SY20-0885-0
IBM Virtual Machine Facility/370:

System Logic and Problem Determination Guide
1976

Page Missing From
Original Document

Page Missing From
Original Document

This publication provides the IBM system
hardware and software support personnel
with the information needed to analyze

problems that may occur

on the IBM Virtual
Machine PFacility/370 (VM/370). ‘

CMS/DOS is part of the CMS system and .is

not a separate system. The term CMS/DOS is
used in this publication as a
of stating that the DOS simulation mode of
CMS is currently active; that is, the CMS
command :

SET DOS ON
has been previously issued. e

The phrase “CMS file system"™ refers to
disk files that are in CMS's 800-byte block
format; CMS's VSAM data
included.

A system failure is usually accompanied
by a dump of processor storage. The dump
can occur by means of an automatically
invoked dump program, or a standalone dump
program. An example of a standalone dump
program is: i

BPS Storage Print Program, No. 360-UT-056
HOW THIS MANUAL IS ORGANIZED
This manual contains five sections:

contains
error

"Section 1. Introduction®
debugging information about
conditions that may occur within VM/370.
This debugging information tells you what
to do about ABENDs, loops, wait states, and
incorrect output. Section 1 also contains
a brief description of three of the VM/370
components. The components that are
described are: the VM/370 Control Program
(CP), the Conversational Monitor Systenm
(CHs), and the Remote Spooling
Communications Subsystem (RSCS).

"Section 2. Method of Operation and

Progran Organization® contains the
functions and relationships of the progranm
routines in VM/370. Section 2 indicates

the program operation and organization in a
general way to serve as a guide in
understanding the programming of VM/370.
It is not meant to be a detailed analysis
of VM/370 programming and cannot be used as
such.

"Section 3. Directories® contains a
description of all the assemble modules in
cCP, CMs, and RSCS. It also contains
extensive cross-references between modules
and labels within a VM/370 component.

concise way

sets are not.

PREFACE

"gection 4. Diagnostic Aids" contains
.debugging commands for problem solving,
wait state and ABEND codes, error codes,
return codes, and information about the
DASD ‘Dump Restore Progran.

"Section 5. Appendixes" contains
reference information that may be useful

when debugging VM/370, such as: the VM/370
programming restrictionms, the CHMS ZAP
Service Program, and the VM/370 coding
conventions and equate symbols.

~ 'HOW TO. USE THIS MANUAL

e Use the problem determination part of
Section 1 to help you to determine what
type of error has occurred. Write down
all error messages, ABEND codes and
return codes, and obtain a storage
dump.

e Consult the VM/370: System Messages for
- information about the error message,
ABEND code, or return code. The VM/370:
System Messages also contains extensive
cross-reference information that may be
‘helpful to you.

e TIsolate the component of VM/370 in which
the problem occurred.

e Use the list of restrictions in "Section
5. Appendixes" to be certain that the
operation that was being performed was
valid.

e Use "Section 3. Directories" and use the

VM/370: Data Areas and Control Block
Logic to help you to isolate the
problem.

e Use "Section 2. Method of Operation and
Program Organization" if necessary, to
understand the operation that was being
performed.

PREREQUISITE PUBLICATIONS

IBM Virtual Machine Facility/370:

Introduction, Order No. GC20-1800
Terminal User's Guide, Order No.
GC20-1810

Operator's Guide, Order No. GC20-1806

Order No. GC20-1820

_______ and Macro
No. GC20-1818

Reference, Order

IBM System/360 Principles of Operation,
Order No. GA22-6821 :

IBM System/370 Principles of Operation,

Order No. GA22-7000

IBM 0S/VS and VM/370 Assembler Programmer's
Guide, Order No. GC33-4021

Lanquage, Order No. GC33-4010 o

~-Data Areas an
Orde 0

COREQUISITE PUBLICATIONS

ntrol Blocks Logic,

r No. SY2

System Messages, Order No. GC20-1808

Operating Systems im a Virtual Machine,
order No. GC20-1821

(RSCS) User's Guide, order No.
GC20-1816

SECTION 1. INTRODUCTION. .
Introduction To Debugging.
How To Start Debugging .
Does a Problem Exist? .
Analyzing the Problem. .
Using VM/370 Facilities to De
CP Abnormal Termination. . . .
CP Termination without a Dump.
CMS Abnormal Termination . . .
Virtual Machine ABEND (Other Than C
Unexpected Results
Unexpected Results in CP
Unexpected Results in a Virtual
Machine . « ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o« &
LOOPSe ¢ o ¢ ¢ o ¢ o o o o o o =
CP Disabled LOOpP +» « « « « « & o«
Virtual Machine Disabled Loop. .
Virtual Machine Enabled Loop . .
WAIT e e o o o s o @

s & o s

e o o o o
e ¢ 2 s o

o 0 8 s 8 % s 8

ug
a

e« o e o o o o s o s &

CP Disabled Halt e e o e o o o
CP Enabled Wait. . . o o o
Virtual Machine Dlsabled Wait.
Virtuval Machine Enabled Wait . .
RSCS Virtual Machine Disabled Wait
RSCS Virtual Machine Enabled Wait.
Summary of VM/370 Debugging Tools. .
Comparison of CP and CMS Facilities f
Debugging « « o o ¢ o o o o o o o o
Debugging CP on a Virtual Machine. .
ABEND DUMPS. « o o = « « « « « « « «
Using the VMFDUMP Command.
How to Print A CP Abend Dump
Reading CP ABEND Dumps . .
Reason for the ABEND . .
Collect Information. . .
Register Usage
Save Area Conventions. .
Virtual and Real Control
VMBLCK . . .
VCHBLOK. o
VCUBLOK. .
VDEVBLOK .
RCHBLOK. .
RCUBLOK. .
RDEVBLOK -
Identlfylng a Pageable Mo
e

e o o o o & & s & =

or

Q
s & o & ¢ ¢ o X's s o o

¢ o 8 o
e & o 8 4 o o
e« o o o o o

u
Reading CMS ABEND Dumps.
Reason for the ABEND .
Collect Information.
NUCON AREAS.
Register Usage . .
Nucleus Load Map .
Load Map « « « o -«
CP Introduction. . .
CP Initialization.

Virtual Machine Managem

=]

e & ¢ c+ e 4 8 s 0 s et o Oye & o * o & & [Tje s s .

Spooling
Console Punctions.
Program States . . « . &
Preferred Virtual Machine.
VM/VS Handshaking.

e

¢ ® o * & o o 4 + s * s ¢ o o pule e s 0 2 & s (s s o o
o
e & o 6 ® o 5 s 8 4 & & s & 8 s s 8 & 2 e e & N s

® & o e & 8 e s 4 & 8 e s 5 s & 8 8 s s e &8 " 0w s

%]

¢ 6 e s s 2 s s s s 0

¢ 6 s & 8 s & 0 s s s e e & s s s s s s e s s s s s s o s (De s s e

Interruption Handling. .

CONTENTS

CP Interruption Handling

Free Storage Management.
Storage Protection . . .
Executing the Pageable Control
System Support Modules
Control Register Usage . . .
Restrictions and Conventions
Pageable CP Modules . .
Data Area Modules. . .

(o]

SVC Interruptions. .
Executable Modules . .
External Interruptions
Program Interruptions.
Virtual Timer Maintenan
I/0 Management
I/0 Supervisor . . .
Real I/0 Control Blocks.
Virtual I/0 Requests . .
I/0 Component States . .
I/0 Interruptions. . . .
Virtual I/0 Interruptions.
Scheduling I/0 Requests. .
Virtual Console Simulation
Remote 3270 Programming. . .
I/0 Programs for Bisync Lines and
Remote 3270s. « ¢« ¢« &« ¢ o o &

e

e o o s o s & o
® & 6 & o % o s 8 s e s &

e 8 e & & & & & 5 &6 & 6 8 s & @
® & o & o s s 2 ¢ s & 4 s s s 0 ¢ s [hoe

8 & & 8 ¢ & o ¢ & o 8 o s o ° s & @

-
r
.
.
.
n

« o 53
« « 54

Program 54

« « 55
« « 55

6 % & o 4 o 4 s 0 ¢ & s s s 8 s s »
® 2 & 8 s s o ¢ 8 s 6 4 6 s s 4 & »
=
(=)

.« o T4

Data Formats - Bisync Lines and Remote

32700 ¢ ¢ ¢« o o 4 e e e e
Allocation Management. . . .
Normal Paging Requests . . .
DASD Storage Management. . .
Paging I/0 « « « o o o« o o« o«
Virtual Storage Paging Error
Virtual Relocation

i

eco
Free Storage Management. .

CP Initialization.

Initialization and Terminat
Console Functions.

Dispatching and Scheduling
CP Spoolinge « + « o o« o

Spool Data and File Format .
spool Buffer Management. . .
Virtual Spooling Manager (DMKVSP)
Real Spooling Manager (DMKRSP)
Spooling Commands. .« . « « . .
spool File Error Recovery. . .
Recovery from System Failure . .
Recovery Management Support (RMS)
System Initialization for RMS. .
Overview of Machine Check Handler.
System/370 Recovery Features . . .
Overview of Channel Check Handler.
Channel Control Subroutine
Individual Routines.

io

5 % & 8 s D e s s Te s s e

(o
P

v

Error Recording Interface for V1rtu

Machines. « « « ¢« ¢« o« ¢ « o ¢ « &
Error Recording and Recovery . . .
Exrror Record Writing . . . « . « .
DASD Error Recovery, ERP (DMKDAS).
Tape Error Recovery, ERP (DMKTAP).
3270 Remote Support Error Recovery

Y

1

® e & & s s Qs e 0 4t s & s 8 2 e+ s s 4 ¢ 3 ¢ o s * e s o

The Conversational Monitor System (CMS).111

The CMS Command Language . « « « « « «111 NPT Input File Processing.146
The File System. . . « ¢« ¢« « « « « « 111 NPT Output Processing Routines147
Program Development. . . « . . « « « o112 Major Data ATreas . « « « « « o o o o o147
Interruption Handling in CMS 112 - SVECTORS: Supervisor Control Queues
Fanctional Information 115 and Supervisor Routine Addresses. . .17
Structure of CMS Storage . . « . « « .116 RSCS Supervisor Queue Elements147
Free Storage Management. . . . « . « 116 MAINMAP: Storage Available to RSCS
CMS Handling of PSW Keys« .123 Programs and Tasks. « . « « « « « « 147
CMS SVC Handling « « « « « ¢ « « « « <124 TAREA: The Save Area for an
SVC Types and Linkage Conventions. . .124 Interrupted Task. « « ¢ « o « « « o o147
User and Transient Program Areas . . .126 LINKTABL: Link Description Data. . . .147
Called Routine Start-up Table.126 TAG: The RSCS File Descriptor.147
Returning to the Calling Routine . . .126 RSCS Request Elements. 147
CMS Interface for Display Terminals. .129 VM/370 Data Areas Referenced by RSCS .148
0S Macro Simulation under CMS.130 RSCS Storage Requirements. . «148
0S Data Management Simulation.130 synchronizing and Dispatching Tasks. . .149
Handling Files that Reside on CMS The WAIT/POST Routines <149
bisks « o« o o « 130 Synchronization Locks. « « . 149
Handling Files that R951de on 0S or Asynchronous Interruptions and Exits .149
DOS DiSkS « « o o o o o o « « o« « « 4130 Using Asynchronously Requested
Simulation Notes .« « « ¢« ¢« o ¢ « « o o131 Services: DMTWAT. . « « « « « « « « 150
Access Method Support. . . « « « « « .134 Posting a Synch Lock «150
Reading 0S Data Sets and DOS Files Dispatching in RSCS. . . « « « « « « 150
Using 0S Macros . . e+ e e o o o136 Task-to-Task Communications.150
DOS/VS Support under CHS e e e e = - #2137 ALERT Task-to-Task Communication . . .150
CMS Support for 0S and DOS VSAM GIVE/TAKE Task-to-Task Communication .151
Functions . « « o « o « « « « « « « 2138 Input/Output Methods and Techniques. .152
RSCS Introduction. .« . . « « « o « « « 138 Active and Pending I/0 Queues.152
Remote Spooling Communications Handling Link Activity: LINKTABLs and
Subsystem: Overview . . . « o138 TAGSe o o o o o s o o s o o o« o « o 152
The RSCS Virtual Hachlne and the How Links Handle Piles152
VM/370 Control Program (CP)139 Transmitting VM/370 Files to an RSCS
Locations and Links. « « . .139 Linke ¢ ¢« o o ¢ o o o o o o o o « « +153
Remote Stations.« .« « .« « « 139 Processing Files from Remote Stations.153

Network Control: RSCS and VM/370
ComrmandSe « ¢« o = s s o o o o o »
RSCS Commands. «

. 140 SECTION 2. METHOD OF OPERATION AND
. 140 PROGRAM ORGANIZATION. . « « « « « « « 155

VM/370 CP and CMS Conmands For RSCS. .140 CMS Program Organization155
The RSCS Control Program 141 Introduction to CMS. . . . e s o « 160
The RSCS Supervisor. . . . « « « « « o141 Initialize the CMS Virtual Hachlne
Task Management. « « « o« o« 141 Environment . « « « « « 160
I/0 Management . « « o« o » o o « « « o142 Initialization: Loading a CMS Virtual
Interruption Handling. 142 Machine from Card Reader.160
Virtual Storage Management o .142 Initializing a Named or Saved System .162
RSCS Task Structure. . « « « « « « - o142 Handle the First Command Line Passed
Create System Tasks: DMTCRE.143 tO CMS. v ¢ ¢ o o o o o o o o = o » 2162
Process Commands: DMTCMX . . . « . . .143 Setting and Querying Virtual Machine
Process Messages: DMTMGX . . . « o o143 Environment Options « . « « . « « . 163
Terminate System Tasks and Handle Process and Execute CMS Files.163
Program Checks: DMTREX. . . . 143 Maintaining an Interactive Console
Commnunicate with the VM/370 spool Environment . « .« ¢« ¢ ¢ ¢ ¢« ¢« ¢ . . <163
File System: DMTAXS « « . o144 Console Management and Command
Manage Telecommunication Line Handling in CMS « « « « « .163
Allocation: DMTLAX. « « o144 Maintaining an Interactive
Line Driver Tasks: DMTNPT and DHTSHL . 144 Command/Response Session. « « « « » +163
The SML Line Driver Program.144 Method of Operation for DMSINT164
SHL PIOCESSOILS &« « « o « o « o « o o« <145 Method of Operation for DMSITS165
The SML Line I,/0 Handler Routine: Load and Execute Text Files.168
COMSUP. + « ¢ ¢ ¢ « o« « « « o « « « o145 Process Commands That Manipulate the
The SML Punction Selector Routine: File System . « « « v« o« o o o « o o« 177
$START. . « « « « =« e « « « <145 Manage the CMS File System177
Block and Deblock SML Teleproce551ng How CMS Files are Organized in
Buffers: $TPPUT and $TPGET.145 Storage « ¢« ¢ ¢ o o o o o o o o o o 2177
The NPT Line Driver Prograll. . « « «+ « .146 File Status Tables « « « « 177
The NPT Line Monitor Routine: LINEIO .146 Chain Links. « « ¢« ¢« ¢ ¢ o o o« « « « 178
The NPT Function Selector Routine: CMS Record Formats . « . « « « « « « .178

NPTIGET. . 4 ¢ ¢ ¢ ¢ 4 o o o o o « « 146

Disk Organization in CMS < - 178
Physical Organization of Vlrtual
DISKS ¢ o « o o o o o o o « o « « o« 4180
The Master File Directory.180
Keeping Track of R/W Disk Storage:
QMSK and QOMSK. « « « « « « « = « o« 180
Dynamic Storage Management: Active
Disks and Files « . . <182
CMS Routines Used to Access the File
Systeme « ¢« ¢ o o ¢ o o o o o « o <182
Input/Output Operations. . . . 182
Unit Record I/O0 Processing . « <183
Handle Interruptions 184
DISK I/0 IN CMSe ¢« o « ¢ o & . 184
Manage CMS Free Storage. . « . =« . 185
Simulate Non-CMS Operating Environments.192
Access Method Support for Non-CMS
Operating Environments.
CMS Support for the Virtual storage
Access Method ¢« . . ¢ ¢ <« . 193

e

193

Creating the DOSCB Chain « . «193
Executing an AMSERV Function . «193
Executing a VSAM Function for a DOS

User. . . e e e e o o s e o o <194

CMS/DOS SVC Handllng e e e+ s s s e e 21985

Executing a VSAM Function for an 0S

USELe ¢ ¢ « o o o o o o o =« . . « <196
Completion Processing for OS and DOS ‘
VSAM Programs . «. « « « « « « » « « 198

0S Simulation by CMS . . . « « « - « . .198
Simulating a DOS Environment Under
CMS &+ ¢« o o o o o o o o o o s o o o 4207
Initializing DOS and Processing DOS ‘
System Control Commands207
Setting or Resetting Systen '
Environment Options e « o <208
Process CMS/DOS OPEN and CLOSE
Functions . . . e e o o o . .«209
Process CMS/DOS Executlon-Related
Control Commands. . « « « « « « « « .210
Simulate DOS SVC PFunctions211
SVCs Treated as No-Op by CMS/DOS . . .213
Process CMS/D0OS Service Commands . . .213

Terminate Processing the CMS/DOS .
Environment . . . « « « « o « « o o 4213
Perform Miscellaneous CMS Functions. .213
CMS Batch Facility « « « ¢« ¢« ¢« « « « 4213
General Operation of DMSBTB. 213
General Operation of DMSBTP.214
Other CMS Modules Modified in CMS
BatCh « ¢« ¢ o« ¢ o o o o ¢ o o o o o
CP Program Organization.
Use of the Annotated Flow Diagram. . .216
VM/370 CP Interruption Processing. . .216
SVC Interruptions - Problem State. . .216
SVC Interruptions - Supervisor State .216
External and Clock Interruption
ReflectiON. « « o ¢ o o o o o o o « <217
MONITOR Interruption Processing. . . .217
Program Interruption Processing. . . .217
Virtual I/O0 Operations and Interruption
PTOCESSES o o o o o o o« s o o o« o « « <218
CTCA Operations Between Two Virtual
Machines. « « « « o o « « ¢« « « o« o o218
Scheduling I/0 for CP and the Virtual
Machine . . . <« ¢« ¢ ¢ ¢ ¢« ¢« ¢ o« « « 2218
Standard DASD I/0 Initiated via

DiagnoSe€. « « o « « « o o o o s o o

.215
«216

.219

General I/0 Operation Initiated Via

biagnose. . . . e e e e o e o o « «219
virtual Machine I/O Instruction

Simulation and Interruption

Reflection. « « v o o o o o o o o« « 219
Virtual Console Simulation219
Local Graphic I/0O and Interruption
Processing. « « « « « « o o o o o o o220
Locate and Validate an ISAM Read

equence. « . . « . 220

Schedullng CP and V1rtua1 Machlne I/0
operations and Interruption Handling.221
Terminal Console I/0 Control,

START/STOP, 3210, 3215, and Others. .222
Console Scheduling . . « .« « « o « o 2222
3704/3705 Interruption Handler223
Handling Remote 3270 with Binary

Synchronous Lines « « « « . 224
Real Storage Allocation and Page

‘Management. e o o <225
Reading/Writing a DASD page To/From

Virtual Storage e o o 225
Allocation and Deallocatlon of DASD

SPACE v« <« o o o o o o o o o o o o 2 226
Shared Ssegment Storage Management. . .226
Temporary Disk Storage Management. . .226
Paging I/0 Scheduler . . . « « « o o 4227
Release Virtual Storage Pages.227
Free Storage Management.227
CP Initialization and Termination

ProcedureSe. « « o« « o o o o o o o« o« 228
Virtual Machine Initialization and

Termination . « « o o o« o ¢« o o o « 4229
Console Function (CP Command)

Processing. . . « o o o « #2230
Dispatching and SChedullng e e e e o« 231
Spoooling Virtual Device to Real.

DEVICE. « ¢ o o o o o o s o o » . «232
Spooling to the Real Prlnter/Punch

Output Device . ¢« « ¢ . ¢ « & ¢ o o <233
Spooling to the Real Input Device. . .234
Spool File Deletion. . . . ¢« « « « .« 234

Recovery Management Support Operation.234

User Directory Routines. . . . « « « 236
save the 3704/3705 Control Progranm
INAage PIOCESS « « « « « « o o o o « 236
Spool File Checkpoint and Recovery . .236
RSCS Program Organization.238
SECTION 3. DIRECTORIES . . . « « o« « « o245
CMS Module Entry Point Directory2u47
- CMS Module-to-Label Cross Reference. . .265
CMS Label-to-Module Cross Reference. . .281
CP Module Entry Point Directory.321
CP Module-to-Label Reference341
CP Label-to-Module Cross Reference . . .373
RSCS Module Directory. . « « « « « o« o JUU47
RSCS Module Entry Point Directory. . . .455
RSCS Module-to-Label Cross Reference . .U465
RSCS Label-to-Module Cross Reference . .469
SECTION 4., DIAGNOSTIC AIDS U477

CP Internal Trace Table. . . . « « o« U477

CP Commands Used To Debug the Vlrtual
Machine . . ¢« ¢ o« o o o « « = o « « « U479
ADSTOP o .« ¢« o 4 o o o o o« o o« o s o « oJUBO

BEGIN. .
DISPLAY.
DUMP . .
SET. . .
STORE. .
SYSTEM .
TRACE. . .
CP Commands for S
System Analysts
DCP. . .
DMCP . . .
LOCATE . .
MONITOR. .

e

e s s o

QUERY. . .
STCP . .
DASD Dump Restore (DDR) Serv1
and How To Use It
Invoking DDR under CMS . .
Invoking DDR as a Standalone
DDR Control Statements . . .
I/0 Definition Statements. .
CP Wait State Codes. . . .« . «
CP ABEND Codes « « . « . « .
CMS Return Codes
CMS DMSFREX Error Codes. .« .
Error Codes from DMSFREE, DMSF
DMSFRET « ¢ o o o o o « o o @
CMS ABEND CodeS. . .« « o « « =«
ABEND Recovery . . . « s .
RSCS Message-To-Label Cross Ref
g
e

¢ % o o 8 a4 s kg P s % s s o o
4]

@ o o & & o e o & 2 s v o
e & s s & s o MJe ¢ & & o v o
H

L T N - N T IS S R
Y]

s ¢ 4 8 s 4 s He o o 0 s s
[+
=]

e & & 8 & o 8 De e e ¢ & ¢ o
H

e P

-.Q.a.oc.o-.o.-.u

(2]

RES

H

¢ & 2 ¢ s De & & n 2 o s s s e O s MHe s 4 s s o« s N8 o & & o s o

=4

CMS Commands for Debugging
DEBUGGING with CMS . . .

CMS Debugging Commands . .
DEBUG. « ¢ ¢ o o« ¢ o « =«
SVCTRACE ¢« o« ¢ « ¢ o o o

DASD Dump Restore Service Progr
How To Use It . . ¢« « . « .
Invoking DDR under CMS . .
Invoking DDR as a Standalon

¢ ¢ s & s o e o 8 fUe o s s s o He s e & s s s e & Pe e s s e s

.
.
-
.
-

B

.
[Q

s Je s s e s N o s e s s s s s e s Qe 6 s s s s s Pe s s s e s
[=]] [

.

rogram

s » e o 2 ¢ o (De o o e o o ¢ o o IMYge o

SECTION 5. APPENDIXES. . ¢« « ¢« « « o «
APPENDIX A: VM/370 CODING CONVENTIONS.
CP Coding ConventionS. . . « o« « « « &
CP Loadlist Requirements . . . « « « «

APPENDIX B: CP AND RSCS EQUATE SYMBOLS
VM/370 Device Classes, Types, Models
and FeatureS. « « « ¢ « « o« = « o &
VM/370 Machine Usage « « « « o« « &
VM/370 Extended Control Registers.
VM/370 CP USag€. « « + « o« « = o« =
VM/370 Registers . « o« ¢ o« ¢ o o o

APPENDIX C: CHMS EQUATE SYMBOLS
CHMS Usage Equates. « « « o« « o o« o &
CHMS Register Equates . . o« o« « « o o

482
.483
. 489
492
. 499
.502
.503

.508
.509
511
.513
.514
515
.528

.529
.529
.530
.530
. 531
540
542
. 557
. 558

.558
«559
«559
563
.568
.568
568
.568
.584

.586
. 586
. 586

. 587

. 589
.589
«590

591

«592
. 594
.595
. 596
.598

599
<599
601

APPENDIX D: DASD RECORL FORMATS.

.603

Record 0 Track 0 Cylinder 0 Only603
Record 1 (24 Bytes). « « « « « o« o « « o604
Record 2, 4096 Bytes « « « « « « « « « 604
ReCOrd 3 . o ¢ o o o o o o o ¢ o« o o o <604
Record 4 . ¢« o o o o o o o« o s o o o o «605
Record 5 & 4« ¢« ¢« ¢ 4« e o o o o =« » o s «605
ReCOTd 6 o « ¢« v « o « « o o« « « « « « 605
Record F3. . ¢« & ¢ o ¢ ¢ o« o « o« « o « «605
RecoTd P, o ¢« o ¢ ¢ o ¢« o « o « =« « s 606
Record U . ¢« ¢ o o o o o o o « o« o o« « 2606
2314 Record Layout « . « <« . « ¢ ¢ « « 606
Cylinder 0, Track 0. « ¢« &« ¢« ¢« « « « « 606
All Cylinders Except 0, Track 0.606
3330 Series Record Layout.607
Cylinder 0, Track 0. « « « « o 607
Any Cylinder Except 0. « « « « 4608
2305 Model 1 and Model 2 ., . . « « « . .608
Cylinder 0, Track 0. « ¢« &« « « ¢« « « « 608
Any Cylinder Except 0. « « + « « « « « .608
3340 Series Record Layout.609
Cylinder 0, Track 0. « « « ¢« o « « « « .609
Any Cylinder Except 0. « 2« ¢ o « « « o« o609
APPENDIX E: VM/370 RESTRICITONS.611
CP Restrictions. . . « « ¢ ¢ o « « « « 611
Dynamically Modified Channel Programs. .611
Minidisk Restrictions. « « . . .611
Timing Dependencies. « « ¢« « « « ¢« « « 613
CPU Model-Dependent Punctions. . . « . .614
Virtual Machine Characteristics.614
CMS Restrictions « « ¢« ¢« ¢« ¢« ¢« ¢ « &« « 616
Miscellaneous Restrictions618
APPENDIX F: VIRTUAL DEVICES USED IN CMS.619
APPENDIX G: FUNCTION CCDES FOR DIAGNOSE
INSTRUCTIONS. <« <« « « o o« « o o o « o 621
APPENDIX H: CMS ZAP SERVICE PROGRAM. . .623
ZAP Input Control Records.624
Special Considerations for Using the
ZAP Service Prograll « . « « o« « « « +629
APPENDIX I: APPLYING PTFS. . . « « « . .631
Supporting A VM/370 System 631
VM /370 Update Procedures . . « « « « « 631
Updating a Module. « « « . .633
Control Files. . e o o s o o s « o« +634
Applying PTFs to VH/370. « o o« e o o« o <635
Updating Modules 051ng the VMFASM EXEC
Procedure . . - « « <638
Using VMFASM to Apply IBH Supplled
Updates . . . - « o o « « 639
Using VMFASM to Apply !our Own Updates .641
Other Files Produced by VMFASM64l

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Fiqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure
Figure
Figure

Figure
Figure

Fiqure
Figure
Figure
Figure

Figure
Figure

1.
2.

4.
5.
6.
7.
8.
9.

10.
1.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.

27.

28.

29.

30.

31.
32.

33.
34,
35.
36.

37.
38.

Does a Problem Exist........13
Debug Procedures for Waits

NG LOOPSececcecccsasascnasasll
Debug Procedures for Unexpected
Results and an ABEND. . . . 15
ABEND MeSSageS eeececsccscces 19
ABEND Problem TyP€eiecessesaasl
Unexpected Results Problen
TYPCecesnccecoscosacnsnncnanaeldl
Loop Problem TYpPCeceasaaaeea25
CP 'Wait Problem Type........25
Virtual Machine Wait

Problem TyPe.cecesesacaacaaea2l
RSCS Wait Problem TypCee....28
Summary of VM/370 Debugging
TOOlSeeeescscoecescsscccccceeld
Comparison and CP and CMS
Facilities for Debugging....33
CMS Control BlockS.seeeseesali2
Sample CMS Load MapPesecsocaoalili
Overview of Interruption
Handlingeeeceoeeoecenassacseseesh3
DIAGNOSE X'5C'/VMMLEVEL

Field AnalySiSecesceacccscsssbll
User Dispatching States.....90
User Status ChangeSeeecessese91
RMS Control Register
AssignmentS....ccececesecasa102
Summary of IOB Indicators...109
CMS File SysteD..ccaceessecaall13
CHMS Storage MaPececcecscccesas 117
CMS Command (and Request)
ProcessiNgeccecccccesccacases 127
PSW Fields When Called

Routine StartSeceeccecececcesss128
Register Contents When

Called Routine Starts.......128
Simulated 0OS Supervisor
CallSececeesccccnsoassaanesnasl3l
DCB Fields That Can Be
Specified for Each Access
Method.eeeeeeeeeeccecseseaesa135
RSCs vVirtual Machine
Configuration...cececeeese..139
RSCS Commands and
FunctionS.ceeeececcceccccncae 140
VM/370 DIAGNOSE

Instructions Issued by the

RSCS Prograleeececececcsecccsecces 141
RSCS TaSKSeeeeeecocanenonasalli3
Data Flow Between RSCS and
Remote Stations via the SHL
Line Driver.iccceccceceecccecssss 145
SML Function Processors..... 146
RSCS Storage Allocation.....148
Input to the DMTWAT Routine. 149
Movement of Data During a
Typical GIVE/TAKE
TransactioN..ceecaccacssasss 152
I/0 Queues and Subqueues....153
Chaining of Data Areas

Required for File TAG
ManipulatioNecseecacccaaaaas 154

Figure
Figure
F@gure
Figure
Figure
Figure

Figure

Figure

Figure

Figure
Figqure
Figure

Figure

Figure

Figure

Figure
Figqure
Figure
Figure

Figure

Figure
Figure
Figure

Figure
Figure

39.
40.
41.
42.
43.
4y,

45.

46.

u7.

48.
49.
50.

51.

52.

53.

54.
55.
56.
57.

58.

59.
60.
61.

62.
63.

An Overview of the

Functional Areas of CMS.....155
Details of CMS Systenm

Functions and the Routines

That Perform TheéMeccecseseseea156
CMS Storage MapPeecsscesccesce..161
PSW Fields When Called

Routine Is Started..........167
Register Contents When

Called Routine Is Started... 168
How CMS File Records Are
Chained Together....ceeeees.177
Format of a File Status

Block; Format of a File

Status Table..eececacenecnsaal78
Format of the First Chain

Link and Nth Chain Links....179
Arrangement of Fixed-Length

or Variable-Length Records

in FileS.iceececanccccccceassl79
Structure of the Master

File DirectOrYeecececesesssesss 181
Disk Storage Allocation

Using the QMSK Data Block... 181
Flow of Control for Unit

Record I/0 Processinge.......183
Relationship in Storage

Between the CMS Interface
Module DMSAMS and the

CMSAMS and CMSVSAM DCSSSs.... 194
The Relationships in Storage
Between the User Program

and the CMSDOS DCSS and the
CMSVSAM DCSSS.ceeacecccnsncsea 195
Relationship in Storage

Between the User Progranm,

the 0S Simulation and

Interface Routines, and

the CMSDOS and CMSVSAM
DCSSSecsassssnsscssccsncnsnscs 196
0S Functions that CMS
SimulateSecesceccsssncccnssesalld9
CP Commands and Their

Module Entry PointSecesss...230
Overview of RSCS Progran
Organization...ccecceecccessess238
Program Organization for

the Multitasking Supervisor.239
Program Organization for

the REX System Service
TaSKSeeeeccroassncssnssnsnesalli0
Program Organization for

the AXS System Service Task.241
Program Organization for

the SML Line Driver Task....242
Program Organization for

the NPT Line Driver Task....243
CP Trace Table Entries......478
Annotated Sample of Output

from the TYPE and PRINT
Functions of the DDR

Program...cceeeececessscaaea539

Figure 67. Devices Supported by a CMS

Figure 64. CP ABEND CodeSeeccececascacnaasdl2 Virtual Machine...ceceee....619
Figure 65. CMS ABEND COQ€S.ccscecsenaaa560 Figure 68. Function Codes for
Figure 66. Summary of SVC Trace Output DIAGNOSE Instruction........621

LineS.ceeceecsccsacenoncaceeea’86 Figure 69. System Support Plan.........638

INTRODUCTION TO DEBUGGING

The VM/370 Control Program (CP) manages the
resources of a single computer such that
multiple computing systems appear to exist.
Fach "virtual computing system®", or virtual

machine, is the functional equivalent of an IBM
System/370. The person trying to determine the
cause of a VM/370 software problem must consider
three separate areas:

e The Control Program (CP), which controls the
resources of the real machine.

e The virtual machine
under the control
0s, DOS, or VM/370.

operating system running
of CP, such as CMS, RSCS,

e The problem program, which executes under the

control of a virtual machine operating
systenm.
Note: For information about +the Interactive

Problem Control System refer to the

Once the area causing the problenm is
identified, the appropriate person should use
all available information and determine the
cause of the problem. The IBM Program Systems
Representative (PSR) or a system programmer
handles all problems with CP, Conversational
Monitor Systenm (Cmus), Remote Spooling
Communication Subsystem (RSCS), and Interactive
Problem Control System (IPCS); information that
is helpful in debugging CP, CMS, and RSCS is
contained in this publication. The applications
programmer handles all problem program errors;
techniques for applications program debugging
are found in the VM/370: CMS User's Guide.

If the problem is caused by a virtual machine
operating system other than CMS and RSCS, refer
to the publications pertaining to that operating
systen for specific information. However, use
the CP debugging facilities, such as the CP
commands, to perform the recommended debugging
procedures discussed 1in the publication that
pertains to the other operating system. The IBHM
PSR or a system programmer handles problems with
virtual machine operating systems.

If it Dbecomes necessary to apply a PTF
(Program Temporary Fix) to a component of
VM/370, refer to "Appendix J: Applying PFTs" for
detailed information on applying PTFs.

HOW TO START DEBUGGING

must
nust

Before you can correct any
recognize that omne exists.

problem, you
Next, you

identify the problem, collect information and
determine the cause so that the problem can be
fixed. When running VM/370, you must also

decide whether the problem is in CP, the virtual
machine, or the problem program.

A good approach to debugging is:

1. Recognize that a problem exists.

2. Identify the problem type and the area
affected.

3. Analyze the data you have available,
collect more data if you need it, then
isolate the data that pertains to your
problenm.

4. PFinally, determine the cause of the problem
and correct it.

DOES A PROBLEM EXIST?

There are four types of problems:

e ABEND (Abnormal End)
e Unexpected results
e Loop

e Wait state

ABEND (Abnormal End)

end is the most easily identified
abnormal termination causes an

The abnormal
problen. An
error message.

Unexpected Results

Unexpected results, such as missing or incorrect
output, or incorrect format, is another easily
jdentified problenm.

Loop and Wait State

Unproductive processing time is a problem not
easily recognized, especially in a time-sharing
environment. When you are using VM/370, you are
usually sitting at a terminal and do not have
the lights of the CPU control panel to help you
recognize this type of problem.

condition if your
execute than you
If the number of
greater than

You may have a looping
program takes longer to
anticipated. Check your output.
output records or print lines is
expected, the output may really be the same
information repeated many times. Repetitive
output usually indicates a program loop.

Section 1. Introduction 11

Another way to identify a loop is to
periodically examine the current PSW. If the PSW
instruction address always has the same value,

or if the instruction address has a series of
repeating values, the program probably is
looping.

A wait state may exist if your program is
taking longer to execute then expected. To

display the
Periodically,

identify a probable wait state,
current PSW on the terminal.
issue the CP command

QUERY TIME
and compare the elapsed

the elapsed processing time does
the wait state probably exists.

processing time. When
not increase,

Figures 1-10 help you to identify problen
types and the areas where they may occur.

ANALYZING THE PROBLEM

Once the type of probler is identified, the
cause of it must be determined. There are
recommnended procedures to follow. These

procedures are helpful, but do not identify the

cause of the problem in every case. Be
resourceful. Use whatever data you have
available. If the cause of the problem is not

found after the recommended debugging procedures
are followed, it may be necessary to undertake
the tedious job of checking through listings at
your desk.

Guide for

User's

facilities to debug

See the V¥M/370 CMS
information on using VM/370
a problem program.

USING VM/370 FACILITIES TO DEBUG

once the problem and the area where it occurs is
identified, you can gather the information
needed to determine the cause of +the problesn.
The type of information you want to use varies
with the type of problem. The tools used to
gather the information vary depending upon the
area in which the problem occurs. For example,
if looping is the problem, you should examine
the PSH. For a CP 1loop, you must use the
operator's console to display the PSW, but for a
virtual machine loop you can display the PSW via
the CP DISPLAY command.

The following shows specific debugging
procedures for the various error conditioms.
The procedures tell you what to do and what

debugging tool to use. PFor details on how to
invoke and use the debugging tools refer to "CP
Commands FPor Debugging", WCMS Commands For
Lebugging", and "Debugging With CHMS"™ in Section

CP ABNORMAL TERMINATICN

When CP abnormally terminates, a dump is taken.
This dump can be directed to a tape or printer
or dynamically allocated to a DASD. The output
device for a CP ABEND dump is specified by the
CP SET comnmand. See YABEND Dumps" in this
section for a description of the SET and VMFDUMP
commands.

Use the dump to find what caused CP to
terminate. Find why the system abnormally
terminated and then see how the condition can be
corrected. See “Reading CP ABEND Dumps" in this
section for detailed information on reading a CP
ABEND dump.

REASON FOR THE ABEND: CP terminates and takes an

abnormal termination dump under three
conditions:
e Program Check in CP

Examine the PROPSW and INTPR fields in the

Prefix Storage to determine the

failing module.

Area (PsSA)

e Module Issuing an SVC 0

Examine the SVC o0ld PSW (SVCOPSHW) and ABEND
code (CPABEND) fields inm the prefix storage
area to determine the module that issued the
SVC 0 and the reason it was issued.

CPABEND contains an abnormal termination
code. The first three characters identify
the failing module (for example, ABEND code
BLD001 indicates DMKBLD is the failing
module) .

e Pressing SYSTEM RESTART cn CPU Console

Examine the old PSW at location X'08' to find
the 1location of the instruction that was
executing when SYSTEM RESTART was pressed.
The operator presses SYSTEM RESTART when CP
is in a disabled wait state or loop.

PROCEDURE WHEN CP ABEND OCCURS: The information
in low storage tells you the status of the
system at the time CP terminated. Status
information is stored in the CPSTAT field of the
PSA. You should be able to tell the module that
wvas executing by looking at the PSA. See "Save
Area Conventions" in this section and refer to
the appropriate save area (SAVEAREA, BALRSAVE,
or FREESAVE) to see how that module started to
execute.

control blocks
The PSA
Areas and

Examine the real and virtual
to find the status of I/0 operations.
is described in Data
Control Block Logic.

Examine the CP internal trace table. This
table can be extremly helpful in determining the
events that preceded the ABEND. The CP internal
trace table description in Section 4 tells you
how to use the trace table.

12 IBM VM/370: System Logic and Problem Determination Guide

== Does a problem exist?

START
DEBUGGING

ANY

—— s there an ABEND condition ?

appears on the console and

the alarm rings,
this is a CP ABEND.
The system dumps to disk or to the
printer if the set dump E command

has been issued, and automatically
performs IPL. ——’@

DMKCKP961W SYSTEM SHUTDOWN COMPLETE
appear on the console,

this is a CP ABEND.

The system dumps to tape

or printer and stOPs. — g @

If the message

DMSABNI48T SYSTEM ABEND XXX,
CALLED FROM YYYYYY
appears on the terminal,

this is a CMS ABEND.———'

f an ABEND message
from the virtual machine appears
on the terminal,

this is an ABEND in the
operating system controiling

this virtual machin&—-——-&@

Otherwise, an ABEND
condition does not exist,

If the message
1 DMKDMP308! SYSTEM FAILURE, CODE XXX XXX

If the messages
A DMKDMP908I SYSTEM FAILURE, CODE XXXXXX
DMKCKP960! SYSTEM WARMSTART DATA SAVED

MESSAGES

ANY
UNEXPECTED
RESULTS

HAS
AN EXCESSIVE
AMOUNT OF
TIME ELAPSED

No problem exists

GO TOw

Y

@ Unexp d Results?

2

If an operating system which

executes properly on a real machine

fails to execute properly under VM/370,
there are unexpected results

inCP, — w
If a program which executes under

the control of an operating system on

a real machine fails to execute correctly
with the same operating system under
VvM/370,

there are unexpected results

in the virtual machine. ————%=
If the program’s output is
inaccurate or missing,

there are unexpected results
in the problem program.

If the output is redundant
check for a (00p. ———am

Otherwise, check for a wait or

e |5 there a wait or Loop?

If pressing the REQUEST key on the operator’s
console leaves the REQUEST PENDING light on,
a CP disabled wait state exists

The CPU console light will be on. ——— gam

If the CPU console wait light is on,

. the system is in a CP enabled wait state. —em v
If the real PSW problem bit is OFF,
there is a CP loop., ——————p v

If any of the following messages

DMKDSP450W CP ENTERED; DISABLED WAIT PSW

DMKDSP451W CP ENTERED; INVALID PSW

DMKDSP452W CP ENTERED; EXTERNAL INTERRUPT
Loop

DMKDSP453W CP ENTERED; PROGRAM INTERRUPT
Loorp

appears on the terminal,

there is a disabled wait or an interrupt loop in the

virtual machine. —__—————w
If pressing the ATTN key once does not cause
an interrupt,

there is a disabled foop in the virtual machine.

machine without reaching end-of-job,
the virtual machine is in an
enabled wait state and no 1/0O interrupt
has occurred.

n If processing has ceased in the virtual

7 If processing time exceeds normal expectations,
the virtual machine may have an enabled loop. \

. Otherwise,’

Figure 1.

s
®

Does a Problem Exist?

\
@

Section 1., Introduction

13

Figure

14

2.

G

Dby

C

Hﬂﬂﬁ

Debug Procedures for a Wait

CP Disabled Wait

Use ALTER/DISPLAY console mode (if available), to display real PSW and CSW. Also,
display general and extended control registers and storage locations X'00°—X"100",

Press SYSTEM RESTART button to cause a CP ABEND
dump to be taken,

IPL.

T

CP Enabled Wait

Press SYSTEM RESTART button to cause a
CP ABEND dump to be taken.

Use the dump to check the status of each VMBLOK. Also,
check RCHBLOK, RCUBLOK, and RDEVBLOK for each device.

Virtual Machine Disabled Wait

Use CP commands (CMS users may use the CMS DEBUG command) to display
the PSW, CSW, general registers, and control registers.

2 Use the CP DUMP command {or CMS DUMP subcommand) to
take a dump.

Virtual Machine Enabled Wait

Take a dump.

B

Debug Procedures for a Loop

CP Loop

Use ALTER/DISPLAY console mode (if available) to
display real PSW, general registers, control
registers, and storage locations X"00'—X"100",

Press SYSTEM RESTART button to cause a CP

ABEND dump to be taken.

Examine the CP internal trace table to see where the loop is.

Virtual Machine Disabled Loop

Use the CP TRACE command to trace the loop.

Display the general registers and controdl registers
via the CP DISPLAY command.

Take a dump using the CP DUMP command.

Examine the source code.

Virtual Machine Enabled Loop
Trace the loop. Display the PSW, general registers,
and extended control registers,

Take a dump.

. Examine source code.

Debug Procedures for Waits and Loops

IBM VM/370: System Logic and Problem Determination Guide

Figure

3.

s

Debug Procedures for Unexpected Results

r— Unexpected Results in CP

Check that the program is not violating any
CP restrictions.

on the virtual machine are exactly the same as those
that ran on the real machine.

Use the CP TRACE command to trace CCWs, 8$10s, and interrupts.
Look for an error in CCW translation or interrupt reflection.

If disk 1/O error, use the CP DDR (DASD Dump Restore)
program to print the contents of any disk.

Check that the program and operating system running

Unexpected results in a virtual

Check that the program executing on the virtual machine is
exactly the same as the one that ran on the real machine.

Make sure that operating system restrictions
are not violated.

Use CP TRACE to trace all 1/O operations.

Hﬂﬁ

Debug Procedures for an ABEND

CP ABEND

Find out why CP abnormally terminated. Examine the
PROPSW, INTPR, SVCOPSW, and CPABEND fields in the PSA
from the dump.

Identify the module that caused the ABEND.

Examine the SAVEAREA, BALRSAVE, and FREESAVE areas of the dump.

If 1/0 operation, examine the real and virtual 1/O
control blocks.

CMS ABEND

Determine reason for ABEND from code in ABEND
message DMSABN148T.
Enter debug environment or CP console function mode
2 to use the commands, to display the PSW, and to examine
low storage areas:
LASTLMOD and LASTTMOD
LASTCMND and PREVCMND
LASTEXEC and PREVEXEC and DEVICE
Look at the last instruction executed.
Take dump if need be.

Virtual Machine ABEND (other than CMS)

Examine dump, if there is one.

control words.

Use CP TRACE to trace the processing up to
the point where the error occurred.

. Use CP commands to examine registers and

Debug Procedures for Unexpected Results and an ABEND

Section 1.

Introduction

15

The values in the general registers can help
you to locate the IOBLOK, VMBLOK, and the save
area. Refer to “"Reading CP ABEND Dumps" in this
section for detailed information on the contents
of the general registers.

In the PSsA, if the program check old PSW
(PROPSW) or the SVC old PSW (SVCOPSW) points to
an address beyond the end of the resident
nucleus, the module that caused the ABEND is a
pageable module. Refer to YReading CP ABEND
Dumps™ in this section to f£find out how to
identify that pageable module. Use the CP load
map that was created when the VM/370 system was
generated to find the address of the end of the
resident nucleus.

CP TERMINATION WITHOUT A DUMP

Two types of severe machine checks can cause the
VM/370 control program to terminate:

e An unrecoverable machine check in the control
program

e A machine check that cannot be diagnosed

A machine check error cannot be diagnosed if
either the machine check 0ld PSW or the machine
check interruption code is invalid. These
severe machine checks cause CP to terminate, but
no dump is taken since the error is recorded on
the error recording cylinders. The system is
automatically restarted and a message is issued
identifying the machine check error.

If an unrecoverable machine check occurs in
CP, the message

DMKMCH610I MACHINE CHECK SUPERVISOR DAMAGE

appears on the CPU console. CP is terminated and
automatically restarted.

If the machine check handler cannot diagnose
a certain wmachine check, the integrity of the
system is questionable. The message

DMKMCH611I MACHINE CHECK SYSTEM INTEGRITY
LOST

appears on the CPU console, CP is terminated and
automatically restarted.
Hardware errors are probably the cause of
these severe machine checks. The systenm
operator should run the CPEREP program‘to print
the previous error and save the output for the
installation hardvare maintenance personnel.

CMS ABNORMAL TERMINATION

When CMS abnormally terminates, the
error message appears on the terminal:

following

DMSABN148T SYSTEM ABEND xxx CALLED
FROM yyyYYY

where xxx is the ABEND code and yyyyyy is the
address of the instruction causing the ABEND.
The DMSABN module issues this message. Then, CMS
waits for a command to be entered from the
terminal.

Because CMS is an interactive system, you may
want to use its debugging facilities to examine
status. You may be able to determine the cause
of the ABEND without taking a dump.

The debug program is located in the resident
nucleus of CMS and has its own save and work
areas. Because the debug program does not alter
the status of the system, you can use its
options knowing that routines and data cannot be
overlaid wunless you specifically request it.
Likewise, you can use the CP commands to debug
wvhen you know that you cannot inadvertently
overlay storage because the CP and CMS storage
areas are completely separate.

REASOR FOR THE ABEND: Pirst determine the
reason CMS abnormally terminated. There are four

types of CMS abnormal terminations:
e Program Exception

The DMSITP routine gets control whenever a
hardware program exception occurs. If a
routine other than a SPIE exit routine is in
control, DMSITP issues the message

DMSITP141T xxxxxXxxX EXCEPTION OCCURRED
AT xxxxxx IN ROUTINE XXXXXXXX
DMSABN (the ABEND

and invokes routine). The

ABEND code is 0Cx, where x is the progranm
exception number (0-P). The possible
programming exceptions are:
Code HMeaning
0 Imprecise
1 Operation
2 Privileged operation
3 Execute
4 Protection
5 Addressing
6 Specification
7 Decimal data
8 Fixed-point overflow
9 Fixed-point divide
A Decimal overflow
B Decimal divide
(o} Exponent overflow
D Exponent underflow
E Significance
F Floating-point divide
e ABEND Macro
Control is given to the DMSSAB routine

user routine executes the ABEND
specified in the ABEND
abnormal termination

whenever a
macro. The ABEND code
macro appears in the
message DMSABN14S8T.

e Halt Execution (HX)
Whenever the virtual

an attention interruption and
terminates and issues "CMS",

machine opertor signals
enters HX, CMS

16 IBM VM/370: System logic and Problem Determination Guide

e System ABEND

A CMS system routine can abnormally terminate
by issuing the DMSABN macro. The first three
hexadecimal digits of the system ABEND code
appear in the CMS ABEND message, DMSABN148T.

The format of the DMSABN macro is:

Ll 1

| | | r r 1 |

I[label]| DMSABN |code |,TYPCALL=|SYC || {

| | | (reg) | |BALR{ | |

I I | L L 44 |

L]

Where:

label is any valid Assembler language
label.

code is the abnormal termination code
(0-FFF) that appears in the DMSABN148T
system termination message.

(req) is the register containing the
abnormal termination code.

TYPCALL= specifies how control passes to the

TYPCALL=BALR abnormal
routine, DMSABN.

termination

TYPCALL=SVC
Routines that do not reside in the
nucleus should use TYPECALL=SVC to
generate CMS SVC 203 linkage.

TYPCALL=BALR
Nucleus-resident
TYPCALL=BALR to
branch to DMSABN.

routines
generate a

specify
direct

If a CMS SVC handler abnormally terminates, it
sets an ABEND flag and stores anm ABEND code in
NUCON (the CMS nucleus constant area). After

the SVC handler has
ABEND condition is recognized.
routine issues the ABEND message,
with the ABEND code stored in NUCON.

finished processing, the
The DMSABN ABEND
DMSABRN148T,

PROCEDURE WHEN CMS ABEND OCCURS: After a CMS
ABEND, CMS provides two courses of action. In

addition, you can enter the CP command mode and

WHEN CMS

use CP's debugging facilities by signalling

attention.

The two courses of action available in CMS
are:

e Issue the DEBUG command and enter the debug
environment. After wusing all the DEBUG
subcommands that you need, exit from the
debug environment. Then, either issue the
RETURN command to return to DMSABN so that
ABEND recovery occurs, oOr issue the GO

command to resume processing at the point the
ABEND occurred.

e 1Issue a CMS command other than DEBUG and the

ABEND routine, DMSABN, performs its ABEND
recovery and then passes control to the
DMSINT routine to process the command Jjust
entered.

The ABEND
following:

recovery function performs the

e The SVC handler, DMSITS, is re-initialized,
and all stacked save areas are released.

e UFINIS * * *" jis invoked by means of SVC 202,
to close all files, and to update the master
file directory.

e TIf the EXECTOR module is
is released.

in real storage, it

e All 1link blocks
freed.

allocated by DMSSLEN are

e All FCB pointers are set to zero.

e All user storage is released.

e The amount of system free storage which
should be allocated is computed. This value
is compared to the amount of free storage

that is actually allocated.
e The console input stack is purged.

When the amount of storage actually allocated
is 1less than the amount that should be
allocated, the message

DMSABN149T xxxx DOUBLEWORDS OF SYSTEM
STORAGE HAVE BEEN DESTROYED

appears on the terminal. If the amount of
storage actually allocated is greater than the
amount that should be allocated, the message

DMSABN150W nnn (HEX xxx) DOUBLEWORDS OF
SYSTEM STORAGE WERE NOT
RECOVERED

appears on the terminal.

A DEBUGGING PROCEDURE: When a CMS ABEND occurs,
you probably want to use the DEBUG subcommands
or CP commands to examine the PSW and certain
areas of 1low storage. Refer to "“CMS Debugging
Commands" in Section 4 for detailed description
of how to use the CMS DEBUG subcommands. See
WCP Commands Used to Debug the Virtual Machinen
and "CP Commands Used to Debug CP" in Section 4
for a detailed description of how to use the CP
conmands. Also refer to Figure 12 for a
comparison of the cP and CMS debugging
facilities.

The following procedure may be wuseful in

determining the cause of a CMS ABEND:

CP DISPLAY
subconmanad.)

1. Display the PSHW. (Use the
command or CHMS DEBUG PSW
Compare the PSW instruction address to the
current CMS 1load map to determine the
module that caused the ABEND. The CMS
storage-resident nucleus routines are in
fixed storage locations.

Also check the interruption code in the
PSW.

2. Examine areas of low storage. The
information in low storage can tell you

more about the cause of the ABEND.

Section 1. Introduction 17

Field Contents

LASTLMOD Contains the name of the last
module loaded into storage via
the LOADMOD command.

LASTTMOD Contains the name of the last
module loaded into the
transient area.

LASTCMND Contains the name of the last
command issued.

PREVCMND Contains the name of the
next-to-the-last conmand
issued.

LASTEXEC Contains the name of the last
EXEC procedure.

PREVEXEC Contains the name of the
next-to-last EXEC procedure.

DEVICE Identifies the device that
caused the last I/0
interrupt.

The low storage areas examined depend on

the type of ABEND.

3. Once you have identified the module that
caused the ABEND, examine the specific
instruction. Refer to your listing.

4. If you have not identified the problem at

this time, take a dump by issuing the DEBUG

DUMP subcommand. Refer to "Reading CMS
ABEND Dumps" in this section for
information on reading a CMS dump. If you
can reproduce the problem, try the CP or

CMs tracing facilities.

VIRTUAL MACHINE ABEND (OTHER THAN CHNS)

The abnormal termination of an operating system
(such as 0S or DOS) running under VM/370 appears
the same as a similar termination on a real

machine. Refer to publications for the
specified operating systen for debugging
information. However, all of the CP debugging
facilities may be used to help you gather the

information you need. Because certain operating
systems (0S/Vs1, 0S/VS2, and DOS/VS) manage
their own virtual storage, CP commands that
examine or alter virtual storage locations
should be wused only in virtual=real storage
space with 0S/Vs1, 0S/VSs2, and DOS/VS.

18 IBM VM/370:

taken, it was sent to the
Issue a CLOSE command to the

If a dump was
virtual printer.

virtual printer to print the dump on the real
printer.

If you choose to run a standalone dump
program to dump the storage in your virtual

machine, be sure to specify the NOCLEAR option
when you issue the CP IPL command. At any rate,
a portion of your virtual storage is overlaid by
CP's virtual IPL simulation.

If the problem can be reproduced, it is
helpful to trace the processing using the CP
TRACE command. Also, you can set address stops,
and display and alter registers, control words
(such as the PSW), and data areas. The (P
commands can be very helpful in debugging
because you can gather information at various
stages in processing. A dump is static and
represents the system at only one particular
time. Debugging on a virtual machine can often
be more flexible than debugging on a real
machine.

VM/370 may terminate or reset a virtual
machine if a nonrecoverable channel check or
machine check occurs in that virtual machine.
Hardware errors usually cause this type of
virtual machine termination.

One of the following messages appears on the CPU
console:

DMKMCH616I MACHINE CHECK; USER userid
TERMINATED

DMKCCH604I CHANNEL ERROR; DEV xxx;
USER userid; MACHINE RESET

System Logic and Problem Determination Guide

Figure

(o o e A o S —— — T ——— T —— ——— — —— —— T ——— —— o —— q—— —— ————— ————

Message

Type of ABERD

(Alara rings)

DMKDMP908I

DMKDMPIO5W
DMKDMP906W

DMKDMPIO7W

SYSTEM FAILURE CODE xXXXXX

SYSTEM DUMP FAILURE;
PROGRAM CHECK
SYSTEM FAILURE;
CHECK, RUN SEREP
SYSTEM DUMP FAILURE; FATAL
I/0 ERROR

MACHINE

CP ABEND, system dumps to disk.

Restart is automatic.

If the dump program encounters a
a program check, machine check or
fatal I/0 error, a message is
issued indicating the error. CP
enters the wait state with code 3
in the PSH.

DMKCKF900W

DMKCKP90 1W

SYSTEM RECOVERY FAILURE;
PROGRAM CHECK

SYSTEM RECOVERY FAILURE;
MACHINE CHECK, RUN SEREP

If the checkpoint program
encounters a progran check, a
machine check, a fatal I/0 error or
an error relating to a certain warm

DMKCKP902W SYSTEM RECOVERY FAILURE; start cylinder Oor warm start

FATAL I/0 ERROR — NUCL CYL data conditions, a message is
— WARM CYL issued indicating the error and CP

DMKCKP904W SYSTEM RECOVERY FAILURE; enters the wait state with code 7
INVALID WARM START DATA in the PSW.

DMKCKP910W SYSTEM RECOVERY FAILURE;
INVALID WARM START CYLINDER

DMKCKP911W SYSTEM RECOVERY FAILURE;
WARM START AREA FULL

DMKWRM902W SYSTEM RECOVERY FAILURE; If the warm start progranm
FATAL I/O ERROR encounters a severe error, a

DMKWRMIO3W

DMKWRMOOUW
DMKWRM909W

DMKWRWI09W

SYSTEM RECOVERY FAILURE;
VOLID xxxxx ALLOCATION
ERROR CYLINDER xxX
SYSTEM RECOVERY FAILURE;
INVALID WARM START DATA
SYSTEM RECOVERY FAILURE;
VOLID xxxxxx NOT MOUNTED
SYSTEM DUMP DEVICE;
NOT-REALY

message is 1issued
error and CP enters the wait
code 9 in the PSW.

indicating the
state

DMKDMP908I
DMKCKP960I
DMKCKP96 1W

SYSTEM FAILURE, CODE XXXXXX
SYSTEM WARM START DATA SAVED
SYSTEM SHUTDOWN COMPLETE

CP ABEND, system dumps to tape or
printer. The system stops; the
operator must IPL the system to

start again.

b o e e - e e e e T — . S - S —— — — — ——— —— A — T — " n —ee o ——

4. ABEND Messages (Part 1 of 2)

Section 1.

Introduction

19

Figure

20

[o T e T e S P e T e . A — T . T — —— — — —— —— — — T — O — —— O — ————— —————— ——— T —

Message

Type of ABEND

Optional M
DMKDMPI90O5SW
DMKDMPI06W

DMKDMPSO7W

essages

SYSTEM DUMP FAILURE;
PROGRAM CHECK

SYSTEM DUMP FAILURE;
MACHINE CHECK, RUN SEREP
SYSTEM DUMP FAILURE; FATAL
I/0 ERROR

— o — o ——— — —— — ——

If the dump program encounters a
program check, a machine check or
fatal I/0 error, a message is
issued indicating the error. CP

enters the wait state with code 3

in the PSH.

If the dump cannot find a defined
dump device and if no printer is
defined for the dump, CP enters a
disabled wait state with code 4 in
the PSWH.

DMKMCH610I

DMKMCH6 111

MACHINE CHECK; SUPERVISOR

DAMAGE

MACHINE CHECK; SYSTEM

INTEGRITY LOST

Ccp termination with automatic
restart when the tvo messages in
the "Messages" column are issued:

The machine check handler encoun-—
tered an unrecoverable error with
the VM/370 control program.

The machine check handler encoun-
tered an error that connot be diag-
nosed; system integrity, at this
point, is not reliable.

DMKCCH603W

DMKCPI955W

CHANNEL ERROR,
RESTART SYSTEM

RUN SEREP,

INSUFFICIENT STORAGE FOR
VH/370

CP terminaticm occurs without auto-
matic restart when the two
messages in the "Messages" column
are issued:

There was a channel check condition

from which the channel check
handler could not recover. CP
enters the wait state with condi-

tion code 2 in the PSW.

The generated system requires more
real storage than is available. CP
enters the disabled wait state with
code 00D in the PSW.

DMSABN148T

SYSTEM ABEND xxx
CALLED FROM xxXxXXX

CMS ABEND; the system accepts com-
mands from the terminal. Enter the
DEBUG command and then the DUMP
subcomnmand to have CMS dump storage
on the printer.

Others
Refer to 0S and DOS publication
for the abnormal termination
messages.

When O0S or DOS abnormally termi-
nates on a virtual machine, the
messages issued and the dumps taken
are the same as they would be if 0S
or DOS abnormally terminated on a
real machine.

e e e e e e e e e e e e o s S — — — — . —— — — . — — — - — —— — A — ———— - — —— - —]

4.

ABEND Messages (Part 2 of 2)

IBM VM/370: System Logic and Problem Determination Guide

Problen

Type

| Where |
|ABEND Occurs|

Distinguishing Characteristics

(o — — T —— — T —— — T —— T — T — T ————— ———— ——n —————— o S — ————— T — A ——— —— — o

ABEND

CP ABEND

The alarm rings and the message
DMKDMP908I SYSTEM FAILURE, CODE xXXXXX

appears on the CPU console. In this instance, the
system dump device is a disk, so the system dumps to
disk and automatically restarts. If an error occurs
in the dump, checkpoint, or warmstart program, CP
enters the wait state after issuing one or more of
the following messages:

DMKDMP905W SYSTEM DUMP FAILURE;

DMKDMP906W SYSTEM DUMP FAILURE;
SEREP

DMKDMP907W SYSTEM DUMP FAILURE; FATAL I/C ERROR

DMKCKP900W SYSTEM RECOVERY FAILURE; PROGRAM CHECK

DMKCKP901W SYSTEM RECOVERY FAILURE; MACHINE CHECK,
RUN SEREP

PROGRAM CHECK
MACHINE CHECK, RUN

DMKCKP902W
DMKCKPIO4W

DMKCKP910W
DMKCKP911¥

DMKWRMIO2W
DMKWRM903W

DMKWRMSOUW

DMKWRM909W

SYSTEM RECOVERY
SYSTEM RECOVERY
START DATA
SYSTEM RECOVERY
START CYLINDER
SYSTEM RECOVERY
FULL

SYSTEM BECOVERY
SYSTEM RECOVERY

FAILURE;
FAILURE;

FAILURE;
FAILURE;

FAILURE;
FAILURE;

FATAL I/0 ERROR
INVALID WARM

INVALID WARM
WARM START AREA

FATAL I/O0 ERROR
VOLID XXXXXX

ALLOCATION ERBOR CYLINDER xxXx

SYSTEM RECOVERY
START DATA
SYSTEM RECOVERY
NOT MOUNTED

FAILURE;

FAILURE;

IRVALID WARM

VOLID xXXXXX

{
|
|
I
|
|
|
|
|
|
|
|
|
|
I
I
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| CP ABEND
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
1
[
|
|
|
|
|

The following

DMKDMP9081I

DMKDMP961W SYSTEM SHUTDOWN COMPLETE

The systenm
operator
error

enters the wait

must
occurs in the dump or
state after

messages

SYSTEM FAILURE,

appear on the CPU comsole:

CODE xxXxXXXX
DMKDMP960I SYSTEM WARM START DATA SAVED

dumps to tape or printer and stops. The

IPL the

the following messages:

DMKDMPIO5W
DMKDMPI06W

DMKDMP90OT7W
DMKCKP90OW
DMKCKP90 1W

DMKCKP902W
DMKCKPI10W

DMKCKPI11W

SYSTEM DUMP FAILURE;
SYSTEM DUMP FAILURE;

SEREP

SYSTEM DUMP FAILURE;

SYSTEM RECOVERY
SYSTEM RECOVERY
RUN SEREP
SYSTEM RECOVERY
SYSTEM RECOVERY
START CYLINDER

SYSTEM RECOVERY FAILURE;

FULL

system to

restart. If an

checkpoint program CP
issuing one or more of

FAILURE;
FAILURE;

FAILURE;
FAILURE;

PROGRAM CHECK
MACHINE CHECK, RUN

FATAL I/0 ERROR

PROGRAM CHECK
MACHINE CHECK,

FATAL I/O ERROR
INVALID WARM

WARM START AREA

Figure 5.

ABEND Problem Type (Part 1 of 2)

Section 1.

Introduction

21

Figure 5.

22

o P e e - —— ——— —— T — —— —— T —— T — " —— —— "~ = o = — o B — T — — e — s o ——

Problem |

Where

Type | ABERD Occurs | Distinguishing Characteristics
ABEND CP termina- An unrecoverable machine check error has occurred.
(Cont.) tion with One of the following messages:
automatic
restart DMKMCH610I MACHINE CHECK SUPERVISOR DAMAGE

DMKMCH6111I MACHINE CHECK INTEGRITY LOST

appears on the CPU consocle. The system is automat-
ically restarted.

CP termina-
tion without
automatic
restart

An unrecoverable channel check error has occurred.
The message:

DMKCCH603W CHANNEL ERROR,
SYSTEM

RUN SEREP, RESTART

appears on the CPU console, and CP enters the wait

state.

Virtual ma-

The CMS message

I
chine ABEND |
(CMS) | DMSABM148T SYSTEM ABEND xxx CALLED FROM XXXXXX
|
| appears on the terminal. The system stops and
| waits for a command to be entered on the terminal.
| To have a dump taken, issue the CMS DEBUG command
| and then the DUMP subcommand.
Virtual ma- When 0S or DOS abnormally terminates on a virtual
chine ABEND machine, the messages issued and the dumps taken
(other than are the same as they would be if 0S or DOS abnor-
CMS) mally terminated on a real machine.

VM/370 may terminate or reset a virtual machine if
a nonrecoverabele channel check or machine check
occurs in that virtual machine. One of the
following messages appear to the system operator
at the CPU console:

USER userid TERMINATED
DEV xxx; USER userid;

DMKMCH6161 MACHINE CHECK;
DMKCCH604I CHANNEL ERROR;
MACHINE RESET

Also, the virtual machine user is notified, by one
of the following messages, that his machine was
terninated or reset:

DMKMCH619I MACHINE CHECK;
DMKCCH606I CHANNEL ERROR;

OPERATOR TERMINATED
OPERATOR TERMINATED

ABEND Problem Type (Part 2 of 2)

IBM VM/370: System lLogic and Problem Determination Guide

UNEXPECTED RESULTS

The unexpected results type of errors vary, from
operating systems improperly functioning wunder
VM/370 to output printed in the wrong format.

UNEXPECTED RESULTS IN CP

executes properly on a
real machine but does not execute properly with
VM/370, a problem exists. Also, if a program
executes properly under the control of a
particular operating system on a real machine
but does not execute correctly under the same
operating system with VM/370, a problem exists.

If an operating systenm

There are programs (such as time-dependent
programs) that CP does not support. Be sure that
one of these programs is not causing the
unexpected results in CP. Refer to wCp
Restrictions" in Section 5 for a 1list of the
restrictions.

Ensure that the program and operating system
running on the virtual machine are exactly the
same as the one that ran on the real machine.
Check for the same:

e Job streanm
e Copy of the operating system (and progran)
e Libraries

If the problem still is not found, look for
an I/0 problem. Try to reproduce the problen,
tracing all CCWs, SIOs, and interruptions via
the CP TRACE command. Compare the real and
virtual CCWs from the trace. A discrepancy in
the CCWs may indicate that one of the CP
restrictions was violated, or that an error
occurred in CP.

UNEXPECTED RESULTS IN A VIRTUAL MACHINE

When a program executes
control of a particular
real machine but has
executing under the control
operating system with VM/370,
You usually f£find that something was changed in
the operating system or problem programs. Check
that the Jjob stream, the operating system, and
the system libraries are the sanme.

correctly under the
operating system on a
unexpected results
of the same
a problem exists.

If unexpected results occur (such as TEXT
records interspersed in printed output), you can
examine the contents of the system or user disk
files. Non-CMS users may execute any of the
utility programs, which are included in the
operating system they are using to examine and
rearrange files. For more details on using the
utility programs refer to the specific utilities
publication for the operating system running in
the virtual machine.

CMS users should use the DASD Dump Restore
(DDR) service program to print or move the data
stored on direct access devices. The VM/370
DASD Dump Restore (DDR) program can be invoked

DDPR command in a virtual machine
The DDR program has five

by the CMS
controlled by CMS.
functions:

e DUMP — dumps part, or all of the data from a
DASLC device to magnetic tape.

e RESTORE — transfers data from tapes created
by DDR DUMP to a direct access device. The
direct access device that the data is being
restored to must be the same type of device
as the direct access device originally
containing that data.

e COPY - copies data from one device to
another device of the same type. Data may be
reordered, by cylinder, when copied from disk
to disk. To copy one tape to another, the
original tape must have been created by the
DDR DUMP function.

e PRINT — selectively prints the hexadecimal
and EBCDIC representation of DASD and tape
records on the virtual printer.

e TYPE — selectively displays the hexadecimal

and EBCDIC representation of DASD and tape

records on the terminal.

CMS wusers should refer to "Debugging with
CMS®™ in Section 4 for instructions on using the
DDR command. "CP Commands for Debugging"™ in
Section 4 contains information about executing
the DDR program in a real or virtual machine and
a description of the LDR control statements.

Unexpected Results Problem Type

CP If an operating system, executes
properly on a real machine but not
properly with CP, a problem exists.
Inaccurate data on disk or systenm
files (such as spool files) could

be the cause of the error.

If a program executes correctly

Machine under the control of a particular
operating system on a real

does not execute

correctly under the same operating
systenm with VM/370, a problenm

|

|

|

| machine, but
|

|

| exists.

1]
]
|
|
|
|
|
I
I
|
| Virtual
|
|
]
|
I
|
L
F

iqure 6. Unexpected Results Problem Type

LOOPS

The real cause of a 1loop usually is an
instruction that sets or branches on the
condition code incorrectly. The existence of a

loop can usually be recognized by the ceasing of
productive processing and a continual return of
the PSW instruction address to the same address.
If I/0 operations are involved, and the loop is
a very large one, it may be extremely difficult
to define, and may even include nested loops.
One of the most difficult types of loops to
determine is entry to the 1loop from a wild
branch. The problem in loop analysis is finding

Ssection 1. Introduction 23

either the instruction that should open the loop
or the ‘instruction that passed control to the
set of looping instructions.

CP DISABLED LOOP

The system operator should perfore the following
sequence when gathering information to find the
cause of a CP disabled loop.

1. Use the ALTER or DISPLAY commands to
display the real PSW, general registers,
control registers, and storage Jlocations

X*'00' -~ X'100°".

2. Press the SYSTEM RESTART button to cause an
ABEND dump to be taken.

collected for the
Programming

3. Save the information
systenm programmer or IBM
Support Representative.

collected the

After the system operator has

information, the system programmer or Field
Engineering representative examines it. If the
cause of the loop is not apparent:

1. Examine the CP internal trace table to

determine the modules that
in the loop.

may be involved

2. If the cause is not yet determined, assume

that a wild branch caused the 1loop entry,
and search the source code for this wild
branch.

VIRTUAL MACHINE DISABLED LOOP

When a disabled loop is in a virtual machine you
cannot communicate with the virtual machine's
operating system. This means that signaling
attention does not cause an interruption.

machine

To £ind the virtual

disabled loop:

cause of a

1. Enter the CP console function mode.

2. Use the CP
entire loop.
control registers via the
command.

TRACE command to trace the
Display general and extended
CP DISPLAY

3. Take a dump via the CP DUMP command.
4. Examine the source code.
Use the

listings,
loop.

information gathered, along with
to try to find the entry into the

Note: You can IPL a standalone dump program such
as the BPS Storage Print to dump the storage of
your virtual machine. If you choose to use a
standalone dump program, be sure to specify
NOCLEAR on the IPL command. Also, be aware that
the CP IPL simulation destroys a page of storage
in your virtual machine and the standalone dump

alters your virtual storage while the CP DUMP
command does not.
However, 1if the operating system in the

virtual machine
usually better.
dump program.
exist only on the
device.

manages virtual storage, it is
to use that operating system's
CP does not retrieve pages that
virtual machine's paging

VIRTUAL MACHINE ENABLED LOOP

You should perform the following sequence when
locating the cause of an enabled loop:

1. Use the CP TRACE command to trace the

entire 1loop. Display the PSW and the
general registers.
2. If your virtual machine has the extended

contrel (EC) mode and the EC
display the control registers.

option, also

3. Use the CP DUMP command to dump your
virtual storage. CMS users can use the
DEBUG DUMP subcommand. A standalone dump
may be used, but be aware that such a dump
destroys the contents of some areas of
storage.

4. Consult the source code to search for the
faulty instructions, examining previously
executed modules, if necessary. Begin by
scanning for instructions that set the
condition code or branch on it.

5. If the way in which the loop was entered is
still undetermined, assume that a wild
branch has occurred and begin a search for
its origin.

WAIT

No processing occurs in the virtual machine when
it is in a wait state. When the wait state is
enabled, an I/0 interruption causes processing
to resume. Likewise, when the Control Progranm
is in a wait state, its processing ceases.

24 IBM VM/370: System Logic and Problem Determination Guide

Loop Problem Type

Wait Problem Type

L] L]
I |
| |
Cp	The CPU console wait 1light is
disabled	off. The problem state bit-of the
loop	real PSW is off. No 1/0
I	interruptions are accepted.
I l	
}] CP	Condition does not exist.
enabled	
: loop | |

|
Virtual	The program is taking longer to
machine	execute than anticipated.
disabled	Signaling attention from <the
loop	terminal does not cause an
i	interruption in the virtual
{ machine. You cannot comrrunicate	
	with the virtual machine's opera-
	ting system by signaling atten-
	tion.
virtual	Excessive processing time often
machine	indicates a loop. Use the CP
enabled	QUERY TIME command to check the
loop	elapsed processing time. In CMS,
	the continued typing of the blip
	characters indicates that
	time 1is elapsing. 1If time has
	elapsed, periodically display the
	virtual PSH and check the
	instruction address. If the same
]	instruction, or series of
i	instructions continues to appear
	in the PSW, a loop probably
	exists.
[J

Figure 7.

Loop Problem Type

CP DISABLED WAIT

results from a
IPL, normally

A disabled wait state usually
hardware malfunction. During
correctable hardware errors may cause a wait
state because the operating systenm error
recovery procedures are not accessible at this
point. These conditions are recorded in the
carrent PSW.

CP may be in enabled wait state with
channel O disabled when it is attempting to
acquire more free storage. Examine extended
control register 2 to see whether or not the
multiplexer channel is disabled. A severe
machine check could also cause a CP disabled
wait state.

an

channel check
one of the

If a severe machine check or
caused a CP disabled wait state,
following messages appear:

DMKMCH6 12W MACHINE CHECK TIMING FACILITIES
DAMAGE; RUN SEREP

DMKCCH603W CHAKNEL ERROR,
RESTART SYSTEM

RUN SEREP,

o o - —— — — ——————— — = — T ———_— T — - " ——————— - ————] ———— — — T —— s —— o

Type

Distinguishing Characteristics

Disabled CP
wait

The CPU wait light is on.

Pressing the REQUEST key, or
the equivalent action, on the
operator's console, leaves the
REQUEST PENDING light on. If
the message

DMKMCH612W MACHINE CHECK TIMIN
FACILITIES DAMAGE,

RUN SEREP
appears on the CPU console,
a machine check (probable
hardware error) caused the

CP disabled wait state. If the

nessage

DMKCCH603W CHANNEL ERROR,
SEREP, RESTART
SYSTEM

RUN

the CPU console,
(probable
caused the

If the

appears on
a channel check
hardware error)
CP disabled wait state.
message

DMKCPI955W INSUFFICIENT STORAGE

FOR VM/370
appears on the CPU console,
the control program has

entered a disabled wait state
with code 00D in the PSW.
Either the generated systen
is larger than the real
machine size, or a hardware
machine malfunction prevents
VM/370 from using the
necessary amount of storage.
If the message

DMKPAGU41SE CONTINUOUS PAGING
ERRORS FROM
DASD xxx

the CPU console,
(CP) has
wait with

appears on
the control progran
entered a disabled

code OOF in the PSW.

Consecutive hardware errors
are occurring on one or more
VM/370 paging devices.

G

1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
!
|
|
|
i
|
|
]
|
|
|
|
|
|
|
|
|
|
|
']

Enabled CP | The CPU console 1light is on,
wait | but the systenm accepts
| interrupticns from I/0 devices.
Figure 8. CP Wait Problem Type

Section 1. Introduction

25

If the generated system cannot run on the
real machine because of insufficient storage, CP
enters the disabled wait state with code 00D in
the PSW. The insufficient storage condition
occurs 1if:

» The generated system is
machine size

larger than the real

—— O —
e A hardware malfunction occurs which reduces
the available amount of real storage to less
than that required by the generated systenm.
The message
DMKCPI955W INSUFPICIENT STORAGE FOR VM/370

appears on the CPU console.

consecutive
one or more

If CP cannot continue because
hardware errors are occurring on
VM/370 paging devices, the message

DMKPAGU15E CONTINUOUS PAGING ERRORS FROM
DASD xxx

appears on the CPU console and CP enters the
disabled wait state with code QOF in the PSW.

If more than one paging device is available,
disable the device on which the hardware errors
are occurring and IPL the system again. If the
VM/370 system is encountering hardware errors on
its only paging device, move the paging volume
to another physical device and IPL again.

Note: This error condition may occur if the
VM/370 paging volume was not properly
formatted.

The following procedure should be used by the

system operator to record the needed
inforemation.
1. Use the alterydisplay mode of the CPU

console to display the real PSW and CSW.
Also, display the general registers and the
control registers.

2. Press the SYSTEM RESTART button to
system ABEND dump.

get a

3. IPL the systen.

Examine this information to find what caused
the wait. If you cannot £find the cause, try to
reconstruct the situation that existed before
the wait state was entered.

CP ENABLED WAIT

If you determine that CP is im an enabled wait
state, but that no I/0 interrupts are occurring,
there may be an error in a CP routine or CP may
be failing to get an interrupt from a hardware
device. Press the SYSTEM RESTART button on the
operator's console to cause an ABEND dump to be
taken. Use the ABEND dump to determine the cause
of the enabled (and noninterrupted) wait state.
After the dump is taken, IPL the system.

Using the dump, examine the VMBLOK for each
user and the real device, channel, and control
unit blocks. If each user is waiting because of
a request for storage and no more storage is
available, there is an error in CP. There may be
looping in a routine that requests storage.
Refer to “Reading CP ABEND Dumps" in this
section for specific information on how to
analyze a CP dump.

VIRTUAL MACHINE DISABLED WAIT

The VM/370
virtual machine

Control Program does not allow the
to enter a disabled wait state
or certain interrupt loops. Instead, CP
notifies the virtual machine operator of the
condition with one of the following messages:

DMKDSP450W CP ENTERED; DISABLED WAIT
PSH

DMKDSP451W CP ENTERED; INVALID PSW

DMKDSP452W CP ENTERED; EXTERNAL
INTERRUPT LOOP

DMKDSP4S53W CP ENTERED; PROGRAM
INTERRUPT LOOP

and enters the console function mode. Use the CP
comrmands to display the following information on
the terminal.

Program status word
Channel status word
General registers
Control registers

Then use the CP DUMP comnrand to take a dump.

If you cannot f£find the cause of the wait or
loop from the information jJjust gathered, try to
reproduce the problem, this time tracing the
processing via the CP TRACE command.

If CMS is running in the virtual machine, the
CMS debugging facilities may also be used to
display information, take a dump, or trace the
processing. The CMS SVCTRACE and the CP TRACE
commands record different information. Figure
11 compares the two.

VIRTUAL MACHINE ENABLED WAIT

If the wvirtual machine is in an enabled wait
state, try to find out why an I/O interruption
has not occurred to allow processing to resume.

CP treats the following enabled wait in a
virtual machine the same as a disabled wait. If
the virtual machine does not have the real timer
option and loads a PSW enabled only for external
interrupts, CP issues the message

DMKDSP450W CP ENTERED; DISABLED WAIT STATE

Because the virtual timer is not decremented
while the virtual machine is in a wait state, it

26 IBM VM/370: System logic and Problem Determination Guide

cannot cause the external interrupt. A real
timer runs in both the problem state and wait
state and an external interruption can cause a

virtual machine to resume processing.

Wait Problem Type

L
|
I
Problem | Distinguishing |
Type | Characteristics |
|
Disabled | The VM/370 Control Program does |
virtual | not allow a virtual machine to |
machine | enter a disabled wait state or |
wait | certain program loops. Instead, |
| CP issues one of the following |
| message: |

|
| DMKDSP450W CP ENTERED; DISABLED |
| WAIT PSW |
| DMKDSP451W CP ENTERED; INVALID |
| PSW o
| DMKDSP452W CP ENTERED; EXTERNAL |
| INTERRUPT LOOP |
| DMKDSP453W CP ENTERED; PROGRAM |
| INTERRUPT LOOP |
|
Enabled A PSW enabled for I/0 |
virtual interruptions is loaded. WNothing |
machine happens if an I/0 device fails to |
wait issue an I/0 interruption. If a |
|

|

|

|

|

| program is taking longer to
| execute than expected,|
| periodically issue the CP commangd, |
| QUERY TIME. If the processing |
| time remains unchanged, probably

| a virtual =machine enabled wait

| exists.

|

|

|

|

l

|

i

|

|

|

|
CMS types a blip character for |
every two seconds of elapsed |
processing time. If the program |
does not end and blip characters |
stop typing, an enabled wait |
|

"l

T
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
I
|
1
|
|
|
|
|
I
|
I
|
I
|
I
|
|
i
|
|
|
|
|
| state probably exists.
[N

Figure 9. Virtual Machine Wait Problem Type

RSCS VIRTUAL MACHINE DISABLED WAIT

Three disabled wait conditions can occur during

the operation of the RSCS component of VM/370.
They can result from either hardware
nalfunctions or system generation errors. cp

notifies the RSCS operator of the wait condition
by issuing the message

DMKDSPU450W CP ENTERED; DISABLED WAIT
PSW

to the RSCS operator's console. Using CP
comrmands, the operator can display the virtual
machine's PSW. The rightmost 3 hexadecimal
characters indicate the error condition.

WAIT STATE CODE X'001': If no RSCS message was

issued, a progranm check interrupt occurred
during the execution of the program check
handler. A programming error is the probable
cause.

If the RSCS message

DMTREX091T INITIALIZATION FAILURE
—— RSCS SHUTDOWN
was issued, RSCS operation was terminated

because of an error in the loading of DMTAXS or
DMTLAX. A dump of virtual storage is
automatically taken. Verify that the CMS files
'DMTAXS TEXT' and 'DMTLAX TEXT' are correctly
written and that they reside on the RSCS systenm
residence device.

If the RSCS message

DMTREX030T PROGRAM CHECK IN SUPERVISOR
— RSCS SHUTDOWN

check handler has
prograr check

was issued, the progranm
terminated RSCS because of a
interrupt in other than a dispatched 1line
driver. A dump of virtual storage is
automatically taken. A programming error is the
probable cause.

The wait state code is loaded by DMTREX at
RSCS termination or automatically during program
check handling.

If neither of the last two
issued, use the CP DUMP command:
contents of virtual storage. Do an
program lcad to restart the system.
problem persists, notify your systen
personnel.

messages was
to dump the
initial
If the
support

CODE X'007':
occurred

WAIT STATE
interrupt has

A program check

during initial
processing, before the program check handler
could be activated. This may be caused by a
prograrming error or by an attempt to load RSCS
into an incompatible virtual machine. The
latter case can occur if the virtual machine has
(1) an incomplete instruction set, (2) less than
512K of wvirtual storage, or (3) does not have
the required VM/370 DIAGNOSE interface support.
The wait state code 1is loaded automatically
during the initial loading and execution of the
RSCS supervisor, DMTINI, DMTREX, DMTAXS or
DMTLAX.

that the RSCS virtual rachine
configuration has been correctly specified and
that the ‘"retrieve subsequent file descriptor"®
function of DIAGNOSE code X'14' is supported.
Dump the contents of virtual storage via the CP
DUMP command. If the problem persists, notify
your system support personnel.

Verify

WAIT STATE CODE X'011': An unrecoverable error
occurred when reading the RSCS nucleus from DASD
storage. This may be caused by a hardwvare
malfunction of the DASD device. It may also be
the result of an incorrect virtual DASD device
definition, an attempt to use a system residence

Section 1. Introduction 27

device unsupported by RSCS, incorrect RSCS
system generation procedures, or the subsequent
overlaying of the RSCS nucleus on the systen
residence device. The wait state code is loaded
by DMTINI after an attempt, successful or not,
to issue the message:

DMTINI402T IPL DEVICE READ I/0 ERROR

vVerify that the RSCS system residence device
has been properly defined as a virtual DASD
device and that the real TCASD device is mounted
and operable. If the problem persists, dump
virtual storage via the CP DUMP command and
notify your system support personnel. The RSCS
system residence device may have to be restored
or the RSCS system may have to be regenerated.

RSCS VIRTUAL MACHINE ENABLED WAIT

Whenever RSCS has no task ready for execution,
CMTDSP loads a masked-on wait state PSW with a
code of hexadecimal zeros. This occurs during
normal RSCS operation and does not indicate an
error condition. An external interrupt caused
by command entry or an I/O interrupt due to the
arrival of files automatically causes processing

to resume.

28

RSCS Wait Problem Type

Problem
Type

Distinguishing Characteristics

Disabled
RSCS
wvait

The RSCS operator is notified of
the wait state because CP issues
the message
DMKDSP450W CP ENTERED;
WALT PSW

DISABLED

I1f, in addition, the message

DMTINIUO02T IPL DEVICE READ

ERROR

I/0

RSCS console, an
error has occurred
while reading the RSCS nucleus
from DASD storage. RSCS enters
a disabled wait state with a code
of X'011' in the PSW.

appears on the
unrecoverable

If a program check occurs before
the program check handler is
activated, RSCS enters a disabled
wait state with a code of X'007!
in the PSW.

If a program check occurs after
the program check handler is
activated, RSCS enters a disabled
wait state with a code of X'001!
in the PSW. One of the following
messages also appear on the RSCS
console:

DMTREXO090T PROGRAM

SUPERVISOR
SHUTDOWN

CHECK IN
- — RSCS

DMTREX091T INITIALIZATION FAILURE
- — RSCS SHUTDOWN

Enabled
RSCS

r
|
I
|
|
|
|
[
|
|
|
[
|
|
|
|
|
1
|
|
|
|
I
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3
| wait
1

|

L

RSCS has no task
execution. A PSW, enabled for
external and I/O0 interruptionms,
is loaded with a wait code of all
Zeros.

ready for

e e s e e s s . . ———— —— — — ——— ————— — ———— — — — ———— — — ot o—]

Figure 10.

IBM VM/370: System Logic and Problem Determination Guide

RSCS Wait Problem Type

SUMMARY OF VM/370 DEBUGGING TOOLS

Figure 11 summarizes

the VM/370 commands that are

commands are classified by the function they perfornm.

useful in debugging.

The

CP and CMS

Function

Comments

CP Command

CHMS

Command

Stop exe-
cution at
a speci-
fied lo-
cation

Set
address
stop
fore
program
reaches a
specified
address.
CHMS allows
16 address
stops to
be active
while cp
allows on-
1y one.

the

be-
the

ADSTOP {

hexloc
OFF

DEBUG

BReak id {

symbol
hexloc

Resume

Resunme
execution
where pro-
gram vas

interrupted

Begin

DEBUG
GO

Continue
execution
at a spe-
cific 1lc-
cation

Begin [hexloc])

DEBUG

GO {

symbol
hexloc}

r

|

|

I

|

|

|

|

I

|

|

|

|

|

|

|

|

1

|

|

| execution
|

|

|

|

|

|

|

|

|

|

| Dump data
|
|
|
|
|
I
|
|
[8

Dump the
contents
of speci-
fic sto—
rage loca-
tions.

DUMP { hexloc1 -
Lhexloc1 :

r
|

|

|

| r
1{-1}
|

L

[*dumpid]

byt
| END
L

r
|hexloc2
| END

L

ecount

[R S |

b o -

EBUG

o o

9
L

r 1nr)
Ump |symbol1l| |symbol2|
{hexloc1]

[*
41 32
L

[ident]

hexloc2|

b e - S —— T ——— T —— — T ————————— — O — — —— vy o ——]

Figure 11.

Susmary of VM/370 Debugging Tools (Part 1 of 4)

Section 1.

Introduction

29

r Ll
| Function Comments | CP Command | CMS Command |
| |
| Display | Display | r r 1 1 IDEBUG v 1
data	contents	bDisplay hexloc1 l{—	hexloc2			symbol	{ n
	of storage		:}IEEQ [N llength				
	locations		L 4 1 L				
	in hexade-	I r all roo					
	cimal)	I{.}Ibytecount			1 n		
				ERD Il hexloc	4		
		L L J4	L J				
	Display	r r 1 Al					
I	contents	Display Thexloc1	{—}	hex1002	i		
1	of storage	It:JIEND [N					
	locations		L 4 1				
	(in hexa-		r all 1				
{ decimal i {{.)}Ibytecount							
	and EBCDIC)			END 1			
	L (8 444 l						
I							
	Display	r r oAl 1					
	storage	Display Khexloc1	{—	hexloc2})	1		
	key of	1l : f1END [
	specific		L 4 11				
]	storage] r Al I					
	lccations	1{.-}Ibytecount					
	in hex—			EXD i			
	adecimal I L L 444						
i	Display	r r 1]	DEBUG				
	general	Display Gregljf(-)lireg2			GPR regl [reg2]		
	registers		:}	§gg			
	I	r Al	I				
		1{.}lregcount{					
				END I			
		L L 44					
i]							
	Display	r r q]					
	floating-	Display Yreg1l	(-)lireg2				
	point	I{:}IE!Q I		{			
i	registers		L 4		i		
			r al				
l [1{-}lregcount]							
		I	END	1	I		
i		L L 44 1					
	i						
i	Display	r r 1 "					
	control	Display Xregi	(-)ireg2	i			
i	registers	l{:}IEED 1 (!				
I		L 4					
			r a1				
1		1{.}lregcount					
				END 1l			
I	L L 44						
	Display	bisplay PSW	DEBUG]				
	contents		PSH				
	of current						
{ virtual							
	PSW in						
	hexadecimall						
{ format							
	Display	Display CAW	DEBUG				
]	CAW con-—		CAw 1				
	tents 1						
I]							
	Display	bPisplay CcSWH	DEBUG				
]	CSW con~-] CSW {				
	tents						
L. J
Figure 11. Sunamary of VM/370 Debugging Tools (Part 2 of 4)

30 IBM VM/370: System Logic and Problem Determination Guide

Function | Comments | CP Command | CMS Command

Store
specified
informa—
tion into
consecu-—
tive sto-
rage loca— |
tions with—|
out align- |
ment. |

Store
data DEBUG

STore {synbol} hexinfo

STore Shexloc hexdata...

hexloc

Store I
specified |STore {hexloc }
words of | Lhexloc

information|
into con- | {hexvord1[hexword2...]}
secutive |
fullword]
storage |
locations |

Store |STore Greg hexwordil | DEBUG

specified | [hexword2...] |SET GPR reg hexinfo[hexinfo]
words of | |

information|
into con— |
secutive |
general |
registers |

Store | STore Yreg hexwordil
specified | { hexword2...]
words of |
information|
into con- |
secutive |
floating- |
point |
registers |

Store
specified
words of

| STore Xreg hexwordil
|
|
data into |
|
|
|

[hexword2...]

consecutive
control
registers

Store | STore PSW [hexword1] hexword2 | DEBUG
information| |SET PSW hexinfo {hexinfo]
into PSW | |

Store | |DEBUG
information| |SET CSW hexinfo [hexinfo]
in csw I |

i
i

b o v e S e - S - e - . = T = S e S — e —————— — — — - —— — ——— ——_— ———n m—— — ——

Store] . | DEBUG
information] | SET CAW hexinfo
in CAW i |

P o — e S — . T — T — — T — T —— —— —— T ——— —— T —— ——— T — O — o —— — —— — T ——— T —— ——————— ———

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
|
|
|
|

Figure 11. Summary of VM/370 Debugging Tools (Part 3 of 4)

Section 1. Introduction 31

Function | Comments | CP Command | CMS Command

Trace all
instruc-

| TRace ALL

|
tions, |

|

|

|

Trace
execution

interrupts,
and

branches

Trace SVC | TRACE SVC | SVCTrace ON
interrupts | |

Trace I/0 | TRace 1I1/0 i
interrupts | |

Trace | TRace PROgran
program | |
interrupts | |

Trace | TRace EXTernal
external | |
interrupts | |

Trace TRace PRIV
privileged

|
I |
instruc- |
I

Trace all | TRace SIO |
user I/0 | {
operations |]

Trace | TRace SIO i
virtual and} TRace CCW |
real CCWs | I

Trace | TRace BRANCH
all user |
interrupts |
and suc- |
cessful i

|

branches

Trace | TRace INSTruct |
all in- | |
structions | I

End all | TRace END | SVCIrace OFF
tracing | |

|
|
|
|
|
|
|
|
|
|
|
I
|
|
i
|
|
|
|
|
|
|
|
|
| tions
|
|
|
I
|
I
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
' .
| activity | |

Trace | MONitor STArt CPTRACE
events in |
real |
machine |

Trace real
machine
events

Stop trac-— MONitor STOP CPTRACE
ing events
the real

machine

[e e s S o e M — T W e B de G e . - o e T o e e T = —— S —— T — — — e - - — — ——— ——— ——

Figure 11. Summary of VM/370 Debugging Tools (Part 4 of u)

32 IBM VH/370: System Logic and Problem Determination Guide

COMPARISON OF CP AND CMS FACILITIES FOR DEBUGGING

of the

If you are debugging problems while your Figure 12 for a comparison

virtual machine is running CMS, you can CNS debugging tools.

choose the CP or CMS debugging tools. See
r 1
| Function | CP | CMS |
l |
| Setting | Can set only one address | Can set up to 16 address |
| address | stop at a time. | stops at a time, |
: stops | | :
Dumping	The dump is printed in hexa-	The dump is printed in
contents	decimal format with EBCDIC	hexadecimal format. The
of stor-	translation. The storage ad-	storage address of the
age to	dress of the first byte of	first byte of each line is
the	each 1line is identified at	identified at the left.
printer	the left. The control blocks	The contents of the gen-
	are formatted.	eral and floating-point
i	registers are printed at	
		the beginning of the dump.
Display	The display occurs in hexa-	The display occurs in hex-
the con-	decimal format with EBCDIC	adecimal format. The CMS
tents of	translation. The CP command	commands do not dis-
storage	displays storage keys,	play storage keys,
{ and con-	floating-point registers and	floating-point registers
trol re-	control registers.	or control registers as
gisters		as the CP comnmand does.
at the		
terminal)	
Storing	The amount of information	The CMS command stores up
informa-	stored by the CP command is	to 12 bytes of information
tion	linited only by the length	and can store data in the
	of the input line. The in-	general registers but not
	formation can be fullword	in the floating-point or
	aligned when stored. CP	control registers. CMS [
	stores data in the PSW, but	stores data in the PSW, i
{	not in the CAW or CSW. How-	CAW, and CSW. I
	ever, data can be stored im	
	the CSW or CAW by specifying	
	the hardware address in the	I
	STORE command. CP also	
	stores the status of the	
	virtual machine in the	
{ extended logout area.]		
{ Tracing	CP traces:	CMS traces all SVC inter-
informa-		rupts. CMS displays the
tion	A1l interrupts, instruc-	rupts. CMS displays the]
	tions and branches	contents of general and
	e SVC interrupts	floating-point registers
	« I/0 interrupts	before and after a routine
	e Program interrupts	is called. The parameter
	o External interrupts	list is recorded before a
	Privileged instructions	routine is called.
	All user I/0 operations	
	o virtual and real CCW's]	
]	o A1l instructions	
I I 1		
	The CP trace is interactive.	
i	You can stop and display i	
	other fields.	
L. ")

Figure 12. Comparison of CP and CMS Facilities for Debugging

Secti

on 1.

CP and

Introduction

33

Many CP problems can be isolated without
standalone machine testing. It is possible to
debug CP by running it in a virtuwal machine. 1In
most instances, the virtual machine system is an
exact replica of the syster running on the real
machine. To set up a CP system on a virtual
machine, use the same procedure that is used to

generate a CEF system on a real machine.
However, remember that the entire procedure of
running service programs 1is now done omn a

Also, the virtual machine must
be described in the real VM/370 directory. See
the VM/370: System Prograpmer's Guide for
directions for setting up the virtuwal machine.

virtual machine.

ABEND DUMPS

There are three kinds of abnormal termination
dumps possible when using CP. The first kind
occurs when the problem program cannot continue.
It terminates and in some «cases attempts to
issue a dump. The second occurs when the
operating system for your virtual machine cannot
continue. It terminates and in some cases
attempts to issue a dump. In the VM/370
environment, both the problem program and the
virtual machine's operating system dumps go to
the virtual printer. A CLOSE must be issued to
the virtual printer to have either dump print on
the real printer.

occurs when the CP
system cannot continue. The CP abnormal
termination dumps can be directed to a printer
or tape or be dynamically allocated to DASD. If
the dump is directed to a tape, the dumped data

A third kind of dump

must fit on one reel of tape. Multiple tape
volumes are not supported by VM/370. The
historical data on the tape is in print 1line
format and can be processed by user-created

programs or via CMS commands.

Use the CP SET command to specify the output
device for CP ABEND dunmps. The format of the
SET command is:

r 1

| | r 1 |

1 | | | I

| SET | DUmp AUTO | CP |

| | raddr 1 ALL | |

| | | | |

| | L 4 |

L]

Where:

DUMP specifies the ABEND Dump.

AUTO automatically directs the ABEND dump
to disk.

raddr directs the ABEND dump to the
specified wunit address (either a
printer or a tape unit). If the

address specifies a tape device, the

34 IBM VM/370:

dunp data must fit on one reel; VM/370

does not support multiple tape
volumes.

cp dumps only the CP storage area.

ALL dumps all of real storage.

USING THE VMFDUMP COMMAND

Use the CMS VMFDUMP command to print the dump on
the real printer, when the CP ABEND dump is sent

to a disk. The format of the VMFDUMP command

is:

r 1

1 l r 1 r 1 I

| VMFDUMP | | | | ERASE 1 1

| | | DUMPxx | | NOMAP | |

| (B | | NOHEX | i

| | ¢+ 4 { NOFORM | |

] | | NOVIRT | |

| | L 4 |

L 4

where:

DUMPxXX specifies the pame of the CP dump file
to be formatted and printed. XX may
be any value from 00 to 09. Class D
spool files contain only CP dump
files. These files are searched for
the indicated dump file. When the
file is found, it is used to create a
CMs file which, in turn, is formatted
and printed.

ERASE specifies that the CMS file which is
being formatted and printed is to be
erased at the conclusion of the
progranm.

NOMAP specifies that a load map is not to be
printed.

NOHEX specifies that a hexadecimal dump is
not to be printed.

NOFORM specifies that no formatted control
blocks are to be printed.

NOVIRT specifies that only the real machine

to be formatted.
if NOFORM is

control blocks are
This option is ignored
also specified.

Use the VMFDUMP command to format and print a
current or previous VM/370 system ABEND dump.

Specify
VMFDUMP
to obtain a complete formatted, hexadecimal
printout.
When the dump has been printed, one of two

messages is printed:

System Logic and Problem Determination Guide

DUMP FILE - DUMP xx -~ PRINTED AND KEPT
- or --

DUMP FILE - DUMP xx - PRINTED AND ERASED

HOW TO PRINT A CP ABEND DUMP FROM TAPE

When the CP ABEND dump is sent to a tape, the
records are 133 characters unblocked, and
include carriage control characters.

To print the tape, first make sure the tape
drive is attached to your system. Next, define
the printer and tape file:

FILEDEF ddname1 PRINTER (RECFM F LRECL 133)

TAP1
RECFM F LRECL 133 BLOCK 133)

FILEDEF ddname2 {TAPZ} (9-track DEN 1600

Then use the MOVEFILE command to print the

tape:
MOVEFILE ddname2 ddnamel

READING CP ABEND DUMPS
Two types of printed dumps occur when CP
abnormally ends, depending on the options
specified in the CP SET DUMP command. When the
dump is directed to a direct access device,

VMFDUMP must be used to format and print the

dump. VMFDUMP formats and prints:

e Control blocks

e General registers

e Floating-point registers

e Control registers

e TOD (Time-of-Day) clock

e CPU timer

e Storage

Note: Storage is printed in hexadecimal
notation, eight words to the line, with EBCDIC
translation at the right. The hexadecimal

address of the first byte printed on each line

is indicated at the left.

If the CP SET DUMP command directed the dump

to tape or the printer, the printed format of
the dump is the same as with VMFDUMP, except
that the control blocks are not formatted and
printed.

When CP can 1o longer continue and abnormally
terminates, you Rust first determine the
condition that caused the ABEND, and then find
the cause of that condition. You should know
the structure and function of the Control

Program. The following discussion on reading CP
dumps includes many references to CP control
blocks and control block fields. Refer to

VM/370: Data Areas and Control Block Logic for a
description of the CP control blocks. You will
need the current 1load map for CP to be able to
identify the modules from their locations. See

e For a

"Load Map" later in this section for
instructions for generating a load map.

REASON FOR THE ABEND

Determine the immediate reason for the ABEND.
You need to examine several fields in the PSA
(Prefix Storage Area) which is located in low

storage, to find the reason for the ABEND.

e FExamine the program old PSW and prograsm
interrupt code to find out if a program check
occurred in CP. The program old PSW (PROPSW)
is located at X'28' and the program interrupt
code (INTPR) is at X'8E'. If a program check
has occurred in supervisor mode, use the CP
system load map to identify the module. If
you cannot find the module using the 1load
map, refer to "Identifying a Pageable
Module.®

e Examine the SVC old PSW, the SVC interrupt
code, and the ABEND code to find out if a CP
routine issued an SVC 0. The SVC old PSW
(SVCOPSH) is 1located at X'20*, the sSVC
interrupt code (INTSVC) is at X*'8A', and the
ABEND code (CPABEND) is at X'374¢'.

The modules that may issue an SVC 0 are:

DMKBLD DMKPSA
DMKCFG DMKPTR
DMKCKS DMKRGA
DMKCPI DMKRRH
DMKCVT DMKRPA
DMKDRD DMKSCH
DMKDSP DMKTDK
DMKFRE DMKUDR
DMKHVD DMKVDB
DMKIOS DMKVDR
DMKNLD DMKV IO
DMKPGS DMKVHMA
DMKPGT DMKVSP
DMKPRG

The ABEND code (CPABEND) is a fullword in
length. The first three bytes identify the
nodule that issued the SVC 0 and the fourth
byte is a binary field whose value
indicates the reason for issuing am SVC 0.
See "CP ABEND Codes, Reason and Action" in
Section 3.

Use the CP system load map to identify the
module issuing the SVC 0. If you cannot

find the module using the CP system load
map, refer to "Identifying a Pageable
Module" in this Section.

e Exanmine the old PSW at Xt08'. If the

operator has pressed the SYSTEM RESTART
button on the CPU console, the old PSW
indicates the instruction executing when the
ABEND (caused by pressing the SYSTEM RESTART
button) was recognized.

machine
area. The

machine check, examine the

check o0ld PSW and the 1logout

Section 1. Introduction 35

machine check old PSW (MCOPSW) is found at
X'30' and the fixed logout area is at X'100°*'.
Also examine the machine check interrupt code
(INTMC) at X'E8',

COLLECT INFORMATION

Examine several other fields in the PSA to
apalyze the status of the system. As you
progress in reading the dump, you may returnm to
the PSA to pick up pointers to specific areas
(such as pointers to the real control blocks) or
to examine other status fields.

The following areas of the PSA
useful debugging information.

may contain

e CP Running Status Field

The CP running status is stored in CPSTAT at
location X'348¢. The value of this field
indicates the running status of CP since the
last entry to the dispatcher.

CPSTAT Values and Meaning

Xv801? CP is in wait state
Xt401 CP is running the user in RUNUSER
Xv20¢ CP is executing a stacked request

e Current User

The PSW that was most recently loaded by the
dispatcher 1is saved in RUNPSW at location
X*'330', and the address of the dispatched
VMBLOK is saved in RUNUSER at location
X338, Also, examine the contents of
control registers 0 and 1 as they were when
the 1last PSW was dispatched. See RUNCRO
(X'340') and RUNCR1 (X*344') for the control
registers.

internal trace table to
determine the events that preceded the abnormal
termination. Start with the 1last event recorded
in the trace table and proceed backward through
the trace table entries. The last event recorded
is the last event that was completed.

Also, examine the CP

The trace table is at least one page (4096
bytes) long. Cne page is allocated to the trace
table for each block of 256K bytes of real
storage available at IPL. Each trace table
entry is 16 bytes lcng. The TRACSTRT field
(location X'0C') contains the address of the

start of the trace table. The TRACEND field
(location X'10') contains the address of the
byte following the end of the trace table. The
address of the next available trace table entry
is found in the TRACCURR field (location
X"149)

Subtract 16 (X'10') bytes from the value at
X*14' (TRACCURR) to find the address of the last
trace table entry recorded.

REGISTER USAGE

To +trace control blocks and modules, it is
necessary to know the CP register usage
conventions,

The 16 general registers have many uses that
vary depending upon the operation. The contents
of some of the general registers follows:

Begister Contents

GR1 The virtual address to be translated

GR2 The real address or parameters

GR6,7,8 The address of the active VMBLOK and
device control blocks

GR10 The address of the active IOBLOK

GR14,15 The external branch linkage

The following general registers always contain

the sare information:

Register Contents

GR11 The address of the active VMBLOK

GR12 The base register for the module
executing

GR13 The address of the current save area,

if the module was called via an SVC

Use these registers, the CP control blocks,
and the data in the prefix storage area to
determine the error that caused the CP ABEND.

SAVE AREA CONVENTIONS

There are three save areas that may be helpful
in debugging CP. If a module was called by an
SVC, examine the SAVEAREA. SAVEAREA is not in
the PSA; the address of the SAVEAREA is found
in general register 13. If a module was called
by a BALR, the general registers are saved in
the PSA in an area called BALRSAVE (X'240¢).
The DMKFRE save area and work area is also in
the PSA: these areas are only used by the
DMKFREE and DMKFRET routines. The DMKFRE save
area (FREESAVE) is at location X'280' and its
work area (FREEWORK) follows at location
Xt2cor,

Use the save areas to trace back and find the
previous module executed.

e SAVEAREA

An active save area contains the callert's
return address in SAVERETN (displacement
X'00') . The caller's base register is saved
in SAVER12 (displacement X'04'), and the
address of the save area for the caller is
saved in SAVER13 (displacement X'08') . Using
SAVER13, you can trace back again.

36 IBM VM/370: System Logic and Problem Determination Guide

BALRSAVE

All the general registers are saved in
BALRSAVE after branching and 1linking (via
BALR) to another routine. If you look at
BALR14 for the return address saved, BALR13
for the caller's save area, and BALR12 for
the caller's base register, you can trace
module control backwards.

FREESAVE

All the general registers are saved in

FREESAVE before DMKFRE executes. Use the
address of FREESAVE to trace module control
backwards. .

Field Contents

FREER15 The entry point (DMKFREE or
DMKFRET)

FREER14 The saved return address

FREER13 The caller's save area (unless the
caller was called via BALR)

FREER12 The caller's base register

FREER1 Points to the block returned (for
calls to DMKFRET)

FREERO Contains the number of doublewords

requested or returned

VIRTUAL AND REAL CONTROL BLOCK STATUS

Examine the virtual and
more

real control blocks for

information on the status of the CP

system.

VMBLOK

The address of the VMBLOK is in general register

1.

Examine the following VMBLOK fields:

The virtual machine running status is
contained in VMRSTAT (displacement X'58¢').
The value of this field indicates the running
status:

VMRSTAT

Status Meaning

X80 Waiting, executing console function

X'40° Waiting, page operation

X120 Waiting, scheduled IOBLOK start

X'10!? Waiting, virtual PSW wait state

Xvo8* Waiting, instruction simulation

X104 User not yet logged on

X102¢ User logging off

X*01°* virtual machine in idle wait state

The virtual machine dispatching status is

contained in VMDSTAT (displacement X'59').

The value of this field indicates the

dispatching status:

VMDSTAT

Values Meaning

Xv80¢ Virtual machine is dispatched
RUNUSER

Xxv40!0 virtual machine is coampute bound

X120 virtual machine in-queue time slice
end

X110 Virtual machine in TIO/SIO busy loop

Xr08! Virtual machine is runable

X104t Virtual machine in a queue

Examine the virtual PSW and the last virtual
machine privileged instruction. The virtual
machine PSH is saved in VMPSW (displacement
X*'28') and the virtual machine privileged or
tracing instruction is saved in VMINST
(displacement X*'98').

Pind the name of the last CP command that
executed in VMCOMND (displacement X' 148').

Check the status of I/0 activity. The
following fields contain pertinent
information.

-- VMPEND (displacement X'63') contains the
interrupt pending summary flag. The value
of VMPEND identifies the type of
interrupt.

VMPEND

VYalues Meapning

X0 Virtual PER (Program Event

Recording) interrupt pending

X*20° Virtual program interrupt deferred
Xt10! Virtual SVC interrupt deferread
X*08! Virtual pseudo page fault pending
Xv02¢ Virtual I/0 interrupt pending
X'01¢ Virtual external interrupt pending

contains the

Bach bit
An interrupt
the

-- VMIOINT (displacement X'6AY)
I/0 interrupt pending flag.
represents a channel (0-15).
pending is indicated by a 1 in
corresponding bit position.

VMIOINT

Values Heaning

10000000 00000000 Interrupt pending
on channel 0

01000000 00000000 Interrupt pending
on channel 1

00000000 00000001 Interrupt pending
on channel 15

-- VMIOACTV (displacement X'36') is the

active channel mask. An active channel is
indicated by a 1 in the corresponding bit
position.

VCHBLOK

The address of the VCHBLOK table is found in the

VMCHSTRT field
VMBLOK.
of the active

(displacement X*'18') of the
General register 6 contains the address
VCHBLOK. RExamine the following

VCHBLOK fields:

The virtual channel address is contained in

VCHADD (displacement X'00').

The status of the virtual channel is found in
the VCHSTAT field (displacement X'06'). The
value of this field indicates the virtual
channel status:

Section 1. Introduction 37

VCHSTAT

Values Meaning

X'80¢" Virtual channel busy

X140 Virtual channel class interrupt
pending

X101 Virtual channel dedicated

e The value of the VCHTYPE field (displacement
X'07') indicates the virtual channel type:

VCHTYPE

Values Meaning

Xt80¢" Virtual selector channel

Xor virtual block multiplexer
VCUBLOK

The address of the VCUBLOK table is found in the
VCUSTRT field (displacement X'1C') of the
VMBLOK. General register 7 contains the address
of the active VCUBLOK. Useful information is
contained in the following. VCUBLOK fields:

e The virtual control unit address is found in
the VCUADD field (displacement X'00%).

e The value of the VCUSTAT field (displacement
X'06') indicates the status of the virtual
control unit:

VCUSTAT

Yalues Meaning

X180 Virtual subchannel busy

X'40¢ Interrupt pending in subchannel

X120 Virtual control unit busy

X*'10¢ Virtual control unit interrupt
pending

xros? Virtual control unit end pending

e The value of the VCUTYPE field (displacement
X'07') indicates the type of the virtual
control unit:

VCUTYPE
Values Meaning
X80 Virtual control unit on shared
subchannel
Xxr40° Virtual control unit is a
channel-to-channel adapter
VDEVBLOK

The address of the VDEVBLOK table is found in
the VMDVSTRT field (displacement X'20') of the
VMBLOK. General register 8 contains the address
of the active VDEVBLOK. Useful information is
contained in the following VDEVBLOK fields:

e The virtual device address is found in the
VDEVADD field (displacement X'00').

e The value of the VDEVSTAT field (displacement
X'06') describes the status of the virtual
device:

VDEVSTAT
Values Meaning

X'80°* Virtual subchannel busy

X'40* Virtual channel interrupt pending

Xr20! Virtual device busy

X*t10 Virtual device interrupt pending

xt08! Virtual control unit end

Xrour Virtual device not ready

Xro2¢ Virtual device attached by console
function

Xto1:e VDEVREAL is dedicated to device
RDEVBLOK

The value of the VDEVFLAG field (displacement
X107¢) indicates the following device
dependent information:

VDEVFLAG

Values Meaning

X'80" DASD--read-only device

X*80" virtual 2701/2702/2703 device--line
enabled

Xx*40" DASD--TDISK space allocated by CP

X401 Virtual 2701/2702/2703 device--line
connected

Xtu40! Console--activity spooled

X¢20° DASD--2311 device simulated on top
half of 2314

Xv10°" DASD--2311 device simulated on
bottom half of 2314

X*10¢ Console and spooling
device--processing first cCW

Xr08* DASD~~executing standalone seek

xro2r+ RESERVE/RELEASE are valiad ccw
operation codes.

Xvo1e Virtual device sense bytes present

The VDEVCSW field (displacement X'08")
contains the virtual channel status word for
the last interrupt.

The VDEVREAL field (displacement X240
contains the pointer to the real device
block, BRDEVBLOK.

The VDEVIOB field (displacement X134%)
contains the pointer to the active IOBLOK.

For console devices, the value of the
VDEVCFLG field (displacement X'26') describes
the virtual console flags:

VDEVCFLG

Values Meaning

X' 80" User signaled attention too many
times

X140 Last CCW processed was a TIC

X120 Data transfer occurred during this
channel program

X110 Virtual console function in progress

x108* Automatic carriage return on first
read

For spooling devices, the value of the
VDEVSFLG field (displacement X'27') describes
the virtual spooling flags:

38 IBM VM/370: System Logic and Problem Determination Guide

VDEVSFLG

Values Meaning

Xt80" Spool reader--last command was a
feed

X80 Spool output--transfered to VSPXXUSR

X'40°" Spool device--continuous operation

X*20! Hold output--save input

X'10° Spool output--for user and
distribution

X'08°" Spool input -- set unit exception at
EOF

X108¢ Terminal output required for spooled
console

Xour Device closed by console function

Xv02! Spool output--purge file at close

X102¢ Spool input--device opened Ly
DIAGNOSE

X1 Spool output--DMKVSP entered via SVC

e For output spooling devices, the VDEVEXTN
field (displacement X*'10') contains the

pointer to the virtual spool extension block,
VSPXBLOK.

RCHBLOK

The address of the first RCHBLOK is found in the
ARIOCH field (displacement X'3B4') of the PSA
(Prefix Storage Area). General register 6
contains the address of the active RCHBLOK.
Examine the following RCHBLOK fields:

e The real channel address 1is found in the
RCHADD field (displacement X'00?).

e The value of the RCHSTAT field (displacement

X'04') describes the status of the real
channel.

RCHSTAT

Values Meaning

X80 Channel busy

X140 IOB scheduled on channel

X'20 Channel disabled

X001 Channel dedicated

e The value of the RCHTYPE field (displacement
X'05') describes the real channel type:

RCHTYPE

Values Meaning

X*'80°* Selector channel

Xr40¢* Block multiplexer channel

X120 Byte multiplexer channel

X*'01" System/370 type channel (System/370

instruction support)

e The RCHFIOB field (displacement X'08') is the
pointer to the first IOBLOK in the queue and
the RCHLIOB field (displacement X'0C') is the
pointer to the last IOBLOK in the queue.

RCUBLOK

The address of the first RCUBLOK is found in the
ARIOCU field (displacement X'3B8') of the PSA.

General register 7 points to the current
RCUBLOK. Examine the following RCUBLOK fields:
e The RCUADD field (displacement X100')

contains the real control unit address.

e The value of the RCUSTAT field (displacement

X'04') describes the status of the control
unit:

RCUSTAT

Values Meaning

X*'80! Control unit busy

Xr40! IOB scheduled on control unit

X'20° Control unit disabled

X101 Control unit dedicated

e The value of the RCUTYPE field (displacement
X'05') describes the type of the real control

unit:

RCUTYPE

Values Meaning

X180* This control unit can attach to only
one subchannel

X'01* TCU is a 2701

X102 TCU is a 2702

Xt 03¢ TCU is a 2703

X104 Subordinate control unit

e The RCUFIOB field (displacement X'08') points
to the first IOBLOK in the queue and the
RCULIOB field (displacement X'0C') points to
the last IOBLOK in the queue.

RDEVBLOK

of the first RDEVBLOK is found in
the ARIODV field (displacement X'3BC') of the
PSA. General register 8 points to the current
RDEVBLOK. Also, the VDEVREAL field (displacement
X'24*) of each VDEVBLOK contains the address of
the associated RDEVBLOK. Examine the following
fields of the RDEVBLOK:

The address

e The RDEVADD field (displacement X'00°")
contains the real device address.

e The values of the RDEVSTAT (displacement
X'04') and RDEVSTA2 (displacement X'437)
fields describe the status of the real
device:

RDEVSTAT

Values Meaning

X80 Device busy

X400 IOB scheduled on device

X120 Device disabled (offline)

X110 Device reserved

X108 Device in intensive error recording
mode

X104 Device intervention required

X*02¢ GRAF - IO0OBLOK pending; queue
requests

X'01!? Dedicated device (attached to a
user)

Section 1. Introduction 39

RDEVSTA2
Values Meaning
X80 Active device is being reset

X400
X200

Device is busy with the channel
Contingent connection present

The value of the RDEVFLAG field (displacement
X'05') indicates device flags. The following
flags are device dependent.

RDEVFLAG

Values Meaning

X801 DASD--ascending order seek queueing

Xt40r DASD--volume preferred for paging

X200 DASC--volume attached to systenm

X' 10 DASD--CP owned volume

x'08°? DASD--volume mounted but not

i attached

x'80°* Console--terminal has print suppress
feature

X'40¢* Console--terminal executing prepare
command

X120 Console-~-I0BLOK pending; queue
request

X'10¢* Console--2741 terminal code
identified

Xt08: Console~--device is enabled

X104 Console--next interrupt from a halt
I/0

Xto2e Console--device is to be disabled

X011 Console--3704,/3705 NCP resource in
EP mode

X'80¢ Spooling--device output drained

X'40° Spooling--device ocutput terminated

X120 Spooling--device busy with
accounting

X*10°* Spooling--force printer to single
space

x08¢ Spooling--restart current file

X'04r Spooling--backspace the current file

X102* Spooling--print/punch job separator

X'01 Spooling--UCS buffer verified

X'80¢* Special--network control program is
active

X'40° Special--2701/2702/2703 emulation
program is active

Xt20! Special--3704/3705 is in buffer
slowdown mode

X'10¢ Special--automatic dump/load is
enabled

X' 08! Special--IOBLOK is pending; gqueue
requests

X'0ur Special--emulator lines are in use
by systen

X'02¢ Special-~automatic dump/load process
is active

Xto1 Special--basic terminal unit trace

requested

The value of the RDEVTYPC field (displacement
X'06') describes the device type class and
the value of the RDEVTYPE field (displacement
X'07') describes the device type.

The RDEVAICB field (displacement Xr247")
contains the address of the active IOBLOK.

The RDEVUSER field (displacement X'28')
points to the VMBLOK for a dedicated user.

The RDEVATT field (displacement
contains the attached virtual address.

X12ct)

IBM VM/370:

e The RDEVIOER field (displacement Xxuge)
contains the address of the IOERBLOK for the
last CP error.

e For spooling unit record devices, the RDEVSPL

field (displacement X'18') points to the
active RSPLCTL block.

e For real 3704/3705 Communications
controllers, several pointer fields are
defined. The RDEVEPDV field (displacement
X*'1C') points to the start of the free
RDEVBLOK 1list fcr EP lines. The RDEVNICL
field (displacement X'38') points to the

network control 1list and the RDEVCKPT field
(displacement X'3C') points to the CKPBLOK.
Also, the RDEVMAX field (displacement X'2E')
is the highest valid NCP resource name and
the RDEVNCP field (displacement X'30') is the
reference name of the active 3705 NCP.

e For terminal devices, additional flags are
defined. The value of the RDEVTFLG field
(displacement X'3A') describes the additional
flags:

RDEVTFLG

Values Meaning

X'80°' Terminal--logon process has been
initiated

Xt40! Terrinal--terminal in reset process

X'20¢ Terminal--suppress attention signal

X'80" Graphic--logon process initiated

X'40 Graphic--screen full, nmore data
waiting

Xr20 Graphic--screen in running status

X*10° Graphic--read pending for screen
input

X'08° Graphic--last input not accepted

X' our Graphic--timer request pending

X022 Graphic--control function
interruption pending

X'01? Screen full, hold status

e For terminals, an additional flag is defined.
The value of the RDEVTMCD field (displacement
X'46') describes the line code translation to

be used:

RDEVTMCD

Values Meaning

X*'10°* UASCII--8 level

xroct APL correspondence
X108’ APL PTTC/EBCD

Xrour Correspondence

X'00! PTTC/EBCD

IDENTIFYING A PAGEABLE MODULE

If a program check PSW or SVC PSW points to an
address beyond the end of the CP resident
nucleus, the failing module is a pageable
module. The CP system load map indicates where
the end of the resident nucleus is located.

address indicated in the PSW.
Backtrack to the beginning of that page frame.
The first eight bytes of that page frame (the
page frame containing the address pointed to by
the PSW) contain the name of the failing
module. If multiple modules exist within the

Go to the

System Logic and Problem Determination Guide

same page frame, identify the module using the
load map and failing address displacement within
the page franme.

READING CMS ABEND DUMPS

When CMS abnormally terminates, the terminal
operator must issue the DEBUG command and then
the DUMP subcommand if an ABEND dump is desired.
The DUMP formats and prints the following:

e General registers
e Extended control registers
e Floating-point registers
e Storage boundaries with their corresponding
storage protect key
e Current PSW
e Selected storage
Storage is printed in hexadecimal, eight
words to the line with EBCDIC tramslation at the
right. The hexadecimal storage address

corresponding to the first byte of each lime is

printed at the left.

When CMS can no
abnormally terminates.
the condition that caused the
find why the condition occurred. In order to
find the cause of a CMS problem, you mnust be
familiar with the structure and functions of
CHS. The discussion about reading CMS dumps
refers to several CMS control blocks and fields
in the control blocks. Refer to the VM/370:
Data Areas and Control Block Logic for a
description of each CMS control block. Figure
13 shows the relationships of CMS control
blocks. You also need a current CMS nucleus
load map to analyze the dump.

longer continue, it
You must first determine
ABEND and then

REASON FOR THE ABEND

Determine the immediate reason for the ABEND and
identify the failing module. The ABEND message
DMSABN148T contains an ABEND code and failing
address. "“CMS ABEND Codes" in Section 3 lists
all the CMS ABEND codes, identifies the module
that caused the module +to abnormally terminate,
and describes the action that should be taken
whenever CMS abnormally terminates.

You may have to examine several fields in the
nucleus constant area (NUCON) of low storage.

1. Examine the program old PSW (PGMOPSW) at
location X'28!'. Using the PSW and current
CMS load map, determine the failing
address.

2. Examine the SVC old PSW
location X'20°.

(SVCOPSW) at

3. Examine the external old PSW (EXTOPSW) at
location X'18'. If the virtual machine
operator terminated CMS, this PSW points to
the instruction executing when the
termination request was recognized.

4. PFor a machine check, examine the machine
check o0ld PSW (MCKOPSW) at locatiom X'30°.

COLLECT INFORMATION

Examine several other fields in NUCON to analyze
the status of the CMS system. As you proceed
with the dump, you may return to NUCON to find
pointers to specific areas (such as pointers to
file tables) or to examine other status fields.
The complete contents of NUCON and the other CMS
control blocks are described in the ¥M/370: Data
Areas and Control Block Logic. The following
areas of NUCON may contain useful debugging
information.

NUCON AREAS

e Save Area For Low Storage.
Before executing, DEBUG saves the first 160
bytes of low storage in a NUCON field called
LOWSAVE. LOWSAVE begins at X'CO'.

e Register Save Area.

DMSABN, the ABEND routine, saves the user's
floating-point and general registers.

Pield Location Contents

FPRLOG X*'160" User's floating-point
registers

GPRLOG Xt180¢ User's general
registers

ECRLOG xt1co! User's extended control
registers

e Device.

The name of the device causing the last I/0
interrupt is in the DEVICE field at X'26C"'.

e Last Two Commands or Procedures Executed.

Field Location Contents

LASTCMRND X*220° Last CMS command
issued

PREVCMND X*'2a8 Next to last CMS
command issued

LASTEXEC X'2B0O" Last EXEC procedure
invoked

PREVEXEC X288 Next to last EXEC

procedure invoked

Section 1. Introduction 41

600
608
610
618
620
628
630
638
640
648
650
658

670
678

6D8
6EQ
6E8
6F0
6F8

DMSNUC

USERSECT
SUBSECT
TSOBLKS
OPSECT | FCBIO —Free Storage ——
SYSREF DMSABW
A(FVS) A(OPSECT) | CMSCB
A(DEVTAB) | V(FSTLKP) DMSFRT
V(DMSINM) | VIFSTLKW)
A(PIE) A(IADT) DMSERT
A(USERSECT) | V(DMSDIOR) P
ebug w T o
VIDMSSCNN) | At0) |0BDCBPT | IOBECBPT

A(TABEND) A(SUBSECT)

V(DMSSTTW) | V(POINT)

¥

CVTSECT(Some fields are filled in
at {PL.)

NUCON

V(DMSSBDFR) | VIDMSDIOW)
V(DMSSMNST) | A(ADTSECT) FVs
V(FREE) V(FRET) DCB DECB
V(DMSPIOCC] | A(PGMSECT) DiosecT
A(IOSECT) | V(DMSDBD) SVCSECT
A{(DIOSECT) V(OSTABLE)
A(DMSERL) | A(DMSCRD) PGMSECT
V(DMSFREB) VCSECT
(l A(SVCS) |OSECT
A(ADTLKP) V{DMSAUDUR)
A(0) V(OSRET} EXTSECT
V(CMSRET) V(DMSSCNO) AFTSECT (© e e AFT
reate when the file is ;
VIDMSEXC) V(DMSLDRA) opened. There is room for 5 AFTs in continued
V(ADTLKW) V(USABRV) DMSNUC, others are in free storage.)
ADTSECT (Space is allocated when
A(EXTSECT) A(SCBPTR) DMSNUC is assembled, fields are
Al0) Alo) filled in when ACCESS command is
MSLAFNX issued. There is one ADT entry for
VIDMSLAF) vioms) each of the 10 possible disks.)
V(DMSLAFFE) | VIDMSLAFFT)
V(ADTNXT} V(DMSTRK) DEVTAB
V(DMSTRKX) | V(DMSTQQ) Terminal Buft s
erminal Buffers and Saveareas
V(DMSTQOX) V(DMSERS) CMSAVE LDRST
V(TYPSRCH) | VIDMSAUD) SYSREF
V(DMSFNST
VIKILLEX) (DMS ! MACDIRC and TXTDIRC
V(DMSBRD) V(DMSBWR)
V(DMSFNS) V(DMSSTTE)

Figure 13. CMS Control Blocks

Last Module Loaded Into Free Storage and
Transient Area.

The name of the last module loaded into free
storage via a LOADMOD is in the field
LASTLMOD (location X'2C0'). The name of the
last module 1loaded into the transient area
via a LOADMOD is in the field LASTTMOD
(location X'2C8').

e Pointer to CMSCB.

42

The pointer to the CMSCB is in the FCBTAB
field located at X'5C0'. CMSCB contains the
simulated 0S control blocks. These simulated
0S control blocks are in free storage. The
CHMSCB contains a PLIST for CMS I/0 functioms,

a simulated job file control block (JFCB), a
simulated data event block (DEB), and the
first in a chain of I/0 blocks (IOBs).

The Last Command.
The last command entered from the terminal is
stored in an area called CMNDLINE (X'7R0'),
and its corresponding PLIST is stored at
CMNDLIST (X'848').

External Interrupt Work Area.

EXTSECT (X'1550') is a work area for the
external interrupt handler. It contains:

IBM VM/370: System Logic and Problem Determination Guide

-- The PSW, EXTPSW (X'15F8')

-- Register save areas, EXSAVE1 (X'15B8')

-- Separate area for timer interrupts,
EXSAVE (X*'1550¢)

e TI/0 Interrupt Work Area.

IOSECT (X'1620') is a work area for the I/0
interrupt handler. The oldest and newest PSW
and CSW are saved. Also, there is a register
Save area.

e Program Check Interrupt Work Area.

PGMSECT (X'16B0') is a work area for the
program check interrupt handler. The old PSW
and the address of register 13 save area are
stored in PGMSECT.

e SVC Work Area.
SVCSECT (X'1748') is a work area for the SVC

interrupt handler. It also contains the
first four register save areas assigned. The

SFLAG (X'1758') indicates the mode of the
called routine. The values have the
following meanings:

Flag Description

X*80"' SVC protect key is zero

X'40* Transient area routine

X'20' Nucleus routine

X'01* Invalid re-entry flag

Also, the SVC ABEND code, SVCAB, is located

at X'175ar.

e Simulated CVT (Communications Vector Table).
The CVT, as supported by CMS, is CVTSECT

(x*1cc8'). oOnly the fields supported by CHS
are filled in.

e Active Device Table and Active File Table.

examine the ADT
APFT (Active File

For file system
(Active Device
Table) in NUCON.

problens,

Table), or

REGISTER USAGE

modules, it is
register usage

control blccks and
know the CHMS

To trace
important to
conventions.

Register Contents
GR1 Address of the PLIST

GR12 Program's entry point

GR13 Address of a 12-doubleword
work area for an SVC call

GR14 Return address

GR15 Program entry point or

the return code

The preceding information should help you to
read a CMS dump. With a dump, the control block
diagrams, and a CMS locad map you should be able
to find the cause of the ABEND.

NUCLEUS LOAD MAP

Each time the CMS resident nucleus is loaded on

a DASD, and an IPL can be performed on that
DASD, a load map is produced. Save this load
map. It lists the virtual storage locations of

nucleus-resident routines and work areas.
Transient modules are not included in this load
map. When debugging CHMS, you can locate
routines using this map.

The load map may be saved as a disk file and
printed at any time. A copy of the nucleus load
map is contained on the system with the file
identification of 'filename NUCMAP'. 1Issue the

LISTF * NUCMAPS
command to determine the filename. Then issue

PRINT filename NUCMAP

to obtain a copy of the current nucleus load
map.
FPigure 14 shows a sample CMS load map.

Notice that the debug work area (DBGSECT) and
the DMSINM module have been located.

LOAD MAP
The load map of a disk-resident command module
contains the location of control sections and
entry points loaded into storage. It may also
contain certain messages and card images of any
invalid cards or it may replace cards that exist
in the loaded files. The 1load map is contained
in the third record of the MODULE file.

This load map is useful in debugging. When
using the debug environment to analyze a
program, use the program's load map to help in
displaying information.

There are two ways to get a load map:

1. When loading relocatable object code into
storage, make sure that the MAP option is
in effect when the LOAD command is issued.
Because MAP is the default option, be sure
that NOMAP is not specified. A load map is
then created on the primary disk each time
a LOAD command is issued.

2. When generating the absolute image form of
files already 1loaded into storage, make
sure that the MAP option is in effect when
the GENMOD command is issued. Because MNAP

is the default option, be sure that NOMAP
is not specified. Issue the MODMAP command
to type the load map associated with the

specified MODULE file on the terminal. The
format of the MODMAP command is:

Ll 1
| MODmap | filename |
L N}
Where:
filename 1is the module whose map is to be
displayed. The filetype must be
MODULE.
Section 1. Introduction 43

FILE: LOAD CMSMAP C CONVERSATIONAL MONITOR SYSTEM

INVALID CARD...:READ DHMSNUC TEXT C1 CMs191 9/21/72 9:01
* UPLIB MACLIB D1 CMS191 9/21/72 8:47
* CMSLIB MACLIB D1 CMS191 9/21/72 8:44
* OSMACRO MACLIB Y2 CMS19E 7/19/72 18:11
* DMSNUC ASSEMBLE C1 SOURCE 9/18/72 23:09

DMSNUC AT 000000
DMSNUCU AT 002800
NUCON AT 000000
SYSREF AT 000600
FEIBM AT 000274
CMNDLINE AT 000720
SUBFLAG AT 0005E9
IADT AT 000644
DEVICE AT 00026C
DEVTAB AT 000C90
CONSOLE AT 000C90
ADISK AT 000CAQ
DDISK AT 000CDO
SDISK AT 000D10
YDISK AT 000L20
TABEND AT 000DFO
ADTSECT AT 00OLFO
AFTSTART AT 001200
EXTSECT AT 001500
EXTPSW AT 0015A8
IOSECT AT 0015D0
IONTABL AT 001610
PGMSECT AT 001660
PIE AT 001668
SVCSECT AT 0016F8
DIOSECT AT 001998
FVS AT 001a88
ADTFVS AT 001BUS
KXFLAG AT 001C2F
UFDBUSY AT 001C2E
CMSCVT AT 001C80
DBGSECT« AT 001D80
DMSERT AT 002098
DMSFRT AT 002208
DMSABW AT 002258
OPSECT AT 002800
DMSERL AT 002935
TSOBLKS AT 0029B0
SUBSECT AT 002340
USERSECT AT 002ADS8
INVALID CARD...:READ DMSINA TEXT Cc1 CMS191 9/19,/72 15:37
ABBREV AT 003000
USABRV AT 0030DO
INVALID CARD...:READ DMSINM TEXT C1 CMS191 9/18/72 20:36
CMSTIMER AT 003200
GETCLK AT 003200
DMSINM~ AT 003200
INVALID CARD...:READ DNSTIO TEXT C1 CMS191 9/19/72 10:33
TAPEIO AT 003308
DMSTIO AT 003308

Fiqgure 14, Sawmple CMS Load Map

4y IBM VM/370: System Logic and Problem Determination Guide

CP INTRODUCIION

The VM/370 Control Program (CP) manages the
resources of a Systeam/370 to provide virtual
storage support by using virtual machines. With
this support each terminal user appears to have
the complete function of a dedicated System/370
at his disposal, even though many other users
may be running batch, teleprocessing,
time-sharing, testing, or production jobs at the
same time.

A user defines the configuration he requires

-- input/output (I/0) device addresses, and a
storage size up to 16 =million bytes --
regardless of whether they match the real

machine's configuration. virtual devices nmust
have real counterparts, but not always in a
one-for-one ratio. For example, many users!
readers, punches, and printers can be mapped
onto common spool disks, and their virtual disk
devices may be mapped as minidisks onto
different sections of common disk packs,
effectively multiplying the number of 1logical
disk devices that are available on the real
machine.
Each user's virtual machine comprises:

e An operator's console (his 1local or remate

terminal device)
e 1A virtual CPU either with or without virtual
storage addressing.

e Virtual storage of up to 16 million bytes

e vVirtual I/0 devices

Note: If an operating system that manages
virtual storage 1is running in the virtual
machine, the CPU must have extended control (EC)
node.

Virtual I/0 devices are controlled by the
virtuval machine's operating system, not by CP.
Thus, for proper operation, the support for the
correct number and type of I/0 devices Rrust be
provided by the operating system of the virtual
machine. CP monitors, translates, and schedules
all real I/C operations to provide system
integrity. It executes all virtual machine
operations in a problem state by trapping,
screening, and processing all the interrupts,
and passing on the necessary information to the
appropriate virtual machine. Only CP executes
in the privileged state.

To increase the amount of real
available to the user's virtual machine, parts
of CP that are infrequently used are not
resident in main storage. Instead, they reside
on part of the auxiliary paging storage used by
the system, and are brought into main storage
only when they are required.

main storage

Because CP nonresident modules are paged into
main storage, CP also occupies virtual storage
space. The system VMBLOK, assembled into the
resident control program in the module DMKSYS,
defines this space. The VMBLOK has a pointer to

a segment table that references a set of page
and swap tables that describe CP's virtual
storage space.

The virtual space is divided into 2 parts;

the first part (4 segments (256K)) is reserved
for executable CP code, both resident and
pageable; the second part (the remaining storage

-of at least 256K) is dynamically allocated for
spooling buffers and for user directory
functions. For a routine to be pageable, a

numnber of restrictions must be observed.

When the system is loaded, resolved, and
written onto the systenm residence volunme,
pagable modules must be loaded at addresses

higher in main storage than the symbol DMKCPEND,
which defines the last byte of the resident CP
nucleus. This is done by reordering the
LOAD-LIST EXEC that the VMFLOAD procedure uses
when punching out the text decks that comprise
the Any pageable modules are listed after the
entry for DMKCPE. In addition, the set page
boundary (SPB) loader control card must precede
each pageable module. This SPB card forces the
loader to start loading the succeeding module at

the next higher U4k page boundary and ensures
that the entire module is resident when it is
paged in.

If several pageable modules perform similar
or related functions and if they are 1likely to
be resident at the same time, they may be
included in the same page by omitting the SPB
cards that would normally have preceded the
second and subsequent modules. The group of
modules to be loaded together must not exceed 4K
as their total storage requirement; if they do,
one or more must be loaded in separate pages,
because no page boundary crossover in the
pageable part of the control program is allowed.
All currently pageable CP rodules punch their
own SPB card via an assembler PUNCH statement,
except those that are designed to reside in a
page along with other modules.

CP INITIALIZATION

System initialization (IPL) prepares VM/370 for
operation. IPL performs the following tasks:

e TInitializes main storage

e Mounts devices

e Reads spool file checkpoint records, on a
warm start from the warm start cylinder;
reads spool file checkpoint records on a

checkpoint or force from the

checkpoint cylinders.

start,

e Allocates space for the system dump file
e TLogs on the system operator

In the case of a system restart that follows
a failure, active files and the system 1log
message are written on the warm start cylinder
before the CP nucleus can be brought into main
storage. The user can now log on.

Section 1. Introduction 45

VIRTUAL MACHINE MANAGEMENT

A virtual machine is created for a user when he
logs on VM/370, on the basis of information
stored in his directory entry. The entry for
each user identification includes a list of the
virtual I/0 devices associated with his virtual
machine and the real device equivalents.

The directory file contains additional
information about the virtual machine. Included
are the VM/370 command privilege classes for the
user, accounting data, normal and maximum
virtual storage sizes, and optional virtual
machine characteristics such as extended control
mode.

machine execution by
state execution

CP supervises virtual
(1) permitting only problen

except in its own routines, and (2) receiving
control after all interruptions occur on the
real system. CP intercepts each privileged

instruction and simulates it if the current PSW

of the 4issuing virtual machine indicates a
virtual supervisor state. If the virtual
machine 1is running in the problem state, an
attempt to execute a privileged instruction is
reflected back to the virtual wmachine as a
program interruption. A1l virtual machine
interruptions (including those caused by

attempting privileged instructions) are first
handled by CP, and are reflected to the virtual
machine if an equivalent interruption would have
occured on the real machine.

Virtual Machine Time Management

The real CPU uses time-slicing to simulate
multiple virtual CPUs. Virtual machines
executing in a conversational mode are given
access to the real CPU more frequently than
those that are not; these conversational
machines are assigned the smaller of two
possible time slices. CP determines execution

characteristics of a virtual machine at the end
of each time slice on the basis of the recent
frequency of its comnsole requests or terminal
interruptions. The virtual machine is gqueued
for subsequent CPU usage according to whether it
is a conversational or nonconversational user of
system resources.

A virtual machine can gain control of the CPU
only if it is not waiting for some activity or
resource, The virtual machine itself may enter a
virtual wait state after an I/0 operation has
begun. The virtual machine cannot gain control
of the real CPU if it is waiting for a page of
storage, an I/0 operation to be translated and
started, or a CP command to finish execution.

A virtual machine can be assigned a priority
of execution. Priority is a parameter affecting
the execution privilege of a particular virtual
machine in comparison to other virtual machines
that have the same general execution
characteristics. Priority may be assigned by
the real machine operator, but is more
frequently determined by the virtual machine's
directory entry.

Virtual Machine Storage Management

The normal and maximum storage sizes of a
virtual wmachine are defined in the virtual
machine configuration in the VM/370 directory.
The virtual storage size can be temporarily
redefined to any value that is a multiple of 4K
and not greater than the value stated as the
maximum allowable in the directory. VM/370 uses
this storage as virtual storage. The storage
can appear as paged or nonpaged to the virtual
machine, depending upon whether the extended
control (EC) mode option was specified for that
virtual machine. EC mode is required if
operating systems that control virtual storage,
such as 0S/VSt1 or VM/370, are to be run in the
virtual machine.

Storage in the virtual machine 1is logically
divided into 4096 byte areas called pages. A
complete set of segment and page tables describe
the storage of each virtual machine. These
tables are maintained by CP and reflect the
allocation of virtual storage pages to blocks of
real storage. The System/370 machine uses these
tables to address virtual storage. Storage in
the real machine 1is logically and physically
divided into 4096 byte areas called page frames
or blocks.

Only referenced
kept in real storage

virtual storage pages are

and, therefore, use real
storage more efficiently. A page can be brought
into any available page frame; the necessary
relocation is done during program execution by a
combination of VM/370 software and the dynamic
address translation hardware of the System/370.

The active pages from all logged-on virtual
machines and from the pageable routines of CP
compete for available page frames. When the

nunber of page frames available for allocation
falls below a threshold value, CP determines
which virtual storage pages currently allocated
to real storage are relatively inactive and
starts suitable operations to write them out on
a paging device (paging out).

Inactive pages are Bmaintained on a direct
access storage device. If an inactive page has
been changed at some time during virtual machine
execution, CP assigns it to a paging device,
selecting the fastest such device with available
space. If the page has not changed, it remains
allocated in its original direct access location
and is written into real storage from there the
next time the virtual machine references that
page. A virtual machine program can use the
DIAGNOSE instruction to inform CP that the
information from specific pages of virtual
storage is no longer needed. CP then releases
the areas of the paging devices that had been
assigned to hold the specified pages.

on demand by CP. This means
storage is not read from
to a real storage

Paging is done
that a page of virtual
the paging device and written

block until it is needed for virtual machine
execution. No attempt is made by CP to
anticipate what pages might be required by a

virtual machine. While a paging operation is
being performed for one virtual machine, another
virtual machine can be executing. Any paging
operation started by CP is transparent to the
virtual machine.

46 IBM VM/370: System Logic and Problem Determination Guide

If the virtual machine is executing in .EC
mode with +translate on, two additional sets of
segment and page tables are maintained. The
virtual machine operating system is responsible
for the equivalency of the virtual storage
created by it to the virtual storage of the
virtual machine. CP uses this set of tables in
conjunction with the page and segment tables
created for the virtual machine at logon time to
build shadow page tables for the virtual
machine. These shadow tables map the virtual
storage created by the virtual machine operating

system to the storage of the real computing
system. The tables created by the virtual
machine operating system may describe any page

and segment size permissible in the IBM

System/370.

The systenm
page frames

operator can assign the reserved
option to a single virtual machine

This option, specified by the SET RESERVE
command, assigns a specific amount of: the
storage of the real machine to the virtual
machine. cp dynamically builds a set of
reserved real storage page frames for this
virtual machine during its execution until the
maximum number ‘“reserved" has been reached.

Because other virtual machines' pages are not
allocated from +this reserved set, the mnmost
active pages of the selected virtual machine
remain in real storage.

During the process of CP system generation,
the installation may specify that a single
virtual machine is to be given an option called
virtual=real. With this option, the virtual
machine's storage is allocated directly from
real storage at the time CP is initially loaded,
and remains allocated until released by an
operator command. All pages except page zero
are allocated to the corresponding real storage
locations. To control the real computing
system, real page zero must be controlled by
CP. Consequently, the real storage size must be
large enough to accommodate the CP nucleus, the
entire virtual=real virtual machine, and the
remaining pageable storage requirements of CP
and the other virtual machines.

The virtual=real option improves performance
in the selected virtual machine because it
removes the need for CP to perform paging
operations for the selected wvirtual machine.
The virtual=real option is necessary whenever
programs that contain dynanmically nodified
channel programs (excepting those of 0S ISAM)
are to execute under control of CP.

Virtual Machine I/O ManageNent

A real disk device can be shared among multiple

virtual machines. virtual device sharing is
specified in the directory entry or by a user
command. If sharing is requested by a user
command, an appropriate password must be
supplied before gaining access to the virtual
device. A particular virtual machine can be
assigned read-only or read/write access to a

verifies each virtual
the parameters in
ensure

shared disk device. CP
machine I/0 operation against
the virtual machine configuration to
device integrity.

The virtual machine operating system is
responsible for the operation of all virtual
devices associated with it. These virtual

devices may be defined in the directory entry of
the virtual machine, or they may be attached to
(or detached fronm) the virtual machine's
configuration while it remains logged on.
Virtual devices may be dedicated, as when mapped
to a fully equivalent real device; shared, as
vhen mapped to a minidisk or when specified as a
shared virtuval device; or spooled by CP to
intermediate direct access storage.

In a real machine running under control of
0S, I/0 operations are normally initiated when a
problem program requests 0S to issue a START I/0
instruction to a specific device. Device error
recovery is handled by the operating system. In
a virtual machine, 0S can perform these sanme
functions, but the device address specified and
the storage locations referenced are both
virtual, It is the responsibility of CP to
translate the virtual specifications to real.

In addition, the interruptions caused by the
I/0 operation are reflected to the virtual
machine for its interpretation and processing.
If I/0 errors occur, CP records them but does
not initiate error recovery operations. These
are the responsibility of the virtual machine
operating systenm.

I/0 operations started by CP for its own
purposes (paging and spooling), are performed
directly and are not subject to translationmn.

SPOOLING

A virtual unit record device, which is mapped
directly to a real unit record device, is
dedicated. The real device is then controlled
completely by the virtual machine's operating
system.

CP facilities allow multiple virtual machines
to share unit record devices. Because virtual
machines controlled by CMS ordinarily have
modest requirements for unit record I/0, such
device sharing is quite advantageous, and it is
the standard mode of system operation.

spooling operations stop if the direct access
storage space assigned to spooling is exhausted,
and the virtual unit record devices are in a not
ready status. The system operator can wmake
additional spooling space available by purging
existing spool files or by assigning additional
direct access storage space to the spooling
function.
transferred from the

specific files «can be

spooled card punch or printer of a virtual
machine to the card reader of the same or
another virtual machine. Files transferred
between virtual wunit record devices by the

spooling routines are not physically punched or

printed. With this method, files can be made
available to multiple virtual machines, or to
different operating systens executing at

different times in the same virtual machine.

Section 1. Introduction 47

includes many desirable options
for the virtual wmachine user and the real
machine operator. These options include
printing multiple copies of a single spool file,

CP spooling

backspacing any number of printer pages, and
defining spool classes for scheduling real
output.

Remote Spooling

The Remote Spooling Communications Subsysten
(RSCS), a component of VM/370, provides support
for the automatic transfer of spool files
generated by VM/370 virtual machines to remote
locations. It also supports the transmission of
files from remote locations to virtual users.

RSCS uses the CP spooling facilities of

VM/370 to:

e Gain access to files spooled to RSCS by
VM/370 users for transmission to remote
locations.

e Transfer files, received from remote
locations, to the intended VM/370 virtual
machines.

This support is fully described in the IBM

VM/370: RSCS User's Guide.

CONSOLE FUNCTIONS

The CP console functions allow the user to

control the virtual machine from the terminal,

much as an operator controls a real machine.

Virtual machine execution can be stopped at any
time by the terminal's attention key; it can be
restarted by typing in the appropriate CP
command. External, attention, and device ready
interruptions can be simulated on the virtual
machine. Virtual storage, virtual machine
registers, the ESW and CSW can be inspected and
modified. Extensive trace facilities are
provided for the virtual machine, as well as a
single-instruction mode. Commands control the
spooling and disk sharing functions of CP.

Console functions are divided into privilege
classes. The directory entry for each user
assigns one or more privilege classes. The
classes are:

Primary system operator
System resource operator
System programmer
Spooling operator

Systems analyst

IBM field engineer or PSR
General user

Commands in the system analyst class can
inspect real storage lccations, but they cannot
make modifications to real storage. Commands in
the operator class control real Tresources.
System operator commands include all those
relating to virtual machine performance options,

such as assigning a set of reserved page frames
to a selected virtual machine.

PROGRAM STATES

When instructions in CP are being executed, the
real computer is in the supervisor state; at all
other times, when running virtual machines, it
is in the problem state. Therefore, privileged
instructions can only be executed by CP.
Programs running on a virtual computer can issue
privileged instructions; such an instruction
causes an interruption that is handled by CP.
CP examines the operating status of the virtual
machine PSW. If the virtual machine indicates
that it is functioning in supervisor mode, then

the privileged instruction is simulated
according to its type. If the virtual machine
is in problem mode, then the privileged

interrupt is reflected to the virtual machine.

Only CP may operate in the supervisor state
on the real machine. All programs other than CP
operate in the problenm state on the real
machine. All user interruptions, including
those caused by attempted privileged operationms,
are handled by CP, which then reflects to the
user program only those interruptions that the
user program would expect from a real machine.
A problem program executes on the virtual
machine in a manner identical to its execution
on a real System/370 CPU, as long as it does not
violate the CP restrictions.

PREFERRED VIRTUAL MACHINE

cp supports four special virtual machine
operating environment functions. Each function
can be applied to one virtual machine at a

time. Although each function could be applied
to a different virtual machine, optimum
performance would not be achieved. Each

function is discussed separately following.

Favored Execution

CP attempts to provide
percentage of CPU time to a
machine, provided that the
functioning in a way that
time. At regular time intervals the CcP
dispatcher checks the CPU time used by the
particular virtual machine. If the specified
percentage is exceeded, the machine becomes the
lowest priority user in the system. If the
percentage used is lower than that specified,
the virtual nmachine has highest priority
execution for the remainder of the interval.
The percentage of CPU time assured is specified
in the privileged class command that invokes the
function.

up to a specified
particular virtual
virtual machine is
fully utilizes CPU

CP can also assure that a designated user is
never dropped from the active (in queue) subset
by the scheduler. When the user is runnable, he

48 IBM VM/370: System logic and Problem Determination Guide

is placed in the dispatchable list at his normal
priority.

Reserved Page Frames

entries for
for users
which is

CP uses chained 1lists of table
available and pageable pages. Pages
are assigned from the available list
replenished from the pageable list.

Pages that are temporarily locked in real
storage are not available or pageable. Paging
proceeds using demand paging with a "reference
bit" algorithm to select the best page for
swapping. The reserved page frames option gives
a particular virtual machine an essentially
"private" set of pages. The pages are not
locked, that 1is, they can be swapped, but
usually only for the specified virtual machine.
The number of reserved pages for the virtual
machine are specified as a maximum. The page
selection routine selects an available page for
a reserved user and marks that page reserved if
the maximum specified for the user has not been
reached. If an available, unreferenced reserved
page is encountered during page replenishment
for the reserved user, it is used whether or not

the maximum has been reached. If the page
selection routine cannot locate an available
page for other users because they are all
reserved, the routine may steal the reserved

pages.

Virtual=Real

that the CP nucleus be
"hole" in real storage
the entire storage area

This feature requires
reorganized to provide a
large enough to contain

of the virtual machine. For the virtual
machine, each page from page one to the last
page (n) is in its true real storage location;
only page zero is relocated. The virtual

machine runs in relocate mode, but because the
virtual page address is the same as the real
page address, no CCW translation is required for
the virtual machine. Because no CCW translation
is performed, no check is made of the I/0 data
addresses. The virtual machine must ensure that
no I,/0 data transfer is specified into page zero

or into any page not in the virtual machine's
domain.
There are several considerations for the

virtual=real option of preferred machine support
that affect overall system operation:

e The area of contiguous
virtual=real machine must be
contain the entire addressing space
machine.

storage built for the
large enough to
of that

e HWhile allocated as such, the storage reserved
for the virtual=real machine can be used only
by a virtual machine with that option. It is
not available to other users for paging space
nor for VM/370 usage, even when the
virtual=real machine is nct logged on. For
this reason, the virtual=real machine should

be a high availability, high throughput
machine. The virtual=real storage can be
released by the operator. That storage is
then available for paging. Once virtual=real
storage space is released by the operator, a
VM/370 IPL 1is necessary to reallocate that

storage to that virtual=real machine.

e The virtual machine with the virtual=real
option operates in the pre-allocated storage
area with normal CCW translation in effect
until the execution of the SET NOTRANS ON
conmpand. At that time, all subsequent I/0

operations are performed from the virtual
CCWs in the virtual=real space without
translation. In this mode, the virtual

machine must not perform I/O operations into
page zero nor beyond its addressable limit.
Violation of this requirement may cause
destruction of the VM/370 system and/or other
virtual machines.

e If the virtual=real machine perfores a
virtual reset or IPL, the normal CCW
translation is performed until the issuance
of the SET NOTRANS ON command. Only the
virtual=real virtual machine can issue the
command. A message is issued if npormal
translation mode is entered.

Virtual Machine Assist Feature

The virtual machine assist feature is available
with system/370 Models 135, 145, and 158 and as
an RPQ on the Systes/370 Model 168. It improves
the performance of VM/370. It intercepts and

handles interruptions caused by SVCs, invalid
page conditions and the following privileged
instructions:

LRA (load real address)

STCTL (store control)

RRB (reset reference bit)

ISK (insert storage key)

SSK (set storage key)

IPK (insert PSW key)

STNSH (store then and systemr mask)

STOSM (store then or system mask)
SSHM (set system mask)
LPSW (load PSW)
SPKA (set PSW key from address)
Although virtual machine assist feature is

designed tc¢ improve the performance of VN/370,
the virtual machines that do not have virtual
machine assist feature available may see a
performance improvement because the virtual
machines with virtual machine assist feature are
using less of the system resources leaving more
resources available for the other users.

VIRTUAL MACHINE CONTROL: Real control register 6

(see Note 1) and a MICBLOK control virtual
machine assist feature. The MICBLOK is a list
of pointers to areas within VKE/370 control

blocks. The control register 6 format follows:
Bit Meaping
0 1=virtual machine assist feature on for

this virtual machine
O=virtual machine
disabled (VM/370 mode)

assist feature

Section 1. Introduction 49

Bit Meaning
1 1=virtual machine is in problem state
0=vVirtual machine is in supervisor state
(see Note 2)
2 1=ISK and SSK not handled by virtual
machine assist feature
0=ISK and SSK handled by virtual machine
assist feature
3 1=360 operations and 370 non-DAT
operations only
0=370 DAT operations allowed
(see HNote 3)
4 1=SVC interruptions not handled by
virtual machine assist feature
0=SVC interruptions handled by virtual
machine assist feature
5 1=Shadow table mode: Shadow page fixup
done by virtual machine assist feature
O0=Shadow Table fixup not allowed
6 Reserved (must be zero)
7 Reserved (must be zero)
8-28 Real address of virtual machine pointer
list
29-31 Unused (must be zero)
Notes:
1. Control register 6 is loaded before each

virtual machine is dispatched.

2. Bit 1 of control register 6 may be changed
by virtual machine assist feature during a
virtual machine status change.

3. Bit 3 affects instructions that only a
virtual machine with the EC option may
execute. Specifically, they are: LRA, RRB,

IPK, STNSM, STOSM, and SPKA. Bit 3 also
affects STCTL even though it can be
executed by a virtual machine without the
EC option.

virtual machine assist feature uses the list
of pointers, or MICBLOK, to access virtual
machine control information. The list must start
on a doubleword boundary. A MICBLOK is obtained
for each user when he 1logs on. The entries in
this list are as follows:

e Real segment table pointer and length, page
size, and segment size.

e Pointer to the real address of virtual

control register 0.

e Pointer to the real address of the virtual
PSW currently in effect.

e Pointer to the 64 byte workspace area
reserved for virtual machine assist feature.

INTERACTION WITH PROGRAM
For all
feature
events are
instructions were

EVENT RECORDING (RER) :
instructions in virtual machine assist
except SVC and LPSW, PER monitoring
indicated normally as if the
being executed in supervisor
state. Changes made to the virtual PSW or swap
table entries in VM/370 real storage are
indicated as storage alteration events, because
those locations are considered to be internal
registers to the virtual machine. A virtual
instruction that attempts to change the state of
the virtual PSW PER mask causes a privileged
instruction interruption, and the instruction is
suppressed.

For virtual SVC interruption, PER monitoring
specified in the current real PSW, current
virtual PSW, or new virtual PSW causes a real
svC interrupt, regardless of the values
specified in real or virtual control registers

9, 10, and 11. For virtual LPSW, similar
conditions result in a real privileged
instruction interruption.

PER monitoring specified in the real PSW

causes the VM/370 page invalid interruption to

be inactive.

Privileged instruction interruptions
resulting from the virtual instructions may show
a PER event for instruction fetching, Jjust as
they would without the feature. Real SVC
interruptions may be followed by a progranm
interruption for an instruction fetch PER
event.

INTERACIION WITH DOS EMULATOR: On machines with
both virtual machine assist feature and the DOS
Emulation feature installed, 1local execution
(LEX) mode inactivates virtual machine assist
feature; privileged instruction interruptions
and SVC interruptions occur according to DOS
emulation architecture. When the machine is not
in LEX mode, the machine performs as described

for virtual machine assist feature.

BESTRICTED USE OF VIRTUAL MACHINE ASSIST
FEATURE: Certain interruptions must be handled
by VVM/370. Consequently, the virtual machine
assist feature is not on in a virtual machine if
the machine has instruction address stop set

on.

VM/370 turns svC handling off when
instruction address stop is set on, and turms it
back on after the stop occurs.

VM/VS HANDSHAKING

The VM/VS
comrmunication
machine operating
each system control progranm
capabilities or requirements
VM/VS Handshaking performs the
functions:

Handshaking feature provides a
path between CP and a virtual
system (0S/VS1) that makes
aware of certain
of the other.
following

® Closes CP spool files when the VS1 job output
from its DSO, terminator, and output writer
is complete

e Processes VS1 pseudo page faults

50 IBM VM/370: Syster Logic and Problem Determination Guide

e Provides an optional nonpaging mode for VSt
when it is run in the VM/370 environment .

When a Vsi virtual machine with the
handshaking feature is loaded (via IPL), its
initialization routines determine whether the
handshaking feature should be enabled. First,
VS1 determines if it is running under the
control of VM/370 by issuing a STIDP (Store
Processor 1ID) instruction. STIDP returns a
version code; a version code of X'FF' indicates
Vs1 is running with VM/370. If vsl1 finds a
version code of X'FF', it then issues a DIAGNOSE
(x100') instruction to store the vM/370
extended-identification code. If an
extended-identification code is returned to Vvst,
VS1 knows that VM/370 supports handshaking; if
nothing is returned to VS1, VM/370 does not
support handshaking. At this time or any time
after IPL, the operator of the VSt virtual
machine can issue the CP SET PAGEX ON command to
enable the pseudo page fault handling portion of
handshaking. If +the VS1 virtual machine is in
the nonpaging mode and, if the pseudo page fault
handling is active, full handshaking support is
available.

Because the VS1 system does no paging, any
ISAM programs run under VS1 are treated by
VM/370 as though they are running in an

ADDRSPC=REAL partition. Therefore, the ISAM
option 1is required for the VS1 machine to
successfully execute the ISAM program.

If the handshaking feature is active, VS1 closes
the CP spool files when 1its job output from the
DSO, terminator, and output writer is complete.

Oonce the spool files are closed, vM/370
processes them and they are sent to the real
printer or punch. During its job termination
processing, VS1 issues a DIAGNOSE (X' 08')

instruction to pass the CP CLOSE command to
VH/370 for each CP spool file.

Pseudo Page Faults

A page fault is a program interruption that
occurs when a page marked "not in storage" is
referred to by an instruction with an active
page. The virtual machine referring to the page
is placed in a wait state while the page is
brought into real storage. Without the
handshaking feature, the entire VS1 virtual
machine is placed in page wait by VM/370 until
the needed page is available.

handshaking feature, a
multiprogramming (or multitasking) VS1 virtual
machine can dispatch one task while waiting for
a page request to be answered for another task.
VM/370 passes a pseudo page fault (program
interrupt X'14') to VS1. When VS1 recognizes
the pseudo page fault, it places only the task
waiting for the page in page wait and can
dispatch another tasks.

However, with the

VS1 virtual
pseudo page
is active and that

Rhen a page fault occurs for a
machine, VM/370 checks that the
fault portion of handshaking

the VS1 virtual machine is in EC mode and
enabled for I/0 interruptions. Then, VM/370
reflects the page fault to VS1 by:

e Storing the virtual machine address that

caused the page fault at location X'90' (the

translation exception address)
e TIndicating a program interruption (interrupt
code X'14') to VS1
e Removing the VS1 virtual eachine from
wait and execution wait

page

When VS1 recognizes program interruption code
X*'14¢, it places the associated task in wait
state. VS1 can then dispatch other tasks.

When the requested page becomes available in
real storage, VM/370 indicates the same progranm
interrupticn to VS1, except the high order bit
in the translation exception address field is
set on to indicate completion. VS1 removes the
task from page wait; the task is then eligible
to be dispatched.

¥S1 Nonpaging Mode

When VS1 runs under the control of
executes in nonpaging mode if:

VM/370, it

e TIts virtual storage size is equal to the size
of the VM/370 virtual machine

e Its virtual machine size is at least one
megabyte and no more than four megabytes.

e The VM/VS Handshaking feature is available.

When VS1 executes in nonpaging mode, it uses
fewer privileged instructions and avoids
duplicate paging. The vs1 Nucleus

Initialization Program (NIP) fixes all VS1 pages
to avoid the duplicate paging.
larger for a

Note: The working set size may be

VS1 virtual machine in nonpaging mode +than for
one in paging mode.

Miscellaneous Enhancements

A VS1 virtual machine with the handshaking
feature avoids many of the instructions or
procedures that would duplicate the function

that VM/370 provides. For example, VS1 avoids:

e ISK (Insert Storage Key) instructions and
uses a key table

e Seek separation for 2314 direct access
devices

e ENABLE/DISABLE
Supervisor (I0S)

sequences in the Vs1 I/0

Section 1. Introduction 51

e TCH (Test Channel) instructions preceding SIO
(start I/0) instructions.

CP INTERRUPTICN HANDLING

Interruption processing occurs within the CP
environment. More than 30 modules control the
process of interrupting events brought about by
CP or virtual machine activity. Each module
handles a particular I/0 device or class or a
function of CP, (for example: timers, paging,
SVCs) . For an overview of interruption
handling, see Figure 15.

Program Interruption

Program interruptions occur in two states. If

the CPU is in the supervisor state, the
interruption indicates a system failure in the
CP nucleus and causes a systen abnormal
termination. If the CPU is in the problenm
state, a virtual machine is in execution. If
the program interruption indicates +that the

Dynamic Address Translation (DAT) feature has an
exception, a virtual machine issued a privileged
instruction, or a protection exception occurred
for a shared segment system, CP takes control
and performs any required processing to satisfy
the exception. Usually, the interruption is

transparent to the virtual machine. Most other
progran interruptions result from virtual
machine processing and are reflected to the

virtual machine for handling.

52 IBM VM/370:

I1/Q Interrupt

I/0 interruptions from completed I/0 operations

initiate various completion routines and ' the
scheduling of further I/0 requests. The I/0
interruption handling routine also gathers
device sense information.

Machine Check Interruption

When a machine check occurs, CP Recovery
Management Support (RMS) gains control to save
data associated with the failure for FR

maintenance. RMS analyzes the failure and

determines the extent of damage.

Damage assessment results in one of the
following actions being taken:
e System termination
e Selective virtual user termination
e Refreshing of damaged information with no

effect on system configuration

» Refreshing
defective storage
system use

of damaged information with the
page removed from further

s Error recording only for certain soft machine
checks

The system operator is informed of all
actions taken by the RMS routines. When a
machine check occurs during VM/370 startup
(before the system is set up well enough to
permit RMS to operate successfully), the CPU
goes into a disabled wait state and places a
completion code of X'00B* in the high-order
bytes of the current PSH.

System Logic and Problem Determination Guide

INTERRUPT

Handler. These are:

The VM/370 Control Program (CP) is interrupt driven. Thus, when an interrupt occurs, control is passed to the appropriate Interrupt

. For SVC interrupts, the SVC Interrupt Handler]

W For External interrupts, the External Interrupt Handler DMKPSAEX

B For Machine Check interrupts, the Machine Check Handler (MCH)

.
® From unknown channel, the interrupt is ignored

® From an unsolicited Device End, build an I0OBLOK

and for: Console {Start/Stop) HEEP>(DMKCNSIN)
i i DMKRGA or
and for 3270s on bisync lines Sl DMKRGE

and for local 3270 devices, 3158 and 3066 consoles lp»(DMKGRF)

Unit Record (U/R), real spooling
® From a solicited Device End to stack I0BLOK

® From a Channel ERROR, the Channel Check Handler»

. For 10 interrupts, the 1/O interrupt Handler m
DMKIOSIN passes control to the appropriate processor depending on the type of 1/O interrupt. They are:

Monitor Tape 1/O Operation

From a dedicated device error, for either CP or a virtual machine
(DMKVCH), the ERP for:

DASD DMKDASER Tape

From 3270 bisync line and channel errors »
Recoverable error? No, record error Slp»(pMKIOERR

Yes

. For Program Check interrupts, the Program Check Interrupt Handler

® For normal paging DMKPTRAN

® For paging (virtual
machine in EC mode)

® For Supervisor state

® For privileged instructions

DMKPRVLG

® For virtual machine 1/0

DMKPRGIN passes control to the appropriate processor, depending on the type of program check, as follows:

DMKPRVLG passes control as follows:

® For DIAGNOSE ins(ructions
@ For timers -@

DMKPRGIN

DMKVIOEX

DMKVIOEX passes control as follows:

® For console »(DMKVCNEX

® For Unit Record (U/R), virtual

spooling ~

Figure 15. Overview of Interruption Handling

SYC Interruption

When an SVC interruption occurs, the SVC
interruption routine is entered. If the machine
is in problem state, the type of interruption is
usually reflected back to the pseudo-supervisor
(that is, the supervisor operating in the user's
virtual machine). If the machine 1is in
supervisor state, the SVC interruption code is
determined, and a branch is taken to the
appropriate SVC interruption handler.

External Interruption

If a timer interruption occurs, CP processes it
according to type. The interval timer indicates
time-slice end for the running user. The clock
comparator indicates that a specified timer

event has occurred, such as the time of day, a
scheduled - shutdown, or a reached user event.
The CPU timer indicates that a virtual machine's
allowed execution interval (time in gqueue) has
expired.

The external console interruption invokes CP
processing to switch from the primary console to
an alternate operator's comnsole.

FREE STORAGE MANAGEMENRT

During its execution, CP occasionally requires
small blocks of storage that are used for the
duration of a task. CP obtains this storage
from the free storage area. The free storage
area is divided into various size subpools. The
requestor informs the free storage manager of
the size of the block required and the smallest
available subpool that fulfills the request is
allocated to the requestor. When the block is

Section 1. Introduction 53

no longer needed, the requestor informs the free
storage manager and CP returns the block to free
storage.

If the request for free storage cannot be
fulfilled, the free storage manager requests the
temporary use of a page of storage from the
dynamic paging area. If a page is obtained, the
page is chained to the free storage area and
used for that purpose until it is no longer
needed and subsequently returned to the dynanic
paging area.

cannot be
until free

If the request for a
fulfilled, the requestor
storage becomes available.

page
waits

STORAGE PROTECTION

VM/370 provides both fetch and store protection
for real storage. The contents of real storage
are protected from destruction or misuse caused
by erroneous or unauthorized storing of fetching
by the progranm. Storage is protected from
improper storing or from both improper storing
and fetching, but not from improper fetching
alone.

When the CPU accesses storage, and protection
applies, the protection key of the current PSW
is used as the comparand. The protection key of
the CPU is bit positions 8-11 of the PSW.

If the CPU access is prohibited because of a

protection violation, the operation is
suppressed or terminated, and a program
interruption for a protection exception takes
place.

When the reference is made to a channel, and
protection applies, the protection key
associated with the I/0 operation is used as the
comparand. The protection key for an I/0
operation is in bit positions 0-3 of the CAW and
is recorded in bit positions 0-3 of the CSW
stored as a result of an I/0 operation. If
channel access is prohibited, the CSW stored as
a result of the operation indicates a
protection-check condition.

When a storage access is prohibited because
of a store protection violation, the contents of
the protected 1location remain unchanged. If a
fetch protection violation occurs, the protected
information is not loaded into an addressable
register, moved to another storage location, or
provided to an I/0 device.

To use fetch protection, a virtual machine
mast execute the set storage key (SSK)
instruction referring to the data areas to be
protected, with the fetch protect bit in the
key. VM/370 subsequently:

1. Checks for
when handling privileged
instructions.

a fetch protection violation
and nonprivileged

2. Saves and restores the fetch protection bit
(in the virtual storage key) when writing
and recovering virtual machine pages from
the paging device.

54 IBH VM/370:

3. Checks for a fetch protection violation on
a write CCW (except for spooling or console
devices) .

case of storage protection occurs
when the CMS nucleus resides in a shared
segment. The nucleus must be protected and
still be shared by many CMS users. The progran
interrupticn handler, DMKPRG, manipulates the
real storage key and real PSW key to ensure that
user programs and disk-resident commands run
with a different key than the nucleus code.

A special

EXECUTING THE PAGEABLE CONTROL PROGRAM

Calls to pageable routines are recognized at
execution time by the SVC 8 linkage manager in
DMKPSA. For every SVC 8, the called address (in
the caller's GPR15) is tested to see if it is
within the resident nucleus. If it is less than
DMKCPEND and greater than DMKSLC, the called
routine's base address is placed in GPR12 and
control is passed to the called routine in the
noreal way. However, if the called address is
above DMKCPEND or below DMKSLC, the 1linkage
manager issues a TRANS macro, requesting the
paging manager to locate and, if necessary,
page-in the called routine. The TRANS is issued
with LOCK option. Thus, the lock count
associated with the called routine's real page
indicates the responsibility count of the
module.

e When the module count is
incremented.

is called, the

e When the routine exits via SVC 12, the count

is decremented.

When the count reaches
routine is unlocked and is
out of the systen. However, because all CP
pageable modules are reentrant, the page is
never swapped out, but when the page is stolen,
it is placed directly on the free page list.

zero, the pageable
eligible to be paged

Because unlocked pageable routines
participate in the paging process in a manner
similar to user virtual storage pages, the least

recently used approximation used by page
selection tends to make highly used control
program routines, even when not locked, remain
resident. The called routine is locked into
real storage until it exits. Thus, it can
request asynchronously scheduled function, such

as I/0 or timer interrupts, as 1long as it
dynamically establishes the interruption return
address for the requested operation and does not
give up control via an EXIT macro prior to
receiving the requested interruption.

while it is

Addressability for the module,

executing, is guaranteed Dbecause the CALL
linkage 1loads the real address of the paged
module into GPR12 (the module base register)

prior to passing control. If all addressing is
done in a basesdisplacement form, the fact that
the module is executing at an address different
from that at which it was loaded is transparent.
Although part of CP is pageable, it never runs
in relocate mode. Thus, the CPU is not degraded

Systemr Logic and Problem Determination Guide

by the DAT feature being active, and no problems
occur because of handling disabled page faults.

SYSTEM SUPPORT MODULES

The system support modules provide CP with
several common functions for data conversion and
control block scanning and verification. Most
of the routines are 1linked to via the BALR
option of the CALL macro, and make use use of
the BALRSAVE and TEMPSAVE workareas in DMKPSA.

Two exceptions are the virtuval and real I/O
control block scan routines DMKSCNVU and
DMKSCNRU. These routines do not alter the

contents of the BALRSAVE area, and hence may be
called by another low level BALR routine.

CONTROL REGISTER USAGE

Every IBM System/370 CPU provides the progranm
with 16 logical control registers (logical
registers since the number that are active

depends on the features installed in the machine
at any one time) that are addressable for
loading and storing from basic control (BC)
node. VM/370 provides only a single control
register, control register zero, for normal
virtual machines, and for processing systems
that do not require the full set of registers
(for example, CMS, DOS, or other operating
systems for System/360.

virtual machine operating
system requires the use of control registers
other than control register zero, can request
the full set of 16 registers by specifying the
ECMODE option in the VM/370 directory entry for
his virtual machine.

Any user whose

A virtual machine, which utilizes any
System/370 features that use the control
registers, requires the ECMODE option. Some of

these features are expanded timer support of the
System/370 CPU timer, clock comparator, etc.,
the virtual relocate mode and its instructions,
RRB, LRA, PTLB, virtual monitor calls, virtual
Program Event Recording (PER), etc.

RESTRICTIONS AND CONVENTIONS FOR PAGEABLE CP

MODULES

the following
when they are

Pageable CP modules must observe
restrictions and conventions
designed and coded:

e The module should be completely reenterable.
Any messages to be modified, temporary work
or scratch areas, or program switches must be
allocated from system free storage or from
the caller's save area.

s The module must be entered by the standard
SVC 8 CALL linkage. Modules entered by BALR
or GOTO cannot be pageable.

e The module cannot contain any A-
address constants that point to locations
within itself or within other pageable
nodules, and it cannot contain any CCWs that
contain data addresses within themselves.
The only exceptions are address constant
literals generated as the result of calls to
other modules (because these addresses are
dynamically relocated at execution time, they
must be resolved by the loader to the loaded
address of the called module) and a pageable
module that locks itself into storage. In
.practice, this restriction means that data or
instructions within the pageable routine must
be referenced via base/displacenent
addressing, and the address in register 15
for a CALL may not be generated by a LOAD
ADDRESS instruction.

or V-type

o The pageable module must be no more than 4096
bytes in length.

If the four above design and coding
restrictions are adhered to, the CP module can
be added to the existing pageable nucleus
modules by utilizing the service routine,
VMFLOAD, which is described in "yYM/370
Maintenance Procedures" of the VM/370: Service

Routines Program Logic. Additional information

can be found in the VM/370: Planning and System
Generation Guide.
DATA AREA MODULES
In addition to the executable resident and

pageable modules, there are certain modules that

only contain data areas and do not contain

executable code. These modules are:

Resident

Module Contents

DMKCPE- Defines the end of the CP nucleus

DMKRIO I/0 device blocks

DMKSYS System constants

DMKTBL Terminal translate table

Pageable

Module Contents

DMKBOX Output separator table

DMKEMS Error message data module

DMKFCB 3211 Forms Control Buffer (FCB) load
tables

DMKSNT System name table

DMKSYM System symbol table

DMKUCB 3211 Universal Character Set Buffer
(UCSB) load tables

DMKUCS 1403 Universal Character Set (UCS)
load tables

DMKTBM Terminal translate tables

INTERRUPTION HANDLING

SVC INTERRUPTIONS

occurs, the SVC
is entered. If
state, DMKPSASV

When an SVC dinterruption
interrupticn routine (DMKPSASV)
the machine is in the problenm
takes the following action:

Section 1. Introduction 55

EXECUTABLE MODULES

Executable Resident Modules

DMKBSC DMKFRE
DMKCCH DMKGRF
DMKCCW DMKHVC
CMKCFC DMKHVD
DMKCFHM DMKIOR
DMKCNS DMKIOS
DMKCVT DMKLOC
DMKDAS DMKNCH
DMKDGD DMKMSW
CMKDMP DMKOPR
DMKDSP DMKPAG
Executable Pageable Modules
DMKACO DMKCSOC
CMKBLD DMKCSP
DMKCDB DMKCST
CMKCDS DMKCSU
DMKCFD DMKDEF
CMKCFG DMKDIA
DMKCFP DMKDRD
CMKCFS DMKEIG
DMKCFT DMKEMA
DMKCKP DMKEMB
DMKCKS DMKERM
DCMKCPB DMKGIO
DMKCPI DMKIOC
DMKCPV DMKIOF
DMKCQG DMKIOG
CMKCQP DMKISHM
DMKCQR DMKLNK
e If the interruption was the result of an

56

ADSTOP (SVC code X'B3'), the message ADSTOP
AT XXXXX is sent to the user's terminal, the
overlaid instruction is replaced, and the
virtual machine is placed in console function
mode (CP mode) via DMKCFMBK.

If the interruption was the result of an
error recording interface (SVC 76), DMKPSA
checks for valid parameters and passes
control to DMKVER to convert virtual device
addresses in the error record to real device
addresses. The actual recording is
accomplished in DMKIOE and DMKIOF. If
recording is not possible, the interrupt is
reflected back to the virtual machine.

If the virtual machine was in EC mode or its
page O was not in real storage, then all
general and floating-point registers are
saved, the user's VMBLOK is flagged as being
in an instruction wait, and control is
transferred (via GOTO) to DMKPRGRF to reflect
the interruption to the virtual machine.

If the virtual machine was in BC mode and if
page 0 is in main storage, an agppropriate SVC
old PSW is stored in page 0 and the
interruption is reflected to the virtual
machine, bypassing unnecessary register
saving. If the new virtual PSW indicates the
wait state, all registers are saved in the
VMBLOK and control transfers to DMKDSPB for
PSW validation.

DMKPGT DMKRSP

DMKPRG* DMKSCH

CMKPRV DMKSCHN

DMKPSA DMKSTK

DMKPTR DMKTMR

DMKQCN DMKUNT

DMKRGA DMKVAT

DMKRGB DMKVCN

DMKRGF DMKVIO

DMKRNH DMKVMA

DMKRPA DMKVSP

DMKLOG DMKTAP

DMKMCC DMKTDK

DMKMID DMKTHI

DMKMON DMKTRA

DMKNSG DMKTRC

DMKNEM DMKTRM

LCMKNES DMKUDR

DMKNET DMKUSO

CMKNLD DMKVCA

DMKPGS DMKVCH

DMKRSE DMKVDB

DMKSAV DMKVDR

DMKS EP DMKVDS

DMKSEV DMKVER

DMKSIX DMKVMI

DMKSKNC DMKWRM

DMKSPL

If the machine is in the supervisor state,

the SVC interruption code 1is determined and a
branch is taken to the appropriate svC
interrupticn handler.
s¥c 0
Impossible conditicn or terminal error. The

SVCDIE routine initiates an abnormal termination
by using the DMKDMPDK routine.

SvC 4

Reserved for IBM use.

request that transfers control from the
routine to the routine specified by
register 15. The SVCLINK routine sets up a new
save area, and then saves the caller's base
register in register 12 and save area address in
register 13, and the return address (from the
SVCOPSW) in the new save area. If the called
routine dis within the resident CP nucleus,
SVCLINK places its address in register 12 and
branches directly to the called routine. If the
called routine is in a pageable module, a TRANS
macro 1is performed for register 12 to ensure
that the page containing the called routine is
in storage. Upon return from the TRANS
execution, the real address of the pageable
routine is placed in register 12 and SVCLINK
branches to the called routine. The real
storage location of DMKCPE 1is the end of the
resident CP nucleus. Any modules loaded at a

calling

IBM VM/370: System Logic and Problem Determination Guide

higher real storage address are defined as

pageable modules.

S¥C 12

A return request that transfers control from the
called routine to the calling routine). The
SVCRET routine is invoked. If the routine that
issued the SVC 12 is in the pageable module
DMKPTRUL, then DMKPGSUL is called to unlock the
page. SVCRET then restores registers 12 and 13
(addressability and save area address saved by
SVCLINK), places the user's return address (also
saved in this area) back into the SVCOPSW, and
returns control to the calling routine by
loading the SVCCPSW.

sSVC 16

Releases current save area from the active chain
(removes linkage pointers to the calling
routine). The SVCRLSE routihe releases the
current save area by placing the address of the
next higher save area in register 13 and returns
control to the current routine by 1loading the
SVCOPSHW. This SVC 1is used by
interrupt handlers to bypass returning the first
level handler under specific circumstances. The
bkase address field (register 12) in the save
area being released is examined to determine if
the bypassed routine is in a pageable module.
If so, DMKPTRUL is called to unlock the page.

S¥C 20

Obtain a new save area. The SVCGET routine
places the address of the next available save
area 1in register 13 and the address of the
previous save area in the save area pointer

field of the current save area.

There are 35 SAVEAREAs initially set up by
DMKCPINT for use by the SVC 1linkage handlers.
If all the save areas are used, the 1linkage
handlers call DMKFREE to obtain additional save

areas.

EXTERNAL INTERRUPTIONS

Timer Interruption

entered because of a timer
state of the machine must be
determined. If the machine was in wait state,
control 1is transferred to DMKDSPCH, and the
machine stays idle until another interruption
occurs. If the machine is in problem state, the
address of the current user's VMBLOK is obtained
from RUNUSER. The user's current PSW (VMPSW) is
updated from the external interruption old PSW,

If DMKPSAEX is
interruption, the

the address of the current VMBLOK is placed in
register 11, and control is transferred to
CMKDSPCH. For additional information about

timers, see "Virtual Timer Maintenance."

External Interruption

If DMKPSAEX is entered because the operator
pressed the console interrupt button
(INTERRUPT), the following steps are taken:

e The current systenr VMBLOK
(DHKSYSOP) is referenced.

operator's

e The virtual machine is disconnected.

The operator can now log on from another
terminal. Pressing the console interrupt button
activates an alternate operator's console., For
a description of the processing of the external
interruption command, refer to module DMKCPB in
Section 2.

Extended Virtual External Interruptions

second level

" external interruptions,

To reflect

machine, an X
pointed to by
XINTBLOKs are

external interruptions to a virtual

XINTBLOK is queued on a chain
VMPXINT in the VMBLOK. The
chained sequentially by the
XINTSORT field that contains the collating
number of the pending interruption. If more
than one interruption has the same collating
number, the interruption codes are ORed together
in the XINTCODE field for possible simultaneous
reflection.

machine is enabled for
the XINTBLCK gqueue for
that machine is searched for an eligible block.
An XINTBLOK is eligible for reflection if one or
more bits of the XINTMASK field match the bits
in the low-order halfword of control register 0.
If the interruption was an interruption such as
CPU timer or clock comparator, the block is left
chained because reflection does not reset these
interruptions. If the reflected interruption (s)
does not represent all those coded in the
XINTMASK field, the block is left chained and
only the interruptions that were reflected are
reset. In all other conditions, the XINTBLOK is
unchained and returned to free storage.

When a virtual

PROGRAM INTERRUPTIONS

When a program interruption occurs, the program

interrupticn handler (DMKPRG) is entered.
Program interruptions can result from:

e Normal paging requests.

e 1A paging request by a virtual machine in EC

mode (virtual relocate mode).
e pPrivileged instructions.
e Program errors.

For information paging requests, see "Allocation
Management" in this section.

Privileged Instructions

If a program interruption is caused by the
virtual rmachine issuing a privileged imnstruction
when it is running in supervisor state, DMKPRVLG
obtains the address of the privileged
instruction and determines the type of operation
requested. If the virtual machine was running
in problem state, the inte