
SY20-0885-0
IBM Virtual Machine Facility/370:

System Logic and Problem Determination Guide
1976

Page Missing From
Original Document

Page Missing From
Original Document

This publication provides the IBM system
hardware and software support personnel
with the information needed to analy~e
problems that may occur on the IBM Virtual
Machine Facility/370 (VM/370).

CMS/DOS is part of the eMS system and~is
not a separate system. The term eMS/DOS'is
used in this publication as a concise way
of stating that the DOS simulation mode of
CMS is currently active; that is, the eMS
command

SET DOS ON

has been previously issued.

The phrase "CMS file system" refers to
disk files that are in CMS's 800-byte bloc~
format; CMS's VSAM data sets are not
included.

A system failure is usually accompanied
by a dump of processor storage. The dump
can occur by means of an automatically
invoked dump program, or a standalone dump
program. An example of a standalone dump
program is:

BPS Storage Print Program, No. 360-UT-056

HOW THIS MANUAL IS ORGANIZED

This manual contains five sections:

"Section 1. Introduction" contains
debugging information about error
conditions that may occur within VM/310.
This debugging information tells you what
to do about ABENDs, loops, wait states, and
incorrect output. Section 1 also contains
a brief description of three of the VM/370
components. The components that are
described are: the VM/370 Control Program
(CP), the Conversational Monitor System
(CMS), and the Remote Spooling
Communications Subsystem (RSCS).

"Section 2. Method of Operation and
Program Organization" contains the
functions and relationships of the program
routines in VM/370. section 2 indicates
the program operation and organization in a
general way to serve as a guide in
understanding the programming of VM/370.
It is not meant to be a detailed analysis
of VM/370 programming and cannot be used as
such.

"Section 3. Directories" contains a
description of all the asse.ble modules in
CP, CMS, and RSCS. It also contains
extensive cross-references between modules
and labels within a VM/370 component.

PREFACE

"Section 4. Diagnostic Aids" contains
.debugging commands for problem solving,
~ait state and ABEND codes, error codes,
ret,urn codes, and information about the
DASD'Dump Restore Program.

"Section 5. Appendixes" contains
reference information that may be useful
when Qebugging VM/370, such as: the VM/370
pr09~amming restrictions, the CMS ZAP
Service Program, and the VM/370 coding
conventions and equate symbols.

·HOW TO. USE THIS MANUAL

• Use the problem determination part of
section 1 to help you to determine what
type of error has occurred. Write down
a1~ error messages, ABEND codes and
return codes, and obtain a storage
dump.

• Consult the !~Ll1Q: ~~§!~! ~~§§g~~§ for
information about the error message,
ABEND code, or return code. The !~L11Q:
~~§!~~ Me22gg~2 also contains extensive
cross-reference information that may be
·he1pfu1 to you.

• Isolate the component of VM/370 in which
the problem occurred.

• Use the list of restrictions in "Section
5. Appendixes" to be certain that the
operation that was being performed was
valid.

• Use "Section 3. Directories" and use the
!~Ll1~: Data Areas and Control Block
~2~!f to---he1p--you-~0 --isolate--the
problem.

• Use "Section 2. Method of Operation and
Program Organization" if necessary, to
understand the operation that was being
performed.

PREREQUISITE PUBLICATIONS

!~~ !!~!yg! ~~fh!n~ Igf!!!!~Ll1Q:

1~!~QgYf!!2~, Order No. GC20-1800

Order No.

!~~ Q~L!§ ~Bg Y~L11Q !22gm~!g£ g£Qg£~mmg£~2
§~i~g, Order No. GC33-4021

!~~ Q~L!§, ~Q~LY§, ~Bg Y~L11Q !§§g!£!g£
1~gg~~gg, Order No. GC33-4010

COREQUISITE PUBLICATIONS

§~2~gm ~g22~gg2' Order No. GC20-1808

SECTION 1. INTRODUCTION ••••••••• 11
Introduction To Debugging. 11

How To Start Debugging • • • • • • 11
Does a Problem Exist? . • • • 11
Analyzing the Problem. • • .' •• 12
Using VM/370 Facilities to Debug ~ 12
CP Abnormal Termination. •• 12
CP Termination without a Dump. .16
CM S Abnormal Termina tion •• • • • 16
Virtual Machine ABEND (Other Than CMS) 18
Unexpected Results •••••••••• 23
Unexpected Results in CP • • • • 23
Unexpected Results in a Virtual

Machine • • • • • • • • 23
Loops. • • • • • • • ••• 23
CP Disabled Loop • • • • • 24
Virtual Machine Disabled Loop. • • • • 24
Virtual Machine Enabled Loop • 24
WAIT • • • • • • • • • • • • 24
CP Disabled Wait • • • • 25
CP Enabled Wait. • • • • • • 26
Virtual Machine Disabled wait ••••• 26
virtual Machine Enabled Wait • • • • • 26
RSCS Virtual Machine Disabled Wait • • 27
RSCS Virtual Machine Enabled Wait ••• 28

Summary of VM/370 Debugging Tools •.•• 29
Comparison of CP and CMS Facilities for

Debugging • • • • • • • • • • • •• 33
Debugging CP on a virtual Machine •••• 34

ABEND Dumps. • • • • • • • • • • • • • 34
Us in g the VMFDUMP Command. • • • • • • 34.
How to Print A CP Abend Dump From Tape 35

Reading CP ABEND Dumps • • 35
Reason for the ABEND • • • • • 35
Collect Information. • 36
Register Usage • • • • • • • • • 36
Save Area Conventions. • • ••• 36
Virtual and Real Control Block status. 37
VMBLeK • • 37
VCHBLOK. • • ••• 37
VCUBLOK. • • • • 38
VDEVBLOK • • • • • • • 38
RCHBLOK. • ••••••••• 39
RCUBLOK. 39
RDEVBLOK • • • • • • • • 39
Identifying a Pageable Module. • ••• 40

Reading CMS ABEND Dumps. • • ••• 41
Reason for the ABEND ••••••••• 41
Collect Information. • ••• 41
NUCON AREAS. • • • 41
Register Usage • • • • • 43
Nucleus Load Map • • • • 43
Load Map • • • • • 43

CP Introduction. • • • • • 45
CP Initialization. • • ••• 45
Virtual Machine Management • • • • • • 46
Spooling • • • • • • • • • • • • ••• 47
Console Functions. • • •• • • • • 48
Program States • • • • •• ••• • 48
Preferred virtual Machine. • • • • 48
VM/VS Handshaking. • • •• • ••• 50

CP Interruption Handling • • • • • 52
Free Storage Management. • . • • • 53
storage Protection • • • • • • • • 54
Executing the Pageable Control Program 54
System Support Modules • • • • 55
Control Register Usage • • . • 55
Restr~ctions and Conventions for
pageable CP Modules

Data Area Modules. •
Interruption Handling. • •
. SVC Interruptions ••

Executable Modules •
External Interruptions •
Program Interruptions. • • • • •
Virtual Timer Maintenance ••
I/O Management • • • • • • • • •
I/O Supervisor • • • • • • • • •
Real I/O Control Blocks. • • • •
Virtual I/O Requests • • •
I/O component States • • •
I/O Interruptions. • • • •
Virtual I/O Interruptions.
Scheduling I/O Requests. • •
Virtual Console Simulation.
Remote 3270 Programming. • •
I/O Programs for Bisync Lines and

55
• 55
• 55
• 55
• 56
• 57
• 57
• 65

66
• 66
• 66

• •• 67
• 69
• 70
• 70
• 71
• 72
• 73

Remote 3270s ••••••••••••• 74
Data Formats - Bisync Lines and Remote

3270. • • • • • • • • • • 75
Allocation Management. • • • 76
Normal paging Requests • • • 76
DASD Storage Management. • • 80
Paging I/O • • • • • • • • • 81
Virtual Storage Paging Error Recovery. 82
Virtual Relocation • • • • • • • • 82
Free storage Management. • • • 84
CP Ini tializa tion. • • • • • • • 85
Initialization and Termination • • 85
Console Functions. • • • • • 88
Dispatching and Scheduling • • 88
CP Spooling. • • • • • • • • • 93
Spool Data and File Format • • 93
spool Buffer Management. • • • • • • • 94
Virtual Spooling Manager (DMKVSP). • • 94
Real spooling Manager (DMKRSP) • • • • 96
Spooling Commands ••••••••••• 97
spool File Error Recovery ••••••• 99
Recovery from System Failure ••••• 100
Recovery Management Support (RMS) ••• 100
system Initialization for RMS ••••• 100
Overview of Machine Check Handler ••• 101
system/370 Recovery Features ••••• 101
Overview of Channel Check Handler ••• 105
Channel Control Subroutine •••••• 105
Individual Routines •••••••••• 106
Error Recording Interface for Virtual
Machines. • • • • • • • • • .107

Error Recording and Recovery ••••• 107
Error Record Writing • • • • • • • • .107
DASD Error Recovery, ERP (DMKDAS) ••• 108
Tape Error Recovery, ERP (DMKTAP). • .109
3270 Remote Support Error Recovery •• 110

The Conversational Monitor system (CMS).111
The CMS Command Language •• 111
The File System. • • • • .111
Program Development. • • • • 112
Interruption Handling in CMS • • .112
Functional Information. • .115
structure of CMS storage •• 116
Free Storage Management. • .116
CMS Handling of PSi Keys. • .123
CMS SVC Handling. • • • • • .124
SVC Types and Linkage Conventions. .124
User and Transient Program Areas .•• 126
Called Routine Start-up Table. •• • 126
Returning to the Calling Routine. .126
CMS Interface for Display Terminals •• 129
os Macro simulation under CMS ••••• 130
os Data Management Simulation. •• .130
Handling Files that Reside on C~S
Disks •••••••••••••••• 130

Handling Files that Reside on os or
DOS Disks. • • • • • • • ••• 130

simulation Notes ••••••••••• 131
Access Method su pport. • • • • • 134
Reading OS Data Sets and DOS Files

Using OS Macros • • • •
DOS/VS Support under CMS
CMS Support for OS and DOS VSAM

• • 136
• •• 137

Functions •••••••••••••• 138
RSCS Introduction. . • • • • • .138
Remote Spooling Communications

Subsystem: Overview •••••••••• 138
The RSCS Virtual Machine and the

VM/370 Control Program (CP)
Locations and Links. • • • •
Remote Stations •••••••
Betwork Control: RSCS and VM/370

•• 139
• • • 139
• •• 139

Commands. • • • • • • • • • ••• 140
RSCS Commands. • • • • • • • ••• 140
VM/370 CP and CMS Commands For RSCS •• 140
The RSCS Control Program. • ••• 141
The RSCS Supervisor. • • • ••• 141
Ta sk Management. • • • • • • 141
I/O Management • • • • • • • 142
Interruption Handling. • • ••• 142
Virtual Storage Management •••• 142
RSCS Task Structure. • •• • ••• 142
Crea te System Tasks: DMT CRE. • • • • • 143
Process Commands: DMTCMX • • .143
Process Messages: DMTMGX ••••••• 143
Terminate system Tasks and Handle

Program Checks: DMTREX •••••••• 143
Communicate with the VM/370 Spool
File System: DMTAXS ••••••••• 144

Manage Telecommunication Line
Allocation: DMTLAX •••••••••• 144

Line Driver Tasks: DMTNPT and DMTSML .144
The SML Line Driver Program •••••• 144
SML Processors •••••••••••• 145
The SML Line I/O Handler Routine:

COMSUP •••••••••••••••• 145
The SML Function Selector Routine:

$START •••••••••••••••• 145
Block and Deblock SML Teleprocessing
Buffers: $TPPUT and $TPGET •••••• 145

The NPT Line Driver Program •••• ~ •• 146
The NPT Line Monitor Routine: LIBEIO .146
The NPT Function Selector Routine:
BPTGET •••••••••••••••• 146

NPT Input File Processing ••••••• 146
NPT Output Processing Routines •••• 147
Major Data Areas ••••••••••• 147
SVECTORS: Supervisor Control Queues

and Supervisor Routine Addresses ••• 147
RSCS Supervisor Queue Elements •••• 147
MAINMAP: storage Available to RSCS

Programs and Tasks •••••••
TAREA: The Save Area for an

Interrupted Task ••••••••
LINKTABL: Link Description Data.
TAG: The RSCS File Descriptor. •
RSCS Request Elements ••••••
VM/370 Data Areas Referenced by RSCS
RSCS storage Requirements ••••••

synchronizing and Dispatching Tasks ••
The WAIT/POST Routines • • • •
Synchronization Locks. • • ••
Asynchronous Interruptions and Exits
using Asynchronously Requested

.147

.147

.147

.147

.147

.148
• 148
.149
• 149
.149
.149

Services: DMTWAT. • • .150
Posting a Synch Lock. • • • • • .150
Dispatching in RSCS. • • • • • • .150
Task-to-Task Communications. • • .150
ALERT Task-to-Task Communication .150
GIVE/TAKE Task-to-Task Communication .151
Input/Output Methods and Techniques •• 152
Active and Pending I/O Queues ••••• 152
Handling Link Activity: LINKTABLs and

TAGs ••••••••••••••••• 152
How Links Handle Files • • • • • • • • 152
Transmitting VM/370 Files to an RSCS
Link. • • • •••••••••• 153

Processing Files from Remote Stations.153

SECTION 2. METHOD OF OPERATION AND
PROGRAM ORGANIZATION •••••

CMS Program Organization • •
Introduction to CMS •••••
Initialize the CMS Virtual Machine

.155
.155
.160

Environment ••••••••••••• 160
Initialization: Loading a CMS Virtual

Machine from Card Reader ••••••• 160
Initializing a Named or Saved System .162
Handle the First Command Line Passed
to CMS •••••••••••••••• 162

Setting and Querying Virtual Machine
Environment Options ••••••••• 163

Process and Execute eMS Files ••••• 163
Maintaining an Interactive Console

Environment • •• •••••
Console Management and Command

Handling in CMS ••••••••
Maintaining an Interactive

Command/Response Session ••••
Method of Operation for DMSINT •
Method of Operation for DMSITS •

Load and Execute Text Files. • .' •
Process Commands That Manipulate the
File System • • • • • • • • • •

Manage the CMS File System • • •
How CMS Files are Organized in
Storage • • • • •

File Status Tables
Chain Links. • • •
CMS Record Formats ••

.163

.163

.163

.164

.165

.168

.177

.177

.177
• 177
.178
.178

Disk Organization in CMS •••••••• 178
Physical Organ~zation of Virtual

Disks •••••••••••••••• 180
The Master File Directory. • • • • • • 180
Keeping Track of R/W Disk storage:

QMSK and QQMSK •••••••••••• 180
Dynamic storage Management: Active

Disks and Files ••••••••••• 182
CMS Routines Used to Access the File

System. • • • • • • • • • • • .182
Input/Output Operations. •• • •• 182
Unit Record I/O Processing. • .183

Handle Interruptions. • • • •••• 184
DISK I/O IN CMS. • • • • • • .184

Manage CMS Free Storage. • • • .185
Simulate Non-CMS Operating Environments. '192
Access Method support for Non-CMS
Operating Environments. • • • • • • • • 193

CMS Support for the virtual storage
Access Method. • • • • •• • ••• 193
Creating the DOSCB Chain • • • • • • • 193

Executing an AMSERV Function •••••• 193
Executing a VSAM Function for a DOS

User. • • • • • • • • • • • •• • .194
CMS/DOS SVC Handling ••••••••• 195

Executing a VSAM Function for an os
User. ••• 196

Completion Processing for os and DOS
VSAM Programs. • • • • •• • •• 19a

OS Simulation by CMS • • • • • • 198
Simulating a DOS Environment Under

CMS • • • • • • • • • • • • • .207
Initializing DOS and processing DOS

System Control Commands ••••••• 207
setting or Resetting system

Environment Options. • • • • • .208
Process CMS/DOS OPEN and CLOSE
Functions. • • • • • • • • • • .209

Process CMS/DOS Execution-Related
Control Commands ••••••••••• 210

Simulate DOS SVC Functions •••••• 211
SVCs Treated as No-Op by CMS/DOS ••• 213
Process CMS/DOS Service Commands ••• 213
Terminate Processing the CMS/DOS

Environment ••••••••••••• 213
Perform Miscellaneous CMS Functions •• 213
CMS Batch Facility ••••••••• ~213
General Operation of DMSBTB •••••• 213
General Operation of DMSBTP •••••• 214
Other CMS Modules Modified in CMS

Batch •••••••••••••••• 215
CP Program Organi zation. • • • • • • • .216

Use of the Annotated Flow Diagram ••• 216
VM/370 CP Interruption Processing ••• 216
SVC Interruptions - Problem state ••• 216
SVC Interruptions - Supervisor state .216
External and Clock Interruption
Reflection •••••••••••••• 217

MONITOR Interruption Processing •••• 217
Program Interruption Processing •••• 217

virtual I/O Operations and Interruption
Processes ••••••••••••••• 218

CTCA Operations Between Two virtual
Machines. • ••••••••• 218

Scheduling I/O for CP and the Virtual
Machine ••••••••••••••• 218

Standard DASD I/O Initiated via
Diagnose. • • • • • • • • • • • .219

General I/O Operation Initiated Via
01agnose. • • • • • • • • • • • .219

virtual Machine I/O Instruction
simulation and Interruption
aeflection. • • • • • • • • •• .219

Virtual Console Simulation. • • .219
LQcal Graphic I/O and Interruption
Processing •••••••••••••• 220

Locate and Validate an ISAM Read
$equence ••••••••••••••• 220
S~heduling CP and Virtual Machine 1/0
operations and Interruption Handling.221

Terminal Console I/O Control,
START/STOP, 3210, 3215, and Others •• 222

Console Scheduling. • • • • •• .222
3704/3705 Interruption Handler. .223
Handling Remote 3270 with Binary

Synchronous Lines • • • • • • • .224
Real Storage Allocation and Page
'Management. • • • • • • • • • • .225

Reading/Writing a DASD page To/From
Virtual Storage ••••••••••• 225

Allocation and Deallocation of DASD
Space •••••••••••••••• 226

Shared segment Storage Management ••• 226
Temporary Disk storage Management ••• 226
Paging I/O Scheduler • • • • • • • • .227
Release Virtual Storage Pages ••••• 227
Free Storage Managemen t. • • • • • • .227
CP Initialization and Termination
Procedures. • • • • • • • • • .228

Virtual Machine Initialization and
Termination. • • • • • • • • • .229

Console Function (CP Command)
Processing. • • • • • • • • • .230

Dispatching and Scheduling. • • .231
Spoooling Virtual Device to Real

Device. • • • • • • • • • • • • .232
Spooling to the Real Printer/Punch
output Device • • • • • • • • .233

spooling to the Real Input Device ••• 234
Spool File Deletion •••••••••• 234
Recovery Management Support operation.234
User Directory Routines. • • • • • • .236
Save the 3704/3705 Control program

Image Process •••••••••••• 236
Spool File Checkpoint and Recovery •• 236

RSCS Program Organization. . • • • .238

SECTION 3. DIRECTORIES • • • • • •
CMS Module Entry Point Directory •

. CMS Module-to-Label Cross Reference. •
CMS Label-to-Module Cross Reference ••
CP Module Entry Point Directory ••
CP"Module-to-Label Reference •••
CP Label-to-Module Cross Reference ••
RSCS Module Directory. • • • • • •
RSCS Module Entry Point Directory.
RSCS Module-to-Label Cross Reference •
RSCS Label-to-Module Cross Reference •

SECTION 4. DIAGNOSTIC AIDS • • • • • •
CP Internal Trace Table ••••••••
CP Commands Used To Debug the Virtual

Machine • • • •
ADSTOP • • • • • • • • • • • • • • • •

.245

.247

.265

.281

.321

.341

.373

.447

.455

.465

.469

• 477
• 477

.479

.480

BEGIN. •
DISPLAY ••
DUMP •
SET. •
STORE.
SYSTEM • •
TRACE.

••••••• 482
• ••• 483
• ••• 489
• ••• 492
• ••• 499
• ••• 502

.503
CP Commands for System Programmers and

system Analysts. • ••• 508
DCP. • • • • • • • • •••••• 509
DMCP • • • • ••• 511
LOCATE. • • ••• 513
MONITOR. • • • • • • • •••• 514
QUERY. • • • .515
STCP • • • • •••••••• 528
DASD Dump Restore (DDR) Service Program

and How To Use It ••••••••••• 529
Invoking DDR under CMS • • • • • • • .529
Invoking DDR as a Standalone Program .530
DDR Control statements • • • .530
I/O Definition statements. • ••• 531

CP Wait State Codes. • • • • .540
CP ABEND Codes. • • • • • • • .542
CMS Return Codes. • • • • • • .557
CMS DMSFREX Error Codes. • • • • • .558
Error Codes from DMSFREE, DMSFRES, and

DMSFRET • • • • • • • •• •• .558
CMS ABEND Codes. • • • • • • • •• .559

ABEND Recovery • • • • • • • •• .559
RSCS Message-To-Label Cross Reference •• 563
CMS Commands for Debugging. • ••• 568

DEBUGGING with CMS • • •••• 568
CMS Debugging Commands ••••••••• 568

DEBUG ••••••••••••••••• 568
SVCTRACE ••••••••••••••• 584

DASD Dump Restore Service Program and
How To Use It ••••••••••••• 586
Invoking DDR under CMS • • • • • ••• 586
Invoking DDR as a Standalone Program .586

SECTION 5. APPENDIXES. • • • • .587

APPENDIX A: VM/370 CODING CONVENTIONS •• 589
CP Coding Conventions •••••••••• 589
CP Loadlist Requirements •••••••• 590

APPENDIX B: CP AND RSCS EQUATE SYMBOLS
VM/370 Device Classes, Types, Models

.591

and Features ••••••••••••
VM/370 Machine Usage • • • • • • • •
VM/370 Extended Control Registers ••
VM/370 CP Usage. • • •
VM/370 Registers • • • • • • • •

• .592
• .594
• .595
• .596
• .598

APPENDIX C: CMS EQUATE SYMBOLS ••••• 599
CMS Usage Equates. • • • .599
CMS Register Equates •••••••••• 601

APPENDIX D: DASD RECORD FORMATS. • .603
Record 0 Track 0 Cylinder 0 Only. .603
Record 1 (24 Bytes). • • • • .604
Record 2, 4096 Bytes. • • • .604
Record 3 • • • • • • • • • .604
Record 4 • • • • • • .605
Record 5 • • • • • • • • .605
Record 6 • • • • • .605
Record F3. • • • • • • • • .605
Record F4. • • .606
Record 4 • • • • • • .606
2314 Record Layout. .606
Cylinder 0, Track O. • ••••••• 606
All Cylinders Except 0, Track O. • .606
3330 Series Record Layout. • • .607
Cy linder 0, Track O. • • • • • • • .607
Any Cylinder Except O. .608
2305 Model 1 and Model 2 • .608
Cylinder 0, Track O. • • • .608
Any Cylinder Except O. • • .608
3340 Series Record Layout. • .609
Cylinder 0, Track O. • • • • .609
Any Cylinder Except O. • • • .609

APPENDIX E: VM/370 RESTRICITONS. • .611
CP Restrictions. • • • • • • .611
Dynamically Modified Channel Programs •• 611
Minidisk Restrictions. • • • • • • .611
Timing Dependencies. • • • • • • .613
CPU Model-Dependent Functions. • • .614
Virtual Machine Charact.eristics. • .614
CMS Restrictions. • • • • • .616
Miscellaneous Restrictions. • • • .618

APPENDIX F: VIRTUAL DEVICES USED IN CMS.619

APPENDIX G: FUNCTION CODES FOR DIAGNOSE
INSTRUCTIONS •••••••••••••• 621

APPENDIX H: CMS ZAP SERVICE PROGRAM ••• 623
ZAP Input Control Records. .624
special Considerations for Using the

ZAP Service Program. • .629

APPENDIX I: APPLYING PTFS. • .631
Supporting A VM/370 System. .631
VM/370 Update Procedures. .631

Updating a Module. • • • .633
Control Files. • • • • • • .634

Applying PTFs to VM/370. • .635
Updating Modules Using the V"FASM EXEC
Procedure ••••••••••••••• 638

Using VMFASM to Apply IBM-Supplied
updates •••••••••••••••• 639

Using VMFASM to Apply Your Own Updates .641
Other Files Produced by VMFASM ••••• 644

Figure 1.
Figure 2.

Figure 3.

Figure 4.
Figure 5.
Figure 6.

Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.

Figure 12.

Figure 13.
Figure 14.
Figure 15.

Figure 16.

Figure 17.
Figure 18.
Figure 19.

Figure 20.
Figure 21.
Figure 22.
Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 27.

Figure 28.

Figure 29.

Figure 30.

Figure 31.
Figure 32.

Figure 33.
Figure 34.
Figure 35.
Figure 36.

Figure 37.
Figure 38.

Does a Problem Exist •••••••• 13
Debug Procedures for waits
and Loops ••••••••••••••••••• 14
Debug Procedures for Unexpected
Results and an ABEND. .. 15
ABEND Messages •••••••••••••• 19
ABEND Problem Type •••••••••• 2l
Unexpected Results Problem
Type •••••••••••••••••••••••• 23
Loop Problem Type ••••••••••• 25
CP 'Wait Problem Type •••••••• 25
virtual Machine wait
Problem Type •••••••••••••••• 27
RSCS wait Problem Type •••••• 28
Summary of VM/370 Debugging
Tools ••••••••••••••••••••••• 29
comparison and CP and CMS
Facilities for Debugging ••• ~33
CMS Control Blocks •••••••••• 42
Sample CMS Load Map ••••••••• 44
Overview of Interruption
Handling •••••••••••••••••••• 53
DIAGNOSE X'5C'/VMMLEVEL
Field Analysis •••••••••••••• 64
User Dispatching States ••••• 90
User Status Changes ••••••••• 91
RMS Control Register
Assignments .•••••••••••••••• l02
Summary of lOB Indicators ••• 109
CMS File System ••••••••••••• 113
CMS Storage Map ••••••••••••• 117
CMS Command (and Request)
Processing •••••••••••••••••• 127
PSW Fields When Called
Routine Starts •••••••••••••• 128
Register Contents When
Called Routine Starts ••••••• 128
Simulated OS Supervisor
Calls .•...........•.•.•...•. 131
DCB Fields That Can Be
Specified for Each Access
Method •••••••••••••••••••••• 135
RSCS Virtual Machine
Configuration ••••••••••••••• 139
RSCS Commands and
Functions ••••••••••••••••••• 140
VM/370 DIAGNOSE
Instructions Issued by the
RSCS Program •••••••••••••••• 141
RSCS Tasks •••••••••••••••••• 143
Data Flow Between RSCS and
Remote stations via the SML
Li n e Dr i v e r ••••••••••••••••• 1 45
SML Function Processors ••••• 146
RSCS storage Allocation ••••• 148
Input to the DMTWAT Routine. 149
Movement of Data During a
Typical GIVE/TAKE
Transaction ••••••••••••••••• 152
I/O Queues and Subqueues •••• 153
Chaining of Data Areas
Required for File TAG
Manipulation •••••••••••••••• 154

Figure 39.

Figure 40.

Figure 41.
Figure 42.

Figure 43.

Figure 44.

Figure 45.

Figure 46.

Figure 47.

Figure 48.

Figure 49.

Figure 50.

Figure 51.

Figure 52.

Figure 53.

Figure 54.

Figure 55.

Figure 56.

Figure 57.

Figure 58.

Figure 59.

Figure 60.

Figure 61.

Figure 62.
Figure 63.

An Overview of the
Functional Areas of CMS ••••• 155
Details of CMS system
Functions and the Routines
That Perform Them ••••••••••• 156
CMS Storage Map ••••••••••••• 161
PSW Fields When Called
Routine Is Started •••••••••• 167
Register Contents When
Called Routine Is Started ••• 168
How CMS File Records Are
Chained Together •••••••••••• 177
Format of a File status
Block; Format of a File
Status Table •••••••••••••••• 178
Format of the First Chain
Link and Nth Chain Links •••• 179
Arrangement of Fixed-Length
or Variable-Length Records
in Files •••••••••••••••••••• 179
Structure of the Master
File Directory •••••••••••••• 181
Disk Storage Allocation
Using the QMSK Data Block ••• 181
Flow of Control for Unit
Record I/O processing ••••••• 183
Relationship in storage
Between the CMS Interface
Module DMSAMS and the
CMSAMS and CMSVSAM DCSSs •••• 194
The Relationships in storage
Between the User Program
and the CMSDOS DCSS and the
CMSVSAM DCSSs ••••••••••••••• 195
Relationship in Storage
Between the User Program,
the OS Simulation and
Interface Routines, and
the CMSDOS and CMSVSAM
DCSSs ••••••••••••••••••••••• 196
os Functions that CMS
Simulates ••••••••••••••••••• 199
CP Commands and Their
Module Entry Points ••••••••• 230
Overview of RSCS Program
Organization •••••••••••••••• 238
Program Organization for
the Multitasking Supervisor.239
Program Organization for
the REX System Service
Tasks ••••••••••••••••••••••• 240
Program Organization for
the AXS System Service Task.241
Program Organization for
the SML Line Driver Task •••• 242
Program Organization for
the NPT Line Driver Task •••• 243
CP Trace Table Entries •••••• 478
Annotated Sample of Output
from the TYPE and PRINT
Functions of the DDR
Program ••••••••••••••••••••• 539

Figure 64.
Figure 65.
Figure 66.

CP ABEND Codes •••••••••••••• 542
CMS ABEND Codes ••••••••••••• 560
Summary of SVC Trace Output
Lines ••••••••••••••••••••••• 586

Figure 67.

Figure 68.

Figure 69.

Devices supported by a CMS
Virtual Machine ••••••••••••. 619
Function Codes for
DIAGNOSE Instruction •••••••• 621
System Support plan ••••••••• 638

The VM/370 Control Program (CP) manages the
resources of a single computer such that
multiple computing systems appear to exist.
Each "virtual computing system", or virtual
machine, is the functional equivalent of an IBM
System/370. The person trying to determine the
cause of a VM/370 software problem must consider
three separate areas:

• The Control Program (CP) , which controls the
resources of the real machine.

The virtual machine operating system running
under the control of CP, such as CMS, RSCS,
OS, DOS, or VM/370.

The problem program, which executes under the
control of a virtual machine operating
system.

~2~~: For information about the Interactive
Problem Control System refer to the !~LJIQ:
Interactive Problem Control ~Y2i~~ (lgf~) Q2~~!2
§g!~§:-order-No:-GC20=1823:

Once the area causing the problem is
identified, the appropriate person should use
all available information and determine the
cause of the problem. The IBM Program systems
Representative (PSR) or a system programmer
handles all problems with CP, Conversational
Monitor System (CMS), Remote Spooling
communication Subsystem (RSCS), and Interactive
Problem Control System (IPCS); information that
is helpful in debugging CP, CMS, and RSCS is
contained in this publication. The applications
programmer handles all problem program errors;
techniques for applications program debugging
are found in the !~Ll1Q: £~~ Q2~!~§ ~Y!~~.

If the problem is caused by a virtual machine
operating system other than CMS and RSCS, refer
to the publications pertaining to that operating
system for specific information. However, use
the CP debugging facilities, such as the CP
commands, to perform the recommended debugging
procedures discussed in the publication that
pertains to the other operating system. The IBM
PSR or a system programmer handles problems with
virtual machine operating systems.

If it becomes necessary to apply a PTF
(Program Temporary Fix) to a component of
VM/370, refer to "Appendix J: Applying PFTs" for
detailed information on applying PTFs.

HOW TO START DEBUGGING

Before you can
recognize that

correct any problem, you must
one exists. Next, you must

identify the problem, collect information and
determine the cause so that the problem can be
fixed. When running VM/370, you must also
decide whether the problem is in CP, the virtual
machine, or the problem program.

A good approach to debugging is:

1. Recognize that a problem exists.

2. Identify the problem type and the area
affected.

3. Analyze
collect
isolate
problem.

the data you have available,
more data if you need it, then
the data that pertains to your

4. Finally, determine the cause of the problem
and correct it.

DOES A PROBLEM EXIST?

There are four types of problems:

• ABEND (Abnormal End)
• Unexpected results
• Loop
• wait state

The abnormal
problem. An
error message.

end is the most easily identified
abnormal termination causes an

Unexpected results, such as missing or incorrect
output, or incorrect format, is another easily
identified problem.

Unproductive processing time is a problem not
easily recognized, especially in a time-sharing
environment. When you are using VM/370, you are
usually sitting at a terminal and do not have
the lights of the CPU control panel to help you
recognize this type of problem.

You may have a looping condition if your
program takes longer to execute than you
anticipated. Check your output. If the number of
output records or print lines is greater than
expected, the output may really be the same
information repeated many times. Repetitive
output usually indicates a program loop.

Section 1. Introduction 11

Another way to identify a loop is to
periodically examine the current PSW. If the PSW
instruction address always has the same value,
or if the instruction address has a series of
repeating values, the program probably is
looping.

A wait state may exist if your program is
taking longer to execute then expected. To
identify a probable wait state, display the
current PSW on the terminal. Periodically,
issue the CP command

QUERY TIME

and compare the elapsed processing time. When
the elapsed processing time does not increase,
the wait state probably exists.

Figures 1-10 help you to identify problem
types and the areas where they may occur.

ANALYZING THE PROBLEM

Once the type of problem is identified, the
cause of it must be determined. There are
recommended procedures to follow. These
procedures are helpful, but do not identify the
cause of the problem in every case. Be
resourceful. Use whatever data you have
available. If the cause of the problem is not
found after the recommended debugging procedures
are followed, it may be necessary to undertake
the tedious job of checking through listings at
your desk.

See the !~LllQ: ~~~
information on using VM/370
a problem program.

User's Guide for
facIlIties-to debug

USING VM/370 FACILITIES TO DEBUG

Once the problem and the area where it occurs is
identified, you can gather the information
needed to determine the cause of the problem.
The type of information you want to use varies
with the type of problem. The tools used to
gather the information vary depending upon the
area in which the problem occurs. For example,
if looping is the problem, you should examine
the PSW. For a CP loop, you must use the
operator's console to display the PSW, but for a
virtual machine loop you can display the PSW via
the CP DISPLAY command.

The following shows specific debugging
procedures for the various error conditions.
The procedures tell you what to do and what
debugging tool to use. For details on how to
invoke and use the debugging tools refer to "CP
Commands For Debugging", "CMS Commands For
tebugging", and "Debugging With CMS" in section
4.

CP ABNORMAL TERMINATION

When CP abnormally terminates, a dump is taken.
This dump can be directed to a tape or printer
or dynamically allocated to a DASD. The output
device for a CP ABEND dump is specified by the
CP SET command. See "ABEND Dumps" in this
section for a description of the SET and VMFDUMP
cOllmands.

Use the dump to find what caused CP to
terminate. Find why the system abnormally
terminated and then see how the condition can be
corrected. See "Reading CP ABEND Dumps" in this
section for detailed information on reading a CP
ABEND dump.

REASON FOR THE ABEND: CP terminates and takes an
abnormal-- -termInation dump under three
conditions:

• Program Check in CP

Examine the PROPSW and INTPR fields in the
Prefix Storage Area (PSA) to determine the
failing module.

• Module Issuing an SVC 0

Examine the SVC old PSW (SVCOPSW) and ABEND
code (CPABEND) fields in the prefix storage
area to determine the module that issued the
SVC 0 and the reason it vas issued.

CPABEND contains an abnormal termination
code. The first three characters identify
the failing module (for example, ABEND code
BLD001 indicates DMKBLD is the failing
module) •

• Pressing SYSTEM RESTART on CPU Console

Examine the old PSW at location X'08' to find
the location of the instruction that was
executing when SYSTEM RESTART was pressed.
The operator presses SYSTEM RESTART when CP
is in a disabled wait state or loop.

PROCEDURE WHEN CP ABEND OCCURS: The information
In--low-storage --tells- you-'-the status of the
system at the time CP terminated. Status
information is stored in the CPSTAT field of the
PSA. You should be able to tell the module that
was executing by looking at the PSA. See "Save
Area Conventions" in this section and refer to
the appropriate save area (SAVEAREA, BALRSAVE,
or FREESAV~ to see how that module started to
execute.

Exalline the real and virtual control blocks
to find the status of I/O operations. The PSA
is described in the !!1L37.Q: Q!!! Ar.!i!!2 !!!S
~Q~!IQ! ~!Q£~ 1Qgi£·

Examine the CP internal trace table. This
table can be extremly helpful in determining the
events that preceded the ABEND. The CP internal
trace table description in Section 4 tells you
how to use the trace table.

12 IBM VM/370: System Logic and Problem Determination Guide

Does a problem exist?---_

START
DEBUGGING

Is there an ABEND condition? ------__.

II If the message
DMKDMP9081 SYSTEM FAILURE, CODE XXX XXX
appears on the console and
the alarm rings,

this is a CP ABEND.
The system dumps to disk or to the
printer if the set dump E command

has been issued, and automatically rs;:;l
performs I PL. • ~

II If the messages
DMKDMP9081 SYSTEM FAI LURE, CODE XXXXXX
DMKCKP9601 SYSTEM WARMSTART DATA SAVED
PMKCKP961W SYSTEM SHUTDOWN COMPLETE
appear on the console,

this is a CP ABEND.
The system dumps to tape
or printer and stops. __ ~

~
II If the message

DMSABNI48T SYSTEM ABEND XXX,

CALLED FROM YYYYYY
appears on the terminal,

this is a CMS ABEND.---~

II If an ABEND message

, from the virtual machine appears

on the terminal,
this is an ABEND in the
operating system controll ing

this virtual machine. ___ ~

II Otherwise, an ABEND
condition does not exist,

No problem exists

GO TO =) ___________ ...J

Figure

(0 Unexpected Results?---------_

II If an operating system which
executes properly on a real machine
fails to execute properly under VM/370,

there are unexpected results
in CPo ---------1_- rs;l

II If a program which executes under V
the control of an operating system on
a real machine fails to execute correctly

with the same operating system under
VM/370,

there are unexpected resOJlts ~
in the virtual machine. ---~

II If the program's output is
maccurate or mlssmg,

there are unexpected results

in the problem program.

If the output is redundant r::\
check for a loop. ---0

II Otherwise, check for a wait or

~ _____ IOO_P_.~-----------------~
o

Does a Problem Exist?

Is there a wait or Loop? _________ _

a If pressing the REQUEST key on the operator's
console leaves the REQUEST PENDING light on,

a CP disabled wait state exists.
The CPU console light will be on. _ ~

II If the CPU console wait light is on,
the system IS in a CP enabled wait state. __ ~

II If the real PSW problem bit is OFF,

there IS a CP loop. • ~

II If any of the following messages

DMKDSP450W CP ENTERED; DISABLED WAIT PSW
DMKDSP451W CP ENTERED; INVALID PSW
DMKDSP452W CP ENTERED; EXTERNAL INTERRUPT

LOOP

DMKDSP453W CP ENTERED; PROGRAM INTERRUPT
LOOP

appears on the terminal,
there IS a disabled wait or an interrupt loop in the

virtual machine. ---------

')

C5J II If pressing the ATTN key once does not cause

an Interrupt,

there is a disabled loop in the virtual machine.)

II If processing has ceased in the virtual
machine without reaching end-of-job,

GJ

II

II

the virtual machine is in an

enabled wait state and no I/O interrupt

has occu rred.

If processing time exceeds normal expectations,

the virtual machine may have an enabled loop.)

f4;I
Otherwise.~ ____________ v __ .J

o

Section 1. Introduction 13

Figure 2.

Debug Procedures for a Wait

CP Disabled Wait ---------------------------.,

II
II

Use ALTER/DISPLAY console mode (if available), to display real PSW and CSW. Also,
display general and extended control registers and storage locations X'OO'-X'l00',

Press SYSTEM RESTART button to cause a CP ABEND
dump to be taken.

IPl.

CP Enabled Wait ----------------------------1

Press SYSTEM RESTART button to cause a
CP ABEND dump to be taken.

Use the dump to check the status of each VMBlOK. Also,
check RCHBlOK, RCUBlOK, and RDEVBlOK for each device.

Virtual Machine Disabled Wait -------------------------f

II

Use CP commands (CMS users may use the CMS DEBUG command) to display
the PSW, CSW, general registers, and control registers.

Use the CP DUMP command (or CMS DUMP subcommand) to
take a dump.

Virtual Machine Enabled Wait ------------------------1

Take a dump.

Debug Procedures for a Loop

CPloop----------------------------------.,

II
II

Use ALTER/DISPLAY console mode (if available) to
display real PSW, general' registers, control
registers, and storage locations X'OO'-X'100',

Press SYSTEM RESTART button to cause a CP
ABEND dump to be taken.

Examine the CP internal trace table to see where the loop is.

Virtual Machine Disabled loop ------------------------1

II
II
II

Use the CP TRACE command to trace the loop.

Display the general registers and control registers
via the CP DISPLAY command.

Take a dump using the CP DUMP command.

Examine the source code.

Virtual Machine Enabled loop -----------------------1

Trace the loop. Display the PSW, general registers,
and extended control registers.

II Take a dump.

II Examine source code.

Debug Procedures for waits and Loops

14 IBM VM/370: System Logic and Problem Determination Guide

Figure 3.

Debug Procedures for Unexpected Results

Unexpected Results in CP -------------------------,

II
II
II

Check that the program is not violating any
CP restrictions.

Check that the program and operating system running
on the virtual machine are exactly the same as those
that ran on the real machine.

Use the CP TRACE command to trace CCWs, SIOs. and interrupts.
Look for an error in CCW translation or interrupt reflection.

If disk I{O error, use the CP DDR (DASD Dump Restore)
program to print the contents of any disk.

Unexpected results in a virtual machine ---------------------1

II
II

Check that the program executing on the virtual machine is
exactly the same as the one that ran on the real machine.

Make sure that operating system restrictions
are not violated.

Use CP TRACE to trace all I{O operations.

Debug Procedures for an ABEND

CPABEND-------------------------------,

II
II

Find out why CP abnormally terminated. Examine the
PROPSW, INTPR, SVCOPSW, and CPABEND fields in the PSA
from the dump.

Identify the module that caused the ABEND.
Examine the SAVEAREA, BALRSAVE, and FREESAVE areas of the dump.

If I{O operation, examine the real and virtual 110
control blocks.

CMSABEND------------------------------~

II

Determine reason for ABEND from code in ABEND
message DMSABN148T.

Enter debug environment or CP console function mode
to use the commands, to display the PSW, and to examine
low storage areas:

LASTLMOD and LASTTMOD
LASTCMND and PREVCMND
LASTEXEC and PREVEXEC and DEVICE

Look at the last instruction executed.
Take dump if need be.

Virtual Machine ABEND (other than CMS) ----------------------------------1

II
II

Examine dump, if there is one.

Use CP commands to examine registers and
control words.

Use CP TRACE to trace the processing up to
the point where the error occurred.

Debug Procedures for unexpected Results and an ABEND

Section 1. Introduction 15

The values in the general registers can help
you to locate the IOBLOK, VMBLOK, and the save
area. Refer to "Reading CP ABEND Dumps" in this
section for detailed information on the contents
of the general registers.

In the PSA, if the program check old PSi
(PROPSi) or the SVC old PSi (SVCOPSi) points to
an address beyond the end of the resident
nucleus, the module that caused the ABEND is a
pageable module. Refer to "Reading CP ABEND
Dumps" in this section to find out how to
identify that pageable module. Use the CP load
map that was created when the VM/370 system was
generated to find the address of the end of the
resident nucleus.

CP TERMINATION WITHOUT A DUMP

Two types of severe machine checks can cause the
VM/370 control program to terminate:

• An unrecoverable machine check in the control
program

• A machine check that cannot be diagnosed

A machine check error cannot be diagnosed if
either the machine check old PSi or the machine
check interruption code is invalid. These
severe machine checks cause CP to terminate, but
no dump is taken since the error is recorded on
the error recording cylinders. The system is
automatically restarted and a message is issued
identifying the machine check error.

If an unrecoverable machine check occurs in
CP, the message

DMKMCH6101 MACHINE CHECK SUPERVISOR DAMAGE

appears on the CPU console. CP is terminated and
automatically restarted.

If the machine check handler cannot diagnose
a certain machine check, the integrity of the
system is questionable. The message

DMKMCH6111 MACHINE CHECK SYSTEM INTEGRITY
LOST

appears on the CPU console, CP is terminated and
automatically restarted.

Hardware errors are probably the cause of
these severe machine checks. The system
operator should run the CPEREP program'to print
the previous error and save the output for the
installation hardware maintenance personnel.

CMS ABNORMAL TERMINATION

When CMS abnormally terminates, the following
error message appears on the terminal:

DMSABN148T SYSTEM ABEND xxx CALLED
FROM '1yyyyy

where xxx is the ABEND code and yyyyyy is the
address of the instruction causing the ABEND.
The DMSABN module issues this message. Then, CMS
waits for a command to be entered from the
terminal.

Because CMS is an interactive system, you may
want to use its debugging facilities to examine
status. You may be able to determine the cause
of the ABEND without taking a dump.

The debug program is located in the resident
nucleus of CMS and has its own save and work
areas. Because the debug program does not alter
the status of the system, you can use its
options knowing that routines and data cannot be
overlaid unless you specifically request it.
Likewise, you can use the CP commands to debug
when you know that you cannot inadvertently
overlay storage because the CP and CMS storage
areas are completely separate.

I§A~g! FOB THE ABEND: First determine the
reason c~i-abi~imaIIi-ierminated. There are four
types of CMS abnormal terminations:

• program Exception

The DMSITP routine gets control whenever a
hardware program exception occurs. If a
routine other than a SPIE exit routine is in
control, DMSITP issues the message

DMSITP141T xxxxxxxx EXCEPTION OCCURRED
AT xxxxxx IN ROUTINE xxxxxxxx

and invokes DMSABN (the ABEND routine). The
ABEND code is OCx, where x is the program
exception number (O-F). The possible
programming exceptions are:

Code --0-
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

!1~~ning
Imprecise
Operation
Privileged operation
Execute
Protection
Addressing
Specification
Decimal data
Fixed-point overflow
Fixed-point divide
Decimal overflow
Decimal divide
Exponent overflow
Exponent underflow
Significance
Floating-point divide

ABEND Macro

Control is given to the DHSSAB routine
whenever a user routine executes the ABEND
macro. The ABEND code specified in the ABEND
macro appears in the abnormal termination
message DHSABN148T.

• Halt Execution (HX)

Whenever the virtual machine opertor signals
an attention interruption and enters HX, CMS
terminates and issues "CMS".

16 IBH VM/370: System Logic and Problem Determination Guide

• system ABEND

A CMS system routine can abnormally terminate
by issuing the DMSABN macro. The first three
hexadecimal digits of the system ABEND code
appear in the CMS ABEND message, DMSABN148T.

The format of the DMSABN macro is:

r-'- --,
I I I r r"
l[labelJIDMSABNlcode I,TYPCALL=la!£ II
I I I (reg) I I BALR II
I I ILL.J.) L _______ _

label is any valid
label.

Assembler

I
I
I
I

.I

language

code is the abnormal termination code
(O-FFF) that appears in the DMSABN148T
system termination message.

(reg) is the register containing
abnormal termination code.

the

TYPCALL= specifies how control passes to the
TYPCALL=BALR abnormal termination
routine, DMSABN.

TYPCALL=SVC
Routines that do not reside in the
nucleus should use TYPECALL=SVC to
generate CMS SVC 203 linkage.

TYPCALL=BALR
Nucleus-resident
TYPCALL=BALR to
branch to DMSABN.

routines
generate

specify
a direct

If a CMS SVC handler abnormally terminates, it
sets an ABEND flag and stores an ABEND code in
NUCON (the CMS nucleus constant area). After
the SVC handler has finished processing, the
ABEND condition is recognized. The DMSABN ABEND
routine issues the ABEND message, DMSABN148T,
with the ABEND code stored in NUCON.

~~Q£~QYB~ !H~~ £~a ABEND OCCURS: After a CMS
ABEND, CMS provides two--courses of action. In
addition, you can enter the CP command mode and
use CP's debugging facilities by signalling
attention.

The two courses of action available in CMS
are:

• Issue the DEBUG command and enter the debug
environment. After using all the DEBUG
subcommands that you need, exit from the
debug environment. Then, either issue the
RETURN command to return to DMSABN so that
ABEND recovery occurs, or issue the GO
command to resume processing at the point the
ABEND occurred.

• Issue a CMS command other than DEBUG and the
ABEND routine, DMSABN, performs its ABEND
recovery and then passes control to the
DMSINT routine to process the command just
entered.

The ABEND recovery function performs the
following:

• The SVC handler, DMSITS, is re-initialized,
and all stacked save areas are released.

• "FINIS * * *" is invoked by means of SVC 202,
to close all files, and to update the .aster
file directory.

• If the EXECTOR module is in real storage, it
is released.

• All link blocks allocated by DMSSLI are
freed.

• All FCB pointers are set to zero.

• All user storage is released.

• The amount of system free storage which
should be allocated is computed. This value
is compared to the amount of free storage
that is actually allocated.

• The console input stack is purged.

When the amount of storage actually allocated
is less than the amount that should be
allocated, the message

DMSABN149T xxx x DOUBLEWORDS OF SYSTEM
STORAGE HAVE BEEN DESTROYED

appears on the terminal. If the amount of
storage actually allocated is greater than the
amount that should be allocated, the message

DMSABN150W nnn (HEX xxx) DOUBLEWORDS OF
SYSTEM STORAGE WERE NOT
RECOVERED

appears on the terminal.

A DEBUGGING PROCEDURE: When a CMS ABEND occurs,
you-probably--want-to use the DEBUG subco.mands
or CP commands to examine the PSW and certain
areas of low storage. Refer to "CMS Debugging
Commands" in Section 4 for detailed description
of how to use the CMS DEBUG subcommands. See
"CP Commands Used to Debug the Virtual Machine"
and "CP Commands Used to Debug cpu in Section 4
for a detailed description of how to use the CP
commands. Also refer to Figure 12 for a
comparison of the CP and CMS debugging
facilities.

The following procedure may be useful in
determining the cause of a CMS ABEND:

1. Display the PSW. (Use the CP DISPLAY
command or CMS DEBUG PSW subcommand.)
Compare the PSW instruction address to the
current CMS load map to determine the
module that caused the ABEND. The CMS
storage-resident nucleus routines are in
fixed storage locations.

Also check the interruption code in the
PSW.

2. Examine areas of low storage. The
information in low storage can tell you
more about the cause of the ABEND.

Section 1. Introduction 17

Field
iASTLMOD

Contents contaIns the name of the last
module loaded into storage via
the LOAD MOD command.

LASTTMOD Contains the name of the last
module loaded into the
transient area.

LASTCMND Contains the name of the last
command issued.

PREVCMND

LASTEXEC

PREVEXEC

DEVICE

Contains the name of the
next-to-the-Iast command
issued.

Contains the name of the last
EXEC procedure.

Contains the name of the
next-to-Iast EXEC procedure.

Identifies the
caused the
interrupt.

device
last

that
I/O

The low storage areas examined depend on
the type of ABEND.

3. Once you have identified the module that
caused the ABEND, examine the specific
instruction. Refer to your listing.

4. If you have not identified the problem at
this time, take a dump by issuing the DEBUG
DUMP subcommand. Refer to "Reading CMS
ABEND Dumps" in this section for
information on reading a CMS dump. If you
can reproduce the problem, try the CP or
CMS tracing facilities.

VIRTUAL MACHINE ABEND (OTHER THAN CMS)

The abnormal termination of an operating system
(such as OS or DOS) running under VM/370 appears
the same as a similar termination on a real
machine. Refer to publications for the
specified operating system for debugging
information. However, all of the CP debugging
facilities may be used to help you gather the
information you need. Because certain operating
systems (OS/VS1, OS/VS2, and DOS/V~ manage
their own virtual storage, CP commands that
examine or alter virtual storage locations
should be used only in virtual=real storage
space with OS/VS1, OS/VS2, and DOS/VS.

If a dump was taken, it was sent to the
virtual printer. Issue a CLOSE command to the
virtual printer to print the dump on the real
printer.

If you choose to run a standalone dump
program to dump the storage in your virtual
machine, be sure to specify the NOCLEAR option
when you issue the CP IPL command. At any rate,
a portion of your virtual storage is overlaid by
CP's virtual IPL simulation.

If the problem can be reproduc~d, it is
helpful to trace the processing uS1ng the CP
TRACE command. Also, you can set address stops,
and display and alter registers, control words
(such as the PS~, and data areas. The CP
commands can be very helpful in debugging
because you can gather information at various
stages in processing. A dump is static and
represents the system at only one particular
time. Debugging on a virtual machine can often
be more flexible than debugging on a real
machine.

VM/370 may terminate or reset a virtual
machine if a nonrecoverable channel check or
machine check occurs in that virtual machine.
Hardware errors usually cause this type of
virtual machine termination.

One of the following messages appears on the CPU
console:

DMKMCH616I MACHINE CHECK; USER userid
TERMINATED

DMKCCH604I CHANNEL ERROR; DEV xxx;
USER userid; ~ACHINE RESET

18 IBM VM/370: System Logic and Problem Determination Guide

ftessage

(Alarm rings)
DftKDftP9081 SYSTEft FAILURE CODE xxxxxx

DMKDftP90SW SYSTEft DUKP FAILURE;
PROGRAK CHECK

DftKDftP906W SYSTEft FAILORE; ftACHINE
CHECK, ROR SEREP

DMKDftP907W SYSTEK DOKP FAILORE; FATAL
1/0 ERROR

DKKCKF900W SYSTEft RECOVERY FAILORE;
PROGRAK CHECK

DMKCKP901W SYSTEft RECOVERY FAILORE;
ftACHINE CHECK, RON SEREP

DftKCKP902W SYSTEft RECOVERY FAILORE;
FATAL 1/0 ERROR - NOCL CYL

- WARK CYL
DKKCKP904W SYSTEft RECOVERY FAILORE;

INVALID WARM START DATA
DKKCKP910W SYSTEft RECOVERY FAILORE;

INVALID WARft START CYLINDER
DMKCKP911W SYSTEK RECOVERY FAILORE;

WARft START AREA FOLt

DMKWRK902W SYSTEK RECOVERY FAILORE;
FATAL 1/0 ERROR

DMKWRft903W SYSTEft RECOVERY FAILORE;
VOLID xxxxx ALLOCATION
ERROR CYLINDER xxx

DKKWRM904W SYSTEft RECOVERY FAILORE;
INVALID WARK START DATA

DKKWRK909W SYSTEK RECOVERY FAILORE:
VOLID xxxxxx NOT KOUNTED

DMKWRW909W SYSTEK DUKP DEVICE;
ROT-READY

Type of ABERD

CP ABERD, system dumps to disk.
Restart is automatic.

If the dump program encounters a
a program check, machine check or
fatal 1/0 error, a message is
issued indicating the error. CP
enters the wait state with code 3
in the PSW.

If the checkpoint program
encounters a program check, a
machine check, a fatal 1/0 error or
an error relating to a certain warm
start cylinder or warm start
data conditions, a message is
issued indicating the error and CP
enters the wait state with code 7
in the PSW.

If the warm start program
encounters a severe error, a
message is issued indicating the
error and CP enters the wait state
code 9 in the PSW.

DKKDftP9081 SYSTEK FAILURE, CODE XXXXIX CP ABERD, system dumps to tape or
DMKCKP9601 SYSTEM WARft START DATA SAVED printer. The system stops; the
DMKCKP961W SYSTEM SHOTDOWN COKPLETE operator must IPL the system to

'---­
Figure 4. ABEND Kessages (Part 1 of 2)

start again.
----------------_._-----------'

section 1. Introduction 19

,----- -----,
1 Message

DMKDMP905W SYSTEM DUMP FAILURE;
PROGRAM CHECK

DMKDMP906W SYSTEM DUMP FAILURE;
MACHINE CHECK r RUN SEREP

DMKDMP907W SYSTEM DUMP FAILURE; FATAL
I/O ERROR

DMKMCH6101 MACHINE CHECK; SUPERVISOR
DAMAGE

DMKMCH6111 MACHINE CHECK; SYSTEM
INTEGRITY LOST

Type of ABEND

If the dump program encounters a
program check r a machine check or
fatal I/O error r a message is
issued indicating the error. CP
enters the wait state with code 3
in the PSW.

If the duap cannot find a defined
dump device and if no printer is
defined for the dumpr CP enters a
disabled wait state with code 4 in
the PSi.

CP termination with automatic
restart when the two messages in
the "Messages" column are issued:

The machine check handler encoun­
tered an unrecoverable error with
the VM/370 control program.

The machine check handler encoun­
tered an error that con not be diag­
nosed; system integritYr at this
pointr is not reliable.

--

DMKCCH603W CHANNEL ERROR r RUN SEREP r
RESTART SYSTEM

DMKCPI955W INSUFFICIENT STORAGE FOR
VM/370

CP terainaticn occurs without auto­
matic restart when the two
messages in the "Messages" column
are issued:

There was a channel check condition
from which the channel check
handler could not recover. CP
enters the wait state with condi­
tion code 2 in the PSi.

The generated system requires more
real storage than is available. CP
enters the disabled wait state with
code OOD ,in the PSW.

1

---,----------------------- ----------1
DMSABN148T SYSTEM ABEND xxx CMS ABEND; the system accepts com- 1

CALLED FROM xxxxxx mands from the terminal. Enter the 1
DEBUG command and then the DUMP 1
subcommand to have CMS dump storage 1

lion the printer. 1
1---I
1 Others 1 When OS or DOS abnormally termi- 1
1 Refer to OS and DOS publication 1 nates on a virtual machine r the 1
1 for the abnormal termination 1 messages issued and the dumps taken 1
1 messages. I are the same as they would be if OS 1
1 I or DOS abnormally terminated on a I
1 I real machine. 1 1.-___ --I

Figure 4. ABEND Messages (Part 2 of 2)

20 IBM V"/370: System Logic and Problem Determination Guide

r-----
I Problem I Where I
I Type IABEND Occurs I

ABEND CP ABEND

CP ABEND

L-_____

-----,
bistinguishing Characteristics

The alarm rings and the message

DMKDMP9081 SYSTEM FAILURE, CODE xxx xxx

appears on the CPU console. In this instance, the
system dump device is a disk, so the system dumps to
disk and automatically restarts. If an error occurs
in the dump, checkpoint, or warmstart program, CP
enters the wait state after issuing one or more of
the following messages:

DMKDMP90SW SYSTEM DUMP FAILURE; PROGRAM CHECK
DMKDMP906W SYSTEM DUMP FAILURE; MACHINE CHECK, RUN

SEREP
DMKDMP907W SYSTEM DUMP FAILURE; FATAL I/O ERROR
DMKCKP900W SYSTEM RECOVERY FAILURE; PROGRAM CHECK
DMKCKP901W SYSTEM RECOVERY FAILURE; MACHINE CHECK,

RUN SEREP
DMKCKP902W SYSTEM RECOVERY FAILURE; FATAL I/O ERROR
DMKCKP904W SYSTEM RECOVERY FAILURE; INVALID WARM

START DATA
DMKCKP910W SYSTEM RECOVERY FAILURE; INVALID WARM

START CYLINDER
DMKCKP911W SYSTEM RECOVERY FAILURE; WARM START AREA

PULL
DMKWRM902W SYSTEM RECOVERY FAILURE; FATAL I/O ERROR
DMKWRM903W SYSTEM RECOVERY FAILURE; VOLID xxxxxx

ALLOCATION ERROR CYLINDER xxx
DMKWRM904W SYSTEM RECOVERY FAILURE; INVALID WARM

START DATA
DMKWRM909W SYSTEM RECOVERY FAILURE; VOLID xxxxxx

NOT MOUNTED

The following messages appear on the CPU console:

DMKDMP9081 SYSTEM FAILURE, CODE xxxxxx
DMKDMP9601 SYSTEM WARM START DATA SAVED
DMKDMP961W SYSTEM SHUTDOWN COMPLETE

The system dumps to tape or printer and stops. The
operator must IPL the system to restart. If an
error occurs in the dump or checkpoint program CP
enters the wait state after issuing one or more of
the following messages:

DMKDMP90SW SYSTEM DUMP FAILURE; PROGRAM CHECK
DMKDMP906W SYSTEM DUMP FAILURE; MACHINE CHECK, RUN

SEREP
DMKDMP907W SYSTEM DUMP FAILURE; FATAL I/O ERROR
DMKCKP900W SYSTEM RECOVERY FAILURE; PROGRAM CHECK
DMKCKP901W SYSTEM RECOVERY FAILURE; MACHINE CHECK,

RUN SEREP
DMKCKP902W SYSTEM RECOVERY FAILURE; PATAL I/O ERROR
DMKCKP910W SYSTEM RECOVERY FAILURE; INVALID WARM

START CYLINDER
DMKCKP911W SISTEM RECOVERY FAILURE; WARM START AREA

PULL _ _____________ -J

I
I

Figure S. ABEND Problem Type (Part 1 of 2)

section 1. Introduction 21

r 1 Problem
1 Type

ABEND
(Cont.)

--,
Where 1 1

ABEND Occurs 1 Distinguishing Characteristics I

CP termina­
tion with
automatic
restart

--------------1
An unrecoverable machine check error has occurred. 1
One of the following messages: 1

DMKMCH6101 MACHINE CHECK SUPERVISOR DAMAGE
DMKMCH6111 MACHINE CHECK INTEGRITY LOST

1
1
1
1

appears on the CPU console. The system is automat- 1
1 1 ically restarted. 1
1--I
1 CP termina- 1 An unrecoverable channel check error has occurred. 1
1 tion without I The message: 1
1 automatic 1 I
I restart I DMKCCH603W CHANNEL ERROR, RUN SEREP, RESTART 1
I I SYSTEM I
I I I
I 1 appears on the CPU console, and CP enters the wait 1
I 1 state. I
1-------------------------------------1
I Virtual ma- I The CMS message 1
1 chine ABEND 1 I
1 (CMS) I DMSABM148T SYSTEM ABEND xxx CALLED FROM xxxxxx I
I I 1
I I appears on the terminal. The system stops and 1
I I waits for a command to be entered on the terminal. 1
I I To have a dump taken, issue the CMS DEBUG command I
I 1 and then the DUMP subcommand. 1

Virtual ma­
chine ABEND
(other than

CMS)

When OS or DOS abnormally terminates on a virtual
machine, the messages issued and the dumps taken
are the same as they would be if OS or DOS abnor­
mally terminated on a real machine.

VM/370 may terminate or reset a virtual machine if
a nonrecoverabele channel check or machine check
occurs in that virtual machine. One of the
following messages appear to the system operator
at the CPU console:

DMKMCH6161 MACHINE CHECK; USER userid TERMINATED
DMKCCH6041 CHANNEL ERROR; DEV xxx; USER userid;

MACHINE RESET

Also, the virtual machine user is notified, by one
of the following messages, that his machine was
terminated or reset:

DMKMCH6191 MACHINE CHECK; OPERATOR TERMINATED
DMKCCH6061 CHANNEL ERROR; OP_RATOR TERMINATED L____________ _ ________________________________ , _____ J

Figure 5. ABEND Problem Type (Part 2 of 2)

22 IBM VM/370: System Logic and Problem Determination Guide

UIEXPECTED RESULTS

The unexpected results type of errors vary, from
operating systems improperly functioning under
VM/370 to output printed in the wrong for.at.

UNEXPECTED RESULTS IN CP

If an operating system executes properly on a
real machine but does not execute properly with
VM/370, a problem exists. Also, if a program
executes properly under the control of a
particular operating system on a real machine
but does not execute correctly under the same
operating system with VM/370, a problem exists.

There are programs (such as time-dependent
programs) that CP does not support. Be sure that
one of these programs is not causing the
unexpected results in CPo Refer to "CP
Restrictions" in Section 5 for a list of the
restrictions.

Ensure that the progr'am and operating system
running on the virtual machine are ~~~£!!I the
same as the one that ran on the real machine.
Check for the same:

• Job stream
• Copy of the operating system (and program)
• Libraries

If the problem still is not found, look for
an I/O problem. Try to reproduce the problem,
tracing all CCWs, SIOs, and interruptions via
the CP TRACE command. Compare the real and
virtual CCWs from the trace. A discrepancy in
the CCWs may indicate that one of the CP
restrictions was violated, or that an error
occurred in CPo

UNEXPECTED RESULTS II A VIRTUAL MACHINE

When a program executes correctly under the
control of a particular operating system on a
real machine but has unexpected results
executing under the control of the same
operating system with VM/370, a problem exists.
You usually find that something was changed in
the operating system or problem programs. Check
that the job stream, the operating system, and
the system libraries are the same.

If unexpected results occur (such as TEXT
records interspersed in printed output), you can
examine the contents of the system or user disk
files. Non-CMS users may execute any of the
utility programs, which are included in the
operating system they are using to examine and
rearrange files. For more details on using the
utility programs refer to the specific utilities
publication for the operating system running in
the virtual machine.

CMS users should use the DASD Dump Restore
(DDR) service program to print or move the data
stored on direct access devices. The VM/370
DASD Dump Restore (DDR) program can be invoked

by the CMS
controlled
functions:

DDR command
by CMS. The

in
DDR

a virtual machine
program has five

• DUMP dumps part, or all of the data from a
DASD device to magnetic tape.

• RESTORE -- transfers data from tapes created
by DDR DUMP to a direct access device. The
direct access device that the data is being
restored to must be the same type of device
as the direct access device originally
containing that data.

• COpy copies data from one device to
another device of the same type. Data may be
reordered, by cylinder, when copied from disk
to disk. To copy on~ tape to another, the
original tape must have been created by the
DDR DUMP function.

• PRINT -- selectively prints the hexadecimal
and EBCDIC representation of DASD and tape
records on the virtual printer.

• TYPE -- selectively displays the hexadecimal
and EBCDIC representation of DASD and tape
records on the terminal.

CMS users should refer to "Debugging with
CMS" in section 4 for instructions on using the
DDR command. "CP Commands for Debugging" in
section 4 contains information about executing
the DDR program in a real or virtual machine and
a description of the DDR control statements.

,.--- -----------------_._-,
1 Unexpected Results Problem Type 1
1----------------------------------1
1 CP 1 If an operating system, executes 1
1 I properly on a real machine but not I
1 1 properly with CP, a problem exists. 1
1 1 Inaccurate data on disk or system 1
1 1 files (such as spool files) could 1
1 I be the cause of the error. 1
1----------------------1
1 Virtual I If a program executes correctly 1
1 Machine 1 under the control of a particular 1
1 1 operating system on a real 1
1 1 machine, but does not execute 1
1 1 correctly under the same operating 1
1 1 system with V8/370, a problem I
1 1 exists. 1
L ~

Figure 6. Unexpected Results Problem Type

LOOPS

The real cause of a loop usually is an
instruction that sets or branches on the
conditj_on code incorrectly. The existence of a
loop can usually be recognized by the ceasing of
productive processing and a continual return of
the PSi instruction address to the same address.
If I/O operations are involved, and the loop is
a very large one, it may be extremely difficult
to define, and may even include nested loops.
One of the most difficult types of loops to
determine is entry to the loop from a wild
branch. The problem in loop analysis is finding

section 1. Introduction 23

either the instruction that should open the loop
or the instruction that passed control to the
set of looping instructions.

CP DISABLED LOOP

The system operator should perform the following
sequence when gathering information to find the
cause of a CP disabled loop.

1. Use the
display
control
X'OO'

ALTER or DISPLAY commands to
the real PSW, general registers,
registers, and storage locations

X' 100' •

2. Press the SYSTEM RESTART button to cause an
ABEND dump to be taken.

3. Save the information
system programmer or
support Representative.

collected for the
IBM Programming

After the system operator has collected the
information, the system programmer or Field
Engineering representative examines it. If the
cause of the loop is not apparent:

1 • Examine the CP internal
determine the modules that
in the loop.

trace table to
may be involved

2. If the cause is not yet determined, assume

Note: You can IPL a standalone dump program such
i;-~he BPS storage Print to dump the storage of
your virtual machine. If you choose to use a
standalone dump program, be sure to specify
NOCLEAR on the IPL command. Also, be aware that
the CP IPL simulation destroys a page of storage
in your virtual machine and the standalone dump
alters your virtual storage While the CP DUMP
co •• and does not.

However, if
virtual machine
usually better.
dump program.
exist only on
device.

the operating system in the
manages virtual storage, it is

to use that operating system's
CP does not retrieve pages that
the virtual machine's paging

VIRTUAL MACHINE ENABLED LOOP

You should perform the following sequence when
locating the cause of an enabled loop:

1. Use the CP TRACE command to trace the
entire loop. Display the PSW and the
general registers.

2. If your virtual machine has the extended
control (EC) mode and the EC option, also
display the control registers.

that a wild branch caused the loop entry, 3. Use the CP DUMP com,mand to dump your
and search the source code for this wild
branch.

VIRTUAL MACHINE DISABLED LOOP

When a disabled loop is in a virtual machine you
cannot communicate with the virtual machine's
operating system. This means that signaling
attention does not cause an interruption.

To find the cause of a virtual machine
disabled loop:

1. Enter the CP console function mode.

2. Use the CP TRACE command to trace the
entire loop. Display general and extended
control registers via the CP DISPLAY
command.

3. Take a dump via the CP DUMP command.

4. Examine the source code.

Use the information gathered, along
listings, to try to find the entry into
loop.

with
the

virtual storage. CMS users can use the
DEBUG DUMP subcommand. A standalone dump
may be used, but be aware that such a dump
destroys the contents of some areas of
storage.

4. Consult the source code to search for the
faulty instructions, examining previously
executed modules, if necessary. Begin by
scanning for instructions that set the
condition code or branch on it.

5. If the way in which the loop was entered is
still undetermined, assume that a wild
branch has occurred and begin a search for
its origin.

WAIT

No processing occurs in the virtual machine when
it is in a wait state. When the wait state is
enabled, an I/O interruption causes processing
to resume. Likewise, when the Control Program
is in a wait state, its processing ceases.

24 IBM VM/370: System Logic and Problem Determination Guide

r--------------- ---------------------, 1 Loop Problem Type 1
1--------------------------1
1 CP 1 The CPU console wait light is 1
I disabled I off. The problem state bit of the 1
1 loop 1 real pSW is off. No I/O 1
I I interruptions are accepted. I
1--­
I CP
1 enabled
I loop
I
I
1
1
I
I
I
1
I ,

Virtual
machine
disabled
loop

Virtual
machine
enabled
loop

Condition does not exist.

The program is taking longer to
execute than anticipated.
Signaling attention from the
terminal does not cause an
interruption in the virtual
machine. You cannot communicate
with the virtual machine's opera­
ting system by signaling atten­
tion.

Excessive processing time often
indicates a loop. Use the CP
QUERY TIME command to check the
elapsed processing time. In CMS,
the continued typing of the blip
characters indicates that
time is elapsing. If time has
elapsed, periodically display the
virtual psw and check the
instruction address. If th~ same
instruction, or series of
instructions continues to appear
in the PSW, a loop probably
exists.

Figure 7. LOop Problem Type

CP DISABLED WAIT

A disabled wait state usually results from a
hardware malfunction. During IPL, normally
correctable hardware errors may cause a wait
state because the operating system error
recovery procedures are not accessible at this
point. These conditions are recorded in the
current PSW.

CP may be in an enabled wait state with
channel 0 disabled when it is attempting to
acquire more free storage. Examine extended
control register 2 to see whether or not the
multiplexer channel is disabled. A severe
machine check could also cause a CP disabled
wait state.

If a severe machine check or channel check
caused a CP disabled wait state, one of the
following messages appear:

DMKMCH612W MACHINE CHECK TIMING FACILITIES
DAMAGE; RUI SEREP

DMKCCH603W CHAINEL ERROR, RUN SEREP,
RESTART SYSTEM

r-------------'---------------------,
1 wait Problem Type 1
I---------·"-~---· 1
1 Type 1 Distinguishing Characteristics 1

L

Disa"bled CP
wait

Enabled CP
wait

-------------1
The CPU wait light is on. 1

Pressing the REQUEST key, or
the equivalent action, on the
operator's console, leaves the
REQUEST PENDING light on. If
the message

DMKMCH612W MACHINE CHECK TIMING
FACILITIES DAMAGE,
RUN SEREP

appears on the CPU console,
a machine check (probable
hardware error) caused the
CP disabled wait state. If the
message

DMKCCH603W CHANNEL ERROR, RUN
SEREP, RESTART
SYSTEM

appears on the CPU console,
a channel check (probable
hardware error) caused the
CP disabled wait state. If the
message

DMKCPI955W INSUFFICIENT STORAGE
FOR VM/370

appears on the CPU console,
the control program has
entered a disabled wait state
with code OOD in the PSW.

Either the generated system
is larger than the real
machine size, or a hardware
machine malfunction prevents
VM/370 from using the
necessary amount of storage.
If the message

DMKPAG415E CONTINUOUS PAGING
ERRORS FROM
DASD xxx

appears on the CPU console,
the control program (CP) has
entered a disabled wait with
code OOF in the PSi.

Consecutive hardware errors
are occurring on one or more
VM/370 paging devices.

1
1
1
1
1
1
1

---------------1
The CPU console light is on, 1
but the system accepts I
interruptions from I/O devices., _________________________ J

Figure 8. CP wait Problem Type

Section 1. Introduction 25

If the generated system cannot run on the
real machine because of insufficient storage, CP
enters the disabled wait state with code OOD in
the PSW. The insufficient storage condition
occurs if:

• The generated system is larger than the real
machine size

or -

• A hardware malfunction occurs which reduces
the available amount of real storage to less
than that required by the generated system.

The message

DMKCPI955W INSUFFICIENT STORAGE FOR VM/370

appears on the CPU console.

If CP cannot continue because consecutive
hardware errors are occurring on one or more
VM/370 paging devices, the message

DMKPAG415E CONTINUOUS PAGING ERRORS FROM
DASD xxx

appears on the CPU console and CP enters the
disabled wait state with code OOF in the PSW.

If more than one paging device is available,
disable the device on which the hardware errors
are occurring and IPL the system again. If the
VM/370 system is encountering hardware errors on
its only paging device, move the paging volume
to another physical device and IPL again.

!Q!~: This error condition may
VM/370 paging volume was
formatted.

occur if the
not properly

The following procedure should be used by the
system operator to record the needed
information.

1. Use the alter/display mode of the CPU
console to display the real PSW and CSW.
Also, display the general registers and the
control registers.

2. Press the SYSTEM RESTART button to get a
system ABEND dump.

3. IPL the system.

Examine this information to find what caused
the wait. If you cannot find the cause, try to
reconstruct the situation that existed before
the wait state was entered.

CP ENABLED WAIT

If you determine that CP is in an enabled wait
state, but that no I/O interrupts are occurring,
there may be an error in a CP routine or CP may
be failing to get an interrupt from a hardware
device. Press the SYSTEM RESTART button on the
operator's console to cause an ABEND dump to be
taken. Use the ABEND dump to determine the cause
of the enabled (and noninterrupted) wait state.
After the dump is taken, IPL the system.

Using the dump, examine the VMBLOK for each
user and the real device, channel w and control
unit blocks. If each user is waiting because of
a request for storage and no more storage is
available, there is an error in CPo There may be
looping in a routine that requests storage.
Refer to "Reading CP ABEND Dumps" in this
section for specific information on how to
analyze a CP dump.

VIRTUAL MACHINE DISABLED WAIT

The VM/370 Control Program does not allow the
virtual machine to enter a disabled wait state
or certain interrupt loops. Instead, CP
notifies the virtual machine operator of the
condition with one of the following messages:

DMKDSP450W CP ENTERED; DISABLED WAIT
PSi

DHKDSP451i CP ENTERED; INVALID PSW

DHKDSP452W CP ENTERED; EXTERNAL
INTERRUPT LOOP

DMKDSP453W CP ENTERED; PROGRAM
INTERRUPT LOOP

and enters the console function mode. Use the CP
commands to display the following information on
the terminal.

• Program status word
• Channel status word
• General registers
• Control registers

Then use the CP DUMP command to take a dump.

If you cannot find the cause of the wait or
loop from the information just gathered, try to
reproduce the problem, this time tracing the
processing via the CP TRACE command.

If CMS is running in the virtual machine, the
CMS debugging facilities may also be used to
display information. take a dump, or trace the
processing. The CMS SVCTRACE and the CP TRACE
commands record different information. Figure
11 compares the two.

VIRTUAL MACHINE ENABLED WAIT

If the virtual machine is in an enabled wait
state, try to find out why an I/O interruption
has not occurred to allow processing to resume.

CP treats the following enabled wait in a
virtual machine the same as a disabled wait. If
the virtual machine does not have the real timer
option and loads a PSi enabled only for external
interrupts, CP issues the message

DHKDSP450W CP ENTERED; DISABLED WAIT STATE

Because the virtual timer is not decremented
while the virtual machine is in a wait state, it

26 IBH VM/370: System Logic and Problem Determination Guide

cannot cause the external interrupt.
timer runs in both the problem state
state and an external interruption can
virtual machine to resume processing.

A real
and wait
cause a

r------------- --------------,
I wait Problem Type I
I----~---------~-------------------- I
I Problem I Distinguishing I
I Type I Characteristics I

Disabled
virtual
machine
wait

Enabled
virtual
machine
wait

The VM/370 Control Program does
not allow a virtual machine to
enter a disabled wait state or
certain program loops. Instead,
CP issues one of the following
message:

DMKDSP450W CP ENTERED; DISABLED
WAIT PSW

DMKDSP451W CP ENTERED; INVALID
PSW

DMKDSP452W CP ENTERED; EXTERNAL
INTERRUPT LOOP

DMKDSP453W CP ENTERED; PROGRAM
INTERRUPT LOOP

A PSW enabled for I/O
interruptions is loaded. Nothing
happens if an I/O device fails to
issue an I/O interruption. If a
program is taking longer to
execute than expected,
periodically issue the CP command,
QUERY TIME. If the processing
time remains unchanged, probably
a virtual machine enabled wait
exists.

CMS types a blip character for
every two seconds of elapsed
processing time. If the program
does not end and blip characters
stop typing~ an enabled wait
state probably exists.

I
I
I
I
I
I
I

_______________ ~ ---J

Figure 9. Virtual Machine Wait Problem Type

RSCS VIRTUAL MACHINE DISABLED WAIT

Three disabled wait conditions can occur during
the operation of the RSCS component of VM/370.
They can result from either hardware
malfunctions or system generation errors. CP
notifies the RSCS operator of the wait condition
by issuing the message

DMKDSP450W CP ENTERED; DISABLED WAIT
PSW

to the RSCS operator's console. Using CP
commands, the operator can display the virtual
machine's PSW. The rightmost 3 hexadecimal
characters indicate the error condition.

WAIT STATE CODE X'OOl': If no RSCS message was
issued;--i -progrii---check interrupt occurred
during the execution of the program check
handler. A progra.ming error is the probable
cause.

If the RSCS message

DMTREX091 T INITIALI ZATI ON FAI LURE
-- RSCS SHUTDOWN

was issued, RSCS operation was terminated
because of an error in the loading of DKTAXS or
DKTLAX. A dump of virtual storage is
automatically taken. Verify that the CMS files
'DHTAXS TEXT' and 'DMTLAX TEXT' are correctly
written and that they reside on the RSCS system
residence device.

If the RSCS message

DMTREX090T PROGRAM CHECK IN SUPERVISOR
-- RSCS SHUTDOWN

was issued, the program check handler has
terminated RSCS because of a program check
interrupt in other than a dispatched line
driver. A dump of virtual storage is
automatically taken. A program.ing error is the
probable cause.

The wait state code is loaded by DMTREX at
RSCS termination or automatically during program
check handling.

If neither of the last two messages was
issued, use the CP DUMP command to dump the
contents of virtual storage. Do an initial
program load to restart the system. If the
problem persists, notify your system support
personnel.

WAIT STATE £QQ~ X'007': A program check
interrupt- has occurred during initial
process1ng, before the program check handler
could be activated. This may be caused by a
programming error or by an attempt to load RSCS
into an incompatible virtual machine. The
latter case can occur if the virtual machine has
(1) an incomplete instruction set, (2) less than
512K of virtual storage, or (3) does not have
the required VM/370 DIAGNOSE interface support.
The wait state code is loaded automatically
during the initial loading and execution of the
RSCS supervisor, DMTINI, DMTREX, DMTAXS or
DMTLAX.

Verify that the RSCS virtual machine
configuration has been correctly specified and
that the "retrieve SUbsequent file descriptor"
function of DIAGNOSE code X'14' is supported.
Dump the contents of virtual storage via the CP
DUMP command. If the problem persists, notify
your system support personnel.

WAIT STATE CODE X'011': An unrecoverable error
occorred-when-readlng-the RSCS nucleus from DASD
storage. This may be caused by a hardware
malfunction of the DASD device. It may also be
the result of an incorrect virtual DASD device
definition, an attempt to use a system residence

section 1. Introduction 27

device unsupported by RSCS, incorrect RSCS
system generation procedures, or the subsequent
overlaying of the RSCS nucleus on the system
residence device. The wait state code is loaded
by DMTINI after an attempt, successful or not,
to issue the message:

DMTINI402T IPL DEVICE READ I/O ERROR

Verify that the RSCS system residence device
has been properly defined as a virtual DASD
device and that the real DASD device is mounted
and operable. If the problem persists, dump
virtual storage via the CP DUMP command and
notify your system support personnel. The RSCS
system residence device may have to be restored
or the ascs system may have to be regenerated.

RSCS VIRTUAL MACHINE ENABLED WAIT

Whenever Rses has no task ready for execution,
CMTDSP loads a masked-on wait state PSW with a
code of hexadecimal zeros. This occurs during
normal ascs operation and does not indicate an
error condition. An external interrupt caused
by command entry or an I/O interrupt due to the
arrival of files automatically causes processing
to resume.

r---,
1 RSCS Wait Problem Type 1
1---1
1 Problem 1 1
1 Type 1 Distinguishing Characteristics 1

Disabled
RSCS
wait

The RSCS operator is notified of
the wait state because CP issues
the message

DMKDSP450W CP ENTERED; DISABLED
WAIT PSW

If, in addition, the message

DMTINI402T IPL DEVICE READ I/O
ERROR

appears on the RSCS console, an
unrecoverable error has occurred
while reading the RSCS nucleus
from DASD storage. RSCS enters
a disabled wait state with a code
of X'Oll' in the PSW.

If a program check occurs before
the program ~heck handler is
activated, RSCS enters a disabled
wait state with a code of X'007'
in the PSi.

If a program check occurs after
the program check handler is
activated, RSCS enters a disabled
wait state with a code of X'OOl'
in the PSW. One of the following
messages also appear on the ascs
console:

DMTREX090T PROGRAM CHECK IN
SUPERVISOR ascs
SHUTDOWN

DMTREX091T INITIALIZATION FAILURE
- - RSCS SHUTDOWN

1-------------------_·_---------------1
1 Enabled I RSCS has no task ready for 1
1 RSCS 1 execution. A PSW, enabled for 1
1 wait 1 external and I/O interruptions, 1
I I is loaded with a wait code of all I
I I zeros. I L ______________________________________ ._--'

Figure 10. RSCS Wait Problem Type

28 IBM VM/370: System Logic and Problem Determination Guide

Figure 11 summarizes the VM/370 commands that are useful in debugging. The CP and CMS
commands are classified by the function they perform •

.--------------------------------- ------------,
/ Function / comments / CP Command CMS Command /

Stop exe­
cution at
a speci­
fied lo­
cation

Set the
address
stop be­
fore the
prograll
reaches a
specified
address.
CMS allows
16 address
stops to
be active
while CP
allows on­
ly one.

ADS TOP {heX10C }
OFF

DEBUG

BReak id {symbOl}
hex10c

---------------/
Resume Resume Begin DEBUG /
execution execution GO /

where pro- /
grail was /
interrupted/ / /

-------------------------------------/
Continue / Begin [hex1oc] / DEBUG /
execution / / /
at a spe- / / GO { S ymh01} /
cific 1c- / / hex10c /

/ cation / / /
/----------------------------- ----------/
/ Dump data / Dump the / .-.-, , /DEBUG /
I I contents I DUMP {heX10C 1 } I {-}I hex10c21 II .- , .- , I
I I of speci- / Lhex10c1 / : Un!!! / // DUmp / sYllbo11/ /symbo12/ /
/ / fic sto- / / L .J // /hex10c1/ /hex10c2/ ./
/ I rage 10ca- / /.-, // / Q / / * / /
/ / tions. / /{. }/bytecount/ // L .I / .1~ / I
I I I I I ~!J2 I I I L.J I
I I ILL .J .J I [ident] .1
/ 1 I [*dUllpid] I I L________ _ __ . __ -____________ ~ _ _.J

Figure 11. SUllllary of VM/370 Debugging Tools (Part 1 of 4)

section 1. Introduction 29

r---,
1 Function 1 comments 1 CP Command 1 C"S Command I
---1

Display 1 Display 1 r r '"1 I DEBUG rl I
da ta I contents I Display hexlocl I{ -}I hexloc21 II X symbol I nil

I of storage I I : I~!Q I II 1!~!Hlihl I
1 locations I I L .J II L J I
1 in hexade- I 1 r , I I r "1 I
I cimal) I I{ • } I bytecount III I n I I
1 I I I ~!Q I I I hexloc I 4 I I
1 ILL .J.J I L .J I
I --1
I Display I r r "1' I I
I contents IDisplay Thexlocll{-}lhexloc21 II I
I of storage I I : I~!Q I II I
I locations I I L .J I I I
I (in hexa- I I r , II I
I decimal I I { • } I bytecount I I I I
I and EBCDIC) I I I~!Q III I
I ILL .J.J I I
1-----------------,-------------------------,-------1
I Display I r r '"1 I I
I storage I Display KheXlOC11{ -} I hexloc21 II I
Ike y 0 f I I : I ~!Q I I I I
I specific I I L .J II I
I storage I I r , I I I
I lccations 1 1{.}lbytecountlll I
I in hex- I I 1 ~!Q I I I I
I adecimal ILL .J.J I I

1- ---------------------------------------1
1 Display I r r , , I DEBUG I
I general IDisplay Greg l l{-}lreg 2 1 I 1 GPR regl [reg2] I
I registers I I : I~!Q I I I I
I I I r "1 I I I
I I I{ • }I regcoun t I I I I
I I 1 I~!Q 1'1 I I
I ILL.J.J I I
1--1
1 Display I r r , , I I
I floating- I Display Yregll{ -} Ireg21 I I I
I point I I : I~!Q I I 1 I
I registers IlL .J I I I
I I I r , I I I
I 1 I{ • }I regcount" I I
I I I I~!Q II I I
I ILL.J.J I I
I --------------------1
I Display I r r , , I I
I control IDisplay Xreg11{-}lreg21 I I I
I registers I I : I~!Q I I I I
I I I L.J I I I
I I I r , I I I
I I I{. }lregcountll I I
I I I I~!Q II I I
I ILL.J.J I I
1--·-------1
I Display I Display PSW I DEBUG I
I contents I I PSW I
I of current I I I
I virtual I I I
I PSW in I I I
I hexadecimal I I I
I format I 1 I
1-------------------------------- ·-----1
I Display I Display CAW DEBUG I
I CAW con- 1 CAW I
I tents I I I
1-------------------,-------_·_------------------_·_--I
I Display I Display CSW I DEBUG I
I CSW con- I I CSW I
I tents I I I L________ _ ________________________________ . __ . ___ --.J

Figure 11. Summary of V"/370 Debugging Tools (Part 2 of 4)

30 IB" VM/370: System Logic and Problem Determination Guide

r----------------- ---,
1 Function 1 Co •• ents CP Command 1 eMS Command 1

store
data

-------------------------------------1
store 1 1 1
specified ISTore Shexloc hexdata... 1 DEBUG 1
infor.a- 1 1 STore {SYllbOl} hexinfo 1
tion into 1 1 hexloc 1
consecu- 1 1 1
tive sto- 1 1 1
rage loca- 1 1 1
tions with-III
out align- 1 1 1

1 mente 1 1 1
1---1
1 Store 1 1 1
1 specified 1 STore {hexloc } 1 1
1 words of 1 Lhexloc 1 1
1 information 1 1 1
1 into con- 1 (hexvord1[hexword2 •••]) 1 1
1 secutive 1 1 1
1 fullword 1 1 1
1 storage 1 1 1
1 locations 1 1 1
1--I
1 Store ISTore Greg hexword1 IDEBUG 1
1 specified 1 [hexword2 •••] ISET GPR reg hexinfo[hexinfo] 1
1 words of 1 1 1
1 information 1 1 1
1 into con- 1 1 1
1 secutive 1 1 1
1 general 1 1 1
1 registers 1 1 1
I-------------------------------------~-~--·~--"------------------1
1 Store 1 STore Ireg hexword 1 1 1
1 specified 1 [hexword2 •••] 1 1
1 words of 1 1 1
1 informationl 1 1
1 into con- 1 1 1
1 secutive 1 1 1
1 floating- 1 1 1
1 point 1 1 1
1 registers 1 1 1
1--1
1 Store 1 STore Xreg hexword 1 1 1
1 specified 1 [hexword2 •••] 1 1
1 words of 1 1 1
1 data into 1 1 1
1 consecutive 1 1 1
1 control 1 1 1
1 registers 1 1 1
1 ------------------------------~--------I
1 Store 1 STore PSW [hexword1] hexword2 IDEBUG 1
1 inforaationl ISET PSW hexinfo [hexinfo] 1
1 into PSW 1 1 1
1---1
1 store 1 IDEBUG 1
1 informationl ISET CSW hexinfo [hexinfo] 1
1 in CSW 1 1 1
1--1
1 Store 1 1 DEBUG 1
1 informationl ISET CAW hexinfo 1
1 in CAW 1 1 1 L ___ --'

Figure 11. Summary of VM/370 Debugging Tools (Part 3 of 4)

section 1. Introduction 31

,.------------------------------_._----------------------------------,
I Function 1 Comaents 1 CP Command 1 C~S Command ,
--------------- ·_-------------------------------1

Trace Trace all 1 TRace ALL , 1
execution instruc- 1 1 1

tions, 1 , 1
interrupts, 1 1 1
and 1 1 1

1 branches 1 1 1
1--1
1 Trace SVC 1 TRACE SVC 1 SVCTrace ON 1
1 interrupts 1 1 1
1------·_--1
1 Trace I/O 1 TRace I/O 1 1
1 interrupts 1 1 1
1--I
1 Trace 1 TRace PROgram 1 1
1 program 1 1 1
1 interrupts 1 1 1
1-----------_·_--1
I Trace 1 TRace EXTernal I 1
1 external 1 1 ,
1 interrupts 1 I 1

1--1
1 Trace 1 TRace PRIV 1 1
I privileged 1 1 1
1 instruc- 1 I 1
1 tions 1 1 1
1 -----------------·-------1
1 Trace all TRace SIO 1 1
1 user I/O I 1
1 operations I 1 1
1---I
1 Trace 1 TRace SIO 1 1
I virtual andl TRace CCW 1 1
1 real CCws 1 1 1
1---1
1 Trace 1 TRace BRANCH 1 1
1 all user 1 1 1
1 interrupts 1 1 1
1 and suc- 1 1 1
1 cessful 1 1 1
1 branches 1 I 1
1------------------_·_-----------------------_·_--------I
1 Trace 1 TRace INSTruct 1 1
1 all in- 1 I 1
1 structions 1 1 1
1---,
1 End all 1 TRace END 1 SVCTrace OFF 1
1 tracing 1 1 1
1 activity 1 1 1

1--·---1
1 Trace reall Trace 1 MONitor STArt CPTRACE 1 1
1 machine 1 events in 1 1 1
I events 1 real 1 1 1
1 1 machine 1 1 1
1 1---'---1
1 1 stop trac- 1 MONitor STOP CPTRACE 1 1
1 1 ing events 1 1 1
lithe real 1 1 1
1 I machine 1 1 1 L ___ . __ --'

Figure 11. Summary of VM/370 Debugging Tools (Part 4 of 4)

32 IBM VM/370: system Logic and Problem Determination Guide

If you are debugging problems while
virtual machine is running CMS, you
choose the CP or CMS debugging tools.

your
can
See

Figure 12 for a comparison
CMS debugging tools.

of the

• --------- I

1 Function 1 CP 1 CMS 1
1--1

setting
address
stops

Dumping
contents
of stor­
age to
the
printer

Display
the con­
tents of
storage
and con­
trol re­
gisters
at the
terminal

Can set only one address 1 Can set up to 16 address 1
stop at a time. 1 stops at a time. 1

1 1
-------------------------1

The dump is printed in hexa- 1 The dump is printed in 1
decimal format with EBCDIC 1 hexadecimal format. The 1
translation. The storage ad- I storage address of the I
dress of the first byte of I first byte of each line is 1
each line is identified at I identified at the left. 1
the left. The control blocks I The contents of the gen- I
are formatted. I eral and floating-point I

The display occurs in hexa­
decimal format with EBCDIC
translation. The CP command
displays storage keys,
floating-point registers and
control registers.

1 registers are printed at I
I the beginning of the dump. 1

The display occurs in hex­
adecimal format. The CMS
commands do not dis­
play storage keys,
floating-point registers
or control registers as
as the CP command does.

1
1
I
1
I
1
I
1
I
I

--------------------_.-------
storing
informa­
tion

Tracing
informa­
tion

The amount of information
stored by the CP command is
limited only by the length
of the input line. The in­
formation can be fullword
aligned when stored. CP
stores data in the PSW, but
not in the CAW or CSW. How­
ever, data can be stored in
the CSW or CAW by specifying
the hardware address in the
STORE command. CP also
stores the status of the
virtual machine in the
extended logout area.

CP traces:

• All interrupts, instruc-
tions and branches

• SVC interrupts
• I/O interrupts
• Program interrupts
• External interrupts
• Privileged instructions
• All user I/O operations
• Virtual and real CCW's
• All instructions

The CP trace is interactive.
You can stop and display
other fields.

'--

The CMS command stores up
to 12 bytes of information
and can store data in the
general registers but not
in the floating-point or
control registers. CMS
stores data in the PSW,
CAW, and CSW.

CMS traces all SVC inter­
rupts. CMS displays the
rupts. CMS displays the
contents of general and
floating-point registers
before and after a routine
is called. The parameter
list is recorded before a
routine is called.

Figure 12. Comparison of CP and CMS Facilities for Debugging

CP and

Section 1. Introduction 33

Many CP problems can be isolated without
standalone machine testing. It is possible to
debug CP by running it in a virtual machine. In
most instances, the virtual machine system is an
exact replica of the system running on the real
machine. To set up a CP system on a virtual
machine, use the same procedure that is used to
generate a Cf system on a real machine.
However, remember that the entire procedure of
running service programs is now done on a
virtual machine. Also, the virtual machine must
be described in the real VM/370 directory. See
the !~LdlQ: 2Y2!~! g£Qg£~!!~~~2 §~!~~ for
directions for setting up the virtual machine.

ABEND DUMPS

There are three kinds of abnormal termination
dumps possible when using CPo The first kind
occurs when the problem program cannot continue.
It terminates and in some cases attempts to
issue a dump. The second occurs when the
operating system for your virtual machine cannot
continue. It terminates and in some cases
attempts to issue a dump. In the VM/370
environment, both the problem program and the
virtual machine's operating system dumps go to
the virtual printer. A CLOSE must be issued to
the virtual printer to have either dump print on
the real printer.

A third kind of dump occurs when the CP
system cannot continue. The CP abnormal
termination dumps can be directed to a printer
or tape or be dynamically allocated to DASD. If
the dump is directed to a tape, the dumped data
must fit on one reel of tape. Multiple tape
volumes are not supported by VM/370. The
historical data on the tape is in print line
format and can be processed by user-created
programs or via CMS commands.

Use the CP SET command to specify the output
device for CP ABEND dumps. The format of the
SET comlland is:

l-=~r-l-::::-l :~!~r -1-T~tL T-I--l
I I I I I
I I L.I I L _________________ ,, ________________________ .1

DUMP

AUTO

raddr

specifies the ABEND Dump.

automatically directs the ABERD dump
to disk.

directs the ABEND dump to the
specified unit address (either a
printer or a tape unit). If the
address specifies a tape device, the

dump data must fit on one reel; VM/370
does not support multiple tape
volumes.

CP dumps only the CP storage area.

ALL dumps all of real storage.

USING THE VMFDUMP COMMAND

Use the CMS VMFDUMP command to print the dump on
the real printer, when the CP ABEND dump is sent
to a disk. The format of the VMFDUMP command
is:

r--- ---------------------,
I r , r , I
I VMFDUMP I I I ERASE I I
I I DUMPxx I I NOMAP I I
I I I I NOHEX I I
I L .I I NOFORM I I
I I NOVIRT I I
I L .I I L _________________________

_.I

DUMP:xx

ERASE

NOMAP

NOHEX

ROFORM

NOVIRT

specifies the name of the CP dump file
to be formatted and printed. xx may
be any value from 00 to 09. Class D
spool files contain only CP dump
files. These files are searched for
the indicated dump file. When the
file is found, it is used to create a
CMS file which, in turn, is formatted
and printed.

specifies that
being formatted
erased at the
program.

the CMS file which is
and printed is to be

conclusion of the

specifies that a load map is not to be
printed.

specifies that a hexadecimal dump is
not to be printed.

specifies that no formatted control
blocks are to be printed.

specifies that only the real machine
control blocks are to be formatted.
This option is ignored if ROFORM is
also specified.

Use the VMFDUMP command to format and print a
current or previous VM/370 system ABEND dump.
Specify

VMFDUMP

to obtain a complete formatted, hexadecimal
printout.

When the dump has been printed, one of two
messages is printed:

34 IBM VM/370: System Logic and Problem Determination Guide

DUMP FILE - DUMP xx - PRINTED AND KEPT

-- or --

DUMP FILB - DUMP xx - PRINTBD AND ERASBD

HOW TO PRINT A CP ABBND DUMP FROM TAPE

When the CP ABBBD dump is sent to a tape, the
records are 133 characters unblocked, and
include carriage control characters.

To print the tape, first make sure the tape
drive is attached to your system. Next, define
the printer and tape file:

FILEDEF ddname1 PRINTBR (RECPM P LRECL 133)

FILEDEF ddname2 {TAP2} (9-track DBB 1600
TAP1

RECPM F LRBCL 133 BLOCK 133)

Then use the MOVEFILE command to print the
tape:

MOVEFILE ddname2 ddname1

Two types of printed dumps occur when CP
abnormally ends, depending on the options
specified in the CP SBT DUMP command. When the
dump is directed to a direct access device,
VMPDUMP must be used to format and print the
dump. VMFDUMP formats and prints:

• Control blocks
• General registers
• Floating-point registers
• Control registers
• TOD (Time-of-Day) clock
• CPU timer
• Storage

!Q~~: Storage
notation, eight
translation at
address of the
is indicated at

is printed in hexadecimal
words to the line, with BBCDIC
the right. The hexadecimal

first byte printed on each line
the left.

If the CP SET DUMP command directed the dump
to tape or the printer, the printed format of
the dump is the same as with VMFDUMP, except
that the control blocks are not formatted and
printed.

When CP can no longer continue and abnormally
terminates, you must first determine the
condition that caused the ABEND, and then find
the cause of that condition. You should know
the structure and function of the Control
Program. The following discussion on reading CP
dumps includes many references to CP control
hlocks and control hlock fields. Refer to
!~L12Q: R~~~ A~~~2 ~~g ~Q~~~Q! ~!Qf! 1Qg!f for a
description of the CP control blocks. You will
need the current load map for CP to he ahle to
identify the modules from their locations. See

"Load Map" later in this section
instructions for generating a load map.

REASON FOR THE ABEND

for

Determine the immediate reason for the ABEND.
You need to examine several fields in the PSA
(prefix storage Area) which is located in low
storage, to find the reason for the ABEND.

• Examine the program old PSW and program
interrupt code to find out if a program check
occurred in CPo The program old PSW (PROPSW)
is located at X'2S' and the program interrupt
code (INTPR) is at X'SB'. If a program check
has occurred in supervisor mode, use the CP
system load map to identify the module. If
you cannot find the module using the load
map, refer to "Identifying a Pageable
Module."

• Examine the SVC old PSW, the SVC interrupt
code, and the ABEND code to find out if a CP
routine issued an SVC O. The SVC old PSW
(SVCOPSW) is located at X'20', the SVC
interrupt code (INTSVC) is at X'SA', and the
ABEND code (CPABEND) is at X'374'.

The modules that may issue an SVC 0 are:

DMKBLD DMKPSA
DMKCFG DMKPTR
DMKCKS DMKRGA
DMKCPI DMKRNH
DMKCVT DMKRPA
DMKDRD DMKSCH
DMKDSP DMKTDK
DMKFRE DMKUDR
DMKHVD DMKVDB
DMKIOS DMKVDR
DMKNLD DMKVIO
DMKPGS DMKVMA
DMKPGT DMKVSP
DMKPRG

The ABEND code (CPABEND) is a full word in
length. The first three bytes identify the
module that issued the SVC 0 and the fourth
hyte is a binary field whose value
indicates the reason for issuing an SVC O.
See "CP ABEND Codes, Reason and Action" in
section 3.

Use the CP system load map to identify the
module issuing the SVC O. If you cannot
find the module using the CP system load
map, refer to "Identifying a Pageahle
Module" in this Section.

• Examine the old PSW at X'OS'. If the
operator has pressed the SYSTEM RESTART
button on the CPU console, the old PSW
indicates the instruction executing when the
ABEND (caused hy pressing the SYSTEM RESTART
hutton) was recognized.

• For a machine check, examine the machine
check old PSW and the logout area. The

section 1. Introduction 35

machine check old PSW (MCOPSW) is found at
X'30' and the fixed logout area is at X'100'.
Also examine the machine check interrupt code
(INTMC) at X'E8'.

COLLECT INFURMATION

Examine several other fields in the PSA to
analyze the status of the system. As you
progress in reading the dump, you may return to
the PSA to pick up pointers to specific areas
(such as pointers to the real control blocks) or
to examine other status fields.

The following areas of the PSA may contain
useful debugging information.

• CP Running status Field

The CP running status is stored in CPSTAT at
location X'348'. The value of this field
indicates the running status of CP since the
last entry to the dispatcher.

CPSTAT Values gDg ~~gD!Dg
X'80'- -cp-is in wait state
X'40' CP is running the user in RUNUSER
X'20' CP is executing a stacked request

• Current User

The PSW that was most recently loaded by the
dispatcher is saved in RUNPSW at location
X'330', and the address of the dispatched
VMBLOK is saved in RUNUSER at location
X'338'. Also, examine the contents of
control registers 0 and 1 as they were when
the last PSW was dispatched. See RUNCRO
(X'340') and RUNCRl (X'344') for the control
registers.

Also, examine the CP internal trace table to
determine the events that preceded the abnormal
termination. start with the last event recorded
in the trace table and proceed backward through
the trace table entries. The last event recorded
is the last event that was completed.

The trace table is at least one page (4096
bytes) long. Cne page is allocated to the trace
table for each block of 256K bytes of real
storage available at IPL. Each trace table
entry is 16 bytes leng. The TRACSTRT field
(location X'OC') contains the address of the
start of the trace table. The TRACEND field
(location X'10') contains the address of the
byte following the end of the trace table. The
address of the next available trace table entry
is found in the TRACCURR field (location
X'14').

subtract 16 (X '10') bytes from the value at
X' 14' (TRACCURR) to find the address of the last
trace table entry recorded.

REGISTER USAGE

To trace control blocks and
necessary to know the CP
conventions.

modules,
register

it is
usage

The 16 general registers have many uses that
vary depending upon the operation. The contents
of some of the general registers follows:

~~g!~!~!:
GRl
GR2
GR6,7,8

GR10
GR14,15

Contents
The-vIrtual address to be translated
The real address or parameters
The address of the active VMBLOK and

device control blocks
The address of the active IOBLOK
The external branch linkage

The following general registers always contain
the saDe information:

!!~.9j.§!~.!:
GRll
GR12

GR13

Contents
'The-address of thE! active VMBLOK
The base register for the module

executing
The address of the current save area,

if the module was called via an SVC

Use these registers, the CP control blocks,
and the data in the prefix storage area to
determine the error that caused the CP ABEND.

SAVE AREA CO.VENTIONS

There are three save areas that may be helpful
in debugging CPo If a module was called by an
SVC, examine the SAVEAREA. SAVEAREA is not in
the PSAi the address of the SAVEAREA is found
in general register 13. If a module was called
by a BALR, the general registers are saved in
the PSA in an area called BALRSAVE (X'240').
The DMKFRE save area and work area is also in
the PSA: these areas are only used by the
DMKFREE and DMKFRET routines. The DMKFRE save
area (FREESAVE) is at location X'280' and its
work area (FREEWORK) follows at location
X' 2CO' •

Use the save areas to trace back and find the
previous module executed.

• SAVEAREA

An active save area contains the caller's
return address in SAVERETN (displacement
X'OO'). The caller's base register is saved
in SAVER12 (displacement X'04'), and the
address of the save area for the caller is
saved in SAVER13 (displacement X' 08'). Using
SAVER13, you can trace back again.

36 IBM VK/370: SY5tem Logic and Problem Determination Guide

• BALRSAVE

All the general registers are saved ~n
BALRSAVE after branching and linking (via
BALR) to another routine. If you look at
BALR14 for the return address saved, BALR13
for the caller's save area, and BALR12 for
the caller's base register, you can trace
module control backwards.

• FREESAVE

All the general registers are saved in
FREESAVE before DMKFRE executes. Use the
address of FREESAVE to trace module control
backwards.

Field
FREER 15

FREER14
FREER13

FREER12
FREERl

FREERO

contents
The---entry point (DMKFREE or

DMKFRET)
The saved return address
The caller's save area (unless the

caller was called via BALR)
The caller's base register
Points to the block returned (for

calls to DMKFRET)
Contains the number of doublewords

requested or returned

VIRTUAL AND REAL CONTROL BLOCK STATUS

Examine the virtual and real control blocks for
more information on the status of the CP
syste/l.

VMBLOK

The address of the VMBLOK is in general register
11. Examine the following VMBLOK fields:

• The virtual machine running status is
contained in VMRSTAT (displacement X'SS').
The value of this field indicates the running
status:

•

VMRSTAT
Status
i'80'-
X'40'
X' 20'
X'10'
X' 08'
X'04'
X'02'
X'Ol'

~~!!!ti:B9
Waiting, executing console function
Waiting, page operation
Waiting, scheduled IOBLOK start
Waiting, virtual PSW wait state
Waiting, instruction siaulation
User not yet logged on
User logging off
virtual /lachine in idle wait state

The virtual .machine dispatching status is
contained in VMDSTAT (displace/lent X'S9').
The value of this field indicates the
dispatching status:

VMDSTAT
Values
X'80'-

X' 40'
X'20'

X '10'
X'OS'
X'04'

~~!!B!B9
virtual machine is dispatched

RUIUSES
virtual machine is compute bound
virtual machine in-queue time slice

end
Virtual /lachine in TIO/SIO busy loop
virtual machine is runable
Virtual machine in a queue

• Examine the virtual PSW and the last virtual
machine privileged instruction. The virtual
machine PSW is saved in VMPSW (displacement
X'AS') and the virtual /lachine privileged or
tracing instruction is saved in VMINST
(displacement X'9S').

• Find the name of the last CP command that
executed in VMCOMND (displacement X'14S').

• Check the status of I/O activity. The
following fields contain pertinent
information.

VMPEND (displacement X'63') contains the
interrupt pending summary flag. The value
of VMPEND identifies the type of
interrupt.

VMPEND
Values
i'4'o'-
X'20'
X'10'
X'OS'
X'02'
X'Ol'

!!~!!i!!g
Virtual PER (Program Event

Recording) interrupt pending
Virtual program interrupt deferred
Virtual SVC interrupt deferred
Virtual pseudo page fault pending
Virtual I/O interrupt pending
Virtual external interrupt pending

VMIOINT (displacement X'6A') contains the
I/O interrupt pending flag. Each bit
represents a channel (0-15). An interrupt
pending is indicated by a 1 in the
corresponding bit position.

V"IOINT
Values
10000000

01000000

000000'00

!!~!!niBg
00000000 Interrupt pending

on channel 0
00000000 Interrupt pending

on channel 1

00000001 Interrupt pending
on channel 15

VMIOACTV (displacement X'36') is the
active channel mask. An active channel is
indicated by a 1 in the corresponding bit
position.

VCBBLOK

The address of the VCBBLOK table is found in the
V"CBSTRT field (displacement X'lS') of the
VMBLOK. General register 6 contains the address
of the active VCBBLOK. Examine the following
VCBBLOK fields:

• The virtual channel address is contained in
VCBADD (displace sent X' 00 ') •

• The status of the virtual channel is found in
the VCBSTAT field (displacement X'06'). The
value of this field indicates the virtual
channel status:

Section 1. Introduction 31

VCHSTAT
Values
X'80'-
X'40'

X'01'

tl~~!!!!!9
Virtual channel busy
Virtual channel class interrupt

pending
virtual channel dedicated

• The value of the VCHTYPE field (displacement
X'07') indicates the virtual channel type:

VCHTYPE
Values
X'80'-
X'40'

~~~!!i!!g 
Virtual selector channel 
Virtual block multiplexer 

VCUBLOK 

The address of the VCUBLOK table is found in the 
VCUSTRT field (displacement X' 1C') of the 
VMBLOK. General register 7 contains the address 
of the active VCUBLOK. Useful information is 
contained in the following VCUBLOK fields: 

• The virtual control unit address is found in 
the VCUADD field (displacement X'OO'). 

• 

• 

The value of the 
1'06') indicates 
control unit: 

VCUSTAT field (displacement 
the status of the virtual 

VCUSTAT 
Values 
X'80'-
X '40' 
X'20' 
X'10' 

X'OS' 

!1~~!!i!!g 
Virtual subchannel busy 
Interrupt pending in subchannel 
Virtual control unit busy 
Virtual control unit interrupt 

pending 
Virtual control unit end pending 

The value of the 
X'07') indicates 
control unit: 

VCUTYPE field (displacement 
the type of the virtual 

VCUTYPE 
Values 
X'80'-
X'40' 

~~~!!i!!g 
virtual control

subchannel
Virtual control

unit on

channel-to-channel
unit
adapter

shared

is a

VDEVBLOK

The address of the VDEVBLOK table is found in
the VMDVSTRT field (displacement X'20') of the
VMBLOK. General register S contains the address
of the active VDEVBLOK. Useful information is
contained in the following VDEVBLOK fields:

• The virtual device address is found in the
VDEVADD field (displacement X'OO').

• The value of the VDEVSTAT field (displacement
X'06') describes the status of the virtual
device:

VDEVSTAT
values !1~~!!!!!g X'80'- virtual subchannel busy
X' 40' Virtual channel interrupt pending
X'20' virtual device busy
X' 10' virtual device :interrupt pending
X'OS' virtual control unit end
X' 04' virtual device :not ready
X'02' Virtual device attached by console

function
X'01' VDEVREAL is dedicated to device

RDEVBLOK

• The value of the VDEVFLAG field (displacement
X'07') indicates the following device
dependent information:

•

•

•

•

VDEVFLAG
Values
X'80'­
X'SO'

X' 40'
X'40'

X'40'
X' 20'

X' 10'

X'10'

X'OS'
X'02'

!1~~!!!!!g
DASD--read-only device
Virtual 2701/2702/2703 device--line

enabled
DASD--TDISK space allocated by CP
Virtual 2701/2702/2703 device--line

connected
Console--activity spooled
DASD--2311 device simulated on top

half of 2314
DASD--2311 device simulated on

bottom half of 2314
Console and spooling

device--processing first ccw
DASD--executing standalone seek
RESERVE/RELEASE are valid CCW

operation codes.
Vi~tual device sense bytes present

The VDEVCSW field (displacement X'OS')
contains the virtual channel status word for
the last interrupt.

The VDEVREAL field
contains the pointer
block, RDEVBLOK.

(displacement
to the real

X' 24')
device

The VDEVIOB field (displacement X'34')
contains the pointer to the active IOBLOK.

For console devices, the value of the
VDEVCFLG field (displacement X'26') describes
the virtual console flags:

VDEVCFLG
values
X'80'-
X'40'
X'20'

X' 10'
X'OS'

!1~~!!!!!9
User signaled attention too many

times
Last CCW processed was a TIC
Data transfer occurred during this

channel program
Virtual console function in progress
Automatic carriage return on first

read

• For spooling devices, the value of the
VDEVSFLG field (displacement X'27') describes
the virtual spooling flags:

3S IBM VM/370: system Logic and Problem Deteraination Guide

•

VDEVSFLG
Values
i 78'0'-

XI 80 1

XI 40 1

XI 20 1

XI 10 1

XI 08 1

XI 08 1

XI 04 1

XI 02 1

XI 02 1

X 1011

li~g!!!119
Spool reader--last command was a

feed
Spool output--transfered to VSPXXUSR
Spool device--continuous operation
Hold output--save input
Spool output--for user and

distribution
Spool input -- set unit exc~ption at

EOF
Terminal output required for spooled

console
Device closed by console function
spool output--purge file at close
spool input--device opened by

DIAGNOSE
Spool output--DMKVSP entered via SVC

For output spooling devices, the VDEVEITN
field (displacement Xll01) contains the
pointer to the virtual spool extension block,
VSPXBLOK.

RCHBLOK

The address of the first RCHBLOK is found in the
ARIOCH field (displacement I13B41) of the PSA
(Prefix Storage Area). General register 6
contains the address of the active RCHBLOK.
Examine the following RCHBLOK fields:

• The real channel address is found in the
RCHADD field (displacement XIOOI).

• The value of the
X1041) describes
channel.

RCHSTAT field (displacement
the status of the real

RCHSTAT
Values x'SO'-
XI 40 1

X' 20 1

X '0 l'

1!~~ning
Channel busy
lOB scheduled on channel
Channel disabled
Channel dedicated

• The value of the RCHTYPE field (displacement
X'05 1) describes the real channel type:

•

RCHTYPE
values x'SO'-
XI 40 1

XI 20 1

XI Ol l

1!~~!!ing
Selector channel
Block multiplexer channel
Byte mUltiplexer channel
System/370 type channel (System/370

instruction support)

The RCHFIOB field (displacement X108 1) is the
pointer to the first IOBLOK in the queue and
the RCHLIOB field (displacement XIOCI) is the
pointer to the last IOBLOK in the queue.

RCUBLOK

The address of the first RCUBLOK is found in the
ARIOCU field (displacement X13B8 1) of the PSA.
General register 7 points to the current
RCUBLOK. Examine the following RCUBLOK fields:

• The RCUADD field (displacement XIOOI)
contains the real control unit address.

• The value of the
X1041) describes
unit:

RCUSTAT field (displacement
the status of the control

RCUSTAT
Values i'so'-
1140 1
XI 20 1

X I Ol l

1!~g!!i!!g
Control unit busy
lOB scheduled on control unit
Control unit disabled
Control unit dedicated

• The value of the RCUTYPE field (displacement
X105 1) describes the type of the real control
unit:

RCUTYPE
Values
i'80'-
X I Ol l

XI 02 1

1103 1
XI 04 1

l1~gn!!!g
This control unit can attach to only

one subchannel
TCU is a 2701
TCU is a 2702
TCU is a 2703
Subordinate control unit

• The RCUFIOB field (displacement 1108 1) points
to the first IOBLOK in the queue and the
RCULIOB field (displacement XIOCI) points to
the last IOBLOK in the queue.

RDEVBLOK

The address of the first RDEVBLOK is found in
the ARIODV field (displacement XI 3BCI) of the
PSA. General register 8 points to the current
RDEVBLOK. Also, the VDEVREAL field (displacement
11241) of each VDEVBLOK contains the address of
the associated RDEVBLOK. Examine the following
fields of the RDEVBLOK:

• The RDEVADD field (displacement
contains the real device address.

XIOOI)

• The values of the
X I 04 1) and RDEVSTA2
fields describe the
device:

RDEVSTAT (displacement
(displacement X143 1)

status of the real

RDEVSTAT
Values
i 7so'-
XI 40 1

1120 1
II 10 1

XI 08 1

XI 04 1

11021

XI Ol l

l1~g!!i!!g
Device busy
lOB scheduled on device
Device disabled (offline)
Device reserved
Device in intensive error recording

mode
Device intervention required
GRAF IOBLOK pending; queue

requests
Dedicated device (attached

user)
to a

Section 1. Introduction 39

•

RDEVSTA2
Values
X'80'-
X'40'
X'20'

!15H!!!!!!g
Active device is being reset
Device is busy with the channel
Contingent connection present

The value of the RDEVFLAG field (displacement
X'05') indicates device flags. The following
flags are device dependent.

RDEVFLAG
Values
1'80'­
X'40'
X'20'
X'10'
X'OS'

X'SO·

X'40'

X'20'

X' 10'

X'OS'
X'04'

X '02'
X' 0 l'

X'SO'
X' 40'
X'20'

X '10'

X'OS'
X' 04'
X'02'
X' 0 l'
X'SO'

X'40'

X'20'

X '10'

X'OS'

x'04'

X'02'

X' 01'

~t~~!!!!!g
DASD--ascending order seek que?eing
DASD--volume preferred for pag1ng
DASD--volume attached to system
DASD--CP owned volume
DASD--volume mounted but not

attached
Console--terainal has print suppress

feature
Console--terminal executing prepare

command
Console--IOBLOK pendingi queue

request
Console--2741 terminal code

identified
Console--device is enabled
Console--next interrupt from a halt

I/O
Console--device is to be disabled
Consolp.--3704/3705 NCP resource in

EP mode
Spooling--device output drained
Spooling--device output terminated
Spooling--device busy with

accounting
Spooling--force printer to single

space
Spooling--restart current file
Spooling--backspace the current file
Spooling--print/punch job separator
Spooling--UCS buffer verified
Special--network control program is

active
Special--2701/2702/2703 emulation

program is active
Special--3704/3705 is in buffer

slowdown mode
Special--automatic dump/load is

enabled
Special--IOBLOK is pendingi queue

requests
Special--emulator lines are in use

by system
Special--automatic dump/load process

is active
Special--basic terminal unit trace

requested

The value of the RDEVTYPC field (displacement
X'06') describes the device type class and
the value of the RDEVTYPE field (displacement
X'07') describes the device type.

• The RDEVAIOE field (displacement X' 24')
contains the address of the active IOBLOK.

• The RDEVUSER field (displacement X' 2S')
points to the VMBLOK for a dedicated user.

The RDEVATT field (displacement X'2C')
contains the attached virtual address.

•

•

•

•

•

The RDEVIOER field (displacement X'48')
contains the address of the IOERBLOK for the
last CP error.

For spooling unit record devices, the RDEVSPL
field (displacement X'lS') points to the
active RSPLCTL block.

For real 3704/3705 Communications
Controllers, several pointer fields are
defined. The RDEVEPDV field ~isplacement
X'lC') points to the .start of the f:ree
RDEVBLOK list fer EP lines. The RDEVNICL
field (displace.ent X'38') points to the
network control list and the RDEVCKPT field
(displacement X'3C') points to the CKPBLOK.
Also, the RDEV"AX field (displacement X'2E')
is the highest valid NCP resource name and
the RDEVNCP field (displacement X'30') is the
reference name of the active 3705 RCP.

For terminal devices, additional flags are
defined. The value of the RDEVTFLG field
(displacement r'3A') describes the additional
flags:

RDEVTFLG
Values
X'80'-

X'40'
X'20'
x'so'
X' 40'

X'20'
X' 10'

X'OS'
X' 04'
X'02'

X'Ol'

l1~!!J!!!!g
Terminal--logon process has been

initiated
Terminal--terminal in reset process
Terminal--suppress attention Signal
Graphic--logon process initiated
Graphic--screen full, more data

waiting
Graphic--screen in running status
Graphic--read pending for screen

input
Graphic--last input not accepted
Graphic--timer request pending
Graphic--control function

interruption pending
Screen full, hold status

For terminals, an additional flag is defined.
The value of the RDEVTMCD field (displacement
X'46') describes the line code translation to
be used:

RDEVTMCD
Values
1'10·-
x'oC'
x' os'
X'04'
x' 00'

!1~g!!!!!g
UASCII--S level
APL correspondence
APL PTTC/EBCD
Correspondence
PTTC/EBCD

IDENTIFYING A PAGEABLE MODULE

If a program check PSi or SVC PSi points to an
address beyond the end of the CP resident
nucleus, the failing module is a pageable
module. The CP system load map indicates where
the end of the resident nucleus is located.

Go to the address indicated in the PSi.
Backtrack to the beginning of that page frame.
The first eight bytes of that page frame (the
page frame containing the address pointed to by
the PSi) contain the name of the failing
module. If multiple modules exist within the

40 IBM VM/370: System Logic and Problem Determination Guide

same page frame, identify the module using the
load map and failing address displacement within
the page frame.

When CMS abnormally terminates, the terminal
operator must issue the DEBUG command and then
the DUMP subcommand if an ABEND dump is desired.
The DUMP formats and prints the following:

• General registers
• Extended control registers
• Floating-point registers
• storage boundaries with their corresponding

storage protect key
• Current PSW
• selected storage

storage is printed in hexadecimal, eight
words to the line with EBCDIC translation at the
right. The hexadecimal storage address
corresponding to the first byte of each line is
printed at the left.

When CMS can no longer continue, it
abnormally terminates. You must first determine
the condition that caused the ABEND and then
find why the condition occurred. In order to
find the cause of a CMS problem, you must be
familiar with the structure and functions of
CMS. The discussion ab6ut reading'CMs dumps
refers to several CMS control blocks and fields
in the control blocks. Refer to the !~L37~:

&g~g !I~g2 g~g £g~!~gl ~lg£! 199i£ for a
description of each CMS control block. Figure
13 shows the relationships of CMS control
blocks. You also need a current CMS nucleus
load map to analyze the dump.

REASON FOR THE ABEND

Determine the immediate reason for the ABEND and
identify the failing module. The ABEND message
DMSABN14ST contains an ABBND code and failing
address. "CMS ABEND Codes" in Section 3 lists
all the CMS ABBND codes, identifies the module
that caused the module to abnormally terminate,
and describes the action that should be taken
whenever CMS abnormally terminates.

You may have to examine several fields in the
nucleus constant area (NUCON) of low storage.

1. Examine the program old PSW (PGMOPSW) at
location X'2S'. Using the PSW and current
CMS load map, determine the failing
address.

2. Examine the SVC old
location X'20'.

PSW (SVCOPS~ at

3. Examine the external old PSW (EXTOPSW) at
location X'lS'. If the virtual machine
operator terminated CMS, this PSW points to
the instruction executing when the
termination request was recognized.

4. For a machine check, examine the machine
check old PSW (MCKOPSW) at location X'30'.

COLLBCT INFORMATION

Bxamine several other fields in NUCOH to analyze
the status of the CMS system. As you proceed
with the dump, you may return to NUCON to find
pointers to specific areas (such as pointers to
file tables) or to examine other status fields.
The complete contents of NUCON and the other CMS
control blocks are described in the !J!ilZQ: !2atg
!~~g2 ~n~ £Qn~~Q! §!Q£! Logi£. The following
areas of NUCON may contain useful debugging
information.

NUCON ARBAS

•

•

•

Save Area For Lov storage.

Before executing, DEBUG saves the first 160
bytes of low storage in a NUCON field called
LOWSAVE. LOiSAVE begins at X'CO'.

Register Save Area.

DMSABN, the ABEND routine, saves the user's
floating-point and general registers.

Field
FPRiOG
GPRLOG

ECRLOG

Device.

X'lS0'

X 'lCO'

Contents
Userts~loating-point
registers
User's general
registers
User's extended control
registers

The name of the device causing the last I/O
interrupt is in the DEVICE field at X'26C'.

• Last Two Commands or Procedures Executed.

PRBVCMND X'2AS'

LASTEXBC X'2BO'

PREVEXEC X'2BS'

£g~!~J!!2
Last CMS command
issued
Next to last CMS
command issued
Last EXEC procedure
invoked
Next to last EXEC
procedure invoked

Section 1. Introduction 41

DMSNUC

USERSECT

SUBSECT

OPSECT

SYSREF
DMSABW

CMSCB

DMSFRT

DMSERT

DBGSECT (Debug work areal

fields are filled in

FVS

DIOSECT
DCB DECB

SVCSECT

PGMSECT

IOSECT

EXTSECT

AFTSECT (Create when the file is
opened. There is room for 5 AFTs in
DMSNUC, others are in free storage.

ADTSECT (Space is allocated when
DMSNUC is assembled, fields are
filled in when ACCESS command is
issued. There is one ADT entry for
each of the 10 possible disks.)

DEVTAB

NUCON

Figure 13. CMS Control Blocks

• Last Module Loaded Into Pree storage and
Transient Area.

The name of the last module loaded into free
storage via a LOADMOD is in the field
LASTLMOD (location X'2CO'). The name of the
last module loaded into the transient area
via a LOADMOD is in the field LASTTMOD
(location X'2C8').

• Pointer to CMSCB.

The pointer to the CMSCB is in the PCBTAB
field located at XI 5CO'. CMSCB contains the
simulated as control blocks. These simulated
os control blocks are in free storage. The
CMSCB contains a PLIST for CMS I/O functions,

BB

a simulated job file control block (JPCB), a
simulated data event block (DEB), and the
first in a chain of I/O blocks (lOBs).

• The Last Command.

The last command entered from the terminal is
stored in an area called CMIDLIRE (X'7AOI),
and its corresponding PLIST is stored at
CMRDLIST (X'848 1) •

• External Interrupt Work Area.

EXTSECT (X'1550') is a work area for the
external interrupt handler. It contains:

42 IBM VM/370: system Logic and Problem Determination Guide

The PSW, EXTPSW (X'lSFS')
Register save areas, EXSAVE1 (X'15BS')
separate area for timer interrupts,
EXSA VE (X '1550')

• I/O Interrupt Work Area.

IOSECT (X'1620') is a work area for the I/O
interrupt handler. The oldest and newest PSW
and CSW are saved. Also, there is a register
save area.

• Program Check Interrupt Work Area.

PGMSECT (X'16BO') is a work area for the
program check interrupt handler. The old PSW
and the address of register 13 save area are
stored in PGMSECT.

• SVC Work Area.

SVCSECT (X'174S') is a work area for the
interrupt handler. It also contains
first four register save areas assigned.
SFLAG (X'175S') indicates the mode of
called routine. The values have
following meanings:

f!2.9
X'80'
X '40'
X'20'
X' 0 l'

!!5E§£Iil!:!:i2!l
SVC protect key is zero
Transient area routine
Nucleus routine
Invalid re-entry flag

SVC
the
The
the
the

Also, the SVC ABEND code, SVCAB, is located
at X'175A'.

• Simulated CVT (Com.unications Vector Table).

The CVT, as supported by
(X'lCCS'). Only the fields
are filled in.

CMS, is CVTSECT
supported by CMS

• Active Device Table and Active File Table.

For file system problems,
(Active Device Table), or
Table) in NUCON.

examine the ADT
AFT (Active File

REGISTEEt USAGE

To trace control blccks and
important to know the CMS
conventions.

modules,
register

!!~gi§!5E!
GRl
GR12
GR13

GR14
GR15

Contents
Address-of the PLIST
Program's entry point
Address of a 12-doubleword
work area for an SVC call
Return address
Progra. entry point or
the return code

it is
usage

The preceding infor.ation should help you to
read a eMS dump. with a dump, the control block
diagra.s, and a CMS load .ap you should be able
to find the cause of the ABEND.

NUCLEUS LOAD MAP

Each time the CMS resident nucleus is loaded on
a DASD, and an IPL can be performed on that
DASD, a load map is produced. Save this load
map. It lists the virtual storage locations of
nucleus-resident routines and work areas.
Transient modules are not inclUded in this load
map. When debugging CMS, you can locate
routines using this map.

The load map may be saved as a disk file and
prin~ed at any time. A copy of the nucleus load
map 1S contained on the system with the file
identification of 'filename NUCMAP'. Issue the

LISTF * NUCMAPS

command to determine the filename. Then issue

PRINT filename NUCMAP

to obtain a copy of the current nucleus load
map.

Figure 14 shows a sample CMS load map.
Notice that the debug work area (DBGSECT) and
the DMSINM module have been located.

LOAD MAP

The load map of a disk-resident command module
contains the location of control sections and
entry points loaded into storage. It may also
contain certain messages and card images of any
invalid cards or it may replace cards that exist
in the loaded files. The load map is contained
in the third record of the MODULE file.

This load map is useful in debugging. When
using the debug environment to analyze a
program, use the program's load map to help in
displaying information.

1.

2.

There are two ways to get a load map:

When loading relocatable object code into
storage, make sure that the MAP option is
in effect when the LOAD command is issued.
Because MAP is the default option, be sure
that NOMAP is not specified. A load map is
then created on the primary disk each time
a LOAD com.and is issued.

When generating the absolute image form of
files already loaded into storage, make
sure that the MAP option is in effect when
the GENMOD command is issued. Because MAP
is the default option, be sure that NOMAP
is not specified. Issue the MODMAP command
to type the load map associated with the
specified MODULE file on the terminal. The
format of the MODMAP command is:

r---,
I MODmap I filename I I-______________________________ ._J

!!!5EI5E:

filename is the module whose map is to be
displayed. The filetype must be
MODULE.

Section 1. Introduction 43

FILE: lOAD CMSMAP C CONVERSATIONAL MONITOR SYSTEM

INVALID CARD ••• :READ DMSNOC TEXT C1 CMS191 9/21/72 9:01

* OPlIB MAClIB D1 CMS191 9/21/72 8:47

* CMSlIB MAClIB D1 CMS191 9/21/72 8:44

* OSMACRO MAClIB Y2 CMS19E 7/19/72 18:11

* DMSNOC ASSEMBLE C1 SOURCE 9/18/72 23:09
DMSNUC AT 000000
D8SNUCU AT 002800
NUCON AT 000000
SYSREF AT 000600
PEIBM AT 000274
CMNDlINE AT 0007AO
SOBFlAG AT 0005E9
IADT AT 000644
DEVICE AT 00026C
DEVTAB AT 000C90
CONSOLE AT 000C90
ADISK AT OOOCAO
DDISK AT OOOCDO
SDISK AT 000D10
YDISK AT 000D20
TABEND AT OOODFO
ADTSECT AT OOODFO
AFTSTART AT 001200
EXTSECT AT 001500
EXTPSW AT 0015A8
IOSECT AT 0015DO
IONTABl AT 001610
PGMSECT AT 001660
PIE AT 001668
SVCSECT AT 0016F8
DIOSECT AT 001998
FVS AT 001A88
ADTFVS AT 001B48
KXFlAG AT 001C2F
UFDBUSY AT 001C2E
CMSCVT AT 001C80
DBGSECT AT 001D£HJ
DMSERT AT 002098
DMSPRT AT 002208
DMSABW AT 002258
OPSECT AT 002800
DMSERl AT 002935
TSOBlKS AT 0029BO
SOBSECT AT 002A40
OSERSBCT AT 002AD8
INVALID CARD ••• :READ DMSINA TEXT C1 C8S191 9/19/72 15:37
ABBREV AT 003000
OSABRV AT 0030DO
INVALID CARD ••• :READ DMSINM TEXT C1 CMS191 9/18/72 20:36
CMSTIMER AT 003200
GETClK AT 003200
DMSINM AT 003200
INVALID CARD ••• :READ DMSTIO TEXT C1 CMS191 9/19/72 10:33
TAPEIO AT 003308
DMSTIO AT 003308

Figure 14. Sample eM S Load Map

44 IBM VM/370: System Logic and Problem Determination Guide

The VM/370 Control Program (CP) manages the
resources of a System/370 to provide virtual
storage support by using virtual machines. with
this support each terminal user appears to have
the complete function of a dedicated System/370
at his disposal r even though many other users
may be running batch r teleprocessing r
time-sharing r testing r or production jobs at the
same time.

A user defines the configuration he requires
input/output (I/O) device addresses r and a

storage size up to 16 million bytes
regardless of whether they match the real
machine's configuration. virtual devices must
have real counterparts r but not always in a
one-for-one ratio. For example r many users'
readers r punches r and printers can be mapped
onto common spool disks r and their virtual disk
devices may be mapped as minidisks onto
different sections of common disk packsr
effectively multiplying the number of logical
disk devices that are available on the real
machine.

Each user's virtual machine comprises:

• An operator's console (his local or remote
terminal device)

• A virtual CPU either with or without virtual
storage addressing.

• Virtual storage of up to 16 million bytes

• Virtual I/O devices

!!.Q'!~: If an operating system that manages
virtual storage is running in the virtual
machine r the CPU must have extended control (EC)
mode.

virtual I/O devices are controlled by the
virtual machine's operating system r not by CPo
Thus r for proper operation, the support for the
correct number and type of I/O devices must be
provided by the operating system of the virtual
machine. CP moriitors, translates r and schedules
all real I/C operations to provide system
integrity. It executes all virtual machine
operations in a problem state by trapping r
screening r and processing all the interrupts,
and passing on the necessary information to the
appropriate virtual machine. Only CP executes
in the privileged state.

To increase the amount of real main storage
available to the user's virtual machine r parts
of CP that are infrequently used are not
resident in main storage. Instead r they reside
on part of the auxiliary paging storage used by
the system r and are brought into main storage
only when they are required.

Because CP nonresident modules are paged into
main storage, CP also occupies virtual storage
space. The system VftBLOK, assembled into the
resident control program in the module DftKSYS r
defines this space. The VftBLOK has a pointer to

a segment table that references a set of page
and swap tables that describe CP's virtual
storage space.

The virtual space is divided into 2 parts;
the first part (4 segments (256K» is reserved
for executable CP code, both resident and
pageable; the second part (the remaining storage
of at least 256K) is dynamically allocated for
spooling buffers and for user directory
functions. For a routine to be pageable, a
number of restrictions must be observed.

When the system is loaded, resolved, and
written onto the system residence volume,
pagable modules must be loaded at addresses
higher in main storage than the symbol DftKCPEND,
which defines the last byte of the resident CP
nucleus. This is done by reordering the
LOAD-LIST EXEC that the VftFLOAD procedure uses
when punching out the text decks that comprise
the Any pageable modules are listed after the
entry for DftKCPE. In addition, the set page
boundary (SPB) loader control card must precede
each pageable module. This SPB card forces the
loader to start loading the succeeding module at
the next higher 4k page boundary and ensures
that the entire module is resident when it is
paged in.

If several pageable modules perform similar
or related functions and if they are likely to
be resident at the same time, they may be
included in the same page by omitting the SPB
cards that would normally have preceded the
second and subsequent modules. The group of
modules to be loaded together must not exceed 4K
as their total storage requirement; if they do,
one or more must be loaded in separate pages,
because no page boundary crossover in the
pageable part of the control program is allowed.
All currently pageable CP modules punch their
own SPB card via an assembler PUNCH statement,
except those that are designed to reside in a
page along with other modules.

CP INITIALIZATION

System initialization (IPL) prepares Vft/370 for
operation. IPL performs the following tasks:

• Initializes main storage

• ftounts devices

• Reads spool file checkpoint records, on a
warm start from the warm start cylinder;
reads spool file checkpoint records on a
checkpoint or force start, from the
checkpoint cylinders.

• Allocates space for the system dump file

• Logs on the system operator

In the case of a system restart that follows
a failure, active files and the system log
message are written on the warm start cylinder
before the CP nucleus can be brought into main
storage. The user can now log on.

section 1. Introduction 45

VIRTUAL MACHINE MANAGEMENT

A virtual machine is created for a user when he
logs on VM/370, on the basis of information
stored in his directory entry. The entry for
each user identification includes a list of the
virtual I/O devices associated with his virtual
machine and the real device equivalents.

The directory file contains additional
information about the virtual machine. Included
are the VM/370 command privilege classes for the
user, accounting data, normal and maximum
virtual storage sizes, and optional virtual
machine characteristics such as extended control
mode.

CP supervises virtual machine execution by
(1) permitting only problem state execution
except in its own routines, and (2) receiving
control after all interruptions occur on the
real system. CP intercepts each privileged
instruction and simulates it if the current PSi
of the issuing virtual machine indicates a
virtual supervisor state. If the virtual
machine is running in the problem state, an
attempt to execute a privileged instruction is
reflected back to the virtual machine as a
program interruption. All virtual machine
interruptions (including those caused by
attempting privileged instructions) are first
handled by CP, and are reflected to the virtual
machine if an equivalent interruption would have
occured on the real machine.

The real CPU uses time-slicing to simulate
mUltiple virtual CPUs. Virtual machines
executing in a conversational mode are given
access to the real CPU more frequently than
those that are not; these conversational
machines are assigned the smaller of two
possible time slices. CP determines execution
characteristics of a virtual machine at the end
of each time slice on the basis of the recent
frequency of its console requests or terminal
interruptions. The virtual machine is queued
for subsequent CPU usage according to whether it
is a conversational or nonconversational user of
system resources.

A virtual machine can gain control of the CPU
only if it is not waiting for some activity or
resource. The virtual machine itself may enter a
virtual wait state after an I/O operation has
begun. The virtual machine cannot gain control
of the real CPU if it is waiting for a page of
storage, an I/O operation to be translated and
started, or a CP command to finish execution.

A virtual machine can be assigned a priority
of execution. Priority is a parameter affecting
the execution privilege of a particular virtual
machine in comparison to other virtual machines
that have the same general execution
characteristics. priority may be assigned by
the real machine operator, but is more
frequently determined by the virtual machine's
directory entry.

The normal and maximum storage sizes of a
virtual machine are defined in the virtual
machine configuration in the VM/370 directory.
The virtual storage size can be temporarily
redefined to any value that is a multiple of 4K
and not greater than the value stated as the
maximum allowable in the directory. VM/370 uses
this storage as virtual storage. The storage
can appear as paged or nonpaged to the virtual
machine, depending upon whether the extended
control (EC) mode option was specified for that
virtual machine. EC mode is required if
operating systems that control virtual storage,
such as OS/VS1 or VM/370, are to be run in the
virtual machine.

storage in the virtual machine is logically
divided into 4096 byte areas called pages. A
complete set of segment and page tables describe
the storage of each virtual machine. These
tables are maintained by CP and reflect the
allocation of virtual storage pages to blocks of
real storage. The System/370 machine uses these
tables to address virtual storage. Storage in
the real machine is logically and physically
divided into 4096 byte areas called page frames
or blocks.

Only referenced virtual storage pages are
kept in real storage and, therefore, use real
storage more efficiently. A page can be brought
into any available page frame; the necessary
relocation is done during program execution by a
combination of VM/370 software and the dynamic
address translation hardware of the System/370.
The active pages from all logged-on virtual
machines and from the pageable routines of CP
compete for available page frames. ihen the
number of page frames available for allocation
falls below a threshold value, CP determines
which virtual storage pages currently allocated
to real storage are relatively inactive and
starts suitable operations to write them out on
a paging device (paging out).

Inactive pages are maintained on a direct
access storage device. If an inactive page has
been changed at some time during virtual machine
execution, CP assigns it to a paging device,
selecting the fastest such device with available
space. If the page has not changed, it remains
allocated in its original direct access location
and is written into real storage from there the
next time the virtual machine references that
page. A virtual machine program can use the
DIAGNOSE instruction to inform CP that the
information from specific pages of virtual
storage is no longer needed. CP then releases
the areas of the paging devices that had been
assigned to hold the specified pages.

Paging is done on demand by CPo This means
that a page of virtual storage is not read from
the paging device and written to a real storage
block until it is needed for virtual machine
execution. No attempt is made by CP to
anticipate what pages might be required by a
virtual machine. While a paging operation is
being performed for one virtual machine, another
virtual machine can be executing. Any paging
operation started by CP is transparent to the
virtual machine.

46 IBM VM/370: System Logic and Problem Determination Guide

If the virtual machine is executing in EC
mode with translate on, two additional sets of
segment and page tables are maintained. The
virtual machine operating systea is responsible
for the equivalency of the virtual storage
created by it to the virtual storage of the
virtual machine. CP uses this set of tables in
conjunction with the page and segment tables
created for the virtual machine at logon time to
build shadow page tables for the virtual
machine. These shadow tables map the virtual
storage created by the virtual aachine operating
system to the storage of the real computing
system. The tables created by the virtual
machine operating system may describe any page
and segment size permissible in the IBM
System/370.

The system operator can assign the reserved
page frames option to a single virtual machine
This option, specified by the SET RESERVE
command, assigns a specific amount of the
storage of the real machine to the virtual
machine. CP dynamically builds a set of
reserved real storage page frames for this
virtual machine during its execution until the
maximum number "reserved" has been reached.
Because other virtual machines' pages are not
allocated from this reserved set, the most
active pages of the selected virtual machine
remain in real storage.

During the process of CP system generation,
the installation may specify that a single
virtual machine is to be given an option called
virtual=real. With this option, the virtual
machine's storage is allocated directly from
real storage at the time CP is initially loaded,
and remains allocated until released by an
operator command. All pages except page zero
are allocated to the corresponding real storage
locations. To control the real computing
system, real page zero must be controlled by
CPo Consequently, the real storage size must be
large enough to accommodate the CP nucleus, the
entire virtual=real virtual Ilachine, and the
rema1n1ng pageable storage requirements of CP
and the other virtual machines.

The virtual=real option improves performance
in the selected virtual machine because it
removes the need for CP to perform paging
operations for the selected virtual machine.
The virtual=real option is necessary whenever
programs that contain dynamically modified
channel programs (excepting those of OS ISAM)
are to execute under control of CPo

A real disk device can be shared among multiple
virtual machines. virtual device sharing is
specified in the directory entry or by a user
command. If sharing is requested by a user
command, an appropriate password must be
supplied before gaining access to the virtual
device. A particular virtual machine can be
assigned read-only or read/write access to a
shared disk device. CP verifies each virtual
machine I/O operation against the parameters in
the virtual machine configuration to ensure
device integrity.

The virtual machine operating systea is
responsible for the operation of all virtual
devices associated with it. These virtual
devices may be defined in the directory entry of
the virtual machine, or they may be attached to
(or detached from) the virtual machine's
configuration while it remains logged on.
virtual devices aay be dedicated, as when mapped
to a fully equivalent real device; shared, as
when mapped to a ainidisk or when specified as a
shared virtual device; or spooled by CP to
interaediate direct access storage.

In a real machine running under control of
OS, I/O operations are normally initiated when a
problem program requests OS to issue a START I/O
instruction to a specific device. Device error
recovery is handled by the operating systea. In
a virtual machine, OS can perform these same
functions~ but the device address specified and
the storage locations referenced are both
virtual. It is the responsibility of CP to
translate the virtual specifications to real.

In addition, the interruptions caused by the
I/O operation are reflected to the virtual
machine for its interpretation and processing.
If I/O errors occur, CP records them but does
not initiate error recovery operations. These
are the responsibility of the virtual machine
operating system.

I/O operations started by CP for its own
purposes (paging and spooling), are performed
directly and are not subject to translation.

SPOOLING

A virtual unit record device, which is mapped
directly to a real unit record device, is
dedicated. The real device is then controlled
completely by ihe virtual machine's operating
system.

CP facilities allow multiple virtual machines
to share unit record devices. Because virtual
machines controlled by CMS ordinarily have
modest requirements for unit record I/O, such
device sharing is quite advantageous, and it is
the standard mode of system operation.

Spooling operations stop if the direct access
storage space assigned to spooling is eXhausted,
and the virtual unit record devices are in a not
ready status. The system operator can make
additional spooling space available by purging
existing spool files or by assigning additional
direct access storage space to the spooling
function.

specific files can be transferred from the
spooled card punch or printer of a virtual
machine to the card reader of the same or
another virtual machine. Files transferred
between virtual unit record devices by the
spooling routines are not physically punched or
printed. With this method, files can be made
available to multiple virtual machines, or to
different operating systems executing at
different times in the same virtual machine.

section 1. Introduction 47

CP spooling includes many desirable options
for the virtual machine user and the real
machine operator. These options include
printing multiple copies of a single spool file,
backspacing any number of printer pages, and
defining spool classes for scheduling real
output.

The Remote Spooling Communications Subsystem
(RSCS), a component of VM/370, provides support
for the automatic transfer of spool files
generated by VM/370 virtual machines to remote
locations. It also supports the transmission of
files from remote locations to virtual users.

RSCS uses the CP spooling facilities of
VM/370 to:

• Gain access to files spooled to RSCS by
VM/370 users for transmission to remote
locations.

• Transfer files, received
locations, to the intended
machines.

from
VM/370

remote
virtual

This support is fully described in the !~~
!~L]lQ: B~£~ ~§~~~§ §~!g~.

CONSOLE FUNCTIONS

The CP console functions allow the user to
control the virtual machine from the terminal,
much as an operator controls a real machine.
virtual machine execution can be stopped at any
time by the terminal's attention key; it can be
restarted by typing in the appropriate CP
command. External, attention, and device ready
interruptions can be simulated on the virtual
machine. Virtual storage, virtual machine
registers, the PSW and CSW can be inspected and
modified. Extensive trace facilities are
provided for the virtual machine, as well as a
single-instruction mode. Commands control the
spooling and disk sharing functions of CPo

Console functions are divided into privilege
classes. The directory entry for each user
assigns one or more privilege classes. The
classes are:

• Primary system operator
system resource operator
System programmer

• Spooling operator
Systems analyst

• IBM field engineer or PSR
General user

Commands in the system analyst class can
inspect real storage lecations, but they cannot
make modifications to real storage. Commands in
the operator class control real resources.
system operator commands include all those
relating to virtual machine performance options,

such as assigning a set of reserved page frames
to a selected virtual machine.

PROGRAM STATES

When instructions in CP are being executed, the
real computer is in the supervisor state; at all
other times, when running virtual machines, it
is in the problem state. Therefore, privileged
instructions can only be executed by CPo
Programs running on a virtual computer can issue
privileged instructions; such an instruction
causes an interruption that is handled by CPo
CP examines the operating status of the virtual
machine PSW. If the virtual machine indicates
that it is functioning in supervisor mode, then
the privileged instruction is simulated
according to its type. If the virtual machine
is in problem mode, then the privileged
interrupt is reflected to the virtual machine.

Only CP may operate in the supervisor state
on the real machine. All programs other than CP
operate in the problem state on the real
machine. All user interruptions, including
those caused by attempted privileged operations,
are handled by CP, which then reflects to the
user program only those interruptions that the
user program would expect from a real machine.
A problem program executes on the virtual
machine in a manner identical to its execution
on a real System/370 CPU, as long as it does not
violate the CP restrictions.

PREFERRED VIRTUAL MACHINE

CP supports four special virtual machine
operating environment functions. Each function
can be applied to one virtual machine at a
time. Although each function could be applied
to a different virtual machine, optimum
performance would not be achieved. Each
function is discussed separately following.

CP attempts to provide up to a specified
percentage of CPU time to a particular virtual
machine, provided that the virtual machine is
functioning in a way that fully utilizes CPU
time. At regular time intervals the CP
dispatcher checks the CPU time used by the
particular virtual machine. If the specified
percentage is exceeded, the machine becomes the
lowest priority user in the system. If the
percentage used is lower than that specified,
the virtual machine has highest priority
execution for the remainder of the interval.
The percentage of CPU time assured is specified
in the privileged class command that invokes the
function.

CP can also assure that a designated user is
never dropped from the active (in queue) subset
by the scheduler. When the user is runnable, he

48 IBM VM/370: system Logic and Problem Determination Guide

is placed in the dispatchable list at his normal
priority.

CP uses chained lists of table entries for
available and pageable pages. Pages for users
are assigned from the available list which is
replenished from the pageable list.

Pages that are temporarily locked in real
storage are not available or pageable. Paging
proceeds using demand paging with a "reference
bit" algorithm to select the best page for
swapping. The reserved page frames option gives
a particular virtual machine an essentially
"private" set of pages. The pages are not
locked, that is, they can be swapped, but
usually only for the specified virtual machine.
The number of reserved pages for the virtual
machine are specified as a maximum. The page
selection routine selects an available page for
a reserved user and marks that page reserved if
the maximum specified for the user has not been
reached. If an available, unreferenced reserved
page is encountered during page replenishment
for the reserved user, it is used whether or not
the maximum h~s been reached. If the page
selection routine cannot locate an available
page for other users because they are all
reserved, the routine may steal the reserved
pages.

This feature requires that the CP nucleus be
reorganized to provide a "hole" in real storage
large enough to contain the entire storage area
of the virtual machine. For the virtual
machine, each page from page one to the last
page (n) is in its true real storage location;
only page zero is relocated. The virtual
machine runs in relocate mode, but because the
virtual page address is the same as the real
page address, 'no CCi translation is required for
the virtual machine. Because no CCi translation
is performed, no check is made of the I/O data
addresses. The virtual machine must ensure that
no I/O data transfer is specified into page zero
or into any page not in the virtual machine's
domain.

There are several considerations for the
virtual=real option of preferred machine support
that affect overall system operation:

• The area of contiguous storage built for the
virtual=real machine must be large enough to
contain the entire addressing space of that
machine.

• While allocated as such, the storage reserved
for the virtual=real machine can be used only
by a virtual machine with that option. It is
not available to other users for paging space
nor for VM/310 usage, even when the
virtual=real machine is net logged on. For
this reason, the virtual=real machine should

be a high availability, high throughput
machine. The virtual=real storage can be
released by the operator. That storage is
then available for paging. Once virtual=real
storage space is released by the operator, a
VM/310 IPL is necessary to reallocate that
storage to that virtual=real machine.

• The virtual machine with the virtual=real
option operates in the pre-allocated storage
area with normal CCi translation in effect
until the execution of the SET NOTRAIS ON
command. At that time, all subsequent I/O
operations are performed from the virtual
CCis in the virtual=real space without
translation. In this mode, the virtual
machine must not perform I/O operations into
page zero nor beyond its addressable limit.
Violation of this requirement may cause
destruction of the VM/310 system and/or other
virtual machines.

• If the virtual=real machine performs a
virtual. reset or IPL, the normal CCi
translation is performed until the issuance
of the SET NOTRANS ON command. Only the
virtual=real virtual machine can issue the
command. A message is issued if normal
translation mode is entered.

The virtual machine assist feature is available
with system/310 Models 135, 145, and 158 and as
an RPQ on the Syste./310 Model 168. It improves
the performance of VM/310. It intercepts and
handles interruptions caused by svcs, invalid
page conditions and the following privileged
instructions:

LRl
STCTL
RRB
ISK
SSK
IPK
STNSH
STOSM
SSM
LPSi
SPKA

(load real address)
(store control)
(reset reference bit)
(insert storage key)
(set storage key)
(insert PSi key)
(store then and system mask)
(store then or system mask)
(set system mask)
(load PSi)
(set PSi key from address)

Although virtual machine assist feature is
designed te improve the performance of VM/310,
the virtual machines that do not have virtual
machine assist feature available may see a
performance improvement because the virtual
machines with virtual machine assist feature are
using less of the system resources leaving more
resources available for the other users.

!!EIYA1 ~Afn!!~ £Q!IBQb: Real control register 6
(see Bote 1) and a MICBLOK control virtual
machine assist feature. The MICBLOK is a list
of pointers to areas within V8/310 control
blocks. The control register 6 format follows:

Bit ~~2!l!~19
-0- 1=virtual machine assist feature on for

this virtual machine
O=virtual machine assist feature
disabled (VM/310 mode)

section 1. Introduction 49

Bit ~~!!!!!!!g -,- l=Virtual machine is in problem state
O=Virtual machine is in supervisor state

2

3

4

5

6

7

(see Note 2)

l=ISK and SSK not handled by virtual
machine assist feature
O=ISK and SSK handled by virtual machine
assist feature

1=360 operations and 370 non-DAT
operations only

0=370 DAT operations allowed
(see Note 3)

l=SVC interruptions not handled by
virtual machine assist feature
O=SVC interruptions handled by virtual
machine assist feature

l=Shadow table mode: Shadow page fixup
done by virtual machine assist feature

O=Shadow Table fixup not allowed

Reserved (must be zero)

Reserved (must be zero)

8-28 Real address of virtual machine pointer
list

29-31 Unused (must be zero)

Notes:
-l~--control register 6 is loaded before each

virtual machine is dispatched.

2. Bit 1 of control register 6 may be changed
by virtual machine assist feature during a
virtual machine status change~

3. Bit 3 affects instructions that only a
virtual machine with the EC option may
execute. Specifically, they are: LRA, RRB,
IPK, STNSM, STOSM, and SPKA. Bit 3 also
affects STCTL even though it can be
executed by a virtual machine without the
EC option.

virtual machine assist feature uses the list
of pointers, or MICBLOK, to access virtual
machine control information. The list must start
on a doubleword boundary. A MICBLOK is obtained
for each user when he logs on. The entries in
this list are as follows:

•

•

•

Real segment table pointer and length, page
size, and segment size.

Pointer to the real
control register o.

address of virtual

Pointer to the real address of the virtual
PSi currently in effect.

Pointer to the 64 byte workspace area
reserved for virtual machine assist feature.

INTERACTION WITH PROGRAM ~!l;!!:! R~£Q!Ul!!!§ (g~~):
i~~-~II--ris~~i~tI~i~-li virtual machine assist
feature except SVC and LPSW, PER monitoring
events are indicated normally as if the
instructions were being executed in supervisor
state. Changes made to the virtual PSW or swap
table entries in VM/370 real storage are
indicated as storage alteration events, because
those locations are considered to be internal
registers to the virtual machine. A virtual
instruction that attempts to change the state of
the virtual PSW PER mask causes a privileged
instruction interruption, and the instruction is
suppressed.

For virtual SVC interruption, PER monitoring
specified in the current real PSW, current
virtual PSi, or new virtual PSW causes a real
SVC interrupt, regardless of the values
specified in real or virtual control registers
9,10, and 11. For virtual LPSW, similar
conditions result in a real privileged
instruction interruption.

PER monitoring specified in
causes the VM/370 page invalid
be inactive.

the real PSW
interruption to

Privileged instruction interruptions
resulting from the virtual instructions may show
a PER event for instruction fetching, just as
they would without the feature. Real SVC
interruptions may be followed by a program
interruption for an instruction fetch PER
event.

!!!:!~~!£:!!Q!! !!:!fl ~Q~ ~~Y1!:!QB: On machines with
both virtual machine assist feature and the DOS
Emulation feature installed, local execution
(LEX) mode inactivates virtual machine assist
feature; privileged instruction interruptions
and SVC interruptions occur according to DOS
emulation architecture. When the machine is not
in LEX mode, the machine performs as described
for virtual machine assist feature.

~~§!~!£!~~ y~~ OF VIRTUAL MACHINE ASSIST
l~A:!Y~~: Certain Interruptions mu~t--be handled
by VM/370. Consequently, the virtual machine
assist feature is not on in a virtual machine if
the machine has instruction address stop set
on.

VM/370 turns SVC handling off when
instruction address stop is set on, and turns it
back on after the stop occurs.

V"/VS HANDSHAKING

The V"/VS Handshaking feature provides a
communication path between CP and a virtual
machine operating system (OS/VS1) that makes
each system control program aware of certain
capabilities or requirements of the other.
V"/VS Handshaking performs the following
functions:

• Closes CP spool files when the vsl job output
from its DSO, terminator, and output writer
is complete

• Processes VS1 pseudo page faults

50 IB" V"/370: System Logic and Problem Determination Guide

• Provides an optional nonpaging .ode for VS1
when it is run in the VM/310 environment

When a VS1 virtual machine with the
handshaking feature is loaded (via IPL), its
initialization routines determine whether the
handshaking feature should be enabled. First,
VS1 determines if it is running under the
control of VM/310 by issuing a STIDP (store
Processor ID) instruction. STIDP returns a
version codei a version code of X'FF' indicates
VS1 is running with V"/310. If VS1 finds a
version code of X'FF', it then issues a DIAGNOSE
(X' 00') instruction to store the V"/310
extended-identification code. If an
extended-identification code is returned to VS1,
VS1 knows that V"/310 supports handshakingi if
nothing is returned to VS1, VM/310 does not
support handshaking. At this time or any time
after IPL, the operator of the VS1 virtual
machine can issue the CP SET PAGE X ON command to
enable the pseudo page fault handling portion of
handshaking. If the VS1 virtual machine is in
the nonpaging mode and, if the pseudo page fault
handling is active, full handshaking support is
available.

Because the VS1 system does no paging, any
ISAM programs run under VS 1 are treated by
V"/310 as though they are running in an
ADDRSPC=REAL partition. Therefore, the ISA"
option is required for the VS1 machine to
successfully execute the ISAM program.

If the handshaking feature is active, VS1 closes
the CP spool files when its job output from the
DSO, terminator, and output writer is complete.
Once the spool files are closed, VM/310
processes them and they are sent to the real
printer or punch. During its job termination
processing, VSl issues a DIAGNOSE (X'08')
instruction to pass the CP CLOSE command to
VM/310 for each CP spool file.

A page fault is a program interruption that
occurs when a page marked "not in storage" is
referred to by an instruction with an active
page. The virtual machine referring to the page
is placed in a wait state while the page is
brought into real storage. Without the
handshaking feature, the entire VSl virtual
machine is placed in page wait by VM/310 until
the needed page is available.

However, with the handshaking feature, a
multiprogramming (or multitasking) VS1 virtual
machine can dispatch one task while waiting for
a page request to be answered for another task.
V"/370 passes a pseudo page fault (program
interrupt X'14') to VS1. When VS1 recognizes
the pseudo page fault, it places only the task
waiting for the page in page wait and can
dispatch another tasks.

When a page fault occurs for a VS1 virtual
machine, VM/310 checks that the pseudo page
fault portion of handshaking is active and that
the VS1 virtual machine is in EC .ode and
enabled for I/O interruptions. Then, VM/370
reflects the page fault to VS1 by:

• Storing the virtual machine address that
caused the page fault at location X'90' (the
translation exception address)

• Indicating a program interruption (interrupt
code X' 14') to VS 1

• Removing the VS1 virtual .achine fro. page
wait and execution wait

When VS1 recognizes program interruption code
X'14', it places the associated task in wait
state. VS1 can then dispatch other tasks.

When the requested page becomes available in
real storage, VM/370 indicates the same progra.
interruption to VS1, except the high order bit
in the translation exception address field is
set on to indicate completion. VS1 removes the
task from page wait; the task is then eligible
to be dispatched.

When Vs1 runs under the control of VM/370, it
executes in nonpaging mode if:

• Its virtual storage size is equal to the size
of the VM/370 virtual machine

• Its virtual machine size is at least one
megabyte and no more than four megabytes.

• The V"/VS Handshaking feature is available.

When VS1 executes
fewer privileged

in nonpaging mode, it uses
instructions and avoids

duplicate paging.
Initialization progra.
to avoid the duplicate

The VS1 Nucleus
(NIP) fixes all VS1 pages
paging.

!Qt~: The working set size may be larger for a
VS1 virtual machine in nonpaging mode than for
one in paging mode.

A VS1 virtual machine with the handshaking
feature avoids many of the instructions or
procedures that would duplicate the function
that V"/370 provides. For example, VS1 avoids:

• 15K (Insert storage Key) instructions and
uses a key table

• Seek separation
devices

for 2314

• ENABLE/DISABLE sequences in
Supervisor (IDS)

direct access

the VS1 I/O

section 1. Introduction 51

• TCn (Test Channel) instructions preceding SIO
(start I/O) instructions.

CP INTERRUPTION HANDLING

Interruption processing occurs within the CP
environment. More than 30 modules control the
process of interrupting events brought about by
CP or virtual machine activity. Each module
handles a particular I/O device or class or a
function of CP, (for exaaple: tiaers, paging,
SVCs). For an overview of interruption
handling, see Figure 15.

Program interruptions occur in t~o states. If
the CPU is in the supervisor state, the
interruption indicates a systea failure in the
CP nucleus and causes a system abnormal
termination. If the CPU is in the problem
state, a virtual machine is in execution. If
the program interruption indicates that the
Dynamic Address Translation (DAT) feature has an
exception, a virtual machine issued a privileged
instruction, or a protection exception occurred
for a shared segment system, CP takes control
and performs any required processing to satisfy
the exception. Usually, the interruption is
transparent to the virtual machine. Most other
program interruptions result from virtual
machine processing and are reflected to the
virtual machine for handling.

I/O interruptions from completed I/O operations
initiate various completion routines and the
scheduling of further I/O requests. The I/O
interruption handling routine also gathers
device sense information.

When a machine check occurs, CP Recovery
Management Support (RHS) gains control to save
data associated with the failure for FE
maintenance. RHS analyzes the failure and
determines the extent of damage.

Damage assessment results in one of the
following actions being taken:

• system termination

• selective virtual user termination

• Refreshing of damaged information with no
effect on system configuration

• Refreshing of damaged information with the
defective storage page removed from further
system use

• Error recording only for certain soft machine
checks

The system operator is informed of all
actions taken by the RMS routines. When a
machine check occurs during VM/370 startup
(before the system is set up well enough to
permit RMS to operate successfully), the CPU
goes into a disabled wait state and places a
completion code of X'OOB' in the high-order
bytes of the current PSi.

52 IBM VM/370: System Logic and Problem Determination Guide

The VM/370 Control Program (CP) is interrupt driven. Thus, when an interrupt occurs, control is passed to the appropriate Interrupt
Handler. These are:

• From unknown channel, the interrupt is ignored
• Monitor Tape I/O Operation

• From an unsolicited Device End, bUild;a~n~IO~B:LO~K~~~~~~_'
• From a dedicated device error, for either CP or a virtual machine

(DMKVCHI. the ERP for:

and for: Console (Start/Stop) C DMKCNSIN)

----------------~
DASD --C DMKDASER) Tape --C DMKTAPER)

and for 3270s on bisync lines .C DMKRGA or)
_. ___ D_M....,;.;K;.;.,R;..,;G;;.;B:::..-__

and for local 3270 devices, 3158 and 3066 cunsoles .. (DMKGRF)

• From 3270 bisync line and channel errors",(DMKBSC)

Recoverable error? No, record error C DMKIOERR)

Unit Record (U/R), real spooling I C DMKRSPEX)

• From a solicited Device End t
C

DMKSTKIO) to stack 10BLOK
Yes.,

• From a Channel ERROR, the Channel Check Handler.C DMKCCHNT)

• For Program Check interrupts, the Program Check Interrupt Handler ••••••• ___ • ____________________ .. ~

'-------
DMKPRGIN passes control to the appropriate processor, depending on the type of program check, as follows:

• For normal pagingc DMK~TRAN)
• For paging (virtual.....r DMKVAT) DMKPRVLG passes control as follows: DMKVIOEX passes control as follows:

machine in EC moder--- \. .

• For Supervisor state ~
• Forconsole·G~ • For DIAGI\JOSE instructions~

• For privileged instructions _. ____ •
• Fortimers~ • For Unit Record (U/R), virtual

spooling .~ • For virtual machine I/O _______ 111

Figure 15. Overview of Interruption Handling

When an SVC interruption occurs, the SVC
interruption routine is entered. If the machine
is in problem state, the type of interruption is
usually reflected back to the pseudo-supervisor
(that is, the supervisor operating in the user's
virtual machine). If the machine is in
supervisor state, the SVC interruption code is
determined, and a branch is taken to the
appropriate SVC interruption handler.

If a timer interruption
according to type. The
time-slice end for the
comparator indicates

occurs, CP processes it
interval timer indicates
running user. The clock

that a specified timer

event has occurred, such as the time of day, a
scheduled shutdown, or a reached user event.
The CPO timer indicates that a virtual machine's
allowed execution interval (time in queue) has
expired.

The external console interruption invokes cp
processing to switch from the primary console to
an alternate operator's console.

FREE STORAGE MANAGEMENT

During its execution, CP occasionally requires
small blocks of storage that are used for the
duration of a task. CP obtains this storage
from the free storage area. The free storage
area is divided into various size subpools. The
requestor informs the free storage manager of
the size of the block required and the smallest
available subpool that fulfills the request is
allocated to the requestor. When the block is

Section 1. Introduction 53

no longer needed, the requestor informs the free
storage manager and CP returns the block to free
storage.

If the request for free storage cannot be
fulfilled, the free storage manager requests the
temporary use of a page of storage from the
dynamic paging area. If a page is obtained, the
page is chained to the free storage area and
used for that purpose until it is no longer
needed and subsequently returned to the dynamic
paging area.

If the request for a page cannot be
fulfilled, the requestor waits until free
storage becomes available.

STORAGE PROTECTION

VM/370 provides both fetch and store protection
for real storage. The contents of real storage
are protected from destruction or misuse caused
by erroneous or unauthorized storing of fetching
by the program. Storage is protected from
improper storing or from both improper storing
and fetching, but not from improper fetching
alone.

When the CPU accesses storage, and protection
applies, the protection key of the current PSW
is used as the comparand. The protection key of
the CPU is bit positions 8-11 of the PSW.

If the CPU access is prohibited because of a
protection violation, the operation is
suppressed or terminated, and a program
interruption for a protection exception takes
place.

When the reference is made to a channel,
protection applies, the protection
associated with the I/O operation is used as
comparand. The protection key for an
operation is in bit positions 0-3 of the CAW
is recorded in bit positions 0-3 of the
stored as a result of an I/O operation.
channel access is prohibited, the CSW stored as
a result of the operation indicates a
protection-check condition.

and
key
the
I/O
and
CSW
If

When a storage access is prohibited because
of a store protection violation, the contents of
the protected location remain unchanged. If a
fetch protection violation occurs, the protected
information is not loaded into an addressable
register, moved to another storage location, or
provided to an I/O device.

To use fetch protection, a virtual machine
must execute the set storage key (SSK)
instruction referring to the data areas to be
protected, with the fetch protect bit in the
key. VM/370 subsequently:

1. Checks for a fetch protection violation
when handling privileged and nonprivileged
instructions.

2. Saves and restores the fetch protection bit
(in the virtual storage key) when writing
and recovering virtual machine pages from
the paging device.

3. Checks for a fetch protection violation on
a write CCW (except for spooling or console
devices) •

A special case of storage protection occurs
when the CMS nucleus resides in a shared
segment. The nucleus must be protected and
still be shared by many CMS users. The program
interruption handler, DMKPRG, manipulates the
real storage key and real PSW key to ensure that
user programs and disk-resident commands run
with a different key than the nucleus code.

EXECUTING THE PAGEABLE CONTROL PROGRAM

Calls to pageable routines are recognized at
execution time by the svc 8 linkage manager in
DMKPSA. For every SVC 8, the called address (in
the caller's GPR15) is tested to see if it is
within the resident nucleus. If it is less than
DMKCPEND and greater than DMKSLC, the called
routine's base address is placed in GPR12 and
control is passed to the called routine in the
normal way. However, if the called address is
above DMKCPEND or below DMKSLC, the linkage
manager issues a TRANS macro, requesting the
pagin~ manager to locate and, if necessary,
page-~n the called routine. The TRANS is issued
with LOCK option. Thus, the lock count
associated with the called routine's real page
indicates the responsibility count of the
module.

• When the module is called, the count is
incremented.

• When the routine exits via SVC 12, the count
is decremented.

When the count reaches zero, the pageable
routine is unlocked and is eligible to be paged
out of the system. However, because all CP
pageable modules are reentrant, the page is
never swapped out, but when the page is stolen,
it is placed directly on the free page list.

Because unlocked page able routines
participate in the paging process in a manner
similar to user virtual storage pages, the least
recently used approximation used by page
selection tends to make highly used control
program routines, even when not locked, remain
resident. The called routine is locked into
real storage until it exits. Thus, it can
request asynchronously scheduled function, such
as I/O or timer interrupts, as long as it
dynamically establishes the interruption return
address for the requested operation and does not
give up control via an EXIT macro prior to
receiving the requested interruption.

Addressability for the module, while it is
executing, is guaranteed because the CALL
linkage loads the real address of the paged
module into GPR12 (the module base register)
prior to passing control. If all addressing is
done in a base/displacement form, the fact that
the module is executing at an address different
from that at which it was loaded is transparent.
Although part of CP is pageable, it never runs
in relocate mode. Thus, the CPU is not degraded

54 IBM VM/370: system Logic and Problem Determination Guide

by the DAT feature being active, and no problems
occur because of handling disabled page faults.

SYSTEM SUPPORT MODULES

The system support modules provide CP with
several common functions for data conversion and
control block scanning and verification. Most
of the routines are linked to via the BALR
option of the CALL macro, and make use use of
the BALRSAVE and TEMPSAVE workareas in DMKPSA.
Two exceptions are the virtual and real I/O
control block scan routines DMKSCNVU and
DMKSCNRU. These routines do not alter the
contents of the BALRSAVE area, and hence may be
called by another low level BALR routine.

CONTROL REGISTER USAGE

Every IBM System/370 CPU provides the program
with 16 lo~ical control registers (logical
registers s~nce the number that are active
depends on the features installed in the machine
at anyone time) that are addressable for
loading and storing from basic control (BC)
mode. VM/370 provides only a single control
register, control register zero, for normal
virtual machines, and for processing systems
that do not require the full set of registers
(for example, CMS, DOS, or other operating
systems for system/360.

Any user whose virtual machine operating
system requires the use of control registers
other than control register zero, can request
the full set of 16 registers by specifying the
ECMODE option in the VM/370 directory entry for
his virtual machine.

A virtual machine, which utilizes any
system/370 features that use the control
registers, requires the ECMODE option. Some of
these features are expanded timer support of the
System/370 CPU timer, clock comparator, etc.,
the virtual relocate mode and its instructions,
RRB, LRA, PTLB, virtual monitor calls, virtual
Program Event Recording (PER), etc.

RESTRICTIONS AND CONVENTIONS FOR PAGEABLE CP
MODULES

Pageable CP modules must observe the following
restrictions and conventions when they are
designed and coded:

• The module should be completely reenterable.
Any messages to be modified, temporary work
or scratch areas, or program switches must be
allocated from system free storage or from
the caller's save area.

• The module must be entered by the standard
SVC 8 CALL linkage. Modules entered by BALR
or GOTO cannot be pageable.

• The module cannot contain any A- or V-type
address constants that point to locations
within itself or within other pageable
modules, and it cannot contain any CCws that
contain data addresses within themselves.
The only exceptions are address constant
literals generated as the result of calls to
other modules (because these addresses are
dynamically relocated at execution time, they
must be resolved by the loader to the loaded
address of the called module) and a pageable
module that locks itself into storage. In

,practice, this restriction means that data or
instructions within the pageable routine must
be referenced via base/displacement
addressing, and the address in register 15
for a CALL may not be generated by a LOAD
ADDRESS instruction.

• The pageable module must be no more than 4096
bytes in length.

If the four above design and coding
restrictions are adhered to, the CP module can
be added to the existing pageable nucleus
modules by utilizing the service routine,
VMFLOAD, which is described in "VM/370
Maintenance Procedures" of the !~LJ1Q: ~~£y!£~
SgY!i~~~ R~~g~2! 199!f· Additional information
can be found in the !~L1IQ: g!~~~!~g ~~g 212!~!
~~~~£2!!gD ~~!g~. 

DATA AREA MODULES 

In addition to the executable resident and 
pageable modules, there are certain modules that 
only contain data areas and do not contain 
executable code. These modules are: 

Resident 
~ggYl~ 
DMKCPE 
DMKRIO 
DMKSYS 
DMKTBL 

Pageable 
~ggYl~ 
DMKBOX 
DMKEMS 
UMKFCB 

DMKSNT 
DMKSYM 
DMKUCB 

DMKUCS 

DMKTBM 

contents 
DefInes-the end of the CP nucleus 
I/O device blocks 
System constants 
Terminal translate table 

Contents 
output-separator table 
Error message data module 
3211 Forms Control Buffer (FCB) load 

tables 
System name table 
System symbol table 
3211 Universal Character set Buffer 

(UCSB) load tables 
1403 Universal Character set (UCS) 

load tables 
Terminal translate tables 

SVC INTERRUPTIONS 

When an SVC interruption occurs, the SVC 
interrupticn routine (DMKPSASV) is entered. If 
the machine is in the problem state, DMKPSASV 
takes the following action: 

section 1. Introduction 55 



EXECUTABLE MODULES 

DMKBSC 
DMKCCH 
DMKCCW 
DMKCFC 
DMKCFM 
DMKCNS 
DMKCVT 
DMKDAS 
DMKDGD 
DMKDMP 
DMKDSP 

DMKACO 
DKKBLD 
DMKCDB 
DMKCDS 
DMKCFD 
DMKCFG 
DMKCFP 
DMKCFS 
DMKCFT 
DMKCKP 
DMKCKS 
DMKCPB 
DMKCPI 
DMKCPV 
DMKCQG 
DMKCQP 
DMKCQR 

DMKFBE 
DMKGBF 
DMKHVC 
DKKHVD 
DKKIOE 
DMKIOS 
DMKLOC 
DMKKCH 
DMKKSW 
DMKOPB 
DMKPAG 

DMKCSO 
DKKCSP 
DMKCST 
DMKCSU 
DMKDEF 
DMKDIA 
DMKDBD 
DMKEIG 
Df!KEf!A 
DMKEMB 
DMKEBM 
DMKGIO 
DMKIOC 
DMKIOF 
DMKIOG 
DMKISK 
DMKLNK 

If the interruption was the result of an 
ADSTOP (SVC code X'B3'), the message ADSTOP 
AT XXXXX is sent to the user's terminal, the 
overlaid instruction is replaced, and the 
virtual machine is placed in console function 
mode (CP mode) via DKKCFKBK. 

• If the interruption was the result of an 
error recording interface (SVC 76), DKKPSA 
checks for valid parameters and passes 
control to DKKVER to convert virtual device 
addresses in the error record to real device 
addresses. The actual recording is 
accomplished in DMKIOE and DMKIOF. If 
recording is not possible, the interrupt is 
reflected back to the virtual machine. 

• If the virtual machine was in EC mode or its 
page 0 was not in real storage, then all 
general and floating-point registers are 
saved, the user's VKBLOK is flagged as being 
in an instruction wait, and control is 
transferred (via GOTO) to DMKPRGRF to reflect 
the interruption to the virtual machine. 

• If the virtual machine was in BC mode and if 
page 0 is in main storage, an aFpropriate SVC 
old PSW is stored in page 0 and the 
interruption is reflected to the virtual 
machine, bypassing unnecessary register 
saving. If the new virtual PSi indicates the 
wait state, all registers are saved in the 
VKBLOK and control transfers to DMKDSPB for 
PSi validation. 

DMKPGT 
DMKPBG" 
DMKPRV 
DMKPSA 
DMKPTR 
DMKQCN 
DMKBGA 
DMKRGB 
DMKRGF 
DMKRNH 
DMKRPA 

DMKLOG 
DKKKCC 
DKKKID 
DKKMON 
DKKKSG 
DKKNEM 
tMKNES 
DMKNET 
tKKNLD 
DMKPGS 
DMKRSE 
DMKSAV 
Df!KSEP 
DMKSEV 
DMKSIX 
DMKSNC 
DMKSPL 

DMKBSP 
DMKSCH 
DMKSCN 
DMKSTK 
DMKTMB 
DMKUNT 
DMKVAT 
DMKVCN 
DMKVIO 
DMKVMA 
DMKVSP 

DKKTAP 
DKKTDK 
Df!KTHI 
DMKTRA 
DKKTBC 
DKKTRM 
DKKUDR 
DKKUSO 
DMKVCA 
DMKVCH 
DMKVDB 
DMKVDR 
DKKVDS 
DMKVER 
DMKVKI 
DMKWRM 

If the machine is in the supervisor state, 
the SVC interruption code is determined and a 
branch is taken to the appropriate SVC 
interruption handler. 

SVC 0 
Impossible condition or terminal error. The 
SVCDIE routine initiates an abnormal termination 
by using the DMKDMPDK routine. 

SVC 4 
Reserved for IBM use. 

SVC 8 
i-link request that transfers control from the 
calling routine to the routine specified by 
register 15~ The SVCLINK routine sets up a new 
save area, and then saves the caller's base 
register in register 12 and save area address in 
register 13, and the return address (from the 
SVCOPSi) in the new save area. If the called 
routine is within the resident CP nucleus, 
SVCLINK places its address in register 12 and 
branches directly to the called routine. If the 
called routine is in a pageable module, a TRANS 
macro is Ferformed for register 12 to ensure 
that the page containing the called routine is 
in storage. Upon return from the TRANS 
execution, the real address of the pageable 
routine is placed in register 12 and SVCLINK 
branches to the called routine. The real 
storage location of DMKCPE is the end of the 
resident CP nucleus. Any modules loaded at a 

56 IBM VK/370: System Logic and Problem Determination Guide 



higher real storage address are defined as 
pageable modules. 

SVC 12 
i-return request that transfers control from the 
called routine to the calling routine) • The 
SVCRET routine is invoked. If the routine that 
issued the SVC 12 is in the pageable module 
DMKPTRUL, then DMKPGSUL is called to unlock the 
page. SVCRET then restores registers 12 and 13 
(address ability and save area address saved by 
SVCLINK), places the user's return address (also 
saved in this area) back into the SVCOPSW, and 
returns control to the calling routine by 
loading the SVCCPSW. 

SVC 16 
Releases current save area from the active chain 
(removes linkage pointers to the calling 
routine). The SVCRLSE routihe releases the 
current save area by placing the address of the 
next higher save area in register 13 and returns 
control to the current routine by loading the 
SVCOPSW. This SVC is used by second level 
interrupt handlers to bypass returning the first 
level handler under specific circumstances. The 
base address field (register 12) in the save 
area being released is examined to determine if 
the bypassed routine is in a pageable module. 
If so, DMKPTRUL is called to unlock the page. 

SVC 20 
obtain a new save area. The SVCGET routine 
places the address of the next available save 
area in register 13 and the address of the 
previous save area in the save area pointer 
field of the current save area. 

There are 35 SAVEAREAs initially set up by 
DMKCPINT for use by the SVC linkage handlers. 
If all the save areas are used, the linkage 
handlers call DMKFREE to obtain additional save 
areas. 

EXTERNAL INTERRUPTIONS 

If DMKPSAEX is entered because of a timer 
interruption, the state of the machine must be 
determined~ If the machine was in wait state, 
control is transferred to DMKDSPCB, and the 
machine stays idle until another interruption 
occu~s. If the machine is in problem state, the 
address of the current user's VMBLOK is obtained 
from RUNUSER. The user's current PSW (VMPSW) is 
updated from the external interruption old PSi, 
the address of the current VMBLOK is placed in 
register 11, and control is transferred to 
DMKDSPCH. For additional information about 
timers, see "Virtual Timer Maintenance." 

If DMKPSAEX is entered because the operator 
pressed the console interrupt button 
(INTERRUPT), the following steps are taken: 

• The current system operator's VMBLOK 
(DMKSYSOP) is referenced. 

• The virtual machine is disconnected. 

The operator can now log on from another 
terminal. pressing the console interrupt button 
activates an alternate operator's console. For 
a description of the processing of the external 
interruption command, refer to module DMKCPB in 
Section 2. 

To reflect external interruptions to a virtual 
machine, an XINTB~oK is queued on a chain 
pointed to Df VMPXINT in the VMBLOK. The 
XINTBLOKs are chained sequentially by the 
XINTSORT field that contains the collating 
number of the pending interruption. If more 
than one interruption has the same collating 
number, the interruption codes are ORed together 
in the XINTCODE field for possible simultaneous 
reflection. 

When a virtual machine is enabled for 
external interruptions, the XINTBLOK queue for 
that machine is searched for an eligible block. 
An XINTBLOK is eligible for reflection if one or 
more bits of the XINTMASK field match the bits 
in the low-order half word of control register O. 
If the interruption was an interruption such as 
CPU timer or clock comparator, the block is left 
chained because reflection does not reset these 
interruptions. If the reflected interruption(s) 
does not represent all those coded in the 
XINTMASK field, the block is left chained and 
only the interruptions that were reflected are 
reset. In all other conditions, the XINTBLOK is 
unchained and returned to free storage. 

PROGRAM INTERRUPTIONS 

When a program interruption occurs, the program 
interrupticn handler (DMKPRG) is entered. 
Program interruptions can result from: 

• Normal paging requests. 

• A paging request by a virtual machine in Ee 
mode (virtual relocate mode). 

• Privileged instructions. 

• Program errors. 

For information paging requests, see "Allocation 
Management" in this section. 

If a program interruption is caused by the 
virtual machine issuing a privileged instruction 
when it is running in supervisor state, DMKPRVLG 
obtains the address of the privileged 
instruction and determines the type of operation 
requested. If the virtual machine was running 
in problem state, the interruption is reflected 
back to the virtual machine. 

Section 1. Introduction 57 



lLQ E~lYl~~Q~£ INSTRUCTIONS DMKPRVLG transfers 
control to the -virtual--i;o executive program 
(DMKVIOEX) • 

!Q~=lLQ E~!Y!1EQE] INSTRUCTIONS DMKPRVLG 
simulates valid non-I/O -prIvIleged-instructions 
and returns control to DMKDSPCH. For invalid 
non-I/O privileged instructions, the routine 
sets an invalid interruption code and reflects 
the interruption to the virtual machine. For 
the privileged instructions (SCK, SCKC, STCKC, 
SPT, and STPT that affect the TOO clock, CPU 
timer, and TeD clock comparator, control is 
transferred to DMKTMR by DMKPRVLG. Other 
instructions that are simulated are LPSW, SSM, 
SSK, 1SK, and DIAGNOSE. 

Although the CS and CDS instructions are 
non-privileged, they are not part of the 
standard instruction set on IBM System/370 
Models 135 and 145. VM/370 simulates these 
instructions on Models 135 and 145 that do not 
have the optional hardware feature installed. 

Code 
0000 

0004 
0008 
OOOC 
0010 
0014 
0018 
001C 

0020 

0024 
0028 
002C 
0030 
0034 
0038 
003C 

004C 

Class iny--
C,E 
G 
G 
G 
G 
G 
F 

G 

G 
G 
C,E,F 
C,E,F 
C,E 
C,E 
A,B,C 

Any 

Function store--- extended-identification 
code. 

Examine data from real storage 
Execute CP console function 
Pseudo-timer facility 
Release virtual storage pages 
Manipulate input spool files 
standard DASD I/O 
Clear I/O and machine chE!ck 
recording 

General virtual I/O without 
interrupts 

Virtual device type information 
Dynamic TIC modification 
Return DASD start of LOGREC area 
Read one page of LOGREC data 
Read system dump spool file 
Read system symbol table 
Dynamically update system user 
directory 

Generate accounting 
virtual user 

cards for 

0050 
System/370 EC mode non-I/O privileged~ 

instruction simulation includes the following: ~ 0054 

A,B,C 

G 

Save 3704/3705 control program 
image 

Enable or disable for external 

fQ!!~ 
SCK 
SCKC 
STCKC 
SPT 
STPT 
STNSM 
STOSM 
STIDP 
STIDC 
LCTL 
STCTL 
LRA 
RRB 
PTLB 
IPK 
SPKA 

Definition -set-Clock 
set Clock Comparator 
store Clock Comparator 
set CPU Timer 
Store CPU Timer 
store And AND System Mask 
Store And OR system Mask 
Store CPU Identification 
Store Channel Identification 
Load Control 
store Control 
Load Real Address 
Reset Reference Bit 
Purge Table Look-aside Buffer 
Insert PSW Key 
Set PSW Key From Address 

The DIAGNOSE co.mand communicates between a 
virtual machine and CPo Correct CP execution of 
DIAGNOSE requires that the operand storage 
addresses passed to CP via the DIAGNOSE 
interface be real addresses to the virtual 
machine using the DIAGNOSE instruction. In 
VM/370, the machine-coded format for the 
DIAGNOSE command is: 

flits 0 7 8 11 12 15 16 31 
f"-------T-~-·-------------------, 

I 83 I rx I ry I code I 
L-~ _______ ~_---L-___ -L ________________ J 

content --83---
rx 
ry 

code 

~!I!!g!H!~!Q!! 
DIAGNOSE operation code 
User-specified register number 
User-specified register number 
Hexadecimal value that selects a 

particular VM/370 control program 
function. The codes and their 
associated functions are: 

~0058 

005C 
0060 

0064 

G 
G 
G 

G 

interruption 
Virtual console interface for 3270 
Error message editing 
Provide virtual machine storage 
size 

Load, find, or purge a named system 

Rules for DIAGNOSE codes: 

1. 

2. 

The DIAGNOSE code must always be a multiple 
of 4. 

Virtual machines issuing DIAGNOSE codes 
should run with interruptions disabled to 
prevent loss of status information 
(condition code, sense, etc.) pertaining to 
the DIAGNOSE operation. 

X'OO' through X'FC' --Reserved for IBM use 
x'100' through X'lFC' --Reserved for users 

£!!Q!Q~~ fQQ~ Q: Allows a virtual machine to 
examine the VM/370 extended-identification code. 
For example, an OS/VSl virtual machine issues a 
DIAGNOSE code 0 instruction to determine if the 
version of V"/370 it is running in supports the 
VM/VS Handshaking feature. If the 
extended-identification code is returned to VS1, 
V"/370 supports handshaking; otherwise, it does 
not. 

rx contains the virtual storage address where 
the VM/370 extended-identification code is 
to be stored. 

ry is the number of bytes to be stored (an 
unsigned binary number). 

If the V"/370 system currently running does not 
support the DIAGNOSE code 0 instruction, no data 
is returned to the virtual machine. If it does 
support the DIAGNOSE code 0 instruction, the 
following data is returned to the virtual 
machine (at the location specified by rx): 

58 IBM V~/370: System Logic and Problem Determination Guide 



r-------- --------------------, 
I Pield Description I Attributes I 

system 
Nalle 

version 
Number 

Version 
Code 

MCEL 

CPU 
Address 

userid 

VM/370 

The first byte is 
the version num­
ber, the second 
is the level, and 
the third is the 
prograll level 
change (PLC) num­
ber. 

VM/370 executes 
the STORE CPU ID 
(STIDP) instruc­
tion to determine 
the version code. 

VM/370 executes 
the STIDP in­
struction to de­
termine the max­
imum length of 
the machine check 
extended logout 
area (MCEL). 

VM/370 executes 
the STORE CPU 
ADDRESS (STAP) 
instruction to 
determine the 
processor ad-
dress. 

The userid of 
the virtual ma­
chine issuing the 
DIAGNOSE. 

8 bytes, 
EBCDIC 

3 bytes, 
hex 

1 byte, 
hex 

2 bytes, 
hex 

2 bytes, 
hex 

8 bytes, 
EBCDIC 

The condition code remains unchanged by the 
DIAGNOSE code 0 instruction. 

~!!2!Q~~ ~Q~~ ~: Examines real storage. 

where: 
ri---contains the virtual address of a list of 

CP (real) addresses. 

ry contains a count of entries in the list. 

ry+l contains the virtual address of the result 
field that holds the values retrieved from 
CP locations. 

DIAGNOSE CODB 8: Allows a virtual machine to 
perform-CP-console functions. 

where: 
ri---contains the address (virtual) of the CP 

console function command and parameters. 

ry contains the length of 
console function input, 
characters. 

the associated 
up to 132 

The following example illustrates the virtual 
console function: 

LA 
LA 
DC 

CPPURC DC 
CPPUNCL BOU 

R6,CPPUBC 
R10,CPPUNCL 
X'83',X'6A',XL2'0008' 

C' QUERY PILBS' 
*-CPPUNC 

The console function output goes to the 
user's terminal, and then execution continues. 
Any valid and authorized console function can be 
executed in this manner. 

A coapletion code is returned to the user as 
a value in the register specified in ry. A 
completion code of 0 signifies normal 
completion. If an error message is issued, the 
completion code is equal to the numeric portion 
of the error message. 

Q!A2!~2j ~Q~l £: Obtains total and virtual CPU 
time. 

where: 
ri---contains the virtual address of a 32-byte 

data area that does not cross a page 
boundary, into which the following data is 
stored: 

Bytes 0 7 8 15 16 23 24 31 
r -----------------------, 
IMM/DD/lYIBB:MM:SSIVirt CPUITotal CPUI 
'-----------_._------------- , 

Virtual and 
microseconds) 
logical value. 

totdl CPU 
is returned 

time 
as a 

used (in 
doublevord 

~!!2!Q~~ ~QQ~ lQ: Releases pages. 

where: 
ri---contains the virtual address of the first 

page to be released. 

ry contains the virtual address of the last 
page to be released. 

Any of the virtual pages in real or auxiliary 
storage are released. 

DIAGNOSE CODE 1~: Performs input spool file 
miiiIpulatioii:--

where: 
ri---contains either a buffer address, a copy 

count, or a spool file identifier, 
depending on the value of the function 
subcode in ry+1. 

ry (cannot be register 15) contains either the 
virtual address of a spool-input card 
reader or, if ry+1 contains x'OPPP', a 
spool file ID number. 

ry+1 contains a hexadecimal 
interpreted by DMKDRDBR as 
the following: 

function code 
a command to do 

Section 1. Introduction 59 



Code 
0000 
0004 
0008 
OOOC 
0010 
0014 
0018 
OFFF 

Function 
Read-next spool buffer (data record) 
Read next print SFBLOK 
Read next punch SFBLOK 
Select a file for processing 
Repeat active file BB times 
Restart active file at beginning 
Backspace one record 
Retrieve successor file descriptor 

!2~g: ry+1 on return, 
codes which further 
condition code of 3. 

may contain error 
define a returned 

The file manipulation 
DMKDRDER. 

is performed by 

~!!~!Q~~ £Q~~ 1~: Performs limited disk I/O. 

rx contains the device address of the disk. 

ry points to a CCW chain to read or write a 
limited number of disk records. 

Each read or write must specify no more than 
2048 bytes (usually 800 is used), and the CCW 
chain is of a standard form, as shown below. 
For a 3330 or 3350 a SET SECTOR command would 
precede each SRCH command. 

Register 15 contains the number of reads or 
writes in the CCW chain (the number is two in 
the following example for a typical CCW string 
(to read or write two BOO-byte records): 

A 
B 

SEEK,A,CC,6 
SRCH,A+2,CC,5 
TIC,*-8,0,0 
RD or WRT,DATA,CC+SILI,800 
SEEK HEAD,B,CC,6 (Omitted if 
SRCH,B+2,CC,5 
TIC,*-8,0,0 
RD or WRT,DATA+800,SILI,800 
SEEK and SRCH arguments for 
SEEK and SRCH arguments for 

HEAD No. 
unchanged) 

first RD/WRT 
second RD/WRT 

The condition codes (cc) and completion codes 
that are returned are as follows: 

cc=O I/O complete with no errors 

cc=l Error condition. Register 15 contains one 
of the following: 
1 Device not attached 
2 Device not 2314, 2319, 3330, 3340, or 

3350 
3 Attempt to write on a read-only disk 
4 Cylinder number is not in the range of 

user's disk 
5 Virtual device is busy or has an 

interrupt pending 

cc=2 Error condition. Register 15 contains one 
of the following: 

5 Pointer to CCW string not doubleword 
aligned. 

6 SEEK/SEARCH arguments are not within 
range of user's storage 

3 READ/WRITE CCW is neither read (06) nor 
wri te (05) 

8 READ/WRITE byte count=O 

9 READ/WRITE byte count greater than 2048 
10 READ/WRITE buffer not within user's 

storage 

cc=3 Uncorrectable I/O error. Register 15 
contains the following: 
13 CSW (8 bytes) returned to user. 

Sense bytes are available if user issues a SENSE 
comlland. 

DIAGNOSE CODE 1C: Calls the DftKIOEFM routine to 
clear-the-j;o error recording data on disk. 

where: 
ri---contains the code value 1, 2, or 3 to clear 

and reformat the I/O ex'ror recording, M/C 
recording, or both. 

ry is ignored. 

~!!Q!Q~~ £Q~~ ~Q: Performs general I/O without 
in terruptions. 

!l!~.I~: 
rx contains a virtual tape or DASD device 

address. 

ry contains the address of 
to be executed. 

the string of CCWs 

The CCW string is processed by DftKCCWTR through 
DftKGIOEX. This provides full virtual 
synchronous I/O to any virtual tape or DASD 
device specified (self-modifying CCW strings are 
not permitted, however). Control returns to the 
virtual machine only after completion of the 
operation or detection of a fatal error 
condition. Condition codes and error codes are 
returned to the virtual system. Unit record 
devices are not supported. 

The condition codes (cc) and completion codes 
that are returned fellow: 

cc=O I/O complete with no errors 

cc=l Exception conditions. Register 
the following: 
1 Device not attached 
5 Virtual device is busy 

interrupt pending 

15 contains 

or has an 

cc=2 Exception conditions. Register 15 

cc=3 

contains one of the following: 
2 Unit exception bit in device status 

byte=l 
3 Wrong length record detected 

Error condition. Register 15 contains 
the following: 
13 A permanent I/O error occurred. The two 

low order positions of the user's R2 
register contain the first two sense 
bytes. 

!Qig: SUPFort is provided for DASD and tape 
devices only. All other devices have a return 
code of 13 and a condition code of 3 in the 
virtual machine's PSi. 

DIAGNOSE CODE ~~: Provides virtual device type 
information:--

60 IBM V6/370: System Logic and Problem Determination Guide 



rx contains a virtual device address, or a 
value of -1 indicating a virtual console 
whose address is not known. 

If rx contained a value of -1 upon entry 
and a virtual console was found, the 
register contains the virtual device 
address in the two low order bytes, upon 
return. 

ry contains virtual device information. 

ry+l contains real device information. If ry is 
register 15, then only virtual device 
information is supplied. 

7 8 15 16 23 24 31 
r I 

ry IVDEVTYPCIVDEVTYPEIVDEVSTATIVDEVPLAGI 
1--- I 

ry+1 IRDEVTYPCIRDEVTYPEIRDEVHDL Isee Notel 
L___ ~ 

!!g!.§!: The low order byte of ry+1 contains 
the current device line length (RDEVLLEN) 
for a virtual console, or the device 
feature code (RDEVPTR) for a device other 
than a virtual console. The condition 
codes (cc) and completion codes that are 
returned follow: 

cc=O Data transfer successful 

cc=2 Real device does not exist 

cc=3 Device address invalid; or device does 
not exist 

Y!!Q!!Q§~ ~~~j 28: Hodifies a real TIC or 
NOP CCV 1n a-channel program when the 
associated virtual TIC or NOP has been 
modified after a START I/O but before a 
channel or device end interruption. 

rx 

ry 

contains the address of the TIC or NOP 
CCV that has been modified. The 
address in rx, the new address in the 
modified TIC CCV, and the addresses in 
the new eeN list pointed to by the 
modified TIC, .ust be "real" with 
respect to the virtual m~chine; they 
must be "second level" virtual storage 
addresses to CPo 

contains the virtual device address in 
bits 16 through 31. (Hust be a 
different register than rx.) 

Vhen DHKHVC has analyzed the DIAGNOSE, the 
real CCV string and appropriate TIC or NOP is 
located by a call to DHKCCWTC. If a virtual TIC 
had been changed to a NOP, a corresponding 
change is made to the real TIC. If a virtual 
TIC had been changed to point to a new list of 
CCVs or a virtual NOP had been changed to a TIC, 
the program translates the new list via a call 
to DHKCCVTR and modifies the existing channel 
program to include the new real CCVs. If an 
error was detected in the DIAGNOSE information, 

or if it was too late to change the real CCV 
list because channel or device end had already 
occurred, a condition code and return code are 
returned to the virtual machine to notify it 
that the real CCN string was not successfully 
modified. The condition codes are as follows: 

Condition 
Code GR15 --0- 0--

1 1 
1 2 

3 

4 

5 

5 

6 

7 

8 

2 9 

J!E!~n~liQ!! 
Successfully modified channel program 
rx and ry registers are the same. 
Device specified by ry register was 
not found. 
Address given to rx register was not 
within user's storage space. 
Address given by rx register was not 
doubleword aligned. 
CCW string corresponding to ry device 
and rx address was not found. 
CCV string corresponding to ry and rx 
address was not found. 
CCN at address specified by rx is not 
a TIC or a NOP, or CCW in channel 
program is not a TIC or a NOP. 
New address in Toe is not within 
user's storage space. 
New address in TOC is not doubleword 
aligned. 
Too late to change the CCW string 
(channel end or device end has 
already occurred) • 

DIAGNOSE CODE ~~: Returns the locatIon o£~he LOGREC area. 
DASD start 

rx 

ry 

on return contains the DASD location, in CP 
format, of the first record of the syste. 
I/O and machine check error recording 
area. 

is ignored. 

DIAGNOSE ~QYj lQ: Reads one page of LOGREC data:---

rx contains the DASD location, in CP for.at, 
of the desired record. 

ry contains the virtual address of a page-size 
buffer to receive the data. 

The page of data is provided to the virtual 
machine via DHKRPAGT. The condition codes are 
as follows: 

cc=O Successful read, data available. 
cc=l End of cylinder, no data. 
cc=2 Invalid cylinder, outside recording area 

DIAGNOSE ~Q~j 1~: Reads the system dump spool £I1;;:---

rx contains the virtual address of a page-size 
buffer to accept the requested data. 

section 1. Introduction 61 



ry (cannot be register 15) 
virtual device address of 
card reader. 

contains the 
a spool-input 

ry+l on return, may contain error codes which 
further define a returned condition code of 
3. 

The system chain of spool input files is 
searched for a dump file belonging to the user 
issuing the DIAGNOSE by DMKDRDMP. The first (or 
next) record from the dump file is provided to 
the virtual machine via DMKRPAGT and the 
condition code is set to zero. The dump file is 
closed by the CLOSE command issued from the 
console. 

DIAGNOSE fQQ] ]~: Reads 
table:--

the system symbol 

rx contains the 
buffer that 
table. 

start address of the page 
is to contain the symbol 

ry is ignored. 

The system symbol table (DMKSYM) is read into 
storage by DMKDRDSY at the location specified by 
rx. 

DIAGNOSE CODE 3C: Dynamically updates the system 
~;e~-~I~e~t~~y-by DMKUDRDS. 

rx 

ry 

contains the first 4 bytes of the volume 
serial label. 

the first 2 bytes of the register specified 
by ry contain the last 2 bytes of the 
volume serial label. 

DIAGNOSE CODE 4C: Generates accounting cards for 
the-virtual-user. This code can be issued only 
by a user with the account option (ACCT) in his 
directory. 

rx contains the virtual address of either a 
24-byte parameter list identifying the 
"charge to" user, or a variable length data 
area that is to be punched into the 
accounting card. The interpretation of the 
address is based on a hexadecimal code 
supplied in rYe If the virtual address 
represents a parameter list, it must be 
doubleword aligned; if it represents a data 
area, the area must not cross a page 
boundary. If rx is interpreted as pointing 
to a parameter list and the value in rx is 
zeros, the accounting card is punched with 
the identification of the user issuing the 
DIAGNOSE. 

ry contains a hexadecimal function 
interpreted by DMKHVC as follows: 

code 

Code ~~~~!~g 
0000 rx points to a parameter list containing 

only a userid. 
0004 rx points to a parameter list containing a 

userid and account number. 

Code ~~~~!~g 
0008 rx points to a parameter list containing a 

userid and distribution number. 
OOOC rx points to a parameter list containing a 

userid, account number, and distribution 
number. 

0010 rx points to a data area containing up to 
70 bytes of user information to be 
transferred to the accounting card 
starting in column nine. 

!Q!~: If ry contains X'0010', ry cannot be 
register 15. 

ry+l contains the length of the data area 
pointed to by rx. If rx points to a 
parameter list (ry not equal to X'0010'), 
ry+l is ignored. 

The following condition codes are returned to 
the user by DMKHVC: 

CC -0 
1 

2 
3 

~~~~!ng 
Successful operation
User does not have account option
privileges
Invalid userid in the parameter list
Invalid function hexadecimal code in ry or
an error occurred in trying to read in the
user machine block (UMACBLOK)

DMKHVC checks the VMACCOUN flag in VMPSTAT to
verify that the user has the account option and
if not, returns control to the user with a
condition code of 1.

If ry contains a code of X'0010', DMKHVC
performs the following checks:

• If the address specified in rx is negative or
greater than the size of the user's virtual
storage, an addressing exception is
generated.

• If the combination of the address in rx and
the length in ry+l indicates that the data
area crosses a page boundary, a specification
exception is generated.

If the value in ry+l is zero, negative or
greater than 70, a specification exception is
generated.

If both the virtual address and the length
are valid, DMKFREE is called to obtain storage
for an account buffer (ACNTBLOK) which is then
initialized to blanks. The userid of the user
issuing the DIAGNOSE is placed in columns 1
through 8 and an accounting card identification
code of "CO" is placed in columns 79 and 80.
The user data pointed to by the address in rx is
moved to the accounting card starting at column
9 for a length equal to the value in ry+l. A
call to DMKACOQU queues the ACNTBLOK for real
output. If a real punch is available, DMKACOPU
is called to punch the card; otherwise, the
buffer is stored in main storage until a punch
is free. DMKHVC then returns control to the
user with a condition code of O.

If ry contains other than X'0010' code,
control is passed to DMKCPV to generate the
card. DMKCPV passes control to DMKACO to
complete the "charge to" information; either
from the user accounting block (ACCTBLOK), if a

62 IBM VM/370: System Logic and Problem Determination Guide

pointer to it exists, or from the user's
VftBLOK. DftKCFV then punches the card and passes
control back to DftKHVC to release the storage
for the ACCTBLOK, if one exists. DftKHYC then
checks the parameter list address for the
following conditions:

• If zero, control is returned to the user with
a condition code of O.

• If invalid,
generated.

an addressing exception is

• If not aligned on a doubleword boundary, a
specification exception is generated.

Por a parameter list address that is nonzero
and valid, the userid in the parameter list is
checked against the directory list and if not
found, control is returned to the user with a
condition code of 2. If the hexadecimal code in
ry is invalid, control is returned to the user
with a condition code of 3. If both userid and
hexadecimal code are valid, the user accounting
block (ACCTBLOK) is built and the userid,
account number, and distribution number are
moved to the block from the parameter list or
the user machine block belonging to the userid
in the parameter list. Control is then passed
to the user with a condition code of O.

~!!2Mg~E £g~~ 2Q: Saves the 3704/3705 control
program image.

When a 3704/3705 control program module has
been created, the CftS-based service routine
(SAVENCP) builds a parameter list (see CCPARft in
SAVENCF data areas) of control information
required by CP to load the module into the
user's virtual storage. It passes this
information to CP by a DIAGNOSE code X'0050'.

rx contains the virtu~l
parameter list (CCPARM)

ry is ignored on entry.

address of the

DIAGNOSE code X'0050' invokes DMKSNC to
validate the parameter specifications and write
the page-format image of the control program to
the appropriate system volume.

ry upon return, contains the following error
codes:

Code ~~E!~n~!i2n
~ii- "ncpname" was not found in system name

table.
171 System volume specified not currently

available.
176 Insufficient space reserved for program

and system control information.
179 System volume specified is not a CP owned

volume.
435 Paging error while writing saved system.

~!!2Mg~E £g~~ 2~: Sets a flag in the VMQSTAT to
reflect an external interruption to the virtual
machine when the PA2 key is pressed on a 3270
keyboard with the APL feature activated.

DIAGNOSE £g~~ 2§: Virtual console interface for 32107---

Execution of DIAGNOSE code 58 allows a
virtual machine to quickly display large amounts
of data on a 3270 in a very rapid fashion. The
interface can display up to 1760 characters on
the screen with one write operation instead of
up to 22 individual writes, if each line was
limited to 80 characters.

rx

ry

contains
string.
CCW is:

the address of the console CCW
The format of the special display

CCW X'19', dataddr, flags, ctl, count

dataddr is the address of the first byte
to be displayed.

flags is the standard CCW flag field.
ctl is a control byte indicating the

starting output display line
(0-22). If the high-order bit is
on, the entire 3270 output display
area is erased before the new data
is displayed. A value of X'PP'
clears the screen, but writes
nothing.

count is the number of bytes to be
displayed (maximum is 1760).

contains the address of the virtual console
device in bits 16-31.

If this ccw is issued to a virtual console
that is not simulated on a real 3270, a virtual
command rej~ct is generated. Otherwise, a
buffer is built in free storage and the data
pointed to by 'dataddr' is loaded into it. Data
chaining may be specified in the CCW to link
noncontiguous data areas; however, command
chaining is an end-of-data indication for the
current buffer.

The starting line specified in 'ctl' is
correlated with the data 'count' to ensure that
the data does not overflow the allowed area.
Any invalid specification will generate a
command reject.

CP then processes the display CCW returning a
condition code of zero if the display was
successful or a nonzero code if an I/O error
occurred.

DIAGNOSE £Q~~ 2£: Edits error messages.
Execution of DIAGNOSE Code 5C edits an error
message according to the user's setting of the
EftSG function.

rx

ry

contains the address of the message to be
edited.

contains the length of the message to be
edited.

section 1. Introduction 63

DMKHVC tests the VMMLEVEL field of the VMBLOK
and returns to the caller with rx and ry
modified as described in Figure 16.

r------------------------------------,
1 VM"LEVEL 1 Registers Upon Return 1
1------------------------------------1
IVMMCODEIVMMTEXTI rx 1 ry 1
1------·_--------------------------------- 1
1 On 1 On 1 No change 1 No change 1
1-------------------------------------- 1
1 On 1 Off 1 No change 1 10 (length 1
1 1 1 1 of code) 1
1----------------------------,------1
1 Off 1 On 1 Pointer to 1 Length of 1
1 1 1 text part 1 text alone 1
1 1 1 of message 1 1
1-----------------------------------1
1 off 1 Off 1 N/A I 0 1 L __________________________________ J

Figure 16.DIAGNOSE X'5C'/VMMLBVEL Field
Analysis

Note that DIAGNOSE code X'SC' does not write
the messagei it merely rearranges the starting
pointer and length. For CMS error messages, a
console write is performed following the
DIAGNOSE, unless ry is returned with a value of
o.

Q!!~!Q§~ £~Q~ ~Q: Returns the virtual machine
storage s~ze to the user. CMS issues this
DIAGNOSE during initialization.

rx contains the virtual storage size.

DIAGNOSE CODE 64: Allows any virtual machine to
dynamIcally-load, purge, or find a named system
in its virtual storage. CMS uses this DIAGNOSE
to support DOS simulation.

rx contains the address of the NAMED
system. The name must occupy eight
bytes, be left justified and padded with
trailing blanks.

ry

ry=OO

ry=04

ry=08

ry=OC

the contents must be a multiple of 4 and
its value cannot be greater than decimal
12.

loads the named system in shared mode
and attach to the user's virtual
storage.

loads the named system in non shared mode
and attach to the user's virtual
storage.

release the nailed system from virtual
storage.

finds the starting address of the named
system.

If the address in the rx register is invalid
an addressing exception occurs. If the code in
the ry register is invalid, a specification
exception occurs.

LOADSYS DIAGNOSE function: Execution of the
LOADSYS DIAGNOsi- functIon-(ry=OO or 04) causes
the contrcl program to locate the name and
location of the named system and builds the
necessary page/swap tables. All virtual storage
pages into which the system is to be loaded are
released prior to loading the named system.
When the LOADSYS DIAGNOSE is invoked, the
virtual machine's storage is expanded
dynamically, if necessary, and is completely
transparent to the virtual machine. Whenever
the LOADSYS function is invoked, an automatic
PURGESYS function occurs prior to building new
page/swap tables. The automatic PURGESYS allows
virtual machines to switch back and forth from
shared systems to nonshared systems.

When the LOADSYS function is executed in
shared mode and the virtual machine has the CP
trace facility active, the following options are
reset if they are active: instruction trace and
branch trace. All other options remain in
effect. If no other tracing options are active,
the user receives the message: TRACE ENDED.

Note: If the LOADSYS function is executed in
~~iied mode, the virtual machine assist feature
is reset.

• Successful Execution

PSW CONDITION CODE = 0
User's rx = address of where the named system

has been loaded.

PSi CONDITION CODE =
User's rx = address of where the named system

has been loaded and also the
starting address of virtual
storage released prior to loading
the named system.

User's ry ending address of virtual storage
released prior to loading the
named system.

Note: A condition code of one in the user's PSW
is-ieflected only when the named system to be
loaded resides within the virtual machine size.

• Unsuccessful Execution

PSW CONDITION COIE = 2
User's rx Return code of 44 if the named

system does not exist.
User's ry Return code of 174 if paging I/O

errors occur ..

£YR~~§l§ DIAGNOSE function: The PURGESYS
function r;I;i~;~-stoii~;--mide addressable to
the virtual machine when the LOADSYS function
was executed. The PURGESYS function releases
page/swap tables associated with the named
system. If the area released occupied a storage
address range greater than the virtual machine
storage size, this area is now made
non addressable to the virtual machine. If the
named system was being operated on in a
nonshared mode, the storage which contained the
named system is cleared to binary zeros. If the
PURGESYS function is executed for a named system
which had not been loaded by the LOADSYS
function, no action takes place and the command

64 IBM VM/370: system Logic and Problem Determination Guide

is treated as a NOP. The PURGESYS function is
invoked dynamically by the control program when
a LOADSYS function is executed. The name of the
purged named system is the same as that
requested via the LOADSYS function.

• Successful Execution

PSi CONDITION CODE = 0

• Unsuccessful Execution

PSi CONDITION CODE = 1
This occurs if the named system was not found
in the user's virtual storage.

PSi CONDITION CODE = 2
User's ry = Return code of 44 if the named

system does not exist or is
inactive.

1!!~~!~ Q!!§!Q~~ !Y~£!~Q~: The PINDSYS function
determines where the named system will be loaded
into storage, without actually loading it.
PINDSYS also determines whether or not the named
system has already been invoked by this virtual
machine. PINDSYS is executed by CMS prior to
issuing the LOADSYS DIAGNOSE instruction. This
ensures that the named system to be loaded does
not overlay any part of th~ CMS nucleus and that
the named system is not already active (loaded)
in the virtual machine. If the named system is
active, no subsequent LOADSYS DIAGNOSE is
issued, therby keeping the current copy of the
named system active. The address of where the
named system resides is returned in the user's
rx register.

• Successful Execution

PSi CONDITION CODE = 0
User's rx address of where the named system

resides in virtual storage.
User's ry ending address of where the named

system resides in virtual
storage.

PSi CONDITION CODE =
User's rx = beginning address of where the

named system is loaded into
virtual storage •.

User's ry ending address of where the named
system is loaded into virtual
storage.

Unsuccessful Execution

PSi CONDITION CODE = 2
User's rx return code of 44 if the named

system does not exist.
User's ry return code of 174 if paging I/O

errors occur.

!Q~~: Condition code 0 indicates that the
named system already resides in main
storage. Condition code 1 indicates that the
named system exists but has not been
previously loaded in virtual storage.

VIRTUAL TIMER MAINTENANCE

The System/370 with EC mode provides the system
user (both real and virtual) with four timing
facilities. They are:

• The interval timer at main storage location
X'SO'

• The time-of-day clock

• The time-of-day clock comparator

• The CPU timer

Before describing how CP maintains these timers
for virtual machines, it is necessary to review
how VM/370 uses the timing facilities of the
real machine.

1. The location X'SO' interval timer is used
only for times1icing. The value placed in
the timer is the maximum length of time
that the dispatched virtual machine is
allowed to execute.

2.

3.

4.

The time-of-day clock is used as a tille
stallp for messages and enables the
scheduler to compute elapsed in-queue
time for the dispatching priority
calculation.

The tille-of-day clock cOllparator facility
is used by CP to schedule timer driven
events for both control program functions
and for virtual machines. A stack of
comparator requests is maintained and as
clock comparator interrupts occur, the
timer request blocks are stacked for the
dispatcher via calls to DMKSTKIO.

The CPU timer
functions:

facility perforlls three

• Accumulates CP overhead

• Detects in-queue time slice end

• Simulates virtual CPU timer

The accumulation of CP overhead is
accomplished as follows. The VKTTIME field
in the VMBLOK contains the total CP
overhead incurred by the virtual machine;
it is initialized to the maximull positive
number in a doub1eword, X'7PPPFFPF
PPPPFPPP'. Whenever CP performs a service
for a virtual lIachine, GR 11 is loaded with
the address of the V"BLOK and the current
value in VKTTIKE is placed in the CPU
timer. When CP is finished with the
service for that virtual machine the CPU
timer, which has been decremented by the
amount of CPU time used, is stored back
into VKTTIKE. GR 11 is then loaded with a
new VKBLOK pointer and the CPU timer is set
froll the new VKTTIKE field. The allount of
CP overhead for a given virtual lIachine at

Section 1. Introduction 65

any point in time is the difference between
the maximum integer and the current value
in the VMTTIMB field.

since VMTTIME only accounts for supervisor
state overhead, detection of in-queue time
slice end is performed by the CPU timer
when the virtual machine is dispatched in
the problem state. The VMTMOUTQ field in
the VMBLOK is initialized to the amount of
problem state time that the virtual machine
is allowed to accumulate before being
dropped from a queue. This initial value
is set by the scheduler (DMKSCH) when the
virtual machine is added to a queue and its
value depends on the queue entered
(interactive or non-interactive) and on the
CPU model. For example, the initial value
of VMTMCUTQ for a user entering Q1
(interactive) on a Model 145 is 300
milliseconds, while for the same user
entering 02 (non-interactiv~ it is 2
seconds. Each time the user is dispatche~,
the value in VMTMOUTQ is entered into the
CPU timer; whenever the user is
interrupted, the decremented CPU timer is
stored into VMTMOUTQ prior to being set
from the new VMTTIMB. When the problem
state time slice has been exhausted; a CPU
timer interrupt occurs, the VMQSBND flag
bit is set in the VMBLOK, and the scheduler
drops the user from the queue. At each
queue drop, the problem time used in-queue
(the difference between VMTMOUTQ and the
initial value) is added to the total
problem time field (VMVTIMB) in the
VMBLOK.

Virtual CPU timer simulation is handled for
EC mode virtual machines if the value in
the virtual CPU timer is less than that in
VMTMOUTQ. In this case, the VMBLOK is
flagged as "tracking CPU timer" and a CPU
timer interrupt is interpreted as a virtual
timer interrupt rather than as an in-queue
time slice end.

virtual location X'50' timers are updated by the
elapsed CPU time each time the dispatcher has
been entered after a running user has been
interrupted. The size of the update is the
difference between the value of the timer at
dispatch (saved in QUANTUM at location X'54')
and the value of the timer at the time of the
interruption (saved in QUANTUMR at location
X '4C') •

virtual clock comparator requests are handled
ty the virtual timer maintenance routine,
DMKTMR. They are inserted into the general
comparator request stack and the virtual machine
is posted when the interruption occurs.

virtual clock comparator requests to set the
virtual CPU timer place the new value into the
ECBLOK. Requests to store the new value update
the ECBLOK field with the virtual CPU time used
since the last entry to dispatch and pass the

value to the user. Requests to
time-of-day clock are ignored.

set the

A real interval timer or CPU timer is one
that runs when the virtual machine is executing
or is in a self-imposed wait state (that is, the
wait bit is on in the virtual PSW). A real
timer does not run if the virtual machine is in
a CP pseudo wait state (for example, page wait
or I/O wait) or if the virtual machine can be
run but is not being dispatched because of other
user interaction. Real timers provide accurate
interrupts to programs that depend on
measurement of elapsed CPU and/or wait time.
They do not accurately measure wall time -- the
TOD clock must be used for this function.

An EC mode virtual machine with the real
timer opticn has both a real interval timer and
a real CPU timer. Real timer requests for
waiting machines are maintained in the clock
comparator stack. CPU timer requests are added
to TOD clock value at the time that they are
issued. Interval timer requests must have their
units converted. In addition, if the virtual
CPU timer contains a large negative value, then
a real timer request is scheduled to occur when
the virtual machine becomes positive, so that
the pending timer interruption can be unflagged.
Comparator requests for real timer interruptions
are inserted into the stack whenever a virtual
machine enters a self-imposed wait. They are
removed either when the virtual machine resumes
execution or when it is forced (or places
itself) into a pseudo wait.

I/O MANAGEMENT

I/O SUPBRVISOR

The module, DMKIOS, handles the I/O requirements
of all system devices except the following
terminals: 1052, 3210, 3215, 2150, 2741, 3270
remote equipment, and compatible teletypewriter
devices. scheduling and interruption handling
for these devices is essentially a synchronous
process and does not require the queuing and
restart services of DMKIOS. This is handled by
the module DMKCNS. For handling the I/O
requirements of 3270 remote equipment, refer to
"Programming for 3270 Remote Terminals an
Introduction" in this section.

REAL I/O CONTROL BLOCKS

To schedule I/O requests and control the
activity of the I/O devices of the system, I/O
control uses several types of control blocks.
These blocks are separated into two basic
types.

• Static blocks that describe the components of
the I/O system.

• The dynamic blocks that represent active and
pending requests for I/O operations.

The I/O devices of the real system are
described by one control block for each channel,

66 IBM VM/370: system Logic and Problem Determination Guide

control unit, and device available to the
control program. Units present but not
represented by control blocks are not available
for either user-initiated or cP-initiated
operations.

Because all virtual machines are run in the
problem state, any atte.pt to issue a SIO
instruction results in a program interruption
that indicates a privileged operation exception.
This interruption is handled by CP's first level
program interrupt handler, DMKPRGIN. It
determines if the virtual machine was in virtual
supervisor state (problem state bit in the
virtual PSW is zero). If so, the instruction
causing the interruption is saved in the VMBLOK
for the virtual machine and control is
transferred to the privileged instruction
simulator, DMKPRVLG, via a GOTO.

DMKPRVLG determines if the privileged
operation affects the virtual I/O configuration.
DMKPRVLG simulates non-I/O privileged
instructions (such as LPSW) • If the
instruction's operation code is from x'9C to
X'9F', control is transferred to DMKVIOEX.

After clearing the condition code in the
user's VMBLOK, DMKSCNVU is then called to
locate the virtual I/O blocks representing the
I/O components (channel, control unit and
device) addressed by the instruction. DMKVIOEX
then branches to handle the request based on the
operation requested.

VIRTUAL I/O REQUESTS

The virtual I/O interface maintained by CP
provides to the software operating in the user's
virtual machine, the condition codes, CSW status
information, and interruptions necessary to make
it appear to the user's virtual machine that it
is in fact running on a real System/370. The
virtual I/O interface consists of:

• A virtual I/O configuration for each active
virtual machine that consists of a set of I/O
control blocks that are maintained in the
control Program's free storage. This
configuration is built at logon time from
information contained in the user's directory
file, and can be changed by the user or the
system operator.

• A set of routines that maintain the status of
the virtual I/O configuration.

• Other system routines that simulate or
translate the channel programs provided by
the user to initiate I/O on units in the real
system's configuration.

With a SIO, the condition code returned from
DMKSCNVU is tested to verify that all addressed
components were located. If they were not, then
a condition code of 3 (unit not available) is
placed in the PSW and control returns to the
dispatcher. Otherwise, the addresses of the

appropriate virtual I/O control blocks are
saved, and DMKVIOEX tests the status of the
addressed I/O units by scanning the VCBBLOKs,
VCUBLOKS, and VDEVBLOKs to locate the block that
contains the status of the addressed subchannel.
The subchannel status is indicated in:

• The VCHBLOK for a
multiplexer channel.

selector or block

• The VCUBLOK for a shared selector subchannel
on a byte multiplexer channel.

• The VDEVBLOK for a nonshared subchannel on a
byte multiplexer channel.

When the block containing the status is
found, the status is tested. If the subchannel
is busy or has an interruption pending,
condition code 2 is placed in the virtual PSW.
Otherwise, the subchannel is available and the
device and the control unit are tested for
interruption pending or busy. If either is
found, condition code 1 is placed in the virtual
PSW and the proper CSW status is stored in the
virtual machine's page zero. If all components
in the subchannel path are free, DMKVIOEX
proceeds to simulate the SIO by locating and
loading the contents of the virtual machine's
CAW from virtual location x'48' and testing the
device type of the unit addressed.

The device type is in the VDEVBLOK. If the
device class code indicates a terminal or
console, control is passed to the module
DMKVCNEX with a GOTO. DMKVCNEX interprets and
simulates the entire channel program, moving the
necessary data to or fro. virtual storage and
reflecting the proper interruptions and status
bytes. When DMKVCNEX has finished, it passes
control directly to the dispatcher, DMKDSPCB.

If the referenced device is a spooled unit
record device, DMKVIOEX passes control to
DMKFSPEX for additional processing. When
control returns to DMKVIOEI, it passes control
to DMKDSPCH.

If the device is not a terminal or a spooling
device, the SIO is translated and executed
directly cn the real system's I/O device.
DMKVIOEX calls DMKFREE to obtain free storage
and then it constructs an IOBLOK in the storage
obtained. The IOBLOK serves as an identifier of
the I/O task to be performed. It contains a
pointer to the channel program to be executed
and the address of the routine that is to handle
any interruptions associated with the
operation.

DMKVIOEX stores the contents of the user's
CAW in IOECAW and sets the interruption return
address (IOBIRA) to be the same as the virtual
interruption return address (DMKVIOIN) in
DMKVIO. The CCW translation routine (DMKCCWTR)
is then called to locate and bring into real
main storage all user pages associated with the
channel program, including those containing data
and CCWs. The following occurs:

• The CCWs are translated.

• A corresponding real
constructed.

channel program is

Section 1. Introduction 67

• The data pages are locked into real storage.

• DMKCCWTR returns
DMKVIOEX places the
state, IOWAIT, and
scheduler DMKIOSQV to
real configuration.

control to DMKVIOEX •
user in a pseudo wait
calls the real I/O

schedule the I/O on the

DMKIOSQV queues the request for operation on
the real channel, control unit, and device
corresponding to the address used by the virtual
machine. When the real SID is issued, DMKIOS
takes the user out of IOWAIT and reflects the
condition code for the SID if it is zero. If it
is not zero, the operation is further analyzed
by DMKVIOIN. In any case, DMKIOSQV returns
control to DMKVIOEX, which passes control to
DMKDSPCH.

Other privileged I/O instructions are handled
directly by DMKVIOEX. DMKVIOEX scans the
virtual channel, control unit, and device blocks
in the same manner as for a SID and reflects the
proper status and condition to the virtual
machine. In some cases (TIO), the status of the
addressed devices is altered after the status is
presented.

If the operation active on the virtual device
is actually in progress in the real equipment,
the simulation of a HID or HDV is somewhat more
involved, since it requires the actual execution
of the instruction. In this case, the active
operation is halted and the resultant condition
code/status is returned to the user.

The virtual channel-to-channel adapter (CTCA)
simulates data transfer and control
communication between two selector channels,
either on two distinct processors or two
channels on a single processor. Data transfer
is accomplished via synchronized complementary
I/O commands (for example, read/write,
write/read) issued to both parts of the CTCA.
Each part of the CTCA is identical and the
operation of the unit is completely symmetrical.
The CTCA occupies an entire control unit slot on
each of the two channels attached. The
low-order four bits of the unit address (device
address) are ignored completely and are not
available for use.

The VM/370 control program support for
virtual CTCA includes all status, sense data,
and interruption logic necessary to simulate the
operation of the real CTCA. Data transfer,
command byte exchange, sense data, and status
data presentation for the virtual CTCA is
accomplished via storage-to-storage operations
(MVCL, etc.). No real I/O operations (excluding
paging I/O) nor I/O interruptions are involved.
Unit errors or control errors cannot occur.

The CCW translator, DMKCCWTR, is called by the
virtual machine I/O executive program (DMKVIOEX)
when an I/O task block has been created and a
list of virtual CCis associated with a user's
SID request must be translated into real CCWs.

When the I/O operation from a self-modifying
channel program is completed, DMKUNTIS is called
by DMKIOS. When retranslation of OS ISAM CCWs
is required, the self-modifying channel program
checking portion of DMKCCWTR calls DMKISMTB.

DMKCCWTR operates in two phases:

• A scan and a translate phase.
• A TIC-scan phase.

A self-modifying channel program checking
function is also included.

The scan and translate phase analyzes the
virtual CCW list. Some channel commands require
additional doublewords for control information
(for example, seek addresses). Additional
control words are also allocated (in pairs) if
the data area specified by a virtual CCW crosses
4096-byte page boundaries, or if the virtual CCW
includes an IDA (indirect data address) flag.

Space is obtained from DMKFREE for the real
CCW list, and the translation phase then
translates the virtual CCW list into a real CCW
list. TIC commands that cannot be immediately
translated are flagged for later processing by
the TIC-scan phase. A READ or WRITE command
that specifies that data cross 4096-byte
boundaries is revised to include an IDA flag
that points to an indirect data address list
(IDAL) and a pair of words for each 4096-byte
page, in which each word handles a data transfer
of 2048 bytes (or less). The real CCW is flagged
as having a CP-generated IDA. DMKPTRAN is
called (via the TRANS macro) to lock each
4096-byte page.

If the real CCW string does not fit in the
allocated free storage block, a new block is
obtained. The old block is transferred and
adjusted before being released. The translation
continues with the new block. The process is
repeated, as needed, to contain the real CCW
string.

Virtual CCWs having an IDA flag set are
converted to user translated addresses for each
IDAW ~ndirect data address wor~ in the virtual
lOlL. OMKPTR1N is called for each IDAW is. The
CCW is flagged as having a user (but not CP)
generated lOA.

The TIC-scan phase scans the real CCW list
for flagged (untranslated) TIC commands and
creates a new virtual CCW list for the
untranslated commands. Scan-translate phase
processing is then repeated. When all virtual
CCWs are translated, the virtual CAW in the
IOBLOK task block is replaced by the real CAW
(that is, a pointer to the real CCW list created
by DMKCCWTR), and DMKCCWTR returns control to
OMKVIOEX. The user protection key is saved.

68 IBM VM/370: System Logic and Problem Determination Guide

Because many of the OS PCP, MFT, and MVT ISAM
channel p~ograms are self-modifying, special
handling ~s required by the V6/370 control
program to allow virtual machines to use this
access method. The particular CCvs that require
special handling have the following general
format:

o 2 6 8

r--------------------------------------,
A 1 READ DATA C+7 10 bytes 1

1 1-----1------1----------1
B 1 TIC to E 1

1------1-----1------1-------1
C 1 1 1 1 1

1----1-----1----1-----------1
D 1 1 1 1 1

1----1---1------1------1
E 1 SEEK: SEEK head on D 1

1----1---1-------1------1
F 1 SEARCH on D+2 1 L _______________________________ ~

The CCV at A reads 10 bytes of data. ~he
tenth byte forms the command code of the CCV at
E. In addition, the data read in makes up the
seek and search arguments for the CCvs at E and
F. After the CCV string is translated by the
VM/370 control program, it usually is in the
following format:

o 2 6 8

r ------------,
1 READDATA C+7 10 bytes 1
1----1-----1 1----1

2 1 TIC to 3 1
1 1

3 1 SEEK: SEEK head on 6 1
1----1----1---1 1

4 1 SEARCH on D+2 1
1----1----1-----1 1

5 1 1 etc. 1 1
1----1----1 1----1

6 1 IllS AM word 1
L

To accomplish an efficient and non-timing
dependent translated operation for OS ISAM, the
virtual CCV string is modified in the following
manner.

DMKISMTR is called by DMKCCVTR if, during
normal translation, a CCV of the type at 1 is
encountered. The scan program locates the TIC
at 2 by searching the translated CCV strings.
The TIC at 2 locates the SEEK at 3.

The virtual address of the virtual SEEK CCV
at E is located fro. the RCWTASK header. Seven
doublewords of free storage are obtained and the
address of the block is saved in the IS1M
control word at 5. The seven doublewords are
used to save the following infor.ation from the
translated CCV strings:

r---------~---.-~--------~~-~

7 1 Address of Read 1 Address of TIC 1
1 at 1 1 at 2 1
1 -1-------------1

8 1 Unused 1 Unused 1
I-~-------~-I 1

9 1 Data area for READ at 1 1
I-------------~----I

10 1 SEEK HEAD on 9 1
1---------------------------1

11 1 TIC to 4 1
I-------------------~---I

12 1 Image of REID CCV at 1 1
1----------------------1

13 1 Image of TIC CCV at 2 1 L-_______________ ~ ____ ~~_______ ,

The translated read CCV (at 1) is moved to
the save block at 12. The TIC CCW (at 2) is
moved to the save block at 13, and the addresses
of 1 and 2 are saved at 7. The read CCV at 1 is
modified to point to a 10-byte data area at 8+7
in the save block. The seek head CCV at 3 is
copied into the save block at 10, and the seek
address is modified to point to the data area at
9. At 11, a TIC CCi is built to rejoin the
translated CCV string at 4. The search at 4 (or
any subseguent search referencing D+2) is
modified to point to 9+2. The completed CCV
string has the following format:

r- ------------.---,
1 Readdata 8+7 10 Bytes 1
1 ~---I

2 1 TIC to 10 1
I------~-------·------~--I

3 1 Unused 1
1- -----1

4 1 Search on 9 + 2 1
1 ----------------1

5 1 Etc. 1
1 -I

6 1 1 IS1M word 1
1 ------~-----·--~·---I

7 1 1
1----1 1---1 1

6 1 1 Unused 1 1
1----1---1---1 1

9 1 Data Area for Readdata 1
1 ------------. -,----1

10 1 Seek Head on 9 1
1 1

11 1 TIC to 4 1
L ~

The interruption return address in the IOBLOK
is set to DMKUNTIS. DMKURTIS restores the CCVs
to their original for.at fro. the seven
doubleword extensions, moves the 10 bytes of
data from 8+7 into virtual storage (at C+7), and
releases the block. lor.al IIO handling is
resumed by DMKVIO and DMKURT.

IIO COMPONENT STATES

The I/O components represented by the control
blocks described in "Real I/O Control Blocks"
are in one of four states and the state is
indicated by the flag bits in the block status

Section 1. Introduction 69

byte. If the component is not disabled, it is
either busy, scheduled, or available.

If the disabled bit is on, the component has
been taken offline by the operator or the system
and is at least temForarily unavailable. A
request to use a disabled component causes the
IOBLOK to be stacked with an indication of
condition code 3 on the SIO and the real SIO is
not performed.

An I/O unit is busy if it is transferring
data (in the case of a channel or control unit),
or if it is in physical motion (in the case of a
device). If an I/O unit is busy, the IOBLOK for
the request is queued from the control block
representing that I/O unit.

An I/O unit is scheduled if it is not busy
but will become busy after a higher level
component in the subchannel path becomes
available and an operation is started. For
example, if a request is made to read from a
tape drive and the drive and control unit are
available, but the channel is bUSY, the IOBLOK
for that request is queued from the RCHBLOK for
the busy channel and the RCUBLOK and RDEVBLOK of
the drive and control unit are marked as
scheduled. FutUre requests to that drive are
queued from the RDEVBLOK for the scheduled
device. When the channel completes the
operation, the next pending operation is
dequeued and startedi the scheduled control unit
and device are then marked as busy.

The IOBLOKs for various I/O requests indicate
the status of that request by a combination of
the status bits in the IOBLOK and the queue in
which the block resides. In general, an IOBLOK
is queued from the control block of the highest
level I/O unit (taken from device up to channel)
in the subchannel path that is not available.
Once the I/O operation is started, the IOBLOK is
chained from the active IOBLOK pointer
(RDEVAIOB) in the real device control block.
Flags in the IOBLOK status fields may also
indicate that a unit check has occurred, that a
sense is in progress, or that a fatal I/O error
(unrecoverable) has been recognized by error
recovery procedures. After I/O control releases
control of the IOBLOK, it is stacked on the
queue of IOBLOKS and CPEXBLOKs anchored at
DMKDSPRQ in the dispatcher and control is passed
to the second level interruption handler whose
address is stored in IOBIRA.

I/O INTERRUPTIONS

I/O interruptions are either synchronous or
asynchronous. Asynchronous interruptions
indicate the change in status of an I/O unit
from the not ready to ready state or busy to not
busy state. In either case, if the affected
component has any pending requests queued from
its control block, they are restarted and
whether or not the given interrupt is processed
any further depends upon the status of the
interrupting component. Channel available and
control unit end type interruptions restart the
interrupting component. An asynchronous device
end is passed to the user if the device is
dedicatedi otherwise, the device is restarted.

An interruption is considered to be
synchronous if the interrupting device has a
nonzero pointer to an active IOBLOK. In this
case, the following processing occurs:

• If a unit check has occurred, a sense is
scheduled, and when the sense is completed,
the appropriate ERP is called.

• If an ERP is currently in control of the task
(indicated by a flag in the IOBLOK), return
the IOBLOK to the appropriate ERP.

• If the operation is incomplete (for example,
channel end is received without device end),
the IOBLOK is copied and the copy is stacked
but the original IOBLOK remains attached to
RDEVAIOB to receive the final interrupti
then, the control unit and the channel is
restarted.

• If the operation is complete (that is, the
device is available), the IOBLOK is detached
from the device and stacked, and the device,
control unit and channel are restarted.

The restart operation usually dequeues the
next IOBLOK that is queued to the restarted
component and queues it to the next higher
component in the subchannel path. When the
channel level is reached, a SIO is issued and
exit is taken to the dispatcher after handling
any non zero condition codes as previously
described.

VIRTUAL I/O INTERRUPTIONS

When an I/O interruption is received, the IOBLOK
is stacked for dispatching and control is passed
to the address specified in the IOBIRA
(interrupt return address) field. For
operations requested by DMKVIOEX, the return
address is DMKVIOIN (virtual interrupt return
address). When DMKVIOIN receives control from
the dispatcher, it loads the virtual address of
the unit with which the interruption is
associated from the IOBLOK and calls DMKSCNVU to
locate the virtual device control blocks.
DMKVIOIN then tests the IOBLOK status field to
determine the cause for the interruption. If
the block has been unstacked because of an
interruption, the field is zero. If the
operation was not started, it contains the
condition code from the real SIO.

Note: The VIRA should not see a real condition
code 2 as the result of a SIO, since channel
busy conditions are detected and reflected
before any real I/O operati.on is attempted.

A condition code of 3 is reflected virtual
machine and exit is taken to the to the
dispatcher. For a condition code of 1, the CSW
status field in the IOBLOK is examined to
determine the cause for the CSW stored
condition. The status is reflected to the
virtual machine and various components of the

70 IBM V6/370: system Logic and Problem Deter.ination Guide

virtual configuration may be freed, if the
status so indicates. For example, if the CSW
status indicated both channel end and device
end, the operation was immediate and has
completed. Thus, the CCW string (real) may be
released and all virtual components marked
available.

The CSW status returned for a virtual
interruption must be tested in the same manner,
with the additional requirement that the status
be saved in the affected virtual I/O control
blocks and that the CSW be saved in the VDEVCSW
field for the device causing the interruption.
If the unit check bit is on in the status field,
the sense information saved in the associated
IOERBLOR (pointed to by the IOBLOR) must be
retained so that a sense initiated by the
virtual machine receives the proper
inforllation.

In any case, when an interruption is received
for a virtual device, a bit in the interruption
mask, VCUDVIIT, for the device's control unit is
set to 1. The bit that is set is the one
corresponding to the relative address of the
interrupting device on the control unit. Por
example, if device 235 interrupts, the fifth bit
in the VCUDVINT lIask in the VCUBLOK for control
unit 30 on channel 2 is flagged. Similarly, the
bit in the VCUCUINT in the affected VCUBLOK is
also set; in this case, bit 3 in VCHBLOK for
channel 2. If the interruption is a channel
class interrupt (PCI or CE), the address of the
interrupting unit (235) is stored in the
VCHCEDEV field in the VCHBLOK. The final
interruption flag is set in the VMPEND field in
the VMBLOK for the interrupted virtual machine;
the bit set corresponds to the address of the
interrupting channel. The next time, the
virtual machine is dispatched and becomes
enabled for I/O.

SCHEDULING I/O REQUESTS

A task that requests an I/O operation lIust
specify the device on which the operation is to
take place and must provide an IOBLOR that
describes the operation. Upon entry to DMKIOS,
Register 10 must point to the IOBLOR. The
IOBLOK must contain at least a pointer to the
channel program to be started in IOBCAW and the
address to which the dispatcher is to pass
control in IOBIRA. In addition, the flags and
status fields should be set to zero. If the
operation is a VM/370 control program function
such as for spooling or paging, the entry point
DMKIOSQR is called. If the requestor is the
virtual I/O executive (DMRVIOEX) attempting to
start a virtual machine operation, the entry
point DMRIOSQV is called and some additional
housekeeping is done. In either case, an
attempt is made to find an available subchannel
path from the device to its control unit and
channel. If an I/O unit in the path is busy or
scheduled, the IOBLOK for the request is queued
to the control block of the I/O unit.

Requests are
first-in-first-out
requests:

usually
(FIFO) , except

queued
those

• To 1I0veble head DASD devices that are queued
in order of seek address.

• That release the affected component after
initiation (SEEKS and other control commands)
which are queued last-in-first-out (LIFO)
from the control block.

Regardless of whether or not the operation
has been successfully started, the caller
requesting the I/O operation receives control
froll DMKIOS. If a free path to the device is
found, the unit address is constructed and an
SIO is issued. If the resulting condition code
is zero, control is returned to the caller;
otherw·ise, the code is stored in the requestor's
IOBLOK along with any pertinent CSW status, the
IOBLOR is stacked, any components that become
available are restarted, and control is returned
to the caller.

Q~g~~~g ~~~! 2Y~YiBg: Requests to start I/O on
system devices are normally handled PIFO.
However, requests to moveable head DASD devices
are queued on the device in ascending order by
seek address. This ordered seek queuing is
perforlled to minimize intercylinder seek times
and to improve the overall throughput of the I/O
system.

CP assumes that very few virtual machines
perform chained SEEKs. Therefore, the first
logical address represents the position of the
arm upon completion of the I/O operation.
Ordered SEEK queuing is based on the relocated
real cylinder. DMKIOS uses the cylinder
location supplied in IOBCYL for ordered SEEK
queuing. This field is initialized by the
calling CP routine for paging and spooling or by
the CCW translator for virtual I/O. The CCW
translator, DMKCCW, supplies the IOBCYL value in
the following manner:

• Reads the IPL record, relocates to virtual
cylinder 0

• Recalibrates, issues a real calibrate and
then SEEKs to virtual cylinder 0

• Cha~nel SEEKs, relocates
cylinder

to the virtual

The IOBLOK queuing subroutine of DMKIOS
recognizes that a request is being queued on a
1I0veable head DASD device by means of the device
class and type fields of RDEVBLOK. Instead of
adding the IOBLOK to the end of the queue on the
RDEVBLOK, the queuing routine sorts the block
into the queue based on the cylinder number for
the request. The cylinder number for any
request to a DASD device is recorded in the
field IOBCYL. The queue of IOBLOKs on a real
device block is sorted in ascending order by
seek address, unless the entire device is
dedicated to a given user. In this cas~, DMKIOS
does not automatically schedule the device, and
no more than one request can be outstanding at
anyone time.

When an outstanding I/O request for a device
has completed, DMKIOS attempts to restart the
device by dequeuing and starting the next IOBLOK
queued on the device. For non-DASD devices,
this is the first IOBLOK queued. However, for
moveable headDASD devices, the queued requests

section 1. Introduction 11

are dequeued in either ascending or descending
order, depending on the current position
(recorded in BDEVCYL) and the direction of
motion of the arm. If the arm is seeking up
(that is, toward the higher cylinder numbers),
the queue of IOBLOKs is scanned from the first
block toward the last until an IOBLOK is found
with an IOBCYL value equal to or greater than
the value in BDEVCYL, or until the end of the
queue is reached. At this point, the device is
flagged as seeking down and the queue is scanned
from last to first until an IOBLOK with an
IOBCYL value equal to or less than RDEVCYL is
found. When IOBLOK is found, it is dequeued and
started. The direction of motion is indicated
by an RDEVFLAG bit and the next request is
dequeued in the down direction until the head of
th~ queue is reached.

Because the queue itself is a two-way chained
list, no special handling for null or unity set
lists is required, and the ordered seek
algorithm returns to FIFO queuing.

]~~!£~!~~ £~~nn~! ~Y~~2!!: One of the facilities
of the VM/370 control program allows a virtual
machine to control one or more channels on a
dedicated basis. The channels are attached to
the virtual machine by using the privileged
ATTACH CHANNEL co.mand. A virtual machine can
have one or more dedicated channels. In
addition, channels can be split between virtual
machines but a dedicated channel cannot be
shared between two virtual machines. For
instance, channel 1 could be dedicated to
virtual machine A, and channel 2 could be
dedicated to virtual machine B, or they could be
both dedicated to virtual machine A or B.

with a dedicated channel, all virtual machine
device addresses must be identical to the real
machine device addresses. For instance, virtual
device 130 must be real device 130, and virtual
device 132 must be real device 132. With
dedicated channels, CP does not perform any
virtual device address mapping.

CP error recording and channel recovery
procedures are still in effect for dedicated
channels. The dedicated channel support can be
used in conjunction with the virtual=real
feature for any virtual machine that is
occupying the virtual=real storage space.

VIRTUAL CONSOLE SIMULATION

DMKVCN receives control from the virtual machine
I/O executive, DMKVIO. When control is received,
the device is available with no interruptions
pending. A console control block, VCONCTL, that
is obtained from storage and chained from the
virtual device control block, VDEVBLOCK, by
DMKLOG is accessed for use during the
interpretation of the virtual console I/O
sequence. The user's CAW is examined for
validity. If it is valid, the TRANS macro is
issued to fetch the first user CCW. This ccw is
moved to the VCCNCTL block for analysis.

The CCW is analyzed to determine if it is a
read, a write, a control, a sense, a TIC, or an
invalid operation. Based upon the analysis, the

appropriate processing routine in DMKVCN is
invoked.

!!!!!! ~!!~g Simulation ~2!!:tin.!§!: Obtains a buffer
for input ~;~;-ii~i- free storage. The location
of the buffer is set in the VCONCTL block. The
DMKQCNRD routine is called to schedule and
perform an actual read to the corresponding real
device representing the user's virtual console.
If SET LINEDIT ON is specified, the buffer data
is edited and translated to EBCDIC. When the
read is completed, the data is moved to the
specified user address obtained from the address
portion of the virtual CCW. If command chaining
is specified, processing returns to fetch and
analyze the next CCW. If command chaining is
not specified, the virtual CSW is constructed in
the VDEVBLOK and an interrupt is flagged as
pending in the VMBLOK.

The Write Simulation Routine: Obtains a buffer
f~i the-constiuctI~n-of--the-output message from
free storage. The virtual machine data is
located from the virtual CCW address in the
VCONCTL block and moved to the data buffer. The
DMKQCNWT routine is called to write the data in
the buffer and provide the necessary length,
translation, and format functions. Control is
received at the DMKVCN module upon completion of
the writing. At this point, the virtual CCW is
re-examined. If command chaining is specified,
processing continues to fetch and analyze the
next CCW. If command chaining is not specified,
the virtual CSW is constructed in the VDEVBLOK
and an interruption is flagged as pending in the
VMBLOK.

The Control Simulation Routine: Is used for the
NOP -an~--iLiR"--OperatI~ns:·-- A NOP operation
requires no data transfer or I/O operation. An
ALARM operation has no equivalent on low speed
teleprocessing equipmenti thus, a message
indicating the ALARM operation is constructed.
DMKQCNWT is called to output the constructed
message. If the command is chained, processing
continues (for NOP or ALARM) to fetch the next
CCW and analyze it. If command chaining is not
specified and this is not the first CCR, a
virtual CSW is constructed in the VDEVBLOK and
an interruption is flagged as pending in the
VMBLOK. If this is the first (and only) CCW,
then a condition code of 1 is presented with
channel end and device end in the virtual CSW.

! 1!!!Y~! ~!!n§~ QE~!~:ti2n: Is similar to a
control operation, because no actual I/O
operation is performed. However, there is data
transfer. The sense data from the VDEVBLOK is
moved to the virtual storage location specified
in the virtual CCW address. If the command is
chained, processing continues to fetch the next
CCW and analyze it. otherwise, an interruption
is flagged as pending in the VMBLOK.

! !i!!Y~! !!£ Q~!!~~!!~n: Fetches the virtual CCW
addressed by the TIC address and analyzes the
fetched CCW. If the fetched CCW is itself a
TIC, or if the TIC is the first CCR, a channel
program check condition is reflected to the
virtual machine as an interruption or as a CSW
stored condition, respectively.

72 IBM VM/370: system Logic and Problem Determination Guide

J~Y~!~~ Q£~~~!~2~: Any other operation is
considered invalid. Command reject status is
posted in the virtual sense byte and the
operation is terminated with unit check status
presented in the virtual CSW.

REMOTE 3270 PROGRAMMING

For a basic understanding of CP processing of
data relating to 3270 devices on binary
synchronous lines, the information and
terminology contained in J]~ ~~lQ In!Q~!s!i2~
Q!2£!~I 212!~! f2!£2n~n! Q~2£!i£!!Q~, GA27-2749,
and ~~~~~a! !~!Q~m~!!Qn -]i~s~I 2Y~£h!Qn2~2
~Qmm~n!£a!!Qn2' GA27-3004, is required.

A digest of some of this essential
information as it applies to VM/370 follows:

• Text messages to and from remote
and printers can only be achieved
bisync line is in text mode.

terminals
when the

• Text messages from a remote device can be the
result of a general poll or specific poll
operation to the related device or devices on
the bisync line. This polling communication
interface is accomplished by each
line-connected control unit having unique
specific poll and general poll recognition
circuitry and by the CP terminal list of
valid bisync lines and 3270 remote control
unit addresses. This list, the terminal
list, is generated by VM/370 system
generation procedures employing TERMINAL and
CLUSTER macros. For more details about
terminal list generation, see the !~L1IQ:
R!a~n!ng sng 212!~m g~n~~~!!Q~ ~~!g~.

• Reliability and dependability of line
operation is achieved by the use of: a double
addressing scheme, control characters with a
rigid message protocol, and complex
redundancy check characters appended to
transmission messages. Examples of these
techniques are shown in the formats that
follow.

• Every message (text or control) that is
issued by CP mayor may not be responded to
by the remote station or control unit. The
type of response (or absence of response)
that CP receives depends on the receptiveness
of that device or control unit to the
previously sent message (is the device ready
and enabled and accurately addressed) and the
content and correctness of the message (no
line errors).

• To establish the relationship of the line of
terminal response to a particular line or
device write or read operation, CP employs an
operation "tracking" facility (TP op code)
imbedded in the issued CCws. The function
performed by the CP op code is described in
the following CCW formats.

r----------------"---------'--·----,
IOperationl Address IF1ags ITP Op 1 Count 1
1 Code I Field 1 1 Code 1 1
1 1 byte 1 3 bytes 11 by tel 1 bytel2 bytesl L-_________ _ ___________________ ----J

o 7 8 31 32 39 40 47 48 63

Operation Code
contains the hexadecimal value of the
type of operation performed by the
command.

Valid operation codes are:

X'Ol' WRITE
X'02' READ
X'03' NO-OP
X'09' POLL
X'23' SET MODE
X'27' ENABLE
X' 2F' DISABLE

Address Field

Area

Table

Depending on CCW usage, this field may
address an:

The address of the data area (read
buffer) located in the BSCBLOK at
BSCREAD.

The appropriate location in the table
of data-link control characters
provided in the module DMKGRF
(Example: RVI, EOT, ENQ).

Response

List

(BSCRESP). The address location of
the response message in the BSCBLOK.

The appropriate entry in terminal list
(NICBLOKS) associated with the READ or

WRITE operation. The entry for WRITE
operation is at location BSCSBL. The
entry for the READ operation is at
location BSCPOLL.

Note: To see how the key words AREA, TABLE,
RESPONSB, and LIST are used, refer to the CCW
sequences described in "I/O Program Routines for
Bisync Lines and 3270 Remote Devices" in this
section.

Flags
The flag bits turned on in the CCW: CC
(channel commands). CD (chained data),
SILl (suppress incorrect length
indicatio~ , skip (suppress data
transfer to main storage) and PCI
(program controlled interrupt).

TP Op Code
An imbedded teleprocessing operation
code in the CCws used in bisync line
communications. This code is
inspected by the secondary
interruption handler, DMKRGFIN, when

section 1. Introduction 73

count

channel end and device end are
received. The code is also used by
the error processing module, DMKBSC.
The code indicates the function being
performed by the associated command.
For use of the TP op codes, refer to
the formatted CCWs that follow.

Refers to the byte length of the CCW
READ or WRITE operation.

I/O PROGRAMS FOR BISYNC LINES AND REMOTE 32105

Before data communication to remote 3210
equipment can take place, the remote
teleprocessing line, the control unit and the
device(s) must be enabled for communication.
This occurs when control unit hardware
recognizes a unique string of characters
transmitted on the line from CPo Disabling a
line occurs in a similar manner. The following
is the format of the CCWs used in the
enabling/disabling operation:

,.--------------------------------------,
10pera-ICommandlAddress IFlagslTP OplCountl
I tion I Code I I I Code I I
1-------------------------------------- 1
1 Di s- 1 X' 2F 'I 0 1 CC, 1 01 1 1 1
1 abl ell 1 SILl 1 1 1
ILine 1 1 1 1 1 1
1-----·-------- ----------- 1
ISet 1 X'23' X'40' CC, 1 01 1 1 1
1 Mode 1 SILl 1 1 1
1 1
IEnablel X'21' 0 SILII 01 1
1 Line 1 1 1 L ________________ • __________________ J

r-----------------"-----------------,
10pera-ICommandlAddress IFlagslTP OplCountl
Ition 1 Code 1 1 ICode I 1
1------ 1
IDis- 1 X'2F' 0 SILl 1 01 1
lable 1 1 1
ILine 1 1 1 L _____________ J

After a line is enabled, communication can
then be directed to a particular resource. The
sequence of events (for a write disable and
write continuous) is as follows:

Send a data link control character on the
line that places the control unit in control
mode. This mode makes the control unit
receptive to the specific address indicated by
the second CCW. The third CCW is a read CCW
that is needed for the acknowledgement response
from the addressed control unit. Normally, in
response, CP transmits a block of data to that
device with a write text CCW. Acknowledgement
of receipt of this data is contained by the read
response (write continue) CCW. The format of
the CCW write initial and write continue
operation follows.

,.----------------------------,
10pera-ICommandlAddress IFlagslTP OplCountl
Ition I Code 1 1 I Code 1 I
1------------------------------1
IWrite 1 01 1 Table 1 CC, I 02 1 1 I
1 an EOT I 1 I SILl 1 1 1
1---------------------------1
1 write 1 01 1 List 1 CC, 1 03 ILIST 1
lad- I 1 1 SILl 1 1 1
Idress-I 1 1 1 I I
ling I I 1 1 1 1
Ichar. 1 1 1 1 1 I
1---- --------1
IRead 02 IResponsel SILII 05 1 2 1
IRe- 1 1 1 1 1 1
1 sponse I 1 1 1 1 1 L _____________________________ --'

i ----.-----------,

10pera-ICoDmandlAddress IFlagslTP OplCountl
Ition 1 Code 1 1 ICode 1 1
1 ----------1
IWrite 1 01 Area 1 CC, 1 10 Ivari-I
1 text 1 1 1 SILl 1 1 able I
1---------------------1
I Read I 02 1 Responsel SILII 11 1 2 I
IRe- 1 1 I 1 1 1
1 sponse I I 1 1 I 1
, ------------------------'

In situations where the line is found
in text mode, CP can issue a write
sequence to put the bisync line in control
The following format illustrates the write
CCW.

r----------------------------------,
10pera-ICommandlAddress IFlagslTP OplCountl
1 tion 1 Code 1 1 ICode 1 1
1------------------------------1
IWrite I 01 1 Table I SILII 09 I 1 I
1 EOT 1 1 I 1 1 1 L ___________________________ .J

to be
reset
mode.
reset

In situations where the expected response
from a remote station was not received or was
invalid, the channel program may request the
remote station to retransmit the response. The
following write ENQ format shows this sequence.
The remote station, upon receipt of the ENQ
message, responds by transmitting the expected
or valid response to the response area indicated
by the second CCW.

r-------- -,
10pera-ICommandlAddress IFlagslTP OplCountl
1 tion I Cede 1 1 ICode 1 I
1------------------- --I
IWrite I 01 1 Table 1 CC, 1 03 1 1
1 ENQ 1 1 1 SILII 1
1--------------- 1
IRead 1 02 1 Responsel SILII 11 2 1
IRe- 1 1 1 1 1
1 sponse 1 1 1 1 1 L __________________________ -.A

14 IBM VM/310: system Logic and Problem Determination Guide

Read operations occur following a general
poll or a specific poll for text messages. In a
general poll sequence, CP transmits the general
poll characters to the attached control unit on
the bisync line. The control unit recognizes
the polling request, then the list (referred to
in the poll eew) of enabled devices is scanned
for any messages that are queued and ready for
transmission. A positive acknowledgement (yes,
I have a message to transmit) from any of the
attached devices causes the next CCW to be
skipped. The last CCW provides the read buffer
and the count necessary for the incoming data
block from the first remote station on the list
that had a message queued for transmission. If,
however, all remote stations respond with
negative acknowledgement (no messages queued) or
any station queried for a response fails to
respond, then the channel program ends with the
third ccw. The following read initial format
shows the initial read CCW sequence.

r---,
IOpera-ICommandlAddress IFlagslTP OplCountl
Ition I Code I I ICode I I
1------------------------------1
IWrite I 01 I Table I CC, I 02 I 1 I
I EOT I I I SILII I I
1------ -------------1
IPol1 I 09 List ec, I 03 ILIST I
I I SILl I I I
1-------- I
11/0 I 03 0 SILII 07 I
INo- I I I
lopera-I I I
Ition I I I I
I ---------------1
IRead 02 Area SILII 10 I 162 I
I Text I I I L ___________________________ _

After CP receives a message from a remote
station, it may ~eissue the initial read
sequence to poll the remaining stations on the­
list (assuming the list of enabled devices was
not exhausted on the first pass of the initial
read sequence). In the event that the list was
exhausted on either the first or a subsequent
initial read sequence, CP starts the poll delay,
then allows the poll delay interval to expire
before starting another read scan to the line
(assuming CP has no higher line priority tasks
to process) • If, in the process of receiving
messages from remote stations, CP receives a
message block that is invalid or its beginning
or ending bisync control characters are not
recognized, CP can elect to send a negative
response back to the remote station. This
negative response, the NAK control character,
causes the remote station to retransmit the
previous message to CPi this incoming message is
processed by the second CCW of the read repeat
sequence as shown in the format below.

r--------------- i
I Opera-I Command I Address IFlagslTP OplCountl
Ition I Code I I ICode I I
1----------------------------1
IWrite I 01 I Table I CC, I 06 I 1 I
I NAK I I I SILl I I I
1--------------------------------1
IRead I 02 I Area I SILII 10 I 162 I
I Text I I I I I I L ___ ~

Once ep message processing receives an
error-free message fro. a remote station, CP
sends an RVI control character to the remote
station before processing the message. The
remote station, upon recognition of the RVI
character, halts the sending of additional
queued data and responds with EOT (instead of
the normal ACKO/ACK1 response). The second ceN
of the read interruption sequence processes the
EOT response from the remote station as shown in
the format below.

r-------------------- ---,
I Opera-ICommand I Address IFlagslTP OplCountl
Ition I Cede I I ICode I I
I------------~--------------I
IWrite I X'01' I Table I ce, I 06 I 2 I
I R VI I I I 51 LI I I I
1------------------------1
IRead I X'02' IResponsel SILII 11 I 2 I
I Re- I I I I I I
Isponsel I I I I I L _________________________________ -----J

DATA FORMATS - BISYNC LINES AND REMOTE 3270

CP, in conjunction with remote 3270 support,
uses the following formats for its text
messages. For a detailed explanation of the
abbreviations used, see the IBM 3270 Information
R!§£!gx ~~§t~m £Q!£Q~~nt R~§£~iEli2n:-order-io:
GA27-2749.

Display commands use this message format for the
placement or erasure of data anywhere on the
display screen. The display commands that
implement this function are: WRITE (XIF11),
ERASE/WRITE (XIF71) and COpy (X'F7 1).

Section 1. Introduction 75

r--------------------------
ISTXIESCICMDIWCCIBSAI Buffer I Orders ISBAI
I I I I I IAddress I & Text I I L _____________________________________ _

2 variable

------/ /----,
I Buffer I I ETX I
IAddress I I I __________ / / ____ .J

2 1

The COpy command is limited to remote terminal
display devices and compatible printers located
on the same control unit. Action starts by
pressing a PF key designated for the COPY
function. CP responds by sending a message to
the control unit that contains both the
designated printer and the display station that
requested the action and directs the control
unit to print the designated display buffer to
the printer specified.

The format of the COpy messages follow:

r--------------------------,
ISTXIESCI CMD ICCCI From IETXI
I I I X'F7' I IAddressl I L ________________________ --.l

r------------------------,
ISTXIESCI CMD IWCCISBAIBuff IETXI
I I IX'F1'1 I IAdr I I
I I I I I I (4040 I I L _________________________ --.l

The following is representative of typical
input-to-processor message formats. The format
of a multiline read operation follows.

.--
I Index ISTXICU IDevlAIDICursor ISBAIBuff I
I Byte I I Adr I Adr I I Address I I Address I l ____ . ___________ _

---I /-------------/ /----,
I Text ISEAI Buff I Text I IETX I
I I I Adr I I I I
---I /------------------/ /---------'

~IIQI ~~!~g§ ~!~! ~~I~!!

Another form of input message is the error
status message. Error status is processed by
the DMKBGF module. The characters, IB,
following the SOH signify that this message
contains sense and status data. The format of
this message follows.

r-------------------·-·-----·------,
IIndexlSOHI I I B ISTXICU IDeviSense/IETX I
IByte I I I I IADBlldrlStatusl I
I I I I I I I I Bytes I I L ______________________________ --.l

The test request message, upon receipt from
display terminals, is ignored by CPo The input
inhibit mode that the display terminal enters
upon pressing the test request key can be reset
only if the terminal user presses the BESET key.
The characters, 1/, following SOH indicate the
test request function. The format of this
message follows.

.--------------------------------,
I Index I SOH I I I / I STX I Text I ETX I
I BYTE I I I I I I I l ________________________________ --'

ALLOCATION MANAGEMENT

Beal storage space above the Control Program
nucleus is made up of the dynamic paging area
and the free storage area. Page frames
(allocation space in real storage for a page of
data) in the dynamic paging area are allocated
to virtual machines and the control program to
satisfy paging requests. Blocks of storage,
requested by virtual machines and CP for working
storage, are allocated from the free storage
area.

NORMAL PAGING BEQUESTS

If a program interruption is caused by a normal
paging request (not from a virtual machine that
is running in EC mode with translation on),
DMKPRGIN determines whether a segment or page
translation error has occurred. If one of these
errors occurred, an invalid address interruption
code is set, and the interruption is reflected
to the virtual machine supervisor. If a segment
or page translation error bas not occurred, the
virtual machine's current PSW is updated from
the program old PSW (PROPSW~, the address of the
current VMBLOK is placed in register 11, and
DMKPTRAN is called to obtain the required page.
When the paging operation is completed, control
is returned to DMKDSPCH. NEXT storage, the
management of real storage~ and the management
of auxiliary storage (DASD paging devices).

76 IBM VM/370; System Logic and Problem Determination Guide

When operating in the CP relocate environment,
each virtual machine's virtual storage space is
described by two sets of tables.

• One set, the segment and page tables,
describes the location . and availability of
any of the virtual machine's virtual pages
that may be resident in real storage.
Locations in these tables are indexable by
virtual address, and the entries contain
index values that reference corresponding
real storage addresses. In addition, each
table entry contains an indication of whether
the corresponding virtual page is available
to the user in real storage. These tables are
referenced directly by the DAT feature when
the virtual machine's program is running.

• The second set of tables, called swap tables,
is a map of the locations of the virtual
machine's pages on the DASD devices that
comprise the system's paging or auxiliary
storage. The DASD addresses in these tables
can either represent the source of a page of
virtual storage (the location to which a page
may be moved, if necessary) or a dummy
address, indicating that the given page has
not yet been referenced, and thus has a value
of binary zeros.

The swap tables are arranged in a format
indexable by virtual storage address. In
addition to containing the address of a page,
each entry contains flags and status bytes
that indicate such information as:

• The storage protection keys to be assigned to
the page when it is made resident.

• Whether the page is currently on its on its
way into or out of the system (in transit),
etc.

These tables, are not referenced directly by
the hardware as are the page and segment
tables, but are used by paging management to
locate user pages that are needed to execute
a program.

virtual storage management is done by the
technique known as demand paging. This means
that a page of virtual storage is not 'paged in'
from its DASD auxiliary storage area until it is
needed. CP does not determine the pages
required by a virtual machine before it
executes. A demand for a page can be made
either implicitly by the virtual machine or
explicitly by CPo

• An implicit demand for a page is made when a
program attempts to reference a page that is
not available in real main storage. This
attempt causes a program interruption with
the interruption code indicating a page or
segment exception. Upon recognition of this
condition, control is passed to the paging
manager to obtain a page frame of real main
storage and to bring in the desired page.

• An explicit demand for a page can be made by
CP (for example, in the course of translating
a user's channel program). If, in the

process of translation, CP encounters a CCW
that addresses a page that is not resident in
real storage, a call is made to the paging
manager to make the referenced page
resident.

While the requested page is being fetched,
the requesting virtual machine is unable to
continue execution; however, it may be possible
to run other tasks in the system, and CP runs
these while the needed page is being paged in.
When the requested page is resident, the virtual
machine can be run and is dispatched in its
turn.

In addition to demanding pages, virtual
machines implicitly or explicitly release page
frames of their virtual storage space. Part of
the space may be explicitly released from both
real and virtual storage via a DIAGNOSE
instruction which indicates to the control
program ihose page frames that are to be
released. An entire virtual storage is released
when a user IPLs a new operating system or logs
off from the system.

CP also has virtual storage associated with
it. This space contains CP (some parts of which
need not always be resident in real storage) ,
and virtual storage buffers for spooling and
system directory operations. Although CP makes
use of virtual storage space for its execution,
it does not run in relocate mode. Thus,
nonresident modules must be completely
relocatable.

Real storage management allocates the system's
page frames of real storage to satisfy the
demands for virtual pages made by the system's
virtual machines. Efficiency of allocation
involves a trade-off; the paging manager uses
only enough CPU time to ensure that:

• The set of virtual storage pages that are
resident represent those pages that are most
likely to be used.

• A sufficient number of cycles is available to
execute virtual machine programs.

Inefficiency in the first area causes a
condition known as thrashing, which means that
highly used pages are not allowed to remain
resident long enough for useful work to be
performed by or on them. Thrashing could be
aggravated by the paging manager's page frame
selection algorithm or by a dispatcher that
attempts to run more tasks than the system can
handle (the sum of their storage requirements
exceeds the real paging space available in the
system). Thus, the paging manager must keep
statistics on system and virtual machine paging
activity and make these statistics available to
the dispatcher to detect and prevent a potential
thrashing condition.

Inefficiency in the second area causes an
unacceptable ratio of CP overhead to virtual
machine program time, and in extreme case may

Section 1. Introduction 11

cause CP
understand
the way in
page frames
understood.

to use excessive CPU time. To
how allocation is determined by CP,

which the inventory of real storage
is described to the system must be

Each page frame (4096-byte block) of real
storage in the system is in one of two basic
states: non-pageable or pageable. A
non-page able page must remain resident in real
storage for some finite period of time; thus,
the page frame cannot be taken from its current
owner to give it to someone else. Pages can be
either permanently or temporarily non-pageable,
depending on their use.

Temporary loks usually occur when an I/O
operation has been initiated that is moving data
either to or from the page, and the page must he
kept in real storage until the operation has
completed.

A page can also be temporarily non-pageable
if it contains an active nonresident CP
routine.

In addition, a page can be non-pageable
through use of the LOCK command. Pages locked
this way are permanently resident until they are
explicitly unlocked by the UNLOCK command.
Pages that are usually considered permanently
non-pageable are those that contain the resident
portion of CP and those that contain the
system's free storage area in which control
blocks, I/O buffers, etc. are built.

The data area that page management routines
use to control and allecate real storage is the
cortable. Each page frame of real storage has a
corresponding entry in the cortable, and because
the table entries are fixed in length and
contiguous, the entry for any given real page
frame may be located directly by indexing into
the table. Each entry contains pointers that
indicate both the status and ownership of the
real page which it represents. Some pointers
link page table and swap table entries to the
real page (and thus establish ownership), while
others link the entry into one of several lists
that the paging routines use to indicate the
page frame's status and availability for paging.
A given cortable entry .ay appear on one of
three lists if its real page frame is available
for paging; however, if the page referenced is
locked or it is in transit, its entry is not in
any list and is not referenced when available
page frames are being searched for swap
candidates. The lists are known as the freelist,
the flushlst, and the userlist, and they
represent various levels of page frame
availability.

• The freelist contains page frames that are
immediately available for assignment to a
requesting virtual machine. The virtual
storage pages for which they were last used
have either been released by their owners or
they have been paged out to auxiliary
storage. Requests for real storage are always
satisfied fro. the freelist. If the list has
been depleted, the requestor waits until a
new page frame becomes available as the
result of a virtual storage release or a
swap-out.

• The flushlist contains page frames that
belong to those virtual machines that have
been dropped from an active dispatching
queue. The flushlst is the first place that
the page frame selection routine looks to
find a page to swap out or to assign to the
freelist for a virtual machine that requires
real storage space.

• The userlist contains the cor table entries
for all other pageable pages in the system
that belong to active virtual machines.

Requests for real storage fall into two general
categories; those that are requesting space for
a page of virtual storage, and those (such as
requests for CP work space) that need page
frames for their own QS~. The former, more
general case is discussed first, because the
latter case is a suhset of the first.

The main page manager routine, DMKPTRAN, maps
a request for a specific virtual storage address
into a page frame of real storage. This
requires that the virtual page be read in and
the necessary tables be updated to show the
proper status of the page frame.

D"KPTRAN requires that the caller supply only
the virtual address to be translated and any
options that apply to the page to be located.
Most calls are made via the TRANS macro, which
sets up the necessary parameters, determines if
the required page is resident, and calls
D"KPTRAN if it is not.

When D"KPTRAN receives control, it first
tests to see if the requested page is resident.
This is done via the LRA instruction. If the
page is resident, the routine locks the page if
requested and exits to the caller. If the LRA
indicates that the page is unavailable, it is
still possible that the required page is
resident. This occurs if the page frame has
been placed on the freelist but has not been
assigned to another virtual machine. When the
page swap routine removes a page frame from a
virtual machine, the unavailable bit is set in
the corresponding page table entry; however, the
real main storage index for the page frame is
left unchanged. The page table entry is set to
zero only when the corresponding page is
actually assigned to another virtual machine.
Thus, if D"KPTRAN finds the page unavailable, a
further test is made on the page table entry to
see if the page can he reclaimed. If the entry
is not zero (aside from the unavailable bit) ,
the cortable entry for the page frame is removed
from the freelist and the page frame is returned
to the calling virtual machine.

If the page table entry corresponding to the
requested virtual page is zero, the required
page is not in real storage and must be paged
in. However, it is possible that the page is
already on its way into lIain storage. This
condition is indicated by a flag in the SWPTABLE
entry for the virtual page. The DMKPAGIO routine
m~intains a queue of CPEXBLOKs to be dispatched
when the pending page I/O is complete. The
CPEXBLOK for the page in transit is located and

78 IB" V"/370: system Logic and Problem Deter.ination Guide

a new CPEXBLOK, representing the
request, is chained to it.

current

Before exiting to wait for the p~ging
operation to complete, DMKPTRAB checks to see if
the deferred return (DEFER option) has been
specified. If it has not, DMKPTRAH returns to
the caller. If the DEFER option has been
requested, DMKPTRAB exits to the dispatcher to
wait for page I/O completion. When the requested
page has been read into real storage, the list
of CPEXBLOKs are unstacked fifo to satisfy all
requests for the page that arrived while it was
in transit.

If a page is not in transit, a page frame of
real storage must be allocated to fill the
request. Before the allocation routine is
called, a test is made to see if the caller
wishes the return to his routine or to be
delayed until after the requested page is
available. If the DEFER option is not requested,
DMKPTRAN returns to the caller after first
building and stacking a CPBXBLOK that allows
processing of the page request to be continued
the next time the dispatcher (DMKDSPCH) is
entered.

DMKPTRAN next calls the freelist manager
(DMKPTBFR) to obtain the address of the next
available cortable entry. DMKPTRPR maintains a
fifo list of the cortable entries for those page
frames that are immediately available for
assignment. As DMKPTRFR releases these page
frames, a check is made to see if the number of
entries on the freelist has fallen below a
dynamically maintained minimum value. If it has,
the page selection routine (select) is called to
find a suitable page frame for placement in the
freelist. The number maintained as the freelist
threshold has a value equal to the number of
users in queue1 plus the number of users in
queue2 plus 1.

The freelist is replenished directly by users
releasing virtual storage space. The page-out
routine, DMKPGSPO, calls DMKPTRPT to place
released page frames directly on the freelist.
However, most replenishment is done via the page
selection routine, select. select is called by
DMKPTRPR when the free list count falls below the
current m1n1mum, or when a user page is
reclaimed from the freelist. In either case,
the selection algorithm attempts to find a page
to swap to auxiliary storage. The highest
priority candidates for a swap are those page
frames whose cortable entries appear on the
flushlst. Select attempts to take a flushed
page frame before it takes a page frame from an
active user. If such a page frame is found, it
is checked to see if it has been changed since
page-in. If not, it is placed in the freelist by
DMKPTRPT; otherwise, it is scheduled for a
swap-out by dequeueing the cortable entry from
the flushlst, constructing a CPEXBLOK for
dispatching after I/O completion, and exiting to
DMKPAGIO by a GOTO. After the paging I/O is
complete, the entry is placed on the freelist
via a call to DMKPTRFT.

If the flushlst is exhausted, select must
take a page frame from an active user by
examining the page frames represented by the
entries in the userlist to locate the least
recently used user page frame. This list is

scanned from top to bottom, and each page frame
is tested to see if its hardware referenced bits
have been set. If a page frame has been
referenced, its bits are reset and it is queued
to the end of the userlist. This process is
continued until either an unreferenced page
frame is found or the list is exhausted. An
unreferenced page frame is immediately selected.
Hvwever, if the list is exhausted, it is
rescanned from the top. An unreferenced page
frame is always found; in the worst case it is
the first one tested on the userlist at initial
entry. However, if this occurs, it indicates
that the rate of entry to select is too low to
permit differentiation between high- and
low-usage page frames.

Once a page frame has been selected and
page-out is scheduled, control is returned to
DMKPTRPR, which then passes control back to
DMKPTRAN with the address of the cortable entry
that was allocated. In most cases, page-outs are
completely overlapped with page-ins.
Approximately one half of all page-ins require a
corresponding page-out.

Once a page frame has been assigned, DMKPTBAH
checks to see if a page-in is required. It
usually is, and the DASD address of the virtual
storage page must be obtained from the user's
swap table entry and the I/O operation
scheduled. However, if the page frame has not
yet been referenced (as indicated by a DASD
address of zero), the real main storage page
frame is set to zero. After the page-in
operation has been queued, DMKPTRAN exits to the
paging I/O scheduler (DMKPAGIO) which initiates
the paging operation and exits to the dispatcher
(DMKDSPCH) to await the interruption.

After the required page has been read in or
the page frame has been set to zero, DMKPTRAH
queues the appropriate cortable entry to the end
of the userlist, where it eventually is
available for page selection. After developing
the real storage address that corresponds to the
requested virtual address, DMKPTRAH tests to see
if the caller has requested that the page be
locked. If LOCK is requested, the cortable
entry is de-queued from the userlist and is not
available for selection. A resident page can
also be locked by removing it from the USERLIST.
In addition, a LOCK count is maintained in the
cortable entry so that when all locks have been
satisfied the page frame can again be made
available for paging.

Some requests for main storage page frames
are handled differently than general
virtual-to-real storage mapping. In particular,
it may be necessary for CP to obtain additional
free storage for control blocks, I/O lists,
buffers, etc. This is handled by the free
storage manager, which makes a direct call to
DMKPTRPR tc obtain the needed storage. Usually
this storage is immediately available (due to
the page buffering technique previously
described) • However, if the freelist is
exhausted, the request for free storage is
recognized as a high priority call and queued
first on the list of those waiting for free page
frames.

The real storage manager (DMKPTR) accumulates
paging statistics that the scheduler (DMKSCH)

section 1. Introduction 79

use to anticipate user storage requirements. A
count of page-reads and page-writes is kept in
each virtual machine's VMBLOK; the corresponding
total counts for the system are kept in DMKPSA.
A running total of the number of pages a virtual
machine has resident, at each instance of
page-read, is kept in the VMBLOK. A count of the
number of times a virtual machine enters
page-wait, because a page frame has been stolen
from it, is also kept in the VMBLOK. The
section entitled "Controlling the Depth of
Multiprogramming" under "Dispatcher/Scheduler"
describes the use to which the scheduler puts
these counts.

!~L1IQ Yi£!Y~!=~~~! QEi!2~: The V~/370
virtual=real option involves the mapping 1n a
one-for-one correspondence of a virtual machine
storage area with an equivalent real storage
area. For instance, virtual page 1 is in real
page frame 1 and virtual page 20 is in real page
frame 20. virtual page 0, is relocated at the
end of the virtual storage space because it
cannot occupy real page frame O.

The CP nucleus is altered at system
generation to support the virtual=real option.
Virtual machines with virtual=real (specially
identified in the directory) can then log on and
use the space reserved for this option. That
space can be used by only one virtual machine at
a time. Two virtual machines with the
virtual=real capability cannot occupy the same
space at the same time.

The virtual=real option allows the virtual
machine to bypass the control program's CCW
translation. This is possible because I/O from
a virtual machine occupying a virtual=real space
contains a list of CCWs whose data addresses
reflect the real storage addresses. The
restriction in this situation is that the
virtual machine does not perform I/O into page
frame 0 because this would perform a· data
transfer into real page frame O. At the same
time, it is assumed, and cannot be checked, that
the virtual machine also does not attempt to do
I/O beyond the bounds of its virtual addressing
space. To do so would cause the destruction of
either the CP nucleus, which resides beyond the
virtual machine space, or another user's page.

The bypassing of CCW translation for the
virtual machine occupying the virtual=real space
is only invoked after the virtual machine has
executed the SET NOTRANS ON command. This
command can only be issued by the virtual
machine occupying the virtual=real space. The
command initiates the bypass of CCW translation.
This option is automatically turned off if the
virtual machine performs an explicit reset or an
implied reset by performing a virtual IPL.
During virtual machine IPL, I/O must be
performed into page frame O. For this reason,
normal virtual IPL simulation assumes CCW
translation in effect to accomplish the full
simulation. Once the IPL sequence has completed,
CCW translation can be bypassed by issuing the
SET NOTRANS ON command.

When the virtual machine demands a page frame
thr?ugh normal use of CP's page tables, the
pag1ng routine recognizes the virtual=real
capability. It then assigns the virtual page to
the equivalent real page frame and does not

perform a paging operation, because all these
pages are resident and are never swapped out.

Note: The virtual machine running with
vIrtual=real is still run in System/370 relocate
mode.

Virtual 270X lines and sense operations from
the virtual machine do not use the virtual=real
function. These invoke CCW translation for the
virtual enable/disable lines and the transfer of
the sense bytes.

The UNLOCK command has a VIRT=REAL operand
that essentially releases the virtual=real area
for normal system paging use. Once the area has
been released, it can only be reclaimed for
additional virtual=r~al operations only by an
IPL of the VM/370 system. The size of the
virtual=real area is an installation
specification that is part of the special
nucleus generation procedure that is outlined in
the !1!Ll1Q: E!!!~!!i!!.9 ~!!g ~I§i~!!! !!~!!~!:~:t!s.m
§y!g~. The size of the area must be large
enough to contain the entire addressing s~ace of
whatever virtual machine wishes to occupy that
space. A virtual machine can use a smaller space
than is provided but cannot use a larger space
without regenerating the CP nucleus.

DASD STORAGE MANAGEMENT

Any virtual machine's virtual storage pages that
have been referenced but are not resident in
real storage must be kept in slots on the DASD
paging device. DASD page space is assigned only
when the page is selected for a page-out.
Certain DASD pages may also be marked read-only.
Thus, the DASD address slot initially associated
with the Fage should be considered to be the
source of the page only. If the page is changed
after it has been read into real storage, a new
slot must be obtained when it is paged out.
Examples of read-only pages are those which
contain portions of pageable saved systems and
pages which are part of a system spool file.
Slots can be reassigned when DMKPTRAN finds that
it must swap a page out to a movable head DASD
device. In this case, the old slot is released
and the new slot is obtained.

If a new slot is required, DMKPGT is called to
supply the address of an available slot. DMKPGT
maintains a chain of cylinder allocation maps
for each cylinder that has been assigned for
either virtual storage or spool file paging.
The allocation chains for spooling are kept
separately from those used for paging so that
they can be checkpointed in case of a system
failure. However, in other respects they are the
same. The allocation blocks for a given volume
are chained from the RDEVBLOK for the device on
which the volume is mounted. The chains of
cylinder and slot allocation blocks are
initialized by DMKCPI. Each block on an
allocation chain represents one cylinder of
space assigned to paging, and contains a bit map

80 IBM V8/370: system Logic and Problem Determination Guide

indicating which slots have been allocated and
which are available. Each block also has a
pointer to the next allocation block on the
chain, a cylinder number, and a record count.
DMKPGT searches this list sequentially until an
available slot is found; its DASD address is
then determined and passed back to the calling
routine. If DMKPGT cannot find a cylinder with a
de-allocated slot, it enters the cylinder
allocation phase. When an available cylinder is
found, it constructs a page allocation block for
this cylinder and allocates a page to the
caller.

DMKPGT controls the paging and spooling I/O load
of the system by allocating cylinders evenly
across all available channels and devices. In
order for a device to be considered available
for the allocation of paging and spooling space:

• Its volume serial number must appear in the
system's owned list.

• It must have at least one cylinder of
temporary space marked as available in the
cylinder allocation block which is located on
cylinder 0, head 0, record 3.

At system initialization time, cpinit reads
in the allocation records for each volume and
constructs the chains of device allocation
blocks from which DKKPGT allocates the
cylinders. In managing the cylinder allocation,
DMKPGT takes three factors into consideration:
device type, device address, and possible status
as a preferred paging device.

A reques~ for a cylinder of virtual storage
page space ~s satisfied by allocating space on a
preferred paging device, provided that one
exists on the system and that it has page space
available. Preferred paging devices are
specified by the installation at system
generation time, and generally should be devices
on which excessive seek times do not occur. A
typical preferred paging device would be the lBK
2305 Fixed Head storage facility. If the 2305
is assigned as a preferred device, it is
possible to allocate some of its space for other
high priority data files without excessively
degrading paging. An example pf such usage
would be for high activity read-only saved
system pages that are not shared in real
storage, and high activity system residence
disks.

It is also possible to designate moveable
head DASD devices such as the 3330, 3340, 3350
and 2314/2319 Direct Access storage facilities
as preferred paging devices. The module(s) so
designated should not be requiEed to seek
outside of a relatively narrow cylinder band
around the center of the paging areas. It is
advisable to share the access arm of a moveable
head preferred paging device with only the
lowest usage data files.

If one or more preferred devices are defined
on the system, CP allocates all of the page

space available space on these before it
allocates on any other available owned volumes.
Within the class of preferred devices, space is
allocated first on the fastest devices, and
these are spead out across channels and devices.
Allocation on non preferred devices is spread out
in the same manner. cylinders for spooling
space are not allocated from preferred devices.
Allocation on a given device is done from the
relative center of the volume outward, a
cylinder at a time in a zig-zag fashion in an
attempt to minimize seek times.

When a request to allocate a slot for virtual
storage paging is received by DKKPGTGT and the
slot must be allocated on a moveable head
(2314/2319, 3330, 3340, or 3350) device, a
cylinder and slot are selected in the following
manner:

1. CP tries to allocate a space on the
cylinder at which the arm on the selected
device is currently positioned.

2. If slots are not available on the current
cylinder, CP tries to allocate space on a
cylinder for which paging I/O has been
queued.

3. If the above conditions cannot be met, CP
allocates space as close to the center of
the volume as is possible.

Before DKKIOSQR is called, the queue of
IOBLOKs currently scheduled on the device is
examined. If paging I/O has already been
scheduled on a device, the paging channel
programs are slot sorted and chained together
with TICs.

PAGING I/O

DKKPAGIO handles all input/output requests for
virtual storage and spooling pages. DKKPAGIO
constructs the necessary task blocks and channel
programs, expands the compressed slot addresses,
and maintains a queue of CPEXBLOKs for pages to
be moved. Once the I/O scheduled by DKKPAGIO
completes, it unchains the CPEXBLOKs that have
been queued and calls DKKSTKCP to stack them for
execution. DKKPAGIO is entered by a GOTO from:

• DKKPTRAN to read and write virtual storage
pages

• DMKRPA to read and write virtual storage
spool buffers

In either case, all that needs to be passed
to DKKPAGIO is the address of the cortable entry
for the page that is to be moved, the address of
a swptable entry for the slot, a read or write
operation code, and the address of a CPEXBLOK
that is ·to be stacked for dispatching after the
I/O associated with the page has completed.
DKKPAGIO obtains an IOBLOK and builds a channel
program to do the necessary I/O, and uses the
device code that is part of the page address to
index into the system's owndlist and locate the
real device to which the I/O request should be
directed. If the device is capable of
rotational position sensing, the required sector

section 1. Introduction 81

is computed and a SET SECTOR command is inserted
into the channel program. The real SIO
supervisor DMKIOSQR is then called to schedule
the operation on the proper device.

When the interruption for the paging
operation is processed hy the primary I/O
interruption handler, the IOBLOK that controls
the operation is unstacked to the interruption
return address, waitpage, in DMKPAGIO. waitpage
then unchains the CPEXBLOKs that are queued to
DMKPAGG, and then stacks the queued CPEXBLOKs,
by calls to DMKSTKCP, in the order in which they
were received. The address of the real page
frame is filed into the appropriate page table
entry and the pointers denoting the ownership of
the real page frame are filed into the cortable
entry by the processing routines in DMKPTRAN.
If a fatal I/O error occurred for the related
page frame, the CPEXBLOKs associated with it are
flagged, and the dispatcher, DMKSDPCH, sets a
nonzero condition code when it activates the
pending task. The error recovery followed
depends on the operation being performed. Paging
I/O errors associated with spooling operations
are discussed in "DASD Errors During Spooling"
in this section, while errors associated with
virtual storage paging operations are discussed
later in section "Virtual storage Paging Error
Recovery".

DMKPAGIO maintains its own suhpool of
preformatted paging IOBLOKs. As I/O operations
complete, their IOBLOKs are added to a list of
availahle blocks; as new blocks are needed, they
are taken from this list. If the list is empty,
DMKFREE is called to obtain storage for a new
block. DMKPAGIO also periodically calculates
system paging overhead. After 200 pages have
been moved (read or written), the elapsed time
for the 200 page moves is computed, and the
paging rate is calculated in page moves per
second. The recent paging load, expressed as the
percentage of time that more than one half of
the system's pages were idle due to page-wait,
is averaged with the previous load and
re-projected as the expected load for the next
interval.

VIRTUAL STORAGE PAGING ERROR RECOVERY

Errors encountered during virtual storage (as
opposed to spooling) paging operations can
generally be classified as either soft or hard
errors. Soft errors allow the system to continue
operation without delay or degradation. Hard
errors can cause noticeable effects such as the
abnormal termination of user tasks (ABEND) and
response degradation. Errors that are
successfully retried or corrected are known only
to the I/O supervisor and the I/O error retry
and recording routines; they appear to the
second level interruption handlers (such as
waitpage) as if the original operation completed
normally.

SOFT ERROR RECOVERY: An I/O error that occurs on
a--page-swap=out--is considered to he a soft
error. DMKPTRAH calls DMKPGTPG to assign a
different DASD page slot and the page is
re-queued for output. The slot that caused the
error is not de-allocated, and thus is not

assigned to another virtual machine. All other
uncorrectable paging errors are hard because
they more drastically affect system
performance.

HARD ERROR RECOVERY: Hard paging errors occur on
eItber--ijo-errors- for page reads or upon of
exhausting the system's spooling and paging
space. Recovery attempted on hard errors depends
upon the nature of the task for which the read
was heing done. If the operation was an attempt
to place a page of a virtual machine's virtual
storage into real storage, the operation of that
particular virtual machine is terminated by
setting the page frame in error to zero and
placing the virtual machine in console function
mode. The user and operator are informed of the
condition, and the page frame causing the error
is not de-allocated, thereby ensuring that it is
not allocated to another user.

The control program functions that call
DMKPTRAN (such as spooling, pageahle control
program calls, and system directory management)
have the oFtion of requesting that unrecoverable
errors be returned to the caller. In this case,
the CP task may attempt some recovery to keep
the entire system from terminating (ABEND). In
general, every attempt is made to at least allow
the operator to hring the system to orderly
shut-down if continued operation is impossible.

Proper installation planning should make the
occurrence of a space exhaustion error an
exception. An unusually heavy user load and a
backed-up spooling file could cause this to
happen. The operator is warned when 90% of the
temporary (paging/spooling) space in the system
is exhausted. He should take immediate steps to
alleviate the shortage. possible remedies that
exist include preventing more users from logging
on and requesting users to stop output spooling
operations. More drastic measures might include
the purging of low priority spool files. If the
system's paging space is completely eXhausted,
the operation of virtual machines progressively
slows as more and more users have paging
requests that cannot be satisfied and operator
intervention is required.

VIRTUAL RELOCATION

CP provides the virtual machine the capahility
of using the DAT feature of the real
System/370. Programming simulation and hardware
features are comhined to allow usage of all of
the available features in the real hardware,
(that is, 2K or 4K pages, 64K or 1M segments).

For clarification, some
follow:

term definitions

fi~2!=!~Y~! 2!Q~!g~: The physical storage of
the real CPU, in which CP resides.

Second-level 2!Q~!~~:
avaIlable-to any virtual
CPo

The virtual storage
machine, maintained by

1hi!~=1~Y~1 §!9~g9~:
defined by the system

The virtual storage space
operating in second-level

82 IBM VM/370: System Logic and Prohlem Determination Guide

storage, under control of page and segment
tables which reside in second-level storage.

E~g~ ~~g §~g!~~! !~~1~§: Logical mapping
between first-level and second-level storage.

!i~!~~l
mapping

E~g~ ~ng §~g!~B! !g~l~§: Logical
between second-level and third-level

storage.

§h~g2! Egg~ ~Bg §~g!~B! !~E!~2:
between first-level storage
storage.

Logical mapping
and third-level

A standard, nonrelocating virtual machine in
CP is provided with a single control register,
control register zero that can be used for:

• Extended masking of external interruptions
• Special interruption traps for SSM
• Enabling of virtual block multiplexing

A virtual machine that is allowed to use the
extended control feature of System/370 is
provided with a full complement of 16 control
registers, allowing virtual monitor calls, PER,
extended channel masking, and dynamic address
translation.

An extension to the normal virtual-machine
VMBLOK is built at the time that an extended
control virtual machine logs onto CPo This
ECBLOK contains the 16 virtual control
registers, 2 shadow control registers, and
several words of information for maintenance of
the shadow tables, virtual CPU timer, virtual
TOD clock comparator, and virtual PER event
data. The majority of the processing for
virtual address translation is performed by the
module DMKVAT, with additional routines in
DMKPRG, DMKPRV, DMKDSP, DMKCDB, DMKLOG, DMKUSO,
and DMKPTR. The simulation of the
relocation-control instructions (that is, LCTL,
STCTL, PTLB, RRB, and LARA) is performed by
DMKPRV. These instructions, with the exception
of LCTL and STCTL, are not available to virtual
machines which are not allowed the extended
control mode.

When an extended control virtual machine is
first active, it has only the real page and
segment tables provided for it by CP and
operates entirely in second-level storage.
DMKPRV examines each PSW loaded via LPSW to
determine when the virtual machine enters or
leaves extended control or translate mode,
setting the appropriate flag bits in the
VMBLOK. Flag hits are also set whenever the
virtual machine modifies control registers 0 or
1, the registers that control the dynamic
address translation feature. DMKDSP also
examines PSWs that are loaded as the result of
interruptions to determine any changes in the
virtual machine's operating mode. The virtual
machine can load or store any of the control
registers, enter or leave extended control mode,
take interruptions, etc., without invoking the
address translation feature.

If the virtual machine, already in extended
control mode, turns on the translate hit in the
BC mode PSi, then the DMKVATMD routine is called
to examine the virtual control registers and
build the required shadow tables. (Shadow tables
are required because the real DAT hardware is

capable of only a first-level storage mapping.)
D!KV1TMD examines virtual control registers 0
and 1 to determine if they contain valid
information for use in constructing the shadow
tables. Control register zero specifies the
size of the page and segment the virtual machine
is using in the virtual page and seg.ent tables.
The shadow tables constructed by DMKV1TMD are
always in the sa.e for. at as the virtual
tables.

The shadow seg.ent table is constructed in
first-level storage and initialized to indicate
that all segments are unavailable. Flags are
maintained in the VMBLOK to indicate that the
shadow tables exist. DMKVATMD also constructs
the shadow control registers 0 and 1. Shadow
control register 0 contains the external
interruption mask bits used by CP, mixed with
the hardware controls and enabling bits from
virtual control register O. Shadow control
register 1 contains the segment table origin
address of the shadow segment table.

When the virtual machine is operating in
virtual translate mode, CP loads the shadow
control registers into the real control
registers and dispatches the user. The
immediate result of attempting to execute an
instruction is a segment exception, intercepted
hy DMKPRG and passed to DMKVATSX. DMKV1TSI
examines the virtual seg.ent table in
second-level storage. If the virtual segment is
not available, the segment exception
interruption is reflected to the virtual
machine. If the virtual segment is marked
available, then DMKV1TSX:

• Allocates one full segment of shadow page
table, in the format specified by virtual
control register o.

• Sets all of the page table entries to
indicate page not in storage.

• Marks the segment available in the shadow
segment table.

• Redispatches the virtual machine via DMKDSP.

Once again, the immediate result is an
interruption, which is a paging exception and
control is passed to DMKVATPI. DMKVATPI
references the virtual page table in
second-level storage to determine if the virtual
page is available. If the virtual page is not
available, the paging interruption is reflected
to the virtual machine. However, if the virtual
page is marked in storage, the virtual page
table entry determines which page of
second-level storage is being referenced by the
third-level storage address provided. DMKVATPX
next determines if that page of second-level
storage is resident in first-level storage at
that time. If so, the appropriate entry in the
shadow page table is filled in and marked in
storage. If not, the required page is hrought
into first level storage via DMKPTRAN and the
shadow page table filled in as above.

As the virtual machine continues execution,
more shadow tables are filled in or allocated as
the third-level storage locations are
referenced. Whenever a new segment is
referenced, another segment of shadow page

Section 1. Introduction 83

tables is allocated. Whenever a new page is
referenced, the appropriate shadow page table
entry is validated, etc. No changes are made in
the shadow tables if the virtual machine leaves
translate mode (usually via an interruption),
unless it also leaves extended control mode.
Dropping out of EC mode is the signal for CP to
release all of the shadow page and segment
tables and the copy of the virtual segment
table.

There are some situations that require
invalidating all of the shadow tables
constructed by CP or even releasing and
reallocating thea. Whenever DMKPTR swaps out a
page that belongs to a virtual relocating
machine, it sets a bit in the VMBLOK indicating
that all of the shadow page tables must be
invalidated. Invalidation of all of the tables
is required since CP does not know which
third-level storage pages map into the
second-level page that is being swapped out.
The actual invalidation is handled by DMKVATAB,
called from DMKDSP when the virtual machine is
on the verge of being dispatched.

The other situations which cause shadow table
invalidation arise from the simulation of
privileged instructions in DMKPRV. Flags are
set in the VMBLOK whenever the virtual machine
loads either control register 0 or 1, and DMKPRV
calls DMKVATAB to perform whatever maintenance
is required. When control register 1 is loaded
by the virtual machine, DMKVATAB must re-copy
the virtual segment table into first-level
storage and invalidate the entire shadow segment
table. When control register 0 is loaded,
DMKVATAB examines the relocation-architecture
control bits to determine if they have changed,
(such that the format of the virtual page and

segment tables no longer matches that of the
shadow tables). If the format has not changed,
the shadow tables are left intact; otherwise,
all of the shadow tables must be returned to
free storage and another set, in the new format,
must be allocated and initialized. The same
actions can result from modifying the control
registers via the CP console functions, in which
case DMKVATAB is called from DMKCDB. The
privileged operation, PTLB also causes the
virtual segment tables to be re-copied and all
of the shadow page tables to be invalidated
because the shadow tables are the logical
equivalent of the translation look-aside
buffer.

DMKPRV provides virtual interrogation of the
reference and change bits in the virtual storage
keys, which involve the privileged instructions
ISK, SSK, and RRB. The privileged instruction
LRA is simulated via DMKVATLA, which searches
the virtual page and segment tables to translate
a third-level storage address to a second-level
storage address, returning a condition code
indicator to DMKPRV, or forcing an interruption
if the tables are incorrectly formatted.

Most error situations that occur in the
virtual machine are handled by means of the
extended program interruptions associated with
the real address translation hardware. Whenever
a virtual relocating machine loads control
registers 0 or 1 with an invalid value, DMKVAT
releases all of the shadow tables exactly as if
the hardware controls had changed. The shadow

control registers are set valid, with the shadow
segment table re-allocated at a minimum size and
all segments marked unavailable. Flag bits are
set in the VMBLOK to indicate that the shadow
tables are artificially valid, and DMKVATSX
reflects a translation specification exception
to the virtual machine as soon as it is
dispatched. While it is possible for the
virtual machine to enter an interruption loop
(if the new PSW is also a translate mode PSW),
the cited process prevents the occurrence of a
disabled loop within CP, which would result if
the virtual machine is never dispatched.

FREE STORAGE MANAGEMENT

DMKPRE is responsible for the management of free
storage, and CP uses it to obtain free storage
for I/O tasks, CCW strings, various I/O buffers,
etc. It is used, in fact, for practically all
such applications except real channel, control
unit, and device blocks, and the cortable.

Block sizes of 30 doublewords or less,
constituting about 99 per cent of all calls for
free storage, are grouped into 10 subpool sizes
(3 doublewords each), and are handled by LIFO
(push-down stack) logic. Blocks of greater than
30 doublewords are strung off a chained list in
the classic manner.

When subpools are exhausted, small size
blocks are generally obtained from the first
larger sized block at the end of available free
storage. Large size blocks, on the other hand,
are obtained from the high-numbered end of the
last larger block. This procedure tends to keep
the volatile small subpool blocks separated from
the large blocks, some of which stay in storage
for much longer periods of time; thus, undue
fragmenting of available stor.age is avoided.

DMKPRE initially starts without any subpool
blocks. They are obtained from DMKFREE and
returned to DMKFRET on a demand basis.

The various cases of calls to DMKFREE for
obtaining free storage, or to DMKFRET for
returning it, for subpool sizes and large sizes,
are handled as follows:

~Y~~~~l !!gilgBl~: If a call for a sub pool is
made and a block of the suitable size is
available, the block found is detached from the
chain, the chain patched to the next sub pool
block of the same size (if any), and the given
block returned to the caller.

~Y~~~~l !~! Available: If a block of suitable
size is not avaIlable-when a call to DMKFREE is
made for a subpool, the chained list of free
storage is searched for a block of equal or
larger size. The first block of larger or equal
storage is used to satisfy the call (an
equal-size block taking priority), except that
blocks within the dynamic paging area are
avoided if at all possible. If no equal or

84 IBM VM/370: system Logic and Problem Determination Guide

larger block is found, all the subpool blocks
currently not in use are returned to the main
free storage chain, and then the free storage
chain is again searched for a block large enough
to satisfy the call. If there still is no block
large enough to satisfy the request, then
DMKPTRFR is called to obtain another page frame
of storage from the dynamic paging area, and the
process is repeated to obtain the needed block.

If a call to DMKFREE is made for a block larger
than 30 doublewords, the chained list of free
storage is searched for a block of equal or
larger size. If an equal size block is found, it
is detached from the chain and given to the
caller. If at least one larger block is found
the desired block size is split off the high
numbered end of the last larger block found, and
given to the caller. If no equal or larger block
is found, DMKPTRFR is called to obtain another
page frame of storage from the dynamic paging
area, and the above process is repeated (as
necessary) to obtain the needed block.

If a subpool block is g~ven back via a call to
DMKFRET, the block ~s attached to the
appropriate subpool chain on a LIFO (push-down
stack) basis, and return is made to the caller.
If, however, the block was in a page within the
dynamic paging area, the block is returned to
the regular free storage chain instead.

If a block larger than 30 doublewords is
returned via DftKFRET, it is merged appropriately
into the regular free storage chain. Then,
unless the block was returned by DftKFRBTR (see
"Initialization") a check is made to see if the
area given back (after all merging has been
done) is a page frame within the dynamic paging
area. If so, it is DftKPTRFT returns it to the
dynamic paging area for subsequent use.

The number of page frames allocated to free
storage depends upon the number of storage boxes
upon which the Vft/370 control program is
running, and is initialized by DftKCPINT (3 pages
for the first 256K and 1 page for each 64K
thereafter not including V=R size if any).
DftKFRETR is called by DftKCPINT to merge
available blocks of storage into the regular
free storage chain regardless of their size.

CP INITIALIZATION

System initialization starts when the operator
selects the DASD device address of CP system's
residence volume (SISRBS) and presses the IPL
button. The System/370 hardware reads 24 bytes
from record 1 of cylinder 0 on SISRES into
location 0 of main storage. This record consists
of an initial PSW and a channel program. The
channel program reads the module DMKCKP into
location X'800' and gives it control. DftKCKP
checks location CPID in module DftKPSA.

If CPID contains the value CPCP or WARft,
DftKCKP saves the spool file control blocks,
system log messages, accounting information,
status of spool devices, spool hold queue
blocks, and spool record allocation blocks and
writes them on the warm start cylinders. If
CPID contains the value CPCP, DftKCKP loads a
disabled wait state code X'008'.

If location CPID does not contain the value
CPCP, DftKCKP now loads DftKSAV and passes control
to it at entry point DftKSAVRS. DMKSAV reloads a
page image copy of the CP nucleus into real
storage starting at page O. When DftKSAV is
finished, control is transferred to DftKCPI.
DftKCPI performs the main initialization
function. This includes calling DftKWRft to
retrieve the information stored on the warm
start cylinder. This also includes calling
DftKCKS to initialize the dynamic checkpoint
cylinders and to checkpoint the current status
of the spool file system. When DftKCPL has
finished, it passes control to DftKDSPCB.
DftKDSPCB loads a wait state PSW to wait for
work.

INITIALIZATION AND TBRftINATION

After CP has been initialized, DMKCPVBN enables
the communication lines. Then an individual
virtual machine is attached to the system using
the following steps:

1. 1!~!!n~1_lg~~I!~!~~lion

When the CP receives the initial interrupt
from a terminal on an enabled line
(normally initiated by a user dialing in on
a data-set), the DftKCNSIN routine is
entered. DftKCBSIB determines the terminal
device type, stores this information in the
terminal device block, writes the online
message and puts the terminal line in a
state to receive an attention
interruption.

2. At!~~!ioA_~~~~_Q§~~

After the online message has been typed at
the user's terminal, and he has pressed the
ATTENTION key, D!KCISIB (the
console-interruption routine) calls
DftKBLDVft to build a skeleton v.blok for the
user. At this time, the userid is

section 1. Introduction 85

3.

LOGONxxx, where xxx is the terminal real
device address, and a flag is set to
indicate that the user has not yet
completed the LOGON process.

Then D~KCNSIN calls
single blank at the
read to the terminal
his first command
DIAL) •

DMKCF~BK, which types a
terminal, and issues a
for the user to enter

(normally LOGON or

After the first command has been entered by
the user, DMKCNSIN further determines the
type of terminal. If the terminal is a
2741, DMKTRMID is called to identify it as
either a 2741P (PTTC/EBCD) or a 2741C
(Correspondence) terminal. If successful,
the correct device type and translate
tables for input and output are set; if
not, flags are set to indicate the terminal
is not yet identified.

Then control is returned to DMKCFMBK, which
determines if the first command is valid
(for example, LOGON, ~SG, or DIAL). If the
first command is not valid, a restart
message is given, and the read to the
terminal occurs again for the first
command. If the first command was LOGON
(or its abbreviation), DMKLOGON is called
to complete the process of attaching the
virtual machine to the system.

The operations performed
include the following:

by

• Ensures that the maximum
virtual machines allowed on
is not being exceeded.

DMKLOGON

number of
the system

• Obtains the userid from the command
line, and checks for a possible password
and other optional operands.

• Checks the userid and password (entered
separately if not on the LOGON command
line) against entries in CP's directory
of users.

• Ensures that the user is not logged on
at another terminal (an error
condition), or reconnects the user if he
was running, in the disconnect mode.

• Obtains pertinent information on the
user's virtual ~achine from the user
machine block portion of the directory.

• Stores the correct userid (replacing the
LOGONxxx userid used until now), virtual
storage size, and other vital
information in the virtual machine's
VKBLOK.

• Allocates and initializes segment, page,
and swap tables (necessary for handling
of the virtual machine's virtual
storage).

• Allocates an extended VKBLOK (ECBLOK) if
the user's virtual machine has the
ability to run in the extended control
mode.

• Allocates and initializes virtual device
blocks, control unit blocks, and channel
blocks, using information from the user
device blocks portion of the directory.

• Establishes links (as feasibl~ to all
DASD devices included in the directory,
the accessibility of any disk being
determined by the user access mode in
the directory, and whether any other
user(s) are presently linked to the
disk, in read-mode and/or write-mode.

•

•

•
•

•

Initializes all other virtual device
blocks as appropriate, such as reader,
punch, printer, and terminal.

Kaps all virtual
devices.

devices to

Performs appropriate accounting.

real

Informs the user of the date and time of
the most recent revision to the system
log message (LOGMSG), and of the
presence of any outstanding spooled
files in his virtual reader, printer, or
punch.

Sends a ready message to the user with
the date and time (and weekday), and a
message to the system operator
indicating that the user has logged on.

If the virtual machine has a device address
or a named system in the directory and the
initialization was not suppressed via an option
on the LOGON command line, then that device or
named system is then loaded (via IPL) at the
conclusion of the LOGON process. Otherwise,
when the LOGON functions are complete, the
user's terminal is placed in CP read mode ready
for the entry of his first desired command.

Under the latter condition of no automatic
1PL, the user can IPL an alternate nucleus by
using the STOP option in the IPL command. This
option causes the normal IPL procedure to halt
execution prior to loading the initial PSi, and
issues a DIAGNOSE Code 8 that places the user's
terminal in CP read mode. A hexadecimal
character entered in location X'08' changes the
nucleus name. A hexadecimal character entered
in location X'09' changes the apparent storage
size. The BEGIN command allows the IFL
procedure to continue.

Three commands alter the I/O configuration of a
user's virtual machine after he has logged on.
Two are user commands, while the third a system
operator command, because it affects the status
of real devices attached to the system. The
ATTACH and DETACH commands are contained in
DKKVDB and DEFINE in DKKDEF. The system command
scanner (DKKCFM) calls both page able modules
after their format and privilege classes have
been validated. These commands access the same
control-block building subroutines in the module
DKKVDS that DMKLOG, the LOGON processor, uses.

86 IBK VK/370: System Logic and Problem Determination Guide

A!!~£hjB~ ~ S~~l R~!!£~: The system operator can
dedicate any real device to a single virtual
machine by issuing the ATTACH command. The
device attached is available only to the given
virtual machine, and all I/O requests to it are
handled by CCi translation. If the device is a
DASD, cylinder relocation does not occur when
SEEK addresses or home addresses are referenced.
The I/O supervisor does not queue operations on
the device, nor does it automatically restart it
or do ordered seek queueing. Nonsharable
devices such as tape drives must be attached to
a virtual machine to be accessed by the virtual
machine. A virtual machine can also have a
dedicated card read/punch or printer. However,
this is usually not necessary because of the
unit record spooling facilities of CPo Unit
record input or output on a dedicated (attached)
device is not spooled by CPo The unit attached
may be given a different virtual address than
its real address; however, the virtual machine
may not already have a virtual device at the
attached address. A real device cannot be
attached (1) if it is currently dedicated to
another virtual machine, (2) if it contains
mini-disks that are in use by other virtual
machines, or (3) if it is a system owned volume
that is in use for spooling or paging.

~~!!B!n~ ~ !!~!Y~l Device: A system user can
define a new virtuaI--device with the DEFINE
command that does not require the dedication of
a corresponding real device. Devices that can
be defined are consoles, spooled readers,
punches and printers, dialable TP lines, virtual
channel-to-channel adapters, pseudo timers, and
temporary disks. With the DEFINE command, the
user can change any existing virtual device
address whether it corresponds to a shared or
dedicated real device or no real device unit.

The DEFINE command also describe the virtual
machine channel mode of operation, that is,
either selector or block multiplexer. The
default mode, selector channel mode, reflects a
channel busy to any SIO operation attempted on
the same channel path that has not completed the
previous channel SIO operation. Block
multiplexer mode allows the successful
initiation of different devices on the same
channel path. Channel 0, a byte-multiplexer
channel, is unaffected by the DEFINE command.
Also, any channel with a channel-to-channel
adapter (CTCA) defaults to selector mode of
operation regardless of the channel mode
selected. Use of the DEFINE command with the
CHANNELS operand generates a virtual machine
reset; therefore, it should be invoked prior to
the virtual machine IPL operation.

Note: The channel mode selected has
on the types of channels that are
the real system.

no bearing
attached to

Temporary disks are dynamically obtained
cylinders of DASD storage space. They are
available to the user for as long as they are
part of his virtual machine configuration, but
the data on them is destroyed after the user
detaches the area. For all other purposes,
however, they appear to be a standard disk.

R~!!£h!~ ~ !!!!Y~! R~!!£~: A virtual device can
be removed fro. a virtual machine configuration
prior to logging off with the DETACH co •• and. A
user can detach any of his own devices, and the
system operator can detach a real device fro. a
virtual machine. If the operator detaches the
device, the user is informed of the operator's
action. A real device can be detached only if it
is dedicated to a single virtual .achine or is
attached to the system and is not in use when
the DETACH is issued.

A user may permanently or temporarily disconnect
bis ter.inal or virtual machine from the system
by a console command, or the terminal or virtual
macbine may be forcibly disconnected by the
operator. The system can also log off the
virtual machine. In any case, the routines that
handle the termination process are in the
pageable module, DMKUSO.

PERMANENT DISCONNECT: The user may voluntarily
reiove-hIs--vIrtual-machine from the system via
the LOGOFF command. This command terminates all
virtual machine operation, releases all storage
occupied by control blocks and virtual storage
pages, and disconnects the teleprocessing line
connection to the user's terminal. If the user
specifies the HOLD option with LOGOFF, all of
the above occurs, except the teleprocessing line
remains enabled. This option is especially
useful for dialed connections that are reused
immediately by another user.

The virtual machine can be forced off the
system by the system operator via the FORCE
command. This has the same effect as a
user-initiated logoff, except that the user is
informed that the operator has logged off his
machine. A virtual machine may also be logged
off the system:

• If the time for a read of a system password
expires (28 seconds).

• If the user makes a connection to the system
but does not logon within a given period.

• If the virtual machine is running
disconnected (without an active terminal) and
tbe virtual machine attempts a terminal read
or enters a disabled wait state.

The DMKUSOLG and D~KUSOFF subroutines process
the LOGOFF command. DMKDSP calls DMKUSOFF
directly by DMKDSP to force the logoff of a
disconnected user as previously described.

~~~gQ~A~I ~l~~Q!!~~!: A user may temporarily 
disconnect his terminal from his virtual machine 
by using the DISCONN command, while allowing the 
virtual machine to continue to run. This 
command flags the virtual machine as being 
disconnected and releases the user's terminal 
and teleprocessing line. If the HOLD option was 
specified in the DISCONN command, CP allows the 
line to remain enabled, and another user can use 
the terminal to log on. The disconnected 
virtual machine continues to be dispatched until 

Section 1. Introduction 81 



it either attempts to execute a terminal read to 
the disconnected console or it enters a disabled 
wait state. At this time, the dispatcher 
(DMKDSF) calls the routine DMKUSOll directly to 
force the machine out of the system. While the 
machine is disconnected from its virtual console 
(real terminal) any terminal output is lost; in 
addition, CP may apply a disconnected penalty to 
the machines scheduling priority, to bias the 
system in favor of interactive users. 

A user's virtual machine may also be 
di5connected by the system. If the disconnected 
user logs on to the system while his 
disconnected machine is still running he is 
reconnected and can continue to interact with 
th~ system in the usual manner. 

The DMKUSO subroutine processes the DISCONN 
command. 

CONSOLE FUNCTICNS 

CMKCFM analyzes CP commands and passes control 
to the appropriate routine to handle the 
command. DMKC1M can be entered by the ATTENTION 
key at the user's terminal or directly from a 
virtual machine. 

When a console interruption occurs by the 
ATTENTION key at the user's terminal, DMKIOSIN 
calls DMKCNSIN to handle the unsolicited 
interruption, then DMKCNSIN calls DMKCFMBK. 

DMKCFMBK first calls DMKFREE to obtain 
storage for an 18 doubleword input buffer. Next, 
DMKQCNiT is called to send the CP message to the 
terminal to inform the user that he has entered 
console function mode. DMKQCHRD is then called 
to read the command line entered at the 
console. 

DMKCFMEN is the entry point for commands 
coming directly from the virtual machine. 
DMKPRGIN enters at DMKCFMEN here when a DIAGNOSE 
instruction with a code of 8 is detected. The 
address of an 18 double word input buffer is 
passed in register 1; therefore, a read to the 
terminal is not needed. 

After either the read to the terminal or 
entry from the virtual machine, DMKSCNFD is 
called to find the command type. On return from 
DMKSCNFD, register 1 points to the start of the 
command and register 0 contains the length of 
the command. The entered command is matched 
against a list of valid commands. The list 
contains a 16-byte entry for each command. Each 
entry contains 8 bytes for the name, 2 bytes for 
class mask, 2 bytes for an abbreviation count, 
and 4 bytes containing the routine address. If 
the entered command matches an entry in the 
list, it is then checked to ensure that a valid 
abbreviation for the command has been used. If 
this test is not successful, DMKSCN continues to 
scan the list for a valid command. Should the 
abbreviation be valid, a check is then made to 
determine if this user is of the proper class to 
use the command entered. If this is successful, 

DftKCFM then calls the appropriate routine to 
process the command. 

After the command has been processed, control 
is returned to DMKCFM. There are three possible 
returns. (1) On a normal return, the input 
buffer is scanned to see if there are any more 
commands. If none exist, DMKCFft returns to the 
virtual machine (if entered via DIAGNOSE) or 
calls DftKQCNRD to read the next command from the 
terminal. (2) On a return plus 4, the V MCFWAIT 
bit is turned off to allow the virtual machine 
to run. DMKFRET is called to return the input 
buffer storage. Then control returns to either 
the virtual machine, if entered via a DIAGNOSE 
or to DftKDSPCH if entered via the ATTENTION key. 
(3) On a return plus 8, the operation is the 
same as plus 4 except the VMCFWAIT bit is left 
on. 

DISPATCHING AND SCHEDULING 

The scheduler, DMKSCH, selects dispatchable 
virtual machines from the virtual machine 
population. The auxiliary routine that assists 
the scheduler and dispatcher is the request 
stack maintenance routine, DMKSTK. 

To make decisions on dispatching and 
scheduling, the control program places all 
virtual machines into various categories, and 
recognizes user machines as being in one of 
several states. The virtual machine categories 
either interactive or non-interactive virtual 
machine, are defined in the following way: 

• An interactive virtual machine is one whose 
use of the system is punctuated by regular 
and frequent termina1.I/0, and does not have 
long CPU execution times. A virtual machine 
becomes eligible to enter interactive status 
whenever a channel program for virtual 
console I/O has completed, or whenever I/O 
for a dedicated or ~ia1ed virtual 
telecommunications line has completed. 

• A non-interactive virtual machine is one that 
has violated an interactive criterion, or one 
that has entered an idle wait state by 
entering console function mode (equivalent to 
stopped state), or by loading a wait state 
PSi that is not enabled for any busy 
channel. CP schedules interactive users 
ahead of non-interactive users. 
Non-interactive users are subdivided into 
several classes. Normal non-interactive 
virtual machines are scheduled by a priority 
scheme described below. A virtual machine is 
allowed to execute for a specified time 
period and then it is placed in a list of 
those machines that are waiting. 

To give preference to certain classes of 
virtual machines, a priority scheduling scheme 
allows virtual machines to be SCheduled with a 
priority class. The priority is a number 
assigned by the directory; however, the number 
may be altered by the system operator. 

88 IBM VM/370: System Logic and Problem Determination Guide 



To efficiently manage the large inventory of 
potential virtual machines that are logged on to 
the system, CP defines several states that a 
virtual machine may occupy. The scheduler can 
move a virtual machine from one state to 
another; however, a virtual machine may exist in 
only one state at any given instant. CP can 
then make scheduling and dispatching decisions 
by looking only at the subset of virtual 
machines that are in the appropriate state. To 
do this search, it also maintains lists of 
virtual machines in certain executable states. 

A user's virtual machine may be in one of the 
following states: 

state --,--
2 

3 

4 

5 

6 

7 

8 

~g~ning 
Interactive and dispatchable (in queuel, 

in dispatch list) 
Interactive and not dispatchable (in 

queuel, not in dispatch list) 
Interactive and eligible for queuel, but 

queuel is full (waiting for queuel, in 
eligible list) 

In wait state with terminal read or 
write active 

Hon-interactive and dispatchable (in 
queue2, in dispatch list) 

Hon-interactive and not dispatchable (in 
queue2, not in dispatch list) 

Hon-interactive and eligible for queue2, 
but queue2 is full (waiting for 
queue2, in eligible list) 

Idle - waiting for asynchronous I/O or 
external interruption, or stopped (in 
console function mode) 

Entries on the dispatch list are the VMBLOKS 
for those virtual machines in states 1 and 5, 
and represent the virtual machines that can be 
run at any given time. The dispatch list is 
sorted by dispatching priority, which is the 
ratio of CPU time to wait time over the length 
of the current virtual machine task. A task is 
defined as that execution that takes place 
between terminal reads or entry to enabled wait 
(that is, movement from state 4 or 8 to state 1) 
and is re-projected for a virtual machine each 
time it is dropped from a queue. Virtual 
machines entering state 1 always have a priority 
of O. 

The eligible list are virtual machines in 
states 3 and 7; these virtual machines are 
potentially executable but due to the current 
load on the system they are not allowed to 
compete for the CPU. As soon as a virtual 
machine in the dispatch list is dropped from 
queue, the highest priority virtual machine(s) 
in the eligible list is added to the dispatch 
list. Conditions can arise where the virtual 
machine that is added to the DISPATCH list bas a 
projected working set size that far exceeds the 
remaining system capacity. The eligible list 
has two components; a section composed of those 
virtual machines waiting for 01 (interactive) 
and a section composed of those virtual machines 
waiting for 02 (non-interactive). Each section 
of the list is sorted by scheduling priority, 
which is determined at the time the virtual 
machine is added to the eligible list, as 
follows: 

1. The virtual machine's prOjected working set 
size, calculated the last time it was 
dropped from a queue, is expressed as a 
percentage of the amount of main storage 
available for paging. This percentage, 
usually between 0 and 100, is multiplied by 
the paging bias factor (stored at 
DMKSCBPB). 

2. The virtual machine's priority (the 
priority set by the directory or the class 
A SET PRIORITY command) is multiplied by 
the user bias factor (stored at DMKSCHUB), 
and is added to the paging bias calculated 
in step 1. 

3. The sum of paging and user bias is divided 
by the sum of the bias factors to obtain a 
weighted average. 

4. A base priority is obtained by storing the 
TOD clock and using the high order word, 
which increments by 1 approximately once 
per second. This word is then modified by 
shifting it left or right based on the 
priority delay factor (stored at DMKSCHPD). 
If DMKSCBPD is positive, it indicates a 
right shift, thereby increasing the delay 
interval of the base priority. A negative 
value indicates a left shift. 

5. The weighted average obtained 
then logically added to the 
obtained in step 4. 

in step 3 is 
adjusted base 

6. If the virtual machine is entering 02 for 
the first time after being dropped from 01, 
the interactive bias factor (stored at 
D"KSCBIB) is subtracted from the priority 
obtained in step 5. If the virtual machine 
is entering Ql, or if it was last dropped 
from Q2, the interactive bias is not 
applied. 

7. The result of 
scheduling or 
is stored in 
V"BLOK. 

steps 1 through 6 is the 
eligible list priority, and 
the V"EPRIOR field of the 

The VBBLOK is then 
appropriate section of the 
ascending value of VMEPRIOR. 
various biases and the 
illustrated by the following 

sorted into 
eligible list 
The effects of 

delay factor 
examples. 

the 
in 

the 
are 

~~~~~lg 1 
Assume that two virtual machines are to be
added to the eligible list for Q2. The
paging bias factor is 1, the user bias
factor is 1, and the priority delay factor
is o. Virtual machine A has a projected
working set size of 80 percent of available
storage and a user priority of 50. Virtual
machine B has a projected working set size
of 20 percent of available storage and also
has a user priority of 50. The biases are
obtained as follows:

Paging
Bias

80-i-,
20 I 1

Dser
Bias

+ 50-i-'
+ 50 X 1

Weighted
Bias

130/2----65
70/2 35

Section 1. Introduction 89

If A is added to the eligible list at base
time 0, its eligible list priority witll be
65. If the priority delay factor is 0, B
is added ~~~~~ of A provided that B is
eligible for entry to the list within the
next (65-35) 30 seconds. If the priority
delay factor is set to +1, the base is
incremented once every two seconds.
Therefore, although the bias difference is
still 30, the delay time is now 60
seconds.

~!~m£!~ ~
To force A to be given
equal to B, a priority
calculated as follows:

80 + A 20 + B

2 2

1 = B - 60

a weighted bias
differential is

Therefore, for the biases to be equal, A
must have a priority of 60 less than B.
For example, if 1 is given a priority of 10
and B is given a priority of 70, the biases
wuuld compute as follows:

Paging User
Bias Bias

80-i-, + ,o-i-,
20 X 1 + 70 X 1

~!~m£!~ J

Weighted
Bias

90/2 --45----
90/2 = 45

The large difference in priorities could te
lessened by increasing the user bias
factor. If the user bias factor is set to
3 instead of 1, the calculated priority
differential is as follows:

80 + 31 20 + 3B

4 4

3 (B - I) 60

1 B - 20

HOW, 1 requires a priority
then B to achieve parity.

of only 20 less
For example:

Paging User
Bias Bias

80-i-, + 30-i-3
20 X 1 + 50 X 3

weighted
Bias

17 0/4 --4"2----
170/4 42

The above examples illustrate the following
general points about the use of the bias
factors, the delay factor, and the user
priority value:

1. The paging and user bias factors are a
measure of the relative importance of
the bias value. A high user bias
allows greater discrimination via the
assigned priority; while a high paging
bias makes storage requirement the
primary scheduling parameter.

2. The virtual machine priority value, in
the directory, may be overridden, and
is the means through which selected
users obtain improved performance.

3. The priority delay factor is the
measure of the impact that the paging
and user biases are to have. The
greater the delay value, the greater
1S the maximum delay that can be
experienced by a given user.

4. The interactive bias factor is a tool
that enhances command response to
conversational commands that require
disk I/O, and that may be partially
executed in Q2.

If the paging bias factor is nonzero, the net
effect of the priority scheme is to discriminate
against virtual machines that require large
amounts of real storage. This discrimination
results in a higher level of multiprogramming
and increased CPU utilization; however, it must
be traded off against poorer throughput for
large storage users. The distributed scheduler
is ~Q! biased; the bias factors are as follows:

Paging bias factor (DMKSCHPB)
User bias factor (DMKSCHUB)
Priority delay factor (DMKSCHPD)
Interactive bias factor (DMKSCHIB)

o
1
o
o

Thus, the basic VM/370 scheduler schedules
virtual machines FIFO within user priority.

Figure 17 is a graphic breakdown of the user
states, showing the relationship between
interactive and non-interactive states, in-queue
and not-in-queue states, and in-list and
not-in-list states.

,.------------------,
1 In-Oueue 1 Rot-in-Queue 1
1--------------1
IDispatch 1 Ro IEligible 1 Ro 1
1 List IListl List IListl

r-------·--.l-------------- I
1 Interacti ve I 1 I 2 1 3 I 4 1
1------------------------1
IRon-Inter- 1 1 1 1 1
1 active 1 5 1 6 1 7 1 8 1
'-------------------_._---------'
Figure 17. User Dispatching states

Figure 18 shows the possible user-state changes
and the reasons for them; any changes not
described are not possible.

To control the number of virtual machines
allowed in queue, the scheduler monitors the
paging activity of all virtual machines and of

90 IBM VM/370: System Logic and Problem Determination Guide

r ---------------------, 1 Status
1 Change 1
1---------1

1
1
1

1 From 1 To 1 Reason for Status Change 1

1
1

2
2

3

4

4

5

5

5

5

5

6
7
8

2 Pagewait, SIO-WAIT, or enabled
wait for any busy channel

4 Enabled wait for interactive
terminal read or write

5 Exceeds in-queue time slice
7 Same as 1 to 5 except that

queue 2 is full
8 Wait without active I/O, dis-

abled WAIT or hit ATTN
1 Wait condition complete
5,7 Wait completes, but in-queue

time slice exceeded
Another user drops from queuel

and now there is room
Terminal I/O completes while

user is waiting
3 Terminal I/O completes, but

queuel is full
Terminal I/O completes while

user is active in queue2
4 User puts up terminal read or

write and enters wait
6 Pagewait, SIO-WAIT, or enabled

wait for busy channel
7 Dropped from queue2 due to

in-queue time-slice end
8 Wait without active I/O, dis-

abled WAIT, or hit ATTN
5 wait condition completes
5 Room is found in queue2
5,7 IAsynchronous I/O or external

1 interruption or BEGIN

Figure 18. User Status Changes

the total system. A decision as to whether or
not to move a potential virtual machine from the
eligible to the dispatch list is based upon
whether or not that its projected working set
exceeds the system's remaining capacity.
Individual virtual machine's working sets are
calculated and projected at queue drop time
according to one of the following formulas:

P=(A+P)/2

If (lP-lA) r (P-A) < 0

-- or --

P=A

If (lP-lA) r (P-A) ~ 0

The working set is added to the current system
load, which consists of the sum of the working
sets for all virtual machines currently in a
que~e. The sum is compared to the system
maX1mum, which is equal to the number of
dynamically assignable pages in the system. If
the virtual machine's projected working set will
not push the system load over tthe virtual
machine maximum, he is placed in the queue and
added to the dispatchable list.

A Actual working set at queue drop time

lA last actual working set

lP last projected working set

Current projected working set P

The actual working set, A, is the smaller of the
two values determimined at queue drop time by
the following formula:

r ,
N

L PRi / • + Steals

A i= 1

-- or --

Pages referenced

N Number of page reads while in queue.

PR Number of pages resident at the ith
page read.

Steals Number of times page wait was entered
because of a stolen page.

The number of referenced pages is determined by
scanning the virtual machine's page tables for
software referenced bits. These bits are set by
D"KPTRAN when the page is taken from the virtual
machine by CPo Thus the actual working set is
generally th~ average number of pages resident
at each page read. However, this estimate is
sensitive to the overall system paging activity
for the following reasons:

1. If there is no paging load on the system,
there is one page read for each resident
page, and no steals; the working set
therefore tends to be equal to about one
half of the resident page total.

2. As paging activity increases,
working set location shifts, the
set tends to increase toward the
number of resident pages.

and the
working
average

3. If paging activity becom~s excessive, the
number of page steals 1ncreases to the
extent that the working set expands to the
maximum of the total number of pages
referenced while in the queue.

In summary, the scheduler selects the subset of
logged-on virtual machines that are allowed to
compete for the resources of the CPU, with the
constraint that a new virtual machine is not
added to the active subset if its projected main
storage requirement, added to that of the other
active virtual machines, causes the current

section 1. Introduction 91

capacity of the syste. to be exceeded.
Selection within scheduling priority simply
means that a executable virtual .achine of high
priority is always added to the active subset
(to a queue) before a executable virtual machine
of lower priority. If the paging bias mechanism
is activated by setting the paging bias factor
to a nonzero value, scheduler selection is in
favor of smaller virtual machines; otherwise,
selection is within priority. Once the active
subset (the set of in-queue virtual machines)
has been selected, the dispatcher allocates
resources of the CPU among them.

The list of executable virtual machines in a
queue is sorted by dispatching (as opposed to
scheduling) priority. The dispatching priority
is a running average of a given virtual
machine's CPU time/wait-time ratio. Thus,
virtual machines who are most likely to go into
wait state, based on past performance, are
dispatched ahead of those whose demands on the
CPU are more extensive. This simple ratio
priority is normally altered if a virtual
machine is identified as compute bound by means
of the fact that it has executed for at least 50
ms. without entering the wait state. In this
case, it is placed at the bottom of the
dispatchable list. On the other hand, virtual
machines identified as interactive by virtue of
the frequency their requests for terminal I/O
are placed at the top of the dispatchable list.

DMKDSP also provides a fast dispatch path for
virtual machines that have issued specific
privileged instructions that are not handled by
the Virtual Machine Assist feature.

These virtual machines can be dispatched very
rapidly because the virtual machine's program
old PSM needs very little reconstruction to
redispatch the virtual machine, hence use of
full PSi reconstruction path is not required.
The decision for using the fast dispatch path
(DMKDSFA) is accomplished by the module that
handles privileged operation, DMKPRV.

ihen the resources of the CPU (and real storage)
are being allocated, the dispatching and
scheduling functions are implemented in such a
manner that options exist which allow an
installation to designate that certain virtual
machines are to receive preferential treatment.

The favored execution options allow an
installation to modify the algorithms described
above and force the system to devote more of its
resources to a given virtual machine than would
ordinarily be the case. The options provided
are:

1. The favored execution option.
2. The favored execution percentage.

The favored execution option means that the
virtual machine so designated is never to be
dropped from the active (in-queue) subset by the
scheduler. When the virtual machine is
executable, it is to be placed in the

dispatchable list at its normal priority
position. However, any active virtual machine
represents either an explicit or implicit
commitment of main storage. An explicit storage
com.itment can be specified by either the
virtual=real option or the reserved page option.
An implicit commitment exists if neither of
these options are specified, and the scheduler
recomputes the virtual machine's projected
work-set at what it would normally have been at
queue-drop time. Multiple virtual machines can
have the basic favored execution option set.
However, if their combined main storage
requirements exceed the sytem's capacity,
performance can suffer due to thrashing.

The basic favored execution option removes
the primary source of elapsed time stretch~out
in a loaded time-sharing environment. However,
if the favored task is highly compute bound and
must compete for the CPU with many other tasks
of the same type, an installation can define the
CP~ allocation to be made. In this case, the
favored execution percentage option can be
selected for one virtual machine. This option
specifies that the selected virtual machine, in
addition to remaining in queue, receives a given
minimum percentage of the total CPU time, if he
can use it. The percentage is assured in the
following manner:

1. The in-queue time slice is multiplied by
the requested percentage and added to the
virtual machine's current total CPU time
usage.

2. When the favored virtual machine, is
executable, it is always placed at the top
of the dispatchable list until it has
obtained his guarantee.

3. If the virtual machine obtains its
guarantee before the interval has elapsed,
it is placed in the dispatchable list
according to its caluculated dispatching
priority.

4. In any case, at the end of the in-queue
time slice, the guarantee is recomputed as
in step 1 and the process repeated.

These options can impact the response time of
interactive virtual machines and only one
favored percentage virtual machine is allowed at
any given time.

Most of the routines in the CP nucleus are
reenterable and multiple control program or
virtual machine tasks can make use of one
routine at the same time. However, there are
certain areas where requests for a resource must
be serialized (as in paging) or delayed while
previous requests are serviced (as in requests
to schedule I/O) •

92 IBM VM/370: System Logic and Problem Determination Guide

The routine handling the request obtains a
CPEXBLOK from free storage and stores the
caller's registers in it; when the requested
resource is free, the CPEXBLOK is stacked for
the dispatcher via a call to the request stack
manager (DMKSTKCP). The dispatcher un stacks the
block and exits to the requesting routine the
next time it is entered. I/O requests are
stacked in the same manner, except that the
stacking vehicle is the IOBLOK, and return is
passed to the address specified in the interrupt
return address (IOBIRA). In either case, it
should be noted that the dispatcher always
unstacks and gives control to any stacked
IOBLOKs and CPEXBLOKs prior to dispatching a
user. This guarantees that CP information
needed by a virtual machine (such as page
availability) is always as up-to-date as
possible.

CP SPOOLING

The spooling support in
functions.

CP performs three

• Simulates the operation of the virtual unit
record devices that are attached to each
user's virtual machine configuration. The
simulation is done in such a way that it
appears to the program in the virtual machine
that it is controlling a real unit record
device. This support involves the
interception and interpretation of virtual
machine SIOs, the movement of data to and
from the virtual machine's virtual storage
space, and the reflection of the necessary
interruption codes and ending conditions in
PSW's, CSW's and sense bytes. This support
is provided by the virtual spooling
executive.

• Operates the real unit record equipment,
attached to the system, that transcribes
virtual machine output spool files to the
real printer or punch and input from the real
card reader to DASD storage. This function
is provided by the real spooling executive.

• Provides an interface among the virtual
machines, the system operator, and the
spooling system so that the locatioh, format,
priority and utilization of the systems
spooling data and resources can be
controlled.

SPOOL DATA AND FILB FORMAT

The buffers that collect and write spool data
are all one page (4096 bytes) in length, and
contain the data to be transcribed and all CCis
necessary for operating the unit record devices
that perform the transcription. The data is
provided in the exact format required with no

compression except that trailing blanks are
suppressed. The first two doublewords of each
buffer contain linkage information described
below, followed by the data and CCWs.

Bach spool logical record (card or print
line) is stored as one CCW that moves data (READ
or WRITB), a TIC to the following CCW, and the
full data record. Space is left at the end of
each buffer so that a SENSE command can be
inserted to force concurrent channel end and
device end. For card punch channel programs
there is an additional back chain field that
points to the card previously punched so that
error recovery for punch equipment checks can
back up one card. The only exception to the
format of RBAD/MRITB-TIC-Data is in buffers of
files directed to the printer. In this case,
immediate operation code CCWs (skips and spaces)
are followed by the next CCW.

In addition to the data and CCWs contained in
each spool buffer, the first two doublewords
contain forward and backward links to the next
and previous buffers in the file. This two-way
linkage allows the file to be backspaced or
restarted from any point at any time. Also, it
means that if I/O errors are encountered while
reading one buffer, the file is put in system
hold status. If purged, all buffers except
those in error are released. The two-way chain
allows this control of the file while preventing
fragmentation by allowing pages to be assigned
and released individually regardless of their
ownership.

The first spool buffer of an output spool
file contains a special data record called the
tag record. This record immediately follows the
two doublewords containing the forward and
backward buffer linkage pointers. The tag record
allows VM/370 users to specify information to be
associated with spool files that they generate.
The information is entered via the CP TAG
command, although the tag record is not
considered a spool file data record and is not
printed or punched as part of the spool file.
However, the contents may be interrogated via
the CP TAG QUBRY command.

The format of the tag record is a NOP CCW,
followed by a TIC to the next CCW and a 136 byte
data field. To differentiate the tag record
from an immediate NOP CCW (no TIC-data sequence)
independently of the command code, the 'skip'
bit (bit 35) in the CCM has the following
convention:

Bit 35 = 0 for NOP CCW, TIC, data (tag
record)

= 1 for NOP CCM (immediate NOP
co.mand)

Each spool file in the system is controlled
by a spool file control block (SFBLOK) that is
resident in storage. While the file is open,
these blocks are chained from the devices
(either real or virtual) that are processing the
file, and from device type file anchors after

section 1. Introduction 93

the file is closed. There is one file chain
each for printer, readerv and punch files. Each
SFBLOK contains information about the file that
describes its owner and originator (these can be
different for transfered files), the filename
and filetype, and the class and number of copies
for output files. All of these attributes can
be examined and most can be changed by the
file's owner or the system operator. The SFBLCK
also contains information such as the starting
and ending buffer addresses for the file, the
record size, certain file status flags, etc.

SPOOL BUFFER MANAGEMENT

Buffers that temporarily store spool data on its
way between DASD secondary storage and the
user's virtual machine are allocated from a pool
of virtual storage space that belongs to CPo
The size of this pool varies with the real
storage available to VM/370 (the storage
specified at system generation or actual real
storage, whichever is less). Allocation is as
follows:

Virtual Buffers
___ !1!~£~!~~ __ _

256K to 655,360 bytes 128
655,361 bytes to 1.1 megabytes 320
over 1.1 megabytes 640

virtual storage buffers are allocated in
l-page increments by DMKPGT at the time the
spool file is opened for either input or
output. If no virtual storage space is
available, the virtual machine is placed in a
wait state until a buffer is freed by another
virtual machine closing a file. This places
limits on the number of concurrent spooling
operations permitted by the system because
spooling operates as a high priority task.

Real storage is not allocated for a spooling
buffer until a virtual machine actually issues a
SIO that attempts to transfer data between the
buffer and the user's virtual storage space. At
this time, a page of real storage is allocated
to the buffer via the real storage paging
manager. The buffer is locked in main storage
(that is, is unavailable to be paged out) only
for the amount of time necessary to transfer the
data. After the data transfer is complete, the
buffer is treated as a normal page of virtual
storage, and can be selected to be paged out.
This ensures that low usage spool files do not
have buffers in real storage, while the buffers
for high usage files should remain resident.
The location of the spool buffer in real storage
is transparent to the virtual spooling
executive, because all references to the data
therein are accomplished through the DAT feature
of the cPU.

While a spool buffer is inactive, it resides in
real storage or on the paging device. After it
has been filled with data from the virtual
machine or a real input reader, it is written
to a page of secondary DASD storage. The
allocation of pages on the spooling disk(s) is
managed by DMKPGT, which handles requests for
both pages of virtual storage and semi-permanent
spool file residence. DMKPGT maintains separate
allocation block chains for virtual storage and
spooling pages. Each block contains control
information and a bit map that allocates pages
on a single cylinder. If none of the cylinders
allocated have any available pages, DMKPGT
enters its cylinder allocation routine.

DMKPGT attempts to even out the spooling and
paging I/O load by allocating cylinders across
channels and devices. To minimize seek times on
a given device, cylinders are allocated as close
to the relative center of the spooling or paging
area as possible.

f~~j~~ Q~!i£~ ~y££~~!: All actual I/O for the
page buffers on any device is controlled by the
paging I/O executive DMKPAGIO.

VIRTUAL SPOOLING MANAGER (DMKVSP)

The two functions of the virtual spooling
manager are (1) to simulate the operation of all
spooled unit-record devices attached to the
user's virtual machine, and (2) to read and
write the spool files associated with those
devices. The following virtual devices are
supported for spooling, with tbe exceptions
notefr:

• IBM 2540 Card Reader/Punch, except for punch
feed read and column binary

• IBM 1403 Printer Models
positions)

2 and N1 (132

• IBM 3211 Printer (150 print positions)

• IBM 3505 Card Reader (except for mark senses
reading)

• IBM 3525 Punch (except for the card read,
print, and data protect features).

The following consoles
spooling when entered into
virtual system console:

are supported for
the directory as the

• IBM 1052 Printer-Keyboard, Model 7 (via the
2150 Console)

• IBM 3210 Console printer-Keyboard, Models 1
and 2

• IBM 3215 Console Printer-Keyboard, Model 1

All virtual printers must have the universal
character set feature. No checking is done on
the spooled printer data. However, any UCS

94 IBM VM/370: System Logic and Problem Determination Guide

buffer commands issued by the virtual machine
(load UCS buffer, block data checks, etc.) are
ignored. It is up to the user and the
installation to ensure that the output is
directed to the proper real printer via use of
the output CLASS feature described below. For
the 3211 printer, forms control buffer (PCB)
commands are accepted and simulated by means of
a virtual PCB maintained by the executive. The
use of the virtual PCB is the only way to
si~ulate end-of-form conditions reflected hy the
detection of a channel 9 or 12 punch. When the
spooled file is directed to a real 3211 or 1403,
the operator is responsible for loading the FCB
or mounting the proper carriage tape.

If any of the unsupported unit record
features are required, the real device must he
attached directly to the user's virtual
machine. Thus, a 3505 reader could he a
spooling input reader, but attached directly to
a batch virtual machine when it is necessary to
read mark sense cards.

DMKVSP receives control from the virtual I/O
executive, DMKVIO, when the user's machine
issues a SIO to a spooled unit record device.
DMKVIO does not pass control until it has been
determined that the device is availahle (that
is, non-busy and with no interruptions
pending). DMKVSP first determines if the device
is currently processing a file. If it is,
processing continues. If this is the first
command issued hy the given device, a new output
file must be opened. An open suhroutine is
called to build the control blocks necessary to
manage the file and to ohtain virtual storage
and DASD buffer space. Control is then returned
to DMKVSP.

Before the first record of an output spool
file is written, DMKVSP writes a tag record (NOP
CCW, TIC, data sequence) and initializes the
136-byte data area to blanks. It then sets the
spool buffer displacement pointer to the first
doubleword in the buffer heyond the tag record.
DMSVSP then analyzes and interprets the channel
program associated with the virtual machine's
SIO. Each CCW is tested for validity of
command, address, flags, alignment, protection,
etc., and if the CCW is valid, the virtual
machine's data is moved from his own virtual
storage space to the buffer in the spooling
virtual storage. When this buffer is full, it
is written to a page of DASD secondary storage
and a new buffer is obtained. The
interpretation of the virtual machine's channel
program continues until there are no more CCWs
or until an error condition is detected that
prohibits further processing. In either case,
the device is marked as having the proper
interruptions pending, a CSW is constructed, and
DMKVSP exits to the main dispatcher. In contrast
to nonspooled I/O, the virtual machine has
remained in a pseudo-wait (IOWAIT) for the time
it took to interpret the entire channel
program.

The output file can be logically closed by
the virtual machine either by issuing an invalid
CCw co.mand code, or hy the CP CLOSE co.mand.
In either case, DMKSPL checks for tag record
information in the VSPXBLOK. (The VSPXBLOK,
pointed to by the VDEVEXTR field of the VDEVBLOK
for the output spool device, contains the tag
information entered via the CP TAG com.and.) If
tag data exists, the first spool buffer for the
file is read in, the tag data is inserted in the
tag record, and the buffer is rewritten to DASD
storage. If no tag data exists, the tag record
data field is left blank. The device is then
cleared of pending interruptions, the file
chains are completed, and the file is either
queued for output on a real device of the proper
type (printer or punch), or, if IPER is in
effect, is queued for input to another virtual
machine.

Input file processing is similar to output file
processing, except for the open and close
functions, and the analysis of CCW commands and
the direction of data movement. Many common
routines are utilized to locate and verify CCWs,
obtain buffer space, and to move the spooling
data.

The difference in the open function is that
instead of creating a new file, it is necessary
to locate a reader file that already exists in
the system. To do this, the open subroutine
scans the SPBLOKs chained from the anchor,
READBRS, to find a file with an owner userid
that matches that of the caller and is not in
hold status. If a file is not found, a unit
check or intervention required condition is
reflected to the virtual machine; otherwise, its
SPBLOK is chained to the control hlock for the
reader and the channel program is interpreted in
the same manner as for an output file.

After the input file is exhausted, a unit
exception is reflected to the user machine,
unless the user has requested either continuous
spooling or that an BOP not be reflected. With
continuous spooling, the unit exception is not
reflected until the last file for that virtual
machine is processed. If HOEOP is specified,
the simulation terminates with a unit check or
intervention required condition (similar to what
happens if the BOP hutton on a real reader is
not pushed) •

In either case, the input file is then
deleted from the system, unless the user has
specifically requested that his input files be
saved. If the file is saved, it can be re-read
any number of times.

Support of virtual console I/O for both the
virtual machine and VM/370 is provided as an
option for the VM/370 spooling capabilities.
This support fulfills the following
requirements:

Section 1. Introduction 95

•

•

•

•

Provides hardcopy support
Facility virtual machines.

for CMS Batch

Provides hardcopy support for display devices
used as system or virtual machine consoles.

Allows disconnected virtual machines to spool
virtual console output, CP commands and
system resources to disk instead of losing
the output.

Improves the perfor.ance
that currently produce a
console output.

of virtual machines
large amount of

Whenever a SIO is issued to a virtual machine
console, the virtual console manager (DMKVCN)
determines if the spooling option is active. If
it is, control is passed to the virtual spooling
manager at DMKVSPBP to insert the data into a
spool file buffer. While console spooling
utilizes, basically, the same code as printer
spooling, the fcllowing exceptions are made:

• A skip to channel 1 CCW is inserted after
every 60 lines of output.

• The operator's
is written out
output.

virtual console
after every

spool buffer
16 lines of

The virtual spool buffer is written out to
the allocated spool device when the first CCW
is placed in that virtual buffer. The linkage
drea of the virtual spool buffer takes the
form of a CLOSE file to allow checkpoint
(DMKCKP) to recover the active spool file in
the event of a shutdown because of system
failure. The data in the virtual buffer, not
yet written out to the spool device will not
be recovered.

To maintain a pseudo closed file status for
console spool files, DMKSPL now assigns spool
identifications to all output spool files
where they are first queued.

A virtual system reset, device reset, or 1PL
does not close the virtual console spool
file. --The LOGOFF, FORCE, or DETACH of
virtual console commands does close the
virtual console spool file.---The SHUTDOWN
command does close the operator's console
spool file. If the SHUTDOWN command is
issued by a Class A user other than the
operator, the console spool file for both the
user and operator is closed.

The inclusion of the spool file tag record in
a virtual console spool file is processed by
DMKVSP and DMKSFL as described for printer spool
files in "Output File Processing" under "Virtual
Spooling Manager."

REAL SPOOLING MANAGER (DMKRSP)

The real spooling manager operates the real unit
record devices that are attached to the system
and that are used to transcribe input data into
reader spool files and user output spool files
onto the real printers and punches. The

executive optimizes the use of main storage and
the CPU rather than running the system unit
record devices at their rated speeds. DASD
input files are not double buffered and under
periods of peak load, input and output devices
tend to run in bursts. However, command
chaining is used for all unit record channel
programs so that the devices are running at
their maximum speed with a minimum of
interruptions.

Both the input and output operations of DMKRSP
are interruption driven. Thus, DMKRSP does not
process unless an internally or externally
generated not-ready to ready device end
interruption occurs. External interruptions are
generated by the hardware in the normal manner,
while internal, "pseudo interruptions," are
generated by the software when an output file
has been queued on the real printer ~r punch
file chain, or when the operator issues a START
command to a drained device.

Upon receipt of the initial device end for a
printer or punch, DMKRSP searches the
appropriate file chain for the SFBLOK of a file
whose class matches that of the device that was
made ready. When the SFBLOK is located
(provided the file is not in a HOLD status) f it
is unChained from the output queue and chained
to the real device block that services the file.
A page of real main storage is then obtained for
use as a buffer, and the output separator
routine (DMKSEP) is called to print output
identifier pages. When DMKSEP returns control
to DMKRSP, the first buffer of the file is paged
into real main storage, and the CCWs in the
channel program that it contains are adjusted so
that their data addresses correspond to the real
addresses at which the data resides. The real
SIO supervisor (DMKIOSQR) is then called to
start the channel program, and DMKRSP exits to
the dispatcher (DMKDSPCH) to await the
interruption.

When the channel end/device end interruption
for the completed buffer is unstacked to DMKRSP,
the forward chain file link field locates the
next buffer. This buffer is paged-in, and the
process is repeated until the final buffer is
processed. At this point, the number of copies
requested for the file is decremented. If the
number of copies is 0, processing is terminated
and the file is deleted from the system;
otherwise, the process is repeated as many times
as necessary.

When file processing is complete, a scan of
the appropriate output queue is again made, and
if a file is found it is processed. If the
queue is empty, or if a file with a matching
class is not found, an exit is taken to DMKDSPCH
to wait for another ready interruption.

output file processing can be modified by
either the system operator, by a spoolin9
support command or as a result of system errors.
The operator commands allow a given file to be
backspaced or restarted, and the files of
individual users or the whole system to be held

96 IBM VM/370: System Logic and Problem Determination Guide

and released for output. I/O errors also affect
the spooling system, and a description of how
they are processed is in the section "Error
Recovery."

Reader file processing is initiated by the
receipt of a device end interruption from a
spooling card reader. No explicit operator
command is required to start the processing of
an input file. When the device end is unstacked
to DMKRSP, an open subroutine is called to build
the necessary control blocks and to obtain the
virtual, real, and DASD buffer space required
for the file. A channel program to read 41
cards is built in the buffer, and DMKIOSQR is
called to start the reader.

When the interruption for the first buffer is
unstacked, the first card is checked for its
validity as a userid card. The minimum
information that this card must contain is the
use rid of the owner of the input file. It may
appear anywhere on the card, with the
restriction that it must be the first
information punched. Optional information on
the userid card can include a filename and type
and/or the class of the virtual card reader to
which the file is to be directed. If the userid
is valid, the file processing continues;
otherwise, the operator receives an error
message and processing is terminated.

After each file buffer is read, it is written
onto disk by the paging I/O routines in the same
way that virtual output files are handled. When
a unit exception signaling physical end-of-file
is received from the reader, the file is closed
by writing the final buffer to disk and
completing and queuing the SFBLOK to the
reader's file chain. If the owner of the file
is currently logged on, he is given a message
indicating that a file has been read and if he
has an available card reader, it is posted with
a device end interruption. An available reader
is one of the correct class which is ready, is
not bUSY, has no active file, and has no pending
interruptions.

Various routines in CP accumulate, format, and
punch account cards that contain system usage
information for certain users. These routines
format the information into an SO-column card
image preceded by a punch CCW and call DMKACOAQ
to queue the card for real output. DMKACOAQ
calls DMKACOPU to punch the card on a real
punch, if one is available; otherwise, the card
is queued in main storage until a punch is free.
When a punch finishes processing its last file,
a test is made to see if any accounting cards
have been queued. If they have, DMKACOPU is
called to process them.

In addition to the cards generated by CP to
account for a virtual machine's use of system
resources, the user may request cards to be

punched in order to account for the use of
virtual machine resources by jobs running under
his userid. In order to do so, the user must
have the account option (ACCT) entered into the
directory.

To punch an accounting card, the user must
issue a code X'004C' DIAGNOSE instruction with a
pointer to either a parameter list containing
user specified "charge to" information, or a
data area containing up to 70 bytes of user
specified information to be punched into the
accounting card. DMKHVC validates the
instruction operands, builds an account buffer
(ACNTBLOK), and DMKACOQU is called to queue the
card for real output. For additional
information about this user option, see
"DIAGNOSE Interface (DMKHVq" under "Privileged
Instructions."

When the user accounting option is being
utilized, the user must keep in mind that each
additional accounting record requested is
occupying real storage space. Degradation of
system performance occurs if available storage
becomes filled with accounting data.

SPOOLING COMMANDS

The spooling commands provide an interface
between the user, the system operator, and the
spooling system. There are three types of
spooling commands:

• Those that affect virtual devices

• Those that affect real devices

• Those that affect spool files that are queued
within the system

The commands that affect virtual devices are
generally available to all system users, and a
user can only affect the status of devices that
are attached to his own virtual machine.
Commands that affect the status of the real
system's spooling devices can be used by the
system operator only. Commands that affect
closed spool files that are awaiting processing
are generally available to all users, with some
additional capabilities assigned to the system
operator. For example, a user may alter the
char~cteristics only of those files that have an
owner's userid that matches his own, whereas the
system operator may change any spool file in the
system.

Each spool file in the system has a number of
attributes that are assigned to it, either
explicitly or by default, at the time that it is
created. These attributes and their values are
as follows:

• Filename and filetype can be 24 character
fields. Either or both can be replaced by a
user-supplied value.

section 1. Introduction 97

•

Spoolid number is a system-assigned number
between 1 and 9900. It is automatically
assigned when the file is created (input) or
closed (output), and is unique within the
system. The file's owner, the device type,
and the id number are specified. Usually,
the userid defaults to the identification of
the user issuing the given command. Because
the identification number rather than the
filename and filetype is an identifier,
duplicate user-assigned names do not present
an identification problem.

The number of logical records (cards or
print lines) in the file is an integer
between 1 and 16 million. For printer
files, the record count also includes any
immediate operation code space or skip
CCWs.

• The originating user is the identification
of the file's creator, if the file has been
internally transferred from the originator's
printer or punch to the new owner's card
reader.

The number of copies requested for an output
file is between 1 and 99. Unless altered by
the user or operator, it defaults to 1.

• The device type is used by DIAGNOSE for a
file transferred to a reader to determine
the virtual type of output device.

In addition to those attributes, a file that
is queued for real output or virtual input
always has a class associated with it. A class
is a single alphameric character from A through
Z or from 0 to 9. It controls both the real or
virtual device on which the file will be
printed, punched, or read, and the relative
priority and sequence of output on the device.
While each file is assigned a single class, each
real spooling output device can be assigned from
one to four classes. The device then processes
only files that have a class attribute that
corresponds to one of its own, and processes
these files in the order that its own classes
are specified.

For example, if a printer is assigned the
classes A, D, 2, it processes any printer file
with a class of A before it searches the printer
output queue for a file with class D. All class
D files are printed before class 2 files.

The output class for a file is assigned at
the time the file is created and is the class
that is associated with the virtual device that
created it. While each real spooling device can
have up to four classes, each virtual spooling
device can have only one. When a user logs onto
to the system, the class associated with a
device is the one defined in his directory entry
for that device. However, he can alter this
class at any time by the SPOOL command. As
files are created and closed by a device, they
take on the device's output class.

After they are closed and are awaiting
output, their class can be changed by a CHANGE
command issued either by the file's owner or the
system operator. The system operator can alter
the system generated output class (es) of a real
output device by the START command. Output

files transferred to a user's virtual reader can
also be controlled by class. If the receiving
user has several readers, the input to each can
be limited to files of a certain class. In
addition, the ORDER command allows sequencing of
input files by class as well as spoolid number.

output priorities can also be managed by
altering the hold status of a file. Individual
users can alter the hold status with the CHANGE
command, While the system operator can change
(hold or free) the files of specific individual
users.

These commands affect the status of a user's
virtual spooling devices:

Command
CLosi--

SPOOL

!1~~n!!!g
Terminates spooling operations on a
specified device. It clears the
device of any pending interrupt
conditions, and for output files,
updates the tag record, completes and
queues the file for real output.
Optional operands allow the user to
specify a filename and filetype, and
to override for the given file any
standard CLASS, HOLD/NOHOLD or COpy
operands set into the output device by
the SPOOL command.

Establishes the file attributes that
apply to files created on, or read by,
the given device. It establishes the
class that will be in effect, whether:
files are to be automatically held,
input files are to be saved or purged
after reading, and output files are to
be directed to the real system
Frinters and punches or are to be
transferred to a user's virtual
reader.

The operator can use these commands to control
the activity of the real spooling devices:

Command ~~~~!~g
BACKSPAC Backspaces an active spooling device

for either a specified number of pages
(printers only) or to the beginning of
the file (printers or punches).

DRAIN Stops the operation of a specified
output or input device after it has
finished processing the file on which
it is currently working. A printer
must be drained prior to the issuance
of the LOADBUF command. Unit record
devices are normally drained prior to
system shutdown.

START Restart a device after it has been
drained. Options allow the operator
to specify the spooling output class

98 IBM VM/370: System Logic and Problem Determination Guide

FLUSH

REPEAT

LOADBUF

SPACE

for the output device and output
separator records.

Immediately halts the output on the
specified device and either flushes
that copy of the file from the system,
or puts it into the system hold status
for future processing.

Supple.ents the number of copies
requested by the user for the file
when it was created. The operator can
specify a number froa 1 to 99 that is
added to the number specified by the
user.

Loads the universal character set
buffer of the FCB of the specified
printer with the specified image. If
requested, the system verifies the
loading by printing its contents on
the affected printer.

Forces the output on the specified
printer to be single spaced,
regardless of the skipping or spacing
commands specified by the file's
creator.

~EQQ! l!!~ ~~~~g~!~~~ ~~!!~~g~: The spooling
commands alter the attributes and status of
closed spool files that are queued and awaiting
processing. When a command applies to an
individual file, the device type (RDR, PUN, PRT)
and the spoolid number must be provided to
identify the file. In most commands requiring a
spoolid, the keyword CLASS followed by a valid
spool class or the keyword ALL are acceptable
substitutes for the spoolid number. This causes
the command to be executed for all files of the
given class or device type. The use rid is the
identification of the user issuing the command,
except that the system operator must explicitly
supply the identification of the user whose
files he wishes to affect or he must specify the
keyword SYSTEM, which give$ access to all files
(valid for CHANGE, PURGE, ORDER, and TRANSFER
commands also).

Command
CHAUGi-

HOLD

FREE

PURGE

~~~~i~~ 
Changes the filename and filetype, the 
number of copies, and the class of the 
specified file. Any of the above 
attributes of a file can be determined 
via the QUERY command. 

Places, via the system operator, 
specified file in a hold status. 
file is not printed or punched 
released by the system operator. 
operator can hold any user files 
device type. 

the 
The 
is 

The 
by 

Opposite of the HOLD co.mand. Allows 
a file or group of files that were 
previously held to become available 
for processing. However, the user 
cannot reset a hold that was set by 
the operator with the HOLD command. 

Removes unwanted spool files from the 
system before they are printed or 
punched. 

ORDER Reorders the input files in a virtual 
card reader. It can order files by 
identification number, by class, or by 
any combination of the two. 

TRANSFER Transfers a virtual reader to another 
user's virtual reader without any 
processing. The TRABSFER command 
causes a changing in the owning userid 
field in the file's SFBLOK. 

SPOOL FILE ERROR RECOVERY 

I/O errors on real spooling unit record devices 
are handled by a transient routine that is 
called by DMKIOS after it has sensed the unit 
check associated with the error on a spooling 
device. If appropriate, a restart CAW is 
calculated and DMKIOS is requested to retry the 
operation, in some cases waiting for a device 
end that signals that the failing device has 
been made ready after manual corrective measures 
have been taken. If, after retrying the 
operation the error is unrecoverable, DMKIOS is 
informed that a fatal error has occurred. 
DMKIOS then unstacks the interruption, flagged 
as a fatal error, and passes control to real 
spooling executive. The routines that handle 
unstacked interruptions in real spooling 
executive only module operations that have been 
completed correctly or those that are fatal 
errors. If a fatal error is unstacked, the 
recovery mechanism depends on the operation in 
progress. 

For fatal reader errors, processing of the 
current file is terminated and any portion of 
the file that has been read and stored on disk 
is purged. The owner of the file is not 
informed of the presence of a fractional part of 
the file in the system. 

For fatal printer or punch errors, the SFBLOK 
for the partially completed file is re-queued to 
the appropriate output list and processing can 
be resumed by another available printer or 
punch, or can be deferred until the failing 
device is repaired. 

In any case, the failing device is marked 
logically offline, and no attempt is made by the 
system to use it until the operator varies it 
back online via the VARY command. 

DASD I/O errors for page writes are transparent 
to the user. A new page for the buffer is 
assigned, the file linkage pointers are 
adjusted, and the buffer is rewritten. The 
failing page is not de-allocated and no 
subsequent request for page space is granted 
access to the failing page. If an unrecoverable 
error is encountered while reading a page, 
processing depends on the routine that is 
reading the file. If the processing is being 

section 1. Introduction 99 



done for a virtual reader, the user is informed 
of the error and a unit check/intervention 
required condition is reflected to the reader. 
If the processing is being done for a real 
printer or punch, the failing buffer is put into 
the system hold status, and processing continues 
with the next file. In either case, the DASD 
page is not de-allocated and it is not available 
for the use of other tasks. 

If the space allocated for paging and spooling 
on the system's DASD volumes is exhausted and 
more 'is requested by a virtual spooling 
function, the user receives a message and a unit 
check intervention required condition is 
reflected to the virtual output device that is 
requesting the space, the output file is 
automatically closed and it is available for 
future processing. The user can clear the unit 
check and periodically retry the operation which 
will start when space is free or completely 
restart later from the beginning of the job. If 
the task requesting the space is the real 
spooling reader task, the operator receives an 
error message and the partially complete file is 
purged. Any time the spooling space is 
exhausted, the operator is warned by a console 
message and alarm. However, the system attempts 
to continue normal operation. 

RECOVERY FROM SYSTEM FAILURE 

Should the system suffer an abnormal 
termination, CF attempts to perform a warm 
start. Spool file and device data, as well as 
other system information is copied from real 
storage to warm start cylinders on DASD 
storage. When the systme is reinitialized, the 
spool data and other system data is retrieved 
from the warm start cylinders and operation 
continues. 

If the warm start data in real storage had 
damaged by the abnormal termination, the warm 
start procedure recognizes the situation and 
notifies the operator that a warm start cannot 
be performed. Another recovery method would be 
to attempt a checkpoint start. 

The spool file recovery routines (DMKCKS) 
dynamically checkpoint on DASD storage; the 
status of all open reader files, the status of 
all closed output files, real spooling device 
data, and system hold queue information. This 
information is stored on checkpoint cylinders 
that are allocated, along with warm start 
cylinders, at system generation. 

When a checkpoint (CKPT) start is requested, 
spool file and spooling device information is 
retrieved from the checkpoint cylinders. Spool 
file blocks are chained to their appropriate 
reader, printer or punch chains; record 
allocation blocks are reconstructed; spooling 
device status is restored; and, system hold 
queues are chained to the proper devices. 
system operation then continues. 

If the checkpoint start procedure encounters 
I/O errors or invalid DASD data on the 
checkpoint cylinders, the operator is notified. 
The FORCE option of the checkpoint start 
performs all the checkpoint start functions 
except that, invalid or unreadable files are 
bypassed. While this is at best a partial 
recovery, the only other alternative is a cold 
(COLD) start where all spool file data is lost. 

RECOVERY MANAGEMENT SUPPORT (RHS) 

The machine check handler (HCD) minimizes lost 
computing time caused by machine malfunction. 
MCD does this by attempting to correct the 
malfunction immediately, and by producing 
machine check records and messages to assist the 
service representatives in determining the cause 
of the problem. 

The channel check handler (CCD) aids the I/O 
supervisor (DHKIOS) to recover from channel 
errors. CCD provides the device dependent error 
recovery programs (ERPs) with the information 
needed to retry a channel operation that has 
failed. 

This support is standard and model independent 
on the external level (from the user's point of 
view there are no considerations, at system 
generation time, for model clependencies) • 

SYSTEM INITIALIZATION FOR RMS 

DMKCPI calls to initialize the error recording 
at cold start and warm start. DMKIOEFL gives 
control to DMKIOG to initialize the MCD area. A 
store CPU ID (STIDP) instruction is performed to 
determine if VM/370 is running in a virtual 
machine environment, or running standalone on 
the real machine. If VM/370 is running in a 
virtual machine, the version code is set to a 
hexadecimal 'FF' by DMKPRV. If the version code 
returned is hexadecimal 'FF', the RMS functions 
are not initialized beyond setting the wait bit 
on in the machine check new PSW (virtual). This 
occurs because machine check interruptions and 
channel errors (other than channel data checks) 
are not reflected to any virtual machine. 
VM/370, running on the real machine, determines 
whether the virtual machine should be 
terminated. 

If the version code is not X'FF,' DMKIOG 
determines what channels are online by 
performing a STORE CHANNEL ID (STIDC) 
instruction and saves the channel type for each 
channel that is online. The maximum machine 
check extended logout length (MCEL) indicated by 
the STORE CPU ID (STIDP) instruction is added to 
the length of the MCD record header, fixed 
logout length and damage assessment data field. 
DMKIOG then calls DMKFRE to obtain the necessary 
storage to be allocated for the MCH record area 
and the CP executing block (CPEXBLOK). DMKIOG 
saves the pointers for the machine check record 
and the CPEXBLOK in DMKMCH. DMKIOG obtains the 
storage for the I/O extended logout area and 

100 IBM VM/370: System Logic and Problem Determination Guide 



initializes the logout area and the ECSW to 1s. 
The 110 extended logout pointer is saved at 
location 172 and control register 15 is 
initialized with the address of the extended 
logout area. The length of the CCH record and 
the online channel types are saved in DMKCCH. 
It should be noted that the ability of a CPU to 
produce an extended logout or 110 extended 
logout and the length of the logouts are both 
model and channel dependent. If VM/370 is being 
initialized on a Model 165 II or 168, the 2860, 
2870, and 2880 standalone channel modules are 
loaded and locked by the paging supervisor and 
the pointers are saved in DMKCCH. If VM/370 is 
being initialized on any other model, the 
integrated channel support is assumed; this 
support is part of the channel control 
subroutine of DMKCCH. Before returning to 
CMKIOE the MCH/CCH recording cylinder for error 
recording is initialized. DMKIOE passes control 
back to DMKCPI and control register 14 is 
initialized with the proper mask to record 
machine checks. 

CVERVIEW OF MACHINE CHECK HANDLER 

A machine malfunction can originate from the 
CPU, real storage or control storage. When any 
of these fails to work properly, the CFU 
attempts to correct the malfunction. 

When the malfunction is corrected, the 
machine check handler (MCH) is notified by a 
machine check interruption and the CPU logs out 
fields of inforaation in real storage, detailing 
the cause and nature of the error. The model 
independent data is stored in the fixed logout 
area and the model dependent data is stored in 
the extended logout area. The machine check 
handler uses these fields to analyze the error, 
format an error record, and write the record out 
on the error recording cylinder of SYSRES. 

If the machine fails to recover from the 
malfunction through its own recovery facilities, 
the machine check handler is notified by a 
machine check interruption. An interruption 
code, noting that the recovery attempt was 
unsuccessful, is inserted in the fixed logout 
area. The machine check handler then analyzes 
the data and attempts to keep the system as 
fully operational as possible. 

Recovery from machine malfunctions can be 
divided into four categories: functional 
recovery, system recovery, system-supported 
restart and syst~m repair. These levels of error 
recovery are discussed in their order of 
acceptability, functional recovery being most 
acceptable and system repair being least 
acceptable: 

!Y!~I!g!A1 RECCVERY: Functional recovery is 
recovery froi--i-ii~hine check without adverse 
effect on the system or the interrupted user. 
This type of recovery can be made by CPU retry, 
the ECC facility, or the machine check handler. 
CPU retry and ECC error correcting facilities 
are discussed separately in this section tecause 
they are significant in the total error recovery 

scheme. Functional recovery by MCH is made by 
correcting storage protect feature (SPF) keys 
and intermittent errors in real storage. 

E!E11~ SI~Q!ISl: System recovery is attempted 
when functional recovery is impossible. System 
recovery is the continuation of system 
operations at the expense of the interrupted 
user, whose virtual machine operation is 
terminated. System recovery can only take place 
if the user in question is not critical to 
continued system operation. An error in a system 
routine that is considered to be critical to 
system operation precludes functional recovery 
and would require a system-supported restart. 

SYSTEM-SUPPORTED RESTART: When the aachine check 
o~~urs In-i-crItical-routine, the primary system 
operator is notified that the system cannot 
continue tc operate. An automatic reload of the 
system occurs. This type of recovery is tried 
when functional and system recovery have failed 
or could not be tried. 

SYSTEM REPAIR: Sy~tem repair is recovery that 
requIres-the- serv~ces of maintenance personnel 
and takes place at the discretion of the 
operator. Usually, the operator has tried to 
recover by system-sup~orted restart one or more 
times with no success. An example of this type 
of error is when a hard error occurs so 
frequently that system-supported restart is not 
successful. 

SYSTEM/370 RECOVERY FEATURES 

The operation of the Machine Check Handler 
depends on certain automatic recovery actions 
taken by the hardware and on logout information 
given to it by the hardware. 

CPU errors are automatically retried by 
microprogram routines. These routines save 
source data before it is altered by the 
operation. When the error is detected, a 
microprogram returns the CPU to the beginning of 
the operation, or to a point where the operation 
was executing correctly, and the operation is 
repeated. After several unsuccessful retries, 
the error is considered permanent. 

ECC checks the validity of data from real and 
control storage, automatically correcting 
single-bit errors. It also detects multiple-bit 
errors but does not correct them. Data enters 
and leaves storage through a storage adapter 
unit. This unit checks each douhlewcrd for 
correct parity in each byte. If a single-bit 
error is detected, it is corrected. The 

Section 1. Introduction 101 



corrected double word is then sent tack into real 
or control storage and on to the cpu. When a 
multiple-bit error is detected, a machine check 
interruption occurs, and the error location is 
placed in the fixed logout area. MCH gains 
control and attempts to recover from the error. 

Two control registers are used by MCH for 
loading and storing control information (see 
Figure 19). Control register 14 contains mask 
bits which specify whether certain conditions 
can cause machine check interruptions and mask 
bits which control conditions under which an 
extended logout can occur. Control register 15 
contains the address of the extended logout 
area. 

r--'---------------------------------, 
1 1 1 1 Associatedl 
IWordlBitsl Name of Field I With I 

14 

14 

14 

14 

14 

14 

14 

14 

14 

15 

L 

o 

2 

4 

5 

6 

7 

8 

9 

Check-stop control 

Synch. MCEL control 

I/O extended logout 
control 

Recovery report mask 

Degradation report mask 

External damage report 
mask 

Warning lIask 

Asynch. MCEL control 

Asynch. fixed log 
control 

8-281 MCEL address 
1 

Mch-Chk 
handling 
Mch-Chk 
handling 
Chan-Chk 
handling 
Mch-Chk 
handling 
Mch-Chk 
handling 
Mch-Chk 
handling 
Mch-Chk 
handling 
Mch-Chk 
handling 
Mch-Chk 
handling 
Mch-Chk 
handling 

---..J 

Figure 19. RMS Control Register Assignments 

VM/370 Machine Check Handler 1I0dule (DMKMCH) 
consists of the following functions: 

• Initial analysis subroutine 
• Main storage analysis subroutine 
• SPF analysis subroutine 
• Recovery facility mode switching 

Operator cOllmunication subroutine 
• Virtual user termination subroutine 
• soft recording subroutine 
• Buffer error subroutine 
• Termination subroutine 

The initial analysis 
receives control by 

subroutine of 
a lIachine 

DMK"CH 
check 

interruption. To m~n~m~ze the possibility of 
losing logout information by recursive machine 
check interruptions, the machine check new PSW 
gives control to DM~MCH with the system disabled 
for further interruptions. There is always a 
danger that a machine malfunction may occur 
immediately after DMKMCH is entered and the 
system is disabled for interruption. Disabling 
all interruptions is only a temporary measure to 
give the initial analysis subroutine time to 
make the fcllowing emergency provisions: 

• 

• 

• 

• 

• 

• 

• 

It disables for soft machine check 
interruptions. Soft recording is not enabled 
until the error is recorded. 

It saves the contents 
extended logout areas in 
record. 

of the fiXed and 
the machine check 

It alters the machine check new PSW to point 
to the term subroutine. The term subroutine 
handles second machine check errors. 

It enables the machine for hard machine check 
interruption. 

If a virtual user was running when the 
interruption occurred, the running status 
(GPRs, FPRs, PSW, M.C. old PSW, CRs, etc.) is 
saved in the user's VMBLOK. 

It initially examines the machine check data 
for the following error types: 

MCIC=ZERO 
PSW invalid 
System damage 
Timing facilities damage 

The occurrence of any of these errors is 
considered uncorrectable by DMKMCH; the 
primary system operator is informed, the 
error is formatted and recorded, and the 
system is shutdown followed by an automatic 
restart function. 

If the instruction processing damage bit is 
on, it tests for the following types of 
Jlalfunctions: 

"ultiple-~it Error in Main storage 
Control ~s given to the main storage 
analysis subroutine. 

SPF Key Error -- control is given to the 
SPF analysis subroutine. 

Retry failed If the cpu was in 
supervisor state the error is considered 
uncorrectable and the VM/370 system is 
terminated. If the CPU was in problem 
state, the virtual Jlachine is reset or 
terminated and the system continues 
operation. 

• If CPU retry or ECC was successful on a soft 
error, control is given to the soft recording 
subroutine to format the record, write it out 
on the error recording cylinder, and update 
the count of soft error occurrences. 

• If external damage was reported, control is 
given to the soft recording subroutine to 

102 IBM V"/370: system Logic and Problem Determination Guide 



format the record and write it out on the 
error recording cylinder. 

The main storage analysis subroutine is given 
control when the machine check interruption was 
caused by a multiple-bit storage error. An 
initial function points the machine check new 
PSi to an internal subroutine to indicate a 
solid machine check, in case a machine check 
interruption occurs while exercising main 
storage. 

Damaged storage areas associated with any 
portion of the CP nucleus itself cannot be 
refresbed; multiple-bit storage errors in CP 
cause the V"/370 system to be terminated. An 
automatic restart reinitializes VM/370. 

If the damage is not in the CP nucleus, main 
storage is exercised to determine if the failure 
is solid or intermittent. If the failure is 
solid, the 4K page frame is marked unavailable 
for use by the system. If the failure is 
intermittent, the page frame is marked invalid. 
The change bits associated with the damaged page 
frame are checked to determine if the page had 
been altered, by the virtual machine. If no 
alteration had occurred w VM/370 assigns a new 
page frame to the virtual machine and a backup 
copy of the page is brought into storage the 
next time the page is referenced. If the page 
had been altered V"/370 resets or terminates the 
virtual machine, clears its virtual storage, and 
sends an appropriate message to the user. 
Normal system operation continues for all other 
users. 

The SPF analysis subroutine is given control 
when the machine check interruption was caused 
by an SPF error. An initial function points the 
machine check new PSi to an internal subroutine 
if a machine check interrruption occurs during 
testing and validation. The SPF analysis 
routine then determines if the error was 
associated with a failure in virtual machine 
storage or in the storage associated with the 
control program. 

An SPF error associated with V"/370 is a 
potentially catastrophic failure. Namely, V"/370 
always runs with a PSi key of zero, which means 
that the SPF key in main storage is not checked 
for an out-of-parity condition. The SPF 
analysis subroutine exercises all 16 keys in the 
failing storage 2K page frame. If an SPF 
machine check occurs in exercising the 16 keys 5 
times each, the error is considered solid and 
the operating system is terminated with a system 
shutdown. The system is automatically restarted 
and VM/370 is reinitialized. If an SPF machine 
check does not occur, the machine check is 
considered intermittent. The zero key is 
restored to the failing 2K page frame and this 
is transparent to the virtual machine. 

If an SPF machine check occurs, which is 
associated with a virtual machine, the SPF 
analysis subroutine exercises all 16 keys in the 
failing storage 2K page frame. If an SPF 
machine check does not occur, the machine check 
is intermittent and the swptable for the page 
associated with the failing storage address is 
located. The storage key for the failing 2K 
storage page frame is retrieved fro. the 
swptable and the change and reference bits are 
set on in the storage key. The storage key is 
then stored into the affected failing storage 2K 
page frame. If an SPF machine check occurs in 
exercising the 16 keys 5 times each, then the 
machine check is considered solid and the 
follow.ing actions are taken. (1) The virtual 
machine is selectively reset or terminated by 
the virtual machine termination subroutine; (2) 
The 4K page frame associated with the failing 
address is removed as an available system 
resource. This is accomplished by locating the 
cortable for the defective page and altering the 
corfpnt and corpbpnt pointers to make the page 
unavailable to the system. The cordisa bit in 
this cortable is set on to identify the reason 
for the status of this page in a system dump. 

The recovery facility mode switching subroutine 
(DMKMCH"S) allows the service representative to 
change the mode that CPU retry and ECC recording 
are operating in. This subroutine receives 
control when a user with privilege class F 
issues some form of the SET "ODE command. A 
check is initially made to determine if this is 
V"/370 running under VM/370. If this is the 
case, the request is ignored and control is 
returned to the calling routine. The format of 
the "ODE command is as follows: 

SET MODE {RETRYI"AIN} {QUIETIRECORD} 

RETRY and MAIN imply CPU retry and main 
storage, respectively. 

QUIET causes the specified facility to be 
placed in quiet mode. RECORD causes the count 
of soft errors to be reset to zero and the 
specified facility to be placed in record mode. 

The operator communciation subroutine is invoked 
when the integrity of the system has degraded to 
a point where automatic shutdown and reload of 
the system has been tried and was unsuccessful, 
or could not be attempted due to the severity of 
the hardware failure. A check is first made to 
determine if the system operator is logged on as 
a user, next a check is made to determine if the 
system operator is disconnected. If either of 
these checks is not affirmative a message cannot 
be issued directly to the system operator. A 
LPSW is performed to place the CPU in a disabled 

Section 1. Introduction 103 



wait state with a recognizable wait state code 
in the CPU instruction counter. 

The virtual machine termination subroutine 
selectively resets or terminates a virtual user 
whose operation has been interrupted by an 
uncorrectable machine check. First, the machine 
is marked nondispatchable to prevent the damaged 
machine from running before reset or termination 
is performed. The machine check record is 
formatted and DMKIOEMC is called to record the 
eiror. Then the user is notified by a call to 
DMKQCNWT that a machine check has occurred and 
that his operation is ter.inated. The primary 
system operator is notified of the virtual user 
termination by a message issued by a call to 
DMKQCNWT. If the virtual machine is running in 
the virtual=real area, DMKUSO is c~lled to log 
the virtual machine off the system and to return 
the storage previously allocated to the virtual 
machine and to clear any outstanding virtual 
machine I/O requests. The HOLD option of LOGOFP 
is invoked to allow a user on a dial facility to 
retain the connection and thus permit LOGON 
without re-establishing the line connection. 
However, if the virtual machine is running in 
the virtual area, and DMKCPM is then called to 
put the virtual machine in console function 
mode, the user must re-initialize the system to 
commence operation. 

The soft recording subroutine performs two basic 
functions: 

• Pormats a machine check record and calls 
DMKIOEMC to record the error on the error 
recording cylinder. 

Maintains the threshold for CPU retry and ECC 
errors and switches from recording to quiet 
mode when the threshold value is exceeded. 
To accomplish this, a counter is maintained 
by DMKMCH for successful CPU retry and 
corrected ECC events. 

~g~ B~!II R~£QIg!ng ~Qg~: Recording mode (bit 4 
of control register 14 set to one) is the 
initialized state, and normal operating state of 
VM/370 for CPU retry errors. Recording mode may 
also be entered by use of the CP SET command. 
When 12 soft machine checks have occurred, the 
soft recording subroutine switches the CPU from 
recording mode to quiet mode. For the purpose 
of model-independent implementation this is 
accomplished by setting bit 4 of control 
register 14 to zero. Because in quiet mode no 
soft machine check interruptions occur, a switch 
from quiet mode to recording mode can be made by 
issuing the SET MODE RETRYIMAIN RECORD command. 
While in recording mode, corrected CPU 

- RETRYIMAIN reports are formatted and recorded on 
the VM/370 error recording cylinder, but the 
primary systems operator is not informed of 
these occurrences. 

£fY R~trI ~y!~! Mode: Quiet mode (bit 4 of 
control register 14-Set to 0) can be entered in 
one of two ways: (1) when 12 soft machine 
checks have occurred, or (2) when the SET MODE 
RETRY QUIET command is executed by a class F 
user. In this mode, both CPU retry and ECC 
reporting are disabled. The CPU remains in 
quiet mode until the next system IPL (warm start 
or cold start) occurs or a SET MODE RETRYIMAIN 
RECORD command is executed by a class P user. 

]££ B~£QIg!ng ~Qg~§: To achieve model 
independent support, RMS does not set a specific 
mode for ECC recording. The mode in which ECC 
recording is initialized depends upon the 
hardware design for each specific CPU model. 
For the IBM System/370 Models 135, 145, 158, and 
168, the hardware initialized state (therefore 
the normal operational state for VM/370) is 
quiet mode. Por the IBM System/370 Models 155 
II and 165 II, the hardware initialized state 
(the normal operational state for VM/370) is 
record mode. An automatic restart incident due 
to a VM/370 failure does not reset the ECC 
recording mode in effect at the time of 
failure. 

The change from record to quiet mode for ECC 
recording can be initiated in either of the 
following ways; (1) by issuing the SET MODE 
(MAINIRETRY) QUIET command, or ~) automatically 
whenever 12 soft machine checks have occurred. 
For the purpose of model independent 
implementation this occurs by setting bit 4 of 
control register 14 to zero. 

The change from quiet to record mode for ECC 
recording can be accomplished by use of the SET 
MODE MAIN RECORD command. This recording mode 
option is for use by maintenance personnel only. 
It should be noted that CPU retry is placed in 
recording mode if it is not in that state when 
the SET MODE MAIN RECORD command is issued. 

While in recording mode, corrected ECC 
reports are formatted and recorded on the error 
recording cylinder, but the primary systems 
operator is not informed of these incidents. 

On CPU models equipped with a high speed buffer 
(155 II, 158, 165 II, 168) or a data lookaside 
ta ble (DLA T) (165 II, 168) the deletion of 
buffer blocks because of hardware failure is 
reported via a DEGRADATION report machine check 
interruption. MCR enables itself for 
degradation report machine check interruptions 
at system initialization by setting bit 5 of 
control register 14 to 1. If a machine check 
interruption occurs that indicates high speed 
buffer or DLAT damage, MeR formats the record 
and calls DMKIOEMC to record it on the error 
recording cylinder, informs the primary systems 
operator of the failure, and returns control to 
the system to continue normal operation. 

104 IBM VM/370: System Logic and Problem Determination Guide 



The termination subroutine is given control if a 
hard machine check interruption occurs while 
DHKHCH is in the process of handling a machine 
check interruption. Note that soft error 
reporting is disabled for the entire time that 
HCH is processing an error. 

An analysis is performed of the machine check 
interruption code of the first error to 
determine if it was a soft error. If it was, 
the first error is recorded, the system status 
is restored and control is restored to the point 
where the first error occurred. If the first 
error was a hard error, the operator 
communication subroutine is given control to 
issue a message directly to the system operator, 
and to terminate CP operation. 

OVERVIEW OF CHANNEL CHECK HANDLER 

The channel check bandler (CC~ aids the 110 
supervisor in recovering from channel errors and 
informs the operator or service representative 
of the occurrence of channel errors. 

CCH receives control from the 110 supervisor 
when a channel data check, channel control 
check, or interface control check occurs. CCH 
produces an 110 error block (IOERBLOg) for the 
error recovery program and a record to be 
written on the error recording cylinder for the 
system operator or service representative. The 
operator or service representative may obtain a 
copy of the record by using the CPERBP programs. 
A message about the channel error is issued each 
time a record is written on the error recording 
cylinder. 

When the 110 supervisor program detects a 
channel error during routine status examination 
following an SID, TID, HID, or an 110 
interruption it passes control to the channel 
check handler (DKKCCH). DKKCCH analyzes the 
channel logout information and constructs an 
IOERBLOK, if the error is a channel control or 
interface control check. An BCSW is constructed 
and placed in the IOERBLOK. The IOERBLOK 
provides information for the device dependent 
error recovery procedures. DKKCCH also 
constructs a record to be recorded on the error 
recording cylinder. Normally, CKKCCH returns 
control to the 1/0 supervisor after constructing 
an IOERBLOK and a record. However, if DHKCCH 
determines that system integrity has been 
damaged (system reset or invalid unit address, 
etc.) then CP operation is terminated. CP 
termination causes DKKCCH to issue a message 
directly to the system operator and place the 
CPU in a disabled wait state with a recognizable 
wait code in the CPU instruction counter. 

Recovery is not initiated for channel errors 
associated with 1/0 events inititated by a 
virtual machine, however these causes 
termination of the virtual machine after it has 
been notified of the failure. The error is 
recorded by DKKIOECC on the error recording 
cylinder. 

Normally, when DHKCCH returns control to the 
1/0 supervisor, the error recovery program for 
the device which experienced the error is 
scheduled. When the ERP receives control, it 
prepares to retry the operation if analysis of 
the IOERBLOK indicates that retry is possible. 
Depending on the device type and error 
condition, the ERP either effects recovery or 
marks the event fatal and returns control to the 
1/0 supervisor. The 1/0 supervisor calls the 
recording routine DHKIOE to record the channel 
error. 

The primary system operator is notified of 
the failure, and DKKIOE returns control to the 
system and normal processing continues. 

CHANNEL CONTROL SUBROUTINE 

Control is passed to the channel control 
subroutine of DKKCCH after a SIO with failing 
status stored, or an 1/0 interrupt because of a 
channel control check, interface control check, 
or channel data check. 

If "logout pending" is indicated in the CSW, 
the CP termination flag is set. The existence 
of real device blocks (RCHBLOK, RCUBLOK, 
RDEVBLOK), for the failing device address, is 
determined by a call to DKKSCNRU and an 
indicator is set if they do exist. An indicator 
is also set if the IOBLOK for the failing device 
address exists. A call to DKKFRBE obtains 
storage space for the channel check record and 
the channel control subroutine builds the 
record. If the indicators show that the real 
device blocks and the IOBLOK exist, a call to 
DKKFRBE obtains storage space and the channel 
control subroutine builds the 1/0 error block 
(IOERBLOK); if these blocks do not exist, the 
IOERBLOK is not built. The IOERBLOK is used for 
two purposes: 

1. The device dependent error recording 
program (ERP) uses the IOERBLOK to attempt 
recovery on CP initiated 1/0 events. If 
the 1/0 events that resulted in a channel 
check are associated with a virtual 
machine, the 1/0 fatal flag is set in the 
IOBLOK and the virtual machine is reset, 
cleared, and put into CP read status. The 
length and address of .the channel check 
record is placed in the IOERBLOK and the 
IOERBLOK is chained off the IOBLOK. 

2. DMKIOECC uses the IOERBLOK to record the 
channel check record on the error recording 
cylinder. 

The channel control subroutine gives control 
to a channel dependent error analysis routine to 
build or save the extended channel status word 
(ECSW) • When the channel control subroutine 
regains control, eight active addresses are 
saved in the channel check record. 

If the CP termination flag is set, the 1/0 
extended logout data fro. the channel check 
record is restored to main storage for use by 
SEREP. If the system operator is both logged on 

Section 1. Introduction 105 



as a user and connected to the system, a message 
(DMKCCH603W) is sent to him advising him of the 
channel error. A LPSW is then executed to place 
the CPU in a disabled wait state with a wait 
state code of 002 in the CPU instruction 
counter. 

If the CP termination flag is not set, a 
check is made to determine if an IOERBLOK was 
built by the channel control subroutine. 

If an IOERBLOK was not built, DMKIOECC is 
called to record the channel check record on the 
error recording cylinder. The system operator 
is then sent a message (DMKCCH6011 or 
DMKCCH602I) informing him of the error and 
control is then returned to DMKIOS to continue 
system operation. 

If an IOERBLOK was built, control is returned 
to DMKIOS, which calls the appropriate ERP. 
Whether or not recovery is successful, DMKIOS 
eventually calls DMKIOE to record the channel 
check record. DMKIOE examines the status of the 
in CSW error in the IOERBLOK to determine if it 
was a channel error; if so, it finds the length 
and pointer to the channel check record and 
records the error on the error recording 
cylinder. If this was not a channel error, 
DMKIOE continues normal processing. 

INDIVIDUAL ROUTINES 

A separate channel error analysis routine is 
provided for each type of channel for which 
DMKCCH can be used. The purpose of these 
routines and the channel control subroutine is 
to analyze the channel logout to determine the 
extent of damage and to create a sequence and 
termination code to be placed in the ECSW in the 
IOERBLCK. At system initialization, the correct 
model dependent channel recovery routine is 
loaded and the storage necessary to support the 
routine is allocated. The model dependent error 
analysis subroutines and routines and their 
functions are as follows: 

Since all of these systems have integrated 
channels one common subroutine is used to handle 
all of these CPU types. This subroutine: 

Indicates CP termination if the ECSW is not 
complete, the channel has been reset, or 
reset codes are invalid 

• Moves the ECSW to the IOERBLOK 

• Moves the hardware stored unit address and 
the I/O extended logout to the channel check 
record 

• Sets the I/O extended logout area and ECSW 
area to 1s 

Returns control 
subroutine 

to the channel control 

The 2860 logout area is checked to determine if 
a complete logout exists; if not, CP termination 
is necessary. 

A check is made in the logout 
validity of the CSW fields and bits 
the channel check record's ECSW 
indicate bad fields. 

area for 
are set. in 
field to 

The channel logout is then checked and 
sequence codes are set based on the presence of 
a channel control check, or an interface control 
check. If a channel control check is present, 
the codes set are determined through parity. 
The count determines if parity is good and sets 
a resultant condition code. 

The logout area is examined to ensure that 
the unit address has valid parity and is the 
same address passed by DMKIOS. If so, the unit 
address valid bit in the ECSW is set. If the 
unit address is not valid the unit address valid 
bit is reset to indicate the invalid condition. 

The ECSW field in the channel check record is 
moved to the IOERBLOK, if one exists. 

After completing the ECSW the 2680 routine 
moves the 2860 I/O extended logout into the 
channel check record, set. the I/O extended 
logout area to ones, and returns to the channel 
control subroutine. 

If the channel failed to logout completely, at 
least part of the logout area is all 1s. If a 
fullword of ones is found, a CP termination 
condition exists. 

A check is made in the logout area for valid 
CSW fields, and bits are set in the channel 
check record's ECSW field to indicate bad 
fields. 

The termination and sequence codes are set 
depending on the presence of an interface 
control check or channel control check. If a 
channel control check is present, the codes set 
are determined through parity, count, and/or 
data transfer checks. For the 2870, parity can 
be determined directly from the channel logout. 

area is also examined to ensure 
the unit address and to ensure 
is the same as that passed to 
If so, the unit address valid 
set. 

The logout 
valid parity in 
that the address 
DMKCCH by DMKIOS. 
bit in the ECSW is 

The third word of the logout area is also 
analyzed for type II errors. If a type II error 
is found, a CP termination condition exists. 

The ECSW field in the channel check record is 
moved t6 the IOERBLOK, if one exists. 

Before returning to the channel control 
subroutine, the 2870 routine moves the 2870 I/O 

106 IBM VM/370: system Logic and Problem Determination Guide 



extended logout into the channel check record 
and sets the 1/0 extended logout area to ones. 

This routine analyzes 9 words of the 28 word 
logout. 

The 2880 analysis routine handles channel 
data checks, interface control checks, and 
channel control checks. 

Termination code 3 (system reset) is not set 
in the ECSW because the 2880 channel does not 
issue system reset to the devices. Retry codes 
of zero to five are possible. 

Note: There are several catastrophic conditions 
under which the CP termination flag can be set, 
in the 2880 analysis routine. They are: 

• The channel did not complete the logout. 

• The CSW is not reliable. 

• The unit address in the 1/0 interruption 
device address field is not correct. 

Only a channel check record is needed if the 
channel has recognized an internal error and has 
recovered from it without any damage. No 
recovery action is necessary in these cases. 

If the channel address in the 1/0 
interruption device address field does not match 
the channel address in the logout, a CP 
termination condition exists. 

If the channel was doing a scan and the unit 
control word had a parity check a CP termination 
condition exists. If there was no parity check, 
there was no damage during "the scan and only a 
channel check record i p required. 

Depending on the sequence the channel has 
entered, the termination and sequence codes are 
set; command address, unit addr.ess, and unit 
status validity is determined; and the sequence 
code is set valid. The ECSW field in the 
channel check record is moved into the IOERBLOK, 
if one exists. 

Before returning to the channel control 
subroutine, the 2880 routine moves the 1/0 
extended logout into the channel check record 
and sets the 1/0 extended logout area to ones. 

ERROR RECORDI~G INTERFACE FOR VIRTUAL ftACHINES 

The error recording interface provides a means 
of recordinq errors encountered by operating 
systems running in a virtual machine under 
Vft/370. If the virtual operating system is 
Vft/370, it must be the Release 2.0 version or 
later. An SVC 76 issued by a virtual machine is 
used to signal Vft/370 that error recording is 
required. The SVC interruption handler in 
DftKPSA examines general registers 0 and 1 to 
determine if valid parameters have been passed. 

If valid paraaeters are not found, the SVC is 
reflected back to the virtual machine and no 
recording takes place. If valid parameters are 
passed, a pageable routine (DftKVER) processes 
the error record. 

DftKVER validates the record passed by the 
virtual machine. If invalid conditions are 
found, no recording takes place. Control is 
returned to the SVC interruption routine in 
DftKPSA to reflect the SVC to the virtual machine 
as an SVC interruption. The action taken by the 
virtual machine is dependent on the operating 
system running in the virtual machine, not 
Vft/370. If the record is valid, it is modified 
by changing virtual information to real. The 
actual recording is accomplished by using 
existing modules in DftKIOE and DftKIOF. 

Control is then returned to the instruction 
following the SVC 76 rather than reflecting the 
SVC. This eliminates the duplication of error 
recording in Vft/370 and the operating system in 
the virtual machine. If DftKVER determines that 
the recording represented a permanent I/O error, 
a message is sent to the primary system 
operator. 

ERROR RECORDING AND RECOVERY 

The error recording facility is made up of four 
modules. One module (DftKIOE) is resident and 
the other three (DftKIOC, DMKIOF, and DMKIOG) are 
pageable. 

The error recording modules record temporary 
errors (statistical data recording) for CP 
generated I/O except for DASD devices with a 
buffered log. 

The error recording routines record: unit 
checks, statistical data counter overflow 
records, selected temporary DASD errors, machine 
checks, channel ~hecks, and hardware 
environmental counter sense data on the error 
recording cylinders of the system resident 
device in a format suitable for subsequent 
processing by the CPEREP program. The recorder 
asynchronously updates the statistical data 
counters for supported devices. The recorder 
also initializes the error recording cylinders 
at IPL if they are in an unrecognizable format. 

When the recorder is entered from DftKIOS, it 
is entered at DftKIOERR. This entry is used for 
unit checks and channel data checks. A test is 
made of the failing CSW (located in the 
IOERBLOK) to see if the error was a channel 
error. If it was, control is passed to routine 
for recording channel checks. 

The IOERBLOK sense data, IOBLOK flags, and 
VftBLOK privilege class are examined to deter.ine 
if the error should be recorded. 

ERROR RECORD WRITING 

After an error record is formatted, it is added 
to the error recording cylinder using DftKRPAGT 

Section 1. Introduction 107 



and DMKRPAPT. The error recording cylinders 
have page sized records (4096 bytes). Each page 
contains a header (8 bytes) which signifies: the 
cylinder and page number of the page (4 bytes), 
the next available space for recording within 
page (2 bytes), a page in-use indicator (1 
byte), and a flag byte. Bach record within the 
page is recorded with a 4-byte prefix. 

If an error record is too large to be added 
into a page, a new page is retrieved, updated 
with record, and placed back on the error 
recording cylinder with the paging routines. 

Two cylinders are used for error recording: 
one cylinder is used exclusively for recording 
the I/O errors and the other cylinder for 
recording MCH/CCH errors. The cylinders that 
are used for error recording are specified by 
the user at system generation time. If either 
error recording cylinder becomes 90 per cent 
full, a message is issued to the operator using 
DMKQCNWT to warn him of the condition. If 
either cylinder becomes full, another message is 
issued to inform the operator and recording is 
stopped on that cylinder. Recording continues 
on the cylinder that is not full. 

If a channel check error is to be recorded, 
the recorder is entered at DMKIOERR or DMKIOECC. 
The channel check handler determines the entry. 
A channel check error record is formatted. 

A machine check enters at DMKIOEMC. Pointers 
are passed from the machine check handler in 
registers 6 and 7 to locate a buffer where the 
machine check record and length are saved. A 
machine check error record is recorded with the 
saved machine check logout and additional 
information. The machine check error record is 
written onto the error recording cylinder by 
using the paging routines. 

Hardware environmental counter records are 
formed using routine DMKIOEEV. This routine is 
scheduled by DMKIOS after control is returned 
from the ERP. Sense data information is stored 
in the IOERBLOK by the BRP. The record formed 
is called a nonstandard record. 

DMKIOEPM is called by the CPEREP program via a 
DIAGNOSE instruction. DMKIOEFM is invoked to 
reset the specified error recording cylinders 
(if CLEARALL, CLEARIO, or CLEARMC was 
specified). The clear is performed by resetting 
each page-header, space-available field. A 
pointer in storage is then updated to point to 
the first page on the error r~cording cylinder 
available for recording MCH and CCH records and 
the first page available on the other error 
recording cylinder for recording outboard 
errors. Control is then returned to the calling 
routine. 

DMKIOEPL is called by DMKCPI to find the first 
available page that can be used' for error 

recording. The paging routines, DMKRPAPT and 
DMKRPAGT, are used to read the error recording 
cylinder's pages (4096 byte records). As each 
page record is read, it is examined to see if 
this record is the last recorded. If so, a 
pointer in storage is saved so recording can 
continue on that page record. Control is then 
returned to the caller. If either error 
recording cylinder is in an unrecognizable 
format, that cylinder is automatically 
reformatted by CPo 

DASD ERROR RECOVERY, ERP (DMKDAS) 

Error recovery is attempted for CP initiated I/O 
operations to its supported devices and for 
user-initiated operations to CP supported 
devices that use a DIAGNOSE interface. The 
primary control blocks used for error recovery 
are the RDEVBLOK, the IOBLOK and the IOERBLOK. 
In addition, auxiliary storage is sometimes used 
for recovery channel programs and sense 
buffers. 

The initial error is first detected by the 
I/O interruption handler which performs a SENSE 
operation if a unit check occurs. Unit check 
errors are then passed to an appropriate RRP. 
If a channel check is encountered, the channel 
check interruption handler determines whether or 
not retry is possible and passes control to an 
ERP through the I/O interruption handler. DASD 
errors are processed as described below. 

• Channel 
check. 

control check is treated 
It is retried 10 times. 

as seek 

• Interface control check is treated as seek 
check. It is retried 10 times. 

• Channel data check is treated as data check. 
It is retried 10 times. 

~g.YiE!!!.!!! £.b!!£!: Retry the operation 10 times 
for 3330, 3340, 3350, and 2305 devices; twice 
for the 2314 and 2319. 

No record !2Y.!!S !ng 
Recallbrate and retry 
times (2314/2319). 

,mis§i.!!g ,2SSI!!§§ ma:rks: 
the channel progrii--~O 

No record found: Execute a READ HOME ADDRESS and 
check--home-address against seek address. If 
they are the same, consider the error permanent. 
If they are not equal recalibrate and retry the 
channel program 10 times (2314/231~. For other 
devices, return to caller. 

~!!!!! £.b!!£!: Retry the 
that 3330/3350 seek 
hardware. 

operation 10 times except 
checks are retried by 

!.!!!!!I!!!ntiE.!! I!!g.Yi!~~: Issue a message to 
console and wait for solicited device end. This 
procedure is repeated once. 

108 IBM VM/370: System Logic and Problem Determination Guide 



~~§ Q~! £~~£!: One retry of the operation. 

Q~i~ £h~£~§: For 2314/2319 retry the operation 
256 times, with a recalibrate being executed 
every 16th time. For the 2305/3340, retry the 
operation 10 times. For the 3330/3350, the 
operation is retried by hardware. 

Q~~~~B~: Retry the operation 10 times. 

~!22!ng ~~~~~§§ m2~~~~: Retry the operation 10 
times. 

~Q!~2ng ~~j~£!: The command is not retried. 

f~~i~i~g £h~£!: Test for command reject. If not 
present, retry the operation 10 times. 

Environmental s~!~ E~~2~ni: Issue a BUFFER 
UNLOAD-command and retry the operation. 

!~~£! condition check: This error should not 
occur. CP-does--not-use alternate tracks in its 
paging or spooling management. When a disk pack 
is formatted, any track that is marginal 1S 
marked as permanently allocated and, therefore, 
made unavailable for use by CPo 

The error recovery routine keeps track of the 
number of retries in the IOBRCNT field of the 
IOBLOK. This cQunt determines if a retry limit 
has been exeeded for a particular error. On 
initial entry from DMKIOS for an error 
condition, the count is zero. Each time a retry 
is attempted the count is increased by one. 

The ERP preserves the original error CSW and 
sense information by placing a pointer to the 
original IOERBLOK in the RDEVBLOK. Additional 
IOERBLCKs, which are received from DKKIOS on 
failing restart attempts, are discarded. The 
original IOERBLOK is thus preserved for 
recording purposes. 

If after a specified number of retries, 
DKKDAS fails to correct the error situation, the 
operator mayor may not be notified of the error 
condition. Control is returned to DKKIOS. 
DMKIOS is notified of the permanent error by 
posting the IOBLOK (IOBSTAT=IOBFATAL). The error 
is recorded via DMKIOS by DKKIOERR, if DKKDAS 
and DMKIOE determine that the error condition 
warrants recording. 

If the error is corrected by a restart, the 
temporary or transient error is not recorded. 
control is returned to DMKIOS witn the error 
flag off. 

Before returning control to DMKIOS on either 
a permanent error ,or a successful recovery, the 
ERP frees all auxiliary storage gotten for 
recovery CCWs, buffers, and IOERBLOKs, and 
updates the statistical counters for 2314 and 
2319 devices. 

The DMKIOS interface with the ERP uses the 
IOBSTAT and lOB FLAG fields of the IOBLOK to 
determine the action required when the Bap 
returns to DMKIOS. 

When retry is to be attempted the ERP turns 
on the restart bit of the IOBFLAG field. The Eap 
bit of IOBSTAT field is also turned on to 
indicate to DMKIOS that the ERP wants control 

back when the task has finished. This enables 
the Eap to receive control even if the retry was 
successful and allows the freeing of all storage 
gotten for CCWs and temporary buffers. The 
IOBRCAW is set to the recovery CCW string 
address. 

In handling an intervention required 
situation, the ERP sends a message to the 
operator and then waits for the device end to 
arrive. This is accomplished by a return to 
DKKIOS with the ERP bit in the IOBSTAT field set 
on and the IOBSTRT bit in the IOBFLAG field set 
off. When the device end interruption arrives, 
the original channel program which was 
interrupted is then started. 

The ERP flags of the IOERBLOK are also used 
to indicate when special recovery is being 
attempted. For example, a READ HOKE ADDRESS 
command when a no record found error occurs. 

The other two indicators are self explanatory 
and are explained in Figure 20. 

I ---, 
1 ________ I!elS ____________ 1 Action to be 
IIOBSTATIIOBFLAG IIOBSTAT 1 Performed 
IIOBERP IIOBRSTRT IOBFATALlby DKKIOS 
------ 1--------------

o 0 IReturn control 
1 when solicited 
1 device end 
1 arrives 
1 

o IRestart using 
1 IOBRCAW 
1 

o 0 1 Permanent I/O 
1 Error 
1 

o 0 0 IRetry successfulll 
L ~ 

Figure 20. Summary of lOB Indicators 

If the error is uncorrectable or intervention 
is required, the ERP calls DKKKSW to notify 
operator. The specific message is identified in 
the KSGPARK field of the IOERBLOK. 

TAPE ERROR RECOVERY, ERP (DKKTAP) 

Error recovery is attempted for user-initiated 
tape I/O operations to CP supported devices that 
use the DIAGNOSE interface. The primary control 
blocks used for error recovery are the RDEVBLOK, 
the IOBLOK, and the IOERBLOK. In addition, 
auxiliary storage is used for recovery channel 
programs (repositioning and erase) • 

The interruption handler, DKKIOS, performs a 
SENSE operation when a unit check occurs. Tape 
errors are then passed to D!KTAP. The sense 
information associated with a unit check is 
contained in the IOERBLOK. If a channel check is 
encountered, the channel check interruption 
handler determines if retry is possible and 
passes control to the RRP through the I/O 
interruption handler. 

section 1. Introduction 109 



When an error is encountered and ERP receives 
control, DMKTAP determines if this is the first 
entry into the ERP for this task. The IOBRCNT 
(lOB error count) field of the lOB is zero on 
initial entry. On this first entry, the pointer 
to the IOERBLOK is placed in the RDEVIOER field 
of the RDEVBLOK. This preserves the original 
error CSW and sense information for recording. 
Thereafter, IOERBLOKS are discarded before a 
retry is attempted or a permanent error is 
passed to lOS. 

The ERP looks for two other specific 
conditions. If the error count field is not 
zero, entry must be due to a recovery attempt. 
Thus, it may be a solicited device end to 
correct an intervention required condition or a 
retry attempt for either tape repositioning or 
channel program re-execution. 

The ERP keeps track of the number of retries 
in the IOBRCNT field of the IOBLOK to determine 
if a retry limit has been exceeded for a 
particular error. If the specified number of 
retries fails to correct the error, the error is 
recorded and DMKIOS is notified of the permanent 
error by turning on a status flag in the IOBLOK 
(IOBSTAT=IOBFATAL) • 

If the error is corrected by DMKTAP, the 
temporary error is not recorded and control is 
returned to DMKIOS with error flags all off. 
When repositioning is required in order to 
attempt recovery, additional ERP flags are 
contained in the IOERBLOK to indicate paths for 
specific errors (that is, data check on write 
must reposition, erase, and then reissue 
original channel program). 

All error recovery is started the same except 
for intervention required errors. The IOBFLAG 
is turned on to indicate RESTART 
(IOBFLAG=IOBRSTRT), and the IOBRCAW (IOBLOK 
Restart CAW) is filled with the restart channel 
address word. In addition, an IOBSTAT flag is 
turned on to indicate that the ERP is in control 
so that control can be returned to ERP during 
all tape error recovery (IOBSTAT=IOBERP). In the 
case of an intervention required error, the ERP 
sends a message to the operator, and then 
returns to DMKIOS with indications that tell 
DMKIOS the ERP is waiting for a device end on 
this device. This is done by clearing the 
restart flag and returning to DMKIOS with only 
the LOBERP flag on. 

When ERP has determined a permanent error 
situation or successfully recovered from an 
error, all auxiliary storage obtained for 
recovery CCWs, buffers, and IOERBLOKs is freed 
before a return is made to DMKIOS (see Figure 23 
for a summary of the lOB indicators), also, the 
statistical counters for 2400, 3410, and 3420 
devices are updated. 

If the error is uncorrectable or operator 
intervention is necessary, ERP calls the message 
writer to write the specific message. 

3270 REMOTE SUPPORT ERROR RECOVERY 

Recovery from errors associa ted with bisync 
lines, and the related channel and transmission 
control unit hardware is processed by DMKBSC. 
Recovery from errors associated with data and 
control processing by the remote station (the 
device) as defined by remote status and sense 
byte definition (see lIB:!. l£IQ lnf.Q~.!!!B:!.!.Q1! 
.Qi~E!B:I £Q!!EQn~n:!:. ~~2£!:iE:!:.iQn, Order No. 
GA27-2749) is processed by DMKRGF. ,Control 
blocks associated with these errors are the 
CORTASK, the RDEVBLOK, the BSCBLOK, the NICBLOK, 
the IOBLOK, and the IOERBLOK. 

The interruption handler, DMKIOS, performs a 
SERSE operation upon detection of a unit check 
condition (IOERBLOK). The related sense data is 
analyzed as it relates to the previous operation 
(CORTASK or BSCBLOK, whichever is applicable). 
If a channel check is encountered by the channel 
check interruption handler, the channel check 
interruption (DMKBSC) procedures determine if 
recovery can be attempted. If it cannot be 
retried, that operation is aborted and an 
appropriate message is sent to the system 
operator. 

Depending on the error encountered, ERP 
receives control and either DMKBSC or DMKGRA and 
DMKGRB determines if this is the first entry 
into the ERP for this task. The IOBRCRT (lOB 
error count) field of the lOB is zero on initial 
entry. On this first entry, the pointer to the 
IOERBLOK is placed in the RDEVIOER field of the 
RDEVBLOK. This preserves the original error CSW 
and sense information for recording. 
Thereafter, IOERBLOKs are discarded before a 
retry is attempted or a permanent error is 
passed to lOS. 

The ERP looks for two other specific 
conditions. If the error count field is not 
zero, entry must be due to a recovery attempt. 
Thus, it may be a solicited device end to 
correct an intervention required condition or a 
retry attempt channel program re-execution. 

The ERP keeps track of the number of retries 
in the IOBRCRT field of the IOBLOK to determine 
if a retry limit has been exceeded for a 
particular error. If the specified number of 
retries fails to correct the error, the error is 
recorded and DMKIOS is notified of the permanent 
error by turning on a status flag in the IOBLOK 
(IOBSTAT=ICSFATAL). 

If the error is corrected, the temporary 
error is not recorded and control is returned to 
DMKIOS with error flags all off. 

When ERP has determined a permanent error 
situation or successfully recovered from an 
error, all auxiliary storage obtained for 
recovery CCWs, buffers, and IOERBLOKs is freed 
before a return is made to'DMKIOS (see Figure 23 
for a summary of the lOB indicators). Also, the 
statistical counters for 3270 are updated. 

110 IBM VM/370: System Logic ann Problem Determination Guide 



• Introduction to CMS 
• Interruption handling 
• Functional information (how C"S works) 

Register usage 
DMSNUC structure 
storage structure 
Free storage management 
SVC handling 

• os macro simulation 

The Conversational Monitor System (CMS), the 
major subsystem of V"/370, provides a 
comprehensive set of conversational facilities 
to the user. Several copies of CMS may run 
under CP, thus providing several users with 
their own time-sharing system. CMS is designed 
specifically for the V"/370 virtual machine 
environment. 

Each copy of CMS supports a single user. 
This means that the storage area contains only 
the data pertaining to that user. Likewise, 
each CMS user has his own machine configuration 
and his own files. Debugging is simpler because 
the files and storage area are protected from 
other users. 

programs can be debugged from the terminal. 
The terminal is used as a printer to examine 
limited amounts of data. After examining 
program data, the terminal user can enter 
commands on the terminal to alter the program. 

CMS, operating with CP, is a time-sharing 
system suitable for problem solving, program 
development, and general work. It includes 
several programming language processors, file 
manipulation commands, utilities, and debugging 
aids. Additionally, CMS can simplify the 
operation of other operating systems in a 
virtual machine environment ~hen controlled from 
a remote terminal. For example, CMS can create 
and modify job streams,' and to analyze virtual 
printer output. 

Part of the CMS environment is related to the 
virtual machine environment created by CPo Each 
user is completely isolated from the activities 
of all other users, and each machine in which 
CMS executes has virtual storage available to it 
and managed for it. The CP commands are 
recognized by CMS. For example, the commands 
allow messages to be sent to the operator or to 
other users, and virtual devices to be 
dynamically detached from the virtual machine 
configuration. 

THE CMS COMMAND LANGUAGE 

The CMS command language offers terminal users a 
wide range of functions. It supports a variety 
of programming languages, service functions, 
file manipulation, program execution control, 
and general system control. The CMS commands 
that are useful in debugging are discussed in 
"Debugging with CMS" in this section. For 
detailed information on all other CMS commands, 
refer to the !~L~IQ: ~~~ ~2~~sBg sBg ~s£!2 

Reference. Figure 23 describes CMS command processing. 

THE FILE SYSTEM 

CMS interfaces with virtual disks, tapes, and 
unit record equipment. The CMS residence device 
is kept as a read-only, shared, system disk. 
Permanent user files may be accessed from up to 
nine active disks. CMS controls logical access 
to those virtual disks, while CP facilities 
manage the device sharing and virtual-to-real 
mapping. 

User files in CMS are identified with three 
designators: the filena.e, the filetype, which 
can imply specific file characteristics to the 
CMS file management routines, and the filemode, 
which describes the location and access mode of 
the file. 

The compilers available under CMS default to 
particular input filetypes, such as ASSEMBLE, 
but the file manipulation and listing commands 
do not. Files of a particular filetype form a 
logical data library for a user; for example, 
the collection of all COBOL source files, or of 
all object (TEXT) decks, or of all EXEC 
procedures. This allows selective handling of 
specific groups of files with minimum input by 
the user. 

User files can be created directly from the 
terminal with the CMS EDIT facility. EDIT 
provides extensive context editing services. 
File characteristics such as record length and 
for.at, tab locations, and serialization options 
can be specified. The system includes standard 
definitions for certain filetypes. 

CMS automatically allocates compiler work 
files at the beginning of command execution on 
whichever active disk has the greatest amount of 
available space, and deallocates them at 
completion. Compiler object decks and listing 
files are normally allocated on the same disk as 
the input source file or on the primary 
read/write disk, and are identified by combining 
the input filename with the filetypes TEXT and 
LISTING. These disk locations may be overridden 
by the user. 

A single user file is limited to a maximum of 
65533 records and must reside on one virtual 
disk. The file management system limits the 
number of files on anyone virtual disk to 3400. 
All CMS disk files are written as 800-byte 
records, chained together by a specific file 
entry that is stored in a table called the 
master file directory; a separate master file 
directory is kept for, and on, each virtual 
disk. The data records may be discontiguous, 
and are allocated and deallocated 
automatically. A subset of the master file 
directory (called the user file directory) is 
made resident in virtual storage when the disk 
directory is made available to CMS; it is 
updated on the virtual disk at least once per 
command if the status of any file on that disk 
has been changed. 

section 1. Introduction 111 



Virtual disks may be shared by CMS users; the 
facility is provided by VM/370 to all virtual 
machines, although a user interface is directly 
available in CMS commands. Specific files may 
be spooled between virtual machines to 
accomplish file transfer between users. 
Commands allow such file manipulations as 
writing from an entire disk or from a specific 
disk file to a tape, printer, punch, or the 
terminal. other commands write from a tape or 
virtual card reader to disk, rename files, copy 
files, and erase files. Special macro libraries 
and text or program libraries are provided by 
CMS, and special commands are provided to update 
and use them. CMS files can be written onto and 
restored from unlabeled tapes via CMS commands. 

~~Y!!Q~: Multiple write access under CMS can 
produce unpredictable results. 

Problem programs which execute in CMS can 
create files on unlabeled tape in any record and 
block size; the record format can be fixed, 
variable, or undefined. Figure 21 describes the 
CMS file system. 

PROGRAM DEVELOPMENT 

CMS includes commands to create and compile 
source programs, to modify and correct source 
programs, to build test files, to execute test 
programs and to debug from the terminal. The 
commands of CMS are especially useful for as and 
DOS/VS program development, but also may be used 
in combination with other operating systems to 
provide a virtual machine program development 
tool. 

CMS utilizes the as and DOS/VS compilers via 
interface modules; the compilers themselves 
normally are not changed. To provide suitable 
interfaces, CMS includes a certain degree of as 
and DOS/VS simulation. The sequential, direct, 
and partitioned access methods are logically 
simulated; the data records are physically kept 
in the chained 800-byte blocks which are 
standard to CMS, and are processed internally to 
simulate as data set characteristics. CMS 
supports VSAM catalogs, data spaces, and files 
on as and DOS disks using the DOS/VS Access 
Method Services. as SVC functions such as 
GETMAIN/FREEMAIN and TIME are simulated. The 
simulation restrictions concerning what types of 
as object programs can be executed under CMS ar€ 
primarily related to the as/pcp, MFT, and MVT 
Indexed Sequential Access Method (ISAM) and the 
telecommunications access methods, while 
functions related to multitasking in as and 
DOS/VS are ignored by CMS. 

INTERRUPTION HANDLING IN CMS 

CMS receives virtual SVC, input/output, program, 
machine, and external interruptions and passes 
control to the appropriate handling program. 

The Conversational Monitor System is SVC 
(supervisor call) driven. s'c interruptions are 
handled by the DMSITS resident routines. Two 
types of SVCs are processed by DMSITS: internal 
linkage SVC 202 and 203, and any other SVCs. 
The internal linkage SVC is issued by the 
command and function programs of the system when 
they require the services of other CMS programs. 
(Commands entered by the user from the terminal 
are converted to the internal linkage SVC by 
DMSINT) • The OS SVCs are issued by the 
processing programs (for example, the 
Assembler). 

INTERNAL LINKAGE ~!~~: When DMSITS receives 
controj-as-a--result of an internal linkage SVC 
(202 or 203), it saves the contents of the 
general registers, floating-point registers, and 
the SVC old PSW, establishes the normal and 
error return addresses, and passes control to 
the specified routine. (The routine is specified 
by the first 8 bytes of the parameter list whose 
address is passed in register 1 for SVC 202, or 
by a halfword code following SVC 203.) 

For SVC 202, if the called program is not 
found in the internal function table of nucleus 
(resident) routines, then DMSITS attempts to 
call in a module (a CMS file with filetype 
MODULE) of this name via the LOADMOD command. 

If the program was not found in the function 
table, nor was a module successfully loaded, 
DMSITS returns an error indicator code to the 
caller. 

To return from the called program, DMSITS 
restores the calling program's registers, and 
makes the appropriate normal or error return as 
defined by the calling program. 

QI~~R ~!~~: The general approach taken by DMSITS 
to process other SVCs supported under CMS is 
essentially the same as that taken for the 
internal linkage SVCs. However, rather than 
passing control to a command or function 
program, as is the case with the internal 
linkage SVC, DMSITS passes control to the 
appropriate routine. The S'C number determines 
the appropriate routine. 

In handling non-CMS SVC calls, DMSITS refers 
first to a user-defined SVC table (if any -- set 
up by the DMSHDS program). 

If the user-defined SVC table is present, any 
SVC number (other than 202 or 203) is looked for 
in that table. If it is found, control is 
transferred to the routine at the specified 
address. 

If the SVC number is not found in the 
user-defined SVC table (or if the table is 
nonexistent), the standard system table of as 
calls is searched for that SVC number. If the 
SVC number is found, control is transferred to 
the corresponding address in the usual manner. 
If the SVC number is not in either table, then 
the supervisor call is treated as an ABEND 
call. 

112 IBM VM/370: system Logic and Problem Determination Guide 



til 
CD 
o 
t+ 
1-1' 
o 
I:' 

H 
I:' 
t+ 
t1 
o 
~ 
c: o 
t+ .... 
o 
I:' 

... 
W 

til 
~ 
til 
t+ 
CD .. 

DMSII:UC Area of Storage Free Storage Disk Storage 



The DMSHDS initialization program sets up the 
user-defined SVC table. It is possible for a 
user to provide his own SVC routines. 

All input/output interruptions are received by 
the I/O interrupt handler, DMSITI. DMSITI saves 
the I/O old PSi and the CSi (channel status 
word) • It then determines the status and 
requirements of the device causing the 
interruption and passes control to the routine 
that processes interruptions from that device. 
DMSITI scans the entries in the device table 
until it finds the one containing the device 
address that is the same as that of the 
interrupting device. The device table (DEVTAB) 
contains an entry for each device in the 
system. Each entry for a particular device 
contains, among other things, the address of the 
program that processes interruptions from that 
device. 

When the appropriate interrupt handling 
routine completes its processing, it returns 
control to DMSITI. At this point, DMSITI tests 
the wait bit in the saved I/O old PSi. If this 
bit is off, the interruption was probably caused 
by a terminal (asynchronous) I/O operation. 
DMSITI then returns control to the interrupted 
program by loading the I/O old PSi. 

If the wait bit is on, the interruption was 
probably caused by a nonterminal (synchronous) 
I/O operation. The program that initiated the 
operation most likely called the DMSIOi function 
routine to wait for a particular type of 
interruption (usually a device end.) In this 
case, DMSITI checks the pseudo-wait bit in the 
device table entry for the interrupting device. 
If this bit is off, the system is waiting for 
some event other than the interruption from the 
interrupting device; DMSITI returns to the wait 
state by loading the saved I/O old PSi. (This 
PSi has the wait bit on.) 

If the pseudo-wait bit is on, the system is 
waiting for an interruption fro. that particular 
device. If this interruption is not the one 
being waited for, DMSITI loads the saved I/O old 
PSi. This will again place the machine in the 
wait state. Thus, the program that is waiting 
for a particular interruption will be kept 
waiting until that interruption occurs. 

If the interruption is the one being 
for, DMSITI resets both the pseudo-wait 
the device table entry and the wait bit 
I/O old PSi. It then loads that PSi. 
causes control to be returned to the 
function routine, which, in turn, 
control to the program that called it 
for the interruption. 

waited 
bit in 
in the 

This 
DMSIOi 

returns 
to wait 

TERMINAL INTERRUPTIONS: Terminal input/output 
Interruptions-are-handled by the DMSCIT module. 
All interruptions other than those containing 
device end, channel end, attention, or unit 
exception status are ignored. If device end 

status is present with attention and a write ccw 
was terminated, its buffer is unstacked. An 
attention interrupt causes a read to be issued 
to the terminal, unless attention exits have 
been queued via the STAX, macro. The attention 
exit with the highest ,-r'Iority is given control 
at each attention until the queue is exhausted, 
then a read is issued. Device end status 
indicates that the last I/O operation has been 
completed. If the last I/O operation was a 
write, the line is deleted from the output 
buffer and the next write, if any, is started. 
If the last I/O operation was a normal read, the 
buffer is put on the finished read list and the 
next operation is started. If the read was 
caused by an attention interrupt, the line is 
first checked for the commands RT~ HO, HT, or 
HX, and the appropriate flags are set if one is 
found. Unit exception indicates a canceled 
read. The read is reissued, unless it had been 
issued with ATTREST=NO, in which case unit 
exception is treated as device end. 

~~!Q~~LgY!£~LE~!!I~~_!!I~~~YE1!~~~: 
Interruptions from these devices are handled by 
the routines that actually issue the 
corresponding I/O operations. When an 
interruption from any of these devices occurs, 
control passes to DMSITI. Then DMSITI passes 
control to DMSIOW, which returns control to the 
routine that issued the I/O operation. This 
routine can then analyze the cause of the 
interrupti en. 

y§~] £Q!!~Q~~~Q Qj!l£~ !~I~RRQgI!Q!§: Interrupts 
from devices under user control are serviced the 
same as CMS devices except that DMSIOW and 
DMSITI manipulate a user created device table, 
and DMSITI passes control to any user written 
interrupt processing routine that is specified 
in the user device table. Otherwise, the 
processing program regains control directly. 

The program interruption handler, DMSITP, 
receives control when a program interruption 
occurs. When DMSITP gets control, it stores the 
program old PSi and the contents of the 
registers 14, 15, 0, 1, and 2 into the program 
interruption element (PIE). (The routine that 
handles the SPIE macro instruction has already 
placed the address of the program interuption 
control area (PICA) into PIE.) DMSITP then 
determines whether or not the event that caused 
the interruption was one of those selected by a 
SPIE macro instruction. If it was not, DMSITP 
passes control to the DMSABR ABEND recovery 
routine. 

If the cause of the interruption was one of 
those selected in a SPIE macro instruction, 
DMSITP picks up the exit routine address from 
the PICA and passes control to the exit 
routine. Upon return from the exit routine, 
DMSITP returns to the interrupted program by 
loading the original program check old PSW. The 
address field of the PSi was modified by a SPI! 
exit routine in the PIE. 

114 IBM VM/370: System Logic and Problem Determination Guide 



An external interruption causes control to be 
passed to the external interrupt handler DMSITE. 
If the user has issued the HNDEXT macro to trap 
external interrupts, DMSITE passes control to 
the user's exit routine. If the interrupt was 
caused by the timer, DMSITE resets the timer and 
types the BLIP character at the terminal. The 
standard BLIP timer setting is two seconds, and 
the standard ELIP character is upper case, 
followed by the lower case (it moves the 
typeball without printing). otherwise, control 
is passed to the DEBUG routine. 

Hard machine check interruptions on the real CPU 
are not reflected to a CMS virtual user by CPo 
A message prints on the console indicating the 
failure. The user is then disabled and must IPL 
CMS again in order to continue. 

FUNCTIONAL INFORMATION 

The most important thing to remember about CMS, 
from a debugging standpoint, is that it is a 
one-user system. The supervisor manages only 
one user and keeps track of only one user's file 
and storage chains. Thus, everything in a dump 
of a particular machine relates only to that 
virtual machine's activity. 

You should be familiar with register usage, 
save area structuring, and control block 
relationships before attempting to debug or 
alter CMS. 

When a CMS routine is called, Rl must point to a 
valid parameter list (PLIST) for that program. 
On return, RO mayor may not contain meaningful 
information (for example, on return from a call 
to FILEDEF with no change, RO will contain a 
negative address if a new FCB has been set up; 
otherwise, a positive address of the already 
existing FCB). R15 will contain the return 
code, if any. The use of Registers 0 and 2 
through 11 varies. 

On entry to a command or routine called by 
SVC 202: 

B~g!2i~E Contents 
1 The-address of the PLIST supplied 

by the caller 
12 The address entry point of the 

called routine 
13 The address of a work area (12 

doublewords) supplied by SVCINT 
14 The return address to the SVCINT 

routine 
15 The entry point (same as register 

12) 

On return 
contains: 

fro. a routine, 

Return 
Code ---0--

(0 
)0 

~~~~i~g 
NO error occurred
Called routine not found
Error occurred

register 15

If a CMS routine is called by an SVC 202,
registers 0 through 14 are saved and restored by
CMS.

Most CMS routines use register 12 as a base
register.

DMSNUC is the portion of storage in a CMS
virtual machine that contains system control
blocks, flags, constants, and pointers.

The CSECTs in DMSNUC contain only symbolic
references. This means that an update or
modification to CMS, which changes a CSECT in
DMSNUC, does not automatically force all CMS
modules to be recompiled. Only those modules
that refer to the area that was redefined must
be recompiled.

The USERSECT CSECT defines space that is not
used by CMS. A modification or update to CMS
can use the 18 fullwords defined for USERSECT.
There is a pointer (AUSER) in the NUCON area to
the U3er space.

The DEVTAB CSECT is a table describing the
devices available for the CMS system. The table
contains the fcllowing entries:

• 1 console
• 10 disks
• 1 reader
• 1 punch
• 1 printer
• 4 tapes

You can change some existing entries in
DEVTAB. Each device table entry contains the
following information:

• virtual device address
• Device flags
• Device types
• symbol device name
• Address of the interrupt processing routine

(for the console)

The virtual address of the console is defined
at IPL time. The virtual address of the user
disks can be altered dynamically with the ACCESS
command. The virtual address of the tapes can
be altered in the device table. Changing the
virtual address of the reader, printer, or punch
will have no effect.

section 1. Introduction 115

STRUCTURE OF CMS STORAGE

Figure 22 describes how CMS uses its virtual
storage. The pointers indicated (MAINSTRT,
"AINHIGH, FREELOWE, and FREEUPPR) are all found
in NUCON (the nucleus constant area).

The sections
following uses:

of CMS storage have the

• DMSHUC (X'OOOOO' to approximately X'03000')

•

•

This area contains pointers, flags, and other
data updated by the various system routines.

Low Storage DMSFBEE Free Storage
{Approximately X'03000' to X'OEOOO'

Area

This area is a free storage area, from which
requests from DMSFREE are allocated. The top
part of this area contains the File Directory
for the System Disk {SST AT). If there is
enough room (as there will be in most cases) ,
the FREETAB table also occupies this area,
just below the SSTAT.

Transient Program Area (X'OEOOO' to X'10000')

Because it is not essential to keep all
nucleus functions resident in storage all the
time, some of them are made "transient."
This means that when they are needed, they
are loaded from the disk into the Transient
Program Area. Such programs may not be
longer than two pages, because that is the
size of the Transient Area. (A page is 4096
bytes of virtual storage.) All transient
routines must be serially reusable since they
are not read in each time they are needed.

• CMS Nucleus (X'10000' to X'20000')

Segment 1 of storage contains the reenterable
code for the CMS Nucleus routines. In shared
CMS systems, this is the "protected segment."
That is, this segment must consist only of
reenterable code, and may not be modified
under any circumstances. This fact implies
certain system restrictions for functions
which require that storage be modified, such
as the fact that DEBUG breakpoints or CP
address stops cannot be placed in this
segment, in a saved system.

User Program Area (X'20000' to Loader Tables)

User programs are loaded into this area by
the LOAD command. Storage allocated by means
of the GETMAIN macro instruction is taken
from this area, starting from the high
address of the user program. In addition,
this storage area can be allocated from the
top down by DMSFREE, if there is not enough
storage available in the low DMSFREE storage
area. Thus the usable size of the User
Program Area is reduced by the amount of free
storage which has been allocated from it by
DMSFREE.

• Loader Tables (Top pages of storage)

The top of storage is occupied by the Loader
Tables that are required by the CMS loader.
These tables indicate which modules are
currently loaded in the User Program Area
(and the Transient Program Area after a LOAD

COMMAND). The size of the Loader Tables can
be varied by the SET LDRTBLS command.
However, to successfully change the size of
the Loader Tables, the SET LDRTBLS com.and
must be issued immediately after IPL.

FREE STORAGE MANAGEMENT

Free storage can be allocated by the GETMAIN or
DMSFREE macros. Storage allocated by the
GETMAIN macro is taken from the user program
area, beginning after the high-address of the
user program.

Storage allocated by the DMSFREE macro can be
taken from several areas.

If possible, DMSFREE requests are allocated
from the low-address free storage area.
Otherwise, DMSFREE requests are satisfied from
the storage above the user program area.

There are two types of DHSFREE requests for
free storage: requests for USER storage and
NUCLEUS storage. Because the two types of
storage are kept in separate 4K pages, it is
possible for storage of one type to be available
in low storage, while no storage of the other
type is available.

All GETMAIN storage is allocated in the user
program area, starting after the end of the
user's actual program. Allocation begins at the
location pointed to by the NUCON pointer
MAINSTRT. The location MAIN HIGH in NUCON is the
"high-extend" pointer for GETMAIN storage.

Before issuing any GETMAIN macros, user
programs must use the STRINIT macro to set up
user free storage pointers. The STRINIT macro is
issued only once, preceding the initial GETMAIN
request. The format of the STRINIT macro is:

r-------------------·--------------,
I I I r r" I
I [label] I STRINIT I ITYPCALL=I~!~ II I
I I I I I BALR II I
I I ILL.J.J I L __________________________________ --J

r ,
TYPCALL=I~!~ I

IBALRI
L .J

indicates how control is passed to
DMSSTG, the routine that processes the
STRINIT macro. Because DMSSTG is a

116 IBM VM/370: System Logic and Problem Determination Guide

VIRTUAL
STORAGE

ENDOFSTORAGE~---------------------------------

System Loader Table (Size determined

by SET LDRTBLS command) Storage Key = X'F'
FREEUPPR----~~----------------------~~----~

DMSFREE requests when
no more low storage available

FREELOWE -----+-- - - - - - - - --

Unused portion of User
Program Area

MAINHIGH ___ +_ __ Storage Key; X'E'

GETMA: ''"u:,~ --- J.,:.:-
MAINSTRT---~.- - - --- - - - _L ~~ ~~

The User's Program
(program is loaded via the

LOAD command)

X'20000'~--------------------S-to-r-a~ge--K-e~y-=-X-'E~'
CMS Nucleus

In "saved systems" this area
is a protected segment
(that is, all code must be
reentrant and cannot be
modified)

X'1 0000 -11----------------------=----'------4

Transient Program Area

X'EOOO'--II---------------:..----
Low Storage OMS F R E E Free Storage Area

DMSFREE requests are filled from
this area. The upper part of this
area contains the System Disk MFD
followed by the FREETAB, if there is
enough room.

X'3000'-+------------------S-t-or-a~g-e-K-e~y-=-X--'E-'-0-r-X-'-F_'
DMSNUC

System Control Blocks, flags, constants,
and pointers.

X'O'--~--------------------~~~-----

Figure 22.

*The half-page containing OPSECT and TSOBLOKS
has a storage key = X'E'

eMS Storage Map

CONTROL BLOCKS
INFREESTORAGE-------.

BBG
BEJG

DMSNUC
,....---------....., X'3000'

USERSECT _____________ ---1 X'2ADS'

SUBSECT _____________ ---1 X'2A40'

TSOBLKS
-------------1 X'29BO'

OPSECT
---------------1 X'2S00'

DMSABW -----------1 X'2360'

-----------~X'2300'

-----------1 X'2190'

-----------IX'1DDO'

1---------------IX'1CCS'

FVS

I----------------t X'1ADS'
DIOSECT

"""--------------------t X'19ES'
SVCSECT

----------------------t X'174S'

--------------------1 X'16BO'

---------------------1 X'1620'

---------------------1 X'1550'

------------1 X'1200'

----------------1 X'DFO'

------------------1 X'C90'

--------------------1 X'700'

---------------------1 X'600'

-----------------------1 X'2EO'

NUCON

Section 1. Introduction 111

nucleus-resident routine, other
nucleus-resident routines can branch
directly to it (TYPCALL=BALR) while
routines that are not nucleus-resident
must use linkage SVC (TYPCALL=SVC). If
no operands are specified the default
is TYPCALL=SVC.

When the STRINIT macro is executed, both
MAINSTRT and MAINHIGH are initialized to the end
of the user's program, in the user program area.
As storage is allocated from the user program
area to satisfy GETMAIN requests, the MAINHIGH
pointer is adjusted upward. Such adjustments
are always in multiples of doublewords, so that
this pointer is always on a doubleword
£oundary. As the allocated storage is released,
the MAINBIGH pointer is adjusted downward.

The pointer MAINHIGB can never be higher than
FREELOWE, the "low-extend" pointer for DMSFREE
storage allocated in the user program area. If
a GETMAIN request cannot be satisfied without
extending MAINHIGH above FREELOWE, GETMAIN
takes an error exit, indicating that
insufficient storage is available to satisfy the
request.

The area between MAINSTRT and MAINHIGH may
contain blocks of storage that are not
allocated, and that are therefore available for
allocation by a GETMAIN instruction. These
blocks are chained together, with the first one
pointed to by the NUCON location MAINSTRT.

Refer to Figure 22 for a description of CMS
virtual storage usage.

The format of an element on the GETMAIN free
element chain is as follows:

r--------~------_y_----~------_,

I FREPTR -- pointer to next free I
0(0) I element in the chain, or 0 I

I if there is no next element I
1------1------1----1 -I
I FRELEN -- length, in bytes, of I

4 (4) I this element I
I I
1--------1------1-----1----1
I Remainder of this free element I
< >
< >
< >

When issuing a variable length GETMAIN, six
and a half pages are reserved for CMS usage;
this is a design value. A user who needs
additional reserved pages (for example, for
larger directories) should free up some of the
variable GETMAIN storage from the high end.

The DMSFREE macro allocates CMS free storage.
The format of the DMSFREE macro is:

r--------------------------------.------------------------,

label

[label] DMSFREE
r ,

DWORDS={ n } I,MIN={ n } I
(0) I (1) I

L .J

r r "r r "
I,TYPE=IY~~R II I,ERR=lladdrll
I INUCLEUSII I I! II
L L .J.J L L .J.J

r r"
I, AREA= I LOW II
I IHIGH II
L L.J.J

r r"
I,TYPCALL=I~!f II
I IBALRII
L L.J.J L-___________________________________ _

a valid assembler language label.

---.--1

DWORDS={ n }
(0)

operand is not available, the Jargest
block of storage that is greatit-thari
or equal to the minimum is returned.
MIN=n specifies the minimum number of
doublewords of free storage directly
while MIN=(l) indicates that the
minimum is in register 1. The actual
amount of free storage allocated is
returned to the requesting routine via
general register o.

MIN={ n }
(1)

is the number of doublewords of free
storage requested. DWORDS=n specifies
the number of doublewords directly and
DWORDS=(O) indicates that register 0
contains the number of doublewords
requested.

indicates a variable request for free
storage. If the exact number of
doublewords indicated by the DWORDS

r ,
TYPE=I.Y~~S I

INUCLEUSI
L ...

indicates the type of CMS storage with
which this request for free storage is
filled: USER or NUCLEUS.

118 IBM VM/370: System Logic and Problem Determination Guide

r ,
ERR=lladdrl

I .! I
L J

is the return address if any error
occurs. "laddr" is any address that
can be referred to in a LOAD ADDRESS
(LA) instruction. The error return is
taken if there is a macro coding error
or if there is not enough free storage
available to fill the request. If *
is specified for the return address,
the error return is the same as a
normal return.

r ,
AREA=ILOW I

IHIGHI
L J

indicates the area of CMS free storage
from which this request for free
storage is filled. LOW indicates the
low storage area between DMSNUC and
the the transient program area. HIGH
indicates the area of storage between
the user program area and the CMS
loader tables. If AREA is not
specified, storage is allocated
wherever it is available.

r ,
TYPCALL=I~!£ I

IBALRI
L J

indicates how control is passed to
DMSFREE. Because DMSFREE is a
nucleus-resident routine, other
nucleus-resident routines can branch
directly to it (TYPCALL=BALR) while

routines that are not nucleus-resident
must use linkage SVC (TYPCALL=SVC).

The pointers FREEUPPR and PREELOWE in NUCOR
indicate the amount of storage that DMSFREE has
allocated from the high portion of the user
program area. These pointers are initialized to
the beginning of the loader tables.

The pointer PREELOWE is the "low-extend"
pointer of DMSFREE storage in the user program
area. As storage is allocated from the user
program area to satisfy DMSFREE requests, this
pointer is adjusted downward. Such adjustments
are always in multiples of 4K bytes, so that
this pointer is always on a 4K boundary. As the
allocated storage is released, this pointer is
adjusted upward.

The pointer PREELOWE can never be lower than
MAINHIGH, the "high-extend" pointer for GETMAIN
storage. If a DMSFREE request cannot be
satisfied without extending FREELOWE below
MAINHIGH, DMSPREE takes an error exit,
indicating that insufficient storage is
available to satisfy the request. Figure 22
shows the relationship of these storage areas.

The FREETAB free storage table is kept in
free storage, usually in low-storage, just below
the master file directory for the system disk
(S-disk). However, the FREETAB may be located
at the top of the user program area. This table
contains one byte for each page of virtual
storage. Each such byte contains a code
indicating the use of that page of virtual
storage. The codes in this table are as
follows:

section 1. Introduction 119

~Q~~ ~~!m!!HI
USERCODE (X'Ol') The page is assigned to user

storage.

NUCCODE (X'02') The page is assigned to
nucleus storage.

TRNCODE (X'03') The page is part of the
transient program area.

USARCODE (X' 04') The page is part of the user
program area.

SYSCODE (X'OS') The page is none of the
above. The page is assigned
to system storage, system
code, or the loader tables.

other DMSFREE storage pointers are maintained
in the DMSFRT CSECT, in NUCON. The four chain
header blocks are the most important fields in
DMSFRT. The four chains of unallocated elements
are:

• The low-storage nucleus chain
The low-storage user chain

• The high-storage nucleus chain
• The high-storage user chain

For each of these chains of unallocated
ele.ents, there is a control block consisting of
four words, with the following format:

..-------------------------------,
1 POINTER -- pointer to the first 1

o (0) 1 free element on the 1
1 chain; it is zero, if 1
1 the chain is empty. 1
1---------------------------1
1 NUM - the number of elements on 1

4 (4) 1 the c ha in. 1
1 1
1----------------------------1
1 MAX -- a value equal to or 1

8 (8) 1 greater than the size 1
1 of the largest element. 1
1 -----------1
1 FLAGS- 1 SKEY - I TCODE -I Unused 1

12 (C) 1 Flag 1 storage 1 FREETAB 1 1
1 byte 1 key 1 code 1 1 L-_____________________________ .I

POINTER points to the first element on this
chain of free elements. If there are
no elements on this free chain, the
POINTER field contains all zeros.

NUM

MAX

contains the number of elements on
this chain of free elements. If there
are no elements on this free chain,
this field contains all zeros.

avoids failing searches. It contains
a number not exceeding the size, in
bytes, of the largest element on the
free chain. Thus, a search for an
element of a given size is not be made
if that size exceeds the MAX field.
However, this number may actually be
larger than the size of the largest
free element on the chain.

FLAGS

SKEY

TCODE

The following flags are used:

• FLCLN (X'SO') Clean-up flag.

•

•

•

This flag is set if the chain .ust
be updated. This is necessary in
the following circumstances:

If one of the two high-storage
chains contains a 4K page that
is pointed to by FREELOWE, then
that page can be r.emoved from
the chain, and FREELOWE can be
increased.

All completely unallocated 4K
pages are kept on the user
chain, by convention. Thus, if
one of the nucleus chains
(low-storage or high-storage)
contains a full page, then this
page must be transferred to the
corresponding user chain.

FL CL B (X • 4 0')
Set if the
destroyed.

Destroyed flag.
chain has been

FLHC (X'20') -- High-storage chain.
set for both the nucleus and user
high-storage chains.

FLNU (X' 10') -- Nucleus chain. set
for both the low-storage and
high-storage nucleus chains •

• FLPA (X 'OS') Page available.
This flag is set if there is a full
4K page available on the chain.
This flag may be set even if there
is no such page available.

contains the 1-byte storage key
assigned to storage on this chain.

contains the l-byte FREETAB table code
for storage on this chain.

When DMSFREE with TYPE=USER (the default) is
called, one or more of the following steps are
taken in an attempt to satisfy the request. As
soon as one of the following steps succeeds,
then user free storage allocation processing
terminates.

1. Search the low-storage user chain for a
block of the required size.

2. Search the high-storage user chain for a
block of the required size.

3.

4.

Extend high-storage user storage
into the user program area,
FREELOWE in the process.

downward
modifying

For a variable request, put all available
storage in the user program area onto the
high-storage user chain, and then allocate
the largest block available on either the
high-storage user chain or the low-storage

120 IBM VM/370: System Logic and Problem Determination Guide

user chain. The allocated block will not
be satisfactory unless it is larger than
the minimum requested size.

When DMSFREE with TYPE=NUCLEUS is called, the
following steps are taken in an attempt to
satisfy the request, until one succeeds:

1. Search the low-storage nucleus chain for a
block of the required size.

2. Get free pages from the low-storage user
chain, if any are available, and put them
on the low-storage nucleus chain.

3. Search the high-storage nucleus chain for a
block of the required size.

r---

4. Get free pages from the high-storage user
chain, if they are available, and put them
on the high-storage nucleus chain.

5. Extend high-storage nucleus storage
downward into the user program area,
modifying FREELOWE in the process.

6. For variable requests, put all available
pages from the user chains and the user
program area onto the nucleus chains, and
allocate the largest block available on
either the low-storage nucleus chains, or
the high-storage nucleus chains.

The DMSFRET macro releases free storage
previously allocated with the DMSFREE macro.
The format of the DMSFRET macro is:

--,
I [label] DMSFRET
I

I
I

DWORDS={ n },LOC={laddr}
(0) (1)

I
I
I
I
I
I

I I r r " r r " I I I,ERR=lladdrll I,TYPCALL=I.§!£ II
I I I I ! II I I BALRII
I I L L L L
L--- --------- ------.1

label is any valid assembler language label.

DWORDS={ n }
(0)

is the number of doublewords of
storage to be released. DWORDS=n
specifies the number of doublewords
directly and DWORDS=(O) indicates that
register 0 contains the number of
doublewords being released.

LOC={ laddr}
(1)

is the address of the block of storage
being released. "laddr" is any
address that can be refereed to in a
LOAD ADDRESS (LA) iBstruction.
LOC=laddr specifies the address
directly while LOC=(1) indicates the
address is in register 1.

r ,
ERR=lladdrl

I ! I
L ..

is the return address if an error
occurs. "laddr" is any address that
can be referred to by a LOAD ADDRESS
(LA) instruction. The error return is
taken if there is a macro coding error
or if there is a problem returning the
storage. If * is specified, the error
return address is the same as the
normal return address.

r ,
TYPCALL=I~!.£ I

IBALRI
L ..

indicates how control is passed to
DMSFRET. Because DMSFRET is a
nucleus-resident routine, other
nucleus-resident routines can branch
directly to it (TYPCALL=BALR) while
routines that are not nucleus-resident
must use SVC linkage (TYPCALt=SVC).

When DMSFRET is called, the block being
released is placed on the appropriate chain. At
that point, the final update operation is
performed, if necessary, to advance FREELOWE, or
to move pages from the nucleus chain to the
corresponding user chain.

Similar update operations are performed, when
necessary, after calls to DMSFREE, as well.

storage allocated by the
instruction may be released
following ways:

GETMAIN macro
in any of the

1. A specific block of such storage may be
released by means of the FREEMAIN macro
instruction.

2. The STRINIT macro instruction releases all
storage allocated by any previous GETMAIN
requests.

section 1. Introduction 121

3. Almost all CMS commands issue a STRINIT
macro instruction. Thus, executing almost
any CMS command causes all GETMAIN storage
to be released.

storage allocated
instruction may be
following ways:

by the DMSFREE macro
released in any of the

1. A specific block of such storage may be
released by means of the DMSFRET macro
instruction.

2. Whenever any user routine or CMS command
abnormally terminates (so that the routine
DMSABN is entered), and the ABEND recovery
facility of the system is invoked, all
DMSFREE storage with TYPE=USER is released
automatically.

Except in the case of ABEND recovery, storage
allocated by the DMSFREE macro is never released
automatically by the system. Thus, storage
allocated by means of this macro instruction
should always be released explicitly by means of
the DMSFRET macro instruction.

The system uses the DMSFRES macro instruction to
request certain free storage management
serv ices.

The format of the DMSFRES macro is:

r--,
l[label]IDMSFRESI INITl r r" I
I I I INIT2 I,TYPCALL=ISVC II I
I I I CHECK I IBALRII I
I I I CKON L L.... I
I I I CKOFF I
I I I UREC I
I I I CALOC I
L ---'

label

!lUT1

is any valid
label.

assembler language

invokes the first free storage
initialization routine, so that free
storage requests can be made to access
the system disk. Before this routine
is invoked, no free storage requests
may be made. After this routine has
been invoked, free storage requests
aay be made, but these are subject to
the following restraints until the
second free storage management
initialization routine has been
invoked:

• All requests for USER type storage
are changed to requests for NUCLEUS
type storage.

• Error checking is
initialization is

limited before
complete. In

INIT2

CHECK

CKON

particular, it is
possible to release a
was never allocated.

sometimes
block which

• All requests that are satisfied in
high storage must be of a temporary
nature, since all storage allocated
in high storage is released when
the second free storage
initialization routine is invoked.

When CP's saved system facility is
used, the CMS system is saved at the
point just after the A-Disk has been
made accessible. It is necessary for
DMSFRE to be used before the size of
virtual storage is known, since the
saved system can be used on any size
virtual machine. Thus, the first
initialization routine initializes
DMSFRE so that limited functions can
be requested, while the second
initialization routine performs the
initialization necessary to allow the
full functions of DMSFRE to be
exercised.

invokes the second initialization
routine. This routine is invoked
after the size of virtual storage is
known, and it performs initialization
necessary to allow all the functions
of DMSFRE to be used. The second
initialization routine performs the
following steps:

1. Releases all storage that has
been allocated in the
high-storage area.

2. Allocates the FREETAB free
storage table. This table
contains one byte for each 4K
page of virtual storage, and so
cannot be allocated until the
size of virtual storage is
known.

3. The FREETAB table is initialized,
and all storage protection keys
are initialized.

4. All completely unallocated 4K
pages on the low-storage nucleus
free storage chain are removed to
the user chain. Any other
necessary operations are
performed.

invokes a routine which checks all
free storage chains for consistency
and correctness. Thus, it checks to
see whether any free storage pointers
have been destroyed. This option can
be used at any time for system
debugging.

turns on a flag which causes the CHECK
routine to be invoked each time a call
is made to DMSFREE or DMSFRET. This
can be useful for debugging purposes
(for example, when you wish to
identify the routine destroying free
storage management pointers). Care
should be taken when using this

122 IBM VM/370: system Logic and Problem Determination Guide

option, since the CHECK routine is
coded to be thorough rather than
efficient. Thus, after the CKON
option has been invoked, each call to
D!SPRBB or DftSPRET takes much longer
to be co.pleted than before.

CKOPP turns off the flag that was turned on
by the CKON option.

UREC is used by DftSABN during the ABEND
recovery process to release all user
storage.

CALOC is used by D!SABN after the ABEND
recovery process has been co.pleted.
It invokes a routine that returns, in
register 0, the number of doublewords
of free storage that have been
allocated. DftSABN uses this number to
determine whether ABEND recovery has
been successful.

A nonzero return code upon return from DftSFRES,
D!SFREE, or DftSFRET indicates that the request
could not be satisfied. Register 15 contains
this return code, indicating which error has
occurred. The following codes apply to the
DftSFRES, D!SFREE, and DftSFRET macros.

£2f!.~ Error
1 (DKSFREE) Insufficient storage space is

available to satisfy the request for free
storage. In the case of a variable
request, even the minimum request could not
be satisfied.

2 (DMSFREE or DMSFRET) User storage pointers
destroyed.

3 (DMSFREE, DMSFRET, or DMSFRES) Nucleus
storage pointers destroyed.

4 (DMSPREE) An invalid size was requested.
This error exit is taken if the requested
size is not greater than zero. In the case
of variable requests, this error exit is
taken if the minimum request is greater
than the maximu. request. (However, the
latter error is not detected if DMSFREE is
able to satisfy the maximum request.)

5 (DMSFRET) An invalid size was passed to the
DMSFRET macro. This error exit is taken if
the specified length is not positive.

6 (DMSFRET) The block of storage which is
being released was never allocated by
DMSFREE. Such an error is detected if one
of the following errors is found:

a. The block does not lie entirely inside
either the low-storage free storage area
or the user program area between
FREELOWE and FREEUPPR.

b. The block crosses a page boundary that
separates a page allocated for USER
storage from a page allocated for
NUCLEUS type storage.

£.QS'!} III2I
c. The block overlaps another block already

on the free storage chain.

7 (DftSPRET) The address given for the block
being released is not doubleword aligned.

8 (D!SFRES) An invalid request code was
passed to the DMSFRES routine. Because all
request codes are generated by the DMSFRES
.acro, this error code should never
appear.

9 (DftSFREE, DftSFRET, or DMSFRES) Unexpected
and unexplained error in the free storage
management routine.

CftS HANDLING OP PSi KEYS

The the CftS nucleus protection scheme protects
the CMS nucleus from inadvertent destruction by
a user ptogram. iithout it, it would be
possible, for example, for a FORTRAN user who
accidentally assigns an incorrectly subscripted
array element to destroy nucleus code, wipe out
a crucial table or constant area. or even
destroy an entire disk by destroying the
contents of the master file directory.

In general, user programs and disk-resident
CftS commands run with a PSi key of X'E', While
nucleus code runs with PSi key of X'O'.

There are, however, some exceptions to this
rule. Certain disk-resident CMS commands run
with a PSW key of X'O', because they have a
constant need to modify nucleus pointers and
storage. The nucleus routines called by the
GET, PUT, READ, and WRITE macros run with a user
PSi key of X'E', to increase efficiency.

TWO macros are available to any routine that
wishes to change its PSi key for some special
purpose. These are the DMSKEY macro and the
DM SEIS macro.

The DMSKEY macro may be used to change the
PSi key to the user value or the nucleus value.
The DMSKEY NUCLEUS option causes the current PSi
key to be placed in a stack, and a value of 0 to
be placed in the PSW key. The DMSKEY USER
option causes the current PSW key to be placed
in a stack, and a value of X'E' to be placed in
the PSi key. The DMSKEY RESET option causes the
top value in the DMSKEY stack to be removed and
re-inserted into the PSi.

It is a requirement of the CMS system that
when a routine terminates, the DMSKEY stack must
be empty. This means that a routine should
execute a DMSKEY RESET option for each DMSKEY
NUCLEUS option and each DMSKEY USER option
executed by the routine.

The DMSKEY key stack has a current maximum
depth of seven for each routine. In this
context, a "routine" is anything invoked by an
SVC call.

Section 1. Introduction 123

The DMSKEY LISTUSER option causes the current
PSi key to be placed in the stack, and a new key
inserted into the PSi, determined as follows:
the SVC system save area stack is searched in
reverse order (top to bottom) for the first save
area corresponding to a user routine. The PSi
key which was in effect in that routine is then
taken for the new PSi key. (If no user routine
is found in the search, then LISTUSER has the
same effect as USER.) This option is used by OS
macro simulation routines when they must enter a
user-supplied exit routine; the exit routine is
entered with the PSi key of the last user
routine on the SVC system save area stack.

The BOSTICK option of DMSKBY may be used with
BUCLEUS, USER, or LISTUSER (as in, for example,
DftSKEY BUCLEUS,IOSTICK) if the current key is
not to be placed on the DMSKEY stack. If this
option is used, then no corresponding DMSKEY
RESET should be issued.

The DMSEXS ("execute in system mode") macro
instruction is useful in situations where a
routine is running with a user protect key, but
wishes to execute a single instruction which,
for example, sets a bit in the BUCON area. The
single instruction may be specified as the
argu.ent to the DftSEXS macro, and that
instruction will be executed with a system PSi
key.

ihenever possible, CMS commands run with a
user protect key. This protects the CMS nucleus
in cases where there is an error in the system
command which would otherwise destroy the
nucleus. If the com.and must execute a single
instruction or small group of instructions that
.odify nucleus storage, then the DftSKEY or
DftSEXS macros are used, so that the system PSi
key will be used for as short a period of time
as possible.

CftS SVC HABDLIBG

DftSITS (IBTSVC) is the CftS system SVC handling
routine. The general operation of DftSITS is as
follows:

1. The SVC new PSi (low-storage location
X'60') contains, in the address field, the
address of DftSITS1. The DftSITS .odule will
be entered whenever a supervisor call is
executed.

2.

3.

4.

5.

DMSITS allocates a system and user save
area. The user save area is used as a
register save area (or work are~ by the
called routine.

The called routine is called (via a LPSi or
BALR) •

Upon return fro. the called routine, the
save areas are released.

Control
routine
call) •

is returned to the caller
which originally .ade the

(the
SVC

SVC TYPES AND LIBKAGE CONVEBTIONS

SVC conventions are important to any discussion
of CftS because the system is driven by SVCs
(supervisor calls). SVCs 202 and 203 are the
most common CMS SVCs.

svc 202 is used both
resident routines, and
written as commands (for
modules).

for calling nucleus
for calling routines
example, disk resident

I typical coding sequence for an SVC 202 call
is the following:

LA R1,PLIST
SVC 202
DC AL4 (ERRADD)

Whenever SVC 202 is calle.d, register 1 must
point to a parameter list (PLIST). The format of
this parameter list depends upon the actual
routine or command being called, but the SVC
handler will examine the first eight bytes of
this parameter list to find the name of the
routine or command being called.

The "DC AL4(address)" instruction following
the SVC 202 is optional, and may be omitted if
the programmer does not expect any errors to
occur in the routine or coosand being called.
If included, an error return is made to the
address specified in the DCa DMSITS determines
whether this DC was inserted by examining the
byte following the SVC call inline. A nonzero
byte indicates an instruction, a zero value
indicates that "DC AL4 (address)" follows.

SVC 203 is called by CMS macros to perform
various internal system functions. It is used
to define SVC calls for which no parameter list
is provided. Por example, DMSFREE parameters
are passed in registers 0 and 1.

A typical calling sequence for an SVC 203
call is as follows:

SVC 203
DC H'code'

The halfword deci.al code following the SVC
203 indicates the specific routine being
called. DMSITS examines this halfword code,
taking the absolute value of the code by an LPR
instruction. The first byte of the result is
ignored, and the second byte of the resulting
halfword is used as an index to a branch table.
The address of the correct routine is loaded,
and control is transferred to it.

It is possible for the address in the SVC 203
index table to be zero. In this case, the index
entry will contain an 8-byte routine or command
name, which will be handled in the same way as

124 IBft Vft/370: system Logic and Problem Deter.ination Guide

the 8-byte name passed in the para.eter list to
an SVC 202.

The progra •• er indicates an error return by
the sign of the halfword code. If an error
return is desired, then the code is negative.
If the code is positive, then no error return is
.ade. The sign of the ha1fword code has no
effect on deter.ining the routine which is to be
called, since DMSITS takes the absolute value of
the code to deter.ine the routine called.

Since only the second byte of the absolute
value of the code is examined by DftSITS, seven
bits (bits 1-7) are available as flags or for
other uses. Thus, for exa.p1e, DMSFREE uses
these seven bits to indicate such things as
conditional requests and variable requests.

When an SVC 203 is invoked, DMSITS stores the
ha1fword code into the BUCOB location CODE203,
so that the called routine can examine the seven
bits made available to it.

All calls made by means of SVC 203 should be
made by macros, with the macro expansion
co.puting and specifying the correct half word
code.

The programmer may use the BNDSVC macro to
specify the address of a routine which will
handle any SVC call o',ther than for SVC 202 and
SVC 203.

In this case, the linkage conventions are as
required by the user-specified sVc-hand1ing
routine.

CMS supports selected SVC calls generated by OS
and DOS/VS macros, by simulating the effect of
these macro calls. DftSITS is the initial SVC
interrupt handler. If the SET DOS command has
been issued, a flag in NUCON will indicate that
DOS/VS macro simulation is to be used. Control
is then passed to DftSDOS. Otherwise, OS macro
simulation is assumed and DftSITS passes control
to the appropriate OS simulation routine.

There are several types of invalid SVC calls
recognized by DftSITS.

1. Invalid SVC number. If the SVC number does
not fit into any of the four classes
described above, then it is not handled by
DftSITS. An appropriate error message is
displayed at the terminal, and control is
returned directly to the caller.

2. Invalid routine name in SVC 202 parameter
list. If the routine named in the SVC 202

parameter list is invalid or cannot be
found, DMSITS handles the situation in the
same way it handles an error return from a
legitimate SiC routine. The error code is
-3.

3. Invalid SVC 203 code. If an invalid code
follows SVC 203 in1ine, then an error
message is displayed, and the ABEND routine
is called to terminate execution.

When a program issues SVC 202, passing a routine
or command name in the parameter list, then
DMSITS must be searched for the specified
routine or command. (In the case of SVC 203
with a zero in the table entry for the specified
index, the same logic must be applied.)

The search algorithm is as follows:

1. First, a check is made to see if there is a
routine with the specified name currently
occupying the system Transient Area. If
this is the case, then control is
transferred there.

2. second, the system function name table is
searched, to see if a command by this name
is nucleus-resident. If successful,
control goes to the specified nucleus
routine.

3. Bext, a search is made for a disk file with
the specified name as the filename, and
MODULE as the fi1etype. The search is made
in the standard disk search order. If this
search is successful, then the specified
module is loaded (via the LOADMOD command),
and centro1 passes to the storage location
now occupied by the command.

4. If all searches so far have failed, then
DMSIBA (ABBREV) is called, to see if the
specified routine name ~s a valid system
abbreviation for a system command or
function. user-defined abbreviations and
synonyms are also checked. If this search
is successful, then steps 2 through 4 are
repeated with the full function name.

5. If all searches fail, then an error code of
-3 is issued.

When a command is entered from the terminal,
DMSINT processes the command line, and calls the
scan routine to convert it into a parameter list
consisting of eight-byte entries. The following
search is performed:

1. DMSIBT searches for a disk file whose
filename is the command name, and whose
fi1etype is EXEC. If this search is
successful, EXEC is invoked to process the
EXEC file.

Section 1. Introduction 125

If not found, the command name is
considered to be an abbreviation and the
appropriate tables are examined. If found,
the abbreviation is replaced by its full
equivalent and the search for an EXEC file
is repeated.

2. If there is no EXEC file, DMSINT executes
SVC 202, passing the scanned parameter
list, with the command name in the first
eight bytes. DMSITS will perform the
search described for SVC 202 in an effort
to execute the command.

3.

4.

If DMSITS returns to DMSINT
code of -3, indicating that
unsuccessful, then DMSINT
DIAGNOSE facility to attempt
command as a CP command.

wi th a return
the search was

uses the CP
to execute the

If all these
displays the
COMMAND.

searches fail, then DMSINT
error message UNKNOWN CP/CMS

See Figure 23 for a description of this
search for a command name.

USER AND TRANSIENT PROGRAM AREAS

TWO areas can hold programs that are loaded from
disk. These are called the user program area
and the transient program area. (see Figure 22
for a description of CMS storage usage.)

The user program area starts at location
X'20000' and extends upward to the loader
tables. Generally, all user programs and
certain system commands (such as EDIT, and
COPYFILE) run in the user program area. Because
only one program can be running in the user
program area at anyone time, it is impossible
(without unpredictable results) for one program
running in the user program area to invoke, by
means of SVC 202, a module that is also intended
to be run in the user program area.

The transient program area is two pages long,
running from location X'EOOO' to location
X'FFFF'. It provides an area for system
commands that may also be invoked from the user
program area by means of an SVC 202 call. When
a transient module is called by an SVC, it is
normally run with the PSW system mask disabled
for I/O and external interruptions.

The transient program area also handles
certain OS macro simulation SVC calls. OS SVC
calls are handled by the OS simulation routines
located either in the CMSSEG discontiguous
shared segment or in the user program area, as
close to the loader tables as possible. If
DMSITS cannot find the address of a supported OS
SVC handling routine, then it loads the file
DMSSVT MODULE into the transient area, and lets
that routine handle the SVC.

A program running in the transient program
area may not invoke another program intended to
run in the transient program area, including OS
macro simulation SVC calls that are handled by
DMSSVT. For example. a program running in the

transient program area may not invoke the RENAME
command. In addition, it may not invoke the OS
macro iTO, which generates an SVC 35, which is
handled by DMSSVT.

DMSITS starts programs running in the user
program area enabled for all interruptions but
starts programs running in the transient program
area disabled for all interruptions. The
individual program may have to use the SSM (SET
SYSTEM MASK) instruction to change the current
status of its system mask.

CALLED ROUTINE START-UP TABLE

Figures 24 and 25 show how the PSW and registers
are set up when the called routine is entered.

RETURNING TO THE CALLING ROUTINE

When the called routine finishes processing,
control is returned to DMSITS, which in turn
returns control to the calling routine.

The return is accomplished by loading the
original SVC old PSW ~hich was saved at the
time DMSITS was first entered), after possibly
modifying the address field. The address field
modification depends upon the type of SVC call,
and on whether the called routine indicated an
error return.

For SVC 202 and 203, the called routine
indicates a normal return by placing a zero in
register 15, and an error return by placing a
nonzero code in register 15. If the called
routine indicates a normal return, then DMSITS
makes a normal return to the calling routine.
If the called routine indicates an error return,
DMSITS passes the error return to the calling
routine, if one was specified, and abnormally
terminates if none was specified.

For an SVC 202 not followed by "DC
AL4{address)", a normal return is made to the
instruction following the SVC instruction, and
an error return causes an ABEND. For an SVC 202
followed by "DC AL4{address)h, a normal return
is made to the instruction following the DC, and
an error return is made to the address specified
in the DC. In either case, register 15 contains
the return code passed back by the called
routine.

For an SVC 203 with a positive halfword code,
a normal return is made to the instruction
following the halfword code, and an error return
causes an ABEND. For an SVC 203 with a negative
halfword code, both normal and error returns are
made to the instruction following the halfword
code. In any case, register 15 contains the
return code passed back by the called routine.

For macro simUlation
user-handled SVC calls,

SVC calls, and for
no error return is

126 IBM VM/370: System Logic and Problem Determination Guide

Name is now
the real name
from a
Svnonvm
Tobie

Figure 23.

Read line
from terminal
(.. n.me)

Issue SVC 202
(See the SVC 202
Subroutine)

No

Expand line by
inserting the
command name
EXEC to:
EXEC name

No

Display
UNKNOWN
CP/CMS
COMMANO

Display Ready
message, with
error code if
RC = 0

CMS Command (and Request) Processing

No

Name is now the
real name from the
Synonym Table

Pass line
to CP
for processing

Ves

Attempt to execute
LOADMOD name
MODULE from disk

Set RC = ·3

Notes:

Ves

Ves

Pa3S control to the
routine (in the nucleus,
transient area, or
user area) to execute
the command

Upon completion,
return to SVC routine

1. If the terminal line was actually from an EXEC file, or if the
command SET IMPEX OFF has been executed, implied EXEC
is not in effect.

2. A -3 return code indicates SVC 202 processing did not find
the command.

3. If the terminal line was actually from an EXEC file, or if the
command SET IMPEX OFF has been executed, implied CP
is not in effect.

section 1. Introduction 127

, ,
1 Called Type System Bask Storage Key 1 Proble. Bit 1
1 -I ---I
1 SVC 202 or 203 Disabled Syste. 1 Off 1
1 - Bucleus 1 1
1 resident 1 1 1
1 -1------1 1
1 svc 202 or 203 Disabled 1 User 1 Off 1
1 - Transient 1 1 1
1 area BODULE 1 1 1 1
1-------1 -I 1-------1
1 svc 202 or 203 1 Enabled 1 User 1 Off 1
1 - User area 1 1 1 1
1 1----------1-------1 1
1 User-handled 1 Enabled 1 User 1 Off 1
1 1----------1 1 1
1 os - DOS/VS 1 Disabled 1 System 1 Off 1
1 liuc leus 1 1 1 1
1 resident 1 1 1 1
1 1------------1-- 1 --I
1 os - DOS/VS 1 Disabled 1 Systea 1 Off 1
1 Transient 1 1 1 1
1 area module 1 1 1 1 L--- __________________ . ______________ ...

Figure 24. PSW Fields When Called Routine Starts

Type
Registers

0-1

,
Registers 1 Register 1 Register 1 Register Register 1

2 - 11 1 12 1 13 1 14 1 15 1
---- ----- -----1------1-----1 1-------1

SVC 202
or 203

Same as
caller

Unpredic- 1 Address 1 User 1 Return 1 Address 1
table 1 of 1 save 1 address 1 of 1

1 called 1 area 1 to 1 called 1
1 1 1 1 routine 1 1 DMSITS 1 routine 1
1----1-----1--------1-----1 1----1-----1
lather L Same as 1 Same as 1 Address 1 User 1 Return 1 Same as 1
1 1 caller 1 caller 1 of 1 save 1 address 1 caller 1
1 1 1 1 caller 1 area 1 to 1 1
1 1 1 1 liD ft SI T S 1 1 L--- _. ______________________________ ---'

Figure 25. Register contents When Called Routine Starts

recognized by DMSITS. As a result, DftSITS
always returns to the calling routine by loading
the SVC old PSW which was saved when DftSITS was
fi rst en te red.

Upon entry to DBSITS, all registers are saved as
they were when the SVC instruction was first
executed. Upon exiting from DftSITS, all
registers are restored from the area in which
they were saved at entry.

The exception to this is register 15 in the
case of SVC 202 and 203. Upon return to the
calling routine, register 15 always contains the
value which was in register 15 when the called
routine returned to DftSITS after it had
completed processing.

If the called routine has system status, so that
it runs with a PSW storage protect key of 0,

then it may store new values into the System
Save Area.

If the called routine wishes to modify the
location to which control is to be returned, it.
must modify the following fields:

•

•

For SVC 202 and
RUftRET and ERRET
address) fields.

For other SVCs, it
field of OLDPSW.

203, it must modify the
(normal and error return

must modify the address

To modify the registers that are to be returned
to the calling routine, the fields EGPR1, EGPR2,
••• , EGPR15 must be modified.

If this action is taken by the called
routine, then the SVCTRACE facility may print
misleading information, since SVCTRACE assumes
that these fields are exactly as they were when
DftSITS was first entered. Whenever an SVC call
is made, DftSITS allocates two save areas for
that particular SVC call. Save areas are
allocated as needed. For each SVC call, a system
and user save area are needed.

128 IBft VM/370: System Logic and Problem Determination Guide

When the SVC called routine returns, the save
areas are not released, but are kept for the
next SVC. At the completion of each command,
all SVC save areas allocated by that command are
released.

The system save area is used by DMSITS to
save the value of the SVC old PSW at the time of
the SVC call, the calling routine's registers at
the time of the call, and any other necessary
control information. Because SVC calls can be
nested, there can be several of these save areas
at one time. The system save area is allocated
in protected free storage.

The user save area contains 12 doublewords
(24 words), allocated in unprotected free
storage. DMSITS does not use this area at all,
but simply passes a pointer to this area (via
register 13.) The called routine can use this
area as a temporary work area, or as a register
save area. There is one user save area for each
system save area. The field OSAVEPTR in the
system save area points to the user save area.

The exact format of the system save area can
be found in the !~JIQ: ~A~A A~~A§ A~ £g~!!~l
~!2£~ ~2g!£. The most important fields, and
their uses, are as follows:

CALLER (Full word) The address of
instruction that resulted
call.

the SVC
in this

CALLEE

CODE

OLDPSW

liIHMRET

EHRET

(Doubleword) Eight-byte symbolic name
of the called routine. Por OS and
user-handled SVC calls, this field
contains a character string of the
fora SVC nnn, where nnn is the SVC
number in deci.al.

(Halfword) For SVC 203, this field
contains the halfword code following
the SVC instruction line.

(Doubleword) The SVC old PSW at the
time that DMSITS was entered.

(Pull word) The address of the calling
routine to which control is to be
passed in the case of a normal return
from the called routine.

(Fullword) The address of the calling
routine to which control is to be
passed in the case of an error return
from the called routine.

r--------

EGPRS (16 Fullwords, separately labeled
EGPRO, EGPR1, EGPR2, EGPR3, ••• ,
EGPR15) The entry registers. The
contents of the general registers at
entry to DMSITS are stored in these
fields.

EFPRS (4 Doublewords, separately labeled
EFPRO, EFPR2, EFPR4, EFPR6) The entry
floating-point registers. The
contents of the floating-point
registers at entry to DMSITS are
stored in these fields.

SSAVENXT (Fullword) The address of the next
system save area in the chain. This
points to the system save area which
is being used, or will be used, for
any SVC call nested in relation to the
current one.

SSAVEPRV (Fullword) The address of the
previous system save area in the
chain. This points to the 'system save
area for the SVC call in relation to
which the current call is nested.

OSAVEPTR (Fullword) Pointer to the user save
area for this SVC call.

CMS INTERFACE FOR DISPLAY TERMIliIALS

CMS has an interface that allows it to display
large amounts of data in a very rapid fashion.
This interface for display terminals is much
faster and has less overhead than the normal
write because it displays up to 1760 characters
in one operation, instead of issuing 22
individual writes of 80 characters each (that is
one write per line on a display terminal). Data
that is displayed in the screen output area with
this interface is not placed in the console
spool file.

The DISPW macro allows you to use this
display terminal interface. It generates a
calling sequence for the CMS display ter.inal
interface module, DMSGIO. DMSGIO creates a
channel program and issues a DIAGNOSE
instruction (Code 58) to display the data.
DMSGIO is a TEXT file which must be loaded in
order to use DISPW. The format of the CMS DISPW
.acro is:

--,
I r , r , I

I
I
I
I

I [label] DISPW
I
I
I
L-

bufad I,LIRE=nl I,BYTES=bbbbl
IL~!!~=~I ILDllES=11~~1
L .J L .J

[ERASE=YES] [CARCEL=YES]
---'

Section 1. Introduction 129

label

bufad

r ,
ILINE=nl
ILINE=OI
L ~

is an optional macro statement label.

is the address of a buffer containing
the data to be written to the display
terminal.

is the number of the line, 0 to 23, on
the display terminal that is to be
written. Line number 0 is the
default.

r ,
IBYTES=bbbbl
1~!I~~=11~QI
L ~

is the number of bytes (0 to 1760) to
be written on the display terminal.
1760 bytes is the default.

[ERASE=YES]
specifies that the display screen is
to be erased before the current data
is written. The screen is erased
regardless of the line or number of
bytes to be displayed. specifying
ERASE=YES causes the screen to go into
"MORE" status.

[CANCEL=YES]
causes the
performed:
erased.

CANCEL operation to be
the output area is

as MACRO SIMULATION UNDER CMS

When a language processor or a user-written
program is executing in the CMS environment and
using Os-type functions, it is not executing as
code. Instead, CMS provides routines that
simulate the as functions required to support as
language processors and their generated object
code.

CMS functionally simulates the as macros in a
way that presents equivalent results to programs
executing under CftS. The as macros are
supported only to the extent stated in the
publications for the supported language
processors, and then only to the extent
necessary to successfully satisfy the specific
requirement of the supervisory function.

The restrictions for COBOL and PL/I program
execution listed in "Executing a Program that
Uses as Macros" in the !~L~lQ: gl~BBiB~ and
~I~~~~ §~~~I2t!Q~ §g!g~ exist because of the
limited simulation by CMS of the as macros.

Figure 26 shows the as macro
are partially or completely
defined by SVC number.

functions that
simulated, as

as DATA MANAGEMENT SIMULATION

The disk format and data base organization of
CMS are different from those of as. A CMS file
produced by an as program running under CMS and
written on a CMS disk, has a different format
than that of an as data set produced by the same
as program running under as and written on an as
disk. The data is exactly the same, but its
format is different. (An as disk is one that
has been formatted by an as program, such as
IBCDASDI.)

HANDLING FILES THAT RESIDE ON CMS DISKS

CMS can read, write, or update any as data that
resides on a CMS disk. By simulating as macros,
CMS simulates the following access methods so
that as data organized by these access methods
can reside on CMS disks:

direct

partitioned

sequential

identifying a record by a key or
by its relative position within
the data set.

seeking a named member within
the data set.

accessing a record in a sequence
relative to preceding or
following items in the data
set.

Refer to Figure 26 and the "Simulation
Notes", then read "Access Method Support" to see
how CMS handles these access methods.

Because CMS does not
sequential access method
which uses ISAM can
Therefore, no program
sequential data set on a

simulate the indexed
(ISAM), no as program
execute under CMS.

can write an indexed
CMS disk.

HANDLING FILES THAT RESIDE ON as OR DOS DISKS

By simulating as macros, CMS can read, but not
write or update, as sequential and partitioned
data sets that reside on as disks. Using the
same simulated as macros, CMS can read DOS
sequential files that reside on DOS disks. The
as macros handle the DOS data as if it were as
data. Thus a DOS sequential file can be an input
to an as program running under CMS.

However, an as sequential or partitioned data
set that resides on an as disk can be written or
updated only by an as program running in a real
as machine.

CMS can execute programs that read and write
VSAM files from as programs written in the VS
BASIC, COBOL, or PL/I programming languages.
This CMS support is based on the DOS/VS Access
Method Services and Virtual Storage Access
Method (VSAM) and therefore the as user is
limited to those VSAM functions that are
available under DOS/VS.

130 IBM VM/370: system Logic and Problem Determination Guide

..--
Macro
Title
-inAPl

WAIT
POST
EXIT/RETURN
GETMAIN
FREEMAIN
GETPOOL
FREE POOL
LINK
XCTL

LOAD
DELETE
GETMAIN/

FREEMAIN
TIMEI
ABEND

» SPIEl

RESTOREI
BLDL/FINDI

OPEN
CLOSE
STOWI
OPENJ
TCLOSE
DEVTYPEI

TRKBAL
WTO/WTORI
EXTRACTI
IDENTIFYI
ATTACHI
CHAPI
TTIMERI
STIMERI
DEOI
SNAPI
ENOl
FREEDBUF

_.STAE

DETACHI
CHKPTI
RDJFCBl

SVC
NUliber --00--

01
02
03
04
05

06
07

08
09
10

11
13
14

17
18

19
20
21
22
23
24

25
35
40
41
42
44
46
47
48
51
56
57
60

62
63
64

Function
Read or-wrIte-direct access volumes
wait for an I/O completion
Post the I/O coapletion
Return from a called phase
Conditionally acquire user storage
Release user-acquired storage
simulate as SVC 10
Simulate as SVC 10
Link control to another phase
Delete. then link control to another

load phase
Read a phase into storage
Delete a loaded phase
Manipulate user free storage

Get the time of day
Terminate processing
Allow processing program to

handle program interrupts
Effective NOP
Manipulate simulated partitioned

data files
Activate a data file
Deactivate a data file
Manipulate partitioned directories
Activate a data file
Temporarily deactivate a data file
Obtain device-type physical

characteristics
NOP
Communicate with the terminal
Effective NOP
Add entry to loader table
Effective LINK
Effective Nap
Access or cancel timer
set timer
Effective NOP
Dump specified areas of storage
Effective NOP
Release a free storage buffer
Allow processing program to

decipher ABEND conditions
Effective NOP
Effective Nap
Obtain information from FILEDEF

command
SYIADI 68 Handle data set error conditions
BSPI 69 Backup a record on a tape or disk
GET/PUT Access system-blocked data
READ/WRITE Access system-record data
laTE/poINT Manage data set positioning
CHECK Verify READ/WRITE completion
TGET/TPUT 93 Read or write a terminal line
TCLEARQ 94 Clear terminal input queue
~STAX 96 Create an attention exit block

1---
11 Simulated in the transient routine "DMSSVT". Other simulation
1 routines reside in the nucleus.
L-

Figure 26. Simulated OS Supervisor Calls

SIMULATION NOTES

Because CMS has its own file srstem and is a
single-user system operating 1n a virtual
machine with virtual storage. there are certain

restrictions for the simulated OS function in
CMS. For example. HIARCHY options and options
that are used only by OS multitasking systems
are ignored by CMS.

Listed below are descriptions of all the OS
macro functions that are simulated by CMS as
seen by the programmer. Implementation and

Section 1. Introduction 131

progra. results that differ fro. those given in
Q~L!~ R!l! A!D!g§!§!S A!~!Q ID§!!YS!!QD§ and
Q~L!~ ~YE§!~i§9! ~§!~i~§§ !DS A!£!9 lD§!!YS!!2!~
are stated. 8IABC8Y options and those used only
by OS .ultitasking syste.s are ignored by CMS.
Validity checking is not perfor.ed within the
si.ulation routines. The entry point na.e in
LIBK, ICTL, and LOAD (SVC 6, 1, a) must be a
.e.ber na.e or alias in a TITLIB directory
unless the CO!PSWT is set to on. If the COMPSWT
is on, SVC 6, 1, and a .ust specify a MODULE
na.e. This switch is turned on and off by using
the COMPSWT macro. See the !AL~lQ: ~A~ ~Q!!!Dg
~DS A~S!Q l§i§!§D~§ for descriptions of all CMS
user macros.

!acro-SVC !Q. inip:svco

WAIT-SVC1

POST-SVC2

EIIT/RETURN
-SVC3

GET!AIN-SVC4

lREEMAIN-SVCS

LIRK-SVC6

ICTL-SVC1

~!i!~!§D~~§ !D 1!]!§!~D!!!!2D
The TYPE option must be R or
W; the V, I, and K options are
not supported. The
BLKREl-ADDR must point to an
item nu.ber acquired by a NOTE
macro. Other options
associated with V, I, or K are
not supported.

All options of WAIT are
supported. The WAIT routine
waits for the completion bit
to be set in the specified
ECBs.

All options of
supported. POST
completion code
completion bit
specified ECB.

POST are
sets a
and a

in the

Post ECB, execute end of task
routine, release phase
storage, unchain and free
latest request block, and
restore registers depending on
whether this is an exit or
return from a linked or an
attached routine.

All the options of GET MAIN are
supported. GETMAIN gets
blocks of free storage.

All the options of lREEMAIN
are supported. lREEMAIN frees
blocks of storage acquired by
GETMAIN.

The DCB and HIARCHY options
are ignored by CMS. All other
options of LIRK are supported.
LINK loads the specified
program into storage (if
necessary) and passes control
to the specified entry point.

The DCB and HIARCHY options
are ignored by CMS. All other
options of ICTL are supported.
ICTL loads the specified
program into storage (if
necessary) and passes control
to the specified entry point.

LOAD-svca

GET POOL/
lREEPOOL

DELETE-SVC9

GET!AIN/
lREEMAIN­
SVC10

TIME-SVC11

ABEND-SVC13

SPIE-SVC14

RESTORE-SVC11

132 IBM VH/310: System Logic and Problem Determination Guide

The DCB and 8IARC8Y options
are ignored by CMS. All other
options of LOAD are supported.
LOAD loads the specified
progra. into storage (if
necessary) and returns the
address of the specified entry
point in register zero.
However, if the specified
entry point is not in core
when SVC a is issued, and the
subroutine contains VCONs
which cannot be resolved
within that TITLIE member, CMS
attempts to resolve these
references, and may return
another entry point address.
To insure a correct address in
register zero, the user should
bring such subroutines into
core either by the eMS
LOAD/INCLUDE commands or by a
VCON in the user program.

All the options of GETPOOL
and lREEPOOL are supported.
GETPOOL constructs a buffer
pool and stores the address of
a buffer pool control block in
the DCB. lREEPOOL frees a
buffer pool constructed by
GETPOOL.

All the options of DELETE are
supported. DELETE decreases
the use count by one and if
the result is zero frees the
corresponding virtual
storage. Code 4 is returned
in register 15 if the phase is
not found.

All the options of GETMAIN
and lREEMAIN are supported.
Subpool specifications are
ignored.

All the options of TIME except
MIC are supported. TIME
returns the time of day to the
calling program.

The completion code parameter
is supported. The DUMP
parameter is not. If a STAE
request is outstanding,
control is given to the proper
STAE routine. If a STAE
routine is not outstanding~ a
message indicating an ABEND
has occurred is printed on the
terminal along with the
completion code.

All the options of SPIE are
supported. The SPIE routine
specifies interruption exit
routines and program
interruption types that will
cause the exit routine to
receive control.

The RESTORE routine in CMS is
a NOP. It returns control to
the user.

BLDL-SVC18

PIID-SVC18

STOi-SVC21

OPEN/OPENJ­
SVC19/22

CLOSE/TCLOSE­
SVC20/23

DEVTYPE-SVC24

iTO/iTOR-SVC35

EXTRACT-SVC40

BLDL is an effective NOP for
LINKLIBs and JOBLIBs. Por
MACLIBs, item numbers are
filled in the TTR field of the
BLDL list; the K, Z, and user
data fields, as described in
Q~L!~ y~!~ H~~~g~!~~! ~~!2
Instructions, are set to
zeros:--The-'alias' bit of the
C field is supported, and the
remaining bits in the C field
are set to zero.

All the options of PIND are
supported. PIND sets the
read/write pointer to the item
number of the specified
.ember.

All the options of STOi are
supported. The 'alias' bit is
supported, but the user data
field is not stored in the
MACLIB directory since CMS
MACLIBs do not contain user
data fields.

All the options of OPEN and
OPEIJ are supported except for
the DISP and RDBACK options
which are ignored. OPEN
creates a CMSCB (if
necessary), completes the DCB,
and merges necessary fields of
the DCB and CMSCB.

All the options of CLOSE and
TCLOSE are supported except
for the DISP option, which is
ignored. The DCB is restored
to its condition before OPEN.
If the device type is disk,
the file is closed. If the
device type is tape, the
REREAD option is treated as a
BEiIID.

All the options of DEVTYPE are
supported. DEVTYPE moves
device characteristic
information for a specified
data set into a specified user
area.

All options of iTO and iTOR
are supported except those
options concerned with
.ultiple console support. iTO
displays a message' at the
operator's console. iTOR
displays a message at the
operator's console, waits for
a reply, .oves the reply to
the specified area, sets a
co.pletion bit in the
specified EeB, and returns.

The EXTRACT routine in CftS is
essentially a NOP. The user
provided answer area is set to
zeros and control is returned
to the user with a return code
of 4 in register 15.

IDENTIPY-SVC41

ATTACH-SVC42

'CHAP-SVC44

TTlftER-SVC46

STlftER-SVC47

DEQ-SVC48

SNAP-SVC51

ERQ-SVC56

PREEDBUP-SVC57

STAE-SVC60

The IDERTIPY routine in CftS
adds a RPQUEST block to the
load request chain for the
requested name and address.

All the options of ATTACH are
supported in CftS as in OS
PCP. The following options
are ignored by CftS: DCB,
LPftOD, DPMOD, HIARCHY, GSPV,
GSPL, SHSPV, SHSPL, SZERO,
PURGE, ASYNCH, and TASKLIB.
ATTACH passes control to the
routine specified, fills in an
ECB completion bit if an ECB
is specified, passes control
to an exit routine if one is
specified, and returns control
to the instruction following
the ATTACH.

Because CMS is not a
multitasking system, a phase
requested by the ATTACH macro
must return to CftS.

The CHAP routine in CftS is a
NOP. It returns control to
the user.

All the options of TTIMER are
supported.

All options of STIftER are
supported except for TASK and
iAIT. The TASK option is
treated as if the REAL option
had been specified, and the
iAIT option is treated as a
ROP; it returns control to the
user.

The DEQ routine in CftS is a
NOP. It returns control to
the user.

All the options of SNAP are
supported except for the DCB,
SDATA, and PDATA options,
which are ignored. SNAP always
du.ps output to the printer.
The dump contains the PSi, the
registers, and the storage
specified.

The ERQ routine in CftS is a
NOP. It returns control to
the user.

All the options of PREEDBUP
are supported. PREEDBUP
returns a buffer to the buffer
pool assigned to the specified
DCB.

All the options of STAE are
supported except for the XCTL
option, which is set to
XCTLLYES; the PURGE option,
which is set to HALT; and the
ASYNCH option, which is set to
10. STAE creates, overlays,
or cancels a STAE control
block as requested. STAE
retry is not supported.

section 1. Introduction 133

DETACH-SVC62

CHKPT-SVC63

RDJPCB-SVC64

SYNADAP-SVC68

SYNADRLS-SVC68

BSP-SVC69

TGET/TPUT­
SVC93

TCLEARQ-SVC94

STAX-SVC96

NOTE

POINT

CHECK

DCB

The DETACH routine in CMS is a
NOP. It returns control to
the user.

The CHKPT routine is a Nap.
It returns control to the
user.

All the options of RDJPCB are
supported. RDJPCB causes a
Job Pile Control Block (JFCB)
to be read from a CMS Control
Block (CMSCB) into real
storage for each data control
block specified. CMSCBs are
created by PILEDEP commands.

All the options of SYNADAP are
supported. SYNADAP analyzes
an I/O error and creates an
error message in a work
buffer.

All the options of SYNADRLS
are supported. SYNADRLS frees
the work area acquired by
SYNAD and deletes the work
area from the save area
chain.

All the options of BSP are
supported. BSP decrements the
item pointer by one block.

TGET and TPUT operate as if
EDIT and WAIT were coded.
TGET reads a terminal line.
TPUT writes a terminal line.

TCLEARQ in CMS clears the
input terminal queue and
returns control to the user.

Updates a queue of CMTAXEs
each of which defines an
attention exit level.

All the options of NOTE are
supported. NOTE returns the
item number of the last block
read or written.

All the options of POINT are
supported. POINT causes the
control program to start
processing the next read or
write operation at the
specified item number. The
TTR field in the block address
is used as an item number.

All the options of CHECK are
supported. CHECK tests the
I/O operation for errors and
exceptional conditions.

The following fields of a DCB
may be specified, relative to
the particular access method
indicated:

ACCESS METHOD SUPPORT

The manipulation of data is governed by an
access method. To facilitate the execution of
as Code under CMS, the processing program must
see data as as would present it. For instance,
when the processors expect an access method to
acquire input source cards sequentially, CMS
invokes specially written routines that simulate
the OS sequential access method and pass data to
the processors in the format that the as access
methods would have produced. Therefore, data
appears in storage as if it had been manipulated
using an as access method. For example, block
descriptor words (BDW), buffer pool management,
and variable records are updated in storage as
if an as access method had processed the data.
The actual writing to and reading from the I/O
device is handled by eMS file management.

The essential work of the Volume Table of
Contents (VTOC) and the Data set control Block
(DSCB) is done in CMS by a Master File Directory
(MPD) which updates the disk contents, and a
Pile status Table (PST) (one for each data
file). All disks are formatted in physical
blocks of 800 bytes.

CMS continues to update the as format, within
its own format, on the auxiliary device, for
files whose filemode number is 4. That is, the
block and record descriptor words (BDW and nDW)
are written along with the data. If a data set
consists of blocked records, the data is written
to, and read from, the I/O d~vice in physical
blocks, rather than logical records. CMS also
simulates the specific methods of manipulating
data sets.

To accomplish this simulation, CMS supports
certain essential macros for the following
access methods:

• BDAM

• BPAM

• BSAM/QSAM

• VSAM

(direct) -- identifying a record
by a key or by its relative
position within the data set.

(partitioned) -- seeking a named
member within data set.

(sequential) accessing a
record in a sequence relative to
preceding or following records.

(direc~ or sequential)
access1ng a record sequentially
or directly by key or address.
1!.Q!~: CMS :support of as VSAM
files is ba:sed on DOS/VS Access
Method Services and virtual
Storage Access Method (VSAM).
Therefore, the as user is
restricted to those functions
available under DOS/VS Access
Method Services. See the section
"CMS Support for as and DOS VSAM
Functions" for details.

CMS also updates portions of the as control
blocks that are needed by the as simulation
routines to support a program during execution
(see Pigure 27). Most of the simulated
supervisory as control blocks are contained in
the following two CMS control blocks:

134 IBft Vft/370: system Logic and Problem Determination Guide

!l~A1!
F,D
n (number)
a (address)
n
n
s (sYllbol)
DA

a
n
n

R,W
A,E,F,R

!lRA1!
F,D
n
a
n
n
s
PO
a
a

n
R,W

a
n
n
s
PS
a
a
n

n
R,W, P

a
n
n
s
PS
a
a

n
G,P,L,M

F,V,U F,V,U
a a

F,V,B,5,A,M,U
a

F,V,B,U,A,M,S
a

n n

--
DCB Fields That Can be specified for Each Access Method

CMSCVT
simulates the COllmunication Vector
Table. Location 16 contains the address
of the CVT control section.

C"SCB
is allocated from system free storage
whenever a FILEDEF command or an OPEN
(SVC19) is issued for a data set. The

CMS control Block (CM5CB) consists of a
File Control Block (FCB) for the data
file, and partial sillulation of the Job
File control Block (JFCB), Input/Output
Block (lOB), and Data Extent Block
(DEB) •

The Data Control Block (DCB) and the Data
Event Control Block (DECB) are used by the
access method simulation routines of CMS.

The GET and PUT macros are not supported for
use with spanned records. READ and WRITE are
supported for spanned records, provided the
filemode number is 4, and the data set is
Physical Sequential (B5AM) format.

GET (Q5A")
All the Q5AM options of GET are supported.
substitute mode is handled the same as move
mode. If the DCBRECFM is FB, the filemode
number is 4, and the last block is a short
block, an EOI indicator (X'61FFFF61') must be
present in the last block after the last
record.

GET (QI5AM)
QI5AM is not supported in CMS.

PUT (Q5AM)
All the Q5AM options of PUT are supported.
Substitute mode is handled the same as move
mode. If the DCBRECFM is FB, the file.ode
number is 4, and the last block is a short
block, an EOF indicator is written in the
last block after the last record.

PUT (QI5AM)
QI5AM is not supported in CM5.

PUTX
PUTX support is provided only for
opened for QSAM-UPDATE with
buffering.

READ/WRITE (BI5AM)
BISAM is not supported in CMS.

READ/WRITE (BSAM and BPAM)

data sets
simple

All the B5AM and BPAM options of READ and
WRITE are supported except for the 5E option
(read backwards).

READ (Offset Read of Keyed BDAM data set)
This type of READ is not supported because it
is only used for spanned records.

READ/WRITE (BDAM)
All the BDAM and BSAM (create) options of
READ and WRITE are supported except for the R
and RU options.

The four methods of accessing BDAM records are:

1. Relative Block RRR
2. Relative Track TTR
3. Relative Track and Key TI~ey
4. Actual Address MBBCCHfl~

The restrictions on those methods are as
follows:

• Only the BDAM identifiers underlined above
can be used to refer to records, since CMS
files have a two-byte record identifier.

• CMS BDAM files are always created with 255
records on the first logical track, and 256
records on all other logical tracks,
regardless of the block size. If BDAM
methods 2, 3, or 4 are used and the RECFM is
U or V, the BDAM user must either write 255
records on the first track and 256 records on
every track thereafter, or he must not update
the track indicator until a NO SPACE FOUND
message is returned on a write. For method 3
(WRITE ADD), this message occurs when no more
dummy records can be found on a WRITE

section 1. Introduction 135

request. Por methods 2 and 4, this will not
occur, and the track indicator will be
updated only when the record indicator
reaches 256 aud overflows into the track
indicator.

• Two files of the same filetype, which both
use keys, cannot be open at the same time.
If a program that is updating keys does not
close the file it is updating for some
reason, such as a system failure or another
IPL operation, the original keys for files
that are not fixed format are saved in a
temporary file with the same filetype and a
filename of ,KEYSAVE. To finish the update,
run the program again.

• Once a file is created using keys, additions
to the file must not be made without using
keys and specifying the original length.

• The number of records in the data set extent
must be specified using the FILEDEP command.
The default size is 50 records.

• The minimum LRECL for a CMS BDAM file with
keys is eight bytes.

READING as DATA SETS AND DOS PILES USING as
MACROS

CMS users can read as sequential and partitioned
data sets that reside on as disks. The CMS
MOVEPILE command can be used to manipulate those
data sets, and the as QSAM, BPAM, and BSAM
macros can be executed under CMS to read them.

The CMS MOVEFILE command and the same as
macros can also be used to manipulate and read
DOS sequential files that reside on DOS disks.
The as macros handle the DOS data as if it were
as data.

The following as Release 20.0 BSAM, BPAM, and
QSAM macros can be used with CMS to read as data
sets and DOS files:

BLDL
BSP
CHECK
CLOSE
DEO
D!VTYPB

ENO
FliD
GET
BOTE
POINT
POST

RDJFCB
READ
SYNADAF
SYNAl'RLS
WAIT

CMS supports the following disk
the as and OS/VS sequential and
access methods:

• split cylinders
• user labels
• track overflow
• alternate tracks

formats for
partitioned

As in as, the CMS support of the BSP macro
produces a return code of 4 when attempting to
backspace over a tape mark or when a beginning
of an extent is found on an as data set or a DOS
file. If the data set or file contains split
cylinders, an attempt to backspace within an

extent resulting in a cylinder switch, also
produces a return code of 4.

Before CMS can read an as data set or DOS file
that resides on a non-CMS disk, you must issue
the CMS ACCESS command to make the disk on which
it resides available to CMS.

The format of the ACCESS command is:

ACCESS cuu mode[/ext]

You must not specify options or file
identification when accessing an as or DOS
disk.

You issue the PILEDEP command to assign a CMS
file identification to the as data set or DOS
file so that CMS can read it. The format of the
PILEDEF command used for this purpose is: If you
are issuing a PILEDEF for a DOS file, note that
the as program that will use the DOS file must
have a DCB for it. For "ddname" in the FILEDEF
command line, use the ddname in that DCB. with
the DSN operand, enter the file-id of the DOS
file.

sometimes, CMS issues the FILEDEF command for
you. Although the CMS MOVEFILE command, the
supported CMS program product interfaces, and
the CMS OPEN routine each issue a default
FILEDEF, yeu should issue the FILEDEF command
yourself to be sure the appropriate file is
defined.

After
commands
data set
(such as
data set
file.

you have issued the ACCESS and PILEDEF
for an as sequential or partitioned
or DOS sequential file, CMS commands

ASSEMBLE and STATE) can refer to the as
or DOS file just as if it were a CMS

Several other CMS commands can be used with
as data sets and DOS files that do not reside on
CMS disks. See the !~LJ.1.Q: ~11~ ~Q!!U!!~!!g ~!!g ~~£!:Q
R~!~I~~£~ for a complete description of the CMS
ACCESS, FILEDEF, LISTDS, ~JVEFILE, QUERY,
RELEASE, and STATE commands.

For restrictions on reading as data sets and
DOS files under CMS, see the "VM/370
Restrictions" in "Part 1. Debugging with
VM/370".

The CMS FILEDEP command allows you to specify
the I/O device and the file characteristics to
be used by a program at execution time. In
conjunction with the as simulation scheme,
PILEDEP simulates the functions of the Data
Definition JCL statement.

PILEDEP may be used only with programs using
as macros and functions. Por example:

136 IBM VB/370: system Logic and Problem Determination Guide

r--- -----,
r r " r ,

FIledef IDISK fn ft Ifmll IDSN ? I
I I All I I D SN q 1 [q 2 •••] I

L JJ L J

r r "
DISK Ifn ft Ifm II

IFILE ggn~~~ IA111
L L JJ

DUMMY
r ,

Sgls!gg QE!ign: IMEMBER membernamel
ICONCAT I
L J

filedef filel disk proga data al

After issuing this command, your program
referring to FILEl would access PROGA DATA on
your A-disk.

If you wished to supply data from your
terminal for FILE1, you could issue the command:

filedef filel terminal

and enter the data for your program without
recompiling.

fi tapein tap2 (recfm fb lrecl 50 block 100
9track den 800)

After issuing this command, programs referring
to TAPEIN will access a tape at virtual address
182. (Each tape unit in the CMS environment has
a symbolic name associated with it.) The tape
must have been previously attached to the
virtual machine by the VM/370 operator.

The AUIPROC option can only be used by a program
call to FILEDEF and not from the terminal. The
CMS language interface programs use this feature
for special I/O handling of certain (utility)
da ta sets.

The AUXPROC option, followed b~ a fullword
address of an auxiliary process1ng routine,
allows that routine to receive control from
DMSSEB before any device I/O is performed. At
the completion of its processing, the auxiliary
routine returns control to DMSSEB signalling
whether I/O has been performed or not. If not,
DMSSEB performs the appropriate device I/O.

GPR15 is used by the auxiliary processing
routine to inform to DMSSEB of the action that
has been or should be taken with the data block
as follows:

GPR15=0

GPR15<0

No I/O performed by AUXPROC routine;
DMSSEB will perform I/O.

I/O performed by AUXPROC
error was encountered.
take error action.

routine and
DMSSEB will

_________________ -J

GPR15>0 I/O performed by
residual count
returns normally.

DOS/VS SUPPORT UNDER CMS

AUIPROC routine with
in GPR15; DMSSEB

CMS supports interactive program development for
DOS/VS. 7his includes creating, compiling,
testing, debugging, and executing commercial
application programs. The DOS/VS programs can
be executed in a CMS virtual machine or in a CMS
Batch Facility virtual machine.

DOS/VS files and libraries can be read under
CMS. VSAM data sets can be read and written
under CMS.

The CMSjDOS en vironment (called CMS/DOS)
provides many of the same facilities that are
available in DOS/VS. However, CMS/DOS supports
only those facilities that are supported by a
single (background) partition. The DOS/VS
facilities supported by eMS/DOS are:

• DOS/VS linkage editor
• Fetch support
• DOS/VS Supervisor and I/O macros
• DOS/VS supervisor control block support
• Transient area support
• DOS/VS VSAM macros

The eMS/DOS environment is entered each time
the eMS SET DOS ON command is issued. In the
eMS/DOS environment, eMS supports many DOS/VS
facilities. When you no longer need DOS/VS
support under eMS, you issue the SET DOS OFF
command and DOS/VS facilities are no longer
available.

eMS/DOS can execute
sequential (SAM) and
access methods, and
libraries.

programs that use the
virtual storage (VSAM)

can access DOS/VS

eMS/DOS cannot execute programs that have
execution-time restrictions, such as programs
that use sort exits, teleprocessing access
methods or multitasking. DOS/VS COBOL, DOS
PL/I, and assembler language programs are
executable under eMS/DOS.

All of the CP and CMS online debugging and
testing facilities (such as the CP ADSTOP and
STORE commands and the CMS DEBUG environment)

section 1. Introduction 137

are supported in the CftS;oOS environment. Also,
CP disk error recording and recovery is
supported in CftS/DOS.

with its support of a CftS/DOS environment,
CftS becomes an important tool for DOS/VS
application program development. Because
CftS/DOS was designed as a DOS/VS program
development tool, it assumes that a DOS/VS
system exists, and uses it. The following
sections describe what is supported, and what is
not.

CftS SUPPORT FOR as AND DOS VSAM FUNCTIONS

CftS supports interactive program development for
OS and DOS programs using VSAM. CftS supports
VSAM for OS programs written in VS BASIC, OS/VS
COBOL, or OS PL/I programming languages; or DOS
programs written in DOS/VS COBOL or DOS PL/I
progra.ming languages. CMS does not support
YSAM for OS or DOS assembler language programs.

CMS also supports Access ftethod Services to
manipulate OS and DOS VSAft and SAM data sets.

Under CftS, VSAM data sets can span up to nine
DASD volumes. CMS does not support VSAM data
set sharing; however, CMS already supports the
sharing of minidisks or full pack minidisks.

VSAM data sets created in CMS are not in the
CMS file format. Therefore, CftS commands
currently used to manipulate CMS files cannot be
used for VSAM data sets which are read or
written in CMS. A VSAM data set created in CMS
has a file format that is compatible with OS and
DOS VSAM data sets. Thus a VSAM data set
created in CMS can later be read or updated by
OS or DOS.

Because VSAM data sets in CMS are not a part
of the CMS file system, CMS file size, record
length, and minidisk size restrictions do not
apply. The VSAM data sets are manipulated with
Access Method Services programs executed under
CMS, instead of with the CMS file system
commands. Also, all VSAM minidisks and full
packs used in CMS must be initialized with the
IBCDASDI program; the CMS FORMAT command must
not be used.

CMS supports VSAM control blocks with the
GENCB, MODCB, TESTCB, and SHOWCB macros.

In its support of VSAM data sets, CMS uses
RPS (rotational position sensing) wherever
possible. CMS does not use RPS for 2314/2319
devices, or for 3340 devices that do not have
the feature.

Because CMS support of VSAM data sets is based
on DOS/VS VSAM and DOS/VS Access Method
services, only disks supported by DOS/VS can be
used for VSAM data sets in CMS. These disks
are:

• IBM 2314 Direct Access storage Facility
• IBM 2319 Disk Storage
• IBM 3330 Disk Storage, Models 1 and 2
• IBM 3330 Disk Storage, Model 11 only as a

Model 1 or 2
• IBM 3340 Direct Access Storage Facility
• IBM 3344 Direct Access Storage
• IBM 3350 Direct Access storage, only in 3330

Kodel 1 compatibility mode

The introduction
information:

provid(~s the following

•

•

A brief description of the Remote
communications Subsystem (RSCS)
structure and the commands used to
the system.

Spooling
external
control

An overview of the RSCS control program, that
is, of the RSCS supervisor and RSCS tasks.

• Descriptions
(NPT) and
drivers.

of the nonprogrammable terminal
spool MULTI-LEAVING1 ~ML) line

• Brief descriptions of major RSCS data areas
and storage requirements.

• Detailed information about RSCS supervisor
functions, such as synchronizing and
dispatching tasks, task-to-task
communications, I/O methods, and how RSCS
network links are manipulated.

The VM/370 Remote spooling Communications
Subsystem ~SCS) is the V~/370 component that
provides for the transmission of files across a
teleprocessing network controlled by the VM/370
computer. using RSCS, virtual machine users can
transmi t files to remote stations. (Remote
stations are I/O configurations attached to the
YK/370 computer by communications lines.) Also,
users at remote stations can transmit files to
VM/370 virtual machines and to other remote
stations using RSCS.

RSCS resides in a
to remote spooling.
language, the RSCS
telecommunications
installaticn.

virtual machine dedicated
using the RSCS command

operator manages the
facilities for the

Operators at remote stations can manage their
own configurations using a subset of the command
language. Commands issued from remote stations
can be entered either at a terminal or from a
card reader.

You can find detailed descriptions of RSCS
functions in the publication !.HLJ1.Q: lt~m.Q:t~

'Trademark of IBM

138 IBM VM/370: System Logic and Problem Determination Guide

THE RSCS VIRTUAL MACHINE AND THE VM/370 CONTROL
PROGRAM (CP)

Like the other VM/370 virtual machines, the RSCS
virtual machine runs under the control of CPo
In extending the VM/370 spooling system
capability to include spooling to remote
stations, RSCS interacts with the CP spooling
system. Therefore, some of the information in
this publication requires a knowledge of that
area of CP.

The RSCS virtual machine consists of the
virtual machine operator console, an RSCS system
disk, and virtual telecommunications lines.
During system generation, a virtual card reader
is defined for the RSCS virtual machine, but
this reader does not exist in the CP directory
entry for the RSCS virtual machine.

virtual printers, card punches, and readers
are defined dynamically as they are needed. For
example, when a file from a remote station is
transmitted to RSCS, a virtual punch is defined
to accept the file. Similarly, virtual readers
are defined when RSCS receives a file to
transmit. RSCS virtual storage also dumps onto
a virtual printer when abnormal termination of
the system occurs. Figure 28 shows the
configuration of an RSCS virtual machine.

The minimum virtual storage required to run
RSCS is S12K.

OB1

Virtual
TCU

OB2

RSCS
Virtual Virtual
Machine TCU

OB3

Virtual
TCU

l 191

~
f'-"""""I

~

Virtual RSCS

Console System

,-~".,
Figure 28. RSCS Virtual Machine Configuration

LOCATIONS AND LINKS

At a local installation there are a number of
transmission paths to remote stations. A unique
location identifier (locid) is assigned to each
of these remote stations.

For each transmission path (nonswitched line)
or potential transmission path (switched line),
a link must be defined at the local VM/370
installation. Each such link is given a name
(linkid) that defines the location identifier of
the remote station to which the transmission
path leads. This link can be defined either at
system generation or by means of the DEFINE
command.

REMOTE STATIONS

Remote stations are configurations of I/O
devices attached to the VM/370 computer by
binary synchronous {BSC} switched or nons witched
lines. Two types of remote stations are
supported by RSCS: programmable remote stations
and nonprogrammable remote stations.

Programmable remote stations, such as the IBM
System/3 and System/370, are IBM processing
systems with attached binary synchronous
communications adapters. These systems must be
programmed to provide the MULTI-LEAVING line
protocol necessary for their devices to function
as remote stations. This programming support is
provided by a remote terminal processor (RTP)
program generated according to HASP workstation
protocol and tailored to the system's hardware
configuration. ·Certain programmable remote
stations like the System/3 can only be
programmed to function as remote terminals.
Others, like the System/360 and System/370, can
function either as remote terminals or as host
batch systems using RSCS as a remote job entry
workstation. Both of these types of remote
stations are managed by the spool MULTI-LEAVING
(SML) line driver of RSCS.

Nonprogrammable remote stations are I/O
configurations that cannot be programmed, but
are hard-wired to provide the line protocol
necessary for them to function as remote
stations. They can receive, read, print, punch,
and send files. An example of a nonprogrammable
remote station is a 2780 Data Transmission
Terminal. Nonprogrammable remote stations are
managed by the NPT (Nonprogrammable Terminal)
RSCS line driver.

The types of devices supported for all types
of remote stations, programmable and
nonprogrammable, are listed in the !~LJIQ:

]~~Q1~ ~EQQ!!ng £Q~~gn!£2i!QB§ 2g~§I§1~! (]2f2)
.Y§~I~§ Q!!!g~.

Section 1. Introduction 139

NETWORR CONTROL: RSCS AND VM/370 COMMANDS

Both RSCS and VM/370 cOllmands are used to
control RSCS. The R SCS com.ands are used to
control the RSCS network; VM/370 CP and CMS
commands are used by virtual lIachine users who
use the RSCS network.

RSCS COMMANDS

To manipulate the file being transmitted across
the network and to communicate with the various
network users, the RSCS control program provides
a command language. Pigure 29 is a list of RSCS
commands and the functions they perform. You
can find detailed descriptions of these commands
in the pUblication !~LJ1Q: ~~!21~ §E221ing
£~!!~ni£~!i~n2 ~Y~212!~! (~~£§) Q2~E~~ ~~!~~.

The operator may enter RSCS commands
described in Pigure 29 at the RSCS virtual
machine console. A subset of the RSCS command
language may be entered by operators of remote
stations.

VM/370 CP AND CMS COMMANDS POR RSCS

The VM/370 CP TAG and SPOOL commands specify a
device to be spooled and to associate a
destination location identifier (locid) with
that device. SPOOL directs the file to the RSCS
virtual machine. The CP CLOSE command or the
CMS PRINT or PUNCH cOllmands close the file and
transfer it to the RSCS virtual machine.

Data specified by the CP TAG command controls
processing of files transmitted across the RSCS
network. When a VM/370 user creates a file to
be transmitted to a remote station via RSCS, the
TAG command text operand takes the following
format:

lin kid [userid] [priority]

linkid

userid

is the location identifier of the
link on which the file is to be
transmitted.

is the remote virtual machine
that is to receive the file.

priority is the requested transmission
priority (a decimal number 0-99,
default 99). The lower numbers
have higher priorities.

Also, the CP SPOOL comlland directs files to the
RSCS virtual machine. See the publication Por
details on how to use the CP TAG and SPOOL
commands to control RSCS network functions, see
the !~LdIQ: B~!Qt~ §E221ing ~~!!yni£~!iQn2
~~~212!~! (R2~2) ~2~~~2 ~Yig~· 

r--------------------· ------, 
I Command I 
I Name I Function 

BACKSPAC 

CHANGE 

CMD 

DEPINE 

DELETE 

DISCONN 

DRAIN 

PLUSH 

PREE 

PWDSPACE 

HOLD 

MSG 

ORDER 

PURGE 

QUERY 

START 

TRACE 

Restarts or repositions 
backward direction the 
currently being transmitted. 

in a 
file 

Alters one or more attributes of 
a file owned by RSCS. 

Controls certain functions per­
formed by a remote system, or 
controls the logging of I/O acti­
vity on a specified link. 

Temporarily adds a new link defi­
nition to the RSCS link table or 
temporarily redefines an existing 
link. 

Temporarily deletes a link defi­
nition from the RSCS link table. 

places RSCS in disconnect mode 
and optionally directs output to 
another virtual machine. 

Deactivates an active communi­
cation link. 

Discontinues processing the cur­
rent file on the specified link. 

Resumes transmission on a commu­
nication link previously in HOLD 
sta tus. 

Repositions the file 
being transmitted in 
direction. 

currently 
a forward 

Suspends file transmission on an 
active link without deactivating 
the line. 

Sends a message to a local or 
remote station. 

Reorders files enqueued on a spe­
cific link. 

Removes all or specified files 
from a link. 

Requests system information for a 
link, a file, or for the system 
in general. 

Activates a specified communica­
tion link. 

Monitors line activity on a spe­
cified link. 

---------------------.-------~ 
Pigure 29. RSCS Commands and Punctions 

I 
I 

140 IBM VM/370: system Logic and Problem Determination Guide 



When RSCS handles files being transmitted across 
the network, the RSCS control program (line 
driver tasks) issues CP DIAGNOSE instructions. 

The DIAGNOSE instruction is 
communication between a virtual 
In VM/370, the machine-coded 
DIAGNOSE instruction is: 

the method of 
machine and CPo 

format for the 

o 7 8 11 12 15 16 31 
r -, 
l 83 rx ry Code l L _________ _ _ _____________________ J 

Content 83-----
rx 
ry 
Code 

R~E!g!H~!!2!! 
DIAGNOSE operation code 
User-specified register number 
User-specified register number 
Hexadecimal value that selects 

particular CP function. 
a 

Figure 30 lists the DIAGNOSE function codes 
used by RSCS, the functions of those codes, and 
the RSCS modules from which they are issued. 

r 
l DIAGNOSE 
l Code 

0008 

OOOC 

0014 

0020 

0024 

---------------------, 
l Issued bYl 

Function I Module (s) l 

Executes a CP command. 

Gets the current time 
and date. 

Manipulates input spool 
files. 

Performs general I/O 
without interrupt. 

Determines virtual de­
vice type information. 

DMTAXS 
DMTREX 
DMTCMX 
DMTMGX 
DMTSML 
DMTNPT 

DMTSML 
DMTNPT 

DMTAXS 
DMTSML 
DMTNPT 

DMTINI 

DMTREX 
DMTLAX 
DMTSML 

005C Edits error messages. DMTREX ______________________________________ ---J 

Figure 30. VM/370 DIAGNOSE Instructions 
Issued by the RSCS Program 

THE RSCS CONTROL PROGRAM 

RSCS is a control program composed 
multitasking supervisor and multiple 
which are controlled by the supervisor. 

of a 
tasks, 

The supervisor provides only those functions 
that cannot be consistently provided by the 
tasks themselves; that is, the supervisor 
provides only the support necessary to control 
and coordinate the execution of the tasks. 

In RSCS, a task is a single program or set of 
subprograms that can run concurrently and 
autonomously with other such programs and 
subprograms, and which uses control functions 
provided by the Supervisor. 

There are two types of tasks: system service 
tasks and line driver tasks. The system service 
tasks are those that provide the system support 
functions for the supervisor and for other 
tasks. The line driver tasks are those that 
manage the transmission paths to remote stations 
and that interact between the remote stations 
and the system service tasks and the 
Supervisor. Each line driver task manages the 
transmission of files to and from a single 
remote station. 

Figure 56 in section 2 shows the 
communications paths between the supervisor, 
system service tasks, line driver tasks, remote 
stations, and VM/370 virtual machines. 

THE RSCS SUPERVISOR 

The RSCS supervisor is composed of a set of 
service routines that provide functions for the 
tasks that run under them. These service 
routines may be called by any task. In general, 
they provide four kinds of services: 

• Task management 
• I/O management 
• Interrupt handling 
• Virtual storage management 

TASK MANAGEMENT 

The task management service routines provide 
three kinds of services: task execution control, 
task synchronization, and task-to-task 
communication. 

Task execution control includes initiating 
and terminating tasks. In general, the only task 
to request these services is the REX system 
control task, which is described below. Task 
execution control also includes the dispatcher, 
DMTDSP, which activates task execution as soon 
as that task is initiated and while the task is 
active. 

Task synchronization comprises a mechanism by 
which tasks are made ready or not ready for 
execution. When a task requests the services of 
another task, the requestor task may suspend its 
execution while the request is being processed. 
The synchronization mechanism that accomplishes 
this consists of two routines, DMTWAT and 
DMTPST. DMTWAT causes the requestor task to 
temporarily halt execution. DMTPST causes a 
temporarily-halted task to resume execution. 
For more information on task synchronization 
refer to the section "Task synchronization". 

There are 
communica tions: 
and (2) the 
(GIVE/TAKE) • 

two types of task-to-task 
(1) the DMTSIG routine (ALERT) 
DMTGIV and DMTAKE routines 

Section 1. Introduction 141 



The DMTSIG routine allows a task to 
immediately interrupt another task to pass it 
information. The interrupted task must have an 
asynchronous exit routine defined to handle the 
interruption. Functionally, DMTSIG performs a 
function analagous to an SVC instruction. 

The DMTGIV and DMTAKE routines allow tasks to 
exchange information buffers with other tasks. 
The GIVE/TAKE function provides the means for 
organized enqueuing and delivery of requests for 
services or information from one task to 
another. 

For more information on task-to-task 
communications, refer to the section 
"Task-to-Task Communications" in this section. 

I/O MANAGEMENT 

I/O management for tasks consists 
following functions: 

• Handling requests for I/O operations 
• Handling I/O interrupts 
• starting an I/O operation 
• Completing an I/O request 

of the 

Whenever a task requests the services of the 
I/O manager, that task builds an I/O request 
table to be passed to the I/O manager. This 
table consists of the following information: 

• A synchronization lock for signalling I/O 
completion 

• The address of the device on which the I/G 
operation is to take place 

• T~ number of SENSE bytes to be returned, 
when applicable 

• The address of the channel program to be 
executed 

The following information is 
task by the I/O manager, in 
table: 

returned to the 
the I/O request 

• The condition code for the SID issued for the 
I/O operation 

• The composite CSW 

• The SENSE bytes returned by the operation (if 
any) 

Using the information in this table, the I/O 
manager enqueues the request on the specified 
subchannel, starts the I/O operation, assembles 
the return information in the requestor's I/O 
request table, and posts the synchronization 
lock in the I/O request table signalling that 
the I/O operation is complete. 

INTERRUPTION HANDLING 

supervisor service routines handle three kinds 
of interruptions: external interruptions, SVC 
interruptions, and I/O interruptions. 

In RSCS, supervisor routines use the SVC 
(SUPERVISOR CALL) to suspend the execution or 
dispatching of a task when that supervisor 
routine received control. On an SVC 
interruption in RSCS, DMTSVC is entered. DMTSVC 
saves the status of the executing task and 
passes control to the calling supervisor routine 
in supervisor execution mode. 

RSCS handles external interruptions from 
tasks by searching for asynchronous exit 
requests supplied by tasks. When a request with 
a code matching the external interruption code 
is found, its asynchronous exit is taken; 
otherwise, the external interruption is 
ignored. 

I/O interruptions are handled by the RSCS I/O 
manager. When an active I/O request causes an 
I/O interruption, the status of the I/O request 
is updated to reflect the new information. 
Otherwise, a search is made for an asynchronous 
exit request for the interrupting device. When 
one is found, the asynchronous exit is taken. 
Otherwise, the interruption is ignored. 

VIRTUAL STORAGE MANAGEMENT 

The supervisor virtual storage service routine 
DMTSTO handles requests by tasks for main 
storage. When a task requests main storage, 
DMTSTO reserves page(s} of storage for it. Main 
storage is freed directly by task programs. 

DMTQRQ manages requests for free elements of 
the supervisor status queue. Supervisor 
routines call DMTQRQ to reserve and release 
supervisor status queue elements. 

RSCS TASK STRUCTURE 

As described in the previous section, the RSCS 
supervisor comprises a set of routines that 
function together to manage RSCS system 
processing. 
many system 
are not to 
programs.) 

The supervisor provides a base for 
programs called tasks. (These tasks 

be confused with user-application 

The RSCS system service tasks perform less 
generalized functions for the system than those 
functions performed by the supervisor. For 
example, the AXS system service task is designed 
specifically to access the VM/370 spool file 
system. 

The supervisor identically manages all tasks 
in RSCS; the supervisor makes no distinction 
between system service tasks and line driver 
tasks. Figure 31 is a list of the RSCS tasks 
and a brief statement of the service each 
performs. 

142 IBM V"/370: System Logic and Problem Determination Guide 



CREATE SYSTEM TASKS: DMTCRB 
r--------- -----, 
1 Task 1 Module 1 
1 Name I Name 1 

REX DMTREX 

DMTCRE 

DMTCMX 

DMTMGX 

Function 

Handles console I/O; ac­
cepts requests for ser­
vices passed by other 
system service tasks or 
line driver tasks; termi­
nates a task; handles 
program check inter­
ruptions. 

Creates a system service 
or line driver task. 

Monitors processing of 
commands in RSCS; exe­
cutes the DEFINE, DELETE, 
DISCONN, QUERY, and START 
commands. 

Builds a message element 
and passes the element to 
to the appropriate tasks 
for transmission or 
printing. 

DMTCOM performs common task 
functions. 

1 
1 

1----------------------------1 
1 AXS I DMTAXS I Communicates with the 1 
1 1 1 spool file system. I 
1---------------------------------1 
1 LAX 1 DMTLAX 1 Manages telecommunica- 1 
1 1 1 tions line allocation. 1 
1---------------------------------1 
1 Line 1 DMTSML 1 Manages a telecommunica- 1 
I Driver 1 1 tions line for a program- 1 
1 1 1 mabIe remote station 1 
1 1 1 using RTAM. 1 
1 1 1 1 
1 1 DMTNPT 1 Manages a telecommunica- 1 
1 1 1 tions line for a nonpro- 1 
1 1 1 programmable remote sta- 1 
1 1 1 tion terminal. 1 L ___________________________________________ J 

Figure 31. RSCS Tasks 

The main system service task, REX, is loaded 
with the supervisor during RSCS initialization. 
The REX,., task, in turn, creates other tasks 
required - by the system. DMTCRE reads these 
other tasks from a CMS disk by means of a CMS 
read access method. The task is then started as 
a new active task under RSCS. 

PROCESS COMMANDS: DMTCMX 

CMTCMX receives commands by means of either GIVE 
request elements passed by line driver tasks or 
in the form of a console input line resulting 
from a console read by DMTREX. 

The commands DEFINE, DELETE, DISCONN, QUERY, 
and START (for inactive links) are executed by 
DMTCMX. Execution of these commands generally 
involves referencing and modification of system 
status tables (SVECTORS, TTAGQ, TLINKS, etc.). 

If the command is not one that DMTCMX 
executes within its own code, the command line 
is examined for syntax errors and then passed to 
the appropriate task for execution. To do this, 
DMTCMX generates a formatted table called a 
com.and element to be passed to another active 
task for execution via an ALBRT asynchronous 
exit. 

The commands CHANGE, ORDER, and PURGE are 
executed by DMTAXS; the commands BACKS PAC, CMD, 
DRAIN, FLUSH, FREB, FWDSPACE, HOLD, MSG, TRACE 
and START (for active links) are executed by the 
line driver task for the specified link. 

PROCESS MESSAGES: DMTMGX 

DMTMGX manages distribution of all RSCS 
messages, which may be generated by REX or by 
any other RSCS task. Each aessage to be issued 
is presented to DMTMGX (via GIVE/TAKE for tasks 
other than REX) along with an internal routing 
code and an internal severity code. 

Messages may be addressed to the local RSCS 
operator console, to the local VM/370 operator, 
to a local VM/370 user console, to a remote 
station operator, or to any combination of these 
destinations, by means of the routing code. The 
severity code is defined for each message, and 
is an indication of the importance of the 
message. 

Messages for the RSCS local operator console 
are enqueued for output on the RSCS virtual 
machine console. Messages for the local VM/370 
system operator and for local virtual machine 
consoles are issued by means of execution of a 
VM/370 MESSAGE command (through the DIAGNOSE 
interface). Messages for remote RSCS operators 
are presented to the line drivers for the 
associated links by means of the RSCS MSG 
command element interface. This method of 
message handling simplifies RSCS message 
routing, tracing, and recording. 

TERMINATE SYSTEM 
CHECKS: DMTREX 

TASKS AND HANDLE PROGRAPI 

When a line driver task requests termination, a 
TAKE request is passed to DMTREX specifying that 
function. DMTREX marks the task as terminated, 
then searches for active I/O associated with the 
task. If active I/O is found, it is 
terminated. To ensure that system integrity is 
maintained during the termination of the I/O, a 
mechanism (at label QUIESE) is set up to handle 
situations in which an HID (Halt I/O 
instruction) does not take effect immediately. 

All RSCS program checks are handled by a 
routine in DMTREX. Program check diagnostic 
information is dumped, a message to the operator 
is issued, and the RSCS system status is 
modified, depending on the nature of the program 
check. 

Section 1. Introduction 143 



COMMUNICATE WITH THE VM/370 SPOOL FILE SYSTEM: 
DMTAXS 

DMTAXS is responsible for the maintenance of the 
total RSCS interface to the VM/370 spool 
system. When a spool file arrives at the RSCS 
virtual machine, AXS receives the associated 
asynchronous interrupt, reads and interprets the 
file's VM/370 spool file block (SPBLOK) and TAG, 
enqueues the file for transmission as 
appropriate, and notifies the appropriate line 
driver of the new file's availability. AXS 
provides a GIVE/TAKE request interface to line 
driver tasks for spool file data input and 
output, and defines and detaches virtual spool 
I/O devices as necessary. Also, AXS provides an 
interface to DMTCMX for second-level command 
execution support. 

AXS maintains a queue of a fixed number of 
virtual storage elements (called tag slots) that 
describe files currently owned by the RSCS 
virtual machine. TO maintain RSCS integrity in 
a simple way when a very large number of files 
is enqueued on the RSCS virtual m~chine, the 
virtual storage tag queue is not extended during 
execution. 

When a new file arrives at the RSCS virtual 
machine, its destination locid is examined, and 
it is accepted only if there is a matching 
linkid for which there is a free tag slot 
available. If the file's destination locid is 
not defined as a linkid, the file is purged and 
the originating user is notified of the action. 
If there is no free tag slot available for a 
defined linkid, the file is left "pending", and 
is accepted when a TAG slot becomes free. While 
a file is pending, it is not recognized by the 
RSCS command processors, and cannot be 
referenced through RSCS functions. 

To prevent links from being totally locked 
out by an exhausted (and stagnant) virtual 
storage tag queue, a minimum number of tag slots 
is reserved for each link. This guarantees that 
a minimum number of files is accepted for each 
associated link. The number of reserved slots 
is defined during system generation or in the 
DEFINE command for each link to be defined in 
RSCS. The appropriate number of slots to be 
reserved for each link may depend on the 
expected file traffic, the link's line speed, 
the expected time the link is to be active, and 
the desired level of service to be provided to 
the link. This number for each link may be 
arrived at through actual operational experience 
in each location. 

MANAGE TELECOMMUNICATION LINE ALLOCATION: DMTLAX 

DMTLAX is responsible for line port resource 
allocation to line driver tasks. DMTLAX 
allocates available switched ports (when a link 
is activated without a specified line address) 
through an ALERT request interface. When a line 
port is specifically requested (by virtual 
address), DMTLAX checks the device for validity 
as a line port. 

LINE DRIVER TASKS: DMTNPT AND DMTSML 

As part of the link activation process, REX 
(module DMTCRE) loads and st.arts a line driver 
task to service the remote location. 

The general functions of line driver tasks 
are: 

• Manage I/O on the BSC line 

• Manage transmission of spool file data via a 
GIVE/TAKE request to the AXS task 

o Provide GIVE/TAKE requests to the REX task 
command module (DMTCMX) 

The precise functional requirements vary from 
line driver to line driver, depending on t.he 
type of remote station t.he line driver 
supports. 

Each line driver is responsible for 
maintenance of its link status and line act1vity 
(TRAC~ records in the RSCS system status 
tables. 

Two line drivers are provided, one to support 
remote 2770, 2780, 3770 (in 2770 mode), and 3780 
terminals, and another to interface to remote 
HASP- and ASp-type systems or work stations. 

THE SML LINE DRIVER PROGRAM 

The SML line driver program is composed of four 
general types of routines: 

Processors, which are routines that execute 
the functions required by the HOST and RJE 
processing modes. 

o An input/output routine that accepts and 
transmits data on the BSC line. 

• A function selector routine 
one of the processors when 
services is received. 

that dispatches 
a request for 

• Buffer blocking and deblocking routines. 

The SML line driver supports programmable 
remote stations (in both HOST and RJE modes) for 
HASP- and ASp-type systems. HOST mode is that 
processing mode in which a remote station may 
submit jobs to VM/370 and receive print and 
punch output from VM/370. RJE mode is that 
processing mode in which VM/370 may send jobs to 
a remote batch system for processing and receive 
print and punch output from the remote batch 
system. 

Figure 32 shows the types of data flowing to 
and from RSCS via the SML line driver program. 

144 IBM VM/370: system Logic and Problem Determination Guide 



HOST Mode 

VM!370 

I f SML 

HOS~MOde 
I PRINT and PUNCH Output 

RJEMode 

System 

RSCS I 
I 

SML 

RJE Mode 

J PRINT and PUNCH Output 

Figure 32. Data Plow Between RSCS and Remote 
stations via the SML Line Driver 

SML PROCESSORS 

To support the HOST and RJE processing modes, 
the SML program provides seven "processors," or 
routines, that handle the seven functions 
required to support the two processing modes. 
Figure 33 is a list of the SML processors, the 
processing modes they support, and a brief 
statement of their function. 

When a command is transmitted from a remote 
station to RSCS, SML receives the command and 
coordinates processing of the command with 
supervisor routines and the REX task command 
module DMTCMX. 

The SML processor, $WRTN1, processes a 
command request from a remote station by passing 
a command request element to the REX task 
(module DMTCMX) via a GIVE request. DMTCMX then 
determines whether the command should be 
executed by DMTCMX, DMTAXS, or by the line 
driver. If the command is to be executed by the 
line driver, it is passed back to'SML via an 
ALERT request. The SML routine CMDPROC then 
executes the command. 

THE SML LINE IIO HANDLER ROUTINE: COMSUP 

The SML line I/O handler routine, COMSUP, 
controls communications on the BSC line for 
SML. This routine receives data from the BSC 
line and passes the data to the deblocker 
routine ($TPGET). COMSUP also sends data (which 
has been blocked by the blocker routine, $TPPUT) 
to a remote station. COMSUP is also responsible 
for acknowledging receipt of data over the line 
using the standard BSC line contr~l characters. 

THE SML FUNCTION SELECTOR ROUTINE: $START 

The $START routine is entered when SML is 
required (by either a remote station or a 
virtual machine) to perform a function. The 
purpose of this routine is to select a function 
to execute. The routine performs this function 
by using a commutator table, a list of synch 
locks, and task control tables. 

The SML commutator table is a branch table 
consisting of branch (B) and no-operation (NOP) 
instructions. The targets of the branch 
instructions are the seven processor routines, 
each of which performs a specific function. 
When the service of a processor is not required, 
the Commutator Table entry for that processor is 
a NOP instruction. When the function of the 
processor is required, the NOP instruction in 
the commutator table entry for that processor is 
replaced with a B instruction, thereby opening a 
gate in the commutator table. 

The $START routine cycles through the 
commutator table, falling through any NOP 
instructions and taking any branches. Control 
is passed in this way to any processor whose 
gate in the commutator table is open. 

When the processor completes the function 
requested, it closes its gate in the commutator 
table by replacing the B instructions with a NOP 
instruction. $START continues cycling through 
the commutator table taking any open branches. 

When the bottom of the commutator table is 
reached, $START tests a series of synch locks to 
see if any have been posted, signifying a 
request for an SML function. If any synch locks 
are posted, $START opens the commutator table 
gate for the requested processor and goes to the 
top of the commutator table to start cycling 
through it again. 

If the bottom of the commutator table is 
reached and there are no posted synch locks, SML 
discontinues processing by issuing a wait 
request via a call to the supervisor module 
DMTWAT, waiting on a list of the synch locks. 
When any 'of the synch locks is posted, $START 
receives control, opens the appropriate gate, 
and starts cycling through the commutator 
table. 

The task control table (TCT) is a DSECT 
defining data required by each of the 
processors. There is a TCT for each of the 
processors. Also, contained within the TCT is a 
branch instruction to the appropriate 
processor. 

BLOCK AND DEBLOCK SML TELEPROCESSING BUPPERS: 
$TPPUT AND $TPGET 

Data received over the BSC line is placed in a 
teleprocessing (TP) buffer. The size of TP 
buffers is specified by a START command 
parameter and can be up to 1024 bytes. 

Data contained in TP buffers is deblocked 
into tanks, which are unit buffers of a specific 

Section 1. Introduction 145 



r----------------------------------------------, 
I Processor I Mode I Function I 
1------1----------1--------------1 
I I I I 
I $CRTNl I HCST/RJE I Processes the follow- I 
I I I ing MULTI-LEAVING I 
I I I control records: I 
I I I permission to trans- I 
I I I mit, request to I 
I I I transmit, and SIGNON I 
I I I control records. I 
I I I I 
1--------1--------,-1-------------------1 
I $PRTN 1 I RJ E I Processes print file I 
I I I records received from I 
I I I remote stations and I 
I I I passes them to the I 
I I I VM/370 spool system. I 
I I I I 
1---------1-----1---------------1 
I $URTNl I RJE I Processes punch file I 
I I I records received from I 
I I I remote stations and I 
I I I passes them to the I 
I I I VM/370 spool system. I 
I I I I 
1---------1---------1--------------------1 
I $JRTN 1 I HOST I Processes job file I 
I I I records received from I 
I I I the remote station I 
I I I and passes them to I 
I I I the VM/370 spool sys- I 
I I I tem. I 
I I \ I 
1----------1 1----------------------
I $WRTNl I HOST/RJE \ In HOST mode, passes 
I I I command request ele-
I I I ments, via DMTMGX, 
I I I to DMTCMX for proces-
I I I sing. 
I I I In RJE mode, passes 
I I I message request ele-
I I I ments to the RSCS op-
I I I era tor I s console. 
I I I 
1-------1-----1 
I $RRTNl I HOST/RJE I Receives records from 
I I I the VM/370 spool sys-
I I I tem for transmission 
I I I to remote stations. 
I \ I 
\-----\------1------------------\ 
I CMDPBOC I I Executes local com- I 
I I I mands passed by I 
I I I DMTCMX, and passes I 
I I I messages and commands I 
I I I to remote stations. I 
I I I I L ________________________________________ -J 

Figure 33. SML Function Processors 

size used to deblock the larger TP buffers. 
There are 15 tanks; these are allocated as they 
are needed by processors. The size of tanks is 
determined by MULTI-LEAVING control bytes. 

When an SML function has been requested, the 
data must be either blocked for transmission (if 
it is data for a remote station) or deblocked 
for processing (if it has been received from a 
remote station) • 

$TPGET receives data from a BSC line (via the 
COM SUP routine) and allocates tanks to output 
processors as they are needed. 

$TPPUT receives tanks from input processors, 
blocks the data in these tanks into TP buffers, 
and gives control to COMSUP to transmit the 
buffers over the line. 

The NPT line driver program processes only one 
file at a time; it can either receive a file as 
input from the remote station or transmit an 
output file to a remote station. These two 
processes execute under control of a line 
monitor that reads and writes data over the ESC 
line and a function selector routine that 
determines whether an input or output function 
has been requested. 

THE NPT LINE MONITOR ROUTINE: LINEIO 

The NPT line monitor routine, LINEIO, controls 
communications on the BSC line. This routine 
sends and receives data over the BSC line. 

When the data is received 
stations, that data is received in 
buffer. When data is transmitted 
station, it is transitted using 
buffer. The NPT buffers are a 
defined by terminal type and 
specified on the SIGNON card. 

from remote 
the LINEINB 

to a remote 
the LIHEBUFF 
fixed size, 
buffer size 

THE HPT FUNCTION SELECTOR ROUTINE: NPTGET 

When the NPT line driver program has been loaded 
and initialized, the NPTGET program begins a 
cycle in which it checks every three seconds for 
one of three functions to perform: 

• Process a command 
• Read a file from a remote station 
• Write a file to a remote station 

When a function is requested, a branch is 
taken to the appropriate routine. 

NPT INPUT FILE PROCESSING 

For files being received from remote stations, 
two processing routines are executed: PUTVRFY 
and PUTBLOCK. PUTVRFY reads the data contained 
in the input buffer (LINEINB) and verifies the 
BSC control characters for that data. PUT BLOCK 
deblocks the data in LINEINB, formats it for use 
by VM/370, and then writes the data to the 
VM/370 spool system. 

146 IBM VM/370: system Logic and Problem Determination Guide 



NPT OUTPUT PROCESSING ROUTINES 

For files being transmitted to a remote station, 
three processing routines are executed: 
"AKEBLOC, GETBLOCK, and GETVRFY. 

"AKEBLOC accepts a block of data from the 
V"/370 spool system and passes control to 
GETBLOCK. GETBLOCK then builds a buffer with 
which to transmit the data and transmits the 
data to the remote station. The response 
received from that transmission is analyzed by 
GETVRFY. 

MAJOR DATA AREAS 

The major data areas used by RSCS are: 

• SVECTORS 
RSCS supervisor queue elements 

• KAINMAP 
• TAREA 
• LINKTABL 
• TAG 
• RSCS request elements 
• VM/370 data areas referenced by RSCS 

The data areas discussed below give a brief 
functional overview of each data area and its 
relationship to other data areas in the system. 
These are not meant to be a comprehensive 
description of the RSCS data areas. Rather, it 
is meant as an introduction to the types of data 
used by RSCS in performing its various 
functions. 

SVECTORS: SUPERVISOR CONTROL 
SUPERVISOR ROUTINE ADDRESSES 

The SVECTORS DSECT contains: 

QUEUES 

• The PSW for the last task dispatched 

• The RSCS system Save area 

AND 

• The task ID and address of the task element 
for the last task dispatched 

pointers to the RSCS supervisor subqueues 

• Entry addresses for all supervisor service 
routines 

This data area is updated dynamically as tasks 
execute and is used by RSCS to monitor the 
execution status of the system. 

RSCS SUPERVISOR QUEUE ELEMENTS 

All supervisor status information pertaining to 
tasks and task requests is maintained in 
Supervisor storage defined by the SVECTORS 
DSECT. There are various queues defined in this 
DSECT, each pertaining to a particular 
Supervisor function, and composed of elements of 
similar format. The heads of these queues are 
defined in a portion of SVECTORS from FREEQ 

through GIVEQ. The DSECTS defining the elements 
chained on these queues are: FREEE, TASKE, IOE, 
ASYNE, and GIVEE. 

MAINMAP: STORAGE AVAILABLE TO RSCS PROGRAMS AND 
TASKS 

The MAINMAP DSECT is a grid of a fixed number of 
bytes, each of which represents a page of 
virtual storage. When a task (or the 
Supervisor) requests storage, the byte is filled 
with the TASKID (generated by the Supervisor) of 
the requestor, thus marking the storage page as 
taken by that task. When a page is free, its 
map entry is cleared to zero by the task owning 
the storage. 

TAREA: THE SAVE AREA FOR AN INTERRUPTED TASK 

The TAREA DSECT contains the PSW at which a task 
is to resume execution, the contents of the task 
general registers when it was interrupted, and 
the task's request synchronization lock. This 
area is used to maintain the status of a task 
when it is interrupted by another task. 

LINKTABL: LINK DESCRIPTION DATA 

The LINKTABL DSECT describes control data 
associated with each link in the system. The 
control data includes such information as the 
linkid of the link, the task name for the link's 
line driver (that is, the name by which Rses 
knows the task), the address of the line which 
is used by the link, and so on. The link table 
(a chain of LINKTABL DSECTS) is built during 
system generation and may be updated by the 
DEFINE, DELETE, START, and DRAIN commands. 

TAG: THE RSCS FILE DESCRIPTOR 

The TAG DSECT defines the attributes and status 
of a file being processed by RSCS. The TAG is 
built from information passed via the CP TAG 
command (or its counterpart for remote stations) 
and from the CP Spool File Block (SFBLOK) that 
describes the file. 

RSCS REQUEST ELEMENTS 

Request elements are data tables built by task 
programs when a service is to be requested by 
the task. 

For example, when a command is processed by 
DMTCMX, the command line may be formatted into a 
command element, which gives the following types 
of information: 

• Length of the command element 

• The unique code 
element 

identifying the command 

Section 1. Introduction 147 



• The 1inkid to which command response is to be 
returned 

• Modifiers that specify options for a given 
c omlland 

• A variable length buffer field containing the 
command line 

This command element is then passed (via DMTSIG) 
to another task for processing. 

Other types of request elements are built to 
Frocess individual commands and messages, to 
create and terminate tasks, to process console 
I/O, and so on. 

In many cases, elements are contained in a 
generalized control area used when processing a 
system function, for example, monitoring 
requests for DMTAXS module to open or close a 
VM/370 spool file. 

0, ------------, 
1 DMTVEC 1 

270 1--------------------·---------- 1 
1 DMTMAP 1 
1-------------------------------1 
1 DMTEXT 1 
1-----------------------------1 
1 DMTSVC 1 
1 -----1 
1 DMTIOM 1 
1------------------------------1 
1 DMTQRQ 1 
1-----------------------------1 
1 DMTDSP 1 
1------------------------------1 
1 DMTWAT 1 
1-·---------------------------1 
1 DMTPST 1 
1 -----------------1 
1 DMTASK 1 
1----------------------------1 
1 DMTSTO 1 
1--------------------------------1 
1 DMTASY 1 
1-------------------------------1 
1 DMTSIG 1 
1------------------------------1 
1 DMTGIV 1 
1------------------------------1 
1 DMTAKE 1 

10001-----------------------------1 
1 Supervisor Queue Extension 1 

20001------------------------------- 1 
/ / 
/ / 
/ / 
/ / 
/ Free storage / 
/ (al1oca table) / 
/ / L-- __________ -J 

Figure 34. RSCS storage Allocation 

VM/370 DATA AREAS REFERENCED BY RSCS 

There are two VM/370 CP data areas referenced by 
RSCS when VM/370 spool files are processed: 

• SFBLOK The VM/370 spool file block 
that contains control information and 
describes attributes of a VM/370 spool 
file. 

• SPLINK The data block that links pages of a 
VM/370 spool file buffer. 

RSCS STORAGE REQUIREMENTS 

Figure 34 shows the storage used by the RSCS 
control program and how the parts of the system 
(the Supervisor, the tasks, and the data areas) 
fit together in storage. 

10000 r----------------·-------, 
1 DMTREX 1 1 --------·----1 
1 DMTCMX 1 
1-------------------------1 
1 DMTMGX 1 
1 ----------
1 DMTCRE 
1---------_·_--------
1 DMTCOM 
1---------------------
1 DMTMSG 
1------------------
1 DMTSYS 
1-----· --------------
1 DMTINII 
1 
1 Free Storage 
/ / 
/ / 
/ / 
/ / 
/ / 
/ / 
/ / 
/ / 
/ / 
/ / 
/ / 

700001----------------------1 
1 Third Line Driver 1 

740001----------------------1 
1 Second Line Driver 1 

78000 1----------------------·---1 
1 First Line Driver 1 

7COOOI----------------------1 
1 DMTLAX 1 

7 DOOO 1--------------------------·----1 
1 DMTAXS 1 

80000 '--------------------------------' 

lDMTINI begins at the first page boundary following DMTSYS. After initialization its storage 
becomes part of free storage. 

148 IBM VM/370: system Logic and Problem Determination Guide 



The means by which RSCS synchronizes and 
dispatches tasks are the WAIT/POST routines 
(DMTWAT and DMTPST), synchronization locks, 
asynchronous requests and exits, and the 
dispatcher routine (DMTDSP). 

The WAIT/POST method of task synchronization 
(Supervisor modules DMTWAT and DMTPST) is used 
when an executing task requires the services of 
another task. When this situation occurs, the 
requesting task must suspend its execution while 
it waits for the requested service to be 
performed. In conjunction with the dispatcher, 
WAIT/POST allows tasks to temporarily suspend 
execution until they receive a signal (via the 
synch lock) that they can resume execution. 

THE WAIT/POST ROUTINES 

To suspend its execution, the requesting task 
calls DMTWAT, which inspects the synchronization 
locks RSCS uses to synchronize task execution. 
Completion of a service is signalled by means of 
a synch lock, which is set (or "posted") by 
DMTPST. 

R1 Synch Lock 
r----- , ,.-----., 
1 A (Synch Lock) 1------> 1 1 000000 1 
L --' , .I 

- OR --

SYNCHRONIZATION LOCKS 

synchronization locks (or "synch locks") are 
fullwords contained in task save areas or 
control tables (such as TAREA or IOTABLE). 
Synch locks are also found in control areas 1n 
function selector routines such as REXCYCLE in 
module DMTREX. 

The synch lock must be set to zero before the 
request for services is made. Setting the synch 
lock to zero prepares it for processing by the 
WAIT routine. 

The first byte of the full word may contain 
either a zero or a "post code." If the first 
byte is zero, the task is nondispatchable, 
because the requested service has not yet been 
performed. A post code is a code which sets to 
one any bit in the first byte of the synch 
lock. DMTPST sets such a bit to specify that a 
requested service has been completed. 

The requesting task, that is, the caller of 
DMTWAT, may specify the address of a single 
synch lock (as in the case of a GIVE Table or an 
IOTABLE) or the address of a list of synch locks 
(as in the case of REXCYCLE), one of which must 
be posted by DMTPST before dispatching of the 
requesting task can resume. Figure 35 shows the 
contents of Register 1 on a call to DMTW1T. 

synch Lock 
r --, 

R1 r---> 1 0 1 
r-- ------, r-----------, 1 " --' 
IA(list Address) 1------->1 A (Synch Lock) 1----' Synch Lock 
L--- -----' 1----------1 r -, 

1 A (Synch Lock) 1--------> 1 0 1 1 ___________ 1 L-----' 

/ / 
/ / 
1 1 
11 (Synch Lock) 1---, Synch lock 
, .I I ,.---------, 

L ___ > 1 0 
, --' 

Figure 35. Input to the DMTWAT Routine 

ASYNCHRONOUS INTERRUPTIONS AND EXITS 

Asynchronous interruptions result from processes 
external to RSCS. For example, during REX task 
execution, the RSCS operator may press the ATTN 

key on the RSCS console, thereby asynchronously 
interrupting execution of the REX task. 

To handle asychronous interruptions, RSCS 
tasks contain asynchronous exit routines. These 
asychronous exit routines are set up during 
initialization without dispatching the task 
being requested to perform the requested 
service. Asynchronous exits are provided for 

Section 1. Introduction 149 



external interruptions, for certain I/O 
interruptions, and for ALERT requests that occur 
during execution of another task. 

Asynchronous exits are taken after a 
calls DMTASY specifying the requested 
conditions and the entry address of 
asynchronous exit routine. 

task 
exit 
the 

DMTASY also handles external interruptions 
reqeusted for the clock comparator. The request 
element is queued on the asynchronous exit queue 
and processed by DMTEXT. The DMTASY clock 
comparator provides a time delay mechanism by 
using the CPU hardware clock comparator. 

Asynchronous exit routines perform limited 
function, often enqueueing requests for further 
processing at a later time by dispatched tasks. 
When the asynchronous exit routine completes 
processing, it returns control to the 
supervisor, which then resumes dispatching tasks 
via a call to the dispatcher (DMTDSP). 

USING ASYNCHRONOUSLY REQUESTED SERVICES: DMTWAT 

Before a task can use the results of an 
asynchronously requested service, it must ensure 
that the service has been performed. To ensure 
that the service has been performed, the calling 
task signals that it is waiting for completion 
of a service via a call to the supervisor 
routine DMTWAT, specifying the synch lock 
associated with the requested service. 

If the high-order byte of the task's synch 
lock is nonzero when DMTWAT inspects it, control 
is returned directly to the calling task. If 
the high-order byte of the synch lock is zero, 
DMTWAT marks the calling task nondispatchable 
(via the task's request element), stores the 
address of the task's request element in the 
low-order bytes of the synch lock, and resumes 
dispatching for other tasks. 

POSTING ! SYNCH LOCK 

When the requested service is comFlete the REX 
Task signals completion by calling the POST 
routine (DMTPST), specifying the requesting 
task's associated synchronization lock. The 
POST routine sets the high-order byte of the 
synch lock to nonzero. This is referrred to as 
"posting" that synch lock, and indicates that 
the requested service is complete. 

DISPATCHING IN RSCS 

The supervisor functions return control to the 
tasks by means of the dispatcher (DMTDSP). The 
dispatcher scans the queue of tasks to be 
executed (TASKE in SVECTORS), selects the first 
dispatchable task element (that is, one that is 
not marked nondispatchable by DMTWAT), moves 
this task element to the end of the task queue, 
and restarts its execution. If no task element 

is marked "nondispatchable," a masked-on wait 
state PSW is loaded by the dispatcher. 

In addition to posting a synch lock, DMTPST 
inspects the synch lock to determine whether 
DMTWAT has stored the address of a task element 
in that synch lock, implying that the task is 
nondispatchable. If this is the case, DMTPST 
marks the task's task element dispatchable and 
clears the last three bytes of the synch lock to 
zero. 

Tasks may call DMTWAT specifying multiple 
synch locks. When this is the case, each synch 
lock is inspected and, if any synch lock is 
posted, task execution resumes immediately. If 
no synch locks are posted, the task element for 
the calling task is marked nondispatchable, its 
address is stored in each of the synchronization 
locks, and dispatching is resumed for other 
tasks. 

When any synch lock in the list is posted, 
the task element is marked dispatachable. The 
dispatcher clears the low-order three bytes of 
each of the task's synchronization locks 
(pointed to in the task element before task 
execution is resumed) • 

Refer to Diagrams 1-9 and 1-10 in the Method 
of Operation section for details on processing 
by DMTWAT and DMTPST. 

TASK-TO-TASK COMMUNICATIONS 

There are situations when a task requires the 
services of another task in order to complete a 
function. For example, SML may require that AXS 
open a file for input before processing of that 
file can continue. RSCS task communicate with 
each other to request these kinds of services 
using two methods: ALERT task-to-task 
communication and GIVE/TAKE communication. 

Both methods use an element, which is a table 
of information that describes the nature of the 
request. In general, these elements are 
referred to as request elements and ALERT 
elements. 

ALERT TASK-TO-TASK COMMUNICATION 

The ALERT method of task-to-task communication 
allows a task to interrupt another task to 
request an immediate service. The type of 
request is described by an ALERT element, the 
address of which is specified by the requesting 
task in a call to DMTASY. 

The supervisor responds by g1v1ng control to 
the asynchronous exit routine defined by the 
request task and by passing to that task the 
address of the ALERT element that describes the 
requested service. 

The requested task's (i.e., the task 
receiving the request) asynchronous exit routine 
responds immediately and may copy the ALERT 
element into its own storage for further 

150 IBM VM/370: System Logic and Problem Determination Guide 



processing. The receiving task's asynchronous 
exit routine then returns control to the 
supervisor, which allows the dispatched task to 
resume execution. 

The ALERT routine (DMTSIG) also notifies 
another task that an asynchronous event has 
taken place. In this case, DMTSIG is not used 
with an ALERT request element. 

GIVE/TAKE TASK-TO-TASK COMMUNICATION 

While the ALERT method of task-to-task 
communication demands immediate response from 
the alerted task, the GIVE/TAKE method provides 
a means for ordered enqueueing of requests for 
services. These requests are handled when the 
servicing task is free to handle it, rather than 
upon immediate demand. 

Generally, request and response elements are 
formatted tables of information that reside in 
the storage of both the requesting task and the 
task providing the service. During task-to-task 
communication, these elements are passed from 
one task to another, containing either requests 
for services or responses to requests. 

When a task requests services of another task 
via GIVE/TAKE, it builds a GIVE table in its 
storage. The GIVE request buffer and a GIVE 
response buffer. (The request and response 
buffers may be at the same location in 
storage. ) 

The GIVE request buffer contains a GIVE 
request element, which is a table of information 
describing the service being requested. Once 
the GIVE request element is built, the 
requesting task clears the synch lock in its 
address of the GIVE table to zero (in 
preparation for a call to DMTWAT) and specifies 
the address of the GIVE table in a call to 
DMTGIV. 

The supervisor then enqueues a supervisor GIVE 
element containing a pointer to the GIVE table, 
so that the request can be forwarded to the 
receiving task when that task is ready to accept 
the request. 

When the receiving task signals that it can 
process a GIVE request, the receiving task 
builds a TAKE table in its own storage. The 
TAKE table consists of a field to receive the 
task name of the requesting task and the 
addresses and the lengths of a TAKE request 
buffer and a TAKE response buffer. 
Functionally, these buffers complement the GIVE 
request and response buffers and, like the GIVE 
buffers, may be at the same location in 
storage. 

Once the TAKE table is built, the receiving 
task specifies the address of the TAKE table in 
a call to DMTAKE. The supervisor then moves the 
GIVE request buffer (containing the GIVE request 
element) to the receiving task's TAKE request 
buffer. 

The receiving task performs the requested 
service and updates the GIVE request element and 
places it in its TAKE response buffer. This 
modified GIVE request element contains 
information on results of request processing to 
be returned to the requesting task. 

When all request processing is complete, the 
receiving task again calls DMTAKE, specifying 
the address of the TAKE table. The supervisor 
responds by immediately moving the contents of 
the receiving task's TAKE reponse buffer to the 
requesting task's GIVE response buffer, and 
posting the synch lock in the requesting task's 
GIVE table. 

If another GIVE request addressed to the 
receiving task has been enqueued, it is given to 
the receiving task as described above, and 
dispatched task execution is resumed. On each 
call to it, DMTAKE first responds to a 
previously accepted GIVE request (if one exists) 
and then gives another modified GIVE request 
element back to the calling task (if one 
exists). 

The requesting task waits for request completion 
by specifying the address of the synch lock in 
its GIVE table in a call to the WAIT routine 
(DMTWAT) • 

The receiving task waits for request 
availability by calling DMTWAT and specifying 
the address of its "task request synch lock," 
which is located in its Task Save Area. The 
task request synch lock is cleared to zero by 
DMTAKE when no GIVE request address to the 
calling task remains enqueued. It is posted by 

section 1. Introduction 151 



DMTGIV when such a request is enqueued as a 
result of DMTGIV processing for another task. 

Figure 36 shows the movement of data during a 
GIVE/TAKE transaction. 

SVECTORS GIVEE GIVEE GIVEE 

~====J---~==~~-C==~ 

GIVEQ 

Request 

'--__ -I '- Element 

SML 
STORAGE 
(Giver) 

(Taker) 

GIVE 
Request 
Table 

I Request 
I Table 

\ 
\ 
\ 

\ 
\. 

"- ...... ....... 

TAKE 

.......... , 
\. 

\. 

TAKE 2 \ 

/ 
.,,/ 

\ 
\ 
I , 

I 
I 

I 
/ 

/ 

Figure 36. Movement of Data During a Typical 
GIVE/TAKE Transaction 

INPUT/OUTPUT METHODS AND TECHNIQUES 

Two data structures are created when RSCS 
performs an I/O operation: an I/O element and an 
I/O table. 

The I/O table (defined by DSECT lOT ABLE) is 
built by the requesting task and describes 
specific inforaation required to perform the 
requested I/O operation. 

The I/O element (defined by DSECT IOE) is 
built by the I/O request manager (DMTIOM) and 
consists of items of system information 
describing a request for an I/O operation. 

I/O elements are placed on queues pointed to 
in SVECTORS: MPXIOQ (for multiplexer I/O 
requests) and SELIOQ (for Selector I/O 
requests). The elements in these two queues are 
in ascending subchannel order. Queue elements 
may also contain pointers to subqueues, which 
represent requests for use of the same nonshared 
subchannel. Each I/O elellent points to an I/O 
table. 

Also, there is a queue of I/O asynchronous 
exit request elements pointed to in the SVECTORS 

data area. Figure 37 shows the relationships 
between these various data areas. 

ACTIVE AND PENDING I/O QUEUES 

The supervisor I/O queues (MPXIOQ and SELIOQ) 
include an active queue and a number of inactive 
or "pending" subqueues. Each element in the 
active I/O queue represents an I/O operation 
which is active on a particular nonshared I/O 
subchannel. The active I/O queue is ordered 
according to ascending numerical I/O subchannel 
address. 

When an I/O operation is requested on an idle 
I/O subchannel, an I/O element representing the 
request is built and enqueued on the active I/O 
queue in its I/O subchannel's numerical address 
position. The I/O operation is then started. 

When an I/O operation is requested on an I/O 
subchannel for which an I/O element is enqueued 
on the active I/O queue, the nonshared 
subchannel is busy and, therefore cannot be 
started immediately. In this case, an I/O 
element representing the request is built and 
enqueued on the subchannel's inactive I/O 
subqueue. The head of this subqueue 1S 
contained in the active I/O element enqueued on 
the active I/O queue. 

When the nonshared subchannel's active I/O 
completes and the subchannel becomes available, 
the first element on the inactive I/O sub queue 
is enqueued on the active I/O queue and its I/O 
operation is started. 

HANDLING LINK ACTIVITY: LINKTABLS AND TAGS 

When the RSCS system is generated, a number of 
TAG slots are generated and enqueued on the free 
TAG queue. TAG slots are storage areas defined 
by the TAG DSECTi TAG slots describe the files 
being transmitted via RSCSi the free TAG queue 
cOllprises those TAG slots available for a given 
RSCS system. 

The Free TAG Queue is define~ in the DSECT 
TAGAREA, which also defines the status of TAG 
slots in the RSCS system. TAGAREA is pointed to 
by TTAGQ in SVECTORS. 

HOW LINKS HANDLE FILES 

Each link in RSCS is defined by a LINKTABL 
DSECT. The LPOINTER field of the LINKTABL DSECT 
points to the link's inactive TAG queue. Tbis 
queue comprises those TAGs describing files tbat 
RSCS has not yet transmitted. Only one TAG per 
link can be active at a time. 

The queue of 
table) is pointed 
SVECTORS. 

LINKTABLs (called the link 
to by the TLINKS field in 

152 IBM VM/370: system Logic and Problem Determination Guide 



SVECTORS 

MPXIOQ 

SELlOQ 

IOEXITQ 

ACTIVE 
IOE 

IOTABLE 

ASYNE ASYNE ASYNE 

Figure 31. I/O Queues and Subqueues 

TRAISftITTIIG Vft/310 FILES TO AI ascs LIRK 

When a Vft/310 file is spooled to RSCS for a 
specific link, RSCS accepts the file and: 

• Obtains a free TAG slot for the file. 

• Builds a description of the file in the TAG 
slot. 

• Enqueues the new TAG on the link's inactive 
TAG queue. 

When trans.ission to the reaote station begins, 
the file's TAG is dequeued from the inactive TAG 
queue and enqueued on the active input file 
queue (TAGACIN in TAGAREA). When transmission 
of the file is complete, the TAG is dequeued 

from the active input queue and its slot is 
returned to the Free TAG Queue. 

PROCESSING FILES FROft REftOTE STATIONS 

As in the case of Vft/310 spool files, when files 
are received from remote stations, RSCS obtains 
a TAG slot and builds a description of the file 
in that slot. However, files from remote 
stations are enqueued on the active output queue 
(TAGACOUT in TAGAREA) • 

When the file is completely transmitted, its 
TAG is dequeued from the active output queue, 
closed to the Vft/310 spool system, and its freed 
slot returned to the free TAG queue. 

Figure 38 shows the relationships between the 
DSECTs described above. 

section 1. Introduction 153 



LlNKTABL 

LPOINTER 

TLiNKS 

TTAGQ 

• • • 

Link's Inactive llii Queue 

These are TAG's representing 
files waiting for transmission; 
that is,waiting to be enqueued 
on the Active Input TAG Queue 
described below. 

Freg TAG Queue 

All TAG "slots" which are 
not in use to d()scribe a file 
are enqueued on the free 
TAG queue. 

TAG TAG Active L!l.I2.!J.! TAG Queue 

ITDTI 
TAG TAG TAG 

There may be only one active 
input file for any given link on 
this queue. Each file which is 
being read from the VM/370 spool 
system and transmitted to a 
remote station is represented by 
a TAG on this queue. 

DTI~D 
Active Output TAG Queue 

Each file which is being written 
to the VM/370 spool system is 
represented by a TAG on this 
queue. 

Figure 38. Chaining of Data Areas Required for File TAG Manipulation 

154 IBM V8/310: sJste. Logic and Proble. Deter.ination Guide 



section 2 describes the progra. organization for 
CftS, CP, and BSCS. 

The CftS description is in two parts. The first 
part contains figures showing the functional 
organization of CftS. The second part contains 
general information about internal structure of 
CftS programs and their interaction with one 
another. 

CftS program organization is in two figures. 
Figure 39 is an overview of the functional areas 

8 

of CftS. Each block is nu.bered and corresponds 
to a .ore detailed outline of the function found 
in Figure 40. 

Figure 40 shows how CftS routines relate to 
these functional areas. The numbers on top of 
each detailed figure correspond to the numbers 
on Figure 39. 

In most cases, the detailed figures contain 
three levels of information: the functional 
topic, a breakdown of logical areas within that 
topic, and the CftS routines that perform those 
logical functions. 

o 
,..---------, 

Manage 
the CMS 

r---------, 

Process 
Commands 
that Manipulate 
the File System 

Process 
And 
Execute 
CMS Files 

Initialize the 
CMS Virtual 
Machine 
Environment 

Perform 
Miscellaneous 
CMS Functions 

File 
System 

Simulate 
Non-CMS 
Operating 
Envi ron ments 

Handle 
I/O 
Operations 

Handle 
Interruptions 

Manage 
CMS 
Storage 

Figure 39. An Overview of the Functional Areas of CftS 

section 2. ftethod of Operation and Program Organization 155 



(2 I 
Initialize the Process 
CMS Virtual and 
Machine Execute 
Environment CMS Files 

I 
r I I J I 

Maintain an Process Load and Process Perform 
Interactive and Execute Execute MODULE Library 
Console EXEC Files TEXT Files Files Support 
Environment Functions 

I I I I 1 
DMSINI DMSINT DMSEXC DMSLOA DMSMOD DMSLBM 

Interpret Load a disk Process the 
Generate Generate and Read theCMS LOAD and commands version of a MODULE update MACLIB nucleus the EXEC INCLUDE entered at file files 

the console processor commands 

I I I I 1 
DMSINS DMSINA DMSEXT DMSLDR DMSMOD DMSLBT 

Initialize 
Begin execution Load a 

Generate 
storage constants Handle Perform and update 
and virtual disks synonyms and EXEC of programs MODULE a TXTLIB 
for a virtual abbreviations processing in storage file library 
machine 

I I 
DMSINT DMSSCN DMSLSB 

Handle first Process a Process 
commands command line loader 
entered at and create options 
the console a PLiST 

I I 
DMSSET DMSCPF DMSLlO 

Set virtual Pass a Create a 
machine command load map 
environment line to CP and perform 
options for execution loader I/O 

I I 
DMSQRY DMSITS DMSMDP 

Query the Process 
Type a load virtual machine command 

environment functions map at a 

option settings via SVC calls console 

I 
DMSGLB 

Define libraries 
to be searched 
during execution 
and assembly 

I 
DMSLGT 

Create a chain 
of TXTLIB 
blocks for use 
during execution; 
release the chain 

I 
DMSLlB 

Search TXTLIB 
libraries for 
undefined symbols; 
close TXTLIB 
libraries 

Figure 40. Details of eMS System Functions and the Routines That Perform Them (Part 1 of 4) 

156 IBM VM/310: System Logic and Problem Deteraination Guide 



CD. I CD 1 
Process Manage 
Commands the CMS 
that Manipulate File 
the File System System 

I 1 
I I I I I 

Perform Perform Locate Perform 
General File Data 

Manage Data in File 
Support Manipulation 

Virtual the CMS Update 
Functions Functions 

Disk Data File System Functions 

I I I I J J 
DMSSTT DMSEDC, DMSEDF DMSPRT DMAACC DMSLAD DMSARE 

Verify the 
DMSEDI, DMSEDX 

Access data Find an Clear an 
existence of Create and Print a 

on a virtual active disk active 
a file and update files record 

disk table disk table 
return its address 

I I I I I I 
DMSLST DMSUPD DMSPUN DMSACM DMSLAF DMSFNS 

List the Update Build an Find an Close any 
names of source Punch active disk active file open files 
files on a files a record table table on disk 
CMS disk 

I I T T T I 
DMSSYN DMSCPY DMSTYP DMSACF DMSLFS DMSALU 

Create synonyms Manipulate Type a Build file Find a file Clear tables 

and abbreviations disk file record status table status and free storage 

for a file name records blocks for a table associated 
virtual disk with a disk 

I I I J 
DMSRNM DMSCMP DMSASM DMSLAF 

Compare Interface Create or 
Rename 

records in with the delete active 
a file 

two files assembler to file table 
assemble files entries 

I I I 
DMSERS DMSSRT DMSDSK 

Erase Sort/arrange Load card-to-

a file records in disk, dump 
a file disk-to-card 

I I 
DMSRDC DMSTPE 

Read a Process 

record TAPE command 
functions 

I I 
DMSMVE 

Move data 
from one 
device to 
another 

Figure 40. Details of eMS System Functions and the Routines That Perform Them (Part 2 of 4) 

Section 2. Method of Operation and Program Organization 157 



CD 

I I I 
Perform Perform Perform 
Console Disk Unit 
110 110 Record 

110 

I I I 
DMSCIT DMSDIO OMSPIO 

Read or 
Start an write one or Perform print 
110 operation more blocks 110 functions 

of disk data 

I I I 
DMSCWT DMSTOO, OM:; I HK DMSCIO 

Wait fora Manipulate Perform read 
console event storage 
to complete management 

chains 

card and punch 
card 110 

l I I 
DMSCAT DMSBRD. DMSBWR DMSCWR 

Stack a line Read or write Write a 
of console 
input for items on a 
DMSCRD disk file 

line to the 
console 

I I 
DMSCRD DMSPNT 

Read a Set the read 

line of or write 

console pointer for a 

input fHetoa given 
file item 

I 
DMSCWR 

Write a line 
to the console 

I 

Handle 
110 
Operations 

I 
I 

Perform 
Tape 
110 

I 
DMSTPD 

Read a 
PDS tape 

I 
DMSTIO 

Read or 
write a tape 
record 

I 
DMSTMA 

Read an unloaded 
PDS from tape 
and place it in 
a [IIIACLIB 

I 
Write to 
a Display 
Terminal 

I 
DMSSCR 

Load display 
buffers to be 
displayed on 

I 
DMSGI 

Issue a 
display to 
screen 
DIAGNOSE 

I 
Wait for 
110 to 
Complete 

I 
DMSIOW 

Wait for 
an 110 event 
to take place 

Handle 
Interrupts 

DMSCIT 

Handle 
console 
interrupts 

DMSITS 

Handle SVC 
interrupts 

DMSITI 

Handle 110 
interrupts 

DMSITE 

Handle 
external 
interrupts 

DMSITP 

Handle 
program check 
interrupts 

DMSHDS 

Set up and 
I-- handle user· 

defined SVC 
interrupts 

DMSHDI 

Set up and 
t-- handle user-

defined 110 
in1errupts 

0r----'--..... 
Manage 
CMS 
Storage 

DMSFRE 

Allocate and 
release free 
system and 
user storage 

DMSSMN 

Allocate and 
release user storage 
upon request by 
OSGETMAINI 
FREEMAN macros 

figure 40. Details of e"s System functions and the Routines That Perform Them (Part 3 of 4) 

158 IB" V"/370: System Logic and Problem Deter.ination Guide 



CD. I 
Simulate 
Non-CMS 
Operating 
Environments 

1 
r I 

Provide 
Simulate Simulate Access 

Method OS DOS 

Support Functions Functions 

1 I 
DMSSOS DMSFLD 

Support 
Interpret OS 
JC L parameters 

OSAM for use by CMS 

I 1 
DMSSBS DMSSVT, DMSSOP, 

DMSSCT, DMSSMN, 
Support DMSSVN, DMSSLN, 
BSAM and DMSSAB 
BPAM Simulate OS 

macros 

I I 
DMSSBD DMSSEB 

Support Perform 
BDAM I/O functions 

for OS 

1 1 
I 

DMSVIB DMSROS Initialize 
DOS and Process 

Load the Allow CMS to 
Process DOS DOS I/O 

CMS/VSAM ACCESS,STATE, System Control Functions 
shared system READ, NOTE, Commands 
for OS VSAM and BACKSPAC 
programs on OS disks 

I 1 I 
DMSVIP DMSLDS DMSSET DMSBOP 

Interface with List 
VSAM programs Initialize Simulate 

information the CMS/DOS the DOS/VS to perform VSAM about OS environment OPEN function functions for data sets 
OS VSAM programs 

I I 
DMSVSR DMSOPT DMSOR1, DMSOR2 

Reset fields 
DMSOR3 

set during VSAM Set compiler Locate a 
processing and options specified 
purge the CMS/ file 
VSAM DCSS 

1 1 
DMSAMS DMSASN DMSOPL 

Support Associate system Access a source 
VSAM or programmer statement 
Access Method logical units library for a 
Services with physical units DOS/VS compiler 

1 
DMSLLU DMSCLS 

List assignments 
Simulate the 
DOS/VS CLOSE 

of logical units function 

DMSDLB 

Ass·ociate a 
DTF table 
filename with 
a logical unit 

r 
DMSBTB 

Load the CMS 
Batch Virtual 
Machine 

1 
DMSBTP 

Perform batch 
processing 
functions 

1 
I 

Process 
DOS Execution 
Related 
Functions 

I 
DMSDLK 

Link·edit 
DOS/VS 
phases in 
storage 

I 
DMSFET, DMSFCH 

Load a phase; 
begin program 
execution 

0 I 

Perform 
Miscellaneous 
CMS Functions 

1 
I I 

DMSDBG DMSGND 

Perform Generate 
DEBUG an auxiliary 
functions directory 

1 1 
DMSOVR DMSASD 

Load the 
SVCTRACE Provide an 

module, 
auxiliary 
directory 

DMSOVS 

-I 1 
DMSOVS DMSLAD 

Include an 
Perform 
SVCTRACE 

auxiliary 
directory on 

functions the FST chain 

1 I 
Process 

Provide DOS 
DOSSVC Service 
Simulation Commands 

I I 
DMSDOS DMSSRV 

Handle all Copy books from 

CMS/DOS SVC a source statement 

requests library to an 
output device 

I 
DMSRRV 

Copy modules 
from a 
relocatable 
I ibrary to an 
output device 

1 
DMSPRV 

Copy procedures 
from a procedure 
library to an 
output device 

1 
DMSDSV 

List the 
directories 
of libraries 

I 
DMSDSL 

Delete, compress, 
I ist phases of 
a DOSLIB 
library 

-~ 

DMSABN 

Handle 
abnormal 
termination 

1 
DMSERR 

Generate 
error 
messages 

Terminate 
the DOS 
Environment 

DMSBAB 

Pass control to 
an abnormal 
termination 
routine via 
STXIT AS macro 

DMSITP 

Process program 
interrupts 
and SPI E 
exits 

DMSDMP 

Simulate 
$$DUMP and 
$$PDUMP; issue 
CP DUMP 
DIAGNOSE 

Figure 40. Details of eMS System Functions and the Routines That Perform Them (Part 4 of 4) 

section 2. Method of Operation and program OrganiZation 159 



INTRODUCTION TO CMS 

This introduction contains brief descriptions of 
the concepts on which CMS operates, for example, 
how the CMS file system is organized. This 
introduction also contains descriptions of logic 
flow for significant routines, for example, the 
logic executed when the CMS command handler, 
DMSITS, is invoked. 

The following CMS information is organized 
into topics that correspond to the functional 
areas described in the previous charts. 

INITIALIZE THE CMS VIRTUAL MACHINE ENVIRONMENT 

There are four steps involved in initializing a 
CMS virtual machine: 

• processing the IPL command for a virtual card 
reader. 

• processing the IPL command for a disk device 
or a named or saved system. 

• processing the first command line entered at 
the CMS virtual console. 

• setting up the options for the virtual 
machine operating environment. 

DMSINI and DMSINS are the two routines that 
are mainly responsible for the one-time 
initialization process in which the virtual card 
reader is initial program loaded. DMSIBI also 
handles the IPL process when a named or saved 
system is loaded. The CMS command interpreter, 
DMSINT, processes the first line entered from 
the console as a special case; the processing 
performed by this code is a part of the 
initialization process. DMSSET sets up the 
user-specified virtual machine environment 
features; DMSQRY allows the user to query the 
status of these settings. 

INITIALIZATION: LOADING A CMS VIRTUAL MACHINE 
FROM CARD READER 

When a virtual card reader is specified by the 
IPL command, for example OOC, initialization 
processing begins. Initialization refers to the 
process of loading from a card reader as opposed 
to reading a nucleus from a cylinder of a CMS 
minidisk or reading a named or shared system 
(description follows) • 

IPL OOC invokes the CMS module DMSINI, which 
requests that the operator enter information 
such as the address of the DASD where the 
nucleus is to be written, the cylinder address 
where the write operation is to begin, and which 
version of CMS is to be written (if there is 
more than one to choose from). 

When 
requested 
Figure 41 
nucleus. 

all questions are answered, the 
nucleus is written to the DASD. 

shows the structure of the CMS 

Once written on the DASD, a copy of the 
nucleus is read into virtual machine storage. 
One track at a time is read from the 
disk-resident nucleus into virtual storage. 
DMSINS is then invoked to initialize storage 
constants and to set up the disks and storage 
space required by this virtual machine. 

DMSINS performs three general functions: 

• Initializes 
tables. 

storage constants and system 

• Processes IPL 
and BATCH). 

command line parameters (SEG= 

• Initializes 
case where 
for use 
req.uests. 

DMSINS 

for os SVC processing, in the 
a saved segment is not available 
in processing os simulation 

---Saves the address of this virtual machine in 
BUCON. 

DMSLAD 
---~~~ates and returns the address of the ADT 

for this virtual machine. 

DMSFRE 
---illocates free storage to be used during 

initialization. 

DMSFRE 
---illocates all low free storage so that the 

system status table (SSTAT) will be built in 
high free storage. 

DMSACM 
---Reads the S-disk ADT entry and builds the 

SSTAT. 

DMSFRE 
---Releases the low free storage allocated above 

(to force SSTAT into high storage) so that it 
can be used again. 

DMSINS 
---stores the address of SSTAT into ASSTAT and 

ADTFDA in NUCON. 

R!12!1!! 
Sorts the entries in the SSTAT. 

DMSINS 
---Checks for parameters BATCH and SEG=. If 

BATCH is specified, DMSINS sets the flag 
BATFLAGS. If SEG= is specified, DMSINS loops 
through again to read the segment name. At 
this point, all the parameters on the command 
line have been scanned. 

160 IBM VM/370: system Logic and Problem Determination Guide 



VIRTUAL 
STORAGE 

END OF STORAGE -r------------------. 
System Loader Table (Size determined 

by SET LDRTBLS command) Storage Key = X'F' 
FREEUPPR----~r_------------------------._-----

DMSFREE requests when 
no more low storage available 

FREELOWE ---1-- - - - - - - - - --

.. Unused portion of User 
Program Area 

Storage Key = X'E' 

MAINHIGH ---+--G --ETMA: requ:t~ - - - ~t:a~ 

MAINSTRT-----t-- - - --- - - - _L ~y~ ~~ 
The User's Program 

(program is loaded via the 
LOAD command) 

X'20000'~------------S-to-r-a~ge-K-e~y-=-X-'-E_i' 
CMS Nucleus 

In "saved systems" this area 
is a protected segment 
(that is, a" code must be 
reentrant and cannot be 
modified) 

X'l 0000 -11-------------------------'''----'------1 

Transient Program Area 

X'EOOO'-It------------------' 
Low Storage DMSFREE Free Storage Area 

DMSFREE requests are filled from 
this area. The upper part of this 
area contains the System Disk MFD 
followed by the FREETAB, if there is 
enough room. 

X'3000'-+----------S-t-or-a~g-e-K-e~y-=-X-'E-'-o-r-X-'-F_' 
DMSNUC 

System Control Blocks, flags, constants, 
and pointers. 

X'O' --------------------

Figure 41. 

*The half-page containing OPSECT and TSOBLOKS 
has a storage key = X'E' 

eMS Storage Map 

CONTROL BLOCKS 
INFREESTORAGE----------~ 

BBG 
BBG 

DMSNUC 

FVS 

DIOSECT 

SVCSECT 

X'3000' 

X'2ADS' 

X'2A40' 

X'29BO' 

X'2800' 

X'235O' 

X'2300' 

X'219O' 

X'lDDO' 

X'lADS' 

X'19ES' 

X'174S' 

X'16BO' 

X'1620' 

X'1550' 

X'1200' 

X'DFO' 

X'C90' 

X'700' 

X'600' 

X'2EO' 

section 2. Method of Operation and Program Organization 161 



If SEG= is specified, the 
FINDSYS function is issued 
whether the segment specified 
line exists. If it does, the 
is temporarily set. 

DIAGNOSE 64 
to determine 

on the command 
DCSSAVAL flag 

!B.t~!.!H! 
Issues DIAGNCSE 24 to obtain the device type 
of the console. 

DMSCWR 
---wrItes the system id message to the console. 

DMSCRD 
---Reads the IPL command line from the console. 

DMSSCN 
---Puts 3 the IPL command line in PLIST format. 

DMSINS 
---If-the FINDSYS DIAGNOSE validated the segment 

name specified on the IPL command line, 
DMSINS issues a DIAGNOSE 64 SAVESYS function 
for that segment. 

DMSINS 
Clears DCSSAVAL and ensures that all the 
parameters on the command line are valid; 
branches back to label INITLOOP to reprocess 
for the segment just saved. 

DMSINS 
---1£- BATCH is specified, sets BATFLAGS and 

BATFLAG2 in NUCON. Saves the name of the 
BATCH saved system in SYSNAME in NUCON. 

DMSACC 
---Issues ACCESS 195 A to access 

virtual machine A-disk. 

DMSINS 
---Issues DIAGNOSE 60 to get the 

virtual machine; sets up enough 
this virtual machine. 

DMSINS 

the batch 

size of the 
storage.for 

---if-the DCSSAVAL flag is set, sees if the size 
of the CMSSEG segment overlaps the size of 
the virtual machine. If this is the case, 
DMSINS sets the flag DCSSOVLP and continues 
the initialization procedure for a CMS 
virtual machine running without the use of 
the CMSSEG segment, that is, performs 
time-of-day processing and 05 
initialization. 

If the CMSSEG segment can be used, DMSINS 
issues the DIAGNOSE 64 LOADSYS function as 
the final check to see if the segment is 
usable. If the segment is loaded 
successfully, it can be used whenever one of 
the functions contained in it is requested. 
Because it is not required immediately, 
DMSINS issues the DIAGNOSE 64 PURGESYS 
function to purge the segment. 

If the segment cannot be successfully 
loaded, DMSINS turns off the DCSSAVAL flag. 

DMSIN5 
---Checks for the availability of CMSSEG. 

DMSSTT 
---pInds and returns the address of DMSSVT, the 

CMS OS SVC-handler. 

!H!1iI!Ul 
Acquires enough free storage to contain 
DMSSVT. 

DM5LOA 
---Loads DMSSVT. 

!2!2~11Hi 
Sets the flag DCSSVTLD. 

DM SINS 
---1£- the BATCH virtual machine is not being 

IPLed, determines whether there is a PROFILE 
EXEC or a first command line to be handled. 
If so, issues SVC 202's to process these 
commands and passes control to DMSINT, the 
CMS console manager. 

DMSACC 
---ii-the BATCH virtual machine is being initial 

program loaded, accesses the D-disk and 
passes control to DMSINT, the console 
manager. 

INITIALIZING A NAMED OR SAVED SYSTEM 

A named system is a copy of the nucleus that has 
been saved and named with the CP 5AVESYS 
command. It is faster to IPL a named system 
than to IPL by disk address because CP maintains 
the named system in page format instead of CMS 
disk format. That is, the saved system is on 
disk in 4096-byte blocks instead of aOO-byte 
blocks. The initialization of a saved system is 
also faster because the SSTAT is already built. 

The shared system is a variant of the saved 
system. In the shared system, reentl:ant 
portions of the nucleus are placed in storage 
pages that are available to all users of the 
shared system. Each user has his own copy of 
nonreentrant portions of the nucleus. The 
shared pages are protected by CP, and may not be 
altered by any virtual machine. 

During DMSINI processing v the virtual machine 
operator is asked if the nucleus must be written 
(via message DMSINI607R). If the operator 
answers no, control passes directly to DMSINS to 
initialize the named or saved system specified 
by the operator in his answer to message 
DMSINI606R. 

HANDLE THE FIRST COMMAND LINE PASSED TO CMS 

DMSINT, the CMS console manager, contains the 
code to handle commands stacked by module DMSINS 
during initialization processing. DMSINT checks 
for the presence of a stacked command line, and 
if there is one to process, processes it just as 
it would a command entered during a terminal 
session. That is, DMSINT calls the WAITREAD 

162 IBM VM/370: System Logic and Problem Determination Guide 



subroutine and issues an SVC 202 to execute the 
command. When first command processing 
completes, DMSINT receives control to handle 
commands entered at the console for the duration 
of the session. 

SETTING AND QUERYING VIRTUAL MACHINE ENVIRONMENT 
OPTIONS 

DMSSET sets up the virtual machine environment 
options, as outlined in the publication !~LJIQ: 
CMS Command and Macro R~!~~~B£~. DMSQRY 
aisplays--these-settings--at the user console. 
Both of these modules are structured and 
relatively easy to follow, except for some 
sections of DMSSET. 

DMSSET 
---Clabel DOS) If a disk mode is specified on 

the command line, ensure that it is valid. 

DMSLAD 
---I~the disk mode specified is valid, locates 

and returns the address of the disk. 

DMSSET 
---Issues DIAGNOSE 64 FINDSYS to locate the 

CMSDOS segment. If the segment is not 
already loaded, issues DIAGNOSE 64 LOADSYS to 
load it. 

DMSSET 
---Sets up the SSB-transient area for use by DOS 

routines. 

DMSSET 
---ii-SET DOS OFF has been specified, issues the 

DIAGNOSE 64 PURGESYS function for the CMSDOS 
segment and, if VSAM has been loaded, for the 
CMSVSAM segment. 

DMSSET 
---Determines whether the name of the CMSSEG 

segment is being changed. 

DMSSET 
---Determines whether NONSHARE is specified. If 

so, the segment may be loaded and kept. If 
RONSHARE is not specified, the segment is 
purged, because it is needed only on demand. 

IHHH21!I 
Once a new name is placed in the SYSRAMES 
table replacing CMSSEG, the DIAGNOSE 64 
FINDSYS function is issued to determine 
whether the new name has been entered 
correctly. If the FINDSYS is successful, the 
size of the virtual machine is compared to 
beginning address of the segment to determine 

whether the segment overlays virtual machine 
storage. 

DMSSET 
---If-the segment can be used (i.e. does not 

overlay the virtual machine storage) the 
DIAGNOSE 64 LOADSYS function is performed. 
If the LOADSYS executes successfully, control 
passes to DMSINT, where the segment is purged 
(because it is only needed on demand) • 

PROCESS AND EXECUTE CMS FILES 

As shown in Part 1 of Figure 40, the five 
general topics form the category "Process and 
Execute CMS Files." Two of these topics are 
discussed in this section: "Maintaining an 
Interactive Console Environment" and "Loading 
and Executing TEXT files." 

MAINTAINING AN INTERACTIVE CONSOLE ENVIRONMENT 

Two levels of information are discussed in the 
following section. The first level is a general 
discussion of how CMS maintains an interactive 
console environment. The second- level is a more 
detailed discussion of the methods of operation 
mainly responsible for this' function. 

CONSOLE MANAGEMENT AND COMMAND HANDLING IN CMS 

There are two major functions concerned with 
maintaining an interactive terminal environment 
for CMS: console management and command 
processing. The CMS module that manages the 
virtual machine console is DMSINT. The module 
responsible for command processing is DMSITS. 
Many CMS modules are called in support of these 
two functions but the modules in the following 
list are primarily responsible for supporting 
the functions: 

DMSCRD 
---Reads a line from the console. 

DMSCWR 
---wiItes a line to the console. 

DMSSCN 
---converts a command line to PLIST format. 

DMSIRA 
---coDverts abbreviated commands to their full 

names. 

DMSCPF 
---Passes a command line to CP for execution. 

MAINTAINING 
SESSION 

AN IRTERACTIVE COMMAND/RESPONSE 

Three main lines of control maintain the 
continuity for an interactive CMS session: (1) 
handling of commands passed to DMSINT by the 

Section 2. Method of Operation and Program Organization 163 



initialization module, DMSINS (2) handling of 
commands entered at the console during a 
session, and (3) handling of commands entered as 
subset commands. The following lists show the 
main logic paths for first two functions. 

DMSINT 
---on-entry from DMSINA, processes any commands 

passed via the console read put on the user's 
console by that routine; that is processes 
any commands the user stacks on the line as 
the first read that DMSINT processes. In 
handling the first read, if that read is 
null, control passes to the main loop of the 
program, which is described in the following 
section. 

DMSINM 
---Get the current time. 

DMSCRD 
---Branch to the waitread subroutine to read a 

command line at the console. 

DMSSCN 
---wiItread then calls DMSSCN to convert the 

line just read into plist format. Once 
converted to plist format, an SVC 202 is 
issued (at label INIT1A) to execute the 
function. This cycle is repeated until all 
stacked commands are executed. 

DMSFNS 
---When command execution 

DMSFNS (at label UPDAT) 
that may have remained 
command processing. 

DMSVSR 

completes, calls 
to close any files 

open during the 

---Ensures that any fields set by VSAM 
processing are reset for CMS. Also ensures 
that the VSAM discontiguous shared segment is 
purged. 

.!HH!.!!!I 
Sets up an appropriate status message (CMS, 
CMS SUBSET, CMSjDOS, etc.). 

DMSCWR 
---writes the status message to the console. 

DMSIBT 
---irinches (from label INLOCP2) to the waitread 

subroutine to read a line entered at the 
console. 

DMSCRD 
---Reads a line entered at the console 

(subroutine waitread). 

Q~~~£] 
Converts the command line to PLIST format 
(subroutine waitread) • 

Q~'§!!!l 
Determines whether the command line is a null 
line or a comment. 

DMSLFS 
---ii-the command line is neither a command line 

nor a comment, determines whether the command 
is an EXEC file. 

Q~'§!!!! (AJHHUt!) 
Determines whether the command is an 
abbreviation and, if it is, returns its full 
name. 

DM SITS 
---Passes the command line to DMSITS via an SVC 

202. DMSITS is the CMS SVC handler. For a 
detailed description of the SVC handler, see 
"Method of Operation for DMSITS." 

DMSCPF 
---ii-the command could not be executed by the 

SVC handler, passes the command to CP to see 
if CP can execute it. 

DMSFNS 
---on-return from processing the command line 

(label UPDAT) , closes any files that may have 
been opened during processing. 

Q~'§'§~] 
Resets any flags or fields that may have been 
set during OS processing. 

Q~'§!~!! 
Ensures that any fields set for VSAM 
processing are reset for CMS. Also ensures 
that the VSAM discontiguous shared segment is 
purged. 

DMSINT 
---When the command line has been successfully 

executed, builds a CMS ready message for the 
user (label PRNREADY). 

DMSCWR 
---wrItes the ready message to the console • 

Q~'§!!l 
Returns control to DMSINT at label INLOOP2 to 
continue monitoring the CMS terminal 
session. 

METHOD OF OPERATION FOR DMSINT 

DMSINT, the console manager, maintains the 
continuity of operation of the CMS command 
environment. The main control loop of DMSINT is 
initiated by a call to DMSCRD to get the next 
command. When the command is entered, DMSINT 
calls DMSINM to initialize the CPU time for the 
new command and then puts it in standard 
parameter list form by calling the scan function 
program DMSSCN. After calling DMSSCN, DMSINT 
checks to see if an EXEC filetype exists with a 
filename of the typed-in command. (For example, 
if AEC was typed in, it checks to see if ABC 
EXEC exists.) If the EXEC file does exist, 
DMSINT adjusts register 1 to point to the same 

164 IBM VM/370: System Logic and Problem Determination Guide 



command as set up by DMSSCN, but preceded by 
CLS'EXEC', and then issues an SVC 202 to call 
the corresponding EXEC procedure ('ABC EXEC' in 
the example) • 

If no such EXEC file exists for the first 
word typed in, DMSINT makes a further check 
using the CMS abbreviation-check routine, 
DMSINA. If, for example, the first word typed 
in had been 'E', DMSINT looks up 'E' via the 
tMSINA routine. If an equivalent is found for 
'E', DMSINT looks for an EXEC file with the name 
of the equivalent word (for example, EDIT EXEC) ; 
if such a file is found, DMSINT adjusts register 
1 as described above to call EXEC and 
substitutes the equivalent word, EDIT, for the 
first word typed in. Thus, if 'E' is a valid 
abbreviation for 'EDIT' and the user has an EXEC 
file called EDIT EXEC, he invokes this when he 
merely types in 'E' from the terminal. 

If no EXEC file is found either for the 
entered command name or for any equivalent found 
by DMSINA, DMSINT leaves the terminal command as 
processed by DMSSCN and then issues an SVC 202 
to pass control to DMSITS which, in turn, passes 
control to the appropriate command program. 
When the command terminates execution, or if 
DMSITS cannot execute it, the return code is 
passed in register 15. 

A 0 return code indicates 
completion of the command. 

successful 

A positive return code indicates that the 
command was completed, but with an apparent 
error; and a negative code returned by DMSITS 
indicates that the typed in command could not be 
found or executed at all. 

In the last case, DMSINT assumes that the 
command is a CP command and issues a DIAGNOSE 
instruction to pass the command line to the CP 
environment. If the command is not a CP 
command, DMSINT calls DMSCWR to type a message 
indicating that the command is unknown and the 
main control loop of DMSINT is entered at the 
heginning. 

If the return code from DMSITS is positive or 
zero, DMSINT saves the return code briefly and 
calls module DMSAUD to update the Master File 
Directory (MFD) on the user's appropriate user's 
disk. DMSINT also frees the TXTLIB chain and 
releases pages of storage if required. 

After updating the master file directory, 
DMSINT checks the return code that was passed 
tack. If the code is zero, DMSINT types a ready 
message and the CPU time used by the given 
command. Control is passed to the beginning of 
the main control loop of DMSINT. If the return 
code is positive, an error message is typed, 
along with the CPU time used. The command 
caused the typing of an error message of the 
format: DMSxxxnnnt 'text' where DMSxxx is the 
module name, nnn is the message identification 
number, t is the message type, and 'text' is the 
message explaining the error. Control is then 
passed to the beginning of the main control 
loop. 

METHOD OF OPERATION FOR DMSITS 

DMSITS (INTSVC) is the CMS system SVC handling 
routine. Since CMS is SVC driven, the SVC 
interruption processor is more complex than the 
other interruption processors. 

The general operation of DMSITS is as follows: 

1. The SVC new PSW (low-storage location 
X'60') contains, in the address field, the 
address of DMSITS1. Thus, the DMSITS 
routine is entered whenever a supervisor 
call is executed. 

2. DMSITS allocates a system and user save 
area, as described below. The user save 
area is a register save area used by the 
routine, which is invoked later as a result 
of the SVC call. 

3. The called routine is invoked. 

4. Upon return from the called routine, the 
save areas are deallocated. 

5. Control 
routine 
call). 

is returned to the 
which originally 

caller 
made the 

(the 
SVC 

The following 
of the general 
described. 

expands upon various features 
operation that has just been 

The types of SVC calls recognized by DMSITS, and 
the linkage conventions for each are as follows: 

E!f ~~1: When a called routine returns control 
to DMSITS, the user storage key may be in the 
PSi. Because the called routine may also have 
turned on the problem bit in the PSW, the most 
convenient way for DMSITS to restore the system 
PSi is to cause another interruption, rather 
than to attempt the privileged Load PSW 
instruction. DMSITS does this by issuing SVC 
201, which causes a recursive entry into DMSITS. 
DMSITS determines if the interruption was caused 
by SVC 201, and if so, determines if the SVC 201 
was from within DMSITS. If both conditions are 
met, control returns to the instruction 
following the SVC 201 with a PSi that has the 
problem bit off and the system key restored. 

~!f ~~~: SVC 202 is the most commonly used SVC 
in the CMS system. It is used for calling 
nucleus resident routines and for calling 
routines written as commands. 

A typical coding sequence for an SVC 202 call 
is the following: 

LA R 1 ,PLIST 
SVC 202 
DC AL4 (ERRADD) 

section 2. Method of Operation and Program organization 165 



Whenever SVC 202 is called, register 1 must 
point to a parameter list (PLIST). The format 
of this parameter list depends upon the actual 
routins or command being called, but the SVC 
handler examines the first 8 bytes of the list 
to find the name of the routine or command being 
called. It searches for the routine or module 
as described for SVC 201. 

The DC AL4{address) following the SVC 202 is 
optional, and may be omitted if the programmer 
does not expect any errors to occur in the 
routine or command being called. DMSITS can 
determine whether this DC was inserted by 
examining the byte following the SVC call. If 
it is nonzero, then it is an instruction; if it 
is zero, then it is a "DC AL4(address)". 

SVC 203: SVC 203 is used by CMS macros to 
perfor;-various internal system functions. SVC 
203 is an SVC call for which no parameter list 
is provided. An examFle is DMSFREE, for which 
the parameters are passed in registers 0 and 1. 

A typical 
follows: 

SVC 203 

sequence for an SVC 203 call 

DC H'code' 

The halfword decimal code following the SVC 
203 indicates the specific routine being 
called. DMSITS examines this halfword code as 
follows: (1) the absolute value of the code is 
taken, using an LPR instruction, (2) the first 
byte of the result is ignored, and the second 
byte of the resulting halfword is an index into 
a branch table, (3) the address of the correct 
routine is loaded, and control is transferred 
there, as the called routine. 

It is possible for the address in the SVC 203 
index table to be zero. In this case, the index 
entry contains an 8-byte routine or command 
name, which is processed in the same way as the 
8-byte name passed in the parameter list passed 
to SVC 202. 

The sign of the halfword code indicates 
whether the programmer expects an error return; 
if so, the code is negative: if not, the code is 
positive. Note that the sign of the half word 
code has no effect on determining the routine 
which is to be called, because DMSITS takes the 
absolute value of the code to determine the 
called routine. 

Because only the second byte of the absolute 
value of the code is examined by DMSITS, seven 
bits (bits 1-7) are available as flags or for 
other uses. For example, DftSFREE uses these 
seven bits to indicate such things as 
conditional requests and variable requests. 
Therefore, DMSITS considers the codes H'3' and 
B'259' to be identical, and handles them the 
same as B'-3' and B'-259', except for error 
returns. 

When an SVC 203 is invoked, DMSITS stores the 
halfword code into the NUCOI location CODE203, 
so that the called routine can interrogate the 
seven bits made available to it. 

~~~~-H!!Q1~Q ~!~§: The programmer may use the 
BNDSVC macro to specify the address of a routine
that processes any SVC call for SVC numbers 0
through 200 and 206 through 255.

If the BNDSVC macro is used, the linkage
conventions are as required by the user
specified SVC-handling routine.

There is no way to specify a normal or error
return from a user-handled SVC routine.

g~ ~Af]9 SIMULATION SVC £!11~: CftS supports
certain of the-SVc-calIs-generated by OS macros,
by simulating the effect of these macro calls.

The proper linkages are set up by the OS
macro generations. DftSITS does not recognize
any way to specify a normal or error return froa
an OS macro simulation SVC call.

~Q~ ~!£ CALLS: All SVC functions supported for
CftS/DOS are--handled hy the CftS module DMSDOS.
DftSDOS receives control from DMSITS (the CMS SVC
handler) when that routine intercepts a DOS SVC
code and finds that the DOSSVC flag in DOSFLAGS
is set in NUCON.

DMSDOS acquires the specified SVC code from
the OLDPSW field of the current SVC save area.
Using this code, DftSDOS computes the address of
the routine where the SVC is to be handled.

Many CftS/DOS routines (including DftSDOS) are
contained in a discontiguous shared segment
(DCSS). Most SVC codes are executed within
DMSDOS, but some are in separate modules
external to DftSDOS. If the SVC code requested
is external to DMSDOS, its address is computed
using a table called DCSSTAB; if the code
requested is executed within DMSDOS, the table
SVCTAB is used to compute the address of the
code to handle the SVC.

DOS SVC calls are discussed in more detail in
"Simulating a DOS Environment Under CftS" in this
section.

INVALID ~!~ ~!11~: There are several types of
Invalid sVc calls recognized by DftSITS. These
are:

• Invalid SVC number. If the SYC number does
not fit into any of the classes described
above, it is not handled by DftSITS. An error
message is displayed at the terminal, and
control is returned directly to the caller.

• Invalid routine name in SVC 202 parameter
list. If the routine named in the svc 202
parameter list is invalid or cannot be found,
then DftSITS handles the situation in the same
way it handles an error return from a
legitimate SVC routine. The error code is
-3.

• Invalid SVC 203 code. If an illegal code
follows SVC 203, an error message is
displayed, and the ABEND routine is called to
terminate execution.

When a program issues SVC 202, and passes a
routine or command name in the parameter list,

166 IBM VM/370: system Logic and Problem Determination Guide

DMSITS must search for the specified routine or
command. (In the case of SVC 203 with a zero in
the table entry for the specified index, the
same logic must be applied.)

The search order is as follows:

1. A check is made to see if there is a
routine with the specified name currently
in the system transient area. If so, then
control is transferred there.

2. The system function name table is searched
to see if a co.mand by this name is nucleus
resident. If successful, control goes to
the specified nucleus routine.

3. A search is made for a disk file with the
specified name as the filename, and module
as the filetype. The search is made in the
standard disk search order. If this search
is successful, then the specified module is
loaded by LOADMOD and control passes to the
storage location now occupied by the
command.

4. If all searches so far have failed, then
DMSINA (ABBREV) is called to see if the
specified routine name is a valid system
abbreviation for a system command or
function. User-defined abbreviations and
synonyms are checked at the same time. If
this search is successful, then steps 2
through 4 are repeated with the full
nonabbreviated name.

5. If all searches fail, then an error code of
-3 is forced.

There are two areas which can hold program
modules which are loaded by LOADMOD from the
disk. These are called the user program area
and the transient program area.

The user program area starts at location
Xl 20000 1 and extends upward to the loader
tables. However, the high-address end of that
area can be allocated as free storage by
tMSFREE. Generally, all user programs and
certain system commands, such as EDIT and
COPYFILE, execute in the user program area.
Because only one program can be executing in the
user program area at one time, unless it is an
overlay structure, it is impossible for one
program in the user program area to invoke, by
means of SVC 202, a module which is also
intended to execute the user program area.

The transient program area is two pages,
running from location XIEOOOI to location
X1100001. It provides an area for system
commands that may also be invoked from the user
program area by means of an SVC 202 call. For
example, a program in the user program area may
invoke the RENAME command, because this command
is loaded into the transient program area.

The transient program area also handles
certain OS macro simulation SVC calls. If
tMSITS cannot find the address of a supported OS

macro simulation SVC handling routine, it calls
LOADMOD to load the file DMSSVT module into the
transient area, and lets that routine handle the
SVC.

A program in the transient program area may
not invoke another progra. intended to execute
in the transient program area, including os
macro simulation SVC calls that are handled by
DMSSVT. Thus, for example, a program in the
transient program area may not invoke the RENAME
command. In addition, it may not invoke the OS
.acro iTO, which generates an SVC 35, which is
handled by DMSSVT.

There is one further functional difference
between the use of the two program areas.
DMSITS starts a program in the user program
area so that it is enabled for all
interruptions. It starts a program in the
transient program area so that it is disabled
for all interruptions. Thus, the individual
program may have to use the SSM (Set Syste.
Mask) instruction to change the current status
of its system mask.

Figures 42 and 43 show how the PSi and registers
are set up when the called routine is entered.

r--------------------------- ----,
I I System 1 Storage 1 Problem 1
1 Called Type 1 Mask 1 Key 1 Bit I
1-----------_·_- ---I
ISVC 202 or 203 I Disabled System Off I
I - Nuc residentl 1 1 1
I------------u--------------,-----I
ISVC 202 or 203 1 Disabled I User I Off I
1 - Transient 1 1 , 1
1 area MODULE I 1 , ,
I------------~- ---I
,SVC 202 or 203 1 Enabled User Off 1
1 - User Area I I I 1
1------------------------1
I User-handled I Enabled I User 1 Off 1
1--------------- 1
lOS - Nuc res ,Disabled System Off 1
1 I
lOS - in DMSSVT 1 Disabled System Off 1
L--­

Figure 42. PSi Fields when Called Routine is
Started

When the called routine is finished processing
it returns control to DMSITS, which then must
return control to the caller.

RETURN LOCATION: The return is effected by
loading -the-original svc old PSW (which was
saved at the time DMSITS was first entered),
after possibly modifying the address field. How
the address field is modified depends upon the
type of SVC call, and on whether the called
routine indicated an error return address.

section 2. Method of Operation and Program Organization 167

r-- '-------,
1 Type 1 0 - 1 1 2 - 11 1 12 1 13 1 14 1 15 1

1
1
1
I
1
1
I

1---------1----1------1-----1------1-----1
1 SVC 202 1 Saae IUnpredict-1 Address 1 User I Return I
1 or 203 1 as 1 able 1 of I save 1 address 1

Address
of

called
routine

I 1 caller 1 able 1 called 1 area 1 to 1
1 1 1 1 routine 1 1 DMSITS 1
1---------------------------------
1 other 1 Same 1 Same 1 Address 1 User Return

address
to

DMSITS

Same
1 I as 1 as 1 of 1 save as 1
1 1 caller 1 caller 1 called 1 area caller 1

1 1 1 1 1 routine 1
L--- --------------1

Figure 43. Register Contents when Called Routine is Started

For SVC 202 and 203, the called routine
indicates a normal return by means of a zero
returned in register 15, and an error return by
means of a nonzero in register 15. If the
called routine indicates a normal return, then
DMSITS makes a normal return to the caller. If
the called routine indicates an error return,
then DMSITS returns to the caller's error return
address, if one was specified, and abnormally
terminates if none was specified.

For SVC 202 not followed by "DC
AL4(address)", a normal return is made to the
instruction following the SVC instruction, and
an error return causes an abnormal termination.
For SVC 202 followed by "DC AL4~ddress)", a
normal return is made to the instruction
following the DC, and an error return is made to
the address specified in the DC. In either
case, register 15 contains the return code
passed by the called routine.

For SVC 203 with a positive halfword code, a
normal return is made to the instruction
following the halfword code, and an error return
causes an abnormally terminates. For SVC 203
with a negative halfword code, both normal and
error returns are made to the instruction
following the halfword code. In any case,
register 15 contains the return code passed back
by the called routine.

For OS macro simulation SVC calls, and for
user-handled SVC calls, no error return is
recognized by DKSITS. As a result, DMSITS
always returns to the caller by loading the SVC
old PSW that was saved when DMSITS was first
entered.

~~~!~1~~ ~~~1g~j!!g~: Upon entry to DKSITS, all 
registers are saved as they were when the SVC 
instruction was first executed. Upon exiting 
from DHSITS, all registers are restored to the 
values that were saved at entry. 

The exception to this is register 15 for SVC 
202 and 203. Upon return to the caller, 
register 15 contains the value that was in 
register 15 when the called routine returned to 
DHSITS after it had completed processing. 

Whenever an SVC call is made, DKSITS allocates 
two save areas for that particular SVC call. 

DMSITS uses the system save area (DSECT 
SSAVE) to save the value of the SVC old PSW at 
the time of the SVC call, the caller's registers 
at the time of the call, and any other necessary 
control information. Since SVC calls can be 
nested, there can be several of these save areas 
at one time. The system save area is allocated 
in protected free storage. 

The user save area contains (DSECT EXTUAREA) 
12 doublewords (24 fullwords), allocated in 
unprotected free storage. DMSITS does not use 
this area at all, but simply passes to the 
called routine a pointer to this area in 
register 13. Thus, the called routine can use 
this area as a temporary work area, or as a 
register save area. There is one user save area 
for each system save area, and the latter 
contains a pointer to the former in the USAVEPTR 
field. 

The CMS leader consists of a nucleus resident 
loader (DMSLDR), a file and message handler 
program (DMSLIO), a library search program 
(DMSLIE), and other SUbroutine programs. DMSLDR 
starts loading at the user first location 
(AUSRAREA) specified in BUCON or at a user 
specified location. When performing an INCLUDE 
function, loading resumes at the next available 
location after the previous LOAD, INCLUDE, or 
LOADKOD. 

The loader reads in the entire user's 
program, which consists of one or more control 
sections, each defined by a type 0 ESD record 
("card"). Each control section contains a type 
1 ESD card for each entry point and may contain 
other control cards. 

Once the user's program is in storage, the 
loader begins to search his files for library 
subprograms called by the program. The loader 
reads the library subprograms into storage, 
relocating and linking them as required. To 
relocate programs, the loader analyzes 
information on the SLC, ICS, ESD, TXT, and REP 
cards. To establish linkages, it operates on 
ESD, and RLD cards. Information for end-of-load 
transfer of control is provided by the END and 
LDT cards, the ENTRY control card, START 
command, or RESET option. 

The leader also analyzes the options 
specified on the LOAD and INCLUDE commands. In 
response to specified options, the loader can: 

168 IBM VH/370: system Logic and Problem Determination Guide 



• Set the load area to zeros before loading 
(CLEAR option). 

• Load the program at a specified loca tion 
(ORIGIN option). 

• Suppress creation of the load-map file on 
disk (NOMAP option) • 

• Suppress the printing of invalid card images 
in the load map (NOINvoption). 

• Suppress the printing of REP card 
the load map (NOREP option). 

images in 

• LOad program into "transient area" (ORIGIN 
TRANS option) • 

• Suppress TXTLIB search (NOLIBE option). 

• suppress text file search (NOAUTO option). 

• Execute the loaded program (START option). 

• 

• 

Type the load map, if the TYPE option was 
specified. 

Set the program entry point (RESET option). 

During its operation, the loader uses a 
loader table (REPTBL), and external symbol 
identification table (ESIDTB), and a location 
counter (LOCCNT). The loader table contains the 
names of control sections and entry points, 
their current location, and the relocation 
factor. (The relocation factor is the 
difference between the compiler-assigned address 
of a control section and the address of the 
storage location where it is actually loaded.) 
The ESIDTB contains pointers to the entries in 
REPTBL for the control section currently being 
processed by the loader. The loader uses the 
location counter to determine where the control 
section is to be loaded. Initially, the loader 
obtains from the nucleus constant area the 
address (LOCCNT) of the next location at which 
to start loading. This value is subsequently 
incremented by the length indicated on an ESD 
(typeO), END, or ICS card, or it may be reset by 

an SLC card. 

The loader contains a distinct routine for 
each type of input card. These routines perform 
calculations using information contained in the 
nucleus constant area, the location counter, the 
ESIDTB, the loader table, and the input cards. 
Other loader routines perform initialization, 
read cards into storage, handle error 
conditions, provide disk and typewritten output, 
search libraries, convert hexadecimal characters 
to binary, proce~s end-of-file conditions, and 
begin execution of programs in core. 

Following are descriptions of the individual 
subprocessors with LDR. 

Punction 
---ThIs- routine sets the location counter 

(LOCCT) to the address specified on an SLC 

card, or to the address assigned (in the 
REPTBL) to a specified symbolic name. 

En!.!:I 
The routine is entered at the first 
instruction when it receives control from the 
initial and resume loading routine. It is 
entered at ORG2 whenever a loader routine 
requires the current address of a symbolic 
location specified on an SLC card. 

Q£~~2!!Q!! 
This routine determines which of 

and takes 
the 
the following situations exists, 

indicated action: 

1. The SLC card does not contain an address 
or a symbolic name. The SLC card 
routine branches, via BADCRD in the 
reference table search routine, to the 
disk and type output routine (DMSLIO), 
which generates an error message. 

2. The SLC 
The SLC 
counter 
returns 
loading 

card contains an address only. 
card routine sets the location 
(LOCCT) to that address and 

to RD, in the initial and resume 
routine, to read another card. 

3. The SLC card contains a name only, and 
there is a reference table entry for 
that name. The SLC card routine sets 
LOCCT to the current address of that 
name (at ORG2) and returns to the 
initial and resume loading routine to 
get another card. 

4. The SLC card contains a name only, and 
there is no reference table entry for 
that name. The SLC card routine 
branches via ERRSLC to the Disk and Type 
Output routine (DMSLIO), which generates 
an error message for that name. 

5. The SLC card contains both an address 
and a name. If there is a REFTBL entry 
for the name, the sum of the current 
address of the name and the address 
specified on the SLC card is. placed in 
LQCCTi control returns to the initial 
and resume loading routine to get 
another card. If there is no REFTBL 
entry for the name, the SLC card routine 
branches via ERRSLC to the Disk and Type 
Output routine, which generates an error 
message for the name. 

Function 
---ThIs-routine establishes a reference table 

entry for the control-segment name on the 
ICS card if no entry for that name exists, 
adjusts the location counter to a fullword 
boundary, if necessary, and adds the 
card-specified control-segment length to 
the location counter if necessary. 

!H!!.!:I 
This routine 
C2AE1. The 

has one entry point, named 
routine is entered fro. the 

Section 2. Method of operation and Program organization 169 



initial and resume loading routine when it 
finds an ICS card. 

QE~~~!~2~ 
1. The routin~ begins its operation with a 

test of card type. If the card being 
processed is not an ICS card, the 
routine branches to the ESD card 
analysis routine; otherwise, processing 
continues in this routine. 

2. The routine tests for a hexadecimal 
address on the ICS card. If an address 
is present, the routine links to the 
DMSLSBA subroutine to convert the 
address to binary, otherwise the routine 
branches via BADCRD to the disk and type 
output routine (DMSLIO). 

3. The routine next links to the REFTBL 
search routine, which determines whether 
there is a reference table entry for the 
card-specified control-segment name. If 
such an entry is found, the REFTBL 
search routine branches to the initial 
and resume loading routine; otherwise, 
the REFTBL search routine places the 
control-segment name in the reference 
table, and processing continues. 

4. The routine determines whether the 
card-specified control-segment length is 
zero or greater than zero. If the 
length is zero, the routine places the 
current location counter value in the 
reference table entry as the control 
segment's starting address (ORG2), and 
branches to the initial and resume 
loading routine. If the length is 
greater than zero, the routine sets the 
current location counter value at a 
fullword boundary address. The routine 
then places this adjusted current 
location counter value in the reference 
table entry, adjusts the location 
counter by adding the specified 
control-segment length to it, and 
branches to RD in the initial and resume 
loading routine to get another card. 

Function 
---ThIs-routine creates loader table and ESID 

table entries for the card-specified control 
section. 

~~!~~ 
This routine has one entry point, 
C3AA3. The routine is entered from 
card analysis routine. 

QE~~~!iQ~ 

location 
the ESD 

1. If this is the first section definition, 
its ESDID is proved. 

2. This routine first determines whether a 
loader table (REFTBL) entry has already 
been established for the card-specified 

3. 

4. 

5. 

6. 

7. 

Function 

control section. To do this, the 
routine links to the REFTBL search 
routine. The ESD type 0 card routine's 
subsequent operation depends on whether 
there already is a REFTBL entry for this 
control section. If there is such an 
entry, processing continues with 
operation 5, below; if there is not, the 
REFTBL search routine places the name of 
this control section in REFTBL, and 
processing continues with operation 3. 

The routine obtains the 
control section length 
operation 4. 

card-specified 
and performs 

The routine links to location C2AJl in 
the ICS card routine and returns to 
C3AD4 to obtain the current storage 
address of the control section from the 
REFTBL entry, inserts the REFTBL entry 
position (N - where this is the Nth 
REFTBL entry) in the card-specified ESID 
table location, and calculates the 
difference between the current 
(relocated) address of the control 
section and its card-specified 
(assembled) address. This difference is 
the relocation factor; it is placed in 
the REFTBL entry for this control 
section. If previous ESD's have been 
waiting for this CSECT, a branch is 
taken to SDDEF, where the waiting 
elements are processed. A flag is set 
in the REFTBL entry to indicate a 
section definition. 

The entry found in the REFTBL is 
examined to determine whether it had 
been defined by a COMMON. If so, it is 
converted from a COMMON to a CSECT and 
performs operation 3. 

If the entry had not been defined 
previously by an ESD type 0, processing 
continues at 3. 

If the entry had been defined previously 
as other than COMMON, DMSLIO is called 
via ERRORM to print a warning message, 
"DUPLICATE IDENTIFIER". The entry in 
the ESID table is set negative so that 
the CSECT will be skipped (that is, not 
loaded) by the TXT and RLD processing 
routines. 

---ThIs-routine establishes a loader table entry 
for the entry point specified on the ESD 
card, unless such an entry already exists. 

~~!~I 
This routine is entered from the ESD card 
analysis routine. 

QR~~~!iQ~ 
1. Branches and links to REFADR to find 

loader table entry for first section 
definition of the text deck saved by the 
ESD 0 routine. 

170 IBft VM/370: System Logic and Problem Determination Guide 



2. The routine then adds the relocation 
factor and the address of the ESD found 
in operation 1 or the address in LOCCNT 
if an ESD has not yet been encountered. 
The sum is the current storage address 
of the entry point. 

3. The routine links to the REFTBL search 
routine to find whether there is already 
a REFTBL entry for the card-specified 
entry point name. If such an entry 
exists, the routine performs operation 
4. If there is no entry, the routine 
performs operation 5. 

4. Upon finding a REFTBL entry that has 
been previously defined for the 
card-specified name, the routine then 
compares the REFTBL-specified current 
storage address with the address 
computed in operation 2. If the 
addresses are different, the routine 
branches and links to the DMSLIO routine 
(duplicate symbol warning);. if the 
addresses are the same, the routine 
branches to location RD in the initial 
and resume loading routine to read 
another card. Otherwise, it is assumed 
that the REFTBL entry was created as a 
result of previously encountered 
external references to the entry. The 
DMSLSBC routine is called to resolve the 
previous external references and adjust 
the REFTBL entry. The entry point name 
and address are printed by calling 
DMSLIO. 

5. If there is no REPTBL entry for the 
card-specified entry point name, the 
routine makes such an entry and branches 
to the DMSLIO routine. 

Punction 
---ThIs-routine creates the proper ESID table 

entry for the card-specified external name 
and places the name's assigned address (ORG2) 
in the reference table relocation factor for 
that name. 

£!!L!:!:I 
This routine has two entry points: location 
C3AHl and location ESDOO. Location C3AHl is 
entered from the ESD card analysis routine; 
this occurs when an ESD type 2 card is being 
processed. Location ESDOO is entered from: 

• The ESD card analysis routine, when the 
card being processed is an ESD type 2, and 
an absolute loading process is indicated. 

• The ESD type 0 card routine and ESD type 1 
card routine, as the last operation in 
each of these routines. 

.Q.E~!~:!:.!2!! 
1. When this routine is entered at location 

C3AH1, it first links to the REPTBL 
search routine to determine whether 
there is a REFTBL entry for the 

card-specified external name. If none 
is found, the REPTBL search routine sets 
the undefined flag for the new loader 
table entry. 

2. The routine resets a possible WEAK EXTRB 
flag. The routine next places the 
REPTBL entry's position-key in the ESID 
table. If the entry has already been 
defined by means of an ESD type 0, 1, 5, 
or 6, processing continues at operation 
4. Otherwise, it continues at operation 
3. 

3. The relocated address is placed in the 
RELPAC entry in the external name's 
REPTBL entry. 

4. The ESD type 2 card routine then 
determines (at location ESDOO) whether 
there is another entry on the ESD card. 
If there is another entry, the routine 
branches to location CA3Al in the ESD 
card analysis routine for further 
processing of this card; otherwise, the 
routine branches to location RD in the 
initial and resume loading routine. 

Exits 
---This routine exits to location CA3A1 in the 

ESD card analysis routine if there is another 
entry on the ESD card being processed, and 
exits to location RD in the initial and 
resume loading routine if the ESD card 
requires no further processing. 

Function 
---ihIs-routine makes loader table and ESIDTAB 

entries for private code CSECT. 

Q:E~!~.:U.Q'!! 
The ESD Type 4 Card Routine: 

1. The routine LDRSYM is called to generate 
a unique character string number of the 
form 00000001, which is left in the 
external data area NXTSYM; it is greater 
in value than previously generated 
symbol. 

2. 

Function 

The CSECT is then 
type 0 ESD with 
name. 

processed as a normal 
the above assigned 

---ihIs- routine creates reference table and 
ESIDTAB entries for common and 
pseudo-register ESDs. 

Q:E~!~!.!.Q'!! 
The ESD type 5 and 6 card routine: 

1. Links to ESIDINC in the ESD type 0 card 
routine, to update the number of ESIDTB 
entries. 

section 2. Method of Operation and Program Organization 171 



2. Links to the REFTBL search routine to 
determine whether a reference table 
(REFTBL) entry has already been created. 
If there is no entry, the RBFTBL search 
routine places the name of the item in the 
REFTBL. 

3. If the REFTBL search routine had to create 
an entry for the item, the ESD type 5 and 
6 card routine indexes it in the ESIDTB, 
enters the length and alignment in the 
entry, indicates whether it is a PR or 
common, and branches to ESDOO in the ESD 
type 2 card routine to determine whether 
the card contains additional ESD's to be 
processed. If the entry is a PR, the BSD 
type 5 and 6 card routine enters its 
displacement and length in the REFTBL 
before branching to BSDOO. 

4. If the REFTBL already contained an entry, 
the ESD type 5 and 6 card routine indexes 
it in the BSIDTB, checks alignment and 
branches to ESDOO. 

Note: The PR alignment is coded and placed into 
the-REFTBL. It is an error to encounter more 
restrictive alignment PR than previously 
defined. A blank alignment factor is translated 
to full word alignment. 

The WEAK EXTRN routine calls the search routine 
to find the BXTRB name in the loader table. If 
not found, set the WEAK EXTRN flag in the new 
loader table entry. Bxit to BSDOO. 

Function 
---This- routine has two functions: address 

inspection and placing text in storage. 

~!!:t.!:I 
This routine has three entry points: 
location C4AA1, which is entered from the ESD 
card analysis routine, and locations REPENT 
and APR1, which are entered from the REP card 
routine for address inspection • 

.QEg!:~!i2!! 
1. This routine begins its operation with a 

test of card type. If the card being 
processed is not a TXT card, the routine 
branches to the RBP card routine; 
otherwise, processing continues in this 
routine. 

2. The routine then determines how many 
bytes of text are to be placed in 
storage, and finds whether the loading 
process is absolute or relocating. If 
the loading process is absolute, the 
routine performs operation 4, below; if 
relocating, the routine performs 
operation 3. 

3. If the ESIDTB entry was negative, this 
is a duplicate to CSECT and processing 
branches to RD. Otherwise, the routine 
links to the REFADR routine to obtain 
the relocation factor of the current 
control segllent. 

4. The routine then adds the relocation 
factor (0, if the loading process is 
absolute) and the card-specified storage 
address. The result is the address at 
which the text must be stored. This 
routine also determines whether the 
address is such that the text, when 
loaded starting at that address, 
overlays the loader or the reference 
table. If a loader overlay or a 
reference table overlay is found, the 
routine branches to the LDRIO routine. 
If neither condition is detected, the 
routine proceeds with address 
inspection. 

5. The routine then determines whether an 
address has already been saved for 
possible use as the end-of-10ad branch 
address. If an address has been saved, 
the routine performs operation 7; if 
not, the routine performs operation 6. 

6. The routine determines whether the text 
address is below location 128. If the 
address is below location 128, it should 
not be saved for use as a possible 
end-of-10ad branch address, and the 
routine performs operation 7; otherwise 
the routine saves the address and then 
performs operation 7. 

7. The routine then stores the text at the 
address specified (absolute or 
relocated) and branches to location RD 
in the initial and resume loading 
routine to read another card. 

Exits 
---The routine exits to 

follows: 
two locations, as 

1. The routine exits to location RD in the 
initial and resume loading routine if it 
is being used to process a TXT card. 

2. The routine exits to location APRIL in 
the REP card routine if it is being used 
for REP card address inspection. 

Function 
---ThIs- routine places 

storage. 

£!!!:!:!:I 

text corrections in 

This routine has one entry point, location 
C4AA3. The routine is entered froll the TXT 
card routine. 

.Q£g!:~:!:!2!! 
1. This routine begins its operation with a 

test of card type. If the card being 
processed is not a REP card, the routine 
branches to the RLD card routine; 

172 IBM VM/370: System Logic and Problem Determination Guide 



otherwise, processing continues in this 
routine. 

2. The routine then links to the HEIB 
conversion routine to convert the REP 
card-specified correction address from 
hexadecimal to binary. 

3. The routine then links to the HEIB 
conversion routine again to convert the 
REP card-specified ESID from hexadecimal 
to binary. 

4. The routine then determines whether the 
2-byte correction being processed is the 
first such correction on the REP card. 
If it is the first correction, the 
routine performs operation 5; otherwise, 
the routine performs operation 6. 

5. When the routine is processing the first 
cOrrection, it links to location REPENT 
in the TXT card routine, where the REP 
card-specified correction address is 
inspected for loader overlay and for 
end-of-load branch address saving; in 
addition, if the loading process is 
relocating, the relocated address is 
calculated and checked for reference 
table overlay. The routine then 
performs operation 7. 

6. When the correction being processed is 
not the first such correction on the REP 
card, the routine branches to location 
APR1 in the TIT card routine for address 
inspection. 

7. The routine then links to the HEXB 
conversion routine to convert the 
correction from hexadecimal to binary, 
places the correction in storage at the 
absolute (card-specified) or relocated 
address, and determines whether there is 
another correction entry on the REP 
card. If there is another entry, the 
routine repeats its processing from 
operation 4, above; otherwise, the 
routine branches to location RD in the 
initial and resume loading routine. 

Exits 
---when all the REP-card corrections have been 

processed, this routine exits to location RD 
in the initial and resume loading routine. 

Function 
---ThIs-routine processes RLD cards, which are 

produced by the assembler when it encounters 
address constants within the program being 
assembled. This routine places the current 
storage address (absolute or relocated) of a 
given defined symbol or expression into the 
storage location indicated by the assembler. 
The routine must calculate the proper value 
of the defined symbol or expression and the 
proper address at which to store that value. 

]~!~~ 
This routine has two entry points, locations 
C5AA1 and PASSTWO. 

Q~~~g!!2n 
1. Location C5AA1 writes each RLD card into 

a work file (DMSLDR CMSUT1). Exit to RD 
to process the next card. 

Location PASSTWO reads an RLD card from 
the work file. At EOF got to C6AB6 to 
finish this file. 

2. The routine uses the relocation header 
(RH ESID) on the card to obtain the 
current address (absolute or relocated) 
of the symbol referred to by the RLD 
card. This address is found in the 
relocation factor section of the proper 
reference table entry. If the RB ESID 
is 0, the routine branches to the LDRIO 
routine (invalid ESD). 

3. The routine uses the position header (PH 
ESID) on the card to obtain the 
relocation factor of the control segment 
in which the DEFINE CONSTANT assembler 
instruction occurred. If the PH ESID is 
0, the routine branches to BADCRD in the 
REFTBL search routine (invalid ESID). 
If the ESIDTAB entry is negative 
(duplicate CSECT), the RLD entry is 
skipped. 

4. The routine next decrements the 
card-specified byte count by 4 and tests 
it for O. If the count is now 0, the 
routine branches to location RD in the 
initial and resume loading routine; 
otherwise, processing continues in this 
routine. 

5. The routine determines the length, in 
bytes, of the address constant referred 
to in the RLD card. This length is 
specified on the RLD card. 

6. The routine then adds the relocation 
factor obtained in operation 3 
(relocation factor of the control 
segment in which the current address of 
the symbol must be stored), and the 
card-specified address. The sum is the 
current address of the location at which 
the symbol address must be stored. 

7. The routine then computes the arithmetic 
value (symbol address or expression 
value) that must be placed in storage at 
the address calculated in operation 6, 
above, and places that value at the 
indicated address. If the value is 
undefined, the routine branches to 
location DMSLSBB, where the constant is 
added to a string of constants that are 
to be defined later. 

8. The routine again decrements the byte 
count of information on the RLD card and 
tests the result for zero. If the 
result is zero, go to operation 2; 
otherwise, processing continues in this 
routine. 

section 2. Method of Operation and Program Organization 173 



9. The routine next checks the continuation 
flag, a part of the data placed on the 
RLD card by the assembler. If the flag 
is on, the routine repeats its 
processing for a new address only; the 
processing is repeated from operation ~. 
If the flag is off, the routine repeats 
its processing for a new symbol; the 
processing is repeated from operation 
2. 

Exits 
---This routine exits to location RD in the 

initial and resume loading routine. 

Function 
---ThIs-routine saves the END card address under 

certain circumstances, and initializes the 
loader to load another control segment. 

~B!fl 
This routine has one entry point, location 

the RLD C6AA1. The routine is entered from 
card routine. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

This routine begins 
test of card type. 
processed is not 
routine branches 
routine; otherwise, 
in this routine. 

its operation with a 
If the card being 

an END card, the 
to the LDT card 
processing continues 

The routine then determines whether the 
END card contains an address. If the 
card contains no address, the routine 
performs operation 7, below; otherwise, 
the routine performs operation 3. 

The routine next checks the 
end-address-saved switch. If this 
switch is on, an address has already 
been saved, and the routine performs 
operation 7. If the switch is off, the 
routine performs operation 4. 

The routine determines whether loading 
is absolute or relocated. If the 
loading process is absolute, the routine 
performs operation 6; otherwise, the 
routine performs operation 5. 

The routine links to the REFADR routine 
to obtain the current relocation factor, 
and adds this factor to the 
card-specified address. 

The routine stores the address (absolute 
or relocated) in area BRAD, for possible 
use at the end-of-load transfer of 
control to the problem program. 

Goes to location PASSTWO (in RLD 
routine) to process RLD cards. 

The routine then clears the ESID table, 
sets the absolute load flag on, and 
branches to the location specified in a 
general register (see "Exits"). 

Exits 
---This routine exits to 

in a general register. 
two locations: 

the location specified 
This may be either of 

1. Location RD in the initial and resume 
loading routine. This exit occurs when 
the END card routine is processing an 
END card. 

2. The location in the LDT card routine 
that is specified by that routine's 
linkage to the END card routine. This 
exit occurs when the LDT card routine 
entered this routine to clear the ESID 
table and set the absolute load flag 
on. 

Function 
---ThIs-routine handles the ENTRY and LIBRARY 

control cards. 

~B!fl 
This routine has one entry point, location 
CTLCRD1. The routine is entered from the tDT 
card routine. 

QE~f~!i2B§ 
1. The CMS function SCAN is called to parse 

the card. 

2. If the card is not an ENTRY or LIBRARY 
card, the routine determines whether the 
NOINV option (no printing of invalid 
card image~ was specified. If printing 
is suppressed, control passes to RD in 
the initial and resume loading routine, 
where another card is read. If printing 
is not suppressed, control passes to the 
disk and type output routine (DMSLIO), 
where the invalid card image is printed 
in the load map. If the card is a valid 
control card, processing continues. 

ENTRY Card 
----3.--1£ the ENTRY name is already defined in 

REFTBL, its REFTBL address is placed in 
ENTADR. Otherwise, a new entry is made 
in REFTBL, indicating an undefined 
external reference (to be resolved by 
later input or library search), and this 
REFTBL entry's address is placed in 
ENTADR. 

4. The control card is printed by calling 
DMSLIO via CTLCRD; it then exits to RD. 

LIBRARY Card ----5:- Only nonobligatory 
cards are handled; 
considered invalid. 

6. Each entry-point naRe 

reference LIBRARY 
any others are 

is individually 
isolated a~ is searched for in the 
HEFTBL. If it bas already been loaded 
and defined, nothing is done and the 
next entry-point name is processed. 

174 IBM VM/370: System Logic and Problem Deteraination Guide 



otherwise, the nonobligatory bit is set 
in the flag byte of the RElTBL entry. 

7. Processing continues at operation 4. 

Function 
---ThIs-routine computes the storage address of 

a given entry in the reference table. 

jn~~I 
This routine has one entry point, location 
RElADR. The routine is entered for several 
of the routines within the loader. 

QE~!~!!2~ 
1. Checks to see if requested ESDID is 

zero. If so, uses LOCCNT as requested 
location; branches to the return 
location + 44; otherwise continues this 
routine. 

2. The routine first obtains, from the 
indicated ESID table entry, the position 
(n) of the given entry within the 
reference table (where the given entry 
is the nth REFTBL entry). 

3. The routine then multiplies n by 16 (the 
number of bytes in each RElTBL entry) 
and subtracts this result from the 
starting address of the reference table. 
The starting address of the reference 
table is held in area TBLREF; this 
address is the highest address in 
storage, and the reference table is 
always built downward from that 
address. 

4. The result of the subtraction in 
operation 2, above, is the storage 
address of the given refer~nce table 
entry. If there is n~ ESD for the 
entry, goes to operation 5; otherwise, 
this routine returns to the location 
specified by the calling routine. 

5. Adds an element to the chain of waiting 
elements. The element contains the BSD 
data item information to be resolved 
when the requested ESDID is 
encountered. 

Function 
---ThIs- routine compares each reference table 

entry name with the given name determining 
(1) whether there is an entry for that name 
and (2) what the storage address of that 
entry is. 

jn~~I 
This routine is initially entered at PRSERCH, 
and subsequently at location SERCH. The 
routine is entered from several routines 
within the loader. 

QE~~~~!2n 
1. This routine begins its operation by 

obtaining the number of entries 
currently in the reference table (this 
number is contained in area TBLCT), the 
size of a reference table entry (16 
bytes), and the starting address of the 
reference table (always the highest 
address in storage, contained in area 
TBLREl) • 

2. The routine then checks the number of 
entries in the reference table. If the 
number is 0, the routine performs 
operation 5; otherwise, the routine 
performs operation 3. 

3. The routine next determines the address 
of the first (or next) reference table 
entry to have its name checked, 
increments by one the count it is 
keeping of name comparisons, and 
compares the given name with the name 
contained in that entry. If the names 
are identical, PRSERCH branches to the 
location specified in the routine that 
linked to it. PRSERCH then returns the 
address of the REFTBL entry; else 
PRSERCH performs operation 4. 

4. The routine then determines whether 
there is another reference table entry 
to be checked. If there is none, the 
routine performs operation 5; if there 
is another, the routine decrements by 
one the number of entries remaining and 
repeats its operation starting with 
operation 3. 

5. If all the entries have been checked, 
and none contains the given name for 
which this routine is searching, the 
routine increments by one the count it 
is keeping of name comparisons, places 
that new value in area TBLCT, moves the 
given name to form a new reference table 
entry, and returns to the calling 
program. 

Exits 
---This routine exits to either of two 

locations, both of which are specified by the 
routine that linked to this routine. The 
first location is that specified in the event 
that an entry fer the given name is found; 
the second location is that specified in the 
event that such as entry is not found. 

ESD Card Codes (col. 25 ••• ) 

Code 
-00-

01 
02 
04 
05 
06 
OA 

~~~n!ng 
SD (CSECT or START)
LD (ENTRY)
ER (EITRN)
PC (Private code)
CM (COMMON)
XD (Pseudo-registe~
WI (WEAK EXTERN)

Section 2. Method of Operation and Program Organization 175

The ESD ID table (ESltTE) is constructed
separately for each text deck processed by the
loader. The ESIDTB produces a correspondence
between ESD ID numbers (used on RLD cards) and
entries in the loader reference table (REFTBL)
as specified by the ESD cards. Thus, the ESIDTB
is constructed while processing the ESD cards.
It is then used to process the TXT and RLD cards
in the text deck.

The ESIDTB is treated as an array and is
accessed by using the ID number as an index.
Each ESIDTB entry is 16 bits long.

Bits 0---

2

3

4-15

~ggni!lg
~f 1, this entry corresponds to a CSECT
that has been previously defined. All
TXT cards and RLD cards referring to
this CSECT in this text deck should be
ignored.

If 1, this entry corresponds to a CSECT
definition (SD).

waiting ESD items exist for this ESDID.

Unused.

REFTEL entry number (e.g. 1, 2, 3,
etc.)

Bit 1 is very crucial because it is necessary
to use the VALUE field of the REFTBL if the ID
corresponds to an ER, CM, or PR; but, the INFO
field of the REFTEL entry must be used in the ID
corresponds to an SD.

REFTBL Entry
r--------------·----------------------,
10 (0) I
1- - - - - - - - - NAME - - - - - - - - - I
I I
1--------------_·_---------------------1
18(8) 19(9) I
I FLAG1 I INFO I
1--------1----------------------1
I 12 (C) I 13 (D) I
I NOTE 1 I VALUE I
1---------1----·------------------------1
I 16 (10) I 17 (11) I
I FLAG2 I AtDRESS I L _________ _

-----------------------------~

A REFTEL entry is 20 bytes. The fields have the
following uses:

NAME Field: contains the symbolic name from the
ESO-data-Item.

Loader
Code --:rE-

7D
7E

ESD
Code 00--
0-1
03

Routine
19!1~!
XBYTE
XHALF
XFULL

n~g.!!i!lg
PR - byte alignment
PR - halfword alignment
PR - fullword alignment

7F 07 XDBL PR doubleword
alignment

80 05 XUNDEF Undefined symbol
81 04 XCXD Resol ve CXD
82 02 XCOMSET Define common area
83 05 WEAKEXT Weak external reference
90 06 CTLLIB TXTLIBs not to be used

to resolve names

INFO Field: depends upon the type of the ESD Iteii.-----
ESD Item
!.I.E~
SD (CSECT or START)
LD (ENTRY)
CM (COMMON)

INFO Field
~~!!!li!lg
Relocation factor
ze:to
maximum length

PR (Psuedo Register)

VALUE Field: depends upon the type of the ESD
item: as-dces the INFO field.

ESD Item
l.I.E~

VALUE Field
l1g!!!ling

SD (CSECT or START) Absolue address
Absolue address
Absolue address
Assigned value
(starting from 0)

LD (ENTRY)
CM (COMMON)
PR (Psuedo register)

FLAG2 Eyte

lli! l1gg!li!lg
o Unused
1 Unused

2 Unused
3 Unused

Bit ~~gni!l_g
-4'- Unused

5 Name was located in a
TXTLIB

6 section definition entry
7 Name specifically loaded

from command line.

Entries m~y be created in the loader reference
table pr10r to the actual defining of the
symbol. For example, an entry is created for a
symbol if it is referenced by means of an EXTRN
(ER) even if the symbol has not yet been defined
or its type known. Furthermore, common (CM) is
not assigned absolute addresses until prior to
the start of execution by the START command.

These circumstances are determined by the
setting of the flag byte; if the symbol's value
has not yet been defined~ the value field
specifies the address of a patch control block
(PCB) •

These are allocated from free storage and
pointed at from REFTBL entries or other PCBs.

~~2..!!i.!!g
Address of next PCB

5-7 Location of ADCON in storage

4 Flag byte

All address constant locations in loaded program
for undefined symbols are placed on PCB chains.

176 IBM VM/370: System Logic and Problem Determination Guide

All restrictions which apply to object files for
the OS linkage editor apply to CMS loader input
files.

PROCESS COMMANDS THAT MANIPULATE THE FILE SYSTEM

Figure 40 lists the CMS modules that perform
either general file system support functions or
that perform data manipulation.

MANAGE THE CMS FILE SYSTEM

A description of the structure of the CMS file
system and the flow of routines that access and
update the file system follows.

HOW CMS FILES ARE ORGANIZED IN STORAGE

CMS files are
types of data

Master
File Directory

Address of
FSTB

organized in storage by
blocks: the file status

File Status
Table Block (FSTB)

three
table

File Status
Table Entry

(FST), chain links, and file records. Figure 44
shows how these types of data blocks relate to
each other; the following text and figures
describe these relationships and the individual
data blocks in more detail.

FILE STATUS TABLES

CMS files consist of 800-byte records whose
attributes are described in the file status
table (FST). The file status table is defined
by DSECT FSTSECT. The FST consists of such
information as the filename, filetype, and
filemode of the file, the date on which the file
was last written, and whether the file is in
fixed-length or variable format. Also, the FST
contains a pointer to the first chain link. The
first chain link is a block that contains
addresses of the data blocks that contain the
actual data for the file.

The FSTs are grouped into 800-byte blocks
called FST Blocks (these are sometimes referred
to in listings as hyperblocks). Each FST block
contains 20 FST entries, each describing the
attributes of a separate file. Figure 45 shows
the structure of an FST block and the fields
defined in the FST.

First Chain
Link (FCL)

Addr

Address of
an 800-byte
CMS Record

Nth Chain
Link (NCL)

~ ______ ~ ______ ~ ________ ~~:~:~ __ R_e_co_rd_n~1
~----800-byte CMS Record Containing File Data Items----....... ~I

Figure 44. How CMS File Records a~e Chained Together

Section 2. Method of Operation and Program Organization 111

File Status

Table Block

FST 1

Fields in a File

Status Table Entry

FILE

--.-.--.-------------------------,---1
FST 2 NAME

FILE

TYPE

FST 4
DATE LAST WRITTEN

FST 5 Write Pointer 22 Read Pointer

(Number of Item) (Number of Item)

26 Number of
Filemode

Items in File FST 6

Disk Address 30 Fixed 31 Flag

of 1st Chain Link Variable Byte

Item Length (F)

Max. Item Length (V)

Year
Number of

BOO-Byte Data Blocks

Figure 45. Format of a File Status Block; Format of a File Status Table

CHAIN LINKS

Chain links are 200- or aOO-byte blocks of
storage that chain the records of a file in
storage. There are two types of chain links:
first chain links and Nth chain links.

The first chain link points to two kinds of
data. The first ao bytes of the first chain
link contain the halfword addresses of the
remaining 40 chain links used to chain the
records of the file. The next 120 bytes of the
file are the half word addresses of the first 60
records of the file.

The Nth chain links contain only halfword
addresses of the records that contained in the
file.

Because there are 41 chain links
the first contains addresses for
records), the maximum size for any C"S
16,060 aOO-byte records.

C"S RECORD FORMATS

(of which
only 60
file is

CMS records are aOO-byte blocks containing the
data that comprises the file. For example, the
CMS record may contain several card images or
print images, each of which is referred to a
record item. Figure 46 shows how chain links are
chained together.

C"S records can be stored on disk in either
fixed-length or variable-length format. However,
the two formats may not be mixed in a single
file.

Regardless of their format, the items of a
file are stored by C"S in sequential order in as
many aOO-byte records as are required to
accommodate them. Each record (except the last)
is completely filled and items that begin in one
record can end on the next record. Figure 47
shows the arrangement of records in files for
files containing fixed-length records and files
containing variable-length records.

The location of any item in a file containing
fixed-length records is determined by the
formula:

(Item Number - 1) x Record Length
locations= -------------800-----------------

where the quotient is the number of the item and
the remainder is the displacement of the item
into the file.

For variable-length records, each record is
preceded by a 2-byte field specifying the length
of the record.

C"S virtual disks (also referred to as
minidisks) are blocks of data designed to
externally parallel the function of real disks.
several virtual disks may reside on one real
disk.

178 IBM VM/370: System Logic and Problem Determination Guide

A ...

Disk Aridre" of
2nd Chain Link

Disk Address ot

3rd Chain Link

Disk Address of

40th Chain link

Disk Address of

41S1Chaon Link

Disk Address of

1 Sf Data Block

Disk Address of

2nd Data Block

Disk Aridress of

59th Data Block

....

Cham

Linkago
Directory

DISk Address of
f\ • Oth Data Block

Disk Andress of
f\. lst Data Block

•
•
•
•

Disk Addre .. of
f\. 39B th Data Block

DISk Address of
1\. 399th Data Block

(n-2) - 400'" 61 E--_l

where n "" Cham LInk. Number

DISk Address of

60th Data Block

Figure 46. For_at of the First Chain Link and Nth Chain Links

Data block structure for file consisting of fixed-length records

1 ~-------~~~ec~~-------- J
800 ~----, 800

~-----I---- _________ - ---
2nd record

-~~-------- ,

3rd record
8001----------------,..-----1

4th record

800

-~~--------------------~

5th record

8j~===-~--------------- ii

Data brock structure for file consisting of variable-length records

1st record

800 800 ~--------------L2J - - - 2nd record

[9-------[9--------L3 3rd record L4
- -------

800 800
4th record

5th record 8

r--------------
I

Figure 47. Arrangement of Fixed-Length or Variable- Length Records in Files

A CftS virtual aachine .ay have up to 10
virtual disks accessed during a terminal
session, depending on user specifications. Some
disks, such as the S-disk, are accessed during

eftS initialization; however, most are accessed
dynamically as they are needed during a terminal
session.

Section 2. ftethod of Operation and Program Organization 179

PHYSICAL ORGANIZATION OF VIRTUAL DISKS

Virtual disks are physically organized in
aOO-byte records. Records 1 and 2 of each user
disk are reserved for 1PL. Record 3 contains the
disk label. Record 4 contains the master file
directory. The remaining records on the disk
contain user file-related information such as
the FSTS, chain links, and the individual file
records discussed above.

THE ~ASTER FILE DIRECTORY

The master file directory (~FD) is the major
file management table for a virtual disk. As
mentioned earlier, it resides on cylinder 0,
track 0, record 4 of each virtual disk. Six
types of information contained in the master
file directory:

• The disk addresses of the FST entries
describing user files on that disk.

• A 4-byte "sentinel," which can be either FFFD
or FPFF. FFFD specifies that extensions of
the Q~SK (described below) follow. FFFF
specifies that no Q~SK extensions follow.

• Extensions to the QMSK, if any.

• General information describing the status of
the disk:

ADTNU~ The total number of aOO-byte
blocks on the user's disk.

ADTUSED - The number of blocks currently
in use on the disk.

ADTLEFT - Humber of blocks remaining for
use (ADTNO~ - ADTUSED) .

ADTLAST - Relative byte address of the
last record in use on the disk.

ADTCYL Number of cylinders on the
user's disk.

Unit Type - A l-byte field describing the
type of the disk: oa for a 2314, 09 for a
3330.

A bit mask called the QMSK, which keeps
track of the status of the records on
disk. The QMSK is described in more
detail below.

Another bit map, called the QQMSK, which
is used only for 2314 disks and performs a
function similar to that of QMSK.

Figure 4a shows the structure of the master
file directory. Figure 44 shows the
relationship of the Master File Directory, which
resides on disk, to data blocks brought into
storage for file management purposes, for
example, FSTs and chain links.

KEEPING TRACK OF R/W DISK STORAGE: QMSK AND
QQMSK

Because large areas of disk space need not be
contiguous in CMS, but are composed of aOO-byte
blocks chain-linked together, disk space
management needs to determine only the
availability of blocks, not extents. The status
of the blocks on any read/write disk (which
blocks are available and which are currently in
use) is stored in a table called QMSK. The term
QMSK is derived from the fact that a 2311 disk
drive has four aOO-byte blocks per track. One
block is a "quarter-track", or QTRK, and a
200-byte area is a "quarter-quarter-track", or
QQTRK. The bit mask for 2314, 2319, 3340, or
3330 records is called the QMSK, although each
aOO-byte block represents less than a quarter of
a track on these devices.

On a 2314 or 2319 disk, the blocks are
actually grouped fifteen aOO-byte blocks per
even/odd pair of tracks. An even/odd pair of
tracks is called a track group. On a 3330 disk,
the blocks are grouped fourteen aOO-byte blocks
per track. On a 3340 disk, the blocks are
grouped into eight aOO-byte blocks per track.

When the system is not in use, a user's QHSK
resides on the Master File Directory; during a
session it is maintained on disk, but also
resides in main storage. QMSK is of variable
length, depending on how many cylinders exist on
the disk.

Each bit is associated with a particular
block on the disk. The first bit in QMSK
corresponds to the first block, the second bit
to the second block, and so forth, as shown in
Figure 49.

When a bit in QMSK is set to 1, it indicates
that the corresponding block is in use and not
available for allocation. A O-bit indicates
that the corresponding block is available. The
data blocks are referred to by relative block
numbers throughout disk space management, and
the disk I/O routine, DMSDIO, finally converts
this number to a CCHHR disk address.

A table called QQHSK indicates which 200 byte
segments (QQTRK) are available for allocation
and which are currently in use. QQMSK contains
100 entries, which are used to indicate the
status of up to 100 QQTRK records. An entry in
QQMSK contains either a disk address, pointing
to a QQTRK record that is available for
allocation, or zero. QQMSK is used only for
2314 files; for 3330, 3340, and 3350, the first
chain link occupies the first 200-byte area of
an aOO-byte block.

The QMSK and QQMSK tables for read-only disks
are not brought into storage, since no space
allocation is done for a disk while it is
read-only. They remain, as is, on the disk
until the disk is accessed as a read/write
disk.

lao IBM VM/370: System Logic and Problem Determination Guide

Byte 0

Byte 364

Byte 380

Byte 382

Byte 384

Byte 599

/

/~

~
'/
~

.......... ------- 2 Bytes --------: .. ~

Disk Address of 1st FST Block

Disk Address of 2nd FST Block (if any)

• • ·
Disk Address of Nth FST Block (if any)

Sentinel (Note 1)

Disk Address of 1st OMSK extension (if any)

• · •
Disk Address of Nth OMSK extension (if any)

• • ·
~ Not used - Zero filled ~ ~

• • •

ADTUSED,ADTLEFT,ADTLAST

Not used (zero)

ADTCYL

First 215 Bytes of OMSK

~
I UNIT-TYPE (Note 4)

Byte 600
L.. Entire 200-Byte OOMSK Table

/ TL--_____ (f_or_2_3_14_0n_ly_l _____ --IT

Figure q8. structure of the Master File Directory

OMSK for 2314 or 2319

g 0 0 0 0
0 0 0 0

1 2 3 4 5
0 0 ~ 0 ~ 1 1 1
9 10 11 12 13

0 0 0 0 0

~ ~ i ~ l

T

1 bit

f---
0 0 0
0 0 0
6 7 8
0 ~ g 1

14 15 1

0 0 0

~ i ~

J

t 1 bit

1 bit

[IJt1bit

where:
C ~ Cylinder
H = Head
R - Record

o
1

Block available
Block in use

Number of OMSK Extensions Number of Cylinden on Disk

Required ,lif anyl 2314 or 2319 3330 3340
0 1 . 11 1 6
1 12. 54 7 30
2 55· 96 31 54
3 97· 139 65 78
4 140· 182 79 · 102
5 183·203 103 · 126
6 127 · 150
7 161 · 174
8 176 · 198
9 199 ·223

10 224 - 246

Figure 49. Disk Storage Allocation Using the QMSK Data Block

OMSK for 3330

g g g g g g g g
1 2 3 4 5 6 7 8

g g
1V

g g g ~ ~
9 10 12 13 14 1 2

0 0 0 0 0 0 0 0

~ 1 ~ J J ~ a 1~

L __ ~ J
,,-

3350

- -

section 2. Method of Operation and Program Organization 181

DYNAMIC
FILES

STORAGE MANAGEMENT: ACTIVE DISKS AND

CMS disks and files contained on disk are
physically mapped using the data blocks
described above: for disks, the QMSK, QQMSK, and
the MFD; for files, the FST, chain links, and
800-byte file records. In storage, all of this
data is accessed by means of two DSECTs whose
addresses are defined in the DSECT NUCON,
ADTSECT and APTSECT.

The ADTSECT DSICT maps information in the active
disk table (ADT). This information includes
data contained in the MFD, FST blocks, the QMSK,
and QQMSK. The DSECT comprises of ten "slots,"
each representing one CMS virtual disk. A slot
contains significant information about the disk
such as a pointer to the MFD for the disk, a
pointer to the first PST block and pointers to
the QMSK and QQMSK, if the disk is a R/M disk.
Also contained in ADTSECT is information such as
the number of cylinders on the disk, the number
of records on the disk.

Each open file is represented in storage by an
active file table (AFT). The AFT (defined by
the AFTSECT DSECT) contains data found on disk
in FSTs, chain links, and data records. Also
contained in the AFT is such information as the
address of the first chain link for the file,
the current chain link for the file, the address
of the current data block, the fileid
information for the file. Figure 39 shows the
relationship between the AFT and other CMS data
blocks.

CMS ROUTINES USED TO ACCESS THE FILE SYSTEM

DMSACC is the control routine used to access a
virtual disk. In conjunction with DMSACM and
DMSACF, DMSACC builds, in virtual s~orage, the
tables eMS requires for process~ng files
contained on the disk. The list below shows the
logical flow of the main function of DMSACC.

DMSACC: Scans the command line to determine
whIch-disk is specified.

Q~§1!Q: Looks up the address of the ADT for the
disk specified on the command line.

~~§!CC: Determines whether an extension to a
disk has been specified on the command line and
ensures that it is correctly specified.

DMSLAD: In the case where
specIfied, calls DMSLAD
extension disk exists.

an extension has been
to ensure that the

DMSLAD: Ensures that the specified disk is not
already accessed as a R/M disk.

Y~~l!~: In the case where the specified disk is
replacing a currently accessed disk, closes any
open files belonging to the duplicate disk.

DMSACC: verifies the parameters remaining on the
coiiimand line.

DMSALU: Releases any free storage belonging to
the-duplicate disk via a call to DMSFRE. Also,
clears appropriate entries in the ADT for use by
the new disk.

~~~!£~: (Called as the first instruction by 
DMSACF) Reads, from the Master File Directory, 
QMSK, and the QQMSK for the specified disk; 
also, DMSACM updates the ADT for the specified 
disk using information from the MFD. 

]~§J£l: Reads into storage all the FST blocks 
associated with the specified disk. 

!1~§J~~: Handles error processing or processing 
required to return control to DMSINT. 

INPUT/OUTPUT OPERATIONS 

CMS input/output operations for disk, tape, and 
unit record devices are always synchronous. 
Disk and tape I/O is initiated via a privileged 
instruction, DIAGNOSE, whose function code 
requests CP to perform necessary error recovery. 
control is not returned to CMS until the 
operation is complete, except for tape rewind or 
rewind and unload operations, which return 
control immediately after the operation is 
started. No interruption is ever received as 
the result of DIAGNOSE I/O. The CSM is stored 
only in the event of an error. 

Input/output operations to a card reader, 
card punch, or printer are initiated via a 
normal START I/O instruction. After starting 
the operation, CMS enters the wait state until a 
device end interruption is received from the 
started device. Because the I/O is spooled by 
CP, CMS does not handle any exceptional 
conditions other than not ready, end-of-file, or 
forms overflow. 

CMS input/output operations to the terminal 
may be either synchronous or asynchronous. 
output to the terminal is always asynchronous, 
but a program may wait for all terminal 
input/output operations to complete by calling 
the console wait routine. Input from the 
terminal is usually synchronous but a user may 
cause CMS to issue a read by pressing the 
attention key. A program may also 
asynchronously stack data to be read by calling 
the console attention routine. 

182 IBM VM/370: system Logic and Problem Determination Guide 



UNIT RECORD I/O PROCESSING 

Seven routines handle I/O processing for CMS: 
DMSRDC, DMSPUN, and DMSPRT handle the READCARD, 
PUNCH, and PRINT commands and pass control to te 
actual I/O processors, DftSCIO (for READCARD and 
PUNCH) or DMSPIO (for PRINT). DftSCIO and DftSPIO 
issue the SIO instructions that cause I/O to 
take place. Two other routines, DMSIOW and 
DMSITI, handle synchronization processing for 
I/O operations. Figure 50 shows the overall 
flow of control for I/O operations. 

DMSRDC 
DMSPUN 
DMSPRT 

DMSIOW 

DMSITI 

Figure 50. Flow of control For Unit Record I/O 
Processing 

The following are more detailed descriptions of 
the flow of control for the read, punch, and 
print unit record control functions. 

Y~~~R£: Initializes block length and unit record 
size. 

Y~~£!Q: Initializes areas to read records. 

]~~£lQ: Issues an SIO command to read a record. 

DMSIOi: Sets the wait bit for the virtual card 
reader and load the I/O old PSi from NUCON. 
This causes CMS to enter a wait state until the 
read I/O is complete. 

DMSITI: Ensures that this interrupt is for the 
vIrtual reader. If not, the I/O old PSi is 
loaded, returning CMS to a wait state. If the 
interrupt is for the reader, DMSITI resets the 
wait bit in the I/O old PSi and loads it, 
causing control to return to DMSIOW. 

DMSIOW: Places the symbolic name of the 
Interrupting device in the PLIST and passes 
control to the calling routine. 

DftSCIO: Checks for SEISE information and handle 
I/O-errors, if necessary. 

DMSCWR: Displays 
console. 

a control record at the 

DftSSCI: If another control record is 
encountered, formats it via DMSSCI. 

R~~£!]: Displays the new control record at the 
console. 

!!~~l!~: Closes the file when end- of- file 
occurs. 

DftSRDR: Issues a CP CLOSE command to close the 
card-reader. 

DMSPUN: Ensures that a virtual punch 
avaIlable; processes PUNCH command options. 

is 

DMSSTT: Verifies the existence of the file and 
returns its starting address. 

~~~R~]: If requested, sets up a header record 
and calls DMSCWR to write it to the console.

DMSBRD: Reads a
buffer; continues
filled.

block of data
reading until

into the read
the buffer is

~~~~lQ: Initializes areas to punch records. 

DMSCIO: Issues the SIO instruction to punch the 
contents of the buffer. 

DMSCIO: Issues a call to DMSIOi to wait for 
completion of the punch I/O operation. 

DMSIOW: Sets the wait bit on for the virtual 
punch- device and loads the I/O old PSW from 
NUCON. This causes CMS to enter a wait state 
until the punch operation completes. 

R~~!I!: Ensures that this interrupt is for the 
punch. If not, the I/O old PSW is loaded 
returning CftS to a wait state. If the interrupt 
is for the punch, DMSITI resets the wait bit in 
the I/O old PSW and then loads the PSW, 
returning control to DMSIOi. 

DMSIOW: Places the 
Interrupting device 
control to DMSCIO. 

symbolic name of the 
in the PLIST and passes 

DMSCIO: Checks for SENSE information and handles 
I/o-errors, if any. 

DMSPUN: Handles error returns and 
constants for the next punch operation. 

resets 

DMSFNS: Closes the file and returns control to 
the-command handler, DMSINT. 

Section 2. Method of Operation and Program Organization 183 



]~§E~!: Determines the 
printer. Checks out 
Checks out the options 
com.and line. 

device type of the 
the specified fileid. 
specified on the PRINT 

]~§§f!: Verifies the existence of the file and 
returns its starting address. 

DMSPRT: Determines the record size to be printed 
and-sets up an appropriate buffer area via a 
call to DMSFRE. 

DMSFRE: Obtains storage space to be used as a 
buffe~. 

DMSPRT: Determines whether the file to be 
p~Inted is a library member or an input file. 

Q~§~~~: Reads a record; continues reading until 
the buffer is filled. When the buffer is 
filled, calls DMSPIO to issue the SIO 
instruction to begin the print operation. 

Q~§E!~: Issues the print 
then calls DMSIOW to wait 
operation completes. 

SIO instruction 
until the the 

and 
I/O 

DMSIOW: sets the wait bit for the virtual 
prInter device and load the I/O old PSW from 
DUCOD. This causes CMS to enter a wait state 
until the print operation completes. 

Q~§!!!: Ensures that the interrupt is for the 
printer. If not, the I/O old PSW is reloaded, 
returning CMS to a wait state. If the interrupt 
is for the printer, DMSITI resets the WAIT bit 
in the I/O old PSW and loads that PSW, returning 
control to DMSICW. 

DMSIOW: places the symbolic name of the device 
in-the last word of the PLIST and passes control 
to DMSPIO. 

]~§R1Q: Performs channel testing and handles 
errors. TIO instructions and sense SIO 
instructions are issued during the test 
processing. These operations are synchronized 
using DMSIOW and DMSITI in the manner described 
above. When the I/O completes successfully, 
control returns to DMSPRT. 

DMSPRT: Determines whether all file recorJs have 
been printed. If so, control returns to the 
caller. Otherwise, the address of the buffer is 
updated and more print operations are 
performed. 

CMS supports the use of ASCII control characters 
and machine carriage control characters for the 
printed output. Part of the CMS implementation 
depends upon the fact that the set of ASCII 
control characters has almost nothing in common 
with the set of machine control characters. 
There are two exceptions to this, the characters 
X'C1' and X'C3'. These two characters, when 

interpreted as ASCII control characters, have 
the following meanings: 

Cl Skip to channel 10 before print. 

C3 Skip to channel 12 before print. 

The same characters, when interpreted as 
machine control characters, have the following 
meanings: 

C1 = Write, then 
print. 

C3 Do not write, 
immediately. 

skip to channel 8 after 

but skip to channel 8 

In printing lines containing carriage control 
characters, CMS has the capability of operating 
in two modes. In the first mode, which may be 
called ASCII control characters or machine 
control characters of either type are recognized 
and properly interpreted, except that the two 
conflicting characters are always interpreted as 
ASCII control characters. In the second mode, 
which may be called machine-only, only machine 
control characters are recognized, and the two 
conflicting characters are treated as machine. 

The DMSPIO function uses a bit in the plist 
to indicate which of the two modes is in effect 
for printing. 

The PRINTL macro always uses ASA control 
character or machine control character mode. 

The PRINT command with the CC option always 
runs in ASCII control character or machine 
control character mode. 

OS simulation output, which is used, for 
example, by the MOVEFILE command, uses the RECFM 
field in the DCB or in the FILEDEF command to 
determine which mode is to be used. If FA, VA, 
or UA is specified, then ASCII control character 
or machine control character mode is used. If 
FM, VM, or UM is specified, then machine-only 
mode is used. If no control character 
specification is included with the RECFM, then 
it is assumed that the output line begins with a 
valid data character, rather than with a control 
character, and single spacing is always used. 

Figure 40 lists the CMS modules that process 
interruptions for CMS. CMS modules are 
described briefly in "CMS Module Description." 
SVC 9 interruption processing is described in 
"Maintaining an Interactive Console 
Environment." 

DISK I/O IN CMS 

Files residing on disk are read and written 
using DMSDIO. nMSDIO has two entry points: 
DMSDIOR, which is entered for a read I/O 
operation, and DMSDIOW, which is entered for a 
write operation. 

184 IBM VM/370: System Logic and Problem Determination Guide 



The actual disk I/O operation is performed 
using the DIAGNOSE code 18 instruction. A 
return code of a from CP indicates a successful 
completion of the I/O operation. If the I/O is 
not successful, CP performs error recording, 
retry, recovery, or ABEND procedures for the 
virtual machine. 

DMSDIO: Initializes the CCW to perform read 
operations. 

DMSLAD: Obtains the address of the disk from 
whIch-to read or write. 

]~2~JQ: Determines the size of the record to be 
read or written. 

~~2IB~: Gets enough storage 
record if the request is for 
than 800 bytes. 

to contain the 
a record longer 

DMSDIO: Reads records continually until all 
rec~rds for the file have been read. 

DMSFRE: Returns the buffer to free storage if 
the-record was longer than 800 bytes. 

~~2~!Q: Returns to the caller. 

DMSFRE handles requests for CMS free storage. 
The sections of CMS storage have the following 
uses: 

• DMSNUC (1'00000' to approximately 1'03000') -
This is the nucleus constant area. It 
contains pointers, flags, and other data 
maintained by the various system routines. 

• LOW-core DMSFREE free storage area 
(approximately 1'03000' to I'OEOOO') - This 
area is a free storage area, from which 
requests from DMSFREE are allocated. The top 
part of this area contains the file directory 
for the system disk (SST AT). If there is 
enough room (as there will be in most cases) , 
the FREETAB table also occupies this area, 
just below the SSTAT. 

• Transient prog~am area (I'OEOOO' to 1'10000') 
- Because it is not essential to keep all 
nucleus functions resident in storage all the 
time, some of them are made "transient." 
This means that when they are needed, they 
are loaded from the disk into the transient 
program area. Such programs may not be 
longer than two pages, because that is the 
size of the transient area. (A page is 4096 
bytes of virtual storage.) 

• CMS nucleus (1'10000' to 1'20000') - Segment 
1 of storage contains the reentrant code for 
the CMS nucleus routines. In shared eMS 
systems, this is the protected segment. That 

is, this segment must consist only of 
reentrant code, and may not be modified under 
any circumstances. This fact implies certain 
system restrictions for functions which 
require that storage be modified, such as the 
fact that DEBUG breakpoints or CP ADS TOP 
commands cannot be placed in this segment, in 
a saved system • 

• User program area (1'20000' to loader tables) 
- User programs are loaded into this area by 
the LOAD command. storage allocated by means 
of the GETMAIN macro instruction is taken 
from this area, starting from the high 
address of the user program. In addition, 
this storage area can be allocated from the 
top down by DMSFREE, if not enough storage is 
available in the low-core DMSFREE storage 
area. Thus, the effective size of the user 
program area is reduced by the amount of free 
storage which has been allocated from it by 
DMSFREE. 

• Loader tables (top pages of storage) - The 
top of storage is occupied by the loader 
tables, which are required by the CMS 
loader. These tables indicate which modules 
are currently loaded in the user program area 
(and the transient program area after a LOAD 
command). The size of the loader tables can 
be varied by the SET LDRTBLS command. 

Free storage can be allocated by means of the 
GETMAIN or DMSFREE macros. 

Storage 
macro is 
beginning 
program. 

allocated by means of the GETMAIN 
taken from the user program area, 
with the high address of the user 

storage allocated by means of the DMSFREE 
macro can be taken from several areas~ 

First, DMSFREE requests are allocated from 
the low-address free storage area. If requests 
cannot be satisfied from there, they will be 
satisfied from the user program area. 

In addition, requests are further broken down 
between requests for user storage and nucleus 
storage, as specified in the TYPE parameter of 
the DMSFREE macro. These two types of storage 
are kept in separate 4K pages. It is possible, 
if there are no 4K pages completely free in low 
storage, for no storage of one type to be 
available in low storage, while there is storage 
of the other type available there. 

All GETMAIN storage is allocated in the user 
program area, starting from the end of the 
user's actual program. Allocation begins at the 
location pointed to by NUCON pointer MAINSTRT. 
The location MAIN8IGB in NUCON is the pointer to 
the highest address of GETMAIN storage. 

section 2. Method of Operation and Program organization 185 



When the STRINIT macro is executed, hoth 
MAINSTRT and MAINBIGB are initialized to the end 
of the user's program, in the user program area. 
As storage is allocated from the user program 
area to satisfy GETMAIN requests, the MAINHIGB 
pOinter is adjusted upward. Such adjustments 
are always in multiples of doub1ewords, so that 
this pointer is always on a douhleword 
boundary. As the allocated storage is released, 
this pointer is adjusted downward. 

The pointer MAINHIGH can never be higher than 
FREELOVE, the pointer to the lowest address of 
DMSFREE storage allocated in the user program 
area. If a GETMAIN request cannot be satisfied 
without extending MAINHIGH ahove FREELOVE, 
GETMAIN takes an error exit, indicating that 
insufficient storage is available to satisfy the 
request. 

The area between MAINSTRT and MAINHIGH may 
contain blocks of storage that are not 
allocated, and that are therefore available for 
allocation by a GETMAIN instruction. These 
blocks are chained together, with the first one 
pointed to by the NUCON location HAIBLIST. 

The format of an element 
element chain is as follows: 

on the GETMAIN free 

<-------- 4 bytes --------> 
...--------_ .. _-----------------, 
I FREPTR - pointer to next free I 

0(0) 1 element in the chain, or 0 I 
I if there is no next element I 
I--~-----.-------.------------.. 
I FRELEN - length, in bytes, of 1 

4(4) 1 this element I 
1 I 
1-------------_._----------1 
1 Remainder of this free element 1 

The pointers FREEUPPR and FREELOWE in NUCON 
indicate the amount of storage which DMSFREE has 
allocated from the high portion of the user 
program area. These pointers are initialized to 
the beginning of the system loader tables. 

The pointer FREELOVE is the pointer to the 
lowest address of DHSFREE storage in the user 
program area. As storage is allocated from the 
user program area to satisfy DMSFREE requests, 
this pointer is adjusted downward. Such 
adjustments are always in multiples of 4K, so 
that this pointer is always on a 4K boundary. 
As the allocated storage is released, this 
pointer is adjusted upward when whole 4K pages 
are completely free. 

The pointer FREELOVE can never be lower than 
MAIBHIGH, the pointer to the highest address of 
GETMAIN storage. If a DMSFREE request cannot be 
satisfied without extending FREELOVE below 
MlINHIGB, then DMSFREE takes an error exit, 
indicating that insufficient storage is 
available to satisfy the request. 

The FREETAB free storage table is kept in 
free storage, usually just below the master 
file directory for the system disk. If there 
was no space available there, then FREETAB was 
allocated from the top of the user program area. 
This table contains one byte for each page of 
virtual storage. Each such byte contains a code 
indicating the use of that page of virtual 
storage. The codes in this table are as 
follows: 

y~~]~~~~ (j): If the page is assigned to user 
storage. 

~y~~~y~ (~): If the page is assigned to nucleus 
storage. 

!]!~~]] (1): If the page 
transient program area. 

is part of the 

y~!]~~]] (~): If the page is part of the user 
program area. 

~!~~~~] (~): If the page is none of the above. 

In 
system 
tables. 

these cases, the page 
storage, system code, 

is 
or 

assigned to 
the loader 

Other DHSFREE storage pointers are maintained 
in the DMSFRT control section, in NUCON. The 
most important fields there are the four chain 
header blocks. 

Four chains of elements are not allocated to 
be associated with DHSFREE storage: The 
low-storage nucleus chain, the low-storage user 
chain, the high-storage nucleus chain, and the 
high-storage user chain. For each of these 
chains, exists a control block consisting of 
four words, with the following format: 

< 4 bytes -----> 
r ------------------., 
IPOINTER pointer to the first 1 

0(0) 1 free element on the chain, or I 
I zero, if the chain is empty. 1 
1--------------------1 
I BUM - the number of elements on 1 

4 (4) I the chain. I 
1 I 
1--------------------1 
I MAX - the value in this word is I 

8(8) 1 the size of the largest free 1 
1 element on the chain. 1 
1-----·_---------------1 
1 FLAGS- 1 SKEY - 1 ~rCODE -I Unused 1 

12(C) 1 Flag Istorage IFBEETAB 1 1 
1 byte 1 key 1 code 1 1 1.-_________________________ ---' 

These fields have the following meanings and 
uses: 

POINTER This field points to the first element 
on this chain of free elements. If 
there are no elements on this free 
chain, then the POINTER field contains 
a zero. 

186 IBM VM/310: System Logic and Problem Determination Guide 



BUM 

MAX 

the nu mber of 
chain of free 

are no elements on 
then this field 

This field contains 
elements on this 
elements. If there 
this free chain r 
contains a zero. 

This field is used for the purpose of 
avoiding searches which will fail. It 
contains the sizer in bytes r of the 
largest element on the free chain. 
Thus r a search for an element of a 
given size will not be made if that 
size exceeds the MAX field. 

FLAGS The following flags are used: 

F LC L Ii ( X ' 80 ' ) 
Clean-up flag This flag is set if the 
chain must be cleaned up. This is 
necessary in the following circumstances: 

- If one of the two high-core chains 
contains a 4K page that is pointed to by 
FREELOWE r then that page can be removed 
from the chain r and FREELOWE can be 
increased. 

- All, completely non-allocated 4K pages 
are kept on the user chain r by convention. 
Thus r if one of the nucleus chains 
(low-core or high-core) contains a full 
pager then this page must be transferred 
to the corresponding user chain. 

FLCLB(X' 40') 
Clobbered flag - Set if the chain has been 
destroyed. 

FL HC (X' 20 ' ) 
High-core chain - Set for both the nucleus 
and user high-core chains. 

FL Ii U ( X' 1 0 ' ) 
Nucleus chain - Set for both the low-core 
and high-core nucleus chains. 

FLPA (1'08') 
Page available - This flag is set if there 
is a full 4K page available on the chain. 
Note that this flag may be set even if 
there is no such page available. 

SKEY This one-byte field contains the storage 
key assigned to storage on this chain. 

TCODE This one-byte field contains the FREETAB 
table code for storage on this chain. 

Each element on the free chain has the 
following format: 

<-------- 4 bytes --------> 
r -, 
I POINTER - pointer to the next I 

0(0) I element in the free chain I 
I I 
1-------------------------1 
I SIZE -- size of this free I 

4 (4) I elelllent r in bytes I 
I I 
1-------,------------------4 
I Remainder of this free element I 

When the user issues a variable length 
GETMAlli r the control program reserves 6 1/2 
pages for CMS usage; this is a designed and set 
value. If the user wants more spacer for 
example r for more directories, he should free up 
from the high end of storage some of the 
variable GETMAIN area. 

As indicated in the illustration above, the 
POINTER field points to the next element in the 
chain r or contains the value zero if there is no 
next element. The SIZE field contains the size 
of this element r in bytes. 

III elements within a given chain are chained 
together in order of descending storage address. 
This is done for two reasons: 

1. Because the allocation search is satisfied 
by the first free element that is large 
enough r the allocated elements are grouped 
together at the top of the storage area r 
and prevent storage fragmentation. This is 
particularly important for high-storage 
free storage allocations r because it is 
desirable to keep FREEL OWE as high as 
possible. 

2. If free storage does become 
fragmented r the search causes as 
faults as possible. 

sOllewha t 
few page 

As a matter of convention r completely 
nonallocated 4K pages are kept on the user chain 
rather than the nucleus chain. This is because 
requests fer large blocks of storage are made r 
most of the timer froll user storage rather than 
from nucleus storage. Nucleus requests need to 
break up a full page less frequently than user 
requests. 

I description of the algorithms which allocate 
and release blocks follows. The descriptions 
are based on the assumption that neither 
IREI=LOW nor AREI=HIGH was specified in the 
DMSFREE macro call. If either was specified, 
then the algorithm must be appropriately 
modified. 

!11Q£!~!!Q Q2~] l]~~ 2~Q]!Q~: When DMSFREE with 
TYPE=USER (the default) is called r the following 
steps are taken to satisfy the request. As soon 

Section 2. Method of Operation and Program organization 187 



as one of the steps succeeds, then processing 
can terminate. DMSFRE: 

1. Searches low-storage user chain for a block 
of the required size. 

2. Searches the high-storage user chain for a 
block of the required size. 

3. 

4. 

Extends high-storage user 
into the user program 
FREELOWE in the process. 

storage downward 
area, modifying 

For fixed requests, there is nothing more 
to try. For variable requests, DMSFRE puts 
all available storage in the user program 
area onto the high-storage user chain, and 
then allocates the largest block available 
on either the high-storage user chain or 
the low-storage user chain. The allocated 
block is not satisfactory, if it is not 
larger then the minimum requested size. 

ALLOCATING NUCLEUS FREE STORAGE: When DMSFREE 
wlth-TYPE~NUCLEUS-Is-called:-the-following steps 
are taken in an attempt to satisfy the request, 
until one succeeds. DMSFREE: 

1. 

2. 

3. 

Searches the low-storage nucleus chain for 
a block of the required size. 

Gets free pages from low-storage user 
chain, if any are available, and removes 
them to the low-storage nucleus chain. 

Searches the highstorage nucleus chain for 
a block of the required size. 

4. Gets free Fages from the high-storage user 
chain, if they are available, and removes 
them to the highstorage nucleus chain. 

5. Extends high-storage nucleus storage 
downward into the user program area, 
modifying FREELOWE in the process. 

6. For fixed requests, there is nothing more 
to try. For variable requests, DMSFRE puts 
all available pages from the user chains 
and the user program area onto the nucleus 
chains, and allocates the largest block 
available cn either the low-storage nucleus 
chains or the high-storage nucleus chains. 

RELEASING STORAGE: When DMSFRET is called, the 
block---beIng---released is placed on the 
appropriate chain. At that point, the cleanup 
operation is performed, if necessary, to advance 
FREELOWE, or to move pages from the nucleus 
chain to the corresponding user chain. 

Similar cleanup operations 
when necessary, after calls 
well. 

are performed, 
to DMSFREE, as 

The types of DMSFREE request in decreasing order 
of efficiency, are as follows: 

1. User fixed storage requests, any size. 

2. Nucleus fixed storage requests, for small 
blocks (less than one page in size). 

3. Nucleus fixed storage request, for large 
blocks. 

4. 

5. 

User variable storage requests. (Variable 
requests are no less efficient than fixed 
requests, if the maximum block size 
requested can be allocated.) 

Fixed variable 
maximum block 
allocated. 

storage requests, if 
size requested cannot 

the 
be 

STORAGE ALLOCATED BY g~I~A!]: storage allocated 
by-the-GETMAii-macro instruction may be released 
in any of the following ways: 

• 

• 

• 

A specific block 
released by means 
instruction. 

The STRINIT macro 
storage allocated 
requests. 

of such storage may be 
of the FREEMAIN macro 

instruction releases all 
by any previous GETMAIN 

Almost all CMS commands call the STRINIT 
routine. Thus, executing almost any CMS 
command causes all GETMAIN storage to be 
released. 

STORAGE ALLOCATED BY ~~~l~~: Storage allocated 
by-the-DMSFREE-macro instruction may be released 
in either of the following ways: 

• A specific 
released by 
instruction. 

block 
means 

of such storage may be 
of the DMSFRET macro 

• Whenever any user routine or CMS command 
abends (so that the routine DMSABN is 
entered), and the ABEND recovery facility of 
the system 1S invoked, all DMSFREE storage 
with TYPE=USER is released automatically. 

Except in the case of ABEND recovery, storage 
allocated by the DMSFREE macro is never released 
automatically by the system. Thus, storage 
allocated by means of this macro instruction 
should always be released explicitly by means of 
the DMSFRET macro instruction. 

The system uses the DMSFRES macro instruction to 
request certain free storage management 
services. The options and their meanings are as 
follows: 

• INIT1--DMSINS calls this option to invoke the 
first free storage initialization routine, to 

188 IBM VM/370: system Logic and Problem Determination Guide 



allow free storage requests to access the 
system disk. Before this routine is invoked, 
no free storage requests may be made. After 
this routine has been invoked, free storage 
requests may be made, but these are subject 
to the following restraints until the second 
free storage management initialization 
routine has been invoked: 

All requests for user storage are changed 
to requests for nucleus storage. 

Only partial error checking is performed 
by the DMSPRET routine. In particular, it 
is possible to release a block that was 
never allocated. 

All requests that are satisfied in high 
storage must be temporary, because all 
high storage allocated is released when 
the second free storage initialization 
routine is invoked. 

When CP's saved system facility is used, 
the CMS system is saved at the point just 
after the system disk has been accessed. 
This means that it is necessary for DMSPRE to 
be used before the size of virtual storage is 
known, because the saved system can be used 
on any size virtual machine. Thus, the first 
initialization routine initializes DMSPRE so 
that limited functions can be requested, 
while the second initialization routine 
performs the initialization necessary to 
allow the full functions of DMSPRE to be 
requested. 

IBIT2--This option is called by DMSINS to 
invoke the second initialization routine. 
This routine is invoked after the size of 
virtual storage is known, and it performs the 
initialization necessary to allow all the 
functions of DMSPRE to be used. The second 
initialization routine performs the following 
steps: 

Releases all storage that has 
allocated in the highstorage area. 

been 

Allocates the PREETAB free storage table. 
This table contains one byte for each 
4096-byte page of virtual storage, and so 
cannot be allocated until the size .of 
virtual storage is known. It is allocated 
in the low-address free storage area, if 
there is enough room available. If not, 
then it is allocated in the higher free 
storage area. Por a 256K virtual machine, 
PREETAB contains 64 bytes; for a 16 
million byte machine, it contains 4096 
bytes. 

The PREETAB table is initialized, and all 
storage protection keys are initialized. 

All completely non-allocated 4K pages on 
the nucleus free storage chain are removed 
to the user chain. Any other necessary 
cleaning up operations are performed. 

• CHECK--This option can be called at any time 
for system debugging purposes. It invokes a 
routine that performs a thorough check of all 
free storage chains for consistency and 
correctness. Thus, it checks to see whether 
any free storage pointers have been 
destroyed. 

• CKON--This option turns on a flag which 
causes the CHECK routine described in the 
preceding paragraph to be invoked each time 
any call is made to DKSPREE or DMSPRET. This 
can be useful to pinpoint a problem that is, 
for example, destroying free storage 
management pointers. Care should be taken 
when using this option, because the CHECK 
routine is coded to be thorough rather than 
efficient. Thus, after the CKON option has 
been invoked, each call to DMSPREE or DMSPRET 
takes many times as long to be completed as 
before. This can impact the efficiency of 
system functions. 

• CKOPP--Use of this option turns off the flag 
that was turned by the CKOB option, described 
in the preceding paragraph. 

• UREC--This option is called by DMSABN during 
the ABEND recovery process to release all 
USER storage. 

• CALOC--This option is called by DMSABN after 
the ABEND recovery process has been 
completed. It invokes a routine that 
returns, in register 0, the number of 
doublewords of free storage that have been 
allocated. This figure is used by DMSABN to 
determine Whether ABEND recovery has been 
successful. 

In general, the following rule applies: system 
storage is assigned the storage key of X'P', 
while user storage is assigned the key of X'E'. 
This is the storage key associated with the 
protected areas of· storage, not to be confused 
with the PSW or CAW key used to access that 
storage. 

The specific key assignments are as follows: 

• 

• 

The BUCON area is assigned the key of X'P', 
with the exception of a half-page containing 
the OPSECT and TSOBLOKS areas, which has a 
key of X'E'. 

Pree storage allocated 
up into user storage 
The user storage has 
X'E', while the nucleus 
X'P'. 

by DMSPREE is broken 
and nucleus storage. 
a protection key of 
storage has a key of 

• The transient program area has a key of 
X'B'. 

• The CMS nucleus code has a storage key of 
X'P'. In saved systems, this entire segment 
is protected by CP from modification even by 
the CMS system, and so must be entirely 
reentrant. 

Section 2. Method of Operation and Program Organization 189 



• The user program area is assigned the storage 
key of X'E', except for those pages which 
contain Nucleus DMSFREE storage. These 
latter pages are assigned the key of X'F'. 

• The loader tables are assigned the key of 
X 'F'. 

The CMS nucleus protection scheme protects the 
CMS nucleus from inadvertent destruction by a 
user program. This mechanism, however, does not 
prevent a user from writing in system storage 
intentionally. Because a CMS user can execute 
privileged instructions, he can issue a LOAD PSi 
(LPSi) instruction and load any PSi key he 
wishes. If a user defeats nucleus protection in 
this way there is nothing to prevent his program 
froll: 

• Modifying nucleus code 

• Modifying a table or constant area 

• Losing files 
directory 

by modifying a CMS file 

In general, user programs and disk-resident 
CMS commands run with a PSi key of X'E', while 
nucleus code runs with PSi key of X'O'. 

There are, however, some exceptions to this 
rule. certain disk-resident CMS commands run 
with a PSi key of X'O', because they need to 
modify nucleus pointers and storage. On the 
other hand, the nucleus routines called by the 
GET, PUT, READ and iRITE macros run with a user 
PSi key of X'E', to increase efficiency. 

TWO macros, DMSKEY and DMSEXS, are available 
for changing the PSi key. The DMSKEY macro 
changes the PSi key to the user value or the 
nucleus value. DMSKEY NUCLEUS causes the 
current PSi key to be placed in a stack, and a 
value of 0 to be placed in the PSi key. DMSKEY 
USER causes the current PSi key to be placed in 
a stack, and a value of X'E' to be placed in the 
PSi key. DMSKEY RESET causes the top value in 
the DMSKEY stack to be removed and re-inserted 
into the PSi. 

It is a CMS requirement when a routine 
terminates, that the DMSKEY stack must be empty. 
This means that a routine should execute a 
DMSKEY RESET macro instruction for each DMSKEY 
NUCLEUS macro instruction and each DMSKEY USER 
macro instruction executed by the routine. 

The DMSKEY key stack has a maximum depth of 
seven for each routine. In this context, a 
"routine" is anything invoked by an SVC call. 
The DMSEXS ("execute in system mode") macro 
instruction is useful in situations where a 
routine is running with a user PSi key, but 
wishes to execute a single instruction with the 
nucleus PSi key. The single instruction may be 
specified as the argument to the DMSEXS macro, 
and that instruction is executed with a system 
PSi key. 

The explanation of saved system nucleus 
protection depends on the VSK, RSK, VPK and RPK: 

1. Virtual storage Key (VSK) - This is the 
storage key assigned by the virtual machine 
using the virtual SSK instruction. 

2. Real Storage Key (RSK) - This is the actual 
storage key assigned by CP to the 2K 
page. 

3. Virtual PSi Key (VP~ - This is the PSi 
storage key assigned by the virtual 
machine, by means of an instruction such as 
LPSW (Load PSW). 

4. Real PSi Key (RPK) - This is the PSW 
storage key assigned by CP, which is in the 
real hardware PSi when the virtual machine 
is running. 

When there are no shared 
virtual machine, then storage 
as it does on a real machine. 
pages, and RPK=VPK for the PSW. 

segments in the 
protection works 

RSK=VSK for all 

However, when there is a shared segment (as 
in the case of segment 1 of CMS in the saved 
system), it is necessary for CP to protect the 
shared segment. For non-CMS shared systems, it 
does this by, essentially, ignoring the values 
of the VSKs and VPK, and assigning the real 
values as follows: RSK=O for each page of the 
shared segment, RSK=F for all other pages, and 
RPK=F, always, for the real PSW. The SSK 
instruction is ignored, except to save the key 
value in a table in case the virtual machine 
later does an ISK to get it back. 

For the CMS saved system, the RSKs and RPK 
are initialized as before~ but resetting the 
virtual keys has the following effects: 

• 

• 

• 

If the virtual machine uses an SSK 
instruction to reset a VSK, CP does the 
following: If the new VSK is nonzero, CP 
resets the RSK to the value of the VSK; if 
the new VSK is zero, CP resets RSK to F. 

If the virtual machine uses a 2:fP (~ther) 
instruction to reset the VPK CP does the 
following: If the new VPK is ero, CP resets 
the RPK to the value of the VPK; if the new 
VPK is zero, CP resets RPK to F. 

If the VPK=O and the RPK=F, storage 
protection may be handled differently. In a 
real machine, a PSi key of 0 would allow the 
program to store into any storage location, 
no matter what the storage key. But under 
CP, the program gets a protection violation, 
unless the RPK of the page happens to be F. 

Because of this, ther&is extra code in the 
CP program check handling routine. Whenever 
a protection violation occurs, CP checks to 
see if the following conditions hold: 

The virtual m&chine running is the saved 
CMS syste., running with a shared 
segment. 

190 IBM VM/370: System Logic and Problem Determination Guide 



The VPK = O. The virtual machine is 
operating as though its PSi key is O. 

The BSK of the page into which the store 
was attempted is nonzero, and different 
from the BPK. 

If anyone of these three conditions fails to 
hold, then the protection violation is reflected 
back to the virtual machine. 

If all three of these conditions hold, then 
the BPK (the real protection key in the real 
PSi) is reset to the BSK of the page into which 
the store was attempted. 

EFFECT ON CMS: In CMS, this works as follows: 
CMS-keeps -Its system storage in protect key F 
(RSK = VSK = F), and user storage in protect key 
E (BSK = VSK = E) • 

When the CMS supervisor is running, it runs 
in PSW key 0 (VPK = 0, RPK = F), so that CMS 
gets a protection violation the first time it 
tries to store into user storage (VSK RSK = 
E). At that point, CP changes the BPK to E, and 
lets the virtual machine re-execute the 
instruction which caused the protection 
violation. There is not another protection 
violation until the supervisor goes back to 
storing into system-protected storage. 

S~~I~J~IIQ~~ CN CMS: There are several coding 
restrictions which-iust be imposed on CMS if it 
is to run as a saved system. 

The first and most obvious one is that CMS 
may never modify segment 1, the shared segment, 
which runs with a BSK of 0, although the VSK = 
F'. 

A less obvious, but just as important, 
restriction, is that CMS may never modify with a 
single machine instruction (except MVCL) a 
section of storage which crosses the boundary 
between two pages with different storage keys. 
This restriction applies not only to SS 
instructions, such as HVC and ZAP, but also to 
BS instructions, such as STM, and to BX 
instructions, such as ST and STD, which may have 
nonaligned addresses on the System/370. An 
exception is the MVCL instruction which can be 
restarted after crossing a page boundary because 
the registers are updated when the paging 
exception occurs. 

This restriction also applies to I/O 
instructions. If the key specified in the CCW 
is zero, then the data area for input may not 
cross the boundary between two pages with 
different storage keys. 

CVEBHEAD: It can be seen that this system is 
iiiost--liiefficient when "storage-key thrashing" 
occurs -- when the virtual machine with a VPK of 
o jumps around, storing into pages with 
different VSK 's. 

A nonzero return code, upon return from DMSPBES, 
DMSFBEE or DMSFRET, indicates that the request 

could not be satisfied. Begister 15 contains 
this return code, indicating which error has 
occurred. The codes below apply to the DMSFBES, 
DMSFBEE and DMSFBET macros. 

Code 1---

2 

3 

4 

5 

6 

7 

8 

9 

Error 
DMSPREE -- Insufficient storage space is 
available to satisfy the request for free 
storage In the case of a variable 
request, even the minimum request could 
not be satisfied. 

DMSFREE or DMSFRET 
pointers destroyed. 

DMSFBEE or DMSFBET 
pointers destroyed. 

User storage 

Nucleus storage 

DMSFBEE -- An invalid size was requested. 
This error exit is taken if the requested 
size is not greater than zero. In the 
case of variable requests, this error 
exit is taken if the minimum request is 
greater than the maximum request. 
However, the error is not detected if 
DMSFREE is able to satisfy the maximum 
request. 

DMSFBET -- An invalid size was passed to 
the DMSFBET macro. This error exit is 
taken if the specified length is not 
positive. 

DMSPRET -- The block of storage which is 
being released was never allocated by 
DMSFBEE. Such an error is detected if 
one of the following errors is found: 

a. The block is not entirely inside 
either the free storage area in low 
storage or the user program area 
between FBEELOWE and FBEEUPPR. 

b. The block crosses a page-boundary 
which separates a page allocated for 
user storage from a page allocated for 
nucleus type storage. 

c. The block overlaps another block 
already on the free storage chain. 

DMSFBET The address 
block being released is 
boundary. 

given for the 
not a doubleword 

DMSFRES -- An illegal request code was 
passed to the DMSPBES routine. Because 
all request codes are generated by the 
DMSFBES macro, this error code should 
never appear. 

DMSFBE, DMSFBET, or DMSFBES An 
unexpected internal error occurred. 

CMS uses the DMSPBES macro to request special 
internal free storage management services. Use 
of this macro by non-system routines causes 
unpredictable results. The format is: 

Section 2. Method of Operation and Program organization 191 



r----------------------------------------------, 
I label I DMSPRES I option I L ______________________________________________ ~ 

where 'option' is one of the following: 

INIT1 Performs the CMS system first 
initialization routine. 

INIT2 Performs the CMS system second 

CtIECK 

CKON 

CKOPF 

UREC 

CALOC 

initialization routine. 

Invokes a routine that 
validity of all current 
management pointers. 

checks the 
free storage 

sets a flag that causes the CHECK to be 
invoked for each call to OMSPREE or 
DMSPRET. 

Turns off the above flag. 

Assists AEEND recovery, by releasing all 
USER-type DMSFREE storage allocations. 

Assist ABEND recovery, by computing the 
total amount of allocated storage, 
excluding the system disk MFD and the 
FREETAE table. 

For a full discussion of 
these options, refer to 
Routines. II 

t he meanings of 
"DMSFRE Service 

CMS uses the DMSKEY macro to modify the PSi 
storage protection key so that the nucleus code 
can store data into protected storage. The 
format is: 

r-----------------------------------------------, 
I [label] DMS KEY I {NU CLEUS[ , NOS TACK] I I 
I I USER[,NOSTACK]I I 
I I LASTUSER[, NOSTACK] I I 
I I RESET} I L ________________ . _____________________ ~ 

NUCLEUS The nucleus storage protection key is 
placed in the PSW, and the old 
contents of the second byte of the PSi 
is saved in a stack. Use of this 
option allows the program to store 
into system storage, which is 
ordinarily protected. 

USER The user storage protection key is 
placed in the PSW, and the old 
contents of the second byte of the PSW 
is saved in a stack. Use of this 
option prevents the program from 
inadvertently modifying nucleus 
storage, which is protected. 

LASTUSER The SVC handler traces back through 
its system save areas for the active 
user routine closest to the top of the 
stack, and the storage key in effect 
for that routine is placed in the PSi. 
The old contents of the second byte of 
the PSW is saved in a stack. This 

option should be used only by system 
routines that should enter a user exit 
routine. 

NOSTACK This option may be used with any of 
the above options to prevent the 
system from saving the second byte of 
the current PSi in a stack. If this 
is done, then no OMSKEY RESET need be 
issued later. 

RESET The second byte of the PSi is changed 
to the value at the top of the PSi key 
stack, and removed from the stack. 
Thus, the effect of the last DMSKEY 
NUCLEUS or USER or LASTUSER request is 
reversed. This option should may not 
be used to reverse the effect of a 
OMSKEY macro for which the NOSTACK 
option was specified. A DMSKEY RESET 
macro must be executed for each DMSKEY 
NUCLEUS, USER or LASTUSER macro that 
was executed and that did not specify 
the NOSTACK option. Failure to 
observe this rule results in program 
abnormal termination. 

system commands running in user protect status 
use the DMSEXS macro to execute a single 
instruction with a system protect key in the 
PSW. This macro instruction can be used in lieu 
of two DMSKEY macros. The format is: 

r--------------------------------------------, 
I [label] I DMSEXS I op-code,operands I L _____ . __________________ ~ 

The op-code and the operands of the 
instruction to be executed must be given as 
arguments to the DMSEXS macro. 

For example, execution of the sequence, 

USING NUCON,O 
DMSEXS OI,OSSFLAGS,COMPSWT 

would cause the 01 instruction to be executed 
with a zero protect key in the PSi. This 
sequence would turn on the COMPSiT flag in the 
nucleus. It would be reset with 

DMSEXS NI,OSSFLAGS,255-COMPSWT 

The instruction to be executed may be an EX 
instruction. 

Register 1 cannot be used in any way in the 
instruction being executed. 

The following contains descriptions for: access 
method support for non-CMS operating systems, 
CMS simulation of OS functions, and CMS 
implementation of DOS/VS functions. 

192 IBM VM/370: system Logic and Problem Determination Guide 



An access method governs the manipulation of 
data. To make the execution of as generated 
code easier under CMS, the processing program 
must see data as as would present it. For 
instance, when the processors expect an access 
method to acquire input source records 
sequentially, CMS invokes its sequential access 
method and passes data to the processors in the 
format that the as access methods would have 
produced. Therefore, data appears in storage as 
if it had been manipulated using an as access 
method. For example, block descriptor words 
(BDi), buffer pool management, and variable 
records are maintained in storage as if an os 
access method had processed the data. The 
actual writing to and reading from the I/O 
device is handled by CMS file management. 

The work of the volume table of contents 
(VTOC) and the data set control block (DSCB) is 
done by a master file directory (MFD) to 
maintain disk contents and a file status table 
(FST) fo'r each data file. All disks are 
formatted in physical blocks of 800 bytes. 

CftS continues to maintain the as format, 
within its own format, on the auxiliary device, 
for files whose filemode number is 4. That is, 
the block and record descriptor words (BDi and 
RDi) are written along with the data. If a data 
set consists of blocked records, the data is 
written to and read from the I/O device in 
physical blocks, rather than logical records. 
CftS also simulates the specific methods of 
manipulating data sets. 

TO accomplish this simulation, CMS supports 
certain essential macros for the following 
access methods: 

• BDAM (direct)--identifying a record by a key 
or by its relative position within the 
data set. 

• BPAM (partitioned)--seeking a named member 
within an entire data set. 

• BDAM/QSAM (sequential)--accessing a record in 
a sequence relative to 

• VSAM (~irect or sequential)--accessing a 
record sequentially or directly by key 
or address. CMS support of as VSAM 
files is based on DOS/VS access method 
services and the virtual storage access 
method (VSAM). Therefore, the as user 
is restricted to those services 
available under DOS/VS AMS and VSAM. 

CMS simulation of as and DOS includes support 
for the virtual storage access method (VSAM). 

The description of this support is in three 
parts: 

• A description of the access method services 
program (AMSERV), which allows you to create 
and update VSAM files. 

• A description of support for VSAM functions 
under CMS/DOS. 

• A description of support for VSAM functions 
for the CMS as simulation routines. 

The routines that support VSAM reside in 
three discontiguous shared segments (DCSSs). 

The CMSAMS DCSS, which contains the DOS/VS 
AMS code to support AMSERV processing. 

The CMSVSAM DCSS, which contains actual 
DOS/VS VSAM code, and the CMS/VSAM as 
interface program for processing as VSAM 
requests. 

The CMSDOS DCSS, which contains the code 
that supports DOS requests under CMS. 

Note: DMSVSR, which performs completion 
processing for CMS/VSAM support, resides in the 
CMS nucleus. 

CREATING THE DOSCB CHAIN 

The DLBL command creates a control block called 
a DOSCB in CMS free storage. The ddname 
specified in this DLBL command is associated 
with the ddname parameter in the program's ACB. 

·The DOSCB contains information defining the 
file for the system. The information in the 
DOSCB parallels the information written on the 
label information cylinder of a real DOS SYSRES 
unit, e.g. the name, and mode (volume serial 
number) of the data set, its logical unit 
specification, and its data set type (SAM or 
VSAM). The anchor for this chain is at location 
DOSFIRST in NUCON. 

The CMS AMSERV com.and invokes the .odule 
DMSAMS, which is the CMS interface to the DOS/VS 
access method services (AMS) program. Module 
DMSAMS loads DOS/VS AMS code contained in the 
CMSAMS DCSS by means of the L01DSYS DIAGNOSE 
64. The AMS code requires the services of 
DOS/VS code that resides in the CMSVSAM DCSS so 
that DCSS is also loaded via LOADSYS DIAGNOSE 64 
when the VSAM master catalog is opened. Figure 
51 shows the relationship in storage between the 
interface module DMS1MS and the CMSAMS and 
CftSVSAM DCSSs. 

section 2. Method of Operation and Progra. organization 193 



AMSERV MODULE 

[ALR IDCAMS 

CMSVSAM DCSS 

CMSAMS DCSS 

---I 
IDCAMS: I 

AMS Root I 
~hase_ --.J 

B-disk 
for 
OS or 
DOS 
User 

CMS 
A-disk 

Figure 51. Relationship in Storage Between the CMS Interface Module DMSAMS and the CMSAMS and 
CMSVSAM DCSSs 

The following is a general description of the 
tMSAMS method of operation. 

DMSAMS first determines whether the user is 
in the CMS/DOS environment. If not, a SET DOS 
ON (VSAM) command is issued to load the CMSDOS 
segment and initialize the CMS/DOS environment. 
In this case, DMSAMS must also issue ASSGB 
commands for the disk modes in the DOSCB chain 
created by the OS user's DLBL commands. An 
ASSGN is also issued for SYSCAT, the VSAM master 
ca talog. 

DMSAMS then issues the ASSGB command for the 
SYSIPT and SYSLST files, assigning them to the 
user's A-disk. DLBL commands are then issued 
associating these units with files on the user's 
A-disk. Input to the AMSERV processor is the 
SYSIPT file, which has the filetype AMSERV. 
Output from AMSERV processing is placed in the 
SYSLST file, which has a filetype of LISTING. 

DIAGNOSE 64 (LOADSYS) is then issued to load 
the CMSAMS DCSS, which contains the DOS/VS AMS 
code. A DOS/VS SVC 65 is issued to find the 
address of the DOS/VS AMS root phase, IDCAMS. 
When the SVC returns with the address of IDCAMS, 
a branch is made to IDCAMS, giving control to 
"live" DOS/VS routines. 

IDCAMS expects parameters to be passed to it 
when it receives control. DMSAMS passes dummy 
parameters in the list labeled AMSPARMS. 

After the root phase IDCAMS receives control, 
the functions in the file specified by the 
filename on the AMSERV com.and are executed. 

In performing the functions requested in this 
file, AMS may require execution of DOS/VS VSAM 
phases located in the CMSVSAM DCSS. The CMSVSAM 
DCSS is loaded when AMS opens the VSAM catalog 
for processing. 

On return from DOS/VS code, DMSAMS purges the 
CMSAMS DCSS, and issues DLBL commands for the 
SYSIPT and SYSLST files to clear the DOSCB's for 
these ddnames. 

Control is then passed to DMSVSR, which 
purges the CMSVSAM DCSS. If the user progra. 
was not in the CMS/DOS environment when DMSAMS 
was entered, the SET DOS OFF command is issued 
by DMSVSR. Upon return from DMSVSR, DMSAMS 
performs minor housekeeping tasks and returns 
control to CMS. 

ihen a VSAM function, such as an OPEB or CLOSE 
macro, is requested from a DOS program, CMS 
routes control through the CMSDOS ncss to the 
CMSVSAM ncss, thus giving control to DOS/VS VSAM 
phases. Figure 52 shows the relationships in 
storage between the user program, the CMSDOS 
DCSS, and the CMSVSAM DCSS. The description 
below illustrates the overall logic of that 
control flow. 

194 IBM VM/370: System Logic and Problem Determination Guide 



DOS VSAM 
Program 

OPEN ACBl 

CLOSE ACBl 

CMSDOS DCSS 

DMSDOS 

----
DMSBOP 

----
----

DMSCLS 

----

B-disk 
for OS 
or DOS 
User 

DOS Transient 
Area CMSVSAM DCSS 

$$BOVSAM 

-----
IKOVOPEN 

$$BCVSAM ----

----
$$BACLOS IKOVCLS 

----

Figure 52. The Relationships in Storage Between the User Program and the CMSDOS DCSS and the CMSVSAM 
DCSSs 

CftS/DOS SVC HANDLING 

ftodule DftSDOS handles all CMS/DOS SVCs. There 
are four CftS/DOS routines that handle VSAM 
requests: DMSDCS, DMSBOP, DMSCLS, and DMSXCP. 
Within DMSDOS, several SVC functions support 
VSAft requests. These are described in 
"Simulating a DOS Environment Under CMS." 

DftSDOS VSAM processing involves handling of SVC 
65 (CDLOAD), which returns the address of a 
specified phase to the caller. DMSDOS searches 
both the shared segment table and the nonshared 
segment table for the CMSDOS and CMSVSA" 
segments, because both could be in use. Both of 
these segment tables contain the name of each 
phase comprising that segment followed by the 
fullword address of that phase within the 
segment. 

During SVC 65 processing, DMSDOS checks to 
see if the address of IKQLAB is being requested. 
IKQLAB is the YSAM routine that returns the 
label information generated by DLBLs and EXTENT 
cards in DOS/VS systems. If this is the case, 
DftSDOS saves the address of IKQLAB in NUCON for 
later use by DMSXCP. 

If VSAM has not been loaded, a DIAGNOSE 64 
(LOADSYS) is issued to load the CMSVSAM DCSS. 

When DMSBOP is entered to process ACBs, it 
checks to see if CMSVSAM is loaded. If VSAM has 
not been leaded, DIAGNOSE 64 is issued to load 
the CMSYSAM DCSS. DMSBOP then initializes the 
transient work area and issues a DOS OPEN via 
SVC 2 to bring the VSAM OPEN $$BOVSAM transient 
into the DOS transient area. 

When VSAM processing completes, control 
returns to the user program directly. 

DMSCLS processing is nearly the same as 
processing for DMSBOP. When DMSCLS is entered, 
it checks for an ACB to process. If there is 
one, the $$BCVSAM transient work area is 
initialized and SVC 2 is issued to FETCH the 
VSAM CLOSE transient $$BCVSAM into the DOS 
transient area. When the VSAM CLOSE routines 
complete processing, control returns to the user 
program, as in the case of OPEN. 

When DMSXCP processes an EXCP request, it 
determines if the request is from IKQLAB (i.e. 
to read the SYSRES label information). If so, 
the label information area record is filled in 
from the appropriate DOSCB. (DM SXCP determines 
that the caller is IKQLAB by comparing the 
address of the caller with the address stored in 
NUCON by DMSDOS, as described above.) 

section 2. Method of Operation and Program Organization 195 



as user requests for VSAK services are handled 
by DOS/VS VSAK code that resides in the CKSVSAK 
DCSS. To access this code, as VSAK requests are 
intercepted by the CKS module DKSVIP, the 
interface between the as VSAK requests and the 
CKS/DOS and DOS/VS VSAK routines. 

Because DKSVIP is in the CKSVSAK segment, it 
is available only when that segment is loaded. 
Kodule DKSVIB, which resides in the CKS nucleus, 
is a bootstrap routine to load the CKSVSAK 
segment and pass control to DKSVIP. 

DKSVIP receives control from VSAK request 
macros in three ways: via SVC (e.g. OPEN and 
CLOSE), via a direct branch using the address of 
DKSVIP in the ACB, and via a direct branch to 
the location of DKSVIP whose address is 256 
bytes into the CMSCVT (CKSCVT is a CKS control 
block that simulates the aS CVT control block) • 

OS VSAM CMS Module 

This last technique is used by the code 
generated from the as VSAK control block 
manipulation macros (GENeS, SHOWCB, TESTCB, 
KODCB). That is, the address at 256 into CVT is 
assumed to be that of a control block that is at 
displacement X'12' has the address of the VSAK 
control block manipulation routine. To ensure 
that DKSVIP receives control from these 
requests, the address of DKSVIP is stored at 256 
bytes into CKSCVT. However, until the CKSVSAM 
segment is loaded, the address at CMSCVT+256 is 
the address of module DMSVIB rather than the 
address of DKSVIP. The address of DKSVIP 
replaces that of DKSVIB when CKSVSAK is loaded. 
Both DKSVIB nd DKSVIP have pointers to 
themselves at 12 bytes into themselves to ensure 
that this technique works. 

Figure 53 shows the relationships in storage 
between the user program, the as simUlation and 
interface routines, and the CMSDOS and CKSVSAM 
DCSSs. 

B-disk 
tor OS 

or DOS 

DOS Transient CMSVSAM 
User 

Program DMSSOP DMSVIP CMSDOS DCSS Area DCSS 

DMSDOS $$BOVSAM 

OPEN ACBl DMSSOP19 DOSOPEN 

BALR 14,15 DMSBOP IKQVOPEN 
$$BCVSAM 

CLOSE ACBl DMSSOP20 DOSCLOSE 

BALR 14,15 DMSCLS IKWVCLS I/SAMF \\-' 

Figure 53. Relationship in Storage Between the User Program, the as simulation and Interface 
Routines, and the CKSDOS and CKSVSAM DCSSs. 

The description below illustrates the overall 
logic of that control flow. 

DKSVIP gains control from DKSSOP when an as svc 
19, 20 or 23 (CLOSE TYPE=T) is issued. It also 
gains control on return from execution of a VSAK 
function, as described below. DKSVIP performs 
five main functions: 

• Initializes the CMS/DOS environment for as 
VSAK processing. 

• Simulates an as VSAM OPEN .acro. 

• Simulates an as VSAM CLOSE macro. 

• Simulates an as VSAM 
.anipulation .acro (GENCB, 
TESTCB) • 

• Processes as VSAK I/O macros. 

control block 
KODCB, SHOWCB, or 

J:!!:!!ig!i~i!!g :t.!!~ ~~'§L!1Q'§ ];;!!!,i!:Q!!'!!~'!!! !QI .Q.§ !'§A~ 
R!:Q£~22i!!g 

DKSVIP gets control when the first VSAK .acro is 
encountered in the user program. Initialization 
processing begins at this time. The CMSDOS DCSS 
is loaded by issuing the command SET DOS ON 
(VSAK). ASSGN commands are also issued at this 
ti.e according to the user-issued DCBL's as 
indicated in the DOSCB chain. Once this 
initialization completes, DMSVIP processes the 
VSAM request. 

After the initialization, DKSVIP first checks 
to determine which VSAM function is being 
requested, OPEN, CLOSE, or a control block 
manipulation macro. 

For OPEN processing, the DOSSVC bit in NUCON is 
set on and control passes to DMSBOP via SVC 2. 
Once the CKS/DOS routines are in control, 

196 IBK VK/370: system Logic and Problem Determination Guide 



execution of the VSAM fUnction is the same as 
for the DOS VS1~ functions described above. 

On return from executing the OPEN routine, 
the address of another entry point to D"SVIP, at 
label DMSVIP2, is placed in the ACB for the data 
set just opened, the DOSSVC bit is turned off, 
and control is passed to D"SSOP, which returns 
to the user program. D"SVIP2 is the entry point 
for code that performs linkage to the VSA" data 
.anagement phase IKQVSM. This is done after the 
first OPEN because it is assumed that, once 
opened, the user performs I/O for the phase, 
e.g. a GET or PUT operation. 

When the linkage routine is entered, the 
DOSSVC bit is set on and control is given to the 
VSA" data management routine IKQVS". On return 
from IKQVSM DMSVIP turns off the DOSSVC bit and 
returns control to the user program. (Refer to 
Simulate as VSA" I/O Macros in this section.) 

For CLOSE processing, the DOSSVC bit is set on 
and control is passed to the CMS/DOS routine 
D"SCLS via SVC 2. As in the case of OPEN, once 
control passes to the CMS/DOS routine, execution 
of the VSA" function is the same as for the DOS 
VSAM functions described above. 

On return from executing the VS1" CLOSE, the 
DOSSVC bit is turned off and control passes to 
D"SSOP, which returns to the user program. 

D"SVIP simulates the GENCE, "ODCB, SHOWCB, and 
TESTCB control block manipulation macros. 

GENCB PROCESSING: When a GENCB macro is isstied 
;ith-BLK;ics--or BLK=EXLST specified, the GENCB 
PLIST is passed unmodified to IKQGEN for 
execution. If GENCB is issued with BLK=RPL and 
BCB=address specified, the PLIST is rearranged 
to exclude the ECB specification, because DOS/VS 
does not support BCB processing. The GENCB 
PLIST is then passed to IKQGEN for execution. 

~Q~£~, SHOWCB, AND TESTCB ~~Q£~~~!!~: When 
MODCB, SHOWCB: or-TESTCB-is--issued, the OS ACB, 
RPL, and EXLST control blocks are reformatted, 
if necessary, to conform to DOS/VS formats. 

For "ODCB and SHOWCB, the requests are passed 
to IKQT"S for processing. When "ODCB is issued 
with EXLST= specified, ensure that the exit 
routines return control to entry point D"SVIP3. 

For TESTCB, check for any error routines the 
user may have specified. If the TESTCB 
specified RPL= and IO=CO~PLETE, a not equal 
result is passed to the user. All other TESTCD 
requests are passed to DOS and the new PSW 
condition code indicates the results of the 
test. 

If an error return is provided for TESTCB, 
the address of DMSVIP4 is SUbstituted in the 
PLIST. This allows DMSVIP to regain control 
from VSA" so that the DOSSVC bit can be turned 
off. The error routine is then given control 
after the address is returned to the PLIST. 

DftSVIP simulates the as GET, PUT, POINT, EBDREQ, 
ERASE, and CHECK I/O macros. 

First, the OS request code in register 0 is 
mapped to a DOS/!S request code. The RPL or 
chain of RPLs 1S rearranged to DOS format 
(unless that has already been done) • 

If there is an ECB address in the OS BPL, a 
flag is set in the new DOS RPL and the ECB 
address is saved at the end of the RPL. 

Asynchronous I/O processing is simulated by 
setting active exit returns inactive in the user 
EXLST. The exception to this is the JBNAD exit 
which need not be set inactive since it is not 
an error exit. Setting error exits to be 
inactive prevents VSAM from taking an error 
exit, thus allowing such an exit to be deferred 
until a CHECK can be issued for it. 

The DOS macro is then issued via a BALB to 
IKQVS". 

DOS error codes returned in the RPL PDBK 
field that do not exist in as are mapped to 
their OS equivalents= If the user has specified 
synchronous process1ng, this return code is 
passed unchanged in register 15. 

Por asynchronous processing, return codes are 
cleared before return and any exit routines set 
inactive are reactivated in the EXLST. Also, 
all ECEs are set to WAITING status. 

CHECK PROCESSING: For CHECK processing, return 
codes -in-the--RPL FDBK field are checked to 
determine the results of the I/O operation. If 
there is an active exit routine provided for the 
return code, control is passed to that routine. 
Also, all WAITING EeBs are posted with an 
equivalent completion code. 

If no active exit routine is provided or if 
the exit routine returns to VSAM, the return 
code is placed in register 15 and control is 
returned to the instruction following the 
CHECK. 

Two types of support for error routine 
processing are provided in DMSVIP. Entry point 
DMSVIP3 provides support for user exit routines; 
entry point DMSVIP4 provides support for EBET 
error returns. 

Section 2. Method of Operation and Program Organization 197 



M~]~ EXIT ROUTINE PROCESSING: DMSVIP provides 
support-for--OS-YSAM--I/o-error exits at entry 
point DMSVIP3. At this entry point the DOSSVC 
bit is turned off and the user storage key is 
restored. 

The address of the user routine is recovered 
from VIp·s saved exit list (either the primary 
exit list in the work area or the overflow exit 
list, OEXLSA). 

Control then passes to the appropriate exit 
routine. If the routine is one that returns to 
VSAM, the DOSSVC flag is set ON and VSAM 
processing continues. 

DMSVIP can 
exit routines 
program. 

save the addresses of up to 128 
during execution of a user 

ERET ERROR ~~YI!!] g~~~I~~l!Q: DMSVIP provides 
support-for os VSAM ERET exit routines used in 
conjunction with the TESTCB macro. This support 
is located at entry point DMSVIP4. At DMSVIP4, 
the DOSSVC bit is turned off and the user 
storage key is restored. The address of the 
ERET routine is recovered from the work area and 
control passes to that routine. 

The ERET routine may not return control to 
VSAM. 

COMPLETION PROCESSING FOR OS 
PROGRAMS 

AND DOS VSAM 

When an OS or DOS VSAM program completes, 
control is passed to module DMSVSR, which 
"cleans up" after VSAM. DMSVSR can be called 
from three routines after OS processing: 

• DMSIRT, if processing completes without 
system errors or serious user errors. 

• DMSEXT, if the user program is used as part 
of an EXEC file. 

• DMSABI, if there are system errors or the 
user program abnormally terminates. 

After DOS VSAM processing comFletes, DMSVSR 
is called by DMSDOS. 

DMSVSR issues an SVC 2 to execute the DOS 
transient routine $$BACLOS. $$BACLOS first 
checks for any OPEl VSAM files. If any are open, 
SVC 2 is issued to $$BCLOSE (DMSCLS) to close 
the files. 

If there are no open files or if all ACB·s 
have been closed, $$BACLOS issues SVC 2 to 
$$BEOJ4, an entry point in DMSVSR. At $$BEOJ4, a 
PURGESYS DIAGBOSE 64 is issued to purge the 
CMSVSAM DCSS. DMSVSR then checks to see if an as 
program has completed processing. If this is the 
case, the SET DOS OFF command is issued and 
control returns to the caller. 

When in a CMS environment, a processor or a 
user-written program is executing and utilizing 
Os-type functions, OS is not controlling this 
action, CMS is in control. Consequently, it is 
not OS code that is in C~S, but routines to 
simulate, in terms of CMS, certain as func~ions 
essential to the support of OS language 
processors and their generated code. 

These functions are simulated to yield the 
same results as seen from the processing 
program, as specified by OS program logic 
manuals. However, they are supported only to 
the extent stated in CMS documentation and to 
the extent necessary to successfully execute OS 
language processors. The user should be aware 
that restrictions to OS functions as viewed from 
OS exist in CMS. 

Certain TSO Service routines are provided to 
allow the Program Products to run under CMS. The 
routines are the Command Scan and parse Service 
Routines and the Terminal I/O Service Routines. 
In addition the user 'must provide some 
initialization as documented in TSO TMP Service 
Routine initialization. The OS functions that 
CMS simulates are shown in Figure 54. 

TSO macros that support the use of the terminal 
monitor program (TMP) service routines are 
contained in TSOMAC MACLIB. The macro functions 
are as described in the TSO TMP documentation 
with the exception of PUTLI.E, GETLINE, PUTGET, 
and TCLEARQ. 

Before using the TSO service routines, the 
calling program performs the following 
initialization: 

1. Stores the address of the command line as 
the first word in the command processor 
parameter list (CPPL) • The TSOGET macro 
puts the address of the CPPL in register 
1. 

2. Initializes CMS storage using the STRINIT 
macro. 

3. 

4. 

Clears the ECT field that contains the 
address of the I/O work area (ECTIOWA). 

Issues the STACK macro to define the 
terminal as the primary source of input. 

Most of the simulated 
blocks are contained in 
control blocks: 

supervisory OS 
the following 

control 
two CMS 

CMSCVT simulates the communication vector table 
(CVT). Location 16 contains the address 
of the CVT control section. 

198 IBM VM/370: system Logic and Problem Determination Guide 



SYC 
Nuaber 

OS ftacro 
Punction 

Siaulation 
Routine 

--------------------------------00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 

11 
\ 13 
"1.\14 

18 
19 
20 
21 
22 
23 
24 
25 
35 
40 
41 
42 
44 
46 
47 
48 
51 
56 

\. 57 
60 
62 
63 
64 
68 
69 

93 
\. 94 
~96 

IDAP 
WAIT 
POST 
BXIT 
GETftAIN 
PREEMAIN 
LINK 
ICTL 
LOAD 
DBLBTE 
GETftAIN/ 

PRBBMAIB 
GETPOOL 
TIMB 
ABEND 
SPIB 
BLDL/PIND 
OPBN 
CLOSE 
STOW 
OPENJ 
TCLOSE 
DEYTYPE 
TRKBAL 
WTO/WTOR 
BXTRACT 
IDENTIFY 
ATTACH 
CHAP 
TTIMER 
STIftER 
DEQ 
SNAP 
ENQ 
FREEDBUF 
STAE 
DETACH 
CHKPT 
RDJFCB 
SYNAD 
BACKSPACE 
GET/PUT 
READ/WRITE 
NOTE/POINT 
CHECK 
TGET/TPUT 
TCLEARQ 
STAI 

DMSSVT 
DftSSYB 
DftSSVN 
DftSSLB 
DftSSMN 
DftSSMN 
DftSSLN 
DftSSLB 
DftSSLN 
DftSSLB 
DMSSMN 

DftSSftN 
DftSSVT 
DftSSAB 
DftSSVT 
DftSSVT 
DftSSOP 
DMSSOP 
DftSSVT 
DftSSOP 
DftSSOP 
DMSSVT 
DftSSVT 
DftSSVT 
DMSSVT 
DftSSVT 
DftSSVT 
DftSSVT 
DMSSVT 
DftSSVT 
DftSSVT 
DftSSVT 
DMSSVT 
DftSSVT 
DMSSVT 
DftSSVT 
DftSSVT 
DMSSVT 
DftSSVT 
DftSSVT 
DMSSQS 
DftSSBS 
DMSSCT 
DftSSCT 
DftSSVB 
DMSSVN 
DMSSVT 

Pigure 54. OS Punctions that CftS Simulates 

Reads or writes direct access voluaes 
Waits for an I/O coapletion 
Posts the I/O coapletion 
Returns from linked phase 
conditionally acquires user free storage 
Releases user-acquired free storage 
Links control to another load phase 
Deletes, then links control to another load phase 
Reads another load phase into storage 
Deletes a loaded phase 
Manipulates free user storage 

siaulates an SVC10 
Gets the time of day 
Terainates processing 
Processes program interruptions 
Manipulates simulated partitioned data files 
Activates a data file 
Deactivates a data file 
ftanipulates partitioned director1es 
Activates a data file 
Temporarily deactivates a data file 
Obtains device-type physical characteristics 
Effective NOP 
Communicates with the terminal 
Effective NOP 
Adds entry to loader table 
Effective LINK 
Effective NOP 
Accesses or cancels timer 
Sets timer interval and timer exit routine 
Effective NOP 
Dumps specified storage areas 
Effective NOP 
Releases a free storage buffer 
Allows processing program to decipher abend condition 
Effective NOP 
Effective NOP 
Obtains information from FILEDEP command 
Handles data set error conditions 
Backs up to the beginning of the previous record 
Manipulates data records 
Manipulates data blocks 
Accesses or changes relative track address 
Tests ECB for completion and errors 
Terminal processing 
Clears input queue 
Adds or deletes an attention exit level 

-. 
I 
I 

CMSCB allocated from system free storage 
whenever a PILEDEP command or an OPEN 
(SYC 19) is issued for a data set. The 

CftS control block consists of the CMS 
file Control block (PCB) for the data 
file management under CftS, and simulation 
of the job file control block (JFCB), 
input/output block (lOB), and data extent 
block (DEB). The name of the data set is 
contained in the FCB, and is obtained 
from the FILEDEF argument list, or from a 
predetermined file name supplied by the 
processing problea program. 

user profile table (UPT), protected step control 
block (PSCB), and environment control table 
(ECT) • 

CftS also utilizes portions of the supplied data 
control block (DCB) and the data event control 
block (DECB). The TSO control blocks utilized 
are the command program parameters list (CPPL), 

CftS provides a number of routines to simUlate 
certain operating system functions used by 
programs such as the Assembler and the FORTRAN 
and PL/I compilers. Some of the SVC simUlation 
routines are located in the disk resident 
transient module DftSSYT. Whenever one of the 
SVC routines in DMSSVT or is invoked, that 
routine is loaded into the transient area. The 
following paragraphs describe how these 
simulation routines work. 

section 2. ftethod of Operation and Program Organization 199 



!Q!~-§!£_~: Writes and reads the source code 
spill file, SYSUT1, during language compilation 
for PL/I Optimizer and ANSI COBOL Compilers. 

WAIT-SVC 1: Causes the active task to wait until 
one--of-more event control blocks (ECBs) have 
been posted. For each specified ECB that has 
been posted one is subtracted from the number of 
events specified in the WAIT macro. If the 
number of events is zero by the time the last 
ECB is checked control is returned to the user. 
If the number of events is not zero after the 
last ECB is checked and the number of events is 
not greater than the number of ECBs, the active 
task is put into a wait state until enough ECBs 
are posted to set the number of events at zero. 
When the event count reaches zero the wait bits 
are turn off in any ECBS that have not been 
posted and control is returned to the user. If 
the number of events specified is greater than 
the number of ECBs the system abnormally 
terminates with an error message. All options 
of WAIT are supported. 

~Q§!=§!£_~: Causes the specified event control 
block (ECB) to be set to indicate the occurrence 
of an event. This event satisfies the 
requirements of a WAIT macro instruction. All 
options of POST are supported. The bits in the 
ECB are set as follows: 

~~! .§~!!!!!g 
o 0 
1 1 

2-7 Value of specified completion code 

EXIT-SVC 3: This SVC is for CMS internal use 
only:--It-is used by the CMS routine DMSSLN to 
acquire an SVC SAVEAREA on return fron an 
executing program that had been given control by 
LINK (SVC 6), XTCL (SVC 7) or ATTACH (SVC 42). 

GETMAIN-SVC 4: Control is passed to the GETMAIN 
entry--point- in the DMSSMN storage resident 
routine. The mode is determined: VU, VC, EC. 
A call is made to GETBLK to obtain the block of 
storage. Control blocks of two fullwords 
precede each section of a vailable storage: (1) 
the address of the next block, (2) the size of 
this block. The head of the pointer string is 
located at the words MAIRSTRT - initial free 
block, and MAINLIST - address of first link in 
chain of free block pointers. All options of 
GETMAIN are supported. 

FREEMAIN-SVC 5: Releases a block of free 
~torage:---If-the block is part of segmented 
storage, a control block of two fullwords is 
placed at the beginning of the released area. 
Adjustment is made to include this block in the 
chain of available areas. All options of 
FREEMAIN are supported. 

LINK-SVC 6: Program transfer is controlled by 
the--nocleus routine, DMSSLR. The LINK macro 
causes program control to be passed to a 
designated phase. If the COMPSWT bit within the 
byte OSSFLAGS is on, loading is done by calling 
LOADMOD to bring a CMS MODULE file into storage. 
If this flag is off, dynamic loading is 
initiated by calling LOAD. A GETMAIR is issued 
to obtain enough storage so that the loader 

(DMSLDR) may relocate the phase in storage. A 
chain of link request blocks is built to record 
the old SVC PSW, and the location and size of 
the phase storage area. If the routine is 
already in storage, determined by scanning the 
load request chain, no LOAD or LOADMOD is done. 
Control is passed directly to the routine. CMS 
ignores the DCB and HIARCH! options; all other 
options of LINK are supported. 

XCTL-SVC 7: XCTL first deletes the current phase 
from ~torage. Processing then continues as for 
LINK-SVC 6, as previously described. CMS 
ignores The DCB and HIARCH! options; all other 
options of XCTL are supported. 

bQ!Q-§!£_§: Control is passed to DMSSLN8 located 
in DMSSLN when a LOAD macro is issued. If the 
requested phase is not in storage, a LOAD or 
LOADMOD is issued to bring it in. Control is 
then returned to the caller. CMS ignores the 
DCB and HIARCHY options; all other options of 
LOAD are supported. 

~~b~I~=~!£_2: Control is passed to DMSSLN9 
located in DMSSLN when a DELETE macro is issued. 
Upon entry, DELETE checks to see whether the 
module specified was loaded using LOADMOD or 
dynamically loaded by LOAD or INCLUDE. If it 
was loaded by LOAD MOD control is returned to the 
user. If it was dynamically loaded, the 
responsibility count is decremented by one and 
if it reaches zero, the storage is released 
using FREEMAIN, and control is returned to the 
user. All options of DELETE are supported. 
Code 4 is returned in register 15 if the phase 
is not found. 

~1~~!lML~~~~~A!M-S!£_jQ: Control is passed to 
the SVC 10 entry point in DMSSMN. Storage 
management is analogous to SVC 4 and 5, 
respectively. All options of GETMAIN and 
PREEMAIN are supported. Subpool specifications 
are ignored. 

~ll~QQ1: Gets control via an OS 
IECQBFGI. IECQBPGI allocates an 
storage using GETMAIN, sets up a 
block" in the free storage, stores 
the buffer control block in the 
returns control to the caller. 

LINK macro to 
area of free 

buffer control 
the address of 
DCB, and then 

l!~I=§!£_jj: This routine (TIME) located in 
DMSSVT receives control when a TIME macro 
instruction is issued. A call is made (by SIO 
or DIAGNOSE) to the RPQ software chr6nological 
timer device, X'OPF'. The real time of day and 
date are returned to the calling program in a 
specified form: decimal (DEC) binary (BIN), or 
timer units (TU). All options of TIME except 
MIC are supported. 

ABEND-SVC 13: This routine (DMSSAB) receives 
controI--when either an ABEND macro or an 
unsupported OS/360 SVC is issued. If an SVC 13 
was issued with the DUMP option and either a 
SYSUDUMP or SYSABEND ddname had been defined via 
a call tD DMSPLD ~ILEDEP), a SNAP (SVC 51) 
specifying PDATA=ALL is issued to dump user 
storage to the defined file. A check is made to 
see if there are any outstanding STAE requests. 
If not, or if an unsupported SVC was issued, 
DMSCWR is called to type a descriptive error 
message at the terminal. Next, DMSCWT is called 
to wait until all terminal activity has ceased, 

200 IBM VM/370: System Logic and Problem Determination Guide 



and then, control is passed to the ABEND 
recovery routine. If a STAE macro was issued, a 
STAE work area is built and control is passed to 
the STAE exit routine. After the exit routine 
is complete, a test is made to see if a retry 
routine was specified. If so, control is passed 
to the retry routine. Otherwise, control passes 
to DMSABN unless the task that had the ABEND was 
a subtask. In that case, the resume'pSW in the 
link block for the subtask is adjusted to point 
to an EXIT instruction (SVC 3). The EXIT frees 
the subtask, and the attaching task is 
redispatched. 

SPIE-SVC 14: This routine (SPIE) receives 
control-when a SPIE macro instruction is issued. 
When it gets control, SPIE inserts the new 
program interruption control area (PICA) address 
into the program interruption element (PIE). 
The program interruption element resides in the 
program interruption handler (DMSITP). It then 
returns the address of the old PICA to the 
calling program, sets the program mask in the 
calling program's PSW, and returns to the 
calling program. All options of SPIE are 
supported. 

~1R1Ll!!R1IIE~_Ql=2!~_1~: SVC to entry points 
in DMSSOP. If an os disk is specified, DMSSVT 
branches and links to DMSROS. See BLDL and FIND 
under description of BPAM routines in DMSSVT. 

STOW-SVC 21: See STOW under description of BPAM 
routines-In DMSSVT. 

~R~!L~R~!~=2!~_12L~~: OPEN simulates the data 
management function of opening one or more 
files. It is a nucleus routine and receives 
control from DMSITS when an executing program 
issues an OPEN macro instruction. The OPEN 
macro causes an SVC to DMSSOP. DMSSOP simulates 
the OPEN macro. The DISP and RDBACK options are 
ignored by CMS; all other options of OPEN and 
OPENJ are supported. 

~1Q2ILI~1Q2~=2!~_~QL~J: CLOSE and TCLOSE are 
simulated in the nucleus routine DMSSOP. It 
receives control whenever a CLOSE or TCLOSE 
macro instruction is issued. The CLOSE macro 
causes an SVC to DMSSOP. DMSSOP simulates the 
CLOSE macro. CMS ignores the DISP option; all 
other options of CLOSE and TCLOSE are 
supported. 

~~!IXg~=§!~_~~: This routine (DEVTYPE), located 
in DMSSVT, receives control when a DEVTYPE macro 
is issued. Upon entry, DEVTYPE moves Device 
Characteristic Information for the requested 
data set into a user specified area, and then 
returns control to the user. All options of 
DEVTYPE are supported. 

IRK~!~=2!~_~2: TRKBAL is a 
DMSSVT. 

NOP located in 

~IQL~IQ~=2!~_J2: This routine (WTO), located in 
DMSSVT, receives control when either a WTO or a 
iTOR macro instruction is issued. For a WTO, it 
constructs a calling sequence to the DMSCWR 
function program to type the message at the 
terminal. (The address of the message and its 
length are provided in the parameter list that 
results from the expansion of the WTO macro 
instruction.) It then calls the DMSCWT function 
program to wait until all terminal I/O activity 

has ceased. Next, it calls the DMSCWR function 
program to type the message at the ter.inal and 
returns to the calling program. All options of 
WTO and WTOR are supported except those 
concerned with multiple console support. 

Por a WTOR macro instruction, this routine 
proceeds as described for WTO. However, after 
it has typed the message at the terminal it 
calls the DMSCRD function program to read the 
user's reply from the terminal. When the user 
replies with a message, it moves the message to 
the buffer specified in the WTOR parameter list, 
sets the completion bit in the ECB, and returns 
to the calling program. 

~!l~!~l=§!~_~Q: This routine (EXTRACT), located 
in DMSSVT receives control when an EXTRACT macro 
is issued. Upon entry, EXTRACT clears the user 
provided answer area and returns control to the 
user with a return code of 4 in register 15. 

IDENTIFY-SVC 41: Located in DMSSVT, this 
routIne-Creates a new load request block with 
the requested name and address if both are 
valid. The new entry is chained from the 
existing load request chain. The new name may 
be used in a LINK or ATTACH macro. 

ATTACH-SVC 42: Located in DMSSLN, ATTACH 
operates-rike a LINK (SVC 6), with additional 
capabilities. The user is allowed to specify an 
exit address to be taken upon return from the 
attached phase; also, an ECB is posted when the 
attached phase has completed; and a STAI routine 
can be specified in case the attached phase 
abends. The DCB, LPMOD, DPMOD, HIARCHY, GSPV, 
GSPL, SHSPV, SHSPL, SZERO, PURGE, ASYNCH, and 
TASKLIB options are ignored; all other options 
of ATTACH are supported. Because CMS is not a 
multitasking operating system, a phase requested 
by the ATTACH macro must return to CMS. 

~~AR=~!£_~~: CHAP is a NOP located in DMSSVT. 

TTIMER-SVC 46: Checks to ensure that the value 
Ii-the--timer (hex location 50) was set by an 
STIMER macro. If it was, the value is converted 
to an unsigned 32 bit binary number specifying 
26 microsecond units and is returned in register 
o. If the timer was not set by an STIMER macro 
a zero is returned in register 0, after setting 
register 0, the CANCEL option is checled. If it 
is not specified, control is returned to the 
user. If it is specified, the timer value and 
exit routine set by the STIMER macro are 
cancelled and control is returned to the user. 
All options of TTIMER are supported. 

~Il~]]=~!£_~l: Checks to see if the WAIT option 
is specified. If so, control is returned to the 
user. If not, the specified timer interval is 
converted to 13 microsecond units and stored in 
the timer (hex location 50) • If a timer 
completion exit routine is specified, it is 
scheduled to be given control after completion 
of the specified time interval. If not, no 
indication of the completion of the time 
interval is scheduled. After checking and 
handling any specified exit routine address, 
control is returned to the user. All options of 
STIMER are supported. The TASK option is 
treated as though the REAL option had been 
specified. 

section 2. Method of operation and Program organization 201 



RIQ:~!~_!~: DEQ is a HOP located in DftSSVT. 

SIAP-SVC 51: Control is passed to SlAP in 
iiiissVT-;iien a SlAP .acro is issued. SlAP fills 
in a PLIST with a beginning and ending address 
and calls DftPEIEC. DftFEXBC du.ps the specified 
storage along with the registers and low storage 
to the printer. Control is then returned to 
SlAP and SlAP checks to see if any more 
addresses are specified. It continues calling 
DftPEXBC until all the specified addresses have 
been du.ped to the printer. Control is then 
returned to the user. The DCB, SDATA, and PDATA 
options are ignored by CftS; all other options of 
SRAP are supported. 

J!g=SV£_~§: ERQ is a lOP located in DftSSVT. 

FRBEDBUF-SVC 51: This routine (FREEDBUF) 
locatea--lii--iiftSSVT receives control when a 
FREEDBUF macro is issued. Upon entry, FREEDBUF 
sets up the correct DSECT registers and calls 
the FREEDBUF routine in DftSSBD. This routine 
returns the dyna.icallyobtained buffer (BDAft) 
specified in the DECB to the DCB buffer control 
block chain. Control is then returned to the 
DftSSVT routine which returns control to the 
user. All the options of PREEDBUF are 
supported. 

§!!I~!£_§Q: This routine (STAE) located in 
DftSSVT receives control when a STAE macro is 
issued. Upon entry, STAE creates, overlays or 
cancels a STAE control block (SCB) as requested. 
Control is then returne~ to the user with one of 
the following return codes in register 15: 

Code 1t~gll!llg 00-- An SCB is successfully created, 
overlaid or cancelled. 

08 The user is atte.pting to cancel or 
overlay a non-existent SCB. 

o r-----------------, 
10 or pointer to next SCBI 

4 t--- ., 
lexit address I 

8 1-------"'------------\ 
Iparameter list address I 

12 ' ____ .J 

DETACH-SVC 62: DETACH is a NOP located in 
DMSSVT:------

CHKPT-SVC 63: CHKPT is a NOP located in 
DMSSVT:-----

RDJFCB-SVC 64: This routine (RDJFCB) receives 
control--;hen a RDJFCB macro instruction is 
issuedw When it gets control, RDJPCB obtains 
the address of the JFCB from the DCBEXLST field 
in the DCB and sets the JFCB to zero. It then 
reads the simulated JPCB located in CftSCB that 
was produced by issuing a FILEDEP into the 
closed area. RDJFCB calls the STATE function 
program to determine if the associated file 
exists. If it does, RDJFCB returns to the 
calling program. If the file does not exist, 

BDJFCB sets a switch in the DCB to indicate this 
and then returns to the calling program. RDJFCB 
is located in DftSSVT. All the options of RDJFCB 
are supported. 

Rote: The switch set by the RDJFCB is tested by 
the FORTRAI object-time direct-access handler 
(DIOCS) to determine ~hether or not a referenced 
disk file exists. If it does not, DIOCS 
initializes the direct access file. 

~I!!R=~!£_§~: Located in DMSSVT, SYNAD attempts 
to simulate the functions SYRADAF and SYRADRLS. 
SYNADAF expansion includes an SVC 68 and a 
high-order byte in register 15 denoting an 
access method. SYNAD prepares an error message 
line, swap save areas and register 13 pointers. 
The message buffer is 120 bytes: bytes 1-50, 
84-119 blank; bytes 51-120, 1205 INPUT/OUTPUT 
ERROR nnn OR FILE: "dsna.e"; where nnn is the 
CftS RDBUF/WRBUF error code. All the options of 
SYRAD are supported. 

SYNADRLS expansion includes SVC 68 and a high 
order byte of X'FF' in register 15. The save 
area is returned, and the message buffer is 
returned to free storage. 

BACKSPACE-SVC 69: Also in DftSSVT. For a tape, 
i--BSi-coiiana--is issued to the tape. Por a 
direct access data set, the CftS write and read 
pointers are decremented by one. Control is 
passed to BACKSPACE in DftSSVT when a BACKSPACE 
macro is issued. BACKSPACE decrements the read 
write pointer by one and returns control to the 
user. No physical tape or disk adjustments are 
made until the next READ or WRITE macro is 
issued. All the options of BACKSPACE are 
supported. 

!§I!L!RQ!=§!£_~]: Located in DftSSVN, this 
routine receives control when a TGET or TPUT 
macro is issued. It is provided to support TSO 
service routines needed by program products. 
TGET reads a terminal line; TPUT writes a 
ter.inal line. The return code is zero if the 
operation was successful and a four if an error 
was encountered. 

J£LI!~2=§1£_2!: TCLEARQ is located in DftSSVN 
and causes the terminal input queue to be 
cleared via a call to DESBUF. At completion a 
return is made to the user. 

~J!X=§l£_~§: Located in DKSSVT, STAX gets and 
chains a CMSTAXE control block for each STAX SVC 
issued with an exit routine address specified. 
The chain is anchored by TAXEADDR in DMSNUC. If 
no exit address is specified the most recently 
added CftSTAXE is cleared from the chain. If an 
error occurs during STAX SVC processing, a 
return code of eight is placed in register 15. 
The only option of STAX which may be specified 
is 'EXIT ADDRESS'. 

Sn;!LR!!! : See the DlISSQS prolog for 
descr iption. 

]IJ~L!]!!J: OS RBAD and WRITE macros branch and 
link to DMSSBS. DMSSBS branches and links to 
DftSSEB and, if the disks is an OS disk, DMSSEB 
branches and link to DMSROS. See DMSSBS for 
description. 

202 IBM Vft/310: System Logic and Problem Deter.ination Guide 



!QI~LRQ!!!L~!!~l!IE~_fl: os NOTE, POINT, and 
FIND (type c) macros branch and link to entry 
points in DMSSCT. If the disk is an as disk, 
DMSSCT branches and links to DMSROS. See DMSSCT 
for descriptions. 

f~~£!: See the DftSSCT prolog for description. 

Notes on using the as simulation routines: 

• CftS files are physically blocked in 800-byte 
blocks, and logically blocked according to a 
logical record length. If the fi1emode of 
the file is not 4, the logical record length 
is equal to the DCBLRECL and the file must 
always be referenced with the same DCBLRECL, 
whether or not the file is blocked. If the 
fi1emode of the file is 4, the logical record 
length is equal to the DCBBLKSI and the file 
must always be referenced with the same 
DCBBLKSI. 

• When writing CftS files with a fi1emode number 
other than four, the as simulation routines 
deblock the output and write it on a disk in 
unblocked records. The simulation routines 
delete each 4-byte block descriptor word 
(BDW) and each 4-byte record descriptor word 
(RDW) of variable length records. This makes 
the OS-created files compatible with 
CMS-created files and CMS utilities. When 
CMS reads a CftS file with a fi1emode number 
other than four, CftS blocks the record input 
as specifies and restores the BDW and RDW 
control words of variable length records. 

If the CftS fi1emode number is four, CMS does 
not unblock or delete BDWs or RDWs on output. 
CMS assumes on input that the file is blocked 
as specified and that variable length records 
contain block descriptor words and record 
descriptor words. 

• To set the READ/WRITE pointers for a file at 
the end of the file, a FILEDEF command must 
be issued for the file specifying the ftOD 
option. 

• A file is erased and a new one created if the 
file is opened and all the following 
conditions exist: 

The OUTPUT or OUTIN option of OPEN is 
specified. 

The TYPE option of OPEN is not J. 

The dataset organization option of the DCB 
is not direct access or partitioned. 

A FILEDEF command has not been issued for 
data set specifying the ftOD option. 

• The results are unpredictable if two DCBs 
read and write to the same data set at the 
same time. 

ACCESS COftftAID 11Q!: The module DftSACC gets 
control -fIrst- when you invoke the ACCESS 
com.and. DMSACC verifies parameter list 

validity and sets the necessary internal flags 
for later use. If the disk you access specifies 
a target mode of another disk currently 
accessed, DMSACC calls DftSALU to clear all 
pertinent information in the old active disk 
table. DMSACC then calls DMSACF to bring in the 
user file directory of the disk. As soon as 
DMSACF gets control, DMSACF calls DMSACM to read 
in the master file directory of the disk. Once 
DMSACM reads the label of the disk, and 
determines that it is an OS disk, DMSACM calls 
DMSROS (ROSACC) to complete the access of the OS 
disk. Upen returning from DMSROS, DMSACM 
returns immediately to DMSACF, bypassing the 
master file directory logic for CMS disks. 
DftSACF then checks to determine if the accessed 
disk is an OS disk. If it is an OS disk, DMSACF 
returns immediately to DMSACC, bypassing all the 
user file directory logic for OS disks. DMSACC 
checks to determine if the accessed disk is an 
OS disk; if it is, another check determines if 
the accessed disk replaces another disk to issue 
an information message to that effect. Another 
check determines if you specified any options or 
fi1eid and, if you did, a warning message 
appears on the terminal. Control now returns to 
the calling routine. 

~!11~11 £Q~~!!~ FLQ]: DMSFLD gets control first 
when you issue a CMS FILEDEF command. DMSFLD 
adds, changes, or deletes a FILEDEF control 
block (CMSCB) and returns control to the calling 
routine. 

LISTDS COMMAND l~Qj: The module DMSLDS gets 
control -fIrst- when you invoke the LISTDS 
command. DMSLDS verifies parameter list 
validity and calls module DMSLAD to get the 
active disk table associated with the specified 
mode. DMSLDS reads all format 1 DSCB and if you 
specified the PDS option and the data set is 
partitioned, DMSLDS calls DKSROS (ROSFIND) to 
get the members of the data set. After 
displaying the DSCB (or DSCB) on you console, 
DMSLDS returns to"the calling routine. 

~Q!JIILJ £~AAA!~ l~Qj: The module DftSMVE gets 
control first when you issue a CftS ftOVEFILE 
command. DMSMVE calls DMSFLD to get an input 
and output CMSCB and, if the input DftSCB is for 
a disk file, DMSMVE calls DMSSTT to verify the 
existence of the input file and get default DCB 
parameters in absence of CMSCB DCB parameters. 
DMSMVE uses OS OPEN, FIND, GET, PUT, and CLOSE 
macros to move data from the input file to the 
output file. After moving the specified data, 
control returns to the calling routine. 

~~I~! gQ~~J!] ILO!: The module DMSQRY gets 
control first when you invoke the QUERY 
co.mand." DMSQRY verifies parameter list 
validity and calls DMSLAD to get the active disk 
table associated with the specified .ode. 
DMSQRY displays all the information that you 
requested on your console. When DMSQRY 
finishes, control returns to the calling 
routine. 

RELEASE COMMAND FLOW: The module DMSARE gets 
control fIrst--when- you invoke the RELEASE 
command. DMSARE verifies parameter list 
validity and checks to determine if the disk you 
want to release is accessed. If the disk you 
want to release is currently active, DMSARE 
calls DMSALU to clear all pertinent information 

section 2. Method of Operation and Program organization 203 



associated with the active disk. DMSALU first 
checks the active disk table for any existing 
CftS tables kept in free storage. If the disk 
you want to release is an as disk, DMSALU does 
not find any tables associated with a CMS disk. 
If the disk is an as disk, DMSALU releases the 
as FST blocks (if any) and clears any as FST 
pointers in the as file control blocks. DMSALU 
then clears the active disk table and returns to 
DftSARE. DMSARE then clears the device table 
address for the specified disk and returns to 
the calling routine. 

STATE COMMAND I~Q!: The module DMSSTT gets 
control--first when you invoke the STATE 
command. DMSSTT verifies the parameter list 
validity and calls module DMSLAD to get the 
active disk table associated with the specified 
mode. Upon return from DMSLAD, DMSSTT calls 
DMSLFS to find the file status table (FST) 
associated with the file you specified. Once 
DMSLFS finds the associated FST, it checks to 
determine if the file resides on an as disk. If 
it does, DKSLPS calls DMSROS (ROSSTT) to read 
the extents of the data set. Upon return from 
DMSROS, DMSLPS returns to DMSSTT. DMSSTT then 
copies the PST (or OS FST) to the FST copy in 
statefst and returns to the calling routine. 

DKSACC MODULE: Once Df:lS ACC determines that the 
disk--you--want to access is an as disk, it 
bypasses the routines that perform 'LOGIN UFD' 
and 'LOGIN ERASE'. 

If the disk you want to access replaces an as 
disk, message DMSACC7241 appears at your 
terminal. 

If you specified any options or fileid in the 
ACCESS command to an as disk, a warning message, 
DKSACC230W, appears to notify you that such 
options or fileid were ignored. DKSACC returns 
to the calling routine with a warning code of 
4. 

Y~~!£l MODULE: DKSACF verifies that the disk you 
want to--access is an as disk and, if it is, 
exits immediately. 

DKSACK KODULE: DKSACK saves the disk label and 
VToc-address-in the ADT block if the disk is an 
as disk. DMSACK checks to determine if a 
previous access to an as disk loaded DMSROS. If 
not, DKSACK calls DKSSTT to verify that DMSROS 
text exists. Upon successful return froa STATE, 
DKSACK loads DMSROS text into the high storage 
area with the same protect key and calls the as 
access routine (ROSACC) of DMSROS to read the 
format 4 DSCB of the disk. Upon successful 
return from DMSROS, control returns to the 
callin,g routine. Any other errors are treated 
as general logon errors. 

DMSALU ~QYY11: If the disk is an as disk, 
D~SFRET returns the as FST blocks (if any) to 
free storage. DMSALU clears the as FST pOinter 
in all active as file control blocks, decrements 
the DMSROS usage count and, if the usage count 
is zero, clears the address of DKSROS in the 
nucleus area. DMSALU also calls DKSFRET to 

returns to free storage the area which DMSROS 
occupies. 

DMSARE KODULE: DKSARE ensures that the disk you 
want--to-relase is an as disk. DKSARE calls 
DKSALU to release alIOS FST blocks and, if 
necessary, to free the area DMSROS occupies. 
Upon return from DKSALU, DKSARE clears the 
common CMS and as active disk table. 

• DSN If you specify the parameter DSN as 
'1', FILEDEF displays the message DKSFLD220R 
to request you to type in an as data set name 
with the format Q1.Q2.QN. Q1, Q2, and QN are 
the qualifiers of an as data set name. If 
you specify the parameter DSN as Q1.Q2.QN, 
FILEDEF assumes that Q1, Q2, and QN are the 
qualifiers of an as data set name, and stores 
the qualifiers with the format Q1.Q2.QN in a 
free storage block and chains the block to 
the FCB. 

• CONCAT -- If you specify the CONCAT option, 
FILEDEF assumes that the specified FILEDEF is 
unique unless a filedef is outstanding with a 
matching ddname, filename, and filetype. 
This allows you to specify more than one 
FILEDEF for a particular ddname. The CONCAT 
option also sets the FCBCATKL bit in the FCB 
to allow the as simulation routine to know 
the FCB is for a concatenated MACLIB. 

• KEKBER -- If you specify the member option, 
filedef stores the member name in FCBKEKBR in 
the FCB to indicate that the as simUlation 
routine should set the read/write pointer to 
point to the specified BPAK file member when 
OPEN occurs. 

DKSLDS MODULE: DMSLDS saves the return register, 
sets--itselj-with the nucleus protection key, 
clears the dsname key, and initializes its 
internal flag. 

DMSLDS verifies parameter list validity. The 
data set name must not exceed 44 characters, and 
the disk mode (the last parameter before the 
options) must be valid. DMSLDS joins the 
quailifiers with dots (.) to for. valid data set 
names. If you specify the data set name as a 
question mark (1), DKSLDS prompts you to enter 
the dsname in exactly the same form as the 
dsname which appears on the disk. 

DKSLDS calls DKSLAD to find the active disk 
table block. If you specify filemode as an 
asterisk (*), DKSLAD searches for all ADT 
blocks. If you specify the filemode as 
alphabetic, DKSLAD finds only the ADT block for 
the specified filemode. 

If you specify the dsname (which is 
optional), DKSLDS sets the channel programs to 
read by key. If you did not specify a dsname, 
DKSLDS searches the whole VTOC for format 1 
DSCBS and displays all the requested information 
contained in the DSCB on your console. If you 
specify the format option, the RECFK, LHECL, 
BLKSI, DSORG, DATE, LABEL, FKODE, and data set 
naae appear on you console; otherwise, only the 
FKODE and data set naae appear. 

204 IBM VK/370: system Logic and Problem Determination Guide 



If you specify the PDS option, DKSLDS calls 
the 'find' routine (rosfind) in DKSROS to read 
the .ember directory and pass back, one at a 
time, in the fcbmembr field of CKSCB the name of 
each member of the data set. This occurs if the 
data set is partitioned. 

After processing finishes, DKSLDS resets the 
nucleus key to the same value as the user key, 
puts the return code in register 15, and returns 
to the calling routine. 

DKSLFS ~QQY~~: DKSLFS verifies that the PST being- searched for has an OS disk associated 
with it. DKSLFS calls the DKSROS state routine 
(ROSSTT) to verify that the data set exists and 

CKS supports the data set attributes. Upon 
return from DKSROS, a return code of 88 
indicates that the data set was not found, and 
DKSLDS starts the search again using the next 
disk in sequence. Any other errors, such as a 
return code 80, cause DKSLFS to exit 
i.mediately. A return code of 0 from DKSROS 
indicates that the data set is on the specified 
disk. From this point on, execution occurs 
co.mon to both CKS and OS disks. 

Q~§~!~ ~~QY1~: If you specify the PDS option and 
the input 1S from a disk, DKSKVE sets the 
FCBKVPDS bit and issues an OS FIND macro before 
opening an output DCB to position the input file 
at the next member. DKSKVE then stores the 
input member name in the output CMSCB for use as 
the output filename. After reaching end-of-file 
on a member, the message DMSMVE2251 appears, 
DMSKVE closes the output DCB, and passes control 
to find the next member. After moving all the 
members to separate CMS files, movefile displays 
message DKSMVE226I, closes the input and output 
DCBS, and returns control to the calling 
routine. 

• ROSACC Routine -- ROSACC gets contr.ol from 
DMSACM after DMSACM determines that the label 
of the disk belongs to an OS disk. The 
ROSACC routine reads the format 4 DSCB of the 
disk to further verify the validity of the OS 
disk. ROSACC updates the ADT to contain the 
address of the high extent of the VTOC (if 
the disk is a DOS disk) or the address of the 
last active format 1 DSCB (if the disk is an 
OS disk), and the number of cylinders in the 
disk. If the disk is a DOS disk, ROSACC sets 
a flag in the ADT. Information messages 
appear to notify you that the disk was 
accessed in read-only mode. If the disk is 
already accessed as another disk, another 
information message appears to that effect. 
Finally ROSACC zeroes out the ADTFLGl flag in 
the ADT, sets the ADRFLG2 flag to reflect 
that an OS disk was accessed, and returns 
control to the calling routine. 

• ROSSTT Routine -- Verifies the existence of 
an OS data set and verifies the support of 
the data set attributes. 

Note: Within the ROSSTT 
reference to FCB or CMSCB 
DOS is active. 

description, any 
i.plies a DOSCB if 

ROSSTT gets control from DMSSTT after 
DMSSTT determines that the STATE operation is 

to an OS disk. The ROSSTT routine searches 
for the correct FCB which a previous FILEDEF 
associated with the data set. If the DOS 
environ.ent is active, ROSSTT locates the 
correct DOSCB that defines a data set 
described by a previous DLBL. If ROSSTT 
finds an active FST, control p~sses to 
ROSSTRET; otherwise, ROSSTT acqu1res the 
dsname block, places its address in the FCB, 
and moves the dsname in the FCB to the 
acquired block. ROSSTT acquires an FST 
block, chains it to the FST chain, and fills 
all general fields (dsname, disk address, and 
disk mode). BOSSTT now reads the for.at 1 
DSCB for the data set and checks for 
unsupported options (BDAM, ISAM, VSAM, and 
read protect). 

Errors pass control back to the calling 
routine with an error code. ROSSTT groups 
together all the extents of the data set (by 
reading the for.at 3 DSCB if necessary) and 
checks them for validity. ROSSTT bypasses 
any user labels that .ay exist and displays a 
message to that effect. Next, ROSSTT moves 
the DSCB1 BLKSIZE, LRECL, and RECFM 
parameters to the OS FST and passes control 
to rosstret. 

• ROSSTRET Routine -- If the disk is not a DOS 
disk, rosstret passes control back to the 
caller. If the specified disk is a DOS disk, 
rosstret fills in the OS FST BLKSIZE, LRECL, 
and RECFM fields that were not specified in 
the DSCB1. If the CMSCB fields are zero, 
rosstret defaults the. to BLKSIZE=32760, 
LRECL=32670, and RECFM=U. Control then 
returns to the calling routine. 

• ROSRPS Routine ROSRPS reads the next 
record of an OS data set. Upon entry to the 
ROSRPS entry point, ROSRPS calls CHKITNT and, 
if the current CCHHR is zero, SETITNT to 
ensure the CCHHR and extent boundaries are 
correctly set. ROSRPS then calls DISKIO 
and, if necessary, CHKSENSE and GETALT to 
read the next record. If no errors exist or 
an unrecoverable error occurred, control 
returns to the user with either a zero (I/O 
OK) or an 80 (I/O error) in register 15. If 
an unrecoverable error occurs, ROSRPS updates 
the CCWS and buffer pointers as necessary and 
recalls CHKITNT and DISKIO to read the next 
record. 

• ROSFIND Routine -- ROSFIND sets the CCHHR to 
point to a member specified in FCBMEMBR or, 
if the FCBMVPDS bit is on, sets the CCHHR to 
point to the next member higher than FCBHEMBR 
and sets a new member name in FCBMEMBR. 

Upon entry at the ROSFND entry point, ROSFND 
sets up a CCW to search for a higher member 
name if the FCBMVPDS bit is on, or an equal 
member name if the FCBMVPDS bit is off. It 
then calls SETITNT, DISKIO and, if needed, 
CHKSENSE and GETALT to read in the directory 
block that contains the member name 
requested. After reading the block, it is 
searched for the requested member name. If 
the member name is not found, an error code 4 
returns to the calling routine. If an I/O 
error occurs while trying to read the PDS 
block, an error code 8 returns to the calling 
routine. If the member name is found, 

section 2. Method of Operation and Program Organization 205 



• 

• 

TTRCRVRT is called to convert the relative 
track address to a CCBB and pass the address 
of the member entry to the calling routine. 

ROSNTPTB Routine -- ROSRTPTB gets the current 
TTR, sets the current CCBBR to the value of 
the TTR, and backspaces to the previous 
record. 

Upon entry at the ROSNTPTB entry 
ROSNTPTB checks to determine if a 
POINT, or BSP operation was requested. 

point, 
NOTE, 

If register 0 is zero, ROTE is assumed. The 
note routine calls CBRCNVRT to convert the 
CCBB to a relative track and returns control 
to the calling routine with the TTR in 
register O. 

If register 0 is positive upon entry into 
DMSROS, POINT is assumed and ROSRTPTB loads a 
TTR from the address in register 0 and calls 
TTRCNVRT and SETXTNT to convert the TTR to a 
CCRRR. Then control returns to the calling 
routine. 

If register 0 is negative upon entry into 
DMSROS, BSP (BACKSPACE) is assumed. The 
backspace code checks to determine if the 
current position is the beginning of a track. 
If not, the backspace code decrements the 
record number by one and control then returns 
to the calling routine. If the current 
position is the beginning of a track, the 
backspace code calls CBRCRVRT to get the 
current CCBB. The backspace code then calls 
rdcnt to get the current record number of the 
last record on the new track, calls setxtnt 
to set the new extent boundaries, and returns 
control to the calling routine. 

HOTE Routine -- Upon entry to 
checks to determine if the DCB 
OS disk. If it does, DMSSCT 
(ROSHTPTB) to get the current 
then returns to the user. 

note, DMSSCT 
refers to an 
calls DMSROS 
TTR. Control 

• POINT Routine -- upon entry to point, DMSSCT 
checks to determine if the DCB refers to an 
os disk. If it does, DMSSCT calls DMSROS 
(ROSNTPTB) to reset the current TTR, calls 
CKCOHCAT and returns control to the calling 
routine. 

• CKCONCAT Routine -- Upon entry to CKCONCAT, 
DMSSCT checks to determine if the PCB MACLIB 
COHCAT bit is on. If it is on, DCBRELAD+3 
sets the correct os PST pointer in the PCB 
and returns control to the calling routine. 
If the PCB M~CLIB COHCAT bit is off, control 
returns to the calling routine. 

• PIHD (type_C) Routine -- If the DCB refers to 
an OS disk, DMSSCT calls DMSROS (ROSNTPTB) to 
update the TTR and control returns to the 
calling routine. 

• BOBROUTR Routine -- If the PCB OS bit is on, 
control passes to OSBEID. Otherwise, if no 
special I/O routine is specified in PCBPBOC, 
control passes to BOB2 in DMSSEB. 

• OSREAD Routine DMSSEB calls DMSROS to 
perform a read or write and then control 
passes to EOBRETRN which, in turn, passes 
control back to DMSSBS. DMSSBS passes 
control back to the routine calling the read 
or write macro operation. 

~~~~g~ ~Q~~~~ -- If the MICLIB CONCAT option is 
on in the CMSCB. OPEN checks the MICLIB names ion
the global list and fills in the addresses of OS
FSTS for any MACLIBS on OS disks. The CMSCB of
the first MACLIB in the global list merges and
initializes CMSCBS.

If the CMSCB refers to a data set on an OS disk,
DMSSOP checks to ensure that the data set is
accessible and the DCB does not specify output,
BDAM, or a key length. If any errors occur,
error message DMSSOp036E appears and DMSSOP does
not open the DCB. DMSSOP fills them in from the
OS PST for the data set.

If the CMSCB fcbmembr field contains a member
name (filled in by FILEDEP with the member
option), DMSSOP issues an OS PIND macro to
position the file pointer to the correct member.
If an error occurs on the call to the FIND
macro, error message DMSSOP036E appears and
DMSSOP does not open the DCB.

• BSP (backspace) Routine Upon
backspace checks for the PCB os bit.
is on, the BSP routine calls
(ROSNTPT~ to backspace the TTR and
returns to the calling routine.

entry,
If it

DMSROS
control

• PIID (type_D) Routine -- Upon entry to find,
the find routine checks the PCB OS bit. If
it is on, the FIND routine takes the OS FST
address from the CMSCB or, if the CONCAT bit
is on, from the global MACLIB list. The PIND
routine then calls DMSROS (ROSFIND) to find
the member name and TTR. DMSROS searches for
a matching member name or, if the PCBMVPDS
option is specified, a higher member name.
If the DMSROS return code is 0 or 8, or if
the PCBCATML bit is not on, control returns
to the calling routine with the return code
from DMSROS. If the return code is 4 and the
PCBCATML bit is on, DMSSVT checks to
determine if all the global MACLIBS were
searched. If they were, control returns to
the calling routine with the DMSROS return
code. If they were not, DMSSVT issues the
PIND on the next MACLIB in the global list.

• BLDL Routine--BLDL list = PP LL NAME TTR KZC
DATA

If the DCB refers to an OS disk, the BLDL
routine fills in the TTR, C-byte and data
field from the os data set.

• SEARCB Routine -- The search routine ensures
that any OS disk currently active is included
in the search order of all disks currently
accessible.

• DISK Routine -- The disk routine displays the
status of any or alIOS disks using the
following form:

206 IBM VM/370: system Logic and Problem Determination Guide

'MODB(CUU): (HO. CYLS.), TYPB R/O - OS.'

DMSSTT MODULB -- DMSSTT verifies that the disk
being- searched is an OS disk. DMSSTT calls
DMSLFS to get the FST associated with the data
set. Upon return from DMSLFS, DMSSTT checks the
return code to ensure that CMS supports the data
set attributes. A return code of 81 or 82
indicates that CMS does not support the data set
and message DMSSTT229B occurs to that effect.
DMSSTT then clears the FST copy with binary
zeros, and moves the filename, fi1etype,
fi1emode, BLKSIZE, LRECL, RBCFM, and flag byte
to the FST copy. From this point on, com. on
code execution occurs for both CMS and OS
disks.

• CHRCHVRT Routine The CHRHCVRT routine
converts a CCHH address to a relative track
address.

• CHKSEHSE Routine -- CHKSEHSE checks sense
bits to determine the recoverabi1ity of a
unit check error if one occurs.

• CHKXTHT Routine CHKXTHT checks to
determine if the end of split cylinder or the
end of extent occurred~ and, if so, updates
to the next split cylinder or extent.

• DISKIO Routine -- DISKIO starts I/O operation
on a CCW string via a DIAGHOSB X'20'.

• GETALT Routine -- GETALT switches reading
from alternate track to prime track, and from
prime track to alternate track.

• RDCHT Routine -- RDCHT reads count fields on
the track to determine the last record number
on the track.

• SETXTNT Routine -- SETXTNT sets osfstend to
the value of the end of the extent and, if a
new extent is specified, sets CCHHR to the
value of the start of the extent.

SIMULATIHG A DOS EHVIROHMENT UHDER CMS

CMS/DOS is a functional enhancement to CMS that
provides DOS installations with the interactive
capabilities of a VM/370 virtual machine.
CMS/DOS operates as the background DOS
partition; the other four partitions are
unnecessary, since the CMS/DOS virtual machine
is a one-user machine.

CMS/DOS provides read access to real DOS data
sets, but not write or update access. Real DOS
private and system relocatable, source
statement, and core-image libraries can be read.
This read capability is supported to the extent
required to support the CMS/DOS linkage editor,
the DOS/PLI and DOS/VS COBOL compilers, the
FETCH routine, and the RSERV, SSERV, and ESERV
commands. Ho read or write capability exists for
the DOS procedure library, except for copying

procedures from the procedure library
PSBRV co.mand) or displaying the
library (via the DSERV co •• and) •

(via the
procedure

CMS/DOS does not support the standard label
cylinder.

IHITIALIZIHG DOS IHD
CONTROL COMMAHDS

PROCESSING DOS SYSTEM

Initialization of the CMS/DOS operating
environment requires the setting of flags and
the creation of certain data areas in storage.
Once initialized, these flags and data areas may
then be changed by routipes invoked by the
system control commands.

Five modules are described in this section:

• DMSSET Activates the CMS/DOS
control blocks to be
CMS/DOS processing.

environment
used during

• DMSOPT sets or resets compiler execution-time
options.

• DMSASH Relates logical units to physical
units.

• DMSLLU Lists the assignments of CMS/DOS
physical units.

• DMSDLB Associates a DTF with a logical unit
for CMS/DOS processing.

~~~~~I--!Bi!i~li~iDg !h~ 
~D~i~~B~B! 

DMSSET initializes the 
environment as follows: 

CMS/DOS operating 

• Verifies that the mode, if specified, is for 
a DOS formatted disk. 

• Stores appropriate data in the SYSRES LUB and 
PUB. 

• Locates and loads the CMS/DOS discontiguous 
shared segment. Saves (in HUCON) the 
addresses of the two major CMS/DOS data 
blocks, SYSCOM, BGCOM,and the address of the 
CMS/DOS discontiguous shared segment 
(CMSDOS) • 

• Sets the DOSMODE and DOSSVC bits in DOSFLAGS 
in NUCON. 

• Assigns (via ISSGB) the SYSLOG logical unit 
as the CMS virtual console. 

The CMS/DOS operating environment is entered 
when the CMS SET DOS ON command is issued, 
invoking the module DMSSET. 

section 2. Method of Operation and Program Organization 207 



Data Areas Prepared for 
CBS/~ Initialization 

Processing During 

Several data areas are prepared for processing 
during initialization. The main CMS data area, 
NUCON, is modified to contain the addresses of 
two DOS data areas, SYSCOM and BGCOM. 

The SYSCOM DSECT is the DOS system 
communications region. It consists mainly of 
address constants, including the addresses of 
the AB option table, the PUB ownership table, 
and the FETCH table. It also includes such 
information as the number of partitions (always 
one for CMS/DOS) and the length of the PUB 
table. 

The BGCOM DSECT is the partition 
communication region. It includes such 
information as the date, the location of the end 
of supervisor storage, the end address of the 
last phase loaded, the end address of the 
longest phase loaded, bytes used to set the 
language translator and supervisor options, and 
the addresses of many other DOS data areas such 
as the LUB, PUB, NICL, FICL, PIB, PIB2TAB, and 
the PCTAB. 

The LUB and PUB tables are also made 
available during initialization. The LUB is the 
logical unit block table. It acts as an 
interface between the user's program and the 
CMS/DOS physical units. It contains an entry 
for each symbolic device available in the 
system. 

Each of the symbolic names in the LUB is 
mapped into an element in the PUB, the physical 
unit block table. The PUB table contains an 
entry for each channel and device address for 
all devices physically available to the system 
and also contains such information as device 
type code, CMS disk mode, tape mode setting, and 
7-track indicator. 

Two bits are set in DOSFLAGS in NUCON, 
DOSMODE and DOSSVC. DOSMODE specifies that this 
virtual machine is running in the CMS/DOS 
operating environment. DOSSVC indicates whether 
OS or DOS SVCs are operative in the operating 
environment. If DOSSVC is set, DOS SVCs are 
used; otherwise, OS SVCs are operative. 

SETTING OR RESETTING SYSTEM ENVIRONMENT OPTIONS 

Once the CMS/DOS environment is initialized, the 
flags and control blocks set during 
initialization can be modified and manipulated 
to perform the functions specified by commands 
entered at the console. This section describes 
the modules that set and reset the system 
environment options. That is, they set those 
options that control compiler execution and that 
control the configuration of logical and 
physical units in the system. 

The CMS/DOS OPTION command invokes module 
DMSOPT, which sets either the default options 
for the compiler or the options specified on the 
command line. The nonstandard language 
translator options switch and the job duration 
indicator byte are altered. Options are set 
using two control words located in the partition 
communication region (DGCOM). Bits in bytes 
JCSW3 or JCSW4 are set, depending on the options 
specified. 

Module DMSASN is invoked when the ASSGN command 
is entered. DMSASN first scanS the command line 
to ensure that the logical unit being assigned 
is valid for the physical unit specified (for 
example, SYSLOG must be assigned to either the 
virtual console or the vi~tual printer). Once 
the command line is checked, PUB and LUB entries 
are modified to reflect the specified 
assignment. 

For the PUB entry, the device type is 
determined (via DIAG 24) and the device type 
code is placed in the PUB. other modifications 
are made to the PUB depending on the specified 
assignment. The LUB entry is then mapped to its 
corresponding PUB. 

The function of DMSLLU is to request a list of 
the physical units assigned to logical units. 
It performs this function by referencing 
information located in the CMS/DOS data blocks, 
specifically SYSCOM, LUB, and PUB. Another data 
block, the next in class (NICL) table is also 
referenced. 

The information on the command line is 
scanned and the appropriate items are displayed 
at the user's console. If an option (EXEC or 
APPEND) is specified, an EXEC file is created 
($LISTIO EXEC Al) to contain. the output. If 
EXEC is specified, any existing $LISTIO EXEC Al 
file is erased and a new one is created. If 
APPEND is specified, the new file is appended to 
the existing file. 

DMSDLB is invoked when the CMS/DOS DLBL command 
is entered. DMSDLB associates a DTF (Define The 
File) table filename with a logical unit. This 
function is performed by creating a control 
block called a DOSCB, which contains information 
defining a DOS file used during job execution. 
DLBL is valid only for sequential or VSAM disk 
devices. 

208 IBM VM/370: System Logic and Problem Determination Guide 



This information parallels the label 
information written on a real DOS SIs RES unit 
under DOS/VS. The DOSCB contains such 
information as the name, type, and .ode of the 
referenced dataset, its device type code, its 
logical unit specification, and its dataset type 
(SA" or VSA"). 

A DOSCB is created for each file specified by 
the user during a terminal session. The DOSCBs 
are chained to each other and are anchored in 
NOCON at the field DOSFIRST. The chain remains 
intact for the entire session, unless an ABEND 
occurs or the user specifically clears an entry 
in the the DOSCB chain. A given DOSCS is 
accessed when an OPEN macro is issued from an 
executing user program. 

The overall logic flow for DMSDLB is as 
follows: 

1. Scans the command line to ensure that any 
options entered are valid (i.e. anything 
to the right of the open parenthesis). 

2. Processes the first operand (ddname or *). 
When ddname is specified, loop through the 
DOSCB chain to find a matching ddname. If 
none is found, DMSDLB calls DMSFRE to get 
storage to create a new DOSCB for this 
file. The old copy of the DOSCB is then 
saved so that, in case of errors during 
processing, it can be retrieved intact. 
The new copy of the DOSCB contains updates 
and DOSCB replaces the old copy if there 
are no errors. 

3. The mode specification is checked to ensure 
that it is a valid mode letter; if the file 
is a CMS file, the mode letter must specify 
a CMS disk. If DSN has been specified, the 
mode letter must be for a non-CMS disk. 

4. Process each option on the command line 
appropriately. 

5. If EXTENT or MULT is specified, a separate 
block of free storage is obtained to 
contain information about the extent, for 
example, a block is obtained to contain the 
DOS data set name. 

5. Check for errors. If there are errors, any 
blocks created during processing are purged 
and an error message is issued. If there 
are no errors, restore the old block, which 
has been modified to reflect current 
processing, and return control to DMSITS. 

PROCESS C"S/DOS OPEN AND CLOSH FUNCTIONS 

The CMS/DOS OPEN routines are invoked in 
response to DOS OPEN macros. They operate on 
DTF (define the file) tables and ACB (access 
method control block) tables created when the 
DTFxx and ACB macros are issued fro~ an 
executing user program. These tables contain 
information such as the LOG unit specification 
for the file, the DTF type of the file, the 
device code for the file, and so forth. The 
information in the tables varies depending on 

the type of DTP specified, i.e. the table 
generated by a unit record DTF macro is slightly 
different than the table generated by a DTl disk 
.acro. 

live routines are invoked to perform OPEN 
functions, DMSOPL, DMSOR1, DMSOR2, D"SOR3, and 
D"SBOP. DMSCLS performs the CLOSE function. 

Depending on the type of OPEN macro issued from 
a user program, one of five CMS/DOS OPEN 
routines could be invoked. OPENR macros give 
control to D"SOR1 and, depending on the DTl type 
specified, DMSOR2 or DMSOR3 may be invoked. 
These three routines (DMSOR1,DMSOR2, and DMSOR3) 
request the relocation of a specified file. 
D"SOPL is invoked by the DOS/VS compilers when 
they need access to a source state.ent library. 
These routines are mainly interface routines to 
D"SBOP, which performs the main function of 
opening the specified file. Each of the 
routines calls DMSBOP. 

D"SBOP is the C"S/DOS routine that simulates 
the DOS/VS OPEN function. The basic function of 
D"SBOP is the initialization of DTF tables, i.e. 
setting fields in specified DTFs for use by the 
DOS/VS LIOCS routines. 

When a DOS problem program is compiling, a 
list of DTFs and ACBs is built. At execution 
time, this list is passed to DMSBOP. The logic 
flow of D"SBOP is as follows: 

1. Scans the list of DTF and ACB addresses, 
handling each iteam in the list in line. 
When the OPEN macro expands, register 
points to the name of the $$B transient to 
receive control ($$BOPEN) and register 0 
points to the list of DTF/ACB addresses to 
be opened. 

2. When an ACB is encountered in the table, 
control is passed directly to the VSA" OPEN 
routine, $$BOVSAM. The VSAM routine is 
responsible for opening the file and 
returning control to DMSBOP. 

3. When a DTF is encountered in the table, 
DMSBOP itself handles the OPEN: 

a. For reader/punch files (DTFCD), the 
OPEN bit in the DTF table is turned 
on. 

b. For printer files (DTFPR), if two 
IOAREAs are specified, the IOREG is 
loaded with the address of th~ 
appropriate IOAREA. Next, the PUB 
index byte associated with the logical 
unit specified in the DTF is checked to 
ensure that a physical device has been 
assigned and the PUB device code is 
then analyzed. The OPEN bit in the DTF 
table is then turned on. 

c. For console files (DTFeN), no OPEN 
logic is required. 

section 2. Method of Operation and Program Organization 209 



4. 

5. 

d. For tape files (DTFMT), the PUB device 
type code must specify TAPE. If an 
IOREG is specified (for output tapes 
only), the address of the appropriate 
IOAREA is placed in it. For input 
files, there is separate processing for 
tapes with standard label, nonstandard 
label, and no label. For output tapes, 
both tape data files and work tape 
files are treated as no label tapes. 

e. For disk files (DTFxx), the LUB is 
verified to ensure that the logical 
unit has been assigned. A check is 
made to ensure that the DOSCB exists 
for the DTF filename. For disk output 
files, the address of the appropriate 
IOAREA is placed in IOREG. For disk 
~nput files, the existence of the file 
1S verified via a call to DMSSST. 
Also, EXTENT information is initialized 
and the OPEN bit is posted. 

f. DTFDT and DTFCP are separate DTF types 
that could describe any of the above 
devices. 

After all files in the table have been 
opened, DMSBOP returns control to the 
problem program via SVC 11. 

If errors are encountered 
processing, an error message 
return is .ade via SVC 6. 

during DMSBOP 
is issued and 

The CMS/DOS routine that processes CLOSE 
requests is DMSCLS, whose logic is analogous to 
that of DMSBOP, the OPEN routine described 
above: when CLOSE expands, register 1 pOints to 
$BCLOSE and register 0 points to the list of 
DTF/ACB addresses. The same table containing 
DTFs and ACBS used to open files is also used to 
close those files. Each entry in the table is 
processed as it occurs, with control passing to 
a VSAM CLOSE routine ($$BCVSAM) when an ACB is 
encountered. The OPEN bit is then turned off. 

PROCESS 
COMMANDS 

CMS/DOS EXECUTION-RELATED CONTROL 

The CMS/DOS FETCH and DOSLKED commands simulate 
the operation of the DOS/VS fetch routines and 
the DOS/VS Linkage Editor. The three CMS 
.odules that perform this si.ulation are: 

• 

• 

DMSFET--Provide an interface to interpret the 
DOS FETCH co •• and line and execute the phase, 
if START is specified on the co.mand line. 

DMSFCH--Bring into storage a specified phase 
from a system or private core-image library 
or fro. a CMS DOSLIB library. 

• DMSDLK--Link edit the relocatable output of 
the CMS/DOS language translators to create 
executable progra.s. 

The DOS/VS FETCH function is simulated 
modules DMSFET and DMSFCH. The main 
block used during a FETCH operation is 
which contains addressing information 
for I/O operations. 

by eMS 
control 

FCHSECT, 
required 

The FETCH command line invokes module 
DMSFET. This module first validates the command 
line and issues a FILEDEF for the DOSLIB file. 
It then issues a FILEDEF for a DOSLIB file. 
DMSFET then issues a DOS SVC 4, which invokes 
the module DMSFCH to perform the actual FETCH 
operation. 

DMSFCH first determines where the phase to be 
fetched resides. The search order is private 
core-i.age library, DOSLIB, system core-image 
library. If the phase is not found in any of 
these libraries, DMSFCH assumes that the FETCH 
is for a phase in a system or private core-image 
library. To find a DOSLIB library member, OS 
OPEN and FIND .acros are issued (SVC 19 and 
18) • 

When the member is found~ OS READ and CHECK 
.acros are issued to read the first record of 
the file (the member directory). This record 
contains the number of text blocks and the 
length of the member. 

All addressing information is stored in 
FCHSECT and the text blocks that the phase are 
read into storage. If the read is from a CMS 
disk, issue the OS READ and CHECK macros to read 
the data. If the read is fro. a DOS disk, first 
determine whether this is the first read for the 
DOS discontiguous shared segment (DCSS). If 
this is the case, CCW information is relocated 
to ensure that the DCSS code is reentrant. For 
all reads for a DOS disk, a CP READ DIAG 
instruction is issued. When the entire file is 
read, it is relocated (if it is relocatable) • 

If a DOSLIB is open, close it using an OS SVC 
20 and return control to DKSFET. DMSFET then 
checks to see whether START is specified and, if 
so, an SVC 202 is issued for the CMS START 
co •• and to execute the loaded file. 

When 
control 
DMSITS. 

all FETCH processing is 
returns to the CMS com.and 

complete, 
handler, 

CMS simulation of the DOS/VS 
function directly parallels 
i.plementation of that function. 
infor.ation on the logic of the 
the publication I!Q~L!~ Li!!k.Ag~ 
Order No. SY33-8556. 

Linkage Editor 
the DOS/VS 
For detailed 

function, see 
Igi.:t2I. 1l2gi£, 

Note that the .odules comprising the DOS/VS 
Linkage Editor are prefixed by the letters IJB 
and are separate CSECTs. ILL of these CSECTs 
have counterparts contained within the one CMS 
.odule, DMSDLK. They are treated as subroutines 

210 IBM VM/370: System Logic and Problem Determination Guide 



within that .odule, but perform the same 
functions as their independent DOS/VS 
counterparts and have been named using the sa.e 
naming conventions as for the DOS/VS CSECTs. 
Por exaaple, the IJBESD CSECT in DOS/VS is 
paralleled by the CMS DMSDLK subroutine 
DLKESD. 

A brief dscription of the logic follows. The 
CMS/DOS DOSLKED command invokes the module 
DMSDLK, which is entered at subroutine DLKINL. 
DLKINL performs initialization and is later 
overlaid by the text buffer and the linkage 
editor tables. DLKINL starts to read from a 
DOSLNK file and processes ACTION statements, if 
there are any. 

On encountering the first non-ACTION card (or 
if there is no DOSLNK file), the main flow is 
entered. Depending on the input on the DOSLNK 
or the TEXT file, records from either of those 
files aay be read or records from a relocatable 
library may be read. The type of card image 
read determines the subroutine to which control 
is given for further processing. 

An ENTRY card indicates the end of the input 
to the linkage editor. At this point, a map is 
produced by subroutine DLKMAP. DLKRLD is then 
entered to finish the editing of object modules 
by relocating the address constants. If the 
phases are to be relocatable, relocation 
information is added to the output on the 
DOSLIB. Updating of the DOSLIB library is 
performed by DLKCAT using the OS STOW macro. 

A significant deviation from DOS/VS code is 
the use of OS macros, in some instances, rather 
than DOS/VS macros. To take advantage of CMS 
support of partitioned data sets, the OS OPEN, 
PIND, READ, CHECK, and CLOSE macros are issued 
rather then their DOS/VS counterparts. 

SIMULATE DOS SVC PUNCTIONS 

All SVC functions supported for CMS/DOS are 
handled by the CMS module DMSDOS. DMSDOS 
receives control from DMSITS (the CMS SVC 
handler) when that routine intercepts a DOS SVC 
code and finds that the DOSSVC flag in DOSFLAGS 
is set in NUCON. 

DMSDOS acquires the specified SVC code from 
the OLDPSW field of the current SVC save area. 
using this code, DMSDOS computes the address of 
the routine where the SVC is to be handled. 

Many CMS/DOS routines (including DMSDOS) are 
contained in a discontiguous shared segment 
(DCSS). Most SVC codes are executed within 

DMSDOS, but some are in separate modules 
external to DMSDOS. If the SVC code requested 
is external to DMSDOS, its address is computed 
using a table called DCSSTAB; if the code 
requested is executed within DMSDOS, the table 
SVCTAB is used to compute the address of the 
code to handle the SVC. 

The items below show the SVCs supported by 
CMS/DOS simulation routines, the name of the 
macro that invokes a given SVC code, the CMS 
module that executes the code, and a brief 

state.ent describing how the SVC function is 
performed. 

SVC 0: IICP Handled by aodule DMSICP ••• reads 
froa-CMS--or DOS/VS formatted disks. CCls are 
converted to appropriate CMS I/O requests, for 
example, RDBUP/IRBUF, CARDRD/CARDPH. The CCB is 
posted (indicating I/O completion) using CMS 
return information. If a non-zero return code is 
returned, a CANCEL is performed. I/O re~uests 
to DOS disks are handled using CP DIAGNOSE 
instructions. 

§!~ 1: lET£H Handled by DMSFCH ••• loads a 
problem program phase into core and executes it, 
if execution is requested. For details on how 
FETCH works, see the section "Bring a Phase into 
Storage for Execution: DMSFET and DMSFCH." 

SVC 2: PETCH Handled by DMSPCH ••• loads a 
iii$B~TransIent phase into core and executes 'it, 
if execution is requested. For details on how 
FETCH works, see the section "Bring a Phase into 
Storage for Execution: DMSFET and DMSFCH." 

svc 4: l~I£H Handled by DMSFCH ••• loads a 
problem program phase into user storage and 
executes it, if execution is requested. Por 
details on how FETCH works, see the section 
"Bring a Phase into storage for Execution: 
DMSFET and DMSFCH." 

§I£ ~: ~!£~~ -- Handled by DMSDOS ••. provides the 
user with a way of altering bytes 12 through 23 
of the partition communication region (BGCOM). 
Checks to ensure that the specified field is 
correct length and then moves the information to 
the specified field. 

SVC 6: £!!£¥ Handled by DMSDOS ••• cancels a 
efts/Dos seSS10n. Processing depends on value in 
register 15 on entry; if above 256 the request 
is from a system program. If below 256, request 
is from a user program. Processing continues 
with control passing to EOJ code, described 
below. 

§!£ 1: !!II Handled by DMSDOS ••• informs 
system programs to wait for a system event to 
take place before processing can continue. WAIT 
is an effective NOP for CMS/DOS. 

~!~~: Handled by DMSDOS ••• temporarily returns 
control to a problem program. The address of 
the problem to which control is being passed is 
contained in register o. This address is stored 
in the SVC save area OLDPSW field and control is 
passed to the CMS SVC handler (DMSITS). 

~!£ 2: Handled by DMSDOS ••• returns control to 
system program (i.e. a user program has been 
given control, as in the case of SVC 8, and must 
return control to the system routine, a 
$$$$E-Transient routine, that called it) • 

SVC 11: Handled by DMSDOS ••• returns control to a 
problem program from a $$$$-B transient 
routine. Uses the SVC save area OLDPSW field to 
return to the calling program. 

~!£ 1~: Handled by DMSDOS ••• resets flags in the 
linkage control byte of the Partition 
Communication Region (BGCO!) to zero; also, 
provides the user the capability to use a mask 
to set the value of this same byte. In both 

section 2. Method of Operation and Program organization 211 



cases, the SVC routine that handles the request 
performs an AND operation to accomplish the 
function. 

~!~ 1~: EOJ -- Handled by DMSDOs ••• normally 
terminates--execution of a problem program. 
Clears control blocks and resets control words. 

SVC 16: Handled by DMSDOS ••• establishes linkage 
with or terminates linkage to a user's program 
check routine. Locates the appropriate PC 
option table entry. If contents of register 0 
is zero, terminates linkage: stores a zero into 
the routine address field of the PC option 
table. If register 0 is non-zero, the address 
of the PC routine and the save area address is 
passed to the STIlT macro. If a STXIT PC 
routine is already active, the complement of the 
new routine address is placed in the PC option 
table; if no STIlT PC routine is active, both 
the new routine address and the save area 
address are placed in the PC option table. 

SVC 11: Handled by DMSDOS ••• provides supervisory 
~upport for the exit macro. Locates appropriate 
PC option table entry and restores user's 
registers and PSi. Stores the address of the PC 
routine in the PC option table and returns to 
the next sequential address in the interrupted 
program. 

~!~ ~§: Handled by DMSDOS ••• validates address 
limits. Checks the limits passed in registers 1 
and 2 and either returns control to the caller 
or writes an error message. 

SVC 33: COMRG-­
the -address--of 
region (BGCOM). 
register 1. 

Handled by DMSDOS ••• provides 
the partition communication 

Returns the address of BGCOM in 

SVC 34: Handled by DMSDOS ••• supports the GETIME 
.aero: Updates the date field in the partition 
communications region (BGCOM). 

~!~ 11: Handled by DMSDOS ••• establishes linkage 
to or terminates linkage from a user's abonormal 
termination routine. Locate the AB table 
entry. If register 0 ccontains zeros; 
terminates linkage: if the AB routine is active, 
stores zeros into the routine address field of 
the AB option table. If the AB routine is not 
active, stores zeros into both the routine 
address field and the save area field of the AB 
option table. 

If register 0 is non-zero, establishes 
linkage: passes the address of the AB routine 
and the save area address to the STIlT AB macro. 
If STilT AB is active, the complement of the AB 
routine address is stored in the AB option 
table. If STIlT AB is not active, both the 
address of the new AB routine and the address of 
the save area are placed in the option table. 

SVC 40: POST -- Handled by DMSDOS ••• signals the 
completion-of a system event. 

~!~ ~Q: Handled by DMSDOS ••• issues an error 
message and terminates the command. Issued by a 
LIOCS routine when that routine is requested to 
perform a function it could not perform. 

SVC 61: Q~j!!~ -- Handled by DMSDOS ••• used by 
~~iM-~o obtain scratch storage; also, obtains 
storage for a relocatable VSAM routine. Storage 
is obtained from the user free storage area and 
the address of the storage is returned in 
Register 1. 

SVC 62: FREEVIS -- Handled by DMSDOS ••• returns 
s~orage obtained by a GETVIS. Address of the 
area to be returned is pointed to by Register 
1. 

~!~ §J: Q~~ -- Handled by DMSDOS ••• VSAM uses SVC 
63 to ensure that system resources are updated 
serially, so that two or more attempts to modify 
the same data at the same time do not succeed. 
A table of counters (RURTBL) is kept for system 
resources. These counters are posted when a 
request is made for system resources. If a 
resource is already in use# a return code of 
eight is placed in gister O. If the resource is 
available, a zero is returned in Register o. 

~!£ 64: RELEASE -- Handled by DMSDOS ••• VSAM uses 
SVC iij to-release a system resource obtained via 
USE SVC. The appropriate counter in RURTBL is 
decremented by one each time a resource is 
released. 

~!£ §2: £~~QA~ Handled by DMSDOS ••• loads a 
relocatable VSAM phase into storage unless that 
phase has already been loaded. 

If an anchor tatle is available, it is 
searched for the phase. If the phase is found, 
its load point, entry point, and length are 
returned in registers 0, 1, and 14, 
respectively, and register 15 contains zeros. 

If the phase is not found in the anchor 
table, DMSFCH is called to search for it. If 
the phase is found in the discontiguous shared 
segaent, return is made to the requestor as 
above. 

If the phase was found, but not loaded, 
storage is ontained for it via the GETVIS SVC. 
DMSFCH is called again to load the phase into 
the storage just obtained. An anchor table is 
then built in the user area (unless one already 
exists) and return to the caller is then made as 
described above. 

SVC 66: RUNMODE BandIed by 
~~~Dos •• :determines-ihether the problem program 
is running in real or virtual mode. Register 0
contains zero on return if the program is
running in virtual mode.

~!~ 1~: SECTVAL -- Handled by DMSDOS ••• used by
VSAM I/O routInes to obtain a sector number for
3330 or 3340 devices. The appropriate sector
value is calculated from input supplied in ser
registers 1 and O. The sector number (from 0 to
121) is returned in register O.

Certain DOS SVCs are treated as no-ops by
CMS/DOS and other DOS/VS SVCs are not supported.
These are listed below.

212 IBM VM/310: system Logic and Problem Determination Guide

SVCS TREATED AS NO-OP BY C!S/DOS

SVC
10:
18:
20:
22:
24:
35:
36:
41 :
42:
52:

67:
68:
71 :
85:
86:
87:

Action
sets-timer interval
STXIT (IT)
Establishes linkage to OC
Seizes (interruption enable/disable)
Sets timer interval
Holds a track
Frees a track
Dequeues a resource
Enqueues a resource
Returns re.aining timer interval
(Register 0 is also cleare~
PFIX, fixes pages in real storage
PFREE, frees pages in real storage
SETPFA
RELPAG
FCEPGOUT
PAGEIN

§!£§ l!Q1 §Y~~Q~I!.!2 ~! ~lI~L12Q§: The following
SVCs cause an error message to be generated and
are treated as a CANCL (SVC 6).

SVC -3:
13 :
15:
19:
23:
25:
27:
28:
29:
30:
31:
32:
38:
39:
43:
44:
45:
46:
47:
48:
49:
51:
53:
54:
55:
56:
51:
58:
59:
60:
69:
10:
72:
13:
14:
16:

71:
18:
79:
80:
81 :
82:
83:
84:
88

Action Forces dequeue
Sets switches in BGCO!
Heads queue and executes channel program
Returns from user's IT
Loads phase header
Issues HIO
special HIO
Returns from user's MR
!ultiple WAITM support
waits for a QTAM element
Posts a QTAM element
Reserved for IB! use
Initializes a subtask
Terminates a subtask
Reserved for IBM use
External unit checks record
Emulator interface
OLTEP in supervisor state
Multiple WAITF support
Fetches a CRT trans
Reserved by IBM
Returns phase header
Reserved by IBM
Frees real page frames
Gets real page frames
Gets or frees PUB of POWER device
Makes POWER dispatchable
Interface between JCL and supervisor
Interface between EOJ and supervisor
EREP and CRT I/O areas address
REALAD
VIR TAD
GETCBUF/FREECBUF
SETAPP
Fixes pages in real storage for restart
Initializes for recording of RMSR I/O
error
TRANSCSW
Reserved for IBM use
Reserved for IBM use
Reserved for IBM use
Reserved for IBM use
Reserved for IBM use
Reserved for IBM use
Reserved for IBM use

and up:
Reserved for IBM use

PROCESS C!S/DOS SERVICE COMMANDS

DMSSRV--Copies books from a system or private
source state.ent library to a specified output
device.

DMSPRV--Copies DOS procedures from a DOS system
procedure library to a specified output device.

DMSRRV--Copies modules from a
relocatable library to a
device.

system or private
specified output

DMSDSV--Lists the directories of DOS private or
system libraries.

DMSDSL--Deletes me.bers (phases) of a DOSLIB
library; compresses a DOSLIB library; lists the
members (phases) of a DOSLIB library.

ESERV--De-edits, displays or
and updates edit assembler
source statement library.

punches, verifies,
macros from the

TER!INATE PROCESSING THE CMS/DOS ENVIRONMENT

DMSBAB--Gives control to an abnormal termination
routine once linkage to such a routine has been
established via the STXIT AB macro.

DMSITP--Processes program interrupts and SPIE
exits.

DMSD!P--Simulates the $$BDUMP and $$BPDUMP
routines; issues a CP DUMP command directing the
dump to an offline printer.

PERFORM MISCELLANEOUS CMS FUNCTIONS

CMS BATCH FACILITY

The CMS Batch Facility is a function of CMS. It
provides a way of entering individual user jobs
through an active CMS machine from the virtual
card reader rather than from the console. The
batch facility reissues the IPL command after
each job.

The eMS Batch Facility consists of two
modules: DMSBTB, the bootstrap routine (a
nonrelocatable CMS module file) and DMSBTP, the
processor routine (a relocatable CMS text file
that runs free storage).

GENERAL OPERATION OF DMSBTB

The bootstrap module, DMSBTB,
processor routine DMSBTP and the
routines BATEXIT1 and BATEXIT2 (if
into free storage.

loads the
user exit

they exist)

DMSBTB first ensures that DMSINS (CMS
initialization) has set the BATRUN and BATLOAD

Section 2. Method of Operation and Program Organization 213

flags on in the CMS nucleus constant area
indicating that either an explicit batch initial
program load command has been issued or that the
CMSBATCH command has been issued immediately
after initial program load has taken place. If
not r error message DMSBTB101E is typed and the
batch console returns to a normal CMS
interactive environment. STATE (DMSSTT) is then
called to confirm the existence of the processor
file DMSBTP TEXT. If the file does not exist r
error message DMSTBT100E is typed and the batch
console returns to the CMS interactive
environment.

Using the "state" copy of the file status
table (FST) for DMSBTP r DMSBTB computes the size
of DMSBTP TEXT file by multiplying the logical
record length by the number of logical records
(no DS constants). A free storage request is
made for the size of DMSBTP and the address of
the routine is then stored at ABATPROC in the
NUCON area of the CMS nucleus.

The existence of the user exit routines is
determined by STATE. If they exist r their sizes
are included in the request for free storage.

The free storage addr~ss is translated into
graphic hexadecimal format and the CMS LOAD
command is issued to load the DMSBTP TEXT file
into the reserved free storage area. The user
exit routines r BATEXITl TEXT and BATEXIT2 TEXT
are also loaded at this time. If these files do
not exist r an unresolved external reference
error code is returned by the loader, but is
ignored by DMSBTB because these routines are
optional. If an error (other than unresolved
names) occurs r error message DMSBTB101E is typed
and the batch console returns to the CMS
interactive environment.

The loader tables are searched for the
address of the ABEND entry point DMSBTPAB in the
loaded batch processor. When the entry is
found r its address and that of entry DMSBTPLM
are stored in ABATABND and the ABATLIMT
respectively, in the NUCON area of the CMS
nucleus. If the ABEND entry point is not found
in the tables r error message DMSBTB101E is typed
and the batch console returns to the CMS
interactive environment.

The BATLOAD flag is set off to show that
DMSBTP has been loaded, the BATNOEX flag is set
on to prevent user job execution until DMSBTP
encounters a IJOB card and finally, control is
returned to the com.and processor DMSINT.

If an error message is issued r DMSERR is
called to type the message r and the BATRUN and
BATLOAD flags are set off before control is
returned to CMS. This allows the normal CMS
interaction to resume.

GENERAL OPERATION OF DMSBTP

The batch processor module DMSBTP simulates the
function of the CMS console read module DMSCRD.
This is accomplished by issuing reads to the
virtual card reader, formatting the card-image
record to resemble a console record and
returning control to CMS to process the command

(or data) request. DMSBTP also performs reads
to the console stack if the stack is not empty,
checks for and processes the IJOB card, ensuring
that it is the first record in the user jOb r

traps all CP commands to maintain system
integrity and performs job initialization,
cleanup, and job recovery.

upon receiving control, DMSBTP checks the
BATCPEX flag in NUCON. If the flag is set on,
control was received from DMSCPF and a branch is
made to the CP trap routine to verify that the
command is allowable under batch. The function
of that routine is described' later. If the
BATCPEX flag is off, control was received from
DMSCRD (console read module) and DMSBTP checks
for finished reads in the real batch console
stack. If the number of finished reads is not
zero, control is returned to DMSCRD to process
the real console finished (stacked) reads. If
the number of finished reads is zero, a record
is read from the batch virtual card reader into
the CARD buffer via an svc call to CARDRD
(DMSCIO). The record in the CARD buffer is
typed on the console via the WRTERM macro. If
the BATMOVE flag is set on mOVEFILE executing
from the console), the records in the file are
not typed on the console.

The record in the reader buffer is scanned to
compute its length with trailing blanks deleted.
It is then moved to the CMS console read buffer
and the computed length is stored in the
original DMSCRD parameter list r whose address is
passed by DMSCRD when it initially passes
control to DMSBTP.

If the first user record is not a IJOB card,
error message DMSBTP105E is typed and normal
cleanup is performed with the BATTERM flag set
on. This flag prevents another initial program
load, since it is not needed at this time.
Reads to the card reader are then issued until
the next IJOB card is found.

If the first record is a IJOB card, DMSBTP
branches to its IJOB card processing routine
which calls DMSSCNN via a BALR. A check is made
for the existence of the userid and account
number on the card. If the fields exist, a CP
diagnose 'QC' is issued to start accounting
recording for that userid and account number.
If an error is returned from CP denoting an
invalid userid, or if the userid or account
number fields were missing on the IJOB card,
error message DMSBTP106E is typed and normal
cleanup is performed with the BATTERM flag set
on.

The jobname, if provided on the IJOB card, is
saved and a message is issued via SVC to inform
the source userid that the job has started. The
spooling devices are closed and respooled for
continuous output, a CP QUERY FILES command is
issued for information purposes and the implied
CP function under CMS is disabled and the

,protection feature set off via SVC calls to SET
(DMSSET). The BATPROF EXEC is executed via an
SVC to EXEC. The BATNOEX flag, which is set by
DMSBTB to suppress user job execution until the
IJOB card is detected, is set off. The BATUSEX
flag is set on (for DMSCPF) to signal the start
of the actual user job, and a branch is taken to
read the next card from the reader file (user
job) .

214 IBM VM/370: system Logic and Problem Determination Guide

After reading the IJOB card, DMSBTP continues
reading and checks for a 1* card, a ISET card,
or a CP command. If a card is none of these,
DMSBTP passes control back to the command
processor DMSINT for processing of the command
(or data).

If a 1* card is read and it is the first card
of the new job, it is assume to be a
precautionary measure and thus ignored by DMSBTP
which then reads the next card. If it is not
the first card a check is made for the BATMOVE
flag. If the flag is on, the 1* card indicates
an end-of-file condition for the MOVEPILE
operation from the console (reader) and is
consequently translated to a null line for the
MOVEPILE command.

If the BATMOVE flag is not on, the 1* card is
and end-of-job indicator and an immediate branch
is taken to the end-of-job routine for cl~anup
and reloading of CMS batch.

When a CP command is encoutered DMSBTP
branches to a routine that first checks a table
of CP commands allowable in batch. If the
command is allowed, a check is made for a reader
or other spool device in the command line. If
the CP command is allowed but would alter the
status of the batch reader or any spooling
device or certain disks, or if the command is
not allowed at all, error message DMSBTP107E is
typed, and the next card is read.

If the CP command is LINK, the device address
is stored in a table so that DMSBTP can detach
all user disk devices at the end of the job.

A CP DETACH command is examined for a device
address corresponding to the system disk, the
IPL disk, the batch 195 work disk or any spool
device. If the device to be detached is any of
these, error message DMSBTP107E is displayed and
the next card is read. Otherwise, DMSBTP
returns control to DMSINT (or DMSCPF is the
BATCPEX flag is set on) for processing of the
command.

When a ISET control card is encountered, the
card is checked for valid keywords, valid
integer values (less than or equal to the
installation default values), and if an error is
detected, error message DMSBTP108E is typed. An
abnormal termination message is also sent to the
source userid and the job is terminated with
normal cleanup performed. If the control card
values are valid, the appropriate fields are
updated in the user job limit table DMSBTPLM and
the next card is read.

If DMSBTP detects a "not ready" condition at
the reader, a message is typed at the console
stating that batch is waiting for reader input.
DMSBTP then issues the WAITD macro to ,ait for a
reader interrupt. When first detecting the
empty reader, DMSBTP calls the CP accounting
routines via a CP diagnose '4C' to charge the
wait time to the batch userid.

If a hard error i~ detected at the reader,
DMSBTP sends an "intervention required" message
to the system console and branches to its
abnormal terminal routine and waits for an

interruption for the reader by issuing the WAITD
macro.

When a 1* card is read (with the BATMOVE flag
off) or when the end-of-file condition occurs at
the reader, DMSBTP branches to the cleanup
routine which sends the source userid a message
stating that the job ended normally or
abnormally (if cleaning upa fter an abnormal
termination) and turns off the BATUSEX flag (for
DMSCPF) to signal the end of the user user job.
CONWAIT (DMSCWT) is called via SVC to allow any
console 1/0 to finish, the spooling devices are
clos~d (including the console), and all disks
that were made available by issuing the CP LINK
command are returned by issuing the CP DETACH
command.

DMSBTP then relinquishes control by issuing
the CP IPL command with the PARM BATCH option
which loads a new CMS nucleus and the next job
is started when CMS attempts its first read to
the console.

A branch is made to the CMSBTP routine when
DMSBTP itself detects an 110 error at the
reader. However, the primary purpose of the
routine is to receive control not only from
DMSABN when there is an abnormal termination
during the user job, but also from DMSITE,
DMSPIO, and DMSCIO when a user job exceeds one
of the batch job limits (BATXLIM flag is on).
This routine, entry point DMSBTPAB, calls the CP
DUMP routine via SVC and then branches to the
cleanup routine which reloads CMS Batch and
treat the remainder of the current job as a new
job with no IJOB card. This has the effect of
flushing the remainder of the job. This
technique is used because batch must keep its
reader spooled "continuous." Entry point
DMSBTPAB is also used by the CMS commands that
are disabled in CMS batch. In this case
(BATDCMS flag set on), an error message is
displayed and control returned to CMS.

When a CP command is called via an SVC in
DMSBTP, the CMS CP module (DMSCPF) is acutally
called to issue the DIlGNOSE instruction to
invoke the CP command. DMSBTP calls DMSCPF by
issuing a direct SVC 202 or by issuing the
LINEDIT macro with the CPCOMM option that
generates an SVC 203.

OTHER CMS MODULES MODIFIED IN CMS BATCH

Several CMS modules check whether CMS
running; and, if so, perform
associated with batch operation.
shown in the following list:

batch is
functions

These are

~ggul~
DMSINI
DMSINS

DMSLDR
DMSCRD

DMSITE

DMSPIO

Function Performed for CMS Batch
passes-batch-parameters-to Dftsiis.
Uses batch IPL parameters to reload
CMS Batch.
Loads DMSBTP into free storage.
Passes control to DMSBTP to read from
the reader rather than from the
console.
Accounts
batch job
Accounts for
by batch job

for virtual time used by
ABEND if over limit.

number of lines printed
ABEND if over limit.

section 2. Method of Operation and Program Organization 215

DMSCIO

DMSABN

DMSERR

DMSMVE

DHSSET

DHSRDC
DMSCPF

DMSFLD

DM SDSK

Accounts for number of cards punched
by batch job -- ABEND if over limit.
Passes control to batch ABEND routine
in DMSBTP.
Passes control to batch ABEND routine
instead of entering disabled wait
state.
Turns the BATMOVE flag on and off
allows batch to treat moved blanks as
data.
Disabled if batch running, except
during batch initialization.
Disabled if batch running.
Distinguishes between CP command
issued by user and by batch.
Disallows reader device
specification.
Disk load not allowed in batch.

USE OF THE ANNOTATED FLOW DIAGRAM

The following text sections, which describe each
major CP function, are annotated flow diagrams.
These diagrams, consisting of logic labels and
commentary, describe the general flow and use of
CP logic modules and their relationship to other
modules ~hile performing a specific function or
task. The annotated flow diagrams do not
contain references to error messages, abnormal
termination conditions, or most control block
field labels. This avoids complexity and makes
the general logic of CP and its related tasks
more understandable to the user. With
"understandability" as the key, obtuse and
complex logic that is used for obscure and
seldom used functions is not described. Also
the flow diagram does not indicate or describe
every entry point encountered in a function.
Nor do the diagrams illustrate the innumerable
times that commonly used modules are utilized.
DMKFRE and DMKCVT, the obtaining and returning
of free storage and the number base conversion
modules are such examples. Annotated flow
diagrams are arranged by function and
subfunction. Titles for these functions and
subfunctions also precede annotated flow text
and labels. The text in the charts is prefixed
by underscored and capitalized entry points and
labels. Entry points are indicated by 7 or 8
characters; the first three characters are DMK.
Labels are indicated by prefixing with a comma
and the six-character module identification.

Note: annotated flow diagrams are not to be
construed to be trace material. The dynamics of
CP operations preclude the use of the annotated
flow diagrams, as they are shown in this manual,
as traces of CP functions.

VM/370 CP INTERRUPTION PROCESSING

SVC INTERRUPTIONS - PROBLEM STATE

.Q~~E'§!'§!
Entry for
supervisor

SVC interruptions from
states. For proble.

problem or
mode and

ADSTOP (SVC X 'B3'), the overlaid instruction
is replaced

DMKCFMBK
---Console function mode is entered.
DMKPSASV
---por-problem state SVC 76 (X'4C') check for

valid parameter passing.
DMKVERD, DMKVERO
---netermIne--the operating SCP used in the

virtual machine by examining passed
parameters in RO and R1.

DMKPSA, SVCVER ---Por -invalid parameter passing, error
recording is not performed.

DMKIOEVR
---The-SVC is reflected back to the user.
DMKIOFVR
---on-correct parameter reflection~ record the

error.
DMKTRCSV
---The-DMKTRC module is called if TRACE SVC was

invoked.
DMKPSA, R EFSVCB
---Por Ec--iiiode machine or page 0 not in real

storage. Per results of TRACE activity, go
to the DMKDSPCH; if not successful, go to
DMKDSPB.

DMKPRGRF
---j~-tracing not active, flag user as being in

instruction wait state and reflect the SVC
back to the user.

DMKPSASV
---jf-the virtual machine is in BC mode and page

o is in real storage, generate and store an
old SVC PSi. Then fetch the new SVC PSi.

DMKDSPB
---j~-wait state is not indicated, store user's

new PSi in RUNPSW, restore registers and
dispatch via LPSi.

SVC INTERRUPTIONS - SUPERVISOR STATE

DMKPSASU
---Entry is for a system failure and is a SVC 0

or SVC 4 ABEND condition.
DMKDMPDK
---Perform partial or full real storage dump.
DMKCKPT
---Checkpoint the system.
DMKCPINT
---Perform an automatic IPL if indicated
!H!!H~12! , ~.!£1!!HS

Entry via SVC 8 provides linkage to a called
routine in R15

DMKPTRUL
---j~-called routine is not resident, page it in

and return control to the caller by loading
the SAVERTN into the old PSi and then load
the old PSi. The callers addressability,
SAVEAREA address and return address are
maintained in a new SAVEAREA.

DMKPSA, SVCRET
---Entry--vIi-svc 12 return control from the

called routine to the calling routine and
restores address ability via R12 and R13.

DMKPGSUL
---j~--a nonresident module unlock page to

return it to DASD device.
DMKPSA, SVCRLSE
---Entry--vIi--svc 16 to release the current

SAVEAREA used by SVC 8 and 12. Return to
caller.

216 IBM VM/370: System Logic and Problem Determination Guide

DMKPSA, SVCGET
---Entry-vi;--svc 20 to obtain a new SAVEAREA.

Return to caller.

EXTERNAL AND CLOCK INTERRUPTION REFLECTION

DMKPSAEX
---Entered via the interruption key on system

console, adjust accounting to charge for
supervisor overhead. If problem mode, ATTN
interruption, update the virtual machine PSi
from the external old PSi.

DMKPSA, EXTBUTTN
---jiit to-dispatcher, if there is no logged-on

operator, or the operator is disconnected, or
there is no active terminal. If the operator
was logged on and the external interruption
key was pressed, disconnect the operator's
terminal

.Q~!Hl£!£~
Clear all console requests.

DMKSCNRD
---If-the device is a terminal or graphic device

issue HIO to the real device
DKKDSPCH
---EiIt-to the dispatcher.
DMKPSA, EXTBUTTN
---Por 3104/3105, convert resource identifier

for the NCP terminal for the index able entry
into the NICBLOK for the associated VMBLOK
then

.Q~!H~!!!!!2
Reset all BTUs.

DMKDSPCH
---Exit-to the dispatcher.
!2!!!H~2A , JAI!t!I!2

Upon location X'80' timer interruption,
indicate the user end of the time slice by
storing flag in the VMBLOK's VKOSTAT.

DKKDSPCH
---EiIt-to dispatcher.
DKKPSA, EXTTIMER
---upon -cpu--tImer interruption, VKTLEVEL in

VKBLOK as a real CPU timer interruption.
DMKTMRVT
---sImulate the interruption.
DMKDSPCH
---EiIt-to the dispatcher.
DMKPSA, EXTCKC
---Upon clock-comparator interruption reflection
!2!!~2£!!I.Q

Use the printer to unchain the active
TRQBLOK. Call DKKSTKIO.

DMKSTKIO
---stack the block.
DKKDSPCH
---EiIt-to dispatcher.

MONITOR INTERRUPTION PROCESSING

DKKMONTI
---Par-monitor requests, with an operation code

of X'AF', increment TOD with DMKPRGTI value
and insert in TRQBLOK.

DMKSCHST
---Insert the block in the request block chain.
DMKMONTI
---collect Monitor timer driven date for the

enabled classes. On the successful decode of

the class and code, branch to the appropriate
data collection routine.

Class Code ---0- 0---

97
98
99

o
1
2
3

2 2
3
4

4 0
5 0
6 0+1

o
7 0
8 2

Function
perfori- timer driven system
clock and counter recording
MONITOR tape header record
MONITOR tape trailer record
MONITOR suspension due to tape
busy
Begin console read
Console output
End Console read
Console sleep
Drop user from queue
Add user to queue
Add user to eligible list
User statistics
Instruction simulation
DASTAP
Device statistics header
DASD seek channel program
Device statistics and system
counters

Each collection routine calls buffer
management for space for the collected dat~.
If the MONITOR tape is busy MONITOR activity
is suspended. If not busy call -

DMKSTKCP
---to-stack a CPEXBLOK for the event to call the

scheduler.
DMKMON, EXIT2
---iestore--ill registers to their previous

values prior to the MONITOR CALL. Load the
old program check PSi to resume processing.

PROGRAM INTERRUPTION PROCESSING

!HUg~!!§!!
For a program interruption received while in
supervisor mode (indication of CP module
error) and INTRDR+1 does not indicate MONITOR
CALL (X'40') exit to -

DMKPRG, CPERROR
---Send ABEND-message to the system operator.
DMKDMKPK
---Dump-storage and initiate IPL
DMKPRGIN
---por-supervisor state and MONITOR CALL save

registers in in DMKPRGPR
DMKPRGKI
---Do--BoNITOR CALL interruption processing

(DMKMON) •
!2!!~R!H~ , R!!~2I!I

For paging exception X'11' and EC mode with
DKKVATEX
---Translation on, process the exception.
DMKPRGIM
---por-paging exception, x '11' and EC mode with

DMKVATPF
DMKVATPF
---Translation off, and enabled for 1/0

interrupts and PAGEX on, process the pseudo
page fault

DMKPRG, PAGEXCP
---Por all-other page fault conditons go to

DMKPTRAN
!2!1~~.!!!!!!

Bring in the page from the auxiliary device.
DMKDSPCH
---Eiit-to dispatcher.

Section 2. Method of Operation and Program Organization 217

DMKPRG, PRNSTAT
---Por segment- exception X'10' with EC mode on

and translation on
DMKVATSX
---process the exception.
~IlK~!!§, ~R§§!~!

For the segment exception, X'10' does not
follow the above parameters; process it as an
addressing exception.

Y!HU~~§, :£~A.!'§I!
Process X'12' translation exceptions.

DMKPRG, PRG01
---Par privileged or operational exception of a

virtual machine in supervisor mode, examine
ITRPR+l if X'Ol' or '02' call -

DMKPRVLG
---to-process the exception.
DKKPRV, DKKPRGSM
---Por virtual--machines in problem mode, store

the users new program PSi in VMBLOK VMPSi.
DKKPSASV ---When- the program interrupt occurs and the

users page 0 is not resident or the virutal
machine is in EC mode, paging is performed

tKKDSPB
---Check the new PSi.
DKKPRVLG
---ValIdate the privileged operation indicated

in VMINST+2 and perform the service.

Code
XI 08'
X'09'
X'44'
X'80'
X'82'
X'9C'
X'9D'
X'9E'
X'9F'
X'AC'
X'AD'
X'Bl'
X'B202'
X'B203'
X'B204'
X'B206'
X'B207'
X'B208 '
X'B209'
X'B20A'
X'B20B'
X'B20D'
X'B6'
X'B7'
X'BA'
X'BB'

DKKHVCAL

Q~~!:~!i2!!
SSK - Set storage key
Insert storage key
EX - Execute instruction
SSM - Set system mask
LPSi - Load PSW
SIO - Start I/O
TIO - Text I/O
HIO - Halt I/O
TCH - Text Channel
STNSM - Store, then AND system mask
STOSK - Store, then OR system mask
LRA - Load real
STIDP - Store CPU ID
STIDC - Store channel ID
SCK - Set TOD clock
SCKC - Set TOD clock comparator
STCKC - Store TOD clock comparator
SPT - Set CPU timer
STPT - Store CPU timer
SPKA - Set PSW key from address
IPD - Insert PSi key
PTLB - Purge TLB
STCTL - Store control registers
LCTL - Load control registers
CS - Compare and swap
CDS - Compare double and swap

---On--privileged operations of DIAGNOSE X'83'
and the associated function code, perform the
service.

Q!H~!!Q
Execute
HIO, TIO

DMKT"RTH
---Perform

clock,
timer.

Y!!!.F~§'§ll

privileged I/O operations of SIO,
and TCH.

privileged operations related to TOD
TOD clock comparator and the CPU

Program interruption is reflected back to the
user on invalid instruction operands,

unsupported instruction operand codes and
DIAGNOSE '83' function codes that are not a
multiple of 4.

CTCA OPERATIONS BETiEEN TWO VIRTUAL MACHINES

DKKVIOEX
---Virtual I/O operation is reflected to DMKVCA,

the channel adapter module, for processing.
DMKVCAST
---Por-SIO, check if the CTCA is coupled. If

not coupled, call DKKDIASK.
DKKDIASM
---sIiiuIate return status.
D"KVCA, VCRSTART
---P~r a---coupled CTCA, analyze operations

resulting in X-side (read) and Y-side (write)
of the data transfer opera tion.

DMKVCA, VCASIOB
---Detected-Interruptions are presented to users

via stacked IOBLOKS and DMKSTKIO.

DMKVCATS
---cTci-TIO activity is determined by examining

Y-side information to determine mode and
activity.

DMKVCASH
---cTci-HIO and HDV is processed by determining

the conition code to present and whether the
Y-side should be notified.

DMKVCARD
---CTci-process results from RESET xxx or SYSTEM

RESET commands. The CTCA status is reset but
the CTCAs are not uncoupled.

DKKVCARS
---Uncoupling CTCA is achieved in the VDEVBLOK

(VDEVNRDY flag) idle CTCA plus an invoked
DETACH xxx or user LOGOFF. Return to calling
routine.

SCHEDULING I/O FOR CP AND THE VIRTUAL MACHINE

Yl1~!Q'§2!!
Entered via SVC. Entry pOint indicate a CP
I/O event as indicated in the IOBLOK. For
start request, increment the SIO count in the
RDEVBLOK and start the device if it is
available. If not (device busy or already
scheduled) queue the IOBLOK and return the
operation to the caller.

Yll!!Q§2!
Entered via SVC. Entry point indicates
virtual machine initiated I/O event.
Preserve VMBLOK address in R11, turn off
IOBCP bit in the IOBLOK, add 1 to SIO count
in the VDEVBLOK (or RDEVBLOK). Process the
SIO if there is any available path to the
device. If not, queue the IOBLOK and return
the operation to the caller.

218 IBf! V"/370: system Logic and Problem Determination Guide

STANDARD DASD I/O INITIATED VIA DIAGNOSE

DMKDGDDK
---Perform simple disk I/O of a standard

format. Entry is via DMKHVC code X'18'.
DMKSCNVU
---FInd-device related to SIO cuu address.
DMKFREE
---illocate storage for IOBLOK and RCWTASK.
DftKGDDK
---BuIld and check the CCW string.
!l~~!Q~2!

Execute I/O. On completion, post condition
code (and error return code in R15, if
detected) •

DftKDSPCH
---Eilt-to dispatcher.

GENERAL I/O OPERATION INITIATED VIA DIAGNOSE

DftKGIOEX
---Perform general I/O operation. Entry is via

DftKHVC code 20.
DftKSCNVU
---Find-device related to SIO cuu address.
DMKFREE
---illocate storage for the IOBLOK.
DMKCCWTR
---BuIld the read CCW list.
!H!!!OS.Q!

Queue the I/O request for execution.
DftKGIO, DIAGRTN
---On-interruption return, check status.
DMKUNTFR
---If-no problem encountered, free storage used

for CCW string and IOBLOK.
DMKGIO, DIAGRTN
---Reflect-the-condition code and return code to

the user.
DftKDSPCH
---jilt-to dispatcher.
DftKUNTRN
---On-returned error condition, convert real CSW

to virtual CSW and set in user's page O.
DMKGIO, GIOEXT
---Eilt vIa-sic 12.

VIRTUAL MACHINE I/O INSTRUCTION SIftULATION AND
INTERRUPTION REFLECTION

DMKIOEX
---Entry from DMKPRV to simulate I/O per

VMBLOK's VMIST field.
!l~!!!Q, !!Q2!Q On detected SIO, call -
DMKSCNVU
---To-locate VCHBLOK, VCUBLOK, and VDEVBLOK for

the cuu called per SIO instruction.
DftKVIOEX
---Determine device availability and set

condition code accordingly.
Q~!!Q~.Q'!

If the operation is warranted, schedule the
operation.

!H1!!!Q, !!Q!!Q
For TIO, check device status, pending
interrupts, and set appropriate condition
codes.

DftKVIO, VIOHIO
---For HIO,-check for dedicated channel, CE, CU,

or device busy condition, and subchannel busy
and set appropriate condition codes.

DftKVIO, VIOTCH
---Check-far-dedicated selector or busy channel

and check for pending abnormal interruption
and set appropriate condition code.

DftKVIOIN
---Entry from DftKDSP to process the reflected

virtual interruption.
DMKSCNVU
---Locate the VCHBLOK, VCUBLOK, and VDEVBLOK.
DMKVIOIN
---Analyze blocks and reflect condition code to

user. If condition code equals 1 (cc= 1) ,
save status from the real device (if real
device) and DMKUNTFR.

DMKUNTFR
---Translate and store CSW in user's page O.
DMKVIO, VIOCC1
---On-TIO-or-HIO, free the device and set CC=1.
DMKFRET
---Fret storage for the IOBLOK.
DMKDSPCH
---jilt-to dispatcher.

VIRTUAL CONSOLE SIMULATION

DMKVIOEX
---Entry for virtual console activity comes from

the SCP stored in the user's virtual
machine. The program's generated CCWs and
data are reflected to the attached terminal
used by the virtual machine operator.

DMKVCNEX
---Locate and move non-TIC CCWs from the users

virtual storage to a VCONCTL block.
DMKVCN, GETCCW
---Update--cii and CSW in respective control

block.
DMKVCN, VCNRD
---For read- operation, build a read console

buffer VCONBUF for the input to be read from
the terminal.

Q~!2~!!m.
Execute the read operation and call
DMKVCHEX.

DMKVCNEX
---set--return address in VCONCTL VCNRDRET

field.
DMKVSPVP
---spool console activity if SPOOL CONSOLE START

specified.
DMKDSPCH
---EiIt-to dispatcher. wait for completion.
DMKVCN VCNWR
---Calculate and obtain free storage (VCONBUF)

necessary for the write to console
operation.

DMKVCN, VCNMDAT
---Translate-and bring in user's data page and

move it into VCONBUF.

section 2. Method of Operation and Program Organization 219

!H1K2£!~±
Write data to user's terminal.

DKKDSPCH
---'Eilt-to dispatcher.

DKKVCN, VCNSHCN
---oi-a -sense-operation, set CE and DE in the

virtual PSW. Reflect the PCI flag in the PSW
if the PCI flag was set in the CCW. set the
IL flag if warranted. Kove the sense data
from the VDEVBLOK to user storage as
designated by the CCW. Update VDEVBLOKS
VDEVCSW to reflect status and count.

.!!!U~!£!, !£!££1
On completion of I/O operation, set
appropriate status for command reject, not
ready protection check, incorrect length,
channel program check. set appropriate CC
and CSW in users page O. Otherwise post
pending interruption status in VKBLOK,
VCHBLOK, VCUBLOK and VDEVBLOK.

DKKVCN, FLAGTEST
---If-command-chaining, process the next ccw.
I:KKDSPCH
---Exit-to dispatcher.

LOCAL GRAPHIC I/O AND INTERRUPTION PROCESSING

~!H~~!U!1B!
Entry for local graphic device enable and
disable function (from DKKCPVEN and unstacked
CPEXBLOK). Invoking CP ENABLE/DISABLE
commands, start or terminate local 3270
display (and supported print devices) and
3066 console activity.

DKKFREE
---Performs enabling function. Gets storage for

IOBLOK and TRQBLOK generation.
DKKGRB, LOGUSER
---Porm and-wrIte out the logo at the screen.
DKKGRB, ATTNINI
---unsolIclted- attention for RDEVBLOK

(enabled) •
DKKBLDVK
---Bulla LOGON VKBLOK for logon process.
~!!~£I1!!H~

Enter console function mode for terminal
input.

~~K!Q§2~
Schedule request to clear screen preparatory
to logon.

DKKDSPCH
---'EiIt-to dispatcher to wait for interruption.

successful logon per the next interruption
begins the operation of building the user's
virtual machine.

DKKGRAIN
---Local 3270 display and 3066 interruption

entry from dispatcher.
I!1!!§£1!.~!l

From the IOBLOK, locate the real device
blocks related to the interruption. Analyze
IOBLOK CSW and condition code and the I/O
operation to determine read/write sequential
action. For unit error, retry 10 times (if
applicable). If recovery fails, log off.
For ATTN interruptions, attempt to log on the
new user if unsolicited ATTN occurs.
Otherwise, set up for READ CCW string.

DKKFREE
---Get-storage for function and build CONTASK,

IOBLOK, TRQBLOK.

~~!!Q"§2~
Issue the SIO.

DKKDSPCH
---ialt-for the response.
DKKGRA, RDINT
---Ei- t~e--Interruption response, go to the

return processing address in the TRQBLOK
extension TRQBCRT. For read return,
determine function key action and write
response (if appropriate) via KEYTBL. On
response of CE and DE go to auxiliary
processing address and execute the processing
routines:
CONRETBF - completion of a write CONTASK
RDKINT - completion of a buffer read
GRFCFK - execute console function
SETREJ - set no accepted timer
SETKOR - set more ••• timer delay
SETWNG set 10 second clear warning
RDEXIT clear buffers after PF keys
STRTREAD - set read status
NOCTL - process next CONTASK or go idle

DMKGRA, RDATA
---Process--read response of data plus ENTER

key.
DMKCNSED
---ialt-and modify length count. Move data to

caller's buffer.
Jl1!1S~£l!~±

Schedule rewri te to screen (unless
inhibited) •

Q~!HQ'§2!!
Perform start I/O.

DKKDSPCH
---iilt-to dispatcher.
Q~!~!!n!£

Entry point to process CONTASKS queue for
local 3270 and 3066 devices.

DKKFREE
---Get-storage for IOBLOK and TRQBLOK.
DKKGRB, BLDCCWS
---iiecute-CENTASK, if appropriate. If not -
DMKDSPCH
---'Eilt-to dispatcher.

LOCATE AND VALIDATE AN ISAM READ SEQUENCE

Qn!!.§111!!
Entry from DKKCCW modules to locate and
modify an ISAK CCW string_ using the IOBLOKs
IOBCAW locate the RCWTASK. Check for the
ISAK read CCW.

DMKISK, CHKRD
---Check--for the correct ISAK sequence as

follows:

1. The last CCW in the RCWTASK is a TIC.
2. This RCWTASK points to the ne~t RCWTASK

with a minimum of 2 CCWs.
3. The first modified CCW is in real

storage.
4. The last byte of the ISAK read overlays

the operation code of the first CCW in
the next RCWTASK.

5. The TIC in the RCWTASK is to the next
RCWTASK's first CCW.

6. The date address of the first CCW in the
next RCWTASK is the same address of the
ISAK read+1 as it is in real storage.

220 IBK VK/370: System Logic and Problem Determination Guide

D!KFREE
---storage obtained for seven double words save

block.
D!KISft, CHKTSK2
---institute--the ISAft read modification as

follows:

1. Set the read to point to the save block
data area.

2. Set the CP TIC to point to the .odified
CCW in the same block.

3. Set the modified CCW (seek head) in the
save block to point to the save block
data area.

4. Set the CP TIC in the save block to
return to the RCWTASK following the
modified (seek head) CCW.

5. Set the search CCW in the RCWTASK to
point to the data area in the same
block.

DOUBLE WORD SIVE BLOCK
r------ . -,
1 Read Address 1 (2) TIC Address
1
1
1
1
1
1

I
1(3)

Unused

Read Data. Area

Modified CCW
1----------------------
1 (4)
1
1
1
1

TIC to RCWT AS K

Real Read CCW

Real TIC CCW

1
1
1
1
1

---I
1
1
1
1
1
1
1

L
________________________________ -J

D!KISM, CHKTSK2
---Return-tO-DMKCCW module via SVC 12

SCHEDULING CP AND VIRTUAL !ACHINE I/O OPERATIONS
AND INTERRUPTION HANDLING

~~K!Q~2R
Entry to process CP generated I/O. Flag the
IOBLOK as a CP generated event. Initiate I/O
if path to real device is free (available).
If not, queue the IOBLOK and return to
caller.

.!H~Kl;Q.22.!
Entry to process IIO for virtual machine I/O
operations. ftARK IOBLOK as not CP
initiated. Save VMBLOK address. If path to
the VDEVBLOK or the VDEVBLOK is busy queue
the IOBLOK and return to caller.

DftKIOS,IOSTATDV
---i~avarlable status, start the I/O and return

to caller.

DMKIOS, IOBSTART
---if-ItO-request has not been reset, save the

address of the active IOBLOK and set device
busy. If the device is being reset, unflag
scheduled device and scheduled control unit.
stack the IOELOK and restart the device.

DMKIOS, IOSSIO
---set the--subchannel path busy and chain the

active IOBLOK from the RDEVBLOK.
DftKIOS, IOSSIO
---Locate-caller's CAW and issue the SIO. Check

SIO completion. Returned condition code sets
sequel action. cc=O indicates successful
start; cc=l, ccw stored, initiate sense
operation; cc=2, busy condition, retry or
requeue IOBLOK; cc=3, fatal error (not
operational, stack the IOBLOK and return to
caller.

DftKIOSHA
---Entry point for haltin9 a device. If device

is not active, return to caller. If IOBLOK
active, reset the IOBLOK to halt the device
and mark the device reset in RDEVBLOK.

DftKIOS, lOS lOKI
---If-the-channel path is busy with a burst .ode

operation, stack the IOBLOK to halt the
operation when the channel path becomes
available. Return to caller.

DftKIOSIN
---Entry from I/O new PSW. Check old PSW. If

problem mode, save CPU status in the VKBLOK.
DMKSCNRN
---Locate RCHBLOK, RCUBLOK, RDEVBLOKs for

interruption unit.
1HU~'!!Q~£

Process dedicated channel interruption
condition. If control unit end or channel
available interruption occurs, restart the
operation, if interruption does not occur
stack it.

DftKIOSIN
---If--the IOBLOK is not active on RDEVBLOK

interruption, call DKKIOS.
DMKIOS, IOSENSE
---Schedule---sense operation, then go to

dispatcher.
DKKIOS, IOSRSTRT
---Por PCi--or-CE interruptions, copy and stack

the IOBLOK •
DMKCNSIN
---Process PCI or CE interruptions, if related

to local graphic device or nondedicated TP
line.

DftKIOS, DOSENSE
---Por split-seek complete interrupt, rechain

the seek and reschedule operations.
DMKSTKIO
---stack IOBLOK and restart any units freed by

the interruptions.
DMKDSPCH
---Exit-to dispatcher.

section 2. Method of Operation and program Organization 22\

TERMINAL CONSOLE I/O CONTROL, START/STOP, 3210,
3215, AND OTHBRS

DMKCNSBN
---Per-unstacked CPEXBLOK, on enable or disable

function, check current status of the current
real device and set flag in RDEVFLAG. Build
CON TASK and IOBLOK.

:Q~KIQ§2~
Issue SIO for enabling or disabling function
and check return.

DMKDSPCH
---jiIt-to dispatcher.

:Q1H~£NS!£
Entry from DMKQCO module. Build I/O CCi
string as defined by the console device
type. Also select the proper line code to
interface with the device. place in
CONTASK. For output CONTASK determine the
correct translation table applicable to
terminal communications (DMKTBL). To append
proper control character to the data stream
for the particular device type, refer to the
following labels:
• DMKCNS, IBCWTTY

TeletypewrIters
• DMKCNS, IBC2741

2741~-3767-----

• DMKCNS, IBC1050
1050~-1051-----

• DMKCBS, IBC3210
3210~-3215-----

DMKCRS, IRCFIlIIS
---Attempt-to--start I/O by halting the current

operation, if the operation is a 'prepare'
CCW or the input is a read and the
forthcoming output is a priority write
CON TASK.

DMKPREE
---Get-storage to build IOBLOK, if needed.
DMKCRSIN
---Set-return address in IOBIRA.
:QJ!K!Q§2~

start I/O. If busy condition encountered
build CPEXBLOK and queue for later
execution.

DMKDSPCH
---EiIt-to dispatcher.

:Q~~£!§!!, £~§~~A~
For an active input task halted,
RDEVPLAG=RDEVHIO to process priority output
task.

DMKPREE
---SuIid COBTASK for reverse break CCws.
DftKCRS, CNSBREAK
---Move -the-Input CORTASK following the last

priority write output COBTASK on the chain.
DftKCNS, CBSIOUC
---Por unIt-check with intervention required,

assume an attention interruption and build a
'prepare' ccw for the 2741.

DMKCNS, CNSLOGF
---Por unIt-Check and timeout condition - logoff

the virtual machine and re-enable the line.
DMKCNS, CNSRTRY
---Por data--check and other conditions, retry

the previous operation.
:QJ!!£2!U~1

Process completed output contask.
:Q~~£1!§'!!!

Interpret interruption status and CCW
residual count for input CON TASK completion.

DMKCN S, CNINCT
---Validate--Input data and control characters

and translate to EBCDIC from line code.
DMKTRMID
---Attempt to identify, if applicable, the line

code identification; PTTC/EBCD or
correspondence.

DMKCNSED
---Perform line editing of the input buffer.
DMKCNS, CNSRT41
---Prepare--and issue control CCis to request

status information from the terminal.

DMKCNSIN, CNSCTAK
---por-contral-task interruption return, examine

the interruption status according to control
task function:
• DMKCNS, CNSTAK

Reset-cont~or-task.
• DMKCNS, CNSCTID

DevIce identIfIcation.
• DMKCNS, CNSCTPR

Attention-sIgnal.
DMKCNS, CNSCTPR
---wrIte--'VM/370 Online' interpretation of

response determines retry, or build new
CONTASK and execute or stack or process next
CONT ASK.

:Q~!,g£.!!]!
Process completed CONTASK requests. If no
tasks remain for the terminal, set IOBLOK's
IOBIRA to DMKCNSIN and link the IOBLOK to the
user.

DMKDSPCH
---jiIt-to dispatcher.

CONSOLE SCHEDULING

:QJ!!2£!!!!:Q
SVC entry to build CONTASK for input data.
Set the input buffer to zeroes.

DMKFREE
---Get-storage to build CONTASK.
:Q~!2£!, §!2Y§Y§

Stack CONTASK on RDEVBJJOK, if RDEVCON was
zero. If not, exit to the appropriate
interrupt handler per RDEVTYPC and RDEVTYPE
or -

DMKSPCH
---jiIt to dispatcher.

:QJ!!2£!!1
SVC entry to build CONT1SK for output data.
strip trailing blanks from output message,

222 IBM VM/370: system Logic and Problem Deteraination Guide

.o~ify byte count and determine real device
destination.

DftKFREE
---Get-storage to build output CONTASK.
.!HUS.2C N , !!!~2£!

Update CON TASK CCW message byte count for the
message text, terminal and line control
information and (i~ appropriate) time sta.p.

DMKCVTDT
---if--time stamp required, get the value for

CONDATA area.
DftKVSPVP
---Spool console message, if VDEVFLAG=VDEVCSPL.
.!2.ftK2CN, ~R§'~A.ll

If message data contains carriage returns,
X115 1 , create a separate CONTASK for each
line.

.!H1K2~~, !AK!!!~R
On first CONTASK Or priority CONTASK, enqueue
on chain from RDEVBLOK in appropriate
location, then call related interrupt
handler.

!tt!K2~.I, !!!!~!!~
If NORET or DEFRET specified, build and stack
CPEXBLOK to alert the interruption handler
and return via EXIT SVC otherwise go to
specified interruption handler.

!H~KQ~.I1Q
Entry via SVC to disconnect and logoff a
virtual machine as a result of transmission
line failures. place the virtual machine in
a wait state, VftRSTAT=VftCFWAIT.

DMKSCHDL
---ilter virtual machine to unrunnable state.
DKKFREE
---Get- storage for message for the system

operator •
.!2~!~~~!!~, ~~!2£.I!!~,].ft!£!~]~,]~K2!2!~

Fill in message variables.
DMKSCNR, DKKSCNRD, DftKCVTBH, DftKSYSNK
---FIll in-message varlables.--------
~~K2£!!!1

Send the user disconnect message to the
operator.

~!1!2~~, ~§'~2~!!Q
Build TRQBLOK, if needed, for 15 minute
delay, schedule it, and exit via SVC.

]~K2£!,]~£11Q2
After time elapse, TRQELOK is unstacked and
VHOSTAT is set to VftKILL for inevitable
DMKUSOFF logoff operation.

DKKDSPCH
---ExIt-to dispatcher.

3704/3705 INTERRUPTION HANDLER

!H~!!Hm!£
Entry via DMKQCN or via CPEXBLOK for
3704/3705 resource initialization. Locate
the NICBLOK and check resource avaiability.

~~KR!~, 1!~!1.!!!!
For resource
CONTASK save
DKKQCNET.

~.ftKRNH, ~!2~!2!

unavailable, set
area and return

RC=12
task

in
via

For resource available, set CONTASK values
per input and output task requirements.

!H1!!! NH, ~!2!!.I2
Kove CONTASK from RDEVBLOK chain to NICBLCK
chain.

]~K!!!M, !!!!~l!!!l
On 3704/3705 available condition, search
NICLIST and build an IOBLOK if required.

DftKRNHIC, RNEXLST
---Search the--SICBLOKS for CONTASKs

to 3704/3705, build and chain for
DftKRNH, RNCHAIB

to be sent
output.

---Perform---necessary function for each
resource.

~11!!Q2Q!!
Start ou tput I/O opera tions.

DKKRNH, RBICHBl
---Return-via-a7.
DftKRBHND
---Entry via SVC to schedule resource control

tasks •
DKKRNH, RBHBDTK
---Bulld--control CONTASK and enqueue it for

execution.
DKKRNH, STKCPEX
---For NORET--specified, build and stack

CPBXBLOK to perfor. SVC exit.
DftKRNH, RNDEXIT
---ittempt-to-start output via GOTO DKKRNHIC.
DKKRNH, RBFDI sc
---Entry-for-3704/3705 recovery.
DKKBLDR

a

---Load the 3704/3705, if it was not previously
loaded.

~~K~R!
Get storage
(telecommunications
necessary.

to build CKPBLOK
control block), if

DMKRNH, RNSBITS
---Record-actIve line and enabled terminal flag

bits.
]~!2£!]~

Clear CONTASK chains.
]~!2£~1:.Q

Force disconnect to all active users.
DMKNLDKP
---DUMP-the 3704/3705.
DKKNLDR
---Reload the named program.
Q!1!!!!~!m

On I IPL complete'
resources.

DKKFRET
---Release the CPEXBLOK.
~11!~§.f£!!

Exit to dispa tcher.
DftKRNHIN

signal, reenable

---Entry via IOBLOK to perform input and output
interruption processing.

DKKRNK, RNIOBRR
---por Input--process failure. Analyze the

failure and if related to the 3704/3705 and
not to a particular resource, either retry or
dump and reload.

DKKRNH, READBUF
---jnterpret---response codes for each BTU

received and schedule necessary control
operations.

DKKRBH, CKPRBAD
---Generate-response to a read error.
DKKRNH, CKPWRITE
---Generate-response to a write error.
DKKRNH, CKPCONT
---Generate-response to a contact task error.
DKKRNH, COMDISC
---Generate--response to a disconnect task

error.
DKKRNH, COMCNTL
---Generate-response to a control task error.
Q~!!!!~, !!!~.Q1.!1:

Generate response to a unsolicited read.
~~!2£!]~

Return completed CONTASKs.

section 2. Method of Operation and Program Organization 223

DMKRNH, RNSTART
---Attempt-te-restart the 3704/3705.
DMKDSPCH
---Exit-to the dispatcher.

~!HH!!!J1'!!!
Entry via IOBLOK to perform input and output
interruption processing.

DMKRNH, SCHREAD
---on- output:- examine Interrupt status per

IOBLOK values and if ATTN, build and start a
read CCW sequence.

!!!HH~!!!!, !!!!IQ!B!~
If unit check and fatal, dump and reload the
3704/3705.

DMKRNH, RNOREAD
---I~pend[ng-iTTN cleared via SIO
]~!s'IQ'§.2B

Reschedule write operations.
DMKRNH, RNSLOWDN
---I~ unit---exception, set RDEVSLOW and

reschedule rejected CONTASKs.
!!~!s'.2CN!!l!

Return only CONTASKs without CONRESP or
CONSPLT set. Retain others until final
response is received.

I:MKRNH, RN START
---Attempt-to-restart the 3704/3705.
DMKDSPCH
---EiIt-to dispatcher.

HANDLING REMOTE 3270 WITH BINARY SYNCHRONOUS
LINES

I:MKRGBEN
---Entered when the

command is issued.
~~!i!BJ1!J1!

NETWORK ENABLE/DISABLE

Get storage for the necessary CONTASK,
IOBLOK, and if applicable, BSCBLOK.

DMKRGB, LINESUP
---set up-requIred CCWS and control data in the

CONTASK for tasks. These tasks include:
enabling the binary synchronous line,
enabling a device, LOGO messages, screen
formatting, and disable line or device
(logoff) •

~~!s'!!!!!l~
For logon function build logon VMBLOK.

.!HHSIQ~.Q]
Start line I/O or device I/O, for not busy
condition.

DMKRGB, RGFTASK
---Per busy--condition, build CPEXBLOK and exit

to caller.

DMKRGBIC
---Entry from DMKDSP. On a not available line

condition, exit to dispatch. For available
line, process the associated CONTASKs by
queueing the related resource from the
NICBLOK.

!!~!i!Q~, R§.§!!!!!
Process POLL SIO on a no CONTASK queued
conditicn.

!!~!i!.Q~.2]
Process selection SIO on available resources
and not in control mode per NICBLOK
conditions and the CONTASK CONSTAT field.

DMKDSPCH
---ExIt-to dispatcher.

DMKRGAIN
---Entry from DKKIOS, examine line interruption

condition. Discard any of the :following and
go to the dispatcher: nonbinary synchronous
line, copied IOBLOK, unsolicited
interruption, bisync line fl.agged not-in-use,
non-terminal class device.

!!~!i!!'§~, fA.1A1~!!
For IOBFATAL condition or any non-zero
condition code, free all related CONTASK,
IOBLOK, IOERBLOK, and BSCDLOK.

!!~!i!!§A, !!!.§A.§!A
Log off all affected users on that line.

DKKMSWR
---send message to the system opera tor.
DMKDSPCH
---EiIt-to dispatcher.
DMKRGAIN
---j~-IIne or terminal response did not fall in

the previous category, process via TP code
branch. The code in the fifth byte of the
ending ccw or IOBCSW-8.

TP Code Function
TPOO---Errer-Handling CCW
TP01 Enable/disable function
TP02 Write EOT (sequence prior to polling

and addressing)
TP03 write polling or addressing characters
TP04 Handle station's status and sense

TP05
TP06
TP07
TP08

TP09
TP10
TP 11

message
Read response to addressing
write response to text
NO-OP following POLL command
unit exceFtion condition
(timeout)
A 11 reset commands
Read/write text
Read response to text

DKKDSPCH
---Exit-to'the dispatcher •

DKKBSCER
---Entry via DKKIOS and SVC 8 to process errors

related to the binary synchronous line unit
check and channel error conditions. On first
error pass, move the IOERBLOK pointer from
the IOBLOK to the RDEVBLOK, reset retry and
fatal flags, set the ERP flag and call
DMKFREE.

DKKFREE
---~;t-free storage for a work area for retry

CCws.

224 IBK VM/370: System Logic and Problem Determination Guide

DMKBSC, NOTPIRST ---on- a-not--iIrst error condition, test for
unrecoverable error condition. Unrecoverable
errors include:
program check, protection check, chaining
check, equipment check, interface control
check and channel control checks. If one of
these, notify the system operator. Rese~
flags, initiate error recording and

DMKPREE
---Free IOERBLCK.
!H1K!OS2~

Go back to scheduler.
DMKRGP, UNITCK
--~na1yze--TP code, sense data CSW residual

count and retry count to determine retry or
IOBPATAL flag setting.

REAL STORAGE ALLOCATION AND PAGE MANAGEMENT

DMKPTRAN
---Enter via the TRANS MACRO per paging request

as determined by DAT created program
interrupt (page or segment exception).

DMKPTR RESTART
---Return-to-Ca11er, if virtual address in R1 is

beyond range of user's directory specified
storage si ze.

DMKPTR, ADDROK
---Check--page residency via LRA (LOAD REAL

ADDRESS) operation.
DMKPTR, TESTLOCK
---For resldent- page, lock page in storage (if

appropriate) •
DMKPTR, GETRADD
---s;t real--address in R2, make PAGTABLE entry

valid. Set cc=O and exit to caller.
DMKPTR, INTRAN
---For page-- not resident but in transit

(SWPTABLE, SWPPLAG), place virtual machine in
locate mode. Locate CPEXBLOK for the real
page requested and chain another CPEXBLOK
with a return address of TRANRETN, to the
same chain.

DMKPTR, TRANRETN
---iiter-page--Is no longer in transit, restore

registers and return to RESTART for
processing.

DMKPTR, GETPAGE
---Rec1aIms-a-page on PREELIST (CORETABLE).
DMKPTR, DOlO
---For page-that is not in storage, do setup to

read in the page.
DMKPTR, CKDEPER
---For DEFER-option passed in R2, build CPEXBLOK

to return to user after page is in storage.
DMKPTR, PAGIN
---ifter-the-page is read into storage DMKPAGIO

process, place its CORTABLE entry into the
user's page list then remove the user from
the wait state and update the lock count (if
required).

DMKPTR, GETRADD
---set reaI--address in R2, make PAGTABLE entry

valid. Set cc=O and exit to caller.

DMKPTRPR
---Per-the caller's code in R2, obtain a page

frame -
DMKPTR, GETPREE
---Obtain-page-frame via CORTABLE reference then

exit to caller.
DMKPTRPE
---Entry via CPEXBLOK, check page availability

via flush list (DMKPTRPL), if none available
steal a user's page.

!H1!H~l!i, .§11ECl
The SELECT routine is entered to replenish
the PREELIST from the flush list or user's
pages that have not been referenced.

DMKPTRPT
---Process pages to be returned by chaining them

to the PREELIST. On page returns DEPER page
requests are processed first.

DMKPTRLK
---Iii-locking a page in Real Storage (addre.ss in

R2), add 1 to lock count; if previously
locked, and exit to caller. If not
previously locked, unchain the CORTABLE entry
from the user's page list and set the lock
count to 1.

DMKPTRUL
---To-unlock a locked page, reduce Lock ountby 1

and exit. If the lock count is now equal to
zero, place CORTABLE entry on user's page
list prior to exiting from routine.

READING/WRITING A DASD PAGE TO/PROM VIRTUAL
STORAGE

DMKPGAGT
---Entered via SVC call to read in DASD page

into storage.
DMKPGTPR
---Release DASD space that was previously

occupied by this virtual storage page.
DMKRPA, RESIDENT
---Reiove--resIdent page frames from the user

list.
DMKPTRPT
---Place these page frames on the free list.
Q1Us~g!, ~~Q~l!!~l!

Update the SWPTABLE with disk address in RO.
DMKPTRAN
---Bring the page into storage.
DMKPRA, EXIT
---Put rear-storage address of the virtual page

is passed back to the caller in R2.
DMKRAPT
---Entered via SVC call to write out a page to

DASD storage.
DMKPTRAN
---Locate the page to be moved and lock it.
DMKPRAPT
---store all registers in CPEXBLOK and flag

CPEXRO as a write request.
DMKPAGIO
---Write the page.
l!1!!Sg~!, IQ]II!

Decrement page wait count. If zero results,
take user out of page wait.

Section 2. Method of Operation and Program Organization 225

DMKPTRUL
---Unlock the page frame. Return to caller.

!H1EY!IA~
Entry via BALR when an EC mode virtual
machine needs a shadow table generation and
update or purge operation.

DMKVATMD
---Get--storage to create shadow table, Flag

VMBLOK to show shadow table existance.
DMKVATBC
---Free-shadow page, segment and copy segment,

when user leaves Ee mode or alters CR o.
DMKVATRN
---Entry to perform third level to first level

translations and third level translations to
second level address translations. Use TRANS
macro to access virtual segment and page
tables to get the virtual page into real
storage.

DMKVATLA
---usIng the TRANS macro to access the virtual

segment and page tables, pass the resulting
page and displacement to DMKPRVLG.

DMKVATPX
---Invoked by DMKPRGIN when a paging exception

is received for an EC mode virtual machine.
DMKVAT, SETUPEX
---Perfor;--set up operation and develop page

table address.
DMKPTRAN
---Get-the page.
Dt!KVATPX
---Update the shadow table.
DMKVATSX
---Invoked by Dt!KPRGIH when a segment exception

is received for an EC mode virtual machine.
Dt!KVAT, SETUPEX
---Perform-setup operation, then invalidate the

shadow page table or if none exists, allocate
a new shadow table and set it invalid.

DMKVATPF
---jntered via Dt!KVATPG from DMKPRG to simulate

pseudo page fault interrupts when a paging
exception occurs with pseudo page faults
interrupts enabled.

Dt!KPTRAN
---BrIng in the DASD page.
Dt!KPRGSM
---Reflect program check X'14' to the user.
DMKVAT, PAGRES
---When the--page becomes resident in storage.

Build the PGBLOK, set high order bit in the
translation exception address field,

DMKDSPGH
---jilt-to dispatcher.

ILLOCATIOR IND DEILLOCATIOR OF DASD SPACE

DMKPGTPG
---intry to search and allocate a DASD page for

paging/spooling.
Dt!KPGTSG
---~e;rch appropriate RECBLOK chain for

available DASD page. If none found, locate
next available cylinder and construct a new
RECBLOK, calculate address of the allocated

DASD page and place it in Rl. Return to
caller.

DMKPGTRPR
---intry-to deallocate DASD page used for paging

and Spooling. Via RDEVBLOK locate the
RECBLOK and reset appropriate bit in the
RECBLOKs RECMAP and adjust the member of DASD
pages in use. If all the pages on the DASD
cylinder have been deallocated, deallocate
the cylinder. Exit to caller.

DMKPGTSR
---intry to release a group of DASD pages no

longer needed for spool file use. Per Rl,
find RECBLOK and dummy RECBLOKs and reset the
RECMAP bits as specified. Free related
RECBLOKS, if complete deallocation occurs.

DMKPGTCG
---Entry for allocation of enough DASD spool

space to record a 3704/3705 dump. Scan
RDEVBLOK and associated ALOCBLOK for enough
contiguous available space to record the
dump. When found, flag cylinder as allocated
and build and chain the required RECBLOKs.

DMKPGTVG
---iiMKPGT contains an intel:nal table, PAGET1!,BL,

in which the allocation of page frames for
the CP paging VMBLOK is kept. The PAGETABL
is scanned for a zero bit denoting the page
frame is available. The page is marked
allocated by setting the bit to one and the
address of the page frame is returned to the
caller in Rl. If no page frames are
available, a CPEXBLOK is built and queued to
the deferred request chain.

DMKPGTVG
---E;try to release a page of virtual storage.

Check the chain of deferred requests. If
there are none, reset the page bit in the
PAGETBL to 0 and exit to the caller.
otherwise, give the page to the first
requestor in the deferred chain and stack his
CPEXBLOK for the dispatcher.

SHARED SEGMENT STORAGE MARAGEMERT

Dt!KVMIPS
---j;try via DMKPRT because a shared page

(address in R2) has been detected by CPo The
virtual machine (VMBLO~ that caused the page
alteration has its named system released.
The original page swap tables are copies.

DMKRt!SG
---ihe-running virtual machine is informed of

the share page violation.
DMKVMASH
---Entered via DMPDSP/BALR, the shared page

table are examined for hardware change bit
being on. The resulting condition code is
reflected to the caller.

TEt!PORIRY DISK STORAGE MANAGEMENT

Dt!KTDKGT
---Entry to allocate temporary disk space

(T-disk). With RO equal to the number of
cylinders required and R1 equal to the device
type, locate RDEVBLOK and related ALOCBLOK's
ALOCMAP. If no allocation space is to be
found, return to caller with 0 in RB. If

226 IBM Vt!/370: system Logic and Problem Determination Guide

allocation is successful, flag ALOCMAP, with
X'AA' as allocated and put first cylinder
address in Rl and RDEVBLOK pointer in RS and
return to caller.

PAGING I/O SCHEDULER

DMKPAGIO
---intry to initiate page I/O activity. Using

preformatted IOBLOK from IOBSTACK, fill in
the CCWs with DASD opcode and values derived
from CPEXBLOK swap table and core table.
Chain the CPEXBLOK on the in-transit queue.

DMKPAG, GETRDEV
---plnd the-Paging RDEVBLOK.
DMKPAG, FINDIOB
---search--ioBLOKs seeking the same cylinder

address. If found, chain the channel
programs together with TICs.

DMKDSPCH
---EiIt-to the dispatcher.
~~!fA§, 2Q~Y~R!Q

If no IOBLOKs with some cylinder address are
found -

R~!!Q~2~
Start the I/O operation.

DMKDSPCH
---ExIt-to the dispatcher to await interrupt.
DMKPAG, UNTRANS
---upon Interrupt return, unchain the CPEXBLOK

from the intransit queue.
DMKSTPCP
---stack all deferred requests for execution.
DMKPAG, UNSTACK3
---Return-iOBLOK to IOBSTACK or free it.
DMKPAG, OVERHEAD
---Calculate-paging load and store it, the TOD,

and other values in PSA.
DMKDSPCH
---Eilt-to dispatcher.

RELEASE VIRTUAL STORAGE PAGES

DMKPGSSS
---Entry to release partial virtual storage.

Per Rl (address of first page to be released)
and R2 (address of last page to be released)
set partial entry flag.

R~!fi~~Q
Entry to check for shared segments and
decrement usage count. Some registers and
flag full entry condition. Examine VMSHRSYS
for shared segments. If so, decrement use
count. On 0 use count unchain the SHRTABLE
from the active list.

DMKPGS, CKCLEAR
---On- NOCEAi-exit to caller. If not, store

number of release pages in RB.
DMKPGS, PAGOUT2
---Locate-page- and swap tables for the segment

to be released and index to the entry for the
first page.

DMKPTRAN
---inItIate paging, and when paging stops

release the page frame.
DMKPGS, NEXTPAGE
---a-value:-----

DMKDSPCH
---ExIt-to caller.

Q~~f§~l~
Entry to examine user's page tables for a
named system. Locate segment table and check
each page table header for a named system.
If found, set cc=O; if not, set cc=2 and
return to caller.

DMKPGSPS
---intry to release storage containing a named

system passed by the caller. Search the page
tables looking for a header equal to the
named system. If found, release the swap and
page tables and build new ones, if the
address range still lies within the user's
virtual storage size.

FREE STORAGE MANAGEMENT

DMKFREE
---intry to obtain a block of storage, validate

input doubleword request (RO).
DMKFRE, FREESUB ---oi- subpooI size reque~t, index into

SUBTABLE. For correct S1ze block found,
remove block from chain and put the address
of the block in Rl. Return to caller.

DMKFRE, FREE02 ---Por subpool size not found condition get next
large subpool size. Remove block from chain,
put address in Rl and return to caller.

DMKFRE TRYSPLIT
---Por subpool-that cannot honor request, start

search a 30 doubleword end for block
requirement. When a block is found, split
block (if necessary) and give caller address
of his portion in Rl and chain the remainder
to the appropriate subpool size. Return to
caller.

DMKFRE, CLEARSAV
---1£- no--block can be found to honor user

request, call
DMKPTRFR
---Petch a page from the dynamic paging area.

Chain it to the free storage chain.
Processing then continues. See entry DMKFRE,
FREESUB.

DMKFRERS
---Entry to return all sub pool blocks to the

free storage chain per the SUBTABLE
reference, as each sub pool block is released,
its address and length are placed in Rl and
R2 respectively. Branch and link to FRETOS
to return the block to the free storage chain
(DMKFRELS) • Repeat action through all
subpools. Return to caller.

DMKFRET
---Entry to restore block to subpool or free

storage. Per RO and Rl (number of
double words to be released and and address of
the first double word, respectively), the
subpool sized block is returned to the
appropriate subpool. Update the pointer in
the SUBTABLE.

DMKFRE, FRET21
---1£- subpool size block being returned' is

within the dynamic paging area, process as a
block of more than 30 doublewords.

Section 2. Method of Operation and Program Organization 227

D~KFRE, FRET20
---SIocks--larger than 30 doublewords to be

returned are merged into the free storage
chain indicated by D~KFRELs.

D~KPTRFT
---Restore page to dynamic page area; if a

complete page is alloted, blocks belonging to
the dynamic paging area can be built.

D~KFRE, FRET03
---Return--a-block of storage to free storage

chain by merging into the chain storage
addresses in an ascending order of sequence.
Return to caller.

CP INITIALIZATION AND TER~INATION PROCEDURES

D~KCKPT

---InItial entry point to load the system after
loading the first module, DMKCKP, from the
system residence volume. Check CPID in PSA
for startup method.

DMKSAVRS
---i~r--CPID eqaal to not warm or not CPCP,

insert COLD and load the nucleus. Then
branch to DMKCPINT, to perform CP
initialization.

.!H1!£!fl !Q:!~!!~
ON CPID=WARM or CPCP, halt and drain all I/O
devices and remember enabled terminals.

DMKCKP, NEXTCH
---DMKRSPCV-to validate warm start cylinder.
DMKCKP, CLOCKOK
---save accou;ting data, log message, SDFBLOKs

and enabled terminals and lines on checkpoint
cylinders.

DMKCKP, CHKOS
---save spool records allocation and spool hold

queue blocks on checkpoint cylinder.
D~KCKP, SHUTSYS
---if-normal--shutdown indicated, issue message

to system operator and load disabled wait
state code X'008'.

D~KCPIlU
---Entry point to perform system

initialization.
DMKCPI, KEYLOOP
---DeteriiiIne--real storage size, initialize

CORTABLE, Allocate free storage and
initialize system paging tables

DMKCPI, CPIHIP
---Check-vIa-BIO for online and ready status of

all DMKRIO generated devices.
DMKCPI, CPISTCAW
---Read -volume-labels and aatch to RDEVBLOK,

RDEVSER.
DMKCIP, DMPALLOC
---Allocate-dump file to systea device.
DMKCPI, ALOCLF
---suild-allocation block for CP-owned devices.
DMKCPI, MICTEST
---Test -for--virtual machine assist feature

availability If available, build MICBLOK and
link to VMMICRO.

DMKCPI, NPSWS
---iocate--an available primary or alternate

system console (PSA values).
DMKCPI, NOTCHNG
---SuIld-u;er-directory page list per DHKSYSUD.
DMKLOGOP
---iog-on the system operator.
DMKCPI, STARTSYS
---iorce--iiOii--iiucleus modu.les to DASD page

device.
DMKIOEFL
---inItIalize error recording cylinders.
DMKNLDR
---Auto load 3704/3705; if appropriate.
DMKCPVAE
---Enable 270X lines, if appropriate.
DMKPTRUL
---ijiilock CPI as initialization is complete.
DHKDSPCH
---iwaIt interrupts.

DMKWRMST
---Entry from DMKCPI initialization. Check

R2=01, if so go to DMKWRN, WARMCLR for cold
start. Check Warm start cylinder for 8 byte
XFFs identifier.

DMKWRM, ENABLERT
---jf-enable--records on, warm start cylinder,

enable appropriate RDEVBLOKs.
DMKWRM, EN370S
---if-warm-;tart record indicates, set flag for

auto load of the named Nep program.
DMKWRM, ENR3270
---inable-bInary synchronous lines by clearing

NICBLOK Offline flag, (if appropriate)
DMKWRM, ACNTRT
---iuIld--ACiiBLOK, load it with warm start

cylinder data and chain it.
DMKWRM, WARMLOG
---SuIld-buffer and load it with the saved log

message.
DMKWRM, WARMSPL
---i'Uild--SPPiioKS and fill with appropriate

printer, punch and reader spool data.
DMKWRM, WAR HOLD
---suIld-SHQSLOK and move hold queue record data

to the new block and chain it to the hold
queue chain.

DMKWRH, . WARMCLR
---Clear-i-bites of record 1 on the warm start

cylinder. Check CPID again.
DMKCKSWH
--~Por--CPID=CKPT or FORCE, reconstruct spool

checkpoint records.
DMKCKSIN
---ior-CPID=NOT CKPT or NOTFORCE, initialize the

checkpoint cylinders.
DMKCKSPL
---pIles in the systems spool hold queue are

added to the checkpoint cylinder.
DMKWRM, GETDISK
---Read iii-the-remainder of warm start data.

.!HUS£.f~2!!
Entry paint results from involing CP SHUTDOWN

228 IBM VM/370: System Logic and Problem Determination Guide

command. Close active spool files for
callers or operator console.

DflKCPS, DASDCH
---vIa -RDEVBLOK, locate and record DASD

statistical data.
DflKCPS, DASDCHI
---Put cpcp-Into CPID to denote shutdown.
DflKDMPRS
---set--up CAV, CCVs and issue IPL to system

residence device to reinitialize CPo
DMKCKPT
---save spooling and accounting data.
DMKMONSH
---stop-monitor tape activity.
DflKCPI SHUTSYS
---sense-shutdown flag, issue DftKCPI961V, enter

disable wait state code X'006'.

Entry occurs via ABENDOOO condition or by
pressing system console RESTART button. Save
PSA values. Determine if dump is full or
just CP portion.

DftKDMP, DftPftSG
---Pormat-and- issue ABEND message to operator

and transfer to DMKDKP and DMPDASD.
!HHUH1g, Ql1fQ!'§Q

Write out a defined amount of storage or all
storage to selected DASD device.

DMKDftP, DSKEND
---Place-sendIng record number and the system

file number in the dump file SFBLOK.
DMKDMP, RECSRCH
---Chain--dump-file RECBLOKs to RDEVBLOK, and

link dump file SFBLOK onto the system reader
chain.

DftKDSP RESTART
---Restart-the system on warm start indication.
DftKDftP, DMPTAPE
---Dump -cP--storage or all

selected Tape Drive per
parameters.

DftKDftD RESTART
---Restart--the system, if

indicated.
DftKDMP, DftPPRT
---Dump -cP--storage or all

selected printer.
DftKDftS RESTART
---Restart--the system, if

indicated.

storage to
specified

warm start

storage to

warm start

the
tape

is

the

is

VIRTUAL ftACHINE INITIALIZATION AND TERMINATION

DftKCRSII
---Entered via interruption fro. a console or

terminal (not displays) device. If
appropriate, determine and store device type
in the RDEVBLOK. Vrite the Vft/370 online
• essage. Sets up to receive attention
interruption.

DftKBLDVft
---On--attention interruption,

VftBLOK for LOGONxxx.
build skeleton

DftKCFMBK
---Send-read CCVs to the terminal for LOGON or

DIAL response.
DMKTRMID
---On-response determine translate tables to be

used.
DMKFKBK
---valIdate command and transfer to DftKLOGON.
DKKLOGON
---LOGON command execution.
DftKDIAL
---DIal access linkage to multiaccess system.
Ql1!s'yQS

Via user directory access, validate user
logon eligibility. On acceptance of
eligibility, that is the successful
completion of logon, build and allocate
control blocks and linkages for the user's
virtual machine.

DMKCFGIP
---Par-the IPL of a named saved system, the name

is verified and resources are checked for
availability. virtual storage is set up with
the saved system via SVAPTABLE, SEGTABLE,
SHRTABLE updates. For the IPL of device
address, the IPL simulator is loaded in the
user's storage.

DMKVKIPL
---user's page 0, set console address, IPL

device address, VMBLOK flags 1PL device type
and class and user CAV. Read in 24 bytes
from the CTCA, reader, DASD or tape unit into
the user's virtual location zero. The CCW
pointer is now set to the 1PLCCW at virtual
location X'8' and the program is loaded.

Ql1!S!l1!, !E!!QQ!!~
For IPL STOP, the virtual machine is placed
in console function mode to allow change to
nucleus name and apparent storage size before
continuation.

DMKVftI, LOADNOW
---IPL address-is inserted in X'02' if BC mode,

or X'BA', if EC mode. The user's CAV and
registers are restored and control is given
to the user by loading the current PSW at
virtual location O.

DMKUSOLG
---Entry is the result of user invoking LOGOFF.

Set flags in VMBLOK indicating logout
operation.

DftKUSO, US006
---Retain--lIne communication, if HOLD operand

specified.
Ql1!s'y'§Q, 'y'§QQ~

Adjust return address to not run the user.
DMKUSOPP
---set-VMBLOK flags •
DftKTRCRD
---Called to reset tracing.
DMKPERT
---Called to reset tracing.

section 2. ftethod of Operation and Program Organization 229

DItKACOTIt
---iccounting called to co.pute the connect time

for the LOGOPP .essage.
J2!U~.Q£Jjl

Write the .essage to the user.
DItKSCHDL
---Called to alter userdispatch status.
DItKCFPBB, DItKGSPO
---Reset the-virtual .achine.
DItK'ATBC
---Release shadow tables (if any).
DftKSCHBT
---Dequeue clock comparator request (if any).
DftKBLDBL
---Release seg.ent tables, page and swap tables

related to the user.
J2ftK!!SO, .!l§Q.2~

Via DItKFBBT return user 'ItBLOKs to free
storage.

DftKUSO, US093
---Por ~he- system operator, clear and

reinitialize the 'ltBLOK.
DltKFBBT
---Return all other virtual machine control

blocks to free storage.
DftKACOPF ---Punch an accounting card for the user.
DftKUSO, US098
---Pree LOGOFP .essage area. Exit to do free

storage maintenance. Exit to DltKCFIt or
DltKDSPCH.

DftKUSOFL
---Entry is the result of the invoked FOBCE

co •• and.
DftKSCNAU
---Locate userid 'ltBLOK.
DftKUSOFL
---set--'ltKILL in 'ftBLOK, build CPEXBLOK and

stack it for dispatcher.
DltKDSPCH
---upon-CPEXBLOK execution, process as at LOGOPP

entry DltKUSOPF.
DftKUSODS
---Entry from an invoked CP DISCONN command.

set disconnected 'ltDISCK in 'ftOSTAT.
!H~!2£!l!1

Send disconnect message to user.
]ftK!!§Q~§

Increment return address to DltKCFIt by 4 to
prevent a return read to the user's
terminal. Clear 'ltTERIt field to indicate the
user terminal is disconnected.

]!1K2£!l!1
Send message to system operator informing him
of user disconnect status. Exit to DftKCFIt.

CONSOLE FUNCTION (CP COftltAND) PROCESSING

DltKCFltBK
---Entry used when the ATTENTION key (or

equivalent) is pressed once or twice
(according to the ,It or CP status) to allow
the user to direct a line of input data for
CP command processing. Set 'ltPCWAIT and VltCF
bits in VltBLOK indicating wait state and
console function mode.

DltKPREE
---suIlds an 18 doublevord CONBUP buffer for the

read operation.
DltKSCNPD
---Matches the 8-byte command name

table of matching command
against the

names, the

truncations
allowable
COftNBEGO.

of co.mand
abbreviations,

nalles, and
starting

the
at

The for.at of the table entry is:

Co •• and name 8
Class mask 2
Abbreviation count 2
Routine address 4

DftKCFIt, CONFFIND
---ifter--a-cOiiand match

privilege class of the
with the user's privilege
the 'ltBLOK.

DltKCPIt, CONFCALL
---The last--4-bytes of R

address of the routine
command.

has been made, the
command is matched
class, 'ltCLEVEL in

command contain the
that processes the

Figure 55 is a list of all CP commands and
the associated processing modules.

r
COllmand

AUTOLOG
LOGIN
LOGON
DIAL
ATTACH
ATTN
ADSTOP
ACNT
BEGIN
BACKSPAC
CHANGE
CLOSE
COUPLE
DISPLAY
DCP
DEFINE
DETACH
DISCONN
DISABLE
DltCP
DRAIN
DUltP
ECHO
EXTERNAL
ENABLE
FLUSH
FOBCE
FREE
HALT
HOLD
INDICATE
IPL
LINK
LOADBUF
LOADVFCB
LOCATE
LOCK
LOGOFF
LOGOUT
1t0NITOR
ItESSAGE
ItSG

----_._--------,
Entry Label I

DftKLOGON
DltKLOGON
DltKLOGON
DftKDIAL
DltKVDBAT
DltKCFMRQ
DItKCPVAC
DltKCPVAC
DltKCFMBE
DltKCSOBS
DltKCSUCH
DItKCSPCL
DltKDIACP
DItKCDBDI
DltKCDBDC
DftKFENIN
DltK'DBDE
DltKUSODS
DltKVPVDS
DltKCDBDM
DltKCSODB
DMKCDBDU
DItKftSGEC
DltKCPBEX
DltKCPVEN
DltKCSOFL
DltKUSOFL
DItKCSPFR
DltKCPVH
DltKCSPHL
DltKTHIEN
DltKCFGIP
DltKLNKIN
DltKCSOLD
DMKCSOVL
DltKCFDLO
DMKCPVLK
DltKUSOLG
DltKUSOLG
DltKMCCCL
DltKMSGMS
DltKMSGMS

------------'
Figure 55. CP Commands and Their Module

Entry Points (Part 1 of 2)

230 IBIt Vlt/370: System Logic and Problem Determination Guide

COlllland Entry Label

NETWORK DMKBETWK
NOTREADY DMKCPBNR
ORDER DMKCSUOR
PURGE DMKCS'UPU
QUERYl DMKCFMQU
READY DMKCPBRY
REPEAT DMKCSORP
REQUEST DMKCFMRQ
RESET DMKCPBRS
REWIND DMKCPBRW
SYSTEM DMKCPBSR
SAVESYS DMKCFGSV
SET DMKCFSET2
SHUTDOWN DMKCPVSH
SLEEP DMKCFMSL
SPACE DMKCSOSP
SPOOL DMKCSPSP
STORE DMKCDSTO
START DMKCSOST
STCP DMKCDSCP
TAG DMKCSTAG
TERMINAL DMKCFTRM
TRACE DMKTRACE
TRANSFER DMKCSUTR
UNLOCK DMKCPUVL
VARY DMKCPVRY
WNG DMKMSGWN
WARNING DMKMSGWN

* DMKCFM
CP DMKCFM

lMajor operand decode of QUERY is by a
scan table at QRYLIST in DMKCFMQU. De­
pending on the operand match, DMKCQP,
DMKCQG, or DMKCQR· are called. The re­
spective entry points are DMKCQPRV,
DMKCQGEN, and DMKCQREY.
2Major operand decode (except for PFnn)
is contained by the scan table starting
label SETSTART in DMKCFSET.

-,

L __ ---J

Figure 55. CP Commands and Their Module
Entry Points (Part 2 of 2)

!1~K2£!!!m
Read in the terminal input command line.

DMKCFMAT
---On-NULL data and ATTN key indication, post

attention interrupt pending in VDEVBLOK,
VCUBLOK and VCHBLeK. Return to run the
v irtual machine.

" !H1E£!:1!S2 I

On receipt of CP comllands ATTN or REQUEST,
process the same as previous entry,
DMKCFMAT.

DMKCFM
---On-receipt of * (asterisk) return to DMKCFMBK

to set up another read. If console spooling
is enabled, all console input and output
including comllents are spooled for printer
output.

DMKCFMBE
---oi--receipt of BEGIN, simulate the start

button on the virtual machine (If optional
address is supplied with BEGIN command the
supplied address is substituted for the
location counter address).

DMKCVTHB
---Convert this address to binary notation.
DMKCFMSL
---on-receipt of the SLEEP command or SLEEP with

tille value (siaulation of virtual aachine
stop button depression) the VMBLOKs VMSLEEP
bit is set. The terminal console keyboard is
now inactive until the user hits an ATTENTION
key or the SLEEP command times out.

DISPATCHING AND SCHEDULING

DMKDSPA
---Entry for fast reflection activity. Perform

user (PSA RUNUSER) accounting and determine
validity of fast reflection by examination of
DMKDSTAT values.

DMKDSP, RUNTIME
---no-user--accounting, then load the remaining

tille slice.
!1~!!12E, 2]!~YA!I!~

Build the PSW, then dispatch virtual machine
with LPSW RUNPSW.

DMKDSPB
---Entry to dispatcher when the user's PSW has

been external to DMKDSP.
DMKDSP, CKPSW
---Verify-the PSW change.
!1~!!12E, Y!2!A£E

Unstack any pending interrupts for the user
(if enabled).

DMKDSPCH
---Go-to the dispatcher.

DMKDSPCH
---Normal dispatch entry after each interrupt

handler has finished processing, and after
each CPEXBLOK, I/O request and external
interrupt has been serviced.

DMKDSP, RUNTIME
---For CPSiATOS=CPRUN, stop charging time to old

virtual machine, start charging time to new
virtual machine.

DMKDSP, W AITIME
---Por CPSTATUS=CPWAIT, if old virtual machine

was not CP start charging CP with wait time.
DMKDSP, PROCWAIT
---via vNTLEvEL, allocate time to appropriate

virtual machine time category.
!11!!!2J2f, !!!2I!£E

For nonrunnable virtual machine, go to entry
DMKDSP, DISPATCH.

!2!1E!2J2f, !!!2!!£E
For runnable user, check pending
interruptions for the following:
• DMKDSP, CKPEND

per-interruptIon (VMPERPND).
Pseudo page faults (VMPGPND)
External interruptions

• DMKDSP, UNSTIO
I/o-interruptIons.

Section 2. Method of Operation and Program Organization 231

• ~~!Q~g, ~lQ~~£~~
I/O interruptions are reflected by
swapping user PSWs and storing the unit
address and status in low storage.

DMKDSP, NOTRACZA
---Clear-the-pending bit in the VMBLOKs.
DMKDSP, CKPSW
---Validate-the PSW.
DMKVATBC
---Par-virtual machine leaving EC Mode, clean up

the shadow tables.
DMKVATftD
---Par-virtual machine in BC mode and entering

translate mode, initialize shadow tables.
DMKDSP, DSPMSG
---For PSW--Invalid, send error message to

virtual machine, and place user in CP mode.
If disconnected and invalid PSW, log off
user.

DMKDSP, DISPATCH
---netermIne--If virtual

additional execution.
entry.

DMKDSP CKCPSTAK

machine
If not,

is allowed
use DMKSCHDL

---Process--a--stacked IOBLOK or TRQBLOK as
indicated via DMKDSPRQ. The new user
IOBUSER/TRQBUSER is time stamped and a branch
is made to IOBIRA/TRQBIRA.

Y!1!Q§!!, £!£!!~lH2
If system extending search CPEXBLOK for exit
address of DMKPTRPD, DMKPTRPE, or DMKPTRPP.
If none found load a wait state.

YI1!Q§!!, £!g~.rJ,g1!
If not extending, unstack first CPEXBLOK.
The new virtual machine is time stamped and
branch taken to CPEXADD.

DMKDSP, CKUSER
---Load last-virtual machine with remaining time

slice if applicable. Load the highest
priority user in the dispatch queue, if
available and applicable. If not enter the
wait state to await an interruption.

~!lK§£!!Y1
Entry to modify the user's status. If the
user has the wait bit on in his running
status (VMRSTAT) q the user is not
dispatchable or unqueue before the user's
time slice has ended, the user has set
favored execution option, or the user is not
eligable for Q 1.

DMKSCH, CKCPWAIT
---net ermine-the running or not running of the

real timer per VMBLOKs VMRSTAT, VMTLEVEL
val ues.

DMKSCH, CKRSTAT
---Process--virtual machine, if currently not

runnable.
DMKSCH, CKRUN
---Process---virtual machine, if currently

runnable.
DMKSCH, CKWRITING
---idd runnable-virtual machine to active queue

from eligible list search. Return to entry
DMKDSP, CKCPSTAK.

R.!tJS§£!!§!
Set a clock comparator interrupt request.

RI1!~£!!Rl
Reset a clock comparator interrupt request.

QI1!.§£!!I1Q
Set up a request block for midnight date
change.

DMKSCH80
---Process a real interrupt timert"equest.
Q!!!~£!!£g

Process a real CPU timer interrupt.

SPOOOLING VIRTUAL DEVICE TO REAL DEVICE

DMKVSPEX
---Entry from DMKVIO to initiate SIO on a

spooling device that is available {not busy
and no interruptions pending}.

DMKVSP, OPEN
---netermIne if output device needs to be

opened.
DMKSPLOV
---i~-ies, build message control blocks: SPBLOK

and VSPCTLBLOK.
DMKPGTVG
---~btain a virtual buffer; the address is

stored in VSPVAGE.
DMKPGTSG
---~btiIn a DASD page; the address is stored in

VSPDPAGE.
DMKVSP, BUILDCTL
---Assigo-i-spoolid and the other user, record,

and device values plus DMKCVTDT.
DMKCVTDT
---issIgns the time stamp and date and stores it

in SPBLOK.
DMKVSP, PRTCONT
---Generate-TAG record at the start of the spool

data buffer.
DMKVSP, CCWOK
---i~ter-cci- validity check, data and CCis {if

appropriate} are moved to the work buffer.
Trailing blanks are truncated and when the
buffer is full, it is written out to the DASD
slot.

DMKVSPVP
---~n-console spooling, the following occurs:

1. Skip to channell every 60 lines.
2. write out the system console, spool file

buffer every 16 lines.
3. Place the system console in a pseudo

closed state for checkpoint recovery in
the event of system failure.

DMKVSP, LASTCCW
---When --all-- CCWS are processed, post

interruption pending to the VDEVBLOK, VDEVCSW
and return control to the user.

232 IBM VM/370: system Logic and Problem Determination Guide

DMKVSFCO
---intry via CP CLOSE cOllmand. If device busy,

defer close operation by building CPEXBLOK,
stack it and exit to dispatcher.

DMKVSP, PRTEOF
---on-devlce--not busy, write final buffer page

to DASD storage.
DMKSPLCV
---Queue closed virtual printer or punch spool

file, queued to the read spool output device
or transfer the file to another user's
virtual reader. Also update the SFBLOK with
number of copies printed/punched,
distribution code, hold status, and file
owner ID. If VSPXBLOK with TAG data exists
for the spool device, copy the TAG data to
the TAG record in the first spool file data
buffer.

DMKSPL, TXTXFR
--I£a iispooled to" file, queue to the end of

the reader file chain. Otherwise, chain the
SFBLOK to the designated real spool printer
or punch.

DMKCKSPL
---Checkpoint the new spool file block.
DMKSPL, SETPEND
---io~ a-iispooled to" file find a virtual reader

with the proper class and in the ready state
with no active file, and no pending
interrupts. Then build an IOBLOK with IOBIRA
of DMKVIOIN.

DMKSTKIO
---stack the IOBLOK.
~11~~ PL, ~~I!!lB!~

Exi t to DMKVSP.
DMKSPL, TSTHOLD
---io~ not-iisi~oled to" files and not in user or

system hold, find printer or punch with the
proper class. Then build an IOBLOK with
IOBIRA of DMKRSPEX.

DMKSTKIO
---Stack the IOBLOK.
DMKSPL, TSTHOLD
---iiit to-DMiisp.

DftKVSP, OPENRDR
---Entry--to--open a spool input file. If

VDEVSPL=O the file needs to be opened. Build
VSPLCTL block and a work buffer. Search the
systea reader file chain per PSA linkage
ARSPRD for a file with appropriate user and
class.

~IIK!'§~, '§EIl~!~
On file found condition, place first DASD
page address in VSPLCTL, VSPDPAGE. Obtain a
virtual buffer and retain its address in the
VSPLCTL block.

DftKVSP, READER
--Cbeck-the-CCWs for validity, move and expand

the data back to its original size and the
data is moved from the work buffer to user's
virtual storage.

~~K!'§~, iRi~QY!1
On BOF, set SFBBOP bit in SFBLOK and return
to caller.

DMKVSPCR
---Por--CLOSE operation requested via console

command and the device is busy, initiate a
delayed close by constructing and stacking
the CPEXBLOK for the CLOSE.

DMKVSP, RDREOP
---ior normal-end-of file and VDEVSPLG indicates

continuous read.
DMKVSP, OPENCONT
---Locates-the-next file and continue reading.
DMKVSP, LASTPILE
---ior last-fIle, post end status in RDEVBLOK.
DMKVSP, FILECLR
---ior HOLD--status file (VDEVSFLG=VDEVHOLD),

call DMKCKSPL.
DMKCKSPL
---Checkpoints the file.
DMKVSP, FILECLR
---Unchain-the-file (except hold files) from the

reader queue and call DMKSPLDL.
DMKSPLDL
---Delete the file.
DftKVSP, DVICECLR
---To-clea~-the-device, call DMKRPAGT.
~IIKi~!~1

Releases the storage page.
DMKPGTVR
---Releases the virtual buffer.
DMKFRET
---Releases storage for the work buffer and

VSPLCTL block.

SPOOLING TO THE REAL PRINTER/PUNCH OUTPUT DEVICE

DftKRSPEX
---intry from the dispatcher when an IOBLOK is

unstacked with and interrupted for spooling
unit record device. IOBRADD points to the
RDEVBLOK RDEVTYPC input or output class.

DMKRSP, RSPLOUT
---i£- RDEVSPOL indicates an available spool

device (not active),
DMKFREE
---Get-storage for a work buffer and build a

RSPLCTL block and link it to RDEVBLOK.
DMKRSP, PRNXTPIL
---search-prInter and punch SFBLOK chains for

corresponding device and class. On a found
condition, unchain the block, put its address
in RSPSFBLK.

DftKSEPSP
---i£--called, provides separators for output

pages or cards.
DftKRSP, PROCESS1
---Brlng-firs~spool data DASD page to the work

buffer and convert CCW addresses to real
device addresses.

~l1JS1.Q~.Q.B
Start the spool device.

DMKRSP, PRNXTPAG
---Repeat-the-process until done.
DMKRSP, REPEAT
---Reprocess-- and reaccess the buffer, if

aultiple copies are specified.
DftKCKSPL
---Checkpoint records the change to COPY count.
DMKSPLDL
---Delete the file on coapletion (unless HOLD

specified) •

section 2. Method of Operation and Program Organization 233

DBKRSP, PRRITPIL
--~ocate-the-next spool file to process.
DftKRSP, PRTIDLE
---processIng--for the device is complete as

there are no .ore SPBLOK, for this device or
the device was drained.

DBKPRET
---Release work area and co.pleted IOBLOK

storage.
DftKDSPCB
---ixit-to the dispatcher.

SPOOLIHG TO THE REAL IHPUT DEVICE

DftKSPLOR
---issuiie there is no active file being

processed on the real input file reader. The
spooling operator has issued the START
co.mand to the device to 'open' the reader.

DftKSPL, BUILDCTL
---auild-RSPLCTL and SPBLOK.
DftKPGTVG
---set-virtual buffer and place its address in

RSPVPAGE.
!HUifGT1a~

Get DASD buffer and place its address in
SPBSTART and RSPDPAGE, linke together b~
pointers.

!1!!!!Q~,g~
start the reader.

]~!i!1SP£]
Await the interruption.

!1~!R~f, RQ~~~II!Q
Check that the first card in the buffer is
the userid header. If so, proceed.

DftKRSP RDRCARDS
---preload-the-buffer with CCWs.
!1~!i!Q~2R

IssUe the 510 (SIO's of 42 cards per buffer
load).

DMKRSP, RDRSIO
---Write-the--buffer to the DASD slot. Repeat

until EOP detected.
DMKSPLCR
---Close the file on EOP. Queue the file on

reader spool chains.
DMKCKSPL
---iaa--the spool reader file block to the

checkpoint cylinder data.
DftKSPL, RDRPEND
---1f- the-file owner is logged on, and his

virtual reader is available, an IOBLOK is
constructed with device end pending -

DftKSTKIO
---Stacks it.
DftKRSP, RDREXIT4
---Release-storage for virtual buffer, RSPLCTL

and the SPBLOK.
DMKDSPCB
---EiIt-to the dispatcher.

SPOOL PILE DELETION

DftKPLDL
---wIth R7 not equal to zero, place the

specified SPBLOK on the delete chain anchored
to DMKRSPDL.

DBKCKSPL
---Delete the SPBLOK fro. checkpoint cylinder

data.
DBKSPLDL
---Assuie the delete routine is not running,

build a CPEXBLOK to call DBKSPLDR.
DBKSPLDR
---sets- the DELSW=X'80' (delete routine

active).
DBKSTKCP
---Stacks it and exits to caller.
DBKSPLDR
---on-unstacking the CPEXBLOK, if the SPBLOK is

a system dump file, calls DBKDRDDD.
DBKDRDDD
---Deallocates DASD buffers.
DftKSPL, NEITSPB
---Par coiplete allocation chains of RECBLOKS,

call DBKPGTSR
DftKPGTSR
---deallocate DASD buffer an.d return to storage

held by the dummy RECBLOKs.
DBKSPL, DELSTART
---Por Incoiplete allocation RECBLOK chains,

deallocate by calling DftKPGTSD.
DftKPGTSD
---Deallocates a page at a time via SPBSTART and

the IOBLOK until the last page is reached.
DftKPRPT
---Delete the SPELOK, then go to DftKSPL and

NEXTSPB.
DftKSPL, NEITSPB
---if-the-delete queue is not empty, process the

next SPBLOK an identical manner. Continue
until all SPBLOK deletions are complete then
call DMKPRET.

DMKPRET
---Delete the IOBLOK.
DBKDSPCB
---iiit-to the dispatcher.

RECOVERY BANAGEBENT SUPPORT OPERATION

DMKIOEPL
---Entry from CP initialization module to set up

pointers to VM/370 error recording
cylinders.

DMKIOGP1
---ihe-STIDP instruction store CPU version and

model in CPUID of PSA.
DMKIOG, ISSUEIRS
---Check--attached channels. If standalone

channel on the 165 or 168 the address of the
logout routines are stored in the DftKCCB
module.

DBKIOG, CBARGEID
---Set u~-~ointers for machine check and channel

check record area and extended logout areas.
DBKIOG, PASTDAVE
---DetermIne-the 901 full and 1001 full capacity

of designated error recording cylinders and
store the amount in DftKIOEMX and DMKIOERI
respectively.

DftKIOG, PIRDREC
---Check-first- records on each cylinder of the

error recording cylinders for proper format.
If invalid. reformat. If valid but clear,
store pointer value in PSA as the first
available slot for error record* If valid but

234 IBft Vft/370: System Logic and Problem Determination Guide

used, search for first unused slot and store
its value in PSA.

DMKIOG, CYlFULL ---on- a--cylInder full condition, inform the
operator, and continue.

DMKIOEFl
---Turn-off the recording in progress switch and

exit to caller.

Process the Machine Check Interruption

DMKMCHIN
---Entry via the machine check PSi upon

detection of an unrecoverable and nonfatal
CPU or storage error. Disable soft machine
recording store logout area on the machine
check and channel check recording cylinders.
The system is enabled for hard machine checks
with a pointer to the termination routine.
DMKMCH, ERHARD for virtual user store status
in VMBlOK. DMKMCH, MCHSYSIl for system
damage timing facility or uncorrectable
retry, multibit storage error post system
operator message, flag system as terminated.
place wait state code, if first hard error,
record it. If the fault occurred in problem
state, terminate the active virtual machine.

DMKMCH, SOFTSTG
---Par corrected ECC or CPU retry, update soft

error count and record the error and dispatch
the virtual machine.

DMKMCH, MCHSKIP
---Par mUltIbIt storage error in problem mode,

exercise storage location to clear up or flag
as unavailable (permanent error).

DMKMCH, ftCHCHANG
---On- an-altered page condition, the virtual

machine is reset, otherwise, the error is
recorded and the virtual machine is
redispatched.

DMKftCH SPFTEST
---storage-key failure. Exercise the 2K page

key. If CP area and solid error condition
process as DMKftCH, ftCHSYSIl, intermittient,
restore the key and go to the dispatcher. If
key failure and in virtual machine area if
permanent error, mark page as unavailable,
terminate the user. If intermittent condition
refresh the key and dispatch the virtual
machine.

DftKMCH, VIRTERft
---on-condItIons that cause the terminated or

reset. The error is recorded, and both the
user and the operator receive status
.essages. Per the termination flag, VftBlOK,
the user is logged off and control returns to
the dispatcher or is reset via DMKCFPRR.

DftKCFPRR
---iIrtual storage is released, the virtual

machine is flagged dispatchable and placed in
console function mode.

DMKftCH, TERM
---on- a-hard machine check while handling a

• achine check, the machine check new PSi is
loaded with a wait state PSi and the current
PSi is enabled for hard machine checks.

DftKftCH, ftCHTERft2
---Locate-the-system or the user's VftBlOK.
DftKftCH, MCHTERft3
---On- second--hard machine check error, or

machine check handler is not active or

hardware recovery is not active process as in
DftKftCH, ftCHSYSIl.

DMKftCH, ftCHiAIT
---Par TOn-damage, load PSi, enter wait state.
Q~!~~li, ~~liR~~l!

If the TOD is not damaged, the address of the
TOD is saved for accounting purpose and­

DMKDMPRS
---Dumps and initiates system restart.

DMKCCHIS
---Entry via DMKIOS via CSi channel error
DMKFREE
---Obtain storage and build a CCHREC block and

if IOBlOK and RDEVBlOK exist, build an
IOERBlOK.

DMKCCH, CCHIOERl
---Store-the--CCHREC address, it length and the

CSi in the IOERBlOK
DMKCCH, CCHDEPND
---Call -appropriate channel error analysis

module. Analyze channel logout data for
validity.

DMKCCH, SCNEND
---Record--the error on the error recording

cylinder, if appropriate
DMKCCH, CPTERM
---Terminate-CP if the PSA's terminate flag is

set.
DMKCCH, CCHiAIT
--~he SEREP--code (X'OF') is placed in the

interruption code of the machine check new
PSi. The I/O old PSi, CSi, and CAi are
restored. Checkpoint is set up by moving
'CPCP' into 'CPID'. The TOD clock is saved
and a wait state PSi is loaded to place the
system in a disabled wait state.

DMKCCH, SCNEND
---Unless-termination is established, return to

DMKIOS for recovery.

DMKERO
---Entry via DMSPSA as a result of SVC 76

detection. Check parameters passed in RO and
Rl.

DftKFREE
---obtain storage for a rdcord buffer for the

user error record
DMKVER, BUFFUl
---usIng--valId record type (from the buffer)

branch to an appropriate routine to format
that particular record type.

Q~!!~R, !IBJQ
Using RDEVBlOK, VDEVBlOK and VMBlOK, convert
virtual data to real values and place in
record •

DMKIOERV
---Record the error.
DftKDSPCH
---EiIt-to dispatcher

Section 2. Method of Operation and Program organization 235

USER DIRECTORY ROUTINES

DMKUDRFU
---Entry after CP detected LOGON command.

DMKSYSPL points to the directory. Determine
length of userid, if valid call DMKLOCKQ.

12!H~1Q£!S~
Lock the directory in storage.

DMKODR, NXTPAGE
---Bring-in-each directory page and return each

page {and clear the buffer} until a UDIRBLOK
match occurs or directory's last page is
detected.

DMKUDR, FINDUSER
---On- useria-found move UDIRBLOK to caller's

area.
121HS1.Q£!~

Unlock the directory in storage
DMKUDR, EXITCCO
---Return-to-caller
DMKUDRFD
---Entry from calling routine to find the

addressed {cuu} device ODEVBLOK in users
directory and move it to the caller. Via
UMACBLOK locate the ODEVBLOKs.

DMKUDR, FINDDEV
---Check-user-device address is the same as in

the ODEVBLOK. Search the chain until match or
end of chain occurs.

DMKODR, DEVFOUND ---Par found-condition, post condition code 0 in
users VMPSi.

.!H1!!!12!Um
Entry from calling routine to read the
UDEVBLOK addressed into the caller's buffer
using the DASD and the user displacement from
the UMACBLOK bring in the buffer page to
storage. Determine if the virtual directory
page address (UDBFVADD) exists in the user
directory buffer blocks. If not call-

DMKPGTVG
---and-get a virtual page
DMKRPAGT
---por-DASD address does not match the UMACBLOK,

point to the DASD page and bring in the
virtual buffer page. Move UDEVBLOK into
callers area and set cc=O in VMPSi. Return to
caller.

!H1~!!!H!!t!
Entry to return a virtual page used as a
buffer. Determine if UDBFBLOK contains a
virtual buffer page pOinter (ODBFVADD). If
not, exit with CC=l set in the VMPSi. If a
buffer exists, check to see if it is
resident; if it does, clear it to zeros.

DMKPAGT
---Return the real page to the system.
!!~!!!~!!!!

Return the virtual page to the system
DKKUDRRV
---set-cc=O and return to caller

!!~!!!!!!!~!
Entry from DMKDIRCT or DKKCPINT to build page
buffers for each UDIRBLOK.

DMKFREE
---~et-storage for the virtual buffer page list
DMKODR, GETVPAGE
---Call DHKP~TV~ and DKKRPAGT to get the virtual

and real buffer Save the virtual buffer
address in the page list.

DMKUDR, FRETLIST
---incountered--I/O error, free the virtual

buffer page list, post fatal message, set
cc=3 and return to caller.

DMKODR, ENDLIST
---swap the--new virtual buffer page list with

the old list. Anchor the new list to
DMKSYSPL.

DMKODR, FBETLIST
---If- there-was a previous buffer page list,

free it. Save the start of the user
directory pointer in DMKSYSOD, and return to
caller with a CC=O in the VMPSi.

SAVE THE 3704/3705 CONTROL PROGRAM IMAGE PROCESS

DMKSNCP
---Entry from DMKHVC and DIAGNOSE code 50. Per

the system VMELOK, locate the DMKRNTBL. The
CCPARM virtual address is contained in R1 of
the DIAGNOSE instruction.

DMKSNC, NAMECHK
---Hatch---via- search CCPARM; CCPNAME with

DMKRNTBL entries.
DMKSNC, SIZECHK
---verify-niso-space requirements for 3704/3705

control program and resource data. The volume
required to save {NCPVOL} as indicated in the
NCPTBL entry must be:
available and mounted on the system, on a
Cp-owned and supported paging device.

DMKSNC, SVRESDAT
---save -resource data on the NCPVOL device •

CCPARMs supplies the starting address and
size parameters for this write operation.

DMKSNC, SVNCPIM
---save -3704/3705 control program image on

NCPVOL device. CCPARMS also provides the
parameters for this similar operation.

DMKSNC, SAVEFINI
---store--cc;O--on no errors and return to

caller.

SPOOL FILE CHECKPOINT AND RECOVERY

DMKCKSIN
---Entry from CP initializer, DMKCPI to

initialize the checkpoint cylinders. Per
DMKSYSCH, get a virtual page for the
checkpoint cylinder and set up the device
code in the system residence device. In
addition set up local data areas such as
pages per cylinder and checkpoint cylinders.

DMKCKS, CKSIN1
---Loop through each SFBLOK in the system and

checkpoint it in a slot on the checkpoint
cylinder. Then loop through each remaining
slot and mark it empty.

DMKCKS, CKSIHS
---Place-the-map delimiter of the last non-empty

slot in the map.
DMKPTROL
---Unlock the map page.
DMKCKS, CKSIN5
---Return-to-caller.

236 IBM VM/370: System Logic and Problem Determination Guide

. DMKCKSPL
---Entry from any routine that adds, deletes,

changes, the status of closed spool files.
Lock the routine, or waits until it becomes
unlocked. Bring the map page into storage
and set up the device code of the system
residence volume.

!H!JS£JS~, l!QQ~~!H2
If the change is applicable to a SHQBLOK
(hold queue block) make appropriate change on
the checkpoint cylinder.

DMKCKS, CKSPLl
---1£- the-change is applicable to a SFBLOK,

either add, change, or delete it on the
checkpoint cylinder.

DMKCKS, CKSPL5
---1£- the--change affects a spooling device

RDEVBLOK, (for example, a START or DRAIN
com.and issued) mark the change on the
checkpoint cylinder.

DMKCKS, CKSEXIT
---Unlock-the--routine. Unlock the page map and

exit to caller.

DMKCKSWM
---Entry via DMKCPI during VM/370

reinitialization process whenever the
for closed spool data need
reconstructed. Get a virtual page for
of the checkpoint cylinder and set
device code of the system residence
In addition, set up local data areas.

records
to be
the map
up the
volume •

DMKCKS, CKSWM2B
---Par slots-having real device entries, set or

reset the RDEVDISA and RDEVDRAN and move in
the checkpointed device classes into
RVDEVCLAS.

DMKCKS, CKSWM2G
---Par slots-containing spool hold queue block,

chain this to the SHQ chain.
DMKCKS, CKSWM3
---Get storage for SFBLOK space and set flags

depending on its last checkpoint activity.
DMKCKS, CKSWM4
---If-the--file SFBLOK was active, chain it to

the appropriate printer, reader, or punch
chain.

DMKCKS, CKSWM5
---Allocate-the DASD buffers of the spool file

by reading each buffer to determine the next
one and then allocate this page.

DMKCKS, CKSWM6E ---Por the-duip spool file, the buffers are
allocated sequentially from the beginning to
the end.

DMKCKS, CKSWM9
---Set uP-the map delimiter for the end of

non-empty slot; then set up a new spool file
identity (spoolid) higher than existing
numbers. Return to DMKWRM.

section 2. Method of operation and Program Organization 237

In this section, Figures 56 through 61 show how
the RSCS routines interact with each other

DMTSML

REX Task

functionally. Figure 56 shows all of the RSCS
coaponents at an overview level. Figure 57
through 61 show the parts of the individual
coaponents.

,
"­

"-

.-----.. 'B
sse
Line

sse
Line

Supervisor Routines]
~------------------~-------------------------------

Figure 56. Overview of RSCS Program Organization

238 IBM VM/370: System Logic and Problem Deteraination Guide

External (
Interrupt

Console)

DMTVEC

Fixed
Storage
Values

DMTMAP

Variable
Storage

Work Area

DMTQRQ

Reserve or
Release

Supervisor
Queue Elements

DMTPST

Signal
Completion of

an Event in
the System

DMTEXT

Process an
External
Interrupt

DMTIOMIN

Process an
I/O Interrupt

110 Inter '"~

A

WAIT <"

--

- - -------

--
- ------- -

"I; 7
DMTDSP

Resume Execu-
tion of a Task;
Enter a System

WAIT State

I [I

DMTSTO

Reserve <:=:-Main
Storage

DMTWAT

Suspend

<== Dispatching
for an

Executing Task

DMTAKE

Accept and

~ Respond to GIVE
Requests; Calls

DMTQRQ

DMTASK

Initiate, Term-

~ inate and Query
Tasks; Calls DMTSVC
DMTQRQ

'---' Suspend ~ ,....-- Execution
DMTASY of a Task

Initiate and
Terminate

~ Asynchronous
Exits; Calls
DMTQRQ

DMTGIV

Present GIVE

~ Requests;
Calls DMTQRQ) and DMTPST

DMTIOMRQ

Request I/O

~ Service; Calls
DMTQRQ and

DMTPST

DMTSIG

Asynchronously
.I'--ALERT Another

Task; Calls '\r---
DMTPST

All
Task-Level
Programs

n
Figure 57. Program organization for the ftultitasking Supervisor

Section 2. ftethod of Operation and Program Organization 239

REX Task

DMTCRE

Line Driver Tasks

Create System

AXS Task Service and .A

I I
Line Driver

'" I DM~::J-DMTAXS Tasks. 7 BSC Line

~

~ ¢:; ~ ~
DMTMGX DMTREX

VM/370
Spool

_ Handle all REX

File Process Messages: Requests I DMT~ System - Build the
_ Handle Program

/BSC Line
...... Final Message ... Check Interrupts

/-7 Element. ..,-- • Handle Console

-Transmit File I/O

rE! Message - Terminate System

VM/370
Service and Line

Virtual
Driver Tasks

Machine DMTCMX

Process Commands:

IE • Execute DMTCMX

Virtual Commands

\ Machine • Pass Command .A

Elements to ~

AXS and Line
Drivers for
Execution.

~~~ Console 

Supervisor Routines 

Figure 58. Program Organization for REX system Service Tasks 

240 IBM VM/370: System Logic and Problem Determination Guide 



AXS Task (Module DMTAXS) 

CMDPROC 

• Reorder Files 
by Recording 
the TAGs queued 
to a Given Line 
Driver 

• Purge Files 
From RSCS 

• Change the 
Attributes 
Associated with 
an RSCS File 

Open and Close 
Input and 

Output Files 

Accept Files 
from VM/370 
Spool System 

AXSCYCLE 

ACCEPT: 

• Files Spooled 
by Other Tasks 

• Order, Change 
Purge Command 
Elements 

• Requests to 
Open and 
Close VM/370 
Spool Files. 

Supervisor Routines 

Figure 59. program Organization for the AXS System Service Task 

REX Task 

I DMTMSG I Line Driver 
Tasks 

I DMTMGX I BSC 
Line 

I DMTREX ! BSC 
Line 

I DMTCRE I 

I DMTCMX I 

Section 2. Method of Operation and Program Organization 241 



$PRTN1 

RJE: 

Process Print 
File Records 
and Send Them I"--
to VM/370. \r--

$URTN1 

RJE: 
Process 
Punch File ;L-
Records and \r-
Send Them to 
VM/370. 

$TPGET 

$JRTN1 

Receive Data 

HOST: from BSC Line 

Process Job via COMSUP; I"--

File Records ~ '--- Allocate Tanks V-

and Send Them ~ to I nput Processors COMSUP 

to VM/370. Control Communi-

\ 
cations on the BSC 
Line; Send and 

~ \ "- Receive: Li 
$CRTN1 \ 

y 
• Transmission 

HOST and RJE: 
Acknowledgement 

C 

Scan RSCS \ ./ • Data Streams 

Control 
\ / '" Records and ;L- $START / 

< Perform \r- \ Control 
/ 

- Functions. \ Control Input/ / 
- \ 

Output Processors 
by Means of 
the Commutator 

$WRTN1 Table and Task 
Control Tables 

RJE: 
Send Messages 
to RSCS Operator 
Console ;L-

"\,--
HOST: 
Pass Commands ds 
to DMTCMX 

$RRTN1 

HOST and RJE: 

Receive 
Records from 
VM/370 Spool I--- $TPPUT 
System and 

I--

Transmit. them Receive Tanks 
Via $TPPUT from Output 

.. 
~ 

Processors for 
} Transmission; 

v 
Send Buffers CMDPROC 
to BSC Line 

E1<ecute Local viJ COMSUP 

Commands 
Passed by 

I--DMTCMX; Pass r---
Messages and 
Commands to 
Remote Stations. 

Supervisor Routines 

Figure 60. program Organization for the SML Line Driver Task 

242 IBM VM/370: System Logic and Problem Deteraination Guide 



PUTBLOCK 

Deblock the 
Buffer from 
the BSC Line; 
Write Data 
to VM/370 
Spool System. 

MAKEBLOC 

Get a Block 
of Data from 
the VM/370 
Spool System. 

CMDPROC 

Process a 
Command 
Received 
Over the 
BSC Line. 

RECVRFY 

Obtain Data 
Buffers from 
the BSC Line 
and Verify 
the BSC 
Control 
Characters. 

GETBLOCK 

Build a 
Buffer for 
the Appropriate 
Hardware 
Device. 

Supervisor Routines 

NPTGET 

Cycle Every 
Three Seconds 
to Check for: 

• A Command 
to Process 

• A Fileto 
Transmit 

• A File to Read 

SENDVRFY 

Check BSC 
Control 
Characters 
AfterWritinQ 
a Block of 
Data to the 
BSC Line. 

LlNEIO 

Read Data 
and Write 
Data on 
the BSC 
Line. 

1----"7 BSC 
Line 

Figure 61. Program Organization for the NPT Line Driver Task 

section 2. Method of Operation and Program Organization 243 





"Section 3. 
within three 
components. 

Directories" contains the cross-references for locating modules 
VM/370 components. section 3 also contains module descriptions 

• CMS MODULE ENTRY POINT DIRECTORY 

and labels 
for these 

Use this directory when you want to find the entry point and its function for any 
given module. 

• CMS MODULE-TO-LABEL CROSS REFERENCE 

Use this directory when you want to know, for any given module, the names of any 
external references it may make to data areas, registers, or entry points in other 
modules. 

• CMS LABEL-TO-MODULE CROSS REFERENCE 

Use this directory when you want to know which modules refer to any given label. This 
directory also, by means of the count field, indicates the number of times that the 
label was referenced. 

• CP MODULE ENTRY POINT DIRECTORY 

Use this directory when you want to find the entry point and its function for any 
given module. 

• CP MODULE-TO-LABEL CROSS REFERENCE 

Use this directory when you want to know, for any given module, the names of any 
external references it may make to data areas, registers, or entry points in other 
modules. 

• CP LABEL-TO-MODULE CROSS REFERENCE 

Use this directory when you want to know which modules refer to any given label. This 
directory also, by means of the count field, indicates the number of times that the 
label was referenced. 

• RSCS MODULE DIRECTORY 

Use this directory to determine what modules are branched to, from any given module, 
and the labels where the branchs occur. 

• RSCS MODULE ENTRY POINT DIRECTORY 

Use this directory when you when to find the entry point and its function for any 
given module. 

• RSCS MODULE-TO-LABEL CROSS REFERENCE 

Use this directory when you want to know, for any given module, the names of any 
external references it may make to data areas, registers, or entry points in other 
modules. 

• RSCS LABEL-TO-MODULE CROSS REFERENCE 

Use this directory when you want to know which modules refer to any given label. This 
directory also, by means of the count field, indicates the number of times that the 
label was referenced. 

Section 3. Directories 245 





r-------------
I Module Entry 
I Name Points 

DMSAEN DMSABN 

DMSABIKI 

DMSABIGO 

DMSABNSV 

DMSABIRT 

DMSACC ACCESS 

DMSACF READFST 

DMSACM READMFD 

DMSALU RELUFD 

DMSAMS DMSAMS 

DMSARD DMSARD 

Function 

Intercepts an abnormal termination (ABEND) and provides 
recovery from the ABEND. Entered by a DMKABN 
TYPCALL=BALR macro call. 
Entered by a KICBK macro to halt execution after HI has 
been entered after signaling attention. 
Entered by any routine that sets up ABNPSW and ABNREGS 
in the work area beforehand. 
Entered as the result of a DMSABN TYPCALL=SVC macro 
call. 
Returns entry point from DEBUG. 

Accesses data in the ADT and related information (such 
as AFT's and chain links) in virtual storage. 

Reads all file status table blocks into storage for a 
read/write disk. Reads in file management tables for a 
read - only disk. For an O/S disk, control returns to 
to the caller after a successful return from DMSACft. 

Reads the ADT, QMSK, QQMSK, and first chain link into 
virtual storage from the master file directory on disk. 

For a specified disk, releases all tables kept in free 
storage and clears appropriate information in the active I 
disk table (ADT). I 

I 
Provides an interface to DOS Access Method utility I 
programs (IDCAftS). Provided for support of CMS/VSAM. I 

I 
Provides storage for the ASM3105 assembler auxiliary I 
directory. DMSARD contains no executable code. It mustl 
be loaded with DMSARX and the GENDIRT command must then I 
be issued to fill in the auxiliary directory entries. I 
GENMOD must then be issued to create the ASSEMBLE I 
module. I 

I 

In 
13 
I~ 

13 
10 
I~ 
Ie 
I~ 
I~ 

I~ 
I~ 
I~ 
I~ 
I~ 

I~ 
10 
IH 
I~ 
I~ 

10 
IH 
I~ 
I~ 
In 
I~ 
10 
I~ 
I~ 



< 
3 , 
W 
~ 
o .. 

Module 
Name 

DMSARE 

DMSARN 

DMSARX 

DMSASD 

DMSASM 

DMSASN 

DMSAUD 

DMSBAB 

Entry 
Points 

DMSARE 

DMSARN 

ASMHAND 

DMSARX 

DMSASD 

DMSASM 

ASMPROC 

DMSASN 

DMSAUD 

DMSAUDUP 

DMSBAB 

Function 

Releases storage used for tables pertaining to a given 
disk when that disk is no longer needed. 

This is the ASM3705 command processor. It provides the 
interface between user and the 370x Assembler • 
This is the SYSUT2 processing routine called from 
DMSSOB and used during the assembly whenever any I/O 
activity pertains to the SYSUT2 file. 

Provide an interface for the ASM3705 command to the 
3705 assembler program. 
Provides storage for the assembler auxiliary directory. 
DMSASD contains no executatle code. It must be loaded 
with DMSASM and the GENDIRT command must then be issued 
to fill in the auxiliary directory entries. The GENMOD 
command must then be issued to create the assemble 
module. 

Processes the ASSEMBLE command. Provides the interface 
between the user and the system assembler. 
This is the SYSUTl processing routine (called from 
DMSSOB). 

Associates logical units with a physical hardware 
device. (Interface for the ASSGN command used by 
CMS/DOS and CMS/VSAM.) 

Reserves space on disk for writing a copy of disk and 
and file management tables on disk and then updates the 
master file directory. 
Closes all CMS files, thereby updating the master file 
Directory for any disks that had an output file 0Fen. 

Give control to an abnormal termination routine once 
linkage to such a routine has been established by STXIT 
AB macro. 



til 
CD 
o 
t+ .... 
o 
= 
w 

'=' .... 
1"1 
CD 
o 
t+ 
o 
1"1 .... 
CD 
en 

r-
I Module 
I Name 

DMSBOP 

DMSBRD 

DMSBSC 

DMSBTB 

DMSBTP 

DMSBWR 

DMSCAT 

DMSCIO 

Entry 
Points 

DMSBOP 

DMSBRD 
(RDBUF) 

BASIC 

DMSBTB 

DMSBTP 

DMSBTPAB 

DMSBTPLM 

DMSBWR 

DMSCAT 

DMSCIOR 
DMSCIOP 
DMSCIOSI 

L-____ _ 

Functicn 

Opens CMS/DOS files associated with the following DTF 
(Define The File) tables: DTFCN, DTFCD, DTFPR, DTFMT, 
DTFDI, DTFCP, DTFSD. Once the files are opened and 
initialized, I/O operations can be performed using the 
file. 

Reads one or more successive items from a specified 
file. 

Processes the BASIC command. The EASIC command invokes 
the CALL-OS BASIC language processor to compile and 
execute the specified file of BASIC source code. 

This is the CMS batch bootstrap routine. It loads the 
batch processor routine (DMSBTP) and user exit routine 
(if they exist) into free storage. 

Main entry; reads from the virtual card reader each 
time CMS tries to execute a console read. 
Entry point for abnormal conditions during user job: 

• Job exectuion ABEND (from DMSABN) 
• Job limit exceeded (from DMSITE, DMSCIO, DMSPIO) 
• Disabled CMS command (from the command) 

Non-executable user job limit table referenced by 
DMSITE, DMSPIO, and DMSCIO. 

writes one or more successive items into a specified 
disk file. 

Stacks a line of console input that DMSCRD reads later 
when it is called. 

Reads one card record. 
Punches one card record. 
Punch caller's buffer. 

n 
tI: 
til 

:3 
o 
Pol 
C 
...... 
CD 

tzj 
::I 
t+ 
H 
'< 

"t1 
o .... 
::I 
r+ 

'=' .... 
H 
CD 
o 
t+ 
o 
H 
'< 



c:I 
3 

....... 
W 
-..J 
o 

t/.l 
'< m 
rt 
(I) 
EI 

t-I 
o 

loCI 
1-" 
n 
~ 
c:; 
~ 

I'tj 
H 
o 
t:3" 
~ 
(I) 
EJ 

t=' 
(I) 
rt 
(1) 
H 
&I 
1-" 
t:! 
~ 
rt 
1-" 
o 
t:! 

en 
c: 
1-" 
~ 
(1) 

r 
I Module 
I Name 

DMSCIT 

DMSCLS 

DMSCMP 

DMSCPF 

DMSCFY 

DMSCRD 

DMSCiR 

DMSCiT 

DHSDBD 

DHSDEG 

DHSDIO 

Entry 
Points 

DHSCIT 

DHSCITA 
DHSCITB 
DHSCITDB 

DMSCLS 

COMPARE 

DMSCPF 

DHSCPY 

DftSCRD 

DMSCWR 

DMSCWT 

DftSDBD 

DMSDBG 
DMSDBGP 
DftSDBG 
DMSDIOR 

DMSDIOW 

Functicn 

Processes the interruptions for all CMS terminal I/O 
operations and starts the next I/O operation upon 
completion of the current I/O operation. 
Processes terminal interruptions. 
starts next terminal I/O operation. 
Frees I/O buffers from stacks. 

Closes CMS/BOS files associated with the fcllowing DTF 
(Define The File) tables: DMTCN, DTFCD, DTFPR, DTFMT, 

DTFDI, DTFCP, and DTFSD. For reader, printer, or punch 
files, a CP CLOSE command is issued. For disk files, 
DMSFNS is called to close the file. For a disk work 
file, DMSEBS is called to erase the file, unless 
DELETFL=NO is specified. 

Compares the records contained in two disk files. 

Passes a command line to CP for execution. 

Processes the COPYFILE command to copy disk files. 

Beads an input line and makes it available to the 
caller. 

writes an output line to the console. 

Causes the calling program to wait until all terminal 
I/O operations have been completed. 

Enables a user to dump his virtual storage from within 
an executing program. 

Enables the user to debug his program from the terminal. 
Entry point for program interruptions. 
Entry point for all other interruptions. 
Reads one or more aOO-byte records (blocks) from disk, 
or reads one 200-byte record (sub-block) from disk. 
writes one or more aOO-byte records (blocks) on disk, 
or writes one 200-byte record (subblock) on disk. 

--------------------------------------------------.---------------~ 



r---
I Module 
I Name 

DMSDLB 

DMSDLK 

DMKDMP 

DMSDOS 

DMSDSK 

DMSDSL 

DMSDSV 

DMSEDC 

DMSEDF 

DMSEDI 

Entry 
Points 

DMSDLE 

DMSDLK 

DMKDMP 

DMSDOS 

DMSDSK 

DMSDSL 

DMSDSV 

DMSEDC 

DMSEDF 

DMSBDI 

Function 

Interface for the DOS DtBt command; allows the user to 
specify I/O devices extents, and certain file attributes 
for use by a program at execution time. DLEL can also 
be used to modify or delete previously defined disk 
file descriptions. 

Interface for the DOS user" command. Link-edit the 
relecatable output of the language processors. Once 
link-edited, these core image phases are added to the 
end of the specified DOSLIE. 

Simulates the DOS/VS $$BDUMP and $$BPDCMP functions. 
For both functions, a CP DUMP command is issued, direct­
ing the dump to an offline printer. 

Provides DOS SVC support. Interprets DOS SVC cedes and 
passes control to appropriate routines for execution 
(for example, OPEN, CLOSE, FETCH, EXCP). 

Dumps a disk file to cards or loads files from card to 
disk. 

Provides capability to delete members (phases) of a 
DOStIB library; also, to compress a DOSLIB library; 
also, to list the members (phases) of a DOSLIE library. 

Lists the directories of DOS private or system packs. 

Arranges compound (overstruck) 
ordered form and disregards tab 
characters. 

characters into an 
characters as special 

Provides the lditor with the proper settings (CASE, TAB, 
FORMAT, SlRIAL, etc.) ty filetype. contains non-
executable code for reference by DMSEDI. 

Modifies the contents of an existing file or creates a 
new file for editing. 



< 
::J: 

" W 
~ 
o 
00 

Module 
Name 

DMSEtX 

DMSERR 

DMSERS 

DMSEXC 

DMSEXT 

DMSFCH 

DMSFET 

DMSFLD 

DMSFNC 

DMSFNS 

DMSFOR 

Entry 
Points 

DMSEDX 

DMSERR 

DMSERS 

DMSEXC 

DMSEXT 

DMSFCH 

DMSFET 

DMSFLD 

DMSFNC 
DMSFNCSV 

DMSFNSA 
DMSFNSE 

DMSFNST 

DMSFOR 

Function 

Perforas initialization for the CMS Editor. 

Builds a message to be written at the virtual ccnsole 
by DMSCWR. 
Deletes a file or related group of files from 
read/write disks. 

Bootstrap loader for disk version of EXEC. 

Processes the EXEC command. 

Bring a specified phase into storage from a system or 
private core image library or from a CMS DOSLIB 
library. DMSFCH is invoked via SiC 1, 2, or 4 or via 
the FETCH command. 

Provides an interface for the FETCH command; also, 
provides the capability to start execution of a 
specified phase. 

Interprets OS JCL DD paraaeters for use by CMS. 

Nucleus resident coamand name table. 
Standard SVC table. 

Closes one or more input or output disk files. 
Closes a particular file without updating the directory 
or removing it from the active file table. 
Temporarily closes all output files for a given disk. 

Physically initializes a disk space for the CMS data 
management routines. For an existing disk, any 
information on the disk may be destroyed. The label 
may be changed and the number of cylinders allowed may 
be changed. 



r-----------
I Module 
I Name 

DMSFRE 

DMSGIO 

DMSGLB 

DMSGND 

DMSGRN 

DMSHDI 

Entry 
Points 

DMSFREB 

DMSFREES 

DMSFRETS 

DMSFREEX 

DMSFRETX 

DMSFRES 

DMSGIO 

DMSGLB 

DMSGID 

DMSGRI 

DMSHDI 
(BNDINT) 

Punction 

Called as a result of the DMSFREE and DMSFRET macro 
calls. Allocates or releases a block of storage 
depending upon the code in NUCON location CODE203. 
Called as a result of the SVCFREE macro call. The size 
of the block is loaded from the PLIST and a DMSFREE 
macro is executed. Upon return, the address of the 
allocated block is stored into the PLIST. 
Called as a result of the SVCFRET macro call. The size 
and address of the block to be released are loaded from 
the PLIST and a DMSFRET macro is executed. 
Called as a result of a BALR to the address in the 
IUCON location AFREE. Executes the DMSFREE macro. 
Called as a result of a BALR to the address in the 
NUCON location AFRET. Executes the DMSFRET macro. 
Called as a result of executing the DMSFRES macro. 
DMSFRES processes the following service routines: 
CKOPP, INIT1, INIT2, CHECKS, UREC, and CALOC. 
Creates the DIAGNOSE and CCWs for an I/O operation to a 
display terminal from a virtual machine. 

Defines the macro libraries to be searched during 
assembler processing. Defines text libraries to be 
searched by the loader for any unresolved external 
references. 

Generates auxiliary system status table. 

Edits STAGE1 output (STAGE2 input), builds 3705 
assembler files, link-edits text files and an EXEC 
macro file. 

Sets the CMS interruption handling functions to 
transfer control to a given location for an I/O device 
other than those normally handled by CMS, or clears 
previously initialized I/O interruption handling. 



r 
I Hodule Entry 
I Name Points 

DMSBDS I DMSBDS 
I 
I 
I 
I 

DHSIJA I DHSINA 
I 
I 

DHSINDEX DHSINDEX 

DHSINI DMSINIR 
DHSINIW 

DMSIJH DHSIJM 
(GETCLK) 

(CHSTIMER) 

DHSIJS DHSINS 

DHSINS DHSINS 

DMSINT 

DHSIOW 

DMSITE 

DHSITI 

DHSINT 

DHSINTAB 
SUBSET 

DMSIOW, 
WAIT, 
DHSIOWR, 
WAITRTN 
DHSITE, 
EXTINT, 
DHSITET, 
TRAP, 

DHSITI, 
IOINT, 

Functicn 

Initializes the SYCINT SYC interruption handler to 
transfer control to a given location for a specific 
SYC number (other than 202) or to clear such previous 
handling. 

Handles either user-defined syncnyms or abbreviations 
or system-defined synonyms for command names. 

Index of CMS listings in the microfiche deck. 

Reads a nucleus into main storage. 
writes a nucleus onto a DASD device. 

Obtains the time from the CP timer. 

Controls initialization of the CMS nucleus. 

Controls initialization of the CMS nucleus. 

Reads CMS commands from the terminal and executes them. 
Entry is from DMSINS. 
Entry from DMSABN. 
CMS subset entry. 

places the virtual CPU in the wait state until the com­
pletion of an I/O operation on one or more devices. 

Processes external interruptions. 

This module is entered when an I/O operation causes the 
I/O new PSW to be loaded. This module handles all I/O 
interruptions, passes control to the interruption pro­
cessing routine, and returns control to the interrupted 
prograll. 



ttl 
~ 
o 
~ .... 
o 
::s 
w . 
t:1 .... 
1"1 
~ 
o 
~ 
o 
1"1 .... 
~ 
en 

'" U'1 
U'1 

..-­
Module 

Name 

DMSITP 

DMSITS 

DMSLAD 

DMSLAF 

DMSLBM 

--------------------------------------------------------------------, 
Entry 
Points 

DMSITP 

DMSITS 
DMSITSl 

DMSITSCR 

DMSITSOR 

DMSITSK 
DMSITSXS 
DMSITSR 

DMSLAD, 
ADTLKP 
DMSLADN, 
ADTNXT, 
DMSLADi 

DltSLADAD 

DMSLAF, 
ACTLKP 
DMSLAFNX, 
ACTNXT, 
DMSLAFFE 
ACTFREE 

DMSLAFFT 
ACTFRET 
DMSIBM 

Function 

Processes program interruptions and processes SPIE 
exits. 

Avoids CP overhead due to SVC call. 
Address pointed to by the CMS SVC new PSi. This point 
is entered whenever an SVC interruption occurs. 
Return point to which a program called by a CMS SVC 
returns when it is finished processing. 
Return point to which a program called by an OS SVC 
returns when it is finished processing. 
Called by an SVC by the DMSKEY macro. 
Called by an SVC from the DMSEXS macro. 
This is the DMSITS recovery and reinitialization 
routine, called by DMSAEN. DMSABN is the ABEND recovery 
routine. 
Finds the active disk table block whose mode matches 
the one supplied by the caller. 
Finds the first or the next ADT block in the active 
disk table. 
Finds the read or write disk according to input 
parameters. 
Modifies the file status table chain to 
auxiliary directory, or clears the auxiliary 
from the chain. 

include an 
directory 

Finds the active file table block whose filename, file­
type, and filemode match the one supplied by the caller. 
Finds the next or first AFT block in the active file 
table. 
Finds an empty block in the active file table or adds a 
new block from free storage to the active file table, 
if necessary, and places a file status entry (if given) 
into the AFT block. 
Removes an AFT block from the active file table and re­
turns it to free storage if necessary. 
Generates a macro library, adds macros to an existing 
library, and lists the dictionary of an existing macro 
library. 



-== :z 

" w 
-.J 
o .. 
til 
~ 
til 
rt 
co 
e 
~ 
o 

l,Q ..... 
o 
III 
::s 
0. 

to 
H 
o 
tr ..... 
co 
S 

t:I 
co 
rt 
co 
H 
e ..... 
::s 
III 
rt ..... 
o 
::s 
(j) 
d ..... 
0. 
co 

r 
I Module 
I Name 

DMSLBT 

DMSLDR 

DMSLDS 

DMSLFS 

DMSLGT 

DMSLIB 

DMSLIO 

DMSLKD 

DHSLLU 

Entry 
Points 

DMSLBT, 
TXTLIB, 

DHSLDRA 

DMSLDRB 

DMSLDRC 

DHSLDRD 

DMSLDS 

DHSLFS, 
TYPSBCH 

DHSLGTA 

DHSLGTB 

DHSLIB 

DMSLIO 

DMSLKD 

DMSLLU 

Function 

Creates a text library, adds text files to an existing 
text library, creates a disk file that lists the 
control section and entry point names in a text 
library or types, at the terminal, the control section 
and entry peint names in a text library • 

Begins execution of a group of programs loaded into 
real storage. Definition ef all undefined programs is 
established at location zero. Entered from the START 
command or internally from DHSLDRB LDT routine if START 
is specified. 
Processes TEXT files that may contain the following 
cards: SLC, ICS, ESD, TIT, REP, RLD, END, LDT, LIBRARY, 
and ENTRY. Entered from DMSLDP when the load function 
is requested. 
Does the precessing required by various loader routines 
when an invalid card is detected in a text file. 
Does the processing required when a fatal I/O error 
is detected in a text file. 

Lists information about specified data sets residing on 
an OS disk. Processes the LISTDS command. 

Finds a specified 40-byte FST entry within the FST 
blocks for read-only or read/write disks. 

Entered from DHSLDRB if not a dynamic load. Frees all 
the TITLIB blocks on the TITLIB chain. 
Reads TITLIB directories into a chain of free storage 
directory blocks. Entered from DHSLDRB. 

Searches TEIT libraries for undefined symbols and 
closes the libraries. 

Creates the load map on disk and types it at the 
terminal. Performs disk and typewriter output for 
DMSLDR. 
Provides an interface between eMS and the V51 linkage 
editor. 
Lists the assignments of logical units. 



en 
(1) 
o 
c+ 
~. 

o 
t:t 

W 

t:=' 
~. 

11 
(1) 
o 
c+ 
o 
11 
~. 
(1) 

rn 

Module 
Name 

DMSLOA 

DMSLSB 

DMSLST 

DMSLSY 

DMSMDP 

DMS80D 

DMSMVE 

D8SNCP 

DMSNUC 

Entry 
Points 

DMSLOA 

DMSLSBA 
DMSLSBB 

DMSLBC 

DMSLBD 

DMSLSTI 

D8SLSY 

DMSl!ISP 

DMSMOD 

DMSMVE 

DftSNCP 

DMSNUC 

NUCON 
SYSBEl 
DEVTAB 
ADTSECT 
AFTSECT 
EXTSECT 
IOSECT 

Function 

Processes the LOAD and INCLUDE commands to invoke the 
relocating loader. 
Hexadecimal to binary conversion routine. 
Adds a symbol to the string of locations waiting for 
an undefined symbol to be defined. 
Bemoves the undefined bit from the BEFTBL entry and 
replaces the ADCON with the relocated value. 
Processes LDB options. 

Processes the LISTFILE command. 
about the specified files. 

Prints information 

Generates a unique character string of the form Z000001 
for private code symbols. 

Types the load map associated with the specified file 
on the terminal. 

Processes the GENMOD command to create a file that is a 
core image copy; processes the LOADMOD coamand to load 
a file that is in core image form. 

Transfers data between two specified OS ddnames, the 
ddnames may specify any devices or disk files supported 
by the CMS system. 

Beads a 3705 control program module (Emulator Program 
or Network Control Program) in OS load module format 
and writes a page-format core image copy on a V8/370 
system voluBle. 

Contains CSECTS for nucleus work areas and permanent 
storage. 
Nucleus constant area. 
lucleus address table. 
Device table. 
Active disk table. 
Active file table. 
External interruption storage. 
I/O interruption storage. 

t:riI 
t:t 
c+ 
11 
~ 

I'C 
o 
~. 

t:t 
c+ 

t:=' 
~. 

11 
(1) 

o 
c+ 
o 
11 

I.e! 



<I 
til: 

" W 
-...J 
o 

tf.I 
I< 
til 
rT 
(J) 
EiI 

t"4 
o 

\Q .... 
n 
I» 
::s 
g, 

." 
t1 
o 
r;,o 
~ 
(J) 
EI 

t:::I 
(J) 
rT 
It) 
t1 

• .... 
::s 
I» 
rT .... 
o 
::s 
G'l 
c .... 
g, 
(J) 

r---------
Module I Entry 

Name I Points 

D!1S NUC 
(cont .) 

DMSOLD 

D!1S0PL 

DMSOPT 

DMSOR1 

DKSOR2 

DKSOR3 

PGKSECT 
SVCSECT 
DIOSECT 
PVS 
OPSECT 
CVTSECT 
DBGSECT 
TSOBLKS 

DKSOLD 
DKSIDRC 

DKSLDRD 

DKSCPL 

DKSOPT 

DKSOR 1 

DMSOR2 

DMSOR3 

Punction 

Program Interruption storage. 
SVC interru~tion storage. 
Disk I/O storage. 
Pile system storage. 
Parameter lists. 
Simulated OS CVT. 
Debug storage. 
TSO control blocks. 
Performs initialization and processing for each loading 
operation by processing text files that contain the 
following cards: SLC, ICS, ESD, TXT, REP, RLD, END, 
LDT, LIBRARY, and ENTRY • 
Entered from DMSSLN when load requested. 
Entered when an invalid card is detected in a text 
file. 
Entered when a fatal error occurs during loading. 

Beads the appropriate system directory records and 
headers and determines if the specified libraries con­
tain any active members. Returns the disk address of 
the specified system library and indicates whether or 
not there are active members to be accessed on the disk. 

sets DOS options in the System Communications Region as 
specified by the OPTION command • 

Relocates all DPT (Define The Pile) Table address 
constants to executable storage addresses. (Called by 
$$BOPENR via SVC 2.) 

Relocates all DTP (Define The File) Table address 
constants to executable storage addresses. (Called by 
DMSOR 1.) 

Relocates all DTF (Define The Pile) Table address 
constants to executable storage addresses. (Called by 
DMSOR2.) I 

I 
I 



en 
(t) 
o 
r+ ..,-
o 
::t 

w . 
t::I ..,-
t1 
(t) 

o 
r+ 
o 
t1 ..,-
(t) 
en 

r----------------------------------------------------------------------------------, 
I ftodule 
I Name 

DftSOVR 

DftSOVS 

DftSPIO 

DftSPNT 

DftSPRT 
DftSPRV 

DftSPUN 

DMSQRY 

DMSRDC 

DMSRNE 

DMSRI1M 

DMSROS 

Entry 
points 

DMSOVR 

DMSCVS 

DMSPIO 
DftSPIOCC 
DMSPIOSI 

DMSPNT 

DMSPRT 
DMSPRV 

DMSPUI1 

DMSQRY 

READC.ARD 

DMSRNE 

DMSRNM 

DMSROS 
ROSACC 

DMSROS+4 
ROSSTT 

Function 

Analyzes the SVCTRACE command parameter list and 
loads the DMSOVS tracing routine. 

Provides trace information requested by the SVCTRACE 
command. 

Prints one line. 
Puts CCWs and data into the caller's buffer. 
Prints the caller's buffer, issues an SIO to the 
virtual printer, and analyzes the resulting status. 

Places the address of a file status table entry in the 
active file table (if necessary), and sets the read 
pointer or write pointer for that file to a given item 
number within the file. 

Prints CMS files. 
Copies procedures from the DOS/VS system procedure 
library to a specified output device. 

Punches efts files to the virtual card punch. 

Processes the 
terminal, the 
tables. 

QUERY command. Displays 
status of various CMS 

at the user's 
functions and 

Reads cards and assigns the indicated filename. 

Provides an interface for the CMS Editor RENUM subcom­
mand, which renumbers files with filetypes of VSBASIC 
and FREEFORT. 

Processes the R!NAME command. Changes the fileid of 
the specified file. 

Accesses OS disks. 

Verifies the existence of CS disks. 

n 
til: 
en 
::I: 
o 
~ 
~ 
~ 
co 
till 
::t 
r+ 
t1 
~ 

I'd 
o ..,-
::t 
rt 

'=' ..,-
t1 
(1) 

o 
ri­
o 
t1 
~ 



< 
3: 

" W 
-.J 
P .. 

r 
I Module 
I Name 

DMSROS 
(cont. ) 

DMSRRV 

DMSSAB 

DMSSBD 

DMSSES 

DMSSCN 

DMSSCR 

DMSSCT 

DMSSEB 

DMSSEG 

DMSSET 

Entry 
Points Functicn 

DMSROS+8 Reads OS disks. 
ROSRPS 

DMSROS+12 Finds a member in an OS PDS. 
ROSFIND 

DMSROS+16 Performs NOTE, POINT, and ESP functions • 
ROSNTPTB 

DMSBRV Provides the capability to copy (to an output device) 
modules residing on DOS system or private relocatable 
libraries. 

DMSSAE Processes OS ABEND macros. 

DMSSBD Accesses data set records directly by item number. It 
converts record identifications given by OS BDAM macros 
into item numbers and uses these item numbers to access 
records. 

Processes OS BSAM READ and WRITE macros. 
DMSSBSRT Entry for error return from call to DMSSBD. 

DMSSCN 

DMSSCR 

DMSSCTNP 

DMSSCTCK 
DMSSCTCE 

DMSSEB 

DMSSEG 

J)MSSET 

Transforms the input line from a series of arguments to 
a series of 8-byte parameters. 

Loads display buffers and issues a macro resulting in a 
CP DIAGNOSE to write to the display terminal. 
Processes OS POINT, NOTE, CHECK, and FIBD (type C) 
macros. 
Processes OS CHECK macro. 
Handles QSAM I/O errors for DMSSQS and PDS and keys 
errors for DMSSOP. 

Calls device I/O routines to do I/O and sets up ECB 
and lOB return codes. 

contains a table of vceNS for CMS saved segment 
entries. 

Processes the SET command. 



til 
(I) 
o 
rt .... 
o 
I:S 

W 

o .... 
11 
(I) 

o 
rt 
o 
11 .... 
(I) 

rn 

Module 
Name 

DMSSLN 

DMSSIUl 

D!!SSOP 

DMSSQS 

DMSSBT 

DMSSBV 

DMSSSK 

DMSS'IG 

DMSSTT 

DMSSVN 
DMSSVT 

Entry 
Points 

DMSSLN 

D!SSMB 

D!!SSOP 

DMSSQS 

D!SSBT 

DMSSBV 

DMSSSK 

DMSSTGSB 
DMSSTGST 
D!SSTGCL 
DMSSTGSV 
D!SSTGAT 

D!!SSTT 

D!SSVB 
DMSSVT 

Function 

Handles OS contents management requests issued under 
CMS (LINK, LOAD, ICTL, DELETE, ATTACH, EIIT). 

Processes OS FBEEMAIN and GET!!AIN macros and CftS calls 
DMSSMBSB and DMSSMNST. 

Processes OS OPEN and CLOSE macros. 

Analyzes record formats and sets up the buffers 
for GET, PUT, and PUTI requests. 

Arranges records within a file in descending sequential 
order. 

Provides capability to copy books from a system or 
private source statement library to a specified output 
device. 

Sets storage protect key for a specified saved system. 

Processes CMS calls to D!!SSTGST and D!!SSTGSB (STBINIT) 
and storage service routines. 
STBINIT. 

OS exit reset routine. 
Service routine to change nucleus variables. 
Initializes storage and sets up an anchor table. 

Locates the file status tatle entry for a 
and, if found, provides the caller with the 
the entry. 

Processes the OS WAIT and POST macros. 

given file 
address of 

Processes OS macros: IDAP, TIME,.SPIE, BESTOB!, BLDL, 
FIND, STOW, DEVTYPE, TBKBAL, iTO, WTOB, EXTBACT, 
IDENTIFY, CHAP, TTIMEB, STIMEB, DEQ, SNAP, ENQ, 
FBEEDBUF,fSTAE, DETACH, CHKPT, BDJFCB, SYNAD, BACKSPACE, 
and STAX. !:IiI 

I:S 
rt 
11 
'< 

ItJ 
o .... 
I:S 
rt 

o .... 
11 
CD 
o 
rt 
o 
11 
'< 



r----
I Module 
I Name 

DMSSYN 

DMSTlO 

DMSTMA 

DMSTPD 

DBSTPE 

DMSTQQ 

DBSTRK 

DMSTYP 

DMSUPD 

Entry 
Points 

SYNONYM 

DMSTlO 

DMSTMA 

DMSTPD 

DBSTPE 

DMSTQQ 

DMSTQQI 

DBSTRKA 
DMKSTRKI 

TYPE 

DMSOPD 

----, 

Functien 

Processes the SYNONYM command. Sets up user-defined 
command names and abbreviations for CMS commands. 

Reads or writes a tape record or controls 
positioning. 

tape 

Reads an lEBMOVE unloaded PDS from tape and places it 
in a CMS MACLlB. 

Reads a tape consisting of card image members of a PDS 
and creates CBS disk files fer each member of the data 
set. The PDS option allows reading unblocked tapes 
produced by the as lEEPTPCB utility or blocked tapes 
produced by the as lEBMOVE utility. The UPDATF option 
provides the ".1 ADD" function to blocked or unblocked 
tapes produced by the lEEUPDTE utility. 

Processes the TAPE command to perform certain tape 
functions, such as: dump a CMS file, load a CBS file, 
set tape mode, scan, skip, rewind, run, FSF, FSR, ESF, 
ESR, ERG, and iTM. 

Allocates a 200-byte first chain link (FCL) to a 
calling program. 
Makes a 200-byte disk area no longer needed by one 
program available for allocation to another program. 

Allocates an aOO-byte disk area to a calling program. 
Bakes an aOO-byte disk area that is no longer needed by 
one program available for allocation to another. 

Processes the TYPE command. Types all or a specified 
part of a given file on the user's console. 

Processes the UPDATE command. Updates source files 
according to specifications in update files. Multiple 
updates can be made, according to specifications in 
control files that designate the update files. 

I 
i 



... 
I r.lodule 
I Name 

Dr.lSVAN 

DMSVAS 

Dr.lSVIB 

DMSVIP 

Dr.lSVPD 

DHSVSR 

DMSXCP 

DMSZAP 

DMSZAT 
til 
CI) DMSZIT 
(1 
rt 
1-'- DMSZNR 0 
1:1 

w DMSZUS . 
t:I 
1-'-
H 
CI) 
(1 
c+ 
0 
H 
1-'-
CI) 

en 

l\) 

0'\ 
W 

Entry 
Points 

DMSVAN 

DMSVAS 

DMSVIB 

DMSVIP 

DMSVPD 

DMSVSR 

DMSXCP 

DMSZAP 

DMSZAT 

DMSZIT 

DMSZ NB 

DMSZUS 

Functicn 

Contains table of Access Method Services ncnshared 
(nonreentrant) modules. 
Contains a table of Access Method Services shared 
(reentrant) modules. 

Loads the CMS/VSAM saved system and pass control to the 
CMS/VSAM interface routine, DMSVIP. 

Finds the CMS/DOS discontiguous shared segment (DCSS); 
issues all necessary DOS ASSGB statements for OS user; 
maps alIOS VSAM macro requests to DOS specifications; 
equivalents, where necessary; traps all transfers of 
control between VSAM and the OS user and sets the 
appr~priate operating environment flags. 

Reads DOS, VSAM, and 
from a DOS PTF tape 
user's A-disk. 

Access Method Services mOdules 
and writes the mcdules to the CMS 

Resets any flags or fields set by VSAM processing; 
purges the VSAM discontigucus shared segment. 

Simulates the DOS EXCP function (DOS SVC 0) in the 
CMS/DOS environment. EXCP (Execute Channel Program) 
requests initiation of an I/O operation to a specific 
logical unit. 

Processes the ZAP 
maintain CMS LOADLIB 
command LKED. 

command. 
memters 

Provides a 
as written 

Defines 8K-tytes of transient area. 

Defines the end of the eMS nucleus. 

Defines the end of BUCON (DMSNOC). 

Defines the start of the user area. 

facility to 
by the CMS 





~odule External References (Labels and ~odules) 10 
13 
len 

13 
DftSABH ABATABHD ABHBIT ABHERLST ABHPAS13 ABHPSi ABHREGS ABHRR ABiSECT ADTFDA ADTFFSTF ADTFLGl ADTFLG2 ADTF~IH 10 

ADTFQQF ADTFROS ADTHBCT ADT~ ADT~FDA IDT~FDH IDTPQ~3 ADTSECT AFVS AINTRTBL IIOSECT IOPSECT AOUTRTBL It:j 
Ie 

ISUBFST ASUBSECT ASUBSTAT AUSIBRV AUSRAREA AUSRILST AUSRITBL BATFLAGS BATLOAD BATRUH CftIDLII! COIRDCNT COHRDCOD It-t 
CONBEID CUBBSAVE DBGABH DBGFLAGS D~SABi D~SCIT D~SCITDB DftSCRD DftSCWT DftSDBG DftSEXCAB D~SIHTAB D~SITSR Itl!I 

I DftSLIDAD DftSLIDI EGPBS FCBFIRST FCBIUft FREELOWE FVSECT IOITABL IOSECT IPLPSW KXFLIG KXWAIT LDftSROS 1t-3 
LOC ftACDIBC ftISFLAGS HOPAGREL IB~RET IUCOH HUftFIHRD OLDPSW OPSECT OPTFLIGS OSADTFST OSFST OSFSTLTH 10 
OSFSTBXT PGftlPSW PG~OPSW BELPAGES RO Rl R12 R13 R14 R15 B3 R4 R5 I 

It-t 
R6 R7 RS SSAVE SUBFLAG SUBSECT UFDBUSY IIII' 

ItxI 

DftSICC ADTDTA IDTFALUF ADTFDA ADTFDOS ADTFFSTF IDTFFSTV ADTFLGl IDTFLG2 ADTFLG3 IDTFftIH ADTFRO 
Itl!I 

ADTFROS IDTFRi It-t 

ADTFSTC ADTHBCT ADTLHBA IDTft ADT!!FDN ADTftSK IDT!!X ADTIU!! IDTPQft2 ADTPQft3 IDTRES ADTSICT ADTUSED 10 
IDT1ST AFIHIS AFVS CURRSAVE DTAD FVSECT FW4 IADT ftISFLIGS HUCON RO Rl R10 1= 
Rll R12 B13 R14 R15 R2 R3 B4 R5 R6 R7 RS R9 10 

ItIl 
UFDBUSY WRBIT ItIl 

D~SACF ADTADD ADTCIST IDTCHEA IDTFALI!! ADTFALTY ADTFALUF ADTFDI ADTFFSTF ADTFLGl ADTFLG2 ADTFLG3 ADTFftDRO ADTFRO 1= 
Itl!I 

ADTFROS ADTFRW IDTFSTC ADTFTYP ADTHECT ADTLHBA ADTft ADT!!FDA IDT!!FDH ADTPQft2 ADTRES ADTSICT AFVS lfold 
ARDTK ATYPSRCH DSKIDR DSKLOC DSKLST ERBIT ERRCODl FSTIC FSTRP FSTSECT FSTT FSTWP FVSECT Itl!I 

1= 
FW4 F65535 JSRO JSBl HUCON REGSAVO REGSIVl RWCNT RO Rl Rl0 Rll R12 Itl!I 

R13 R14 R15 R2 R3 B4 B5 B6 R7 RS R9 UFDBUSY 12: 
10 
Itl!I 

DftSAC!! ADIOSECT ADftSBOS ADTADD ADTeYL ADTDTA ADTFLGl ADTFLG2 ADTFLG3 ADTFftFD ADTFQQF ADTFRO ADTFRi ADTHBCT 
ADTID ADTftFDH ADTftSK ADTftX IDTIUI! ADTPQl!l ADTPQI!2 ADTPQI!3 ADTQQI! ADTBES ADTROX ADTSICT ADTUSED 
AFVS IRDTK BITFLIGS BITLOAD CDI!SROS DIOSECT DSKIDR DSKLOC DSKLST DTID DTADT ERRCODO FFD 
FFE FFF FVSDSKI FVSECT FVSFSTIC FVSFSTIL FSOO JSRO LDftSROS LOCCIT BUCOB OSIDTVTA RIGSIVO 
RiftFD RO Rl Rl0 Rll B12 R13 B14 R15 R2 R3 R4 RS 
R6 R7 RS R9 SIGBIL SWTCH TBEIT UFDBUSY UPBIT 

I:ftSALU IDftSROS IDTFDI IDTFFSTF IDTFLGl IDTFLG2 IDTFLG3 IDTFftIN IDTFQQF IDTFRO IDTFROS IDTFRW IDTFSTC IDTFTYP 
ADTID IDT!! ADT~FDN ADTftSK IIlTftI ADTPQ~l IDTPQ!!3 ADTQQft IDTRES ADTROX ADTSECT AFVS CDMSROS 
FCBDSftD FCBFIRST FCBNEXT FCBOSFST FCBSECT FLGSAVE FVSECT LDMSROS LOC IUCON OSIDTFST OSFST OSFSTLTH 
OSFSTNIT REGSIVO RO Rl Rl0 Bll R12 B13 R14 R1S R2 R3 R4 
R5 R6 R7 RS R9 STATEFST 

0 
::.: 
til 

131: 
0 

til 
j;la 

c: 
CD .... 0 CD 
!+ I 
~. n-o 0 
=' I 
W t-t 

at 
t1' 

t:::I 
II) 

~. 
.... 

t1 0 CD /"f 0 0 !+ en 0 en 
/"f 
~. = II) II) en .... 

(I) 
/"f 

~ 
(I) 

=-0\ 0 U'1 (I) 



IV Module External Beferences (Labels and Modules) (") 
0'1 t:z 
0'1 til 

IlMSAMS ADEVTAB ADTM ADTSECT AEBASE ASCANN ASTATE ASTATEi ATABEND BGCOM CMSAMS COMNAME DOSDD 
t:z 

DOSDEV 0 
DOSDSMIl DOS DUM DOSEITNO DOSEITTB DOSNEIT DOSSECT DOSVOLNO DOSVOLTB DOSISIII DTAD DTAS FSTFV FSTIL c:lI 

FSTM FSTH FSTSECT LTK LUBPT MISFLAGS MUCON PIBPT PUBPT BELPAGES BO B1 B10 
.:::: 

<I J-I 
::I: B 11 B12 B13 B14 R15 B2 B3 B4 R5 R6 R7 R8 R9 CD 

" SYSHAMES VMSIZE 
, 

w rt" 
...,J 0 
0 tMSARE ADTDTA ADTFLG1 ADTFLG2 ADTFLG3 ADTFBO ADTFBOS ADTFBi ADTFSTC ADTM ADTSECT AFINIS AUPDISK DTAD 

, 
~ 

NUCOI BO Rl Bl0 B12 B14 B15 R2 B3 B4 R5 R6 R7 III 
til R8 R9 tr 
'< CD 
til ..... 
rt" tMSARN ADTFLG1 ADTFRi ADTM ADTMI ADTSECT AOPSECT ASTRINIT BATFLAGS BATBUN COMPSiT FCBBUFF FCBBYTE FCBCATML (I) n 
IS FCBCLOSE FCBDD FCBDEV FCBFOBM FCBINIT FCBIOSi FCBITEM FCBPBOC FCBPIiOCC FCEPBOCO FCBB:EAD FCBS:ECT FSTL H 

FSTM FSTSECT IOBCSi IOBIN IOBICFLG MISFLAGS NUCON OSSFLAGS BELPAGES RO Rl Bl0 R 11 0 
~ R12 R13 B14 B15 B2 B3 R4 B5 B6 B7 R8 R9 til 
0 til 

t,Q ---~-.--..... DMSABI AADTIKii ADTFLG1 ADTFRi ADTM AIlT"I ADTSECT CMNDLINE COMPSiT DEVICE DMSABD FCBBUFF FCBBYTE FCBCATML ~ 
C'l CD 

FCBCLOSE FCBDD FCBDEV FCBDSK FCBDSNAM FCBFOBM FCEINIT FCBIOSW FCBITEM FCBPROCC FCBBDR FCBREAD FCBSECT HI 
III FCBTAP FBEELOWE FSTFV FSTIL FSTL FSTM FSTSECT IOBCSi ICBIN IOBIOFLG MAINBIGB MISFLAGS NUCOR CD 
t:I H 
c:lI OPSECT OSIOTYPE OSSFLAGS BELPAGES RO Bl Bl0 Bll B12 R13 R14 B15 R2 CD 

B3 R4 R5 R6 R7 R8 R9 t:I 
It! C'l 
H CD 
0 DMSASM AADTLIOi ADTFLGl ADTFBi ADTM AIlTrU ADTSECT CMNDLINE COMPSWT DEVICE DMSASD FCBBUFF FCBBYTE FCBCATML tr ..... FCBCLOSE FCBDD FCBDEV FCBDSK FCBDSNAM FCBFOBM FCBINIT FCBIOSi FCBITEM FCBPROCC FCBBDR FCBREAD FCBSECT 
(I) FCBTAP FREELOiE FSTFV FSTIL FSTL FST" FSTSECT IOBCSi IeBIN IOEIOFLG HAINHIGH MISFLAGS NUCON IS OPSECT OSIOTYPE OSSFLAGS BELPAGES BO Bl Bl0 Rll B12 R13 R14 R15 R2 
t::I R3 
(I) 

R4 R5 R6 R1 R8 R9 
rt" 
(I) DHSASN ADEVTAE ADTDTA ADTFDOS ADTFLG 1 AIlTFLG2 ADTFRO ADTFROS ADTFRi ADTSECT ASYSREF EGCOM DEVTAB DTAD 
I"f DTADT NUCON PUBPT BO Rl Rl0 Rll R12 R13 R14 R15 R2 R3 iii ..... R4 R5 R6 B7 R8 R9 TAPEl 'IAPE4 
t:I 
S» 
c+ DMSAUD ADTADD ADTDTA ADTFDA ADTFLG3 ADTHBCT ADTLAST ADTMFIlA ADTMFDN ADTHSK ADTNUM ADTPQMl ADTPQM2 ADTSECT ..... AFVS ATRKLKP ATRKLKPX AiRTK DSKADR DSKLOC DSKLST DTADT FFD FFE FFF FINISLST FVSDSKA 0 
t:I FVSECT F800 NUCON REGSAVO RiCNT RiFSTRG RWHFD RO Rl Rl0 Rll R12 R13 
<O'l 

R14 B15 B2 B3 B4 IiS R6 B? R8 R9 UFDBUSY UPBIT 
c: ..... DHSBAB BGCOM IJBABTAB NUCOll PCPTB PIBACB PIBPT PIBSAVE PIK BO B1 B10 B12 R13 
~ 
1ft R14 B15 R2 B3 R4 RS B6 B8 R9 SVEABA SVEPSi SV:EPSi2 SVEBOF 

SVEBOO SVERO 1 SVEB09 SYSCOH 



ftodule External References (Labels and ftod ules) 

DftSBOP ACBDDUI ICBERPLG ACEII ACBIIPLG ICBftACR 1 ACBOLIGI ICBOUT ICBSTSKP ADTPDOS ADTPLGl IDTPLG2 ADTPLG3 IDTPftPD 
ADTPRO ADTPROS IDTFRi ADTSECT AERASE ASTATE ASISREP EGCOM CftSVSAft DOSBLKSZ DOSBUFF DOSDD DOSDEV 
DOSDSlm DOSDUft DOSEIT DOSEITCT DOSIORft DOSIBIT DOSIEIT DOSOP DOSOSPST DOSSECT DOSSIS DOSUCAT DOSOCRAft 
DOSISXXX FSTIC FSTft FSTSECT IJBPLG04 IKQACB LUBPT IICLPT ROCOI OSPST OSPSTPft OSPSTRPft OSPSTIIO 
OSFSTXTI PIBPT PUBADR PUBCOU PUBDEVT PUBPT PUBTAPft 1 PUBTAPft2 PUBTAP7 RftSROPER RO Rl Rl0 
Rll R12 R14 R1S R2 R3 R4 RS R6 R7 RS R9 SISCO" 
SISIAftES V"SIZE 

DftSBRD AACTPREE AACTLKP APTADT APTCLA APTCLB APTCLD APTCLI APTDBI APTDBD APTDBI APTFBA AFTPCL APTPCLA 
APTFLG APTFST APTFV AFTIC AFTID APTIL APTII APTRD APTRP APTSECT APTiRT ARDTK AUSRAREA 
DISK$SEG DftSLPS PSTPV FSTIC FSTRP PSTSECT IUCOI REGSAV3 RiPSTRG RO Rl Rl0 Rll 
R12 RB R14 R1S R2 R3 R4 BS B6 R7 RS B9 STATEPST 
STATEBO VftSIZE 

DftSBSC AADTIKi ADTPLGl ADTPRi ADTft ADTftI ADTSECT ASTRIIIT CURRSAVE EGPRS PBEELOiE PSTPV PSTIL FSTL 
PSTft FSTSECT ftAIIBIGB ftISPLAGS IUCCI OLDPSi OVIID BELPAGES RO Rl Rl0 Rll B12 
R13 R14 R1S R2 R3 B4 RS B6 R7 RS R9 SSAVE 

DftSBTB ABATABND ABATLlftT ABATPROC APVS ALDRTBLS AUSRIREA BATDCftS BATFLIGS BITPLIG2 BATLOAD BATIOEI BATRUI BATUSEI 
PVSECT PVSFSTIC PVSFSTIL LOCCNT NUCOI BO Bl B12 R14 R1S R2 B3 R4 
RS BS TBEIT 

tftSBTP ABNBIT ADftSCBD APVS ASCARI BITCPEI BATDCftS BITPLAGS BITPLIG2 BATftOVE BATIIOEI BATRERR BITSTOP BITTERft 
BATUSEX BATICPU BATILlft BITIPRT CMSS!G FVSECT IPLADDR IUCOI IUftPINRD RO Rl Rl0 Rll 
R12 R13 R14 R1S R2 R3 R4 RS R6 R7 RS R9 SIStlAftE 
SI SRAftES OPDBUSI 

DftSBiR lACTPREE llCTFRET lACTLKP ADTDTI ADTFLG 1 ADTPLG3 IDTPRi IDTPSTC IDTftI IDTIIACi IDTSECT IPTIDT APTCLI 
AFTCLB APTCLD APTCLDI AFTCLI IPTCLI APTD IPTDBI IFTDBC IPTDBD IPTDBR IPTPBA IPTPCL IPTPCLI 
APTFCLX IFTPLG APTPLG2 APTPST ~FTFULD IPTPV IPTIC IFTID APTIL APTIN APTft IF TN 1FT lEi 
APTOLDCL IPTRD APTRP APT SECT IPTiP IFTiRT IFVS lQQTRK AQQTRl{I ARDTK ITPltlIS ITRKLKP ITRKLKPI 
AOPDISK liRTK DftSLID DftSLFSi FSTPV PSTIL PSTSECT FSTiP PVSECT NUCON REGSIV3 RiFSTRG RO 
R1 Rl0 Rll R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 
RS R9 UPDBUSY VftSI ZE iRBIT n 

3: 
til 

3: 
0 
PJ 

til ~ 
(I) I-' 
0 (I) 
rt- I ...,. rt-
0 0 

" I 
t-4 

W ~ . t:I" 
(I) 

t:j I-' ...,. 
t1 n 
(I) t1 
0 0 
rt- C/l 
0 C/l 
t1 ...,. 

!:tI 
(I) (I) 
C/l HI 

(I) 

t1 
(I) 

~ " 0\ 0 
...,J (I) 



~ Module External References (Labels and !od ules) n 0'1 
c:c 3: 

til 

D!SCAT CMNDLIST FSTFINRD !SGFLAGS NOTYPING NUCON NUMFINRD RO Bl 3: 

R4 0 
s:lI 

<: c: 
3: t!SCIO ABATABND ABATLI!T BATFLlGS BlTLSECT BlTNOEI BATPUNC BlTPUNL BATRUN BlTILI! BATIPUN ClW CSi NUCON ..... 

" 
(!) 

w RO Rl Bl0 Bll R12 R13 R14 B15 R2 R3 B4 R5 R6 I 
...... B7 B8 rT 
0 0 
00 I 

DMSCIT lFVS AIOSECT ASVCSECT ATTN BlTFLlG2 BlTSTOP CAi CE CMSTAIE CONCCWS CONSTACK CSi CUBBIOOP I:"'" 
III til DBGEIEC DBGEIINT DBGFLlGS DE FSTFINRD FVSECT IOOPSi KIFLlG KIWANT LSTFINBD !SGFLAGS ROTYPING NUCON t:r Iocl 

en RUMFINBD NU!PNDWB OSSFLAGS OVSHO OYSON OVSSO OVSTAT PENDRElD PENDiRIT RO Rl R12 B13 co 
rT R14 R15 R2 B3 R4 R5 R6 R7 R8 R9 SVCSECT TlIEIlD TlIE!SGL 

..... 
co TAIERSAV TAIElDDR TlIEEIIT TAIEEITS TlIEFBEQ TAIEioL TlIEIOWS TlIELNK TAIERTNA TlIESTAT TAIETlIE TAIETSOF TSOATCNL (') EI H 
I:"'" 

TSOFLAGS UE WAIT iAITSAVE 0 
0 en 

\Q [MSCLS lERASE AFIIIS ASYSREF BGCO! DOSDD DOSDSNAM DOSNEIT DOSSECT DOSYSIII LUEPT NICLPT NUCOR PIBPT en 
~. PUBADB PUBCUU PUBDEVT PUBPT PUBTAPMl BO Rl Bl0 Bl1 R12 B13 B14 B15 !:tI 0 

B2 R3 R4 B5 B6 R7 R8 B9 (I) 

I» H\ 
I:' CD 
s:lI [MSCMP ADT! ADTSECT AFIlUS ARDBUF NUCCN H 

CD 
It! I:' 

t1 DMSCPF ABATPBOC BALBSAVE BATCPEI BATFLAGS BATLOAD BATBUN BATUSEI C!NDLINE NUCON RO Bl B12 R14 0 
0 B15 R2 R3 B4 B5 B6 R7 R8 CD 
t:r ..... 
(I) [MSCPY ADTCBBA ADTFLGl ADTFRi ADTM lDTSECT FSTD FSTFACT FSTFB FSTFV FSTIC FSTIL FSTft FSTN 
EI FSTSECT FSTYB ftISFLAGS NUCON RELPlGES 
t:I 
co DftSCRD ABATPBOC AFVS lINTRTBL AOPSECT BlTFLAGS BATLOAD BATRUN CONINBLK CONINBUF CSi D!SClT DMSCITB FSTFINRD rT 
co FVSECT KIFLAG KIWSVC LSTFINBD !ISFLlGS ftSGFLAGS NOTYPING NUCON NUftFIBRD NUftPNDiR OPSECT PENDBElD QSiITCB 
11 RO Bl Bll B12 R13 B14 R15 B2 R3 B4 R5 B6 B8 EI 
~. R9 TSOATCNL TSOFLAGS iAITLST 
I:' 
I» 
rT DftSCiR AFYS AOPSECT AOUTBTBL CONSTlCK CSi DMSCITl D!SCITB FVSECT KIFLAG KIiSVC ftSGFLlGS NOTYPING NUCON 
~. NUftPNDiR OPSECT PENDREAD PENDiRIT REDER BID BO Bl B10 Bll R12 B13 B14 R15 0 
I:' B2 B3 B4 B5 B6 R7 B8 WAITLST 
(j) 

DftSCiT AFVS AOPSECT FVSECT KIFLAG KIiSYC RUCOR NU!PNDWR OPSECT PENDBElD BO Bl Bl0 Bll c: 
~. R12 R14 R15 B9 ilITLST 
s:lI 
co 

DftSDBD lDEVTAE ABGS CAW CCiPRINT CPULOG DBDD!SG DBDEIIT DBGFLAGS DBGOUT DEGRECUB DBGSECT DBGSiTCB DEC 
DEVTAB LASTLINE LINE LINEl LINE 11 LIBE1B LINE1C BUCON PBIRTERl RO Bl Rl0 B 11 
R14 B15 R2 R3 R4 B5 R6 R7 R8 R9 SAVEl 



Module External References (Labels and Modules) 

DMSDBG ABRPSW ABBREGS ABiSECT ADI!!SCRD AIOSECT AKILLEX AOPSECT ARGMAX ARGS ARGSAV ABGSCT EALRSAVE BEGAT 
BITS BRKPNTBL CAW CONHXT CONWB CONiBL CSW CURRSAVE DBGABN DBGEXEC DBGEXINT DBGPLAGS DBGOUT 
DBGPGI!!CK DBGRECUB DBGSAVl DBGSAV2 DBGSECT DBGSET DBGSiTCH DEC DECDEC DMPTITLE DftSABNRT DI!!SABi DltSCiR 
DMSCWT DMSDBD DMStOWR DMSITP DUMPLIST EXAMLC EXAMLG EXTOPSW PIRSTDMP PPRLOG FO P6 GPRLOG 
HEX HEXHEX INPUT INPUTSIZ INPUTl IOOPSW IPLPSW JFLAGS LASTDftP LOWSAVE MVCNT MVCNT2 NUCON 
OPSECT OBG OUTPT 1 PGMOPSi PRFPOPP PROTPLAG RETSAV RSTNPSi RO Rl Bl0 R13 R14 
R15 R2 R3 R4 R5 R6 R7 R8 B9 SAVEl SAVE2 SSAVE STOPAT 
SYMTABLE SYI!!TBG TPFUSR TSYM TYPPLAG VMSIZE WAITLIST WAITRD WAITSAVE iTRDCNT XPSW 

DI!!S DIO ADIOSECT ADTDTA ADTFLGl ADTFRO ADTFBW ADTSECT APVS ANUCEND CAW CCWX CCil CCilA Ccw2 
CSW DEVTYP DIAGNUI!! DIAGRET DIOBIT DIOPLAG DIOPBEE DIOSECT DOUBLE DTAD DTADT EBRCODE FBEERO 
FVSECT IOCOMI!! IOOLD IOOPSi LASTCYL LASTHED NUCON QQDSKl QQDSK2 QQTBK RiCCW BO Rl 
B10 R 11 R12 R13 R14 R15 B2 R4 R5 R6 R7 R8 R9 
SAVEADT SEEKADR SENCCW SENSB TOOBIG UFDBUSY iRTKP XRSAVE 

DMSDLB ADTPDOS ADTFLG2 ADTFROS ADTSECT ASYSBEF EGCOM CUBRSAVE DOSBUFSP DCSCBID DOSDD DOSDDCAT DOSDEV DOSDSK 
DOSDSI!D DOSDSNAM DOSDSTYP DOSDUM DOSERD DOSENSIZ DOSEXTNO DOSEXTTB DOSINIT DOSJCAT DOSNEXT DOSOSDSN DOSOSPST 
DOSPERM DOSSECT DOSUCAT DOSUCNAM DOSVOLNO DOSVOLTB DOSYSXXX EGPRO LUBPT NICLPT RUCOR PUEPT RO 
Rl R10 R 11 B12 R13 B14 R15 B2 R3 R4 R5 R6 R7 
R8 R9 SSAVE 

tMSDLK AADTLKP AADTLKi ADTPLG 1 ADTFRW ADTI! ADTSECT AERASE AFINIS ARDBUF ASTATE AiRBUF BGCOM COMNAME 
CSW DOSDD DOSDEV tOSDSK DOSOP DOSOSPST DOSSECT PREELOWE FSCBBUFF FSCBD FSCBFI!! FSCBFN FSCBPV 
PSCBITNO PSTPB PSTPRi PSTPBiX PSTFV PSTIC PSTIL PSTM FSTSECT JCBDATE LABLER NUCON OSFST 
OSFSTDSK OSFSTXTN PUEADR PUBCUU PUBDEVT PUBPT SYSLINE 

DMSDMP !SYSREF BGCOM EOCADR RUCON PPEND RO Rl R12 R2 B3 R4 R5 R6 
R7 

DMSDOS ACMSRET ARCHERDA ANCHERTP ANCHINST ARCflLDPT ANCHLENG ANCHPHLR ANCHPHNM ANCHSECT ANCHSTSi AOSBET ARPLG ASYSREP 
BGCOM CMSVSAM COMNAI!!E CURRSAVE DACTIVE DIRC DIRLL DIRN DIRRAME DIRTT DMSFCH DMSXCP PCSLENG 
FCHTAB FBEELOWE IJBABTAE IJBCCiT IJBFTTAB INTINPO JCSi2 JCSi4 JOBDATE LTK MAIN HIGH MAINLIST lUI NSTRT 
NOTEXT RUCON NUCRSV3 PCPTR PIBAtR PIBFLG PIBPT PIBSAVE PIB2PTR PIK PROTFRD PPEEG PPEND 
RO Rl Rl0 Rll R12 B13 R14 R15 R2 R3 R4 R5 R6 

(') 
R7 B8 R9 SVEARA SVEPSi SVEPSW2 SVEBOF SVEROO SVER09 SYSCOM SYSNAMES VMSIZE 3: 

til 

tMS DSK ABATABND ADTFTYP ADTSECT AERASE AFINIS AFVS ABDBUF ASTATE ATYPSRCH AUPDISK AWRBUF EATDCMS BATFLAGS 3: 
BATFLAG2 BATRUN FIlHSLST FSTDBC FSTFV FSTIC FSTIL PSTM PSTR PSTSECT FSTT FVSECT FVSFSTM 0 
F65535 F800 NUCON RO Rl R13 R14 B15 B2 R3 B4 B5 R6 

p. 
til c::: 
CD 
0 

R7 B8 R9 STATERl UFDBUSY UPBIT iRBIT .-
It) 

rt I ..,. DMSDSL ADTFLGl ADTFRW ADTM ADTSFCT AERASE ASTATE DA DIRRHIE DIRR DIRTT FCBIOSi2 FCBIT:'!M FCBMVPDS c+ 
0 FCBSECT FSTL FSTSECT FXD NUCON PO PS RO Rl Rl0 B12 R14 R15 0 
t' I 

R2 R3 R4 R5 R8 t'"I 
w PI 

tJ" 
It) 

t:::! I-' ..,. 
H (') 
([) H 
0 0 
rt en 
0 en 
H ..,. !:O 
([) CD 
en HI 

([) 
H 
([) 

I'\) t' 
0\ 0 

,\0 ([) 



IV !odule External References (Labels and !odules) n 
-..J 131: 
0 en 

D!SDSV BGCO! CO!BI!E DOSDD tOSSECT PREELOWE BUCOB PUBIDR PUBCUU PUBPT 3: 
0 
Q.I 

t!SEDC DUILIOS EDCB RO Rl Rl0 B13 R14 R1S R2 R3 R4 RS R6 c:::: 
c:: B7 BS R9 SIVEIR ~ 

=- CD 

" 
I 

Vol D!SEDI IDEVTIE IERISE IEITEBD IPIRIS IPSTPRRD AIRCORE ILCBIRl ILCBAR2 ALTLIST IRDEUP IREA ATTR ATTRLER rt' 
-..J 0 
0 IUTOCRT IUTOCURR IUTOREG IWRBUF BLOC EYTE CIBDIRCR CIRDRO CISEREAD CASESW CHRGCNT CBBGFLAG CBRGltSG I 

CBHGBU! C!!ODE CONSOLE CORITElt COURT CRBIT DECIltAL DEVTAB DITCNT DMSSCR EDCB EDCT EDLIR t-' 
PI 

en EDBET EIDBLOC ERDTABS FILEMS FLAG PLIG2 FltODE PNlltE FFTR FREELEN FSIZE PTYPE Fi t:r 
'< GETFLIG BILF IRCRRO INVLD IOID IOLIST IOftODE ITElt JAR LIRE LftCURR LltINCR L!STIRT CD 
[/) MSGPLIGS IEWTYPE ROTYPIRG RUCOR PIDBUF PIDCHIR PTRl PTR2 PTR3 RIIGE 

~ 

rt' NEWMODE NEWNlfH REGSAV 
CD REGSIVI REPCRT RPLIST RO Rl R10 R13 R14 R1S R2 R3 R4 RS n 
B R6 R7 RS R9 SIVCNT SIVCWD SCRFLGS SCRFLG2 SEQBUIE SERSIV SERTSEQ SERTSW SIGRAL 11 

0 
t-' SPIRES STICKIT STICKATL STRTRO TIBLIN TIBS TEMPTIB TIR TOUT TRURCOL TVERCOLl TVERCOL2 TWITCH [/) 

0 TYPFLG VERCOLl VERCOL2 VERLER IIREI IIICWD IYCRT IYFLIG YIREA ZONEl ZORE2 
[/) 

IQ ..... !:O 

n tllS EDI IDEVTIE IEDLIR IEITERD AFIRIS AFLIGLCC IFSTFNRD ALINELOC lLTftODE lNUPlLOC IRDEUF ASTITE ASTATEW BLARK 1 CD 
HI 

PI BLINK2 BLABK3 BLOC CINCCW CARtIRCR CASESW CHNGPISG CIISSEG COR SOLE CORITElt DEVTAB EDCB EDCBEND CD 
::I EDCBLTH EDLIN EDRET EDWORK ENDBLOC ENDTABS FLAG FLAGLOC FLAG2 F!ODE FBAftE FREELER FSTD 11 

CD Q.I FSTFIRRD FSTFIlODE FSTRECCT FSTRECFIl FTYPE FV IRVLD lOAD laID IOLIST IOPIODE ITEIl JAR ::t 
'1:1 LIIE LINELOC L!ST1RT LOCCNT BAIRAD NUCON RUPILOC PADBUF PADCBAR PTRl PTR2 PTR3 RECS n 

CD 11 REPCNT RO Rl R10 R12 R13 R14 R1S R2 R3 R4 RS R6 0 
t:r R7 RS R9 SCRBUFID S!QNAPIE SPIRES SUBACT SUBFL1G SYSI1!ES TABS TIN TRUNCOL TWITCH 
~ VERCOL 1 VERCOL2 VERLEN ZONEl ZCNE2 (I) 
B 

~ 
D!SERB ABITIBID BITFLIGS BITRUI CILLE! CIW CORCCWS CURRSAVE DltSCWR D!.SCWT D!.SERT ERBL ERDSECT ERF1BF 

(I) ERP1BD ERF1SBR ERF1SBl ERF1TI ERF2C!. ERF2DI ERF2DT ERF2PR EBF2S1 ERLET ERltESS ERRU!. ERPAS13 
rt' ERPBPA ERPCS ERPFl EBPP2 ERPBDB EBPLET ERPNU !. ERPSBA ERPTIA ERSAVE ERSBD ERSBl ERSBL 
(I) 

ERSECT ERSFI ERSFL ERSFLST ERSSZ ERTEIT ERTPL ERTPLI EBTPLL ERTSIZE ERTl ERT2 NUCON 11 
&I ..... OLDPSW SSAVE 
::t 
PI D!.SERS IICTFRET IICTLKP IICTRIT IDTIDD ItTCFST IDTCBBA IDTFLGl ADTFRO IDTFRW ADTPSTC ADTBBCT ADTLFST ADTLHBA 
rt' ADT!. ADTRES ADTSECT AFTADT IFTDBC AFTPCL AFTPLG AFTPFST APTSECT AFlS AQQTRKI ARDTK ASTATEW .... 
0 ATFIIIS ITRKLKPI IUPDISK t!.SLID DltSLADW D!SLFSW DSKADR DSKLOC DSKLST ERBIT ERRCODl ERSFLAG FSTBKWD 
::t FSTDBC FSTFCL FSTFWDP FSTII FSTR FSTSECT FSTT FVSECT FVSERASO FVSERISl PVSERAS2 NUCOR REGSAVl 
en RO Rl Rl0 Rll R12 R13 R14 R1S R2 R3 R4 RS R6 
c:::: R7 RS . R9 SIGRAL STATEPST STATER 1 UFDBUSY ..... 
Q.I 
(I) tltSEIC ADT!. ADTSECT AEIEC AFIRIS AFVS AOPSECT C!.SSEG D!.SLFS EIADD EIECFLAG EIECRUR EILElEL EINU!. 

FILEBUFF FILEBYTE FILEIWDE FSTD FSTLRECL IHSFLAGS NUCON OPSECT PLIST RO Rl Rl0 Rl1 
R12 R13 R14 R1S R2 R3 R4 RS R6 R7 RS R9 SYSRAltES 



eodule External Beferences (Labels and eodules) 

teSEIT ADTFDOS ADTFLG2 ADTFftFD ADTFROS ADTe ADTSECT AFINIS AGETCLK AOPSECT APOINT ARDBUF ASCANO ASTATE 
CftNDIIST CUBBtATE CUBBTlftE llADD EXLlVEL FSTFINRD LASTCeND LASTEXEC ftSGFLAGS NO TYPING NUCON OPSECT OSRESET 
OSSFLAGS PBEVCftND PREVEXEC RO Bl Bl0 R14 B1S R2 R3 R4 RS R6 
B7 B8 R9 

DftSFCH ASTATE ASYSBEF AUSRABEA BGCOe COeNAftE CSW FCBDD FCBDEV FCBDSK FCBDSNAM FCBINIT FCBOP FCBOSFST 
FCBSECT FBEELOWE HIPHAS HIPROG IHADEB LOC LUBPT NUCON OSFST OSFSTDSK OSFSTXTN PO PS 
PUBPT BO Rl Rl0 Bll R12 R13 R14 R1S R2 R3 R4 RS 
R6 R7 RS R9 

tMSFET ALDRTBLS AUSBAREA BGCOft COMNAME DACTIVE DIRN DIBNAftE FCHAPHNM FCHLENG FCHOPT FCHTAB HIPHAS IJBFTTAB 
LASTIOC LOCCIT NOT EXT NUCON PNOTFND RO Rl B12 R14 R1S R2 R3 R4 
RS R6 R7 STRTADDR SYSCCM TBENT 

DMSFLD ABATABID ASTATE BATDCMS BATFLAGS BATFLAG2 BATBUN CUBRSAVE EGPRO FCBBLKSZ FCBCASE FCBCATML FCBCON FCBDD 
FCBDEV FCBDSK FCBDSMD FCBDSNAM FCBDSORG FCBDSTYP FCBENSIZ FCBFIRST FCBINIT FCBIOSW FCBLBECL FCBMEMBR FCBMODE 
FCBIUM FCBOSDSN FCEPCH FCBPROC FCBPTR FCBBDR FCBRECFM FCBSECT FCBTAP FCBTAPID FCBXTENT JFCBIND2 JFCBUFNO 
JFCKEYIE JFCLIMCT JFCOPTCt LOC NUCON RO Rl Rl0 Rll R12 B13 R14 R1S 
R2 R3 R4 RS R6 B7 RS R9 SSAVE 

DMSFRC DMSBWR DftSCAT DMSCIOSI DfilSCITDB DftSCPF DftSCRD DMSCWR DMSCWT DfilSDBG DMSERR DMSEXC DfilSFET DMSFREES 
DMSFREEX DfilSFRETS DfilSITET DfilSLADAD DMSIDRA DMSLOA DMSMOD DMSPIO DfilSPIOCC DMSPIOSI DMSSTGAT DMSVSR 

tMSFNS AACTFRET AACTLKP ADIOSECT ADTADD AERASE AFVS AQQTRKX ARDTK ATRKLKPX ATYPSRCH A UPDISK AWRTK BALRSAVE 
DEVTYP DIOCSW DIOSECT DISK$SEG DMSLFSW DSKLOC DSKLST FltlISLST FNBIT FVSECT IUCON REGSAV3 RWFSTRG 
RO Rl Rl0 Rll R12 B13 R14 R1S R2 RS R6 R7 R8 
R9 SEISB STATEFST SUBFLAG SUBINIT UFDBUSY 

tMSFOR ADEVTAB ADTCYL ADTDTA ADTFALUF ADTFDA ADTFFSTF ADTFLGl ADTFLG2 ADTFQQF ADTFRO ADTFRW ADTHBCT ADTID 
ADTIAST ADTLEFT ADTLHBA ADTM ADTMSK ADTNUM ADTPQM 1 ADTPQM2 ADTPQM3 ADTQQM ADTRES ADTSECT ADTUSED 
ADT1ST ARDTK AUPDISK AWRTK DTAD NUCON RO Rl R10 Bll R12 R13· R14 
R1S R2 R3 R4 RS R6 B7 RS R9 

DMSFBE ABIPSW ABIBEGS ABWSECT ACALL AFREETAB ASSTAT ASVCSECT AUSRAREA BLOCKIER CALLER CODE CODE203 CUBRSAVE 
DMSABNGO DMSABW DftSFRT DMSNUCU FLAGS FLCLN FLHC FLNU FIPA FRDSECT FBEEFLGl FREEFLG2 FREEHN n 

131: 
FBEEHU FBEELN FBEELOWE FREELOWl FREEIU FBEESAVE FRF1B FRF1C FRF1E FRF1H FBF1L FRF1M FBF1N til 
FRF1V FBF2CKE FRF2CKT FRF2CKX FRF2CL FRF2NOI FRF2SVP LOCCRT 

131: 
NUCON NOM POIRTER PRFPOFF PROTFLAG SIZE SKEY SSAVE SVCAB SVCSECT SYSCODE TCODE TRRCODE 0 

til OSARCODE USEBCODE OSERKEY VftSIZE ~ 

CD ~ 

n I-' 
c+ tMSGIO ADEVTAB BUFAD CANCCW CMDBLOK CSW CTI EDCB NUCON RO Rl Rl0 R13 R14 CD 
~. R1S R2 R4 RS WRCOURT I 
0 c+ 
I:S 0 

DMSGLB ASTATE ftACLIBL NOCON RO Rl R12 R13 R14 R1S R2 R3 R4 RS I 
~ w R7 R8 TXTDIRC TITLIBS $lI 
tT 

~ CD 
~. I-' 
t1 n CD 
n t1 
c+ 0 
0 Ul 

t1 Ul 
~. 

~ CD 
Ul CD 

I-h 
CD 
t1 

IV 
(1) 

...,J = n 
~ (1) 



~ !odule External References (Labels and !od ules) (') 

....J 01: 
~ til 

D!SGRD lLDBTBLS lSTlTE FSTD FSTDATEV NUCOI BO Bl Rll R12 R14 R1S B2 R3 01: 
0 

R4 RS R6 R9 TBENT Pol 
~ 

<I I-' 
::c t!SGRN RO Rl R10 Rll R12 a13 R14 R1S R2 R3 R4 RS R6 CD 

" R7 B8 R9 I 
w c+ 
....J 0 
0 t!SHDI lIOSECT ANUCEND AUSRILST lUSRITBL ICITlBL IOSECT NUCON RO Rl Rl0 B12 R13 R14 I 

1:-1 
B1S B2 R3 B4 BS R6 R7 B8 R9 V!SIZE ~ 

til tr 
"< R1S 

en 
en DPlSHDS AIUCERD ASVCSECT JFIRST JLlST JRUMB RUCOR RO Bl R10 R12 B13 R14 I-' 
r+ R2 R3 R4 BS R6 B7 R8 B9 SVCSECT VMSIZE en (') 

s t; 

D!SIRl lUSABRV BlLBSlVE ROABBR:EV NOSTDSYN NUCON OPTFLAGS RO Rl R14 R1S R2 R3 R4 0 
t""I RS R6 R7 R8 R9 en 
0 en 

l,Q .... t!SINI ADEVTAB CAW CC CE CHlNO CORSOLE CSW DE DEVTAB D!SDBGP D!SINS D!SINSE DMSITSl 
!:Ij 

0 en 
EXTRFSW IBSTALID IOllPSV IOOPSW IPLCCWl IPLPSW !CK! MCKNPSW ICP NUCCN BDCORS BDDATl RO I-t! 

I» Rl R10 Rll R12 R13 R14 R1S R2 R3 R4 RS R6 R7 CD 
i:! t; 
Pol R8 R9 SDISK SEARCH S:EEK SET SEC SILl SYSlDDB SYSTEPlID TIC WAIT WRtATl WRITE en 

WRITEl YDISK I:S 
Itl 0 
t1 CD 
0 DPlSlJiM lSUBSECT BALRSAVE CUBRCPUT CURRDATE CURRVIRT NUCON RO Rl R10 B14 R1S R2 R3 
t:r R4 RS H8 SUBSECT TIMEUF I-' 
CD 
s [!SINS ACMSCVT lDTFDA ADTFFSTF ADTFFSTV ADTFLGl ADTFLG3 ADTFSTC ADTSECT AEXTSECT lLDBTBLS AOPSECT ASSTAT ASTATE 
t=' ASTATEXT ASYSBEF AUSRAREA BATFLAGS BATFLAG2 BATIPLSS BATLOAD BATRUN BGCOM CAW CC CHANO CMRDLINE 
CD CMNDLIST CMSCVT CMSSEG CONRDCNT CCNRDCCD CCNREAD CURRDATE CVTMDL CVTMZOO CVTNUCB CVTOPTA CVTS:ECT DMSLAD r+ 
CD DMSLCA DMSSCHN DTAD UTSECT FRE:ELOiE FO GRAFDEV IONPSW IPLADDR IPLPSW LOCCNT MAINHIGH MCKM 
t1 MISFLAGS MSGFLAGS NOYMREAD NUCON OPSECT OPTFLAGS PGMNPSi PRFTSYS PROTFLAG RO Bl R10 R 11 e .... R12 R13 R14 R1S R2 R3 R4 HS R6 R7 R9 SILl SYSNAME 
i:! SYSNAMES SYSREF SYSTEMID TIMCHAR TIlHR TIlHNIT VMSIZE WAIT YYDDD I» 
c+ .... [MS INT AACTLKP AEXTSECT AFTM AFTN lFTSECT AFTWP AFVS AIOSECT ACPSECT ASCBPTR ASUBFST ASUBRET ASUBSECT 
0 
i:! ASUBSTAT ASVCSECT AUSRAREA CMNDLINE CPlSS:EG CMSTIM CONRDCNT CONRDCOD CON READ CONiRBUF CONiRCOD CONi RITE DMSCPF 

en DMSLFS DMSSCNN ERRNUM EXTPSV EXTSECT FILENAME FILETYPE FINISLST FREELOVE FSTFINRD FVSECT IONTABL IOSECT 
~ JNUMB LASTCMND IHSFLAGS MSGFLAGS NOlBEREV NCIMPCP NOIMPEX NOPAGREL NORDYTIM NO TYPING NOVMREAD NUCON OPSECT .... OPTFIAGS OSBESET OSSFLAGS PLIST PREVCMND QSWITCH REDERRID RELPAGES RPlSGBUF RO III R10 R 11 
~ R12 R13 R14 R1S R2 R3 R4 RS R6 R7 R9 SPIESAV STAESAV en 

STABS STAT:EFST SUBACT SUBFLAG SUBSECT SVCSECT SiTCH SA V SYSNAMES TIMCHAR TIMER TIMINIT 

[MSIOW AEXTSECT CSW DEVICE EXTSECT ICNFSW ICOPSW NUCON RO Rl R10 Rll R14 R15 
R2 R4 RS R6 R7 R8 R9 TIMCHAR TIMER THIINIT iAITSAVE 



Module External References (Labels and Mod ules) 

DMSITE ABATABND ABATLIMT AEXTSECT BALR BATCPUC BATCPUL BATFLAGS BATFLAG2 BATLOAD BATLSECT BATRUI BATXCPU BATXLIM 
CSW DBGEXEC DBGEXINT DBGFLAGS DBGSECT DMSCWR EXSAVE EXSAVEl EXTFLAG EXTOPSW EXTPSi EXTRET EXT SECT 
FVS FVSECT FO '2 F4 F6 IONPSi IOOPSi 
PENDREAD RO Rl Rl0 Rll R12 R13 R14 R1S R2 R3 R7 SAVEXT 
SCAi STIMEXIT TIMCCi TIMCBAR TIMER TIMINIT TSOATCNL TSOFLAGS TYPLIST UFDBUSY XPSi 

tMSITI ABNPSW ABNREGS ABiSECT ADIOSECT AFVS AIOSECT CSi DEVICE DIOSECT DMSABNGO DMSABi FVSECT BOLD 
IONTABL IOOLD IOOPSW IOPSi IOSAVE IOSECT KXFLAG KXiANT NEXTO NUCON OLDEST RO Rl0 
Rll R12 RD R14 R15 R3 R4 RS R6 R7 R8 R9 TSOATCNL 
TSOFLAGS UFDBUSY VSTRANGE iAIT 

DMSITP ABNPSi ABIREGS ABiSECT AFVS APGMSECT ASYSREF AUPIE BGCOM CALLEE CURRSAVE DMSABIGO DMSABi FVSECT 
IJBABTAB INTINFO LTK NUCON OPSi PCPTR PGMNPSi PGMOPSi PGMSECT PIBADR PIBPT PIBSAVE PICADDR 
PIE PIK PSAVE RO Rl Rl0 Rll R12 R13 R14 R1S R2 R3 
R4 RS R6 R7 R8 R9 SCBPTR SSAVE SVEARA SVEPSi SVEPSi2 SVEROO SVER09 
SISCOM TPFUSR TYPFLAG UFDBUSY 

DMSITS ABNPSi ABNREGS ABiSECT AERR AFVS ASVCSECT AiAIT CALLEE CALLER CBKiRDl CBKiRD2 CMSSEG CODE 
CODE203 CURRSAVE DMSABNGO DMSABi DMSCiT DMSERR DMSFNC DMSFNC3 DMSMOD EFPRS EGPRS EGPRO EGPR11 
EGPR14 EGPR1S EGPR2 ERRET FVSECT FO F6 ITSBIT KEYMAX KEYP KEYS KXFLAG KXilNT 
KXWSVC LASTTMOD LENOVS MCKM MISFLAGS NRMRET NUCON OLDPSi OVSECT PRFPOFF PRFTSYS PRFUSYS PROTFLAG 
RO Rl Rl0 Rll R12 B13 R14 R1S R2 R3 R4 RS R6 
R7 R8 -R9 SSAVE SSAVENXT SSAVEPRV SSAVESZ STRTADDR SVCOPSi SYSIUMES TPFEBT TPFNS TPFROl 
TPFSVO TPFUSR TSOATCNL TSOFLAGS TYPFLAG UFDBUSY USAVEPTR USAVESZ 

DMSLAD ADTFDA ADTFFSTV ADTFLGl ADTFLG2 ADTFRO ADTFROS ADTFRi ADTFVS ADTHBCT ADTLEFT ADTM ADTPSTM ADTPTR 
ADTHES ADTSECT IADT REGSAVO RO Bl Rl0 R12 all R14 B1S R2 R3 
R4 RS B6 R7 R8 B9 SVLAD SVLADi 

DMSLAF ADTFLGl ADTFBi ADTM ADTMX ADTSECT AFTADT AFTFB AFTFLG AFTFSF AFTFST AFTLD AFTM AFTN 
AFTPFST AFTPTR AFTSECT AFTT AFTUSED FSTL FSTSECT BO Rl R 11 R12 a13 R14 
R1S B2 B3 R4 RS 

DMSLBM AADTLKW ADTFLGl ADTFRi ADTM ADTSECT FREELOiE FSTFV FSTIC FSTIL FSTM 'STSECT MISFLAGS NUCON 
RELPAGES ao Rl Rl0 Rll B14 R1S R2 R3 R4 RS R6 R7 
R8 R9 n 

3: 
til 

tMSLBT AADTLKW MISFLAGS NUCON RELPAGES RO Rl Rl0 all R12 R13 B14 R1S R2 3: 
R3 R4 RS R6 R7 R8 R9 0 

Po 
til a 
CD f-I 
0 CD 
rt' I 
~. ri-
o 0 
t:I I 

t-t 
W I» 

t::J' 
CD 

t::I f-I 
~. 

t1 n 
CD t1 
0 0 
rt' en 
0 en 
t1 
~. !:\j 

CD CD 
en HI 

CD 
t1 
CD 

t.J t:I 
...,J 0 
w CD 



tv Module External References (Labels and ~odules) n 
-..J 3: 
~ Ul 

D~SLDR ACMSBET AERASE AFIBIS ALDRTBLS APRILB APSV ARDEUF ASCIII ASTATE AUSRAREA BATFLAGS EATLOAD BRAD 3: 
0 

CALLEE CLOSELIB C!IDLIST CO!f!OIEX CRDPTR CURRSAVE D!SLGTA Df!SLGTB Df!SLIB D!SLIO Df!SLSBA D!SLSBB Df!SLSBC 0.. 
D!SLSBD Df!SLSY DYLD DYIAEID EGPRl EIDCDADR EBTADR EBTBAf!E ESD1ST ESIDTB FIBIS FLAGS FLAGl ~ 

<I ...... 
3 FLAG2 FREELOWE FRSTSDID FSTXTADR GPRSAV LDRADDR LDRFLAGS LDRRTCD LDRST LOCCNT LOCCT LUBD!F f!AIBHIGH (1) 

'" f!EMBCUlilD 1I1EED BOAUTO BODUP BOINV NOLIBE ROREP ROSLCADR BUCOR BUf!BYTE NXTSYf! OSRESET OSSFLAGS I 
W r+ 
-..J OUTEUF OUTPUT PARf!LIST PLISTSAV PREXIST PRBOLD PRVCBT PSW READBUF REG13SAV RESET RETREG RLDCOBST 0 
0 RO Rl Rl0 Rll R12 R13 R14 R15 R2 R3 R4 R5 R6 I 

R7 R8 R9 SAV67 SPEC SSAVE START STRTADDR SlSUTl TBENT TBLCT TBLREF TEf!PST t-' 
p) 

Ul Tf!PLOC TPFOSR TXTDIRC TYPFLAG Vf!SIZE tr 
A< (1) 
(J] ...... 
r+ D!SLDS ADMS80S ADTCYL ADTFLGl ADTPLG2 ADTPRO ADTFROS ADTPRW ADTID ADT! ADTSECT CSW FCBIOSi2 FCB!Ef!BR 
(1) 

FCBf!VPDS FCBOSDSN FCBSECT BUCON OSADTDSK OSADTVTA OSADTVTB PO RO Rl Rl0 Rll R12 n a H 
R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 0 

t"'4 (J] 
0 (J] 

\Q D!SLFS ADf!SBOS ADTCBBA ADTPDA ADTFFSTV ADTFLG 1 ADTFLG2 ADTPLG3 ADTPRO ADTFROS ADTPRi ADTFTYP ADTBBCT ADTLPST .... ADTLBBA ADTf! ADT!I ADTRES ADTSECT DISK$SEG D!SLAD Df!SLADB D!SSTTR FVSECT RUCOR REGSAVO RO l:tI 
0 (1) 

Rl Rl0 Rl1 R12 R13 B14 R15 R2 R3 B4 R5 R6 R7 HI 
I» B8 R9 SVLFS (1) 

= H 
Q.o (1) 

t!SLGT APSV ARDBOF Df!SLDRD FILE F!ODE FBUIE FTYPE LDRST BUCON OOTBOF RADD READBUF BFII = ttl 
RITEl! RLEIG 80 Rl Rl0 R12 R13 R14 R15 R3 R4 R5 0 

H RBU! (1) 
0 R6 R7 R8 B9 SPEC TITDIRC TITLIBS TYPE 
tr 
...... 
(1) D!SLIB AFINIS APOIIT APSV ASTATE CLOSELIB D!SLDRD DY!BRN! FILE PIBIS FLAGS FLAG2 F!ODE FNA!E 
iii FTYPE LDRST BOAOTO BOLIBE BOCON NU!BYTE OSSPLAGS OUTEUF RADD READBUF RITE! RLEBG RBU! 
I:' RO Bl Rl1 812 R13 B14 R15 R5 R7 SETLIE SPEC TBLCT TEL REP 
(1) TXTDIRC TITLIBS TYPE r+ 
It) 
H D!SLIO AERASE AFIBIS ALIASEBT APSV AWREUF DSKAD DSKLIB DYLD FILE FLAGl FLAG2 FBAf!E LDRADDR iii .... LDBST 10EBASE BO!AP BUCOR OSSFLAGS OUTEUF OUTPUT PACK PAR!LIST RO Rl Bl0 Rll 
= R13 R14 R15 R2 R3 B4 TYPE TYPEAD TYPLIB UNPACK I» 
r+ .... D!SLKD AADTLKi ADT! ADTSECT PSTFV FSTIL FSTM FSTSECT !ISFLAGS NUCON RELPAGES RO Bl Bl0 
0 
=:s Rl1 R12 B14 R15 R2 R3 R4 R5 R6 R7 B9 
(j) 

t!SLLO ADTFLGl ADTFRi ADTSECT AERASE AFIRIS ASYSBEF AWRBOP BGCO! LUBPT RICLPT RUCOI PUEADR PUBCOU ~ .... PUBDEVT PUBDSK! PUBPT RO Rl 810 811 B12 B14 R15 R2 R3 R4 
0.. R5 R6 B7 R8 It) 

D!SLOA ALDRTBLS AUSRAREA D!SLDRB FSTITADR LDRADDR LDRPLAGS LOCCRT BOAUTO BOERASE 10IRV ROLIBE RO!AP ROREP 
BUCON P8HOLD RO Rl R12 R14 R15 B2 R6 STRTADDR SYSREF TBERT TYPE 

D!SLSB APSV AOSRAREA BATPLAGS EATLOAD BBAD D~SLDRC D!SLDRD ERDCDADR ENTRA!E PLAGS FLAGl FLAG2 FREELOWE 
FRSTSDID FSTITADR LASTT!OD LDRST LOCCT !AIRHIGB ROAUTO RODOP BOINV ROLIEE ROf!AP NOREP RUCOR 
OOTBOF RESET RETT RO Rl Rl0 R 11 R12 R13 R14 B15 R2 R3 
B4 R5 R6 R7 B8 &9 START STRTADDR T!PLOC TYPE 



eodule External References (Labels and Modules) 

DMSLST ADTFDA ADTFLG1 ADTFRO ADTFRi ADTID ADTf! ADTSECT AERASE NUCON RO R1 R10 R11 
R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 

DeSLSY DSUJ GET1 .JSYf'I NUCON NXTSYf'I RO R1 R14 R15 

tf'lSMDP ALDRTBLS ASTATE FSTIC FSTSECT NUCCN RO Rl R14 R15 R2 R3 R4 TBENT 

DMSMOD AERASE AFINIS AFVS ALDRTBLS ARDBUF ARDTK ASTATE ASTATEi AUSRAREA AiRBUF DSKLOC DSKLST FREELOiE 
FRSTLOC FVSECT FVSFSTAI: FVSFSTCL FVSFSTFV FVSFSTIC FVSFSTIL F65535 LASTLf'lOD LASTTMOD LDRFLAGS LOCCNT NUCON 
PRFTSYS PRFUSYS PROTFLAG REGSAV3 RiCNT RO R1 Bl0 R 11 R12 R13 R14 R15 
R2 R3 R4 R5 R6 B7 R8 R9 STRTADDR SUBFLAG TBENT 

I:MSMVE ADTFLG1 ADTFRi ADTSECT BATFLAGS BATMOVE DA DDNAM FCBBLKSZ FCBDD FCBDEV FCBDSK FCEDSf'lD FCBDSNAM 
FCBINIT FCBIOSi2 FCBITEM FCBLRECL FCBMVPDS FCBOP FCBOPCB FCBOSFST FCBRECFM FCBSECT FCBTAP FCBTAPID FSTFV 
FSTIL FSTSECT IRADEB NUCON OSFST OSFSTBLK OSFSTLRL OSFSTRFM PS RO Rl R10 R12 
R13 R14 R15 R2 R3 R4 R5 B6 R7 R8 R9 

Df'lSNCP FSTD FSTFMODE RO R1 Rl0 R 11 R12 R13 R14 R15 R2 R3 R4 
R5 R6 R8 R9 

tMSNUC DMSINALT DMSINA 1 S 

DMSOLD AEBASE AFIBIS ALDRTELS APRILB APSV ARDBUF ASCANN ASTATE AUSRAREA AiRBUF BATFLAGS BATLOAD BRAD 
CLOSELIB CMNDLIST COMMONEX CRDPTR DMSLGTA DMSLGTB DMSLIB DMSLSBA DMSLSBB DMSLSBC DMSLSBD DMSLSY DYLD 
DYNAEND ENDCDADR ENTADR ENTNAME ESD1ST ESIDTB FINIS FLAGS FLAGl FLAG2 FREELOiE FSTXTADR GPRSAV 
LDBADDB LDBFLAGS LDBBTCD LDRST LOCCNT LOCCT LUNDEF MEMBOURD 
NOREP NOSLCADR NUCON NUMBYTE NITSYM OSRESET OSSFLAGS OUTBUF OUTPUT PARMLIST PLISTSAV PREXIST PBHOLD 
PBVCNT BEADBUF REG13SAV BESET RETRIG RLDCONS'I RO Rl Rl0 Rll R12 R13 R14 
R15 R2 B3 B4 R5 R6 R7 R8 B9 SAV67 SPEC STRTADDR SYSUTl 
TRENT TBLCT TELREF TEMPST TMPLOC TXTDIRC iORKFILE 

tMSOPL ASYSREF BGCOM DOSDD DOSNEXT DOSSECT DOSSYS LUBPT NUCOR RO Rl B12 R15 R2 
R3 R4 R5 R6 R7 R8 R9 

Df'lSOPT BGCOM .JCSi3 .JCSi4 RUCON RO Rl R10 Rl1 R12 R14 R15 R2 SOBl 
(1 
13: 
en 

tMSORl NUCON RO Rl R12 R15 R2 R5 R6 13: 
0 

til tMSOR2 Rl R12 
p.. 
~ 

(I) ..... 
0 CD r+ DMSOR3 Rl R12 R14 t 
~. r+ 
0 0 
::J DMSOVR ADMSOVS ASVCSECT DMSOVS LENOVS NUCON OVAPF OYBPF OVF1F OYF1FS OYF1GA OVF1GE OYFl GS OYF10N t 

w OYF1PA OVF2CM OVF2NR OVF20S OVF2WA OVSECT OVSHO OVSON OVSSO OVSTAT RO Rl R12 t-I 
R14 R15 R3 R5 R6 R7 R8 I» . R4 SVCSECT t:r' 

t:1 
(I) 

~. 
..... 

t1 (1 
(I) 11 
0 0 r+ en 
0 en 
t1 
~. !:tI 
(I) CD en H\ 

CD 
11 
(I) 

'" ::J 
~ 0 
U1 (I) 



"-> Module External Beferences (Labels and Modules) -.J n 
0\ 3: 

en 
I:MSOVS ASVCSECT CUBBSAVE EPPBS EGPBS EGPBO EGPB15 NUCON OVAPP OVBPP OVP10N OVSAPT OVSHO OVSON 3: 

OVSSO OVSTAT BPPBS BGPRS RGPBa BO Rl R12 RD R14 R15 R3 R4 0 

B5 B6 R1 Ra SSAV! SVCOUNT SVCSECT 'IPPSVO TYPFLAG Vl!SIZE ICOUBT IGPBO XGPBl 
~ 

-= s:: 
3: XGPB15 ...., 
"- CD 
(.oJ I 
-.J DMSPIO ABATABIID ABATLIMT BATFLAGS BATLSECT BATNOEI BATPBTC BATPBTL BATBUN BATILIK BATXPBT CAW CSW NUCON cT 
0 Bl Bl0 B 11 B12 B13 B14 B15 B2 B3 B4 B5 B6 B7 0 
00 I 

Ba B9 t"4 
en ~ 
~ b" 
en DMSPIIT AACTPBEE AACTLKP AFTIC APTBP APTSECT APTWP DKSLFS F65535 NUCON BEGSAV3 BO Bl Bl1 CD 
cT R14 B15 R2 R4 RS B6 

...., 
CD 
II n 

DMSPRT ADMSPIOC AFIIIIS ARDEUP ASTATE INSTALID NUCON RO Rl Rl0 Rll R12 R13 R14 t1 
t"4 0 
0 R1S B2 R3 B4 BS B6 B1 Ba R9 en 

\,Q en ..... I:MSPRV AEBASE AFINIS ASISBEF AWRBUF BGCe!! LUBPT NUCON PUBADR PUBCUU PUBPT RO Bl R10 0 !:tI 
R12 

~ 
R14 R1S R2 R3 CD 

HI 
::I CD 
~ I:MSPUN ADTID ADTSECT AFINIS ABDBUF ASTATE PVSPSTAD NUCOR BO Bl Bl0 Bll R12 R13 t1 

B14 B15 B2 B3 B4 B5 B6 B1 Ba B9 STATEFST CD 
~ t:S 
t1 0 
0 DMSQRI ADTCIL ADTDTA ADTFDOS ADTFLG 1 ADTPLG2 ADTFLG3 ADTFBO ADTFBOS ADTFBW ADTPSTC ADTID ADTM ADTKX CD 
b" ...., ADTRUM ADTSECT AEITSECT AFVS AIRTBTBL ALDBTBLS AOUTRTBL ASYSBEF AUSABBV CMSSEG DUD DTADT EXTSECT 
CD FCBDD FCBDEV FCBDSNAM PCBDSTIP FCBPIBST PCBRUK FCBSEC'! FCBTAPID FVSECT !!ACLIBL MISPLAGS MSGPLAGS NOABBBEV B NOIMPCP NOIMPEI ROPAGBEL ROBDITIK NOSTDSYN RUCOR OPTPLAGS PBFPOPF PBOTPLAG REDERRID BO Rl Rl0 
'=' Rl1 B12 R13 R14 B15 R2 R3 R4 RS R6 R1 Ba R9 
CD SI SRAMES TIMCCi TIMCHAR TITLIBS cT 
(I) 

t1 I:MSRDC ABATABRD AEBASE AFIRIS ASCANN ASTATEi AWBBUF BATDCMS B.ATPLAGS BATFLAG2 BATRUN RUCOR BO Rl • ..... Rl0 Bl1 R14 B15 R2 B3 R4 RS R6 R7 RS R9 
::I 
~ 
cT I:MSBRE AERASE AFIIIS ARDBUF AWRBUP RUCOR BO Rl Rl0 R12 B13 R14 R15 B2 ..... R3 B4 R5 B6 R1 0 
::I 

G'l 
DMSBNM AACTLKP ADTCHBA ADTFLGl ADTFRO ADTPBi ADTPTIP ADTM ADTSECT 

s:: ATIPSBCH AUPDISK EBBIT EBBCODl ERSFLAG PSTM FSTN PSTSECT PSTT FVSECT FVSEBASO PVSEBASl FVSEBAS2 ..... RUCOI BEGSAVl BO Bl Bl0 Bl1 R12 B13 B14 B1S B2 B3 B4 
~ 
(I) R5 R6 R7 B8 B9 STATEFST UFDBUSI 

DMSBOS ADTCIL ADTDTA ADTFDOS ADTFLGl ADTPLG2 ADTPLG3 ADTPROS ADTM ADTSECT CSi DTAD FCBBLKSZ FCBDSMD 
FCBDSRAM PCBDSTIP PCEFIBST PCBIOSi2 PCBLBECL PCBMVPDS FCBREIT PCBOP FCBOSDSN FCBOSFST FCBPROC FCBBECFM FCBSECT 
FILEBUPP FILEBITE FILENAME FILEBEAD LOC RUCOR OPSECT OSADTDSK OSADTFST OSADTVTA OSADTVTB OSPST OSPSTALT 
OSFSTBLK OSPSTCHB OSPSTDEK OSFSTDSK OSPSTDSI OSPSTERD OSPSTEI4 OSPSTPLG OSPSTPM OSFSTFVF OSFSTLRL OSFSTLTH OSFSTMVL 
OSPSTNTE OSPSTNIT OSFSTBPK OSPSTRSi OSFSTTRK OSPSTTIP OSFSTUMV OSFSTIRO OSFSTITN PO PS BO Rl 
R10 R 11 R12 B14 R15 B2 R3 R4 RS R6 R1 Ra R9 
URD VAB 



!!odule External References (Labels and ftodules) 

DftS RRV AERASE APIIIS ASTATE ASYSREP AiRBUP BGCO!! DOSDD DOSDEV DCSDSK DOSCP DOSOSPST DOSSECT LUBPT 
IUCOI CSPST OSPSTDSK OSFSTXTI PUBPT RO Rl Rl0 R 11 R12 R14 R1S R2 
R3 R4 RS R6 R7 RS R9 

DftSSAB APGftSECT CURRSAVE DEBDCBAD PCBDD FCBFIRST PCBSECT LIIKLAST LOC IUCOl PGftOPSi PGMSECT RETRYBIT RO 
Rl R10 Rl1 R12 R13 R14 R1S R2 R3 R4 RS R6 R7 
RS R9 SCBPTR SCBSAV12 SCBWCRK STAEBIT STAIBIT 

DMSSBD DA DATAEID DECAREA DECKYADR DECLBGTH DECRECPT DECSDECB DECTYPE DftSSBS DftSSBSRT FCBBYTE FCBITEM FCBKEYS 
FCBOP FCBSECT FCEXTENT IHADECB IOBIN IOBIOFLG KEYCHNG KEYCOUT KEYLBGTH KEY lAME KEYOP KEYSECT KEYTBLAD 
KEYTBLBO OPSECT PS RO Rl R10 Rll B12 R14 R1S R2 R3 R4 
RS R6 R7 R8 R9 TBLLNGTH VAR 

DMSSBS AOPSECT DA DECAREA DECDCBAD DECIOBPT DECLNGTH DECSDECB DECTYPE DMSSBD DMSSEB FCBBUFF FCBBYTE FCBCATML 
FCBCOUT FCBDEV FCEDSMC FCBDSNAft FCBINIT PCBITEM FCBMODE FCEOP PCBOS FCBPDS FCBREAD FCBSECT FCBTAP 
FCBXTENT IHADEB IHADECB IOBBCSW IOBEECBP IOBBFLG IOBIN IOBIOFLG IOBOUT NUCCIf OPSECT OSIOTYPE PO 
PREVIOUS PS RO Rl R 11 R12 R13 R14 R1S R2 R3 R4 RS 
R6 R8 TAPEDEV TAPELIST TAPEMASK TAPEOPER UND VAR 

tftSSCN BALRSAVE CftlDLIST IUCON RO Rl 1112 R14 R1S R2 R3 B4 RS R6 
R7 R8 

CftSSCR BUPPLOC DECLTH DMSGIO EDCB EDftSK PLAG FLAGLOC PLAG2 PMODE FBAME FTYPE PV GIOPLIST 
HOLDFLAG ITEM LIBELOC BUfttOC PTRl PTR2 RO Rl R 11 R12 R13 R14 R1S 
R2 R3 R4 RS R6 R7 R9 SAVCNT SAVEAR SCLlW SCRBUPAD SCRPLGS SCRPLG2 
TABLII TRUICOL TWITCH UTILFLAG VERCCLl VERLEN 

DftSSCT ADMSBOS AOPSECT CMSOP DA DlCCCBAD DECIOBPT DECSDECB FCBCATML FCBCLOSE FCBCOUT FCEDEV FCEDSNAft PCBINIT 
FCBIOSi FCBITEft FCBOP FCBOS FCBCSPST PCEPDS PCEB13 PCB SECT FCBTAP FILEUME IHADEE IHADECE IOEBFLG 
IOBCSi IOBICPLG IOEOUT ftACDIRC MACLIBL NUCON OPSECT PS RO Rl Rll R12 R13 
R14 R1S R2 R3 R4 RS R6 R7 R8 R9 SAVER14 

tftSS EB ADftSBOS AOPSECT BLK CMIDLINE COBBDCNT CONBDCOD CONREAD CONiREUP CONWRCNT CONiRCOD CONiRITE FCBBUFF FCEEYTE 
FCBCASE FCECCUT FCBDEV FCBDSftD FCBDSTYP FCBIIIT FCBIO FCBIOSi FCBITEM FCEMCD! FCEOP FCEOPCB FCEOS 
PCEPROC FCBPRPU FCBREAD FCBRECL FCEB13 PCB SECT FCBTAPID FXD IHADECB IOBBCSi IOBBECBC IOEBECBP IOEIN n 

3: 
IOBICFLG IUCON OPSECT PRINTLST PS PUlfCHLST RDEUFF RDCCW RDCOUNT BEADLST RO Rl Rll til 
R13 R14 R1S R2 R3 RS SAVER 14 TAPEBUFF TAPECOUT TAPEDEV TAPELIST TAPEftASK TAPEOPER 3: TAPE SIZE TSOATCNL TSOFLAGS UND VAR 0 

en P-
c CD DMSSEG DMSEDC DMSEDI DMSEXT DMSGIO DftSLGT DftSLIB DftSLSB DMSLSY DMSOLD DMSSAB DftSSED DMSSES DMSSCR ..... n 

DMSSCT DftSSEB DftSSLN DMSSftN DMSSCP DMSSQS DMSSVI DMSSVT CD r+ 
I ~. 

rt 0 0 = I 
W t"4 

~ 
tT 

t:::I CD 
~. ..... 
t1 n CD t1 n 

0 r+ CIl 0 CIl t1 
~. 

~ CD CD CIl HI 
CD 
t; 

~ CD 

= ""'" n 
""'" CD 



N Module External References (Labels and Modules) ("") 
...,j :3 
co til 

tftSSET ABATABND ADEVTAB ADftSFRT ADTDTA ADTFDOS ADTFLG2 ADTM IDTSECT :3 
0 

AS TATE ASYSREF BATDCMS BATFLAGS BATFLAG2 BATHOEI BATRUN BGCOM CMSDOS C~SSEG CftSVSAM CPULOG EITSECT 0. 
FRDSECT FREELOiE FREELOil JCSi3 JCSi4 LOCCNT LTK LUBPT MAINBIGB ftISFLAGS ftSGFLAGS NOABBREV NOHIPCP d 

< I-' 
3: HOlftPEI BOPAGREL NORDYMSG BORDYTIM NOVMREAD NUCKEY NUCON NUM OPTFLAGS PIBPT PPEND PRFPOFF PROTFLAG (\) 

" PUBPT REDERRID RO Rl Rl0 Rll R12 R14 R15 R2 R3 R4 RS I 
W c+ 
...,j R6 R7 R8 R9 SOBl SYSCODE SYSNAMES SYSREF TIMCCi TIMCBAR TIMER TIMINIT TSOBLKS 0 
0 UPSI UPTMID UPTSiS USERCODE USERKEY VMSIZE I 

t-I 
III 

til DftSSLN ADTRANS AFINIS AF'S ALDRTBLS ALIASENT AFGMSECT ARDBUF ASTATE ASVCSECT AUSRAREA COftPSiT CURRSAVE DMSOLD 1:1" 
Io.c: 

DMSSMNSB DUMCOM DYLD DYLIBO DYMBRNM DYNAEND FREELOiE FRSTLOC FVSECT F65535 LASTLMOD LASTTMOD LDRFLAGS (\) 
en I-' 
c+ LINKLAST LINKSTRT LOCCNT MODLIST NUCON OSRESET OSSFLAGS PGMSECT PBFTSYS PBFUSYS PBOTFLAG SCBPTB STRTADDR 
(\) 

SUBICT SUBFLAG SVCSECT TBINT n s H 
0 

t-I DMSSMI ATSOCPFL AUSRAREA BALRSA'! BGCOM COD!203 COMPSiT CURRSAVE EGPRl EGPR15 EOCADR FREELOWE LOCCNT MAINBIGB en 
0 en 

I.Q f!AINLIST f!AINSTRT MISFLAGS NUCON OSSFLAGS OSSMNU PPEND BELPAGES RO Rl Rl0 R12 R13 
\oJ. R14 R15 R2 B3 R4 R6 R7 R8 R9 SSAVE ~ 
0 (\) 

HI 
III DMSSOP AACTLRF AC~SCVT ADTFLGl ADTFRO ADTIUCi ADTSECT AERASE AFINIS AFTADT AFTFST AFTIC AFTIN AFTPFST (\) 
~ H 
0. AFT SECT AOPSECT AOSRET ASTATE AUPDISK BLK CMSCVT Cf!SNAf!E CMSOP CURRSAVE DA DEBDCBAD DEBDEBID (\) 

DEBOFLGS DEBOFATB DMSSBS DMSSCTCE DI"ISSCTCK DMSSCTNP DI"ISSQSGT DMSSQSPT D~SSQSUP FCBELKSZ FCBBUFF FCBBYTE FCBCASE ~ 
It:! 0 
H FCBCATML FCBCLEA' FCBCLOSE FCBCON FCBCCUT FCBDCBCT FCBDD FCBDE' FCBDSK FCBDSMD FCBDSNAft FCBDSTYP FCBFIRST (\) 
0 FCBFORM FCBINIT FCBIOSi FCBIOSi2 FCBITEM FCBKEYS FCBLRECL FCBMEMBR FCBMODE FCBMVPDS FCBOP FCEOS FCBOSFST 
1:1" FCBPDS FCBPROC FCBPROCC FCBPROCO FCBRDR FCBBECFM FCBRECL FCBSECT FILEBYTE FILEMODE FILENAME FILEREAD FILETYPE I-' 
(\) FID F6 IBADEB IOBDCBPT IOB!ND IOBIOFLG IOBNITAD IOBSTART JFCBIND2 JFCElUSK JFCDSORG JFCK!YLE JFCLIMCT 
S JFCOPTCD LOC MACDIRC MACLIBL NUCCli OPSECT OSFST OSFSTBLK OSFSTCHR OSFSTLRL OSFSTRFM OSIOTYPE PLIST 
t::I PO PREVIOUS PS QS RO Rl Rl0 R 11 R12 R 13 R14 R15 R2 
(t) R3 R4 R5 R6 R7 R8 R9 SAVERl SA'ER15 TAPEDEV TAPELIST TAPEftASK TAPEOPER c+ 
(t) UND VAR 
H 
II 
\oJ. DMSSQS AOPSECT BLK DEBTCEAt tP.lSSCTCE DI"ISSCTCK DMSSEB FCBBUFF FCBBYTE FCBCLOSE FCBCOUT FCBDEV FCBDSMD FCBINIT 
~ FCBIORD FCBIOSi FCBIOiR FCBITEM FCBOF FCBPVMB FCEREAD FCBSECT FID IHADEB IOBECB IOEECBPT IOBIN 
III 
c+ IOBIOFLG IeBOUT IOESTART IOBUPD LOC NUCON OPSECT OSIOTYPE PREVIOUS PS RO Rl Rl0 .... Rll R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 UND VAR 
0 
~ 

en tMSSRT ASCANO ASTRINIT FREELOiE MAINHIGH MISFLAGS NUCON RELPAGES RO Rl R12 R14 R15 R2 
d R3 R4 R5 R6 
\oJ. 
0. tMSS RY IERISE AFIBIS ISTATE ASYSREF AiRBUF BGCOM DOSDD DOSDEV DOSDSR DOSOP DOSOSFST DOSS!CT LUBPT (\) 

NUCOi OSFST OSFSTtSK OSFSTITN PUBPT RO Rl Bl0 R12 R14 R15 R2 R3 
R4 R5 R9 

DMSSSK NUCON RO Rl R12 R14 R15 R2 R3 R4 R5 R6 R8 R9 
V~SIZE 



eodule External References (Labels and eodules) 

EHSSTG AEXTSECT ALDRTBLS ANCHENDA ANCHSECT ANCHSIZ APGHSECT ASTATEIT ATSOCPPL AUSRAREA BALRSAVE BGCOH CODE203 COepSiT 
CORESIZE CURRSAVE DHSLGTA tHSSHNCF DeSSeNCN DHSSHNRP DHSSftNTS DYLD DYLIBO DYHBRNH EGPR12 EGPR14 EGPR15 
EOCADR EITSECT FREELOWE IJBBOX LIRKLAST LIRKSTRT LOCCNT HACDIRC HACLIBL HAlliHIGH !UIBLIST HAIBSTRT ftISFLAGS 
NUCON OLDPSW OPTNBYTE OSSFLAGS osselu PDSSECT PGftSECT PICADDR PPEND RELPAGES RO Rl Rl0 
R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 SCBPTR 
SCBWORK SSAVE STIHEXIT SYSCOft TAIEADDR USAVEPTR 

DftSSTT AACTLKP ADTFLGl ADTFLG2 ADTFRO ADTFROS ADTFRW ADTH ADTftX ADTSECT AFTADT AFTFLG AFTFST AFTRD 
AFTSECT AFTWRT DftSLAD DftSLADW DftSLFS DHSLFSW FSTFAP FSTFAR FSTFAW FSTFB FSTFRO FSTFROX FSTFRW 
FSTFBWI FSTft FSTSECT FVSFSTAD FVSFSTDT FVSFSTft FVSFSTN NUCON OSFST OSFSTFLG OSFSTFft REGSAV3 RO 
Rl Rl0 R12 R13 R14 R15 R2 R3 R4 R5 B6 R9 STATEFST 
STATERO 

DftSSVI AEITSECT AOPSECT COBRDBUF COBRDCRT CONREAD CONSTACK CORWRBUF CORWRCRT CONiRITE CURRSAVE EXTSECT FCBSECT FSTFINRD 
LOC LSTFINRD RUCON RUftFIRRD RUftFRDiR OPSECT OSSFLAG.S PERDREAD PERDiRIT PS RO Rl Rl0 
R12 R13 R14 R15 R2 83 R4 R5 R6 R8 STlftEIIT TlftCHAR TlftER 
TIMINIT TSOATCNL TSOFLAGS 

tftSSVT ADftPEXEC ADHSROS AERASE AEXTSECT AOPSECT APGftSECT APIE ARDBUF ASTATE ATFINIS AUPDISK AiRBUF CHNGBYTE 
CMBDLIlIIE CftSBAftE CHSOP • CftSTAXE CORRDCNT CORREAD CONWRBUF CONiRCRT CORiRITE CORESIZE CURRDATE CURRSAVE DATAEND 
DECSDECB DIAGTlftE DIRNAftE DIRPTR DHSLGT DHSLSB DHSSAB DftSSBDFR DftSSBS DftSSCT DftSSLB tftSSLR3 DftSSLR42 
DftSSLN6 DHSSLI7 DHSSLR8 DftSSLI9 DHSS!HI DftSSftRl0 DftSSftR4 DHSSftN5 DHSSOP DftSSOP19 DftSSOP20 DftSSOP22 DftSSOP23 
DHSSQS DHSSVI DftSSVRl DftSSVN2 DftSSVI93 DftSSVR94 DOSDD DOSIEXT DOSSECT DuePLIST EXTSECT FCBBUFF FCBBYTE 
FCBCATHL FCBCOUT FCBDD FCBDEV FCBDSK FCBDSNAe FCBDSTYP FCBFIRST FCBFORft FCBINIT FCBIOSi2 FCBITEH FCBKEYS 
FCBHVPDS FCBOF FCBOS FCBOSFST FCBPDS FCBSECT FCBTAB FCBXTENT FILEBUFF FILEBYTE FILECOUT FILEITEft FILEftODE 
FILE-RAftE FILETYPE IHADEB IHADECB IHAJFCB IOBIN IOBIOFLG JFCBftASK JFCLRECL KEYCHNG KEYCOOT KEYFORft KEYLIGTH 
KEYBAftE KEYOP KEYSECT KEYTABLE KEYTBLAD KEYTBLRO KEYTYPE LIRKSTRT LOC LOWSAVE HACDIRC ftlCLIBL REiBLKS 
RUCON OPSECT OSIOTYPE OSRESET OSSFLAGS PDSBLKSI PDSDIR PDSSECT PGftSECT PLIST PREVIOUS PS RO 
Rl Rl0 Rll R12 R.13 R14 R15 R2 R3 R4 R5 R6 R7 
R8 R9 SCBPTR STIHEXIT TAIEADDR TAXEDEF TAIEEIIT TAIELNK TBLLIG:rH TEHPBYTE TlftER VAR VftSIZE 
WAITLIST 

IftSSYN AFIIIS ARDBUF ASTATE IUSIBRV ROSTDSYR NOCOR OPTFLAGS RO Rl Rl1 R12 R14 R15 
R2 R3 R4 B5 R6 R7 R8 (") 

3: 
DHSTIO ADEVTAE ATAB!ID CC eSi DEVADDR DEVlUSC DEVNAHE DEVSECT DEVSIZE NUCON 80 Rl Rll en 

R12 R13 R14 R15 SILl ::z 
0 

en DeSTHA DftSLIB RO Rl Rl0 R 11 R12 R14 R15 R2 R3 R4 R5 86 Po 
~ 

CD R7 R8 R9 ..... 
0 CD r+ I 1-'- DeSTPD CSi NUCOI RO 81 Rl0 Rll R12 R14 R15 R2 R3 R4 R5 r+ 0 
I:' R6 R7 R8 89 0 

I 

W t-t 
III . tr 

t:I 
CD 

1-'- ..... 
1'1 (") 
CD 1'1 
0 0 r+ en 0 en 
1'1 
1-'- ~ CD (I) 
en HI 

CD 
1'1 

tv 
(I) 

I:' 
~ 0 
1.0 (I) 



'" Module External References (Labels and Modules) n CD 
0 3: 

til 

tMSTPE AACTLKP ADEVTAB AEBASE APIBIS APTFST AFT SECT APVS ASTATE ATABEBD ATYPSRCH AUPDISK AiRBUP DEVADDR or: 
0 

DEVMISC DEVIAME DEVSECT DEVSIZE PSTD PSTDBC PSTPCL PSTPV PSTIC PSTIL PSTM PSTB PSTRP ~ 

c:: FSTSECT PSTT PSTiP PVSECT IUCOI RO Rl Rl0 Rll R12 B13 B14 R15 ~ 

3: R2 R3 R4 R5 R6 B7 R8 R9 UfDBUSY iRBIT ~ 

" 
CD 

W I 
..,J DMSTQQ ADTDTA ADTPLGl ADTPLG2 ADTPM-PD ADTPRi ADTQQM ADTSECT AQQTRK ATBKLKP ATRKLKPI DTADT PVSECT F65535 M-

0 0 IUCOI TRKLSAVE I 00 

t-t 
til III 

"'<I DMSTRK ADTPLG1 ADTPLG2 ADTPMPD ADTPRi ADTMSK ADTBES ADTSECT ADT1ST RO Rl Rl0 R 11 R12 t:r 
til R13 R14 R15 R2 B3 B4 R5 B6 R7 B8 B9 CD 
M- ~ 

(D 
BO R1 Rl0 R15 R2 R3 n iii tMSTYP APIIIS ABDBUP ASTATE MSGPLAGS NeTYPING IUCON R14 t1 

t"' R4 R5 R6 R7 B8 R9 0 
til 0 til '-'I I:MSUPD ADTPLG1 ADTPRO ADTPRi ADTM ADTMI ADTSECT AERASE APINIS ARDBUP ASTATE AiRBUP PSTPV FSTIL ..,-

PSTM PSTSECT MISPLAGS NUCOI RELPAGES RO Rl Rl0 R 11 B12 R13 R14 R15 t:C n 
R2 R3 B4 R5 R6 R7 R8 B9 (D 

I» H\ 
t:I CD 
~ I:MSVIB ACMSCVT BALRSAVE CMSVSAft NUCON RO Bl R12 R14 B15 B2 B3 R5 SYSNAMES t1 

CD 
I'tI VftSIZE t:I 

t1 n 
(I) 

0 I:ftSVIP ACBAftBL ACBAftO ACBBPPL ACBBUPND ACBDDNM ACBDOSID ACBDTPID ACBERPLG ACBEILST ACBIBUP ACBID ACBIDD ACBLEI t:r 
~ ACBftACRP ACBOCEIT ACBOCTER ACBOEftPT ACBOPLGS ACBOKBUP ACBOPEN ACBPRTCT 
(D AOSRET CUBRSAVE DOSDD DOSDEV DOSDSMD DOSDUM DOSEXTNO DOSEITTB DOSNEIT DOSSECT DOSVOLIO DOSVOLTB DOSYSXXX &I 

EIENACTB EIEIADDR EILEODP EILEODL EXLECDP EILJRN EILJRIL EILLEI EXLLERP EILLERL EILLERP EILSYNP EXLSYNL 
~ EILSYRF IKQACB IKQEILST IKQRPL NUCOI RPLACB RPLAREA BPLARG RPLASY BPLBUPL RPLCHAII RPLECBPR BPLEOPDS 
(I) 
M- RPLPDBKC RPLPLAG BPLKEYL RPLNUP RPLCFTl BPLOPT2 RPLRLEN RPLRTBCD BPLST RPLSTRID RPLUPD RPLVLEBR RO 
(D Rl Bl0 Rll B12 R13 R14 R15 R2 R3 R4 B5 B6 B7 
t1 B8 R9 • ..,-
1:1 DMSVPD BO Bl Rl1 B12 B14 R15 R2 R3 R4 R5 R6 R7 I» 
M-..,- tftSVSR ACMSCVT BGCOM CMSAftS CftSCVT CMSVSAM IUCON PIB2PTB PIK PFEID BO Rl B12 R13 0 
t:I R14 R15 B2 B3 R4 R5 R6 R7 R8 SYSNAMES 
G'lI 
I:l DftSXCP ADTDTA ADTPDOS ADTPLG2 ADTPLG3 ADTFBOS ADTFBi ADTID ADTM ADTSECT AFINIS ARDBUF ASYSBEP AiRBUP ..,- BGCOM CSi DftSCCB DOSBUPF DOSBUPSP DOSBYTE DOSCBID DOSCOUT DCSDD DOSDEV DOSDSK DOSDSMD DOSDSIAft 
~ 
(I) DOSDUf'! DOSEITCX DOSEITIO DOSEXTTB DOS lilT DOSITEM DOSNEXT DOSOP DOSOSDSI DOSOSPST DOSREAD DOSSAVE DOSSECT 

DOSSENSE DOSTAPID DOSUCRAM DOSVOLNO DOSVOLTB DOSiORK DOSYSXXX LUBPT NICLPT IUCOR PUBADR PUBCUU PUBDEVT 
PUBDSKM PUBPT PUBTAPM 1 RO Rl Rl0 Rl1 R12 R13 R14 R15 R2 R3 
R4 B5 R6 R7 R8 R9 

tftSZAP PSTPB PSTPRi PSTPV PSTIC PSTIL FSTM FSTSECT IS LOC IUCOI RO Rl Rl0 
Rl1 R12 R13 B14 R15 R2 B3 R4 R5 R6 R7 R8 R9 



In 

Label Count References 
lIZ 
ItIl 

I~ 
AACTFREE 000004 D!SBRD D!SBWR D!SPRT II::d 

AACTFRET 000004 D!SBWR DftSERS D!SFNS Itl!! 
It-t 

AACTLKF 000011 D!SBRD D!SBWR DftSERS DftSFRS DftSIRT D!SPNT D!SRN! D!SSOP D!SSTT DftSTPE I 

AACTNXT 000001 DftSERS I~ 
10 

AADTLKF 000001 D!SDLK I 

AADTLKi 000012 DftSARX D!SAS! DftSBSC D!SDLK D!SLB! D!SLBT D!SLKD lIZ 
10 

ABATABND 000011 DftSABN DftSBTB D!SCIO DftSDSK DftSERR DftSFLD DftSITE DftSPIO DftSRDC DftSSET I~ 

ABATLIftT 000004 DftSBTB D!SCIO DftSITE D!SFIO Ie 
It-t 

ABATPRCC 000003 DftSBTB D!SCPF DftSCRD Itl!! 
ABNBIT 000003 DftSABN DftSBTP In 
ABNERLST 000001 D!SABH 11::0 
ABNPAS 13 000001 D!SABR 10 

ItIl ABNPSi 000026 DftSABH DftSDEG D!SFRE DMSITI DMSITP D!SITS ItIl 
ABNREGS 000013 DftSABN D!SDBG DftSFRE DMSITI D!SITP DftSITS 

It:tI ABHRR 000002 D!SABR Itl!! 
ABiSECT 000008 DftSABH DftSDBG D!SFRE D!SITI DftSITP DftSITS Itld 

ACALL 000001 D!SFRE Itl!! 
It:tI 

ACBAftBL 000001 D!SYIP Itl!! 
ACBAftO 000005 DMSYIP 12: 

In 
ACBBFPL 000001 DMSYIP Itl!! 
ACBBUFND 000001 DMSYIP 
ACBDDHM 000002 DftSBOP D!SVIP 
ACBDOSID 000001 DftSVIP 
ACBDTFID 000001 D!SYIP 
ACBERFLG 000007 DMSBOP D!SVIP 
ACBFXLST 000004 DftSYIP 
ACBIBUF 000001 DMSVIP 

n 
l3I: 
til 

t-t 
I» 
t1' 

til 
(D .... 

(1) I n t+ r+ 0 1-" I 0 l3I: 
1:1 0 
W Cl.J 

c: .... 
t:I 

(D 

1-" n 
I"f I"f (1) 0 n til r+ til 
0 
I"f t:tI 
1-" (D 
(D HI 
til (D 

I"f 
(1) 

I\.) 
1:1 
0 

CD (1) 



N label Count References (") 
ex> a: 
N til 

ICBID 000006 
toot 

DKSVIP jli 

ICBIDD 000007 DKSVIP t::r 
(I) 

<I ICBIN 000001 DKSBOP ~ 
3: ICBIRFlG 000001 DKSBOP • 
" ri" 
w ICBlER 000001 DKSYIP 0 
....:I ICBfUCRF 000001 DKSYIP I 
0 

000002 :z ICBfUCR 1 DKSBOP 0 
ICBOCEIT 000001 DKSYIP ~ 

til ICBOCTER 000001 DKSYIP .:::: 
'< ~ en ICBOEKFT 000001 DKSVIP (I) 
ri" ICBOFLGS 000002 DKSYIP (I) n 
B ICBOKBUF 000001 DKSYIP H 

ICBOLIGN 000001 DKSBOP 0 
toot en 
0 ICBOPEI 000002 DKSYIP en 

\Q ICBOUT 000001 DKSBOP 
~. !;O 
0 ICBPRTCT 000001 DKSVIP (I) 

ICBST 000001 DKSVIP H\ 
PI 000001 

(I) 
::s ICBSTRBO DKSVIP H 
~ ICBSTSKP 000001 DKSBOP (I) 

ICBSTU 000001 DKSYIP ::s 
It:I 0 
H ICBUIPTR 000001 DKSYIP (I) 
0 ICKSCYT 000004 DKSIIIlS DKSSOP DKSVIB tKSVSR t::r 
~ ICKSRET 000004 DKSDOS DKSLDR DKSYIP 
(I) IDEYTIB 000017 DKSIKS DKSISliI DKSDBD tKSEDI DKSEDX DKSFOR DKSGIO DKSINI DKSSET DMSTIO DKSTPE EI 

IDIOSECT 000005 DftSACK DKSDIO DKSFNS DeSITI 
t::::' IDKPEXEC 000001 DKSSVT (I) 
r+ IDKSCRI: 000002 DftSBTP DKSDBG 
(I) IDKSFRT 000001 DftSSET H 

IDKSOVS 000008 DKSOVR EI 
~. IDKSPICC 000001 DKSPRT ::s IDKSROS 000016 DKSICK DKSILU DKSLDS DKSLFS DKSSCT DKSSEB DeSSVT PI 
r+ IDTIDD 000008 DKSICF DKSICK DKSIUD tKSERS DKSFBS ..... 

IDTCFST 000003 DKSICF DKSERS 0 
::s IDTCBBI 000016 DKSICF DKSCPY DKSERS DKSLFS DKSRBK 
Cil IDTCYL 000007 DKSICK DKSFOR DKSLDS DeSQRY DKSROS 
.:::: IDTDTA 000027 DKSICC DKSICK DKSIRE DKSISR DKSIUD DKSBiR DKSDIO DKSFOR DKSQRY DKSROS DMSSET DMSTQQ ..... DKSXCP 
~ 
CD IDTFILBK 000003 DKSICF 

IDTFILTY 000004 DKSICF 
IDTFILUF 000004 DKSICC DKSICF DKSFOR 
IDTFDI 000025 DKSIBB DKSICC DKSICF DKSILU DKSIUD DKSFOR DKSIBS DKSLID DKSLPS DKSLST 
IDTPDOS 000016 DKSICC DKSISIIl DKSBOP DKSDLB DKSEXT DKSQRY DKSROS DKSSET DMSXCP 
IDTPFSTF 000008 DKSIBR DKSICC DMSICF DMSALU DeSPOR DKSIRS 
IDTFFSTY 000007 DKSICC DMSIBS DKSLID DKSLFS 



Label Count References 

IDTFLG 1 000101 Df!SIBB DMSICC DMSICF D!SIC! D!SILU DMSIRE D!SIR8 D!SIRI D!SIS! D!SISN Df!SBOP D!SBSC 
Df!SBWR D!SCPY Df!SDIO D!SDLK DI!SDSL Df!SERS DMSFOR DMSIBS DMSLID DMSLIF D!SLBl'l DMSLDS 
DMSLFS D!SLLU D!SLST Df!SMVE DMSQRY DMSRBf! DMSROS Dl'lSSOP D!SSTT Df!STQQ DI!STRK Df!SUPD 

IDTFLG2 000063 DMSIBB DMSICC DMSICF D!SICf! D!SILU DMSIRE Df!SISB DMSBOP DMSDLB DMSEXT Df!SFOR DI!SLID 
DMSLDS DMSLFS Df!SQRY Df!SROS DMSSET DMSSTT DMSTQQ DMSTRK Dl'lSICP 

IDTFLG3 000029 DMSICC DMSICF DMSICf! DMSILU DMSIRE DMSIUD DI!SBOP DMSBWR Df!SIBS Df!SLFS Dl'lSQRY DMSROS 
DMSICP 

IDTFf!DRO 000003 DMSICF 
IDTFf!FD 000007 D!SICM DMSBOP DI!SEIT DMSTQQ DMSTRK 
IDTFf!IB 000004 DMSIBB DMSICC Dl'lSILU 
IDTFQQF 000005 DMSIBB DMSICl'l DMSILU Dl'lSFOR 
IDTFRO 000031 Df!SICC DMSICF Dl'lSICM D!SILU' D!SIRE DMSISB DMSBOP Df!SDIO Df!SERS D!SFOR Df!SLID D!SLDS 

D!SLFS DI!SLST D!SQRY DI!SRBf! DI!SSOP DI!SSTT D!SUPD 
IDTFROS 000031 DMSIBB D!SICC DMSICF D!SILU DI!SIRE DMSISB DMSBOP Df!SDLB DftSEIT Df!SLID Df!SLDS D!SLFS 

D!SQRY D!SROS DMSSTT DMSICP 
IDTFRW 000069 DMSICC DMSICF DMSIC! D!SILU Dl'lSIRE D!SIRB DMSIRI DMSISl'l DI!SISB DMSBOP D!SBSC Dl'lSBWR 

D!SCPY DMSDIO Df!SDLK D!SDSL DMSERS DI!SFOR Dl'lSLID DMSLIF D!SLB! DI!SLDS DI!SLFS DI!SLLU 
DMSLST DMSMVE DMSQRY DMSRBM DMSSTT Df!STQQ DMSTRK Dl'lSUPD DMSICP 

IDTFSTC 000013 DMSICC DMSICP Dl'lSILU Dl'lSIRE DMSBWR Dl'lSERS DI!SIBS Dl'lSQRY 
IDTPTYP 000012 DMSICF Df!SILU DI!SDSK D!SLFS DMSRBM 
IDTFVS 000001 DI!SLID 
IDTBBCT 000016 DI!SABB DMSICC DI!SICF D!SIC! DI!SIUD DMSERS DMSFOR Dl'lSLAD DMSLFS 
IDTID 000011 DI!SACl'l DMSILU Dl'lSPOR Dl'lSLDS Dl'lSLST Dl'lSPUB Dl'lSQRY Dl'lSICP 
IDTLAST 000006 Df!SAUD D·f!SFOR 
IDTLEFT 000003 Df!SFOR DMSLID 
IDTLPST 000002 Df!SERS Df!SLFS 
ADTLBBI 000007 DMSICC Df!SICP DM~ERS D!SFOR Df!SLFS 
IDTM 000079 Df!SIBN DMSICC DMSACF Df!SALU Df!SAf!S DMSIRE Df!SARB Df!SIRI DMSISf! Df!SBSC DMSCl'lP D!SCPY 

D!SDLK D!SDSL Df!SERS Dl'lSEIC Df!SEIT D!SFOR DI!SLID D!SLAF Dl'lSLBl'l Df!SLDS Df!SLPS DI!SLKD 
Df!SLST Df!SQRY DI!SRNI! DI!SROS D!SSET Df!SSTT Df!SUPD DI!SICP 

IDTI!PDI 000004 DI!SABB DI!SACF DI!SIUD 
IDTI!FDB 000014 Df!SIBN DI!SICC DI!SICF DI!SIC! DI!SILU DI!SIUD 
IDTI!SK 000011 Df!SACC DI!SICI! DI!SALU DI!SAUD DI!SFOR Df!STRK 
IDTI!I 000032 DI!SICC Df!SICf! DI!SILU DI!SARN DI!SARI DI!SASf! DI!SBSC DI!SBWR Df!SLAF DMSLFS DftSQRY Dl'lSSTT n 

DI!SUPD 3 

IDTBACW 000008 DI!SBWR Df!SSOP en 

ADTBUI! 000012 DI!SICC DMSACf! Df!SAUD Df!SFOR Df!SQRY t-' 

ADTPQf! 1 000010 Df!SICf! Df!SALU DI!SAUD DI!SFOR III 
0-

tn ADTPQf!2 000009 Df!SACC Df!SlCP D!SACf! DI!SAUD DMSPOR CD 
CD IDTPQl'l3 000006 Df!SIBB DI!SICC DI!SACI! D!SALU DI!SPOB ~ 
0 I 
rT IDTPST! 000004 DI!SLID rT .... ADTPTB 000002 Df!SLID 0 
0 I 
::I IDTQQI! 000006 DI!SICI! Dl'lSILU DI!SFOB Dl'lSTQQ 3 

ADTRABS 000011 Df!SSLB 0 
w ~ . c::: 

~ 
tj CD .... 
11 n 
CD 11 
0 0 
rT til 
0 til 
11 .... !:tt 
CD CD 
til I-h 

CD 
11 
CD 

I\.) 1:1 
CD 0 
W CD 



I'U Label count References n (X) 

.c: 131: 
til 

ADTRES 000014 DftSACC DftSACF DftSACM DftSALU DMSERS DMSFOR DftSLAD DMSLFS DMSTRK t"" 
ADTROX 000003 DftSACft DMSALU ~ 

0-
c:: ADTSECT 000106 DMSABB DMSACC DMSACF DMSACM DMSALU DMSAMS DMSARE DMSARB DftSARX DMSASft DMSASB DftSAUD (1) 

3: DMSBOP DMSBSC DMSBiR DMSCftP DMSCPY DMSDIO DftSDLB DMSDLK DMSDSK DMSDSL DftSERS DMSEXC I-' 

" DMSEXT DMSFOR DMSIBS DMSLAD DMSLAF DMSLBM DMSLDS DMSLFS DMSLKD DMSLLU DftSLST DeSMVE 
, 

w c+ 
...,J DMSPUB DMSQRY DMSRBM DMSROS DMSSET DftSSOP DftSSTT DMSTQQ DMSTRK DMSUPD DPlSXCP 0 
0 ADTUSED 000010 DMSACC DMSACM DMSFOR 

, .. 3: 
ADT1ST 000007 DMSACC DMSFOR DM"STRK 0 

til AEDLlli 000001 DMSEDX 0.. 
'< C 
en AERASE 000036 DftSAMS DMSBOP DMSCLS DMSDLK DMSDSK DMSDSL DMSEDI DMSFBS DMSLDR DMSLIO DMSLLU DMSLST I-' 
c+ DMSMOD DMSOLD DMSPRV DMSRDC DMSRBE DftSRRV DMSSOP DMSSRV DMSSVT Dft STPE DMSUPD (1) 

(1) 
AERR 000001 DMSITS () EI 
AEXEC 000002 DftSEXC 11 

0 t"" AEITEND 000007 DMSEDI DMSEDX en 0 
I.Q AEXTSECT 000014 DftSIN S DftSIBT DMSIOi DMSITE DMSQRY DftSSFT DMSSTG DftSSVB DMSSVT en .... AFINIS 000042 DMSACC DMSARE DMSCLS DMSCMP DMSDLK DPlSDSK DMSEDI DMSEDI DMSEXC DMSEXT DMSLDR DPlSLIB ttl 0 

DMSLIO DftSLLU DMSMOD DMSCLD DMSPRT DMSPRV DftSPUB DPlSRDC DftSRBE DftSRRV DftSSLB DMSSOP (1) 

~ DMSSRV DMSSYli DftSTPE DMSTYP DMSUPD DPlSXCP HI 
~ 

(1) 

0.. AFLAGLOC 000001 DftSEDX I'i 

AFREETAB 000006 DftSFRE DMSSET 
(1) 

1"0 ~ 

H AFSTFNRD 000004 DMSEDI DftSEDX 0 
0 AFTADT 000023 DMSBRD DMSBiR DMSERS DPlSLAF DMSRBM DMSSOP DMSSTT CD 
0- AFTCLA 000011 DMSBRD DMSBiR I-' 
(1) AFTCLB 000010 DMSBRD DMSBiR 
EI AFTCLD 000015 DMSBRD DMSBiR 
t:1 AFTCLDX 000005 DMSBiB 
(1) AFTCLN 000014 DMSBRD DMSBiR c+ 
(1) AFTCLX 000006 DMSBiR 
t1 AFTD 000002 DMSBiR EI .... AFTDBA 000019 DMSBRD DMSBiR 
~ AFTDBC 000005 DMSBiR DftSERS ~ 
c+ AFTDBD 000007 Df!SBBD DMSBiR .... AFTDBN 000009 DMSBRD DMSBiR 0 
~ AFTFB 000001 DMSLAF 

en AFTFBA 000005 DMSBRD DMSBiR 
c AFTFCL 000011 DMSBRD DMSBiR DMSERS .... AFTFCLA 000007 DMSBRD DMSBiR 
0.. AFTFCLX 000008 DMSBiR (1) 

AFTFLG 000036 DMSBRD DMSBiR DMSERS DMSLAF DMSSTT 
AFTFLG2 000015 DMSBiR 
AFTFSF 000002 DMSLAF 
AFTFST 000009 DMSBRD DPlSBiR DMSLAF DMSSOP DMSSTT DMSTPE 
AFTFULD 000002 DMSBiR 
AFTFV 000006 DMSBRD DMSBiR 



Label Count References 

AFTIC 000008 DftSBRD DftSBiR DMSPNT DMSSCF 
AFTlD 000010 DftSBRD DMSBiR 
AFTlL 000005 DftSBRD DftSBiR 
AFTlB 000014 DMSBRD DMSBiR DMSSOP 
AFTLD 000002 DftSLAF 
AFTM 000008 DMSBiR DMSlBT DMSLAF 
AFTB 000005 DMSBiR DMSlBT DMSLAF 
AFTBEW 000004 DMSBiR 
AFTOLDCL 000006 DMSBWR 
AFTPFST 000007 DMSERS DMSLAF DMSSOP 
AFTPTR 000012 DMSLAF 
AFTRD 000006 DMSBRD DMSBiR DMSSTT 
AFTRP 000008 DftSBRD DMSBiR DMSPNT 
AFTSECT 000024 DMSBRD DMSBiR DMSERS DMSlBT DftSLAF DMSPBT DftSRBM DMSSOP DMSSTT DMSTPE 
AFTT 000001 DftSLAF 
AFTUSED 000004 DMSLAF 
AFTiP 000010 DMSBWR DftSlBT DftSPNT 
AFTiRT 000008 DMSBRD DftSBWR DMSSTT 
AFVS 000042 DftSABN DftSACC DMSACF DMSACM DftSALU DftSAUD DftSBTB DftSBTP DMSBiR DftSClT DlISCRD DMSCiR 

DMSCiT DftSDlO DMSDSK DftSERS DMSEXC DMSFBS DMSlBT DftSlTl DlISlTP DMSlTS DftSlIOD DMSQRY 
DftSRNM DMSSLN DMSTPE 

AGETCLK 000001 DMSEXT 
AlNCORE 000005 DftSEDl 
AlNTRTBL 000007 DlISABN DlISCRt DftSQRY DMSSET 
AlOSECT 000008 DftSABN DMSClT DMSDBG DMSHDl DlISlBT DftSlTl 
AKlLLEX 000001 DlISDBG 
ALCHAR1 000002 DMSEDl 
ALCHAR2 000002 DlISEDl 
ALCRTBLS 000022 DftSBTB DMSFET DftSGND DMSlNS DlISLDR DftSLOA DftSftDP Dft SftOD DftSOLD DftSQRY DlISSET DlISSLB 

DftSSTG 
ALlASENT 000004 DftSLlO DMSSLN 
ALlBELCC 000001 DftSEDX 
ALTLlST 000006 DftSEDl 
ALTMODE 000006 DlISEDX n 
ABCHENCA 000003 DMSDOS DftSSTG 3: 
ABCHENTP 000001 DMSDOS t.n 

ABCHlNST 000001 DftSDOS ~ 

ABCHLDFT 000002 DMSDOS p) 

t1' t.n ABCHLENG 000002 DMSDOS CT) 
CD ANCHPHLN 000001 DlISDOS ..... 0 I 
ci" ABCHPHBft 000005 DMSDOS ci" .... ANCHSECT 000003 DlISDOS DlISSTG 0 0 I 
tI ANCHSIZ 000003 DftSSTG 3: 

ANCHSTSi 000001 DftSDOS 0 w 
~ 
c:: ..... 

t:I CT) .... 
t1 n CD t1 0 0 ci" Ul 0 Ul 
t1 .... l:d 
CD CT) 
[/l HI 

CD 
t1 
CT) 

I\) 
tI (Xl 0 U1 CT) 



to.,) Label Count Beferences n 
(XI ell 
0'1 til 

ABUCEND 000003 DflSDIO DflSHDI DflSHDS 
t"I 
I» 

ABUflLOC 000001 D!SEDI 1!7" 

AOPSECT 000026 DflSABN DftSABN DftSCBD DMSCWB DflSCWT DftSDBG DftSEIC DMSEIT DflSIIS DflSINT DftSSBS DMSSCT (1) 
ca .... 
tJ: DMSSEB D!SSOP DflSSQS DftSSVI DflSSVT I 

........ AOSBET 000003 DflSDOS DflSSOP D!SVIP 
(+ 

w 0 
..,.J AOUTBTBL 000006 D!SABB DMSCWB DftSQBY DMSSET I 
0 APGftSECT 000007 DflSITP DflSSAB D!SSLN D!SSTG D!SSVT tz 

0 
APIE 000001 DMSSVT Co 

til APOINT 000002 DftSEIT DMSLIB &:: 
'< .... 
til APRILB 000006 DMSLDB DMSOLD (1) 
r+- APSV 000035 DMSLDR DflSLGT DflSLIB DftSLIC DMSLSB DftSOLD (I) n 
s AQQTBK 000004 DMSBWB DMSTQQ t1 

AQQTRKI 000005 DflSBWR DflSERS D!SFNS 0 
t-t en 
0 ARDBUF 000040 DMSCMP DftSDLK DftSDSK DftSEDI Dft SEDI DftSEIT DftSLDR DflSLGT D!SMOD DftSOLD DflSPRT DftSPUB en 
~ DftSRNE DftSSLN DftSSVT D!SSYl1 DMSTYP DftSUPD DMSICP 
~. ARDTK 000011 DMSACF D!SACM DMSBRD DMSEWB DftSERS DftSFBS DftSFOR DftSftOD ~ 
0 (1) 

AREA 000027 DftSEDI ~ 
I» ARFLG 000002 D!SDOS 

(I) 

t:I t1 
P- ARGMAX 000001 DftSDBG (1) 

ARGS 000038 D!SDBD DftSDEG t:I 
ttl 0 
t1 ARGSAV 000008 DftSDBG (1) 

0 ARGSCT 000016 DMSDBG 
0-.... ASCAIN 000005 DflSAft S DftSBTP DMSLDR D!SCLD DMSRDC 
(1) ASCABO 000002 DMSEIT D!SSBT 
S 

ASCBPTR 000002 DftSINT 
t:::J ASSTAT 000002 DftSPRE D!SIIS 
(I) 

ASTATE 000034 DftSAftS D!SBOP DftSDLK DftSDSK DftSDSL DftSEDX DftSEIT DftSFCB DftSFLD DftSGLB DftSGND D!SINS (+ 
(1) DftSLDB DMSLIE DftSftDP DftSftOD DMSOLD DftSPBT DftSPUB DftSBBV D!SSET DftSSLl1 DftSSOP DMSSRV 
t1 DMSSVT DftSSYl1 DflSTPE DMSTYF DftSUPD II 
~. ASTATEi 000007 DMSAftS DftSEDI DftSEBS DftSftOD DftSRDC DftSRBft 
t:I ASTATEIT 000002 DftSIN S DftSSTG I» 
(+ ASTRIIUT 000003 DMSARH DMSBSC DftSSRT ..... ASUBFST 000003 DftSABN DftSINT 0 
t:I ASUBRET 000002 D!SINT 
en ASUBSECT 000006 DftSABN DftSIN! DflSINT 
&:: ASUBSTAT 000003 DMSABN DMSIHT 
~. ASVCSECT 000017 DMSCIT DftSFBE DftSHDS DftSINT D!SITS DftSOVB DftSOVS DftSSLN 
P- ASYSBEP 000025 D!SASN D!SBOP DftSCLS DftSDLB DflSDftP DftSDOS DfilSFCH DftSINS D!SITP D!SLLU DftSOPL DftSPRV (I) 

DftSQRY DftSRRV DMSSET DfilSSBV DftSICP 
ATABEND 000005 D!SAfilS DfilSTIO DftSTPE 
ATFINIS 000006 DftSBWR DftSERS D!SRNft DfilSSVT 
ATRKLKP 000004 D!SAUD DftSBWB DftSTQQ 
ATRKLKPX 000014 DftSAUD DftSBWR DftSERS DMSFNS DfilSTQQ 



Label Count References 

ATSOCPFL 000002 DMSSMN DMSSTG 
ATTN 000012 DKSCIT DMSEDI 
ATTNLEN 000007 DMSEDI 
ATYPSRCH 000005 DMSACF DMSDSK DMSFNS DMSRNM DMSTPE 
AUPDISK 000016 DfiSARE DKSBiR DKSDSK DMSERS DMSFNS DftSFOR DftSRNM DMSSOP DftSSVT DMSTPE 
AUPIE 000002 DftSITP 
AUSABRV 000004 DMSABN DMSIN! DMSQRY DKSSYN 
AUSRAREA 000033 DftSABN DftSBRD DMSBTB Dl!1SFCH DftSFET DKSFRE DftSINS DKSINT DKSLDR DMSLOA DMSLSB DKSMOD 

DMSOLD DKSSLN DMSSMN DftSSTG 
AUSRILST 000008 DKSABN DKSHDI 
AUSRITBL 000007 DKSABN DKSHDI 
AUTOCNT 000005 DKSEDI 
AUTOCURB 000003 DMSEDI 
AUTOREG 000002 DKSEDI 
AWAIT 000001 DMSITS 
AiRBUF 000025 DftSDLK DftSDSK DKSEDI DKSLIC DKSLLU DKSKOD DKSOLD DMSPRV DKSRDC DftSRNE DKSRRV DMSSRV 

DKSSVT DKSTPE DKSUPD DftSXCP 
AWRTK 000004 DftSAUD DftSBiR DMSFNS DMSFCR 
BALR 000241 DMSITE 
EALRSAVE 000027 DftSCPF DftSDBG DftSFNS DKSINA DMSINK DftSSCN DKSSMN DMSSTG DftSVIB 
BATCPEX 000005 DMSBTP DMSCPF 
EATCPUC 000002 DMSITE 
BATCPUL 000001 DMSITE 
EATDCMS 000008 DMSBTB DMSBTP DKSDSK DKSPLD DKSRDC DMSSET 
BATFLAGS 000057 DfilSABN DMSACM DKSARN DMSBTB DMSBTP DMSCIO DKSCPF DMSCRD DMSDSK DMSERR DMS FLD DMSINS 

DKSITE DftSLDR DftSLSB DfilSKVE DMSOLD DMSPIO DMSRDC DMSSET 
BATFLAG2 000015 DMSBTB DMSBTP DMSCIT DMSDSK DMSFLD DMSINS DMSITE DMSRDC DMSSET 
EATIPLSS 000001 DfilSINS 
BATLOAD 000013 DMSABN DMSACM DftSBTB DMSCPP DMSCRD DMSINS DMSITE DMSLDR DKSLSB DftSOLD 
EATLSECT 000003 DKSCIO DMSITE DMSPIO 
BATMOVE 000006 DMSBTP DKSMVE 
EATNOEX 000010 DKSBTB DMSBTP DMSCIO Dl!1SFIC DMSSET 
BATPRTC 000002 DMSPIO 
EATPRTL 000001 DMSPIO n 
BATPUNC 000002 DMSCIC ::II 

en 
EATPUNL 000001 DMSCIO 
BATRERR 000003 DMSBTP t-I 

I» 
EATRUN 000021 DMSABN DMSARN DKSBTB DKSCIC DKSCPF DMSCRD DMSDSK DMSERR DMSFLD DMSINS DMSITE DMSPIO ~ 

Ul DMSRDC DKSSET CD 
CD 000002 

~ 

0 EATSTOP DMSBTP DMSCIT I 
r+ BATTERK 000005 DMSBTP r+ 
1-'- EATUSEX 000004 DKSBTB DMSBTP DMSCPF 0 
0 I 
I:' BATXCPU 000002 DMSETP DMSITE ::II 

0 
W j:lI . ~ 

~ 

t:::I CD 
1-'- n H 
CD H 
0 0 
r+ en 
0 en 
H 

!:tI 1-'-
CD CD 
[J) H\ 

CD 
H 
(I) 

~ t:t 
()) 0 

" 
(I) 



~ Label Count References n 
00 tJ: 00 til 

EATXLIM 000005 DMSBTP DMSCIO DMSITE DMSHC t.-4 
III BATXPRT 000002 DMSBTP DMSPIO t:7' 

~ EATXPUN 000001 DMSCIO CD 
:z BEGAT 000003 DMSDBG I-' 

I 

" EGCOM 000048 DMSAMS DftSASN DMSBAB DMSBOF DMSCLS DMSDLB DMSDLK DMSDMP DMSDOS DMSDSV DftSFCH DMSFET c-t w 
.,.J DMSINS DMSITP DftSLLU DMSOPL DMSOPT DMSPRV DMSRRV DMSSET DeSSMN DftSSRV DMSSTG DMSVSR 0 

I 
0 DftSXCP a: 00 

BITS 000009 DMSDBG 0 
p. 

til BLANK 1 000001 DftSEDX ~ IoocI 
BLAliK2 000002 I-' en D~SEDX CD r+ ELANK3 000001 DftSEDX 

CD BLK 000015 DMSSEB DMSSOP DMSSQS (') • H 
t,-4 

BLOC 000006 DftSEDI DftSEDX 0 
BLOCKLEli 000010 DMSFRE en 

0 en 
~ ERAD 000021 DftSLDR DftSLSB DftSOLD .... BRKPNTBL 000003 DftSDBG !X:I n 

EUFAD 000010 DMSGIO CD 
HI 

~ BUFFLOC 000001 DMSSCR CD 
t:I 

000004 H p. EITE DftSEDI CD 

ttl 
CALLEE 000018 DftSERR DMSITP DMSITS DftSLDR t:I 

CALLER 000004 DMSFRE DMSITS n 
t1 CD 0 CAIiCCi 000002 DftSEDX DftSGIO tr CARDINCR 000003 DftSEDI DftSEDX ...., 
CD CARD NO 000003 DeSEDI • CASERBAD 000001 DftSEDI 
~ CASESII 000006 DftSEDI DftSEDX 
CD CAi 000015 DftSCIO DMSCIT DMSDBD DMSDBG DftSDIO DMSEBR DMSINI DMSINS DMSPIO r+ 
CD CC 000305 DftSINI DMSINS DMSTIO 
t1 CCWPRINT 000017 DMSDBD • .... CCiI 000002 DMSDIO 
t:I CCi 1 000005 DMSDIO ~ 
r+ CCilA 000004 DeSDIO .... CCi2 000003 DftSDIO 0 
t:I CDftSROS 000006 DMSACft DMSALU 

G'l 
CE 000004 DMSCIT DftSINI 

c:: CHANO 000002 DMSINI DftSINS .... CHKiRDl 000002 DMSITS p. 
CHKWRD2 000002 DMSITS CD 
CHIiGBITE 000010 DMSSVT 
CHBGCliT 000003 DftSEDI 
CHNGFLAG 000018 DMSEDI 
CHBGMSG 000003 DftSEDI DMSEDX 
CHNGNUft 000005 DMSEDI 



Label count References 

CLOSELIB 000016 DfilSLDR DfilSLIE DfilSOLD 
CfilDBLOK 000001 DMSGIO 
CMBDLIIE 000012 DfilSABB DftSARX DfilSASM DfilSCPF DfilSIIS DfilSIBT DfilSSEB DfilSSVT 
CftRDLIST 000024 DMSCAT DftSEXT DfilSIRS DfilSLDR DftSOLD DfilSSCR 
CftODE 000017 DfilSEDI 
CftSAftS 000005 DftSAftS DftSVSR 
CftSCVT 000003 DftSIRS DftSSOP DfilSVSR 
CftSDOS 000002 DftSSET 
CMSIAfilE 000002 DfilSSOP DfilSSVT 
CMSOP 000016 DfilSSCT DfilSSOP DfilSSVT 
CftSSEG 000017 DfilSBTP DfilSEDX DftSEXC DfilSIRS DfilSIRT DfilSliS DftSQRY DftSSET 
CftSTAXE 000005 DfilSCIT DftSSVT 
CfilSTlft 000007 DftSIBT 
CftSVSAM 000009 DMSBOP DfilSDOS DfilSSET DftSVIE DftSVSR 
CODE 000016 DfilSFRE DfilSITS 
CODE203 000012 DftSFRE DfilSITS DftSSftl DfilSSTG 
COfilfilOREX 000004 DfilSLDR DfilSOLD 
COfillAftE 000013 DfilSAftS DfilSDLK DftSDOS DfilSDSV DftSFCH DMSFET 
COftPSWT 000014 DfilSARI DfilSARX DfilSASM DfilSSLR DMSSfill DfilSSTG 
CORCCiS 000008 DfilSCIT Dft SERR 
CORBXT 000002 DftSDBG 
CORIIBLK 000004 DftSCRD 
COBIIBOF 000004 DfilSCRD 
CORRDBOF 000001 DftSSVR 
COBRDCIT 000007 DfilSABB DfilSIIS DfilSIIT DfilSSEB DfilSSVI DfilSSVT 
CORRDCOD 000005 DMSABR DfilSIHS ]}ftSIRT DI'ISSEB 
CORREAD 000009 DI'ISABR DftSIBS DftSIRT DMSSEB DMSSVR DftSSVT 
CORSOLE 000018 DMSEDI DMSEDX DftSIRI 
CORSTACK 000008 DfilSCIT DftSCiR DftSSVR 
CORiR 000005 DftSDBG 
COHiRBOF 000005 DftSIBT DftSSEB DMSSVR DMSSVT 
CORiRCRT 000004 DftSSEB DMSSVR DfilSSVT 
COHiRCCD 000005 DftSIBT DftSSEB 
CORiRITE 000005 DftSIRT DftSSEB DftSSVR DMSSVT (') 

CORiRL 000001 DftSDBG 3: 
en 

CORESIZE 000009 DfilSSTG DftSSVT 
CORITEe 000007 DI'ISEDI DftSEDX 1:"1 

III 
COURT 000085 DMSEDI tJ' 

en CPOLOG 000005 DftSDBD DftSSET CD 
I-' CD CRBIT 000002 DfilSEDI I n CRDPTR 000006 DftSlDR DesOlt r+ cT 0 .... CSW 000054 DftSCIO DfilSCIT DMSCRD DMSCiR DMSDBG DfilSDIO DMSDLK DMSFCH DMSGIO DMSIRI DfilSIOi DftSITE I 0 DfilSITI DeSLDS DftSPIO DfilSROS DftSTIO DfilSTPD DfilSXCP 3: =s 0 

w p. 
c: 
I-' 

t::1 CD .... 
(1 

t1 t1 CD 0 n en r+ en 0 
t1 ~ .... 

CD CD 
en HI 

CD 
t1 
CD 

IV =' 
(X) n 
\D CD 



tv Label Count References (") \0 
0 tJ: 

til 

CTL 000004 DftSGlO t"" 
CDRRCPDT 000001 DMSlBM III 

CDRRDATE 000005 DftSEXT DftSlNM DftSINS DMSSVT t:r 
< (1) 

tJ: CDRRlOOP 000003 DMSCIT I-' 

" CDRRSAVE 000061 DftSABN DftSACC DMSBSC DMSDBG DMSDLE DMSDOS DMSERR DMSFLD DftSFRE DMSITP DftSlTS DMSLDR I 
w rT 
-.J DMSOVS DMSSAE DftSSLN DMSSMN DMSSOP DMSSTG DMSSVN DMSSVT DMSVlP 0 
0 CDRRTIME 000001 DMSEXT I 

tJ: 
CURRVIRT 000002 DMSINM 0 

til CVTMDL 000001 DftSIN S 0. 
"< CVTMZOO 000001 

.:: 
en DMSINS I-' 
rT CVTNUCE 000001 DMSIN S (1) 

(1) CVTOPTA 000001 DftSIHS n EI 
CVTSECT 000001 DMSINS H 

t"" DA 000020 DMSDSL DMSMV:E DftSSBD DP.ISSBS DMSSCT DMSSOP 0 
0 en 

I.Q tACTIVE 000007 DMSDOS DMSFET en .... DATAEND 000015 DMSSBD DMSSVT ~ 0 DBDDMSG 000003 DMSDBD (1) 

I» DBDEXI'I 000003 DMS DBD HI 
(1) ::s tBGABN 000005 DftSABN DftSDBG H 0. 

DBGEXEC 000003 DMSCIT DMSDEG DMSITE (1) 

::s '"CI tBGEXINT 000006 DftSCIT DftSDBG DMSITE 0 H 
0 DBGFLAGS 000036 DMSABH DMSCIT DMSDBD DMStBG DMSITE (1) 

t:r tBGOUT 000029 DMSDBD DftSDBG I-' 
(1) DBGPGMCK 000004 D~SDBG 
EI DBGRECDR 0000 17 DMSDBD DPlSDBG 
0 DBGSAVl 000002 DPlSDBG 
(1) tBGSAV 2 000001 DMSDBG c+ DBGSEC'I 000007 DMSDBD DMSDEG DMSITE (1) 
H DBGSET 000003 DftSDBG • DBGSWTCB 000012 DPlSDBD m!SDEG .... 
::s tDNAPI 000001 DftSMVE 
I» DE 000006 DMSCIT DMSINI rT .... DEBDCBAD 000002 DMSSAB DMSSOP 
0 DEBDEBID 000001 DMSSOP ::s 

tEBOFLGS 000001 DPISSOP 
en DEBOPATB 000001 DMSSOP .:: .... tEBTCBAD 000004 DMSSQS 
0. DEC 000068 DMStBD DPISDEG (1) 

tECAREA 000007 DMSSBD DPlSSBS 
DECDCBAD 000002 DMSSBS DMSSCT 
tECDEC 000031 DPlSDBG 
DECIMAL 000009 DMSEDI 
tECIOBPT 000003 DMSSBS DPlSSCT 



Label count References 

DECKYADR 000004 DMSSBD 
DECLNGTH 000004 DftSSBD DMSSBS 
DECLTH 000002 DftSSCR 
I:ECRECPT 000002 DftSSBD 
DECSDECB 000021 DMSSBD DftSSES DMSSCT DftSSVT 
DECTYPE 000025 DftSSBD DftSSBS 
DEVADDR 000041 DftSTIO DftSTPJ!: 
DEVICE 000004 DftSARX DMSASft DftSIOW DftSITI 
DEVMISC 000005 DMSTIO DftSTPE 
DEVNAftE 000003 DftSTIO DftSTPE 
DEVSECT 000003 DftSTIO DftSTPE 
VEVSIZE 000003 DftSTIO DftSTPE 
DEVTAB 000011 DftSASN DftSDEt DftSEDI IlMSEDI DftSINI 
tEVTYP 000017 DftSDIO DftSFNS 
DIAGNUft 000001 DftSDIO 
I:IAGRET 000003 DftSDIO 
DIAGTlf!E 000001 DftSSVT 
DIOBIT 000002 DftSDIO 
DIOCSW 000001 DeSFNS 
tIOFLAG 000009 DftSDIO 
DIOFREE 000003 DeSDIO 
tIOSECT 000007 DeSACft DftSDIO DftSFNS DeSITI 
DIRC 000016 DeSDOS 
DIRLL 000004 DftSDOS 
DIB! 000006 DeSDOS DftSFET 
I:IRNAftE 000038 DeSDOS DftSDSL DftSFET DftSSVT 
DIRPTR 000007 DeSSVT 
IlIRR 000001 DeSDSL 
DIRTT 000005 DftSDOS DftSDSL 
DISK$SEG 000006 DftSBRD DftSFNS DftSLFS 
DITCNT 000005 DeSEDI 
I:ePTITLE 000003 DeSDBG 
DeSAB!GO 000005 DftSFRE DeSITI DeSITP DftSITS 
I:eSABNRT 000001 DeSDBG n 
DeSABW 000011 DftSABN DeSDEG DeSFRE DeSITI DeSITP DeSITS 3: 

Ul 
I:eSARD 000001 DeSARI 
DeSASD 000001 DeSASft t"4 

~ 
IleSBWR 000001 DftSFNC t:r' 

til DftSCAT 000003 DeSAB! DeSCRI: DftSFHC (I) 

(I) IlftSCCB 000002 DftSICP ~ 

0 I 
c+ DeSCIOSI 000001 DftSFHC c+ .... I:f!SCITA 000001 DMSCWR 0 
0 I 
I:S DI!ISCITB 000002 DMSCRD DeSCWB 3: 

0 
W c:lI . c::: 

~ 

t:t (I) .... 
n 11 

(I) 11 
0 0 
c+ en 
0 en 
11 

t:I:J .... 
(I) (I) 

en tit 
(I) 

t1 
CD 

~ I:' 
1.0 0 

CD 



~ n 
1.0 Label Count References 3: 
~ en 

t:"4 
DMSCITDB 000002 DMSABN DMSFNC PI 

t:r DMSCPF 000002 DMSFHC DMSIHT CD 
< tMSCRD 000003 DMSABN DMSFHC ..... 
3: DMSCWB 000004 DMSDBG DMSERB DMSFNC DMSITE I 

" c+ 
UJ DMSCWT 000005 DMSABH DMSDBG DMSERR DMSFNC DMSITS 0 
~ DMSDBD 000001 DMSDBG I 

01: 0 tMSDBG 000002 DMSABN DMSFNC 0 .. 
DMSDBGP 000001 DMSINI ~ 

j:; en DMSEDC 000001 DMSSEG ..... ~ 
til DMSEDI 000001 DMSSEG CD 
c+ tMSEBR 000002 DMSFNC DMSITS n CD 
s DMSEBT 000002 DMSEBR H 

0 
t:"4 tMSEXC 000001 DMSFNC til 
0 DMSEXCAB 000001 DMSABH til 

t.Q tftSEXT 000001 DMSSEG 
!:O ..... 

n DMSFCH 000003 DMSDOS CD 
tMSFET 000001 DMSFNC Hl 

PI CD 
t:I DMSFNC 000001 DMSITS H 
PI tMSFNC3 000001 DMSITS CD 

t:I 
." DMSFREES 000001 DMSFHC n 
t1 tMSFREEX 000001 DMSFNC (I) 
0 DMSFRETS 000001 DMSFNC t:r ..... tftSFRT 000002 DMSFRE 
CD DMSGIO 000002 DMSSCR DMSSEG B 

tMSINALT 000001 DMSNOC 
t:1 DMSIHA lS 000001 DftSNOC CD 
c+ DMSINS 000001 DftSINI 
(I) DMSINSE 000001 DMSINI 
H tMSINTAB 000001 DMSABN a ..... DMSIOiB 000001 DMSDBG 
t:I DMSITET 000001 DftSFNC PI 
c+ DMSITP 000001 DMSDBG ..... 

tMSITSR 000001 DMSABN 0 
t:I DMSITSl 000001 DMSINI 
Cil tMSLAD 000005 DftSBWR DMSEBS DMSINS DMSLFS DMSSTT 
j:; DMSLADAD 000002 DMSABN DMSFHC ..... 

tMSLADN 000003 DMSABN DMSLFS PI 
CD DMSLADi 000002 DMSERS DMSSTT 

tMSLDBA 000001 DMSFNC 
DMSLDBB 000001 DMSLOA 
DMSLDBC 000001 DMSLSB 
DMSLDBD 000003 DMSLGT DMSLIE DMSLSB 
tftSLFS 000005 DMSBRD DMSEXC DMSINT DMSPNT DMSSTT 



Label Count References 

DftSLFSi 000005 DftSBiIi DftSEIiS DftSFHS DftSSTT 
tMSLGT 000002 DMSSEG DMSSVT 
DMSLGTA 000003 DftSLDIi DftSOLD DftSSTG 
tMSLGTE 000002 DMSLDR DMSOLD 
DMSL1B 000004 DMSLDB DMSOLt DMSSEG DMSTIU 
tMSL10 000001 DMSLDR 
DMSLOA 000003 DMSFNC DeS1HS 
tMSLSB 000002 DMSSEG DeSSVT 
DMSLSBA 000002 DMSLDB DeSOLD 
tMSLSBB 000002 DMSLDR DMSOLD 
DMSLSBC 000002 DMSLDB DesoLt 
tMSLSBD 000002 DMSLDB DMSOLD 
DMSLSY 000003 DMSLDB DeSOLD DMSSEG 
tftSMOD 000003 DMSFNC DMS1TS 
DMSNUCU 000001 DMSFBE 
tMSOLD 000002 DMSSEG DftSSLN 
DftSOVS 000001 DMSCVB 
tMSPIO 000001 DftSFNC 
DMSPICCC 000001 DMSFNC 
I:MSPIOSI 000001 DMSFNC 
DMSSAB 000003 DMSSEG DMSSVT 
tMSSBD 000002 DMSSBS DftSSEG 
DMSSBDFR 000001 DMSSVT 
LMSSBS 000004 DliSSBD DMSSEG DMSSOP DMSSVT 
DMSSBSRT 000001 DMSSBD 
LftSSCNN 000002 DftSINS DMSINT 
DftSSCR 000002 DMSEDI DMSSEG 
LMSSCT 000002 DMSSEG DftSSVT 
DMSSCTCE 000002 DMSSOP DMSSQS 
tMSSCTCK 000003 DMSSOP DMSSQS 
DMSSCTNP 000001 DMSSOP 
LMSSEB 000005 DMSSBS DMSSEG DMSSQS 
DMSSLN 000002 DMSSEG DMSSVT 
I:MSSLN3 000001 DMSSVT n 
DMSSLN42 000001 DMSSVT 3: 

en 
tMSSLN6 000001 DMSSVT 
DMSSLN7 000001 DMSSVT t-' 

I» 
LMSSLN8 000001 DMSSVT 0" 

en DMSSLN9 000001 DMSSVT CD 
CD LMSSMN 000002 DMSSEG DMSSVT I-' 
0 I 
t+ DMSSMNCF 000001 DMSSTG M-..... LMSSMNCN 000001 DM SSTG 0 
0 I 
t:I DMSSMNRP 000001 DMSSTG 3: 

0 
W Po 

c:: 
I-' 

tj CD ..... 
t1 n 
CD t1 
0 0 
t+ til 
0 til 
t1 

!:tI ..... 
CD CD 
til HI 

CD 
t1 
(l) 

"-> t:I 
\0 0 
W (l) 



~ label Count References n 
\0 tI: 
~ til 

DftSSftHSB 000001 D!SSLH 
t"" 
I» 

D!SSftITS 000001 DftSSTG t:7' 

DftSSftll0 000001 D!SSVT 
(1) 

< ..... 
tI: DftSSftl4 000001 D!SSVT I 

'" tftSSftl5 000001 DftSSVT rT 
w 0 ...., DftSSOP 000002 D!SSEG DftSSVT I 
0 DftSSOP19 000001 D!SSVT tI: 

0 
DftSSOP20 000001 DftSSVT 0. 

til tftSSOP22 000001 D!SSVT ~ 
J< ..... 
en D!SSOP23 000001 DftSSVT (1) 

rT tftSSQS 000002 DftSSEG D!SSVT 
(1) n 
EI DftSSQSGT 000001 DftSSOP H 

tftSSQSPT 000001 D!SSOP 0 
t"" DftSSQSUP 000001 D!SSOP til 
0 til 

\Q tftSSTGAT 000001 DftSFHC 
~. DftSSTTR 000001 D!SlFS l:I:l 
0 (1) 

DftSSVH 000002 D!SSEG D!SSVT H1 
I» DftSSVll 000001 DftSSVT (1) 

l:I H 
0. tftSSVH2 000001 DftSSVT (1) 

DftSSVI93 000001 DftSSVT l:I 
~ 0 
H DftSSVH94 000001 DftSSVT (1) 

0 D!SSVT 000001 D!SSEG 
t:7' tftSVSR 000001 DftSFHC ..... 
(1) D!SICP 000001 DftSDOS 
EI DOSBLKSZ 000005 D!SBOP 
t:; DOSBUFF 000011 D!SBOP DftSICP 
(1) tOSBUFSP 000002 DftSDLB D!SICP rt 
(1) DOSBITE 000014 D!SICP 
H DOSCBlt 000002 D!SDLB DftSICP EI .... DOSCOUT 000002 DftSICP 
l:I tOSDD 000023 DftSAft S DftSBOP DftSCLS DftSDLB DftSDLK DftSDSV DftSOPL DftSBBV DftSSRV DftSSVT DftSVIP DMSICP I» 
rt DOSDDCAT 000006 DftSDLB .... tOSDEV 000017 DftSAft S DftSBOP DftSDLB DftSDLK DftS RBV DftSSBV DftSVIP DftSICP 
0 
l:I DOSDSK 000006 DftSDLB D!SDLK DftSBBV DftSSRV DftSICP 

en tOSDSftD 000027 D!SA!S D!SBOP D!SDLB DftSVIF D!SICP 
~ DOSDSHA! 000008 D!SCLS DftSDLB D!SICP .... [OSDSTIP 000001 D!SDLB 
0. DOSDU! 000012 DftSAftS D!SBOP DftSDLB DftSVIP D!SICP (1) 

DOSEID 000001 D!SDLB 
DOSEISIZ 000006 DftSDLB 
tOSEIT 000004 DftSBOP 
DOSEITCT 000002 D!SBOP 
DOSEITCI 000004 D!SICP 



Label Count References 

DOSEITNO 000009 DfilSAfilS DfilSDLE DfilSVIP DfilSICP 
DOSEITTB 000007 DfilSAfilS DfilSDLB DMSVIP DMSICF 
DOSFOBfil 000006 Dl!SBOP 
DOSIBIT 000013 Dl!SBOP Dl!SDLB DMSICP 
DOSITE!! 000007 DfIlSICP 
DOSJCAT 000006 Dl!SDLB 
DOSREIT 000011 DfilSAl!S DfIlSBOP DfilSCLS DfIlSDLB DMSOPL DfIlSSVT Dl!SVIP DfilSICP 
DOSOP 000034 DfIlSBOP DfilSDLK DfIlSRBV DfIlSSBV Dl!SICP 
DOSOSDSI 000007 DfilSDLB DfIlSICP 
DOSOSFST 000009 DfIlSBOP Dl!SDLB Dl!SDLK Dl!SBBV DfIlSSBV DMSICP 
DOSPEBfil 000002 DfIlSDLB 
DOSBEAD 000009 DfIlSICP 
DOSSAVE 000006 DfIlSICP 
tOSSECT 000028 DfilSAfilS DfilSBOP DMSCLS Dl!SDLB DfIlSDLK DMSDSV Dl!SOPL DMSBBV DMSSBV DMSSVT DMSVIP Dl!SICP 
DOSSERSE 000008 Dl!SICP 
tOSSYS 000002 Dl!SBOP DfilSOPL 
DOSTAPID 000002 DfIlSICP 
tOSUCAT 000006 Dl!SBOP DfilSDLB 
DOSUCBAl! 000007 DfilSEOP Dl!SDLE DMSICP 
DOSVOLNO 000011 Dl!SAMS Dl!SDLB DMSVIP DfIlSICP 
DOSVOLTB 000007 DMSAl!S DfIlSDLE DMSVIP DfIlSICP 
tOSWOBK 000004 DMSICP 
DOSYSIII 000015 DfilSAfilS DfIlSBOP DMSCLS DMSDLB DfIlSVIP DMSICP 
DOUBLE 000021 Dl!SDIO 
DSKAD 000002 Dl!SLIO 
tSKADB 000006 Dl!SACF DMSACl! DMSAUD DMSEBS 
DSKLII 000066 Dl!SLIO 
DSKLOC 000010 DMSACF Dl!SACl! DMSAUD DfilSEBS DfIlSFBS DMSl!OD 
DSKLST 000020 Dl!SACF DfilSACM DMSAUD DMSEBS DMSFBS DfilSMOD 
DSYl! 000002 DMSLSY 
DTAD 000029 Dl!SACC DfilSACM DMSAl!S DMSABE Dl!SASB DPISDIO DMSFOB DPISINS DPISQBY DfIlSBOS 
tTADT 000022 Dl!SACl! Dl!SASB Dl!SAUD DMSDIO DMSQBY Dl!STQQ 
DTAS 000003 DMSAMS 
tUALBOS 000008 DMSEDC 
DUMCOl! 000004 DMSSLI n 
I:UMPLIST 000002 DMSDBG DMSSVT t:I: 

Ul 
DYLD 000012 Dl!SLDB DMSLIO DPISOLD DMSSLB DMSSTG 
DYLIBO 000004 DMSSLB Dl!SSTG t'"I 

~ 
Ul DYl!BBBM 000005 Dl!SLIB DMSSLB DMSSTG t:T 
(!) I:YBAEBD 000004 Dl!SLDB DMSOLD Dl!SSLR (1) 

0 ~ 
r+ EDCB 000005 Dl!SEDC DMSEDI DMSEDI DMSGIO DPISSCB I 
~. EDCBENt 000001 Dl!SEDI r+ 
0 EDCBLTB 000002 DMSEDI 0 
t:I I 

t:I: 
W 0 . ~ 

~ 
~ ~ 
~. (1) 

11 
CD n 
0 11 
M- 0 
0 en 
11 en 
~. 

CD !:d 
en CD ...., 

(1) 

11 

'" 
(1) 

I,Q t:I 
(J1 0 

CD 



I\.) Label Count Beferences n 
\0 lJI: 
0'\ U'l 

EDCT 000026 DftSEDI t-t 
PI 

EDLIlII 000013 DftSEDI Df5SEDI t:I" 
IDftSK 000003 Dft SSCB CI> 

< .... 
lJI: EDBET 000003 DftSEDI DftSEDI I 

" EDiOBK 000001 DftSEDI rT 
w EFPBS 000004 DftSITS DftSOYS 0 
.,.J I 
0 1!GPBS 000021 DftSABlII DftSBSC DftSITS DftSCVS lJI: 
00 

EGPBO 000062 DftSDLB DftSlLD DftSITS DftSOVS 0 
~ 

U'l IGPBl 000037 DftSLDB DftSSftR s:: 
~ EGPBll 000002 DftSITS .... 
[J1 CI> 
rT IGPB12 000003 DftSSTG 
CI> EGPB14 000009 DftSITS tlftSSTG n 
iii t1 IGPB15 000034 DftSITS DftSOVS DftSSftB DftSSTG 0 
t-t EGPB2 000006 DftSITS [J1 
0 EBDBLOC 000003 DftSEDI DftSEDI. 

[J1 
IQ .... ElIIDCDADB 000006 DftSLDB DftSLSE DftSOLD ~ 
0 EBDTABS 000004 DftSEDI DftSEDI CI> 

~ 
PI ElIITADB 000008 DftSLDB DftSOLI: CI> 
1:1 ERTRAftE 000005 DftSLDB DftSLSB DftSOLD t1 
~ CI> 

EOCADB 000006 DftSDftP DftSSftR DftSSTG 1:1 
ttl EBBIT 000006 DftSACl DftSEBS DftSBRft 0 
t1 (I) 
0 EBBL 000001 DftSEBB 
t:I" EBDSECT 000002 DftSERB .... 
CI> ERllBl 000002 DftSEBB 
Ell ERllBD 000003 DftSERR 
c;, ERll SBI 000005 DftSEBB 
(1) EBllSBl 000003 DftSERR r+ ERllTI 000002 DftSEBB (1) 
t1 EBl2Cft 000004 DftSEBR 
Ell ERl2DI 000001 DftSEBB .... 
1:1 ERl2DT 000001 DftSERR 
PI ERl2PR 000002 DftSERR rT .... ERl2SI 000001 DftSERR 
0 ERLET 000001 DftSEBR 1:1 

lRftESS 000002 DftSERR 
Cil ERROft 000002 D!SEBR s:: .... ERPAS 13 000001 DftSERR 
~ ERPBlA 000002 D!SERB (1) 

ERPCS 000001 D!SERR 
ERPFl 000013 D!SERR 
ERPl2 000012 DftSERR 
EBPBDB 000001 DftSEBR 
!RPLET 000001 DftSERB 



Label Count References 

ERPNOft 000001 DftSERR 
ERPSBA 000004 DftSERR 
ERPTIA 000003 DftSERR 
ERRCODE 000063 DftSDIO 
ERRCODO 000009 DftSACft 
ERRCODl 000017 DftSACF DftSERS DftSRNft 
ERRET 000035 DftSITS 
ERRNOft 000002 DftSINT 
ERSAVE 000007 DftSERR 
ERSBD 000013 DftSERR 
ERSBF 000010 DftSERR 
ERSBL 000005 DftSERR 
ERSECT 000001 DftSERR 
ERSFA 000004 DftSERR 
ERSFL 000005 DftSERR 
ERSFLAG 000050 DftSERS DftSRNft 
ERSFLST 000002 DftSERR 
ERSSZ 000002 DftSERR 
ERTEIT 000004 DftSERR 
:ERTPL 000004 DftSERR 
ERTPLA 000006 DftSERR 
ERTPLL 000008 DftSERR 
ERTSIZE 000002 DftSERR 
:ERTl 000008 DftSERR 
ERT2 000013 DftSERR 
ESD1ST 000007 DftSLDR DIISOLD 
ESIDTB 000040 DftSLDR DftSOLI: 
EXADD 000008 DftSEXC DftSEIT 
EIAftLC 000005 DftSDBG 
EXAftLG 000006 DftSDBG 
EIECFLAG 000003 DftSEIC 
EIECRON 000004 DIISEIC 
EIENACiB 000009 DftSVIP 
EXENADtR 000002 DftSVIP n 
EILEODF 000004 DftSVIP 3: 

til 
EXLEODL 000001 DftSVIP 
EILEODP 000001 DftSVIP t-I 

I» 
EILEVEL 000006 DIISEXC DftSEXT ~ 

til BILJRN 000002 DftSVIP CD ..., 
CD EILJRNL 000004 DftSVIP t n BILLEN 000009 DftSVIP r+ r+ .... ULLERF 000004 DftSVIP 0 

t 0 EILLERL 000001 DftSVIP 3: t:I 0 
W ~ 

~ ..., 
0 CD .... n t1 t1 CD 0 n rn r+ rn 0 
t1 !:C .... 

CD CD I-h rn CD 
t; 
CD 

f\..) :::s 
\0 n 
..J 

(I) 



...., Label count References n 
I.C 13 
(X) til 

EXLLERP 000001 DftSVlP t-'I 

EILSYNP 000004 DMSVlP III 
t:r' 

<I EILSYNL 000002 DftSVlP CD ..., 
13 EILSYNP 000001 DMSVlP I 

" EINUft 000003 DftSEIC cT w 
...,J EISAVE 000005 DMSlTE 0 

I 
0 EISAVE 1 000006 DftSlTE 1:1: 

EITFLAG 000006 DftSlTE 0 
~ 

til EXTNPSW 000001 DftSlNl w 
'< EITOPSii 000017 DMSDBG DMSlTE ..., 
en CD cT EXTPSW 000005 DMSlNT DftSlTE 
CD EITRET 000002 DMSlTE n 
iii t1 EXTSECT 000014 DftSlN S DMSlNT DMSlOW DMSlTE DMSQRY DMSSET DMSSTG DftSSVN DftSSVT 0 
t-'I FCBBLKSZ 000005 DMSFLD DMSftVE DMSROS DMSSOP en 0 

I.Q FCBBUFF 000042 DMSARN DMSARX DMSASM DMSSBS DMSSEB DftSSOP DftSSQS DftSSVT rn 
..... PCBBYTE 000052 DMSARN DMSARX DMSASM DftSSBD DM SSBS DftSSEB DftSSOP DftSSQS DMSSVT ~ 
0 

PCBCASE 000004 DMSFLD DMSSOP CD DMSSEB H\ 
III FCBCATML 000019 DMSARB DMSARI DMSASft DftSFLD DMSSBS DftSSCT DMSSOP DftSSVT CD = FCBCLEAV 000004 DMSSOP H 
~ CD 

~ 
FCBCLOSE 000011 DMSARB DMSARI DftSASM DMSSCT DftSSOP DMSSQS = FCBCON 000002 DMSFLD DftSSOP 0 

H CD 
0 FCBCOUT 000025 DMSSBS DMSSCT DMSSEB DftSSOP DftSSQS DMSSVT 
t:r' FCBDCBCT 000004 DftSSOP ..., 
CD PCBDD 000024 DMSARB DMSARX DMSASM DMSFCB DftSFLD DMSftVE DMSQRY DftSSAB DftSSOP DMSSVT 
II FCBDEV 000040 DMSARN DMSARX DftSASM DMSFCB DftSPLD DMSMVE DftSQRY DftSSBS DftSSCT DftSSEB DftSSOP DMSSQS 
t:=' DMSSVT 
CD FCBDSK 000009 DMSARX DMSASft DMSFCB DMSFLD DMSMVE DMSSOP DftSSVT cT 
/I) FCBDSMD 000027 DMSALU DftSPLD DftSMVE DftSROS Dft SSBS DMSSEB DMSSOP DMSSQS 
H FCBDSNAft 000033 DMSARX DftSASM DMSFCB DMSPLD DftSftVE DftSQBY DftSROS DMSSBS DftSSCT Dft SSOP DMSSVT • ..... FCBDSORG 000005 DMSPLD 
= FCBDSTYP 000016 DMSFLD DMSQRY DMSROS DftSSEE DMSSOP DftSSVT 
III 
cT FCBENSlZ 000007 DMSPLD ..... FCBFlRST 000016 DMSABN DftSALU DMSFLD DMSQRY DMSROS DMSSAB DftSSOP Dft SSVT 
0 

= peBFORM 000008 DftSARR DMSARI DMSASK DMSSOP DMSSVT 
G) 

FCBlNlT 000065 DMSARR DMSARX DftSASM DMSFCB DMSFLD DftSftVE DftSSBS DftSSCT DMSSEB DftSSOP DMSSQS DMSSVT 
c FCBlO 000001 DMSSEB ..... FCBlOR!: 000003 DftSSQS 
~ FCBlOSi 000033 DMSARR DMSARX DMSASft DP1SFLD DMSSCT DftSSEB DP1SS0P DMSSQS CD 

FCBlOSW2 000017 DMSDSL DMSLDS DKSMVE DMSROS DKSSOP DKSSVT 
FCBlOWR 000003 DMSSQS 
FCBlTEM 000061 DMSARN DKSARX DMSASM DMSDSL DMSftVE DMSSED DftSSBS DftSSCT DMSSEB DftSSOP DftSSQS DMSSVT 
FCBKEYS 000009 DMSSBD DMSSOP DKSSVT 
FCBLRECL 000006 DftSFLD DMSKVE DMSROS DHSSCF 



Label Count References 

FCBf!!Ef!!BB 000009 DeSFLD Dl!SLDS Df!!SSOP 
FCBftODE 000006 DftSFLD DftSSBS DftSSEB Df!!SSOP 
FCBf!!VPDS 000016 Df!!SDSL DftSLDS Df!!SftVE DeSROS DftSSOP DftSSVT 
FCBNEXT 000003 DftSALU DftSROS 
FCBBUf!! 000013 DftSABB DftSFLt DftSQRY 
FCBOP 000116 DftSFCH DftSftVE DftSROS DftSSBD DftSSBS DftSSCT DftSSEB DftSSOP DftSSQS Dft SSVT 
FCBOPCB 000003 DftSeVE DftSSEE 
FCBOS 0000 17 DftSSBS DftSSCT DftSSEB Dessop DftSSVT 
FCBOSDSB 000013 DftSFLD DeSLts DftSROS 
FCBOSFST 000020 DftSALU DftSFCH DeseVE DftSRCS DeSSCT DMSSOP DftSSVT 
FCBPCH 000001 Df!!SFLD 
FCBPDS 000011 DftSSBS Df!!SSCT DftSSOP DftSSVT 
FCBPROC 000009 DeSABB Df!!SFLD DftSROS DMSSEB DftSSOP 
FCBPROCC 000005 DeSARR DeSARX DftSASe DMSSOF 
FCBPROCO 000003 DMSARB DMSSOP 
FCBPRPU 000006 DftSSEB 
FCBPTR 000001 DMSFLD 
FCBPVftE 000003 DftSSQS 
FCBRDB 000004 DMSABX DftSASft DftSFLD DftSSOP 
FCBREAt 000021 DI!SARN DeSARX DMSA SM DMSSBS DMSSEB DMSSQS 
FCBRECFe 000005 DeSFLD DMSMVE DMSROS DMSSOP 
FCBRECL 000005 DftSSEB DMSSOP 
FCBR13 000002 DeSSCT Dess EE 
FCBS ECT 000038 DMSALU DftSARN DeSARX DPISASM DMSDSL DftSFCH DeSFLD DftSLDS DftSMVE DMSQRY DftSROS DMSSAB 

DeSSBD DMSSES DMSSCT DPISSEB DMSSOP DMSSQS DPlSSVN DPlSSVT 
PCBTAB 000001 DMSSVT 
FCBTAP 000007 DPlSABX DeSASft DMSFLD DMSPlV! DPlSSBS DeSSCT 
FCBTAPID 000006 DMSFLD DMSMVE DPlSQRY DMSSEE 
FCBXTENT 000010 DMSFLD mlSSBD DMSSBS tMSSVT 
FCHAPHNM 000002 DMSFET 
FCHLENG 000003 DeSDOS DMSFET 
FCHOPT 000002 DMSFET 
FCHTAB 000008 DMSDOS DMSFET 
FFD 000005 DMSACM DMSAUD n 
FFE 000002 DMSACM DMSAUt ::. 
FFF 000004 DftSACM DMSAUD til 

FILE 000074 DMSLGT DMSLIE DeSLIO t-4 
FILEBU FF 000024 DMSEXC DMSROS DMSSVT I» 

0-
til FILEBYTE 000009 DMSEXC DMSROS DMSSOP DMSSVT (!) 

(1) FILECOUT 000002 DMSSVT 
...., 

C'l I 
r+- FILEITEM 000007 DMSSVT r+ .... FILEMOtE 000013 DMSEXC DMSSOP DMSSVT 0 
0 FILEMS 000004 DftSEDI 

I 
=' ::. 

0 
w ,. . c= ...., 
t::I (!) .... 
11 n 
(1) t1 
C'l 0 
r+- en 
0 en 
11 
1-" ~ 
(1) (1) 

en '"'" CD 
t1 
CD 

I\,) t:J 
\D 0 
\D (1) 



w label Count References n 
0 13: 
0 til 

FILENAME 000044 DftSINT DftSROS DMSSCT DMSSCP DftSSVT t-t 
~ FI1EREAD 000002 DftSROS DftSSOP 0" 

FILETYPE 000013 DftSINT DftSSOP DMSSVT CD < I-' 
3: FINIS 000064 DMS1DR DftSLIB DMSOLD I 

" FINISLST 000005 DMSAUD DMSDSK DftSFNS DftSINT c+ w 
FIRSTDMP 000002 DftSDBG 0 

~ I 
0 FLAG 000129 DftSEDI DMSEDX DftSSCR 3 .. 0 FLAG10C 000004 DftSEDX DMSSCR I:l.o 
til FLAGS 000122 DftSFRE DftSLDR DftSLIB DftS1SB DftS01D £:i 
~ FLAG 1 000057 DMS1DR DMS1IO DMSLSB DMSOLD I-' 
Ul CD c+ FLAG2 000122 DMSEDI DMSEDX DMSLDR DftSlIB DMSLIO DMSLSB DMSOLD DMSSCR 
CD F1C1N 000003 DMSFRE n s t1 FLGSAV F 000002 DftSALU 0 
I:'" FLHC 000008 DMSFRE Ul 
0 Ul 

;,Q FLNU 000007 DftSFRE ..... FLPA 000008 DftSFRE !XI 
0 CD FMODE 000043 DftSEDI DftSEDX DMS1GT DMSlIE DMSSCR I-h 
III FNAME 000053 DMSEDI DMSEI:X DMSLGT DMS1IB DMSLIO DMSSCR CD 

= FNBIT 000003 DMSFNS t1 p. 
CD 

FPR10G 000001 DMSDBG = t1j 
FPTR 000008 DMSEDI 0 

t1 CD 
0 FRDSECT 000004 DMSFRE DMSSET 
0" FREEFLG 1 000028 DMSFRE I-' 
CD FREEF1G2 000028 DMSFRE 
EI FREEHN 000006 DftSFRE 
t::I FREEHU 000006 DMSFRE 
CD FREELEN 000006 DMSEDI DMSEDX c+ 
CD FREE1B 000013 DMSFRE 
t1 FR EELOWE 000052 DMSABN DMSARX DMSASM DMSESC DMSDLK DMSDOS DMSDSV DMSFCH DMSFRE DMSINS DMSINT DMSLBM EI ..... DMSLDR DMSLSE DMSMOD DMSOLD DM SSET DMSSLN DMSSMN DMSSRT DMSSTG 
= FREELOW 1 000004 DMSFRE DMSSET III 
c+ FREE1U 000006 DMSFRE ..... FREERO 000003 DftSDIO 
0 FREESAVE 000012 DMSFRE = FRF1E 000002 DMSFRE en FRF1C 000003 DMSFRE c: ..... FRF1E 000003 DMSFRE 
I:l.o FRF1H 000006 DMSFRE CD 

FRF1L 000006 DMSFRE 
FRF1M 000004 DMSFRE 
FRF1N 000003 DMSFRE 
FRF1V 000003 DPISFRE 
FRF2CK E 000003 DMSFRE 



Label count References 

lBF2CKT 000007 DftSlBE 
FBF2CKX 000003 DftSFBE 
FRF2CL 000004 DftSlRE 
FBl2BOI 000010 DftSFBE 
lBF2SVF 000003 DftSlBE 
lBSTLOC 000008 DftSftOD DftSSLB 
FBSTSDID 000002 DftSLDB Dl!SLSE 
FSCBBUIl 000001 DftSDLK 
FSCBD 000012 Dl!SDLK 
lSCBFft 000003 DftSDLK 
FSCBFB 000022 Dl!SDLK 
lSCBlV 000001 DftSDLK 
FSCBITBO 000013 DftSDLK 
lSIZE 000009 DftSEDI 
FSTBKiD 000001 DftSEBS 
FSTD 000011 DftSCPY DftSEDX DftSEXC Dl!SGBD Dl!SBCP Dl!STPE 
FSTDlTEi 000001 DftSGBD 
FSTDBC 000006 DftSDSK Dl!SEBS Dl!STPE 
FSTFlCT 000001 Dl!SCPY 
ISTFlP 000001 Dl!SSTT 
lSTFlB 000001 Dl!SSTT 
FSTlli' 00.0.0.01 DftSSTT 
FSTFB 000008 Dl!SCPY Dl!SDLK Dl!SSTT Dl!SZlP 
FSTlCL 000003 Dl!SEBS Dl!STPE 

., FSTFlliRD 00.0012 DftSClT Dl!SCIT Dl!SCBD Dl!S!DX Dl!SEXT Dl!SIBT Dl!SSVB 
FSTFl!OD! 00.0007 DftSEDX DftSBCP 
lSTFBO .000001 Dl!SSTT 
FSTlROX 000001 DftSSTT 
FSTFBi 00.0003 Dl!SDLK DftSSTT Dl!SZlP 
FSTFBiX 000002 DftSDLK DftSSTT 
FSTFV 000023 DftSll!S Dl!SlBX DftSlSft DftSBBD Dl!SBSC DftSBiB Dl!SCPY Dl'ISDLK Dl!SDSK DftSLEl'I Dl'ISLKD Dl'ISl'IVE 

DftSTPE Dl!SUPD Dl!SZlP 
lSTFiDP 000002 Dl!SERS 
ISTIC 0.00017 DftSlCF D1!SBOP Dl!SBBD Dl!SCPY Dl!SDLK DftS DSK DftSLBl! Dl! Sl!DP Dl!STPE Dl!SZlP n 
lSTIL 000023 Dl!Sll!S Dl!SlBX DftSlSft Dl!SBSC DftSBiB Dl!SCPY Dl'ISDLK Dl!SDSK DftSLBl! DftSLKD Dl!Sl'IVE Dl!STPE 3: 

DftSUPD DftSZlP en 
FSTL 000006 Dl!SlBB Dl!SlRX DftSlSft DftSBSC DftSDSL Dl!SLlF t"'4 
FSTLBECL 000001 DftSEXC ~ 

0' 
en FSTl! 000030 Dl!Sll'IS Dl!SlBB DftSlRX DftSlSft DftSBOP DftSBSC Dl!SCPY Dl'ISDLK Dl!SDSK Dl!SERS Dl!SLBft Dl!SLKD CD 
CD DftSBBft Dl!SSTT DftSTPE Dl'ISUPD Dl!SZlP t-J 
0 I 
c+ FSTB 000014 Dl!SlftS DftSCPY Dl'ISDSK Dl!SEBS DftSBBft DftSTPE c+ 
!oJ. FSTRECCT 0000.01 DftSEDX 0 
0 lSTBECFl! 000001 DftSEDX I 
t:I 3: 

0 
W ~ 

C 
t-J 

t:1 (1) 
!oJ. 
H n 
CD H 
0 0 
c+ en 
0 en 
H 
!oJ. l:O 
CD CD 
en H\ 

CD 
H 
(1) 

W t:I 
0 0 

It) 



w Label Count References n 0 

'" 
::I: 
til 

FSTRP 000004 DMSACF DMSBRD DMSTPE t-t 
FSTSEC'I 000048 DPlSACF DPlSAPlS DPISARN DMSARX DM SASPI DMSBOP DMSBRD DMSBSC DMSBWR DPlSCPY DMSDLK DPlSDSK III 

tJ' 

< DMSDSL DPISERS DMSLAF DMSLBPI DMSLKD DMSMDP DMSMVE DMSRNM DMSSTT DMSTPE DMSUPD DPlSZAP CD 
3: FSTT 000009 DMSACF DMSDSK DMSERS DMSRNI1 DI1STPE ~ 

I 

" FSTWP 000009 DMSACF DI1SBWR DMSTPE rt' w 
.....J FSTXTADR 000007 DMSLDR DMSLOA DMSLSB DMSOLD 0 

I 
0 FSTYR 000006 DM SCPY 01: 

FTYPE 000016 DMSEDI DMSEDX DMSLGT DMSLIB DM SSCR 0 
!:l.o til FV 000013 DMSEDI DMSEDX DMSSCR c:: "< 

CIl FVS 000002 DMSITE ..... 
rt' FVSDSKA 000002 DMSACM DMSA OD CD 
CD F VSECT 000047 DMSABN DMSACC DMSACF DMSACM DM SAL U DMSAOD DM SBTB DMSBTP DPlSBW R DPISCIT DMSCRD DMSCWR n e 

DMSCWT DPISDIO DMSDSK DPISERS DMSFNS DMSINT DMSITE DMSITI DMSITP DMSITS DMSLFS DMSMOD t1 
0 t-t DMSQRY DMSRNM DMSSLN I:MSTPE DMSTQQ CIl 0 

I.Q FVS ERASO 000013 DMSERS DMSRNM CIl .... F VSERAS 1 000012 DMSERS DMSRNM !:tI 
('l 

FVS ERAS2 000004 DMSERS DMSRNM CD 
HI III FVSFSTAD 000004 DMSMOD DMSPUN DMSSTT CD ::s t1 !:l.o FYSFSTCL 000001 DKSKOD CD 

't:l 
F VSF STDT 000002 DMSSTT ::s 

t1 FVSFSTFY 000001 DMSMOD ('l 

CD 0 FVSFSTIC 000003 DMSACM DPlSBTE DKSMOD 
tJ' FVSFSTIL 000003 DKSACK DKSBTB D!lSMOD ..... 
CD FVSFSTM 000002 DMSDSK DMSSTT e FVSFSTN 000001 DMSSTT 
tI FW4 000002 DPISACC DMSACF 
CD FXD 000021 DMSDSL DMSSEB DMSSOP DKSSQS rT 
CD Fa 000008 DMSDBG D!lSINS DMSITE I:MSITS 
t1 F2 000008 DMSITE e .... F4 000010 DMSITE 
::s F6 000012 DKSDBG DKSITE DMSITS DMSSCP III 
rt' F65535 000008 DMSACF DKSDSK DMSP.lOD DMSPNT DMSSLB DMSTQQ .... F800 000004 DMSACM DM SA OD DMSDSK 
0 
::s GETFLAG 000007 DMSEDI 

Cil 
GET 1 000002 DMSLSY 

c:: GIOPLIST 000001 DMSSCR .... GPRLOG 000008 DMSDBG 
!:l.o GPRSAV 000004 DMSLDR DMSOLD CD 

GRAFDEV 000001 DPISIB S 
HALF 000002 DMSEDI 
HEX 000043 DMSDBG 
BEXBEI 000010 DPlSDBG 
HIP HAS 000005 DI1SFCH DMSFET 



Label count References 

BIPROG 000002 DMSFCB 
BOLD 000012 DftSITI 
BOLDFLAG 000015 DMSSCR 
IADT 000002 DftSACC DMSLAD 
IBADEB 000017 DftSFCB DMSMVi DMSSBS DMSSCT DMSSOP DMSSQS DMSSVT 
IBADECB 000006 DMSSBD DMSSBS DMSSCT DMSSEB DMSSVT 
IBAJFCB 000001 DMSSVT 
IJBABTAB 000005 DftSBAB DftSDOS DMSITP 
IJBBOX 000001 DMSSTG 
IJBCCiT 000001 DftSDOS 
IJBFLG04 000001 DMSBOP 
IJBFTTAB 000004 DftSDOS DMSFET 
IKQACB 000007 DftSBOP DMSVIP 
IKQEXLST 000003 DMSVIP 
IKQRPL 000006 DMSVIP 
INCRNO 000003 DftSEDI 
INPUT 000062 DMSDBG 
INPUTSIZ 000002 Dft SDBG 
INPUTl 000002 DMSDBG 
INSTALID 000005 DftSINI DMSPRT 
INTINFC 000004 DMSDOS DMSITP 
INVLD 000003 DftSEDI DMSEDX 
lOAD 000002 DMSEDX 
IOBBCSi 000003 DMSSBS DMSSEB 
IOBBECBC 000002 DMSSEB 
IOBEECBP 000003 DftSSBS DMSSEB 
IOBBFLG 000002 DMSSBS DMSSCT 
IOBCSi 000005 DMSARN DMSARX DMSASM DMSSCT 
IOBDCBPT 000001 DMSSOP 
IOBECB 000002 DftSSQS 
IOBECBPT 000003 DMSSQS 
IOBEND 000001 DMSSOP 
10BIN 000031 DMSARN DMSARX DMSASM DMSSBD DMSSBS DMSSEB DMSSQS DMSSVT 
IOBIOFLG 000044 DftSARN DMSARX DMSASM DMSSBD DMSSBS DMSSCT DMSSEB DftSSOP DftSSQS DMSSVT (") 

IOBNXTAD 000003 DMSSOP ::I: 

IOBOUT 000007 DMSSBS DMSSCT DMSSQS til 

IOBSTART 000008 DMSSOP DMSSQS t-' 
IOBUPD 000004 DMSSQS PI 

IOCOMM 000007 DMSDIO 
~ 

til 
(I) 

(I) IOID 000002 DftSEDI DMSEDX ~ 

0 lOLl ST 000048 DMSFDI DMSEtX 
, 

tT 
rt 

.... IOMODE 000003 DMSEDI DftSEDX 0 

0 IONPSW 000006 DMSIIiI DMSINS DMSIOi DM SITE 
, 

=' 
::I: 
0 

W 
j;l.o 

= . 
~ 

t::I 
(I) 

.... (") 
H 
(I) 

H 

0 
0 

tT 
en 

0 
en 

H t::C .... (I) 
CD I-h en CD 

H 
CD 
=' W 0 

0 CD w 



w Label Count References n 0 
3 .&= til 

IOHTABL 000012 D!SABH D!SHDI D!SIHT D!SITI 1:"4 
~ IOOLD 000002 D!SDIO D!SITI tr 

IOOPSW 000025 D!SCIT D!SDBG D!SDIO D!SIHI D!SIOW D!SITE D!SITI (1) < I-' 3 IOPSi 000001 D!SITI I 

" IOSAVE 000005 D!SITI rT w 0 "oJ IOSECT 000004 D!SABH D!SBDI D!SIHT D!SITI I 0 IPLADDR 000003 D!SBTP D!SIHS 3 .. 
0 IPLCCWl 000001 D!SIII ~ til IPLPSW 000009 D!SABH D!SDBG D!SIHI D!SINS s:: 

IooCI 
IS 000003 D!SZAP I-' en (1) 

rT ITE! 000055 D!SEDI D!SEDI D!SSCR (1) 
ITSBIT 000007 D!SITS n iii H 
JAR 000003 D!SEDI D!SEDI 0 1:"4 JCSi2 000001 D!SDOS en 0 en IQ JCSi3 000016 D!SOPT D!SSET ..,. 
JCSi4 000005 D!SDOS DftSOPT D!SSET !:tl 0 (1) 
JPCBIHD2 000002 D!SPLD D!SSOP HI ~ JPCB!ASK 000022 D!SSOP DftSSVT (1) 

t:I H 
~ JPCBOPHO 000001 D!SPLD (1) 

JPCDSORG 000002 D!SSOP t:I ttl 
000003 0 

H JPCKEILE D!SPLD D!SSOP (1) 
0 JPCLI!CT 000003 D!SPLD D!SSOP tr 

JPCLRECL 000001 DftSSVT I-' 
(1) JPCOPTCD 000008 D!SPLD D!SSOP s 

JPIRST 000009 DftSHDS 
t=' JPLAGS 000014 D!SDBG 
(I) 

JLAST 000010 DftSBDS rT 
(1) JIU!B 000012 DftSHDS DftSIHT 
H JOBDATE 000003 D!SDLK D!SDOS S ..,. JRO 000002 D!SITE 
::s JRl 000001 D!SITE ~ 
(+ JSRO 000009 DftSACP D!SACft ..,. 

JSRl 000002 D!SACP 0 
t:I JSI! 000002 D!SLSI 

en KEICBNG 000006 DftSSBD D!SSVT 
s:: KEYCOOT 000004 D!SSBD DftSSVT ..,. 

KEYPOR! 000002 D!SSVT 
~ KEYLIGTB 000010 D!SSBD D!SSVT (1) 

KEI!AI 000001 D!SITS 
KEYHA!E 000007 DftSSBD DftSSVT 
KEYOP 000009 D!SSBD D!SSYT 
KEYP 000008 DftSITS 
KEYS 000003 DMSITS 



Label count References 

KEISECT 000002 DMSSBD DMSSVT 
KEITABLE 000011 DftSSVT 
KEITBLAD 000009 DMSSBD DMSSVT 
KEITBLNO 000016 DMSSBD DftSSVT 
KEYTYPE 000002 DMSSVT 
KXFLAG 000011 DftSABN DftSCIT DftSCRD DMSCWR DftSCWT DMSITI DftSITS 
KXiANT 000004 DftSABN DftSCIT DftSITI DMSITS 
KXWSVC 000005 DKSCRD DftSCWR DMSCWT DftSITS 
LABLEN 000003 DftSDLK 
LASTCMND 000010 DftSEXT DMSINT 
LASTCYL 000003 DftSDIO 
LASTDftP 000001 DftSDBG 
lASTEXEC 000002 DMSEXT 
LASTBED 000003 DKSDIO 
LASTLIliE 000010 DftSDBD 
LASTLftOD 000002 DftSftOD DftSSLN 
lASTLOC 000001 DMSPET 
LASTTftOD 000008 DftSITS DftSLSB DftSMOD DMSSLN 
lDMSROS 000004 DftSABN DMSACft DMSALU 
LDRADDR 000014 DMSLDR DftSLIO DMSLOA DMSCLD 
lDRFLAGS 000018 DMSLDB DMSLOA DftSMOD DftSOLD DMSSLN 
LDRRTCD 000002 DMSLDR DMSOLD 
lDRST 000009 DftSLDR DMSLGT DftSLIB DMSLIO DMSLSB DftSOLD 
LENOVS 000003 DMSITS DMSOVR 
lINE 000040 DMSDBD DMSEDI DftSEDX 
LINELOC 000002 DftSEDX DKSSCR 
LINEl 000002 DMSDBD 
LINE1A 000001 DftSDBD 
LINE1B 000001 DftSDBD 
LINF1C 000001 DMSDBD 
lINKLAST 000007 DMSSAB DMSSLN DMSSTG 
LINKSTRT 000009 DftSSLN DftSSTG DMSSVT 
lftCURR 000005 DMSEDI 
LftINCB 000005 DftSEDI (") 

lftSTART 000009 DMSEDI Dl!ISEDX 3 

LOC 000145 DMSABN DMSALU DMSFCB DMSPLD Dl!ISROS DMSSAB DftSSOP DftSSQS Dl!ISSVN DftSSVT DftSZAP 
til 

LOCCNT 000034 DMSACft Dl!ISBTB DMSEDX Dl!ISFET DKSFRE DKSINS DKS1DR DKSLOA Dl!ISl!IOD DKSOLD Dl!ISSET DKSSLN t-t 
DKSSl!IN Dl!ISSTG III 

0-
til 10CCT 000024 DftSLDR Dl!ISLSE Dl!ISOLD CD 
CD LOWSAVE 000003 DftSDBG DftSSVT I-' 
0 I 
("t lSTFINBD 000005 Dl!ISCIT DMSCBD DftSSVN ("t 

~. LTK 000009 Dft SAft S Dl!ISDOS Dl!ISITP DMSSET 0 
0 000016 

I 

= lUBPT Dl!ISAMS Dl!ISBOP DKSCLS DMSDLB DKSFCB Dl!ISLLU DMSOPL DMSPBV DMSBRV DMSSET Dl!ISSRV DKSXCP 3 
0 

W Po 
C 
I-' 

t:I CD 
~. 

(") 1"'1 
CD 1"'1 
0 0 
t+ [Jl 

0 [Jl 

1"'1 !:I:! ~. 

CD CD 
[Jl I-h 

CD 
1"'1 
CD 

w t:I 
0 0 
U1 CD 



w 
0 Label count References 0'1 

() 

1UNDEF 000012 DftS1DR DftS01D 3: 
til 

lIACDIRC 000011 DftSABN DeSSCT Dessop DMSSTG DftSSVT 
ftAC1IB1 000009 DftSG1B DftSQRY DeSSCT DlISSCP DMSSTG DMSSVT t"'" 

-= lIAINAD 000003 DMSEDX 
~ 

::I: t:r 

" MAINHIGB 000039 DMSARX DftSASM DMSBSC DMSDCS DeSFRE DMSINS DMS1DR DftS1SB DMSSET DftSSftN DMSSRT DeSSTG CD 
w eAIN1IST 000010 DMSDOS DlISS"H DMSSTG f-I 
-..J I 
0 ftAINSTRT 000005 DeSDOS DMSSeN DMSSTG r+ 

MAX 000014 DftSFRE 0 
I 

til MAXCODE 000002 DftSFRE 13: 
J< MCKM 000014 DMSIHI DMSIHS DMSITS 0 
til 0.. 
r+ MCKNPSW 000001 DMSINI ~ 
CD lIEMBOUliD 000008 DMSLDR DlISOLt f-I 
Ell CD 

MISFLAGS 000033 D"SABN DMSACC D"SA"S DMSARN D"SARX DMSASM DMSBSC DMSCPY D"SCRD DlISEXC DlISINS D eSI NT 
t"'" DMSITS DlISLBM DMSLBT DMS1KD DMSQRY DMSSET DMSSMH DMSSRT DMSSTG DMSUPD () 

0 t; 
I.Q MOD1IST 000002 DMSS1N 0 
1-" eSGF1AGS 000024 DMSCAT DMSCIT DMSCRD DMSCWR DMSEDI DMSEI'I DMSINS DMSINT DMSQRY DMSSET DMSTYP Ul 
() 

MVCNT 000001 DMSDBG Ul 

~ lIVCNT2 000001 DMSDBG !:t1 

= NEED 000007 DMSLDR DftSOLD CD 
0.. HI 

NEWB1KS 000005 DMSSVT CD 
t,;:j NEWftODE 000009 DMSEDI t; 
t; CD 
0 BEiNUIE 000019 DMSEDI = 
t:r NEWTYPE 000005 DMSEDI 

() 

f-I CD 
CD HEXTO 000001 DMSITI 
s NIC1PT 000005 DMSBOP DftSC1S DMSDLB DMSLLU DMSXCP 
tj BOABBREV 000006 DMSIRA DMSINT DMSQRY DMSSET 
CD BOAUTO 000007 DMSLDR DMSLIB DMSLOA DMS1SE DMSOLD 
r+ NODUP 000006 DMSLDR DMSLSE DMS01D CD 
t; NOERASE 000008 DMS1IO DMSLOA 
Ell BOIMPCP 000007 DMSIHT DMSQRY DMSSET 1-" 
= NOIMPEX 000004 DMSIHT DMSQRY DMSSET 
~ ROIBV 000005 DMSLDR DMS10A DMS1SB DMS01D r+-
1-" BOLIBE 000007 DMS1DR DMSLIB DMSLOA DMSLSE DMSOLD 
0 ROMAP 000007 DMSLIO DMSLCA DMS1SB = BOP 000014 DftSINI 
en ROPAGREL 000005 DftSABN DMSIHT DMSQRY DMSSET 
~ 
1-" NORDYftSG 000002 DMSSET 
0.. NORDYTIPl 000006 DMSINT DMSQRY DMSSET 
CD NOREP 000006 DMSLDR DMSLOA DMS1SB DMSC1D 

BOSLCADR 000006 DMSLDR DMSOLt 
NOSTDSYN 000005 DMSINA DMSQRY DMSSYN 
ROTEXT 000008 DMSDOS DMSFET 
NOTYPING 000010 DMSCAT DMSCIT DMSCRD DMSCWR DMSEDI DMSEXT DMSINT DMSTYP 



Label count References 

1II0VnREAD 000003 DPlSHJS DPlSIlIJT DPISSET 
lIJRPlRET 000009 DftSABlIJ DPISITS 
lIJUCCODE 000004 DftSFRE 
lIJUCKEY 000002 DftSFRE DftSSET 
BUCOI 000168 DftSABlIJ DftSACC DftSACF DftSACPI DPISALU DnSAnS DPISARE DftSARI DftSARX DftSASM DftSASlIJ DMSAUD 

DftSBAB DftSBOP DftSBRD DftSESC DMSBTE DftSBTP DPlSBWR DMSCAT DftSCIO DftSCIT DftSCLS DftSCMP 
DftSCPF DPlSCPY DftSCRD DMSCWR DMSCWT DMSDBD DMSDBG DMSDIO DPlSDLB DPlSDLK DftSDMP DMSDOS 
DftSDSK DPlSDSL DftSD SV Dl!ISEDI DftSEDX Dl!ISERR Dl!ISERS DftSEXC DftSEXT Dl!ISFCH DftSFET DftSFLD 
DPISFIS DftSFOR DPISFRE DPISGIO DPlSGLB DftSGlIJD DPISHDI DMSHDS DMSINA DftSIlIJI DftSIlIJft DIISINS 
DMSINT DftSIOW DMSITE Dl!ISITI DPISITP Dl!ISITS DftSLBft DftSLBT DftSLDR DftSLDS DftSLFS Dl!ISLGT 
DMSLIB DPISLIO Dl!ISLKD Dl!ISLLU DPISLOA Dl!ISLSB DPlSLST DftSLSY DftSMDP DMSftOD DMSftVE Dl!ISOLD 
Dl!ISOPL Dl!ISOPT Dl!ISORl DftSOVR Dl!ISOVS DftSPIO Dl!ISPlIJT Dl!ISPRT Dl!ISPRV DftSPUlIJ DftSQRY Dl!ISRDC 
DftSRNE DftSRlIJft DMSROS Dl!ISRRV DftSSAB DMSSBS DftSSClIJ DMSSCT Dl!ISSEB DftSSET Dl!ISSLN DMSSMN 
DMSSOP DPlSSQS DMSSRT DMSSRV DMSSSK DMSSTG DMSSTT DMSSVN Dl!ISSVT DftSSYI DftSTIO DMSTPD 
DMSTPE DMSTQQ DMSTYP DftSUPD DMSVIB Dl!ISVIP Dl!ISVSR DftSXCP DMSZAP 

IUCRSV3 000001 DftSDOS 
IUft 000562 Dl!ISFRE Dl!ISSET 
JiUftBYTE 000005 DftSLDR DPISLIE Dl!ISOLD 
lWftFINRD 000014 DMSABN DftSBTP DftSCAT Dl!ISCIT DftSCRD DftSSVN 
IIUl!ILOC 000002 DftSEDX DftSSCR 
lIJUftPlIJDWR 000016 DftSCIT DftSCRD DftSCWR DftSCWT DftSITE Dl!ISSVN 
BITSYft 000004 DftSLDR DftSLSY DftSOLD 
OLDEST 000001 DftSITI 
OLDPSi 000069 DftSABN DftSBSC DftSERR Dl!ISITS DMSSTG 
OPSECT 000028 DftSABN DftSARI DftSASft Dl!SCRD DMSCWR Dl!SCWT Dl!ISDBG DPISEXC DftSEXT DftSINS Dl!SINT DftSROS 

DMSSBD Dl!SSES Dl!SSCT DMSSEE DftSSOP DftSSQS Dl!ISSVlIJ Dl!ISSVT 
OPSW 000012 DftSITP 
OPTFLAGS 000030 Dl!ISABlIJ Dl!ISIlU DftSIlIJS DnSINT Dl!ISQRY Dl!ISSET DnSSYN 
OPTNBYTE 000002 DnSSTG 
eRG 000004 DMSDBG 
OSADTDSK 000007 DnSLDS Dl!ISROS 
OSADTFST 000006 Dl!ISAEN Dl!ISALU DnSROS 
OSADTVTA 000008 DftSACft DftSLDS DftSROS 
OSADTVTB 000008 DftSLDS DftSROS 
OSFST 000013 DftSABN DftSALU DftSBOP DftSDLK Dl!ISFCH Dl!ISftVE DftSROS Dl!ISRRV DftSSOP DftSSRV DftSSTT (') 

:31: 
OSFSTALT 000009 Dl!ISROS en 
OSFSTBLK 000005 DftSftVE DftSROS DftSSOP t-4 
OSFSTCHR 000013 Dl!SROS Dl!ISSOP III 

til OSFSTDBK 000002 DftSROS e-
CI) 

CI) OSFSTDSK 000006 Dl!ISDLK DMSFCH Dl!ISROS DMSRRV Dl!ISSRV ..... 
(1 

OSFSTDSN 000003 DftSROS I c+ c+ ,.... OSFSTEIiD 000007 DftSROS 0 
0 OSFSTEI4 000006 DftSROS I 
I:' :31: 

W 
0 
PJ . 
~ 

t:::! 
..... 

,.... CI) 

t1 (') 
CI) t1 
(1 0 c+ en 
0 en 
t1 ,.... 

~ 
CI) CI) en HI 

CI) 

t1 

W 
CI) 
I:' 

0 (1 

" CI) 



w Label Count References n 
0 3 Q) til 

OSFSTFLG 000023 DMSROS D!SSTT t.-4 
I» 

OSFSTFM 000007 D!SBOP D!SROS DMSSTT 0-
<I OSFSTFVF 000002 Dt!SBOS (I) 

3: OSFSTLBL 000005 DMSftVE DMSROS DMSSOP 
I-' 

" 
I 

OSFSTLTB 000005 DMSABN DMSALU DftSROS r+ w 0 .....J OSFSTMVL 000001 DftSROS I 0 OSFSTNTE 000010 D!SBOS 3: 00 

OSFSTNXT 000005 DftSABN DMSALU DMSROS 0 
Pol 

til OSFSTBFM 000012 DMSBOP DMSfilVE DfilSROS tMSSOP ~ "< 
til OSFSTBSi 000009 Dt!SROS I-' 

(I) 
r+ OSFSTTBK 000008 DftSBOS (I) 

OSFSTTYP 000003 Dt!SROS n iii 11 

t.-4 
OSFSTUt!V 000001 DftSBOS 0 
OSFSTXNO 000005 DftSBOP DftSROS til 

0 til 
~ OSFSTXTJ 000013 DMSBOP DfilSDLK DMSFCB DftSROS DftSRRV DftSSRV .... 

OS1OTYPE 000015 DftSARX DfilSASM Dt!SSBS Dt!SSOF DMSSQS DMSSVT !::C 0 (I) 
OSRESET 000010 DMSEXT DMS1JT DftSLDR DftSOLD DftSSLJ DftSSVT HI I» OSSFLAGS 000057 DftSARN DftSARX DMSASft DMSC1T DftSEXT Dt!S1NT DMS1TE DMSLDR DftSL1B DMSL10 Dt!SOLD DMSSLN (I) 

~ 11 
Pol DMSSftl DfilSSTG DftSSVJ DftSSVT (I) 

"t:I OSSftRU 000007 DftSSftJ DMSSTG ~ 

11 OUTBUF 000054 DfilSLDB DfilSLGT DftSL1B DMSL10 DMSLSB DMSOLD 0 
(I) 

0 OUTPT 1 000009 DMSDBG 0-
I-' OUTPUT 000031 DMSLDB Dt!SL1Q DMSOLD 
(I) OVAPF 000004 DftSOVR DftSOVS s 

OVBPF 000005 DfilSOVB DftSOVS 
t=' OVF1F 000001 DftSOVR 
Q) 

OVF1FS 000001 DMSOVB r+ 
(I) OVF1GA 000001 DftSOVR 
11 OVF1GB 000001 DMSOVB s .... OVF 1GS 000001 DftSOVR 
~ OVF10N 000009 DftSOVR DMSOVS I» 
r+ OVF1PA 000001 DMSOVR .... CVF2CM 000002 DMSOVR 0 
~ OVF2NR 000002 DftSOVR 
Cil OVF20S 000002 Dt!SQVB 
~ OVF2iA 000002 DftSOVR .... OVIND 000001 Dt!SBSC 
Pol 
(I) OVSAFT 000004 DftSOVS 

OVSECT 000003 DMS1TS DftSOVB 
OVSBO 000004 DftSC1T DftSOVR DftSOVS 
OVSOR 000009 DMSC1T DftSOVR DftSOVS 
OVSSo 000006 DftSC1T DftSOVR DMSOVS 
OVSTAT 000019 DfilSC1T DMSOVR DMSOVS 



Label count References 

PACK 000026 DftSLIO 
PADBUF 000017 DftSEDI D~SEDX 

PADCHAR 000007 D~SEDI D~SEDX 

PARf'lLIST 000013 DftSLDB DftSLIO Df'lSOLD 
PCPTR 000005 DftSBAB DMSDOS DMSITP 
PDSBLKSI 000008 DftSSVT 
PDSDIR 000003 DftSSVT 
PDSSECl 000002 D~SSTG Df'lSSVT 
PENDREAD 000022 DMSCIT DMSCRD DMSCWR DMSCWT D~SITE D~SSVN 

PEND WRIT 000011 D~SCIT D~SCWR D~SSVN 

PG~NPSW 000006 DMSABN DftS!NS DMSITP 
PGMOPSi 000016 D~SABN DMSDEG DMSITP DMSSAB 
PGMSECT 000006 DMSITP DMSSAB DMSSLN DMSSTG DMSSVT 
PIBADR 000011 DMSBAB DMSDOS DMSITP 
PIBFLG 000001 DMSDOS 
PIBPT 000023 DMSAMS DMSBAE DMSBOP DMSCLS DMSDOS DMSITP DMSSET 
PIBSAV E 000016 DMSBAB DMSDOS DMSITP 
PIB2PTR 000002 DMSDOS DMSVSR 
PICADDR 000004 DMSITP DMSSTG 
PIE 000002 DMSITP 
PIK 000017 DMSBAB DMSDOS DMSITP DMSVSR 
PLIST 000115 DMSEXC DMSIBT DMSSOP DfIlSSVT 
PLISTSAV 000016 DftSLDR DftSOLD 
PliOTFND 000008 DftSDOS D~SFET 

PO 000013 DMSDSL DMSFCH DfIlSLDS DfIlSRCS D~SSBS DMSSOP 
POINTER 000026 D~SFRE 

PPBEG 000002 D~SDOS 

PPEND 000019 D~SDMP D~SDOS D~SSET DfIlSSMN DMSSTG DfIlSVSR 
PREVC~ND 000004 DMSEXT D~SINT 

PREVEXEC 000001 D~SEXT 

PREVIOUS 000016 DMSSBS D~SSOP DMSSQS DMSSVT 
PREXIST 000004 DMSLDR D~SOLL 

PRFPOFF 000009 DMSDBG DMSFRE DMSITS D~SCRY DMSSET 
PRFTSYS 000005 D~SINS DMSITS DMSMOD DMSSLN n 
PRFUSYS 000003 DMSITS DMSMOD DMSSLN ::II: 

PRHOLD 000005 DMSLDR DMSLOA DMSOLD til 

PRINTERl 000001 DMSDBD t-t 
PRINTLST 000001 D~SSEB 

PI 
'=" til PROT FLAG 000017 DMSDBG DMSFRE D~SINS D~SITS DMSMOD DfIlSQRY DMSSET DMSSLN CD 

CD PRVCNT 000010 D~SLDR DMSOLI: ...... 
0 I 
rt' PS 000019 DMSDSL DMSFCH D~SMVE DMSROS DMSSBD DMSSBS DMSSCT DM SSEB DMSSOP DMSSQS DMSSVN DMSSVT r+-..... PSAVE 000011 DMSITP 0 
0 I 
::s PSi 000002 DMSLDR ::II: 

0 
IN ~ 

c:: 
...... 

'=' CD ..... 
11 n 
CD 11 
0 0 
r+- en 
0 en 
11 ..... !:tI 
CD CD 
en HI 

CD 
11 
CD 

IN ::s 
0 0 
\.0 (1) 



w Label Count References n ..... 
0 3 

til 

PTR1 000015 Dl!S:FDI Dl!SEDI Dl!SSCR t'"4 
PTR2 000036 Dl!SEDI Dl!SEDI Df!SSCR ~ 

C' 

< PTR3 000008 Dl!SEDI Dl!SEDI (1) 

3 PUEADR 000017 Dl!SBOP Dl!SCLS Dl!SDLK Dl!SDSV Dl!SLLU Dl!SPRV DftSICP ~ 
I ......... PUECUU 000013 Dl!SEOP Dl!SCLS DftSDLK DftSDSV DftSLLU DftSPRV Dl!SICP rt" w 

...,J PUEDEVT 000039 DMSBOP Dl!SCLS DftSDLK Dl!SLLU Dl!SICP 0 
0 000002 

I 
PUBDSKl! DftSLLU Dl!SICP 3 
PUEPT 000017 DftSAftS Dl!SASH Dl!SBOP DftSCLS Df!SDLE DMSDLK Dl!SDSV DftSFCB DftSLLU DftSPRV DftSRRV DftSSET 0 

til DftSSRV Dl!SICP 0. 
"< I:l 
ttl PUETAPl! 1 000005 DftSBOP Df!SCLS DftSICP ~ 

rt" PUBTAP~2 000016 Dl!SEOP (1) 

CD PUETAP7 000001 DftSBOP n i1 
PURCBLST 000001 Dl!SSEB t1 

0 t'"4 QQDSK 1 000001 Dl!SDIO ttl 0 
I.Q QQDSK2 000007 DftSDIO ttl .... QQTRK 000008 DftSDIO !:tI n 

QS 000003 Dl!SSOP (1) 
HI DI QSiITCB 000003 DftSCRD DftSIHT CD =:t 

0. RADD 000005 DftSLGT Dl!SLIE t1 
(1) 

tt:I 
RARGE 000009 DftSEDI =:t 

t1 RDBUFF 000002 DftSSEE n 
0 RDCCi 000001 DftSSEB 

(1) 

t:7" BDCOIS 000001 DftSIRI ~ 
(I) RDCOURT 000004 DftSSEB 
Ell RDDATA 000027 DftSIII 
t::I READBUF 000029 DftSLDR DftSLGT Dl!SLIB Dl!SCLD 
(I) READLST 000002 DftSSEB rt" 
(I) RECS 000002 DftSEDI 
t1 REDERBID 000005 Dl!SCiB DftSIBT Df!SQRY DftSSET II .... BEGSAV 000025 DftSEDI 
=:t REGSAVX 000007 DftSEDI DI 
rt' BEGSAVO 000028 DftSACF DftSACft DftSALU DftSAUD DftSLAD DftSLFS .... REGSAV1 000012 DftSACF DftSERS DftSBlft 
0 BEGSAV3 000031 DftSBBD DftSBiB DftSFRS DftSl!OD DftSPRT DftSSTT =:t 

Cil 
REG13SAV 000003 DftSLDB Dl!SOLD 

Q RELPAGES 000017 DftSABN DftSAftS DftSARR Dl!SABI Dl!SASft DftSBSC DftSCPY DftSINT DftSLBft DftSLBT DftSLKD DftSSftli .... DftSSBT DftSSTG DftSUPD 
0. BEPCNT 000010 DftSEDI DMSEDI (1) 

BESET 000081 DftSLDB DfIISLSE DfilSOLD 
RETREG 000009 DftSLDR DftSOLD 
RETBYBIT 000002 Dl!SSAB 
RETSAV 000006 DftSDBG 
BETT 000005 DftSLSB 



Label Count 

RFIX 000001 
RFPRS 000001 
RGPRS 000007 
RGPR8 000001 
RITEM 000004 
BLDCOliiST 000008 
RLEBG 000002 
RMSGBUF 000011 
RMSROPEN 000001 
BBUM 000002 
RPLACB 000003 
BPLAREA 000001 
RPLARG 000001 
BPLASY 000002 
RPLBUFL 000001 
BPLCHAIN 000006 
RPLECBPR 000004 
RPLEOFDS 000001 
RPLFDBKC 000003 
RPLFLAG 000004 
RPLIST 000005 
RPLKEYL 000001 
RPLNUP 000001 
RPLOPT1 000004 
RPLOPT2 000001 
RPLRLE! 000001 
RPLRTNCD 000006 
RPLST 000002 
RPLSTRID 000001 
BPLUPD 000001 
RPLVLERR 000001 
BSTNPSi 000002 
RWCCi 000003 
BWCliiT 000004 
RWFSTRG 000009 
BWMFD 000010 
RO 002247 

til 
CD 
0 
rt' ...,. 
0 
=' 
w . 
t:::I ...,. 
t1 
CD 
0 
rT 
0 
11 ...,. 
CD 
rn 

w 
~ 

~ 

Beferences 

DMSLGT 
DMSOVS 
DMSOVS 
DMSOVS 
DMSLGT 
DMSLDB 
DMSLGT 
Dl!ISIBT 
DMSBOP 
Dl!ISLGT 
DMSVIP 
DfilSVIP 
DMSVIP 
DfilSVIP 
DMSVIP 
DfilSVIP 
DMSVIP 
DMSVIP 
DfilSVIP 
Dl!ISVIP 
Dl!ISEDI 
DMSVIP 
DMSVIP 
Dl!ISVIP 
DHSVIP 
Dl!ISVIP 
DMSVIP 
Dl!ISVIP 
DMSVIP 
DMSVIP 
DMSVIP 
DMSDBG 
DHSDIO 
DHSACF 
DMSAUD 
DMSACl!I 
DMSABN 
DMSBAB 
DMSCRD 
DMSEDI 
DfilSGBD 
DMSITP 
Dl!ISLKD 
DMSOPT 
DMSROS 
Dl!ISSQS 
Dl!ISTPE 

DMSLIB 
Dl!ISOLD 
Dl!ISLIB 

DMSLIE 

Dl!ISAUD 
Dl!ISBRD 
Dl!ISAUt 
Dl!ISACC 
DfilSBOP 
Dl!ISCiR 
Dl!ISEDX 
DftSGRN 
DftSITS 
Dl!ISLLU 
DfilSOR 1 
DMSBRV 
DfilSSRT 
DHSTRK 

Dl!ISl!IOD 
DfilSBiR 

DMSACF 
DfilSBRD 
Dl!ISCiT 
DMSERS 
Dl!ISHDI 
DMSLID 
DMSLOA 
Dl!ISOVR 
DMSSIB 
DMSSRV 
DMSTYP 

DHSFNS 

Dl!ISACl!I Dl!ISALU 
DMSBSC Dl!ISBTB 
DMSDBD Dl!ISDBG 
tl!lSEXC Dl!ISEXT 
Dl!ISHDS DMSIBA 
DMSLAF DMSLBM 
DMSLSB DMSLST 
Dl!ISOVS DfilSPNT 
DHSSBD DHSSBS 
DMSSSK Dl!ISSTG 
DMSUPD Dl!ISVIB 

n 
3 
til 

Dl!ISAl!IS Dl!ISARE DMSIRN Dl!ISARX Dl!ISASfiI DfilSASB DfilSAUD 
DfilSBTP Dl!ISBWR Dl!ISCAT DfilSCIO Dl!ISCIT DfilSCLS DMSCPF t-' 

I» 
DMSDIO DfilSDLB DMSDfilP DfilSDOS Dl!ISDSK DMSDSL DMSEDC t::r 

Dl!ISFCH DMSFET Dl!ISFLD DfilSFBS DMSFOR Dl!ISGIO DeSGLB CD 
I-' 

DMSIBI DMSI!M DMSINS DfilSIliiT DftSIOi DftSITE tl!lSITI I 

DMSLBT Dl!ISLDR Dl!ISLDS DMSLFS DMSLGT DMSLIB DMSLIO rT 
0 

DMSLSY Dl!ISMDP DMSMOD DfilSMVE DMSNCP Dl!ISOLD Dl!ISOPL I 
DMSPRT DMSPRV DMSPUB DfilSQRY DfilSRDC Dl!ISRNE DeSRNM 3 

0 
DHSSCB DHSSCR DHSSCT DHSSEB DHSSET DMSSl!IB DMSSOP Il.I 
DHSSTT DMSSVN DMSSVT Dl!ISSYN DMSTIO DMSTl!IA Dl!ISTPD ~ 

I-' 
DeSVIP DMSVPD DHSVSR DeSXCp DMSZAP CD 

n 
11 
0 
rn 
rn 
!:C 
CD 
I-h 
CD 
t1 
CD 
=' 
0 
CD 



w Label Count References n 
...A :z 
tIJ til 

Rl 006064 DMSABN DMSACC DMSACF DMSACM DMSALU DMSAMS DMSARE DMSARN DMSARX DMSASM DMSASH DMSAUD t"I 
III DMSBAB DMSBOP DMSERD DMSESC DMSBTB DMSBTP DMSBWR DMSCAT DMSCIO DMSCIT DMSCLS DMSCPF t:r' 

DMSCRD DMSCWR DMSCWT DMSDBD DMSDBG DMSDIO DMSDLB DMSDMP DMSDOS DMSDSK DMSDSL DMSEDC (1) 

-= DMSEDI DMSEDX DMSERS DMSEXC DMSEXT DMSFCH DMSFET DMSFLD DMSFNS DMSFOR DMSGIO DMSGLB ..... :z I 
""'- DMSGHD DMSGRN DMSHDI DMSHDS DMSINA DMSIHI DMSIHM DMSIHS DMSINT DMSIOW DMSITE DMSITP tT 
w DMSITS DMSLAD DMSLAF DMSLEM DMSLBT DMSLDR DMSLDS DMSLFS DMSLGT DMSLIB DMSLIO DMSLKD 0 
...,J I 
0 DMSLLU DMSLOA DMSLSE DMSLST DMSLSY DMSMDP DMSMOD DMSMVE DMSHCP DMSOLD DMSOPL DMSOPT c:. 

DMSOR 1 DMSOR2 DMSOR3 DMSCVR DMSOVS DMSPIO DMSPNT DMSPRT DMSPRV DMSPUH DftSQRY DMSRDC 0 
PI 

til DMSRHE DMSRHM DMSROS DMSRRV DMSSAB DMSSBD DMSSBS DMSSCH DMSSCR DMSSCT DftSSEB DMSSET ~ 
~ DMSSMH DMSSOP DMSSQS DMSSRT DftSSRV DMSSSK DMSSTG DMSSTT DMSSVH DMSSVT DftSSYH DMSTIO ..... 
en (1) 
M' DMSTMA DMSTPD DMSTPE DMSTRK DMSTYP DMSUPD DMSVIB DMSVIP DMSVPD DMSVSR DMSXCP DMSZAP 
(1) R10 001736 DMSACC DMSACF DMSACM DMSALU DMSAMS DMSARE DMSARH DMSARX DMSASM DMSASN DMSAUD DMSBAB n 
B t1 

DMSBOP DMSERD DMSBSC DMSETP DM SBWR DMSCIO DMSCLS DMSCiR DMSCWT DMSDED DMSDEG DMSDIO 0 
t"I DMSDLB DMSDOS DMSDSL DMSEDC DMSEDI DMSEDX DMSERS DMSEXC DMSEXT DMSFCH DMSFLD DMSFNS en 
0 en 
~ DMSFOR DMSGIO DMSGRH DMSBDI DMSHDS DMSIHI DMSIHM DMSIHS DMSIHT DMSIOW DMSITE DMSITI 
to'" DMSITP DMSITS DMSLAD DMSLEM DMSLBT DMSLDR DMSLDS DMSLFS DMSLGT DMSLIO DMSLKD DMSLLU !::C 
n DMSLSB DMSLST DMSMOD DMSMVE DMSNCP DMSOLD DMSOPT DMSPIO DMSPRT DMSPRV DMSPUH DMSQRY 

(1) 
HI 

III DMSRDC DMSRNE DMSRNM DMSROS DMSRRV DMSSAB DMSSBD DMSSET DMSSMN DMSSOP DMSSQS DMSSRV (1) 
t:I DMSSTG DMSSTT DMSSVH DMSSVT DMSTMA DMSTPD DMSTPE DMSTRK DMSTYP DMSUPD DMSVIP DMSXCP t1 
PI CD 

DMSZAP t:I 
"0 Rll 000702 DMSACC DMSACF DMSACM DMSALU DMSAMS DMSARN DMSARX DMSASM DMSASN DMSAUD DMSBOP DMSBRD n 
t1 CD 
0 DMSBSC DMSBTP DMSBWR DMSCIO DMSCLS DMSCRD DMSCiR DMSCWT DMSDBD DMSDIO DMSDLB DMSDOS 
t:r' DMSERS DMSEXC DMSFCB DMSFLD DMSFNS DMSFOR DMSGND DMSGRN DMSINI DMSIBS DMSINT DMSIOi ..... 
(1) DMSITE DM SITI DMSITP DMSITS DMSLAF DMSLEM DMSLBT DMSLDR DMSLDS DMSLFS DMSLIB DMSLIO 
EiJ DMSLKD DMSLLU DMSLSE DMSLST DMSMOD DMSNCP DMSOLD DMSOPT DMSPIO DMSPNT DMSPRT DMSPUN 
t::' DHSQRY DMSRDC DMSRNM DMSROS DMSRRV DMSSAE DMSSBD DMSSBS DMSSCR DMSSCT DMSSEB DMSSET 
CD DMSSOP DMSSQS DMSSVT DMSSYN DMSTIO DMSTMA DMSTPD DMSTPE DMSTRK DMSUPD DMSVIP DMSVPD 
tT 
(1) DMSXCP DMSZAP 
t1 R12 000598 DMSABN DMS ACC DMSACF DMSACM DM SAL U DMSAMS DMSARE DMSARN DMSARX DMSASM DMSASN DMSAUD e DMSBAB DMSBOP DMSBRD DMSBSC DMSBTE DMSBTP DMSBWR DMSCAT DMSCIO DM SCIT DMSCLS DMSCPF to'" 
::s DMSCRD DMSCW R DMSCWT DMSDIO DMSDLB DMSDMP DMSDOS DMSDSL DMSEDX DMSERS DMS EXC DMSFCH 
III DMSFET DMSFLD DMSFNS DMSFOR DMSGLB DMSGND DMSGRN DMSHDI DMSHDS DMSINI 1>MSINS DMSINT tT 
to'" DMSITE DMSITI DMSITP DMSITS DMSLAD DMSLAF DMSLBT DMSLDR DMSLDS DftSLFS DMSLGT DMSLIB 
0 DMSLKD DMSLLU DMSLOA DMSLSB DMSLST DMSMOD DMSMVE DMSNCP DMSOLD DMSOPL DMSOPT DMSORl ::s 

DMSOR2 DMSOR3 DMSOVR DMSOVS DMSPIO DMSPRT DMSPRV DMSPUN DMSQRY DMSRNE DMS RNM DMSROS 
en DMSRRV DMSSAB DMSSBD DMSSBS DMSSCN DMSSCR DMSSCT DMSSET DMSSMN DMSSOP DMSSQS DMSSRT 
~ 
to'" DMSSRV DMSSSK DMSSTG DMSSTT DMSSVN DMSSVT DMSSYN DHSTIO DHSTMA DMSTPD DMSTPE DMSTRK 
PI DHSUPD DMSVIB DMSVIP DMSVPD DMSVSR DMSXCP DMSZAP (1) 

R13 000694 DMSAEN DMSACC DMSACF DMSACM DMSALU DMSAMS DMSARN DMSARX DMSASM DMSASN DMSAUD DMSBAB 
DMSBRD DMSBSC DMSBTP DHSEiR DMSCIO DMSCIT DMSCLS DMSCRD DMSCW R DMSDEG DMSDIO DMSDLB 
DMSDOS DMSDSK DMSEDC DMSEDI DMSEDX DMSERS DMSEXC DMSFCH DMSFLD DMSFNS DMSFOR DMSGIO 
DMSGLB DMSGRN DMS HDI DMSHDS DMSINI DMSINS DMSINT DMSITE DMSITI DMSITP DMSITS DMSLAD 
DMSLAF DMSLBT DMSLDR DMSLDS DMSLFS DMSLGT DMSLIB DMSLIO DMSLSB DMSLST DMSMOD DMSMVE 
DMS RCP DMSOLD DMSOVS DMSPIO DMSPRT DMSPUN DMSQRY DHSRNE DMSRNM DMSSAB DMSSBS DMSSCR 
DMSSCT DMSSEB DMSSMN DMSSOP DMSSQS DMSSTG DMSSTT DM SSVN DMSSVT DMSTIO DMS'tPE Df'lSTRK 
DMSU PD DMSVIP DMSVSR DMSXCP DMSZAP 



Label Count References 

R14 002863 Df!SABN D!SACC DftSACF nnSAce D8SALO DnSA!S DnSARE Df!SARN Df!SARI DnSASK D!SASN DeSAOD 
DnSBAB D8SBOP D8SBRD D8SBSC DnSBTB DnSBTP DKSBWR D!SCAT DnSClO DnSClT DKSCLS D8SCPF 
DnSCRD DnSCWR DnSCWT Df'ISDBD D8SDBG Df'ISDlO Df'ISDLB DKSDOS DKSDSK Dl!SDSL DKSEDC Dl!SEDI 
Dl!SEDX DMSERS D8SEIC DKSEIT DnSFCH DKSFET DKSFLD DKSFNS DKSFOR DKSGIO DKSGLB DKSGND 
DnSGRH D8SHtI DKSHDS DKSIHA DKSlHI DKSINK Df!SlHS Dl!SlHT Df!SIOW DKSITE DKSITl DKSlTP 
DMSITS Df!SLAD Df!SLAF D8SLBf! D8SLBT Df!SLDR Df!SLDS Df!SLFS Df!SLGT Df!SLlB Df!SLlO DeSLKD 
D8SLLO D8SLOA Df!SLSB Df!SLST Dl!SLSY Df!Sf!DP Df!Sf!OD DKSl!VE Dl!SNCP Dl!SOLD Dl!SOPT Dl!SOR3 
Df!SOVR Df!SOVS Df!SPlO Df!SPHT Df!SPRT Df!SPRV DMSPON Df!SQRY Df!SRDC Df!SRHE Df!SRNM DftSROS 
DftSRRV Df!SSAE Df!SSBD DKSSBS Df!SSCN Df'ISSCR Dl!SSCT Df'ISSEB DKSSET DKSSMN DMSSOP DeSSQS 
DMSSRT Df!SSRV Df!SSSK Df!SSTG Df!SSTT Df!SSVN DMSSVT Df!SSYN DnSTlO Df!STKA Df!STPD DMSTPE 
DKSTRK DKSTYP DKSOPD Df'ISVIB Df!SVIP Df!SVPD Df!SVSR Df!SICP DMSZAP 

R~5 004744 Df!SABN Df!SACC Df!SACF Df'ISACK Df!SALO Df!SAf'IS DMSARE Df'ISARN DnSARI DnSASf! DMSASN DMSAOD 
Df!SBAB Df'ISBOP Df'ISBRD Df'ISESC D8SBTB Df'ISBTP Df'ISBWR Df'ISCAT Df'ISClO Df'ISClT Df!SCLS DeSCPF 
D8SCRD D8SCWR Df!SCWT Df'ISDBD Df'ISDBG Df'ISDlO Df'ISDLB Df'ISDOS DnSDSK DnSDSL Df'ISlDC DMSEDI 
DnSEDI DnSERS DnSEXC DMSEIT DnSFCH DMSFET Df'ISFLD DMSFNS DMSFOR DHSGlO DMSGLB DnSGND 
DnSGRN DnSBDI Df'ISHDS Df'ISINA Df'ISIHl Df'ISlNf'I Df!SINS Df'ISlNT DMSlOW Df!SITE DKSITl DMSlTP 
DHSITS DMSLAD Df!SLAF Df!SLBf! Df!SLBT Df!SLDR Df!SLDS Df! SLFS Df'ISLGT DMSLlB Df!SLlO DMSLKD 
Df!SLLO Df!SLOA DHSLSB Df!SLST Df!SLSY Df!SHDP Df'ISf'IOD Df!Sf'IVE Dl!SNCP Dl!SOLD Dl!SOPL Dl!SOPT 
DHSOR 1 Df'ISOVR Df'ISOVS Dl!SPIO Dl!SPNT Dl!SPRT DMSPRV DHSPON DHSQRY DHSRDC DeSRNE DeSRNK 
Dl!SROS DeSRRV DMSSAB DKSSBD DHSSBS Df'ISSCN DHSSCR Df'ISSCT Df'ISSEB DeSSET DHSSMN Dessop 
DeSSQS Df!SSRT Df'ISSRV DeSSSK DeSSTG DeSSTT DeSSVN DeSSVT DHSSYN DHSTIO DMSTl!A Df'ISTPD 
DeSTPE Dl!STBK Dl!STYP DeSOPD DMSVIB Dl!SVlP DeS'IPD Df'ISVSR DeSICP Df'ISZAP 

R2 003449 D!SACC Df!SACF Df!SACf'I Df'ISALO D8SA8S DHSARE DHSARN Df'ISARI DeSASH DHSASN DHSAOD DeSBAB 
DHSBOP D8SBRD DeSBSC DKSBTB DeSBTP DeSBiR DMSCAT DKSClO D8SCIT D8SCLS DKSCPF DMSCRD 
DeSCWR DeSDBD DKSDBG DeSDlO DHSDLB D!SD!P DHSDOS D!SDSK DHSDSL DMSEDC Df!SEDl D8SEDX 
DeSERS Df!SEIC Dl!SEIT Df!SFCB DKSFET Df!SFLD Dl!SFNS Dl!SFOR DHSGIO DHSGLE DHSGND Df!SGRN 
DHSBDI Df!SBDS D8SlNA DeSINI Des INK Des INS DKSlNT DMSIOW DMSITE DMSlTP DMSlTS DeSLAD 
DMSLAF DMSLEe Dl!SLBT tMSLDB DMSLDS DMSLFS Dl!SLIO DMSLKD DKSLLU DMSLOA DMSLSB DMSLST 
DMSHDP DMSMOD DMSMVE DeSNCP DeSOLD DKSOPL DHSOPT DMSOR 1 DeSPlO DMSPNT DeSPRT DMSPBV 
Df!SPUN DeSQBY DMSRDC DMSRNE DeSRNe DMSROS D.MSRRV DKSSAB Dl!SSBD DMSSES DMSSCN DMSSCR 
Df!SSCT Df!SSEB DMSSET DeSSf!N Dessop Df!SSQS Df!SSRT DeSSRV DeSSSK DMSSTG DMSSTT DeSSVN 
DMSSVT DeSSYN DeSTMA DMSTPD Df!STPE DMSTRK DMSTYP DMSOPD DKSVIB DeSVIP DMSVPD DMSVSR 
DMSICP DMSZAP 

B3 003494 DeSABN DMSACC DMSACF DMSACK DeSALO DMSAHS DHSARE DKSARN D8SARI DHSASM DHSASN DMSAOD n 
DHSBAB DHSBOP D8SBRD DeSBSC DeSBTB DHSBTP DeSBWR DHSCAT DMSClO DHSClT DMSCLS DMSCPF 3: 

DHSCRD D8SCWB DMSDBD tKSDBG D8SDLB D8SDHP DHSDOS DMSDSK DHSDSL DHSEDC DMS EDI DMSEDI en 
DHSERS DHSEIC DHSEIT DHSFCB D8SFET DMSFLD DMSFOR DMSGLB DMSGND DMSGRN DMSHDI DMSHD~ t-' 

DMSlNA DHSINI DMSINM DMSINS DMSINT DMSlTE DMSlTl DKSlTP Df'ISlTS DMSLAD DHSLAF DMSLBM I» 
t:1' 

en DHSLBT DMSLDR DHSLDS DMSLFS DMSLGT DKSLlO DHSLKD Df'ISLLO Df'ISLSB DMSLST DMSKDP DMSMOD CD 
CD DHS8VE D8SNCP D8S0LD DMSOPL Df'I SO VR DMSOVS DMSPlO DMSPRT Df'ISPRV DMSPON DMSQBY DMSRDC I-' 
0 I 
t+ DHSRNE DHSRNM DHSROS DHSRRV DMSSAB DMSSBD DMSSBS DHSSCN DMSSCR Df'ISSCT DHSSEB DHSSET t+ ..... DHSSHN DI'!SSOP DI'!SSQS DMSSRT Df!SSRV DMSSSK DMSSTG DHSSTT DMSSVN Df!SSVT DMSSYN Df!STI'lA 0 
0 I 
1:1 Df'ISTPD DMSTPE DHSTRK DHSTYP DltSOPD DMSVIB DltSVIP DMSVPD DMSVSR Dlt SXCP DltSZAP 3: 

0 
W /:lI 

~ 
I-' 

t:=' CD ..... 
t1 (') 

CD t1 
0 0 
t+ rJl 
0 rJl 
t1 ..... !:tI 
CD CD 
rJl Ht 

CD 
t; 
CD 

W t:S 
~ 0 
w CD 



w Label Count References 
~ ('l 

C :I: 
til 

R4 002780 DI!SABH DMSACC DI!SACF DMSACM DfilSALU Df!SAMS DI!SA~E DfilSARN DfilSARX DMSASM DMSASN DMSAUD t'"4 

DMSBAB DMSBOP DfilSBRD DMSESC DMSBTB DMSBTP DMSBWR DMSCAT DMSCIO DMSCIT DMSCLS DMSCPF III 
0' 

< DMSCRD DMSCWR DMSDBD tMSDBG DMSDIO DMSDLB DMS DMP DMSDOS DMSDSK DMSDSL DMSEDC DMSEDI (I) 

:I: DMSEDX DfilSERS DMSEXC DfilSEXT DMSFCH DMSFET DMSFLD DMSFOR DMSGIO DMSGLB DMSGND DfilSGRN ~ 

" 
I 

w DMSHDI DMSHDS DMSINA DI!SIN1 DI!SINM DMS1NS DMSINT DM SlOW DMSIT1 DMSITP DMSITS DMSLAD M" 
..,.J DI!SLAF DMSLBM DMSLBT tMSLDR DMSLDS DMSLFS DMSLGT DMSLIO DMSLKD DMSLLU DMSLSB DMSLST 0 
0 I 

DI!SMDP DMSI!OD DMSMVE DI!SNCP DMSOLD DMSOPL DMSOVR DMSOVS DMSPIO DMSPNT DMSPRT DMSPUN 3: 
DMSQRY DMSRDC DMSRNE DMSRNM DfilSROS DMSRRV DMSSAB DMSSBD DMSSBS DMSSC·N DMSSCR DMSSCT 0 

til DMSSET DMSSMN DMSSOP DMSSQS DMSSRT DMSSRV DMSSSK DMSSTG DMSSTT DMSSVN DMSSVT DMSSYN 0... 
'< ~ 

til DMSTMA DMSTPD DMSTPE DMSTRK DMSTYP DMSUPD DMSVIP DMSVPD DMSVSR DMSXCP DMSZAP ~ 

cT RS 002930 DMSABN DMSACC DMSACF DMSACM DMSALU DMSAMS DMSARE DMSARN DMSARX DMSASM DMSASN DMSAUD (I) 

(!) 
e DMSBAB Dl'lSBOP DMSBRD tMSBSC DfilSBTB Dl'lSBTP DfilSBiR DMSCIO D l'lS CIT DMSCLS DMSCPF DMSCRD n 

DMSCiR DMSDBD DMSDBG DMSD10 DMSDLB Dt!lSDt!lP DMSDOS DMSDSK Dt!lSDSL DMSEDC Dt!lSEDI DMSEDX H 
t'"4 0 
0 Dl'lSERS DMSEXC DMSEXT DMSPCH DMSFET DMSFLD DMSFNS DMSFOR DMSGIO DMSGLB DMSGND DMSGRN til 

I.Q Dl'lSHDI DMSHDS DMSINA DMSIN1 DMSINM DMSINS DMSINT DMS10i DMSIT1 DMSITP DMSITS DMSLAD til 
1-" DMSLAF DMSLEM DMSLBT DMSLDR DMSLDS Dl'lSLFS DMSLGT DMSLIB Dl'lSLKD DMSLLU DMSLSB DMSLST ~ n 

DMSMOD DMSMVE Dt!lSNCP Dt!lSCLD DMSOPL Dt!lSOR1 Dt!lSOVR DM SOVS DMSPIO DMSPNT DMSPRT DMSPUN (I) 

III Dt!lSQRY Dt!lSRDC DMSRNE DMSRNM DMSROS DMSRRV DMSSAB DMSSBD DMSSBS DMSSCN DMSSCR DMSSCT 
I-tt 

= (I) 

0... Dt!lSSET Dt!lSSOP DMSSQS DMSSRT DMSSRV DMSSSK DMSSTG DMSSTT DMSSVN DMSSVT DMSSYN DMSTMA H 
(I) 

'"0 DMSTPD DMSTPE DMSTRK DMSTYP DMSUPD DMSVIB DMSVIP DMSVPD DMSVSR DMSXCP DMSZAP = H R6 002486 Dt!lSABN DMSACC DMSACF DMSACM DMSALU DMSAMS DMSARE DMSARN DMSARX DMSASM DMSASN DMSAUD n 
0 Dl'lSBAB DMSBOP DMSBRD DMSBSC Dt!lSBTP DMSBiR DMSC10 DMSCIT DMSCLS DMSCPF DMSCRD DMSCiR 

(I) 

0' 
~ DMSDBD DMSDBG DMSDIO DMSDLE DMSDMP Dt!lSDOS DMSDSK DMSEDC DMSEDI DMSEDX DMSERS DMSEXC 
(I) DMSEXT DMSFCH DMSFET DMSPLD DMSFNS DMSFOR DMSGND DMSGRN DMSHDI DMSHDS Dl'lSINA DMSIII1 e 

DMS1NS DMSINT DMSIOi DMSITI Dt!lS1TP DMSITS DMSLAD DMSLBM DMSLBT DMSLDR DMSLDS Dl'lSLFS 
I:' DMSLGT Dt!lSLKD Dt!lSLLU I:MSLOA DMSLSB DMSLST DMSMOD DMSMVE DMSNCP DMSOLD DMSOPL DMSOR1 
(I) 

Dt!lSOVR DMSOVS DMSPIO DMSPNT DMSPRT DMSPUN DMSQRY DM SRDC DMSRNE DMSRNM Dt!lSROS DMSRRV cT 
(I) DMSSAB DMSSBD DMSSBS DMSSCN Dl!SSCR Dl!SSCT DMSSET DMSSMN Dl'lSSOP Dl!SSQS DMSSRT Dl'ISSSK 
H DMSSTG Dl!SSTT DMSSVN Dl'ISSVT DMSSYN DMSTl!A DMSTPD DMSTPE DMSTRK Dl!STYP DMSUPD Dl!SV1P e 
1-" DMSVPD DMSVSR Dl!SXCP DMSZAP 
= R7 002318 Dl!SABN DMSACC Dl!SACF DMSACM DMSALU DMSAMS DM.SARE Dl'lSARN DMSARX DMSASM DMSASN DMSAUD III 
cT DMSBOP Dl!SBRD Dl!SBSC Dl!SBTP DMSBiR Dl!SCIO DMSCIT DMSCLS DMSCPF DMSCiR Dl!SDBD Dl'lSDBG ..... DMSD10 DMSDLE DMSDMP DMStOS DMSDSK DMSEDC DMSEDI DMSEDX DMSERS DMSEXC DMSEXT DMSFCH 0 

= DMSFET Dl!SFLD DMSFNS DMSFOB DMSGLB DMSGRN DMSHDI DM SEDS DMS1NA DMSINI DMS1NS DMS1NT 

en DMSIOi DMSITE DMSITI DMS1TP DMS1TS DMSLAD DMSLBM DMSLBT DMSLDR DMSLDS DMSLFS DMSLGT 
c DMSLIB DMSLKD DMSLLU DMSLSB Dl!SLST DMSMOD DMSMVE DMSOLD DMSOPL DMSOVR DMSOVS DMSP10 
1-" DMS FRT DMSPUN DMSQRY DMSRDC DMSRNE DMSRNM DMSROS DMSRRV DMSSAB DMSSED DMSSCN DMSSCB 
0... 
(!) DMSSCT DMSSET DMSSMN DMSSOF DMSSQS DMSSTG DMSSVT DMSSYN DMSTMA DMSTPD DMSTPE DMSTRK 

DMSTYP Dl'lSUPD DMSVIP DMSVPD DMSVSR DMSXCP DMSZAP 



Label Count References 

R8 001983 DMSABN DMSACC DPlSACF DMSACPI D8SALU D8SAftS DftSARE DftSARN DPISARX DftSASP.I DMSASlI DMSAUD 
DMSBAB DMSBOP DMSBRD DMSBSC DMSBTB DMSBTP DMSBWR DMSCIO DMSCIT DMSCLS DMSCPF DMSCRD 
DMSCWR DMSDBD DMSDBG DMSDIO DMSDLB DMSDOS DP.lSDSK DMSDSL DMSEDC DMSEDI DP.lSEDX DMSERS 
DftSEXC DftSEXT DftSFCB DMSFLD DftSFNS DMSFOR DMSGLB DMSGRN DMSBDI DMSBDS DftSINA DMSINI 
DMSINM DMSIOW DMSITI DMSITP DMSITS DP.lSLAD DMSLBM DMSLBT DftSLDR DftSLDS DftSLFS DMSLGT 
DMSLLU DftSLSB DMSLST DMSMOD DMSMVE DMSNCP DP.lSOLD DMSOPL DMSOVR DMSOVS DMSPIO DMSPRT 
DMSPUN DMSQRY DMSRDC DMSRNM DMSROS DMSRRV DftSSAB DP.lSSBD DMSSBS DMSSCN DMSSCT DMSSEB 
DMSSET DMSSMN DMSSOP DMSSSK DMSSTG DMSSVN DMSSVT DMSSYN DMSTMA DMSTPD DftSTPE DPlSTRK 
DP.lSTYP DMSUPD DP.lSVIP DMSVSR DP.lSXCP DP.lSZAP 

R9 001779 DMSACC DMSACF DMSACP.I DMSALU DMSAMS DP.lSARE DMSARN DMSARX DP.lSASM DMSASN DP.lSAUD DMSBAB 
DMSBOP DMSBRD DMSBSC DMSBTP DMSBWR DMSCIT DMSCLS DMSCRD DMSCWT DMSDBD DP.lSDBG DPiSDIO 
DMSDLB DP.lSDOS DMSDSK DMSEDC DMSEDI DftSEDX DMSERS DP.lSEXC DMSEXT DftSFCB DMSFLD DftSFNS 
DMSFOR DMSGlID DMSGRN DMSBDI DMSBDS DP.lSINA DMSINI DMSINS DftSINT DMSIOW DP.lSITI DP.lSITP 
DMSITS DMSLAD DMSLBM DMSLBT DMSLDR DMSLDS DMSLFS DMSLGT DMSLKD Dft SLSB DftSLST DMSftOD 
DP.lSMVE DMSNCP DP.lSOLD DP.lSOPL DP.lSPIO DMSPRT DMSPUN DP.lSQRY DMSRDC DMSRNM DftSROS DMSRRV 
DMSSAB DMSSBD DMSSCR DMSSCT DMSSET DMSSMN DMSSOP DMSSRV DMSSSK DMSSTG DMSSTT DMSSVT 
DMSTMA DMSTPD DMSTPE DMSTRK DMSTYP DMSUPD DMSVIP DMSXCP DMSZAP 

SAVCNT 000004 DMSEDI DMSSCR 
SAVCWD 000021 DMSEDI 
SAVEADT 000002 DMSDIO 
SAVEAR 000010 DMSEDC DMSSCR 
SAVERl 000042 DMSSOP 
SAVER14 000013 DMSSCT DMSSEE 
SAVER15 000002 DMSSOP 
SAVEXT 000002 DMSITE 
SAVEl 000020 DftSDBD DMSDBG 
SAVE2 000003 DMSDBG 
SAV67 000006 DMSLDR DMSOLD 
SCAW 000003 DMSITE 
SCBPTR 000014 DMSITP DMSSAB DMSSLN DMSSTG DMSSVT 
SCBSAV12 000004 DMSSAB 
SCBWORK 000008 DMSSAB DMSSTG 
SCLNO 000002 DP.lSSCR 
SCRBUFAD 000002 DMSEDX DMSSCR n 
SCRFLGS 000033 DMSEDI DP.lSSCR 1:1: 
SCRFLG2 000015 DMSEDI DMSSCR U') 

SDISK 000004 DP.lSINI t"4 
SEARCH 000035 DMSINI ~ 

t:1' 
en SEEK 000036 DPISI NI CD 
CD SEEKADR 000001 DMSDIO ..... 
n SENCCW 000002 DP.lSDIO I 
t1" t1" .... SENSB 000002 DMSDIO DMSFNS 0 
0 SEQ NAME 000004 DMSEDI DMSEDX I 
CI 1:1: 

0 
W s:lI . c: ..... 
t:I CD .... 
1'1 n 
CD 1'1 
n 0 
t1" en 
0 en 
11 .... ~ 

CD CD 
en HI 

CD 
11 
CD 

w t:I - n 
VI CD 



w Label Count References n .. 0( 
0\ til 

1:"4 SERSAV 000002 DMSEDI PI 

SERTSEC 000003 DMSEDI t:l" 
CD < SERTSW 000003 DMSEDI 1-1 

0( SETLIB 000002 DMSLIB I 

" ("t 
w SETSEC 000002 DMSINI 0 
....J SIG BAL 000053 DftSACft DftSEDI DMSERS I 
0 tI: .. SILl 000205 DMSINI D1!SINS DftSTIO 0 

SIZE 000022 DftSFRE ~ 
til SKEY 000003 DMSFRE ~ 

IoocI 1-1 en SOBl 000002 DftSOPT DftSSET CD 
rT SPARES 000015 DMSEDI DMSEDX CD n 
iii SPEC 000189 DMSLDR DftSLGT DftSLIB DMSOLD 11 

SPIESAV 000002 DMSINT 0 
1:"4 en 
0 SSAVE 000056 DMSABN DMSBSC DftSDBG DMSDLB DftSERR DftSFLD DftSFRE DMSITP DftSITS DftSLDR DftSOVS DftSSMN en 

\.Q DMSSTG ~. ~ n SSAVElIlXT 000004 DftSITS CD 
SSAVEPRV 000008 DMSITS HI 

PI CD 
I:' SSAVES2 000003 DftSITS 11 
~ STACKAT 000001 DftSEDI CD 

I:' 
Itj STACKATL 000005 DMSEDI n 
t1 STAEBIT 000003 DMSSAB CD 
0 STAESAV 000002 DMSINT t:l" 
1-1 STAIBIT 000002 DMSSAB 
CD STARS 000001 DMSINT iii 

START 000022 DMSLDR DMSLSB 
t=' STATEFST 000022 DMSALU DMSBRD DMSERS DMSfNS DMSINT DMSPUN DMSRNft DMSSTT CD 
("t STATERO 000002 DftSBRD DftSSTT 
CD STATERl 000005 DMSDSK DMSERS 11 
iii STIMEXIT 000009 DMSITE DMSSTG DMSSVN DMSSVT 
~. STOPAT 000002 DMSDBG I:' 
PI STRTADDR 000030 DMSFET DMSITS DMSLDR DMSLOA DMSLSB DMSMOD DMSOLD DMSSLN 
("t STRTNO 000005 DMSEDI 
~. 

0 SUBACT 000003 DMSEDX DMSINT DMSSLN 
I:' SOBFLAG 000024 DMSABN DMSEDX DMSfNS DMSIRT DMSMOD DMSSLN 
en SOBINIT 000001 DMSFNS 
~ SOBSECT 000004 DMSABN DMSI!M DMSINT 
~. 

SVCAB 000008 DMSFRE ~ 
CD SVCOPSi 000020 DMSITS 

SVCOUNT 000003 DMSOVS 
SVCSECT 000010 DMSCIT DMSFRE DMSBDS DMSI!T DMSOVR DMSOVS DMSSLN 
SVEARA 000008 DMSBAB DMSDOS DMSITP 
SVEPSi 000008 DMSBAB DMSDOS DMSITP 



Label Count Beferences 

SVEPSW2 000009 D8SBlB D8SDOS DMSITP 
SVEBOF 000005 DMSBIB DMSDOS 
SVEBOO 000020 DMSBIB D8SDOS D8SITP 
SVEBOl 000002 DMSBAB 
SYEB09 000011 DMSBIB D8SDOS DMSITP 
SVLID 000002 DMSLAD 
SYLIDW 000001 DMSLID 
SYLFS 000002 DMSLFS 
SiTCH 000001 D8SlCM 
SiTCHSIV 000002 D8SIRT 
SIMTIBLE 000003 DMSDBG 
SI8TBG 000004 DMSDBG 
SISADDB 000003 DMSINI 
SISCODE 000005 DMSFBE D8SSET 
SISCOM 000018 DMSBIB DMSBOP DMSDOS DMSFET D8SITP D8SSTG 
SISLINE 000001 DMSDLK 
SISNIME 000006 DMSBTP DMSINS 
SISRIMES 000022 D8SlMS DMSBOP DMSBTP DMSDOS D8SEDX DMSEXC DMSINS DMSINT DMSITS DMSQBI D8SSET DMSYIB 

D8SVSB 
SISBEF 000004 D8SINS D8SLOI DMSSET 
SISTE8ID 000005 D8SINI D8SINS 
SISUTl 000024 D8SLDB D8S0LD 
TIBLIN 000016 D8SEDI D8SSCB 
ilBS 000017 D8SEDI D8SEDX 
TIIEIlt 000002 D8SCIT 
'IIIEKSGL 000001 DKSCIT 
TIIEBSAY 000002 DMSCIT 
'IIPEBUFF 000001 D8SSEB 
TAPECOUT 000002 DMSSEB 
'IAPEDEV 000003 D8SSBS D8SSEE D8SS0P 
TAPELIST 000003 D8SSBS D8SSEB D8SS0P 
TlPE8lSK 000003 D8SSBS D8SSEB D8SS0P 
TAPEOPEB 000007 D8SSBS D8SSEB D8SS0P 
'IIPESIZE 000002 D8SSEB n 
TIPEl 000002 D8SASN 3: 

en 
'IIPE4 000002 D8SASN 
TAXEIDtB 000008 D8SCIT D8SSTG D8SSVT ~ 

PI 
'IIXEDEF 000001 D8SSVT 0-

en TIXEEXIT 000002 D8SCIT D8SSVT CI) 

I--' CI) 'IAXEEXTS 000001 D8SCIT I (') 
TAXEFBEQ 000004 D8SCIT rT rT 0 1-" lAXEICL 000002 D8SCIT I 0 =-t:I 0 

W 0,. 
C 
I--' 

~ 
CI) 

1-" n 11 11 CI) 
0 (') 
00 ("t- oo 0 

11 l:tI 1-" CI) CI) 
HI en CI) 
11 
CI) 

W t:I 
(') 

..A 
CI) ..,J 



w Label count Beferences (1 
3: 

CD til 

TlIEIOWS 000002 DftSCIT 
I:'"' 
~ 

TlIELI!IR 000004 DftSCIT DMSSVT t:T 

TlIEBTNl 000002 DftSCIT CD 
< ..... 
3: TlIESTAT 000003 DMSCIT I 

" TAIETAIE 000002 DftSCIT c+ 
w 0 
....,j TlIETSCF 000002 DMSCIT I 
0 TBENT 000024 DftSlCft DftSBTB DftSFET DftSGND DftSLDB DftSLOA DftSftDP DMSftOD DMSOLD DftSSLN 3: 

0 
TBLCT 000017 DftSLDB DftSLIE DftSOLD Q.. 

til TBLLNGTB 000005 DftSSBD DftSSVT ~ 

'< TBLREF 000016 DftSLDB DftSLIE DMSOLD 
..... 

en CD 
r+ TCODE 000001 DftSFRE 
CD TEftPBYTE 000003 DMSSVT 

(1 

a H 
TEftPST 000008 DftSLDB DftSOLD 0 

1:-1 TEMPTAB 000002 DMSEDl en 
0 rn 

I.Q TIC 000053 DMSINl .... UMBUF 000013 DMSINM !:tl 
(1 ('0 

TIMCCW 000005 DMSITE DftSQRY DMSSET t-h 
~ UMCHAR 000012 DMSINS DftSINT DeSIOW DMSlTE DMSQRY DMSSET DMSSVN ('0 

=' H 
~ TIMER 000015 DftSIN S DftSINT DMSIOW DMSITE DMSSET DMSSVN DMSSVT CD 

TIMINIT 000010 DMSINS DMSINT DMSlOW DMSITE DM SSET DMSSVN =' 
tt:1 (1 

H TIN 000007 DMSEDI DftSEDX ('0 

0 TftPLOC 000008 DMSLDR DftSLSE DftSOLD 
tr TOOBlG 000003 DftSDIO ..... 
CD TOUT 000008 DMSEDI 
iii TPFERT 000003 DftSITS 
t::j 'lPFNS 000009 DMSITS 
('0 TPFROl 000002 DftSITS r+ 
('0 'lPFSYO 000005 DftSITS Desovs 
H TPFUSR 000011 DMSDBG i)ftSITP DMSITS DMSLDR 
iii .... 'lBKLSAVE 000004 DeSTQQ 
=' TRNCODE 000001 DMSFRE 
~ 
c+ TRUNCOL 000015 DMSEDl DftSEEX DMSSCR .... TSOATCNL 000018 DMSClT DMSCRD DMSITE DMSITI DMSITS DMSSEE DMSSVN 
0 TSOBLKS 000001 DeSSET =' 
(j) 

TSOFLAGS 000019 DMSClT DftSCRD DeSITE DMSITI DMSITS DMSSEE DMSSVN 
~ TSYM 000005 DeSDBG .... TVERCOL 1 000002 De SEDI 
~ TVERCOL2 000001 Des EDl ('0 

Ti ITCH 000087 DMSEDI DeSEDX DMSSCR 
TITDIRC 000008 DMSGLB DeSLDR DeSLGT DeSLIE DMSOLD 
TXTLlBS 000004 DeSGLB DMSLGT DeSLIB DMSCRY 
'lYPE 000092 DeSLGT Des LIE DMSLIO tMSLOA DMSLSB 
TYPEAD 000001 DMSLIO 
TYPFLAG 000034 DeSDBG DMSITP DMSlTS DMSLDR DMSOVS 



Label Count References 

TYPFLG 000004 DftSEDI 
TYPLIN 000040 DftSLIO 
TYPLIST 000007 DftSITE 
UE 000001 DftSCIT 
UFDBUSY 000030 DftSABN DftSACC DftSACF DftSACft DftSAUD DftSBTP DftSBWR DftSDIO DftSDSK DftSERS DftSFNS DftSITE 

DftSITI DftSITP DftSITS DftSRNft DftSTPE 
UND 000017 DftSROS DftSSBS DftSSEB DftSSOP DftSSQS 
UNPACK 000010 DftSLIO 
UPBIT 000005 DftSACft DftSAUD DftSDSK 
UPSI 000004 DftSS-ET 
UPTftID 000002 DftSSET 
UPTSWS 000002 DftSSET 
USARCODE 000002 DftSFRE 
USAVEPTR 000023 DftSITS DftSSTG 
USAVESZ 000002 DftSITS 
USERCODE 000004 DftSFRE DftSSET 
USERKEY 000010 DftSFRE DftSSET 
UTILFLAG 000017 DftSSCR 
VAR 000027 DftSROS DftSSBD DftSSBS DftSSEB DftSSOP DftSSQS DftSSVT 
VERCOL 1 000006 DftSEDI DftSEDX DMSSCR 
VERCOL2 000003 DMSEDI DftSEDX 
VERLEN 000006 DMSEDI DftSEDX DftSSCR 
VMSIZE 000037 DftSAMS DftSBOP DftSBRD DftSEWR DftSDBG DftSDOS DftSFRE DftSBDI DftSBDS DftSINS DftSLDR DftSOVS 

DftSSET DMSSSK DMSSVT DMSVIB 
VSTRANGE 000001 DMSITI 
IiAIT 000028 DMSCIT DMSINI DMSINS DMSITI 
WAITLIST 000002 DMSDBG DftSSVT 
iiAITLST 000003 DftSCRD DftSCiR DftSCiT 
iAITRD 000004 DftSDBG 
iAITSAVE 000006 DftSCIT DftSDEG DMSIOi 
iORKFILE 000005 DftSOLD 
iRBIT 000008 DftSACC DftSEiR DMSDSK DMSTPE 
iRCOUNT 000001 DftSGIO 
iRDATA 000022 DftSINI n 
WRITE 000028 DftSINI 3 

Ul 
iRITEl 000007 DftSINI 
WRTKF 000003 DftSDIO t:-I 

I» 
iTRDCNT 000002 DftSDBG t1' 

tt.I XAREA 000001 DftSEDI CD 
CD XCOUNT 000001 DftSOVS ~ 

0 I 
ri" XGPRO 000002 DftSOVS IT ..,. XGPRl 000001 DftSOVS 0 
0 I 
::s XGPR15 000002 DftSOVS 3 

XPSi 000013 DftSDEG DMSITI 0 
w s::lI . ~ ..... 
tj CD ..,. 

n t1 
CD 11 
0 0 
ri" en 
0 en 
t1 

!:t1 ..,. 
CD CD 
en H'I 

CD 
11 
CD 

w ::s 
.... 0 
\0 CD 



W 
tv 
o 

<: 
3: 

" W 
...,J 
o 
00 

en 
1004 
en 
rt 
CD 
B 

~ 
o 
~ .... 
o 
~ 
t:S 
~ 

I'tI 
t1 
o 
tT 
..... 
CD 
S 

t=' 
CD 
rt 
CD 
t1 
EI .... 
::I 
~ 
rt .... 
o 
t:S 

en 
c: .... 
~ 
CD 

label 

XRSAVE 
XXXCiD 
XYCNT 
XYFIAG 
YAREA 
YDISK 
YYDDD 
ZONEl 
ZONE2 

Count 

000003 
000043 
000008 
000003 
000001 
000002 
000003 
000011 
000016 

References 

DftSDIO 
DftSEDI 
DftSEDI 
DftSEDI 
DMSEDI 
Dl!SIBI 
DKSIBS 
Dl!SEDI DftSEDX 
DftSEDI DftSEDX 

n 
13 
en 
~ 
~ 
tT 
(I) 
..... 
I 
rt 
o 
I 

::1: 
o 
~ 
c: ..... 
CD 

n 
t1 
o 
en 
en 
!:O 
CD 
I-+J 
CD 
t1 
CD 
::I 
o 
CD 



tn 
CD 
o 
c+ 
~. 

o 
t:I 

W 

t:! 
~. 

t1 
CD 
o 
c+ 
o 
t1 
~. 

CD 
[J1 

Module 
Name 

DMKACO 

DMKBLD 

DMKBOX 

Entry 
Points 

DMKACOB 

Dl!KACODV 

Dl!KACOFF 

Dl!KACOPU 
DMKACOQU 

DMKACOTM 

DMKBLDEC 

DMKBLDRL 

Dl!KELDRT 

DMKBLDVM 

DMKBOXBX 

Attributes, Function 

Pageable. 
Provides additional accounting 
function at logon time (for in­
stallation use). 
Builds an account card tuffer for 
a VDEVBLOK. 
Creates account card buffer for a 
VMBLOK. 
Punches queued up accounting cards. 
Queues up account card buffers for 
output on a real device. 
Creates a connect and usage time 
message for a user. 

Pageable. 
Allocates storage for a virtual 
ECBLOK and the two TRQBLOKS re­
quired for a virtual machine with 
the BCMOD! option, and initializes 
these blocks. 
Releases real segment, page, and 
swap tables to free storage. 
Creates and initializes segment, 
page, and swap tables as a func­
tion of virtual storage size, 
which is part of the process of 
building a user's virtual machine. 
Creates and partially initializes 
a VMBLOK for a virtual machine, 
identified by its terminal real 
device block. 

Pageable. 
Provides the VM/370 or user logo 
(header) for printed output. 

Loge for initial screen display 
and header separator for printer 
spoel files. 

Module 
Name 

DMKBOX 

DMKBSC 

DMKCCH 

Entry 
Points 

DMKBOXHR 

DMKESCER 

Dt!KCCBIS 

DMKCCHNT 

DMKCCBRT 

-----------, 
Attributes, Function 

Installation header reference. 

Resident. 
Bisync line error processing. 
Examines the error conditien 
resulting from a unit check or 
channel error that occurred while 
executing a CP generated bisync 
line channel program. If the er­
ror is uncorrectable, DMKMSi is 
called to notify the operator. 
After return from DMKMSi, the or­
iginal channel program is termi­
nated and the fatal flag is set in 
the IOELOK. If the error is cor­
rectable, the channel program is 
re-executed up to a maximum of 
seven retries. 

Resident. 
Operates with the I/O interrupt 
handler to schedule a device de­
pendent error recovery procedure 
when a channel data check, control 
check, or interface control check 
is detected. 
Entry from DMKIOS when a channel 
check occurs when storing a CSi 
after a SIO. 
Entry from DMKIOINT when a channel 
check occurs on an I/O interrupt. 
Entry from DMKIOE to allow error 
messages to be printed. 

DMKCCW Resident. 
DMKCCiSB Invokes an internal subroutine 

(CNTRLSUB) to obtain control bytes 
(seek data) • ____________________________________________ ---J 

In 
II'tI 

13 
10 
It::I 
10 
ltot 
I~ 

I~ 
hz: 
I~ 
I ttl 
h< 

II'tI 
10 
,~ ,. 
,~ 

It::I 
,~ 

I ttl 
I~ 
In 
,~ 

10 
I ttl 
h< 



r 
I Module 
I Name 

DMKCCW 
(cant. ) 

DMKCDB 

DMKCDS 

DMKCFC 

Entry 
Points 

DMKCCiTC 

DMKCCiTR 

DflKCDEDC 

DflKCDBDI 

DMKCDBDM 

DflKCDBDU 

DMKCDSCP 

DMKCDSTO 

DflKCFCMD 
DMKCFCSL 
DMKCFCBE 

Attributes, Function 

Searches previous (external) RCi 
chains and resolves the address of 
the RCi task if found. 
Takes the list of virtual CCis as­
sociated with the user's SIO and 
translates it into a real CCi list. 

Pageable. 
Processes DISPLAY, DCP, DUMP, and 
DMCP commands. 
Executes the DISPLAY co.mand to 
display real storage locations. 
Displays virtual storage 
locations, storage keys, general 
registers, floating-point regis­
ters, PSi, CAi, and CSW at the 
terminal. 
Dumps the contents of the speci­
fied real storage locations en the 
virtual printer spool file. 
Dumps the contents of the speci­
fied virtual storage locations, 
registers, PSi, and storage keys 
on the virtual printer spool file. 

Pageable. 
Processes STORE and 
stores data into 
(STCP command) • 
stores data into 
eSTeRE command}. 

Pageable. 

STCP co.mands. 
real storage 

virtual storage 

Gets the address of the routine 
that processes the CP ccnscle 
function that was requested. 
Processes a CP console function. 
Processes the SLEEP command. 
Processes the BEGIN command. 

r--­
Module 

lame 

DMKCFC 
(cant. ) 

DMKCFD 

DMKCFG 

DMKCFft 

---------------------------------------------, 
Entry I 
Points Attributes, Function I 

DflKCFCQU 
DflKCFCRQ 

DftKCFDAD 

DftKCFDLO 

DflKCFGSV 

DMKCFftAT 

DftKCFftBK 

DflKCFflEN 

Processes the QUERY command. 
Presents an attention interruption 
to the virtual machine to simulate 
a real request key interruption. 

Pageable. 
Processes LOCATE and ADSTOP 
co.mands. 
stops virtual machine at specified 
address (ADSTOP command) • 
Displays address of real device 
blocks, or VMBLOK and/or virtual 
device blocks (LOCATE command). 

Pageable. 
Saves a system's virtual storage 
space, including registers and PSi 
as they currently exist, in Fage 
form, on a DASD device. The name 
of the system and the DASD loca­
tion at which it is to be saved is 
defined in tftKSVS. 
Resident. 
Processes the SLEEP, BEGIN, QUERY, 
and REQUEST commands. Also pro­
cesses DIAGNOSE code 8. Its scans 
the co.mand line and goes to the 
required module. 
Posts an attention interrupt pend­
ing for the virtual machine. 
Puts the terminal in console func­
tion (CP) mode (ATTN key pressed 
twice). Scans the command line 
and goes to the co.mand handling 
routine. 
Entered when DIAGNOSE code 8 is 
executed. Scans the command line 
and goes to the co.mand handling 
routine. 



til 
CD 
n 
r+ .... 
o 
I' 

w . 
t::I .... 
t1 
CD 
n 
r+ 
o 
t1 .... 
CD 
en 

..-­
Module 

Nallle 

DMKCFP 

DMKCFS 

Df!KCFT 

DMKCKP 

Entry 
Points 

Df!KCFPII 

Dl!KCFPIP 

Df!KCFPRD 

Dl!KCFPRR 

DMKCFPRI 

Dl!KCFSET 

DftKCFTRft 

DftKCKPT 

Attributes, Function 

Pageable. 
Simulates the operator's console 
for the virtual machine. 
Entry from DftKLOG to process IPL 
command (logon). 
Entry from DMKCFft to process IPL 
command. 
Handles virtual device reset for 
other CP routines. 
Handles system resets for ether CP 
routines. Resets the virtual ma­
chine. 
Releases an IOBLOK when called by 
DftKILD. 

Pageable. 
Processes the CP SET command. 
Entry point for SET command pro­
cessor. 

Pageable. 
Processes user's terminal eptions. 
Entry point for the TERftINAL com­
mand processor. 

Pageable. 
Saves pertinent data when a check 
point occurs. 
Retrieves accounting data from the 
VftBLOK, VD!VELOK, and unpunched 
accounting cards. It retrieves 
accounting information fer dedi­
cated devices, saves the system 
log messages, and saves all con­
trol blocks for spool files. The 
data is written on the SYSiARft cy­
linder of the IPL pack. 

Df!KCKP is loaded and executed by 
DMKDftP or initial program load. 

..--
I Module 
I Bame 

DMKCKS 

DMKCNS 

DftKCPB 

Entry 
Points 

DftKCKSPL 

DMKCKSIN 

DMKCKSiM 

DMKCBSED 

DMKCBSEN 

DMKCBSIC 

Df!KCNSIB 

Df!KCPBEX 

Attributes, Function 

Pageable. 
Performs checkpoint processing. 
Performs a checkpoint on any al­
terations in the spool file set up 
to allow the recovery routine to 
get them if warm start fails. 
Initializes the check point cylin­
der after a successful warm start 
from the standard recovery pro­
cedure or after a cold start. 
Recovers previously check pointed 
spool file information. This in­
formation includes all open print 
or punch files in existence at the 
tillle the system went down or was 
shutdown. All open spool files 
are put in user hold status. 

Resident. 
Real console terminal manager. 
Edits the input line for the fol­
lowing characters: escape, line 
end, line delete, and character 
delete. 
Enables or disables a low-speed 
terllinal line. 
Entered from DMKQCB to initialize 
read and write CCWs for the 
COB TASK built by DMKQCB. 
Interruption return point and 
handler for terminal I/C. 

Pageable. 
Simulates the operator's console 
for the virtual lIachine. 
Processes the EXTERBAL co •• and to 
present an external interruption 
to the virtual machine. 



<I 
tI: 

" W 
-.J 
o 

r------------- .---------------------------------------------, 
Module I Entry I 

Name I Points Attributes, Function I 

DeKCFB 
(cont. ) 

DeKCFE 

DMKCFI 

DMKCFS 

DMKCPV 

DMKCPBIiR 

Df!KCPBRS 

DMKCPBRW 

DflKCPBRY 

DMKCPBSR 

DMKCPIEM 

Df!RCPIIiT 

Dl!RCPSSH 
DMKCPSH 
DMRCPSRY 

DMKCPVAA 

Processes the NOTREADY command to 
cause the virtual device to appear 
not ready. 
Processes the RESET command to 
reset all pending interrupts from 
the specified device. 
Processes the REWIND command to 
issue a rewind to the real tape 
device. 
Processes the READY co~mand to 
simulate a device end interrupt to 
the specified device. 
Processes the SYSTEM command to 
simulate system reset and PSW re­
start to allow clearing of storage. 

Resident. 
Contains data constants that de­
fine the end of the CP nucleus. 

Pageable. 
PreFares VM/370 for operation. 
Enables the operator's console, 
initializes the TOD clock and di­
rectory, allows operator logon, 
prepares for warm start, and com­
pletes initialization. 
Initializes and prepares CP for 
operation. 

Pageable. 
Processes the SHUTDOWN, HALT, and 
VARY commands. 
Processes the SHUTDOWN command. 
Processes the HALT command. 
Processes the VARY command. 

Pageable. 
Punches user accounting records. L-______________________________ _ _______ --J 

eodule 
Nalle 

DMKCPV 
(cont.) 

DMKCQG 

DMKCQP 

DMKCQR 

Entry 
Points 

DHKCPVAC 

DMKCPVAE 

Dl'lRCPVDS 

DMKCPVEN 

DMKCPVLK 

DeKCPVUL 

DMKCQGEN 

DMKCQPRV 

DMKCQREY 

Attributes, Function 

Processes the ACNT command to 
create accounting records for 
logged on users. Also, resets 
accumulated accounting information. 
Enables system low-speed lines for 
system restart. 
Processes the DISABLE cemmand to 
disable an active line after the 
current user is finished with it. 
Processes the ENABLE command to 
enable the system's low-speed 
lines for system log on. 
Processes the LOCK command to 1eck 
specified pages of a user's vir­
tual storage space into,real main 
storage. 
Processes the UNLOCK com.and to 
unleck pages that were locked by 
operator command (LOCK). 

Pageab1e. 
Processes the class G and class D 
QUERY commands. 
Entry to QUERY command processor 
for class G users. 

Pageable. 
Processes the class B and class G 
QUERY command. 
Entry to QUERY command processor 
for class E and G users. 

Pageab1e. 
Processes the QUERY command. 
Main entry point. Contains a 
branch table to get to the rou­
tine that processes the operand 
specified in the QUERY command; 
the operand can be one of the fol­
lowing: FILES, TIME, SET, LCGMSG, 
NAMES, USERS, DUMP, PAGING, HOLD, 
PRIORITY, TERMINAL, PF, SASSIST. 



til 
(1) 
(1 

rt­.... 
o 
t:I 

W 

t::J .... 
ti 
(1) 
(1 

c+ 
o 
ti .... 
(1) 

en 

W 
N 
U'1 

r 
I 
I 

filodule 
Name 

DfilKCQR 
(cont. ) 

Dl!KCSC 

DMKCSP 

DKKCST 

DMKCSU 

Entry 
Points 

DfilKCQRFI 

DMKCSCBS 
DftKCSODR 
Dl!KCSOFL 
DKKCSOLD 

DKKCSORP 
D!!KCSOSD 
DftKCSOSP 
DMKCSOST 

DMKCSCVL 

DMKCSPCL 
DftKCSPFR 
DfilKCSPHL 
DKKCSPSP 

DKKCSTAG 

DKKCSUCH 
DMKCSUCR 
DKKCSUPU 
DKKCSUTR 

--, 

Attributes r Function 

Retrieves the number of reader r 
punch, and print files. 

Pageable. 
Processes real spooling cOllmands 
for real unit record devices. 
Processes the BACKSPACE command. 
Processes the DRAIN command. 
Processes the FLUSH command. 
Processes the LOADBUF command 
(real UCS or FCB buffer). 
Processes the REPEAT command. 
Starts entry point for warm start. 
Processes the SPACE command. 
Processes the START command by de-
vice type. 
Processes the LOADVFCB (load vir-
tual forms control buffer) cOlllland. 

Pageable. 
Processes class D and G spooling 
commands. 
Processes the CLOSE command. 
Processes the FREE cOllmand. 
Processes the HOLD command. 
Processes the SPOOL command. 

Pageable. 
Processes class G commands. 
Entry point to process the TAG 
command. 

Pageable. 
Processes the class D and G spool­
ing commands. 
Processes the CHANGE command. 
Processes the ORDER command. 
Processes the PURGE command. 
Processes the TRANSFER command. 

r--
filodule Entry 

Name Points 

Df!KCVT 

DfilKCVTBD 

D!!KCVTBH 

DftKCVTDB 

DftKCVTDT 

D!!KCVTFP 

DMKCVTHB 

DMKDAS 

DftKDASER 

DftKDASRD 

DftKDASSD 

DMKDDR 

Attributes r Function 

Resident. 
Processes the conversion routines. 
converts a word of binary data 
into a doubleword of decimal di-
gits. 
Converts a word of binary data 
into a doubleword of hexadecimal 
data. 
Converts a decimal field into a 
fullword of binary data. 
Converts data and time to EBCDIC 
and inserts it into a specified 
location. 
Converts a floating-point double-
word into 17 bytes of decimal data. 
Converts the designated hexadeci-
lIal field into a binary fullword. 

Resident. 
DASD error retry program. 
Retries the failing DASD channel 
program. 
Processes unsolicited device end 
interruptions. 
Collects DASD sense data. 

Residency not applicable. 
This is the DASD dump restore pro­
gram. It saves data from a direct 
access volume onto a tape or tapes. 
It returns data to DASD froll tape 
that has been placed on the tape 
by this program. It copies data 
froll one device to another of the 
same type. It prints a transla­
tion of each record specified on 
the SYSPRINT device. Prints a 
translation of each record speci­
fied on the console. 

Initial program loaded or run 
under CftS if on a CMS disk. 



Module 
Name 

D"KDtB 
(cont.) 

D"KDIF 

DMKDGD 

DMKDIA 

Entry 
Points 

DMKDDBEP 

Df!KDDBED 

DMKDEFIN 

DMKDGDDK 

DMKDIACP 

DMKDIADB 

DMKDIAL 

DMKDIASM 

-------------------------, 
Attributes, Function 

DASD dump restore program entry 
point. 
End-of-load module for C"S. 

Pageable. 
Processes the DEFINE command to 
define a virtual device or storage. 
Processes the DEFINE command to 
alter the virtual machine's confi­
guration or storage size. 

Resident. 
Processes simple disk I/O. 
Performs simple disk I/e of a 
standardized format with a minimum 
of CCW chain manipulation and 
interruption handling. 

Pageable. 
COUPLE command processor. Esta­
blishes a virtual connection be­
tween two channel-to-channel adap­
ters on a single virtual machine. 
Releases a terminal line that has 
been in use by the virtual machine 
via the DIAL command. The line is 
detached from the virtual machine 
and made available for normal log 
on to '"/370. 
Processes the DIAL command. At­
taches a user's terminal as a de­
dicated device to an existing vir­
tual 2101 terminal line in the 
virtual machine addressed by the 
com.and line. 
simulates sense data and status 
for virtual I/O to a simulated I/O 
device (21C2 line or CTCA) that 
that has not yet been activated 
through either the console func­
tion DIAL for 2102 lines, or the 
console function COUPLE for vir­
tual CTCAs. 

.---
I Module 
I Nalle 

---------------------------------------------, 
Entry I 
Points Attributes, Function I 

--------------------.------------------------------------
Df!KDIR 

Df!KD!!P 

DMKDBD 

DMKDSP 

DMKDIRCT 

DMKDIRED 

Df!KDMPDK 

DMKDMPRS 

DMKDRDDD 
Df!KDRDER 

DMKDRDMP 

DMKDRDSY 

Pageable or standalone. 
Initial program loaded or run un­
der C"S if on a CMS disk. 
Builds a user directory on a sys­
tem owned volume using pre-alloca­
ted cylinders. 
End of load module for CMS. 

Resident. 
Writes a dump of main storage, 
control registers, floating-point 
registers, general registers, and 
clocks to a sFecified device. 
writes the dump on the specified 
device. 
Initial program loads the system 
over again. 

Pageable. 
Process spocl files 
Delete system dump spool file. 
Manipulates input spool files via 
a DIAGNOSE code 1'0014' issued by 
the virtual machine. 
Beads a system dump spool file via 
a DIAGNOSE code 1'0034' issued by 
the virtual machine. 
Reads the system symbol table 
CSECT via a DIAGNOSE code 1'0038' 
issued by the virtual machine. 

Resident. 
Entered after each interruption 
handler is finished processing and 
after each stacked CPEIBLCK, I/O 
request, and external interruption 
has been serviced. It updates the 
CPU times charged to the user that 
has received service, updates all 
virtual tillers, and reflects any 
pending interruptions for which 
the user is enabled. After the 
user's status has been updated, 
the highest priority runatle user 
is dispatched. 



tn 
(I) 
o 
c+ 
1-1-
o 
t:I 

w . 
t::l 
1-1-
t1 
(I) 
o 
c+ 
o 
t1 
1-1-
(I) 
en 

l!odule Entry 
Nalle Points 

Dl!KDSP DMKDSPA 
(cant.) 

Dl!KDSFB 

DMKDSPCH 

Dl!KDSPQS 

DMKDSPRQ 

Dl!KDSPBP 

DMKEDl! 

DMKEDl! 

DMKEtl! Dl!KEDl! 

Attributes, Function 

Im.ediate redispatch path for vir­
tual machines. The only status 
update that occurs is for virtual 
timers. 
Process new virtual PSi and dis­
patch. Entered if the virtual PSi 
has been entered outside of Dl!KDSP. 
l!ain entry point. Updates timers 
and dispatch user. 
Nonexecutable; dispatched user's 
maximum time slice. 
Queues anchor for IOBLCKs and 
CPEXBLOKs. 
Number of dynamically assignable 
page frames now availatle in the 
system. 

Runs in a virtual machine under 
Cl!S control. 
Reads the CP dump from the CMS 

t file and edits and prints the fal­
I lowing in a readable format: 
I. PSis 
I. General registers and control 
, registers 

• CSi and CAi 
• Load map 
• Real device blocks and associa­

ted control blocks - RBCBLOK, 
RCUBLOK, RDEYBLOK, IOBLCK, RES­
PLCTL, SIBLOK, IOERBLOK, ALOC­
BLOC, RECBLOK 

• SFBLOK chains for reader, prin­
ter, and punch files 

• Core table 
• Each user's virtual 

blocks and associated 
blocks YMBLOK, 
YCUBLOK, YDEYBLOK, 
SFBLOK, YCOBCTL 

device 
control 

YCBBLOK, 
YSPLCTL, 

l!odule 
Name 

DMKEtl! 
(cant.) 

DMKEIG 

DP.lKEP.lA 

DP.lKEMA 

Entry 
Points 

DMKEDM 
(cant.) 

DMKEl!A 

DMKEl!A 

Attributes, Function 

• Each user's segment page and 
swap tables. 

Prints a hex dump of storage sup­
pressing print lines that are dup­
licates of the preceding lines. 
Operator options allow: 
• Print suppression of a for-

matted dUllp 
• Print suppression of a hex dump 
• Erasing the CMS dump file 
• Printing a load map 
• Printing the dump at the user's 

console. 
The default of the options is a 
formatted hex dump printed on de­
vice OOE. 

Pageable. 
Analyses the 2880 channel 
and sets appropriate bits 
ECSi field according 
results of this analysis. 
the channel logout to the 
check record. 

Pageable. 

logout 
in the 
to the 

It moves 
channel 

Contains the framework of the com­
lion error messages that are gener­
ated at various places within CPo 
l!odule Dl!KERl! references DP.lKEl!A to 
write error messages that require 
variable data to be inserted into 
them. 

This module contains no execu­
table code and contains all error 
messages from 0 to 225. 



< 
3 , 
W 
~ 
o 

r---­
Module 

Name 

D~KEMB 

DMKER~ 

DMKFCB 

DMKF~T 

---------------------------------------------, 
Entry 
Points 

DMKE!B 

DftKERftSG 

DMKFCB 

Attributes, Function 

Pageable. 
Contains the framework for tbe 
common errer messages that are 
generated at various places within 
CPo The module DMKERft references 
DMK!ftB to write error messages 
that require variable data to be 
written into them. 

Tbis module contains no execut­
able code and contains error mes­
sages 256 and up. 

Pageable. 
This is the message writer. Lo­
cates the requested message and 
inserts the module ID, message 
number, and data. It also prints 
the message. 

Pageable. 
Contains the forms control load 
buffer images that the LOADBOF 
command uses to load the forms 
control buffer in the 3811 control 
unit for the 3211 printer. 

I 
I 

The LOADVFCB command also uses 
DftKFCB to lead the forms control 
buffer in the virtual 3211 printer. I 

I 
standalone program. Initial pro- I 
gram loaded or run under CMS if I 
on a CftS disk. I 

J 

r---­
Hodule 

lame 

DMKFftT 
(cont.) 

D~KFRE 

DMKGIO 

Entry 
Points 

DMKFREE 
DftKFBEBS 

DftKFRET 
DMKFRETR 

DftKGIOEX 

Attributes, Function 

Adapts parameters from the console 
or IPL device (card reader) and 
performs partial or complete for­
matting, allocating, and labeling 
of 2314, 2319, 3330, 3340, 3350 
and 2305 DASD devices. The FORHAT 
program alse write-checks the sur­
faces. Bad surfaces are flagged 
to prevent their use. No alterna­
tive tracks are assigned. os la­
bels are written to be compatible 
with OS, but labels indicate to OS 
that no space is left on the DASD 
device. All input parameters are 
verified for correctness. 

Resident. 
Free storage manager. 
Gets space from free storage. 
Returns subFocls to free storage 
chain. 
Returns space to free storage. 
Returns space to free storage; 
does not release pages. 

Pageable. 
Initializes supervisor operations 
for tape, unit record, and 
nonstandard disk I/O operations. 
Checks device validity and ini­
tializes I/O operations on tape, 
unit record, and nonstandard disk 
I/O programs Fer supervisor call. 
This module presents resultant 
condition code and CSW (if warran­
ted) to the user. 

________________________________________________________ -J 



~ .... 
11 
<D 
o 
r+ 
o 
11 .... 
<D 
en 

r---------------------------------- ------------------------, 
I Module 
I Name 

DMKGRF 

DMKHVC 

DMKHVD 

DMKIOC 

DMKICE 

Entry 
Points 

DMKGRFIN 

DMKGRFEN 
DMKGRFIC 

DMKHVCAl 

DMKHVDAl 

DMKIOCVT 

Attributes, Function 

Resident. 
Supports local 3270 and 3066 devi­
ces. DMKGRF processes interrup­
tions and CCWs for the devices. 
The processing includes message 
handling and screen management. 
Handles the interruption via an 
IOB10K. 
Enables or disables the device. 
Starts a CONTASK from DMKQCN. 

Resident. 
Performs services for the virtual 
machine as requested via the 
DIAGNOSE instruction. The specific 
service performed depends on the 
code in the DIAGNOSE instruction. 
Pageable. 
Performs services for virtual ma­
chines as requested by the 
DIAGNOSE instruciton. 

converts VM/370 device type to 
OS/VS device type. 

Resident. I 
This is the error recording module. 
It receives all requests for error 
recording and passes control to 
the proper pageable routine after 
checking if a recording is in pro­
gress. If a previous request for 
error recording is in progress, 
the current request is queued on 
the appropriate queue for recor­
ding at a later time. It makes a 
check to determine if the re­
cording cylinder is full. DMKIOE 
also interfaces with the,pageable 
module that initializes and erases 
the error recording cylinders. 

r---
I Module 
I Name 

DMKICE 
(cont. ) 

DMKIOF 

Entry 
Points 

DI!KIOECC 

DMKIOECH 

DMKIOECJ 

D!KIOEFl 

DMKIOEFM 

D!KIOEMC 
DMKIOEMH 

DMKIOENV 

DMKIOEOB 

DMKIOEQQ 

D!KIOERC 
DMKIOERN 

DMKIOERR 

D!KIOESD 
DMKIOESR 

DMKIOEST 

D!KIOEVR 

D!KIOFCl 

Attributes, Function 

Entry for a channel error condi­
tion occurring on a SIO in DMKIOS 
with a response condition code of 
one. 
Entry for a stacked channel re­
cording request from the channel 
check handler. 
Entry for a stacked channel check 
recording request from ERP. 
Entry point to locate the star­
ting page record for recording. 
Entry to clear and format the re­
cording area on disk. 
Entry for machine check recording. 
Entry for a stacked machine check 
request. 
~ntry for a stacked environmental 
recording request. 
Entry for a stacked outboard error 
recording request. 
Calls to initiate error recording 
via DMKIOF (no DMKIOE function 
performed). 
Entry for a stacked erase request. 
Processes a 3704/3705 and remote 
3270 request. 
Schedules recording for unit 
check, channel data check, and 
hardware environmental counts. 
Records 3330 data. 
Schedules statistical data record­
ing. 
Schedules the update of a statis­
tical data request. 
Processes an SVC 76 request. 

Pageable. 
Records system ~nd I/O errors on 
the system disk ~n predefined er­
ror recording cylinders. 
Records channel check error from 
SIO in DaKIOS when CC=l. 



w 
w 
o 

< 
3: 

" W 
--.J 
o 

til 
I.e:: 
en 
r+ 
CD 
s 
~ 
o 

IQ ..... 
n 
~ 
::s 
~ 

~ 
1"1 
o 
tr ..... 
CD 
S 

t:; 
CD 
r+ 
CD 
1"1 .. ..,. 
cs 
~ 
t+ ..... 
o 
cs 
en 
c: ..... 
~ 
CD 

Module 
Name 

DMKIOF 
(cont.) 

DPlKICG 

DMKI CS 

Entry 
Points 

DMKIOFIN 

DMKIOFOB 
Dl!IRIOFMl 
DMKIOFST 
D!!KIOFVR 

DMKIOGFl 

DMKIOGF2 

DMIUOSHA 

D!!KIOSlli 
DMKIOSQR 

DMKIOSQV 

DMKIOSRi 

Attributes, Function 

Initializes pointers to available 
recording pages at IPL and after 
an erase has been completed. 
Records OBR and MDR records. 
Records machine checks. 
Updates statistical data counters. 
Records errors when requested by 
SiC 76. 

Pageable. 
Called at initialization to locate 
the error recording device, locate 
the last outboard error record and 
system recordings made on the cyl­
inders, and set the in-storage 
pointers to the correct values. 
Initialization for RMS functions 
is performed after firsr making a 
test to determine if CP is running 
under CPo RMS functions are not 
activated for a virtual CP envi­
ron.ent. This module also erases 
the recording areas. 
contains all function of DMKIOS 
except erase. 
Erases either the machine check 
handler or channel check handler 
recording cylinder, or the out­
board recording cylinder; either 
separately or co.bined. 
Resident. 
Schedules requests for virtual ma­
chine and program I/O operations, 
and services all I/O interruptions. 
Halts an active device and drains 
all interruptions. 
Processes an I/O interruption. 
Schedules CP generated I/C opera­
tion. 
Schedules a virtual machine I/O 
operation. 
Processes the IOBLOK used for 
REiIND. 

________________ --J 

r-------------------------------
I filodule 
I Name 

Entry 
Points Attributes, Function 

------------------------------------------------------------
DMKISM 

DMKLtOO 

DPlKLCC 

DMKLNK 

DMKLOG 

DMKMCC 

DMKISMTR 

LDRGEN 

DMKLOCK 

DMKLOCKD 
DMKLOCKQ 
DMKLOCKT 

DMKEPSiD 

DMKINKIN 

DMKLliKSB 

DMKLOGON 
DMKIOGCP 
DMKLOGA 

DMKlICCCL 

Pageable. 
Finds and modifies an ISAM CCi 
string. 

Loader - utility progra •• 
Loads assembled program modules 
into storage at locations other 
than those assigned by the assem­
bler. It completes linkage among 
the modules and transfers control 
to one of the loaded .odules for 
execution. 

Resident. 
Allows a system resource to be 
marked in use or not available by 
a unique a-character name. 
Dequeues a locked name. 
Queues or locks a name. 
Tests to determine if a name is 
locked. 

Pageable. 
Prompts the user to enter a pass­
word, types masking characters if 
appropriate, reads the password 
from the terminal, and checks it 
for a match. 
Links to a virtual DASD device be­
cause of an issued LINK co •• and. 
LINK subroutines. 
Pageable. 
Logs on a user or operator. 
Logs on a user. 
Logs on the operator. 
Processes the AUTOLOG command. 

Pageable. 
Processes the MONITOR START or the 
MONITOR STOP command. 



til 
(1) 
o 
t+ ..,. 
o 
r:s 
w . 
t:::I .... 
11 
(1) 

~ 
o 
11 .... 
(1) 
en 

,--­
Module 

Name 

DPlKMCH 

DPlKMID 

DMKPlCN 

DMKMSG 

DMKMSW 

---------------------------------------------, 
Entry 
points 

DMKMCHIli 

DMKMCHPIS 

DPlKlIIDliT 

DflKl!OliIO 

DflKl!OIlPlI 

DlIKl!CNSH 

DPlK~ONTH 

DPlKlIOIiTI 

DflKPlSGEC 
DMKMSGMS 
DPlKflSGWN 

DIHOISWR 

Attributes, Function 

Resident. 
Processes a machine check inter­
ruption. 
Enables or disables soft machine 
check recording. 

Pageable. 
Changes the date in the system low 
storage at midnight and resets the 
clock comparator for the next mid­
night occurence. DPlKPlID also 
sends messages to all users about 
the date change. 

Pageable. 
Processes cOllmands and requests 
associated with the MONITCR, in­
including MONITOR CALL interrup­
tions within CPo 
Processes tape interruptions re­
turned by DMKIOS. 
Processes a MONITOR CALL program 
interruption. 
Routine to stop the PlONITOR com­
mand. 
Routine to write MONITOR tape 
header records. 
Handle timer request interruptions. 

Pageable. 
Transmits messages to logged on 
users for the MESSAGE or WARNING 
commands. Receives and retransmits 
lines for the ECHO command for the 
number of times specified. 
ECHO command processor. 
MESSAGE command processor. 
WARNING command processor. 
Resident. 
Allows system communication with 
the operator for the enhancement 
of error recovery procedures. 

I 
I 

L _________________________________________________________ J 

Module 
Name 

DMKNEM 

DPIKNES 

DMKNET 

DMKNLD 

Entry 
Points 

DMKNEMOP 

DflKNESDS 

DflKIiESEP 

DMKNESHD 

DMKNESPL 

DMKNESTR 

DMKNESWN 

DPlKIiETAE 

DPIKNETWK 

DMKNLDMP 

DMKNLDR 

Attributes, Function 

Pageable. 
Gets a 5-byte mnemonic ope ode for 
a System/370 binary opcode. 

Pageable. 
Processes NETWORK operands as 
follows: 

POLLDLAY 
SHUTDOWN 
DISPLAY 
VARY 
TRACE 

Processes the NETWORK DISPLAY 
comlland. 
Processes the NETWORK VARY EP 
command to switch an NCP communica­
tion line to EP mode. 
Processes the NETWORK SHUTDOWN 
command. 
Processes the NETWORK PCLLDLAY 
command. 
Processes the NETWORK TRACE 
command. 
Processes the NETWORK VARY NCP 
command to switch an EP communica­
tion line to NCP mode. 

Pageable. 
Decodes NETWORK command and enables 
bisync lines. 
Enable bisync lines and remote 
stations. 
NETWORK command decoder. 

Pageable. 
Dumps the 3705 network control 
program. 
Loads the 3705 network control 
program. 
These routines may be called by a 
console command from DMKNET or 
or internally by DMKCPI (for LOAD) 
or DMKRNH (for DUMP). ------_________________________________________________ --J 



< 
3 

" W 
-.J 
o 

DMKOPR 

DMKPAG 

DMKPER 

DMKPGS 

DMKPGT 

Entry 
Points 

DMKCPRiT 

DMKPAGIO 

DMKFEBCB 
DMKPEBIL 
DI!IKFEBT 

DMKPGSPO 

DMKPGSPP 

DMKFGTCG 

DMKFGTFG 

-----------, 
Attributes, Function 

Resident. 
Provides the necessary support for 
the VM/370 system console. Certain 
routines within the control program 
can not call DMKQCN to issue writes 
to the system console. This module 
determines the system's primary 
console and builds a channel 
program to handle the requested 
call. 

Resident. 
Constructs IOBLOKs and schedules 
the tasks that move virtual storage 
pages between auxiliary storage and 
main storage. It also calculates 
the total system paging load at 
user specified intervals. 

Pageable. 
Sets a return code of zero in R2. 
Resets the interruption. 
Resets program event recording. 

Pageable. 
Release all the pages of a user's 
virtual storage - from the real 
storage and fro. auxiliary storage 
on the paging device. 
Releases a specified part of 
virtual storage. 

Resident. 
DASD storage manage.ent. 
Allocates contiguous space for a 
3704/3705 dump. 
Allocates a page of DASD storage 
for either virtual storage paging 
or for spool file page buffers. 

r 
I Module 
I Name 

DMKPGT 
(cont. ) 

DMKPRG 

DMKPRV 

DI'!KPSA 

-------------------------------------------, 
Entry I 
Points Attributes, Function I 

----------------------------------------DI!IKFGTPR 

Dl'IKPGTSD 

DMKPGTSG 

DMKPGTSR 

DMKPGTVG 

DMKPGTVR 

DMKPRGIN 

DMKPRGRF 

Dl'IKPRGSM 

DMKPRVLG 

DMKFSADU 

DMKFSAEI 
DMKPSAFP 

DMKPSAID 

DMKPSARR 

Dl'IKPSARS 

DMKPSARI 

DMKPSASP 

DMKPSASV 

Releases DASD storage used for 
virtual storage paging. 
Releases one page of DASD storage 
used for spooling. 
Allccates a page of DASD storage 
for spooling. 
Releases a group of DASD storage 
pages used for spooling. 
Allccates a page of virtual storage 
belonging to the CP paging VMBLOK. 
Releases a virtual storage page. 
Resident. 
Processes a hardware program 
interruption. 
Reflects an SVC interruption to the 
virtual machine. 
Simulates a virtual program 
interruption. 

Resident. 
Simulates a privileged operation. 

Resident. 
PSi restart processing. Forces an 
SVC 0 type of dump. 
Processes external interruptions. 
Checks for fetch protection 
violation per PSi key. 
Gets virtual address for any 
instruction. 
Gets the virtual address for an RR 
instruction. 
Gets the virtual address for RS,SI, 
or SS instruction. 
Gets the virtual address for an RI 
instruction. 
Checks for a storage protection 
violation per the PSi key. 
Processes SVC interruptions. 

-------------' 



Cfl 
(I) 
o 
r+­..... 
o 
= 
w 

t::l ..... 
H 
(I) 

o 
("f-

o 
H ..... 
(I) 
[J) 

w 
w 
w 

eodu1e 
Name 

DeKPTR 

DMKQCN 

Entry 
Points 

DMKPSAFC 

DMKPSASC 

DMKPTRAN 

DeKPTRFR 
D!KFTRFT 
DMKPTRLK 
D!KPTRPi 

DMKPTRUL 

DMKQCNCL 

DMKQCNET 

DMKQCNRD 

DMKQCNSY 

DMRQCITO 

Attributes, Function 

Checks fetch protection per the 
CAi key. 
Checks storage protection per the 
CAi key. 

Resident. 
eanages the inventory of real 
system pages, provides real storage 
space for CP functions and for 
pages of user and CP virtual 
storage. 

Translates user virtual storage 
address to a real storage 
address. 
Gets a page of real storage. 
Releases a page of real stcrage. 
Locks a page of real storage. 
Called to defer execution of 
system reset functions when user's 
virtual machine is in page wait. 
Un1ccks a page of real storage. 
Resident. 
Clears CONTASK stack and returns 
all blocks to free storage. 
ProceSses ccmp1eted CONTASRS for 
virtual console spooling, return 
or no return options, and returns 
the COBTASK blocks to free storage. 
starts and queues a console read 
request. 
synchronizes virtual machine 
console activity with internal 
supervisor activity. This is used 
during a virtual system reset and 
during the logoff process. 
Disconnects a virtual machine 
and sets a TOD clock comparator 
request to logoff the virtual 
machine after a fifteen minute 
delay. 

..-­
Module 

Nallle 

DMKQCN 
(cont. ) 

DMKRGA 

DMKRGB 

DMKRIO 

DMKRIW 

Entry 
Points 

D~KQCNiT 

DflKRGAIN 

DMKRGE 

DflKRGEIC 
DMKRGBEN 

DMKBIO 

DMRRliD 

Attributes, Function 

Starts and queues a console 
write request. 

Resident. 
This is the second-level inter­
ruption handler for remote 3270 
stations. This module supports 
the 3270 remote display and prin­
ter stations. It processes inter­
ruptions and CCws for the remote 
stations including message hand­
ling and screen management. 

Resident. 
Supports the 3270 remote display 
and printer stations. It proces­
ses interruptions and CCws for the 
remote stations including message 
handling and screen management. 
Initializes and schedules CONTASKS. 
Enables and disables bisync lines 
and relllote stations. 

Resident. 
Exists as a CSECT and defines the 
machine's configuration. A basic 
DMKRIO is shipped with VM/370. 
DMKBIO can be changed at system 
generation or whenever new ma­
chines are added by using the ap­
propriate macros. 
Residency not applicable. Invoked 
via the NCPDUMP command in CMS. 
This is the interface between the 
VM/370 dump spool file and the 
os-ssp dump format program for 
printing and formatting dumps of 
the 3704 and 3705 communications 
controllers. 



< 
:z 

" IN 
-...I 
o 

r-------------- ---------------.-----------------------------, 
I Module Entry I 
I Name Foints Attributes, Function I 

DMKRIH 

Df!KRFA 

DMKRSE 

DMKRSP 

DMKRNHIC 

Df!KR BHIN 

DMKRNHND 

Df!KRPAGT 

DMKRPAPT 

Df!KRSERR 

DMKRSPER 
DMKRSFEX 

Resident. 
Initializes and schedules the 
CONiASK fields that comprise the 
3704 and 3705 Network Control Pro­
gram transmission header. 
This is the secondary interruption 
handler for the 3704 and 3705 
communication controllersi it is 
read when oFerating in NCP or PEP 
mode. 
Schedules centrol fUnctions for 
the 3705 or 3704 Network Centrol 
Program. 

Resident. 
virtual storage mapping. 
Page-in from DASD to user's 
virtual sterage. 
Page-out to DASD from user's 
virtual storage. 

Pageable. 
Real UR device I/O error handler. 
Retries and attempts to recover 
from real unit record device I/O 
errors. 

Resident. 
Manages all spooling oFerations 
on the real system unit reccrd 
devices including printing and 
punching user-created spool files 
and reading and queueing reader 
files from the real card reader. 
Processes sFooling errors (ERP). 
Processes spooling operaticns. 
Entered via a GOTO when Df!KDSPCH 
unstacks an IOBLOK with an 
interruption for the spooling unit 
record device. 

r­
Module 

Name 

DMKRSP 

DMKSAV 

DMKSCH 

--------------------------------------------, 
Entry I 
Foints Attributes, Function I 

Df!KRSFUR 

DMKSAVRS 

DMKSAVNC 

DMKSCHCP 
DMKSCHDL 
DMKSCHMD 

DMKSCHRT 

DMKSCHST 

DMKSCH80 

DMKSCHAE 

Formats the active file message 
for real UR devices. 

Pageable. 
DMKSAVNC is entered via an LDT 
card from DMKLDR. DMKSAVRS is en­
tered via a BALR from DMKCKF. 
DMKSAV saves and restores a page 
image count of the CP nucleus on 
the system residence disk. 
Restores a page image copy of the 
CP nucleus. 
Writes a page image copy of the CP 
nucleus. 

Resident. 
Maintains queues of runable and 
eligible users, alters the 
disFatching status of users, and 
periodically recalculates the 
working set size and dispaching 
priority of users. DMKSCH 
contains the routines that maintain 
the system TOD clock comparator 
request queue and the code that 
monitors users with aknormal 
execution. 
Interruption from real CPU timer. 
Alters a user's dispatching status. 
Interruption for the midnight 
date change. 
Resets a clock comparator 
interruption request. 
Establishes a clock comparator 
interruption request. 
Interruption for real timer at 
storage address 80. 
Processes interruption occurring 
when the favored execution 
measurement interval expires. 

L ________________________________________________________ -J 



til 
(t) 
o 
~ 
~. 

o 
:::s 

w . 
t:::I 
~. 

t1 
(t) 
o 
c+ 
o 
t1 
~. 
(t) 
til 

w 
w 
U1 

r------------------------------
I Module 
I Name 

DMKSCN 

Entry 
Points 

DMKSCNAU 

DMKSCNFD 

DMKSCN DMKSCNLI 

DMKSCNBD 

DIIKSCBBB 

DIIKSCBBU 

I DIIKSCBVD 

DMKSCNVN 

DMKSCNVS 

DMKSCNVU 

Attributes, Function 

Resident. 
Scans module. 
Searches the chain of VMBLOKs for 
one whose userid matches the one 
pointed to by register one. 
Finds the next field in an input 
message buffer. 
Searches the logged on virtual 
machines for any links to a 
specified minidisk. A link is any 
virtual device whose ADEVBLOK 
pointer and relocation factor 
match those specified. 
Computes a real device address 
(in CW form), from the RDEVADD, 
RCOADD, and RCHADD entries in the 
real device, control unit, and 
channel blocks. 
Returns the name of the real 
device to the caller in register 1. 
Returns the addresses of the real 
channel, control unit, and device 
blocks for a given real device 
to the caller. 
Computes a full virtual device 
address (in cuu form), plus the 
addresses of the virtual channel 
and control unit blocks from a 
specific virtual device block. 
Returns the name of the virtual 
device to the caller in register 1. 
Searches all the real device 
blocks for a device whose volume 
serial number matches the one 
pointed to by register 1. 
Returns the addresses of the 
virtual channel, control unit, 
and device blocks for a given real 
device to the caller. 

r----------------------------------
I Module 
I Name 

DMKSEP 

DMKSEV 

DMKSIX 

DMKSNC 

DMKSNT 

Entry 
Points 

DMKSEPSP 

DMKSEV70 

DMKSNCP 

DMKSNTBL 

Attributes, Function 

Pageable. 
Prints and punches the respective 
output separators on real spooling 
devices. 

Pageable but locked. 
Analyzes 2870 channel logout and 
sets appropriate bits in the ECSW 
field according to the results of 
analysis. It moves the channel 
logout to the check record. 
Pageable but locked. 
Analyzes 2860 channel logout and 
sets appropriate bits in the ECSW 
field according to the results of 
analysis. It moves the channel 
logout to the check record. 

Pageable. 
Save a page-form version of a 
3104/3705 network control program. 
The name of the network control 
program and the DASD location at 
which it is to be saved is defined 
in the CP module DMKSYS. 

Pageable. 
This module is assembled by the 
installation system prograamer. It 
describes the system to be saved 
via the SAVESY5 command and to be 
initial program loaded by name. 
Shared segments may be specified. 
These segments consist of all re­
entrant code and no altering of 
this storage is allowed. There is 
no executable code in this module. 



w 
W 
0\ 

< 
::I: 

....... 
W 
....J 
o 

en 
""CI 
en 
rT 
(I) 
iii 

~ 
o 

\Q 

"", o 
I» 
t:' 
~ 

It:,! 
H 
o 
0-..... 
(I) 
iii 

t::' 
(I) 

rT 
(I) 

H 
iii "", 
t:' 
I» 
rT "", o 
t:' 

Cil 
~ "", 
~ 
(I) 

Module 
Name 

DfilKSPL 

DfilKSSP 

DfilKSTK 

DfilKSYM 

Entry 
Points 

DMKSPLCR 

DMKSPLCV 

DfilKSPLDL 

DMKSPLOR 

DfilKSPLOV 

DfilKSSP01 

DMKSTKCP 
DMKSTKIO 

Dfil KS HI 

-------, 
Attributes, Function 

Pageable. 
Spool file manager. 
Closes and queues a real reader 
spool file for virtual input. 
Closes and queues a virtual 
printer or punch spool file for 
processing. 
Deletes used files from the 
system and de-allocates the DASD 
page space. 
Initializes control blocks and 
buffers for real input reader 
files. 
Initializes control blocks and 
buffers for virtual printer and 
punch output spool files. 

This module is found in the star­
ter system cnly. 
It builds RCBBLOKs, RCUBLOKs, and 
RDBVBLOKs necessary to configure a 
minimum CP system. From the starter 
system, a real CP system is figured 
based on the installation's REALIO 
deck. 
Entered as a result of an IPL 
operation. Constructs the I/O 
blocks and system modules for a 
minimum system configuration. 

Resident. 
Stacks I/O blocks. 
Stacks a CP!IBLOK. 
Stacks an IOBLOK. 

Pageable 
Provides a symbol table of all 
CSECTS and entry points. 

,--------
ftodule Entry 

Name Points 

DMKSYS 
DMKSYS 

DfilKTAP 
DMKTAP 

DMKTAPER 

DfilKTBL 
DfilKTBl 

DMKTBfII 

DMKTBftZO 

DMKTBftZI 

DftKTBftftO 

DMKTBftNO 

DMKTBftNI 

Attributes, Function 

Resident. 
Bxists as a CSBCT that defines the 
system residence volume, paging 
space, operator ID, dump ID, sto­
rage size, and time zone. 

Pageable. 
Bxamines the error conditicn 
resulting from a unit check while 
executing a CPP generated tape 
channel program. Positioning of 
the tape is required on read/write 
commands and the channel program 
is re-executed. If the error 
condition is uncorrectable, a call 
is issued to the message writer 
(DftKftSi) tc notify the operator. 
Upon regaining control from DMKftSi, 
the original channel program may 
be re-executed or terminated. 
Retries the failing tape channel 
program, after a tape positioning 
command has been executed. 

Resident. 
Contains the terminal translate 
tables. 
Pageable. 
Contains terminal translate tables 
for APL. 
3270 APL compound write transla­
tion. 
3270 APL ccmpound read transla­
tion. 
EBCDIC to APl correspondence ter­
minal code. 
APL correspcndence terminal code 
to APL. 
EBCDIC to APL PTTC/BBCD terminal 
code. 
APL PTTC/EBCD terminal code to 
EBCDIC. 



~ .... 
11 
(\) 
n 
rt' 
o 
11 .. 
(\) 

rn 

Module 
Name 

DMKTDK 

DMKTHI 

DMKTMR 

DMKTRA 

Entry 
Points 

DMKTDKGT 

DMKTDKRL 

DMKTHIEN 

DflKTflRCK 

DlIKTMRPT 

DflKTMRTN 
DMKTMRVT 

DflKTRACE 

Attributes, Function 

Pageable. 
Allocates cylinders of temporary 
disk space from owned volumes. 
Releases temporary disk space to 
the pool of free space. 

Pageable. 
Displays data about use of and 
contention for major system 
resources. 
Processes INDICATE command. 

Resident. 
Simulates the CPU timer and 
time-of-day clock comparator 
instructions for virtual System/ 
370's operating in extended 
control mode. 
Simulates virtual clock comparator 
interruptions. 
Calculates user's total virtual 
problell tillle. 
Simulates timer instruction. 
Simulates virtual CPU timer 
interruptions. 

Pageable. 
Processes the TRACE command line. 
Provides a virtual machine with the 
facility to track SVC instructions, 
program interruptions, external 
interruptions, successful searches, \ 
or all instructions with output on I 
the printer, terminal, or both. \ 
TRACE command processor. \ 

\ 
-----------~---------------------------------------------~ 

r----------------------------------
I Module 
I Name 

DMKTRC 

DMKTRM 

DMKUCB 

Entry 
Points 

DMKTRCEX 
Df!KTRCIO 
DMKTRCIT 

DMKTRCND 
DMKTRCPB 

DIH(TRCPG 
DMKTRCPV 

DMKTRCSI 

DMK'IRCSV 

DMKTRCSW 
Df!KTRCWT 

DflKTRMID 

DMKUCB 

Attributes, Function 

Pageable. 
Processes the TRACE command 
functions. 
Traces external interruptions. 
Traces I/O interruptions. 
Sets the needed SVC B2 for 
instruction tracing. 
Ends tracing. 
Puts back user instructions 
altered by tracing. 
Traces program interruptions. 
Traces privileged instruction 
interruptions. 
Traces I/O operations (SIC, TIO, 
HIO, TCH). 
Processes an SVC, Branch, or full 
instruction TRACE. 
Traces virtual and real CSWs. 
Serialization entry for I/O and 
CCW tracing. 

Pageable. 
Identifies a 2741 terminal as 
either a 2741P (PTTC/EBCD) or 
2741C (correspondence froll) the 
user command. It sets ADEVTYPE 
the RDEVBLOK to TYP2741P or 
TYP2741C and sets flag RDEVIDNT on 
if the terminal was successfully 
identified. 

Pageable. 
contains the UCE buffer load 
images used by the LOAD command to 
load the universal character set 
buffer in the 3811 control unit. 
This module contains no executable 
code. 



r---
1 "odule 
1 Name 
1 
1 D"KUCS 
1 
1 
1 
I 
1 
I 
1 D"KUDR 

Df'lKUBT 

, 
Entry I 
Points Attributes, Function I 

---------1 
Pageable. I 
Contains the UCS buffer load I 
images that the LOAD command uses I 
to load the universal character, 
.set buffer in the 2821 control, 
unit. This module contains no, 
executable code. I 
Pageable. , 

Df!KUDRBV Allcws the Df!KDIRCT or Df'lKCPIRT , 
programs to build a list of virtual, 
page buffers; one for each UDIRBLOK 
page on disk. 

Df!KUDRDS Allcws the Df!KDIRCT program to 
swap the active user directory to 
newly created user directory. 

Df'lKUDRFD Puts specified UDEVBLOK into the 
caller's buffer. 

Df'lKUDRFU Finds a given user ID in the user 
directory and moves the user's 
directory entry into the caller's 
buffer. 

Df'lKUDRRD Reads the next user directory into 
the caller's buffer. 

Df'lKUDRRV Releases a virtual page used by 
the directory program as a buffer. 

Resident. 
Untranslates CCis and CSis. 

Df!KURTFR Releases pages and free storage 
used for the CCi chain. 

Df!KURTIS Finds the RCiTASKS that have been 
patched to handle OS ISA" 
self-modifying sequences and put 
them back the way D"KCCi had them 
to allow Df!KURTRN and Df'lKUNTFR to 
operate correctly. 

Df!KUNTRN Translates a real CSi into a 
virtual CSi. 

r------
1 "odule 
1 Name 

D"KUNT 
(cont. ) 

D"KUSO 

D"KVAT 

Entry 
Points 

D f'lKU NTRS 

Df!KUSODS 

Df!KUSOFF 
Df!KUSOFL 
Df!KUSOLG 
Df!KUSOFf! 

Df!KVATAB 

Df!KVATBC 

Df!KVATEX 

Df!KVATLA 

Df!KVATf!D 

._---, , 
Attributes, Function I 

---------------------------------
Relocates sense byte information. 
For a 3330, 3340, 3350, or 2305, 
comFutes virtual cylinder member 
in bytes 5 and 6 of the sense byte 
data by unrelocating the real 
cylinder number given ty the 
hardware. 

For a 2311 simulated on a 2314 
or 2319, computes the appropriate 
status for byte three of the sense 
data from the real sense data 
given by the hardware. 
Pageable. 
Processes user termination. 
Processes the DISCORN (disconnect) 
command. 
Logs off a user. 
Processes the FORCE command. 
Processes the LOGOFF command. 
Returns subpools from the free 
storage chain and removes spool 
file blocks and allocation blocks 
from the dynamic paging area. 

Resident. 
Storage management for EC mode 
virtual machine. 
Allocates, initializes and 
maintains shadow, segment, and 
page tables for virtual machines 
that can relocate. 
Returns active shadow tatles to 
free storage. 
Services page or segment 
exceptions for virtual 
extended control machines. 
Virtual - virtual to virtual 
address translation. 
Allocates and initializes shadow 
tables. 



Ul 
(!) 
o 
rt 
~. 

o 
::s 
w . 
t::t 
~. 

H 
(!) 

o 
rt 
o 
H 
~. 
(!) 

en 

w 
W 

,\.0 

ftodule 
Nalle 

DftKVAT 
(cont. ) 

DftKVCA 

Entry 
Points 

Dl!KVATPF 

Dl!KVATPI 

DftKVATRN 

DftKVATSX 

Dl!KVCABD 

Dl!KVCARS 

DftKVCASH 

DMKVCAST 

Dl!KVCATS 

Attributes, function 

Handles pseudo page fault 
interruption from a VS1 virtual 
machine. 
Processes paging exceptions for 
a virtual machine that performs 
paging. 
virtual (shadow) -- virtual to 
real address translation. 
Processes segment exception for a 
virtual machine that performs 
paging. 

Pageable. 
Simulates I/O for a virtual 
channel-to-channel adapter. 
Selectively resets a device for 
a virtual channel-to-channel 
adapter without decoupling the 
CTCA from the I-side adapter. 
Does a final reset for a virtual 
channel-to-channel adapter and 
and disconnects the adapter from 
its coupled twin on the I-side 
virtual machine. 
simulates the execution of a 
Halt I/O or Halt Device instruction 
for a virtual machine channel-to­
channel adapter. 
Sillulates the channel and device 
operations of the channel-to­
channel adapter (CTCA) connected 
between two virtual machines under 
VM/370. 
Simulates the TEST I/O instruction 
for a virtual channel-to-channel 
adapter that has no interruptions 
pending. 

,---
Module Entry 

Name Foints 

DftKVCH 
Dl!KVCHDC 

DMKVCN 
Dl!KVCNEX 

DMKVDB 
DMKVDBAT 

Dl!KVDBDE 

DMKVDR 
DMKVDREL 

DftKVDS 
DPlKVDSAT 

DMKVDSDF 

DMKVDSLK 

DMKVER 

DMKVERD 

DMKVERO 

Attributes, Function 

Pageable. 
Processes the ATTACH and DETACH 
real devices and channels) command. 

Resident. 
Simulates all SIOs to a virtual 
console. 

Pageable. 
Processes the ATTACH command to 
a real device as a virtual device 
to a user or dedicates all devices 
on a particular channel to a 
specific user. 
Processes the DETACH command to 
detach a real or virtual device 
from a user or detaches a 
previously-dedicated channel frem 
a user. 
Pageable. 
Releases a virtual or real device 
from a virtual user. 

Pageable. 
Attaches a virtual device to a 
user. 
Defines a new virtual device for 
user. 
Links a virtual DASD device to 
a user. 

Pageable. 
Processes error records from 
virtual machine via SVC 76. 
Processes the SVC 76 from DOS or 
DOS/VS. 
Processes the SVC 76 from OS, VS/1, 
VS/2, or VII/370. 



< 
3 , 
W 
~ 
o 

Module 
Name 

DMKVIO 

DMKV~A 

Entry 
Points 

DMKVIOEX 
D~KVIOIN 

DeKVIOMK 

D~KVIODC 

D~KVMACF 

DMKVMAPS 

DMKVMASH 

Attributes, Function 

Resident. 
Simulates the operation of 
privileged I/O instructions issued 
by the virtual machine and records 
and translates the interruptions 
and status associated with virtual 
I/O operations. 
simulates a SIO, TIO, HIO, or TCH. 
Translate a virtual I/O 
interuption. 
Address of a table of interruption 
masks, indexable by device address. 
Processes interruptions for 
dedicated channels. 

Resident. 
Called by the command processors 
via an SVC if the command execu­
tion is to change a shared page. 
The virtual machine is notified 
that the command has released the 
shared system. The user continues 
to run without a shared cOFY of 
the named system. 
Called by DMKPTR when the paging 
manager detects that a shared page 
has been changed. The current 
LAstUSER is the only virtual ma­
chine that could have changed the 
page. The shared named system is 
loacated and made non-shared for 
the current RUNUSER. Any other 
shared systems that may exist for 
RUN USER are left as a shared sys­
tem. Other users of the Ehared 
system are unaffected by the vio­
lation caused by RUNUSER. 
Checks all shared pages associated 
with shared named systems and de­
termines if they have been changed. I 
If they were changed, the condi- I 
tion code is made non-zero and re- I 
gister 2 contains the real address I 
of the page that was changed. I 

i 
J 

r----
I Module 
I Name 

DMKVMI 

DMKVSP 

DMKWRM 

.------------------------------------------, 
Entry I 
Points Attributes, Function I 

DMKYMIPL 

DMKYSPCO 

DMKYSPCP 
DMKYSPCR 

D~KVSPEX 

DMKYSPRT 

DMKYSPTO 

DMKYSPVP 

DMKVSPWA 

DMKWRMST 

Pageable - loaded into the user's 
virtual storage when invoked. 
Performs an IPL of a virtual 
machine. 
Simulates a user's IPL sequence. 

Resident. 
Simulates all user SIOs to a 
virtual unit record device (real 
reader, punch, print, or psuedo 
timer) That is spooled rather 
than dedicated. It also handles 
control probram requests to print 
on the user's virtual printer. 
stops processing the file 
currently in the spooled printer 
or punch and clears all pending 
status from the spooled printer 
or punch. 
writes a print line to the console. 
stops processing the file currently 
in the spooled card reader and 
clears all pending status from the 
spooled card reader. 
status from the spooled printer 
Simulates SIO to a spooled unit 
record device. 
Puts a CP-generated line on the 
user's spooled printer. 
Checks if the virtual reader is 
empty. 
Simulates SIO to a spooled virtual 
console. 
Nonexecutable index work area for 
2311. 
Pageable. 
Warm start processing. Retrieves 
the system log messages, accounting 
cards, spool file blocks, and 
spooling allocation records from 
the warm start cylinder on the IPL 
pack. _________________________________________________________ J 



Module External References (Labels and Modules) In 
Ir,j 

13: 
10 

DMKACO ACNTEACK ACITBLOK ACITCCi ACITDATA ACNTNEXT ACITSIZE ACORETBL ARIODV ARIOPU ARSPAC ASYSLC ASYSVM CC I~ 
CLASDASD CPEXADD CPEXBLOK CPEXSIZE DE DEVCARD DFRET DMKCVTBH DMKDSPCH D!!KERMSG DMKFREE DMKFRET DMKIOSQR Ie 

It'"i 
DMKPTRIK DMKPTRUL DfilKQCNiT DMKRSPEX DfilKSTKCP DfilKSTKIO DfilKSYSCK DfilKTMRPT F1 F4 F60 F8 IOBCAi It'!:! 

IOBCP IOBCSi IOBFATAL IOBFLAG IOBIRA IOBLINK IOBLOK IOBfilISC IOBfilISC2 IOBRADD IOBSIZE IOESPEC IOBSTAT I 
18 IOBUSER NORET PRIORITY PSA RDEVACNT RDEVBLOK RDEVBUSY RDEVCLAS RDEVDED RDEVDISA RDEVDRAN RDEVFLAG RDEVSPL 10 

RDEVSTAT RDEVTfilAT RDEVTYPE RO R1 R10 R 11 R12 R13 R14 R15 R2 R3 I 

R4 R5 R1 R8 R9 SAVE AREA SAVER11 SAVEiRK2 SAVEiRK3 SAVEWRK6 SAVEiRK1 SAVEiRK8 SAVEiRK9 It'"i 
1>-

SILl SKIP SYSLOCS TYP2540P USERCARD VDEVBLOK VDEVFLAG VDEVREAL VDEVTDSK VDEVTfilAT VDEVTYPC VMBLOK VfilIOCNT I tIl 
VfilLOGOFF VMPGREAD VftRSTAT VftTlftEON VfilTTIME VfilVTIME ZEROES It'!:! 

It'"i 

DfilKBLD ACORETEL ASYSLC ASYSVM AVMREAL CLASSPEC CLASTERfiI CORCFLCK CORFLAG CORFPNT CORLCNT CORPGPNT CORSiPNT CORTABLE Il:t! 
II:IiI 

DELPAGES DELSEGS DftKCVTBH DMKERfilSG DMKFREE DfilKFRET DMKQCNiT DMKRIORI DMKSCHCP DMKSCIRD DMKSYSLE DMKSYSLL DfilKTMRCK lioz'J 
ECBlOK EXTCCTRQ EXTCPTRQ lXTCRO EXTCR14 EXTCR15 EXTCR2 EXTSIZE FFS F1 F15 F16 F4 It'!:! 

11:0 
F4095 F1 F8 KEEPSEGS MICBLOK MICRSEG NEiPAGES NEWSEGS NICBLOK IICCIBfiI BIClLEN NICNAME NICTERM It'!:! 

NICTYPE NICUSER NORET OLDVMSEG PAGCCRE FAGINVAL PAGSiP PAGTABLE PSA RDEVBLOK RDEVFLAG RDEVLLEN RDEVPSUP 12: 
1(') 

RDEVTYPC RDEVTYPE RDEVUSER RO R1 R10 R 11 R13 R14 R15 R2 R3 R4 It'!:! 

R5 R6 R1 R8 R9 SAVE AREA SAVER1 SAVER 11 SAVER2 SAVER8 SAVEWRK1 SAVEiRK2 SEGPAGE 
SEGPLEI SEGTABLE SWPFLAG SWPPAG SiPRECMP SiPiABLE SiPVM SYSlOCS TRQBIRA TRQBLOK TRQBSIZE TRQBUSER TYPBSC 
TYP3105 VMAEX VfilBLOK VfilBSIZE VMCFiAIT VMCHTBl VMECEXT VMLOGON VfilMCODE V!!!UCRO VMMLEVEL VMMSGON VMftTEXT 
VftPAGES VMPNT V.!!PSTAT VftPSW VfilQLEVEL VftREAL VMRSTAT VMSEG VMSEGDSP VMSIZE VMSTOR VMTERM VMTlEND 
VMTftOUTQ VftTRMID VMTTIME VMUSER VMVTERM Vft V 310R VMiNGON VftiSPROJ VRALOC iAIT XPAGNUft ZEROES 

EftKBSC BSCBLOK BSCREAD BSCRESP CC CCC CDC CHC DMKFREE DMKFRET DMKIOEST DMKMSiR F1 F1 
F8 IFCC IOECAi IOBERP IOBFATAL IOBFLAG IOBIOER IOBlOK ICBRCAi IOBRCNT IOBRSTRT IOBSTAT IOERBLOK 
IOERCAN IOERCSi IOERDATA IOERDi IOEREIT IOERFLG2 IOERFLG3 IOERIND3 IOERINFO IOERLOC IOERMSW IOERIUM IOEROVFL 
IOERREAD IOERSIZE PRGC PRTC PSA RDEVBLOK RDEVBSC RDEVIOER RO R1 R10 R13 R2 
R3 R4 R5 R6 R7 R8 R9 SAVEAREA SILl UC ZEROES 

tftKCCB ALARft ARIOCU ARIODV CAi CCC CCCPUID CCDEVTYP CCHADDR CCHANID CCHCAV CCHCUA CCHHIO CCHINTB 
CCHlOG45 CCHLCG80 CCHRCV CCBREC CCHSIOB CCHSIZE CCHSI ZE 1 CCHSNSB CCHTIO CCPROGID CCRECTYP CDC CO!!PSYS 
CPID CPUID CSW C1 DEVCCH DMKCVTBH DMKFREE DMKFRET D!!KIOECC D!!KMCBAR DMKOPRiT DMKQCNiT DftKSCNRU 
DMKSYSCK DMKSYSRft ECSWLOG FAIL ADD FAILCCW FAILCSW FAILECSW FFS F16 F7 F8 BIOCCH IFCC 
IGPRGFlG IGTERftSQ IGVALIDB INTERCCH INTTIO IOBCCH IOBCP IOBCSi IOBFLAG IOBHIO IOBIOER IOBLOK IOBRADD 
IOBSPEC IOBTIO lOB USER IOELPNTR IOERElOK IOERCSW IOERDATA IOERECSi IOEREIT IOERSIZE IOOPSW MCHAREA MCH!!ODEL 
MODEL145 MODEl165 NORET OPERATOR PSA RCHADD RCHBLOK RCHCUTBL RCUADD RCUBLOK BCUDVTBL RDEVADD RDEVAIOB (') 
RDEVBLOK RDEVBUSY RDEVSTAi RO R1 R10 R11 B13 R14 R15 R2 R3 R4 r,j 

R5 R6 R7 R8 R9 SAVEAREA SAVEWRK1 SAVEiRK2 SAVEiRK3 SAVEiRK4 SAVEWRK5 SAVEiRK6 SAVEiRK7 3: 
SAVEWRK8 SAVEiRK9 SIOCCH TERMSYS TIOCCH VMBLOK VMUSER 0 

Ul 0.0 

CD c: 
n ..... 
rt CD .... I 

0 rt 
::I 0 

I 
W t'"i 

~ 
tr 

~ CD .... ..... 
H (') 
CD 
0 H 
rt 0 
0 en 
H en .... 

l:t! (t) 

en (t) 

t-h 
(t) 
H 

W (t) 

~ ::I 
0 
(t) 



w Module External References (Labels and Mod ules) n 
~ 1'0 
tv 

3: 

DMKCCi ACORETEL APTHLK BALRSAV! BALR2 BALR3 BRING CC CD CLASDASD CLASGHAF CLASSPEC 
0 

CL1STAPE CLASTERM ~ 

CLASURI CLASURO CORFLAG CORSHARE CORSiPNT COR TABLE CPSHRLK CPSTAT2 Cl DEFER DMKD1SSD DMKDIASft DMKFREE ~ 
I-' 

CI DftKFRET DMKISl'lTR DMKPTRAN DftKPTRFR DMKFTBUL DMKSYSRM DMKUHTRS DftKVftAPS PFS FTREXTSN F1 FlO F15 CD 
3: F16 F2 F240 F3 F4 F4095 F4096 F1 F8 F9 IDA IOBCAi IOBCYL I 

'" IOBFLAG IOBLOK IOBftI SC IOBMISC2 IOBRELCU IOBSIZE IOBSTAT IOBiR1P IOERBLOK IOERDATA IOEREXT IOERLER IOERSIZE rT 
w 0 
~ LOCK PCIF PSA RCiADDR RCWCCRT RCiCCi RCiCHT RCiCOMRD RCiCTL RCiFLAG RCiGEI RCWH!AD RCiHftR I 
0 RCiINVL RCiIO RCiISAM RCWPRT RCiRCRT HCiREL RCiSHR RCiTASK RCiVCAi RCWVCRT RCi2311 RDEVBLOK RDEVFTR 1:"'1 

~ 
RDEVSADN RO Rl Rl0 R 11 R12 R13 R14 R15 R2 R3 R4 R5 C" 

til R6 R7 R8 R9 SAVEAREA SAVE REGS SAVERl SAVER 10 SAVER12 SAVER2 SAVER8 SAVER9 SAVEiRK 1 CD 
"< I-' 
en SAVEiRK2 SAVEiRK9 SILl SKIP SiP FLAG TEMPR10 TEl'1PR14 TEl'1PR15 TEMPR2 TEMPR3 TYPURSUP TYP1442R TYP2305 
("t- TYP2311 TYP2314 TYP2955 TYP3210 TYP3217 TYP3330 TYP3340 TYP3350 TYP3410 TYP3420 TYP3705 VDIVBLOK VDEVBRD n 
(1) t1 
EI VDEVDED VDEVDIAL VDEVERAB VD1!VFLAG VDEVIOER VDEVPOSN VDEVRDO VDEVREAL VDEVRELR VDEVRSRL VDEVSAS VDEVSTAT VDEVTYPC 0 

VDEVTYPE VDEVUC VDEV231B VDEV 231T VMBLOK VMCLASSF VftCLEVEL VftDVSTRT VMISAM VMOSTAT VMPSTAT VftSEG VMSHR Ul 
1:"4 VMSIZE XPAGNUft XRIGHT16 XRIGHT24 X2048BND ZEROES Ul 
0 

I.Q l:tj 

~. DMKCDB BRING BUFFER BUFNXT Cl DEFER DMKCVTBD DMKCVTBB DMKCVTDB Dl'1KCVTFP DMKCVTHB DftKDMPTR DMKERMSG DMKFREE CD 
0 HI 

DMKFRET DMKPTRAN DMKQCRiT DMKSCNFD DMKSYSRM DMKVATAE DMKVSPR'I ECBLOK EXTCRO FFS Fl F15 F16 (1) 

~ F2 F24 F3 F4 F4096 F6 RORET PSA RO Rl Rl0 R 11 R13 t1 
::s CD 
~ R14 R15 R2 R3 R4 R5 R6 R1 R8 R9 SAVEAREA SAVEiRK 1 SAVEiRK2 I:' 

SAVEiRK4 SAVEiRK5 SAVEiRK6 SAVEiRK8 VMBLeK VMECEXT VMESTAT VftEXTCM VMFPRS VMGPRS VIHNVPAG VMINVSEG VMLOGOFF 0 
1'0 (1) 

t1 VMNEiCRO VMOSTAT Vl'1PSTAT VMPSi VMRSTAT VMSEG VMSHR VftSI ZE VMVCRO VMV310R XPAGBUM XRIGHT 16 ZEROES 
0 
C" Il'1KCDS ACORETBL BLANKS BRING CORFLAG CORPGPNT CORSHARE CORSiPRT CORTABLE CPEXADD CPEXBLOK CPEXFPBT CPEXRO CPEXR14 I-' 
CD CPEXR15 CPEXR5 CPEXR1 CPEXSIZE DEFER DMKCVTBH DMKCVTDB DftKCVTHB Dl'1KERftSG Dl'1KFREE DftKPAGIO DMKPSACC. DMKPSASC 
EI DMKPTRAN DftKPTRiQ DMKQCBiT DftKSCHFD DMKSYSRM DftKTRCIT DftKTRCPB DftKVATAB DMKVATBC DMKVATftD DMKVftACF DftKVftAPS ECBLOK 
I::=' EXTCCTRQ EXTCPTftR EXTCRO EXTftODE F1 F15 F16 F2 F4 F5 F6 F8 NORET 
CD PAGCORE PAGIBVAL PSA RUNUSER RO Rl Rll R13 R14 R15 R2 R3 R4 ("t-

CD R5 R6 R7 R8 SAVEAREA SAVER2 SAVEiRK 1 SAVEiRK2 SAVEiRK3 SAVEiRK4 SAVEWRK5 SAVEiRK8 SiPFLAG 
t1 SiPTRANS TEMPR14 TEMPR15 TRABftODE TRQELOK TRQBVAL VftBLOK VftECEXT VMESTAT VMEXTCft VMFPRS YftGPRS VftIBVPAG iii 
~. YftINVSEG YMBEiCRO VftPSTAT VftPSi VMSI ZE VMTIMER VftTRBRIB VftTRCTL VftUSER VftVCRO VftV310R iAIT XPAGHUM 
::s ZEROES 
~ 
rT 
~. IftKCFC ATTN BLANKS DftKCDBDC DftKCDBDI DMKCDBDft DMKCDBDU DMKCDSCP DftKCDSTO Df!KCFDAD DMKCFDLO DftKCFGIP DftKCFGSV DMKCFf!AT 
0 Df!KCFMWU DMKCFSET DMKCFTRf! Df!KCPBEX Df!KCPBNR Df!!<CPBRS DMKCPBRi DMKCPBRY DMKCPBSR DftKCPVAC DftKCPVDS DftKCPYEB DMKCPSH t::t 
(j) 

Df!KCPVLK DftKCPSRY Df!KCPSSH DftKCPVUL DMKCQGEN DftKCQPRY DMKCQREY Df!KCSOBS DMKCSODR DMKCSOFL DMKCSOLD DMKCSORP DMKCSOSP 
~ DMKCSOST DftKCSOVL DftKCSPCL DMKCSPFR D!!IKCSPHL D!!IKCSPSP DftKCSTAG DMKCSUCH Df!KCSUOR DMKCSUPU DftKCSUTR DftKCVTDB DMKCVTHB 
~. DMKDEFIN Df!KDIACP Df!KDIAL DftKERftSG Df!KFREE Df!KLNKIN Df!KLOGA DMKLOGON DMKMCCCL DMKMSGEC DftKMSGMS DMKftSGiN DMKHETiK 
~ DMKQCNiT DftKSCHRT DftKSCHST DftKSCHFD DMKTHIEN D!!IKTRACE DftKTRCIT DMKTRCPB DMKUSODS DftKUSOFL DftKUSOLG DftKVDBAT DMKVDBDE (1) 

FFS F1 F2 F3 F4 F6 F60 F8 LOCK BORET PSA RDHBLOK RDEVTYPE 
RO Rl Rll R13 R15 R2 R3 R4 R5 R6 R7 SAVEAREA SAVERETN 
SAVERl SAVER2 SAVEiRK2 SAVEiRK4 SYSTEM TRQBIRA TRQBLOK TRQBSIZE TRQBUSER TRQBVAL TYP2741 VftBLOK VMCLASSA 
VMCLASSB VMCLASse VMCLASSD VMCLASSE Vf!CLASSF Vf!CLASSG VMCLASSH Vf!CLEVEL Vf!COMND VftDELA Y VftLOGON VftOSTAT Vf!PSi 
VMRSTAT VMSLEEP Vf!TERM VMTRBRIB VMTRCTL VMVIRCF 



~odule External References (Labels and Modules) 

UIKCFD BLANKS BRING DEFER DMKCVTBH DMKCVTHB DMKERMSG DMKFREE DMKFRET DMKPSASC DMKPTRAli DMKQCNiT DMKSCNAU DMKSCNFD 
DMKSCNRU DMKSCNVU DMKVMACF F1 F3 F6 NORET PSA RO R1 Rl0 R 11 R13 
R15 R2 R3 R4 R5 R6 R7 R8 SAVEAREA SAVEiRKl SAVEWRK2 SAVEiRK3 SAVEWRK4 
SAVEiRK5 SAVEiRK7 VMADSTOP VMBLOK VMESTAT VMMCR6 VMMICSVC VMMSVC VMSHRSYS VMSIZE ZEROES 

DMKCFG ASYSVM AVMRl!AL BRING BUFFER BUFNIT C14 C15 C2 DEFER DMKBLDRT DMKCFPRR DMKCVTBH DMKCVTDB 
DMKCVTBB DMKERMSG DMKFREE DMKFRET DMKPGSFS DMKPGSPC DMKPGSPP Dl'!KPGSPS DMKPGTVG DMKPGTVR DMKPTRAN DMKPTRUL DMKQCNRD 
DMKQCNiT DMKRFAGT DMKRPAPT Dl'!KSCNFD DMKSCNVS DMKSCNVU DMKSNTBL Dl'!KVATl'!D DMKVMASl Dl'!KVMAS2 DMKVMI ECBLOK EDIT 
ERRMSG EITCRO EITMASK BITMODE FO F1 F15 F2 F256 F3 F4 F4095 F4096 
F7 F8 KEEPSEGS LOCK NEWPAGES NORET OLDVMSEG PAGCORE PAGSHR PAGSiP PAGTABLE PSA RDEVBLOK 
RDEVCODE RDEVFLAG RDEVOiN RDnSER RDEVTYPE RO R1 Rl0 R 11 R13 R14 R15 R2 
R3 R4 R5 R6 R7 R8 R9 SAVCREGS SAVEAREA SAVERETN SAVERS SAVER6 SAVEWRKl 
SAVEiRK2 SAVEWRK3 SAVEiRK4 SAVEiRK5 SAVEiRK6 SAVEiRK7 SAVEiRK9 SAVFPRES SAVGREGS SAVKEYS SAVPSi SAVTABLE SBRBPNT 
SHRFPNT SHRNAME SHRPAGE SHRSEGCT SHRSEGNM SHRTABLE SHRTSIZE SBRUSECT SiPCBGl SWPCHG2 SWPCYL SiPFLAG SWPKEY 1 
SWPSBR SYSCYL SYSBRSEG SYSNAME SYSPAGCT SYSPAGLN SYSPAGNM SYSPNT SYSSEGLN SYSSIZE SYSSTART SYSTBL SYSTEM 
SYSVADDR SYSVOL TRANMODE TYP2305 TYP2314 TYP3330 TYP3340 TYP3350 UCASE VDEVBLOK VDEVREAL VDn RELN VMABLOK 
VMAFFNT VMANAME VMASBRBK VMASIZE Vl!ASSIST VMBLOK VMCOMND VMECEIT VMESTAT VMEITCM VMFPRS VMGPRS VMIOWAIT 
VMMLEVEL VMNSBR VMOSTAT VMPA2APL VMPEND VMPSTAT VMPSW VMPSiDCT VMQSTAT HlRSTAT VMSEG VMSBR VMSHRSYS 
VMSIZE VMSTOR VMVCRO VMV370R VSYSRES IRIGHT16 I40FFS 

DMKCFM ATTN BALRSAVE BLANKS BUFCNT BUFFER BUFINLTB BUFNIT BUFSIZE CLASGRAF CLASTERM CPEIADD CPEIBLOK CPEIREGS 
CPEISIZE DMKCFCMD DMKDSPB DMKDSPCH DMKFREE DMKFRET DMKQCNRD DMKQCNWT DMKSCBRT DMKSCNFD DMKSTKCP DMKVIOMK EDIT 
IOMASK liOAUTO NORET NOTIME PSA RDEVBLOK RDEVTYPC RDEVTYPE RO Rl Rll R12 R13 
R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 SAVEAREA SAVER 11 SAVER2 
SAVEiRK6 TREILOCK TREIT TREITERM TRQBSIZE TYPBSC UCASE VCHADD VCHBLOK VCBCUINT VCHCUTBL VCUADD VCUBLOK 
VCUDVlliT VCUDVTBL VDEVADD VDFVBLOK VDEVBUSY VDEVCHBS VDEVINTS VDEVi>END VDEVSTAT VMELOK VMCF VMCFREAD V-MCFRUN 
VMCFWAIT VMCHSTRT VMCBTBL VMCLASSA VMCLASSB VMCLASSC VMCLASSD VMCLASSE VMCLASSF VMCLASSG VMCLASSB VMCPiAIT VMCUSTRT 
VMDELAY VMDVSTRT VMIOHIT VlHOPND VMKILL VMLOGOFF VMLOGON VMMLEVEL V~MSTMP VMOSTAT VMPEND VMPRIDSP VMPSW 
VMQSTAT VMRSTAT VMSLEEP VMSTKO V~SYSOP VMTERM VMTREIT VMVIRCF VMVTERM WAIT 

DMKCFP AVMREAL CBBWAIT CBIELOK CBICNCT CBIFLAG CLASGRAF CLASSPEC CLASTERM CLASURI CLASURO CUE DELPAGES DMKBLDRL 
DMKBLDRT DMKDIADR DMKDSPCB DMKFREE DMKFRET DMKIOSHA DMKIOSQR DMKLOCKD DMKLOCKQ DMKFERT DMKPGSPO DMKPGSPP DMKPTRPW 
DMKQCNSY DMKSCHRT DMKSCNVU DMKSTKCP DMKSTKIO DMKTRCPE DMKUNTFR DMKVATBC DMKVCARD DMKVDREL DMKVIOMK DMKVSPCO DMKVSPCR 
ECBLOK EXTCCTRQ EITCPTMR EITCRO EITCR14 EITCR 15 EITCR2 EITCR4 FFS IOBCAi IOBFLAG 10BBIO 10EHVC 
IOBIOER IOBIRA IOBLINK 10BLOK IOBMISC IOBlUSC2 lOB RES 10BSIZE 10BSPEC IOBTIO IOBUSER 10ERBLOK IOEREXT n 
IOERSIZE KEEPSEGS NEWPAGES NEWSEGS OLDVMSEG PGBLOK PGBSIZE PGPNT PSA RDEVAIOB RDEVATT RDFVELOK RDEVIOER I"tl 

RO Rl R10 Rll R12 R13 R14 R15 R2 R3 R4 R5 R6 3: 
R7 R8 R9 SAVEAREA SAVEWRK6 SAVEiRK8 TRQBFPNT TRQBLOK TBQBVAL TYPCTCA TYP3210 TYP3215 VCHADD 0 

til VCHELOK VCBBUSY VCBCEDEV VCHCEPND VCHCUINT VCHCUTBL VCHDED VCHSTAT VCONCTL VCONRBSZ VCONRBUF VCONWESZ VCONWBUF ~ 
~ CD VCUACTV VCUAED VCUHLOK VCUBUSY VCUCEPND VCUCHBSY VCUCUEPN VCUDVINT VCUDVTBL VCUINTS VCUSTAT VDEVADD VDEVAUCR I-' n 

ri- VDEVBLOK VDEVBUSY VDEVCCW 1 VDEVCFLG VDEVCBAN VDEVCHES VDEVCON VDEVCSW VDEVCUE VDEVDED VDEVDIAL VDRVBNAB VDEVFEED CD 
I ~. VDEVFLAG VDEVINTS VDEVIOE VDEVIOER VDEVNRDY VDEVPEND VDEVREAL VDEVSFLG VDEVSPL VDEVSTAT VDEVTYPC VDEVTYPE VDEVUC ri-O 

=' VMBLeK VMCHSTRT VMCHTEL VMCUSTRT VMDSTAT VMDVSTRT VMECEIT VMESTAT VflEXWAIT V'HDLE VMINVPAG VMIOACTV VM IOINT 0 
I 

w VMIOPND V!HOWAIT VMKILL VMLOGOFF VMMICSVC VMNOTRAN VMOSTAT VMPAGEX VMPEND VMPGPND VMPGPNT VMPStAT V~PSW ~ . VMPXINT VMRSTAT VMSEG VMSIZE VMSTOR VM no VMTRBRIN VMTRCTL VMUSER V~VCRO VMVTERM VMV370R WAIT I» 
tT 

'=' 
XINTBLOK XINTEXT XINTSI ZE XINTSORT XRIGBT24 ZEROES CD 

~. I-' 
t1 n CD t1 n 0 t+ 
0 Ul 

t1 Ul 
~. 

!::tI CD CD Ul HI 
CD 
t1 

W CD 
=' ~ n w CD 



w Label External Beferences (Labels and Mod ules) (') 
.c:: ttl 
.c:: 

:.: 
DPIKCFS lCOBETEL ASYSLC AVMBEAL BLAIKS BUFCNT BUFFEB BUFNIT CLASTlPE CLASUBO COB FLAG COBBSV COBTABLE CPlUCAVL 0 

p. 
CPMICON CPSTAT2 DMKBLDEC DBKCFPBB DPIKCVTBH DPIKCVTDB DPIKCVTDT DKKCVTHB DKKDMPAU DMKDMPDV DKKDPIPSi DKKDSPNP DMKEBKSG ~ 

DKKFBEE DMK1BET DlilKIOEIB DlIIKMCHAR DPIKPICH!S DMKPTBBC DlIIKPTBBL DKKPTRRU DMKQCNBD DKKQCNWT DMKSCHAP DrIKSCHAU DKKSCHPG I-' 
<I CD 
:.: DPIKSCHBT DMKSCH80 DPIKSCIAU DPIKSCIFD DPIKSCNBD DPIKSCNBU DlilKSYSDT DKKSYSDi DPIKSYSLG DPIKSYSLi DlilKSYSBV DMKSYSTK ECBLOK , 
" EDIT EITCCTBQ EITCPTBQ EITSIZE F1 12 F3 F4 F5 F7 F8 IBPIAND IBMBIT 1 (i-
w 0 
...,J IBMBIT2 IB8BLOK IBPIBYT 1 IBMBYT2 IBlH'LG IBPILftT IBPIOB IBPIBLADD IBKSIZE KCHABEA MICBLOK KICCBlG KICBSEG , 
0 8ICSIZE ftICVPSi MICWOBK 1II0DFLAGl MOD1BETY NOAUTO NOBET PSA BDEVBLOK BDEVDED BDEVDISA BDEVFLAG BDEVIRM t-t .. 

BDEVSTAT BDEVSYS BDEVTYPC BD!VTYPE BDEVUSEB BO Bl Rl0 R 11 R13 R14 R15 R2 PJ 
t:r 

til R3 R4 R5 R6 B7 B8 B9 SAVEABEA SAVEWRKl SAVEiBK2 SAVEiBK3 SAVEWBK4 SAVEWRK5 CD 
"< SAVEWBR7 SIVEiBK8 SYSLOCS TEMPSAVE TBQEIBA TBQBLOK TRQBSIZE TBQBUSER TYPPBT UCASE VMADSTOP VKAEI VPIAEIP I-' 
[/l 
(i- VMBLOK VMCFBUN VMCLISSA V8CLASSB VPICLASSC VPICLASSD VMCLASSE VPICLASSF VPICLASSG VPICLEVEL VKECEIT VMESTAT VM HIPRI (') 
('I) VMISAM VMftACCON VMMADDB VMMCODE VMMCB6 VPIMFE VMIUCBO VMMICSVC VMIHPISG VMMLEVEL VMMLINED VKPILVL2 VMPISGON 1'1 
Iiil 0 

VMPISVC VPI8TEIT VPI8360 VPINOTBAN VPIOSTAT VMPAGEI VMPFUNC VMPSTAT nlPSi VMQLEVEL VMBON VMBPAGl VMSEG [/l 
I:"' VMSTMPI VMSTOR VMTLEVEL VMTON V8TRQBLK VMUPRIOR VMUSER VMVCRO VMV370R VMWNGON I40FPS ZEROES [/l 

0 
\Q ~ .... DMKCFT ASYSLC CLASGBAF CLASSPEC CLASTEBM DMKCVTBH DKKCVTDB DKKERKSG DMKSCNFD DftKSCNVD DKKSYSCD DKKSYSES DMKSYSLD DMRSYSLE CD 
(') 

Pl F2 P255 F4095 NICAPL NICATOP NICBLOK NICFLAG NICLLEN NICPSUP NICSIZE NICTKCD PSA H\ 
CD 

PI RDEVAPLP BDEVATOF BDEVBLOK RDEV1LAG BDEVLLEN BDEVNICL RDEVPSUP RDEVTFLG RDEVTKCD RDEVTYPC RDEVTYPE RO Rl 1'1 

= Rl0 Bl1 R13 R14 R15 R2 R3 R4 RS R6 R7 R8 SAVEAREA CD 
P. = SAVEiBKl SYSLOCS TYPBSC TYPTTY TYP3277 VMBLOK VKDVSTRT VMKCPENV VMKLEVEL VMPISTKP VMTCDEL VKTERM VMTESCP (') 

ttl VMTLDEL VMTLEBD VPITBMID VMVTERPI I40FFS ZEBOES CD 
1'1 
0 
t:r tMKCKP ACNTBLOK ACBTCCi ACNTDlTl lCNTNEIT ALARM ABIOCC ABIOCE ABIOCT ABIOCU ABIODV ARIOPR ARIOPU ABIOBD I-' 
CD ARSPPB ASYSLC ASYSVM ATTN BUSY CAW CC CE CLASDlSD CLASGBAF CLASSPEC CLASTAPE CLASTERK 
II CLASUBI CLlSUBO CPCBEGO CPID CSi CUE CO C2 C3 DE DEVCABD DMKOPBWT DMKBSPAC 
t:=' DMKBSPCV D8KRSPDL DMKBSPHQ DMKBSPID DMKBSPPB DMKRSPPU DMKBSPBt DMKSAV DKKSAVBS DKKSYSCK DMKSYSDT DMKSYSLG DPIKSYSOC 
CD DPIRSYSCi DMKSYSBM DPIKSYSTP DftKSYSiK DKKTMRPT FTB3SPIB IITPB IITTIO IONPSW IOOPSW IPLPSi NICBLOK NICDISA (i-
CD NICDISB NICENlB NICFLlG NICLGBP NICLINE IICSIZE NICSTAT NICTEBPI NICTYPE OWNDLIST OiNDBDEV PBNPSi PBOPSW 
1'1 PSA BCHAtD BCHBLOK BCHCUTBL BCUAtD BCUBLOK BCUCHA BCUDVTBL BCUPBIPIE BCUSUB RCUTYPE BDEVACNT RDEVADD 
EI BDEVAIOB BDEVAUTO BDEVBLOK BDEVCLAS BDEVCUA RDEVDED BDEVDISA BDEVDISB RDEVDBAN BDEVENAB BDEVPLAG BDEVFTB RDEVLCEP .... 
= BDEVLICP BDEVPIAI BDEVMDL BDlVNCP BtEVNICL BDEVBECS BDEVSEP RDEVSPL BDEVSTAT BDEVTYPC BDEVTYPE RECBLOR RECCYL 
PJ RECftlI RECPNT RECSIZE RECUSED RSPLCTL RSPSPBLK RO Bl Bl0 B 11 B12 R13 R14 (i-
1-'. B15 B2 B3 R4 B5 B6 R7 R8 B9 SFBCLAS SFBCOPY SFBDATE SFBDIST 
0 SFBFIBST SFBFLAG SPBFLAG2 SPBLAST SPBLOK SFBORIG SFBPNT SPBPUBGE SFBBECER SPBBECS SFBSIZE SFBSTABT SF BUSER = SHQBSIZE SILl SKIP STABTIME SYSLOCS TYPBSC TYPPRT TYPPUN TYP230S TYP2314 TYP3210 TYP3277 TYP3284 
Cil TYP3330 TYP3340 TYP33S0 TYP370S UC USEBCABD VCHBLOK VCHCUTBL VCUBLOK VCUDVTBL VDEVBLOK VDEVCLAS VDEVCOPY ~ .... VDEVDED VDEVEITB VDEVFLAG VDEVSFLG VDEVSPL VDEVSTAT VDEVTDSK VDEVTYPC VDEVTYPE VDEVIFEB VMBLOK VMCHSTBT VKCBTBL 
Pol VPICUSTBT VPIDIST VPIDVSTBT VftLOGON VMPNT VPIBSTAT VPIUSEB VSPLCTL VSPSFBLK VSPIBLOK VSPIIUSB CD 



Kodule External References (Labels and Kodules) 

tKKCKS ACTSFB ADDSFB ARIODV ARSPPR ARSPPU ARSPRD BRIRG CBGSFB DEFER DELSFB DKKCVTBD DKKERKSG DKKFREE 
DKKFRET DKKLCCKD DKKLOCKQ DKKLOCKT DKKPGTTU DKKPGTVG DKKPGTVR DKKPTRAR DKKPTRUL DKKQCRSY DKKRPAGT DKKRPAPT DKKRSPHQ 
DKKRSPID DKKSCBRD DKKSCBBU DKKSYSCH DKKSYSCB DKKSYSOi FFS Fl FlO F24 F255 F3 F4 
LOCK OPRSFB OWRDLIST OWRDRDEV OWRDVSEB PCBCHN PRTCHR PSA RDEVALLR RDEVBLOK BDEVCLAS BDEVCODE BDEVDISA 
BDEVDRAB RDEVFLAG RDEVRECS BDEVSER BDEVSPL RDEVSTAT RDEVTYPE BDRCBR BECBLOK BECCYL BECKAP BECKAX RECPNT 
RECSIZE RECUSED BO Rl Rl0 Bl1 R13 B14 B15 R2 R3 R4 RS 
R6 B7 BS B9 SAVEAREA SAVER 1 SAVER2 SAVERS SAVEiBKl SAVEWBK2 SAVEWBK3 SAVEWBK4 SAVEWBK5 
SAVEWRK6 SAVEiRK7 SAVEiBKS SAVEWBK9 SFBCCPY SFBDUKP SFBEOF SFBFILID SFBFLAG SFBFLAG2 SFBINUSE SFBLAST SFBLOK 
SFBOPEII SFBPBT SFBRECEB SFEBECRO SFBBECS SFBRSTBT SFBSIZE SFBSTART SFBTIKE SFBUHOLD SHQBLOK SHQBSIZE SHQUSER 
SPLIRK SPRXTPAG SPRECNOK SYSIPLDV SYSTEK TYP2314 TYP3330 TYP3350 VKBLOK ZEBCES 

tKKCRS ALARK ASYSVK ATTR BALRSAVE BALR3 BALB6 BALB9 ELANKS BRING BOSY CAW CC CCC 
CD CDC CE CHC CLASTERK CKDREJ CONACTV CORADDR CONCCil CORCCW2 CORCCW3 CORCCi4 CORCRT 
CONCRTL CORCOKRD CONDATA CORESCP CONFLAG COROUTPT CORPABK CONPNT CORRESP CONRETR CONRTRY CONSPLT CORSTAT 
CORSYIIC COBTASK COBTSIZE CORTSKSZ CONOSER CPID CSi DATACHK DE DEFER DKKBLDVK tKKCFKAT DKKCFMBK 
DKKCPIEK DKKCVTBH DKKDSPCH DKKEBKSG DKKFBEE DKKFBET DKKIOEBR DKKIOEST DKKIOSQB DKKKSiR DKKPTBAR DKKQCNCL DKKQCRET 
DKKQCBTO DKKSCRBD DKKSCBBU DKKTBLCI DKKTBLCO DKKTB1PI DKKTBLPO DKKTBLTI DKKTBLTO DKKTBLOP DKKTBKKI DKKTBMKO DMKTBMNI 
DKKTBKBO DKKTRKID EDIT FFS Fl FlO F15 F16 F2 F256 F4 FS IFCC 
IL IRHIBIT INTREQ IOBCAW IOBCCl IOBCC3 IOBCSW IOBERP IOBFATAL IOBFLAG IOBIOER IOBIRA IOBLIRK 
IOSLOK IOBBADD IOERES IOBSIZE lOB SPEC IOBSTAT IOBURSL lOB USER IOEBBLOK IOEBDATA IOEBEXT IOERFLG3 IOERNOM 
IOEROVFL IOERREAD IOERSIZE LOGDBOP LOGHCLD ROAOTO PBGC PBIORITY PBTC PSA RDEVACTV RDEVATNC RDEVATOF 
RDEVBLOK BDEVCOB BDEVCOBB BDnCTL RDEVDISA RDEVDISB RDEVENAB BDEVEPKD RDEVFLAG BDEVHIO BDEVIDNT BDI!VIOER RDEVLOG 
RDEVNRDY RDEVPREP RDEVPSOP RDEVPTTC RDEVBCRT BDEVREST RDEVSADN BDEVSTAT RDEVTFLG RDEVTMCD BDEVTYPC RDEVTYPE RDEVUSC8 
RDEVOSEB BO Rl Rl0 Rl1 R12 R13 R14 B15 R2 R3 R4 R5 
R6 R7 RS B9 SAVEABEA SAVERO SAVER 1 SAVER2 SILl SKIP SM SYSTEK TEKPRO 
TEKPSAVE TRACBEF TBACCURB TRACERD TRACFLG2 TBACSTRT TYPTTY TYPUNDEF TYP1050 TYP2741 TYP3210 UC UCASE 
UE VKBLeK VKCF VKCFiAIT VKLOGOFF VKLOGON VKMCPENV VKKLEVEL VKOSTAT VKRSTAT VftSYSOP VMTCDEL VMTLERD 
VKTTIKE 

DKKCPB ASYSVK BLAIIKS BBIBG CLASSPEC CLASTAPE CLASTERM CLASURI CLASURO DE DEFER DKKCFPRD DKKCFPBR DMKCVTBH 
DKKCVTHB DKKDSPCH DKKERKSG DKKFREE DMKFBET DKKIOSQR DKKIOSRi DftKPGSPO DKKPTBAR DKKQCRiT DMKSCNFD DMKSCNVU DKKVATBC 
DMKVATMD DKKVIOftK EXTKODE F3 F4 F6 IOBCAW IOBIRA IOBLOK IOBMISC IOBSIZE IOBUSER NORET 
PSA BCHBLOK BCUBLOK RCUCHA RCUPRIKE RCUSUB RCUTYPE RDEVBLOK RDEVBUSY RDEVCUA RDEVSTAT BO Rl 
Rl0 R 11 R12 B13 R15 B2 R3 B4 R5 R6 R7 R8 SAVEABEA 
SAVEBETI SAVEiBK2 SAVEiRK4 SAVEiBK5 SILl SYSTEM TRARKODE TYPCTCA TYP3210 VCHADD VCHBLOK VCHCUINT VCOADD (') 

VCOBLOK VCUDVIRT VDEVADD VDEVBLOK VDEVBUSY VDEVDED VDEVIRTS VDEVRRDY VDEVPEND VDEVREAL VDEVSTAT VDEVTYPC VDEVTYPE I'tS 

VKBLCK VKESTAT VKEXTCK VMIOINT VMIOPRD VKPA2APL VKPEND VKPSTAT VKPSi VlIPXIRT VlIQSTAT VMV370B XIRTBLOK 3 

XIRTCODE XIRTREXT XIRTSIZE XIRTSOBT X40FFS ZEROES 0 
~ 

til ~ 

<D I-' 
0 <D 
t+ I 
1-" eT 
0 0 
t:I I 

t"4 
W CI 

0' 
CD 

~ I-' 
1-" 
H (') 

CD H 
0 0 
t+ en 
0 en 
H 
1-'- = <D CD 
[Il ..... 

CD 
H 
CD 

W 1:1 
+: 0 

,(J1 CD 



IN l'lodule External References (Labels and Modules) ~ n 
0'\ "" 3: 

DMKCPI ACORETEL ALARM ALOCBLOK ALOCCYL1 ALOCCYL2 ALCCMAP ALOCKAX ALOCPNT ALOCUSED APAGCP ARIOCH ARIOCT ARIOCU 0 
PI ARIODV ASYSOP iSYSVM BALRSAVE BALRO BALRl BALR14 BALR2 B1LR6 BALRS BLKMPX BRIHG BUFCNT c: 

<I BUPPER EUFIN BUPNXT BUPSIZE BUSY CAW CC CCC CE CKCMASK CLASDASD CLASGRAP CLAST APE ~ 

3: CLASTEBM COBCFLCK COBCP CORPLAG CORFPNT CORPREE CORSiPNT CORTABLE CPCREGO CPEXSIZE CPID CPMICAVL CPMICOH 
(I) 

" 
I 

IN CPSTATUS CPSTAT2 CPUID CPULOG CPUMCDEL CPUVERSN CPWAIT CSW CUE CO C1 C14 C6 cT 
....,J DAMAGRPT DATE DE DEFER DMKELDRT DKKCPMEN DMKCKP DMKCNSEN DMKCPEID DMKCPEND DMKCPVAE DMKCQRFI DMKCSOSD 0 
0 I 

DMKCVTBD DMKCVTBH DMKCVTDT DMKDMPAU DMKD!PDV DMKDMPRC DMKDMPSF DMKDSPCH DMKDSPNP DMKPREE DMKPREHI DMKPRELG DMKPRELO ~ 

DMKPBESV DMKPRET DMKPRETB DMKIOEPL DMKIOSIB DMKIOSQR DMKLOGOP DMKMCHIN DMKNETAE DMKNLDR DMKPAGHI DMKPAGLO DMKPAGST ~ 

til tl' 

'< DMKPGTBN DMKPGTPG DMKPGTPO DMKPGTP4 D!KPGTF5 DMKPGTTM DMKPGTTU DMKPGTTO D!KPGTT4 DMKPGTT5 DMKPGT4P DMKPGT4T DMKPGT5P (I) 

en DMKPGTST DMKPGT90 DMKPRGIB DMKPSADU DMKPSAEI DMKPSAHI DMKPSALO DKKPSANS DMKPSASV DMKPTRAN DMKPTRPA DMKPTRPN DMKPTRFl ~ 

rt' DMKPTRLK DMKPTRUL DMKPTRU 1 DMKQCNRD DMKQCNiT DMKRIOCN DMKRIORN DMKRPAPT DMKSAV DKKSCHLI DKKSCBMD DMKSCHQ1 DKKSCHQ2 n (I) 
II DMKSCHST DMKSCBTI DMKSCNRD DKKSCNRU DMKSCNVS DMKSYM DMKSYMTB DMKSYSDU DKKSYSDW DMKSYSBU DMKSYSOC DMKSYSOW DMKSYSRK 1'1 

0 
~ DMKSYSRV DMKSYSTI DKKSYSTZ DKKSYSUD DMKSYSVL DMKUDRBV DKKVMI DMKWRMST EDIT EXNFSW EITMODE PFS FTRRPS en 
0 PTR3SMB PTR7CMB PO Pl Pl0 F2 P3 F4 F4096 FS P7 PS P9 en 

\Q HARDSTCP IDLEWAIT IFCC INTMASK INTREQ IOBCAW IOBIRA IOBLOK IOBSIZE IOBUSER IOBTWAIT IPLCCWl IPLPSW ~ 1-1-
n IPUADDR KEYMASK MCHEK MCNPSW NEWPAGES NEWSEGS NICBLOK BICDISA NICNAME NICSIZE NICSTAT NOAUTO HORET (I) 

NOTIME OWI!1DLIST OWBDPREF OWNDRDEV OWNDVSER PAGCORE PAGEW!IT PAGE4K PRNPSW PROETIME PROPSW PSA PSENDCLR HI 
~ 

(I) 

t:l RCHADD RCHBLOK RCHCUTBL RCHDISA RCHSTAT RCUADD RCUBLOK RCUDISA RCUDVTBL RCUPRIME RCUSTAT RCUSUB RCUTYPE 1'1 
PI RDEVADD RDEVAIOB RDEVALLB RD.HATOP RDEVAUTO RDEVBLOK RDEVCODE RDEVDISA RDEVENAB RDEVPLAG RDEVPTR RDEVIDNT RDEVMAX 

(I) 

t:l 

"" RDEVMDI RDEVIHCL RDEVI!1RDY RDHOWN RD!VPBT RDEVPREP RDEVPTTC RDEVRUN RDEVSER RDEVSTAT RDEVSYS RDEVTFLG RDEVTMCD n 
1'1 RDEVTYPC RDEVTYPE RDEVUSER RECBLOK RECCYL RECMAP RECMAX RECPNT RECSIZE RECUSED RUNCRO RUNCRl RUNUSER (I) 

0 RO Rl Rl0 Rl1 R12 R13 R14 R15 R2 R3 R4 R5 R6 tl' 
~ R7 R8 R9 SAVE SIZE SEGPAGE SPBLOK SPBORIG SPBSTART SFBUSER SILl SM STARTI!E SVCNPSW 
(I) SWPCHGl SWPCBG2 SWPCYL SWPPLAG SYNCLOG SYSIPLDV SYSTEM 'IE!PRO TEMPR14 TEMFR15 TEMPR2 TEMPR3 TEMPR4 II 

TEMPR S TEMPSAVE TIMER TODATE TRACCURR TRACEPLG TRACEND 'IRACSTRT TRQBIRA TRQBLOK TRQBSIZE TRQBTOD TRQBUSER 
~ TRQBVAL TYPBSC TYP2305 TYP2314 TYP2741 TYP3066 TYP3210 TYP3277 TYP3330 TYP3340 TYP3350 UC UCASE (I) 
cT VMBLOK VMLOGON VKMPE VKMSVC VMPAGES VKR STAT VMSEG VMSIZE VMTERM VKUSER WAIT XPAGNUK XRIGHT16 
(I) ZEROES 1'1 
iii [MKCPS ARIOCH ARIOCT ARIOCU ARIODV ASYSOP ASYSVM CPSTOP CLASDASD CLASGRAF CLASTAPE CLASTERM CLASURI CLASURO 
1-1' CPCREG8 CPEXBLOK CPEIRO CPEXSIZE CPID C8 DE DPRET F2 P3 IOBCC3 IOBCP IOBCSW 
t:l 
~ IOBPIAG IOBHIO IOEHVC IOBIOER IOBIRA IOBLIHK IOBLOK IOBfUSC ICBMISC2 IOERADD IOBSIZE IOBSP!C IOBSTAT 
cT IOBTIO IOBUNSL lOB USER IOBVADD IOERELOK IOERDATl IOEREIT IOERSIZE MONAIOB MONARDB MONCOM MONPLAG 1 KONUSER 
1-1' 
0 NICSIZE BORET PRIORITY PSA RCHELOK RCHCUTBL RCHDISA RCHSTAT RCUBLOK RCUDISA RCUDVTEL RCUSTAT RDEVADD 
t:l RDEVAIOB RDEVBLOK RDEVBUSY RDEVCTRS RDEVDED RDEVDISK RDEVDRAN RDEVENAB RDEVEPLN RDEVFLAG RDEVIOER RDEVLCEP RDEVLNCP 
en RDEVLI!1KS RDEVMAI RDEVMOUT RDEVHICL RDEVNRDY RDEVOWN RDEVRCVY RDEVRSVD RDEVSCED RDEVSPL RDEVSTAT RDEVSYS RDEVTYPC 
c: RDEV'IYPE RDEVUSER RO Rl Rl0 Ill1 R12 R13 R14 R15 R2 R3 R4 
1-1' R5 R6 R7 R8 SAVElREA SAVER11 SAVEWRK 1 SAVEWRK 2 SAVEWRK3 SAVEWRK4 SAVEWRK9 TBUSY PI 
(I) TYPBSC TYP2305 TYP3705 VDEVBLOK VDEVSPL VKBLOK VMDVSTRT VMTTI ME VMUSER VMVTERM X40FFS ZEROES 



l!odule External References (Labels and Modules) 

BfilKCPV ACORETBL ARIOCB ARIOCT ARIOCU ARIOBV ASYSOP ASYSVM AVMREAL BALRSAVE BRING CLASDASD CLASGRAF 
CLASTERM CORCFLCK CORFLAG CORFPNT CORTABLE CPEIADD CPEIBLOK CPEXREGS CPEIR12 CPEXSIZE DEFER Fl F2 
F3 F4096 F8 F9 LOCK NORET PSA RCHBLOK RCHCUTBL RCUELOK RCUDVTBL RDIVBLOK RDEVDED 
RDEVDISA RDEVDISB RDEVENAB RDEVFLAG RDEVLCG BDEVSTAT RDEVTFLG RDEVTYPC RDEVTYPE RDEVUSER RO Rl Rl0 
Rl1 R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 SAVEAREA 
SAVEREGS SAVER11 SAVEWRK 1 SAVEiRK2 SAVEiRK3 SAVEiRK4 SAVEiRK3 SAVEWRK4 SAVEiRK8 SYSTEM TYPTTY TYP3066 TYP3277 
TYP3284 VCHBLOK VCHCUTEL VCUBLOK VCUDVTEL VDEVBLOK VDEVDED VDEVFLAG VDEVSTAT VDEVTDSK VDEVTYPC 
VMBLOK VMCHSTRT VMCHTEL VfilCUSTRT VMDVSTRT VfilLOGOFF VMLOGON VMMACCON VMfilLEVEL Vl!PNT VMRSTAT VMSEG VMSIZE 
VMSTOR VMTTIME VMUSER VMWSPROJ I40FFS ZEROES 

DMKCQG ARSPPR ARSPPU ARSPRD BLANKS CBIBLOK CBIOTHR CHXYADD CLASDASD CLASGRAF CLASSPEC CLASTAPE CLASTERM CLASURI 
CLASURO DfilKCVTBD DMKCVTBH DMKCVTDB DfilKCVTHB DMKERMSG DMKFRIE DMKFRET DfilKQCNiT DMKSCNAU DMKSCliFD DMKSCBRD DMKSCNRN 
DfilKSCNVlII DMKSCNVU Fl F2 F3 F8 NORET PSA RDEVBLOK RDEVSER RDEVTYPC RDEVTYPE RO 
Rl Rl0 Rll R12 R13 R15 R2 R3 R4 R5 R6 R7 R8 
R9 SAVEAREA SAVERO SAVERll SAVEWRK1 SAVEiRK2 SAVEWRK3 SAVEiRK4 SAVEiRK5 SAVEiRK8 SFBCLAS SFBCOPY SFBD1TE 
SFBDIST SFBDUfilP SFEFILIB SFBFLAG SFBFNAME SFBFTYPE SFBINUSE SFBLOK SFBORIG SFEPBT SFBRECNO SFBSHOLD SFBTIME 
SFBTYPE SFBUHOLD SFBUSER TYPBSC TYPCTCA TYPPRT TYPRDR TYPTIMER TYP2305 TYP2311 TYP2314 TYP3210 TYP3330 
TYP3340 TYP3350 VCHADD VCHBLOK VCHCUTBL VCUADD VCUBLOK VCUDVTBL VDEVADD VDEVBLCK VDEVBliD VDEVCLAS VDEVCONT 
VDEVCOPY VDEVCSPL VDEVDED VDEVEBAB VDEVEOF VDEVEITN VDEVFLAG VDEVFOR VDEVHOLD VDEVNRDY VDEVRDO VDEVREAL VDEVSFLG 
VDEVSTAT VDEVTDSK VDEVTERM VD1!VTYPC VDEVTYPE VDEVXFER VDEV231B VDEV231T VMBLOK VfilCBSTRT VMCBTBL VMCLASSD VfilCLASSG 
VfilCLEVEL VMCUSTRT VMDISC VMDIST VfilDVSTRT VMFBMX VMFSTAT VfilOSTAT VMSTKO VMSTOR VMTERM VMTRMID VMUSER 
VSPXBLOK VSPIXUSR ZEROES 

DMKCQP ALARM ARIOCB ARIOCT ARIOCU ARIODV ASYSVM BLANKS CLASDASD CLASGRAF CLASSPEC CLAST APE CLASTERM CLASURI 
CLASURO DMKCVTBD DMKCVTBB DMKCVTHB DMKERMSG DMKFREE DMKFRET DMKQCNiT DMKRIORN DMKRSPUR DMKSCIUU DMKSCNFD DMKSCBRD 
DMKSCNRN DMKSCNRU DMKSCNVD DMKSCNVU DKKSYSRM DMKSYSRV ERRMSG FFS Fl F2 F3 F6 NORET 
PSA RCHBLOK RCHCUTBL RCUBLOK RCUDVTEL RDEVACBT RDEVADD RDEVATT RDEVAUTO RDEVBLOK BDEVCLAS RDUDED RDEVDISA 
RDEVDRAN RDEVENAB RDEVFLAG RDEVLCEP RDEVLNCP RDEVLNKS RDEVMOUT RDEVNCP RDEVNRDY RDEVOiN RDEVSEP RDEVSER RDEVSLOi 
RDEVSPL RDEVSTAT RDEVSYS RD1!VTYPC RDEVTYPE RDEVUSER RSPLCTL RSPSFBLK RO Rl Rl0 Rl1 R12 
R13 R14 R2 R3 R4 B5 R6 R7 R8 R9 SAVE AREA SAVEREGS SAVERO 
SAVERl SAVER 11 SAVER2 SAVEiRK 1 SAVEWRK2 SAVEiRK3 SAVEWRK5 SAVEiRK6 SAVEiRK8 TYPESC TYP2305 TYP3705 VDEVADD 
VDEVBLOK VDEVBND VDEVFLAG VDEVRDO VDEVREAL VDEVRELN VDEVSIZE VDEVTDSK VDEVTYPC VMBLOK VMDISC VMDVCNT VMDVSTRT 
VMOSTAT VMPNT VMSTKO VMTERM VMTRIHD VMUSER IRIGBT16 ZEROES 

BMKCQR ARIODV ARSPPR ARSPPU ARSPRD BLANKS CLASDASD CLASSPEC CLASTAPE CLASTERM CPMICON CPSTAT2 DFRET DMKACOTM n 
DMKCVTED DMKCVTBB DMKCVTDE DMKCVTDT DfilKDMPDV DMKDMPSi DMKERMSG DMKFREE DMKFRET DMKPAGQR DMKPTRFF DMKPTRSS DHKQCNiT ~ 

DMKRIOPR DMKRSPBQ DMKRSPPR DMKRSPPU DMKRSPRD DMKSCHPG DMKSCNA U DMKSCNFD DMKSCNRD DMKSYSDi DMKSYSLG DMKSYSND DMKSYSNM :3 

DMKSYSTI FO F1 F2 F4095 F60 F8 NICAPL NICATOF NICBLOK NICFLAG NICLLEN NICPSUP 0 
p" 

Ul NICSIZE NlCTMCD NORET PAGEiAIT PSA RDEVAPLP RDEVATOF RDEVBLOK RDEVFLAG RDEVLLEN RDEVNICL RDEVPSUP RDEVTFLG c:: 
(I) RDEVTMCD RDEVTYPC RDEVTYPE RO Rl Rl0 R 11 R12 R13 R14 R15 R2 R3 1-1 
n R4 R5 R6 R7 R8 R9 SAVEAREA SAVERO SAVEWRK1 SAVEiRK2 SAVEiRK4 SAVEiRK8 SFBCLAS 

(I) 
("'t I ... ' SFBFLAG SFBINUSE SFBLOK SFBPNT SFBSBCLD SFBUHOLD SFBUSER SBQBLOK SHQSBOLD SHQUSER STARTIME TEMPSAVE TYPBSC tT 
0 TYPPRT TYPPUN VMELOK VMCFRUN VMCLASSA VMCLASSB VMCLA SSD VMCLASSE VMCLEVEL VMDISC VfillSAfiI VfilMACCON VHMCODE 0 
l:I I 

VMMCPENV VMMCR6 VMMFE VMI'lIMSG VMMLEVEL VMMLINED VfilMLVL2 VMMSGON VMMSVC VMMTEIT VMOSTAT VMPAGEI VMPFUNC t""I 
w VMPNT VMPSTAT VMRON VMSTKO VfilTCBEL VMTERM V MT ESCP VMTLDEL VMTL END VMTLEVEL VMTON VMTRMID VHUPRIOR ~ . t:1' 

VMUSER VMV370R VMiNGON ZEROES (I) 

t::I 1-1 ... ' 
H n 
(I) H 
n 0 
("'t en 
0 en 
H ... ' ~ 
(I) (I) 

en HI 
(I) 

H 
(I) 

W ::I 
.I:' n 
~ (1) 



w ~odule External References (Labels and Plodules) n ~ 
co I'C 

3: 
tMKCSO ACORETBL APTRAN ARIODV ARIOPR ARIOI'U ARIORD ASYSVPI EALRSAVE BLANKS BRliG BUFFER EU FHIT CC 0 

CHGRDV CLASURI CLASURO Cl DE DEFER D8KCKSPL DPlKCVTBH D8KCVTDB D8KCVTiiB DHKDSPCii DHKERMSG DMRFCBLD ~ 

= 
< DMKFREE DMKFRET DMKIOSQR DHKPTRUL DPlKQCHiT DHKRSPEI DHKSCHFD DPiKSCHRU DHKSCHVU DMKSPLDL D8KSTKIO DHKUCBLD DMKUCSLD I-' 
3: FTRUCS Fl F2 F3 F4 F8 IOBCAi IOBCP IOBCSi IOBFATAL lOB FLAG IOBIRA IOBLIRK CD 

J 

" IOBLOK IOBlUSC IOEMISC2 IOBRADD IOBRSTRT IOBSIZE IOBSTAT IOBUSER LOCK NORET OPERATOR PSA RDEVACNT rt w 
~ RDEVAIOB RDEVBACK RDEVBLOK RDEVBUSY RDEVCLAS RDEVDED RDEVDISA RDEVDRAN RDEVFLAG RDEiFTR RDEVIOER RDEVLOAD RDEVNRDY 0 

.J 
0 RDEVRSTR RDEVSEP RDEVSPAC RDEVSPL RDEVSTAT RDEVTERPI RDEVTYPC RDEVTYPE RDEVUSER RSPLCTL BSPPlISC RSPSFBLK RO t"4 .. 

Rl Rl0 Rll R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 III 
til R8 R9 SAVEAREA SAVEiRK 1 SAVEiRK2 SAVEiRK4 SA VEiRK5 SAVEiRK6 SAVEiRK7 SAVEWRK8 SFBCOPY SFBFLAG SFBFLAG2 t::r 

Io<j CD 
til SFBLOK SFBRECER SFBRECOK SFBREQUE SFBSHOLD SILl SKIP SYSTEM TYPPRT TYPPUN TYP3211 UE VDEVBLOK I-' 
rt' VDEVDED VDEVFCBK VDEVSTAT VDUTYPE VFCBBLOK VFCBCNT VFCBLOAD VFCBNDEI VFCBSIZE VMBLOK VHOSTAT VMSEG VHSYSOP n CD 
51 VMUSER ZEROES 11 

0 
t-' til 
0 UIKCSP ARSPPR ARSPPU ARSPRD BLANKS BUFFER CBGSFB CHGSHQ CLASTERM CLASURI CLASURO DE DELSFB DHKCKSPL til 

I.Q DMKCSOSD DMKCVTDB DMKCVTHE DMKERMSG DPlKFREE DMKFRET DMKRSPHQ DMKSCRFD DHKSCHVU DHKSTKIO DMKUDBFU DMKVIOIN DMKVSPCO !:O 1-'- DMKVSPCR FFS Fl F2 F3 F4 F7 F8 IOBCSi IOBIRA IOBLIIK IOBLOK IOBSIZE CD 0 
IOBUSEB IOBVADD PSA RO Rl Rl0 R 11 R13 R14 R2 R3 R4 R5 HI 

III R6 R7 R8 R9 SAVEWRKl SAVEiRK2 SAVEWRK4 SAVEiRK5 SAVEiRK6 SAVEWRK8 SAVEiRK9 SFBCLAS 
CD 

= SAVEAREA 11 
p. SFBDIST SFBFILID SFEFLAG SFBFLAG2 SFBFNAME SFBHOLD SFBINUSE SFBLOK SFBNOHLD SFBSHOLD SFBUHOLD SFBUSER SHQBLOK CD = 
I'tI SHQBSIZE SHQFLAGS SHQPNT SHQSBOLD SHQUSER TEMPR2 TYPPRT TYPPUN TYPRDR TYP3210 UDIRBLOK UDIRPASS UDIRSIZE 0 
11 VCHADD VCHBLOK VCHCUTBL VCUADD VCUBLeK VCUDVTBL VDEVADD VDEVBLOK VDEVCLAS VDEVCONT VDEVCOPY VDEVCSPL VDEVCSi CD 
e VDEVDED VDEVEOF VDEVEITN VDUFLAG VDEVFOR VDEVHOLD VDEVPEND VDEVPURG VDEVSFLG VDEVSIZE VDEVSPL VDEVSTAT VDEVTERPI 
t::r VDEVTYPC VDEVTYPE VDEVIFER VMBLOK VI!ICHSTRT VMCBTBL VMCUSTRT VMDIST VHDVCNT VHDVSTRT VHUSER VSPLCTL VSPSFBLK ..... 
CD VSPIELOK VSPIDIST VSPILEH VSPISIZE VSPISPAR VSPITGLH VSPIIUSR ZEROES 
51 

t::I tHKCST ARSPRD BRING BUFCNT BUFFER CLASTERH CLASURI CLASURO DMKCVTBH D8KCVTDB D8KCVTHB D8KER8SG DMKFREE DHKFRET 
CD DMKPGTVG DMKPGTVB DPlKRPAGT DMKRPAPT DMKSCNFD DMKSCNVD D8KSCNVN DHKSCNVU FFS Fl F2 F3 PSA rt' 
CD RO Rl Rl0 R 11 R13 R14 R2 R3 R4 R5 R6 87 R8 
11 R9 SAVEAREA SAVEWRKl SAVEWRK2 SAVEWRK4 SAVEiRK5 SAVEWRK6 SAVEiRK7 SFBFILID SFBLOK SFBPHT SFBSTART SFBUSER a 
1-'- SKIP SYSTEM TYPP8T TYPPUN TYPRDR TYP3210 VDEVADD VDEVBLOK VDEVDED VDEVEITI VDEVFOR VDEVSFLG VDEVSIZE 
= VDEVSTAT VDEVTYPC VDEVTYPE VDEVIFER VMBLOK VMDIST VHDVCNT VMDVSTRT VHSTKO VHUSER VSPIBLOK VSPIDIST VSPILEN III 
rt' VSPISIZE VSPISPA8 VSPITAG VSPITGLI VSPIIUSR ZEROES 
1-'-
e 
= I:HKCSU ARSPPR ARSPPU ARSPRD BLANKS BUFFER BUFRIT CHGSFB CLASURI DE DPlKCKSPL DHKCSOSD DHKCVTBD DHKCVTDB 

Cil 
DHKERMSG DHKFREE DPlKFRET DPlKQCIWT DHKSCBAU DHKSCNFD DPiKSPLDL DHKSTKIO DI!IKUDRFU DHKVIOIN FFS Fl F2 

= F24 F3 F4 F5 F6 F7 F8 IOBCSi IOBIRA IOBLINK IOBLOK IOBSIZE IOBUSER 
1-'- IOBVADD NORET PSA RO Rl Rl0 R 11 R12 R13 R14 R15 R2 R3 p. 

R4 R5 R6 R7 R8 R9 SAVEAREA SAVERll SAVEiRKl SAVEWRK2 SAVEWBK4 SAVEWRK5 SAVEWRK6 CD 
SAVEiRK8 SAVEiRK9 SFBCLAS SFBCOPY SFBDIST SFBFILID SFBFLAG SFBFNAHE SFBINUSE SFBLOK SFBORIG SFBPBT SFBSHOLD 
SFBUHOLD SFBUSER TEHPR2 TEHPR3 TEHPR4 TYPPRT TYPPUB 'IYPRDR VCHADD VCHBLOK VCHCUTBL VCUADD VCUBLOK 
VCUDVTBL VDEVADD VDEVBLOK VDEVCLAS VDEVCSW VDEVPEND VDEVSPL VDEVSTAT VDEVTYPC VDEVTYPE VHBLOK VHCHSTRT VMCHTBL 
VMCLASSD VMCLl!VEL VPlCOMID VMCUSTRT VMDVSTRT VMPlIM SG VMMLEVEL VMMLVL2 .VPlMSGOB VPlTTIME VMUSER ZEROES 



Module External References (Labels and f1odules) 

DMKCVT BALRSAVE BALR1 BALR2 CPID DATE Fl FlO F240 F4 F60 PSA RO Rl 
Rl0 R14 R15 R2 R3 Il5 Il6 R7 R8 R9 TEMPSAVE TODATE 

DeKDAS ALARM ASYSVM CC CCC CD CDC DFRET DMKCVTBH DeKDSPCH DMKFREE DeKFRET DeKIO!SD DMKIOEST 
DMKIOSQR DeKMSWR DPlKQCRWT DPIKSCRRU FTIlEXTSB FTIlRPS FTR35MB FTR70eB Fl FlO F2 F256 F4095 
F4096 FB IDA IFCC lOB CAW IOBCC3 IOBCP IOBCSW IOBERP IOBFATAL IOBFLAG IOBIOER IOBIRA 
IOBLIBK IOBLOK IOBRADD IOBRCAW IOBRCRT IOBRSTRT IOBSIZE IOBSPEC IOBSTAT IOBTIO IOBUSER IOERACT IOERADR 
IOERBLOK IOERCAL IOERCAR IOERCEPID IOERCSW IOEIlDASD IOERDATA IOERDEC IOERDW IOERECF IOERETRY IOEREIT IOERFLGl 
IOERFLG2 IOERFLG3 IOERHA IO!RIGRR IOERIRD3 IOERIRD4 IOERIRFO IOERLER IOERLOC IOEIlPlSG IOERPISW IOERRUPI IOEROVFL 
IOERPERD IOERPRT IOERREAD IOERSIZE IOEIlSTAT IOERSTRT IOERVOLl IOERVSER RORET OPERATOR PRGC PRTC PSA 
RDEVELCK IlDEVDED RDEVDISA RDEVFLAG RDEVFTR RDEVIOER RDEVPlOUT RDEVRRDY RDEVOWR RDEVSEIl IlDEVSTAT RD!VSYS RDEVTYPE 
RO Rl Rl0 Rll R12 Il13 R1S R2 R3 R4 R5 R6 R7 
RB Il9 SAVEAREA SAVER 11 SILl SKIP TYP2305 ~YP2314 TYP3330 TYP3340 TYP33S0 UC IRIGHT16 
ZEROES 

DMKDDR ATTR BUSY CC CD CE CLASDASD CLAST APE CLASTERM CUE DE ERRPlSG IRTREQ RO 
Rl R10 R 11 R12 R13 Il14 R15 R2 R3 R4 IlS R6 R7 
R8 R9 SILl SKIP TYP2305 TYP2311 TYP2314 TYP2319 TYP2401 TYP2415 TYP2420 TYP3330 TYP3340 
TYP3350 TYP3410 TYP3411 TYP3420 UC UE WAIT 

I:MKDEF CLASDASD CLASGRAF CLASSPEC CLASTERM CLASURI CLASURO DELPAGES DELSEGS DPlKBLDRL DMKBLDRT DeKCFPRD DPlKCFPRR DeKCVTBD 
DeKCVTEH DMKCVTDB DeKCVTHE DeKERMSG DeKFRl!E DeKFRET DPlKLOCKD DPlKLOCKQ DPlKPGSPO DMKQCRWT DPIKSCRFD DMKSCRVD DeKSCRVR 
DeKSCRVU DMKUDRFU DMKUDRRD DeKUDRRV DPlKVCARS DPlKVDSDF FFS F3 F4 F5 F8 REWPAGES REWSEGS 
BOBET PSA RDEVATT RDEVBLOK RO III Ill0 Rll R12 R13 R1S R2 R3 
R4 R5 R6 R7 R8 SAVEAREA SAVER2 SAVEWRKl SAVEWBK2 SAVEWRK3 SAVEWRK4 SAVEWRK5 SAVEWRK6 
SAVEWRK7 SAVEWRK8 SAVEWRK9 TYPCTCA TYPIBMl TYPPRT TYPTELE2 TYP1052 TYP1403 TYP2305 TYP3211 UDBFBLOK UDBFSIZE 
UDBFVADD UDEVADD UDEVBLOK UDEVCLAS UDEVDISP UDEVFTR UDEVRCYL UDEVSTAT UDEVTDSK UDEVTYPC UDEVTYPE UDEV 315B UDIRBLOK 
UDIRDISP UPlACBLOK UeACPlCOR VCHADD VCHBLCK VCHBeI VCHCUTBL VCHDED VCHSEL VCHSTAT VCHTYPE VCUADD VCUBLOK 
VCUCTCA VCUDVTBL VCUTYPE VDIVADD VDEVBLOK VDEVDED VDEVFLAG VDEVLIRK VDEVPOSR VDEVRELR VDEVSTAT VDl!VTDSK VDEVTYPC 
VMBLOK VMCHSTRT veCHTBL VMCUSTRT VMDVSTRT VMFBPlI veFSTAT VPlPlIPlSG VMMLVL2 VMSIZE VPlSTOR veUSER VMVTERe 
VBALOC 

I:MKDGD ACORETBL BRING CC CD CLASDASD COBPGPRT CORSWPBT COR TABLE CPSHRLK CPSTAT2 CSW DEFER DMKDSPCH 
DMKFIlEE DMKFBET DMKIOSQV DMKPSACC DMKPSASC DMKPTRAN DMKPTBFIl DPlKPTRFT DMKPTRUL DPlKSCNVU DPlKVPlAPS FFS Fl 
F15 F16 F3 F4 F4095 F4096 F5 F6 FB IDA IOBCAW IOBCCl IOBCC3 n 
IOBCSW IOBCYL IOBFATAL IOBFLAG IOBHVC IOBIOER IOBIRA IOBLIRK IOBLOK IOBeISC IOBeISC2 IOBSIZE IOBSTAT ttj 

IOEBBLOK IOEREIT IOl!RSIZE LOCK PCIF PSA RCWADDR RCWCCW BCWCRT RCWCOPIND IlCWCTL RCWFLAG RCWIO 3: 
RCWSER RO Rl Rl0 Rll Il12 R13 R14 R1S R2 R3 R4 RS 0 

R6 B7 R8 Il9 SAVEAREA SAVEREGS SAVER 12 SAVER2 SAVEWRK9 SILl SWPFLAG TYP230S TYP2311 
~ 

Ul C 
(1) TYP2314 TYP3330 TYP3340 TYP3350 VDEVELOK VDEVBRD VDEVEUSY VDEVCHAR VDEVDED VDEVFLAG VDEVIOB VDEVIOER VDEVPERD t-J n (1) 
r+ VDEVPOSN VDEVPOST VDEVIlDO VDEVRELR VDEVSTAT VDEVTYPC VDEVTYPE VDEVUC VMACTDEV VMELOK vecoPlP VMDVSTRT VMESTAT , 
1-" VMEXTCM VMEXWAIT VMGPRS VMIOCRT VMICWAIT VMLOGOFF VPlLOPRI VMPSW VMQLEVEL VMRSTAT IPAGRUM r+ 
0 0 
l::I , 
w t"4 

III 
tr' 

t:1 
(1) 

1-" 
t-J 

11 n 
(1) 11 n 0 r+ rn 
0 rn 
11 
1-" !::tI 
(1) (1) 
rn HI 

(1) 
11 
(1) 

W l::I t n 
1.0 (1) 



w 
-~odule n V1 External References (Labels and Modules) "tI 

0 
3 

IMKDIA ARIOCU ARIODV ASYSVM BALRSAVE BALRl BLANKS CC CCDESMD CD CE CHBSIZE 
0 

CHXBLOK CHXOTHR p.. 

CHXYADD CHYBLOK CBYOTBB CBYXAtD CLASGRAF CLASSPEC CLASTEJU! CMDREJ CCNCCi3 CONDATA CONDCNT CONSYSR CPEXADD j:l 
~ 

~ CPEXBLOK CPEXSIZE CRESDQ CRESIMD CSETDSM CSiLMEP CSiLBCP CTRMLTR DE DFRET DMKACODV DMKBLDVM DMKCFPRD (\) 
3 DMKCVTED DMKCVTBH DPfKCVTHE tMKDSPCB DPIKERMSG DMKFREE DMKFRET DMKIOSHA DMKIOSQR DMKQCNCL DftKQCNiT DftKRIORN DMKRNHND I 

" r+ w DftKSCNAU DMKSCNFD DMKSCBRI DftKSCNRN DMKSCNRU DMKSCNVD DMKSCNVU DMKSTKCP DMKSTKIO DPIKSYSCK DMKSYSND tMKSYSRM DMKVCARS 0 ...,J DMKVIOIN FFS Fl F240 F3 F4095 IDA IL INTREQ IOBCAi IOBCC 1 IOBCP IOBCSW I 
0 t-l IOBFlAG IOBIOER lOB IRA IOBLINK IOBLOK IOBfnsc IOBRADD IOBRCAW IOBRSTRT IOBSIZE IOBSTAT IOBU SER IOBVADD ~ 

til IOERBLOK IOERCCW IOERCSW IOERDATA IOEREXT IOERSIZE LOGBOLD NICBLOK NICCIBM NICDISA NICENAB NICEPAD NICEPMD t:r 

~ NICFIAG IUCLINE NICLTRC NICNAME NICQPNT NICSESN NICSIZE NICSTAT NICSiEP NICTELE NICTYPE NICUSER NORET (\) 
I-' til OPERATOR PRGC PRIORITY PRTC PSA RCBBLOK RCHCUTBL RCUBLOK RCUDVTBL RCWADDR RCWCCi RCiCNT RCWCOPfND r+ RCWCTl n 

(\) RCiFLAG RCiINVL RDEVACTV RDEVADD RDEVAIOB RDEVAIRA RDEVATT RDEVBASE RDEVBLOK RDEVCON RDEVCORD RDEVCTL H EI RDEVCUA RDEVCYL RDEVDED RDEVEPDV RDEVEPLN RDEVEPMD RDEVFLAG RDEVHIO RDEVLCEP RDEVLNCP RDEVNICL RDEVRRDY RDEVPREP 0 
t-l RDEVBCVY RDEVRUN RDEVSTAT RDEVTFLG RDEVTPlAT BDEVTYPC RDEVTYPE RDEVUSER RUNUSER RO Rl R10 Rl1 til 

til 0 R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 B8 R9 SAVEAREA 
\Q 

SAVERETN SAVER 11 SAVER2 SAVER8 SAVEiRKl SAVEiRK2 SAVEiRK3 SAVEiRK4 SAVEWRK5 SAVEiRK6 SAVEiRK7 SAVEWRK8 SAVEWRK9 !::o .... (\) n SILl SKIP TRQESIZ E TYPBSC TYPCTCA TYPIBMl TYPTELE2 TYP3277 UC VCHADD VCHBLOK VCBCUTBL VCUADD HI 

~ VCUBLOK VCUDVTBL VDEVADD VDEVBLOK VDEVDED VDEVDIAl VDEVENAB VDEVFLAG VDEVIOB VDEVNRDY VDEVREAL VDEVSTAT VDEVTYPC (\) 
H ::s VDEVTYPE VMBLCK VMBSIZE VMCF VMCBSTRT VMCBTBL VMCUSTR'I' YMDVSTRT VllIOWAIT VPfKILL VMLOGOFF VPfOSTAT HIPNT (\) p.. VMRSTAT VMTERM VMTRMID VPlTTIPlE VllUSER ZEROES ::s 

"tI 
n 
(\) 

H DMKDIR ATTN BUSY CC CD CE CLASDASD CLASGRAF CLASSPEC CLASTERM CLASURI CLASURO CUE DE 0 
t:7' ERRPfSG FTR2311B FTR2311T RO Rl Rl0 R 11 R12 R13 R14 R15 R2 R3 
I-' R4 R5 R9 SILl TYPCTCA TYPIBMl TYPTELE2 TYPTIMER TYP1052 TYP1403 TYP1443 TYP2305 TYP2311 
(\) 
EI TYP2314 TYP2501 TYP2540P TYP2540R TYP3158 TYP3210 TYP3211 'IYP3215 TYP3277 TYP3330 TYP3340 TYP3350 TYP350S 

t::I 
TYP3525 UC UDEVADD UDEVBLOK UDEVCLAS UDEVDASD UDEVDED UDEVDISP UDEVFTR UDEVLINK UDEVLKDV UDEVLKID UDEVLPI 

(\) UDEVrOliG UDEVlR UDEVLi UDEVMODE UDEVMR UDEVPlW UDEVNCIL UDEVPASll UDEVPASR UDEVPASW UDEVR UDEVRELN UDEVRR 
r+ UDEVSIZE UDEVSPOO UDEVSTA'I UDEVTDSK UDEVTYPC UDEVTYPE UDEVVSER UDEVW UDEViR UDEV3158 UDIRBLOK UDIRDASD UDIRDISP 
(!) UDIRFASS UDIRSIZE UDIRUSER UE UfUCACC UMACACC'I UMACBLOK UMACBMX UPlACCDEL UPIACCLEV UMACCORE UMACIASD UMACDISP H 
iii U1HCDIST UPlACDVCT UMACECOP UMACES UMACIPl UPIACISAM UPlACLDEL UMACLEND UMACMCOR UMACNSVC UMACOPT UMACPRIR UPIACRT .... UMACSIZE UMACVROP ::s 
~ 
r+ DPlKDPfP ACORETBL ALARM ARIODV ARSPRD ATTN BAlR2 BUSY CAi CC CE CBGSFB CLAS DASD CLASTAPE .... 
0 CLASURC CORCP CORFLAG CORFPNT CORTABLE CPABEND CPID CSi CUE CO C14 C15 C2 
=' DAMAGRPT DATE DE DMKOPRWT DMKPRGMC DMKRIOPR DMKRSPID DMKSCNRD DMKSCNRU DPIKSYSCH DPIKSYSCK DPIKSYSRM DPIKSYSRV 
G"l DPIPFLAG DMPFPRS DMPGPRS DPfPINREC DPIPKEI DPlPKYREC DMPLCORE DMPPGMAP DMPSYSRV DMPTODCK EXTMODE FFS F4095 
j:l F4096 F60 F8 HALFPAGE BARDSTOP INTREQ INTTIO IOBSIZE ICMASK ICNFSW IPLCCWl IPLPSi MCHEK .... 
p.. MONAIOB MONARDB MONCOM MONFLAG2 PRNPSW FSA RDEVBLOK RDEVRECS RDEVTYPC RDEVTYPE RDRCHN RECBLOK RECCYL 
(!) RECMAP RECPNT RECUSED RO Rl R10 R 11 R12 R13 R14 R15 R2 R3 

R4 R5 R6 R7 R8 R9 SFBDATE SFBDUMP SFBFlLID SFBLAST SFBLOK SFBPNT SFBSIZE 
SFBSTART SFBTIM! SFETYPE SILl SKIP SY SIPLDV TODATE 'IRUN T1PPRT TYP1403 TYP2314 TYP3330 TYP3340 
TYP3350 UC UE WAIT yO 12 14 Y6 ZEROES 



Module External References (Labels and r!odules) 

I:MKDRD ARIODV lRSPRD ISYSVS BRING ClASURI DEFER Dl'lKFRFE Dl'lKFRET DMKHVCPC DMKPGTSD DMKPGTVG DMKPGTVR DMKPSASP 
DMKPTRAli DMKRPAGT DMKSCNVU DMKSYM DMKSYSOi DMKVSPCR FFS Fl F255 F256 F4096 F8 OiNDLIST 
OiNDRDEV PSA RDEVBLOK RDEVTYPE RO Bl Rl0 Rl1 R12 R13 R14 R15 R2 
R3 R4 R5 R6 R7 R8 R9 SAVEAREA SAVERO SAVER2 SAVER6 SA VEiRKl SAVEiRK2 
SAVEiRK3 SAVEiRK6 SFBCLAS SFBCOPY SFBDUPIP SFBEOF SFBFILID SFBFLAG SFBINUSE SF BLAST SFBLOK SFBOPEN SFBPNT 
SFBRECER SFBSIZE SFESTART SFETYPE SFBUHOLD SFEUSER SKIP SPLINK SPNXTPAG SPPREPAG SYSTEM TYPPRT TYPPUN 
TYPRDR TYP2305 TYP2319 TYP3330 TYP3340 TYP3350 VDEVBLOK VDEVBUSY VDEVCLAS VDEVCONT VDEVDIAG VDnSFLG VDEVSPL 
VDEVSTAT VDEVTYPC VDEVTYPE VMBLOK VPlDVSTRT VPlPSi VPlSEG VPlUSER VSPCAi VSPCCi VSPDPAGE VSPLCTL VSPSFBLK 
VSPSIZE IPAGliUM X2048EN£ ZEROES 

£MKDSP ASYSVM ATTN BRING CPCREGO CPEI CPEIADD CPEIBLOK CPEIBPNT CFEXFPNT CPEIREGS CPEIR10 CPEIR 11 CPEISIZE 
CPMICCli CPRUI CPSHRLK CPSTATUS CPSTAT2 CPiAIT CSi CUE CO Cl C 11 C13 C4 
C5 C6 C7 C9 DfFER DPlKCFPlBK DPlKCVTBH Dr!KFREE DPlKFRET DPIKIOSER DPIKIOSRC DHKPERT DMKPTRAN 
DPlKPTRFD DMKPTRFE DPlKPTRFP DPlKPTRRC DPlKPTBRT DMKQCNiT DMKSCHDL DMKSCHN 1 DMKSCHN2 DMKSCHRL DMKSCNVU DMKTRCEI DMKTRCIO 
DPlKTBCIT DMKTRCPG DMKUSOFF DMKVATAB DPlKVATBC DMKVATEI DMKVATMD DMKVIOMK DMKVIUPS DMKVPlASH ICBLOK ERRMSG EINPSi 
EIOPSi EITCRO EITCR2 EITCR4 EITCR7 EXT MODE EITPERAD EITPERCD EITSHCRO EITSHCRl FFS FO Fl 
IDLEiAIT INTEl INTEIF INTPRL IITTIO IOBBPNT IOBCSi IOBFLAG ICBFPIT ICBIRA IOBLOK IOBPAG IOBUSER 
IONPSi IONTiAIT IOOPSi LASTUSER MICBLCK MICPEND MICVIP NORET PAGEiAIT PCI PER ADD PERCODE PERHODE 
PGADDR PGBLCK PGESIZE PGPNT PRNPSi PROBMODE PROPSi PSA QUANTUM QUANTUMR RUNCRO RUNCRl RUNPSi 
RUNUSER RO Rl Rl0 R 11 R12 R14 B15 R2 R3 B4 R5 R6 
R7 R8 R9 SIGMASK TIMER TRACCURR TRACEND TRACFLG2 TRACSTRT TRACOA TRACOC TRAC10 TRANMODE 
TREICR9 TREIINl TREIIN2 TREIT UC VCHADD VCHBLOK VCHBUSY VCHCEDEV VCHCEPND VCHCUINT VCHCUTBL VCOSEL 
VCHSTAT VCHTYPE VCUADD VCUBLOK VCUCEPND VCUCTCA VCUDVINT VCUDVTBL VCUINTS VCUSHRD VCUSTAT VCUTYPE VDEVADD 
VDEVBLCK VDEVCHAN VDEVCSi VDnCUE VDEVFLAG VDEVUTTS VDEVPEND VDEVPOST VDEVSTAT VIUEIP VMBLOK VMCF VMCFREAD 
VMCFRUN VMCHSTRT VMCHTBL VMCOMP VMCPiAIT VMCUSTRT VMDSP VMDSTAT VMDVSTRT VMECEIT VMESTAT VMEITCM VMEITPND 
VMEIiAIT VMFPRS VMGPRS VMBIPRI VMIDLE VMIliIQ VMINVPAG VMINVSEG VfHOACTV VMICINT V!!lOPND VMKILL VI!LOGOFF 
VMLOPRI VMMADDR VMMCR6 VMMFE VMMICRO VMMNOSK VMMPROB VHMSHADT VMNDCNT VMNEiCRO VMNORUN VMOSTAT VMPAGES 
VMPEND VMPEBCM VMPERPNI: VMPGPND VMPGPNT Vr!PGiAIT Vr!PNT VMPRGIL VMPRIDSP VMPSTAT VMPSi VMPSiAIT VMPIINT 
VMQLEVEL VMQSEND VMQSTAT VMRON VMRSTAT VMRUN VMSEG VMSHADT VMSHR VMSYSOP VMTIDLE VMTIMER VMTIONT 
Vr!TLEVEL V"TMINQ V"T"OUTQ VMTON VMTPAGE VMTRBRIN VMTRCTL VMTREI V"TREIT V"TRIO V"TRPER V."TRPRG V"TRPRV 
V"TRSVC VMTSEND VMTTIME VMVCRO VMV370R iAIT XINTBLOK IINTCODE IINTMASK IINTNEIT IINTSIZE IINTSORT IRIGHT16 
XTNDLCCK YO Y2 Y4 Y6 ZEROES 

tMKEDM ACORETBL ARIOCT ARSPPR ASISVM CLASDASD CLASGRAF CLASTERM CLASURI CLASURO CCNFNT CONTASK CONTSKSZ CORCP 
CORDISA CORFLAG CORFLUSE CORFPNT CORFREE CORSHARE CORSiPNT CORTABLE CPABEND DATE DMPCRS DMPFPRS DMPGPRS n 
DMPINREC DMPLCORE DMPPGMAP D"PSYSRV DMPTODCK ECBLOK EDIT EITSIZE INTKFLIN ICBFPNT IOBLOK IOBSIZE IOERBLOK ~ 

IOEBSIZE PSA RCHADD RCHBLOK RCHCUTBL RCHFIOB RCHSIZE RCUADD RCUBLOK RCUDVTBL RCUFIOB RCUSIZE RDEVADD 3 
RDEVAICB RDEVBLOK RDEVCON RDnFIOB R£EVFLAG RDEVIOER RDEVOWN RDEVPAGE RDEVRECS RDEVSIZE RDEVSPL RDEVTYPC RECBLOK 0 

til RECPNT RECSIZE RSPLCTL RSPSFBLK RSPSIZE RO Rl Rl0 R 11 R12 R13 R14 R15 ~ 
c:: 

(1) R2 R3 R4 R5 R6 R7 R8 R9 SFBLOR SFBPNT SFBSIZE SFBUSER SiPTABLE I-J 
(") 

TYP3215 VCUBLOK VCUDVTBL (1) 
rT SiPVM TODATE TREISIZE TREIT VCHADD VCHBLOK VCHCUTBL VCHSIZE VCONSIZE VCUADD I 
1-" VCUSIZE VDEVADD VDEVBLOK VDnCON VDEVIOB VDEVIOER VDEVSIZE VDEVSPL VDEVTYPC VDEVTYPE VMBLOK VMBSIZE VMCHSTRT M-
0 

V"EITCM VMSEG VMSIZE VMTRCTL VMTREIT VMUSIR VSPLCTL 0 
I:S VMCHTBL VMCUSTRT V"DVSTRT VMECEIT VPlESTAT V"PNT I 

w VSPSFBLK VSPSIZE t-4 
~ . 0-

tj 
(1) 

1-" 
..... 

t1 n 
(1) t1 
(") 0 M- oo 
0 00 
t1 
1-" !:O 
(1) (1) 
00 HI 

(1) 

t1 
(1) 

w I:S 
U'1 (") 

(1) 



w 
Module External References (Labels and Modules) () 

U"I td "-> 
:3 

DMKEIG CCC CCBCMDV CCHDAV CCEDI CCHLOG80 CCHRCV CCHREC CCHUSV COMPFES COMPSEL COMPSYS CSW FFS 
0 
p. 

IFCC IGBLAME IGTERMSQ IGVALIDB IBTERCCB IOELPNTR IOERBLOI'( PSA RTCODEO RTCCDEl BTCODB2 RTCODE3 RTCODE4 '=' I--' < RTCODES RO Rl R12 R13 B14 R15 R2 R3 R4 R9 SAVEAREA SAVEWRKl CD 
3: SAVEWRK9 TERMSYS TIOCCH I ........ c+ w 0 
-..J tMKERM ALARM BLANKS BRING BUFCNT BUFFER BUFINLTH BUFSIZE DEFER DFRE'!' DMKCVTBD DMKEMAOO DMKBMBOO DMKFREE I 
0 

Rl t-' .. DMKFRET DMKPTRAN DMKQCNWT DMKSYSRM ERRMSG F2 F255 BaRET OPERATOR PSA RO R10 PI 

til Rll R12 R13 R14 R1S R2 R3 R4 R5 R6 R7 R8 R9 C' 

SAVBRO SAVBR1 SA VBR2 SAVER3 SYSTEM VMBLOK XRIGBT 16 (!) 
'< SAVEAREA I--' 
Ul 
c+ 

CD CE CSW CUE DB ICNPSW IOOPSW PROPSW PSA () 
CD Dl!KFMT ATTN BUSY CAi CC Ii 
EI RO Rl R10 Rll R12 B13 R14 R15 R2 R3 R4 R5 R6 0 

~ R7 R8 R9 SILl SKIP Sl! UC UE Ul 

0 
Ul 

\Q Dl!KFRE ACORBTBL AFREE ASYSVM AVl!RBAL BALRSAVE CORPGPNT COR TABLE C2 Dl!KCPE DPlKDSPNP Dl!KPTRFR DMKPTRFT DMKSYSRM ~ .... CD n FREERO FREERl FREER14 FREER1S FREESAVE Fl F4096 PSA RO Rl Rl0 R 11 R12 HI 

PI R13 R14 R1S R2 R3 R4 RS R6 R7 R8 B9 SAVESIZE TEMPSAVE (!) 
Ii 

~ TRACCURR TRACEND TRACFLGl TRACSTRT TRAC67 IPAGNUl! XTNDLOCK CD P. ~ 

td DMKGIO BRING CLASDASD CLASTAPE CSi DEFER DMKCCWTR DMKDSPCH DMKFREE DMKFRET DMKIOSQV DMKPTRAN DMKSCNVU DMKUNTFR n 
CD 

Ii DMKUNTRN IL IOBCAi IOBCC3 IOBCSi IOBFATAL IOBFLAG IOBHVC IOBIOER IOBIRA IOBLIIK IOBLOK IOBMISC 
0 IOBMISC2 IOBSIZE IOESTAT IOERBLOK IOBRCSW IOERDATA IOEREXT IOERSIZE PSA RO Rl R10 Rll C' 
I--' R12 R13 R15 R2 R4 RS R6 R7 R8 R9 SAVEAEBA SAVER2 UE 
CD 
EI VDEVBLOK VDEVBUSY VDEVCBAN VDEVCSW VDEVDBD VDEVFLAG VDBVIOB VDEVIOER VDEVPEND VDBVPOST VDEVSTAT VDEVTYPC VDEVUC 

VMACTDEV VMBLeK VMCOME VMDVSTRT VMESTAT VMBXTCM VMEXWAIT VMGPRS VMIOCNT VMIOiAIT VMLOPRI VMPSW VMQLEVEL 
I::j 

VMRSTA'I CD 
c+ 
(!) DMKGRF ALARl! ARIODV ASYSVl! ATTN BLANKS BRING BUFCNT BUFFER BUFINLTH BUFSIZE CC CCC CD Ii 
EI CDC CE CBC CLASGRAF CONACTV CONADDR CONCCil CONCCi2 CCNCCi4 CONCNT CONDATA CONESCP CONOUTPT .... CONPARl! CONPJI1T CONRESP CONRETN CONRSV3 CONSTAT CONSYNC CONTASK CONTSIZE CONTSKSZ CPEXADD CPEXBLOK CPEIRO ~ 
PI CPEXSIZE CPID DE DEFER Dl!KBLDVPI DPIKBOXBX DPIKCFMAT DMKCFMBK DMKCFMEN DMKCNSED DMKCPIEM DMKCVTBD DMKCVTDB 
c+ DMKCVTBB DMKDSPCB DMKFREE DMKFRET DMKIOERR DMKIOEST DMKIOSQR DMKMSiR DMKPTRAN DMKQCNCL DMKQCNET DMKQCNTO DIHiQCNiT .... 
0 DMKRr-OCN DMKSCHRT DMKSCHST DMKSCNRD DMKSCNRU DMKSTKCP DMKSYSNM DMKTBLGR DMKTBLUP Dl!KTBMZI Dl!KTEMZO EDIT Fa 
~ Fl F255 F256 F3 F4 F5 F8 IFCC INHIBIT INTREQ IOBCAi IOBCOPY IOBCSW 
G:l IOBEBP IOBFATAL IOBFLAG IOBIOBR IOBIRA IOBLINK IOBLOK IOBMISC IOBRADD IOBRCNT lOBS ENS IOBSIZE IOBSPEC 
'=' IOBSTAT IOBUNSL lOB USER IOERBLOK IOERCSi IOEBDAT! IOEREIT IOERFLG3 IOERNUM IOEROVFL IOERREAD IOERSIZE LOGDROP .... 

LOGBCLD NOBET NOTIME PRGC PRIORITY PRTC PSA RCUBLOK RCUDVTBL RDEVACTV RDBVAIOE RDEVAIRA RDEVAPLP p. 
(!) RI;>EVBLOK RDEVCON RDEVCORD RDEVCPNA RDEVCTL RDEVCUA RDEVDED RDEVDISA RDEVDISB RDEVENAB RDBVFLAG RD!VHIO RDEVHOLD 

RDEVIOER RDBVLOG RDBVMORE RDEVRBAD RtEVRUN RDEVSTAT RDEVTFLG RDEVTMCD RDEVTRQ RDEVTYPC RDEVTYPE RDEVUSER RO 
Rl R10 R 11 R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 
R8 R9 SAVEAREA SAVERO SAVER2 SILl SYSTEM TEMPSAVE TRQBIRA TRQBLOK TRQBSIZE TRQBUSER TRQBVAL 
TYP3066 TYP3277 TYP3284 UC UCASE UE VCONCTL VCONRBSZ VCONRBUF VCORRCNT VDEVBLOK VDIVCON VMBLOK 
VMCF VMCFWAIT VMDVSTRT VMGENIO VMLOGOFF VMLOGON VMMCPENV VMMLEVEL VMMLINED VMOSTAT VMPA2APL VI1PFUNC VMPXINT 
VMQSTAT VMRSTAT VMSYSOP VMTLEND VMTTIME VMVTERM XINTBLOK XINTCODE XINTNEXT XINTSIZE XINTSORT XTNDLOCK ZEROES 



f'!odule External References (Labels and Modules) 

I:MKHVC BLANKS BRING CCC CDC CE CHC CLASGRAF CLASTERM CFUID DE DEFER DMKCCWTC DMKCCWTR 
DMKCFGCL DMKCFMBK DMKCFMEN DMKCVTDT DMKDGDDK DMKDSPCH DMKFREE DMKFRET DMKGIOEX DMKHVDAL DMKPGSSS DMKPRGSM DMKPSASP 
DMKPTRAN DMKSCNVU DMKTMRPT DMKUNTFR DMKVIOEX Fl F16 F256 F4 F4095 F60 IFCC IL 
rOBCAW IOBCSW rOBLOK rOBRADD IOBSIZE NICBLOK NICGRAF NICSIZE NICTYPE PCI PRGC PRTC PSA 
RCWADDR RCWCCW RCWCTL RCWPNT RCWTASK RDEVBLOK RDEVNICL RDEVTYPC RDEVTYPE RO Iil Rl0 R 11 
R12 R13 R14 R15 R2 B3 R4 RS R6 R7 R8 R9 TEMPR6 
TEMFR8 TYPBSC TYP3277 UC UE VDEVBLOK VDEVIOB VMBLOK VMCF VMCFWAIT VMCOMND VMDVSTRT VMESTAT 
VMEXTCM VMEXWAIT YMGPRS VMINST VlUCWAIT VMMCODE VMMLEVEL VMMTEXT VMNOTRAN Vl'IOSTAT VMPA2APL VMPRIDSP VMPSTAT 
VMPSW VMQSTAT VMRSTAT VMSLEEP VMSTOR VMTERM VMTRl'IID VMTTIME VMVIRCF VMWSCHG XPAGNUM 

DMKHVD ACCTACNO ACCTBLOK ACCTDIST ACCTLENG ACCTUSER ACNTBLOK ACNTCODE ACNTDATA ACNTNUM ACNTSIZE ACNTUSER ERING CLASGRAF 
CLASSPEC CLASTERM CLASURI CLASURO CPUMCELL CPUVERSN DEFER DMKACOQU DMKCPEID DMKCPVAA DMKCVTDB DMKDRDER Df'!KDRDMP 
DMKDRDSY DMKFREE DMKFRET DMKIOEFM DMKPSASP DMKPTRAN DMKRPAGT DMKSCNRU DMKSCNVD Dl'IKSCNVU DMKSNCP I:MKSYSER DMKSYSRM 
DMKUDRDS DMKUDRFU DMKUDRRD DMKUDRRV FFS FTR35ME F2S6 F3 F4 F409S F4096 F60 F8 
IPUADDIi NICBLOK BICGRAF BICLLEN NICSIZE NICTYPE PSA RDEVBLOK RDEVCODE RDEVFTR RDEVLLEN RDEYMDL RDEVNICL 
RDEVTYPC RDEVTYPE RO Rl Rl0 Rll R13 R14 R15 R2 R3 R4 RS 
R6 R7 R8 R9 SAVEAREA SAVERO SYSIPLDV TYPBSC TYP230S TYP2319 TYP3210 TYP3277 TYP3330 
TYP3340 TYP3350 UDBFBLOK UDBFSIZE UDBFVADD UDIRBLOK UDIRDISP UDIRUSER UMACACCT UMACBLOK VDEVBLOK VDEVDED VDEVREAL 
VDEVSTAT VDEVTYPC VDEVTYPE VMACCOUN VMACCUNT VMELOK VMCLASSA YMCLASSB VMCLASSC VMCLASSE VMCLASSF VMCLEVEL VMDVSTRT 
VMESTAT VMEXTCM VMGPRS VMINST VMPA2APL VMPSTAT VMPSW VMQSTAT VMTERM VMTRMID VMUSER VMVTERM XPAGNUM 
XRIGHT24 X2048BND 

DMKIOC CLASDASD CLASTERM OERDEVSB OBRDEVTN OERRECN OBRSHOBR OBRSWSN PSA RCUBLOK RCUTYPE RCU2701 RCU2?02 RDEVBLOK 
RDEVCUA RDEVMDL RDEVSADN RDEVTMCD RDEVTYPC RDEVTYPE RO R12 R13 R4 R5 R6 B8 
R9 SAVEAREA TYP2305 TYP2311 TYP3330 ZEROES 

DMKIOE CCC CDC CLASDASI: CLASGRAF CLASSPEC CLASTAPE CLASTERM COBCCW3 CCNDATA CONDCNT CPEXADD CPEXBLOK CPEXFPNT 
CPEXBEGS CPEXSIZE CPUID DMKCCHRT DMKCFMBK DMKCFPRR DMKDSPCE DMKFREE DMKFRET DMKIOFCl DMKIOFIN DMKIOFM 1 DMKIOFOB 
DMKICFST DMKIOFVR DMKIOGFl DMKIOGF2 DMKQCNWT DMKSTKCP DMKSYSTZ ERRBLOK ERRCCNT ERRCCW ERRCORR ERRHEADR ERRIOB 
ERRIOER ERR KEY ERRl'IIOB ERRMIOER ERRPARM ERRSDR ERRSIZE ERRVOLID FTREXTSN Fl FlO F2S5 F'4 
F7 F8 IFCC IOBCP IOBFATAL IOBFLAG IOBHVC IOBIOER IOBLOK IOBRADD IOBSTAT IOBUSER IOERADR 
IOERELOK IOERCEMD IOERCSW IOERDATA IOEREXT IOERFLG2 IOERLEN IOERPNT IOERSIZE IOERVSER IRMAND IRMBITl IRMBIT2 
IRMBLOK IRMBYTl IRMBYT2 IRMFLG IRMLMT IRMLMTCT IRMMAXCT IRMOR IRMRLADD IRMSIZE NORET OBRCORL OERCPIDN 
OBRCSiN OBRCUAIN OBRCU APR OBRDDCNT OBRFCCWN OBRHAN OBRKEYN OBRLSKN OBRPGMN OBRRECN OERSDRCT OBRSENSN OBRSNSCT 
OBRSWSN OBRTAPSN OBRURSNS OBRVOLN OBR3211S OBR33SNS OER3420S PSA RDEVBLOK RDEVCTRS RDEVFTR RDEVIOER RDEVIBM n RDEVMDI RDEVSER RDEVSTAT RDEVTYPC RDEVTYPE RO Rl Rl0 R 11 R12 R13 R14 R15 t'Ij 

R2 R3 R4 R5 R6 Ii? R8 R9 SAVEAREA SAVEREGS SAVERl SDRBLOK SDRBSIZE 
3 SDRCTRS SDRFLAGS SDRLNGTB SDRSERT TNSCPIDN TNSDEVAD TNSKEYN TNSREC TNSSNSl TNSSWS3 TNSVOLID TYP2305 TYP3211 0 

en TYP3330 TYP3340 TYP33S0 TYP3410 TYP3420 TYP3S0S UC VMBLOK VMCLASSF VMCLEVEL VMUSER XOERFLAG XOBRT 1 ~ 

CD XOBRT3 XOBR010 XOBR1S0 XOBR180 XOBR512 ZEROES c= 
0 ~ 

r+ CD 
1-'- I 
0 r+ 
t:J 0 

I 
W t"'I 

I» 
tr' 

c;, CD 
1-'- ~ 

11 n CD 
0 11 
r+ 0 
0 en 
11 en 
1-'-

~ (1) 

en CD 
I-h 
CD 
11 

W CD 
V1 ::s 
w 0 

(1) 



w ~odule External References (Labels and ~od ules) n (J1 
.c: ItI 

3: 
DMKIOF BRING CDC CL!SD!St CLASGR!F CLASSPEC CLASTAPE CLASTERM CLASURI CLASURO CPEXBLOK CPEXFPNT CPEXREGS CPEXR6 0 

j;lI 
CPEXSIZE CPOID CPUVERSN DEFER DMKERMSG DMKFREE DMKFRET DMKIOCVT DMKICECQ DMKIOEFS r:~KIOEIQ DMKIOEMP DMKIOEMQ d 

c:; D~KICElIS DMKICE~X DMKIOENI tMKIOENQ D ~KICEOP D~KIOERP DMKIOERQ DMKIOESQ DMKIOEVQ DMKPGTVG DMKPG'IVR DMKP'IRAN DlIKPTRUL I-' 
(1) 

::I D~KRPAGT DMKRPAPT DMKST~CP EBRBLOK ERRCCNT ERRCCi ERRCONT ERRCORR ERRIOB EBBICER EBRKEY ERRMIOB EBRMIOER I 
"'-w ERRP!RM ERRSDR ERRVOLID FFS FTREXTSN F15 F255 F4 F7 IOBFATAL IOERADR IOERBLOK IOERCSi rT 
...,J IOERDAT! IOEREXT IOEBFLG3 IOERLEN IOEROVFL IOERPNT IOERREAD IOERVSER LCCK OERCCRL CBRCPIDN OBRCSiN OBBCUAIN 0 

I 
0 OBRCUAPR OBRDDCNT OBRDEVTN OBRFCCiN OBRHAN OBRIORTY OBRKEYN OBRLSKN OBRPGMN OBRRECN OBRSDRCT OBRSDRSH OBRSHOBR t-' 

OBRSNSCT OBRSSDRl OERSiSN OBRT EMP OERVOLN OBR33SNS PSA RCUBLOK RCUTYPE RCu2701 RCU2702 RDEVELOK RDEVCTRS ~ 
b" til RDEVCUA RDEVFTR RDEVMDL RDEVSADN RDEVTMCD RDEVTYPC RDEVTYPE RECCCPD BECFLAGl RECNXT RECPAG RECPAGFL RECPAGIU (1) 

'< 
til BO R1 Rl0 Rll R12 R13 R14 R15 R2 R3 R4 R5 R6 I-' 
rt' R7 R8 R9 SAVEAREA SDRELCK SDRCTR S SDRCUA SDRFLAGS SDRFLCT SDRLNGTH SDRMAX SDROVFiK SDRPRMCT n (1) 
a SDRRDEV SDRSHRT SDRSIZE SDRSIZEl SYSTEM TNSCPIDN TNSDEVAD TNSKEYN TNSREC TNSSNS 1 TNSSiS3 TNSVOLID TYPTTY 11 

0 
~ 

TYP1050 TYP1403 TYP1443 TYP2305 TYP2311 TYP2501 TYP2520R TYP2540R TYP2700 TYP2741 TYP3066 TYP3210 TYP 3211 en 
0 TYP3330 TYP3340 TYP 3350 TYP3410 TYP3420 TYP3505 V~BLOK VMUSER XOBRFLAG XOBRT 1 XOBRT3 XOBR010 XOER150 en 

I.Q IOBR180 XOBR512 ZEROES l:O ..... 
(1) 

C'l HI 
t~KIOG ARIOCH ARIOCT BRING CHANID CPEXSIZE CPUID CPUMCELL CPUMODEL CPUVERSN DEFER DMKCCHCF DMKCCHMX DMKCCHSZ (1) 

~ DMKCCH60 DMKEIG80 DMKERMSG DMKFREE DMKIOEES DMKIOE~P DMKIOEMS DMKIOEMX DMKIOENI DMKIOEOP DMKMCHAR DMKMCHBL Df!KMCHRD 11 I:' 
j;lI DMKPGTVG DMKPGTVR DMKPTRAN DMKRPAGT DMKRPAPT DMKSCNRU DMKSEV70 DMKSII60 DMKSYSER ECSiLOG F7 IOELPNTR LOCK (1) 

I:' 

I'd MCDAMLEN MCHAREA MCHFIX MCHMODEL MCNPSi lWDEFLAG MODEL 135 MODEL145 MODEL155 MODEL158 MODEL 165 MODEL168 MODEQUIT C'l 

ti NOMODEL PSA RCHBLOK RCHTYPE RCH370 RDEVBLOK RDEVCODE RDEVTYPE RECCCPD RECFLAGl RECFLAG2 RECNXT RECPAG 
(1) 

0 RECPAGFL RECPAGFM RECPAGFR RECPAGIU RO Rl Rl0 Rl1 R12 R13 R14 R15 R2 b" 
I-' R3 B4 R5 R6 R8 R9 SA VEAREA SAVEREGS SAVEiRK2 S AVEiRK3 SAVEiBK7 SYSIPLDV SYSTEM 
(1) TYP2305 TYP 3330 TYP 3340 TYP3350 VMBLeK iAIT a 
tj DMKIOS ADSPCH ASYSVM ATTI BUSY CAW CC CCC CDC CE CHC CLASDASD CLASGRAF CLASSPEC (1) 
rT CLAS'IAPE CLASTERM CLASURI CLASORO CPCREGO CPCREG8 CPEXADD CPEIBLOK CPEIR13 CPEXSIZE CPSTATUS CPiAIT CSi 
(t) CUE CO C8 DE DMKBSCER DMKCCHIS DMKCCHNT DMKCNSIN DMKDASER DMKDASRD DMKDSPCH DMKFREE DMKFRET 
ti DMKGRFIN DMKIOERR DMKRGAI N DMKRNHIN DMKRSPER DMKR SPEI DMKSCHDL DMKSCNRU DMKSTKCP DIHSTKIO Df!KTAPER DMKTRCSI DMKVIOIN a ..... FTRRPS FO Fl IFCC IL INTREQ INTTIO IOBBPNT IOBCAW IOBCC 1 IOBCC2 IOBCC3 IOECP 
I:' IOBCSW IOBCYL IOBERP IOBFATAL IOBFLAG IOBFPNT IOBHIO IOBHVC IeBIOER IOEIRA IOELINK IOBLOK IOBPAG ~ 
rt' IOBRADD IOBRCAW IOBRELCU IOBRES IOERSTRT IOBSIOF IOBSIZE IOBSNSIO IOBSPEC IOBSPLT IOBSTAT IOBTIO IOEUC ..... IOBUNSl IOBUSER IOEVADt IOERBLOK IOERCCW IOERCSi IOERDATA IOEREXT IOERLEN IOERSIZE lOOPS Ii MNCLSEEK MNCOCYL 0 
I:' PCI PRGC PRTC PSA QUANTOMR BCHADD RCHBLOK RCHEMX RCHBUSY RCHDISA RCHFIOB RCHMPX RCHQCNT 
Cl RCHSEL RCHSTAT RCHTYPE BCH370 RCUADD RCUBLOK RCUBUSY RCUCHA BCUDISA RCUFIOB BCUPRIME RCUQCNT RCUSCED 
c RCUSHRD RCUSTAT RCOSUB RCUTYPE RDEVADD BDEV AlOE RDEVATT RDEVBLOK RDEVBUCH RDEVBUSY RDEVCONC RDEVCUA RtEVCYL ..... RDEVDED BDEVtISA RDEVFIOE RDEVFLAG RDEVFTR RDEVIOCT RDEVIOER RDEVLIOB RDEVQCNT RDEVRACT RDEVSCED RDEVSKUP RDEVSTAT j;lI 
(1) RDEVSTA2 RDEVTYPC RDEVTYPE RDEVUSER RUNUSER RO Rl Rl0 Rl1 R12 R13 R14 R15 

R2 R3 R4 R5 R6 R7 R8 R9 SAVEAREA SAVER11 SILl SKIP SM 
TEMPR14 TIl~E Ii TR!CBEF TRACCURR TRACEND TRACFLGl TRACFLG2 'IRACSTRT TRAC05 TYPESC TYPCTCA UC VtEVBLOK 
VDEVIOCT VDEVREAL VMBLOK VMESTAT VMEITCM VMFPRS VMGPRS VMIDLE VMIOiAIT VMPSi VMR STAT VMTMOUTQ VMTRCTL 
VMTESIO VMTTIME YO Y2 Y4 Y6 



~odule External References (Labels and Modules) 

t~KISM CD DMKFREE DMKPTRAll DMKPTRUL DMKUNTIS 1"16 1"2 F4 F8 IDA IOBCn IOBIRA IOBLOK 
IOBIUSC PSA BCiCCllT RCiCCi RCile RCiPNT RCiRCNT BCiTASK RCWVCAi BO Rl Rl0 Rl1 
R12 B13 B14 B15 B2 R3 R4 R5 B6 R7 R8 B9 SAVEAREA 
VMBLOK 

DMKLDOO DMKCPE DMKPSA D~KWRM RO Rl Bl0 R12 R13 R14 R15 B2 R3 R4 
R5 R6 R7 R8 R9 

tMKLllK BLANKS BUFFER BUFINLTH BUFNXT BUFSIZE CLASDASD DMKCVTBD DMKCVTBH DMKCVTHB DMKEPSiD DMKERMSG DMKFREE D~KFRET 
DMKLOCR DMKLCCKD DMKQCllBD DMKQCNiT DMKSCNAU DMKSCNFD DMKSCllLI DMKSCNVN D~KSCllVS DMKSCNVU DMKUDBFD DMKUI:RFU DMKUDRRV 
DMKVDREL DMKVDSLK EDIT ERRMSG FFS FTR2311E FTR2311T F1 F15 F2 F4095 1"7 1"8 
INHIBIT NORET PSA BDliBLOK RDEVTYPC RDEVTYPE RO R1 Rl0 R 11 R12 R13 R14 
R15 R2 R3 R4 R5 R6 R7 R8 R9 SAVEAREA SAVERETN SAVER 11 SAVEB2 
SAVEiRR1 SAVEiRK2 SAVEiRK4 SAVEiRK5 SAVEiRK6 SAVEiRK7 SAVEiRK8 SAVEiRK9 TYP2311 TYP2314 UCASE UDBFBLOK UDBFSIZE 
UDBFVADD UDEVADD UDEVBLOK UDliDED UDEVDISP UDEVFTR UDEVLINK UDEVLKDV UDEVLKID UDEVLM UDEVLONG UDliLR UDEVLi 
UDEVMODE UDEVPASR UDEVR UDEVRELN UDEVSTAT UDEVTDSK UDEVTYPC UDEVTYPE UDEVVSER UDEVi UDIRBLOK UDIRDISP VCHBLOR 
VCHDED VCHSTAT VDEVBLOK VDliFLAG VDEVRDO VDEVREAL VDEVRELN VDEVTYPC VDEVTYPE VDEVUSER VMBLOK VMCOMND VMKILL 
VMLOGON VMOSTAT VMPSiDCT VMRSTAT VIWSER VMVIRCF ZEROES 

DMKLOC ASYSLC BALRSAVE BALR14 CPEXADD CPEIBLOK CPEIFPNT CPEIREGS CPEXSIZE DMKDSPCH DMKFREE DMKFRET DMKSTKCP DMRSYSLB 
LOCKBLOK LOCKNAME LOCKNEXT LOCKQUE LOCKSIZE PSA RO Rl Rl0 R12 R14 B15 R2 
R3 R4 R5 R6 R7 B8 R9 SYSLOCS 

DPlKLOG ABIODC ARIODV ASYSLC ASYSOP ASYSVM BLANKS BUFCNT BUFFER BUFNIT BUFSIZE CLASDASD CLASSPEC CLASTERM 
CPMICAVL CPSTAT2 DMKACON DMKBLDEC DMKBLDRT DMKBLDV~ DMKCFGII DftKCQRFI DMKCVTBD DMKCVTBH DMKCVTDT DMKEPSiD DMKERMSG 
DMKFREE DMKFRET DMKLIKSE DMKQCNSY DMKQCBWT DMKSCHDL DMKSCHBT DMKSCH80 DMKSCNAU DMKSCNFD DMKSCNBD DMKSCNRU Df!KSCNVD 
DMKSCNVN DMKSCNVU DMKSYSCK DMKSYSDT DMKSYSDi DMKSYSLG DMKSYSLi DMKSYSMA DMKSYSMU D~KSYSIM DMKSYSTI DMKSYSTM DMKUDBFU 
DMKUDRBD DMKUDBRV DMKUSOFF DMKVDSAT DMKVDSDF FFS 1"1 1240 F4095 1"7 1"8 INHIBIT IOBLOK 
IOBUSEB MICBLOK MICCBEG MICBSEG MICSIZE MICVPSi MICiOBK NEiPAGES IEWSEGS NICELOK NICFLAG IHCPSUP NICSIZE 
NICUSEB NOBET OPEBATOB PSA BDEVADD RDEVAIOE BDEVBLOK RDEVDED BDEVDISA BDEVFLAG BDEVNICL BDEVOiN RDEVPSUP 
BDEVSER RDEVSIZE BDEVSTAT BDEVSYS BDEVTYPC BDEVTYPE BDEVUSEB BUIUSEB BO Bl Bl0 Bll B12 
B13 B14 B15 B2 B3 B4 B5 B6 B7 B8 B9 SAVEABEA SAVEBETN 
SAVER11 SAVER2 SAVEB9 SAVEiBK 1 SAVEiBK2 SAVEiBK8 SYSLOCS TEMPSAVE TRQBIRA TRQELOK TRQESIZE TRQBUSER TYPBSC 
TYP1052 TYP2305 UDBFBLOK UDBFSIZE UDEFVADD UDEVADD UDEVBLOK UDEVDED UDEVDISP UDEVLIIIlK UDEVLKDV UDliLKID UDEVLONG 
UDEV~ODE UDEVSIZE UDEVSTAT UDEVTDSK UDEVTYPC UDEVTYPE UDEVVSER UDIBELOK UDIBDISP UDIBPASS UDIBUSEB UMACACC UMACACCT n 
UMACBLOK UlUCBMX UMACCDEL UMACCLA UMACCLEV UMACCOBE UMACDIS'I UMACDVCT UMACECOP UMACES UIUCIPL UMACISAM UMACLDEL ~ 

UMACLEND UMACNSVC U!UCOPT UMACPBIB UMACRT UlUCVROP VCHADD VCHELOK VCHSIZE VCONCTL VCONBBSZ VCOIllBBUF VCONBCNT 3: 
VCUADD VCUBLOK VCUSIZE VDliADD VDEVAUCB VDEVBLOK VDEVCFLG VDEVCON VDEVSIZE VfUCCOUIIl VMACNT VMACOUNT VMBLOK 0 

tn VMBSIZE VMCF VMCFBEAD VMCFiAIT VMCHCNT VMCHSTRT VMCLEVEL VMCOMND VMCUCNT VMCUSTBT VMDELAY VMDISC VMDIST ~ 
s:: 

(I) VMDVCNT VMDVSTRT VMECEIT VMESTAT VMFBMI VMFSTAT VMISAM VMKILL V~LOGON VMIUCCCN VMMCODE VMMCPENV VMMCB6 I-' 0 
VMMFE VMMICBO VMMLVL2 VMM360 (1) c+ VMMICSVC VMMIMSG VMMLEVEL VftMLINED VftMSGON VMMSVC VMftTEIT VftOSTAT VMPNT I ..,. VMPSTAT VPlPSW VMPSiDCT VMQSTAT VMRlAL VMRON VftBSTAT VMSEG VMSIZE VMSLEEP VMSTOR VMSYSOP VMTCDEL c+ 0 

1:1 VMTEBM VMTESCP VMTIMEON VMTIMEB VMTLDEL V~TLEND VftTLEVEL VftTftOUTQ VftTON V~TRMID VftTRQELK VMTTlftE VMUPBIOB 0 
I VMUSEB VMVCRO VMVIRCF VMVTERM VMVTIME VMV370B VftiNGON VRALOC iAIT ZEBOES t:-t w PI . tr 

t:=' 
(I) ..,. I-' 

t1 n (I) t1 
0 0 c+ til 0 til 
t1 ..,. 

!:I:I 
(1) (1) 
til HI 

(1) 

t1 

W 
CI) 
1:1 

U'I 0 
U'I (I) 



w Module External References (Labels and Modules) n 
U1 I'd 
0'1 

3: 

DMKPlCC ACORETBL ASYSVPI BLANKS ERING CC CFSTOP CLASTAPE CORCP CCRFLAG CORTABLE CPCREG8 CPEXSIZE C8 0 
p. 

DASDCL DEFER DMKCVTDB DMKCVTHB DMKERMSG DMKFREE DMKFRET DMKMOBMI DMKMONSH DMKMONTH DMKMOITI DMKPRGC8 DPlKPRGMC a 
DPlKPRGMI DMKPBGTI DMKPTRAB DMKPTRFR DMKQCBiT DMKSCHRT DPIKSCHST DPlKSCNFD DPlKSCBRU ERROR F-FS Fl F3 ..... 

< CD 
3: F4 F4095 F60 F8 IOBCAW IOBLOK IOBfUSC IOBSIZE ICBUSER LOCK MBBBDLEN PlOBAIOB PlOBARDB I 

" PlOBATRB PlOICeM MONCTEEl MOBDVLST MONDVNUM MONFLAGl MONNEXT MOBSIZE MONUSER BORET PAGECUR PAGEND PAGEBXT r+-w 0 
...,J PERFCL PSA RDEVBLOK RD:EVDED RDEVDISA RDEVFLAG RDEVSTAT RDEVSYS RDEVTYPC RDEVUSER BO Rl Rl0 I 
0 R 11 R13 R2 R3 R4 R5 R6 R7 R8 R9 SAVEAREA SA VEiRKl SAVEiRK3 t-t 
00 III 

SCBEDCl SILl SPROFCL SYSTEM TBUSY TRACCURR TRACEFLG 'IRACSTRT TRQBIRA TRQELOK TRQBSIZE TRQBTOD TRQBUSER tT 
til TRQBVAL USERCL VMBLOK VMUSER ZEROES CD 
"< ..... 
til 
r+- DMKMCH ACORETBL ALARM ASYSVPl AVMREAL CORBPBT CORDISA CORFLAG CORFPNT CORIOLCK CORPGPBT CORSiPBT CORTABLE CPCREGO n 
CD CPEXADD CPEXBLOK CPEXSIZE CPID CPUID CPUVERSN cO C13 C3 C7 DMKCFMBK DMKCFPRR DftKDPlPRS 11 
E!I 0 

DMKDSPCB DPlKERPlSG DMKFRE! DMKIOEftC DMKOPRiT DPlKPGSPO DMKPTRFT DPlKQCNiT DPlKSCNFD DftKSTKCP DftKSYSCK FFS F255 til 
t'"4 F6 F8 IRTftC MCCPUID MCFXDLOG PlCBEK PlCRPSi PlCOLDPi PlCOPSi PlCPROGID PlCREC PlCRECORD ftCRECTYP til 
0 

I.Q NORET OPERATOR PAGCORE PAGINVAL PROBMODE PSA QUABTUPlR RECOVRPT RUBUSER RO Rl Rl0 Rl1 !:O .... 
R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 B8 R9 SAVEAREA CD 

0 t-I) 
SiPCBG1 SiPCBG2 SiPFLAG SiPKEYl SiPKEY2 TIPlER TRACCURB TRACEND TRACFLGl TRACSTRT TRAC04 TRARftODE VftBLOK CD 

III VPlESTAT VMEXTCM VPlEXiAIT VMFPRS VPlGPRS VPlIRVPAG VPlKILL VPlOSTAT VMPSi VMRSTAT VMTPlOUTQ VMTTlft! VMUSER 11 
::t CD 
P. YO Y2 Y4 Y6 ZEROES ::t 

0 
I'd CD 
t1 DPlKMID ALABM ASYSVPI DATE DMKCVTDT DPIKERMSG DftKQCNiT DftKSCBST DMKSYSDi DMKSYSTI RORET PSA RO R1 
0 Rl0 R 11 R12 R13 R2 B3 R4 R5 R6 R7 B8 B9 SAVEAREA tT ..... SAVER11 TEMPSAVE TODATE TRQBLOK TRQEVAL VPlBLOK VMMLEVEL VftMSGOB VftPNT VftTTlftE 
CD 
E!I 

~ 
CD 
r+-
CD 
t1 
E!I .... 
::t 
III 
r+-.... 
0 
::t 

G"l 
a .... 
p. 
CD 



Module External References (Labels and Mod ules) 

DMKMON ALOCBLOK ALOCMAX ALOCUSEI ARIOCB ARIOCT ARIOCU ABIODV ASYSVft CC CFSTOP CLASDASD CLASTAPE CONADDR 
CONCNT CONTASK CORCP COBFLAG COBFPNT COR TABLE CPCBEGS CPEXADD CPEXBLOK CPEXRO CPEXSIZE CPUII: CUE 
CS DASDCL DE DftKCPEID DftKCVTDT DftKDSPAC DftKDSPBC DftKDSPCC DftKDSPCB DftKDSPCK DftKDSPIT DftKDSPNP DMKDSPPT 
DftKERftSG DMKFREE DftKFRET DftKBVCDI DftKIOSCT DftKIOSQR DftKPAGCC DftKPAGPS DftKPRGCT DMKPRGCS I:ftKPRGGR DftKPBGMC DMKPBGMI 
DMKPRGTI DftKPRVCD DMKPBVCE DMKPRVCH DMKPRVCP DMKPRVCS DMKPRVCT DftKPRVDI DMKPRVEK DftKPRVEP DftKPRVIK DMKPRVIP DftKPRVLC 
DftKPBVLP DftKPRVLB DftKPBVftN DftKPRVftO DftKPRVftS DftKPRVNC DftKPRVPB DftKPRVPE DMKPRVPT DMKPRVRR DftKPRVTC DftKPRVTE DMKPSANX 
DftKPTRCS DftKPTBFC DftKPTRFF DftKPTRFN DMKPTRFT DftKPTRFO DftKPTBPR DftKPTRRC DMKPTRRF DMKPTRSC DftKPTRSS DftKPTRSW DftKPTRUL 
DMKSCBAL DMKSCHCT DftKSCBNl DMKSCBN2 DftKSCBPU DftKSCHQl DftKSCHRT DftKSCHST DMKSCHW1 DMKSCHW2 DftKSTKCP DftKSYSND DftKSYSNft 
DMKSYSOC DMKSYSOW DMKVIOCI DftKVIOCT DMKVIOCW DftKVIOHD DftKVIOHI DMKVIOSF DPlKVIOSI DMKVIOTC DPlKVIOTI EBROR ,FO 
Fl F3 F4 F4095 II:LEiAIT IOBCAW IOBCSi IOBCYL IOBFATAL IOBFLAG IOBIOER IOBIBA IOBLOK 
IOBftISC IOBftISC2 IOBSIZE IOBSTAT IOERSIZE IONTWAIT IPLPSi P1NBHDLEN ftNCLDAST P1NCLPERF ftNCLSYS P1NCLUSER ftNCODA 
MNCODAS ftNCODASH ftNCOSUS MNCOSYS ftNCOTB MNCOTT MNCOUSER MNHCLASS MNHCODE MNHDR MNBDRLEI MNBRl!CSZ ftNBTOD 
KNOOO MNOOOIIT {!NOOOLEN MNOOOPPA ftNOOOPPC MNOOOPRB MNOOOPSI MNOOOQ1E MNOOOQ2E ftNOOOWID MNOOOWIO ftNOOOiPG ftl097 
ftN097CPU MN097CBS ftN097DAT MN097LlN ftN097LEV ftN097TIM MN097UID MN09S ftN09SLEN MI09SUID MN099 MN099CNT ftN099LEN 
MN099TOD ftNl0X ftNl0XADD ftNl0XLEN MN10XUID PlNl0YCNT MN10YIO ftll0YLEN MI2 BSV1 MI20X ftN20XNPP PlN20XQNPI HI20XQ1E 
MN20XQ1N MN20XQ2E PlN20XQ2N MN20XSWS ftl20XUID ftN20XWSS ftN20YTTI MN20YVTI PlN202APR MN202CRD MN202IOC MN202LEN ftN202LIH 
MN202PGR ftN202PNC PlH202PBI HN202PST HN202REF HN202RES MN203LEN HN204LEN ftN204PRI MN4RSV1 MN400 ftN400CRD MN400IHT 
MN400IOC MN400LEN ftN400LIN MN400PDK ftN400PDR MN400PGR PlN400PGW ftN400PNC MN400PST ftN400QLV ftN400RES ftN400RST MH400TTI 
MN400UID HH400UPR ftH400VTI MI400iSS MN500 MN 500INS ftN500LEH ftN5000VH MN500UID MH500VAD MN600ADD MN600CNT HH600DEV 
MN600DLN HN600BDR HH600HLN MN600MAX MN600NUM MH600SER MN600TY ftH700 MN700ADD MN700CCY MN700CYL MH700DIR MN700LEH 
MN700QCH MH700QCU MN700QI:V ftN700UID MNS02CLH MNS02CN'I MNS02CTR MNS02DEV ftlS02DLN MNS02NAU MNS021PP MNS02HUM ftHS02PGR 
MNS02PGi MNS02PRB ftNS02iID MN802iIO MNS02iPG MONA lOB ftONARDB MONATRB HONCLASS ftO·NCLOCK eONCODE eOlcoe HONCTEBl 
HONDVlST MOIDVNUft ftOIFLAGl IWNFLAG2 MONIlXT ftONSAVE ftONSIZE ftONSUSCK ftON SUSCT MONTIINT ftONUSER PAGECUR PAGEND 
PAGENXT PAGEiAIT PERFCL PGREAD PGiRITE PROBTlftE PROPSi PSA PSASVCCT RCHADD RCBBLOK RCBCUTBL RCHQCNT 
RCUADD RCUBLOK RCUCHA BCUDVTBL RCUPRIME BCUQCNT RCUSUE RCUTYPE RDEVADD RDEVALLI RDEVBLOK RDEVCUA RDEVCYL 
RDEVDISA RDEVFLAG RDlVIOCT RD:EVPREF RDEVQCNT RDEVSER RDEVSKUP RDEVSTAT RDEVSYS RDEVTYPC BO R1 Rl0 
Rl1 R12 R13 R14 B15 R2 R3 R4 R5 R6 R7 RS R9 
SAVEAREA SPROFCL SUSPEID TBUSY TBQBLOK TRQBSIZE TRQBTOD 'IRQBVAL TRUN UC UE USERCL VftAEX 
VMBLOK VMCRDS VftEPRIOB VIHNST VMICCNT VftLINS VftLOGON VftPAGES VftPDISK VftPDRUft nlPGREAD VftPGRINQ VftPGiRIT 
VMPNCH VMPNT VMPSTAT VMPSi VMQL1!VEL VftQPRIOR VftQl VftBDINQ VftRSTAT VftSTEALS VftTERM VMTTIME VMUPRIOB 
VMUSER VftVTIftE VftiSPROJ ZEROES 

DMKMSG ALARlI ASYSOP BLANKS BUFFER BUFNXT DftKCVTDB DMKCVTDT DftKERMSG DftKFREE DftKFRET DftKQCNRD DftKQCNiT Dl!KSCNAU 
DftKSCNFD Fl F2 F3 NORET NOTlftE PRIORITY PSA RO R1 Bl0 Rll R13 
R15 R2 R3 R4 R5 R7 RS R9 SAVEAREA SAVERll SAVER2 SAVEiRKl SAVEiRK2 ("l 
SAVEiRK4 SAVEiRK6 SAVEiRKS VftBLOK VftCLASSA VftCLASSB VftCLEVEL VMDISC VlIKILL VlILCGOFF Vl!ftLEVEL VftftLINl!D VftMSGON I'tj 

VMOSTAT VftPNT VftR STAT VftTTlftE VMUSER Vl!iNGON XRIGHT16 
tJ: 
0 

til DMKMSW ALARM ASYSOP CCC CDC CLASI:ASD DftKCVTBH DMKFREE DftKFRET DlIKQCNRD DftKQCNiT DftKSCNRN EDIT FlO ~ 
c= (1) F20 F4 F6 FS F9 IFCC INTREQ IOBLOK ICBRADD IOERACT IOERADR IOIRELOK IOERCNCL ~ 0 IOERCSW IOERDASD IOERDATA IOERDEC IOERETRY IOERFLGl IOERIGN IOERIGNR IOERIND3 IOERIND4 IOERINFO IOERLEN IOERNUft (1) 

r+ 
1-'- IOERPEND IOERSTRT NOBET NOTHIJE OPERATOR PSA RDEVBLOK RDEVCLAS RDEVDED RDEVIOFR RDEVST AT RO Rl I 

r+ 0 Rl0 R 11 R12 R13 R2 R3 R4 R5 R6 R7 RS R9 SAVEAREA 0 
~ 

SAVERO SAVER11 TYP3340 UCASE VMBLOK VMDISC VMOSTAT VlIJTERlIJ VMTTIlIJE VMUSER ZEROES I 
1:"4 w 
~ 
IT 

t:=' (1) 

1-'- ~ 

t1 (1 
CD 
0 t1 
r+ 0 
0 en 
t1 en 
1-'- !:C CD (1) 
til HI 

CD 
t1 

w (1) 

(JI ~ 

...J 0 
(1) 



w Module External References (Labels and Modules) U'1 n 
ex> I"Cj 

til 
tMKNEM RO Rl R12 R13 R15 B2 R3 R4 R5 SAVEAREA SAVERO 0 

e:lI 
~ 

-< tl'IKNES ARlOCU ARIODV ASYSVM BLANKS CACTLTR CDlSPLY CLASSPEC CLASTERM CONCCW3 CONDATA CONSYSR CONTASK CSWLMEP ~ 

3: CSWLIiCF CTBMLTB DMKCVTEB tMKCVTDB DMKCVTBB DMKERMSG DMKFREE DMKFRET DMKlOES R DMKQCNCL tMKQCNTO DMKQCNWT DMKRGBEN (I) 

" 
I 

w DftKRlORN DftKRHBHD DMKRNBTR DMKSCNFD Df'lKSCNRD DMKSCNRU FFS Fl F255 F3 F4 F4095 NlCBLOK r+ 
~ HICCIBM NICDISA HlCEHAB HICEPAD HIC!PMD HICFLAG NICLBSC NICLlNE NICLTRC NlCPSUP NICQPHT NICSESH NICSIZE 0 
0 I 

HICSTAT NICSiEP NICTYPE NICUSER NCRET PSA RCBBLOK RCBCUTBL RCUBLOK RCUtISA RCUDVTBL RCUSTAT RDEVADD t"4 
RDEVBASE RDBVBLOK RDBVCON RDIVCTRS RtEVCUA RDBVDED RDBVDISA RDEVDISB RDEVENAB RDEVEPDV RDEVEPLN RDEVEPMD RDEVFLAG ~ 

Ul RDBVlRM RDEVLHCP RDEVMAX RDUftDL RDEVNICL RDEVNRDY RDEVPDLY RDEVPTTC RDEVRCVY RDEVRSVD RDEVSADN RDEVSLOi RDEVSTAT t:r 
'< (I) 

til RDEVTBTU RDEVTCTL RDEVTftCD RDEVTYPC RDEVTYPE RDEVUSC8 RDEVUSER RDEViAIT RO Rl R10 Rl1 R13 ~ 

r+ R15 R2 R3 R4 R5 R6 R7 R8 R9 SAVEAREA SAVER 11 SAVER2 SAVER9 n (l) 
e SAVEiRKl SAVEWRK2 SAVEWRK3 SAVEWRK4 SAVEWRK5 SAVEWRK7 SAVEWRK8 SAVEWRK9 TYPBSC TYPTTY iYPUNDEF TYP2700 TYP3705 t1 

VMBLOK VMOSTIT Vf'lTTlf'lE VMUSER VMVIRCF 0 
t"4 en 
0 en 

IQ tMKNET IRlODV ASYSVM BLANKS CACTLIN CDCTLIN CLASSPEC CLASTERft CONCCW3 CCNSYSB CONTACT CBESIMD DMKCVTBB DMKCVTHB I:tI ..... 
DMKEBf'lSG DMKFBEE DMKFRET DMKIOESR Df'lKNESDS Df'lKNESEP DMKHESBD DMKHESPL DMKHESTB DftKHESWH DMKHLDMP DftKNLDB DMKQCNWT (l) 0 
DftKRGBEN DftKRlORN DftKRNBND DftKSCNFD DMKSCNRD F255 F3 F4 F4095 F60 F8 HICBLOK NlCCIBM H\ 

~ NlCDISA NICDISB NICENAB NlCEPAD NlCEFf'lD NICFLAG NICGRAF NICLBSC NICLGRP HICLINE HlCNAME NICRSPL 
(I) 

l:I NICSESN t1 
0. NlCSIZE IiICSTAT NICTELE NlCTERM NICTYPE NlCUSER NORET PSA RDEVBLOK RDEVCTRS RDEVDED RDEVtlSA RDEVDISB (I) 

l:I 
I"d RDEVENIB RDEVFLAG RDEVLHCP RDEVMAX RDEVNICL RDEVNRDY RDEVRSVD RDEVSTAT RDEVTYPC RDEVUSER RO Rl Rl0 0 
t1 Rl1 R13 R14 R15 R2 R3 R4 R5 R6 R7 B8 B9 SAVEAREA (l) 

0 SAVER2 SAVER9 SA VEiRK 1 SAVEWRK2 SAVEWBK3 SAVEWRK4 SAVEWRK5 SAVEWRK7 SAVEWRK8 SA VEWRK9 TEMPSAVE VMBLOK VMCLASSA t:r 
~ VMCLASSB VMCLISSC VMCLASSt VMCLASSE VMCLASSF VMCLASSG VMCLEVEL VMOSTAT VMSTKO VMUSER VftVlRCF ZEROES 
(l) 
e DMKNLD ABORT ADDSFB ARSPRD ASYSVM BLANKS BRlHG CC CCPARM CCPENTRY CCPMAXID CCPNAf'lE CCPPSlZE CCPRESID 
t:I CCPRSTAT CCPRSTEP CCPRSTYP CCPSIZE CCPTEP CCPTPEP CCPTYPE CDC CLASSPEC CUE DEFER DMKCFPBI DMKCKSPL 
(I) DMKCVTBB DMKCVTDT DMKCVTHE DMKDSPCB DMKERMSG DMKFREE DMKFRET DMKIOSQR DMKPGTCG DMKPGTSD DMKPG'IVG DMKPGTVR DMKPTRAN rt' 
(l) DMKPTRUL DMKQCHCL DMKQCHRD DMKQCNTO DMKQCNWT DMKRHBlN DMKRHTBL DMKRPAGT DMKRPAPT DMKRSPID DMKSCJiJFD DMKSCHRD DMKSCHRU 
t1 DMKSCIiVS DMKSCHVU DMKSTKlO DMKSYSDU DMKVDREL EDIT ERRMSG FFS FTRTYP 1 FO Fl F256 F3 EI ..... F4 F4096 F5 F8 IL lHTREQ 10BBPNT 10BCAW IOBCCl IOBCC3 10BCP 10BCSW IOBFATAL 
l:I IOBFLAG 10BFPHT IOBIOER IOBIRA IOBLCK IOBMISC IOBMISC2 IOBRADD IOBRCAW IOBRCHT IOBRES IOBRSTRT IOBSIZE ~ 
r+ IOBSPEC IOBSTAT IOETIO IOBUSBR IOERBLOK IOERDATA IOERETN IOEREXT IOERSlZE IPLREQ LOCK NCPNAME NCPPAGCT ...,. 

NCPPNT NCPSTART NCPTBL NCPVOL NICELCK NICCIBM NlCEPAD HlCEPMD NICFLAG HICHUIE NICPSUP NICSIZE NlCSTAT 0 
l:I HICSWEP IHCTEBf'I NICTYPE NlCUSER NOAUTO HORET OPERATOR PSA RCUBLOK RCUDISA BCUDVTBL RCUSTAT RDEVADD 
(j') RDEVAIOB RDEVATT RDEVAUTO RDEVBASE RDEVELOK RDEVCODE RDEVCUA RDEVDED RDEVDISA RDEVEHAB RDEVEPDV RDEVEPLH BDEVEPMD 
~ RDEVFICB RDEVFLAG RDEVFTR BDEVIRf'I RDEVLCEP RDEVLHCP RDEVMAX RDEVMDL RDEVNCP RDEVHICL RDEVNRDY RDEVOWN RDEVPTTC ..... RDEVRCVY RDEVRSVD RDEVSTAT RDEVSTA2 RDEVTFLG RDEVTMCD RDEVTYPC RDEVTYPE RDEVUSER RDRCBN BO Rl Rl0 
0. Rll R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 (l) 

SAVEAREA SAVER11 SAVEB2 SAVEWRKl SAVEWBK2 SAVEWRK3 SAVEWRK4 SA VEWRK5 SAVEWBK6 SAVEWRK7 SAVEWRK8 SAVEWRK9 SFBCLAS 
SFBCOPY SFBDATE SFBDIST SFBDUMP SFBFILID SFBFLAG SFBFNAME SFBFTYPE SFBLAST SFBLOK SFBORIG SFBPNT SFBRECNO 
SFBRECSZ SFBSIZE SFBSTART SlBT!ME SFBTYPE SFBUSER SILl SM SYSTEM TEMFSAVE TYPBSC TYPlBMl TYPPRT 
TYPUNDEF TYP2314 TYP3330 TYP3350 TYP3705 UC UCASE VCUBLOK VCUDVTBL VDEVADD VDEVBLOK VDEVDIAL VDEVFLAG 
VMBLOK VMTTIME Vf'lUSER X40FFS 



~odule External Beferences (Labels and l!odules) 

I:l!KOPB ALARl! CAi CC CD CLASGRAF CPUID CPUVERSN CSi DMKRIOCN DlIKBIODV FFS NOAUTO PSA 
RDEVElOK RDEVCORD RDEVTYPC RDEVTYPE RO Rl R10 B14 R1S R2 R3 R4 BS 
R8 SILl TYP3066 UC XRIGBT16 

tMKPAG ACORETEL ALARl! ARIODV CC CORTAELE CPEXADD CPEXELOK CPEXEPNT CPEXFPNT CPEXl!ISC CPEXRO CPEXR 11 CPEXRS 
CPEXR7 DMKCVTBB DMKDSPCB Dl!KFREE Dl!KFRET DMKIOSQR DMKOPRiT DM·KPTRFF DMKPTRRQ DMKPTRSS DMKPTRiQ DMKSCNRD DMKSTKCP 
DMKSYSOi FTR70l!B Fl F2 F3 F4 FS F8 IL ICEEPNT IOBCAi IOBCP IOECSW 
IOBCYL IOBFATAL IOEFLAG IOEFPNT IOBIRA IOBLOK IOEl!ISC IOBPAG IOBRADD IOBSIZE IOBSTAT IOBUSER OWNDLIST 
OiNDRDEV PAGELOAD PAGERATE PAGEiAIT PGSRATIO PGiAITPG PSA RDEVBLOK RDEVFTR RDEVlIDL RDEVTYPE RO Rl 
R10 R 11 R12 R13 R14 R1S R2 R3 R4 R5 R6 R7 R8 
R9 SILl SKIP SiPCODE SiPCYL SiPDPAGE SiPFLAG SWPTRANS TYP230S TYP2314 TYP3330 TYP3340 TYP3350 
Vl!BLOK Vl!TTIME XTBDLOCK 

DMKPER VMBLOK VMPEND VMPERPNt Vl!TRCTL Vl!TRPER 

I:MKPGS ACORETBL ASYSVl! AVMREAL CORBPNT CORCFLCK CORFLAG CORFPNT CORIOLCK CCRPGPNT CORRSV CORSBARE CORTABLE DEFER 
DELPAGES DHKBLDRL Dl!KBLDRT Dl!KDSPNP DMKFRET Dl!KPGTPR Dl!KPTRAN Dl!KPTRFT Dl!KPTRPW Dl!KPTRRC Dl!KPTRSC FFS FO 
F15 F4 F4096 F8 KEEPSEGS NEiPAGES BEiSEGS OLDVl!SEG PAGCORE PAGINVAL PAGREF PSA RO 
Rl R10 Rll R13 R14 R15 R2 R3 R4 RS R6 R7 R8 
R9 SAVEAREA SAVERl SAVER2 SAVEiRK 1 SAVEiRK2 SA VEiRK3 SA VEWRK4 SAVEiRK7 SAVEWRK9 SEGPAGE SEGPLEN SEGTABLE 
SHRBPNT SHRFPNT SHRNAME SHRSEGCT SHRSEGNM SBRTABLE SHRTSIZE SBRUSECT SWPCYL SiPFLAG SWPKEYl SiPRECl!P SiPSHR 
SWPTAELE SiPVlI SiPVPAGE TR!XANSI TREXIN 1 TREXNSI TREXT VMABLOK VMADSTOP VIUFPNT Vl!A:t1AME VMASIZE VMASSIST 
Vl!BLOK VHESTAT VMINVPAG VMLOGOFF VlINSHR VMOSTAT Vl!PAGES Vl!PGWAIT Vl!PSTAT VMRSTAT VHSEG Vl!SHR VMSHRSYS 
VMSIZE VMSTOR Vl!TIl!ER VMTREXT XPAGNUP.I 

tMKPGT ALARl! ALOCBLOK ALOCMAP ALOCl!AX ALOCUSED ARIODV ASYSVM EALRSAVE BALRO BALRl BALRS CP!XADD CPEXBLOK 
CPEXSIZE CPID DMKCKP Dl!KDSPCB DlIKFRBB DMKFRET DMKQCNiT DHKSTKCP DMKSYSOi FFS FTR70MB Fl F3 
F4 IOBCYL IOBFPNT IOBLOK NORET OPERATOR OWNDLIST OiNDRDEV PSA RDEVALLN RDEVBLOK RDEVCODE RDEVCYL 
RDEVFIOB RDEVFLAG RDEVFTR RDEVPAGE RDEVPNT RDEVPREF RDEVRECS RDEVTYPE RECBLOK RECCYL RECMAP RECHAX RECPNT 
RECSIZE RECUSED RO Rl Rl0 R 11 R12 R13 R14 R1S R2 R3 R4 
R5 R6 R7 R8 R9 SiPCYL SiPDPAGE SWPFLAG SiPRECMP TYP230S TYP2314 TYP3330 TYP3340 
TYP33S0 VMBLCK Vl!PDISK VMPDRUl! 

tMKPRG BRING CPABEBD CPCREGO CPCREG8 CO C8 DEFER DMKCFl!BK DMKDMPDK DMKDMPGR DMKDSPB tMKDSPCH DMKPERIL 
DMKPBVLG DMKPTRAN DMKQCNiT DMKTRCPG DMKVATPF DMKVATPX DMKVATSX ECBLOK EXTPERAD EXTPERCD FFS Fl INTPR C1 
INTPRL INTSVCL l!ONCLASS MONCODE NORET PERADD PERCODE PRNPSW PROBMODE PROPSW PSA QUANTUMR RUNUSER I'\j 

RO Rl Rl0 R 11 R12 R13 R14 R1S R2 R3 R4 RS R6 3 
R7 R8 R9 SVCNPSi SVCOPSi TEMPR14 TEMPR15 'HMER TRACCURR TRACEND TRACFLGl TRACSTRT TRAC03 0 

til TRANMODE TREXADD TREXINTC TREXINTL TREXPERA TREXPERC TREXPSW TBEXT VMBLOK VMCFRUN Vl!CFWAIT VHECEXT VHESTAT PI 
~ 

(I) VMEXTClI VMEXWAIT VMFPRS VHGPRS VMIOPBD VMIOiAIT VMOSTAT VMPAGEX VMPEND HIPERCM VMPERPND VMPRGIL VMPRGPND ..... 
0 

VMTRCTL VMTREXT VMTRPER YMTRPRG VMTTIHE VMY370R CD 
("t VMPSTAT VMPSW VMRSTAT VMSHADT HISVCPND VMTMOUTQ VMTRBRIN I .... YO Y2 Y4 Y6 ("t 
0 0 
::I I 

W 
t-4 
P' . t:1' 
(I) 

tj .... ..... 
t1 C1 
(I) H 
0 0 ("t en 
0 en 
H .... !:tI 
(I) CD 
en HI 

CD 
H 
(I) 

W ::I 
U1 0 
\0 CD 



w ~odule External References (Lahels and Modules) n 
0'\ ~ 
0 

3 

tMKPRV BRING CHANID CPCREGO CPOID CPOMCELL CFOVERSN CO C1 DEFER DMKDSPA DMKDSFB DMKDSPCH DMKHVCAL 0 
p,. 

DMKFERIL DMKPllGSM DMKPSAFP DMKPSASP DMKPTRAN DMKTMRTN DMKTRCPE DMKTRCPV DMKVATAB DMKVATEI DMKVATLA DMKVATRN DMKVIOEI C 
ECBLOK EITCRO EITCR9 EITMODE EITPERAD EITSHCRO FFS F15 F16 F240 F4 F5 F6 ..... 

< (I) 
3: F60 F7 INTPR INTPRL MNCLINST MNCOSIM PERGPRS PERSALT PROBMODE PROPSi PSA RONCRO RO I 

" R1 R10 R11 R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 r+ w 0 
~ R8 R9 SWPFLAG SiPKEY1 SWPSHR TEMPSAVE TRANMODE TREICR9 TREIINTC TREIIN 1 TREINSI TREIPERA TREIT I 
0 VCHBICK VCHBMI VCHSEL VCHTYPE VMBLOK VMCHSTRT VMCHTBL VMDSP VPlDSTAT VMECEIT VMESTAT VM:EITCM VMEITPHD t-I .. 

'" VMEIWAIT VMGPRS VMINQ VMINST VllINVFAG VMINVSEG VMIOINT VMNEWCRO VMPEND VMPERCM VMPERPND VMPRGIL VMPSTAT t:r 
til VMPSW VMPIINT VMREAL VMllSTAT VMRON VMSEG VMTRBRIN VMTRCTL VMTIlEIT VMTRPER VMTRPRV VMVCRO VMv310R (I) 

Io.cj 
WAIT ..... 

lJl 
r+ 0 
(1) DMKPSA ACORETEL APAGCP ASYSOP ASYSVM BRING BOSY CLASGRAF CLASTERM CORFLAG COR SHARE CORTABLE CPABEND CPCREGO 1'1 
EI 0 

CPCREG8 CRESIMD CSW CUE cO C1 C8 DEFER DFRET DMKCFMBK DMKCVTEH DMKDMPDK DMKDMPGR en 
~ DMKDSPE DMKDSFCH DPlKFREE DMKFRET DMKPRGRF DMKPTRAN DMKPTRUL DMKQCNCL DMKQCNWT DMKRNHND DMKSCHTQ DMKSCNRD DMKSTKIO lJl 
0 

IQ DMKT.I'lRVT DMKTBCIT DMKTRCPE DMKTRCSV DMKV!RD DMKVERO EIOPSW EITMODE FFS F1 F15 F2 F240 !:O 
1-" F4095 F60 F8 INTEl INTEXF INTSVC INTSVCL LOCK NICBLOK NICNAME NICSIZE NICUSER NORET (1) 
0 H\ 

PRCBMODE PSASVCCT QOAHTUMR RDIYBASE RDEVELOK RDEVFLAG RDEVHIO llDEVNICL RDEVTYPC RDEVUSER llUNPSi RUNOSER RO (1) 

'" Rl R10 R 11 R12 R13 R14 R15 R2 R3 R4 R8 SAVEAREA SAVENEIT 1'1 
t:I (I) 
p.. SAVERETli SAVER12 SAVER13 SAVER2 SAVESIZE SA VEiRK2 SPI SVCNPSi SVCOPSi SYSTEPI TIPlER TRACCORR TRACEND ::J 

TRACFLG1 TRACSTRT TRAC01 TRAC02 TREnN 1 TREIT TRQBBPNT 'IRQBFPNT TRQBLOK TRQBVAL VMADSTOP VPlBLOK HICPOTMR 0 
~ 

HlDISC VMDSTAT VMESTAT VMEITCM VMEXiAIT VMFPRS VMGPRS VMINST VMMCR6 VMMICSVC VMMSVC VMCSTAT VMPEND 
(I) 

H 
0 VMPERPND VMPSW VMQSEND VMRSTAT VMSEG VPlSHR VMSYSOP VMTERM UITLEVEL VPlTMOUTQ VMTPlRIHT VMTRBRIN VMTRCTL 
t:r ..... VMTREXT VMTRMID VMTRSVC VMTSEND VMTTIME iAIT XPAGNOM XRIGHT24 X2048BND yO Y2 Y4 Y6 
(1) ZEROES 
EI 

t::;I tMKPTR ACORETBL ARIODV ASYSVPI AVMREAL BALRSAVE BALRO BALR2 ERING CORBPHT CORCFLCK CORCP CORFLAG CORFPNT 
(I) CORFREE CORICLCK COBLCNT CORPGPNT CORRSV CORSHARE CORSiPNT CORTABLE CPEIADD CPEXBLOK CPEXFPNT CPEXMISC CPEIRO r+ 
(I) CPEXR13 CPEIR2 CPEXR7 CPEIR9 CPEISIZE CPSTAT Cl DEFER DMKCFMBK DMKDSPCH DMKDSPNP DMKFR!E DMKFRET 
H DMKFRETR DMKPAGIO DMKPAGQ DMKPGTPG DMKFGTFR DMKQCNWT DMKSCHDL DMKSCHN 1 DMKSCHN2 DMKSTKCP DMKSYSOW DMKSYSRM DMI<VMAPS 51 
1-" FFS FO Fl F4 F4095 F4096 F8 IOERETN LOCK NCRET OiNDLIST OiNDRDEV PAGCORE 
::s PAGINVAL PAGREF PGREAD PGiRITE PSA RDEVBLOK RDEVTYPE RO Rl Rl0 Rl1 R12 R13 
'" r+ R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 SAVEAREA SAVEREGS SAVERETN 
1-" SAVERO SAVER 1 SA VER 11 SA VER12 SAVER13 SAVER2 SAVER3 SAVER7 SAVEiRKl SAVEiRK2 SAVEiRK3 SAVEWRK5 SAVEiRK6 0 
::s SAVEiRK9 SWPALLOC SWPCHGl SiPCBG2 SiPCODE SiPCYL SiPDPAGE SWPFLAG SWPKEY 1 SiPKEY2 SiPRECMP SiPREFl SiPREF2 

G'l 
SWPSHR SWPTRANS SWPVPAGE SYSTEM TIMER TYP2305 VMBLOK VMESTAT VMINVPAG VMNDCNT VMPAGES VMPGREAD VMPGRINQ 

c VMPGiAIT VMPGWRIT VMPSTAT VMRPAGE VMRSTAT VMSEG VMSIZE VMSTEALS VMTIMER VMTTIME VMiCNT XPAGNUM XTNDLOCK 
1-" ZERCES p.. 
(1) 



~odule External Beferences (Labels and Kodules) 

I:ftKQCN ADSPCB ALABK ASYSOP BALBSAVE BLANKS CLASGBAF CLASSPEC CLASTEBK CCNADDB CCHCHT COHCHTL COIIDATA COIIOOTPT 
CONPABK CONPHT COHBESP COHBETH COHBSV3 COHSPLT CONSTAT CORSYRC CONTASK CORTSIZE CORiSKSZ COROSEB CPEIADD 
CPEIELOK CPEIBEGS CPEIB12 CPUSIZE DFBET DKKCRSIC DKKCVTBD DKKCVTBB DKKCVTDT DKKDSPCB DKKFBEE DKKFBET DKKGBFIC 
DKKRGEIC DftKRRBIC DftKSCBDL DftKSCBBT DKKSCBST DKKSCRBD DftKSCRBR DKKSTKCP DftKSYSRft DftKVSPVP EDIT Fl F2 
F4095 F8 IIiBIEIT ftllCLRESP ftNCOEBD ftRCOEBD ftRCOiBIT IIICBLOK HICLLEN IIICSIZE NOAOTO NOBET NOTIftE 
OPERATOR PRIORITY PSA RDEVAPLP RDEVELCK RDEVCON BDEVLLEN RDEVRICL BDEVTftCD BDEVTYPC RDEVTYPE RO Rl 
Bl0 Bll B12 B13 B14 B15 R2 B3 B4 B5 B6 B7 B8 
R9 SAVEAREA SAVERO SAVERl SAVEB11 SAVEB2 SAVER3 SAVEWRK 1 SAVEiBK2 SAVEiBK3 SAVEiBK4 TEftPSAVE TBQBIBA 
TBQELOR TBQBSIZE TRQBOSEB TBQEVAL TYPESC OCASE VDEVBLOK VDEVCSPL VDEVFLAG VDEVSFLG VDEVTEBft VKBLOK VftCF 
VKCFREAD VftCFROR VftCFiAIT VftDELAY VKDISC VKDVSTBT VftGENIO VftKILL VlnOGOFF VKLCGOII VftftCODE VftftLUEL VKKSTftP 
VMKTEIT VKOSTAT VKQSTAT VftRBSC VKRSTAT VKSYSOP VMTEBK VMTRKID VftTTlftE VftOSER VftVIRCF VftVTERft 

DMKBGA ASYSVK ELAIIKS EBIIiG BSCAOSEB BSCBLOK BSCCRT BSCCOPY BSCECCWl BSCECCi2 BSCEIIQ BSCETE BSCFLAG BSCFLAGl 
BSCIGN BSCINDEI BSCLOG BSCOPIED BSCPCCil BSCPCCi2 BSCPCCi3 ESCPCCW4 BSCBCVD BSCREAD BSCREGEN BSCRESP BSCBROEN 
ESCBSTBT ESCRVI BSCSCAH BSCSCCi 1 BSCSCCi2 BSCSCCi3 BSCSEL BSCSEHD ESCSEHSE BSCSIZE ESCSIZEl BSCSPTB BSCTftBQ 
ESCTSTRQ BSCOCOPY BSCOECCi BOFCNT BOFFER EOFINLTB EOFSIZE CC CD CE CLASTEBft COIIACTV CORADDB 
CONCCil COBCCi2 COBCCi3 CORCCW4 CORCNT CORCRTL CORDATA CORDCNT CORESCP CONLABEL CONPABft COBPBT COIIBESP 
CONBETN COBSTAT COBTASK CORTSIZE COBTSKSZ CORUSEB CPEIADD CPEIBLOK CPEIBO CPEISIZE DE DEFEB DKKBLDVK 
DKKCFKAT DKKCFftBK DKKCFKEN DftKCRSED DKKCVTED DKKCVTEB DftKCVTDB DftKCVTHE DKKDSPCH DftKEBMSG DKKFBEE DftKFRET DKKIOEBB 
DKKIOSQB DKKPTBAR DKKQCBCL DftKQCNET DftKQCBTO DMKQCIIWT DKKRGBIC DKKRGBKT DKKRGBSII DKKSCHRT DKKSCHST DKKSCIIBD DftKSCIiBU 
DKKSTKCP DftKTBLGB DKKTBLUP DftKTBKZI EDIT FO Fl F2 F255 F256 F3 F4 F4095 
FS F8 IIiBIEIT IOBCAW IOBCC3 IOBCP IOBCSi IOBFATAL ICBFLAG ICBIOEB IOBIBA IOELINK IOELOK 
IOEftISC IOBftISC2 IOBBADD IOBRCNT IOBBSTRT IOESIZE IOESPEC IOBSTAT IOBUNSL IOBUSER IOEBBLOK IOEBEIT IOEBSIZE 
LOGDBOP LOGHOLD NICALRK NICAPL BICATBE NICBLOK RICCARD NICCOBD RICCPNA NICDIAG NICDISA NICDISB NICENAB 
NICFLAG NICFftT NICHOLD NICKOBE NICNAME NIClfTBL NICPOLL BICPBOCB nCQPBT NICBEAD IIICBSPL BICBURR BICSELT 
BICSIO BICSIZE NICSTAT NICTABF RICTKCD NICTRQ NICTYPE NICUSEB NIC3275 ROBET NOTIME PSA RDEVBLOK 
BDEVBSC BDEVCOB BDEVDISA BDIVDISB BDEVERAB RDEVFLAG BDEVKAI BDEVBICL BDEVIBDY BDEVPDLY BDEVBSVD BDEVSTAT RDEVTYPC 
BDEVTYPE RDEViAII RO Bl Bl0 Bl1 R12 B13 R14 B15 B2 B3 R4 
B5 B6 B7 B8 R9 SAVEABEA SAVEBO SAVER2 SILl SYSTEK TEftPB2 TEftPR3 TEKPB7 
TEMPSAVE TRQBIBA TBQBLOK TRQBSIZE TRQBUSEB TRQEVAL TYPBSC UCASE UE VCONCTL VCONBBSZ VCONBBUF VCOBBCBT 
VDEVBLOK VDEVCON VMBLOK VftCF VKCFWAIT VKDVSTRT VftGENIO VKLOGOFF VKLOGOR VKKCPEBV VKftLEVEL VftMLIRED VKOSTAT 
VftPA2APL VftPFUNC VftPIINT VftQSTAT VKRSTAT VftTERM VftTLERD VftTTlftE VftVTEBft IIBTBLOK lINT CODE IINTREIT IINTSIZE 
IINTSCRT ITBDLOCK 

I:MKBGE ALABM BBING BSCAUSER BSCBLOK BSCFLAG BSCLINE ESCPCCil ESCPCCi2 ESCPCCi4 BSCRCVD BSCBEAD BSCBESP BSCRBOBII n BSCSCAN BSCSCCi 1 ESCSCCW2 BSCSCCi3 BSCSEL ESCSIZE BSCSIZEl BSCSIZE2 BSCSPTB BUFINLTH CC CD CONADDB ~ 

CONCCWl CONCCi2 CORCCi3 CORCCi4 CORCNT GORCBTL CORDATA CONESCP CCBLABEL COROUTPT CORPARK COBPBT COBBESP 01: CONBETN CONBSV3 CONSTAT CONSYNC CONTASK CONTSIZE CONTSKSZ COBUSEB CPEIADD CPEIBLOK CPEISIZE DEFEB DKKBOIBI 0 
en DKKDSPCB DMKFREE DftKFBET DftKIOSQR DKKPTRAN DftKQCRET DftKRGAIB DKKSCBRT DKKSTKCP DKKTBLGB DKKTBKZO Fl F256 0. 
(1) F4 F4095 INBIBIT IOBCAi IOBep IOBFLAG IOBIOER IOEIRA IOBLOK IOBftISC IOBftISC2 IOBRCRT IOBBSTRT 

Q ...., 
0 lOB SIZE IOESPEC IOBSTAT IOBUSEB IOEBELOK IOEREIT IOEBSIZE LOGDROP LOGBOLD RICALRK IHCAPL BICATRB RICBLOK CD r+ .... NICCORD RICDIAG NICDISA RICDISE RICFLAG RICFKT RICBOLD RICKORE RICRTRL RICPOLL RICPROCR BICQPlfT RICBEAD I 

r+ 0 NICBURN lUCSELT RICSIO RICSIZE NICSTAT RICTKCD RICTRQ RICUSER PRIORITY PSA RDEVBLOK RDEVBSC RDEVCOR 0 cs 
RDEVDED RDEVDISA RDEVDISE BDEVFLAG RDEVl!!I BDEVNICL BDEVRBDY RDEVBSVD RDEVSTAT RDEViAII BO Rl Rl0 I 

t-t W R 11 R12 R13 R14 R15 R2 B3 B4 B5 R6 R7 R8 R9 g) 

SAVEABEA SAVEB2 SILl SYSTEK T!MPR3 TEKPSAVE TBQBLOK VKBLOK VKGERIO VKLOGOFF VftRSTAT VKTLERD VKTBftID tr 
CD t:::I VKTTIKE ...., .... 

t1 n (1) 
t1 0 0 r+ en 0 en t1 .... 
~ (1) 
CD rn t-h 
CD 
t1 

W CD 
0'1 = 0 
~ CD 



w Module External References (Labels and Modules) C'\ (') 

I\) "tI 

::1: 
DMKRNH ABORT ALARll ASISVll ATTN EALRSAVE BLANKS BUSOUT EUSI CACTDEV CACTLIN CACTLTR CC CCDESllD 0 

CDC CHC CKPBITS CKPBKSZ CKPELOK CKPNUIE CKPRIUI CKPSIZE CLASSPEC CMDREJ CNTLBTU CONACTV CONADDR ~ 
Q 

-= CONCCil CONCCi2 CONCCi3 CONCNT CONCNTL CONCOMND CONDATA CONDCNT CONDEST CONESCP CONEXTR CONFLAG CONOUTPT 1-1 
3: CONPARM CONPNT CONRESP CONRETN CONRTAG CONRTRY CONSPLT CONSRID CONSTAT COISINC CONSYSR CONTACT CONTASK CD 

"'- I 
w CONTCMD CONTSIZE CONTSKSZ CONUSER CPEXADD CPEXELOK CPEXSIZE CRESCND CRESERL CRESIMD CSETDSM CTRMLTR DE rt' 
-.J DFRET DISCEOC DISCNCT DMKBLDVM DMKCPMAT DMKCFMBK DllKCNSED DMKCPVAE DMKCVTBH DMKCVTDT DMKDSPCH DMKERMSG DMKPREE 0 

I 0 DMKFRET DMKIOERN DMKIOSQR DMKNLDMP DMKNLDR DMKQCNCL DllKQCNET DMKQCNTO DMKQCNWT DMKRIORN DMKSCNAU DMKSCNRU DMKSTKCP t"4 
DMKVSPRT EDIT ERRMSG Pl F16 F256 F4 F4095 F60 F8 IL INHIEIT INTREQ ~ 

til IOBCAi IOBCC 1 IOBCC3 IOBCP IOECSW IOEFLAG IOBIOER IOEIRA IOBLINK IOEMISC2 
tr' 

I'< IOBLOK IOBllISC IOBRADD CD 
en IOBRCAW IOERCNT IOERSTRT IOESIZE IOESPEC lOBSTAT IOBUNSL IOBUSER IOERBLOK IOERDATA IOEREIT IOERSIZE IPLREQ 1-1 
r1" LOGDROP LOGHOLD NICATOF NICATTN NICBLOK NICCIBM NICDED lHCDISA NICDISB NICENAE NICEPMD NICERLK NICFLAG n CD 
EiI NICLIBE lUCLTBC NICMTA NICNAME NICNTRL NICPSUP NICQPNT NICRCNT NICSESN NICSIZE NICSTAT NICTELE NICTERll t1 

NICTYPE NICUSER NOAUTO NORET OPERATOR PCI PRGC PRIORITY PBTC PSA RDEUPLN RDEUPNO RDEVAUTO 0 
t"4 en 
0 RDEVBLOK RDEVBUSI RDEVCKPT RDEVCON RDEVDED BDEVDISA BDEVPLAG BDEVLCEP RDEVLNCP RDEVMAX RDEVNCP RDEVNICL RDEVNRDI en 

\,Q RDEVRCVY RDEVRSVD BDEVSCEt RDEVSLOW RtEVSTAT RDEVTETU RDEVTYPC RDEVWAIT READIR!! RO Bl Bl0 Rll ~ .... 
R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 SAVEAREA CD n 
SAVERO SAVERl SAVER2 SILl SYSTEM TEMPSAVE TRACCURR TRACEND TRACFLG2 TBACSTBT TRACll TYP3705 UC HI 

CD ~ UCASE UE VMBLOK VMCFWAIT Vf!LCGCN V!!f!CPENV Vf!MLEVEL VMRSTAT VMTRMID VeTTI!!E Vf!USEB WBITERK WRITEOT t1 1:1 
QI WRITIRH IRIGHT16 ZEROES CD 

1:1 
"tI n 
t1 DMKRPA ACORETEL AHIBEAL ERING CORBPNT CORCFLCK CORFLAG CORFPNT CORIOLCK CCRPGPNT COBSWPNT CORTAELE CPlXADD CPEIBLOR CD 

0 CPEIPPNT CPEXRO CPEISIZE DEFER Df!KFREE Df!KPAGIO DMKPGTPR DMKPGTSP DMKPTRAN DMKPTRFT DMKPTRUL DMKPTRWQ Df!KSCHDL tr' 
1-1 FFS Fl F4 IOERETN LOCK PAGCORE PAGINVAL PAGREF PSA RO Bl Rll R13 
CD R14 R15 R2 R3 R5 R7 R9 SAVEAREA SAVERl SAVER2 SAVEWRRl SWPCYL SiPFLAG EiI 

SWPREClIP SWPSHR SWPTRABS SI~TEM VMELOK VMESTAT VMINVPAG VMPAGES VMPGWAIT VMRSTAT VMWCNT 
'=' CD DMKRSE ACBTBACR ACITELOK ATTN EUSOUT CC CCC CDC CE CHC CLASURI CLASURO CMDRIJ CUE r+ 
CD DATACHK DE DMKFREE DMKFRET Df!KICEST DMKMSWB DMKRSP83 EQCHK Fl F3 F4 F7 F8 
t1 IFCC IBTREQ IOECAW IOECC 1 IOBCC3 IOBCSW IOBERP IOBFATAL IOBFLAG IOEIOER IOELOR IOEMISC2 IOERCAW iii .... IOERCNT IOBRSTRT IOBSTAT IOERACT IOERELOK IOERCEMD IOERCSW IOERDATA IOERDEPD IOERDERD IOERECSW IOERERP IOERETRI 
1:1 IOEREIT IOERPLGl IOERFLG2 IOIRPLG3 IOERIGN IOERIND3 IOERINFO IOERNUM ICEROVFL IOERPEND IOERPNT IOERREAD IOERSIZE ~ 
r+ IOERXERP PCI PRGC PRTe PSA RDEVACNT RDEVEACK RDEVBLOK RDEVFLAG RDEVIOER RDEVNBDI BDIVRSTR RDEVSPL .... RDEVSTAT RDEVTERM RDEVTYPC RD!VTIPE RO Rl Rl0 Rl1 R13 R14 R15 R2 R3 0 
1:1 R4 RS R6 R7 RS R9 SAVEAREA SAVEWRKl SILl Sf! TIPPUN TYP1403 TIP1443 
en TIP2501 TIP2520P TIP2540P TIP2540R TIP3211 TIP3S05 UC VMELOK VMCF VMOSTAT IOBRCCWl IOBRCCW2 IOERCcw3 
Q XOERCCW4 XOBREXT XOERFLAG XOERMISl XOBRfUS2 IOBRRTl IOBRRT2 IOBRRT3 IOBRRT4 IOBRRT5 IOERRT6 IOERSIZE XOBRSTAT .... XOBRTl XOBRT2 IOBRT3 XOBR010 IOER150 IOBR180 IOER512 ZEROES 
QI 
CD 



l!odule External References (Labels and l!od ules) 

Dl!KRSP ALARl! ELAIKS BRING BUlCNT BUFF1!R BUFNIT BUFSlZE CC CCC CDC CE CHGSFB CLASURl 
CLASURO CPEIADD CPEIBLOK CPEISIZE DE DEFER DMKACOPU Dl!KCKSPL Dl!KCSOSD Dl!KCVTBD Dl!KCVTBH Dl!KCVTD'l' DMKDSPCH 
Dl!KERl!SG DHKFREE Dl!KFRET DHKIOSQR DMKCPRiT Dl!KPGTSG DMKPGTVG DHKPGTVR DMKPTRAN DHKQCNiT DHKRPAGT DMKRPAPT DMKRSERR 
DMKSCllD DMKSCNRD DMKSCNRN Dl!KSCNRU DMKS1!PSP DMKSPLCR DMKSPLDL DMKSPLOR DMKSTKCP DPIKSYSOC DPlKSYSOi DMKSYSRM DMKSYSTP 
DMKSYSWM Dl!KTMRPT DMKUDRFU F24 F4 F4095 F4096 F8 IFCC lL IOBCAi IOBCCl 10BCP 
IOBCSW IOBERP IOEFATAL IOBFLAG IOBlOER lOB IRA IOBLOK IOBMISC ICBRADD IOERCAi IOBRCNT IOBRSTRT IOESIZE 
IOBSTAT IOERBLOK IOERCSi IOERDATA IOERDEFD IOERDERD IOERERP IOEREIT IOERFLGl IOERSIZE LOCK NO RET OPERATOR 
PSA RDEVACNT RDlVBACK RDEVBLOK RDEVBUSY RDEVCLAS RDEVDED RDEVDISA RDEVDRAN RDEVFLAG RDEVIOER RDEVLOAD RDEVNRDY 
RDEVRSTR RDEVSEP RDEVSPAC RDEVSPL RDEVSTAT BDEVTERPI RDEVTYPC RDEVTYPE RECBLOK RECCYL BECMAP RECPNT RECSlZE 
RECUSED RSPDPAGE RSPLCTL RSPMISC RSPRFAGE RSPRSTRT RSPSFBLK RSPSlZE RSPVPAGE RO Rl Rl0 Rll 
R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 B8 R9 SAVEAREA 
SAVEREGS SAVERO SFBCLAS SFBCOPY SFBFlLID SFBFLAG SFBFLAG2 SFBFNAME SFBFTYPE SFBLAST SFBLOK SFBORIG SFBPNT 
SFBRECER SFBR1!CNO SFERECOK SFBRECS SFBRlQUE SFBRSTRT SFBSHOLD SFBSIZE SFBSTART SFBTICER SFBTYPE SFBUHOLD SFBUSER 
SILl SKIP SPLINK SPNITPAG SPPREPAG SPRECNUM SPRMISC SPSIZE SYSTEM TYPPRT TYPPUN TYPRDR TYP2540R 
UC UE HIELOK 

I:MKSAV ALARM CAi CC CE CSi DE DMKCKP DMKCKPRS DPlKCKPST DMKCKPT DMKCPICD DMKCPlNT DMKCVTBH 
DMKOPRiT DMKSYSNU DMKSYSRS DMKSYSTP DMKSYSTZ DMKSYSVL EINPSW Fl F2 F3 F4 INTREQ INTTlO 
IONPSW IOOPSW MCBPSi PRNPSi PSA PSTARTSV RO Rl Rl0 Rll R12 R13 R14 
R15 R2 R3 R4 R5 B6 R7 R8 R9 SILl SKIP TEMPR2 TEMPR4 
TEMPSAVE TYP2305 TYP2314 TYP3330 TYP3340 TYP3350 

I:MKSCH ACORETBL AVMREAL BALRSAVE BALR 11 BRllG CCBBPNT CORCFLCK CORFLAG CCRFPNT CORIOLCK CORRSV CORSHARE CORTABLE 
DEFER DMKDSPCH DMKDSPNP DMKFREE DMKFRET DMKMIDNT DMKPTRAN DMKPTRFL DMKPTRRL DMKPTRUl ECBLOK EXTCPTMR EITCPTRQ 
FFS FO F1 FlO F15 F3 F4 F5 IDLEWAIT IONTiAIT MNCLSCH MNCOAEL MNCOAQ 
MNCODQ PAGCORE PAGELOAD PAGEiAIT PAGINVAL PAGREF PROBTIME PSA RO Rl Rl0 R 11 R12 
R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 TEMPSAVE TIMER 
TRACCURR TRACEND TRACFLG 1 TRACSTRT TRAC08 TRAC09 TRQEBPNT TRQEFPNT TRQBLOK TRQBQUE TRQBTOD TRQBVAL VMAEX 
VMAEXP VMBLeK VMCOMP VMCPUTMR VMCPWAlT VMDROP 1 VMDSP VMDSTAT VMECEXT H1EIlG VMEPRlOR VMHlPRI VMINQ 
VMlOINT VMLONGWT VMLOPRI VMNORUN VMPAGES VMPEND VMPGREAD VMPGRlNQ VMPRIDSP VMPSTAT VMPSiAIT VMPXINT VMQBPNT 
VMQFPNT VMQLEVEL VMQPRlOR VMQSEND VMQSTAT VMQl VMRDINQ VMRON VMRPAGE VMRPRlOR VMRSTAT VMRUN VMSEG 
VMSTEALS VMSTMPI VMSTMPT VMTI MER VMTLEVEL VMTMINQ VMTMOUTQ VMTMRINT VMTODINQ VMTRQBLK VMTSEND VMTTIME VlWPRIOR 
VMVTHIE VMV370R VMWSCHG HliSERNG VMiSPROJ IINTBLOK XINTCODE IlNTNEIT XINTPARM IINTSIZE IINTSORT ZEROES 

DMKSCN ARIOCH ARIOCT ARIOCU ARIODC ARIODV ASYSVM BALRSAVE EALR1 BALR2 BALR3 BALR8 ELANKS BUFFER n 
BUFNXT CLASDASD CLASSPEC .cLASTERM CLASURI CLASURO FFS FTR2311B FTR2311T FO F5 F7 PSA I'tI 

RCHADD RCHBLOK RCHCUTBL RCUADD RCUBLOK RCUCHA RCUDV'IBL RCUPRHlE RCUSUB RCUTYPE RDlVADD RDEVBLOK RDlVCUA ::I: 
RDEVDED RDEVDISA RDEVFLAG RDEVLNKS RDEVMOUT RDEVSER RDEVSIZ E RDEVSTAT RDEVTYPC RO Rl R10 R 11 0 

til R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 TYPCTCA TYPIBMl TYPPRT ~ 
~ 

(1) TYPPUN TYPRDR TYPTELE2 TYP2311 TYP2700 TYP3210 TYP3705 UDEVBLOK UDEVFTR UDEVRELN VCHADD VCHBLOK VCHCUTBL ~ 
0 VCUADD VCUBLOK VCUDVTEL VDEVADD VDEVBLOK VDEVDED VDEVFLAG VDEVLINK VDEVRDO VDEVREAL VDEVRELN VDEVSIZE VDEVSTAT (1) 
rt' I .... VDEV'IYPC VDEVTYPE VDEVUSER VMBLOK VMCHSTBT VMCHTBL VMCUSTRT VMDVCNT VMDVSTRT VMLOGOFF VMLOGON VMPNT VMRSTAT rt' 
0 VMUSER ZEROES 0 
~ I 

IN 
t:-t 
~ . t:T 

t:j 
(1) 

.... ~ 

t1 n 
CD t1 
0 0 
rt' til 
0 til 
t1 .... to 
(1) CD 
til HI 

CD 
t1 
(t) 

IN I:S 
0'1 0 
IN CD 



!.oJ !!odule External References (Labels and Modules) (") 
0'1 
J;: 

Ilj 

3: 
I:MKS EP BRING CC DEFER DMKBOXBX Dl!KCFEID DMKCVTED DMKCVTBE DMKCVTDT Dl!KDSPCH Dl!KFRET DMKIOSQR DMKPGTVG DMKPGTVR 0 

PI 
DMKFTRAB DMKPTRUL DMKSCNRr IOECAW IOECSW ICEFATAL IOEFLAG IOEIRA IOBLINK IOBLOK IOEMISC IOBlHSC2 IOERSTRT ~ 

< IOBSIZE IOBSTAT LOCK PSA RDEVBLOK RDEVFLAG RDEVLOAD RDEVSEP RDEVTYPE RO Rl R10 R 11 I-' 
CD 3: R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 SAVEAREA I 

" SAVEREGS SAVER10 SAVER8 SAVEWRK 1 SAVEWRK2 SAVEWRK5 SAVEWRK? SAVEWRK8 SAVEWRK9 SFBCLAS SFBDATE SFEDIST SFBPILID rt' 
!.oJ 0 
....J SFBPLAG2 SFBFNAME SFBLOK SFBORIG SFBRECNO SFBRSTRT SFETIME SFBUSER SILl SKIP SYS'IEM TYPPUN UE I 
0 VMBLOK J:-I 
" III 

en t:r 
I:MKSEV CCC CCHCHNL CCHCMDV CCHCNTB CCHCFU CCEDAV CCHDI CCHINTFC CCHLOG70 CCHREC CCHSTG CCHUSV COMPFES CD 

~ I-' 
til COMPSEI COl!PSYS CSW PPS F7 F8 HIOCCH IFCC IGBLAME IGPRGFLG IGTERMSQ IGVALIDB INTERCCH 
r+ IOERELOK PSA RTCODEl RTCODE2 RTCODE3 RTCODE4 RTCODE5 RTCODE7 RO Rl R12 R13 R14 (") 
CD 

R15 R2 R3 R4 R9 SAVEWRK 1 SAVEWRK9 11 e SAVEAREA TERMSYS TIOCCH XRIGHT16 0 

I:"'" til 

0 DMKSI X CCHCHliI CCHCMDV CCHCNTE CCECPU CCHDAV CCEDI CCHIN'IFC CCHLOG60 CCHREC CCHSTG CCEUSY COMPFES COMPSEL til 

I.Q CSW FFS F1 F? F8 HIOCCH IFCC IGELAME IGPRGFLG IGTERMSQ IGVALIDE IOERBLOK PSA !:tI 
~. RTCODEl RTCODE2 RTCODE3 RTCODE4 RTCODE5 RO Rl R12 R13 R14 R15 R2 R3 CD (") H'I R4 R9 SAVEAREA SAVEWRKl SAVEWRK9 TERMSYS TIOCCH IRIGHT16 CD III 11 
::I CD PI I:MKSNC BRING CCPADDR CCPARM CCPNAME CCPPSIZE CCPSIZE DEFER DMKERMSG DMKPTRAN DMKPTRUL Dl'IKRNTBL DMKRPAPT DMKSCNVS ::I 

Ilj Fl F256 F4096 IOERETN LOCK NCPNAME NCPPAGCT NCPPNT NCPSTART NCPTBL NCPVOL PSA RDEVBLOK (") 

1'1 RDEVCODE RDEVFLAG RDEVOiN RDEVTYPE RO Iil Rl0 Iil1 R13 R2 R3 R4 R5 CD 

0 R6 R7 R8 R9 SAVEAREA SAVERO SAVER2 SAVER6 SAVEWRK 1 SAVEWRK2 SAVEiRK3 SAVEWRK4 SAVEWRK5 t:r 
I-' SAVEiRK6 SAVEiRK8 SAVEWRK9 SYSTEM TYP2314 TYP3330 TYP3350 VMBLOK 
CD 
e 

tMKSPL ACCTELOK ACCTDIST ACCTUSER ACORETBL ADDSFE ARIODV ARIOPR ARIOPU ARSPPR ARSPPU ARSPRD ASYSVM BLANKS 
'=' BRING CC CHGSFE CLASURI CPEXADD CPEXBLOK CPEXREGS CPEXSIZE DE DEFER DELSFB DMKCKSPL DMKCVTED CD 
r+ DMKCVTDT DMKDRDDD Dl'IKDSPCH DMKFREE DMKFRET DMKIOSQR DMKPGTSD Dl'IKPGTSG DMKPGTSR DMKPGTVG DMKPTBAN r:MKPTRLK DMKPTRUL 
CD DMKQClIIWT DMKRFAGT Dl'IKRPAPT tl'lKRSPDL DftKRSPEX DftKRSPHQ DMKRSPID DMKSCNAU DMKSTKCP DftKSTKIO Dl'IKSYSOC DMKSYSOW DMKUDRFU 
11 DMKUDRRD DMKUDRRV DMKVIOIN FTR70ME FO Fl F2 F3 F4 IOBCAW IOBCP IOECSW IOBCYL e 
~. IOBFATAL IOBFLAG IOBIRA IOBLINK IOBLCK IOEIHSC2 IOERADD IOESIZE IOBSTAT IOBUSER IOBVADD LOCK NORET 
::I OWNDIIST OWNDRDEV PCHCHN PRTCEN PSA RDEVACN'I RDEVBlOK RDEVClAS RDEVDED RDEVDISA RDEVDRAN RDEVFLAG RDEVFTR ~ 
rt' RDEVSPL RDEVSTAT RDEVTYPE RDRCHN RECELCK RECPNT RECSIZE RSPDPAGE RSPlCTL RSPRPAGE RSPSFBLK RSPSIZE RSPVPAGE 
~. BO Rl B10 Rll R12 R13 R14 R15 R2 R3 R4 R5 R6 0 
::I R7 R8 R9 SAVEAREA SAVERll SAVER? SAVER8 SAVER9 SAVEWRKl SAVEWRK2 SAVEWRK8 SFECLAS SFBCOPY 
G'l SFBDATE SFBDIST SFEDUMP SFEFILID SFBFIRST SFBFLAG SFEFlAG2 SF BPNAffE SFBHOLD SFBlAST SFBLOK SFBNOHLD SFBORIG 
~ SFBPNT SFBPURGE SFBRECER SFBRECS SFERECSZ SFBREQUE SFBRSTRT SFBSHOLD SFBSIZE SFBSTART SFBTIME SFETYPE SFEUHOLD 
~. SFBUSER SHQBLOK SHQSHOLD SHQUSER SIll SKIP SPlINK SPSIZE SYSTEM TYPPRT TYPPUN TYPRDR TYP1052 PI 
CD TYP2314 TYP3210 TYP3211 TYP3340 TYP3350 UDBFBlOK UDBFSIZE UDBFVADD UDIRBLOK UDIBDISP UMACBLOK UMACDIST VCHADD 

VCHBLOK VCECUTBL VCUADD VCUBLOK VCUDVTEL VDEVADD VDEVBLOK VDEVCLAS VDEVCOPY VDEVCSW VDEVEXTN VDEVFOR VDEVHOLD 
VDEVPEND VDEVSFLG VDEVSPL VDEVSTAT VDEVTYPC VDEVTYPE VDEVIFER VIUCOUNT VMBLOK VMCHSTRT VMCHTEl VMCUSTRT VMDIST 
VMDVSTRT Vl'Il'ILEVEl Vl'IMSGON VMTTIME VMUSER VSPLCTL VSPSFBLK VSPSIZE VSPVPAGE VSPXBLOK VSPXTAG VSPXTGLN VSPXXUSR 
ZEROES 



Mod ule External References {Labels and Modules} 

tMKSSP ARIOCH AiUOCT ARIOCU ARIODV ATTN BUSY CAW CC CD CE CLASDAS D CLASGRAF CLASTAPE 
CLASTERM CLASURI CLASURO CPUID CPUVERSN CSi CUE DE DMKCPINT DMKCVTBH DMKCVTHB DMKRIO D MKRI OCH 
DMKRIOCN DMKRIOCU DMKRIODV tMKRIOPR DMKRIOPU DMKRIORD DMKSYSNU FTRUCS F4096 IONPSi IOOPSi MCNPSW PRNPSW 
PSA RCHBLOK RCHCUTBL RCHSIZE RCUADD RCUBLOK RCUCHA RCUCHB RCUDVTBL RCUSIZE RCUTYPE RDEVADD RDEVBLOK 
RDEVCLAS RDEVCUA RDEVFTR RDEV SIZE RDEVTYPC RDEVTYPE RO Rl R10 Rll R12 R13 R14 
R2 R3 R4 RS R6 R7 R8 R9 SAVEAREA SILl SYSTEM TYPPRT TYPPUN 
TYP2314 TYP2540P TYP2540R TYP3066 TYP3210 TYP3277 TYP3330 'IYP3340 TYP3350 UC UE XRIGET16 

tMKSTK CPEXELO K CPEXBPNT CPEXFPNT DMKDSPRQ IOEEPNT IOBFPNT IOBLOK PSA RO Rl Rl0 R14 R15 

tMKSYM DMKACO DMKBLDRL DMKBLDRT DMKBLDVM DMKBSCER DMKCCHIS DMKCCHRT DMKCCH60 DMKCCWSB DMKCCiTC DMKCCWTR DMKCDBDC DMKCDBDI 
DMKCDBDM DMKCDBDU DMKCDSCP DMKCDSTO DMKCFDAD DMKCFDLO DMKCFGII DMKCFGIP DMKCFGSV DMKCFMAT DMKCFMBK DMKCFMEN DMKCFPRD 
DMKCFPRR DMKCFSET DMKCFTRM DMKCKPT DMKCNSED DMKCNSEN DMKCNSIC DMKCNSI N DMKCPBEX DMKCPBNR DMKCPERS DMKCPBRi DMKCPBRY 
DMKCFBSR DMKCPEID DMKCPENt DMKCPVAA DMKCFVAC DMKCPVAE DMKCPVDS DMKCPVEN DMKCPSH DMKCPVLK DMKCPSRY DMKCPSSH DMKCPVUL 
DMKCQGEN DMKCC;;PRV DMKCQREY DMKCQRFI DMKCSOBS DMKCSODR DMKCSOFL DMKCSOLD DMKCSORP DMKCSOSD DMKCSOSP DMKCSOST DMKCSOVL 
DMKCSPCL DMKCSPFR DMKCSPHL DMKC SPSP DMKCSUCH DMKCSUOR DMKCSUPU DMKCSUTR DMKDASER DMKDASRD DMKDASSD DMKDEFIN DMKDGDDK 
DMKDIACP DMKDIADR DMKDIAL DMKDIASM DMKtMPDK DMKDMPGR DMKDMPRS DMKDRDDD DMKDRDER DMKDRDMP DMKDRDSY DMKDSPAC DMKDSPBC 
DMKDSPCC DMKDSPCH DMKDSPNP DMKDSPQS DMKDSPRQ DMKEIG80 DMKEPSWD DMKERMSG DMKFREE DMKFREHI DMKFRELG DMKFRELO DMKFRELS 
DMKFRENP DMKFRERS DMKFRESV DMKFRET DMKFRETR DMKGIOEX DMKGRFEN DMKGRFIC DMKGRFIN DMKHVCAL DMKHVCDI DMKIOEFM DMKIOERR 
DMKIOF DMKIOG DMKIOSCT DMKIOSHA D MKICSIN DMKIOSQR DMKIOSQV DMKISMTR DMKLNKIN DMKLNKSB DMKLOC DMKLOGON DMKLOGOP 
DMKMCCCL DMKMCHAR DMKMCHIN DMKMCHMS DMKMIDNT DMKMONIO DMKMONTH DMKMSGEC DMKMSGMS DMKMSGWN DMKMSWR DMKNEMOP DMKNETiK 
DMKNLDMP DMKNLDR DMKOPRWT DMKPAGCC DMKPAGIC DMKPAGIO DMKPAGPS D-MKPAGQ DMKPAGSP DMKPAGST DMKPGS DMKPGSPO DMKPGSPP 
DMKPGTEN tMKPGTPG DMKPGTTM DMKPGTTU DMKPRGCT DMKPRGC8 DMKPRGGR DMKPRGIN DMKPRGMC DMKPRGRF DMKPRGSM DMKPRVLG D MKPRVNC 
DMKPSADU DMKPSAEX DMKPSANS DMKPSARG DMKPSASV DMKPTRAN DMKPTRC'I DMKPTRFC DMKPTRPF DMKFTRPR DMKPTRRC DMKPTRRQ DMKPTRSC 
DMKPTRSS DMKPTRWQ DMKQCNCL DMKQCNET DMKQCNBD DMKQCNSY DMKQCNTO DMKQCNiT DMKRGAIN DMKRGBEN DMKRGBIC DMKRIOCH D MKRIOCN 
DMKRIOCU DMKRIODV DMKRIOPR DMKRIOPU DMKRIORD DMKRIORN DMKRNHCT DMKRNHIC DMKRNBIN DMKRNHND DMKRNHTG DMKRNHTR DMKRPAGT 
DMKRPAPT DMKRSERR DMKRSPAC DMKRSPCV DMKRSPDL DMKRSPER DMKRSPEX DMKRSPHQ DMKRSPID DMKRSPPR DMKRSPPU DMKRSPRD D MKRS PUR 
DMKRSP83 DMKSCHAL DMKSCHAP DMKSCHAU DMKSCHCP DMKSCHC'I DMKSCHDL DMKSCHIB DMKSCHMD DMKSCHNl DMKSCHN2 tMKSCHPB DMKSCHPD 
DMKSCHPG DMKSCHPU DMKSCHQl DMKSCHQ2 DMKSCHRL DMKSCHRT DMKSCHST DMKSCHTQ DMKSCHUB DMKSCHWl DMKSCHW2 DMKSCH80 DMKSEPHR 
DMKSEPSP DMKSEV70 DMKSIX60 DMKSNCP DMKSPLCR DMKSPLCV DMKSPLDL DMKSPLDR DMKSPLOR DMKSPLOV DHKSYSCS DMKSYSLC DMKSYSOC 
DMKSYSOP DMKSYSOW DMKSYSRM DMKSYSRS DMKSYSRV DMKSYSVL DMKSYSVM DMKTAPER DMKTDKGT DMKTDKRL DMK'IMRTN DMKTRACE DMKTRCEX 
DMKTRMID DMKUDBBV DMKUDBDS I:MKU DRFD DMKUtRFU DMKUDRRD DMKUDRBV DMKUNTFB DMKUNTIS DMKUNT BN DMKUNTRS I:MKU SODS DMKUSOFF 
DMKUSOFL DMKUSOFM DMKUSOLG DMKVATAB DMKVATBC DMKVATEX DMKVATLA DMKVATMD DMKVATPX DMKVATRN DMKVA'ISX DMKVCABD DMKVCARS 
DMKVCASH DMKVCAST DMKVCATS DMKVCHDC DMKVCNEX DMKVDBAT DMKVDBDE DMKVDREL DMKVDSAT DMKVDSDP DMKVDSLK DMKVERD DMKVERO 
DMKVIOCT DMKVIOCW DMKVIOEX DMKVIOIN DMKVMA DMKVMAPS DMKVMASH DMKVSPCO DMKVSPCR DMKVSPEX DMKVSPRT DMKVSPVP DMKVSPWA (1 

I'tI 
DMKTAP CCC CD CDC CHC CUE DE DMKFREE DMKFRET DMKIOEST DMKLOCKD DMKLOCKQ DMKMSWR Fl 3: 

F15 F16 F2 F3 F4 F5 F6 F8 IDA IFCC IL IOECAW IOECP 0 
en roBCSW IOBERP IOBFATAL IOBFLAG IOBIOER IOBLOK IOBRCAW IOBRCNT IOBRSTRT IOBSTAT IOEBACT IOEBADR IOERBLOK P, 

.::: 
CD IOEBESR IOERCAN IOERCLN IOERCSW IOERDATA IOERDW IOERERG IOEREXT ICEBFLGl ICERFLG2 IOERFLG3 IOEBFSR IOERIGNR ...... 0 IOERIND3 IOERIND4 IOERINFO IOERLOC IOEBMSG IOEBMSW IOERNUM IOERORA IOEROVFL IOERPEND IOEBRBK IOERREAD IOERREW CD 
rT I ..... IOERSIZE IOERSTRT IOEBSUPF IOERVLD IOERWRK PRGC PRTC PSA RDEVBLOK RDEVIOER BDEVNBDY BDEVS'IAT RDEVTYPE rt 
0 RO R 1 R10 R13 R2 R3 R4 RS R6 R7 R8 R9 SAVEAREA 0 
=' I SAVEliRK2 SAVEWRK3 SILl SKIP TYP2401 TYP2415 TYP2420 TYP 3410 TYP3420 UC ZEROES 1:"'1 w ~ 

tr 

t::::I 
CD 

..... ...... 
H (1 
CD H 
0 0 rt en 0 en 
H ..... !::tI 
CD CD en HI 

CD 
H 

w CD 
=' '" 0 

U1 CD 



w lIodule External References (Labels and Modules) (') 
0'\ to 
0'\ 

::z 
DHKTDK ALOCELOK ALOCCYLl ALOCCYL2 ALOCMAP ALOCPNT CC DMKDSPCB DMKFREE DMKFRET DMKIOSQR DMKPGTPO DMKPGTP4 DMKPGTPS 0 

j;lo 
DMKPGTTO DMKPGTT4 DMKPGTTS DMKPGT4P DHKPGT4T DHKPGTSP DMKPGTST FTR70MB F2SS F2S6 IOBCP IOBCYL IOBFLAG ~ 

IOBLOK IOBfUSC PSA RD!VALLN RtEVBLOK RDEVFTR RDEVPNT RDEVTYPE RO Rl Bl0 R 11 R12 .... 
<I ([) 
3: RB R14 R15 R2 R3 R4 R5 B6 R7 R8 B9 SAVEAREA SAVERO I 

" SAVERl SAVER8 SAVEiBK2 SILl TYP2314 TYP3330 TYP3340 TYP3350 r+ w 0 
-..J I 
0 DMKTBI ASYSVH ELAliKS DFRET DMKCVTBD DMKCVTBB DMKERMSG DMKFREE DMKFRET DMKQCNiT DMKSCBCO DMKSCBCU DMKSCBLI DMKSCBSC t-' 

DMKSCBSl DMKSCBS2 DMKSCNFD DHKSCBRD DMKSCNVU DHKTMRPT Fl F3 F4 F60 F8 NORET PSA ~ 
tr 

til RUNUSEB BO Rl Rl0 R 11 RB B2 B3 R4 R5 B6 R7 R8 ([) 

'< R9 SAVEAREA SAVER 11 SAVEiRK 1 SAVEiBK2 SAVEiBK3 SAVEiBK6 VDEVBLOK VDEVBEAL VMACTDEV VHBLOK VMCLASSA VMCLASSB .... 
til 
r+ VHCLASSC Vf')CLASSD VMCLASSE VMCLASSF VMCLASSG VHCLEVEL VMCRDS VMDSTAT VMELIG VMEXiAIT VMINQ VMIOCNT VIHOiAIT (') 
([) VMLINS VMPAGES VMPDISK VMPDBUH VMPGBEAD VHPGiAIT VHPGiRIT VMPBCB VHPNT VHPSiAIT VMQLEVEL VMQl VMRSTAT H 
e 0 

VMRUN VHSTKO VMTTIME VHUSER VHiSPROJ en 
t-I en 
0 

\,Q DMKTHB BALR2 BRIRG CPCREGO CO Cl DEFER DHKDSPCB DHKFREE DHKFBET DHKPRGSH DMKPSAFP DMKPSASP DMKPTBAN !:tI 
~. DHKSCBNl DMKSCBR2 DHKSCBRT DHKSCBST DHKSTKIO DHKVATEI DHKVATRR ECBLOK EXTCCTBQ EXTCPTHR EXTCPTRQ :EXTCB9 EXTPEBAD ([) 

n HI 
EITSBCBO F4 F409S FS F60 F7 F8 PEBSALT PSA BO Rl Bl0 Rll ([) 

~ R12 R14 R15 R2 R3 R4 RS R6 B7 R8 B9 TBAIMODE TREXCR9 H 
=' TREXPEBA TREXT TRQBFPNT TBQBLOK TBQEQUE TRQBTOD TRQBVAL VMBLOK VMCPUTMR VMDSP VMDSTAT VMECEXT VMESTAT 

([) 
j;lo ::s 

VMEITCH VMEIiAIT VMGPRS VMINQ VMINST VMINVPAG VMPEND VMPERCM V!PERPRD VMPBGIL VMPSTAT VMPSi VMPXINT n 
It:l VMQLEVEL VMQl VMBSTAT VMRUN VMSEG VMTLEVEL VMTMOUTQ VMTMRINT VMTRCTL VMTREXT VMTRPER VMVTIME VMV370R 

([) 

H 
0 XINTBLCK XIBTliEXT XIRTPARM XINTSIZE XINTSORT ZEROES 
tr .... 
CD tMKTRA CSi C1 DMKERMSG DMKFREE DMKFBET DMKLOCKt DMKLOCKQ DMKQCNiT DMKSCIFD DMKTBCIT DMKTRCPB FFS F3 
B F8 liCBET PSA BO Rl Bll R12 B13 B14 B1S B2 R3 R4 
t:I RS R9 SAVEAREA SAVER2 SAVEiRK 1 SAVEiRK2 SAVEiRK7 TREXAISI TREXBRAli TREXCCi TREXCSi TREXCTL TREXIIST 
CD TREXIN 1 TREXPRIT TBEXRUNF TREXSIZE TREXT TREXTERH VMBLOK Vt!CFiAIT VMEXiAIT VHPSi VMRSTAT VMSEG VMTRBRIN r+ 
CD VMTRCTL VMTREX nlTREXT VMTRINT VHTRIO VHTRPER VHTRPRG VMTRPRV VMTRSIO VHTRSVC WAIT XRIGBT16 
H 
EI tMKTRC APTRAN BLANKS BRING CAi CLASDASD CLASGRAF CLASSPEC CLASTERH CLASUBI CLASURO CPCBEGO CSi CO ~. 

t::I C1 DEFEB DHKCCWSE DHKCFMBK DMKCVTBH DMKFBET DHKLOCKD DMKLOCKQ DMKREMOP DMKPSABR DMKPSARS DMKPSARX D!KPSASC 
~ DMKPSASP DHKQCNiT DHKSCIBD DHKSCNRR DHKSCRVN DHKSCNVU DHKSYSRH DMKVATRN DHKVMACF DHKVSPRT lCBLOK EXTCBO EXTHASK r+ 
~. EXTHODE EXTSHCRO FFS Fl F1S F16 F2 F240 F3 F4 F60 F8 IDA 
0 INTSVCl IOBCAi IOECSi IOBLOK IOBRADD IOBSTAT IOBVADD IOMASK ICRET PERMODE PSA BCiCCi RCiGEN t::I 

BCWINVL RCiPNT RCiRCNT RCWTASK RCiVCAi BCiVCNT RO B1 R10 R 11 R12 B13 R14 en R15 R2 R3 R4 R5 R6 B7 R8 B9 SAVEABEA SAVERO SAVERl SAVER2 ~ 
~. SAVER4 SAVERS SA VEiRK 1 SAVEiRK2 SAVEiRK3 SAVEiRK4 SAVEiBK5 SAVEiRK6 SAVEiRK7 SAVEiRK8 SAVEiRK9 SVCNPSi SVCOPSi 
j;lo TRANHODE TREXANSI TREXBRAN TRHBUFF TREXCCi TREXCSi TREXCTLl TREXCTL2 TREXFLAG TREXINST TREXINl TBEIIB2 TREXLCIT ([) 

TREXBSI TREXPRNT TREXRUNF TREXSIZE TREXSVCl TREXSVC2 TREIT TREITERH TREXVAT VDEVBLOK VDEVCSi VDUDED VDEVREAL 
VDEVSTAT VDEVTYPC VMELOK VMCFiAIT VMECEIT VHESTAT VMEXTCH VHEXiAIT VHGPRS VMINST VMINVPAG VMLOGOFF VMPEND 
VHPEBPND VHPSTAT VHPSi VHRSTAT VHS!G VHSTOR VHTRBRIN VMTRCTL VHTREX VHTREXT VMTRINT VHTRIO VMTRPRG 
VHTRPRV VMTRSIO VPlTRSVC VPlVCRO VMV370R iAIT X2048END ZEROES 



Module External References (Labels and Mod ules) 

DMKTRM F7 PSA RDEVATOF RDFVBLOK RDEVCORR RDEVFLAG RDEVIDHT RDEVPTTC RDEVTFLG RDEVTMCD RO Rl R13 
R2 R3 R4 R5 R8 SAVEAREA 

I:MKUCB CC SILl 

DMKUCS CC SILl 

DMKUDR ACORETBL ALARM ARIODV ASYSLC BLANKS BRING CC CORBPNT CORFPNT CORPGPNT CORTABLE DEFER DMKDSPCH 
DMKFREE DMKFRET DMKIOSQR DMKLOCKD DMKLCCKQ DMKPGTVG DMKPGTVR DMKPTRAN DMKPTRFT DMKQCNWT DMKRPAGT DMKSYSOC DMKSYSOW 
DMKSYSPL DMKSYSUD Fl F256 F4096 F8 IOBCAW IOBCP ICBFATAL IOBFLAG lOB IRA IOBLOK IOBMISC 
IOBMISC2 IOBSIZE IOBSTAT IOBUSER NOADD NORET OPERATOR OWNDLIST OWNDRDEV OWNDVSER PAGINVAL PSA RO 
Rl R10 Rl1 R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 
R8 R9 SAVEAREA SAVERO SAVER2 SAVEWRK2 SILl SYSLOCS SYSTEM UDBFBLOK UDBFDASD UDBFVADD UDBFWORK 
UDEVADD UDEVBLOK UDEVDASC UDFVDISP UDEVSIZE UDIRBLOK UDIRDASD UDIRDISP UDIRSIZE UDIRUSER UMACBLOK UMACI:ASD UMACDISP 
VMBLOK VMESTAT VMEXTCM VMPSW ZEROES 

DMKUNT ACORETBL BALRSAVE CCC CD CI:C CHC CORPGPNT CORTABLE DMKDSPCH DMKFRET DMKPTRFT DMKPTRUL DMKSTKIO 
DMKSYSRM FFS FO Fl F15 F16 F240 F4 F7 F9 IDA IFCC IOBCAW 
IOBCC3 IOBCSW IOEFLAG IOBIRA IOBLCK IOBtHSC lOB RES IOBSTAT IOERBLOK IOERCYLR IOERDATA IOERFLG2 IOERLEN 
PRGC PRTC PSA RCWADDR RCWCCNT RCWCCW RCWCNT RCWCOMND RCWCTL RCWFLAG RCWGEI RCWHMR RCiIO 
RCiPNT RCiRCNT RCiSHR RCWTASK RCWVCAW RCW2311 RDEVBLOK RDEVMDL RO Rl Rl0 Rll R12 
R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 SAVEAREA SAVEWRKl 
SAVEWRK2 SAVEWRK3 SAVEWRK5 SA VEWRK6 SAVEWRK9 SKIP TYP2305 TYP3330 TYP3340 TYP3350 UC VDEVBLOK VDEVCSW 
VDEVFLAG VDEVREAL VDEVRELN VDEVTYPE VI:EV231B VMBLOK XPAGNUM X2048BND ZEROES 

I:MKUSO ACCTLENG ADSPCH ARSPPR ARSPPU ARSFRD ASYSLC ASYSOP ASYSVM BLANKS CLASGRAF CLASSPEC CLASTERM CPEXADD 
CPEXELOK CPEXRO CPEXR11 CPEXR12 CPEXSIZE DELPAGES DELSEGS DMKACOFF DMKACOTM DMKBLDRL DMKCFPRR DMKCVTBD DMKCVTBH 
DMKCVTDT DMKDSPCH DMKERMSG DMKFREE DMKFRELO DMKFRENP DMKFRERS DMKFRET DMKLOCKD DMKLOCKQ DMKPERT DMKPGSPO DMKPGTP5 
DMKPTRRL DMKPTRRU DMKQCNWT DMKSCHAU DMKSCHDL DMKSCHRT DMKSCNAU DMKSCNFD DMKSCNRD DMKSCNRN DMKSCNVU DMKSTKCP DMKSYSDW 
DMKSYSNM DMKSYSTI DMKTRCND DMKVATBC DMKVDRFL DMKVMAPS DMKVMASH DMKVSPWA ECBLOK EXTCCTRQ EXTCPTRQ EXTSIZE FFS 
F15 F8 LASTUSER LOGDROP LOGHCLD MICSIZE NORET OPERATOR PRIORITY PSA RDEVBLOK RDEVPAGE RDEVPNT 
RDEVRECS RDEVTYPC RDEVTYPE RECSIZE RUNUSER RO Rl Rl0 R 11 R13 R14 R15 R2 
R3 R4 RS R6 R7 R8 R9 SAVEAREA SAVERETN SA VER 11 SA VEWRK 1 SAVEWRK2 SAVEWRK3 
SFBFLAG SFBINUSE SFBLOK SFBSIZE SYSLOCS TREXSIZE TRQBFPNT 'IRQBLOK TRQBSIZE TYPESC TYP3705 VCHBLOK VCBSIZE 
VCUBLOK VCUDVTBL VCUSIZE VDEVADD VDEVBLOK VDEV SIZE VMACCOUN VMACNT VMACOUNT VMAEXP VMBLOK VMBSIZE VMCHCNT n 
VMCHSTRT VMCHTBL VMCOMND VMCUCNT VMDELAY VMDISC VMDVCNT VMDVSTRT VMECEXT VMFSTAT VMKILL VMLOGOFF VMLOGON ~ 

VMMICRO VMMLEVEL VMMSGON VMOSTAT VMPFUNC VMPNT VMPSTAT VMPSW VMQLEVEL HIRPAGE VMRSTAT VMSEG VMSHR 3: 
VMSIZE VMSYSOP VMTERM VMTRCTL VMTREXT VMTRMID HITRPER VMTRQBLK VMTTIME VMUSER VMVTERM VMV370R VMWNGON 0 

WAIT ZEROES P, 
ton s= 
(\) ~ 
0 (\) 

rT I .... rT 

g 0 
I 

t-I 
W ~ . tr 

(\) 

t:::I ~ .... 
t1 n 
(1) t1 
0 0 
rT en 
0 en 
t1 .... ttl 
(1) (\) 

en '"" (1) 

t1 
(l) 

w t1 
~ 0 
-..J (l) 



w ~odule External References (Labels and ltodules) n 
a-. I'tj 
CD 

3 

I:ftKVAT BALRSAVE BALR12 BALR13 BALR14 BRING CPCREGO Cl DEFER DMKDSPCB DMKFREE DftKFRET DMKP:ERIL DMKPRGSM 0 
p. 

DftKPTRAIi I:MKPTRRi ECELOK EXTARCB EXTCCPY EXTCRO EXTCR 1 EXTSEGLN EXTSHCRO EXTSHCRl EXTSBLEN EXTSHSEG EXTSTOLD ~ 

EXTVSEGS F4 PGADDR PGBLOK PGBSIZE PGPNT PSA RO Rl R10 R 11 R12 R13 
.... 

< CD 
3: R14 R15 R2 R3 R4 BS R6 R7 R8 R9 SAVEAREA SAVEREGS SAVERETN I 

" SAVERO SAVERl SAVER12 SAVER13 SAVER2 SAVER3 TREXADD VMBADCRO VMBLOK VMECEXT VftESTAT VMEXWAIT VIHNVPAG c+ w 0 
...,J VlHNVSEG VMIOPND VMNEiCRO VltPAGEX VMPEND VMPERPND VltPGPND VftPGPNT VltPSTAT VMPSW VltRSTAT VMSEG VMSHADT I 
0 VMTRCTL VMTRPER IRIGBT16 t-I .. Pl 

tr 
til I:MKVCA ADSPCB ATTN BALRSAVE BALR14 BALR1S BALR2 BALR3 EALR9 BLANKS BUSY CC CD CE CD 
'< .... 
en CHBATTN CBBCENT CBECNTL CBBEOFL CBBBIO CHBMNOP CHBM370 CHBRDBK CHBREAD CHBREST CHBSIZE CHBWAIT CBBWEOF 
c+ CBBiRIT CHIBLOK CHICMDB CHIC MDT CHXCNCT CHXDATH CHIFLAG CBIIDAi CHIHCCi CHICTHR CHIPKEY CHXRCNT CHISTAT n 
CD 1"1 
iii CHXYADD CHYBLOK CBYCMDB CHYCMDT CBYCNCT CHYDATN CHYFLAG CHYIDAi CBYNCCW CHYRCNT CHYSTAT CHYXADD CPEX 0 

CPEXADD CPEXBLOK CPEXFPNT CP!IRO CPEIR12 CPEISIZE CPiAIT DE DltKCVTBB DMKDIASM DMKDSPCH DMKFREE DftKFRET en 
t-t DMKQCNiT DMKSCHDL DMKSCNVU DMKSTKCP DMKSTKIO DMKSYSRM DMKTRCSI DftKVIOIN FFS FREESAVE Fl F2 F240 en 
0 

I.Q IDA IL IHTREQ IOBCAi IOBCC 1 IOBCC3 IOBCSi IOBFLAG IeBIOER IOEIRA IOELIBK IOBLOK IOBRES !:t! .... IOBRSTRT IOBSIZE IOBSTAT IOBUSER IOBVADD IOERBLOK IOERCCi IOERCSi IOERDATA IOERLEN IOERSIZE NORET PCI CD 
0 HI 

PCIF PRGC PRTC PSA RCWADDR RCiCCW RCiCNT RCWCOMND RCWCTL RCWFLAG RCWINVL RUNUSER RO CD 
Pl Rl R10 Rll R12 R13 B14 R1S R2 R3 R4 RS R6 R7 1"1 
=' CD 
P. RS R9 SAVEAREA SAVERETN SAVlRO SAVERl SAVER10 SAVER 11 SAVER12 SAVERS SA VEWRK 1 SAVEWRK2 SAVEiRK3 =' 

SAVEiRK4 SAVEWRK6 SAVEiRK9 SILl SKIP TEltPRO TEMPR2 '!EMPR3 TEMPR4 TEMPRS TYPCTCA UC UE 0 
I'tj CD 
t1 VDEVBLOK VDEVCCil VDEVINTS VDEVIOCT VDEVNRDY VDEVREAL VDEVSTAT VMBLOK VMDVSTRT VMIOWAIT VMLOGOFF VMRSTAT VMRUN 
0 VMTRCTL VMTRSIO VMTTIME VMUSER ZEROES tr .... 
CD EMKVCH ARIOCU ARIODV ASYSOP BRING CLASDASD CLASGRAF CLASSPEC CLASTAPE CLASTERM CLASURI CLASURO DEFER DftKCVTBH iii 

DMKERf!SG DMKFBEE DMKFRET I:MKPTRAN DMKQCNWT Df!KSCNRD DMKSCNRU DMKSCNVU DMKVDREL DMKVDSAT FFS NORE'! OPERATOR 
'=' PSA RCHBLOK RCBCUTBL RCHDISA RCHSTAT RCUBLOK RCUDISA RCUDVTBL RCUSTAT RDEVATT BDEVBLOK RDEVEUSY RDEVDED 
CD 
c+ RDEVDISA RDEVDRAN RDEVENAB RDEVFLAG RDEVCWN BDEVRCVY RDEVRSVD RDEVSCED RDEVSPL RDEVSTAT RDEVSYS RDEVTYPC RDEVTYPE 
CD RO Rl Rl1 Il13 R14 IllS R2 R3 R4 RS B6 R7 R8 
1"1 R9 SAVEAREA SAVER 1 0 SAVERll SAVER2 SAVEiRKl SAVEWRK2 SYSTEM TYP3705 VCHADD VCHBLOK VCHCUTBL VCBDED iii .... VCHSTAT 
=' 

VCUAED VCUBLOK VCUDVTBL VDEVADD VDEVBLOK VMBLOK VMCHTBL VMTTIME VMUSER 
Pl 
c+ I:MKVCN ALARM BLANKS BRING BUFCNT BUFIN BUFNIT CC CD CE CLASGRAF CLASTERM CMI:REJ CSi .... 

DE DEFEB DMKCFMAT DMKCFftEK DMKCFMEN DMKDSPCH DMKFREE DMKFRET DMKPSACC DftKPSA SC DftKPTRAN DMKQCNRD Df!KQCNWT 0 
=' DMKSCNVU DMKTBLUP DMKVIOMK DMKVMAPS EDIT Fl F256 F3 F4 F7 F8 IDA IL 
(i') INTREQ NOAUTO NORET NOTIME PCI PCIF PBGC PRIORITY PRTC PSA RDEVBLOK RDEVTYPC RDEVTYPE 
d RO Rl R10 R 11 R12 R13 R14 R15 R2 R3 R4 RS R6 .... R7 RS R9 SILl SKIP TYPESC TYP3210 UC UE VCHADD VCHBLOK VCBCUINT VCONADDR p. 
CD VCCNEFSZ VCONEUF VCONCAi VCONCCW VCONCNT VCONCOMD VCONCTL VCONFLAG VCONIDAP VCONRESZ VCONREUF VCONRCNT VCONRSV4 

VCONWESZ VCONWBUF VCONWCNT VCUADD VCUBLCK VCUCEPND VCUDVINT VCUSHRD VCUSTAT VCUTYPE VDEVADD VDEVATTN VDEVAUCR 
VDEVELCK VDEVBUSY VDEVCCW1 VDEVCFLG VDEVCHAN VDEVCHBS VDEVCON VDEVCSPL VDEVCSW VDEVFLAG VDEVINTS VDEVIOCT VDEVKEY 
VDEVNRDY VDEVPEND VDEVSFLG VDEVSNSE VDEVSTAT VDEVTERf! VDEVTIC VDEVTRAN VDEVTYPC VDEVTYPE VDEVVCF VMBLOK VMCF 
VMCHSTET VMCUSTET VMDISC VMDSTAT VMDVSTRT VMESTAT VMEXTCft VMEXWAIT VMGENIO VMIDLE VMIOINT VMIOPND VMLOGOFF 
VMMLEVEL VMMLINED VMMSTMP VMOSTAT VMPEND VMPRIDSP Vl'IPSW VMQSTAT VMRBSC Vf!RSTAT VftTERM VMTIO XRIGHT16 



~odule External References (Labels and Modules) 

I:MKVDB ALOCBLOK ALOCCYLl ALOCCYL2 ALOCIUP ALOCMAX ALOCPNT ALOCUSED ARIODV ASYSVM BALR1 BALR14 BALR6 BLANKS 
CC CLASDASD CLASSP]!C CLAST APE CPEIBLOK CPEIRO CPEIR 13 CPEISIZE DFRET DMKCVTBD DMKCVTBH DMKCVTHB DMKDSPCH 
DMKERMSG DMKFREE DMKFRET DMKIOSQR DMKLOCKD DMKLOCKQ DMKPGTPO DMKPGTP4 D~KPGTP5 D~KPGTTM DMKPGTTO DMKPGTT4 DMKPGTT5 
DMKPGT4P DMKPGT4T DMKPGT5P DMKPGT5T DMKPGT90 DHKQCNWT DHKSCNAU DMKSCNFD DMKSCNRD DMKSCNRN DMKSCNRU DMKSCNVN D MKSCNVS 
DMKSCNVU DMKSYSOC DMKSYSOW DMKVCBDC DMKVDREL DMKVDSAT FFS FTRRPS ' FTR35MB FTR70MB FO Fl FlO 
F3 F4 F6 F7 F8 F9 IOBCAW IOBCC3 IOBCP IOBFATAL IOBFLAG IOBIRA IOELOK 
IOBMISC IOBMISC2 IOESIZ]! IOBSPEC IOBSTAT IOBTIO IOBUSER NORET OPERATOR OWNDLIST OWNDPREF OWNDRDEV OWNDVSER 
PSA RDEVADD RDEVALLN RDEVATT RDEVBLOK RDEVCODE RDEVDED RDEVDISA RDEVFLAG RDEVFTR RDEVLNKS RDEVMDL RDEVMOUT 
RDEVOWN RDEVPNT RDBVPREF RDnSER RDEVSTAT RDBVSYS RDEVTYPC RDEVTYPE RDEVUSER RO Rl Rl0 Rll 
R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 SAVEAREA 
SAVERll SAVER2 SAVEWRK 1 SAVEWRK2 SAVEWRK3 SAVEWRK4 SAVEWRK5 SAVEWRK6 SAVEWRK9 SILl SKIP TYPCTCA TYP2305 
TYP2314 TYP3330 TYP3340 TYP3350 UDEVADD UDEVBLOK UDEVMODE UDEVW VCHADD VCHBLOK VCBCUTBL VCBD]!D VCBSTAT 
VCUADD VCUBLOK VCUDVTBL VDEVADD VDEVELOK VDEVCATT VDEVDED VDEVSTAT VDEVTYPC VMBLOK VMCBTBL VMCLASSB VHCLEVEL 
VMIU~SG VMl!ILVL2 Vl!IOSTAT VMSYSOP VMTTIME VMUSER ZEROES 

I:MKVDR ASY SVl!I CLASDASD CLASSPEC CLASTAPE CLASTERl!I CLASURI CLASURO Dl!IKACODV DMKCFPRD DHKCVTBH DMKFR:EE DMKFRET DMKIOSQR 
DMKIOSRW DMKQCNWT DMKSCNRI: DMKSCNRN DMKTDKRL DMKVCARS DMKVSPCO DMKVSPCR FFS Fl IOBCAW IOBFLAG IOBIRA 
IOBLOK IOBRELCU IOBSIZE IOBUSER NORJ!T OPERATOR PSA RDEVADD RDEVATT RDEVBLOK RDEVDED RDnFLAG RDEVLNKS 
RDEVMOUT RDEVSTAT RDEVSYS RDEVTMAT RDEVTYPC RDEVUSER RO Rl Rl0 R 11 R13 R15 R2 
R3 R4 R6 R8 SAVEAREA SAVER8 SAVEWRK2 SAVEWRK3 SAVEWRK4 SAVEWRK6 SAVEWRK9 SILl TYPCTCA 
TYP1052 TYP2305 TYP3211 VCONBFSZ VCONBUF VCONCTL VCONRBSZ VCONRBUF VCONSIZE VCONWBSZ VCONWBUF VDEVBLOK VDEVBND 
VDEVCATT VDEVCON VDEVDED VDEVEITN VDEVFCBK VDEVFLAG VDEVLINK VDEVREAL VDEVRELN VDEVSPL VDEVSTAT VDEVTDSK VDEVTYPC 
VDEVTYPE VFCBSIZE VMBLOK VMDVSTRT VMUSER VMVTERM VSPIBLOK VSPILEN ZEROES 

DMKVDS BALR1 BLANKS CLASDASI: CLASGRAF CLASSPEC CLASTAPE CLASTERM CLASURI CLASURO DMKCVTBH DMKERMSG DMKFREE DMKFRET 
DMKSCNRD DMKSCNRU DMKSCNVU DMKSYSCK DMKTDKGT FFS FTRRSRL F8 NICSIZE PSA RDEVATT RDEVELOK RDEVDED 
RDEVDISA RDEVDRAN RDEVENAE RD]!VEPLN RDEVFLAG RDEVFTR RDEVLNCP RDEVLNKS RDEVMAI RDEVMOUT RDEVNICL RDEVOWN RDEVRCVY 
RDEVRSVD RDEVSPL RDEVSTAT RDJ!VSYS RDEVTMAT RDEVTYPC RDEVTYPE RDEVUSER RO Rl Rl0 R 11 R12 
R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 SAVEAREA SAVERl 
SAVER2 SAVER8 SAVEWRK 1 SAVEWRK2 SAVEWRK3 SAVEWRK4 SAVEiRK6 SAVEiRK7 SAVEWRK9 TYPESC TYPCTCA TYP1052 TYP2305 
TYP2311 TYP3210 TYP3277 TYP3705 UDEVADD UDEVBLOK UDEVCLAS UDEVFTR UDEVMODE UDEVNCYL UDEVRELN UDEVSTAT UDEVTDSK 
UDEVTYPC UDEVTYPE UDEV3158 VCHADD VCHBLOK VCHBMI VCHCUTBL VCHSEL VCHSIZE VCBTYPE VCONSIZE VCUADD VCUBLOK 
VCUCTCA VCUDVTBL VCUSHRD VCUSIZE VCUTYPE VDEVADD VDEVBLOK VDEVBND VDEVCLAS VDEVCON VDEVCOPY VDnCSPL VDEVDED 
VDEVEOF VDEVFLAG VDEVLINK VD]!VNRDY VDEVRDO VDEVREAL VDEVRELN VDEVRSRL VDEVSFLG VDEVSIZE VDEVS'IAT VDEVTDSK VDEVTERM 
VDEVTMAT VDEVTYPC VDEVTYP]! VDEVUSER VMBLOK VMCBCNT VMCHSTRT VMCBTBL VMCUCNT VMCUSTRT VMDVCNT VMDVSTRT VMFBMI n VMFSTAT VMOSTAT VMSYSOP VMTERM VMVTERM ZEROES 1'1:1 

DMKVER ADSPCB ALARM BRING CLASDASD CPUID DDRCUAl DDRCUA2 DDRKEYN DDRREC DEFER DMKCVTBH DMKFREE DMKFRET ::c 
0 

til DMKIOEVR DMKPTRAN DMKQCNiT DMKSCNRD DMKSCNVU DMKVATRN EITMODE FTR2311B FTR2311T FTR70MB Fl F24 F256 ~ 

(I) F4 F4095 F7 F8 MDRCUA1 MDRKEYN MDRREC MIBCUAl MIHKEYN MIHREC MIHVOL NORET OBRCPIDN a 
0 ..... 
r+ OBRCUA OBRCUAIN OBRCUAPR OBRBAN OERKEYN OBRLSKN OBRPGMN OBRRECN OBRSENSN OBRSiSN OBRVOLN OBR33SNS OPERATOR CD .... PSA RDEVBLOK RDEVDED RDEVFTR RDEVSER RDEVSTAT RDEVTYPC RDEVTYPE RO Rl Rl0 Rl1 R13 I 

c+ 0 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 SAVEAREA SAVERJ!TH SAVER12 0 I:' 
SAVEWRKl SAVEiRK2 SA VEiRK3 SA VEWRK4 SAVEWRK5 SAVEiRK7 SAVEWRK9 TRAHMODE TYP2305 TYP2314 TYP3330 TYP3340 TYP3350 I 

t-t w VDEVBLOK VDEVDED VDEVREAL VDHRELH VDEVSTAT VDEVTYPC VDEVTYPE VMBLOK VMEIiAIT VMGPRS VMPSi VMRSTAT VMS TOR ~ 

YMUSER tr' 
~ 

(I) .... ..... 
1"'1 (") (I) 
0 1"'1 
c+ 0 
0 en 
1"'1 en .... 

!:tI (I) 

en (I) 

H\ 
(I) 
t; 

w (I) 

0\ t:S 
y:) 0 

(I) 



(,rJ Module External References (Labels and Mod ules) n 
-..I 1'0 
0 

til 

DMKVIO ATTN AVMREAL BLKMPI ERING BUSY CAi CE CHBM370 CHIBLOK CHIFLAG CLASDASD CLASGRAF CLASSPEC 0 
s:lo 

CLASTERM CLASURI CLASURO CSi CUE DE DEFER DMKCCiTR DPlKDSPCH DPlKFREE tMKFRET DMKIOSQV DMKPTRAN c: 
DPlKPTRUL DMKSCHDL DMKSCNVU DMKSTKIO DPlKTRCSI DPlKTRCSi DMKTRCiT DPlKUNTFR DMKUNTRN DPlKVCASH DPlKVCAST DPlKVCATS DPlKVCNEI 

...., 
<: CD 
::I: DMKVSPEI DMKVSPTO FTR35ME FTR70PlB Fl F240 F4095 F8 IL INTREQ IOBCAi IOBCC2 IOBCC3 I 

" IOBCSi IOBFATAL IOBFLAG IOBHIO IOBIOER IOBIRA IOBLINK IOBLOK IOBMISC IOBMISC2 IOBRADD IOBRCAW IOBRELCU c+ 
(,rJ 0 
-..I IOBSIOF IOBSIZE IOESPEC IOBSTAT IOBTIO IOBUNSL IOBUSER IOBVADD IOBWRAP IOERBLOK IOFRCSW IOERtATA IOEREIT I 
0 IOERSIZE PCI PSA RDEVAIOB RDEVELOK RDEVFTR RDEVMtL RO Rl Rl0 R 11 R12 R13 t'"4 

~ 
R14 R15 R2 R3 R4 RS R6 R7 R8 R9 SM TEPlPSAVE TRACBEF t:r 

Ul TRACCURR TRACEND TRACFLG2 TRACSTRT TRACOD TREICSi TREICTL2 'IREIT TYPCTCA TYP2314 TYP3210 TYP3330 TYP 3340 CD 
"< UC UE VCHAtD VCHBLOK VCEBMI VCEBUSY VCHCEDEV VCECEPND VCHCUINT VCHCUTBL VCHSEL VCHSTAT VCHTYPE ..... 
til 
c+ VCUACTV VCUADD VCUBLOK VCUBUSY VCUCEPND VCUCHBSY VCUCTCA VCUCUEPN VCUDVINT VCUDVTBL VCUINTS VCUSERD VCUSTAT n 
CD VCUTYPE VDEVADD VDEVBLOK VDEVBND VDEVEUSY VDEVCEAN VDEVCHBS VDEVCSW VDEVCUE VDEVDED VDEVDIAL VDEVENAB VDEVFLAG t1 
EI 0 

VDEVINTS VDEVIOB VDEVIOER VDEVNRDY VDEVPEND VDEVPOST VDEVRDO VDEVREAL VDEVSAS VDEVSPL VDEVSTAT VDEVTYPC VDEVTYPE en 
1;-1 VDEVUC VMACTDEV VMBLOK VMCHSTRT VMCUSTRT VMDSTAT VMDVSTRT VMECEIT VMESTAT VMEITCM VftEIiAIT VMGPRS VMIDLE en 
0 

I.Q VMINST VMIOACTV VIHOCNT VfHOINT VMIOPND VMIOWAIT VMNOTRAN VMPEND VPlPRIDSP VMPSTAT VMPSW VMQSTAT VPlRSTAT ::0 .... VMSIZE VMTIO VMTRBRIN VMTRCTL YfiITREXT VMTRIO VMTRSIO VMVCRO VMV370R XTNDLOCK In 
0 HI 

CD 
I» DMKVMA ACORETEL ASYSVM BALRS AVE BALR2 BRING CORFLAG CORPGPNT CORSHARE CORSWPNT COR TABLE CPEIADD CPEIBLOK CPEIRO t1 
t:I CD 
s:lo CPEXR2 CPEIR3 CPEXSIZE DEFER DMKCFMBK DMKCVTBH DMKDSPCH DMKDSPNP DPlKERPlSG DPlKFREE DMKFRET DPlKPTRAN DPlKPTRSC 1:1 

DftKSTKCP F1 F2 F4095 F4096 F8 LASTUSER PAGCORE PAGINVAL PAGSHR PAGSWP PAGTABLE PSA 0 
1'0 CD 
t1 RUNUSER RO Rl Rl0 R 11 R12 RB R14 R15 R2 R3 R4 R5 
0 R6 R7 R8 R9 SAVEAREA SAVERll SAVER2 SAVEWRK 1 SAVEWRK2 SAVEWRK3 SAVEiRK5 SA VEWRK6 SAVEWRK7 
t:r SAVEiRK8 SAVEWRK9 SEGPAGE SEGPLEN SEGTABLE SHRBPNT SERFPNT SHRNAME SHRSEGCT SHRSEGNM SHRTAELE SHRTSIZE SHRUSECT ..... 
CD SiPALLOC SWPFLAG SWPPAG SWPRECMP SWPSHR SWPTABLE SWPTRANS SiPVPl SiPVPAGE VMABLOK VftAFPNT VMANAME VfI\ASHRBK 
EI VMASIZE VMASSIST VMBLOK VPlIDLE VMOSTAT VMPAGES VMRSTAT VMSEG VMSHR VMSHRSYS VMTTIME XPAGNUM 
t::I 
CD rMKVMI ATTN EUSY CAW CC Ct CE CLASDASD CLASSPEC CLASTAPE CLASURI CSi DE EITMODE c+ 
CD IL INTTIO IPLCCWl IPLPSW PSA RO Rl Rl0 R 11 R12 RB R14 R15 
t1 R2 R3 R4 R5 R6 R9 SILl SKIP SM TYPCTCA TYPRDR TYPUNSUP TYP2401 s .... TYP2415 TYP2420 TYP2501 TYP2540R UC UE VMMCODE VMMTEXT 
l:I 
I» 
c+ .... 
0 
::I 

en 
c: .... 
s:lo 
CD 



Module External References (Labels and Modules) 

DMKVSP ADDSFB ARSPBD BLANKS BRING CC CD CE CBGSFB CLASURI CLASURO CMDREJ CPEXADD CPEXBLOK 
CPEXFPNT CPEXRl CPEXRll CPEXRa CPEXSIZE CSli DATACBK DE DEFER DftKEOXHR DMKCKSPL I:MKCVTBH DMKCVTDT 
DMKDSPCB DMKERMSG DMKFREE DMKFRET DMKFGTSG DMKPGTVG DMKPGTVR DMKPSACC DMKPSASC DMKPTRAN DMKPTRUL DMKRPAGT DftKRPAPT 
DftKSCBVD DftKSCNVU DftKSPLCV DMKSPLDL DMKSPLOV DMKSTKCP DMKTMRPT DMKVIOMK DftKVlUPS FFS FO Fl F4 
F4095 F4096 Fa IDA IL INTREQ LOCK OPNSFB PCI PCIF PRGC PRTC PBTCHN 
PSA RECBLOK RECCYL RECMAP RECPNT RECSIZE RECUSED RO Rl Rl0 Bll R12 R13 
R14 R15 R2 R3 R4 RS R6 B7 Ra R9 SAVEAREA SAVERO SAVER 1 
SAVER2 SAVERa SAVEliRK2 SAVEliRK6 SFBCLAS SFBDUMP SFBEOF SFBFILID SFBFLAG SFBFLAG2 SFBHOLD SFBINUSE SFBLAST 
SFBLOK SFBMISCl SFBNOBLD SFBOPEN SFBPNT SFBBECER SFBRECNO SFBRECS SFBRECSZ SFBSTART SFBTIME SFETYPE SFBUBOLD 
SFBUSER SILl SKIP SPLINK SPNXTPAG SPPREPAG SPRECNUft SPSIZE SYSTEM TEMPRO TEMPRl TYPPRT TYPPUN 
TYPTIMER TYP3210 TYP3211 TYP3505 UC UE VCHADD VCHBLOK VCBBMX VCHCEDEV VCHCEPND VCHcun'T VCHCUTBL 
VCBSEL VCBSTAT VCHTYPE VCUADD VCUBLCK VCUDVINT VCUDVTBL VDEVADD VDEVBLOK VDEVBUSY VDEVCCW 1 VDEVCFCL VDEVCBAN 
VDEVCBES VDEVCLAS VDEVCOHT VDEVCSPL VDEVCSli VDEVDED VDEVDIAG VDEVEOF VDEVFCBK VDEVFEID VDEVFLAG VD:EVHOLD VDEVINTS 
VDEVIOCT VDEVKEY VDEVNRDY VDEVPEND VDEVFURG VDEVSFLG VDEVSNSE VDEVSPL VDEVSTAT VDEVSVC VDEVTYPC VDEVTYPE VDEVUNIT 
VFCBBLOK VFCBCBL VFCBCNT VFCBIOF VFCBFLAG VFCBLOAD VFCBNDEX VFCBSIZE VMBLOK VftCBSTRT VMCHTBL VMCRDS VMCUSTRT 
VMDVSTRT VMESTAT VMEXTCM VMEXWAIT VMINST VMIOINT VlHOPND VMLINS VMOSTAT VMPEND VMPNCB VMPSli VMBSTAT 
VMSYSOF VMTTIME VMUSER VSPBUFBK VSPBUFSZ VSPCAli VSPCCi VSPDPAGE VSPIDACT VSPIDAL VSPIDASW VSPIDA i2 VSPLCTL 
VSPMISC VSPNEXT VSPRECNO VSPSFBLK VSPSIZE VSPVPAGE ZEROES 

I:MKliRM ACNTBLOK ACliTCCli ACNTDATA ACNTNEXT ACNTSIZE ADDSFB ALARM ARIODV BRING CC CBGSBQ CKPBLOK CKPNAME 
CKPRftAX CKPSIZE CLASSPIC CLASTERM CPID DEFER DMKCKSIN DMKCKSPL DftKCKSliM DPlKCVTBD DMKERMSG DPlKFREE DMKPGTVG 
DMKPGTVR DMKPTRAN DMKQCNWT DMKRPAGT DMKRPAPT DMKRSPAC DMKRSPCV DMKRSPDL DMKRSPHQ DMKRSPID DMKRSPPR DMKRSPPU DMKRSPRD 
DMKSCHRU DMKSYSDT DMKSYSLG DMKSYSOW DMKSYSiM FFS F256 Fa LCCK NICELOK NICDISA NICE NAB NICFLAG 
N ICLGRP NICSIZE NICSTAT NICTERM NICTYFE OPERATOR OWNDLIST OWNDRDEV PSA RDEVALLN RDEVAUTO RDEVBLOK RDEVCKPT 
RDEVCLAS RDEVCODE RDEVDISA RDIVDRAN RDEVENAB RDEVFLAG RDEVMAX RDEVNCP RDEVNICL RDEVRECS RDEVSEP RDEVSER RDEVSPL 
RDEVSTAT RDEVTYPC RDEVTYPE RECBLOK RECCYL RECPNT RECSIZE RO Rl R10 R12 R13 R 14 
R15 R2 R3 R4 RS R6 R7 Ra R9 SAVEAREA SAVER2 SA VEWRKl SAVEWRK2 
SAVEWRK3 SAVEWRK4 SAVEiRK6 SAVEiRK7 SFBDATE SFBEOF SFBFILID SFBFLAG SFBFLAG2 SFBINUSE SFBLOK SFBOPEN SFBPNT 
SFBRECER SFBRECS SFBRSTRT SFBSIZE SBQELCK SBQBSIZE SILl STARTIME SYSIPLDV SYSTEM TYPBSC TYP230S TYP3330 
TYP3340 TYP33S0 TYP370S ZEROES 

n 
ttl 

3 
0 
~ 

til ~ 

CD ~ 

0 CD 
c+ I 
~. c+ 
0 0 
~ I 

1:""1 
W ~ 

0-
(I) 

t::I ~ 
~. 

(') 11 
(I) 11 
0 0 
c+ C1l 
0 C1l 
11 

!:I:I ~. 

(I) (I) 

C1l t-h 
(I) 

11 
(I) 

W ~ 

~ 0 - CD 





Label Count References In 
I"" 

It"" 
I>' 

ABORT 000002 DftKNLD Df!KRNH It:J:I 
ACCTACNC 000003 Df!KHVD 11:>1:1 

It"'I 
ACCTBLOK 000003 DftKHVD Df!KSPL I 
ACCTDlST 000002 Df!KHVD Df!KSPL 11-3 

10 
ACCTLENG 000004 DMKHVD Df!KUSO I 
ACCTUSER 000002 Df!KHVD DMKSPL Iar: 

10 ACNTBACK 000007 DftKACO DftKRSE It! 
ACNTBLCK 000021 J1MKACO DMKCKP DPIKHVD DMKRSE DMKWRM Ie: 

ACNTCCW 000009 DftKACO DMKCKP DMKWRft It-' 
ItltI 

ACNTCODE 000001 DMKHVD 
In ACNTDATA 000014 DftKACO DMKCKP DPIKHVD Df!KWRf! I~ 

ACNTNEXT 000014 Df!KACO DMKCKP DMKWRM 10 
ACNTNUM 000001 DMKHVD Itn 

I til 
ACNTSI2E 000008 DMKACO DPIKHVD DMKWRft 
ACNTUSER 000001 DftKHVD I~ 

ItltI ACORETBL 000068 Df!KACO DMKELE DPIKCCW DMKCDS Df!KCFS Df!KCPI DMRCPV DMKCSO DMKDGD DMRDf!P EMKEDM DMKFRE I~ 
DMKf!CC DMKMCH Df!KPAG DMKFGS DMKPSA DPIKPTR DMKRPA DPIKSCH DMKSPL DMKUDR DMKUNT DMKVMA ItltI 

1= ACTSFB 000005 DMKCKS ItltI 
ADDS FE 000006 DMKCKS DMKNLD DMKSPL DMKVSf DMKWRM HZ: 
ADSPCH 000005 Df!KlOS DMKQCN Df!KUSO EPlKVCA DMKVER In 

I till 
AFREE 000007 DPIKFRE 
ALARM QOO054 DPlKCCH DMKCKP DMKCNS DPlKCPI DPlKCQP Df!KDAS DMKDf!P DMKERM DMKGRF DMKMCH DMKPlID DMKMSG 

DMKMSW DMKOPR DMKPAG DMKFGT DMKQCN DMKRGE DMKRNH DPIKRSP DMKSAV DMKUDR DMKVCN DMKVER 
DMKWRM 

ALOCBLOK 000012 DMKCPI DMKMON DMKPGT DMKTDK DMKVDE 
ALOCCYL1 000006 DMKCPl Df!KTDK DMKVDB 
ALOCCYL2 000005 DMKCPI DMKTDK DMKVDB 
ALOCMAf 000012 DMKCPI Df!KPGT DMKTDK DMKVDB 
ALOCf!AX 000015 DMKCPl DMKMON DMKPGT DMKVDE 
ALOCPNT 000004 DMKCPI DlilKTEK DMKVDE 
ALOCUSED 000010 DMKCPI Df!Kf!ON DMKPGT DMKVDE 
APAGCP 000006 DMKCPI DMKPSA 
APTRAN 000003 DMKCSO DMKTRC 
APTRLK 000001 DlIIKCCW 
ARlOCC 000001 DMKCKP n 
ARlOCH 000009 DMKCKP DMKCPI DMKCPS DMKCPV DMKCQP DMKIOG DMKMON DMKSCN DMKSSP I'd 

ARlOCT 000010 DMKCKP DMKCPI DMKCPS DMKCPV DMRCQP DMKEEft DftKlOG DMKMON DMKSCN DMKSSP t-' 
ARlOCU 000012 DMKCCH DMKCKF DMKCPI DMKCPS DMKCPV DMRCQP DMRDlA DMKMON Dl!IRNES DMKSCN DlIIKSSP DMKVCH I» 

ARlODC 000002 DMKLOG DMKSCN t:J' 
tn CD 
CD .... n , 
rt t+ ..,. 

0 
0 I 
t:S :z 
w 0 

~ 
c:: 

0 
.... ..,. CD 

1'1 n 
CD 1'1 n 0 
rt en 
0 en 
1'1 ..,. 

= CD CD en ..... 
~ 
1'1 

W 
CD 
:::s -....J n w CD 



w Label Count References n 
-.J '"'=' 01:: 

t-t 
ARIODV 000045 D!!KACO D!!KCCB DMKCKP DMKCKS DMKCPI DMKCPS DMKCPV DMKCQP DMKCQR DMKCSO DMKDIA DMKD!!P I» 

b" 
DMKDRD DMKGRP D!!KLOG D!!K!!CN D!!KNES DMKNET DMKPAG DMKPGT DMKPTR DMKSCN DMKSPL DMKSSP (D 

D!!KUDR DMKVCB DMKVDB DMKWRM ..., 
<: I 
:. ARIOPR 000004 DMKCKP DMKCSO DMKSPL r+ 

" ARIOPU 000008 DMKACO DMKCKP DMKCSO DMRSPL 0 w I 
-.J ARIORD 000004 D!!RCKP DMKCSO :3 
0 ARSPAC 000003 DMKACO 0 

ARSPPR 000011 D!!RCRP DMRCRS DMKCQG DMKCQR DMRCSP DMKCSU D!!REDM DMKSPL DMRUSO 
p. 
~ 

til ARSPPU 000009 DMKCKS DMKCQG DMKCQR DMKCSF D!!RCSU DMKSPL DMKUSO ..., 
'< ARSPRD 000025 D!!KCKS D!!KCQG DMKCQR Dl'IKCSP DMKCST DMKCSU Dl'IRDl'IP Dl'IKDRD D!!KNLD D!!KSPL D!!KUSO DMKVSP (D 
til 
r+ ASYSLC 000022 DMKACO DMKBLD DMKCPS DMRCPT D!!KCKP D!!KLOC Dl'IKLOG Dl'IKUDR Dl'IKUSO n 
(D ASYSOP 000014 D!!KCPI D!!KCPS DMKLOG DMKMSG D!!KMSi DMKPSA D!!KQCN DMKUSO D!!KVCB t1 
EI 0 

ASYSVl'I 000098 DMKACO DMKBLD DMKCP~ DMKCRF D!!RCNS DMKCPB DMKCPI DMKCPS DMKCPV DMKCQP D!!KCSO DMKDAS til 
t-t D!!KDIA DMKDRI: DMKDSP DMKEDM Dl'IKPRE Dl'IKGRP D!!KIOS Dl'IKLOG D!!RMCC Dl'IKftCB Dl'IKl'IID DMKl'ION til 
0 

I.Q DftKNES DftKNET Dl'IKNLD Dl'IRPGS DMKPGT Dl'IKPSA Dl'IKPTR Dl'IKRGA Dl'IKRNH Dl'IKSCll Dl'IKSPL DPlKTHI l:O .... D!!KUSO DMKVDB Dl'IKVDR Dl'IKVl'IA (D 
0 

ATTN 000055 Dl'IKCPC DMKCPft DftKCKP D!!KCNS DftRDDR DMKDIR DMKDMP DMKDSP DMKPMT DMKGRP DftKIOS DftKRNB I-h 
(D 

I» DftKBSE DftKSSP DftKVCA DMKVIO DMKVMI t1 
::s AVMREAL 000025 DftKBLD DMKCPG DftKCPP DftRCPS DMKCPV DftKPBE DftKMCH DftKPGS DMKPTR DftKRPA DMKSCH DMKVIO (D 
p. ::s 

BALRSAVE 000077 D!!KCCi DftKCPM DMKCBS DMKCPI DPlKCPV DMKCSO DMKCVT DMKDIA D!!KPRE DMKLOC DMKPGT DMKPTR 0 
'"'=' DMKQCN DMKRNH DMKSCH DftKSCN DMKUNT DMKVAT DMKVCA DMKVMA (D 

t1 
0 BALRO 000005 D!!KCPI D!!KPGT DMKPTR 
b" EALR 1 000021 DMKCPI DMKCVT DftKDIA DMKPGT D!!RSCN DMKVI:B DMKVDS ..., 
(D BALR 11 000001 DMKSCB 
&I EALR12 000001 DMKVAT 
t::J BALR13 000001 DMKVAT 
(D fALR 14 000008 DMKCPI DMKLOC DMKVAT DMRVCA DMRVDB r+ 
(I) BALR15 000001 D!!KVCA 
t1 EALR2 000027 DMKCCi DMRCPI DMKCVT DMKD!!P D!!RPTR DMKSCN DftKTMR DftKVCA DMKVftA 
II BALR3 000007 DMKCCW Df!lKCIIIS DMKSCB DftKVCA .... 
::s fALR6 000005 DMKCNS DMKCPI DftKVDB 
I» BALRS 000005 DMKCPI DMKPGT DMKSCN r+ .... EALR9 000004 DMKCNS DMKVCA 
0 BLANKS 000121 Df!lKCDS DMKCPC DftKCPD DMKCPM DMKCPS DMKCNS Df!lRCPB DMKCQG D!!KCQP Dl'IKCQR DMKCSO DMKCSP t:S 

DMKCSU DMKDIA DMKERM DMKGRP DMRHVC DMKLNK DMKLOG DMKMCC DMKMSG DMKNES DMKNET DMKNLD 
Cil Df!lKCCIII D!!KRGA DMKRNB DMKRSP DMKSCB Dl'IKSPL DMRTHI Dl'IKTRC DMKUDR DMKUSO DMKVCA DMKVCN c: .... DMKVDB DMKVDS DMKVSP 
~ BLKMPI 000002 DMKCPI D!!KVIO (I) 

ERING 000134 DMKCCW DMKCDB DMKCDS D!!RCPD DMKCPG DMKCKS DMKCNS DMKCPB DMKCPI DMKCPV DMKCSO DMKCST 
D!!KDGD D!!KDRD DMKDSP D!!KFRl'I DMKGIO Dl'IKGRP D!!KHVC DMKHVD D!!KIOF DMKIOG D!!K!!CC D!!KNLD 
DftKPRG DftKPRV DftKPSA D!!KFTR DftRRGA DMKRGB DftKRPA DMKRSP D!!KSCH DftKSEP DftKSNC Dl'IKSPL 
DMKTMR Df!lKTRC Df!lKUDR Dl'IKVAT DftKVCH DMKVCN Df!lKVER DftKVIO DftKVftA DMKVSP Dl'IKWRl'I 

fSCAUSER 000004 DMKRGA DMKRGB 
BSCBLOK 000005 DMKESC DMKRGA Df!lKRGB 
BSCCNT 000009 D!!KRGA 



Label Count 

ESCCOPY 000009 
BSCECCi1 000004 
ESCECCi2 000004 
BSCEBQ 000004 
ESCETB 000005 
BSCFLAG 000040 
ESCFLAG 1 000008 
BSCIGB 000004 
ESCIBDE! 000006 
BSCLINE 000002 
ESCLOG 000005 
BSCOPIED 000004 
ESCPCCi 1 000004. 
BSCPCCi2 000002 
ESCPCCi3 000003 
BSCPCCi4 000006 
ESCRCVI: 000008 
BSCREAD 000024 
ESCREGEB 000003 
BSCRESF 000028 
ESCRROBB 000006 
BSCRSTRT 000002 
ESCRVI 000003 
BSCSCAli 000007 
ESCSCCi 1 000006 
BSCSCCi2 000005 
ESCSCCi3 000003 
BSCSEL 000012 
ESCSENI: 000005 
BSCSENSE 000015 
ESCSIZE 000002 
BSCSIZE1 000004 
ESCSIZE2 000001 
BSCSPTR 000015 
ESCTMRQ 000006 
BSCTSTRQ 000002 
ESCUCOPY 000006 
BSCUECCW 000003 

til EUFCNT 000027 
CD BUFFER 000107 0 
~ .... BUFIN 000003 0 
t:I 

W . 
t:I .... 
t1 
CD 
0 
r+ 
0 
t1 .... 
CD 
en 

w 
-..J 
U1 

References 

DMKRGA 
Dl!KRGA 
DMKRGA 
Dl!KRGA 
DMKRGA 
Dl!KRGA 
DMKRGA 
Dl!KRGA 
DMKRGA 
Dl!KRGB 
DMKRGA 
DMKRGA 
DMKRGA 
DMKRGA 
DMKRGA 
DMKRGA 
DMKRGA 
Dl!KBSC 
DMKRGA 
Dl!KBSC 
DMKRGA 
Dl!KRGA 
DMKRGA 
Dl!KRGA 
DMKRGA 
DMKRGA 
DMKRGA 
Dl!KRGA 
DMKRGA 
Dl!KEGA 
DMKRGA 
DMKRGA 
DMKRGB 
DMKRGA 
DMKRGA 
DMKRGA 
DMKRGA 
DMKRGA 
DMKCFM 
DMKCDB 
DMKLOG 
DMKCPI 

DMKRGE 

DMKRGB 
DMKRGB 

DMKRGE 
DMKRGB 
DMKRGA 

DMKRGA 
DMKRGB 

DMKRGE 
DMKRGB 
DMKRGB 
DMKRGB 
DMKRGE 

DMKRGB 
DMKRGE 

Dl!KRGE 

DMKCFS 
DMKCFG 
DMKMSG 
DMKVCB 

DMKRGB 

DMKRGB 

DMKCPI 
DMKCFM 
DMKRGA 

DMKCST 
I:MKCFS 
Df!KRSF 

DMKERM 
DMKCPI 
Df!KSCN 

I:MKGRF 
DPIKCSO 

DMKLOG 
DMKCSP 

DMKRGA 
DMKCST 

DMKRSP 
DMKCSU 

DMKVCN 
DMKERM DMK GRF DMKLNK 

n 
I'tI 

t-t 
III 
t:r 
CD 
I-' 
I 
~ 
o 
• 3: 
o 
~ 
C 
I-' 
CD 

n 
t1 
o en 
en 
!::tj 
CD 
Ht 
CD 
t1 
CD 
t:I 
o 
CD 



w label Count References n 
-..J I'd 0'1 

EUPINLTH 000018 DMKCPft DftKERM DMKGRP 
f:"I 

DMKINK DMKRGA tftK RGB PI 
BUPNXT 000026 DMKCDB DMKCFG DMKCPM DMKC:fS DMKCPI DMKCSO DMKCSU DMKlliK DMKLOG DMKMSG DMKRSP DMKSCli t:r 

(1) 

~ 
DftKVCN ~ 

::I: BUPSI ZE 000026 DMKCPM DMKCPI DMKERM DMKGRP DMKLNK DMKLOG DMKRGA DMKRSP I 

" EUSOUT 000005 DMKRNH DMKRSE rt-
0 w BUSY 000044 DMKCKP DMKCBS DMKCPI DMKDDR DftKDIR DMKDMP DMKFMT DMKIOS DMKPSA DMKRliH DMKSSP DMKVCA I -..J 

0 DMKVIO DMKVMI :.: 
0 

CACTDEV 000002 D!!KBliH Cl.I 

til CACTLIB 000002 DftKNET DMKRBH ~ .... 
Ioc:I CACTLTR 000002 D!!KIlES D!!KRBH (1) en 
rt- CAW 000073 DftKCCH DftKCKP DftKCBS DMKCPI DMKDftP DMKPMT DftKIOS DMKOPR DftKSAV DftKSSP DMKTRC DMKVIO n (1) DMKVftI t1 
II CC 000845 DMKACO DftKBSC DftKCCW DMKCKF D!!KCNS DftKCPI DftKCSO DMKDAS DMKDDR DftKDGD DMKDIA DMKDIR 0 

en f:"I D!!KD!!P DMKPMT DMKGRP DMKIOS DftK!!CC DMKMOB DMKBLD DMKCPR DMKPAG D!!KRGA DMKRGB DMKRNH til 
0 DftKRSE DMKRSP DMKSAV D!!KSEF DMKSPL DMKSSP DftKTDK DMKUCB DMKUCS DMKUDR DMKVCA DMKVCN IQ = .... DMKVDB DMKVMI DMKVSP DMKWRM (1) 
0 CCC 000041 DMKBSC DftKCCH D!!KCNS DMKCFI D!!KDAS DMKEIG DMKGRF DMKHVC DMKIOE DMKIOS D!!KMSW DMKRSE tit 

PI D!!KESP D!!KSlV DMKTAP DMKUBT 
(1) 
t1 

t:J CCCPUID 000001 DftKCCH (1) 
Cl.I t:J CCDES!!D 000003 D!!KDIA D!!KRBH 0 I'd CCDEVTYP 000001 DMKCCH (1) 
t1 
0 CCHADDE 000001 D!!KCCH 
t:r CCHANlt 000006 DMKCCH 
~ 
(I) CCHCAV 000001 DMKCCH 
• CCHCHNL 000012 DMKSEV DMKSIX 
0 CCHCMDV 000010 D!!KEIG DMKS!V DftKSIX 
CI) CCHCNTB 000005 DMKSEV DMKSIX 
rt- CCHCPU 000003 DMKSEV DMKSIX (I) 
t1 CCHCUA 000002 DftKCCH 
II CCHDAV 000010 DMKEIG DMKSEV DMKSIX .... 
t:J CCHDI 000003 DftKEIG DMKSEV - DMKSIX 
~ CCHHIO 000002 DMKCCH rt-.... CCHINTE 000001 DftKCCH 
0 CCHINTPC 000007 DMKSEV DMKSIX =' CCHLOG!t5 000002 DMKCCH 
en CCHLOG60 000001 DMKSIX 
~ .... CCHLOG70 000001 DMKSEV 
Cl.I CCHLOG80 000002 DMKCCH DMKEIG CI) 

CCHRCV 000003 DMKCCH DMKEIG 
CCHREC 000005 DMKCCH DMKEIG DMKSEV DMKSIX 
(CHSIOE 000002 DMKCCH 
CCHSIZE 000002 D!!KCCH 



Label 

CCBSIZE 1 
CCBSBSB 
CCBSTG 
CCBTIO 
CCBUSV 
CCPADDB 
CCPARft 
CCPEBTllY 
CCPftAXID 
CCPNUIE 
CCPPSIZE 
CCPBESID 
CCPROGID 
CCPRSTAT 
CCPRSTEP 
CCPRSTYP 
CCPSIZE 
CCPTEP 
CCPTPEP 
CCPTYPE 
CCRECTYP 
CD 

CDC 

CDCTLlli 
CDISPLY 
CE 

CFSTOP 
CBANID 
CBBATTJ 
CBBCENT 
CBBCNTL 
CBBEOFL 
CBBBIO 
CBBftNOP 
CBBlO70 

tn CBBRDBK 
CD CBBREAD 
(1 

CBBREST 1+ .... CBBSIZE 
0 
t:S 

w 

t:1 .... 
H 
CD 
(1 
1+ 
0 
H .... 
CD 
en 

w 
...,J 
...,J 

Count 

000002 
000001 
000004 
000002 
000005 
000001 
000004 
000001 
000001 
000003 
000005 
000002 
000003 
000001 
000001 
000001 
000003 
000002 
000001 
000003 
000002 
000099 

000038 

000001 
000001 
000077 

000006 
000003 
000013 
000003 
000002 
000014 
000015 
000005 
000020 
000007 
000008 
000012 
000003 

References 

DftKCCB 
DftKCCB 
DftKSEV 
DftKCCB 
DftKEIG 
DMKSNC 
DftKNLD 
DftKNLD 
DftKNLD 
DMKliLD 
DftKNLD 
DMKliLD 
DftKCCB 
DMKliLD 
DftKNLD 
DMKNLD 
DftKNLD 
DMKliLD 
DftKNLD 
DMKliLD 
DftKCCB 
DftKCCW 
DftKRGB 
DftKBSC 
DMKRSE 
DftKliET 
DftKNES 
DftKCKP 
DMKRSE 
DftKCPS 
DftKIOG 
DftKVCA 
DMKVCA 
DMKVCA 
DftKVCA 
DftKVCA 
DMKVCA 
DftKVCA 
DMKVCA 
DMKVCA 
DMKVCA 
DMKDIA 

DMKSIX 

DMKSEV 

DMKSNC 

DftKSNC 
DMKSNC 

DftKSNC 

DftKCBS 
DftKSSP 
DftKCCB 
DMKRSP 

DftKCNS 
DMKRSP 
DMKftCC 
DftKPRV 

DMKYIO 

DMKVCA 

DMKSIX 

DftKDAS 
DftKTAP 
DftKCNS 
DftKTAP 

DftKCPI 
DMKSAV 
DMKftON 

DMKDDR DftKDGD DftKDIA DMKDIR DMKFftT DftKGRF DftKISM DftKOPR DftKRGA 
DftKUNT DftKVCA tMKVCN DftKVMI DMKVSP 
DftKDAS DftKGRF DMKBYC DMKIOE DMKIOF DftKIOS DftKftSW DMKNLD DftKRNB 
DftRUNT 

DMKtDR DMKDIA DMKDIR DftRDftP DMKFMT DMKGRF DMKHVC DftKIOS DMKRGA 
DMKSSF DMKYCA DMKVCN DMKVIO DftKVlH DftKVSP 

n 
to 

t-' 
~ 
0-
CD 
~ 
I 

1+ 
0 
I 

=-0 
~ 
d 
~ 
CD 

n 
H 
0 en 
en 
l:I:1 
CD 
Ht 
CD 
H 
CD 
t:S 
(1 
CD 



w Label Count References n ooJ I"tj 
CD 

t"4 
CHBWAIT 000014 DMKCFP DMKVCA ~ 

tr CHBWEOP 000002 Dl'lKYCA (1) 

< CHBWRIT 000009 DMKVCA .... 
I or: CHC 000014 DMKBSC DMKCNS 'DMKGRF DfilKHVC DfilKIOS DMKRNB DMKRSE DfilKTAP DMKUNT cT 

" CBGRDV 000002 DfilKCSO 0 w I 
ooJ CBGSFB 000012 DfilKCKS DMKCSP DfilKCSU DfilKDfilP DMKRSP DfilKSPL DMKVSP D: 
0 CBGSBQ 000004 DMKCSP DMKWRM 0 

CBIBLOK 000013 DMKCFP DfilKCQG DMKDIA DMKVCA DMKVIO 0. 
CI 

VI CBICfilDE 000010 DMKVCA .... I< 
en CBICfilDT 000014 Dl'lKVCA CD 
cT CBICNCT 000009 DMKCFP DMKYCA n 
CD CBIDATN 000005 DMKYCA H B 0 

1:-1 
CBIFLAG 000057 DMKCFP DMKVCA DMKVIO [II 

0 CBIIDAi 000004 DMKVCA en 
IQ CBINCCW 000012 DMKVCA !:O 
~. CBIOTBH 000009 Dl'lKCQG Dl'lKDIA DJ!IIKVCA (1) 
0 Hl CBIPKEY 000005 DJ!IIKVCA (1) 
PI CBIRCNT 000010 Dl'lKVCA H = 0. CBISTAT 000020 DMKVCA CD 

= 
~ 

CBIYADD 000007 Dl'lKCQG Dl'lKDIA DJ!IIKVCA 0 

H CBYBLOK 000005 DJ!IIKDIA DMKVCA CD 

0 CHYCfilDB 000001 Dl'lKVCA tr CBYCfilDT 000003 DMKVCA .... 
(1) CBYCNCT 000004 Dl'lKVCA 
iii CBYDATN 000006 DMKVCA 
t:::I CBYFLAG 000032 Dl'lKVCA 
CD CBYIDAi 000001 DMKVCA ("t 
(I) CBYNCCi 000004 Dl'lKVCA 
H CBYOTBR 000001 DMKDIA e 
~. CBYRCNT 000005 Dl'lKVCA 
t:I CBYSTAT 000003 Dl'lKVCA PI 
("t CBYIADD 000005 Dl'lKDIA DMKVCA 
~. CKCMASK 000001 DMKCPI 0 
t:I CKPBITS 000003 Dl'lKIiNB 

en CKPBKSZ 000001 Dl'lKRNB 
CI CKPBLOK 000004 DMKENB DMKWRM 
~. CKPNAME 000003 DMKRNB DJ!IIKWRM 
0. CKPRfilAX 000002 DMKHHB DMKWRM (I) 

CKPSIZE 000003 DMKRNB DMKWRM 
CLASDASD 000108 DflKACO DMKCCW DMKCKP DMKCPI DMKCPS DMKCPV DMKCQG DMKCQP Dl'lKCQR Dl'lKDDR DMKD:EF DMKDGD 

DMKDIR DIHDMP DMKEDM DMKGIC DMKIOC DMKIOE DMKIOF mUIDS DMKLNK DMKLOG Dl'lKl'lON Dl'lKl'lSW 
Dl'lKSCN DMKSSP DMKTRC I:MKVCE DMKVDB DMKVDR DMKVDS DMKVER Dl'lKVIO DMKVfH 



label Count References 

CLAS GRAF 000060 DlUCCW Dl!IKCFl!I Dl!IKCFP Dl!IKCFT Dl!IKCKP Dl!IKCP1 Dl!IKCPS Dl!IKCPV D!!KCQG D!!KCQP Dl!IKI:EF Dl!IKD1A 
Dl!IKD1R D!!KEDl!I Dl!IKGRF I:MKBVC DMKHVD DMK10E DMK10F DMK10S DMKOPR DMKPSA DMKQCN Dl!IKSSP 
DMKTRC DMKUSO DMKVCB DMKVCN DMKVDS DMKV10 

CLASSPEC 000061 DMKBLD DMKCCW DMKCFP Dl!IKCFT Dl!IKCKP DMKCPB DMKCQG DMKCQP DMKCQR DMKDEF Dl!IKD1A Dl!IKD1R 
D!!KBVD D!!K1OE DMK10F DMK10S DMKLOG DMKNES Dl!IKBET D!!KNLD Dl!KQCN Dl!IKRBB DMKSCN DMKTRC 
DMKUSO DMKVCH Dl!IKVDB Dl!IKVDR DMKVDS DMKV10 DMKVM1 DMKWRl!I 

CLASTAPE 000064 Dl!IKCCW DMKCFS DMKCKP DMKCPB DMKCP1 DMKCPS DMKCQG Dl!IKCQP D!!KCQR DPlKDDR DMKDl!IP 
DMKG10 DMK10E DMK10F DMK1CS Dl!IKl!ICC DMKMON Dl!IKSSP DMKVCH DMKVDB DMKVDR Dl!IKVDS Dl!IKVl!I1 

CLASTERl!I 000138 Dl!IKBLD DMKCCW DMKCFM DMKCFP DMKCFT DMKCKP Dl!IKCBS DMKCPB D!!KCP1 DMKCPS DMKCPV DMKCQG 
DMKCQP DMKCQR DMKCSP DMRCST Dl!IKDDR DMKDFF DMKD1A DMKD1R Dl!IKEDM DMKHVC DMKHVD Dl!IK1OC 
DMK10E Dl!IK1OF DMK10S DMKLOG Dl!IKNES DMKNET DMKPSA DMKQCN D!!KRGA DMKSCB DMKSSP DMKTRC 
DMKUSO DMKVCH DMKVCN DMKVDR DMKVDS DMKV10 Dl!IKWRl!I 

CLASUR1 000076 DMKCCW DMKCFP DMKCKP DMKCPB Dl!IKCPS DMKCQG Dl!IKCQP Dl!IKCSO Dl!IKCSP DMKCST Dl!IKCSU 
Dl!IKDEF DMKD1R Dl!IKDRD DMKEDM Dl!IKHVD DMK10F Dl!IK1OS DfilKRSE DMKRSP Dl!IKSCN DfilKSPL Dl!IKSSP 
DMKTRC DfilKVCH DMKVDR DMKVDS DfilKV10 DfilKVl!I1 Dl!IKVSP 

CLASURO 000058 DMKCCW DfilKCFP DMKCFS Dl!IKCKP Dl!IKCPB DfilKCPS DfilKCQG DMKCQP Dl!IKCSO Dl!IKCSP Dl!IKCST 
Dl!IKDEF Dl!IKD1R DMKDMP DMKEDfiI DMKHVD DMK10F Dl!IK1OS Dl!IKRSE Dl!IKRSP Dl!IKSCB DMKSSP DMKTRC 
Dl!IKVCH Dl!IKVDR DMKVDS DMKV1C DMKVSP 

Cl!IDREJ 000010 DMKCNS DMKD1A DMKRNB DfilKRSF DfilKVCN DMKVSP 
CNTLBTU 000005 DMKRNH 
COMPFES 000009 DUEIG Dft.KSEV DKK51X 
COfilPSEL 000015 DfilKE1G DfilKSEV Dl!IKS1X 
COMPSYS 000006 DMKCCB Dl!IKE1G DfilKSEV 
CONACTV 000028 DfilKCNS DfiKGRF DMKRGA DMKRBB 
CONADDR 000032 DMKCNS Dl!IKGRF DMKftON DftKQCN DftKRGA DftKRGB DftKRBH 
CONCCW 1 000083 DMKCNS Dl!IKGRF DMKBGA DMKRGE Dl!IKRNH 
CONCCW2 000037 Dl!IKCNS Dl!IKGRF DfilKBGA DMKRGB DMKBNH 
CONCCW3 000034 DMKCNS DfilKD1A DfilK10E Dl!IKNES DMKNET DfilKBGA DMKRGB DMKBNB 
CONCCW4 000030 Dl!IKCNS Dl!IKGRF DfilKRGA Dl!IKBGB 
CONCNT 000069 Dl!IKCNS DMKGBF DMKl!ION DMK(;CN DMKRGA Dl!IKBGB DMKBNH 
CONCNTL 000024 DMKCNS DMKQCN DfilKBGA I:MKRGB Dl!IKBNH 
CONCOMND 000008 DMKCNS DMKRNH 
CONDATA 000081 DMKCNS Dl!IKD1A Dl!IKGBF Dl!IK1OE DMKNES DMKQCN DMKRGA DMKRGB DMKRNB 
CONDCNT 000031 DMKD1A DMK10E DMKBGA Dl!IKRNH 
CONDEST 000004 Dl!IKIiNB n 
CONESCP 000021 Dl!IKCNS DMKGRF DMKRGA DMKRGE DMKRNB I'd 
CONEXTR 000001 DMKRBB 

t"'4 CONFLAG 000006 Dl!IKCN S DMKRNH AI 
til CONLABEL 000029 DMKBGA DMKRGB 0-
(1) CONOUTPT 000031 DMKCNS DMKGRF D!!KQCN D!!KRGE DMKRNB 

(j) 

0 ~ 

rT CONPABM 000109 D!!KCNS DMKGRF DMKQCN DMKRGA DMKRGB DMKRNH I ...,. CONPNT 000091 DPlKCNS DMKEDM DMKGRF DMKQCN D!!KRGA DMKRGB DMKRNH rT 
0 0 
I:l I 

3: 
W 0 . p. 

~ 

t:I ~ ...,. (1) 

t; 
n (1) 

0 t; 
rT 0 
0 [Il 

t; [Il 
...,. 
(1) !::tI 
[Il (1) 

Hi 
(1) 

t1 
w (j) 

"-oJ I:l 
\D 0 

(1) 



w Label count R.eferences n c:o '" 0 

1:"4 
CORRESP 000017 D~KCRS DMKGRF DMKQCR DMKRGA DMKRGB DMKRRH I» 

tT 
CORRETR 000030 DMKCRS DfIIKGRF DMKQCN DMKRGA DPlKRGE DMKRRB en 
CORRSV3 000022 DMKGRF DMKQCR DMKRGB 

..., 
c:: I 3: CORRTAG 000003 DMKRRH ("t 

" CORRTBY 000012 DMKCNS DPlKRRH 0 w I 
...,J CONSPLT 000014 DMKCNS DMKQCN DMKRNH 3: 
0 CONSBID 000013 DMKRRH 0 .. j;lo 

CONSTAT 000126 DMKCNS DMKGRF DfIIKQCR DMKRGA DPlKRGE DMKRNB -= til CONSYNC 000005 DMKCNS DMKGRF DMKQCN DMKRGB DMKRNH ..., 
Io.oC: en en CONSYSR 000040 DMKDIA DMKNES DMKNET DMKRNH 
r+- CORTACT 000003 DPlKliET DPlKRRH n en CONTASK 000119 DMKCNS DMKEDM DMKGBF DMKPlON DMKRES DMKQCN DMKRGA DMKRGB DMKRNH i'1 
EI 0 

CONTCMD 000027 DPlKRNH en 
1:"4 CONTSIZE 000036 DMKCNS DMKGBF DMKQCN Df!KRGA Df!KRGE DMKRRH en 
0 

IQ CONTSKSZ 000016 Df!KCRS DPIKEDM DMKGRF DMKQCN DfIIKRGA DMKRGB DMKRRH !XI 
1-'- CONUSER 000012 DMKCNS DfIIKQCN DMKRGA DMKRGE DMKRNB en n HI CORBPRT 000020 DMKMCB DMKPGS DMKPTR DMKRPA DMKSCH DMKUDR en I» CORCFLCK 0000 17 DMKBLD DMKCPI DMKCPV Df!KFGS Df!KPTR DMKRPA DMKSCH 1"1 
::l en j;lo CORCP 000010 DMKCPI DfIIKDMP Dl'!IKEDM DMKMCC DMKMON DMKPTR ::l 

CORDISA 000002 DMKEDM DMKMCH n 
'" en 
t; CORFLAG 000056 DMKELD DfIIKCCi DfIIKCDS DfIIKCFS DMKCPI DMKCPV DPlKDMP DMKEDM Df!KMCC DMKMCB DMKMOR DMKPGS 
0 DMKPSA DMKPTR DMKRPA DMKSCB DPlKVMA tT ..., CORFLUSB 000001 DMKEDM 
en CORFPNT 000052 DMKBLD DfIIKCPI DMKCPV DMKDPlP DPIKEDM Dl'!IKMCH DfilKMOR DMKPGS DMKPTR DMKRPA DMKSCH DMKUDR EI 

CORFREE 000003 DPlKCPI DMKEDM DMKPTR 
t::I CORIOLCK 000012 DMKMCB DMKPGS DMKPTR DMKRPA DPIKSCH en CORLCN'I 000008 DPlKBLD DMKPTR ("t 
en CORPGPNT 000034 DMKBLD DMKCDS DMKDGD DMKFRE DMKMCB DMKPGS DMKPTR DMKRPA DMKUDR DfIIKUNT DMKVfIIA 
1"1 CORRSV 000008 DMKCFS DfIIKPGS DMKPTR DMKSCE • 1-'- CORSBARE 000014 DMKCCi DMKCDS DMKEDl'!I Dl!KFGS DPlKPSA DMKPTR DMKSCE Dl!KVl'!IA 
::l CORSiPNT 000019 DMKBLD DfIIKCCW DMKCDS DMKCPI DMKDGD DMKEDM DMKMCH DfIIKPTR Dl!KRPA DMKnlA I» 
("t CORTABLE 000087 DMKBLD DMKCCW DMKCDS DPlKCFS DMKCPI DMKCPV DMKDGD DMKDMP DMKEDM DMKFRE DMKMCC DMKMCH 
1-'- DMKPlON DMKPAG DMKPGS DMKPSA DMKPTR DMKRPA DMKSCH DMKUDR DMKURT DMKVMA 0 
::l CPABERD 000009 DMKDMP DMKEDM DMKPRG DPlKFSA 
en CPCREGO 000018 DMKCKP DPlKCPI DMKDSP DMKIOS DMKMCB DMKPRG DMKPRV DMKPSA DPlKTMR DMKTRC DMKVAT 

-= CPCREG8 000019 DMKCPS DMKIOS DMKMCC DMKMCR DMKPRG DMKPSA 
1-'- CPEX 000009 DMKDSP DPlKVCA j;lo 

en CPEIADD 000045 DMKACO DMKCDS DMKCFM DMKCPV DMKDIA DMKDSP DMKGRF Dl'!IKIOE DMKIOS DKKLOC DMKMCH DKKMON 
DPlKPAG DfIIKPGT DMKPTR DMKQCN DMKRGA DKKRGB DPlKRNH DKKRPA DPlKRSP DPIKSPL DKKUSO DKKVCA 
DMKVMA DMKVSP 



Label Count References 

CPEIBLCK 000088 DPIKACO D8KCDS DKKCFK DMKCPS DKKCPi DPlKDlA DPlKDSP DMKGRF DMKlOE DMKIOF DPlKlOS DMKLOC 
DftKftCH DPlKftON DMKPAG DPlKFGT DMKPTR DftKQCN DftKRGA DMKRGB DPlKRNH DftKRPA DMKRSP DftKSPL 
DPlKSTK DPIKOSO DMKVCA DPlKVDB DPlKVftA DftKVSP 

CPEIBPNT 000006 DPlKDSP DPlKPAG DMKSTK 
CPEXFPNT 000033 DftKCDS DPlKDSP DMKlOE DPIKIOF DPlKLOC DPlKPAG DMKPTR DftKRPA DftKSTK DftKVCA DPlKVSP 
CPEIPllSC 000006 DMKFAG DMKPTR 
CPEXREGS 000009 DftKCFft DMKCPV DPlKDSP DMKlOE DMKIOF DMKLOC DMKQCN DMKSPL 
CPEIRO 000025 DMKCDS DMKCPS DMKGRF DMKMON DMKPAG DMKPTR DMKRGA DMKRPA DMKUSO DMKVCA DftKVDB DMKVMA 
CPEIR 1 000001 DftKVSP 
CPEIR10 000001 DMKDSP 
CPEXR 11 000005 DftKDSP DMKPAG DMKUSO DMKVSF 
CPEXR12 000004 DMKCPV DMKQCN DMKOSO DMKVCA 
CPEIR 13 000004 DMKIOS DMKPTR DMKVDB 
CPEIR14 000001 DPlKCDS 
CPEXR15 000001 DftKCDS 
CPEIR2 000005 DPlKPTR DMKVMA 
CPEIR3 000001 DftKVftA 
CPEIR5 000003 DMKCDS DPlKPAG 
CPEIR6 000005 DftKlOF 
CPEIR7 000003 DftKCDS DPlKPAG DftKPTR 
CPEIRa 000001 DftKVSP 
CPEIR9 000002 DPlKPTR 
CPEISIZE 000057 DftKACO DftKCDS DMKCFft DMKCPl DftKCPS DftKCPV DftKDlA DftKDSP DMKGRF DPlKlOE DMKlOF DMKlOG 

DMKlOS DPlKLOC DMKftCC DMKPlCH DftKPlON DMKPGT DftKPTR DMKQCN DMKRGA DftKRGE DMKRNB DMKRPA 
DftKRSP DftKSPL DftKOSO DMKVCA DMKVDB DPlKVftA DftKVSP 

CPlD 000031 DMKCCH DPlKCKP DPlKCNS DPlKCPI DftKCPS DftKCVT DftKDMP DMKGRF DMKMCH DMKPGT DftKiRM 
CPftICAVL 000007 DftKCFS DMKCPl DMKLOG 
CPPllCOli 000009 DMKCFS DMKCPI DMKCQR DMKDSP 
CPRUN 000002 DftKDSP 
CPSHRLK 000007 DftKCCi DMKDGD DMKDSP 
CPSTAT 000001 DftKPTR 
CPSTATUS 000012 DPlKCPI DPlKDSP DPlKlOS 
CPSTAT2 000019 DMKCCi DftKCFS DftKCPl DPlKCQR DMKDGD DftKDSP DMKLOG 
CPOlD 000028 DftKCCH DPlKCPI DftKBVC DftKIOE DftKIOF DftKlOG DMKftCH DMKMON DPIKOPR DftKPRV DMKSSP DMKVER 
CPOLOG 000001 DftKCPl n 
CPOPICELL 000003 DMKBVD DMKIOG DMKPRV to 

CPUftODEL 000002 DftKCPl DMKlOG t-' 

CPOVERSN 000011 DMKCPl DMKHVD DMKlOF tMKIOG DMKftCH DMKOPR DMKPRV DMKSSP ~ 
0-

en CPiAlT 000008 DftKCPI DftKDSP DMKlOS DftKVCA (1) 
(1) CRESCliiD 000001 DMKIiNH ..... 
n I 
ri" CRESDQ 000001 DftKDlA r+ .... CRESERL 000002 DftKRliH 0 
0 I 
1:1 3 

0 
W ~ 

c= ..... 
t:I (1) .... 
1"'1 n 
(1) 1"'1 n 0 
ri" en 
0 en 
1"'1 .... ~ 
(1) (1) 
en HI 

(1) 
1"'1 
(1) 

W 1:1 
CD n ... (1) 



w Label Count References n 
<XI ." 
tv 

tot 

CRESIMD 000005 DMKDIA DMKNET DMKPSA D~KRNB III 

CSETDSf! 000002 D!KDIA DfilKRIB 
t:r 
(l) 

CSW 000269 DMKCCB DMKCKP DMKCIS DMKCPI DfilKDGD DMKDMP DMKDSP DMKEIG DMKPMT DMKGIO DMKIOS DMKOPR ..... 
~ I 
:I: DfilKPSA DMKSAV DMKSEV DMKSIX DMKSSP DMKTRA DMKTRC DMKVCI DMKVIO DMKVMI DMKVSP r+ 

" CSWLMEP 000002 DMKDIA DMKNES 0 w I 
~ CSWLICP 000002 DfilKDIA DMKIES tJ: 
0 CTRMLTR 000003 DMKDIA DMKNES DMKRNB 0 

CUE 000039 DMKCFP DMKCKP DMKCPI DMKDDR DMKDIR DMKDMP DMKDSP DMKPMT DMKIOS DMKMOI DMKILD DMKPSA 0. 
&::: 

til DMKRSE DMKSSP DMKTAP DMKVIC ..... 
~ CO 000034 DMKCKP DMKCPI DMKDMP DMKtSP DfiIKIO S DMKMCB DMKPRG DMKFRV Df!KPSA DMKTMR DMKTRC (!) 
til 
r+ C1 000049 DMKCCW DMKCDB DMKCPI DMKCSC DMKDSP DMKPRV DMKPSA DMKPTR DMKTMR DMKTRA DMK'IRC DMKVAT n 
(l) 

C 11 000001 DMKDSP 11 s 0 
C13 000003 DMKDSP DMKMCB til 

t-4 C14 000003 DMKCFG DMKCPI DMKDMP til 
0 

I,Q C15 000003 DMKCPG DMKDMP I:tI .... C2 000013 DMKCPG DMKCKP DMKDMP DMKFRE (!) 
(') I-h C3 000003 DMKCKP DMKMCB (!) 
III C4 000003 DMKDSP t; 
I:' 

C5 000002 DMKDSP 
(!) 

0. ::I 
C6 000009 DMKCPI DMKDSP (') 

." C7 000006 DMKCCB DMKDSP DMKMCB 
(l) 

t; 
0 C8 000022 DMKCPS DMKIOS DMKMCC DMKMOI DMKPRG DfilKPSA 
t:r C9 000001 DMKDSP ..... 
1'1) DAMAGRFT 000002 DMKCPI DfilKDMP s DASDCL 000006 DMKMCC DMKMOI 
tI DATACHK 000006 DfilKCIS DMKRSE DMKVSP 
1'1) tATE 000027 DMKCPI DfilKCVT DMKDMP DMKEDM DMKMID r+ 
(l) DDRCUAl 000002 DMKVER 
11 DDRCUA2 000002 DMKVER 
Ei1 .... DDRKEYli 000001 DMKVER 
::I LDRREC 000001 DMKVER 
III 
r+ DE 000096 DMKACO DMKCKP DMKCIS DMKCPB DfilKCPI DMKCPS DMKCSO DMKCSP DMKCSU DMKDDR DMKDIA DMKDIR 
~. DMKDMP DMKPMT DMKGRP DMKBVC DMKIOS DMKMOI DMKRGA DMKRIB DMKRSE DMKRSP DMKSAV DMKSPL 
0 DMKSSP DMKTAP DMKVCA DMKVCI DMKVIO DMKVMI DMKVSP I:' 

en tEFER 000112 DMKCCW DMKCDB DMKCDS DMKCFD DMKCFG DMKCKS DMKCNS DMKCPB DMKCPI DMKCPV DMKCSO DMKDGD 
c:: DMKDRD DMKDSP DMKERM DMKGIO DMKGRP DMKBVC DMKBVD DMKIOP DMKIOG DMKMCC DfilKILD DMKPGS .... DMKPRG DMKPRV DMKPSA DMKPTR DMKRGA DMKRGB DfilKRPA DMKRSP DfilKSCB DMKSEP DMKSNC DMKSPL 
0. Dl'IKTMR DMKTRC DfilKUDR DfilKVAT DMKVCB DMKVCN DMKVER DMKVIO DMKVMA DMKVSP DMKWRM 1'1) 

tELPAGES 000007 DMKBLD DMKCPP DfilKDEF DMKFGS DMKUSO 
DELSEGS 000005 DMKBLD DMKDEF DMKUSO 
LELS FB 000005 DMKCKS DMKCSP DfilKSPL 
DEVCARD 000002 DMKACO DMKCKP 



Label Count References 

DEVCCH 000005 D~KCCH 

tFRET 000016 DftKACO DftKCPS DftKCQR D~KDAS D~KDIA DftKERft DftKPSA DftKQCN DftKRNH DftKTHI DftKVDB 
DISCEOC 000002 DMKRNH 
tISCNCT 000001 DMKRNH 
DftKACO 000001 DMKSYM 
tftKACODV 000004 DftKCPV DfilKDIA DMKVDR 
DftKACOFF 000003 DMKCPV DMKUSO 
tftKACON 000001 DMKLOG 
DftKACOPU 000001 DMKRSP 
tftKACOQU 000001 DftKHVD 
DftKACOTM 000003 DMKCPV DMKCQR DftKUSO 
tMKBLDEC 000002 DftKCFS DftKLOG 
DMKBLDRL 000005 DMKBLD DMKCFP DftKDEF DftKPGS DftKSYft DftKUSO 
tftKBLDRT 000008 DftKCFG DftKCFP DMKCPI DMKDEF DfilKLOG DftKPGS DftKSYft 
DftKBLDVft 000007 DftKCNS DMKDIA DftKGRF D~KLOG D~KRGA DMKRNH DftKSYM 
tftKBOXBX 000003 DftKGRF DftKRGB DftKSEP 
DMKBOXHR 000001 DMKVSP 
DftKBSCER 000002 DftKIO S DftKSYM 
DftKCCHCF 000001 DMKIOG 
DftKCCHIS 000002 DftKIOS DftKSYM 
DMKCCHIU 000001 DMKIOG 
tftKCCHNT 000001 DftKIOS 
DMKCCHRT 000002 DfilKIOE DMKSYM 
tMKCCHSZ 000001 DftKIOG 
DftKCCH60 000002 DfilKIOG DMKSYM 
tMKCCWSB 000002 DMKSYft DMKTRC 
DMKCCWTC 000003 DMKHVC DMKSYM 
tftKCCWTR 000004 DMKGIO DftKHVC DMKSYft DMKVIO 
DMKCDBDC 000002 DftKCFC DMKSYft 
tMKCDBDI 000002 DftKCFC DftKSYft 
DftKCDBDM 000002 DMKCFC DMKSYM 
DftKCDBDU 000002 DMKCFC DftKSYft 
DMKCDSCP 000002 DftKCFC DftKSYM 
tMKCDSTO 000002 DftKCFC DftKSYM 
DftKCFC~D 000001 D~KCFM n 
tMKCFDAD 000002 DftKCFC DftKSYM I'C 

DMKCFDLO 000002 DMKCFC DfilKSYft t-t 
tMKCFGCL 000001 DftKHVC PJ 

til DfilKCFGII 000002 DftKLOG DfilKSYM t:1' 
CD 

(I) tftKCFGIP 000002 DMKCFC DftKSYM .... 
0 DMKCFGSV 000002 DMKCFC DMKSYM I 
c+ c+ .... tMKCFMAT 000010 DMKCFC D~KCNS DMKGRF DMKRGA DfilRRNH DMKSYM DftKVCN 0 
0 I 

= ::I: 
0 

W PI . ~ .... 
t::I CD .... 
t1 n 
(I) H 
0 0 c+ en 
0 en 
H .... !XI 
(I) (I) 
en I-h 

CD 
H 
(I) 

w = co 0 w (I) 



w Label Count References n 
co ttl 
J:" 

t-t 

DMKCFMBK 000018 DMKCNS DMKCPV DMKDSP DMKGRF DMKHVC DMKIOE DMKMCH DMKPRG DMKPSA DMKPTR DMKRGA DMKRNH 
PI 
0" 

DMKSYM DMKTRC DMKVCN DMKVMA (I) 

DMKCFMEN 000006 DMKCPI DMKGRF DMKHVC DflKRGA DMKSYM DMKVCN ~ 
< I 
3: I:MKCFMliU 000001 DflKCFC rt 

" DMKCFPRD 000006 DMKCPB DMKCPV DMKDEF DMKDIA DMKSYM DMKVDR 0 
w I 
-...J DMKCFPRI 000001 DMKtiLD til: 
0 I:MKCFPRR 000011 DMKCFG DMKCFS DMKCPB DMKDEF DMKIOE DMKMCH DMKSYM DMKOSO 0 .. ~ 

DMKCFSET 000002 DMKCFC DMKSYM ~ 
til I:MKCFTRM 000002 DMKCFC DMKSYM ~ 
~ (I) 
en DMKCKP 000006 DMKCPI DMKPGT DMKSAV 
rT DMKCKPRS 000001 DMK SA V n 
<D t1 
EI DMKCKPST 000001 DMKSAV 0 

DMKCKPT 000002 DMKSAV DMKSYM en 
t-t en 
0 DMKCKSIN 000001 DMKWRM 

\Q I:MKCKSPL 000018 DMKCSO DMKCSP DMKCSU DMKNLD DMKRSP DMKSPL DMKVSP DMKWRM !:tI ..... 
DMKCKSWM 000001 DMKWRM (I) 

0 HI 
I:MKCNSED 000006 DMKGRF DMKRGA DMKRNH DMKSYM (I) 

PI DMKCNSEN 000003 DMKCPI DMKCPV DMKSYM t1 
t:I (I) 
PI .cMKCNSIC 000002 DMKQCN DMKSYM t:I 

DMKCNSIN 000002 DfiIKIOS DMKSYM n 
It:! <D 
I'i I:MKCPBEX 000002 DMKCFC DMKSYM 
0 DMKCPBNR 000002 DMKCFC DMKSYM 0" 
~ .cMKCPBRS 000002 DMKCFC DMKSYM 
<D DMKCPBRi 000002 DMKCFC DMKSYM EI 

DMKCPBRY 000002 DMKCFC DMKSYM 
t:I DMKCPBSR 000002 DMKCFC DMKSYM 
<D DMKCPE 000002 DHKFRE DMKLDOOE rT 
<D DMKCPEID 000005 DHKCPI DMKHVD DHKMON DMKSEP DMKSYM 
t1 I:MKCPEND 000003 DMKCPI DHKSYM EI ..... DMKCPICD 000001 DMKSAV 
t:I I:MKCPIEM 000002 DMKCNS DMKGRF PI 
rT DMKCPINT 000002 DMKSAV DMKSSP ..... 

I:MKCPVAA 000002 DMKHVD DMKSYM 0 
t:I DMKCPVAC 000002 DMKCFC DMKSYM 
G'l I:MKCPVAE 000003 DMKCPI DMKRNH DMKSYM 
~ DMKCPVDS 000002 DMKCFC DMKSYM ..... DMKCPVEN 000002 DMKCFC DMKSYM 
~ 
<D DMKCPVH 000002 DMKCFC D~KSYM 

I:MKCPVLK 000002 DMKCFC DMKSYM 
DMKCPVRY 000002 DMKCFC DMKSYM 
I:MKCPVSH 000002 DMKCFC DMKSYM 
DMKCPVUL 000002 DMKCFC DHKSYM 



Label Count Beferences 

tftKCQGEN 000002 DftKCFC DftKSYM 
DftKCQPBV 000002 DftKCFC DftKSYft 
tftKCQBEY 000002 DftKCFC DftKSYft 
DftKCQBFI 000003 DftKCPI DftKLOG DftKSYft 
DftKCSOES 000002 DMKCFC DftKSYft 
DftKCSODB 000002 DftKCFC DftKSYft 
tftKCSOFL 000002 DMKCFC DftKSYft 
DftKCSOLD 000002 DMKCFC DMKSYft 
tftKCSORP 000002 DftKCFC DMKSYft 
DMKCSOSD 000005 DftKCPI DMKCSP DftKCSU DMKBSP DftKSYft 
tftKCSOSP 000002 DftKCFC DMKSYM 
DftKCSOST 000002 DMKCFC DMKSYM 
DftKCSOVL 000002 DftKCFC DftKSYl'1 
DftKCSPCL 000002 DMKCFC DMKSYM 
DMKCSPFB 000002 DMKCFC DftKSYM 
DMKCSPHL 000002 DMKCFC DMKSYM 
tftKCSPSP 000002 DMKCFC DMKSYM 
DMKCSTAG 000001 DMKCFC 
DftKCSUCH 000002 DftKCFC DftKSYM 
DftKCSUCB 000002 DMKCFC DMKSYft 
tMKCSUPU 000002 DftKCFC DMKSYM 
DMKCSUTB 000002 DftKCFC DftKSYft 
I:ftKCVTED 000060 DMKCDB DMKCKS DftKCPI DMKCPV DftKCQG DftKCQP DftKCQB DftKCSU DftKDEF DftKDIA DftKEBft DMKGBF 

DMKLHK DMKLOG DftKQCH DftKRGA DftKRSP DftKSEP DftKSPL DMKTHI DMKUSO DftKVDE DftKiRft 
I:MKCVTEH 000205 DftKACO DMKBLD DftKCCH DMKCDE DftKCDS DMKCFD DftKCFG DftKCFS DftKCFT DftKCNS DMKCPB DMKCPI 

DMKCPV DftKCQG DftKCQP DMKCQB DMKCSO DMKCST DMKDAS DftKDEF DftKDIA DMKDSP DftKLHK I:ftKLOG 
DMKMSi DMKHES DMKNET DftKNLD DftKPAG DMKPSA DftKQCN DMKRGA DMKRNH DftKRSP DftKSAV DftKSEP 
DMKSSP DMKTHI DftKTRC tftKUSO DMKVCA DftKVCH DftKVDB DftKVDR DMKVDS DftKVEB DftKVftA DftKVSP 

I:MKCVTI:E 000032 DMKCDB DftKCDS DftKCFC DMKCFG DftKCFS DftKCFT DftKCQG DftKCQR DftKCSO DftKCSP DftKCST DMKCSU 
DftKDEF DMKGRF DftKHVD DMKMCC DftKftSG DMKNES DftKRGA 

tMKCVTtT 000016 DMKCFS DftKCPI DftKCQR DftKHVC DMKLOG DftKftID DftKftON DftKft SG DftKHLD DMKQCH DMKRNH DMKRSP 
DMKSEP DMKSPL DftKUSO DMKVSP 

I:ftKCVTFP 000001 DftKCDE 
DMKCVTHB 000053 DMKCDB DMKCtS DMKCFC tMKCFD DftKCFG DMKCFS DftKCPB DMKCPV DMKCQG DftKCQP DMKCSO DMKCSP 

DMKCST DftKDEF DMKDIA DMKGBF DMKLHK DftKftCC DftKNES DMKNET DMKHLD DMKRGA DftKSSP DftKVDB (") 

DMKDASER 000002 DMKIOS DMKSYM It:I 

tftKDASRD 000003 DftKCPV DftKIOS DftKSYM t"'I 

DftKDASSD 000003 DMKCCi DMKCPV DMKSYM ~ 
t:r 

en I:ftKDEFIH 000002 DftKCFC DMKSYft CD 
CD DMKDGDDK 000002 DMKHVC DMKSYI'! ..... 
0 I 
rt tftKDIACP 000002 DMKCFC DMKSYM rt .... DftKDIADR 000003 DftKCFP DMKSYft 0 
0 I 
t:S or: 

0 
w ~ 

~ ..... 
t:I CD .... 
t1 n 
CD t1 
0 0 
rt en 
0 en 
t1 .... !:tI 
CD CD 
Ul I-h 

CD 
t1 
CD 

W = CXI 0 
U1 CD 



w Label count References 
CO n 
0'1 "tI 

tMKDIAL 000002 DMKCFC DMKSYM t'"' 
~ 

DMKDIASM 000003 DMKCCW DMKSYM DMKVCA t::r 
I:MKDMPAU 000002 DMKCFS DMKCPI CD 

cs I-' 
131 DMKDMPDK 000003 DMKPRG DMKPSA DMKSYM , 
" I:MKDMPI:V 000003 DMKCFS DMKCPI DMKCQR M' 
w 0 
...,J DMKDMPGR 000003 DMKPRG DMKPSA DMKSYM , 
0 tMKDMPRC 000002 DMKCPI 3: 

0 
DMKDMPRS 000003 DMKCPV DMKMCH DMKSYM 0. 

til tMKDMPSF 000001 DMKCPI ~ 
I< DMKDPlPSW 000002 DMKCFS DMKCQR 

I-' 
Ul CD 
M' I:MKDMPTR 000001 DMKCDB 
CD DMKDRDDD 000002 

n 
s DMKSPL DMKSYM H 

tMKDRDER 000002 DMKHVD DMKSUI 0 
t"4 DMKDRDf'lP 000002 DMKHVD DMKSYM en 
0 en 

\,Q I:MKDRDSY 000002 DMKHVD DMKSYM .... DMKDSPA 000001 DMKPRV ~ 

0 CD 
I:MKDSPAC 000002 DMKMON DMKSYM I-h 

~ DMKDSPB 000004 DMKCFM DMKPRG DMKPRV DMKPSA CD 
=:s H 
0. DMKDSPEC 000002 DMKMON DMKSYM CD 

DMKDSPCC 000002 DMKPlON DMKSYM =:s 
"tI 0 
H I:MKDSPCH 000093 DMKACO DMKCFM DMKCFP DMKCNS DPlKCPE DMKCPI DMKCPV DMKCSO DMKDAS DMKDGD DMKDIA DMKGIO CD 
0 DMKGRF DMKHVC DMK IOE DMKIOS DMKLOC DMKMCH DMKMON DMKNLD DMKPAG DMKPGT tMKPRG DMKPRV 
t::r DMKPSA DMKPTR DMKQCN DMKRGA DMKRGE DMKRNH DMKRSP DMKSCH DMKSEP DMKSPL DMKSYM DMKTDK I-' 
CD DMKTMR DMKUtR DMKUNT DMKUSO DMKVAT DMKVCA DMKVCN DMKVDB DMKVIO DMKVMA DMKVSP 
EI I:MKDSPCK 000001 DMKMON 
~ DMKDSPIT 000001 DMKMON 
CD I:MKDSPNP 000019 DMKCFS DMKCPI DMKCPV DMKFRE DMKMON DMKPGS DMKPTR DMKSCH DMKSYM DMKVMA M' 
d) DMKDSPFT 000001 DMKMON 
H I:MKDSPQS 000001 DMKSYM 
iii .... DMKDSPRQ 000003 DMKSTK DMKSYM 
=:s tMKEIG80 000002 DMKIOG DMKSYM 
~ DMKEMAOO 000001 DMKERM M' .... I:MKEMBOO 000001 DMKERM 
0 DMKEPSWD 000004 DMKLNK DMKLOG DMKSYM =:s 

I:MKERMSG 000056 DMKACO DMKBLD DMKCDB DMKCDS DMKCFC DMKCFD DMKCFG DMKCFS DMKCFT DMKCKS DMKCNS DMKCPB 
G'l DMKCPV DMKCQG DMKCQP DMKCQR DMKCSO DMKCSP DMKCST DMKCSU DMKDEF DMKDIA DMKIOF DMKIOG c:: .... DMKLNK DMKLOG DMKMCC DMKMCH DMKMID DMKMON DMKMSG DMKNES DMKNET DMKNLD DMKBGA DMKRNH 
0. DMKBSP DMKSNC DMKSYM DMKTBI DMKTRA DMKUSO DMKVCH DMKVDB DMKVDS DMKVMA DMKVSP DMKWRM CD 

I:MKFCBLD 000002 DMKCSO 



Label Count References 

DMKFREE 000320 DMKACO DMKBLD DMKBSC DMKCCH DMKCCi DMKCDB DMKCDS DMKCFC DMKCFD DMKCFG DMKCFM DMKCFP 
DMKCFS DMKCKS DMKCNS DMKCPE DMKCPI DMKCPV DMKCQG DMKC(;;P DMKCQR DMKCSO DMKCSP tMKCST 
DMKCSU DMKDAS DMKDEF DMKI:GD DMKDIA DMKDRD DMKDSP DMKERM DMKGIO DMKGRF DMKBVC DMKBVD 
DMKIOE DMKIOF DMKIOG DMKIOS DMKISM DMKLNK DMKLOC DMKLOG DMKMCC DMKMCB DMKMOH DMKMSG 
DMKMSW DMKNES DMKNET DMKNLD DMKPAG DMKPGT DMKPSA DMKPTR DMKQCH DMKRGA DMKRGB DMKRNB 
DMKRPA DMKRS:E DMKRSP DMKSCH DMKSPL DMKSYM DMKTAP DMKTDK DMKTHI DMKTMR DMKTRA DMKUDR 
DMKUSO DMKVAT DMKVCA DMKVCB DMKVCN DMKVDB DMKVDR DMKVDS DMKVER DMKVIO DMKVMA DMKVSP 
DMKWRM 

tMKFREHI 000002 DMKCPI DMKSYM 
DMKFRELG 000002 DMKCPI DMKSYM 
DMKFRELO 000003 DMKCPI DMKSYM DMKUSO 
DMKFRELS 000001 DMKSYM 
tMKFRENP 000002 DMKSYM DMKUSO 
DMKFRERS 000002 DMKSYM DMKUSO 
DMKFRESV 000002 DMKCPI DMKSYM 
DMKFRET 000285 DMKACO DMKBLD DMKBSC DMKCCH DMKCCW DMKCDB DMKCFD DMKCFG DMKCFM DMKCFP DMKCFS DMKCKS 

DMKCNS DMKCPB DMKCPI DMKCPV DMKCQG DMKCQP DMKCQR DMKCSO DMKCSP DMKCST DMKCSU DMKDAS 
DMKDEF DMKDGt DMKDIA DMKDRD DMKDSP DMKERM DMKGIO DMKGRF DMKBVC DMKBVD DMKIOE DMKIOF 
DMKIOS DMKLHK DMKLOC DMKLCG DMKMCC DMKMON DMKMSG DMKMSi DMKNES DMKNET DMKNLD DMKPAG 
DMKPGS DMKPGT DMKPSA I:MKPTR DMKQCN DMKRGA DMKRGB DMKRHB DMKRSE DMKRSP DMKSCH DMKSEP 
DMKSPL DMKSYM DMKTAP DMKTDK DMKTBI DMKTMR DMKTRA DMKTRC DMKUDR DMKUNT DMKUSO DMKVAT 
DMKVCA DMKVCH DMKVCN DMKYDB DMKVDR DMKVDS DMKVER DMKVIO DMKVIU DMKVSP 

DMKFRETR 000004 DMKCPI DMKPTR DMKSYM 
I:MKGIOEX 000002 DMKBVC DMKSYM 
DMKGRFEN 000002 DMKCPV DMKSYM 
I:MKGRFIC 000002 DMKQCN DMKSYM 
DMKGRFlli 000002 DMKIOS DMKSYM 
DMKBVCAL 000002 DMKPRV DMKSYM 
DMKBVCDI 000002 DMKMON DMKSYM 
I:MKBVCPC 000001 DMKDRD 
DMKBVDAL 000001 DMKBVC 
DMKIOCVT 000001 DMKIOF 
DMKIOECC 000001 DMKCCB 
I:MKIOECQ 000002 DMKIOF 
DMKIOEES 000005 DMKIOF DMKIOG n 
I:MKIOEFL 000001 DMKCPI "0 

DMKIOEFM 000002 DMKBVD DMKSYM t'"4 
I:MKIOEIQ 000003 DMKIOF III 

til DMKIOEIR 000001 DMKCFS t:r' 
(I) 

I'D I:MKIOEMC 000001 DMKMCH ~ n DMKIOEMP 000002 DMKIOF DMKIOG I 
rT rt' .... I:MKIOEMQ 000002 DMKIOF 0 
0 I 
l:I 3: 

0 
CoN j:lI . ~ 

~ 
t:J I'D .... 
t1 n 
I'D H 
n 0 
rt' en 
0 en 
t1 .... !:tI 
I'D I'D en ...... 

(I) 

t1 
I'D 

CoN l:I 
Q) n 
...J I'D 



w Label count References n 
(Xl I't1 
(Xl 

1:"4 
Pl 

DfHUOE~S 000005 DMKIOP DMKIOG tr 
DftKIOEftX 000002 DeKIOF DeKlOG CD ..., 

< DftKlOElU 000002 D~KlOP D~KIOG f 
3: tftKlOENQ 000001 DftKlOF ri" 

" DftKIOECP 000002 DeKlOP DeKlOG 0 
w I 
.,.J CftKlOERN 000002 DftKRGA DMKRNH tJ: 
0 DeKlOERP 000001 DeKIOP 0 .. Po 

I:ftKlOERQ 000002 DeK'IOF c 
til DeKIOERR 000004 DeKCNS D~KGRP DftKIOS CftKSYft 

..., 
loCI CD 
en CftKIOESD 000001 DftKDA S 
rt' DftKlOESQ 000001 DftKlOP n 

11 CD DftKlOESR 000004 DeKCPV DftKNES DftKNET 0 B 
DftKlOEST 000006 DeKESC D~KCHS DftKDAS DftKGRF DftKRSE DftKTAP en 

1:"4 000001 en 
0 tftKIOEVQ DeKIOF 

IQ DftKlOEVR 000001 DftKVER ~ 

~- tftKIOP 000001 DftKSyft CD 
n ~ 

DftKlOFCl 000001 DMKlOE CD 
Pl tftKlOFIN 000002 DftKlOE 11 
t:I C!) 
p. DftKlOFftl 000001 D~KlOE ::I 

Cf'IKlOFOB 000003 DMKIOE n 
I't1 C!) 

H DftKlOFST 000001 DftKlOE 
0 tftKlOFVR 000001 DMKlOE tr DftKlOG 000001 DftKSyft I-' 
C!) tMKlOGFl 000001 DMKIOE 
!J DftKlOGP2 000001 DMKlOE 
t::I tftKIOSCT 000002 DftKftON DeKSYft 
C!) DftKlOSER 000001 DeKDSP rt' 
C!) DftKIOSBA 000004 DeKCFP DftKCPV DftKDlA DftKSYft 
11 DftKIOSlN 000002 DMKCPI DeKSYM B 
~- tftKlOSQR 000029 DMKACO DeKCFP DMKCNS DMKCFE DftKCPl DftKCPV DMKCSO DftKDAS DftKDlA DftKGRP DeKftON DMKNLD 
t:I D~KFAG DftKRGA DMKRGE DftKRHH DftKRSP DftKSEP DMKSPL DMKSyft DMKTDK DPIKUDR DPlKVCB DMKVDR Pl 
rt' tMKlOSQV 000005 DMKDGD DMKGlO DftKSYft DMKVlC ..,- DftKlOSRC 000001 DeKDSP 0 
::I CftKlOSRi 000002 DftKCPB DftKVDR 

DPlKl Sft'IR 000002 DftKCCi DMKSYM 
G'l tftKLHKIN 000002 DftKCFC DftKSYft c ..,- DftKLHKSB 000002 DftKLOG DftKSYM 
Po tftKLOC 000001 DMKSYft C!) 

DftKLOCK 000002 D~KLHK 

tftKLOCKD 000014 DMKCFP DMKCKS DMKDEF DMKLNK DMKTAP DMKTRA DftKTRC DftKUDR DftKUSO DftKVDB 
DPlKLOCRQ 000011 DMKCFP DftRCRS DPlKDEF DftKTAP DftKTRA DftRTRC DftKUDR DftRUSO DMKVDE 
CftKLOCKT 000001 DMKCKS 



Label Count References 

DftKLOGA 000001 DftKCFC 
tftKLOGON 000003 DftKCFC DftKSlft 
DftKLOGCP 000002 DftKCPI DftKSlft 
I:ftKftCCCL 000002 DftKCFC DftKSlft 
DftKftCHAB 000005 DftKCCH DftKCFS DftKIOG DftKSlft 
DftKftCBEL 000001 DftKIOG 
DftKftCBIN 000002 DftKCPI D!KSlft 
tftKftCBftS 000002 DftKCFS DftKSlft 
DMKftCHRD 000001 DftKIOG 
DftK!IDNT 000002 DftKSCB DftKSlft 
D!K!ONIO 000001 DftKSlft 
I:ftKftONMI 000001 DftKftCC 
DMKf!ONSB 000002 DftKCPV Df!KftCC 
tftKftONTH 000002 DftKftCC DftKSlft 
DMKftONTI 000001 DftKf!CC 
I:ftKftSGEC 000002 DftKCFC DftKSlft 
DMKf!SG!S 000003 DftKCFC DftKSIM 
tftKftSGWN 000003 DftKCFC DftKSlft 
DMKf!SWB 000007 DftKBSC DftKCNS DftKDAS Df!KGRF DftKBSE DMKSlft D!KTAP 
tftKNE!OP 000004 DMKSlft DftKTBC 
DftKNESDS 000001 DftKIIlET 
tftKBESEP 000001 DftKNET 
DftKBESBD 000001 D!KIET 
tftKNESPL 000001 DftKNET 
DftKNESTR 000001 D8KJiET 
t!KNESWN 000001 DftKNET 
D8KNETAE 000001 D!KCPI 
tftKNETWK 000002 DftKCFC DftKSlft 
DftKBLD!P 000003 D!KBET D!KBNB DftKSIM 
tftKNLDR 000004 DftKCPI DftKNET D!KBNB DMKSI! 
DftKOPRWT 000008 D!KCCB D!KCKP DMKDftP DftKftCB DftKPAG DftKBSP DHKSAV DMKSIM 
I:ftKPAGCC 000002 DftKftOB DftKSIM 
DftKPAGBI 000001 D!KCPI 
tftKPAGIC 000001 DftKSIM 
Df!KPAGIO 000007 D!KCDS D!KPTR Df!KRPA tMKSlf! n 
tMKPAGLO 000001 DftKCPI I'tI 

DftKPAGFS 000002 DftKMON D!KSIM t-I 
tMKPAGQ 000002 DftKPTR DftKSlft III 

DftKPAGCB 000001 DftKCQB tr 
til CD 
CD tftKPAGSP 000001 DftKSlft ~ 
0 DftKPAGST 000002 DMKCPI DMKSIM I 
r+ r+ 
1-1' tftKPEBIL 000004 DftKPRG DftKPRV DMKVAT 0 
0 I 
I:' tJ: 

W 
0 
~ 
c:: 
~ 

t=' CD 
1-1' 
t1 n 
CD t1 
0 0 
r+ til 
0 til 
t1 
j-Ie ~ 
CD CD 
til HI 

(l) 
t1 
(l) 

W I:' 
CD 0 
\0 CD 



w Label Count References n 
~ "tl 
0 

t'"4 

DrIKPERT 000003 DMKCFP DftKDSP DrIKUSO PI 

tftKPGS 000001 DftKSYft 
t:r 
(1) 

cz DftKPGSFS 000001 DMKCFG .... 
I 

3 tftKPGSPO 000007 DftKCFG DftKCFP DftKCPB DPlKDEF DftKPlCB DPlKSYft DlIIKUSO rT 

" DlIIKPGSFP 000004 DlIIKCFG Dl!KCFP DrIKCPV tPlKSYrI 0 w 
.....J tPlKPGSPS 000002 DlIIKCFG 

I 
3 

0 Dl!KPGSSS 000001 DPlKBVC 0 

I:ftKPGTBN 000002 DMKCPI DlIIKSYrI a. 
c:: 

til DftKPGTCG 000001 DlIIKBLD .... 
'< 
CIl t!!KPGTPG 000003 DftKCPI DMKPTR DMKSYM (1) 

rT DrIKPGTPR 000003 DMKPGS DMKPTR DMKRPA n 
(1) 

tftKPGTPO 000003 DMKCPI DftKTDK DMKVDB H e 0 
DMKPGTP4 000003 DMKCPI DMKTDK DMKVDE CIl 

t"4 I:ftKPGTPS 000004 DftKCPI DlIIKTDK DMKUSO DMKVDB CIl 
0 

I.Q DMKPGTSD 000004 DMKDRD DMKNLI: DMKSPL !:C 
~. trIKPGTSG 000006 DlIIKRSP DlIIKSPL DMKVSP (1) 
0 

DftKPGTSP 000001 DMKBPA HI 
(1) 

PI tMKPGTSR 000001 DrIKSPL H 
::I 
a. DMKPGT'IM 000004 DPlKCPI DMKSYflI DMKVDE 

(1) 
::I 

"tl 
tMKPGTTU 000003 DrIKCKS DftKCPI DMKSYM 0 

H DMKPGTTO 000004 DPlKCPI DrIKTDK DrIKVDB 
(1) 

0 trIKPGTT4 000004 DMKCPI DMKTDK DrIKVDB 
t:r DMKPGTTS 000004 DMKCPI DMKTDK DMKVDB .... 
(1) trIKPGTVG 000022 DMKCFG DftKCKS DMKCST DMKDBD DMKIOF DMKIOG DftKNLD DMKRSP DftKSEP DftKSPL DftKUDR DMKVSP 
e DMKWRft 
t:I tftKPGTVR 000020 DMKCFG DrIKCKS DMKCS'I' DPlKDRD DlIKIOF DMKIOG tMKNLD DMKRSP DftKSEP DMKUDR Dl'IKVSP Dl'IKiRM 
(1) DlIKPGT4P 000003 DMKCPI DMKTDK DrIKVDB rT 
(1) tl'lKPGT4T 000004 DMKCPI DMKTDK DMKVDB 
H DMKPGTSP 000003 DPlKCPI DMKTtK DMKVDB 
II 
~. trIKPGT ST 000004 DrIKCPI DrIKTDK DMKVDB 
::I DMKPGT90 000002 DMKCPI DPlKVDE 
PI 
rT trIKPRGCT 000002 DrIKftON Dl'IKSYM ..,. DrIKPRGC8 000012 DMKf'lCC DMKl'ION Df'lKSYM 
0 
::I tMKPRGGR 000007 Df'lKMON Df'lKSYM 
G') 

DMKPRGIN 000002 DPlKCPI DMKSHI 
c:: tftKPRGftC 000012 DMKCPV DMKDMP DftKftCC D~KflON Df'lKSYM 
~. DMKPRGPlI 000002 DMKMCC DMKMOIi a. IMKPRGRF 000002 DftKPSA DMKSYM (1) 

DMKPRGSM 000008 DMKHVC DMKPRV Df'lKSYM I:MKTMR Df'lKVA'I 
tMKPRGTI 000006 Df'lKMCC DMKMON 
DMKPRVCD 000001 DPlKMON 
trIKPRVCE 000001 DMKMON 



Label 

DMKPRVCH 
I:MKPRVCP 
DMKPRVCS 
I:MKPRVCT 
DMKPRVDI 
DMKPRVEK 
DMKPRVEP 
I:MKPRVIK 
DMKPRVIP 
I:MKPRVLC 
DMKPRVLG 
I:MKPRVLP 
DMKPRVLR 
EMKPRVMN 
DMKPRVMO 
I:MKPRVMS 
DMKPRVliIC 
I:MKPRVPB 
DMKPRVPE 
tMKPRVPT 
DMKPRVRR 
I:MKPRVTC 
DMKPRVTE 
I:MKPSA 
DMKPSACC 
I:MKPSAI:U 
DMKPSAEX 
I:MKPSAFP 
DMKPSAHI 
I:MKPSALO 
DMKPSAliIS 
I:MKPSANX 
DMKPSARG 
I:MKPSARR 
DMKPSARS 
tMKPSARX 
DMKPSASC 
I:MKPSASP 

en DMKPSASV 
CD tMKPTRAN 0 
r+ .... 
0 
I:' 

w . 
~ .... 
11 
CD 
0 
r+ 
0 
11 .... 
CD 
en 

w 
I.D ... 

count 

000001 
000001 
000001 
000001 
000001 
000001 
000001 
000001 
000001 
000001 
000002 
000001 
000001 
000001 
000001 
000001 
000002 
000001 
000001 
000001 
000001 
000001 
000001 
000001 
000016 
000002 
000002 
000006 
000001 
000001 
000002 
000001 
000001 
000001 
000003 
000002 
000013 
000012 
000002 
000111 

References 

DMKIWliI 
DMKMON 
DMKMON 
DMKMON 
DMKMOlil 
DMKMON 
DMKMON 
DMKMON 
DMKMON 
DMKMON 
DMKPRG 
DMKMON 
DMKMON 
DMKMON 
DMKMON 
DMKMON 
DMKMON 
DMKMON 
DMKMOlil 
DMKMON 
DMKMON 
DMKItON 
DMKMON 
DMKLDOOE 
DMKCDS 
DMKCPI 
DMKCPI 
DMKPRV 
DMKCPI 
DMKCPI 
DMKCPI 
DMKMON 
DMKSHI 
DMKTRC 
DMKTRC 
DMKTRC 
DMKCDS 
DMKDRD 
DMKCPI 
DMKCCW 
DMKDSP 
DMKPRG 
DMKTMR 

DMKSYM 

DMKSYM 

DMKDGD 
DMKSYM 
DMKSYM 
DMKTMR 

DMKSYM 

DMKCFD 
DMKHVC 
DMKSYM 
DKKCDB 
DMKERM 
DMKPRV 
DKKUtR 

DMKVCN DMKVSP 

DMKDGD I:MKTRC DMKVCN DMKVSP 
DMKHVD DMKPRV DMKTMR DMKTRC 

DKKCDS DMKCFD DMKCFG DMKCKS DMKCNS DMKCPB 
DMKGIO DKKGRF DMKBVC DKKHVD DMKIOF DMKIOG 
DMKPSA DMKRGA DMKRGB DKKRPA DMKRSP DMKSCH 
DMKVAT DMKVCB DKKVCN DMKVER DMKVIO DMKVMA 

DMKCPI DKKCPV DMKDGD 
DMKISM DMKMCC DMKNLD 
DMKSEP DMKSNC DMKSPL 
DMKVSP DMKWRM 

DMKDRD 
DMKPGS 
DMKSYM 

() 
It! 

/;'"4 
III 
tr 
CD ...., 
I 

c+ 
o 
I 

3 
o 
PI 
c: ...., 
CD 

() 
t; 
o 
en 
en 
!:tI 
CO 
HI 
CO 
t; 
CO 
~ 
o 
CO 



w Label Count References n 
\0 "tI 
I\) 

tMKPTRCS 000001 DMKMON t"I 
I» 

DMKPTRCT 000001 DMKSYM t:7' 

tMKPTRFA 000001 DMKCPI CD ..... 
< DMKPTRFC 000002 DMKIWII DMKSYM I 
3 

DMKPTRFD 000001 DMKDSP c+ 

" 0 w DMKPTRFE 000001 DMKDSP I 
....J tMKPTRFF 000004 DMKCQR DMKMON DMKPAG DMKSYM tI: 
0 0 .. DMKPTRFL 000001 DMKSCB Pol 

tMKPTRFN 000002 DMKCPI DMKMON ~ 
en ..... 
"< DMKPTRFP 000001 DMKDSP CD 
Ul tMKPTRFR 000005 DMKCCW DMKDGD DMKFBE Df!KftCC c+ 

000010 n 
CD DMKPTRFT DMKDGD DMKFBJ! DMKMCB tMKMON DJ!IIKPGS DMKBPA DMKUDR DMKUIiT H 
B tMKPTBFO 000001 DMKMON 0 

DMKPTRFl 000001 DMKCPI Ul 
t"I Ul 
0 tMKPTRLK 000005 DMKACO DMKCPI DMKCPV DPlKSPL 

\Q 
DMKPTBFB 000002 DMKftOIi DMKSYM ~ 

~. (I) 
0 tMKPTRPW 000003 DftKCFP DftKPGS DMKVAT HI 

PI DMKPTBBC 000005 DMKCFS DMKDSP DMKMOIi DMKPGS DMKSYM (I) 
t1 

=' tMKPTBBF 000001 DMKMON (I) 
~ DMKPTBBL 000003 DMKCFS DMKSCB DJ!IIKUSO =' 

0 
"tI tftKPTRBQ 000002 DJ!IIKPAG DftKSYM CD 
t1 DftKPTRRT 000001 DMKDSP 0 
t:7' tMKPTRRU 000002 DMKCFS DMKUSO ..... DMKPTRSC 000005 DMKIWII DJ!IIKPGS DMKSYJ!II tMKVJ!IIA (I) 

• tMKPTBSS 000004 DftKCQR DftKftON DMKPAG DMKSYft 

~ 
DMKPTRSW 000001 D!KPlOIi 

(I) tMKPTRUL 000036 DMKACO DMKCCi DMKCFG DMKCKS DMKCPI DMKCPV DMKCSO DMKDGD DMKIOF DftKISM DftKJ!IION DMKNLD 
c+ DMKPSA DJ!IIKBPA DMKSEP DJ!IIKSNC DMKSPL DMKUNT DMKVIO DMKVSP 
(I) 

tMKPTRU 1 000002 DMKCPI DMKSCB t1 
II DMKPTRiQ 000004 DMKCDS DMKPAG DMKRPA tMKSYM 
~. tMKQCNCL 000017 DMKCNS DftKDIA DftKGBF DMKIIES DMKNLD DMKPSA DMKRGA DftKRNB DftKSYft =' 
PI DftKQCNET 000012 DMKCBS DMKGRF DftKRGA DftKBGB DJ!IIKRBB DftKSYM 
c+ tftKQCNRD 000014 DMKCFG DMKCFM DftKCFS DMKCPI DMKLNK DJ!IIKMSG DMKMSW DMKBLD DMKSYM DftKVCN ~. 

0 DMKQCIISY 000004 DMKCFP DMKCKS DMKLOG DMKSYJ!II 
=' tMKQCNTO 000008 DMKCNS DftKGRF DMKNES DMKNLD DMKRGA DftKBNB DftKSYft 
en DMKQClIiT 000174 DMKACO DMKBLD DMKCCB DMKCDB DMKCDS DMKCFC DMKCFD DMKCFG DMKCFM DMKCFS DMKCPB DMKCPI 
~ DMKCPV DftKCQG DMKCQP DMKCQIi DMKCSO DMKCSU DMKDAS DMKDEF DMKDIA DMKDSP DMKEBM DMKGRF ~. 

Pol DftKIOE DftKLNK DMKLOG DMKftCC DPlKMCB DftKMID DMKMSG DMKMSi DMKNES DMKBET DMKNLD DMKPGT 
(I) DMKPRG DMKPSA DMKPTB DMKIiGA DftKRNB DMKRSP DMKSPL DMKSYM DMKTBI DMKTRA DMKTBC DftKUDB 

DMKUSO DMKVCA DftKVCH DMKVCB DMKVDB DftKVDR DftKVER DftKiBM 
tftKBGAIN 000003 DMKIOS DftKRGB DftKSYM 
DMKBGBEN 000004 DftKIIES DftKNET DMKSYM 



label Count References 

DlIKRGBIC 000004 DlIKQCN DlIKRGA DMKSYl'1 
DMKRGBMT 000001 DlIKRGA 
[lIKRGBSN 000001 DMKRGA 
DlIKRIO 000002 DlIKSSP 
DlIKRIOCB 000002 DMKSSP DlIKSYft 
DftKRIOCN 000006 DlIKCPI DlIKGRF DMKOPR DMKSSP DftKSYft 
[ftKRIOCU 000004 DftKSSP DMKSYft 
DMKRICDV 000006 DftKCPR DlIKSSP DMKSYM 
tftKRIOPR 000004 DftKCQR DftKDlIP DMKSSP DlIKSYlI 
DMKRIOFU 000002 DMKSSP DMKSYM 
[ftKRIORD 000002 DftKSSP DMKSYM 
DftKRIORN 000014 DlIKBLD DMKCPI DMKCQP DMKDIA DMKNES DlIKNET DMKRNB DMKSYM 
tllKRNBCT 000001 DlIKSYM 
DMKRNBIC 000002 DlIKQCN DlIKSYM 
tMKRNBIN 000003 DMKIOS DlIKNLD DlIKSYM 
DMKRNBND 000015 DMKDIA DMKIHS DMKNET DMKPSA DMKSYM 
DMKRNBTG 000001 DMKSYft 
DftKRNBTR 000004 DMKNES DMKSYM 
DftKRNTEL 000002 DMKNLD DMKSNC 
DlIKRPAGT 000043 DMKCFG DMKCKS DlIKCST DftKDRD DMKHVD DMKIOF DMKIOG DMKIUD DlIKRSP DMKSPL DMKSYM DMKUDR 

DMKVSP DMKWRM 
DMKRPAPT 000024 DMKCFG DMKCKS DMKCPI DMKCST DMKIOF DftKIOG DftKBLD DMKRSP Df!KSNC DftKSPL DMKSYM DMKVSP 

DftKWRft 
DMKRSERR 000002 DMKRSP DMKSYM 
tftKRSPAC 000003 DlIKCKP DMKSYM DlIKWRlI 
DlIKRSPCV 000005 DlIKCKP DlIKSYlI DlIKWRlI 
DlIKRSPI::L 000009 DlIKCKP DMKSPL DlIKSYM DlIKWRlI 
DMKRSPER 000002 DlIKIOS DlIKSYM 
I::MKRSPEX 000005 DMKACO DMKCSO DMKIOS DlIKSPL DlIKSYlI 
DlIKRSPBQ 000009 DMKCKP DlIKCKS DlIKCQR DMKCSP DMKSPL DMKSYM DlIKWRM 
DMKRSPID 000008 DMKCKP DMKCKS DMKDMP DlIKNLD Df!KSPL DMKSYlI DMKWRlI 
DMKRSPFR 000005 DMKCKP DMKCQR DMKSYM DMKWRM 
[MKRSPPU 000004 DMKCKP DMKCQR DMKSnl DlIKWRlI 
DMKRSPRD 000005 DlIKCKP DMKCQR DMKSYlI DMKWRlI 
[lIKRSPUR 000002 DMKCQP DMKSYM n 
DMKRSP83 000002 DMKRSE DMKSYM 

ttj 

I:MKSAV 000004 DMKCKP DMKCPI t"4 

DMKSAYRS 000001 DMKCKP ~ 
t1' 

til [MKSCBAL 000002 DMKMON DMKSYM (I) 

(I) DMKSCHAP 000002 DlIKCFS DMKSYM ~ 

0 I 
rt tMKSCHAU 000004 DMKCFS DMKSYM DMKUSO rt .... DMKSCHCO 000001 DMKTHI 0 
0 I 

= =-0 
w P.o 

c:: 
~ 

~ 
(I) .... n 1"'1 

(I) H 
0 0 
rt rn 
0 rn 
1"'1 !:tI .... 
(I) (I) 

rn HI 
(I) 
H 
(I) 

w ::s 
1.0 0 
W (I) 



w Label count References n 1.0 "tI ~ 

t"I 
DMKSCBCP 000002 DMKBLD DMKSYM I» 

Dl1KSCHCT 000002 DMKMON DMKSYM t:r 
CD 

<I DMKSCBCU 000001 DMKTBI ..., 
I or DMKSCHDL 000014 DMKDSP DMKIOS DMKLOG DMKPTR DMKQCN DMKRPA DMKSYP.I DMKUSO Dl1KVCA DP.lKVIO rt' 

" DP.lKSCBIB 000001 DMKSYl1 0 w I ....,J DP.lKSCHLI 000002 DP.lKCPI DP.lKTBI or 
0 DMKSCBP.lD 000002 DP.lKCPI DP.lKSYP.I 0 

DP.lKSCHlil 000006 DMKDS P DMKP.lON DP.lKPTR DMKSYP.I DMKTMR Cl.I 
c:: en DMKSCBN2 000005 DMKDSP DMKMON DP.lKPTR DP.lKSYP.I DMKTP.lR ..., 

"< en DMKSCHFB 000001 DlIKSYP.I CD 
rt' tMKSCBPD 000001 DMKSYM n 
CD 
a DMKSCHFG 000003 DflKCFS DMKCQR DMKSYP.I t1 

0 
I:"" 

DP.lKSCBPU 000003 DMKMON DMKSYM en 
0 DMKSCHQl 000003 DMKCPI DMKP.lON DP.lKSYP.I en 

I.Q I:MKSCBQ2 000002 DMKCPI DMKSYM 1:0 
~. DP.lKSCBRL 000002 DlIKDSP DMKSYM CD 0 H\ tP.lKSCHRT 000016 DMKCFC DMKCFM DP.lKCFP DlIKCFS DP.lKGRF DP.lKLOG DMKP.lCC DP.lKP.lON DP.lKQCN DP.lKRGA DflKRGB DlIKSYM CD 
I» DlIKTP.lR DlIKUSO t1 
~ 
c. tMKSCBSC 000001 DMKTHI CD 

~ 

I'tI DMKSCBST 000011 DlIKCFC DP.lKCPI DMKGRF DP.lKP.lCC DP.lKP.lID DP.lKMOH DMKQCN DMKRGA DMKSYM DMKTMR 0 

t1 tP.lKSCBS 1 000001 DMKTBI CD 

0 DMKSCHS2 000001 DlIKTHI 
t:r' ..., tMKSCBTI 000001 DMKCPI 
CD DP.lKSCBTQ 000002 DlIKPSA DMKSYP.I a IP.lKSCBUB 000001 DMKSYM 
tI DMKSCHil 000003 DMKMON DI'IKSYM 
CD DMKSCBW2 000003 DMKMON DMKSYP.I rt 
CD DMKSCH80 000003 DP.lKCFS DMKLOG DP.lKSYM 
t1 IMKSCNAU 000021 DMKCFD DMKCFS DMKCPV DMKCQG DlIKCQP DP.lKCQR DP.lKCSU DMKDIA DP.lKLNK DMKLOG DlIKP.lSG DMKRNH EI 
~. DlIKSPL DlIKUSO DMKVDE 
tj DP.lKSCNFD 000178 DMKCDB DMKCDS DP.lKCFC DMKCFD DMKCFG DMKCFM DP.lKCFS DMKCFT DP.lKCPB DP.lKCPV DMKCQG DlIKCQP I» 
rt' DMKCQR DMKCSO DMKCSP DMKCST DMKCSU DP.lKDEF DMKDIA DMKLNK DMKLOG DMKflCC DP.lKP.lCH DP.lK!lSG ..,. 

DMKNES DMKNET DMKNLD DMKBSF DMKTBI DMKTRA D!lKUSO DMKVDB 0 
tj DP.lKSCNLI 000001 DMKLHK 
(j) IMKSCNRD 000048 DMKBLD DMKCFS DP.lKCKS DflKCNS DMKCPI DP.lKCPV DP.lKCQG DMKCQP DMKCQR DMKDIA DMKDMP DMKGRF 
c:: DMKLOG DI'IKNES DP.lKBET DP.lKBLD DMKPAG DMKPSA DMKQCN DMKRGA DI'IKRSP DP.lKSEP DP.lKTBI DP.lKTBC 
~. DMKUSO DMKVCH DMKVDB DMKVDR DMKVDS DP.lKVEB c. 
CD DP.lKSCNRN 000015 DMKCPV DMKCQG DMKCQP DP.lKDIA DMKP.lSi DMKQCN DMKBSP DP.lKTRC DP.lKUSO DP.lKVDE I:MKVDB 

IMKSCNRU 000048 DMKCCB DMKCFD DMKCFS DMKCKS DMKCNS DP.lKCPI DMKCPV DMKCQP DP.lKCSO DMKDAS DP.lKDIA DIIKDMP 
DMKGRF DMKBVD DP.lKIOG DMKIOS DMKLOG DMKMCC DP.lKNES DMKNLD DP.lKBGA DP.lKRBH DMKRSP DMKVCH 
DMKVDB DMKVDS DMKWRM 

DP.lKSCNVD 000011 DMKCFT DMKCPV DP.lKCQP DMKCST DMKDEF DMKDIA DP.lKHVD DMKLOG DMKVSP 



Label Count References 

tftKSCHVH 000009 DftKCPV DftKCQG DftKCST DMKtEF DMKLHK tMKLOG DftKTRC tftKVDB 
DftKSCNVS 000011 DftKCFG DftKCPI DMKLHK DMKBLD DMKSBC DMKVDB 
tftKSCHVU 000063 DftKCFD DftKCFG DftKCFP DMKCPB DMKCPV DftKCQG DMKCQP DMKCSO DflKCSP DMKCST tftKt!F DMKDGD 

DftKDIA DftKDRD DftKDSP DftKGIO DftKHVC DMKHVD DMKLHK DftKLOG DftKHLD DftKTHI DftKTRC DftKUSO 
DftKVCA DftKVCH DftKVCH tftKVDB DMKVDS DMKVER DPlKVIO DftKVSP 

tftKSEPBR 000001 DftKSYft 
DftKSEPSP 000002 DftKRSP DftKSYft 
tftKSEV70 000002 DftKIOG DftKSYft 
DftKSIX60 000002 DftKIOG DMKSYM 
tftKSLC DftKBLD 
DMKSBCF 000002 DftKHVD DftKSYM 
tftKSNTEL 000001 DPlKCFG 
DftKSPLCR 000002 DftKBSP DftKSYft 
tftKSPLCV 000002 DftKSYft DftKVSP 
DftKSPLDL 000007 DPlKCSO DI!KCSU DMKRSP tftKSYft DPlKVSP 
tftKSPLtR 000001 DftKSYft 
DftKSPLCR 000002 DftKRSP DI!KSYI! 
tftKSPLOV 000002 DftKSYM DftKVSP 
DftKSTKCP 000043 DI!KACO DMKCFft DMKCFP tMKCPV DMKDIA DMKGRF DMKIOE DMKIOF DMKIOS DMKLOC DMKftCB tftKf!lOB 

DftKPAG DftKPGT DMKPTR DMKQCN DeKRGA DMKRGB DMKRNH DftKRSP DMKSPL DftKUSO DMKVCA DeKVftA 
DftKVSP 

tftKSTKIO 000024 DMKACO DftKCFP DftKCPV DflKCSC DftKCSP DftKCSU DftKDIA DftKIOS DftKNLD DftKPSA DMKSPL DftKTftR 
DftKUBT D!!KVCA DftKVIO 

tftKSYft 000002 DftKCPI DMKDRD 
DftKSYftTB 000001 D!!KCPI 
DMKSYSCD 000001 DftKCFT 
DfilKSYSCH 000003 DfIIKCKS DI!KDI!P 
tl!KSYSCK 000020 DftKACO DftKCCH DMKCKP DftKDIA DMKDftP DftKLOG DMKMCH DMKVDS 
DftKSYSCH 000006 DI!KCKS 
I:ftKSYSCS 000001 DftKSYft 
DMKSYSDT 000004 DMKCFS DftKCKP DMKLOG DMKiRM 
I:ftKSYStU 000002 DMKCPI DftKHLD 
DMKSYSDi 000009 D!!KCFS DMKCPI D!!KCQR tMKLOG DMK!!ID DMKUSO 
tftKSYSER 000003 DftKHVD DMKIOG 
DMKSYSES 000001 DMKCFT 
I:ftKSYSLB 000002 DftKLOC n 
DftKSYSLC 000001 D!!KSYft I'CJ 

I:MKSYSLD 000001 DftKCFT t-t 

D!!KSYSIE 000002 DftKBLD DMKCFT $ll 
til 0-
(1) tftKSYSLG 000006 Df!lKCFS DMKCKP DMKCQR DMKLCG D!!KiRM (l) 

n DI!KSYSLL 000002 DfilKBLD ..... 
r+ I 
~. tfilKSYSLi 000003 DMKCFS DMKLOG rt 
0 DMKSYSeA 000001 DeKLOG 0 

= t 
3: 

W 0 
P. 

= tj ..... 
~. (l) 

1"1 
(1) n 
n 1"1 
r+ 0 
0 en 
1"1 en 
~. 
(1) ~ 
en (1) 

HI 
(l) 

1"1 
W (1) 

ID t:I 
U1 n 

(l) 



(..oJ Label count References n 
\0 ttl 
0'\ 

t"4 
I:MKSYSMU 000004 DMKLOG I» 

0" DMKSYSND 000004 DMKCQR DeKDI! DMKeOB CD 
DMKSYSBM 000014 mUCQR DMKGRF DMKLOG DMKMON DMKQCN DMKUSO ..... 

< I 
3: DMKSYSNU 000003 DMKCPI DMKSAV DMKSSP c+ 

........ DMKSYSOC 000010 DMKCKP DMKCPI DMKMON DMKRSF DMKSPL DMKSYM DMKUDR DMKVDB 0 
(..oJ 

DMKSYSCP 000001 DMKSHI I 
.....J tz 
0 I:MKSYSOW 000022 DMKCKP DMKCKS DMKCPI DMKDRD DMKMON DMKPAG DMKPGT DMKPTR DMKRSP DMKSPL DMKSYM DeKUDR 0 
II 

DeKVDB DMKWRM ~ 
.:: 

til I:MKSYSPL 000003 DMKUDR ..... 
Iocl DMKSYSRM 000029 DMKCCH DMKCCW DMKCDB DMKCDS DMKCKP DMKCPI DMKCQP DMKDIA DMKDMP DMKERM DMK FRE DMKHVD CD 
til 
rT DMKPTR DMKRSP DMKSYM DMKTRC DMKUNT DMKVCA (') 
CD DMKSYSRS 000002 DMKSAV DMKSYM t1 
EI 0 

DMKSYSRV 000009 DMKCFS DMKCPI DMKCQP DMKDMF DMKSYM til 
t"4 DMKSYSTI 000006 DMKCPI DMKCQB DMKLOG DMKMID DMKUSO til 
0 

I.Q I:MKSYSTM 000002 DMKCFS DMKLOG !:tI 
1-" DMKSYSTP 000003 DMKCKP DMKBSP DMKSAV CD 
C1 H\ I:MKSYSTZ 000004 DMKCPI DMKIOE DMKSAV CD 
I» DMKSYSUD 000004 DMKCPI DMKUDR t1 
::I I:MKSYSVL 000004 DMKCPI DMKSAV DMKSYM CD 
PI ::I 

DMKSYSVM 000001 DMKSYM 0 
"tI DMKSYSWM 000003 DMKCKP DMKRSP DMKWRM CD 
H 
0 DMKTAPEB 000002 DMKIOS DMKSYM 
0" I:MKTBLCI 000001 DMKCNS ..... 
CD DMKTBLCO 000001 DMKCHS 
EI DMKTBLGR 000004 DMKGRF DMKRGA DMKBGB 
'=' DMKTBLFI 000001 D!!KCNS 
CD I:MKTBLPO 000001 DMKCNS r+ DftKTBL'II 000001 DMKCNS CD 
t1 I:MKTBLTO 000001 DMKCNS 
EI DMKTBLUP 000004 DMKCNS DftKGRF DftKRGA I)MKVCN 1-" 
::I I:ftKTBftMI 000001 DMKCNS 
I» DftKTBMMO 000001 DMKCNS c+ 
1-" I:ftKTBMNI 000001 DMKCNS 
0 DMKTBMNO 000001 DMKCNS ::I 

I:MKTBMZI 000002 DMKGRF DMKRGA 
en DMKTBM20 000002 DMKGRP DMKRGB .:: 
1-" DMKTDKGT 000002 DMKSYM DMKVDS 
PI DftKTDKBL 000002 DMKSYft DMKVDR 
CD I:MKTHIEN 000001 DMKCPC 

DMKTMRCK 000001 D!!KBLD 
UIKTMRPT 000007 DMKACO DMKCKP DMKHVC DMKBSF DMKTHI DMKVSP 
DMKTMR'IN 000002 DMKPRV DMKSYM 



Label Count References 

I:MKTKRVT 000001 DMKPSA 
DMKTRACE 000002 DMKCFC DKKSYM 
DKKTRCEX 000002 DMKDSP DMKSYK 
DMKTRCIO 000001 Df'lKDSP 
DMKTRCIT 000005 DMKCDS DKKCFC DMKDSP DMKfSA DMKTRA 
DMKTRCliD 000001 DMKUSO 
tMKTRCPB 000008 DMKCDS DMKCFC DMKCFP DKKPRV DMKPSA DKKTRA 
DMKTRCFG 000002 DMKDSP DKKPRG 
DMKTRCPV 000001 DMKPRV 
Df'lKTRCSI 000004 DMKIOS DKKVCA DMKVIO 
DMKTRCSV 000001 DMKPSA 
DPlKTRCSi 000001 Df'lKVIO 
DMKTRCWT 000001 DMKVIO 
DMKTRMID 000002 DMKCNS DMKSYM 
DMKUCBLD 000001 DMKCSO 
DMKUCSLD 000001 DMKCSO 
DMKUDRBV 000002 DMKCPI DMKSYM 
DMKUDRDS 000002 Df'lKBVD DMKSYM 
DMKUDRFD 000003 DMKLNK DMKSYM 
DMKUDRFU 000012 DMKCSP DMKCSU DMKDEF DMKHVD DMKLNK DMKLOG DMKRSP DMKSPL DflKSYM 
Df'lKUDRRD 000006 DMKDEF DMKBVD DMKLOG DMKSPL DMKSYM 
DMKUDRRV 000008 DMKDEF DMKBVD DMKLNK DMKLOG DMKSPL DMKSYM 
I:MKUNTFR 000008 DMKCFP DMKGIO DMKBVC Df'lKSYM DflKVIO 
DMKUNTIS 000003 DMKISM DflKSYM 
tMKUNTRN 000003 DMKGIO DKKSYK DMKVIO 
DMKUNTBS 000002 DMKCCW DMKSYM 
tMKUSOtS 000002 DMKCFC DMKSYM 
DKKUSOFF 000003 DPlKDSP DMKLOG DMKSYM 
DMKUSOFL 000002 DMKCFC DMKSYM 
DMKUSOFM 000001 DMKSYM 
tMKUSOLG 000003 DMKCFC DMKSYM 
Df'lKVATAB 000007 DKKCDB DMKCDS DMKDSP DMKPRV Df'lKSYK 
DKKVATEC 000006 DMKCDS DMKCFP DMKCPB DKKDSF DKKSYK DKKUSO 
DKKVATEX 000004 DMKDSP DMKPRV DMKSYK DMKTKB 
I:KKVATLA 000002 DMKPRV DMKSYM 
DMKVATMD 000005 DMKCDS DKKCFG DKKCPB DKKDSP DKKSYfl n 

I'Ij 
I:MKVATPF 000001 DMKPRG 
DMKVATFX 000002 DMKPRG DMKSYM t"'4 

III 

en DKKVATRN 000006 DMKPRV DMKSnl DMKTMR DMKTBC DKKVEB 0-
DMKVATSX 000002 Df'lKPRG DMKSYM CD 

(!) ...., 
0 I:MKVCABD 000002 DMKCFP DMKSYM I r+ DMKVCARS 000004 DMKDEF DMKDIA DMKSYK DMKVDR r+ 1-'- 0 
0 I 
t:' 3 

W 0 
~ 
c 

'=' 
...., 

1-'- CD 

H (') 
(!) H 0 0 r+ en 
0 en 
H 
1-'- !XI 
CD (!) en HI 

CD 
H 

w (!) 

=' ~ 0 ...,J (I) 



w Label Count References (') 
\0 ttl 
co 

t"'f 
I:MKYCASH 000002 DMKSYM DMKVIO I» 

DMKVCAST 000002 Dl!KSYM Dl!KVIO b" 
(I) 

DMKYCATS 000002 DMKSYM DMKVIO ~ -= DMKVCBDC 000002 DMKSYM DMKVDE I 
Dr rt" 

" DMKVCNEX 000002 DMKSYM DMKVIO 0 w DMKVDBAT 000002 DMKCFC DMKSYM I 
...,J 01: 
0 DMKVDBDE 000002 DMKCFC DMKSYM 0 

DMKVDREL 000007 DMKCFP DMKLNK Dl'IKNLD Dl'IKSYM DMKUSO Dl'IKVCB Dl'IKVDB ~ 

-= til DMKYDSAT 000005 DMKLOG DMKSYM DMKVCB DMKVDE ~ 
~ Df'lKVDSDF 000004 til DMKDEF DMKLOG DMKSYM (I) 

rt" DMKVDSLK 000002 DMKLNK DMKSYM n 
(I) DMKYERD 000002 DMKPSA DMKSYM t1 
iii 0 I:MKYERO 000002 DMKPSA DMKSYM til 
t"'f DMKVIOCI 000001 DMKMON til 
0 

IQ tMKYIOCT 000002 DMKMON DMKSYM ::0 ..... DMKVIOCW 000002 DMKMON DMKSYM (I) 
0 tMKVIOEX 000003 DMKBVC DMKPRV DMKSYM ~ 

(I) 
I» Dl'lKVIOBD 000001 DMKf'lON t1 
::s LMKYIOEI 000001 DMKMON (I) 
~ ::s 

DMKVIOIN 000008 DMKCSP DMKCSU DMKDIA tMKIOS DMKSPL Dl'IKSYl'I Dl'IKVCA 0 
ttl I:MKVIOMK 000007 DMKCFM DMKCFP DMKCPB DfH<DSP DMKVCN DMKVSP (I) 
t1 
0 DMKVIOSF 000001 DMKl'ION 
b" I:MKV IOS1 000001 DMKl'ION 
~ 
(I) Dl'IKVIOTC 000001 Dl'IKMON 
II tMKY lOTI 000001 DMKMON 
t:J DMKVPlA 000001 DMKSYM 
(I) tMKYMACF 000004 DMKCDS DMKCFD DMKTRC r+ 

DMKVMAFS 000020 DMKCCi DMKCDS Dl'IKDGD DMKDSP Dl'IKPTR DMKSUI DMKUSO DMKVCN D~KVS P (I) 
t1 tMKVMASH 000003 DMKDSP DMKSYM DMKUSO 
iii DMKVl'IASl 000003 D~KCFG ..... 
::s I:MKVl'IAS2 000001 DMKCFG 
I» DMKVM1 000002 DMKCFG DMKCPI r+ ..... rf'IKV SPCO 000007 DMKCFP DMKCPV DMKCSP Df'lKSHI Df'lKVDR 
0 Df'lKVSPCR 000005 DMKCFP DMKCSP Df'lKDRD DMKSYM DMKVDR 1::1 

tMKVSPEX 000002 DMKSYM DMKV10 
en Df'.IKVSPRT 000007 DMKCDB DMKRNH DMKSYM DMKTRC 
-= ..... I:MKVSPTO 000001 DMKV10 
~ DMKVSPVP 000003 DMKQCN Df'.IKSYM (!) 

I:MKVSPWA 000003 DMKSYM DMKUSO 
DI'IKWRM 000001 DMKLDOOE 
I:MKW RMST 000001 DMKCPI 
DMPCRS 000001 DMKEDM 



Label Count References 

I:MPFLAG 000001 DMKDl1P 
DMPFPRS 000002 DMKDMP DMKEDM 
I:MPGPRS 000002 Dl1KDl1P DMKEDM 
DMPINREC 000003 DMKDMP DMKEDM 
I:MPKEY 000002 DMKDl1P 
DMPKYREC 000001 DMKDMP 
UIPLCOBE 000002 DMKDMP DMKEDM 
DMPPGMAP 000004 DMKDMP DMKEI:M 
I:MPSYSRV 000002 DMKDMP DMKEDM 
DMPTODCK 000002 DMKDMP DMKEI:M 
ECBLOK 000060 DMKBLD DMKCDB DMKCDS DMKCFG DMKCFP I:MKCFS DMKDSP DMKEDM DMKPRG DMKPRV DMKSCH DMKTMR 

DMKTRC DMKUSO DMKVAT 
ECSWLOG 000006 DMKCCH DMKIOG 
EDIT 000024 DMKCFG DMKCFM DMKCFS DMKCNS DMKCPI DMKEDM DMKGRF DMKLNK DMKMSW DMKNLD DMKQCN DMKRGA 

DMKRNH DMKVCN 
EQCHK 000007 DMKBSE 
ERRBLOK 000009 DMKIOE DMKIOF 
ERRCCN'I 000003 DMKIOE DMKIOF 
ERRCCW 000006 DMKIOE DMKIOF 
ERRCON'I 000001 DMKIOF 
ERRCORB 000003 DMKIOE DMKIOF 
ERRHEADB 000002 DMKIOE 
ERR lOB 000012 DMKIOE DMKIOF 
ERRIOEB 000003 DMKIOE DMKIOF 
ERRKEY 000004 DMKIOE DMKIOF 
ERRMIOB 000003 DMKIOE DMKIOF 
ERRMIOER 000002 DMKIOE DMKIOF 
ERRMSG 000009 DMKCFG DMKCQP DMKDDR DMKDIR DMKDSP DMKERM DMKLNK DMKNLD DMKRNH 
ERROR 000070 DMKMCC DMKMON 
ERRPARM 000003 DMKIOE DMKIO:r 
ERRSDR 000007 DMKIOE DMKIOF 
ERRSI ZE 000001 DMKIOE 
ERRVOLID 000003 DMKIOE DMKIOF 
EXNPSW 000006 DMKCPI DMKDSP DMKSAV 
EXOPSW 000008 DMKDSP DMKPSA (1 

EXTARCH 000007 DMKVAT I'd 

EXTCCTRQ 000007 DMKBLD DMKCDS DMKCFP DMKCFS DMKTMR DMKUSO t-I 

EXTCOPY 000005 DMKVAT PI 
t:r 

til EXTCPTMR 000024 DMKCDS DMKCFP DMKSCH DMKTMR CD 
CD EXTCPTRQ 000014 DMKELD DMKCFS DMKSCB DMKTf'IR DMKUSO ..... 
0 I 
c+ EXTCRO 000021 DMKBLD DMKCDB DMKCDS DMKCFG DMKCFP DMKDSP DMKPRV DMKTRC DMKVA T c+ .... EITCRl 000003 DMKVAT 0 
0 

, 
I:' 3: 

0 
W ~ . ~ ..... 
tj (1) .... 

n 11 
(1) 11 
0 0 
c+ en 
0 en 
11 .... !:tI 
(1) (1) 

en H\ 
(1) 

11 
(1) 

W I:' 
~ 0 
~ 

(1) 



Label count References 
~ n 
0 I'1j 
0 

EXTCR 14 000002 DMKBLD DMKCFP 1:'"1 

EXTCR15 000002 DMKBLD DMKCFP III 
tr 

EXTCR2 000006 DMKBLD DMKCFP DMKDSP C'O 

c:: EXTCR4 000003 DMKCFP DMKDSP ~ 
I 

:I: EXTCR7 000001 DMKDSP c+ 

" EXTCR9 000002 DMKPRV DMKT.MR 0 w I 
....J EXTMASK 000002 DMKCFG DMKTRC 13: 
0 EXTMODE 000025 DMKCDS DMKCFG DMKCPB DMKCPI DMKDMP DMKDSP DMKPRV DPlKPSA DPlKTRC DMKVER DMKVfH 0 
00 P-

EXTPERAD 000005 DMKDSP DMKPRG DMKPRV DPlKTPlB ~ 
en EXTPERCD 000003 DPlKDSP DMKPRG ~ 
~ C'O 
1Il EXTSEGLN 000005 DMKVAT 
c+ EXTSBCBO 000011 DMKDSP DMKPRV DMKTMR DMKTRC DMKVAT n 
C'O H 
II EXTSBCR 1 000011 DMKDSP DMKVAT 0 

EXTSHLEN 000008 DMKVAT 1Il 
1:'"1 

EXTSHSEG 000005 DMKVAT 1Il 
0 

IQ EXTSIZE 000010 DMKELD DMKCFS DMKEDM tMKUSO !:C 
!oJ- EXTSTOLD 000003 DMKVAT C'O 
0 HI 

III 
EXTVSEGS 000005 DMKVAT C'O 
FAILAtD 000002 DMKCCH H 

::t C'O 
P. FAILCCli 000007 DMKCCH ::t 

FAILCSW 000011 DMKCCH 0 
I'1j CD 
11 FAILECSW 000004 DMKCCB 
0 FFS 000113 DMKBLD DMKCCB DMKCCW DMKCDE DMKCFC B.MKCFP DMKCKS DMKCNS DMKCPI DMKCQP DlIIKCSP DllKCST tr 
~ DMKCSU DMKDEF DMK DGD DMKDIA DMKDMP DMKDRD DMKDSP DMKEIG DMKHVD DMKIOF DMKLNK BMKLOG 
CD DMKMCC DMKMCH DMKNES DMKNLD DMKOPR DMKPGS DMKPGT DMKPRG DMKPRV DMKPSA DMKPTR DMKRPA 
EI 

DMKSCH DMKSCN DMKSEV DMKSIX DMKTRA DMKTRC DMKUNT DMKUSO DMKVCA DMKVCH DMKVDB Df!KVDR 
'=' DMKVDS DMKVSP DMK WRM 
C'O 
c+ FREERO 000001 DMKFRE 
C'O FREERl 000002 DMKFRE 
H FREER14 000001 DMKFRE II 
!oJ- FREER15 000001 DMKFRE 
::t FREESAVE 000012 DMKFRE DMKVCA III 
t+ FTREXTSN 000006 DMKCCW DMKDAS DMKIOE tMKIOF 
!oJ- FTRRPS 000006 DMKCPI DMKDAS DMKIOS DMKVDE 0 
::t FTRRSRL 000001 DMKVDS 
en FTRTYP 1 000003 DMKNLD 
~ FTRUCS 000'002 DMKCSO DMKSSP 
!oJ- FTR2311B 000005 DMKDIR DlIIKLNK DlIIKSCN DMKYER P-
C'O FTR2311T 000005 DMKDIR DlIIKLBK DMKSCB DMKYER 

FTR35ME 000010 DMKCKP DMKCPI DMKDAS DMKHVD DMKVDE BMKY 10 
FTR70MB 000011 DMKCPI DPlKDAS DMKPAG DMKPGT DMKSPL DMKTDK DMKVDB DMKVER DPlKVIO 



Label Count References 

FO 000024 DMKCFG DMKCPI DMKCQB Dl!KDSF Dl!KGBF DMKIOS DMKMON DMKNLD DMKPGS DMKPTR DMKRGA DMKSCH 
DMKSCR DMKSPL DMKUNT DMKVDB DMKVSP 

F1 000194 DMKACO DMKBLD DMKBSC DMKCCi DMKCDB DMKCDS DMKCFC DMKCFD DMKCFG DMKCFS DMKCFT DMKCKS 
DMKCNS DMKCPI DMKCPV Dl!KCQG Dl!KCQP DMKCQB DMKCSO DMKCSP DMKCST DMKCSU DMKCVT DMKDAS 
DMKDGD DMKDIA DMKDRD DMKDSP DMKFRE DMKGRF DMKHVC DMKIOE Dl!KIOS DMKLIK DMKLOG DMKMCC 
DMKMON DMKMSG DMKNES Dl!KNLD DMKPAG DMKPGT DMKPRG DMKPSA DMKPTR DMKQCN DMKBGA Dl!KBGB 
DMKRRH DMKBPA DMKRSE DMKSAV DMKSCH DMKSIX DMKSRC DMKSPL DMKTAP DMKTHI DMKTBC DMKUDR 
DMKURT DMKVCA DMKVCR DMKVDB DMKVDB DMKVEB DMKVIO DMKVMA DMKVSP 

F10 000022 Dl!KCCi DIHCKS DMKCRS DMKCPI DMKCVT DMKDAS DMKIOE DMKMSi DMKSCH DMKVDB 
F15 000032 DMKBLD DMKCCi DMKCDB Dl!KCDS DMKCFG DMKCNS DMKDGD DMKIOF DMKLNK DMKPGS DMKPRV DMKPSA 

DMKSCH DMKTAP DMKTRC DMKUNT DMKUSO 
F16 000021 DMKBLD DMKCCH DMKCCi DMKCDE DMKCDS DMKCNS DMKDGD DMKHVC DMKISM DMKPRV DMKBNH DMKTAP 

DMKTBC . DMKURT 
F2 000082 DMKCCi DMKCDB PMKCDS DMKCFC DMKCFG DMKCFS DMKCFT DMKCNS DMKCPI DMKCPS DMKCPV DMKCQG 

DMKCQP DMKCQB DMKCSO DMKCSP DMKCST DMKCSU DMKDAS DMKERM DMKISM DMKLIK DMKMSG DMKPAG 
DMKPSA DMKQCN DMKRGA DMKSAV DMKSPL DMKTAP DMKTRC DMKVCA DHKVMA 

F20 000001 DMKMSi 
F24 000006 DMKCDB DMKCKS DMKCSU Dl!KBSF DMKVER 
F240 000015 DMKCCi DMKCVT DMKDIA DMKLOG DMKPRV DMKPSA DHKTRC DMKUNT DMKVCA DMKVIO 
F255 000018 DHKCFT DHKCKS DMKDRD DMKEBM DMKGRF DMKIOE DMKIOF DMKMCH DMKNES DMKNET DMKBGA DMKTDK 
F256 000039 DMKCFG DMKCNS DMKDAS DMKDRD DMKGRF DMKHVC DMKHVD DMKNLD DMKRGA DHKRGE DMKRNH DMKS He 

DHKTDK DHKUDB DHKVCN DMKVER DHKiRM 
F3 000095 DMKCCi DMKCDE DMKCFC DMKCFD DMKCFG DMKCFS DMKCKS DHKCPB DMKCPI DMKCPS DMKCPV DMKCQG 

DlIKCQP DlIKCSO DMKCSP DMKCST DMKCSU DHKDEF DMKDGD DMKDIA DMKGBF DMKHVD DHKMCC DMKMON 
DMKMSG DMKNES DHKNET DMKNLD DMKPAG DMKPGT DMKRGA DMKBSE DHKSAV DMKSCH DHKSPL DMKTAP 
DMKTHI DMKTRA DMKTRC DMKVCN DMKVDB 

F4 000097 Dl!KACO DMKBLD DMKCCi DMKCDB DMKCDS DMKCFC DMKCFG DMKCFS Dl!KCKS DMKCNS DMKCPB DMKCPI 
DMKCSO DMKCSP DMKCSU Dl!KCVT DMKDEF DMKDGD DMKGRF DMKBVC DMKHVD DMKIOE DMKIOF DMKISM 
DMKHCC DMKHON DHKMSi DMKNES DMKNET DMKNLD DMKPAG DMKPGS DMKPGT DMKPRV DMKPTR DMKRGA 
DHKRGB DMKRNH DMKRPA DMKRSE DMKBSP DMKSAV DHKSCH DHKSPL DMKTAP DMKTHI DMKTMR DMKTRC 
DMKURT DMKVAT DMKVCN DMKVDB DMKVEB DMKVSP 

F4095 000051 DMKBLD DMKCCi DMKCFG Dl!KCFT DMKCQB DMKDAS DMKDGD DMKDIA DMKDMP DMKBVC DMKBVD DMKLNK 
Dl!KLOG DMKHCC DMKHON DMKNES DHKNET DMKPSA DMKPTR DMKQCN DMKBGA DMKRGB DMKBNH Dl!KRSP 
DHKTMR DMKVER DHKVIO DMKVMA DHKVSP 

F4096 000063 DMKCCi DMKCDB DMKCFG DMKCPI DMKCPV DMKDAS DMKDGD DMKDMP DHKDRD DMKFRE DMKHVD DMKNLD (') 

DMKPGS DMKPTR DMKRSP DMKSNC DMKSSP DMKUDR DMKVMA DMKVSP t"d 

F5 000020 DMKCDS DMKCFS DMKCPI DMKCSU DMKDEF DMKDGD DMKGRF DMKNLD DMKPAG DMKPRV DMKRGA DMKSCH t"I 
DMKSCN DMKTAP DMKTMR ~ 

t:T' 
tn F6 000020 DMKCDS DMKCDS DMKCFC DMKCFD DMKCPB DMKCQP DMKCSU DMKDGD DMKMCH DMKMSi DMKPRV DMKTAP co 
(I) DMKVDB ..... 
0 F60 000031 DHKACO DMKCFC DMKCQB DHKCVT DMKDMP DMKHVC DMKHVD DMKMCC DMKNET DMKPRV DMKPSA DMKRNH I 
r+ r+ .... DMKTBI DMKTMR DMKTRC 0 
0 I 
::s :J: 

0 
W s::lJ 

c::: ..... 
~ co .... 

(') tot 
(I) tot 
0 0 
r+ til 
0 til 
tot 

~ .... 
(I) (I) 

til HI 
(I) 
1"1 
(I) 

~ ::s 
0 0 - co 



# Label count References n 
0 ttl 
N 

t-' 
F7 000045 DMKBLD D!KBSC DMKCCH DMKCCW DMKCFG DMKCFS D!KCPI DMKCSP DMKCSU DMKIOE DMKIOF DMKIOG III 

DMKLNK DMKLOG DMKPRV DMKRSE DMKSCN DMKSEV DMKSIX DMKTMR DMKTRM DMKUNT DMKVCN DMKVDB b" 
tIl 

DMKVER ~ 
<I F8 000157 DftKACO DltKBLD DMKBSC DMKCCH DMKCCW DMKCDS DMKCFC DMKCFG DMKCFS DMKCNS DMKCPI DMKCPV I 
:. ("t" 

"- DMKCQG DftKCQR DMKCSO DMKCSP DMKCSU DMKDAS DMKDEF DMKDGD DMKDMP DMKDRD DMKGRF DMKHVD 0 
w DMKIOE DftKISM DMKLNK DMKLOG DMKMCC DMKMCH DMKMSW DMKNET DMKNLD DMKPAG DMKPGS DMKPSA I 
~ IX 
0 DMKPTR DMKQCN DMKRGA DMKRNH DMKRSE DMKRSP DMKSEV DMKSIX D MKT AP DMKT BI DMKTMR DMKTRA 0 

Dl!KTRC Dl!KUDR DMKUSO DMKVCN DMKVDB DMKVDS DMKVER DMKVIO DMKVMA DMKVSP DMKWRM 0-
s:: 

en F9 000007 Dl!KCCW DMKCPI DMKCPV DMKMSW DMKUNT DMKVDB ~ 
I< HAL FPAGE 000002 DMKDMP tIl 
til 
("t" HARDSTCP 000002 DMKCPI Dl!KDMP n 
CD BIOCCB 000006 DMKCCH Dl!KSEV DMKSIX H 
II IDA 000057 DMKCCW DMKDAS DMKDGD DMKDIA DMKISM DMKTAP DftKTRC DMKUNT DMKVCA DMKVCN DMKV SP 0 

til 
1:"4 IDLEWAIT 000006 DMKCPI DMKDSP DMKMON DMKSCH til 
0 IFCC 000048 DMKBSC DftKCCH DMKCNS DMKCPI DMKDAS DMKEIG DMKGRF DMKHVC DMKIOE DMKIOS DMKMSW DMKRSE \Q ~ .... DMKRSP DMKSEV DMKSIX DMKTAf DMKUNT CD 
0 IGBLAME 000027 DMKEIG DMKSEV DMKSIX Hl 

CD 
III IGPRGFLG 000009 DMKCCH DMKSEV DMKSIX H 
::s IGTERMSQ 000048 DMKCCH DMKEIG DMKSEV DMKSIX tIl 
0- ::s 

IGVALIDB 000029 DMKCCH DMKEIG DMKSEV DMKSIX 0 
ttl IL 000034 DMKCNS DMKDIA DMKGIO DMKHVC DMKIOS DMKNLD DMKPAG DMKRNH DMKRS P DMKT AP DMKVCA DMKVCN CD 
H 
0 DftKVIO DMKVMI DMKVSP 
b" INHIBIT 000032 DMKCNS DMKGRF DMKLNK DMKLOG DMKQCN DMKRGA DMKRGB DMKRNH 
~ 
CD INTERCCB 000005 DMKCCH DMKEIG DMKSEV 
EI INTEX 000005 DMKDSP DftKPSA 
I:' INTEXF 000002 DMKDSP DftKPSA 
tIl INTKFLIN 000001 DMKEDK 
("t" 

INTMASK 000001 DMKCPI CD 
H INTMC 000001 DMKMCH 
B INTPR 000017 DMKCKP DMKPRG DMKPRV .... 
::s INTPRL 000007 DMKtSP DKKPRG DMKPRV 
III INTREQ 000037 DMKCNS DMKCPI DMKDDR DMKDIA DMKDMP DMKGRF DMKIOS DMKM SW DMKNLD DMKRNH DMKRSE DMKSAV t+ .... DMKVCA DMKVCN DMKVIO DMKVSP 
0 INTSVC 000004 DMKPSA ::s INTSVCL 000013 DMKPRG DMKPSA DMKTRC 
<U INTTIO 000014 DMKCCH DMKCKP DMKDMP DMKDS P DMKIOS DMKSAV DMKVMI c: IOBBPNT 000012 DMKDSP DMKIOS DMKNLD DMKPAG DMKSTK .... 
0- IOBCAW 000162 DMKACO DMKBSC DMKCCW DMKCFP DMKCNS DMKCPB DMKCPI DMKCSO DMKDAS DMKDGD DMKDIA DMKGIO 
CD DMKGRF DMKHVC DMKIOS DMKISM DMKMCC DMKMON DMKNLD DMKPAG DMKRGA DMKRGE DMKRNH DMKRSE 

DMKRSP DMKSEP DMKSPL DMKTAP DMKTRC DMKUDR DMKUNT DMKVCA DMKVDB DMKVDR DMKVIO 
IOBCCH 000004 DMKCCH 
IOBCC 1 000015 DMKCN S DMKDGD DMKDIA DMKICS DMKNLD DMKRNH DMKRSE DMKRSP DMKVCA 



Label Count References 

IOBCC2 000002 Dl!IKIOS Dl!IKVIO 
IOBCC3 000029 Dl!IKCNS DfIIKCPS DMKDAS DMKDGD DfIIKGIO m!KIOS DMKNLD DMKRGA DfIIKRNH DMKRSE DMKUNT DMKVCA 

DMKVDB DMKVlO 
IOBCOPY 000006 DfIIKGRF 
IOBCP 000039 DMKACO DMKCCH DMKCPS DMKCSO DMKDAS DMKDIA DMKIOE DMKIOS DMKNLD DMKPAG DMKRGA DMKRGB 

DMKRNB DMKRSP DMKSPL DMKTAP DMKTDK DMKUDR DMKVDB 
10BCSW 000249 DMKACO DMKCCH DMKCNS DMKCPS DfIIKCSO DMKCSP DMKCSU DMKDAS DMKDGD DMKDlA DMK DSP DMKGIO 

DMKGRF DMKBVC DMKIOS DMKMON DMKNLD DMKPAG DMKRGA DMKRNB DMKRSE DMKRSP DMKSEP DMKSPL 
DMKT AP DMKTRC DMKUNT DMKVCA DMKVIO 

IOBCYL 000024 DMKCCW DMKDGD DMKIOS DMKfIION DMKPAG DMKPGT DMKSPL DMKTDK 
10BERP 000026 DMKESC DMKCNS DMKDAS DMKGRF DMKIOS DMKRSE DMKRSP DMKTAP 
10BFATAL 000058 DMKACO DMKBSC DMKCNS DMKCSO DMKDAS DMKDGD DMKGIO DMKGRF DMKIOE DMKIOF DMKIOS DMKMON 

DMKNLD DMKPAG DMKRGA DMKRSE DMKRSP DMKSEP DMKSPL DMKTAP DMKUDR DMKVDE DMKVlO 
10BFLAG 000142 DMKACO DMKBSC DMKCCB DMKCCW DMKCFP DMKCNS DMKCPS DMKCSO DMKDAS DMKDGD DMKDIA DMKDSP 

DMKGIO DMKGRF DMKIOE DMKIOS DMKMON DMKNLD DMKPAG DMKRGA DMKRGB DMKRNB DMKRSE DMKRS P 
DMKSEP DMKSPL DMKTAP DMKTDK DMKUDR DMKUNT DMKVCA DMKVDB DMKVDR DMKVIO 

IOBFPNT 000023 DMKDSP DfilKEDfil DMKIOS DMKNLD DMKPAG DMKPGT DMKSTK 
10BBIO 000018 DMKCCH DMKCFP DMKCPS DMKIOS DMKVIO 
10BHVC 000011 DHKCFP DMKCPS DMKDGD DMKGIC DMKIOE DMK lOS 
10BIOER 000115 DMKESC DMKCCH DMKCFP DMKCNS DMKCPS DMKDAS DMKDGD DMKDIA DMKGIO DMKGRF DMK IOE DMKIOS 

DMKMON DMKNLD DMKRGA DMKRGE DMKRNH DMKRSE DMKRSP DMKTAP DMKVCA DMKVIO 
lOBI RA 000054 DMKACO DMKCFP DMKCNS DMKCPB DMKCPI DMKCPS DMKCSO DMKCSP DMKCSU DMKDAS DMKDGD DMKDIA 

DMKDSP DMKGIO DMKGRF DMKIOS DMKISM DMKMON DMKNLD DMKPAG DMKRGA DMKRGE DMKRNH DMKRSP 
DMKSEP DMKSPL DMKUDR DMKUNT DMKVCA DMKVDB DHKVDR DHKVIO 

10BL INK 000032 DMKACO DMKCFP DMKCNS DMKCPS DMKCSO DMKCSP DMKCSU DMKDAS DMKDGD DMKDlA DMKGIO DMKGRF 
DMKIOS DMKRGA DMKRNB DMKSEP DMKSPL DMKVCA DMKVIO 

10BLOK 000245 DMKACO DMKBSC DMKCCH DMKCCW DMKCFP DMKCNS DMKCPB DMKCPI DMKCPS DMKCSO DMKCSP DMKCSU 
DMKDAS DMKDGD DMKDIA DMKDSP DMKEDM DMKGIO DMKGRF DMKHVC DMKIOE DMKIOS DMKISM DMKLOG 
DMKMCC DMKMON DMKMSW DMKNLD DHKPAG DMKPGT DMKRGA DMKBGB DMKRNB DMKRSE DMKRSP DHKSEP 
DMKSPL DMKSTK DMKTAP DMKTDK DMKTRC DMKUDR DMKUNT DMKVCA DMKVDB DMKVDR DMKVIO 

10Bf'lISC 000097 DMKACO DMKCCW DMKCFP DHKCPB DMKCPS DMKCSO DMKDGD DMKDIA DMKGIO DMKGRF DMK ISM DMKMCC 
DMK MON DMKNLD DMKPAG DMKBGA DMKRGE DMKRNH DMKRSP DMKSEP DMKTDK DMKUDR DMKUNT DMKVDB 
DMKVIO 

10 BM ISC2 000061 DMKACO DMKCCW DMKCFP DMKCPS DMKCSO DMKDGD DMKGIO DMKMON DMKNLD DMKRGA DMKBGB DMKRNH 
DMKBSE DMKSEP DMK SPL DMKUDR DMKVDB DMKVIO (1 

10EPAG 000005 DMKDSP DMKIOS DMKPAG I'Ij 

IOBRADD 000054 DMKACO DMKCCH DMKCNS DMKCPS DMKCSO DMKDAS DMKDIA DMKGRF DMKHVC DMKlOE DMK lOS DMKMSW ~ 
DMKNLD DMKPAG DMKRGA DMKBNH DMKRSP DMKSPL DMKTRC DMKVIO ~ 

til 10BRCA W 000058 DMKESC DMKDAS DMKDIA DMKIOS DMKNLD DMKRNH DMKRSE DMKBSP DMKT AP DMKVlO '=" 
CD 10BRCNT 000087 DMKBSC DMKDAS DMKGRF DMKNLD DMKBGA DMK BGB DMKBNH 

CD 
0 DMKR SE DMKHSP DMK'IAP J-I 
c+ IOBBELeu 000013 DMKCCW DMKIOS DMKVDR DMKVIO I 
1-'- 10BHES 000007 DHKCFP DMKCNS 

ri-
O DMKIOS D HKNLD DMKUNT DHKVCA 0 
I:' I 

3: 

W 0 . ~ 
~ 

tj J-I 
1-'- (I) 

t1 (') 
(I) 
0 t1 
c+ 0 
0 en 
t1 en 
1-'-

!:tI CD 
en (I) 

HI 
(I) 

t1 
~ 

(I) 

0 I:' 
w 0 

(I) 



J::: Label count References n 
0 tU 
J::: 

I:"'l 

IOBRSTRT 000059 DMKBSC DMKCSO DMK DAS DMKDIA DMKIO S DMKNLD DMKRGA DMK BGB DMKRNH DMKRSE DMKRSP DMKSEP ~ 
t::r 

DMKTAP DMKVCA CD 

IOBSENS 000004 DMKGRF ~ 
c= , 
3: IOBSIOF 000003 DMKIOS DMKVIO ('"t 

" IOBSIZE 000148 DMKACO DMKCCW DMKCFP DMKCNS DMKCPB DMKCPI DMKCPS DMKCSO DMKCS P DMKCSU DMK DAS DMKDGD 0 
w , 
-.J DMKDIA DMKDMP DMKEDM DMKGIO DMKGRF DMKHVC DMKIOS DMKMCC DMKMON DMKNLD DMKPAG DMKRGA 3: 
0 DMKRGB DMKRNH DMKRSP DMKSEP DMKSPL DMKUDR DMKVCA DMKVDB DMKVDR DMKVIO 0 .. PI 

IOBSNSIO 000008 DMKIOS ~ 
til IOBSPEC 000068 DMKACO DMKCCH DMKCFP DMKCNS DMKCPS DMKDAS DMKGRF DMKIOS DMKNLD DMKRGA DMKRGB DMKRBH ~ 

""= CD 
en DMKVDB DMKVIO 
('"t IOBSPLT 000010 DMKIOS n 
CD IOBSTAT 000158 DMKACO DMKBSC DMKCCW DMKCNS DMKCPS DMKCSO DMKDAS DMKDGD DMKDIA DMKGIO DMKGRF DMKIOE ti 
a 0 

DMKIOS DMKMON DMKNLD DMKPAG DMKRGA DMKRGB DMKRNH DMKRSE DMKRS P DMKSEP DMK SPL DMKTAP en 
I:"'l DMKTRC DMKUDR DMKUNT DMKVCA DMKVDB DMKVIO en 
0 

I.Q IOBTIO 000032 DMKCCH DMKCFP DMKCPS DMKDAS DMKIOS DMKNLD DMKVDB DMKVIO !Xl ..... IOBUC 000008 DMKIOS CD 
0 HI 

IOBUNSL 000013 DMKCNS DMKCPS DMK GRF DMKIOS DMKRGA DMKRNH DMKVIO CD 
III IOBUSER 000056 DMKACO DMKCCH DMKCFP DMKCNS DMKCPE DMKCPI DMKCPS DMKCSO DMKCSP DMKCSU DMKDAS DlIKDIA ti 
::s CD 
PI DMKDS P DMKGRF DMKIOE DMKIOS DMKLOG DMKMCC DMKNLD DMKFAG DMKRGA I:MKRGB DMKRNE DlIKSPL ::s 

DMKUDR DftKVCA DMKVDB DMKVDR DftKVIO 0 
"t:l IOBVADD 000017 DMKCPS DftKCSU DMKDIA DMKIOS DMKSPL DMKTRC DftKVCA DMKVIO CD 
H DMKCSP 
0 IOBiRAP 000003 DMKCCW DMKVIO 
t::r IOELPJilTR 000005 DMKCCH DMKEIG DMKIOG ~ 
CD IOERACT 000005 DMKDAS DftKMSW DMKRSE DlIKTAF 
9 IOERADR 000020 DMKDAS DMKIOE DMKIOF DMKMSi DftKTAP 
t:J IOERBLOK 000147 DMKBSC DMKCCH DMKCCi DMKCFP DMKCNS DMKCPS DftKDAS DMKDGD DMKDIA DMKEDM DMKEIG DMKGIO 
CD DMKGRF DMKIOE DHKIOF DMKIOS DMKMSi DMKNLD DMKRGA DMKRGB DfilKRNH tMKRSE DMKRSP DMKSEV rT 
CD DMKSIX DMKTAP DMKUNT DMKVCA DMKVIO 
H IOERBSR 000014 DMKTAP a ..... IOERCAL 000003 DMKDAS 
::s IOERCAN 000021 DMKBSC DMKDAS DMKTAP 
III 
('"t IOERCCW 000008 DMKDIA DMKIOS DMKVCA ..... IOERCEMD 000013 DMKtAS DMKIOE DMKRSE 
0 IOERCLN 000005 DMKTAP ::s 

IOERCNCL 000002 DMKMSi 
G"l IOERCSi 000072 DMKBSC DMKCCH DMKDAS DMKDIA DMKGIO DMKGRF DMKIOE DMKIOF DMKIOS DMKMSi DMKRSE DMKRSP ~ ..... DMKTAP DMKVCA DMKVIO 
PI IOERCYLR 000002 DMKUNT CD 

IOERDASD 000005 DMKDAS DMKMSi 
IOERDATA 000203 DMKBSC DMKCCH DMKCCW DMKCNS DMKCPS DftKDAS DMKDIA DMKGIO DMKGRF DMKIOE DMKIOF DMKIOS 

DMKMSi DMKNLD DMKRNH DMKRSE DMKRSP DMKTAP DMKUNT DMKVCA DMKVIO 
IOERDEC 000007 DMKDAS DMKMSi 



Label Count References 

IOERDEPD 000003 DMKRSE DlIKRSP 
IOERDERD 000004 DMKRSE DlIKRSP 
IOERDW 000015 DMKBSC DlIKDAS DlIKTAP 
IOERECF 000003 DMKDAS 
IOERECSi 000004 DMKCCB DlIKRSE 
IOERERG 000004 DMKTAP 
IOERERF 000004 DMKRSE DlIKRSP 
IOERETN 000006 DMKNLD DMKPTR DMKRPA DMKSNC 
IOERETRY 000008 DMKDAS DMKMSW DMKRSE 
IOEREXT 000040 DMKBSC DMKCCH DMKCCi DMKCFP DMKCNS DMKCPS DftKDAS DftKDGD DftKDIA DftKGIO DftKGRF DMKIOE 

DMKIOF DMKIOS DMKNLD DMKRGA DMKRGB DMKRNH DftKRSE DMKRSP DMKTAP DftKVIO 
IOERFLG 1 000062 DMKDAS DMKMSi DftKRSE DMKRSP DMKTAP 
IOERFLG2 000055 DMKESC DMKDAS DMKIOE DMKRSE DMKTAP DMKUNT 
IOERFLG3 000017 DMKBSC DMKCNS DMKDAS DMI<GRF DMKIOF DMKRSE DMKTAP 
IOERFSR 000010 DMKTAP 
IOERHA 000004 DMKDAS 
IOERIGN 000003 DMKMSW DMKRSE 
IOERIGNR 000004 DMKDAS DMKlISi DMKTAP 
IOERIND3 000042 DMKBSC DMKDAS DMKMSW DMKRSE DMKTAP 
IOER IND4 000010 DMKDAS DftKftSi DMKTAP 
IOERINFO 000020 DMKBSC DMKDAS DMKMSW DMKRSE DMKTAP 
IOERLEN 000017 DMKCCW DftKDAS DftKIOE DMI<ICF DMKIOS DftKMSW DftKUNT DMKVCA 
IOERLOC 000026 DMKESC DMKDAS DMKTAP 
IOERftSG 000003 DftKDAS DMKTAP 
IOERMSi 000009 DMKBSC DMKDAS DMKTAP 
IOERNUM 000071 DMKBSC DMKCNS DMKDAS DMI<GRF DMKMSW DMKRSE DMKTAP 
IOERORA 000012 DMKTAP 
IOEROVFL 000008 DMKBSC DMKCNS DMKDAS DMI<GRF DMKIOF DMKRSE DMI<TAP 
IOERPEND 000013 DMKDAS DMKMSW DMKRSE DMKTAP 
IOERPNT 000018 DMKDAS DMKIOE DMKIOF DMI<RSE 
IOERRBK 000012 DMKTAP 
IOERREAD 000015 DMKBSC DMKCNS DMKDAS DMI<GRF DMI<IOF DMKRSE DMKTAP 
IOERREi 000002 DMKTAP 
IOERSIZE 000056 DMKBSC DMKCCH DMKCCW DMKCFP DMKCNS DMKCPS DMKDAS DMKDGD DMKDIA DMKEDM DlIKGIO DMI<GRF 

DMKIOE DMKIOS DMKMON DMKNLD DMKRGA DMKRGB DMI<RNH DMKRSE DMI<RS P DftKTAP DMKVCA DMKVIO (") 

I'tI 
IOERSTAT 000008 DMKDAS 
IOERSTRT 000003 DMKDAS DMKMSW DMKTAP t'"4 

PI 
IOERSUPP 000006 DMKTAP tr 
IOERVLD 000002 DMKT AP (1) 

Ul ..... 
(1) IOERVOL 1 000003 DMKDAS I 
0 IOERVSER 000009 DMKDAS DMKIOE DMKIOF ~ 
~ 0 
""0 IOERWRI< 000011 DKKTAP I 
0 3 
t:S 0 
W 

Pol 
C 
..... 

I:' 
(1) 

""0 n 
t1 t1 
(1) 0 
0 til 
~ til 
0 
t1 !:tI 
""0 (1) 
(1) HI 
til (1) 

ti 
(1) 

~ 
t:S 
0 

0 (1) 
U'I 



~ Label count References 
0 n 
0'1 Itj 

IOERXERP 000003 DMKRSE t"4 
I» 

IOMASK 000003 DMKCFM DMKDMP DMKTRC C' 
IONPSW 000017 DMKCKP DMKDMP DMKDSP DMKFMT DMKSAV DMKSSP (I) 

<I j-I 

3: IONTWAIT 000006 DMKCPI DMKDSP DMKMON DMKSCH I 

"'- IOOPSW 000024 DMKCCH DMKCKP DMKDSP DMKFMT DMKIOS DMKSA V DMKSSP C"t' 
w 0 
...J IPLCCW 1 000009 DMKCPI DMKDMP DMKVMI I 
0 IPLPSW 000012 DMKCKP DMKCPI DMKDMP DMKMON DMKVMI 3: 

0 
IPLREQ 000003 DMKNLD DMKRNH c:l.I 

til IPUADDR 000002 DMKCPI DMKHVD ~ 

I< IRMAND 000003 DMKCFS DMKIOE 
~ 

en (!) 

C"t' IRMBIT1 000002 DMKCFS DMKIOE n (!) IRMBIT2 000002 DMKCFS DMKIOE s r; 
IRMBLOK 000004 DMKCFS DMKIOE 0 

t"4 IRMBYT 1 000002 DMKCFS DMKIOE rn 
0 en 
"l IRMBYT2 000002 DMKCFS DMKIOE ..... IRMFLG 000006 DMKCFS DMKIOE ~ 

0 II 
IRIHMT 000003 DMKCFS DMKIOE HI 

I» IRMLMTCT 000003 DMKIOE (!) 

= r; 
c:l.I IRMf!AXCT 000005 DfUIOE (!) 

IRMOR 000003 DMKCFS DMKIOE = 
Itj 0 
11 IRMRLADD 000003 DMKCFS D!!IKIOE (!) 

0 IRMSIZE 000005 DMKCFS DMKIOE 
t:7' KEEPSEGS 0000 11 DMKBLD DMKCFG DMKCFP DMKPGS 
~ 
(I) KEYMASK 000001 DMKCPI 
e LASTUSER 000007 DMKDSP DMKUSO DMKVMA 
t:j LOCK 000038 DMKCCW DMKCFC DMKCFG DMKCKS DMKCPV DMKCSO DMKDGD DMKIOF DMKIOG DMKMCC DMKNLD DMKPSA 
m DMKPT R DMKRPA DMK RSP DMKSEP DMKSNC DIUSPL DMKVSP DMKWBM 
C"t' 
m LOCKBLOK 000004 DMKLOC 
11 LOCKNAME 000002 DMKLOC 
II LOCKNEXT 000004 DMKLOC ..... 
= LOCKQUE 000004 DMKLOC 
I» LOCKSIZE 000002 DMKLOC C"t' ..... LOGDROP 000012 DMKCNS DMKGRF DMKRGA DMKRGB DMKRNH DMKUSO 
0 LOG80LD 000011 DMKCNS DMKDIA DMKGBF DMKBGA DMKBGE DMKRN8 DMKUSO = ~CCPUID 000001 DMKMC8 en f'lCDAMLEN 000001 DMKIOG c ..... MCFXDLCG 000015 DMKMCH 
c:l.I MCHARE! 000003 DMKCCH DMKCFS DMKIOG (I) 

MCHEK 000004 DMKCPI DMKDMP DI"IKMCH 
MCHFIX 000003 DMKIOG 
MCHMODEL 000014 DMKCCH DMKIOG 
MCNPSW 000016 DMKCPI DMKIOG DMKMCH DMKSAV DMKSS P 



Lahel Count References 

~COLDPi 000002 D~KMCH 

MCOPSW 000008 DMKMCH 
f!CPROGID 000002 DMKMCH 
MCREC 000002 DMKMCH 
f!CRECOBD 000001 D~KMCH 

MCRECTYP 000001 DMKMCH 
f!DRCUAl 000002 DMKVEB 
MDRKEYN 000001 DMKVER 
MDRBEC 000006 DMKVER 
MICBLOK 000007 DMKBLD DMKCFS DMKDSP DMKLCG 
MICCREG 000005 DMKCFS DMKLOG 
MICPEND 000002 DMKDSP 
f!ICRSEG 000003 DMKBLD DMKCFS DMKLOG 
MICSIZE 000004 DMKCFS DMKLOG DMKUSO 
~ICVIP 000002 DMKDSP 
MICVPSW 000002 DMKCFS DMKLOG 
~ICWORK 000002 DMKCFS DMKLOG 
MIHCUA 1 000002 DMKVER 
MIHKEY1i 000001 DMKVEB 
MIHREC 000002 DMKVER 
IHHVOL 000001 DMKVEB 
MRBHDLER 000002 DMKMCC Df!KMOR 
MRCLDAST 000002 DMKMOR 
MRCLINST 000004 DllKPRV 
MRCLPEBF 000005 DMKMOH 
MNCLRESP 000003 DMKQCN 
MNCLSCR 000003 DMKSCH 
MNCLSEEK 000001 DMKIOS 
MRCLSYS 000001 DMKMOH 
MRCLUSER 000002 DMKMON 
MRCOAEL 000001 DMKSCH 
MNCOAQ 000001 DMKSCH 
MRCOBRD 000001 DMKQCR 
MRCOCYL 000001 DMKIOS 
MNCODA 000001 DMKMON () 

MHCODAS 000001 DMKMON I'd 

MNCODASH 000001 DMKMOR 1:'4 
MNCODQ 000001 DMKSCH III 

til ~RCOERD 000001 DMKQCN tr 
CD (I) 

MNCOSIM 000004 DMKPRV 1-1 0 
cT MNCOSUS 000001 DMKMON I 

rT ~. 
MNCOSYS 000002 DMKMON 0 0 

::J I 
3: 

W 0 
t:I.o 
,,::: 

t:::I 1-1 
~. CD 
11 

() CD 
11 0 
0 cT 

0 In 
11 en 
~ 

!:!:I (I) 
CD en 
HI 
(I) 

11 
.c: (I) 

::J 0 
0 

" (I) 



~ 
Label count References 

(') 
0 "tI 
(X) 

l'!HCOTH 000001 DMKl'!OB t-I 
~ 

eHCOTT 000001 DMKMON t:r 
MaCOUSER 000002 DMKMOR CD .... 

CI MNCOiRIT 000001 DMKQCN I 
:- eNHCLASS 000001 DMKflOB r+ 

" 0 
w eHHCODE 000001 DMKeON I 
...,J MNHDR 000001 Df'lKMOB 13: 
0 MNHDRLEN 000002 Df'lKftON 0 
00 ~ 

flBHRECSZ 000001 Dl'!KMOB c 
til MNHTOD 000001 DftKftON .... 
~ CD 
en eNOOO 000002 Df'lKMON 
r+ l'!HOOOINT 000001 DftKftON (') 
CD t1 
B tlBOOOLER 000001 DMKI!OB 0 

ftNOOOPPA 000002 DftKftON [/l 
t-I en 
0 flBOOOPPC 000001 DMKftOB 

I,Q MNOOOPRB 000001 DI!KftON to .... CD 
0 ftBOOOPSI 000001 DftKMOB HI 

ftNOOOQ1E 000002 DftKftON (I) 
PI t1 
::I ftNOOOQ2E 000001 DftKMOI (I) 
~ ftNOOOiID 000001 DftKftON ::I 

ftlOOOiIO 000001 DftKftON 0 
"tI (I) 

tot ftNOOOiPG 000001 DftKftON 
0 ftN097 000001 DftKMOR t:r .... ftl097CPU 000001 DI!KftON 
ro ftR097CR8 000001 DftKMOB • ftl097DAT 000001 DI!KftOI 
'=' eB097LEB 000001 DMKMON ro 
r+ eH097LEV 000001 DftKMON 
ro MB097TIM 000001 DMKMOI t1 
B ftl097UID 000001 DftKftOH .... eN098 000001 DftKftOI 
::I 
PI ftl098LEN 000001 DftKftON 
r+ MH098UID 000001 DMKfiION .... 

IUI099 000001 DMKftOB 0 
::I ftJlJ099CIT 000001 DMKftOB 
Cil ftN099LEN 000001 DftKftON 
c I!N099TOD 000001 DMKMON .... 

ftNl0I 000001 DMKftON ~ 
ro ftNl0IADD 000002 DMKMOJlJ 

ftN 10ILEN 000001 DHKftON 
MI10IUID 000001 DMKI!ION 
ftll0YCNT 000001 DMKMON 



Label count References 

~Nl0YIO 000001 DMKMON 
MN10YLEN 000001 DftKftON 
MN2RSVl 000002 DMKMON 
ftN20X 000001 DftKftON 
MN20UPP 000001 DftKMON 
ftN20XQNM 000008 DftKftON 
MN20XQ1E 000001 DftKftON 
MN20XQ1N 000001 DMKMON 
MB20XQ2E 000001 DMKMOB 
ftN20XQ2N 000001 DMKftON 
MB20XSiiS 000001 DMKMON 
ftB20XUID 000001 DftKftON 
MN20XiSS 000001 DftKftOI 
MN20YTTI 000001 DftKMON 
MI20YVTI 000001 DMKftON 
MN202APR 000001 DMKMON 
MN202CRD 000001 Dl'IKftON 
l'IN202IOC 000001 DMKMON 
MN202LElI1 000001 DMKMOll1 
ftN202LIN 000001 DMKftON 
MI202PGR 000001 DMKIWN 
ftN202PNC 000001 DMKftON 
MB202PRI 000001 DMKl'IOll1 
ftN202PST 000001 Dl'IKftON 
MN202REF 000001 DftKMOR 
ftB202RES 000001 DftKftON 
MN203LEN 000001 DfilKIWN 
ftN204LEN 000001 DftKftOB 
MB204PRI 000001 DfilKftOB 
ftB4RSV 1 000001 DftKftON 
MN400 000001 DfilKfilOB 
ftN400CRD 000001 DftKftOB 
ftB400INT 000001 DMKfilOB 
MB400IOC 000001 DftKftOB 
filB400LEB 000001 DMKMOB n 
MB400LIN 000001 DMKMON I'tI 

MB400PDK 000001 DMKftOB t"'I 
ftB400PDR 000001 DftKftOB I» 

t:r 
Ul ftB400PGR 000001 DftKMOB CD 
CD MB400PGi 000001 DKKKON ...., 
0 ftN400PlIC 000001 DftKMON J 
c+ r+ .... ftB400PST 000001 DMKMON 0 
0 • ::s 3: 

0 
(.oJ Co 

C ...., 
t:1 (1) .... 
t1 n 
(1) t1 
0 0 r+ en 
0 en 
t1 .... !:U 
(1) CD en ..... 

(1) 
t1 
CD 

.&:: ::s 
0 0 
\0 (1) 



(") 
~ Label Count References ttl ... 
0 1:"'4 

I» 
rlH400QLV 000001 DMKMON t:1' 

(I) rlH400R.ES 000001 DMKMON ..... 
MH400RST 000001 DMKMON I < ftN400TT1 000001 DMKMON c+ :z 0 ........ MN400UID 000001 DMKMOH I w MN400UPR 000001 DMKMON 3: 

-.J 0 
0 MH400VT1 000001 DMKMOB p" 

MN400WSS 000001 DMKMON c:: 
..... 

Vl MN500 000001 DMKI'ION (I) 
~ MN5001NS 000001 DKKKON Ul n c+ MN500LEN 000001 DMKKON I'i (!) MN5000VH 000001 DKKMON 0 EI Ul MH500U1D 000001 DKKMON Ul 
1:"'4 I'IN500VAD 000002 DKKKON 
0 MN600ADD 000006 DKKKOB ~ 

!,Q (I) .... MB600CNT 000002 DMKKON HI 
0 MH600DEV 000002 DrlKI'ION (!) 

H 
I» KN600DLN 000004 DrlKKON (!) ::s rlN600HDR 000001 DKKKOH ::s 
p" 0 KN600HLN 000004 DKKKON (l) 
ttl MH600KAX 000001 DKKMON H 
0 KN600NUM 000002 DKKMON 
t:r MN600SER 000002 DMKIWN ..... MN600TY 000002 DMKKON (l) 
s MN700 000001 DMKMON 
t:l MN700ADD 000001 DMKKON 
(l) rlH700CCY 000001 DMKMON 
c+ MN700CYL 000001 DMKMON (I) 
H MN700D1R 000002 DMKMOH 
iii MN700LEN 000001 DMKMON .... 
::s MB700QCH 000001 DMKMON 
I» MN700QCU 000001 DMKMON c+ .... MN700QDV 000001 DMKMOH 
0 MN700U1D 000001 DMKMON ::s 

MN802CLN 000001 DrlKIWN 
en MN802CNT 000001 DMKMON c:: f'lN802CTR 000001 DMKMON .... 
p" MN802DEV 000001 DMKf'lON 
(I) 

MB802DLN 000002 DMKMON 
MN802NAU 000001 DMKMON 
MB802NPP 000001 DMKIWN 
MH802NUM 000001 DMKMON 



Label Count References 

~N802PGR 000001 D~K~ON 

~N802PGW 000001 DMK~ON 

1I1802PRB 000001 DMKMOI 
ltN802WID 000001 DftKftON 
~1802 iIO 000001 DftKftOl 
ftN802iPG 000001 DftKftON 
~ODEFLAG 000008 DMKIOG 
MODEL 135 000003 DftKIOG 
f!ODEL145 000004 DMKCCH DMKIOG 
MODEL 155 000003 DftKIOG 
~ODEL158 000001 Df!KIOG 
ftODEL 165 000005 DMKCCH DMKIOG 
f!ODEL168 000001 DMKIOG 
MODEQUIT 000008 DftKIOG 
f!ODFLAG1 000011 D~KCFS 

MOD1RETY 000003 DftKCFS 
lWNAIOB 000010 DMKCPS DMKDftP DMKftCC DMKMOI 
ftONARDB 000006 DftKCPS DMKDMP DftKMCC DfJK~ON 

ftONATRB 000006 D8KftCC DftKMON 
ftONCLASS 00Q014 DftKftON DftKPRG 
!WNCLOCK 000004 D8K80l 
ftONCODE 000016 DftKftON DftKPRG 
ftOIlCOft 000012 DftKCPS DftKDftP D8K8CC D8K801 
ftOliCTEB 1 000002 DIIKIICC D8KftON 
lWNDVLST 000009 DMK8CC DftKftOIl 
80NDVNU8 000009 DftKftCC DftKMON 
ftONFLAG1 000033 DMKCPS DftK8CC DftKftON 
MONFLAG2 000005 DftKDftP DftKftON 
liON NEXT 000008 DftKftCC DftKftON 
ftONSAVE 000003 DftKftON 
f!ONSIZE 000003 DftKMCC DfilKfilOl 
ftONSUSCK 000002 DftK80N 
MONSUSCT 000012 DftKftON 
ftONTIINT 000004 DftKftOH 
'WHUSER 000006 DftKCPS DfilKftCC DfilKfilOI n 

"t:I 
NCPNAftE 000002 DftKHLD DftKSHC 
NCPPAGCT 000002 DftKNLD D8KSIIC t-' 

NCPPNT 000002 DftKHLD DMKSNC 
III 
t:r 

til BCPSTART 000002 DftKIILD DfilKSIC CD 
CD NCPTBL 000003 DftKHLD DftKSHC 

..... 
0 I 
r+ NCPVOL 000004 DIIKILD DftKSIC r+ .... REWPAGES 000011 DftKBLD DfilKCFG DftKCFP DfilKCPI DfilKDEF DfilKLOG DftKPGS 0 
0 I 
t' 3: 

0 
W ~ . c ..... 
t:1 . CD .... 
t1 n 
CD t1 
0 0 
r+ m 
0 m 
t1 .... !::tI 
CD CD 
rn /"t) 

CD 
H 
CD 

~ 
t' 

.- 0 

...a CD 



~ Label Count References n 
~ 1"0 
tv 

t-' 

IEiSEGS 000006 DMKBLD DMKCFP DKKCPI 
PI 

DMKDEF DMKLOG DMKPGS t:r 
BICALRM 000005 DMKRGA DftKRGB CD ..... 

< lUCAPL 000008 DMKCFT DMKCQR DMKRGA DMKRGB I 
3: NICATOF 000005 DMKCFT DMKCQR DMKRNH rt 

" nCATRB 000006 DMKBGA DMKRGE 
0 

w I 
-..l NICATTN 000007 DMKRNH 3: 
0 nCBLOK 000037 DMKBLD Dl!KCFT Dl!KCKP Dl!KCPI DMKCQR DMKDIA DMKHVC DMKHVD DKKLOG DMKNES DMKNET DKKNLD 0 .. j;;I.. 

DMKPSA DMKQCN DMKRGA DMKRGB DMKRNH DMKWRM ~ 

til NICCARD 000005 DMKRGA ..... 
'< CD 
til NICCIBM 000006 DMKBLD DMKDIA DMKNES DKKNET DKKNLD DMKRNH 
rt nCCORD 000007 DMKRGA DKKRGE n 
CD i'i 
iii NICCPNA 000006 DMKRGA 0 

nCDI8D 000001 DMKRNH til 
t-' til 
0 IHCDIAG 000008 DMKRGA DMKRGB 

\Q IUCDISA 000035 DMKCKP DMKCPI DMKDIA DMKNES DP.lKNET DMKRGA DMKRGB DMKRNH DKKWRM t:Ij .... NICDISB 000014 DMKCKP DMKNET DMKRGA DMKRGE Dl!KRNH 
CD 

0 HI 
nCENAB 000024 DMKCKP DMKDIA DMKNES DMKNET DMKRGA DMKRRH DP.lKiRM CD 

I» NICEPAD 000009 DMKDIA DP.lKNES 
11 

::I Dl!KNET DKKNLD CD 
j;;I.. lUCEPMD 000016 Dl!KDIA DMKNES DP.lKNET DMKNLD DMKRNH t:' 

IHCERLK 000004 DMKRNH 0 
1"0 CD 
H lUC:ttAG 000092 DMKCFT DMKCKP DP.lKCQR DMKDIA DMKLOG DMKNES DMKNET DMKIHD DKKRGA DMKRGB DMKRBH DMKWRM 
0 NICFMT 000005 DMKRGA DMKRGB t:r ..... nCGRAF 000003 DMKHVC DP.lKHVD DMKNET 
CD BICHOLD 000006 DMKRGA DMKRGB II 

lUCLBSC 000002 DMKNES DMKNET 
t:J NICLGRP 000006 DMKCKP DMKNET DMKWRM 
CD IUCLIIE 000013 DMKCKP DMKDIA DMKBES DMKNET DMKRNH rt 
CD IICLLEN 000006 DMKBLD DMKCFT DMKCQR DMKHVD DMKQCN 
H lUCLTBC 000013 DMKDIA Dl!KRES DMKRNH II ..,. NICl!ORE 000006 DMKRGA Dl!KRGB 
::I NICMTA 000002 Dl!KRRH PI 
r+ NICNAME 000018 DMKBLD DMKCPI DMKDIA DMKNET DMKNLD DMKPSA DMKRGA Dl!KRNH ..,. 

IiIICBTRL 000027 Dl!KRGA DMKRGB DMKRRH 0 
::I NICPOLL 000006 DMKRGA DMKRGB 
Gl 

IHCPROCN 000006 DMKBGA DMKRGB 
c:: NICPSUP 000011 DMKCFT DMKCQR DMKLOG DMKNES DMKNLD DMKRNH ..,. 

IHCQPNT 000062 DMKDIA DMKNES DMKRGA DMKRGB DMKRNH 
j;;I.. 
CD NICRCNT 000012 DMKRNH 

nCREAD 000008 DMKBGA DMKRGB 
NICRSPL 000007 DMKNET DM'KRGA 
IUCRUNN 000011 DMKBGA Dl!KRGE 
IHCSELT 000005 DMKRGA DMKRGB 



Label count References 

NlCSESN 000011 DPlKDlA DPlKlrES DPlKNET DMKRNH 
RICSlO 000006 DMKRGA DMKRGB 
NICSlZE 000062 DMKCFT DMKCKP DMKCPl DMKCPS DMKCQR DPlKDlA DMKHVC DMKHVD DMKLOG DPlKNES DPlKRFT DPlKRLD 

DPlKPSA DMKQCN DMKRGA DMKBGB DPlKRNH DMKVDS DMKWRM 
IiICSTAT 000116 DMKCKP DMKCPI DMKDIA DMKNES DMKNET DPlKRLD DMKRGA DMKBGB DMKBRH DMKWRM 
NlCSWEP 000007 DMKDIA DMKNES DMKNLD 
NICTABF 000003 DMKRGA 
NICTELE 000010 DMKDlA DMKNET DMKRNH 
NICTERM 000015 DMKBLD DMKCKP DMKRET DMKNLD DMKRNH DMKWRM 
RICTMCD 000015 DMKCFT DMKCQR DMKRGA DPlKBGB 
NICTRQ 000006 DMKBGA DMKRGE 
RICTYPE 000059 DMKBLD DMKCKP DMKDlA DMKHVC DMKHVD DMKNES DMKNET DMKNLD DMKRGA DMKRNH DMKWRM 
NICUSER 000051 DMKBLD DMKDlA DMKLOG DMKRES DMKNET DMKNLD DMKPSA DMKBGA DMKRGE DMKRNH 
IiIC3275 000002 DMKRGA 
IiOADD 000001 DMKUDR 
IiOAOTO 000021 DMKCFM DMKCFS DMKCNS DMKCPI DMKNLD DMKOPR DMKQCN DMKRNH DMKVCN 
NOMODEL 000001 DMKlOG 
RORET 000 171 DMKACO DMKBLD DMKCCH DMKCDE DMKCDS DMKCFC DMKCFD DMKCFG DMKCFM DMKCFS DMKCPB DMKCPl 

DMKCPS DMKCPV DMKCQG DMKCQP DMKCQR DMKCSO DMKCSU DMKDAS DMKDEF DMKDlA DMKDSP DMKERM 
DMKGRF DMKlOE DMKLNK DMKLOG DMKMCC DMKMCH DMKMlD DMKMSG DMKMSW DMKNES DMKNET DMKNLD 
DMKPGT DMKPRG DMKPSA DMKPTR DMKQCN DMKRGA DMKRIiH DMKRSP DMKSPL DMKTHl DMKTRA DMKTRC 
DMKODR DMKOSO DMKVCA DMKVCH DMKVCIi DMKVDB DMKVDR DMKVER 

NOTlME 000030 DMKCFM DMKCPl DMKGRF DMKMSG DMKMSW DMKQCIi DMKRGA DMKVCN 
OBRCORL 000002 DMKlOE DMKlOF 
OBRCPIDN 000003 DMKIOE DMKIOF DMKVER 
OBRCSiN 000002 DMKlOE DMKlOF 
OBRCOA 000002 DMKVER 
OBRCUAlN 000004 DMKlOE DMKlOF DMKVER 
OBRCOAPR 000006 DMKlOE DMKIOF DMKVER 
OBRDDCNT 000009 DMKIOE DMKIOF 
OBRDEVSH 000011 DMKlOC 
OBRDEVTN 000022 DMKIOC DMKIOF 
OBRFCCWN 000002 DMKIOE DMKIOF 
OBRHAN 000004 DMKIOE DMKlOF DMKVER 
OBRlORTY 000001 DMKlOF (1 

OBRKEYN 000011 DMKIOE DMKlOF DMKVER I'd 

OBRLSKN 000004 DMKIOE DMKIOF DMKVER 1:"1 
OBRPGMN 000003 DMKlOE DMKlOF DMKVER PI 

tr 
til OBRRECN 000009 DMKIOC DMKlOE DMKlOF DMKVER CD 
In OBRSDRCT 000010 DMKlOE DMKIOF I-' 
0 OBRSDRSH 000001 DMKlOF I 
t+ t+ 
...,- OBRSENSN 000009 DMKIOE DMKVER 0 
0 I 

=' t:K 
0 

W 0. 
c:: 
I-' 

~ CD 
...,-
11 C'1 
In 11 
0 0 
t+ CJl 
0 CJl 
11 
..." ~ 

In In 
CJl HI 

In 
H 
CD 

~ =' 
~ 0 
w CD 



~ Label count References (') ...I> 

~ ~ 

t"' 
OBRSHOBR 000008 DMKlOC DMKlOF III 

OBRSNSCT 000002 DMKlOE DMKlOF tr 
(1) 

c: OBRSSDRl 000001 DMKlOF ~ 

til: OBRSWSN 000016 DMKlOC DMKlOE DMKlOF DMKVER I 

"- cT 
(,oJ OBRTAPSN 000001 DMKlOE 0 
....,J OBRTEMP 000002 DMKlOF I 

3: 0 OBRURSNS 000001 DMKlOE 0 
OBRVOLN 000005 DHKlOE DMKIOF DMKVER P. 

til CBR3211S 000001 
~ 

loci DHKlOE ~ 

Ul OBR33SNS 000014 DMKlOE DMKlOF DMKVER (1) 

cT OBR3420S 000001 DMKlOE n CD 
&iii OLDVMSEG 000010 DMKBLD DMKCFG DMKCFP DHKfGS H 

OPERATCR 000048 DHKCCB DMKCSO DMKDAS DMKDlA DMKERM DMKLOG DHKMCB DMKMSW DMKNLD DMKPGT DMKQCN DMKRNH 0 
~ Ul 
0 DMKRSP DMKUDR DHKUSO DMKVCH DMKVDE DMKVDR DMKVER DMKWRM Ul 

\Q OPNSFB 000006 DHKCKS DHKVSP ::0 ..,. 
OWNDLlST 000020 DHKCKP DMKCKS DMKCPl DHKtRD DHKPAG tMKPGT DMKPTR DMK SPL DMKUDR DMKVDB DMKWRl'l. (1) 0 
CWNDPREF 000002 DMKCPl DMKVDB t-n 

(1) 
III OWNDRDEV 000015 DHKCKP DMKCKS DMKCPl DHKtRD DHKPAG DHKPGT DMKPTR DHK SPL DHKUDR DMKVDB Dl'l.KWRM H t:I 
P. OWNDVSER 000008 DMKCKS DMKCPl DMKUDR DHKVDB (1) 

t:I 
~ 

PAGCORE 000059 DHKBLD DHKCDS Dl'l.KCFG DHKCFl Dl'l.KMCH DMKPGS DMKPTR DMKRPA DHKSCB DMKVMA 0 
H PAGECUR 000006 DMKMCC DHKHON (1) 

0 PAGELOAD 000004 DMKPAG DHKSCH tr 
~ PAGEND 000004 DMKMCC DMKMON 
(1) PAGENXT 000005 DHKHCC DMKHON B 

PAGERATE 000001 DMKPAG 
tj PAGEWAIT 000008 DHKCPl DMKCQR DMKDSP DMKf!CN DMKPAG DMKSCB 
CD 
cT PAGE4K 000001 DHKCPl 
(1) PAGINVAL 000021 DHKBLD DMKCDS DMKMCH DMKfGS DHKPTR DHKRPA DHKSCH DMKUDR DMKVMA 
H PAGREF 000010 DHKPGS DMKPTR DHKRPA DtiKSCH • ..,. PAGS HR 000002 DHKCFG Dl'!KVMA 
t:I PAGSWP 000008 DMKBLD DMKCFG DMKVrH III 
cT PAGTABLE 000020 DHKBLD DHKCFG DMKVMA .... PCHCHN 000004 DMKCKS DMKSPL 0 
t:I PCl 000025 DMKDSP DMKHVC DMKlOS DHKRNH DMKRSE DMKVCA DMKVCN DMKVIO DMKVSP 
(j) PClF 000006 DMKCCW DHKDGD DMKVCA DMKVCN DHKVSP 
~ PERADD 000004 DHKDSP DMKPRG ..,. PERC ODE 000004 DHKDSP DMKPRG p. 
(1) PERFCL 000004 DHKMCC DHKMON 

PERGPRS 000005 DMKPRV 
PERMODE 000003 DMKDSP DMKTRC 
PEflSALT 000008 DHKPRV DMKTMR 
PGADDR 000002 DHKDSP DHKVAT 



Label Count References 

PGBLOK 000003 DMKCFP DMKDSP DMKVAT 
PGBSIZE 000003 DMKCFP DMKDSP DMKVAT 
PGPNT 000003 DMKCFP DMKDSP DMKVAT 
PGREAD 000004 DMKMON DMKPTR 
PGSRATIO 000001 DMKPAG 
PGWAITPG 000002 DMKPAG 
PGWRITE 000004 DMKMON DMKPTR 
PRGC 000022 DMKBSC DMKCNS DMKDAS DMKDI.A DMKGRF DMKHVC DMKIOS DMKRNH DMKRSE DMKTAP DMKUNT DMKVCA 

DMKVCN DMKVSP 
PRIORITY 000027 DMKACO DMKCNS DMKCPS DMKDIA DMKGRF DMKMSG DMKQCN DMKRGB DMKRNH DMKUSO DMKVCN 
PRNPSW 000023 DMKCKP DMKCPI DMK DMP DMKDSP DMKPRG DMKSAV DMKSSP 
PROBMODE 000011 DMKDSP DMKMCH DMKPRG DMKPRV DMKPSA 
PROBTIME 000006 DMKCPI DMKMON DMK SCH 
PROPSW 000041 DMKCKP DMKCPI DMKDSP DMKFMT DMKMON DMKPRG DMKPRV 
PRTC 000019 DMKES C DMKCNS DMKDAS DMKDIA DMKGRF DMKHVC DMKIOS DMKRNH DMKRSE I:MKTAP DMKUNT DMKVCA 

DMKVCN DMKVSP 
PRTCH Ii 000005 DMKCKS DMKSPL DMKVSP 
PSA 000159 DMKACO DMKBLD DMKBSC DMKCCH DMKCCW DMKCtB DMKCDS DMKCFC DMKCFD DMKCFG DMKCFM DMKCFP 

DMKCFS DMKCFT DMKCKP DMKCKS DMKCNS DMKCPB DMKCPI DMKCPS DMKCPV DMKCQG DMKCQP DMKCQR 
DMKCSO DMKCSP DMKCST DMKCSU DMKCVT DMKDAS DMKDEF DMKDGD DMKDIA DMKDMP DMKDRD DMKDSP 
DMKEDM DMKEIG DMKERM DMKFMT DMKFRE DMKGIO DMKGRF DMKHVC DMKHVD DEKIOC DMKIOE DMKIOF 
DMKIOG DMKIOS DMKISM DMKLNK DMKLOC DMKLOG DMKMCC DMKMCH DMKMID DMKMON DMKMSG DMKMSW 
DMKNES DMKNET DMKNLD DMKOPR DMKPAG DMKPGS DMKPGT DMKPHG DMKPRV DMKPTR DMKQCN DMKRGA 
DMKRGB DMKRNH DMKRPA DMKHSE DMKRSP DMKSAV DMKSCH DMKSCN DMKSEP DMKSEV DMKSIX DMKS NC 
DMKSPL DMKSSP DMKSTK DMKTAP DMKTDK DMKTHI DMKTMR DMKTHA DMKTRC DMKTRM DMKUDR DMKUNT 
DMKUSO DMKYAT DMKVCA DMKVCH DMRiCN DMKVDB DMKVDR DMKVDS DMKVER DMKVIO DMKVMA DMKVMI 
DMKVS P DMKWRM 

PSASVCCT 000003 DMKMON DMKPSA 
PSENDCLR 000001 DMKCPI 
PSTARTSV 000004 DMKSAV 
QUANTUM 000004 DMKDS P 
QUANTUMR 000011 DMKDSP DMKIOS DMKMCH DMKPRG DMKPSA 
RCHADD 000011 JMKCCH DMKCKP DMKCPI DMKEDM DMKIO S DMKMON DMKSCN 
RCHBLOK 000027 DMKCCH DMKCKP DMKCPB DMKCPI DMKCPS DMKCPV DMKCQP DMKDIA DMKEDM DMKIOG DMKIOS DMKMON 

DMKNES DMKSCN DMK SSP DMKVCH n 
RCHBMX 000002 DMKIO S ttl 

RCHBUSY 000014 DMKIOS ~ 

RCHCUTBL 000018 DMKCCH DMKCKP DMKCPI DMKCPS DMKCPV DMKCQP DMKDIA DMKEDM DMKMON DMKNES DMKSCN DMKSSP III 
t:r 

til DMKVCH CD 
CD RCHDISA 000006 DMKCPI DMKCPS DMKIOS DMKVCH 

..., 
0 I 
rt RCHFIOE 000007 DMKEDM DMKIOS rt .... 

RCHM PX 000003 DHKIOS 0 
0 I 
I:S RCHQCNT 000007 DMKIOS DMKMON 01: 

w 0 
~ 
~ ..., 

t1 CD .... 
t1 n 
CD t1 
0 0 rt en 
0 en 
t1 .... tltI 
CD CD en HI 

CD 
t1 
CD 

~ I:S 
~ 0 
U'I CD 



01:: Label Count References n - I'tI 
O't 

t""I 
RCHSEL 000001 DMKIOS I» 

RCHSI ZE 000003 DMKEDM DMKSSP t::r 
CD 

< RCHSTAT 000021 DMKCPI DMKCPS DMKIOS DMKVCH ~ 

RCHTYPE 000009 DMKIOG DMKIOS I ::I: t+ 

" RCH370 000003 DMKIOG DMKIOS 0 w RCUADD 000014 DMKCCH DMKCKP DMKCPI DMKEDM DMKIO S DMKMON DMKSCN DMKSSP I 
...,J 3 
0 RCUBLOK 000034 DMKCCB DMKCKP DMKCPB DMKCPI DMKCPS DMKCPV DMKCQP DMKDIA DMKEDM DMKGRF DMKIOC DMKIOF 0 .. 

DMKIOS DMKMON DMKNES DMKNLD DMKSCN DMKSSP DMKVCH ~ 

'" til RCU BUSY 000012 DMKIOS ~ 
~ RCUCHA 000008 DMKCKP DMKCPE DMK lOS DMKMON DMKSCN DMKSSP CD en 
t+ RCUCHB 000001 DMK SSP n 
CD RCUDISA 000009 DMKCPI DMKCPS DMKIOS DMKNES DPlKNLD DMKVCH H 
EI 0 RCUDVTBL 000020 DMKCCH DMKCKP DMKCPI DMKCPS DMKCPV DMKCQP DMKDIA DMKEDM DMKGRF DMKMON DMKNES DMKNLD en 
t""I DMKSCN DMKSSP DMKVCB en 
0 RCUFIOB 000006 DMKEDM DMKIOS t,Q !:C .... RCUPRIPlE 000008 DMKCKP DMKCPE DPlKCPI DMKIOS DMKMON DMKSCN CD 
0 RCUQCNT 000007 DMKIOS DPlKMON HI 

CD 
I» RCUSCED 000005 DMKIOS H 
t:I RCUSHRD 000006 DMKIOS CD 
~ t:I 

RCUSIZE 000004 DMKEDM DMKSSP 0 
I'tI RCUSTAT 000027 DPlKCPI DMKCPS DMKIOS DMKNES DMKNLD DMKVCB CD 
H 
0 RCUSUB 000008 DMKCKP DMKCPE DMKCPI DMKIOS DMKMON DPlKSCN 
t::r RCUTYPE 000021 DMKCKP DMKCPB DMKCPI DMKIOC DMKIOF DMKIOS DMKMON DMKSCN DMKSSP 
~ 
CD RCU2101 000003 DMKIOC DMKIOF 
EI RCU2102 000003 DMKIOC DMKIOF 
t::J RCWADDR 000049 DMKCCW DPlKDGt DMKDIA DMKBVC DMKUNT DMKVCA 
CD RCiCCNT 000009 DMKCCi DMKISM DMKUNT 
t+ RCiCCW 000026 DMKCCi DMKDGD DMK DIA DMKBVC DMKISM DMKTRC DMKUNT DMKVCA (1) 
H RCiCNT 000013 DMKCCi DPlKDGD DMKDIA DMKUNT DMKVCA 
EI RCiCOMliD 000053 DMKCCi DMKDGI: DMKDIA DMKUNT DMKVCA .... 
t:I RCiCTL 000041 DMKCCi DMKDGD DMKDIA DMKBVC DMKUNT DMKVCA 
I» RCiFLAG 000081 DMKCCW DMKDGD DMKDIA DMKUNT DMKVCA t+ .... RCiGEN 000005 DMKCCi DMKTRC DMKUNT 
0 RCiBEAD 000005 DMKCCW t:I 

RCWBMR 000006 DMKCCi DPlKUNT 
Cil RCiI NiL 000008 DMKCCi DMKDIA DPlKTRC DMKiCA 
'" .... RCiIO 000013 DMKCCi DMKDGD DMKISM DMKUNT 
~ RCiISAfl 000001 DMKCCi 
CD RCWPNT 000014 DMKCCi DMKHiC DMKISM DMKTRC DMKUNT 

RCiRCRT 000001 DMKCCi DMKISM DMKTRC DMKUNT 
RCiREL 000008 DMKCCi 
RCiSHR 000007 DMKCCi DMKDGD DMKUBT 



Label Count References 

RCiTASK 000025 DKKCCi DKKHVC DftKISft DlIKTRC DKKUNT 
RCiVCAi 000010 DftKCCi DMKISK DMKTRC DMKUNT 
RCiVCNT 000004 DKKCCi DMKTRC 
RCi2311 000005 DKKCCi DMKUNT 
RDBUFLN 000004 DKKRNH 
RDBUFNC 000003 DKKRNH 
RDEVACNT 000015 DMKACO DMKCKP DMKCQP DMKCSO DMKRSE DMKRSP DKKSPL 
RDEVACTV 000022 DMKCNS DMKDIA DMKGRF 
RDEVADD 000026 DMKCCH DMKCKP DMKCPI DMKCPS DMKCQP DMKDIA DMKEDM DMKIOS DMKLOG DMKMON DMKNES DMKNLD 

DMKSCN DMKSSP DMKVDB DMKVDR 
RDEVAIOB 000027 DMKCCH DMKCFP DMKCKP DMKCPI DMKCPS DMKCSO DMKDIA DMKEDM DMKGRF DMKIOS DMKLOG DMKNLD 

DMKVIO 
RDEVAIRA 000008 DMKDIA DMKGRF 
RDEVALLN 000018 DMKCKS DMKCPI DMKMON DMKPGT DMKTDK DMKVDB DMKiRM 
RDEVAPLP 000009 DMKCFT DMKCQR DMKGRF DMKQCN 
RDEVATNC 000004 DMKCNS 
RDEVATOF 000008 DMKCFT DMKCNS DMKCPI DMKCCR DMKTRM 
RDEVATT 000012 DMKCFP DMKCQP DMKDEF DMKDIA DMKIOS DMKNLD DMKVCH DMKVDB DlIKVDR DMKVDS 
RDEVAUTO 000007 DMKCKP DMKCPI DMKCQP DMKNLD DMKRNH DMKiRM 
RDEVBACK 000008 DMKCSO DMKRSE DMKRSP 
RDEVBASE 000005 DMKDIA DMKNES DMKNLD DMKFSA 
RDEVBLCK 000207 DMKACO DMKBLD DMKBSC DMKCCH DMKCCi DMKCFC DMKCFG DMKCFM DMKCFP DMKCFS DMKCFT DMKCKP 

DMKCKS DMKCNS DMKCPB DMKCPI DMKCPS DMKCPV DMKCQG DMKCQP DMKCQR DMKCSO DMKDAS DMKDEF 
DKKDIA DMKDKP DftKDRD DftKEDft DMKGRF DMKHVC DMKHVD DMKIOC DlIKIOE DMKIOF r:ftK lOG DMKIOS 
DMKLNK DftKLOG DMKMCC DMKftON DftKftSi DMKNES DMKNET DMKNLD DMKOPR DMKPAG DlIKPGT DMKPSA 
DMKPT R DftKQCN DMKRGA DMKRGB DMKRNH DMKRSE DMKRSP DMKSCN DMKSEP DftKSHC DftKSPL DMKSSP 
DMKTAP DMKTDK DMKTRM DMKUNT DMKUSO DMKVCH DMKVCN DMKVDB DMKVDR DMKVD S DMKVER DMKVIO 
DMKiRM 

RDEVBSC 000010 DMKBSC DMKRGA DMKRGB 
RDEVBUCH 000009 DMKIOS 
RDEVBUSY 000015 DMKACO DMKCCH DMKCPB DMKCPS DMKCSO DftKIOS DMKRNH DMKRSP DMKVCH 
RDEVCKPT 000007 DMKBNH DMKWRM 
RDEVCLAS 000016 DMKACO DMKCKP DMKCKS DMKCQP Dl!KCSO DMKMSi DMKRSP DMKSPL DMKSSP DMKiRM 
BDEVCODE 000016 DlIKCFG DMKCKS DMKCPI DMKHVD DMKIOG DMKNLD DMKPGT DMKSNC DMKVDB DMKiRM 
RDEVCON 000055 Dl!KCNS Dl!KDIA DMKEDl! DMKGRF DMKNES DMKQCN DMKRGA DMKRGB DMKRNH n 
RDEVCONC 000003 Dl!KIOS ttl 
RDEVCORD 000015 DMKDIA DMKGRF DMKOPR t-t 
BDEVCOBB 000002 DMKCNS Dl!KTBM !:II 

tf.I BDEVCPNA 000005 DMKGRF t:7' 
CD BDEVCTL 000029 DlIKCNS DMKDIA DMKGRF 

CD 
0 ..... 
r+ RDEVCTRS 000016 DMKCPS DlIKIOE DlIKIOF DMKNES DlIKNET I 
~. RDEVCUA 000016 DMKCKP DMKCPB DlIKDIA DMKGRF DMKIOC DMKIOF DMKIOS DMKMON DMKNES DMKHLD DMKSCN DMKSSP r+ 
0 0 

=' BDEVCYL 000006 Dl!KDIA Dl!KIOS DMKMON DMKFGT I 
til: 

W 0 
c:lo 
C 

t:1 ..... 
~. (I) 

H n CD 
0 H 
r+ 0 
0 [/1 

H [/1 

~. 
!:tI CD 

[/1 (I) 

H\ 
CD 
H 

~ CD 
..... =' 
-.J 0 

(I) 



-'= Label Count References () 

(X) 
It:! 

t""4 
RDEVDED 000057 DMKACO DMKCFS DMKCKP DMKCPS DMKCPV DMKCQP DMKCSO DMKDAS DKKDIA DKKGRF DKKIOS DMKLOG III 

DKKKCC DMKMSW DKKNES DMKNET DMKNLD DMKRGB DMKRNH DMKRSP DMKSCN DMKSPL DMKVCH DMKVDB tr 
('[) 

< DKKVDR DKKVDS DMKVER ...... 
::z RDEVDISA 000062 DMKACO DMKCFS DMKCKP DMKCKS DMKCNS DMKCPI DMKCPS DMKCPV DMKCQP DMKCSO DMKDAS DMKGRF I 

M-

" DMKIOS DMKLOG DKKKCC DMKMON DMKNES DMKNET DMKNLD DKKRGA DMKRGB DMKRNH DMKRSP DMKSCN 0 w I 
.....J DMKSPL DMKVCH DMKVDB DMKVDS DMKWRM 3: 
0 RDEV DISB 000025 DMKCKP DMKCNS DMKCPV DMKGRF DMKNES DMKNET DMKRGA DKKRGB 0 

RDEVDRAN 000028 DMKACO DMKCKP DMKCKS DMKCPS DMKCQP DMKC SO DMKRSP DMKSPL DMKVCH DMKVDS DMKWRK 0. 
~ 

til RDEV ENAB 000036 DKKCKP DMKCNS DKKCPI DMKCPS DMKCPV DMKCQP DMKGRF DKKNES DMKNET DMKNLD DMKRGA DMKVCH ...... 
~ DMKVDS DMKWRM ('[) 
til 
M- RDEV EPDV 000018 DMKDIA DKKNES DMKNLD n 
('[) RDEVEPLN 000005 DMKCPS DMKDIA DMKNES DMKNLD DMKVDS H II 0 RDEV EPMD 000007 DMKCNS DMKDIA DMKNES DMKNLD Ul 
t-t RDEVFICB 000005 DMKEDM DMKIOS DMKNLD DMKPGT Ul 0 

\,Q RDEV FLAG 000308 DMKACO DMKBLD DMKCFG DMKCFS DMKCFT DMKCKP DMKCKS DMKCNS DMKCPI DMKCPS DMKCPV DMKCQP ~ .... DMKCQR DMKCSO DMKDAS DMKDIA DMKEDM DMKGRF DMKIOS DMKLOG DMKMCC DMKMON DMKNES DKKNET ('[) n 
DKKNLD DMKPGT DMKRGE DMKRNH I-h DMKPSA DMKRGA DI!'IKRSE DMKRSP DMKSCN DMKSEP DMKSNC DMKSPL ('[) 

III DMKT RM DMKVCH DMKVDB DMKVDR DMKVDS DMKWRM H 
t:I RDEV FTR 000041 DMKCCW DMKCKP DMKCPI DMKCSC DMKDAS DMKHVD DMKIOE DI!'IKIOF DMKIOS DMKNLD DMKPAG DMKPGT ('[) 
0. 1:1 

tt:I 
DMKSPL DMKSSP DMKTDK DMKVDB DMKVD S DMKVER DMKVIO n 

H RDEV HIO 000015 DMKCNS DKKDIA DMKGRF DMKPSA ('[) 

0 RDEVHOLD 000005 DMKGRF 
tr RDEV IDNT 000008 DMKCN S DMKCPI DMKTRM ...... 
('[) RDEVIOCT 000007 DMKIOS DMKMON 
II RDEV IOER 000036 DMKBSC DMKCFP DMKCNS DMKCPS DMKCSO DMKDAS DMKEDM DMKGRF DMKIOE DMKIOS DMKMSW DMKRSE 
t;j DMKHSP DMKTAP 
(!) RDEVIRM 000007 DMKCFS DMKIOE DMKNES DMKNLD rt 
(!) RDEVLCEP 000010 DMKCKP DMKCPS DMK CQP DMKDIA DMKNLD DMKRNH 
H RDEVLIOB 000002 DMKIOS 
EI .... RDEVLLEN 000005 DMKBLD DMKCFT DMKCQR DMKHVD DMKQCN 
t:I RDEVLNCP 000021 DMKCKP DMKCPS DMKCQP DMKDIA DMKNES DMKNET DMKNLD DMKRNH DMKVDS 
III 
c+ HDEVLNKS 000008 DMKCPS DMKCQP DMKSCN DMKVDB DMKVDR DMKVDS .... RDEVLOAD 000005 DMKC SO DMKRSP DKKSEP 
0 HDEVLOG 000010 DMKCNS DMKCPV DMKGRF t:I 

G'l 
RDEVMAX 000028 DMKCKP DMKCPI DMKCPS DMKNES DMKNET DMKNLD DMKRGA DMKRGB DMKRNH DKKVDS DMKWRM 

~ RDEVMDL 000029 DMKCKP DMKCPI DMK HVD DMKIOC DMKIOE DMKIOF DMKNES DMKNLD DMKPAG DMKUNT DMKVDB DMKVIO .... RDEVMORE 000005 DMKGRF 
0. RDEVMOUT 000010 DMKCPS CMKCQP DMK DAS DMKSCN DMKVDB DMKVDR DMKVDS (!) 

RDEVNCP 000010 DMKCKP DKKCQP DMKNLD DMKBNH DMKWHM 
RDEVNICL 000056 DMKCFT DMKCKP DMKCPI DMKCPS DMKCQR DMKDIA DMKHVC DMKHVD DMKLOG DMKNES DMKNET DMKNLD 

DMKPSA DMKQCN DMKRGA DMKBGE DMKRNH DMKVDS DMKWRM 
RDEVNRDY 000044 DMKCNS DMKCPI DMKCPS DMKCQP DMKC SO DMKDAS DMKDIA DMKNES DMKNET DMKNLD DMKRGA DMKRGB 

DMKRNH DMKR SE DMKHSP DMKTAP 



Label Count References 

RDEvon 000019 D~KCFG DKKCPI DKKCPS DKKCQP DKKDAS DKKEDK DKKLOG DKKNLD DKKSNC DKKVCH DKKVDB DKKVDS 
RDEVPAGE 000009 Dl'!KEDM 'Dl'!KPGT DfilKUSO 
RDEVPDLY 000003 DfilKNES DfilKRGA 
RDEVPNT 000014 DMKCPI DMKPGT DMKTDK DMKOSO DMKVDB 
RDEVPREF 000010 Dl'!KCPI DMKfilON DfilKPGT DfilKVDB 
RDEVPREP 000014 DfilKCNS Dl'!KDIA 
RDEVPSOP 000015 DMKBLD Dl'!KCFT DfilKCNS DfilKCQB DfilKLOG 
RDEVPTTC 000006 DfilKCBS DMKCPI DfilKNES DKKBLD DfilKTRfiI 
RDEVQCNT 000005 Dl'!KIOS Dl'!KfilON 
RDEVRACT 000011 DfilKIOS 
RDEVRCNT 000011 DfilKCNS 
RDEVRCVY 000014 DfilKCPS DMKDIA DfilKNES DKKNLD DMKRNH DfilKVCH DKKVDS 
RDEVREAD 000007 DfilKGRF 
RDEVRECS 000011 DfilKCKP Dl'!KCKS DfilKDfilP DfilKEDM DMKPGT DMKOSO D~KiRM 

RDEVREST 000004 DfilKCNS 
BDEVRSTR 000009 DfilKCSO DKKRSE DMKRSP 
RDEVRSVD 000017 DMKCPS Dl'!KNES DMKNET Dl'!KNLD DKKRGA tKKRGB DKKRNH DKKVCH DfilKVDS 
RDEVRUN 000011 DKKCPI DMKDIA DKKGRF 
RDEVSADN 000006 DfilKCCW DMKCNS DKKIOC DfilKIOF DKKNES 
RDEVSCED 000007 DMKCPS DMKIOS DfilKBNH DfilKVCH 
RDEVSEP 000011 DMKCKP DKKCQP Dl'!KCSO DfilKBSF DfilKSEP DMKiRM 
BDEVSER 000038 DM-KCFG DltKCKS DMKCPI DMKCQG DfilKCQP DMKDAS DKKIOE DfilKLOG DKKfilON DMKSCN DKKVDB DfilKVER 

Dl'!KWRK 
RDEVSIZE 000005 DKKEDfiI DMKLOG DMKSCN DMKSSP 
RDEVSKUP 000004 DfilKTOS DKKMON 
RDEVSLCW 000009 DMKCQP DfilKBES DfilKRBH 
BDEVSPAC 000004 DKKCSO DMKRSP 
RDEVSPL 000037 DfilKACO DfilKCKP DKKCKS DfilKCPS DMKCQP DKKCSO DfilKEDK DMKBSE DfilKRSP DMKSPL DfilKVCH DfilKVDS 

DfilKWRfiI 
RDEVSTAT 000184 DfilKACO DfilKCCH DfilKCFS DfilKCKP DfilKCKS DfilKCNS DfilKCPB DfilKCPI DfilKCPS DMKCPV Dl'!KCQP DKKCSO 

DfilKDAS DfilKDIA Dl'!KGRF DKKIOE DKKIOS DMKLOG DKKfilCC DMKMON DfilKMSW DfilKNES DKKNET DfilKNLD 
DMKBGA DMKRGB DMKRNB DfilKRSE DfilKRSP DfilKSCN DfilKSPL DfilKTAP DfilKVCH DfilKVDE DKKVDR DMKVDS 
DfilKVER DMKiRK 

RDEVSTA2 000022 DMKIOS DfilKNLD 
RDEVSYS 000022 DfilKCFS DKKCPI DMKCPS DfilKCQP DfilKDAS DMKLOG DMKfilCC DMKMON DMKVCH DMKVDB DMKVDR DMKVDS n 
BDEVTBTO 000003 DMKliIES DMKRBB '" BDEVTCTL 000002 DMKNES 1:"4 
RDEVTERM 000013 DMKCSO DMKRSE DfilKRSP AI 

~ en RDEVTFLG 000078 DfilKCFT DfilKCNS DfilKCPI DfilKCPV DMKCQB DKKDIA DKKGRF DfilKNLD DfilKTRfiI (1) 
(1) RDEVTfilAT 000004 DfilKACO DfilKDIA DfilKVDR DfilKVDS ...., 
0 RDEVTMCD 000024 DfilKCFT DfilKCNS DMKCPI DfilKCQR DMKGRF DfilKIOC DfilKIOF DMKNES DfilKNLD DMKQCN DKKTRfiI 

, 
rt rt 
1-10 RDEVTRC 000004 DfilKGRF 0 
0 , 
r::s 3: 

0 
W ~ . c: ...., 
t::::1 (1) 

1-1' ..,. n 
(1) t1 
0 0 
c+ 00 
0 00 
t1 
1-1' !:tI 
(1) (1) 
00 H\ 

(1) 

t1 
(1) 

~ r::s .... 0 
\0 (1) 



~ Label Count References (1 
tv 
0 

~ 

~ 
RDEVTYPC 000262 DMKBLD DMKCFM DMKCFS DMKCFT DMKCKP DMKCNS DMKCPI DMKCPS DP.lKCPV DMKCQG DMKCQP DMKCQR PI 

DMKCSO DP.lKDIA DMKDftP DftKEDft DftKGRF DMKHVC DMKHVD DMKIOC DMKIOE DMKIOF DMKIOS DMKLNK t:r 
CD 

DMKLOG DMKMCC DMKMON DMKNES DPIKNET DMKILD DMKOPR DMKPSA DMKQCN DMKRGA DMKRNH DMKRSE I-' 
~ DMKRSP DMKSCN DMKSSP DMKUSC DMKVCH DMKVCN DMKVDB DMKVDR DMKVDS DMKVER DMKiRM I 
3: c+ ....... RDEVTYPE 000376 DMKACO DMKBLD DMKCFC DMKCFG DPIKCFft DftKCFS DMKCFT DMKCKP DMKCKS DftKCRS DMKCPI DMKCPS 0 w DMKCPV DMKCQG DMKCQP DMKCQR DMKCSO DMKDAS DMKDIA DMKDMP DMKDRD DMKGRF DMKBVC DMKBVD I 
-.J 3 
0 DMKIOC DMKIOE DMKIOF DMKIOG DMKIOS DMKLNK DMKLOG DMKNES DMKNLD DMKOPR DftKPAG DftKPGT 0 
00 DMKPTR DftKQCN DMKRGA DMKRSE DMKRSP DftKSEP DMKSNC DMKSPL DMKSSP DMKTAP DMKTDK DMKUSO Po 

t:: 
til DHKVCB DMKVCN DMKVDB DMKVDS DHKVER DMKiRM I-' 
~ RDEVUSC8 000002 DHKCNS DMKNES CD en 
c+ RDEVUSER 000034 DMKBLD DHKCFS DMKCNS DMKCPI DMKCPS DMKCPV DMKCQP DMKCSO DMKDIA DMKGRF DMKIOS DMKLOG (1 
CD DMKMCC DftKNES DftKNET DMKNLD DMKPSA DftKVDB DMKVDR DMKVDS t1 
iii RDEViAII 000011 DMKRGA DMKRGE 0 

en 
t-' RDEViAIT 000008 DMKNES DMKRNH en 
0 RDRCHI 000006 DMKCKS DMKDMP DMKILD DMKSPL IQ ~ ..,. READNRM 000002 DMKRNH CD n RECBLOK 000055 DMKCKP DMKCKS DMKCPI DMKDMP DMKEDM DMKPGT DMKRSP DMKSPL DP.lKVSP DMKiRM HI 

CD 
PI RECCCPD 000004 DMKIOF DMKIOG t1 

= RECCYL 000030 DMKCKP DMKCKS DMKCPI DMKDMP DMKPGT DMKRSP DMKVSP DMKiRM CD 
Po = RECFLAG1 000009 DMKIOF DMKIOG n 
~ RECFLAG2 000003 DMKIOG CD 
t1 
0 RECMAP 000037 DMKCKS DMKCPI DMKDMP DMKPGT DMKRSP DMKVSP 
t:r RECMAX 000012 DMKCKP DMKCKS DMKCPI DMKPGT 
I-' 
CD RECNXT 000010 DHKIOF DMKIOG 
iii RECOVRPT 000005 DMKMCB 
t:j RECPAG 000003 DMKIOF DMKIOG 
CD RECPAGFL 000004 DMKIOF DMKIOG 
c+ RECPAGFM 000003 DHKIOG CD 
t1 RECPAGFR 000002 DHKIOG • RECPAGIU 000003 DMKIOF DMKIOG ~. 

= RECPNT 000035 DMKCKP DMKCKS DMKCPI DMKDMP DMKEDM DMKPGT DMKRSP DMKSPL DP.lKVSP DMKiRM 
'" RECSIZE 000022 DMKCKP DMKCKS DMKCPI DMKEDM DMKPGT DMKRSP DMKSPL DMKUSO DMKVSP DMKiRM c+ 
~. RECUSED 000024 DMKCKP DMKCKS DMKCPI DMKDMP DMKPGT DMKRSP DMKVSP 
0 RSPDPAGE 000014 DMKRSP DMKSPL = RSPLCTL 000014 DMKCKP DMKCQP DMKCSO DMKEDM DMKRSP DMKSPL 
en RSPMISC 000004 DMKCSO DMKRSP 
t:: 
~. RSPRPAGE 000015 DMKRSP DMKSPL 
Po RSPRSTRT 000007 DMKRSP 
CD RSPSFBLK 000019 DMKCKP DMKCQP DMKCSO DMKEDM DMKRSP DMKSPL 

RSPSIZE 000007 DMKEDM DMKRSP DMKSPL 
RSPVPAGE 000010 DMKRSP DMKSPL 
RTCODEO 000002 DMKEIG 



Label count References 

RTCODE1 000004 DMKEIG DMKSEV DMKSIX 
RTCODE2 000004 DMKEIG DMKSEV DMKSIX 
RTCODE3 000007 DMKEIG DMKSEV DMKSIX 
RTCODE4 000010 DMKEIG DMKSEV DMKSIX 
RTCODE5 000004 DMKEIG DMKSEV DMKSIX 
RTCODE7 000004 DMKSEV 
RUNCRO 000006 DMKCPI DMKDSP DMKPRV 
RUNCRl 000002 DMKCPI DMKDSP 
RUNPSW 000015 DMKDS P DMKPSA 
RUNUSER 000029 DMKCDS DMKCPI DMKDIA DMKDSP DMKIOS DMKLOG DMKMCH DMKPRG DMKPSA DMKTHI DMKUSO DMKVCA 

DMKVMA 
RO 004816 DMKACO DMKBLD DMKBSC DMKCCH DMKCCW DMKCDB DMKCDS DMKCFC DMKCFD DMKCFG DMKCFM DMKCFP 

DMKCFS DMKCFT DMKCKP DMKCKS DMKCNS DMKCPB DMKCPI DMKCPS DMKCPV DMKCQG DMKCQP DMKCQR 
DMKCSO DMKCSP DMKCST DMKCSU DMKCVT DMKDAS DMKDDR DMKDEF DMKDGD DMKDIA DMKDIR DMKDMP 
DMKDRD DMKDSP DMKEDM DMKEIG DMKERM DMKFMT DMKFRE DMKGIO DMKGRF DMKHVC DMK HVD DMKIOC 
DMKIOE DMKIOF DMKIOG DMKIOS DMKISM DMKLDOOE DMKLNK DMKLOC DMKLOG DMKMCC DMKMCH DMKMID 
DMKMON DMKMSG DMKMSW DMKNEM DMKNES DMKNET DMKNLD DMKOPR DMKPAG DMKPGS DMKPGT DMKPRG 
DMKPRV DMKPSA DMKPTR DMKQCN DMKRGA DMKRGB DMKRNH DMKRPA DMKRSE DMKRSP DMKSAV DMKSCH 
DMKSCN DMKSEP DMK SEV DMKSIX DMKSNC DMKSPL DMKSSP DMKSTK DMKTAP DMKTDK DMKTHI DMKTMR 
DMKTRA DMKTRC DMKTRM DMKUDB DMKUNT DMKUSO DMKVAT DMKVCA DMKVCH DMKVCN DMKVDB DMKVDR 
DMKVDS DMKVER DMKVIO DMKVMA DMKVMI DMKVSP DMKWRM 

Rl 009506 DMKACO DMKBLD DMKBSC DMKCCH DMKCCW DMKCDB DMKCDS DMKCFC DMKCFD DMKCFG DMKCFM DMKCFP 
DMKCFS DMKCFT DMKCKP DMKCKS DMKCNS DMKCPB DMKCPI DMKCPS DMKCPV DMKCQG DMKCQP DMKCQR 
DMKCSO DMKCSP DMKCST DMKCSU DMKCVT DMKDAS DMKDDR DMKDEF DMKDGD DMKDIA DMKDIR DMKDMP 
DMKDRD DMKDSP DMKEDM DMKEIG DMKERM DMKFMT DMKFRE DMKGIO DMKGRF DMKHVC DMK HVD DMKIOE 
DMKIOF DMKIOG DMKIOS DMKISM DMKLDOOE DMKLNK DMKLOC DMKLOG DMKMCC DMKMCH DMKMID DMKMON 
DMKMSG DMKMSW DMKNEM DMKNES DMKNET DMKNLD DMKOPR DMKPAG DMKPGS DMKPGT DMKPRG DMKPRV 
DMKPSA DMKPTR DMKQCN DMKRGA DMKRGB DMKRNH DMKRPA DMKRSE DMKRSP DMKSAV DMKSCH DMKSCN 
DMKS EP DMKSEV DMKSIX DMKSNC DMKSPL DMKSSP DMKSTK DMKTAP DMKTDK DMKT HI DMKTMR DMKTRA 
DMKTRC DMKTRM DMKUDR DMKUNT DMKUSO DMKVAT DMKVCA DMKVCH DMKVCN DMKVDB DMKVDR DMKVDS 
DMKVER DMKVIO DMKVMA DMKVMI DMKVSP DMKWRM 

Rl0 001964 DMKACO DMKBLD DMKBSC DMKCCH DMKCCW DMKCDB DMKCFD DMKCFG DMKCFP DMKCFS DMKCFT DMKCKP 
DMKCKS DMKCNS DMKCPB DMKCPI DMKCPS DMKCPV DMKCQG DMKCQP DMKCQR DMKCSO DMKCSP DMKCST 
DMKCSU DMKC VT DMKDAS DMKDDR DMKDEF DMKDGD DMKDIA DMKDIR DMKDMP DMKDRD DMKDSP DMKEDM 
DMKERM DMKFMT DMK FRE DMKGIO DMKGRF DMKH VC DMKHVD DMKIOE DMKIOF DMKIOG DMKIOS DMKISM n 
DMKLDOOE DMKLNK DMKLOC DMKLOG DMKMCC DMKMCH DMKMID DMKMON DMKMSG DMKMSW DMKNES DMKNET I'd 

DMKNLD DMKOPR DMKPAG DMKPGS DMKPGT DMKPRG DMKPRV DMKPSA DMKPT R DMKQCN DMKRGA DMKRGB t"4 
DMKRNH DMKRSE DMKRSP DMKSAV DMKSCH DMKSCN DMKSEP DMK SNC DMKSPL DMKSSP DMKSTK DMKTAP I» 

DMKT DK DMKTHI DMKTMR DMKTRC DMKUDR DMKUNT DMKUSO DMKVAT DMKVCA DMKVCN DMKVDB DMKVDR t:r 
til CD 
CI) DMKVDS DMKVER DMKVIO DMKVMA DMKVMI DMKVSP DMKWRM ~ n I 
t+ r+ 
~. 0 
0 I 
1:1 01: 

W 0 
Q.I 
c: 

t::I 
~ 

~. 
(I) 

11 n 
CD 11 n 0 r+ en 
0 en 
11 
~. I:tI 
CD CD en HI 

(1) 
1'1 

~ 
(1) 

1:1 
t-.) n - (1) 



.;: Label Count References n 
II.) "t1 
II.) 

t'"I 

Rll 000656 DP.lKACO DP.lKBLD DP.lKCCE DMKCCW DKKCDB DKKCDS DKKCFC DKKCFD DKKCFG DKKCFM DMKCFP DMKCFS I» 
b" 

DKKCFT DftKCKP DMKCKS DP.lKCNS DP.lKCPB DMKCP1 DMKCPS DMKCPV DP.lKCQG DMKCQP DMKCQR DMKCSO (1) 

DMKCSP DMKCST DMKCSU DMKDAS DMKDDR DMKDEF DMKDGD DMKD1A DMKD1R DMKDMP DMKDRD DMKDSP 1-1 
< I 
:.: DMKEDft DMKERM DMKFftT DMKFRE DMKG10 DMKGRF DMKHVC DMKBVD DP.lK1OE DKK10F DKK10G DMK10S rt' 

" DMK1SM DMKLNK DMKLOG DMKMCC DMKftCB DftKfHD DKKKON DKKftSG DKKftSW DKKNES DMKNET DMKNLD 0 
w I 
-..J DMKPAG DMKPGS DMKPGT DMKPRG DMKPRV DMKPSA DMKPTR DMKQCN DP.lKRGA DMKRGB DP.lKRNB DMKRPA 3 
0 DKKRSE DKKRSP DMKSAV DMKSCB DKKSCN DKKSEP DMKSNC DP.lKSPL DMKSSP DftKTDK DMKTH1 DftKTftR 0 

DP.lKTRA DMKTRC DMKUDR DMKUNT DMKUSQ DftKVAT DMKVCA DMKVCB DMKVCN DMKVDB DftKVDR DMKVDS ~ 
c 

tf.I DMKVER DftKV10 DftKVMA DMKVlU D!!KVSP 1-1 
I< R12 000605 DP.lKACO DMKBLD DMKCCW DMKCFM DP.lKCFP DMKCKP DMKCNS DMKCPB DP.lKCP1 DMKCPS DMKCQG DMKCQP 

(1) 

til 
c+ DMKCQR DMKCSO DMKCSU DMKDAS DMKDDR DMKDEF DMKDGD DftKD1A DftKD1R DftKDftP DP.lKDRD DftKDSP n 
(1) DMKEDM DMKE1G DMK ERft DMKFMT DMKFRE DMKG10 DMKGRF DMKBVC DftK10C DMK10E DMK10F DMK10G H 
B 0 

DMK10S DftK1SM DMKLDOOE DMKLNK DftKLOC DMKLOG DftKftCH DftKft1D DftKftON DMKftSW DMKNEM DftKNLD til 
t'"I DMKPAG DftKPGT DMKPRG DMKPRV DMKPSA DMKPTR DMKQCN DMKRGA DMKRGB DMKRIIB DftKRSP DMKSAV til 
0 

i,Q DftKSCH DftKSEP DftKSEV DMKS1X DftKSPL DMKSSP DftKTDK DMKTMR DMKTRA DftKTRC DftKUDR DftKUNT ~ 
..... DftKVAT DftKVCA DMKVCN DMKVDB DMKVDS DMKV10 DMKVftA DMKVM1 DMKVSP DMKWRM (1) 

() I-h 
R13 000501 DMKACO DMKBLD DMKBSC DMKCCB DMKCCi DMKCDB DMKCDS DMKCFC DMKCFD DftKCFG DftKCFM DMKCFP (1) 

III DMKCFS DftKCFT DMKCKP DMKCKS DMKCNS DftKCPB DftKCP1 DMKCPS DMKCPV DftKCQG DMKCQP DftKCQR H 
::s DMKCSO DMKCSP DMKCST DMKCSU DMKDAS DMKDDR DMKDEF DMKDGD DftKD1A DftKDIR DftKDftP DftKDRD 

(1) 

~ ::s 
DMKEDft DftKE1G DMKERM DMKFftT DftKFRE DMKGIO DMKGRF DMKHVC DMKHVD DMK10C DMK10E DMK10F 0 

"t1 DMK10G DMKIOS DMK1Sft DftKLDOOE DftKLNK DftKLOG DftKftCC DMKftCH DftKK1D DMKftON DftKftSG DMKftSW 
(1) 

H 
0 DMK1I1EM DMKIES DMKIET DMK1I1LD DftKPAG DMKPGS DftKPGT DftKFRG DMKPRV DMKPSA DftKPTR DMKQCI 
t:r DMKRGA DftKRGB DftKRNH DMKBPA DMKRSE DMKRSP DftKSAV DMKSCH DftKSEP DftKSE V DftKSIX DKKSNC 1-1 
(1) DKKSPL DftKSSP DftKTAP DMKTDK DMKTH1 DMKTRA DMKTRC DftKTRft DMKUDR DftKUIT DftKUSO DftKVAT 
B DMKVCA DftKVCH DftKVCN DMKVDE DftKVDR DftKVDS DftKVER DftKVIO DMKVMA DftKVMI DftKVSP DftKWRM 
t:j R14 002696 Dl'IKACO DMKBLD DMKCCB DMKCCW DMKCDB DftKCDS DMKCFG DMKCFM DMKCFP DftKCFS DftKCFT DftKCKP 
(1) DftKCKS DKKCNS DMKCP1 DMKCPS DMKCPV DMKCQP DMKCQR DKKCSO DKKCSP DMKCST Dl'IKCSU DKKCVT c+ 
(1) DKKDDR DKKDGD DKKD1A DKKD1R DKKDKP DKKDRD DftKDSP DMKEDM DMKEIG DKKERM DMKFMT DMKFRE 
H DftKGRF DftKBVC DftKHVD DftK10E DftK10F DftKIOG DftKIOS DMK1Sft DftKLDOOE DftKLNK DftKLOC DftKLOG • Dl'IKftCH DMKMOI DMKIET DMKNLD DftKOPR DftKPAG DKKPGS DKKPGT DftKPRG DKKPRV DftKPSA DftKPTR ..... 
::s DftKQCN DKKRGA DftKRGB DftKRNH DMKRPA DftKRSE DftKRSP DftKSAV DftKSCB DKKSCN DftKSEP DMKSEV 
I» Dl'IKS1X DftKSPL DKKSSP DMKSTK DMKTDK DMKTMR DMKTRA DMKTRC DftKUDR DMKUNT DftKUSO DMKVAT c+ ..... DMKVCA DKKVCH DftKVCN DMKVDB DftKVDS DMKVER DftKVIO DftKVMA DftKVft1 DftKVSP DftKWRM 
0 R15 002637 DMKACO DKKELD DMKCCB DMKCCW DKKCDB DftKCDS DMKCFC DMKCFD DMKCFG DftKCFM DftKCFP DftKCFS ::s 

Dl'IKCFT DftKCKP DKKCKS DftKCNS DftKCPE DftKCPI DftKCPS DftKCPV DftKCQG DftKCQR DftKCSO DMKCSU 
en Dl'IKCVT DKKDAS DMKDDR DMKDEF DMKDGD DftKDIA DKKDIR DMKDMP DftKDRD DMKDSP DftK EDM DMKEIG 
C ..... DftKERM DftKFMT DMKFRE DMKGIO Dl'IKGRF DftKHVC DKKHVD DKKIOE DMKIOF DMKIOG DftKIOS DftKISft 
~ DftKLDOOl DMKLNK DMKLOC DMKLOG DMKftCH DftKftON DftKftSG DftKNEM DKKNES DKKNET DKKNLD DftKOPR (1) 

DMKPAG DftKPGS DftKPGT DMKPRG DftKPRV DftKPSA DftKPTR DftKQCN DftKRGA DftKRGB DKKRNB Dl'IKRPA 
DftKRSE DftKRSP DftKSAV DftKSCB DftKSCN DKKSEP DftKSEV DKKSIX DMKSPL DKKSTK DKKTDK DMKTMR 
DMKTRA DftKTRC DKKUDR DKKUNT DKKUSO DftKVAT DftKVCA DMKVCB DftKVCN DftKVDB DftKVDR DMKVDS 
DP.lKVER DftKV10 DMKVMA DMKVftI DMKVSP DMKWRK 



Label Count References 

R2 006218 DftKACO DftKBLD DftKBSC DftKCCH DftKCCi DftKCDB DftKCDS DftKCFC DMKCFD DMKCFG DMKCFM DMKCFP 
DftKCFS DftKCFT DMKCKP DMKCKS DMKCNS DMKCPB DMKCPI DMKCPS DMKCPV DMKCQG DMKCQP DMKCQR 
DftKCSO DMKCSP DMKCST DMKCSU DMKCVT DMKDAS DMKDDR DMKDEF DMKDGD DMKDIA DMKDIR DMKDMP 
DMKDRD DMKDSP DMKEDM DMKEIG DMKERM DMKFMT DMKFRE DMKGIO DMKGRF DMKHVC DMKHVD DMKIOE 
DMKIOF DMKIOG DMKIOS DMKISM DMKLDOOE DMKLHK DMKLOC DMKLOG DMKMCC DMKMCH DMKIHD DMKMON 
DMKMSG DMKMSi DMKHEM DMKNES DMKNET DMKHLD DMKOPR DMKPAG DMKPGS DMKPGT DMKPRG DMKPRV 
DMKPSA DMKPTR DMKQCN DMKRGA DMKRGB DMKRNH DMKRPA DMKRSE DMKRSP DMKSAV DMKSCH DMKSCN 
DMKSEP DMKSEV DMKSIX DMKSNC DMKSPL DMKSSP DMKTAP DMKTDK DMKTHI DMKTMR DMKTRA DMKTRC 
DMKTRM DMKUDR DMKUNT DMKUSO DMKVAT DMKVCA DMKVCH DMKVCN DMKVDB DMKVDR DMKVDS DMKVER 
DMKVIO DMKVMA DMKVMI DMKVSP DMKiRM 

R3 004791 DMKACO DMKBLD DMKBSC DMKCCH DMKCCi DMKCDB DMKCDS DMKCFC DMKCFD DMKCFG DMKCFM DMKCFP 
DMKCFS DMKCFT DMKCKP DMKCKS DMKCNS DMKCPB DMKCPI DMKCPS DMKCPV DMKCQG DMKCQP DMKCQR 
DMKCSO DMKCSP DMKCST DMKCSU DMKCVT DMKDAS DMKDDR DMKDEF DMKDGD DMKDIA DMKDIR DMKDMP 
DMKDRD DMKDSP DMKEDM DMKEIG DMKERM DMKFMT DMKFRE DMKGRF DMKHVC DMKHVD DMKIOE DMKIOF 
DMKIOG DMKIOS DMKISM DMKLDOOE DMKLHK DMKLOC DMKLOG DMKMCC DMKMCH DMKIUD DMKMON DMKMSG 
DMKMSi DMKNEM DMKNES DMKNET DMKNLD DMKOPR DMKPAG DMKPGS DMKPGT DMKPRG DMKPRV DMKPSA 
DMKPTR DMKQCN DMKRGA DMKRGB DMKRNH DMKRPA DMKRSE DMKRSP DMKSAV DMKSCH DMKSCH DMKSEP 
DMKSEV DMKSIX DMKSHC DMKSPL DMKSSP DMKTAP DMKTDK DMKTHI DMKTMR DMKTRA DMKTRC DMKTRM 
DMKUDR DMKURT DMKUSO DMKVAT DMKVCA DMKVCH DMKVCN DMKVDB DMKVDR DMKVDS DMKVER DMKVIO 
DMKVMA DMKVMI DMKVSP DMKWRM 

R4 003787 DMKACO DMKBLD DMKBSC DMKCCH DMKCCi DMKCDB DMKCDS DMKCFC DMKCFD DMKCFG DMKCFM DMKCFP 
DMKCFS DMKCFT DMKCKP DMKCKS DMKCNS DMKCPB DMKCPI DMKCPS DMKCPV DMKCQG DMKCQP DMKCQR 
DMKCSO DMKCSP DMKCST DMKCSU DMKDAS DMKDDR DMKDEF DMKDGD DMKDIA DMKDIR DMKDMP DMKDRD 
DMKDSP DMKEDM DMKEIG DMKERM DMKFMT DMKFRE DMKGIO DMKGRF DMKHVC DMKHVD DMKIOC DMKIOE 
DMKIOF DMKIOG DMKIOS DftKISM DMKLDOOE DMKLHK DMKLOC DMKLOG DMKMCC DMKMCH DMKMID DMKMOH 
DMKMSG DMKMSi DMKREM DMKHES DMKHET DMKNLD DftKOPR DMKFAG DMKPGS DMKPGT DMKPRG DMKPRV 
DMKPSA DMKPTR DMKQCH DMKRGA DMKRGB DMKRHH DMKRSE DMKRSP DMKSAV DMKSCH DMKSCN DMKSEP 
DMKSEV DMKSIX DMKSNC DMKSPL DMKSSP DMKTAP DMKTDK DMKTHI DMKTMR DMKTRA DMKTRC DMKTRM 
DMKUDR DMKUNT DftKUSO DMKVAT DMKVCA DMKVCH DMKVCN DMKVDB DMKVDR DMKVDS DMKVER DMKVIO 
DMKVMA DMKVMI DMKVSP DMKiRM 

RS 003502 DMKACO DMKBLD DMKBSC DMKCCH DMKCCi DMKCDB DMKCDS DMKCFC DMKCFD DMKCFG DMKCFM DMKCFP 
DMKCFS DMKCFT DMKCKP DMKCKS DMKCHS DMKCPB DMKCPI DMKCPS DMKCPV DMKCQG DMKCQP DMKCQR 
DMKCSO DMKCSP DMKCST DMKCSU DMKCVT DMKDAS DMKDDR DMKDEF DMKDGD DMKDIA DftKDIR DMKDMP 
DMKDRD DMKDSP DMKEDM DMKERM DMKFMT DMKFRE DMKGIO DMKGRF DftKHVC DMKHVD DMKIOC DftKIOE 
DMKIOF DMKIOG DMKIOS DMKISM DMKLDOOE DMKLNK DMKLOC DMKLOG DMKMCC DMKMCH DMKMID DMKMON (') 

~ 
DMKMSG DMKMSW DMKNEM DMKHES DMKNET DMKNLD DMKOPR DMKFAG DMKPGS DMKPGT DMKPRG DMKPRV 
DMKPTR DMKQCH DMKRGA DMKRGB DMKRNH DMKRPA DMKRSE DMKRSP DMKSAV DMKSCH DMKSCN DMKSEP 1;-1 

~ DMKS HC DMKSPL DMKSSP DMKTAP DMKTDK DMKTHI DMKTMR DMKTRA DMKTRC DMKTRM DMKUDR DMKUHT t:T' 
Ul DMKUSO DMKVAT DMKVCA DMKVCH DMKVCN DMKVDB DMKVDS DMKVER DMKVIO DMKVMA DMKVMI DMKVSP CD 
CD DMKWRM ~ 
0 , 
r+- r+-..... 0 
0 , 
=' 3: 

0 
W ~ . c: 

~ 
t:I CD ..... 
t1 n 
CD t1 
0 0 
r+- OO 
0 00 
t1 ..... !:t:I 
CD CD 
00 HI 

CD 
t1 
m 

-'=' =' 
t>.J 0 
W CD 



.::: Label Count References (1 tv 

.::: t'tj 

R6 002567 DMKBLD DMKBSC DMKCCB DMKCCW DMKCDB DMKCDS DMKCFC DMKCFD DMKCFG DMKCFM 
~ 

DMKCFP DMKCFS III 
DMKCFT DMKCKP DMKCKS DMKCBS DMKCPB DMKCPI DMKCPS DMKCPV DMKCQG DMKCQP DMKCQR DMKCSO 0-

CD 

< DMKCSP DMKCST DMKCSU DMKCVT DMKDAS DMKDDR Dl!IKDEF DMKDGD DMKDIA DMKDl!IP DMK DRD DMKDSP ~ 

3: DMKEDl!I DMKERM DMKFMT DMKFRE Dl!IKGIO DMKGRF DMKHVC DMKHVD Dl!IKIOC DMKIOE DMKIOF DMKIOG I 

" DMK10S DMKISM DMKLDOOE DMKLNK DMKLOC DMKLOG DMKMCC DMKMCH DMKM1D DMKMOB DMKMSW DMKBES r+-
l.rJ 0 

" DMKNET DMKNLD DMKPAG DHKFGS DMKPGT DMKPRG DMKPRV DMKPTR DHKQCN DHKRGA DHKRGB DMKRNH I 
0 DMKRSE DMKRSP DMKSAV DMKSCH DMKSCN DMKSEP DMKSNC DMKSPL DMKSSP DMKT AP DMKTDK DMKTB1 3: 

0 
DMKTMR DMKTRC DMKUDR DMKUNT DMKUSO DMKV AT DMKVCA DMKVCB DMKVCN DMKVDB Dl!IKVDR Dl'IKVDS Po 

til DMKVER DMKVIO Dl'IKVMA DMKVM1 DMKVSP DMKWRM ~ 
~ Ioc:I R7 002858 DMKACO DMKBLD DMKBSC DMKCCB DMKCCW DMKCDB DMKCDS DMKCFC DMKCFD DMKCFG DMKCFM DMKCFP CD [Jl 

r+- DMKCFS DMKCFT DKKCKP DMKCKS DMKCNS DMKCPB DMKCP1 DMKCPS DMKCPV DMKCQG DMKCQP DMKCQR (1 
CD DMKCSO DMKC SP DMKCST DMKCSU DMKCVT DMKDAS DMKDDR DMKDEF DMKDGD DMKD1A DMKDMP DMKDRD t1 II 

Dl'IKDS P DI1KEDI1 DMKERM DMKFMT DMKFRE DMKG10 DMKGRF DMKBVC DMKBVD DMK10E DMKIOF DfiIK lOS .:> 
t"'4 DMKISM DMKLDOOE DMKLNK DMKLOC DMKLOG DMKMCC DI1KI1CH DMKIHD DMK110N DMKMSG DMKMSW DMKNES 

[Jl 

0 
[Jl 

I,Q DMKIiET DMKNLD DMKPAG DMKPGS DMKPGT DMKPRG DMKPRV DMKFTR Dl'IKQCN DMKRGA DMKRGB DMKRNH .... DMKRPA DMKR SE DMKRSP DMKSAV DMKSCH DMKSCN DMKSEP DMK SNC DMKSPL DMKSSP DMKTAP DMKTDK l:C 

0 CD 
DMKTHI DMKTMR DMKTRC DI1KUDR DMKUNT DMKUSO DMKVAT DMKVCA DMKVCB DMKVCN DMKVDB DMKVDS HI 

I» DMKVER DMKVIO DMKVMA DMKVSF DMKWRM CD 
t1 = R8 002093 DMKACO DMKBLD DMKBSC DMKCCH DMKCCW DMKCDB DMKCDS DMKCFD DMKCFG DMKCFM DMKCFP DMKCFS CD Po 

DMKCFT DMKCKP DMKCKS DMKCNS DMKCPB DMKCPI DMKCPV DMKCPV DMKCQG DMKCQP DMKCQR DMKCSO = 0 t'tj DMKCS P DMKCST DMKCSU DHKCVT DMKDA S DMKDDR DMKDEF DMKDGD DMKDIA DMKDMP DMK tRD DMKDSP CD t1 
0 DMKEDM DMKERM DMKFMT DMKFRE DMKG10 DMKGRF DMKBVC DMKHVD DMKIOC DMKIOE DMKIOF DHKIOG 
0- Dl'IKIOS DMKISM DMKLDOOE DMKLNK DMKLOC DMKLOG DMKMCC DMKMCH DMKMID DMKMOB DMKMSG DHKMSW 
~ 
CD DMKNES DMKNET DHKNLD DMKCPR DHKPAG DHKPGS DHKPGT DHKPRG DHKPRV DMKPSA DMKFTR DI1KQCN 
iii DMKRGA DMKRGE DMKRNH DMKRSE DPlKRSP DMK SA V DMKSCH DMKSCN DMKSEP DMKSNC DMKSPL DMKSSP 
~ DMKTAP DMKTDK DMKTHI DMKTMR DMKTRC DMKT RM DMKUDR DMKUNT DMKUSO DMKVAT DMKVCA DMKVCH 
CD DMKVCN DMKVDE DMKVDR DMKVDS DMKVER DMKVIO DI1KVMA DHKVSP DMKWRM r+-
CD R9 002001 DMKACO DHKBLD Dl'IKBSC DMKCCH DMKCCW DMKCI:B DHKCFG DMKCFM DMKCFP DMKCFS DMKCKP DMKCKS 
t1 Dl'IKCNS DHKCPI DMKCPS DMKCPV DMKCQG DMKCQP DMKCQR DMKCSO DMKCS P DMKCST DMKCSU DMKCVT 
II .... DMKDAS DMKDDR DMKDGD DMKDIA DMKD1R DMKDMP DMKDRD DHKDSP DMKEDM DMKE1G DMKERM DMKFMT 
= DMKFRE DMKGIO DMK GRF DMKHVC DMKHVD DMK10C DMKIOE DMKIOF DMK10G DMKIOS DMK1SM DMKLDOOE 
I» DMKLNK DMKLOC DMKLOG DMKMCC DMKMCH DMKMID DMKMON DMKMSG DMKMSW DMKNES DMKNET DMKNLD rt' .... DMKPAG DMKPGS DMKPGT DMKPRG DMKPR V DMKPTR DMKQCN DMKRGA DMKRGB DMKRBH DMKRPA DMKRSE 
0 DMKRSP DMKSAV DMKSCH DMKSCN DMKSEP DMKSEV DMKSIX Df'IKSNC DMKSPL DMKSSP DMKTAP DMKTDK ts 

DMKTH1 DMKT MR DMKTRA Df'IKTRC DMKUDR DMKUNT Dl'iKUSO DMKVAT DMKVCA DMKVCH DMKVCN DMKVDB 
Gl DMKVDS DMKVER DMKV10 DMKVMA Df'IKVMI Df'IKVSP DMKWRM c: .... SA VCREGS 000007 Dl'IKBLD DMKCPG 
Po SAVEAREA 000143 DMKACO DMKBLD DMKBSC DMKCCH DMKCCW DMKCtB DMKCDS DI1KCFC DMKCFD DI1KCFG DMKCFI1 DMKCFP (1) 

DMKCFS DMKCFT DMKCK S DMKCNS DI1KCPB DMKCPS DMKCPV Df'IKCQG DMKCQP I:MKCQR DMKCSO DMKCSP 
DMKCST DMKCSU DMKDAS DMKDEF DMKDGD DI1KD1A DMKDRD DMKEIG DMKERM DMKG10 DMKGRF DMKHVD 
DMK10C DMK10E DMK IOF DMKIOG DMKIOS Df'IKI SM DMKLNK DMKLOG DMKI1CC DMKMCH DMKMID DMKMON 
DMKMSG DMKl'iSW DMKNEM DMKNES tMKNE'I DMKNLD DMKPGS DMKFSA DMKPTR DMKQCN DMKRGA DMKRGB 
DMKIiNH DMKRPA DMKRSE DMKRSP DMKSEP DMKSEV DMKSIX DMKSNC DMKSPL DMKSSP DMKTAP DMKTDK 
DMKTHI DMKTRA DMKTRC DMKTRM DMKUDR DMKUNT DMKUSO DMKVAT DMKVCA DMKVCH DMKVDB DMKVDR 
DMKVDS DMKVER DMKVMA D~KVSF I:MKWRM 



Label Count References 

SA VENEIT 000004 D~KPSA 

SAVEREGS 000032 D~KCCW DMKCPV DMKCQP DMKDGD DMKIOE DMKIOG D~KPTR DMKRSP DftKSEP DMKVAT 
SA VERETN 000031 DftKCFC DMKCFG DftKCPB D~KDIA D~KLNK DMKLOG DftKPSA DftKFTR DllKUSO DftKV AT DftKVCA DftKVER 
SAVERO 000049 DMKCNS DftKCQG DMKCQP DftKCQR DMKDRD DMKERft DMKGRF DMKHVD DftKftSW DftKNEft DftKPTR DMKQCN 

DMKRGA DMKRNH DMKRSP DMKSNC DMKTDK DMKTRC DMKUDR DMKVAT DMKVCA DMKVSP 
SAVERl 000042 DMKBLD DftKCCW DMKCFC DMKCKS DMKCNS DMKCQP DMKERM DMKICE DMKPGS DMKPTR DMKQCN DMKRIH 

DMKRPA DMKTDK DMKTRC DMKVAT DMKVCA DMKVDS DMKVSP 
SAVER10 000013 DMKCCW DMKS!P DMKVCA DMKVCH 
SAVERll 000059 DMKACO DMKELD DMKCFM DMKCPS DMKCPV DMKCQG DMKCQP DMKCSU DMKtAS DMKDIA DMKIOS DMKLIK 

DMKLOG DMKMID DMKMSG DMKMSW DMKNES DMKNLD DftKPTR DftKQCN DftKSPL DftKTHI DftKUSO DMKVCA 
DftKVCH DMKVDE DMKVMA 

SAVER12 000014 DMKCCW DMKDGD DMKPSA DMKFTR DftKVAT DMKVCA DftKVER 
SAVER13 000003 DftKPSA DMKPTR DftKVAT 
SAVER2 000148 DMKBLD DMKCCW DftKCDS DftKCFC DftKCFM DftKCKS DMKCNS DftKCQP DftKDEF DftKDGD DMKDIA DftKDRD 

DMK!RM DMKGIO DMK GRF DMKLNK DMKLOG DMKMSG DMKNES DMKNET DMKNLD DMKPGS DMKPSA DMKPTR 
DMKQCN DMKRGA DMKRGB DMKRNH DMKRPA DMKSNC DMKTRA DMKTRC DftKUDR DftKVAT DftKVCH DMKVDB 
DftKVDS DMKVMA DftKVSP DMKWRft 

SAVER3 000006 DMKERft DftKPTR DftKQCN DMKVAT 
SA VER4 000001 DftKTRC 
SAVERS 000007 DftKCFG DMKTRC DMKVCA 
SA VER6 000008 DMKCFG DMKDRD DMKSNC 
SAVER7 000()O2 DMKPTR DMKSPL 
SA VER8 000022 DMKELD DMKCCW DMKCKS DMKDIA DMKSEP DMKSPL DMKTDK DMKVDR DMKVDS DMKVSP 
SAVER9 000007 DMKCCW DMKLOG DMKNES DMKNET DlIKSPL 
SAVESIZE 000008 DMKCPI DMKFRE DMKPSA 
SAVEWRK 1 001001 DftKBLD DMKCCH DftKCCW DMKCDE DMKCDS DMKCFD DftKCFG DftKCFS DftKCFT DftKCKS DMKCPS DMKCPV 

DftKCQG DMKCQP DftKCQR DMKCSO DMKCSP DMKCST DMKCSU DMKDEF DMKDIA DMKDRD DMK!IG DftKLNK 
DMKLOG DMKMCC DMKMSG DMKNES DMKNET DMKNLD DMKPGS DMKPTR DMKQCN DMKRPA DMKRSE DMKSEP 
DMKSEV DMKSIX DMKSNC D~KSPL DMKTHI DMKTRA DMKTRC DMKUNT DMKUSO DMKVCA D~KVCH DMKVDB 
DMKVDS DMKVER DMKVMA DMKWRM 

SAVEWRK2 000552 DMKACO DMKBLD DMKCCH DMKCCW DMKCDE DMKCDS DMKCFC DMKCFD DMKCFG DMKCFS DMKCKS DMKCPB 
DMKCPS DftKCPV DMKCQG DMKCQP DMKCQR DftKCSO DftKCSP DMKCST DftKCSU DftKD!F DftKDIA DMKDRD 
DftKIOG DftKLNK DMKLOG DftKMSG DMKNES DMKNET DftKNLD DMKPGS DftKPSA DftKP'IR DftKQCN DftKSEP 
DPlKSNC DMKSPL DMKTAP DMKTDK DMKTHI DMKTRA DMKTRC DMKUDR DMKUNT DMKUSO DMKVCA DMKVCH 
DMKVDB DMKVDR DMKVDS DMKVER DMKVMA DMKVSP DMKWRM n 

SAVEWRK3 000138 DMKACO DMKCCH DMKCDS DMKCFD DMKCFG DMKCFS DMKCKS DMKCPS DMKCPV DMKCQG DMKCQP DMKDEF to 
DMKDIA DMKDRD DMKIOG DMKMCC DMKNES DMKNET DMKNLD DMKPGS DMKPTR DftKQCN DMKSNC DMKTAP ~ 
DMKTHI DMKTRC DMKUNT DMKUSO DMKVCA DMKVDB DMKVDR DMKVDS DMKVER DMKVMA DMKWRM PI 

SAVEWRK4 000170 DMKCCH DMKCDB DMKCDS DMKCFC DMKCFD DMKCFG DMKCFS DMKCKS DMKCPB DMKCPS DMKCPV DMKCQG t7' 
til CI) 

CD DMKCQR DMKCSO DMKCSP DMKCST DMKCSU DMKDEF DMKDIA DMKLNK DftKMSG DMKNES DMKNET DMKNLD ..... 
n DMKPGS DMKQCN DMKSNC DMKTRC DMKVCA DMKVDB DMKVDR DMRVDS DMKVER DMKWRM I 
t+ t+ .... 0 
0 I 
::I IX 

0 
W ~ 

c: ..... 
'=' CI) .... 
t1 n 
CD t1 
n 0 
t+ en 
0 en 
t1 .... !:O 
CD CD 
en HI 

CD 
t; 
CI) 

.c:: t:I 
IV n 
c..n CD 



-= Label Count References n ~ 
0\ "tl 

t""I 
SAVEWRK5 000148 DMKCCH DMKCDB DMKCDS DMKCFD Dl'IKCFG DMKCFS DMKCKS DMKCPB DMKCQG DMKCQP DMKCSO DMKCSP ll> 

DMKCST DMKCSU DMKDEF DMKDIA DMKLNK DMKNES DMKNET DMKN1D DMKPTR DMKSEP DMKSNC Dl'IKTRC tr 
DMKUNT DMKVDB DMKVER DMKVMA CD 

c:; 1-1 
:I: SA VEiRK6 000148 DMKACO DMKCCH DMKCDB DMRCFG DMKCFM DMKCFP DMKCKS DMKCQP DMKCSO DPlKCSP DMKCST DMKCSO I 

" DMKDEF DPlKD1A DPlKDRD DPlKLNK DMKMSG DMKNLD DMKPTR DMKSNC DMKTH1 DMRTRC DMKUNT DMKVCA c+ 
w 0 
...,J DMKVDB DMKVDR DMKVDS DMKVMA DMKVSP DMKWRM I 

0 SAVEWRR7 000066 DMKACO DPlKCCH DMKCFD DMKCFG DMKCFS DMKCKS DMRCSO DMKCST DMKDEF DMKDIA DMK10G DMKLNK 3: 
0 

DMKNES DMKNET DMKNLD DMRFGS DMKSEP DMKTRA DMKTRC DMKVDS DMKVER DMRVMA DMKiRM PI 
til SA VE iRK8 000229 DMKACO DMKCCH DMKCDB DMKCDS DMKCFP DMKCFS DMRCKS DMKCPV DMRCQG DMKCQP DMKCQR DMKCSO ~ 

I.e; 1-1 
en DMKCSP DMKCSU DMKDEF DMRD1A DMRLNR DMKLOG DMKMSG DMKNES DMKNET DMKNLD DMKSEP DMRSNC CD 
rT DI1KSPL DMKTRC DMKVMA n CD SAVEiRK9 000116 DMKACO DMKCCH DMKCCW DMRCFG DMKCKS DMKCPS DMKCSP DKKCSO DI1KDEF DMRDGD DMKD1A DMKEIG H e 

DMKLNK DMKN!S DMKNET DMKNLD DMKPGS DMRPTR DPIKSEP DMKSEV DMKS1X DMKSIIC DMKTRC DMKOIIT 0 
t'"4 DMKVCA DMKVDB DMKVDR DMRVDS DMKVER DMKVMA en 
0 en 

I.Q SA VFPRES 000002 DMKCFG 
!:tI 1-'- SAVGREGS 000003 DMKCFG 

0 CD 
SAVKEYS 000002 DMKCFG Ht 

S» SAVPSW 000002 DMKCFG CD 
I:' H 
PI SAVTABLE 000002 DMKCFG CD 

SCHEDCI 000001 DMKMCC ::;:I 
0 "tl SDRBLOK 000006 DMK10E DMKIOF CD H 

0 SDRBS12E 000001 DMK10E 
tr SDRCTRS 000014 DMK10E DMKIOF 1-1 
CD SDRCUA 000002 D"KIOF e SDRFLAGS 000005 DMK10E DMK10F 
~ SDRFLC'I 000004 DMK10F 
CD SDRLNGTH 000008 DMK10E DMK10F rT 
(1) SDRI1AX 000003 DMKIOF 
H SDROVFWK 000006 DMKIOF • SDRPRMCT 000004 DMK10F 1-'-
I:' SDRRDEV 000002 DMK10F 
S» SDRSHR'I 000007 DMK10E DMKIOF rT 
1-'- SDRS1ZE 000001 DMK10F 
0 SDRS1ZEl 000001 DMK10F I:' 

SEGPAGE 000033 DMKBLD DMKCP1 DMKPGS DMKVMA en SEGPLEli 000011 DMKBLD DMKPGS DMKVMA Q 
1-'- SEGTAELE 000015 DMKBLD DMKPGS DMKVMA 
PI SFBCLAS 000025 DMKCKF DMKCQG DMKCQR DMKCSP DMKC SU DMKDRD DMKNLD DKKBSP DMKSEP DKKSPL DMKVSP CD 

SFBCOPY 000018 DMKCKP DMKCRS DMKCQG DMKCSC DMKCSO DMKDBD DMKNLD DKKRSP DMKSPL 
SFBDATE 000009 DMKCKF DMKCQG DMKDKP DMKNLD DKKSEP DKKSPL DMKWRM 
SFBD1ST 000018 DMKCKP DMKCQG DMKCSP DMRCSO DMKNLD DMKSEP DMKSPL 
SFBDOMf 000008 DMKCKS DMKCQG DMKDMP DMKDRD DMKNLD DMKSPL DMRVSP 



Label Count References 

SFBEOF 000014 DMKCKS DMKDRD DMKVSP DMKiiRM 
SFBFILID 000035 Dl'.IKCKS DMKCQG DMKCSP DMKCST DPlKCSU DPlKDl'.IP DMKDRD DPIKIUD D~KRS P DMKSEP DMKSPL DPlKVSP 

DMKWRM 
~FBFIRST 000002 DMKCKF D~KSPL 

SFBFLAG 000090 DMKCKP DMKCKS DMKCQG DMKCQR DMKCSO DPlKCSP DMKCSU DMKDRD DMKNLD DMKRSP DMKSPL DMKUSO 
DPlKVSF Dl'.IKWRM 

SFBFLAG2 000032 DMKCKP DMKCKS DMKCSO DMKCSF DMKRSP tMKSEP DMKSPL DMKVSP DKKWRM 
SFBFNAME 000012 DMKCQG DMKCSP DMKCSU DMKNLD DMKRSP DKKSEP DMKSPL 
SFBFTYPE 000003 DMKCQG DMKNLD DMKRSP 
SFBHOLD 000011 DMKCSP DKKSPL DMKVSP 
SFBINUSE 000013 DMKCKS DMKCQG DMKCQR DMKCSF DMKCSU DMKDRD DKKUSO DMKVSP DKKWRK 
~FBLAS'I 000036 DMKCKP DMKCKS DMKDMP DMKDRD DPlKNLD DMKRSP DMKSPL DMKVSP 
SFBLOK 000067 DMKCKP DMKCKS DMKCPI DMKCQG DMKCQR DMKCSO DMKCSP DMKCST DMKCSU DMKDMP DMKDRD DMKEDPI 

DPIKILD Dl'.IKRSP Dr'IKSEP DMKSPL DMKUSO DPlKVSP DPlKWRPI 
SFBMISCl 000003 DMKVSP 
~FBNOHID 000010 DMKCS P DMKSPL DMKVSP 
SFBOPEN 000007 DMKCKS DMKDRD DMKVSP DPlKWRl'l 
~FBORIG 000012 DMKCKP DMKCPI DMKCQG DMKCSU DMKNLD DMKRSP DMKSEP DPlKSPL 
SFBPNT 000055 DMKCKP DMKCKS DMKCQG DPlKCQR DPlKCST DMKCSU DKKDMP DMKDRD DMKEDM DMKNLD DPlKRSP DMKSPL 

DMKVSP DMKWRM 
SFBPURGE 000005 DMKCKP DPlKSPL 
SFBRECER 000031 DPlKCKP DK-KCKS DKKCSO DKKDRD DKKRSP DPIKSPL DMKVSP DPlKWRPI 
SFBRECNO 000017 DMKCKS DMKCQG DMKNLD DPlKRSF DPIKSEP DPlKVSP 
~FBRECCK 000003 Dl'.IKCSO DMKRSP 
SFBRECS 0000 1"8 DMKCKP DMKC1{S DMKRSP D!H(SFL DPlKVSP DMKWRM 
SFBRECSZ 000006 DMKl/LD DPIKSPL DKKVSP 
SFBREQUE 000007 DMKCSO DMKRSP DMKSPL 
SFBRSTRT 000008 DMKCKS DMKRSP DMKSEP DKKSPL DPlKWRM 
SFBSHOLD 000016 DMKCQG DMKCQR DMKCSO DPlKCSF DMKCSU DMKRSP DKKSPL 
~FBSIZE 000037 DMKCKP DMKCKS DMKDMP DKKDRD DMKEDM DPlKNLD DPlKRSP DMKSPL DMKUSC DKKWRPI 
SFBSTART 000056 DKKCKP DPlKCKS DMKCPI DMKCST DMKDMP DMKDRD DMKNLD DMKRSP DKKSPL DKKVSP 
SFBTICER 000001 DMKRSP 
SFBTIM E 000009 DMKCKS DMKCQG DMKDMP DMKNLD DMKSEP DMKSPL DMKVSP 
SFBTYPE 000014 DMKCQG DMKDMP DKKDRD DMKNLD DPlKRSP DPIKSPL DMKVSP 
SFBUHOLD 000018 DMKCKS DPlKCQG DMKCQR DMKCSF DPlKCSU DMKDRD DKKRSP DKK SPL DMKVSP n 
SFBUSER 000039 DMKCKP DMKCPI DPlKCQG DMKCQR DPlKCSP DMKCST DMKCSU DPlKDRD DMKEDl'.I DMKIUD Dl'.IKRSP DKKSEP ." 

Dl'.IKSPL Dl'.IKVSP 1:"4 
SHQBLCK 000011 DPlKCKS DPlKCQR DMKCSP DPlKSPL Dl'.IKWRM ~ 

SHQESIZE 000011 DMKCKP DMKCKS DMKCSP DMKWRPl t:I" 
CJ:l CD 
CD SHQFLAGS 000001 DPlKCS P J-I 
0 SHQPNT 000001 DMKCSP I 
M- M-.... SHQSHOID 000005 DPlKCQR DPlKCSP DMKSPL 0 
0 I 
t:' ::JI: 

0 
W ~ . j:;: 

J-I 
t:::I CD .... 
11 n 
CD 11 
0 0 
c+ en 
0 en 
11 .... !:tJ 
CD CD 
en HI 

CD 
11 
CD 

~ t:' 
~ 0 

""'" 
CD 



.;: Label Count References n tv 
CD "'C 

SBQUSER 000007 DftKCKS DftKCQR DMKCSP DPlKSFL ~ 
III 

SHRB P5'I 000006 Df!lKCFG DPlKPGS DMKVMA tr 
SHRFPNT 000017 DMKCFG DftKPGS DMKVPlA (D 

c; ...... 
::I: SHBNAME 000018 DMKCFG DPlKPGS DPlKVftA I 

" SBRPAGE 000013 DftKCFG r+ 
0 w SHRSEGCT 000009 DPlKCFG DPlKPGS DPlKVftJ I ...,J 

0 SHRSEGNft 000013 DPlKCFG DftKPGS DMKVMA tI: 
0 II SBBTABIE 000024 DPlKCFG DPlKPGS DPlKVPlA Pol 

C/) SBRTSIZE 000003 DPlKCFG DftKPGS DMKVftA ~ 

'< SHROSECT 000009 DPlKCFG DPlKVftA ...... 
en DPlKPGS (D 

r+ SIGMASK 000001 DMKDSP n (D SILl 000896 DMKACO DPlKBSC DPlKCCW DMKCKP DMKCNS DPlKCPB DPlKCPI DMKCSO DPlKDAS tMKDDR DMK tGD DMKDIA EI H 
DMKDIR DMKDf!P DMKFMT Df!KGRF DPlKIOS DMKMCC DMKNLD DPlKOPR DPlKPAG DPlKRGA DPlKRGB DMKRNH 0 

~ DMKRSE DMKRSP DMKSAV DMKSFP DMKSPL DMKSSP DMKTAP DPlKTDK DPlKUCE DMKUCS DMKUDR DMKVCA en 
en 0 DMKVCN DftKVDB DMKVDR DPlKVPlI DPlKVSP DMKWRM I.Q 

.... " SIOCCH 000002 DPlKCCH !:tI 
(D 0 SKIP 000138 DMKACO DMKCCW DMKCKP DMKCNS DPlKCSO DMKCST DMKDAS DMKDDR DMKDIA DltKDMP DMKDBD DMKFMT HI 

III DMKIOS DMKPIG DMKRSP DMKSAV DMKSEP DMKSPL DMKTAP DMKUNT DMKVCA tMKVCN DMKVtB DMKVMI (D 
H 1:1 DltKVSP (D Pol 

Sf! 000022 Df!KCNS Df!KCPI DMKFMT DMKIOS DMKNLD DMKPSA DMKRSE DMKVIO DMKVIH t:I 
ttl SPLIRK 000009 DPlKCKS DPlKDRD DMKRSP DPlRSFL DMKVSP 0 
H (D 

0 SPRITPIG 000023 DMKCKS DftKDBD DftKRSP DMKVSP 
0" SPPREPAG 000013 DftKDRD DftKRSP DMKVSP ...... 
(D SPRECloe 000015 DftKCKS DPlKRSP DMKVSP 
EI SPRMISC 000002 Df!KRSP 
t::j SPROFCl 000003 DftKf!CC DPlKf!OI 
(D SPSIZE 000012 Df!KRSP DPlKSPL DMKVSP r+ STARTIPlE 000011 DPlKCKP DPlKCPI DMKCQR DPlKWRM (D 

H SUSPENI: 000006 DMKPlON 
EI SVCNPSii 000008 DPlKCPI DMKPRG DeKPSA DPlKTRC .... " 
1:1 SVCOPSi 000034 Df!KPRG DPlKPSA DMKTRC 
III SiPALLCC 000006 DPlKFTR DPlKVMA r+ .... " SiPCHGl 000006 DMKCFG DMKCPI DeKeCH DMKFTR 
0 SiPCHG2 000006 DMKCFG DeKCPI DPlKPlCH DPlKPTR 1:1 

SiPCODE 000003 Df!KPAG DftKP'IR 
Cil SiPCYL 000009 DMKCFG DftKCPI Df!KPAG Df!KPGS Df!KPG'I DMKPTR DPlKRPA ~ 
.... " SiPDPAGE 000006 DftKPAG Df!KPGT DMKPTR 
Pol SiPFLAG 000074 DPlKELD DftKCCW DftKCDS DPlKCFG DftKCPI DPlKDGD DMKMCH DPlKFAG DIIKPGS DMKPGT DMKPRV DMKPTR (D 

DftKRPA DMKVMA 
SiPKEYl 000013 DPlKCFG DPlKftCH DftKPGS DPlKPRV DMKPTR 
SiPKEY2 000003 DftKftCH DMKPTR 
SiPPAG 000002 DPlKELD DMKVftA 



Label Count References 

SiPRECftP 000009 DftKBLD DftKPGS DftKPGT DftKFTR DftKRPA DftKVftA 
SiPREF1 000003 DftKPTR 
SiPREF2 000003 DftKPTR 
SiPSHR 000008 DftKCFG DftKPGS DftKPRV DftKPTR DftKRPA DMKV!!A 
SiPTABLE 000017 DftKBLD D!!KED!! DftKPGS DftKVJ!A 
SiPTRAliS 000011 DftKCDS DftKPAG DftKPTR DMKRPA D!!KVftA 
SiPV!! 000005 DftKBLD DftKED!! D!!KPGS DftKVftA 
SiPVPAGE 000004 DftKPGS DftKPTR DftKVftA 
SIBCLOG 000001 DftKCPI 
SISCIL 000002 DftKCFG 
SISHRSEG 000003 DftKCFG 
SISIPLDV 000012 DftKCKS DMKCPI DMKDMP DMKHVD DMKIOG DMKWRM 
SISLOCS 000019 DftKACO DftKBLD DftKCFS DftKCFT DftKCKP DftKLOC DftKLOG DMKUDR DftKUSO 
SISBAftE 000047 DftKCFG 
SISPAGCT 000003 DftKCFG 
SISPAGlli 000009 DftKCFG 
SISPAGNft 000016 DftKCFG 
SISPNT 000003 D!!KCFG 
SISSEGLN 000004 DftKCFG 
SISSIZE 000002 DftKCFG 
SISSTART 000002 DMKCFG 
SISTBL 000003 DftKCFG 
SISTEM 000123 DMKCFC DftKCFG DftKCKS DftKCNS D!!KCPE DMKCPI DMKCPV DMKCSO DMKCST DMKDRD DftKERft DMKGRF 

DftKIOF DftKIOG DftKMCC DMKNLD DMKPSA DMKPTR DMKRGA DMKRGB DftKRNB DMKRPA DMKRSP DftKSEP 
D!!KSHC DMKSPL DMKSSP D!!KUDB DMKVCH DMKVSP DMKiRft 

SISV1DDR 000005 DftKCFG 
SISVOL 000005 DftKCFG 
'lBUSI 000010 DftKCPS DMKftCC D!!KMON 
TE!!PRO 000015 D~KCNS DftKCPI DMKVCA DftKVSF 
'lEftPRl 000005 DftKVSP 
TEftPR10 000002 DftKCCi 
TEMPR14 000016 DftKCCi DftKCDS DftKCPI DMKIOS DftKPRG 
TEMPR 15 000006 DftKCCW DftKCDS DMKCPI DftKFRG 
'lEftPR2 000016 DftKCCi DftKCPI DMKCSP DftKCSU DMKRGA DMKSAV DMKVCA 
TEMPR3 000013 DMKCCi DMKCPI DftKCSU DftKBGA DftKRGB DMKVCA n 
'lEMPR4 000007 DMKCPI DMKCSU DMKSAV DMKVCA It:! 

TEftPR5 000004 DMKCPI DftKVCA t-t 
'lEftPR6 000004 DftKHVC III 

TEftPR7 000002 DftKRGA tr 
til CD 
CD 'lEftPR8 000002 DftKHVC I-' 
0 TEftPSAVE 000136 DftKCFS DftKCNS DMKCPI DMKCQR DMKCVT DftKFRE DMKGRF DMKLOG DftKMID DftKNET DftKNLD DftKPRV t 
("i- ("i-

I-'- DftKCCR DftKRGA DMKRGB DMKRRB DMKSA V DftKSCH DMKVIO 0 
0 t 
=' ::.: 

0 
w PI 

c:: 
I-' 

'=' CD 
1-'-
I'i (') 

CD H 
0 0 
("i- en 
0 en 
H 
1-'- !:tI 
CD CD 
C/l HI 

CD 
H 
CD 

.;= =' 
tV 0 
\0 CD 



~ Label Count Heferences n w 
0 

1'0 

1:"'4 
TEHMSYS 000009 DMKCCB DMKEIG DMKSEV D!KSIX I» 
'lIMER 000021 D!KCPI DMKDSP DMK lOS Dl'!KMCH DMKPHG DMKPSA DMKPTR Dl'!KSCH b" 

TIOCCH 000012 DMKCCB DMKEIG DMKSEV D!KSIX 
CD 

c:: ...... 
IZ 'lISCPIDN 000002 DMKIOE DMKIOF I 

" TISDEVAD 000024 DMKIOE DMKIOF 
r+ 
0 w 'lliSKEYli 000005 DMKIOE tMKIOF I 

-..J 
0 TNSREC 000006 DMKIOE DMKIOF 

3: 
0 

'lNSSNS1 000006 D!KIOE D!KIOF p., 

til TNSSWS3 000018 DMKIOE DMKIOF c: 
'< 'lliSVCLID 000004 D!KIOE D!KIOF 

...... 
en (1) 

r+ TODATE 000013 DMKCPI DMKCYT D!KDMP DMKED! tMKMID n 
(1) 'lRACBEF 000003 DMKCIS DMKIOS DMKVIO H • THACCURR 000040 DMKCNS DMKCPI DMKDSP Dl!KFHE DMKIOS tMKMCC Dl'!Kl'!CB tMKPRG DMKPSA DMKRNB DMKSCB DIH<VIO 0 

t-' 'lRACEFLG 000006 DMKCPI DMKMCC rn 
0 en 

I.Q TRACENt 000020 DMKCNS DMKCPI DMKDSP DMKFRE DMKIOS DMKMCB DMKPHG DMKPSA DMKHNB DMKSCH DMKYIO 
!XI "". 'IHACFLGl 000011 D!KFHE DMKIOS DMKMCH DMKPHG DMKPSA DMKSCB CD 

0 TRACFLG2 000008 DMKCNS DI!KDSP DMKIOS DMKBiH DMKVIO I-h 

I» 'IRACSTRT 000021 D!KCNS DMKCPI DMKDSP DMKFRI DMKIOS DMKMCC DPlKMCB Dl'!KPRG DPlKPSA tPlKRliB I:MKSCH DMKVIO (1) 
H 

I:' TRACOA 000001 DMKDSP (1) 
p., 

'IRACOC 000001 D!KI:S P ::s 
0 

ItJ TRACOD 000001 DMKVIO CD 
H 
0 'IHACOl 000001 D!KPSA 
t:r THAC02 000002 DMKPSA ...... 
CD 'lHAC03 000002 DMKFRG 
• TRAC04 000001 DMKMCH 
t:I 'lHAC05 000001 DMKIOS 
(I) TRAC08 000001 DMKSCH 
r+ 'I8AC09 000001 Dl!KSCH CD 
H THAC10 000001 DMKDSP • 'IRAC 11 000001 Dl!KBNB "". I:' TRAC67 000002 DMKFRE 
I» 'IRAIUWDE 000020 DflKCDS DI!KCFG DI!KCPB DMKDSP DI!KMCH Dl'!KPRG Dl'!KPRV Dl'!KTPlR D~KTRC DMKVER r+ 
"". TREXAI:I: 000004 DMKPRG DlU<VA'I 
0 'IREIAISI 000005 Dl!KPGS tPlKTRA DMKTRC 
I:' 

TREXBRAN 000012 DMKTRA DI!KTRC 
Cil 'IREXBUFF 000004 DflKTRC c: 
"". TREXCCW 000006 DMKTRA DPlKTRC 
~ 'IHEXCH9 000003 Dl!KtS P DI!KPHV DI!KTI!R 
(I) 

TREXCSW 000006 DI!K'IRA DI!KTRC DMKVIO 
'IREICTI 000004 DMKTRA 
TREXCTL 1 000002 DMKTRC 
'IREICTI2 000007 DMKT He DflKVIO 



Label Count References 

TREIFLAG 000004 DMKTRC 
'IREXINST 000010 Dl'IKTRA Dl'IKTRC 
TREIINTC 000004 DftKPRG DftKPRV 
'IREXINTL 000001 Dl'IKPRG 
TREIIN 1 000010 DftKDSP DftKPGS Dl'IKPRV DMKPSA Dl'IKTRA DftKTRC 
'IREXIN2 000007 DMKDSP DMKTRC 
TREILCNT 000003 DftKTRC 
'IREILOCK 000001 DMKCFl'I 
TREINSI 000012 DftKPGS DMKPBV DMKTBC 
TBEIPERA 000003 Dl'IKPRG Dl'IKPRV DftKTMR 
TREIPERC 000001 DftKPBG 
TBEIPRNT 000004 Dl'IKTRA Dl'IKTRC 
TREIPSW 000002 Dl'IKPBG 
'IBEIRUNF 000004 Dl'IKTRA Dl'IKTBC 
TREXSIZE 000007 DMKEDM DftKTRA DMKTRC Dl'IKUSC 
'I-REISVCl 000002 Dl'IKTRC 
TREISVC2 000002 Dl'IKTBC 
TBEIT 000020 Dl'IKCFM Dl'IKDSP Dl'IKI!DM Dl'IKPGS Dl'IKPBG Dl'IKPBV Dl'IKPSA Dl'IKTl'IR Dl'IKTRA Dl'IKTRC Dl'IKVIO 
TBEITERft 000005 Dl'IKCFl'I Dl'IKTBA Dl'IKTRC 
'IBEIVAT 000004 Dl'IKTRC 
TBQBBPNT 000004 DftKPSA DMKSCH 
TBQBFPNT 000013 Dl'IKCFP Dl'IKPSA Dl'IKSCB Dl'IKTl'IB Dl'IKUSO 
TRQBIRA 000011 Dl'IKBLD Dl'IKCFC DftKCFS Dl'IKCPI Dl'IKGBF Dl'IKLOG Dl'IKl'ICC Dl'IKQCN Dl'IKRGA 
TRQBLOK 000058 Dl'IKELD Dl'IKCDS DftKCFC DftKCFP DMKCFS Dl'lKCPI Dl'IKGRF Dl'lKLOG Dl'IKl'lCC Dl'lKl'IID DftKl'lON Dl'IKPSA 

DftKQCN DftKRGA Dl'IKRGB Dl'IKSCH Dl'IKTPJR Dl'IKUSO 
TBQBQUE 000014 DftKSCH DftKTl'IB 
TRQESIZE 000033 DftKBLD DftKCFC DftKCFft Dl'IKCFS Dl'IKCPI Dl'IKDIA DftKGRF DMKLOG Dl'IKMCC DMKl'ION DMKQCN Dl'IKRGA 

Dl'IKUSO 
TRQETOD 000021 DftKCPI DftKl'ICC DftKftON Dl'IKSCH Dl'IKTftR 
'IRQBUSER 000011 Dl'IKELD Dl'IKCFC DftKCFS DftKCPI DftKGRF DftKLOG DftKl'ICC Dl'IKQCN Dl'IKRGA 
TRQEVAL 000030 DftKCDS DftKCFC DftKCFP Dl'IKCPI Dl'IKGRF Dl'IKMCC DMKftID DftKftON DMKPSA DMKQCN Df!!KRGA Df!!KSCH 

Dl'IKTf!!R 
TRUN 000008 Df!!KDftP Df!!Kf!!ON 
'IYPBSC 000038 Df!!KELD DMKCFf!! DftKCFT DftKCKP Df!!KCPI DftKCPS DftKCQG DMKCQP Df!!KCQR Df!!KDIA Df!!KBVC DftKBVD 

Df!!KIOS Df!!KLOG Dl'IKNES Df!!KNLD Dl'IKQCN Df!!KRGA DftKUSO DftKVCN Df!!KVDS DftKWBl'I (') 
'IYPCTCA 000022 Df!!KCFP Df!!KCPE DftKCQG Df!!KDEF DftKDIA Df!!KDIR Dl'IKIOS Dl'lKSCN Df!!KVCA Dl'IKVDE Dl'lKVDR DMKVDS t"tj 

DftKVIO Df!!KVf!!I 
t'"4 'IYPIBl'll 000006 Dl'IKDEF Dl'IKDIA DftK DIR Dl'IKNLD Df!!KSCN III 

til TYPPRT 000052 DMKCFS DMKCKP Df!!KCQG DIIJI<CQB Dl'IKCSO Dl'IKCSP DftKCST Dl'lKCSU Dl'lKDEF Dl'IKDl'IP Dl'IKDRD Dl'IKNLD t:r 
(1) (1) DI5KRS P Dl'IKSCN Dl'IKSPL Dl'IKSSP DftKVSP ~ 0 TYPPUN 000047 Dl'IKCKP Dl'IKCQR Dl'IKCSO Dl'IKCSF Dl'IKCST Dl'IKCSU DMKDRD Dl'IKRSE DMKRSP Dl'IKSCN DftKSEP Dl'IKSPL I rt rt ..... Dl'IKSSF DMKVSP 0 0 
I 1:1 

t:J: 
W 0 

Po . 
~ 

t:j ~ 
..... (1) 

1"1 n (1) 
1"1 0 0 rt en 0 en 1"1 ..... 
to (1) 
(1) en t-n 
(1) 

1"1 
(1) 

.&:: 1:1 W 0 
(1) 



-=- Label Count References (') 
w I'd 
~ 

1:"4 
TYPRDR 000015 DHKCQG DMKCSP DHKCST DrlRCSU DftRDRD DftKRSP DftKSCN DftKSPL DrlKVIH PI 

tr 7YPTELE2 000005 D!!KDEP DHIDI! tHI DIR DHISCN (!) 

<: TYPTIHER 000004 DHKCQG DHKDIR DHKVSP .... 
3: 7YPTTY 000014 DMKCFT DftKCNS DftKCPV DrlRIOF DMKNES I 

c+ 

" 7YPUNDEF 000003 DMKCNS DftKRES D!!KBLD 0 w TYPUNSUP 000003 I 
..,J DftKCCi D!!RV!!I ::J: 
0 7YP1050 000006 DftKCNS DHKIOP 0 
00 

TYP1052 000007 ~ DHKDEF DHKDIR D!!KLOG D!fKSFL DftRVDR D!!Kvts ~ en 7YP1403 000005 DMKDEF DMKDIR DHKDftP DftKIOF DftKRSE .... 
Iooq TYP1442R 000001 DHKCCW (!) 
til 
r+ 7YP1443 000005 DHKtIR DHKIOF tHKRSE (') 
(!) TYP2305 000059 DftKCCW DHKCFG DftKCKP DftRCPI DftKCPS D!!KCQG DftKCQP DHKDAS DHKDDR DHKDEF DMKDGD DrlKDIR 11 
B 0 

DHKtRD DHKBVD DHKIOC DHKIOE DftRIOF DHKIOG DHKLOG DrlKPAG DMKPGT DftKPTR DHKSAV DHKURT til 
1:"4 DHKVDB DHKVDR DMKVDS DftRVEB DMRWRM til 
0 

IQ TYP2311 000017 DHKCCW DftKCQG DftKDDR DftKDGD DftKDIB DftKIOC DftlUOF DHKLBK DMKSCB DftKVDS ttl ..... TYP2314 000046 DHKCCW DftKCFG DHKCKP DftRCRS DMKCPI DftKCQG DftKDAS DHKDDR DHKDGD DftKDIB DHKDHP DMRLBK (!) 
0 

D!!KIiLD DHKPAG DHKPGT DHKSAV DHKSNC DHKSPL DftKSSP DHKTDK D!!KVDB DftKV!R DftKVIO HI 
(!) 

PI TYP2319 000003 DftKDDR DHKDBD DHKBVD 11 = 7YP2401 000004 DHKDDR DHKTAP DHKVHI (!) 
~ = 
I'd 

TYP2415 0000C3 DHKDDR DHKTAP DHKV!!! 0 
7YP2420 000003 D!!KDDR tftKTAP DftKVfH (!) 

11 
0 TYP2501 000004 DHKDIB DHKIOF DftKRSE DrlKV!!I 
tr 7YP2520P 000002 D!!KRSE .... 
(!) TYP2520B 000001 DHKIOF 
iii 7YP2540P 000004 DHKACO DHKDIR tHKRS! DHKSSP 
'=' TYP2540R 000008 DHKDIB DHKIOF DftKBSE DftKRSF DHKSSP DftKVlH 
(1) TYP2700 000003 DftKIOF DMKNES DftKSCN r+ 
(1) TYP2741 000012 DHKCFC DftKCNS DHKCPI DMKICF 
11 7YP2955 000001 DMKCCi 
B ..... TYP3066 000012 DftKCPI DHKCPV DHKGRF DMKICF DHKOPB DHKSSP 
= 7YP3158 000001 D!!KDIR 
~ TYP3210 000040 nrUCCi DHKCFP DHKCKP DHKCIS D!!KCPB DHKCPI DHKCQG DHKCSP DHKCST DHKDIR D!!KBVD DHKIOF c+ ..... D!!KSCN DMKSPL DHKSSP DHKVCN DHKVDS DHKVIO DHKVSP 
0 TYP3211 000024 DHKCSO DHKDEF DHKDIR DHKICE t!!KIOF DHKBSE DHKSPL DHKVDR DftKVSP =' 

TYP3215 000004 DHKCFP DHKDIB DHKlDH en TYP3277 000033 DHKCCW DHKCFT DftKCKP DHKCPI DHKCPV DHKDIA DHKDIR DftKGRF DHKBVC DHKBVD DftKSSP DftKVDS ~ ..,. 'IYP3284 000014 DHKCKF D!!KCPV DHKGRF 
~ TYP3330 000060 DHKCCi DftKCFG DHKCKP DHKCRS DHKCPI DHKCQG DHKDAS tHKDDR DHKDGD DftKDIR DftKDMP DMKDRD (1) 

DHKBVD DMKIOC DftKIOE DHKIOF DHKIOG DHKNLD DftKPAG DMKFGT DftKSAV DHKSBC DftKSSP DHKTDK 
DHKUNT DftKVDB DftKVEB DMKVIO DMKWRH 

'IYP3340 000057 DHKCCW tftKCFG DftKCKP DHKCPI DHKCQG DHKDAS DftKDDR DHKDGD t!!KDIB DHKDHP DftKtRD DHKBVD 
DHKIOE DHKIOF DftKIOG DMKMSW tftKPAG DHKPGT DHKSAV DMKSPL DHKSSP DHKTDK DftKUNT D!!KVDB 
DftKVEB DftKVIO DftKWRM 



Label Count References 

TYP3350 000069 muccw DftKCFG DftKCKP DlIKCKS DlIKCPl DftKCQG DMKDAS DlIKI)DR DeKDGD DMKDlR I:MKtflIP DftKDRD 
DlIKBVD DMKlOE DMKlOF DlIKlOG DMKNLD DMKPAG DftKPGT DMKSAV DftKSNC DftKSPL DlIKSSP DftKTDK 
DMKUNT DMKVDB DMKVER DftKWRft 

TYP3410 000007 DftKCCW DftKDDR DftKlOE DftKlOF Dl!KTAP 
'IYP3411 000001 DlIKDDR 
TYP3420 000007 DMKCCW DMKDDR Dl!KlOE DlIKlCF DlIKTAP 
'IYP3505 000008 DMKDlR DMKlOE DMKlOF DMKRSE DMKVSP 
TYP3525 000001 DMKDlR 
'IYP3705 000014 DftKBLD DMKCCW DMKCKP DMKCPS DMKCQP DMKRES DMKRLD DMKliNB DftKSCN I:MKUSO DMKVCB DMKVDS 

DMKWRM 
UC 000086 DMKESC DftKCKP DMKCNS DMKCPl DMKDAS DlIKDDR DMKDlA DMKDlR DlIKDMP DMKDSP DMKFMT DMKGRF 

DMKBVC DMKlOE DMKlOS DftKftON DMKNLD I:MKOPR DMKRNB DMKRSE DMKRSP DMKSSP DftKTAP DMKUNT 
DftKVCA DMKVCN DMKVlO DMKVPJl DMKVSP 

UCASE 000019 DMKCFG DMKCFlI DftKCFS DlIKCNS Dl!KCPl DMKGRF DMKLNK Dl!Kl! SW DMKNLD DMKQCN DftKRGA DftKRNB 
UDBFBLCK 000015 DftKDEF DMKBVD DMKLNK DMKLOG DMKSPL DMKUDR 
UDBFDASD 000004 DMKUDR 
UDBFSl2E 000011 Dl!KDEF DMKBVD DMKLNK DMKLOG DMKSPL 
DDBFVAI:D 000012 DMKDEF DftKBVD DlIKLNK DlIKLCG DMKSPL DMKDI:R 
UDBFWORK 000005 Dl!KUDR 
UDEVADD 000034 DMKDEF DMKDlR Dl!KLNK DlIKLCG DlIKUDR Dl!KVDB DMKVDS 
ODEVBLCK 000042 DltKDEF DltKDlR DMKLNK DMKLOG DltKSCN DltKDDR Dl!KVDB DMKVDS 
DDEVCLAS 000006 DltKDEF DltKDlR DlIKVDS 
ODEVDASD 000004 DftKDlR DMKUDB 
DDEVDE!) 000003 DftKDlR DftKLNK DMKLOG 
ODEVDlSP 000010 DltKDEF DMKDlR DMKLNK DftKLOG DltKUDR 
UDEVFTR 000007 DMKDEF DMKDlR DMKLNK DftKSCN DlIKVDS 
ODEVLl JK 000007 DftKDlB DMKLNK DMKLOG 
DDEVLKDV 000004 DMKDlR DMKLNK DMKLOG 
UDEVLKlD 000009 DMKDlB DMKLNK DMKLOG 
DDEVLM 000023 DMKDlR DMKLNK 
UDEVLOllG 000004 DMKDlR DMKLIK DMKLOG 
DDEVLR 000008 DMKDlR DMKLNK 
UDEVLW 000014 DlIKDlR DMKLIK 
DDEVMODE 000015 DMKDlR DMKLNK DMKLOG DMKVDE DMKVDS 
ODEVMR 000001 DMKI:lR n 
DDEVMW 000001 DftKDlR to 

ODEVNCIL 000006 Dl!KDEF DMKDlR DMKVDS t'"4 
DDEVPASM 000002 DMKDlR I» 

t:r 
CJ) UDEVPASR 000003 DMKDlR DMKLIK CD 
(1) UDEVPASW 000002 DMKDlR I-J 
0 UDEVR 000002 DeKDlR DftKLIK I 
rT t+ 
1-" DDEVRELR 000004 DftKDlR DftKLNK DeKSCN DlIKVDS 0 
0 I 
t:J =-0 
w ~ 

j;:l 
I-J 

t::1 CD 
1-" 
H n 
(1) H 
0 0 
t+ en 
0 en 
H 
1-" ~ 
(1) (1) 

en HI 
([) 
H 
(1) 

~ I:' 
w 0 
w (1) 



,f= Label count References n w I'tI 
,f= 

I:"' 
UDEVRR 000001 D~KDIR ~ 

UDEVSIZE 000014 DMKDIR DMKLOG DMKUDR tr 
(J) 

UDEVSPCO 000001 DMKDIR .... 
<I UDEVSTAT 000019 DMKDEF DMKDIR DMKLNK DMKLCG DMKVDS I 
3 ("t 

" UDEVTDSK 000006 DMKDEF D~KDIR DMKLNK DMKLOG DMKVDS 0 w UDEVTYPC 000024 DMKDEF DMKDIR DMKLNK DMKLCG DMKVDS I 
-.J 01: 
0 UDEVTYPE 0000 17 DMKDEF DMKDIR DMKLNK DMKLOG DMKVDS 0 

UDEVVSER 000014 DMKDIR DMKLNK DMKLOG 0. 

" til UDEVi 000004 D~KDIR DMKLNK D~KVDE .... 
J< UDEViR 000001 DMKDIR (J) 
til 
("t DDEV3158 000003 DMKDEF D~KDIR DMKVDS (1 
<D UDIRELOK 000015 DMKCSP DMKDEF DMKDIR DMKBVD DMKLNK DMKLOG DMKSPL DMKUDR H 
Ii 0 DDIRDASD 000003 DMKDIR DMKUDR til 
t""I UDIRDISP 000008 DMKDEF DMKDIR DMKBVD DMRINK tMKLOG DMKSPL tMKUDR til 
0 

I.Q UDIRPASS 000007 DMKCS P DMKDIR DMKLOG l=tI 
~. UDIRSIZE 000010 DMKCSP DMKDIR DMKUDR (J) 
n UDIRUSER 000008 DMKtIR DMKBVD DMKLOG DMKUDR HI 

<D 
PI UE 000052 DMKCNS DMKCSO DMKDDR DMKDIR DMRD~P DMKFMT DMKGIO DMKGRF DMKBVC DMKMON DMKRGA DMKRNB H 
I:' 

D~KRSP DMKSEP DMKSSP DMKVCA DMKVCN DMKVIO DMRVMI DMKVSP <D 
0. ::t 

UMACACC 000002 DMKDIR DMKLOG n 
I'tI UMACACCT 000006 D!KtIR DMKBVD DMKLOG <D 
H 
0 UMACBLOK 000019 DMKDEF DMKDIR DMKBVD DMIUCG D!KSPL DMKU DR 
tr UMACBMI 000002 DMKDIR DMKLOG .... 
<D UMACCDEL 000002 DMKDIR DMKLOG 
Ii DMACCLA 000001 D~KLOG 

'=' UMACCLEV 000005 DMKDIR DMKLOG 
<D UMACCCBE 000002 DMKDIR DMKLOG 
("t 

UMACDASD 000002 DMKDIR DMKUDR (J) 
H UMACDISP 000003 DMKDIR DMKUDR 
iii UMACDIST 000003 DMKDIR DMKLOG DMKSPL ~. 

I:' UMACDVCT 000003 DMKDIR D!KLOG 
PI UMACECOP 000002 D!KDIR DMKLOG ("t .... DMACES 000002 DMKDIR D!KLOG 
0 UMACIPL 000002 DMKDIR DMKLOG I:' 

DMACISA! 000002 D!KDIR DMKLOG 
Cil UMACLDEL 000002 DMKDIR DMKLOG c:: .... DMACLEliD 000003 DMKDIR DMKLOG 
0. UMACMCOR 000002 DMKDEF DMKDIR <D 

DMACNSVC 000002 D!KDIR DMKLOG 
UMACOPT 000014 DMKDIR DMKLOG 
UMACPRIR 000003 D!KDIR DMKLOG 
UMACRT 000002 DMKDIR DMKLOG 



Label Count References 

UftlCSI ZE 000004 DftKDIR 
OftlCVROP 000002 DftKDIR DftKLOG 
USERCIBD 000002 DftKICO DftKCKP 
OSERCL 000004 DftKftCC DftKftON 
VCHIDD 000036 DftKCFft DftKCFP DftKCPB DftKCQG DftKCSP DftKCSU DftKDEF DftKDII DftKDSP DftKEtft DftKLOG DftKSCN 

DftKSPL DftKVCH DftKVCN DftKVDE DftKVDS DftKVIO DftKVSP 
VCHBLOK 000050 DftKCFft DftKCFP DftKCKP DftKCPB DftKCPV DftKCQG DftKCSP DftKCSU DftKDEF DftKDII DftKtsP DftKE.Dft 

DftKLNK DftKLOG DftKPRV DftKSCN DftKSPL DftKUSO DftKVCH DftKVCB DftKVDB DftKVDS DftKVIO DftKVSP 
VCHBftX 000009 DftKDEF DftKPRV DftKVDS DftKVIO DftKVSP 
VCHBUSY 000009 DftKCFP DftKDSP DftKVIO 
VCHCEDEV 000004 DftKCFP DftKDSP DftKV 10 DftKVSP 
VCHCEPND 000010 DftKCFP DftKDSP DftKVIO DftKVSF 
VCHCUIllT 000011 DftKCFft DftKCFP DftKCPB DftKDSP DftKVCN DftKVIO DftKVSP 
VCBCUTEL 000027 DftKCFft DftKCFP DftKCKP DftKCPV DftKCQG DftKCSP DftKCSU DftKDEF DftKDII DftKDSP DftKEDft DftKSCN 

DftKSPL DftKVCB DftKVDB DftKVDS DftKVIO DftKVSP 
VCHDED 000008 DftKCFP DftKDEF DftKLNK DftKVCB DftKVDE 
VCHSEL 000014 DfIIKDEF DftKDSP DftKPRV DftKVDS DftKVIO DftKVSP 
VCBSIZI 000006 DftKEDft DftKLOG DftKOSO DftKVDS 
VCHSTIT 000027 DftKCFP DftKDEF DftKDSP DftKLBK DftKVCH DftKVDB DftKVIO DftKVSP 
VCHTYPI 000019 DftKDEF DftKDSP DftKPRV DftKVDS DftKVIO DftKVSP 
VCOJilDDB 000005 DI!.KVCN 
VCONBFSZ 000004 DftKVCN DftKVDR 
VCONBUF 000010 DftKVCN DftKVDR 
VCONCAW 000006 DftKVCN 
VCONCCW 000014 DftKVCN 
VCONCNT 000006 DftKVCN 
VCOBCOftD 000017 DftKVCN 
VCONCTL 000006 DftKCFP DftKGRF DftKLOG DftKBGI DftKVCN DftKVI:B 
VCONFLIG 000026 DftKVCN 
VCOBIDIP 000003 DftKVCN 
YCONRBSZ 000006 DftKCFP DftKGRF DftKLOG DftKRGI DftKVCI DftKVDR 
VCONRBUF 000014 DftKCFP DftKGRF DftKLOG DftKBGA I:ftKVCN DftKVI:B 
YCONRCllT 000005 DftKGRF DftKLOG DftKBGA DftKVCI 
VCONRSV4 000007 DftKVCN 
YCOISIZE 000005 DftKIDft DftKVDR DftKVDS (1 

VCONWBSZ 000005 DftKCFP DftKVCN DftKVDR "'0 

VCONWBUF 000009 DftKCFP DftKVCI DftKVDR t"I 
VCOIWCNT 000002 DftKVCI III 

VCUACTV 000008 DftKCFP DftKVIO t:r' 
til CD 
CD VCUlDD 000029 DftKCFft DftKCFP DftKCPB DftKC(;IG DftKCSP DftKCSU DftKDEF DftKDII DftKDSP DftKEDft DftKLOG DftKSCN ..... n DftKSPL DftKVCB DftKVCN DftKVDB DftKVDS DftKVIO DftKVSP I 
rt- rt-.... VCUBLOK 000039 DftKCFft DftKCFP DftKCKP DftKCPE DftKCPV DftKCQG DftKCSP DftKCSU DftKDEF DI!!KDII DftKDSP DftKEDft 0 
0 Df!lKtOG DftKILD DftKSCI DftKSPL DftKUSO DftKVCH DftKVCN I:fiIKVDB DftKVDS DftKVIO DftKVSP I 
::-, 3: 

0 
W ~ . Q 

..... 
t::1 CD .... 
11 (1 
CD 11 
n 0 
rt- til 
0 til 
11 .... ~ 
CD CD 
til t-h 

CD 
11 
CD 

~ ::-, 
w n 
VI (1) 



.;:- label Count References (") w ttl (J\ 

~ 
VCUBUSY 000008 DlIKCFP DlIKVIO III 

VCUCEPID 000004 DPlKCFP DPlKDSP DPlKVCN DPlKVIO 0-
eo 

<: VCUCBBSY 000004 DlIKCFP DPlKVIO I-' 

::3: VCUCTCA 000013 Df!KI:EF I:lIKDSP DMKVDS DMKV10 I 
("f-

" VCUCUEPN 000004 DMKCFP DMKVIO 0 w VCUDVI IT 000011 DMKCFM DMKCFP DMKCPB DMKI:SP DPlKVCN DPlKVIO DMKVSP I 
....,J 3 
0 VCUDVTEL 000036 DMKCFM DPlKCFP DPlKCKP DMKCPV Df!KCQG DMKCSP DMKCSU DMKDEF DMKDIA DMKDSP Df!KEDM DMKNLD 0 
II 

Df!KSCN DMKSPL DPIKUSO DMKVCH DPlKVDB DMKVDS DMKVIO DMKVSP P.o 
~ 

til VCU 1NTS 000012 DMKCFP DlIKDSP DMKV10 I-' 
loci VCUSBRD 000006 Df!KDSP DMKVCN DMKVDS I:MKV1O eo en 
r+ VCUS1ZE 000007 DMKEDM DMKLOG DPIKUSO DPlKVDS (") eo VCUSTAT 000024 DPlKCFP I:MKDSP DPlKVCN DPlKV10 H a 0 VCUTYPE 000016 DPlKDEF DMKDSP DPlKVCN DPlKVDS I:PlKV1O en 
~ VDEVADD 000041 DPlKCFM DMKCFP DPlKCPB DMKCQG DMKCQP DPlKCSP DPlKCST DPlKCSU DPlKDEF DMKDIA I:ftK I:SP I:MKEDM en 
0 

IQ DPlKLOG DPlKNLD DPlKSCN DPlKSPl DPIKUSO DPlKVCB DPlKVCN DMKVDB DPlKVDS DPlKVIO DPlKVSP !:O 
~. VDEVAT'l1 000008 DMKVCN eo 
(') 

VDEVAUCR 000003 DlIKCFP DMKLOG DPlKVCN 
...., 
eo 

III VDEVBleK 000100 Df!KACO DPlKCCi DMKCFG DPlKCFM DPlKCFP DPlKCKP DPlKCPB DPlKCPS Df!KCPV tPlKCQG tMKCQP DPlKCSO H 
1;1 DMKCSP DlIKCST DPlKCSU DPlKtEF DPlKDGD DMKD1A DlIKDRD DMKDSP DPIKEDM DMKGIO DPlKGRF DPlKBVC eo P.o 1;1 

Df!KBVD DMKIOS DPlKLNK DPlKLOG DMKNLD DPlKQCN DPlKRGl DMKSCN DPIKSPL I:MKTEI I:P1KTRC Df!KUNT (') 
ttl DliKUSO DMKVCA DMKVCB DfIIKVCN DMKVDE DMKVI:R DPlKVDS DMKVER DPlKVIC DPlKVSP eo 
H 
0 VDEVBND 000012 Dl'!KCCi DMKCQG DMKCQP DM KI:GD DfIIKVDR DPlKVI:S DPlKVIO 
0- VDEVBUSY 000035 DlIKCFlI DMKCFP DMKCPB DMKDGD DPlKDRD DMKGIO DPlKVCN DMKVIO DPlKVSP I-' 
eo VDEVCATT 000004 DPlKVDB DMKVDR a VDEVCCil 000028 DPlKCFP DPlKVCA I:MKVCN DMKVSP 
tI VDEVCFCL 000005 DPlKVSP 
eo iDEVCFIG 000021 DPlKCFP DMKLOG DMKVCN r+ 
eo VDEVCEAN 000017 DPlKCFP DPlKDGD DPlKDSP DfIIKGIC DPlKVCN DMKV10 DPlKVSP 
H VDEVCBBS 000015 DPlKCFM DMKCFP I:P1KVCN DMKV10 DMKVSP a 
~. VDEVCLAS 000019 DPlKCKP DMKCQG DPlKCSP DfIIKCSU I:fIIKDRD DfIIKSPL DMKVDS DMKVSP 
1;1 VDEVCON 000008 DfIIKCFP DMKEDM DPlKGRF DMKLOG DMKRGI DPlKVCN DMKVDR DMKVDS 
III VDEVCONT 000012 DMKCQG DMKCSP DPlKDRD DPlKVSF r+ 
~. VDEVCOPY 000006 DMKCKP DMKCQG DMKCSP I:MKSPL DMKVDS 
0 
1;1 V DEVCSPL 000009 DMKCQG DMKCSP DMKQCN DPlKVCN DfIIKVDS DMKVSP 

VDEVCSi 000108 DPlKCFP DMKCSP DMKCSU DPlKtSP DMKGIO DMKSPL DMKTRC DMKUNT DPlKVCN DMKVIO DPlKVSP en YDEVCUE 000012 DMKCFP DlIKDSP DMKVIO ~ 
~. iDEVDED 000054 DfIIKCCi DfIIKCFP DlIKCKP DMKCPB DMKCPY DMKCQG DPlKCSO I:MKCSP DPlKCST DMKD!F tPlKI:GD DfIIKDIA 
P.o DMKGIO DMKHVD DfIIKSCN DPlKTRC DMKVDE I:MKVI:R DMKVDS DlIKVER DMKVIO DMKVSP eo 

iDEVDIIG 000008 DPlKDRD DPlKVSP 
YDEVDIAL 000015 DMKCCi DPlKCFP DMKDIA DPlKNLD DPlKVIO 
VDEVENAB 000012 DMKCCi DMKCFP DMKCQG DPlKtIA DPlKVIO 
VDEVEOF 000009 DMKCQG DMKCSP DPlKVDS DPlKVSP 



Label Count References 

VDEVEXTN 000015 DftKCKP DftKCQG DftKCSP DMKCST DMKSPL DMKVDR 
VDEVFCEK 000013 DMKCSO DMKVDR DftKVSP 
VDEVFEED 000007 DftKCFP DMKVSP 
VDEVFLAG 000110 Dl!IKACO Dl!IKCCW DMKCFP Dl!IKCKP DMKCPV Dl!IKCQG DMKCQP Dl!IKCSP DeKDEP DMKDGD DMKtIA DftKDSP 

DMKGIO DMKLNK DMKNLD DMKQCN Dl!IKSCN DMKUNT DMKVCN DMKVDR DMKVDS DMKVIO DMKVSP 
VDEVFOB 000021 Dl!IKCQG DMKCSP DMKCST DMKSPL 
VDEVBOLD 000009 DMKCQG DMKCSP DMKSPL DMRVSP 
VDEVIBTS 000031 DftRCFM DMKCFP DMKCPE DMKDSP DftKVCA DftKVCN DftKVIO DftKVSP 
VDEVIOE 000018 DftKCFP DMKDGD DMKDIA DftKEDl!I Dl!IKGIO DMKBVC DMKVIO 
VDEVIOCT 000008 DftKIOS DftKVC! DMKVCB DMKVSP 
VDEVIOER 000018 DftKCCW DMKCFP DftKDGD DftREDe Dl!IKGIO DMKVIO 
VDEVKEY 000013 Dl!IKVCB DMKVSP 
VDEVLINK 000016 DftKDEF Dl!IKSCN DMKVDR Dl!IRVDS 
VDEVIRDY 000027 DMKCFP DMKCPE DMKCQG DMKDIA DMKVCA DMKVCN DMKVDS DMKVIO Dl!IKVSP 
VDEVPEND 000018 DMKCFM DMKCFP DMKCPB DMKCSF Dl!IKCSU tl!lKDGD Dl!IKDSP Dl!IKGIO DftKSPL DftKVCN DftKVIO Dl!IRVSP 
VDEVPOSN 000008 Dl!IKCCW DMKDEF DMKtGD 
VDEVPOST 000007 D8KDGD DMKDSP DMKGIO DeKVIO 
VDEVPUBG 000009 Dl!IKCSP Dl!IKVSP 
VDEVRDO 000011 DMKCCW DftKCQG DftKCQP Dl!IKDGD D!KLBK D!KSCN D8KVDS DMKVIO 
VDEVREAL 000047 Dl!IKACO DMKCCW DMKCFG DMKCFP D!KCPB D8KCQG D!KCQP DMKDIA Dl!IKBVD D!KIOS D8KLBK DftKSCR 

DftKTBI DftKTRC D8KUNT D!KVCA D8RVDR DftKVts D8KVER DftKVIO 
VDEVRElN 000029 DftKCCW DftKCFG DftKCQP DftKDEF DftKDGD DftKLNK Dl!IKSCB DftKUNT DftKVDR DftKVDS DftKVER 
VDEVRSRL 000002 DMKCCW DMKVDS 
VDEVSAS 000004 DftKCCW D8KVIO 
VDEVSFLG 000068 DftKCFP DJI!KCKP DftKCQG DMKCSP DftKCST DftKDRD DftRQCB D8KSPL DeKVCN DftKVDS DftKVSP 
VDEVSIZE 000016 DMKCQP DftKCSP DMKCST DftKEDft DftKLOG D8KSCN DMKUSO DMKVDS 
VDEVSNSE 000029 Dl!IKVCN DMKVSP 
VDEVSPL 000035 DMKCFP DJI!KCKP DMKCPS DMKCSP Dl!IKCSU Dl!IKDRD D8KED8 D8KSPL DMKVDR D8KVIO DMKVSP 
VDEVSTAT 000163 D8KCCW Dl!IKCFM DMKCFP D8KCKP DMKCPB D8KCPV DMRCQG DMKCSO Dl!IKCS P DMKCST DMKCSU DMKDEF 

D8KDGD DMKDIA DMKDRD Dl!IKDSP DMKGIO DMKBVD DMKSCN D8KSPL DftKTRC D8KVCA DMKVCN D8KVDB 
DMKVDR DMKVDS DMKVER DMKVIO DMKVSP 

VDEVSVC 000018 DMKVSP 
VDEVTDSK 000010 DMKACO DMKCKP DMKCPV DMKCQG DMKCQP DMKDEF DMKVDR DMKVDS 
VDEVTERM 000011 DMKCQG DMKCSP DMKQCB DMKVCB Dl!IKVDS 
VDEVTIC 000006 DMKVCB (") 

VDEVTMAT 000002 DMKACO DMKVDS to 
VDEVTRAB 000003 DftKVCB t-t 
VDEVTYPC 000139 D8KACO DMKCCW D8KCFP D8KCKP DftKCPB DftKCPV DftKCQG DftKCQP DMKCSP DftKCST DftKCSU D8KDEF III 

DftKDGD Dl!IKDIA DMKDRD DMKEDM DMKGIO D8KBVD D8KLBK DMKSCB DftKSPL DftKTRC Dl!KVCI DMKVDB t:1' 
en (t) 

(t) DftKVDR DMKVDS DftKVER Dl!IKVIC D8KVSP ..... 
0 VDEVTYFE 000119 DftKCCW DMKCPP DftKCKP DMKCPB DftKCQG D8KCSO DMKCSP Dl!IKCST Dl!IKCSU DMKDGD tMKtIA DMKDRD I 
r+ r+ .... DMKEDM DMKBVD D8KLIK Dl!IKSCN Dl!IKSPL Dl!IKUNT DMKVCB DMKVDR DftKYDS DMKYER Dl!IKVIO Dl!IRVSP 0 
0 I 

= CI: 
0 

W PI 
c: 
..... 

t:=' (t) .... 
H (") 

CD H 
0 0 
r+ CJl 
0 CJl 
H .... ttl 
(t) CD 
CJl I-h 

CD 
H 
(t) 

.:= = w 0 

....a (t) 



.&:: Label Count References n w 'tI 
GO 

~ 
VDEVUC 000010 DlIKCCW DlIKCFP DMKDGD DMKGIO DlIKVIO PI 
YDEYUNIT 000004 DlIKYSP 0' 

to 
VDEVUSER 000003 DlIKLBK DMKSCB DMKVDS ~ 

c; VDEVVCF 000003 D8KYCB t 
3: r+ 

" VDEVXFER 000021 DlIKCKF DlIKCQG D8KCSP DlIKCST D8KSPL 0 w VDEV231B 000008 DlIKCCW DMKCQG DMKUBT t 
'I 3: 
0 VDEV231T 000003 DlIKCCW. DlIKCQG 0 

VFCBBLOK 000012 D8KCSO DlIKVSP ~ 

VFCBCHI 000005 DMKYSP 
~ 

til ~ 
I< YFCBCNT 000009 DMKCSO DMKYSP to en 
r+ VFCBEOF 000003 DlIKYSP n 
to YFCBFLAG 000009 DMKYSP 1'1 
iii VFCBLOAD 000009 DfIIKCSO DlIKYSP 0 

til 
t-t YFCBBD!X 000008 D8KCSO DlIKYSP til 
0 YFCBSIZE 000006 DI!!KCSO DMKYDR DI!!KYSP \Q ~ .... Y8ABLOK 000003 D8KCFG DMKPGS DI!!KVMA CD 
0 V8ACCOUI 000003 DMKHVD DMKLOG DlIKUSO .... 

CD 
PI YlIACBT 000004 DMKLOG DlIKUSO 1'1 

= VlIACOUIiT 000007 DI!!KHYD DMKLOG D8KSPL DlIKUSO CD 
~ = Y8ACTDEY 000004 D8KDGD DlIKGIO DlIKTHI DIU~YIO 0 
to VlUDSTOP 000008 DlIKCFD DlIKCFS D8KPGS DlIKPSA CD 
1'1 
0 Y8AEX 000011 D8KBLD DlIKCFS DlIKlIOI DfilKSCH 
0' VlIAEXP 000007 DI!!KCFS DlIKDSP D8KSCH DlIKUSO 
~ YftAFPBT 000007 DftKCFG DlIKPGS DlIKY8A to 
iii VlIAIAME 000005 DMKCFG DlIKPGS DlIKVlIA 
t" Y8ASHRBK 000002 D8KCFG DlIKYIU 
CD VlIASI ZE 000003 DlIKCFG DlIKPGS DlIKVlIA 
r+ Y8ASSIST 000006 D8KCFG DlIKPGS DlIKYlIA CD 
1'1 VftBADCRO 000004 DlIKYAT 
iii Y8BLOK 000303 DlIKACO DMKBLD DlIKCCH Dl!KCCi DfIIKCDB DlIKCDS DlIKCFC DMKCFD DlIKCFG D8KCFfII DlIKCFP DlIKCFS .... 
t:I DfIIKCFT D8KCKP D8KCKS D8KCBS DMKCPB DMKCPI DMKCPS DlIKCPV DlIKCQG DMKCQP DlIKCQB DlIKCSO 
PI D8KCSP D8KCST D8KCSU DfIIKDEF DfIIKDGD D8KDIA DlIKDBD D8KDSP DfilKEDlI D8KEBlI D8KGIO D8KGBF r+ .... DfilKHYC DlIKHYD DlIKIOE DMKIOF DMKIOG DlIKIOS DlIKIS8 D8KLBK D8KLOG DMK8CC DlIKMCH DMKlIID 
0 DftKftOB DlIKlISG DMKMSi D8KIES D8KBET DlIKBLD DlIKPAG DlIKFEB DfIIKPGS DMKPGT D8KPBG DlIKPBV 
t:I DlIKPSA DlIKPTB DMKQCB DMKRGA DMKBGB DlIKBIH D8KBPA D8KBSE D8KBSP DMKSCH DMKSCB DMKSEP 
Cil DMKSIC DMKSPL DMKTHI DlIKTlIB DlIKTBA DMKTBC DMKUDB DlIKUIT DfIIKuse DMKYAT DlIKVCA D8KYCB 
~ DlIKVCB DMKVDB DMKYDB DfIIKVDS DlIKVEB DlIKYIO D8KV8A D8KYSP .... 
~ VlIBSIZE 000010 DMKBLD DlIKDIA DlIK!DlI DMKLOG -DMKUSO 
CD Y8CF 000026 DlIKCFlI DlIKCBS DMKDIA DfIIKDSF DMKGBF DMKHVC DlIKLOG DlIKQCB DlIKBGA DlIKBSE DlIKVCB 

VMCFBEAD 000006 DfIIKCFM DlIKDSP DMKLOG DMKQCB 
Y8CFBUB 000009 DlIKCFlI. DlI.KCFS DMKCQB DlIKDSF DMKPRG DlIKQCB 
YMCFiAIT 000029 DlIKBLD DMKCFM DMKCBS DlIKGRF DlIKHVC DlIKLOG DMKPBG DMKQCB DfIIKBGA DlIKBIH DlIKTRA DftKTBC 



Label Count References 

iHCBCNT 000004 DHKLOG DHKUSO DHKVDS 
UICHSTRT 000053 DHKCFH DHKCFP DHKCKP DHKCPV DHKCQG DHKCSP DHKCSU DHKDEF DHKDIA DHKDSP DHK!DH DHKLOG 

DHKPRV DHKSCN DHKSPL DHRUSC DHRVCN DHKVts DHKVIO DHKVSP 
VHCHTBL 000026 DHKBLD DHKCFH DHKCFP DHKCKP DHKCPV DHKCQG DHKCSP DHKCSU DHKDEF DHKDIA DHKDSP DHKEDH 

DftKPRV DHKSCN DHKSPL DHRUSC DHRVCH DftKVtE DHKVDS DHKVSP 
VHCLASSA 000011 DHKCFC DHKCFH DHKCFS DHKCQR DHKHVD DHKHSG DHRNET DHRTHI 
iHCLASSB 000011 DftKCFC DHRCFH DHKCFS DHRCQR DHRHVD DHKHSG DHKNET DHKTHI DHKVDB 
iHCLASSC 000012 DHKCFC DHKCFH DHKCFS DHKBVD DHRNET DHKTHI 
iHCLASSD 000018 DftKCFC DHKCFH DHKCFS DHRCQG DHRCQR DHKCSU DHKNET DftKTBI 
iHCLASSE 000013 DHKCFC DHKCFH DHKCFS DHKCQR DHKHVD DHKNET DHRTHI 
VHCLASSF 000011 DHKCCi DHKCFC DHKCFH DHRCFS DHRHVD DHKIOE DHKNET DftKTHI 
VHCLASSG 000006 DHKCFC DHKCFft DHKCFS DHKCQG DHKNET DHRTHI 
iHCLASSH 000002 DHKCFC DHKCFH 
VHCLEVEL 000039 DHKCCi DHKCFC DHKCFS DHKCQG DHKCQR DHKCSU DHKHVD DHKIOE DHKLOG tHKHSG tftKRET DHKTBI 

DHKVDB 
UICOHliD 000008 DHKCFC DHKCFG DHKCSU DHKBVC DHKLNK DHKLOG DHRUSO 
iHCOHP 000005 DftKDGD DftKDSP DHKGIO DHRSCH 
VHCPUTHR 000013 DHKFSA DHKSCH DHKTHR 
iHCPiAIT 000003 DHKCFH DHKDSP DHKSCH 
VHCRDS 000005 DHKHON DHKTHI DHKVSP 
VHCUCNT 000004 DftKLOG DHKUSO DHKVDS 
VHCUSTRT 000052 DHKCFH DHKCFP DHKCKP DftKCPV DHKCQG DHKCSP DHKCSU DHKDEF DHRDIA DHKDSP DHK!DH DHKLOG 

DHKSCN DHKSPL DHKVCN DHRVDS DHRVIO DHKVSP 
VHDELAl 000011 DHKCFC DHKCFH DHKLOG DHKQCR DHKUSO 
VHDISC 000025 DHKCQG DHRCQP DHKCQR DHRLCG DHKHSG DHKHSi DHKPSA DHKQCN DHKUSO DHKVCR 
Vt.tDIST 000010 DHKCKP DHKCQG DHK(:SP DHK(:S'f DHKLOG DHKSPL 
VftDROP 1 000003 DftKSCH 
iHDSP 000011 DHKDSP DHKPRV DHKSCH DHKTHR 
iHDSTAT 000051 DHKCFP DHKDSP DHKPRV DHRPSA DHRSCH DHKTHI DHKTftR DHKVCN DHKVIO 
VHDVCliT 000008 DHKCQP DHKCSP DHKCST DHKLOG DHKSCR DHKUSO DHKVDS 
VHDVSTRT 000210 DHKCCi DHKCFH DHKCFP DHKCFT DHKCKP DHKCFS DHKCPV DHKCQG DHKCQP DHKCSP DHKCST DHKCSU 

DHKDEF DHKDGD DHKDIA DHKDRD DHKDSP DHKEDH DHKGH) DHKGRF DHKHVC DHKHVD DHKLOG DHKQCN 
DHKRGA DHKSCN DHKSPL DHRUSC DHKVCA DHKiCN DHKVDR DHKVDS DHKVIO DHKVSP 

VHECEIT 000045 DHKELD DHKCDE DHKCDS DHKCFG DHKCFP DHKCFS DHKDSP DHKEDH DHKLOG DHKPRG DHKPRi DHKSCH 
DHKTHR DHKTRC DHKUSO DHKVAT DHKVIO 

r~ 
VHELIG 000005 DHKSCH DHKTHI ~ 

VHEPRIOR 000004 DHKHOR DHKSCH 
t'"I iHESTAT 000117 DHKCDB DHKCDS DHKCFD DHKCFG DHKCFP DHKCFS DHKCPB DHKDGD DHKDSP DHKEDH DHKGIO DHKHVC I» 

til DHKHVD DHKIOS DHKLOG DHKHCH DHKPGS DHKPRG DHRPRV DHKPSA DHKPTR DHKRPA DHKTHR DHKTRC t:r 
(\) DHKUDR DHKVAT DHKiCR DHKVIC DHKVSP 

(\) 

(") .... 
rt iHEITCH 000060 DHKCDB DHKCDS DHKCFG DHKCPB DHKDGD DHKDSP DHKEDH DHKGIO DHKHVC DHKHVD DHKIOS DHKHCH I 
..... DHKPRG DftKPRV DHKPSA DHKTHB DHKTRC DHKUtR DHKVCN DltKVIO DHKiSP rt' 
0 0 
t:' I 

=-
W 0 . ~ 

s:: 
t:I .... 
..... (\) 

11 n (\) 
(") 11 
rt' 0 
0 en 
11 en 
..... 

l:tt (\) 
en (\) 

HI 
(1) 

11 

-= (1) 

W t:' 

'" 
(") 
(1) 



I:: Label Count References n 
I:: t'\j 
0 

1:"1 
nlEXTPlID 000005 DMKDSP DMKPBV I» 

VMEXWAIT 000035 DMKCFP DMKDGD DMKDSP DMKGIC DMKBVC tMKMCB DMKPRG DMKPRV DMKPSA DMKTBI DMKTMR DMKTRA 0" 
<D 

< DMKTRC DMKVAT DMKVCN IlMKVER DMKVIO DMKVSP ~ 

3: VMFBMX 000006 DMKCQG DMKDEF DMKLOG DMKVDS I 
cT 

" VMFPRS 000042 DMKCDB DMKCDS DMKCFG DMKIlSP DMKIOS DMKMCB DMKPRG DMKPSA 0 w VMFSTAT 000007 DMKCQG DMKDEF DMKLOG DMKUSC IlMKVDS I 
~ !:II: 
0 VMGEBIC 01)0019 DMKGRF DMKQCN DMKRGA DMKRGB DMKVCli 0 
00 

VMGPRS 000065 DMKCDB DMKCDS DMKCFG DMKtGIl DMKDSP IlMKGIO DMKBVC DMKBVD DMKIOS DMKMCB D!KPRG D!KPRV ~ 
,;:: 

tn DMKPSA DMKTMR DMKTRC DMKVER DMKVIO ~ 
'< VMBIPRI 000007 DMKCFS DMKDSP DMKSCB <D en 
cT VMIDLE 000012 DMKCFP IlMKDSP DMKIOS DMKYCN DMKVIO DMKV!A n 
<D vtHNQ 000018 DMKDSP DMKPRV DMKSCH DMKTBI DMKTMB H 
iii 0 VMINST 000072 DMKBVC DMKBVD DMKMON DMKPRV DMKPSA DMKTMR DMKTRC DMKVIO DI!KVS P en 
1:"1 VMINVPAG 0000 17 DMKCDB DMKCDS DMKCFP DMKDSP DMKMCB DMKPGS DMKPRV DMKPTR DMKRPA DMKTMR DMKTRC DMKVAT en 
0 

I.Q VMIRVSEG 000012 DMKCDB DMKCDS DMKDSP DMKPRV DMKVAT !:tI ..... VMIOACTV 000010 DMKCFP DMKDSP DMKVIO <D 0 'HIIOCN'I 000011 DMKACO DfilKDGIl DMKGIO DMKMOR DMKTHI DMKVIO HI 
<D I» YMIOINT 000015 DMKCFM DMKCFP DMKCPB D!KtSF D!KPRV DMKSCB DMKYCN DMKVIO DMKVSP H 

CI VlUOPRD 000014 DMKCFfiI DMKCFP DMKCPB DMKDSP DMKPRG DMKVAT DMKVCB DMKVIO DMKYS P <D 
~ t:l 

YMIOWAIT 000024 DMKCFG DMKCFP DMKDGD DMKDIA tMKGIO DMKBVC DMKIOS DMKPRG DMKTHI DMKVCA DMKVIO 0 
t'\j VlUSAM 000005 D!KCCW DMKCFS DMKCQR DMKLOG <D 
t1 
0 YMKILL 000019 DMKCFM DMKCFP DMKDIA DMKDSF D!KLNK DMKLOG DMKMCH tMKMSG DMKQCN DMKUSO 
0" VMLINS 000005 D!KMOB Df!KTBI DMKVSP ~ 
<D YMLOGOFF 000035 DMKACO Df!KCDB DMKCFf! Df!KCFF DMKCRS Df!KCPV DMKDGD DMKDIA DMKDSP DMKGRF DMKMSG DMKPGS 
iii DMKQCB DMKRGA IlMKRGB DMKSCN DMKTRC DMKUSO DMKVCA DMKVCN 
t:J YMLOGON 000032 DMKBLD DMKCFC DMKCFM DMKCKF DMKCNS DMKCPI DMKCPV DMKGRF DMKLNK DMKLOG DMKMCB Df!KQCN 
<D DMKRGA DMKRRB DMKSCB DMKUSO 
cT 
<D VMLOBGWT 000001 DMKSCB 
t1 VMLOPRI 000004 DMKIlGD DMKDSP DMKGIO DliKSCB 
II VMMACCON 000005 DMKCFS Df!KCPV DMKCQR DMKICG ..... 
CI VMMADDB 000003 DMKCFS DMKDSP 
I» VMMCODE 000013 DMKBLD DMKCFS DMKCQR DMKHYC DMKLOG DMKQCN DMKVMI cT ..... VM!CPEBV 000014 DMKCFT DMKCNS DMKCQR DMKGRF DMKLOG DMKRGA DMKRBH 
0 VMMCR6 000020 DMKCFD DMKCFS DMKCQR DMKDSF DMKLOG IlMKPSA CI 

VMMFE 000008 DMKCFS DMKCPI DMKCQR DMKDSP DMKLOG 
G'l VMMICRO 000008 DMKBLD DMKCFS DMKDSP DMKICG DMKUSO ,;:: ..... VMMICSVC 000007 DMKCFD DMKCFP DMKCFS DMKLOG DMKPSA 
~ YMMIMSG 000012 DMKCFS DMKCQR DMKCSU DMKIlEF DMKLOG DMKYtB <D 

VMMLEVEL 000062 DMKELD DMKCFG DMKCFM DMKCFS DMKCF'I DMKCBS DMKCPV DMKCCB DI!KCSU IlMKGBF DMKBVC Ilf!KLOG 
DMKMID DMKMSG DMKQCB DMKRGA DMKBNH DMKSPL Df!KUSO tf!KVCN 

VIUUINED 000009 Df!KCFS DMKCQB DMKGRF IlMKLOG DMKMSG Df!KBGA DMKVCB 
YMMLVL2 000012 DMKCFS DMKCQR Df!KCSU Df!KDEF Df!KLOG DMKVIlE 



Label count References 

VlUnlOSK 000002 DlIKDSP 
yftftPROB 000002 DftKDSP 
VftftSGOI 000014 Dl!KELD Dl!KCFS Dl!KCQR DMKCSO Dl!KLOG DftKl!ID Dl!Kl!SG Dl!KSPL D!!KUSC 
VftftSHAtT 000002 DftKDSP 
VftftSTftF 000005 Dl!KCFl! Dl!KCFT DftKQCR DftKVCR 
Vftl!SVC 000008 DftKCFD Dl!KCFS Dl!KCPI Dl!KCQB Dl!KLOG DftKPSA 
VftMTEXT 000012 Dl!KBLD Dl!KCFS DftKCQR DMKHVC Dl!KLOG Dl!KQCN Dl!KVl!I 
Vftl!360 000003 DftKCFS DftKLOG 
VMIDCRT 000005 DlIKDSP Dl!KPTR 
VftREWCRO 000010 DftKCDB DftKCDS DftKDSP DftKFRV Dl!KVAT 
VftNOROI 000003 DftKDSP Dl!KSCH 
VftNOTRAN 000005 DftKCFP Dl!KCFS Dl!KHVC Dl!KVIC 
Vl!RSHR 000003 D!!KCFG DftKPGS 
VftOSTAT 000130 DftKCCW Dl!KCDB DMKCFC Dl!KCFG DftKCFl! DftKCFP DftKCFS DMKCNS DftKCQG Dl!KCQP Dl!KCQB Dl!KCSO 

Dl!KDIA DlIKDSP DftKGRF DlIKBVC DlIKLNK Dl!KLOG DftKPlCH tMKlISG Dl!KMSW Dl!KIES tl!KN.ET Dl!KPGS 
DftKPRG Dl!KPSA Dl!KQCN Dl!KBGA Dl!KRSE tl!KOSO Dl!KVCN Dl!K VDB Dl!KVDS DMKYlIA DPlKVSP 

VlIPAGES 000028 Dl!KBLD DPlKCPI Dl!K DSP DPlKl!OR DMKPGS Dl!KPTR Dl!KRPA DMKSCH Dl!KTHI DftKVftA 
VlIPAGEX 000006 DftKCFP Dl!KCFS Dl!KCQR DPlKFRG Dl!KVAT 
Vl!PA2AFL 000008 DPlKCFG Dl!KCPE DPlKGRF DPlKHVC Dl!KHVD tPlKBGA 
VlIPDISK 000007 Dl!Kl!CB Dl!KPGT DlIKTBI 
VftPDROl! 000007 DftKl!ON DftKPGT DMKTHI 
iMPEID 000043 Dl!KCFG DlIKCFft Dl!KCFP DlIKCPB DPlKDSP Dl!KPER DPlKPRG Dl!KPRV DPlKPSA Dl!KSCH Dl!KTftR DPlKTRC 

DftKYAT DftKVCB DlIKVIO Dl!KVSF 
VlIPERce 000012 Dl!KDSP DMKPRG DftKPRV DMKTlIR 
VlIPERPND 000023 DftKDSP DftKPER DMKPRG Dl!RPRV Dl!KPSA Dl!KTlIR DMKTRC DMKVAT 
VlIPFOBC 000010 Dl!KCFS DftKCQR DMKGRF DftKRGA DlIKOSO 
VlIPGPNI: 000005 DlIKCFP DftKDSP DlIKVAT 
VftPGPRT 000006 Dl!KCFP DftKDSP DMKVAT 
VftPGREAD 000009 DftKACO DftKftON Dl!KPTR DftKSCH DftKTHI 
VftPGRIiQ 000004 D!!K!!OB DlIKPTR DMKSCH 
VftPGWAIT 000009 DMKDSP DMKPGS Dl!KPTR Dl!KBPA Dl!KTHI 
Vl!PGiRIT 000004 Dl!Kl!OB DlIKPTB DMKTHI 
VMPNCB 000005 Dl!KftON DMKTHI Dl!KVSP 
VlIPIT 000049 Dl!KBLD DftKCKP DftKCPV Dl!KCQP DftKCQR Dl!KDIA Dl!KDSP DMKEDl! D!!KLOG DftKlUD DMKMON tftKl!SG 

Dl!KSCN DftKTHI DftKOSO 
Vl!PRGII 000010 DftKI:SP DftKPRG DftKPRV Dl!KTftR (') 

VMPRGPND 000003 DMKPRG I'd 

VftPRIDSP 000008 Dl!KCFl! Dl!KDSP Dl!KHVC Dl!KSCH DftKVCN DftKVIO t'"4 

Vl!PSTAT 000089 Dl!KBLD Dl!KCCi Dl!KCDB Dl!KCDS Dl!KCFG Dl!KCFP DMKCFS Dl!KCPB DftKCQR DMKDSP Dl!KHVC DMKHVD 
I» 
0-

Ul Dl!KLOG DPlKftOl DMKPGS I:l!KPRG DftKPRV DftKPTR Dl!KSCH Dl!KTftR DftKTRC DftKUSO DftKVAT Dl!KVIO CD 
CD Vl!PSi 000233 DftKBLD DftKCDB Dl!KCDS Dl!KCFC Dl!KCFG tl!KCFM DMKCFP Dl!KCFS Dl!KCPB DMKDGD Dl!KDRD DMKDSP I-' 
(") I 
r+ Dl!KGIC DftKHVC Dl!KBVD DfiIKIOS DMKLOG DlIKl!CH DMKMON tMKPRG DftKPRV DftKPSA DMKTl!R DPIKTRA rt ..... DMKTRC DftKODR Dl!KUSO Dl!KVAT DftKVCB tPlKVER Dl!KVIO DMKVSP 0 
0 I 
t:l 01: 

0 
W P, 

c: 
I-' 

t:I CD 
..... 

(') 11 
CD 11 
0 0 
rt en 
0 en 
11 

~ ..... 
CD CD 
en HI 

CD 
11 
CD 

.c: ::s 

.c: 0 
CD 



~ Label Count Beferences (') 
~ ttl 
tv 

~ 

VftPSWAIT 000005 DMKDSP DMKSCH DMKTHI I» 
tr 

iftPSWDCT 000011 DMKCFG DMKLRK DMKLOG CD 

VMPIINT 000017 DMKCFP DMKCPB DMKDSP DMKGBF DMKPRV DMKRGA DMKSCH DMKTMR ..... 
-= I 

=- iftQBPliT 000003 DMKSCH (i" 

" YMQFPNT 000008 DftK SCH 0 w I 
-..J YMQLEYBL 000041 DMKBLD DMKCFS DMKDGD DMKDSP DMKGIO DMKMOR DftKSCH DMKTHI DMKTMR DftKUSO 3: 
0 YMQPBIOR 000006 DMKMON DMKSCH 0 

Q.. 
VMQSEliD 000008 DMKDS P DMKPSA DMKSCB ~ 

til VMQSTAT 000027 DMKCFG DMKCFft DMKCPB Dl!KDSP D!!KGRF DftKBVC DMKBVD DMKLOG DftKQCR DMKRGA DMKSCH Dl!KVCR ..... 
'< CD en D!!KYIO 
(i" YftQl 000011 DftKMON DMKSCH DMKTHI D!!KTl!R n 
CD t1 
EJ YMRBSC 000007 DMKCCR DMKVCR 0 

VftRDINQ 000003 DftKftON DMKSCH rn 
~ YftREAL 000003 DPlKELD DMKLOG DMKPBV rn 
0 

I.Q VMRON 000010 DftKCFS DMKCQB DftKDSP Dl!KICG Ill!KSCH ~ ..... 
VMBPAGB 000006 Dl!KCFS DI'IKPTR DMKSCB DMKOSO CD n HI 
YftRPRIOB 000002 DMKSCB CD 

I» VftBSTAT 000176 DftKACO IlMKBLD DftKCDI! DMKCFC DftKCFG DMKCFM Dl!KCFP DMKCKP DftKCNS IlMKCPI DftKCPY IlMKDGD t1 
ts CD 
Q.. DftKDIA DMKDSP DMKGIO DMKGBF DMKBVC DMKIOS DftKLNK tMKLOG DMKftCH DMKMON Dl!Kl!SG Dl!KPGS ts 

DMKPBG DMKPBV DMKPSA DMKPTB DMKQCB Dl!KRGA DftKRGB DMKBNH DI!IKRPA IlftKSCB DftKSCB Dl!KTHI n 
~ CD 
t1 DMKTftB Dl!KTRA DftKTBC Dl!KOSO DMKVAT DftKVCA DMKVCB DftKVER DMKVIO DMKVl!A Dl!KVSP 
0 YftBOR 000017 DMKDSP DftKPBV DftKSCB DMKTBI DftKTMB DMKVCA tr ..... VftSEG 000070 DftKBLD DftKCCi DMKCDB Dl!KCFG DftKCFP Dl!KCFS DftKCPI DftKCPV DftKCSO DMKDRD Dl!KDSP DMKEDM 
CD DftKLOG Dl!KPGS Dl!KPRV DftKPSA DMKPTB DftKSCH DftKTI!IR DMKTBA DtlKTBC ttlKOSO DftKVAT DftKVMA • VftSEGDSP 000002 DftKBLD 
t:1 VftSHADT 000009 DI!IKDS P DftKPBG DftKYAT 
CD VftSBR 000016 DftKCCW DftKCDB DftKCFG DMKDSP DMKPGS DMKPSA tftKUSO DMKVftA (i" 
(I) VftSHBSIS 000007 DMKCFD DMKCFG DftKPGS DftKVMA 
t1 VftSIZB 000032 DftKBLD DftKCCW DftKCDB DMKCDS DftKCFD DftKCFG DMKCFP DftKCPI DftKCPV DftKDEF DftKEDM DMKLOG • ..... DMKPGS DMKPTB DftKUSO DftKYIO 
ts VftSLBEP 000009 DftKCFC DftKCFM DMKHVC DftKICG I» 
(i" YftSTEAlS 000005 DMKMOI DMKPTB DftKSCB ..... VftSTKO 000008 DftKCFft DftKCQG DftKCQP DftKCQB Dl!KCST DMKNFT DftKTBI 0 
ts VMSTl!PI 000010 Dl!KCFS DtlKSCB 
Cil VftSTftPT 000007 DtlKSCH 
c: VftSTOR 000022 DI!IKBLD DMKCFG DftKCFP DMKCFS DMKCPV DMKCQG DftKDEF DMKHVC DMKLOG DMKPGS DMKTRC tMKVER ..... VftSVCPND 000002 DftKPBG Q.. 

VftSYSOP 000020 DMKCFft DMKCBS DMKCSO DMKDSP DMKGBF DMKLOG D!!KPSA DMKCCB D MKUSO DftKVDB DMKVDS DMKYSP (I) 

VftTCDEL 000006 DMKCFT DMKCNS DMKCQB DMKICG 
VftTEBft 000039 DMKBLD DMKCFC DMKCFft DMKCFT DftKCPI DMKCQG DMKCQP DMKCCB DMKDIA tMKBVC DMKBVD DMKLOG 

DftKftON DftKftSi DftKPSA DMKCCN DMKBGA DMKUSO DftKVCN tftKVDS 
VftTESCF 000005 DMKCFT DMKCQB DMKLOG 



Label Count References 

iftTIDL E 000004 DftKDSP 
YftTlftECN 000004 DPIKACO DPlKLOG 
iftTIPlER 000017 DftKCDS DPlKDSP DPlKLOG DPlR:FGS DPlR:PTR DPlKSCB 
YftTIO 000007 DPlKCFP DPlKiCI DPlKiIO 
iftTIONT 000003 DftKDSP 
YPlTLDEL 000005 DPlR:CFT DPlKCQR DPlKLOG 
iftTLENt 000016 DftKBLD DPlKCFT DPlKCIS DPlR:CQB DPlR:GRF DftKLOG DftKRGA tftKRGB 
YftTLEVEL 000051 DftKCFS DPlKCQR DPlKDSP DPlKLOG DPlKPSA DfilKSCB DfilR:TPlR 
iPlTfilINQ 000004 DftKDSP DPlKSCB 
YPlTfilOUTQ 000030 DftKI3LD DftKDSP DftKIOS DfilKLOG DPlKPlCB DftKPRG DfilKPSA DftKSCB D!!R:TfilB 
iftTftBINT 000004 DftKPSA DftKSCB DftKTftB 
VftTODINQ 000001 DfilKSCB 
iftTON 000006 DftKCFS DPlKCQR DftKDSP DftKLCG 
VftTPAGE 000004 DftKDSP 
VftTRI3RIN 000023 DftKCDS DftKCFC DftKCFP DPlR:DSP DPlKPRG DPlKPBi DPlKPSA DftKTRA DftKTRC DftKiIO 
iftTRCTL 000052 DPlKCDS DPlKCFC DftKCFP DftKDSP DftKEDPI DPIKIOS DftR:PER DPlKPBG DPlR:PRi DftKPSA DftKTftR DftKTRA 

DftKTRC DPIKOSO DftKiAT DPlKVCA tPlKiIO 
VPlTREX 000004 DPlKDSP DPIKTRA DPlKTRC 
iftTREXT 000027 DftKCFft DPlKDSP DftKEDPI DPlKPGS DPlR:PRG DftKPRi DftKPSA DftKTftR DftKTRA DftKTRC DPIKUSO DPlKVIO 
YPITRIBT 000002 DPIKTRA DPlKTRC 
VftTRIO 000010 DPlKDSP DPIKTRA DPlKTRC DftKVIC 
VPlTRPlID 000022 DPIKELD DPlKCFT DfilKCQG DPlKCQP DPlKCQR DPlKDIA DPlKHVC DftKBVD D!!KLOG DftKPSA DftKQCI DftKRGB 

DftKRNB DftKUSO 
VftTRPEB 000014 DftKDSP DftKPI-R DftKPRG DfilKPRY DftKTftR DftKTRA DfilKOSO DftKVAT 
YftTRPRG 000005 DftKDSP DftKPRG DftKTRA DftR:TBC 
VftTRPRV 000007 DftKDSP DMKPRV DftKTRA DftKTRC 
YftTRQI3LK 000007 DftKCFS DftKLOG DftKSCH DftR:USC 
YftTRSIC 000017 DftKIOS DftKTRA DftKTRC DftKVCA DPlKVIO 
VftTRSVC 000005 DftKDSP DPlKPSA DftKTRA DPlKTBC 
YftTSEND 000006 DPlKDSP DftKPSA DftKSCB 
VftTTIIH 000268 DPIKACO DftKBLD DftKCIS DftKCPS DftKCPV DftKCSO DftKDIA DftKDSP DftKGRF DftKHiC DftKIOS DftR:LOG 

DPlKPlCH DPlKPlID DftKftOI DftKftSG DftKftSi DftKIES DfilKBLD DPlKPAG DPlKPRG DftKPSA DftKPTR DftKQCI 
DftKRGA DPlKRGB DPlKBIH DPlR:SCH DftKSPL DftKTBI DftKOSO DftKVCA DftKVCH DftKVDB DPlKVftA 

VftOPRICR 000005 DftKCFS DftKCQR DftKLOG DftKftOI DftKSCH 
YftOSER 000132 DftKBLD DftKCCH DftKCDS DftKCFP DftR:CFS DftKCKP DftKCPI DftKCPS DftKCPY DftKCQG DftKCQP DPlKCQR n 

DftKCSO DftKCSP DftKCST DftKCSO DftKDEF DftKDIA DftKDRD DftKEDft D!!KHYD DPIKIOE DftK IOF DftKLBK ~ 

DftKLOG DftKftCC DftKftCH DPlKPlON DflKflSG DPlKftSi DftKIES DftKIET DftKNLD DftKQCN DPlKBIH DftKSCI t-4 
DftKSPL DftKTBI DftKOSO DftKYCA DftKVCH DftKVDB DftKVDR DPIKYEB DfilKVSP I» 

t:7' 
til VftiCRO 000019 DftKCDB DftKCDS DflKCFG DfilKCFP DflKCFS DftKDSP DfilKLOG DfilKPRY DftKTRC DftKVIO (1) 
(I) 

V"VIRCF 000015 DftKCFC DftKCFft DftKBVC D"KLIK DfilKLOG DftKBES DPlKBET DfilKCCI I-' n I 
r+ YftVTERPI 000019 DftKBLD DftKCFft DftKCFP DftKCFT DPlKCPS DfilKDFF DftKGRF DftKBYD DPlKLOG DftKQCN DPlKRGA r+ ..,- DPIKOSO DflKYDR D"KYDS 0 
0 I 
~ ::z 

0 w PI . C 
I-' 

t:j (1) ..,-
t1 n 
(1) t1 n 0 r+ en 
0 en 
t1 ..,- !:C 
(1) (1) 
en t-h 

~ 
t1 
(1) 

.f;: I:' 

.f;: n w (1) 



~ Label Count References n 
~ to 
~ 

1:"4 
VMVTIME 000008 DMKACO DMKLOG DMKMON DeKSCH DMKTMB I» 

t:r iMV370B 000058 DMKBLD DeKCDE DMKCDS DMKCFG DMKCFP DMKCFS DMKCPB DMKCQB DMKDSP DMKLOG DMKPBG DMKPBV (I) 

DMKSCB DMKTMB DMKTBC DMKUSC DMKVIO ..... 
< I :3: VMWCNT 000008 DeKPTB DMKBPA c+ 

" VMWNGON 000010 DMKBLD DMKCFS DMKCQB DeKlCG DeKMSG DMKUSO 0 w VMWSCBG 000003 DeKBVC DMKSCH I 
...,J t=-o VMWSERNG 000003 DMKSCB 0 .. 

VMWSPRCJ 000018 DMKELD DeKCPV DMKMON DMKSCH DMKTBI ~ 
~ 

til VBALOC 000003 DMKBLD DMKDEF DMKLOG ..... 
loci VSPBUFEK 000016 DeKVSP (I) rn 
r+ VSPBUFSZ 000006 DMKVSP n 
(I) VSPCAW 000014 DeKDRD DMKVSP 1"1 e 0 VSPCCW 000118 DMKDBD DMKVSP rn 
t'"I VSPDPAGE 000024 DMKEBD DMKVSP rn 
0 VSPIDACT 000006 DeKVSP I.Q ~ ..... VSPIDAl 000001 DMKVSP (I) n VSPIDASW 000008 DMKVSP HI 

(I) 
I» VSPIDAi2 000002 D!!KVSP 1"1 
:::I VSPLCTL 000011 DMKCKP DMKCSP DMKDBD DMKEDe D!!KSPL DMKVSP (I) p.. t:I 

VSPfUSC 000002 DMKVSP n 
ttl VSPNEXT 000005 DMKYSP (I) 
H 
0 VSPRECliC 000002 D!!KVSP 
t:r VSPSFBLK 000024 DMKCKP DMKCSP DMKDBD DeKED!! DMKSPL DMKYSP I-' 
(I) VSPSIZE 000009 DMKDRD DMKEDM DMKSPL DMKVSP 
e YSPVPAGE 000015 DMKSPL DeKYSP 
t:J YSPXBLCK 000019 DeKCKP DMKCQG DMKCSP DMKCST DMKSPL DMKVDB 
(I) YSPXDIST 000006 DMKCSP DMKCST" c+ 
(I) VSPILEli 000006 DMKCS P D!KCST DMKVDR 
1"1 YSPXSIZE 000002 DMKCSP DMKCST e YSPISPAR 000002 D!!KCSP DMKCST ..... 
:::I VSPITAG 000003 DMKCST DMKSPL 
I» VSPXTGLli 000007 D!!KCSP DMKCST DMKSPL c+ ..... VSPXXUSR 000009 DMKCKP DMKCQG D!KCSP DMKCST DMKSPL 
0 VSYSBES 000003 D!!KCFG :::I 

WAIT 000017 DMKBLD DMKCDS DMKCFM DMKCFP DMKCPI DMKDI:R DMKDMP DMKDSP DMKIOG DMKLOG DMKPBV DMKPSA 
(j) DMKTBA DMKTBC DMKUSO ~ ..... WRITBRK 000001 DMKRNB 
p.. WRITEOT 000002 DMKRBH (I) 

WRITNRM 000007 DMKRNB 
XIITBLCK 000055 DMKCFP DMKCPE DMKDSP DMKGRF DMKBGA DMKSCB DMKTMB 
XINTCOI:E 0000 17 DMKCPB DMKDSP DMKGBF DMKBGA DMKSCH 
XIBTMASK 000005 DMKDSP 



Label Count References 

XINTNEXT 000036 DPlKCFP DPlKCPB D!!KDSP D!!KGRF Dl!KRGA tMKSCH DftKTftR 
XlliTPARPl 000002 Dl!KSCB DPlKTPlR 
XINTSIZE 000013 DPlKCFP DPlKCPB DPlKDSP DPlKGRF DPlKRGA tPlKSCB DPlKTPlR 
XIliTSOBT 000015 DPlKCFP DPlKCPE DPlKDSP DPlKGRF DPlKRGA DPlKSCB Dl!KTl!R 
XOERCCi 1 000002 DPlKRSE 
XOBRCCi2 000001 Dl!KBSE 
XOBRCCi3 000001 DPlKRSE 
XOBRCCi4 000001 Dl!KBSE 
XOEREXT 000003 DPlKRSE 
XOBRFLAG 000013 Dl!KIOE DPlKIOF DPlKRSE 
XOBRPlISl 000002 DPlKRSE 
XOBRPlIS2 000002 DPlKBSE 
XOBRRT 1 000006 DPlKRSE 
XOBRRT2 000006 Dl!KBSE 
XOERRT3 000006 DPlKRSE 
IOBRRT4 000003 Dl!KRSE 
XOERRT5 000007 DPlKR SE 
IOBRRT6 000006 Dl!KRSE 
XOERSIZE 000002 DPlKRSE 
IOBRSTAT 000012 Dl!KRSE 
XOBRT 1 000011 DPlKIOE Dl!KIOF DMKRSE 
IOBRT2 000001 D!!KRSE 
XOERT3 000007 DPlKIOE DPlKIOF DPlKRSE 
IOBR010 000003 Dl!KIOE Dl!KIOF DPlKRSE 
XOBRTSO 000004 DMKIOE DPlKIOF DPlKRSE 
IOBR180 000003 DPlKIOE tPlKIOF DPlKRSE 
XOBR512 000009 DPlKIOE DMKIOF Dl!KRSE 
IPAGRUl! 000047 Dl!KBLD Dl!KCCi Dl!KCDB DPlKCtS DMKCPI DPlKDGD DMKDRD Dl!KFRE Dl!KBVC Dl!KBVD DPlKPGS DPlKPSA 

DPlKPTR DPlKUNT Dl!KVPlA 
IRIGBT16 000028 DPlKCCi DPlKCtE DPlKCFG DPlKCPI Dl!KCQP DMKDAS DPlKDSP DPlKERPl DPlKPlSG tftKOPR DftKRNB DPlKSEV 

DPlKSIX DftKSSP DPlKTRA DP.lKVAT DPlKVCR 
IRIGBT24 000007 DP.lKCCi DP.lKCFP DMKBVD DMKPSA 
XTNDLOCK 000011 DPlKDSP DPlKFRE DMKGRF DMKPAG Dl!KPTR DPlKRGA DPlKVIO 
12048BIID 000015 Dl!KCCi DPlKDRt DPlKBVD DMKPSA DPlKTRC DMKURT 
X40FFS 000007 DPlKCFG DPlKCFS DPlKCFT Dl'IKCPE tl!KCPS DPlKCPV DPlKRLD n 
YO 000011 Dl!KDPlP DPlKDSP DPlKIOS DPlKPlCB DPlKPRG DPlKPSA I'Ij 

Y2 000011 DPlKDPlP DPlKDSP DPlKIOS Dl!K!CB Dl!KPRG Dl!KPSA t'"I 
Y4 000011 Dl!KDPlP DPlKDSP DMKIOS DftKPlCB DPlKPRG DPlKPSA ~ 

Y6 000011 DPlKDPlP DPlKDSP Dl!KIOS Dt!Kl!CB Dl!KPRG DPlKPSA 0-
U) CD 
CD ZEROES 000119 Dl!KACO Dt!KBLD DMKBSC DMKCCi Dl!KCDB DPlKCDS DPlKCFD Dl!KCFP tllKCFS tPlKCFT DMKCKS DMKCPB ~ 
0 DPlKCPI DPlKCPS DMKCPV DMKCQG Dl!KCQP DPlKCQR DPlKCSO DMKCSP DPlKCST DMKC SU Dl!KDAS DMKDIA I 
r+ r+ .... Dl!KtMP DMKDRD DMKtSP DMKGRF DMKIOC DMKIOE DP.lKIOF tMKLNK Dl!KLOG DPlKMCC DPlKPlCB DMKMON 0 
0 DP.lKPlSi DPlKNET Dl!KPSA DP.lKPTR Dl!KRRB DPlKRSE DPlKSCB DPlKSCN DPlKSPL DMKTAP DMKTP.lR DMKTRC I 
::s tz 

Dl'IKUDR DP.lKURT DMKUSO DMKVCA DMKVDB DMKVDR DMKVDS DMKVSP DPlKiRM 0 w j;l.I 

c 
~ 

t::::' CD .... 
H n 
CD H 
0 0 
r+ Ul 
0 Ul 
H .... ~ 
CD CD 
Ul HI 

CD 
H 
CD 

-'= ::s 
-'= 0 
\J'I CD 





w . 
t::I ..... 
t1 
(1) 
() 
c+ 
o 
H ..... 
(1) 
[I) 

DMTPST 
DMTCBC 
DMTQRQ 
DMTCEC 
DMTQRQ 
DMTCBC 

DMTQRQ 

DMTQRQ 

DMTASY 

DMTASY 
DMTCOM 
DMTCOM 
DMTCOM 
DMTCCM 

DMTG1V 
DMTPST 
DMTPST 

At 
Label 

TAKEXIT 

TAKE MUTE 

TAKEMUTE 

TAEX1T 

TAGPURGE 
TAFBEEOK 
TAGPURGE 
TAMAKE 
TAQPTEST 
TASQTEST 

ASEXIT 

ASQEND 

ASQGOT 

AXSACCPT 

AXSIGSET 

AXSIGSET 
GETLINK 
CPENIBTY 
OPENOLNK 
TODEECD 

MSGDO 
AXSALRT1 
AXSASY10 

COllments 
I 
1 

-----------------------1 
Besumes dispatching; processing of a TAKE requestl 

I is complete. 
Signals a task 
request. 

that it must process a TAKE 1 

Frees a GIVE element. 
1 
1 
1 

Resumes dispatching; processing of a task request 1 
has completed. 1 
Signals the termination of a task. I 
Frees a terminated task element. 1 
Frees a terminated GIVE element. 1 
Gets a queue element for a new task. 1 
Frees requested elements for a terminated task. 1 
Frees an I/O element associated with a task beingl 
purged. I 

Resumes dispatching; processing cf 
nous exit request has completed. 
Gets a free querre element; free 

I 
an asynchro- I 

t 
a terminatedl 

queue element. 
Gets a free queue 
queue elellent. 

I 
element; free a terminated 

Takes a request for DMTAXS services froll another 
task. 
Bequests an asynchronous exit for task asynchro­
nous alerts. 
Bequests an asynchronous exit for reader X'001'. 
Gets a link table entry. 
Gets a page of main storage. 
Gets a page of main storage. 
converts a S/370 format TOD to EBCDIC date and 
time. 
Gives a message element to DMTMGX for processing. 
Signals acceptance of a command to process. 
Signals arrival of a request for an asynchronous 
exit. 

I~ 
ItIl 
In 
ItIl 

13 
10 
It::I 
Ie::: 
It-' 
It:o!l 

It::I 
IH 
I~ 
Itril 
In 
11-3 
10 
I~ 
I~ 



-< 
3: 

"­W 
.,.J 
o 
II 

r---
IRSCS IBALR to 
l1~od ule I Module 
I 
IDMTAXSI DMTSIG 
I (cont) I 
I I DMTSIG 
I I DMTWAT 
I I DMTWAT 
I I 

DMTCMX DMTCCM 

DMTCCM 
DMTCBE 

DMTMGX 

DMTMGX 

DMTMGX 

DMTMGX 

DMTMGX 

DMTMGX 

DMTMGX 

DMTBEX 

DMTBEX 

DMTSIG 
DKTSIG 

DKTCOK DMTDSP 

DMTDSP 

DMTSTC 

At 
Label 

ACCEFIND 

CHANDONE 
AXSCYCLE 
MSGDO 

CYOLINK 

TODEECD 
STALtiGOT 

CMXDCIT 

CMXM001 

CMXM003B 

DISCHABG 

QY8654 

QYM655 

QYSYMSG 

DISCCNN 

DISCBABG 

CMXALRDY 
STACREAT 

MFIXIT 

MFOXIT 

GETPTRY 

--, 

Comments 
I 
I 
I 

task that a newly arrivedl Alerts a line driver 
file has been accepted. 
Alerts a line driver task. 
Waits for a request for DMTAXS services. 
waits until processing by DMTGIV has completed. 

Finds a link tatle entry. 

I 
I 
I 
I 
I 
I 
I 

converts a 5/370 TOD to EECDIC 
Creates a line driver task, as 

date and time. I 

START cOlllmand. 
Writes a message 
sing. 

specified in the I 
I 

resulting from co.mand proces-I 

Writes a message showing the 
I 

number of free pages 
in sterage. 
writes a message showing the command currently 
being executed by RSCS. 
writes a message resulting from DISCONN command 
processing. 
Writes a message resulting from QUERY cemmand 
processing. 
Writes a message resulting from QUERY cemmand 
processing. 
Writes a message resulting from command preces­
sing. 
DIAGNOSE instruction entry to CP console func­
tion. 
DIAGNOSE instruction entry te CP console func­
tion. 
Alerts a task for command processing. 
Alerts DMTLAX to validate a line address used in 
a START command. 

Requests dispatching of a task for which a mes­
sage has been stacked for transmission. 
Requests dispatching of a task for which a mes­
sage has been unstacked for transmission. 
Requests main storage. 



I 

IRSCS IBALB to 
I ftodule I ftodule 
I 
I DftTCR!1 DftTASK 
I I DMTIOft 
I I 
I I DftTSTO 
I I DftTiAT 
I I 
I DftTEXT DMTDSP 
I 
I 
IDftTGIV DftTDSP 
I 
I DMTPST 
I 
I DftTQRQ 
I 
DftTIII DftTDSP 

DftTQRQ 
DftTIOft DftTDSP 

DftTPST 
DMTPST 

DftTCBO 
DftTQRQ 
DftTQliC 
DftTQRQ 

IDMTLAI DftTASY 
I DftTiAT 
I 
I DftTftGXI DftTCOft 
I I DftTCOft 
I I DftTREI 

til 
I I DftTREI (I) 

0 I I DItTSIG c+ .... I I 0 
I I = 

W 
i.-

t:=' .... 
t'1 
(I) 
0 
c+ 
0 
t'1 .... 
(I) 
rn 

of: 
of: 
\D 

At 
Label 

CREQTASK 
CFILDOIO 

CRETRYIT 
CFILDOIO 

EITGe 

GIVEIIT 

GIVESNIF 

GIVESCAN 

INIQDONE 
IBIQDOBE 
IODISPCH 

IONOBftAL 
IOPUBT 

DftTICMBQ 
IODISftIS 
IOBOBftAL 
IOUIITCK 

LAIINIT 
LAIHABG 

f!GIBUILT 
ftGITOLOC 
f!GIBCPB 
ftGINOVft 
ItGIBUILT 

Requests the supervisor to start a new task. 
Requests the I/O manager to read one DASD block 
from a file on a CftS-type system disk. 
Requests main storage for the creation of a task. 
Waits for a read I/O request to complete. 

Resumes dispatching; processing of an external 
interruption is complete. 

Resumes dispatching; processing of a GIVE 
is complete. 
Signals a task to begin processing a GIVE 
request. 
Gets a free queue element. 

Dispatches the first task. 
Initializes the queUE cf free elements. 
Resumes dispatching; processing of an I/O 
is complete. 
Signals completion of an I/O event. 
Signals an error on a request for a queue 
element. 
Gets an element for an I/O request. 
Frees an element used for a SENSE request. 
Frees an element USEd in an I/O request. 
Gets an element for a SENSE request. 

Sets up an asynchroncus exit for DftTLAI. 
Terminates DftTLAI. 

Gets a link table entry. 
Stacks a message. 
Writes a message to a local Vft/370 userid. 
Writes a message to the VIt/370 operator. 

request I 
I 
I 
I 
I 
I 
I 
I 

request 

Alerts an originating task that a message has 
been handled. 

!:tI 
til 
n 
til 

3: 
o 
0. 
C ..... 
(1) 

t:=' .... 
t'1 
(1) 
o 
c+ 
o 
t'1 

loci 



r--
I RSCS I BALR to 
I ftod ule I ftod ule 

At 
Label 

1-----------------------
DftTNPT DftTASY 

DftTCCI! 

DftTCCI! 

DftTCCI! 
Dft TCOft 
DftTGIV 
Dft TGIV 
DftTGIV 

DftTGIV 
Dft TGIV 
DftTGIV 
DftTGIV 

DftTGIV 
DftTGIV 
DMTGIV 

DMTIOft 
DftTICI! 
Dft TIOft 

DftTPST 
DftTWAT 

DftTWAT 

DftTWAT 
DftTWAT 

DMTWAT 

DftTWAT 

DftTWAT 

DHTWAT 

NPTNOPAS 
AISI!ENQ 

I!SG2780 

liPTNCPAS 
TODEBCD 
AISG!T 
AISPURGE 
COftMANDS 

KLOGIT 
LINEDROP 
LOGCLOSE 
I!SG 1 

PUTCLSl 
PUTOFEN 
TASKILL 

LOGCONTl 
LOGPBliT 
IECUTE 

AISALRTl 
AISGET 

AISPUBGE 

COftftANDS 
KLOGIT 

LINEDROP 

LOGCLOSE 

LOGCONTl 

ftSGl 

Comments 

sets up an asynchroneus interrupt for DftTNPT. 
Enqueues a message en the message stack fcr 
processing by DftTI!GI. 
Unstacks a message for transmission te a remote 
sta tien. 
Gets a page of storage for use as DMTNPT buffers. 
converts S/370 TOD to EBCDIC date and time. 
Bequests tMTAIS to open a file. 
Requests DftTAIS to purge a file. 
Passes a command element to DftTREX for processing 
by Dft'ICftX. 
Bequests tftTAXS to open the LOG file for eutput. 
Requests DftTAIS to close a file. 
Bequests tftTAXS to close the LOG file fer output. 
Passes a message element to DftTftGI for 
processing. 
Requests DftTAXS to close a file for output. 
Bequests tftTAXS to open a file for output. 
Requests DftTBEX to terminate the requesting NPT 
line driver. 
Requests an I/O operation for the LOG routine. 
Prints a LOG message. 
Requests an I/O operation (general usage by 
DftTBPT) • 
Signals that DftTNPT accepted a command. 
waits for a request to open a file to ccmplete 
processing. 
waits for a request te purge a file te complete 
processing. 

, 

Waits for DftTCftX to process a command. 
waits for completion of a request to open 
file for processing. 

the LOGI 

Waits for a request to close a file to complete 
processing. 
waits for a request to close the LOG file when 
processing is complete. 
Waits for an I/O operation to complete logging 
processing .. 
waits for message processing to complete. 

I 
I 
I 
I 
I 
I 
I 
I 



til 
(l) 
n 
rT .... 
o 
=' 
w . 
t:j .... 
1'1 
(l) 
n 
r+ 
o 
1'1 .... 
(l) 

rn 

i 

IRSCS IBALB to 
IModulel Module 
---------
DMTNP'II 
(cont) I 

I , 

DMTREX 

DMTSIG 

I , , 
I 

IDMTSMI 
I 
I 
I 

DMTWAT 

DMTWAT 

DMTWAT 

DMTWAT 

DMTAKE 
DMTASK 
DMTASK 
DMTASY 
DMTCCM 
DI!TCOI! 

DI!TCRE 
DMTDSP 
DI!TDSP 

DI!TIOM 
DMTICM 
DI!TIOM 
DMTMGX 

DMTMGX 
DMTPS'I 
DMTFST 

DMTWAT 
DMTWAT 
DMTWAT 
DI!TWA'I 

DMTDSP 

DMTASY 
DMTCOM 
DMTCOM 
DMTCOM 

At 
Label 

PUTCLS1 

PUTOFEN 

TASKILL 

XECQiAIT 

REXACCPT 
QUIESE 
TEBTKILL 
REXICGOT 
BEXFLUSH 
REXOUTRY 

REXICGOT 
BEXDQUIT 
REXHEXIT 

REXCONON 
REXFCONF 
BEXQUEBY 
MSG 

TERMSET 
REXASYN 
REXHALT 

QUIESE 
QUICK 
BEXSiAIT 

I REXWAIT 
I 
I ALSCAN 
I ALNOGO 
I 
I SETNCBUF 
I ASYNENQ 
, EUFS£ONE 
I IBLDBUFS 

Waits fer a request to close a file to complete 
processing. 
waits for completion of a request to open a file 
for processing. 
Waits for task termination processing to 
complete. 
waits for an I/O operation to complete. 

Accepts a request to process a VM/370 file. 
Requests task termination. 
Bequests task termination. 
Initializes an asynchronous exit. 
Bequests £MTMGX to write any queued messages. 
Removes a message for the message stack and write, 
it to the console. I 
creates the tasks DMTAXS and DMTLAX. I 
Terminates dispatching due te program check. I 
Resumes dispatching after program check proces- I 
sing. I 
Bequests an I/O operation (console write). I 
Bequests an I/O operation (console write) • I 
Bequests an I/O operation (console read). I 
Passes a message element te DI!TMGX for I 
processing. 
Writes a task terminated message. 
Signals a console attention. 
Signals that DMTREX is undispatchable due to 
program check. 
Waits for a task to terminate. 
waits for task I/O to terminate. 
Waits for a console write to complete. 
waits for completion of an event. 

Resumes dispatching; processing of an alerted 
task has completed. 

Sets up an asynchroneus exit for DMTSML. 
stacks a message to be transmitted by DMTSML. 
Gets a page of storage for DMTSML I/O tasks. 
Gets a page of storage for D!TSML TP buffers. L---____________________________________________________________________________ --J 



< 
3 

" W 
..,J 
o 
00 

r 
IRSCS IBALR to 
II!0d u1e I I! od u1e 

At 
Label Comments 

1---------------------------
IDI!KSML DMTCCM I!SGPBOCl Unstacks a message fer transmission te a remote 
I (cont) statien. 
I DI!TCOI! TODEBCD converts S/370 TOD to EBCDIC date and time. 
I DMTGIV AIS Bequests services of DMTAIS for the SI!L line 
1 driver task. 
1 
IDMTGIV 
I 
DI!TGIV 

DMTGIV 
DI!TGIV 
DI!TGIV 

DI!TGIV 
DI! TGIV 

DI!TIOI! 

DI! TIOI! 

DI!TIOI! 

DMTIOM 

DMTIOM 

DMTIOM 
DMTFST 
DMTWAT 

DMTWAT 
DMTWAT 
DMTWAT 
DMTWAT 

DMTWAT 
DMTWAT 

DMTWAT 
DMTWAT 

KLOGIT 

LOGCLOSE 
AISGET 
AISPURGE 
EOJ 

MSGl 
WGET1A 

1271110 

JOUTl 

PCOHT2 
PLIBE 
RSIO 

UOUT2 

WRLOG 1 
ASYBBET 
ALLCHK 

AIS 
AISGET 
AISPUBGE 
EOJ 

KLOGIT 
LOGCLOSE 
MSGl 
RISI01 

WGET 1A 
WRLOG 1 

Requests DMTAIS to e~en a LOG printer. 

Requests DMTAXS to close the LOG printer. 
Bequests tMTAIS to give a file fer transmission. 
Requests DMTAXS to purge a file. 
Bequests termination of tbe SML line driver task. 

Gives a message to DMTMGI for processing. 
Requests that a message be written to the RSCS 
console; pass a command te DMTREX. 
Performs the initial I/O operation for the SML 
line driver task. 
Requests an I/O operation; set up job processing 
controls. 
Requests an I/O operation (set up printer 
controls. 
Requests a start I/O for the DMTSML TRACE 
function. 
Requests an I/O operation (sets up punch 
controls). 
Requests an I/O operation (log an I/O operation). 
Posts the reader synch leck. 
Waits for the DMTSML synch lock to be posted 
(waits for a request te ~rocess). 
Waits fer completion of an event by DMTAXS. 
Waits for DMTAXS to GIVE a file for transmission. 
waits for DMTAXS to purge a file. 
!er.~nates the SI!L line driver task by issuing a 
terminal WAIT request. 
Waits for DMTAXS to open a LOG printer. 
waits for DMTAXS to close a LOG ~rinter. 
waits until GIVE to DMTMGX is complete. 
waits for initial SIO for the DM~SML line driver 
to cemplete. 
waits until message precessing has com~leted. 
waits for I/O logging to complete. 



til 
CD 
0 
r+-
.." 
0 
= 
w 

t::I 
.." 
H 
CD 
0 
r+-
0 
H 
.." 
CD 
[Jl 

~ 
U1 
W 

r-­ ---------------------------------------------------------------, 
IRSCS IBALR to 
IModulel Module 

At 
Label comments' 

1 
I 

1----------------------------- -------------------------1 
IDMTSTCI DMTDSF MAlltOI! Resumes dispatching; a request fer a page of 1 
I I storage has been processed. 
I 1 
IDMTWATI DMTDSP 
I I 
I 

WAITGO Besulles dispatching; processing of a WAIT 
has completed. 

I 
I 

requestl 
I 
I 

~ 
en 
n 
til 

3 
0 
~ 
c: 
~ 
CD 

t::I ..,-
t1 
CD 
0 
c+ 
0 
H 
I< 





r----
I Module 
I Name 

DMTARE 

DMTASK 

DMTASY 

DMTAXS 

Entry 
Points 

DMTAKE 

DMTASR 

DMTASY 

DMTAXS 

AXSINIT 
AXSCYCLE 

BECXEQ 

CMDPROC 

OPENIN 
CLCSECUT 
MSG 

Function 

Contains the supervisor service that supplies task 
programs with the receiver interface te GIVE reguests 
issued by other tasks. A single CALL causes tMTAKE to 
first respond to the previously supplied GIVE request 
and then supply a new GIVE request to the task for its 
processing. 

A service routine that creates new tasks and deletes 
existing tasks executed by the MSUP dispatcher. The 
entry to tMTASK is via a EAL instruction from task 
program.ing. Any entry into DMTASK causes the calling 
task's execution to be suspended through the freeze 
SVC function. 

A supervisor service module that starts and ends 
asynchronous exit requests for task pregrams. This 
routine handles asynchronous exit requests for 
asynchronous exit requests for I/O interruptiens, 
and ALERT exit requests. 

Controls the interface of the line drivers to the 
VM/370 spool file system, enqueues files for 
transmission and processes commands that manipulate 
spool files. 
Initializes the AXS task. 
Looks for work to do by examining the synch leeks 
associated with the AXS task. 
Scans the request table for a match and branches to the 
to the apprepriate subroutine, depending on the request 
code. 
Executes AXS commands from the command buffer passed 
on by an ALERT exit from DMTREX. 
starts spool file processing. 
Ends processing for output files. 
Sets the MSG request element. A CALL GIVE instruction 
passes the MSG request element to the message manager. 
The code associated with other entry points in this 
module format the MSG element variable areas in various 
ways and exit finally to MSG. _______________ --J 

I~ 
I~ 
In 
I~ 

13 
10 
I~ 
Ie 
I~ 
I~ 

I~ 
I~ 
I~ 
I~ 
I~ 

I~ 
10 
IH 
I~ 
I~ 

I~ 
IH 
I~ 
I~ 
In 
I~ 
10 
I~ 
I~ 



<I 
::K 

........ 
W 
...,J 
o 
00 

en 
J.ct 
rn 
r+ 
CD 
iii 

1:"4 
o 

\Q .... 
o 
PI 
I:' 
~ 

ta 
1"'1 
o 
0-
~ 
CD 
iii 

o 
CD 
r+ 
CD 
1"'1 
iii .... 
I:' 
PI 
r+ .... 
o 
::I 

Cil 
c: .... 
~ 
CD 

r--
80dule 

lame 

Df!TAIS 
(cont. ) 

Df!TCf!I 

Entry 
Points 

HElGET 
DECGET 
DECPUT 

TODS370 
TCDEBCD 
GSUCCESS 
ACCEPT 
UIPEND 
GETBOUTE 
GETLIBK 
GETSLCT 
FREESLOT 
TAGGEI 
TAGPLACE 

FILSELEC 
TAGFIND 

DEFINE 
DETACH 
VCHANGE 
VCLOSE 
VPUIiGE 
VSPOOL 
VTAGD 
VTAGF 
Df!TC!U 

C8IHIT 

C8SALERT 

KEYWDGET 

Function 

Converts and validates a hex string. 
Converts and validates a decimal string. 
converts a hex full word to decimal and generates an 
EECtIC representation of it, sUFFresses leading zeroes 
to a minimum count, which is optionally supplied by the 
caller. 
converts EECDIC to the System/370 TOD value. 
converts System/370 TOD to an EBCDIC date and time. 
Gets inactive successor spool file. 
Inspects newly arrived files. 
Brings in a link's pending tags. 
Gets a routing table entry. 
Gets link table entry. 
Gets a free tag queue element. 
Returns a tag queue element. 
Builds a file tag from hyperviser information. 
sets a file tag into a link queue immediately before 
the first tag of numerically higher priority (lewer 
real priority). 
selects a file to be read from a link queue. 
Locates a file with spoolid matching the one supplied 
by the caller, within the internal file tag queues. 
Gets a virtual spool device. 
Undefines a virtual spool device. 
Changes V8/370 file attributes. 
Issues the V8/370 CLOSE ccmmand for a device. 
Purges an inactive reader file frem the V8/370 sFeol. 
sets V8/370 virtual spool device options. 
sets a V8/370 tag for a virtual SFool device 
sets a V8/370 tag for an inactive spool file. 
This module is part of the REX system contrel task. 
D8TC8X is called in several places in DftTREX, which is 
the main BEX control routine. D8TC8X accepts an EECDIC 
string and executes the RSCS command that the string 
represents. 
Calls the necessary individual co.mand proccessing 
routine. 
Passes a com.and element to another task via the ALERT 
task-to-task communications interface. 
Decodes the next keyword on the input command line. 



til 
ID 
o 
r+ .... 
o 
::I 

w 

'=' .... 
t1 
ID 
o 
r+ 
o 
t1 .... 
ID 
en 

Bodule 
lame 

D!!TC!!X 
(cont. ) 

D!!TCC!! 

D!!TCBE 

Entry 
Foints 

LTABGET 

HEXGET 
DECPUT 

FILGET 

TCDEBCD 

FAB!!GET 

D!!TCO!! 
GETLIHK 

GETPAGE 
FBEEPAGE 
BFI 

!!FC 

GTODEBCD 

Df!TCBE 
C!!SFILCH 
Cf!SCPEI 
C!!SGET 

Function 

Finds the link table entry i.plied by the first keyword 
in the command line descrited by the calling reutine's 
register parameters. 
converts and validates a hex string. 
converts a hex fullword to decimal and generates an 
EEcrIC representation of it. It suppresses leading 
zercs to a minimum count, which is optionally supplied 
by the calling routine. 
Locates a file, within the internal file tag queues, 
with a spoolid matching that supplied by the calling 
routine. 
converts a System/370 format Ton to EBCDIC data and 
time. 
Scans an EECDIC line and fra.es the next parameter on 
the line. 
Contains various reentrant rcutines used by BSCS tasks. 
Scans the link table chain and returns a link tablel 
address. I 
Gets a free page of main storage. I 
Returns a page of main storage. I 
stacks message elements in a LIFO stack for laterl 
processing. If no room is available in the current page, I 
a new page is fetched if there are at least five freel 
pages remaining. If five free pages are net remaining, I 
an error condition is returned. I 
All tasks except BEX are allowed only three pages ofl 
storage to stack messages. I 
Unstacks message elements frem the message queue for I 
this task. If none are queued an error condition is I 
returned. I 
Converts a System/370 format TOD to EBCDIC data andl 
time. I 

Creates new tasks under ftSUP. 
Reads one dASD block from a CftS disk. 
Does initial work prior to reading a CMS file. 
Gets the next CftS file item. 

I 
I 
I 
I 
I 
I 
I 



r----
I Module 
I Name 

DMTDSP 

DMTEXT 

DMTGIV 

DMTINI 

DMTICN 

DMTLAX 

Entry 
Points 

DMTDSP 

DMTEXT 

DMTGIV 

DMTIBI 

DMTIOI 

DMTIAX 

Function 

This module is the MSUP dispatcher. It is entered when 
an exit occurs from supervisor functions that were 
entered following an interruption or that issued the 
freeze SVC function. 
DMTtSP must be entered with all PSi masks off (except 
for the machine check mask). 
This module is the MSUP external interruption handler. 
DMTEXT receives control directly on an external inter­
rupt and saves the status of the executing task if one 
was interru~ted. 
This is a supervisor service routine that enqueues GIVE 
requests from tasks to be delivered to other tasks by 
DMTAKE. 
Receives control after initial loading of RSCS, and per­
forms general initialization functions that are common 
to all parts of RSCS. 

DMTINI writes a copy of the initial load to tASD, acor­
ding to operator instructions, when RSCS is initial 
program loaded from the generation IPL deck. 

When ititial ~rogram loaded from disk, DMTINI finishes 
reading the saved RSCS load. 

When 1PL disk reading or writing is comlete, DMTINI 
initializes RSCS storage areas. 
This module contains toth the MSUP I/O interrupt handler 
and the task I/O service routine. The I/O service pro­
vided by tMT10M to the task ~ro9rams includes sequential 
subchannel scheduling, channel program execution, auto­
matic sense execution on unit check when requested, 
return of all pertinent information regarding the execu-I 
tion of the channel program, and notification via a POSTI 
upon completion of the channel program. I 
This routine is the line allocation task for RSCS. The I 
major part of this routine functions as an asynchronous I 
exit being alerted by DMTREX. I 

I 



til 
IT) 
o 
c+ 
1-'­
o 
l:' 

w . 
tj 
1-'­
H 
IT) 
o 
cT 
o 
H 
1-'-
IT) 

en 

Module 
Name 

Df!T!UP 

DMTMGI 

DMTMSG 

DMTNPT 

Entry 
Points 

DMMAP 

DMTHGI 

DMTMSG 

Df!TIPT 

IPTGET 

SEIDOFF 

BUFFIIIT 

XECUTE 

LINEIO 

GETELOCK 

GETVBFY 

PUTBLOCK 

PUTVBFY 

i 

1 
Function 1 

------------------------1 
Describes the non-fixed address MSUP status storage I 
areas in main storage. I 

1 
This module contains no executable code. 1 

1 
Takes a message request buffer and constructs the 1 
message from the information in that buffer and thel 
message text found in DMTMSG. 1 

1 
1 

contains a list of error messages to be used externally 1 
by tMTMGI. 
This module contains no executable code. 

This module is a line driver that provides support for 
the 2770, 2780, 3770, and 3780 nonprogrammable 
terminals. 
Maintains a cyclic control of the DMTPT task on both 
sending and receiving operations. 
Sends the ESC end-of-transmissien character (EOT) on the 
line to the remote terminal. 
Initializes the line output buffer with the cerrect ESC 
character set, depending on the type of output file and 
and features available at the terminal. 
Bequests the supervisor to execute I/O operations. After 
starting the I/O operations, IECUTE waits fer either a 
command to be entered or the completion of the requested 
I/O operation. 
Executes (by calling XECUTE) I/O operations on the ESC 
line and checks the final state. LINEIO then sets the 
IOERB flag in the DEVFLAG byte. 
prepares the line output buffer to be transmitted to thel 
remote terminal. 1 
Analyses the response ottained freE each buffer trans-I 
mission and takes the appropriate error action. 1 
Deblocks received TP buffers and writes the deblockedl 
record to the VM/370 spool file system. 1 
Verifies the content of each received TP buffer and con-I 
structs an appropriate reply if the buffer is found inl 
errer. 1 _________________ J 



.&= 
0'1 
o 

< 
3: 

" W 
...,J 
o 
00 

en 
~ 
rn 
r+­
ro 
iii 

J:"4 
o 

I.Q ... -o 
I» 

= ~ 

ttl 
t1 
o 
t:7' ..... 
ro • 
t::I 
ro 
rT 
ro 
t1 
B ... -
=' I» 
r+­... -o 
=' 
en 
~ ... -
~ 
ro 

r--'-----
I Module Entry 
I lame Points 

l 

D~TIFT 

(cont. ) 

DKTPST 

DMTQRQ 

CC~!!AIDS 

CKDPROC 

KSGFROC 

!SG 

HEADPBEP 

KAKEBLOC 

V~SE2CP 

AISGET 

TODEBCD 
1?AB!!GET 
NPTINIT 
I1?TIIIK 
NPTERROR 

NPTTER! 

DKTPST 

DKTQRQ 

Function 

Passes commands received from the remote card reader to 
the RSCS co •• and processor for execution. 
Executes co •• ands passed to it in the CKDRESP buffer 
after an ALERT from DMTREI indicates a command has been 
entered. 
Unstacks messages from the task KSG queue and transmits 
the. to the remote terminal printer. Prepares and sends 
requests to the specialized task REI to write console 
messages. 
Prepares and sends requests to the spec.ialized task REI 
to write console messages. 
Provides, one record after the other, the separator and 
header for print files and the header card for punch 
files. 
Saves the caller's registers for a call to VKSB2CP. 
Upon return from VKSB2CP, it sets the return code and 
returns to the original caller. 
Deblocks the VK/370 spool page buffers into an unpacked 
buffer (PACKBLK) • 
Requests the specialized task AIS to open, close, andl 
delete the spool files that the IPT task is processing. I 
converts system/370 TOD to EECDIC date and time. I 
Scans character strings to find delimiter characters. I 
Initialization routine for 1FT. I 
NPT sign-on routine. I 
Writes the terminal I/O error message and terminates thai 
task. I 
Terminates the NPT task. I 

I 
1 service routine that may be called from anywhere inl 
RSCS. DMTPST signals the completion of an event byl 
posting the event's associated synch lock. This routinel 
is entirely reentrant and does not change the state ofl 
running PSW. I 

I 
Kanages the KSUP supervisor status queue for other 8SUPI 
functions. DMTQRQ is for use within the supervisor and I 
be entered with all PSi masks off (except machinel 
check) • I 

---' 



til 
n> 
o 
rt .... 
o 
::I 

w 

o .... 
t1 
n> 
o 
rt 
o 
t1 .... 
n> 
en 

.-­
Bodule 

lame 

DftTREI 

DMTSIG 

DMTSML 

Entry 
Foints 

DMTBEI 

BEIIIIT 
REXCYCLE 

REIPCHEI 
BEIITERM 

BEQIEQ 

DEACT 
ftSG 
TEB!IIAT 
QUIESCE 

DftTSIG 

DftTSML 

SMLINIT 

ISIO 

ASYIEIIT 

I 

I 
Function I 

---------------------------1 
This routine is the controlling sUFervisor task and to-I 
gether with DBTCftX, DBTftGX, DftTSYS, Dft7COft, DftTftSG, andl 
DftTCRE make up the REX supervisor task. I 
Performs the initialization for the DftTREX task. I 
ftonitors a list of synch locks when looking for work fori 
DftTBEX to perform. I 
Processes program checks. I 
Entered when RSCS initialization fails. Issues the in-I 
itialization failure message, dumps the contents of mainl 
storage, types any remaining messages, and loads a diS-I 
abled wait state PSW. I 
Scans the function table and calls the aFFropriatel 
routine based on that code (either DftTCftX or tftTftGX). I 
Deactivates the link tatle entry. I 
Writes messages. I 
Terllinates a specified task. I 
Becemes the task code for a task in the Frocess ofl 
termination. Looks for any outstanding I/O for the 
terminating task. If any outstanding I/O is found, 
issues HIO and waits for completion. When all I/O is 
completed, it termin-ates the task. 

Performs a task alert exit for a requesting task. 

Functions as an RJE work station into a remote system 
using the MULTI-LEAVING transmission protocol. It can 
also function as a host to a remote Frogrammable work 
station supporting a System/370, System/3, Model 20, 
1130, or a 2922. 
Initializes various parameters needed by DMTSftL. Saves 
the link table address, initializes output tags, and 
constructs the sign-on card from information in the 
operand field of the START command. 
Perforas the enable sequence on the communications line, 
analyzes the response received, and, if the resFonse is 
correct, writes the line connected message • 
This is the alert exit entered by DftTSIG. Two tasks may 
alert this line driver: 

• DMTBEX--When a command has been entered fer pro-I 
Processing by the DftTS!L line driver. I 

• DftTAXS--When DftTAXS must asynchronously notify I 
DftSftL that a file has arrived for transmission. I 

----I 



r--
I Module 
I Name 

I 
I 
I 
I 
I 
I 
l 

D~TS~L 

(cont.) 

Entry 
Foints 

&START 

&CTRNl 

&FBTN1 

&URTNl 

&JRTll 

&USREXIT 

&PRTNl 

AXSGET 

V~DEBLOK 

BEADPREP 

TODEECt 
&iRTNl 

CMDPROC 

MSGPROC 

Function 

------------------------------------
This is the supervisor routine for DMTSML. The co •• u­
tater cycles while looking fer a routine to enter until 
all co.mutator entries are closed. It then waits for a 
synch lock list to be posted. 
Dequeues tasks from its task queue and performs the 
action requested by the control record in the degueued 
task. 
Dequeues tasks from its task queue, obtains a new output 
spoel device, if needed, fro. DMTAXS, and sends the task 
to a virtual printer. 
Dequeues tasks from its task queue, obtains a new output 
spool device, if needed, from DftTAXS, and sends the task 
to a virtual punch. 
Dequeues tasks from its task queue, obtains a new output 
spoel device, if needed, from DftTAIS, and sends the task 
to a virtual device. 
Validates the ID card in the front of decks read in from 
a remote card reader. 
Reads in files from the VM/370 spool file syste., 
deblocks the files into 132 byte records, and issues 
a call to PUT to block the record into a transmission 
buffer. 
This routine is the interface to DMTAIS. It gets files 
ready to transmit and purges these files when transmis­
sion is co.~lete. 
This is the deblock routine for the Vft/370 Fage spool 
buffers. It returns the deblocked record in the 
RDTTDTA1 buffer. 
provides, one record after the other, the separator and 
header for print files and the header card fer punch 
files. 
Converts System/370 TOD to EBCDIC data and time. 
writes received messages to the RSCS operator, if in 
RJE mode. Passes commands to DftTREI for execution, if 
in BOST mode. These commands or messages are dequeued 
from console TCT. 
Executes commands passed to it in the CfttRESP buffer 
after an alert from DMTREI indicating a ce.mand was 
entered. 
Entered when the MSGECB is posted by this task's asynCh­
ronous exit indicating messages are in the message queuel 
for this task. These messages are unstacked frem the I 
message queue by repeated calls to GftSGREQ and queuedl 
for transmission. I 



tn 
CD 
n 
r+-
1-'­
o 
::s 
w . 
t:1 
1-'­
t; 
CD 
n 
c+ 
o 
t; 
1-'-
CD 
Ul 

r---------------------------------- I 
I Module 
I Name 

DMTSML 
(cont. ) 

DMTSTO 

DMTSVC 

DMTSYS 

DMTVEC 

DMTWAT 

Entry 
Points 

I 
Function I 

----------------------------------------------- ------------------1 
MSG 

PARP-GET 
&TPPUT 

&TPGET 

COMSUP 

CERROR 

DMTSTO 

DMTSVC 

DeTSYS 

DeTVEC 

D"TWAT 

Prepares and sends requests to the specialized task REX I 
to writes messages on the operator's console. I 
Scans lines and tests for delimiter characters. I 
Takes a line and packs it into a teleprocessing buffer. I 
When the buffer is filled, it is queued onte OOiBOF fori 
processing by COMSOP. I 
Deblocks received telecommunications buffers into tasksl 
and queues the task onto the appropriate processors I 
TCTTASK queue. I 
Processes all I/O on the communications line. It deque-I 
ues TP buffers from OOTEU! for transmission and queuesl 
received TP buffers onto the &IREOF queue for deblocking I 
by TPGET. I 
Analyses all errors on the communications line. The ap­
propriate corrective action is taken depending on the 
on the type of error. 

Reserves pages of free storage for use by calling task 
programs. Task programs free storage pages by clearing 
the associated map byte to zero in the main storage map. 

This module is the MSOP interrupt handler and receives 
control directly when an SVC interrupt occurs. 

The common system control information area that is 
shared by all task level functions of RSCS. All instal-I 
lation variable informaticn used by an RSCS system isl 
reflected in the assembly of this module. This modulel 
is the only module that must be assembled as part of ani 
RSCS system generation. I 
Describes the fixed address stcrage utilization fori 
MSOP, beginning at main storage address X'200'.1 
System/370 architecture defies the first 512 bytes ofl 
main storage and MSOP uses this area as it is defined. I 
This area is not included in the DMTVEC module tol 
facilitate initial system loading. This area is ini-I 
tialized by DMTIB I at IPL tim e. I 

I 
Called directly from task prcgrams by a EAL instruction. I 
It ~rovides event synchronizaticn by means of suspendingl 
a task's execution until some specified event is sig-I 
naIled complete by another process in the syste.. I _______________---J 





llodule External References (Labels and llodules) 11:0 
ItIl 
In 
I til 

DllTAKE ACTIVE DISPATCH GIVEADDR GIVEE GIVENAME GIVENEI7 GIVENID GIVEQ GIVE RID PCSTREQ QREQ Rl R 11 13 
R12 R13 R14 R15 R2 B3 R4 RS R6 SVECTORS TAREA TASK! TASKID 10 

Itj 
TASKIUllE TASKiEXT TASKQ TGREGl TGREG1S TREQLOCK Ie: 

It"t 

DMTASK ACTIVE DISPATCH FREEID 
ItIII 

ALERTQ !XTQ FREEE FREENEIT GIVEADDR GIVEE GIVENEIT GIVEBID GIVBQ IOE I 
IOEXITQ IOID lONE IT IOSUBQ LIllEC filAINfilAP filAINSIZE filPIIOQ POSTREQ QREQ RO Rl R12 1t-3 

10 R13 R14 R1S R2 R3 R4 RS B6 R7 B8 B9 SBLIOQ SVBCTORS I 
TAREA TASKE TASKID TASKNAfilE TASKiEXT TASKQ TASKSAV! TASKSTAT TGREGO TGREG13 TGREG1S 1t'"4 

I~ 
ItEI 

DfilTASY ACTIVE ALERTQ ASYNCODE ASYNE ASYNEXIT ASYNID ASYNNFIT ASYNTASK DISPATCH EITQ IOEXITQ QREQ RO 1t:ri2 

Rl R12 B13 R14 R1S R2 R3 R4 SVECTOIlS TAREA TASKE TASKID TGREGO It"t 

TGREG1S In 
11:0 
10 

DllTAIS ALEBTIlEQ ASYBBEQ COfilDSECT CSi DE DEVCODE DEVCUU GIVEREQ GLINKREQ GPAGEREQ GTODEBCD IOTABLE LACTCLSl len 
LACTIVE LACTTNllE LALERT LFLAG LINKID LINKLEN LINKTABL LPEBDIBG LFOINTEB LRESERVD LSPABE LTAK!N llAINftAP ItIl 

POSTBEQ PBCGADDR ROUTDEST ROUTE ROUTNEIT BCUTSIZE RO III Rl0 Rl1 R12 R13 R14 11:0 
R1S B2 R3 R4 RS R6 R7 R8 R9 SFECLAS SIBCOPY SFEtATE SFEDIST ItIII 

II'ld SFBFILID SFBFLAG SFBFLAG2 SFBFNAfilE SFEFTYPE SFEINUSE SFELOK SFEORIG SFERECNO SFBRECSZ SFBREQUE SFBSHOLD SFETYPE I till 
SFEUHOLD SVECTORS TAG TAGELOCK TAGCLASS TAGCOPY TAGDEV 7AGDIST TAGFLAG TAGFLAG2 TAGID TAGINDEV TAGINLOC 11:0 

ItzJ TAGINTOD TAGINVll TAGLEB TAGLINK TAGNAfilE TAGREIT TAGPRIOR TAGRECLN TAGRECNft TAGTOLOC TAG TOVll TAGTYPE TAKEREQ 1!Zl 
TASKE TASKSAVE TCOfil TLINKS TROUTE TTAGQ TYPPRT 7IPPUR TYP1403 TIP2540P TYP3211 iAITR!Q In 

leu 

tllTCfilX ALERTREQ COfilDSECT DEVCODE DEVCUU DftTCBE DliTCREDA DftTfilGI DfilTREICI D~TBEIHC DfilTREIID GLINKREQ GTOD!ECD IOTABLE 
LACTClSl lACTDRVR LACTIV! LACTLINE LACTTRllE LDEFCLS 1 L£EFDRVR LDEFLIRE LDEFTNfilE LDRAIH LFLAG LHCLD LIIKID 
LIIKIEi lINKTAEL LPFllDIIG LPOINTER LRESERVD LTAKEN LTRALL LTRERR filAIBfilAP ~AINSIZE BO Rl Rl0 
R 11 R12 R13 R14 R1S B2 R3 R4 RS R6 R7 R8 R9 
SFESHOlD SFEUHOLD SVECTORS TAG TAGELOCK TAGCLASS TAGCOPY TAGDIST TAGFLAG TAGID TAGIBLOC TAGINTOD TAGIRVM 
TAGLIRK TAGNAftE TAGREIT TAGPRIOR TAGBECNfiI TAGTOLOC TAGTOVM TCOft TLIHKS TPORTS TTAGQ 

DfilTCOll ACTIVE DISPATCH LACTTlHll LIBKID LINKLEB LINKTABL LMSGQ filAINfilAP ftAIHREQ llAIHSIZE RO Rl Rl0 
R 11 R12 R13 B14 R1S R2 R3 R4 RS R6 II7 R8 R9 
SVECTCBS TAREA TASKE TASKID TASKNAllE TASKNEIT TASKQ TGREGO TGREG 1 TGREG1S TGREG2 TLIRKS TPSi 

1:0 
til 
n 
en 

::I: 
0 
Q. 

til c: 
CD .... 
0 CD 
t+ I .... t+ 
0 0 
t:S I 

t'"4 
w III 

tr 
CD 

t:::I .... .... 
11 n 
CD 11 
0 0 
t+ en 
0 en 
11 .... 1:0 
CD CD 
en HI 

CD 
11 
CD 

.&::' t:S 
0\ 0 
lJ1 CD 



~ Module External References (Labels and Mod ules) ~ 

'" til 

'" n 
til 

DMTCRE CC CE CUE DE DEVCOD! ENDCSW IOREQ IOTABLE LACTDRVR LACTTNME LINKTABL MAINMAP MAINREQ 
3: MAINSIZE RO R1 R12 R14 R15 R2 R3 B4 B5 116 B7 R9 0 

SILl SICCCND 
< 

SVICTORS TABEA TASKBEQ TGIlEGO TGREGl TGBEG2 TYP2314 WAITBEQ 0-
!:i 

3: ..... 

" DMTDSP ACTIVE lIMBe LOCKLIST NEWPSW BO Bl R15 R2 R3 R4 SVECTOBS TABEA TASKE (t) 
w TASKID TASKNEXT TASKQ TASKSAVE TASKSTAT TGBEGO TGBEGl 'lPSi WAITING I 
....,J ~ 
0 0 

DMTEXT ACTIVE ASYNCODE ASYNE ASYNEXIT ASYliNEXT ASYNTASK DISPATCH EXTQ NEWEXT OLDEXT BO Bl B13 I 
~ 

til R14 1115 R2 R3 R4 SSAVE SVECTOBS 'lAREA TASKE TASKS AVE TGRlGO TGREG14 TPSW I» 
'< t:r 
en UITGIV ACTIVE DISPATCH GIVEADDR GIVEE GIVENAME GIVENEX'l GIVENID GIVEQ GIVEBID POSTBEQ QIlEQ BO Rl 

(t) 

rr ..... 
(t) R12 R13 R14 B15 B2 113 B4 SVECTORS TABEA TASKE TASKID TASKNAME TASKNEXT 
EI TASKSAVE TGIlEG15 TREQLOCK 

n 
TASKC H 

1:"4 0 
0 tMTINI CAW CC CE CLASDASD CLASTERM CSW DE tEVCODE DEVCUU DISPATCH DMTCBEDA tMTIOMIN DMTMAPME en 

I.Q en ..... DMTMAPCE DMTREXVL FREEE FREEN EXT FBEEQ IOTABLE IPLCCW 1 IPLPSW MAINMAP MAINSIZE MCHEK NEWEXT NEWIO 
(") OLDIO QBEQ QUEUE BO Rl Rl0 R 11 B12 B13 R14 B15 R2 R3 !:tI 

(t) 

I» B4 B5 R6 B7 B8 B9 SILl SVECTORS TASKE TASKID 'lASKNAME TASKNEXT TASKQ HI 
t::I TASKSAVE TASKSTAT TIMER TYP2314 TYP3210 TYP 3330 TYP3340 iiIT (t) 

0- H 
(t) 

I'd tMTIOM ACTIVE ASYNCODE ASYNE ASYNEXIT ASYNNEIT ASYNTASK BUSY CAW CE CHAliDONE CSW DE DEVCUU t::I 
H (") 

0 DISPATCH ENDCSW ENDSENS E IOADDB IOE IOEXITQ IOID ION EXT IOSBCHAN IOS'lAT IOSUBQ IOSYNCH IOTABLE (t) 

t:r IOTABLEA MPXIOQ NEWIO OLDIO PCI POS'l'REQ PROGADDB QREQ BO Rl B12 R13 R14 ..... R15 R2 R3 B4 B5 R6 SELIOQ SENSING SENSREQ SIOCOND SM SSAVE SVECTOBS (t) 
EI TABEA TASKE TASKlt TASKSAVE TGREGO 'lGBEG14 TPSi UC 
t:I 
(t) tMTLAX ASYNREQ CLASTERM LACTIVE LACTLINE LPLAG LINKID LIRKLEN LINKTABL RO Rl 1112 B14 R15 
rr B2 B3 R4 R5 R6 B7 R8 B9 SVECTORS TLIRKS TPORTS TYPBSC TYP2700 (t) 
H WAITREQ 
EI ..... 

IMTMGX ALERTREQ COMDSECT DMTMSG DMTREXHC GIIBKREQ LACTIVE LACTTRME LPLAG LIRKID LINKTABL PMSGREQ RO Rl t::I 
I» Rl0 B12 B13 B14 R15 B2 B3 B4 RS B6 R7 R8 R9 
~ ..... SVEC'lOBS TCOM TLINKS 
0 
t::I DMTNPT ASYNBEC BUSOUT CC CMDREJ COMDSECT EQCHK GIVEREQ GMSGBEQ GPAGEREQ GTODEBCD INTREQ IOBEQ LACTLIBE 
en LDRAIN LERRCNT LPLAG LHOLD LIRKID LIRKTAEL LTOCNT LTBALL LTREBB LTRIIS'CRT FMSGREQ POSTBEQ RO 
!:i Rl B10 Bl1 R12 R13 B14 R15 B2 R3 R4 R5 R6 B7 ..... 
0- R8 R9 SILl SKIP SPLINK SPRECNUM SVECTORS 'lAG TAGDEV TAGDIST TAGID TAGIBDEV TAGIRLOC 
(t) TAGINTOD TAGINVM TAGLIBK TAGNAME TAGBEXT TAGBECNM TAGTOLOC TAGTOVM TASKE TASKSAVE 'lCOM TLINKS TYPPRT 

TYFFUII TYP2700 TYP3210 UC UE WAITREQ 

IMTPST RO Rl R14 TASKE TASKSTAT WAITING 

DMTQRQ PBEEE PBEEID PREENEXT FREEQ Rl R14 R15 SVECTORS 



f!odule External References (Labels and Modules) 

DMTREI ACTIVE ASYNBEQ ATTN COMDSECT CSi DEVCODE DEVCUU DISPATCH Df!TC1'lX D5TCCMVC DMTCRE tMTMGI DMTSYSLK 
DMTSYSND DMTSISPT DMTSISRT DMTSYSTQ ENDCSi GMSGREQ IOADDR IOE IOID IONEIT IOREQ IOSINCH IOTABLE 
IOTABLEA LACTDRVR LACTIVE LACTLINE LACTTNME LDEFDRVR LFLAG LHALT LIMBe LINKID LINKLEN LINKTABL L5SGQ 
LOCKLIST MAIN MAP MAINSIZE MPXIOQ NEiPBOG CLDPROG POSTREQ PROGADDR RO Rl R12 R13 R14 
R15 R2 R3 R4 R5 SELIOQ SILl SSAVE SVECTORS TAKEREQ TAREA TASKE TASKID 
TASKNAME TASKNEIT TASKQ TASKREQ TASKSAVE TASKSTA'I TCOM 'IGREGO TGREG12 TGREG13 TGREG2 TGREG4 TLINKS 
TPORTS TPSW TVECTORO TIP3210 UE WAITING WAITREQ 

DMTSIG ACTIVE ALERTQ ASYNE ASINEXIT ASINNEIT ASYNTASK DISPATCH RO RB R14 R15 R2 R3 
SVECTORS TAREA TASKE TASKNAME TGREG15 TGREG2 

tMTSML ASINREQ CC CCC CD COMDSECT DEVCUU ENDCSW GIVEREQ GMSGREQ GPAGEREQ GTODEBCD IOREQ IOSINCH 
IOTAELE LACTLINE LDRAIN LERRCNT LFLAG LHOLD LINKID LINKTABL LTOCNT LTRALL LTRERR LTRNSCNT PMSGREQ 
POS'IREQ PROGADDR RO Rl Rl0 Ell R12 R13 R14 R15 R2 R3 R4 
R5 R6 R7 RS R9 SILl SKIP SPLINK SPRECNUM SVECTORS TAG TAGDEV TAGDIST 
TAGID TAGINDEV TAGINLOC TAGINTOD TAGINVM TAGLINK TAGNAME 'IAGRECNM TAGTCLOC TAGTOVM TASKE TASKSAVE TCOM 
TLINKS TIPPBT TYPPUN TYP2700 TYP3210 UC UE i AITREQ 

DMTSTO ACTIVE DISPATCH MAINMAP RO Rl R14 R15 R2 R3 R4 SVECTORS TAREA TASKE 
TASIUD TGREG1 TGBEG15 

tMTSVC ACTIVE NEWPSW NEiSVC OLDSVC HO B13 R14 E15 SSAVE SVECTORS TABEA TASKE TASKSAVE 
TGREGO TGREG13 TGBEG14 TPSi 

DMTSYS LINKIED BOUTSIZE TAGLE! 

tMTVEC DMTAKE DMTASK DMTASY DMTDSP D5TGIV DMTIOMRQ DMTMAPMS tMTMAPQE D5TMAPQU DMTPST DMTQRQ DMTSIG DMTSTO 
DMTWA'I 

tMTWAT ACTIVE DISPATCH LOCKLIS'I Rl R14 B15 R2 R3 R4 R5 R6 SVECTORS TASKE 
TASKS'IAT WAITING 

~ 
til 
(') 
til 

3 

til 
0 
0. 

(I) C 
0 .... 
r+ (I) 
1-'- I 
0 r+ 
1:1 0 

I 
W ~ . ~ 

tj 
t:1' 
(I) 

1-'- .... 
1'1 
(I) (') 
0 1'1 
r+ 0 
0 en 
1'1 en 
1-'-
(I) ~ en (I) 

HI 
(I) 
1'1 

~ (I) 
0\ I:' 
.,.J 0 

(I) 





Label count Beferenct=.:. I !XI 
M 
In 
len 

ACTIV! 000030 DftTIKE DftTISK DeTISY DeTcce DeTDSP DPITEIT DeTGIV tPlTIOPl DeTBEI DPITSIG DPITSTO DPlTSVC II:"" 
DeTilT 1>-

ILEBTQ 000003 DftTISK DftTISY DftTSIG 1tJ:! 
ItzJ 

ILEBTBEQ 000005 DeTIIS DeTCftl DPlTftGX IL-'I 
ISYICOIE 000004 DftTISY DftTEXT DftTIOft I 

I~ ISYIE 000011 DeTASY DeTEXT DftTIOft tftTSIG 10 
ASYIEXIT 000005 DftTISY DftTEXT DPlTIOft DeTSIG I 

lSYIID 000002 DI!TASY 13 
10 

ASYIIEIT 000011 DftTISY DI!TEXT DPlTIOft DPITSIG I~ 

ISYIBE~ 000006 DI!TAXS DPITLAX DeTIPT tftTBEI DPlTSftL Ie: 
IL-'I 

ASYITASK 000006 DftTISY DftTEXT DPlTIOft DPITSIG It:o€I 
ITTI 000001 DftTBEX In 
EOSOOT 000001 DftTIPT I !XI 
BUSY 000001 DeTIOft 10 

IUl CIW 000006 DftTIII DftTIOI! IUl 
CC 000087 DeTCBE neTI))I DeTIPT teTseL I !XI CCC 000001 DftTSPlL I tIEl 

CD 000001 DeTSI!L I I'll! 

CE 000004 DPlTCBE DPITINI DPlTIOPl It:o€I 
I !XI 

CHIIDCIiE 000004 DI!TIOI! ltv 
CLISDASD 000001 DftTIII 12: 

In 
CLISTEBI! 000005 DI!TIII DeTLAX I tIEl 

CfttBEJ 000001 DftTIPT 
COftDSECT 000006 DI!TIXS DftTCftX DI!TftGX tftTIPT DeTREX DftTSftL 
CSW 000026 DftTIXS DPlTIII DftTIOft DftTBEI 
CUE 000001 DI!TCRE 
IE 000006 DftTIXS DI!TCBE DeTIII DftTICI! 
DEVCODE 000013 DI!TAXS DftTCI!X DI!TCB! tftTIII DftTBEX 
IEVCUU 000008 DftTIXS DftTCftl DftTIII DftTICft DeTBEX DI!TSftL 
DISPITCH 000015 DftTAKE DeTASK DftTASY tftTCOe DeTEXT DftTGIV Dft'IIII DPlTICft DPITBEX DPITSIG DftTSTO DPlTWIT 
IftTIKE 000001 DftTVEC 
DftTISK 000001 DftTVEC 
tftTASY 000001 DftTVEC 

!XI 
Ul 
n 
Ul 

L-'I 
l» 

Ul e;," 

CD CD 
0 ~ 
r+ I 

""" 
r+ 

0 0 
t:S I 

3 
W 0 

~ 
c: 

~ ~ 

""" 
CD 

1'1 
n CD 

0 1'1 
r+ 0 
0 [/) 

1'1 en 

""" !XI CD 
[/) CD 

HI 
CD 
1"1 

~ CD 
0\ t:I 
\D 0 

CD 



-= Label count References !%I 
...,J til 
0 n 

til 
DKTCtU 000001 DKTEEX 

t"'I IKTCOKVC 000001 DKTREX 
~ 

DKTCRE 000003 Dl!TCKX Dl!TREX tr' c: IKTCRltA 000003 DKTCKX DKTIHI (1) 
:I: ...., 

" DKTDSP 000001 DKTVEC , 
w IKTGIV 000001 DKTVEC rio 
...,J 0 
0 DKTIOKHI 000001 Dl!TIHI , 

DKTIOKRQ 000001 DKTVEC :I: 
0 

til DKTfIlAPeE 000001 Dl!TINI p.. 
'< tKTftAPKS 000001 DKTVEC I:l 
til ...., 
ri" DKTKAPQE 000002 DKTINI DKTVEC (1) 
(1) DKTIUPCU 000001 DKTYEC B n tKTfIlGX 000010 DKTCftX DftTREX tot 
tr DKTKSG 000001 DKTeGX 0 0 tftTPST 000001 DftTVEC til I.Q til !J. DftTQRQ 000001 DftTYEC n I:KTREXCH 000001 DftTCftX ~ 

<t 
I» DftTREXHC 000004 DKTCKX DfI!TKGX ~ 
t:J tftTREXID 000001 DflTCftX ('b 
s:lI tot DftTREXYL 000001 DKTIHI (1) 
~ IftTSIG 000001 DftTYEC t:J 
tot n 
0 DftTSTO 000001 DKTYEC (1) 
tr DftTSISLK 000001 DftTREX ...., 
(1) D!lTSISllD 000001 DKTEEX 
B tftTSISPT 000001 DftTREX 
0 DKTSISRT 000001 DKTEEX 
(1) tftTSISTQ 000001 DKTREX 
ri" DftTiAT 000001 DftTYEC (1) 
tot EIDCSW 000014 DflTCRE DKTIOK DKTREX DKTSrH • EIDSERSE 000001 DKTIOfl !J. 
t:J EQCBK 000001 DftTHPT 
I» EXTQ 000004 DKTASK DflTASI DflTIXT ri" 
!J. FREEE 000008 DflTASK DflTIHI DftTQRQ 
0 FREEID 000002 DKTASK DKTQEQ t:J 

FREEHEXT 000009 DftTASK DfilTIHI DKTQRQ 
en FREEQ 000005 DKTIBI DKTQBQ c: 
!J. GIYEADtR 000004 DftTAKE DftTASK DKTGIY 
p.. GIYEE 000013 DKTAKI DKTASK DKTGIV (I) 

GIYEBAKE 000003 DKTAKE DftTGIV 
GIVEHEIT 000014 DPlTAKE DKTASK DKTGIY 
GIVEBlt 000005 DftTAKE DKTASK DKTGIV 
GIVEQ 000005 DKT AKE DKTASK DftTGIV 
GIVEREQ 000018 DfilTAXS DftTNPT DKTSPlL 
GIVERID 000002 DKTAKE DKTGIV 



Label count References 

GLIBKREQ 000003 DMTAIS DMTCMI DMTMGX 
GMSGREC 000004 D~TNPT DMTREI DMTSftL 
GPAGEREQ 000005 DftTAIS DftTNPT DMTSML 
GTODEBCD 000004 D~TAIS DMTCMI DMTBPT DMTSML 
IBTREQ 000001 DMTNPT 
IOADDR 000008 D~TIO~ DMTREI 
IOE 000024 DMTASK DMTIO~ D~TREI 

IOEIITC 000003 DMTASK Dl'ITASY DMTIOM 
IOID 000004 DMTASK Dl'ITIOM DMTREI 
IOBEIT 000015 D~TASK DMTIOM DMTREI 
IOREQ 000013 DMTCRE Dl'ITNPT DMTREI DMTSl!L 
IOSBCHAN 000006 Dl!TIOM 
lOST AT 000009 DMTIOM 
IOSUBQ 000007 DMTASK DMTIOM 
IOSYBCB 000021 DMTIOM DMTREI DMTSML 
IOTABLE 000034 DMTAIS DMTCMI DMTCRE DftTIBI DMTIOM DMTREI DMTSML 
IOTABLEA 000009 DMTIOft DMTREI 
IPLCCWl 000001 D~TIBI 

IPLPSW 000005 DMTIBI 
LACTCLSl 000005 DMTAIS DMTCftI 
LACTDRVR 000008 DMTCMI DMTCRE D~TREI 

LACTIVE 000019 DMTAIS DMTCfU DftTLAI DMTMGI DMTREI 
LACTLIBE 000013 DMTCMI DMTLAI DMTBPT D~TREI DMTSML 
LACTTNf!E 000021 D~TAIS DMTCMX DMTCOM DMTCRE DMTMGI DMTREX 
LALERT 000005 DftTAIS 
LDEFCLSl 000004 DMTCMI 
LDEFDRVR 000005 DMTCMI DMTREX 
LDEFLINE 000004 D~TCMI 

LDEFTNftE 000004 DMTCMI 
LDRAIN 000013 DMTCMI DMTBPT DMTSML 
LERRCNT 000008 DftTNPT DMTSML 
LFLAG 000073 D~TAIS DMTCMI DMTLAI DftTftGI DMTBPT DMTREI DMTSML 
LHALT 000003 DMTREI 
LHOLD 000018 DMTCMI DMTNPT DMTSML ~ 

LIMBO 000005 DMTASK DMTDSP DMTREI til 

LIBKID 000045 DMTAIS DMTCMX DMTCOM DMTLAX DMTMGI DMTBPT DMTREI DMTSML n 
til 

LIBKLEB 000017 DMTAIS DMTCMI DMTCOM DMTLAI DMTREI DMTSYS 
LINKTABL 000015 DMTAIS DMTClU DMTCOM DMTCRE DMTLAI DftTMGI DMTBPT DMTREI DMTSML t-I 

III 
til LftSGQ 000005 DMTCOM DftTREX t7' 
C1) LOCKLIST 000004 DMTDSP DMTREI DMTWAT C1) 

~ C1 LPEBDIBG 000018 DMTAIS DMTCMX I rt 
f-'. LPOIBTER 000015 D~TAXS DMTCMX rt 

0 0 LRESERVD 000006 DMTAIS DMTCMX I ::1 
LSPARE 000002 DMTAIS ::I: 

w 0 . P-
c:: 

t::I ~ 

f-'. C1) 

t1 n CD 
C1 t1 
rt 0 
0 en 
t1 en 
f-'. 

~ C1) 
en C1) 

HI 
CD 
t1 

-= C1) 

~ ::1 
C1 
C1) 



~ Label Count References !:O 
-..J til 
t-.) n 

til 

LTAKEH 000006 DftTAXS DftTCMX t"4 
LTOCHT 000008 DMTBPT DftTSftL ~ 

LTRALL 000016 DftTCftX DMTHPT Df!TSftL 0' 
< (1) 
3: LTRERB 000013 DftTCftX DftTBPT DftTSftL ~ 

" LTRHSCHT 000008 DftTHPT DftTSftL I 
w t+' 
-..J IUIHftAP 000016 DMTASK DftTAXS DftTCftX DMTCOf! DftTCBE DftTIBI DftTREX DftTSTO 0 
0 ftAIHREQ 000002 DMTCOft DftTCBE I .. 3: filAIBSIZE 000007 DMTASK DftTCftX DftTCOft DMTCBE DMTIBI DftTREX 0 
til ftCBEK 000004 DftTIHI ~ 

Io<j 
MPXIOQ 000007 DMTASK Df!TIOM DftTREX 

s::: 
til ~ 
t+' BEWEXT 000003 DftTEXT DftTIHI CD 
CD NEiIO 000004 DftTIHI DftTIOft S n 

BEiPBOG 000004 DftTBEX t1 
~ BEiPSi 000006 DMTDSP DMTSVC 0 
0 en 

I.Q HEiSVC 000001 DftTSVC en .... OLDEXT 000002 DftTEXT (1 !:O 
OLDIO 000006 DftTIHI DftTIOft CD 

~ CLDPROG 000001 Df!TREX H\ 
t:I CD 
P.o OLDSVC 000004 DftTSVC 1"1 

PCI 000001 DftTIOft CD 

'" PftSGREQ 000003 DftTMGX DftTHPT 
t:I 

1"1 DftTSftL (1 
0 POSTREQ 000011 DftTAKE DftTASK DftTAXS DftTGIV DftTIOM DftTBPT DftTREX DftTS!'!L CD 
0' PBOGADtR 000012 DftTAXS DMTIOft DftTREX DftTSML ~ 
CD QBEQ 000014 D!'!TAKE Df!TASK DftTASY DftTGIV DftTIBI DftTIOft s QUEUE 000001 DftTIHI 
tI BOUTDEST 000001 Df!TAXS 
CD ROUTE 000001 DftTAXS cT 
CD BOUTBEIT 000002 DftTAXS 
1"1 ROUTSIZE 000003 DftTAXS DftTSYS s .... BO 000513 DftTASK DftTASY DftTAXS DftTCMX DftTCOft DftTCBE DftTDSP DftTEXT DMTGIV DftTIBI DftTIOft DftTLAX 
t:I DftTftGX DftTHP'I DftTPST DMTBEX DftTSIG DftTSftL DftTSTO DftTSVC 
~ 
t+' Rl 001048 DftTAKE DftTASK DftTASY DftTAXS DftTCftX DMTCOft DftTCRE DftTDSP DftTEXT DftTGIV DftTIBI DftTIOft .... DftTLAX DftTftGX DftTHPT DftTPST DftTQRQ D!'!TREX DftTSftL DftTSTO DftTiAT 0 
t:I R10 000058 DftTAXS DftTC!'!X DftTCOft DftTIBI DftTftGX DftTBPT D!!TSftL 

Cl 
Rl1 000033 DftTAKE DftTAXS DftTCftX DftTCOft DftTIHI DftTHPT DftTSftL 

s::: R12 000050 DftTAKE DftTASK D!!TASY DMTAXS D!!TCftX DftTCOft DftTCRE DftTGIV D!'!TIBI D!'!TIOft DftTLAX DftTftGX .... DftTHPT DftTREX DftTSftL 
~ B13 000190 DftTAKE DMTASK DftTASY DMTAXS DMTCftX DftTCO!! DMTEXT DftTGIV DftTIBI DftTIOft DftTftGX DftTBPT CD 

DftTREX DftTSIG DftTSftL DftTSVC 
R14 001066 Df!T AKE DftTASK Dl!ITASY DMTAXS DMTCMX DftTCOft DftTCRE DftTEXT DftTGIV DftTIBI DftTIOft DftTLAX 

DMTftGX DftTHPT DftTPST DftTQBQ DftTREX DftTSIG DftTSftL DftTSTO DftTSVC DftTiAT 
B15 000938 DMTAKE DftTASK DftTASY DftTAXS DftTCftX DftTCOM DftTCRE DftTDSP DftTEXT DftTGIV DftTIBI DftTIOft 

DftTLAX DftTftGX DftTHPT DMTQRQ DftTREX DftTSIG DftTSftL DftTSTO DftTSVC DftTiAT 



Label Count References 

R2 000739 DMTAKE DMTASK D8TASY DMTAXS DMTC8X DMTCOM DMTCRE D8TDSP DMTEXT Dft TGIV DftTINI DMTI08 
DftTLAX DftTMGX D8TNPT DMTREX DftTSIG DftTSML DMTSTO DMTWAT 

R3 000723 DftTAKE DMTASK DMTASY DMTAXS DMTCftX DftTCOM DMTCRE DftTDSP DftTEXT DftTGIV DMTINI DftTIOft 
DMTLAX DMTMGX DftTNPT DPITREX DftTSIG DftTSPIL DftTSTO DMTWAT 

R4 000620 DftTAKE DftTASK DPITASY DPITAXS DfilTCftX DftTCOft DMTCRE DPITDSP DftTEXT DftTGIV DfilTINI DMTIOM 
Df!lTLAX Df!lTftGX Df!lTNPT DftTREX Df!lTSftL DftTSTO DftTWAT 

R5 000418 DftTAKE Df!lTASK DMTAXS Df!lTCIU DftTCOft DMTCRE DftTINI DftTIOft DftTLAX DftTftGX DftTNPT Df!lTREX 
DMTSML Dl!TiAT 

R6 000460 Dl!TAKE DftTASK DMTAXS Dl!TCl!X Dl!TCOl! Df!lTCRE DftTINI DftTIOl! DftTLAX DftTftGX Dl!TNPT Dl!TSl!L 
DfilTiAT 

R7 000309 Df!lTASK DftTAXS Dl!TCf!lX Df!lTCOl! Dl!TCRE DftTINI DftTLAX DftTftGX Dl!TNPT DftTSl!L 
RS 000368 Df!lTASK Dl!TAXS Df!lT Cf!I X Df!lTCOl! DftTINI Dl!TLAX Df!lTl!GX Dl!TNPT DMTSML 
R9 000122 DftTASK Dl!TAXS DMTCl!X Dl!TCOM Dl!TCRE Dl!TINI DftTLAX Dl!TftGX Dl!TNPT Dl!TSl!L 
SELIOQ 000007 DMTASK Dl!TIOM Dl!TREX 
SENSING 000003 Dl!TIOl! 
SENSREC 000002 DMTIOPI 
SFBCLAS 000001 DftTAXS 
SFBCOPY 000001 Dl!TAXS 
SFBDATE 000001 DftTAXS 
SFBDIST 000001 DMTAXS 
SFBFILID 000010 DftTAXS 
SFBFLAG ()(}0002 DPITAXS 
SFBFLAG2 000001 DPITAXS 
SFBFBAl!E 000001 DMTAXS 
SFBFTYPE 000001 DIITAXS 
SFBIBOSE 000001 DMTAXS 
SFBLOK 000002 DIITAXS 
SFBORIG 000002 DPITAXS 
SFBRECNO 000001 DPITAXS 
SFBRECSZ 000001 DPITAXS 
SFBREQOE 000004 DMTAXS 
SFBSHOlD 000004 DMTAXS DMTCMX 
SFBTYPE 000001 DMTAXS 
SFBOHOlD 000005 DMTAXS DPITCMX IZ:I 
SILl 000 130 DMTCRE DMTINI DMTNPT DMTREX DPITSML til 

SIOCOND 000005 Dl!TCRE DMTIOM n 
til 

SKIP 000002 DftTNPT Dl!TSML 
SM 000001 DMTIOM t'"4 

III 
til SPLINK 000006 DMTNPT DftTSML 0-
CD SPRECNUPI 000018 DMTNPT DPITSPIL CD 
n SSAVE 000011 DPITEXT DMTIOM Dl!TREX DPlTSVC ~ 
rT I 
~. SVECTORS 000022 DPlTAKE DPlTASK DPlTASY DMTAXS DPlTCPlX Df!lTCOM Df!lTCRE DMTDSP DPITEXT Df!lTGIV D8TINI DM TIOM rt 
0 DMTLAX DMTMGX DMTNPT DMTQRQ DMTREX DPITSIG DMTSML DMTSTO DMTSVC DM TiAT 0 
~ I 

TAG 000038 DMTAXS DPITCl!X Dl!TNPT Dl!TSPIL ::I: 
w 0 

~ 
c:: 

tj ~ 
~. (1) 

H n CD 
n H 
rT 0 
0 en 
H en 
~. 

!:tJ (1) 

en (1) 

~ 
(1) 
H 

~ (1) 

-.J = 
W n 

(1) 



Label Count References ~ 
~ til 
...,J n 
~ til 

TlGELOCK 000019 DftTlIS DftTCftI 
TlGCLlSS 000009 DftTlIS DftTCftI t-' 

OJ 
TAGCOPY 000010 DftTlIS DftTCftI t:T 

~ ilGDEV 000016 DftTlIS DftTIPT DftTSftL (I) 
~ 

3 TlGDIST 000015 DftTlIS DftTCftI DftTNPT DftTSeL I 

" TlGFLAG 000008 DeTlIS DftTC!!! cT w 0 
...,J TlGFLAG2 000004 DftTAIS I 
0 TAGID 000022 DftTAIS DftTCftI DftTHPT DftTSftL :3': 

TlGINDH 000022 DftTlIS DftTHPT D!!ITS!!IL 0 
~ 

til TlGINLCC 000012 DeTAIS DeTCftI D!!ITHPT DftTSftL ~ 
'< TlGIITOD 000007 DMTlIS DMTCMI DMTNPT DeTseL ~ 
til (I) 
rt" ilGIIVe 000008 DMTlIS DftTCMI DftTIPT DMTS!!IL 
(I) TAGLEN 000002 DMTAIS DftTSYS n 
EiI t1 

TlGLIBK 000020 DftTlIS DftTCftI DftTNPT DftTSeL 0 
t-' TAGBlftE 000009 DeTAIS DMTCMI DftTHPT DftTSftL til 
0 til 

IQ TIGREIT 000051 DftTAIS DftTC!!IX DMTNPT 
1-'" iAGPRIOR 000012 DftTAIS DMTCMI ~ 
n (I) 

TAGRECLN 000001 DMTAIS HI 
OJ TlGRECIU! 000004 DMTAIS DMTCMI DMTNPT DMTSftL (I) 
1:1 t1 
Po TAGTOLOC 000013 DftTAIS DMTCMX DMTNPT DMTSML (I) 

TAGTOVM 000017 DMTAIS DMTCMI DMTRPT DftTSftL ::I 
~ TAGTYPE 000001 DftTAIS n 
t1 (I) 
0 TAKEREQ 000002 DMTlIS DftTREI 
t:T TAREA 000021 DftTAKE DMTASK DMTASY DftTCOft DMTCRE DMTDSP DMTEIT DftTGIV DMTIOM DftTREI DMTSIG DMTSTO ~ 
(I) DMTSVC s TASKE 000044 DftTAKE DMTASK DftTASY DMTAXS D!!ITCOM DftTDSP DMTEIT DMTGIV DftTINI DMTIOft DMTNPT DMTPST 
c DMTBEI DMTSIG DftTSftL DftTSTO DftTSVC D!!ITiAT 
(I) TASKID 000021 DftTAKE DMTASK DMTASY DMTcoe DMTDSP DMTGIV DMTINI DMTIOM D!!ITBEX DMTSTO r+ 
m TASKNAME 000016 DeTAKE DftTASK DMTCOM DMTGIV DMTIII DftTREX DeTSIG 
t1 TASKNEXT 000023 DMTAKE D!!ITASK DMTCOM DMTDSP D!!ITGIV DMTINI DMTREX • 1-'" TASKQ 000010 D!!ITAKE D!!ITASK DMTCOM DMTDSP DMTGIV DMTINI DMTREX 
::I TASKBEQ 000003 DftTCRE DftTREX 
OJ 
rt" TASKSA VE 000015 DMTASK DMTAXS DMTDSP DMTEXT DMTGIV DMTINI DMTIOM DMTNPT DeTREX DMTSML DMTSVC 
1-'" TASKSTAT 000014 DftTASK DMTDSP DMTINI DMTPST DftTREX DftTWAT 
0 TCOft 000019 DftTAXS DMTCftX D!!ITftGX DMTRPT D!!ITREX D!!ITSML 1:1 

G"l 
TGREGO 000014 DMTASK DMTASY D!!ITCO!!l D!!ITCRE DeTDSP DftTEXT DMTIOM DMTBEX DMTSVC 

c:: TGREGl 000005 DMTAKE DMTCOM D!!ITCRE D!!ITDSP DMTSTO 
1-'" TGREG12 000001 DftTREX 
~ TGREG13 000005 DeTASK DMTREX DMTSVC (I) 

TGREG14 000003 DftTEXT DftTIOe DftTSVC 
TGREG15 000020 DMTAKE DftTASK DftTASY DftTCOft DftTGIV DMTSIG DftTSTO 
TGREG2 000005 DftTCOft DftTCBE DftTBEX DftTSIG 
TGREG4 000001 DMTREX 
TIftER 000001 DMTINI 



Label Count References 

TLIBKS 000030 Dl'ITAXS Dl'ITCl'IX DPlTCOl'l Dl'ITLAX Dl'ITl'IGX Dl'ITNPT Dl'ITREX Dl'ITSl'IL 
TPORTS 000003 Dl'ITCl'IX Dl'ITLAX Dl'ITREX 
TPSW 000014 Dl'ITCOl'l DftTDSP DftTEXT Dl'ITIOl'l Dl'ITREX Dl'ITSVC 
TREQLOCK 000004 DftTAKE Dl'ITGIV 
TROUTE 000001 Dl'ITAXS 
TTAGQ 000005 Dl'ITAXS Dl'ITCl'IX 
TYECTORO 000001 Dl'ITREX 
TIPBSC 000002 Dl'ITLAX 
TIPPRT 000009 Dl'ITAXS DftTIPT Dl'ITSftL 
TIPPUI 000010 DftTAXS DftTNPT Dl'ITSftL 
TIP1403 000001 DftTAXS 
TIP2314 000005 Dl'ITCRE Dl'ITINI 
TIP2540P 000001 Dl'ITAXS 
TIP2700 000004 Dl'ITLAX DftTIPT DftTSl'IL 
TIP3210 000009 Dl'ITIII DftTIPT DftTREX DftTSl'IL 
TIP3211 000001 Dl'ITAXS 
TIP3330 000002 DftTIII 
TYP3340 000002 Dl'ITINI 
UC 000010 Dl'ITIOl'l Dl'ITIPT DftTSftL 
UE 000003 DftTNPT Dl'ITREX DftTSl'IL 
WAIT 000002 Dl'ITIII 
WAITING 000005 Dl'ITDSP DftTPST Dl'ITREX Dl'ITWAT 
iAITREQ 000030 Dl'ITAXS Dl'ITCRE Dl'ITLAX DftTBPT DftTREX DftTSl'IL 

!:U 
en 
("l 
en 

t"" 
~ 

til 0-
CD (J) 

0 I-' 
t+ • .... t+ 
0 0 
t:J • ::. 
w 0 . Pol 

1:1 
t:::I ..... .... (J) 

t1 
(J) ("l 
0 t; 
t+ 0 
0 en 
t1 en .... 
CD !:tS 
en CD 

1-+1 
CD 
t1 

~ (I) 
...,J t:J 
U1 0 

(I) 





CP has an internal trace table which records events that occur in the 
real machine. The events that are traced are: 

• External interruptions 
• SVC interruptions 
• program interruptions 
• Machine check interruptions 
• I/O interruptions 
• Free storage requests 
• Release of free storage 
• Entry into scheduler 
• Queue drop 
• Run user requests 
• start I/O 
• Unstack I/O interruptions 
• storing a virtual CSW 
• Test I/O 
• Halt device 
• Unstack IOBLOK or TRQBLOK 
• NCP BTU (Network Control Program Basic Transmission Unit) 

Use the trace table to determine the events that preceded a CP system 
failure. An ABEND dump contains the CP internal trace table and the 
pointers to it. The address of the start of the trace table, TRACSTRT, 
is a location X'OC'. The address of the byte following the end of the 
trace table, TRACEND, is a location X'10'. The address of the next 
available trace table entry, TRACCURR, is at location X'14'. subtract 
16 (X'10') bytes from the address stored at X'14' (TRACCURR) to obtain 
the trace table entry for the last event completed. 

The size of the trace table depends on the amount of real storage 
available at IPL time. For each 256K bytes (or part thereof) of real 
storage available at IPL time, one page (4096 bytes) is allocated to the 
CP trace table. Each entry in the CP trace table is 16 bytes long. 
There are 17 possible types of trace table entries; one for each type of 
event recorded. The first byte of each trace table entry, the 
identification code, identifies the type of event being recorded. 

The trace table is allocated by the main initialization routine, 
DMKCPI. The first event traced is placed in the lowest trace table 
address. Each subsequent event is recorded 1n the next available trace 
table entry. Once the trace table is full, events are recorded at the 
lowest address (overlaying the data previously recorded there). Tracing 
continues with each new entry replacing an entry from a previous cycle. 

The CP internal trace table is initialized during IPL. If you do not 
wish to record events in the trace table, issue the MONITOR STOP CPTRACE 
command to suppress recording. The pages allocated to the trace table 
are not released and recording can be restarted at any time by issuing 
the MONITOR START CPTRACE command. If the VM/370 system should 
abnormally terminate and automatically restart, the tracing of events on 
the real machine will be active. After a VM/370 1PL (manual or 
automatic), CP internal tracing is always active. 

section 4. Diagnostic Aids 477 



There are 17 possible types of trace table entries, 
identified by the value of the first byte. Figure 62 
format of each type of trace table entry. 

each uniquely 
describes the 

Identification 
Type of Event Module Code Format of Trace Table Entry 

(hexadecimal) 
----- ------------ ------+----------------------------------------/ 

External interrupt 

SVC mterrupt 

Program interrupt 

MachmeCheck 

Interrupt 

1/0 interrupt 

Free Storage (FREE) 

Return storage (FRETI 

Enter Scheduler 

Queue drop 

Start I/O 

DMKPSA 

DMKPSA 

DMKPRG 

DMKMCH 

DMKIDS 

DMKFRE 

DMKFRE 

DMKSCH 

DMKDSP 

DMKCNS 
DMKIOS 
DMKVIO 

Unstack I/O Interrupt DMKDSP 

Virtual CSW store DMKVIO 

DMKCNS 
Test I/O DMKIOS 

DMKVIO 

DMKCNS 
Halt Device DMKIOS 

DMKVIO 

Unstack 
IOBLOK or DMKDSP 
TRQBLOK 

NCP BTU 
DMKRNH 

(See Not. 2) 

Notes: 

0' 

02 

03 

04 

05 

06 

07 

OS 

09 

OA 

DB 

DC 

00 

DE 

10 

" 

I ~'o "1, X'oooooooooo' 

GR14 or GA15 (See Note 11 , 

kOB'I, 

1 :'oc'l, 

First 3 bytes 
of VMPSW 

Address of 

VMBLOK 

X'oo' I Device I 
2 Address 4 

Address of 
VMBLOK 

Address of 

VMBLOK 

Address of 
VMRLOK 

Address of VMBLOK 

X'OOOOOO' 

Condition 

12 
Device 

Code Address 

12 

Virtual 
X'OO' Device 

Address 

I Interrupt I 
6 CodeS 

I/O Old PSW + 4 I 
GROat entry I 
GR Oa1 entry 

Vdlue of VMRSTAT, 

VMDSTAT, VMOSTAT, 

RUNUSER value 
frornPSA 

Addres'i of IOBLOK 

Address of VMBLOK 

Address of VMBLOK 

Addres<, of IOBLOK 

Addres', of IOBLOK 

S 

8 

External Old PSW 

SVC Old PSW 

Program Old PSW 

Machine Check Old PSW 

CSW 

GR 1 atexit 

RUNPSW value from PSA 

CAW 

VirtualCSW 

VirtualCSW 

CAW 

CAW 

I GR'4 

'2 

GR '4 

__ ,J 

For CC -,- 1, CSW + 4. 
otherwise this field is 

not used 

For CC '" 1, CSW + 4 
otherwise this field is 

not used 

ForCe'" l,CSW+4 
otherwise this field is 

notLlsed 

1. If the interrupt code (bytes 6 and 7) IS ac, the contents of GR 14 are displayed. For all other interrupt codes, the contents of GR 15 are displayed. 

2. Bytes 2 through 15 of a code 11 trace record represent a Basic Transmission Unit, sent or received by a 3704/3705. If CONSYSA/CONEXTR are zero, the 
BTU was transmitted to the 3704/3706, If they are n~ the BTU was received. If CONTCMD equals X'7700', this is an unsolicited BTU response, 

Figure 62. CP Trace Table Entries 

478 VM/370: System Logic and Problem Determination Guide 



The VM/370 Control Program has a set of interactive commands that 
control the VM/370 system and enable the user to control his virtual 
machines and associated control program facilities. The virtual machine 
operator using these commands can gather much the same information about 
his virtual machine that an operator of a real machine gathers using the 
CPU console. 

The CP commands are eight characters or less in length. The commands 
can be abbreviated by truncating them to the minimum permitted length 
shown in the format description. When truncation is permitted, the 
shortest acceptable version of the command is represented by capital 
letters, with the optional part represented by lowercase letters. Note, 
however, that you can enter any CP command with any mixture of uppercase 
and lowercase letters. 

The operands, if any, follow the command on the same line and must be 
separated from the command by a blank. Lines cannot be continued. 
Generally, the operands are positional, but some commands have reserved 
words and keywords to assist processing. Blanks must separate the 
command from any operands and the operands from each other. 

several of these commands (for example, STORE or DISPLAY) examine or 
alter virtual storage locations. When CP is in complete control of 
virtual storage (as in the case of DOS, MFT, MVT, PCP, CMS, and RSCS) 
these commands execute as expected. However, when the operating system 
in the virtual machine itself manipulates virtual storage (OS/VS1, 
OS/VS2, or DOS/VS), these CP commands should not be used. 

Each CP user has one or more privilege classes as indicated in his 
VM/370 directory entry. Class G commands useful for debugging are 
discussed in the follcwing paragraphs. For a discussion of all the CP 
Class G commands and the CP command privilege classes, refer to the 
!~LJIQ: £f fQ!!~ng ~g!g~gB£~ !g~ ~~B~£~l Q§~£~. The remainder of this 
section discusses the CP Class G commands that provide material and 
techniques that are useful in debugging. 

section 4. Diagnostic Aids 479 



Use the ADSTOP command to halt the execution of a virtual machine at a 
virtual instruction address. Execution halts when the instruction at 
the address specified in the command is the next instruction to be 
executed. The format of the ADSTOP command is: 

.--------------------------_._-_. ----- --------, 
I ADSTOP I {heXIOC} 
I I OFF 

I 
I 

L --------' 

hexloc is the hexadecimal representation of the virtual instruction 
address where execution is to be halted. Since ADSTOP 
modifies storage, an address specified within a shared segment 
results in the virtual machine being placed in nonshared mode 
with its own copy of the shared segment. A fresh copy of the 
shared segment is then loaded for the use of the other users. 

OFF cancels any previous ADSTOP setting. 

1. When execution halts, the CP command mode is entered and a message 
is d~splayed. At this point, you may invoke other CP debugging 
commands. To resume operation of the virtual machine, issue the 
BEGI~ command. Once an ADSTOP location is set, it may be removed 
by one of the following: 

• Reaching the virtual storage location specified in the ADSTOP 
command 

• performing a virtual IPL or SYSTEM RESET 

• Issuing the ADSTOP OFF command 

• specifying a different location with a new ADSTOP hexloc command 

2. Since the ADSTOP function modifies storage by placing a CP SVC 
X'B3' at the specified location, you should not: 

• Examine the two bytes at the instruction address because CP does 
not verify that the location specified contains a valid CPU 
instruction. 

• Use the TRACE command with the INSTRUCT, BRABCH, or ALL operands 
if any traced instruction is located at the ADSTOP address. 

3. Address stops may not be set in an OS/VS or DOS/VS virtual 
machine's virtual storage; address stops may be set only in the 
virtual=real partitions or regions of those virtual machines. 

480 VM/370: system Logic and Problem Determination Guide 



4. If the SVC handling portion of the virtual machine assist feature 
is enabled on your virtual machine, CP turns it off when an ADSTOP 
is set. When the address stop is removed, CP returns the assist 
feature SVC handling to its previous status. 

ADSTOP AT xxxxxx 

The instruction whose address is xxxxxx is the next instruction 
scheduled for execution. The virtual machine is in a stopped 
state. Any CP command (including an ADSTOP command to set the next 
address stoP) can be issued. Enter the CP command BEGIN to resume 
execution at the instruction location xxxxxx, or at any other 
location desired. 

section 4. Diagnostic Aids 481 



Use the BEGIN command to continue or resume execution in the virtual 
machine at either a specified storage location or the location pointed 
to by the virtual machine's current program status word (PSi). The 
format of the BEGIN command is: 

r -----------------, 
I Begin 
L-_ 

[hexloc] I 
_._-------' 

hexloc is the hexadecimal storage location where execution is to 
begin. 

1. When BEGIN is issued without hexloc, execution begins at the 
storage address pointed to by the current virtual machine PSi. 
Unless the PSi has been altered since the CP command mode was 
entered, the location stored in the PSW is the location where the 
virtual machine stopped. 

2. When BEGIN is issued with a storage location specified, execution 
begins at the specified storage location. The specified address 
replaces the instruction address in the PSi, then the PSW is 
loaded. 

None. The virtual machine begins execution. 

482 V"/370: System Logic and Problem Determination Guide 



Use the DISPLAY command to display the following virtual machine 
components at your terminal: 

• Virtual storage locations (1st level virtual storage only; see Usage 
Notes. ) 

• Storage keys 
• General registers 
• Floating-point registers 
• control registers 
• Program status word (PSW) 
• Channel address word (CAW) 
• Channel status word (CSW) 

Note: Use the NETWORK DISPLAY command to display the content of 
3704/3705 storage. 

The format of the DISPLAY command is: 

Display 

hexloc1 
Lhexloc1 
Thexloc1 
Khexloc1 

Q 

-------------------------, 
r , r r , , 
I hexloc11 1{-}'heXIOc2 I I 
IKhexloc11 I : I]!~ I I 
I Lhexloc 11 1 L J 1 
1 T hexloc 1 1 1 r , I 
I Q 1 I{.} 1 bytecountl 1 
L J 1 1 ~!Q 1 1 

L L J J 

r r , , 
Greg1 1 {-},reg 2

' 
1 

Yreg1 1 : IE!~ 1 1 
Xreg1 1 L J 1 

Psw 
CAW 
CSW 

1 r , I 
1 ( • } 1 regcount I 1 
1 I~!~ 1 I 
L L J J 

is the first, or only, hexadecimal storage location 
that is to be displayed at the terminal. If 
L or no letter prefix is specified, the storage 
contents are displayed in hexadecimal. If T is 
specified, the storage contents are displayed in 
hexadecimal, with EBCDIC translation. If K is 
specified, the storage keys are displayed in 
hexadecimal. 

If hexloc1 is not on a fullword boundary, it is rounded 
down to the next lower full word. 

If hexloc1 is not specified, the 
storage location O. If L, T, or K 

display begins at 
are entered either 

section 4. Diagnostic Aids 483 



{
-} hexloc2 
: ];!H~ 

{ • }b ytecoun t 
END 

Greg1 

Yreg1 

¥reg1 

{ 
-}reg2 
: ~!Q 

without any operands, or followed immediately by a 
blank, the contents of all storage locations or all the 
storage keys are displayed. If L, T, or K are not 
specified and this is the first operand, then the 
default value of zero is assumed. The address, 
hexloc1, may be one to six hexadecimal digits; leading 
zeros are optional. 

is the last of the range of hexadecimal storage 
locations whose contents are to be displayed at the 
terminal. Eit her a - or a : must be specified to 
display the contents of more than one location by 
storage address. If hexloc2 is not specified, the 
contents of all storage locations from hexloc1 to the 
end of virtual storage are displayed. If specified, 
hexloc2 must be equal to or greater than hexloc1 and 
within the virtual storage size. (See Usage Notes 
below for a discussion on discontiguous shared 
segments.) The address, hexloc2, may be from one to 
six hexadecimal digits; leading zerOs are optional. 

is a hexadecimal integer designating the number of 
bytes of storage (starting with the byte at hexloc1) to 
be displayed at the terminal. The period (.) must be 
specified to display the contents of more than one 
storage location by bytecount. The sum of hexloc1 and 
bytecount must be an address that does not exceed the 
virtual machine size. (see Usage Notes below for a 
discussion on discontiguous shared segments.) If this 
address is net on a fullword boundary, it is rounded up 
to the next higher fullword. The value, bytecount, 
must have a value of at least one and may be from one 
to six hexadecimal digits; leading zeros are optional. 

is a decimal number from 0 to 15 or a hexadecimal 
integer from 0 to F representing the first, or only, 
general register whose contents are to be displayed at 
the terminal. If G is specified without a register 
number, the contents of all the general registers are 
displayed at the terminal. 

is an integer (0, 2, 4, or 6) representing the first, 
or only, floating-point register whose contents are to 
be displayed at the terminal. If y is specified 
without a register number, the contents of all of the 
floating-point registers are displayed at the 
terminal. 

is a decimal number from 0 to 15 or a hexadecimal 
number from 0 to F representing the first, or only, 
control register whose contents are to be displayed at 
the terminal. If X is specified without a register 
number, the contents of all of the control registers 
are displayed at the terminal. If Xreg1 is specified 
for a virtual machine without extended mode operations 
available, only control register 0 is displayed. 

is a number representing the last register whose 
contents are to be displayed at the terminal. Either a 
- or a : must be specified to display the contents of 

484 VM/370: System Logic and Problem Determination Guide 



{.}regcount 
~!~ 

PSW 

CAW 

CSW 

more than one register by register number. If reg2 is 
not specified, the contents of all registers from regl 
through the last register of this type are displayed. 
The operand, reg2, must be equal to or greater than 
regl. If Greg1 or Xreg1 are specified, reg2 may be a 
decimal number from 0-15 or a hexadecimal number from 
O-F. If Yreg1 is specified, reg2 may be 0, 2, 4, or 
6. The contents of registers reg1 through reg2 are 
displayed at the terminal. 

is a decimal number from 1 to 16 or a hexadecimal 
number from 1 to F specifying the number of registers 
(starting with regl) whose contents are to be displayed 
at the terminal. If the display type G or X is 
specified, regcount can be a decimal number from 1 to 
16 or a hexadecimal number from 1 to F. If display type 
Y is specified, regcount must be 1, 2, 3, or 4. The 
sum of reg1 and regcount must be a number that does not 
exceed the maximum register number for the type of 
registers being displayed. 

displays the current virtual machine 
status word) as two hexadecimal words. 

PSW (program 

displays the contents of the CAW (channel address word 
at hexadecimal location 48) as one hexadecimal word. 

displays the contents of the CSW (channel status word 
at hexadecimal location 40) as two hexadecimal words. 

1. Only first level storage (storage that is real to the virtual 
machine) can be displayed. operating systems such as DOS/VS and 
OS/VS have virtual storage of their own. This second level virtual 
storage cannot be displayed directly. The user or the virtual 
operating system is responsible for converting any second level 
storage locations to first level storage locations before issuing 
the command. 

2. If a command line with an invalid operand is entered, the DISPLAY 
command terminates when it encounters the invalid operandi however, 
any previous valid operands are processed before termination 
occurs. Multiple storage locations, registers, and control words 
can be displayed using a single command line. 

3. When multiple operands are entered on a line for location or 
register displays, the default display type is the same as the 
previous explicit display type. The explicit specification of a 
display type defines the default for subsequent operands for the 
current display function. Blanks are used to separate operands or 
sets of operands if more than one operand is entered on the same 
command line. Blanks must not be used to the right or left of the 
range or length delimiters (: or - or .), unless it is intended to 
take the default value of the missing operand defined by the blank. 
For example: 

display 10 20 T40 80 G12 5 L60-100 

section 4. Diagnostic Aids 485 



displays the following, respectively: 

hexadecimal location 10 
hexadecimal location 20 
hexadecimal location 40 with EBCDIC translation 
hexadecimal location 80 with EBCDIC translation 
general register 12 
general register 5 
hexadecimal locations 60 through 100 

4. To terminate the DISPLAY function ~hile data is being displayed at 
the terminal, press the Attention key (or its equivalent). When 
the display terminates, another command may be entered. 

5. The DISPLAY command does not distinguish between shared and 
non-shared storage; it displays any of the virtual machine's 
addressable storage whether shared or not. 

6. Use the DISPLAY command to display the contents of various storage 
locations, registers, and control words at the terminal. By 
examining this type of information during the program's execution, 
you may be able to determine the cause of program errors. Usually, 
an address stop is set to stop the program execution at a specified 
point. The system enters the CP environment and you may then issue 
the DISPLAY command. 

7. When you must examine large portions of storage, use the DUMP 
command rather than the DISPLAY command. Because the terminal 
operates at a much slower speed than the printer, only limited 
amounts of storage should be printed (via the DISPLAY command) at 
the terminal. 

8. When running with a discontiguous saved segment (DCSS), you can 
display storage locations outside the range of your virtual machine 
size if they are within the DCSS. If there exist locations between 
the upper limit of your virtual machine and the address at which 
the ncss was saved, an attempt to display those locations (or 
associated keys) will result in a "non-addressable storage" 
message. 

One or more of the following responses is displayed, depending upon the 
operands specified. 

xxxxxx wordl word2 word3 word4 [key] *EBCDIC TRANSLATION* 

This is the response you receive when you display storage 
locations; xxxxxx is the hexadecimal storage location of wordl. 
Wordl is displayed (word-aligned) for a single location 
specification. Up to four words are displayed on a line, followed, 
optionally, by an EBCDIC translation of those four words. Periods 
are represented by nonprintable characters. Multiple lines are 
used (if required) for a range of locations. If translation to 
EBCDIC is requested (Thexloc), alignment is made to the next lower 
16-byte boundary; otherwise, alignment is made to the next lower 
fullword boundary. If the location is at a 2K page boundary, the 
key for that page is also displayed. 

486 VM/370: System Logic and Problem Determination Guide 



xxxxxx TO xxx xxx KEY = kk 

This is the response you receive when you display storage keys; 
xxxxxx is a storage location and kk is the associated storage key. 

GPR n = genreg1 genreg2 genreg3 genreg4 

This is the response you receive when you display general 
registers; n is the register whose contents are genreg1. The 
contents of the following consecutive registers are genreg2, 
genreg3, and so on. The contents of the registers are displayed in 
hexadecimal. Up to four registers per line are displayed for a 
range of registers. Multiple lines are displayed if required, with 
a maximum of four lines needed to display all 16 general 
registers. 

FPR n = xxxxxxxxxxxxxxxx .xxxxxxxxxxxxxxxxx E xx 

This is the response you receive when you display floating-point 
registers; n is the even-number floating-point register whose 
contents are displayed on this line. The contents of the requested 
floating-point registers are displayed in both the internal 
hexadecimal format and the E format. One register is displayed per 
line. Multiple lines are displayed for a range of registers. 

ECR n = ctlreg1 ctlreg2 ctlreg3 ctlreg4 

This is the response you receive when you display control 
registers; n is the register whose contents are ctlreg1. The 
contents of the following consecutive registers are ctlreg2, 
ctlreg3, and so on. The contents of the requested control 
registers are displayed in hexadecimal. Up to four registers per 
line are displayed. Multiple lines are displayed if required. 

psw = xxxxxxxx xxxxxxxx 

The contents of the PSW are displayed in hexadecimal. 

section 4. Diagnostic Aids 487 



CAW = xxxxxxxx 

The contents of the CAW (hexadecimal location 48) are displayed in 
hexadecimal. 

CSW = xxxxxxxx xxxxxxxx 

The contents of the CSW (hexadecimal location 40) are displayed in 
hexadecimal. 

488 VM/370: System Logic and Problem Determination Guide 



Use the DUMP command to print the contents of various components of the 
virtual machine on the virtual spooled printer. The following items are 
printed: 

• virtual program status word (PSW) 

• General registers 

• Floating-point registers 

• control registers (if you have the ECMODE option specified in your 
VM/370 directory entry) 

• storage keys 

• virtual storage locations (1st level virtual storage only; see Usage 
Notes. ) 

IfQi~: Use 
storage. 

the NETWORK DUMP command to dump the contents of 3704/3705 
This command is described in the !~L]IQ: QE~E~iQ£~§ Q~ig~. 

The format of the DUMP command is: 

r----------------------------------------------------------------------1 
I DUMP I r , r r , , I 
I I ILhexloC11Ij-}lheXIOc2 I I I 
I I IThexloc1 11{: Ij!U~ I I [*dumpid] I 
I I I hexloc 111 L .J I I 
I I I .Q II r , I I 
I I L .J I {. } I bytecount I I I 
I I I I~!Q I I I 
I ILL .J .J I L _____________________________________________________________________ -1 

Lhexloc1 
Thexloc1 

hexloc1 
Q 

{
-\ hexloc2 
:f~1!Q 

is the first or only hexadecimal storage location to 
be dumped. If you enter L or T without operands, the 
contents of all virtual storage locations are dumped. 

The address, hexloc1, may be one to six hexadecimal 
digits; leading zeros are optional. If hexlcc1 is not 
specified, the dump begins at storage location o. 

If hexloc1 is not on a fullword boundary, it is rounded 
down to the next lower fullword. 

is the last hexadecimal storage location whose contents 
are to be dumped to the printer. The operand, hexloc2, 
must be equal to or greater than hexloc1 and within the 
virtual storage size. To dump to the end of storage, you 
can specify END instead of hexloc2 or you can leave the 
field blank, since the default is END. If you specify 
:END or -END, the contents of storage from hexloc1 to END 
are dumped. The contents of storage locations hexloc1 
through hexloc2 are printed with EBCDIC translation at 
the printer. The operand, hexloc2, may be from one to six 
hexadecimal digits; leading zeros are optional. 

section 4. Diagnostic Aids 489 



{ .}bytecount 
~~~ 

is a hexadecimal integer designating the number of bytes
of storage (starting with the byte at hexlocl) to be
dumped to the printer. The period (.) must be specified
to dump the contents of more than one storage location by
bytecount. The sum of hexloc1 and bytecount must be an
address that does not exceed the virtual machine size.
If this address is not on a fullword boundary, it is
rounded up to the next highest fullword. The value,
bytecount, must be one or greater and can be no longer
than six hexadecimal digits. Leading zeros are
optional.

*dumpid can be entered for descriptive purposes. If specified,
it becomes the first line printed preceding the dump
data. Up to 100 characters, with or without blanks, may
be specified after the asterisk prefix. No error
messages are issued, but only 100 characters are used,
including asterisks and embedded blanks.

1. Only first level storage (storage that is real to the virtual
machine) can be dumped. operating systems such as DO~/VS and OS/VS
have virtual storage of their own. This second level virtual
storage cannot be dumped directly. The user or the virtual
operating system is responsible for converting any second level
storage locations to first level storage locations before issuing
the command.

2. The CP DUMP command executes in an area of storage separate from
your virtual machine storage and does not destroy any portion of
your storage.

3. The DUMP command prints the virtual PSi and the virtual registers
(general, floating-point, and control). If only this information
is desired, at least one virtual address must be specified, such as

DUMP 0

4. The output format for the virtual storage locations is eight words
per line with the EBCDIC translation on the right. Each fullword
consists of eight hexadecimal characters. All the rest of the
information (PSi, general and floating-point registers, and storage
keys) is printed in hexadecimal. If you have the ECMODE option in
your VM/370 directory entry, the control registers are also
printed. To print the dump on the real printer, a CLOSE command
must be issued for the spooled virtual printer.

5. Normally, you should define beginning and ending dump locations in
the following manner:

dump Lhexloc1-hexloc2
dump Lhexloc1.bytecount
dump Lhexloc1-hexloc2 hexloc1.bytecount * dumpid

If, however, a blank follows the type character (L or T) or the
character and the hexloc, the default dump starting and ending
locations are assumed to be the beginning and/or end of virtual
storage. Blanks are used to separate operands or sets of operands
if more than one operand is entered on the same command line.
Blanks must not be used to the right or left of range or length

490 VM/370: system Logic and Problem Determination Guide

delimiters (: or - or .) , unless it is intended
default value of the m1ss1ng operand defined by the
all of the following produce full storage dumps:

dump 1 dump t: dump O-end
dump t dump 1. dump l:end
dump dump t. dump t:end
dump dump 0- dump O:end
dump . dump 0: dump l.end
dump 1- dump O. dump t.end
dump t- dump I-end dump O.end
dump 1: dump t-end

The following produces three full dumps:

dump 1 • t
dump - • •

to take the
blank. Thus,

6. When running with a discontiguous saved segment (DCSS), you can
dump storage locations outside the range of your virtual machine
size if they are within the DCSS. If there exist locations between
the upper limit of your virtual machine and the address at which
the DCSS was saved, an attempt to dump those locations (or
associated keys) will result in a "non-addressable storage" message
appearing in the printer output.

As the dump progresses,
terminal; indicating that
boundary:

the following
the dump is

message is displayed at
continuing from the next

the
64k

DUMPING LOC hexloc

where hexloc is the segment (64K) boundary address for the dump
continuation, such as 020000, 030000, or 040000.

If you press the Attention key,
while the message is being
terminated.

COMMAND COMPLETE

or its equivalent, on the terminal
displayed, the dump function is

is the response indicating normal completion of the dump function.

section 4. Diagnostic Aids 491

Use the SET command to control various functions within your virtual
system. The format of the SET command is:

..-­
SET

ACNT {ON}
OFF

MSG f ON }
lOFF

ACNT
MSG
WNG
IMSG
RUN
LINEDit
ECmode
ISAM
NOTRans
PAGEX

EMSG

TIMER

ASsist

r

{

ON } OFF
CODE
TEXT

{
ON } OFF
REAL

l' ON 1 r svc 1 ! I I I NOSVCI
L .J L .J

OFF

,
PFnn IIMMed I [pfdata1tpfdata21 ••• pfdatan~

I 1~1l!~I~g
L .J

PFnn [TAB n 1 n2 •••]

PFnn COpy [resid]

PFnn COPY [cuu]

controls whether accounting information is displayed at
the terminal or not (ON and OFF, respectively) when the
operator issues the CP ACNT command. When you log on
VM/310, ACNT is set on.

controls whether messages sent by the MSG command from
other users are to be received at the terminal. I~ ON is
specified, the messages are displayed. If OFF is
specified, no messages are received. In addition to
controlling messages generated by the MSG command,
spooling messages generated by users sending punch,

q92 VM/310: System Logic and Problem Determination Guide

WNG {ON }
OFF

IMSG {ON}
OFF

RUN {ON }
OFF

LI NEDIT {ON }
OFF

ECMODE

ISAM

printer or reader files to another virtual machine are
also suppressed if OFF is specified. When you log on
VM/370 r MSG is set on.

controls whether warning messages are displayed at the
terminal. If ON is specified r all warning messages sent
via the CP WARNING command from the system operator are
received at the terminal. If OFF is specified r no
warning messages are recei ved. When you log on VM/370 r'
WNG is set on.

controls whether certain informational responses issued
by the CP CHANGEr DEFINEr DETACH r ORDER r PURGEr and
TRANSFER commands are displayed at the terminal or not.
The descriptions of these CP commands tell which
responses are affected. If ON is specified the
informational responses are displayed. If OFF is
specified r they are not. The SET IMSG ON or OFF command
line has no effect on the handling of error messages set
by the SET EMSG command. When you log on VM/370 r IMSG is
set on.

controls whether the virtual machine stops when the
Attention key is pressed. ON allows you to activate the
Attention key (causing a read of a CP command) without
stopping your virtual machine. When the CP command is
entered r it is immediately executed and the virtual
machine resumes execution. OFF places the virtual
machine in the normal CP environment r so that when the
Attention key is pressed r the virtual machine stops.
When you log on VM/370 r RUN is set off.

controls the line editing functions. ON specifies that
the line editing functions and the symbols of the VM/370
system are to be used to edit virtual CPU console input
requests. This establishes line editing features in
systems that do not normally provide them. OFF specifies
that no character or line editing is to be used for the
virtual machine operating system. When you log on
VM/370 r LINEDIT is set on.

controls whether the virtual machine operating
system may use system/370 extended control mode and
control registers 1 through 15. control register zero may
be used with ECMODE either ON or OFF. When you log on
VM/370 r ECMODE is set according to the user's directory
option; ON if ECMODE was specified and OFF if not.

Note: Execution of the SET ECMODE {ONIOFF} command always
causes a virtual system reset.

controls whether additional checking is . performed
on virtual I/O requests to DASD in order to support the
as Indexed Sequential Access Method (ISAM). When you log
on VM/370 r ISAM is set according to the user's directory
options; ON if ISAM was specified and OFF if not.

Section 4. Diagnostic Aids 493

BOTRABS {OR }
OFF

PAGEX {ON }
OFF

EMSG \ ON \ OFF
CODE
TEXT

TIMER {ON }
OFF
REAL

controls CCW translation for CP. NOTRANS can be
specified only by a virtual machine that occupies the
virtual=real space. It causes all virtual I/O from the
issuing virtual machine to bypass the CP CCW translation
except under the following conditions:

• SIO tracing active
• 1st CCW not in the V=R region
• I/O operation is a sense command
• I/O device is a dial-up terminal
• I/O is for a non-dedicated device
• Pending device status

Any of the above conditions will force ccw translation.

To be in effect in the virtual=real environment, SET
NOTRANS ON must be issued after the virtual=real machine
is loaded via the IPL command. (IPL sets the NOTRANS
option to an OPP condition.)

controls the pseudo page fault portion of the
VM/VS Handshaking feature. PAGEX ON or OPF should only be
issued for an OS/VSl virtual machine that has the VM/VS
Handshaking feature active. It can only be specified for
a virtual machine that has the extended control mode
(ECMODE) option. PAGEX ON sets on the pseudo page fault
portion of handshaking; PAGEX OPP sets it off. When you
log on to VM/370, PAGEX is set OFF. Also, each time you
IPL VSl in your virtual machine PAGEX is set off. If you
want to use the pseudo page fault handling portion of
handshaking you must issue SET PAGEX ON after you IPL
VS 1.

controls error message handling. ON specifies that both
the error code and text are displayed at the terminal.
TEXT specifies that only text is displayed. CODE
specifies that only the error code is to be displayed.
OFF specifies that no error message is to be displayed.
When you log on VM/370, EMSG is set to TEXT.

If the console i~ being spooled, the OFF setting is
ignored for the spooled output and the full error message
appears in the spooled output. The other three settings
result in spooled output that matches the console
printout.

!Q1!: CMS recognizes EMSG settings for all error (E),
information (I), and warning (W) messages, but ignores
the EMSG setting and displays the complete message (error
code and text) for all response (R), severe error (S),
and terminal (T) messages.

controls the virtual timer. ON specifies that the
virtual timer is to be updated only when the virtual CPU
is running. OFF specifies that the virtual timer is not
to be updated. REAL specifies that the virtual timer is
to be updated during virtual CPU run time and also during
virtual wait time. If the REALTIMER option is specified
in your VM/370 directory entry, TIMER is set to REAL when
you log on; otherwise it is set to ON when you log on.

494 VM/370: System Logic and Problem Determination Guide

r ,
ION I
I I
L .I

OFF

r ,

r ,
ISVC I
INOSVCI
L .I

controls the availability of the virtual machine assist
feature for your virtual machine. The assist feature is
available to your virtual machine when you log on if (1)
the real CPU has the feature installed and (2) the system
operator has not turned the feature off. The SVC handling
portion of the assist feature is invoked when you log on
unless your VM/310 directory entry has the SVCOFF option.
Issue the QUERY SET command line to see if the assist
feature is activated and whether the assist feature or
VM/310 is handling SVC interruptions. All SVC 16
requests are passed to CP for handling, regardless of the
SVC and NOSVC operands. If you issue the SET ASSIST
command line and specify SVC or HOSVC while the virtual
machine assist feature is turned off, the appropriate
bits are set. Later, if the feature is turned on again,
the operand you specified while it was off becomes
effective. ON sets the assist feature on for the virtual
machine; OFF turns it off. SVC specifies that the assist
feature handles all SVC interruptions except SVC 16 for
the virtual machine; NOSVC means VM/310 handles all the
SVC interruptions. See the Y~L1IQ: 212!~~ f!Qg!~!!~~~~
§~iQ~ for information on how to use the assist feature.

PFnn IIMMED I [pfdatal#pfdata2t ••• pfdatan]
112~1!.!~~ I
L .I

nn

IMMED

DELAYED

defines a program function for a program function key on
~ 3217 Display Station and indicates when that function
1S to be executed. See the Y~L1IQ: I~~~!~~! Q2~~~§ ~~ig~
for a description of how to use the 3217 program function
keys.

is a number from 1 (or 01) to 12 that corresponds to
a key on a 3211. The program function is a
programming capability you create by defining a
series of VM/310 commands or data you want executed.
This series of commands executes when you press the
appropriate program function key.

specifes that the program
immediately after you press
key.

function is
the program

executed
function

specifies that execution of the program function is
delayed for a display terminal. When the program
function is entered, it is displayed in the input
area and not executed until you press the Enter key.
DELAYED is the default value for display terminals.

pfdata1#pfdata2t ••• pfdatan
defines the VM/310 command or data lines that
constitute the program function. If more than one
command line is to be entered, the pound sign (I)
must separate the lines. If you use the pound sign
(#) to separate commands that you want executed with
the designated PF key, you must precede the command

section 4. Diagnostic Aids 495

PFnn TAB n1 n2

line with JCP, turn line editing off, or precede
each pound sign with the logical escape character
("). For further explanation, see the "Usage Notes"
section that follows. If no command lines are
entered, PFnn is a null command. program functions
cannot be embedded within one another.

specifies a program function number to be associated with
tab settings on a terminal. The number of the PF key, nn
can be a value from 1 (or 01) to 12. For examples of how
this feature is used, see the !ttL1IQ: ~tt~ y§~~£~§ §Eig~.

TAB is a keyword identifying the tab function. The tab
settings (n1 n2 •••) may be entered in any order.

PFnn COPY [resid]
specifies that the program function key, numbered nn,
performs a COpy function for a remote 3270 terminal. nn
must be a value from 1 (or 01) to 12. The COpy function
produces a printed output of the entire screen display at
the time the PF key is actuated. The output is printed on
an IBM 3284, 3286 or 3288 printer connected to the same
control unit as your display terminal.

resid may be specified if more than one printer is
connected to the same control unit as your display
terminal. It is a three-character hexadecimal
resource identification number assigned to a
specific printer. If resid is entered, the printed
copy is directed to a specific printer; if not, the
copy is printed on the printer with the lowest resid
number. The resid numbers of the printers available
to your display terminal can be obtained from your
system operator. If only one printer is available,
as with the 3275 Display Station, resid need not be
specified.

PFnn COPY [cuu]
specifies that the program function key, numbered nn,
performs a COpy function for a local 3270 terminal. nn
must be a value from 1 (or 01) to 12. When the PF key is
actuated, the COpy function produces a printed output of
the entire local screen display except for the status
field which is replaced with blanks.

cuu is the real hardware address of the 3284, 3286, or
3288 printer, and may specify a printer that is on a
different control unit than the one to which your
3270 is attached. If you do not specify cuu, the
printer with the lowest cuu that is available on the
same control unit as your 3270 will be selected.

~Q1~: For both remote and local COpy functions:

You will receive a NOT ACCEPTED message, displayed in the screen
status field of your 3270, if any of the the following situations
occur:

• The printer is already busy, or all printers are busy.
• The printer is turned off.
• The printer is out of paper or is in any other intervention

required condition.

496 VM/370: System Logic and Problem Determination Guide

• The designated device is not a 328X type printer.
• The SET PFnn COPY command is invalid.

You may include your own identification on the printed output by
entering the data into the user input area of the screen before you
press the PF key. The identification appears on the last two lines
of the printed copy.

1. Both SET PFnn TAB and SET PFnn COpy are immediate commands: their
function is executed immediately upon pressing the appropriate
program function key. If you insert the keyword DELAYED after the
PFnn operand, the command will be accepted, however, the program
function will still be executed immediately.

2. If you use the SET PFnn command to set up a series of concatenated
commands, you should be aware of the following situation:

If you enter one of the following commands while in CMS mode:

SET PF02 IMMED Q RDR#Q PRTtQ PUN

-- or --

CP SET PF02 IMMED Q RDRtQ PRTIQ PUN

and then press the Enter key:

1. The Enter key causes immediate execution,

2. Only the Q PRT and Q PUN commands execute, and

3. Q PRT and Q PUN are stripped from the PF02 key
assignment leaving Q RDR, which was not executed.

The following examples demonstrate two methods for avoiding the
problem.

Enter one of the following commands while in CMS mode:

#CP SET PF02 IMMED Q RDRIQ PRT#Q PUN

-- or

CP SET PF02 IMMED Q RDR"IQ PRT"#Q PUN

or

SET PF02 IMMED Q RDR"tQ PRT"IQ PUN

Now press the Enter key.

CP assigns the three QUERY commands as functions of the PF02 key.
Pressing the PF02 key executes the three QUERY commands.

section 4. Diagnostic Aids 497

Enter the following command while in CMS mode:

SET LINEDIT OFF

and press the Enter key.

Then enter:

SET PF02 IMMED Q RDRIQ PRTtQ PUN

or

CP SET PF02 IMMED Q RDRtQ PRTIQ PUN

and press the Enter key.

CP assigns the three QUERY commands as functions of the PF02 key.

Then enter:

SET LINEDIT ON

and press the Enter key.

Pressing the PF02 key executes the three QUERY commands.

None

498 VM/370: System Logic and Problem Determination Guide

Use the STORE command to alter the contents of specified registers and
locations of the virtual machine. The contents of the following can be
al tered:

• Virtual storage locations (1st level virtual storage onlYi see Usage
Notes)

• General registers
• Floating-point registers
• Control registers (if available)
• Program status word

The STORE command can also save virtual machine data in low storage.
The format of the STORE command is:

r---,
STore hexloc

hexloc
Lhexloc

Lhexloc hexword1 [hexword2 •••]

Shexloc

{
Greg}
Xreg

{Yreg}

psw

STATUS

hexda ta •••

hexword1 [hexword2 •••]

hexdword1 [hexdword2 •••]

[hexword1] hexword2

hexword1 [hexword2 •••]
stores the specified data (hexword1
successive fullword locations starting
specified by hexloc. The smallest group of
that can be stored using this form is one
form (hexloc or Lhexloc) can be used.

[hexword2 •••]) in
at the address

hexadecimal values
fullword. Either

If hexloc is not on a fullword boundary, it is rounded down to
the next lower fullword.

hexword1 [hexword2 •••]
each represents up to sixteen hexadecimal digits. If the
value being stored is less than a full word (eight
hexadecimal digits), it is right-adjusted in the word and
the high order bytes of the word are filled with zeros.
If two or more hexwords are specified, they must be
separated by one or more blanks.

Shexloc hexdata •••
stores the data specified (hexdata •••) in the address
specified by hexloc, without word alignment. The shortest
string that can be stored is one byte (two hexadecimal
digits). If the string contains an odd number of characters,
the last character is not stored, an error message is sent,
and the function is terminated.

section 4. Diagnostic Aids 499

hex data •••
is a string of two or more hexadecimal digits with no
embedded blanks.

Greg hexword 1 [hexword2 •••]
stores the hexadecimal data (hexword1 [hexword2 •••]) in
successive general registers starting at the register
specified by reg. The reg operand must be either a decimal
number from 0-15 or a hexadecimal digit from O-F.

hexword1 [hexword2 •••]
each represents up to eight hexadecimal digits. If the
value being stored is less than a fullword (eight
hexadecimal digits), it is right-adjusted in the word and
the high order bytes of the word are filled with zeros.
If two or more hexwords are specified, they must be
separated by one or more blanks.

Ireg hexword 1 [hexword2 •••]
stdres the hexadecimal data (hexword1 [hexword2 •••]) in
successive control registers starting at the register
specified by reg. The reg operand must either be a decimal
number from 0-15 or a hexadecimal digit from O-F. If the
virtual machine is in basic control mode, you can store data
in register 0 only.

hexword1 [hexword2 •••]
each represents up to eight hexadecimal digits. If the
value being stored is less than a full word (eight
hexadecimal digits), it is right-adjusted in the word and
the high order bytes of the word are filled with zeros.
If two or more hexwords are specified, they must be
separated by one or more blanks.

Yreg hexdword1 [hexdword2 •••]
stores the hexadecimal data (hexdwordl [hexdword2 •••]) in
successive floating-point registers starting at the register
specified by reg. The reg operand must be a digit from 0-7.
If reg is an odd number, it is adjusted to the preceding even
number.

hexdwordl [hexdword2 •••]
each represents up to sixteen hexadecimal digits. If the
value being stored is less than a double word (sixteen
hexadecimal digits), it is left justified in the
doubleword and low order positions are filled with zeros.
If two more more hexdwords are specified, they must be
separated by one or more blanks.

PSi [hexwordl] hexword2
stores the hexadecimal
the virtual machine's
hexword2 is specified,
the PSi.

data in the first and second words of
program status word (PSW). If only
it is stored into the second word of

[hexwordl] hexword2

STATUS

each represents up to eight hexadecimal digits. These
operands must be separated by one or more blanks. If the
value being stored is less than a full word (eight
hexadecimal digits), it is right-adjusted in the word and
the high order bytes of the word are filled with zeros.

stores selected virtual machine data
locations of the virtual machine,

in certain low storage
simulating the hardware

500 VM/370: System Logic and Problem Determination Guide

store status facility. These locations are permanently
assigned locations in real storage. To use the STATUS
operand, your virtual machine must be in the extended control
mode. The STATUS operand should not be issued for CMS virtual
machines or for DOS virtual machines generated for a CPU
smaller than a system/360 Model 40. The STATUS operand stores
the following data in low storage:

Decimal
.!gg!:g§§

216
224
256
352
384
448

Hexadecimal
!gg!:g§2. ___ _

D8
EO

100
160
180
lCO

Length
!!!_It!1g§

8
8
8

32
64
64

Data
CPU-Timer
Clock Comparator
Current PSi
Floating-point registers 0-6
General registers 0-15
Control registers 0-15

1. Only first level storage (storage that is real to the virtual
machine) can be stored into. operating systems such as DOS/VS and
OS/VS have virtual storage of their own. This second level virtual
storage cannot be stored into directly. The user or the virtual
operating system is responsible for converting any second level
storage locations to first level storage locations.

2. The operands may be combined in any order desired, separated by one
or more blanks, for up to one full line of input. If an invalid
operand is encountered, an error message is issued and the store
function is terminated. However, all valid operands entered,
before the invalid one, are processed properly.

3. If you combine the operands for storing into storage, registers,
the PSW, or the status area on a single command line, all operands
must be specified; default values do not apply in this case.

4. If the STORE command is used by your virtual machine to alter the
contents of a shared segment, your virtual machine will be placed
in non-shared mode with your own copy of the shared segment. A
fresh copy of the shared segment is then loaded for use by the
other users.

5. with the STORE command, data is stored
with fullword boundary alignment or in
alignment.

either in units of one word
units of one byte without

6. The STORE STATUS command stores data in the extended logout area.
The STORE STATUS command stores CPU Timer and Clock comparator
values that may then be displayed at the terminal via the DISPLAY
command. The procedure is the only way to get timer information at
the terminal.

STORE COMPLETE

is the response at the successful completion of the command.

section 4. Diagnostic Aids 501

Use the SYSTEM command to simulate the action of the RESET and RESTART
buttons on the real co.puter console, and to clear storage. The format
of the SYSTEM command is:

r---,
I SyStem I {CLEAR } I
I I RESET I
I I RESTART I L __ .~

CLEAR

RESET

clears virtual storage and virtual storage keys to binary
zeros.

clears all pending interruptions and conditions in the virtual
machine.

RESTART simulates the hardware system RESTART function by storing the
current PSi at virtual l~cation eight and loading, as the new
PSi, the doubleword from virtual location zero. Interrupt
conditions and storage remain unaffected.

1. The RESET function and the CLEAR function leave the virtual machine
in a stopped state.

2. After issuing the SYSTEM command with RESET or CLEAR specified,
either STORE a PSi and issue BEGIN or issue BEGIN with a
hexadecimal storage location specified, to resume operation. The
virtual machine automatically restarts at the location specified in
the new PSi (which is loaded from the doubleword at location zero)
after the SYSTEM RESTART command is processed.

STORAGE CLEARED - SYSTEM RESET

is the response given if the command SYSTEM CLEAR is entered.

SYSTEM RESET

is the response given if the command SYSTEM RESET is entered.

If the command SYSTEM RESTART is entered, no response is given; the
virtual machine resumes execution at the address in the virtual PSi
loaded from virtual storage location zero.

502 VM/370: System Logic and Problem Determination Guide

Use the TRACE command to trace specified virtual machine activity and to
record the results at the terminal, on a virtual spooled printer, or on
both terminal and printer. The format of the TRACE command is:

r--,
r ,

TRace SVC \ I PRINter I
I/O I r , r , I
PROgram I I !:~!H!i!!~! I I!Q!!.!!!!I I
EXTernal I IBOTH I IRUN I I
PRIV I L .J L .J I
SIO I I
CCW I OFf I
BRanch L .J

INSTruct
ALL
CSW

END
1--1
I lMore than one of these activities may be traced by using a single I
I TRACE command. For example: I
I I
I TRACE SVC PROGRAM SIO PRINTER I L ___ ---J

SVC traces virtual machine SVC interruptions.

I/O traces virtual machine I/O interruptions.

PROGRAM traces virtual machine program interruptions.

EXTERNAL traces virtual machine external interruptions.

PRIV traces all virtual machine non-I/O privileged instructions.

SIO traces TIO, CLRIO, HIO, HDV, and TCH instructions to all
virtual devices. Also traces SIO and SIOF instructions for
nonconsole and nonspool devices only.

CCW traces virtual and real CCWS for nons pool nonconsole device
I/O operations. When CCW tracing is requested, SIO and TIO
instructions to all devices are also traced.

BRANCH traces virtual machine interruptions, PSW instructions, and
successful branches.

INSTRUCT traces all instructions, virtual machine interruptions, and
successful branches.

ALL

CSW

traces all instructions, interruptions, succesful branches,
privilege instructions, and virtual machine I/O operations.

provides contents of virtual and real channel status words at
I/O interruption.

section 4. Diagnostic Aids 503

END terminates all tracing activity and prints a termination
message.

PRINTER directs tracing output to a virtual spooled printer.

~~B~l!Ab directs tracing output to the terminal (virtual machine
console).

BOTH directs tracing output to both a virtual spooled printer and
the terminal.

OFF halts tracing of the specified activities on both the printer
and terminal.

RUN

stops program execution after the trace output to the terminal
and enters the CP command environment.

Note: If a Diagnose code X'008' is being traced, NORUN has no
effect and program execution does not stop.

continues the program execution after
terminal has completed and does not
environment.

the trace output to the
enter the CP command

1. If your virtual machine has the virtual=real option and NOTRANS set
on, CP forces CCW translation while tracing either SIO or C:CW. When
tracing is terminated with the TRACE END command, CCW translation
is bypassed again.

2. If the virtual machine assist feature is enabled on your virtual
machine, CP turns it off while tracing SVC, PRIV, BRANCH, INSTRUCT,
or ALL activities. After the tracing is terminated with the TRACE
END command line, CP turns the assist feature on again.

3. If trace output is being recorded at the terminal, the virtual
machine stops execution and CP command mode is entered after each
output message. This simulates the instruction step function.

However, all processing associated with the event being traced will
be completed and, therefore, execution may have stopped after an
instruction has executed and the PSW has been updated.

For example, a privileged instruction traced with the PRIV operand
will stop after the privileged instruction executes, whereas the
same instruction traced with the ALL operand will stop before the
instruction executes.

To determine whether the traced instruction has executed~ display
the virtual machine PSW.

To resume operation of the virtual machine, the BEGIN command must
be entered. If the RUN operand is specified, the virtual machine is
not stopped after each output message.

4. If trace output is being recorded.on a virtual spooled printer, a
CLOSE command must be issued to that printer in order for the trace
output to be printed on the real printer.

5. Successful bran~hes to the next sequential instruction and
branch-to-self instructions are not detected by TRACE.

504 VM/370: System Logic and Problem Determination Guide

6. Instructions that modify or examine the first two bytes of the next
sequential instruction cause erroneous processing for BRANCH and
INSTRUCT tracing.

7. When tracing on a virtual machine with only one printer, the trace
data is intermixed with other data sent to the virtual printer. To
separate trace information from other data, define another printer
with a lower virtual address than the previously defined printer.
For example, on a system with OOE defined as the only printer,
define a second printer as OOB. The regular output goes to OOE and
the trace output goes to OOB.

8. If the BRANCH, INSTRUCT~ or ALL activities are being traced by a
virtual machine using a shared system, the virtual machine is
placed in nonshared mode with its own copy of the shared segment.
A fresh copy of the shared segment is then loaded for use by the
other users.

9. IIO operations for virtual channel-to-channel adapters, with both
ends connected to the same virtual machine, cannot be traced.

10. Use the TRACE command to trace specified virtual machine activity
and to record the results at the terminal, at a virtual printer, or
at both. This command is useful in debugging programs because it
allows you to trace only the information that pertains to a
particular problem.

11. If your virtual machine is doing IIO that results in program
controlled interruptions (PC Is), and you are tracing IIO or CSW
activity, some of the PCls may not be traced. This situation
arises when the system is extending its free storage area and the
additional demand on available free storage would cause a system
abend.

The following symbols are used in the responses received from TRACE:

~I!~Q!
vvvvvv
tttttt
rrrrrr
xxxxxxxx
yyyyyyyy
ss
ns
zz

zzzzzzzz
type

V vadd
R radd
mnem
int
code
CC n
IDAL

==)

~~~B!B9 
virtual storage address 
virtual transfer address or new PSi address 
real storage address 
virtual instruction, channel command word, csw status 
real instruction, CCW 
argument byte (SSM-byte) for SSM instruction 
new system mask after execution of STOSM/STNSM 
low order byte of R1 register in an execute instruction 

(not shown if R1 register is register 0) 
referenced data 
virtual device name (DASD, TAPE, LINE, CONS, RDR, 

PRT, PUN, GRAF, DEV) 
virtual device address 
real device address 
mnemonic for instruction 
interruption type (SVC, PROG, EXT, I/O) 
interruption code number (in hexadecimal) 
condition-code number (0, 1, 2, or 3) 
Indirect data address list 
virtual machine interrupt 
privileged operations 
transfer of control 

Section 4. Diagnostic Aids 505 



TRACE STARTED 

This response is issued when tracing is initiated. 

TRACE ENDED 

This response is issued when tracing is suspended. 

I/O VVVVVV TCH xxxxxxxx type vadd CC n 

~!Q, ~1~!Q, ~!Q, Qf ~~! 

I/O vvvvvv mnem xxxxxxxx type vadd CC n type radd CSW XXXX 

I/O vvvvvv mnem xxx xxx xx type vadd CC n type radd CSW XXXX CAW vvvvvvvv 

CCW vvvvvv xxxxxxxx xxxxxxxx rrrrrr yyyyyyyy yyyyyyyy 
CCW IDAL vvvvvvvv vvvvvvvv IDAL OOrrrrrr OOrrrrrr 
CCW SEEK xxxxxxxx xxxxxx SEEK yyyyyyyy yyyy 

The IDAL or SEEK line is included only if applicable. The virtual IDAL 
is not printed if the real CCW operation code does not match the real 
CCW. 

!!H~!!!QS;l!Q!f 1!!!~!!!~: 

~I!.!i!~gJ~!! !!!§!f!!£!!Q!l: 

· .. vvvvvv SSM xxx xxx xx ss (normal SSM) 
· .. vvvvvv SSM xxxxxxxx ss tttttt (switch to/from translate mode) 
· .. vvvvvv STOSM xxxxxxxx ns (normal STOSM) 
· .. vvvvvv STOSH xxxxxxxx ns tttttt (switch to translate mod.e) 
· .. vvvvvv STNSM xxxxxxxx ns (normal STNSM) 
· .. vvvvvv STNSM xxxxxxxx ns tttttt (switch from translate mode) 
· .. vvvvvv LPSW xxxxxxxx tttttttt tttttttt (WAIT bit on) 
· .. vvvvvv LPSW xxxxxxxx ==> tttttttt tttttttt (WAIT bit nCit on) 
· .. vvvvvv mnem xxxxxxxx (all others) 

vvvvvv EX xxxxxxxx zz vvvvvv mnem xxxx xxxxxxxx 

For an executed instruction, where zz (see preceding explanation of 
symbols) is nonzero, the mnemonic for the executed instruction is given 
as if the zz byte had been put into the instruction with an OR 
opera tion. 

vvvvvv mnem xxxxxxxx xxxx 

506 VM/370: system Logic and Problem Determination Guide 



vvvvvv mnem xxxxxxxx ==) tttttt 

*** vvvvvv iot code ==) tttttt 

!LQ !~1EBBgR%!g~ (First line given only if "CSW" vas specified): 

CSW V vadd xxxxxxxx xxxxxxxx R radd yyyyyyyy yyyyyyyy 
*** vvvvvv I/O vadd ==) tttttt CSW xxxx 

~B!~fB IBA£~: (ALL option selected) 

Entry for 'branch from' instruction 

vvvvvv mnem xxxxxxxx tttttt 

Entry for 'branch to' instruction 

==) vvvvvv mnem xxxxxxxxxxxx 

section 4. Diagnostic Aids 507 



CP real machine debugging is reserved for Class C users (system 
programmers) and Class E users (system analysts). CP has facilities to 
examine data in real storage (via the DCP and DMCP commands) and to 
store data into real storage (via the STCP command). There is no 
facility to examine or alter real machine registers, PSW, or storage 
words. 

Remember, real storage is changing even as you issue the CP commands 
to examine and alter it. 

system programmers and analysts may also want to use the CP internal 
trace table. This table records events that occur on the real machine. 

508 VM/370: System Logic and Problem Determination Guide 



Use the DCP command to display the contents of real storage locations at 
the terminal. 

If an invalid operand is entered, the DCP command terminates. 
However, any previous valid operands are processed before termination 
occurs. The format of the DCP command is: 

r ---------------------~ 
I 
I DCP 

1 r ,r r " 
1 ILhexIOC111{-}1 hexloc2 I 1 

1 1 1 Thexloc 11 1 : 1 ~!!.Q 1 1 
1 1 1 hexloc 11 1 L .I 1 
I 1 1 .Q 1 1 1 
1 1 L .I I 1 
1 1 I r , I 
1 I I{. lIbytecount I 1 
1 I I I~!Q I I 
1 I L L.I.I L _______ _ 

Lhexloc1 
Thexloc 1 

hexloc1 
o 

r , 
1 hexloc21 
1 lHH! 1 
L .I 

r , 

specifies the first storage location to be displayed. If 
hexloc1 is the only operand, it specifies the only storage 
location to be displayed. If hexloc1 is not specified, L 
or T must be specified and the display begins with storage 
location o. If hexloc1 is specified and L or T is not 
specified, the display is in hexadecimal. T specifies 
that an EBCDIC translation is to be included with the 
hexadecimal display. L specifies that the display is to 
be in hexadecimal only. If hexloc1 is followed by a 
period and is not on a fullword boundary, it is rounded 
down to the next lower fullword. 

specifies that a range of locations is to be displayed. 
To display the contents of one or more storage 
locations by specified storage address location the "-" 
or ":" must be used. The hexloc2 operand must be 1- to 
6-hexadecimal digits; leading zeroes need not be 
specified. In addition, The hexloc2 operand must be 
equal to hexloc1 and it should not exceed the size of 
real storage. If END is specified, real storage from 
hexloc1 through the end of real storage is displayed. If 
hexloc2 is not specified, END is the default. Note that 
this occurs only if "-" or ":" follows the first 
operand. 

{.}Ibytecountl is a hexadecimal integer designating the number of 
I ~!~ 1 bytes of real storage (starting with the byte at 
L .I hexloc1) to be displayed on the terminal. The sum of 

hexloc1 and the bytecount must be an address that does 
not exceed the size of real storage. If this address is 
not on a fullword boundary, it is rounded up to the next 
higher fullword. The bytecount operand must be a value 
of 1 or greater and may not exceed six hexadecimal 
digits. 

Section 4. Diagnostic Aids 509 



Normally, a user will or should define the beginning and ending 
locations of storage in the following manner: 

dcp Lhexlocl-hexloc2 
dcp Thexlocl-hexloc2 
dcp hexlocl:hexloc2 
dcp hexlocl.bytecount 
dcp hexlocl:hexloc2 hexlocl.bytecount 

Note that no blanks can be entered between the limit or range symbols 
(: or - r.) or any of the operands except for the blank or blanks 
between the command name and the first operand. 1 blank is also 
required between each set of operands when more than one set cf operands 
are entered on one com.and line. 

However, if a blank immediately follows the designated type character 
(T or L), DCP displays all of real storage. If the next operand is 
either a colon (:), a hyphen (-), or a period (.) followed by a blank 
character, the system again defaults to a display of all storage 
locations as this operand assumes a second set of operands. 

~2!~: Blanks separate operands or sets of operands if more than one 
operand is entered on the same command line. Blanks should not occur on 
the right or left of range or length symbols, unless it is intended to 
take the default value of the missing operand defined by the blank. 

The following are examples of DCP entries that produce full storage 
displays. 

dcp 1 dcp 1- dcp 0- dcp t:end 
dcp t dcp 1 : dcp 0: dcp t:end 
dcp - dcp t: dcp l-end dcp O:end 
dcp dcp 1 • dcp t-end dcp 1.end 
dcp . dcp t • dcp O-end dcp O.end 

The following displays all of storage three times because 
embedded blanks: 

dcp 1 . t 

Requested locations are displayed in the following format: 

xxxxxx = wordl word2 word3 word4 [key] *EBCDIC translation* 

of the 

where xxxxxx is the real storage location of wordl. "wordl" is 
displayed (word aligned) for a single hexadecimal specification. 
Up to four words are displayed on a line. If required, multiple 
lines are displayed. The EBCDIC translation is displayed aligned 
to the next lower 16-byte boundary if Thexloc is specified. 
Nonprintable characters display as a ".". If the location is at a 
2K page boundary, the key for that page is also displayed. The 
output can be stopped and the command terminated by pressing the 
ATTN key (or its equivalent). 

510 VM/370: system Logic and Problem Determination Guide 



Use the DMCP command to print the contents of real storage locations on 
the user's virtual spooled printer. The output format is eight words 
per line with EBCDIC translation. Multiple storage locations and ranges 
may be specified. To get the output printed on the real printer, the 
virtual spooled printer must be terminated with a CLOSE command. The 
format of the DMCP command is: 

r -, 
I I r , r r , , I 
I DMCP I I Lhexloc 1 "{-}I hexloc2 I I [ *d umpid ] I 
I I IThexlocl II : I lH!.Q I I I 
I I I hexloc 1 II L J I I 
I I I Q II I I 
I I L .1'1 I I 
I I I r , I I 
I I I {. } I bytecoun t I I I 
I I I I~!Q I I I 
I I L L J .I , L __________________________________________________________________ ----J 

Lhexloc1 
Thexloc1 

hexlocl 
o 

r , 

{
-.. } I hexloc21 

I END I 
L .I 

r , 

specifies the first storage location to be dumped. If 
hexloc1 is the only operand, it specifies the only 
storage location to be dumped. If hexlocl is not 
specified, L or T must be specified and dumping starts 
with storage location O. An EBCDIC translation is 
included with the dump contents. If hexlocl is followed 
by a period and is not on a fullword boundary, it is 
rounded down to the next lower fullword. 

is a range of real storage locations to be dumped. 
To dump to the end of real storage, hexloc2 may be 
specified as END or not specified at all, in which case 
END is assumed by default. 

{.}Ibytecountl is a hexadecimal integer designating the number of 
I END I bytes of real storage (starting with the byte 
L .I at hexlocl) to be typed at the printer. The sum of 

*d umpid 

hexloc1 and the bytecount must be an address that does 
not exceed the size of real storage. If this address is 
not on a fullword boundary, it is rounded up to the next 
higher fullword. If the "." is used for a range, hexloc2 
is defined as the number of hexadecimal storage locations 
(in bytes) to be dumped starting at hexloc1. If hexloc2 
is specified as a length in this way, it must have a 
value such that when added to hexlocl it will not exceed 
the storage size. 

is specified for identification purposes. If specified, 
it becomes the first line printed preceding the dump 
data. Up to 100 characters with or without blanks may be 
specified after the asterisk prefix. If dumpid is 
specified, hexloc2 or bytecount must be specified. The 
asterisk (*) is required to identify the dumpid. 

section 4. Diagnostic Aids 511 



Normally, a user would define beginning and ending dump locations in the 
following manner: 

dmcp Lhexloc-hexloc 

-- or --

dmcp hexloc.bytecount 

Note that there are no blanks between length or range symbols (: or -
or.) or between any of the operands except for the blank(s) between 
the command and the first operand. A blank is also required between 
each set of operands when more than one set of operands are entered. 
Note, only one period (.), colon (:), dash (-) or no delimiter may be 
used within each set of operands. 

If, however, a blank immediately follows the designated type 
character, the default dump starting and ending locations are assumed to 
be the beginning and/or end of virtual storage. Similarly, if the range 
or length symbol separates the first character from a blank or END, all 
of real storage is dumped. 

!2~~: Blanks separate operands or sets of operands if more than one 
operand is entered on the same command line. Blanks should net occur on 
the right or left of the range or length symbol, unless it is intended 
to take the default value of the missing operand defined by the blank. 
Thus, all of the following produce full storage dumps. 

dmcp 1 
dmcp t 
dmcp -
dmcp 
dmcp . 

Each of the 
embedded blanks: 

dmcp 1 • t 
dmcp - • • 

dmcp 1-
dmcp t-
dmcp 1: 
dmcp t: 
dmcp 1. 

following 

dmcp t. dmcp t-end 
dmcp 0- dmcp O:end 
dmcp 0: dmcp l.end 
dmcp o. dmcp l.end 
dmcp I-end dmcp O.end 

produces three full dumps because of the 

!2~~: In cases where multiple storage ranges or limits are specified on 
one command line and the line contains errors, command execution 
successfully processes all correct operands to the encountered error. 
The encountered error and the remainder of the command line is rejected 
and an appropriate error message is displayed. 

As the dump proceeds, the following message appears at the terminal 
indicating that the dump is continuing from the next 64K boundary: 

DUMPING LOC hexloc 

where "hexloc" is the segment (64~ address for the dump continuation, 
such as 020000, 030000, 040000. 

If the user signals attention on the terminal !Ail~ the above message 
is displayed, the dump ends. 

COMMAND COMPLETE 

indicates normal completion of the dump. 

512 VM/370: System Logic and Problem Determination Guide 



Use the LOCATE command to find the addresses of CP control blocks 
associated with a particular user, a user's virtual device, or a real 
system device. The control blocks and their use are described in the 
VM/370: Data Areas and Control Block Logic. The format of the LOCATE 
command is: 

r 
I LOCate 
I 
L 

userid 

vaddr 

raddr 

VMBLOK 

VMBLOK 
xxxxxx 

RCHBLOK 
xxxxxx 

{
userid [Vaddr]} 
raddr 

----, 
I 
I 

--I 

is the user identification of the logged on user. The address 
of this user's virtual machine block (VMBLOK) is printed. 

causes the virtual channel block (VCHBLOK), virtual control 
unit block (VCUBLOK), and virtual device block (VDEVBLOK) 
addresses associated with this virtual device address to be 
printed with the VMBLOK address. 

causes the real channel block (RCHBLOK), real control unit 
block (RCUBLOK), and the real device block (RDEVBLOK) 
addresses associated with this real device address to be 
printed. 

xxxxxx 

VCHELeK 
xxxxxx 

RCUBLOK 
xxx xxx 

VCUBLOK 
xxxxxx 

RDEVBLOK 
xxxxxx 

VDEVBLOK 
xxxxxx 

section 4. Diagnostic Aids 513 



Use the MONITOR command to initiate or terminate the recording of events 
that occur in the real machine. This recording is always active after a 
VM/370 IPL (manual or automatic). The events that are recorded in the 
CP internal trace table are: 

• External interruptions 
• SVC interruptions 
• Program interruptions 
• Machine check interruptions 
• I/O interruptions 
• Free storage requests 
• Release of free storage 
• Entry into scheduler 
• Queue drop 
• Run user requests 
• start I/O 
• unstack I/O interruptions 
• storing a virtual CSW 
• Test I/O 
• Halt device 
• unstack IOBLOK or TRQBLOK 
• NCP BTU (Network Control program Basic Transmission Unit) 

Use the trace table to determine the events that preceded a CP system 
failure. The format of the MONITOR command for tracing events in the 
real machine is: . 

r , 
I MONitor 

{
STArt CPTRACE} 
STOP CPT RACE 

I 
I I L ____ _ 

------I 

START CPTRACE 

STOP 

starts the tracing of events that occur on the real machine. 
The events are recorded on the CP internal trace table in 
chronological order. When the end of the table is reached, 
recording continues at the beginning of the table, overlaying 
data previously recorded. 

CPTRACE 
terminates 
recording 
internal 
restarted 
command. 

the internal trace table event tracing. Event 
ceases but the pages of storage containing the CP 
trace table are not released. Tracing can be 
at any time by issuing the MONITOR START CPT RACE 

COMMAND COMPLETE 

The MONITOR command was processed successfully. 

514 VM/370: System Logic and Problem Determination Guide 



Use the QUERY command to request system status and machine configuration 
information. (For 3704 or 3705 Communication controllers and remote 
3270 resources see the Class A and B NETWORK command.) Not all operands 
are available in every privilege class. 

Operands available to the specified privilege classes are given below. 
The format of the Class A and E QUERY command is: 

r ---------------------------------------, 
I Query 
I 
I 

PRIORity userid II 
SA,Ssist L _______ _ 

{
PAGing } I 

-------1 

PAGING displays the current system paging activity. 

PRIORITY userid displays 
userid. 
but can 
command. 

the current priority of the specified 
This is established in the VM/370 directory 

be overridden by the SET PRIORITY nn 

SASSIST displays the current status of the Virtual Machine 
Assist feature for the VM/370 system. 

PAGING nn, SET mm, RATE nnn/SEC INTERVAL=XX:xx:xx 

nn 

mm 

nnn/SEC 

specifies the percentage of time the system was in 
page wait during this time interval. 

is the system paging activity index (threshold 
value). This value affects the paging rate and degree 
of multiprogramming that VM/370 tries to attain. The 
value mm is normally 16. 

is the current CP paging rate in pages per second. 

XX:XX:XX is the time interval between the issuance of QUERY 
PAGING commands. 

section 4. Diagnostic Aids 515 



userid PRIORITY = nn 

SASSIST 

nn is the the assigned priority of the specified user. The 
lower the value, the higher the priority. 

ON or OFF is indicates that the virtual Machine Assist feature 
is enabled or disabled from the system. 

The format of the Class B QUBRY command is: 

r----------------------------------------------------------------------, 
Query 

l 
DAsd 
TApes 
LINES1 
UR 
GRaf 
ALL 

DAsd volid 
TDsk 
STORage 
raddr 

r , 
1.!£li!!i! I 
IOFFline I 
IFREe I 
I ATTach I 
IALL I 
L .J 

SYStem raddr 
DUMP 

! 
I I 
11Query LINES is not effective for 3704/3705 resources unless thel 
I 3704/3705 is operating in 2701, 2702, 2703 Emulation Program (EP) I 
I mode. For 3704/3705 Communications Controllers operating in Networkl 
I Control Program (NCP) or Partitioned Emulator Program (PEP) mode usel 
I the NETWORK QUBRY command. I L___________ --' 

DASD 

TAPES 

LINES 

UR 

GRAF 

ALL 

DASD volid 

displays the real addresses of disk or drum devices. 

displays the real addresses of magnetic tape units. 

displays the real addresses of communication lines. 

displays the real addresses of unit record dev:ices (card 
reader, card punches, printers) • 

displays the locally attached display devices. 

(used as a first operand) displays all devices and the 
size of real storage. 

displays the active or free status of the specified DASD 
volume. 

516 VM/370: System Logic and Problem Determination Guide 



TDSK displays all the currently allocated temporary disk space 
(TDSK) from all available system owned volumes assigned 
to virtual machine users. 

STORAGE displays the size of real storage. 

raddr displays the status of the device at the specified 
address. 

SYSTEM raddr displays the userid, virtual address, and access mode of 
virtual disks which reside on the specified channel and 
control unit address raddr belonging to logged on users. 

DUMP displays at the operator's terminal the type of device 
and device address of the unit designated to receive 
abnormal termination dumps. 

ACTIVE displays the status of only the active devices within the 
group specified. This is the default. Active devices do 
not include devices that are "free" or "offline". An 
active device is one that is in use by a user or the 
system. 

OFFLINE displays only the devices in an "offline" status within 
the group specified. An offline device is one that is 
not available for access by any user or the system. 

FREE displays all the devices that are not currently in use by 
the system or a user on the system. Free devices do not 
include "offline" devices. A free device is one that is 
not in use by a user or the system. 

ATTACH displays all the 
on the system. 
device. 

devices that are dedicated to any user 
An attached device is also an active 

ALL (as the second operand) displays the status of all 
devices within the group specified. The status is typed 
in the order of "active", "free" and "offline" and is 
equivalent to the response from entering 

QUERY type ACTIVE 
QUERY type FREE 
QUERY type OFFLINE 

Produces the same results as if the following commands vere issued: 

QUERY STORAGE 
QUERY UR 
QUERY LINES 
QUERY DASD 
QUERY TAPES 
QUERY GRAF 

section 4. Diagnostic Aids 517 



DASD raddr ATTACH TO userid vaddr 

is displayed if the real device specified by raddr is attached 
to a user's (userid) virtual machine at virtual address vaddr. 

DASD raddr CP SYSTBM volid nnn 

is displayed if the real device designated by raddr is allocated 
to the system for use as user's minidisks. nnn is the number of 
active user's minidisks on the physical disk and volid is the 
volume serial number of the real disk. 

DASD raddr CP OWNED volid nnn 

is displayed if the real device designated by raddr is used by 
the system for paging and spooling activity. nnn is the number 
of active user's minidisks (if any) on the physical disk and 
volid is the volume serial number of the real disk. 

TAPE raddr CP SYSTEM 

is displayed if the real tape device designated by raddr is 
attached to CP for its exclusive use. 

TAPE raddr ATTACH TO userid vaddr 

is displayed if the real tape device designated by raddr is 
attached to a user's (userid) virtual machine at virtual address 
vaddr. 

{
PRT} {STARTED \ 
PUN raddr DRAINED f SYSTEM CLASS = { 

SEP } 
a.. • NOSEP 

RDR { STARTED} 
raddr DRAINED SYSTEM 

is displayed for each unit record device assigned to -the system 
for spooling activity. 

raddr 

DRAINED 

is the real device address (cuu). 

indicates that the device is not currently available 
for processing. A START command must be issued to 
activate the device. 

518 V8/370: System Logic and Problem Determination Guide 



STARTED indicates that the device is available for spooling 
activity. 

a... specifies the classes serviced by the output device. 

NOSEP 

Up to four classes may be serviced by an output 
device. No blanks or commas are allowed between 
classes. 

indicates the device was started with the NOSEP 
option. 

SEP indicates the device was started without the NOSEP 
option. 

Note: The separator (SEP) option applies to printer 
output where the edge of the fanfo1ded continuous 
forms are heavily printed. This indicates to the 
spooling operator the beginning and end of adjacent 
spool files. 

PUN raddr ATTACH TO userid vaddr 
{ 

PRT} 

RDR 

is displayed if the device is attached to a user's virtual 
machine at vaddr. 

If the unit record device is currently active with a spool file, the 
following additional response is also given: 

{ 
PRT } { PRINTING} 
PUN raddr t PUNCHING userid FILE file RECDS norecs COpy nn a typ 

RDR raddr READING userid FILE file 

userid is the name of the spool file owner. 

file is the spool file spoo1id number. 

norecs is the total file logical record count. 

nn is the number of copies remaining for output, where 01 
indicates the last copy. 

a is the spool file class. 

typ is the originating device type (PRT, PUN, CON). 

{
LINE} raddr LOGON AS userid 
CONS 

indicates that the user represented by userid is currently 
logged on at the terminal located at the address raddr. 

section 4. Diagnostic Aids 519 



LINE raddr ATTACH TO userid vaddr 

indicates that the communication line at raddr is attached to 
the virtual machine represented by userid at virtual address 
vaddr. 

GRAF raddr LOGON AS userid 

indicates that the user represented by userid is currently 
logged on at the terminal located at real address raddr. 

GRAF raddr ATTACH TO userid vaddr 

indicates that the display device at real 
attached to the virtual ~achine represented 
virtual address vaddr. 

address raddr is 
by userid at the 

This command produces a response for each offline device in the 
following format: 

type raddr OFFLINE 

Multiple responses are displayed in the following format: 

type raddr OFFLINE, 

Note: In the above responses the term type refers to one or more of the 
following device types: 

1.IE§! 
DASD 
TAPE 
LINE 
RDR 
PRT 
PUN 
GRAF 
CONS 
CTCA 
CTLR 
DEV 

~~~!!!!!g 
Direct access device
Magnetic tape units
Communication line
Card reader
Line printer
Card punch
Graphics device
Console
Channel to channel adapter
3704/3705 communications controller
Any other device

This command produces a response for each device that is not active or
offline in the following format:

type raddr :FREE

520 VM/370: System Logic and Problem Deteraination Guide

Por unit record devices the response is:

type raddr DRAINED

Note: This response implies that no spool files are queued for this
devIce.
Por communication devices the response is:

{
ENABLED }

type raddr DISABLED

For DASD devices with mounted volumes the response is:

type raddr {FREE }
volid

Multiple responses are displayed in the following format:

type raddr FREE,

The command response is given in either the "active" or "free" format
depending upon the device status.

This command displays all the currently allocated user TDSK space from
all available system-owned volumes. One entry of the following format
is produced for each TDSK:

use rid vaddr nnn

use rid is the virtual machine identification.

vaddr is the user's virtual device address.

nnn is the number of cylinders allocated.

!Q!~: If the operator does a QUERY to any real device or group of
devices (such as QUERY DASD) the following message occurs for all
devices in a not-ready status and the CPU alarm rung:

type raddr INT REQ

section 4. Diagnostic Aids 521

STORAGE = xxxxxK

displays the size of real storage (xxxxx) in multiples of 1024
bytes.

The response to this command depends upon the type of device located at
raddr.

See the QUERY DASD, TAPES, UR, GRAF, and LINES responses.

This command requests the number of user minidisks residing on the
physical disk located at raddr. The response for each minidisk is given
in the following format:

userid vaddr mode,

userid is the identification of the user who owns the minidisk.

vaddr is the virtual address by which the user refers to the
minidisk.

mode is the type of access the user has: either R/O or R/W, or
nnn for the number of cylinders of TDSK space allocated.

type raddr DUMP UNIT {CP }
ALL

indicates that the device of device type "type" located at raddr
is the system dump unit.

522 VM/370: System Logic and Problem Determination Guide

The format of the Class D QUERY command is:

r

Query

FILES

CLASS c

use rid

*

READER
RDR

PRINTER
PRT

PUNCH
PCH

HOLD

--------,
r ,

Files [CLass c] luseridl

Reader
Printer
PUnch

HOld

rr
II ALL
II CLass
I L

I * I
L .J

,
I

al
.J

,

I spoolid

[userid]1
I
I
I

L .J

_______________________________ ----J

displays the number of spooled input and output files. The
Class D user receives the total count in the system. Files
that are currently being processed are not included in the
totals.

displays only the spool files of the specified class.
CLASS is omitted then all spool classes are examined.

If

displays only the spool files owned by the specified userid.
If userid is omitted then spool files owned by all users are
examined.

displays only the spool files of the logon user who issued the
QUERY command.

displays basic information concerning reader spool files.

displays basic information concerning printer spool files.

displays basic information concerning punch spool files.

!Q~~: The basic information displayed is:

userid of the owner of the spool file. If exam~n~ng files
for a specific user (userid option), the userid indicates
the originator of the spool file.

• spool file spoolid number

• Class and originating device type

• Number of logical records in the file

• Number of copies specified for the file

• File hold status

displays a list of users whose output is being held by the
HOLD command.

ALL displays additional information for all spool files examined.

Section 4. Diagnostic Aids 523

spoolid displays additional information for the specified spool file.
The spool identification (spoolid) is a VM/370 generated
sequential nu~ber assigned to each spool file.

The additional information displayed is:

• Date and time the file was created
• Filename and filetype of the file (if any)
• Distribution code of the file

~~E~X 111~~ [CLass c] [userid]

FILES: {=~n} RDR, { '=~n } PRT, { :~n} PUN

r
v

OWNERIDl
use rid

displays the total number of spool files in the system, of a
particular class, or for a particular userid.

,
r , I
I ALL I I
I Class a I [userid] I
L J I
spoolid I

J

Basic Information , .---Additional Information--,
v v V

r ,
FILE CLASS RECDS CPY HOLD IDATE TIME NAME TYPE DIST I
file a typ norecs nn stat Imm/dd hh:mm:ss name type code I

L J

Only one file is listed for a QUERY READER, QUERY PRINTER, or
QUERY PUNCH command if the spoolid operand is specified.

The DATE, TIME, NAME, TYPE, and DIST information is displayed
only when the following commands are issued:

QUERY {READER } {ALL . }
PRINTER spoo11d
PUNCH

1!h!g:~:

userid

file

a

is the identification of the user who owns the file.

is a unique, system assigned number which is used by
VM/370 to identify the file.

is the spool file class.

lOWNERID heading the title line for the
ORIGINID when the userid operand is
represents the originator of the file.

spool file data is altered to
used. In that event, ORIGINID

524 VM/370: system Logic and, Problem Determination Guide

typ is the originating device type (PRT, PUN, CON, or
RDR) •

norecs is the number of logical records contained in the
file.

nn

stat

mm/dd

is the number of copies specified for the file.
no effect for reader files.)

is the file hold status and is either

NONE - no hold
USER user hold

is the date the file was created in month/day.

(Has

hh:mm:ss is the actual time of the creation of the file in
hours:minutes:seconds.

filename is the filename assigned to the file (if any). If the
file has a 24-character data set name (dsname), only
20 characters are displayed. These characters extend
from the "name" field through the "type" field.

filetype is the filetype assigned to the file (if any).

distcode is the distribution code of the file.

HOLD : {NO } RDR, {NO } PR T, {NO } PUN
nnn nnn nnn

userid -{ ~~~~ , •••
PRT
PUN

The first response displays the total number of files within the
system which are retained in the SYSTEM HOLD status. The second
response indicates the type of hold (if any) for any user in the
system for which HOLD is in effect. The user who issues QUERY
HOLD may receive, depending upon the status of his spooled
files, the first response, the second response, or both
responses.

section 4. Diagnostic Aids 525

The format of the Class A, B, C, D, E, F, and G QUERY command is:

r-- ,
I Query I {LOGmSg J I
I I Names I
I I user~ [userid] I
I I userl.d I L __ ----J

LOGMSG

NAMES

USERS

userid

displays the log messages of the day.

displays a list of all the users logged on
address of the line to which each is connected.
is disconnected, DSC is displayed instead
address.

and the real
If the user

of the line

displays the number of logged on users and the number of users
dialed to other virtual machines. If use rid is specified, the
userid and device address of the user's terminal are displayed
if he is logged on. If the specified user is not logged on, a
message to that effect occurs. Use the USERS operand if the
userid is the same as an operand (or its minimum truncation)
of the QUERY command.

Note: It is possible for the number of users logged on as
indIcated by the 'NAMES' operand to differ from the number
logged on as indicated by the 'USERS' operand. The number of
users in the process of logging on and logging off accounts
for this difference.

displays the userid and the device address of the user's
terminal if he is logged on. If the user is not legged on, a
message to this effect occurs.

* logmsg text line

* 109ms9 text line n

logmsg additional text lines

All lines (both those with and without an asterisk) in the log
message fil~ are displayed.

526 VM/370: System Logic and Problem Determination Guide

userid

userid

- {DSC }'
raddr

- {DSC }, •••
raddr

Lists all logged on users. If the user is currently connected,
the real address to which he is connected is displayed (raddr).
If he is not connected to the system, DSC is displayed.

nnn USERS, mmm DIALED

nnn is the total number of logged on users.

mmm is the total number of users logically attached via the
DIAL command to virtual machines.

Note: The term DIALED means that the line is not available to CP because
It-Is logically attached to a logged-on user and is a part of that
user's virtual machine operation.

userid - raddr

displays the real address (raddr) to which the specified user is
connected.

section 4. Diagnostic Aids 527

Use the STCP command to alter the contents of real storage. The real
PSi or real registers cannot be altered with this command. The format
of the STCP command is:

r---,
I STCP I {{ hexloc} hexword1 [hexword2 •••] } I
I I Lhexloc I
I I I
I I Shexloc hexdata I L ____________________ ~

hexloc
Lhexloc

Shexloc

hexword

hexdata

stores the data given in hexword1 [hexword2 •••] in successive
fullword locations starting at the address specified by
hexloc. The smallest group of hexadecimal values that can be
stored using this specification is one fullword. Data is
aligned to the nearest fullword boundary. If the data being
stored is less than a fullword (8-hexadecimal digits), it is
right-adjusted in the word and the high order bytes of the
word are filled with zeros. Either specification (hexloc or
Lhexloc) may be used.

stores the data given in hexdata in the address specified by
hexloc without word alignment. The shortest string that can
be stored is one byte (2-hexadecimal digits). If the string
contains an odd number of characters, the last character is
not stored. An error message occurs and the function ends.

specifies up to 8-hexadecimal digits. If less than eight
digits are specified, the string is right justified in a
fullword and left-filled with zeros. If two or more hexwords
are specified, they must be separated by at least one blank.

specifies a string of two or more hexadecimal digits with no
embedded blanks.

STORE COMPLETE

528 VM/370: System Logic and Problem Determination Guide

Use the DASD Dump Restore (DDR) program to dump, restore, copy, or print
VM/370 user minidisks. The DDR program may run as a standalone program,
or under CMS via the DDR command.

The DDR program has five functions:

1. Dumps part or all of the data from a DASD device to tape.

2. Transfers data from tapes created by the DDR dump function to a
direct access device. The direct access device must be the same as
that which originally contained the data.

3. Copies data from one device to another of the same type. Data may
be reordered, by cylinder, when copied from disk to disk. In order
to copy one tape to another, the original tape must have been
created by the DDR DUMP function.

4. Prints selected parts of DASD and tape records in hexadecimal and
EBCDIC on the virtual printer.

5. Displays selected parts of DASD and tape records in hexadecimal and
EBCDIC on the terminal.

TO generate the VM/370 starter system from the distribution tape, the
standalone RESTORE function must be used.

INVOKING DDR UNDER CMS

The format of the DDR command is:

r----------
I I
I DDR I [fn
I I
I I
L

r ,
ft Ifml]

I.! I
L .J

---------------.-------------.,

section 4. Diagnostic Aids 529

r ,
fn ft Ifml

1* I
L ~

is the identification of the file containing
statements for the DDR program. If
identification is provided, the DDS program
obtain control statements from the console.
defaults to * if a value is not provided.

the control
no file

attempts to
The filemode

!Qi~: If you use the CMS DDR command, CMS ignores the SYSPRINT control
statement and directs the output to the CMS printer OOE.

INVOKING DDR AS A STANDALONE PROGRAM

To use DDR as a standalone program, the operator should IPL it from a
real or virtual IPL device as he would any other standalone program.
Then indicate where the DDS program is to obtain its control statements
by responding to prompting messages at the console.

Note: Be aware that DDR when run as a standalone
error recovery support. However, when DDR is
virtual machine environment, the I/O operation
has built-in error recovery facilities).

DDR CONTROL STATEMENTS

program does not have
invoked in CMS, in a

is performed by CP (CP

DDR control statements describe the intended processing and the needed
I/O devices. I/O definition statements must be specified first.

All control statements may be entered from either the console or the
card reader. Only columns 1 to 71 are inspected by the program. All
data after the last operand in a statement is ignored. An output tape
must have the DASD cylinder header records in ascending sequences;
therefore, the extents must be entered in sequence by cylinder. Only
one type of function -- dump, restore, or copy -- may be performed in
one execution, but up to 20 ~tatements describing cylinder extents may
be entered. The function statements are delimited by an INPUT or OUTPUT
statement, or by a null line if the console is used for input. If
additional functions are to be performed, the sequence of control cards
must be repeated. If you do not use INPUT or OUTPUT control statements
to separate the functions you specify when the input is read from a card
reader or CMS file, an error message (DMKDDR702E) is displayed.
However, the remainder of the input stream will be checked for proper
syntax, but no further DDR operations will be performed. only those
statements needed to redefine the I/O devices are necessary for
subsequent steps. All other IIO definitions remain the same.

To return to CMS, enter a null line (carriage return) in response to
the prompting message (ENTER:). To return directly to CP, key in #CP.

The PRINT and TYPE statements work differently from other DDR control
statements in that they operate on only one data extent at a time. If
the input is £rom a tape created by the dump function, it must be
positioned at the header record for each step. The PRINT and TYPE
statements have an implied output of either the console (TYPE) or system
printer (PRINT). Therefore, PRINT and TYPE statements need not be
delimited by an INPUT or OUTPUT statement.

530 VM/370: System Logic and Problem Determination Guide

I/O DEFINITION STATEMENTS

The I/O definition statements describe the tape, DASD, and printer
devices used while executing the DASD Dump Restore program.

An INPUT or OUTPUT statement describes each tape and DASD unit used.
The format of the INPUT/OUTPUT statement is:

r--~------------------,
I I r, I
I INput I cuu type Ivolserl [(options •••)] I
I OUTput I laltapel I
I I L.I I
I I QE:th2!!§ : I
I I r 1r ,r' I
I I ISKip nn I IMOde 6250 I IREWindl I
I I I~~!E Q I IMOde 1600 I IQ!J~~~I I
I I L .I I MOde 800 I I LEave I I
I I L.I L.I I L __ ._ _ _____________________________ --1

INPUT

OUTPUT

cuu

type

volser

al tape

indicates that the device described is an input device.

indicates that the device described is an output device.

is the unit address of the device.

is the device type (2314, 2319, 3330, 3330-11, 3340-35,
3340-70, 3350, 2305-1, 2305-2, 2400, 2420, or 3420) (no
7-track support for any tape devices). Specify a 3410 device
as a 3420, a 3340-70F as a 3340-70, and a 3333 as a 3330.
Specify a 3350 that is in 3330-1 or 3330-11 compatibility mode
as a 3330 or 3330-11. Specify a 3344 as a 3340-70, and
specify 3350 for a 3350 operating in native mode (as opposed
to compatibility mode).

Note: The DASD Dump Restore (DDR) program, executing in a
vIrtual machine, uses I/O DIAGNOSE 20 to perform I/O
operations on tape and DASD devices. DDR under CMS requires
that the device type entered agree with the device type of the
real device as recognized by VM/370. If there is a conflict
with device types, the following message is issued:

DMKDDR708E INVALID OPTION

However, if DDR executes standalone in a virtual machine, DDR
uses DIAGNOSE 20 to perform the I/O operation if the device
types agree. If the device types do not agree, error message
DMKDDR708E is issued.

is the volume serial number of a DASD device. If the keyword
"SCRATCH" is specified instead of the volume serial number, no
label verification is performed.

is the address of an alternate tape drive.

section 4. Diagnostic Aids 531

~Q~~: If multiple reels of tape are required and "altape" is
not specified, DDR types the following at the end of the reel:

END OF VOLUME CYL xxx HD xxx, MOUNT NEXT TAPE

After the new tape is mounted, DDR continues automatically.

SKIP nn
o

r ,

forward spaces nn files on the tape. nn is any number
up to 255. The SKIP option is reset to zero after the
tape has been positioned.

MODE 162501 causes all output tapes that are opened for the first
116001 time and at the load point to be written or read in
I 8001 the specified density. All subsequent tapes mounted
L ~ are also set to the specified density. If no mode

REWIND

UNLOAD

LEAVE

option is specified, then no mode set is performed and
the density setting remains as it previously was.

rewinds the tape at the end of a function.

rewinds and unloads the tape at the end of a function.

leaves the tape positioned at the end of the file at
the end of a function.

!~!~: When the wrong input tape is mounted, the message DMKDDR709E
is displayed and the tape will rewind and unload regardless of
options REWIND, UNLOAD, or LEAVE being specified.

Use the SYSPRINT control statement (in the standalone DDR virtual
machine only) to describe the printer that is to print data extents
specified by the PRINT statement. It also can print a map of the
cylinder extents from the DUMP, RESTORE, or COpy statement. If the
SYSPRINT statement is not provided, the printer assignment defaults to
ODE. CMS ignores the SYSPRINT statement when you invoke DDR as a
command under CMS, and CMS always directs the output to OOE. The format
of the SYSPRINT control statement is:

r ------------------,
I SYsprint
L

cuu

cuu specifies the unit address of the device.

I
-~

The function statements tell the DDR program what action to perform.
The function commands also describe the extents to be dumped, copied, or
restored. The format of the DUMP/COPY/RESTORE control statement is:

532 VM/370: System Logic and Problem Determination Guide

r--,
I I r , I
I DUmp I Icyl1 [To] [cyl2 [Reorder] [To] [cyI3]] I I
I COpy I ICPvol I I
I REstore I 1111 I I
I I INUcleus I I
I I L -' I L ___ --'

DUMP requests the program to move data from a direct access volume
onto a magnetic tape or tapes. The data is moved cylinder by
cylinder. Any number of cylinders may be moved. The format
of the resulting tape is:

Record 1: a volume header record, consisting
descrIbing the volUmes.

of data

Record 2: a track header record, consisting of a list of count
fields to restore the track, and the number of data records
written on tape. After the last count field the record
contains key and data records to fill the 4K buffer.

!!~£QIg 3: track
records -packed
truncated.

data
into

records, consisting
4K blocks, with

of
the

key and data
last record

Record 4: either the end-of-volume (EOV) or end-of-job (EOJ)
traIler- label. The end-of-volume label contains the same
information as the next volume header record, except that the
ID field contains EOV. The end-of-job trailer label contains
the same information as record 1 except that the cylinder
number field contains the disk address of the last record on
tape and the ID field contains EOJ.

COpy requests the program to copy data from one device to another
device of the same or equivalent type. Data may be recorded
on a cylinder basis from input device to output device. A
tape-to-tape copy can be accomplished only with data dumped by
this program.

RESTORE requests the program to return data that has been dumped by
this program. Data can be restored only to a DASD volume of
the same or equivalent device type from which it was dumped.
It is possible to dump from a real disk and restore to a
minidisk as long as the device types are the same.

cyl1 [TO] [cyl2 [REORDER] [TO] [eyI3]]
only those cylinders specified are moved, starting with the
first track of the first cylinder (cyI1), and ending with the
last track of the second cylinder (cyI2). The REORDER operand
causes the output to be reordered, that is, moved to different
cylinders, starting at the specified cylinder (cyI3) or at the
starting cylinder (cyl1) if "cyI3" is not specified. The
REORDER operand must not be specified unless specified limits
are defined for the operation; the starting and, if required,
ending cylinders (cyl1 and cyl2) must be specified.

CPVOL specifies that cylinder 0 and all active directory and
permanent disk space are to be copied, dumped, or restored.
This indicates that both source and target disk must be in CP
format, that is, the CP Format/Allocate program must have
formatted them.

section 4. Diagnostic Aids 533

ALL specifies that the operation is to be performed on all
cylinders.

NUCLEUS specifies that record 2 on cylinder 0, track 0 and the nucleus
cylinders are dumped, copied, or restored.

• Each track must contain a valid home address~ containing the real
cylinder and track location.

• Record zero must not contain more than eight key and/or data
characters.

• Flagged tracks are treated just as any other track for all 2314,
2319, 3340, and 2305 devices. That is, no attempt is made to
sUbstitute the alternate track data when a defective primary track is
read. In addition, tracks are not inspected to determine whether
they were previously flagged when written. Therefore, volumes
containing flagged tracks should be restored to the same cylinders of
the volume from which they were dumped. The message DMKDDR715B occurs
each time a defective track is dumped, copied or restored, and the
operation continues.

• Flagged tracks for 3330 and 3350 devices are handled automatically by
the control unit and may never be detected by the program. The
program may detect a flagged track if, for example, no a.lternate
track is assigned to the defective primary track. If a flagged track
is detected by the program, the message DMKDDR715E occurs and the
operation terminates.

INPUT 191 3330 SYSRES
OUTPUT 180 2400 181 (MODE 800
SY SPR INT OOF
DUMP CPVOL
INPUT 130 3330 MINIOl
DUMP 1 TO 50 REORDER 51
60 70 101

This example sets the density to 800 bpi, then dumps all pertinent
data from the voluae labeled SYSRES onto the tape that is mounted on
unit 180. 1£ the program runs out of space on the first tape, it
continues dumping onto the alternate device (181). A map of the dumped
cylinders is printed on unit OOF while the program is dumping. When the
first function is coaFlete, the volume labeled MINIOl is dumped onto a
new tape. Its cylinder header records are labeled 51 to 100. A map of
the dumped cylinders is printed on unit OOF. Next, cylinders 60 to 70
are dumped and labeled 101 to 111. This extent is added to the cylinder
map on unit OOF. When the DDR processing is complete, the tapes are
unloaded and the program stops.

If cylinder extents are being defined from the console, the following
is displayed:

ENTER CYLINDER EXTENTS
ENTER:

534 VM/370: System Logic and Problem Determination Guide

For any extent after the first extent, the message

ENTER NEXT EXTENT OR NULL LINE
ENTER:

is displayed.

The user may then enter additional extents to be dumped, restored, or
copied. A null line causes the job step to start.

~Qt~: When a cylinder map is printed on the virtual printer (OOF as in
the previous example) a heading precedes the map information. Module
DMKDDR controls the disk, time and zone printed in the heading. Your
installation must apply a local modification to DMKDDR to insure that
local time, rather than GMT (Greenwich Meridian Time), is printed in the
heading.

Use the PRINT and TYPE function statement to print or type (display) a
hexadecimal and EBCDIC translation of each record specified. The input
device must be defined as direct access or tape. The output is directed
to the system console for the TYPE function, or to the SYSPRINT device
for the PRINT function. (This does not cause redefinition of the output
unit definition.) The format of the PRINT/TYPE control statement is:

r
I PRint
I TYpe
I
I
L

cyll [hhl [rrl]] [To cy12 [hh2 [rr2

2.E!12.!!§:
[Hex] [Graphic] [Count]

------------------,
]]] [(options ••• [)]] I

I
I
I
I

cyll is the starting cylinder.

hhl is the starting track. If present, it must follow the cyll
operand. The default is track zero.

rrl is the starting record. If present, it must follow the hhl
operand. The default is home address and record zero.

TO cy12 is the ending cylinder. If more than one cylinder is to be
printed or typed "TO cy12" must be specified.

hh2 is the ending
operand. The
cylinder.

track. If present, it must follow the cy12
default is the last track on the ending

rr2 is the record ID of the last record to print. The default is
the last record on the ending track.

HEX prints or displays a hexadecimal representation of each
record specified.

GRAPHIC prints or displays an EBCDIC translation of each record
specified.

section 4. Diagnostic Aids 535

COUNT

PRINT 0 TO 3

prints or displays only the count field for each record
specified.

Prints all of the records from cylinders 0, 1, 2, and 3.

PRINT 0 1 3

Prints only one record, from cylinder 0, track 1, record 3.

PRINT 1 10 3 TO 1 15 4

prints all records starting with cylinder 1, track 10, record 3, and
ending with cylinder 1, track 15, record 4.

The example in Figure 63 shows the information displayed at the
console (TYPE function) or system printer (PRINT function) by the DDR
program. The listing is annotated to describe some of the data fields.

DMKDDR725R

DMKDDR711R

ORIGINAL INPUT DEVICE WAS (IS) LARGER THAN OUTPUT DEVICE.
DO YOU WISH TO CONTINUE? RESPOND YES OR NO:

~!E!~~~!!2~:
RESTORE function - The number of cylinders on the original
DASD input unit is compared with the number of cylinders on
the output device.

COpy function - The input device contains more cylinders
than the output device.

Qeg£~!Q£ 1£~iQ~: The operator must determine if the COpy or
RESTORE function is to continue. The response is either
yes or no.

VOLID READ IS volid2 [NOT volidl]
DO YOU WISH TO CONTINUE? RESPOND YES NO OR REREAD:

volidl - The volume serial number from
control statement; volidl is
was entered.

the input or output
displayed only if it

volid2 - is the volume serial number from the VOLl label on
the DASD device specified by the control
statement.

~1§!gm !£!iQll: The system waits for a response.

If you respond "yes", the operation will continue.

If you respond "no", and the input is from cards or a eMS
file, the program is terminated after scanning the
rema~n~ng statements for syntax. Otherwise, the next
statement is solicited from the console.

536 VM/370: System Logic and Problem Determination Guide

DMKDDR7l6R

DMKDDR717R

If you respond "reread", the volume specified will be read
again.

]Qig: A new volume may have been mounted in the interim.

y§g£ A£i!Q~: Respond "yes", "no", or "reread."

NO VOLl LABEL FOUND FOR volser
DO YOU WISH TO CONTINUE? RESPOND YES NO OR REREAD:

E!El~n~iiQ~: The program was unable to find a record with
the key of VOLl on cylinder 0 track 0 and was not able to
read record 3 on cylinder 0 track 0 for the specified
volume serial number (volid). The volume serial number is
displayed only if specified in the INPUT or OUTPUT control
statement.

~y§t~~ ~£t!2~: The system waits for a response.

If you respond "yes", the system will continue with the job
steps.

If you respond "no" and the input is from cards or a CMS
file, the program will be terminated after scanning the
remaining statements for syntax. Otherwise, the next
statement will be solicited from the console.

If you respond "reread", the program will attempt to reread
the specified device.

Q§~£ !£i!~n: Respond to the message as indicated.

DATA DUMPED FROM volidl TO BE RESTORED to volid2
DO YOU WISH TO CONTINUE? RESPOND YES NO OR REREAD:

J2~El~!!~iiQ~:
volidl - The volume serial number of the input tape.

volid2 -- The volume serial number of the output DASD
device that is to receive the data from volidl.

21§igm !£iiQ~: The system waits for a response.

If you respond "yes". the restore function will continue.

If you respond "no" and the input is from cards or a CMS
file, the program will be terminated after scanning the
remaining statement for syntax. Otherwise, the correct
statement will be solicited from the console.

If you respond "reread", the input tape will be backspaced
to the start of the file, and the volume header label will
be reread.

User Action: If the wrong input tape is mounted, replace
the-tape--and respond REREAD. Otherwise, respond in the
appropriate manner.

ENTER CYLINDER EXTENTS
ENT ER:

This message is received only if you are entering input from your
tErminal.

section 4. Diagnostic Aids 537

END OF VOLUME CYL xxx HD xx, MOUNT NEXT TAPE

DDR continues processing, after the mounting of the next tape
reel.

RESTORING volser

volser is the volume serial number of the disk dumped. The
RESTORE operation has begun.

COPYING volser

volser is the volume serial number described by the input unit.
The COpy operation has begun.

DUMPING volser

volser is the volume serial number described by the input unit.
The dumping operation has begun.

PRINTING volser

volser is the volume serial number described by the input unit.
The PRINT opration has begun.

END OF DUMP

The DUMP operation has ended.

END OF RESTORE

The RESTCRE operation has ended.

END OF COpy

The COPY operation has ended.

END OF PRINT

The PRINT operation has ended.

END OF JOB

All specified operations have completed.

ENT ER:

Prompts input from the terminal. A null line (Press the Enter key
or equivalent) causes control to return to CMS, if the virtual
machine is in the CMS environment.

538 VM/370: system Logic and Problem Determination Guide

110I11~ Addr~ss
R"~nrd 0

ro -;,h;:;:" I::;h ;;;;- is :;/e,:- - l
I • A he"ding is "rinled conlaining Ihe I

Re,'llrd I -+--__

A-_-_~
dala lellglh rr"m Ihe enlllli field firsl in
d~dll1;11. then in hexadecimal I • The dala is Ihell prinled in hex"decinwl I

?
wilh g,aphic lllier"re'"'i,,n 10 thc right

_ ~'~n~ ___ J
040961000 DATA LENGTH _---------

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE.

1st lIalfllf-+----II_CYL 019 HD 00 REC 002 COUNT 0013000b02 OOM
Rl'f..'ord ~,IfI,. ..

No'e: nala Lenglh field repeated
in heading.

Ilome Address
Record 0

2nd lIalf uf
Re..:ord 2

02472~DATA LENGTH

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE.

ABOVE RECORD WRITTEN USING RECORD OVERFLOW 0
r::;--------,

'

0 This stalemenl indicales Ihat Ihis pori ion I
of Rc(oru 2 was written uSlIlg the Wrtte

I
Special Count. Key, and Data command. Thc
remainder of.Record .2 is fOllnd on the next I

L -.:,ck.:,:he'::: re~ a~7Rceord O~ .J

CYL 019 HD 01 HOME ADDRESS 0000130001 RECORD ZERO 0013000100 00 0008 00000000 00000000 .

CYL 019 HD 01 REC 002 COUNT 0013000102 00 0658--

01624 0658 DATA LENGTH

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE.

~ - -.- - - - - - - ., e I r I he key lengl h field is not lero

I • A heading is prinled conlaining Ihe key lenglh I

~
firsl in decimal. then ill hexadecimal. I • The key is Ihell prinled ill hexadecimal wilh I

G ________ ..J ;Y
graphic inle'prelal,oll 10 the nght(nol shown here).

Record J ---1---_ CYL 019 HD 01 REC 003 COUNT 0013000103 80 OF80

00128 0080 KEY LENGTH _--~----

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE

0396B OF80 DATA LENGTH

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE.

Record" --+---- CYL 019 HD 01 REC 004 COUNT 0013000104 00 0000 G)

END OF FILE RECORD

Figure 63. Annotated Sample of Output from
of the DDR Program

re--------,
I Whellever 11ll' dala !ellglh I,eld IS lero I
I an end-of-file priliis lIext I
L _______I

the TYPE and PRINT Functions

section 4. Diagnostic Aids 539

A wait state is produced by one of the following modules:

DMKCCH
DMKCKP
DMKCPI
DMKDMP

DMKMCH
DMKPAG
DMKSAV
DMKWRM

When a wait state occurs, the Program status Word (PSW) is displayed at
the operator's console in the following format:

xxyyyyyyzzzzzwww

xxyyyyyy is the left half of the program status word. This half may be
either:

03yyyyyy Valid wait condition.
work.

The system is waiting for

OOyyyyyy system wait caused by an error condition.

zzzzzwww is the right half of the program status word. The wait state
code is found in the right half of the PSW when the CPU is in
the wait state. The wait state code, www, indicates the error
condition.

wait
fQQ~
001

002

003

~!El~~~t!2~
The machine check handler
Probable hardware error.

The channel check handler
probable hardware error.

found

found

an unrecoverable failure.

an unrecoverable failure.

A system failure
performed.

occurred before a valid warm start was

004 This wait state code is loaded by DMKDMP when a console, or an
output device is not operational, or when a console or output
device produces an inexplicable error status. Probable hardware
error.

005 DMKCPI could not find an operational primary or alternate
console. Probable hardware error.

006 This is a normal wait when a system shutdown is completed.

007 A program check, a machine check, or a permanent I/O error was
found by the checkpoint program.

008 Checkpoint and system shutdown are complete. If the system is
running under an alternate console, error messages DMKCKP910I,
DMKCKP911w, DMKCKP960I, and DMKCKP9611 are not displayed.

009 An error condit~on occurred that prevents a warm start.

If the system is running under an alternate console, error
messages DMKCKP9101 and DMKCKP911W are not displayed.

540 VM/370: System Logic and Problem Determination Guide

OOA A machine check occurred while DMKSAV was attempting to save or
restore a page image copy of the nucleus on a SYSRES device.
probable hardware error.

OOB A machine check occurred before initialization was complete.

OOC An attempt was made to IPL from a disk that did not contain a
system. Thus, the wait state code OOC entered on disk by the
Format/Allocate program is encountered.

OOD .The machine size defined during system generation is greater than
the real machine size, or a hardware error has occurred which
inhibits VM/370 from using the required storage.

OaF Hardware errors are being received on VM/370 paging device(s).
The wait state that causes this code is preceded by message

DMKPAG415E CONTINUOUS PAGING ERRORS FROM DASDxxx

010 The SYSRES device, on which DMKSAV is attempting to write a page
image copy of the nucleus, is not mounted or not ready.

all An unrecoverable error, other than a machine check, occurred while
DMKSAV attempted to write a page image copy of the nucleus on the
SYSRES device.

012 The normal wait state code loaded by DMKSAV when it has completed
loading the nucleus.

Section 4. Diagnostic Aids 541

Figure 64 lists the CP ABEND, their cause and required action.

r
ABEND
Code

BL DOO 1

------'----------------------------------,

Reason for ABEND

Register 8 should con­
tain a pointer to the
RDEVBLOK for the user's
terminal. This routine
(DMKBLDVM) attempts to
create and partially
initialize a VMELOK for
a user. DMKBLDVM abnor­
mally terminates if
general register 8 does
not contain a pointer
to the user.

Action

Verify that general register 8
points to an RDEVBLOK for a ter­
minal. If it does not, there is
probably an error in the calling
program. Identify the calling
program by means of the return
address and the base register in
the save area pointed to by
general register 13. Then, at­
tempt to identify the source of
the incorrect RDEVBLOK address.

I
I

BLD002 I pages are being re­
I leased but the page
I invalid bit is not on

Examine the dump and determine
why the page was released without
the page invalid bit turned on.

I in the page table entry.,
---1

CFG010 I DMKCFGCL was called to , Identify the caller by the return I
I perform an unsupported I address and base register in the ,
I function. The function I SAVEAREA pointed to by register 1
1 request may be found in 1 13 to identify the source of the 1

CK SOO 1

CKS002

, SAVEWORK1, byte 2. 1 unsupported function request. 1
1 supported values are: I I
I X' 01' LOAD SYS , 1
I X'02' FIND SYS , 1
, X' 04' PURGE SYS I 1

The map for dynamic I The map should be allocated via a
checkpoint has not been , call to entry points DMKCKSIN or
allocated prior to a , DMKCKSWM fro~ DMKWRM. Check that
call to DMKCKSPL. I DMKWRM does, in fact, call one of

The spool file identi­
fication in the map and
on the checkpoint cyl­
inder do not match.

, these entry points and that they
, do allocate a map.

In this case, (1) DKKCKSWM or
DMKCKSIN did not set up the map
properly, (2) a call to DMKCKSPL
caused the mismatch, or (3) the
SFBLOK was released but the' map
was not updated.

CKS003 1 No function was speci- Check location SAVERTN in the
, fied in the call to save area pointed to by general
, DMKCKSPL. register 13. This indicates
I which routine called DMKCKSPL
, I with insufficient data.

1----------------------------,-------
1 CKS004 I A spool file to be de- , The SFBLOK for the file should
1 I leted cannot be found , have been queued previously on
, , on the system printer, , either the printer, punch, or
I , punch, or reader file 1 reader file chain by DKMCKSWM
I I chains. , when performing a CKPT start.
I' , Check for an error in this logic. L __________________________________ ---'

Figure 64. CP ABEND Codes (Part 1 of 15)

542 VM/370: System Logic and Problem Determination Guide

r
ABEND
Code

CPIOOl

CPI002

CPI003

CVTOOl

DRDOOl

DSPOOl

Reason for ABEND

The RDEVBLOK for ·the
DASD on which the
SYSRES volume is mount­
ed cannot be located,
or the IPL volume is
not the SYSRES volume.
The SYSRES volume is
specified in the
SYSRES macro in the
DMKSYS module.

A valid system direc­
tory file could not be
located.

The system TOD clock is
not operational.

The system TOD clock is
in error or is not op­
erational.

The device code index
in the compressed DASD
address for the system
dump file points to an
RDEVELOK for an invalid
DASD. The valid DASDs
are 2305 series, 3330
series, 3340 series,
3350 series or 2314/
2319.

During I/O interrup­
tion, unstack and re­
flection, DMKSCNVU
could not locate all of
the virtual control
blocks for the inter­
rupting unit.

Action

Verify that the volume serial
number on the SYSRES volume from
which the IPL was attempted, is
the same as that specified in the
field DMKSYSVL. If the volume
serial number is not the same, it
may have been altered by the CLIP
utility. Or, the image of the
same nucleus saved on the SYSRES
may have been partially de­
stroyed and the SYSRES specifica­
tion altered. Load or restore
the nucleus from a backup copy
to the SYSRES volume and try
to IPL again.

Display the volume labels for all
owned volumes. If the volumes do
not contain an active directory
pointer, run DMKDIR (the stand­
alone directory program) to re­
create the system directory on an
owned volume. If an active
directory pointer is present in
at least one volume label, verify
that the device on which the vol­
ume is mounted is online and
ready before trying to IPL the
system.

Call IBM for hardware support
to fix the clock.

-,
I
I

I
Verify that the contents and or- I
der of the owned list have not I
been altered since the dump was I
taken. If these fields have not I
been altered, the SFBLOK for the I
dump file may have been destroyed. I
The owned list is specified by I
the SYSOWN macro in the DMKSYS I
module. I

The integrity of the user's vir­
tual I/O configuration has prob­
ably been violated. The unit
addresses or indexes in the vir­
tual control blocks are in error,
or the virtual configuration has
been altered by ATTACH/DETACH
while I/O was in progress. Check
for a devi~e reset failure in
DMKCFPRD.

I
I
I
I
I
I
I
I
I
I
I
I ________ -J

Figure 64. CP ABEND Codes (Part 2 of 15)

section 4. Diagnostic Aids 543

r -,
ABEND I
Code Reason for ABEND Action I

---------------------------------- I
DSP002 The dispatcher (DMKDSP) Most likely, a free storage vio- I

is attempting to dis- 1ation has occurred. First look I
patch a virtual re1o- at the DMKPRV and DMKVAT modules. I
cate user whose shadow Examine the real, virtual, and I
segment tables or vir- shadow translation tables for I
tua1 extended control consistency of entry size and I
register 0 are invalid. format. Also compare page and I

DSP003

DSP004

FREOOl

FRE002

The interval timer was
not incremented proper­
ly. This is most like­
ly a hardware error.
The dispatcher tests
for interval timer er­
rors and abnormally
terminates if such an
error occurs. Results
would be unpredictable
if CP continued when
the interval timer was
in error.

While tracing SIOs or
I/O interrupts, the
virtual dev ice was de-
tached. NOw, the
VDEVBLOK cannot be
found.

The size of the block
being returned (via GR
0) is less than or
equal to o.

The address of the free
storage block being
returned matches the
address of a block al­
ready in the free
storage chain.

segment size. I

Check the timer fields in real
storage. The value of the real
interval timer is at real storage
location X'50'. The dispatcher
loads the value of the real in­
terval timer in real storage lo­
cation x'54' when a user is dis­
patched. The value of the real
interval timer is loaded into
real storage location X'4c' when
an interrupt occurs. If the value
stored at X'4C' is not less
than the value stored at X'54',
the dispatcher abnormally ter­
minates. Check the routines that
control the value of the time
fields at X'4C', X'50', and
X'54'.

Examine the operator's console
sheet and the user's terminal
sheet to see who detached the
device. Warn the person re-
sponsib1e that devices should not
be detached during I/O tracing.

Using FREER14 and FREER12 in the
PSA, identify the CP module
releasing the storage. Check for
an error in calculating the size
of the block or for a modifica­
tion to the stored block size for
variable-size blocks.

Identify the program returning
the storage by means of the re­
turn address and base registers
(FREE14 and FREE12 in DMKFRE's
save area in PSA). The most com­
mon cause of this type of failure
is a module that returns a free
storage block but fails to clear
a pointer to the block that has
been saved elsewhere. All mod­
ules that return blocks via a
call to DMKFRET should first
verify that the saved pointer is
nonzero; after returning the
block, any saved pointers should
be set to zero.

Figure 64. CP ABEND Codes (Part 3 of 15)

544 VM/370: System Logic and Problem Determination Guide

r--,
ABEND I I
Code I Reason for ABEND I Action

FRE003

FRE004

FRE005

FRE006

FRE007

The address of the free
storage block being
returned overlaps the
next lower block on the
free storage chain.

The address of the free
storage block being
returned overlaps the
next higher block on
free storage chain.

A module is attempting
to release storage in
the resident VM/370
nucleus.

A module is requesting
a block of storage
whose size (contained
in GR 0) is less than
or equal to zero.

A module is attempting
to release a block of
storage whose address
exceeds the size of
real storage.

A free storage pointer may have
been destroyed. Also, the module
releasing the lower (overlapped)
block may have returned too much
storage. Examine the lower block
and determine its use and former
owner. Or, identify the program
returning the storage by means of
the return address and base
registers stored (FREER14 and
FREER12 in DMKFRE's save area in
PSA). The most common cause of
this type of failure is a module
that returns a free storage block
but fails to clear a pointer to
the block that has been saved
elsewhere. All modules that re­
turn blocks via a call to DMKFRET
should first verify that the
saved pointer is nonzero; after
returning the block, any saved
pointers should be set to zero.

A free storage pointer may have
been destroyed. Also, the module
releasing the higher (overlapped)
block may have returned too much
storage, or the module may be
attempting to release storage at
the wrong address.

A module is probably attempting
to release location O. Check for
the module picking up a pointer
to the free storage block without
first testing the pointer for O.
Use FREER14 and FREER12 in the
PSA to identify the module.

Using FREER14 and FREER12 in the
PSA, identify the module. Check
for an error in- calculating the
block size. Improper use of the
half word instructions ICM and
STCM can cause truncation of high
order bits that results in a cal­
culation error.

A free storage pointer may have
been destroyed. Attempt to iden­
tify the owners of the free stor­
age blocks adjacent to the one
containing the pointer that was
destroyed. Check for moves and
translation where initial counts
of zero have been decremented to
minus 1, thus generating an
executed length code of X'FF', or
an effective length of 256 bytes.

Figure 64. CP ABEND Codes (Part 4 of 15)

section 4. Diagnostic Aids 545

r---,
ABEND 1 1 1
Code 1 Reason for ABEND I Action I

FRE008 The address of the free
storage block being
returned matches the
address of the first
block in the subpool

1 for that size. 1
-----------------------------1

FRE009 1 The address of the free 1
1 storage block being 1
1 returned matches the 1
1 second block in the 1
1 subpool for that size. 1
1 1
1 1
1 I
1 1

Identify the program returning
the storage by means of the re­
turn address and stored base reg­
isters (FREER14 and FREER12 in
DKKFRE's save area in the PSA).
The common cause of this type of
failure is a module that returns
a free storage block but fails to
clear a pointer to the block that
has been saved elsewhere. All
modules that return blocks via a
call to DMKFRET should first
verify that the saved pointer is
nonzero; after returning the
block, any saved pointers should
be set to zero.

---------------------------------- -----------1
FRE010 A program is attempting If the storage requests that 1

to extend free storage caused the ABEND are due to chan- 1
while storage is being nel activity, place the device 1
extended. This can be involved on channel 0, which is 1
caused by I/O inter- disabled during free storage ex- 1

FREO 11

ruptions or channel tension. 1
programs involving I
channels other than 1
channel o. 1

A CP module has at-
tempted to return a
block of storage that
is in the user dynamic
paging area.

Identify the program returning
the storage by means of the re­
turn address and stored base reg­
isters (FREER14 and FREER12 in
DMKFREE's save area in the PSA).
The common cause of this type of
failure is a module that returns
a free storage block but fails to
clear a pointer to the block that
has been saved elsewhere. All
modules that return blocks via a
call to DMKFRET should first
verify that the saved pointer is
nonzero; after returning the
block, any saved pointers should
be set to zero.

---1
HVD001 1 The user pointed to by I The RDEVBLOK for the SYSRES de- I

I GR 11 issued a DIAGNOSE 1 vice was probably destroyed, or a 1
I instruction while at- I volume with the same serial num- I
1 tempting to format the 1 ber as the SYSRES volume was I
I I/O error, channel I mounted. If a volume with the 1
1 check, or machine check 1 same serial number was mounted, I
1 recording areas: the 1 check the ATTACH processing in 1
1 SYSRRS device type is 1 the DMKVDB routine. 1
1 unrecognizable. 1 1 L __ -I

Figure 64. CP ABEND Codes (Part 5 of 15)

546 VM/370: System Logic and Problem Determination Guide

r-- --------,
ABEND 1 1
Code 1 Reason for ABEND 1

10S001

10S002

10S003

The caller is trying
to reset an active
10BLOK from the RCHBLOK
queue, but that 10BLOK
contains an invalid
address.

DMK10S is attempting to
restart an 10BLOK from
the RCHBLOK queue, but
that 10BLOK contains
an invalid address.

DMK10S is attempting to
remove an 10BLOK from a
queue, but that 10BLOK
contains an invalid
address.

NLD001 During execution of a
NETWORK DUMP command,
or during an automatic
dump of a 3704 or 3705,
VM/370 detected that it
had not allocated suf­
ficient DASD spool
space to contain the
information from the
3704 or 3705. The MODEL
operand of the RDBV1CE
macro describing the
3704 or 3705 was not
specified correctly.
VM/370 determines the
storage size of a 3704
or 3705 by the model
specified on the
RDBV1CE macro.

1---------
1 PGS001 1 The user page count in
lithe VMBLOK (VMPAGES)
1 1 became negative.
1 1
1 1

Action

The 10BLOK may have been returned
(via DMKFRET) or destroyed.
Verify that the 10BLOK was valid
and use the 10BLOK and RDEVBLOK
to determine the last operation.

Register 2 points to the RCHBLOK,
RCUBLOK, or RDEVBLOK from whose
queue the 10BLOK is being re­
moved. Register 10 points to the
10BLOK. Use the CP internal
trace table to determine which
module called DMK10S twice to
start the same 10BLOK.

Correct the RDEV1CE macro speci­
fying the 3704 or 3705, reassem­
ble the DMKR10 module, and regen­
erate the VM/370 CP nucleus with
the corrected module.

1
1

---------1
A module has attempted to release 1
more pages than it originally re- 1
ceived. The module that last 1
called DMKPGS is probably the 1
module in error. 1 L__ ----J

Figure 64. CP ABEND Codes (Part 6 of 15)

section 4. Diagnostic Aids 547

r--------------------·---------------·---------------------,
ABEND I I I
Code I Reason for ABEND I Action I

PGT001

PGT002

PGT003

PGT004

The number of cylinders
in use stored in the
allocation block
(ALOCBLOK) is less than
the maximum but the
DMKPGT module was un­
able to find available
cylinders.

The count of pages
in a page allocation
block (RECBLOK) is less
than the maximum but
the DMKPGT module was
unable to find avail­
able pages.

The DASD page slot
being released is not
marked allocated.

The dummy RECBLOK indi­
cating the spooling
DASD pages on the cyl­
inder that are to be
released contains a
page count greater than
the number of pages al­
located on the cyl­
inder.

Inspect the chains of paging and
spooling allocation blocks an­
chored at RDEVPAGE and RDEVRECS
on the RDEVBLOK for the device in
question, and verify that a
cylinder allocation block
(RECBLOK) exists for each cylin­
der marked and allocated in the
ALOCBLOK. If RECBLOKs for some
cylinders are missing, it is
possible that the bit map in the
ALOCBLOK has been destroyed. If
all cylinders are accounted for,
the updating of the count field
is in error.

If the RECBLOK in question is in
use for paging, then locate a
SWPTABLE entry for each page al­
located on the cylinder. However,
if the cylinder is in use for
spooling, it is possible that the
RECBLOK itself has been de­
stroyed or that the updating of
the use count is faulty.

Identify the module attempting to
release the page by means of the
caller's return address and base
register stored in BALR14 and
BALR12 in the BALRSAVE save area
in PSA. Locate the source
(control block or SWPTABLE entry)
of the DASD address being re-
leased to verify that they have
not been destroyed. If the
DASD page is in a spool file, it
is possible that the file or the
RECBLOK chain has been incorrect­
ly checkpointed and warmstarted
after a system shutdown or a
system crash.

The spool file pointers may have
been destroyed while the file was
being processed, or the alloca­
tion chain may be in error. A
cold start may be necessary. If
feasible, use the DASD dump
restore program to print the DASD
areas containing the affected
file, and try to locate the in­
correct pointers.

Figure 64. CP ABEND Codes (Part 7 of 15)

548 VM/370: system Logic and Problem Determination Guide

r--,
I ABEND I I I
I Code I Reason for ABEND I Action I

PGTOO5 A module is trying to
release a DASD page
slot on a cylinder for
which no page alloca-
tio,n block (RECBLOK)
exists.

1---------------------
PGT006

PGT007

PGT008

The last DASD page slot I
in a RECBLOK has been I
deallocated but the bit I
representing the cylin- I
der in the cylinder I
allocation block I
(ALOCBLOK) is not cur- I
rently set to one, in- I
dicating that the cyl- I
inder was not allocated. I

A module is trying to
release a page of vir­
tual storage in use by
the VM/370 control pro­
gram that has not been
marked allocated.

The system's virtual
storage buffers have
been exhausted because
of an excessive number
of open spool files.

Use BALR14 and BALR12 in the
BALRSAVE area of the PSA to
identify the module attempting to
release the page. Verify that the
DASD cylinder address is valid
for the device in question. If it
is and the rest of the DASD ad-
dress is valid, verify that the
cylinder is in the dynamically
allocatable area. If these re­
strictions are met, the DASD page
must have been used by more than
one user.

The ALOCBLOK has probably been
destroyed, or the chain pointer
in the RDEVBLOK is in error.

Use BALR14 and BALR12 in the
BALRSAVE area of the PSA to iden­
tify the module attempting to re­
lease the page. Locate the con­
trol block containing the virtual
page address that is being re­
leased~ It is possible that the
address has been destroyed, or a
pointer to a virtual page has
been retained after the page was
destroyed.

Request users to close all spool
files that are no longer active.

PRGOOl I Program check (opera- I Examine the ABEND dump. In par­
I tion) in the control I ticular, examine the old PSi and
I program. I identify the module that had the

---------------------------------1 program check.
PRG002 I Program check (privi- I

I leged operation) in the I
I control program. I

1-------- ---I
I PRG003 I Program check (execute) I
I I in the control program. I
I I
I PRG004 Program check (protec- I
I tion) in the control I
I program. I L ______ _ ----------
Figure 64. CP ABEND Codes (Part 8 of 15)

.J

Section 4. Diagnostic Aids 549

r---------------------·-------------------------------------,
1 ABEND 1 I 1
1 Code 1 Reason for ABEND 1 Action 1
I
1 PRG005 Program check (address-
1 ing) in the control
1 1 program. 1
------------------------1

PRG006 1 Program check (specifi- 1
1 cation) in the control I

PRG007

PRG008

1 program. 1
I

Program check (data) in 1
the control program. 1

--I
program check (fixed- I
point overflow) in the I

1 control program. 1
-----------------------1

PRG009 1 program check (fixed- 1
I point divide) in the 1
1 control program. 1

PRGO 10
I

program check (decimal 1
overflow) in the con- I
trol program. 1

PRGO 11
--I

program check (decimal 1
divide) in the control I

1 1 program. 1
1---------------------1
1 PRG012 1 program check (exponen- 1
1 1 tial overflow) in the 1
1 1 control program. 1
1 1
1 PRG013 program check (exponen- 1
1 tial underflow) in the 1
1 1 control program. 1
---------------------1

PRG014 1 Program check (signifi- 1
1 cancel in the control 1
1 program. 1

PRG015

PRG016

program
(floating-point
vide in the
program.

1
check 1

di- 1
control 1

1
-----1

Program check (segment) 1
1 in the control program. 1

1------------------1
I PRG017 1 Program check (paging) 1
1 I in the control program. 1
1 --------1
1 PRG018 Program check (transla- 1
1 tion) in the control 1
1 program. 1
1- 1
1 PRG019 Program check (special 1
1 operation) in the con- 1
1 trol program. 1

Examine the ABEND dump. In par­
ticular, examine the old PSi and
identify the module that had the
program check.

L ______________________ _

------'
Figure 64. CP ABEND Codes (Part 9 of 15)

550 VM/370: System Logic and Problem Determination Guide

r--,
ABEND 1 1 1
Code 1 Reason for ABEND 1 Action 1

---1
PRG254 1 A translation specifi- 1 If the set of translaticn tables 1

1 cation exception has 1 pointed to by RUNCR1 is correct, 1
1 been received for a 1 a hardware failure has occurred, 1
1 virtual machine that is 1 possibly with dynamic address 1
1 not in extended control 1 translation. Otherwise, call IBM 1
1 mode. 1 for software support. 1

---1
PRG255 1 A PER (program event 1 Retry the program causing the er- 1

1 recording) has been re- 1 ror; if the problem persists, 1
1 ceived for a virtual 1 call IBM for software support. 1
1 machine that is running 1 1
1 with PER disabled in 1 1
1 its virtual PSi. 1 1

------------------------------------- 1
PSA001 No free storage is Try to identify the extreme load 1

available for save condition that caused the prob- 1
areas. lem. Verify that a routine has 1

not requested an inordinate 1
amount of storage. If the storage 1
requests are valid and the prob- 1
lem occurs regularly, alter the 1
DMKCPI module to allocate more 1
than six pages of free storage I 1 I per 256K bytes of storage. 1

1---1
1 PSA002 1 The 'PSi Restart' con- I Examine the resulting ABEND dump 1
1 1 sole key was pressed 1 for a dynamic picture of the sys- 1
1 1 and caused this ABEND. 1 tem's status. 1
liThe operator normally I 1
1 1 takes this action when 1 1
1 1 an un usual sys tem con - 1 1
1 1 di tion occurs, such as 1 I
1 1 a system loop or slow 1 1
1 1 machine operation. 1 I
1--1
1 PSA003 1 An unrecoverable DASD 1 Check the unit address in the I/O 1
1 1 I/O error occurred on a I old PSi to find the paging device 1
I 1 paging device. 1 in error. This is a hardware er- 1
1 I 1 ror. Call IBM for hardware 1
1 1 1 support. 1
1------------------------------ 1
1 PTR001 1 A segment exception or 1 Inspect the contents of control 1
1 1 translation specifica- 1 registers 0 and 1, and the format 1
1 I tion has occurred while 1 of the segment table pointed to 1
1 1 executing a LOAD REAL 1 by CR 1. One or more of these 1
1 1 ADDRESS (LRA) instruc- 1 tables and registers may contain 1
1 1 tion in the DMKPTR mod- 1 invalid data. If CR 1 is 1
1 1 ule. 1 invalid, check the contents of 1
1 lithe VMBLOK pointed to by GR 11, 1
1 1 1 especially the address in the 1
I 1 1 VMSEG field. 1
1------ ---------------------------1
1 PTR002 1 A program is attempting 1 Use BALR14 and BALR12 in the 1
lito unlock a page frame I BALRSAVE area of the PSA to iden- 1
I I whose address exceeds 1 tify the module attempting to un- 1
lithe size of real stor- 1 lock the page frame. Check for 1
I 1 age. 1 the source of the invalid ad- 1
1 1 1 dress. 1 L __ ----J

Figure 64. CP ABEND Codes (Part 10 of 15)

section 4. Diagnostic Aids 551

r---,
1 ABEND 1 I 1
1 Code 1 Reason for ABEND 1 Action 1
1--1
I PTR003 1 A program is attempting 1 Use BALR14 and BALR12 in the 1
1 I to unlock a real stor- 1 BALRSAVE area of the PSA to iden- 1
1 1 age page frame whose 1 tify the module attempting to un- 1
1 1 COR TABLE entry is not I lock the page frame. Check for 1
1 I flagged as locked. 1 the source of the invalid ad- I
I 1 I dress. I
I------------------·---~---------------------------I
1 PTR004 1 The lock count in the 1 Check the routines that update I
I 1 CORTABLE entry for the I the lock count field and CORTABLE I
1 1 page frame being un- I entry. 1
I 1 locked has been decre- 1 I
1 1 mented to a value that 1 1
I 1 is less than O. I I

PTR005

PTR007

The user page count in
the VKBLOK (VKPAGES) is
negative.

DMKFRE requested a page
for fixed free storage
but DMKPTR determined
that there were no
pages left in the dy­
namic paging area.

-----1
A module attempted to release 1
more pages than it originally re- 1
ceived. The last module that I
called DKKPTR is probably the I
module that caused the error. 1

Examine the dump for one of the
following conditions:
1. Excessive amounts of free

storage have been allocated by
CP and not released via
DKKFRET. Look for blocks of
identical data and determine
which modules built that data.

2. A block of storage greater
than 4096 bytes was requested.
Requests for large blocks of
free storage require contig­
uous pages from DKKPTR and as
a result have a higher prob­
ability of failure than re­
quests for one page or less.
If possible, change the appli­
cation to reduce the size of
storage requests. otherwise,
schedule the application when
storage is less fragmented.

--1
PTR008 1 A CORTABLE entry on the 1 Pages on the free list should not I

1 free list points to a 1 contain valid PTEs. Examine the I
1 valid PTE (page table I dump to determine which module I
1 entry), but the page is 1 called DKKPTRFR. The module that 1
1 allocated. 1 called DKKPTRFR probably contains 1
1 I an error. I

------------------------------------- I
PTR009 The count of the number The field DMKPTRSC contains the I

of resident shared number of resident shared pages I
pages was incorrectly and the field DKKDSPNP contains 1
decremented making the the number of pageable pages. I
count now less than DKKDSPNP must always be greater I
zero. than DMKPTRSC. Check the routines I

that update these two count 1
fields. I L __ . __________ J

Figure 64. CP ABEND Codes (Part 11 of 15)

552 VM/370: System Logic and Problem Determination Guide

r--------- -------------------------------------,
ABEND I I 1
Code 1 Reason for ABEND 1 Action I

--1
PTR010 I The count of the number 1 The field DMKPTRRC contains the I

1 of resident reserved I number of reserved pages. I
I pages was incorrectly I DMKPTRRC must always be less than 1
1 decremented so that the I DMKDSPNP. Check the routines that I
I count is now less than I update these two count fields 1
1 zero. I (DMKDSPNP and DMKPTRRC) • 1

------------------------------- ----------1
PTR011 A CORTABLE entry to be Pages to be put on the free list I

placed on the free list should not contain valid PTEs. I
points to a valid PTE Examine the dump to determine why 1
(page table entry), but the page was not marked invalid 1
the page is allocated. before the call to DMKPTRPT. 1
An abend occurs trying I
to honor a deferred re- I

I quest. I 1
---1

PTR012 1 A CORTABLE entry to be 1 Pages to be put on the free list I
I placed on the free list I should not contain valid PTEs. I
I points to a valid PTE 1 Examine the dump to determine why I
I (page table entry), but I the page was not marked invalid I
1 the page is allocated. 1 before the call to DMKPTRPT. I

I--------------~-------------------------I
I PTR013 1 DMKPRE requested a page 1 Examine the dump to determine 1
1 I for fixed free storage I what was using all the TEMP I
1 1 but there were no DASD 1 space. Excessive space may be 1
1 1 page slots left to I consumed by large spool files or 1
1 1 write out the selected 1 not enough TEMP space exists for I
1 I page. I paging. 1

RGA001 The reflected device
status in the CSW is
not supported for cer­
tain 3270 remote device
and line protocol I/O
operations. Specifi-
cally, the returned CSW
contains a device sta-
tus other than CE, DE,
and UE; and, the ending
ccw contains an embed-
ded teleprocessing code
of 02, 03, or 06.

1----------------------1
1 RGA002 I The status flag 1
1 I BSCPLAG in the BSCBLOK I
I I indicates a condition 1
1 1 that is not valid for a I
1 I 3270 line reset func- I
1 I tion (Teleprocessing I
1 1 code 09). I

IPL to restart the system. If the
problem persists, call IBM for
system support.

1---1
1 RNH001 1 An unrecoverable I/O I Retry. If the problem persists, I
1 I error occurred during I ensure that the 3704/3705 and 1
1 1 read or write for the I channel hardware are functioning I
1 1 3704 or 3705. status I correctly. 1
1 I indicates program I I
1 I failure. I I L __ ~

Figure 64. CP ABEND Codes (Part 12 of 15)

section 4. Diagnostic Aids 553

r---,
ABEND I I I
Code I Reason for ABEND I Action 1

---1
RNH002 1 A response that should 1 Verify that the 3704/3705 NCP is 1

RPAOOl

RPA002

RPA003

I not occur was received I operating correctly. Use the I
1 from the 3704/3705 I NETWORK TRACE command to deter- 1
I control program. 1 mine the exact cause of the re- I
I I sponse. 1

The virtual address
supplied to DMKRPAGT is
outside of the virtual
storage being refer­
enced.

The virtual address
supplied to DMKRPAPT is
outside of the virtual
storage being refer­
enced.

The user page count in
the VMBLOK became nega­
tive.

The virtual storage belongs ei­
ther to the user whose VMBLOK is
pointed to by GR 11 or, if GR 2
in the SAVEAREA indicates a PARM
of SYSTEM, to the system VMBLOK.
Identify the calling program by
means of the return address and
base register saved in the
SAVEAREA pointed to by GR 13. If
the virtual address was obtained
from the system's virtual stor­
age, examine the virtual page
allocation routine, DMKPTRVG. If
the virtual page refers to a
user's storage, attempt to iden­
tify the routine that has gener­
ated the incorrect address. Ver­
ify that the VMSIZE in the rele­
vant VMBLOK reflects the correct
storage size for the system or
user being referenced.

A module has attempted to release
more pages than it originally
received. The module that last
called DMKRPA is probably the
module in error.

SCHOOl The total number of The field SCHNl is the count of
interactive users plus the number of interactive users
batch users in the and the field SCHN2 is the count
scheduler's queue is of the number of batch users.
less than zero. A Check the routines that update
counter was probably these two count fields (SCHNl and
decremented incorrect- SCHN2) to determine why their sum

I lYe 1 was negative.
---1

SCNOOl 1 The VDEVLINK chain is 1 IPt to restart. If the problem I
I invalid. A VDEVBLOK 1 persists, examine the VDEVBLOKs 1
I has a link field that 1 in the link chain as well as the 1
I points to another lone whose link field points into 1
I VDEVELOK associated I the chain but is not in the I
I with the same real I chain. Determine what the owner I
1 device. The first 1 of the VDEVBLOK was doing at the 1
I VDEVBLOK is not pointed 1 time. 1
1 to by any ot her link I I
I field in the chain. I I __ - ___________ ---------1

Figure 64. CP ABEND Codes (Part 13 of 15)

554 VM/370: System Logic and Problem Determination Guide

r--------------------------------------- ---,
1 ABEND I I
I Code I Reason for ABEND I

TDK001

TDK002

UDR001

A program is attempting
to deallocate a cylin­
der of T-disk space for
which no cylinder
allocation block
(ALOCBLOK) exists.

A program is attempting
to deallocate cylin­
der(s) of T-disk space
that are not marked al­
located.

The user directory mod­
ule is looping trying
to read all of the
UDIRBLOK page buffers
from the directory de­
vice. Or, a directory
containing over 10,816

I users was loaded.
1--------------------------
1 VDB002 I The system-owned list
I I has an invalid format.
I I
I I
I I
1------
I VDR003 I
1 I
I I
I I
I I
I I
I I
I

The DASD link chain is
invalid. In the case of
minidisks, attaching a
mini disk that points to
an RDEVBLOK whose count
of users is already ze­
ro causes this ABEND.

Action

verify that GR 8 points to a
RDEVBLOK for a CP-owned volume.
If it does not, the error may
originate in the calling program.
Identify the caller by the return
address and base register in the
SAVEAREA pointed to by GR 13, and
try to identify the source of the
incorrect RDEVBLOK address. If
the RDEVBLOK is valid, it may be
that the cylinder number passed
is incorrect. The VDEVELOK for
the device for which the T-disk
was defined may have been de­
stroyed. If the cylinder number
appears valid, examine the allo­
cation record on the real volume
by running DKKFKT (VM/370 Format
program), invoking the ALLOCATE
option without allocating any new
space. If the output shows that
deallocated cylinder falls within
an area defined for T-disk allo­
cation, the ALOCBLOK chained to
the RDEVBLOK may be destroyed.

Use the DASD Dump Restore program
to print the UDIRBLOK page buf­
fers from the directory device.
Determine if the chain pointers
are valid.

IPL to restart. If the problem
persists, check the SYSOWN macro
in DMKSYS for validity. If the
macro is good, print the dump and
examine ito

1PL to restart. If the problem
persists, examine the RDEVSYS
flag. If the RDEVSYS flag is off,
the problem is especially seri­
ous; print and examine the dump.
Examine the VDEVBLOK and RDEVBLOK
checking the link chain.

I V10002 DMKSCNVU was unable to Verify that the unit address in
I locate all of the vir- the field IOBVADD in the IOBLOK
I tual I/O control blocks pointed to by GR 10 is valid for
I for the virtual unit the user who initiated the I/O.
I address associated with The field IOBUSBR contains the
I the interrupt just address of the user's VKBLOK. If
1 stacked. the address is valid, the integ-
I rity of the user's virtual I/O

I
I

L--~
Figure 64. CP ABEND Codes (Part 14 of 15)

section 4. Diagnostic Aids 555

r-----------------------------'--------------------------,
I ABEND I I 1
I Code I Reason for ABEND I Action I
1---.;...
I VI0002 I I configuration has probably been
1 (cont.)I I been destroyed. If the address is
I I 1 not valid, the IOBLOK has been
1 1 1 altered, or was built incorrectly
1 I I in the first place.

VI0003 DMKICS has returned an
IOBLOK indicating a
condition code of 2 was
received from the START
I/O for the operation.

Condition code 2 should never be
returned to the virtual I/O in­
terrupt handler. Its presence
indicates either a failure in the
I/O supervisor (DMKIOS), or that
the status field in the IOBLOK

1 I (IOBSTAT) has been destroyed.
--1

VMAOOl I DMKVMASH was called to I Examine BALR14 for the address of 1
1 check if any shared I the module that issues the call. I
1 pages were altered. A I The probable cause of error is 1
I VMABLOK associated with I that the VMBLOK has been over- I
1 a shared named system I laid. Examine the CP trace ta- I

VMA002

I could not be found. I ble entries and determine when I
I I the VMBLOK was overlaid~ I

I
DMKVMA was called to The SHRTABLE may have been over- I
make a shared named laid or the shared page that was 1
system unshared. How- changed was altered by another I
ever, the SHRTABLE as- virtual machine. If the SHRTABLE I
sociated with the was not overlaid find out which 1
shared page that was virtual machine altered the I
changed could not be shared page and why it was not I

I located. I detected. 1
--,--1

VMA003 I A shared page was I A shared page was alterd by an- I
I changed and a named I other virtual machine and went by I
I system could not be I undetected. Investigate system I
I found for the virtual I routines that could allow the I
I machine. I undetected alteration of a shared I
I I page. I

1---------------------------------- ----------1
I VMA004 I A shared page was I A shared page was altered by 1
1 I changed and the corres- I another virtual machine without I
1 I ponding VMABLOK could I being detected. Investigate the I
1 I not be found. I system routines that could allow I
I I I an undetected alter ation of a 1
I 1 I shared page. 1
1--1
1 VSPOOl I The virtual spooling I Verify that the unit address I
1 I manager could not 10- I (IOBVADm in the IOBLOK is valid. 1
I I cate all virtual con- I If the address is valid, the in- I
I I trol blocks for an in- I tegrity of the virtual I/O con- 1
I I terrupting unit. I figuration has probably been de- 1
1 I 1 stroyed. If the address is not 1
1 I I valid, the IOBLOK has been al- 1
1 1 1 tered or was built incorrectly. I L ________________________________ . _______ -'

Figure 64. CP ABEND Codes (Part 15 of 15)

556 VM/370: System Logic and Problem Determination Guide

If a condition arises during execution of a
command which types out a Warning, Error, Severe
or Terminal error message, the command passes a
nonzero return code in register 15. These
return codes have the following values:

HC

HC

RC

HC

HC

RC

8:

~ggDiDg
The user did not specify all the
conditions to execute the command as
intended but these conditions did not
prevent the command from completing
execution. However, the results are
unpredictable.

Device errors for which a warning
message is issued, or errors have been
introduced into the output file.

12 Errors in input file.

20: Invalid character in fileid. The valid
characters are 0-9, a-z, A-Z, at-sign,
pound sign, dollar sign.

24: The user did not specify the command
line correctly.

28: Error occurred while trying to access,
or manipulate a user's files. For
example: file not found.

32: The user's file(s) is not in the
expected format, or the user's file(s)
does not contain the expected
information.

HC 36: Error occurred involving the user's
devices for which he is responsible.
For example: disk is read-only.

HC

HC

HC

RC

~g~~i~g
Functional error occurred executing
the command for which the user is
responsible, or the user failed to
supply all the necessary conditions
for executing the command; or, end of
file or end of tape occurred (where
applicable) •

88: A C"S system restriction prevented
command execution, or the requested
function is an unsupported feature, or
the device requested is unsupported.

100: I/O errors, or serious device errors
occurred.

104: A functional error occurred during
command execution for which the syste.
is responsible.

256: All unexpected errors for which the
system is responsible, that is,
Terminal messages.

If command execution generates no Warning,
Error, severe or Terminal error messages, the
return code passed in register 15 is zero.

Commands which invoke program products pass
to the user the return code passed by the
program in register 15. os simulation routines
indicate return codes within the text of the
messages. Commands or functions of commands
passed to CP pass the return code passed by CP
in register 15.

section 4. Diagnostic Aids 557

A nonzero return code upon return from DMSFRES,
DMSFREE or DMSFRET indicates that the request
could not be satisfied. Register 15 contains
this return code, indicating which error has
occurred. The codes below apply to the DMSFRES,
DMSFREE and DMSFRET macros, described on the
following pages.

~Qg~ Error
1 (DMSFREE) Insufficient storage space is

available to satisfy the request for free
storage. In the case of a variable
request, the minimum request could not be
satisfied.

2

3

4

(DMSFREE or DMSFRET) User storage pointers
destroyed.

(DMSFREE or DMSFRET) Nucleus
pointers destroyed.

storage

(DMSFREE) An invalid size was requested.
This error exit is taken if the requested
size is not greater than zero. In the
case of variable requests, this error exit
is taken if the minimum request is greater
than the maximum request. However, the
error is not detected if DMSFREE is able
to satisfy the maximum request.

Code Error
--S-(DMSFRET) An invalid size was passed to the

DMSFRET macro. This error exit is taken
if the specified length is not positive.

6 (DMSFRET) The block of storage that is being
released was never allocated by DMSFREE.
This error occurs if one of the following
errors is found:

a. The block is not entirely inside either
the low-core free storage area or the
user program area between FREELOWE and
FREEUPPR.

b. The block crosses a page boundary that
separates a page allocated for USER
storage from a page allocated for
NUCLEUS storage.

c. The block overlaps another block
already on the free storage chain.

7 (DMSFRET) The address
being released is
boundary address.

given for
not a

the block
doubleword

8 (DMSFRES) An illegal request code was passed
to the DMSFRES routine. Because the
DMSFRES macro generates all codes, this
error code should never appear.

9 (DMSFRE, DMSFRET, or DMSFRES) unexpected
internal error.

558 'M/370: System Logic and Problem Determination Guide

ABEND RECOVERY

When the abend recovery routine is entered, it
types out the abend message, followed by the
line 'CMS', to indicate to the user that he may
type in his next command.

At this point, there are
available to the user.

two options

First, he may type the DEBUG command. In
this case, DMSABN passes control to DMSDBG, to
make the facilities of DEBUG available to him.
DEBUG's PSW and registers are as they were at
the time that the abend recovery routine was
invoked. From DEBUG, the user may alter the PSi
or registers, as he wishes, and type GO to
continue processing, or type RETURN to return to
DMSABN, so that abend recovery can continue.

The second option available is to type in any
other command. If this is done, DMSABN performs
its abend recovery function and passes control
to DMSINT to execute the command that has been
typed in.

The abend recovery function consists of the
following steps:

1. The SVC handler, DMSITS, is reinitialized,
and all stacked save areas are released.

2. "FINIS * * *" is invoked by means of SVC
202, to close all files, and to update the
user file directory.

3. If the EXEC interpreter (EXECTOR module) is
in storage, it is released.

4. All link blocks allocated by the OS ~acros
simulation routine DMSSLN are freed.

5. If VSAM or Access Method Services are still
active, call DMSVSR for cleanup.

6. All FCB and DOSCB pointers are zeroed ~ut.

7. All user storage is released.

8. The amount of system free storage that
should be allocated is computed. This
figure is compared against the amount of
free storage that is actually allocated.
If the two are equal, then storage recovery
can be considered successful. If they are
unequal, then a message is sent to the
user.

There are certain times, such as when the SVC
handler's pointers are modified, that the system
can neither continue processing nor try to
recover. In these cases, DMSERR with the option
HALT=YES is specified to cause a message to be
typed out, after which a disabled wait state PSi
is loaded.

In CP mode, the programmer can examine the
PSi, whose address field contains the address of
the instruction following the call to the DMSERR
macro. He can also examine all the registers,
which are as they were when the DMSERR macro was
invoked.

Figure 65 lists the CMS ABEND codes and
describes the cause of the ABEND and the action
required.

Section 4. Diagnostic Aids 559

r--,
I ABEND I Module I I I
I Code I Name I Cause of ABEND I Action I
1---1
I 001 I DMSSCT I The problem program encoun- I Message DMSSCT120S I
I I I tered an input/output error I indicates the possible I
I I I processing an os macro. I cause of the error. I
I I I Either the associated DCB I Examine the error I
I 1 1 did not have a SYNAD rou- 1 message and take the I
I I I tine specified or the I/O 1 action indicated. I
I 1 1 error was encountered 1 1
I 1 1 processing an OS CLOSE I 1
I 1 1 macro. 1 1
1--1
1 034 I DMSVIP 1 The problem program encoun- 1 Refer to the ~Q~L!~ I
I 1 1 tered an I/O error while 1 H~2~~~2 R~fe!~~£~, 1
I 1 1 processing a VSAM action I Order No. GC33-5379, 1
1 I I macro under DOS/VS for I to determine the cause 1
1 I 1 which there is no OS equi- 1 of the VSAM error. 1
I I 1 valent. An internal error I I
1 1 1 occurred in a DOS VSAM rou- I I
I I I tine. I 1

OCx DMSITP The specified hardware ex­
ception occurred at a spe­
cified location. "x" is
the type of exception:
x !I.E~ o IMPRECISE
1 OPERATION
2 PRIVILEGED OPERATION
3 EXECUTE
4 PROTECTION
5 ADDRESSING
6 SPECIFICATION
7 DECIMAL DATA
8 FIXED-POINT OVERFLOW
9 FIXED-POINT DIVIDE
A DECIMAL OVERFLOW
B DECIMAL DIVIDE
C EXPONENT OVERFLOW
D EXPONENT UNDERFLOW
E SIGNIFICANCE
F FLOATING-POINT DIVIDE

Type DEBUG to examine
the PSW and registers
at the time of the
exception.

1--------------------------------------
I OFO I DMSITS I Insufficient free storage I If the ABEND was
I I I is available to allocate a I caused by an error in
I I I save area for an SVC call. I the application pro-
I I I I gram, correct it; if
I I I I not, use the CP DEFINE
I I I 1 command to increase
I I I I the size of virtual
I I I 1 storage and then re-
I I I I start CM S. I
1--------------------------------------1
I OF1 I DMSITS 1 An invalid half word code is I Enter DEBUG and type I
I I I associated with SVC 203. I GO. Execution conti- I
I I I I nues. I L ___ . ___ -'

Figure 65. CMS ABEND Codes (Part 1 of 3)

560 VM/370: System Logic and Problem Determination Guide

r-------------------------------- 1
1 ABEND 1 "odule 1 Cause of ABEND 1 Action 1
1 Code 1 1 1 1
1 -------1
1 OF2 DMSITS The C"S nesting level of 20 None. ABEND recovery 1
1 has been exceeded. takes place when the 1
1 next cOllmand is en- 1
1 1 1 1 tered. 1
1--1
1 OF3 1 D"SITS 1 C"S SVC (202 or 203) in- 1 Enter DEBUG and type 1
1 1 1 struction was executed and 1 GO. Control returns to 1
1 1 1 prov~s~on was made for an 1 the point to which a 1
1 1 1 error return from the rou- 1 normal return would 1
1 1 1 tine processing the SVC 1 have been made. 1
1 1 1 call. 1 1
1 --------------------------1
1 OF4 D"SITS The D"SKEY key stack over- 1 Enter DEBUG and type 1
1 flowed. 1 GO. Execution conti- 1
1 1 nues and the D"SKEY 1
1 1 1 macro is ignored. 1
1------- ------- 1 1
1 OF5 1 D"SITS The D"SKEY key stack under- 1 1
1 1 1 flowed. 1 1
1----------------------- --------1
1 OF6 1 DMSITS 1 The DMSKEY key stack was Enter DEBUG and type 1
1 1 1 not empty when control re- GO. Control returns 1
1 1 1 turned from a command or from the command or 1
1 1 1 function. function as if the key 1
1 1 1 stack had been empty. 1
1 1
1 OF7 DMSFRE Occurs when TYPCALL=SVC When a system ABEND 1
1 (the default) is specified occurs r use DEBUG to 1
1 in the DMSFREE or DMSFRET attempt recovery. 1
1 1 .acro. 1 1
1------ ----------------------1
1 OF8 1 D"SFRE Occurs when TYPCALL=BALR is 1 When a system ABEND 1
1 1 specified in the D"SFREE or 1 occurs r use DEBUG to 1
1 1 1 DMSFRET "acro devices. 1 attempt recovery. 1
1--1
1 101 1 DMSSVN 1 The wait count specified in 1 Examine the program 1
1 1 1 an OS WAIT .acro was larger 1 for excessive wait 1
1 1 1 than the nu.ber of EeBs 1 count specification. 1
1 1 1 specified. 1 1
1 1
1 104 DMSVIB The OS interface to DOS/VS See the additional er- 1
1 VSAM is unable to continue ror message accollpany- 1
1 execution of the problem ing the ABEND message r 1
1 program. correct the error r and I
1 1 1 reexecute the progra m. 1
1------- ---------------------------1
1 155 1 D"SSLN Error during LOAD"OD after 1 See the last LOAD"OD 1
1 1 an OS LINK r LOAD r XCTL r or 1 (D"SMOD) error message 1
1 1 ATTACH. The compiler switch 1 for error description. 1
1 1 is on. 1 In the case of an I/O I
1 1 1 error r recrea te the I
1 1 1 module. If the module I
1 1 1 is missing, create it. 1 1_______ _ ____________ 0_1

1 15A 1 DMSSLN Severe error during load 1 See last LOAD error 1
1 1 (phase not found) after an 1 message (D"SLIO) for I
1 1 OS LINK r LOAD r XCTL r or 1 the error description. I
1 I ATTACH. The compiler switch 1 In the case of an I/O I
1 1 1 is on. 1 error, recrea te the 1 L---_________________ J

Figure 65. C"S ABEND Codes (Part 2 of 3)

section 4. Diagnostic Aids 561

r--,
I ABEND I Module I I I I Code I Name I Cause of ABEND 1 Action 1
1--1
I 15A 1 1 1 text deck or TXTLIB. 1
I cont·1 1 1 If either is missing, 1
I 1 I I crea te it. I
I -----.------------------------------.-----------------------------1
I 174 I DMSVIB I The as interace to DOS/VS 1 See the additional er- I
I 1 1 VSAM is unable to continue I ror message accompany- 1
I I 1 execution of the problem I ing the ABEND message, 1
I 1 1 program. I correct the error, and 1
I I I I reexecute the program. I
1------------------------------_·_------------------------I
I 177 I DMSVIB 1 The as interface to DOS/VS I See the additional er- I
I I DMSVIP I VSAM is unable to continue 1 ror message accompany- I
I I 1 execution of the problem I ing the ABEND message, I
I I I program. I correct the error, and 1
1 I I I reexecute the program. 1
1---------------------------------_·_--------------------I
1 240 I DMSSVT I NO work area was provided 1 Check RDJFCB specifi- I
I 1 1 in the parameter list for 1 cation. 1
1 I I an as RDJFCB macro. I 1
1--------------------------------_·_-----------------------1
1 400 I DMSSVT 1 An invalid or unsupported I Examine program for I
1 I I form of the as XDAP macro 1 unsupported XDAP macro I
1 I I has been issued by the I or for SVC O. I
I I I problem program. I I
1-----------------------------_·_--------------------
1 704 1 DMSSMN 1 An as GETMAIN macro (SVC 4) 1 Change the program so
I I I WaS issued specifying the 1 that it specifies
1 1 I LC or LU operand. These 1 allocation of only one
1 1 1 operands are not supported 1 area at a time.
1 1 1 by CMS. 1

1--
1 705 1 DMSSMN 1 An as FRBEMAIN macro 1 Change the program so
1 1 1 (SVC 5) was issued specify- 1 that it specifies the
1 1 1 ing the L operand. This 1 release of only one
I 1 1 operand is not supported by 1 area at a time.
1 1 1 CMS. 1
1--
1 804 1 DMSSMN 1 An as GETMAIN macro (804 - 1 Check the program for
1 80A 1 1 SVC 4, SOA - SVC 10) was 1 a valid GET MAIN re-
I I 1 issued that requested ei- 1 quest. If more storage
1 lither zero bytes of storage, 1 was requested than was
1 1 I or more storage than was 1 available, increase
1 1 1 available. 1 the size of the virtu-
I 1 I 1 al machine and retry.
1--------------- -----------------------·-------------------------------1
1 905 1 DMSSMN An as FREEMAIN macro (90S - 1 Check the program for 1
1 90A I SVC 5, 90A - SVC 10) was 1 a valid FREEMAIN re- 1
1 1 issued specifying an area 1 quest; the address may 1
lito be released whose ad- 1 have been incorrectly 1
1 I dress was not on a double- 1 specified or modified. 1
1 1 word boundary. 'I 1

1--------------- -----------------------·-------------------------------1
1 A05 I DMSSMN An as FREEMAIN macro (A05 - 1 Check the program for I
1 AOA I SVC 5, AOA - SVC 10) was 1 a valid FREEMAIN re- I
1 1 issued specifying an area 1 quest; the address 1
lito be released which over- 1 and/or length may have 1
1 I laps an existing free area. I been incorrectly spec- I
1 I I ified or modified. 1 L ___ ._ _ _______________________ -'

Figure 65. CMS ABEND Codes (Part 3 of 3)

562 VM/370: System Logic and Problem Determination Guide

r---
I Message IGenerated
I Code lat Label

DMTAXS1011 ITAGPEND
DMTAXS1021 IACCEPEND
DMTAXS103E IACCEPURG
DMTAXS1041 ICLOOSCAN

I
DMTAXS1051 ICLOIPURG
DMTAXS1061 IFILSTRY

10PENPOOF
DMTAXS1071 IUNPECHEK
DMTAXS108E 10PENRDER
DMTAXS5201 ICHANGE
DMTAXS5211 ICHANHO
DMTAXS5221 ICHANNOH
DMTAXS5231 ICHANSCAN

IORDBNEXT
DMTAXS524E ICHANGE

IORDBCHEK
IPURGCHEK

DMTAXS525E ICHANGE
10RDECHEK
I PURGCHEK

DMTAXS526E ICHANGE
IORDBCHEK
IPURGCHEK

DMTAXS6401 IPUBGDONE
DMTCMX0011 ICMXFINXT
DMTCMX0031 ICMXM003
DMTCMX2001 ICMXLGOT
DMTCMX201E ICMXHIT

ICMXLGOT
ICMXMISS

DMTCMX202E IDEFNOLNK
I MSGNOLNK

DMTCMX203E IA1FLKGOT
IA1FSTOW
ICHALKGOT
I L2FLKGOT
IQYOFILE
I QYOFNULL

DMTCMX204E ICHALKGOT
I CHANTBRM
ICHASCAN
IFLUMORE
ILOTERM
IL1TERM
IQYTOOMCH
IOYOFILE
IQYOLINK
I QYOSYSTM
IROSCAN

DMTCMX205E ICHACLASS
ICHACOPY

------------------------------,
I

Message Text I
--_·-----1

FILE 'spoolid' ENQUEUED ON LINK 'linkid' I
FILE 'spoolid' PENDING FOR LINK 'linkid' I
FILB 'spoolid' RBJECTED -- INVALID DESTINATION ADDRESS
FILE SPOOLED TO 'userid2' -- ORG 'locid l' (' userid 1')

mm/dd/yy hh:mm:ss
FILE 'spoolid' PURGED
FILE 'spoolid'MISSING -- DEQUEUED FROM LINK 'linkid'

nn PENDING FILES FOR LINK 'linkid' MISSING
SYSTEM ERROR READING SPOOL FILE 'spoolid'
File 'spoolid' CHANGED
FILE 'spoolid' HELD FOR LINK 'linkid'
FILE 'spoolid' RELEASED FOR LINK 'linkid'
LINK 'linkid' QUEUE REORDERED

FILE 'spoolid' ACTIVE -- NO ACTION TAKEN

FILE 'spoolid' IS FOR LINK 'linkid' -- NO ACTION TAKEN

FILE 'spoolid' NOT FOUND -- NO ACTION TAKEN

nn FILE(S) PURGED ON LINK 'linkid'
FREE STORAGE = nn PAGES
LINK 'linkid' EXECUTING: (command line)
RSCS
INVALID COMMAND 'command'

INVALID LINK 'linkid'

INVALID SPOOL FILE ID 'spoolid'

INVALID KEYWORD 'keyword'

CONFLICTING KEYWORD 'keyword'

.J

Section 4. Diagnostic lids 563

r-----------------------------·-----------------------------,
I Message IGeneratedl I
I Code lat Label I Message Text I

DHTCMX205E
(cont.)

DMTCMX206E

DMTCHX208E

DMTCMX3001
DMTCMX301E
DMTCMX302E
DHTCMX303E

DMTCMX304E
DMTCMX5401
DMTCHX5411
DMTCMX542E
DMTCMX543E

DMTCMX544E
DMTCMX5501
DMTCMX551E
DMTCMX 552E
DMTCMX5601
DMTCHX561E
DMTCMX6511
DMTCMX6521

DM TCMX 6531
DMTC MX6541
DMTCMX6551
DMTCMX6601
DMTCMX6611
DMTCMX6621

DMTCMX6631

CHAHOLD
CHANOHOL
CHAPRIOR
FLUKEYWD
LCTKEYWD
ROCLASS
ROKEEP
ROLINE
ROT ASK
ROTYPE
CHACLASS
CHACOPY
CHADIST
CHANAME
CHAPRIOR
LOHOLD
LOTRACE

IL1FLKGOT
I QUERY
IROCLASS
I ROCLMULT
IROKEEP
IROLINE
I R OTASK
IROTYPE
IDISCONN
I MSGNOLNK
IMSGNOUSR
ICMXALRDY
ICMXALRDY
I MSGNOLNK
ICMD
I LOFLKGOT
L1FLKGOT
L2FLKGOT
MSG
CMXALRDY
DEFLKNEW
DEFLKNEW
DEFINE
DEFNEXT
DEFNOLNK
DEFLKNEW
DELDELET
DELETE
DELETE
DISCHARG
DISCONN
QY1STAT

IQY1SNOD
I
IQY1DEF
I QY lQUEUE
I QY lINACT
IQY2STAT
IQY2STAT
IQY2RSS
I
IQY2VNOH
I

INVALID OPTION 'keyword' 'option'

INVALID USER 10 'userid'

ACCEPTED BY TASK 'task'
REJECTED BY TASK 'task' -- PREVIOUS COMMAND ACTIVE
LINK 'linkid' IS NOT DEFINED
LINK 'linkid' IS NOT ACTIVE

REJECTED BY TASK 'task' NOT RECEIVING
NEW LINK 'linkid' DEFINED
LINK 'linkid' REDEFINED
LINK 'linkid' ACTIVE -- NOT REDEFINED
LINK 'linkid' NOT DEFINED LINK LIMIT REACHED

LINK 'linkid' NOT DEFINED -- LIMIT REACHED
LINK 'linkid' NOW DELETED
LINK 'linkid' ACTIVE -- NOT DELETED
LINK 'linkid' HAS A FILE QUEUE -- NOT DELETED
RSCS DISCONNECTING
USERID 'userid' NOT RECEIVING

LINK 'linkid' INACTIVE
LINK 'linkid' ACTIVE 'type' 'vaddr' c (HOINOH) (DRINOD)

(TRAITREINOT)Q=m P=n
LINK 'linkid' DEFAULT 'task' 'type' 'vaddr' c R=m
LINK 'linkid' Q=m P=n
FILE 'spoolid' 'locid' 'userid' CL a PR mm REC nnnnnn
FILE 'spoolid' INACTIVE ON LINK 'linkid'
FILE 'spoolid' ACTIVE ON LINK 'linkid'
FILE 'spoolid' ORG 'locid' 'userid' mm/dd/yy hh:mm:ss

zzz TO 'locid' 'userid' VIA 'linkid'
FILE 'spoolid' PR am CL a CO nn (HOINOH) DI 'distcode',

NA (' fn ft' I' dsname')
--------'

564 VH/370: System Logic and Problem Determination Guide

r--·--------.,
I Message IGeneratedl I
I Code lat Label I Message Text I

Df'lTCMX664E IQY2RSS
I QY2STAT
IQY2VM
IQY2VNOH

DMTCMX6101 IQYSYACT
DMTCMX6111 IQYM611
DMTCMX6121 IQYSYNEXT
DMTCMX613I.IQYM613
DMTCMX1001 ISTALNGOT
DMTCMX101E ISTACREAT

DMTCMX102E

DMTCMX103E

DMTCMX104E

DMTCMX105E

DMTCMX106E

DMTCMX101E

DMTCMX108E

DMTCMX109E

DMTCMX110E
DMTCMX150E
DM TCMX151 I

DMTINI402T
DMTINI401R
DMTINI408R
DMTINI409R
DMTINI410R
DMTINI431S
DMTINI419E
DMTINI480E

DMTINI481E
DMTINI482E
DMTINI483E
DMTNPT010E
DMTNPT108E
DMTNPT1411
DMTNPT 1421
DMTNPT1431

DMTNPT1441

DMTNPT1451

DMTNPT1461
DMTNPT1411
DMTNPT 1491

DMTNPT190E
DMTNPT5101
DMTNPT511E

I
ISTACREAT
I
STACREAT

STACREAT

STACRERR

STACRERR

STACRERR

STACRERR

STACRERR

STAMAXER
STANOTCL

ICMXALRDY
I
IINIEXIT
ASKQUEST
IPLDISK
NUCCYLN
IPLZERO
WRERROR
BINERR1
DECERRl
RDORWRT
IPLZERO
BADIPLD
NUCCYLN
IOERRPRT
VMSGET
NPTEINIT
NPTEINIT
LINEDIS2

ILINEDROP
IPUTOPEN
I
I PUTCLS 1
I
IGETGOT2
I GET PURGE
ITRPRT
I
I VMSPl
IGTBKMSG
ISBKFWDN

FILE 'spoolid' NOT FOUND

LINK 'linkid' ACTIVE -- LINE 'vaddr' (HOINOH)
LINK 'linkid' INACTIVE
NO LINK ACTIVE
NO LINK DEFINED
ACTIVATING LINK 'linkid' 'task' 'type' 'vaddr'
NO SWITCHED LINE AVAILABLE -- LINK 'linkid' NOT

ACTIVATED
LINE 'vaddr' IS IN USE BY LINK 'linkidl' -- LINK

'linkid2' NOT ACTIVATED
DEV 'cuu' IS NOT A LINE PORT -- LINK 'linkid' NOT

ACTIVATED
LINE 'vaddr' CC=3 NOT OPERATIONAL -- LINK 'linkid' NOT

ACTIVATED
DRIVER 'type' NOT FOUND ON DISK 'vaddr' -- LINK

'linkid' NOT ACTIVATED
FATAL ERROR LOADING FROM 'vaddr' -- LINK 'linkid' NOT

ACTIVATED
DRIVER 'type' FILE FORMAT INVALID LINK 'linkid' NOT

ACTIVATED
VIRTUAL STORAGE CAPACITY EXCEEDED LINK 'linkid' NOT

ACTIVATED
TASK NAME 'task' ALREADY IN USE -- LINK 'linkid' NOT

ACTIVATED
MAX (nn) ACTIVE -- LINK 'linkid' NOT ACTIVATED
LINK 'linkid' ALREADY ACTIVE NO ACTION TAKEN
LINK 'linkid' ALREADY ACTIVE -- NEW CLASS(ES) SET AS

REQUESTED
IPL DEVICE READ I/O ERROR
REWRITE THE NUCLEUS? Y OR N
IPL DEVICE ADDRESS = ccu
NUCLEUS CYL ADDRESS = nnn
ALSO IPL CYLINDER O? Y OR N
IPL DEVICE WRITE I/O ERROR
INVALID DEVICE ADDRESS - REENTER
INVALID CYLINDER NUMBER - REENTER

INVALID REPLY - ANSWER YES OR NO
IPL DEVICE ERROR - REENTER
NUCLEUS OVERLAYS CMS FILES - RECOMPUTE
ERROR cuu SIOCC cc CSW CSW SENSE sense CCW ccw
SYSTEM ERROR READING SPOOL FILE 'spoolid'
LINE 'vaddr' READY FOR CONNECTION TO LINK 'linkid'
LINK 'linkid' LINE 'vaddr' CONNECTED
LINK 'linkid' LINE 'vaddr' DISCONNECTED

RECEIVING: FILE FROM 'locid1' ('namel') FOR 'locid2'
('name2')

RECEIVED: FILE FROM 'locid1' ('namel') FOR 'locid2'
('name 1')

SENDING: FILE 'spoolid' ON LINK 'linkid', REC nnnnnn
SENT: FILE 'spoolid' ON LINK 'linkid'
LINK 'linkid' LINE ACTIVITY: TOT= mmm; ERRS= nnn;

TMOUTS= ppp
INVALID SPOOL BLOCK FORMAT ON FILE 'spoolid'
FILE 'spoolid' BACKSPACED
NO FILE ACTIVE ON LINK 'linkid'

----'

Section 4. Diagnostic Aids 565 ,.

r--~------------------------------------ ----,
I Message IGeneratedl
I Code lat Label I Message Text

DMTNPT5701 SETDRAIN
DMTNPT571E SETDRERl
DMTNPT5801 GETFLUSH
DP!TNPT581E SETFLUSH

GETFLSHE
DP!TNPT5901 SETFREE
DP!TNPT591E SETFRER1
DP!TNPT6001 GDGODNE
DMTNPT6101 SETHOLD

GETFILE
DP!TNPT6llI SETHLDIP!

GETFILE
DMTNPT612E SETHLDE1
DMTNPT750E SETSTRT1
DMTNPT7521 SETSTART
DMTNPT801I SETTR 1
DMTNPT8021 SETTR2
DMTNPT8031 SETTRACE
DMTNPT8l0E SETTRE1
DMTNPT811E SETTRE2
DMTNPT902E CONFoCKl
DMTNPT903E SPASS
DMTNPT904E SGNERR
DMTNPT9051 NPTGETX
DMTNPT934E PUTCLOSE
DMTNPT936E GETGOTl

DMTREXOOOI REXICGOT
DMTREX0021 TERLHIT
DMTREX080E TERLHIT
DMTREX090T REXPTERM
DHTREX091T REXITERM
DMTSML070E IOERRPRT
DMTSML108E VMSPGET
DMTSML1411 ISIO
DMTSML 1421 SIGNOK
DMTSML1431 EOJ
DMTSML 1441 JOUTPUT

PCONT
UOUTPUT

DMTSML1451 JCLOSE1
PCLOSE
UCLOSE

DMTSML1461 RLOCl
DMTSML1471 RDEOF
DMTSML1491 TRPRT

DMTSML 1701 WGET2
DHTSML190E VMSPl
DMTSML5101 RDBKMSG
DMTSML511E SBKFWDN
DHTSML5301 SETCMD
DMTSML5701 SETDRAIN

$USRNPUN
DHTSML571E SETDRERl
DMTSML5801 RDFLUSH
DHTSML581E SETFLUSH

RDFLSHER
DMTSML5901 SETFREE
DHTSML591E SETFRERl

LINK 'linkid' NOW SET TO DEACTIVATE
LINK 'linkid' ALREADY SET TO DEACTIVATE
FILE 'spoolid' PROCESSING TERMINATED
FILE 'spoolid' NOT ACTIVE

LINK 'linkid' RESUMING FILE TRANSFER
LINK 'linkid' NOT IN HOLD STATUS
FILE 'spoolid' FORWARD SPACED
LINK 'linkid' TO SUSPEND FILE TRANSMISSION

LINK 'linkid' FILE TRANSMISSION SUSPENDED

LINK 'linkid' ALREADY IN HOLD STATUS
LINK 'linkid' ALREADY ACTIVE -- NO ACTION TAKEN
LINK 'linkid' STILL ACTIVE -- DRAIN STATUS RESET
LINK 'linkid' ERROR TRACE STARTED
LINK 'linkid' TRACE STARTED
LINK 'linkid' TRACE ENDED
LINK 'linkid' TRACE ALREADY ACTIVE
LINK 'linkid' TRACE NOT ACTIVE
NON-SIGNON CARD READ ON LINK (linkid)
PASSWORD (password) on LINK (linkid) IS INVALID
SIGNON KEYWORD (keyword) INVALID
SIGNON OF LINK 'linkid' COMPLETE
ID MISSING ON LINK 'linkid' -- INPUT FILE PURGED
NO REMOTE PUNCH AVAILABLE ON LINK 'linkid' -- FILE

'spoolid' PURGED
RSCS (VER v, LEV 1, mm/dd/yy) READY
LINK 'linkid' DEACTIVATED
PROGRAM CHECK -- 'linkid' DEACTIVATED
PROGRAM CHECK IN SUPERVISOR -- RSCS SHUTDOWN
INITIALIZATION FAILURE - RSCS SHUTDOWN
I/O ERROR -- SIOCC -- CSW -- SENSE -- CCW
SYSTEM ERROR READING SPOOL FILE 'spoolid'
LINE 'vaddr' READY FOR CONNECTION TO LINK 'linkid'
LINK 'linkid' LINE 'vaddr' CONNECTED
LINK 'linkid' LINE 'vaddr' DISCONNECTED
RECEIVING: FILE FROM '10cid1' ('namel') FOR '10cid2'

(' name2')

RECEIVED: FILE FROM 'locidl' ('namel') FOR '10cid2'
(' name 2 ')

SENDING: FILE ~spoolid' ON LINK 'linkid', REC nnnnnn
SENT: FILE 'spoolid' ON LINK 'linkid'
LINK 'linkid' LINE ACTIVITY: TOT= mmm; ERRS= nnn;

TMOUTS= ppp
FROM 'linkid': (MSG message text)
INVALID SPOOL BLOCK FORMAT ON FILE 'spoolid'
FILE 'spoolid' BACKSPACED
NO FILE ACTIVE ON LINK 'linkid'
COMMAND FORWARDED ON LINK 'linkid'
LINK 'linkid' NOW SET TO DEACTIVATE

LINK 'linkid' ALREADY SET TO DEACTIVATE
FILE 'spoolid' PROCESSING TERMINATED
FILE 'spoolid' NOT ACTIVE

LINK 'linkid' RESUMING FILE TRANSFER
LINK 'linkid' NOT IN HOLD STATUS

566 VM/370: System Logic and Problem Determination Guide

I
I

r-----------
I Message
I Code

DMTSML6001
DMTSML6101
DMTSML6111

DMTSML612E
DMTSML750E
DMTSML 7521
DMTSML8011
DMTSML8021
DMTSML8031
DflTSML810E
DMTSML811E
DMTSML901E

DMTSML902E
DMTSML903E
DMTSML9051
DMTSML906E

DMTSML934E
DMTSML935E

IGeneratedl
lat Label I

RDGODNE
SETHOLD
ALLHLD
SETHLDIM
SETHLDE1
SETSTRT 1
SETSTART
SETTR1
SETTR2
SETTRACE
SETTRE1
SETTRE2
SMLIERR1

MC7ERR
MC7A

IMC7B
ISMLIERR2
I
IJCLOSE
IRDNOHLD
I

Message Text

FILE 'spoolid' FORWARD SPACED
LINK 'linkid l TO SUSPEND FILE TRANSMISSION
LINK 'linkid' FILE TRANSMISSION SUSPENDED

LINK 'linkid' ALREADY IN HOLD STATUS
LINK 'linkid' ALREADY ACTIVE -- NO ACTION TAKEN
LINK 'linkid' STILL ACTIVE -- DRAIN STATUS RESET
LINK 'linkid' ERROR TRACE STARTED
LINK 'linkid' TRACE STARTED
LINK 'linkid' TRACE ENDED
LINK 'linkid' TRACE ALREADY ACTIVE
LINK 'linkid' TRACE NOT ACTIVE
INVALID SML MODE SPECIFIED -- LINK 'linkid' NOT

ACTIVATED
NON-SIGNON CARD READ ON LINK (linkid)
PASSWORD (password) ON LINK (linkid) IS INVALID
SIGNON OF LINK 'linkid' COMPLETE
INVALID SML BUFFER PARAMETER -- LINK 'linkid' NOT

ACTIVATED
ID CARD MISSING ON LINK 'linkid' -- INPUT FILE PURGED
LINK 'linkid' IN RJE MODE -- PRINT FILE 'spoolid'

PURGED ____________________ -----J

section 4. Diagnostic lids 567

DEBUGGING WITH CMS

This section describes the debug tools that CMS
provides. These tools can be used to help you
debug CMS or a problem program. In addition, a
CMS user can use the CP commands to debug.
Information that is often useful in debugging is
also included. The following topics are
discussed in this section:

• CMS debugging commands
• DASD dump restore program

CMS provides two commands that
debugging: DEBUG and SVCTRACE.
execute from the terminal.

are useful in
Bot h commands

The debug environment is entered whenever:

• The DEBUG command is issued
A breakpoint is reached

• An external or program interruption occurs

CMS does not accept other commands while in
the debug environment. However, while in the
debug environment, the options of the DEBUG
command can:

• set breakpoints (address stops) that stop
program execution at specific locations.

• Display the contents of the CAW (channel
address word), CSW (channel status word), old
PSW (program status word), or general
registers at the terminal.

• Change the contents of the control words
(CAW, CSW and PSW) and general registers.

• Dump all or part of virtual storage at the
printer.

• Display the contents of up to 56 bytes of
virtual storage at the terminal.

• store data in virtual storage locations.

• Allow an origin or base address to be
specified for the program.

• Assign symbolic names to specific storage
loca tions.

• Close all open files and 1/0 devices and
update the master file directory.

• Exit from the debug environment.

The SVCTRACE command records information for
all SVC calls. When the trace is terminated,
the information recorded up to that point is
printed at the system printer.

In addition, several CMS commands produce or
print load maps. These load maps can locate
storage areas while debugging programs.

DEBUG

The DEBUG command provides support for debugging
programs at a terminal. The virtual machine
operator can stop the program at a specified
location and examine and alter virtual storage,
registers, and various control words. Once CMS
is in its debug environment, the virtual machine
operator can request the various DEBUG options.
However, in the debug environment, all of the
other CMS commands are considered invalid.

Any DEBUG subcommand may be entered if CMS is
in the debug environment and if the keyboard is
unlocked. The following rules apply to DEBUG
subcommands:

1. No operand should be longer than eight
characters. All operands longer than eight
characters are left justified and truncated
on the right after the eighth character.

2.

3.

You must use the DEFINE
create all entries in the
table.

subcommand to
DEBUG symbol

The DEBUG subcommands can be truncated.
The following is a list of all valid DEBUG
subcommands and their minimum truncation.

2!!!!£2!!!!gng
BREAK
CAW
CSW
DEFINE
DUMP
GO
GPR
HI
ORIGIN
PSW
RETURN
SET
STORE
I

Minimum
Truncation ----BR----

CAW
CSW
DEF
DU
GO
GPR
HI
OR
PSi
RET
SET
ST
X

One way to enter the debug environment is to
issue the DEBUG command. The message

DMSDBG7281 DEBUG ENTERED

appears at the terminal. Any of the DEBUG
subcommands may be entered. To continue normal
processing, issue the RETURN subcommand.

Whenever a program check occurs, the DMSABN
routine gains control. Issue the DEBUG command
at this time if you want CMS to enter its debug
environment.

,568 VH/370: System Logic and Problem Determination Guide

Whenever a breakpoint is encountered, a
program check occurs. The message

DMSDBG728I DEBUG ENTERED
BREAKPOINT II AT XXXXX

appears on the terminal. Follow the same
procedure to enter subcommands and resume
processing as with a regular program check.

An external interrupt, which occurs when the
CP EXTERNAL command is issued, causes CMS to
enter its debug environment. The message

DMSDBG728I DEBUG ENTERED
EXTERNAL INTERRUPT

appears on the console. Any
subcommands may be issued. To
debug environment after
interruption, use GO.

of the DEBUG
exit from the
an external

While CMS is in its debug environment, the
control words and low storage locations contain
the debug program values. The debug program
saves the control words and low storage contents
(X'OOI - Xll001) of the interrupted routine at
loca tion X I CO '.

The following is a detailed discussion of the
possible DEBUG sUbcommands.

Use the BREAK subcommand to set breakpoints
which stop execution of a program or module at
specific instruction locations, called
breakpoints. Issuing the BREAK subcommand
causes a single breakpoint to be set. A
separate BREAK subcommand must be issued for
each breakpoint desired. A maximum of 16
breakpoints (with identification numbers 0
through 15) may be in effect at one time; a~y
attempt to set more than 16 breakpoints 1S
rejected. The format of the BREAK subcommand
is:

..--------
I BReak I id {Symbol}
I I hexloc L--_____ _

-----------------,
I
I

----------'

id is a decimal number, from 0 to 15, which
identifies the breakpoint.

symbol
is a name assigned to the storage location
where the breakpoint is set. The symbolic
name must be previously assigned to the
storage address using the DEF subcommand of
the DEBUG command.

hexloc
is the hexadecimal storage location (relative
to the current origin) where the breakpoint
is set.

Breakpoints should be set after a program is
loaded, but before it executes. When a
breakpoint is encountered during program
execution, execution stops and the debug
environment is entered. Iou can then use the
other DEBUG subcommands to analyze the program
at that particular point. Registers, storage,
and control words can be examined and altered.
After you finish analyzing the program at this
point in its execution, issue the GO subcommand
to resume program execution.

Breakpoints are set before the program
executes. They are set on instruction
(halfword) boundaries at locations that contain
operation codes. After setting all the desired
breakpoints, issue the RETURN subcommand to exit
from the debug environment. Then issue the CMS
START command to begin program execution.

The first operand of the BREAK subcommand
(id) assigns an identification number (0-15) to
the breakpoint. If the identification number
specified is the same as a currently set
breakpoint, the previous breakpoint is cleared
and the new one is set.

The second operand of the BREAK subcommand
(symbol cr hexloc) indicates the storage
location of the breakpoint. If the operand
contains any nonhexadecimal characters, the
DEBUG symbol table is searched for a matching
symbol entry. If a match is found, the
breakpoint is set at the storage address
corresponding to that symbol, provided that the
storage address is on an even (halfword)
boundary. If no match is found in the DEBUG
symbol table (and the operand is a valid
hexadecimal number), the second operand is
treated as the hexadecimal representation of the
storage address. When the second operand is a
valid hexadecimal number, this number is added
to the program origin. If the resulting storage
address is on a half word boundary and is not
greater than the userls virtual machinels
storage size, the breakpoint is set •

When the debug program sets a breakpoint, it
saves the contents of the halfword at the
location specified by the second operand of the
BREAK subcommand. This halfword is replaced by
B2Ex, where x is the hexadecimal equivalent of
the identification number, specified in. the
first operand of the BREAK subcommand. The
storage location specified for a breakpoint must
contain an operation code. It is your
responsibility to see that breakpoints are set
only at locations containing operation codes.
After breakpoints are set and during program
execution, the value B2EO through B2EF is
encountered at a location where an operation
code should appear. A program check occurs
because all values B2EO through B2EF are invalid
operation codes and control is transferred to

Section 4. Diagnostic Aids 569

the debug environ.ent. DEBUG recognizes the
invalid operation code as a breakpoint. The
original operation code replaces the invalid
operation code, and a message

DMSDBG728I DEBUG ENTERED
BREAKPOINT yy AT xxxxxx

appears at the terminal. "yy" is the breakpoint
identification number and 1XXXXX is tbe storage
address of the breakpoint. After the message is
displayed, the keyboard is unlocked to accept
any DEBUG subcommands except RETURN. A
breakpoint is cleared when it is encountered
during program execution.

It is your responsibility to ensure that
breakpoints are set only at operation code
locations. Otherwise, the breakpoint is not
recognized; data or some part of the instruction
other than the operation code is overlaid.
Thus, errors may be generated if breakpoints are
set at locations that do not contain operation
codes.

The following error messages may appear while
entering the BREAK subcommand.

INVALID OPERAND

This message indicates that the breakpoint
identification number specified in the first
operand is not a decimal number between 0 and
15 inclusive, or the second operand cannot be
located in the DEBUG symbol table and is not
a valid hexadecimal number. If the second
operand is intended to be a symbol, a DEl
subcommand must have been previously issued
for that symbol; if not, the operand must be
a valid hexadecimal storage location.

INVALID STORAGE REFERENCE

The location indicated by the second operand
is uneven (not on a halfword boundary) or the
sum of the second operand and the current
origin value is greater than the virtual
machine's virtual storage size. If the
current origin value is unknown, it may be
reset to the desired value by issuing the
ORIGIN subcommand.

MISSING OPERAND

The minimum number of operands has not been
supplied.

TOO MANY OPERANDS

you entered more than two operands.

570 VM/370: System Logic and Problem Determination Guide

Use the CAW subcommand anytime the virtual
machine is in the debug environment. Issue the
CAW subcommand to check that the command address
field contains a valid CCW address, or to find
the address of the current CCW so that you can
examine it. Issuing the CAW subcommand causes
the contents of the CAW (channel address word),
as it existed at the time the debug environment
was entered, to appear at the terminal. The CAW
located at storage location X'48' is saved at
the time the debug environment is entered and
displayed on the terminal whenever the CAW
subcommand is issued. If the subcommand is
issued correctly, the contents of the CAW are
displayed in hexadecimal representation at the
terminal.

The format of the CAW subcommand is:

r- ,
I CAW I I L ___ -J

The CAW subcommand has no operands.

The format of the CAW is:

r -,
I KEY I 0000 I Command Address I L _____________________ _

.J

o 3 4 7 8 31

Bits contents
0=3- The--protection key for all commands

associated with START I/O. The protection
key in the CAW is compared with a key in
storage whenever a reference is made to
storage.

4-7 This field is not used and must contain
binary zeros.

8-31 The command address field
storage address (in
representation) of the first
command word) associated with
most recent START I/O.

(::ontains the
hexadecimal

CCW (channel
the next or

The three low-order bits of the command
address field must be zeros for the CCW to be on
a doubleword boundary. If the CCW is not on a
doubleword boundary or if the command address
specifies a location protected fron fetching or
outside the storage of a particular virtual
machine, START I/O causes the status portion of
the CSW to be stored with the program check or
protection check bit on. In this event, the I/O
operation is not initiated.

The following error message may appear while
entering the CAW subcommand.

TOO MANY OPERANDS

An operand was entered on the command line;
the CAW subcommand has no operands.

Section 4. Diagnostic Aids 571

Use the CSW subcommand any time the virtual
machine is in the debug environment. Issue the
CSW subcommand whenever an I/O operation
abnormally terminates. The status and residual
count information in the CSW is very useful in
debugging. Also, use the CSW to calculate the
address of the last executed CCW (subtract 8
bytes from the command address to find the
address of the last ccw executed). Issuing the
CSW subcommand causes the contents of the CSW
(channel status word), as it existed at the time
the debug environment was entered, to appear at
the terminal. The CSW indicates the status of
the channel or an input/output device, or the
conditions under which an I/O operation
terminated. The CSW is formed in the channel
and stored in storage location X'40' when an I/O
interrupt occurs. If I/O interruptions are
suppre~sed, the CSW is stored when the next
start I/O, Test I/O, or Halt I/O instruction is
executed. The CSW is saved when DEBUG is
entered.

If the subcommand is issued correctly, the
contents of the CSW are displayed at the
terminal in hexadecimal representation.

The format of the CSW subcommand is:

r -------,
I CSW \ L ___ -J

The CSW subcommand has no operands.

The format of the CSW is:

r---,
\KEYIOOOOI Command Address IStatuslByte Count \ L-__ -J

03478 31 32 47 48 63

Bits contents
0="3- 'The-protection key is moved to the CSW

from the CAW. It indicates the
protection key at the time the I/O
started. The contents of this field are
not affected by programming errors
detected by the channel or by the
condition causing termination of the
operation.

4-7 This field is not used and must contain
binary zeros.

8-31 The command address contains a storage
address (in hexadecimal representation)
eight bytes greater than the address of
the last CCW executed.

32-47 The status bits indicate the conditions
in the device or channel that caused the
CSW to be stored.

48-63 The residual count is the difference
between the number of bytes specified in
the last executed CCW and the number of
bytes that were actually transferred.
When an input operation is terminated,
the difference between the original count
in the CCW and the residual count in the
CSW is equal to the number of bytes
transferred to storage; on an output
operation, the difference is equal to the
number of bytes transferred to the I/O
device.

The following error message may appear when you
enter the CSW subcommand.

TOO MANY OPERANDS

An operand was entered on the command line;
the CSW subcommand has no operands.

572 V"/370: system Logic and Problem Determination Guide

Use the DEFINE subcommand to assign symbolic
names to a specific storage address. Once a
symbolic name is assigned to a storage address,
that symbolic name can refer to that address in
any of the other DEBUG subcommands. However,
the symbol is valid only in the debug
environment.

Issuing the DEFINE subcommand creates an
entry in the DEBUG symbol table. The entry
consists of the symbol name, the storage
address, and the length of the field. A maximum
of 16 symbols can be defined in the DEBUG symbol
table at a given time.

When a DEFIlE subcommand specifies a symbol
that already exists in the DEBUG symbol table,
the storage address derived from the current
request replaces the previous storage address.
Several symbols may be assigned to the same
storage address, but each of these symbols
constitutes one entry in the DEBUG symbol
table. The symbols remain defined until a new
DEF is issued for them or until an IPL request
loads a new copy of CMS.

The format of the DEFINE subcommand is:

r---·-------
I I r .,

I bytecountl I DEFine I symbol hex10c
I I I ! I
I I L .J

L

symbol
is the name to be assigned to the storage
address derived from the second operand,
hex10c. Symbol may be from 1 to 8 characters
long. It must contain. at least one
nonhexadecima1 character. Any symbolic name
longer than eiqht characters is
left-justified and truncated on the right
after the eighth character.

hex10c
is the hexadecimal storage location, in
relation to the current origin, to which the
name specified in the first operand (symbol),
is assigned. Hex10c, a hexadecimal number,
is added to the current origin established by
the ORIGIN subcommand. The sum of the second
operand (hex10c) and the or1g1n is the
storage address to which the symbolic name is
assigned. To assign the symbolic name to the
correct location be sure to know the current
origin. The existing DEBUG symbol table
entries remain unchanged when the ORIGIN
subcommand is issued.

bytecount
is a decimal number, from 1 throl11gh 56, which
specifies the length in bytes of the field
whose name is specifed by the first operand
(symbol) and whose starting location is
specified by the second operand (hex10c).
When the bytecount operand is not specified,
a default bytecount of 4 is assumed.

The following error messages may appear when the
DEFINE subcommand is issued:

INVALID OPERAND

This message indicates that the name
specified in the first operand contains all
numeric characters, the second operand is not
a valid hexadecimal number, or the third
operand is not a decimal number between 1 and
56 inclusive.

INVALID STORAGE ADDRESS

The sum of the second operand and the current
origin is greater than the virtual machine's
storage size. If the current origin size is
unknown, reset it to the desired value by
issuing the ORIGIN subcommand and then
reissue the DEF subcommand.

16 SYMBOLS ALREADY DEFINED

The DEBUG symbol table is full and no new
symbols may be defined until the current
definitions are cleared by obtaining a new
copy of CMS. However, an existing symbol may
be assigned to a new storage location by
issuing another DEF subcommand for that
symbol.

MISSING OPERAND

The DEFINE subcommand requires at least two
operands and less than two were entered.

TOO MANY OPERANDS

Three is the maximum number of operands for
the DEFINE subcommand and more than three
were entered.

Section 4. Diagnostic Aids 573

Use the DUMP subcommand to print part or all of
a virtual machine's storage on the printer.

The format of the DUMP subcommand is:

r-------------------------------------,
I I r , r , I
I DUmp I I symbo11 I I symbo12 I I
I I I hexloc 1 I I hexloc2 I [ident] I
I I I .Q I I * I I
I I L .J I J~ I I
I I L .J I l _________________________________ .J

.!!h~!~:

symboll
is the name
subcommand) to
begins the dump.

assigned (via
the storage

the DEFINE
address that

hexloc 1
is the hexadecimal storage location, in
relation to the current origin, that begins
the dump.

symbo12
is the name assigned
subcommand) to the storage
the dump.

hexloc2

(via the DEFINE
address that ends

is the hexadecimal storage location, in
relation to the current origin, that ends the
dump.

* indicates that the dump ends at the user's
last virtual storage address.

ident
is the name (up to eight characters) that
identifies this particular printout.

The requested information is printed offline
as soon as the printer is available. First, a
heading:

ident FROM starting location TO ending
location

is printed. Next, the general registers 0
through 7 and 8 through 15, and the
floating-point registers 0 through 6 are
printed. Then the specified portion of virtual
storage is printed with the storage address of
the first byte in the line printed at the left,
followed by the alphameric interpretation of 32
bytes of storage.

The first and second operands specify the
starting and ending addresses, respectively, of
the area of storage to be dumped. If you issue
DUMP without the first and second operands, 32
bytes of storage are dumped starting at the
current origin. If you issue DUMP without the
second operand, 32 bytes of storage are dumped
starting at the location indicated by the first
operand.

If you specify ~he first and second operands,
they must be valid symbols or hexadecimal
numbers. When you specify a symbol, the DEBUG
symbol table is searched. If a match is found,
the storage location corresponding to that
symbol is the starting or ending address for the
dump. When a hexadecimal number is specified,
it is added to the current origin to calculate
the starting or ending storage address for the
dump. The first and second operands must
designate storage addresses that are not greater
than the virtual machine's storage size. Also,
the storage address derived from the second
operand must be greater than the storage address
derived from the first operand. An asterisk may
be specified for the second operand. In this
case, all of storage from the starting address
(first operand) to the end of storage is printed
on the printer.

The following error messages may appear when you
issue the DUMP subcommand.

INVALID OPERAND

This message is issued if the address
specified by the second operand is less than
that specified by the first operand, or if
the first or second operands cannot be
located in the DEBUG symbol table and are not
valid hexadecimal numbers. If either operand
is intended to be a symbol, a DEFINE
subcommand must previously have been issued
for that symbol; if not, the operand must
specify a valid hexadecimal location.

INVALID STORAGE ADDRESS

The hexadecimal number specified in the first
or second operand, when added to the current
origin, is greater than the user's virtual
storage size. If the current origin value is
unknown, reset it to the desired value by
issuing the ORIGIN subcommand and then
reissue the DUMP subcommand.

TOO MANY OPERANDS

Three is the maximum number of operands for
the DUMP subcommand; more than three operands
were entered.

574 VM/370: System Logic and Problem Determination Guide

§Q

Use the GO subcommand to 'exit from the debug
environment and begin execution in the CMS
environment. The old PSW for the interruption
that caused the debug environment to be entered
is saved and later loaded to resume processing.
Issuing the GO subcommand loads the old PSi.

The format of the GO subcommand is:

r ,
I r, I
I GO I symbol I I
I I hexloc I I
I L.J I L--__ · ____________________________________ -.J

symbol
is the name, already assigned by the DEFINE
subcommand, to a storage location where
execution begins.

hexloc
is the hexadecimal location, in relation to
the current origin, where execution begins.

When the GO subcommand is issued, the general
registers, CAW (channel address word), and CSW
(channel status word) are restored either to
their contents upon entering the debug
environment, or, if they have been modified
while in the debug environment, to their
modified contents. Then the old PSW is loaded
and becomes the current PSW. Execution begins
at the instruction address contained in bits
40-63 of the PSW.

By specifying an operand with the GO
subcommand, you can alter the address where
execution is to begin. This operand must be
specified whenever the GO subcommand is issued
if the debug environment is entered by issuing
the DEBUG command.

The operand may be a symbol or a hexadecimal
location. When a symbol is specified, the DEBUG
symbol table is searched. If a match is found,
the storage address corresponding to the symbol
replaces the instruction address in the old PSW.
When a hexadecimal number is specified, it is
added to the current origin to calculate the
storage address that replaces the instruction
address in the old PSW. In either case, the
derived storage address must not be greater than
the virtual machine's storage size. Further, it
is your responsibility to make sure that the
address referred to by the operand of the GO
subcommand contains an operation code.

If the debug environment was entered due to a
breakpoint, external interruption, or program
interruption, then the GO subcommand does not
need an operand specifying the starting
address.

The following error messages may appear while
entering the GO subcommand.

INVALID OPERAND

An operand specified in the GO subcommand
cannot be located in the DEBUG symbol table
and is not a valid hexadecimal number. If
the operand is intended to be a symbol, a
DEFINE subcommand must have been previously
issued for that symbol; if not, the operand
must specify a valid hexadecimal storage
location.

INVALID STORAGE ADDRESS

The address at which execution is to begin is
not on a halfword boundary (indicating that
an operation code is not located at that
address) or the sum of the GO operand and the
current origin value is greater than the
virtual machine's storage size. If the
current value is unknown, it may be reset to
the desired value by issuing the ORIGIN
subcommand.

INCORRECT DEBUG EXIT

The GO subcommand without an operand has been
issued when DEBUG had not been entered due to
a breakpoint or external interruption. The
RETURN subcommand must be issued if DEBUG had
been entered via the DEBUG command.

TOO MANY OPERANDS

The GO subcommand has a maximum of one
operand; more than one operand was entered.

section 4. Diagnostic Aids 575

Use the GPR subcommand to print the contents of
one or more general registers at the terminal.

The format of the GPR subcommand is:

r--,
I GPR I reg1 [reg2] I L _____________________________________ . _________ J

reg1
is a decimal number (from 0 through 15)
indicating the first or only general register
whose contents are to be typed.

reg2
is a decimal number (from 0 through 15)
indicating the last general register whose
contents are to be typed. This operand is
optional and is only specified when more than
one register's contents are to be printed.

When only one operand is specified, only the
contents of that general register are typed at
the terminal. When two registers are specified,
the contents of all general registers from the
register indicated by the first operand through

the register indicated by the second operand are
typed at the terminal. Both operands must be
decimal numbers from 0 through 15 inclusive, and
the second operand must be greater than the
first.

The following error messages may appear on the
terminal when the GPR subcommand is entered.

INVALID OPERAND

The operand(s) specified are not
numbers from 0 through 15, or the
operand is less than the first.

MISSING OPERAND

decimal
second

The GPR subommand requires at least one
operand, and none was entered.

TOO MANY OPERANDS

The GPR
operands,
entered.

subcommand
and more

has a maximum of
than two operands

two
were

576 VM/370: System Logic and Problem Determination Guide

Use the HI subcommand to close all open files
and I/O devices, and to update the master file
directory. This subcommand may be issued
whenever the keyboard is unlocked in the debug
environment, regardless of the reason the debug
environment was entered.

The format of the HX subcommand is:

r--,
I HX I I L _______ _ _ ___________ ---J

The HX subcommand has no operands.

The following error message may appear on the
terminal while entering the HI subcommand.

TOO MANY OPERANDS

The HI subcommand has no operands, and one or
more operands were entered.

Section 4. Diagnostic Aids 577

Use the ORIGIN subcommand to set the origin
equal to the program load point. The ORIGIN
subcommand sets an origin or base address to be
used in the debug environment. In all debug
subcommands, you can specify instruction
addresses in relation to the program load point,
rather than to O. The hexadecimal location
specified in DEBUG subcommands then represents a
specific location within a program, the origin
represents the storage location of the beginning
of the program; and the two values added
together represent the actual storage location
of that specific point in the program.

The format of the ORIGIN subcommand is:

r--,
I ORigin I {SymbOl} I
I I hexloc I L ____________________________ . ___________ --'

symbol
is a name that was previously assigned (via
the DEFINE subcommand) to a storage address.

hexloc
is a hexadecimal location within the limits
of the virtual machine's storage.

When the ORIGIN subcommand specifies a
symbol, the DEBUG symbol table is searched. If
a match is found, the value corresponding to the
symbol becomes the new origin. When a
hexadecimal location is specified, that value
becomes the origin. In either case, the operand
cannot specify an address greater than the
virtual machine's storage size.

Any origin set by an remains in effect until
another ORIGIN subcommand ORIGIN subcommand is
issued, or until you obtain a new copy of CMS.
Whenever a new ORIGIN subcommand is issued, the
value specified in that subcommand overlays the
previous origin setting. If you obtain a new
copy of CMS (via IPL), the origin is set to 0
until a new ORIGIN subcommand is issued.

The following error messages may appear while
you enter the ORIGIN subcommand.

INVALID OPERAND

The operand specified in the ORIGIN
subcommand cannot be located in the DEBUG
symbol table and is not a valid hexadecimal
number. If the operand is intended to be a
symbol, a DEFINE subcommand must have been
previously issued for that symbol; if not,
the operand must specify a valid hexadecimal
location.

INVALID STORAGE ADDRESS

The address
is greater
size.

MISSING OPERAND

specified by the ORIGIN operand
than the user's virtual storage

The ORIGIN subcommand requires one operand,
and none was entered.

TOO MANY OPERANDS

The ORIGIN subcommand requires only one
operand, and more than one was entered.

578 VM/370: system Logic and Problem Determination Guide

Use the PSi subcommand to type the contents of
the old PSi (program status word) for the
interruption that caused DEBUG to be entered.

The format of the PSi subcommand is:

r------------------------------ ---,
I PSi I I L ___ ~

The PSi subcommand has no operands.

If DEBUG was entered due to an external
interrupt, the PSi subcommand causes the
contents of the external old PSi to be typed at
the terminal. If a program interrupt caused
DEBUG to be entered, the contents of the program
old PSi are typed. If DEBUG was entered for any
other reason, the following is typed in response
to the PSi sUbcommand:

01000000 xxxxxxxx

where the 1 in the first byte means that
external interruptions are allowed and xxxxxxxx
is the hexadecimal storage address of the DEBUG
program.

The PSi contains some information not
contained in storage or registers but required
for proper program execution. In general, the
PSi controls instruction seq~encing and holds
and indicates the status of the systea in
relation to the program currently executing.

The following error message may appear while
entering the PSi subcommand.

TOO MANY OPERANDS

The PSi subcommand has no operands and one or
more was entered.

Section 4. Diagnostic Aids 579

Use the RETURN subcommand to exit from t he debug
environment to the CMS command environment.
RETURN should be used only when DEBUG is entered
by issuing the DEBUG command.

The format of the RETURN subcommand is:

r-----------------------------·-------,
I RETurn I I
L __ _

_ _______________ J

The RETURN subcommand has no operands.

When RETURN is issued, the information
contained in the general registers at the time
DEBUG was entered is restored or, if this
information was changed while in the debug
environment, the changed information is
restored. In either case, register 15, the
error code register, is set to zero. A branch
is then made to the address contained in
register 14, the normal CMS return register. If
DEBUG is entered by issuing the DEBUG command,
register 14 contains the address of a central
CMS service routine and control transfers
directly to the CMS command environment. The

ready message followed by a carriage return and
an unlocked keyboard indicates that the RETURN
subcommand has successfully executed and that
control has transferred from the DEBUG
environment to the CMS command environment.

The following error messages may appear while
entering the RETURN subcommand.

TOO MANY OPERANDS

The RETURN subcommand has no operands, and
one or more were specified.

INCORRECT DEBUG EXIT

If DEBUG is entered due to a program or
external interruption, a breakpoint or an
unrecoverable error, this message is
displayed in response to the RETURN
subcommand. To exit from the DEBUG
environment under the above circumstances,
issue GO.

580 VM/370: System Logic and Problem Determination Guide

Use the SET subcommand to change the contents of
the control words and general registers that are
saved when the debug environment is entered.
The contents of these registers are restored
when control transfers from DEBUG to another
environment. If register contents were modified
in DEBUG, the changed contents are stored.

The format of the SET subcommand is:

r--,
I SET I {CAW hexinfo } I
I I CSW hexinfo [hexinfo) I
I I PS W hexinfo [hexinfo) I
I I GPR reg hexinfo [hexinfo) I L ___ -J

CAW hex info
indicates that the specified information
(hexinfo) is stored in the CAW (channel
address word) that existed at the time DEBUG
was entered.

CSW hexinfo [hexinfo)
indicates that the specified information
(hexinfo [hexinfo) is stored in the CSW
(channel status word) that existed at the
time DEBUG was entered.

PSW hex info [hexinfo)
indicates that the specified
(hexinfo [hexinfo) is stored
(program status word) for the
that caused DEBUG to be entered.

GPR reg hexinfo [hexinfo)

information
in old PSW
interruption

indicates that the s~ecified information
(hexinfo [hexinfo]) 1S stored in the
specified general register (reg).

Each hexinfo operand should be from one to
four bytes long. If an operand is less than
four bytes and contains an uneven number of
hexadecimal digits (representing half-byte
information), the information is right-justified
and the left half of the uneven byte is set to
zero. If more than eight hexadecimal digits are
specified in a single operand, the information
is left-justified and truncated on the right
after the eighth digit.

The
contents
example,
times:

SET
SET
SET

SET
of
the

CAW
CSW
PSW

subcommand can only change the
one control word at a time. For
SET subcommand must be issued three

hexinfo
hexinfo [hexinfo)
hexinfo [hexinfo]

to change the contents of the three control
words.

The SET subcommand can change the contents of
one or two general registers each time it is
issued. When four or less bytes of information
are specified, only the contents of the
specified register are changed. When more than
four bytes of information is specified, the
contents of the specified register and the next
sequential register are changed. For example,
the SET subcommand:

SET GPR 2 xxxxxxxx

changes only the contents of general register
2. But, the SET subcommand:

SET GPR 2 xxxxxxxx xxxxxxxx

changes the contents of
and 3.

general registers 2

The number of bytes that can be stored using
the SET subcommand varies depending on the form
of the subcommand. with the CAW form, up to
four bytes of information may be stored. With
the CSW, GPR, and PSW forms, up to eight bytes
of information may be stored, but these bytes
must be represented in two operands of four
bytes each. When two operands of information
are specified, the information is stored in
consecutive locations (or registers), even if
one or both operands contain less than four
bytes of information.

The contents of registers changed using the
SET subcommand are not displayed after the
subcommand is issued. To inspect the contents
of control words and registers, the CAW, CSW,
PSW, or GPR subcommands must be issued.

The following error messages may appear while
entering the SET subcommand.

INVALID OPERAND

The first operand is not CAW, CSW, PSW, or
GPR, or the first operand is GPR and the
second operand is not a decimal number
between 0 and 15 inclusive, or one or more of
the hexinfo operands does no~ contain
hexadecimal information.

MISSING OPERAND

The minimum number of operands has not been
entered.

TOO MANY OPERANDS

More than the required number of operands
were specified.

section 4. Diagnostic Aids 581

Use the STORE subcommand to store up to 12 bytes
of hexadecimal information in any valid virtual
storage address. The information is stored
starting in the location derived from the first
operand (symbol or hexloc).

The format of the STORE subcommand is:

r--------------------------------·--------,
I STore I {SymbOl} hex info [hexinfo [hexinfo]] I
I I hexloc I L ______________________________________ J

symbol
is the naae assigned
subcommand) to the storage
first byte of specified
stored.

hexloc

(via the DEFINE
address where the

information is

is the hexadecimal location,
current or1g1n, where the
information is stored.

relative to the
first byte of

hexinfo
is any hexadecimal information, four bytes or
less in length, to be stored.

If the first operand contains any
nonhexadecimal characters, the DEBUG symbol
table is searched for a matching symbol entry.
If a match is found in the DEBUG symbol table,
or if the first operand contains only
hexadecimal characters, the current origin is
added to the specified operand and the resulting
storage address is used, provided it is not
greater than the virtual machinels storage
size.

The information to be stored is specified in
hexadecimal format in the second through the
fourth operands. Each of these operands is from
one to four bytes (that is, two to eight
hexadeciaml digits) long. If an operand is less
than four bytes long and contains an uneven
nUBber of hexadecimal digits (representing
half-byte information), the information is
right-justified and the left half of the uneven
byte is set to zero. If more than eight
hexadecimal digits are specified in a single
operand, the information is left-justified and
truncated on the right after the eighth digit.

The STORE subcommand can store a maximum of
12 bytes at one time. By specifying all three
information operands, each containing four bytes
of information, the maximum 12 bytes can be
stored. If less than four bytes are specified
in any or all of the operands, the information
given is arranged into a string of consecutive
bytes, and that string is stored starting at the
location derived from the first operand. Stored
information is not typed at the terminal. To
inspect the changed contents of storage after a
STORE subcommand, issue an X subcommand.

The following errcr messages may appear on the
terminal while entering the STORE subcommand.

INVALID OPERAND

The first operand cannot be located in the
DEBUG symbol table and is not a valid
hexadecimal number, or the information
specified in the second, third, or fourth
operands is not in hexadecimal format. If
the first operand is intended to be a symbol,
a DEFINE subcommand must have been previously
issued for that symbol; if not, the operand
must specify a valid hexadecimal storage
location.

INVALID STORAGE ADDRESS

The current origin value, when added to the
hexadecimal number specified as the first
operand, gives an address greater than the
userls virtual storage size. If the origin
value is unknown, reset it to the desired
value using the ORIGIN subcommand and reissue
the STORE subcommand.

MISSING OPERAND

Less than two operands were specified.

TOO MANY OPERANDS

More than four operands were specified.

582 VM/370: system Logic and Problem Determination Guide

Use the X subcommand to examine and display the
contents of specific locations in virtual
storage. The information is displayed at the
terminal in hexadecimal format.

The format of the X (examine) subcommand is:

r ----,
I r , I
I X symbol I n I I
I I !~~g~h I I
I L J I
I r , I
I hexloc I n I I
I I ! I I
I L J I L ___ ---J

symbol
is the name assigned (via the DEFINE
subcommand) to the storage address of the
first byte to be examined.

hexloc
is the hexadecimal location, in relation to
the current origin, of the first byte to be
examined.

n is a decimal number from 1 through 56 that
specifies the number of bytes to be' examined.
If a symbol is specified without a second
operand, the length attribute associated with
that symbol in the DEBUG symbol table
specifies the number of bytes to be examined.
If a hexadecimal location is specified
without a second operand, four bytes are
examined.

The first operand of the subcommand
specifies the beginning address of the
portion of storage to be examined. If the
operand contains any nonhexadecimal
characters, the DEBUG symbol table is
searched for a matching symbol entry. If a
match is found, the storage address to which
that symbol refers is the location of the
first byte to be examined. If no match is
found, or if the first operand contains only
hexadecimal characters, the current origin as
established by the ORIGIN subcommand is added
to the specified operand and the resulting
storage address is the location,of the first
byte to be examined. The derived address
must not be greater than the virtual
machine's storage size.

The second operand of the X subcommand is
optional. If specified, it indicates the
number of bytes (up to a maximum of 56) whose
contents are to be displayed. If the second
operand is omitted and the first operand is a
hexadecimal location, a default value of four
bytes is assumed. If the second operand is
omitted and the first operand is a symbol,
the length attribute associated with that
symbol in the DEBUG symbol table is used as
the number of bytes to be displayed.

The following error messages may appear on the
terminal when the X subcommand is entered.

INVALID OPERAND

The first operand cannot be located in the
DEBUG symbol table and is not a valid
hexadecimal number, or the second operand is
not a decimal number from 1 through 56. If
the first operand is intended to be a symbol,
it must have been defined in a previous
DEFINE subcommand; otherwise, the operand
must specify a valid hexadecimal number.

INVALID STORAGE ADDRESS

The hexadecimal number specified in the first
operand, when added to the current origin, is
greater than the storage size of the machine
being used. If the current origin value is
unknown, reset it to the desired valqe by
issuing the ORIGIN subcommand and reissue the
X subcommand.

KISSING OPERAND

No operands were entered; at least one is
required.

TOO KANY OPERANDS

Kore than the maximum of two operands were
entered.

Section 4. Diagnostic Aids 583

SVCTRACE

Use the SVCTRACE command to trace internal
transfers of information resulting from SVC
(supervisor call) instructions. Issuing the
SVCTRACE command causes switches to be set.
These switches, in turn, cause information to be
recorded at appropriate times. When the trace
is terminated, the recorded information is
printed at the system printer.

The information recorded for a normal SVC
call is:

•

•

storage address
instruction

of the

Name of the program being called

• contents of the SVC old PSi

SVC calling

• storage address of the return from the called
program

• The general registers
registers

and floating-point

• T he parameter
issued.

list at the time the SVC is

The format of the SVCTRACE command is:

r
ISVCTrace
I
L

------,
I
I _._------'

ON indicates tracing for all SVC calls.

OFF discontinues all SVC tracing.

The trace information is:

• The general registers both before the
SVC-called program is given control and after
a return from that program.

• The floating-point registers both before the
SVC-called program is given control and after
a return from that program.

• The parameter list, as it existed when the
SVC was issued.

To terminate tracing set by the SVCTRACE
command, issue the HO or SVCTRACE OFF command.
Both SVCTRACE OFF and HO cause all trace
information recorded up to the point they are
issued to be printed at the system printer.
SVCTRACE OFF can be issued only when the
keyboard is unlocked to accept input to the CMS
command environment. TO terminate tracing at
any other point in system processing, HO must be
issued. If a 8X subcom.and to the DEBUG
environment or a logout from the control program
is issued before terminating SVCTRACE, the
switches are cleared automatically and all
recorded trace information is printed at the
system printer.

A variety of information is printed whenever the

SVCTRACE ON

command is issued.

The first line of trace output starts with a
minus sign (-), a plus sign (+), or an asterisk
(*). The format of the first line of trace
output is:

{ : }

+

*

B/D = xxx/dd name FROM loc OLDPSi
GOPSi = psw2 [RC = rc]

indicates information
processing the SVC.

recorded

pswl

before

indicates information recorded after
processing the SVC, unless * applies.

indicates
processing
return.

information recorded after
a CMS SVC which had an error

N/D is an abbreviation for SVC Bumber and Depth
(or level).

xxx is the number of the SVC call (they are
numbered sequentially).

dd is the nesting level of the SVC call.

name is the macro or routine being called.

loc is the program location from which the SVC
was issued.

pswl is the PSi at the time the SVC was called.

psw2 the PSi with which the routine (for
example, RDBUF) being called is invoked, if
the first character of this line is a minus
sign f-). If the first character of this
line is a plus sign (+) or asterisk (*),
PSi2 represents the PSi which returns
control to the user.

rc is the return code passed from the SVC
handling ~outine in general register 15.
This field is omitted if the first
character of this line is a minus sign (-),
or if this is an OS SVC call. For a CMS
SVC, this field is zero if the line begins
with a plus sign (+), and nonzero for an
asterisk (*). Also, this field equals the
contents of Register 15 in the "GPRS AFTER"
line.

58Q V"/370: System Logic and Problem Determination Guide

The next two lines of output are the contents
of the general registers when control is passed
to the SVC handling routine. This output is
identified at the left by "-GPRSB". The format
of the output is:

-GPRSB h h h h h h h h *dddddddd*
= h h h h h h h h *dddddddd*

represents the contents of a general
register in hexadecimal format.

represents the EBCDIC translation of the
contents of a general register.

The contents of general registers 0-7 are
printed on the first line, with the contents of
8-F on the second line. The hexadecimal contents
of the registers registers are printed first,
following by the EBCDIC. The EBCDIC translation
translation is preceded and followed by an
asterisk (*).

The next line of output is the contents of
general registers 0, 1 and 15 when control is
returned to the user's program. The output is
identified at the left by "-GPRS AFTER :". The
format of the output is:

-GPRS AFTER RO-R1 = h h *dd* R15 h *d*

represents the hexadecimal contents of a
general register.

is the EBCDIC translation of the contents
of a general register.

The only general registers that CMS routines
alter are registers 0, 1, and 15 so only those
registers are printed when control returns to
the user program. The EBCDIC translation is
preceded and followed by an asterisk (*).

The next two lines of output are the contents
of the general registers when the SVC handling
routine is finished processing. This output is
identified at the left by "-GPRSS". The format
of the output is:

-GPRSS h h h h h h b h *dddddddd*
h h h h h h h h *dddddddd*

represents the hexadecimal contents of a
general register.

represents the EBCDIC translation of the
contents of a general register.

General registers 0-7 are printed on the first
line with registers 8-F on the second line. The
EBCDIC translation is preceded and followed by
an asterisk (*).

The next line of output is the contents of
the caller's floating-point registers. The
output is identified at the left by "eFPRS." The
format of the output is:

eFPRS = f f f f *gggg*

represents the hexadeciaal contents of a
floating-point register.

is the EBCDIC translation of a
floating-point register.

Each floating-point register is a doubleword:
each f and g represents a doubleword of data.
The EBCDIC translation is preceded and followed
by an asterisk (*).

The next line of output is the contents of
floating-point registers when the SVC-handling
routine is finished processing. The output is
identified by "eFPRSS" at the left. The format
of the output is:

eFPRSS = f f f f *gggg*

represents the hexadecimal contents of a
floating-point register.

g is the EBDCIC translation.

Each floating-point register is a doubleword and
each! and g represents a doubleword of data.
The EBCDIC translation is preceded and followed
by an asterisk (*).

The last two lines of output are only printed
if the address in Register 1 is a valid address
for the virtual machine. If printed, the output
is the parameter list passed to the SVC. The
output is identified by "epARM" at the left.
The output format is:

ePARM = h h h h h h h h *dddddddd*
h h h h h h h h *dddddddd*

represents a word of hexadecimal data

~ is the EBCDIC translation.

The parameter list is found at the address
contained in register 1 before control is passed
to the SVC-handling program. The EBCDIC
translation is preceded and followed by an
asterisk (*).

Figure 66 summarizes the types of SVC trace
output.

Section 4. Diagnostic Aids 585

r------------------------------------,
1 Identification 1 Comments 1
---1
{

+ } 1 The SVC and the routine which 1
NID 1 issued the SVC. 1

* 1 1
1 1

-GPRSB IContents of general registersl
1 when control passed to the 1
1 SVC handlin~ routine. 1
1 1

-GPRS AFTER 1 Contents of general registers
1 0, 1, and 15 when control
1 is returned to the user
1 program.
1

-GPRSS IContents of the general
1 registers when the SVC
1 handling routine is finished
1 processing.
1

.FPRS ,Contents of floating-point
, register before the
, SVC-called program is given
, control and after returning
I from that program.
I

.FPRSS Icontents of the floating-
I point registers when the SVCI
I handling routine is finishedl
I processing. I
I I

.PARM IThe parameter list, when one 1
I is passed to the SVC. I L ___ . _______________________________ .I

Figure 66. Summary of SVC Trace Output Lines

Use the DASD Dump Restore (DDR) service program
to dump, restore, copy, display, or print VM/370
user minidisks. The DDR program may run as a
standalone program, or under CMS via the DDR
command.

INVOKING DDR UNDER CMS

The format of the DDR command is:

r--------------------- ,
1 1 r, 1
I DDR I [filename [filetype Ifilemodel 1
I 1 1 * 1 1
IlL .I 1 L _______________________________ ---'

filename filetype [filemode]
is the identification of the file
containing the control statements for the
DDR program. If no file identification is
provided, the DDR program attempts to
obtain control statements from the
console. The filemode defaults to * if a
value is not provided.

INVOKING DDR AS A STANDALONE PROGRAM

TO use DDR as a standalone program, load it from
a real or virtual IPL device as you would any
other standalone program. Then indicate where
the DDR program is to obtain its control
statements by responding to prompting messages
at the console.

see the "DDR Control statements" discussion
in the "CP Commands for Debugging" section. The
control statements for running standalone and
under CMS are identical, except that CMS ignores
the SYSPRINT control statement.

586 VM/370: System Logic and Problem Determination Guide

section 5 has nine appendixes:

• "Appendix A:

• "Appendix B:

• "Appendix C:

• "Appendix D:

• "Appendix E:

• "Appendix F:

• "Appendix G:

• "Appendix H:

• "Appendix I:

VM/370 Coding Conventions"

CP and RSCS Equate Symbols"

CMS Equate Symbols"

DASD Record Formats"

VM/370 Restrictions"

Virtual Devices Used in CMS"

Function Codes for DIAGNOSE Instructions"

CMS ZAP Service program"

Applying PTFs"

Section 5. Appendixes 587

The following are coding conventions used
by CP modules. This information should
prove helpful if you debug, modify, or
update CP.

• FORMAT

~Q!.Y!!m
1

10
16

Contents Labels--

31, 36, 41, etc.

Operation Code
Operands
Comments

• COMMENT

Approximately 75 percent of the source
code contains comments. sections of
code performing distinctly separate
functions are separated from each other
by a comment section.

• CONSTANTS

Constants follow the executable code and
precede the copy files and/or macros
that contain DSECTs or system equates.
Constants are defined in a section
followed by a section containing
initialized working storage, followed by
working storage. Each of these sections
is identified by a comment. Wherever
possible for a module that is greater
than a page, constants and working
storage are within the same page in
which they are referenced.

• NO program modifies its own instructions
during execution.

• No program uses its
instructions as data.

own unlabeled

• REGISTER USAGE

- For CP:

~.§gi2~~U:
6
7
8

10
11
12

13

14

!H~g
RCHBLOK, VCHBLOK
RCUBLOK, VCUBLOK
RDEVBLOK, VDEVBLOK
IOBLOK
VMBLOK
Base register for modules

called via SVC
SAVEAREA for modules

called via SVC
Return linkage for modules

called via BALR

•

!I.§~
Base address for modules

called via BALR

- For virtual-to-Real address
transla tion:

!!~~.!§~.§!:
1
2

Use
iirtu al address
Real address

When describing an area of storage in
mainline code, a copy file, or a macro,
DSECT is issued containing DS
instructions.

• Meaningful names are used instead of
self-defining terms, for example 5,
X'02', or C'I' represent a quantity

•

(absolute address, offset, length,
register, etc.). All labels,
displacements, and values are symbolic.
All bits should be symbolic and defined
by EQU. For example:

VMSTATUS EQU X'02'

- To set a bit, use:

01 BYTE ,BIT

where BYTE = name of field, BIT is an
BQU symbol.

- To reset a bit, use:

NI BYTE,255-BIT

- To set multiple bits, use:

or BYTE,BIT1+BIT2

- All registers are referred to as:

RO, R1, ••• , R15

- All lengths of fields or blocks are
symbolic, that is, length of VMBLOK
is:

VMBLOKSZ EQU *-VMBLOK

Avoid absolute relative addressing in
branches and data references, (that is,
location counter value (*) or symbolic
label plus or minus a self-defining term
used to form a displacement).

section 5. Appendixes 589

• When using a single operation to
reference multiple values, specify each
value referenced, for example:

•

LM R2,R4,CONT SET R2=CON1
SET R3=CON2
SET R4= CON3

CON1 DC F'1'
CON2 DC F'2'
CON3 DC F'3'

Do not use PRINT NOGEN or PRINT
source code.

OFF in

• MODULE NAMES

•

•

Control section names and
references are as follows:

external

- The first three letters of the name
are the assigned component code.

Example: DMK

- The next three letters of the module
name identify the module and must be
unique.

Example: DSP

- The preceding three-letter, unique
module identifier is the label of the
TITLE card.

Each entry point or external reference
must be prefixed by the six-letter
unique identifier of the module.

Example: DMKDSPCH

TITLE Card Example:

DSP TITLE 'DMKDSP
VERSION v LEVEL I'

PTF Card Example:

VM/370 DISPATCHER

CP/CMS: PUNCH 'xxxxxxxx APPLIED'

where xxxxxxxx = APAR number response

• ERROR MESSAGES

There should not be any insertions into
the message at execution time and the
length of the message should be resolved
by the assembler. If insertions must be
made, the message must be assembled as
different DC statements, and the insert
positions are to be individually
labeled.

• For all R X instruc tions use • ,. to
specify the base register when indexing
is not being used, that is:

L R2,AB (,R4)

• To determine if your program is
executing in a virtual machine or a real
machine, issue the Store CPU ID (STIDP)
instruction. If STIDP is issued from a
virtual machine, the version number (the
first byte of the CPUID field) returned
will be X'PP'.

The CP loadlist EXEC contains a list of CP
modules used by the VMFLOAD procedures when
punching the text decks that make up the CP
system. All modules following DMKCPE in
the list are pageable CP modules. Each 4K
page in this area may contain one or more
modules. The module grouping gov:rns the
order in which they appear 1n the
loadl ist. An SPB 1 (Se t Page Bounda ry} card
is a loader control card which forces the
loader to start this module at the next
higher 4K boundary. An SPB card is
required only for the first module
following DMKCPE. If more than one module
is to be contained in a 4K page, only the
first can be assembled with an SPB card.
The second and subsequent modules for a
multiple module 4K page must not contain
SPB cards.

If changes are made
care must be taken to
modules loaded together
area do not exceed the
boundary crossover is not
pageable CP modules.

to the loadlist,
ensure that any
in the pageable

4K limit. Page
allowed in the

The position of two modules in the
loadlist is critical. All modules
following DMKCPE must be reenterable and
must not contain any address constants
referring to anything in the pageable CP
area. DMKCKP must be the last module in
the loadlist.

lA 12-2-9 multipunch must be in column 1 of
an SPB card.

590 VM/370: System Logic and Problem Determination Guide

This appendix contains assembler language equate symbols that reference CP and RSCS data
for:

• VM/370 Device Classes, Types, Models and Peatures

• VM/370 Machine Usage

• VM/370 Extended Control Registers

• VM/370 CP Usage

• VM/370 Registers

section 5. Appendixes 591

CLASTER"
TYP2700
TYP2955
TYPTELE2
TYPTTY
TYPIBM 1
TYP2741
TYP1050
TYPUBDEF
TYPBSC
TYP3210
TYP3215
TYP2150
TYP1052
CLASGRAF
TYP2250
TYP2260
TYP2265
TYP3066
TYP1053
TYP3277
TYP32S4
TYP32S6
TYP315S
FTROPRDR
CLASORI
TYPRDR
TYP2501
TYP2540R
TYP3505
TYP1442R
TYP2520R
TYPTIMER
TYPTR
TYP2495
TYP2671
TYP1017
CLASORO
TYPPON
TYP2540P
TYP3525
TYP1442P
TYP2520P
TYPPRT
TYP1403
TYP3211
TYP1443
TYPTP
TYP101S
FTRUCS
CLASTAPE
TYP2401
TYP2415
TYP2420
TYP3420
TYP3410
TYP3411
FTR7TRK
FTRDLDNS
FTRTRANS
FTRDCONV
CLASDASD
TYP2311
TYP2314
TYP2319

EQU
EQO
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BQU
EQU
EQO
EQO
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BQU
EQU
EQU
EQO
BQU
EQO
EQU
EQO
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BQU
EQU
EQU
EQU
EQU
BQU
EQU
EQU
EQO
EQO
EQO
EQU
EQU
EQU
EQO
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

X'SO'
X'40'
TYP2700
X'20'
X'20'
X' 10'
X' lS'
X' 14'
X' 1 C'
X'SO'
X'OO'
TYP3210
TYP3210
TYP3210
X'40'
X'SO'
X'40'
X'20'
X'10'
X'OS'
X'04'
X'02'
TYP32S4
TYP3277
X'SO'
X'20'
X'SO'
X'Sl'
X'S2'
X'S4'
X'SS'
X'90'
X'40'
X'20'
X' 21'
X'22'
X'24'
X' 10'
X'SO'
X'S2'
X'S4'
X'SS'
X'90'
X'40'
X'41'
X'42'
X'44'
X'20'
X'24'
X'Ol'
X'OS'
X' 80'
X'40'
X'20'
X '10'
X' OS'
TYP3410
X'SO'
X'40'
X' 20'
X' 10'
X'04'
X'SO'
X'40'
TYP2314

Teriminal Device Class
2700 Bisync Line
2955 Communications Line
Telegraph Terminal Control Type II
TELETYPE Terminal
IBM Terminal Control Type I
2741 Communications Terminal
1050 Communications Ter.inal
Terminal device type is undefined
Bisync Line for 3270 Remote stations
3210 Console
3215 Console
2150 Console
1052 Console
Graphics Device Class
2250 Display onit
2260 Display station
2265 Display station
3066 Console
1053 Printer
3277 Display station
3284 Printer
3286 Printer
3158 Console
operator ID Card Reader
Onit Record Input Device Class
Card Reader Device
2501 Card Reader
2540 Card Reader
3505 Card Reader
1442 Card Reader/Punch
2520 Card Reader/Punch
Timer Device
Tape Reader Device
2495 Magnetic Tape Cartridge Reader
2671 Paper Tape Reader
1017 Paper Tape Reader
unit Record output Device Class
Card Punch Device
2540 Card Punch
3525 Card Punch
1442 Card Punch
2520 Card Punch
Printer Type Device
1403 Printer
3211 Printer
1443 Printer
Tape Punch Device
101S Paper Tape Punch
UCS Feature
Magnetic Tape Device Class
2401 Tape Drive
2415 Tape Drive
2420 Tape Drive
3420 Tape Drive
3410 Tape Drive
3411 Tape Drive
7-track Feature
Dual Density Feature
Translate Feature
Data Conversion Feature
Direct Access storage Device Class
2311 Disk Storage Drive
2314 Disk storage Facility
2319 Disk Storage Facility

592 VM/370: system Logic and Problem Determination Guide

TIP2321
TYP3330
TYP3333
TYP3350
TYP2301
TYP2303
TIP2305
TYP3340
FTRRPS

FTREXTSN
FTR2311T
FTR2311B
FTR35MB
FTR10MB
FTRRSRL
CLASSPEC
TYPCTCA
TYP3104
TYP3105
TYPRSVl
TIPUNSUP
FTRTYPl
FTRTYP2

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EOU
EOU
EQU
EQU
EQU
EOU
EQU
EQU
EQU
EOU
EQU

TYP2311
X' 10'
TYP3330
X'08'
TYP2311
TYP2311
X'02'
X'Ol'
X' 80'

X'40'
X'20'
X' 10'
X'08'
X'04'
X'02'
X'02'
X'80'
X'40'
TYP3104
X'02'
X'Ol'
X' 10'
X' 20'

2321 Data Cell Drive
3330 Disk storage Facility
3333 Disk storage Facility
3350 Disk storage Facility
3201 Parallel Drum
2303 Serial Drum
2305 Fixed Bead storage Device
3340 Disk Storage Facility
Rotational Positional sensing (RPS)

Installed (3340)
Extended Sense Bytes (24 bytes)

(= VDEV231T) Top half of 2314 used as 2311
(= VDEV231B) Bottom half of 2314 used as 2311

35 MB Data Module mounted (3340)
10 MB Data Module mounted (3340)
RESERVE/RELEASE are valid CCW op codes
special device class
Channel-to-channel adapter
3104 Programmable Communication Control unit
3105 programmable communications control unit
Reserved by IBM
Device unsupported by VM/370
Type 1 Channel Adapter (3104/3105)
Type 2 Channel Adapter (3704/3705)

section 5. Appendixes 593

!~Ll1.Q ~!£!!!!f~ !!~!§~

~!i~ Q~!!!!~g !!! ~!~!!g~!gL~!!~!!g~g r.~!

EITMODE EQU X' 08' Bit 12 - Extended mode
MCHEK EQU X'04' Bit '13 - Machine check enabled
WAIT BQU X'02' Bit 14 - Wait state
PROBMODE EQU X' 0 l' Bit '15 - Problem state

~!i2 Q!1!!!!~g !!! ~!!~!!g~g f~!

PERMODE EQU X'40' Bit 01 - PER enabled
TRAIMODE EQU X'04' Bit 05 - Translate mode
IOMASK EQU X'02' Bit 06 - Summary I/O mask
EXTMASK EQU X'Ol' Bit 07 - summary external mask

~i!§ Qg!:i!!.~~ i!! £h~!!!!gl ~!~!y§ !2!:E - £~!

ATTN EQU X' 80' Bit 32 - Attention
Sit EQU X'40' Bit 33 - status modifier
CUE EQU X'20' Bit 34 - Control unit end
BUSY EQU X' 10' Bit 35 - Busy
CE EQU X' 08' Bit 36 - Channel end
DE EQU X'04' Bit 37 - Device end
UC BQU X'02' Bit 38 - unit check
UE EQU X'Ol' Bit 39 - Unit exception
PCI EQU X'80' Bit 40 - Program-control interruption
IL EQU X'40' Bit 41 - Incorrect length
PRGC EQU X' 20' Bit L.2 - Program check
PRTC EQU X '10' Bit Ln - Protection check
CDC EQU X'08' Bit L.4 - Channel data check
CCC BQU X'04' Bit L~5 - Channel control check
IFCC EQU X'02' Bit 46 - Interface control check
CHC BQU X'Ol' Bit Ln - Chaining check

~i!§ Qg!:i!!.~~ in £h~!!ngl £Q!!~!!g !2fg - ££!

CD BQU X'80' Bit 32 - Chain data
CC EQU X'40' Bit 33 - Command chain
SILl BQU X'20' Bit 34 - Suppress incorrect length indicator
SKIP EQU X' 10' Bit 35 - Suppress Data Transfer
PCIF EQU X'08' Bit 36 - program-control interruption fetch
IDA EQU X'04' Bit 37 - Indirect data address

CMDRBJ EQU X' 80' Bit 0 - Command reject
I BTRBQ EQU X'40' Bit 1 - Intervention required
BUSOUT EQU X' 20' Bit 2 - Bus out
BQCHK EQU X' 10' Bit 3 - Equipment check
DATACHK EQU X'08' Bit .~ - Data check

594 V"/370: systea Logic and Problem Deteraination Guide

!~LJIQ ~!a:~!HnU~ ~Q!!a:BQ1 R~§!~a:~B~

~!i2 ~!!!!!!~g !.!! ~B~§ Q

BYTE 0
BLKMPX EOU X'80' Bit 00 - Enable block multiplexing
SSMSUPP EQU X'40' Bit 01 - Enable SSM suppression

BYTE 1
PAGE4K EQU X'80' Bit 08 - Use 4K pages
PAGE2K EQU X'40' Bit 09 - Use 2K pages
SEG1M EQU X'10' Bit 11 - Use 1M segments

BYTE 2
CKCMASK EQU X'08' Bit 20 - Mask on clock comparator interruption
CPTMASK EQU X'04' Bit 21 - Mask on CPU timer interruption

BYTE 3
IHTMASK EOU X'80' Bit 24 - Mask on interval timer interruption
KEYMASK EQU X' 40' Bit 25 - Mask on operator key interruption
SIGMASK EQU X'20' Bit 26 - Mask on external signals 2-7

~!i2 ~!!!!!!~g !.!! ~.!!~§ 2
BYTE 0

PERSUBR EQU X'80' Bit 00 - Monitor successful branches
PERIFET EQU X'40' Bit 01 - Monitor instruction fetches
PERSALT EOU X'20' Bit 02 - Monitor storage alteration
PERGPRS EQU X' 10' Bit 03 - Monitor register alteration

!!!!§ 12!!!!!!~g !.!! ~.!!!.§1~

BYTE 0
HARDSTOP EQU X'80' Bit 00 - Check stop control
SYHCLOG EQU X'40' Bit 01 - Synchronous logout control
IOLOG EQU X'20' Bit 02 - I/O logout control
RECOVRPT EQU X'08' Bit 04 - Recovery report mask
COHFGRPT EQU X'04' Bit 05 - Configuration report mask
DAMAGRPT EQU X'02' Bit 06 - External damage report mask
WARHGRPT EQU X' 0 l' Bit 07 - Warning condition report mask

BYTE 1
ASYHELOG EQU X'80' Bit 08 - Asynch·ronous extended logout control
ASYHFLOG EQU X'40' Bit 09 - Asynchronous fixed logcut control

section 5. Appendixes 595

BRING EQU
DEFER EQU
LOCK EQU
IOERETN EQU
SYSTEM EQU

DELSEGS EQU
DELPAGES EQU
NEWPAGES EQU
NEWSEGS EQU
KEEPSEGS EQU
OLDVMSEG EQU

ERRMSG
NORET
DFRET
OPERATOR
LOGDROP
LOGHOLD
PRIORITY
VMGENIO
NOAUTO
ALARM
NOTIME
INHIBIT
EDIT
UCASE

RDRCHN
PCHCHN
PRTCHN
ADDS FB
CHGSFB
DELSFB
OPNSFB
ACTSFB
CHGRDV
CHGSHQ

MBCLPERF
MNCOSYS
MBCOTH
MNCOTT
MNCOSUS
MNCLRESP
MNCOBRD
MNCOWRIT
MHCOERD
MNCLSCH
MBCODQ
MNCOAQ
IUICOAEL
MNCLUSER
MNCOUSER

EQU
EQU
EQU
EQU
EQU
BQU
EQU
EQU
BQU
BQU
BQU
BQU
EQU
EQU

EQU
EQU
EQU
EQU
BQU
EQU
EQU
EQU
EQU
EQU

BQU
BQU
BQU
EQU
BQU
EQU
BQU
BQU
BQU
EQU
BQU
BQU
EQU
EQU
BQU

X'80'
X'40'
X' 20'
X'lO'
X' 08'

X' 80'
X'40'
X'08'
X'04'
X'02'
X'Ol'

X'0800'
X'0400'
X'0200'
X'OlOO'
X' 80'
X'40'
X' 20'
X' 10'
X'04'
X'02'
X' 0 l'
X '08'
X'04'
X'02'

X' 0 l'
X'02'
X'04'
X'08'
X' 10'
X'20'
X'40'
X' 80'
X'0100'
X'0200'

X'OO'
X'OOOO'
X'0061'
X'0062'
X'0063'
X' 0 l'
X'OOOO'
X'OOOl'
X'0002'
X'02'
X'0002'
X'0003'
X'0004'
X'04'
X'OOOO'

Bring requested page
Defer execution until page in storage
Lock page for I/O operation
Return I/O errors to caller
Call to DMKPTRAN for system virtual machine space

Release the segment tables
Release the page/swap tables
Build new page/swap table
Build new segment table
Retain information in old segment table
VMSEG pointer in VMBLOK valid

Output - Control prograa error message
Output - Return immediately after call
Output - Free buffer after queueing
output - Message for system operator
Output - Logoff and drop line after message
output - Logoff and hold line after message
output - write this message immediately
I/O request generated by virtual machine
output - suppress auto carriage return
Output - sound the audible alarm
output - suppress time stamp on message
Input - Prevent display of this data
Input - Edit input data for corrections
Input - Translate data to upper case

SFBLOK goes on reader chain
SFBLOK goes on punch chain
SFBLOK goes on print chain
Add new SFBLOK to recovery cylinder
Change existing SFBLOK
Delete SFBLOK from checkpoint
It is an open print-punch file
File being printed or punched
Change attributes of real device
Checkpoint a SHQBLOK

MONITOR PERFORM class
PERFORM class; system performance
MONITOR tape header record
MOBITOR tape trailer record
MOBITOR collection suspension record
MONITOR RESPONSE class
RESPONSE class; begin read code
RESPONSE class; write code
RESPONSE class; end read code
MONITOR SCHEDULE class
SCHEDULE class; drop queue code
SCHEDULE class; add to queue code
Schedule class; add to eligable list code
MOBITOR USER class
USER class; user data

596 VM/370: System Logic and Problem Determination Guide

MHCLINST EQO
MNCOSIM EQO
MHCLDAST EQO
MNCODASH EQO
MNCODAS EQO
MHCL SEEK EQ U
MBCOCYL EQU
MNCLSYS EQO
MICODA EQU

X'OS'
X'OOOO'
X'06'
X'OOOO'
X'OOOl'
X'07'
X'OOOO'
X' 08'
X'0002'

MOHITOR instruction simulation class
INST class; instruction simulation code
MOlITOR DASD/TAPE class
DASTAP class; first record
DASTAP class; data records
MONITOR DASD class
DASD class; SEEKs code
MONITOR SYSTEM PROFILE class
SYS class; DASD data

Section 5. Appendixes 597

!~L170 !!~~!~~j!!~

~~~12Qli£ !i~gi§~.§!: ~g.!!~:.!:~§ 

RO EQU 0 
Rl EQU 1 1 
R2 EQU 2 1 
R3 EQU 3 1 
R4 EQU 4 1 
R5 EQU 5 1 
R6 EQU 6 1 
R7 EQU 7 General 
R8 EQU 8 j~:gi~!i!: 
R9 EQU 9 ]~!iJ.!il!Q!!§ 
Rl0 EQU 10 1 
R 11 EQU 11 1 
R12 EQU 12 1 
R13 EQU 13 1 
R14 EQU 14 1 
R15 EQU 15 ___ I 

yO EQU 0 I!Q!!!1!!g 
Y2 EQU 2 Point 
Y4 EQU 4 ji:g!§l~! 
Y6 EQU 6 ]~!!J.!!!!Q!!2 

CO EQU 0 1 
Cl EQU 1 1 
C2 EQU 2 1 
C3 EQU 3 1 
C4 EQU 4 1 
C5 EQU 5 1 
C6 EQU 6 1 
C7 EQU 7 Control 
C8 EQU 8 j~g!§~~!: 
C9 EQU 9 ~~!!J.!!l!Q!!§ 
Cl0 EQU 10 1 
Cll EQU 11 1 
C12 EQU 12 1 
C13 EQU 13 1 
C14 EQU 14 1 
C15 EQU 15 ___ I 

598 V"1370: system Logic and Problem Determination Guide 



This appendix contains Assembler language equate symbols used in CftS to reference data 
for: 

• CftS Usage 

• CSS Registers 

Field 
Name 

CHANO 
CHAN 1 
CHAN2 
CHAN3 
CRAR4 
CRANS 
CHARM 
EXTS 

ECSS 
MCKM 
IiAIT 
PROB 

FOFM 
DOFM 
EUFS 
SIGH 

ATTN 
SS 
CUE 
BUSY 
CE 
DE 
UC 
UE 

PCI 
ICL 
PGC 
PTC 
CDC 
CCC 
ICC 
CRC 

EQU X'80' 
EQU X'40' 
EQU X'20' 
EQU X'10' 
EQU X'08' 
EQU X'04' 
EQU X'02' 
EQU X'Ol' 

EQU X'08' 
EQU X'04' 
EQU X'02' 
EQU X'Ol' 

EQU X'08' 
EQU X'04' 
EQU X'02' 
EQU X' 0 l' 

EQU X'80' 
EQU X'40' 
EQU X'20' 
EQU X' 10' 
EQU X'08' 
EQU X'04' 
EQU X'02' 
EQU X'Ol' 

EQU X' 80' 
EQU X'40' 
EQU X' 20' 
EQU X '10' 
EQU X'08' 
EQU X'04' 
EQU X'02' 
EQU X'Ol' 

Field Description 

Bit 00 - Channel 0 mask 
Bit 01 - Channel 1 mask 
Bit 02 - Channel 2 mask 
Bit 03 - Channel 3 mask 
Bit 04 - Channel 4 mask 
Bit 05 - Channel 5 mask 
Bit 06 - Input/output mask 
Bit 01 - External mask 

Bit 12 - Extended control mode mask 
Bit 13 - Machine check mask 
Bit 14 - wait state mask 
Bit 15 - Problem state mask 

Bit 36 - Fixed-point overflow mask 
Bit 31 - Decimal overflow mask 
Bit 38 - Exponent underflow mask 
Bit 39 - significance mask 

Bit 32 ,- Attention 
Bit 33 - Status modifier 
Bit 34 - Control unit end 
Bit 35 - Busy 
Bit 36 - Channel end 
Bit 31 - Device end 
Bit 38 - unit check 
Bit 39 - unit exception 

Bit 40 - program-controlled interruption 
Bit 41 - Incorrect length 
Bit 42 - Program check 
Bit 43 - Protection check 
Bit 44 - Channel data check 
Bit 45 - Channel control check 
Bit 46 - Interface control check 
Bit 47 - Chaining check 

Section 5. Appendixes 599 



Field 
Nalle Field Description 

-----------------
~Q!!!Q!! ~h~!!!!!5!l ~Q!!m2!!g ~Qg~~ 

WRITE EOU X' 0 l' Write 
RE1D EOU X'02' Read 
NOP EOU X'03' No opera tion 
SENSE EOU X'04' Sense 
WRDATl EOU X' OS' Write data 
RDDATl EOU X'06' Read data 
SEEK EOU X'07' Seek 
TIC EOU X'OS' Transfer in channel 
WRITE1 EOU X' 09' write and space 1 
RDCONS EOU X'OA' Read from console 
SETSEC EOU X' 23' Set sector 
SE1RCH EOU X '31' Search ID equal 

~i~2 Q!5!'iB.!5!~ i!! 2 ~hg!l!l!5!l ~Q!!!~!!~ !,Q!;:g (~~!O 

CD EOU X'SO' Bit 32 - Chain data 
CC EOU X'40' Bit 33 - Command chain 
SILl EOU X'20' Bit 34 - suppress incorrect length 
SKIP EOU X' 10' Bit 35 - Suppress data transfer 
PCIF EOU X'OS' Bit 36 - Cause program control interruption 
IDl EOU X'04' Bit 37 - Indirect data address 

600 VM/370: System Logic and Problem Determination Guide 



Field 
Nalle 

RO 
Rl 
R2 
R3 
R4 
R5 
R6 
R7 
R8 
R9 
Rl0 
Rll 
R12 
R13 
R14 
R15 

FO 
F2 
F4 
F6 

co 
C1 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
Cl0 
Cll 
C12 
C13 
C14 
C15 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

o 
2 
4 
6 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

section 5. Appendixes 601 





Record 0 (8 bytes long) of all tracks other than track 0 is initialized 
to X'OO'. 

32 Pages/cylinder 2314,2319 
'--T--T---r I I --r--r--, 

*IEO 00 00 00 00 00 00 001 
L_-L_-L_--'- I I L_'___J 

I 
11100000 

57 pages/cylinder 3330 
'--T-T---r I f ~--y--, 
lEO 00 00 00 00 00 00 001 
L-L---L_--'- I I L-I--J 

24 pages/cylinder 2305 
.---r--~-T---r~---r--Y--, 

lEO 00 00 00 00 00 00 001 
L-L---L_-L I I • I I 

120 pages/cylinder 3350 (native mode) 
'--T---r---r---r~-~--y--, 

IFO 00 00 00 00 00 00 001 
L_-L---L_-L I I I-'---.J 

2314 and 2319 
3330 series 
2305 and 3340 
3350 

32 pages/cylinder 
57 pages/cylinder 
24 pages/cylinder 

120 pages/cylinder 

Cylinder 0 contains less pages because this area is used by CP. 

*The first three pages of cylinder 0 are always flagged in use. On all 
other cylinders, the first byte is a hexadecimal '00' unless the disk 
area is flagged as bad. Record 0 of all tracks other than track 0 is 
initialized to hexadecimal ·OO~. 

Section 5. Appendixes 603 



1PL record -- puts system into wait state if storage device is initial 
program loaded. 

r-------~------~--------~--------~ , --, 
100020000 OOOOOOOC 03000000 20000000 00000000 000000001 L _______ -L ________ ~ ________ ~ ________ ~ _______ ~ ______ __J 

Checkpoint record -- This is the checkpoint program load at CP 1PL time 
to retrieve and save control information for a war. start. 

4 byte key of VOLl 
80 byte data record 

Key 
r---~ 

1 VOL 1 1 
L __ ~ 

~Ii~§ 
1-20 

21-40 

41-60 

61-80 

r-------~ y--------~------~-----, 
IE5D6D3P1 xx------->xxPOOO 00000005 000000001 
I 1 
10040 )401 
1 1 
14000---->00C3D7 F3F7P040 40404040 40-)401 
1 1 
140 )401 L--_____ -L ________ ~ ________ ~ ______ ~ ______ __J 

xx->xx is a 6-byte label 

Bytes 13-16 contain a pointer to the VTOC 

Bytes 46-50 identify the system 

Bytes 52-55 contain a pointer to the active directory 

604 VM/370: System Logic and Problem Determination Guide 



1024 bytes Track 0 Cylinder 0 

Allocation byte map - used to identify cylinder 1 usage. 
identifies one cylinder. 

o r-> all 0<-, 
r-------~ ~+--------+, 
100000100 040200--->FF 0000---->00001 
L ______ ~ _________ +-L------------J 

* 

Each byte 

* FF defines the last cylinder + 1 that can be allocated. This varies 
depending on the device. 

00 temporary 
01 permanent 
02 T-disk 
04 directory 

44 bytes key Track 0, Cylinder 0 
96 bytes data area 

Format 4 OS DSCE type label - used to be compatible with OS. 

r--------, , 
1 04--->041 FORM AT 4 LABEL 1 L _______ --I 

44 Key 96 Byte Data 

44 bytes key Track 0, Cylinder 0 
96 bytes data area 

------I 

Format 5 OS DSCE type label for compatibility with os. 

r---I-I--I-I---, 
1 05105105105100 1 
L __ I_I __ I_I ___ J 

44 Byte Key 

r------------------, 
1 OS FORMAT 5 LABEL 1 L-_______________ --I 

96 Byte Data Area 

4096 bytes 1 page, track 0 or track 1 

F3 Record is reserved for CP system use. Referred to as filler record. 

section 5. Appendixes 605 



1624 bytes, Track 1 (2314, 2319 only) 

F4 used only on 2314 and 2319 devices to align Record 4 in proper 
position on track. 

824 bytes track 1, cylinder 0 (2314, 2319 only) 

First segment of Record 4 to be used for paging. 

RO R1 R2 Key R3 R4 Key R5 Key R6 
r----r--T----r-y----r-~_y--T---~__y_---_,__-_, 

IPagelI ICheckiVIVOL1 IAllocl IFormatl IFormatl I 
IBit IP IPointlOILabellByte I I 4 I I 5 I I 
I Map I L I I L I I Map I I I I I I 
I I I 111 I I I I I I I 
I 812414096141 80 110241441 961441 96 I I 
L __ -L-.l. ___ .l.- I .L ___ .L_-.l. ____ --.L __ .L __ -.l.-__ --' 

RO RF3 RF4 R4 
r--_, r----, I 1 ...... ---, 

I I I 1 P AGE I I F I L LE R I I 
I I-I I-I I-I 
I 8 I I 4096 I I 1624 I 1824 
L __ --' L ___ --' I -.J L--_--' 

RO R1 R2 
r-----, r---, r----. 
IPage I I I I I 
IBit Hapl-I I-I I 
I 8 I I 4096 I I 2472 I L--_---' L __ ----' L ____ ,-.J 

These records appear as above formats if cylinder is O. 

606 VM/370: system Logic and Problem Determination Guide 



RO R2 R3 R4 
r--, r-----, r-----, r---, 

1--1 I-I I-I I 
8 I I 1624 I I 4096 I I 824 I 

L ___ ----' '--____ .1 L-_-.I L ____ -.I 

RO R4 R5 
r-----, r----, r----, 

1--1 I-I I 
8 I I 3272 I I 3296 I 

L ___ -.I L ___ -.I L-__ -.I 

RO R5 R6 R7 
r---, r-----, r-----, I , 

1--1 I-I I-I I 
8 I I 800 I I 4096 I 11648 I 

L ___ ----' I .I '--____ .1 L _____ .1 

RO R7 R8 
r----' r-----, r-----, 

I-I I-I I 
8 I I 2448 I I 4096 I 

L ___ -.I L _____ -.I L----.I 

Note: Tracks 0 to 4 are repeated for tracks 5 to 9 (R9-R16), 10 to 14, 
(R17-R24), and 15 to 19 (R25-R32). The last record is R32. 

RO R1 R2 Key R3 R4 Key R5 Key R6 RF3 
r i I T I i -T--T---~-T---~ I 

IPagel! ICheckiVIVOL1 IBytel IFormatl IFormatl1 I 
IBit IP IPointlOILabellMap I I 4 I I 5 IPagel 
I Map I L I I L I I I I I I I I 
I I I 111 I I I I I I I 
I 8 1241 4096141 80 110241441 96 1441 96 140961 
L ___ --L-.L-___ -.l._.L ~ __ ~ _____ .L__.L ____ -.l._-.L-.I 

section 5. Appendixes 607 



RO Rl R2 R3 
r------, r------, r--------, r-----, 
IPage I I I I I I I 
IBit Mapl-I I-I I-I I 
I I I I I I I I 
I 8 I I 4096 I I 4096 I I 4096 I 
L _______ .I L-__ ---' L _______ --' L-___ --' 

I 
l!:~£!_j~ I 

I 
RO RSS V RS6 RS1 

r----·-, r-----, r-------, r-----' 
I 1--1 I-I I-I 
I I I I I I I 
I 8 I I 4096 I I 4096 I I 4096 
L ______ .I L-____ --' L ___ . ___ .I L ____ .I 

RO R1 R2 Key R3 R4 Key RS Key R6 RF3 
r--r--T----T I • -. I -~~---,__-T_, 

IPagelI IChecklVIVOLl IBytel I Formatl I Format I 1 I I 
IBit IP IPointlOILabellMap I I 4 I I S IPagel I 
I Sa p I L I I L I I I I I I I I I 
I I I 111 I I I I I I I I 
I 8 1241 4096141 80 110241441 96 1441 96 140961 I 
L ___ -L_.L ____ --L-.I.- .1.--.1.-___ .1.--.1-.-_ L ..I-.J 

RO R1 R2 R3 
r-----, r-----, r-----, r----, 
IPage I I I I I I I 
IBit Mapl-I I-I I-I I 
I I I I I I I I 
I 8 I I 4096 I I 4096 I I 4096 I L ______ .I L-___ .I L ___ . ___ .I L __ ----' 

I 
1!:~£!_1 I 

I 
RO R22 V R23 R24 

r-----' r-----, r---.----, r----, 
I 1--1 1--1 I-I 
I I I I I I I 
I 8 I I 4096 I I 4096 I I 4096 L _____ .I L-___ .J L _______ --' L _____ --' 

608 VM/310: system Logic and Problem Determination Guide 



RO R1 R2 Key R3 R4 Key R5 Key R6 
r----T--T-----T-T-----y----T--T------y--y------, 
IPagel! ICheckiVIVOL1 IBytel IFormatl IFormatl 
IBit IP IPointlCILabellMap 1 1 4 1 I 5 1 
IMap IL I IL I I I I I I I 
1 I I 1.11 I I I I I I 
1 8 1241 4096141 80 110241441 96 1441 96 I L ____ ~ __ ~ _____ ~_~ __ ~ ___ ~_~ _____ ~_~ ____ -J 

RO R1 R2 R3 
r----' r-------' r-----, r-----, 
IPage I I 1 I I 1 I 
IBit Mapl-I I-I 1--1 I 
I I I . I I I I I 
I 8 I I 4096 I I 4096 I I 4096 I 
L _______ .J L _____ .J L-______ -J L-_____ -.J 

RO 

I 
I 
I 
V 

R23 R24 
r-----' r------, r-------, 
I 1--1 I-I I 
1 I 1 I I I 
I 8 1 I 4096 I I 4096 I L _______ .J L _______ .J L _______ .J 

section 5. Appendixes 609 





A virtual machine created by VM/370 is capable of running an IBM 
System/360 or System/370 operating system as long as certain VM/370 
restrictions are not violated. If your virtual machine produces 
unexpected results, be sure that none of the following restrictions are 
viola ted. 

In general, virtual machines may not execute channel programs that are 
dynamically modified (that is, channel programs that are changed between 
the time the START I/O (SIO) is issued and the time the input/output 
ends, either by the channel program itself or by the CPU). However, 
some dynamically modified channel programs are given special 
consideration by CP: specifically, those generated by the Indexed 
Sequential Access Method (ISAM) running under OS/PCP, OS/MFT, and 
OS/MVT; those generated by ISAM running in an OS/VS virtual=real 
partition; and those generated by the OS/VS Telecommunications Access 
Method (TCAM) Level 5, with the VM/370 option. 

The self-modifying channel programs that ISAM generates for some of 
its operations receive special handling if the virtual machine using 
ISAM has that option specified in its VM/370 directory entry. There is 
no such restriction for DOS ISAM, or for ISAM if it is running in an 
as/vs virtual=virtual partition. If ISAM is to run in an OS/VS 
virtual=real partition, you must specify the ISAM option in the VM/370 
directory entry for the OS/vs virtual machine. 

virtual machines using OS/VS TCAM (Level 5, generated or invoked with 
the VM/370 option) issue a DIAGNOSE instruction when the channel program 
is modified. This instruction causes CP to reflect the change in the 
virtual ccw string to the real CCW string being executed by the channel. 
CP is then able to execute the dynamically modified channel program 
properly. 

The restriction against dynamically modified channel programs does 
not apply if the virtual machine has the virtual=real performance option 
and the NOTRANS option has been set on. 

The following restrictions exist for minidisks: 

1. In the case of read home address with the skip bit off, VM/370 
modifies the home address data in user storage at the completion of 
the channel program because the addresses must be converted for 
minidisks; therefore, the data buffer area may not be dynamically 
modified during the input/output operation. 

Section 5. Appendixes 611 



2. On a minidisk, if a CCW string uses multitrack search on 
input/output operations, subsequent operations to that disk must 
have preceding seeks or continue to use multitrack operations. 
There is no restriction for dedicated disks. 

3. OS/PCP, MFT, and MVT ISAM or OS/VS ISAM running virtual=real may be 
used with a minidisk only if the minidisk is located at the 
~eginning of the physical disk (that is, at cylinder zero). There 
1S no such restriction for DOS ISAM or OS/VS ISAM running 
virtual=virtual. 

4. VM/370 does not return an end-of-cylinder condition to 
machine that has a virtual 2311 mapped to the top half 
tracks 0 through 9) of 2314 or 2319 cylinders. 

a virtual 
(that is, 

5. If the user's channel program for a minidisk does not perform a 
seek operation, then to prevent accidental accessing, VM/370 
inserts a positioning seek operation into the user's channel 
program. Thus, certain channel programs may generate a condition 
code (CC) of zero on a SIO instead of an expected CC of one, which 
is reflected to the virtual machine. The final status is reflected 
to the virtual machine as an interrupt. 

6. A DASD channel program directed to a 3330, 3340, or 3350 device may 
give results on dedicated drives which differ from r~sults on 
miniaisks having non-zero relocation factors if the channel program 
includes multiple-track operations and depends on a search ID high 
or a search ID equal or high to terminate the program. This is 
because the record 0 count fields on the 3330, 3340, and 3350 must 
contain the real cylinder number of the track on which they 
reside. Therefore, a search ID high, for example, based on a low 
virtual cylinder number may terminate prematurely if a real record 
o is encountered. 

Note: Minidisks with non-zero relocation factors on 3330, 3340, and 
3350 devices are not usable under OS and OS/VS systems. This is 
because the locate catalog management function employs a search ID 
equal or high CCW to find the end of the VTOC. 

7. The IBCDASDI program cannot assign alternate tracks for a 3330, 
3340, or 3350 minidisk. 

8. If the DASD channel programs directed to 3330/3340/3350 devices 
include a write record R(O), results differ depending on whether 
the 3330/3340/3350 is dedicated (this includes a mini disk defined 
as the entire device) or nondedicated. For a dedicated 
3330/3340/3350, a write R(O) is allowed, but the user must be aware 
that the track descriptor record may not be valid from one 
3330/3340/3350 to another. For a nondedicated 3330/3340/3350, a 
write record R(O) is replaced by a read record R(O) and tpe skip 
flag is set on. This could result in a command reject condition 
due to an invalid command sequence. 

9. When performing DASD I/O, if the record field of a search ID 
argument is zero when a virtual Start I/O is issued, but the search 
ID argument is dynamically read by the channel program before the 
search ID CCW is executed, then the real search ID uses the 
relocated search argument instead of the argument that was read 
dynamically. To avoid this problem, the record field of a search 
ID argument should not be set to binary zero if the search argument 
is to be dynamically read or if a search ID on record 0 is not 
intended. 

612 VM/370: System Logic and Problem Determination Guide 



Timing dependencies in input/output devices or programming do not 
function consistently under VM/370: 

1. The following telecommunication access methods (or the designated 
option) violate the restriction on timing dependency by using 
program-controlled interrupt techniques and/or the restriction on 
dynamically modified channel programs: 

• as Basic Telecommunications Access Method (BTAM) with the 
dynamic buffering option. 

• as Queued Telecommunications Access Method (QTAM). 

• DOS Queued Telecommunications Access Method (QTAM). 

• OS Telecommunications Access Method (TCAM). 

• OS/VS Telecommunications Access Method (TCAM) 
earlier r and Level 5 if TCAM is not generated or 
the VM/370 option. 

Level 4 or 
invoked with 

These access methods may run in a virtual=real machine with CCW 
translation suppressed by the SET NOTRANS ON command. Even if SET 
NOTRANS ON is issued r CCW translation will take place if one of the 
following conditions is in effect: 

• The channel program is directed 
(such as a spooled unit record 
minidisk r or a console). 

at an a nondedicated device 
device r a virtual CTCA r a 

• The channel program starts with a SENSE operation code. 

• The channel program is for a dialed terminal. 

• START I/O tracing is in effect. 

• The CAW is in page zero or beyond the end of the virtual=real 
area. 

(OS BTAM can be generated without dynamic buffering r in which case 
no virtual machine execution violations occur. However r the BTAM 
reset poll macro will not execute under VM/370 if issued from third 
level storage. For example r a reset poll macro has a NOP effect if 
executed from a virtual=virtual storage under VS1 which is running 
under VM/370.) 

2. Programming that makes use of the PCI channel interrupt for channel 
program modification or processor signalling must be written so 
that processing can continue normally if the PCI is not recognized 
until I/O completion or if the modifications performed are not 
executed by the channel. 

3. Devices that expect a response to an interrupt within a fixed 
period of time may not function correctly because of execution 
delays caused by normal VM/370 system processing. An example of 
such a device is the IBM 1419 Magnetic Character Reader. 

4. The operation of a virtual block multiplexer channel is timing 
dependent. For this reason r the channel appears available to the 
virtual machine operating system r and channel available interrupts 
are not observed. However r operations on virtual block-multiplexing 

Section 5. Appendixes 613 



devices should use the available features like Rotational Position 
sensing to enhance utilization of the real channels. 

On the System/370 Model 158 only, the 
cannot operate concurrently with the 
(Feature #7117). 

Virtual Machine Assist feature 
7070/7074 compatibility feature 

Programs written for CPU model-dependent functions may not execute 
properly in the virtual machine under VM/370. The following points 
should be noted: 

1. Programs written to examine the machine logout area do not have 
meaningful data since VM/370 does not reflect the machine logout 
data to a virtual machine. 

2. Programs written to obtain CPU identification (via the store CPU ID 
instruction, STIDP) receive the real machine value. When the STIDP 
instruction is issued by a virtual machine, the version code 
contains the value 255 in hexadecimal ("FF") to represent a virtual 
machine. 

3. Programs written to obtain channel identification (via the store 
Channel ID instruction, STIDC) receive information from the virtual 
channel block. Only the virtual channel type is reflected; the 
other fields contain zeroes. 

4. No simulation of other CPU models is attempted by VM/370. 

Other characteristics that exist for a virtual machine under VM/370 are 
as follows: 

1. If the virtual=real option is selected for a virtual machine, 
input/output operations specifying data transfer into or out of the 
virtual machine's page zero, or into or out of storage locations 
whose addresses are greater than the storage allocated by the 
virtual=real option, must not occur. The storage-protect-key 
mechanism of the IBM System/370 CPU and channels operates in these 
situations but is unable to provide predictable protection to other 
virtual machines. In addition, violation of this restriction may 
compromise the integrity of the system. The results are 
unpredictable. 

2. VM/370 has no multiple path support and, hence, does not take 
advantage of the two-channel switch. However, a two-channel switch 
can be used between the IBM system/370 running a virtual machine 
under VM/370 and another CPU. 

3. The DIAGNOSE instruction cannot be issued by the virtual machine 
for its normal function. VM/370 uses this instruction to allow the 
virtual machine to communicate system services requests. The 
Diagnose interface requires the operand storage addresses passed to 
it to be real to the virtual machine issuing the DIAGNOSE 
instruction. For more information about the DIAGNOSE instruction in 
a virtual machine, see the !~LllQ: ~y§~~~ f~~~~g~~~~~§ §~ig~. 

614 VM/370: System Logic and Problem Determination Guide 



4. A control unit normally never appears busy to a virtual machine. 
An exception exists when a forward space file or backward space 
file command is executed for a tape drive. subsequent I/O 
operations to the same virtual control unit result in a control 
unit busy condition until the forward space file or backward space 
file command completes. If the real tape control unit is shared by 
more than one virtual machine, a control unit busy condition is 
reflected only to the virtual machine executing the forward space 
file or backward space file command. When a virtual machine 
attempts an I/O operation to a device for which its real control 
unit is busy, the virtual machine is placed in I/O wait 
(nondispatchable) until the real control unit is available. If the 
virtual machine executed a SIOF instruction (rather than SIO) and 
was enabled for block-multiplexing, it is not placed in I/O wait 
for the above condition. 

5. The CP IPL command cannot simulate self-modifying IPL sequences off 
dedicated unit record devices or certain self-modifying IPL 
sequences off tape devices. 

6. The VM/370 spooling facilities do not support punch-feed-read, 
stacker selection, or column binary operations. Detection of 
carriage control channels is supported for a virtual 3211 only. 

7. VM/370 does not support count 
operator's console. 

control on the virtual 1052 

8. Programs that use the integrated emulators function only if the 
real computing system has the appropriate compatibility feature. 
VM/370 does not attempt simulation. The DOS emulator running under 
OS or OS/VS is not supported under VM/370. 

9. The READ DIRECT and WRITE DIRECT instructions are not supported for 
a virtual machine. 

10. The System/370 SET CLOCK instruction cannot be simulated and, 
hence, is ignored if issued by a virtual machine. The System/370 
STORE CLOCK instruction is a nonprivileged instruction and cannot 
be trapped by VM/370; it provides the true TOD clock value from the 
real cpu. 

11. The 1050/1052 Model 2 Data Communication system is supported only 
as a keyboard operator's console. Card reading, paper tape I/O, 
and other modes of operation are not recognized as unique, and 
hence may not work properly. This restriction applies only when 
the 1050 system is used as a virtual machine operator's console. 
It does not apply when the 1050 system is attached to a virtual 
machine via a virtual 2701, 2702, or 2703 line. 

12. The pseudo-timer (usually device address OFF, device type TIMER) 
does not return an interrupt from a Start I/O; therefore, do not 
use EXCP to read this device. 

13. A virtual machine device IPL with the NOCLEAR option overlays one 
page of virtual machine storage. The IPL simulator uses one page 
of the virtual machine to initiate the IPL function. The starting 
address of the overlayed page is either the result of the following 
formula: 

virtual machine size 
-------------------- = starting address of the overlayed page 

2 

or the hexadecimal value 20,000, whichever is smaller. 

Section 5. Appendixes 615 



14. To maintain system integrity, data transfer sequences to and from a 
virtual system console are limited to a maximum of 2032 bytes. 
Channel programs containing data transfer sequences that violate 
this restriction are terminated w~th an interrupt whose CSW status 
indicates incorrect length and a channel program check. 

li2~~: A data transfer sequence is defined as one or more read or 
write CCws connected via chain data. The introduction of command 
chaining defines the start of a new data transfer sequence. 

15. When an I/O error occurs on a device, the System/370 hardware 
maintains a contingent connection for that device until a SENSE 
channel command is executed and sense data is recorded. That is, no 
other I/O activity can occur on the device during this time. Under 
VM/370, the contingent connection is maintained until the SENSE 
command is executed, but I/O activity from other virtual machines 
can begin on the device while the sense data is being reflected to 
the virtual machine. Therefore, the user should be 'aware that on a 
shared disk, the access mechanism may have moved during this time. 

16. The mode setting for 7-track tape devices is maintained by the 
control unit. Therefore, when a virtual machine issues the SET 
MODE channel command to a 7-track tape device, it changes the mode 
setting of all 7-track tape devices attached to that control unit. 

This has no effect on virtual machines (such as OS or DOS) that 
issue SET MODE each time a CCW string is to be executed. However, 
it can cause a problem if a virtual machine fails to issue a SET 
MODE with each CCW string executed. Another virtual machine may 
change the mode setting for another device on the same control 
unit, thereby changing the mode setting of all 7-track tape devices 
attached to that control unit. 

17. OS/VS2 is supported in uniprocessor mode only. 

18. A shared system or one that uses discontiquous saved segments 
cannot be loaded (via IPL) into a virtual machine running in the 
virtual=real area. 

19. The DUMMY feature for VSAM data sets is not supported and should 
not be used at program execution time. specifying this option on 
the DLBL command will cause an execution-time OPEN error. See 
X~LllQ: ~y§!~~ ~~§§~g~~ for additional information. 

The following restrictions apply to CMS, the conversational subsystem of 
VM/370: 

1. CMS executes only on a virtual IBM system/370 provided by VM/370. 

2. The maximum sizes in cylinders of CMS minidisks are as follows: 

~i§~ 
2314/2319 
3330 series 
3340 Model 35 
3340 Model 70/3344 
3350 Series 

~g~i~y~ £l!in~g~§ 
203 
246 
349 

£~~L!~A~ 
200 
404 
348 
696 682 

115 not supported in native mode 

616 VM/370: System Logic and Problem Determination Guide 



3. CMS employs the spooling facilities of VM/370 to perform unit 
record I/O. However, a program running under CMS can issue its own 
SIOs to attached dedicated unit record devices. 

4. Only those OS and DOS facilities that are simulated by CMS can be 
used to execute OS and DOS programs produced by language processors 
under CMS. 

5. Many types of object programs produced by CMS (and OS) languages 
can be executed under CMS using CMS's simulation of OS supervisory 
functions. Although supported in OS and DOS virtual machines under 
VM/370, the writing and updating of non-VSAM OS data sets and DOS 
files are not supported under CMS. 

6. CMS can read sequential and partitioned OS data sets and sequential 
DOS files, by simulating certain OS macros. 

The following restrictions apply when CMS reads OS data sets tqat 
reside on OS disks: 

• Read-password-protected data sets are not read. 

• BDAM and ISAM data sets are not read. 

• Multivolume data sets are 
End-of-volume is treated 
end-of-volume switching. 

read as single-volume data 
as end-of-file and there 

sets. 
is no 

• Keys in data sets with keys are ignored and only the data is 
read. 

• User labels in user-labeled data sets are bypassed. 

The following restrictions apply when CMS reads DOS files that 
reside on DOS disks: 

• Only DOS sequential files can be read. CMS options and operands 
that do not apply to OS sequential data sets (such as the MEMBER 
and CONCAT options of FILEDEF and the PDS option of MOVEFILE) 
also do not apply to DOS sequential files. 

• The following types of DOS files cannot be read: 

• 

--DOS DAM and ISAM files. 

--Files with the input security indicator on. 

--DOS files that contain more than 16 user label and/or data 
extents. (If the file has user labels, they occupy the 
first extent; therefore the file must contain no more than 
15 data extents.) 

Multivolume files are read 
End-of-volume is treated as 
end-of-volume switching. 

as single-volume 
end-of-file. There 

files. 
is no 

• User labels in user-labeled files are bypassed. 

• Since DOS files do not contain BLKSIZE, RECFM, or LRECL 
parameters, these parameters must be specified via FILEDEF or 
DCB parameters; otherwise, defaults of BLOCKSIZE=32760 and 
RECFM=U are assigned. LRECL is not used for RECFM=U files. 

Section 5. Appendixes 617 



• CMS does not support the use of OS/VS DUMMY VSAM data sets at 
program execution time, since the CMS/DOS implementation of the 
DUMMY statement corresponds to the DOS/VS implementation. 
Specifying the DUMMY option with the DLBL command will cause an 
execution-time error. 

7. Assembler program usage of VSAM and the ISAM Interface Program 
(lIP) is not supported. 

1. If you intend to run VM/370 Release 1 and pre-PLC 9 Release 2 
systems alternately, apply Release 1 PLC 14 or higher (APAR V1179) 
to your Release 1 system, to provide compatibility and to prevent 
loss of spool files in case of a warm start. Changes to the spool 
file format in PLC 9 of Release 2 require a cold start when 
switching between pre-Release 2 PLC 9 and post-Release 2 PLC 9 
systems. 

2. The number of pages used for input/output must not exceed the total 
number of user pages available in real storage. Violation of this 
restriction causes the real computing system to be put into an 
enabled wait state. 

3. If you intend to define more than 73 virtual devices for a single 
virtual machine, be aware that any single request for free storage 
in excess of 512 doublewords (a full page) may cause the VM/370 
system to abnormally terminate (ABEND code PTR007) if the extra 
storage i p not available on a contiguous page. Therefore, two 
contiguous pages of free storage must be available in order to log 
on a virtual machine with more than 73 virtual devices (three 
contiguous pages for a virtual machine with more than 146 virtual 
devices, etc.). contiguous pages of free storage are sure to be 
available only immediately after IPL, before other virtual machines 
have logged on. Therefore, a virtual machine with more than 73 
devices should be the first to log on after IPL. The larger the 
real machine size, the lesser the possibility of this occurring. 

4. For remote 3270s, VM/370 supports a maximum 
synchronous lines, minus the number of 3704/3705 
Controllers in NCP mode minus one (if there are 
Communications Controllers in emulation mode) • 

of 16 binary 
Communications 
any 3704/3705 

5. If an I/O device (such as a disk or tape drive) drops ready status 
while it is processing virtual I/O activity, any virtual machine 
users performing I/O on that device are unable to continue 
processing or to log off. Also, the LOGOFF and FORCE commands are 
not effective because they do not complete until all outstanding 
I/O is finished. The system operator should determine which I/O 
device is involved and make that device ready once more. 

618 VM/370: System Logic and Problem Determination Guide 



Figure 67 indicates those devices that are supported by a CMS machine. 

r 
I 
I 

I 

Virtual 
IBM Device 

3210, 3215, 1052, 
3066, 3270 

2314, 3330, 3340 
3350 

2314, 3330, 3340 
3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

1403, 3211, 1443 
2540, 2501, 3505 
2540, 3525 
2415, 2420, 3410, 

3420 

Virtual I Symbolic I 
Address 1 1 Name I 

ccu 

190 

191 2 

ccu 

ccu 

192 

ccu 

ccu 

ccu 

19E 

ccu 

OOE 
OOC 
000 
181-4 

CON1 

DSKO 

DSK1 

DSK2 

DSK3 

DSK4 

DSK5 

DSK6 

OSK7 

DSK8 

DSK9 

PRN1 
ROR1 
PCH1 

TAP1-TAP4 

Device Type 

System console 

system disk (read-only) 

Primary disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Line printer 
Card reader 
Card punch 
Tape drives 

I 1The device addresses shown are those that are preassembled into the 
I CMS resident device table. These need only be modified and a new 
I device table made resident to change the addresses. 
I 2The virtual device address (ccu) of a disk for user files can be 
I any valid system/370 device address, and can be specified by the 
I CMS user when he activates a disk. If the user does not activate 
I a disk immediately after loading CMS, CMS automatically activates 
I the primary disk at virtual address 191. 

-, 
I 
I 

L ~ 

Figure 67. Devices Supported by a CMS Virtual Machine 

Section 5. Appendixes 619 





Figure 68 indicates the DIAGNOSE codes used in VM/370 and gives a 
its use. 

r------
IFunctionl I DMKHVC 
I Code IClassl Function Label 

000 

004 

008 

OOC 

010 

014 

018 

01C 

020 

024 

028 

02C 

030 

G 

C,E 

G 

G 

G 

G 

G 

F 

G 

G 

G 

Store extended identification code. 

Examine data from real storage. 

Execute VM/370 CP command. 

Pseudo-timer facility. 

Release virtual storage pages. 

Manipulate input spool files. 

Standard DASD I/O. 

Clear I/O and MC recording areas. 

General virtual I/O interruptions. 

virtual device type inquiry. 

Dynamic TIC modification. 

C,E,F Get DASD address of error recording 
areas. 

C,E,F Read a page of error recording data. 

HVCONFN 

HVCHRON 

HVCPGRL 

HVCDISK 

HVCFAKE 

HVCDCPM 

Figure 68. Function Codes for DIAGNOSE Instruction (Part 1 of 2) 

brief explanation of 

--, 
DMKHVD I 
Label I 

HVDSTIDX 

READCPC 

HCDSPRD 

HVDLRER 

HVDDTYP 

HVDEREP 1 

HVDEREP2 
-------1 

section 5. Appendixes 621 



r--------------------------------·------------------------, 
I Function I I I DMKHVC I DMKHVD I 
I Code IClassl Function I Module I Module I 

C,F Beads the system dump spool file. BVDRSDF 

C,E Beads the system symbol table. HVDRDSYM 

A,B,C Dynamically updates the VM/310 BVDDIRCT 
directory. 

Reserved for IBM use. HVCEXIT 

Reserved for IBM use. HVCEXIT 

Reserved for IBM use. HVCEXIT 

any Generate accounting cards. HVDACCT 

A,B,C Saves 3104/3105 control program image. HVD3705 

Enable or disable external HVDEXPA 
interruptions. 

G Virtual console interface for 3210. HVCGRAF 

Edit message according to EMSG HVCEMSG 
settings. 

Provide virtual machine storage size. HVCSTOR 

Load, find, or purge a named system. HVCSYS 

start of functions specified by a user. HVCUSER ________________________________ ---J 

Function Codes for DIAGNOSE Instruction (Part 2 of 2) 

622 VM/310: System Logic and Problem Determination Guide 



ZAP is a CMS command that modifies or dumps MODULE, LOADLIB, or TXTLIB 
files. It may be used to modify either fixed or variable length MODULE 
files. It is for use by system support personnel only. 

Input control records control ZAP processing. They can be submitted 
either from the terminal or from a disk file. Using the VER and REP 
control records, you can verify and replace data or instructions in a 
control section (CSECT). Using the DUMP control record, you can dump 
all or part of a CSECT, or an entire member of a LOADLIB or TXTLIB file, 
or an entire module of a MODULE file. 

The format of the ZAP command is: 

r----------------------------------------------------------------------, 
I I {MCDULE } I 
I ZAP I LOADLIB [libname 1 ••• libname 3][ (option ••• [) ]] I 
I I TXTLIB I 
I I 2Eii2!!§ : I 
I I r , r, I 
I I 1~~!H1 IIE]!]l I I 
I I I INPUT filenameilNOPRINTI I 
I I L .J L.J I L __________________________________________________ o _____________ -.J 

MODULE 
LOADLIB 
TXTL IB 

libname 

indicates the type of file that is to be modified or dumped. 

is the library name containing the member to be modified or 
dumped. You can specify one to three library names. The 
libname is valid only for LOADLIB and TXTLIB files. 

r , 
~~B~ IPRINT I 

INOPRINTI 
L .J 

indicates that input to the ZAP service program is submitted 
through the terminal. If you specify TERM, the prompting 
message ENTER: is issued, and you can then enter input control 
records up to 80 characters long. If you specify PRINT with 
TERM, all output prints on the printer, but only error 
messages display at the terminal. If you specify NOPRINT with 
TERM, nothing prints on the printer. All output except 
control records displays at the terminal. 

r , 
INPUT filename IPRINT I 

I NOPRINT I 
L .J 

specifies that input is submitted from a disk file, filename. 
This file must have a filetype of ZAP, and must be a fixed 
80-byte sequential file residing on any accessible device. If 
you specify PRINT with INPUT filename, all output produced by 
the ZAP service program prints on the printer. In addition, 

section 5. Appendixes 623 



commands and control records in error and error messages 
display at the terminal. If you specify NOPRINT with INPUT 
filename, nothing prints on the printer. All output displays 
at the terminal. 

The following table shows the resulting output of valid option 
combinations: 

r---------'------------------------------------------'---.------, 
1 OPTIONS 1 PRINT 1 NOPRINT 1 
1-------,-----------------------------------------,-----I 
I I Commands and control records I Everything on the 1 
1 1 in error and error messages 1 terminal. Nothing on 1 
1 INPUT 1 on the terminal. Everything 1 the printer. 1 
I I to printer. I 1 
1------·_-------------------------------------1 
I I Only error messages on the I Everything except controll 
1 TERM I terminal. Everything on the 1 records on the terminal. 1 
I I Printer. 1 Nothing on the printer. 1 L _____________________________________________________ . ____ ----1 

ZAP INPUT CONTROL RECORDS 

Seven types of ZAP control records exist: NAME, DUMP, BASE, VER or 
VERIFY, REP, comment, and END. 

ZAP control records are free form and need not start in position one 
of the record but the ZAP program can accept only 80 characters of data 
for each control record. Separate all information by one or more 
blanks. All address fields including disp (displacement) fields in VER 
and REP control records must contain an even number of hexadecimal 
digits, to a maximum of six digits (OD, 02C8, 014318). Data fields in 
VER and REP control records must also contain an even number of 
hexadecimal digits, but are not limited to six digits. 

If you wish, you 
example, 83256482 or 
operation. 

may separate 
8325,6482). 

the data anywhere 
The commas have no 

by commas 
effect on 

(for 
the 

The program sets the NOGO switch on if a control record is found to 
be in error. A file cannot be modified once the NOGO switch is turned 
on. The next valid NAME record turns the NOGO switch off. This means 
that if the control record is the NAME record, all succeeding records 
are ignored until the next NAME, DUMP, or END record. For any other 
error, only REP control records that follow are ignored. 

The DUMP control record resets the NOGO switch off. The DUMP control 
record must not immediately precede a BASE, VER, or REP control record. 
A NAME control record must precede the BASE, VER, and REP control 
records (if any) that follow a DUMP control record. 

The DUMP control record allows you to dump a portion or all of a 
specified control section, or the complete member or module. The format 
of the output of the dump is hexadecimal with an EBCDIC translation of 
the hexadecimal data. 

624 VM/370: System Logic and Problem Determination Guide 



The DUMP control record is optional. 
record is: 

The format of the DUMP control 

r------- "----------, 
I , I 

I 
I DUMP {membername} 
I modulename 

r 
Icsectname [startaddress [endaddress]] 
IALL 

I 
I 

I 
I 
I 
I I L J 

I I L _____________________________________________________________ ----J 

membername 

modulename 

is the name of the member to be dumped, or the member that 
contains the CSECT(s) to be dumped. This member must be found 
in one of the libraries specified in the ZAP command line. 
However, if the library is a CMS TXTLIB, its directory does 
not contain member names. Therefore, the program ignores the 
member name (although you must specify it), and the program 
searches for the csectname (which you must specify). 

is the name of the module to be dumped, or the module that 
contains the CSECT(s) to be dumped. If you specify a module 
that has no loader table, the program dumps the entire 
module. 

csectname is the name of the control section that is to be dumped. If 
you do not specify csectname, the program dumps only the first 
CSECT. The csectname is required for CMS TXTLIBs, optional 
for OS TXTLIBs, LOADLIBs, and MODULE files. (See the 
discussion of csectname under "Name control Record.") You must 
not specify csectname for a module created with the NOMAP 
option. 

ALL specifies to the program to dump all CSECTs within the 
specified member or module. You can specify ALL for MODULE 
files, LOADLIBs, and OS TEXTLIBs, but not for CMS TXTLIBS. If 
you wish to dump all the CSECTs in a member of a CMS TXTLIB, 
you must issue a separate DUMP control record for each CSECT. 

startaddress 

endaddress 

is the location within the specified CSECT where the dump is 
to begin. lhis must be two, four, or six hexadecimal digits. 
The start address is the displacement from the beginning of 
the CSECT. For example, if you wish to start dumping at 
address 08 in a CSECT that begins at location 400, you specify 
start address or 08, not 0408. 

is the last address to be dumped. This must be two, four, or 
six hexadecimal digits. If you specify no address, the 
program dumps the rest of the CSECT. Note that start and end 
addresses apply only when you specify a csectname. If the 
file to be dumped contains undefined areas (such as a DS in a 
TXTLIE member), the hexadecimal portion of the dump contains 
blanks to indicate that the corresponding positions are 
undefined. 

section 5. Appendixes 625 



The NAME control record specifies the member or module and CSECT that 
contain the data to be verified or replaced by the ZAP operation. The 
format of the NAME control record is: 

r---------------------------------------------------------------------, 
I I 
I NAME { membername } [csectname] I 
I modulename I 
I I L ______________ --1 

{ 
membername } 
modulename 

csectname 

is the member or module that you want to be searched for the 
desired CSECT. 

is the name of the desired control section. You must 
specify csectname if the CSECT you wish to modify is in a 
eMS TXTLIB (that is, TXTLIB created by the TXTLIB command 
from CMS TEXT decks that do not have a NAME card following 
the END card). The directory of a CMS TXTLIB contains only 
CSECT names and no member names. The CSECT name specified 
in the NAME record is compared with CSECT names in the 
directory. If a CSECT match is found and no member name 
match is found, the member selected is the one that contains 
the CSECT name. The csectname is optional if the CSECT you 
wish to modify is a LOADLIB or an OS TXTLIB (that is, a 
TXTLIB created by the TXTLIB command from CMS TEXT decks 
that have a NAME card after the END card). The dictionaries 
of the specified libraries are searched for the member name 
and the member is then searched for the CSECT name, if you 
specified one. If you do not specify csectname for a 
LOADLIB or an OS TXTLIB, the program uses the first control 
section. The csectname is optional for a MODULE file. The 
module named in the NAME control record is located and, if 
you specified csectname, the first record is read to 
determine the number of records in the module and the 
availability of a loader table, which the program can then 
search for the csectname. If you do not specify csectname, 
the program uses the beginning location of the module. You 
are not allowed to specify csectname if the module was 
created with the NOMAP option. The NAME control r(~cord must 
precede the BASE, VER, and REP control records. If it does 
not, the program sets the NOGO switch on. 

The BASE control record adjusts displacement values for subsequent VER 
or REP control records for a CSECT whose starting address is not 
location zero in an assembly listing. The format of the BASE control 
record is: 

626 VM/370: System Logic and Problem Determination Guide 



..--
I 
I BASE 
I 
L 

address 

address 

----------------, 
I 
I 
I 

--,,-------------' 

is the starting address of the CSECT. The address must be 
two, four, or six hexadecimal digits. For example, for a 
CSECT starting at location 400, you would specify the BASE 
0400 in the BASE control record. If a subsequent VER card 
requests verification of location 0408, the BASE of 0400 is 
subtracted from 0408, and the program verifies location 08 in 
the CSECT. This example applies if you specify TXTLIB, 
LOADLIB, or MODULE and the module map is present. However, if 
no module map is present for a MODULE file (that is, the 
module was generated with the NOMAP option), then all 
operations are performed as if the BASE address is location O. 
For example, if you specify a BASE of 400 and the address you 
wish to inspect or modify is 408, then you must specify 08 and 
not 408 in REP and VER control records. The address in this 
case is from the start of the module. If you do not specify 
csectname in the NAME control record, you cannot specify any 
BASE value other than 00. The BASE control record is 
optional. See the discussion ~nder "VER or VERIFY control 
Record." If specified, the BASE control record must follow 
the NAME record, but it need not follow the NAME record 
immediately. For example, you could have the following 
sequ~nce of control records: NAME, VER, REP, BASE, VER, REP. 

The VER control record requests verification of instructions or data 
within a CSECT. If the verification fails, the program does not perform 
a subsequent REP operation until it encounters another NAME control 
record. 

The VER control record is optional. More than one VER record can 
follow a single NAME record. 

The format of the VER control record is: 

..---
I : { 
I 
L 

disp 

VERIFY } 
VER 

disp data 

------, 
I 
I 
I 
I 

. --' 

is the hexadeciaal displacement of the data to be inspected 
from the start of the CSECT, if you did not submit a BASE 
control record for this CSECT. If you did submit a BASE 
control record, then disp is the actual location of the data. 
The disp must be two, four, or six hexadecimal digits. This 
displacement does not have to be aligned on a full word 

section 5. Appendixes 621 



data 

boundary. If this displacement value is outside the limits of 
the CSECT specified by the preceding NAME control record, the 
VERIFY control record is rejected. 

is the data against which the data in the CSECT is to be 
compared. This must be an even number of hexadecimal digits. 
For example, if the location you wish to verify is 3CC, and 
the CSECT begins at location 2BO, you can either issue: 

BASE 02BO 
VER 03CC data 

or you can omit the BASE control record, subtract the CSECT 
start address from the address of the data, and issue: 

VER 011C data 

This also applies to the disp operand of the REP control 
record. 

The REP control record modifies instructions or data at the specified 
location within the CSECT that you specified in a preceding NAKE control 
record. The data specified in the REP control record replaces the data 
at the CSECT location specified by the disp operand. This replacement 
is on a "one-for-one" basis; that is, one byte of data defined in the 
control record replaces one byte of data at the location that you 
specified. If the replacement fails, the program does net perform 
additional REP operations until it encounters another NAME control 
record. 

The REP control record is optional. More than one REP record can 
follow a single NAME record. 

The format of the REP control record is: 

r 
I 
I REP 
I 

disp data 

-------, 
I 
I 
I L _________________________ _ 

disp 

data 

is the hexadecimal displacement of the data to be replaced 
from the start of the CSECT, if you did not submit a BASE 
control record for this CSECT. If you did submit a BASE 
control record, then disp is the actual location of the data. 
The disp must be two, four, or six hexadecimal digits. This 
displacement need not address a fullword boundary. If this 
displacement value is outside the limits of the CSECT being 
modified, the program does not perform the replacement 
operation. 

is the data that is to replace the data in the CSECT. This 
must be an even number of hexadecimal digits. 

!Q1~: Although you do not have to 
data, you should do so to make sure 
you expect it to be. 

verify a location before replacing 
that the data being changed is what 

628 VM/370: System Logic and Problem Determination Guide 



The ZAP program ignores comment control records. If the PRINT option is 
in effect, the program prints the comments. The format of a comment 
record is: 

r----------------------------------------------------------------------, 
I I 
I * comment I 
I I L _____________________________________________________________________ -J 

You must follow the asterisk with at least one blank. 

The END control record ends ZAP processing. The END record is required 
and must be the last control record. The format of the END control 
record is: 

r 
I 
I END 
I L ________________________________________________ _ 

SPECIAL CONSIDERATIONS FOR USING THE ZAP SERVICE PROGRAM 

Before you use the ZAP command against MODULE files, you can 
MODMAP command to determine whether a module map exists and 
contains. 

use the 
what it 

When a ZAP input file has more than one pair of VER and REP control 
records and a VER control record (other than the first) fails, you must 
remove the records prior to the failing record and correct the error 
before you issue the ZAP command again. Otherwise, the file being 
modified returns to its original status. 

If you issue a REP control record against a file that 
undefined area (for example, a Define storage area) within 
field and do not issue a VER control record prior to the 
record, the bytes prior to the undefined area, if any, are 
all the bytes after the undefined area are not modified. 
prints warning message DMSZAP248W. 

contains an 
the REP data 

REP control 
modified and 
The program 

section 5. Appendixes 629 





Appendix I tells you how to apply Program Temporary Fixes (PTFs) and 
updates to an installed VM/310 system. It contains information about the 
following: 

• supporting a VM/310 system 

• Updating modules using the VMFASM EXEC procedure 

• Using the VMFMAC EXEC procequre to updat~ macro libraries 

• using VMFLOAD to generate a new nucleus 

• The loader 

• Using the GENERATE EXEC procedure to generate a new CP, CMS, or RSCS 
nucleus, or to load IPCS 

• Using the VMFBLD EXEC procedure to build a new nucleus 

• Using the CMSGEND EXEC procedure to generate a CMS module 

• Using the ASMGEND EXEC procedure to generate the Assembler 

• Recommended procedures for updating VM/310 

The multiple virtual machine environment created by VM/310 permits 
support of both hardware and software to be done concurrently with other 
installation work. 

virtual machines can be used to: 

• Generate and test new systems 
• Apply and test PTFs 
• Run hardware diagnostics 
• Retrieve and examine VM/370 ABEND dumps and error recordings 
• Examine portions of real VM/310 storage 
• Trace the execution of a system in a virtual machine 

Before installing VM/310, you should develop an account support plan 
with the IBM FE representative. Appropriately configured virtual 
machine entries should be included in the VM/310 directory for the 
service representative. Two virtual machines, with userids CE and MAINT, 
are defined for these representatives in the VM/310 directory 
distributed with the starter system. 

Using the VM/310 update facility, you can update files with several 
levels of updates and/or any number of program temporary fixes (PTFs). 
Procedures are supplied for assembling the updated source code to 
produce a uniquely identifiable text file. The file has a unique 

section 5. Appendixes 631 



filename and records that identify the origin of the updates, macro 
libraries, and source statements. 

Procedures are provided for generating load files fr~m various object 
modules, and for generating MACLIB files from various COpy and MACRO 
files. 

The update procedure involves a file naming convention for update and 
text files, a set of programs to support the processing, and a set of 
EXEC procedures to process the files. 

The update procedures and programs supplied with VM/370 are: 

• VMFASM Incorporates PTFs and/or updates and creates a 
new text file 

• 
• 
• 
• 

• 
• 
• 
• 

VMFLOAD 
CMSGEND 
GENERATE 
GENERATE IPLDECK 

GENERATE SRVCPGM 
GENERATE IPCS 
VMFMAC 
CMS UPDATE Command 

Generates a new CP, CMS, or RSCS nucleus 
Generates a new CMS module 
Generates a new VM/370 system (CP, CMS, or RSCS) 
Generates a new standalone version of a service 
program on disk 
Punches the service programs on cards 
Loads the IPCS modules onto the IPCS disk 
Generates a new CP, CMS, or RSCS macro library 
Updates modules 

All modules prefaced by the letters DMK are CP modules. There are two 
kinds of CP modules: those that are part of the CP nucleus (these 
modules are contained in the CPLOAD EXEC file) and those that are not 
part of the CP nucleus (service programs that execute either standalone 
or under CMS). The programs that execute standalone are DMKDDR, DMKDIR, 
and DMKFMT. If you apply a PTF to these modules and create a new text 
deck, use the GENERATE EXEC to create a new standalone file. 

632 VM/370: System Logic and Problem Determination Guide 



The service programs that execute under CMS are: 

• DASD Dump Restore Program (module DMKDDR) 
• Directory program (module DMKDIR) 
• VMFDUMP, the virtual dump program (module DMKEDM) 
• NCPDUMP, the 3704/3705 dump program (module DMKRND). 

If you apply updates to these modules, use the 
new CMS module. The module name to specify is 
VMFDUMP, respectively. CMS cannot execute the 
(mod ule DMKFMT) and the IBCDASDI Virtual Disk 
(module IBCDASDI). If you apply a PTF to any 
these six service programs, you must reload 
command). 

UPDATING A MODULE 

CMSGEND EXEC to create a 
DDR, DIRECT, NCPDUMP, or 
Format/Allocate program 
Initialization program 

DMK module other than 
CP (using the VMFLOAD 

The following discussions assume that areas containing the source code 
for CP and CMS are added to the appropriate virtual machine 
configurations. Source code for the CMS system is included on the CMS2 
tape; source code for CP is included on the CP2 tape. These tapes are 
distributed by the Program Information Department (PID). 

VM/370 has update procedures to incorporate changes (additions, 
deletions, or corrections) into an existing module, macro, or copy file. 
For example, if you apply updates to the DMKVAT module, the VMFASM 
update procedure: 

• Locates the DMKVAT source file. It is the unmodified Assembler 
language source code that is distributed with the VM/370 system. 

• Locates the update control file for DMKVAT. The control file name is 
specified on the VMFASM command. The control file can have any 
filename, but must have a filetype of CNTRL. It contains records 
indicating how to apply the updates. 

• Applies the updates to tqe specified source (in this case, DMKVAT) 
and gives the updated source a temporary name by concatenating a $ 
(dollar sign) to the first seven characters of the filename (in this 
case, the temporary filename is $DMKVAT). 

• Puts macro library names specified in the control file into the 
proper Assembler library list. (The macro libraries required at 
assembly time are specified in a MACS record in the control file.) 

• Assembles the updated source file ($DMKVAT) and creates an updated 
object deck. The object deck filetype is derived from information 
found in the control file. The filename of the updated object file is 
the same as that of the original source, DMKVAT. 

As the VMFASM update procedure progresses from one step to the next, 
informational or error messages are displayed. To more fully understand 
how the update procedures operate, you need to know what a control file 
contains, and how it is handled. The following discussion provides this 
information. 

Section 5. Appendixes 633 



CONTROL FILES 

The CMS UPDATE command and the VMFASM EXEC procedure use control files. 
You may have one or more control files to specify various combinations 
of updates and macro libraries to be used at different times. A control 
file contains the following types of records: 

• The MACS Record -- This record contains the names of macro libraries 
to be used at assembly time. A MACS record is required for a control 
file used by the CMS UPDATE command; it is optional for a control 
file used by the VMFLOAD EXEC procedure. A control file must not 
contain more than one MACS record. If a MACS record is included r it 
must precede any other records except comments. Up to eight libraries 
may be specified in the MACS record (if space permits). A MACS record 
has the following format: 

uplevel MACS libl lib2 lib3 ••• 

The uplevel. field is usually TEXT; it is not used to generate th~ 
filetype of the updated file. 

• Update identification records--These records identify updates that 
are to be applied to a particular source filer if such a file exists. 
An update identification record has the following format: 

uplevel upid 

where uplevel is an update level identifier that generates a filetype 
for the new file (the new filetype uniquely identifies the updated 
source file). The field r upid r is the update identification; it can 
he from one to four characters long. This update identification is 
concatenated with the prefix UPDT to identify the filetype of the 
direct update to be applied. The filename must be the same as the 
name of the file to be updated. For example r if an update 
identification record for DMKVAT is: 

TEXT NEW1 

the update file is called DMKVAT UPDTNEW1.The update level identifier 
is TEXT. 

• AUX file identification records--These records contain the names of 
auxiliary files (AUX files) r which in turn contain a list of 
filetypes of update files to be applied to a particular source file. 
An auxiliary file identification record has the following format: 

uplevel AUXnnnn 

where uplevel is an update level identifier that generate~ the 
filetype of the updated source file. The string r nnnnr 1S an 
identification string that can be from one to four characters long. 
This identification string, with the prefix AUX, is the filetype of 
the auxiliary file that contains the list of updates to be applied. 
The filename of the auxiliary file is the same as the filename of the 
source file to be updated. For example, if an AUX file identification 
record that contains a list of updates for DMKVAT is: 

TEXT AUXnnnn 

then the auxiliary file called DMKVAT AUXnnnn contains the filetypes 
of the update files that are to be applied. These update files have 
the same filename as the source file to be updated. 

634 VM/370: System Logic and Problem Determination Guide 



• Commen ts-- An asterisk (*) in the 
identifies a comment record. 

first column of the record 

Note: Control file records in the format that was used under VM/370 
Release 1 or 2 are still accepted under Release 3. Por example, an AUX 
file identification record in the format 

TEXT nnnn AUX 

is still accepted by the update procedures. 

A control file can have many update identification records, AUX file 
identification records, and comments, but can have only one MACS 
record. The control file can have any filename. Note, however, that 
VM/370 updates from IBM normally use the following special control 
files: 

• A control file for CP source, copy, and macro updates is called 
DMKR30 CNTRL. The DMKR30 CNTRL file contains the following records: 

- TEXT MACS DMKMAC CMSLIB OSMACRO 
- TEXT AUXR30 

• A control file for CMS source updates is called DMSR30 CNTRL. The 
DMSR30 CNTRL file contains the following records: 

- TEXT MACS CMSLIB OSMACRO 
- TEXT AUXR30 

• A control file for CMS macro and copy updates is called DMSM30 
CNTRL. The DMSM30 CNTRL file contains the following record: 

- COpy AUXM30 

• A control file for assembling the NCPDUMP source is called NCPR30 
CNTRL. The NCPR30 CNTRL file contains the following records: 

- TEXT MACS OSMACRO DMKMAC CMSLIB 
- TEXT AUXR30 

• A control file for assembling RSCS source, copy, and macro updates is 
called DMTR30 CNTRL. The DMTR30 CNTRL file contains the following 
records: 

- TEXT MACS DMTLOC DMTMAC 
- TEXT AUXR30 

PTF updates are distributed in card or magnetic tape form, cr as APAR 
answers typed on coding forms. In any case, a CMS file (with the correct 
filename and filetype) must be created on a disk to contain the update. 
The disk must belong to the user (userid MAl NT) who is responsible for 
updating VM/370. The disk may be the CP or CMS source disk, but it is 
usually a separate disk. 

section 5. Appendixes 635 



A suggested virtual machine configuration for updating a 2314 system 
is: 

USER MAINT CPCMS 720K 16M BCEG 
ACCOUNT (install ation defin ed) 

OPTION ECMODE REALTIMER 
CONSOLE 009 3215 
SPOOL OOC 2540 READER A 
SPOOL OOD 2540 PUNCH A 
SPOOL OOE 1403 A 
MDISK 190 2314 035 110 CPV 3LO MR READ 
MDISK 191 2314 019 010 CPV3LO WR READ 
MDISK 194 2314 145 058 CPV3LO MR READ 
MDISK 199 2314 034 001 CPV3LO WR READ 
MDISK 193 2314 001 050 USERDl MR READ 
MDISK 294 2314 051 050 USERDl MR READ 
MDISK 393 2314 001 110 USERD2 MR READ 
MDISK 394 2314 001 110 USERD3 MR READ 
MDISK 390 2314 101 003 USERDl MW READ 
MDISK cuu 2314 000 203 yyyyyy MW 

where cuu and yyyyyy are the address and label of your system residence 
volume defined in your DMKSYS module. 

A suggested virtual machine configuration for updating a 3330 system 
is: 

USER MAINT CPCMS 720K 16M BCEG 
ACCOUNT (installation defined) 

OPTICN ECMODE REALTIMER 
CONSOLE 009 3215 
SPOOL OOC 2540 READER A 
SPOOL OOD 2540 PUNCH A 
SPOOL OOE 1403 A 
MDISK 190 3330 030 076 CPV3LO MR READ 
MDISK 191 3330 016 007 CPV 3LO WR READ 
MDISK 194 3330 106 044 CPV3LO MR READ 
MDISK 199 3330 029 001 CPV3LO WR READ 
MDISK 193 3330 001 030 USERDl MR READ 
MDISK 294 3330 031 030 USERDl MR READ 
MDISK 393 3330 061 060 U SERDl MR READ 
MDISK 394 3330 121 060 USERDl MR READ 
MDISK 390 3330 181 002 U SERDl MW READ 
MDISK cuu 3330 000 404 YYYYYI MW 

where cuu and YYIIYI are the address and label of your system residence 
volume defined in your DMKSYS module. 

636 VM/370: System Logic and Problem Determination Guide 



A suggested virtual machine configuration for updating a 3340 system 
is: 

USER MAINT CPCMS 720K 16M BCEG 
ACCOUNT (installation defined) 

OPTION ECMODE REALTIMER 
CONSOLE 009 3215 
SPOOL OOC 2540 READER A 
SPOOL 000 2540 PUNCH A 
SPOOL OOE 1403 A 
MDISK 190 3340 048 203 CPV3LO MR READ 
MDISK 191 3340 026 015 CPV3LO WR READ 
MDISK 194 3340 251 098 CPV3LO MR READ 
MDISK 199 3340 046 002 CPV3LO WR READ 
MDISK 193 3340 001 090 USERD1 MR READ 
MDISK 294 3340 031 090 USERD1 MR READ 
MDISK 393 3340 061 180 USERDl MR READ 
MDISK 394 3340 121 180 USERD1 MR READ 
MDISK 390 3340 181 006 USERD1 MW READ 
MDISK cuu 3340 000 348 yyyyyy MW 

where cuu and yyyyyy are the address and label of your system residence 
volume defined in your DMKSYS module. 

The entries in the preceding VM/370 directory, with the exception of 
the 193, 294, 393, 394, and 390 virtual disks, are in the 2314, 3330, 
and 3340 VM/370 directories supplied with the starter system, and should 
be included in your VM/370 directory, because IBM uses them for 
support. 

The contents of the preceding virtual disks are: 

Disk 
190-
191 
19i~ 

199 
193 
294 

393 
394 
390 
cuu 

fQ!!~~!!!:2 
Current CMS system disk 
Work area 
CP and RSCS text retention 
The 191 minidisk (work area) 
CMS PTFs, updates, and updated text decks (object modules) 
CP and RSCS PTFs, updates, and updated text decks (object 

modules) 
CMS source and macros 
CP and RSCS source, macros, and copy files 
CMS test nucleus area 
CP system residence device, or a replica of it, for test 

purposes 

These·virtual disks are shown in Figure 69. 

You should apply all distributed updates. Once you create the 
appropriate files, you should access the disks containing the CP, eMS, 
or RSCS source files and update procedures, and apply the updates. 

To apply the IBM distributed updates to an existing source file, use 
the VMFASM EXEC procedure. To apply the IBM distributed updates to a 
copy or macro file, use the VMFMAC EXEC procedure. 

If you update a copy or macro file, you should use the VMFASM EXEC 
procedure to reassemble the module(s) that contain that copy or macro 
file. 

section 5. Appendixes 637 



Figure 69. system support plan 

Use the VMFASM EXEC procedure to 
according to entries in a control 
source file. VMFASM invokes the eMS 
VMFASM command is: 

update a specified source file 
file, and to assemble the updated 

UPDATE command. The format of the 

638 VM/370: System Logic and Problem Determination Guide 



r----------------------------------------------------------------, 
VMFASM I fn 1 fn2 [ (options ••. [) ]] I 

I I 
I QE~i2n§: I 
I,. ,,. ,,. , I 
I IDISK I ITERM I 11!~± I I 
I IE~!]!:I I!!Q!:lH!~1 INOLISTI I 
I L .J L .J L J I 
I,. , ,. , I 
, IDECK "RENT I [EXP] [XREF] I 
, I !!QQ~~!i I , !tQ1!]!1 , , 
I L .J L .J I ____________________________________________________________ -.J 

fnl is the filename of the source file to be updated. 

fn2 is the filename of the control file. The control file must have 
a filetype of CNTRL. 

QE!i9n§: 

DISK places the LISTING file on a virtual disk. 

EB!!1 writes the LISTING file to the printer. 

TERM writes the diagnostic information on the SYSTERM data set. The 
diagnostic information consists of the diagnosed statement 
followed by the error message issued. 

!!Q!:§~~ suppresses the TERM option. 

1!~1 produces an Assembler listing. 

NOLIST does not produce an Assembler listing. 

DECK writes an object module on the device specified on the FILEDEF 
statement for PUNCH. 

!QQ]£!i suppresses the DECK option. 

RENT checks the program for a possible violation cf program 
reenterability. Code that makes the program nonreenterable is 
identified by an error message. 

!!QE§]1 suppresses the RENT option. 

EXP expands printing of certain macros which check for the SUP 
parameter issued via the SYSPAEM option of the assembler. 

XREF causes the XREF(SHORT) option to be invoked when VMFASM 
invokes the assembler. 

~Q~g: VMFASM only accepts the non-defaulted options. All other options 
entered are ignored and the defaults are used. 

The control file contains records that identify 
applied and the macro libraries, if any, needed to 

the updates to be 
assemble the source 

section 5. Appendixes 639 



program. The updates are applied starting with the last update file in 
the control file and in sequence up to the first update file (or the 
update file immediately following the HACS record). Updates identified 
by auxiliary files are applied starting with the last update in the 
auxiliary file and proceeding in sequence up to the first. 

For example, a control file named UPDATEl CNTRl contains the 
following two records: 

TEXT 
IBHl 

HACS DHKHAC 
AUX2000 

CHSlIB OSHACRO 

An Assembler language source file is named DHKVAT ASSEHBlE. 

An auxiliary file named DHKVAT AUX2000 contains a list of filetypes 
(NEW2 and NEW1) with NEW2 the first entry and NEWl the last. 

The two update files are named DHKVAT NEWl and DHKVAT NEW2. These 
are the files identified by the auxiliary file, DHKVAT AUX2000. Assume 
these files contain IBM-supplied updates to DMKVAT, such as inserted, 
deleted, or replaced source statements and the appropriate control 
statements. The update control statements are described in the !~LllQ: 
f~§ fQmm~~~ ~ll~ ~~££Q ~gtg£g~~g with the CMS UPDATE command. 

To update DMKVAT, you enter the command: 

VMFASH DMKVAT UPDATEl 

VMFASM does the following: 

• VMFASM locates the DMKVAT ASSEMBLE and UPDATEl CNTRl files. 

• The UPDATEl CNTRL file is processed from the bottom up. The first 
entry found is IBMl AUX2000. 

• VHFASM tries to locate the file named DHKVAT AUX2000 by searching all 
accessed disks. 

• When VHFASH locates the DHKVAT AUX2000 file, it processes it from the 
bottom up. The first entry found is NEW1. 

• VMFASM tries to locate the the update file named DMKVAT NEil. When it 
finds DMKVAT NEW1, VHFASM applies the updates that are in DMKVAT NEWl 
to the DHKVAT ASSEHBLE file, and creates a new file called $DMKVAT 
ASSEMBLE. 

• Next, VMFASH processes the NEW2 entry in the DMKVAT AUX2000 file. 
When VMFASM locates the update file DMKVAT NEW2, it applies the 
updates to the updated ASSEMBLE file ($DHKVAT). 

• Because there are no more filetypes listed in the DMKVAT AUX2000 
file, VMFASH reads the next control record in the UPDATEl CNTRl file. 
In this case, it is the MAes record. 

640 VM/370: System Logic and Problem Determination Guide 



• After entering the macro library names 
into the appropriate Assembler library 
updated ASSEMBLE file ($DMKVAT). 

that are on the MACS record 
lists, VMFASM assembles the 

• The UPDATE command then stacks in the console read buffer the uplevel 
(update level identifier) associated with the last update applied. If 
there were no updates, it stacks the uplevel associated with the MACS 
control record and the names of the macro libraries specified in the 
MACS record. VMFASM then reads the stacked lines and concatenates the 
uplevel (if it is not TEXT) to the characters TXT to form the 
filetype of the assembled updated source. 

An update level identifier of TEXT causes special handling in the 
VMFASM EXEC procedure, whether or not an update is used with it. A 
name of TEXT is used as the object module filetype without level 
identification concatenation. Thus, TEXT becomes the filetype. 

VMFASM places the macro library names that were specified en the MACS 
record in the Assemble library list (via the CMS GLOBAL command) so 
that those libraries can be used when the updated source file is 
assembled. 

In this example, the last (and only) update applied was identified as 
IBM1 AUX2000. The file identification for the updated source is 
DMKVAT TXTIBM1. The updated source is assembled using the macro 
libraries DMKMAC, CMSLIB, and OSMACRO. 

You may want, on occasion, to have entries in a control file that 
specify an update level identifier but no update. A record of the 
following format, for example, is allowed: 

NAMES 

because the control file is used for loading object modules (text decks) 
as well as for updating input files. 

If updates are not found, a message is issued and processing 
continues, if possible. 

If you wish to apply your own update to VM/370 (for example, if you wish 
to expand the accounting routines), you follow the same procedure 
described for applying IBM-supplied updates. 

You create the update file. You can name the update file in either of 
two ways. If you are going to identify the update file directly in the 
control file, use the form: 

DMKACO UPDTupid 

where DMKACO is the filename of the accounting module 
expand, and upid is the identification for the filetype. 
you might call your update file: 

DMKACO UPDTFIXl 

you wish to 
For example, 

section 5. Appendixes 641 



The second way to 
you use an auxiliary 
upda te file: 

identify your update is via an auxiliary file. If 
file, you use the following form to name your 

DMKACO ft 

where DMKACO is the filename of the accounting routine you wish to 
expand and ft is any filetype. 

For example, you could have two update files called: 

DMKACO NEWl 
DMKACO NEW2 

When you decide to use an auxiliary control file, it must have a name in 
the form 

DMKACO Auxnnnn 

For example, assume you have an auxiliary control file called: 

DMKACO AUXllll 

This AUX file has the following entries (the filetypes of your update 
files) : 

NEW2 
NEW 1 

Next, you must create a control file to identify all IBM-supplied 
updates to the module you are changing and your own updates. You must 
apply the IBM-supplied updates first. Assume there are IBM-supplied 
updates in an auxiliary file called: 

DMKACO AUXR30 

and that your own updates are those used as examples in the preceding 
paragraphs. Then, you need your own control file, identified as: 

fn CNTRL 

It can have any filename, but its filetype must be CNTRL. For this 
example, the control file is called: 

Lec CNTRL 

and it has the following records: 

TEXT MACS DMKMAC 
LOCAL FIXl 
SPEC AUXllll 
IBM 1 AUXR30 

To apply the updates to DMKACO, issue the command: 

VMFASM DMKVAT LOC 

The VMFASM procedure handles the update as follows; it: 

• Locates the source file, DMKACO. 

• Locates the control file, LOC CNTRL. 

• Reads the control file, last line first (IBMl AUXR30). 

642 VM/370: System Logic and Problem Determination Guide 



• Locates the IBM-supplied auxiliary file, DMKACO AUXR30. 

• Reads the DMKACO AUXR30 auxiliary file from bottom to top and applies 
the IBM-supplied updates to DMKACO, naming the updated source $DMKACO 
ASSEMBLE. 

• Reads the next entry in the control file (SPEC AUXllll). 

• Locates your own auxiliary file, DMKACO AUXllll. 

• Reads the last entry (NEW1), locates the update file DMKACO NEW1, and 
applies the update to the updated source $DMKACO. 

• Reads the next entry in your auxiliary file (NEW2), locates the 
corresponding update file DMKACO NEW2, and applies it to the updated 
source $DMKACO. Processing for your auxiliary file is now complete. 

• Reads the next entry in the control file (LOCAL FIX1) • 

• Locates the directly-identified update file, DMKACO UPDTFIX1. 

• Applies the DMKACO UPDTFIXl updates to the updated source ($DMKACO). 

• Reads the next control record, the MACS record. 

• Issues the GLOBAL command for the macro libraries identified on the 
MACS record (DMKMAC MAC LIB). 

• Assembles the updated source file, $DMKACO ASSEMBLE. 

• Names the object 
concatenating the 
applied (LOCAL). 

module DMKACO TXTLOCAL. The filetype is derived by 
prefix (TXT) and the uplevel of the last upda te 

If you create a new object module for a VM/370 module, you must also 
reconstruct the CP, CMS, or RSCS nucleus using the VMFLOAD service 
program. Or, if the file is a part of a CMS command module, use the 
CMSGEND procedure to generate a new module utilizing the new object 
code. See Appendix D to determine whether the CMS nucleus or some other 
MODULE files must be generated again because of your update. 

When you use CMSGEND to create a new module, you must change the 
filetype of the object deck to TEXT (if it is not already TEXT) before 
issuing the CMSGEND command. After the CMSGEND processing is complete, 
you can change the filetype of the object deck back to what it was 
before. 

Note that CMSGEND renames the existing module to "fname MODOLD" 
before creating the updated module. This ensures that any users 
currently using the CMS system do not have their processing interrupted 
by the updating of modules, because the SSTAT (system status table) of 
the loaded system is still pointing to the area on the system disk 
occupied by the renamed modu1e. When the system is reloaded, the SSTAT 
points to the updated module, and the old module can be erased. 

section 5. Appendixes 643 



VMFASM invokes the UPDATE command, which produces two output files that 
indicate which updates were applied. The file 

fn UPDATES 

lists the names of update files that were applied to the source file 
(fn) and the file 

fn UPDLOG 

lists the actual updates that were applied to the source file (fn) and 
error messages. Both of these files are included in the LISTING file, 
and precede the program source statements. Also, the file (fn UPDLOG) 
precedes the object code in the text file. 

644 VM/370: System Logic and Problem Determination Guide 



A 
ABEND (2~~ abnormal termination (ABEND» 
ABEND macro 17 
abnormal termination (ABEND) 11 

CMS 16 
codes 559 
collect information 41 
printing dumps 41 
procudure when occurs 17 
reading dumps 41 
reason for 16,41 
register usage 43 

CP 12 
codes 542 
collect information 36 
printing dump from tape 35 
procedure when occurs 12 
reading dumps 35 
reason for 12,35 
register usage 36 
save area conventions 36 

debugging procedures 15 
dumps 34 
messages 19 
operating system 18 
problem types 21 
virtual machine (other than CMS) 18 

ACCESS command 136 
access methods 

BDAM 193 
restrictions 135 

BDAM/QSAM 193 
BPAM 193 
for non-CMS environments 193 
OS 193 
supported by CMS 134 
VSAM 193 

CMS support for 193 
accessing 

a virtual disk 182 
the file system 182 

accounting card, processing 97 
active disk and file storage management 

182 
acti ve disk table (ADT) 182 

used in disk management 182 
active file table (AFT) 182 

used in file management 182 
ADSTOP command 480 
allocated 

free storage, types of 185 
storage, releasing of 188 

allocating 
free storage 

nucleus 121 
user 120 

allocation 
cylinder 81 
management 76 
of DASD space 94,226 
of nucleus free storage 188 
of storage 225 

of user free storage 187 
page frame, free storage 85 
slot 80 

AMSERV function, execution of 193 
analyzing the problem 12 
appendixes 587 
applying PTFs 631 
areas 

nucleus constant (NUCON) 41 
program, user and transient 126 

assist feature, virtual machine 49 
attaching 

a real device 87 
a virtual machine to the system 85 
virtual machine, to the syst~m 229 

attributes, spool file 97 
AXS system service task, program 
organization 241 

B 
batch 

CMS 213 
modules used in 215 

BDAM 
CMS support of 193 
restrictions 135 

BDAM/QSAK, CMS support of 193 
BEGIN command 482 
binary synchronous line 

I!HH~! 

enabling/disabling, remote 3277 224 
error recovery, 3270 224 

bisync lines 
data formats 75 
I/O programs for 74 

BPAM, CKS support of 193 

C 
called routine 

modifications to system area 128 
pSW fields 128 
register 

contents 128 
restoration 128 

register contents, when started 167 
return location 126 
returning 126 
start-up table 128,167 

caller, returning to 167 
calling 

DMKFREE 
for a large block 85 
for a subpool 84 

DKKFRET 

calls 
SVC 

for a large block 85 
for a subpool 85 

invalid 125 

Index 645 



simulation by OS and DOS/VS macro 
125 

carriage control characters, C~S 184 
CCH (channel check handler) 100 

overview 105 
subroutines 

channel control 105 
channel error analysis 106 

chain header block 186 
FLCLB in 187 
FLCLN in 187 
FLHC in 187 
FLNU in 187 
FLPA in 187 
format 186 
MAX in 187 
NUM in 187 
POINTER in 186 
SKEY in 187 
TCODE in 187 

chain links 178 
changes, user status 91 
channel, dedicated, support 72 
channel check, interrupt, processing of 

235 
channel check handler (§gg CCH (channel 
check handler)} 

channel-to-channel adapter, virtual 68 
CHECK processing, os VSA~ 197 
checkpoint 

spool file 237 
recovery of closed 237 

clock interrupt reflection 217 
CLOSE, OS VSAM, simulation of 197 
closed, checkpointed spool files, recovery 
of 237 

closing 
virtual machine input files 233 
virtual output files 233 

CMS (Conversational Monitor System) 
ABEND 16 

debugging procedure 17 
procedure when occurs 17 
reason for 16,41 
recovery function 17 

ABEND codes 559 
ABEND dump 

printing 41 
reading 41 

ABEND macro 17 
accessing the file system 182 
batch facility 213 

modules used in 215 
command 

handling 163 
language 111 
processing 127 

commands for debugging 568 
BREAK 569 
CAW 571 
CSW 572 
DEBUG 568 
DEFINE 573 
DUMP 574 
GO 575 
GPR 576 
HX 577 
ORIGIN 578 

PSW 579 
RETURN 580 
SET 581 
STORE 582 
SVCTRACE 584 
X 583 

console management 163 
control blocks 42 
debugging 

collect informaiton 41 
comparison with CP facilities 33 
register usage 43 

debugging commands 568 
BREAK 569 
CAW 571 
CSW 572 
DEBUG 568 
DEFINE 573 
DUMP 574 
GO 575 
GPR 576 
HI 577 
ORIGIN 578 
PSW 579 
RETURN 580 
SET 581 
STORE 582 
SVCTRACE 584 
I 583 

DEVTAB (device table) 115 
disk organization 178 
disk storage management 180 
DOS/VS support 137 
dynamic storage management 182 
equate symbols 599 
error codes 

D~SFRES 558 
D~SFRET 558 
D~SFREX 558 

file 
execution 163 
processing 163 

file status table block 178 
file status table format 178 
file status tables 177 
file system 111,113 

accessing 182 
management 177 

files, storage organization of 177 
first command processing 162 
free storage management 185 
functional information 115 
handling 

of PSi keys 190 
PSW keys 124 
SVC 124 

initialization for OS SVC handling 162 
interactive console environment 163 
interface, display terminals 129 
interrupts 

external 115 
handling 112 
I/O 114 
machine check 115 
processing 184 
program 114 
SVC 112 

introduction 111,160 

646 IBM VM/370: System Logic and Problem Determination Guide 



IPL command processing 160 
label to module cross reference 281 
load map 43 

sample of 44 
loader 168 
loading, from card reader 160 
maintaining interactive session 163 
management, free storage 116 
master file directory 180 
miscellaneous functions 213 
module entry point directory 247 
module to label cross reference 265 
nucleus constant (NUCON) areas 41 
nucleus load map 43 
OS and DOS VSAM 

functions supported 138 
hardware devices supported 138 

OS simulation 
access method support 134 
BDAM restrictions 135 
data management 130 
handling files that reside on eMS 
disks 130 

handling files that reside on OS or 
DOS disks 130 

macro 130 
notes 131 
reading DOS files using OS macros 

136 
reading OS data sets using OS ,macros 

136 
supervisor calls 131 

overview of functional areas 155 
printer carriage control 184 
printing a file 184 
processing, commands entered during 164 
program 

development 112 
organization 155 

punching a card 183 
read disk I/O 185 
reading a card 183 
record formats 178 
register usage 115 
restrictions on, as a saved system 191 
return codes 557 
routines that access the file system 

182 
simulation 

of DOS environment 207 
of OS by 198 

storage 
constant initialization 160 
map 117,161 
structure 116 

structure of DMSNUC 115 
system functions 156 
USERSECT (user area) 115 
virtual devices used in 619 
virtual machine initialization 160 
write disk I/O 185 
ZAP service program 623 

CMS commands 
ACCESS 136 
DEBUG 17,41,568 
FILEDEF 136 
MODMAP 43 
VMFDUMP 34 

CMSAMS-CMSVSAM DCSSs, storage relationships 
with DMSASM 194 

CMSCB, defined 199 
CMSCVT, defined 199 
CMS/DOS 

CLOSE functions 209 
routines that perform them 209 

DOSLKED command 210 
environment, termination of 213 
execution related control commands 210 
FETCH command 210 
initialization 207 

data areas 207 
OS VSAM processing 196 

OPEN functions 209 
routines that perform them 209 

service command processing 213 
SVC functions 

CANCL- SVC 6 211 
CDLOAD-SVC 65 212 
EOJ-SVC 14 212 
EXCP-SVC 0 211 
FETCH- SVC 1 211 
FETCH-SVC 2 211 
FETCH- SVC 4 211 
FREEVIS-SVC 62 212 
GETVIS-SVC 61 212 
MVCOM-SVC 5 211 
POST-SVC 40 212 
RELEASE-SVC 64 212 
RUNMODE-SVC 66 212 
SECTVAL-SVC 75 212 
simulation of 211 
SVC 11 211 
SVC 12 211 
SVC 16 212 
SVC 17 212 
SVC 26 212 
SVC 33 212 
SVC 34 212 
SVC 37 212 
SVC 50 212 
SVC 8 211 
SVC 9 211 
treated as NOPs 212,213 
USE-SVC 63 212 
WAIT-SVC 7 211 

SVC functions not supported 213 
SVC handling 195 

CMSDOS-CMSVSAM-user program storage 
relationships 195 

CMS/VSAM error return processing 197 
CMSVSAM-CMSDOS-user program storage 
relationships 195 

codes 
for DIAGNOSE instruction 58 
wait state 27 

coding conventions 
CP 589 
VM/310 589 

command 
handling, CMS 163 
processing 

eMS 121 
SET DOS ON 163 
SET SYSNAME 163 

commands 
CP processing 230 

Index 647 



entered from the terminal 125 
file system manipulation 177 
passed via DMSINS, execution of 164 
process of, entered during CMS 164 
RSCS 140 
spool files 97 

management 99 
spooling 

real 98 
virtual 98 

commands for debugging 
ADSTOP 480 
BEGIN 482 
DISPLAY 483 
DUMP 489 
SET 492 
STORE 499 
SYSTEM 502 
TRACE 503 

commands for system programmers and 
analysts 

debugging 508 
DCP 509 
DMCP 511 
LOCATE 513 
MONITOR 514 
QUERY 515 
STCP 528 

comparison, of CP and CMS debugging 
facilities 33 

completion processing 
DOS VSAM programs 198 
OS VSAM programs . 198 

component states, I/O 69 
console 

management, CMS 163 
scheduling 222 
simulation, virtual 219 

console functions 88 
CP 48 
CP processing 230 

CONTASK data, processing of 222 
CONTASK interrupt, control, processing of 

222 
control block 

CMS 42 
I/O, real 66 
manipulation macros, simulation of, VSAM 

197 
real 37 

RCHBLOK 39 
RCUBLOK 39 
RDEVBLOK 39 

virtual 37 
VCHBLOK 37 
VCUBLOK 38 
VDEVBLOK 38 
VMBLOK 37 

control card routine 174 
ENTRY card 174 
LIBRARY card 174 

control CONTASK interrupt, processing of 
222 

control flow for I/O processing 183 
Control Program (§~ CP (Control Program» 
control program, RSCS 141 

control register 
usage 55 
used by MCH 102 

control statements, DDR 530 
controlling 

multiprogramming 91 
virtual Machine Assist 49 

conventions 
linkage 165 

SVCs 165 
pageable CP modules 55 

Conversational Monitor system (2~~ CftS 
(Conversational Monitor System» 

CP (Control Program) 
ABEND 12 

procedure when occurs 12 
reason for 12,35 

ABEND codes 542 
ABEND dump 

printing from tape 35 
reading 35 

annotated flow diagram, use of 216 
coding conventions 589 
command module entry points 230 
command processing 230 
commands for system programmers and 
analysts, debugging 508 

console functions 48,88 
processing 230 

control blocks 
RCHBLOK 39 
RCUBLOK 39 
RDEVBLOK 39 
real 37 
VCHBLOK 37 
VCUBLOK 38 
VDEVBLOK 38 
virtual 37 
VMBLOK 37 

debugging 
collect informaiton 36 
comparison with eMS facilities 33 
on a virtual machine 34 
register usage 36 
save area conventions 36 

debugging commands 479 
ADSTOP 480 
BEGIN 482 
DISPLAY 483 
DUMP 489 
SET 492 
STORE 499 
SYSTEM 502 
TRACE 503 

debugging commands for system 
programmers and analysts 

DCP 509 
DMCP 511 
LOCATE 513 
MONITOR 514 
QUERY 515 
STCP 528 

disabled loop 24 
equate symbols 591 
handling of saved systems 190 
BIO operations 221 
initialization 45,85 

procedures 228 

648 IBM VM/370: System Logic and Problem Determination Guide 



internal trace table 477 
interrupts 

handling 52 
processing 216 

introduction 45 
I/O operations, scheduling of 221 
I/O scheduling for CP and the virtual 

machine 218 
label to module cross reference 373 
loadlist requirements 590 
module entry point directory 321 
module to label cross reference 341 
pageable module, identifying 39 
program organization 216 
program states 48 
request stack 93 
SIO operations 221 
spooling 47,93,232 

remote 48 
termination 85 

procedures 228 
without a dump 16 

trace table entries 478 
undiagnosed machine check 16 
unexpected results 23 
unrecoverable machine check 16 
virtual 

interrupt processing 218 
I/O operations 218 

virtual machine 
I/O management 47 
management 46 
preferred environment 48 
storage management 46 
time management 46 

wait state 
codes 540 
disabled 25 
enabled 26 

CP commands 
ADSTOP 480 
BEGIN 482 
DCP 509 
DISPLAY 483 
DMCP 511 
DUMP 489 
LOCATE 513 
MONITOR 514 
QUERY 515 
SET 34,.492 
STCP 528 
STORE 499 
SYSTEM 502 
TRACE 503 

CPU (Central Processing Unit), System/370,. 
retry 101 

cross reference 
label to module 

CMS 281 
CP 373 
RSCS 469 

message-to-label, RSCS 563 
module to label 

CMS 265 
CP 341 
RSCS 465 

CTCA operations between virtual machines 
218 

D 
DASD (Direct Access storage Device) 

error recovery 108 
errors, during spooling 99 
I/O initiated via DIAGNOSE 219 
record formats 603 
space 

allocation of 94,.226 
de-allocation of 226 
exhausted for spool files 100 

st~rage management 80 
cylinder allocation 81 
slot allocation 80 

DASD Dump/Restore (DDR) Program 530 
control statements 530 
function control statements 532 
invoking 

standalone 530 
under CMS 530 

I/O definition statements 531 
TYPE and PRINT functions,. sample output 

539 
data area modules 55 
data. areas 

RSCS 147 
VM/370,. referenced by RSCS 148 

data base, loader 175 
data formats 

for bisync lines 75 
for remote 3270 75 

DDR program (§gg DASD Dump/Restore (DDR) 
program) 

de-allocation of DASD space 226 
DEBUG command, usage 17 
debugging 

aids 477 
approach to 11 
CMS 

collect information 41 
register usage 43 

comparison of CP and CMS facilities 33 
CP 

collect information 36 
on a virtual machine 34 
register usage 36 
save area conventions 36 

introduction 11 
procedures 

ABEND 15 
loops 14 
unexpected results 15 
wait states 14 

software problem 11 
tools, summary of 29 
with CMS 568 

debugging commands 
CP 479 
for system programmers and analy~ts 508 

DCP 509 
DMCP 511 
LOCATE 513 
MONITOR 514 
QUERY 515 
STCP 528 

dedicated channel, support 72 
defining,. a virtual device 87 
detaching, a virtual device 87 

Index 649 



device 
real 

attaching 87 
spooling commands 98 

virtual 
defining 87 
detaching 87 
spooling commands 98 

DIAGNOSE 
codes 58 
FINDSYS function 65 
instruction format 58 
instructions, issued by RSCS 141 
interface 58 
LOADSYS function 64 
PURGESYS function 64 

DIAGNOSE instruction 
function codes for 622 
starting a general I/O operation 219 
used to start standard DASD I/O 219 

diagnostic aids 477 
direct access storage device (§~~ DASD 

(Direct Access Storage Device» 
directories 245 
directory routines, user 236 
disconnecting 

a terminal 87 
permanently 87 
temporarily 87 

a virtual machine 87 
permanently 87 
temporarily 87 

disk 
and file storage management 182 
I/O, CMS 185 
organization in CMS 178 

disk storage management 
CMS 180 
QMSK used in 180 
QQMSK used in 180 

dispatch entry point 231 
dispatched user, reflection for 231 
dispatching 231 

a new virtual machine 232 
states, user 90 
support routines 92 
virtual machines 88 

examples 89 
dispatching lists, virtual machine 89 
DISPLAY command 483 
DISPW macro, format 129 
I:MKFREE 

calling for a large block 85 
calling for a sub pool 84 

DMKFRET 
calling for a large block 85 
calling for a subpool 85 

DMSACC module 203,204 
used for access 182 

DMSACF module 204 
DMSACM module 204 
DMSALU module 204 
DMSAMS, operation of 194 
DMSAMS-CMSAMS-CMSYSAM, storage 
relationships 194 

DMSARE module 203,204 
DMSASN module 207,208 
DMSBOP module 195,209 

DMSBOP YSAM processing 195 
DMSETB module 213 
DMSBTP module 213 
DMSCLS module 195,210 
DMSCLS YSAM processing 195 
DMSDLB module 207,208 
DMSDLK module 210 
DMSDOS module 195 
DMSDOS VSAM processing 195 
DMSEXS macro 190,192 
DMSFCH module 210 
DMSFET module 210 
DMSFLD module 203,204 
DMSFRE module 

method of operation 187 
used in free storage management 185 

DMSFRE service routine 188 
CALOC option of 189 
CHECK option of 189 
CKOFF option of 189 
CKON option of 189 
INITl option of 188 
INIT2 option of 189 
UREC option of 189 

DMSFREE 
allocated storage 188 
error codes 191 
free storage allocation 185 
free storage management 118 
free storage pointers 186 
request efficiency 188 
service routines 122 

DMSFRES macro 122 
DMSFREE macro 

error codes 123 
format 118 

DMSFRES, error codes 191,558 
DMSFRES macro 191 

error codes 123 
format 122 

DMSFRET 
error codes 191,558 
releasing free storage 121 

DMSFRET macro 
error codes 123 
format 121 

DMSFREX error codes 558 
DMSINS module, executing commands 164 

.DMSINT module 164 
DMSITS module 165 
DMSKCP VSAM processing 195 
DMSKEY macro 190,192 
DMSLDR module 175 
DMSLDS module 203,204 
DMSLFS module 205 
DMSLLU module 207,208 
DMSMVE module 203,205 
DMSOPT module 207,208 
DMSPIO, carriage control characters 184 
DMSPIO module 184 
DMSQRY module 203,206 
DMSROS module 205,207 
DMSSCT module 206 
DMSSEB nodule 206 
DMSSET module 207 
DMSSOP module 206 
DMSSTT module 204,207 
DMSSYT module 206 

650 IBM VM/370: System Logic and Problem Determination Guide 



DMSVIP module 196 
DMSXCP module 195 
DOS 

CLOSE functions 209 
environment simulation under CMS 207 
initialization 207 

assign logical and physical units 
208 

associate a DTF table filename with a 
logical unit 209 

data areas 207 
for OS VSAM processing 196 
list assignments of CMS/DOS logical 
units 208 

reseting compiler options 208 
resetting DOS environment options 

208 
setting compiler options 208 
setting DOS environment options 207 

OPEN functions 209 
simulation by CMS 

handling files that reside on DOS 
disks 130 

read DOS files using OS macros 136 
SVC calls 166 
system control commands, processing of 

207 
use of CMS ACCESS command 136 
use of CMS FILEDEF command 136 
VSAM 

functions supported by CMS 138 
hardward devices supported by CMS 

138 
DOS commands 207 
DOS emulator, interaction with virtual 

Machine Assist feature 50 
DOS VSAM 

completion processing 198 
execution of, for a DOS user 194 

DOSCB 209 
DOSCB chain, creation of 193 
DOS-OS-VSAM-user program storage 
relationships 196 

DOS/VS 
FETCH function 210 
Linkage Editor, simulation of 210 
support, under CMS 137 

DTF tables, opening files associated with 
209 

DTFs, closing files associated with 210 
DUMP 

operand of CP SET command 34 
subcommand of DEBUG 41 

DUMP command 489 
dump the system 229 
dumps 

ABEND 34 
CMS ABEND, reading 41 
CP ABEND 

printing from tape 35 
reading 35 

printing 34 
dynamic storage management, active disk and 
file 182 

E 
ECC, validity checking 101 
END card routine 174 

operation 174 
enhancements, miscellaneous, with VM/VS 

Handshaking feature 51 
ENTBY control card 174 
entry point directory 

CMS 247 
CP 321 
BSCS 455 

entry points for CP commands 230 
environments 

non-CMS 192 
access method support for 193 

equate symbols 
CM~ 599 
CP 591 
RSCS 591 

ERET error routine processing 198 
ERP (error recording program) 105 
error codes 

DMSFREE macro 123 
DMSFRES 558 
DMSFRES macro 123 
DMSFRET 558 
DMSFRET macro 123 
DMSFREX 558 
from DMSFREE 
from DMSFRES 
from DMSFRET 

191 
191 
191 
107 error recording 

record writing 
via SVC 76 235 

107 

virtual machine, interface 107 
error recording base, establishing 234 
error recovery 107 

DASD 108 
hard 82 
soft 82 
spool files 99 
tape 109 
virtual storage paging 82 
3270 binary synchronous line 224 
3270 remote support 110 

error return, CMS/VSAM, processing of 197 
error routine, ERET, processing of 198 
errors, DASD, during spooling 99 
ESD card codes 175 
ESD type 0 card routine 170 

operation 170 
ESD type 1 card routine 170 

operation 170 
ESD type 10 routine 172 
ESD type 2 card routine 171 

operation 171 
ESD type 3 card routine 171 

operation 171 
ESD type 5 card routine 171 

operation 171 
ESD type 6 card routine 171 

operation 171 
ESDID (ESD ID table) entry 176 
examples, of virtual machine dispatching 

and scheduling 89 
executable modules 

pageable 55 
resident 55 

Index 651 



executing 
CMS files 163 
text files 168 
the pageable control program 54 

execution 
favored 48,92 
of scheduled users 232 

exit routine, user, processing of 198 
extended virtual external interrupt 51 
external interrupt 53,51 

reflection 211 

F 
facilities 

VM/370 
real timing 65 
timing 65 
virtual timing 66 

failure, system, recovery 100 
favored execution option 48,92 
features 

system/370 recovery 101 
control registers used by MCH 102 
CPU retry 101 
ICC validity checking 101 

Virtual Machine Assist 49 
VM/VS Handshaking 50 

file status table (FST) 
CMS 178 
format 178 

file status table block, format 178 
file status tables, CMS 177 
file system 

CMS 111,113 
management 177 

manipulation commands 171 
FILEDEF command 136 

AUXPROC option 137 
FILEDEF command flow 203 
FINDSYS function 65 

return codes 65 
first chain link format 179 
first command processing, CMS 162 
format 

CCW, 3270 remote 73 
DIAGNOSE instruction 58 
first chain link 179 
macro 

DISPW 129 
tMSFREE 118 
DMSFRES 122 
DMSFRET 121 
STRINIT 116 

spool data 93 
spool files 93 
system save area 168 
user save area 168 

free chain element format 187 
free storage 

allocating 
nucleus 121 
user space 120 

allocation 185 
management 84,185,221 

eMS 116,185 
DMSFREE 118 

GETMAIN 116 
pointers 185 

nucleus, allocation of 188 
page frame allocation 85 
pointers, DMSFREE 186 
releasing 121 

DMSFRET 121 
user, allocation of 187 

free storage table 
FREETAB 186 
NUCCODE 186 
SYSCODE 186 
TRNCODE 186 
USARCODE 186 
USERCODE 186 

PREETAB free storage table 186 
function codes for DIAGNOSE instructions 

622 
function control statements, DDR 532 
functional area, overview, CMS 155 
functions, console, CP 48 

G 
GENCB processing 191 
GETMAIB 

allocated storage 188 
free storage 

allocation 185 
management 116 
management pointers 185 

graphic I/O processing, local 220 

H 
handling 

CMS 
PSW keys 124 
SVC 124 

interrupts 52,55 
CMS 112 
overview 53 

link activity, RSCS 153 
OS files 

that reside on CMS disks 130 
that reside on os or DOS disks 130 

hard error, recovery 82 
high-core nucleus chain 186 
high-core user chain 186 
HIO operations, CP 221 

I 
ICS card routine 169 

operation 169 
identifying, a pageable module 39 
information, functional, CMS 115 
initialization 

eMS virtual machine 160 
CMS/DOS, for OS VSAM processing 196 
CP 45,85 

procedures 228 
DMSIBS module 160 
DOS 207 
for OS SVC handling, eMS 162 
of a named system 162 
of a saved system 162 

652 IBM VM/370: System Logic and Problem Determination Guide 



storage constant, CMS 160 
system 85,228 

for RMS 100 
system table, CMS 160 
virtual machine 229 

input 
processing 

for a virtual machine 233 
real spool files 97 
virtual spool files 95 

input device, real, spooling to 234 
input files, virtual machine, closing of 

233 
input restrictions, loader 177 
input/output control flow 183 
input/output operations 182 
instruction simulation for virtual machine 

219 
interactive console environment, CMS 163 
Interactive Problem Control System (§~~ 

IPCS (Interactive Problem Control System» 
interface 

DIAGNOSE 58 
error recording, virtual machines 107 

internal trace table 477 
interrupt 

channel check, processing of 235 
handling, RSCS 142 
in CMS 

external 115 
handling 112 
I/O 114 
machine check 115 
program 114 
SVC 112 

I/O 70 
virtual 70 

machine check, processing of 235 
reflection in a virtual machine 219 
secondary, processor for 3270 224 
start/stop terminal, processing of 222 
3704/3705, handling of 223 

interrupt processing 221 
local graphic 220 
MONITOR 217 
program 217 

interrupt reflection 
clock 217 
external 217 

interrupts 
external 53,57 

extended virtual 57 
handling 52,55 

overview 53 
I/O 52 
machine check 52 
processing 184,216 
program 52,57 
SVC 53,55 
timer 57 

introduction 
CMS 111,160 
debugging 11 
RSCS 138 
to CP 45 

invalid SVC calls 125 
I/O 

component states 69 

control blocks, real 66 
disk, CMS 185 
for DASD 219 
general operation, initiated via 

DIAGNOSE 219 
instruction simulation, for virtual 

machine 219 
interrupts 52,70 

virtual 70 
macros, OS VSAM, simulation of 197 
management 66 

RSCS 142 
paging 81 
privileged instructions, other 68 
processing, local graphic 220 
programs 

for bisync lines 74 
for remote 3270 74 

reconfiguration 86 
requests 

scheduling 71 
virtual 67 
virtual selector channel 68 

RSCS 
active and pending queues 153 
methods and techniques 152 
queues and subqueues 153 

scheduler, paging 227 
scheduling for CP and the virtual 

machine 218 
supervisor 66 
3270, request handler 224 

I/O definition statements, DDR 531 
IPL command processing, CMS 160 
IPL of the virtual machine 229 
ISAM read sequence 

K 
key 

locate an 220 
validate 220 

real PSi 190 
real storage 190 
virtual PSi 190 
virtual storage 190 

keys, storage protection 189 

L 
label to module cross reference 

CMS 281 
CP 373 
RSCS 469 

language, CMS command 111 
LIBRARY control card 174 
line driver programs 

NPT 146 
SML 144 

linkage conventions 165 
SVCs 165 

links 
RSCS 

handling by 153 
handling files 153 
transmitting VM/370 files to 153 

Index 653 



LISTDS command flow 203 
load map 

CMS 43 
sample of 44 

nucleus 43 
loader 

CMS 168 
data base 175 
input restrictions 177 

loading 
CMS, from card reader 160 
from card reader, CMS 160 
t ext files 168 
the nucleus 228 

load list requirements, CP 590 
LOADSYS function 64 

return codes 64 
local graphic 

interrupt processing 220 
I/O processing 220 

locate ISAM read sequence 220 
lock a page of free storage 225 
loops 11,23 

debugging procedures 14 
disabled 

CP 24 
virtual machine 24 

enabled, virtual machine 24 
low-core nucleus chain 186 
low-core user chain 186 

M 
machine check 

interrupt 52 
processing of 235 

undiagnosed 16 
unrecoverable 16 

machine check handler (§gg MCH (machine 
check handler» 

machine states, virtual machine 89 
macro 

format 
DISPW 129 
DMSFREE 118 
DMSFRES 122 
DMSFRET 121 
STRINIT 116 

macro processing 
I/O 

macros 

ENDREQ 197 
ERASE 197 
GET 197 
POINT 197 
PUT 197 

control block manipulation, VSAM 197 
GENCB 197 
MODCB 197 
SHOWCB 197 
TESTCB 197 

maintaining interactive session, CMS 163 
maintenance, virtual timer 65 
management 

allocation 76 
commands, for spool files 99 
free storage 53,84,227 

CMS 116 

I/O 66 
RSCS 142 

of pages 225 
OS data, simulation by eMS 130 
real spooling 96 
real storage 94 
storage 

DASD 80 
real 77 
virtual 77 

task, Rses 141 
virtual machine 46 

I/O 47 
storage 46 
time 46 

virtual spooling 94 
virtual storage 94 

RSeS 142 
master file directory 

CMS 180 
structure 181 

MCH (machine check handler) 100 
control registers 102 
overview 101 
recovery 

functional 101 
system 101 
system repair 101 
system-supported restart 101 

subroutines 102 
buffer error 104 
initial analysis 102 
main storage analysis 103 
operator communication 103 
recovery facility mode switching 103 
soft recording 104 
storage protect feature (SPF) 

analysis 103 
termination 105 
virtual user termination 104 

m~ssages, ABEND 19 
message-to-Iabel cross reference, RSCS 563 
miscellaneous eMS functions 213 
MODCB processing 197 
mode, VSl nonpaging 51 
modifications, by called routine to system 
area 128 

MODMAP command 43 
module directory, RSCS 447 
module entry point directory 

CMS 247 
CP 321 
RSCS 455 

module entry points for CP commands 230 
module to label cross reference 

CMS 265 
CP 341 
Rses 465 

modules 
data area 55 
executable 

pageable 55 
resident 55 

pageable 
conventions 55 
identifying 40 
restrictions 55 

system support 55 

654 IBM VM/370: System Logic and Problem Determination Guide 



MONITOR interrupt processing 217 
MOVEFILE command flow 203 
multiprogramming, controlling 91 
multitasking supervisor, program 
organization of 239 

N 
named system initialization 162 
network, control, RSCS 140 
non-CMS operating environments 192 
NPT line driver program 146 

routines 
function selector 146 
I/O processing 146 
line monitor 146 

NPT line driver task, program organization 
243 

Nth chain link, format 179 
nucleus 

free storage 
allocation 121,188 

loading of 228 
storage copy of 160 

nucleus constant (NUCON) areas 41 
nucleus load map 43 

o 
obtain a page of free storage 225 
OPEN, OS VSAM, simulation of 196 
operating environments 

non-CMS 192 
access method support for 193 

operating' system, abnormal termination 
(ABEND) 18 

operation 
of DMSINT 164 
of DMSITS 165 

options 
performance 

favored execution 48,92 
reserved page frames 49 
virtual=real 49,80 
virtual Machine Assist 49 

order seek queuing 71 
organization, virtual disk 180 
OS 

CMS simulation, data management 130 
control block functions, CMS simulation 

of 198 
macro simulation, under CMS 130 
simulation by CMS 

access method support 134 
handling files that reside on CMS 
disks 130 

handling files that reside on OS 
disks 130 

notes 131 
reading OS data sets using OS macros 

136 
supervisor calls 131 

use of CMS ACCESS command 136 
use of ~MS FILEDEF command 136 
VSAM 

functions supported by CMS 138 
hardware devices supported by CMS 

138 

OS ACCESS, flow of commands used in 203 
OS access method modules 

DMSACC 204 
DMSACF 204 
DMSACM 204 
DMSALU 204 
DMSARE 204 
DMSFLD 204 

CONCAT 204 
DSB 204 
MEMBER 204 

DMSLDS 204 
DMSLFS 205 
DMSMVE 205 
DMSQRY 206 

DISK routine 206 
SEARCH routine 206 

DMSROS 205 
CHKXTNT routine 207 
CHRCNVRT routine 207 
common routines 207 
DISKIO routine 207 
GETALT routine 207 
RDCNT routine 207 
ROSACC routine 205 
ROSFIND routine 205 
ROSNTPTH routine 206 
ROSPRS routine 205 
ROSSTRET routine 205 
ROSSTT routine 205 
SETXTBT routine 207 
SHKSENSE routine 207 

DMSSCT 206 
CKCONCAT routine 206 
FIND (Type C) routine 206 
NOTE routine 206 
POINT routine 206 

DMSSEB 206 
EOBROUTN routine 206 
OSREAD routine 206 

DMSSOP 206 
DMSSTT 207 
DMSSVT 206 

BLDL routine 206 
BSP routine 206 
FIND (Type D) routine 206 

OS access method support 193 
OS and DOS/VS macro simulation of SVC calls 

125 
OS functions 

CMS module used for 199 
defined 199 
simulated by CMS 199 
SVC numbers of 199 

OS ISAM, handling by DMKISMTR 69 
OS macro simulation SVC calls 166 
OS simulation by CMS 198 
OS simulation routines 199 

ABEND-SVC 13 200 
ATTACH-SVC 42 201 
BACKSPACE-SVC 69 202 
BLDL/FIBD(Type D)-SVC 18 201 
CHAP-SVC 44 201 
CHECK 203 
CHKPT-SVC 63 202 
CLOSE/TCLOSE-SVC 20/23 201 

Index 655 



DELETE-SVC 9 200 
DEQ-SVC 48 202 
DETACH-SVC 62 202 
DEVTYPE-SVC 24 201 
ENQ-SVC 56 202 
EXIT-SVC 3 200 
EXTRACT-SVC 40 201 
FREEDBUF-SVC 57 202 
FREEMAIN-SVC 5 200 
GETMAIN/FREEMAIN-SVC 10 200 
GETMAIN-SVC 4 200 
GETPOOL 200 
GET/PUT-SVC 96 202 
IDENTIFY-SVC 41 201 
LINK-SVC 6 200 
LOAD-SVC 8 200 
NOTE/POINT/FIND(Type C) 203 
notes on 203 
OPEN/OPENJ-SVC 19/22 201 
POST-SVC 2 200 
RDJFCB-SVC 64 202 
READ/WRITE 202 
SNAP-SVC 51 202 
SPIE-SVC 14 201 
STAE-SVC 60 202 

-STAX-SVC 96 202 
STIMER-SVC 47 201 
STOW-SVC 21 201 
SYNAD-SVC 68 202 
TCLEARQ-SVC 94 202 
TGET/TPUT-SVC 93 202 
TIME-SVC 11 200 
TRKBAL-SVC 25 201 
TTIMER-SVC 46 201 
used by Assembler 199 
used by FORTRAN 199 
used by PL/I 199 
WAIT-SVC 1 200 
WTO/WTOR-SVC 35 201 
XCTL-SVC 7 200 
XDAP-SVC 0 200 

OS SVC handling, initialization for, CMS 
162 

as VSAM 
CHECK processing 197 
CLOSE, simulation of 197 
execution, user 196 
I/O macros, simulation of 197 
OPEN, simualtion of 196 
program completion processing 198 

OS-DOS-VSAM-user program storage 
relationships 196 

output 
processing 

real spool files 96 
virtual spool files 95 

output files, virtual machine, closing of 
233 

output lines, SVCTRACE, summary of 586 
overview 

CCH 105 
CMS, functional areas 155 
MCH 101 
RSCS 138 

P 
page 

frames, reserved 49 
management 225 
of free storage 

lock 225 
obtain 225 
return 225 
unlock 225 

reading from virtual storage 225 
request, processing of 225 
writing to virtual storage 225 

page faults, pseudo, with VM/VS Handshaking 
feature 51 

page frame, allocation, free storage 85 
pageable 

control program, executing 54 
CP modules 

conventions 55 
restrictions 55 

executable modules 55 
pages, virtual storage, releasing 227 
paging 

I/O 81 
I/O scheduler 227 
requests 76 
virtual storage, error recovery 82 

patch control block (PCB) 176 
performance 

options 
favored execution 48,92 
reserved page frames 49 
virtual=real 49,80 
virtual Machine Assist 49 

pointers, free storage management 185 
preferred virtual machine 48 
printer, real, spooling to 233 
printing a file, CMS 184 
privileged instruction 

I/O, other 68 
program interrupt 57 

problem 
analyzing 12 
determining if one exists 13 

problem state, SVC interrupts 216 
problem types 

ABEND 11,21 
loop 11,23 

disabled, CP 24 
disabled, virtual machine 24 
enabled 24 

unexpected results 11,23 
CP 23 

wait state 11,24 
disabled, CP 25 
disabled, RSCS virtual machine 27 
disabled, virtual machine 26 
enabled, CP 26 
enabled, RSCS virtual machine 28 
enabled, virtual machine 26 

processing 
accounting cards 97 
CMS files 163 
commands entered during eMS session 164 
DOS system control commands 207 
interrupts 184 
RSCS, files from remote stations 153 

656 IBM VM/370: System Logic and Problem Determination Guide 



spool files 
real input 97 
real output 96 
virtual output 95 

virtual input 233 
virtual output 232 

program 
areas, user and transient 126 
development, CMS 112 
organization, CMS 155 

program areas 
transient 167 
user 167 

Program Event Recording (PER), interaction 
with virtual Machine Assist feature 50 

program interrupt 52,57 
privileged instruction 57 
processing 217 

program organization 
RSCS 238 
RSCS overview 238 

program states, CP 48 
programming, remote 3270 73 
protection, storage 54 
PRSERCH routine 175 

operation 175 
PSR (2~~ IBM Program Systems 
Representative (PSR» 

PSi 
fields, when called routine starts 128 
validation 231 

PSi keys 
CMS handling of 190 
handling by CMS 124 

PTFs, applying 631 
punch, real, spooling to 233 
punching a card, CMS 183 
PURGBSYS function 64 

return codes 65 

Q 
QMSK data block 181 
QUERY command flow 203 
querying options in the virtual machine 

environment 163 
queuing, order seek 

R 
reading 

a card, CMS 183 

71 

a DASD page from virtual storage 225 
real 

device 
attaching 87 
spooling commands 98 

input devi~e, spooling to 234 
PSi key 190 
storage key 190 

real spooling manager (DMKRSP) 96 
real storage 

allocation 225 
management 77,94 
page management 225 
requests for page frames 78 

reconfiguration, I/O 86 
record, error, writing 107 
record formats 

CMS 178 
DASD 603 

recovery 
from system failure 100 
MCH 

functional 101 
system 101 
system repair 101 
system-supported restart 101 

System/370 101 
control registers used by MCH 102 
CPU retry 101 
BCC validity checking 101 

Recovery Management Support (§gg RMS 
(Recovery Management Support» 

REFADR routine 175 
operation 175 

reflection for the dispatched user 231 
REFTBL 

address field 176 
entry 176 
flagl byte 
flag2 byte 
info field 
name field 
value field 

register 

176 
176 
1'76 
176 

176 

contents when called routine starts 
128,167 

restoration by called routine 128,168 
usage, CMS 115 

RELEASE command flow 203 
releasing 

allocated storage 188 
free storage 121 
storage 188 
virtual storage pages 227 

relocation, virtual 82 
remote 

stations, RSCS processing of files from 
153 

3270 
CCW format 73 
data formats 75 
I/O programs for 74 
support error recovery 110 

3270 programming 73 
Remote Spooling Communications Subsystem 
(§~~ RSCS (Remote spooling Communications 

Su1:system) ) 
REP card routine 172 

operation 172 
request handler, 3270 I/O 224 
request stack, CP 93 
requests 

for real storage page frames 78 
I/O 

scheduling 71 
virtual 67 

paging 76 
RSCS 147 

requirements, RSCS storage 149 
reserved, page frames 49 
resident, executable modules 55 
restart, MCH, system-supported 101 

Index 657 



restrictions 
input, loader 177 
on CMS as a saved system 191 
pageable CP modules 55 
Virtual Machine Assist feature 50 
VM/370 613 

return a page of free storage 225 
return codes 

CMS 557 
FINDSYS function 65 
LOADSYS function 64 
PURGESYS function 65 

return location, when returning to caller 
168 

returning 
to caller 167 

register restoration 168 
return location 168 

to the called routine 126 
REX system service tasks, program 
organization 240 

RLD card routine 173 
operation 173 

RMS (Recovery Management Support) 100,234 
channel check handler (CCH) 100 
machine check handler (MCH) 100 
system initialization 100 

RSCS (Remote Spooling Communications 
su bsystem) 

AXS system service task, program 
organization 241 

control program 141 
data areas 147 

VM/370 148 
DIAGNOSE instructions 141 
equate symbols 591 
interrupt handling 142 
introduction 138 
I/O 

active and pending queues 153 
method and techniques 152 
queues and subqueues 153 

label to module cross reference 469 
links 

handling 153 
handling files 153 
transmitting VM/370 files to 153 

management 
I/O 142 
task 141 
virtual storage 142 

message-to-Iabel cross reference 563 
module directory 447 
module entry point directory 455 
module to label cross reference 465 
multitasking supervisor, program 
organization of 239 

network control 140 
commands 140 
CP and CMS commands used 140 
CP instructions used 141 

NPT line driver program 146 
function selector routine 146 
I/O processing routines 146 
line monitor routine 146 

NPT line driver task, program 
organization 243 

overview 138 

processing files from remote stations 
153 

program organization 238 
overview 238 

request elements 141 
REX system service tasks, program 
organization 240 

SML line driver program 144 
buffer routines 145 
function selector routine 145 
I/O handler routine 145 
processors 145 

SML line driver task, program 
organization 242 

spooling, remote 48 
storage requirements 149 
supervisor 141 
TAG file descriptor 147 
task structure 142 
tasks 143 

ALERT task-to-task communication 150 
asynchronous interrupts and exits 

150 
asynchronously requested services 

150 
dispatching 149,150 
GIVE/TAKE task-to-task communication 

151 
posting a synch lock 150 
synchronization locks 149 
synchronizing 149 
wait/post routines 149 

virtual machine 
configuration 139 
locations and links 139, 
nonprogrammable remote stations 139 
programmable remote stations 139 
remote stations 139 

wait state 
disabled 27 
enabled 28 

RSCS commands 140 

S 
saved system 

effect on CMS as a 191 
handling of, CP 190 
initialization 162 
restrictions on C~S as a 191 

saving the 3704/3705 control program image 
236 

scheduler 
functions, other 232 
I/O paging 227 

scheduling 231 
CP I/O operations 221 
interrupt handling 221 
I/O for CP and the virtual machine 218 
I/O requests 71 
support routines 92 
the console 222 
users for execution 232 
virtual machine I/O operations 221 
virtual machines 88 

examples 89 
selector channel, virtual, I/O requests 68 
service program, ZAP, CMS 623 

658 IBM VM/370: System Logic and problem Determination Guide 



service routines 
DMSFRE 188 
DMSFREE 122 
TSO, support of 198 

SET command (CP) 492 
usage 34 

SET DOS ON command processing, VSAM 163 
SET SYSNAME command processing 163 
setting options in the virtual machine 

environment 163 
shared segment storage management 226 
SHOWCB processing 191 
shutdown, normal 228 
simulation 

CMS, OS data management 130 
of as by CMS 198 
OS macro, under CMS 130 
virtual console 12 

control routine 12 
invalid operation 12 
read routine 12 
sense operation 12 
TIC operation 12 
write routine 12 

simulation routines, OS (~gg OS simulation 
rou tines) 

SIO 
operations, CP 221 
virtual 61 

SLC card routine 169 
operation 169 

SML line driver program 144 
routines 

buffer blocking and deblocking 145 
function selector 145 
I/O handler 145 
processors 145 

SML line driver task, program organization 
242 

soft error, recovery 82 
software problem, debugging 11 
space, allocation, DASD 94 
spool data, format 93 
spool files 

attributes 91 
checkpoint 236 

initialization 236 
commands 91 
CP, closing with VM/VS Handshaking 
feature 51 

DASD, space exhausted 100 
deletion of 234 
error recovery 99 
format 93 
management, commands 99 
real 

input processing 91 
output processing 96 

recovery 236 
recovery of closed checkpointed 231 
virtual 

input processing 95 
output proces~ing 95 

spooling 232 
commands 

for real device 98 
for virtual device 98 

CP 41,93 
remote 48 

DASD errors 99 
real, management 96 
remote, via RSCS 48 
to the real input device 234 
to the real printer 233 
to the real punch 233 
virtual, management 94 
virtual console 95 
virtual device to real device 232 

start/stop terminals, interrupt processing 
222 

start-up table, called routine 161 
STATE command flow 204 
status, changes, user 91 
status tables, file, CMS 111 
storage 

allocated by DMSFREE 188 
allocated by GETMAIN 188 
allocation 225 
constant initialization, CMS 160 
free 

allocation 185 
management of 53 

map 
CMS 111,161 

organization of CMS files 111 
protection 54 
protection keys 189 
releasing of 188 
RSCS, requirements 149 
structure in CMS 116 

storage management 
free 221 
shared segment 226 
temporary disk 226 

storage relationships, DOS-OS-VSAM-user 
program 196 

STORE command 499 
STRINIT macro, format 116 
structure, CMS storage 116 
subpool 

calling DMKFREE for 84 
calling DMKFRET for 85 

subroutines 
CCH 

channel control 105 
channel error analysis 106 

MCH 102 
buffer error 104 
initial analysis 102 
main storage analysis 103 
operator communication 103 
recovery facility mode switching 103 
soft recording 104 
storage protect feature (SPF) 
analysis 103 

termination 105 
virtual user termination 104 

summary of, VM/310 debugging tools 29 
supervisor 

I/O 66 
RSCS 141 

supervisor state, SVC interrupts, 
processing of 216 

support, dedicated channel 12 
support plan, system 638 

Index 659 



support routines 
dispatching 92 
scheduling 92 

SVC 
CALLS (2~~ SVC CALLS) 

handling by CMS 124 
handling for CMS/DOS 195 
interrupt 53,55 

problem state 216 
supervisor state, processing of 216 

linkage conventions 124 
types 124,165 

user handled 125,166 
201 165 
202 124,165 
203 124,166 

SVC calls 
DOS 166 
invalid 125,166 
OS and DOS/VS simulation 125 
OS macro simulation 166 

SVC 201 165 
svc 202 165 

execute commands entered from the 
terminal 125 

search hierarchy for 125,166 
SVC 203 166 
SVC 76 error recording 235 
SVCTRACE output lines, summary of 586 
system 

dump of 229 
failure, recovery 100 
file, management 177 
functions; CMS 156 
initialation 85,228 

for RMS 100 
save area format 168 
start, warm 228 
table initialition, CMS 160 
termination 85 
virtual machine, attaching to 229 

SYSTEM command 502 
system support modules 55 
system support plan 638 
System/370 

T 

recovery 101 
control registers used by MCH 102 
CPU retry 101 
ECC validity checking 101 

table, start-up, called routine 167 
table entry 

ESDID 176 
REPTBL 176 

TAG, RSCS file descriptor 147 
tape, error recovery 109 
task management, RSCS 141 
task structure, RSCS 142 
tasks 

RSCS 143 
ALERT task-to-task communications 

150 
asynchronous interrupts and exits 

150 
dispatching 149,150 

GIVE/TAKE task-to-task communcation 
151 

posting a synch lock 150 
synchronation locks 149 
synchroning 149 
using asynchronously requested 
services 150 

wait/post routines 149 
temporary disk storage management 226 
terminals 

disconnecting 87 
permanently 87 
temporarily 87 

display, CMS interface 129 
I/O control 

disabling 222 
enabling 222 

termination 
abnormal (~~~ abnormal termination 

(ABEND) ) 
CP 85 

without a dump 16 
of the virtual machine 229 
procedures, CP 228 
system 85 
virtual machine 229 

TESTCB processing 197 
text files 168 

executing 168 
loading 168 

thrashing, VPK of 0 191 
timer 

interrupt 57 
virtual, maintenance 65 

timing 
facilities 65 

real 65 
virtual 66 

TRACE command 503 
trace table entries, CP 478 
transient program areas 126,167 
TSO service routine, support of 198 
TXT card routine 172 

operation 172 
TYPE and PRINT function, DDR, sample output 

539 

U 
unexpected results 11,23 

CP 23 
debugging procedures 15 
virtual machine 23 

unlock a page of freee storage 225 
update procedures, VM/370 631 
updating modules with the VMPASM EXEC 

procedure 638 
usage, control register 55 
user 

directory routines 236 
dispatching states 90 
exit routine processing 198 
free storage 

allocating 120 
allocation of 187 

handled SVCs 166 
program areas 126,161 

660 IEM VM/370: System Logic and Problem Determination Guide 



save area format 168 
status changes 91 

user program-CMSDOS-CMSVSAM storage 
relationships 195 

user program-VSAM-DOS-OS storage 
relationships 196 

V 
validate ISAM read sequence 220 
validation of the PSW 231 
virtual 

channel-to-channel adapter 68 
device 

defining 87 
detaching 87 
spooling commands 98 

devices used in CMS 619 
disk 

accessing 182, 
organization 180 
physical organization 180 

I/O interrupts 70 
I/O requests 67 
output files, closing of 233 
PSi key 190 
relocation 82 
selector channel I/O requests 68 
SIO 67 

virtual=real option 49,80 
virtual console 

simulation 72,219 
control routine 72 
invalid operation 72 
read routine 72 
sense operation 72 
TIC operation 72 
write routine 72 

spooling 95 
virtual machine 

abnormal termination (ABEND) 18 
attaching to the system 85,229 
debugging, CP 34 
debugging commands, CP 479 
disabled loop 24 
disconnecting 87 

permanently 87 
temporarily 87 

dispatching 88 
example of 89 

dispatching lists 89 
enabled loop 24 
environment 

querying options 163 
setting options 163 

error recording, via SVC 76 235 
error recording interface 107 
initialition 229 

CMS 160 
input files, closing of 233 
input processing 233 
interrupt reflection 219 
I/O, scheduling by CP 218 
I/O instruction simulation 219 
I/O operations, scheduling of 221 
IPL of 229 
machine states 89 
management 46 

I/O 47 
storage 46 
time 46 

new, dispatching of 232 
output processing 232 
preferred 48 
BSCS 

configuration 139 
locations and links 139 
nonprogrammable remote stations 139 
programmable remote stations 139 
remote stations 139 

scheduling 88 
example of 89 

termination 229 
termination of 229 
unexpected results 23 
wait state, disabled 26 

virtual Machine Assist feature 49 
control 49 
interaction 

with DOS emulator 50 
with Program Event Recording (PER) 

50 
restrictions 50 

virtual Machine Facility/370 (VM/370) 
coding conventions 589 
CP and CMS commands used to control RSCS 

network functions 140 
CP instructions used to control RSCS 

network functions 141 
data areas, referenced by RSCS 148 
debugging 

introduction 11 
software problem 11 
summary of tools 29 

restrictions 613 
system, supporting a 631 
timing facilities 65 

real 65 
virtual 66 

transmitting files to an RSCS link 153 
update procedures 631 

virtual spooling manager (DMKVSP) 94 
virtual storage 

key' 190 
management 77,94 

EC mode 226 
non-EC mode 225 
RSCS 142 

paging, error recovery 82 
releasing pages 227 

VMFASM EXEC procedure 
other files produced by 644 
updating modules with 638 
using to apply updates 638 

VMFDUMP command 
format 34 
usage 34 

VM/VS Handshaking feature 50 
closing CP spool files 51 
miscellaneous enhancements 51 
pseudo page faults 51 

VM/370 (2~~ Virtual Machine Facility/370 
(VM/370) ) 

VPK of 0 caused overhead 191 
VSAM 

CLOSE, OS, simulation of 197 

Index 661 



CMS support of 193 
control block manipulation macros, 
simulation of 197 

execution for os user 196 
execution of, for a DOS user 194 
OPEN, OS, simulation of 196 
processing, DMSDOS 195 
SET DOS ON command processing 163 

VSAM-DOS-OS-user program storage 
relationships 196 

VS1 nonpaging mode 51 

Ii 
wait state 11,24 

codes 27 
CP 540 

debugging procedures 14 
disabled 

CP 25 
RSCS virtual machine 27 
virtual machine 26 

enabled 
CP 26 
RSCS virtual machine 28 
virtual machine 26 

warm start 228 
writing a DASD page to virtual storage 225 

Z 
ZAP service program, CMS 623 

3 
3270 

binary synchronous line error recovery 
224 

remote 
CCW format 73 
data formats 75 
I/O programs for 74 
programming 73 
support error recovery 110 

secondary interrupt processor 224 
3277 

remote, enabling/disabling of 224 
remote station 

binary synchronous line 
enabling/disabling 224 

enabling/disabling 224 
3704/3705, saving the control program image 

236 
3705/3704, interrupt handling 223 

662 IBM VM/370: System Logic and Problem Determination Guide 



.. c • 
:J: 

Title: IBM Virtual Machine Facility/370: 
System Logic and Problem Determination 
Guide 

Order No. SY20-0885-0 

Please check or fill in the items; adding explanations/comments in the space provided. 

Which of the following terms best describes your job? 

o Customer Engineer 
D Engineer 
D Instructor 

D Manager 
D Mathematician 
D Operator 

How did you use this publication? 

D Programmer 
D Sales Representative 
D Student/Trainee 

READER'S 
COMMENT 
FORM 

D Systems Analyst 
D Systems Engineer 
D Other ( explain below) 

D Introductory text ;] Reference manual D Student/ D Instructor text 
D Other (explain) ___________________________ _ 

Did you find the material easy to read and understand? DYes 

Did you find the material organized for convenient use? DYes 

Specific criticisms (explain below) 
Clarifications on pages 
Additions on pages 
Deletions on pages 
Errors on pages 

Explanations and other comments: 

D No ( explain below) 

D No (explain below) 

Thank you for your cooperation. No postage necessary if maile4.in the U.S.A. 



SY20-088S-0 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance and/or additional publications or to suggest 
programming changes will delay response, however. For more direct handling 
of such requests, please contact your IBM representative or the IBM Branch 
Office serving your locality. Your comments will be carefully reviewed by 
the person or persons responsible for writing and publishing this material. All 
comments or suggestions become the property of IBM 

::;l 
: 3" 
:l> 
'0 
• :J 
'IQ 

:-1 
.::r 
• en' :r 
·5" 
• CD 

FOLD FOLD : aJ ............................................................................................................................ 3: 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

POSTAGE WI LL BE PAl D BY 

IBM CORPORATION 
VM/370 PUBLICATIONS 

24 NEW ENGLAND EXECUTIVE PARK 

BURLINGTON, MASS. 01803 

[

FIRST CLASS ] 
PERMIT NO. 172 

BURLINGTON, MASS. 

:< 
:3: .-.W ...... 
:!=? 
:~ 
.~ 

:r­
:c8 
: c;' 
'1» .:::s 
:c. . ." · ~ 
'0 
:P" 
:0 
·CD 
• r+ .CD 

:3 
: :i' 
• I» 
• d'. 
'0 
::::s 
'C) 
: c 
'0.: 
:CD 

:." 
• :::!. 
• :::s 
• r+ 'CD :c. 

........................................ ~ ................................................................................... : :r 
FOLD 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

FOLD :c 
'en :l> · . 

• en :< 
'N 
'0 
:6 
.OQ 
'OQ 
:Y" 
:0 



SV20-0885-0 

International Bu.lne •• Machine. Corporation 
Data Proce •• lng Dlvl.lon 
1133 We.tche.ter Avenue, White Plain., New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nation. Plaza, New York, New York 10017 
(International) 

"'tI .. 
:i' s-
a. 
:i' 
c 
en 
~, 

(I) 

-< 
N 
9 o 
()Q 
()Q 

Y1 o 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	replyA
	replyB
	xBack

