
Systems

File No. 5370-36
Order No. GC20-1818-3

IBM Virtual Machine
Facility /370:
CMS Command and Macro
Reference

Release 6 PLC 17

This publication provides users of the
Conv~rsational Monitor System (eMS) component of
IBM" irtual Machine Facility/370 with detailed

reference information concerning command syntax

and usage notes for:

• CMS commands
• EDIT subcommands
• DEBUG subcommands
• EXEC control statements, special variables, and

built-in functions
• CMS assembler language macro instructions

PREREQUISITE PUBLICATIONS

IBM Virtual Machine Facility' /370:

Terminal User's Guide, Order No. GC20-1810

eMS User's Guide, Order No. GC20-1819

--.. ~ .-. ----- - ---- -- ---- -.. ---- - - --------
-~-.-

""his is a ma ior rl?vision of, and obsoletes, GC20-1818-2. This edition
applies to Release 6 Ptc 17 (Program Level Change) of the IB~ Virtual
~achine Facility/370, and to all subsequent releases unless otherwise
indicated in new editions or Technical Newsletters (rNLsl.

~echnical changes and additions to text ana illustrations are indicated
by a vertical bar to the left of the change.

Changes are periodically made to the information contained herein;
before using this publication in connection with the operation of IB~
systems, consult the I~~ ~teIDL1I~ ~iQliQg£a~hY, Order No. 3C20-0001,
for the editions that are applicable and current.

It is possible that this material may contain reference to, or
information about, IB~ products (machines and programs), programming, or
services which are not announced in your country. Such references or
information must not be construed to mean that IB~ intends to announce
such IB~ products, programming, or services in your country.

Publications are not stocked at the address given below; requests for
copies ~f IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

form for readers' comments is provided at the back of this
publication; if the form has been removea, comments may be addressed to
IBM Programming Publications, Dl?pt. G60, P.O. Box 6, Endicott, New York,
U.S.A. 13760. IBM may use or distribute any of the information you
supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business !1a:::hines Corporation 1976, 1977,
1 q-, q, 1981

Use this publication as a reference manual;
it contains all of the command formats,
syntax rules, and operand and option
desc~iptions for CMS commands, subcommands,
and macro instructions for general users.

The I~~ Yi~IY~l ~~£hin~ Fa£ili!YlJIQ:
~~~ rr§g£~§ Guide, GC20-1819, contains 
tuto~ial information and functional 
descriptions of CMS commands, as well as 
information on using the editor, EXEC, and 
debugging facilities of CMS. You should be 
familiar with the contents of the Y~lJIQ 
~~~ rr§~£~§ 2giQ~ before you attempt to use 
this ~eference manual. For most of the CMS
commands described in this publication, you
may find additional useful notes in the
Y~Ll~Q ~~~ rr§~£~§ Guig~·

~his publication has six sections:

"Section 1. Introduction and General
Concepts" describes the components of the
VM/3 7 0 system and tells you how to enter
CMS commands. It lists the notational
conventions used in this manual, so that
you can interpret the command format
desc~iptions in Section 2. Section 1 also
contains information about the CMS command
search Jrder and a summary of all the eMS
commands available under VM/370, including
those not for general users.

"Section 2. CMS Commands" contains
complete format descriptions, and operand
and option lists, for the CMS commands
available to general users. Each command
description contains usage notes, and lists
responses and error messages (with
associated return codes} produced by the
command.

"Section 3. EDIT subcommands and Macros"
describes the sub commands and macros
available in the environment of the CMS
editor, which you can invoke with the EDIT
command. Each subcommand description
contains usage notes and summarizes the
types of responses you might receive.
Where applicable, additional information is
provide1 for users of display terminals.

"Section 4. DEBUG Subcommands" describes
the sub commands available in the debug
pnvironment of CMS. Each subcommand
desc~iption contains usage notes and, where
applicable, lists the responses to the
su bcomma nd.

Preface

"Section 5. EXEC Control statements"
describes the control statements, special
variables, and built-in functions you can
use when you create EXEC procedures to
execute in eMS. The control statement
descriptions contain usage notes, where
applicahle.

"Section 6. CMS Macro Instructions"
lists the formats and operands of the eMS
assembler language macro instructions you
can use when you write programs to execute
in CMS.

This publication
appendixes:

also has three

"~ppendix A: Reserved Filetype Defaults"
lists the filetypes that are recognized by
the CMS editor and indicates the default
settings that the editor supplies for
logical tabs, truncation, verification,
logical record length, and so on.

"Appendix B: DOS/VS Access Method
Services and VSAM Functions Not Supported
in CMS" lists the restrictions on the use
of access method services and VSAM in the
CMS/DOS envi~onment of CMS.

"Appendix c: as/vs Access Method
Services and VSAM Functions Not Supported
in CMS" lists the restrictions for as
programmers using access method services
and VSAM in eMS.

Some of the following convenience terms are
used throughout this publication:

•

•

The term "eMS/DOS" refers to the
functions of CMS that become available
when you issue the command:

set dos on

CMS/DOS is a part
system, and is not
Users who do not

of the normal CMS
a separate system.

use CMS/DOS are
sometimes referred to as 85 users, since
they use the as simUlation functions of
CMS.

The term "eMS files" refers exclusively
to files that are in the BOO-byte block
format used by CMS file system commands.
VSAM and as data sets and DOS files are

Preface iii

not compatible with the CMS file format,
and =annot be manipulated using CMS file
system commands.

The terms "disk" and "virtual disk" are
used interchangeably to indicate disks
that are in your CMS virtual machine
configuration. Where necessary, a
distinction is made between the
CMS-formatted disks and disks in os or
Dc)S format.

~he following terms in this publication
refer to the indicated support devices:

•

•

•

•

•

•

•

•

•

"2305" refers to IBM 2305 Fixed Head
Stor~ge, Models 1 and 2.

"270X" refers to IBM 2701, 2702, and
2'03 Transmission Control Units or the
Integrated Communications Adapter (ICA)
on the System/370 Model 135.

"3270" refers to a series of display
devices, namely, the IBM 3275, 3276,
327 7 , and 3278 Display Stations. A
specific device type is used only when a
distinction is required between device
types.

Information about display terminal usage
also applies to the IBM 3138, 3148, and
315 Q Display Consoles when used in
display mode, unless otherwise noted.

Any information pertaining to the IBM
32q4 or 3286 Printer also pertains to
the IBM 3287, 3288, and 3289 printers,
unless otherwise noted.

"3330" refers to the IBM 3330, Disk
Storagp. ~odels 1, 2, or 11; and the 3350
Dire=t ~ccess Storage operating in
3330/3333 ~odel 1 or 3330/3333 Model 11
compatibility mode.

"3340" refers to the IBM 3340 Disk
Storage, Models A2, Bl, and B2, and the
3344 Direct Access storage Model B2.

"3350" refers to the
Access storage Models
native mode.

IBM 3350
A 2 and

Direct
B2 in

"3 7 04", "3705", or
IBM 37[l4 and

3704/3705" refers to
3705 Communications

C on t roll e r s .

"3 7 05" refers to the 3705 I and the 3705
II unless otherwise noted.

"2741" refers to the IBM 2741 and the
3 7 6 7 , unless otherwise specified.

• "3065" refers to the IBM 3066 System
Consale.

VM/378 c~s Command and ~acro Reference

For a glossary of VM/370 terms, see the
!~~ Yi£~g~! ~~£h!n~ fg£!l!~YLJIQ: 2!Q~§~fY
~ng ~~§ig£ !gg~!, GC20-1813.

PREREQUISITE PUBLICATIONS

In addition to the Y~L1IQ £~~ y§g£~§ ~YiQg,
E£~re~~i§iig illIQ£~g!lQn 1§ ~Qnt~iggQ in
the following publications:

• For information about the termin~l that
you are using, including procedures for
gaining access to the VM/310 system and
logging on, see the !~~ !i£iY~! ~~£hing
X~~ilitYL~IQ: !gf~in~! y§gf~~ ~y!gg,
GC20-1810.

• If you are using an IBM 3761
Communications Terminal, the IBM ~I~I
~gf~tQ£~§ ~Ylg~; GA18-2000, is a
prerequisite.

• The CP commands that are available to
you as a general user are described in
IBM Virtual Machine E~~i!!tYL1IQ: £~
£Qm~~n~--[~~g£~n£g--IQ£ 2gng~~! q~g£§,
GC20-1820.

For additional tutorial information on
using CM, you may want to use ~~~ IQf
R£~g£~~mg£§ = ! ~£l~gf, SR20-4438.

If you are going to use an IBM Program
Product compiler under CMS, you should have
available the appropriate program product
documentation. These publications are
listed in I~~ !!£tg~! ~~fhig~ E~~i!!~YLJIQ:
!lltrog~~tiQn GC20-1800.

COREQUISITE PUBLICATIONS

The 1~~ Virtual Machine E~£i!!~YLJIQ:
~y§tg~ tlg§§~g~§;--GC20:1808, ~escribes all
of the error messages and system responses
produced by the eM commands and EDIT and
DEBUG subcommands referenced in this
publication. It also lists the error
messages issued by the EXEC processor
during execution of your EXEC procedures.

If you aLe alternating between eMS and
other operating systems in virtual m~~hines
running under VM/310, you should consult
J~~ Yi£t~~! H~£~1gg E~~i!!~YL1IQ:
~Eg£~!!ng ~Y§igm§ in ~ !i£!g~! tt~~h~ng,
GC20-1821.

SUPPLEMENTAL PUBLICATIONS

For general information about the VM/370
system, see the publications 1~~ Yi£iY~l
g~chiQ~ I~£ililYlll~: IntroQY£!iQQ,
GC20-1g00, and !nLl1~ E~~tures SUEE1~~gnt,
GC 20- 1757.

Additional descriptions of various CMS
functions and commands which are normally
used by system support personnel are
described in

rl~nQ1ng ~ng ~§i~m §~nera1ion QY1gg,
GC20-1801

Information
invoked under
Yl£t!!~l !:1~£hin.~
££'QQlgm ~Qnt£Ql
GC 20- 1 g2 3.

on IPCS commands, which are
CMS, is contained in I~!:1

L££11iiyLJIQ: Int~£££iiY~
~Y§ig~ (IE~~) Q§~£~§ QYigg,

Details on the CMS CPEREP, a command
used to generate output reports from VM/370
error recording records, are contained in:

I~!:1 Yi£t~~! !:1££hin~ E££iliiYLllQ: Q1±~~r
£nQ ~IIQI R~£QIging ~Yig~, GC20-1809&

For more details on the operands used
with CPERFP, refer to:

Q~LY5, QQ~LY~~, I~!:1L1IQ Envi£Qn.m~n.!g!
Rg£Q£Qing, ~~iiing, ~n.g £Iinting (~g~~)
£IQg££ill, GC28-0772.

For messag~s issued by CMS CPEFEP, see:

~here are three publications available as
ready reference material when you use
VM/3 7 0 and C'MS. They are:

~Qm~~nQ§ (other ih£n
G1C20-1 q 0 5

If you are going to use the
Spooling Communications Subsystem,
I~~ YiIi~~l ~s£hin~ E~£iliiYL1IQ:
~~Qolin.g ~QmmYn.i£s!iQn.§ ~YQ§I§!gID
Q§~I~ Qgig~, GC20-1816.

Remote
see the

RgmQig
(g~~~)

Assembler language programmers may ~1nd
information about the VM/370 assembler in
Q~LY~, Q~~LY~, sn.g Y!:1LJI~ !§§§IDQlgI
1sn.gysgg, arder No. GC33-4010, and Q~LY~

~n.Q Y~L1I~ !§§~ID~!~I rIQgIgIDID~£~§ Q~iQg,
GC33-4021.

CMS support of Access Method Services is
based on DOS/VS Access Method Services.
The control statements that you can use are
described in ~Q~lY~ !££g§2 ~gihQQ ~~£Yi£~§
Q§gI~§ QgiQ~, GC33-5382. The Y~LJIQ: ~~~
Q§gI~§ Q~1gg contains details on how to use
this support. Error messages produ=ed by
the Access Method Services program, and
return codes and reason codes are listed in
QQ~LY~ ~~§§~g~§; GC33-5379.

For a detailed description of DOS/VS
VSAM macros and macro parameters, refer to
the QQ~LY~ ~gQ§IYi§QI ~nQ ILQ !:1~££Q§,
GC33-5373. For information on OS/VS VSAM
macros, refer to Q~LY~ Yi£i~~l ~iQ£~gg
!££~§§ !:1~ihQQ (Y~!!:1) rIQgIgmmg£~§ ~giQg,
GC26-38i8.

The CMS ESERV command invokes the DOS/VS
ESERV program, and uses, as input, the
control statements that you would use in
D~S/VS. These control statements are
described in Q~ig~ iQ ih~ QQ~LY~ !§§~mQ!gI,
GC33-4024.

Linkage editor control statements, used
when invoking the DOS/VS linkage editor
under CMS/DOS, are described in QQ~LY~

~y§!gID £Qn.~£Q! ~isi~mgnt§, GC33-5376.

Batch DL/I application programs =an be
written and tested in the CMS/DOS
environment. See Y~LJIQ ~!:1~ ~§g£~§ Q~ig~,
GC20-1819, and Q1L! QQ~LY~ ~~n~I~!
IrrfQ£m~!iQn, GH20-1246, for ~etails.

Preface v

Contents

The entries in this Table of contents are accumulative. They list additions to this
publication by the following VM/370 System Control Program products:

• V~/370 Basic System Extensions, Program Number 5748-XX8
• VM/370 System Extensions, Program Number 5748-XE1

However, the text within the publication is not accumulative; it only relates to the one
SCP proqram product that is installed on your system. Therefore, there may be topics and
references in this Table of Contents that are not contained in the body of this
publication.

SUMMARY OF AMENDMENTS. • • • • • • • xi

SECTION 1. INTRODUCTION AND GENERAL
CONCEPTS. • • • • • • .1

The CMS Environment. • .1
Enterinq CMS Commands. .2
Character set iJsaqe. • .3
Notational Conventions e .4
CMS Command Search Order .7
C~S Command Summary 7

CMS COMMANDS. • • • • 15 SECTION 2.
ACCESS • • • • • • • • • • 16
AMSERV •
ASSEMBLE
ASSGN ••
CMSBATCH
COMPARE.
COPYFILE • •

Using the COPYFILE
CP • • • • • • • • •
DDR. • • • • • • • •

Command

DDR Control Statements ••
1/0 Definition Statements.

DE BUG. •
01 SK ••
DLBL ••
DOSLIB
DOSLKED. •
OS ERV •
EDIT •
ERASE ••
ESERV ••••••
EXEC • • • • • • • •
FETCH. • ••••
FI LEDEF. • • • •
FOR~AT ••
GENDIRT.
GEN~OD • • • • • • • •
GLOBAL ••
INCLUDE ••
HELP (21~L~-!!~).
HELP (22~~-!];1).
INCLUDE (~l~~-!X~)
INCLUDE (~l~~-X];J)
LISTDS • • • • • • • • • • • • •

• 20
• 23

29
32
33
35

• 38
• 45

46
• • 47
• • 47

• 57
• 58
• 60

72
• 74
• 77
• 79
• 81
• 83

85
87

• 89
• 97
.100

• • 101
• • 104

• • • • 106
• • 106
• • 106
.106.3
.106.3
• • 110

• • • 110 LABELDEF (2148-XX~) ••
LABELDEF (2148-X];J) •• • 110

.110.4

.110.4
• • • • 114

• • <8 •• 114.1

LISTDS (57~~-!!~) ••
LISTDS (57~~-!~J) ••
LIS TFIL E • • • • • •
LISTFILE (~1~~-!!~).
LISTFILE (21~~-!~1) ••
LIS TIO • • • • •

• • • • .114.1

LOAD • • • • • •
Loader Control Statements.

LOADMOD. • • • ••
MACLIB •
MODMAP •
MOV EFILE •
OPTION •
PRINT. • •
PSERV.
PUNCH •••
QUERY •••
READCAR D • •
REL EASE. •
REN AME • •
RSERV ••••••••••
RUN.
SET ••••
SORT •••
SSERV.
STA RT. • • • • •
STATE/STATEW •
SVCTRACE •
SYNONYM. • • • •••

The User Synonym Table
TAP E • • • •••
TAPEMAC ••
TAPPDS •
TXTLIB •
TIP E • • • • • ••
UPDATE • • • • • •

Update Control Statements.

• 118
.120
.124

• ••••• 129
.130

• • 133
.134

• • • • • 137
• .139

.142

.144

.147

.155
• .158

.160

.162
• 164
.166
.171
.173
.175
.177
.179

• • • • • • 183
.184

• • • • • • 187
.192
.194
.197
.199

• .201
.203

Summary of Files Used by the UPDATE
Command • • • • .206

.213

.213
Immediate Commands •••••

HB •
HO •
HT
HX •
RO •
RT •
SO •

• .. 213
.214
.214
.214
.215
.215

Contents vii

SECTION 3. EDIT SUBCOMMANDS AND MACROS
EDIT Subcommands •
ALTER.
AUTOSAVE •
BACKWARD (primarily 3270).
BOTTOM •
CASE
CHANGE •
CMS.
DELETE •
DOWN •
DS TRING.
FILE
FIND.
FMODE.
FNAME.
FORMAT (3270 only)
FORWARD (Primarilv 3270)
GETFILE.
IMAGE.
INPUT.
LI NEMODE •
LOCATE •
LONG
NEXT
OVERLAY.
PRESERVE
PROMPT •
QUIT •
RECFM.
RENUM.
REPEAT
REPLACE.
RESTOR E.
RETURN •
REUSE (=).
SAVE.
SCROLL/SCROLLUP (3270 only).
SERIAL •
SHORT.
STACK.
TABSET
TOP.
TRUNC.
TYPE
UP
VERIFY
X or Y •
ZONE •
?(QUESTION MARK)
nnnnn.
EDIT Macros.

$DUP •
$MOVE.

SECTION 4. DEBUG SUBCOMMANDS
BREAK.
CAW.
CS W.
DEFINE •
DU,.,P •
GO
GPR.
HX
ORIGIN •
PSW.
RETURN •

.217
• 217
• 218
.219
.220
.220
.221
.221
.224
.226
.226
.227
.228
.228
.229
.230
.230
.231
.232
.233
.234
.235
.237
.238
.238
.239
.240
.240
.241
.241
.242
.243
.244
• 244
.245
.245
.247
.247
• 248
.250
.250
.251
• 252
.252
.253
.254
• 255
.256
.257
.258
.259
.260
.260
.261

.263

.264

.265

.266
• 267
.268
.269
• 270
• 270
.271
.272
.272

SET ••
STORE •

SECTION 5. EXEC CONTROL STATEMENTS •
The Assignment Statement •
&ARGS.
&BEGEMSG •
&BEGPUNCH.
&BEGSTACK.
&BEGTYPE •
&CO }lTINUE.
&CONTROL •
&EMSG.
&END •
&ERROR •
&EX IT.
&GOTO.
&HEX •
&IF.
&LOOP.
&PUNCH •
&READ.
&SKIP.
&SPACE •
&STACK •
&TIME.
&TYP.E.
Built-in Functions
&CONCAT.
&DATATYPE.
&LENGTH.
&LITERAL •
&SU BSTR.
Special Variables •
&n
&* and &$.
&0
&DI SKx •
&DISK*
&DISK?
&DOS •
&EX EC •
&GLOBAL.
&GLOBALn •
&IN DEX
&LINENUM •
&READFLAG.
&RETCODE •
&TYPEFLAG.

SECTION 6. CMS MACRO INSTRUCTIONS.
COMPSWT.
FSCB •
FSC BD.
FSCLOSE.
FSCLOSE (~1!~-!!~)
FSCLOSE (~1!~-!~1)
FSERASE.
FSOPEN •
FSR EAD •
FSPOINT (~1!~-!!~)
FSPOINT (~l!~-!El)
FSREAD (574~-!!~) •
FSREAD (57!~-!!1) •
FSSTATE.
FSWRITE.
HNDEXT •

eMS Ccmma~d and Macro Reference

.273

.274

.277

.278

.279

.280

.281

.282

.282

.283

.284

.285

.286

.286

.287

.288

.288

.289

.290

.291

.291

.292

.293

.294

.295

.296

.297

.297

.298

.298

.299

.299

.300

.300

.300

.300

.300

.301

.301

.301

.301

.301

.302

.302

.302

.302

.302

.302

.303

.304

.304

.305

.306
.306.1
.306.1

.307

.308

.309

.309

.309

.310

.310
" 311
.312
.315

HNDINT • •
HNDSVC • •
LINEDIT. •

• • • • • • • .316
• • • • • • • .317
• ••••••• ~ ••• 319

LINEDIT
PRINTL •
PUNCHC •
RDCARD • •
RDTAPE •

Macro Operands. • •••• 321
•••• e e e330

RDTER!1 • •
REGEQU •
TA PECTL. •
TAPESL (21~§-!X~).
TAPESL (21~~-1]1) ••
WAITD ••
WAITT. •
WRTAPE
WRTERi1 •

SECTION 7. HELP FORMAT WORDS
(21!.§-!X§)· • . . • •

SECTION 7. HELP FORMAT WORDS
(21~.§-K~1)· . . • . •

• BX (BOX) (21~'§-XX'§) •
• BX (BOX) (2748-XE1) ••
.CM (COMMENT) (2148-!X.§)
.CM (COMMENT) (2148-X~1)

.331

.333

.334
• .335

••••• 336
.337

.338.1

.338.1
• .339

• •• 340
.340
.341

.342. 1

.342. 1
• 342. 3
.342. 3
.342. 5
.342. 5

• CS (CONDITIONAL SECTION) (5748-XX8) • 342. 6
• CS (CONDIT IONAl SECTION) (5148-1]1)
.FO (FORMAT MODE) (21!'§-XX~)
.FO (FORMAT MODE) (5748-XE1)
.IL (INDENT LINE) (21!~- XX~) ••••

• 342. 6
.342.7
.342. 7
.342.8

.IL (INDENT LINE) (21!.§-1E1)

.IN (INDENT) (274~-XX~H •••
• IN (INDENT) (21!~-!~1).. • • • •
• OF (OFFSET) (21!H~-xx!n. • • •
.. OF (OF FSET) {21!t§- XEJJ. • • •

.342.8

.342.9

.342.9
342.10

• 342.10
• SP (SPACE LINES) (2748-XX8)
.SP (SPACE LINES) (5748-!E1)
.TR (TRANSLATE CHARACTER)

• 342.11
•••• 342.11

(2748-XX8) ••••••••••
.TR (TRANSLATE CHARACTER)

(2 748- XE1) • • • • • • • • .. •

APPENDIXES ...

• 342.12

• 342.12

.343

APPENDIX A: RESERVED FILETYPE DEFAULTS .345

APPENDIX B: DOS/VS ACCESS METHOD
SERVICES AND VSAM FUNCTIONS NOT
SUPPORTED IN CMS. • • • • • • • .347

APPENDIX B: VSE/VSAM FUNCTIONS NOT
SUPPORTED IN CMS (5748-!X8) • .347

APPENDIX B: VSE/VSAM FUNCTIONS NOT
SUPPORTED IN CMS (2148-!~1) • .347

APPENDIX C: OS/iS ACCESS METHOD
SERVICES AND VSAM FUNCTIONS NOT
SUPPORTED IN CMS. .349

INDEX. • • • • • • • .351

Contents i x

Figure 1.

Figure 2.

Figure 3.
Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 8.

Figure 8.

Figure 9.
Fiqure 10.
Figure 11.
Figure 12.

Character Sets and Their
Contents •••••••••••••••••••••• 4
How CMS Searches for the
Command to Execute •••••••••••• 8
CMS Command Summary •••••••••• 10
CMS Commands for System
Programmers •••••••••••••••••• 14
COPYFILE Option
Incompatibilities •••••••••••• 38
An Annotated Sample of
Output From the TYPE and
PRINT Functions of the DDR
Prooram •••••••••••••••••••••• 54
Determining Which VSAM
Catalog to Use ••••••••••••••• 67
Valid File Characteristics
for Each Device Type of the
FILEDEF Command •••••••••••••• 90
Valid File Characteristics
for Each Device Type of the
FILEDEF Command (~748-XX~).90.1
Valid File Characteristics
for Each Device Type of the
FILEDEF Command (2748-XEj).90.1
Loader Search Order ••••••••• 123
ENTRY Statement Format •••••• 124
LIBRAPY Statement Format •••• 124
LDT Statement Format •••••••• 125

x IB~ VM/~70 c~s Command an~ ~acro ?eference

Figure 13.
Figure 14.
Fig ure 15.
Fig ure 16.
Figure 17.

Figure 17.

Figure 17.

Figure 18.
Fig ure 19.

Fig ure 20.

Fig ure 20.1

Fig ure 20.1

Figure 21.

Figure 22.

ICS Statement Format •••••••• 125
SLC Statement Format •••••••• 126
REP Statement Format •••••••• 127
SPB Statement Format •••••••• 127
Default Device Attributes for
the MOVEFILE Command •••••••• 135
Default Device Attributes
for the MOVEFILE
Command (57~~-!!~) •••••••••• 136
Default Device Attributes
for the MOVEFILE
Command (57~~-1]1) •••••••••• 136
Header Card Format •••••••••• 145
Summary of SVC Trace Output
Lines ••••••••••••••••••••••• 182
System and User-Defined
Truncations ••••••••••••••••• 186
HELP Format Word
Summary (2I~~-!!§) .•.•.•.. 342.2
HELP Format Word
Summary (~I~~-1~1) •..••••. 342.2
Default EDIT Subcommand
settings for the CMS
Reserved Filetypes •••••••••• 345
OS Access Method Services
Operands Not Supported in
CMS ••••••••••••••••••••••••• 350

MI SCELLANEOUS

Chanq~g: Documentation

This major revision incorporates minor
technical and editorial changes.

Summary of Amendments
for GC20-1818-3

For Release 6 PLC 17

Summary of Amendments xi

Summary of Amendments
for GC20-1818-2
Release 6 PLC 1

3278-2A DISPLAY CONSOLE

Ne~: Program Feature

The CMS editor now supports the 3278
Model 2A Display Console which is a
20-line display console. "Section 3.
EDIT Subcommands and Macros" is modified
to reflect this support.

eMS and
M_,. __
o Q""J.. V Reference

MISCELLANEOUS

Changed: Documentation

Technical corrections
changes have been made
publication.

and editorial
throughout thi s

DOS/VS RELEASE 34 SUPPORTED

Ne~: proqram Feature

CMS/DOS supports DOS/VS Release 34.
This support includes a new operand of
the SET command and a new operand of the
QUERY command. SET DOSLNCNT allows the
user to set the number of SYSLST lines
per page. QUERY DOSLNCNT displays the
current number of SYSLST lines per page.

Summary of Amendments
for GC20-1818-1

as updated by GN25-0416
Release 5 PLC 1

These new operands are described in
"Section 2. CMS Commands."

MISCELLANEOUS

Changed: Programming and Documentation

Minor technical and editorial changes
have been made to clarify the text.

Summary of Amendments xiii

xiv VM/370 c!'!s Command and ~acrc

Section 1. Introduction and General Concepts

Virtual :1achine Facility/370 (VM/370) is a system contr::>l program (SCP)
that controls "virtual machines." A virtual machine is the functional
equi~alent of a real machine, but where the real machine has lights to
show st~tus, and buttons and switches on the real system console to
control it, the virtual machine has a virtual system c::>nsole to display
status ~ni a command language to start operations and contr::>l them. The
virtual system console is your terminal; there are three command
langJ~ges, which correspond roughly to the four comp::>nents of the V~/370
system:

• ~he :ontrol Progr~m (CP) controls the resources of the real machine;
that is, the physical machine in your computer room. The CP commands
are described in Y~~lIQ ~~ ~2illill~rr~ Rgfg~g~£g for 2grrg~~1 g§g~§.

• The Remote Spooling Communications Subsystem (RSCS) is a subsystem
designed to supervise transmission of files across a teleprocessing
network controlled by CPo For information about RSCS, see the Y~L1IQ
RgmQtg ~2221irr~ ~Qillillgni£ation~ SUQ~y§~gm (~~~~) rr§g~~§ 2~igg.

• Ihe :onv?rsational Monitor System (CMS; is a conversational operating
svstem designed to run under CPo All of the CMS commands for general
use, ~nd the subcommands and m~CrOS that you can use in the C~S

environment, are described in this publication.

• The Interactive Problem Control System (IPCS) provides
progr~mmers and installation support personnel ~ith V~/370
analvsis and management facilities, including problem
cceation, problem tracking, and CP abend dump analysis. IP:S
the CMS command environment; for details, see Y~l~IQ !R~~

2l!~g~·

system
problem
report

runs in
Q§g~~§

E[cept for IPCS, each of the components of V~/370 ~as a unique
"command environment" which must be active in order for a command to be
acceoteJ. For CMS users, the two basic conmand environments are the CP
comm~nd environment and the eMS command environment. By default, CP
comm~nds are acceptable input in the CMS command environment; if you
enteL a :P command, it is executed by CP, but control returns to the CMS
environment.

The eMS Environment

The :MS command language allows you to create, modify, debug, and, in
general, m~nipulate a system of files.

~he JS/VS Assembler and many as/vs ana DOS/VSE Language processors
can be executed under eMS. For example, the OS VS BASIC, FORTRAN IV
(~1), C8B~LI and PL/T compilers, as well as the DOS FL/I and caSOL
compilers, can execute under CMS. You can find a complete list of
language processors that can be executed under CMS in the Y~LJIQ
Ig1£Qg~2tiQQ. CMS invokes the assembler and the compilers when you
issue the appropriate eMS commands. The ASSEMBLE command is described
in this manual; the supported compiler commands ace described in the
appr~priate program product publications.

section 1. Introduction and General Concepts

CMS commands allow you to read cards from a virtual card reader,
punch cards to a virtual card punch, and print records on a virtual
printer. Many commands are provided to help you manipulate your virt~al
disks and files. The CMS commands are described in "Section 2. CKS
Commands."

A special set of CMS commands becomes available to you when you issue
the command:

set aos on

These c~mmands, called CMS/DOS commands, simulate various functions of
the Pisk Operating System (DOS) in your eMS virtual machine. When the
CMS/DOS environment is active, the CMS/DOS commands are an integral part
of the CMS command language; they are listed alphabetically among the
other C~S commands in "Section 2. CMS Commands."

The EDIT command places your virtual machine in the EDIT subcommand
environment. In this environment you can use the C~S editor to create
and modify files. In the EDIT subcommand environnent, you can place
your virtual machine in either of two modes, edit moda or input mode.
Edit mode lets you modify a file; input mode lets you create or add to a
file. The subcommands available to you in the EDIT subcommand
environment are described in "Section 3. EDIT Subcomlllands and Macros."

The DEBUG command places your virtual machine in the DEBUG subcommand
environment. In this environment you can issue commands to display
registers and storage, specify breakpoints (address instruction stops),
display the contents of control words, and so on. The DEBUG subcommands
are described in "Section 4. DEBUG Subcommands."

The EXEC command executes CMS command procedures, called EXEC files.
You can create EXEC files consisting of CMS and CP commands and EXEC
control statements. The EXEC facility also has a symbolic capability; by
manipulating variable symbols within an EXEC file, you can control the
execution of the procedure. These procedures are usually created in the
edit environment. The EXEC control statements, variable symbols, and
built-in functions are described in "Section 5. EXEC Control
Statements. "

You can use the CMS assembler language macros when you write
assembler language programs to execute in the CMS environment.
Descriptions of these macros are contained in "Section 6. CMS Macro
Instructions."

Entering CMS Commands

A eMS command consists of a command name, usually followed by one or
more positional operands and, in many cases, by an option list. CMS
commands and EDIT and DEBUG subcommands described in this publication
are shown in the format:

r
I command name
L-

[operands •••] [(options ••• [)]]
1

I
--'

You must use one or more blanks to separate each entry in the command
line unless otherwise indicated. For an explanation of the special
symbols used to describe the command syntax, see "Notational
Conventions."

2 IBM I!M/370 eMS 11...",..._"
•• 0. V Reference

~he command name is an alphameric symbol of one to eight characters. In
general, the names are based on verbs that describe the function you
want the system to perform. For example, you may want to find out
information concerning your eMS filesa In this case, you would use the
LISTFILE command.

The command operands are keywords and/or positional operands of one to
eight, and in a few cases, one to seven alphameric characters each. The
operands specify the information on which the system operates when it
performs the command function.

You must write the operands in the order in which they appear in the
command formats in "section 2. CMS Commands," unless otherwise
specified. When you are using eMS, blanks may optionally be used to
separate the last operand from the option list. CMS recognizes a left
parenthesis" (" as the beginning of an option list; it does not have to
be preceded by a blank.

The command options are keywords used to control the execution of the
command. The command formats in "Section 2. C~S Commands" show all the
options for each C~S command.

The option list must be preceded by a left parenthesis; the closing
parenthesis is not necessary.

For most commands, if conflicting or duplicate options are entered,
the last option entered is the option in effect for the command.
Exceptions to this rule are noted where applicable.

If ,ou want to write comments with C~S commands, you enter them
following the closing parenthesis of the option list. The only
exception to this rule is the ERASE command, for which comments are not
allowed.

You can also enter comments on your console by using the CP *
command.

Character Set Usage

eMS commands may be entered using a combination of characters from six
different character sets. The contents of each of the character sets is
shown in Figure 1.

Section 1. Introduction and General concepts 3

r , , Character Set Names Symbols
I
I Separator Blank ,
I National Dollar Sign $, Pound Sign # , At Sign ii)

I
I Alphabetic uppercase A Z , Lowercase a - z , , Numeric Numeric 0 9
I
I Alphameric National $, #, ii) , Alphabetic A Z , a z , Numeric 0 9 , , Special All other , characters
L J

Figure 1 • Character Sets and Their Contents

Notational Conventions

~he notation used to define the command syntax in this publication is:

• Truncations and Abbreviations of Commands

Wher~ truncation of a command name is permitted, the shortest
acceptable version of the command is represented by uppercase
lett~rs. (Remember, however, that eMS commands can be entered with
any combination of uppercase and lowercase letters.) The following
example shows the format specification for the FILEDEF command.

FIledef

This format means that FI, FIL, FILE, FILED, FILEDE, and FILEDEF are
all valid specifications for this command name.

Operands and options are specified in the same manner. Where
truncation is permitted, the shortest acceptable version of the
operand or option is represented by uppercase letters in the command
format box. If no minimum truncation is noted, the entire word
(represented by all uppercase letters) must be entered.

Abbreviations are shorter forms of command operands and options.
Abbreviations for operands and options are shown in the description
of the individual operands and options that follow the format box.
For ~xample, the abbreviation for MEMBER in the PRINT command is MEM.
Only these two forms are valid and no truncations are allowed. The
format box contains

and the description that follows the format box is

MEMBER {name}
MEt'! *

4 IBM VM/370 eMS Command and Macro Reference

• The following symbols are used to define the command format and
should never be typed when the actual command is entered.

underscore -
braces (}
brackets []
ellipsis

• Uppercase letters and words. and the following symbols. should be
entered as specified in the format box.

asterisk *
comma
hyphen
equal sign
parentheses ()
period
colon

• The abbreviations "fn". "ft". and "fm" refer to filename, filetype,
and filemode. respectively. The combination "fn ft :fm]" is also
called the file identifier or fileid.

When a command format box shows the characters, fn ft fm or fileid
and they are not enclosed by brackets or bra~es, it indicates that a
CMS file identifier must be entered. If an asterisk (*) appears
beneath fn, ft, or fm, it indicates that an asterisk may be coded in
that position of the fileid. The operand description describes the
usage of the *.

• Lowercase letters, words, and symbols that appear in the command
format box represent variables for which specific information should
De substituted. For example, ~fn ft fm" indicates that file
identifiers such as "MYFILE EXEC Al" should be entered.

• Choi~es are represented in the command format boxes by stacking.

A
B
C

• An underscore indicates an assumed default option. If an underscored
choi~e is selected. it need not be specified when the command is
entered.

~~~mQlg 
The representation 

indicates that either A, 
sele~ted, it need not be 
assumed. 

B, or C may be selected. However, if B is 
specified. 3r, if none is entered, B is 

section 1. Introduction and General Concepts 5 



• :he crse of braces denotes choices r one of which mg§! be selected. 

~!.£I!!Qlg 
The representation 

indicates that you must specify either Ar or Br or c. 
choi~es is enclosed--by neither brackets or braces r 

treated as if enclosed by braces. 

If a list of 
it is to be 

• The crse of brackets denotes choices r one of which m~!-be selected. 

• 

!;!.£!!!Elg: 
The representation 

r , 
I A , 
I B , 

let 
L J 

indicates that you may enter Ar Br or ~r or you may omit the field. 

In instances where there are nested 
lines r the following rule applies: 
dependent upon the selection of the 
nesting. 

Level Level 2 Level 3 
[filename rfiletype [filemode]]] 

braces or brackets on the text 
nested operand selection is 
operand of a hi~her level of 

where the highest level of nesting is the operand that is enclosed in 
only one pair of brackets and the lowest level of nesting is the 
oper~nd that is enclosed by the maximum number of brackets. Thus r in 
the previous example r the user has the option of selecting a file by 
filename only or filename filetype only or by filename filetype 
filemode. The user cannot select filetype alone because filetype is 
nested within filename and our rule states: the higner level of 
nesting must be selected in order to select the next level (lower 
level) operand. The same is true if the user wants to select 
filemode; filename and filetype must also be selected. 

• An ellipsis indicates that the preceding item or group of items may 
be repeated more than once in succession. 

6 

~!.£!!!El~ 
The representation 

(options ••• ) 

indicates that more than one option may be coded within the 
parentheses. 

c~s ~acro Reference 



CMS Command Search Order 

When yoa enter a command name at the terminal, CMS begins searching for 
the command of that name. Once a match is found, the search stops. The 
search order is: 

1. E~EC file on any currently accessed disk. C~S uses the standard 
search order (A through G, S, Y, and Z.) 

2. Valid abbreviation or truncation for an EXEC file on any currently 
ac=essed disk, according to current SYNONYM file definitions in 

3 • 

4 • 

effect. 

CMS command that has already been loaded into the transient 

~he commands that execute in the transient area are: 

CMS 
are: 

ACCESS 
ASSGN 
COMPARE 
DISK 
DLBL 
FILEDEF 
GENDIRT 
GLOBAL 

nucleus-resident 

CP 
DEBUG 

FETCH 

LISTFILE 
MODMAP 
OPTION 
PRINT 
PUNCH 
QUERY 
READCARD 

command. The 

GENMOD 
INCLUDE 
LOl'i.D 
LOAD MOD 

RELEAS·E 
R ENA~E 
SET 
SVCTRACE 
SYNONYM 
TAPE 
TYPE 

nucleus-resident 

START 
STATE 
STl'i.TEW 

:::MS 

area. 

commands 

5. Command module on any currently accessed disk. (All the remaining 
CMS commands are disk-resident and execute in the user area.' 

6. Valid abbreviation or truncation for nucleus-resident or transient 
area command module. 

7. Valid abbreviation or truncation for disk-resident command. 

Figure 2 shows a basic description of the command search order; you 
can find complete details in the YHlllQ ~!§t~m R£Qg£~mm~£~§ ~~ig~. 

CMS Command Summary 

Figures 3 and 4 contain alphabetical lists of the CMS commands and the 
functions performed by each. Figure 3 lists those commands that are 
available for general use; Figure 4 lists the commands used by system 
programmers and system support personnel who are responsible for 
qenerating, maintaining, and updating VM/310. Unless otherwise noted, 
CMS commands are described in this manual. In these figures, the "Code" 
column indicates, for those commands not described in this manual, the 
reference source for that command: 

Section 1. Introduction and General Concepts 7 



r EXECUTE 
THE FILE 
AND RETURN 
CONTROL TO 
CMS. 

CMS 
EXEC 

SEARCH 

L 
EXPAND THE 
NAME TOTHE 
FULL REAL 
NAME, EXECUTE 
IT, AND RETURN 
CONTROL TO CMS. 

r EXECUTE 
THE FILE 
AND RETURN 
CONTROL TO 
CMS. 

TRANSI ENT OR 
NUCLEUS RESIDENT 

COMMAND 

L EXECUTE THE 
FILE AND 
RETURN CONTROL 
TOCMS 

r EXECUTE THE 
FILE AND 
RETURN CONTROL 
TO CMS. 

CMS 
MODULE 
SEARCH 

L 
EXPAND THE 
NAME TO THE FULL 
REAL NAME, EXECUTE 
IT, AND RETURN 
CONTROL TO CMS. 

F EXECUTE THE 
COMMAND 

CP AND RETURN 
SEARCH CONTROL TO 

~ 
CMS. 

Figure 2. How CMS Searches for the Command to Execute 

8 IBM V~i370 eMS command and Macro Reference 



~Qg~ 
DOS PP 

EREP 

IPCS 

Op Ga. 

OS PP 

SCRIPT 

~g~.niIlg 
indicates that this command invokes a DJS Program Product, 
available from IBM for a license fee. 

indicates that this command is described in the VK/310 OLTSEP 
~ng ~EEQ£ lig£Q£Qing Q~id~; further details on the--operands 
used by this command are contained in the Q~lY~t ~Q~LY~~, 
!~lJIQ EnYi£QIlmental RecQ£gi!!~, ~giiigg, ~!!g ~[iBti!!g (~gER} 
~£Qg£~!!. 

indicates that this command is a part of the Interactive 
Problem Control System (IPCS), and is invoked under CMS. It 
is described in the !~L37Q Igig£~£~i!~ PrQQ!~m-~Q~!~Q! ~I§t~! 
(!R£~) Us~£.!.§ Guide. 

indicates that this command is described in the !~lJIQ 

QE~~~iQ£.!.§ ~~ig~· 

indicates that this command invokes an )S Program Product, 
available from IBM for a license fee. 

indicates that this command invokes a text 
an IBM Installed User Program, available 
license fee. 

processor that is 
from IBM for a 

SPG indicates that this command is described in the !J!l~IQ-~!§!~! 
~£Q~£~!meI.!.§ ~yide. 

SYSGEN indicates that this command is described in the !~llIQ 
~l~IlIli.ng ~!!g ~Y§tem Gene£atiQIl ~Yigg. 

Note: If a CMS command is described in this manual, but is also repeated 
in-other VM/370 publications, the chart does not refer to those other 
publications. 

You can enter CMS commands when you are running CMS in your virtual 
machine, the terminal is idle, and the virtual machine is receptive for 
input. However, if CMS is processing a previously entered command and 
your typewriter terminal keyboard is locked, you must signal your 
virtual machine via an attention interruption. The system acknowledges 
the interruption by unlocking the keyboard. Now you can enter commands. 

If your terminal is a display device, there is no problem of entering 
commands while the virtual machine is busy as its keyboard remains 
unlOCked for additional command input. Note that in these circumstances 
the command you enter is stacked and is not executed until the command 
that is currently being executed completes. If more commands are 
entered than can be handled by CP, a NOT ACCEPTED ~essage is displayed 
at the display terminal. 

In addition to the commands listed in Figures 3 and q, there are 
seven =ommands called Immediate commands which are handled in a 
different manner from the others. They may be entered while another 
command is being executed by pressing the Attention key (or its 
equivalent), and they are executed immediately. The I~mediate commands 
are: 

• HB - Halt batch execution 
• H) - Halt tracing 
• HT - Halt typing 
• HX: - Halt execution 
• RO - Resume tracing 
• RT - Resume typing 
• SO - Suspend tracing 

Section 1. Introduction and General Concepts 9 



r 
ICommand 
I 
I ACCESS 
I , , 
'AMSERV , 
I , 
,ASSEMBLE , 
I ASS:; N , , 
ICMSBA'I'CH , 
, COB)L 
I 
I 
,:::: OM PARE , 
,CONVERT 
I 
ICOPYFILE , 
ICP , 
I CPER EP 
I 
I DDR , 
I 
, DEBOG , 
IDISK 
I , 
IDLBL , 
I 
I DOSL IB , , 
IDOSLKED 
I 
I 
I 

I , 
! , , , , , , , 
I , 
t 
I 
I 

Code 

'OS PP 
I , 
I , 
'OS PP 
I 
I , 
I , 
1 EREP 
I , , 
I , , 
I , 
1 
1 , 
I , , , , , , , 

----, 
Usage 

IIdentify direct access space to a CMS virtual 
, machine, create extensions and relate the disk 
, space to a logical directory. , 
,Invoke access method services utility functions to 
, create, alter, list, copy, delete, import, or 
, export VSAM catalogs and data sets. , 
,Assemble assembler language source code. 
t 
IAssign or unassign a C~S/DOS system or programmer 
, logical unit for a virtual I/O device. 
I 
,Invoke the CMS batch facility. 
I 
ICompile OS ANS Version 4 or OS/VS COB)L source 
I code. , 
'Compare records in CMS disk files. , 

, 
I , , , , , , , , , , , , , , , , , , , , 

IConvert free form FORTRAN statements to fixed 
I 

form. , 

'Copy CMS disk files according to specifications. , 
IEnter CP commands from the CMS environment. , 
IFormat and edit system error records for output. , 
'Perform 
I disks. , 

backup, restore, and copy operations for 

,Enter DEBUG subcommand environment. 
I 

, , , , , , , , , , , , 
IPerform 
, for CMS , 

disk-to-card and card-to-disk operations , 
files. , 

!Define a DOS filename or VSA~ ddname and relate 
, that name to a disk file. , 
'Delete, compact, or list information about the 
I phases of a CMS/DOS phase library. 
I 
ILink-edit CMS text decks or object modules from a 
, DOS/VS relocatable library and place them in 
I executable form in a CMS/DOS phase library. , 

, 
1 , , , , , , , 

, DOSPLI I DOS , PP ,Compile DOS PL/I source code under eMS/DOS. 

, , , 
I 
IDSERV , , 
L 

I , , 
I 
'Display information contained in the D)S/VS core 
I image, relocatable, source, procedure, and 
I transient directories. 

Figure 3. CM~ Command Summary (Part 1 of 4) 

'0 IB!'1 VM/370 c~s :ommand ~acro Reference 

, , , , 



ICommand 
1 
,EDIT 
I 
1 
lERASE 
I 
IESERV 
I 
I , 
IEXEC 
i , 
IFCOBOL 
I 
IFE~CH 

I 
IFILEDEF 
I 
I 
IFORMAT 
I 
IFORTGI 
I 
I 

IFORTHX , 
I 
IGENDIRr 
I 
IGENMOD 
I 
IGLOBAL 
1 
I 
I 
IGOFOR~ 

I 
\ 
lINCL~DE 

\ , 
I 
ILISTDS 
I 
\ 

ILISTFILE , 
lLISTIO 
I , 
,LOAD 

ICode 

i 
I 

--------, 
Usage i 

--------I 
IInvoke the CMS editor to create or modify a disk 
I file. , 
IDelete CMS disk files. , 
'Display, punch or print an edite~ (compressed) 
I macro from a DOS/VS source statement library 
I (E sublibrary). , 
IExecute special procedures made up of frequently 
i used sequences of commands. 
I 

, , 
I , 
I 
I , 
1 
I , 

IDOS , PP ICompile DOS/VS COBOL source code under CMS/DOS. , 
1 
I , , 
I 
I 
I 
lOS PP 

lOS PP , , 
I , 
I , 
I 
I 
I , 
lOS PP , 
I 
I , , 

IFetch a CMS/DOS or DOS/VS executable phase. 
I 
IDefine an as ddname and relate tnat ddname to any 
I device supported by CMS. 
\ 
\Prepare disks in CMS 800-byte block format. 
I 
\Compile FORTRAN source code usin~ the G1 compiler. 
I 
I 

\Compile FORTRAN source code using the H-extended 
I compiler. 
\ 
IFill in auxiliary module directories. 
\ 

IGenerate nonrelocatable CMS files (~JDULE files). 
I 
Identify specific CMS libraries to be searched for 

macros, copy files, missing subroutines, or DOS 
executable phases. 

Compile FORTRAN source ~ode and execute the 
using the FORTRAN Code and Go compiler. 

program, , 
Bring additional TEXT files into storage and 
establish linkages. 

!List information about data sets and space 
allocation on OS, DOS, and VSAM disks. 

List information about CMS disk files. 

Display information concerning CMS/DJS system and 
programmer logical units. 

Bring TEXT files into storage for execution. 

, , , , 

ILOADMOD Bring a single MODULE file into storage. , 
IMACLIB Create or modify CMS ma~ro libraries. 
L J 

Figure 3. CMS Command Summary (Part 2 of 4) 

Section 1. Introduction and 3eneral concepts 11 



r 
Command 

l1 ODM AP 

l10VEFILE 

OP'!'ION 

PLIC 

PLICR 

PLIOPT 

PRINT 

PSERV 

PUNCH 

QUERY 

R EADCAR D 

RELEASE 

RENAME 

RSERV 

RUN 

SCRIPT 

SET 

L 

'Code 

I 
I , , , , , , 
lOS PP 
I , 
lOS PP 
I , 
lOS PP , , 
I , , , 

, , , , 
I , 
I 
I SCRIP':' , , , , 

Usage 

Display the load map of a MODULE file. 

Move data from one device to another device of the 
same or a different type. 

Change the DOS COBOL compiler (FCOBOL) options that 
are in effect for the current terminal session. 

Compile and execute PL/I source code using the 
PL/I Checkout Compiler. 

Execute the PL/I object code generated by the OS 
PL/I Checkout Compiler. , 

ICompile PL/I source code using the OS PL/I 
I Optimizing Compiler. , 
,Spool a specified CMS file to the virtual printer. , 
!Copy a procedure from the DOS/VS procedure library 
, onto a CMS disk, display the procedure at the 
, terminal, or spool the procedure to the virtual 
, punch or printer. , 
'Spool a copy of a CMS file to the virtual punch. 
I 
IRequest information about a CMS virtual machine. , 
'Read data from spooled card input device. , 

, 

IMake a disk and its directory inaccessible to a CMS 
, virtual machine. 
I 
,Change the name of a CMS file or files. , 
ICopv a DOS/VS relocatable module onto a CMS disk, 
, display it at the terminal, or spool a copy to 
I the virtual punch or printer. , 
'Initiate series of functions to be performed on a 
I source, MODULE, TEXT, or EXEC file. 
I 
,Format and print documents according to embedded 
, SCRIPT control words in the document file. , 
IEstablish, set, or reset CMS virtual machine 
I characteristics. ____ -II 

Figure 3. CMS Command Summary (Part 3 of 4) 

12 IBM VM/370 CMS Command and Macro Reference 



r 
ICommand ICode , 
ISORT 
I , 
, SSERV 
I , 
I 
1 ST~RT , 
I 
, ST~TE 
I 
ISTATEW , 
'SVCTR~CE , 
, SYNONY~ , 
I 
'I'~PE 

'!'API?DS 

TESTCOB 

TESTFORT 

TITLIB 

TYPE 

UPD~TE 

VS~I?L , 
IVSB~SIC , 
'V SBUTIL L ___ _ 

, 
I 
1 
I 
I 
I 
I 

as PP 

as PP 

lOS PP 
1 
'as PP , 
lOS PP 

Usage 

!Arrange a specified file in ascending order 
I according to sort fields in the data records. , 
ICoPV a DOS/VS source statement book onto a CMS 
, disk, display it at the terminal, or spool a copy 
1 to the virtual punch or printer. , 
IBegin execution of programs previously loaded (aS 
I and C~S) or fetched (CMS/DOS). 
I 
IVerify the existence of a CMS disk file. 
t 
,Verify a file on a read/write CMS disk. 
I 
tRecord information about supervisor calls. 
1 
'Invoke a table containing synonyms you have created 
I for CMS and user-written commands. 
1 
Perform tape-to-disk and disk-to-tape operations 
for CMS files, and position tapes. 

Create eMS MACLIB libraries directly from an 
IEHMOVE-created partitioned data set on tape. 

Load OS partitioned data set (PDS) files or card 
image files from tape to disk. 

Invoke the os COBOL Interactive Debug Program. 

Invoke the FORTR~N Interactive Debug Program. 

Generate and modify text libraries. 

Display all or part of a CMS file at the terminal. 

lMake changes in a program source file as defined 
I bV control cards in a control file. , 
IInvoke VS APL interface in CMS. 
t 
!Compile and execute VS BASIC programs under CMS. , 
IConvert BASIC 1.2 data files to VS B~SIC format. __________ . _______ -J 

Figure 3. CMS Command Summary (Part 4 of q) 

Section 1. Introduction and General Concepts 13 



r­
lCommand 
I 
I ASM3 705 , 
I ASMGEND 
1 
, CMSGEND 
I , 
I CMS~GE~ 
I 
1 C'PEREP 
I 
, DIRECT 
I 
I DOSGEN , 
'DUMPSC~N 

I 
IGEN3705 , 
I 
1 GENERATE 
1 
I 
lLKED 
I 
lNCPDUMP 
I 
I 
, PRB 
I 
, PROB 
I 
, SAVENCP , 

SETKEY 

STA"!' 

V"FBLD 

VMFDUMP 

VMFLO AD 

VSAMGE~ 

ZAP 

I Code 

, SYSGEN , 
'SYSGEN 
I 
, SYSGEN 
I , 
lSVSGEN 
1 
I EREP 
1 
lap Gd 
I 
(SYSGEN 
I 
IIPCS , 
!SYSGEN , 
I 
, SYSGEN 
I 
I 
1 SYSGEN 
I 
lOP Gd, 
ISPG 
I 
IIPCS , 
,IPCS 
I 
I SYSGEN, 
lS~G 

1 
ISPG 
1 
I 
lIPCS 
1 
lSYSGEN , 
lOp Gd, 
,IPCS , 
,SYSGEN , 
,SYSGEN 
I 
lap Gd, 
ISPG 

Usage 

'Assemble 370x source code. 
I 
Regenerate the VM/370 assembler command modules. 

Generate a new CMS disk-resident module from 
updated TEXT files. 

Generate the CMSSEG discontiguous saved segment. 

Format and edit system error records for output. 

Set up VM/370 directory entries. 

Load and save the CMSDOS shared segment. 

Provide interactive analysis of CP abend dumps. 

Generate an EXEC file that assembles and link-edits, 
the 370x control program. , , 

Update VM/370 or the VM/370 directory, or generate , 
a new standalone copy of a service program. , 

Link-edit the 370x control program. 

Process CP spool reader files created by 370x 
dumping operations. 

IUpdate IPCS problem status. 

Enter a problem report in IPCS. 

Read 370x control program load into virtual 
storage and save an image on a CP-owned disk. 

Assign storage protect keys to storage assigned to 
named systems. 

Display the status of reported system problems. 

Generate and/or update VM/370 using the PLC tape. 

Format and print system abend dumps; under lPCS, 
create a problem report. 

Generate a new CP, CMS or RSCS module. 

Load and save the CMSVSAM and CMSAMS segments. 

Modify or dump LOADLIB, TXTLlB, or MJDULE files. 

, 
I , , , , 

Figure~. CMS Commands for System Programmers 

14 IBM VM/370 CMS Command and Macro Reference 



Section 2. CMS Commands 

This section contains reference information for the CMS commands used by 
general users. Each command description indicates the format, operands 
and options, and error messages and return codes issued by the command. 
Usage notes are provided, where applicable. 

The formats of the DEBUG, EDIT, and EXEC commands are also listed; 
for details on the EDIT or DEBUG subcommands or EXEC control statements, 
see: 

• "Section 3. EDIT Subcommands and Macros" 
• "Section 4. DEBUG Subcommands" 
• "Section 5. EXEC Control Statements" 

For more detailed usage information on eMS commands, see the !~L11Q ~~~­
!!.§~£~§ ~l:lig~· 

Section 2. CMS Commands 15 



ACCESS 

ACCESS 

Use the ACCESS command to identify a disk to CMS, establish a filemode 
letter for the files on the disk, and set up a file directory in 
storage. The specifications of the ACCESS command determine the entries 
in the user file directory. The format of the ACCESS command is: 

r- --, , , 
r .. , , ACcess , cuu moder/ext [fn [ft [fm]]]] [ (N 0 PRO F [) ]] I , , , 121 ~ * * * I I , , 1 I , , cuu mode (ERASE [)] , , , , , , , , (NODISK [) ] I I 

I I L JI , 
L -JI 

cuu makes the disk at the specified virtual device address 
available. The default value is 191. 

Valid addresses are 001 througn 5FF for a virtual machine in 
basic control mode, and 001 through FFF for a virtual machine 
in extended control mode. 

mode assigns a one-character filemode letter to all files on the 
disk being accessed. This field must be specified if cuu is 
specified. The default value is A. 

ext indicates the mode of the parent disk. Files on the disk 
being accessed (cuu) are logically associated with files on 
the parent disk; the disk at cuu is considered a read-only 
extension. A blank must not precede or follow the diagonal 
(/) . 

fn [ft [fm]] 

NOPR:)F 

ER ASE 

NJDISK 

defines a subset of the files on the specified disk. Only the 
specified files are included in the user file directory and 
only those files can be read. An asterisk coded in any of 
these fields indicates all filenames, filetypes, or filemode 
numbers (except 0) are to be included. (See Usage Notes 3 and 
4.) If a fi lemode is specified, it must be specified as a 
letter and a number. For OS and DOS disk access restrictions, 
see Usage Note 9. 

suppresses execution of a PROFILE EXEC file. This option 
is valid only if the ACCESS command is the first command 
entered after you IPL CMS. On subsequent ACCESS 
commands, the NOPROF option is ignored. 

specifies that you want to erase all of the files on the 
specified disk. This option is only valid for read/write 
disks. (See U sage Note 7. ~ 

lets you gain access to the CMS operating system with no 
disks accessed except the system disk (S-disk) and its 
extensions. This option is only valid if the ACCESS 
command is the first command you enter after you IPL eMS. 

16 IBM VM/370 CMS Command and Macro Reference 



ACCESS 

1. If you have disk addresses 190, 191, 192, and 19E defined in the 
VM/370 directorv, or if they are defined before you IPL CMS, these 
disks are accessed as the S-, A-, D-, and Y-disks respectively. 
You must issue explicit ACCESS commands to access any other disks 
vou wish to use following an IPL of the CMS system. Ordinarily, 
you have access only to files with a filemode number of 2 on the 
system disk. 

When ACCESS is the first command issued after an IPL of the CMS 
system, the A-disk is not automatically defined. Another ACCESS 
command must be issued to define the A-disk. 

2. Each CMS disk has associated with it a master file directory, which 
contains an entry for every CMS file on the disk. The user file 
directory created in storage by the ACCESS command contains entries 
for only those files that you can reference. 

Yo~ should issue an ACCESS command every time you link to a new 
minidisk with the CP LINK command, to obtain the appropriate file 
directory. 

3. The filename, filetype, and filemode fields can only be specified 
for disks that are accessed as read-only extensions. For example: 

access 195 b/a * assemble 

gives you read-only access to all the files with a filetype of 
ASSEMBLE on the disk at virtual address 195. The command: 

access 190 z/a * * zl 

gives you access to all files on the system disk (190; that have a 
filemode number of 1. 

When you access any disk in read-only status, files with a filemode 
number of 0 are not accessed. 

4. Yo~ can also identify a set of files on a disk by referring to a 
filename or filetype prefix. For example: 

access 192 cIa abc* 

accesses only those files in the disk at virtual address 192 whose 
filenames begin with the characters ABC. The command line: 

access 192 cIa * a* c2 

gives you access to all files whose filetypes begin with an A and 
which have a filemode number of 2. 

5. Yo~ can force a read/write disk into read-only status by accessing 
it as an extension of another disk or of itself; for example: 

access 10 1 a/a 

forces your A-disk into read-only status. 

6. When a disk is made a read-only extension of another disk, commands 
that typicallv require or allow you to specify a filemode may 
search extensions of the specified disk. The exceptions to this 
are the LISTFILE and DISK DUMP commands. For a detailed 
description of read-only extensions, see the !~l~lQ ~~~ ~§~I~§ 
2~ig~· 

Section 2. CMS Commands 17 



liCCESS 

7. If you enter the ERliSE option by mistake you can recover from the 
error as long as you have not yet written any new files onto the 
disk. ('!'hat is, you have not yet caused CMS to rewrite the master 
file directory.) Reissue the ACCESS command without the ERASE 
option. 

q. You should never attempt to access a disk in read/write status if 
another user already has it in read/write status; the results are 
unpredictable. 

Q. When accessing as and DOS disks: 

a. You cannot specify filename, filetype and filemode when you 
access as or DOS disks, nor can you specify any options. 

b. In order to see as and DOS disks, you must have a read/write 
CMS A-disk available if you are going to use the LOAD command 
with the MAP option. (MAP is a default option.) 

10. If two or more disks have been accessed in CMS, and CP DEFINE 
commands are executed that swap virtual addresses, then a 
subsequent RELEASE command may write the master file directory on 
the wrong aisk: for example: 

(CMS) 
(CM S) 
(CP) 
(CP) 
(CMS) 

liCCESS 193 C 
ACCESS 198 E 
DEFINE 193 293 
DEFINE 198 193 
RELEASE C 

'!'his sequence of commands will write the master file directory from 
lQ3 to 198 since the CP definitions are unknown to CMS. 

DM SACC12 3 I mode (cuu) 
{

R/O} 
R/W 

r , 
I-OS I 
I-DOSI 
L J 

If the specified disk is a CMS disk, this message is displayed if 
the disk is read-only. If the disk is in as or DOS format, the 
message indicates the format, as well as whether it is a read/write 
or read-only disk. 

DMSliCC 7 24I cuu1 REPLACES mode(cuu2) 

Before execution of the command, the disk represented by cuu2 was 
the "mode" disk. The disk, cuul, is now assigned that filemode 
letter. This message is followed by message DMSACC726I. 

DMSACC 7 25I cuu ALSO 
r , 

• mode' I-OS I DISK 
I-DOSI 
L J 

The disk specified by cuu is the mode disk and an A:CESS command 
was issued to assign it another filemode letter. 

DMS1\CC 7 26I 'cuu mode' RELEASED 

The disk being accessed at virtual address cuu as a read/write disk 
is already accessed at a different mode. It is released from that 
moGe. Or, a disk currently accessed at mode is being replaced. 

lq IBM V~/370 C~S Command and M~~ro Reference 



DMSACC002E FILE 'DMSROS TEXT' NOT FOUND RC=28 
DMSACC003E INVALID OPTION 'option' RC=24 
DMSACC017E INVALID DEVICE ADDRESS 'cuu' RC=24 
DMSACC048E INVALID MODE imode i RC=24 

ACCESS 

DMSACC059E 'cuu' ALREADY ACCESSED AS READ/WRITE 'mode' DISK RC=36 
DMSACC060E FILE(S) 'fn [ft [fm]]' NOT FOUND. DISK 'mode(cuu), WILL NOT 

BE ACCESSED RC=28 
DMSACC070E INVALID PARAMETER 'parameter' RC=24 
DMSACC10gS VIRTUAL STORAGE CAPACITY EXCEEDED RC=104 
DMSACC112S DISK 'mode (cuu) I DEVICE ERROR RC=100 
DMSACCl13S mode (cuu) NOT ATTACHED RC=100 
DMSACC230w OS DISK - FILEID AND/OR OPTIONS SPECIFIED ARE IGNORED RC=4 
DMSACC240S ERROR LOADING READ OS ROUTINE 'DMSROS TEXT' 

Section 2. eMS Commands 19 



AM SERV 

AMSERV 

Use the AMSERV command to invoke access method services to: 

• Define VSAM catalogs, data spaces, or clusters 
• Alter, list, copy, delete, export or import VSA~ catalogs and data 

sets 

The format of the AMSEFV command is: 

r 
I r , 
I AMserv fnl Ifn21 ( (options ••• [) ]] 
I 
I 
I 
I 
I 
I , 
L-

Ifn!' 
L J Q.Qtion§: 

(PRINT] 
r 
ITAPIN , 
L 

, 
{ 18n }' 

T1\Pn , 
.J 

r 
, TAPJUT , 
L 

, 
{

18n }' 
TAPn , 

J 
____ -1 

fnl specifies the filename of a CMS file with a filetype of AMSERV that 
contains the access method services control statements to be 
executed. eMS searches all of your accessed disks, using the 
standard search order, to locate the file. 

fn2 specifies the filename of the CMS file that is to contain the 
access method services listing; the filetype is always LISTING. If 
fn2 is not specified, the LISTING file will have the same name as 
the 1\MSERV input file (fnl). 

The LISTING file is written to the first read/write disk in the 
standard search order, usually your A-disk. If a LISTING file with 
the same name already exists, it is replaced. 

PRINT 

TAPIri 

T1\POUT 

spools the output listing to the virtual printer, instead of 
writing it to disk. If PRINT is specified, fn2 cannot be 
specified. 

{~~~n} 
specifies that tape input is on the tape drive at the address 
indicated by 18n or TAPn. n may be 1, 2, 3, or 4, indicating 
virtual addresses 181 through 184, respectively. 

{~~~n} 
specifies that tape output should be written to the tape drive 
at the address indicated by 18n or TAPn. n may be 1, 2, 3, or 
4, indicating virtual addresses 181 through 184, respectively. 

liQi~: If both ~APIN and TAPOUT are specified, their virtual device 
addresses must be different. 

20 LO~ V~;370 eMS Command and Macro Reference 



AMSERV 

1. To create a job stream for access method services, you can use the 
CMS Editor to create a file with the filetype of AMSERV. The 
editor automatically sets input margins at columns 2 and 12. 

2. Refer to the QQ~L!~ Access Me1~Q1 Services User's Guide-for a 
description of access method serV1ces controI-statements-format and 
syntax. Restrictions placed on VSAM usage in eMS are listed in this 
publication in "Appendix B: DOS/VS Access Method Services and VSAM 
Functions Not Supported in CMS" and "Appendix C: 0S/VS Access 
Method Services and VSAM Functions Not Supported in CMS." 

3. You must use the DLBL command to identify the master catalog and 
all disk input and output files for access method services; the 
ddname operand of the DLBL command corresponds to the dname 
parameter following a FILE, INFILE, or OUTFILE keyword in an access 
method services statement. 

4. When you use tape input and/or output with the AMSERV command, you 
are prompted to enter the ddnames; a maximum of 16 ddnames are 
allowed for either input and output. The ddnames can each have a 
maKimum of seven characters and must be separated by blanks. 

5. 

Since only one tape can be attached at a time for either input or 
output while using AMSERV~ if you you enter more than one tape 
ddname, the tape files must be in the sequence they are used in the 
input stream. 

A CMS format variable file cannot be used directly as input to 
AMSERV functions as a variable (V) or variable blocked (VB) file 
because the standard variable eMS record does not contain the BL 
and RL headers needed by the variable record modules. If these 
headers are not included in the record, errors will result. 

6. If you are using Release 34 of access method services, the 
"NJLABEL" keyword is available in the environment section of access 
method services control statements. This keyword is necessary when 
using AMSERV to read nonlabelled tapes. Tapes created using AMSERV 
default to nonlabelled tapes. 

7. 

All files placed on the eMS disk by AMSERV will show a RECFM of V, 
even if the true format is fixed (F), fixed blocked (FB), undefined 
(Ui, variable or variable blocked. The programmer must know the 
true format of the file he is trying to use with the AMSERV command 
and access it properly, or errors will result. 

If you issue HX 
command abnormally 
correctly reset. 
(IPL) CMS. 

to terminate an AMSERV command or the AMSERV 
terminates, the AMSERV environment may not be 

If a subsequent AMSERV abends, you must reload 

1. You must assign a logical unit to be associated with each ddname 
named in a DLBL command when you use the AMSERV co.mand in the 
eMS/DOS environment. 

2. AMSERV internally issues an ASSGN command for SYSIPT and locates 
the source file; therefore, you do not need to assign it. If you 
use the ~APIN or TAPOUT options, AMSERV also issues ASSGN commands 
for the tape drives (assigning logical units SYS004 and SYS005). 

Section 2. CMS Commands 21 



AM SERV 

Any other assignments and DLBL definitions that 
you invoke the AMSERV command are saved and 
command completes executing. 

are in effect when 
restored when the 

The CMS ready message indicates that access method services has 
completed processing. If access method services completed with a nonzero 
return coder the return code is shown in the ready message. You should 
examine the LISTING file created by AMSERV to determine the results of 
access method services processing. 

The publication QQ~LY~ Me§§~gg~ lists and explains all of 
messages generated by access method services together with 
associated reason codes. 

DMSAMS367R ENTER TAPE {INPUTIOUTPUTl DDNAMES: 

the 
the 

This message prompts you to enter the ddnames associated with the 
tape files. 

DMSA~S722I FILE 'fn2 LISTING fm' WILL HOLD AMSERV OUTPUT 

This message is displayed when you enter a fn2 operand or when the 
listing is not being written on your A-disk; it tells you the file 
identifier of the output listing. 

DMSAMS001E NO FILENAME SPECIFIED RC=24 
DMSAMS002E FILE 'fnl AMSERV' NOT FOUND RC=28 
DMSAMS003E INVALID OPTION 'option' RC=24 
DMSAMS006E NO READ/WRITE DISK ACCESSED FOR 'fn2 LISTING' R:=36 
DMSAMS007E FILE 'fnl AMSERV fm' NOT FIXEDr 80-CHAR. REC3RDS RC=32 
DMSA~S065E 'option' OPTION SPECIFIED TWICE RC=24 
DMSAMS066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24 
DMSAMS070E INVALID PARAMETER 'parameter' RC=24 
DMSAMS109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104 
DMSA~S113E {TAPINITAPOUT} (addr) NOT ATTACHED RC=100 
DMSAMS136S UNABLE TO LOAD 'IDCAMS' RC=104 
DMSAMS228E NO DDNAME ENTERED RC=24 
DMSSTT052E INVALID CHARACTER 'char' IN FILEID {'fnl AMSERV,,'fn2 

LISTING'l PC=20 

22 IBM V'!/~70 eMS Command and ~acro 



ASSEMBLE 

ASSEMBLE 

Use the ASSE~BLE command to invoke the assembler to assemble a file 
containing source statements. Assembler processing and output is 
controlled by the options selected. The format of the ASSEMBLE command 
is: 

r 
I Assemble 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
! 
I , 

fn 

fn [ (options ... [)]] 

r , 
I!~Q~I~ I 
INOALOGICI 
L .J 

r , 

I~!~! I 
INOLISTI 
L .J 

r , 
IESD I 
INOESDI 
L .J 

r , 
I MCALL I 
I NOM£AL1' 
L J 

r , 
I FLAG (nnn) , 
,FLAG (Q) I 
L .J 

r , 
IMLOGIC I 
INO~~Q§!~' 
L .J 

r , r , 
! '(REF (FULL) ! 
I !liE~ (SHQliT) I 
I NO,{PFF I 

!PRINT ! 
tNOPRINTI 
1!2!~~ 1 

L 

r , 
!DECK I 
IRQ!!g£KI 
L .J 

r , 

! li!Hl~Kli , 
INONUM I 

.J L 

r , 

IOBJ~£1: I 
I NOOBJECT, 
L J 

r , 

!ST!1T , 
I NOSTMTI 

J 

r , 
,TEST I 
'riQ!~~!1 
L J 

r ., 

I !~!1!i!H!!: , 
INOTERM I 

L .J L .J L J 

r , r 1 r 
I~~!Q!I I IBUFSIZE (MIN) , IRENT 

r , 
,LINECOUN (nn) I 
'1!!i~~Q!!ri (22) I 
L ~ 

r 1 

IR1Q I 
INORLDI 
L J 

, , 

r 1 

ILIBMAC I 
I N () 1I§!t!~ I 
L .II 

lNOALIGNI I~!!FS!~~ (~!!2) I I!QRE!i!t 
L .J L J L J 

r , r 1 

IYFLAG , ISYSPARM (string) I 
IRQ.!rl!QI ISYSPARM () , 
L .J ISYSP!\R!1 ( ?) 

L J 

J 

is the filename of the source file to be assembled and/or the 
filename of assembler output files. The file must have 
fixed-length, SO-character records. By default, the assembler 
expects a CMS file with a filetype of ASSEMBLE. 

Section 2. CMS Commands 23 



ASSEMBLE 

'11. 
G" 

~1§~ing ~Qn!£Ql Q~!iQn§: The 
options you can use to control 
values are underscored. 

list below describes 
the assembler listing. 

the assembler 
The default 

!~Q@I~ 

NOALOGIC 

NOESD 

FLAG (nnn) 
f~!~ JQl 

lists conditional assembly statements in open code. 

suppresses the ALOGIC option. 

lists the external symbol dictionary (ESD). 

suppresses the printing of the ESD listing. 

does not include diagnostic messages and MNOTE 
messages below severity code nnn in the listing. 
Diagnostic messages can have severity codes of 4, 8, 
12, 16, or 20 (20 is the m:lst severe); and MNOTE 
message severity codes can be between 0 and 255. For 
example, FLAG (8) suppresses diagnostic messages with a 
severity code of 4 and MNOTE messages with severity 
codes of 0 through 7. 

LINE:OUN (nnl nn specifies the number of lines to be listed per 
~IH~~Q~N J22l page. 

NOLIST 

MCALL 

MLOGIC 

NORLD 

LIBMAC 

tlM/370 

produces an assembler listing. Any previous listing is 
erased. 

does not produce an assembler listing. However, any 
previous listing is still erased. This option overrides 
ESD, RLD, and XREF. 

lists the inner macro instructions encountered during 
macro generation following their respective outer macro 
instructions. The assembler assigns statement numbers 
to these instructions. The MCALL option is implied by 
the MLOGIC option; NOMCALL has no effect if MLOGIC is 
specified. 

suppresses the MCALL option. 

lists all statements of a macro definition processed 
during macro generation after the macro instruction. 
~he assembler assigns statement numbers to them. 

suppresses the MLOGIC option. 

produces the relocation dictionary (RLD) as part of the 
listing. 

does not print the relocation directory. 

lists the macro definitions read from the macro 
libraries and any assembler statements following the 
logical END statement. The logical END statement is 
the first END statement processed during macro 
generation. It may appear in a macro or in open code; 
it may even be created by substitution. The assembler 
assigns statement numbers to the statements that follow 
the logical END statement. 

suppresses the LIBMAC option. 

and 



ASSEMBLE 

XREF (FULL) includes in the assembler listing a cross-reference 
table of all symbols used in the assembly. This 
includes symbols that are defined but never referenced. 
The assembler listing also contains a cross-reference 
table of literals used in the assembly. 

!R~~ (2flQRT) includes in the assembler listing a cross-reference 
table of all symbols that are referenced in the 
assembly. Any symbols lefined but not referenced are 
not included in the table. The assembler listing 
contains a cross-reference table of literals used in 
the assembly. 

NOXREF does not print the cross-reference tables= 

PRINT writes the LISTING file to the printer. 
PR 

NOPRINT suppresses the printing of the LISTING file. 
NOPR 

QI~~ places the LISTING file on a virtual disk. 
DI 

Q~iE~i ~Qni£21 QEii2TI§: The output control options are used to 
control the object module output of the assembler. 

DECK 

NOOBJECT 
NOOBJ 

TEST 

writes the object module on the device specified on the 
FILEDEF statement for PUNCH. If this option is 
specified with the OBJECT option, the object module is 
written both on the PUNCH and TEXT files. 

suppresses the DECK option. 

writes the object module on the device, which is 
specified by the FILEDEF statement for TEXT, and erases 
any previous object modules. If this option is 
specified with the DECK option, the obiect module is 
written on the two devices specified in the FILEDEF 
statement for TEXT and PUNCH. 

does not create the object module. However, any previous 
object module is still erased. 

includes the special source symbol table (SYM cards) in 
the object module. This option should not be used for 
programs to be run under C~S because the SYM cards are 
not acceptable to the CMS LOAD and INCLUDE commands. 

Does not produce SYM cards. 

~r~IERtl QE!i2TI§: The SYSTERM options are used to control the SYSTERM 
file associated with your assembly. 

N~~~Eg 
N~~ 

writes the line number field (columns 13-80 of the 
input records) in the SYSTERM listing for statements 
for which diagnostic information is given. This option 
is valid only if TERMINAL is specified. 

suppresses the NUMBER option. 

Section 2. eMS Commands 25 



ASSEMBLE 

N3ST~'!' 

NOTERM 

writes the statement number assigned by the assembler 
in the SYSTERM listing for statements for which 
diagnostic information is given. This option is valid 
only if TERMINAL is specified. 

suppresses the STMT option. 

writes the diagnostic information on the 
SYSTERM data set. The diaqnostic information consists 
of the diagnosed statement followed by the error 
message issued. 

suppresses the TERMINAL option. 

Q~hgr !§§~mQl§£ Qgli2n§: The following options allow you to specify 
various functions and values for the assembler. 

!~!~~ 
A~2~ 

NOALIGN 
NOAL3N 

aligns all data on the proper boundary in the 
obiect module; for example, an F-type constant is 
aligned on a fullword boundary. In addition, the 
assembler checks storage addresses used in machine 
instructions for alignment violations. 

does not align data areas 
specified in CCW instructions. 
skip bytes to align constants 
Alignment violations in machine 
diagnosed. 

other than those 
The assembler does not 

on proper boundaries. 
instructions are not 

BOFSIZE (MIN) uses the minimum buffer sizes (790 bytes) for each of 
the utility data sets (SYSUT1, SYSUT2, and SYSUT3). 
Storage normally used for buffers is allocated to work 
space. Because more work space is available, more 
complex programs can be assembled in a given virtual 
storage size; but the speed of the assembly is 
substantially reduced. 

RENT 

YFLAG 

SYSPARM 

chooses the buffer size that gives optimum 
The buffer size depends on the amount 
storage. Of the assembler working storage 
minimum requirements, 37~ is allocated to 
data set buffers and the rest to macro 
dictionaries. 

performance. 
of virtual 

in excess of 
the utility 
generation 

checks your program for a possible violation of program 
reenterability. Code that makes your program 
nonreenterable is identified by an error message. 

suppresses the RENT option. 

does not suppress the warning messages that indicate 
that relocatable Y-type address constants have been 
declared. 

suppresses the warning messages that indicate 
relocatable Y-type constants have been declared. 

{ 
~~tring) } 

(?l 
passes a character value to the system variable symbol, 
SYSPARM. The variable (string, cannot be greater than 
eight characters. If you want to enter a string of 

26 IBM VM/370 CMS Command BOa Macro Reference 



ASSEMBLE 

more than eight characters, use the SYSPARM (?) format. 
With the SYSPARM (?) format, CMS prompts you with the 
message: 

ENTER SYSPARM: 

You can enter up to 100 characters. You can also enter 
parentheses and embedded blanks from the terminal. 
SYSPARM () enters a null string of characters. 

1. When yOU issue the ASSEMBLE command, default FILEDEF commands are 
issued for assembler data sets. You may want to override these 
with explicit FILEDEF commands. The ddnames used by the assembler 
are: 

ASSEMBLE 
TEXT 
LISTING 
PUNCH 
CMSLIB 
SYSUTl 
SYSUT2 
SYSUT3 

(SYSIN input to the assemble~ 
(SYSLIN output of the assembler) 
(SYSPRINT output of the assemble~ 
(SYSPUNCH output of the assemble~ 
(SYSLIB input to the assembler) 
(workfile of the assemble~ 
(workfile of the assembler) 
(workfile of the assembler) 

~he default FILEDEF commands issued by the assembler for these 
ddnames are: 

FILEDEF ASSEMBLE DISK fn ASSEMBLE fm (RECFM FB LRECL 80 BLOCK 800 
FILEDEF TEXT DISK fn TEXT fm 
FILEDEF LISTING DISK fn LISTING fm (RECFM FBA BLOCK 1210 
FILEDEF PUNCH PUNCH 
FILEDEF CMSLIB DISK CMSLIB MACLIB * (RECFM FB LRECL 80 BLOCK 800 
FILEDEF SYSUT1 DISK fn SYSUT1 fm4 (BLOCK 7294 AOXPROC asmproc 
FILEDEF SYSUT2 DISK fn SYSUT2 fm4 (BLOCK 7294 AUXPROC asmproc 
FILEDEF SYSUT3 DISK fn SYSUT3 fm4 (BLOCK 7294 AOXPROC asmproc 

At the completion of the ASSEMBLE command, all FILEDEFs that do not 
have the PERM option are erasede 

2. If you want to use any CMS macro or copy libraries during an 
assembly, yOU must issue the GLOBAL command to identify the macro 
libraries before issuing the ASSEMBLE command. For example: 

global maclib cmslib osmacro testlib 

identifies the MACLIB files named CMSLIB, OSMACRO, and TESTLIB. 

3. In order to use as macro libraries during an assembly, you must 
issue the FILEDEF command for the as data set using a ddname of 
CMSLIB and assigning a CMS file identifier; the filetype must be 
MACLIB, and you must use the filename on the GLOBAL command line. 
For example: 

filedef cmslib disk oldtest maclib c dsn oldtest macros 
global maclib oldtest 

assigns the as data set OLDTEST.MACROS, on the disk accessed as 
mOle C, a CMS fileid of OLDTEST MACLIB and identifies it as the 
macro library to be used during assembly. 

Section 2. eMS Commands 27 



ASSEl'1BLE 

4. You cannot assemble programs using DOS macros from the DOS/VS 
source statement libraries under eMS/DOS. You should use the 
SSERV, ESERV, and MACLIB commands to create eMS MA:LIBs to contain 
DOS macros for assembly under CMS/DOS. See the Y~L1IQ ~~~ Q§~~~§ 
2giQ~ for examples. 

5. You do not need to make any logical assignments for input or output 
files when you use the assembler under eMS/DOS. File definitions 
are assigned bV default under eMS, as described in Usage Note 1. 

6. Usage information about the VM/370 Assembler Language and assembler 
options can be found in OSL!~ ang !~L1I~ !§§~mQ!~~ R£~g~~mm~~~§ 
QgiQ~ and Q~LY~, ~Q~L!~, ~nd !~L12~ !§§gm~!g£ 1~ng~gg~· 

For the messages and return codes associated with the ASSEMBLE command, 
see the Q~LY~ ~nQ Y~L1I~ !~IDQle£ ~rog£~~mg~~§ Quigg. 

28 Tn .. 
..L DL-.1 

tT" 1':>"'7" 
VL/JrV eMS Command and 

n_& _____ _ 
nc .... cJ..<:::u ..... C 



ASSGN 

ASSGN 

Use the ASSGN command in CMS/DOS to assign or unassign a system or 
programmer logical unit for a virtual I/O device. The format of the 
ASSGN command is: 

r , ASSGN SYSxxx \Reaaer ) [ 
I PUnch 
I PRinter , Ter~i~al , 

(APllJ \ 
mode 
IGN 
TJA 

(options ••• [) ]] 

2Eii2!!§: 

r , 
IQgCA~~ I 
,LOWCASEI 
L J 

r , 
17TRACKI 
19TRACKI 
L J 

-----, 
1 
I , , , 
i 

[TRTCR a] , , 
[DEN den] I , , 

L ~ 

SYSxxx 

READER 

specifies the system or programmer logical unit to be assigned 
to a particular physical device. SYSOOO through SYS241 are 
valid programmer logical units in eMS/DOS; they may be 
assigned to any valid device. The system logical units you 
may assign, and the devices to which they may be assigned, 
are: 

~Y~Xx! 
SYSRDR 
SYSIP~ 

SYSIN 
SYSPCH 
SYSLST 
SYSLOG 
SYSOUT 
SYSSLB 
SYSRLB 
SYSCLB 
SYSCAT 

Y~li~ £ssign~g!!i§ 
Reader,disk,tape 
Reader,disk,tape 
Reader,disk,tape 
Punch,disk,tape 
Printer,disk,tape 
Terminal,printer 
Tape 
Disk 
Disk 
Disk 
Disk 

The assignment of a system logical unit to a particular device 
tvpe must be consistent with the device type definition for 
the file in your program. 

is the spooled card reader (card reader I/a must not be 
blocked) • 

PUNCH is the spooled punch. 

PRINTER is the spooled printer. 

TERMINAL is your terminal (terminal 1/0 must not be blocked). 

TAP[n] is a magnetic tape. n is the symbolic number of the tape 
drive. It is either 1, 2, 3, or 4, representing virtual 
addresses 181, 182, 183, and 184, respectively. If n is 
omitted, TAPl is assumed. 

mode specifies the one-character mode letter 
assigned to the logical unit (SYSxxx). 
accessed when the ASSGN command is issued. 

of the disk being 
The disk must be 

Section 2. CMS Commands 29 



ASSGN 

IGN (ignore) specifies that any attempt to real from the specified 
device results in an end-of-file indication; any attempt to 
write to the device is ignored. IGN is not valid when 
associated with SYSRDR, SYSIPT, SYSIN, or SYSCLB. 

UA indicates that the logical unit is to be unassigned. When you 
release a disk for which an assignment is active, it is 
automatically unassigned. 

LOWCASE 

7TRACK 
q!RACK 

TRTCH a 

DEN den 

translates all terminal input data to uppercase. 

retains all terminal input data as keyed in. 

is the tape setting. 

refers to the tape recording technique for 1-track tapes. 
Use the following chart to determine the value of a. 

r--- -----, 
I a Parity converter Translator 1 
1 I 
I 0 odd off off , 
I OC odd on off I 
I OT odd off on I 
I E even off off I 
1 ET even off on 1 
L--- -----J 

is tape density: den can be 200, 556, 800, 1600, or 6250 
bits per inch (bpi). If 200 or 556 are specified, 7TRACK 
is assumed. If 800, 1600, or 6250 are specified, 9TRACK is 
assumed. (See Usage Note 8.) 

1. When you enter the CMS/DOS environment with the command SET DOS ON, 
SYSLOG is assigned by default to TERMINAL. If you specify the mode 
letter of the DOS/VS system residence on the SET DOS ~N command 
line, SYSRES is assigned to that disk mode. 

2. You cannot assign any of the following DOS/VS system logical units 
with the ASSGN command: 

SYSRES 
SYSUSF 

SYSLNK 
SYSREC 

SYSVIS 

3. If you assign the logical unit SYSIN to a virtual device, SYSRDR 
and SYSIPT are also assigned to that device. If you make a logical 
assignment for SYSOUT, both SYSLST and SYSPCH are assigned. 

4. To obtain a list of current assignments, use the LISTI~ command. 

5. To cancel all current assignments (that is, to unassign them), you 
can enter, in succession, the commands: 

set dos off 
set dos on [mode] 

6. If you want to access DOS/VS private libraries, you must assign the 
lo~ical units SYSSLB (source statement library) , SYSRLB 
(relocatable library), and SYSCLB (core image library), and you 
must issue the DLBL command to establish a file definition. 

30 IBM VM/370 CMS Command and Macro Reference 



ASSGN 

7. An assignment to disk (mode) should be accompanied by a DLBL 
command that provides the disk file identification. 

8. If no tape options are specified on the command line, the default 
for a 7-track tape is 800 bpi, data converter off, translator off 
and odd parity. If the tape is 9-track, the density defaults to 
the density of the tape drive. 1600 bpi is the reset condition for 
q-track dual-density tapes. If the tape drive is phase-encoded, 
density defaults to the density of the tape. If the tape drive is 
NRZI, the reset condition is 800 bpi. 

None. 

DMSASN003E INVALID OPTION 'option' RC=24 
DMSASN027E INVALID DEVICE 'device' RC=24 
DMSASN02AE NO LOGICAL UNIT SPECIFIED RC=24 
DMSASN02QE INVALID PARAMETER 'parameter' IN THE OPTION 'option' 

FIELD RC=24 
DMSASN035E INVALID TAPE MODE RC=24 
DMSASN050E PARAMETER MISSING AFTER SYSxxx RC=24 
D~SASN065E 'option' OPTION SPECIFIED TWICE RC=24 
DMSASN066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24 
DMSASN06QE DISK 'mode' NOT ACCESSED RC=36 
DMSASN070E INVALID PARAMETER 'parameter' RC=24 
DMSASNOA7E INVALID ASSIGNMENT of 'SYSxxx' TO DEVICE 'device' RC=24 
DMSASNOqOE INVALID DEVICE CLASS 'deviceclass' FOR 'device' RC=36 
DMSASNOq9E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40 
DMSASNl13S '{~APn'mode'READER'PUNCHIPRINTERI (cuu) , NOT ATTACHED RC=100 

Section 2. CMS Commands 31 



CMSBATCH 

CMSBATCH 

~he system operator uses the CMSBATCH command to invoke the CMS batch 
facility. Instead of compiling or executing a program interactively, 
virtual machine users can transfer jobs to the virtual card reader of an 
active CMS batch virtual machine and thus free up their terminals for 
other work. The format of the CMSBATCH command is: 

r------
, CMSBATCH 
L-

[sysname] 
------, , 

sysname is the eight-character identification of the saved system that 
is specifically generated for CMS batch operations via the CP 
SAVESYS command and the NAMESYS macro. Refer to the Y~L1IQ 
~Y§igID Pro~££m~gr's Qyidg for details on SAVESYS and NAMESYS 
use. 

NQtg: If sysname is not supplied on the command line, then the 
system that the system operator is currently logged onto 
becomes the CMS batch virtual machine. 

1. The CMSBATCH command may be invoked immediately after an IPL of the 
CMS system. Alternatively, BATCH may be specified following the 
PARM operand on the IPL command line. 

2. You should not issue the CMSBATCH command if you use a virtual disk 
at address 195; the CMS batch virtual machine erases all files on 
the disk at address 195. 

3. For a description of how to send jobs to 
machine, see the !~L370 CM~ Usg£~ ~§igg. 
setting up a batch virtual machine, see 
~!!ig~· 

the CMS batch virtual 
For an explanation of 
the Y~LJIQ QE~IgiQ~~§ 

4. The CMS batch virtual machine can be utilized by personnel who do 
not have access to a terminal or a virtual machine. This is 
accomplished by submitting jobs via the real card reader. For 
details on this, see the Y~L170 ~~~ [§~t~§ QYig~. 

5. If the CMSBA~CH command encounters recursive abends, the message 
"C~SBATCH system ABEND" appears on the system operator's console. 

DMSBTB100E NO BATCH PROCESSOR AVAILABLE RC=40 
DMSBTB101E BATCH NOT LOADED RC= 88 
DMSBTP105E NO JOB CARD PROVIDED RC=None 
DMSBTP106E JOB CARD FORMAT INVALID RC=None 
DMSBTP107E CP/CMS COMMAND 'command, (device)' NOT ALLOWED RC=88 
DMSBTP108E ISET CARD FORMAT INVALID RC=None 
DMSBTP109E {CPUIPRINTERIPUNCH} LIMIT EXCEEDED RC=None 

32 IBM VM/370 CMS Command and Macro Reference 



COMPARE 

COMPARE 

Use the CO~PARE command to compare two CMS disk files of fixed- or 
variable-length format on a record-for-record basis and to display 
dissimilar records at the terminal. The format of the CO~PARE command 
is: 

r-----T 
I 1 r , 
I COMpare I fileidl fileid2 [ (COL mm[ - ] Inn '[ ) ]] 
I I 1 I !!:~s:! I 
, I L .J 

fileid is the file identifier of a file 
identifiers (filename, filetype, 
specified for each fileid. 

to be compared. 
and filemode) 

All three 
must be 

(COL mm-nn) 
defines specific columns to be compared. The comparison 
begins at position mm of each record. The comparison proceeds 
up to and including column nne The hyphen (-) may be used in 
place of a blank if the total number of characters required 
for mm-nn is not more than eight (maximum parameter field 
size). If column nn is specified, the hyphen may not follow 
or precede a blank. If column nn is not specified, the 
default ending position is the last character of each record 
(the logical record length). 

,. To find out whether two files are identical, enter both file 
identifications, as follows: 

compare testl assemble a test' assemble b 

Any records that do not match are displayed at the terminal. 

2. To stop the display of dissimilar records, use the eMS Immediate 
command HT. 

3. If a file does not exist on a specified disk, that disk's read-only 
extensions are also searched. The complete fileids of the files 
being compared are displayed in message DMSCMP179I. 

DMSCMP119I COMPARING 'fn ft fm' WITH 'fn ft fm' 

This message identifies the files being compared. If the files are 
the same (in the columns indicated), this message is followed by 
the CMS ready message. If any records do not match, the records 
are displayed. When all dissimilar records have been displayed the 
message DMSCMP209W is issued. 

Section 2. CMS Commands 33 



COMP~RE 

DMSCMP002E FILE 'fn ft frn' NOT FOUND RC=28 
DMSCMP003E INV~LID OPTION 'option' RC=24 
DMSCMP005E NO COLUMN SPECIFIED RC=24 
DMSCMP009E COLUMN 'col' EXCEEDS RECORD LENGTH RC=24 
DMSCMP010E PREMATUPE EOF ON FILE 'fn ft fm' RC=40 
DMSCMP011E CONFLICTING FILE FORMATS RC=32 
DMSCMP019E IDENTICAL FILEIDS RC=24 
DMSCMP029E INVALID P~RAMETER 'parameter' IN THE OPTION 'COL' FIELD 

RC=24 
DMSCMP054E INCOMPLETE FILEID SPECIFIED RC=24 
DMSCMP062E INVALID * IN FILEID RC=20 
DMSCMP104S ERROR 'nnw READING FILE 'fn ft fm' FROM DISK RC=10D 
DMSCMP209W FILES DO NOT COMPARE RC=4 
DMSCMP211E COLUMN FIELDS OUT OF SEQUENCE RC=24 

34 IBM VM/370 CMS Command and Macro Reference 



COPYFILE 

COPYFILE 

Use the cOPYFILE command to copy and/or modify C~S disk files. The 
manner in which the file identifiers are entered determines whether or 
not one or more output files are created. The format of the COPYFILE 
command is: 

r 
, COPYfile 
t , , 

fileidi1 

fileidi2 

fileido 

fileidi 1 [fileid i2 ••• ] [fileido] [( options ••• [) ]] 

QEtiQ!!§: 
r , 
! Type ! 
INO~YEg, 
L .J 

r , 
!NEWDs.tel 
IOLDDatel 
L .J 

r , 
,FRom recno I 
IFRLabel xxxxxxxxi 
L .J 

r , r 

r , 

'!~R!:i!g! 
I REPlacel 
L .J 

r 1 

! fRQ!!U~i . I 
INOPRomptl 
L 1 

r , r , 
I SPecs I 
1!i~~gg§§1 

IFOR numrec I 
ITOLabel xxxxxxxxi 
L .I L .J 

, 
IOVly I I RECfm {F} I [LRecl nnnnn] 

r , 
ITRUnc I 
IH~IR~J!~l !APpend, 

L .J 

r , 
IPAck I 
,UNPackl 
L .J 

[ SIngle] 

, {V} I 
L .I 

r , 
IFIll c I 
IFIll hh I 
IFIll 401 
L .I 

[ EBcd.ic] 

L .I 

r 1 

IUPcase I (TRAns] 
ILOwcasel 
L J 

1 , 
I , , 
I 

____ --I 

is the first (or only) input file. Each file iden~·Zier 
(filename, filetype, and filemode) must be specified either 
by indicating the specific identifier or by coding an 
asterisk. 

is one or more additional input files. Eacn file identifier 
(filename, filetype, and filemode) must· be specified. In 
single output mode, any of the three input file identifiers 
may be specified either by indicating the specific 
identifier or by coding an asteriskc However# all three 
file identifiers of fileidi2 cannot be specified by 
asterisks. In multiple output mode, an asterisk (*) is an 
invalid file identifier. An equal sign (=) may be coded for 
any of the file identifiers, indicating that it is the same 
as the corresponding identifier in fileidil. 

is the output file(s) to be created. Each file identifier 
(filename, filetype, and filemode) must be specified. To 
create multiple output files, an equal sign (=) must be 
coded in one or more of the identifier fields. If there is 
only one input file, fileido may be omitted, in which case 
it defaults to = = = (the input file represented by fileidil 
is replaced) . 

The COpy FILE command options are 
notes and examples, see "Using the 
option descriptions. 

listed below, briefly. For usage 
COPYFILE Command" following the 

Section 2. c~S Commands 35 



CO PYFILE 

36 

TYPE 

OLDDATE 

REPLACE 

NJPROMPT 

displays, at the terminal, the names of the files being 
copied. 

suppresses the display of the names of the files being 
copied. 

uses the current date as the creation date of the new 
file(s) • 

uses the date from the input file as the date for the new 
output file. In the case of multiple input files and a 
single output file, the date of the 'first' input file 
processed is used as the date for the new output file. 

checks that files with the same fileid as the output file 
do not already exist. If one or more output files do 
exist, an error message is displayed and the COPYFILE 
command terminates. This option is the default so that 
existing files are not inadvertently destroyed. 

causes the output file to replace an existing file with 
the same file identifier. REPLACE is the default option 
when only one fileid is entered or when the output fileid 
is specified as "= = =." 
displays the messages that request specification or 
translation lists. 

suppresses the display of prompting messages 
specification and translation lists. 

for 

FROM recno is the starting record number for each input file in the 
copy operation. 

FRLABEL xxxxxxxx 
xxxxxxxx is a character string that appears at 
beginning of the first record to be copied from 
input file. Up to eigmt nonblank characters may 
specified. 

the 
each 

be 

F8R numrec is the number of records to be copied from each input 
file. 

TOLABEL xxxxxxxx 

SPECS 

!!Q~f!;lg§ 

OVLY 

IBM VM/370 

xxxxxxxx is a character string which, if at the beginning 
of a record, stops the copy operation for that input 
file. The record containing the given character is not 
copied. Up to eight nonblank characters may be specified. 

indicates that you are going to enter a specification 
list to define how records should be copied. See 
"Entering a COPYFILE Specification List" for information 
on how you can define output records in a specification 
list. 

indicates that no specification list is to be entered. 

overlays the data in an existing output file 
from the input file. You can use OVLY with 
option to overlay data in particular columns. 

eMS Reference 

with data 
the SPECS 



APPEND 

COPYFILE 

appends the data from the input file at the end of the 
output file. 

Q~t~ nQQifi£ati2g Q£ti2ll§: The following options can be used to 
change the record format of a file. See "Modifying Record Formats" 
for more details. 

RECF~ { FV } is the record format of the output files. If not 
specified, the output record format is the same as that 
of the input file. 

LRECL nnnnn is the logical record length of the output fi1e(s) if it 
~s to be different from that of the input file(s). The 
maximum value of nnnnn is 65535. 

TRUNe 

PACK 

UNPA:K 

FILL c 
FILL hh 
fI~t. ~Q 

EBCDIC 

UPCASE 

LOWCASE 

TRANS 

removes trailing blanks (or fill characters) when 
converting fixed-length files to variable-length format. 

suppresses the removal of trailing blanks (or fill 
characters) when converting fixed-length files to 
variable-length format. 

compresses records in a file so that they can be stored 
in packed format. 

~~)!iiQ!!: A file in packed format should not be modified 
in any way. If such a file is modified, the UNPACK 
routines are unable to reconstruct the original file. 

reverses the PACK operation. If a file is inadvertently 
packed twice, you can restore the file to its original 
unpacked form by issuing the COPYFILE command twice. 

is the padding and truncation character for the TRUNC 
option or the principal packing character for the PACK 
option. The fill character may be specified as a single 
character, c, or by entering a two-digit hexadecimal 
representation of a character. The default is 40 (the 
hexadecimal representation for a blank in EBCDIC). 

converts a file that was created with 026 
characters (BCD), to 029 keypunch characters 
The following conversions are made: 

{ to 
& to + 
% to 
# to = 
Q) to • 
• to 

keypunch 
(EBCDIC) • 

converts all lowercase characters in each record to 
uppercase before writing the record to the output file. 

converts all uppercase characters in each record to 
lowercase before writing the record to the output file. 

indicates that you are going to enter a list of character 
translations to be made as the file is copied. See 
"Entering Translation Specifications" for details on 
entering a list of characters to be translated. 

Section 2. CMS Commands 37 



COPYFILE 

SINGLE suppresses multiple output mode regardless of the manner 
in which the file identifiers are specified. 

Figure 5 shows combinations of options 
together in the same COPYFILE command. 
column is specified, none of the options 
coded. 

that should not be specified 
If the option in the first 

in the second column should be 

r , Option 
I , APPEND , 
I EBCDI: 

FOR 
FRL ABEL 
FROM 
LOW-CASE 
LRECL 
NEWDATE 
NEW FILE 
NOPRO[1PT 
NOSPE:S 
NOTRUNC 
NOTYPE 
OLDDA!E 
OVLY 
PACK 

PROMPT 
RECFM 
REPLA:E 
SPECS 
TOLABEL 
TRANS 
TRaNC 
'!'YPE 
UNPACK 

UPCASE 

Figure 5. 

-----, 
Incompatible Options 

LRECL, NEWDATE, NEWFILE, OLDDATE, OVLY, PACK, RECFM, 
REPLACE, UNPACK 

PACK, UNPACf{ 
PACK, TOLABEL, UNPACK 
FROM, PACK, UNPACK 
FRLABEL, PACK, UNPACK 
PACK, UNPACK 
APPEND, PACK, UNPACK 
APPEND, OLDDATE 
APPEND, OVLY, REPLACE 
PROMPT 
SPECS 
TRUNC 
TYPE 
APPEtfD, NEWDATE 
APPEND, NEWFILE, PACK, REPLACE, UNPACK 
APPEND, EBCDIC, FOR, FRLABEL, FROM, LOWCASE, LRECL, 

OVLY, RECFM, SPECS, TOLABEL, TRANS, TRUNC, UNPACK, 
UPCASE 

NOPROMPT 
APPEND, PACK, UNPACK 
APPEND, NEWFILE, OVLY 
NOSPECS, PACK, UNPACK 
FOR, PACK, UNPACK 
PACK, UNPACK 
NOTRUNC, PACK, UNPACK 
NOTYPE 
APPEND, EBCDIC, FOR, FRLABEL, FROM, LOWCASE, LRECL, 

OVLY, PACK, RECFM, SPECS, TOLABEL, TRANS, TRUNC, 
UPCASE 

PACK, UNPACK 

COPYFILE Option Incompatibilities 

USING THE COPYFILE COMMAND 

The simplest use of the COPYFILE command is for copying a single CMS 
file from one disk to another, or making a duplicate copy of the file on 
the same disk. For example: 

copyfile test1 assemble a test2 assemble a 

makes a copy of the file TESTl ASSEMBLE A and names it TEST2 ASSEMBLE A. 

38 IBM VMi370 eMS Command and Macro Reference 



For those portions of the file identifier that you want 
same, you may code an equal sign in the output fileid. 
command line above can be entered: 

coPvfile test1 assemble a test2 = = 

COPYFILE 

to stay the 
Thus, the 

The equal sign may be used as a prefix or suffix of a file 
identifier. For example, the command: 

copvfile abc file= type= = 

creates an output file called FILEA TYPEB C. 

When you copy a file from one 
the old and new filemodes, and any 
to make; for example: 

virtual disk to another, you specify 
filename or filetype change you want 

copvfile test3 assemble c good = a 

This command makes a copy of the file TEST3 ASSE~BLE C, and names it 
GOOD ASSE~BLE A. 

If you want to copy only particular records in a file, you can use 
the FRO~/FOR PRLABEL/TOLABEL options. Por example: 

copvfile old test a new test a (frlabel start for 41 

copies 41 records from the file OLD TEST Al, beginning with the record 
beginning with the character string START into the file NEW TEST 11. 

You can combine two or more files into a single file with the COPYFILE 
command. For example: 

copyfile test datal a test data2 = test data3 b 

copies the files TEST DATAl and TEST DATA2 from your A-disk and combines 
them into a file, TEST DATA3, on your B-disk. 

Note that if any input file has a filemode number of 3, it is 
possible that the file will be copied in a sequence different from its 
order on the disk. 

If you want to combine two more files without creating a new file: 
use the APPEND option. Por example: 

copyfile new list a old list a (append 

appends the file NEW LIST A to the bottom of the existing file labeled 
OLD LIST A. 

Note: If the file NEW LIST A has a different LRECL from the file OLD 
LIST A, the appended data is padded, or truncated 6 to the LRECL of the 
file OLD LIST A. 

Whenever you code an asterisk (*) in an input fileid, you may cause 
one or more files to be copied, depending upon the number of files that 
satisfy the remaining conditions. For example: 

copyfile * test a combined test a 

copies all files with a filetype of TEST on your A-disk into a single 
file named CO~BINED TEST. If only one file with a filetype of TEST 
exists, only that file is copied. 

Section 2. CKS Commands 39 



COPYFILE 

If you want to copy all the files on a particular disk to another 
disk, you could enter: 

copyfile * * b = = a 

All the files on the B-disk are copied to the A-disk. The filenames and 
filetypes remain unchanged. 

You can also copy a group of files and change all the filenames or 
all the filetypes. For example: 

copy file * assemble b = test a 

copies all ASSEMBLE 
TEST on the A-disk. 

files in the B-disk into files with a filetype of 
The filenames are not changed. 

You can use the SINGLE option to override multiple output mode. For 
example: 

copyfile * test a = = B (single 

copies all files on the A-disk with a filetype of TEST to the B-disk as 
one combined file, with the filename and filetype equal to the first 
input file found. 

Whenever an asterisk appears, it indicates that all files are to be 
copied; whenever an equal sign (=) appears, it indicates that the same 
files are to be copied. For example: 

copyfile x * al = file = 
combines all files with a filename of X on the A-disk into a single file 
named X FILE Al. 

Whenever an equal sign appears in the output fileid in a position 
corresponding to an asterisk in an inputfileid, multiple input files 
produce multiple output files. When you perform copy operations of this 
nature you might wish to use the TYPE option, which displays the names 
of files being copied. For example: 

copvfile * test a = output a = summary = (type 

might result in the display: 

COpy I ALPHA TEST A l' TO 'ALPHA SUMr!ARY A" (NEW FILE) 
COPY 'ALPHA OUTPUT A' 
COPY 'BETA TEST A 1 I TO 'BETA SUJ!IIJ!IIARY A" (NEW FILE) 
COPY 'BETA OUTPUT A.' 

which indicates that files ALPHA TEST A and ALPHA OUTPUT A were copied 
into a file named ALPHA SUr!MARY A and that files BETA TEST A and BETA 
OUTPUT A were copied into a file named BETA SUMMARY A. 

You can use the RECFM and LRECL options to change the record format of a 
file as you copy it. For example: 

copyfi1e data file a (recfm f lrec1 130 

converts the file DATA FILE Al to fixed-length 130-character records. 

40 IBM VM/370 eMS Command and Eacro Reference 



COPYFILE 

If you specify an output fileid r for example: 

copyfile data file a fix data file a (recfm f lrecl 130 

the original file remains unchanged. The file FIXDATA FILE A contains 
the converted records. -

If the records in a file being copied are variable-length, each 
output record is padded with blanks to the specified record length. If 
any records are longer than the record length, they are truncated. 

When vou convert files from fixed-length records to variable-length 
records, you can specify the TRUNC option to ensure that all trailing 
blanks are truncated: 

copyfile data file a (recfm v trunc 

If you specify the LRECL option and RECFM V, the LRECL option is 
ignored and the output record length is taken from the longest record in 
the input file. 

When you convert a file from variable-length to fixed-length records, 
you may also specify a fill character to be used foe padding instead of 
a blank. If you specify: 

copvfile short recs a (recfm f fill * 
then each record 
recoed length. 
variable-length 
existinq record. 
not altered. 

in the file SHORT RECS is padded with asterisks to the 
Assuming that SHORT RECS was originally a 

file, the record length is taken from the longest 
Note that if SHORT RECS is already fixed-length, it is 

Similarly, when you are converting back to variable-length a file 
that was padded with a character other than a blank, you must specify 
the FILL option to indicate the pad character, so that character is 
truncated. 

The FILL option can also be used to specify the packing character 
used with the PACK option. When you use the PACK option, a file is 
compressed as follows: all occurrences of two or more blanks are 
encoded as one character, and four or more occureences of any other 
character are written as three characters. If you use the FILL option 
to specify a fill character, then that character is treated as a blank 
when records are compressed. You do not need to specify the fill 
character when you unpack the file since this is determined from the 
filels pack record. If the fill character is specified, it is ignored. 
Since most fixed-length files are blank-padded to the record length, you 
do not need to specify the FILL option unless you know that some other 
character appears more frequently. 

When you convert record formats on packed files with the COPYFILE 
command vou can specify single or multiple output files, in accordance 
with the procedures outlined under "Modifying Record Formatse" For 
example: 

copyfile * assemble a (pack 

compresses all ASSEMBLE files in the A-disk without changing any file 
identifiers. The command: 

copyfile * assemble a = script = (recfm trunc 

converts all ASSEMBLE files to variable-length, and changes their 
filetypes to SCRIPT. 

section 2. eMS Commands 41 



COPYFILE 

When yoa use the COPYFILE command, you can specify particular columns of 
data to be manipulated or particular characters to be translated. 
Again, how you specify the file identifier determines how many file$ are 
copied or modified. 

When you use the SPECS option on the COPYFILE command, you receive 
the message: 

DMSCPY601R ENTER SPECIFICATION LIST: 

and a read is presented to your virtual machine and you may enter a 
specification list. If you do not wish to receive this message, use the 
NOPROMPT option. The specification list you enter may consist of one or 
more pairs of operands in the following format: 

{
nn-mm } 
/string/ 
hxx ••• 

col 

nn-mm specifies the start and end columns of the input file that are to 
be copied to the output file. If mm exceeds the length of the 
input record, the end of the record is the assumed ending 
position. 

string is any string of uppercase and lowercase characters or numbers 
ielimited by any non-alphameric character. 

hxx .•. is an even number of hexadecimal digits prefixed with an h. 

col is the column in the output file at which the copy operation is 
to begin. 

You can enter as many as 20 pairs of specifications. If you want to 
enter more than one line of specifications, enter two plas signs (++? as 
continuation indicators. 

A specification list may contain any combination of specification 
pairs; for example: 

copyfile sorted list a (specs 
DMSCPY601R ENTER SPECIFICATION LIST: 
11/ 1 1-8 3 III 12 1***1 14 ++ 
9-~0 18 

After this command is executed, each record in the file SORTED LIST 
will look like the following: 

I 00000000 I *** 0000 •••• 

where the a's in columns 3 through 10 indicate information originally in 
columns 1 through 8; the o's following the asterisks indicate the 
remainder of each record, columns 9 through 80. 

When you enter a specification list, you are actually constructing a 
file column by column. If you specify multiple input or output files, 
the same copy operation is performed for each record in each output 
file. 

42 IBM VM/370 eMS Command and Macro Reference 



COPYFILE 

Those columns for which you do not specify any data are filled with 
blanks or, if you use the FILL option, the fill character of your 
choice. For example: 

coPvfile sorted list a (specs noprompt lrecl 20 fill $ 
1-15 6 

copies columns 1 through 15 beginning in column 6 and writes dollar 
signs ($) in columns 1 through 5. 

If you do want to modify data in particular columns of a file but 
want to leave all of the rest of each record unchanged, you can use the 
OVLY (overlay) option. For example, the sequence: 

COPYFILE * bracket a (specs ovly noprompt 
had 1 hbd 80 

overlays the characters [ (X' AD') and ] (X' BD') in columns 1 and 80 of 
all the files with a filetype of BRACKET on your A-disk. 

When you copy fixed-length files, records 
the record length; variable-length files 
specified. 

are padded or truncated to 
are always written as 

You can perform conversion on particular characters in CMS files or 
groups of files with the TRANS option of the COPYFILE command. 

When you enter the TRANS option, you receive the message: 

DMSCPY602R ENTER TRANSLATION LIST: 

and a read is presented to your virtual machine. You may enter the 
translation list. If you do not wish to receive this message, use the 
NO PROMPT option. 

A translation list consists of one or more pairs of characters or hex 
digits, each pair representing the character you want to translate and 
the character you want to translate it to, respectively. For example: 

copy test file a (trans 
DMSCPY602R ENTER TRANSLATION LIST: 
* - A fO 00 ff 

specifies that all occurrences of the character * are to be translated 
to -, all c~aracter A's are to be translated to X'FO' and all X'OO's are 
to be translated to X'FF's. 

If any translation specifications you enter conflict with the 
LOWCASE, EBCDIC, or OPCASE options specified on the same command line, 
the translation list takes precedence. In the preceding example, if 
LOWCASE had also been specified, all A's would be translated to X'FO's, 
:not "to a's. 

You can enter translation pairs on more than one line if you enter a 
++ as a continuation indicator. 

Section 2. CMS Commands 43 



COPYFILE 

D~SCPY601R ENTER SPECIFICATION LIST: 

This message prompts you to enter a specificati~n list when you use 
the SPECS option. 

DMSCPY602R ENTER TRANSLATION LIST: 

This message prompts you to enter a translation list when you use 
the ~RANS option. 

D~SCPY121I COpy 'fn ft fm' [TO IAPPEND, OVLY] 'fn ft fm' [OLDINEW] FILE 

This message appears for each file copied with the TYPE option. It 
indicates the names of the input file and output file. When you 
have multiple input files, the output fileid is displayed only 
once. 

D~SCPY002E 
DMSCPY003E 
D~ SCPY02 4E 
D~SCPY02 9E 

DMSCPY030E 
DMSCPY031E 
DM SCPYOf.J2E 
DMSCPYOf.J8E 
OM SCPY054E 
DMSCPY062E 
DMSCPY063E 
OM SCPY06 4E 

DMSCPY065E 
DM SCPY066E 
DM SCPY06 7E 

DMSCPY068E 
DMSCPY06~E 
DM SCPY 1 01 S 
DMSCPY102S 
DM SCPY 103 S 
DMSCPY156E 

DMSCPY157E 
Dr! SCPY 172E 

DMSCPY1 73E 
OM SCPyQO 1 T 

DM SCPyQ03T 
DM SCPyQ04T 

{INPUTIOVERLAY} FILE 'fn ft fm' NOT FOUND RC=28 
INVALID OPTION 'option' RC=24 
FILE 'fn ft fm' ALREADY EXISTS -- SPECIFY 'REPLACE' RC=28 
INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD 
RC=24 
FILE 'fn ft fm' ALREADY ACTIVE RC=28 
DISK 'mode' IS READ/ONLY RC=36 
NO FILEID(S) SPECIFIED RC=24 
INVALID ~ODE 'mode' RC=24 
INCOMPLETE FILEID 'fn (ft'] SPECIFIED RC=24 
INVALID CHAR '[=I*lchar]' IN FILEID '[fn ft fmJ' RC=20 
NO {TRANSLATIONISPECIFICATION} LIST ENTERED RC=40 
INVALID [TRANSLATE] SPECIFICATION AT OR NEAR , ••••••••• 
RC=24 
• option' 
, option' 
CO~BINED 

RC=24 

OPTION SPECIFIED TWICE RC=24 
AND 'option' ARE CONFLICTING OPTIONS RC=24 

INPUT FILES ILLEGAL WITH PACK OR UNPACK 

INPUT FILE 'fn ft fm' NOT IN PACKED FOR~AT RC=32 
DISK 'mode' NOT ACCESSED RC=36 

OPTIONS 

• SPECS' TEMP STRING STORAGE EXHAUSTED AT •••••••••• RC=88 
~OO MANY FILEIDS RC=88 
NUMBER OF SPECS EXCEEDS MAX 20 RC=88 
'FROM nnn' NOT FOUND --FILE 'fn ft fm' HAS ONLY 'nnn' RECORDS 
RC=32 
LABEL 'label' NOT FOUND IN FILE 'fn ft fm' RC=32 
TO LABEL 'label' {EQUALS I IS AN INITIAL SUBSTRING OF} FRLABEL 
'label' RC=24 
NO RECORDS WERE COPIED TO OUTPUT FILE 'fn ft fm' RC=40 
UNE~PECTED ERROR AT 'addr': PLIST 'plist' AT 'addr', BASE 
'addr', RC Inn' RC=256 
IMPOSSIBLE PHASE CODE 'xx' RC=256 
UNE~PECTED UNPACK ERROR AT 'addr', BASE 'addr' RC=256 

44 IBM VM/370 eMS Command and Macro Reference 



CP 

CP 

Use the CP command to transmit commands to the VM/370 control program 
environment without leaving the eMS environment. The format of the CP 
command is: 

r 
1 CP 
L-

commandline ] 

commandline is any CP command valid for your CP command priVilege class. 
If this field is omitted, you are placed in the CP 
environment and may enter CP commands without preceding each 
command with CP. To return to CMS, issue the CP command 
BEGIN. 

t. You must use the CP command to invoke a CP command: 

• within an EXEC procedure 

• If the implied CP (IMPCP) function is set to OFF for your 
virtual machine 

• In a ~ob you send to the CMS batch facility 

2. To enter a CP command from the CMS environment without CMS 
processing the command line, use the tcp function. 

3. When you enter an invalid CP command following the CP command, you 
receive a return code of -1. In an EXEC, this return code is +1. 

All responses are from the CP command that was issued, and are followed 
by the CMS ready message. 

Section 2. CMS Commands 45 



DDR 

DDR 

Use the DASO Dump Restore (DDR) program to dump, restore, copy, or print 
VM/3 7 0 user minidisks. The DDF. program may run as a standalone program, 
or under CMS via the DDR command. 

r 
I 
I 
I 
I 

The DOR program has five functions: 

1. Dumps part or all of the data from a DASD device to tape. 

2. Transfers data from tapes created by the DDR dump function to a 
direct access device. The direct access device must be the same as 
that which originally contained the data. 

3. Copies data from one device to another of the same type. Data may 
be reordered, by cylinder, when copied from disk to disk. In order 
to copy one tape to another, the original tape must have been 
created by the DDR DUMP function. 

4. Prints selected parts of DASD and tape records in hexadecimal and 
EBCDIC on the virtual printer. 

5. Displays selected parts of DASD and tape records in hexadecimal and 
EBCDIC on the terminal. 

The format of the DOB command is: 

r , 
DDR (fn ft Ifml ] 

I! I 
L .I 

-----, , 
I , 
I 

L-

r , 
fn ft Ifml 

I * I 
L J 

is the identification of the file containing the control 
statements for the DDR program. If no file 
identification is provided, the DDR program attempts to 
obtain control statements from the console. The filemode 
defaults to * if a value is not provided. 

1. If you use the CMS DDR command, CMS ignores the SYSPRINT control 
statement and directs the output to the CMS printer OOE. 

2. Be aware that OOB when run as a standalone program has limited 
error recovery support. However, when DDR is invoked in CMS in a 
virtual machine environment, the 1/0 operation is performed by CPo 

3. OOR copies mode zero (private) files from a CMS disk if that disk 
was linked RIO. Use read passwords to protect private files on eMS 
disks. 

4. When running as a stand-alone program, OOR searches for a console 
at address 009 or 01F. If there is no operational console at one 
of these addresses, the program enters a wait state until an 
interrupt occurs to identify the address of the console. If any 
non-console device is physically connected to address 009 or 01F, 
it must be disconnected. 

46 IBM VM/370 eMS Command ana Macro Reference 



DDR 

DDR CONTROL STATEMENTS 

DDR control statements describe the intended processing and the needed 
I/O devices. I/O definition statements must be specified first. 

All control statements may be entered from either the console or the 
card reader. Only columns 1 to 71 are inspected by the program. All 
data after the last operand in a statement is ignored. An output tape 
must have the DASD cylinder header records in ascending sequences; 
therefore, the extents must be entered in sequence by cylinder. Only 
one type of function -- dump, restore, or copy -- may be performed in 
one execution, but up to 20 statements describing cylinder extents may 
be entered. ~he function statements are delimited by an INPUT or OUTPUT 
statement, or by a null line if the console is used for input. If 
additional functions are to be performed, the sequence of control cards 
must be repeated. If you do not use INPUT or OUTPUT control statements 
to separate the functions you specify when the input is read from a card 
reader or eMS file, an error message (DMKDDR702E) is displayed. The 
remainder of the input stream will be checked for proper syntax, but no 
further DDR operations will be performed. Only those statements needed 
to redefine the I/O devices are necessary for subsequent steps. All 
other IIO definition remain the same. 

To return to eMS, enter a Dull line (carriage return) in response to 
the prompting message (ENTER:). To return directly to CP, key in #CP. 

The ~RINT and TYPE statements work differently from other DDR control 
statements in that they operate on only one data extent at a time. If 
the input is from a tape created by the dump function, it must be 
positioned at the header record for each step. The PRINT and TYPE 
statements have an implied output of either the console (TYPE) or system 
printer (PRINT). Therefore, PRINT and TYPE statements need not be 
delimited by an INPUT or OUTPUT statemente 

IIO DEFINITION STATEMENTS 

The II) definition statements 
devices used while executing 
llig~1LQQIRQ~ ~Qn1rol ~i~1~men1 

describe the 
the DASD 

tape, 
Dump 

DASD, and 
Restore 

printer 
program. 

An INPUT or OUTPUT statement describes each tape and DASD unit used. 
The format of the INPUT/OUTPUT statement is: 

r----------------------------------------------------------------------, , , r, , 
I INput I cuu type Ivolserl [(options ••• ) ] , 
I OUTput I laltapel I 
I I L J , 

I I QEiiQn§!: I 
, I r ,r ,r, , 

ISKip nn I jMOde 6250 i iREWindl , 
'~KiE Q , IMOde 1600 I '~!logg, , 
L J lM:Oae 800 I ILEave I 1 

L J L J , L--------------------------------------________________________________ J 

Section 2. CMS Commands 47 



DDR 

INPUT indicates that the device described is an input device. 

OUTPUT indicates that the device described is an output device. 

cuu 

type 

RQ1~: If the output device is a DASD device and DDR is running 
under CMS, the device is released using the CMS RELEASE 
command function and DDR processing continues. 

is the unit address of the device. 

is the device type (2314, 2319, 3330, 3330-1" 3340-35, 
3340-70, 3350, 2305-1, 2305-2, 2400,. 2420, 3410, or 3420) (no 
7-track support for any tape devices). Specify a 3340-70F as 
a 3340-70, and a 3333 as a 3330~ Specify a 3350 that is in 
3330-1 or 3330-11 compatibility mode as a 3330 or 3330-11. 
Specify a 3344 as a 3340-70, and specify 3350 for a 3350 
operating in native mode (as opposed to compatibility mode). 

RQ1~: The DASD Dump Restore (DDR) program, executing in a 
virtual machine, uses I/O DIAGNOSE 20 to perform I/O 
operations on tape and DASD devices. DDR under CMS requires 
that the device type entered agree with the device type of the 
real device as recognized by VM/370. If there is a conflict 
with device types, the following message is issued: 

DMKDDR708E INVALID OPTION 

However, if DDR executes standalone in a virtual machine, DDR 
uses DIAGNOSE 20 to perform the I/O operation if the device 
types agree. If the device types do not agree, arror message 
DMKDDR708E is issued. 

volser is the volume serial number of a DASD device. If the keyword 
"SCRATCH" is specified instead of the volume serial number, no 
label verification is performed. 

altape is the address of an alternate tape drive. 

RQ1~: If multiple reels of tape are required and "altape" is 
not specified, DDR types the following at the end of the reel: 

END OF VOLUME CIL xxx HD xxx, MOUNT NEXT TAPE 

After the new tape is mounted, DDR continues automatically. 

SKIP nn 
o 

forward spaces nn files on the tape. nn is any number 
up to 255. The SKIP option is reset to zero after the 
tape has been positioned. 

r , 
MODE 162501 causes all output tapes that are opened for the first 

116001 time and at the load point to be written or read in 
I 8001 the specified density. All subsequent tapes mounted 
L J are also set to the specified density. If no mode 

REIJIND 

UNLOAD 

option is specified, then no mode set is performed and 
the density setting remains as it previously was. 

rewinds the tape at the end of a function. 

rewinds and unloads the tape at the end of a function. 

48 IBM VM/370 CMS Command and Macro Reference 



LEAVE 

DDR 

leaves the tape positioned at the end of the file at 
the end of a function. 

1. When the wronq input tape is mounted. the message D~KDDR709E is 
displayed and the tape will rewind and unload regardless of options 
REiIND. UNLOAD, or LEAVE being specified. 

2. If DDR is executed from CMS, failure to attach the tape drive or 
the disk device (or both) to your virtual machine prior to invoking 
the input/output statement causes the following response to be 
displayed: 

INVALID INPUT OR OUTPUT DEFINITION 

Use the SYSPRINT control statement (in the standalone DDR virtual 
machine only) to describe the printer that is to print data extents 
specified by the PRINT statement. It also can print a map of the 
cylinder extents from the DUMP, RESTORE, or COpy statement. If the 
SYSPRINT statement is not provided. the printer assignment defaults to 
OOE. ~MS ignores the SYSPRINT statement when you invoke DDR as a 
command under CMS, and eMS always directs the output to OOE. The format 
of the SYSPRINT control statement is: 

r----------------------------------------------------------------------, 
, SYsprint, cuu , 
L----------------------------------------------------------------------~ 

~h~~: cuu specifies the unit address of the device. 

The function statements tell the DDR program what action to perform. 
The function commands also describe the extents to be dumped. copied. or 
restored. The format of the DUMP/COPY/RESTORE control statement is: 

r----------------------------------------------------------------------, 
, , r l' 
, DUmp I Icyll [To] [cyl2 [Reorder] [To] [cyI3]] , , 
, COpy " CPvol " 
I REstore" ALL I I 
, I ,NUcleus I' 
, I L ~, 

L----------------------------------------------------------------------J 

DUMP requests the program to move data from a ~irect access volume 
onto a magnetic tape or tapes. The data is moved cylinder by 
cylinder. Any number of cylinders may be moved. The format 
of the resulting tape is: 

g~£Q£g_l: a volume header 
describing the volumes. 

record, consisting of data 

g~£Q~g_l: a track header record, consisting of a list of count 
fields to restore the track. and the number of data records 
written on tape. After the last count field the record 
contains key and data records to fill the 4K buffer. 

Section 2. CMS Commands 49 



DDR 

R~£Q~Q_J: track data records, consisting of key and data 
records packed into 4K blocks, with the last record truncated. 

Record 4: either the end-of-volume (EOV) or end-of-job (EOJ) traIler- label. The end-of-volume label contains the same 
information as the next volume header record, except that the 
ID field contains EOV. The end-of-job trailer label contains 
the same information as record 1 except that the cylinder 
number field contains the disk address of the last record on 
tape and the ID field contains EOJ. 

COpy requests the program to copy data from one device to another 
device of the same or equivalent type. Data may be recorded 
on a cylinder basis from input device to output device. A 
tape-to-tape copy can be accomplished only with data dumped by 
this program. 

RESTJRE requests the program to return data that has been dumped by 
this program. Data can be restored only to a DASD volume of 
the same or equivalent device type from which it was dumped. 
It is possible to dump from a real disk and restore to a 
minidisk as long as the device types are the same. 

cyll [TO] [cy12 [REORDER] [TO] [cyI3]] 
Only those cylinders specified are moved, starting with the 
first track of the first cylinder (cyll), and ending with the 
last track of the second cylinder (cyI2). The REORDER operand 
causes the output to be reordered, that is, moved to different 
cylinders, starting at the specified cylinder (cyI3) or at the 
starting cylinder (cyll) if cyl3 is not specified. Specify 
the REORDER operand only if specific limits are defined for 
the operation; the starting and, if required, ending cylinders 
(cyll and cyl2) must be specified. Note that if the input 
device cylinder extents exceed the number of cylinders 
specified on the output device, an error message results~ 

CPVOL specifies that cylinder 0 and all active directory and 
permanent disk space are to be copied, dumped, or restored. 
This indicates that both source and target disk must be in CP 
format; that is, the CP Format/Allocate program must have 
formatted them. 

ALL specifies that the operation is to be performed on on all 
cylinders. 

NUCLEUS 

~Qi~: The occurrence of message DMKDDR705E (issued upon 
completion of the copy, restore, or dump operation) indicates 
that an attempt was made to copy, restore, or dump the 
contents of cylinders beyond the extents of the designated 
minidisk. 

specifies that record 2 on cylinder 0, tra=k 0 and the nucleus 
cylinders are dumped, copied, or restored. 

• Each track must contain a valid home address, containing the real 
cylinder and track location. 

• Record zero must not contain more than eight key and/or data 
characters. 

50 IBM VM/370 CMS Command and Macro Reference 



DDR 

• Flagged tracks are treated just as any other track for all 2314, 
2319, 3340, and 2305 devices. That is, no attempt is made to 
substitute the alternate track data when a defective primary track is 
read. In addition, tracks are not inspected to determine whether 
they were previously flagged when written. Therefore, volumes 
containing flagged tracks should be restored to the same cylinders of 
the volume from which they were dumped. The message D~KDDR715E occurs 
each time a defective track is dumped, copied or restored, and the 
operation continues. 

• Flagged tracks on 3330, and 3350 devices are handled automatically by 
the control unit and may never be detected by the program. The 
program may detect a flagged track if, for example, 110 alternate 
track is assigned to the defective primary track. If a flagged track 
is detected by the program, the message D~KDDR715E occurs and the 
operation terminates. 

INPUT 191 3330 SYSRES 
OUTPUT 180 2400 181 (!'lODE 800 
SYSPRINT OOF 
DU!'lP CPVOL 
INPUT 130 3330 MINIOl 
DU~P 1 TO 50 REORDER 51 
60 70 101 

This example sets the density to 800 bpi, then dumps all pertinent 
data from the volume labeled SYSRES onto the tape that is mounted on 
unit 190. If the program runs out of space on the first tape, it 
continues dumping onto the alternate device (181). A map of the dumped 
cylinders is printed on unit OOF while the program is dumping. When the 
first function is complete, the volume labeled MINIOl is dumped onto a 
new tape. Its cylinder header records are labeled 51 to 100~ A map of 
the dumped cylinders is printed on unit OOF. Next, cylinders 60 to 70 
are dumped and labeled 101 to 111. This extent is added to the cylinder 
map on unit OOF. When the DDR processing is complete, the tapes are 
unloaded and the program stops. 

If cylinder extents are being defined from the console, the user need 
only enter DUMP, COPY or RESTORE on the command line. The following is 
displayed: 

ENTER CYLINDER EXTENTS 
ENTER: 

For any extent after the first extent, the message: 

ENTER NE~T EXTENT OR NULL LINE 
ENTER: 

is displayed. 

You may then enter additional extents to be dumped, restored, or 
copied. A null line causes the job step to start. 

1. When a cylinder map is printed on the virtual printer (OOF as in 
the previous example) a heading precedes the map information. 
Kodule DMrDDR controls the disk, time and zone printed in the 
heading. Your installation must apply a local modification to 
D~KDDR to ensure that local time, rather than G~T (Greenwich 
~eridian Time), is printed in the heading. 

Section 2. C~S Commands 51 



DDR 

2. ~ttempts to restore cylinders beyond the capacity that had been 
recorded on the tape produces a successful EOJ, but the printout 
only indicates the last cylinder found on the tape. 

Use the PRINT and TYPE function statement to print or type (display) a 
hexadecimal and EBCDIC translation of each record specified. The input 
device must be defined as direct access. The output is directed to the 
system console for the TYPE function, or to the SYSPRINT device for the 
PRIN'1" function. (This does not cause redefinition of the output unit 
definition., The format of the PRINT/TYPE control statement is: 

r----------------------------------------------------------------------, 
I PRint I cyll [hhl (rrl]] (To cy12 [hh2 [rr2 ]]] [(options ••• [)]] I 
I TYpe I I 
I I QE1ion§: , 
I , [Hex] [Graphic] [Count] I 
L----------------------------------------------------------------------~ 

cVll is the starting cylinder. 

hh 1 

rr 1 

is the starting track. If present, it must follow the cyll 
operand. The default is track zero. 

is the starting record. If present, it must follow the hhl 
operand. The default is home address and record zero. 

TO cy12 is the ending cylinder. If more than one cylinder is to be 
printed or typed, "TO cy12" must be specified. 

hh2 is the ending 
operand. The 
cylinder. 

track. If 
default 

present, it must 
is the last track 

follow the cy12 
on the ending 

rr2 is the record ID of the last record to print. The default is 
the last record on the ending track. 

HEX prints or displays a hexadecimal representation of each 
record specified. 

GR~PHIC 

COUNT 

prints or displays an EBCDIC translation of each record 
specified. 

prints or displays only the count field for each record 
specified. 

If the TYPE statement follows the occurrence of error message DMKDDR705E 
and specifies the same cylinder, track, and record extents indicated in 
the error message, the contents of the printed record must be 
interpreted in the context of the I/O error information given in the 
in it ial message. 

52 IBM VM/37Q CMS Command and Macro Reference 



DDR 

PRINT 0 TO 3 

Prints all of the records from cylinders 0, 1, 2, and 3. 

PRINT 0 1 3 

Prints only one record, from cylinder 0, track 1, record 3. 

PR INT 1 10 3 TO 1 15 4 

Prints all records starting with cylinder 1, track 10, record 3, and 
ending with cylinder 1, track 15, record 4. 

The example in Figure 6 shows the information displayed at the 
console (TYPE function) or system printer (PRINT function) by the DDR 
program. The listing is annotated to describe some of the data fields. 

DMKDDR711R VOLID READ IS volid2 (NOT volidl] 

volid2 

vol id 1 

DO YOU WISH TO CONTINUE? RESPOND YES NO OR REREAD: 

is the volume serial number from the VOLl label on the 
DASD unit. 

is the volume serial number from the INPUT or OUTPUT 
control card. 

~he volume serial number read from the device at cuu is not the 
same as that specified on the INPUT or OUTPUT control card. 

DMKDDR716R NO VOLl LABEL FOUND FOR volser 

volser 

DO YOU WISH TO CONTINUE? RESPOND YES NO OR REREAD: 

is the volume serial number of the DASD device from the 
INPUT or the OUTPUT control card. 

The DASD device at cuu contains no volume serial number. 

DMKDDR711R DATA DUMPED FROM volid1 TO BE RESTORED TO volid2 
DO YOU WISH TO CONTINUE? RESPOND YES NO OR REREAD: 

volid 1 

volid2 

is the volume serial number from the input tape header 
record (volume dumped) • 

is the volume serial number from the output DASD device. 

The above message is printed to verify the input parameters. 

ENTER CYLINDER EXTENTS 
ENTER: 

This message is received only if you are entering input from your 
terminal. 

Section 2. eMS Commands 53 



DDR 

flome Address 
Record 0 

Record 1--+-__ 

Data 
(hexadecimal) 

ro -;["th;;;-a I;;;h field is :;ze;:-

I • A heading is printed containing the I 
-l A-_-__ -

data length from the count field first in 

I 
decimal, then in hexadecimal 

• The data is then printed in hexadecimal I 

? 
with graphIc interpretation at the right 

_ ~ts~nhere) ___ J 

04096 1000 DATA LENGTH _----------

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS ABOVE. 

I st Half of -+---_ CYL 019. HD 00 REC 002 COUNT 0013000002 09A8 Note: Data Length field repeated 
in heading. Record 2 

02472 09A8 DATA LENGTH 

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS ABOVE. 

ABOVE RECORD WRITTEN USING RECORD OVERFLOW e 
r:::;-------.., 

Ie This .statement indicates that this portion I 
01 Record 2 was WrItten using the Write 

I 
SpeCIal Count, Key, and Data command. The 
remainder of Record 2 is found on the next I 
track as the firs! record after Record O. 

Home Addresst--_- CYL 019 HD 01 HOME ADDRESS 0000130001 RECORD ZERO 0013000100 ~ a:: ooo~ -0000:0 -1- .J 
Record 0 . 

CYL 019 HD 01 REC 002 COUNT 0013000102 00 0658--coC-----------------~ 
2nd Half of 

Record 2 016240658 DATA LENGTH 

00000 0000 00000000 00000000 OOOOOOOO 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS ABOVE ... 

r.;;------ "1 e It the key length fIeld IS not zelo 

I • A headmg IS prmted contamtng the key length I 
/; 

first in decimal, then in hexadecimal. I • The key is then printed in hexade..:imal with I 
e ________ .J J7 

graphic interpretation at the right (not shown here). 

Record 3 --+--- CYL 019 HD 01 REC 003 COUNT 0013000103 800F80 

001280080 KEY LENGTH_'---------

00000 0000 OOOOOOOO 00000000 OOOOOOOO OOOOOOOO 00000000 00000000 OOOOOOOO OOOOOOOO 
SUPPRESSED CHARACTERS SAME AS ABOVE ... 

03968 OF80 DATA LENGTH 

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS ABOVE. 

Record -+ --+---- CYl 019 HD 01 REC 004 COUNT 0013000104 000000 

Figure 6. 

END OF FILE RECORD 

re-------.., 
I Whenever the data length field is zero I 
I an end-of-file prints next. I 
L _______ -.J 

An Annotated Sample of output from 
Functions of the DDR Proqram 

the TYPE and PRINT 

54 IBM VM/370 eMS Command and Macro Reference 



DDR 

END OF VOLUME CYL xxx HD xx, MOUNT NEXT TAPE 

DDR continues processing, after the mounting of the next tape reel. 

RESTORING volser 

~h§£§: 

volser is the volume serial number of the disk dumped. 

The RESTORE operation has begun. 

COPYING volser 

!h§I§: 

volser is the volume serial number described by the input unit. 

The COPY operation has begun. 

DUMPING volser 

!hgIg: 

volser is the volume serial number described by the input unit. 

The DUMP operation has begun. 

PRINTING volser 

!h§I§: 

volser is the volume serial number described by the input unit. 

The PRINT operation has begun. 

END OF DUMP 

The DUMP operation has ended. 

END OF RESTORE 

The RESTORE operation has ended. 

END OF COpy 

The COPY operation has ended. 

END OF PRINT 

The PRINT operation has ended. 

END OF JOB 

All specified operations have complete1. 

Section 2. eMS Commands 55 



DDR 

ENTER: 

Prompts for input from the terminal. A null line (that iS r 
press~ng the Enter key or equivalent) causes control to return to 
CMS if the virtual machine is in the CKS environment. 

DMKDDR725R ORIGINAL INPUT DEVICE WAS (IS) LARGER THAN OUTPUT DEVICE. 
DO YOU WISH TO CONTINUE? RESPONSE YES OR NJ: 

~XQ1~ll~1iQn: 
RESTORE function - The number of cylinders on the 
input unit is compared with the number of cylinders 
device. 

original DASD 
on the output 

COpy function - The input device contains more cylinders than the 
output device. 

QE~~g!Q~ !~!ion: The operator must determine if the COpy or RESTORE 
function is to continue. The response is either yes or no. 

!Ql~: Except as shown, there is no return code returned for the 
following messages. 

DMKDDR700E INPUT UNIT IS NOT A CPVOL 
DMKDDR701E INVALID OPERAND - operand 
DMKDDR 702E CONTROL STATEMENT SEQUENCE ERROR 
DMKDDR703E OPERAND MISSING 
DMKDDR704E DEV cuu NOT OPERATIONAL 
DMKDDR 1 05E 10 ERROR cuu CSW csw SENSE sense INPUT bbcchh OUTPUT bbcchh 

CCW ccw 
DMKDDR7 07E MACHINE CHECK RUN SEFEP AND SAVE OUTPUT FaR CE 
DMKDDR708E INVALID INPUT OR OUTPUT DEFINITION 
DMKDDR709E WRONG INPUT TAPE MOUNTED 
DMKDDR 1 10A DEV cuu INTERVENTION REQUIRED 
DMKDDR712E NUMBER OF E~TENTS EXCEEDS 20 
DMKDDR713E OVERLAPPING OR INVALID EXTENTS 
DMKDDR714E RECORD bbcchh NOT FOUND ON TAPE 
DMKDDR715E LOCATION bbcchh IS A FLAGGED TRACK RC=3 
DMKDDR718E OUTPUT UNIT IS FILE PROTECTED RC=1 
DMKDDR719E INVALID FILENAME OR FILE NOT FOUND 
DMKDDR720E ERROR IN routine RC=varies 
DMKDDR721E RECORD cchhr NOT FOUND 
DMKDDR722E OUTPUT UNIT NOT PROPEFLY FORMATTED FOR THE CP NUCLEUS 
DMKDDR723E NO VALID CP NUCLEUS ON THE INPUT UNIT 
DMKDDR724E INPUT TAPE CONTAINS A CP NUCLEUS DUMP 
DMKDDR756E PROGRAM CHECK PSW=psw 

56 IBM VM/370 CMS Command and Macro Reference 



DEBUG 

DeBUG 

Use the DEBUG command to enter the debug environment from the CMS 
environment. In the debug environment you can use a variety of DEBUG 
subcommands that allow you to test and debug your programs. The DEBUG 
subcommands are described in "Section 4. DEBUG Subcommands. u For 
tutorial information, including examples, see the !~Ll1Q ~~~ g§~£~§ 
Q~ig~. The format of the DEBUG command is: 

r --------------------------------------------------------------, 
I DEB~G I L-____ __ 

1 • The debug environment is also entered 
interruption or the result of a 
encountered during program execution. 

as a result of an external 
breakpoint (address stop) 

2. Once you are in the debug environment, you can enter only DEBUG 
subcommands and CP commands via the ICP function. 

3. To return to the eMS environment, enter the DEBUG subcommand 
RE~URN. 

DMSDBG728I DEBUG ENTERED 

This message indicates that you are in the debug environment. 

Section 2. CMS Commands 57 



DISK 

DISK 

Use the DISK command to: 

• Punch CMS disk files to the virtual spooled card punch in a special 
format which allows the punched deck to be restored to disk in the 
form of the original disk file. 

• Restore punched decks created by the DISK DUMP command to a disk 
file. 

The format of the DISK command is: 

r -----------------------, 
, DISK , {

DUMP 
LOAD 

fn ft [fm] } I , 
L 

________________ . _________ -J 

DUMP fn ft fm 
punches the specified file (fn ft fm). The file may have 
either fixed- or variable-length records. After all data is 
punched, an end-of-file card is created with an N in column 5. 
This card contains directory information and must remain in 
the deck. The original disk file is retained. 

LOAD loads a file or files from the spooled card reader and writes 
them as C~S files on your A-disk. The filename and filetype 
are obtained from the card stream. If a file exists with the 
same filename and filetype as one of those in the card stream, 
it is replaced. 

Note: DISK LOAD file identifiers are those of the specified 
fIle issued by the DISK DUMP command. 

1. To read files with the DISK LOAD command, they must have been 
created bv the DISK DUMP command. To load spooled reader files 
created in any other manner, you should use the READ:ARD command. 

2. To load reader files created by DISK DUMP, you must issue the DISK 
LOAD command for each spool file. For example, if you enter: 

disk dump sourcel assemble 
disk dump source2 assemble 

the virtual machine that receives the files must issue the DISK 
LOAD command twice to read the files onto disk. If you use the CP 
SPOOL command to spool continuous, for example: 

cp spool punch cont 
disk dump sourcel assemble 
disk dump source2 assemble 
cp spool punch nocont close 

then you only need to issue the DISK LOAD command once to read both 
files. 

58 IBM VM/370 eMS Command and Macro Reference 



DISK 

~here is no response to the DISK DUMP command. The file identifiers of 
each file loaded are displayed when you issue the DISK LJAD command: 

fn ft fm 

DMSDSK002E FILE 'fn ft fm' NOT FOUND RC=28 
DMSDSK014E INVALID FUNCTION 'function' RC=24 
DMSDSK037E DISK 'A' IS READ/ONLY RC=36 
DMSDSK047E NO FUNCTION SPECIFIED RC=24 
DMSDSKOU~E INVALID MODE 'mode' RC=24 
DMSDSK054E INCOMPLETE FILEID SPECIFIED RC=24 
DMSDSK062E INVALID * IN FILEID ['fn ft fm'] RC=20 
DMSDSK010E INVALID PARAMETER 'parameter' RC=24 
DMSDSK017E END CARD MISSING FROM INPUT DECK RC=32 
DMSDSK078E INVALID CARD IN INPUT DECK RC=32 
DMSDSK104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100 
DMSDSK105S ERROR inn' WRITING FILE ifn it fmi ON DISK RC=lOO 
DMSDSK118S ERROR PUNCHING FILE RC=100 
DMSDSK124S ERROR READING CARD FILE RC=100 
DMSDSK205W READER EMPTY OR NOT READY RC=8 

section 2. CMS Commands 59 



DLBL 

DLBL 

Use the DLBL command: 

• In CMS/DOS, to define DOS and CMS sequential disk files for program 
input/output; to identify DOS files and libraries; to define and 
identify VSAM catalogs, clusters, and data spaces; and to identify 
VSAM, DOS, or CMS files used for VSAM program input/output and access 
method services functions. 

• In eMS, to define and identify VSAM catalogs, clusters, and data 
spaces; to identify VSAM files used for program input/output; and to 
identify input/output files for AMSERV. 

The format of the DLBL command is: 

r -, 
I 
I r r 1 1 

I DLBL Iddname {mode} ICMS fn ft 1 [ (optionA optionB [) ]] 1 , , DUt1t1Y 1£t1S FIL~ ggll~mg I I 
I , L J 1 
I I I , I r , 1 
I , ddna me {moae }'DSN quaIl [ qua12 ••• qualn ] I I 
I I DUMMY IDSN ? , 1 
I I L .J , , I [ (option A optionB optionC [) ]] I 
I I " I Iddname CLEAR " I I * " I L J , 

I QEiiQn!: QEtiQnB: QEiiQ!!~: , 
1 [ SYSxxx] [ PERM] [ VSAM ] , 
I r , r 1 

, 
I I£HANGE I IEXTENTI , 
1 INOCHANGEI ,MULT I I 
I L .J L .J , 
I [CAT catdd] , , [BUFSP nnnnnn] , 
L --' 

NQi§: The operands and options of the DLBL command are described below. 
Usage notes are provided for general usage, followed by additional notes 
for CMS/DOS users, and then additional notes for as VSAt1 users. 

ddname 

mode 

DUMMY 

specifies a one- to seven-character program ddname (OS) or 
filename (DOS), or dname (as specified in the FILE parameter 
of an access method services control statement). An asterisk 
(*) entered with the CLEAR operand indicates that all DLBL 
definitions, except those that are entered with the PERM 
option, are to be cleared. 

specifies a valid CMS disk mode letter and 
filemode number. A letter must be specified; if 
not specified, it defaults to 1. The disk must 
when the DLBL command is issued. 

optionally, 
a number is 
be accessed 

specifies that no real I/O is to be performed. A read 
operation results in an end-of-file condition and a write 
operation results in a successful return code. DUMMY should 
not be used for OS VSAM data sets (see Usage Note 3). 

60 IE! V~/370 eMS Command and Macro Reference 



CLEAR 

DLBL 

removes any existing definitions for the specified ddname. 
Clearing a ddname before defining it ensures that a file 
definition does not exist and that any options previously 
defined with that ddname no longer have any effect. 

c~s fn ft indicates that this is a c~s file~ and the file identifier (fn 
ft) that follows is a CMS filename and filetype. 

FILE ddname is the default CMS file identifier associated with 
all non-CMS data sets. (See Usage Note 3 for CMS/DOS users.) 

DSN indicates that this is a non-CMS file. 

? indicates that you are going to enter the data set name 
interactively. When prompted, you enter the data set name or 
fileid in its exact form, including embedjed blanks, hyphens, 
or periods. 

quaIl [quaI2 •.• qualn] 

Sy Sxx: x 

PERM 

is an as data set name or DOS file-ide Only data sets named 
according to standard as conventions may be entered this way; 
you must omit the periods between qualifiers. (See Usa.ge Note 
2. ) 

(CMS/DOS only.) indicates the system or programmer logical 
unit that is associated with the disk on which the disk 
file resides. The logical unit must have been previously 
assigned with the ASSGN command. If a DLBL definition is 
already in effect for the specified ddname, SYSxxx may be 
omitted; otherwise, it is required. 

indicates that this DLBL definition can be cleared only 
with an explicit CLEAR request. It will not be cleared 
when the DLBL * CLEAR command line is entered. 

All DLBL definitions, including those entered with the PERM 
option, are cleared as a result of a program abend or HI 
(halt execution) Immediate command. 

~g!N~E indicates that any existing DLBL for this ddname is not to 
be canceled~ but that conflicting options are to be 
overridden and new options merged into the old definition. 
Both the ddname and the file identifier must be the same in 
order for the definitions to be merged. 

NOCHANGE does not alter any existing DLBL definition for the 
specified ddname, but creates a definition if none existed. 

VSAM indicates that the file is a VSAM data set. This option 
must be specified for VSAM functions unless the EXTENT, 
MULT, CAT, or BUFSP options are entered or the ddnames 
IJSYSCT or IJSYSUC are used. 

EXTENT indicates that you are going to use access method services 
to define a VSAM catalog, data space, or unique cluster and 
you want to enter extent information. 

MULT indicates that you are going to reference an existing 
multivolume data set and you want to enter the volume 
specifica tions. 

Section 2. CMS Commands 61 



DLBL 

C~T catdd identifies the VSAM catalog (defined by a previous DLBL 
definition) which contains the entry for this data set. You 
must use the CAT option when the VSA~ data set you are 
creating or identifying is not cataloged in the current job 
catalog. catdd is the ddname in the DLBL definition for 
the catalog. 

BUFSP nnnnnn 
specifies the number of bytes (in decimal) to be 
I/O buffers by VSAM data management during 
execution, overriding the BUFSP value in the ACB 
file. The maximum value for nnnnnn is 999999; 
commas are not permitted. 

used for 
program 
for the 

embedded 

1. To display all of the disk file definitions in effect, enter: 

dlbl 

The response will be: 

ddname DISK fn ft 

If no DLBL definitions are in effect, the following message is 
displayed: 

DMSDLB3241 NO USER DEFINED DLBL'S IN EFFECT 

2. To enter an OS or DOS file identification on the DLBL command line, 
it must consist of 1- to 8-character qualifiers separated by 
periods, with a maximum length of 44 characters, including periods. 
For example, the file TEST.INPUT.SOURCE.D could be identified as 
follows: 

dlbl ddl c dsn test input source d (options ••• 

Or, it may be entered interactively, as follows: 

dlbl ddl c dsn ? (options 
DMSDLB220R ENTER DATA SET NAME: 
test.input.source.d 

Note that when the data set name is entered interactively, the data 
set name must be entered in its exact form; when entered on the 
DLBL command line, the periods must be omitted. 

You must use the interactive form to enter a DOS file-id that 
contains embedded blanks or hyphens. 

3. In DJS/VS, a VS~M data set that has been defined as DU~MY is opened 
with an error code of X· 11'. CMS supports the DUMMY operand of the 
DLBL command in the same manner. OS users should not use the DUMMY 
operand in CMS, since a dummy data set does not return, on open, an 
end-of-file indication. 

62 IBM VM/370 CMS Command and Macro Reference 



DLBL 

1. Ea~h DLBL definition must be associated with a system or programmer 
logical unit assignment r previously made with an ASSGN command. 
Specify the SYSxxx option on the first, or only, DLBL definition 
for a particular ddname. Many DLBL definitions may be associated 
with the same logical unit. For example: 

assgn sys100 b 
dlbl ddl b cms test filel (sysl00 
dlbl dd2 b cms test file2 (sys100 
dlbl ddl cms test file3 

is a valid command sequence. 

2. The following special ddnames must be used to define DOS private 
libraries, and must be associated with the indicated logical units: 

ggn9:m~ 
IJSYSSL 
IJSYSRL 
IJSYSCL 

Logical 
!Inii __ _ 
SYSSLB 
SYSRLB 
SYSCLB 

1ibra£y 
Source statement 
Relocatable 
Core image 

These libraries must be identified in order to perform librarian 
functions (with the SSEBV, ESERV, DSERV r or RSERV commands) for 
private libraries; or to link-edit or fetch modules or phases from 
private relocatable or core image libraries (with the DOSLKED and 
FETCH commands). 

3. Each DOS file has a CMS file identifier associated with it by 
default; the filename is always FILE and the filetype is always the 
same as the ddname. For example, if you enter a DLBL command for a 
DOS file MOD.TEST.STREAM as follows: 

dlbl test c dsn mod test stream 

then you can refer to this OS data set as FILE TEST when you use 
the STATE command: 

state file test 

When you enter a DLBL command specifying only a ddname and mode r as 
follows: 

dlbl junk a 

CMS assigns a file identifier of FILE JUNK Al to the ddname JUNK. 

4. The FILEDEF command performs a function similar to that of the DLBL 
command; you need to use the FILEDEF command in CMS/DOS only: 

• When you want to override a default ddname for an assembler 
input or output file. 

• When you want to use the MOVEFILE command to process a file. 

5. If you use the DUMMY operand, you must have issued an ASSGN command 
specifying a device type of IGN r or ignore, for the SYSxxx unit 
specified in the DLBL command, for example, 

Section 2. CMS Commands 63 



DLBL 

assgn sys003 ign 
dlbl test dummy (sys003 

~R~~IfIIR2 y~!~ ~XT~!! I!FOR~ATION: You must specify extent information 
when you use the access method services control statements DEFINE SPACE, 
DEFINE ~ASTERCATALOG, DEFINE USERCATALOG, DEFINE CLUSTER (UNIQUE); or 
when you use the IMPORT or IMPORTRA functions for a unique file. 

When you enter the EXTENT option of the DLBL command, you are 
prompted to enter the disk extents for the specified file. You must 
enter extent information in accordance with the following rules: 

• You must specify the starting track number and number of tracks for 
each extent, as follows: 

This extent allocates 38 tracks, beginning with the 19th track, on a 
3330 device. 

• All extents must begin and end on cylinder boundaries, regardless of 
whetner the AMSERV file contains extent information in terms of 
cylinders, tracks, or records. 

• Multiple extent entries may be entered 
commas or on different lines. Commas 
ignored. 

on a single line separated by 
at the end of a line are 

• Multiple extents for the same volume must be entered in numerically 
ascending order; for example: 

20 40 0, 600 80 

These extents are valid for a 2314 device. 

• When you enter multivolume extents, you must specify the mode letter 
and logical unit associated with each disk that contains extents; 
extents for each disk must be entered consecutively. For example: 

assgn sy sOO 1 b 
assgn sys002 c 
assgn sys003 d 
dlbl filel b (extent sys001 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
100 60, 400 80, 60 40 d sys003 
200 100 c svs002 
400 100 c svs002 

(null line) 

specifies extents on disks accessed at modes B, C, and D. These 
disks are assigned to the logical units SYS001, SYS002, and SYS003. 
Since B is the mode specified on the DLBL command line, it does not 
need to be respecified along with the extent information. 

• A DASD volume must be mounted, accessed, and assigned for each disk 
mode referenced in an extent. 

When you are finished entering extent information, you must enter a 
null line to terminate the DLBL command sequence. If you do not, an 
error may result and you will have to reenter the DLBL command. If you 
make any error entering the extents, you must reenter all the extent 
information. 

64 IBM VM/370 CMS Command and Macro Reference 



DLBL 

The OLBL command does not check the extents to see whether they are 
on cylinder boundaries or whether they are entered in the proper 
sequence. If you do not enter them correctly, the access method services 
DEFINE function will terminate with an error. 

eMS assigns sequence numbers to the extents according to the order in 
which they were entered. These sequence numbers are listed when you use 
the LISTDS command with the EXTENT option. 

In order to display the actual extents that were entered for a VSAM 
data set at DLBL definition time, the following commands may be entered: 

DLBL (EXTENT) or QUERY DLBL EXTENT 

Either of these commands will provide the following information to 
the user: 

DDNAME The DOS filename or OS ddname. 

MODE The CMS disk mode identifying the disk on which the extent 
resides. 

LOGUNIT The DOS logical unit specification (SYSxxx). This operand 
will be blank for a data set defined while in CMS/OS 
environment; that is, the SET DOS ON command had not been 
issued at DLBL definition time. 

EXTENT Specifies the relative starting track number and number of 
tracks for each extent entered for the given dataset ddname. 

If no DLBL definitions with extent information are active, the 
following message is issued: 

DMSDLB324I NO USER DEFINED EXTENTS IN EFFECT 

!Q~N~!~!!li~ ~~11IV01g~~ y~!~ EXTENTS: When you want to execute a program 
or use access method services to reference an existing multivolume VSAM 
data set, you must use the MULT option on the DLBL command that 
identifies the file. 

When you use the MULT option, you are prompted to enter additional 
disk mode letters, as follows: 

assgn sys001 c 
assgn sys002 d 
assgn sys003 e 
assgn sys004 f 
assgn sys005 9 
dlbl infile c {mult sys001 
DMSDLB330R ENTER VOLUME SPECIFICATIONS: 
d sys002, e sys003 , f sys004 
g sys005 

(null line) 

The above identifies a file that has extents on disks accessed at mo es 
C, D, E, P, and G. These disks have been assigned to the logical un ts 
SYS001, SYS002, SYS003, SYS004, and SYS005. The rules for enter ng 
multiple extents are: 

• All disks must be mounted, accessed, and assigned when you issue the 
DLBL command. 

• You must not repeat the mode letter and logical unit of the disk that 
js entered on the DLBL command line (C in the above example) . 

Section 2. eMS Commands 65 



DLBL 

• If you enter 
they must be 
ignored. 

more than one mode letter and logical unit 
separated by commas; trailing commas on 

on a line, 
a line are 

• ~ maximum of nine disks may be specified you do not need to specify 
them in alphabetical order. 

You must enter a null line to terminate the 
finished entering extents; if not, an error may 
reenter the entire command sequence. 

command when 
result and 

you are 
you must 

In order to display the volumes on which all multivolume data sets 
reside, the following commands are issued: 

DLBL (MULT) or QUERY DLBL MULT 

The following information concerning multiple volume datasets is 
provided: 

DDN~ME 

MODE 

LOGUNIT 

The DOS filename or OS ddname. 

The CMS disk mode identifying one of the disks on which the 
dataset resides. 

The DOS logical unit specification (SYSxxx). This operand 
will be blank for a data set defined while in CMS/OS 
environment; that is, the SET DOS ON command had not been 
issued at OLBL definition time. 

If no OLBL definitions with multiple volume specifications are 
active, the following m~ssage is issued: 

OMSOLB324I NO USER DEFINED MULTS IN EFFECT 

USING VS~~ CATALOGS: There are two special ddnames you must use to 
Identify-a-VSi~-master catalog and job catalog: 

IJ SYSCT 

IJSYSUC 

identifies the master catalog when you initially define it 
(using AMSERV), and when you begin a terminal session. You 
should use the PERM option when you define it. 

You must assign the logical unit SYSCAT to the disk on which 
the master catalog resides. If you are redefining a master 
catalog that has already been identified, you may omit the 
SYSCAT option on the DLBL command line. 

identifies a job catalog to be used for subsequent AKSERV jobs 
or VSAM programs. 

Any programmer logical unit may be used to assign a job 
catalog. 

Only one VSAM catalog is ever searched when a VSAM function is 
performed. If a job catalog is defined, you may override it by using 
the CAT option on the DLBL command for a data set. The following OLBL 
command sequence illustrates the use of catalogs: 

assgn syscat c 
dlbl ijsysct c dsn mastcat (perm syscat 

identifies the master catalog, MASTCAT, for the terminal session. 

66 IBM VM/370 CMS Command and Macro Reference 



DLBL 

assgn sysO 1 0 d 
dlbl ijsysuc d dsn mycat (perm sys010 

identifies the job (user) catalog, MYCAT, for the terminal session. 

assgn sys100 e 
dlbl intest1 e dsn test case (vsam sys100 

identifies a VSAM file to be used in a program. It is cataloged in the 
job catalog, MYCAT. 

assgn sys101 f 
dlbl cat3 f dsn testcat {cat ijsysct sys101 

identifies an additional user catalog, which has an entry in the master 
catalog. Since a job catalog is in use, you must use the CAT option to 
indicate that another catalog, in this case the master catalog, should 
be used. 

dlbl infile f dsn test input (cat cat3 sys101 

identifies an input file cataloged in the user catalog TESTCAT, which 
was identified with a ddname of CAT3 on the DLBL com~and. 

The selection of a VSAM catalog for AMSERV jobs and VSAM programs 
running in CMS is summarized in Figure 7. 

IS THE 
CAT OPTION 

SPECIFIED ON THE 
DLBL 

COMMAND 
? 

NO 

I 
IS 

THERE A 
DLBL ACTIVE 

FOR 
IJSYSUC 

? 

NO 

USE THE 
MASTER 

CATALOG 

YES 

YES 

USE THE 
CATALOG 

DEFINED BY 
THAT DDNAME 

USE THE 
JOB CATALOG 

Figure 1. Determining Which VSAM Catalog to Use 

Section 2. CMS Commands 67 



DLBL 

1. You must use the DLBL command to identify all access method 
services input and output files, and to identify all VSAM input and 
output files referenced in programs. 

For all other file definitions, including os or :MS disk files 
referenced in programs that use VSAM data management, you must use 
the FILEDEF command. 

2. A DLBL ddname may have a maximum of seven characters. If you have 
ddnames in your programs that are eight characters long, only the 
first seven characters are processed when the programs are executed 
in CMS. If you have two ddnames with the same first seven 
characters and you attempt to execute this program in eMS, you will 
receive an open error when the second file is opened. You should 
recompile these programs providing unique seven-character ddnames. 

3. If you release a disk for which you have a DLBL definition in 
effect, you should clear the DLBL definition before you execute a 
VSAM program or an AMSERV command. CMS checks that all disks for 
which there are DLBL definitions are accesse1, and issues error 
message DMSSTT069E if any are not. 

~R~f!~!!~~ !~!~ ~XT~~T !!rOR~ATIQ~: You must specify extent information 
when you use the access method services control statements DEFINE SPA:E, 
DEFINE MASTERCA!ALOG, DEFINE USERCATALOG, DEFINE CLUSTER (UNIQUE); or 
when you use the IMPORT or IMPORTRA functions for a unique file. Space 
allocation is made only for primary allocation amounts. 

When you enter the EXTENT option of the DLBL command, you are 
promoted to enter the disk extents for the specified file. You must 
enter extent information in accordance with the following rules: 

• You must specify the starting track number and number of tracks for 
each ext~nt, as follows: 

10 38 

This extent allocates 38 tracks, beginning with the 19th track, on a 
3330 device. 

• All extents must begin and end on cylinder boundaries, regardless of 
whether the AMSERV file contains extent information in terms of 
cylinders, tracks, or records. 

• Multiple extent entries may be entered 
commas or on different lines. Commas 
ignored. 

on a single line separated by 
at the end of a line are 

• Multiple extents for the same volume must be entered in numerically 
ascending order; for example: 

20 400, 6 00 80 

These extents are valid for a 2314 device. 

• When you enter multivolume extents, you must specify the mode letter 
for extents on additional disks; extents for each disk must be 
entered consecutively. For example: 

68 IBM VM/37Q CMS Command and Macro Reference 



dlbl filel b (extent 
DMSDLB331R ENTEF EXTENT SPECIFICATIONS: 
100 60, 400 80, 60 40 d 
200 100 c 
400 100 c 

(null line) 

DLBL 

specifies extents on disks accessed at modes B, C, and D. Since B is 
the mode specified on the DLBL command line, it does not qeed to be 
respecified along with the extent information. 

• A DASD volume must be mounted and accessed for each mode referenced 
in an extent. 

When you are finished entering extent information, you must enter a 
null line to terminate the DLBL command sequence. If you do not, an 
erroL may result and you will have to reenter the entire DLBL command. 
If you make any error entering the extents, you must reenter all the 
extent information. 

The OLBL command does not check the extents to see if they are on 
cylindeL boundaries or that they are entered in the proper sequence~ If 
you do not enter them correctly, the access method services DEFINE 
function terminates with an error. 

CMS assigns sequence numbers to the extents according to the order in 
which they were entered. These sequence numbers are listed when you use 
the LISTDS command with the EXTENT option. 

IQ~N~!f!IR~ ~Q1!IVo1g~~ y~!~ EXTENT~: When you want to execute a program 
or use access method services to reference an existing multivolume VSAM 
data set, you must use the MULT option on the DLBL command that 
identifies the file. 

When you use the MULT option, you are prompted to enter additional 
disk mode letters, as follows: 

dlbl infile c (mult 
DMSDLB330R ENTER VOLUME SPECIFICATIONS: 
d, e, f 
g 

(null line) 

The above example identifies a file that has extents on disks accessed 
at modes C, D, E, P, and G. The rules for entering multiple extents are: 

• All disks must be mounted and accessed when you issue the DLBL 
command. 

• You must not repeat the mode letter of the disk that is entered on 
the DLBL command line (C in the above example) • 

• If you enter more than one mode letter on a line, they must be 
separated by commas; trailing commas on a line are ignored. 

• A maximum of nine disks may be specified; you do not need to specify 
them in alphabetical order. 

You must enter a null line to terminate the 
finished entering extents; if not, an error may 
re-enteL the entire command sequence. 

command when 
result and 

you are 
you must 

Section 2. C~S Commands 69 



DL BL 

Q~!N~ y~~~ £!!!1QQ~: There are two special ddnames you must use to 
identify a VSAM master catalog and job catalog: 

IJ SYSCT 

IJ SYSUC 

identifies the master catalog, both when you initially define 
it (using AMSERV) and when you begin a terminal session. You 
should use the PERM option when you define it. 

identifies a job catalog to be used for subsequent AMSERV jobs 
or VSAM programs. 

Only one VSAM catalog is ever searched when a VSAM function is 
performed. If a job catalog is defined, you may override it by using 
the CAT option on the DLBL command for a data set. The following DLBL 
command sequence illustrates the use of catalogs: 

dlbl ijsysct c dsn mastcat (perm 

identifies the master catalog, MASTCAT, for the terminal session. 

dlbl ijsysuc d dsn mycat (perm 

identifies the job (user) catalog, MYCAT, for the terminal session. 

dlbl intestl e dsn test case (vsam 

identifies a VSAM file to be used in a program. It is cataloged in the 
job catalog, MYCAT. 

dlbl cat3 dsn testcat (cat ijsysct 

identifies an additional user catalog, which has an entry in the master 
catalog. Since a job catalog is in use, you must use the :AT option to 
indicate that another catalog, in this case the master catalog, should 
be used. 

dlbl infile e dsn test input (cat cat3 

identifies an input file cataloged in the user catalog TEST:AT, which 
was identified with a ddname of CAT3 on the DLBL command. 

The selection of a VSAM catalog for AMSERV jobs and VSAM programs 
running in CMS is summarized in Figure 7. 

If the DLBL command is issued with no operands, the current DLBL 
definitions are displayed at your terminal: 

ddnamel devicel (fnl ftl fml [datasetnamel]] 

ddnamen devicen (fnn ftn fmn (datasetnamen]] 

DMSDLB220R ENTER DATA SET NAME: 

This message is displayed when you use the DSN? form of the DLBL 
command. Enter the exact DOS or as data set name. 

DMSDLB320I MA~IMUM NUMBER OF DISK ENTRIES RECORDED 

This message indicates that nine volumes have been specified for a 
VS~M data set, which is the maximum allowed under CMS. 

70 IBM VM/370 CMS Command and Macro Reference 



DLBL 

DMSDLB321I MAXIMUM NUMBER OF EXTENTS RECOP.DED 

This message indicates that 16 extents on a single disk or minidisk 
have been specified for a VSAM data space, catalog, or unique data 
set. This is the maximum number of extents allowed on a minidisk 
or disk. 

DMSDLB322I DDNAME 'ddname' NOT FOUND; NO CLEAR EXECUTED 

This message indicates that the clear function was not performed 
because no DLBL definition is in effect for the ddname. 

DMSDLB323I {MASTERIJOB} CATALOG DLBL CLEARED 

This message indicates that either the master catalog or job 
catalog has been cleared as a result of a clear request. 

You also receive this message if you issue a DLBL * CLEAR command, 
and any DLBL definition is in effect for IJSYSCT or IJSYSUC that 
was not entered with the PERM option. 

DMSDLB330R ENTER VOLUME SPECIFICATIONS: 

This message prompts you to enter volume specifications for 
existing multivolume VSAM files. (See "Identifying Multivolume VSAM 
Extents" in the appropriate usage section.) 

DMSDLB331R EN~ER EXTENT SPECIFICATIONS: 

This message prompts you to enter the data set extent or extents of 
a new VSAM data space, catalog or unique data set. (See 
"Specifying VSAM Extent Information" in the appropriate usage 
section., 

DMSDLB001E NO FILENAME SPECIFIED RC=24 
DMSDLB003E INVALID OPTION 'option' RC=24 
DMSDLB005E NO '{CATIBUFSP}' SPECIFIED RC=24 
DMSDLB023E NO FILETYPE SPECIFIED RC=24 
DMSDLB04AE INVALID MODE 'mode' RC=24 
DMSDLB050E PARAMETER MISSING AFTER DDNAME RC=24 
DMSDLB065E joption' OPTION SPECIFIED TWICE RC=24 
DMSDLB066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24 
DMSDLB010E INVALID PARAMETEF 'parameter' RC=24 
DMSDLBOq6E INVALID DDNAME 'ddname' RC=24 
DMSDLB10QS VIRTUAL STORAGE CAPACITY EXCEEDED RC=104 
DMSDLB221E INVALID DATA SET NAME RC=24 
DMSDLB301E 'SYSxxx' NOT ASSIGNED FOR DISK 'fm' RC=36 
DMSDLB302E NO SYSXI! OPERAND ENTERED RC=24 
DMSDLB304E INVALID OPERAND VALUE 'value' RC=24 
DMSDLB305E INCOMPLETE EXTENT RANGE RC=24 
DMSDLB306E SYStII NOT ASSIGNED FOR 'IGNORE' RC=36 
DMSDLB307E CATALOG DDNAME 'ddname' NOT FOUND RC=24 
DMSDLB30AE 'mode' DISK IN {CMSINON-CMS} FOP~AT; INVALID FOR 

{NON-CMSICMS} DATASET RC=24 

Section 2. CMS Commands 71 



DOSLIB 

DOSLIB 

Use the DOSLIB command to delete, compact, or list information about the 
executable phases in a C"S/DOS phase library. The format of the DOSLIB 
command is: 

r -, 
I DOSLIB 

l 
DEL libname phasenamel [ ••• phasenamen] , 

I , , CO"P libname , 
I , 
I MAP libname ( (options ••• [) ]] , 
I , 
I Ql!iiQ!!§ : , 
I r , , 
I I TERf! , , 
I IDI~! , I 
1 ,PRINT , , 
1 L !J , , , 
L- -I 

DEL deletes phases from a CMS/DOS phase library. The library is 
not erased when the last phase is deleted from the library. 

COf!P compacts a Cf!S/DOS phase library. 

MAP lists certain information about the phases of 
Available information provided is phase name, 
relative location in the library. 

a DOSLIB. 
size, and 

libname is the filename of a C"S/DOS phase library. The filetype must 
be DOSLIB. 

phasenamel ••• phasenamen 
is the name of one or more phases that exist in the CMS/DOS 
phase library. 

~!£ Q~liQn§: The following options specify the output device for the 
MAP function. If more than one option is specified, only the first 
option is used. 

TERM displays the MAP output at the terminal. 

writes the MAP output to a eMS disk file with the file 
identifier of 'libname "AP A5'. If a file with that name 
already exists, the old file is erased. 

PRINT spools the MAP output to the virtual printer. 

1. The C"S/DOS environment does not have to be active when you issue 
the DOSLIB command. 

2. Phases may only be added to a DOSLIB by the CMS/D3S linkage editor 
as a result of the DOSLKED command. 

72 IBM VM/370 eMS Command and Macro Reference 



DOSLIB 

3. In order to fetch a program phase from a DOSLIB for execution, you 
must issue the GLOBAL command to identify the DOSLIB. When a FETCH 
command or dynamic fetch from a program is issued, all current 
DOSLIBs are searched for the specified phases. 

4. If DOSLIBs are very large, or there are many of them to search, 
program execution is slowed down accordingly. To avoid excessive 
execution time, you should keep your DOStIBs small and issue a 
GLOBAL command speci~ving only those libraries that you need. 

When you use the TERM option on the DOSLIB aAP command line, the 
following is displayed: 

PHASE 
namel 

INDE~ BLOCKS 
loc size 

DMSDSL002E FILE 'fn DOSlIB' NOT FOUND RC=28 
DMSDSL003E INVALID OPTION 'option' RC=24 
DMSDSL013W PHASE 'phase' NOT FOUND IN LIBRARY 'fn DOSLIB fm' RC=4 
DMSDSL014E INVALID FUNCTION 'function' RC=24 
DMSDSL037E DISK 'mode' IS READ/ONLY RC=36 
DMSDSL046E NO LIBRARY NAME SPECIFIED RC=24 
DMSDSL047E NO FUNCTION SPECIFIED RC=24 
DMSDSL069E DISK 'mode' NOT ACCESSED RC=36 
DMSDSL070E INVALID PARAMETER 'parameter' RC=24 
DMSDSLOqRE NO PHASE NAME SPECIFIED RC=24 
DMSDSL104S ERROR Inn' BEADING FILE 'fn DOSLIB fm' FROM DISK RC=100 
DMSDSL105S ERROR Inn' WBITING FILE 'fn DOSLIB fm' ON DISK RC=100 
DMSDSL213W LIBRARY 'fn DOSLIB fm' NOT CREATED RC=4 

Section 2. CMS Commands 73 



DOSLKED 

DOSLKED 

Use the DOSLKED command in CMS/DOS to link-edit 
disks or object modules from DOS/VS private or 
libraries and place them in executable form in a 
(DOSLIB). The format of the DOSLKED command is: 

TEXT files from eMS 
system relocatable 
C~S phase library 

r -----, , r , , 
, DOSLKED , fn ,libna me, ((options ••• [) ]] 

Ifn , 
, , , 

I 
I , 
I 
I , 
I 
L-

fn 

L J 

r , 
IQ~~!S I 
, PRINT, 
'TER~ , 
L J 

I , , , , , , , 
-------------,-------~ 

specifies the name of the source file or module to be 
link-edited. CMS searches for: 

1. A CMS file with a filetype of DOSLNK 

2. A module in a private relocatable library (if IJSYSRL has 
been defined) 

3. A CMS file with a filetype of TEXT 

4. A module in the system relocatable library (if a mode was 
specified on the SET DOS ON command line) 

libname designates the name of the DOSLIB where the link-edited phase 
is to be written. The filetype is DOSLIB. If libname is not 
specified, the default is fn. The output filemode of the 
DOStIB is determined as follows: 

• If libname DOSLIB exists on a read/write disk r that 
filemode is used and the output is appended to it. 

• If fn DOSLNK exists on a read/write disk, libname DOSLIB is 
written to that disk. 

• If fn DOSLNK exists on a read-only extension of a 
read/write disk, libname DOStIB is written to the parent 
disk. 

• If none of the above apply, libname D~SLIB is written to 
your A-disk. 

QQtiQn§: Only one of the following options should be specified. If 
more than one is specified r only the first entry is used. 

QI~~ writes the DOS/VS linkage editor map produced by the DOSLKED 
command on your A-disk into a file with the filename of fn and 
a filetype of MAP. This is the default option. 

PRIN~ spools the linkage editor map to the virtual printer. 

74 IB~ V~/370 c~s Command and Macro Reference 



DOSLKED 

TERM displays the linkage editor map at your terminal. 

!Qig: All error messages are sent to the terminal as well as to the 
specified device. 

1. You can create a CMS file with a filetype of DOSLNK to contain 
DOS/VS 
linkage editor control statements and, optionally, C~S text files. 

2. If you want to link-edit a module from a private relocatable 
L~Drary, vou must issue an ASSGN command for the loqical unit 
SYSRLB and enter a DLBL command usinq a ddname of IJSYSRL to 
identify the library: 

assgn sysrlb c 
dlbl ijsvsrl c dsn reloc lib (sysrlb 

If you have defined a private relocatable library but do not want 
it to be searched, enter: 

assgn sysrlb ign 

to temporarily bypass .. 1. .... 

3. CMS TEXT files may also contain linkaqe editor control statements 
INCLUDE, PHASE, and ENTRY. The ACTION statement is iqnored when a 
TEXT file is link-edited. 

4. To access modules on the DOS/VS system residence volume, you must 
have specified the mode letter of the system residence on the SET 
DOS ON command line: 

set dos on z 

5. The search order that CMS uses to locate object modules to be 
link-edited is: 

a. The specified object module on the DOS/VS private relocatable 
library, if one is available 

b. eMS disks for a file with the specified filename and with a 
filetype of TEXT 

c. The specified object module on the DOS/VS system relocatable 
library, if it is available 

6. When a phase is added to an existinq DOSLIB, it is always written 
at the end of the library. If a phase that is beinq added has the 
same name as an existing phase, the DOSLIB directory is updated to 
point to the new phase. The old phase is not deleted, however; you 
should issue the DOSLIB command .ith the COBP option to compress 
the space. 

If you run out of space in a DOSLIB while you are executing the 
DOSLKED command, you should reissue the DOSLKED command specifying 
a different DOSLIB, or compress the DOSLIB before attemptinq to 
reissue the DOSLKED command. 

~INKA~~ ~~!~Qi ~QNT~Q1 ~TATEMEN~~: The CBS/DOS linkaqe editor recognizes 
and supports the DOS/VS linkage editor control statements A:TION, PHASE, 
ENTRY, and INCLUDE. These control statements are described in ~Q~L!~ 
~I21~m ~Qn1!Q! ~tal~!~n1§. The CMS/DOS linkaqe editor ignores: 

Section 2. CBS Coamands 75 



DO SLKED 

• The SVA operand of the PHASE statement 
• The F+address form for specifying origin on the PHASE statement 
• The BG and Fn operands of the ACTION statement 

The S-form of specifying the origin on the PHASE statement corresponds 
to the CMS user area under CMS/DOS. If a default PHASE statement is 
required, the origin is assumed to be S. The PBDY operand of the PHASE 
statement indicates that the phase is link-edited on a ~K page boundary 
under CMS/DOS as opposed to a 2K page boundary for DOS/VS. 

In DOS/VS, an ACTION CLEAR control statement clears the unused 
portion of the core image library to binary zeros. In DOS/VS the core 
image library has a defined size, while in CMS/DOS the CMS phase library 
varies in size, depending on the number of phases cataloged. Therefore, 
in CMS/DOS an ACTION CLEAR control statement clears the current buffers 
to binary zeros before loading them; CMS/DOS cann~t clear the entire 
unused portion of the CMS phase library because that portion varies as 
phases are added to and deleted from the CMS phase library. In CMS/DOS 
if you want your phases cleared you must issue an ACTION CLEAR control 
statement each time you add a phase to the CMS phase library. 

~I!~!~~ ~QITQ~ ~!RD ~y£~~: The input to the linkage editor can consist 
of six card types, produced by a language translator or a programmer. 
These cards appear in the following order: 

~~£Q !YE~ 
ESD 
SYM 
TJ"T 
RLD 
REP 
END 

~gf!.n!.tio!! 
External symbol dictionary 
Ignored by linkage editor 
Text 
Relocation list dictionary 
Replacement of text made by the programmer 
End of module 

CMS/DOS supports these six card types 
does. These card types are described 

in the same manner that DOS/VS 
in the Qq~L!§ §I§~~! ~2n!~2~ 

~iatg~~!!~§. 

When you use the TERM option of the DOSLKED command, the linkage editor 
map is displayed at the terminal. 

21011 INVALID OPERATION IN CONTROL STATEMENT 

This message indicates that a blank card was encountered in the 
process of link-editing a relocatable module. This message also 
appears in the MAP file. The invalid card is ignored and 
processing continues. 

DMSDLK001E NO FILENAME SPECIFIED RC=24 
DMSDLK003E INVALID OPTION 'option' RC=24 
DMSDLK006E NO READ/WRITE DISK ACCESSED RC=36 
DMSDLK001E FILE 'fn ft fm' IS NOT FIXED, SO-CHAR. RECORDS RC=32 
DMSDLK010E INVALID PARAMETER 'parameter' RC=24 
DMSDLK09qE CMS/DOS ENVIRONMENT NOT ACTIVE RC=40 
DMSDLK104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100 
DMSDLK105S ERROR 'nnw WRI~ING FILE 'fn ft fm' ON DISK RC=100 
DMSDLK210E LIBRARY 'library' IS ON READ-ONLY DISK RC=36 
DMSDLK2~5S ERROR 'nnn' ON PRINTER RC=100 

'"Ie. 
IV IB~ '!Tal 17J '"In 

lUI_'tV eMS Command and Reference 



DSERV 

DSERV 

Use the DSERV command in CMS/DOS to obtain information that is contained 
in DOS/VS private or system libraries. The format of the DSERV command 
is: 

r-
I 
I 

r 
I 

r , , 
Innl I 

, DSERV 

\ 
CD !PHASE {name 1111 I I [d2 ••• dn] [ (options ••• [) ]] 

I 
I 

CD 
RD 
SD 
PD 
TD 
ALL 

( 

L L .J .J 

RD Q~tiQ.m~: 
SD 

) 
r 1 

PD 'Q!~!i , 
TD ITERM I 
ALL IPRINTI 

L J 

[SORT] 

specifies that information concerning one or more types of 
directories is to be displayed or printed. The directory 
types that can be specified are: CD (core imaqe library), 
RD (relocatable library), SD (source statement library), 
PD (procedure library), TD (transient directory), and 
ALL (all directories). 

There is no default value. The private libraries take 
precedence over system libraries. 

PHASE name 

nn 

specifies the name of the phase to be listed. If the 
phasename ends with an asterisk, all phases that start with 
the letters preceding the asterisk are listed. This operand 
is valid only for CD. 

is the displacement within the phase where the version and 
level are to be found (the defaul t is 12) .. 

[ d 2 ••. dn ] indicates additional libraries whose directories are to be 
listed. (See Usage Note 1.) 

Q!~~ writes the output on your CMS A-disk to a file named DSERV MAP 
A5. This is the default value if TERK or PRINT is not 
specified. 

TERM displays the output at your terminal. 

PRINT spools the output to the system printer. 

SORT sorts the entries for each library alphamerically; otherwise, 
the order is the order in which the entries were cataloged. 

Section 2. CMS Commands 77 



DSERV 

1. You may specify more than one directory on DSERV command line; for 
example: 

dserv rd sd cd phase $$bopen (term 

displays the directories of the relocatable and source statement 
libraries, as well as the entry for the phase $$BOPEN from the core 
image directory. 

You can specify only one phasename or phasename* at a time, 
however. If you specify more than one PHASE operand, only the last 
one entered is listed. For example, if you enter: 

dserv cd phase cor* phase idc* 

the file DSERV MAP contains a list of all phases that begin with 
the characters IDC. The first phasename specification is ignored. 

2. If you want to obtain information from the directories of private 
source statement library directories, relocatable library 
directories, or core image library directories, the libraries must 
be assigned and identified (via ASSGN and DLBL commands) when the' 
DSERV command is issued. Otherwise, the system library directories 
are used. System directories are made available when you specify a 
mode letter on the SET DOS ON command line. 

3. The current assignments for logical units are ignored by the DSERV 
command; output is directed only to the output device indicated by 
the option list. 

When you use the ~ERM option of the DSERV command, the contents of the 
specified directory are displayed at your terminal. 

DMSDSV003E INVALID OPTION 'option' RC=24 
DMSDSV021W NO TRANSIENT DIRECTORY RC=4 
DMSDSV022W NO CORE IMAGE DIRECTORY RC=4 
DMSDSV023W NO RELOCATABLE DIRECTORY RC=4 
DMSDSV024W NO PROCEDURE DIRECTORY RC=4 
DMSDSV025W NO SOURCE STATEMENT DIRECTORY RC=4 
DMSDSV026W 'phase' NOT IN LIBRARY RC=4 
DMSDSV027E INVALID DEVICE 'nn' RC=24 
DMSDSV027W NO PRIVATE CORE IMAGE LIBRARY RC=4 
DMSDSV028W NO {PRIVATE1SYSTEM} TRANSIENT DIRECTORY ENTRIES RC=4 
DMSDSV047E NO FUNCTION SPECIFIED RC=24 
DMSDSV06SE 'option' OPTION SPECIFIED TWICE RC=24 
DMSDSV066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24 
DMSDSV070E INVALID PARAMETER 'parameter' RC=24 
DMSDSVOqSE INVALID ADDRESS 'address' RC=24 
DMSDSV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40 
DMSDSV105S ERROR 'nn' WRITING FILE 'DSERV MAP AS' ON DISK RC=24 
DMSDSV24SS ERROR 'nnn' ON PRINTER RC=100 

78 IBM VM/370 eMS Command ann Macro Reference 



EDIT 

EDIT 

Use the EDIT command to invoke the CMS editor to create, modify, and 
manipulate eMS disk files~ Once the editor has been invoked, you may 
only execute EDIT subcommands and EDIT macro requests, and enter data 
lines into the disk file. A limited number of C~S commands may be 
executed in the CMS subset mode, entered from the edit environment. 

You can return control to the CMS environment by issuing the EDIT 
subcommands FILE or QUIT. 

For complete details on the EDIT subcommand formats and usage, see 
"Sectio~ 3. EDIT Subcommands and Macros." For tutorial information on 
using the CMS editor, including examples, see the Y~LJIQ ~~~ ~§~~!§ 
Q~ig~. The format of the EDIT command is: 

r-
I Edit 
I 
I 
I 
I 
L-

fn ft 

fm 

-------------------------------------------.---------, 
fn ft [fm] [(options ••• [)]] I 

* , 
Q~!.iQ'!!§: 
(LRECL nn] 
[NODISP] 

I , , 

is the filename and filetype of the file to be created or 
edited. If a file with the specified filename and filetype 
does not exist, the eMS editor assumes that you want to create 
a new file, and after you issue the INPUT subcommand~ all data 
lines you enter become input to the file. If a file with the 
specified filename and filetype exists, you may issue EDIT 
subcommands to modify the specified file. 

is the filemode of the file to be edited, indicating the disk 
on which the file resides. The editor determines the filemode 
of the edited file as follows: 

~gi!.ing g~i§1ing fil~§: If the file does not reside on your 
A-disk or its extensions, you must specify fm. 

When you specify fm, the specified disk and its extensions are 
searched. If a file is found on a read-only extension, the 
filemode of the parent disk is saved; when you issue a FILE or 
SAVE subcommand, the modified file is written to the parent 
disk. 

If you specify fm as an asterisk (*) all accessed disks are 
searched for the specified file. 

~£~ati.!!g n~~ fi!~§: If you do not specify fm, the new file is 
written on your A-disk when you issue the FILE or SAVE 
subcommands. 

Section 2. C~S Commands 79 



EDI~ 

LRECL nn is the record length of the file to be created or edited. 
Use this option to override the default values supplied by 
the editor r which are determined as follows: 

~giting ~xis~ing ril~§: Existing record length is kept 
regardless of format. If the file has variable-length 
records and the existing record length is less than the 
default record lengthr the default record length is used. 

~£~ating Rg~ Fil~: All new files have a record length of 
RO r with the following exceptions: 

ril~iY£~ 
LISTING 
SCRIPTrVSBDATA 
FREEFORT 

LRE£1 
121 
132 

81 

The maximum record length supported by the editor is 160 
characters. 

~ODISP forces a 3270 display terminal into line (typewriter) mode. 
When the NODISP option is in effect, all subcommands that 
control the display as a 3270 terminal such as SCROLL, 
SCROLLUP r and FORMAT (and CHANGE with no operands) are made 
invalid for the edit session. 

Note: It is recommended that the NODISP option always be 
used when editing on a 3066. 

NEW FILE: 

EDIT: 

The specified file does not exist. 

The edit environment is entered. You may issue any valid EDIT 
subcommand or macro request. 

INPU~: 

The input environment is entered 
REPLACE or INPUT with no operands. 
accepted as input to the file. 

by issuing the EDIT subcommands 
All subsequent input lines are 

D~SEDI003E INVALID OPTION 'option' RC=24 
DMSEDI024E FILE 'EDIT CMSUTl fm' ALREADY EXISTS RC=28 
DMSEDI029E INVALID PARAMETER 'parameter' IN THE OPTION 'LRECL' FIELD RC=2~ 
DMSEDI044E RECORD LENGTH EXCEEDS ALLOWABLE MAXIMUM RC=32 
DMSEDI054E INCOMPLETE FILEID SPECIFIED RC=24 
DMSEDI076E ACTUAL RECORD LENGTH EXCEEDS THAT SPECIFIED RC=40 
DMSEDll04S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100 
DMSEDll05S ERROR Inn' WRITING FILE 'fn ft-fm' ON DISK RC=100 
DMSEDI117S ERROR WRITING TO DISPLAY TERMINAL RC=100 
DMSEDI132S FILE tfn ft fm' TOO LARGE RC=88 
DMSEDI143S UNABLE ~O LOAD SAVED SYSTEM OR LOAD MODULE RC=40 
DMSEDI144S REQUESTED FILE IS IN ACTIVE STATUS 

80 IB~ VM/370 CMS Command and Macro Reference 



ERASE 

ERASE 

Use the ERASE command to delete one or more eMS files from a read/write 
disk. The format of the ERASE command is: 

r -, 
I ERASE I fn ft fm [ (options ••• [) ]] Q£tiQ!!~: , 
I I * * * , 
I I r , , 
I I IType I , 
I I '!~iy£g, , 
I , L j , 
L-

fn is the filename of the file(~ to be erased. An asterisk coded 
in this position indicates that all filenames are to be used. 
fn must be specified, either with a name or an asterisk. 

ft is the filetype of the file(s) to be erased. An asterisk coded 
in this position indicates that all filetypes are to be used. 
This field must be specified, either with a name or an asterisk. 

fm is the filemode of the files to be erased. If this field is 
omitted, only the A-disk is searched. An asterisk coded in this 
position indicates that files with the specified filename and/or 
filetype are to be erased from all read/write disks. 

TYPE displays at the terminal the file identifier of each file 
erased. 

NQ!!R~ file identifiers are not displayed at the terminal. 

1. If you specify an asterisk for both filename and filetype you must 
specify both a filemode letter and number; for example: 

erase * * as 

2. To erase all files on a particular disk, you can use the FORMAT 
command to reformat it or access the disk using the ACCESS command 
with the ERASE option. 

3. If an asterisk is entered as the filemode, then either the filename 
or the filetype or both must be specified by name. 

Section 2. CMS Commands 81 



ER~SE 

If you specify the TYPE option, the file identification of each file 
erased is displayed. For example: 

erase oldfile temp (type 

results in the display: 

OLDFILE TEMP Al 
R; 

DMSERS002E FILE ['fn [ft [fm]]'] NOT FOUND RC=28 
DMSERS003E INVALID OPTION 'option' RC=24 
DMSERS031E DISK 'mode' IS READ/ONLY RC=36 
DMSERS04AE INVALID MODE 'mode' RC=24 
DMSERS054E INCOMPLE~E FILEID SPECIFIED RC=24 
DMSERS06QE DISK 'mode' NOT ACCESSED RC=36 
DMSERS010E INVALID PARAMETER 'parameter' RC=24 
DMSERS011E ERASE * * [*Imode] NOT ALLOWED RC=24 
DMSERS10QT VIRTUAL STORAGE CAPACITY EXCEEDED 

NQi§: You can invoke the ERASE command from the terminal, from an EXEC 
file, or as a function from a program. If ERASE is invoked as a function 
or from an EXEC file that has the &CONTROL NOMSG option in effect, no 
error message is issued. 

82 IBM VM/370 CMS command and Macro Reference 



ESERV 

ESERV 

Use the ESERV EtEC procedure in CMS/DOS to copy edited DOS/VS macros 
from system or private source statement E sublibraries to CMS disk 
files, or to list de-edited macros. The format of the ESERV command is: 

r-
, ESERV , fn 
'--

fn specifies the filename of the eMS file that contains the ESERV 
control statements; it must have a filetype of ESERV. The logical 
unit SYSIPT must be assigned to the disk on which the ESERV file 
resides. fn is also the filename of the LISTING and MACRO files 
produced by the ESERV program. 

1. The input file can contain any or all of the ESERV control 
statements as defined in Guide to the QQ~L!~ As§~mQ!~I. 

2. You must have a read/write A-disk accessed ~hen you uSe the ESERV 
command. 

3. To copy macros from the system source statement library, you must 
have entered the CMS/DOS environment specifying the mode letter of 
the DOS/VS system residence. To copy from a private source 
statement library, you must assign the logical unit SYSSLB and 
issue a DLBL command for the ddname IJSYSSL. 

4. The output of the ESERV program is directed (as in DOS/VS) to 
devices assigned to the logical units SYSLST and/or SYSPCH. If 
either SYSLST or SYSPCH is not assigned, the following files are 
created: 

!lni1 
SYSL ST 
SYSPCH 

Q:!!!12:!!i Filg 
fn LISTING mode 
fn MACRO mode 

where mode is the mode ie~~er of the disk on which the source file, 
fn ESERV resides. If fn ESERV is on a read-only disk, the files are 
written to your A-disk. 

You can override default assignments made by the ESERV EXEC as 
follows: 

• If you assign SYSIPT to TAPE or READER, the source statements 
are read from that device. 

• If you assign SYSLST or SYSPCH to another device, the SYSLST or 
SYSPCH files are written to that device. 

5. The ESERV EXEC procedure clears all DLBL definitions, except those 
entered with the PERM option. 

6. If you want to use the ESERV command in an EXEC procedure, you must 
use the EXEC command (because ESERV is also an EXEC). 

section 2. CMS Commands 83 



ESERV 

7. When you use the ESERV control statements PUNCH or DSPCH, the ESERV 
program may generate CATAL.S, END, or 1* records in the output 
file. When vou add a MACRO file containing these statements to a 
CKS macro library using the MACLIB command, the statements are 
ignored and are not read into the MACLIB member. 

None. The C~S ready message indicates that the ESERV program completed 
execution successfully. You may examine the SYSLST output to verify the 
results of the ESERV program execution. 

DMSERV001E NO FILENAME SPECIFIED RC=24 
DMSERV002E FILE 'fn ESERV' NOT FOUND RC=28 
DMSERV006E NO READ 1 WRITE DISK ACCESSED RC=36 
DMSERV027E INVALID DEVICE' device' FOR SYSxxx RC=28 
DMSERV037E DISK 'mode' IS READ ONLY RC=36 
DMSERV010E INVALID ARGUMENT ' argument' RC=24 
DMSERVOQ9E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40 

!Qi~: The ESERV EXEC calls other CMS commands to perform certain 
functions, and so vou may, on occasion, receive error messages that 
occur as a result of those commands. 

Non-eMS error messages produced by the DOS/VS ESERV program are 
described in the QYig~ iQ 1he ~OSLY[ !§§~mQ!~~. 

84 IBM VM/370 CMS Command and Macro Reference 



EXEC 

EXEC 

Use the E~EC command to execute one or more CMS commands or EXEC control 
statements contained in a specified EXEC file. The format of the EXEC 
command is: 

r 
fn [args ••• ] I [E~ec] 

L-
____________ . ________ -J 

[EXec] indicates that the EXEC command may be omitted if you are 
executing the EXEC procedure from the CMS command environment 
and have not issued the command SET IMPEX OFF. 

fn is the filename of a file containing one or more CMS commands 
and/or EXEC control statements to be executed. The filetype of 
the file must be EXEC and the file can have either fixed- or 
variable-length records with a logical record length not 
exceeding 130 characters. EXEC files can be created with the 
EDIT command or by a user program. EXEC files created by the 
CMS editor have, by default, variable-length, 80-character 
records. 

args are any arguments you wish to pass to the EXEC. The arguments 
are assigned to the special variables &1 through &30 in the 
order in which they appear in the argument list. 

"Section 5. EXEC Control statements" contains complete descriptions 
of EXEC control statements, special variables, and built-in functions. 
For information on designing EXEC procedures and examples of control 
word usage, see the Y~L1IQ CM~ User'§ Guigg. 

The amount of information displayed during the execution of an 
depends on the setting of the &CONTROL control statement, which 
default displays all eMS commands, responses, and error messages. 
addition, it displays nonzero return codes from CMS in the format: 

+++ R(nnnnn) +++ 

where nnnnn is the return code from the CMS command. 

EXEC 
by 
In 

For jetails, see the description of the &CONTROL control statement in 
"Section 5. EIEC Control Statements." 

Section 2. CMS Commands 85 



E1CEC 

If the E1CEC interpreter finds an error, it displays the message: 

DMSEXT012E ERROR IN EXEC FILE filename, LINE nnnn - description 

~h~ possible errors, and the associated return codes, are: 

!!g§££iE1i2!! 
FILE NOT FOUND 
&SKIP OR &GOTO ERROR 
BAD FILE FORMAT 
TO) MANY ARGUMENTS 
MAX DEPTH OF LOOP NESTING EXCEEDED 
ERROR READING FILE 
INVALID SYNTAX 
INVALID FORM OF CONDITION 
INVALID ASSIGNMENT 
MISUSE OF SPECIAL VARIABLE 
ERROR IN &ERROR ACTION 
CONVERSION ERROR 
TOO MANY TOKENS IN STATEMENT 
MISUSE OF BUILT-IN FUNCTION 
EOF FOUND IN LOOP 
INVALID CONTROL WORD 
EXEC ARITHMETIC UNDERFLOW 
EXEC ARITHMETIC OVERFLOW 
SPECIAL CHARACTER IN VARIABLE SYMBOL 

DMSEXC001E NO FILENAME SPECIFIED RC=2q 

Return 
~Q~§--
801 
802 
803 
80q 
805 
806 
801 
808 
809 
810 
~11 
812 
813 
81q 
815 
816 
817 
818 
819 

86 IBM VM/370 CMS Command and Macro Reference 



FETCH 

FETCH 

Use the FE!CH command in CMS/DOS to load an executable phase into 
storage for execution. The format of the FETCH command is: 

r 
1 FETch , phasename ((options ••• () ]] 

Q~.tiQ!!~: 
[ START] I , [COMP] 

I [ORIGIN hexloc] 
L- --------------------------------------------.--------~ 

phasename is the name of the phase to be loaded into virtual storage. 
CMS searches for the phase: 

• In a DOS/VS private core image library, if IJSYSCL has been 
defined 

• In eMS DOSLIBs that have been identified with the GLOBAL 
command 

• In the DOS/VS system core image library, if you specified 
the mode letter of the DOS/VS system residence on the SET 
DOS ON command line 

START specifies that once the phase is loaded into storage, 
execution should begin immediately. 

CaMP specifies that 
should contain 
Note 5.) 

when the phase is to be executed, 
the address of its entry point. 

register 1 
(See Usage 

ORIGIN hexloc 
fetches the program and loads it at the location specified by 
hexloc; this location must be in the CMS user area. The 
location, hexloc, is a hexadecimal number of up to eight 
characters. (See Usage Note 6.) 

1. If you do not use the START option, FETCH displays a message at 
your terminal indicating the name of the phase and the storage 
location of its entry point. At this time, you can set address 
instruction stops for testing. To continue, issue the START 
command to initiate execution of the phase just loaded. 

2 • The fetch routine is also invoked by supervisor 
instructions 1, 2, 4, or 65. The search order for 
phases is the same as listed above. 

call (SVC) 
executable 

3. If you want to fetch a phase from a private core image library, you 
must issue an ASSGN command for the logical unit SYSCLB and define 
the library in a DLBL command using the ddname IJSSYCL. For 
example: 

assgn sysclb c 
dlbl ijsyscl c dsn core image lib (sysclb perm 

Section 2. CMS Commands 87 



FETCH 

4. Phases fetched from DOS core image libraries must have been 
link-edited with ACTION REL. 

5. CMS uses the COMP option when it fetches the DOS PL/I compiler 
because that compiler expects register 1 to contain its entry point 
address. This option is not required when you issue the FETCH 
command to load your own programs. 

When CMS starts executing a phase that has COMP specified, the 
DMSLI07401 E~ECUTION BEGINS ••• message is not displayed. 

6. The ORIGIN option is used by the CMS/VSAM installation EXEC 
procedure to load nonsharable modules on a segment boundary. It is 
not required when you issue the FETCH command to load your own 
programs, unless you want to load them at a location other than 
20000. 

7 The FETCH command should only be used with the START command to 
execute a DOS program. It should not be used with GENMOD to 
attempt to create an executable CMS module file. 

DMSFET710I PHASE 'phase' ENTRY POINT AT LOCATION xxxxxx 

This message is issued when the 
indicates the virtual storage 
loaded. 

DMSLI07401 EXECUTION BEGINS ••• 

START option is not specified. It 
address at which the phase was 

This message is issued when the START option is specified; it 
indicates that program execution has begun. 

DMSFCH104S ERROR 'nn' READING FILE 'fn ft fm' FROM DISK RC=100 
DMSFCH10QS VIRTUAL STORAGE CAPACITY EXCEEDED RC=104 
DMSFCH113S DISK (cuu) NOT ATTACHED RC=100 
DMSFCH115E PHASE LOAD POINT LESS THAN 'address' RC=40 
DMSFCH411S INPUT ERROR CODE "nn" ON '{SYSRESISYSCLB}' R:=100 
DMSFCH777S DOS PARTITION TOO SMALL TO ACCOMMODATE FETCH REQUEST RC=104 
DMSFET003E INVALID OPTION 'option' RC=24 
DMSFET004E PHASE 'phase' NOT FOUND RC=28 
DMSFET029E INVALID PARAMETER 'parameter' IN THE OPTION 'ORIGIN' FIELD 

RC=24 
DMSFET070E INVALID PARAMETER 'parameter' RC=24 
DMSFET098E NO PHASE NAME SPECIFIED RC=24 
DMSFE~099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40 
DMSLI0055E NO ENTRY POINT DEFINED RC=40 

88 IBM VM/370 CMS Command and Macro Reference 



FILEDEF 

FILEDEF 

Use the FILEDEF command to establish data definitions for OS ddnames, to 
define files to be copied with the MOVEFILE command, or to override 
default file definitions made by the assembler and the OS language 
process~rs. The format of the FILEDEF command is: 

r 
IFIledef 
I 
I 
I 

ddname 
nn 

* 

r 

I {ddname} 1 nn 
, * 
i 
I 
I 

Terminal 

PRinter 
PUnch 
Reader 

r 

[ (option A optionD[) ]] 

r (optiona[j j j 

r '1 
I DISK Ifn ft Ifmll ( (0 ptionA optionB[)]] 
I IFILE gdna!tg I!!II , L L JJ 

rr ,r " , I DISK fn ft tlfm II {DSN ? 

QEilQn!: 
( PERM] 
r , 
I£!!!NQ~ , 
INOCHANGEI 
L J 

[RECFM a] 

I I 
LL 

DUMMY 

TA P( n ] 

CLEAR 

r LRECL nnnnn] 
r , 
IBLOCK nnnnn I 

FIL~ gg!!~!!!g I I !! I I DSN quaIl qua12 
.J L JJ 

( (option! optionBe; ]] 

[(optionA() ]] 

( (optionA optionC() ]] 

.Q12tio!!~: 
[KEYLEN nnn] 
r , 
I XTENT nnnnn I 
IXTENT 2Q I 
L 

[LIMCT nnn] 
[OPTCD a] 
(DISP r10D] 

J 

QEilQn~: 
.- , 
17TRACKI 
19TRACKI 
L J 

[TRTCH a] 
(DEN den] 

QEii~H!Q: 
r , 

IY~£!~~ I 
ILOWCASEI 
L J 

... } 

, I 

" " " " II 

" 11 

" " " , , 
I , , 

J 

i IBLKSIZE nnnnni 
I L .J 

[MEr1BER membername] 
[CONCAT] 
r , 

I 
I 
I 
I 

IDSORG 
I 
I 
L 

{
PS}' PO I 
DA I 

.J 

is the name by which the file is referred to in your 
program. The ddname may be from one to eight· alphameric 
characters, but the first character must be alphabetic or 
national. If a number nn is specified, it is translated to a 
FORTRAN data definition name of FTnnF001. An asterisk (*) may 
be specified with the CLEAR operand to indicate that all file 
definitions not entered with the PERM option should be 
cleared. 

Section 2. CMS Commands 89 



FILEDEF 

TERMIN~L is your terminal (terminal 1/0 must not be blocked). 

PRINTER is the spooled printer. 

PUNCH is the spooled punch. 

RE~DER is the spooled card reader (card reader 1/0 must not be 
blocked) • 

DISK specifies that the virtual 1/0 device is a disk. ~s shown in 
the format, you can choose one of two forms for specifying the 
DISK operand. Both forms are described in "Using the FILEDEF 
DISK Operand." 

DUMMY indicates that no real 1/0 takes place for a data set. 

T~P[ n ] is a magnetic tape. The symbolic number of the tape drive, n, 
can be 1, 2, 3, or 4, representing virtual units 181, 182, 
183, and 184, respectively. If n is not specified, FILEDEF 
uses the existing TAPn device for the specified ddname. TAPn 
defaults to T~P2 if there is no existing definition for the 
specified ddname, or if the existing device was not TAPn. 

CLE~R removes any existing definition for the specified ddname. 
Clearing a ddname before defining it ensures that a file 
definition does not exist and that any options previously 
defined with the ddname no longer have effect. 

r 

Q~iiQn§: Whenever an invalid option is specified for a particular 
device type, an error message is issued. Figure 8 shows valid 
options for each device type. 

I OPER~NDS , 
options IRE~DER, PUNCH, DISK , PRINTER , TERMINAL TAPn 

BLOC.K, BLKSIZE t X X 
CHANGE, NOCHANGE t X X 
CONCAT 
DEN 1 
DISP MOD X 
DS~RG 

KEYLEN 
LIMCT 
LOWCASE, UPCASE 1 
LRECL X X X 
MEMBER 
OPTCD 
PERM X X X 
RECFM X X 1 
TRTCH X3 
tTENT 
7'!'RACK, QTR~CK X 

lNo options may be necessary but all disk options are accepted. 
2This option is m~aningful only for BDAM files. 
3This option is for 7-track tapes only. 

DUKMYl 

1 
1 
1 

X 
X 
12 
12 

1 
1 
12 
X 
X 

12 

L- J 

Each Device Type of the Figure q. Valid File Characteristics for 
FILEDEF Command 

90 IBM VM/370 CMS Command and Macro Reference 



PER"I 

NOCHANGE 

RECF~ a 

FILEDEF 

retains the current definition until it either is 
explicitly cleared or is changed with a new FILEDEF 
command with the CHANGE option. If PERM is not 
specified, the definition is cleared when a FILEDEF * CLEAR command is executed .. 

merges the file definitions whenever a file definition 
already exists for a ddname and a new FILEDEF command 
specifving the same ddname is issued; the options 
associated with the two definitions are merged. Options 
from the original definition remain in effect unless 
duplicated in the new definition. New options are added 
to the option list. 

retains the current file definition, if one exists, for 
the specified ddname. 

is the record format of the file, where "a" can be one of 
the following: 

F 
FB 
V 
VB 
U 
FS,FBS 
VS,VBS 
A 
M 

fixed length 
fixed blocked 1 

va riable length 
variable blocked 1 

undefined. 
fixed length, standard blocks 
variable length, spanned records 
ASA print control characters2 
machine print control codes 2 

LRECL nnnnn is the logical record length (nnnnn) of the file, in 
bytes.. LRECL should not exceed 32160 bytes because of as 
restrictions. 

BLOCK nnnnn 
BLKSIZE nnnnn 

is the logical block size (nnnnn) of the file, in bytes. 
BLOCK should not exceed 32160 bytes because of as 
restrictions. If both BLOCK and BLKSIZE options are 
specified, the value of nnnnn for BLO~K is used and 
BLKSIZE is ignored. 

If a CMS file is fixed and has 80-byte C~S records, you 
should specify RECFM FB BLOCK 800 LRECL 80. Performance 
can be improved for CMS fixed files if the block size is 
a multiple of 800. 

KEYLEN nnn is the size (nnn) of the key (in bytes) • 
value accepted is 256. 

The maximum 

XTENT nnnnn is the 
file. 

number of records (nnnnn) in the extent for the 
The default is 50. The maximum value is 65535. 

LIMe:: nnn is the maximum number of extra tracks or blocks (nnn) to 
be searched. The maximum value is 256. 

IFB and VB should not be used with TERMINAL or READER devices. 
2A and "I may be used with any of the valid RECFM settings (for example, 

FA, FBA, VA, VBA, etc.) M should not be used with TERMINAL devices. 

Section 2. C~S Commands 91 



FILEDEF 

OPTCD a is the direct access search processing desired. The 
variable "a" may be any combination of up to three of the 
following: (A and R are mutually exclusive.) 

~Q9.g 
A 
E 
F 
R 

DASD Search 
ictuaI~evIce addressing 
Extended search 
Feedback addressinq 
Relative block addressing 

Note: The KEYlEN, tTENT, LIMCT, and OPTCD options should only be used 
with BDAM files. 

DISP MOD positions the read/write pointer after the last record in 
the disk file. This option should only be used for 
output files. 

MEMBER membername 

CONCAT 

DSORG un 
r , 

allows you to specify the name of a member 
partitioned data set; membername is the name 
member. 

of an OS 
of the PDS 

allows you to assign the same ddname to two or more OS 
macro libraries so that you can refer to them in a single 
GLOBAL command. 

Any file format options you specify in the first FILEDEF 
command line remain in effect for subsequently 
concatenated libraries. For a detailed description of 
concatenated macro libraries, see "Using OS Macro 
libraries" in VML170 CM§. !!.§~£.!.§. 2yidg .. 

is the data set organization: physical sequential CPS), 
partitioned (PO), or direct access CDA). 

, 1TRACK, is the tape setting. 
, qTRACK I 
L J 

TRTCR a is the tape recording technique for 7-track tapes. Use 
the following chart to determine the value of "a" for 
7-track tapes. 

DEN den 

YF.~!~~ 

LOWCASE 

r0- t 

I a Parit y Converter Translator I 
I I , 0 odd off off , , OC odd on off I , OT odd off on I , E even off off I 
I ET even off on , 
L-- J 

~he default value of TRTCH is ~C. 

is tape density: den can be 200, 556, 800, 1600, or 6250 
bpi (bits per inch). If 200 or 556 are specified, 7TRACK 
is assumed. If 800, 1600, or 6250 are specified 9TRACK is 
assumed. 

translates all terminal input data to uppercase. 

retains all terminal input data as typed in. 

92 IBM VM/370 CMS Command and Macro Reference 



FILEDEF 

1. If you do not issue a FILEDEF command for an os input or output 
file, eMS uses the ddname on the DCB macro to issue the following 
default file definition: 

FILEDEF ddname DISK FILE ddname Al 

See "Usage Notes" under the discussion of the ASSEMBLE command for 
information on the default file definitions made by the assembler. 

2. To identify DOS files for DOS program execution or to identify VSAM 
data sets for either OS or DOS program execution, you must use the 
DLBL command. 

3. A file definition established with the FILEDEF command remains in 
effect until explicitly changed or cleared. The system clears file 
definitions under the followi~g circumstances: 

• When the assembler or any of the language processors are 
invoked. (Note that FILEDEF definitions entered with the PERM 
option are not cleared.) 

• When a program abends or when you issue the Immediate command HX 
to halt command or program execution. 

4. The FILEDEF command does not supply default values for LRECL and 
BLKSIZE. As under OS, if DCB information is unavailable when a 
file is opened, an open error is issued for the file. The 
following chart summarizes the results at OPEN time, of specifying 
LRECL and BLKSIZE options. 

r--­
BLKSIZE 

Not 
Specified 

Specified 

Not 
Specified 

Specified 
L---

LRECL 

Not 
Specified 

Results I , 
--------f 

IIf the input file exists on disk, the , 
litem length (or item length +4 for vari- , 
,able-length records) becomes the BLKSIZE.I 

--------I 
Not ILRECL=BLKSIZE (or LRECL=BLKSIZE-4, for , 

Specified Ivariable-length records). 

Specified IBLKSIZE=LRECL (or BLKSIZE=LRECL+4, for 
Ivariable-length records) e 

Specified !The values specified are used. 

, , 
I 

_________________________________________________________ -J 

If V or VB is specified for RECFM, LRECL must be at least 4 bytes 
less than BLKSIZE. 

DOS sequential (SAM) files do not contain BLKSIZE, LRECL, or RECFM 
specifications. These options must be specified by a FILEDEF 
command or DCB statement if OS macros are used to access DOS files. 
Otherwise the defaults, BLKSIZE=32760 and RECFM=U, are assumed. 
LRECL is not used for RECFM=U files. 

5. There is an auxiliary processing option for FILEDEF that is only 
valid when FILEDEF is executed by an internal program call: this 
option cannot be entered as a terminal command. The option, 
AUXPROC addr, allows an auxiliary processing routine to rece1ve 
control during I/O operations. For details on h~w to use this 
option of the FILEDEF command, see !~LJIQ ~y§~gm fI~gIg!m~I~§ 
~gigg· 

Section 2. CMS Commands 93 



FILEDEF 

6. If a FILEDEF command is issued with a DDNA~E that matches a current 
DDNA~E defined by a previous FILEDEF command and the devices are 
the same, the filename, filetype, fi1emode, and options previously 
specified remain in effect, unless respecified by the new FILEDEF 
command. If the devices are not the same, all previous 
specifications are removed. 

7. If the FILEDEF command is entered with no operands r a list of 
current 1efinitions is displayed. 

There are two general forms for specifying the DISK operand in a FILEDEF 
command. If you specify the first form: 

FILEDEF ddname DISK fn ft (fm] 

fn and ft (filename and filetype) are assumed to be a CKS fi1eid. If fm 
is the filemode of an as disk, fn and ft are assumed to be the only two 
qualifiers of an as data set name. If fm is specified as an asterisk, 
(*) then all disks are searched until a file with matching fn and ft is 
found. 

You cannot use this form unless the OS data set name or DOS file-id 
conforms to the as naming convention (1- to a-byte ~ua1ifiers separated 
by periods, to a maximum of 44 characters, including periods). Also, 
the data set name can have only two qualifiers; otherwise, you must use 
the DSN ? or DSN qua1l ••• form. For example, if the OS data set name 
or DOS fi1e-id is TEST.SAMPLE.MAY, you enter: 

FILEDEF MINE Bl DSN TEST SAMPLE MAY 

-- or --

FILEDEF KINE Bl DSN ? 
TEST. SAMPLE. MAY 

If the OS data set name or DOS fi1e-id is TEST.SAMPLE, then you may 
enter: 

FILEDEF KINE DISK TEST SAMPLE B1 

The second form of the DISK operand is used only with OS data sets 
and DOS files: 

r , .. , 
FILEDEF ddname IDISK fn ft I Ifml {DSN ? } 

I FI1~ gdnam~f IAll DSN qua1l [qua12 ••• ] 
L .J L .J 

This form allows you to to enter OS and DOS file identifications that do 
not conform to as data set naming conventions. The DSN operand 
corresponds to the DSN parameter on the OS DD (data definition) 
statement. There are three ways you can specify this form: 

• FILEDEF ddname DISK fn ft fm DSN qua1l (qua12 ••• ] 

This form of the FILEDEF command associates the CKS filename and 
filetype you specify with the as data set name or DOS file-id specified 
following the DSN operand. Once it is defined, you can refer to the OS 
data set name or DOS fi1e-id by using the eMS filename and filetype. If 
you omit DISK, filename, filetype, and filemode, the d9fau1t values are 
FILE ddname Al. 

94 IBK V~/370 CMS Command and Macro Reference 



FILEDEF 

• FILEDEF ddname DSN ? 

This form of the FILEDEF command allows you to specify the OS data 
set name or DOS file-id interactively. Using this form, you can 
enter an OS data set name or DOS file-id containing eBbedded special 
characters such as blanks and hyphens. If you use this form, the 
default filename and filetype for your file, FILE ddname, is the eMS 
filename and filetype associated with the OS data set name or DOS 
file-ide The filemode for this form is always the default, A1. 

To use the interactive DSN operand, you key in DSN 1; CMS then 
requests that you enter the as data set name or DOS file-id exactly 
as it appears in the data set or file. Do not oBit the periods that 
separate the qualifiers of an OS data set name, but do not insert 
periods where they do not appear. 

quall[ .guaI2 ••• 1 

where quall.quaI2... are the qualifiers of the JS data set 
DOS file-ide When you use this form, you must code the 
separating the qualifiers • 

name or 
periods 

• FILEDEF ddname mode DSN quaIl (quaI2 ••• ] 

This form allows you to specify the as data set name or DOS file-id 
explicitly. (This form can be used for DOS file-ids only if they 
comply with the as naming convention of 1- to 8-byte qualifiers 
separated by periods, to a maximum of 44 characters, including 
periods.) Again, the default value for the filename and filetype is 
FILE ddname. When you use this form, you must omit the periods that 
separate the qualifiers of the os data set name. For example, for an 
os data set or DOS file named MY.FILE.IN, you enter: 

FILEDEF ddname Bl DSN MY FILE IN 

All of these forms have many variations, as is apparent from the 
command format. 

ddnamel device 1 rfilenamel filetypel filemodel [ da tasetnam e) ] 

ddnameN deviceN [filenameN filetypeN filemodeN [ da tasetname]] 

A list of current definitions is displayed if the FILEDEF command 
is entered with no operands. 

DMSFLD069I DISK 'mode' NOT ACCESSED 

The specified disk is not accessed; the file definition remains in 
effect. You should access the disk before you attempt to read or 
write the file. 

DMSFLD220R ENTER DATA SET NAME: 

A FILEDEF command with the DSN 1 operand was entered. Enter the 
exact OS or DOS file identification, including embedded periods and 
blanks. 

Section 2. CMS Commands 95 



FILEDEF 

DMSFLD 704I INVALID CLEAR REQUEST 

A CLEAR request was entered for a file definition that does not 
exist; no action is taken. 

DMSSTT22~I USER LABELS BYPASSED ON DATA SET 'data set name' 

This message is displayed when you issue a FILEDEF command for an 
OS data set that contains user labels. The message is displayed the 
first time you issue the FILEDEF command after accessing the disk 
on which the data set resides. 

DMSFLD003E INVALID OPTION 'option' RC=24 
DMSFLD023E NO FILETYPE SPECIFIED RC=24 
DMSFLD027E INVALID DEVICE 'device name' RC=24 
DMSFLD02QE INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD 

RC=24 
DMSFLD035E INVALID TAPE MODE RC=24 
DMSFLD050E PARAMETER MISSING AFTER DDNAME RC=24 
DMSFLD065E 'option' OPTION SPECIFIED TWICE RC=24 
DMSFLD066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24 
DMSFLD070E INVALID PARAMETEF 'parameter' RC=24 
DMSFLD221E INVALID DATA SET NAME 'data set name' RC=24 
DMSFLD224E FILEID ALREADY IN USE RC=24 

96 IBM VM/370 eMS Command and Macro Reference 



FORMAT 

FORMAT 

Use the FORMAT command to: 

• Initialize a virtual disk (minidisk) for use with CMS files 
• Count or reset the number of cylinders on a virtual disk 
• write a label on a virtual disk 

r 

The format of the FORMAT command is: 

----------------------------------------------------------, 
F:)RMAT cuu mode [nocvl] [ (options ••• [) ]] 

QEtiQns: 
r , 
,Label , 
, Recompl 
L .J 

, , , , , , , , _________________________________ -J 

cuu is the virtual device address of the virtual disk to be 
formatted. 

mode 

nocyl 

Valid addresses are 001 through 5FF for a virtual machine in 
basic control mode and 001 through FFF for a virtual machine in 
extended control mode. 

is the filemode letter to be assigned to the specified device 
address. Valid filemode letters are A, B, C, D, E, F, G, Y, and 
z. This field must be specified. If any other disk is accessed 
at mode, it is released. 

is the number of cylinders to be made available for use. All 
available cvlinders on the disk are used if the number specified 
exceeds the actual number available. 

LABEL writes a label on the disk without formatting the disk. A 
six-character label is written on cylinder 0, track 0, record 
3 of the virtual disk. A prompting message requests a 
six-character disk label (fewer than six cbaracters are 
left-justified and blanks padded). 

RECOMP changes the number of cylinders on the disk that are available 
to the user to the actual number of minidisk cylinders or to 
the number specified by noeyl, whichever is less. If nocyl is 
not specified, all cylinders are used. 

,. Yoa ean use the FORMAT command with any virtual 3330, 3340, 3350, 
or 2319 device. 

2. When vou do not specify either the RECOMP or LABEL option, the disk 
area is initialized by writing a device-dependent number of records 
(containing binary zeros) on each track. Any previous data on the 

Section 2. CMS Commands 97 



FORMAT 

disk is erased. A read after write check is made as the disk is 
formatted. For example: 

format 191 a 25 

initializes 25 cylinders of the disk located at virtaal address 191 
in CMS format. The command: 

format 192 b 25 (recomp) 

changes the number of cylinders available at virtual address 192 to 
25 cylinders, but does not erase any existing data. To change only 
the label on a disk, you can enter: 

format 193 c (label) 

Respond to the prompting message with a six-character label. 

3. If you want to format a minidisk for VSAM files, you must use the 
IBCDASDI program. If you want to format an entire disk, you may 
use any OS or DOS disk initialization program. 

4. Because the FORMAT command requires heavy processor utilization and 
is heavily 1/0 bound, system performance may be de~raded if there 
are many users on the system when you use FORMAT. 

5. If the FORMAT command with the RECOMP option fails and eMS issues 
message DMSFOF214W, "CANNOT RECOMPUTE WITHOUT LOSS OF DATA. NO 
CHANGE.", query your A-disk to determine the number of unallocated 
cylinders. If the number of cylinders seems adequate, it is 
possible that some of the allocated space is at the end of the disk 
and is not available to the FORMAT command. Issue the command: 

copy * * a = = = (rep oldd 

followed by the FORMAT command with the RECOMP option. 

DMSFOR603R FORMAT WILL ERASE ALL FILES ON DISK 'mode(cuu) I. DO YOU WISH 
TO CONTINUE? (YES I NO) : 

You have indicated that a disk area is to be initialized: all 
existing files are erased. This message gives you the option of 
canceling the execution of the FORMAT command. Reply yes or no. 

DMSFOR605R ENTER DISK LABEL: 

You have requested that a label be written on the disk. 
one- to six-character label. 

DMSFOR705I DISK REMAINS UNCHANGED. 

Enter a 

The response to message DMSFOR603R was NO or a null line was 
entered. 

DMSFOR732I 'nnn' CYLINDERS FORMATTED ON DISK 'mode(cuu)' 

The format operation is complete. 

IBM tTU'")"''' v fit.J 1 V Command 
__ !I 

auu Macro Reference 



FORMAT 

DMSFOR133I FORMATTING DISK 'mode' 

The disk represented by mode letter 'mode' is being formatted. 

mode (CGu): nnnn FILES, nnnnn REC IN USE, nnnnn LEFT (of nnnnn) F nn% 
FULL (nnn CYL), type, R/W 

This message provides the status of a disk when you use the RECOMP 
option. The response is the same as when you issue the QUERY 
command with the DISK operand. 

DMSFOR003E INVALID OPTION 'option' RC=24 
DMSFOR017E INVALID DEVICE ADDRESS 'cuu' RC=24 
DMSFOR028E NO DEVICE SPECIFIED RC=24 
DMSFOR037E DISK 'moder (cuu)]' IS READ/ONLY RC=36 
DMSFORO~8E INVALID MODE 'mode' RC=24 
DMSFOR06 QE DISK 'mode' NOT ACCESSED RC=36 
DMSFOR010E INVALID PARAMETER 'parameter' RC=24 
DMSFOR113S DEVICE 'cuu' NOT ATTACHED RC=100 
DMSFOR11~S 'cuu' IS AN UNSUPPORTED DEVICE TYPE RC=88 
DMSFOR125S PERMANENT UNIT CHECK ON DISK 'mode(cuu)' RC=100 
DMSFOR126S ERROR {READIWRITJING LABEL ON DISK 'mode(cuu)' RC=100 
DMSFOR214W CANNOT RECOMPUTE WITHOUT LOSS OF DATA. NO CHANGE RC=8 

Section 2. CMS Commands 99 



GENDIRT 

GENDIRT 

Use the GENDIRT command to fill in a CMS auxiliary directory. The 
auxiliary directory contains the name and location of modules that would 
otherwise significantly increase the size of the resident directory, 
thus increasing search time and storage requirements. By using GENDIRT 
to fill in an auxiliary directory, the file entries for the given 
command are loaded only when the command is invoked. The format of the 
GENDIRT command is: 

r ---_.-, 
I GENDIRT directoryname [ target mode ] I L-__ _ _______________________-J 

directory name 

targetmode 

is the entry point of the auxiliary directory. 

is the filemode letter of the disk containing the modules 
referred to in the directory. The letter is the filemode of 
the disk containing the modules at execution time, not the 
filemode of the disk at creation of the directory. At 
directory creation time, all modules named in the directory 
being created must be on either the A-disk or a read-only 
extension; that is, not all disks are searched. The default 
value for targetmode is S (system disk). It is your 
responsibility to determine the usefulness of this operand at 
your installation, and to inform all users whose programs are 
in auxiliary directories exactly what filemode to specify on 
the ACCESS command. 

HQi~: For information on creating auxiliary directories and for further 
requirements for using the targetmode option, see the !~LJIQ ~!§1~m 

R£Qg£~mm~£~2 ~Yig~· 

DMSGND002W FILE 'fn ft fm' NOT FOUND RC=4 
DMSGND021E ENTRY POINT 'name' NOT FOUND RC=40 
DMSGND022E NO DIRECTORY NAME SPECIFIED RC=24 
DMSGND070E INVALID PARAMETER 'parameter' RC=24 

100 IBM VM/370 CMS Command and Macro Reference 



GENMOD 

GENMOD 

Use the GEN~OD command to generate a nonrelocatable (MODULE) file on a 
eMS disk. The format of the GEN~OD command is: 

r 
I r , 
I Genmod [fn r MODULE I fm I ]] 

I !l I 
( (options ... [) ]] 

I 
I 
I 
I 

fn 

L .J 

Q£iiQ!!§: [ FROM entryl ] [ TO entry2 ] 
r , r , r , 
,MAP I ISTR I IQ~ I 
I NOMAPI INOSTRI I DOSI 
L .J L J 1 ALLI 
[ SYSTEM] L J 

_______ -1 

is the filename of the MODULE file being created. If fn 
specified, the file created has a filename equal to that 
first entry point in the LOAD MAP. 

is not 
of the 

fm is the filemode of the MODULE file being created. If fm is not 
specified, ~1 is assumed. 

QQtiQn§: If conflicting options are specified, the last one entered 
is used. 

FROM entry1 specifies an entry point or a control section name that 
represents the starting virtual storage location from 
which the nonrelocatable copy is generated. 

T:> entry2 

NOMAP 

STR 

specifies an entry point or a control section name that 
represents the ending virtual storage location from which 
the nonrelocatable copy is generated. 

includes a load map in the MODULE file, excluding 
transient modules. The load map is a variable-length 
record placed at the end of the load module. 

specifies that a load map is not to be contained in the 
MODULE file. 

~Qig: A module generated with the N)MAP option can later 
be invoked as a command; that is, it can be invoked if 
its filename is entered. However, subsequent use of the 
eMS LO~DMOD command to load the module may not produce 
desirable results. Without a load map, adequate 
information is not available for the START command to 
execute properly or for issuing another GENMOD command 
after debugging has been performed. 

invokes the eMS storage initialization routine when the 
MODULE file is subsequently loaded (see the LOADMOD 
command description). This routine frees any storage 
remaining from a previous program. STR is the default 
setting if the MODULE is to be loaded at tbe beginning of 
available user storage. If you have issued eMS SET 
RELP~GE ON, STR causes eMS storage initialization to 
release the remaining pages of storage. 

Section 2. eMS Commands 101 



GENMOD 

NOSTR 

SYSTEM 

Q~ 

DOS 

ALL 

!21g: If a program running in the user area calls a 
transient routine that was generated with the 5TR option, 
the user area storage pointers will be reset. This reset 
condition could cause errors upon return to the original 
program (for example, when OS GETMAIN/FREE~AIN macros are 
issued in the user program) • 

indicates that, when the MODULE is loaded, free storage 
pointers are not reset for any storage currently in use. 
NOSTR is the default setting if the MODULE file is to be 
loaded at a location other than the default load address. 

indicates that when the MODULE file is subsequently 
loaded, it is to have a storage protect key of zero. 

indicates that the program may contain ~S macros and, 
therefore, should be executed only when eMS/DOS is not 
active. 

indicates that the program contains DOS macros; CMS/DOS 
must be active (that is, SET DOS ON must have been 
previously invoked) in order for this program to execute. 
(See Usage Note 2). 

indicates that the program: 

• Contains CMS macros and must be capable of running 
regardless of whether CMS/DOS is active or not 

• Contains no DOS or as macros 

• Preserves and resets the DOS flag in the eMS nucleus 

• Does its own setting of t~e DOS flags 

!Q1~: The ALL option is primarily for use by eMS system 
programmers. CMS system routines are aware of which 
environment is active and will preserve and reset the DOS 
flag in the CMS nucleus. 

1. The GENMOD command is usually invoked following the LOAD command, 
and possibly the INCLUDE command. For example, the sequence: 

load myprog 
genmod testprog 

loads the file MYPROG TEXT into virtual storage and creates a 
nonrelocatable load module named TESTPROG MODULE. TESTPROG may now 
be invoked as a user-written command from the C~S environment. 

2. The execution of MODULE files created from D~S programs is not 
supported and may give undesirable results. GENMOD is intended for 
use with the LOAD command, not the FETCH command. Storage 
initialization for FETCH is different from that for LOAD. 

3. Before the file is written, undefined symbols are set to location 
zero and the common reference control section is initialized. The 
undefined symbols are not retained as unresolved symbols in the 
MODULE file~ Therefore, once the ~ODULE file is generated, those 
references cannot be resolved and may cause undesirable results 
during execution. 

~02 IB~ VM/37Q eMS Command and Macro Reference 



GENMOD 

4. If you load a program into the transient area you should issue the 
GENMOD command with the NOSTR option. Be careful if the program 
uses as GETMAIN or FREEMAIN macros because your program, plus the 
amount of storage obtained via GETMAIN, cannot exceed two pages 
(8192 bytes). It is recommended that you do not use GETMAIN macros 
in programs that execute in the transient area. 

S. A transient module (loaded with the ORIGIN TRANS option) that was 
generated with the SYSTEM option is written on disk as a 
fi~ed-Iength record with a maximum length of 8192 bytes. 

6. If you are using FORTRAN under CMS, use FROM MAIN as an option to 
avoid undesirable results. 

7. If FROM is not specified in the GENMOD command, the load point of 
the module generated (the beginning virtual storage location) is 
the address of fn, if fn is an external name occurring in the 
loaded text; otherwise, it is the first CSECT in the load map. The 
entry point for execution is determined according to the hierarchy 
outlined in Usage Note 4 of the LOAD command and is not necessarily 
the same as the load point. If your loaded text had external 
references or library statements ahead of the first CSECT, your 
GENMOD command must name the load point explicitly as fn or as the 
FROM entry operand to load your program properly. 

8. If you are using PLII under CMS, use FROM PLISTART as an option to 
avoid undesirable results. 

None. 

DMSMOD003E INVALID OPTION 'option' RC=24 
DMSMJDOOSE NO {FROMITO} ENTRY SPECIFIED RC=24 
DMSMOD021E ENTRY POINT 'name' NOT FOUND RC=40 
DMSMOD032E INVALID FILETYPE 'ft' RC=24 
DMSMOD031E DISK 'mode' IS READ/ONLY RC=36 
DMSMOD040E NO FILES LOADED RC=40 
DMSMOD010E INVALID PARAMETER 'parameter' RC=24 
DMSMJDO~4E INVALID USE OF !FROM! AND !TO! OPTIONS RC=24 
DMSMOD10SS ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100 
DMSSTT048E INVALID MODE 'mode' RC=24 
DMSSTT069E DISK 'mode' NOT ACCESSED RC=36 

Section 2. CMS Commands 103 



GLOBAL 

GLOBAL 

Use the GLOBAL command to identify which CMS or CMS/DOS libraries are to 
be searched for macros, copy files, subroutines, or DOS executable 
phases when processing subsequent CMS commands. The format of the 
GLOBAL command is: 

r -----, 
, GLobal , 

{ 

M ACLIB } (libname 1 ••• Ii bnam e8] 
'IXTLIB 

, , , , DOSLIB 
L -.I 

MACLIB precedes the specification of macro libraries that are to be 
searched for macros and copy files during the execution of 
language processor commands. The macro libraries may be CMS 
files or OS data sets. If you specify an OS data set, a 
FILEDEF command must be issued for the data set before you 
issue the GLOBAL command. 

TXTLIB precedes the specification of text libraries to be searched 
for missing subroutines when the LOAD or INCLUDE command is 
issued, or when a dynamic load occurs (that is, when an OS 
SVC 8 is issued). 

Note: Subroutines that are called by dynamic load should (1) 
contain only VCONs that are resolved within the same text 
library member or (2) be resident in storage throughout the 
processing of the original CMS LOAD or INCLUDE command. 
Otherwise, the entry point is unpredictable. 

DO SL IB precedes the specification of DOS simulated core image 
libraries (that is, CMS/DOS phase libraries) to be searched 
for missing phases. This operand does not apply to system 
or private core image libraries residing on DOS/VS disks. 
DOSLIB can be specified regardless of whether the CMS/DOS 
environment is active or not. 

libnamelooo are the filenames of up to eight libraries. Filetypes must 
be MACLIB, TXTLIB, and DOSLIB, accordin~ly. The libraries 
are searched in the order in which they are named. If no 
library nam~s are specified, the command cancels the effect 
of any previous GLOBAL command. 

1. A GLOBAL command remains in effect for an entire C~S session unless 
it is explicitly canceled or reissued. If a program failure forces 
yocr to IPL CMS again, you must reissue the GLOBAL command. 

2 • There are no default libraries; 
libraries during every terminal 
command(s} in your PROFILE EXEC. 

if you wish to 
session, place 

i04 IB~ VMi370 eMS Command and Macro Reference 

use the same 
the GLOBAL 



GLOBAL 

3. If you want to use an os library during the execution of a language 
processor, you can issue a GLOBAL command to access the library, as 
long as you have defined the library via the FILEDEF command. If 
you want to use that library for more than one job, however, you 
should use the PERM option on the FILEDEF command, since the 
language processors clear nonpermanent file definitions~ 

4. You can find out what libraries have been specified by issuing the 
QUERY command with the MACLIB, TXTLIB, DOSLIB, or LIBRARY operands. 
(The LIBRARY operand requests a display of all libraries.) 

5. For information on creating and/or manipulating CMS libraries, see 
the discussion of the MACLIB, TXTLIB, and DOSLIB commands. 

None. 

DMSGLB002W FILE 'fn ft' NOT FOUND RC=28 
DMSGLB014E INVALID FUNCTION 'function' RC=24 
DMSGLB047E NO FUNCTION SPECIFIED RC=24 
DMSGLB108S MORE THAN 8 LIBRARIES SPECIFIED RC=88 

Section 2. CMS Commands 105 



INCLUDE 

INCLUDE 

Use the INCLUDE command to read one or more TEXT files (containing 
relocatable object code) from disk and to load them into virtual 
storage, establishing the proper linkages between the files. A LOAD 
command must have been previously issued for the INCLUDE command to 
produce desirable results. For information on the CMS loader and the 
handling of unresolved references, see the description of the LOAD 
command. The format of the INCLUDE command is: 

r -----, 
, INclude , fn... [(options ••• [) ]] 

2E1i2.ll§: r , r , r , 
10RIGIN {heXlOc}I , , , , , , , 

I , 
I 
I 
L-

r ... 
1!1!R , 
, NOMAP, 
L J 

r ... 

'1I!!~ , 
,NOLIBEI 
L J 

,CLEAR , ',RESET {en*try }" 
'1!OCL£lARI 
L .I L .I 

r , r ... r 
ITYPE I lIN! , 'R~R 

, TRANS I 
L ~ 

1 r 1 

I 
'NOTIR~' ,NOINV I ,N:J REP, 

I~!!!Q I 
,NOAUTO, 

L .I L J L J L J 

r 1 

[START] ( SAME] '!H!R , 
,NODUP, 
L J 

fn .•. are the names of the files to be loaded into storage. Files 
must have a filetype of TEXT and consist of relocatable object 
code such as that produced by the :JS language processor. If a 
GLOBAL T~TLIB command has identified one or more TXTLIBs, fn may 
indicate the name of a TITLIB member. 

Q2~iQn§: If options were specified with a previous LJAD or INCLUDE 
command, these options (with the exception of CLEAR and ORIGIN) 
remain set if SAME is specified when INCLUDE is issued. Otherwise, 
the options assume their default settings. If conflicting options 
are specifj,ed, the last one entered is in effect. 

CLEAR clears the load area in storage to binary zeros before the 
files are loaded. 

RQ£~~~g does not clear the load area before loading. 

RESET {en;ry} 

• 

• 

resets the execution starting point previously set by a LOAD 
or INCLUDE command. If RESET entry is specified, the starting 
execution address is reset to the specified location; 
otherwise, the included loader input is searched for control 
statements. The entry point is then selected according to the 
priorities outlined in Usage Note 4 for the LJAD command. If 
the included loader input does not contain control statements, 
a default entry point is selected as follows: 

If RESET * was 
section loaded 
point. 

specified, the 
by the INCLUDE 

first byte of the 
command becomes the 

first control 
default entry 

If the RESET option was omitted, the entry point 
execution starting point previously set by a 
command. 

defaults to the 
LJAD or INCLUDE 

106 IB~ V~/370 eMS Command and Macro Reference 



INCLUDE 

OR IGIN {hexloc} 
{TRANS 1 
begins loading the program at the location specified by hexloc. 
The variable, hexloc, is a hexadecimal number of up to six 
characters. If this option is not specified, loading begins at 
the next available storage location. INCLUDE does not overlay 
~ny previously loaded files unless this option is specified and 
the address given indicates a location within a previously loaded 
object module. TRANS indicates that the file is loaded into the 
transient area. 

~~g adds information to the load map. 

NOMAP does not add any information to the load map. 

""YPE displays the load map of the files at the terminal, as 
writing it on the A-disk. This option is valid only if 
specified or implied. 

well as 
MAP is 

!Q!!R~ does not display the load map at the terminal. 

IN! writes invalid card images in the LOAD MAP file. 

NOINV does not write invalid card images in the LOAD MAP file. 

E~R writes Replace (REP) statement images in the LOAD MAP file. See 
the explanation of the CMS LOAD command for a description of the 
R eolace (REP) sta temen t. 

NOREP suppresses the writing of Replace (REP) statements in the LOAD 
~AP file. 

searches your accessed virtual disks for TEXT file names to 
resolve undefined references. 

NOAU~O suppresses automatic resolution of undefined references as TEXT 
file names. 

allows TVTLIB members to be loaded and searches library 
directories for external references not resolved in the loaded 
text. Text libraries to be searched must have been previously 
defined by a GLOBAL command. 

NOLlBE suppresses all loading of TITLlB members. 

START begins execution after loading is completed. 

SAME retains the same options (except ORIGIN and CLEAR) that were used 
by a previous INCLUDE or LOAD command. otherwise, the default 
setting of unspecified options is assumed. If other options are 
specified with SAME, they override previ~usly specified options. 

NODU? 

(See Usage Note 1.) 

displays warning messages at 
duplicate CSECT is encountered 
CSECT is not loaded. 

your virtual console when a 
during processing. The duplicate 

does not display warning messages at your virtual console when 
duplicate CSECTs are encountered during processing. The 
du?licate CSECT is not loaded. 

Section 2. eMS Commands 107 



INCLUDE 

1. If you have specified several nondefault options on the LOAD 
command, and you want those options to remain in effect, you should 
use the SAME option when you issue the INCLUDE command; for 
example: 

include main subi data (reset main map start) 

brings the files named MAIN TEXT, SUBI TEXT, and DATA TEXT into 
virtual storage and appends them to files that were previously 
loaded. Information about these loaded files is added to the LOAD 
MAP file. Execution begins at entry point MAIN. 

load myprog (nomap nolibe norep) 

include mysub (map same) 

During execution of the LOAD command, the file named MYPROG TEXT is 
brought into real storage. The following options are in effect: 
NOMAP, NOLIBE, NOREP, NOTYPE, INV, and AUTO. During execution of 
the INCLUDE command, the file named MYSUB TEXT is appended to 
MYPROG TEXT. The following options are in effect: 

MAP, NOLIBE, NOREP, NOTYPE, INV, AUTO 

2. When the INCLUDE command is issued, the loader tables are not 
reset. 

3. For additional information on the CMS loader, see the discussion of 
the LOAD command, or consult !~Ll1Q ~~~ Q§g~~§ ~Yigg. 

DMSLI0740I EXECUTION BEGINS ••• 

START was specified with INCLUDE and the loaded program has begun 
execution. Any further responses are from the program. 

INVALID CARD - xxx ••• xxx 

INV was specified with LOAD and an invalid card has been found. 
The message and the contents of the invalid card (xxx ••• xxx) are 
listed in the LOAD MAP file. The invalid card is ignored and 
loading continues. 

108 IBM VM/370 CMS Command and Macro Reference 



DMSLGT002I FILE Ifni TXTLIB NOT FOUND RC=O 
DMSLI0001E NO FILENAME SPECIFIED RC=24 
DMSLI0002E FILE 'fn ft' NOT FOUND RC=28 
DMSLI0003E INVALID OPTION 'option' RC=24 
DMSLI0005E NO 'option' SPECIFIED RC=24 
DMSLI0021E ENTRY POINT 'name' NOT FOUND RC=40 

INCLUDE 

DMSLI0029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD 
RC=24 

DMSLI0055E NO ENTRY POINT DEFINED RC=40 
DMSLI0056E FILE Ifn ft' CONTAINS INVALID [NAMEIALIASIENTRYIESD] RECORD 

FORMATS RC=32 
DMSLI0099E eMS/DOS ENVIRONMENT ACTIVE RC=40 
DMSLI0104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100 
DMSLI0105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100 
DMSLI0109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104 
DMSLI0116S LOADER TABLE OVERFLOW RC=104 
DMSLI0168S PSEUDO REGISTER TABLE OVERFLOW RC=104 
DMSLI0169S ESDID TABLE OVERFLOW RC=104 
DMSLI0201W THE FOLLOWING NAMES ARE UNDEFINED: RC=4 
DMSLI0202W DUPLICATE IDENTIFIER 'identifier' RC=4 
DMSLI0203W "SET L~ATION COUNTER" NAME 'name' UNDEFINED RC=4 
DMSLI0206W PSEUDO REGISTER ALIGNMENT ERROR RC=4 
DMSLI0907T 1/0 ERROR ON FILE 'fn ft fm' RC=256 

Section 2. CMS Commands 109 



LISTDS 

LISTDS 

Use the LISTDS command to list, at your terminal, information about the 
data sets or files residing on accessed OS or DOS disks, or to display 
extent or free space information when you want to allocate space for 
VSAM files. The format of the LISTDS command is: 

r-, , 
I LISTDS 
I 
I 
I 
L-

? 

dsname 

r , ,? I [(options ••• [) ]] 
Idsnamel 

QQ.tiQ!!§! 
[FORMAT] 
[PDS ] 
(EXTENT] 

1 

------' 

indicates that you want to enter the OS data set name, DOS 
file-id, or VSAM data space name interactively. When you 
enter a question mark (?), CMS prompts you to enter the OS 
data set name, DOS file-id, or VSAM data space name exactly 
as it appears on the disk. This form allows you to enter 
names that contain embedded blanks or hyphens. 

is the OS data set name or DOS file-id or VSAM data space 
name and takes the form: 

quaIl (qual2 qualn] 

where quaIl, qual2, through qualn are one- to eight-character 
qualifiers normally separated by perio~s. Each qualifier 
must be separated from other qualifiers by blanks when you 
enter them this way. (See Usage Note 1.) 

fm is the filemode of the disk to be searched for the specified 
file. If a dsname is not specified, a list of all the files 
or data sets on the specified disk is displayed. 

* indicates that you want all of your accessed DOS or OS disks 
searched for the specified data set or file. If a dsname is 
not specified, a list of all files on all accessed OS and DOS 
disks is displayed. 

QQtiQn§: The FREE and EXTENT options are mutually exclusive; the 
FORMAT and PDS options cannot be specified with either FREE or 
E~TENT. 

FREE 

EXTENT 
EX 

requests a display of all free space extents on 
minidisk or on all accessed DOS and OS disks. If 
the FREE option, you cannot specify a dsname. 

a specific 
you enter 

requests a display of allocated extents for a single file 
or for an entire disk or minidisk. If a ~sname is specified, 
only the extents for that particular file or data set are 
listed; if fm is specified as *, all disks are searched for 
extents occupied by that file. 

If a dsname is not specified, then a list of all currently 
allocated extents on the specified disk, or on all disks, is 
displayed. 

110 IB~ VM/370 CMS Command and Macro Reference 



FORM!T 
FO 

LISTDS 

requests a display of the date, disk label, filemode, and 
data set name for an as data set as well as RECFM, LRECL, 
BLKSIZE, and DSORG information. For a DOS file, LISTDS 
displays the date, disk label, filemode, and file-id, but 
gives no information about the RECFM, LRECL, and BLKSIZE (two 
blanks appear for each); DSORG is always PS. 

PDS displays the member names of referenced OS partitioned data 
sets. 

For examples of the displays produced as a result of each of these 
options, see the "Responses" section, below. 

1. If you want to enter an as or DOS file identification on the LISTDS 
command line, it must consist of one- to eight-character qualifiers 
separated by periods. For example, the file TEST.INPUT.SOURCE.D 
could be listed as follows: 

2. 

listds test input source d * 

Or, you can enter the name interactively, as follows: 

listds ? * 
DMSLDS220R ENTER DATA SET NAME: 
test.input.source.d 

Note that when the data set name is entered interactively, it must 
be entered in its exact form; when entered on the LISTDS command 
line, the periods must be omitted. 

You must use the interactive form to enter a DOS file-id that 
contains embedded blanks or hyphens. 

You should use the FREE option to determine 
available for allocation by VSAM when you are 
services. For example: 

listds * (free 

what free space is 
using access method 

requests a display of unallocated extents on all accessed as or DOS 
disks. You can then use the EXTENT option on the DLBL command when 
you define the file for AMSERV. 

3. Full disk displays using the FREE option will display free 
alternate tracks as well as free space extents. 

4. Since CMS does not support ISAM files, LISTDS lists extent and free 
information on ISA~ files, but ignores format 2 DSCBs. 

5. Since CMS does not support track overflow, LISTDS will not read 
beyond a track if DCB=RECFM=T is specified for the OS VTOC. 

Section 2. CMS Commands 111 



LISTDS 

DMSLDS220R ENTER D~T~ SET N~ME: 

This message prompts you to enter the data set name when you use 
the? operand on the LISTDS command. Enter the file identification 
in its exact form. ~ sample sequence might be: 

listds ? c 
DMSLDS220R ENTER DATA SET NAME: 
my.file.test 
FM DATA SET NAME 
C MY.FILE.TEST 
R; 

~he response shown above following the entry of the data set name 
is the same as the response given when you enter a data set name on 
the LISTDS command line. 

DMSLDS22QI NO MEMBERS FOUND 

This message is displayed when you use the PDS option and the data 
set has no members. 

DMSLDS233I NO FREE SPACE AVAILABLE ON 'fm' DISK 

This message is displayed when you use the FREE option and there is 
no free space available on the specified disk. 

Rg§~Qn§g§ iQ ihg E~!~!! Q~tiQn: A sample response to the EXTENT option 
is shown below. The headers and the type of information supplied are the 
same when you request information for a specific file only, or for all 
disks. 

listds g (extent 

E~TENT INFORMA~ION FOR 'VTOC' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) 
000 V TO C 099 00 1 88 1 099 1 8 1 89 9 

TRACKS 
19 

E~~EN~ INFORMA~ION FOR 'PRIVAT.CORE.IMAGE.LIB' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 DATA 000 01 1 049 18 949 949 

E~TEN~ INFORMATION FOR 'SYSTEM.WORK.FILE.ND.6' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 DATA 050 00 950 051 18 987 38 

EXTEN~ INFORMATION FOR 'COBOL TEST PROGRAM' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 DATA 052 02 990 054 01 1027 38 

EXTENT INFORMATION FOR 'DKSQ01A' ON 'G' DISK: 
SEQ ~YPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 DATA 080 01 1521 081 00 1539 19 

SEQ indicates the sequence number assigned this extent when the 
extents were defined via the DLBL command. CMS assigns the 
sequence numbers for VSAM data sets; the first extent set has a 
sequence of 000, the second extent has a sequence of 00l~ and so 
on. 

IBM VM/370 eMS Command ana Macro 



~YPE can have the following designations: 

MeE-.ning 
Data area extent 
VTOC extent of the disk 
Split cylinder extent 
User label extent 
ISAM index area extent 
ISAM independent overflow area extent 

LISTDS 

!Y2g 
DATA 
VTOC 
SPLIT 
LABEL 
INDEX 
OVFLO 
tiODEL Model data set label in the VTOC. Does not define an extent 

CYL-HD(RELTRK) TO CYL-HD(RELTBK} 
indicates the cylinder, head, and relative track numbers of the 
start and end tracks of this extent. 

TRACKS indicates the number of tracks in the extent. 

gg2QQn§g!Q !hg fg~~ Q£!i2n: A sample response to the FREE option is 
shown below. The same headers and type of information is shown when you 
request free information for all accessed disks. 

listds g (free 
FREESPACE EXTENTS FOR 'G' DISK: 
CYL-HD (RELTRK) TO CYL-HD (RELTRK) TRACKS 
052 00 988 052 01 989 2 
054 02 i028 080 00 1520 493 
081 01 1540 098 18 1880 341 

CYL-HD(RELTRK) TO CYL-HD(RELTRK} 
indicates the cylinder, head and relative track numbers of the 
starting and ending track in the free extent. 

TRACKS indicates the total number of free tracks in the extent. 

~g§£Qn§~ !Q thg fOR~!! E-.nQ Rg~ Q£tiQn§: If you enter the FORMAT and PDS 
options, you receive information similar to the following: 

listds d (fo pds) 

RECFM LRECL BLKSI DSORG DATE LABEL 
FB 80 800 PO 01/31/75 OSSYS1 

MEMBER NAMES: 
ABEND ATTACH BLDL BSP CLOSE 
FIND PUT READ WRITE IDAP 
RECFM LRECL BLKSI DSORG DATE LABEL 

F 80 80 PS 01/10/75 OSSYSl 

DMSLDS002E DATA SE~ NOT FOUND BC=28 
DMSLDS003E INVALID OPTION 'option' RC=24 
DMSLDS048E INVALID MODE 'mode' RC=24 
DMSLDS06QE DISK '~ode' NOT ACCESSED RC=36 

FM DATA SET NAME 
D SYS1.MACLIB 

DCB DETACH DEVTYPE 

FM DATA SET NAME 
D SAMPLE 

DMSLDS117E INVALID EXTENT FOUND FOR 'data set name' IN Ifm' DISK RC=24 
DMSLDS221E INVALID DATA SET NAME RC=24' 
DMSLDS222E 1/0 ERROR READING 'data set name' FROM {fmIOS1DOS} DISK 

RC=28 
DMSLDS223E NO FILEMODE SPECIFIED RC=24 
DMSLDS226E NO DATA SET NAME ALLOWED WITH FREE OPTION RC=24 
DMSLDS227W INVALID EXTENT FOUND FOR 'datasetname' ON {fmIOS1DOS} DISK 

RC=4 
DMSLDS231E 1/0 ERROR READING VTOC FROM {fmIOSIDOS} DISK RC=28 

Section 2. CMS Commands 113 



LISTFILE 

llSTFllE 

Use the LISTFILE command to obtain specified information about CMS files 
residing on accessed disks. The format of the LISTFILE command is: 

r 

Listfile 
r r r ", 
'fn 'ft 'f m, 'I [(options ••• () ]] 
1* 1* 1* III 
L L L .J.J.J 

r , 
,Header I 
,NOHeader I 
L .J 

r ., 
IExec I 
IAPpend, 
L .J 

r ., 
IFName I 
I FType I 
I Ff'IQ~~ I 
,FOrmat, 
,ALloc I 
,Date , 
ILabel , 
L J 

-----, 

fn is the filename of the files for which information is to be 
collected. If an asterisk is coded in this field, all filenames 
are used. If you code an asterisk preceded by any number of 
characters, then files that begin with the specified characters are 
listed. 

ft is the filetype of the files for which information is to be 
collected. If an asterisk is coded in this field, all filetypes 
are used. If you code an asterisk preceded by any number of 
characters, then files that begin with the specified characters are 
listed. 

fm is the filemode of the files for which information is to be 
collected. If this field is omitted, only the A-disk is searched. 
If an asterisk is coded, all disks are searched. 

HEADER includes column headings in the listing. HEADER is the 
default if any of the supplemental information options 
(FORf'IAT, ALLOCATE, DATE, or LABEL) are specified. The 
format of the heading is: 

FILENAME FILETYPE Ff'I FORMAT RECS BLOCKS DATE TIf'IE LABEL 

NOHEADER does not include column headings in the list. NOHEADER is 
the default if only filename, filetype, or filemode 
information is requested. 

114 IBM VM/3 7 0 eMS Command and Macro Reference 



EXEC 

APPEND 

LISTFILE 

creates a CMS EXEC file of 80-chara~ter records (one record 
for each of the files that satisfies the given file 
identifier) on your A-disk. If a CMS EXEC already exists, 
it is replaced. The header is not included in the file. 

creates a CMS EXEC and appends it to the existing CMS EXEC 
file. If no CMS EXEC file exists, one is created. 

!n!Q£m~!iQn Rggy§§1 Qption§: Only one of these options need be 
specified. If one is specified, any options with a higher priority 
are also in effect. If none of the following options are specified, 
the default information request options are in effect. 

FNAME 

FTYPE 

FMODE 

FORMAT 

ALLoe 

DATE 

LABEL 

creates a list containing only filenames. Jption priority 
is 7. 

creates a list containing only filenames and filetypes. 
Option priority is 6. 

creates a list containing filenames, 
filemodes. option priority is 5. 

filetypes, and 

includes the record format and logical record length of the 
of each file in the list. Option priority is 4. 

includes the amount of disk space that CMS has allocated to 
the specified file in the list. The quantities given are 
the number of 800-byte blocks and the number of logical 
records in the file. Option priority is 3. 

includes the date the file was last written in the list. 
The form of the date is: 

month/day/year hour:minute 

Option priority is 2. 

includes the label of the disk on which the file resides in 
the list. Option priority is 1. 

1. If you enter the LISTFILE command with no operands, a list of all 
files on your A-disk is displayed at the terminal. If you enter: 

listfile a* f* c 

you might see the display: 

AARDVARK 
ANNA 
AUTHOR 

FILE 
FILEDATA 
FLINDEX 

C5 
C1 
Cl 

Section 2. CMS :ommands 115 



LISTFILE 

2. If you request any additional information with the supplemental 
information options, that information is also displayed, along with 
the header. 

3. When you use the E~EC or APPEND option, the C~S EXEC Al that is 
created is in the format: 

pa &2 filename filetype fm ••• 

where column 1 is blank. 

If you use any of the supplemental information options, that 
information is included in the EXEC file. For information on using 
CMS EXEC files, see the VMLJIQ ~~~ ~§g£~§ Eyid~~ 

4. You can invoke the LISTFILE command from the terminal, from an EXEC 
file, or as a function from a program. If LISTFILE is invoked as a 
function or from an EXEC file that has the &CONTROL N~~SG option in 
effect, the DMSLST002E FILE NOT FOUND error message is not issued. 

If the EXEC or APPEND option is not specified, the requested information 
is displayed at the terminal. Depending on the options specified, or 
discussed above, the information displayed is: 

FILENAME FILETYPE PM FORMAT RECS BLOCKS DATE TIME LABEL 

fn ASSEMBLE { FV} fm lrecl norecs noblks mm/dd/yy hh:mm volid 

fn 

ft 

fm 

lrecl 

norecs 

noblks 

is the filename of the file. 

is the filetype of the file. 

is the filemode of the file 

is the file format: F is fixed-length, V is variable-
length. 

is the logical record length of the largest record in the 
file. 

is the number of logical records in the file. 

is the number of physical blocks that the file occupies 
on disk. 

mm/dd/yy is the date (month/day/year) that the file was created •• 

hh:mm is the time (hours:minutes) that the file was created. 

volid is the volume serial number of the virtual disk on which 
the file resides. 

One entry is displayed for each file listed. 

116 IBM VM/3 7 Q eMS Command and Macro Reference 



D~SLST002E FILE NOT FOUND RC=28 
DMSLST003E INVALID OPTION 'option' RC=24 
D~SLST037E DISK 'mode" IS READ/ONLY RC=36 
DMSLSTOij8E INVALID MODE ;mode i RC=24 
DMSLST066E 'option' and 'option' ARE CONFLICTING OPTIONS RC=24 
DMSLST069E DISK 'mode' NOT ACCESSED RC=36 
DMSLST070E INVALID PARAMETER 'parameter' RC=24 
DMSLST105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100 

LISTFILE 

Section 2. CMS Commands 117 



LISTIO 

LISTIO 

Use the LISTIO command in eMS/DOS to display a 
assignments for system and/or programmer logical units 
machine. The format of the LISTIO command is: 

list of current 
in your virtual 

r , , SYS I , LISTIO PROG [ (options ••• [) ]] , , SYSxxx QR:tiQ!!§: I , A r , I , U~ IEXEC , [ STAT] , , 111 ,APPENDI I , L ~ I 
'- -J 

SYS requests a list of the physical devices assigned to all system 
logical units. 

PROG requests a list of the physical devices assigned to programmer 
logical units SYSOOO through SYS2Ql. 

SYSxxx requests a display of the physical device assigned to the 
particular logical unit specified. 

requests a list of only those logical units that have been 
assigned to physical devices. 

UA requests a list of only those logical units that have not been 
assigned to physical devices; that is, that are unassigned. 

111 requests a list of the physical units assigned to all system and 
programmer logical units. If no operand is specified, ALL is the 
default. 

QQtiQ!!§: The EXEC and APPEND options are mutually exclusive; if both 
are entered on the command line, the last one entered is in effect. 

EtEC erases the existing $LISTIO EXEC file, if one exists, and 
creates a new one. 

APPEND adds new entries to the end of an existing $LISrIO EXEC file. 
If no $LISTIO EXEC file exists, a new one is created. 

STAT lists the status (read-only or read/write) of all disk devices 
currently assigned. 

1. Logical units are assigned and unassigned with the ASSGN command. 
For a list of logical units and valid device types, see the 
discussion of the ASSGN command. 

2. The $LISTIO EXEC contains one record for each logical unit listed. 

t 1 0 
J i V 

The format is: 

&1 &2 SYSxxx {device } 
mode [status] 

where column 

Tn .. 
.I.. on tty ~'3"''' vnfJ'v eMS 

is blank. 

.... _____ .::1 __ ..:I 

'- V LU Ul a. il u. a. u u. Macro Reference 



LISTIO 

Depending on the operands specified, the following is displayed for each 
unit requested in the LISTIO command: 

SYSxxx {deVice } 
mode [status] 

where device is the device type (READER, PRINTER, PUNCH, TERMINAL, TAPn, 
IGN, or UA). If the device is a disk, the one-character mode letter is 
displayed. If the STAT option is specified, the status (RIO or R/i) is 
also displayed. 

DMSLLU003E INVALID OPTION 'option' RC=24 
DMSLLU006E NO READ/WRITE lA' DISK ACCESSED RC=36 
DMSLLU070E INVALID PARAMETER 'parameter' RC=24 
DMSLLU099E eMS/DOS ENVIRONMENT NOT ACTIVE RC=40 
DMSLLU105S ERROR Inn' WRITING FILE '$LISTIO EXEC All ON DISK RC=100 

Section 2. eMS Commands 119 



LOAD 

LOAD 

Use the LOAD command to read one or more eMS or OS TEXT files 
(containing relocatable object code) from disk and to load them into 
virtual storage, establishing the proper linkages between the files. 
The format of the LOAD command is: 

r-
I LOAD fn .•• [(options ••• [) ]] 
I 
I 
I 
I 
I 
I 
1 , 
I 
I , 
I 
L-

r .. 
I~!g I 
INOMAPI 
L J 

r , 
,CLEAR I 
I!iOCL~ARI 
L .J 

r .. 
ITYPE I 
I.R0TYPE, 
L .J 

r , 
11I~~ , 
INOLIBEI 
L .J 

[START] 

r .. r , 
IORIGIN {heXIOC}, : RESET {en~ry}: 
I TRANS I 

L .J L .J 

r .. 
II!!! , 
INOINVI 
L J 

r .. 
I~!!~ I 
I NODUPI 
L J 

r .. 

'E~R I 
INOREPI 
L .J 

r .. 
I!QI2 , 
INOAUTOI 
L J 

fn .•. specifies the names of the files to be loaded into storage. The 
files must have a filetype of TEXT and consist of relocatable 
object code such as that produced by the OS language processors. 
If a GLOBAL TXTLIB command has been issued, fn may indicate the 
name of a TXTLIB member. 

QEiiQll§: If conflicting options are specified, the last one entered 
is in effect. Options may be overridden or added when you use the 
INCLUDE command to load additional TEXT files. 

CLEAR clears the load area in storage before the object files are 
loaded. Whole page frames are released; the remainder of 
storage that is not on a page boundary is set to binary 
zeros. 

~Q~1~!g does not clear the load area before loading. 

RESET 

ORIGIN 

f~n;ry} 
sets the starting location for the programs currently loaded. 
The operand, entry, must be an external name (for example, 
CSECT or ENTRY) in the loaded programs. If RESET is not 
specified, the default entry point is used. (See Usage Note 
4.) RESET * is treated as a null entry and does not alter 
the selection of starting location. 

!Qig: The RESET option should not be used when loading TEXT 
files created by any of the following as/vs language 
processors under CMS: OS Code and Go FORTRAN, as FORTRAN IV 
(Gl), OS FORTRAN IV (H) Extended, OS/VS COBOL Compiler and 
Library, as Full American National Standard COBOL Version 4 
Compiler and Library. 

{
heXIOC } 
TRANS 
loads the program beginning at the location specified by 
hexloc; this location must be in the CMS nucleus transient 
area or in the user area. The location, hexloc, is a 

120 IBM VM/370 CMS Command and Macro Reference 



LOAD 

hexadecimal number of up to six characters. If TRANS is 
specified, the file is loaded into the CMS nucleus transient 
area. If ORIGIN is not specified, loading begins at the 
first available storage location in the user program area. 

~Ql~: Any program loaded into the transient area must have a 
starting address of X'EOOO'. See the discussion of the 
GENMOD command for information on loading programs in the 
transient area. 

~!R writes a load map on your A-disk, named LaAD MAP AS. 

NOMAP does not create the LOAD MAP file. 

TYPE displays the load map at your terminal, as well as writing it 
on the ~-disk. This option is valid only if the MAP option 
is in effect. 

!Q1!R~ does not display the load map at the terminal. 

!H! includes invalid card images in the load map. 

NOINV does not include invalid card images in the load map. 

R~~ includes Replace (REP) statements in the load map. 

NOREP does not include the Replace (REP) statements in the load 
map. 

searches your accessed virtual disks for TEIT file names to 
resolve undefined references. 

NO AUTO suppresses automatic resolution of undefined references as 
'I'EXT file names. 

~!~~ allows TITLIB members to be loaded and searches library 
directories for external references not resolved in the 
loaded text. Text libraries to be searched must have been 
previously defined by a GLOBAL command. 

NOLIBE suppresses all loading of TITLIB members. 

START executes the program being loajed when loading is completed. 
LOAD does not normally begin execution of the loaded files. 
To begin execution immediately upon successful completion of 
loading, specify START. Execution begins at the default 
entry point. (See Usage Note 4.) 

QqR displays warning messages at your terminal when a duplicate 
CSECT is encountered during processing. The duplicate CSECT 
is not loaded. (See Usage Note 3.) 

NODUP does not display warning messages at your terminal 
duplicate CSECTs are encountered during processing. 
duplicate CSECT is not loaded. 

when 
The 

1. You must have a read/write eMS A-disk accessed when you issue the 
LOAD command; the loader creates a temporary workfile named DMSLDR 
SYSUTl and writes it on the A-disk. 

section 2. CMS Commands 121 



L::>AD 

2. Unless the NOMAP option is specified, a load map is created on the 
A-disk each time the LOAD command is issued. A load map is a file 
that contains the location of control sections and entry points of 
files loaded into storage. This load map is named LOAD MAP AS. 
Each time LOAD is issued, a new LOAD MAP file replaces any previous 
LOAD MAP file. 

If invalid card images exist in the file or files that are being 
loaded, they are listed with the message INVALID CARD in the LOAD 
MAP file. To suppress this listing in the load map, use the NOINV 
option. 

If Replace (REP) statements exist in the file being loaded, they 
are included in the LOAD MAP file. To suppress this listing of REP 
statements, specify the NOREP option. 

If the ENTRY or LIBRARY control cards are encountered in the 
file, the load map contains an entry: 

CONTROL CARD-

listing the card that was read. 

Mapping of any common areas that exist in the loaded files will 
occur when the program is prepared for execution by the START or 
GENMOD command or by the START option of the LOAD or INCLUDE 
command. An updated load map may be displayed prior to program 
execution if the START command is issued with the NO option to 
suppress execution. 

3. Duplicate CSECTs (control sections) are bypassed by the loader. 
Only the first CSECT encountered is physically loaded. The 
duplicates are not loaded. A warning message is displayed at your 
terminal if you specified the DUP option. If a section contains an 
ADCON that references a duplicate CSECT that has not been loaded, 
that ADCON may be resolved incorrectly. 

4. The loader selects the entry point for the loaded program according 
to the following hierarchy: 

• From the parameter list on the START command 

• From the last RESET operand in a LOAD or INCLUDE command 

• From the last ENTRY statement in the input 

• From the last LDT statement in the input 

• From the first 
that specifies 
input 

assembler- or compiler-produced END statement 
an entry point if no ENTRY statement is in the 

• From the first byte of the first control section of the loaded 
program if there is no ENTRY statement and no assembler- or 
compiler-produced END statement specifying an entry point 

5. The LOAD command should not be used to execute programs containing 
DOS macros. To link-edit and execute programs in the CMS/DOS 
environment, use the DOSLKED and FETCH commands. 

6. See Figure 9 for an illustration of the loader search order. The 
loader uses this search order to locate the filename on the LOAD 
and INCLUDE command lines, as well as in the handling of unresolved 
references. 

122 IB~ VM/37Q CMS Command and Macro Reference 



r= 1 

I ase standard search order to find TEXT filesl 
I specified by fn; also, if LIBE is in effect 
I search TXLIBs defined by the GLOBAL command 

I Usa standard search order to locate files 
I with a filetype of TEXT and a filename that 
I corresponds to the unresolved reference 
'--

1< 
V 

· * · . * Any * 
* unresolved * NO 

* references * 
* ? * 

* · · * 
* IYES 
V 

· * · 
* Is * 

* NOLIBE * YES 

* specified * 
* ? * 

* · * 
* INO 
V , 

Continue to search active text libraries to I 
resolve external references in the loaded , 
text. Files are searched in the order that I 

I they are entered in the command. , 
L--

I 
V 

r-------------------~ 
I Search complete 
L-

Figure q. Loader Search Order 

r-------, 
I Search 

>1 complete 

---, 
1 
I , 
I 
I 
I 
I 
I 
I 
1 

-..I 

r 
1 Search 

>t complete 
L -.I 

r --, 
1 Search , 

>1 complete 1 
L ______ --!I 

LOAD 

Section 2. CMS Commands 123 



LOAD 

7 The CMS loader also loads routines called dynamically by OS LINK, 
LOAD, and XC~I macros. Under certain circumstances, an incorrect 
entry point may be returned to the calling program. See the !~L11Q 
~~~ ~§g~~§ Guigg for more details. 

8. LOAD does not clear user storage unless the CLEAR option is
specified.

9. If you wish to read in a group of CSECTs in a predetermined
sequence, load or include a single TEXT file that contains a series
of ENTRY statements identifying the TEXT files or TXTLIB members
and the loading order desired. For this purpose you can create a
simulated TEXT file consisting solely of ENTRY statements. If the
entry point is not specified by a RESET operand or by the START
command, insert an additional ENTRY card at the end of the sequence
to designate the entry point for execution.

LOADER CONTROL STATEMENTS

You can add loader control statements to TEXT files either by editing
them or by punching real cards and adding them to a punched text deck
before reading it into your virtual machine. The seven control cards
recognized by the eMS loader are discussed below.

The ENTRY and LIBRARY cards, which are discussed first, are similar
to the OS linkage editor control statements ENTRY and LIBRARY. The CMS
ENTRY and LIBRARY statements must be entered beginning in column 1.

ENTRY Statement: The ENTRY statement specifies the first instruction to
be-executed:--It can be placed before, between, or after object modules
or other control statements. The format of the ENTRY statement is shown
in Figure 10. The external name is an entry name or the name of a
control section. If needed, the loader searches for text to resolve the
external reference. If multiple ENTRY statements are submitted, only
the last statement read can affect determination of the entry point for
execution. The selected point of entry must be the name of an
instruction, not of data.

r
, ENTRY 1 external name

Figure 10. ENTRY Statement Format

~!~R!R! ~iaigIDgn!: The LIBRARY statement can be used to specify the
never-call function. The never-call function (indicated by an asterisk
(*) as the first operand) specifies those external references that are
not to be resolved by the automatic library call during any loader step.
It is negated when a deck containing the external name referred to is
included as part of the input to the loa~er. The format of the LIBRARY
statement is shown in Figure 11. The external reference refers to an
external reference that may be unresolved after input processing. It is
not to be resolved. Multiple external references within the parentheses
must be separated by commas. The LIBRARY statement can be placed
before, between, or after object decks or other control statements.

r ,
1 LIBRARY * (external reference) ,
Figure 11. LIBRARY Statement Format

Loader Terminate (LDT) Statement: The LDT statement is used in a text
library-as-the-last-r:ecord of a-member. It indica-ces to the loader that
all records for that member were processed. The LDT statement can

124 IBM VM/370 CMS Command and Macro Reference

LOAD

contain a name to be used as the entry point for the loaded member. The
LOT statement has the format shown in Figure 12.

r
, Column

2-4

5-16

17-24

25

26-33

34-80
L--

Contents

!' 02' (12-2-9 punch).
Identifies this as a loader control statement.

LOT - identifies type of statement.

Not used.

Blank or entry name (left-justified and padded with
blanks to eight characters) •

Blank.

Mav contain information specified on a SETSSI card
processed by the TXTLIB command.

Not used.

---'-'

Figure 12. LOT statement Format

I~£1~g~ £Qg!~Q! ~eciiQg (I~~) ~tat~~~g1: The ICS statement changes the
length of a specified control section or defines a new control section.
It should be used onlv when REP statements cause a control section to be
increased in length. The format of an ICS statement is shown in Figure
13. An ICS statement must be placed at the front of the file or TEXT
file.

r-
, Column ,

2-4

5-16

17-22

23

24

25-28

30-72 ,
, 73-80
I
1----

-----,
contents

!' 02' (12-2-9 punch).
Identifies this as a loader control statement.

ICS -- identifies the type of load statement.

Blank.

Control section name -- left-justified in these columns.

Blank.

(comma) •

Hexadecimal length in bytes of the control section. This
must not be less than the actual length of the previously
specified control section. It must be right-justified in
columns with unused leading columns filled with zeros.

Blank.

May be used for comments or left blank.

, , ,
I
I
I , , , , , , , , , , ,
I
I , , , , ,

Not used by the loader. You may leave these columns blank ,
or insert program identification for your own convenience. I

----I
'NQi~: Only six characters can be coded for the CSECT names in ,
,the ICS statement, but the loader program compares eight characters
Ithe CSECT name from the TEXT file.

tol
I

L -----.-1
Figure 13. ICS statement Format

section 2. CMS Commands 125

LOAD

§gt 1Q~gtiQn ~Qunt~£ (~1~) ~tgtgmgnt: The SLC statement sets the
location counter used with the loader. The file loaded after the SLC
statement is placed in virtual storage beginning at the address set by
this SLC statement. The SLC statement has the format shown in Figure
14. It sets the location counter in one of three ways:

r
I
I
I
I ,

1. With the absolute virtual address specified as a hexadecimal number
in columns 7-12.

2. With the symbolic address already defined as a
entry point. This is specified by a symbolic
columns 17-22.

program name or
name punched in

3. If both a hexadecimal address and a symbolic name are specified,
the absolute virtual address is converted to binary and added to
the address assigned to the symbolic name; the resulting sum is
the address to which the loader's location counter is set. For
example, if 0000F8 was specified in columns 7-12 of the SLC card
image and GAMMA was specified in columns 17-22, where GAKMA has an
assigned address of 006100 (hexadecimal), the absolute address in
columns 7-12 is added to the address assigned to GAKKA giving a
total of 0061F8. Thus, the location counter would be set to
0061F8.

Column

2-4

5-6

7-12

13-16

17-22

23

24-72

73-RO

contents

1C'02' (12-2-9 punch).
Identifies this as a loader control statement.

SLC -- identifies the type of load statement.

Blank.

Hexadecimal address to be added to the value of the symbol,
if any, in columns 17-22. It must be right-justified in
these columns, with unused leading columns filled with
zeros.

Blank.

Symbolic name whose assigned location is used by the
loader. Must be left-justified in these columns. If
the address in the absolute field is used.

Blank.

May be used for comments or left blank.

Not used by the loader. You may leave these columns
blank or insert program identification for your own
convenience.

blank, , , ,
I , , , , ,

L- ,------'
Figure 14. SIC Statement Format

R~£!~£g (R~f) ~taigmgnt: A REP statement allows instructions and
constants to be changed and additions made. The REP statement must be
punched in hexadecimal code. The format of a REP statement is shown in
Figure 15. The data in columns 17-70 (excluding the commas) replaces
what has already been loaded into virtual storage, beginning at the
address specified in columns 7-12. REP statements are placed in the
file either (1) immediately preceding the last statement (END statement)
if the text deck does not contain relocatable data such as address
constants, or (2) immediately preceding the first RLO (relocatable

126 IB~ VM/370 CMS Command and ~acro Reference

LOAD

dictionary) statement if there is relocatable data in the text deck. If
additions made by REP statements increase the length of a control
section, an rcs statement, which defines the total length of the control
section, must be placed at the front of the deck.

r
I Column
I
I
I ,
I 2-4
I , 5-6
I
I 7-12
I
I
I

13-14

15-16

17-70

71-72

73-80

----------------------------,
Contents

~'02' (12-2-9 punch).
Identifies this as a loader control statement.

REP -- identifies the type of load statement.

Blank.

Hexadecimal starting address of the area to be replaced as
assigned by the assembler. It must be right-justified
in these columns with unused leading columns filled with
zeros.

Blank.

,
I ,
I
I ,
I ,
I , ,
I
I , ,
I

ESID (External Symbol Identification) -- the hexadecimal ,
number assigned to the control section in which replacementt
is to be made. The LISTING file produced by the compiler ,
or assembler indicates this number.

A maximum of 11 four-digit hexadecimal fields, separated by
commas, each replacing one previously loaded halfword (two
bytes). The last field must not be followed by a comma.

Blank.

Not used by the loader. This field maj be
program identification may be inserted.

blank or

Figure 15. REP Statement Format

~gi ~£gg ~Q~Dg~£y (~~~) St£te~!: An SPB statement instructs the loader
to update the location counter to point to the next page boundary. The
SPB statement has the format shown in Figure 16.

r , Column contents
I
I ~ 102 I -(12-2-9 punch).
I Identifies this as a loader control statement.
I
I 2-4 SPB identifies the type of load statement.
I
I 5-80 May be used for comments or left blank. ,
L-

-----------------______________ . __ -J

Figure 16. SPB Statement Format

DMSLI07401 E~ECUTION BEGINS •••

START was specified with LOAD and the loaded program starts
execution. Anv further responses are from the program.

Section 2. CMS Commands 127

LOAD

INVALID CARD - xxx •.• xxx

INV was specified with LOAD and an invalid statement was found.
The message and the contents of the invalid statement (xxx ••• xxx)
are listed in the file LOAD MAP. The invalid statement is ignored
and loading continues.

DMSLGT002I FILE 'fn T~TLIB' NOT FOUND RC=O
DMSLI0001E NO FILENAME SPECIFIED RC=24
DMSLI0003E INVALID OPTION 'option' RC=24
DMSLI0005E NO 'option' SPECIFIED RC=24
DMSLI0021E ENTRY POINT 'name' NOT FOUND RC=40
DMSLI0029E INVALID PARAMETER 'parameter' IN THE OPTIJN 'option' FIELD RC=2~

DMSLI0055E NO ENTRY POINT DEFINED RC=40
DMSLI0056E FILE 'fn ft' CONTAINS INVALID [NAMEIALIASIENTRYIESD] RECORD

FORMA'TS RC=32
DMSLI0099E CMS/DOS ENVIRONMENT ACTIVE RC=40
DMSLI0104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSLI0105S ERROP. Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSLI0109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSLI0116S LOADER TABLE OVERFLOW RC=104
DMSLI0168S PSEUDO REGISTER TABLE OVERFLOW RC=104
DMSLI0159S ESDID TABLE OV9RFLOW RC=10~
DMSLI0201W THE FOLLOWING NAMES ARE UNDEFINED: RC=4
DMSLI0202W DUPLICATE IDENTIFIER 'identifier' RC=4
DMSLI0203W "SET LOCATION COUNTER" NAME 'name' UNDEFINED RC=4
DMSLI0206W PSEUDO REGISTER ALIGNMENT ERROR RC=4
DMSLIOQ07T I/O ERROR ON FILE 'fn ft fm' RC=256
DMSSTT062E INVALID * IN FILEID RC=20

128 IBM VM/370 C~S Command and Macro Reference

LOADMOD

LOADMOD

Use the LOADMOD command to load a MODULE file into storage. The file
must be in nonrelocatable format as created by the GENM~D command. The
format of the LOADMOD command is:

.-- ,
I LOADMod
I
L

fn is the filename of the file to be loaded into storage.
filetvpe must be MODULE.

The

fm is the filemode of the module to be loaded. If not specified, or
specified as an asterisk, all your disks are searched for the file.

1. You can use the LOADMOD command when you want to debug a CMS MODULE
file. After the file is loaded, you may set address stops or
breakpoints before you begin execution with the START command; for
example:

loadmod prog 1
cp adstop 210ae
start

2. If a MODULE file was created using the DOS option of the GENMOD
command, the CMS/DOS environment must be active when it is loaded.
If it was created using the OS option (the default), the CMS/DOS
environment must not be active when it is loaded.

3. MODULE files created with the ALL option, or with SYSTEM option and
loaded into the transient area, may be loaded regardless of whether
the CMS/DOS environment is active. If the LOADMOD command is
called from a program~ the loading is also done regardless of
whether the CMS/DOS environment is active.

None.

DMSMJ DOD 1 E
DM SMO DOO 2E
DMSt'!OD032E
DMSMOD070E
DMSMOD104S
DMSMOD109S
DMSMOD114E

DMSMOD116S
DMSSTT048E

NO FILENAME SPECIFIED
FILE 'fn ft' NOT FOUND
INVALID FILETYPE 'ft'

RC=24
RC=28

RC=24
INVALID PARAMETER 'parameter' RC=24
ERROP 'nnw READING FILE 'fn ft fm' FROM DISK
VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
'fn ft fm' NOT LOADED; CMS/DOS ENVIRONMENT
RC=40 or RC=-0005
LOADER TABLE OVERFLOW RC=104
INVALID MODE 'mode' RC=24

RC=100

[NOT] ACTIVE

Section 2. eMS :ommands 129

MACLIB

MACLIB

Use the MACLIB command to create and modify CMS macro libraries. The
format of the MACLIB command is:

r--- --_.--,
I MAClib
I ADD

{
GEN} libname fn1[fn2 •••]

I
I
I
I ,
I
I , ,
I
I
I
I
I
L-

REP

DEL libname membername1(membername2 •••]

COMP libname

MAP libname ((options ••• [)]]

option~:
r ,
ITFRM ,
'Q!~!S ,
IPRINTI
L .I

______ -.:.1

GEN generates a CMS macro library.

ADD adds members to an existing macro library. No checking is
done for duplicate names, entry points, or CSECTS.

REP

DEL

COMP

replaces existing members in a macro library.

deletes members from a macro library. If more than one member
exists with the same name, only the first entry is deleted.

compacts a macro library.

MAP lists certain information about the members in a macro
library. Available information includes member name, size,
and location relative to the beginning of the library.

Ii bname is the filename of a macro library. If the file
exists, it must have a filetype of MACLIB; if it
created, it is given a filetype of MACLIB.

already
is being

fn 1 [fn2 •..]
are the names of the macro definition files to be used. A
macro definition file must reside on a CMS disk and its
filetype must be either MACRO or COPY. Each file may contain
one or more macros and must contain fixed-length, SO-character
records.

me mbername 1 [membername2 •••]
are the names of the macros that exist in a macro library.

~!~ QpiiQn§: The following options specify where the output of the
MAP function is sent. Only one option may be specified. If more
than one option is specified, only the first one given is used.

TERM displays the MAP output at the terminal.

130 IBM VM/370 CMS Command and Macro Reference

PRINT

writes the MAP output on a
identifier of "libname MAP Al".
already exists, the old file is
specified, DISK is the default.

MACLIB

CMS disk with the file
If a file with that name
erased. If no option is

writes the file "libname MAP Al" to your A-disk and
spools a copy to the virtual printer.

1. When a MACRO file is added to a MACLIB, the membername is taken
from the macro prototype statement. If there is more than one
macro definition in the file, each macro is written into a separate
MACLIB member ..

If the filetype is COpy and the file contains more than one macro,
ea=h macro must be preceded by a control statement of the following
forma t:

*COpy membername

The name on the control statement is the name of the macro when it
is placed in the macro library. If there is only one macro in the
COpy file and it is not preceded by a COpy control statement, its
name (in the macro library) is the same as the filename of the COpy
file. If there are several macro definitions in a COpy file and
the first one is not preceded by a COpy control statement, the
entire file is treated as one macro.

2. If any MACRO file contains invalid records between members, the
MACLIB command displays an error message and terminates. Any
members read before the invalid card is encountered are already in
the MACLIB. The MACLIB command ignores CATAL.S, END, and 1*
records when it reads MACRO files created by the ESERV program.

3. If you want a macro library searched during an assembly or
compilation, you must identify it using the GLOBAL command before
you begin compiling.

4. The MACLIBs distributed with the CMS system are: CMSLIB, OSMACRO,
OSMACR01, TSOMAC, and DOSMACRO.

5. The TERM or PRINT options will erase the old MAP file, if one
exists.

When you enter the MACLIB MAP command with the TERM option, the names of
the library members, their sizes, and their locations in the library are
displayed.

MACRO INDEX SIZE
name loc size

Section 2. CMS Commands 131

MACLIB

DMSLBM001E NO FILENAME SPECIFIED RC=24
DMSLBM002E FILE 'fn ft' NOT FOUND RC=28
DMSLBM002W FILE 'fn ft [fm]' NOT FOUND RC=~
DMSLBM003E INVALID OPTION 'option' RC=24
DMSLBM013W MEMBER 'name' NOT FOUND IN LIBRARY 'fn ft fm' RC=~
DMSLBM014E INVALID FUNCTION 'function' RC=24
DMSLBM037E DISK 'mode' IS READ/ONLY RC=36
DMSLBMO~6E NO LIBRARY NAME SPECIFIED RC=24
DMSLBMO~7E NO FUNCTION SPECIFIED RC=24
DMSLBM056E FILE 'fn ft fm' CONTAINS INVALID RECORD FORMATS RC=32
DMSLBM069E DISK 'mode' NOT ACCESSED RC=36
DMSLBM070E INVALID PARAMETER 'parameter' RC=24
DMSLBM10~S ERROR 'nnw READING FILE 'fn ft fm' FROM DISK RC=100
DMSLBM105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSLBM10QS VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSLBM157S MACLIB LIMIT EXCEEDED[, LAST MEMBER NAME ADDED WAS

'membername'] RC=88
DMSLBM167S PREVIOUS MACLIB FUNCTION NOT FINISHED RC=88
DMSLBM213W LIBRARY 'fn ft fm' NOT CREATED RC=4
DMSLBM907T I/O ERROR ON FILE 'fn ft fm' RC=256

132 IBM VM/370 CMS Command ~nd Macro Reference

MODKAP

MODMAP

Use the MODMAP command to display the load map associated with the
specified MODULE file. The format of the KODKAP command is:

r-
I MODmap
L-

fn

fn is the filename of the MODULE file whose load map is
displayed. The ,filetype of the file must be MODULE; all
accessed disks are searched for the specified file.

,

to be
of your

You cannot issue a MODMAP command for
area modules or that have been created
GENKOD command.

modules that are eKS transient
with the NOKAP option of the

The load map associated with the file is displayed at the terminal, in
the format:

name location

DMSMDP001E NO FILENAME SPECIFIED RC=24
DMSMOD002E FILE 'fn ft' NOT FOUND RC=28
DMSMOD018E NO LOAD MAP AVAILABLE RC=40
DMSMDP010E INVALID PARAMETER 'parameter' RC=24

Section 2. CMS Commands 133

MOVEFILE

MOVEFILE

Use the MOVEFILE command to
VM/3 7 0 to any other device
~OVEFILE command is:

move data from any
supported by VM/370.

device supported
The format of

by
the

r
I , r

linddname
I MOVEfile
I

I
11JH1QY~

r , ,
I outddna me I I
I I I
I QUT~OV~ I ,

[(PDS[)]]

, L L .J J

L-
____ -:I

inddname

outddname

is the ddname representing the input file
ddname is not specified, the default input
is used.

definition. If
ddname, INMOVE,

is the ddname representing the output file definition. If
ddname is not specified, the default output ddname, OUTMOVE,
is used.

PDS moves each of the members of the CMS ~ACLIB or TITLIB or of
an OS partitioned data set into a separate CMS disk file,
with a filename equal to the member name and a filetype
equal to the filetype of the output file definition.

1. Use the FILEDEF command to provide file definitions for the ddnames
used in the ~OVEFILE command. If you use the ddnames INMOVE and
OUTMOVE on the FILEDEF commands, then you need not specify them on
the MOVEFILE command line. For example:

filedef inmove disk sys1 maclib b (member stow
filedef outmove disk stow macro
movefile

copies the member STOW from the OS partitioned data set SYS1.MACLIB
into the C~S file STOW ~ACRO.

If you enter:

filedef indd reader
filedef outdd printer
movefile indd outdd

a file is moved from your virtual card reader to your virtual
printer.

2. To copy an entire OS partitioned data set into individual CMS
files, you could enter:

filedef test2 disk sys1 maclib b
filedef macro disk
movefile test2 macro (pds

These commands copy members from the OS partitioned data set
SYS1.MACLIB or the C~S file SYS1 MACLIB into separate files, each

13Q IB~ V~/370 eMS Command and Macro Refer~nce

MOVEFILE

with a filename equal to the membername and a filetype of MACRO.
Note that the output ddname was not specified in full, so that eMS
assigned the default file definition (FILE ddname).

3. You cannot copy VSAM data sets with the MOVEFILE command.

4 • The MOVEFILE command does not support data containing
records. Use of spanned records results in the error
DMSSOP036E and an error code of 7.

spanned
message

5. To copy an entire partitioned data set into another partitioned
data set, use the COPYFILE command. If an attempt is made to use
the MOVEFILE command without the PDS option for a partitioned data
set, only the first member is copied and an end-of-file condition
results. The resultant output file will contain all input records,
including the header, until the end of the first member.

If a record format (RECFM), blocksize (BLOCK), and logical record length
(LRECL) are specified on the FILEDEF command, these values are used in
the data control block (DCB) defining the characteristics of the move
operation. If the FILEDEF was issued without a record format or
blocksize specified, these values are determined according to the
defaults listed in Figure 17. If the blocksize was not specified, the
default blocksize is used. If tne logical record length was not
specified, the default logical record length is determined as follows:
for an F or U record format, the logical record length equals the
blocksize; for a V record format, the logical record length equals the
blocksize minus 4.

r , Input
1 , Device RECF!!
1------, Card Reader F ,
I Card Punch NA2 , , Printer NA2 ,
I '!'erminal IT , , Tape! IT , , , Disk file RECF!! of , file , , Dummy NA2
i
1-----

ddname

Blocksize

80

NA2

NA2

130

3600

Blocksize of
file

NA2

output ddname

RECFM

NA2

F

IT

u

RECF!! of
input ddname

RECF!! of
input ddname

RECF!! of
input ddname

Blocksize

80

132

130

Blocksize of
input ddname

Blocksize of
input ddname

Blocksize of
input ddname

, lIf the default record format and blocksize are used in a
, tape-to-tape move operation and an input record is greater than 36001
, bytes, it is truncated to 3600 bytes on the output tape. ,
I 2Not applicable. ,
L-. 1

Figure 17. Default Device Attributes for MOVEFILE Command

section 2. CMS Commands 135

MOVEFILE

DMSMVE225I PDS MEMBER 'membername' MOVED

The specified member of an OS partitioned data set was moved
successfully to a CMS file. This response is issued for each
member moved when you use the PDS option.

DMSMVE226I END OF PDS MOVE

The last member of the partitioned data set was moved successfully
to a CMS file.

DMSMVE706I TERM INPUT -- TYPE NULL LINE FOR END OF D~T~

The input ddname in the MOVEFILE specified
terminal. This message requests the input
terminates input.

a device type of
data; a null line

DMSMVE70AI DISK FILE 'FILE ddname ~1' ~SSUMED FOR DDN~ME 'ddname'

No file definition is in effect for a ddname specified on the
MOVEFILE command. The MOVEFILE issues the default FILEDEF command:

FILEDEF ddname DISK FILE ddname ~1

If file ddname does not exist for the input file, MOVEFILE
terminates processing.

DMSMVE002E FILE 'fn ft fm' NOT FOUND RC=28
DMSMVE003E INV~LID OPTION 'option' RC=2q
DMSMVE037E OUTPUT DISK 'mode' IS RE~D/ONLY RC=36
DMSMVE041E INPUT ~ND OUTPUT FILES ~RE THE S~ME RC=QO
DMSMVE069E OUTPUT DISK 'mode' IS NOT ~CCESSED RC=36
DMSMVE070E INV~LID P~R~METER 'parameter' RC=2Q
DMSMVE073E UN~BLE TO OPEN FILE ddname RC=28
DMSMVE075E DEVICE 'device name' ILLEG~L FOR {INPUTIOUTPUT} RC=QO
DMSMVEOQ6E INV~LID DDN~ME 'ddname' RC=2Q
DMSMVE127S UNSUPPORTED DEVICE FOR ddname RC=100
DMSMVE128S 1/0 ERROR ON INPUT AFTER READING nnnn RECORDS: INPUT ERROR

code ON ddna~e RC=100
DMSMVE129S 1/0 ERROR ON OUTPUT WRITING RECORD NUMBER nnnn: OUTPUT ERROR

code ON ddname RC=100
DMSMVE130S BLOCK SIZE ON V FORMAT FILE ddname IS LESS THAN 8 RC=88

136 IBM VM/370 CMS Command and Macro Reference

OPTION

OPTION

Use the OPTION command to change any or all of the options in effect for
the DOS/VS COBOL or the RPGII compiler in CMS/DOS. The format of the
OPTION command is:

r- 1
I OPTION [options •••] ,
I ,
I
I
I
I ,
I
I ,

Q~iQn~:
r , r , r ,
IDUMP I
I!QQQMPI

IDE~K I
fNODECKI

ItIS£: I
INOLISTI

L .J L

r ,
IXREF I
I!OXREFI

.J L

r ,
IERR~ I
INOERRSI

.J

r ,
148CI
I§Q~I

L .J L J L

r ,
ILISTX I
'NOL!~I!'
L J

r ,
ISYM I
I!Q~I1!'
L. 3

, , , , ,
1 , , , ,

L-__ _ --------________________ . ___________________________________ -J

Q~iiQn§: If an invalid option is specified on the command liner an
error message is issued for that option; all other valid options are
accepted. Only those options specified are altered r and all other
options remain unchanged.

DUMP dumps the registers and the virtual partition on the virtual
SYSLST device in the case of abnormal program end.

!QQ~~~ suppresses the DUMP option.

punches the resulting object module on the virtual
device. If you do not issue an !SSGN command for the
unit SYSPCH before invoking the compiler r the text
written to your CMS A-disk.

NODECK suppresses the DECK option.

SYSPCH
logical
deck is

tI~I writes the output listing of the source module on the SYSLST
device.

NOLIST suppresses the LIST option. This option overrides the IREF
option as it does in DOS/VS.

LISTX produces a procedure division map on the SYSLST device.

!Qt!~!X suppresses the LISTX option.

SYM prints a Data Division map on SYSLST.

!Q~I~ suppresses the SYM option.

XREF writes the output symbolic cross-reference list on SYSLST.

!Q!R~~ suppresses the XREF option.

writes an output listing of all errors in the source program
on SYSLST.

NOERRS suppresses the ERRS option.

4QC Uses the 48-character set.

§Q~ Uses the 60-character set.

Section 2. CMS Commands 131

OPTION

1. If you enter the OPTION command with no options, all options are
reset to their default values, that is, the default settings that
are in effect when you enter the CMS/DOS environment. CMS/DOS
defaults are not necessarily the same as the defaults generated on
the DOS/VS system being used and do not include additional options
that are available with some DOS compilers.

2. The OPTION command has no effect on the DOS/VS PL/I compiler nor on
any of the OS language compilers in CMS.

None. To displaY'a list of options currently in effect, use the QUERY
command with the OPTION operand.

DMSOPT070E INVALID PARAMETER 'parameter' RC=24
DMSOPT099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40

138 IBM VM/370 CMS Command and Macro Reference

PRINT

PRINT

Use the PRINT command to print a CMS file on the spooled virtual
printer. The format of the PRINT command is:

r

L

fn

ft

fm

PRint
r ,

fn ft I fm I [(options ••• [)]]
1* ,
L J

r ,
2EtiQ!!.§: ICC I

l!OCCI
L J

[UPCASE)

r ,
p.INECOUN fnnl I
! t22!
L

r ,

IMEMBER { * }'
I membername I [HEX]
L .J

is the filename of the file to be printed ..

is the filetype of the file to be printed.

is the filemode of the file to be printed. If this field is
specified as an asterisk (*) , the standard order of search is
followed and the first file found with the given filename and
filetvpe is printed. If fm is not specified, the A-disk and its
extensions are searched.

CC

UPCASE
UP

MEMBER
MEM

HEX

interprets the first character of each record as a carriage
control character. If the filetype is LISTING, the CC
option is assumed. If CC is in effect, the PRINT command
does not perform page ejects nor count the number of lines
per page; these functions are controlled by the carriage
control characters in the file. The LINECOUN option has no
effect if CC is in effect.

does not interpret the first character of each record as a
carriage control character. In this case, the PRINT
command ejects a new page and prints a heading after the
number of lines specified by LINECOUN are printed. If NOCC
is specified, it is in effect even if CC was specified
previously or if the filetype is LISTING.

translates the lowercase
uppercase for printing.

{:embername}

letters in the file to

prints the members of macro or text libraries. This option
rnav be specified if the file is a simulated partitioned
data set (filetype MACLIB or TXTLIB). If an asterisk (*)
is entered, all individual members of that library are
printed. If a membername is specified, only that member is
printed.

prints the file in graphic hexadecimal format. If HEX is
specified, the options CC and UPCASE are ignored, even if
specified, and even if the filetype is LISTING.

Section 2. CMS Commands 139

PRINT

LINECOUN
LI {~~}

allows you to set the number of lines to be printed on each
page. nn can be any decimal number from 0 through 99. If a
number is not specified, the default value is 55. If nn is
set to zero, the effect is that of an infinite line count
and page ejection does not occur. This option has no
effect if the CC option is also specified.

1. The file may contain carriage control characters and may have
either fixed- or variable-length records, but no record may exceed
132 characters for a 1403 or 3203 printer or 150 characters for a
3211 printer. There are two exceptions:

• If the CC option is in effect,
character longer (133 or 151) to
character.

the record length can be one
allow for the carriage control

• If the HEX option is in effect, a record of any length can be
printed, up to the CMS file system maximum of 65,535 bytes.

2. If you want the first character of each line to be interpreted as a
carriage control character, you must use the CC option. When you
use the CC option for files that do not contain carriage control
characters, the first character of each line is stripped off. An
attempt is made to interpret the first character for carriage
control purposes, an invalid character produces undesirable
results. CMS does not perform validity checking for carriage
control characters.

Piles with a filetype of UPDLOG (produced by the UPDATE command)
must be printed with the CC option.

3. One spool printer file is produced for each PRINT command; for
example:

print mylib maclib (member get

prints the member GET from the file MILIB MACLIB. If you want to
print a number of files as a single file (so that you do not get
output separator pages, for example), use the CP command SPOOL to
spool your virtual printer with the CONT option.

4. The PRINT command has its own forms control buffer load. The
format of the PCB macro used is:

FCB NNNN, 6,66, (1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,10,10,
11,64,12,65,9)

This FCB macro is always loaded by the PRINT command and must be
taken into account when the CC option is used. FCB is a series of
DCs at label CCWLFCB.

5. If the MEMBER option is specified more than once, only the last
member specified is printed. If one MEMBER option is coded with an
asterisk (*), and another MEMBER option is spe~ified with a member
name, only the specified member is printed, regardless of their
order on the command line. For example if you code:

print one maclib (member examplel member example2

only EXAMPLE2 is printed.

140 IBM VM/370 CMS Command and Macro Reference

PRINT

If you code:

print one maclib (member examplel member *
only E~AMPLEl is printed.

None. The CMS ready message indicates the command completed without
error (that is, the file is written to the spooled printer). The file
is now under the control of CP spooling functions. If a CP SPOOL
command option such as HOLD or COpy is in effect, you may receive a
message from CP.

DMSPRT002E FILE 'fn ft fm' NOT FOUND RC=28
DMSPRT003E INVALID OPTION 'option' RC=24
DMSPRT008E DEVICE 'cuu' {INVALID OR NONEXISTENT1UNSUPPORTED DEVICE TYPE}

RC=36
DMSPRT013E MEMBER 'name' NOT FOUND IN LIBRARY RC=32
DMSPRT029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD

RC=24
DMSPRT033E FILE 'fn ft fm' IS NOT A LIBRARY RC=32
DMSPRT039E NO ENTRIES IN LIBRARY ;fn ft fm; RC=32
DMSPR~044E RECORD LENGTH EXCEEDS ALLOWABLE MAXIMUM RC=32
DMSPRT048E INVALID MODE 'mode' RC=24
DMSPRT054E INCOMPLETE FILEID SPECIFIED RC=24
DMSPRT062E INVALID * IN FILEID RC=20
DMSPRT010E INVALID PARAMETER 'parameter' RC=24
DMSPRT104S ERROR Inn' READING FILE Ifn ft fm' FROM DISK RC=100
DMSPRT123S ERROR PRINTING FILE 'fn ft fm' RC= 100

Section 2. CMS Commands 141

PSERV

PSERV

Use the PSERV command in CMS/DOS to copy, display, print, or punch a
procedure from the DOS/VS procedure library. The format of the PSERV
command is:

r 1 , r ,
IPSERV
I

procedure I ft I [(options. •• [)]]
'f!tQ~1

I
I ,

I L.J Q~iQ!!§:

I [Q!~K] [PRINT]
I
I [PUNCH] [TERM]

I ,
I
I

L-- J

procedure specifies the name of the procedure in the DOS procedure
library that you want to copy, print, punch, or display.

ft specifies the filetype of the file to be created on your
A-disk. ft defaults to PROC if a filetype is not specified;
the filename is always the same as the procedure name.

QQ~iQn§: You may enter as many options as you wish, depending on the
functions you want to perform.

PRINT

PUNCH

TERM

copies the procedure to a CMS file.
specified, DISK is the default.

If n~ options are

spools a copy of the procedure to the virtual printer.

spools a copy of the procedure to the virtual punch.

displays the procedure on your terminal.

1. You cannot execute DOS/VS procedures in CMS/DOS. You can use the
PSERV command to copy an existing DOS/VS procedure onto a CMS disk,
use the CMS Editor to change or add DOS/VS job control statements
to it, and then spool it to the reader of a DOS/VS virtual machine
for execution.

2. The PSERV command ignores current assignments of logical units, and
directs output according to the option list.

When you issue the TERM option, the procedure is displayed at your
terminal.

142 IBM VM/370 CMS Command and Macro Reference

DMSPRV003E INVALID OPTION 'option' RC=24
DMSPRV004E PROCEDURE 'procedure' NOT FOUND RC=28
DMSPRV006E NO READ/WRITE 'A' DISK ACCESSED RC=36
DMSPRV037E DISK 'A' IS READ/ONLY RC=36
DMSPRV070E INVALID PARAMETER 'parameter' RC=24
DMSPRV097E NO 'SYSRES' VOLUME ACTIVE RC=36
DMSPRV09AE NO PROCEDURE NAME SPECIFIED RC=24
DMSPRV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSPRV105S ERROR 'nnw WRITING FILE 'fn ft fm' TO DISK RC=100
DMSPRV113S DISK (cuu) NOT ATTACHED RC=100
DMSPRV411S INPUT ERROR CODE 'nn' ON 'SYSRES' RC=100

PSERV

Section 2. CMS Commands 143

PUNCH

PUNCH

Use the
pu nch.

PUNCH command to punch a CMS disk file
The format of the PUNCH command is:

to your virtual card

r ,
I r ,
I PUnch fn ft Ifml [(options ••• [)]]
I
I
I
I
I
I ,
I ,
I
L-

fn

ft

I * I
L .J r ,

I!!~AD~R I
I NOHEADER I
L J

r ~

IMEMBER {* }I
I membernam. I
L 1.1

_______________________-.J

is the filename of the file to be punched.
specified.

This field must be

is the filetype of the file to be punched.
specified.

This field must be

fm is the filemode of the file to be punched. If you specify it as an
asterisk (*), the standard order of search is followed and the
first file found with the specified filename and filetype is
punched. If fm is not specified, your A-disk and its extensions
are searched.

NOH EADER
NOH

inserts a control card in front of the punched output.
This control card indicates the filename and filetype for
a subsequent READCARD command to restore the file to a
disk. The control card format is shown in Figure 18.

does not punch a header control card.

MEMBER
MEM {:embername}

punches members of MACLIBs or TXTLIBs. If an asterisk
(*) is entered, all individual members of that macro or
text library are punched. If member name is specified,
only that member is punched. If the filetype is MACLIB
and the MEMBER membername option is specified, the header
contains MEMBER as the filetype. If the filetype is
TXTLIB and the MEMBER membername option is specified, the
header card contains TEXT as the filetype.

144 IB5 iM/370 eMS Command and Macro Reference

PUNCH

r ~

I I Number of I I I
I ColumniCharacterslContentsl Meaning I
I
I I: IIdentifies card as a control card.

t
, 2-5 4 IREAD IIdentifies card as a READ control card.
I I'
I 6-1 2, blank I
1 'I
, A-15 8 Ifname ,Filename of the file punched.
1 'I
116 Iblank 1

, 17-24

25

26-27

28

29-34

35

36-43

144-45
I
146-50
I
i
'51-QO
L-

Figure 18.

8 ftype

blank

2 fmode

blank

6 volid

blank

I
I

lFiletype of the file punched.
1
1
I
IFilemode of the file punched.
I
t

Label of the disk from whicn the file was
read.

8 mm/dd/yy The date that the file was last written.

2 blank

5 hh:mm

30 blank

The time of day that the file was written
to disk.

Header Card Format

1. You can punch fixed- or variable-length records with the PUNCH
command, as long as no record exceeds 80 characters. Records with
less than 80 characters are right-padded with blanks. Records
longer than 80 characters are rejected.

2. If you punch a MACLIB or TXTLIB file specifying the MEMBER * option, a read control card is placed in front of each library
member. If you punch a library without specifying the MEMBER *
option, only one read control card is placed at the front of the
deck.

3. One spool punch file is produced for each PUNCH command; for
example:

punch compute assemble (noh

punches the file COMPUTE ASSEMBLE, without inserting a header card.
To transmit multiple CMS files as a single punch file, use the CP
SPOOL command to spool the punch with the CONT option.

Section 2. CMS Commands 145

PUNCH

4. If the MEMBER option is specified more than once, only the last
member specified is punched. If one MEMBER option is coded with an
asterisk (*), and another MEMBER option is specified with a member
name, only the specified member is punched, regardless of their
order on the command line. For example if you code:

punch one maclib (member examplel member example2

only EXAMPLE2 is punched. If you code:

punch one maclib (member examplel member *
only EXAMPLEl is punched.

5. When punching members from CMS maclibs, each member is followed by
a maclib delimeter record (II). You can edit the file to delete
the II record.

None. The CMS ready message indicates that the command completed
without error (the file was successfully spooled); the file is now under
control of CP spooling functions. You may receive a message from CP
indicating that the file is being spooled to a particular user's virtual
card reader.

DMSPUN002E FILE 'fn ft fm' NOT FOUND RC=28
DMSPUN003E INVALID OPTION 'option' RC=24
DMSPUN008E DEVICE 'cuu' {INVALID OR NONEXISTENTIUNSUPPORTED DEVICE TYPE}

RC=36
DMSPUN013E MEMBER 'name' NOT FOUND IN LIBRARY RC=32
DMSPUN033E FILE 'fn ft fm' IS NOT A LIBRARY RC=32
DMSPUN03QE NO ENTRIES IN LIBRARY 'fn ft fm' RC=32
DMSPUN044E RECORD LENGTH EXCEEDS ALLOWABLE MAXIMUM RC=32
DMSPUN054E INCOMPLETE FILEID SPECIFIED RC=24
DMSPUN062E INVALID * IN FILEID RC=20
DMSPUN104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSPUN118S ERROR PUNCHING FILE 'fn ft fm' RC=100

146 IBM VM/370 CMS Command and Macro Reference

QUERY

QUERY

Use the QUERY command to gather information about your eMS virtual
machine. You can determine:

• The state of virtual machine characteristics that are controlled by
the eMS SET command

• File definitions (set with the FILEDEF and DLBL commands) that are in
effect

• The status of accessed disks

• The status of CMS/DOS functions

The format of the QUERY command is:

r
Query

L-_____ _

BLIP
RDYMSG
LDRTBLS
RELPAGE
IMPCP
IMPEX
ABBREV
REDTYPE
PROTECT
INPUT
OUTPUT
SYSNAMES
SEARCH

DISK

{
SYSTEM}

SYNONYM USER
ALL

FILEDEF
LABELDEF
MACLIB
T,{TLIB
LIBRARY

\

DLBL
DOS
DOSLIB
DOSPART

\

DOSLNCNT
OPTION
UPSI

BLIP displays the BLIP character(s) •

BLIP = {XXXXXXXX}
OFF

---,-----"

Section 2. eMS Commands 141

QUERY

RDYMSG

LDRTBLS

RELPAGE

IMPCP

IMPE;{

ABBREV

displays the PDYMSG message of the CMS Ready format.

Rg§EQn§~: RDYMSG = {LMSG}
SMSG

LMSG is the standard CMS Ready message:

R ; T = O. 1 2/0 • 33 1 7: 06 : 2 0

SMSG is the shortened CMS Ready message:

R~

displays the number of loader tables.

Rg§EQn§~: LDRTBLS = nn

indicates whether pages of storage are to be released or
retained after certain commands complete execution.

Rg§EQn§~: RELPAGE = {ON }
OFF

ON releases pages.
OFF retains pages.

displays the status of implied CP command indicator.

gg§EQn§~: IMPCP = {ON }
OFF

ON indicates that CP commands can be entered from the CMS
environment.

OFF indicates that you must use the CP command or the #CP
function to enter CP commands from the CMS
environment.

displays status of implied EXEC indicator.

= {ON }
OFF

ON indicates that EXEC files can be executed by entering
the filename of the file.

OFF indicates that the EXEC command must be explicitly
entered to execute EXEC files.

displays the status of the minimum truncation indicator.

Rg§EQn§~: ABBREV = {ON }
OFF

148 IBM VM/370 CMS Command and Macro Reference

REDTYPE

PROTECT

INPUT

OUTPUT

ON indicates that
commands.

truncations are accepted for

OFF indicates that truncations are not accepted.

displays the status of the REDTYPE indicator.

Rg§£2n§~: REDTYPE = {ON }
OFF

QUERY

eMS

ON types CMS error messages in red, for certain terminals
equipped with the appropriate terminal feature and a
two-color ribbon. Supported terminals are described in
the !~Ll70 Te~inal ~§~£~§ ~Yig~.

OFF does not type CMS error messages in red.

displays the status of CMS nucleus protection.

Rg§£2n§~: PROTECT = {ON }
OFF

ON means CMS nucleus protection is in effect.
OFF means CMS nucleus protection is not in effect.

displays the contents of any input translate table ~n effect.

an xxn

If you do not have an input translate table in effect, the
response is:

NO USER DEFINED INPUT TRANSLATE TABLE IN USE

displays the contents of any output translate table in effect.

xxn an

If you do not have an output translate table defined, the
response is:

NO USER DEFINED OUTPUT TRANSLATE TABLE IN USE

I SYSNAMES displays the names of the standard saved systems.

Section 2. CMS Commands 149

QUERY

SEARCH

g~~EQn~~: SYSNAMES: CMSSEG CMSVSAM CMSAMS CMSDOS
ENTRIES: entry ••• entry ••• entry ••• entry •••

SYSNAMES are the standard names
discontiguous saved systems.

that ident ify the

ENTRIES are the standard system default names or the system
names established by the SET SYSNAME command.

displays the search order of all disks currently accessed.

r ,
g~~EQn~~: label cuu mode

{RIO} I-oS I
I-DOSI R/i
L .J

label is the label assigned to the disk when it was
formatted; orr if it is an OS or DJS dis[~ the volume
label.

cuu is the virtual device address.

mode is the filemode letter assigned to the disk when it was
accessed.

r ,
{RIO} indicates whether read/write or read-only is the status
R/i of the disk.

lOS 1 indicates an OS or DOS disk.
IDOSI
L J

DISK moae displays the status of the single disk represented by "mode".

g~~~Qn~g: mode (cuu): nnnn FILES r nnnnn REC IN USE, nnnnn LEFT
(OF nnnnn)r nn% FULL (nnn CYL), type {RIO}

R/i

If the disk is an OS or DOS disk r the response is:

mode (cuu) : (nnn CYL)r type {R/O} - {OS}
R/i DJS

mode (cuu) are the access mode letter and virtual device
address.

nnnn FILES is the number of CMS files on the disk.

nnnnn REC IN USEr nnnnn LEFT (of nnnnn)
indicates the number of CMS SOO-byte blocks in
use. nnnnn LEFT is a high approximate value due
to included control blocks.

150 IBM VM/370 eMS Command and Macro Reference

DISK *

QUERY

nn% FULL (nnn CYL)
indicates the percentage of total use and the
number of cylinders.

type indicates the model number of the disk.

{RIO} indicates whether read/write or read-only is the
R/W status of the disk.

{~~S} indicates an OS or DOS disk.

If the disk with the specified mode is n:>t accessed, the
response is:

DISK 'mode' NOT ACCESSED

displays the status of all CMS aisks.

Rg§QQn§~: Is the same as for QUERY DISK mode; one line is
displayed for each accessed disk.

SYNONYM SYSTEM
displays the CMS system synonyms in effect.

SYSTEM SHORTEST
COMMAND FORM

command minimum truncation

If no system synonyms are in effect. the following message is
displayed at the terminal:

NO SYSTEM SYNONYMS IN EFFECT

SYNONYM USER
displays user synonyms in effect.

SYSTEM USER
COMMAND SYNONYM

SHORTEST
FORM (IF ANY)

command synonym minimum truncation

If no user synonyms are in effect, the followin~ message is
aisplayed at the terminal:

NO USER SYNONYMS IN EFFECT

SYNONYl1 ALL
displays all synonyms in effect.

R~§!Qn§~: The response to the command QUERY SY~JNYM SYSTEM is
followed by the response to QUERY SYNONYM USER.

Section 2. CMS :ommands 151

QUERY

FILEDEF

~ACLIB

TXTLIB

LIBRARY

DLBL

152 IB~

displays all file definitions in effect.

g~§£Qn§~: ddname device [fn [ft]]

If no file definitions are in effect, the following nessage is
displayed at the terminal:

NO USER DEFINED FILEDEF'S IN EFFECT

displays the names of all files, with a filetype of MACLIB r
that are to be searched for macro definitions (that is, all
MACLIBs specified on the last GLOBAL MACLIB command r if any).

Rg§EQn§~: MACLIB = libname •••

If no macro libraries are
definitions r the response is:

MACLIB = NONE

to be searched for macro

displays the names of all files, with a filetype of TITLIBr
that are to be searched for unresolved refecences (that iS r
all TXTLIBs specified on the last GLOBAL TITLIB command r if
any) .

Rg§EQn§~: TXTLIB = libname •••

If no TX~LIBs are to be searched for uncesolved ceferences,
the following message is displayed at the terminal:

'IXTLIB = NONE

displays the names of all library files with filetypes of
MACtIB, TXTLIB, and DOSLIB that are to be searchea.

Rg§EQn§~: MACLIB = {libname ••• }
NONE

TXTLIB

DOStIB

= {libname ••• }
NONE

= {libname ••• }
NONE

in order to display the contents of the curcent data set
definitions, it is necessary only to enter:

DLBL or QUERY DLBL

Entering the command yields the following information:

DDNAME

eMS

the DOS filename or OS ddname.

Command. ... "".:1
Q. 11U.

u_,. __
LlQ.L.V Reference

QUERY

MODE the CMS disk mode identifying the disk on which the
data set resides.

LOGUNIT

TYPE

CATALOG

EXT

VOL

BUFSP

PERM

DISK

the DOS logical unit specification (SYSxxx). This
operand will be blank for a data set defined while
in eMSloS environment; that is, the SET DOS ON
command had not been issued at DLBL definition timea

indicates the type of data set defined •. This field
may only have the values SEQ (sequential) "and VSAM.

indicates the ddname of the VSAM catalog to be
searched for the specified data set. This field
will be blank for sequential (SEQ) da taset
defini tions.

specifies the number of extents defined for the data
set. The actual extents may be displayed by
entering either the DLBL (EXTENT) or the QUERY DLBL
EXTENT command. This field will be blank if no
extents are active for a VSAM data set or if the
data set is sequential (SEQ).

specifies the number (if greater than one) of
volumes on which the VSAM data set resides. The
act ual volumes may be displayed by entering either
the DLBL (MULT) or the QUERY DLBL MULT commands.
This field will be blank if the VSAM data set
resides only on one volume or if the data set is
sequential (SEQ) •

indicates the size of the VSAM buffer space if
entered at DLBL definition time. This field will be
blank if the dataset is sequential (SEQ).

indicates whether the DLBL definition was made with
the PERM option. The field will contain YES or NO.

indicates whether the data set resided on a CMS or
DOSIOS disk at DLBL definition time. The"values for
this field are DOS and CMS.

DATASET.NAME
for a data set residing on a eMS disk, the eMS
filename and filetype are given; for a data set
residing on a DOS/OS disk, the data set name
(maximum 44 characters) is given. This field will
be blank if no DOS/OS data set name is entered at
DLBL definition time.

If no DLBL definitions are active, the following message is
issued:

DMSDLB3241 NO USER DEFINED DLBL'S IN EFFECT

DOS displays whether the CMS/DOS environment is active or not.

DOSLIB

gg§EQn§g: DOS = {ON }
OFF

displays the names of all files with a filetype of DOSLIB that
are to be searched for executable phases (that is, all DOSLIBs
specified on the last GLOBAL DOSLIB command, if any).

Section 2. CMS Commands 153

QUERY

DOSPART

R~§QQn§~: DOSLIB = {libname ••• }
NONE

displays the current setting of the virtual partition size.

g~§QQn§~: {nnnnnK}
NONE

nnnnnK indicates the size of the virtual partition to be used
at program execution time.

NONE indicates that CMS determines the virtual partition
size at program execution time.

DOSLNCNr displays the number of SYSLST lines per page.

OPTION

UPSI

R~§QQn§~: DOSLNCNT = nn

nn is an integer from 30 to 99.

displays the compiler options that are currently in effect.

g~§QQn§~: OPTION = options •••

displays the current setting of the UPSI byte. The eight
individual bits are displayed as zeros or ones depending upon
whether the corresponding bit is on or off.

g~§QQn§~: UPSI = nnnnnnnn

1. Yoa can specify only one QUERY command function at a time. If the
implied CP function is in effect and you enter an invalid QUERY
command function, you may receive the message DMKCQG045E.

2. If an invalid QUERY command function is specified from an EXEC and
the implied CP function is in effect, then the return code is
-0003.

3. The DOSPART, OPTION, and UPSI functions are valid only if the
CMS/DOS environment is active.

DMSQRY005E NO 'option' SPECIFIED RC=24
DMSQRY014E INVALID FUNC~ION 'function' RC=24
DMSQRY026E INVALID PARAMETER 'parameter' FOR 'function' FUNCTION RC=24
DMSQRY047E NO FUNCTION SPECIFIED RC=24
DMSQRY070E INVALID PARAMETER 'parameter' RC=24
DMSQRY099E eMS/DOS ENVIRONMENT NOT ACTIVE RC=40

i54 IBn VMi370 eMS Command and Macro Reference

READCARD

READCARD

Use the READCARD command to read data records from your
rea1er ~na to create eMS disk files containing the data
format of the READCARD command is:

virtual card
records. The

r -, , READcard

\

r , ,
I fn ft I fm , I
I I ! , I
I L J I
1 r r "

,
I (. , * , fm II , -, I I ! , I ,
I L L JJ ,
L -J

fn is the filename you want to assign to the file being read.

ft

* [*]

fm

is the filetype you want to assign to the file being read.

indicates that file identifiers are to be assigned according
to READ control cards in the input deck.

is the filemode of the disk onto which the file is to be read.
If this field is omitted or specified as an asterisk (*), the
A-disk is assumed. Whenever a mode number is specified on the
command line, it is used; otherwise, the mode number on the
READ control card is used to create the disk file.

1. Data records read by the READCARD command must be fixed-length
records, and may be a minimum of 80 and a maximum of 151 characters
long.

2. C~5 disk file identifiers are assigned according to READ control
cards in the input deck (the PUNCH command header card is a valid
READ control card). When you enter the command:

readcard *
C~5 reads the first spool reader file in the queue and if there are
READ control cards in the input stream, it names the files as
indicated on the control cards.

If the first card in the deck is not a READ control card, CMS
writes a file named READCARD CMSUT1 A1 to contain the data, until a
READ control. card is encountered or until the end-of-file is
reached.

3. If you s?ecify a filename and filetype on the READCARD command, for
example:

readcard recent memo

CMS does not check the input stream for READ control cards, but
rea1s the entire spool file onto disk and assi~ns it the specified
filename and filetype.

Section 2. C~S :ommands 155

READCARD

If there were anv READ control cards in the deck, they
removed; you must delete them using the CMS Editor if you
want them in vour file. If the file is too large, you can
increase the size of your virtual storage (using the CP
command), or use the COPYFILE command to copy all records
the READ control cards (using the FROM and FOR options,.

are not
do not
either
DEFINE
except

4. To read a file onto a disk other than your A-disk, you can specify
th~ filemode letter when you enter the filename and filetype; for
eX:lmple:

5.

readcard recent memo c

o~, if you want READ control card to determine the filenames and
filetypes, you can enter:

readcard * * c

When vou read a file
th:lt of an existing
replaced.

that has the
file on the

same filename and filetype as
same disk, the old file is

6. If vou are preparing real or virtual card decks to send to your own
or another user's virtual card reader, you may insert READ control
cards to designate filenames, filetypes, and opti~nally. filemode
numbers, to be assigned to the disk file(st.

A READ control card must begin in column 1 and has the format:

:READ filename filetype filemode

Ea=h field must be separated by at least one blank; the second
character of the filemode field, if specified, must be a valid
filemode number (0 through 5). The filemode letter is ignored when
this file is read, since the mode letter is determined by
specifications on the READCARD command line.

7. To send a real card deck to your own or another user's virtual card
re:lder, you must punch a CP ID card to precede the deck. The ID
cacd has the keyword ID or USERID in column 1, followed by the
userid you want to receive the file and optionally, spool file
class and name designations; for example:

1D NEWYOFK CLASS A NAME BIG APPLE

Ea=h field must be separated from the others by at least one blank.

8. When a file in the reader has a filemode letter of "A", the
readcard command uses the filemode number of the read control card.
The default value is only true for a filemode of "A". Any other
filemode letter (B, C, etc.) specified without a filemode number in
the readcard command, defaults to a filemode number of one.

156 1B~ V~/370 CMS Command and Macro Reference

READCARD

When the READCARD * command is issued, control cards encountered in the
input card stream are displayed at the terminal (see message
DMSRDC702I), to indicate the names assigned to each file.

DMSRDC'OlI NULL FILE

The spooled card reader contains no records after the control card.

DMSRDC702I :READ filename filetype fn (other information'

A READ control card has been processed; the designated file is
being written on disk.

DMSRDC702I READ CONTROL CARD IS MISSING. FOLLOWING ASSUMED:
DMSRDC702I :READ READCARD CMSUTl A1

The first card in the deck is not a READ control card. Therefore,
the file READCARD CMSUT1 A1 is created.

DMSRDC73AI RECORD LENGTH IS 'nnn' BYTES

The records being read are not 80 bytes long; this message gives
the length.

DMSRDCOOAE DEVICE 'cuu' {INVALID OR NONEXISrENTIUNSUPPORTED DEVICE TYPE}
RC=36

DMSRDCOq2E NO FILEID SPECIFIED RC=2Q
DMSRDCOSQE INCOMPLETE FILEID SPECIFIED RC=2Q
DMSRDC062E INVALID * IN FILEID RC=20
DMSRDC05QE DISK 'mode' NOT ACCESSED RC=36
DMSRDC10SS ERROR 'nn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSRDC12QS ERROR READING CARD FILE RC=100
DMSRDC205W READER EMPTY OR NOT READY RC=8

Section 2. CMS ~ommands 157

RELEASE

RELEASE

Use the RELEASE command to free an accessed disk ana make the files on
it unavailable. The format of the RELEASE command is:

r ----------_._------_._-_._-----,
, RELease , { CUU} (DET()]] ,

mode , L _____ _

cuu is the virtual device address of the disk that is to be released.

mode

Valid addresses are 001 through 5FF for a
basic control mode and 001 through FFF for a
extended control mode.

virtual machine in
virtual machine in

is the mode letter at which the disk is currently accessed.

DET specifies that the disk is to be detached from your virtual
machine configuration; CMS calls the CP command DETACH.

1. If a disk is accessed at more than one mode letter r the RELEASE cuu
command releases all modes. If you access a aisk specifying the
mode letter of an active disk r the first disk is released.

2. YOl cannot release the system disk (S-disk).

3. When a disk is releasedr the user file directory is freed from
storage and that storage becomes available for other CKS commands
and programs. When you release a read/write CKS disk r either with
the RELEASE command or implicitly with the FORMAT command, the user
file directory is sorted and rewritten on disk; user(s) who may
subsequently access the same disk may have a resultant favorable
decrease in file search time.

4. When a disk is released, any read-only extensions it may have are
not released. The extensions may be referred to by their own mode
letters. If a disk is then accessed with the same mode as the
original parent disk, the original read-only extensions remain
extensions to the new disk at that mode.

5. In CMS/DOS, when you release a disk, any system or programmer
lo~ical unit assignments made for the disk are unassigned.

DASD cuu DETACHED

This is a CP message that is issued when you use the DET option.
It indicates that the disk has been detached.

158 IB~ VK/37Q CMS Command and Macro Reference

DMSARE017E INVALID DEVICE ADDRESS 'cuu' RC=24
DMSARE028E NO DEVICE SPECIFIED RC=24
DMSARE048E INVALID MODE 'mode' RC=24
DKSARE069E DISK ('model "cuu'} NOT ACCESSED RC=36
DMSARE010E INVALID PARAMETER 'parameter' RC=24

RELEASE

Section 2. eMS Commands 159

RENAME

RENAME

Use the RENAME command to change the fileid of one or ~~ce eMS files on
a read/~cite CMS disk. The format of the RENAME com~and is:

r- ,
I Rename , fileid1 fileid2 [(options ••• U]]

I
I ,
I ,
I
L

r ,
ITYPE I
I'!Q!I~~I

r ,
I UPDIRT - I
, N~UPDiRT'

L .J L .J
_______________ -.1

fileid1 is the file identifier of the original file whose name is to
be changed. All components of the fileid (filename r
filetype, and filemode) must be coded, with either a name or
an asterisk. If an asterisk is coded in any field, any file
that satisfies the other qualifications is renamed.

fi leid2

TYPE
T

NOUPDIRT
NOUP

is the new file identifier of the file. All components of
the file (filename, filetype, and filem~det must be coded,
with either a name or an equal sign; if an equal sign (=) is
coded, the corresponding file identifiec is unchanged. The
output filemode can also be specified as an asterisk (*),
indicating that the filemode is not changed.

displaysr at the terminal, the new identifiers of all
the files that are renamed. The file identifiers are
displayed only when an asterisk (*l is specified for one
or more of the file identifiers (fn, ftr or fm) in
fileid 1.

suppresses at the terminal, displaying of the new file
identifiers of all files renamed.

updates the master file directory upon c~mpletion of this
command.

suppresses the updating of the
upon completion of this command.

master file directory
(See Usage Note 3.)

1. When you code an asterisk (*) in any portion of the input fileid,
any oc all of the files that satisfy the other qualifiers may be
cenamed, depending upon how you specify the ~utput fileid. For
example:

rename * assemble a test file a

results in the first ASSEMBLE file found on tne A-disk being
renamed to TEST FILE. If more than one ASSEMBLE file exists, error
messages are issued to indicate that they cannot be cenamed.

160 IBM VM/370 CMS Command and Macro Reference

2 •

3.

RENAME

If you code an equal sign (=) in an output fileid in
corresponding to an asterisk in an input fileid, all
satisfy the condition are renamed. For example:

a position
files that

rename * assemble a = oldasm =

renames all files
filetype of OLDASM.

with a filetype of ASSEMBLE to
Current filenames are retained.

files with a

You cannot use the
another. You must
filemode letters.

RENAME command to move a file from one disk to
use the COPYFILE com mana if you want to change

You can use the RENAME command to modify filemode numbers, for
example,

rename * module al = = a2

changes the filemode number on all MODULE files that have a mode
number of 1 to a mode number of 2.

NQ£~: You can invoke the RENAME command from the terminal, from an
EXEC file, or as a function from a program. If RENA~E is invoked as
a function or from an EXEC file that has the &CONTROL NOMSG option
in effect, the message DMSRNM002E FILE 'fn ft fm' NOT FOUND is not
issued.

Normally, the master file directory for
whenever you issue a command that affects
you use the NOUPDIRT option of the RENAME
directory is not updated until you issue
updates, or deletes any file on the disk,

a C~S disk is updated
files on the disk. When
command, the master file

a commana that writes,
or until you explicitly

release the disk (with the RELEASE command; •

newfn newft newfm

The new filename, filetype, and filemode of each file altered is
displayed when the TYPE option is specified and an asterisk was
specified for at least one of the file identifiers (fn, ft or fm)
of the input fileid.

DMSRNM002E FILE 'fn ft fm' NOT FOUND RC=28
DMSRNM003E INVALID OPTION 'option' RC=24
DMSRNM019E IDENTICAL FILEIDS RC=24
DMSRNM024E FILE 'fn ft fm' ALREADY EXISTS RC=28
DMSRNM030E FILE 'fn ft fm' ALREADY ACTIVE RC=28
DMSRNM037E DISK 'mode (cuu) , IS READ/ONLY RC=36
DMSRNM048E INVALID FILE MODE 'fm' RC=24
DMSRNM051E INVALID MODE CHANGE RC=24
DMSRNM054E INCOMPLETE FILEID SPECIFIED RC=24
DMSRNM062E INVALID * IN OUTPUT FILEID RC=20

, I

Section 2. CMS Commands 161

RSERV

RSERV

Use the RSERV command in CMS/DOS to cOPYr displaYr printr or punch a
DOS/VS relocatable module from a private or system library. The format
of the RSERV command is:

r --,
I r , ,
, RSERV , modname , ft , (op tions ••• [)]]

lT~!!'

, , , , ,
, L .J

I ,
Q~iiQ!l§:

[Q!~~]
[PUNCH]

(PRINT]
(TERM]

L-
___ -J

modname specifies the name of the module on the DOS/VS private or
system relocatable library. The private 1ibrarYr if anYr is
searched before the system library.

ft specifies the filetype of the file to be created on your
A-disk. ft defaults to TEXT if a filetype is not specified.
The filename is always the same as the module name.

Q2i!Qll§: You may specify as many options as you wish on the RSERV
command, depending on which functions you want to perform.

copies the relocatable module onto your A-disk.
options are specified r DISK is the default.

If no other

PUNCH punches the relocatable module on the virtual punch.

PRINT prints the relocatable module on the virtual printer.

TERM displays the relocatable module at your terminal.

1. If you want to copy modules from a private relocatab1e 1ibrarYr you
must issue an ASSGN command for the l~gical unit SISRLB and
identify the library on a DLBL command line using the ddname
IJSYSRL.

To copy modules from the system re10catable library, you must have
entered the CMS/DOS environment specifying a mode letter on the SET
DOS ON command line.

2. The RSERV command ignores the assignment of logical units, and
directs output to the devices specified on the option list.

If you use the TERM option, the relocatable module is displayed at the
terminal.

162 IB~ VM/370 CMS Command and Macro Reference

DMSRRV003E INVALID OPTION 'option' RC=24
DMSRRV004E MODULE 'module' NOT FOUND RC=28
DMSRRV006E NO READ/WRITE 'A' DISK ACCESSED RC=36
DMSRRV070E INVALID PARAMETER 'parameter' RC=24
DMSRRV097E NO 'SYSRES' VOLUME ACTIVE RC=36
DMSRRV098E NO MODULE NAME SPECIFIED RC=24
DMSRRV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSRRV105S ERROR Inn' WRITING FILE 'fn ft fml ON DISK RC=100
DMSRRV113S DISK (cuu) NOT ATTACHED RC=100
DMSRRV411S INPUT ERROR CODE Inn' ON '(SYSRESISYSRLB}' RC=100

RSERV

.. ;.

Section 2. CMS Commands 163

RUN

RUN

Use the PUN EXEC procedure to initiate a series of functions on a file
depending on the filetype. The RUN command can select or combine the
procedures required to compile, load, or start execution of the
specified file. The format of the RUN command is:

r
, RUN
L-

fn (ft (fm]] [(args ••• [)]]

fn is the filename of the file to be manipulated.

ft is the filetype of the file to be manipulated. If filetype is not
specified, a search is made for a file with the specified filename
and the filetype of EXEC, MODULE, or TEXT (the search is performed
in that order). If the filetype of an input file for a language
processor is specified, the language processor is invoked to
compile the source statements and produce a TEXT file. If no
compilation errors are found, LOAD and START may then be called to
initiate program execution. The valid filetypes and resulting
action for this command are:

~i!~tI£~
EXEC

MODULE

TEXT

!£iiQ!!
The EXEC processor is called to process the file.

~he LOADMOD command is issued to load the program into
storage and the START command begins execution of the
program at the entry point equal to fn.

~he LOAD command brings the file into storage in an
executable format and the START command executes the
program beginning at the entry point named by fn.

FORTRAN ~he FORTRAN processor module that is called is FORTRAN,
FORTGI, GOFORT, or FORTHX, whichever is found first.
Object text successfully compiled by the FJRTGI or FORTHI
processors will be loaded and executed.

TESTFORT The TESTFORT module is called to initiate FORTRAN
Interactive Debug and will process a TEXT file that has
been compiled with the TEST option.

FREEFORT The GOFORT module is called to process the file.

COBOL ~he COBOL processor module that is called is COBOL or
TESTCOB, whichever is found first. After successful
compilation, the program text will be loaded and
executed.

PLI The PLIOPT processor module is called to process
PLIOPT the file. After successful compilation, the program text

will be loaded and executel.

1n4 IB~ VM/370 c~s Command and Macro Reference

RUN

fm is the filemode of the file to be manipulated. If this field is
specified, a filetype must be specified. If fm is not specified,
the default search order is used to search your disks for the file.

args are arguments you want to pass to your program. You can specify up
to 13 arguments in the RUN command, provided they fit on a single
input line. Each argument is left-justified, and any argument more
than eight characters long is truncated on the right.

1. The RUN command is an EXEC file; if you want to execute it from
within an EXEC, you must use the EXEC command.

2 • If you are executing an EXEC file, the arguments you
RUN command line are assigned to the variable symbols
so on.

enter on the
&1, &2, and

3. If you are executing a TEXT or MODULE file, or compiling and
executing a program, the arguments are pla~ed in a parameter list
and passed to your program when it executes. The arguments are
placed in a series of doublewords in storage, terminated by X'FF'.
If you enter:

run myprog (charlie dog

the arguments *, CHARLIE, and DOG are pla~ed in
parameter list, and the address of the list is in
your program receives control.

doublewords in a
register 1 when

Note: You cannot use the argument list to override default options
for the compilers or for the LOAD or START commands.

4. The RUN command is not designed for use with CMS/DOS.

5. The RUN EXEC cannot be used for COBOL and PL/I programs that
require facilities not supported under CMS. For specific language
support limitations, see Y~lIQ g1~ggin~ an~ ~Y§!~m 2~n~Ig!iQn
~!!!g~.

Any responses are from the programs or procedures that executed within
the RUN EXEC.

DMSRUN001E NO FILENAME SPECIFIED RC=24
DMSRUN002E FILE['fn [ft [fm]]'] NOT FOUND RC=28
DMSRUN04AE INVALID MODE 'fm! RC=24
DKSRUN010E INVALID PARAMETER 'parameter' RC=24
DKSRUN999E NO (ft] PROCESSOR FOUND PC=28

Section 2. CMS Commands 165

SET

SET

Use the SET command to establish, turn off, or reset a particular
function in your CMS virtual machine. Only one function may be
specified per SET command. The format of the SET command is:

r
I SE'!' , , , ,
I
I
I
I
I , , ,
I , , , ,
I
I ,
I
I ,
I ,
I , , , ,
I
I , ,
L

function
r

£!!!!£iiQn§: ,BLIP str ing((count)
,BLIP ON
IBLIP OFF
L

r ,
[LORTBLS nn] I RELPAGE QN ,

, REL PAGE OFF I
l. .J

r , r ,
I!~~l1~! Q!! I ,REDTYPE ON I
IABBREV OFF, IREDTYPE Q~~'
L J L J

r , r ,
1!!1~~R Q!! I I RROTE~! QN I
IIMPCP OFFI ,PROTECT OFFI
L J L .J

r {CMSOOS } ISYSNAME CMSVSAM
, CMSAMS
L CMSSEG

,
entryname I

I
J

., r .,
] I I!U;!IMS~ 1l1S~ I

I IRDYMSG SMSGI , L

J

r r ,
!INPUT I a xxi
I Ixx yyl
L L J

[OUTPUT [xx a]
r ,
II~REX Q! ,
IIMPEI OFF,
L J

r .,
I AUTOREAD ON I
I AUTOREAD OFF!
L .J

r
INONSHARE
I
L

r ,
lOOS ON [mode [(VSAM[)]]]I

r ,
lOOSLNCNT nnl

IDOS OFF I L

L .J

r , r ,
, UPSI nnnnnnnn I 100SPART nnnnK I
I UPSI OFF "DOSPART OFF I
L J L .J

J

,
I
I

J

]

BLIP string[(count)]

BLIP ON

defines the characters that are displayed at the terminal to
indicate every two seconds of virtual interval timer time.
This time is made up of virtual processor time plus, if the
REAL~IMEB option is in effect, self-imposed wait time. Blips
may also be caused by the execution of the STIMER macro.

You can define up to eight characters as a blip string; if you
want trailing blanks, you must specify count. ON and OFF must
not be used as BLIP characters.

sets the BLIP character string to its default, which is a
string of nonprintable characters. ON is the default for
typewriter devicese The default BLIP character provides no
visual or audio-visual signal on a 3767 terminal. You must
define a BLIP character for a 3767 if you want the BLIP
function.

i66 IB~ VMi370 eMS Command and Macro Reference

SET

BLIP OFF turns off BLIP. OFF is the default for graphics devices.

Note: The BLIP operand will be ignored when issued from the
CMS batch machine.

RQ!~~52 LMSG
---indicates that the standard eMS

current and elapsed timer is used.
Ready message is:

R; T=s.mm/s.mm hh:mm:ss

ready message r including
The format of the standard

wnere the virtual processor timer real processor timer and
clock time are listed.

RDYMSG SMSG

LDRTBLS nn

indicates that a shortened form of the CMS ready message CRt)
which does not include the time is used.

defines the number (nn) of pages of storage to be used for
loader tables. By default, a virtual machine naving up to
384K of addressable real storage has two pages of loader
tables; a larger virtual machine has three pages. Each loader
table page has a capacity of 204 external names. During LOAD
and INCLUDE command processing r each unique external name
encountered in a TEXT deck is entered in the loader table.
The tOAD command clears the table before reading TEIT files;
INCLUDE does not. This number can be changed with the SET
LDRTBLS nn command provided that: (1) nn is a decimal number
between 0 and 128 r and (2) the virtual macnine has enough
storage available to allow nn pages to be used for loader
tables. If these two conditions are met, nn pages are set
aside for loader tables. If you plan to change the number of
pages allocated for loader tables r you should deallocate
storage at the high end of storage so that the storage for the
loader tables may be obtained from that area. Usually, you
can deallocate storage by releasing one or more of the disks
that were accessed.

releases page frames of storage and sets them to binary zeros
after the following commands complete execution: ASSEMBLE,
COPYFILE, COMPARE, EDIT, MACLIB, SORT, TITtIB, UPDATE, and the
program product language processors supported by VM/370.
These processors are listed in the !~lllQ Ini~QgygiiQn.

RELPAGE ::>FF

INPUT a xx

does not release pages of storage after the commands listed in
the RELPAGE ON description complete execution. Use the SET
RELPAGE OFF function when debugging or analyzing a problem so
that the storage used is not released and can be examined.

translates the specified character a to the specified
hexadecimal code xx for characters entered from the terminal.

INPUT xx: YV

INPUT

allows you to reset the hexadecimal code xx to the specified
hexadecimal code yy in your translate table.

HQig: If you issue SET INPUT and SET OUTPUT commands for the
same characters r issue the SET OUTPUT command first.

returns all characters to their default translation.

Section 2. CMS Commands 167

SE~

OUTPUT xx a

OUTPUT

ABBREV OFF

REDTYPE ON

translates the specified hexadecimal representation xx to the
specified character "a" for all xx characters displayed at the
terminal.

returns all characters to their default translation.

!Q!g: Output translation does not occur for SCRIPT files when
the SCRIPT command output is directed to the terminal, nor
when vou use the CMS editor on a display terminal in display
mode.

accepts svstem and user abbreviations for system comBands. The
SYNONYM command makes the system and user abbreviations
available.

accepts only the full system command name or the full user
synonym (if one is available) for system commands.

For a discussion of the relationship of the SET ABBREV and
SYNONYM commands, refer to the SYNONYM command description.

types CMS error messages in red for certain terminals equipped
with the appropriate terminal feature and a two-color ribbon.
Supported terminals are described in the !~llIq X~£!iEs1
rr§~£~§ Guig~·

R~DT!~~ QEE

IMPE~ OFF

IMPCP OFF

suppresses red typing of error messages.

treats EXEC files as commands; an EXEC file is invoked when
the filename of the EXEC file is entered.

does not consider EXEC files as commands. You must issue the
EXEC command to execute an EXEC file.

passes command names that CMS does not recognize to CP; that
is, unknown commands are considered to be CP commands.

generates an error message at the terminal if a command is not
recognized by CMS.

protects the CMS nucleus against writing in its storage area.

PROTECT aFF
does not protect the storage area containing the :MS nucleus.

AU~OREAD ON
specifies that a console read
after command execution. ON is
nonbuffered terminals.

AU~OREAD OFF

is to be issued immediately
the default for nondisplay,

specifies that you do not want a console read to be issued
until you press the Enter key or its eguivalent~ OPF is the
default for display terminals because the display terminal
does not lock, even when there is no READ active for it.

168 IB~ VM/370 CMS Command and Macro Reference

SYSNAME

NONSHARE

RQ!g: If
reconnect
unchanged.

you
on

disconnect from one
another type, the

rM~U~~M _n. _____ _ (CMSDOS }
<~~~i~;u cU~Lyllarnc

(CMSSEG

SET

type of terminal and
AUTOREAD status remains

allows you to replace a saved system name entry in the
SYSNAMES table with the name of an alternative, or backup
system. A separate SET SYSNAME command must be issued for
each name entry to be changed. CMSDOS, CMSVSAM, CMSAMS, and
CMSSEG are the default names assigned to the systems when the
CMS system is generated.

{

CMSDOS }
CMSVSAM
CMSAMS
CMSSEG
specifies that you want
shared named system.

your own nonshared copy of a normally

The following functions describe the SET operands that apply to the
CMS/DOS environment.

DOS 3N

mode

VSAM

places your CMS virtual machine in the CMS/DOS environment.
The logical unit SYSLOG is assigned to your terminal.

specifies the mode letter at which the DOS/VS system residence
is accessed; the logical assignment of SYSRES is made for the
indicated mode letter.

specifies that you are going to use the AMSERV command or you
are going to execute programs to access VSAM data sets.

returns your virtual machine to
All previously assigned system
are unassigned.

the normal CMS environment.
and programmer logical units

DOSLNCNT nn
specifies the number of SYSLSr lines per page.
integer from 30 to 99.

UPSI nnnnnnnn

nn is an

sets the UPSI (User Program Switch Indicator) byte to the
specified bit string of D's and l's. If you enter fewer than
eight digits, the UPSI byte is filled in from the left and
zero-padded to the right. If you enter an "x" for any digit,
the corresponding bit in the UPSI byte is left unchanged.

QR~! Q~~ resets the UPSI byte to binary zeros.

DOSPART nnnnnK
specifies the size of the virtual partition in which you want
a program to execute. The value, nnnnnK, may not exceed the
amount of user free storage available in your virtual machine.
You should use this function only when you can control the
performance of a particular program by reducing the amount of
available virtual storage.

Section 2. CMS Commands 169

SET

NQ!~: In rare circumstances, it may happen that when a program
is executed, the amount of storage available is less than the
current DOSPART. Then, only the amount of storage available is
obtained; no message is issued.

~QSP!RI OFF
--specifies that you no longer want to control your virtual

machine partition size. When the DOSPART setting is OFF, CMS
computes the partition size whenever a program is executed.

1. If you issue the SET command specifying an invalid function and the
implied CP function is in effect, you may receive message
DMKCFC003E.

2. If an invalid SET command function is specified from an EIEC and
the implied CP function is in effect, then the return code is
-0003.

None. To determine or verify the setting of a function, use the QUERY
command.

DMSLI0002I FILE Ifni TXTLIB NOT FOUND RC=O
DMSSET01~E INVALID FUNCTION 'function' RC=2~
DMSSET026E INVALID PARAMETER 'parameter' FOR 'function' FUNCTION RC=24
DMSSET031E LOADER TABLES CANNOT BE MODIFIED RC=40
DMSSETO~7E NO FUNCTION SPECIFIED RC=2~
DMSSETO~gE INVALID MODE 'mode' RC=24
DMSSET050E PARAMETER MISSING AFTER 'function' RC=24
DMSSET061E NO TRANSLATION CHARACTER SPECIFIED RC=24
DMSSET070E INVALID PARAMETER 'parameter' RC=24
DMSSET098W CMS OS SIMULATION NOT AVAILABLE RC=4
DMSSET099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSSET100W SYSTEM NAME 'name' NOT AVAILABLE RC=4
DMSSET1~2S SAVED SYSTEM NAME 'name' INVALID RC=24
DMSSET333E nnnnnK PARTITION TOO LARGE FOR THIS VIRTUAL MACHINE RC=24
DMSSET~QOS SYSTEM 'sysname' DOES NOT EXISr RC=44
DMSSET401S V.M. SIZE (siz~ CANNOT EXCEED 'DMSDOS' START ADDRESS

(address) RC=104
DMSSE~410S CONTROL PROGRAM ERROR INDICATION 'retcode' RC=nnn

~Q1~: In RC=nnn, the nnn represents the actual error code
generated bV CPo

DMSSET444E VOLUME 'label' IS NOT A DOS SYSRES RC=32

17 0 IBM VM/370 CMS Command and Macro Reference

SORT

SORT

Use the SORT command to read fixed-length records from a c~S input file,
arrange them in ascending EBCDIC order according to specified sort
fields, and create a new file containing the sorted records. The format
of the SORT command is:

r------
SORT

fileid1

fileid2

fileidl fileid2

is the file identifier (filename, filetype, filemode) of the
file containing the records to be sorted.

is the file identifier (filename, filetype, filemode) of the
new output file to contain the sorted records.

The inp~t and output files must not have the same file identifiers,
since SORT cannot write the sorted output back into the space occupied
by the input file. If a file with the same name as the output file
already exists, an error message is issued and the SORT operation does
not take place.

~~te~ing Sort Control Fields: After the SORT command is entered, eMS
responds wIth the~oliowing message on the terminal:

DMSSRT604R EN~ER SORT FIELDS:

You should respond by entering one or more pairs of numbers of the form
"xx yy" separated by one or more blanks. Each "xx" is the starting
character position of a sort field within each input record and "yy" is
the ending character position. The leftmost pair of numbers denotes the
major sort field. The number of sort fields is limited to the number of
fields you can enter on one line. The records can be sorted on up to a
total of 253 positions.

Vi£~§~l ~tQ~~~~ Reg~i£gments fo± 2Q£~ig~: The sorting operation takes
place with two passes of the input file. The first pass creates an
ordered pointer table in virtual storage. The second pass uses the
pointer table to read the input file in a random manner and write the
output file. Therefore, the size of storage and the size and number of
sort fields are the limiting factors in determining the number of
records that can be sorted at anyone time. An estimate of the maximum
number of records that can be sorted is:

NUCSIZE

r ,
1 VMSIZE - 256K I
1---------------1 + 172K
, 256K I
L

VMSIZE - NUCSIZE
NR ----------------

14 + NC

Section 2. C~S Commands 171

SOR~

NR is the estimated maximum number of input records.

NC is the total number of characters in the defined sort fields.

VMSIZE is the storage size of the virtual machine.

112K is the size of the resident CMS nucleus and reserved pages
(provided shared segments are available) •

For example, enter the command and respond to the prompting message:

sort name address a1 sortedna address b1

DMSSRT60UR ENTER SORT FIELDS:

1 10 25 28

The records in the NAME ADDRESS file are sorted on positions 1-10 and
25-28. The sorted output is written into the newly created file
SORTEDNA ADDRESS. If you have a 320K virtual machine, you can sort a
maximum of 5412 records.

VMSIZE-172K 320K-172K 148K 151,552
NR --------- = = ------- = 5412

14 + NC 14 + 14 28 28

DMSSRT604R ENTER SORT FIELDS:

You are requested
them in the form
Fields."

to enter SORT control fields. You should enter
described previously in "Entering Sort Control

DMSSRT002E FILE 'fm ft fm' NOT FOUND RC=28
DMSSRT009E COLUMN 'col' EXCEEDS RECORD LENGTH RC=24
DMSSRT019E IDENTICAL FILEIDS RC=24
DMSSRT034E FILE 'fn ft fm' IS NOT FIXED LENGTH RC=32
DMSSRT037E DISK 'mode' IS READ/ONLY RC=36
DMSSRT053E INVALID SORT FIELD PAIR DEFINED RC=24
DMSSRT054E INCOMPLETE FILEID SPECIFIED RC=24
DMSSRT062E INVALID * IN FILEID RC=20
DMSSRT063E NO LIST ENTERED RC=40
DMSSRT070E INVALID PARAMETER 'parameter' RC=24
DMSSRT104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
D~SSRT105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSSRT212E MA~IMUM NUMBER OF RECORDS EXCEEDED RC=40

172 IBM VM/310 CMS Command and Macro Reference

SSERV

SSERV

Use the SSERV command in CMS/DOS to copy, display, print, or punch a
book fr~m a DOS/VS source statement library. The format of the SSERV
command l.S:

r -,
I
I SSERV

r ,
sublib bookname I ft ,

I~OPYI

r (options ••• [)]]
I
I
I
I
I

I
I
I
I
I
L

L .J

QEtiQE§P
[QI~~]
[PUNCH]

(PRINT]
[TERM] _______________ ,________________________________ _______________ -J

sublib specifies the source statement sublibrary in which the book is
cataloged.

bookname specifies the name of the book in the DOS private or system
source statement sublibrary. The private library, if any, is
seaLched before the system library.

ft specifies the filetype of the file to be created on your
A-disk. ft defaults to COpy if a filetype is not specified.
The filename is always the same as the bookname.

Q~tiQ~§t You mav enter as many options as you wish, depending upon
the functions vou want to perform.

QI~~ copies the book to a CMS file.

PUNCa punches the book on the virtual punch.

PRINT spools a copy of the book to your virtual printer.

TER~ displays the book on your terminal.

(I 'c

1. If you want to copy books from private libraries, you must issue an
ASSGN command for the logical unit SYSSLB and identify the library
on a OLBL command line using a ddname of IJSYSSL.

If you want to copy books from the system library, y~u must have
entered the CMS/DOS environment specifying the mode letter of the
system residence volume.

2. You should not use the SSERV command to copy books from macro (El
sablibraries, since they are in "edited" (that is, compressed)
form. Use the ESERV command to copy and de-edit m~cros from a
ma=ro (E) sublibrary.

When you use the TERM option, the specified book is displayed at the
terminal.

section 2. C~S :om.ands 173

SSERV

DMSSRV003E INVALID OPTION 'option' RC=24
DMSSRVOOqE BOOK 'subl.book' NOT FOUND RC=28
DMSSRV006E NO READ/WRITE 'A' DISK ACCESSED RC=36
DMSSRV070E INVALID PARA~ETER 'parameter' RC=24
DMSSRV097E NO 'SYSRES' VOLUME ACTIVE RC=36
DMSSRV098E NO BOOK NAME SPECIFIED RC=24
DMSSRV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSSRV10SS ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSSRV113S DISK (cuu) NOT ATTACHED RC=100
DMSSRV411S INPUT ERROR CODE Inn' ON '{SYSRES,SYSSLB}' RC=100
DMSSRV194S BOOK 'subl.book' CONTAINS BAD RECORDS RC=100

17q IBM VM/370 CMS Command and Macro Reference

START

START

Use thg START command to begin execution of CKS r OSr or DOS programs
that were previously loaded or fetched. The format of the START command
is:

r
I
1 STARr
I , ,
'--

entry

*

args •..

NO

r ,
I entry [args •••] I
I * I
I (option[)] I
L .J

Q£ti2!l1
NO

1

I
1
I , ,
it

passes control to the control section name or entry point
name at execution time. The operand r entrYr may be a
filename only if the filename is identical to a control
section name or an entry point name.

passes control to the default entry
discussion of the LOAD command for a
default entry point selection.

point. See
discussion of

the
the

are arguments to be passed to the started program. If user
arguments are specified r the entry or * operands must be
specified; otherwise r the first argument is taken as the
entry point. Arguments are passed to the program via
general register 1. The entry operand and any arguments
become a string of doublewords r one argument per doubleword r
and the address of the list is placed in general register 1.

suppresses execution of the program. Linkage editor and
loader functions are performed and the program is in storage
ready to execute r but control is not given to the program.

1. Any undefined names or references specified in the files loaded
into storage are defined as zero. Thus r if there is a call or
branch to a subroutine from a main program, and if the subroutine
has never been loaded, the call or branch transfers control to
location zero of the virtual machine at execution time.

2. Do not use the START command for programs that are generated via
the GENKOD command with the NOKAP option. The START command does
not execute properly for such programs.

3. When arguments are passed on the START command r the requirements of
both CKS and the language of the application program must be met.
For example r COBOL programs require arguments to be separated by
commas:

start * A,B,C

See the appropriate language guide for details on parameter
requirements.

Section 2. CKS Commands 175

START

4. It is recommended that the START command be issued immediately
following the LOAD and INCLUDE commands. If the LOAD and INCLUDE
were issued in an EXEC procedure, issue the START command from
within the EXEC as well.

DftSLI0740I EXECUTION BEGINS •••

is displayed when the designated entry point is validated.

This message is suppressed if CMS/DOS is active and the co~p option
is specified in the FETCH command.

DMSLI0021E ENTRY POINT 'name' NOT FOUND RC=40
DMSLI0055E NO ENTRY POINT DEFINED RC=40

176 IB~ VM/370 CMS Command and Macro Reference

STATE, STATEW

STATE/STATEW

Use the STATE command to verify the existence of a C~S, OS, or DDS file
on any accessed disk; use the STATEi command to verify the existence of
a CMS, JS, or DOS file on any accessed read/write disk. Tne formats of
the STATE and STATEW commands are:

r- -----,
, {STATE }
I STATEW
L-

I ,

fn is the filename of the file whose existence is to be verified. If
fn is specified as *, the first file found satisfying the rest of
the fileid is used.

ft is the filetype of the file whose existence is to be verified. If
ft is specified as *, the first file found satisfying the rest of
the fileid is used.

fm is the filemode of the file whose existence is to be verified. If
fm is omitted, or specified as *, all your disks are searched.

1. If you issue the STATEi command specifying a file that exists on a
Lead-only disk, you receive error message DMSSTT002E.

2. When you code an asterisk in the fn or ft fields, the search for
the file is ended as soon as any file satisfies any of the other
conditions. For example, the command:

state * file

executes successfully if any file on any accessed disk (including
the system disk) has a filetype of FILE.

3. To verify the existence of an OS or DOS file when DOS is set JFF,
you must issue the FILEDEF command to establish a CMS file
identifier for the file. For example, to verify the existence of
the OS file TEST. DATA on an OS C-disk you could enter:

filedef check disk check list c dsn test data
state check list

whaLe CHECK LIST is the CMS filename and filetype associated with
the OS data set name.

4. To verify the existence of an OS or DOS file when the CMS/DOS
en,ironment is active, you must issue the DLBL command to establish
a :~s file identifier for the file. For example, to verify the
existence of the DOS file TEST. DATA on a DOS C-disk, you could
enter:

dlbl check c dsn test data
state file check

wheLe FILE CHECK is the default CMS filename and filetype (FILE
ddname) associated with the DOS file-ide

Section 2. CMS :ommands 177

STATE, STATEW

5. You can invoke the STATE/STATEW command from the terminal, from an
EtEC file, or as a function from a program. If STATE/STATEW is
invoked as a function or from an EXEC file that has the &CONTROL
NOMSG option in effect, the message DMSSTT002E FILE 'fn ft fm' NOT
FOUND is not issued.

The CMS ready message indicates that the specified file exists.

DMSSTT227I PROCESSING VOLUME 'no' IN DATA SET 'data set name'

The specified data set has multiple volumes; the volume being
processed is shown in the message. The STATE command treats
end-of-volume as end-of-file and there is no end-of-volume
switching.

DMSSTT22AI USER LABELS BYPASSED ON DATA SET 'data set name'

The specified data set has disk user labels; these labels are
skipped.

DMSSTT002E
DMSSTT048E
DMSSTT054E
DMSSTT062E
DMSSTT06gE
DMSSTT010E
DMSSTT22gE
DMSSTT253E

FILE 'fn ft fm' NOT FOUND RC=28
INVALID MODE 'mode' RC=24
INCOMPLETE FILEID SPECIFIED RC=24
INVALID 'char' IN FILEID 'fn ft' RC=20
DISK 'mode' NOT ACCESSED RC=36
INVALID PARAMETER 'parameter' RC=24
UNSUPPORTED OS DATA SET, ERROR 'code'
FILE 'fn ft fm' CANNOT BE HANDLED WITH

178 IB~ VM/370 CMS Command and Macro Reference

RC=code
SUPPLIED PLIST RC=88

SVCTRACE

SVCTRACE

Use the SVCTRACE command
supervisor calls occurring
SVCTRACE command is:

to trace and record
in your virtual machine~

information about
The format of the

r- 1
I SVCTrace ,
I ,
L-

ON starts tracing all SVC instructions issued within C~S.

OFF stops SVC tracing.

1. The trace information recorded on the printer includes:

• The virtual storage location of the calling SVC instruction and
the name of the called program or routine

• The normal and error return addresses

• The contents of the general registers both before the SVC-called
program is given control and after a return from that program

• The contents of the general reqisters when the SVC handling
routine is finished processing

• The contents of the floating-point registers before the
SVC-called program is given control and after a return from that
program

• The contents of the floating-point registers when the SVC
handling routine is finished processing

• The parameter list passed to the SVC

2. To terminate tracing previously established by the SVCTRACE
command, issue the HO or SVCTRACE OFF commands. SVCTRACE OFF and
HO cause all trace information recorded, up to the point they are
issued, to be printed on the virtual spooled printer. On
typewriter terminals SVCTRACE OFF can be issued only when the
keyboard is unlocked to accept input to the C~S command
environment. To terminate tracing at any other point in system
pr~cessing, HO must be issued. To suspend tracing temporarily
during a session, interrupt processing and enter the Immediate
command SO (Suspend Tracing). To resume tracing that was suspended
with the SO command, enter the Immediate comMand RD (Resume
Tracing) .

If you issue the CMS Immediate command HI or you log off the
VM/370 system before termination of tracing previously set by the
SVCTRACE command, the switches are cleared automatically and all
recorded trace information is printed on the virtual spooled
printer.

If a user timer exit is activated while SVCTRACE is
SVCTRACE is disabled for the duration of the timer exit.
issued during the timer exit are not reflected in the
listing.

active,
Any SVCs
SVCTRACE

Section 2. C~S Commands 179

SVCTRACE

3. When tracing on a virtual machine with only one printer, the trace
data is intermixed with other data sent to the virtual printer.

A variety of information is printed whenever the:

SVCTRACE ON

command is issued.

The first line of trace output starts with a dash or plus sign or an
asterisk (- or + or *l. The format of the first line of trace output
is:

N/D = xxx/dd name FRO~ loc OLDPSW = psw1 GOPSW = psw2 [RC=rc]

indicates information recorded before processing the SVC.

+ indicates information recorded after processing the SVC, unless
the asterisk (*) applies.

* indicates information recorded after processing a eMS SVC that
had an error return.

N/D

xxx

dd

name

loc

pswl

psw2

rc

is an abbreviation for SVC number and depth (or level).

is the number of the SVC call (they are numbered sequentially) ~

is the nesting level of the SVC call.

is the macro or routine being called.

is the program location from which the SVC was issued.

is the PSW at the time the SVC was called.

is the PSW with which the routine being called is invoked, if
the first character of this line is a dash (-) ~ If the first
character of this line is a plus sign or asterisk (+ or *), PSW2
represents the PSW that returns control to the user.

is the return code from the SVC handling routine in general
register 15. This field is omitted if the first character of
this line is a dash (-), or if this is an JS SVC call. For a
CMS SVC, this field is 0 if the line begins with a plus sign
(+), and nonzero for an asterisk (*). Also, this field equals
the contents of R15 in the "GPRS AFTER" line.

The next two lines of output are the
registers when control is passea to the SVC
output is identified at the left by ".GPRSB".
is:

contents of the general
handling routine. This
The format of the output

.GPRSB = h h h h h h h h *daaadddd*
h h h h h h h h *daaddddd*

1BO IB~ VM/370 CMS Command and Macro Reference

SVCTRACE

where h represents the contents of a general register in hexadecimal
format and g represents the EBCDIC translation of the contents of a
general register. The contents of general registers 0 through 7 are
printed on the first line, with the contents of registers 8 through F on
the second line. ~he hexadecimal contents of the registers are printed
first, followed by the EBCDIC translation. The EBCDIC translation is
preceded and followed by an asterisk(*).

The next line of output is the contents of general registers 0, 1,
and 15 when control is returned to your program. The output is
identified at the left by ".GPRS AFTER :". The format of the output is:

.GPRS AFTER: RO-Rl = h h *dd* R15 = h *d*

where h represents the hexadecimal contents of a general register and g
is the EBCDIC translation of the contents of a general register. The
only general registers that CMS routines alter are registers 0, 1, and
15 so only those registers are printed when control returns to your
program. The EBCDIC translation is preceded and followed by an asterisk
(*) •

The next two lines of output are the contents of the general
registers when the SVC handling routine is finished processing. This
output is identified at the left by ".GPRSS." The format of the output
is:

.GPRSS h h h h h h h h *dddddddd*
h h h h h h h h *dddddddd*

where h represents the hexadecimal contents of a general register and g­
represents the EBCDIC translation of the contents of a general register.
General registers 0 through 7 are printed on the first line with
registers 8 through F on the second line. The EBCDIC translation is
preceded and followed by an asterisk (*).

The next line of output is the contents of the
floating-point registers. The output is identified
".FPRS". The format of the output is:

.FPRS = f f f f *gggg*

calling routine's
at the left by

where ~ represents the hexadecimal contents of a floating-point register
and g is the EBCDIC translation of a floating-point register. Each
floating point register is a doubleword; each f and g represents a
doubleword of data. The EBCDIC translation is preceded and followed by
an asterisk (*).

The next line of output is the contents of floating-point registers
when the SVC handling routine is finished processing. The output-is
identified by ".FPRSS" at the left. The format of the output is:

.FPRSS = f f f f *gggg*

where ~ represents the hexadecimal contents of a floating-point register
and g is the EBCDIC translation. Each floating-point register is a
doubleword and each f and g represents a doubleword of data. The EBCDIC
translation is preceded and followed by an asterisk (*).

The last two lines of output are printed only if the address in
register 1 is a valid address for the virtual machine. If printed, the
output is the parameter list passed to the SVC. The output is
identified by ".PARM" at the left. The output format is:

.PARM h h h h h h h h *dddddddd*
h h h h h h h h *dddddddd*

Section 2. CMS Commands 181

SVCTRACE

where h represents a word of hexadecimal data and ~ is the EBCDIC
translation. The parameter list is found at the address contained in
register 1 before control is passed to the SVC handling program. The
EBCDIC translation is preceded and followed by an asterisk (*).

Figure 19 summarizes the types of SVC trace output •

.--
, Identification
I l {:} HID

,
I .GPRSB , ,
, .GPRS AFTER , ,
, .GPRSS , ,
I .FPRS
I , ,
, . FPR SS , ,
, .PARM

Comments

!The SVC and the routine that issued the SVC. ,
I ,
IContents of general registers when control is passed
, to the SVC handling routine.
I
,Contents of general registers 0, 1, and 15 when
I control is returned to your program.
I
,Contents of the general registers when the SVC
, handling routine is finished processing. ,
,contents of floating-point registers before the
, SVC-called program is given control and after
, returning from that program. ,
,Contents of the floating-point registers when the
, SVC handling routine is finished processing.
I
'The parameter list, when one is passed to the SVC.

Figure lq. Summary of SVC Trace Output Lines

DMSOVR014E INVALID FUNCTION • function' RC=24
DMSOVR041E NO FUNCTION SPECIFIED RC=24
DMSOVR104S ERROR Inn' READING FILE 'DMSOVR MODULE' ON DISK RC=100
DMSOVR109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104

1~2 IB~ VM/370 CMS Command and Macro Reference

,

SYNONYM

SYNONYM

Use the SYNONYM command to invoke a table of synonyms to be used with,
or in place ofF eMS and user-written command names. You create the
table yourself using the eMS editor. The form for specifying the
entries for the table is described under "The User Synonym Table."

The names you define can be used either instead of or in conjunction
with the standard CMS command truncations. However, no matter what
truncations, synonyms, or truncations of the synonyms are in effect, the
full real name of the command is always accepted. The format of the
SYNONYM command is:

r

SYNonym
r r r ",
I fn I ~!N0.NYM I fm I II [(options ••• [)]]
I I l!lH I
L L 1* ,..J.J

L ..J

r ,
Q£tiQll§: I~!~ , [CLEAR]

INOSTDI
L .J

---'-'

"

I , ,
I
I , , ,
I

fn is the filename of the file containing your synonyms table.

fm is the filemode of the file containing your synonyms; if omitted,
your A-disk and its extensions are searched. If you specify fm,
you must enter the keyword, SYNONYM. If you specify fm as an
asterisk (*), all disks are searched for the specified SYNONYM
file.

1 •

2I~

NOSTD

CLEAR

specifies that standard eMS abbreviations are accepted.

standard CMS abbreviations are not to be accepted. (The
full CMS command and the synonyms you defined can still
be used.)

removes any synonym table set by a previously entered
SYNONYM command.

If you enter the SYNONYM command
synonym table and the user synonym
listed.

with no
table

operanas, the system
(if one exists) are

2. The SET ABBREV ON or OFF command, in conjunction with the SYNONYM
command, determines which standard and user-defined forms of a
particular CMS command are acceptable.

Section 2. CMS Commands 183

SYNONY~

THE OSER SYNONY~ T~BLE

You create the synonym table using the CKS editor. The table must be a
file with the filetype SYNONY~. The file consists of 80-byte
fixed-length records in free-form format with columns 73-80 ignored.
The format for each record is:

systemcommand usersynonym count

systemcommand
is the name of the C~S command or ~ODULE or EXEC file for which you
are creating a synonym.

usersynonym
is the synonym you are assigning to the command name. When you
create the synonym, you must follow the same syntax rules as for
commands; that is, you must use the character set used to create
commands, the synonym may be no longer than eight characters, and
so on.

count is the m1n1mum number of characters that must be entered for the
synonym to be accepted by CMS. If omitted r the entire synonym must
be entered (see the following example).

A table of command synonyms is built from the contents of this file.
You may have several synonym files but only one may be active at a time.
For example, if the synonym file named KYSYN contains:

MOVEFILE MVI~

then, after you have issued the command:

synonym mysyn

the synonym MVIT can be entered as a command
MOVEFILE command. It cannot be truncated since no
If ~YSYN SYNONYM contains:

~CCESS GETDISK 3

name to execute the
count is specified.

then, the synonyms GET, GETD, GETDI, GETDIS r or GETDISK can be entered
as the command name instead of ~CCESS.

If you have an EXEC file named TDISK, you might have a synonym entry:

~DISK TDISK 2

so that you can invoke the EXEC procedure by specifying the truncation
TD.

The default values of the SET and SYNONYM commands are such that the
system synonym abbreviation table is available unless otherwise
specified.

for the FILEDEF command states
Therefore, the acceptable

FILE, FILED, FILEDE, and
table is available whenever
effect.

The system synonym abbreviation table
that FI is the minimum truncation.
abbreviations for FILEDEF are: FI, FIL,
FILEDEF. The system synomym abbreviation
both SET ~BBREV ON and SYNONYM (STD) are in

lA4 IB~ VM/370 CMS Command and Macro Reference

SYNONYM

If vou have a synonym table with the file identification USERTAB
SYNONYM A, that has the entry:

FILEDEF USENAME 3

then, USENAME is a synonym for FILEDEF, and acceptable truncations of
USENAME are: USE, USEN, USENA, USENAM, and USENAME. The user synonym
abbreviation table is available whenever both SET ABBREV ON and SYNONYM
USERTAB are specified.

No matter what synonyms and truncations are defined, the full real
name of the command is always in effect.

Figure 20
available for
commands.

lists the forms of the system command and user synonyms
the various combinations of the SET ABBREV and SYNONYM

When you enter the SYNONYM command with no operands, the synonym
table(s) currently in effect are displayed.

SYSTEM
COMMAND

USER
SYNONYM

SHORTEST
FORM (IF ANY)

This response is the same as the response to the command QUERY
SYNONYM ALL.

DMSSYN 7 11I NO SYSTEM SYNONYMS IN EFFECT

This response is displayed when you issue the SYNONYM command with
no operands after the command SYNONYM (NOSTD) has been issued.

DMSSYN712I NO SYNONYMS (DMSINA NOT IN NUCLEUS)

The system routine which handles SYNONYM command processing is not
in the system.

DMSSYN002E FILE 'fn ft fm' NOT FOUND RC=28
DMSSYN003E INVALID OPTION 'option' RC=24
DMSSYN007E FILE 'fn ft fm' NOT FIXED, 80 CHAR RECORDS RC=32
DMSSYN032E INVALID FILETYPE 'ft' RC=24
DMSSYN056E FILE 'fn ft fm' CONTAINS INVALID RECORD FORMATS RC=32
DMSSYN066E 'option AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSSYN104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100

section 2. CMS Commands 185

SYNONYM

r-- -----,
I
I
I Options

SET ABBREV ON
SYN USERTAB (STD

SET ABBREV OFF
SYN USERTAB (STD

SET ABBREV ON I
SYN USERTAB (NOSTDI

I
I
I
I
I
I
I ,

Acceptable
Command
Forms

FI
FIL

FILEDEF
USE
US EN

USENAME

FILEDEF
USENAME

FILEDEF
USE
USEN

USENAME

SET ABBREV OFF I FILEDEF
SYN USERTAB (NOSTDI USENAME

I

SET ABBREV ON
SYN (CLEAR STD

SET ABBREV OFF
SYN (CLEAR STD

SET ABBREV ON
SYN (CLEAR NOSTD

SET ABBREV OFF
SIN (CLEAR NOSTD

I
I
I
I
I
I
I
I

FI
FIL

FILEDEF

FILEDEF

Comments

The ABBREV ON option of the SET
command and the STD option of the
SYNONYM command make the system
table available. The user synonym,
USENAME, is available
because the synonym table
(USERTAB) is specified on the
SYNONYM command. The truncations
for USENAME are available because
SET ABBREV ON was specified with
the USERTAB also available.

IThe user-defined synonym, USENAME,
I is permitted because the user
I synonym table (USERTAB) is speci­
I fied on the SYNONYM command. No
I system or user truncations are
I permitted.

IThe system synonym table is un-
, available because the NOSTD option
I is specified on the SYNONYM com-
I mand. The user synonym, USENAME,
I is available because the user syno­
I nym table (USERTAB) is specified on
I the SYNONYM command and the trunca­
I tions of USENAME are permitted
, because SET ABBREV ON is specified
, with USERTAB also available.

IThe system synonym table is made
I unavailable either by the SET
, ABBREV OFF command or by the SYN
, (NOSTD command. The synonym,
, USENAME, is permitted because the
I user-defined synonym table
I (USERTAB) is specified on the
, SYNONYM command. The truncations
I for USENAME are n~t permitted
I because the SET ABBREV OFF option
, is in effect.

IThe user-defined table is now un­
available. The system synonym
table is available because both
the ABBREV ON option of the SET
command and the STD option of the
SYNONYM command are specified.

IBecause CLEAR is specified on the
I SYNONYM command, the synonym and
I its truncations are no longer
, available. Either the SET ABBREV
I OFF command or the SYNONYM (NOSTD
I command make the system synonym
I table unavailable.
I

Figure 20. System and User-Defined Truncations

186 IB~ VM/3 7 0 eMS Command and Macro Reference

I
I
I

TAPE

TAPE

Use the TAPE command to dump CMS'-formatted files from disk to tape, load
previously dumped files from tape to disk, and perform various control
operations on a specified tape drivee Files processea by the TAPE
command must be in a unique C~S format. The TAPE command does not
process multivolume files. Disk files to be dumped can contain either
fixed- or variable-length records. The format of the TAPE command is:

r
I
, TAPE

I
r ,

DUMP Ifm I
1* ,
L .J

((optionA optionB optionO[)]]

r r , ,
LOAD ~{;n} {;t}

Ifml , [(optionB optionC optionD[)]]
I! , 1

L L .J .J

r ,
SCAN

{;n} {;t}
I [(optionB optionC optionD[)]] ,

L .J

r ,
SKIP I

{;n} {;t}
I [(optionB optionC optionD[)]]

1 I
L .J

MODESET
r ,

tapcmd Inl
111

[(optionD[)]]

[(optionD[)]]

L .J

r ,
I WTM I
I!QR!~I
L .J

r ,
INOPRintl
IPRint I
'!~:£!! ,
IDISK I
L .J

r ,
IEOT I
IEOF nl
I~QE 11
L .J

rr "
'iTAPn "
111!fl I I
IL .JI

I r , ,

IIcuu "
IIl!!1 I'
LL .J.J

r ,
I 7TRACK I
19TRACKI
L .J

[DEN den] [TRTCH a]

\

________________________ -J

Section 2. CMS Commands 187

TAPE

DUMP

LOAD

SCAN

SKIP

{;n} {;t} [;m]
dumps one or more disk files to
specified as an asterisk (*) all
file identifier are dumped.

tape. If fn and/or ft is
files that satisfy the other

If fm is coded as a letter, that disk and its extensions are
searched for the specified filets) • If fm is coded as a
letter and number, only files with that mode number and letter
(and the extensions of the disk referenced by that fm letter)
are dumped. If fm is coded as asterisk (*), all accessed
disks are searched for the specified file(s~. If fm is not
specified, only the A-disk and its extensions are searched.

[{~n}{;t}fim~J
reads tape files onto disk. If a file identifier is
specified, only that one file is loaded. If the option EOP n
is specified and no file identifier is entered, n tape files
are written to disk. If an asterisk (*) is specified for fn
or ft, all files within EOP n that satisfy the other file
identifier are loaded.

The files are written to the disk indicated by the filemode
letter. The filemode number, if entered, indicates that only
files with that filemode number are to be loaded.

[{~n}{~t} J
positions the tape at a specified point, and lists the
identifiers of the files it scans. Scanning occurs over n
tape marks, as specified by the option EOP n (the default is 1
tape file). However, if a file identifier (fn and ft) is
specified, scanning stops upon encountering that file; the
tape remains positioned ahead of the file.

[{~n}{;t}]
positions the tape at a specified point and lists the
identifiers of the files it skips. Skipping occurs over n
tape marks, as specified by the option EOP n (tme default is 1
tape mark). However, if a file identifier (fn and ft) is
specified, skipping stops after encountering that file; the
tape remains positioned immediately following the file.

MODESET sets the values specified by the DEN, TRACK, and TRTCH
options. After initial specification in a TAPE command, these
values remain in effect for the virtual tape device until they
are changed in a subsequent TAPE command or RDTAPE, WRTAPE, or
TAPECTL macro.

r ,
tapcmdlnl specifies a tape control function (tapcmd) to be executed n

111 times (default is 1 if n is not specified). These functions
L J also work on tapes in a non-CMS format.

!~~£mg
BSF
BSR
ERG
FSF
FSR
REi

!£tiQ!!
Backspace n tape marks
Backspace n tape records
Erase gap
Forward-space n tape marks
Forward-space n tape records
Rewind tape to load point

188 IBM VM/370 CMS Command and Macro Reference

~£U~£!!!g
RUN
iT!!

!£tiQ1!
Rewind tape and unload
Write n tape marks

TAPE

Q2tiQ!!§:
If conflicting options are specified r the last one entered is in
effect.

WTr! writes a tape mark on the tape after each file is dumped.

writes a tape mark after each file is dumped, then backspaces
over the tape mark so that subsequent files written on the
tape are not separated by tape marks.

NOPRINT does not spool the list of files dumped r loaded r scannedr or
skipped to the printer.

PRINT

DISK

EOT

EaF n
~Q£: 1

TAPn
l~n

7TRACK

qTRACK

spools the list of files dumped r loaded r scanned r or skipped
to the printer.

displays a list of files dumped r loaded r scanned r or skipped
at the terminal.

creates a disk file containing the list of files dumped r

loaded r scanned, or skipped. The disk file has the file
identification of TAPE ~AP A5.

reads the tape until an end-of-tape indication is received.

reads the tape through a maximum of !! tape marks.
default is EOF 1;

The

specifies the symbolic tape identification (TAPn) or the
actual device address of the tape to be read from or written
to where n is 1, 2, 3r or 4. The def~ult is TAPl or 181.
The unit specified by cuu must previously have been attached
to vour CMS virtual machine before any tape I/O operation can
be attempted. Only symbolic names TAP1 through TAP4 and
virtual device addresses 181 through 184 are supported.

specifies a 7-track tape. Odd parity, data convert on, ~nd
translate off are assumed unless TRTCH is specified.

specifies a 9-track tape.

DEN den is the tape density where den is 200, 556, 800,. 1600 r or
6250. If 200 or 556 is specified r 7TRACK is assumed. If
1600 or 6250 is specified, 9TRACK is assumed; if 800 is
specified, 9TRACK is assumed unless 7TRACK is specified. In
the case of either 800/1600 or 1600/6250 dual-density drives r
1600 is the default if the 9TRACK option is specified. If
neither the 9TRACK option nor the DEN option is specified r
the drive operates at whatever bpi the tape drive was last
set.

TRTCH a is the tape recording technique for 7-track tape. If TRTCH
is specified r 7TRACK is assumed. One of the following must
be specified as "a":

Section 2. CMS Commands 189

T~PE

g ~~gniBg
o Odd parity, data convert off, translate off
OC Odd parity, data convert on, translate off
OT Odd parity, data convert off, translate on
E Even parity, data convert off, translate off
ET Even parity, data convert off, translate on

1. Tape records written by the CMS TAPE DUMP command are 805 bytes
long. The first character is a binary 2 (X'02'), followed by the
characters CMS and an EBCDIC blank (X'40't, followed by 800 bytes
of file data packed without regard for logical record length. If a
null block is dumped, the character "0" replaces the blank after
CMS. This causes subsequent loading of null blocks to be ignored.
In the final record, the character N replaces the blank after CMS,
and the data area contains CMS file directory information.

2. If a tape file contains a large number of CMS files that vould not
fit on disk, the tape load operation may terminate if there is not
enough disk space to hold the files. To prevent this, when you
dump the files, separate logical files by tape marks, then forward
space to the appropriate file.

3. Because the CMS file directory is the last record of the file, the
TAPE command creates a separate vorkfile so that backspacing and
rereading can be avoided when the disk file is built. If the load
criteria is not satisfied, the vorkfile is erased; if it is
satisfied, the workfile is renamed. This workfile is named TAPE
CMSUT1, which may exist if a previous TAPE command has abnormally
terminated. If the work file is accidentally dumped to tape and
subsequently loaded, it appears on your disk as TAPE CMSUT2.

4. It is possible to run a tape off the reel in at least one
situation. If you specify EOF nand n is greater than the number
of tape marks on the tape, the tape will run off the reel.

5. The RUN option (rewind and unload) indicates completion before the
physical operation is completed. Thus, a subsequent operation to
the same physical device may encounter a device busy situation.

6. For more information on tape file handling, see the !~l11Q ~~~
Q§~~~§ Guig~·

DMSTPE701I NULL FILE

A final record was encountered and no prior records vere read in a
TAPE LOAD operation. No file is created on disk.

190 IBM VM/370 CMS Command and Macro Reference

TAPE

If the TERM option is in effect, the following is displayed at the
terminal depending on the operation specified:

LOADING •••••
fn ft fm

SKIPPING •••••
fn ft fm

DU MPING ••••.
fn ft fm

SC ANN ING •••••
fn ft fm

When a tape mark is encountered, the following is displayed at the
terminal if the TERM option is specified:

END-OF-FILE OR END-OF-TAPE

DMSTPE002E FILE 'fn ft fm' NOT FOUND RC=28
DMSTPE003E INVALID OPTION 'option' RC=24
DMSTPE010E PREMATURE EOF ON FILE 'fn ft fm' RC=40
DMSTPE01~E INVALID FUNCTION 'function' RC=24
DMSTPE017E INVALID DEVICE ADDRESS 'cuu' RC=24
DMSTPE023E NO FILETYPE SPECIFIED RC=24
DMSTPE027E INVALID DEVICE 'device name' RC=24
DMSTPE029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD

RC=24
DMSTPE037E DISK 'mode! IS READ/ONLY RC=36
DMSTPEO~2E NO FILEID SPECIFIED RC=24
DMSTPEO~3E 'TAPn(cuu)' IS FILE PROTECTED RC=36
DMSTPEO~7E NO FUNCTION SPECIFIED RC=24
DMSTPEO~8E INVALID MODE 'mode' RC=24
DMSTPE057E INVALID RECORD FORMAT RC=32
DMSTPE05SE END-OF-FILE OR END-OF-TAPE RC=40
DMSTPE070E INVALID PARAMETER 'parameter' RC=24
DMSTPE096E FILE 'fn ft' DATA BLOCK COUNT INCORRECT RC=32
DMSTPE104S ERROR 'nn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSTPE105S ERROR 'nn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSTPE110S ERROR READING 'TAPn(cuu)' RC=100
DMSTPE111S ERROR WRITING 'TAPn(cuu)' RC=100
DMSTPE113S TAPn(cuu) NOT ATTACHED RC=100
DMSTPE115S {CONVERSION I {719} -TRACK I {SOO, 6250} BPI, TRANSLATION, DUAL

DENSITY} FEATURE NOT SUPPORTED ON DEVICE 'cuu' RC=88

Section 2. C~S Commands 191

TAPEMAC

TAPEMAC

Use the TAPEMAC command to create a CMS MACLIB from an unloaded
partitioned data set (PDS) from a tape created by the IEHKOVE utility
program under as. The PDS from which the tape was created can be
blocked, but the logical record length must be 80. The format of the
TAPEMAC command is:

r -------------------------------,
I TAPEMAC fn [(options ••• [)]] 2.E:tiQ!!§: ,
I
I
I
I
L

fn

r , r ,
ITAPn"ITEMCT yyyyy,
1!!~11III!MCT_2Q2QQ'
L .J L .J

,
I
I ,

------------------------.------------------------------~

specifies the filename of the first, or only, CMS MACLIB to be
created on the A-disk. If fn MACLIB already exists on the
A-disk, the old one is erased; no warning messaqe is issued.

TAPn specifies the symbolic address of the tape, where n is a number
between 1 and 4 corresponding to virtual device addresses 181
through 184, respectively. The default is TAP1.

ITEMCT VYVYV
specifies the item count threshold of each MACLIB to be
created, which is the maximum number of records to be written
into each file. yyyyy is a number between 0 and 62500 (commas
are not allowed) • If ITEMCT is not specified, the default is
50000.

Tape records are read and placed into fn MACLIB until the file size
exceeds the ITEMCT (item count); loading then continues until the
end of the current member is reached. Then another CMS file is
created; its filename consists of the number 2 appended to the end
of the filename specified (fn) if the filename is seven characters
or less. The appended number overlays the last character of the
filename if the name is eight characters lonq. Loading then
continues with this new name. For example, if you enter the
command:

tapemac mvlib

you may create files named MYLIB MACLIB, KYLIB2 MACLIB, MYLIB3
MACLIB, and so on.

This process continues until up to nine CMS files have been
created. If more data exists on the tape than can fit in nine CMS
files, processing is terminated with the error message DMSTMA139S.
The maKimum size of the unloaded PDS which can be loaded into CMS
MACLIBs would be approximately 9 times 62500 or 584,500 records.

192 IB~ VM/370 eMS Command and Macro Reference

The TAPEMAC command displays the message:

LOADING fn MACtIB

for each macro library created.

DMSTMA001E NO FILENAME SPECIFIED RC=24
DMSTMA003E INVALID OPTION 'option' RC=24
DMSTMA057E INVALID RECORD FORMAT RC=32
DMSTMA070E INVALID PARAMETER 'parameter' RC=24
DMSTMA105S ERROR nn WRITING FILE fn ft ON DISK RC=100
DMSTMA109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSTMA110S ERROR READING TAPn RC=100
DMSTMA137S ERROR nn ON STATE FOR fn ft RC=100
DMSTMA138S ERROR nn ERASING 'fn ft' BEFORE LOADING TAPE RC=100
DMSTMA139S TAPE FILE EXCEEDS 9 CMS MACLIBS RC=104

TAPEMAC

Section 2. CMS Commands 193

TAPPOS

TAPPDS

Use the TAPPDS command to create eMS disk files from tapes that are used
as in pat to or outpat from the following as utility programs:

• IEBPTPCH tape files must be the
operation from either a
set in as. The default
have been issued:

result of an IEBPTPCH punch
sequential or partitioned data
attributes (IEBPTPCH DCB) must

DCB=(RECFM=FA,LRECL=81,BLKSIZE=81)

I • IEBUPOTE -- tape files may be blocked or unblocked and must be in the
format accepted by IEBUPDTE as "control data set" (SYSIN)
input with a control statement

./ ADD •••

preceding the records to be placed in each partitioned
data set member (OS) or separate CMS file (C~S)t.

• IEHMOVE unloaded partitioned data sets are read.

Tne tape can contain as standard labels or be unlabeled. The format
of the TAPPDS command is:

r
I r r r ",
I TAPPOS I fn I ft I fm II I [(opt ions ••• [)]]
1
I
I
I
I
I
I
I
I
I
I
I
L-

I * I * 111111
, I 1* II I
L L L .J.J.J

r ,
QBi!2n2= IPDS I

INOPDS I
IUPDATEI
L .J

r ,
,END I
I NOENDI
L .J

r ,
,COL1 I
I!Q~Qt.ll
L J

r ,
IMAXTEN I
IJ!Q!1!KIE!!1
L J

r ,
I TAPnl
IIAPll
L J

fn is the filename of the disk file to be created from the sequential
tape file. If the tape contains members of a partitioned data set
(POS), fn must be specified as an asterisk (*); one file is created
foe each member with a filename the same as the member name. If
NOPDS or UPDATE is specified and you do not specify fn or specify
it as an asterisk (*), the default filename is TAPPDS.

ft is the filetype of the newly created files. The default filetypes
ar-e CMSUT1 (for PDS or NOPDS) and ASSEMBLE (for UPDATE). The
defaults are used if ft is omitted or specified as *.

fm is the mode of the disk to contain the new files. If this field is
omitted or specified as an asterisk (*), A1 is assumed.

1QU IBM VM/37Q CMS Command and Macro Reference

TAPPDS

QE~iQn§: If conflicting options are specified, the last one entered
is the one that is used. All options, except TAPn, are ignored when
unloaded (IEHMOVE) PDS tapes are read.

R~~ indicates that the tape contains members of an OS partitioned
data set, each preceded by a MEMBER NAME=name statement5 The
tape must have been created by the OS IEBPTPCH service
program if this option is specified.

NOPDS indicates that the contents of the tape will be placed in one
eMS file.

UPDA~E indicates that the tape file is in IEBUPDTE control file
format. The filename of each file is taken from the NAKE=
parameter in the ".1 ADD" record that precedes each member.
(See Usage Note 2.)

COLl reads data from columns 1-80. You should specify this option
when you use the UPDATE option.

!Q~Q~! reads data from columns 2-81; column 1 contains control
character information. This is the format produced by the OS
IEBPTPCH service program.

TAPn

END

is the tape
representing
respectively.

unit number. n can be 1, 2,
virtual units 181, 182, 183,
If not specified, TAPl is assumed.

3,
and

or 4,
184,

considers an END statement (characters 'END' in columns 2-5)
a delimiter for the current member.

specifies that END statements are not to be treated as member
delimiters, but are to be processed as text.

MAXTEN reads up to ten members.
option is selected.

This is valid only if the PDS

reads any number of members.

1. You can use the TAPE command to position a tape at a particular
tape file before reading it with the TAPPDS command. If the tape
has as standard labels, TAPDDS will read and display the "VOL1" and
"HDR" records at the terminal. If the file you want to process is
not at the beginning of the tape, the TAPE command must be used to
position the tape at a particular tape file before reading it with
the ~APPDS command. Be aware that each file on an OS standard
label tape is actually three physical files (HDR, DATA, TRAILER).
If positioning to other than the first file, the user must skip
mo~e physical tape files (3n-3 if positioning to the header labels,
3n-2 if positioning to the data file, where n is the number of the
file on the tape).

2. If you use the UPDATE option, you must also specify the COLl
option. Each tape record is scanned for a "./ ADD" record
be~inning in column 1. When a "./ ADD" record is found, subsequent
reGords are read onto disk until the next ".1 ADD" record is
encountered or until a ".1 ENDUP" record is encountered.

Section 2. CMS Commands 195

TAPPDS

A ".1 ENDUP" record or a tape mark ends the TAPPDS command
execution; the tape is not repositioned.

".1 label" records are not recognized by CMS and are included in
the file as data records.

If the NAME= parameter is missing on the ".1 ADD" record or if it
is followed by a blank, TAPPDS uses the default filename, TAPPDS,
for the CMS disk file. If this happens more than once during the
execution of the command, only the last unnamed member is contained
in the TAPPDS file.

3. If vou are reading a macro library from a tape created by the
IEHMOVE utilitv, you can create a CMS MACLIB file directly by using
the TAPEMAC command.

DMSTPD7031 FILE 'fn ft [fm]' COPIED

The named file is copied to disk.

DMSTPD7011 TEN FILES COPIED

The MAXTEN option was specified and ten members have been copied.

NQ1~: If the tape being read contains standard OS labels, the labels are
displayed at the terminal.

DMSTPD003E INVALID OPTION 'option' RC=24
DMSTPD05AE END-OF-FILE OR END-OF-TAPE RC=40
DMSTPD105S ERROR 'nn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSTPD109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSTPD110S ERROR 'nnw READING 'TAPn(cuu)' RC=100

196 IB~ VM/370 CMS Command and Macro Reference

TITLIB

TXTLIB

Use the TITLIB command to update CMS text libraries. The format of the
TITLIB command is:

r
I TXTlib ,
I
I
I
I
I
I
'--

GEN creates a TXTLIB on your A-disk. If a TITLIB with the same
name already exists, it is replaced.

ADD adds TEXT files to the end
read/write disk. No checking
entry points, or CSECTs.

of an
is done

existing TITLIB on a
for duplicate names,

DEL deletes members from a TITLIB on a read/write disk and
compresses the TXTLlB to remove unused space. If more than
one member exists with the same name, only the first entry is
deleted.

MAP lists the names (entry points) of TXTLIB members, their
locations in the library, and the number of entries.

libname specifies the filename of a file
which is to be created or listed
be deleted or added.

with a filetype of TITLIB,
or from which members are to

fnl [fn2 ••.]
specifies the name(s) of file(stvith filetype(s) of TEIT,
that you want to add to a TITLlB.

membernamel [membername2 •••]

TERM

specifies the name(s} of TXTLIB member{st that you want to
delete.

displays information about the TITLIB on your terminal.

writes a CMS file, named libname MAP AS, that contains a list
of TX!LIB members.

PRINT spools a copy of the TITLIB map to the virtual printer.

1. When a TEXT file is added to a library, its membername(s) are taken
from the CSECT names or NAME statements in the TEXT file. Deletions
and LOAD or INCLUDE command references must be made on these names.
For example, a TEXT file with a filename of TESTPROG that contains
CSECTs named CHECK and RECHECK, when added to a TITLIB, creates
members named CHECK and RECHECK.

Section 2. CMS Commands 197

TXTLIB

2. Members must be deleted by their initial entry in the dictionary
(that is, their "name" or the first ID name) ~ Any attempt to
delete a specific alias or entry point within a member will result
in a "Not found" message.

3. If you want your TXTLIBs to be searched for missing subroutines
during CMS loader processing; you must identify the TITLIB on a
GLDBAL command; for example:

global txtlib newlib

4. You may add OS linkage editor control statements NAME, ALIAS,
ENTRY, and SETSSI to a TEXT file before adding it to a TITLIB. You
must follow os linkage editor conventions concerning format (column
1 must be blank) and placement within the TEXT file. The specified
entry point must be located within the CSECT.

5. TITLIB members are not fully link-edited, and may return erroneous
entry points during dynamic loading.

6. The total number of members in the TXTLIB file cannot exceed 1000.
When this number is reached, an error message is displayed. The
total number of entry points in a member cannot exceed 255. When
this number is reached, an error message is displayed and the next
teKt file (if there is one) is processed. The text library created
includes all the text files entered up to (but not including) the
one that caused the overflow.

7. TERM or PRINT options will erase the old MAP file, if one exists.

When the TXTLIB MAP command is issued with the TERM option, the contents
of the directory of the specified text library are displayed at the
terminal. The number of entries in the text library (xxx) is also
displayed.

ENTRY INDEX
name location

XXK ENTRIES IN LIBRARY

DMSLBT001E NO FILENAME SPECIFIED RC=24
DMSLBT002E FILE 'fn ft' NOT FOUND RC=28
DMSLBT002W FILE 'fn ft' NOT FOUND RC=4
DMSLBT003E INVALID OPTION 'option' RC=24
DMSLBT013E MEMBER 'name' NOT FOUND IN LIBRARY 'fn ft fm' RC=32
DMSLBT014E INVALID FUNCTION 'function' RC=24
DMSLBT037E DISK 'mode' is READ/ONLY RC=36
DMSLBT046E NO LIBRARY NAME SPECIFIED RC=24
DMSLBT041E NO FUNCTION SPECIFIED RC=24
DMSLBT056E FILE 'fn ft fm' CONTAINS [NAME,ALIASIENTRY,ESD] INVALID

RECORD FORMATS RC=32
DMSLBT056W FILE 'fn ft fm' CONTAINS [{NAME,ALIASIENTRY,ESD}] INVALID

RECORD FORMATS RC=4
DMSLBT06QE DISK 'mode' NOT ACCESSED RC=36
DMSLBT104S ERROR 'nn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSLBT105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSLB~106S NUMBER OF MEMBER NAMES EXCEEDS MAX innnni. FILE ifn ft' NOT

ADDED RC=88
DMSLBT213W LIBRARY 'fn ft fro' NOT CREATED RC=4

198 IBM VM/370 CMS Command and Macro Reference

TYPE

TYPE

Use the TYPE
terminal in
EBCDIC code.

command to display all or part of a C~S file at
either EBCDIC or the hexadecimal representation of

The format of the TYPE command is:

the
the

r-
I r r " , Type fn ft [fm] 1 rec 1 I recn, I [(options ••• [)]]
1 * I * I * 11 , I 1 I II
I L L .1.1

I
I QJ!ti.Q1!§:
I r r " r ,
I
I

[HEX] I COL {XXXXX} -I yyyyy I I IME~BER

{n:me}: I 1 'It:~£ll I ,
I L L .J.J L .J

L-

fn is the filename of the file to be displayed.

ft is the filetype of the file to be displayed.

fm is the filemode of the file to be displayed. If this field is
omitted, the A-disk and its extensions are searched to locate
the file. If fm is specified as an asterisk (*), all disks are
searched, and the first file found is displayed.

recl is the record number of the first record to be displayed. This
field cannot contain special characters. If reel is greater
than the number of records in the file, an error message is
displayed. If this field is omitted or entered as an asterisk
(*), a record number of 1 is assumed.

recn is the record number of the last record to be displayed. This
value cannot contain embedded commas. If this field is not
specified, is entered as an asterisk (*), or is greater than the
number of records in the file, displaying continues until end of
file is reached.

COL xxxxx-yyyyy
displays only certain columns of each record. xxxxx specifies
the start column and yyyyy the end column of the field within
the record that is to be displayed. The string xxxxx-yyyyy
may have a maximum of eight characters; additional characters
are truncated.

If columns are not specified, the entire record is displayed
unless the filetype is LISTING, in which case the first
position of each record is not displayed, since it is assumed
to be a carriage control character.

HEX displays the file in hexadecimal format.

Section 2. CMS Commands 199

TYPE

MEMBER
MEM {n:me}

displays member(sl of a library. If ft is MACLIB or TXTLIB r a
MEMBER entry can be specified. If an asterisk (*) is
specified, all members of the library are displayed. If a name
is specified r only that particular member is displayed.

1. If the HEX option is specified r each record can be displayed in its
entirety; if not, no more than 130 characters of each record can be
displayed.

2 • The length of each output line is
current terminal linesize (as
command), whichever is smaller.

limited to 130 characters or the
specified by the CP TERMINAL

3. If the MEMBER option is specified more than once, only the last
member specified is typed. If one ME~BER option is coded with an
asterisk (*), and another MEMBER option is specifiea with a member
name, only the specified member is typed r regardless of their order
on the command line. For example if you code:

type one maclib (member example1 member example2

only EXAMPLE2 is typed. If you code:

type one maclib (member example1 member *

only EXAMPLE1 is typed.

The file is
specifications.
a header record:

displayed at the terminal according to the given
When you use the HEX option r each record is preceded by

RECORD nnnnn LENGTH=nnnnn

DMSTYP002E
DMSTYP003E
DMSTYP005E
DMSTYP009E
DMSTYP013E
DMSTYP029E

DMSTYP033E
DMSTYP03QE
DMSTYPOlJ9E
DMSTYP054E
DMSTYP062E
DMSTYP104S
DMSTYP069E

FILE 'fn ft fm' NOT FOUND RC=28
INVALID OPTION 'option' RC=24
NO 'option' SPECIFIED RC=2lJ
COLUMN 'col' EXCEEDS RECORD LENGTH
MEMBER 'name' NOT FOUND IN LIBRARY
INVALID PARAMETER 'parameter' [IN
RC=24
FILE 'fn ft fm' IS NOT A LIBRARY
NO ENTRIES IN LIBRARY 'fn ft fm'
INVALID LINE NUMBER 'line number'
INCOMPLETE FILEID SPECIFIED RC=2lJ
INVALID * IN FILEID RC=20
ERROR Inn' READING FILE 'fn ft fm'
DISK 'mode' NOT ACCESSED RC=36

RC=24
RC=32

THE OPTION 'option' FIELD]

RC=32
RC=32

RC=24

FROM DISK RC=100

200 IBM VM/370 CMS Command and Macro Reference

UPDATE

UPDATE

Use the UPDATE command to modify program source files. The UPDATE
command accepts a source input file and one or more files containing
UPDATE control statements and updated source records; then it creates an
updated source output file, an update log file indicating what changes,
if any, were made, and an update record file if more than a single
update file is applied to the input file. The format of the UPDATE
command is:

r-
I
I Update
I
I
I ,
I , ,
I
I
I
L-

fn 1 ft 1 f m 1

fn2 ft2 fm2

REP

r r " fnl Iftl Ifml [fn2 [ft2 [fm2]]]1 I [(options ••• [)]]
I ASSEMBLE ------- IAl " L L .J.J

r , r "1 r "1 r 11

2Eii2!l.§: IREP I I~!.Q§. I IINC I ICTL I
INOREPI INOSEQ81 UiQIN~1 I!Q~TI.'
L .J L J L J L J

r , r "1 r , r ,
ISTK I ITERM I I 12!SK I ISTOR I
INOSTKI I NOTERM I IPRINTI I!Q.~IQ.E'
L .J L .J L .J L .J

is the file identifier of the source input file. The file
must consist of 80-character card image records with
sequence fields in positions 73 through 80 or 76 through 80.
If the filetype or filemode are omitted, ASSEMBLE and Al are
assumed, respectively.

is the file identifier of the update file. If the NOCTL
option is in effect, this file must contain UPDATE control
statements and updated source records. The default file
identifier is fnl UPDATE Al. If the CTL option is
specified, this file must be a control file that lists the
update files to be applied; the default file identifier is
fn 1 CNTRL A 1 •

creates an output source file with the same filename as
the input source file. If the output file is placed on
the same disk as the input file, the input file is
erased.

retains the old file in its
different filename to the
dollar sign ($) plus the
input filename (fnl).

original form, and assigns a
new file, consisting of a

first seven characters of the

specifies that the entire sequence field (columns 73
through 80) contains an eight-digit sequence number on
every record of source input.

Section 2. CMS Commands 201

UPDATE

INC

C~L

STK

NOTER~

PRINT

STOR

specifies that columns 73-75 contain a three-character
label field, and that the sequence number is a five-digit
value in columns 76-80.

!Q!g: Source files sequenced by the eMS editor are
sequenced, by default, with five-digit sequence numbers.

increments sequence numbers in columns 73 through 80 in
each record inserted into the updated output file,
according to specifications in UPDATE control statements.

puts asterisks (********) in the sequence number field of
each updated record inserted from the update file.

specifies that fn2, ft2, and fm2 describe an
control file for applying multiple update files
source input file. (See "The CTL option.")

NQ!gl The CTL option implies the INC option.

update
to the

specifies that a single update file is to be applied to
the source input file.

stacks information from the control file in the C"S
console stack. STK is valid only if the CTL option is
also specified and is useful only when the UPDATE command
is executed in an EXEC procedure.

does not stack control file information in the console
stack.

displays warning messages at the terminal whenever a
sequence or update control card error is discovered.
(Such warning messages appear in the update log, whether
they are displayed at the terminal or not.)

suppresses the display of warning messages at the
terminal. However, error messages that terminate the
entire update procedure are displayed at the terminal.

places the update log file on disk. This file has a file
identifier "fn UPDLOG", where "fn" is the filename of the
file being updated.

prints the update log file directly on the virtual
printer.

specifies that the source input file is to be read into
storage and the updates performed in storage prior to
placing the updated source file on disk. This option is
meaningful only when used with the CTL option since the
benefit of increased processing speed is realized when
processing multiple updates. STaR is the default when
CTL is specified.

specifies that no updating is to take place in storage.
NOSTOR is the default when single updates are being
applied (CTL is omitted from the command line).

202 IB~ V~/370 eMS Command and Macro Reference

UPDATE

UPDATE CONTROL STATE~ENTS

The UPDATE control statements let you insert, delete, and replace source
records, as well as resequence the output file.

All references to the sequence field of an input record refer to the
numeric data in columns 73-80 of the source record, or columns 76-80 if
NOSEQA is specified. Leading zeros in sequence fields are not required.
If no sequence numbers exist in an input file, a preliminary UPDATE with
only the './ S· control statement can be used to establish file
sequencing.

sequence numbers are checked while updates are being applied; an
error condition results if any sequence errors occur in the update
control statements, and warnings are issued if an error is detected in
the sequencing of the input file. Any source input records with a
sequence field of eight blanks are skipped, without any indication of a
sequence error. Such records may be replaced or deleted only if they
occur within a range of records that are being replaced or deleted
entirely and if that range has limiti with valid sequence numbers.
There is no means provided for specifying a sequence field of blanks on
an UPDATE control statement.

All UPDATE control statements are identified by the characters './' in
columns 1 and 2 of the 80-byte record, followed by one or more blanks
and additional, blank-delimited fields. Control statement data must not
extend beyond column 50.

~~QQ~!~~ ~Qn1±Ql st~1~m~n1 -- resequences the updated source output file
in columns 73-80 (if SEQ8 is specified), or in columns 76-80 with the
label placed in columns 73-75 (if NOSEQ8 is specified). The format of
the SEQUENCE control statement is:

.--- -,
I ./ S r seqstrt [seqincr [label]]] I
L

seqstrt

seqincr

label

___ -J

is a one- to eight-digit numeric field specifying the
first decimal sequence number to be used. The default
value is 1000 if SEQ8 is specified and 10 if NOSEQ8 is
specified.

is a one- to eight-digit numeric field specifying the
decimal increment for resequencing the output file.
The default is the "seqstrt" value.

is a three-character field to be duplicated in columns
73-75 of each source record if NJSEQ8 is specified.
The default value is the first three characters of the
input filename (fnl).

If you ase the SEQUENCE statement, it must be the first statement in the
update file. If any valid control statement precedes it; the resequence
operation is suppressed. When the SEQUENCE control statement is the
first statement processed, the sequence numbers in the source file are
checked, and warning message DMSUPD210W is issued for any errors.

Section 2. CMS Commands 203

UPDATE

If the SEQUENCE control statement is processed after updates have been
applied, no warning message is issued.

Each source record is resequenced in columns 73-80 as it is written
onto the output file, including unchanged records from the source file
and records inserted from the update file.

IH~~R~ ~QntrQl ~tatemgnt -- inserts all
next control statement, into the output
control statement is:

records following it, up to the
file. The format of the INSERT

r ,
I . / I seqno [$ (seqstrt (seqincr]]] ,

segno

$

seqstrt

seqincr

is the sequence number of the record in the source
input file following which new records are to be added.

is an optional delimiter indicating that the inserted
records are to be sequenced by increments.

is a one- to eight-digit numeric field specifying the
first decimal number to be used for sequencing the
inserted records.

is a one- to eight-digit numeric field specifying the
decimal increment for sequencing the inserted records.

All records following the "./ I" statement, up to the next control
statement, are inserted in the output file following the record
identified by the "seqno" field. If the NOINC option is specified, each
inserted record is identified with asterisks (********) in columns
73-80. If either the INC or CTL option is specified, the records are
inserted unchanged in the output file, or they are sequenced according
to the "seqstrt" and "seqincr" fields, if the dollar sign ($) key is
specified.

The lefault sequence increment, if the dollar sign is included, is
determined by using one tenth of the least significant, nonzero digit in
the seqno field, with a maximum of 100. The default seqstrt is computed
as segno plus the default seqincr. For example, the control statement:

./ I 2600 $ 2610

causes the inserted records to be sequenced XXX02610, XXX02620, and so
forth (NOSEQ8 assumed here). For the control statement:

./ I 240000 $

the defaulted seqincr is the maximum, 100,
number is 240100. SEQ8 is assumed, so
sequenced 00240100, 00240200, and so forth.

and the starting sequence
the inserted records are

If either INC or CTL is specified but the dollar sign is not
included, whatever sequence number appears on the inserted records in
the update file is included in the output file.

204 IBM VM/370 CMS Command and Macro Reference

UPDATE

Q~1~±~ ~Qg~~Ql ~i£igmgg~ -- deletes one or more records from the source
file. The format of the DELETE control statement is:

r --------------------------------,
i ./ D seqnol (seqno2] [$] ,
L

__-J

segnol

segno2

$

is the sequence number identifying the first or only
record to be deleted.

is the sequence number of the last record to be
deleted.

is an optional delimiter indicating the end of the
control fields.

All records of the input file, beginning at seqnol, up to and
including the seqno2 record, are deleted from the output file. If the
seqno2 field is omitted, only a single record is deleted~

REPL!~~ ~Qlli~Ql st£igm~Q~ -- replaces one or more input records with
updated records from the update file. The format of the REPLA:E control
statement is:

r-- --,
I .1 R segnol [seqno2] [$ [seqstrt [seqincr]]]1
L -.I

segnol

segno2

$

seqstrt

seqincr

is the sequence number of the first input record to be
replaced.

is the sequence number of the last record to be
replaced.

is an optional delimiter key indicating that the
substituted records are to be sequenced incrementally.

is a one- to eight-digit numeric field specifying the
first decimal number to be used for sequencing the
substituted records.

is a one- to eight-digit numeric field specifying the
decimal increment for sequencing the substituted
records.

All records of the input file, beginning with the seqno1 record, up
to and including the seqno2 record, are replaced in the output file by
the records following the ".1 pll statement in the update file, up to the
next control statement. As with the ".1 D" (delete) function, if the
segno2 field is omitted, only a single record is replaced, but it may be
replaced by more than a single inserted record. The "./ R" (replace)
function is performed as a delete followed by an insert: thus, the
number of statements inserted need not match the number deleted. The
dollar sign ($), segstrt, and seqincr processing is identical to that
for the insert function.

Section 2. eMS Commands 205

UPDATE

r---------,
I fn ASSEMBLE r---------,

fn UPDATE $fn ASSEMBLE
fn UPDLOG

L---------J
L---------J

update fn

frr !~~~~~~~ is the source input file.

fn UPDATE ~ontains UPDATE control statements and updated source input
record'S-:-
ifn !~~~~~~~ is the updated source file, incorporating changes,
additions, and deletions specified in the update file. The output
filetvpe is always the same as the filetype of the input file. These
default filetypes and filemodes can be overridden on the command line;
for example:

update testprog cobol b fix cobol b (rep

results in a source file TESTPROG COBOL B being updated with control
statements contained in the file FIX COBOL B. The output file replaces
the existing TESTPROG COBOL B.

fg ~~Q~~~ contains a record of updates applied. If you do not want this
file written on disk, specify the PRINT option.

r--- ---- --,

L---------J

fn ASSEMBLE
fn CNTRL
fn UPDTABC
fn UPDTXYZ

update fn (ctl

r---------,
I , ,
I
I
L---------.l

trr !~~~~~1~ is the source input file.

$fn ASSEMBLE
fn UPDLOG
fn UPDATES

fg ~N!g~ is the control file that lists updates to be applied to the
source file. These default filetypes and filemodes can be overridden on
the command line; for example:

update acct pliopt a test cntrl a (ctl

results ~n the file TEST CNTRL being used by the UPDATE command to
locate the update files for ACCT PLIOPT.

Section 2. CMS Commands 201

UPDATE

fn Qg~I!~~ ~g fn Q£~T!!E are update files containinq UPDATE control
statements and new source records. These files must have filenames that
are the same as the source input file. The first four characters of the
filetype must be "UPDT." The UPDATE command searches all accessed disks
to locate the update files.

!fn !~~~~~~E is the updated source file, incorporatinq chanqes,
additions, and deletions specified in the update files. The filetype is
always the same as the filetype of the source input file.

fn QR~1Q~ contains a record of updates applied. If you do not want this
file written on disk, specify the PRINT option.

fn !!RQ!I~2 summarizes the updates applied to the source file,.

!hg ~Q!!I!!Q~ II1E (fn CNTRL) may not contain UPDATE control statements .•
It may only list the filetypes of the files that contain UPDATE control
statements. This control file contains the records:

TE1CT MACS CMSLIB
TWO UPDTABC
ONE UPDTXYZ

where Q~~I!~~ and QR~!!IE are the filetypes of the update files. The
UPDATE command applies these updates to the source file beginning with
the last record in the control file. Thus, the updates in fn UPDTXYZ
are applied before the updates in fn UPDTABC.

When you create update files whose filetypes begin with 'UPDT', you
may omit these characters when you list the updates in the control file;
thus, the CNTRL file may be written:

TE1CT MACS CMSLIB
Twa ABC
ONE lYZ

T~!T, !~Q, Q!!~: The first column of the control file consists of an
update level identifier, which may be from one to five characters long.
These identifiers are used by VM/370 updating procedures, like the
VMFASM EXEC, to locate and identify text decks produced by multilevel
updates.

~!~~: The first record in the control file must be a MACS record which
contains an update level identifier (TEXT) and, optionally, lists up to
eight macro library' (MACLI~ filenames.

The information provided in the MACS card and the update level
identifier are not used by the UPDATE command unless the STK option is
specified. Thev are, however, required in the CNTRL file.

208 IBM VM/370 CMS Command and Macro Reference

r---------,
fn ASSEMBLE
fn CNTRL
fn UPDTABC
fn UPDTIYZ
fn AUXLIST

L---------J fn FIIOl
fn FIX02

update fn (ctl

r----------,
I I
, I
I I
I I
L----------J

$fn ASSEMBLE
fn UPDLOG
fn UPDATES

UPDATE

fn !~~~~~~~, fn CNTB1, fn UPDTA~f, fn gE~!!r~, tfn !~SE~~~~, fn QfQ12~,
and in qR~!I~~ are used as described above, for "Multilevel Update,"
except that the CNTRL file contains:

TE~T MACS CMSLIB
TWO UPDTABC
ONE UPDTXYZ
TEXT AITXLIST

!Q! in the filetype AUXLIST indicates that this is the filetype of an
auxiliary control file that contains an additional list of updates. The
first three characters of the filetype of an auxiliary control file must
be "AU~": the remaining character(s) (to a maximum of 5) may be
anything. The filename must be the same as the source input file.

An auxiliary file may also be specified as:

xxxxx AUX

in the control file. For example, the record:

FIX TEST AUX

identifies the auxiliary file fn AUITEST.

Note that if you give an auxiliary control file the filetype AUXPTF, the
UPDATE command assumes that it is a simple update file and does not
treat it as an auxiliary file. Also, if the update level identifier is
PTF, the UPDATE command assumes a simple update file.

PREFERRED AUX FILE: A preferred AUI file may be specified. A preferred
Aui-file-contains-the version of an update that applies to your version
of the source file. (There may be more than one version of the same
update if there is more than one version of the source file. For
example, you need one version for the source file that has a system
extension program product installed, and you need another version for
the source file that does not have a program product installed.)

When you specify an auxiliary control file, you can specify more than
one filetype. The first filetype indicates a file that UPDATE uses only
on one condition: the files that the second and subsequent filetypes
indicate do not exist. If they do exist, this AUX file entry is ignored
and no updating is done. The files that the second and subsequent
filetypes indicate are preferred because, if they exist, UPDATE does not
use the file that the first filetype indicates. For example, assume
that the file 'fn ASSEMBLE' does exist. The control file MYKODS CNTRL:

Section 2. CMS Commands 209

UPDA~E

TEXT MACS MYMACS CMSLIB OSMACRO

MY2 AUXTEST

MYl AUXMINE AUXTEST

and the command:

UPDATE fn ASSEMBLE * MYMODS CNTRL (CTL

would result in UPDATE finding the preferred auxiliary control file 'fn
AUXTEST', and therefore not using 'fn AUXMINE' to update 'fn ASSEMBLE'.
UPDATE would then proceed to the MY2 AUXTEST entry and update 'fn
ASSEMBLE' with the updates listed in 'fn AUXTEST.' It is assumed that
AUXTEST and AUXMINE list similar but mutually exclusive updates.

!he sea~ch for a "preferred" auxfile will continue until one is found or
until the token is an invalid filetype; that is, less than four or more
than eight characters. This token and the remainder of the line are
considered a comment.

~n EIXQl and ~n EIXQ£ are update files containing UPDATE control
statements and new source records to be incorporated into the input
file. When update files are listed in an auxiliary control file, they
can have any filetype you choose but the filename must be the same as
the sou~ce input file. The update files, as well as the AUI file, may
be on any accessed disk. These are indicated in fn AUXLIST as follows:

FIX02
FIXOl

The updates are applied from the bottom of the auxiliary file. Thus, fn
FIXOl is applied to the source file before fn FIX02. Since the
auxiliary file is listed at the bottom of the control file, these
updates are applied before UPDTXYZ and UPDTABC.

!QQITIQR!~ ~QliTEQ1 I!1~]~CORD~: In addition to the MACS record, the
filetypes of update (UPDTl files, and the filetypes of auxiliary control
(AU~) files, a control file may also contain:

• comments. These records begin with an asterisk (*) in column 1.
comments are also valid in AUX files.

• PTF records. If the characters PTF appear in the update level
identifier field, the UPDATE command expects the second field to
contain the filetype of an update file. The filetype may be
anything; the filename must be the same as the source input file.

• Update level identifiers not associated with update files.

~he following example of a control file shows all the valid types of
records:

* Example of a control file
ABC MACS MYLIB
TEXT
004
003
002
001
PTF

UPDTABC
XYZ
AUXLISTl
LIST2 AUX
TESTFIX

Ili~ ~~K QR1!QN: The STK (stack) option is valid only with the CTL option
and is meaningful only when the UPDATE command is invoked within an EXEC
procedure.

210 IBM VM/370 CMS Command and Macro Reference

UPDATE

When the STK option is specified, UPDATE stacks the following data
lines in the console stack:

first line: * update level identifier
second line: * library list from ~ACS record

The update level identifier is the identifier of the most recent update
file that was found and applied. For example, if a control file
contains

TEtT MACS CMSLIB OSMACRO TEST~AC
OFA UPDTOFA
PFA UPDTOFA

and the UPDATE command appears in an EXEC as follows:

UPDATE SAMPLE (CTL STK
&READ VARS &STAR &TEXT
&READ VARS &STAR &LIB1 &LIB2 &LIB3 &LIB4

then the variable symbols set by the &READ VARS statements have the
following values if the file SAMPLE UPDTOFA is found and applied to the
file SA~PLE ASSEMBLE:

~Y!!!!2Ql
&STAR
&TEXT
&LIB1
&LIB2
&LIB3
&LIB[J

Y£l~g

* OFA
CMSLIB
OSMACRO
TESTMAC
null

The library list may be useful to establish macro libraries in a
subsequent GLOBAL command within the EXEC procedure. If no update files
are found, UPDATE stacks the update level identifier on the MA:S record.

FILE 'fn ft fm,' REC #n = update control statement

This message is displayed when the TERM option is specified and an
error is detected in an update file. It identifies the file and
record number where the error is found.

DMSUPD177I WARNING
IGNORED.]

MESSAGES ISSUED (SEVERITY=nn). [. REP' OPTION

Warning messages were issued during the updating process. The
severity shown in the error message in the "nn" field is the
highest of the return codes associated with the warning messages
that were generated during the updating process.

The warning return codes have the following meanings:

RC = 4; Sequence errors were detected in the original source file
being updated.

RC = 8; Sequence errors, which did not previously exist
source file being updated, were introduced in the output
during the updating process.

in the
file

Section 2. CMS :ommands 211

UPDA:'E

RC = 12; Any other nonfatal error detected during
process. Such errors include invalid update
statements and missing update or PTF files.

the updating
file control

~he severity value is passed back as the return code from the
UPDATE command. In addition, if the REP option is specified in
the command line, then it is ignored, and the updated source file
has the fileid n$fnl ftl", as if the REP option was not specified.

DMSUPD178I UPDATING r'fn ft fm'] WITH 'fn ft fm'

The specified
~his message
command line.

update file is being applied to the source file.
appears only if the CTL option is specified in the

The updating process continues.

DMSUPD304I UPDATE PROCESSING WILL BE DONE USING DISK

An insufficient amount of virtual storage was available to perform
the updating in virtual storage, so a CMS disk must be used. This
message is displayed only if NOSTOR was specified in the UPDATE
command line.

DMSUPD001E NO FILENAME SPECIFIED RC=24
DMSUPD002E FILE 'fn ft fm' NOT FOUND RC=28
DMSUPD003E INVALID OPTION 'option' RC=24
DMSUPD007E FILE 'fn ft fm' IS NOT FIXED, 80 CHAR. RECORDS RC=32
DMSUPD010W PREMATURE EOF OF FILE 'fn ft fm' --SEQ NUMBER •••••••••• NOT

FOUND RC=12
DMSUPD024E FILE 'UPDATE CMSUTl fm' ALREADY EXISTS RC=28
DMSUPD037E DISK 'mode' IS READ/ONLY RC=36
DMSUPD04AE INVALID MODE 'mode' RC=24
DMSUPD065E 'option' OPTION SPECIFIED TWICE RC=24
DMSUPD066E • option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSUPD06QE DISK 'mode' NOT ACCESSED RC=36
DMSUPD070E INVALID PARAMETER 'parameter' RC=24
DMSUPD104S ERROR 'nn' BEADING FILE 'fn ft fm' FR05 DISK RC=100
DMSUPD105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSUPD174W SEQUENCE ERROR INTRODUCED IN OUTPUT FILE: •••••••• TO

••.••••• ' RC=8
DMSUPD176W SEQUENCING OVERFLOW FOLLOWING SEQ NUMBER· •••••••• ' RC=8
DMSUPD179E MISSING OR DUPLICATE 'MACS' CARD IN CONTROL FILE 'fn ft fm'

RC=32
DMSUPD1QOW MISSING PTF FILE 'fn ft fm' RC=12
DMSUPD1~lE NO UPDATE FILES WERE FOUND RC=40
DMSUPD1Q2W SEQUENCE INCREMENT IS ZERO RC=8
DMSUPD1~3E INVALID {CONTROLIAUX} FILE CONTROL CARD RC=32
DMSUPD1~4W './S ' NOT FIRST CARD IN INPUT FILE --IGN~RED RC=12
DMSUPD1~5W INVALID CHAR IN SEQUENCE FIELD •••••••••• RC='2
DMSUPD1Q6W SEQUENCE NUMBER •••••••••• NOT FOUND RC=12
DMSUPD1Q7E OP~ION 'STK' INVALID WITHOUT 'CTL' RC=24
DMSUPD207W INVALID UPDATE FILE CONTROL CARD RC=12
DMSUPD210W INPUT FILE SEQUENCE ERROR: ••••••••••• TO ,......... RC=4
DMSUPD2QQE INSUFFICIENT STORAGE TO COMPLETE UPDATE RC=41
DMSUPD300E INSUFFICIENT STORAGE TO BEGIN UPDATE RC=41

212 IB~ VM/370 CMS Command and Macro Reference

Immediate Commands

Immediate Commands

You can issue an Immediate command from the terminal only after causing
an attention interruption by pressing the Attention key (or its
equivalent). These commands are processed as soon as they are entered.
The HT and RT Immediate commands are also recognized when they are
stacked in an EXEC procedure, and the HT Immediate command can be
appended to a CMS command preceded by a logical line end symbol (I).
Any program execution in progress is suspended until the Immediate
command is processed.

None of the Immediate commands issue responses.

Use the HB command to stop the
at the end of the current job.
is:

r
, HB
L-

execution of a CMS batch virtual machine
The format of the HB Immediate command

,
II

1. If the batch virtual machine is running disconnected, it must be
reconnected.

2. when the HB command is executed, eMS sets a ILag such ~nat at the
end of the current job, the batch processor generates accounting
information for the current job and then logs off the CMS batch
virtual machine.

HQ

Use the HO command during the execution of a command or one of your
programs to stop the recording of trace information. Program execution
continues to its normal completion, and all recorded trace information
is spooled to the printer. The format of the HO command is:

r----
, HO
L-

Section 2. CMS Commands 213

Immediate Commands

Use the HT command to suppress all terminal output generated by any C"S
command or your program that is currently executing. The format of the
H'!' command is:

r---- --------.--------------.-------------------------.---------,
I HT
'---

1 • Program execution continues. When the
normal terminal output resumes. Use
typing or displaying.

,

ready message is displayed,
the RT command to restore

2. CMS error messages having a suffix letter of S or T cannot be
suppressed.

Use the HX command to stop the execution of any C"S or CMS/DOS command
or program, close any open files or I/O devices, and return to the C"S
command environment. The format of the HX command is:

r----
, HX
L- -l

i. HX clears all file definitions made via tne FILEDEF or DLBL
commands, including those entered with the PER" option.

2. The HX command is executed when the next SVC or 110 interruption
occurs: therefore a delay may occur between keying HX and the
return to C"S. All terminal output generated before HI is
processed is displayed before the command is executed.

3. HX does not clear user storage.

EQ

Use the RO command, during the execution of a command or one of your
programs, to resume the recording of trace information that was
temporarily suspended by the SO command. Program execution continues to
its normal completion, and all recorded trace information is spooled to
the printer. The format of the RO command is:

r --,
, RO ,
L-

21U IBM VM/37~ CMS Command and Macro Reference

Immediate Commands

Use the RT command to restore terminal output from an executing eMS
command or one of your programs that was previously suppressed by the HT
command. The format of the RT command is:

r-
I RT
L-

Program execution continues, and displaying continues from the current
point of execution in the program. Any terminal output that is
generated after the HT command is issued and up to the time the RT
command is issued is lost. Execution continues to normal program
completion.

2Q

Use the SO command during the execution of a command or one of your
programs to temporarily suspend the recording of trace information.
Program execution continues to its normal completion and all recorded
trace information is spooled to the printer. The format of the SO
command is:

r 1
I SO ,
L

To resume tracing, issue the RO command.

Section 2. CMS Commands 215

216 IBM VM/37Q CMS Command and Macro Reference

EDIT Subcommands

Section 3. EDIT Subcommands and Macros

This section describes the formats and operands of the EDIT subcommands
and macros. EDIT subcommands are valid only in the environment of the
CMS editor, which is invoked with the EDIT command. The EDIT command
format is described in "Section 2. CMS Commands."

The edit~r has two modes of operation: edit m~de and input mode.
Whenever the EDIT command is issued, edit mode is entered; when the
INPUT or REPLACE subcommands are issued with no operands~ input mode is
entered. In input mode, all lines you enter are written into the file
you are editing. To return to edit mode from input mode, you must enter
a null line (one that has no data on it).

For a functional description of the CMS editor and tutorial
information on how to use it, consult the Y~L11Q £~2rr§g£~§ ~gig~.

For a summary of the default settings assumed by the editor for eMS
reserved filetypes, see "Appendix A: Reserved Filetype Defaults."

EDIT Subcommands

The EDIT subcommands are listed in alphabetical order for easy
referen=e. Each subcommand description includes the format, a list of
operands (if any), usage notes, and responses. For those subcommands
that operate somewhat differently on a 3270 display terminal than on a
typewriter terminal t an
Considerations, " is added.

additional a. i sellS sian, "Display Mode

Subcommands that are valid only with 3270 display terminals, namely
SCROLL, SCROLLUP, and FORMAT have the notation "(3270 only)" next to the
subcommand names. The FORWARD and BACKWARD subcommands, which were
designed for use with 3270 terminals but can be issued at any terminal,
have the notation "(primarily 3270} " next to the sub=ommand names.

Section 3. EDIT Subcommands and Macros 217

EDIT Subcommands-ALTER

ALTER

Use the ALTER subcommand to change a specific character to another
character, one that may not be available on your terminal keyboard. The
ALTER sabcommand allows you to reference characters by their hexadecimal
values. The format of the ALTER subcommand is:

r- -, , r r "
, , ALter charl char2 In I G" ,

I 1* '* I' I
1 11 I II I
I L L .J.J ,
L- -l

char 1 specifies the character to be
either as a single character or
(00 through FF).

altered. It may be specified
as a pair of hexadecimal digits

char2 specifies the character to which charl is to be altered. It may
be specified either as a single character or as a pair of
hexadecimal digits.

n

G

indicates the number of lines to be searched for the specified
character. If you specify an asterisk (*), all lines in the
file, beginning with the current line, are searched. If this
option is omitted, then only the current line is searched.

requests the editor to alter every occurrence of charl in the
lines specified. If G or * is not specified, only the first
occurrence of charl in each line specified is altered.

1. If char2 is a hexadecimal value that cannot be represented on your
terminal, it may appear as a blank, for example:

input XSLC
alter X 02

SLC

Column 1 contains an X'02', which cannot be displayed.

2. Use the ZONE subcommand if you want only particular columns
searched for a specific character.

When verification is on, altered lines are displayed at your terminal.

When yoa request a global change on a 3270, the display is changed only
once, to reflect the final position of the current line pointer. The
editor displays a message to indicate the number of lines changed:

{~gnn} LINE (S) CHANGED

218 IB~ VM/370 C~S Command and Macro Reference

EDIT Subcommands-AUTOSAVE

AUTOSAVE

Use the AUTOSAVE subcommand to set, reset, or display the automatic save
function of the editor. When the automatic save function is in effect,
the editor automatically issues ~ne SAvE subcommand each time the
specified number of changes or insertions are made. The format of the
AUTOSAVE subcommand is:

r --------,
I r ,
I AUrOsave
I

In,
IOFFI

I
I

I L J

L------

n is a decimal number between 1 and 32767, indicating the frequency
of the automatic save function. One SAVE subcommand is issued for
every n lines that are changed, deleted, or added to the file.

OFF tu~ns off the automatic save function.
setting.

This is the initial

1. Each line affected by the $MOVE macro is treated as one update.
However, all changes caused by a single CHANGE, DELETE, DSTRING,
GErFILE, or OVERLAY subcommand are treated as a single update, no
matter how many lines are affected.

2. If you are editing a file on a read-only disk, and an automatic
save request occurs, the message:

SET NEW FILEMODE AND RETRY

is issued. You can enter CMS subset and access the disk in
~ead/write mode, or use the FMODE subcommand to change the filemode
to the mode of a read/write disk. If you were in input mode, you
are placed in edit mode@

3. The message "SAVED" is displayed at the terminal each time the save
operation occurs.

If you issue the AUTOSAVE subcommand with no operands, the editor
displays the current setting of the automatic save function.

Section 3. EDIT Subcommands and Macros 219

EDIT Subcommands-BACKWAPD, BOTTOM

BACKWARD (Primarily 3270)

Use the BACKWARD subcommand to move the current line pointer towards the
beginning of the file you are editing. The format of the BACKWARD
subcommand is:

r-
, r ,
I BAck~ard In 1
1 III
I L J

L-
______________________ -J

n is the number of records backward you wish to move the current line
pointer. If n is not specified, the current line pointer is moved
backward one line, toward the top of the file.

The BACKwARD subcommand is equivalent to the UP subcommand; it is
provided for the convenience of 3270 users.

When verifi~ation is on, the current line on the screen contains the
record located by the BACKWARD n value. If n ex~eeds the number of
records above the current line, TOF is displayed on the current line.

On a typewriter
verification is on.

BOTTOM

terminal the new current line is typed if

Use the BOTTOM subcommand to make the last line of the file the new
current line. The format of the BOTTOM subcommand is:

r
I Bottom
L-

-, ,

Use the BOTTOM subcommand followed by the INPUT subcommand to begin
entering new lines at the end of a file.

When verification is on, the last line in the file is displayed.

If the BOTTOM subcommand is issued at a 3270 display terminal in display
mode, EJF: is displayed on the line following the current line, preceded
by the last records of the file; the rest of the screen's output area is
blank.

220 IB~ VM/37Q CMS Command and Macro Reference

EDIT Subcommands-CASE, CHANGE

CASE

Use the CASE subcommand to indicate how the editor is to process
uppercase and lowercase letters. The format of the CASE subcommand is:

r----
I
I CASE
I ,
L-

, r ,
, ,M I
I I U ,
, L .J

____ 11

M indicates that the editor is to accept any mixture of uppercase and
lowercase letters for the file as they are entered at the terminal.

U inaicates that the editor is to translate all lowercase letters to
uppercase letters before the letters are entered into the file. U
is the default value for all filetypes except MEMO and SCRIPT.

If you enter the CASE subcommand with no operand, the current setting is
displayed at the terminal.

If you specify CASE M when using a 3270 that does not have the lowercase
feature (RPQ), you can key in lowercase characters, but they appear on
the screen as uppercase characters.

CHANGE

Use the CHANGE subcommand to change a specified group of characters to
another group of characters of the same or a different length. You may
use the CHANGE subcommand to change more than one line at a time. The
format of the CHANGE subcommand is:

r-,
, Change , ,
I
L---

r r "
[/stringl[/string2[/IniGI t]]]

1*1 *11
III 'I
L L .J.J ___ -J

I (diagonal) signifies any unique delimiting character that does not
appear in the character strings involved in tne change.

stringl

string2

specifies a group of characters to be changed (old data).
stringl may be a null string.

specifies the group of characters that are to replace
string 1 (new da tal. string 2 may be a n nIl string; if
omitted, it is assumed null.

Section 3. EDIT Subcommands and Macros 221

EDIT Subcommands-CH~NGE

n or * indicates the number of lines to be searched, starting at
the current line. If * is entered, the search is performed
until the end of the file is reached. If this option is
omitted, then only one line is searched.

G or * requests the editor to change every occurrence of stringl
in the lines specified. If G or * is not specified, only
the first occurrence of stringl in each line specified is
changed. If string' is null, G or * may not be specified.

1. The first nonblank character following the CH~NGE
any of its truncation~ is considered the delimiter.

c.VM/370.CMS.*

subcommand (or
For example:

changes the first occurrence of VM/310 to eMS on every line from
the current line to the end of the file.

2. If string2 is omitted, it is assumed to be a null string. For
example:

THIS ISN THE LINE.
change In
THIS IS THE LINE.

~ null string causes a character deletion. If stringl is null,
characters are inserted at the beginning of the line. For example:

THIS IS THE LINE.
change IISO I
SJ THIS IS THE LINE.

3. To change multiple occurrences of the same string on one line,
enter:

change/stringl/string2/ 1 *
4. The CH~NGE subcommand can be used on typewriter terminals to

display, without changing, any lines that contain the information
specified in stringl. Enter:

change /stringl/stringl1 * *
5. Use the ZONE subcommand to indicate which columns are to be

searched for string'. If string' is wider than the current zone,
you receive the message:

ZONE ERROR

and you should either reenter the CHANGE subcommand or change the
zone setting.

6. If the character string inserted causes the data line to extend
bevond the truncation column or the zone column, any excess
characters are truncated. (See the description of the TRUNC
subcommand for additional information on truncation.)

7. You should use the ALTER
single character to some
available on your keyboard).

subcommand when you want
special character (one

222 IB~ VM/37Q CMS Command and Macro Reference

to change a
that is not

EDIT Subcommands-CHANGE

R. When the IMAGE subcommand is set with the CANON operand, backspace
characters at the beginning or end of stringl are ignored.

9 To sta~k a CHANGE subcommand with no operands from a fixed-length
E~EC, you should use the &STACK control statement.

When ve~ification is on, every line that is changed is displayed.

If you issue the CHANGE subcommand without operands at a 3270 display
terminal in display mode, the following occurs:

1. The record pointed to by the current line pointer appears in the
user input area of the display. If the line is longer than the
current truncation setting, it is truncated.

2. Yoa can then alter the record in the user input area by retyping
part o~ all of the line, or by using the Insert, Delete, or Erase
EOF keys to insert or delete characters.

3. When the line is modified, press the Enter key, which causes the
~ecord in the user input area to replace the old record at the
current line in the output display area.

If you bring a line down
change it, press the Erase
line is not changed.

to the user input area and decide not to
Input key and then the Enter key, and the

When a line is moved to th@ user input area, any characters currently
assignej to VM/370 logical line editing symbols (#, ~, ¢,") are
re-interpreted when the line is reentered. Any data that is not retyped
at the input area is reentered without change if it consists of standard
characters only. Other nonprintable characters (including tabs,
backspa~es, control characters, etc., and lower-case letters, are either
converted to blanks or translated by zone substitution into upper-case
letters, numbers, or other printable characters. You should issue a
CHANGE subcommand with explicit operands to change lines containing
line-editing symbols, lower-case letters, or nonprintable data.

The CHANGE subcommand is treated as
issued without operands at a typewriter
terminal that is not in display mode.

an invalid subcommand if it is
terminal or at a 3270 display

When you request a global change on a 3270 terminal, the display is
changed only once, to reflect the final position of the current line
pointer. The editor displays, in the message area of the display
screen:

{~~nn} LINE(S) CHANGED

to indicate the
request resulted
displayed as:

number
in the

of lines that were
truncation of any

updated.
lines,

nnnn LINE(S) CHANGED nnnn LINE{S) TRUNCATED

If the change
the message is

If the change request moves the current line pointer beyond the end
of the file, the word EOF: is displayed on the current line preceded by
the last records of the file. The rest of the output area is blank.

Section 3. EDIT Subcommands and ~acros 223

EDIT Subcommands-CMS

eMS

Use the CMS subcommand to cause the editor to enter the CKS subset mode,
where you may execute those CMS commands that do not need to use the
main storage being used by the editor. The format of the CKS subcommand
is:

r 1
, CMS
L-

,
-.I

1. In CMS subset, you can execute
nu=leus-resident or that executes
nu=leus-resident CMS commands are:

CP
DEBUG
ERASE
FETCH

GENMOD
INCLUDE
LOAD
LOAD MOD

any CMS command that
in the transient area.

START
STATE
STATEW

The commands that execute in the transient area are:

ACCESS LISTFILE RELEASE
ASSGN MODMAP RENAME
COMPARE OPTION SET
DISK PRINT SVCTRACE
DLBl. PUNCH SYNONYM
FILEDEF QUERY TAPE
GENDIRT READCARD TYPE
GLOBAL

To return to edit mode, use the CMS subset command RETURN.

is
The

2. If you attempt to execute a CMS command that requires main storage,
you receive the message:

INVALID SUBSET COMMAND

Results are unpredictable at this point. You should not attempt to
execute any program that executes in the user program area. Using
the LOAD, INCLUDE (RESET), FETCH, START, and RUN commands could
load programs that would overlay the editor's storage area and its
contents. Use these commands only for programs that execute in the
transient area.

3. In an edit macro, if you attempt to use a command that is invalid
in the CMS subset, you receive a return code of -0002.

4. If you attempt to execute a CMS command that fails because of
insufficient storage, your EDIT session may abnormally terminate.
You should save input you have entered before you enter eMS subset
mode.

224 IB~ VM/370 CMS Command and Macro Reference

EDIT Subcommands-C~S

After you issue the eMS subcommand, you receive the message:

eMS SUBSET

to indicate that you are in eMS subset mode. On a display terminal, the
screen is cleared before the editor issues this message; the display of
the file is restored when you enter the RETURN command.

Section 3. EDIT Subcommands and Macros 225

EDIT Subcommands-DELETE, DOWN

DELETE

Use the DELETE subcommand to delete one or more lines
beginning with the current line. The line immediately
last line deleted becomes the new current line. The
DELETE subcommand is:

r
I
I DELete
I ,
I
L

r 1

, nl

'* 1 III
L .J

from a file,
following the

format of the

-, , , , , ,
____ -..I

n indicates the number of lines to be deleted, starting at the
current line. If an asterisk (*) is entered, t~e remainder of the
file is deleted. If n is omitted, only one line is deleted.

None. If you delete the last line in the file, or if you issue the
DELE~E subcommand when the current line pointer is already at the end of
the file, the editor displays the message:

EOF:

If you delete a record when using a display terminal in display mode,
the editor rewrites the output display area with the records above the
current line pointer unchanged. The record at the current line pointer
and the remaining records on the screen move up by one, and a new record
(if one exists) moves into the bottom of the output aisp1ay area.

DOWN

Use the DOWN subcommand to advance the current line pointer forward in
the file. The line pointed to becomes the new current line. The format
of the DOWN subcommand is:

r
I r 1

, DOwn I n I
III I

I
L-

n

L .J

indicates the number
the current line. If
is aavanced one line.

_____ -1

of lines to advance the pointer, starting at
n is not specified, the current line pointer

226 IBM VM/370 eMS Command and Macro Reference

EDIT Subcommands-DOWN, DSTRING

DOWN is equivalent to the NEXT and FORWARD subcommands.

When verification is on, the new current line is displayed at the
terminal; if the end of the file is reached, the message:

EOF:

is displayed.

DSTRING

Use the DSTRING subcommand to delete one or more lines beginning with
the current line, down to, but not including, the first line cont&ining
a specified character string. The current line is not checked for the
character string. The format of the DSTRING subcommand is:

r
I DString
L-

I I[string[I]) .----------___ -J

/ (diagonal) signifies any unique delimiting character that does not
appear in the string.

string specifies the group of characters for which a search is to
be made. If string is not specified, only the current line
is deleted.

The zone set by the ZONE subcommand or the default zone setting is
checked for the presence of the character string. A character string
with a length greater than the current zone setting causes the error
message ZONE ERROR.

If the character string is not found by the end of the file, no
deletions occur, the current line pointer is unchanged, and the message:

STRING NOT FOUND, NO DELETIONS MADE

is displayed.

If verification is on when the DSTRING subcommand is issued at a display
terminal in display mode, the screen is changed to reflect the deletions
from the file.

section 3. EDIT Sub commands and Kacros 227

EDIT Subcommands-FILE r FIND

FILE

Use the FILE subcommand to write the edited file on disk and r
optionallYr override the file identifier originally supplied in the EDIT
command. The format of the FILE subcommand is:

r 1
, FILE
L-

1 [fn (ft [fm]]] , __ -J

fn indicates the filename for the file. If filename is
filetvpe and filemode cannot be specified r and the
filename r filetvpe r and filemode are used.

ft indicates the filetype for the file.

fm indicates the filemode for the file.

omitted,
existing

1. When vou specify a file identifier, any existing file that has an
identical fileid is replaced. If the file being edited had been
previously written to disk r that copy of the file is not altered.

2. You can change the filename and filemode during the editing session
using the FNAME and FMODE subcommands.

The CMS ready message indicates that the file has been written to disk
and control is returned to the eMS environment.

FIND

Use the FIND subcommand to locate a line based on its initial character
string. The format of the FIND subcommand is:

r---- ------------------------, , Find
L-

line

I r line] ,

is any character string, including blanks and tabs, that you
expe~t to find beginning in column 1 of an input record. At
least one non-blank character must be specified. If line is not
specified or the line contains only blanksr the current line
pointer is moved down one line.

1. One blank can be used as a delimiter following the FIND subcommand;
additional blanks are considered part of the character string.

2. If the image setting is ONr the editor expands tab characters to
the appropriate number of blanks before searching for the line.

228 IB~ VM/370 eMS Command and Macro Reference

EDIT Subcommands-FIND, FMODE

3. If the current line pointer is at the bottom of the file when the
FIND subcommand is issued the search begins at the top of the file.

When verification is on, the line is displayed at the terminal. If the
line is not found, the message:

EOF:

is displayed and you may use the REUSE (=) subcommand to search again,
beginning at the top of the file.

FMODE

Use the FMODE subcommand to display or change the filemode of a file.
The format of the FMODE subcommand is:

r --.--------,
, FMode
L-

I [fm] ,
______--J

fm indicates the filemode that is to replace the current filemode
setting. You can specify only a filemode letter (A-G, S, Y, or Z),
or a filemode letter and number (0-5). If you specify a filemode
letter~ the existing filemode number is retained.

1. The specified filemode is used the next time a FILE, SAVE, or
automatic save request is issued. If the file being edited had
been previously filed or saved, that copy of the file remains
unchanged.

2. If the disk specified by filemode already contains a file with the
same filename and filetype, that file is replaced when a FILE,
SAVE, or automatic save request is issued; no warning message is
issued.

3. If the filemode specified is that of a read-only disk, then when an
attempt is made to file or save the file, the editor displays an
error message.

If you enter the FMODE subcommand without specifying fm, the editor
displays the current filemode.

When you specify a new filemode with the FMODE subcommand, the editor
writes the new filemode in the filemode field at the top of the screen.

section 3. EDIT Subcommands and Macros 229

EDIT SUbcommands-FNAME, FORMAT

FNAME

Use the FNAME subcommand to display or change the filename of a file.
The format of the FNAME subcommand is:

r ---------,
1 FName , (fn] ,
'----- -----I

fn indicates the filename that is to replace the current filename.

1. The specified filename is used the next time a FILE, SAVE, or
automatic save request is issued. If the file being edited had
been previously filed or saved, that copy of the file remains
unchanged.

2. If a file already exists with the specified filename and the same
filetype and filemode, that file is replaced; no warning message is
issued.

3. You can use the FRAME subcommand when you want to make multiple
copies of a file, with different filenames, without terminating
your edit session.

If you enter the FNA~E subcommand without specifying fn, the editor
displays the current filename.

When you issue the FNAME subcommand specifying a
editor writes the new name in the filename field
screen.

new filename, the
at the top of the

FORMAT (3270 Only)

Use the FORMA! subcommand to change the mode of a local or remote 3210
terminal from display to line or line to display mode. The format of
the FORMAT subcommand is:

r------
, FORMat
I
L-

DI SPL AY

LINE

--,
{

DISPLAY} ,
LINE 1 ________ - _______ . __ -J

specifies that a full screen display of data is to occur.
Subcommands do not appear as part of the data displayed.

specifies that the display station is to operate as a
typewriter terminal. Every line you enter is displayed on the
screen; the screen looks like a typewriter terminal's console
she9t.

230 IB~ VM/370 eMS CommanR ~nd ~acro Reference

1 •

EDIT Subcommands-FORMAT, FORiARD

Line mode is the default for remote 3270s. If you are using a
remote 3270 in display mode, and you enter the INPUT subcommand,
you are placed in line mode while you enter input. When you return
to edit mode, the full screen display is restored.

2. The FORMAT subcommand is treated as invalid under any of the
following conditions:

a. The NODISP option of the EDIT command was used to invoke the
editor.

b. The edit session wa s ini tia ted on a typewriter terminal. (The
session may optionally be continued on a 3270 after a
reconnection.)

~o obtain a full screen display, 70U must save your file and
restart your edit session.

3. The column settings for the VERIFY, TRUNC, and Z3NE subcommands
remain unchanged when you issue the FORMAT subcommande

None.

FORWARD (Primarily 3270)

Use the FORWARD subcommand to move
end of the file you are editing.
is:

r
I
I FOrward
I
I

r ,
I n I
III
L .J

the current line pointer towards the
The format of the FORWARD subcommand

L- --~

n is the number of records you wish to move forward in the file being
edited. If n is not specified, 1 is assumed.

The FORWARD subcommand is equivalent to the DOWN and NEXT subcommands;
it is provided for the convenience of 3270 users.

When verification is on, the new current line is displayed. If the
number specified exceeds the number of lines remaining in the file, the
current line pointer is positioned at EOF:.

Section 3. EDIT Subcommands and Macros 231

EDIT Subcommands-GETFILE

GETFILE

Use the GETFILE subcommand to insert all or part of a specific CKS file
into a file that you are editing. The format of the GETFILE subcommand
is:

r '-----,
I
, Get file

I r r r r ""
l{fn}lft Ifm Ifirstrec Inumreclill

I
I
I
I

I I * I! I! I 1 ! * I I I I
I , L L L L J.!I.JJ

L

fn is the filename of the file that contains the data to be
inserted into the file you are editing. When an asterisk (*)
is specified, the filename of the file you are'editing is
assumed.

ft

fm

is the filetype
inserted. If ft
specified, the
assumed.

of the file that contains the data to
is not specified or when an asterisk

filetype of the file you are editing

be
is
is

is the filemode of the file that contains the data to be
inserted. If fm is not specified or when an asterisk is
specified, all of your accessed disks are searched for the
file.

firstrec indicates the record number of the first record you want to
copy.

numrec indicates the number of lines to be inserted, starting with
the line specified by firstrec. If numrec is not specified,
or specified as *, then the remainder of the file between
firstrec and the end of the file is inserted.

1 • The GETFILE operand list is positional; if you omit
YOl cannot specify any operands that follow. Thus, if
specify firstrec and lastrec, yoa must specify the
filemode of the file.

2. The last line inserted becomes the new current line.

one operand,
you want to

filetype and

3. If the record length of the records in the file containing the data
to be inserted exceeds that of the file being edited, an error
messaqe is displayed, and the GETFILE is not executed; if shorter,
the records are padded to the record length of thafile being
edited and inserted in the file.

4. If you use the GETFILE subcommand to insert lines into a VSBASIC
file, you must also use the RENUK subcommand to reseq~ence the
file.

5. If the editor fills up available storage while executing a GETFILE
request, it may not be able to copy all of the file. You should
determine how many records were actually copied, and then write the
current file on disk.

232 IB~ V~/370 CMS Command and Macro Reference

EDIT Subcommands-GETFILE, IMAGE

When verification is on, the last line inserted into the file is
displayed. If the end of the file has been reached, the message:

EOF REACHED

is displayed, followed by the display of the last line inserted.

IMAGE

Use the IMAGE subcommand to control how the editor should handle
backspaces and tab characters or to display the current image setting.
The format of the IMAGE subcommand is:

r
I
, IMAGE
I
I ,
L-

I r ,
I ,ON I
, IOFF ,
, ,CANON, ,L J

1 , , , ,
I ____________________________ , ______________________________ -J

ON specifies that any text entered while in input mode or as a line
of data following a FIND, INPUT, OVERLAY, or REPLACE subcommand,
is expanded into a line image; backspaces are removed and tabs
are replaced by blanks.

OFF

CANON

Text entered in the form of delimited strinas. as in CHANGE~
LOCATE, and ALTER, is not expanded; tabs and backspaces are
treated in the same way as other characters.

IMAGE ON is the default for all filetypes except SCRIPT.

specifies that tabs and backspaces are treated
characters in the same way as other charaGters. They
deleted, translated, expanded, or reordered.

as data
are not

specifies that backspaces may be used to produce compound
characters such as underscored words, headings, or phrases.
Before they are inserted in the file, compound characters are
ordered, with backspaces arranged singly between the characters
that overlay each other; the overlaying characters are arranged
according to their EBCDIC values. Tab characters are handled as
for IMAGE OFF.

CANON is the default for SCRIPT files.

1. When the image setting is ON, tab characters are expanded to an
appropriate number of blanks, according to the current settings of
the TAB SET subcommand. The TABSET command has no effect if the
image setting is either OFF or CANON.

Section 3. EDIT Subcommands and Macros 233

EDIT Subcommands-IMAGE, INPUT

2. When the image setting is on, backspaces are handled as follows:

• Backspace characters act in a similar manner to the logical
character delete symbol, in deleting the previous characters if
a sufficient number of other characters or blanks follow the
backspace characters. However, backspace characters that
immediately follow a command name are interpreted as separator
characters and do not delete any part of the command name.

• If a backspace character is the last character in the input
line, it is ignored.

When you issue the IMAGE subcommand with no operand, the current IMAGE
setting is displayed.

INPUT

Use the INPUT subcommand to insert a single line into a file, or, if no
data line is specified, to leave edit mode and enter input mode. The
format of the INPUT subcommand is:

r -,
I Input
L-

1 [line] ,
---~

line specifies the input line to be entered into the file.
contain blanks and tabs; if you enter at least two
following the INPUT subcommand and no additional text,
line is inserted into the file.

It can
blanks

a blank

1. Each line that is inserted into the file becomes the new current
line.

2. When you are using line-number editing (LINEKODE LEFT or LINEMODE
RIGHT) you cannot use the INPUT subcommand to insert a single line
of data; use the nnnnn subcommand.

3. To stack an INPUT subcommand in order to enter input mode from a
fixed-length E~EC, you should use the SSTACK control statement.

When you issue the INPUT subcommand without operands, and verification
is on, the editor displays:

INPUT:

All subsequent lines you entered are written into the file, until you
enter a null line to return to edit mode.

234 IB~ VM/370 eMS Command and Macro Reference

1 •

EDIT Subcommands-INPUT, LINE~ODE

When you insert lines while using
display mode, the editor writes each
The old current line and all records
except for the topmost record formerly
from the screen.

a local display terminal in
record on the current line.
above ~t move up one line,

on line 2, which is deleted

2. If vou are using a remote display terminal in display mode and you
issue the INPUT subcommand with no text, the terminal is forced
into line mode. The display of the file on the screen disappears
and the word INPUT: appears. !s you enter input lines, they appear
in the output display area. When you leave input mode by entering
a null line, the remote terminal returns to display mode. The
display of the file reappears on the screen, with the lines you
have ;ust entered in their proper place in the file.

3. When vou are entering data in input mode at a display terminal that
is in line mode, a tab character generated by a program function
(PF) key only generates one character, and appears as one character
on the screen. That is, the line does not appear spa~ed according
to the tab settings.

liNEMODE

Use the LINEMODE subcommand to set, cancel, or display the status of
line-number editing. When you use line-number editing, you can input,
locate, and replace lines by referencing their record numbers.
Line-number editing is the default for VSB!SIC and FREEFJRT files. The
format of the LINEMODE subcommand is:

r -, , ,
r , I

I LINEmode I ,LEFT , , ,
I
I
L-

LEF'!
L

1 I RIGHT I I
I , OFF , 1
I L .I ,

initializes line-number editing and places sequence numbers
~n the left, in columns 1 through 5, right-justified and padded
with blanks; the near zone is set to 7. If the filetype is
FREEFORT, columns 1 through 8 are used for serial numbers; the
near zone is set to 9.

You should never use left-handed line-number editing for files in
~hich data must occupy columns 1 through 6, for example ASSEMBLE
files.

RIGHT initializes line-number editing and places sequence numbers
R on the right, in columns 76 to 80, right-justified and padded

with zeroes. The end zone and truncation columns are set to 12.

~his operand is valid only
RO-character records.

for files with fixed-length

Section 3. EDIT Subcommands and Macros 235

EDIT Subcommands-LINE~ODE

OFF cancels line-number editing and (if you were using left-handed
line-number editing) resets the first logical tab setting to
column 1. The VERIFY, TRUNC, and ZONE subcommand settings remain
unchanged. Serialization may still be in effect. OFF is the
default for all filetypes except VSBASIC and FREEFORT.

1 •

HQi~: If you enter LINEMODE OFF while editing a FREEPORT file,
line-number editing cannot be resumed for the remainder of the
edit session.

When you enter input mode while
yOJ are prompted with a line
default prompting increment is
PROMPT subcommand.

you are using line-number editing,
number to enter each line. The
10; you may change it using the

If you enter input mode after using the nnnnn subcommand to
position the current line pointer, the prompted line number is the
neKt higher multiple of the current prompting increment or an
ad;usted line number, whichever is smaller. The adjusted line
number is determined according to the following formula:

pppp = 1 + cccc + _lliill..!L=-£Q£c (Any fractional remainder is
4 dropped.)

where:

pppp is the prompt line number.

cccc is the current line number.

nnnn is the next sequential line number in the file.

2. When you are prompted on a typewriter terminal, enter your input
line on the same line as the prompted line number. If you are
using right-handed line-number editing, on a typewriter terminal or
on a display terminal in line mode, the serial n~mbers are not
redisplayed in columns 76 to 80 (unless you use the VERIFY
subcommand to increase the verification setting). When a line is
displayed in edit mode, the line numbers always appear on the left
even though they are on the right in the disk copy of the file.
Whether or not the line numbers are displayed on the right depends
on the current verification setting.

3. You cannot use the INPUT or REPLACE subcommands to input a single
data line when you are using line-number editinq; use the nnnnn
subcommand instead.

4. When you initialize line-number editing for files that already
exist, the editor assumes that the records are in the proper format
and numbered in ascending order.

5. If you want to place serial numbers in columns 16
you do not wish to use line-number editinq,
subcommand.

through 80, but
use the SERIAL

When you issue the LINE~ODE subcommand with no operands, the current
setting is displayed.

236 IB~ VM/37Q CMS Command and ~acro Reference

EDIT Subcommands-LINEMODE, LOCATE

When yo~ use line-number editing on a display terminal in display mode,
the promptinq numbers in input mode appear on line 2 of the display
screen, in the editor message area. Enter your input lines in the user
input area. Regardless of whether you are using right- or left-handed
line-nuBber editing, the line numbers always appear in their true
position in the file.

LOCATE

Use the LOC!TE subcommand to scan the- file beginning with the next line
for the first occurrence of a specified character string. The format of
the LOCATE subcommand is:

r ,r Locate]
L--

I I[string[I] J I
II

/ (diag:>nal)

strinq

signifies any unique delimiting character that does not
appear in the string. The delimiter may be any nonblank
character. The closing delimiter is optional.

specifies any group of characters to be searched for in
the file.

1. If the beginning delimiter is /, you can omit the subcommand name
LOCATE. If you enter only:

I

on a line, the current line pointer is moved down one line.

2. If string is null or blank, the search is successful on the r1rst
line encountered. If the line pointer is at the ena of the file
when the LOCATE subcommand is issued, scanning starts from the top
of the file.

3. Use the ZONE subcommand w.hen you want the editor to search only a
specific column. If you specify a character string longer than the
current zone width, the editor issues the message Z~NE ERROR.

When verification is on, the line containing the specified string is
displayed. If the string is not found, the messages:

NOT FOUND
EOF:

are displayed, and you may use the REUSE (=) subcommand to request that
command be repeated, beginning at the top of the file.

Section 3. EDIT Subcommands and Kacros 237

EDIT Subcommands-LONG, NEtT

LONG

Use the LONG subcommand to cancel a previous SHORT subcommand request.
The format of the LONG subcommand is:

r ~

I LONG ,
L-

When the LONG subcommand is in effect (it is the default), the editor
responds to invalid subcommands with the message:

? EDIT: line •••

None.

NEXT

Use the NEXT subcommand to advance the line pointer a specified number
of lines toward the end of the file. The line pointed to becomes the
new current line. The format of the NEXT subcommand is:

r------ ,
1 r , ,
1 Next 1 nl ,
1 111 I
1 L .J 1
L- -.J

n indicates the number of lines to move the line pointer. If n is
omitted, then the pointer is moved down only one line.

NEXT is equivalent to DOWN and FORWARD.

When verification is on, the new current line is displayed. If the end
of the file is reached, the message:

EOF:

is displayed.

238 IB~ VM/370 eMS Command and Macro Reference

EDIT Subcommands-OVERLAY

OVERLAY

Use the OVERLAY subcommand to selectively replace one or more character
strings in the current line with the corresponding nonblank characters
in the iine being keyed in. The format of the OVERLAY subcommand is:

r----
I Overlay
L-

, [line]
--~

line specifies an input line that replaces corresponaing character
positions in the current line. On a typewriter terminal, if you
enter the OVERLAY subcommand with no data line, t~e input record
remains unchanged.

1. Blank characters in the input line indicate that the corresponding
characters in the current line are not to be overlaid. For
example:

CHARMIE
o L
CHARLIE

Blanks in columns 3, 4, 5, and 6 of the OVERLAY line indicate that
columns 1, 2, 3, and 4 of the current line are not to be changed.
(At least one blank must follow the OVERLAY subcommand, which can
be truncated as 0).

2. This subcommand may be entered at a typewriter terminal by typing
the letter "0", followed by a backspace, f~llowed by the overlaying
characters. This sets up the correct alignment on the terminal.

3. An underscore in the overlaying line must be used to place a blank
into the corresponding position of the current line. Thus, an
underscore cannot be placed (or replaced) in a line.

4.

OVERLAY should be used with care on lines containing underscored
words or other compound characters.

To perform a global overlay
just prior to issuing the
you enter:

operation, issue the REPEAT subcommand
OVERLAY subcommand. For example, when

repeat *
overlay 'l(

an 'l(is placed
beginning with
with the IMAGE
setting.

in the leftmost column of each record in the file,
the current line. The leftmost column, for files
setting ON, is determined by the first logical tab

When verification is on, the line is displayed at the terminal after it
has been overlaid.

Section 3. EDIT Subcommands and Macros 239

EDIT Subcommands-OVERLAY r PRESERVEr PRO~PT

In addition to using the OVERLAY subcomman~ in the normal way, you may
also issue the OVERLAY subcommand with no operands. The next-line you
enter is treated as overlay data. To cancel the overlay request, press
the Erase Input key and then the Enter key.

PRESERVE

Use the PRESERVE subcommand to save the settings of various EDIT
subcommands until a subsequent RESTORE subcommand is issued. The format
of the PRESERVE subcommand is:

r
I PREserve
L- ------------------------------~

Settings are saved for the following subcommands:

CASE
Ff!ODE
FNA~E

I~AGE

LINEMODE

None.

PROMPT

LONG
PROMPT
RECFf!
SERIAL
SHORT

TABSET
TRUNe
VERIFY
ZONE

Use the PRO~PT subcommand to change the prompting increment for input
line numbers when you are using line-number editing. The format of the
PROMPT subcommand is:

r
I
I PROMPT ,
I
L-

, r , , ,n ,
I 11QI
, L J

----------------.------~

n specifies the prompting increment; the default value is 10. The
value of n should not exceed 32 r 767.

When you issue the PROf!PT subcommand with no operands, the current
setting is displayed.

240 IB~ V~/370 CMS Command and f!acro Reference

EDIT Subcommands-QUIT, RECFM

QUIT

Use the QUIT subcommand to terminate the current editing session and
leave the previous copy ox ttte X~Le, if any, intact on the disk. The
format of the QUIT subcommand is:

.--
I QUI'!
L-

1. You can use the QUIT subcommand when you have made a global change
that introduced errors into your file; or whenever you discover
that you have made errors in editing a file and want to cancel your
editing session.

If a SAVE subcommand or automatic save request has been issued. the
file remains as it was when last written.

2. The QUI~ subcommand is a convenient way to terminate an edit
session when you enter an incorrect filename on the EDIT command
line, or when you edit a file merely to examine, but not to change,
its contents.

The CMS ready message indicates that control has been returned to CMS.

RECFI\,1!

Use the RECFM subcommand to indicate to the editor whether the record
format of the file is fixed-length or variable-length, or to display the
current RECFM setting. The format of the RECFM subcommand is:

r
I r ,
I RECfm 'PI

1111 , .,
L J __ -J

F indicates fixed-length records.

v indicates variable-length records.

1. V is assumed by default for all new EXEC, LISTING, FREEFORT,
VSBDAT!, and SCRIPT files. Usually, a variable-Ien~th format file
occupies a smaller amount of disk space because trailing blanks are
deleted from each line before it is written onto disk. When
variable-length VSBDATA files are written to disk, however,
trailing blanks are not truncated (to allow VSBDATA file to span
records) .

Section 3. EDIT Subcommands and Macros 241

EDIT Subcommands-RECFM, RENUM

2. When you use the RECFM subcommand to change the format of a file
from fixed-length to variable-length records, trailing blanks are
removed when the file is written to disk; when you are changing
vaLiable-length records to fixed-length, all records are padded to
the record length.

When you use the RECFM subcommand without specifying F or V, the current
setting is displayed.

When you specify a new record format with the RECFM subcommand, the
editor writes the new record format in the format field at the top of
the screen.

RENUM

Use the RENUM subcommand to recompute the line numbers for VSBASIC and
FREE FORT source files. The format of the RENUM subcommand is:

r ---,
I , r r " ,
I RENum , I strtno I incrnol , ,
I , I lQ l,§trtnQI' ,
I ILL .J.J ,

L- 1

strtno

incrno

indicates the number from which you wish to start renumbering
your file. Because RENUM renumbers the whole file from
beginning to end, the number you specify as strtno becomes the
statement number of the first statement in the newly
renumbered file. This number may not exceed 99999 for VSBASIC
files or 99999999 for FREEFORT files. The default start
number value is 10 and the specified start number must not be
zero.

indicates the increment number value by which you wish to
renumber your file. This value may not exceed 99999 for
VSBASIC files or 99999999 for FREEFORT files. The default for
incrno is strtno, the first sequence number in the renumbered
file, and the specified incrno must not be zero.

1. If you do not specify strtno and incrno, the default value for both
is 10. If you specify only strtno, incrno d9faults to the same
value as strtno.

2. The current line pointer remains as it was before you entered the
RENUM subcommand regardless of whether or not RENUM completes
successfully. If you are editing a VSBASIC file, the file to be
renumbered must either originate from a read/write disk or you must
issue an FMODE subcommand to change the file destination to a
read/write disk.

2U2 IBM VM/370 CMS Command and Macro Reference

EDIT Subcommands-RENUM, REPEAT

3. All VSBASIC statements that use statement numbers for operands are
updated to reflect the new line numbers. The VSBASIC statements
with line number operands are:

4.

CLOSE
CLOSEFILE
DELETE
EXIT
GET
GOSUB
GOTO

IF
ON
OPEN
OPENFILE
PRINT USING
PUT

If any error occurs during the
terminates the RENUM operation and
unchanged.

READFILE
REREADFILE
RESET
RESETFILE
REWRITEFILE
WRITEFILE

RENUM operation, the editor
the file being edited remains

When verification is on, the message EDIT: indicates that the RENUM
subcommand completed processing.

REPEAT

Use the REPEAT subcommand to execute the immediately following OVERLAY
subcommand (or an X or Y subcommand assigned to invoke OVERLAY) for the
specified number of lines or to the end of the file. The format of the
REPEAT subcommand is:

r------
i r ,
, REPEAT Inl
I 1*'
I III
, L .J

L-

n indicates the number of times to repeat the OVERLAY request that
immediately follows, beginning with the current line. An asterisk
(*) indicates that the request is to be repeated until the end of
the file is reached. If neither n nor * is specified, then only
one line is handled. The last line processed becomes the new
current line.

1. If the next subcommand issued after the REPEAT subcommand is not an
OVERLAY subcommand 6 the REPEAT subcommand is ignored=

2. For an example of a REPEAT subcommand followed by an OVERLAY
subcommand, see the discussion of the OVERLAY subcommand.

None.

Section 3. EDIT Subcommands and Macros 243

EDIT Subcommands-REPLACE, RESTORE

REPLACE

Use the REPLACE subcommand to replace the current line with a specified
line or to delete the current line and enter input Bode. The format of
the REPLACE subcommand is:

r ,
I Replace
L-

I [line]
I.

line specifies an input line that is to replace the current line. If a
line is specified, then the editor puts it into the file in place
of the current line. If no line is specified, the editor deletes
the current line and enters input mode (see Usage Note 2 for
exception) •

1. If the LINEMODE subcommand with a LEFT or RIGHT operand is in
effect, then issuing the REPLACE subcommand specifying a line is
not valid. If the REPLACE subcommand is used without any operands
when LINEMODE is set to LEFT or RIGHT, you are prompted for the
next available line number; the first data line you enter replaces
the current line number.

2. If you use the REPLACE subcommand with no operands to enter input
mode, and the next line you enter is a null line, then the current
line is not deleted, and you are returned to edit mode.

3. To stack a REPLACE subcommand in order to enter input mode from a
fixed-length E~EC, you should use the &STACK control statement.

When verification is on and you issue the REPLACE subcommand with no
data line, the message:

INPUT:

indicates that your virtual machine is in input mode.

RESTORE

Use the RESTORE subcommand to restore the settings of EDIT subcommands
to their values when the PRESERVE subcommand was last issued or to their
default values if a PRESERVE subcommand has not been issued. The format
of the RESTORE subcommand is:

r-
I REStor-e
L-

244 IB~ VM/37Q eMS Command and Macro Reference

-----,
I

---~

EDIT Subcommands-RESTORE, RETURN, REUSE (=)

The settings are restored for the following subcommands:

None.

CASE
FMODE
FNAME
IMAGE
LINEMODE

RETURN

LONG
PROMPT
RECFM
SERIAL
SHORT

TABSET
TRUNC
VERIFY
ZONE

Use the RETURN subcommand to return to edit mode from the CMS subset
environment. RETURN is not an EDIT subcommand, but is listed here as a
companion to the CMS subcommand. The format of the RETURN command is:

r ,
I RETURN i
'------ '1

When verification is on, the editor responds:

EDIT:

to indicate that your virtual machine is in edit mode.

REUSE (=)

Use the REUSE subcommand (which can also be specified as =) to stack
last in, first out (LIFO) the last EDIT request, except for REUSE or a
question mark, and then execute the stacked subcommands. The format of
the REUSE (or =) subcommand is:

(subcommand]

II

subcommand specifies any valid EDIT subcommand.

1. If the subcommand you enter on the REUSE subcommand line is an
invalid subcommand, the editor clears the stack.

Section 3. EDIT Subcommands and Macros 245

EDIT Subcommands-REUSE (=)

2. You can use the REUSE subcommand to repeat a subcommand request
that was not satisfied the first time, for example, a LOCATE
subcommand that resulted in an end-of-file condition. If you
enter:

=

the LOCATE subcommand is stacked, then read by the editor and
executed again. This time the search begins from the top of the
file.

3. You can also enter more than one equal sign (=) on a single line,
to stack the last issued subcommand more t~an once. For example:

locate /xyz/
XYZ IS ~Y FAVORITE
= = = =
I FIRST ~ET XYZ
~YZ'S NA~E IS DERIVED
LAST SA W XYZ
EaF:

the LOCATE subcommand is stacked four times, and then the ~ditor,
reading from the stack, executes the four stacked subcommands.

4. You can do the following if you issue a CHANGE subcommand before
positioning your current line pointer:

c/xx/yy
NOT FOUND
= l/x/
LINE XXXl
LINE YYXl

In this example, the CHANGE request was issued and stringl was not
found. The REUSE subcommand stacks the CHANGE subcommand and
stacks a LOCATE subcommand in front of it. The LOCATE subcommand is
read and executed, followed by the CHANGE subcommand.

5. You can stack an INPUT or REPLACE subcommand in front of a data
line you mistakenly entered in edit mode, for example:

roses are red, violets are blue
?EDIT: ROSES ARE RED, VIOLETS ARE BLUE
= input
INPUT:
without cms
i would be, too.

The = subcommand stacks the INPUT sub~ommand in front of the data
line. Reading from the stack, the editor executes the INPUT
subcommand, then reads in, as the first line of data, the line
beqinning with ROSES. The file contains:

ROSES ARE RED, VIOLETS ARE BLUE
WITHOUT CMS
I WOULD BE, TOO.

Responses are those that are issued to the stacked subcommands.

VM/370 eMS
.... _____ .:1 __ .:I

\,.,VUlllla.UU. a. uu.
u_ ... __
na.I..1.V Reference

EDIT Subcommands-SAVE, SCROLL/SCROLLUP

SAVE

Use the SAVE subcommand to write the file that is currently being edited
onto the disk, without returning control to CMS, and optionally to
change the file identifier. The format of the SAVE subcommand is:

r
I SAVE
L-

I [fn [ft [fm]]]
1

I ____ .-.J

fn indicates the filename of the file to be saved. If you specify
only fn, then the filetype and filemode are the same.

ft indicates the filetype of the file to be saved.

fm indicates the filemode of the file to be saved.

1. If you specify a new file identifier, any existing file with the
same file identifier is replaced; no message is issued. The file
being edited, if previously written to disk, is not altered.

2. To write a file on disk and terminate the editing session, use the
FILE subcommand.

3. If you want to save the contents of a file at regular intervals,
use the AUTOSAVE subcommand.

When verification is on, the editor displays:

EDIT:

to indicate the SAVE request completed successfully and you may continue
to enter EDIT subcommands.

SCROLL/SCROLLUP (3270 Only)

Use the SCROLL and SCBOLLUP subcommands to scan the contents of a file
on a display screen.

SCROLL causes the editor to scan forward through the file; SCROLLUP
causes the editor to scan backward through the file. The format of the
SCROLL and SCROLLUP subcommands is:

r- , , , r 1

I {SCrOll } I In ,
I S[croll]O[p] 1 1* I
1 I 11 I
1 I L .J

L-

Section 3. EDIT Subcommands and Macros 247

EDIT Subcommands-SCROLL/SCROLLUP, SERIAL

n is a number from 1 to 255 that specifies the number of successive
screens of data to be displayed. If an asterisk (*) is specified,
the entire file, from the current line to the end or be~inning of
the file, is displayed. If n is not specified, 1 is the default.

1. The SCROLLUP subcommand can be specified by any combination of the
truncation of SCROLL and UP; the minimum truncation is SUe

2. The number of lines shifted forward or backward depends on the
current verification setting. If the verification setting is 80
characters or less, then a scroll request displays a file in
increments equal to the number of lines that can be displayed in
the output display area of the screen. If the verification setting
is more than 80 characters, then a SCROLL request displays a file
in increments equal to half the number of lines that can be
displayed in the output area.

~herefore, a single SCROLL on a 3270 Kodel 2 display terminal is
the equivalent of DOWN 20 or DOWN 10, depending on the record
length, and SCROLLUP is the equivalent of UP 20 or UP 10.

3. When vou use the SCROLL or SCROLLUP subcommands to display more
than one screenful, each display is held for one minute, and the
screen status area indicates MORE •••• To hold the screen display
longer, press the Enter key.

~o halt scrolling before all the requested screenfuls are
displayed, enter the HT Immediate command and press the Cancel key
twice.

U. When you begin scrolling from the top of the file, the first
screenful contains only the first seven lines. When you scroll to
the end of the file, the last screen may duplicate lines displayed
in the previous screen.

The screen displav is shifted forward or backward.

SERIAL

Use the SERIAL subcommand to control the serialization of records in
columns 73 through 80. The format of the SERIAL sub=ommand is:

r -,
I SERial

fFF !
I

I r , I
I ON lincrl ,
I ALL IlQ. I ,
I seq L .J I
L- -.:I

248 IBM VM/37Q eMS Command and Macro Reference

EDIT Subcommands-SERIAL

OFF indicates that neither serialization numbers nor identifiers are
to be placed in columns 73-80.

ON indicates that the first three characters of
be used in columns 73-75 as an identifier.

filename are to

ALL indicates that columns 73-80 are to be used for serialization
numbers.

seq specifies a three-character identification to be used in columns
73-75.

incr specifies the increment for the line number in columas 76-80 (or
73-80). This number also becomes the first line number. If incr
is not specified, then 10 is assumed.

1. The SERIAL subcommand is valid only for files with fixed-length,
SO-character records. To renumber VSBASIC or FREEFORT files, use
the RENUM subcommand.

2. The serialization setting is ON, by default, for the following
filetypes:

ASSEMBLE
COBOL
DIRECT
FORTRAN
MACRO

PLI
PLIOPT
UPDATE
UPDTxxxx

3. When serialization is in effect, records in a file are resequenced
each time a FILE, SAVE, or AUTOSAVE request is issued. If you are
using line-number editing, you must issue the subcommand:

linemode off

before issuing a FILE or SAVE subcommand if you wish the records to
be resequenced.

If you issue the SERIAL subcommand in a file with a zone column greater
than 72, the message:

END ZONE SET TO 72

is displayed, to indicate that the zone has been changed. If the zone
column is 72 or less, but the truncation column is greater than 72, the
message:

TRONC SET TO 72

is displayed.

Section 3. EDIT Subcommands and Macros 249

EDI~ Subcommands-SHORT, ST~CK

SHORT

Use the SHORT subcommand to request the editor to respond
subcommand lines with the short form of the ?EDIT message.
of the SHORT subcommand is:

r
, SHORT
L--

to invalid
The format

--, ,
____ -1

1. When the SHORT subcommand is in effect, the editor responds:

to an invalid subcommand line, and responds:

to an invalid macro request.

2. To resume displaying the long form of the ?EDIT message, use the
LONG subcommand.

None.

STACK

Use the ST~CK subcommand to stack data lines or EDIT subcommands in the
console stack
su bcomma nd is:

for subsequent -...... -~..: -,.,
.L.ca.u.~u'::f • The format of the C",lIr"'TT

..... oJ. n. """ 1\

r-, ,
, STACK , , ,
L-

n

-, , r , , , In , ,
I I subcommand, ,
I 10 I , , 11 , , , L .I ,

-1

indicates the number of lines to be stacked beginning with
the current line. If a number or a subcommand is not
specified, then one line is assumed by default. ~ maximum
of 25 lines can be stacked.

If the current line pointer is at the top of the file, then
n-1 lines are stacked. If fewer than n lines remain in the
file, only the lines remaining are stacked.

subcommand specifies an EDIT subcommand to be stacked.

o stacks a null line.

250 IBM VM/370 CMS Command and Macro Reference

1 • STACK subcommands are used
from a file so that they
additional subcommands.

EDIT Subcommands-STACK, TABSET

to write edit macros, to
can be moved around, or

stack lines
to stack

2. All lines stacked with the STACK subcommand are stacked FIFO (first
in, first out).

3. The length of input lines
current TRUNC setting.
characters.

that are stacked is determined
The maximum length, however,

by the
is 130

None. If you issue the STACK subcommand
line, the stacked subcommand is executed
those to the stacked subcommands, if any.

to stack an EDIT subcommand
immediately; responses are

TABSET

Use the TABSE~ subcommand to set logical tab stops for a file. The
format of the TABSET subcommand is:

r 1

1 ,
1 TABSet n 1 r n 2 ••• nn] , , 1
L-

____ -lI

nl [n2 ... nn] indicates column positions for logical tab settings. You
may specify up to 25 numbers, separated from each other
by at least one blank. n1 indicates the first column in
the file that may contain data.

1. The editor assigns the following tab settings by default:

f!!~ty~~§ Qg!~ylt Tab ~gtt!n~§'
ASt13705, ASSEMBLE, 1, 10, 16, 31, 36, 41, 46, 69, 72, 80

MACRO, UPDATE,
UPD'Ixxxx

FORTRAN

FREEFORT

BASIC, VSBASIC

PLIOPT, PLI

COBOL

Others

2, 6, 11 , 16, 21, 26, 31, 36, 41, 46, 51,
61, 71, 80

1, 7, 10, 15, 20, 25, 30, 80

9, 15, 18, 23, 28, 33, 38, 8i

7, 10, 15, 20, 25, 3 0, 80

2, 4, 7, 10, 13, 16, 19, 22, 25, 31, 37,
43, 49, 55, 79, 80

1 , 8, 12, 20, 28, 36, 44, 68, 72, 80

1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51,
61, 71, 81, 91, 101, 111, 121, 131

Section 3. EDIT Subcommands and Macros 251

EDIT Subcommands-TABSET, TOP, TRUNC

2. Tab setting operands have no effect if the IMAGE subcommand's
operand is either OFF or CANON. (CAN~N is the default for SCRIPT
filetypes) • A tab entered into a file under these conditions
appears as X'05'.

3. The margins set by the TABSET subcommand are used by the INPUT,
REPLACE, OVERLAY, and FIND subcommands.

None.

TOP

Use the TOP subcommand to move the line pointer to the top of the file.
The null top line becomes the current line. The format of the TOP
subcomm~nd is:

r --------,
I ~OP I
L- ------------.--------~

When verification is on, the message:

TOF:

is displayed.

When you are using a display terminal, if you specify TOP and
verific~tion is on, the current line contains the characters TOF
(indicating the top of the file), the lines preceding it are blank, and
the rest of the screen's output area contains the first lines of the
file.

TRUNC

Use the TRONC subcommand to change the truncation column of records or
to display the current truncation column setting. The format of the
TRUNC subcommand is:

r ,
I I r , ,
I TRUNC I In I
I , 1* ,
I I L J I
L- ~

~h~£~:

n indicates the column at which truncation is to occur: If n is
specified as an asterisk (*), the truncation column is set to the
record length for the filetype.

252 IBM VM/370 eMS Command and Macro Reference

EDIT SubcJmmands-TRUNC, TYPE

1. The editor assigns the following truncation setting by default:

Eil~iY!!~§
ASSEMBLE, MACRO, UPDATE, UPDTxxxx
AMSERV, COBOL, DIRECT, FORTRAN,

PLI, PLIOPT
All Others

72
Record Length

2. The truncation value is used by the INPUT, REPLACE, STACK, and
OVERLAY subcommands also, and, for display terminals in display
moie, the CHANGE subcommand when it is used with n~ operands.

3. If your virtual machine is in input mode and you enter a line that
is longer than the current truncation setting, the message:

TRU~CATED

is displayed along with a display of the truncated line. Your
virtual machine is still in input mode.

When you enter the TRUNC subcommand with no operands, the editor
displays the current setting.

TYPE

Use the TYPE subcommand to display all or any part of a file at the
terminal. The format of the TYPE subcommand is:

r
1 , r r " I Tvpe I 1m In II
I I 1* 1* " , I 11 I II
I , L L .JJ

'=- ~

~h~£~:

m indicates the number of lines to be displayed, beginning with
current line. An asterisk (*) indicates all lines between
current line and the end of the file. If m is omitted, only
line is displayed. If the number of lines specified exceeds
number remaining in the file, displaying stops at the end of
file.

the
the
one
the
the

n indicates the column at which displaying is to stop, overriding the
current end column for verification. If n is specified as an
asterisk (*), it indicates that displaying is to take place for the
full record length.

1. Use the TYPE subcommand to display lines when you are editing a
file with verification off.

Section 3. EDIT Subcommands and Macros 253

EDIT Subcommands-TYPE, UP

2. If you display one line, the current line pointer does not move; if
you display more than one line, the current line is positioned at
the last line displayed, or at the end of the file if you specified
an asterisk (*).

3. If you have set an end verification column to a value less than the
re~ord length, and you want to display an entire record, enter:

type 1 *
4. If you do not specify an end column, the length of the line(s)

displayed is determined by the current end verification setting.
If you are using right-handed line-number editing on a typewriter
terminal or a display terminal in line mode, the line numbers are
displayed on the left.

The requested lines are displayed.

Since the TYPE subcommand was designed for printing terminals, it is of
marginal value on a display terminal, except when you use line mode.
However, if the display screen is interrupted by communication from the
control program (CPl, you should use the TYPE subcommand to restore the
full screen display.

UP

Use the UP subcommand to reposition the current line pointer toward the
beginning of the file. The format of the UP subcommand is:

r =,

I , r , I
I Up I In , I
I I 1.1 I I
I I L .J I
L- -.I

x!!gr~ :

n indicates the number of lines the pointer is to be moved toward the
beginning of the file. If a number is not specified, then the
pointer is moved up only one line. The line pointed to becomes the
new current line.

UP is equivalent to BACKWARD.

When verification is on, the line pointed to is displayed at your
terminal. If the UP subcommand causes the current line pointer to move
beyond the beginning of the file, the following message is displayed:

TOF:

254 IB~ VM/370 CMS Command and ~acro Reference

EDIT Subcommands-VERIFY

VERIFY

Use the
setting.

r
I
I Verify
1
1
L-

ON

VERIFY subcommand to set or display the
The format of the VERIFY subcommand is:

current verification

I r , rr , ,
I ION I 1 !startcoll endcoll
I I OFF I I I 1 I * I
,L J LL .J .J

specifies
displayed,
indicated.

that lines located, altered,
and changes between edit and
ON is the initial setting.

or changed
input mode

f.

are
are

OFF specifies that lines that are located, altered, or changed are
not displayed, and changes between edit ani input mode are not
indicated.

startcol indicates the column in which verification is to begin, when
verification is on. The default is column 1. startcol must
not be greater than the record length nor greater than endcol.

endcol indicates the last column to be verified, when verification is
on. endcol must not be greater than the record length. If
endcol is specified as an asterisk (*), each record is
displayed to the end of the record.

1. If you issue the VERIFY subcommand with only one operand, that
operand is assumed to be the endcol operand. For example, if you
issue VERIFY 10, verification occurs in columns 1 through 10.

2. The editor assigns the following settings, by d~fault:

fi.!,giY:Qg§
AMSERV, ASSEMBLE, COBOL,

DIRECT, FORTRAN, MaCRO,
PLI, PLIOPT, UPDATE, UPDTxxxx

others (Including FREEFORT)

yeri.fi.£stiQll ~ll~ ~Q!~mg
Column 72

Record Length

If you issue the VERIFY subcommand with no operands, the current
startcol and endcol settings are displayed, regardless of whether
verification is on or off.

Section 3. EDIT Sub~ommands and ~acros 255

EDIT Subcommands-X, Y

X or Y

Use the X or Y subcommands to assign a given EDIT subcommand to be
executed whenever X or Y is entered, or to execute the previously
assigned subcommand a specified number of times. The format of the X
and Y subcommands is:

subcommand indicates any EDIT subcommand line. The editor assumes that
you have specified a valid EDIT subco.mand, and no error
checking is done.

n indicates the number of times the previously assigned
subcommand is to be executed. If X or Y is entered with no
operands, 1 is assumed.

1. Advancement of the current line pointer depends upon the EDIT
subcommand that has been assigned to X or Y. If a number or a
subcommand is not specified, the previously assigned subcommand is
executed once.

2. X and Yare initially set to null strings. If you enter X or Y
without having previously assigned a subcommanj to it, the editor
issues the ?EDIT error message.

3. You can use the X and Y subcommands in many instances where you
must repeat a subcommand line many times while editing a file, but
the situation does not lend itself to a global request. For
example, if you assign X to a LOCATE and Y to a CHANGE subcommand,
issue:

x

to execute the LOCATE request, and after examining the line, you
can change it and continue searching, by entering the Y subcommand
followed by the X subcommand:

y#x

or just continue searching:

x

Responses are issued for the EDIT subcommands that are assigned to X and
Y, in a=cordance with the current verification setting.

256 IB~ VM/170 CMS Command and Macro Reference

EDIT Subcommands-ZONE

ZONE

Use the rONE subcommand to specify the columns of each record (starting
position and ending position) to be scanned when the editor searches for
a character string or to display the current ZONE settings. The format
of the ZONE subcommand is:

r---
I
I Zone

I r r "
I I firstcol Ilastcolll

I I I * I * II
! I I 1 I "
I ILL .J.J

L

firstcol indicates the near zone column of each record to be scanned.
If firstcol is specified as an asterisk (*), the default is
column 1.

lastcol indicates the end zone column of each record to be scanned.
If lastcol is specified as an asterisk (*), the default is the
record length.

1. The editor assigns the following settings by default:

ASSEMBLE, MACRO, UPDATE,
UPDTxxxx

AMSERV, PLI, PLIOPT
COBOL, DIRECT, FORTRAN
BASIC, VSBASIC
PF.EFFORT
Others

!g,g,£_~Q!H~
(~olY!!!n

1

2
1
7
9
1

~nL~Qng
(~ol!!mn)

71

72
72

Record Length
Record Length
Record Length

2. The ZONE settings are used by the ALTER, CHANGE, and LOCATE
subcommands to define the columns that will be scanned. If you
specify a character string longer than the zone, you receive the
message:

and the subcommand is not executed.

3. If vou issue a CHANGE subcommand that increases the length of a
line beyond the end zone setting, the line is truncated.

Section 3. EDIT Subcommands and Macros 257

1

I
I , ,
I

EDIT Subcommands-ZONE r ?

U. You can use the ZONE subcommand to protect data in particular
columns r for example:

edit newfile memo
NEW FILE:
EDIT:
zone

1 80
zone 10 20
input the zone is now set for columns 10-20

EDI!:
change /0/*/
the zone is n*w set for columns 10-20

Note that the LOCATE and CHANGE
now r not the word zone r because
not in position 1.

subcommands operated on the word
scanning started in position lOr

When you enter the ZONE subcommand without specifyin~ zone settings, the
editor displays the current setting.

? (QUESTION MARK)

Use the? subcommand to display the last EDIT subcommand executed except
for a REUSE (=) or ? (question mark) subcommand. The format of the?
subcommand is:

r-------
I ?
L-

After an Xr Y r
subcommand that
subcommand.

or = subcommand r
was executed as

the last
a result

EDIT subcommand
of issuing the

1 ,
-----'

is the
I or Y

When you issue the ? subcommand using a 3270 in display mode, the last
EDIT subcommand that was executed is redisplayed in the user input area.
Press the Enter key to execute it again; you may modify the line before
reentering it.

258 IBM VM/370 eMS Command and MaGro Reference

EDIT Subcommands-nnnnn

nnnnn

Use the nnnnn subcommand to enter and locate lines when you are using
line-number editing. The format of the nnnnn subcommand is:

r ------------------------------.--------------------------,
I{nnnnn }
I nnnnnnnn

r text] I
I

L ----~

nnnnn indicates a line number between 0
BASIC or VSBASIC, or a line number
filetype is FREEFORT.

and 99999 if the filetype is
between 0 and 99999999 if the

text specifies a line of text to be inserted into the file at the
specified line number. If a line with that number already
exists, it is replaced. If no text line is specified, the
current line pointer is positioned at the line number specified.

~he nnnnn subcommand
editing; that is, you
RIGHT o~ LEFT operand.
and FREEFOR! files.

is valid only when you are using line-number
have issued the LINEMODE subcommand using the

Line-number editing is the default for VSBASIC

When you issue the nnnnn subcommand with no operands, the line with the
specified line number is displayed. If the line is not found, the
editor displays the message:

LINE NOT FOUND

and the current line pointer is set at the largest line number that does
not exceed nnnnn.

Section 3. EDIT Subcommands and Macros 259

Edit Macros-$DUP

EDIT Macros

Edit macros are CMS EXEC files that execute sequences of EDIT
subcommands. ~he following edit macros are supplied with VM/310 for
vour convenience. For additional information on creating and invoking
your own edit macros and EXEC files, see the !~l11Q ~~§ Y§~£~§-§Yij~.

Use the $DUP to duplicate the current line. The format of the $DUP
macro is:

r , , , r , I
t $DlJP I In I , , I 11 I ,
I I L J ,
L- -lI

~h~~~:

n indicates the number of times you want to duplicate the line; the
ma~imum value vou can specify is 25. If n is omitted, the current
line is duplicated once.

1. ~he last copy of the line duplicated becomes the new current line.

2. If vou use the logical line end symbol (I) to stack additional
subcommands on the same line with the $DUP edit macro those
subcommands are cleared from the console stack and the message:

S!ACKED LINES CLEARED BY SDUP

is issued. The stacked subcommand(st are not executed.

3 • Because it
duplicating
characters.

uses console functions, $DUP cannot
records containing binary zeros or
Truncated duplicate records will result.

be used when
nonprintable

4. When using line-number editing, you can insert duplicate lines
between existing numbered lines if the interval between line
numbers is large enough. Execution of $DUP stops after the last
valid line number has been assigned. You can renumber your file to
increase the interval between line numbers.

5. Because it uses the STACK EDIT subcommand, $DUP can duplicate a
ma~imum of 130 characters in one line. Longer lines are truncated.

~he last line duplicated (the new current line) is displayed.

260 IB~ V~/~70 eMS Command and Macro Reference

Edit Macros-$MOVE

Use the $MOVE edit macro to move one or more lines from one place in a
file to another place. The format of the $MOVE macro is:

.- ,
I $MOVF

n {UP m } I
I
L

n

DOWN m
TO label

-------------------------~

indicates the number of records you want to move, beginning
with the current line. The maximum number of lines you can
move is 25.

UP m indicates that you want to move the lines toward the top of
the file, m lines above the current line.

DOWN m

TO label

indicates that you want to move the lines toward the end of
the file, m lines below the last line you are going to move.

indicates that you want the lines inserted
specified label. The label must be one to
characters and must start in column 1.

following the
eight uppercase

1. The last line moved becomes the new current line.

2. If the label is not found or if the DOWN value exceeds the number
of lines remaining before end of file, the lines are inserted at
the end of the file. If the UP value exceeds the number of lines
remaining before top of file, the lines are inserted at the top of
the file.

3. If you use the logical line end symbol (#) to stack additional
subcommands on the same line with the $MJVE request, those
subcommands are cleared from the console stack and the message:

STACKED LINES CLEARED BY $MOVE

is displayed. The stacked subcommands are not executed.

4. Because it uses console functions, $MOVE will truncate duplicated
records containing binary zeros or nonprintable characters.

5. Because it uses the STACK EDIT subcommand, $MOVE can move a maximum
of 130 characters in one line. Longer lines are truncated.

When verification is on, the last line moved is displayed.

Section 3. EDIT Subcommands and Macros 261

262 IB~ VM/370 eMS Command and Macro Reference

DEBUG Subcommands

Section 4. DEBUG Subcommands·

This section describes the subcommands that
vou use the debug environment to test and
debug environment is entered when:

are available to you when
debug your programs. The

• The DEBUG command is issued from the CKS environment.
command is described in "Section 2. CMS Commands.")

(The DEBUG

e An e[ternal interruption occurs.
by the CP ElTERN!L command.)

(An external interruption is caused

• A breakpoint (instruction address sto~is encountered during program
execution. (Breakpoints are set with the DEBUG Sllbcommand BREAK.)

When the debug environment is entered, the contents of all general
registers, the channel status word (CSW), and the channel address word
(CAW) are saved so they may be examined and changed before being
restored when leaving the debug environment. If debug is entered via an
interruption, the old program status word (PSi) for that interruption is
also saved. If DEBUG is the first command entered after an abnormal
termination (abend) occurs, the contents of all general registers, the
CSi, the CAW, and the old PSW are available from the time of the abend.

For hints on debugging your programs using the CMS debug environment,
consult the YHLJI~ ~~~ Q~£!§ Guide.

Section 4. DEBUG Subcommands 263

DEBUG Subcommands-BREAK

BREAK

Use the BREAK subcommand to stop execution of a program or module at a
specific instruction location called a breakpoint. The format of the
BREAK subcommand is:

r --------,
I BReak id {SymbOl}

hexloc
,

1 ,
L-

id

symbol

hexloc

is a decimal number, from 0 to 15, which identifies the
breakpoint. A maximum of 16 breakpoints may be in effect at
one time; if you specify an identification number that is
already set for a breakpoint, the previous breakpoint is
cleared and the new one is set.

is a name assigned to the storage location where the
breakpoint is set. symbol, if used, must have previously been
set using the DEFINE subcommand.

is the hexadecimal storage location (relative to the current
origin) where the breakpoint is to occur. hexloc must be on a
halfword boundary and its value added to the current origin
must not exceed your virtual machine size.

1. To set breakpoints before beginning program execution, enter the
debug environment with the DEBUG command after you load the program
into storage. After setting the breakpoints, use the RETURN
subcommand to leave the debug environment and issue the START
command to begin program execution. For example:

load myprog
debug
break 1 20016
break 2 20032
return
start

2. When you assign hexloc to a breakpoint, you must know the current
origin (set with the ORIGIN subcommand). The hexloc you specify is
added to the current origin to determine the breakpoint address.

3. When a breakpoint is found during program execution, the message:

DMSDBG728I DEBUG ENTERED BREAKPOINT yy AT xxxxxx

is displayed at the terminal. To resume program execution, use the
GO subcommand.

4. Breakpoints are cleared after they are encountered; thus, if a
breakpoint is encountered during a program loop you must reset the
breakpoint if you want to interrupt execution the next time that
address is encountered.

5. When vou set a breakpoint, the halfword at the address specified is
replaced with B2Ex, where x represents the identification number
you assigned. After the breakpoint is encountered during
eX9cution, B2Ex is replaced with the original operation code.

264 IB~ VM/370 c~s Command Macro Reference

DEBUG Subcommands-BREAK, CAW

6. You should set breakpoints only at valid operation code addresses;
the BREAK subcommand does not check to see whether or not the
specified location contains a valid operation code.

7 • If you reference a virtual storage
se~ment, you are given a nonshared
receive the message:

address that is in
copy of the segment

SYSTEM sysname REPLACED WITH NON-SHARED copy

a shared
and you

None.

CAW

Use the CAW subcommand to display at the terminal the contents
CAW (channel address word) as it existed at the time the
environment was entered. The format of the CAW subcommand is:

of the
debug

r
I CAW I
L- -lI

1. Issue the CAW subcommand to check that the command address field
contains a valid CCW address, or to find the address of the current
CCW so you can examine it.

2. The three low-order bits of the command address field must be zeros
in order for the CCW to be on a doubleword boundary. If the CCW is
not on a doubleword boundary or if the command address specifies a
location protected from fetching or outside the storage of a
particular user, the Start IIO instruction causes the status
portion of the CSW (channel status word) to be stored with the
program check or protection check bit on. In this event, the IIO
operation is not initiated.

The CAW, located at storage location X'48', is displayed. Its format is:

r ,
, KEY I 0000 I Command Address I

o 3 4

4-7

B- 31

7 8 31

~Q!!ten1~
The protection key for all commands associated with start I/O.
The protection key in the CAW is compared to a key in storage
whenever a reference is made to storage.

This field is not used and must contain binary zeros.

The command address field contains the storage address (in
hexadecimal representation) of the first CCW (channel command
word) associated with the next or most recent Start I/O.

Section 4. DEBUG Subcommands 265

DEBUG Subcommands-CSW

csw

Use the CSW subcommand to display at the terminal the contents
CSW (c~annel status word), as it existed at the time the
environment was entered. The format of the csw subcommand is:

of the
debug

r
I CSW
L- -.I

1. The CSW indicates the status of the channel or an input/output
device, or the conditions under which an I/O operation terminated.
The CSW is formed in the channel and stored in storage location
XI~OI when an I/O interruption occurs. If I/O interruptions are
suppressed, the CSW is stored when the next Start I/O~ Test I/O, or
Halt I/O instruction is executed.

2. Whenever an 1/0 operation abnormally terminates, issue the
subcommand. The status and residual count information in the
is very useful in debugging. Also, use the CSW to calculate
address of the last executed CCW (subtract eight bytes from
command address to find the address of the last ccw executed).

CSW
CSW
the
the

~he contents of the CSW are displayed at the terminal in hexadecimal
representation. Its format is:

r ,
I KEY 10000 I Command Address Sta tus Byte Count
L __ _

jl

o 3 ~ 7 8 31 32 47 48 63

4_7

8-31

32-41

~Q!!.t.gn.t.§
The protection key is moved to the CSW from the CAW. It shows
the protection key at the time the 110 operation started. The
contents of this field are not affected by programming errors
detected by the channel or by the condition causing
termination of the operation.

~his field is not used and must contain binary zeros.

The command address contains a storage address (in hexadecimal
representation) that is eight bytes greater than the address
of the last CCW executed.

The status bits indicate the conditions in the device or
channel that caused the csw to be stored.

48-63 The residual count is the difference between the number of
bytes specified in the last executed ccw and the number of
bytes that were actually transferred. When an input operation
is terminated, the -difference between the original count in
the CCW and the residual count in the CSW is equal to the
number of bytes transferred to storage; on an output
operation, the difference is equal to the number of bytes
transferred to the I/O device.

266 IB~ VM/310 eMS Command Rnd Macro Reference

DEBUG Subcommands-DEFINE

DEFINE

Use the DEFINE subcommand to assign a symbolic name to a specific
storage address. Once a symbolic name is assigned to a storage address r
that symbolic name can be used to refer to that address in any of the
other DEBUG subcommands. The format of the DEFINE subcom.and is:

.-
I
I DEFine symbol hexloc

.- ,
Ibytecountl
I ~ I I

I L .J

L-

symbol

hexloc

bytecoun t

is the name to be assigned to the storage address derived from
the second operand r hexloc. Symbol may be from one to eight
characters long r and must contain at least one nonhexadecimal
character. Any symbolic name longer than eight characters is
left-justified and truncated on the right after the eighth
character.

is the hexadecimal storage location r in relation to the
current origin r to which the name specified in the first
operand (symbol) r is assigned.

is a decimal number r between and 56 inclusive r which
specifies the length in bytes of the field whose name is
specifed by the first operand (symbol) and whose starting
location is specified by the second operand (hexloc). When
bytecount is net specified r 4 is assumed.

1. Issuing the DEFINE subcommand creates an entry in the debug symbol
table. The entry consists of the symbol name r the storage address r
and the length of the field. A maximum of 16 symbols can be
defined in the debug symbol table at any given time.

2. When a DEFINE subcommand specifies a symbol that already exists in
the debug symbol table, the storage address derived from the
current request replaces the previous storage address. Several
symbols may be assigned to the same storage address r but each of
these symbols constitutes one entry in the debug symbol table. The
symbols remain defined until they are redefined or until an IPL
subcommand loads a new copy of CKS.

3. When you assign a symbolic name to a storage location r you must
know the current origin (set by the ORIGIN subcommand). The hexloc
you specify is added to the current origin to create the entry in
the symbol table used by DEBUG subcommands. If you change the
current origin, existing entries are not changed.

4. You can use symbolic names to refer to storage locations when you
issue the DEBUG subcommands BREAK r DUKP, GO, ORIGIN, STORE, and X.

None.

Section 4. DEBUG Subcommands 267

DEBUG S~bcommands-DUMP

DUMP

Use the DUMP subcommand to print part or all of your virtual storage on
the printer. The requested information is printed offline as soon as
the printer is available. First, a heading:

ident FROM starting location TO ending location

is printed. Next r the general registers 0-7 and 8-15, and the
floating-point registers 0-6 are printed, followed by the PSW, CSW, and
CAW. Then the specified portion of virtual storage is printed with the
storage address of the first byte in the line printed at the left,
followed by the alphameric interpretation of 32 bytes of storage. The
format of the DUMP subcommand is:

r
I
I DUmp , , , ,
L-

symboll

hexlocl

sy mbol2

hexloc2

*

ident

---,
r r , , ,

svmbol1 , symbo12 , , ,
hexloc1 I hexloc2 (ident] I , ,

Q , * I , , , II I , ,
L L J J ,

-I

is the name assigned (via the DEFINE subcommand) to the
storage address that begins the dump.

is the hexadecimal storage location, in relation to current
origin r that begins the dump.

is the name assigned (via the DEFINE subcommand) to the
storage address that ends the dump.

is the hexadecimal storage location, in relation to the
current origin r that ends the dump.

indicates that the dump ends at your virtual machine's last
virtual storage address.

is any name (up to eight characters) that identifies the dump.

1. If you issue the DUMP subcommand with no operands r 32 bytes of
storage are dumped r starting at the current origin.

2. The first and second operands must designate storage addresses that
do not exceed your virtual machine storage size. Also, the storage
address derived from the second operand must be greater than the
storage address derived from the first operand.

None.

26R IBM V~/370 CMS Command and Macro Reference

DEBUG Subcommands-GO

GO

Use the GO subcommand to exit from the debug environment and begin
program execution~ The format of the GO subcommand is:

r 1 , ,
, GO
I

r ~

, symbol I
, hexloc ,

, , , , L J

L --.--------~

symbol is the symbolic name assigned to the storage location where
you want execution to begin.

hexloc is the hexadecimal location, in relation to the current
origin, where you want execution to begin.

1. When you issue the GO subcommand, the general registers, CAW
(channel address word), and CSW (channel status wordt are restored
either to their contents upon entering the debug environment, or,
if they have been modified, to their modified contents. Then the
old PSW is loaded and becomes the current PSW. Execution begins at
the instruction address contained in bits 40-63 of the PSW.

2. When you specify symbol or hexloc with the GO subcommand, the
specified address replaces the instruction address in the old PSW,
so execution will begin at that address. If you entered the debug
environment with the DEBUG command, you must specify an address
with the GO subcommand.

3. The address you specify must be within your virtual machine and it
must contain a valid operation code.

Program execution is resumed.

Section 4. DEBUG Subcommands 269

DEBUG Subcommands-GPR, HX

GPR

Use the GPR subcommand to display the contents of one or more general
registers at the terminal. The format of the GPR subcommand is:

r '--------------------------,
I GPR I reg 1 r reg2 1 1
L-

regl is a decimal number (from 0-15 inclusive) indicating the first
or only general register whose contents are to be displayed.

reg2 is a decimal number (from 0-15 inclusive) indicating
general register whose contents are to be displayed.
be larger than reg1.

the last
reg2 must

~he register or registers specified are displayed, in hexadecimal
representation:

xxxxxxxx

HX

Use the H~ subcommand to leave
reason the debug environment
su bcomma nd is:

r
I H~
L-

the debug environment, regardless of the
was entered. The format of the HI

If you entere1 the debug environment following a program interruption,
you receive the message:

CMS

to indicate a return to the CMS environment. If you entered the debug
environment by issuing the DEBUG command, you receive the message:

DMSABN148T SYSTEM ABEND 2E4 CALLED FROM xxxxxx

where xxxxxx is the address of the debug routine.

27 0 IBM VM/370 CMS Command and Macro Reference

DEBUG Subcommands-ORIGIN

ORIGIN

U~e the ORIGIN subcommand to set an or1g1n or base address to be used in
the debug environment. The format of the ORIGIN subcommand is:

r-
, ORigin

{
SYmbOl}

I hexloc , Q
L-

symbol

hexloc

is a symbolic name that was previously assigned (via the
DEFINE subcommand) to a storage address.

is a hexadecimal location within
storage. If you do not explicitly
a value of o.

the limits of your virtual
set an origin, then it has

1. When the ORIGIN subcommand specifies a symbol, the debug symbol
table is searched. If a match is found~ the value corresponding to
the symbol becomes the new origin. When a hexadecimal location is
specified, that value becomes the or1g1n. In either case, the
operand cannot specify an address greater than your virtual storage
size.

2. Anv origin set by an ORIGIN subcommand remains in effect until
another ORIGIN subcommand is issued, or until you obtain a new copy
of eMS. Whenever a new ORIGIN subcommand is issued, the value
specified in that subcommand overlays the previous origin setting.
If you obtain a new copy of eMS (via IPL), the origin is set to 0
until a new ORIGIN subcommand is issued.

3. You can use the ORIGIN subcommand to set the origin to your
program's base address, and then refer to actual instruction
addresses in your program, rather than to virtual storage
locations.

None.

Section 4. DEBUG Subcommands 211

DEBUG Subcommands-PSW r RETURN

PSW

Use the PSW
status word) .

subcommand to display the contents of
The format of the PSW subcommand is:

the PSi (program

r
, PSW
L- -l

1. If the debug environment was entered because of a program
interruption r the program old PSi is displayed. If the debug
environment was entered because of an external interruption r the
external old PSW is displayed. If the debug environment was
entered for any other reason r the following is displayed in
response to the PSW subcommand:

01000000xxxxxxxx

where the 1 in the first byte means that external interruptions are
allowed and xxxxxxxx is the hexadecimal storage address of the
debug program.

2. The PSW contains some information not contained in storage or
registers but required for proper program execution. In general r

the PSW is used to control instruction sequencing and to hold and
indicate the status of the system in relation to the program
currently executing. For a description of the PSW, refer to
"Appendix A: System/370 Information" in the !~Ll1Q §I§1gm
~£Q~£~mm§£~2 ~Yi~§·

The PSW is displayed in hexadecimal representation.

RETURN

Use the RETURN subcommand to exit from the debug environment and enter
the CMS command environment. The format of the RETURN subcommand is:

r -----,
, RETurn ,
L __ _ ----.-.:8

The RE~URN subcommand is valid only when the debug environment was
entered via the DEBUG command.

The CMS ready message indicates that control has been returned to the
eMS environment.

272 IB~ VM/3 7 0 eMS Command and Macro Reference

DEBUG Subcommands-SET

SET

Use the SE~ subcommand to change the contents of the control words and
general registers. The format of the SET subcommand is:

r 1
, SET , CSW i

CAW hexinfo
hexinfo
hexinfo
reg

[hexinfo]
[hexinfo]

hexinfo [hexinfo] 1 , , PSW
GPR

L-

CAW hexinfo
stores the specified information (hexinfo) in the CAW (channel
address word) that existed at the time the debug environment
was entered.

CSW hexinfo [hexinfo]
stores the specified information (hexinfo (hexinfo]) in the
CSW (channel status word) that existed at the time the debug
environment was entered.

PSi hexinfo [hexinfo]
stores the specified information (hexinfo [hexinfo]) in the
old PSW (program status word) for the interruption that caused
the debug environment to be entered.

GPR reg hexinfo [hexinfo]
stores the specified information (hexinf~ [hexinfo]) in the
specified general register (reg).

1. The SE~ subcommand can only change the contents of one control word
at a time. For example, you must issue the SET subcommand three
times:

set caw hexinfo
set csw hexinfo [hexinfo]
set psw hexinfo [hexinfo]

to change the contents of the three control words.

2. The SE7 subcommand can change the contents of one or two general
registers each time it is issued. When four or fewer bytes of
information are specified, only the contents of the specified
register are changed. When more than four bytes of information are
specified, the contents of the specified register and the next
sequential register are changed. For example, the SET subcommand:

set gpr 2 xxxxxxxx

changes only the contents of general register 2. But, the SET
subcommand:

set gpr 2 xxxxxxxx xxxxxxxx

changes the contents of general registers 2 and 3.

Section 4. DEBUG Subcommands 273

DEBUG Subcommands-SET, STORE

3. Each hexinfo operand should be from one to four bytes long. If an
operand is less than four bytes and contains an uneven number of
heKadecimal digits (representing half-byte information), the
information is right-justified and tne left half of the uneven byte
is set to zero. If more than eight hexadecimal digits are
specified in a single operand, the information is left-justified
and truncated on the right after the eighth digit.

4. The number of bytes that can be stored using the SET subcommand
varies depending on the form of the subcommand. With the CAW form,
up to four bytes of information may be stored. With the CSW, GPR,
and PSW forms, up to eight bytes of information may be stored, but
these bytes must be represented in two operands of four bytes each.
When two operands of information are specified, the information is
stored in consecutive locations (or registers), even if one or both
operands contain less than four bytes of information.

None. To display the contents of control words or registers after you
modify them, you must use the CAW, CSW, PSW, and GPR subcommands.

STORE

Use the STORE subcommand to store up
information in any valid virtual storage
STORE subcommand is:

to 12 bytes of hexadecimal
location. The format of the

r 1
, STore , {

SymbOl}
hexloc

hexinfo [hexinfo [hexinfo]] , ,
L

____ --I

symbol is the symbo~1c name assigned (via the DEFINE
the storage address where the first byte
information is to be stored.

subcommand) to
of specified

hexloc

hexinfo

is the hexadecimal location, relative to the current origin,
where the first byte of information is to be stored.

is the hexadecimal information, four bytes or less in length
(that is, two to eight hexadecimal digits), to be stored.

1. If an operand is less than four bytes long and contains an uneven
number of hexadecimal digits (representing half-byte information),
the information is right-justified and the left half of the uneven
byte is set to zero. If more than eight hexadecimal digits are
specified in a single operand, the information is left-justified
and truncated on the right after the eighth digit.

2. The STORE subcommand can store a maximum of 12 bytes at one time.
By specifying all three information operands, each containing four
bytes of information, the maximum 12 bytes can be stored. If less
than four bytes are specified in any or all of the operands, the
information given is arranged into a string of consecutive bytes,
and that string is stored starting at tne location derived from the
first operand.

274 IB~ VM/3 7Q c~s Command Rna Macro Reference

DEBUG Subcommands-STORE, X

Foe example, if you have defined a four-byte symbol named FENCE
that currently contains X'FFFFFFFF' and you enter:

store fence 0

FENCE contains X'OOFFFFFP'.

None. To display the contents of a storage location after you have
modified it, you must use the X subcommand.

x
Use the X subcommand to examine and display the contents of specific
locations in virtual storage. The format of the X (examine) subcommand
is:

....-
I

\SYRlbOl
r ,

) I X I n I
I I 19n9th ,

L .I

/hexlOC
r ,

\
I n , , ~ ,
L .I

symbol n is the name assigned (via the DEFINE subcommand) to the
storage address of the first byte to be displayed. n is a
decimal number from 1 to 56 inclusive, that specifies the
number of bytes to be examined. If a symbol is specified
without a second operand, the length attribute associated with
that symbol in the debug symbol table specifies the number of
bytes to be examined.

hexloc n is the hexadecimal location, in relation to the current
origin, of the first byte to be examined. If hexloc is
specified without a second operand, four bytes are displayed.

The address represented by symbol or hexloc must be within your virtual
machine storage size.

The requested information is displayed at the terminal in hexadecimal
format.

Section 4. DEBUG Subcommands 275

276 IBM VM/370 eMS Command and Macro Reference

EXEC Control statements

Section 5. CMS EXEC Control Statements

This section describes the formats, usage rules, and default values for
EXEC control words, including:

• Control statements
• Built-in functions
• Special variables

An E~EC procedure is a CMS file that contains a sequence of CRS
commands and/or EXEC control statements. Control statements determine
the logic flow for EXEC, provide terminal communications, and may be
used to manipulate CMS disk files. For an introduction to the EXEC
facilities, and for complete tutorial information, including examples,
consult the Y~L1I~ ~a~ ~ser's Guide.

EXEC procedures may be invoked with the EXEC command, described in
"Section 2. CMS Commands." You may also execute an EXEC procedure by
specifying its filename, as long as the implied EXEC function is in
effect.

section 5. EXEC Control Statements 277

EXEC Control statements-Assignment Statement

The Assignment Statement

Use the assignment statement in an EXEC procedure to assign a value to a
variable symbol. Variable symbols may be tested and manipulated to
control the execution of an EXEC procedure. The format of the
assignment statement is:

r ,
I
I
I
L-

&variable

&variable

string

ae

fu nct ion

X'xxxxxx

I
string
ae
function
X'xxxxxx

}
1 ,
I
1
I

indicates the variable symbol which is assigned the
specified value. A variable may contain a maximum of eight
alphameric and national characters r including the initial
ampersand, which is required. Except in the EXEC special
variables &* and &DISK*r a variable must not contain any
special characters.

is a data item of up to eight characters. It may also be a
variable symbol or null. Whether a numeric string is
treated as numeric or character data depends on how it is
used in the EXEC. If a string containing variable symbols
expands to more than eight characters r it is truncated. If
the string consists of eight X'FF' characters r the variable
is set to a null string.

is an arithmetic expression consisting of a sequence of data
items that possess positive or negative integral values and
are separated by plus or minus signs:

&1 - 4 + &CALC - 6

is an E~EC built-in function followed by at least one token.

indicates up to six hexadecimal digits to be converted to
decimal before assignment. For example:

&A = X'CO

results in &A having the decimal value 192.

Hexadecimal conversion is not performed unless you have used
the &HEX ON control statement.

All variable symbols occurring in executable statements are substituted
before the statement is executed. An executable statement is (1) a eMS
command liner or (2) an EXEC control statement (including assignment
statements) .

278 IB~ VM/370 CMS Command and Macro R2ference

EXEC Control Statements-Assignment Statement, &ARGS

Vari~ble sUbstitution is performed on all symbols on the left-hand
side of an assignment statement, except the leftmost variable. For
example:

&1 = 2
&X&1 = 5

sets &X2 to 5.

If a variable on the left-hand side of an assignment statement has
already been assiqned a value, it is replaced by the new value specified
in the ~ssignment statement.

If the special form, X'&symbol, is
converted to its hexadecimal equivalent.

&A = 192
STIPE X'&A

results in the display:

co

used, the specified symbol
For example:

is

If a variable symbol that has not been defined is used in an
executable statement the symbol is set to a null token and ignored. In
some instances this may cause an EXEC processing error.

All exe=crtable statements in an EXEC are scanned into eight-character
tokens, and padded or truncated as necessary_ Tokens are formed of words
delimited by blanks and parentheses. If there is no blank before or
after a parenthesis, one is added in either case~ If more than one
blank separates a word or a parenthesis from another, the extra blanks
are rem~ved from the line. For example, the line:

STIPE THIS IS AN EXAGGERATED (MESSAGE

scans as:

&TIPE THIS IS AN EXAGGERA (MESSAGE

Vari~ble symbols are substituted after each line is scanned. and each
t~ken is scanned repeatedly until all symbols in it are substituted.

In an executable statement, a token beginning with the character
X' FF' (~r a v ar iable to which such a token is assigned as a value)
usually prevents the processing of data following it on tne same line.
However, if an assignment statement sets a variable to eight X'FF'
characters, data following the variable in an executable statement is
processed.

&ARGS

Use the &ARGS control statement to redefine the value of one or more of
the spe=ial variables, &1 through &30. The format of the &AR3S control
statement is:

r
I &ARGS [arg1 [arg2 ••• [arg30]]]
'--

Section 5. EXEC Control Statements 279

EXEC Control Statements-&ARGS, &BEGE~SG

[a r g 1 [a r g 2 ••• [ar q 30]]]
specify up to 30 tokens to be assigned to the special
variables &1 through &30. If no arguments are specified, all
of the variables &1 through &30 are set to blanks. When fewer
than 30 arguments are entered, the remaining arguments are set
to blanks. An argument is also set to blanks if it is
specified as a percent siqn (%).

1. To enter an argument list from the terminal, use the &READ ARGS
control statement.

2. An &ARGS control statement resets the values of the SINDEX, &*, and
&$ special variables.

&BEGEMSG
Use the &BEGEMSG control statement to introduce one or more unscanned
lines to be edited as VM/370 error messages. The list of lines to be
displayed must be terminated by an &END control statement, which must
appear beginning in column 1. The for~at of the &BEGEMS3 control
statement is:

r-
I &BEGE~SG I [ALL]
L-

ALL specifies, for fixed-length EXEC files, that the entire line (to a
m~ximum of 130 characters) is to be displayed.

1. To qualify for error message editing, the first data item on each
li~e following the &BEGEMSG control statement must be seven
characters long, in the format:

mmmnnns

mmmnnn is a six-character message identification you can supply
for the error message. Standard VM/370 error messages use a
three-character module code (mmm) ana a three-character
message number (nnn).

s indicates the severity code. The following codes qualify
the message for error message editing:

.H~ssa~ !,ng
Informational
Error
Warning

When the severity code is E, I, or W, the message is
displayed in accordance with the CP EMSG setting (ON, OFF,
CODE, or TEXT). You can change this setting with the CP
SET command, described in !~l~lQ ~~ ~Qm!gng ~§!§~~n£§ fQ~­
Q§!!§ra! !!§§~§.

280 IB~ V~/370 eMS Command and Macro Reference

EXEC Control statements-&BEGEMSG, &BEGPUNCH

2. When you use the &BEGEMSG control statement to display error
messages, the character string "DMS" is inserted in front of the
seven-character message identification. For example, if the EMSG
setting is ON, the lines:

&BEGEMSG
TEST01E INSURMOUNTABLE ERROR
&END

result in the display:

DMSTEST01E INSURMOUNTABLE ERROR

Note: Since the maximum length of a line that you can display at
yoir terminal is 130 characters, the insertion of the characters
DMS will cause lines greater than 127 characters long to be
tr~ncated.

3. Messages that are displayed as the result of an &BEGEMSG control
statement are not scanned by the EXEC interpreter. Therefore, no
variable substitution is performed and no data items are truncated.
To display variable data, use the &EMSG control statement.

&BEGPUNCH

Use the &BEGPUNCH control statement to delimit the beginning of a list
of one or more data lines to be spooled to your virtual card punch. The
list of lines to be punched is terminated by the control statement &END,
which must occur beginning in column 1. The format of the &BEGPUNCH
control statement is:

r ,
I &BEGPUNCH
L--

r ALL] ,
II

ALL specifies that data occupying columns 73 through 80 should be
punched. If ALL is not specified, input records are truncated
at column 72 and columns 73 through 80 of the output record
are padded with blanks.

1. Lines that are punched as the res~lt of an &BEGPUNCH control
statement are not scanned by the EXEC interpreter. Therefore, no
variable substitution is performed and no data items are truncated.
To punch variable data, you must use the &PUNCH control statement.

2. When you are finished punching lines in an EXEC procedure, you
should use the CP CLOSE command to close your virtual punch.

Section 5. EXEC Control Statements 281

EXEC Control Statements-SBEGSTACK, &BEGTYPE

&BEGSTACK

Use the &BEGSTACK control statement to delimit the beginning of a list
of one ~r more data lines to be placed in the console input stack. The
list of lines to be stacked is terminated by the control statement &END
which must occur beginning in column 1. The format of the &BEGSTACK
control statement is:

r-
I r , r ,
, &BEGSTACK , I ~I:fQI

ILIFOI
IALLI
L .J

I
L

L .J

specifies that the lines that follow are to be stacked on a
first in, first out basis. This is the default value.

LIFO specifies that the lines that follow are to be stacked on a
last in, first out basis.

ALL specifies, for fixed-length EXEC files, that the entire line
(to a maximum of 130 characters) is to be stacked. If ALL is
not specified, the lines are truncated in column 72.

1 • Lines that are stacked as the result
statement are not scanned by the EXEC
variable substitution is performed,
trlncated. To stack variable data, you
st3.tement.

of an &BEGSTA:K control
interpreter. Therefore, no
and data items are not
must use the &STA:K control

2. To stack a null line in an EXEC file you must use the &STACK
control statement. A null line following an &BEGSTA:K control
st3.tement is interpreted as a line of blanks. To stack an INPUT,
REPLACE, or CHANGE subcommand to enter input mode from a
fixed-length EXEC, you should use the &STACK control statement.

&BEGTYPE

Use the &BEGTYPE control statement to delimit the beginning of a list of
one or more data lines to be displayed at the terminal. The list of
lines t~ be displayed is terminated by the control statement &END, which
must occ~r beginning in column 1. The format of the &BEGTYPE control
statement is:

r-
I &BEGTYPE [ALL] L ___ _

ALL specifies, for fixed-length EXEC files, that
columns 73 through 130 is to be displayed.
specified, the lines are truncated at column 72.

282 IBM VM/370 CMS Command and Macro Reference

-----,
I _ ____ -1

data occupying
If ALL is not

EXEC Control Statements-&BEGTYPE, &CONTINUE

Lines that are displayed as the result of an &BEGTYPE control statement
are not scanned by the EXEC interpreter. Therefore, no variable
substit~tion is performed, and data items are not truncated. To display
vari~ble datal yOu must use the &TYPE control statement.

&CONTINUE

Use the &CONTINUE control statement to
process the next statement in the
&CONTINaE control statement is:

r-
, &CONTINUE
L

instruct the EXE: interpreter to
EXEC filee The format of the

&CONTINITE is generally used with an EXEC label (for example, -LAB
&CONTINITE) to provide a branch address for &EBROR, &GOTO, and other
branching statements. &CONTINUE is the default action taken when an
error is detected in processing a CMS command.

Section 5. EXEC Control Statements 283

EXEC Control Statements-&CONTROL

&CONTROL

Use the &CONTROL control statement to specify the amount of data to be
displayed in the execution summary of an EXEC. The format of the
&CONTROL control statement is:

.--, r , r , r ,
I &CONrROL , lOFF ,

IERRORI
,~~~ ,
IALL ,

I11SG ,
,NOMSG I
L ..J

r ,
ITIME ,
IHQ!IM~t

'R!~!i I
INOPACKI
L J ,

I
I
'-----

OFF

ERROR

L J

L .J

suppresses the display of C~S commands and EXEC
statements as they execute and of any return codes
result from CMS commands.

11

control
that may

displays only those CMS commands that result in an error and
also displays the error message and the return code.

~~~ displays each CMS command as it is executed and all nonzero 
return codes. 

ALL 

NOMSG 

'rIME 

NO PACK 

displays CMS commands and EXEC executable statements as they 
execute as well as any nonzero return codes from CMS commands. 

does not suppress the "FILE NOT FOUND" message if it is issued 
by the following commands when they are invoked from an EXEC 
procedure: ERASE, LISTFILE, RENAME, or STATE. 

suppresses the "FILE NOT FOUND" message if it is issued when 
the ERASE, LISTFILE, RENAME, or STATE commands are invoked 
from an E~EC procedure. 

includes the time-of-day value with each CMS command printed 
in the execution summary; for example: 

14:36:30 TYPE A B 

This operand is effective only if CMS or ALL is also 
specified. 

does not include the time-of-day value with CMS commands 
printed in the execution summary. 

packs the lines of the execution summary so that surplus 
blanks are removed from the displayed lines. 

does not pack the lines of the execution summary. 

1. The execution summary may consist of CMS commands, responses, error 
messages, and return codes, as well as EXEC control statements and 
assignment statements. When EXEC statements are displayed, they 
are displayed in their scanned format, with all variable symbols 
substituted. 

2~4 IBM VM/370 CMS Command and Macro Reference 



EXEC Control Statements-&CONTROL, &EMSG' 

2. Each operand remains set until explicitly reset by another &CONTROL 
statement that specifies a conflicting operand. When &CONTROL is 
used with no operands, all operands are reset to thetr default 
values. 

3. There is no global setting for &CONTROL. When an EXEC is nested 
within another EXEC, the execution summary is controlled by the 
nested EXEC's &CONTROL setting. When control returns to the outer 
EXEC, the original &CONTROL setting is restored. 

&EMSG 

Use the &E~SG control statement to display a line of tokens to be edited 
as a VM/370 error message. The format of the &EMSG control statement is: 

r----
, &EM SG I mmmnnns (tok 1 ••• (tokn]] 
L. 

mmmnnn is a six-character identification you may supply for the error 
message. Standard VM/370 messages are coded using a 
three-character module code (mmm) and a three-character 
message number (nnn). 

s indicates the severity code. The following codes qualify the 
message for error message editing: 

£Qde 
I 
E 
W 
R 

r1~2gg~ 1I~~ 
Informa tion 
Error 
Warning 
Response 

tokl ••• [tokn] 
is the text of the message to be displayed. 

1. When the severity code is I, E, or w, the message is displayed in 
accordance with the CP EMSG setting (ON, OFF, CODE, or TEXT). You 
can change the setting with the CP SET command, described in !~l11Q 
£f £Qmmsng R~!g£~R£~ for Gen~~l US~I§· 

2. When an &EMSG code is displayed, it is prefixed with DMS. For 
example, the statement: 

&EMSG ERROR1E INVALID ARGUMENT 

displays as follows when the EMSG setting is ON: 

DMSERROR1E INVALID ARGUMENT 

3. To display an error message with unsubstituted data, or to display 
a line with words of more than eight characters, use the &BEGEMSG 
control statement. 

Section 5. EXEC control Statements 285 



EXEC Control Statements-SEND, &ERROR 

&END 

Use the SEND =ontrol statement to terminate a list of one or more lines 
that be~an with an SBEGEftSG, &BEGPUNCH, SBEGSTACK, or SBEGTYPE control 
statement. The format of the &END control statement is: 

r 1 
, SEND , 
L _____ _ 

J 

The word "SEND" must be entered beginning in column 1. 

&ERROR 

Use the &ERROR control statement to specify the action to be taken when 
a CftS command or nested EXEC procedure results in an error and returns 
with a nonzero return code. The format of the SERROR control statement 
is: 

r 1 

I , 
, SERR:lR , 

r , 
I executable-statement, 
'~£ONTIH~~ I 

, , , I L .J 
L--___ _ 

----------------------------------------------------------~ 

executable-statement 
specifies any executable statement, which may be an EXEC control 
statement or assignment statement or a C~S command. If you specify 
an EXEC control statement that transfers control to another line in 
the EXEC, execution continues at the specified line. Otherwise, 
elecution continues with the line following the c~s command line that 
caused the error. 

1. If your EXEC does not contain an SERROR control statement, then the 
default is 8CONTINUE; that is, EXEC processing is to continue with 
the line following the CftS command that caused the error. You can 
use SERROR &CONTINUE to reset a previous &ERROR statement. 

2. The words following an &ERROR control statement are not scanned 
until a CMS command returns a nonzero return code or a nested EXEC 
procedure exits using &EXIT to return a nonzero return code. 
Therefore, if you specify an invalid EXEC statement, the error is 
not detected until a nonzero return code triggers the &ERROR 
statement. If the SERROR statement executes a CKS command that 
also results in an error, EXEC processing is terminated. 

286 IB~ VM/370 eMS Command and Macro Reference 



EXEC Control Statements-&EXIT 

&EXIT 

Use the &EXIT control statement to terminate processing the EXEC file. 
If the exit is taken from a first-level EXEC procedure, control passes 
to c~s. If the exit is taken from a nested EXEC procedure, control 
passes to the calling EXEC procedure. The format of the &EXIT control 
statement is: 

r------
I 
I &EXI! , 

r , 
I return-code I 
I Q. I , L .J 

L-

return-code 
specifies a numeric value, which may be a variable symbol, to 
be used as the return code from this EXEC. If the return code 
is not specified, it defaults to O. 

1. If control is returned to CMS, the CMS ready message indicates the 
return code value. Thus, the statement: 

&EXIT 12 

results in the ready message: 

R (OOO 12) ;T=O/02 15: 32: 34 

2. If you specify: 

&EXIT &RETCODE 

the return code value displayed is the return code from the most 
recently executed eMS command. 

Section 5. EXEC Control statements 287 



EXEC Control Statements-&GOTO, &HEX 

&GOTO 

Use the &GOTO control statement to transfer control to a specific 
location in the EXEC procedure. Execution then continues at the 
location that is branched to. The format of the &GOTO control statement 
is: 

r 
I &GOTO 

{
TOP } 

I line-number 
I -label 
L- -------~ 

TOP transfers control to the first line of the EXEC file. 

line-number transfers control to a specific line in the EXEC file. 

-label transfers control to a specific label in the EXE~ file. A 
label must begin with dash (-), and it must be the first 
token on a line. The remainder of the line may contain an 
executable statement or it may be null. 

1. Scanning for an EXEC label starts on the line following the &GOTO 
statement, goes to the end of the file, then to the top of the 
file, and (if unsuccessful) ends on the line above the &GOTO 
statement. If more than one statement in the file has the same 
label, the first one encountered by these rules satisfies the 
search. 

2. To provide a branch up or down a specific number of lines in the 
EXEC, use the ~SKIP control statement. 

&HEX 

Use the &HE~ control 
conversion in an EXEC 
statement is: 

r 
I &HEX 
I 
L 

statement to initiate or 
procedure. The format of 

inhibit hexadecimal 
the &HEX control 

-----------, , , 
-------~ 

ON indicates that tokens beginning with the string X' are to be 
interpreted as hexadecimal notation. 

Q~~ indicates that no hexadecimal conversion is to be done by EXEC. 
OFF is the default setting. 

28~ IB~ VM/37Q eMS Command and Macro Reference 



EXEC Control Statements-&HEX, &IF 

1. Yocr should use the &HEX control statement when you want to display 
a hexadecimal value. For example: 

&HE'( ON 
&'IYPE X'40 
&HE,( 

results in the display: 

29 

If vou did not use the &HEX ON control statementi the STIPE 
statement would result in the display: 

'('40 

2. To convert a hexadecimal value to its decimal equivalent, use an 
assignment statement. 

3 • The Y~L1ZQ CM~-Q§g£~ Guide should be consulted for 
examples of correct usage of EXEC control statements 
in effect. 

details and 
with SHEX ON 

&IF 

Use the &IF control statement to test a condition in an EXEC procedure 
and to perform a particular action if the test is valid. If the test is 
invalid, execution continues with the statement following the &IP 
control statement. The format of the &IP statement is: 

r 
&IF 

'----

tokenl 
token2 

{

{token l}" 
&$ 

operator executable-statement 

&* 

may be numeric constants, character 
symbols. All variable symbols are 
statement is executed. 

J 

strings, or EXEC variable 
substituted before the SIF 

&$ tests all of the arguments entered when the EXEC was invoked. 
If at least one of the arguments satisfies the specified 
condition, the &IF statement is true. 

&* tests all of the arguments entered when the EXEC was invoked. 
All of the entered arguments must meet the specified condition 
in order for the &IF statement to be true. 

operator indicates the test to be performed on the tokens. If both 
tokens are numeric, an arithmetic test is performed. 
otherwise, a logical (alphabetic) test is performed. The 
comparison operators, listed below, may be specified either in 
symbolic or mnemonic form: 

2YID£Q! 
= or EQ 

..,= or NE 
< or LT 
<= or LE 
> or GT 
>= or GE 

Q~!:ation 
equals 
not equal 
less than 
less than or equal to (not greater than) 
greater than 
greater than or equal to (not less than) 

Section 5. EXEC Control statements 289 



E~EC Control Statements-&IF, &LOOP 

executable-statement 
is any valid EXEC executable statement which may be a CMS 
command, an EXEC control statement, or an assignment 
statement. You may also specify another &IF statement; the 
number of &IF statements that may be nested is limited only by 
the record length of the file. In fixed-length EXEC files, 
only the first 72 characters of the line are scanned. 

1. The values &* and &$ are reset when an &ARGS or &READ ARGS control 
statement is executed. They are not changed when you reset a 
specific numeric variable (&1 through &30). 

2. If a variable symbol used in an &IF control statement is undefined, 
the EXEC interpreter cannot properly compare it. In cases where a 
variable may be null, or to check for a null symbol, you should use 
a concatenation character when you write the &IF statement; for 
example: 

&IF .&1 EQ • &GOTO -NOARGS 

tests for a null symbol &1. 

3. If the symbols &* or &$ are null because no arguments were entered, 
the entire &IF statement is treated as a null statement. 

&LOOP 

Use the SLOOP control statement to describe a loop in an EXEC procedure, 
including the conditions for exit from the loop. The format of the 
&LOOP control statement is: 

r------------ -------------------------------, 
: &LOOP , {~label} {~ondition} 

, 
L 

n 

-label 

m 

condition 

is a positive integer from 0 to 4095 that indicates the 
number of executable and nonexecutable lines in the loop. 
These lines must immediately follow the &LOOP statement. 

specifies that all of the lines following the &LOOP 
statement down to, and including the line with the specified 
label, are to be executed in the loop. The first character 
of the label must be a hyphen, and it must be the first 
token on a line. The remainder of the line may contain an 
executable statement, or it may be null. 

is a positive integer from 0 to 4095 that indicates the 
number of times the loop is to be executed. 

specifies the condition that must be met. The syntax of the 
exit condition is the same as that in the &IF statement, 
that is: 

290 IBM VM/37Q CMS Command and Macro Reference 



EXEC Control Statements-&LOJP, &PUNCH, &READ 

1. When loop execution is com~lete, control passes to the next 
statement following the end of the loop. 

The condition is always tested before the loop is executed. LL the 
specified condition is met, then the loop is not executed. For 
example, the statement: 

&LOOP 3 &COUNT = 100 

specifies that the next three lines are interpreted until the value 
of &COUNT is 100. 

3. LOops may be nested up to four levels deep. All nested loops may 
ena at the same label. 

4. A loop is closed when the requirements for termination specified in 
tha &LOOP statement are met, or when control is transferred outside 
the scope of the loop (using &GOTO or &SKIP). 

&PUNCH 

Use tha &PUNCH control statement to punch a line of tokens to the 
virtual card punch. The format of the &PUNCH control statement is: 

r 
, &PUNCH 
L-

rtok1 rtok2 ••• rtokn]]] 

tok1 [tok2 ••• [tokn]] 
specifies the tokens to be punched. All tokens are padded or 
trJncated to eight characters. The punched line is right-padded 
with blanks to fill an 80-column card. If no tokens are specified, 
a line consisting of 80 blank characters is punched. 

Us~~ NQt~~ 

1. Lines punched with the &PUNCH control statement are scanned by the 
EXEC interpreter and variable symbols are substituted before the 
line is punched. In fixed-length EXEC files, only the first 72 
characters of the record are scanned. To punch one or more lines 
of unscanned data, use the &BEGPUNCH or &BEGPUN:H ALL control 
statement. 

2. When you have finished punching lines in an EXEC procedure, you can 
use the CP command CLOSE to close the spool punch file and release 
it for processing. 

&READ 

Use the &READ control statement to read one or more lines from the 
terminal or console stack. The lines may contain data or executable 
statements. The format of the &READ control statement is: 

Section 5. EXEC Control Statements 291 



EXEC Control Statements-tREAD, &SKIP 

.--
I 
I &RErtD 
I 
I 
I 
I 
L-

n 

1 

rtRGS 

r 
I n 
, 1 
IrtRGS 
IVrtRS [&varl [&var2 ••• 
L 

, 
I 
I 
I 

[&varn]]] , 
.J 

1 

reads the next n lines from the terminal and treats them as if 
they had been in the EXEC file. Reading from the terminal 
stops when n lines have been read, or when an &LOOP statement 
or a statement that transfers control is encountered. If an 
&READ statement is encountered, tne number of lines to be read 
by it is added to the number outstanding. 

If n is not specified, the default 1 is assumed, and the EXEC 
continues processing after reading a single line. 

reads a single line, assigns the entered tokens to the special 
variables & 1, &2, ••• , &n, and resets the speci al variables 
&INDEt, &*, and &$. 

If any of the tokens is specified as a percent sign (%) or 
begins with the character X'FF', the corresponding argument is 
set to blanks. 

VrtRS [&varl (&var2 ••• [&varn)]] 
reads a single line and assigns the tokens entered to the 
variable symbols &varl, &var2, ••• , &varn (up to 11). 

These variables are scanned in the same way as though they 
appeared on the left-hand side of an assignment statement. If 
no variable names are specified, any data read from the 
terminal is lost. 

If any of the tokens is specified as a percent sign (%) or 
begins with the character X'FF', the corresponding variable is 
set to blanks. 

You can test the special variable &READFLAG to determine whether the 
next &RErtD statement will result in a physical read to your terminal 
(the value of &RErtDFLrtG is CONSOLE) or in reading a line from the 
console stack (the value of &READFLAG is STrtCK). 

&SKIP 

Use the &SKIP control statement to cause a specified number of lines in 
the EXEC file to be skipped. The format of the &SKIP control statement 
is: 

r 
I r , , &SKIP , n I , , 1 I , L -' 
L- --I 

292 IBM VM/370 CMS Command and Macro Reference 



EXEC Subcommands-&SKIP, &SPACE 

n specifies the number of lines to be skipped: 

• If n is greater than 0, the specified number of lines are 
skipped. Execution continues on the line following the skipped 
lines. If the value of n surpasses the number of lines 
remaining in the file, the EXEC terminates processing. 

• If n is equal to 0, no lines are skipped, and execution 
continues with the next line. 

• If n is less than 0, execution continues with the line that is n 
lines above the current line: An attempt to sKip beyond the 
beginning of the file results in an error exit from the EXEC. 

• The n may be coded as a variable symbol. 1 is the default value 
that is used when no value is specified for n. 

To pass control to a particular label in an EXEC procedure, use the 
&GOTO control statement. The &GOTO control statement provides more 
flexibility when you want to update your EXEC procedures. The &SKIP 
statement, however, is more efficient, in terms of execution time. 

&SPACE 

Use the &SP!CE control statement to display a specified number of blank 
lines at your terminal. The format of the &SPACE control statement LS: 

,------
I 
I &SPACE 
I 
I L-__ 

n specifies 
terminal. 
default. 

r , 
I n 
I 1 
L J 

the nu mb er of 
If no number 

blank lines 
is specified, 

to be 
&SPACE 

displayed at 
1 is assumed 

the 
by 

1. You may want to use the &SPACE control statement to control the 
format of the execution summary that displays while your EXEC 
executes. 

Section 5. EXEC Control Statements 293 



E~EC Control Statements-&STACK 

&STACK 

Use the &STACK control statement to stack a single data line in the 
console input stack. Stacked lines may be read by the EXEC, by C~S, or 
bV the CMS editor. The format of the &STACK control statement is: 

r , 
I &STA:K , 
I , 
L ____ _ 

LIFO 

specifies that the line is to be stacked in a first in, first 
out sequence, and is the default if not specified otherwise. 

specifies that the line is to be stacked in a last in, first 
out sequence. 

tokl (tok2 ••. [tokn]] 

HT 

RT 

specify the tokens to be stacked. If no tokens are specified, 
a null line is stacked. The tokens are in expanded form. 

stacks the CMS Immediate command HT (halt typing), which is 
executed immediately. All terminal display from the EXEC is 
suppressed until the end of the file or until an RT (resume 
typing) command is read. 

stacks the CMS Immediate command RT (resume typing), which is 
executed immediately. If terminal display has been suppressed 
as the result of an HT (halt typing) request, display is 
resumed. 

1. Lines stacked with the &STACK control statement are scanned by the 
EXEC interpreter and variable symbols are substituted before the 
line is stacked. To stack one or more unscanned lines, use the 
&BEGSTACK or &BEGSTACK ALL control statement. 

2. You must use the &STACK control statement when you want to stack a 
null line. 

3. Any CMS Immediate command may be executed in an EXE:, using the 
&STACK control statement. 

4. A complete discussion of techniques you can use to stack commands 
and data in the console stack is provided in the !~l112~~~ Q§~~~§ 
Q!!!g~. 

294 IB~ VM/370 CMS Command and Macro Beference 



EXEC Control Statements-&TIME 

&TIME 

Use the ~~IME control statement to 
displayed at the terminal after each 
format of the &TIME control statement 

request timing information to 
CMS command that is executed~ 
is: 

be 
The 

r 
I r , 
I &TIME ION I 
I 
I 
I 
I 
L-

ON 

RESET 

'!'YPE 

'Q~!: I 
,RESETI 
I TYPE, 
L .J 

resets the processor's time before every CMS command, and 
prints the timing information on return. If the &CONTROL 
control statement is set to CMS or ALL, the display of the 
timing information is followed by a blank line. 

does not automatically reset the processor's time before every 
eMS command, nor does it print the timing information on 
return. 

performs an immediate reset of the processor's time. 

displays the current timing information (and resets the 
processor's time). 

1. When timing information is displayed, it is in the format: 

T=x.xx/y.yy hh:mm:ss 

where; 

x.xx is the virtual processor's time used since it was last 
reset in the current EXEC file. 

y.yy is the total of the processor's time used since it was 
last reset in the current EXEC file. 

hh:mm:ss is the actual time of day in hours:minutes:seconds. 

2. The processor's time is set to zero before the execution of the 
first statement in the EXEC file, and is again set to zero (reset) 
whenever timing information is printed. 

Section 5. EXEC Control Statements 295 



EXEC Control Statements-&TYPE 

&TYPE 

Use the &TYPE control statement to display a line of tokens at the 
terminal. The format of the &TIPE control statement is: 

r--------
, &TYPE I [tokl [tok2 ••• [tokn]]] 
L ~ 

tokl [tok2 •.• [tokn]] 
specify the tokens to be displayed. 
truncated to eight characters. If 
null line is displayed. 

All tokens are padded or 
no tokens are specified, a 

Lines displayed with the &TIPE control statement are scanned by the EXEC 
interpreter and variable symbols are substituted before the line is 
displayed. To display one or more unscanned lines, use the &BEGTYPE or 
&BEGTYPE ALL control statements. 

2q6 IB~ VM/370 CMS Command and Macro Reference 



EXEC Built-In Functions-&CONCAT 

Bu i It-I nFu nctions 

You can use the 
variable symbols. 
may be crsed only 
follows: 

EXEC built-in functions to assign and manipulate 
With the exception of &LITERAL, built-in functions 

on the right-hand side of an assignment statement, as 

&MIX = &CONCAT &1 &2 

Built-in functions may not be combined with arithmetic expressions. 

Each of the built-in functions (&CONCAT, 
&LITEBAL~ and &SUBSTR) is described separately. 

&CONCAT 

&DATATYPE, &LENGTH, 

Use the &CONCAT function to concatenate two or more tokens and assign 
the rescrlt to a variable symbol. The format of the &CONCAT function is: 

r 
I &variable = &CONCAT tokl [tok2 ••• [tokn]] 
L-

&variable is the variable symbol whose value is determined by the 
&CONCA~ function. 

tokl [tok2 •.• [tokn]1 
specifies the tokens that are to be concatenated into a 
single token; for example: 

&A = ** 

&B = &CONCAT XX &A 45 
&TYPE &B 

results in the printed line: 

XX**45 

If the concatenated token is longer than eight characters, the data is 
left-justified and truncated on the right. 

Section 5. EXEC Control Statements 291 



EXEC Built-In Functions-&DATATYPE, &LENGTH 

&DATATYPE 

Use the &DATATYPE function to determine 
specified token is alphabetic or numeric 
&DAT~TYPE function is: 

whether 
data. 

the value of 
The format of 

the 
the 

r----------------·--------------------------------------------
I &variable = &DATATYPE token 
L-

&variable 

token 

is the variable symbol whose value is determined by the 
&DATATYPE function. 

specifies the target token 
alphabetic or numeric data. 
function has the value NUM or 
type of the specified token. 

&CHECK = &DATATYPE ABC 
&TYPE &CHECK 

results in the display: 

CHAR 

that is to be examined for 
The result of the &D~TATYPE 

CHAR, depending on the data 
For example: 

A null token is considered character ~ata. :HAR is also 
returned for alphameric tokens. 

&LENGTH 

Use the &LENGTH function to determine the number of chatacters in a 
t~ken. The format of the &LENGTH function is: 

r -------, 
, &variable = &LENGTH token 
L-

I 

&variable 

token 

298 IB:1 

is the variable symbol whose value is determined by the 
&LENGTH function. 

specifies the target token that 
nonblank characters. The result of 
the number of nonblank characters 
For example: 

&LEN = &LENGTH ALPHA 
&TYPE &LEN 

results in the display: 

5 

V~/370 c~s Command and Reference 

is to be examined for 
the &LENGTH function is 

in the specified token. 



EXEC Built-in Functions-&LITERAL, &SUBSTR 

&LITERAL 

Use the &LITERAL function to inhibit variable substitution on the 
specified token. The &LITERAL function may appear in any EXEC control 
statement, as follows: 

r 
I [ ... ] &LITERAL token( ••• ) 
L 

token specifies the 
sUbstitution. 

&X = ** 

token whose literal 
For example: 

&~YPE &LITERAL &X EQUALS &X 

results in the printed line: 

&X EQUALS ** 

value is to be used without 

&SUBSTR 

Use the &SUBSTR function to extract a character string from a specified 
token and to assign the substring to a variable symbol. The format of 
the &SUBSTR function is: 

r 
I &variable 
L-

&variable 

token 

i 

; 

--------------------------------------------------------------, 
&SUBSTR token i (j] , 

-------------------------------------------------------------------~ 

is the variable symbol whose value is determined by the 
&SUBSTR function. 

is the token from which the character string is to be 
extracted. 

specifies the character position in the token of the first 
character to be used in the substring. 

specifies the number of characters in tne string. 
omitted, the remainder of the token is used. 

If 

~he values of i and j 
example: 

(if given) must be positive integers. For 

&A = &SUBSTR ABCDE 2 3 
&'!'YPE &A 

results in the printed line: 

RCD 

Section 5. EXEC Control statements 299 



EXEC Special Variables 

Special Variables 

Special variables are variable symbols that are assigned values by the 
EXEC interpreter. and that you can test or display in your EXEC 
procedures. In some cases. you may assign your own values to EXEC 
special variables; these cases are noted in the variable descriptions. 

&n 

~he &n special variable represents the numeric variables &1 through &30. 
When an E~EC is invoked. the numeric variables from &1 through &30 are 
initialized according to the arguments that are passed to the EXEC file 
(if any, . 

The numeric variables can be reset by either an &ARGS or &READ ARGS 
control statement; when fewer than 30 arguments are set or reset. the 
remainder of the &n variables are set to blanks. A particular argument 
can be set to blanks by assigning it a percent sign (%) when invoking 
the E~EC procedure. in an &ARGS control statement. or in an &READ ARGS 
control statement. An argument is also set to blanks if it begins with 
the character X'FF' and is specified when invoking the EXEC procedure or 
in an &READ ARGS control statement. 

You may set the values of specific 
statements. ~ny value of n. however. that 
than 0 is rejected by the EXEC interpreter. 

&* and &$ 

arguments using assignment 
is greater than 30 or less 

~hese variables can be used to perform a collective test on all of the 
arguments passed to the EXEC procedure. &* and &$ may only be used in 
the &IF and &LOOP control statements and are described under the 
description of the elF control statement~ 

You may not assign values to the special variables &* and &$. 

&0 

The &0 special variable contains the filename of the EXEC file. You may 
test and manipulate this variable. 

&DISKx 

You can use the &DISKx special variable to determine whether a disk is 
an OS, DOS, or CMS disk. x represents the mode letter at which the disk 
is accessed. For example, if you access an OS disk with a mode letter 
of C, then the special variable &DISKC has a value of as. The possible 
values for the &DISKx special variable are os (for an as disk), DOS (for 
a DOS disk), CMS (for a CMS disk). and NA (when the disk is not 
accessed) . 

You may set or change the values of an &DISKx special variable; if 
you do so, however, you will no longer be able to test the status of the 
disk at mode x. 

300 IB~ VM/370 CMS Command and Macro Reference 



&OISK* 

'!'he &DISK* 
the first 
read/write 
NONE. 

EXEC Special Variables 

special variable contains the one-character mode letter of 
read/write disk in the CMS search order. If you have no 
disks accessed, this special variable contains the value 

You may assign a value to the &DISK* special variable for your own 
use; if you do so, however, you will not be able to use it to obtain the 
filemode letter of a read/write disk. 

&OISK? 

You can use the &DISK? special variable in an EXEC to determine which 
read/write disk that you have accessed has the most space on it. If you 
have no read/write disks accessed, &DISK? contains the value NONE. 

You may assign a value to the &DISK? special variable for your own 
use; if you do so, however, you will no longer be able to locate the 
read/write disk with the most space. 

&OOS 

~he ~DOS special variable contains one of the two character values ON or 
OFF, depending on whether the eMS/DOS environment is active. If you 
have issued the command: 

set dos on 

then the &DOS special variable contains the value ON. 

You may set or change the value of the &DOS special variable for your 
own use; if you do so, however, you will not be able to test whether the 
CMS/DOS environment is active. 

&EXEC 

~he &EXEC special variable is the filename of the EXEC file. You cannot 
set this variable explicitly but you can examine and test it. 

&GLOBAL 

~he &GLOBAL sDecial variable contains the recursion level of the EXEC 
currently executing. Since the EXEC interpreter can handle up to 19 
levels of recursion, the value of &GLOBAL ranges from 1 to 19. You 
cannot set this variable explicitly, but you can examine and test it. 

Section 5. EXEC Control Statements 301 



EXEC Special Variables 

&GLOBALn 

~he &GLJBALn special variable represents the variables &GLOBALO through 
&GLOBALg. You can set these variables only to integral numeric values. 
Thev are all initially set to 1. Unlike other EXEC variables, these can 
be used to communicate between different recursion levels of the EXEC 
inter preter. 

&INDEX 

The &INDEX special variable contains the number of arguments passed to 
the EXEC procedure. Since up to 30 arguments can be passed to an EXEC 
procedure, the value of &INDEX can range from 0 through 30. 

Although you cannot set this variable explicitly, it is reset by an 
&ARGS or &READ ARGS control statement. &INDEX can be examined to 
determine the number of active arguments in the EXEC procedure. 

&LINENUM 

The &LINENUM special variable contains the current line number in the 
EXEC file. You cannot explicitly set this variable but you can examine 
and test it. 

&READFLAG 

The &READFLAG special variable contains one of two literal values: 
CONSOLE or STACK. If there are stacked lines in the terminal input 
buffer (console stack) &READFLAG contains the value STA:K and the next 
read request results in a line being read from the stack. If not, then 
the next read request results in a physical read to the terminal, and 
the value of &READFLAG is CONSOLE. You cannot explicitly set this 
variable but you can examine and test it. 

&RETCODE 

The &RErCODE special variable contains the return code from the most 
recently executed CMS command. &RETCODE can contain only integral 
numeric values (positive or negative), and is set after each CMS command 
is executed. You can examine, test, and change this variable but 
changing it is not recommended. 

&TYPEFLAG 

The &TYPEFLAG special variable contains one of two literal values: RT 
(resume typing) or fiT (halt typing). It contains the value HT when 
terminal display has been suppressed by the Immediate command RT= It 
contains the value RT when the terminal is displaying output. You 
cannot explicitly set this variable, but you can examine and test it. 

302 IB~ VM/370 CMS Command and Macro Reference 



CMS liacros 

Section 6. eMS Macro I nstructi ons 

~his se=tion describes the formats of the C~S assembler language macros, 
which you can use when you write assembler language programs to execute 
in the CMS environment. To assemble a program using any of these 
macros, you must issue the GLOBAL command specifying CMSLIB MACLIB, 
which is the macro library (located on the system disk) which contains 
CMS macros. 

For functional descriptions and usage examples of the eMS macros, see 
the Y~LlIQ £~~ Q~~£~§ ~YiQ~· 

Coding conventions for 
assembler language macros. 
operands in the format: 

[,operandl 

CMS macros are the same as 
The macro format descriptions 

th.ose for all 
show optional 

indicating that if you are going to use this operand, it must be 
preceded by a comma (unless it is the first operand coded). If a macro 
statement overflows to a second line, you must use a continuation 
character in column 72. No blanks may appear between operands. 
Incorrect coding of any macro results in assembler errors and MNOTEs. 

Where applicable, the end of a macro description contains a list of 
the possible error conditions that may occur during the execution of the 
macro, and the associated return codes. Th.ese return codes are always 
placed in register 15. The macros that produce these return codes have 
ERROR= operands, that allow you to specify the address of an error 
handling routine, so that you can check for particular errors during 
macro processing. If an error occurs during macro processing and no 
error address is provided, execution continues at the next sequential 
instruction following the macro. 

Section 6. CMS Macro Instructions 303 



COMPSWT, FSCB Macros 

COMPSWT 

Use the COMPSWT macro instruction to turn the compiler switch (COKPSWT) 
flag on or off. The COMPSWT flag is in the OSSFL~GS byte of the nucleus 
constant area (NUCON). The format of the COMPSWT macro instruction is: 

r 
I [label] COMPSWT 
I 
L-

label 

ON 

FSCB 

________________ . _______ -J 

is an optional statement label. 

turns the COMPSWT flag on. When this flag is on, any program 
called by a LINK, LOAD, XCTL, or ATTACH macro instruction must 
be a nonrelocatable module in a file with a filetype of MODULE; 
it is loaded via the CMS LO~DMOD command. 

turns the COMPSWT flag off. When this flag is off, any program 
called by a LINK, LO~D, XCTL, or ATTACH macro instruction must 
be a relocatable object module residing in a file with a 
filetype of TEXT or TXTLIB; it is loaded via the CMS INCLUDE 
command. 

Use the FSCB macro instruction to create a file system control block 
(FSCB) for a CMS input or output disk file. The format of the FSCB 
macro instruction is: 

r 
I [label] 
! 
L-

label 

fileid 

RECFM=format 

FSCB [fileid] [,BECFM=format] [,BUFFER=buffer] 
f,BSIZE=size] [,RECNO=number] [,NJREC=numrec] , _____________________________________________________ -J 

is an optional statement label. 

specifies the CMS file identifier, which must be enclosed 
in single quotation marks and separated by blanks 
('filename filetype filemode'). If filem~de is omitted, 
~1 is assumed. 

indicates whether the records are fixed- (F) or variable­
(V) length format. The default is F. 

BUFFER=buffer specifies the address of an IIO buffer, from which 
records are to be read or written. 

BSIZE=size 

RECNO=number 

specifies the number of bytes to be read or written for 
each read or write request. 

specifies che record number of the next record to be 
accessed, relative to the beginning of the file, record 
1. ~he default is 0, which indicates that records are to 
be accessed sequentially. 

30U IB~ V~/370 eMS Command and Macro Reference 



FSCB, FSCBD Macros 

NOREC=numrec specifies the 
read operation. 

number of records to 
The default is 1. 

be read in the next 

1. The options RECFM, BUFFER, BSIZE, RECNO, and NOREC must all be 
specified as self-defining terms. 

2. You can use the same FSCB to reference several different files; you 
can override the fileid, or any of the options, on the FSOPEN, 
FS~RITE, or FSREAO macro instructions when you reference a file via 
its FSCB. However, if the FSOPEN macro instruction is used to 
ready an existing file, the BSIZE and RECF~ fields in the FSCB are 
reset to reflect actual file characteristics. 

3. You can use multiple FSCBs to reference the same file, for example, 
if you wanted one FSCB for writing and a different FSCB for reading 
the file. Keep in mind, however, that the file characteristics are 
inherent to the file and not to the FSCB. If you establish a read 
or write pointer using the RECNO option in one FSCB, that pointer 
remains unchanged unless you specify the RECNO option again on the 
same or any other FSCB for that file. 

FSCBD 

Use the FSCBD macro instruction to generate a DSECT for the file system 
control block (FSCB). The format of the FSCBD macro instruction is: 

r , 
i [label] 
L-

FSCBD 

label is an optional statement label. The first statement in the 
FSCBD macro expansion is labeled FSCBD. 

1. You can use the labels established in the FSCB DSECT to modify the 
fields in an FSCB for a particular file. An FSCB is created 
explicitly by the FSCB macro instruction, and implicitly by the 
FSREAO, FSWRI~E, and FSOPEN macro instructions. 

2. The FSCBD macro expands as follows: 

FSCBD 
FSCBCOMM 
FSCBFN 
FSCBF~ 

FSCBFr-1 
FSCBITNO 
FSCBBUFF 
FSCBSIZE 
FSCBFV 
FSCBNOIT 
FSCBNOFD 

FSCBD 
OSECT 
OS CL8 
DS CL8 
DS CL8 
DS CL2 
DS H 
DS A 
OS F 
OS CL2 
DS H 
DS A 

Command 
Filename 
Filetype 
Filemode 
Rela ti ve record (item) number 
Address of read/write buffer 
Length of buffer 
Record format (F or V) 
Number of records to be read/written 
Number of bytes actually read 

section 6. CMS Macro Instructions 305 



FSCLOSE Macro 

FSCLOSE 

Use the FSCLOSE macro instruction to close an open file and save its 
current status on disk. The format of the FSCLOSE macro instruction is: 

.-------
I r labe11 
I L-__ _ 

label 

fileid 

FSCLOSE 
{ 

fileid(,FSCB=fscb] } [,ERROR=erraddr] 
FSCB=fscb 

, 
I 
I 

---~ 

is an optional statement label. 

specifies the CMS file identifier. It may be: 

'fn ft fm' fileid enclosed in single quotation marks and 
separated by blanks. If fm is omitted, A1 is 
assumed. 

(reg) a register other than 0 or 1 containing the 
address of the fileid (18 characters) • When 
register format is used, the fileid must be 
exactly 18 characters in len~th; 8 for the 
filename, 8 for the filetype, and 2 for the 
filemode. Shorter names must be filled with 
blanks. 

FSCB=fscb specifies the address of an FSCB. It may be: 

label 
(reg) 

the label on the FSCB macro instruction. 
a register containing the address of an FSCB. 

ERROR=erraddr 

1. 

specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the callinq program, as it does if no error occurs. 

Although CMS routines close files when a command 
completes execution, you must use the FSCLOSE macro 
when you are executing a program from within an EXE:, 
are going to read and write records in the same file. 

or program 
instruction 
or when you 

2. If you specify both fileid and FSCB, the fileid is used to fill in 
the FSCB. 

If an error occurs, register 15 contains the following error code: 

!1~i!!g 
File not open 

306 IBM VM/370 CMS Command and Macro Reference 



FSERASE Macro 

FSERASE 

Use the FSERASE macro instruction to delete a CMS disk file. The format 
of the FSERASE macro instruction is: 

r 
I [label] FSERASE 

{ 
fileid[,FSCB=fscb] } [,ERROR=erraddr] 
FSCB=fscb I 

L-

label is an optional statement label. 

fileid specifies the CMS file identifier. It may be: 

'fn ft fm' fileid enclosed in single quotatinn marks and 
separated by blanks. If fm is omitted, A1 is 
assumed. 

(reg) a register other than 0 or containing the 
address of the fileid (18 characters) • When 
register format is used, the fileid must be 
exactly 18 characters in length; 8 for the 
filename, 8 for the filetype, and. 2 for the 
filemode. Shorter names must be filled with 
blanks. 

FSCB=fscb specifies the address of an FSCB. It may be: 

label 
(reg) 

the label of an FSCB macro instruction. 
a register containing the address of an FSCB. 

ERROR=erraddr 
'specifies the address of an error routine to be given control 
if an error occurs. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

1. On return from the FSERASE macro, register 1 points to a parameter 
list. The second# third# and fourth words of the list contain the 
filename, filetype, and filemode of the file. 

2. If fileid and FSCB= are both coded, the fileid is used to fill in 
the FSCB. 

If an error occurs, register 15 contains one of the following error 
codes: 

~Q~~ 
24 
2~ 

36 

1!eanigg 
Parameter list error 
File not found 
Disk not accessed 

Section 6. CMS Macro Instructions 307 



FSOPEN Macro 

FSOPEN 

Use the FS8PEN macro instruction to rea1y a file for either input or 
output. The format of the FSOPEN macro instruction is: 

r- , 
I [label] FSOPEN 

{ 
fileid [,FSCB=fscb] } [,ERROR=erraddr][,optionS]" 
FSCB=fscb I 

L ----~ 

label is an optional statement label. 

fileid specifies the CMS file identifier. It may be: 

'fn ft fm' 

(reg) 

the fileid enclosed in single quote marks 
separated by blanks. If fm is omitted, Al 
assumed. 

and 
is 

a register other than 0 or containing the 
address of the fileid (18 characters). When 
register format is used, the fileid must be 
exactly 18 characters in length; 8 for the 
filename, 8 for the filetype, and 2 for the 
filemode. Fill shorter names with blanks. 

FSCB=fscb specifies the address of an FSCB. It may be: 

label 
(reg) 

ERROR=erraddr 

the label on an FSCB macro instruction. 
a register containing the address of an FSCB. 

specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

You can specify any of the following FSCB macro o~tions on the FSOPEN 
macro instruction: 

BUFFER=buffer 
RECNO=number 
BSIZE=size 
RECFM=format 
NOREC=numrec 

These options may be specified either as the actual value (for 
example, NOREC=l) or as a register that contains the value (for 
example, NOREC= (3) where register 3 contains the value 1). 

When you use any of these options, the associated field in the 
FSCB is modified. 

1. On return from the FSOPEN macro, register 1 points to the FSCB for 
the file. If no FSCB exists, one is created in the FSOPEN macro 
expansion. However, if the FSOPEN macro instruction is used to 
ready an existing file, the BSIZE and RECFM fields are reset to 
reflect actual file characteristics. 

308 IB~ VM/370 eMS Command and Macro Reference 



FSOPEN, FSREAD Macros 

2. If you code both fileid and FSCB=, the fileid is used to fill in 
the FSCB. 

3. YO] can use the FSOPEN macro instruction to verify the existence of 
a file to be opened for reading or writing and to create an FSCB 
fOL it. 

If an error occurs, register 15 contains one of the following error 
codes: 

~Q~~ 
20 
24 
28 
36 

!1§!ling 
Invalid file identifier 
Invalid filemode 
File does not exist 
Disk not accessed 

FSREAD 

Use the FSREAD macro instruction to read a record from a disk file into 
an 1/0 buffer. The format of the FSREAD macro instruction is: 

r 
I [label] 
I 
L-

label 

fileid 

------------------------.-------------------------------, 
FSREAD 

{ 
fileid[,FSCB=fscb] }C,ERROR=erraddr] [,options] II 

FSCB=fscb 
____ .--1 

is an optional statement label. 

specifies the CMS file identifier. It may be: 

'fn ft fm' the fileid enclosed in single quotation marks and 
separated by blanks. If fm is omitted, A1 is 
assumed .. 

(reg) a register other than 0 or 1 containing the 
address of the fileid (18 characters). When 
register format is used, the flleid must be 
exactly 18 characters in length; 8 for the 
filename, 8 for the filetype, and 2 for the 
filemode. Shorter names must be filled with 
blanks. 

FSCB=fscb specifies the address of an FSCB. It may be: 

label 
(reg) 

ERROR=eJ:"raddr 

the label of an FSCB macro instruction. 
a register containinq the address of an FSCB. 

specifies the address of an error routine to be given control 
if ~n error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the callinq program, as it does if no error occurs. 

Section 6. CMS Macro Instructions 309 



FS READ Macro 

1 • 

YJU can soecify any of the following FSCB macro options on the FSREAD 
macro instruction: 

BUFFER=buffer 
NOREC=numrec 
BSIZE=size 
RECNO=number 

These options may be specified either as the actual value (for 
eKample, NOREC=1) or as a register that contains the value (for 
eKample, NOREC=(3) where register 3 contains the value 1). 

When you use any of these options, the associated field in the 
F3CB is modified. 

If an FSCB macro instruction has not been coded for a file (and 
FSCB= operand is not coded), you must specify the BUFFER= 
BSIZE= options to indicate the address of the buffer and 
length. When reading variable-length records, a record that 
longer than the buffer length is truncated. 

the 
and 
its 
is 

2. In ret~rn from the FSREAD macro, register 1 points to the FSCB for 
the file. If no FSCB exists, one is created following the FSREAD 
ma=ro instruction. 

3. If yon specify both fileid and FSCB=, the fileid is used to fill in 
the FSCB. 

4. Fegister 0 contains, after the read operation 
number of bytes actually read. This information 
in the FSCBNORD field of the FSCB. 

is complete, the 
is also contained 

s. To read records sequentially beginning with a particular record 
ncrmber, use the RECNO option to specify the first record to be 
read. On the next FSREAD macro instruction, use RE:NO=O so that 
reaaing continues sequentially following the first record read. 

If an error occurs, register 15 contains one of the following error 
codes: 

~Q~~ 
1 
2 
3 
5 

7 

B 
q 

11 
12 

13 

1~ 

15 

ri~9:!li!lg 
File not found 
Invalid buffer address 
?ermanent IIO error 
Number of records to be read is less than or equal to zero, 

or greater than 32,768 
Invalid record format (only checked when the file is first 

opened for reading) 
Incorrect length 
File open for output 
Nllmber of records greater than 1 for variable-length file 
End of file, or record number greater than number of recor~s 

in data set (maximum number of records is 65,533) 
Variable-length file has invalid displacement in active file 

table 
Invalid character in filename 
Invalid character in filetype 

310 IBM VM/370 CMS Command and Macro Reference 



FSSTATE Macro 

FSSTATE 

Use the FSSTATE macro instruction to determine whether a particular file 
exists. The format of the FSSTATE macro instruction is: 

r 
, [label] , 
L-

label 

fileid 

FSSTATE 
{ 

fileid [,FSCB=fscb] } [,ERROR=erraddr] 
FSCB=fscb 

----~ 

is an optional statement label. 

specifies the CMS file identifier. It may be: 

'fn ft fm' the fileid enclosed in single quotation marks and 
separated by blanks. If fm is omitted, A1 is 
assumed. 

(reg) a register other than a or containing the 
address of the fileid ( 18 characters). When 
register format is used, the fileid must be 
exactly 18 characters in length; 8 for the 
filename, 8 for the filetype, and 2 for the 
filemode. Shorter names must be filled with 
blanks. 

FSCB=fscb specifies the address of an FSCB. It may be: 

label 
(reg) 

ERROR=erraddr 

the label on an FSCB macro instruction. 
a register containing the address of an FSCB. 

specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

1. If the specified file exists, register 15 contains a a return code. 

2. When the FSSTATE macro completes execution, register 1 contains the 
address of the file status table (FST) for the specified file. 

The file status table contains the following information: 

Decimal 
Displacement 

a 
3 

16 
18 
20 
22 
24 
26 
2g 
30 
32 
36 
38 

Field Description 

Filename - EBCDIC 
Filetype - EBCDIC 
Date (mmdd) last written 
Time (hhmm) last written 
Write pointer (number of item) 
Read pointer (number of item) 
Filemode 
Number of records in file 
Disk address of first chain link 
Record format (F IV) 
Logical record length 
Number of 800-byte data blocks - binary 
Year (yy) last written - EBCDIC 

Section 6. CMS Macro Instructions 31' 



FSST~TE, FSWRITE Macros 

3. ~ll fields in the file status table are in packed decimal format 
with the exceptions noted above. 

If an error occurs, register 15 contains one of the fol~owing error 
codes: 

~Ql~ 
2Q 
2~ 

23 
36 

!1ggni!!g 
Invalid character in fileid 
Invalid filemode 
Fi Ie not found 
Disk not accessed 

FSWRITE 

Use the FSWRITE macro instruction to write a record from an IIO buffer 
to a CMS lisk file. The format of the FSWRITE macro instruction is: 

r i 

, rlabell , FSWRITE 
{ 

fileid(,FSCB=fscb] } [,ERROR=erraddr](,optionS],' 
FSCB=fscb 

L 

~(hgr~ : 
label 

filei:l 

is an optional statement label. 

specifies the CMS file identifier. It may be: 

'fn ft fm' the fileid enclosed in single quotation marks and 
separated by blanks. If fm is omitted, A1 is 
assumed. 

(reg) a register other than 0 or 1 containing the 
address of the fileid (18 characters). When 
register format is used, the fileid must be 
exactly 18 characters in length; 8 for the 
filename, 8 for the filetype, and 2 for the 
filemode. Shorter name must be filled with 
blanks. 

FSCB=fs=b specifies the address of an FSCB. It may be: 

llbel 
(req) 

ERROR=erraddr 

the label on an FSCB macro instruction. 
a register containing the address of an FSCB. 

specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coled and an error 
occars, control returns to the next sequential instruction in 
the calling proqram, as it does if no error occurs. 

Yoa can specifv any of the followinq FSCB macro options on the 
FSWRITE macro instruction: 

BUFFER=buffer 
REC"lO=number 
BSIZE=size 
NOREC=numrec 
RECFM=format 

312 IB~ V~/370 CMS Command and Macro Reference 



FSWRITE Macro 

These options may be specified either as the actual value (for 
example, NOREC=l) or as a register that contains the value (for 
example, NOREC=(3) where register 3 contains the value 1). 

When you use any of these options, the associated field in t~e FSCB 
for the file is filled in or modified. 

1. If an FSCB macro instruction has not been coded for a file (and the 
FSCB= operand is not coded on the FSWRITE macro instcuction), you 
must specify the BUFFER= and BSIZE= options to indicate the 
location of the read/write buffer and the length of the record to 
be written. For the filemode, you must specify both a letter and a 
number. If the file is a variable-length file, you must also 
specify REC'FM=V. 

2. On return from the FSWRITE macro, register 1 contains the address 
of the FSCB for the file. If no FSCB exists, one is created 
following the FSWRITE macro instruction. 

3. If you specify both fileid and FSCB=, the fileid is used to fill in 
the FSCB. 

4. If the HECNO option is specified (either on the FSWRITE macro 
instruction or in the FSCB), that specified record is written. 
Otherwise, the next sequential record is written. For new files, 
writing begins with record 1 ; for existing files, writing begins 
with the first record following the end of the file. 

5. To write records sequentially beginning W1~n a particular record 
number, use the RECNO option to specify the first record to be 
written. On the next FSWRITE macro instruction, use RECNJ=O so that 
writing continues sequentially, following the first record written. 

6. To write blocked records (valid for fixed-length files only), use 
the BSIZE and NOREC options to specify the blocksize and number of 
records per block, respectively. For example r to write 80-byte 
records into 800-byte blocks, you should specify BSIZE=800 and 
NOREC=10. The buffer you use must be at least 800 bytes long. 

7. When using the FSWRITE macro to update an existing file of variable 
records, ensure that the replacement record length is equal to the 
original record length. Any attempt to replace a record in the 
file with one that is shorter or longer than the original record, 
will cause the file to be truncated at the specified record number. 
No error return code results. 

If an error occurs, register 15 contains one of the following error 
codes: 

!1~i!lg 
Invalid buffer address 
First character of filemode is invalid 
Second character of filemode is invalid 
Item number too large (more than 65,533) 
Attempt to skip over unwritten variable-length item 

Section 6. CMS Macro Instructions 313 



FSWRITE Macro 

£Qg~ 
q 
g 

10 
11 
12 
13 
14 

15 
16 
11 
1q 
1q 
20 
21 
22 
25 

t1~~I!iI!g 
Buffer size not specified 
File open for input 
Maximum number of files per minidisk reached (3400) 
Record format not F or V 
Attempt to write on read-only disk 
Disk is full 
Number of bytes to be written is not integrally divisible 

by the number of records to be written 
Length of fixed-length item not the same as previous item 
Record format specified not the same as file 
Variable-length item greater than 65K bytes 
Number of records greater than 1 for variable-length file 
Maximum number of data blocks per· file reac~ed (16060) 
Invalid character detected in filename 
Invalid character detected in filetype 
Virtual storage capacity exceeded 
Insufficient free storage available for file directory 

buffers 

31U IB~ V~/310 eMS Command and Macro Reference 



HNDEXT Macro 

HNDEXT 

Use the HNDEt~ macro instruction to trap external interruptions and pass 
control to an internal routine for processing. External interruptions 
are caased i in a v1r~ual machine, by the CP EXTERNAL command. The 
format of the HNDElT macro instruction is: 

r-
I [ label] , 
L--

label 

SET 

address 

CLR 

HNDE1CT 
{

SET, address } 
CLR 

is an optional statement label. 

____ --I 

specifies that you want to trap external interraptions. 

specifies the address in your program of the routine to be 
given control when an external interruption occurs. 

specifies that 
interruptions. 

you no longer want to trap external 

1. External interruptions (other than timer interruptions) normally 
place your virtual machine in the debug environment. 

2. When your interruption handling routine is given control, all 
virtual interruptions, except multiplexer, are disabled. If you 
are using the CMS blip function, all blips are stacked. 

3. You are responsible for providing proper entry and exit linkage for 
your interruption handling routine. When your routine receives 
control, register 1 points to a save area in the format: 

~~.Qgl 
GRS 
FRS 
PSi 
tJAREA 
END 

~g£­
o 

64 
96 

104 
176 

_Hex_ 
o 

40 
60 
68 
BO 

Register 13 points to the user save area at label UAREA. 

Register 15 contains the entry point address of yoar routine; it 
must return control to the address in register 14. 

4. If you issue a STAX macro instruction to handle attention 
interruptions while the HNDEXT macro is active, either exit may be 
interrupted while the other is running. If your exits depend on 
data in static areas, results may be undesirable. 

Section 6. CMS Macro Instructions 315 



HN DINT ~acro 

HNDINT 

Use the HNDIN~ macro instruction to trap interruptions for a specified 
1/0 device. The format of the HNDINT macro instruction is: 

r 
, (label] , HNDINT ~ SET, (dev1, {a~dr},CUU, {:i~~}} [, (dev2 ••• } ••• ] t 
, 
I t CLR, (d ev 1) ( , (dev2) [ ••• ]] ) 
I , [ , ERROR=erraddr] 
L-

label 

SET 

is an optional statement label. 

specifies that you want to 
specified device. 

trap interruptions for the 

dev specifies a four-character symbolic name for tne device whose 
interruptions are to be trapped. 

addr specifies the address in your program of the routine to be 
given control when the interruption occurs. An address of 0 
indicates that interruptions for the device are to be ignored. 

cuu specifies the virtual device address, in hexadecimal, of the 
device whose interruptions are to be trapped. 

ASAP specifies that the routine at addr is to be given control as 
soon as the interruption occurs. 

~AIT specifies that the routine at addr is to be given control 
after the WAITD macro is issued for the device. 

CLR specifies that you no longer want to trap interruptions for 
the specified device. HNDINT CLR should not be issued from 
within the interruption handling routine. 

ERROR=erraddr 
specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling pro~ram, as it does if no error occurs. 

1. You can define interruption handling routines for more than one 
device in a single HNDINT macro instruction. The argument list for 
each device must be enclosed in parentheses and separated from the 
next list by a comma. 

2. If you specify WAIT, then the routine at the specified address in 
your program receives control when a WAITD macro instruction that 
specifies the same symbolic device name is issued. If the WAITD 
ma=ro instruction has already been issued for the device when the 
interruption occurs, then the routine at the specified address 
receives control immediately. 

316 IB~ VM/370 CMS Command and Macro Reference 



HNDINT, HNDSVC ~acros 

3. You are responsible for establishing proper entry and exit linkage 
for your interruption handling routine. When your routine receives 
control, the significant registers contain: 

Rggi~!g£§. 
0-1 
2-3 

4 
14 
15 

contents 
I/o-oIdPSW 
Channel status word (CSW) 
Address of interrupting device 
Return address 
Entry point address 

Your routine must return control to the address in re~ister 14, and 
indicate, via register 15, whether processing is complete. A 0 in 
register 15 means that you are through handling the interruption; 
any nonzero return code indicates that you expect another 
interruption. 

4. The interruption handling routine that you code should not perform 
any I/O operations. When it is given control, all IIO 
interruptions and external interruptions are disabled. 

If an error condition occurs, register 15 will contain one of the 
following return codes: 

~~~ni!!g 
Invalid device address (cuu) or interruption handling routine
address (addr).

2 Trap item replaces another of same device name.

3 Attempting to clear a nonexisting interruption.

HNDSVC

Use the HNDSVC macro
specific supervisor call
macro instruction is:

instruction to trap
(SVC) instructions.

interruptions caused by
The format of the HNDSVC

r -----,
I [label]
I {

SET, (svcnum,. address) [,. (svcnum, address) •••] } I
CLR,.svcnum[,.svcnum .••] ,

HNDSVC

I ,
I [, ERROR=erraddr] I
L-

label is an optional statement label.

SE~ specifies that you want to trap SVcs of the specified
nu mber (s) .

sv cnum

address

specifies the number of the SVC you want to trap. SVC numbers
o through 200 and 206 through 255 are valid.

specifies the address of the routine in your program that
should receive control whenever the specified SVC is issued.

Section 6. C~S ~acro Instructions 317

HNDSVC Macro

CLR specifies that you no lonqer want to trap the specified
SVC(s) •

ERROR=eI:'raddr
specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

You ~re responsible for providing the proper entry and exit linkage for
YOUI:' SYC-h~ndling routine. When your program receives control, the
register contents are as follows:

Rg~i§ig£ contents
12 Address-of your SYC-handling routine
13 Address of an 18-fullword save area (for your use)
14 Return address

Yoar routine must return control to the address in register 14.

If an eI:'roI:' occurs, register 15 contains one of the following eI:'ror
codes:

!1gggiRS
Invalid SVC number or address
SVC number set replaced previously set number
SVC number cleared was not set

318 IBM YM/370 CMS Command and Macro Reference

LINEDIT ~acro

llNEDIT

Use the LINEDIT macro instruction to convert decimal values into EB:DIC
or hexa3ecimal and to display the results at your terminal. The format
of the LINEDIT macro instruction is:

[label] LINEDIT
r , r ,r ,
I,TEXT='messagetext' I I,DOT={!g~}1 I ,:O~P={!ES}I
, , TEXTA=address I I NO I I NO I
L J L J L

[, SUB= (substitutionlist)]
r , r ,
I, DISP= 1YPE I I ,BUFFA= ({addreSsp t , NONE I , (re~n I
I SIO I L

! PRINT I , CPCOMM I , ERRMSG f
L J

r
"MF= /1)

I ~, ~lE' address\) ,
, l (reg) '}

L

r ,

: ' RENT= {i~~} :
L J

.J

, [,MAXSOBS=number]
I
I

J

J

The LINEDIT macro operands are listed below, briefly. For detailed
formats, descriptions, and examples, refer to the appropriate heading
following "L1NED1T Macro Operands."

TEXT='message text'
specifies the text of the message to be edited.

TEXTA.=address
specifies the address of the message text. It may be:

label
(reg)

the symbolic address of the message text.
a register containing the address of the message text.

DOT specifies whether a period is to be placed at the end of the
line.

COMP

SUB

D1SP

BOFFA

MF

specifies whether multiple blanks are to be remdved from the
line.

specifies a substitution list describing the conversions to be
performed on the line~

specifies how the edited line is to be used. When DISP is not
coded, the message text is displayed at the terminal.

specifies the address of the buffer in which the line is to be
copied.

specifies the macro format.

section 6. CMS Macro Instructions 319

LINEDIT Macro

MAXSGBS specifies the maximum number of sUbstitutions (MAXSUBS is used
with the list form of the macro~ •

RENT specifies whether reentrant code must be generated.

1. You should never use registers 0, 1, or 15 as address registers
when you code the LINEDIT macro instruction; these registers are
used by the macro.

2. When message text for the LINEDIT macro instruction contains two or
more consecutive periods, it indicates that a substitution is to be
performed on that portion of the message. The number of periods
you code indicates the number of characters that you want to appear
as output. To indicate what values are to replace the periods, code
a substitution list using the SUB operand.

3. When you use the standard (default) form of the LINED IT macro
instruction, reentrant code is produced, except when you specify
more than one SUbstitution list, or when you use register notation
to indicate an address on the TEXTA or BUFFA operands. When any of
these conditions occur, an MNOTE message is produced, indicating
that the code is not reentrant.

If you do not care whether the code is reentrant, you can specify
the RENT=NO operand to suppress the MNOTE message. Otherwise, you
can use the list and execute forms of the macro to write reentrant
code (see "MF Operand").

4. When the macro completes, register 15 may contain the value 2 or 3,
indicating that a channel 9 or channel 12 punch was sensed,
respectively. You can use these codes to determine whether the end
of the page is near (channel 9~, or if the end of the page has been
reached (channel 12).

320 IB~ VM/370 eMS Command and Macro Reference

LINEDIT Macro

Use the TEXT operand to specify the exact text of the message on the
macro instruction. The message text must appear within single quotation
marks, ~s follows:

TEXT=' message text'

If vou want a single quotation mark
text, you must code two of them.

Text specified on the LINEDIT macro
appear ~s only a single blank, and a
line, for example:

to appear within the actual message

is edited so that multiple blanks
period is placed at the end of the

LINEDI! TEXT='IT ISN"T READY'

results in the display:

IT ISN'T READY.

Use the TEX!A operand when you want to display a line that is contained
in a buffer. You may specify either a symbolic address or use register
notation; as follows:

TEXTA={label}
(reg)

In either case, the first byte at the address specified must contain the
length of the message text, for example:

LINEDIT TEXTA=MESSAGE

MESSAGE DC
DC

X' 16 '
CL22'THIS IS A LINE OF TEXT'

If you use register notation with either the standard or list forms of
the macro, the code generated is not reentrant. To suppress the MNOTE
that informs you that code is not reentrant, use the RENT=NO operand.

Use the DOT operand when you do not want a period placed at the end of
the message text. The format of the DOT operand is:

DOI'={!E~}
NO

For example, if you code:

Section 6. CMS Macro Instructions 321

LINEDIT Macro

LINEDI! TEXT='HI!',DOT=NO

the line is displayed as:

HI!

Use the COMP operand when you want to display multiple blanks within
your message text. The format of the COMP operand is:

For example, if you code:

LINEDIT TEXT='TOTAL 5' ,COMP=NO

the line is displayed as:

TO!'AL 5.

Use the SUB operand to specify the type of substitution to be performed
on those portions of the message that contain periods. For each set of
periods, you must specify the type of sUbstitution and the value to be
substituted or its address. The format of the snB operand is:

r -,
I SUB= ((HEX {' (reg) })) , , DEC ,expression 1
I 1
I HEXA{,addreSS} , , DECA , (reg) I
I ,
I HEX4A f address

}
,

I CHARA , (reg) ,
I CHAR8A , ({addreSS}, {length}) ,
t (reg) (reg) ,
L -3

Each of the possible sUbstitution pairs is described below, followed by
discussions of length specification and multiple substitution lists.

HEX, (reg-)
converts the value in the specified register to graphic hexadecimal
format and sUbstitutes it in the message text. If you code fewer
than eight consecutive periods in the message text, then leading
diqits are truncated; leading zeros are not suppressed.

For example, if register 3 contains the value C0031FC8, then the
ma=ro instruction:

LINEDIT TEXT='VALUE = ••• ',SUB=(HEX,(3)}

results in the display:

VALfJE = FCB.

322 IB' VM/370 eMS Command and Macro Reference

LINEDIT !lacro

HEX, expression
converts the given expression to graphic hexadecimal format and
substitutes it in the message text. The expression may be a
symbolic address or symbol equate; it is evaluated by means of a
LOAD ADDRESS (LA) instruction. For example, if your program has a
label BUFF1, the line:

LINEDIT TEXT='BUFFER IS LOCATED AT •••••• ',SUB=(HEX,BUFP1)

miqht result in the display:

BUFFER IS LOCATED AT 0201AC.

If vou code fewer than eight periods in the message text, leading
di~its are truncated; leading zeros are not suppressed.

DEC, (req)
converts the value in the specified register into graphic deciaal
format and substitutes it in the message text. Leading zeros are
suppressed. If the number is negative, a leading minus sign is
inserted. For example, if register 3 contains the decimal value
10,345, then the macro instruction:

LINEDIT TEXT=' REG 3 = •••••• ', SUB= (DEC, (3»)

results in the line:

REG 3 = 10345.

DEC, expression
converts the given expression to graphic decimal format and
substitutes it in the message text. The expression may be a
symbolic label in your program or a symbol equate. For example, if
yo~r program contains the statement:

VALUE EQU 2003

then the macro instruction:

LINEDIT TEXT='VALUE IS •••••• ',SUB=(DEC,VALUE+5)

results in the display:

VALUE IS 2008.

HEXA,address
converts the fullword at the specified address to graphic
heradecimal format and substitutes it in the message text. If you
code fewer than eight periods in the message text, leading digits
are truncated; leading zeros are not removed. For example, if you
coda:

LINEDIT TEXT='HEX VALUE IS ••••• ·,SUB=(HEXA,CODE)

then the last five hexadecimal digits of the fullword at the label
CODE are substituted into the message text.

HE XA, (reg)
converts the fullword at the address indicated in the specified
reqister into graphic hexadecimal format and substitutes it in the
message text. For example, if you code:

LINEDIT TEXT='REGISTER 5 -> •••••• ·,SUB=(HEXA,(5»)

section 6. C!lS !lacro Instructions 323

LINEDI'!' Macro

then the last six hexadecimal digits of the fullword whose address
is in register 5 are substituted in the message text.

If you code fewer than eight digits, leading digits are truncated;
leading zeros are not suppressed.

DECA,address
converts the fullword at the specified address to graphic decimal
format. Leading zeros are suppressed; if the number is negative, a
minus sign is inserted. For example, if you code:

LINED IT TEXT='COUNT = •••••• ·,SUB=(DECA,COUNT)

then the fullword at the location COUNT is converted to graphic
decimal format and substituted in the message text.

DECA, (reg)
converts the fullword at the address
register into graphic decimal format
message text. For example:

specified in the indicated
and substitutes it in the

LINEDIT TEXT='SUM = ·,SUB=(DECA,(3»)

causes the value in the fullword whose address is in register 3 to
be displayed in graphic decimal format.

HEX4A.,address
converts the data at the specified address into graphic hexadecimal
format, and inserts a blank character following every four bytes
(eight characters of output). The data to be converted does not
have to be on a fullword boundary.

When you code periods in the message text for substitution, you
must code sufficient periods to allow for the blanks. Thus to
display 8 bytes of information (16 hexadecimal digits), you must
code 17 periods in the message text.

For example, to display seven bytes of hexadecimal data beginning
at the location STOR in your program, you could code:

LINEDIT TEXT='STOR: ••••••••••••••• ·,SUB=(HEX4A,STOR)

~his might result in a display:

STOR: OA23F115 78ACFE

Note that 15 periods were coded in the message text, to allow for
the blank following the first four bytes displayed.

HE 1(4 A., (r eg)
converts
register
character
output) .

the data at the address indicated in the specified
into graphic hexadecimal format and inserts a blank
following every four bytes displayed (eight characters of

When you code the
sufficient periods
inserted.

message text for substitution, you must code
to allow for the blank characters to be

For example, the line:

L INEDI T TEXT=' BU FFER: ••••••••••••••••••••• , SUB= (HEX4 A, (6))

324 IBM VM/370 CMS Command and Macro Reference

LINEDIT Macro

results in the display of the first nine bytes at the address in
register 6, in the format:

hhhhhhhh hhhhhhhh hh

CHARA,address
substitutes the character data at the specified address into the
message text. For example:

LINEDIT TEXT='NAME IS •• •••••••••• '··,SUB=(CHAR1,NAME)

causes the 10 characters at location NAME to be substituted into
the message text. Kultiple blanks are removed.

CHARA, (reg)
substitutes the character data at the address indicated in the
specified register into the message text. For example:

LINEDIT TEXT=' CODE IS •••• ', SUB= (CHARA, (7))

the first four characters at the address indicated in register 7
are substituted in the message line.

CHAR8A,address
substitutes the character data at the specified address into the
message text, and inserts a blank character following each eight
characters of output.

When vou code the message text, you must code enough periods to
allow for the blanks that will be substituted.

This substitution list is convenient for displaying eMS parameter
lists. For example, to display a fileid in an FSCB, you might code

LINEDIT TEXT='FILEID IS •••••••••••••••••••• ',
SUB=(CHAR8A,OUTFILE+8)

where OUTFILE is the label on an FSCB
this file were TEST OUTPUT Al, then the
would result in the display:

macro. If the fileid for
LINEDIT macro instruction

FILEID IS TEST OUTPUT A1.

In the final edited line~ multiple blanks are reduced to a single
blank.

CHAEH~A, (reg)
substitutes the character data at the address indicated in
specified register and inserts a blank character following
eight characters of output.

the
each

When vou code the message text, you must include sufficient periods
to allow for the blanks. For example:

LINEDIT TEXT=IPLIST: ••••••••••••••••••••••••••••••••••• ,
SUB= (CHARS!, (1))

results in a display of four doublewords of character data,
beginning at the address indicated in register 7.

Section 6. CMS Macro Instructions 325

LINEDIT r'lacro

~fE~~~I!!~ 1BE 1EN2Tli ~OR 1I!EQIX ~A~gQ ~Q~~III~TIQ!: In all the
examples shown r the length of the argument being sUbstituted was
determined by the number of periods in the message text. The number of
periods indicated the size of the output field r and indirectly
determined the size of the input data area.

For hexadecimal and decimal .substitutions r the input data is
truncated on the left. To ensure that a decimal number will never be
truncated r you can code 10 periods (11 for negative numbers) in the
message text where it will be sUbstituted. For hexadecimal data w code
eight periods to ensure that no characters are truncated when a fullword
is substituted.

When you are coding sUbstitution lists with the CHARA r
HEX4A options r however r you can specify the length of the
field. You must code the SUB operand as follows:

SUB=(typer(addresswlength»

CHAR8A w and
input data

Both address and length may be specified using register notation. For
example:

SUB= (HEX4A w (LOC w (4» 1

shows that the characters at location
message text; the number of characters
contained in register 4 r but it cannot
periods coded in the message text.

L~C are substituted into the
is determined by the value

be larger than the number of

You can use this method in the special case where only one character
is to be substituted. Since you must always code at least two periods
to indicate that substitution is to be performed w you can code two
periods and specify a length of one r as follows:

LINEDI'I TEXT='INVALID ~ODE LETTER •• 'rSUB=(CHARAw (PLIST+24 w1»

SP~~IEX!!2 ~~1TI£LE ~~BSTITUTIO! 1I~!~: When you want to make several
substitutions in the same liner you must enter a sUbstitution list for
each set of periods in the message text. For example:

LINEDIT TEXT='VALUFS ARE ••••• and •••••• 'w
SUB= (DEC r (3) r HEXA w LOC)

might generate a line as follows:

VALUES ARE -45 AND FFE3C2.

You should remember that if you are using the standard form of the
macro instruction r and you want to perform more than one sUbstitution in
a single line, the LINEDIT macro will not generate reentrant code. If
you code RENT=NO on the macro linew then you will not receive the ~NOTE
message indicating that the code is not reentrant. If you want reentrant
coder you must use the list and execute forms of the macro instruction.

326 IB~ Vr'I/370 CMS Command and Macro Reference

LINEDIT Macro

Use the DISP operand to specify the output disposition of the edited
line. The format of the DISP operand is:

DISP= ~If~

DISP=TYPE

NONE
PRINT
SIO
CPCOMM
ERRMSG

specifies that the message is to be displayed on the terminal.
This is the default disposition.

DISP=NONE
specifies that no output occurs. This option is useful with the
BUFFA operand.

DISP=SIJ
specifies that the message is to be displayea, at the terminal,
using SIO instead of TYPLIN, which is normally used. This option
is used by CMS routines in cases where free storage pointers may be
destroyed. Since lines are not stacked in the console buffer, no
CONWAIT function is performed.

DISP=PRINT
specifies that the line is to be printed on the virtual printer.
The first character of the line is interpreted as a carriage
control character and as such does not appear on the printed
output. (See the discussion of the PRINTL macro for a list of
valid ASA control characters.,

DISP=CPCOMM
specifies that the line is to be passed to CP to be executed as a
CP command. For example:

LINEDIT TEXT='QUERY USERS',DOT=NO,DISP=CPCOMM

results in the CP command line being passed to CP and executed. On
return, register 15 contains the return code from the CP command
that was executed.

DISP=ERRMSG
specifies that the line is to be checked to see if it qualifies for
error message editing. If it does, it is displayed as an error
message rather than as a regular line.

The standard format of VM/370 error messages is:

xxxmmmnnns

where xxxmmm is the name of the module issuing the message, nnn is
the message number, and s is the severity code. You can code
whatever you want for the first nine characters of the code when
you write error messages for your programs, but the tenth character
must specify one of the following VM/370 message types:

~~§§~g~ !~Eg
INformation
Warning
Frror

section 6. CMS Macro Instructions 327

LINEDIT Macro

Then, the line is displayed in accordance with the CP EMSG setting.
If EMSG is set to ON, then the entire message is displayed; if EMSG
is set to TEXT, then only the message portion is displayed; if EMSG
is set to CODE, then only the lO-character code is displayed.

Use the BUFF! operand to specify the address of a buffer into which the
edited message is to be written. The message is copied into the
indicated buffer, as well as being used as specified in the DISP
operand. The format of the BUFFA operand is:

BUFF!={addreSS}
(reg)

When the text is copied into the buffer, the length of the message
text is inserted into the first byte of the buffer, and the remainder of
the text is inserted in subsequent bytes.

If you use register notation to indicate the buffer address, the code
generated will not be reentrant. To suppress the MNJTE that informs you
that code is not reentrant, use the RENT=NO operand.

Use the MF operand to specify the macro format when you want to code
list and execute forms when you write reentrant programs. The format of
the MF operand is:

~ ;& } MF= L
(E,faddr \l

(l (reg) f

MF=I (Standard form)
generates an inline operand list for the I.~NEDIT macro instruction,
and calls the routine that displays the message. This is the
default. It qenerates reentrant code, except under the following
circumstances:

• When you specify more than one SUbstitution list
• When you use register notation with the TEXTA or BUFF! operands

MF=L (List form)
generates a parameter list to be filled in when the execute form of
the macro is used.

The size of the area reserved
substitutions to be made, which you
operand. For example:

LINEDIT MF=L,MAXSUBS=5

depends upon the
can specify with

number of
the KAXSUBS

reserves space for
substitution lists.
macro instructions.

a parameter list
This same list may

that may hold up to five
be used by several LINEDIT

328 IBM VM/37Q eMS Command and Macro Reference

LINEDIT Macro

MF= (E~ address) (Execute form)
generates code to fill in the parameter list at tne specified
address~ and calls the routine that displays the message text.

The address specified (either a symbolic address or in register
notation) indicates the location of the list form of the macro.
The following example shows how you might use the list and execute
forms of the LINEDIT macro to write reentrant code:

WRITETOT LINEDIT TEXT='SUBTOTAL ••••• TOTAL ••••• ',
SUB= (DEC, (4) ,DEC, (5t),MF=(E,LINELIST)

LINELIST LINEDIT MF=L,MAISUBS=6

When the execute form of the LINEDIT macro instruction is used, the
parameter list for the message is built at label LIMELIST, where
the list form of the macro was coded.

Use the MAISUBS operand when you code the list form (MF=L) -form of the
LINEDIT macro instruction. The format of the MAISUBS operand is:

MAXSUBS=number

where number specifies the maximum number of substitutions that will be
made when the execute form of the macro is used.

Use the RENT operand when you are going to use the standard form of the
LINEDIT macro instruction and you do not care whether the code that is
generated is reentrant. The format of the RENT operand is:

When RENT=YES (the default) is in effect, the LINEDIT macro expansion
issues an ~NOTE message indicating that nonreentrant code is being
generated. This occurs when you use the standard form of the macro
instruction and you specify one of the following:

• TEXTA= (reg)
• BOFFA= (reg)
• More than one substitution pair

If you do not care whether the code is reentrant, and you do not wish
to have the MNOTE appear, code RENT=NO. The RENT=NJ coding merely
suppresses the MNOTE statement; it has no effect on the expansion of the
LINEDIT macro instruction.

section 6. CMS Macro Instructions 329

PR INTL ~ acro

PRINTL

Use the PRINTL macro instruction to write a line to a virtual printer.
The format of the PRINTL macro instruction is:

r
I [label] I PRINTL I line [,length] [,ERROR:erraddr]
L

. ____ -l

label

line

is an optional statement label.

specifies the line to be printed. It may be:

, linetext'
lineaddr
(reg)

text enclosed in quotation marks.
the symbolic address of the line.
a register containing the address of the line.

length specifies the length of the line to be printed.
It may be:

(See Note 1.)

(reg)
n

..
a register containing the length.
a self-defining term indicating the length.

ERROR:erraddr
specifies the address of an error routine to be given control
if an error is found. If ERROR: is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

1. The maximum length allowed is 151 characters on a virtual 3211 or
133 characters on a virtual 1403 or 3203. If you do not specify
the length, it defaults to ljj characters, unless ilinetext i is
specified. In this case, the length is taken from the length of the
line text.

2 • The first character of the line is
control character, which may be either
The valid ASA control characters are:

interpreted as a carriage
ASA (ANSI) or machine code.

~h~~£1g:r B.gX £.Q,q~ l1ganing
l1f 40 Space 1 line before printing
0 FO Space 2 lines before printing

60 Space 3 lines before printing
+ 4E Suppress space before printing
1 Fl Skip to channel 1
2 F2 Skip to channel 2
3 F3 Skip to channel 3
4 F4 Skip to channel 4
S F5 Skip to channel 5
6 F6 Skip to channel 6
7 F7 Skip to channel 7
8 F8 Skip to channel 8
9 F9 Skip to channel 9
A C1 Skip to channel 10
B C2 Skip to channel 11
C C3 Skip to channel 12

330 IB~ VM/3 7 0 CMS Command and Macro Reference

PRINTL, PUNCHC Macros

3. Het codes X'Cl' and X'C3' are used in both machine code and ASA
coie. CMS recognizes these codes as ASA control characters, not as
machine control characters.

4. If the line does not begin with a valid carriage control character,
the line is printed with a write command to space one line before
printing (ASA X'40').

5. When the macro completes, register 15 may contain a 2 or a 3,
indicating that a channel 9 or channel 12 punch was sensed,
respectively. You can use these codes to determine whether the end
of the page is near (channel 9), or if the end of the page has been
reached (channel 12). You might want to check for these codes if
you want to print particular information at the bottom or at the
end of each page being printed.

When the channel 9 or channel 12 punch is sensed, the write
operation terminates after carriage spacing but before writing the
line. If you want to write the line without aaditional space, you
must modify the carriage control character in the buffer to a code
that writes without spacing (ASA code + or machine code 01).

6. You must issue the CP CLOSE command to close the virtual printer
file. Issue the CLOSE command either from your program (using an
SVC 202 instruction or a LINEDIT macro instruction) or from the CMS
environment after your program completes execution. The printer is
automatically closed when you log off or when you use the CMS PRINT
command.

7. The PRINTL macro does not perform a forms control buffer load. if
the spooled virtual printer is a 3203 or 3211, no virtual FCB image
has been previously loaded for this virtual printer. A default FCB
will be used. The default FCB is documented in the Y~L11Q ~g

~Q~!sna g~~~£gn£~ for Ge~£al [§~!§.

If an error occurs register 15 contains one of the following error
codes:

~Q~g
1
2
3
4
5

100

~g~!!ing:
Line too long
Channel 9 punch sensed (virtual 3203 or 3211 only)
Channel 12 punch sensed (virtual 3203 or 3211 only)
Intervention required
Unknown error
Printer not attached

PUNCHC

Use the PUNCHC macro instruction to write a line to a virtual card
punch. The format of the PUNCHC macro instruction is:

r------ ,
, [label] I PUNCHCI line [,EBROB=erraddr] ,

, ___________________________ . __________________________ -J

label is an optional statement label.

Section 6. eMS Macro Instructions 331

PUNCHC Macro

line specifies the line to be punched. It may be:

'linetext'
lineaddr
(reg)

text enclosed in quotation marks.
the symbolic address of the line.
a register containing the address of the liRe.

ERROR=erraddr
specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coaed and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

1. No stacker selecting is allowed. The line length must be 80
characters.

2. You must issue the CP CLOSE command to close the virtual punch
file~ Issue the CLOSE command either from your program (using an
SV: 202 instruction) or from the CMS environment when your program
completes execution. The punch is closed automatically when you log
off or when vou use the CMS PUNCH command.

If an error occurs, register 15 contains one of the following error
codes:

~~gg
2
3

100

~ggnin~
Unit check
Unknown error
Punch not attached

332 IBM VM/370 CMS Command and Macro Reference

RDCARD Macro

RDCARD

Use the RDCARD macro instruction to read a line from a virtual card
reader. The format of the RDCARD macro instruction is:

r ,
I [label] I RDCARD I buffer[,length][,ERROR=erraddr] I L, ____ ,

label

buffer

length

is an optional statement label.

specifies the buffer address into which the card is to be
read. It may be:

bufaddr
(reg)

the symbolic address of the buffer.
a register containing the address of the buffer.

specifies the length of card to be read. If omitted, 80 is
assumed. The length may be specified in one of two ways:

n
(reg)

a self-defining term indicating the length.
a register containing the length.

ERROR=erraddr
specifies the address of an error routine to be given
control if an error is found. If ERROR= is not coded and an
error occurs, control returns to the next sequential
instruction in the calling program, as it does if no error
occurs.

1. No stacker selecting is allowed.

2. When the macro completes, register 0 contains the length of the
card that was read.

3. You may not use the RDCARD macro in jobs that run under the eMS
batch machine.

If an error occurs, register 15 contains one of the following error
codes:

Code --1-
2
3
5

100

!1g§:.ning
End of file
unit check
Unknown error
Length not equal to requested length
Device not attached

Section 6. CMS Macro Instructions 333

RDTAPE ~acro

RDTAPE

Use the RDTAPE macro instruction to read a record from the specified
tape drive. The format of the RDTAPE macro instruction is:

r---------------- ------------------------, , (label] , RDTAPE buffer,length [,device] [,~ODE;mode] , , , [, ERROR;erradr] I L __ _

label

bu ffer

length

device

is an optional statement label.

specifies the buffer address into which the record is to be
read. It may be specified in either of two ways:

the symbolic address of the buffer. lineaddr
(reg) a register containing the address of the buffer.

specifies the length of the largest record to be read. A
65,535-byte record is the largest record that can be read. It
may be specified in either of two ways:

n
(reg)

a self-defining term indicating the length.
a register containing the length.

specifies the device from which the line is to be
omitted, TAPl (virtual address 181) is assumed.
specified in either of two vays:

read. If
It may be

TAPn indicates the symbolic tape number (TAP1 through
TAP4) •

cuu indicates the virtual device address.

~DDE=mode specifies the number of tracks, density, and tape recording
technique options. It must be in the following form:

([track],[density], [trtch])

ER RDR=er ra ddr

track 1 indicates a 1-track tape (implies density;800 and
trtch;O) •

density

trtch

9 indicates a 9-track tape (implies density;800).

200, 556, or 800 for a 7-track tape.
800, 1600, or 6250 for a 9-track tape.

indica tes the
1-track tape.
specified:

tape recording technique for
One of the following must be

o - odd parity, converter off, translator off.
DC - odd parity, converter on, translator off.
OT - odd parity, converter off, translator on.
E - even parity, converter off, translator off.
ET - even parity, converter off, translator on.

specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

334 !B~ V~/370 c~s Command and ~acro Reference

RDTAPE, RDTERM Macros

1. When the macro completes, register 0 contains the number of bytes
read.

2. You need not specify the Mode option when you are reading from a
Q-track tape and using the default density of the tape drive nor
when you are reading from a 7-track tape ~ith a density of 800 bpi,
odd parity, with the data converter and translator off.

If an error occurs, register 15 contains one of the following error
codes:

Code --,-
2
3
4
5
A

~~~!ling 
Invalid function or parameter list 
End of file or end of tape 
Permanent I/O error 
Invalid device address 
Tape not attached 
Incorrect length error 

RDTERM 

Use the RD~ER~ macro instruction to read a line from the terminal into 
anI/O buffer. The format of the RDTERM macro instruction is: 

r------ , 
, I r , I 
I (label] I RDTERM buffer(,EDIT=code]( ,LENGTH=length]I,ATTREST={I~~}11 
I , I NO " 
I I L .\I , 
L-_______ _ __ _______________________________________________ --J 

label 

buffer 

is an optional statement label. 

specifies the address of a buffer into which the line is to be 
read. The buffer is assumed to be 130 bytes long, unless 
EDIT=PHYS is specified. The address may be specified as: 

lineaddr 
(reg) 

the symbolic address of the buffer. 
a register containing the address of the buffer. 

EDIT=code specifies the type of editing, if any, to be performed on the 
input line. 

NO indicates that a logical line is to be read and no 
editing is to be done. 

PAD requests that the input line be padded with blanks 
to the length specified. 

UPCASE requests that the line be translated to uppercase. 

indicates both padding and translation to uppercase. 
YES is the default. 

section 6. CMS Macro Instructions 335 



BDTERM, REGEQU Macros 

PHYS indicates that a physical line is to be read. When 
PHYS is specified, the LENGTH and ATTREST=NO 
operands may also be entered. This option causes 
the input line to be translated using the user 
translation table. 

LENGTH=length 
specifies 
assumed. 
specified 
specified 

the length of the buffer. If not specified, 130 is 
The maximum length is 2030 bytes. The length may be 
only if EDIT=PHYS (see Usage Note 2). It may be 
in either of two forms: 

n 

(reg) 

a self-defining term indicating the length of the 
buffer 
a register containing the length of the buffer. 

ATTREST=YESI NO 
specifies whether an attention interruption during a read 
should result in a restart of the read operation. (See Usage 
Note 2.) 

1. When the macro completes, register 0 contains the number of 
characters read. 

2. You can use the ATTREST=NO and LENGTH operands only when you are 
reading physical lines (EDIT=PHYS). When ATTREST=NO, an attention 
interruption during a read operation signals the end of the line 
and does not result in a restart of the read. These operands are 
used primarily in writing VS APL programs. 

When an error occurs, register 15 contains one of the following 
error codes: 

!1~g,!l.!!lg 
Invalid parameter 
Read was terminated by an attention signal (possible only when 
ATTREST=NO) 

REGEQU 

Use the REGEQU macro instruction to generate a list of EQU (equate) 
statements to assign symbolic names for the general, floating-point, and 
extended control registers. The format of the REGEQU macro instruction 
is: 

r 
, REGEQU 
L. --I 

336 IBM VM/370 eMS Command and Macro Reference 



REGEQU, TAPECTL Macros 

~he REGEQU macro instruction causes the following equate statements to 
be generated: 

@~n~~~l 
RO 
Rl 
R2 
R3 
R4 
R5 
R6 
R7 
R~ 
Rq 
Rl0 
R 11 
R12 
R13 
Rl~ 

R15 

!i~gist~J;:§ 
EQU 0 
EQU 1 
EQU 2 
EQU 3 
EQU 4 
EQU 5 
EQU 6 
EQU 7 
EQU 8 
EQU 9 
EQU 10 
EQU 11 
EQU 12 
EQU 13 
EQU 14 
EQU 15 

£:lQ~ting::gQin1 li~~ist~.§ 
o FO EQU 

F2 EQU 2 
F4 EQU 4 
F6 EQU 6 

Extended ---ca-
Cl 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
C10 
C 11 
C12 
C13 
C14 
C15 

fQ~1£2! Re[i§t~£§ 
EQU 0 
EQU 1 
EQU 2 
EQU 3 
EQU 4 
EQU 5 
EQU 6 
EQU 7 
EQU 8 
EQU 9 
EQU 10 
EQU 11 
EQU 12 
EQU 13 
EQU 14 
EQU 15 

TAPECTL 

Use the TAPECTL macro instruction to position the specified tape 
according to the specified function code. The for~at of the TAPECTL 
macro instruction is: 

r----
I (label] 
L-

label 

TAPECTL , function [,device](,MJDE=mode][ ,ERRJR=erraddr] 

is an optional statement label. 

function specifies the control function to be performed. It must be 
one of the following codes: 

device 

~Q~~ Function 
REW RewInd-the tape 
RUN Rewind and unload the tape 
ERG Erase a gap 
BSR Backspace one record 
BSF Backspace one file 
FSR Forward-space one record. 
FSF Forward-space one file 
WTM write a tape mark 

specifies the tape on which the control operation is to be 
performed. If omitted, TAPl (virtual address 181) is assumed. 
It may be: 

section 6. CMS Macro Instructions 337 



TAPECTL Macro 

TAPn 

cuu 

indicates the symbolic tape number (TAP1 through 
TAP4) • 
indicates the virtual device address. 

MODE=mode specifies the number of tracks, density, and tape recording 
technique options. It must be in the following form: 

([ track ],( density ],[trtch]) 

track 7 

9 

density 

trtch 

indica tes a 7-track tape (implies density=800 and 
trtch=O) • 
indicates a 9-track tape (implies density=800). 

200, 556, or 800 for a 7-track tape. 
800, 1600, or 

indica tes the 
7-track tape. 
specified: 

6250 for a 9-track tape. 

tape recording technique for 
One of the following must be 

o - odd parity, converter off, translator off. 
OC - odd parity, converter on, translator off. 
OT - odd parity, converter off, translator on. 
E - even parity, converter off, translator off. 
ET - even parity, converter off, translator on. 

ERROR=erraddr 
specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

You need not specify the MODE option when you are manipulating a 9-track 
tape ana you are using the default density for the tape drive, nor when 
you are writing a 7-track tape with a density of 800 bpi, odd parity, 
with data converter and translator off. 

If an error occurs, register 15 contains one of the following error 
codes: 

~Qg~ 
1 
2 
3 
4 
5 
6 
q 

!1ggning 
Invalid function or parameter list. 
End of file or end of tape 
Permanent 1/0 error 
Invalid device id 
~ape is not attached 
Tape is file-protected 
Incorrect length 

338 IBM VM/370 eMS Command and Macro Reference 



WAITD Macro 

WAITD 

Use the WAI:D macro instruction to cause the program to wait until the 
next interruption occurs on the specified device. The format of the 
WAITD macro instruction is: 

r ---, 
I [label] I WAITD I device ••• [,devicen] [,ERROR=erraddr] , 
'-- ,----------------------------------------------_______ -J 

label is an optional statement label. 

d evicen specifies the device(s) to be waited for. 
following may be specified: 

O·ne of the 

symn indicates the symbolic device name and number, where: 

sym is CON, DSK, PRT, PUN,RDR, or TAP. 
n indicates a device number. 

user is a four-character symbolic name specified a HNDINT 
macro issued for the same device. 

ERROR=erraddr 
specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returRS to the next sequential instruction in 
the calling program, as it does if no error occurs. 

1. Use the WAITD macro instruction to ensure completion of an I/O 
operation. If an interruption has been received and not processed 
from a device specified in the WAITD macro instruction, the 
interruption is processed before program execution continues. 

2. When the interruption has been completely processed 6 control is 
returned to the caller with the name of the interrupting device in 
register 1. 

3. If an HNDINT macro instruction issued for the same device specified 
ASAP and an interruption has already been processed for the device, 
the wait condition is satisfied. 

4. If an HNDINT macro instruction issued for the same device specified 
WAIT and an interruption for the device has been received, the 
interruption handling routine is given control. 

5. The interruption routine determines if an interruption 
considered processed or if more interruptions are necessary 
satisfy the wait condition. For additional information see 
discussion of the HNDINT macro instruction. 

is 
to 

the 

When an error is detected, register 15 contains a 1 to indicate that an 
invalid device number was specified. 

Section 6. CMS Macro Instructions 339 



WAITT, WRTAPE Macros 

WAITT 

Use the WAI~T macro instruction to cause the program to wait until all 
of the pending terminal IIO is complete. The format of the WAITT macro 
instruction is: 

r , 
, (label] , WAITT, , L __________________________________________________ . _______ -J 

label is an optional statement label. 

The WAIT~ macro instruction synchronizes input and output to the 
terminal; it ensures that the console stack is cleared before the 
program continues execution. Also, you can ensure that a read or write 
operation is finished before you modify an 110 buffer. 

WRTAPE 

Use the WR!APE macro instruction to write a record on the specified tape 
drive. The format of the WRTAPE macro instruction is: 

r 
, (la bel] 
I 
L 

label 

buffer 

length 

device 

WRTAPE buffer,length (,device] (,KODE=mode] 
( , ERROR=erradd r] ___________________ -J 

is an optional statement label. 

specifies the address of the record to be written. It may be: 

lineaddr 
(reg) 

the symbolic address of the line. 
a register containing the address of the time. 

specifies the length of the line to be written. It may be 
specified in either of two ways: 

n 
(reg) 

a self-defining term indicating the length. 
a register containing the length. 

specifies the device to which the record is to be written. If 
omitted, TAPl (virtual address 181) is assumed. It may be: 

TAPn 

cuu 

indicates the symbolic tape number (TAPl through 
TAP4). 
indicates the virtual device address. 

MODE=mode specifies the number of tracks, density, and tape recording 
technique. It must be in the following form: 

([ track ],r density ],[trtch]) 

340 IB~ VM/370 eMS Command and Macro Reference 



WRTA~E, WRTERM Macros 

track 7 indicates a 7-track tape (implies density=800 and 
trtch=O) • 

9 indicates a 9-track tape (implies density=800). 

density 200, 556, or 800 for a 7-track tape 
800, 1600, or 6250 for a 9-track tape. 

trtch indica tes the 
7-track tape. 
specified: 

tape recording technique 
One of the following must 

for 
be 

a - odd parity, converter off, translator off. 
oe - odd parity, converter on, translator off. 
aT - odd parity, converter off, translator on. 
E - even parity, converter off, translator off. 
ET - even parity, converter off, translator on. 

ERROR=erraddr 
specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

You nee1 not specify the MODE option when you are writing to a 9-track 
tape an~ ~ant to use the default density, nor when you are writing to a 
7-track tape with a density of 800 bpi, odd parity, with data converter 
and translator off. 

If an error occurs, reqister 15 contains one of the following error 
codes: 

~Q.gg·!1g~n!!lg: 
1 Invalid function or parameter 
2 End of file or end of tape 
3 permanent 1/0 error 
4 Invalid device identification 
5 Tape not attached 
6 Tape is file-protected 

list 

WRTERM 

Use the WRTERM macro instruction to display a line at the terminal. The 
format ~f the WRTEFM macro instruction is: 

.--
I [label1 I WRTERM I line [,1 ength] [, EDIT=code ] [, eOLOR=color] 
L--

label is an optional statement label. 

Section 6. eMS Macro Instructions 341 



WR'TERM. ~acro 

line 

length 

specifies the line to be displayed. 
forms: 

It may be one of three 

, linetext' 
lineaddr 
(reg) 

the actual text line enclosed in quotation marks. 
the label on the statement containing the line. 
a register containing the address of the line. 

specifies the length of the line. If the line is specified 
within quotation marks in the macro instruction, the length 
operand may be omitted. The length may be specified in either 
of two ways: 

n 
(reg) 

a self-defining term indicating the length. 
a register containing the length. 

EDIT=code specifies whether the line is to be edited: 

!E~ indicates that trailing blanks are to be removed and a 
carriage return added to the end of the line. YES is the 
default value. 

NO indicates that trailing blanks are not to be removed and 
no carriage return is to be added. 

LONG indicates the line may exceed 130 bytes. 
performed. 

COLOR=color 

No editing is 

indicates the color in which the line is to be typed, if the 
typewriter terminal has a two-color ribbon: 

~ indicates that the line is to be typed in black. This is 
the defa ul t. 

R indicates that the line is to be typed in red. 

1. The maximum line length is 130 chara=ters for a black line and 126 
characters for a red line. 

2. If EDIT=LONG, COLOB must be specified as "B". In this case, you may 
write as many as 1760 bytes with a single WRTER~ macro instruction. 
You are responsible for embedding the proper terminal control 
characters in the data. (This operand is for use primarily with VS 
APL programs.) 

3. You may want to use the WAITT macro instruction to ensure that 
terminal 1/0 is complete before continuing program execution. 

3~2 IB~ V~/370 CMS Command and Macro Reference 



Appendixes 

~he following appendixes are provided for your convenience: 

• Appendix A: Reserved Filetype Defaults 

• Appendix B: DOS/VS Access ~ethod Services and VSAM Functions Not 
supported in C~S 

• Appendix C: OS/VS Access ~ethod Services and VSA~ Functions Not 
Supported in CMS 

Appendixes 343 



344 IBM V~/370 eMS Command and Macro Reference 



Appendix A. Reserved Filetype Defaults 

----, 
IFiletype,RECFMILRECLIZONEITRUNCIVERIFYISERIALITABS I Usage I 

1 1------
'default I F 
! 
! I 
1-----------
1 AMSERV , F , , 
,----
I ASSEMBLEI F 
, I 
1------
, ASM3705 , 
I 
I BASIC 
IBASDATA 
1------
I COBOL , 
1-----
, DIEECT , 
,------
I E~EC , 
1----

F 

F 

F 

F 

V 

I FREEFORT, V , , 
,------
,FORTRAN, F 
,---------
ILISTING, V , , , , 
,--------
, MACRO , F , , 
1---
1 MEMO 
I 
1---
1 PLI 
IPLIOPT , 
1-----
1 SCRIPT , , 
I UPDATE 
1 

j-----

F 

F 

V 

F 

IUPDTxxxxl F 
1 I ,------
I V SBASIC F 
1---
1 VSBDATA V 
1 
1 

1-----
1* indicates 
1 L/L indica tes 
L _______ _ 

80 " *1 

80 12 72 
I I 

80 I 1 711 
I I 

80 11 711 
I 1 

80 17 
I 

*1 
I 

8011721 
I I 

8011721 
I I 

80 11 
I 

81 19 
I 

* I 
I 

*1 
I 

80 11 721 

121 11 
I 
I 

* 1 
I 
I 

80 11 71 I 
I I 

80 11 
I 

*1 
1 

80 12 721 
I I 
I I 

132 I 1 
1 

*1 
I 

80 11 711 
1 I 

80 11 711 
1 1 

80 17 

132 11 
1 
1 

*' 
*1 

I 
I 

* I 
I 

72 

71 

71 

* I 
I 

72 

72 

* I 
I 

* I 
I 

72 

* I 
I 
I 

71 

* I 
1 

72 

* I 
I 

71 

71 

* I 

* I 
1 
1 

* 1 OFF 11,6,11,16,21,26,.31,36,IAll other filetypes , 
I i 41,46,51,61,.71,81,91,1 I 
I i 101~111#121 .. i3i I I 

----------------------------------1 
72 OFF 

72 ON 

72 ON 

* I L/L 
I 

72 ON 

72 ON 

* I OFF 
I 

* I L/L 
I 

72 ON 

* I OFF 
I 
I 

72 ON 

* I OFF 
I 

1 72 ON 

* I OFF 
I 

72 ON 

72 ON 

* I L/L 

* 1 OFF 
1 
I 

12,.6,.1',.16,.21,.26,31,.36,IInput Control statements for I 
I 41,46,51,61,71,80 I Access Method Services I 

11,10,. 16,31,36,41,46, 
I 69,72,80 

I',. 10,16,31,36,.41,46,. 
I 69,72,80 

17,10,15,20,25,.30,.80 
I 

I Assembler language source 
, statements. 

IMacro instruction for 3705 
I Assembler 

I 
I 
I 
I 
I 
I 

-----------1 
IBASIC source statements; and I 
1 execution-time files. I 

I 
11,8,12,20,28,36,44,68,ICOBOL source statements. , 
I 72,80 1 I 

--------------------1 
I 1,6,11,16,21,26,31,36,IVM/SP user 1irectory entries I 
I 41,46,51,61,71 I 1 

I 1,6,11,16,21,26,31,36,IEXEC procedures. 
1 41,46,51,61,71 I 

1 
I 
1 
1 

19,15,18,23,28,33,38, IFREEFORM FORTRAN source I 
I 81 I statements. I 

----------1 
11,7,10,15,20,25,30,80 IFORTRAN source statements. I 

1 ',6,", 16,21,26,31,36,ICommand, pro::rram, and 
I 41,46,51,61,71,81,91,1 compiler listings. 
1101,111,121,131 , 

11,10,16,31,36,41,46, 
I 69,72,80 

IMacro definitions. 
I 

1 
1 
I 
I 
I 
I 
I 
I 

11,6,11,16,21,26,31,36,IDocumentation. (Default CASEI 
I 41,46,51,61,71 I value is M.I I 

-------1 
12,4,7,10,13,16,19,22, IPL/I Source statements. I 
I 25,31,37,43,49,55,79,1 I 
I 80 I I 

1 (IMAGE setting is 
I CANON.) 

11,10,16,31,36,41,46, 
I 69,72,80 

11,10,16,31,36,.41,46, 
I 69,72,80 

17,10,15,20,25,30,80 

I 
I SCRIPT text processor input. I 
I (Default CASE setting is M.t I 

IUpdate files for assembler 
! language programs. 

IUpdate files for assembler 
I language programs. 

I 
I 

I 
I 
I 
I 

IVS BASIC source statements. I 
------1 

I 1,6,1',16,2',26,31,36,11S BASIC execution-time I 
I 41,46,51,61,71,81 ••• I files. (Trailing blanks arel 
1 131 I not truncated.) I 

that the ZONE, TRUNC, or VERIFY setting is equal to the current record length. 
that the LINEMODE setting is LEFT,. with serial numbers on the left. 

I 
I 
I 

.J 

Figure 21. Default EDIT Subcommand Settings for eMS Reserved Filetypes 

Appendix A: Reserved Filetype Defaults 345 



346 IB~ V~/370 cas Command and Macro Reference 



Appendix B. DOS/VS Access Method Servicesand 
VSAM Functions Not Supported in eMS 

Refer t~ the publication DOSLY~ Utili1ig§ !ffg§§ Me~hQQ ~~£!i£~§ for a 
description of access method services functions available under DOS/VS, 
and, therefore, under eMS. This knowledge of access method services is 
assumed throughout this publication. 

All of the DOS/VS access method services are supported by eMS, except 
for the following: 

• Non-VSAM data sets with data formats that are not supported by 
eMS/DOS (for example, BDAM and ISAM files are not supported). 

• The SHAREOP~IONS operand has no function in eMS. However, you should 
specify SHAREOP~IONS 3 in your DEFINE control statement for more 
efficient operations. When you specify SHAREOPTIONS 3, eMS does not 
execute the code that attempts to reserve and release system 
resources. 

I • The local Shared Resources Option is not supported by eMS/DOS. 

Appendix B: DOS/VS VSAM Functions Not Supported In eMS 347 



348 IB~ VM/370 CMS Command and Macro Reference 



Appendix C. OS/VS Access Method Servicesand 
VSAM Functions Not Supported in eMS 

In CMS, an OS user is defined as a user that has not issued the command: 

SET DOS ON (VSAr'll 

OS users can use all of the access method services functions that are 
supported by DOS/VS, with the following exceptions: 

• Non-vSAM data sets with data formats that are not supported by 
CMS/DOS (for example, BDAM and ISAM files are not supported). 

• The SHAREOP!IONS operand has no function in CMS. However, you should 
specify SHAREOPTIONS 3 in your DEFINE control statement for more 
efficient operation. When you specify SHAREOPTIONS 3, CMS does not 
execute the code that attempts to reserve and release system 
resources. 

• Do not use the AUTHORIZATION (entrypoint) operand in the DEFINE and 
AL~ER commands unless your own authorization routine exists on the 
DJS core image library, the private core image library, or in a CMS 
DOSLIB file. In addition, results are unpredictable if your 
authorization routine issues an OS SVC instruction. 

• The secondary space allocation parameter in the following DEFINE 
commands is not used by access method services nor DOS/VS VSAM: 
DEFINE SPACE, DEFINE USERCATALOG, and DEFINE CLUSTER with the UNIQUE 
parameter. However, you may code this parameter to make your control 
statement file compatible with an OS/VS VSAM control file. 

• The JS access method services GRAPHICS TABLE options and the TEST 
option of the PARM command are not supported. 

• The filename 
characters. 

in the FILE (filename) operands is limited to seven 
If an eighth character is specified, it is ignored. 

• The JS access method services CNVTCAT and CHKLIST commands are not 
supported in DOS/VS access method services. In addition, alIOS 
access method services commands that support the 3850 Mass Storage 
System are not supported in DOS/VS access method services. 

• Figure 22 is a list of as operands, by control statement, that are 
not supported by the CMS interface to DOS/VS access method services. 

If any of 
specified, the 
error message. 

the unsupported 
AMSERV command 

operands or commands in Figure 22 are 
terminates and displays an appropriate 

When you use the PRINT, EXPORT, IMPORT, IMPORTRA, EXPORTRA, and REPRO 
control statements for sequential access method (SAM; data sets, you 
must specify the ENVIRONMENT operand with the required DOS options (that 
is, PRIME DATA DEVICE, BLOCKSIZE, RECORDSIZE, or RECORDFJBMAT). You 
must have previously issued a DLBL for the SAM file. 

AMSERV can write SAM data sets only to a CMS disk, but can read them 
from DOS, as, or CMS disks. 

Appendix C: OS/VS VSAM Functions Not Supported 349 



r -----, 
I OS Access Method Services 
I control statement 
I 
I AV~ER 

I 
1 
1 
1 
I BLDINDEX 
I 
1-----
1 DEFINE 
1 
1 
1 
I 
I 
I 
I 

Operands Not Supported in :MS 

EMPTY/NOEMPTY 
SCRATCH/NOSCRATCH 
DESTAGEWAIT/NODESTAGEWAIT 
STAGE/BIND/CYLINDERFAULT 

INDATASET 
OUTDATASET 

ALIAS 
EMPTY/NOEMPTY 
GENERATIONDATAGROUP 
PAGESPACE 
SCRATCH/NOSCRATCH 
DESTAGEWAIT/NODESTAGEWAIT 
STAGE/BIND/CYLINDERFAULT 
TO/FOR/OWNERI 

1----------------------------- ------
1 DEL ETE 
I 
I 
I I 

ALIAS 
GENERATIONDATAGROUP 
PAGESPACE 
SCRATCH/NO SCRATCH 

1 , 
I , , 
I 
1 
I , , 
I , 
1 , 
I 
1 , 
I 
I , 
I , 
1 , 

I 1-----------
I EXPORT I OUTDATASET 

----I , 
I 1-------------------------
I IMPORT I INDATASET 
I I OUTDATASET 
, I IMPORTA 
I 1------------
I LISTC~T I 
I 1 
I I 
1 I 
I I 

ALIAS 
GENERATIONDATAGROUP 
LEVEL 
OUTFILE2 
PAGESPACE 

,------ 1---
, PRINT I INDATASET 
, , OUTFILE2 
1---------------------, ----------
I REPRO , IND ATASET 
I I OUTDA TASET 
1 1-----
I VERIFY I DATASET 
1====================================================================== 
liThe TO/FOR/OWNER operands are supported for the access method 
I servi=es interface, but are not supported for the DEFINE NONVSAM 
1 control statement. 
12The OUTFILE operand is supported by the access method services 
1 interface, but is not supported for the LISTCAT and PRINT control 
, sta tements. 

I 
I 
I , 
1 , , , , , 

L ~ 

Figure 22. os Access Method Services Operands Not Supported in CMS 

350 IBM VM/3 7 0 CMS Command and Macro Reference 



Index 

The entries in this Index are accumulative. They list additions to this publication by 
the following VM/370 System Control Program Products: 

• VM/370 Basic System Extensions, program Number 5748-XX8 
• VM/370 System Extensions, Program Number 5748-XE1 

However, the text within the publication is not accumulative; it only relates to the one 
SCP program product that is installed on your system. Therefore, there may be topics and 
references listed in this Index that are not contained in the body of this publication. 

./ * (comments) UPDATE control statement 
206-208 

./ D (DELETE) UPDATE control statement 205 

./ I (INSERT) UPDATE control statement 204 

./ R (REPLACE) UPDATE control statement 
205 

./ S (SEQUENCE) UPDATE control statement 
203-204 

.BX (BJX) format word (.2I~~=XX8) 
342.2,342.3 

.BX (BOX) format word (.2I~~-XE1) 
342.2,342.3 

.CM (COMMENT) format word (2748-XX~) 
342.2,342.5 

.CM (COMMENT) format word (274~-X]1) 
342.2,342.5 

.CS (CONDITIONAL SECTION) format word 
(.2148::!!§) 342.2,342.6 

.CS ~ONDITIONAL SECTION) format word 
(.21~!1:.!£!1) 342.2, 342. 6 

.FO (FORMAT MODE) format word (5748-XX~) 
342.2,342.7 

.FO (FORMAT MODE) format word (5748-X£!1) 
342.2,342.7 

.IL (INDENT LINE) format word (5748-XX~) 
342.2,342.8 

.IL (INDENT LINE) format word (5748-X£!1) 
342.2,342.8 

.IN (INDENT) format word (.21~8-XX8) 
342.2,342.9 

.IN (INDENT) format word (5748-XE1) 
342.2,342.9 

.OF (OFFSET) format word (.2748-XX~) 
342.2,342.10 

.OF (OFFSET) format word (.2148-XE1) 
342.2,342.10 

.SP (SPACE LINES) format word (5748-X!~) 
342.2,342.11 

.SP (SPACE LINES) format word (57~8-X£!1) 
342.2,342.11 

• TR (TRANSLATE CHARACTER) format word 
(.2148::!!§) 342.2,342.12 

.TR (TRANSLATE CHARACTER) format word 
(.2148::!£!1) 342.2,342.12 

S$ special variable 300 
in SIF control statement 289-290 
settinq 280-281 

S* special variable 300 
in &IF control statement 289-290 
setting 280-281 

SARGS control statement, description 
279-280 

&BEGEMSG control statement 
ALL operand 280-281 
description 280-281 

&BEGPUNCH control statement 
ALL operand 281 
description 281 

&BEGSTACK control statement 
ALL operand 282 
description 282 
FIFO operand 282 
LIFO operand 282 

&BEGTYPE control statement 
ALL operand 282-283 
description 282-283 

&CONCAT built-in function, description 298 
SCONTINUE control statement 283 

used with SERROR control statement 286 
&CONTROL control statement 

ALL operand 284-285 
CMS operand 284-285 
description 284-285 
ERROR operand 284-285 
MSG operand 284-285 
NOMSG operand 284-285 
NOPACK operand 284-285 
NOTIME operand 284-285 
OFF operand 284-285 
PACK operand 284-285 
TIME operand 284-285 

&DATATYPE built-in function, description 
298 

SDISK* special variable 301 
&DISK? special variable 301 
SDISKx special variable 301 
SDOS special variable 301 
SEMSG control statement, description 285 
SEND control statement 286 

with &BEGEMSG control statement 280-281 
with &BEGPUNCH control statement 281 
with &BEGSTA:K control statement 282 
with &BEGTYPE control statement 282-283 

SERROR control statement, description 286 
&EXEC special variable 301 
&EXIT control statement, description 287 
SGLOBAL special variable 301 
SGLOBALn special variable 302 

Index 351 



&GOTO control statement 
description 288-289 
TOP operand 288-289 

&HEX control statement 
description 288-289 
OFF operand 288-289 
ON opeLand 288-289 

&IF control statement, description 289-290 
&INDEX special variable 302 

setting 280-281,291-292 
&LENGTH blilt-in function, description 298 
&LINENUM special variable 302 
&LITERAL built-in function, description 

299 
&LOOP control statement, description 

290-291 
&n special variable 300 
&PUNCH control statement, description 291 
&READ ~ontrol statement 

ARGS operand 291-292 
description 291-292 
VARS operand 291-292 

&READFLAG special variable 302 
t es tin g 29 1- 292 

&RETCODE special variable 302 
&SKIP control statement, description 

292-293 
&SPACE control statement, description 293 
&STACK control statement 

description 294 
FIFO operand 294 
LIFO operand 294 
stacking CHANGE subcommand 221-223 
stacking INPUT subcommand 234-235 
stacking REPLACE subcommand 244 

&SUBSTR blilt-in function, description 299 
&TIME control statement 

d escr ipt ion 295 
OFF operand 295 
ON opeLand 295 
RESET operand 295 
TYPE operand 295 

&TYPE control statement, description 296 
&TYPEFLAG special variable 302 
o special variable 300 

$DUP edit macLo 260 
$LISTIO EXEC file 

appending information to 118 
creating 118 
format 118-119 

$MOVE edit macro 261 
DOWN operand 261 
TO oper and 261 
UP operand 261 

* (asterisk) 
entered in fileid 
in ACCESS command 

5 
16 

218 in ALTER subcommand 
in CHANGE subcommand 221-223 
in COPYPILE command 35-44 

examples 39 

in DELETE subcommand 226 
in DLBL command 60 
in DSERV command 77 
in EDIT command 79-80 
in FILEDEF command 89 
in GETFILE subcommand 232 
in LISTDS command 110 
in LISTDS command (274~::!!!H 110.4 
in LISTDS command (2748::!~1) 110.4 
in LISTFILE command 115 
in PRINT command 139 
in PUNCH command 144 
in READCARD command 155 
in RENAME command 160 
in REPEAT subcommand 243 
in SCROLL/SCROLLUP subcommand 247-248 
in START command 175 
in STATE and STATEW commands 177 
in TAPPDS command 194 
in TRUNC subcommand 252-253 
in TYPE subcommand 253-254 
in VERIFY subcommand 255 
in ZONE subcommand 257-258 
with DISK option, of CMS QUERY command 

151 
with RESET option 

of INCLUDE command 106 
of INCLUDE command (2148-!!!D 106.3 
of INCLUDE command (2148~!~1) 106.3 
of LOAD command 120 

* (comment) command 3 
*COPY statement 131 

I (diagonalt, used in ACCESS command 16 

%, used to pass null argument to EXEC 
procedure 300 

? 

A 

subcommand, description 258 
used with DSN option of DLBL command 61 
used with FILEDEF DISK option 95 

(equal sign) 
in COPYFILE command 35-44 

examples 39 
in RENAME command 160 

subcommand (§gg REUSE subcommand) 

A option of LISTIO command 118 
ABBREV option 

of CMS QUERY command 148-149 
of CMS SET command 168 

relationship to SYNONYM command 
184-185 

352 IBM VM/370 CMS Command and Macro Reference 



abbr eviat ion 
of command names 4-6,168,184 

gueLying acceptability of 148-149 
setting acceptability of 168 

used with synonyms 184-185 
abnormal termination (abend) 

effect on DLBL definitions 61 
effect on FILEDEF definitions 93 
encountered by CMSBATCH command 32 
entering debug environment after 263 

ACCESS command 
description 16-19 
ERASE option 16,18 
examples 17 
first command after 1Pt 16 
NODISK option 16 
NOPROF option 16 
usage with DEFINE command 18 

access method services 
allocatinq VSAM space 68-69 

in CMS/DOS 64-65 
control statements, operands not 

suppoLted in CMS (OS users) 349-350 
determine free space extents for 111 
invokinq in CMS 20-22 
LISTING file created by 20 
restrict ions 

for DOS/VS users 349 
for DOS/VSE users (5748-XX8) 349 
for DOS/VSE users C2748-X]j) 349 
for OS/VS users 349-350 

A DD opt ion 
of MACLIB command 130 
of TXTLIB command 197 

A-disk, accessed after IPLing CMS 17 
ALIGN option of ASSE~BLE command ~o 
alignment of boundaries in assembler 

program statements 26 
ALL 

opeL and 
of &BEGEMSG control statement 

280-281 
of &BEGPUNCH control statement 281 
of &BEGSTACK control statement 282 
of &BEGTYPE control statement 

282-283 
of &CONTROL control statement 

284-285 
of SEPIAL subcommand 248-249 

option 
of GENMOD command 102 
of LISTIO command 118 

ALL opt ion 
of HELP command (21~~=!!~) 106.1 
of HELP command C21~~=!]l} 106.1 

ALLOC option of LISTFILE command 115 
ALOGIC option of ASSEMBLE command 24 
ALTER subcommand 

description 218 
effect of zone set ti ng 257- 258 

AMSERV 
command 

description 
LISTING file 
PRINT option 
TAPIN option 
TAPaUT option 

20-22 
20 
20 
20 

20 

filetype 21 
default editor settings 345 

APP EN D option 
of COPYFILE command 37 
of LISTFILE command 115 
of LISTIO command 118 

ARGS operand of &READ control statement 
291-292 

arguments 
on RUN command 165 
on START command 175 
passed to EXEC procedure 85,279-280 

initializing 279-280 
passing to nested EXEC procedures 

302 
reading from terminal or console 
stack 291-292 

testing how many were passed 302 
ASA carriage control characters 330-331 
ASAP operand of HNDINT macro 316-317 
ASSEMBLE 

assembler input ddname 27 
command 1-2 

ALIGN option 26 
ALOGIC option 24 
BUFSIZE option 26 
DECK option 25 
description 23-28 
DISK option 25 
ESD option 24 
FLAG option 24 
LIBMAC option 24 
LINECOUN option 24 
LIST option 24 
listing control options for 24 
MCALL option 24 
MLOGIC option 24 
NOALIGN option 26 
NOALOGIC option 24 
NODECK option 25 
NOESD option 24 
NOLIBMAC option 24 
NOLIST option 24 
NOMCALL option 24 
NOM LOGIC option 24 
NONUM option 25 
NOOBJECT option 25 
NOPRINT option 25 
NORENT option 26 
NORLD option 24 
NOSTMT option 26 
NOTERM option 26 
NOTEST option 25 
NOXREF option 25 
NOYFLAG option 26 
NUMBER option 25 
OBJECT option 25 
PRINT option 25 
RENT option 26 
RLD option 24 
STMT option 26 
SYSPARM option 26-27 
SYSTERM listing 25 
TERMINAL option 26 
TEST option 25 
XREF option 25 
YFLAG option 26 

Index 353 



filetype 
created by TAPPDS command 194 
default editor settinqs 345 
used as input to assembler 23-28 

assembler 
conditional assembly statements, listing 

24 
overriding CMS file defaults 21 
using under CMS 1-2,23-28 

ASSG N command 
DEN option 30 
description 29-31 
IGN option 30 
LOWCASE option 30 
PRINTER option 29 
PUNCH option 29 
READER option 29 
SYSxxx option 29 
T APn option 29 
TERMINAL option 29 
TRTCH option 30 
UPCASE option 30 
1TRACK option 30 
9TRACK option 30 

assignment statement 218-219 
assignment s 

logical unit, listing 118 
system and programmer, unassigning 158 

attention interruption, causing 9 
ATTREST operand of RDTERM macro 335-336 
AUTO option 

of INCLUDE command 101 
of LOAD command 121 

automatic 
read function, setting 168-169 
save function of CMS editor 

canceling 219 
invokinq 219 

AUTOREAD option of CMS SET command 168-169 
AUTOSAVE subcommand 

description 219 
OFF operand 219 

auxiliary directory, creating 100 
AUXPROC option of FILEDEF command 93 

B 
backspace 

characters, how editor handles 233-234 
key, used with OVERLAY subcommand 239 

BACKWARD subcommand, description 220 
BASDATA filetype, default editor settings 

345 
base address, for debugqing, set with 

ORIGIN subcommand 211 
BASIC filetype, default editor settings 

345 
BCD characters, convertinq to EBCDIC 31 
BDAM, files, specifyinq in CMS 90 
blank lines, displaying at terminal during 

EXEC processing 293 
blan ks 

as delimiters 2 
FIND subcommand 228-229 

as delimiters <'~1~§=!1§) 2- 3 
as delimiters (214~=X];1) 2-3 
displaying in LINEDIT message text 322 

overlaying characters with 239 
trailing 

removing with WRTERM macro 341-342 
truncating from variable-length file 

242 
blip 

characters 
for virtual machine 166 
for virtual machine, displaying 

141-148 
function 

querying setting of 141-148 
setting 166 

BLIP option 
of CMS QUERY command 141-148 
of CMS SET command 166 

BLKCT operand 
of TAPESL macro (~1!~=!!~) 338.2 
of TAPESL macro (~74~=!~1) 338.2 

BLKSIZE option 
of FORMAT command (~1!~=!!§) 91 
of FORMAT command (~1!§=!~1) 97 
of TAPE command (~748-!!~) 189 
of TAPE command (5748-!~1) 189 

BLKSIZE option of FILEDEF command 91 
BLOCK option of FILEDEF command 91 
blocksize, specifying with FILEDEF command 

93 
BLP operand 

of FILEDEF command (~74~=!!~) 95 
of FILEDEF command (~1~§=!~1) 95 

books 
from DOS/VS source statement libraries, 
copying 113 

from DOS/VSE source statement libraries 
cop ying <'214~=!!~) 113 
copying (214B-X~1) 113 

BOTTOM subcommand, description 220 
boundary alignment, of statements in 
assembler program 26 

BOX (.BX) format word (~1!~=!!§) 
342.2,342.3 

BOX (.BX) format word (214§=!~1) 
342.2,342.3 

BREAK subcommand, description 264 
breakpoints, setting 264 
BSF, tape control function 188 
BSIZE operand of FSCB macro 304-305 
BSIZE operand of FSCB macro (~1!~=!!~) 

304. 1 
BSIZE operand of FSCB macro (~I!~=!~l) 

304. 1 
BSR, tape control function 188 
BUFFA operand of LINEDIT macro 
buffer 

size 
controlling for assembler 
for VSAM programs 62 
specifying with FSCB macro 
specifying with FSCB macro 

304.1 
specifying with FSCB macro 

304.1 

328 

26 

304-305 
(~l!~~X!~) 

(21~~::!~.!) 

specifying for RDTERM macro 335-336 
specifying for read/write operations, 

FSCB macro 304-305 
to copy LINEDIT message text 328 

354 IBM VM/370 CMS Command and Macro Reference 



BUFFER operand of FSCB macro 304-305 
BUFSIZE option of ASSEMBLE command 26 
BUFSP option, of DLBL command 62 
BUFSP option of DLBL command 62 
built-in functions, EXEC 297 

C 
CANON operand of IMAGE subcommand 233-234 
card reader 

reading files from, BEADCABD command 
155 

reading records from, RDCARD macro 333 
carriage control characters 

ASA, slmmary 330-331 
handling by PRINT command 139,140 
machine code 330-331 

CASE sllbcommand 
description 221 
M operand 221 
U operand 221 

CAT opt ion 
of DLBL command 62 

example of usage in CMS/DOS 66-67 
CAT option of DLBL command, example of 

usage 69 
catalogs (~gg VSAM catalogs) 
CAW 

operand of SET subcommand 273 
subcommand, description 265 

CAW (channel address word) 
changing in debug environment 273 
displaying in debug environment 265 
format 265 

CC option, of PRINT command 139 
CD option of DSERV command 77 
CHANGE 

option 
of DLBL command 61 
of FILEDEF command 91 
of LABELDEF command (2748-X!~!> 110.1 
of LABELDEF command t2148-X~1) 110. 1 

subcommand 
description 221-223 
effect of zone setting 257-258 
stacking with &STACK control 
statement 221-223 

channel address word (§~~ CAW (channel 
address word» 

channel status word (see CSW (channel 
status word» 

CHAR, reslllt of &DATATYPE built-in function 
298 

character 
altering 

with ALTER subcommand 218 
with CHANGE subcommand 221-223 
with COPYFIIE command 43 

data 
deter min ing if token contains 298 
displaying with LINEDIT macro 

323-325 
determining how many in token 298 
for blip string 

displaying 147-148 
settinq 166 

overlaying, with OVERLAY subcommand 239 
sets, used in CMS 4 
special, changing on 3270 221-223 
strings 

assigning to variable symbols 
278-279. 

changing 221-223 
copying 42 
extracting in EXEC procedure 299 
locating 237 

valid in CMS command lines 4 
CLEAR option 

of DLBL command 61 
of FILEDEF command 90 
of INCLUDE command 106 
of INCLUDE command (~1~8-!!~) 
of INCLUDE command (21~8-!El) 
of LABELDEF command (2148-!!~) 
of LABELDEF command (2148=!Ell 
of LOAD command 120 
of SYNONYM command 184 

CLB operand 

CMS 

of HNDEXT macro 315 
of HNDINT macro 316-317 
of HNDSVC macro 317-318 

106.3 
106.3 

110 
110 

operand of &:ONTROL control statement 
284-285 

option of DLBL command 61 
subcommand, description 224 

CMS (Conversational Monitor System) 1 
accessing with no virtual disks attached 
to virtual machine 16 

basic description of 1-2 
batch facility (§ee-CMS batch facility) 
command language, basic description 1-2 
commands (~g~-CMS commands) 
editor 2 
files (~g~ file) 
loader (§gg loader) 
macros (§gg CMS macro instructions) 
subset (§gg CMS subset) 

CMS batch facility 32 
halting 213 

CMS commands 
ACCESS i 6- i 9 
AMSEBV 20-22 
ASSEMBLE 23-28 
ASSGN 29-31 
CMSBATCH 32 
COMPARE 33 
CO P Y FI L E 35- 44 
CP 45 
DDB 46-56 
DEBUG 57 
DISK 58 
displaying during EXEC processing 

284-285 
DL BL 60-71 
DOSLIB 72-73 
DOSLKED 74-76 
DS EBV 77-78 
EDIT 79-80 
entering 2 
entering by synonym 184 
ER ASE 81 
ES EBV 83 

Index 355 



EXEC 85 
FETCH 87 
FILEDEF 89 
FORMAT 97 
GENDIRT 100 
GENMOD 101 
GLOBAL 104 
halting execution 214 
HELP (21~~=!!~) 106-106.2 
HELP (2I~~=Z~1) 106-106.2 
INCLUDE 106 
INCLUDE (2I~~=!Z~) 
INCLUDE (21~~=Z]1) 
LABELDEF (2I~~=ZZ~) 
LABELDEF (2I!~=Z~1) 
LISTDS 110 

106.3 
106.3 

110-110.3 
110-110.3 

LISTDS (2I~~=ZZ~) 110.4 
LISTDS (2I~~=Z~1) 110. 4 
LISTFILE 114 
LISTFILE (2I~~=!Z~) 114.1 
LISTFILE (2I~~=Z~1) 114. 1 
LISTIO 118 
LOAD 120 
LOADMOD 129 
MACLIB 130 
MODMAP 133 
MOVEFILE 134 
not fOL qeneral users 7 
nucleus-resident 1 
OPTION 137 
PRINT 139 
PSERV 142 
PUNCH 144 
QUERY 147 
READCARD 155 
RELEASE 158 
RENAME 160 
RSERV 162 
RUN 164 
search order 7 
SORT 171 
SSERV 173 
START 175 
STATE 117 
STATEW 111 
summary 10-13 
SVCTRACE 119 
SYNONYM 181 
TAPE 181 
TAPEMAC 192 
TAPPDS 194 
transient area 7 
TXTLIB 191 
TYPE 199 
UPDATE 201 
valid in CMS subset 224 

CMS EXEC file 
appendinq information to 115 
creating 114.1 
format 115 

CMS file (see file) 
CMS Immediate-commands (§~~ Immediate 

commands) 
CMS macro instructions 303 

COMPswr 304 
entering operands on 303 
FSCB 304-305 
FSCBD 305 

FSCLOSE 306 
FSCLOSE (21~~::!!~) 306.1 
FSCLOSE (21!~::!El) 306.1 
FSERASE 301 
FSOPEN 308-309 
FSPOINT (21~~::!!~) 309 
FSPOINT (21!~::!~1) 309 
FSREAD 309-310 
FSSTATE 311-312 
FSWRITE 312-314 
HNDEXT 315 
HN DINT 316- 317 
HNDSVC 317-318 
LINEDIT 319-329 
PRINTL 330-331 
PUNCHC 331-332 
RDCARD 333 
RDTAPE 334-335 
RDTERM 335-336 
REGEQU 336- 3 37 
TAPECTL 337-338 
TAPESL (21!~::!X~) 338.1-338.2 
TAPESL (21!8-!~1) 338.1-338.2 
WAITD 339 
WAITT 340 
WRTAPE 340-341 
WRTERM 341-342 

CMS subset 
entering 224 
returning to edit mode 244-245 

CMSAMS, saved system name 169 
CMSBATCH command 

description 32 
recursive abends encountered by 32 

CMS/DOS 
beginning program execution in 87 
defining files for 60 
environment 

description 2 
initializing 169 
leaving 169 
testing whether it is active 152.1 
testing whether it is active, in EXEC 
procedure 301 

CMSDOS, saved system name 169 
CMSLIB, assembler macro library ddname 21 
CMSSEG, saved system name 169 
CMSUT1 file 

created by READCARD command 155 
created by TAPE LOAD command 190 
created by TAPPDS command 194 

CMSVSAM, saved system name 169 
COBOL 

compiler 
querying options in effect for 154 
specifying options for in CMS/DOS 

138 
filetype, default editor settings 345 

COL option 
of COMPARE command 33 
of TYPE command 199 

COLOR operand of WRTERM macro 341-342 
columns 

comparing disk files by 33 
displaying particular 

with TYPE command 199 
with TYPE subcommand 253-254 

356 IBM VM/310 CMS Command and Macro Reference 



of data, copying 42 
spec ify inq 

for copy operations 42 
for verification setting 255 
for zone setting for edit session 

257- 25 8 
COL1 option of TAPPDS command 195 
command 

abbreviatinq 4-6 
defaults, shown by underscore in command 

format box 5 
entering 2 
environment 

eMS 1-2 
CP 1-2 
definition 1-2 

execution, ha1tinq 214 
keyboard differences in entering 9 
language, CMS 1-2 
languages, VM/370 1 
modules, creatinq 101 
operands 3 
options 3 
stacking in console buffer 9 
truncating 4-6 
valid in CMS subset 224 
when to enter 9 

COMMENT (.CM) format word (2148-X!~) 
342.2,342.5 

COMMENT (.CM) format word (2148-X~1) 
342.2,342.5 

comments, in CMS command lines 3 
COMP 

operand, of LINEDIT macro 322 
option 

of DOSLIB command 72-73 
of FETCH command 87 
of MACLIB command 130 

COMPARE command 
COL opt ion 33 
description 33 

comparison operators, in EXEC procedure 
289-290 

compilers, usinq under CMS 1-2 
components, of VM/370 1 
COMPSWT macro, description 304 
CONCAT option, of FILEDEF command 92 
conditional execution 

&IF control statement 289-290 
&LOOP control statement 290-291 

CONDITIONAL SECTION (.CS) format word 
(.2148=KKfH 342.2,342.6 

CONDITIONAL SECTION (.CS) format word 
(.21.9.~::XE1) 342.2,342.6 

console 
read, after CMS command execution, 

controlling 168-169 
stack 

reading data in EXEC procedure 
291-292 

stacking lines, &BEGSTACK control 
statement 282 

stacking lines, &STACK control 
statement 294 

stacking lines, STACK subcommand 
250-251 

testing whether it is empty 302 
CONSOLE, value of &READFLAG special 
variable 302 

constants 
a1 tering 

with LOAD command 126-127 
with STORE subcommand 274 

continuation character 
on COPYFILE specification list 42 
on COPYFILE translation list 43 

control program (§~~-CP (control program) 
control statements 

for access method services 21 
for DDR command 47-52 
for UPDATE command 203 

conventions, notational 4-6 
Conversational Monitor System (§~~CMS 

(Conversational Monitor System» 
COpy 

filetype 
adding to MACLIBs 131 
created by SSERV command 173 

function statement 
of DDR command 49-52 
of DDR command (.21~~-XX~) 49-51 
of DDR command (21~~-XE1) 49-51 

COPYFILE command 
APPEND option 37 
description 35-44 
EBCDIC option 37 
examples 38 
FILL option 37 
FOR option 36 
FRLABEL option 36 
FROM option 36 
incompatible options 38 
LOWCASE option 37 
LRECL option 37 
NEWDATE option 36 
NEWFILE option 36 
NOPROMPT option 36 
NJSPECS option 36 
NOTRUNC option 37 
NOTYPE option 36 
OLDDATE option 36 
OVLY option 36 
PACK option 37 
PROMPT option 36 
RECFM option 37 
REPLACE option 36 
SINGLE option 38 
specification list 42 
SPECS option 36 
TOLABEL option 36 
TRANS option 37 
TRUNC option 37 
TYPE option 36 
UNPACK option 37 
UPCASE option 37 
usage 38 

Index 357 



core image 
libraries (DOS/VS), displaying 
directories of 77 

libraries (DOS/VSE) 
displaying directories of (2748-!!~) 

77 
displaying directories of (2748-X~1) 

77 
phases, in CMS/DOS 72-73 

COUNT option of DDR command TYPE/PRINT 
function control statement 52 

CP (control pro~ram) 
basic description 1 
commands (§gg CP commands) 

CP commands 
description 45 
executing 

in :MS command environment 45,168 
in EXEC procedure 45 
in jobs for CMS batch facility 45 
with LINEDIT macro 327 

implied 168 
w hen to use 45 

CRDTE operand 
of LABELDEF command (2148-XX~) 110.1 
of LABELDEF command (21~8-X~1) 110.1 

cross-reference table, assembler, listing 
25 

CSECTs, duplicate, for LOAD command 122 
CSW 

operand of SET subcommand 273 
subcommand, description 266 

CSW (channel status word) 
changing in debug environment 273 
displayinq in debug environment 266 
format 266 

CTL option, of UPDATE command 209-210 
CTL option of UPDATE command 202 
current line pointer 

position after deleting lines 226 
posit ioninq 

at top of file 252 
BACKWARD subcommand 220 
based on character string 237 
BOTTOM subcommand 220 
DOWN subcommand 226-227 
FIND subcommand 228-229 
FORWARD subcommand 231 
LOCATE subcommand 237 
NEXT subcommand 238 
nnnnn subcommand 259 
UP subcommand 254 

cylinder 
extents for VSAM files 68-69 

in CMS/DOS 64-65 
on virtual disk 

counting number of cylinders 97 
counting number of cylinders 
(21~~=!!~) 98 

counting number of cylinders 
(21~~=!1!1) 98 

resetting number of cylinders 97 
resetting number of cylinders 
(21~~=!!~) 98 

resetting number of cylinders 
(21~H~=X~1) 98 

D 
DASD Dump Restore (DDR) program, invokin~ 
via DDR command 46-56 

data 
displaying at terminal 

with &BEGTYPE control statement 
282-283 

with &TYPE control statement 296 
overlaying in file 36 

data sets, defining with FILEDEF command 
95 

DATE option of LISTFILE command 115 
DD (data definition), simulating in CMS 
D-disk, accessed after IPL of CMS 17 
ddnames 

defining 
with DLBL command 60 
with FILEDEF command 89 

entering tape ddnames for AMSERV 21 
for DLBL command, restrictions for OS 
users 66-67 

relating to :MS file 89 
to identify VSAM catalogs 69 

in CMS/DOS 66-67 
used by assembler 27 
used in CMS/DOS 

for DOS/VS libraries 
for DOS/VSE libraries 
for DOS/VSE libraries 

used in MOVEFILE command 
DDR command 

control statements, entering 47-52 
COpy function statement 49-52 
COpy function statement (21~~=!!~) 

49-51 
COpy function statement (21~~=!1!1) 

49-51 
COUNT option of TYPE/PRINT function 
control statement 52 

description 46-56 
DUMP function statement 49-52 
example of TYPE/PRINT output 54 
GRAPHIC option of TYPE/PRINT function 
control statement 52 

HEX option of TYPE/PRINT function 
control statement 52 

INPUT control statement 
PRINT function statement 
RESTORE function statement 
SYSPRINT control statement 
TYPE function statement 52 

47-49 
52 

49-52 
49 

DEBUG 
command 2 

description 57 
subcommands 

BREAK 264 
CAW 265 
CSW 266 
DEFINE 267 
DUMP 268 
GO 269 
GPR 270 
HX 270 
ORIGIN 271 
PSW 272 
RETURN 272 
SET 273 

89 

63 
63 

":)£:0 
..JJU 

TDU !Tal /":)"7/\ ""M~ r"'",_," __ ~ 
\",L.t oJ ""VlU1Uo.,U.U and Macro 

T"'I_& _____ _ 

J.. U "1 W L! I ..) , v nO::J..cJ..tu",e 



STORE 274 
x 275 

debug environment 2,57 
enterinq 

via breakpoint 263 
via DEBUG command 263 
via external interruption 263 

leaving 
with GO subcommand 269 
with HX subcommand 270 
with RETURN subcommand 272 

setting oriqin value 271 
decimal 

convertinq to EBCDIC~ LINEDIT macro 
323-325 

convertinq to hexadecimal, LINEDIT macro 
323-325 

DECK option 
of ASSEMBLE command 25 
of OPTION command 138 

DEFINE, s~bcommand, description 267 
DEL option 

of DOSLIB command 72-73 
of MACLIB command 130 
of TXTLIB command 197 

DELETE 
control statement, for UPDATE command 

205 
subcommand, description 226 

delimiters 
on CHANGE subcommand 221-223 
on command line 3 
on DSTRING subcommand 227 
on LOCATE subcommand 237 

DEN option 
of ASSGN command 30 
of FILEDEF command 92 
of TAPE command 189 
of TAPE command (~1!~~!!~) 190 
of TAPE command (~I~~~!~l) 190 

density of tapes 
specifyinq 189 
specifyinq (~l!~~!.X~) 190 
specifyinq (~1~8-!~1) 190 

DESC option 
of HELP command (2I~.§~!X~J 106.1 
of HELP command (21!~~!~1) 106.1 

DET option of RELEASE command 158 
DETACH command 158 
device types 

default attributes for MOVEFILE command 
136 

default attributes for MOVEFILE command 
(~l!~=XX~) 136 

default attributes for MOVEFILE command 
(21!!~=X~1) 136 

valid for FILEDEF command options 90 
valid for FILEDEF command options 
(~l!!~:!X~) 90. 1 

valid for FILEDEF command options 
C21!!~=X~1) 90.1 

devices, waitina for interruptions 339 
DIRECT, filetype, default editor settings 

345 
directories 

CMS auxiliary 100 
CMS file, writing to disk 158 

of DOS/VS libraries 
obtaining information from 77 
sorting 77 

of DOS/VSE libraries 
obtaining information from (~1~§=!!~) 

77 
obtaining information from {21~§=K~1} 

77 
sorting (~1~§-XX8) 77 
sorting (~1~~-XE1) 77 

discontiguous, shared segment, saved system 
names 169 

DISK 
command 

DUMP option 58 
LOAD option 58 

option 
of ASSEMBLE command 25 
of CMS QUERY command 150-151 
of DOSLIB command 72-73 
of DOSLKED command 74 
of DSERV command 77 
of FILEDEF command 90 
of FILEDEF command, examples 94 
of FILEDEF command, interactive use 

disks 

of 95 
of M!CLIB command 131 
of PSERV command 142 
of RSERV command 162 
of SSERV command 173 
of TAPE command 189 
of TXTLIB command 197 
of UPDATE command 202 

accessing 16-19,17 
A-disk 17 
D-disk 17 
detaching 158 
determining 

if disk is accessed, in EXEC 
procedure 301 

if disk is CMS as or DOS, in EXEC 
procedure 301 

if disk is full 150-151 
read/write status of 150-151 

DOS, accessing 18 
dumping to and restoring from tape 

46-56 
erasing files from 81 
files (§g~ file) 
formatting 97 
as, accessing 18 
read/write, sharing 18 
releasing 158 

effect on logical unit assignments in 
CMS/DOS 30 

in eMS/DOS 158 
when DLBL definitions are active 

66-67 
S-disk 17 
storage capacity, displaying status of 

150-151 
writing files to 
writing labels on 
writing labels on 
wr iting labels on 
y- disk 17 

228 
97 
(~l~~::KX~) 
(~1~~::!!11) 

98 
98 

Index 359 



DISP 
operand of LINEDIT macro 327 
option of FILEDEF command 92 

display 
mode, of CMS editor 79-80 
terminal 

display mode 230-231 
line mode 79-80 

DISPLAY operand of FORMAT subcommand 
230-231 

DLBL 
command. 

CAT option 62 
CHANGE option 61 
CLEAR option 61 
CMS option 61 
ddname restrictions (OS users) 66-67 
description 60-11 
displaying volumes on which 

multivolume data sets reside 65-66 
displaying VSA~ data set extents 

64.1 
DSN option 61 
DUMMY option 60 
enterinq SYSxxx operand 63 
establishing file definitions for 

STATE command 111 
EXTENT option 61 
MULT option 61 
NOCHANGE option 61 
PERM option 61 
SYSxxx option 61 
to identify files for AMSERV 21 
VSAM option 61 
when to use (OS users) 66-67 

definitions 
cleared by ESERV EXEC 83 
clearing 61,66-67 
displayinq 62,152-153 
displayinq (21~~=XX~) 152,1 
displaying (2148=X~1) 152.1 

option 
of CMS QUERY command 152-153 
of CMS QUERY command (5748-XX8) 

152.1 
of CMS QUERY command (57~8-XE1) 

152.1 
DMSLDR SYSUT1 file 121 
DOS (Disk Operating System) 

disks, accessinq 18 
files 

listinq information 110 
listinq information (5748-X!~) 
listing information (~748-X]1) 
specifyinq FILEDEF options for 

DOS option 
of CMS QUERY command 152.1 
of CMS SET command 169 
of GENMOD command 102 

DOSLIB 
command 

COMP option 
DEL option 
description 
DISK option 
MAP option 

72-73 
72-73 

72-73 
72-73 

72-73 

110.4 
110.4 
93 

PRINT option 72-73 
TERM option 72-73 

files 73 
adding phases to 74-75 
fetching phases from 81 
identifying for fetching 104 
listing information about members 
72-73 

output filemode 74-16 
size considerations 73 
space considerations 74-75 
which DOSLIBs will be searched 

153-154 
option 

of CMS QUERY command 153-154 
of GLOBAL command 104 

DOSLK ED command 
description 
DISK option 
PRINT option 
TERM option 

DOSLN CNT option 

74-16 
7~ 
14-75 

74-75 

of CMS QUERY command 154 
of CMS SET command 169 

DOSLNK 
filetype 

CMS/DOS linkage editor input 1~-16 
creating 14-15 

DOSPART option 
of C~S QUERY command 154 
of CMS SET command 169-170 

DOT operand of LINEDIT macro 321-322 
DOWN 

operand of $MOVE edit macro 261 
subcommand, description 226-227 

DSECT, for file system control block (FSC8) 
305 

DSERV command 
CD option 77 
description 77-78 
DISK option 77 
PD option 77 
PRINT option 11 
RD option 77 
SD option 77 
SO RT option 77 
TD option 77 
TERr1 option 77 

DSN option of DLBL command 61 
DSORG option of FILEDEF command 92 
DSTRING subcommand, description 227 
DUMr1Y option 

of DLBL command 60 
restrictions for as VSAM user 62 
using in eMS/DOS 63 

of FILEDEF command 90 
DUMP 

function statement, of DDR command 
49-52 

option 
of DISK command 58 
of OPTION command 138 
of TAPE command 188 

subcommand, description 268 
DUP option 

of INCLUDE command 101 
of LOAD command 121,122 

360 IBM VM/370 CMS Command and Macro Reference 



duplicate CSECTs, for LOAD command 122 
D V a L 1 0 per and 

of TAPE command (21!~~!X8) 189 
of TAPE command (2I~~=X~1) 189 

E 
EBCDIC 

display file in 199 
option, of COPYFILE command 37 

EDIT 
command 2 

description 79-80 
LRECL option 79-80 
NODISP option 79-80 

operand 
of RDTEFM macro 335-336 
of WRTERM macro 341-342 

subcommand environment 2 
subcommands (§!~ EDIT subcommands) 

edit macros 
$DUP 260 
$MOVE 261 

edit mode 2,215 
entering 79-80 
leaving 

with FILE subcommand 228 
with QUIT subcommand 241 

EDIT subcommands 2 
245- 246 

affected by zone setting 257-258 
ALTER 218 
AUTOSAVE 219 
BACKWARD 220 
BOTTOM 220 
CASE 221 
CHANGE 221- 223 
CMS 224 
DELETE 226 
displayinq last one executed 258 
DOWN 226-227 
DSTRING 227 
FILE 228 
FIND 228-229 
FMODE 229 
FNAME 230 
FORMAT 230-231 
FORWARD 231 
GETFILE 232 
IMAGE 233 
INPUT 234-235 
LINEMODE 235-236 
LOCATE 237 
LONG 238 
NEXT 238 
nnnnn 259 
OVERLAY 239 
PRESERVE 240 
PROMPT 240 
QUIT 241 
RECFM 241 
re-executinq 245-246,256 
RENUM 243 
REPEAT 243 
REPLACE 244 
RESTORE 244-245 
REUSE 245-246 

SAVE 247 
SCROLL 247-248 
SCROLLUP 247-248 
SERIAL 248-249 
settings saved by PRESERVE subcommand 

240 
SHORT 250 
ST ACK 250- 251 
TABS ET 25 1- 252 
TOP 252 
TRUNC 252-253 
TYPE 253- 254 
UP 254 
VERIFY 255 
X 256 
Y 256 
ZONE 257- 258 

edited 
error messages 

displaying with LINEDIT macro 327 
in EXEC procedure 280-281 

macros 
DOS/VS copying 83 
DOS/VSE copying (57!~=!!~) 83 
DOS/VSE copying (57!8-!~1) 83 

editing, lines read with RDTERM macro 
335-336 

editor 
invoking 2,79-80 
settings 

for reserved filetypes, default 345 
IMAGE subcommand, default 233-234 
preserving 240 
restoring 244-245 
TABSET subcommand, default 251-252 
TRUNC subcommand, default 252-253 
ZONE subcommand, default 257-258 

verifying changes made by 255 
END 

option of TAPPDS command (21!~=!X~) 196 
option of TAPPDS command (2I!§=!~1) 196 

end of file 
effect of LOCATE subcommand 237 
position current line pointer at 220 

END option of TAPPDS command 195 
ENTRY, loader control statement 124 
entry point 

determined by loader 122 
displayed with FETCH command 87 
specifying 

with ENTRY statement 
with GENMOD command 
with INCLUDE command 
with IN:LUDE command 

106.3 

124 
101 

106 
(21!~~!!~) 

with INCLUDE command (21~~=!~1) 
106.3 

with LOAD command 120 
with START command 175 

environments of CMS 1-2 
CMS editor 2 
CMS/DOS 2 
debug 2 
EXEC facilities 2 

EOF option of TAPE command 189 
EaT option of TAPE command 189 
EQU statements, generating for registers, 

REGEQU macro 336-337 

Index 361 



ERASE 
command 

description 81 
NOTYPE option 81 
TYPE option 81 

option 
of ACCESS command 16,18 

ERG, tape control function 188 
ERROR 

operand 
of TAPESL macro (21~~~XX8) 338.2 
of TAPESL macro (2I~~~XE1) 338.2 

error messages 
CMS, determining display during EXEC 

processing 284-285 
displaying with LINEDIT macro 327 
editor 

long for-m 238 
shor-t form 250 

issued in EXEC procedure 
&BEGEMSG control statement 280-281 
&EMSG control statement 285 

typinq in red 168 
VM/370 format 280-281 

ERROR oper-and 
of &CONTROL control statement 284-285 
of FSCLOSE macro 306 
of FSCLOSE macro (2I~~~!X~) 306.1 
of FSCLOSE macro (21~!!~XE.1) 306.1 
of FSERASE macro 307 
of FSOPEN macro 308-309 
of FSPOINT macro (2I~~~XX~) 309 
of FSPOINT macro (21~~~X]J) 309 
of FSREAD macro 309-310 
of FSSTATE macro 311-312 
of FSWRITE macro 312-314 
of FSWRITE macro (21!!.~-XX~) 312.1 
of FSWRITE macro (21~~~XE.1) 312.1 
of HNDINT macro 316-317 
of HNDSvC macro 3i7-318 
of PRINTL macro 330-331 
of PUNCHC macro 331-332 
of RDCARD macro 333 
of RDTAPE macro 334-335 
of TAPECTL macro 337-338 
of WAITD macro 339 
of WRTAPE macro 340-341 

errors 
encountered in macro instruction 

execution 303 
from access method services 20,21 
in EXE: procedure, specifying action to 

be taken 286 
ERRS option 

of OPTION command 138 
of OPTION command (21!!.§-XX~) 138 
of OPTION command (21!!.§-X].1) 138 

ESD option of ASSEMBLE command 24 
ESERV, command, description 83 
EXDTE oper-and 

of LABELDEF command (21~~-X!~) 110.1 
of LABELDEF command (21~~-XE.1) 110.1 

EXEC 

362 

built-in functions 297 
5CONCAT 298 
&DATATYl?E 298 
&LENGTH 298 

IBM eMS Command and Macro Reference 

&LITERAL 299 
&SUBSrR 299 

command 2 
description 85 
implied 168 

control statements 277 
&ARGS 279-280 
&BEGEMSG 280-281 
&BEGPUNCH 281 
&BEGSTACK 282 
&BEGTY~E 282-283 
&CONTINUE 283 
&CONTROL 284-285 
&EMSG 285 
&END 286 
&ERROR 286 
&EXIT 287 
&GOTO 288-289 
&HEX 288-289 
&IF 289-290 
&LOO~ 290-291 
&PUNCH 291 
&READ 291-292 
&SKIP 292-293 
&S~ACE 293 
&STACK 294 
&TIME 295 
&TYPE 296 
assignment statement 278-279 
displaying during EXEC processinq 

284-285 
files 

$LISTIO EXEC created by LISTIO 
command 118 

CMS EXEC created by LISTFILE comman~ 
114.1 

executing with RUN command 164 
filetype 

default editor settings 345 
record for-mat 85 

option 
of LISTFILE command 114.1 
of LISTIO command 118 

procedures 
branching with &GOTO control 
statement 288-289 

branching with &SKIP control 
statement 292-293 

comparing tokens in 289-290 
concatenating tokens in 298 
defining synonyms for 181 
ESERV 83 
executing 7,85,277 
exiting from 287 
halting terminal output during 294 
passing arguments to nested EXEC 
procedures 302 

reading data from terminal durinq 
291-292 

resuming ter-minal output during 294 
RUN 164 

special variables 300 
&$ 300 
&* 300 
&DISK* 301 
&DISK? 301 



&DISKx 301 
&DOS 301 
&EXEC 301 
&GLOBAL 301 
&GLOBALn 302 
&INDEX 302 
&INDEX, settinq 280-281 
&LINENUM 302 
&n 279-280,300 
&READFLAG 302 
&RETCODE 302 
&TYPEFLAG 302 
o 300 
&i throuqh 630 279-280 

executable statements 278-279 
in &ERROR control statement 286 
in &IF control statement 289-290 

execute form of LINEDIT macro 328-329 
execution 

entry point 
resetting, with INCLUDE command 106 
resetting, with INCLUDE command 
(21~!!=!!~) 106.3 

resetting, with INCLUDE command 
(21~~=!];!1) 106.3 

summary of EXEC procedure 284-285 
packing 284-285 

extensions 
read-only 16 

access inq 17 
editinq files on 79-80 
releasinq 158 

EXTENT opt ion 
of DLBL command 61,68-69 

in CMS/DOS 64-65 
of LISTDS command 110 
of LISTDS command (21~8-XX8) 
of LISTDS command (21~8-X]1) 

110.4 
110.4 

extents 
for VSA M files 

determining free space for 110 
determining free space for (574~=!!~) 

110. 4 
determininq free space for (574~=!];!1) 

110.4 
enterinq 68-69 
enterinq in CMS/DOS 64-65 

occupied by OS and DOS files 
displaying 110 
displaying (21~~=!!~) 110.4 
displayinq (21~~=!];!1) 110.4 

EXTERNAL, command 263 
external interruption 

effect in CMS 263 
providing processing routine for 315 

external symbol dictionary (ESD) 24 

F 
FCB macro, loaded by PRINT command 140 
FETCH comlDand 

COMP option 87 
descr ipt ion 87 
ORIGIN option 87 

FID operand 
of LABELDEF command (2148-XX~) 110 
of LABELDEF command (5748-XE1) 110 

FI FOoperand 
of &BEGSTACK control statement 282 
of &STACK control statement 294 

file 
accessing 

only particular files on disk 17 
with FSREAD macro 309-310 

appending one file to another 37 
blocking 

with FILEDEF command 91,93 
with FSWRITE macro 312.1 

calculating logical record length 93 
canceling changes made during edit 
session 241 

closing 306 
closing (21!~::1!!!) 306.1 
closing (21~~=!~.!) 306.1 
comparing one file to another 33 
copying 35-44 

from one device to another 46-56 
from one disk to another 39,229 
into file being edited 232 
parts of file 39 
to a file with a different filename 

230 
creating 

from OS partitioned data sets 134 
from tapes created by OS utility 

programs 194 
with CMS editor 79-80 
with COPYFILE command 35-44 
with FSWRITE macro 312-314 
with READCARD command 155 

defining for CMS/DOS 60 
de f ini t ions 

displaying DLBL definitions 152-153 
displaying DLBL definitions 
(21~~::.!!~} 1 52. 1 

displaying DLBL definitions 
(2148::.!El} 152 .• 1 

displaying FILEDEF definitions 152 
for MOVEFILE command 134 
for STATE command 177 

deleting lines in 
with DELETE subcommand 226 
with DSTRING subcommand 227 
with UPDATE command 205 

directories 
auxiliary 100 
set up with ACCESS command 16 

displaying 199 
in hexadecimal format 199 
on 3270 screen 247-248 
particular columns of file 199,255 
particular records in file 199 
with TYPE subcommand 253-254 

dumping to tape 188 
editing 215 
erasing 81 

all files on disk 16 
during program execution 307 

format 91 
identifier 

assigned 
assigned 
changing 
changing 
changing 

with 
with 
with 
with 
with 

READCARD command 155 
TAPPDS command 194 
FILE subcommand 228 
RENAME command 160 
SAVE subcommand 247 

Index 363 



default for DLBL command 63 
default for FILEDEF command 93 
entering on DLBL command 61 
entering on FILEDEF command 95 
entering on LISTDS command 111 
in command syntax 5 

inserting lines in 
with INPUT subcommand 234-235 
with UPDATE command 204 

listing information about 114 
listing information about (2748-XX~) 

11!J.1 
listing information about (27!J8-XE1) 

11 !J • 1 
loading 

from tape to disk 188 
from virtual reader to disk 58 

modifying 35-44 
moving from device to device 134 
numbering lines in 2!J8-249 
opening, during program execution 

308-309 
overlaying data in 

specifying number of lines to overlay 
243 

with COPYFILE command 36,42 
with OVERLAY subcommand 239 

packing 31 
specifying fill character 40-41 

printing 139 
in hexadecimal format 139 
specifying number of lines per page 

140 
processed by TAPE command, listing 189 
protecting data during edit session 

257-258 
punched 

restoring to disk 58,155 
punching to virtual card punch 58~144 
reading 

during program execution 309-310 
from virtual card reader 58 
seqaentially 309-310 

relating to OS ddname 89 
renaming 160 

displaying new names for 160 
renumbering lines in 243,248-249 
replacing lines in 

with REPLACE subcommand 244 
with UPDATE command 205 

replacing old file with new copy 36 
serializing lines in 248-249 

with line-number editing 248-249 
sorting records in 111 
tape, writing to disk 188 
transferring, with DISK DUMP command 58 
unpacking 37 
updating, FSWRITE macro 312.1 
verifying existence of 

with FSOPEN macro 308-309 
with FSSTATE macro 311-312 
with STATE and STATEW commands 117 

writing to disk 
with AUTOSAVE subcommand 219 
with FILE subcommand 228 
with FSWRITE macro 312.1 
with SAVE subcommand 247 

FILE NOT FOUND error message, suppressing 
during EXEC processing 284-285 

file status table (FST) 311 
FILE subcommand, description 228 
file system control block (FSCB) (§~~ 

FSCB) 
FILEDEF 

command 
AUXPROC option 93 
BLKSIZE option 91 
BLOCK option 91 
BLP operand (2748-!X~) 95 
BLP operand (~74~=!~1) 95 
CHANGE option 91 
CLEAR option 90 
CONCAT option 92 
default FILEDEF commands issued by 
assembler 27 

definitions for MOVEFILE commanl 134 
DEN option 92 
description 89 
DISK option 90 
DISP option 92 
DSORG option 92 
Durn'lY option 90 
establishing file definitions for 

STATE command 177 
examples 94,95 
KEYLEN option 91 
LABOFF operand (~1~~=!!~) 95 
LABOFF operand (~74~=X~1) 95 
LEAVE option (2148-!!§) 92.1 
LEAVE option (5748-!~1) 92.1 
LIM CT option 91 
LOWCASE option 92 
LOWCASE option (~148=!!§) 92.1 
LOWCASE option (~l~§=X~l) 92.1 
LRECL option 91 
MEMBER option 92 
NL operand (~148-!!~) 95 
NL operand (~1~8-!~1) 95 
NOCHANGE option 91 
NOEOV option (21~8-!!~) 92.1 
NOEOV option (57~8-!~1) 92.1 
NSL operand (~748-!!~) 95 
NSL operand (~l~~=!El) 95 
OPTCD option 92 
PER Mop t ion 9 1 
positioning read/write pointer 92 
PRINTER option 90 
PUNCH option 90 
READER option 90 
RECFM option 91 
SL operand (21~~=!!~) 95 
SL operand (2148-X~l) 95 
SUL operand (~l~~=!!!D 95 
SUL operand (~1~~=XE1) 95 
TAPn option 90 
TERMINAL option 90 
TRTCH option 92 
UPCASE option 92 
UPCASE option (~148=!!~) 92.1 
UPCASE option (~148=X~l) 92.1 
VOLID operand (~148=!!§) 96 
VOLID operand (~148=!~1) 96 
when to use (aS users) 66-67 
when to use in eMS/DOS 63 

364 IBM VM/370 C~S Command and Macro Reference 



XTENT option 91 
7TRACK option 92 
9TRACK option 92 

definitions 
clearing 91,93 
displaying 96,152 

option of CMS QUERY command 152 
fileid, in command syntax 5 
filemode 

changing 
with COPYFILE command 39 
with FMODE subcommand 229 

displaying, FMODE subcommand 229 
letter 

establishing 16 
replacing 158 

numbers, changing 160 
specifying, for FSWRITE macro 312.1 
specifying on READCARD command 155 

filename 
changing, with FNAME subcommand 230 
of EXEC file 

testing 300,301 
filetypes, reserved, default editor 
settings for 345 

FILL option of COPYFILE command 37 
FIND subcommand 

description 228-229 
effect of image setting 233-234 

first-in first-out stacking, in EXEC 
procedure 282,294 

fixed-length files, converting to 
variable-length 40-41,242 

FLAG option of ASSEMBLE command 24 
FMODE 

option of LISTFILE command 115 
subcommand, description 229 

fn ft fm, used to represent file identifier 
5 

FNAME 
option of LISTFILE command 115 
subcommand, description 230 

FOR option of COPYFILE command 36 
FORM operand 

of FSCB macro (274~=!X~) 304 
of FSCB macro (274~=X]1) 304 
of FSPOINT macro (21~~=~X~) 310 
of FSPOINT macro (~I~~=X]1) 310 
of FSREAD macro (2I!~=!X~) 310.1 
of FSREAD macro (21!~=X]1) 310.1 
of FSSTATE macro (2I~~=XX~) 311 
of FSSTATE macro (21!~=XE1) 311 
of FSWRITE macro (2I~~=XX~) 312.1 
of FSWRITE macro (2I~~=XE1) 312.1 

FORM option 
of HELP command (21~~=XX8) 106 .. 1 
of HELP command (21!~=X]1) 106.1 

FORMAT 
command 

BLKSIZE option (21~~-XX8) 97 
BLKSIZE option (21~~-X]1) 97 
desc:ription 97 
examples 98 
LABEL option 97 
LABEL option (21!~=XX~) 98 
LABEL option (2I~~=X]1) 98 
NOERASE option (~1~~=~X8) 98 
NOERASE option (21~~-XE1) 98 

performance consideration 98 
RECOMP option 97 
RECOMP option (~1~8-!!~) 98 
RECOMP option (2748-!~1) 98 

option 
of LISTDS command 111 
of LISTFILE command 115 

subcommand 
description 230-231 
DISPLAY operand 230-231 
LINE operand 230-231 

FORMAT MODE (.FO) format word (2I~~=!!~) 
342. 2,342.7 

FORMAT MODE (.FO) format word (274~=!El) 
342. 2,342.7 

FORTRAN filetype, default editor settings 
345 

FORWARD subcommand, description 231 
FREE option of LISTDS command 110 
FREE option of LISTDS command (2I~~=!X~) 

110. 4 
FREE option of LISTDS command (2I~~=!El) 

110. 4 
FREEPORT 

files, renumbering 243 
filetype, default editor settings 345 

FRLABEL option of COPYFILE command 36 
FROM option 

of CO~YFILE command 36 
of GENMOD command 101 

FSCB 
macro 

BUFFER operand 304-305 
description 304-305 
FORM operand (21!8-!!~) 304 
FORM operand (21~~=!~1) 304 
NOREC operand 304-305 
RECNO operand 304-305 
RECNO operand (57!8-!!~) 304.1 
RECNO operand (21!~=!~1) 304.1 

operand 
of FSCLOSE macro 306 
of FSCLOSE macro (21!i~=!!~) 306.1 
of FSCLOSE macro (2I!i~=XE1) 306.1 
of FSERASE macro 307 
of FSOPEN macro 308-309 
of FSPOINT macro (21!i~=!X~) 309 
of FS~OINT macro (21~~=XE1) 309 
of FSREAD macro 309-310 
of FSSTATE macro 311-312 
of FSWRITE macro 312-314 

FSCB (file system control block) 
creating 304-305 
format 305 

FSCBD macro, description 305 
F seLO SE macro 

description 306 
description (21~~-X!!!) 306.1 
description (21~~=XE .. 1) 306.1 
ERROR operand 306 
ERROR operand (21!i~-XX~) 306.1 
ERROR operand (2I48=XE1) 306.1 
FSCB operand 306 
FS CB operand (21.9.~::.!!~) 306. 1 
FSCB operand (21.9.~=X~1) 306.1 

FSEQ operand 
of LABELDEF command (21.9.~=!!~) 110.1 
of LABELDEF command (2I!i~=XE1) 110.1 

Index 365 



FSER ASE macro 
description 307 
ERROR operand 307 
FSCB operand 307 

FSF, tape control function 188 
FSOPEN ma::ro 

description 308-309 
ERROR operand 308-309 
FSCB operand 308-309 

FSPOINT macro 
description (21~8-!!~) 309 
description (21~~=!~1) 309 
ERROR operand (274~=!!~) 309 
ERROR operand (21~~=!~1) 309 
FORM operand (2748=!!~) 310 
FORM operand (2148=!~1) 310 
FSCB operand (2148=!!~) 309 
FSCB operand (21~8-X~1) ~09 
RPTR operand (2148=!!~) 309 
RPTR operand (2148=!~1) 309 
WPTR operand (21~!!=!!~) 309 
WPTR operand (21~~=!~1) 309 

FSR, tape control function 188 
FSREAD ma::ro 

description 309-310 
ERROR operand 309-310 
FORM operand (2148=!!~) 310.1 
FORM operand (2148=!~1) 310.1 
FSCB operand 309-310 

FSSTATE macro 
description 311-312 
ERROR operand 311-312 
FORM operand (274!!=!X~) 311 
FORM operand (2748=X~1) 311 
FSCB operand 311-312 

FST (~g~~ file status table) 
FSWRITE macro 

description 312-314 
ERROR operand 312-314 
ERROR operand (21~~=!!~) 312.1 
ERROR operand (21!~=!ll) 312.1 
FORM operand C.21~!!=!!~) 312.1 
FORM operand <'2148=!~1) 312.1 
FSCB operand 312-314 

FTYPE option, of LISTFILE command 115 

G 
GEN option 

of MACLIB command 130 
of TXTLIB command 197 

GENDIRT command, description 100 
general registers 

changing, in debug environment 273 
displaying, in debuq environment 270 
generating list of EQU statements for 

336-337 
printinq contents of 268 

GENMOD command 
ALL option 102 
description 101 
DOS option 102 
FROM option 101 
MAP opt ion 101 
NOMAP option 101 
NOSTR option 102 
OS option 102 

STR option 101 
SYSTEM option 102 
TO option 101 

GENN operand 
of LABELDEF command (21!!!=!!!B 110.1 
of LABELDEF command (21~~=!~1) 110. 1 

GENV operand 
of LABELDEF command (21!.§=!X!!) 110.1 
of LABELDEF comm and (2I~8-X~l) 110. 1 

GETFILE subcommand, description 232 
globa 1 changes 

with ALTER subcommand 218 
with CHANGE subcommand 221-223 
with OVERLAY subcommand 239 

GLOBAL command 
description 104 
DOSLIB option 104 
MACLIB option 104 
querying which DOSLIBs were last 
specified 153-154 

querying which MACLIBs were last 
specified 152 

querying which TXTLlBs were last 
specified 152 

TXTLIB option 104 
GO subcommand, description 269 
GPR 

operand of SET subcommand 273 
subcommand, description 270 

GRAPHIC option of DDR command TYPE/PRINT 
function control statement 52 

H 
HB Immediate command 213 
header 

card 
as READ control card 155 
punched by PUNCH command 144,145 

for LISTFILE command output 114 
format 115 

for LISTFlLE command output (21!~=!!~) 
114.1 

for LISTFILE command output (21!§=!ll) 
114. 1 

HEADER option 
of LISTFlLE command 114 
of LISTFILE command (21!.§=X!!!) 114.1 
of LlSTFILE command (21!~=!ll) 114.1 
of PUNCH command 144 

HELP 
command 

ALL option (21~8-XX~) 
ALL option (2148-!ll) 
DESC option (21!8-!!~) 
DESC option (2748-X~1) 
description (2748-!!~) 
description (21!8-X~1) 
FORM option (2748-!!!!) 
FORM option (2748-XI1) 
HELP option (21!~-X!~) 
HELP option (2748=!E1) 
MENU option (21!8-!!~) 
MENU option (274~-XE1) 
PARM option (21!8-!!~) 
PARM option (21!~-Xll) 

106.1 
106.1 

106. 1 
106. 1 
106-106.2 
106-106.2 
106.1 
106.1 
106 
106 
106 
106 
106.1 
106. 1 

366 IBM VMi370 CMS Command and Macro Reference 



usage (.21!!8-11~) 106.1-106.2 
usage (.2148-XE1) 106.1-106.2 

option 
of HELP command (21~~=XX8) 106 
of HELP ccmmand (.2148=XE1) 106 

HELP format words 
• BX (BOX) (.2I~~=XX8) 342.2,342.3 
• BX (BOX) (.2148=XE1) 342.2,342.3 
• CM (COMMENT) (,,2748=XX8) 342.2,342.5 
• CM (COMMENT) (.2748-1.ll) 342.2,342.5 
.CS (CONDITIONAL SECTION) (.21~~-XX8) 
342.2,342.6 

.. CS (CONDITIONAL SECTION) (2148-XE1) 
342.2,342.6 

.FO (FORMAT MODE) (.2748-XX8) 
342.2,342.7 

.FO (FORMAT MODE) (.2148-X~1) 
342.2,342.7 

.IL (INDENT LINE) (.274~=]X8) 
342.2,342.8 

.IL (INDENT LINE) (5748-X]2) 
342.2,342.8 

.IN (INDENT) (.2748-XX8) 342.2,342.9 
• IN (INDENT) (.2748-X]1) 342.2,342.,9 
• OF (OFFSET) (.2748=1X8) 342.2,342.10 
• OF (OFFSET) (.2748=XE1) 342.2,342.10 
.SP (SPACE LINES) (~148-XX8) 

342.2,342.11 
.SP (SPACE LINES) (574~-Xll) 

342.2,342.11 
.TR (TRANSLATE CHARACTER) (.2148-XX8) 

342.2,342.12 
• TR (TRANSLATE CHARACTER) (57~~-XE1) 
342.2,342.12 

summary (21~~-XX8) 342.2 
summary (.21~~-XE1) 342.2 

HEX option 
of DDR command TYPE/PRINT function 

control statement 52 
of PRINT command 139 
of TYPE command 199 

hexadecimal 
conversion, in assignment statement 

278-279 
converting to decimal, LINEDIT macro 

323-325 
converting to EBCDIC, LINEDIT macro 

319-329 
display file in 199 
printing file in 139 
representations of characters, 
translating 167 

sUbstitution 
in EXEC procedure 278-279 
invoking in EXEC procedure 288-289 
suppressing in EXEC procedure 

288-289 
values, displayinq in EXEC procedure 

283-289 
HNDEXT macro 

CtR operand 
description 
SET operand 

HNDI NT macro 
ASAP operand 
ClR operand 
description 
E RRO R operand 

315 
315 
315 

316-317 
316-317 
316-317 

316-317 

SET operand 316-317 
used with WAITD macro 339 

HNDSVC macro 
CLR operand 317-318 
description 317-318 
ERROR operand 317-318 
SET operand 317-318 

HO Immediate command 213 
HT Immediate command 214 

stacking in EXEC procedure 294 
HX 

DEBUG subcommand 270 
Immediate command 214 

effect on DLBL definitions 61 
effect on FILEDEF definitions 93 

I 
ICS control statement (se~ includ,e control 
section (ICS) statement) 

ID card, CP, example 155 
ID operand 

of TAPEMAC command (5748-XX~) 192 
of TAPEMAC command (5748-XE1) 192 
of TAPPDS command (.2148-X!~) 195 
of TAPPDS command (2748-XE1) 195 

IEBPTPCH utility program, creating CMS 
files from tapes created by 194 

IEBUPDTE utility program, creating CMS 
files from tapes created by 194,195 

IEHMOVE utility program 
creating CMS files from tapes created by 

194 
creating CMS MACLIBs from tapes created 

by 192 
IGN option 

of ASSGN command 30 
with DUMMY data sets 63 

IJSYSCL, defining in CMS/DOS 63 
IJSYSCT 

defining 69 
in CMS/DOS 66-67 

IJSYSRL, defining in CMS/DOS 63 
IJSYSSL, defining in CMS/DOS 63 
IJSYSUC 

defininq 69 
in CMS/DOS 66-67 

image set ting 
effect on FIND subcommand 228-229 
effect on logical tab settings 251-252 

IMAGE subcommand 
CANON operand 233-234 
description 233 
OFF operand 233 
ON operand 233-234 

Immediate commands 
HB 213 
HO 213 
HT 214 
HX 214 
RO 214 
RT 215 
SO 215 
summary 9 

IMPCP option 
of CMS QUERY command 148 
of CMS SET command 168 

Index 367 



IMPEX option 
of CMS QUERY command 148 
of CMS SET command 168 

implied 
CP function 45 

query status of 148 
setting 168 

EXEC function 85 
query status of 148 
settinq 168 

INC option of UPDATE command 202 
INCLUDE command 

AUTO option 107 
called to load files dynamically 304 
CLEAR option 106 
CLEAR option (21!8-XX~) 106.3 
CLEAR option (2748-X~j) 106.3 
description 106 
description (5748-XX~) 106.3 
description (5748-XEj) 106.3 
DUP option 107 
effect on loader tables 167 
examples 108 
following LOAD command 108 
identify TXTLIBs to be searched 104 
I NV option 107 
LIBE option 107 
MAP option 107 
NOAUTO option 107 
NOCLEAR option 106 
NOCLEAR option (5748-XX~) 106.3 
NOCLEAR option (5748-XEj) 106.3 
NODUP option 107 
NOINV option 107 
NOLIBE option 107 
NOREP option 107 
NOTYPE option 107 
ORIGIN option 107 
REP option 107 
RESET option 106 
RESET option (21!8-XX8) 106.3 
RESET option (21~8-Xm) 106.3 
SAME option 107 
START option 107 
TYPE option 107 

include control section (ICS), loader 
control statement 125 

increment 
specifying for line-number editing 240 
specifying for sequence numbers in file 

248-249 
INDENT (.IN) format word (21~~-XX~) 
342.2,342~9 

INDENT (.IN) format word (5748-XE1) 
342.2,342.9 

INDENT LINE (.IL) format word (5748-XX8) 
342.2,342.8 

INDENT LINE (.IL) format word (~74~-XE1) 
342.2,342.8 

INMOVE, MOVEFILE command ddname 134 
INPUT 

control statement, for DDR command 
47-49 

option 
of CMS QUERY command 149 
of CMS SET command 167 

subcommand 
description 234-235 
effect of image setting 233-234 
on = subcommand line 245-246 
stacking with &STACK control 
statement 234-235 

input mode 2,215 
during line-number editing 236 
entering 234-235,244 
leaving 215 

INSERT control statement, for UPDATE 
command 204 

instructions 
addresses, halting program execution at 

264 
altering 

with LOAD command 126-127 
with STORE subcommand 274 

Interactive Problem Control System (IPCS) 
1 

interruptions 
entering debug environment after 263 
handling 

external 315 
I/O 316-317 
SVC 317-318 

I/O, waiting 339 
INV option 

of INCLUDE command 107 
of LOAD command 121 

I/O, devices, handling interruptions for 
316- 317 

IPCS (Interactive Problem Control System) 
1 

ITEMCT option of TAPEMAC command 192 

J 
job catalog 

identifying 69 
in CMS/DOS 66-67 

K 
keyboard, unlock to enter commands 7 
KEYLEN option of FILEDEF command 91 
keypunch characters, converting 37 

L 
LABEL option 

of FORMAT command 97 
of FORMAT command (2748-XX8) 98 
of FORMAT command (2748-XE1) 98 
of LISTFILE command 115 

LABEL DEF 
command 

CHANGE option (5748-XX8) 
CHANGE option (57!8-X~) 
CLEAR operand (5748-!X8) 
CLEAR operand (5748-XEj) 
CRDTE operand (~148-XX~) 
CRDTE operand (5748-X~) 

110.1 
110.1 
110 
110 
11(\ .. 
I I v. I 

110.1 

368 IBM VMi370 eMS Command and Macro Reference 



description (5748-!X~) 110-110.3 
description (5748-X]1) 110-110.3 
EXDTE operand (57~8-XX~) 110.1 
EXDTE operand (57~8-~E1) 110.1 
FID operand (5748-XX~) 110 
FID operand (5748-XE1) 110 
FSEQ operand (5748-XX8) 110.1 
FSEQ operand (574~-X]1) 110.1 
GENN operand (57~8-!X~) 110.1 
GENN operand (5748-XE1) 110.1 
GENVoperand (5748-XX8) 110.1 
GENV operand (57~8-X]1) 110.1 
NOCHANGE option (57 ~~=XX~) 110. 1 
NOCHANGE option (5748-XE1) 110.1 
PERM option (5748-XX~) 110.1 
PERM option (5748-XE1) 110.1 
SEC operand (5748-XX~) 110.1 
SEC operand (5748-XE1) 110.1 
VOLID operand (5748=XX~) 110 
VOLID operand (57~8-XE1) 110 
VOLSEQ operand (5748-XX8) 110 
VOLSEQ operand (574~-XE1) 110 

operand of CMS QUERY command ~748-XX8) 
152 

operand of CM S QUERY command (.2148-X£;1) 
152 

labels 
for file system control block, 
generating 305 

in EXEC procedure 
object of &GOTO control statement 

288-289 
object of &LOOP control statement 

290-291 
using &CONTINUE 283 

on CMS disks 
writing 97 
writing (.274~-XX~) 98 
writing (574~-XE1) 98 

LABID operand 
of TAPESL macro (5748-XX~) 338.1 
of TAPESL macro (5748-XE1) 338.1 

LAB OFF operand 
of FILEDEF command (.21~8-XX8) 95 
of FILEDEF command (5748-XE1) 95 

language processors: using under CMS 1-2 
last-in first-out stacking, in EXEC 

procedure 282,294 
LDRTBLS option 

of CMS QUERY command 148 
of CMS SET command 167 

LDT statement (se~ loader terminate (LDT) 
statement) 

LEAVE option 
of FILEDEF command (2148=XX8) 92.1 
of FILEDEF command (5748=XE1) 92.1 
of TAPE command (5748-XX~) 190 
of TAPE command (5748-X]1) 190 

LEAVE option of DDR command INPU~/OUTPUT 
control statement 49 

LEAVE option of DDE command INPUT/OUTPUT 
control statement (2748-XX8) 49 

LEAVE option of DDR command INPUT/OUTPUT 
control statement (57~~-X]j) 49 

LEFT operand of LINEMODE surcommand 235 

length 
of token in EXEC procedure, determining 

298 
specifying for LINEDIT macro 
sUbstitution list 326 

LENGTH operand of EDTERM macro 335-336 
LIBE option 

of INCLUDE command 107 
of LOAD command 121 

LIBMAC option of ASSEMBLE command 24 
libraries 

CMS (~ee ~1~Q DOSLIB, MACLIB, TXTLIB) 
displaying members of 200 
displaying those to be searched 
during processing 152 

identifying 104 
macro libraries 130 
printing members of 139 
querying 152 
used when processing CMS commands 

104 
DOS/VS 

assigning logical units 30 
obtain information about 77 

DOS/VS core image 
defining IJSYSCL 63 
fetching phases from 87,88 

DOS/VS procedure 
copying procedures from 142 
displaying directories of 77 
displaying procedures from 142 
printing procedures from 142 
punching procedures from 142 

DOS/VS relocatable 
assigning SYSRLB 162 
copying modules from 162 
defining IJSYSRL 63 
displaying modules from 162 
link-editing modules from 74-76 
printing modules from 162 
punching modules from 162 

DOS/VS source statement 
assigning SYSSLB 173 
copying books 173 
copying macros from 83 
defining IJSYSSL 63 
displaying books 173 
printing books 173 
punching books 173 

DOS/VSE 
assigning logical units 

30 
assigning logical units 

30 
obtain inf ormation about 

77 
obtain information about 

77 
DOS/VSE core image 

(214 8-X!~) 

(.214 8=!];1) 

(.21~'§- XX~) 

(.21~~=X~1) 

defining IJSYSCL (5748-XX8) 63 
defining IJSYSCL (5748-X~1) 63 
fetching phases from (57~.§-X!~) 

87,88 
fetching phases from (21~~=X]1) 

87,88 

Index 369 



DOS/VSE procedure 
copying procedures from (57~~-XX~) 

142 
copying procedures from (574~-XE1) 

142 
displaying directories of ~148-XX~) 

77 
displaying directories of (5748-X]1) 

77 
displaying procedures from (~148-XX8) 

142 
displaying procedures from (5748-XE1) 

142 
printing procedures from (~148-XX~) 

142 
printing procedures from (~748-X]1) 

142 
punchinq procedures from (57~8-XX8) 

142 
punching procedures from (5748-X]2) 

142 
DOS/VSE relocatable 

assigning SYSRLB (21~~-XX~) 162 
assigning SYSRLB (21~~-XE1) 162 
copying modules from (574~-XX~) 162 
copyinq modules from (57~8-X]j) 162 
defining IJSYSRL (2148-XX~) 63 
defining IJSYSRL (21~~-XE1) 63 
displaying modules from (574~-XX~) 

162 
displaying modules from (21~~-XE1) 

162 
link-editing modules from (5748-XX~) 

74-76 
link-editing modules from (5748-X]1) 

74-76 
printing modules from (57~~-XX8) 162 
printing modules from <21~§-X]l) 162 
punching modules from (5748-XX8) 162 
punching modules from (21~~=XE1) 162 

DOS/VSE source statement 
assigning SYSSLB (5748-XX~) 173 
assigning SYSSLB (21~~-XE1) 173 
copyinq books (5748-XX~) 173 
copying books (5748=XE1) 173 
copying macros from (2748-XX~) 83 
copyinq macros from (5748-XE1) 83 
defining IJSYSSL (2148-XX~) 63 
defining IJSYSSL (21~~-XE1) 63 
displaying books (2148-XX~) 173 
displaying books (274~-XE1) 173 
printing books (21~~-XX8) 173 
printing books (274~-XE1) 173 
punching books (57!~-X1~) 173 
punching books (2148=111) 173 

OS, macro libraries (2ee macro 
libraries, OS) 

punching member files in 144 
LIBRARY 

loader control statement 124-125 
option of CMS QUERY command 152 

LIFO operand 
of &BEGSTACK control statement 282 
of &STACK control statement 294 

LIMCT option of FILEDEF command 91 
line 

duplicating, in CMS file 260 
image, of record 233-234 
locating by beginning character string 

228-229 
mode 

of CMS editor 79-80 
of 3270 230-231 

moving, within CMS file 261 
number, of EXEC statement, testing 302 
printing 

with LINEDIT macro 327 
with PRINTL macro 330-331 

punching 
in EXEC procedure 281,291 

punching with PUNCHC macro 331-332 
reading from console stack 250-251 

LINE operand of FORMAT subcommand 230-231 
LINECOUN option 

of ASSEMBLE command 24 
of PRINT command 140 

LINEDIT macro 
BUFFA operand 328 
COMP operand 322 
description 319-329 
DISP operand 327 
DOT operand 321-322 
MAXSUBS operand 329 
MF operand 328-329 
RENT operand 329 
SUB operand 322-323 
substitution list, specifying 322-323 
TEXT operand 321 
TEXTA operand 321 

LINEMODE subcommand 
description 235-236 
LEFT operand 235 
OFF operand 236 
RIGHT operand 235 

line-number editing 
displaying line numbers 236 
inserting single line 259 
left-handed 235 
reserializing records in file 248-249 
right-handed 235 
setting prompting increment for 240 

LINK command, accessing disks after 17 
linkage editor control statements 

DOS/VS supported in CMS/DOS 75-76 
DOS/VSE supported in CMS/DOS (2148-!!~) 

75-76 
DOS/VSE supported in CMS/DOS (~1~~=!]1) 
75-76 

OS 
read by TXTLIB command 197 
reguired format for TXTLIB command 

197 
link-editing 

in CMS/DOS 74-76 
modules from DOS/VS relocatable 
libraries 74-75 

modules from DOS/VSE relocatable 
libraries (~148=XX8) 74-75 

370 IBM VM/370 C~S Command and Macro Reference 



modules from DOS/VSE relocatable 
libraries (274§-XE1) 74-75 

TEXT files in storage 120 
TXTLIB members 197 

list form of LINEDIT macro 328-329 
LIST option 

of ASSEMBLE command 24 
of OPTION command 138 

LISTDS command 
description 110 
description (5748-X1JD 110.4 
description (5748-X~1) 110.4 
examples 111 
EXTENT option 110 
EXTENT option (2148=11§) 110.4 
EXTENT option (2748-1~1) 110.4 
FORMAT option 111 
FREE option 110 
FREE option (57~8-XX§) 110.4 
FREE option (57~8-X~1) 110.4 
PDS option 111 

LISTFILE command 
ALLoe option 115 
APPEND option 115 
DATE option 115 
description 114 
description (21!!8-XX.§J 114.1 
description (57~8-XE1) 114.1 
examples 115 
EXEC option 114.1 
FMODE option 115 
FNAME option 115 
FORMAT option 115 
FTYPE option 115 
HEADER option 114 
HEADER option (2748-X1§) 114.1 
HEADER option (5748-XE1) 114.1 
LABEL option 115 
NOHEADER option 114.1 
NOHEADER option (57~8-XX§) 114.1 
NOHEADER option (2148-X]1) 114.1 

LISTING filetype 
created by access method services 20 
created by ASSEMBLE command 24 

controllinq 24 
created by ESERV proqram 83 
default editor settings 345 
printing 139 

LISTIO command 
A option 118 
ALL option 118 
APPEND option 118 
descr ipt ion 118 
EXEC option 118 
PROG option 118 
STAT option 118 
SYS option 118 
SYSxxx option 118 
U A option 118 

LISTX option 
of OPTION command 138 
of OPTION command (2148-X1§) 138 
of OPTION command (21~§-XE1) 138 

literal values, usinq in EXEC procedure 
299 

LOAD 
command 

AUTO option 121 
called to load files dynamically 304 
CLEAR option 120 
description 120 
DUP option 121,122 
duplicate CSECTs 122 
effect on loader tables 167 
executing program using 121 
identify TXTLIBs to be searched 104 
INV option 121 
MAP option 121 
NOAUTO option 121 
NOCLEAR option 120 
NODUP option 121 
NOINV option 121 
NOLIBE option 121 
NOMAP option 121 
NOREP option 121 
NOTYPE option 121 
ORIGIN option 120 
REP option 121 
RESET option 120 
START option 121 
TYPE option 121 
used with GENMOD command 102 

option 
of DISK command 58 
of TAPE command 188 

load map 
creating 122 

with INCLUDE command 107 
with LOAD command 121 

displaying 121 
generated by GENMOD command 101 
invalid card images in 122 
of MODULE file, displaying 133 
replace card image in 107 

load point, specifying 107,120 
loader 

CMS 122 
control statements 

ENTRY statement 124 
include control section (ICS) 
statement 125 

LIBRARY statement 124-125 
loader terminate (LDT) statement 

124-125 
replace (REP) statement 126-127 
set location counter (SLC) statement 

126 
set page boundary (SPB) statement 

127 
search order, for unresolved references 

123 
tables 

defining storage for 167 
displayinq number of 148 

loader terminate (LDT), loader control 
statement 124-125 

LOADMOD command 
called to load files dynamically 304.1 
CMS/DOS considerations 129 
description 129 

Index 371 



LOCATE subcommand 
description 237 
effect of zone setting 257-258 

logical 
operators, in EXEC procedure 289-290 
record length, of CMS file, defaults 

used by CMS editor 79-80 
units 

assigning 29-31 
ignoring assignments 30 
listing 118 
unassigning 169 
unassigning in CMS/DOS 30 

LONG subcommand, description 238 
looping, in EXEC procedure 290-291 
LOWCASE option 

of ASSGN command 30 
of COPYFILE command 37 
of FILEDEF command 92 
of FILEDEF command (5748=1X8) 92.1 
of FILEDEF command (21~~=lE1) 92.1 

lowercase letters 
suppressing translation to uppercase 

221 
translating to uppercase 

with CASE subcommand 221 
with COPYFILE command 37 
with PRINT command 139 

LRECL option 

M 

of COpy FILE command 37 
example 40-41 

of EDIT command 79-80 
of FILEDEF command 91 

M operand of CASE subcommand 221 
MACLIB 

command 
ADD option 130 
COMP option 130 
DEL option 130 
description 130 
DISK option 131 
GEN option 130 
MAP option 130 
PRINT option 131 
reading files created by ESERV 

program 84 
REP option 130 
TERM option 130 

files 
creating 130 
displaying names of MACLIBs to be 
searched 152 

distributed with CMS system 131 
specifying for assembly or 

compilation 104 
option 

of CMS QUERY command 152 
of GLOBAL command 104 

MACRO 
files, created by ESERV program 83 
filetype 

adding to MACLIBs 131 
default editor settings 345 
invalid records in, handling by 

MACLIB command 131 
macro definitions 

in assembler listing 24 
in MACRO files 131 

macro libraries 

MAP 

CMS 
adding to 130 
compacting members of 130 
creating 130 
deleting members of 130 
displaying information about members 
in 130 

reading OS macro libraries into 192 
replacing members of 130 

creating 
from OS partitioned data sets on tape 

192 
from tapes created by IEHMOVE utility 

program 192 
DOS/VS, copying macros from 83 
DOS/VSE 

copying macros from (5748=!!~) 83 
copying macros from (2748=!E1) 83 

identifying for assembly 27,104 
OS 

concatenating 92 
reading into CMS MACLIBs 192 
using in CMS 27 

filetype 
created by DOSLIB command 72-73 
created by DSERV command 77 
created by LOAD command 122 
created by MACLIB command 130 
created by TAPE command 189 
created by TXTLIB command 197 

option 
of DOSLIB command 72-73 
of GENMOD command 101 
of INCLUDE command 107 
of LOAD command 121 
of MACLIB command 130 
of TXTLIB command 197 

maps 
created by DOSLIB command 72-73 
created by GENMOD command 101 
created by LOAD command 122 
created by MACLIB command 130 
created by TXTLIB command 197 
linkage editor, in CMS/DOS 74-76 

margins, setting left margin for input with 
editor 251-252 

master catalog (VSAM) 
identifying 69 
identifying in CMS/DOS 66-67 

372 IBM VM/370 CMS Command and Macro Reference 



master file directory 
contents of 17 
suppressing updating after RENAME 

command 160 
updating entries in 160 
updating on disk 158 

MAXSUBS operand of LINEDIT macro 329 
MAXTEN option of TAPPDS command 195 
MAXTEN option of TAPPDS command (5748-XX8) 

196 
MAXTEN option of TAPPDS command (5748-XEj) 

196 
MCALL option of ASSEMBLE command 24 
MEMBER option 

of FILEDEF command 92 
of PRINT command 139 
of PUNCH command 144 
of TYPE command 200 

MEMO filetype, default editor settings 345 
MENU option 

of HELP command (5748-X1~) 106 
of HELP command (5748=1]1) 106 

message, text for LINEDIT macro 321 
MF operand of LINEDIT macro 328-329 
minidisks (2~~ al§Q disks) 

copying 46-56 
counting cylinders on 97 
counting cylinders on (21!8-XX~) 98 
counting cylinders on (5748-XE1) 98 

MLOGIC option of ASSEMBLE command 24 
MODE 

operand 
of RDTAPE macro 334-335 
of TAPECTL macro 337-338 
of TAPESL macro (5748=XX~) 338.1 
of TAPESL macro (2148=XE1) 338.1 
of WRTAPE macro 340-341 

option of DDR command INPUT/OUTPUT 
control statement 48 

mode letter (se~ filemode letter) 
MODESET option of TAPE command 188 
MODMAP command, description 133 
MODULE files 

creating 101 
debugging 129 
defining synonyms for 181 
DOS/VS, link-editing 74-76 
executing with RUN command 164 
format 101 
generat ing 101 
loading dynamically during program 

execut ion 304.1 
loading into storage for execution 129 
mapping 133 

modules 
DOS/VSE 

link-editing (5748-1X8) 74-76 
link-editinq (5748=1]1) 74-76 

MOVEFILE command 
default device attributes 136 
default device attributes (5748-XX8) 

136 
default device attributes 12148-XE1) 

136 
description 134 
examples 134 
PDS opt ion 134 

MSG operand of &CONTROL control statement 
284- 285 

MULT option of DLBL command 61 
multilevel updates using UPDATE command, 
examples 209-210 

multiple 
extents for VSAM files 

specifying 68-69 
specifying in CMS/DOS 64-65 

FSCBs 304-305 
input files 

for UPDATE command 202 
with COPYFILE command 39 

output files 
with COPYFILE command 35-44,39,41 
with RENAME command 160 

substitution lists, LINEDIT macro 326 
multivolume data sets, displaying volumes 

on which they reside 65-66 
multivolume VSAM extents 

identifying with DLBL command 68-69 
in CMS/DOS 65-66 

maximum number of disks 68-69 
in CMS/DOS 65-66 

rules for specifying 68-69 
in eMS/DOS 65-66 

N 
nesting 

&IF statements in EXEC procedure 
289-290 

EXEC procedures 
effect on &CONTROL 284-285 
passing variable data 302 
testing recursion level 301 

loops in EXEC procedure 290-291 
never-call function, specifying in CMS TEXT 
file 124- 125 

NEWDATE option of COPYFILE command 36 
NEWFILE option of COPYFILE command 36 
NEXT subcommand, description 238 
NL operand 

of FILEDEF command (2748-X!~) 95 
of FILEDEF command (57!8-X~1) 95 

nnnnn subcommand, description 259 
NO option of START command 175 
NOALIGN option of ASSEMBLE command 26 
NOALOGIC option of ASSEMBLE command 24 
NOAUTO option 

of INCLUDE command 107 
of LOAD command 121 

NOCC option of PRINT command 139 
NOCHANGE option 

of DLBL command 61 
of FILEDEF command 91 
of LABELDEF command (5748-X!1H 110.1 
of LABELDEF command (57~8-X~1) 110.·' 

NOCLEAR option 
of INCLUDE command 106 
of INCLUDE command (57~8-XX~) 106.3 
of INCLUDE command (2748-XU) 106.3 
of LOAD command 120 

NOCOL1 option of TAPPDS command 195 
NOCTL option of UPDATE command 202 

Index 373 



NODECK option 
of ASSEMBLE command 25 
of OPTION command 138 

NODISK option of ACCESS command 16 
NODISP option 

of EDIT command 79-80 
effect on FORMAT subcommand 231 

NODUMP option of OPTION command 138 
NODUP option 

of INCLUDE command 107 
of LOAD command 121 

NOEND option of TAPPDS command 195 
NOEND option of TAPPDS command (5748-X!~) 

196 
NOEND option of TAPPDS command (5748-XE1) 

196 
NOEOV option 

of FILEDEF command (2148-XX8) 92.1 
of FILEDEF command (2148=XE1) 92.1 

NOERASE option 
of FORMAT command (57!!.§-XX8) 98 
of FORMAT command (274.§-XE1) 98 

NOERRS option 
of OPTION command 138 
of OPTION command (2148-XX8) 138 
of OPTION command (2148-X]1) 138 

NOESD option of ASSEMBLE command 24 
NOHEADER option 

of LISTFILE command 114.1 
of LISTFILE command (574~-XX.§) 114.1 
of LISTFILE command (21~~-XE.1) 114.1 
of PUNCH command 144 

NOINC option of UPDATE command 202 
NOINV option 

of INCLUDE command 107 
of LOAD command 121 

NOLI BE opt ion 
of INCLUDE command 107 
of LOAD command 121 

NOLIBMAC option of ASSEMBLE command 24 
NOLIST option 

of ASSEMBLE command 24 
of OPTION command 138 

NOLISTX option 
of OPTION command 138 
of OPTION command (21~~-XX8) 138 
of OPTION command (274~-X]1) 138 

NOMAP option 
of GENMOD command 101 
of LOAD command 121 

NOMAXTEN option of TAPPDS command 195 
NOMAXTEN option of TAPPDS command 
t21!!8-XX~) 196 

NOMAXTEN option of TAPPDS command 
C21~8-Xln) 196 

NOMCALL option of ASSEMBLE command 24 
NOMLOGIC option of ASSEMBLE command 24 
NOMSG operand of &CONTROL control statement 

284-285 
nonreentrant code, writing for LINEDIT 

macro 329 
nonrelocatable modules, in CMS 101 
NONSHARE option of CMS SET command 169 
nonshared copy 

of named system, obtaining 169 
of saved system, obtained during debug 

264 

NONUM option of ASSEMBLE command 25 
NOOBJECT option of ASSEMBLE command 25 
NOPACK operand of &CONTROL control 
statement 284-285 

NOPDS option of TAPPDS command 195 
NOPRINT option 

of ASSEMBLE command 25 
of TAPE command 189 

NOPROF option of ACCESS command 16 
NOPROMPT option of COPYFILE command 36 
NOREC operand of FSCB macro 304-305 
NORENT option of ASSEMBLE command 26 
NOREP option 

of INCLUDE command 107 
of LOAD command 121 
of UPDATE command 201 

NORLD option of ASSEMBLE command 24 
NOSEQ8 option of UPDATE command 202 
NOSPECS option of COPYFILE command 36 
NOSTD option of SYNONYM command 184 
NOSTK option of UPDATE command 202 
NOSTMT option of ASSEMBLE command 26 
NOSTOR option of UPDATE command 202 
NOSTR option of GENMOD command 102 
NOSYM option 

of OPTION command 138 
of OPTION command (5748-XX8) 138 
of OPTION cornman d (5748- XE1) 138 

notational conventions 4-6 
NOTERM option 

of ASSEMBLE command 26 
of OPTION command (5748-XX~) 138 
of OPTION command (574~-XE1) 138 
of UPDATE command 202 

NOTEST option of ASSEMBLE command 25 
NOTIME operand of &CONTROL control 

statement 284-285 
NOTRUNC option of COPYFILE command 31 
NOTYP E option 

of COPYFILE command 36 
of ERASE command 81 
of INCLUDE command 101 
of LOAD command 121 
of RENAME command 160 

NOUPDIRT option of RENAME command 160 
NOWTM option of TAPE command 189 
NOXREF option 

of ASSEMBLE command 25 
of OPTION command 138 
of OPTION command (5748-IX~) 138 
of OPTION command (2748-XE1) 138 

NOYFLAG option of ASSEMBLE command 26 
NSL operand 

of FILEDEF command (21~8-X!~) 
of FILEDEF command (5748-XE1) 
of TAPEMAC command (5748-XX~) 
of TAPEMAC command (57~8-XE1) 
of TAPPDS command (2748=XX~) 
of TAPPDS command (5748-XE1) 

nucleus 
CMS, protected storage 168 
protection feature 

displaying status of 149 
set ting 168 

resident commands, list 7 

95 
95 
192 
192 

195 
195 

314 IBM VM/310 CMS Command and Macro Reference 



null 
arguments in EXEC procedure, setting 

with % 300 
block, dumping to tape 190 
line 

stacking in console stack 250-251 
stacking in EXEC 294 
to return to edit mode from input 

mode 215 
when entering VSAM extents 68-69 
when entering VSAM extents, in 

CMS/DOS 64-65 
when entering VSAM extents, in 

eMS/DOS (S748-XX8j 64. i 
when entering VSAM extents, in 

CMS/DOS {5748-XE1> 64.1 
symbols in EXEC statement 289-290 

NUM, result of &DATATYPE built-in function 
298 

number 
of characters in token in EXEC 

procedure, determining 298 
of records to be read or written, 

specifying 304-305 
NUMBER option of ASSEMBLE command 25 
numeric 

o 

data, determining if token contains 298 
variables in EXEC procedure 300 

object deck, assembler, generating 25 
OBJECT option, of ASSEMBLE command 25 
OFF operand 

of &CONTROL control statement 284-285 
of &HEX control statement 288-289 
of &TIME control statement 295 
of AUTOSAVE subcommand 219 
of IMAGE subcommand 233 
of LINEMODE subcommand 236 
of SERIAL subcommand 248-249 

OFFSET (.OF) format word (57~~-X!~) 
342.2,342.10 

OFFSET (.OF) format word (5748-XE1) 
342.2,342.10 

OLDDATE option of COPYFILE command 36 
ON operand 

of &HEX control statement 288-289 
of &TIME control statement 295 
of IMAGE subcommand 233-234 
of SERIAL subcommand 248-249 

operands, command 3 
operators, comparison, in EXEC procedure 

289-290 
OPTCD option of FILEDEF command 92 
OPTION 

command 
DECK option 
description 
DUMP option 
ERRS option 
ERRS option 
ERRS option 
LIST option 
LISTX option 
LISTX option 
LISTX option 

138 
137 
138 
138 
(5748-XX~) 
(5748=.XE1) 
138 

138 
(574 8=.!.!~) 
(5748-XE1) 

138 
138 

138 
138 

NODECK option 138 
NODUMP option 138 
NOERRS option 138 
NOERRS option (~748-!X8) 138 
NOERRS option (5748-XE1) 138 
NOLIST option 138 
NOLISTX option 138 
NOLISTX option (~748-XX8) 138 
NOLISTX option (5748-XE1) 138 
NOSYM option 138 
NOSYM option (5748-XX8) 
NOSYM option (5748-X!1) 
NOTERM option (5748-XX8) 
NOTERM option (5748-XE1) 
NOXREF option 138 

138 
138 

138 
138 

NOXREF option (5748-XX8) 138 
NOXREF option (5748-XE1) 138 
SYM option 138 
SYM option (5 748- XX8) 
SYM option (5748-XE1) 
TERM option (5748-XX8) 
TERM option (5748-XE1) 
XREF option 138 

138 
138 

138 
138 

XREF option (574 8-XX8) 138 
XREF option (5748-XE1) 138 
48C option 138 
48C option (5748-XX8) 138 
48C option (5748-XE1) 138 
60C option 138 
60C option (5748-XX8) 108 
60C option (5748-XE1) 108 

option, of CMS QUERY command 154 
options 

command 3 
for DOS/VS COBOL compiler, specifying 

138 
for DOS/VS COBOL compiler in CMS/DOS, 
querying 154 

for DOS/VSE COBOL compiler 
specifying (5748-XX8) 138 
specifying (~748-XE1) 138 

LOAD and INCLUDE command, retaining 107 
origin 

for debug environment 
setting 271 
used to compute symbol location 267 

ORIGIN 

OS 

option 
of FETCH command 87 
of INCLUDE command 107 
of LOAD command 120 

subcommand, description 271 

da ta sets 
defining in CMS 89 
listing information 110 
listing information (5748-X.!~) 110.4 
listing information (2748-X~1) 110.4 

disks, accessing 18 
linkage editor control cards, adding to 

T EXT files 197 
macro libraries 

reading into CMS MACLIBs 192 
used in assembly 27 

option, of GENMOD command 102 
partitioned data sets (see partitioned 
data sets) 

Index 375 



tapes 
containing partitioned data sets 195 
standard-label processing 195 
standard-label processing (2748-X!~) 

196 
standard-label processing (2148-X~1) 

196 
utility programs 

creating CMS files from tapes created 
by 194 

IEBPTPCH 194 
IEBUPDTE 194 
IEHMOVE 194 

OUTMOVE, MOVEFILE command ddname 134 
OUTPUT 

control statement, for DDR command 
47-49 

option 
of CMS QUERY command 149 
of CMS SET command 168 

OVERLAY subcommand 
description 239 
effect of imaqe settinq 233-234 

OVLY option 
of COpy FILE command 36 

example 42 

P 
PACK 

operand of &CONTROL control statement 
284- 285 

option 
of COPYFILE command 37 
of COPYFILE command, example 41 

parameter list 
displaying with LINEDIT macro 323-325 
passed by RUN command 165 
passed by START command 175 
passed to SVC instruction, recorded 179 

parent disk, of read-only extension 16 
parentheses 

before option list 3 
scanned by EXEC interpreter 278-279 

PARM option 
of HELP command (5748=11!!) 106. 1 
of HELP command (5748-1]1) 106.1 

partition size, for CMS/DOS, setting 
169-170 

partitioned data sets 
copying into CMS files 134 
copyinq into partitioned data sets 135 
displaying member names 111 
listing members of 111 
on tapes, creating CMS files 195 

PD option of DSERV command 77 
PDS (§~g partitioned data sets) 
PDS opt ion 

of LISTDS command 111 
of MOVEFILE command 134 
of TAPPDS command 195 

periods 
as concatenation character for EXEC 

variables 289-290 
indicating message substitution in 

LINEDIT macro 319-329 
placing at end of message text in 

LINEDIT macro 321-322 
PERM option 

of DLBL command 61 
of FILEDEF command 91 
of LABELDEF command (5748-XX~) 110.1 
of LABELDEF command (57!8-X~1) 110.1 

permanent file definitions 91 
phase library 

clearing to zeros 75-76 
CMS/DOS 72-73 
deleting phases from 72-73 

phases 
executing in CMS/DOS 87 
in DOS/VS core image libraries, 
obtaining information about 78 

in DOS/VSE core image libraries 
obtaining information about 

(.2 748- XX8) 78 
obtaining information about 

(.2148-Xn) 78 
PLI filetype, default editor settings 345 
PLIOPT filetype, default editor settings 

345 
preferred auxiliary files 209-210 
prefixes 

identifying sets of files 
with ACCESS command 17 
with LISTFILE command 115 

prefixing, error messages issued in EXEC 
with DMS 280-281 

PRESERVE subcommand, description 240 
PRINT 

command 
CC option 139 
description 139 
HEX option 139 
LINECOUN option 140 
MEMBER option 139 
NOCC option 139 

function statement of DDR command 52 
option 

of AMSERV command 20 
of ASSEMBLE command 25 
of DOSLIB command 72-73 
of DOSLKED command 74-75 
of DSERV command 77 
of MACLIB command 131 
of PSERV command 142 
of RSERV command 162 
of SSERV command 173 
of TAPE command 189 
of TXTLIB command 197 
of UPDATE command 202 

PRINT command, FCB macro loaded by 140 
printer, printing records at 46-56 

376 IBM 17M /~7n eMS Command and 
u~,.. ....... _ n",c __ ,, __ _ 
Uuv,L.V J"\C..LCJ.,.'(;;J,l\,,.,.C II! "'4, _ , ..., 



PRINTER option 
of ASSGN command 29 
of FILEDEF command 90 

printers, virtual, closing after using 
PRINTL macro 330-331 

PRINTL macro 
description 330-331 
ERROR operand 330-331 

private libraries (se~ libraries, DOS/VS) 
private libraries (see libraries 

DOS/VSE) (~748~1X8) 
DOS/VSE) (~148-XE1) 

FROC, files, creating in CMS/DOS 142 
procedures 

DOS/VS, copying into CMS files 142 
DOS/VSE 

copying into CMS files (~148-XX~) 
142 

copying into CMS files (~148~!li1) 
142 

processor time, displaying in EXEC 
procedure 295 

PROFILE EXEC, suppressing execution of 16 
PROG option of LISTIO command 118 
program 

compilation and execution, with RUN 
command 164 

entry point 
selection during CMS loader 

processing 122 
spec ifying 120 

execution 
considerations for closing files in 

EXEC procedures 306 
considerations for closing files in 

EXEC procedures (~748-XX~) 306.1 
considerations for closing files in 

EXEC procedures (~748-XEj) 306.1 
displaying data at terminal 319-329 
displaying parameter lists 323-325 
displaying storage 323-325 
halting 214,264 
handling external interruptions 315 
handling I/O interruptions 316-317 
handling SVC interruptions 317-318 
in CMS subset 224 
in CMS/DOS 87 
modifying control words 273 
modifying general registers 273 
modifying storage 274 
resuming after breakpoint 269 
with INCLUDE command 107 
with LOAD command 121 
with START command 175 

loading into storage 
while using editor 224 
with INCLUDE command 106 
with INCLTJDE cO!llmand (5148-XX~) 

106.3 
with INCLUDE command (574~-X]j) 

106.3 
program status word (§~~ PSW (program 
status word» 

programmer logical units 
for job cataloqs 66-67 
listing assignments for in CMS/DOS 118 
valid assignments in CMS/DOS 29 

PROMP T 
option of COPYFILE command 36 
subcommand, description 240 

prompting 
increment for line-number editing 

setting 240 
PROTECT option 

of CMS QUERY command 149 
of CMS SET command 168 

PSERV command 

PSW 

description 142 
DISK option 142 
PRINT option 
PUNCH option 
TERM option 

111'1 
I~L 

142 
142 

operand of SET subcommand 273 
subcommand, description 272 

PSi (program status wor~ 

236 

changing, in debug environment 273 
displaying in debug environment 272 

PUNCH 
assembler punch output ddname 27 
command 

description 144 
HEADER card format 145 
HEADER option 144 
MEMBER option 144 
NOH EADER option 144 

option 
of ASSGN command 29 
of FILEDEF command 90 
of PSERV command 142 
of RSERV command 162 
of SSERV command 173 

punch, virtual, closing after PUNCHC macro 
331-332 

PUNCHC macro 
description 331-332 
ERROR operand 331-332 

punched files, restoring to disk 58 

Q 
QUERY command (CMS) 

ABBREV option 148-149 
BLIP option 147-148 
description 147 
DISK option 150-151 
DLBL option 152-153 
DLBL option (~1.!!.8-XX1D 152.1 
DLBL option (~1~8-XE1) 152.1 
DOS option 152.1 
DOSLIB option 153-154 
DOSLNCNT option 154 
DOSPART option 154 
~ILEDEF option 152 
IMPCP option 148 
IMPEX option 148 
INPUT option 149 
LABELDEF operand (~148-X1~) 152 
LABELDEF operand (5748-1]1) 152 
LDRTBLS option 148 
LIBRARY option 152 
MACLIB option 152 
OPTION option 154 

Index 377 



OUTPUT option 149 
PROTECT option 149 
RDYMSG option 148 
REDTYPE option 149 
RELPAGE option 148 
SEARCH option 150 
SYNONYM ALL option 151 
SYNONYM SYSTEM option 151 
SYNONYM USER option 151 
SYSNAMES option 149-150 
TXTLIB option 152 
UPSI option 154 

QUIT subcommand, description 241 

R 
RD option of DSERV command 77 
RDCARD macro 

description 333 
ERROR operand 333 

FDTAPE macro 
description 334-335 
ERROR operand 334-335 
MODE operand 334-335 

RDTERM macro 
ATTREST operand 335-336 
description 335-336 
EDIT operand 335-336 
LENGTH operand 335-336 

R DYM SG opt ion 
of CMS QUERY command 148 
of CMS SET command 167 

read, console read after CMS command 
execution 168-169 

READ control card 155 
deletinq 155 
format 155 

READCARD command, description 155 
reader 

virtual 
reading file from 58,155 

READER option 
of ASSGN command 29 
of FILEDEF command 90 

read-only 
disks, editing files on 219 
extensions 

editing files on 79-80 
releasing 158 

read/wr ite 
status of disks 

controllinq 17 
finding first read/write disk in the 
standard search order 301 

finding read/write disk with the most 
space 301 

listinq for disk assignments in 
CMS/DOS 118 

queryinq 150-151 
read/write pointer, positioning, FSWRITE 

macro 312.1 
ready message 

displaying return code from EXEC 
process inq 287 

format 167 
long form 167 

query setting of 148 
setting 167 
short form 167 
special format in EXEC 85 

RECFM 
operand of FSCB macro 304-305 
option 

of COPYFILE command 37 
of COPYFILE command, examples 40-41 
of FILEDEF command 91 

subcommand 
description 241 
F operand 242 
V operand 242 

RECNO operand of FSCB macro 
RECNO operand of FSCB macro 

304. 1 

304-305 
(.2148=1X8) 

RECNO operand of FSCB macro (.2148-X~1) 
304. 1 

RECOMP option of FORMAT command 97 
RECOMP option of FORMAT command (.21!8-!!~) 

98 
RECOMP oRtion of FORMAT command (.21~8-!~1) 

98 
record format 

of CMS file 
changing 37,40-41,242 
listing 115 

of file, specifying 91 
records that can be punched 145 
specifying, for FSWRITE macro 312.1 

record length 
default used by CMS editor 79-80 
modifying 79-80 
of CMS file 

changing 37,40-41 
listing 115 
maximum lengths for PRINT command 

140 
specifying truncation setting for input 

252-253 
specifying with FILEDEF command 93 

record number 
specifying next record to be accessed 

304-305 
specifying next record to be accessed 

(5748-XX8) 304.1 
specifying next record to be accessed 

(5748-XE1) 304.1 
records 

displaying selected positions of 199 
in file, numbering with UPDATE command 

201 
red type 

display lines with WRTERM macro 341-342 
for error messages 168 

REDTYPE option 
of CMS QUERY command 149 
of CMS SET command 168 

reentrant code, writing for LINEDIT macro 
328-329 

references 
unresolved 

resolving with INCLUDE command 107 
resolving with LOAD command 121 

REGEQU macro, description 336-337 
registers (§~~ general registers) 

378 IBM VM/370 eMS Command 
U..,, ___ M_& _____ _ 

ua."J..V L\<::: J..<:::J..<::: 11,,<::: 



RELEASE command 
description 158 
DET opt ion 158 

relocatable 
libraries (DOS/VS), displaying 
directories of 77 

libraries (DOS/VSE) 
displaying directories of ~148-XX~) 

77 
displaying directories of (5748-X~j) 

77 
modules, link-editing in CMS/DOS 74-76 

relocation dictionary, assemtler 24 
RELPAGE option 

of CMS QUERY command 148 
of CMS SET command 167 

remote terminals, using CMS editor 231 
RENAME command 

description 160 
NOTYPE option 160 
NOUPDIRT option 160 
TYPE option 160 
UPDIRT option 160 

RENT 
operand of LINEDIT macro 329 
option of ASSEMBLE command 26 

RENUM subcommand, description 243 
REP option 

of INCLUDE command 107 
of LOAD command 121 
of MACLIB command 130 
of UPDATE command 201 

FEPEAT subcommand 243 
used with OVERLAY subcommand 239 

REPLACE 
control statement, for UPDATE command 

205 
option of COPYFILE command 36 
subcommand 

description 244 
effect of image setting 233-234 
restriction while using line-number 
editing 236 

stacking with &STACK control 
statement 244 

replace (REP) 
loader control statement 126-127 

image of in load map 107 
RESET 

operand of &TIME control statement 295 
option 

of INCLUDE command 106 
of INCLUDE command (~148-XX~) 106.3 
of INCLUDE command (5748-XEj) 106.3 
of LOAD command 120 

responses, eMS editor r controlling format 
of 238 

RESTORE 
function statement, of DDR command 

49-52 
subcommand, description 244-245 

restr ict ions 
access method services and VSAM 

DOS/VS users 349 
DOS/VSE users (57.!!~=~.!~) 349 
DOS/VSE users {5748-XEj} 349 
OS/VS users 349-350 

RETURN 
command, description 244-245 
subcommand {DEBUG} 272 

return codes 
CMS, in EXEC procedure 85 
displaying during EXEC processing 

284-285 
from access method services 22 
from CMS commands, testing in EXEC 

procedure 302 
from CMS macro instructions 303 
from EXEC, displaying in ready message 

287 
from EXEC interpreter 86 
specifying in EXEC procedure 287 

REUSE subcommand 
description 245-246 
examples 245-246 

REW, tape control function 188 
REWIND option 

of TAPE command (5748-X!~) 190 
of TAPE command (5748-X~1) 190 

REWIND option of DDR command INPUT/OUTPUT 
control statement 48 

ribbon, two-color, controlling use of 149 
RIGHT operand of LINEMODE subcommand 235 
RLD option of ASSEMBLE command 24 
RO Immediate command 214 
RPTR operand 

of FSPOINT macro (5748-XX~) 309 
of FSPOINT macro (5748-XE1) 309 

RSCS (Remote Spooling Communications 
Subsystem) 1 

RSERV command 
description 162 
DISK option 162 
PRINT option 162 
PUNCH option 162 
TERM option 162 

RT Immediate command 215 
stacking in EXEC procedure 294 

RUN 

S 

command, description 164 
tape control function 188 

SAME option of INCLUDE command 107 
SAVE subcommand, description 247 
saved system 

names 
querying 149-150 
setting 169 

sharing 169 
SCAN option of TAPE command 188 
scanning 

&EFROR control statement 286 
in EXEC procedure 278-279 

SCRIPT, filetype, default editor settinqs 
345 

SCROLL subcommand, description 247-248 
SCROLLUP subcommand, description 247-248 
SD option of DSERV command 77 
S-disk, accessed after tpLing CMS 17 
SEARCH option of CMS QUERY command 150 

Index 379 



search order 
for CMS commands 7 
for CMS loader 123 
for executable phases in CMS/DOS 87 
for relocatable modules in CMS/DOS 

74-75 
of CMS disks, querying 150 

SEC operand 
of LABELDEF command (21~.§-XXJ1) 110.1 
of LABELDEF command (.21!:H!-XE1) 110.1 

SEQUENCE control statement, for UPDATE 
command 203-204 

sequence numbers 
assigned to VSAM extents 68-69 

in CMS/DOS 64.1 
SEQ8 option of UPDATE command 201 
SERIAL subcommand 

ALL operand 248-249 
description 248-249 
OFF operand 248-249 
ON operand 248-249 

SET command (CMS) 
ABBREV option 168 
AUTOREAD option 168-169 
BLIP option 166 
description 166 
determining status of SET operands for 
virtual machine environment 147 

DOS opt ion 169 
DOSLNCNT option 169 
DOSPART option 169-170 
IMPCP option 168 
IMPEX option 168 
INPUT option 167 
LDRTBLS option 167 
NONSHARE option 169 
OUTPUT option 168 
PROTECT option 168 
RDYMSG option 167 
REDTYPE option i68 
RELPAGE option 167 
SYSNAME option 169 
UPSI option 169 

set location counter (SLC), loader control 
statement 126 

SET operand 
of HNDEXT macro 315 
of HNDINT macro 316-317 
of HNDSVC macro 317-318 

set page boundary (SPB), loader control 
statement 127 

SET subcommand (DEBUG) 273 
CAW operand 273 
CSW operand 273 
GPR operand 273 
PSW operand 273 

SHORT subcommand, description 250 
SINGLE option of COPYFILE command 38 
SKIP option 

of DDR command INPUT/OUTPUT control 
statement 48 

of TAPE command 188 
SL operand 

of FILEDEF command (.21~~=!X~) 95 
of FILEDEF command (.21~~=XEj) 95 
of TAPEMAC command (.21~'§-XX~) 192 
of TAPEMAC command (.21~~=X]1) 192 

of TAPPDS command (.2748=XX8) 195 
of TAPPDS command (5748-XE1) 195 

SLC statement (§~~set location counter 
(SLC) statement) 

SO Immediate command 215 
SORT 

command 
description 171 
storage requirements 171 

option of DSERV command 77 
sort fields, defining 171 
source file, numbering records with UPDATE 

command 201 
source files 

assembling 
identifying macro libraries 21,104 

for assembler 23-28 
updating 201 

source statement libraries 
DOS/VS, displaying directories of 11 
DOS/VSE 

displaying directories of (.2148-X!~) 
71 

displaying directories of (.2748-!~1) 
11 

source symbol table, assembler, generating 
25 

space 
for VSAM 110 
for VSAM 

for VSAM 

determine free extents 
determine free extents 

(5148-XX8) 110.4 
determine free extents 

(5748-XEj) 110.4 
SPACE LINES (.SP) format 

342. 2,342.11 
word (.2 74 8- XX~) 

SPACE LINES (.SP) format 
342.2,342.11 

SPACE operand 

word (.2 74 8- X~l) 

of TAPESL macro (5148-XX8) 338.2 
of TAPESL macro 

special variables 
variables) 

( 574 8- X E 1 ) 33 8. 2 
(~ EXEC special 

specification list, for COPYFILE command, 
format 42 

SPECS option 
of COPYFILE command 36 

usage 42 
SPOOL command 

used with DISK DUMP command 58 
used with PRINT command 140 

SSERV command 
description 
DISK option 
PRINT option 
PUNCH option 
TERM option 

STACK 

113 
113 

173 
113 

113 

subcommand, description 250-251 
value of &READFLAG special variable 302 

stacking 
EDIT subcommands 250-251 
in EXEC procedure, testing whether there 
are lines in stack 302 

lines in console stack 
&BEGSTACK control statement 282 
&STACK control statement 294 

380 IBM VM/370 c~s Command a~.d 
M..",... __ T'l_.t: _____ _ 

l..tUo.\.,r.LV ,j"\'Cl..CJ..,'C,!.J,,,,'I:;;:: 



START 
command 

description 175 
NO option 175 
passing arguments 175 

option 
of FETCH command 87 
of INCLUDE command 107 
of LOAD ccmmand 121 

starting point for execution of module, 
setting 120 

STAT option of LISTIO command 118 
STATE command, description 177 
STATEW command, description 177 
status of virtual machine environment 147 
STD option of SYNONYM command 184 
STK option, of UPDATE command 210-211 
STK option of UPDATE command 202 
STMT option of ASSEMBLE command 26 
STOR option of UPDATE command 202 
storage 

clearing to zeros 
in CMS/DOS 75-76 
with INCLUDE command 106 
with INCLUDE command C2748-XX8) 

106.3 
with INCLUDE command C2148-XE1) 

106.3 
with LOAD command 120 

displaying with LINEDIT macro 323-325 
examining in debug environment 275 
initializing for MODULE file execution 

101 
modifying during program execution 274 
printing contents of 268 
releasing pages of after command 

execution 148,167 
requirements for SORT command 171 
specifying storage for CMS/DOS partition 

169-170 
used by GETFILE subcommand 232 

STORE, subcommand, description 274 
STR option of GENMOD command 101 
SUB operand of LINEDIT macro 322-323 
sublibraries 

of DOS/VS source statement, copying 
books 173 

of DOS/VSE source statement 
copying books (57~~=XX~) 173 
copying books (2148-XEj) 173 

subset, CMS (2~~ CMS subset) 
substit ution 

in EXEC procedure, inhibiting 299 
list for LlNEDIT macro 322-323 

specifying length 326 
of message text in LINEDIT macro 

319-329 
substrings, extracting in EXEC procedure, 

&SUBSTR built-in function 299 
SUL operand 

of FILEDEF command (2748-XX8) 95 
of FILEDEF command (57~~-XE1) 95 

summary 
of HELP format words (574~XX8) 342.2 
of HELP format words (21~8-XE1) 342.2 

SiC 
instructions 

handling interruptions during program 
execution 317-318 

tracing 179 
SVCTRACE command 

description 179 
output 179 

SYM option 
of OPTION command 138 
of OPTION command (2748-XX8) 138 
of OPTION command (5748-XE1) 138 

symbol table, debug 267 
symbolic names, assigning to storage 
locations, in debug environment 267 

symbols 
debug 

defining 267 
modifying 274 
used to set breakpoints 264 

in EXEC procedure 
effect of undefined symbols in &IF 
statement 289-290 

reading from terminal or console 
stack 291-292 

substituted in EXEC procedure, 
displaying 284-285 

variable (2~~ variable symbols) 
SYNONYM 

command 
CLEAR option 184 
description 181 
example 184 
NOSTD option 184 
relationship to SET AEEREV command 

184-185 
STD option 184 

option, of CMS QUERY command 151 
synonym table 

clearing 184 
defining 184 
format for entries in 184 
invoking 181 

synonyms 
for CMS and user-written commands 181 

def ining 184 
displaying 151,184 
examples 184 

system, displaying 151 
SYS option of LISTIO command 118 
SYSCAT, assigning in CMS/DOS 66-67 
SYSIN 

assembler input 27 
logical unit assignment in CMS/DOS 30 

SYSIPT, assigning for ESERV program 83 
SYSLOG, assigning in CMS/DOS 30 
SYSLST lines per page 

displaying number of 154 
setting number of 169 

SYSNAME option of eMS SET command 169 
SYSNAMES option of CMS QUERY command 

149- 150 
SYSPARM option of ASSEMBLE command 26-27 
SYSPRINT control statement of DDR command 

49 
SYSRES, assigning in CMS/DOS 30 
system and programmer logical units, 
entering on DLBL command 63 

Index 381 



system disk 
files available 17 
releasing 158 

system logical units 
invalid assignments in CMS/DOS 30 
listing assignments for in eMS/DOS 118 
valid assignments in eMS/DOS 29 

SYSTEM option of GENMOD command 102 
system residence volume, DOS/VS, specifying 

169 
SYSTERM option of ASSEMBLE command 25 
SySxxx option 

T 
tab 

of ASSGN command 29 
of DLBL command 61 
of LISTIO command 118 

characters, how editor handles 233-234 
settings, used by editor 251-252 

TABSET subcommand 
affected by IMAGE subcommand 233-234 
description 251-252 

tape 
assigning to logical units in CMS/DOS 

30 
backward spacing 188 
control functions 188 

restrictions when using 190 
TAPECTL macro 337-338 

controlling, TAPECTL macro 337-338 
creating CMS disk files 194 
dens ity of 

spec ifyinq 189 
specifying (5748-~1~) 190 
specifying (~148=1]1) 190 

displaying filenames on 188 
dumping and loading eMS files 188 
dumping and restoring disk data 46-56 
files 

created by OS utility programs 194 
created by TAPE command 190 
writing to disk 188 

forward spacing 188 
labels 

displaying definitions in effect 
(~l!!~=!l~) 1 52 

displaying definitions in effect 
(~1!!~=X1H) 152 

displaying VOL1 label (57!!8-XX8) 189 
displaying VOL 1 label (57 !!~-X].1) 189 
in FILEDEF command processing 
(21!!.§:.!1~) 95 

in FILEDEF command processing 
<'~148=X]1) 95 

in TAPEMAC command processing 
(57 !!~=Xl~) 192 

in TAPEMAC command processing 
(21~~:.X1H) 192 

in TAPESL macro processing (2748-XX8) 
338.1-338.2 

in TAPESL macro processinq (2148=X~) 
338.1-338.2 

in TAPPDS command processing 
(57!!~=!X~) 195,196 

in TAPPDS command processing 
(2148-XE1) 195,196 

specifying descriptive information 
(~7 4 8- XX~) 110-110.3 

specifying descriptive information 
(~748-X]1) 110-110.3 

writing VOLl label (2748-X!~) 189 
writing VOLl label (~148-!!1) 189 

marks 

OS 
writing 189 

standard-label processing 195 
standard-label processing (~74~=XX~) 

196 
standard-label processing (2148-X~1) 

196 
positioning 188 

after VOLl label is processed 
(~748-XX§) 190 

after VOL1 label is processed 
(~7 48- X]l) 190 

at specified file 188 
TAPECTL macro 337-338 

reading records from, RDTAPE macro 
334-335 

recording technique 
specifying 189-190 
specifying (5748-XX8) 190 
specifying (5748-XE1) 190 

rewinding 188 
used for AMSERV input and output 20 

entering ddnames 21 
in eMS/DOS 21 

writing records to, WRTAPE macro 
340-341 

TAPE command 
BLKSIZE option (~748-X!§) 189 
BLKSIZE option (~748-X~1) 189 
control functions 

BSF 188 
BSR 188 
ERG 188 
FSF 188 
FSR 188 
REW 188 
RUN 188 
WTM 189 

DEN option 189 
DEN option (21!!8-XX~) 190 
DEN option (~74~-XE1) 190 
description 187 
DISK option 189 
DUMP option 188 
dumping null block 190 
DVOL1 operand (5748-XX8) 189 
DVOLl operand (~748=XE1) 189 
EO F option 189 
EOT option 189 
LEAVE option (~1!!8-XX8) 190 
LEAVE option (~148-X]1) 190 
LOAD option 188 
MODESET option 188 
NOPRINT option 189 
NOWTM option 189 
PRINT option 189 
REWIND option (~148-XX~) 190 
REWIND option (~748-XE1) 190 
SCAN option 188 

382 IBM VM/370 eMS Command and Macro Reference 



SKIP option 188 
TAPn option 189 
TERM option 189 
TRTCH option 189-190 
TRTCH option (~148-XX~) 190 
TRTCH option (~1~8-XE1) 190 
WTM option 189 
WVOL1 operand (5748-XX~) 189 
WVOL1 operand (5748-XE1) 189 
7TRACK option, 189 
7TRACK option (~148-XX~) 190 
7TRACK option (5748-XE1) 190 
9TRACK option 189 
9TRACK option (5748-!!~) 190 
9TRACK option (5748-XE1) 190 

TAPECTL macro 
description 337-338 
ERROR operand 337-338 
MODE operand 337-338 

TAPEMAC command 
description 192 
ID operand (~748-X!~) 192 
ID operand (5748-XE1) 192 
ITEMCT option 192 
NSL operand (57~8-XX~) 
NSL operand (57~8-X]1) 
SL operand (5748-XX8) 
SL operand (~748-X].1) 
TAPn option 192 

TAPESL macro 

192 
192 

192 
192 

BLKCT operand (~748-!!~) 338.2 
BLKCT operand (~748=XE1) 338.2 
description (57~8-XX8) 338.1-338.2 
description (~7~8-XE1) 338.1-338.2 
ERROR operand (5748-XX8) 338.2 
ERROR operanq (5748-X]J) 338.2 
LABID operand (5748-X!~) 338.1 
LABID operand (5748-XE1) 338.1 
MODE operand (~148-X!~) 338.1 
MODE operand (5748-XE1) 338.1 
SPACE operand (5748-XX8) 338.2 
SPACE operand (5748=XE1) 338.2 
TM operand (5748-XX8) 338.2 
TM operand (21~8-XE1) 338.2 

TAPIN option of AMSERV command 20 
TAPn option 

of ASSGN command 29 
of FILEDEF command 

usaqe (5748-XX8) 
usage (~148-XE1) 

of TAPE command 189 

90 
95 
95 

of TAPEMAC command 192 
of TAPPDS command 195 

TAPOUT option of AMSERV command 20 
TAPPDS command 

COL1 option 195 
description 194 
END option 195 
END option (~1~8-X!~) 
END option (274~-XE1) 
ID operand (274~-XX~) 
ID operand (~1~~-XE1) 
MAXTEN option 195 

196 
196 
195 
195 

MAXTEN option (5748-XX8) 196 
MAXTEN option (~148-X]1) 196 
NOCOL1 option 195 
NOEND option 195 

NOEND option (5748-XX8) 196 
NOEND option (~148-XE1) 196 
NOMAXTEN option 195 
NOMAXTEN option (5748-XX8) 196 
NOMAXTEN option (5748-XE1) 196 
NOPDS option 195 
NSL operand (~748-XX~) 195 
NSL operand (5748-XE1) 195 
PDS option 195 
processing OS standard-label tapes 195 
processing as standard-label tapes 

(5748-XX8) 196 
processing as standard-label tapes 

(5748-XE1) 196 
SL operand (5748-XX8) 195 
SL operand (5748-XE1) 195 
TAPn option 195 
UPDATE option 195 

TD option of DSERV command 77 
TERM option 

of DOSLIB command 72-73 
of DOSLKED command 74-75 
of DSERV command 77 
of MACLIB command 130 
of OPTION command (5748-XX~) 138 
of OPTION command (5748-XE1) 138 
of PSERV command 142 
of RSERV command 162 
of SSERV command 173 
of TAPE command 189 
of TXTLIB command 197 
of UPDATE command 202 

terminal 
displaying lines at~ WRTERM macro 

341- 342 
displaying records at 46-56 
output 

determining if terminal is displayinq 
302 

halting 214 
halting in EXEC procedure 294 
restoring 215 
restoring in EXEC procedure 294 

reading data from 
during EXEC procedure 291-292 
with RDTERM macro 335-336 

waiting for I/O to complete, WAITT macro 
340 

TERMI NAL option 
of ASSEMBLE command 26 
of ASSGN command 29 
of FILEDEF command 90 

TEST option of ASSEMBLE command 25 
TEXT 

assembler output ddname 27 
files 

automatic loading 121 
cards read by loader 122 
creating with assembler 25 
executing with RUN command 164 
link-editing in CMS/DOS 74-76,74-75 
linking in storage 120 
loading into storage during program 
execution 304 

loading into virtual storage 120 
resolving unresolved references with 

LOAD command 121 

Index 383 



libraries (§ee TXTLIB) 
operand of LINEDIT macro 321 

TEXT files 
loading into storage for execution 106 
loading into storage for execution 

( 574 8-XX.§ ) 1 0 6 • 3 
loading into storage for execution 
(57~8-X]1) 106.3 

setting starting point for execution 
120 

TEXTA operand of LINEDIT macro 321 
time information, displaying during EXEC 

processing 295 
time of day, displaying during EXEC 

processing 284-285 
TIME operand of SC CNTROL control statement 

284- 285 
timers, virtual interval 166 
TM operand 

TO 

of TAPESL macro (5748=1X8) 338.2 
of TAPESL macro (5748-1]1) 338.2 

operand of $MOVE edit macro 261 
option of GENMOD command 101 

tokens 
comparing in EXEC procedure 289-290 
description 278-279 

TOLABEL option of COPYFILE command 36 
TOP 

operand of SGOTO control statement 
288- 28 9 

subcommand, description 252 
tracing 

resuming after temporarily halting 214 
suspending recording temporarily 215 
SVC instructions 179 

halting 213 
trailing fill characters, removing from 

records 40-41 
TRANS option of COPYFILE command 37 
transient area 

CMS commands that execute in 7 
creating modules to execute in 103 
loading programs into 120 

transient directories in DOS/VS, displaying 
77 

transient directories in DOS/VSE 
displaying (2748-XX.§) 77 
displaying (2148-XE1) 77 

TRANSLATE CHARACTER (.TR) format word 
(5748-XX.§) 342.2,342.12 

TRANSLATE CHARACTER C. TR) format word 
(57~8-X]1) 342.2,342.12 

translate tables 
defining input characters for 
translation 167 

defining output characters for 
translation 168 

displaying 149 
translation list, for COPYFILE command, 

description 43 
TRTCH option 

of ASSGN command 30 
of FILEDEF command 92 
of TAPE command 189-190 
of TAPE command (21~.§-Xl~) 190 
of TAPE command (5748-X]1) 190 

TRUNC 
option of COPYFILE command 37 

example 40-41 
subcommand, description 252-253 

truncation 
column, for input mode 252-253 
of command names 

querying acceptability of 148-149 
setting acceptability of 168 

of commands 4-6 
of input records with editor, default 
settings 252-253 

of records in CMS file 37 
during GETFILE subcommand 232 
following CHANGE subcommand 221-223 

of tokens in EXEC procedure 278-279 
of trailing blanks from CMS file 37 

two-color ribbon, controlling use of 
149,168 

TXTLIB 
command 

ADD option 197 
DEL option 197 
description 197 
DISK option 197 
GEN option 197 
MAP option 197 
PRINT option 197 
TERM option 197 

file, searching for unresolved 
references 107 

files 
adding members 197 
creating 197 
deleting members 197 
determining which TXTLIBs are 

searched 152 
identifying for LOAD and INCLUDE 

command processing 104 
listing members in 197 
maximum number of members 197 
search for unresolved references 121 
searched during INCLUDE command 

processing 106 
searched during INCLUDE command 
processing (5748-XX8) 106.3 

searched during INCLUDE command 
processing (~748-X~1) 106.3 

searched during LOAD command 
processing 120 

option 

TYPE 

of CMS QUERY command 152 
of GLOBAL command 104 

command 
COL option 199 
description 199 
HEX option 199 
MEMBER option 200 

function statement of DDR command 52 
operand of STIME control statement 295 
option 

of COpy FILE command 36 
of COPYFILE command (example) 40 
of ERASE command 81 
of INCLUDE command 107 

384 tTM /~7n ,. .... ./ _ f v c!"!s Command and !1acro Reference 



of LOAD command 121 
of RENAME command 160 

subcommand, description 253-254 
TYPE/PRINT output of DDH command 54 

U 
U operand of CASE subcommand 221 
UA option 

of ASSGN command 30 
of LISTIO command 118 

underscore 
character; on OVERLAY subcommand 239 
data records, using backspaces 233-234 

UNLOAD option of DDR command INPUT/OUTPUT 
control statement 48.1 

UNPACK option, of COPYFILE command 37 
unresolved references 

UP 

during MODULE file generation 102 
loader handling of 123 
resolving with INCLUDE command 107 
searching for TEXT files 121 
searching TXTLIBs for 121 

operand of $MOVE edit macro 261 
subcommand i description 254 

UPCASE option 
of ASSGN command 30 
of COPYFILE command 37 
of FILEDEF command 92 
of FILEDEF command (5748-XX8) 92.1 
of FILEDEF command (~I~~=XE1) 92.1 
of PRINT command 139 

UPDATE 
command 

control statements 203 
CTL option 202,209-210 
description 201 
DISK option 202 
error handling for 210-211 
INC option 202 
input files 206-208 
multilevel updates, example with 
auxiliary control file 209-210 

NOCTL option 202 
NOINC option 202 
NOREP option 201 
NOSEQ8 option 202 
NOSTK option 202 
NOTERM option 202 
output files 206-208 
PRINT option 202 
REP option 201 
SEQ8 option 201 
STK option 202,210-211 
STOR option 202 
TERM option 202 
warnings by 210-211 

control statements 
comments 206-208 
DELETE 205 
INSERT 204 
REPLACE 205 
SEQUENCE 203-204 

filetype, default editor settings 345 
option of TAPPDS command 195 

update log 
for UPDATE command operations 202 

generating at your terminal 202 
UPDIRT option of RENAME command 160 
uppercase letters 

converting to lowercase, with COPYFILE 
command 37 

suppressing translation of lowercase 
letters with editor 221 

UPSI 
byte 

querying setting of 154 
setting 169 

option 
of CMS QUERY command 154 
of CMS SET command 169 

UPTDxxxx filetype, default editor settings 
345 

user catalog 
identifying 69 

in CMS/DOS 66-67 
user file directory 16 

contents of 17 
creating 16 
updating on disk 158 

user-defined synonyms, displaying 151 
user-written commands 

V 

assigning synonyms for 181 
creating 102 

variable data 
in EXEC procedure 

displaying 296 
punching 291 
stacking 294 

variable symbols 
assigning values to in EXEC procedures 

278-279 
reading from terminal or console stack, 
in EXEC procedure 291-292 

substituting, in EXEC procedure 278-279 
testing, in EXEC procedure 289-290 

variable-length files 
converting to fixed-length 40-41 

using RECFM subcommand 242 
reading and writing with CMS macros 

312.1 
VARS operand of &READ control statement 

291- 292 
verification setting, for editor, changing 

255 
VERIFY subcommand, description 255 
virtual disks (see alsg disks) 

counting cylinders on 97 
counting cylinders on (~148-XX~) 98 
counting cylinders on (~148-XE1) 98 
initializing 97 
resetting number of cylinders on 97 
resetting number of cylinders on 

(5748-XX8) 98 
resetting number of cylinders on 

(5748-XE1) 98 
valid addresses for 16 

Index 385 



virt ual machines 
components of 1 
console 1 
definit ion 1 
environment, determininq status 

VM/370, basic description 1 
VOLID operand 

of FILEDEF command (57~]-XX8) 
of FILEDEF command (21~8-XE1) 
of LABELDEF command (274]-XX~) 
of LABELDEF command (~148-XE1) 

VOLSEQ operand 
of LABELDEF command (2148-XX~) 
of LABELDEF command (~l~~-XEj) 

VSAM 
catalogs 

of 147 

96 
96 

110 
110 

110 
110 

determininq which catalog is searched 
66-67 

ident ifying 69 
identifyinq in eMS/DOS 66-67 

data set extents, displaying 64.1 
determining free space extents 110 
determininq free space extents 

( 5 7 ~ 8-!X~) 11 O. 4 
determining free space extents 

(21 48- lit1) 11 O. 4 
files 

defining with DLBL command 60 
specifying disk extents 68-69 
specifying disk extents in eMS/DOS 

64-65 
master catalog 

iden t ifyinq 69 
identifying in CMS/DOS 66-67 

option 
of DLBL ccmmand 61 
of SET DOS ON command 169 

restrictions 
for DOS/VS users 349 
for DOS/VSE users (5748-XX8) 349 
for DOS/VSE users (~748-X]1) 349 
for OS/VS users 349-350 

VSBASIC 
files, renumbering 243 
filetype, default editor settings 345 

VSBDATA filetype, default editor settings 
345 

W 
wait, for terminal I/O to complete, WAITT 

macro 340 
WAITD macro 

description 339 
ERROR operand 339 
used with HNDINT macro 316-317 

WAITT macro, description 340 
W PTR op erand 

of FSPOINT macro (5748-XX~) 309 
of FSPOINT macro (~148=1~1) 309 

WRTAPE macro 
description 340-341 
ERROR operand 340-341 
MODE operand 340-341 

WRTERM macro 

WTM 

COLOR operand 341-342 
description 341-342 
EDIT operand 341-342 

option of TAPE command 189 
tape control function 189 

WVOL 1 operand 

x 
X 

of TAPE command (5748-!!~) 189 
of TAPE command (5748-!~) 189 

DEBUG subcommand 275 
EDIT subcommand 

description 256 
example 256 

XREF option 
of ASSEMBLE command 25 
of OPTION command 138 
of OPTION command (5748-XX~) 138 
of OPTION command (2748-XE1) 138 

XTENT option of FILEDEF command 91 

Y 
Y subcommand 

description 256 
example 256 

Y-disk, accessed after IPLing CMS 17 
YFLAG option of ASSEMBLE command 26 

Z 
zone settings, for edit session 257-258 
ZONE subcommand, description 257-258 

1 
19E virtual disk address, accessed as 
Y-disk 17 

190 virtual disk address, accessed as 
S-disk 17 

191 virtual disk address, accessed as 
A-disk 17 

192 virtual disk address, accessed as 
D-disk 17 

195 virtual disk address, forma tted by CMS 
batch facility 32 

386 IBM VM/370 eMS Command and Macro Reference 



3 of TAPE command 189 
3350, restriction on use in CMS/DOS 30 of TAPE command (~7 48- XXJ!) 190 

of TAP E command (5748-XE1) 190 
7-track tapes 

specifying on TAPE command 189 
4 specifying on TAPE command (.21~J!- X X!! ) 
48C option 190 

of OPTION command 138 specifying on TAPE command (.2148- X];l) 
of OPTION command (5748-XX8) 138 190 
of OPTION command (~748-X].1) 138 

9 
6 9TRACK option 
60C option of ASSGN command 30 

of OPTION command 138 of FILEDEF command 92 
of OPTION command (5748-XX8) 138 of TAP E command 189 
of OPTION command (57 4J!- XE1) 138 of TAP E command (5748-XX8) 190 

of TAP E command (5748-XU) 190 
9-track tapes 

specifying on TAPE command 189 
7 specifying on TAPE command (57!8-XX!!) 
7TRACK option 190 

of ASSGN command 30 specifying on TAPE command (~1!8-XE1) 
of FILEDEF command 92 190 

Index 387 



388 IBM VM/370 C~s Command and Macro Reference 



IBM VM/370 CMS Command 
and Macro Reference 
GC20-1818-3 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. This form may be used to communicate 
your views about this publication. They will be sent to the author's department for 
whatever review and action, if any, is deemed appropriate. Comments may be written 
in your own language; use of English is not required. 

IBM may use or distribute any of the information you supply in any way it believes 
appropriate without incurring any obligation whatever. You may, of course, continue 
to use the information you supply. 

Note: Copies of I EM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using 
your IBM system, to your IBM representative or to the IBM branch office serving your 
locality. 

• Does the publication meet your needs? 

• Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

Well illustrated? 

Written for your technical level? 

• What is your occupation? 

• How do you use this publication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes 

o 

D 
o 
D 
D 
D 

D 
D 
D 

No 

D 

D 
D 
D 
D 
D 

As an instructor in class? 

As a student in class? 

As a reference manual? 

D 
D 
o 

If you would like a reply, please supply your name and address on the reverse side of this 
form. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 

READER'S 
COMMENT 
FORM 



GC20-1818-3 

Reader's Comment Form 

Fold and Tape Please Do Not Staple Fold and Tape 
IC::J ................................................................................................................................................................................................... , s: 

11111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

I nternational Business Machines Corporation 
Department G60 
P. O. Box 6 
End icott, New York 13760 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

< s: -w ..... 
o 
(") 
s: 
CI) 

~ 
3 
3 
l» 
~ 
Q. 

l» 
~ 
Q. 

s: 
l» 
n 

I 0 
J:I 
CD 

~ 
""I 

I ~ 
n 
~ 

"'0 
""I 

:i' 
~ 
Q. 

................................................................................................................................................................................................... 1 :i" 
Fold Fold 1 C en 

If you would like a reply, please print: ~ 

Your Name ____________________________________________ __ 

Company Name ________________________ _ Department ______ _ 

Street Address ____________________ _ 
City ____________________________________________ __ 

State ______________ Zip Code ______ _ 

IBM Branch Office serving you ____________________________ _ ---.. - .-------~-----... _ ...... -- - ----------- ------- _ .. -
® 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N. Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N. Y., U. S. A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamiltun Avenue, \~hite P~Ci;iiS, ~~. y., U. S. A. 10501 

C) 
(") 
N 
9 .... 
00 .... 
r:p 
w 



® 

internationaiBusiness Machines Corporation 
Data PrO(:e$singt:livision 
1133 Westd'lest~r'Avenue~ Wi!iite Plains, N.Y .. 10604 

,JJ3MJNar:!!l T~An1flr~Fa: E~I>tCo:pGr.tiG.~ 
- Town of MountPieasan( ROI,lte 9. I'",orth Tarrvtown_ N.Y., U.S.A-.. 10591 

I ~M, Wodd Trade Europe/Middle EastJ AfriC9 Corporat«JO 
960"Ham"ittbrt A\i!'nL~-~'Whit~tPta:~;;, N"Y"f U~S_A~ 10601 


