
Systems -

File No. 8370-36
Order No. GC20-1818-2

IBM Virtual Machine
Faci I ity /370:
CMS Command and Macro
Reference

I Release 6 PlC 1

This publication provides users of the
Conversational Monitor System (CMS) component of
I BM Virtual Machine Facility/370 with detailed

reference information concerning command syntax

and usage notes for:

• CMS commands
• EDIT subcommands
• DEBUG subcommands
• EXEC control statements, special variables, and

built-in functil'ns
• CMS assembler language macro instructions

PREREQUISITE PUBLICATIONS

IBM Virtual Machine Facility/370:

Terminal User's Guide, Order No. GC20-1810

eMS User's Guide, Order No, GC20-1819

--..- --- = =-=== - -. ---- - - ---------
-~-.-®

!hir~ !di!i2! (!arch 1979)

This is a major revision of, and obsoletes, GC20-1818-1 with Technical
Newsletter GN2S-0416.

This edition applies to ~!~~ § PL£ 1 (Program Level Change) of the
IEM Virtual Machine Facility/370, and to all subsequent releases unless
otherwise indicated in new editions or Technical Newsletters (TNLs).

Technical changes and additions to text and illustrations are indicated
.by a vertical bar to the left of the change ..

Changes are periodically made to the inforllation herein; before using
this publication in connection with the operation of IB! systells,
consult the latest !~~ ~§~~~LJ70 Bib!!gg~!EhI, Order No. GC20-0001, for
the editions that are applicable and current.

Publications are not stocked at the address given below; requests for
copies of IBM publications should be lIade to your IB! representative or
to the IBM branch office serving your locality.

1 form for readers' com.ents is provided at the back of this
publication. If the form has been removed, coaments aay be addressed to
IE! Corporation, V!/370 Publications, Dept. DS8, Bldg. 706-2, P.o. Box
390, Poughkeepsie, New York 12602. IBM lIay use or distribute any of the
information you supply in any way it believes appropriate without
incurring any obligation whatever. You aay, of course, continue to use
the information you supply.

@ Copyright International Business ~achines Corporation 1976, 1977,
1979

/

Use this publication as a reference manual;
it contains all of the-command formats,
syntax rules, and operand and option
descriptions for CMS commands, subcommands,
and macro instructions for general users.

The !~~ !!£~yal ~~gh!n~ l~ci1itIL37Q:
~~~ Q2~~2 Qy!de, GC20-1S19, contains 
tutorial information and functional 
descriptions of CMS commands, as well as 
information on using the e~itor, EXEC, and 
debugging facilities of CMS. You should be 
familiar with the contents of the !~L11Q 
~~~ y§~£~ §y!~~ before you attempt to use 
this reference manual. For most of the CMS
commands described in this publication, you
may find additional useful notes in the
!~/37Q CMS Y2~£~2 Qy!de.

This publication has six sections:

"Section 1. Introduction and General
Concepts" describes the components of the
VM/370 system and tells you how to enter
CMS commands. It lists the notational
conventions used in this manual, so that
Iyou can interpret the command format
descriptions in Section 2. Section 1 also
contains information about the CMS command
search order and a summary of all the CMS
commands available under VM/370, including
those not for general users.

"Section 2. CMS Commands" contains
complete format descriptions, and operand
and option lists, for the CMS commands
available to general users. Each command
description contains usage notes, and lists
responses and error messages (with
associated return codes) produced by the
command.

"Section 3. EDIT Subcommands and Macros"
describes the subcommands and macros
available in the environment of the CMS
editor, which you can invoke with the EDIT
command. Each subcoamand description
contains usage notes and summarizes the
types of responses you might receive.
Where applicable, additional information is
provided for users of display terminals.

"Section 4. DEBUG Subcommands" describes
the subcommands available in the debug
environment of CMS. Each subcommand
~escription contains usage notes and, where
~pplicable, lists the responses to the
~ubcommand.

Preface

"Section 5. EXEC Control Statement~"
describes th~ control statements, special
variables, and - built-in functions you can
use when you create EXEC procedures to
execute in CMS~ The control statement
descripticns contain usage notes, where
applicable.

"Section 6. CMS Macro Instructions"
lists the formats and operands of the CMS
assembler language macro instructions you
can use when you write programs to execute
in CMS.

This publication
appendixes:

also has three

"Appendix A: Reserved Filetype Defaults"
lists the filetypes that are recognized by
the CMS editor and indicates the default
settings that the editor supplies for
logical tabs, truncation, verification,
lcgical record length, and so on.

"Appendix B: DOS/VS Access Method
Services and VSAM Functions Not Supported
in CMS" lists the restrictions on the use
of access method services and VSAM in the
CMS/DOS environment of CMS.

"Appendix C: OS/VS Access Method
Services and VSAM Functions Not supported
in CMS" lists the restrictions for OS
prcgrammers using access method services
and VSAM in CMS.

Some of the following convenience terms are
used throughout this publication:

• The term "CMS/DOS" refers to the
functicns of CMS that become available
when you issue the command:

set dos on

CMS/DOS is a part of the normal CMS
system, and is not a separate system.
Users who do not use CMS/DOS are
sometimes referred to as OS users, since
they use the OS simulation functions of
CftS.

• The term "CMS files" refers exclusively
to files that are in the SOO-byte block
format used by CMS file system commands.
VSAM and OS data sets and DOS files are

Preface iii

not compatIble with the CMS.file format,
-and cannot be manipulated using CMS file
system cOlDmands.

The terms "di-sk" and "virtual disk" are
used interchangeably to indicate disks
that are in your CMS virtual machine
configuration. Where necessary, _ a
distinction is made between the
CMS-formatted disks and disks in OS or
DOS format.

The following terms in this publication
refer to the indicated support devices:

• "2305" refers to IBM 2305 Fixed Head
Storage, Models 1 and,2.'

• "270x" refers to IBM 2701, 2702, and
2703 Transmission Control Units or the
Integrated Communications Adapter (ICA)
on the System/370 Model 135.

• "3270" refers to a series of display
devices, namely, the IBM 3275, 3276,
3277, and 3278 Display Stations. A
specific device type is used only when a
distinction is required between device
types.

Information about display terminal usage
also applies to the IBM 3138, 3148, and
3158 Display Consoles when used in
display mode, unless otherwise noted.

Any information pertaining to the IBM
3284 or 3286 Printer also pertains to
the IBM 3287, 3288, and 3289 printers,
unless otherwise noted.

• "3330" refers to the IBM 3330 Disk
Storage Models 1, 2, or 11; and the 3350
Direct Access Storage operating in
3330/3333 Modell or 3330/3333 Model 11
compatibility mode.

• "3340" refers to the IBM 3340 Disk
Storage, Models A2, Bl, and B2, and the
3344 Direct Access Storage Model B2.

• "3350" refers to the IBM 3350 Direct
Access Storage Models A2 and B2 in
native mode.

• "3704", "3705", or "3704/3705" refers to
IBM 3704 and 3705 Communications
Controllers.

• "3705" refers to the 3705 I and the 3705
II unless otherwise noted.

• "2741" refers to the IBM 2741 and the
3767, unless otherwise specified.

I • "3066" refers to the IBM 3066 System
Console.

lv VM/370 CMS Command and Macro Reference

, Fo~_ a glossary of VM/370 terms, see the
IBM Y!flYg! ~g£hin~ !~£!!!!ZL370: Gl~§§~f~
i~4 ~~§l~f Ing~!, GC20-1813.

PREREQUISITE PUBLICATIONS

In addition to the Y~LdlQ £~§ US~I~§ Qy!g~~
prerequisite information is contained in
the following publications:

• For information about the terminal that
you are using, including procedures for
gaining access to the VM/370 system and
logging on, see the 1~~ yirtu~! ~~l!i1!~
!~£!!!!WIQ: I~mi!!g! .Q~~§ QYig~,
GC20-1810.

• If you are using an IBM 3767
Communications Terminal, the IBM 11§1
QE~IglQI~ Gu!de, GA18-2000, is a
prerequisite.

• The CP commands that are available to
you as a general user are described in
IBM Virtual l!gchi!l§ !~£!li!ZL37.Q: £~
Command-~eference 12I Q~~I~! .Q§~I§,
GC20=182 0:--------
For additional tutorial information on

using CMS, you may want to use £~§ f2I
~!~gI~~~~I§ - ! pr!~~, SR20~4438.

If you are going to use an IBM Program
Product compiler under CMS, you should have
available the appropriate program product
documentation. These publications are
listed in IBM Virtyal ~~hin~ Fac!!itWIQ:
!1!!!odY£!!2!! ~£~Q-1800.

COREQUISITE PUBLICATIONS

The !~~ Virtual Machine !~!!itZLdlQ:
~I~!~~ ~~§§~i§,--GC20=1808, describes all
of the error messages and system responses
produced by the CMS commands and EDIT and
DEEUG subcommands referenced in this
publication. It also lists the error
messages issued by the EXEC processor
during execution of your EXEC procedures.

If you are alternating between CMS and
other operating systems in virtual machines
running under VM/370, you should consult
!~~ Y!f!Yg! Ag£l!in~ !~£!!!lILd70: Q~!g!i1!g
~I~!~~§ !~ ~ Y!ftu~! Ma£l!i~, GC20-1821.

SUPPLBMBNTAL PUBLIClTIONS

For general information about the VM/370
system, see the- publications !~~ !!!!yg!
~.!!ch!!!~ !~£!!itYL11.Q: - !!!!!2£Y£!!2!!,
G-C20-1800, and !11L11.Q !~aty!~~ ~YEEle!~!!!,
GC20-1757.

Additional descriptions of various CftS
functions and commands which are normally
used by system su-pport personnel are
described in

~Y~!~! ~!2g!g!me!~~ QY!£~, GC20-1807

QE~!gtO!~~ Quide, GC20-1806

Information on IPCS commands, which are
invoked under CMS, is contained in I~~

!!rtyg! 11.!!£h!!!~ Fa£!.!!UL11Q: I!!!~g£ti~
~rob.!~! CO!!!!2.! ~Y2!~! (Ig£~) y~~!~~ Guid~,
GC20-1823.

Details on the CMS CPBREP, a command
used to generate output reports from VM/370
error recording records, are contained in:

For more details on the operands used
with CPEREP, refer to:

For messages issued by CMS CPEREP, see:

There are three publications available as
ready reference material when you use
VM/370 and CMS. They are:

!~11 !!!!yg! l1.!!£h!~ !g£ilitYL11.Q:

2Y!£~ QY!~~ !2! y~~!~, GX20-1926

~2!!g!!ds (§~~IA! y~~!), GX20-1961.

If you are going to use the
Spooling communications Subsystem,
!~~ !!!!yg! ~g£hi!!~ !g£!.!!!ILl1.Q:
~Ef2!!g9 £2!!ygicgti2!!2 ~YB~Y2!~!
Y2~!~2 Qy!de, GC20-1816.

Remote
see the
!!~!2!~
(!!~£~)

Assembler language programmers may find
information about the Vft/370 assembler in
Q~L!~, - ~Q~!~, ~!!£ !~Ll1Q !22~~E!er
~g~gygg~, Order No. GC33-4010, and Q~LVS
g~g !~Ll1Q !22~mb!~! g!2g!g!me!~2 Qy!g~,
GC33-4021.

CMS support of Access Method Services is
based on DOS/VS Access Method Services. The
control statements that you can use are
described in ~Q~L!~ !££~22 11~th2g Se!y!£~~
y§~!~~ Qyide, GC33-5382. The !~Ll1Q: £~2
User's Guide contains details on how to use
thIs-support. Error messages produced by
the Access Method Services program, and
return codes and reason codes are listed in
QQ~L!~ ~~§2gg~2' GC33-5379.

For a detailed description of DOS/VS
VSAM macros and macro parameters, refer to
the QQ~L!~ ~YE~!yisor g!!g lLQ 11g£!2§,
GC33-5373. For information on OS/VS VSAM
macros, refer to OSL!2 !!ItUg! ~12!g9~
!££~§~ 11~1ho£ (VSAM) g!2g!g!me!~2 QYig~,
GC26-3818.

The CMS ESERV command invokes the DOS/VS
ESERV program, and uses, as input, the
control statements that you would use in
DOS/VS. These control statements are
described in Qy!de to !h~ ~Q~L!~ !~Se!B!~!,
GC33-4024.

Linkage editor control statements, used
when invoking the DOS/VS' linkage editor
under CftS/DOS, are described 1n QQ~L!2
~I§!~! £2!1!2! ~ta!~~!§, GC33-5376.

Batch DL/I application programs can be
written and tested in the CftS/DOS
environment. See !11Ll1.Q ~~2 ~§~!~§ QYig~,
GC20-1819, and DLLI QOSL!2 Q~!!~!~!
I~!2I!g!!g!!, GH20~1246, for details.

preface v

vi V8/370 CftS Command and ftacro Reference

Pg. of GC20-1818-2 Rev. Mar 3"0, 1919 by Supple SD23-9023-1 for 5148-XX8

The entties in this ~able of Contents are ac6uaulative and reflect the
VK/370 Basic Systea E~tensions Program product, Program ~u.ber 5748-XX8.

SUftftARY OF -AMERDMENTS. · · · · ix PSERV.
PUNCH.

SECTION 1 .. IRTRODUCTION AND GENERAL QUERY.
CONCEPTS. · · · • 1 READCARD · The CftS Env iron.ent. • 1 RELEASE.

Entering CftS Co •• ands. ~ · .2 RENAftE
Character Set Usage. · .~ RSERV.
Rotational Conventions . · it · .4 RUN.
CftS COllmand Search Order · .1 SET.
CftS Command Su •• ary. · · · · .7 SORT · SSERV. · SECTIOR 2. CftS COMMANDS. · · · 15 START.
ACCESS · 16 STATE/STATEW
AftSERV · 20 SVCTRACE · ASSEftBLE · · · · · 23 SYNONYM.
ASSGN. · .• · 29 The User Synonya Table
CKSBATCH · · 32 TAPE
COftPARE. · 33 TAPEftAC.
COpy FILE · 35 TAPPDS

Using the COPYFILE COII.and · 38 TXTLIB
CP . · · · · · 45 TXTLIB (2148- Xl.§) •
DDR. · .. · · 46 TYPE

DDR Control Statements · · · 46 UPDATE

Contents

addition of the

. · -. .142
.144

· .147

· .155-
.158

· .160
.162

o • .164
.166

· -. .171
-. • 113

.115

.116
-. · .118 .• .182

· · .183

· .186

· .191 . .193
.196

.196.1
.198

· .20'0
I/O Definition State.ents. · 41 Update Control Statements. . I • .202

DEBUG. · · · · 51 SUlllaary of Files Used by the UPDATE
DISK · · · · 58 Command .205
DLBL · · · · · · 60 I.mediate CODmands · .212
DOSLIB · · · · · · 12 HB . · .212
DOSLKED. · · 74 HO . · · · .212
DSERV. · · · · · 11 HT · · .213
EDIT · · 19 HX .213
ERASE. · · 81 RO · .213
ESERV. · · · 83 RT · .214
EXEC · · · · 85 SO · .214
FETCH. · · 81
FILEDEF. · · · 89 SECTION 3. EDIT SUBCOftMA NDS AND MACROS .215
FORftAT · · 91 EDIT Subco •• ands . · .215
GENDIRT. · · · · .100 ALTER. .216
GENftOD · · .101 AUTOSAVE · .. · .211
GLOBAL · · .104 BACKWARD (pri.arily 3210) • .218
HELP (21!!!::.!!!!) • · .106 BOTTOM · .218
INCLUDE. · .106 CASE .219
INCLUDE <21! 8- I!!!) · · .106.3 CHANGE .219
LABELDEF (21!!!::.XX!!) • · .110 CftS. · .222
LISTDS .110 DELETE · .224
L ISTDS (57!!!::.!!!!) • .110.4 DOWN · · .224
LISTFILE · · · .114 DSTRING. .225
LISTIO · · · .118 FILE .226
LOAD · · · .120 FIND226

Loader Control Statellents. · · .124 FMODE. .221-
LOADftOD. · · .129 FNAME. · .228
ftAct IB · · · · .130 FORMAT (3210 only) .228
ftODKAP · · · .133 FORWARD (primarily 3210) · .229
BOVEFILE · · · .134 GETFILE. · .230
OPTION · · · · .131 IMAGE. .231
PRDT. · · · .• .139 INPUT. · .232

Contents vii

Pg. of GC20-1818-2 Rev. Mar 30, 1979 by Supple SD23-9023-1 for 5748-IX8

_ LINEMODE • !

LOCATE
LO_NG •
NEXT •
OVERLAY.
PRESERVE •
PROMPT
QUIT •
RECj!'M.
RENUM.
REPEAT
REPLACE.
RESTORE.
RETURN •
REUS-E (=).
SAVE •
SCROLL/SCROLLUP
SERIAL
SHORT.
STACK.
TABSET
TOP.
TRUNC.
TYPE •
UP •
VER-IFY
1 or Y
ZONE •
?(QUESTION MARK)
nnnnn.
EDIT Macros.

$DUP
$MOVE.

. ' .. -.

(3270 only)

SECTION 4.
BREAK.
CAW.

DEBUG SUBCOMMANDS •

CSW.
DEFINE
DUMP •
GO •
GPR.
HX ...
ORIGIN
PSW.
RETURN
SET.
STORE.

SECTION 5. EXEC CONTROL STATEMENTS •
The Assignment Statement •

.. ,.

_.

.233

.235

.236

.236

.237

.238

.238

.239

.239

.240

.241
• 242
.242
• 243
.243
,.245
.245
.246
.248
.248
• 249
.250
.250
.251
.252
.253
.254
.255
.256
• 257
.258
.258
.259

.261

.262
• 263
.264
.265
.266
.267
.268
.268
• 269
.270
.270
.271
.272

.275

.276
• 277
.278
.279

• .280
.. 280
.281

SSKIP __
SSP.ACE
SSTACK
STIME~
STYPE.
Built-in Functions
SCONCAT.
SDATATYPE.
SLENGTH.
SLITERAL
&SUBSTR.
Special Variables •
Sn
s* and S$ _ ' •
SDISKx
SDISK*
SDISK?
SDOS •
SEXEC.
SGLOBAL •
SGLOBALn
SINDEX
&LINENUM
SREADFLAG.
&RETCODE
STYPEFLAG.

SECTION 6. CftS MACRO INSTRUCTIONS.
COMPSiT •
FSCB •
FSCBD.
FSCLOSE.
FSERASE.
FSOPEN
FSPOINT (2748=!!~)
FSREAD
FSREAD (2148-!!~) •
FSSTATE.
FSWRITE.
HRDEXT
HNDINT •
HNDSVC
LINEDIT.

LINEDIT Macro Operands •
PRINTL
PUNCHC
RDCARD
RDTAPE
RD'IERM
REGEQU
TAPECTL.
TAPXSL (21!8-!!§) •
WAITD.
WAITT.
WRTAPE
WRTER"

.290

.291

.292

.293
• .294 -
• .295

.295
.. 296
.296

• .. 297
.297
.298
.298
.298
.298

• .299
,.299
.299
.299
.299

• ,.300
.300
.300
.300
..300
..300

• .301
,.302
.302
.303

.304.1
,.305
.306
.307
.307
.308
.309

• .310
.313
.314
.315
.317
.319

• .. 328
.329
.331
.332
.333
.334

• .335
.336.1

.337
• .338
• .338

.339

SARGS.
SBEGEMSG •
SBEGPUNCH.
SBEGSTACK.
SBEGTYPE •
SCONTINUE.
SCONTROL •
SEMSG.
SEND •
SERROR
SEXIT.
&GOTO.
SHEX.
SIP. ,_

• .282
.283
.284
.284
.285
.286
• 286

SECTION 7. HELP FORMAT
.. EI (BOX) (~74~=!X8)

WCBDS(~748=ill)340.1

SLOOP.
SPUNeH
SREAD.

viii

• ,.287
.288
.289
.289

.Cft (COMMENT) (~1!8-XX8)

.CS (CONDITIONAL SECTION) (~1!8-!!!H

.PO (FORMAT MODE) (5748=!!~)

.IL (INDENT LINE) (~74~=!!~)

.IN (INDENT) (5748=ill) •

.OF (OFFSET) (~148=XI~)
• SP (SPACE LINES) (57!~=!!~)
• TR (TRANSLATE CHARACTER) (5748::!X8)

IBM VM/370 CMS Coamand and Macro Reference

.340.3

.340.5

.340.6

.340.7

.340.8

.340.9
.340.10
340.11
340.12

Pg. of GC20-1818-2 Rev. Mar 30, 1919 by Supple SD23-9023-1 for 5148-XX8

APPENDIXES • • • • • .341

APPENDIX A: RESERVED FILETYPE DEFAULTS .343

APPENDIX B: DOS/VS ACCESS METHOD
SERVICES AND VSAB FUNCTIONS NOT
SOPPORTED IN CBS. • • • • • • •

APPENDIX B: VSE/ySAB FUNCTIONS NOT

.345

SUPPORTED IN CBS (2148-XX8) • .345

APPENDIX C: OS/VS ACCESS METHOD
SERVICES AND VSAB FUNCTIONS NOT
SUPPORTED IN CBS. •

INDEX •••••••

.341

••• 349

Contents ix

Mar 30, 1979

X IBM VM/370 CMS Command and Macro Reference

3278-2A DISPLAY CONSOLE

New: Program Feature

The CMS editor now supports the 3278
Model 21 Display Console which is a
20-line display . console~ "Section 3.
EDIT Subcommands and Macros" is modified
to reflect this support.

Su •• ary of A.end.ents
for GC20-1818-2
Release 6 PLC 1

MISCELLANEOUS

~h~Bg~g: Documentation

Technical corrections
changes have been made
publication.

and editorial
throughout this

Summary of Amendments xi

Summary of Amendaents
for GC20-1818-1
as updated by GN25-0416
Release 5 PLC 1

DOS/VS RELEASE 34 SUPPORTED

!~!: Program Feature

CMS/DOS supports DOS/VS Release 34.
This support includes a new operand of
the SET command and a new operand of the
QUERY command. SET DOSLNCNT allows the
user to set the number of SYSLST lines
per page. QUERY DOSLNCNT displays the
current number of SYSLST lines per page.

xii VM/310 CMS Co.mand and ftacro Reference

These new operands are described in
"Section 2. CMS Commands."

ftISCELLANEOUS

£h§ng~g: Programming and Documentation

ftinor technical and editorial changes
have been made to clarify the text.

IB~ VM/370 ATTACHED PROCESSOR SUPPORT

Ne!: programaing and Hardware Changes

VM/370 support for the IBM System/370
Attached Processor is now available for
the System/370 Model 158 and 168
processors. Modifications to the
program are documented, such as the use
of hardware prefixing, which allows each
processor to have its own PSA, and a
series of locks, which provide the
necessary controls.

IBM VM/370 SUPPORT FOR THE DEDICATED 3850
MASS STORAGE SYSTEM

l!~!: Programming

VM/370 supports the 3850 Mass Storage
System as a dedicated device. As many
as four virtual machines may be
concurrently running OS/VS1 or OS/VS2,
each of which (with MSS support) can
control an interface with a common 3850
Mass Storage System.

Dedicated MSS sUFPort permits an
installation to generate the system,
test, and convert to an MSS environment
while concurrently running non-MSS
production.

VM/370 SUPPORTS THE 3270 DISPLAY DEVICES

~hs~g~g: Programming and Documentation

VM/370 now supports 3270- display
devices. The term 3270 now refers to
the IBM 3275, 3276, 3277, and 3278
Display Stations. It also aFplies to
the IBM 3138, 3148, and 3158 Display
Consoles, when used in disFlay mode.
Information pertaining to the IBM 3284
or 3286 Printers also pertains to the
IBM 3287, 3288, and 3289 Printers. -

Summary of Amendments
as updated for

for GC2o-1818-1
VM/370 Release 4 PLC 1

VM/370 SUPPORTS OS/VS EREP (IFCEREP1)

~hsllg~g: Programming and Documentation

The CPEREP command now uses all edit and
format operands that are available to
OS/VS EREP. Because of VM/370's
compatibility with oS/vs EREP, VM/370
relies on existing OS/VS EREP
documentation. Therefore, VM/370 no
longer publishes the following:

!~~ !i~lYs! ~s£h!~~ !s£!l!lYLllQ:

~~Y!~2~m~llls1 ~~~2~ ~~£2~gi~g,
~gi:!:!~, snd prinl!~g (~~~R) Pr2g~sJ!!,
Order No. GC29-8300

Documentation of the interface to OS/VS
EREP and the interface to the VM/370
error recording cylinders is contained
in:

~~£~!£~ E2ut!~ R~2g!sm 129i£, Order
No. SY20-0882

VM/370 publications contain referrals to
OS/VS publications where required.

The following areas in this publication
reflect _ the changes -to EREP
documentation: _

Preface
Section 1. Introduction and General
Concepts

IUSCELLANEOUS

~hs~g~g: Programming and Documentation

Minor technical and editorial changes
have been made to clarify the text.

Summary of Amendments xiii

xiv VM/370 eMS Command and Mac~o Re_~erence

Barch 30, 1979

Section 1. Introduction and General Concepts

Virtual Machine Facility/370 (VM/370) is a syste. control progra. (SCP)
that controls "virtual machines." A virtual machine is the functional
equivalent of a real machine, but where the real machine has lights to
show status, and buttons and switches on the real system console to
control it, the virtual machine has a virtual system console to display
status and a co •• and language to start operations and control them. The
virtual system console is your terminal; there are three command
languages, which correspond roughly to the four components of the V8/370
system:

• The Control Progra. (CP) controls the resources of the real aachine;
that is, the physical machine in your computer room. The CP co •• ands
are described in !!l37Q ~R ~2!~nd ~~~~~£! !2£ g~~£al ~§~.

• The Remote Spooling Communications Subsystem (RSCS) is a subsystem
designed to supervise transmission of files across a teleprocessing
network controlled by CP. For information about RSCS, see the V8/31~
~!!.!2!~ ~£££!ing ££J!!.!Ylli£atio~ ~ubsy§!~.! (RS~.§) Us~~~§ .§y!de.

• The Conversational Bonitor system (CBS) is a conversational operating
system designed to run under CP. All of the CBS co.mands for general
use, and the subcommands and macros that you can use in the CftS
environment, are described in this publication.

• The Interactive Problem Control System (IPCS) provides
programmers and installation support personnel with Vft/370
analysis and management facilities, including problem
creation, problem tracking, and CP abend duap analysis. IPCS
the CBS command environment; for details, see !~L370 IPCS
Guig~.

system
problem
report

runs in
User'§

Except for IPCS, each of the components of VB/370 has a unique
·command environment" which must be active in order for a command to be
accepted. For CMS users, the two basic command environments are the CP
co •• and environ.ent and the CMS co.mand environment. By default, CP
co.mands are acceptable input in the CftS command environment; if yeu
enter a CP command, it is executed by CP, but control returns to the CftS
environment.

The eMS Environment

The CftS co.mand language allows you to create, modify, debug, and, in
general, manipulate a system of files.

The OS/VS Assembler and many OS/VS and DOS/VSE Language processors
can be executed under CBS. For example, the OS VS BASIC, FORTRAN_IV
(G1), COBOL/ and PL/I compilers, as well as the DOS PL/I and coact
compilers, can execute und~r CMS.You can find a cOllpl-ete list - cf
language processors that can be executed under CftS in the !JL11Q
Introduction. CMS invokes the assembler and the compilers when you
Issue-the-ippropriate CftScommands. The ASSEBBLE command is described
in this manual; the supported -compiler commands are described in the
appropriate program product publications.

Section 1. Introduction and General Concepts 1

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-IX8

CMS commands allow you to read cards from a virtual card reader,
punch cards to a virtual card punch, and print records on a virtual
printer. Many commands are provided to help you manipulate your virtual
disks and files. rhe CMS commands are described in "Section 2. CftS
Commands."

1 special set of CMS commands becomes available to you when you issue
the command:

set dos on

rbese comllands, called CMS/DOS commands,simula te various functions of
the Disk Operating System (DOS) in your CBS virtual machine. When the
CMS/DOS environment is active, the CMS/DOS commands are an integral part
of the CMS command language; they are listed alphabetically among the
other CMS commands in "Section 2. CMS Commands."

The EDlr command places your virtual machine in the EDIT subcommand
environment. In this environment you can use the CBS editor to create
and modify files. In the EDIT subcommand environment, you can place
your virtual machine in either of two modes, edit mode or input mode.
Edit mode lets you modify a file; input mode lets you create or add to a
file. The subcommands available to you in the EDIT subcoamand
environment are described in "Section 3. EDIT Subcommands and Bacros."

The DEBUG com.and places your virtual machine in the DEBUG subcommand
environment. In this environment you can issue commands to display
registers and storage, specify breakpoints (address instruction stops),
display the contents of control words, and so on. The DEBUG subcom.ands
are described in "Section 4. DEBUG Subcommands."

The EXEC command executes CMS command procedures, called EXEC files.
You can create EXEC files consisting of CBS and CP commands and EIEC
control statements. The EXEC facility also has a symbolic capability; by
manipulating variable symbols within an EXEC file, you can control the
execution of the procedure. rhese procedures are usually created in the
edit environment. The EXEC control statements, variable symbols, and
built-in functions are described in "Section 5. EIEC Control
Statements."

You can use the CMS assembler language macros when you write
assembler language programs to execute in the CMS environment.
Descriptions of these macros are contained in "Section 6. CftS Bacro
Instructions."

The HELP format words are used to create HELP 'text' information for
user-defined commands, EXECs, and messages. The function, formats, and
operands of the HELP facility format words are described in "Section 7.
HELP Format Words."

·Entering eMS Commands

1 CMS command consists of a command name, usually foliowed by one or'
more positional operands and, in many cases, by an option list. CftS
commands and EDIT and DEBUG subcommands described in this publicat~oB
are shown in the format:

I

command name [operands ••• l ((options ••• () }J I'

2 IBM VM/370 CMS Command and Macro Reference

Pg. of GC20-1818-2 Rev Barch 30, 1979 by Supp. SD23-9023-1 for 5748-IX8

You must use one or aore blanks to separate each entry in the com.and
line unless otherwise indicated. For an explanation of the special
symbols used to describe the command syntax, see "Rotational
Conventions."

Section 1. Introduction and General Concepts 2.1

Karch 30, 1919

2.2 IBK VK/310 CBS Co •• and and Kacro Reference

The command name is an alphameric symbol of one to eight characters. In
general, the names are based on verbs that describe the function yeu
want the system to perform. For example, you may want to find out
information concerning your CMS files. In this case, you would use the
LISTFILE command.

The command operands are keywords and/or positional operands of one to
eight, and in a few cases, one to seven alphameric characters each. The
operands specify the information On which the system operates when it
performs the command function.

You must write the operands in the order in which they appear in the
command formats in "Section 2. CMS Commands," unless otherwise
specified. When you are using CMS, blanks may optionally be used to
separate the last operand from the option list. CMS recognizes a left
parenthesis "(" as the beginning of an option list; it does not have to
be preceded by a blank.

The command options are keywords used to contrel the execution of the
command. The co •• and formats in "Section 2. CMS Commands" show all the
options for each CMS command.

The option list must be preceded by a left ~arenthesis; the closing
parenthesis is not necessary.

For most commands, if conflicting or duplicate options are entered,
the last option entered is the option in effect for the command.
Exceptions to this rule are noted where applicable.

If you want to write comments with CMS commands, you enter them
following the closing parenthesis of the oFtion list. The only
exception to this rule is the ERASE command, fo~ which comments are not
allowed.

You can also enter comments on your consele by using the CP *
command.

Character 8e-t Usage

eMS commands may be entered using a combination of characters from six
different character sets. The contents of each ef the character-sets is
shown in Figure 1.

Se~tion 1. Introduction and General Concepts 3

Character set I

Separator

National

Alphabetic

Numeric

Alphameric

Special

Names

Blank

Dollar Sign
Pound Sign
At Sign

Uppercase
Lowercase

Numeric

National
Alphabetic

Numeric

Figure 1. Character Sets and Their Contents

Notational Conventions

Symbols

$

~

A Z
a - z

o 9

$, I, ~
A Z
a
o

z
9

All other
characters

The notation used to define the command syntax in this publication is:

• Truncations and Abbreviations of Commands

Where truncation of a command name is permitted, the shortest
acceptable version of the command is represented by uppercase
letters~ (Remember, however, that CMS commands can be entered with
any combination of uppercase and lowercase letters.) The following
example shows the format specification for the FILEDEF command.

FIledef

This format meani that FI, FIL, FILE, FILED, FILEDE~ and FILEDEF are
all valid specifications for this command name.

Operands and options are specified in the same manner. " Where
truncation is permitted, the shortest acceptable version of the
operand or option is represented by uppercase letters in the command
format box. If no minimum truncation is noted, the entire word
(represented by all uppercase letters) must be entered.

Abbreviations are shorter forms of command operands and options.
Abbreviations for operands and options are shown in the description
of the individual operands and options that follow-the format box.
For example, the abbreviation for MEMBER in the PRINT command is MEM.
Only these two forms are valid and no truncations are allowed. The
format box contains

MEMBER { n:me}

and the description that follows the format box is

4 IBM VM/310 CMS Command and Macro Reference

• The following symbols are used to define the command format and
should never be typed when the actual command is entered.

underscore
braces { }
brackets []
ellipsis

• Uppercase letters and words, and the following symbols, should be
entered as specified in the format box.

asterisk
comma
hyphen
equal sign
parentheses
period
colon

* ,
=

()

• The abbreviations "fn", "ft", and "fm" refer to filename, filetype,
and filemode, respectively. The combination "fn ft [fm]" is also
called the file identifier or fileid.

When a command format box shows the characters, fn ft fm or fileid
and they are not enclosed by brackets or braces, it indicates that a
CMS file identifier must be entered. If an asterisk (*) appears
beneath fn, ft, or fm, it indicates that an asterisk may be coded in
that position of the fileid. The operand description describes the
usage of the *.

• Lowercase letters, words, and symbols that appear in the command
format box represent variables for which specific information should
be substituted. For example, "fn ft fm" indicates that file
identifiers such as "MYFILE EXEC A1" should be entered~

• Choices are represented in the command format boxes by stacking.

A
B
C

• An underscore indicates an assumed default option. If an underscored
choice is selected, it need not be specified· whe.n the command is
entered,.

~~sJ!!Ele
The representation

A
~
C

indicates that either A,
selected, it need not be
assumed.

B, or C may be selected. However; if B is
specified. Or, if none. is entered, B is

section 1. Introduction and General Concepts ~5

• The use of braces denotes choices, one of which ~y~! be selected.

~~g~Ele
The representation

{ ~ }
indicates that you mu~! specify either A, or H, or C.
choices is enclosed by neither brackets or braces,
treated as if enclosed by braces~

If a list of
it is to be

• The use of brackets denotes choices, one of which may be selected.

•

~~g~Ele:
The representation

r ,
I A I
I B I
I C I
L ~

indicates that you may enter A, B, or C, or you may omit the field.

In instances where there are nested
lines, the following rule applies:
dependent upon the selection of the
nesting~

Level 1 Level 2 Level 3
[filename [filetype [filemode]]]

braces or brackets on the text
nested operand selection is
operand of a higher level of

where the highest level of nesting is the operand that is enclosed in
only one pair of brackets and the lowest level of nesting is the
operand that is enclosed by the maximum number of brackets. Thus, in
the previous example, the user has the option of selecting a file by
filename only or filename filetype only or by filename filetype
filemode. The user cannot select filetype alone because filetype is
nested within filename and our rule states: the _ higher level of
nesting must be selected in order to select the next level (lower
level) operand. The same is true if the user wants to select
filemode; filename and filetype must also be selected.

• An ellipsis indicates that the preceding item or group of items may
be repeated more than once in succession.

~~gmE!~
The representation

(options •••)

indicates that more than one option may be coded· within the
- parentheses.

6 IBM VM/370 CMS Command and Macro Reference

Pg. of GC20-1818-2 Rev March 30, 1919 by Supp. 5D23-9023-1 for 5148-118

CMS Command Search Order

When you enter a co •• and name at the terminal, CMS begins searching for
the command of that naae. Once a match is found, the search stops. The
search order is:

1. EXEC file on any currently accessed disk. CMS uses the standard
search order (A through Z.)

2. Valid abbreviation or truncation for an EXEC file on any currently
accessed disk, according to current SYNONYM file definitions in
effect .•

3. CMS command that has already been loaded into the tran sien t area.

The cOllllands that execute in the transient area are:

ACCESS HELP RELEASE
AS5GB LISTFILE RENAME
COMPARE MOD MAP SET
DISK OPTION SVCTRACE
DLBL PRINT SYNONYM
FILEDEF PUNCH TAPE
GENDIRT QUERY TYPE
GLOBAL READCARD

4. CMS nucleus-resident command. The nucleus-resident CMS co •• ands
are:

CP GEHMOD START
DEBUG INCLUDE STATE
ERASE LOAD STATEW
FETCH LOADMOD

5. Command module on any currently accessed disk. (All the reaaining
CMS commands are disk-resident and execute in the user area.)

6. Valid abbreviation or truncation for nucleus-resident or transient
area command module.

1. Valid abbreviation or truncation for disk-resident command.

Figure 2 shows a basic description of the command ~earch order; you
can find complete details in the !~LJIQ ~I§1~m fIQ~~~m~~~~§ -~~id~.

CMS Command Summary

Figures 3 and 4 contain alphabetical lists of the CMS commands and the
functions performed by each. Figure 3 lists' those commands that are
available for general use; Figure 4 lists the commands used by systea
programmers and system support personnel who are responsible ,for
generating, maintaining, and updating VM/310. Unless otherwise noted,
CMS commands are described rn this manual. In these figure's, -the "Code"
column indicates, for those commands not described in this manual, the
reference source for that command:

Section 1. Introduction and General Concepts 1

I
CMS

EXEC
SEARCH

L
CMS

MODULE
SEARCH

CP
SEARCH

b

Figure 2.

Karch 30, 1979

KEY IN A
COMMAND NAME

ISSUE
AN ERROR
MESSAGE

YES

YES

YES

YES

YES

Hov CftS Searches for the Coa.and -to Execute

.8 IB! '!/370 CftS Co •• and and ftacro Reference

EXECUTE
THE FILE
AND RETURN
CONTROL TO
CMS.

EXPAND THE
NAME TO THE
FULL REAL
NAME, EXECUTE
IT, AND RETURN
CONTROL TO CMS.

EXECUTE THE
FilE AND
RETURN CONTROL
TOCMS.

EXPAND THE
NAME TO THE FULL
REAL NAME, EXECUTE
IT, AND RETURN
CONTROL TO CMS.

EXECUTE THE
COMMAND
AND RETURN
CONTROL TO
CMS.

Code
DOSPP

Karch 30, 1919

!~!.niJlg
indicates that this command invokes a DOS Program Product,
available fro. IBK for a license fee.

EREP indicates that this co.mand is described in the !Al31Q QLTS~~
sllg!n2!: Re£2rdin9: §.uig,!!; further details on the operands
used by this com.and are contained in the OS/VS, ROS/V~~,
!1L!112 Envi!21!!!Ul!~! Rec,Q!:giJ!g, Edi ti.ng, ~nd ni!!!ing (lU!!R)
f!:Q9:£!!!·

IPCS indicates that this command is a part of the Interactive
Problem Control System (IPCS), and is invoked under CBS. It
is described in the !~~12 Int!!!~cti!!! f!:2bl!!~ Co~~! SI~~~!
(l~~~) Use~§ §.y!g!.

Op Gd

OS PP

SCRIPT

indicates that this command is described in the VKL312
QE!!!.!.~~§ !i!! id!.

indicates that this command invokes an OS program Product,
available from IBK for a license fee.

indicates that this co •• and invokes a text
an IB! Installed User Progra., available
license fee.

processor that is
from IB! for a

SPG indicates that this command is described in the !KL31Q ~~!!

SYSGEN

PrQ9:!:a.I!!!.~§ Gui~!.

indicates that this command is described in the VftL312
flsJ!ning ~J!~ ~st~~ !i~.n~!!!2.n ~~!g!.

!2te: If a CKS command is described in this manual, but is also repeated
in other VK/310 publications, the chart does not refer to those other
publications.

You can enter CKS co.mands when you are running CftS in your virtual
.achine, the ter.inal is idle, and the virtual machine is receptive for
input. However, if CftS is processing a previously entered co •• and and
your typewriter terminal keyboard is locked, you must signal your
virtual machine via an attention interruption. The system acknowledges
the interruption by unlocking the keyboard. Now you can enter co •• ands.

If your terminal is a display device, there is no problem of entering
co •• ands while the virtual aachine is busy as its keyboard remains
unlocked for additional co.mand input. Bote that in these circuastances
the co •• and you enter is stacked and is not executed until the co •• and
that is currently being executed completes. If more co •• ands are
entered than can be handled by CP, a NOT ACCEPTED ~essage is displayed
at the display terminal.

In addition to the com.ands listed in Figures 3 and 4, there are
seven co •• ands called Immediate commands which are handled in a
different manner from the others. They may be entered while another
co.mand is being executed by pressing the Attention key (or its
equivalent), and they are executed i.mediately. The Im.edi~te co •• ands
are:

• HB - Halt batch exec::ution
• HO - Halt tracing
• HT - Halt typing
• HX Halt execution
• RO Resulle tracing
• R"1' -4. Resume typing
• s·] Suspend tracing

- Section 1. Introduction and General Concepts 9

Pg. of GC20-1818-2 Rev 'March 30, 1979 by supp. 5£23-9023-1 for 5748-XX8

r
Com.and

ACCESS

AMSERV

ASSEMBLE

ASSGN

CMSBATCH

COBOL

COMPARE

CONVERT

COPYFILE

CP

CPEREP

DDR

DEBUG

DISK

DLBL

DOSLIB

DOSLKED

DOSPLI

I Code

as PP

as PP

EREP

Usage

Identify direct access space to a CMS virtual
machine r create extensions and relate the disk
space to a logical directory.

Invoke access method services utility functions to
create, alter, list, copy, delete, import, or
export VSAM catalogs and data sets.

Assemble assembler language source code.

Assign or unassign a CMS/DOS system or programmer
logical unit for a virtual I/O device.

Invoke the CMS batch facility.

Compile as ANS Version 4 or OS/VS COBOL source
code.

Comrare records in eMS disk files.

convert free form FORTRAN statements to fixed form.

Copy CMS disk files according to specifications.

Enter CP commands from the CMS environment.

Format and edit system error records for output.

Perform backup, restore, and copy operations for
disks.

Enter DEBUG subcommand environment.

Perform disk-to-card and card-to-disk operations
for CMS files.

Define a DOS filen~me or VSAM ddname and relate
that name to a disk file.

Delete, compact, or list information about the
phases of a CMS/DOS phase library.

Link-edit CMS text decks or object modules from a
DOS/VSE relocatable library ~nd place them in
executable form in a CMS/DOS ph~se library.

DOS PP Compile DOS PL/I source code under CMS/DOS.

DSERV Display information contained jn the DOS/VSE core
image, relocatable, source, procedure, and
transient directories.

Figure 3. CMS Command Summary (Part 1 of 4)

10 IBM VM/370 CMS Command-and Macro Reference

Pg. of GC20-1818-2 Rev March 30, 1919 by Supp. SD23-9023-1 for 5148-XX8

Co.mand

EDIT

ERASE

ESERV

EXEC

FCOBOL

FETCH

FILEDEF

FORMAT

FORTGI

FORTHX

GENDIRT

GENMOD

GLOBAL

GOFORT

,Code Usage

Invoke the CMS editor to create or modify a disk
file.

Delete CMS disk files.

Display, punch or print an edited (compressed)
macro from a DOS/VSE source statement library
(E sublibrary).

Execute special procedures made up of frequently
used sequences of commands.

DOS PP Compile DOS/VS COBOL source code under CftS/DOS.

OS PP

OS PP

OS PP

Fetch a CMS/DOS or DOS/VSE executable phase.

Define an OS ddnaae and relate that ddname to any
device supported by CftS.

Prepare disks in CftS fixed block format.

Compile FORTRAN source code using the G1 compiler.

Compile FORTRAN source code using the H-extended
compiler.

Fill in auxiliary module directories.

Generate nonrelocatable CftS files (ftODULE files).

Identify specific CMS libraries to be searched for
macros, copy files, missing subroutines, or DOS
executable phases.

Compile FORTRAN source code and execute the program
using the FORTRAN Code and Go compiler.

HELP Display information about CP, CftS, or user
commands and Bessages.

INCLUDE Bring additional TEXT files into storage and
establish linkages.

LABELDEF Specify standard HDRl and EOF1 tape label descrip-
tion information for CftS, CMS/D~S, and OS
simulation.

LISTDS List information about data sets and space
allocation on OS, DOS, and VSAM disks.

LISTFILE List information about CMS disk files~

LISTIO Display information concerning CMS/DOS system and
progra.mer logical units.

LOAD Bring TEXT files into storage for execution.

LOADMOD Bring a single MODUtE file into storage.

MACLIB Create or_modify CMS macro libraries.

Figure 3. CMS Command Summary (Part 2 of 4)

section 1. Introduction and General Concepts 11

1'g. OJ: (;(';~U-l~1~';"2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118

COllmand

MODM1P

MOVEPILE

OPTION

PLIC

PLICR

PLIOPT

PRINT

PSERV

PUNCH

QUERY

READC1RD

RELEASE

RENAME

RSERV

RUN

SCRIPT

SET

ICode

I
I
I , , ,
I
I
lOS PP
I
I
as PP

as PP

ISCRIPT
I
I
I
I

Usage

IDisplay the load map of a MODULE file.
t
IMove data from one device to another device of the
I salle or a different type.
I
,Change the DOS COBOL compiler (PCOBOL) options that
I are in effect for the current terminal session.
I
Compile and execute PL/I source code using the

PL/I Checkout COllpiler.

Execute the PL/I object code generated by the OS
PL/I Checkout Compiler.

Compile PL/I source code using the as PL/I
optimizing Compiler.

Spool a specified CftS file to the virtual printer.

copy a procedure from the DOS/VSE procedure library
onto a CMS disk, display the procedure at the
terminal, or spool the procedure to the virtual
punch or printer.

Spool a copy of a CMS file to the virtual punch.

Request information about a CMS virtual aachine.

Read data from spooled card input device.

Make a disk and its directory inaccessible to a CftS
virtual maChine.

Change the name of a eMS file or files.

Copy a DOS/VSE relocatable module onto a CftS disk,
display it at the terminal, or spool a copy to
the virtual punch or printer.

Initiate series of functions to be performed on a
source, MODULE, TEIT, or EXEC file.

Pormat and print documents according to embedded
SCRIPT control words in the document "file.

Establish, set, or reset CftS virtual machine
characteristics.

Figure 3. CMS Com.and Su~mary (Part 3 of 4)

12 IBM VM/310 CMS Command and Macro Reference

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118

I
Command

SORT

SSERV

START

STATE

STATEW

SVCTRACE

SYNONYM

TAPE

TAPEMAC

TAPPDS

TEST COB

TEST FORT

TXTLIB

TYPE

UPDATE

IVSAPL
I
IVSBASIC
I
IVSBUTIL

ICode

OS PP

OS PP

lOS PP
I
lOS PP
I
lOS PP

Usage

IArrange a specified file in ascending order'
, according to sort fields in the data records.
I
ICopy a DOS/VSE source statement book onto a CMS
I disk, display it at the terminal, or spool a copy
I to the virtual punch or printer.
I
IBegin execution of programs previously loaded (OS
I and CMS) or fetched (CMS/DOS).
I
IVerify the existence of a CMS disk file.
t
IVerify a file on a read/write eMS disk.
I
Record information about supervisor calls.

Invoke a table containing synonyms you have created
for CMS and user-written commands.

Perform tape-to-disk and disk-to-tape operations
for eMS files, position tapes, and display or
write VOL1 labels.

create CMS MACLIB libraries directly from an
IEHMOVE-created partitioned data set on tape.

Load OS partitioned data set (PDS) files or card
image files from tape to disk.

Invoke the as COBOL Interactive Debug Program.

Invoke the FORTRAN Interactive Debug program.

Generate and modify text libraries.

Display all or part of a CMS file at the terminal.

Kake· changes in a program source file as defined
by control cards in a control file.

Invoke VS APL interface in CMS.

Compile and execute VS BASIC programs under CMS.

Convert BASIC 1.2 data files to vs EASIC format.

Figure 3. CMS Command Summary (Part 4 of 4)

Section 1. Introduction and General Concepts 13

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8

• ICollmand
I

ASM3705

ASMGEND

CMSGEND

CMSXGEN

CPEREP

DIRECT

DOSGEN

DUMPSCAN

GEN3705

GENERATE

LKED

NCPDUMP

PRB

PROB

SAVENCP

SETKEY

STAT

VMFBLD

VMFDOS

VMFDUMP

VMFLOAD

VSAMPP

'I
IZAP
1

I Code

SYSGEN

SYSGEN

SYSGEN

SYSGEN

EREP

Op Gd

SYS GEN

IPCS

SYSGEN

SYSGEN

SYSGEN

OP Gd,
SPG

IPCS

IPCS

Usage

Assemble 370x source code.

Regenerate the VM/370 asse.bler command aodules.

Generate a new CMS disk-resident module from
updated TEXT files.

Generate the CMSSEG discontiguous saved segment.

Format and edit system error records for output.

Set up VM/370 directory entries.

Load and save the CMSDOS shared segment.

Provide interactive analysis of CP abend dumps.

Generate an EXEC file that assembles and link-edits
the 370x control program.

Update VM/370 or the VM/370 directory, or generate
a new standalone copy of a service program.

Link-edit the 370x control program.

Process CP spool reader files created by 370x
dumping operations.

Update IPCS problem status.

Enter a problem report in IPCS.

SYSGEN, Read 370x control program load into virtual
SPG storage and save an image on a CP-owned disk.

SPG Assign storage protect keys to storage assigned to
named systems.

IPCS Display the status of reported system problems.

SYSGEN Generate and/or update VM/370-usin~ the PLC tape.

SYSGEN Create CMS files for DOS modules froll DOS library
distribution tape or SYSIN ~'-ape.

Op Gd, Format and print system abend d-umps; under IPCS.
IPCS create a problem report.

SYSGEN Generate a new CP, CMS or RS~S module.

SYSGEN Load and save the CMSVSAM. CMSAMS, and CMSBAM
segments.

Op Gd, Mod~fY or dump LOADLIB, TXTLIB. or MODULE files.
SPG

Figure 4. CMS Commands for -System ~rpgrammers

14 IBM VM/370 CMS Comman-d -and -Ma-cro Reference

Section 2. CMS Commands

This section contains reference information for the CMS commands used by
general users. Each command description indicates the format, operands
and options, and error messages and return codes issued by the command.
Usage notes are provided, where applicable.

The formats of the DEBUG, EDIT, and EXEC commands are also listed;
for details on the EDIT or DEBUG subcommands or EXEC control statements,
see:

• "Section 3~ EDIT Subcommands and Macros"
• "Section 4. DEBUG Subcommands"
• "Section 5. EXEC Control Statements"

For more detailed usage information on CMS commands, see the !~Ll1~ £~~
!!.§~£~.§ Quig~.

Section 2. CMS Commands 15

ACCESS

ACCESS

Use the ACCESS command to identify a disk to CMS, establish a file mode
letter for the files on the disk, and set up a file directory in
storage. The specifications of the ACCESS command determine the entries
in the user file directory. The format of the ACCESS command is:

I r ,
ACcess I I cuu mode(/ext [fn (ft (fm]]]] ((NOPROF ())) I

I I 1.21 ! * * * I
I I I
I I cuu mode (ERASE ()) I
I I I
I I (NODISK [)] I
I L ~

~

cuu makes the disk at the specified virtual device address
available. The default value is 191.

Valid addresses are 001 through 5FF for a virtual machine in
basic control mode, and 001 through FFF for a virtual machine
in extended control mode.

mode assigns a one-character file mode letter to all files on the
disk being accessed. This field must be specified if cuu is
specified. The default value is A.

ext indicates the mode of the parent disk. Files on the disk
being accessed (cuu) are logically associated with files en
the parent disk; the disk at cuu is considered a read-only
extension. A blank must not precede or follow the diagonal
(/) .

fn [ft [fm]]

NOPROF

ERASE

NODISK

defines a subset of the files on the specified disk. Only the
specified files are included in the user file directory and
only those files can be read. An asterisk coded in any of
these fields indicates all filenames, filetypes, or filemode
numbers (except 0) are to be included. (See Usage Notes 3 and
4.) If a filemode is 'specified, it must-be specified as a
letter and a number. For OS and DOS disk access restrictions,
see Usage Note 9.

suppresses execution of a PROFILE EXEC file. This optien
is valid only if the ACCESS command is the first command
entered after you IPL CMS. On - subsequent ACCE~S
commands, the NOPROF option is ignored.

specifies that you want to erase all of the files on the
specified disk. This option is only valid for read/write
disks. (See- Usage Note 7.)

lets you gain access to the CMS operating system with nG
disks accessed except th~ system disk (S-disk) and its
extensions. This option is only valid if the ACCESS
command is the f~rst command you ent~r after y~u IPL CMS.

16 IBM VM/370 CMS Command and Macro Reference

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118

ACCESS

!!~aqe !Qte~

1. If you have disk addresses 190, 191, 192, and 19E defined in the
iM/370 directory, or if they are defined before you IPL CMS, these
disks are accessed as the s-, A-, D-, and I-disks respectively.
You must issue explicit ACCESS commands to access any other disks
you wish to use following an IPL of the CMS system. Ordinarily,
you have access only to files with a filemode number of 2 on the
system disk.

When ACCESS is the first command issued after an IPL of the CMS
system, the A-disk is not automatically defined. Another ACCESS
command must be issued to define the A-disk.

2. Each CMS disk has associated with it a file directory, which
contains an entry for every CMS file on the disk. The user file
directory created in storage by the ACCESS command contains entries
for only those files that you Can reference.

You should issue an ACCESS command every time you link to a new
mini disk with the CP LINK command, to obtain the appropriate file
directory.

3. The filename, filetype, and filemode fields can only be specified
for disks that are accessed as read-only extensions. For example:

access 195 b/a • assemble

gives you read-only access to all the files with a filetype of
ASSEMBLE on the disk at virtual address 195. The command:

access 190 z/a • * z1

gives you access to all files on the system disk (190) that have a
filemode number of 1.

When you access any disk in ~e4d-only status, files with a filemode
number of 0 are not accessed.

4. You can also identify a set of files on a disk by referring to a
filename or filetype prefix. For example:

access 192 cia abc.

accesses only those files in the disk at virtual address 192 whose
filenames begin with the characters ABC. The commalid li-ne:

access 192 cia * a* c2

gives you access to all files whose filetypes begin with an A and
Which have a filemod~ number of 2.

5. You can force a read/write disk into read-only status by accessing
it as an extension of another disk or of itself; for exaaple:

access 191 a/a

forces your A-disk into read-only s~atus.

6. When a disk is made a read-only extension of another disk, commands
that typically require or allow you to specify a filemode may
search extensions of the specified disk. The exceptions - to this
are the LISTFILE and DISK DUMP commands. For a detailed
description of read-only - extensions, see the !M/37Q ~MS g~~~~~
§!!!de .•

Section 2. CMS Commands 17

Pg. of GC20-1818-2 Rev March 30, 1979 by SUpPa SD23-9023-1 for 5748-118

ACCESS

7. If you enter the ERASE option by mistake you can recover from the
error as long as you have not yet written any new files onto the
disk. (That is, you have not yet caused CMS to rewrite the file
directory.) Reissue the ACCESS com.and without the ERASE option.

8. You should never attempt to access a disk in read/write status if
another user already has it in read/write status; the results are
unpredictable.

9. When accessing OS and DOS disks:

a. You cannot specify filename, filetype and file.ode when you
access OS or DOS disks, nor can you specify any options.

b. In order to see OS and DOS disks, you must have a read/write
CMS A-disk available if you are going to use the LOAD co.mand
with the MAP option. ~AP is a default option.)

10. If two or aore disks have been accessed in CMS, and CP DEPINE
commands are executed that swap virtual addresses, then a
subsequent RELEASE command may write the file directory on the
wrong disk; for example:

(CMS)
(CMS)
(CP)
(CP)
(CMS)

ACCESS 193 C
ACCESS 198 E
DEFINE 193 293
DEFINE 198 193
RELEASE C

This sequence of commands will write the file directory from 193 to
198 since the CP definitions are unknown to CMS.

r ,
DMSACC7231 mode (cuu) {R/O} 1-0 S I

R/i I-DOSI
L ~

If the specified disk is a CMS disk, this message is displayed if
the disk is read-only. If the disk is in as or DOS format, the
message indicates the format, as well as whether it is a read/write
or read-only disk.

DMS ACC7 241 cuu 1 REPLACES mode (cuu2)

Before execution of the com.and, the disk' represented by cuu2 was
the "mode" disk. The disk, cuu1, is nOw assigned that filemode
letter. This message is followed by message DMSACC726I.

r ,
DMSACC7251 cuu ALSO = 'mode' I-OS I DISK

I-DOSI
L ~

The disk specified by cuu is the mode disk and an ACCESS com.and
was issued to assign it another filemode letter.

DMSACC7261 'cuu mode' RELEASED
-

The disk being accessed at virtual address cuu as a reaa/writa ~isk
is already accessed at a different mode. It is released from that
mode. Or, a disk currently accessed at mode is being replaced.

18 IBM VM/370 CMS Command and,Macro Reference

DMSACC002E FILE 'DMSROS TEXT' NOT FOUND RC=28
DMSACC003E INVALID OPTION 'option' RC=24
DMSACC017E INVALID DEVICE ADDRESS 'cuu' RC=24
DMSACC048E INVALID MODE 'mode' RC=24

ACCESS

DMSACC059E 'cuu' ALREADY ACCESSED AS READ/WRITE 'mode' DISK RC=36
DMSACC060E FILE(S) 'fn [ft [fmJJ' NOT FOUND. DISK 'mode (cuu) , WILL NCT

BE ACCESSED RC=28
DMSACC070E INVALID PARAMETER 'parameter' RC=24
DMSACC109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSACC112S DISK 'mode(cuu), DEVICE ERROR RC=100
DMSACC113S mode (cuu) NOT ATTACHED RC=100
DMSACC230W OS DISK - FILEID AND/OR OPTIONS SPECIFIED ARE IGNORED RC=4
DMSACC240S ERROR LOADING READ OS ROUTINE 'DMSROS TEXT'

Section 2. CMS Commands 19

AMSERV

AMSERV

Use the AMSERV command to invoke access method services to:

• Define VSAM catalogs, data spaces, or clusters
• Alter, list, copy, delete, export or import VSAft catalogs and data

sets

The format of the AMSERV command is:

AMserv fn1
r ,
Ifn21
Ifn!1
L .J

[(options ••• [)]]

.Q.E!.!.Q,n.§:
[PRINT]
r ,

ITAPIN {18n }I
I TAPn I
L .J

r ,

ITAPOUT {18n }I
I TAPn I
L ~

fn1 specifies the filename of a CMS file with a filetype of AftSERV that
contains the access method services control statements to be
executed. CMS searches all of your accessed disks, using the
standard search order, to locate the file.

fn2 specifies the filename of the CMS file that is to contain the
access method services listing; the filetype is always LISTING. If
fn2 is not specified, the LISTING file will have the same name as
the AMSERV input file (fn1).

The LISTING file is written to the first read/write disk in the
standard search order, usually your A-disk. If a LISTING file with
the same name already exists, it is replaced.

Q.E!.!.Q:B.§:

PRINT spools the output listing to the virtual printer, instead of
writing it to disk. If PRINT is specified, fn2 cannot be
specified.

TAPIN {18n }
TAPn
specifies that tape input is on the tate drive at the addresss
indicated by 18n or TAPn. n may be 1, 2, - 3, or 4, indicating
virtual addresses 181 through 184, respectively.-

TAPOUT {18n }
TAPn

specifies that tape output should be written to the tape drive
at the address indicated by 18n or TAPn. n may be 1, 2, 3, cr
4, indicating virtual addresses 181 through 184, respect_i vel y.

Note: If both TAPIN arid TAPOUT are specified, their virtual device
i~~~esses must be different.

20 IBM VM/370 CMS Command and Macro Reference

AMSEBV

1. To create a job stream for access method services, you can use the
eMS Editor to create a file with the filetype of AMSERV. The
editor automatically sets input margins at columns 2 and 72.

2. Refer to the QQ~L!~ !££~§§ ~~!h2g ~~Evif~§ Q§~E~§ Guig~ for a
description of access method services control statements format and
syntax. RestrfCtions placed on VSAM usage in CMS are listed in this
publication in "Appendix B: DOS/VS Access Method Services and VSAM
Functions Not Supported in CMS" and "Appendix C: as/vs Access
Method Services and VSAM Functions Not Supported in CMS."

3. You must use the DLBL command to identify the master catalog and
all disk input and output files for access method services; the
ddname operand of the DLBL command corresponds to the dname
parameter following a FILE, INFILE, or OUTFILE keyword in an access
method services statement.

4. When you use tape input and/or output with the AMSERV command, you
are prompted to enter the ddnames; a maximum of 16 ddnames are
allowed for either input and output. The ddnames can each have a
maximum of seven characters and must be separated by blanks.

Since only one tape can be attached at a time for either input or
output while using AMSERV, if you you enter more than one tape
ddname, the tape files must be in the sequence they are used in the
input stream.

5. A CMS format variable file cannot be used directly as input to
AMSERV functions as a variable (V) or variable blocked (VB) file
because the standard variable CMS record does not contain the BL
and RL headers needed by the variable record modules. If these
headers are not included in the record, errors will result.

6. If you are using Release 34 of access method services, the
"NOLABEL" keyword is available in the environment section of access
method services control statements. This keyword is necessary when
using AMSERV to read nonlabeled tapes~ TaFes created using AMSERV
default to non labeled tapes.

All files placed on the CMS disk by AMSERV will show a REeFM of V,
even if the true format is fixed (F), fixed blocked (FB), undefined
(U), variable or variable blocked. The programmer must know the
true format of the file he is trying to use with the AMSERV command
and access it properly, or errors will result.

1. You must assign a logical unit to be assoc~ated with each ddname
named in a DLBL command when you use the AMSERV command in the
CMS/DOS environment.

2. AMSERV internally issues an ASSGN command for ~YSIPT and l-ocates
the source file; therefore, you do not need to a~sign it. If you
use the TAPIN or TAPOUT options, AMSERV also issues ASSGN commands
for the tape drives (assigning logi~al units SYS004 and SYS005).

Any other assignments and DLBL-definitions that are in effect when
you invoke the AMSERV command are saved and restored when the
command comp~etes executing.

Section 2. eMS Commands 21

AMSERV

The CMS ready message indicates that access method services has
completed processing. If access method services completed with a nonzero
return code, the return code is shown in the ready message. You should
examine the LISTING file created by AMSERV to determine the results of
access method services processing.

The publication ~Q~!~ ~~~§gg~ lists and explains all of
.messages generated by access method services together with
associated reason codes.

DMSAMS367R ENTER TAPE {INPUTIOUTPUT} DDNAMES:

the
the

This message prompts you to enter the ddnames associated with the
tape files.

DMSAMS7221 FILE 'fn2 LISTING fm' WILL HOLD AMSERV OUTPUT

This message is displayed when you enter a fn2 operand or when the
listing is not being written on your A-disk; it tells you the file
identifier of the output listing.

DMSAMS001E NO FILENAME SPECIFIED RC=24
DMSAMS002E FILE 'fn1 AMSERV' NOT FOUND RC=28
DMSAMS003E INVALID OPTION 'option' RC=24
DMSAMS006E NO READ/WRITE DISK ACCESSED FOR 'fn2 LISTING' RC=36
DMSAMS007E FILE 'fn1 AMSERV fm' NOT FIXED, 80-CHAR. RECORDS RC=32
DMSAMS065E 'option' OPTION SPECIFIED TWICE RC=24
DMSAMS066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSAMS070E INVALID PARAMETER 'parameter' RC=24
DMSAMS109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSAMS113E {TAPINITAPOUT} (addr) NOT ATTACHED RC=100
DMSAMS136S UNABLE TO LOAD 'IDCAMS' RC=104
DMSAMS228E NO DDNAME ENTERED RC=24
DMSSTT062E INVALID CHARACTER 'char' IN FILEID {'fn1 AMSERV'I'fn2

LISTING'} RC=20

22 IBM VM/370 CMS Command and Macro Reference

ASSEftBLE

ASSEMBLE

Use the ASSEftBLE command to invoke the assembler to assemble a file
containing source statements. Assembler processing and output is
controlled by the options selected. The format of the ASSEftBLE command
is:

Assemble

fn

fn [(options ••• [)]]

r ,
IALOGIC I
I NOALOGICI
L

r ,
11!.§.I I
INOLISTI

r ,
I!~Q I
INOESDI

r ,
IMCALL I
I1!Q!1~!111

r ,
I FLAG (nnn) I
I FLAG (Q) I

r ,
IftLOGIC I
I!Q!11QQ!~1

L .J L

r , r ,
I XREF (FULL) I
I!R!~ ('§'!!QRI) I
INOXREF I

IPRINT I
INOPRINTI

L

r ,
IDECK I
I!QR!£~I
L .J

r ,
1!!!1H!!R I
INONUM I
L .I

r
1!1I~!

,
I

IR!~~ I
.J L

r ,
IOB~~£I I
I NOOBJECTI
L .J

r ,

I.§.I!1I I
INOSTMTI
L .I

r
IBUFSIZE

.J

r ,
ITEST I
I1!QI~.§~1
L .J

r ,
II!RMI!!11
I NOTERft I
L .I

, r
(MIN) I IRENT

r ,
ILINECOUN (nn) I
1111!!~Q!!1! (.2.2) I

r ,
1!!1Q I
INORLDI

,
I

r ,
ILIBMAC I
I1!Q1!Bft!~1

INOALIGNI I!!Qr~I~! (~TDJ I I!Q!!~!II
L .J L .I L .I

r , r ,
IYFLAG I ISYSPARM (string) I
I!Q!rLA~1 ISYSPARM () I
L .I ISYSPARM (1) I

L .I

is the fltename of the source file to be assembled and/or the
filename of assembler output files. The file mus± have
fixed-lengthi 80-char~cter records. Ey default, the-assembler
expects a CMS fi~e w·i th a filetype. of -ASSEMBLE.

Section 2. CMS Commands 23

ASSEKBLE

1i§!irul ~.Q.!l!~ol Q£!io.!l§: The
options you can use to control
values are underscored.

list below describes the
the assembler listing.

assembler
The default

!1Q§!~

NOALOGIC

~'§R

NOESD

FLAG (nnn)
£:1!§ JQl

lists conditional assembly statements in open code.

suppresses the ALOGIC option.

lists the external symbol dictionary (ESD).

suppresses the printing of the ESD listing.

does not include diagnostic messages and aNOTE
messages below severity code nnn 1n the listing.
Diagnostic messages can have severity codes of 4, 8,
12, 16, or 20 (20 is the most severe); and KNOTE
message severity codes can be between 0 and 255. For
example, FLAG (8) suppresses diagnostic messages with a
severity code of 4 and KNOTE messages with severity
codes of 0 through 7.

LINECOUN (nn) nn specifies the number of lines to be listed per
1!!~~OUN J221 page.

NOLIST

KCALL

!Q~~!LL

KLOGIC

N01!1Q'§1~

RLR

NORLD

LIBKAC

!Q1!!H1!~

produces an assembler listing. Any previous listing is
erased.

does not produce an assembler listing. However, any
previous listing is still erased. This option overrides
ESD, RLD, and XREF.

lists the inner macro instructions encountered during
macro generation following their respective outer macro
instructions. The assembler assigns statement numbers
to these instructions. The KCALL option is implied by
the "LOGIC option; NOKCALL has no effect if KLOGIC is
specified.

suppresses the KCALL option.

lists all statements of a macro definition processed
during macro generation after the macro instruction.
The assembler assigns statement numbers to them.

suppresses the KLOGIC option.

produces the relocation dictionary (RLD) as part of tbe
listing.,

does not print the relocation directory._

lists the macro definitions read from the macro
libraries and any assembler statements following the
logical END statement. The logical END statement is
the first END statement proce-ssed during macro
generation. It may appear in a macro or in open code;
it may even be created by substitution. The as_sembler
assigns -statement numbers to the statements that follow
the logic~lEND statement.

suppresses the LIBK~C option.

24 IBK VK/370 CKS Command and Macro Reference

ASSEftBLE

XREF (FULL) includes in the assembler listing a cross-reference
table of all symbols used in the assembly. This
includes symbols that are defined but never referenced.
The assembler listing also contains a cross-reference
table of literals used in the assembly.

!!~l (~HQ~!) includes in the assembler listing a cross-reference
table of all symbols that are referenced in the
assembly. Any symbols defined but not referenced are
not included in the table. The assembler listing
contains a cross-reference table of literals used in
the assembly.

NOXREF does not print the cross-reference tables.

PRINT writes the LISTING file to the Frinter.
PR

NOPRINT suppresses the printing of the LISTING file.
NOPR

~1~! places the LISTING file on a virtual disk.
DI

QY!EY! £g~!fgl Q~!!B~: The output control options are used to
control the object module outFut of the assembler.

DECK

NOOBJECT
NOOBJ

TEST

writes the object module on the device specified on the
FILEDEF statement for PUNCH. If this option is
specified with the OBJECT option, the object module is
written both on the PUNCH and TEXT files.

suppresses the DECK option.

writes the object module on the device, which is
specified by the FILEDEF statement for TEXT, and erases
any previous object modules. If~ this option is
specified with the DECK option, the~~bject module is
written on the two devices specified in the FILEDEF
statement for TEXT and PUNCH.

does not create the object module. However, any previous
object module is still erased.

includes the special source symbol table (SYM cards) in
the object module. This option should not be used for
programs to be run under CftS because the SYft cards are
not acceptable to the CftS LOAD and INCLUDE c~mmands.

Does not produce SYM cards~

~!§!~RM QE!!g~§: The SYSTERM options are used to control the SYSTEBft
file associated with your asseably.

NONUM

writes the line number field (columns 73-8~ of the
input records) i~ the SYSTERft listing -for statements
for which diagnostic information is given.. This option
is valid only if TERMINAL is specified.

suppresses the NUMBER option.

Section 2. CftS Commands 25

ASSEMBLE

NOSTMT

NOTERM

writes the statement number assigned by the assembler
in the SYSTERM listing for statements for which
diagnostic information is given. This option is valid
only if TERMINAL is specified.

suppresses the STMT option.

writes the diagnostic information on the
SYSTERM data set. The diagnostic information consists
of the diagnosed statement followed by the error
lIlessage issued.

suppresses the TERMINAL option.

Q1h~E !§§~~~1~! QE1!Q~§: The following options allow you to specify
various functions and values for the assembler.

NOALIGN
NOALGN

BUFSIZE (MIN)

RENT

l!Q.H~!!!

YFLAG

aligns all data on the proper boundary in the
object module; for example, an F-type constant is
aligned on a fullword boundary. In addition, the
assembler checks storage addresses used in machine
instructions for alignment violations.

does not align data areas other than those
specified in CCW instructions. The assembler does not
skip bytes to align constants on proper boundaries.
Alignment violations in machine instructions are not
diagnosed.

uses the minimum buffer sizes (790 bytes) for each of
the utility data sets (SYSUT1, SYSUT2, and SYSUT3).
Storage normally used for buffers is allocated to work
space. Because more work space is available, more
complex programs can be assembled in a given virtual
storage size; but the speed of the assembly is
substantially reduced.

chooses the buffer size that gives optimum
The buffer size depends on the amount
storage. Of the assembler working storage
minimum requirements, 31% is allocated to
data set buffers and the rest to macro
dictionaries.

performance.
of virtual

in excess of
the utility
generation

checks your program for a possible violation of program
reenterability. Code that makes - your frogram
nonreenterable is identified by an error message.

suppresses the RENT option.

does not suppress the warning messages that indicate
that relocatable Y-type address constants have been
declared.

suppresses the warning messages that _indicate
relocatable Y-type constants have been declared.

SYSPARM

{
~~tring) }

(1)
passes a character value to the system yariable symbol,
SYSPARM. The variabie (str1ng) . cannot be greater .tha-n
eight characters. If you want to enter a string of

26 IBM VM/370 CMS Command and Macro Reference

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118

ASSEMBLE

!!2gg~ !!f~1~2

more than eight characters, use the SYSPARM (1) format.
With the SISPARM (1) format, CBS prompts you with the
message:

ENTER SYSPARM:

You can enter up to 100 characters. You can also enter
parentheses and embedded blanks from the terminal.
SYSPARM () enters a null string of characters.

1. When you issue the ASSEMBLE command, default FILEDEF commands are
issued for assembler data sets. You may want to override these
with explicit FILEDEF commands. The ddnames used by the assembler
are:

ASS EMBLE
TEXT
LISTING
PUNCH
CMSLIB
SYSUT1
SISUT2
SISUT3

(SISIN input to the assembler)
(SYSLIN .output of the assembler)
(SYSPRINT output of the assembler)
(SYSPUNCH output of the assembler)
(SYSLIB input to the assembler)
(workfile of the assembler)
(workfile of the assembler)
(workfile of the assembler)

The default FILEDEF commands issued by the assembler for these
ddnames are:

FILEDEF ASSEMBLE DISK fn ASSEMBLE fm (RECFM FB LRECL 80 BLOCK 800
FILEDEF TEXT DISK fn TEIT fm
FILEDEF LISTING DISK fn LISTING fm (RECFM FBA BLOCK 1210
FILEDEF PUNCH PUNCH
FILEDEF CMSLIB DISK CMSLIB MACLIB * (RECFB FB LRECL 80 BLOCK 800
FILEDEF SYSUT1 DISK fn SYSUTl fm4 (BLOCK 7294 AUIPROC asmproc
FILEDEF SYSUT2 DISK fn SYSUT2 fm4 (BLOCK 7294 AUIPROC asmproc
FILEDEF SISUT3 DISK fn SYSUT3 fm4 (BLOCK 7294 AUIPBOC asmproc

At the completion of the ASSEMBLE command, all FILEDEFs that do not
have the PERM option are erased.

2. If you want to use any CMS macro or copy libraries during an
assembly, you must issue the GLOBAL command to identify the macro
libraries before issuing the ASSEMBLE command. For example:

global lIaclib c IIslib osmacro testlib

identifies the MACLIB files named CMSLIB, OSMlCRO, and TESTLIB. If
you are invoking ASSEMBLE to assemble code to operate in a Vft/370
Basic System Extensions environment, you must add DMSB20 before
CMSLIB in the above statement.

3. In order to use OS macro libraries during-an assembly, you must
issue the FILEDEF command for the OS data set using a ddname of
CMSLIB and assigning a CMS file identifier; the filetype must be
MACLIB, and you m~st use the filename on the GLOBAL command line.
For example:

filedef cmslib disk oldtest maclib c dsn oldtest macros
global maclib oldtes~ -

assigns the OS data ~et OLDTEST.MACROS, _on the disk accessed as
mode C, a CMS fileid of-OLDTEST MACLIB and identifies it as the
macro library to be used during assembly.

Section 2. CftS Commands 27

March 30, 1979

ASSEMBLE

4. You cannot assemble programs using DOS macros from the DOS/VS
source statement libraries under CftS/DOS. You should use the
SSERV, ESERV, and MACLIB commands to create CBS BACLIBs to contain
DOS lIacros for asse'llbly under CMS/DOS. See the !B/3IQ. C!~ ~~~§.
Qy!de for examples.

5. You do not need to .ake any logical assignments for input or output
files when you use the assellbler under CBS/DOS. File definitions
are assigned by default under CMS, as described in Usage Note 1.

6. Usage information about the V"/370 Assembler Language and assembler
options can be found in Q~L!~ ~nd V!!L37,Q !§§~hler Prog~!!£~
~!!!de and aSL!,2, ~Q~L!,2, ~1!g !!!L37,Q !§§~~h!~ !!anguage.

~~ssaq~2 ~g R~turn £Q~~

For the lIessages and return codes associated with the ASSEBBLE cOlllland,
see the as/vs g.Q.9 V!!L~I,Q As~h.!~! ~roqB:.!l.er's Guig,!!.

28 IBM VM/370 CMS COllmand and Macro Reference

Rev March 30, 1979

1SSGB

ASSGN

Use the 1SSGB command in CMS/DOS to assign or unassign a system or
programmer logical uni t for a virtual I/O device.. The format of the
AS5GB command is:

AS5GB

SYSxxx

RE1DER

SYSxxx

r ,
T1Plni

111
L .I

mode
IGB
01

[(options ••• ()]]

r ,
ly~~!SE I
ILOWClSEI
L .J

r ,
17TR1CKI
19TRACKI
L .I

(TRTCH a]

(DEN den]

specifies the system or programmer logical unit to be assigned
to a particular physical device. SYSOOO through SYS241 are
valid programmer logical units in CMS/DOS; they may be
assigned to any valid device. The system logical units you
may assign, and the devices to which they may be assigned,
are:

~!~~~
SYSRDR
SYSIPT
SY5IN
SYSPCH
SYSLST
SYSLOG
SYSOUT
SYSSLB
SYSRLB
SYSCLB
SYSClT

Val!~ ~§§1gn~12
Reader,disk,tape
Reader,disk,tape
Reader,disk,tape
punch,disk,tape
printer, disk, tape
Terminal, printer
Tape
Disk
Disk
Disk
Disk

The assignment of a system logical unit to a particular device
type must be consistent with the device type, definition fer
the file in your program.

is the spooled card reader (card reader I/O must not be
blocked).

PUNCH is the spooled -punch.

PRINTER is the spooled printer.

TERMIN AL is your terminal (terminal I/O must not be blocke-d).

TAP(n] is a magnetic tape. n is the symbolic number of the taFe
dri vee It is either 1, 2, -3, or 4, representinq virt-ual
addresses 181, 182, 183, and 184, respectively. If n is
omitted, TAP1 is assumed.

.ode sFecifies the one-ch~racter mode letter
assigned to the logical unit (SYSxxx).
accessed when the ASSGN command is issued.

of the disk being
The disk must be

Section 2. CMS Commands 29

Pg. of GC20-1818-2 Rev ftarch 30, 1979 by Supp. SD23-9023-1 for 5748-X18

ISSGB

1GB (ignore) specifies that any attempt to read from the specified
device results in an end-of-file indication; any atteapt to
write to the device is ignored. 1GB is not valid when
associated with SYSRDR, SYSIPT, SYSIN, or SYSCLB.

Ul indicates that the logical unit is to be unassigned. When you
release a disk for which an assignment is active, it is
automatically unassigned.

!!R£!SE

LOWCISE

7TRICK
9TRICK

TRTCH a

DEN den

translates all terminal input data, to uppercase.

retains all terminal input data as keyed in.

is the tape setting.

refers to the tape recording technique for 7-track tapes.
Use the following chart to determine the value of a.

a

o
OC
OT

E
ET

Parity

odd
odd
odd
even
even

converter Translator

off off
on off
off on
off off
off on

is tape density: den can be 200, 556, 800, 1600, or 6250
bits per inch (bpi). If 200 or 556 are specified, 7TRlCK
is assumed. If 800, 1600, or 6250 are specified, 9TRlCK is
assumed. (See Usage Note 8.)

!!2age l!2~2

1. When you enter the CMS/DOS environment with the command SET DOS ON,
SYSLOG is assigned by default to TERMINAL. If you specify the mode
letter of the DOS/VSE system residence on the SET DOS ON command
line, SYSRES is assigned to that disk mode.

2. You cannot assign any of the following DOS/VSE system logical units
with the ISSGN command:

SYSRES
SISUSE

SYSLHK
SYSREC

SYSVIS

3. If you assign the logical unit SYSIN to a virtual device, SYSRDR
and SYSIPT are also assigned to that device. If you make a logical
assignment for SISOUT, both SYSLST and SYSPC~ are assigned.

4. To obtain a list of current assignments, use the LISTIO command.

S. To cancel all current assignments (that is, to unassign them), you
can enter, in sucde~sion, the commands:

set dos off
set dos on [mode]

6. If you want to access DoslvSE private libraries~ you must"assign
the logical units SYSSLB (source stat~ment library), SYSRLB"
(relocatable library), -and SISCLB (core image library), and you
must issue the DLBL command to establish a file definition.

30 IB! V!/370 CftS Co •• and _and Macro Reference

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-X18

ASSGN

1. An assignment to disk (mode) should be accompanied by a DLBL
command that provides the disk file identification.

You cannot make an assignment to a 3350 disk in native mode.

8. If no tape options are specified on the co.mand line, the default
for a 1-track tape is 800 bpi, data converter off, translator off
and odd parity. If the tape is 9-track, the density defaults to
the density of the tape drive. 1600 bpi is the reset condition for
9-track dual-density tapes. If the tape drive is phase-encoded,
density defaults to the density of the tape. If the tape drive is
NRZI, the reset condition is 800 bpi.

9.

None.

8809 tape drives require the 9TRACK and DEN 1600
are the default options; it is not necessary
explicitly.

DMSASN003E INVALID OPTION 'option' RC=24
DMSASN027E INVALID DEVICE 'device' RC=24
DMSASN028E NO LOGICAL UNIT SPECIFIED RC=24

options. These
to state thea

DMSASN029E INVALID PARAMETER 'parameter' IN THE OPTION 'option'
FIELD RC=24

DMSASN035E INVALID TAPE MODE RC=24
DMSASN050E PARAMETER MISSING AFTER SYSxxx RC=24
DMSASN065E 'option' OPTION SPECIFIED TWICE RC=24
DMSASN066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSASN069E DISK 'mode' NOT ACCESSED RC=36
DMSASN010E INVALID PARAMETER 'parametp,r' RC=24
DMSASN087E INVALID ASSIGNMENT of 'SYSxxx' TO DEVICE 'device' RC=24
DMSASN090E INVALID DEVICE CLASS 'deviceclass' FOR 'device' RC=36
DMSASN099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSASN113S '{TAPnlmodeIREADERIPUNCHIPRINTER} (cuu) , NOT ATTACHED RC=100
DMSASN366E NO CMS/DOS SUPPORT FOR NATIVE 3350 DISK RC=36

Section 2. CftS ComBands 31

March 30, 1979

CMSBATCH

CMSBATCH

Tbe system operator uses the CMSBATCH command to invoke the CftS batch
facility. Instead of compiling or executing a program interact~vely,
virtual machine users can transfer jobs to the virtual card reader of an
active CMS batch virtual machine and thus free up their terainals for
other work. The format of the CMSBATCH command is:

CMSBATCH [sysname] , __________ J

sysnaae is the eight-character identification of the saved systea that
is specifically generated for CMS batch operations via the CP
SAVESYS command and the NAMESYS macro. Refer to the VML~IQ
~I§!~~ PrQg~~!~~~§ ~y!~~ for details on SIVESYS and N1MESYS
use.

RQt~: If sysnaae is not supplied on the command line, then the
system that the system operator is currently logged onto
becomes the CMS batch virtual machine.

1. The CMSBATCH command may be invoked immediately after an IPL of the
CMS system. Alternatively, BATCH may be specified following the
PARM operand on the IPL command line.

2. You should not issue the CMSBATCH command if you use a virtual disk
at address 195; the CMS batch virtual machine erases all files on
the disk at address 195.

3. For a description of how to send jobs to
machine, see the !~LJIQ ~~~ Q§~~~§ Gu!~~.
setting up a batch virtual machine, see
~~~~~. 

the CMS batch virtual 
For an explanation of 
the !~/37Q Q2~£!12E!2 

4. The CMS batch virtual machine can be utilized by personnel who do 
not have access to a terminal or a virtual machine. This is 
accomplished by submitting jobs via the real card reader. For 
details on this, see the !~L~IQ £~~ Q~r~2 ~~id~. 

5. If the CMSBATCH command encounters recursive abends, the message 
"CMSBATCH system ABEND" appears on ~he system operator's console. 

DMSBTB100E NO BATCH PROCESSOR AVAILABLE RC=40 
DMSBTB101E BATCH NOT LOADED RC= 88 
DMSBTP105E NO JOB CARD PROVIDED RC=None 
DMSBTP106E JOB CARD FORMAT INVALID RC=None 

- DMSBTP107E CP/CMS COMMAND 'command, (device)' NOT ALLOWED RC=88 
DMSBTP108E /SET CARD FORMAT INVALID RC=None 
DMSBTP109E {CPUIPRINTERIPUNCH} LIMIT-EICEEDED RC=None 

32 IBM VM/370 CMS Command_and Macro Reference 



COftPARE 

COMPARE 

Use the COftPARE com.and to compare two CMS disk files of fixed- or 
variable-length format on a record-for-record basis and to display 
dissimilar records at the terminal. The format of the COMPARE command 
is: 

COftpare 

fileid 

r , 
fileid1 fileid2 [(COL mm[-]Inn I [)]] 

1 I!~£!I 
L .J 

is the file identifier of a file 
identifiers (filename, filetype, 
specified for each fileid. 

to be compared. 
and filemode) 

All three 
aust be 

(COL mm-nn) 
defines specific columns to be compared. The comparison 
begins at position mm of each record. The comparison proceeds 
up to and including column nne The hyphen (-) may be used in 
place of a blank if the total number of characters required 
for ma-nn is not more than eight (maximum parameter field 
size). If column nn is specified, the hyphen may not follow 
or precede a blank. If column nn is not specified, the 
default ending position is the last character of each record 
(the logical record length). 

1. To find out whether two files are identical, enter both file 
identifications, as follows: 

compare" test 1 assemble a test 1 assellbleb 

Any records that do not match are displayed at the terminal. 

2. To stop the display of dissimilar recor~s, use the CftS Immediate 
command HT. 

3. If a file does not exist on a specified disk, that disk'~ read-only 
extensions are also searched. The compl~te fileids of the files 
being compared are displayed in message DftSCftP179I. 

DftSCftP179I COftPARING 'fn ft fm' WITH 'fn ft fm' 

This message identifies the files being compared. If the files are 
the same (in the columns indicated), this message is followed by 
the CMS ready message. If any records do not match, the records 
are displayed. When all dissimilar records have been displayed the­
message DMSCMP209W is issued. 

Section 2. CMS Commands 33 



COMPARE 

DMSCMP002E FILE 'fn ft fa' NOT FOUND RC=28 
DMSCMP003E INVALID OPTION 'option' RC=24 
DMSCMP005E NO COLUMN SPECIFIED RC=24 
DMSCMP009E COLUMN 'col' EICEEDS RECORD LENGTH RC=24 
DMSCMP010E PREMATURE EOP ON FILE 'fn ft fa' RC=40 
DMSCMP011E CONFLICTING FILE FORMATS RC=32 
DMSCMP019E IDENTICAL FILEIDS RC=24 
DMSCMP029E INVALID PARAMETER 'parameter' IN THE OPTION 'COL' FIELD 

RC=24 
DMSCMP054E INCOMPLETE FILEID SPECIFIED RC=24 
DMSCMP062E INVALID * IN FILEID RC=20 
D"SCMP104S ERROR 'nn' READING PILE 'fn ft fa' FROM DISK RC=100 
DMSCMP209W FILES DO NOT COMPARE RC=4 
DMSCMP211E COLUMN FIELDS OUT OF SEQUENCE RC=24 

34 IBM V"/370 CMS Coa.and and Macro Reference 



COPYFILE 

COPYFILE 

Use the COPYFILE command to copy and/or modify CMS disk files. The 
manner in which the file identifiers are entered determines whether or 
not one or more output files are created. The format of the COPYFILE 
command is: 

COpy file 

fileidi1 

fileidi2 

fileido 

fileidil [fileidi2 ••• ] [fileido] [(options ••• [)]] 

.Q£ti.Q'!!'§ : 
r , 
IType I 
INOIY£~I 
L .J 

r , 

I!~!Q~!~I 
IOLDDatel 
L .J 

r , 
IFRom recno I 
IFRLabel xxxxxxxxi 
L .J 

r , r 

r , 
INEWFilel 
I REPlace I 
L .J 

r , 

1:f!!2!!£! I 
INOPRomptl 
L .J 

r , r , 
I SPecs I 
INO.§g~£§1 

IFOR numrec I 
ITOLabel xxxxxxxxi 
L .J L .J 

, 
IOVly I I RECfm {F}I 
IAPpendl I V I 

[LRecl nnnnn] 
r , 
ITRUnc I 
I!QI!!y!!£1 

L .J L 

r , r 
IPAck I IFIll 
IUNPackl IFIll 
L .J I~I11 
[SIngle] L 

, 
c I 
hhl 
!!QI 

.J 

.J 

[EBCdic] 

L .J 

r , 
I UPcase I [ TRans] 
ILOwcasel 
L .J 

is the first (or only) input file. Each file identifier 
(filename, filetype, and filemode) must be specified either 
by indicating the specific identifier or by coding an 
asterisk. 

is one or more additional input files. Each file identifier 
(filename, filetype, and filemode) must be specified. In 
single output mode, any of the three input file identifiers 
may be specified either by indicating the specific 
identifier or by coding an asterisk. However, all three 
file identifiers of fileidi2 cannot be specified by 
asterisks. In multi FIe output mode, an asterisk (*) is an 
invalid file identifier. An equal sign (=) may be coded for 
any of the file identifiers, indicating that it is the same 
as the corresponding identifier ill fileidil. 

is the output file(s) to be created. Each file identifier 
(filename, filetype, and filemode) must be specified. To 
create multiple output files~ an equal sign (=) must be 
coded in one or more of the identifier fields. If there is 
only one input file, fileido may be omitted, in which case 
it defaults to = = = (the input file represented by fileidi1 
is replaced). 

The COPYFILE command options are 
notes and examples, see "Using the 
option descriFtions. 

listed below, briefly. For usage 
COPYFILE Comman~" fol~owing the 

Section 2 •. CMS Commands 35 



COPYFILE 

TYPE 

OLDDATE 

REPLACE 

NOPROMPT 

displays, at the terminal, the names of the files being 
copied. 

suppresses the display of the names of the files being 
copied. 

uses the current date as the creation date of the new 
file(s). 

uses the date on the first input file as the creation 
date of the new file(s). 

checks that files with the same fileid as the output file 
do not already exist. If one or more output files do 
exist, an error message is displayed and the COPYFItE 
command terminates. This option is the default so that 
existing files are not inadvertently destroye~. 

causes the output file to replace an existing file with 
the same file identifier. REPLACE is the default option 
when only one fileid is entered or when the output fileid 
is specified as "= = =." 
displays the messages that request specification cr 
translation lists. 

suppresses the display of prompting messages 
specification and translation lists. 

for 

FROM recno is the starting record number for each input file in the 
copy operation. 

FRLABEL xxxxxxxx 
xxxxxxxx is a character string that appears at the 
beginning of the first record to be copied from each 
input file. Up to eight nonblank characters may be 
specified. 

FOR numrec is the number of records to be copied from each input 
file. 

TOLABEL xxxxxxxx 

SPECS 

HQ~f~CS 

OVLY 

xxxxxxxx is a character string which, if at the beginning 
of a record, stops the copy operation for that input 
file. The record containing the given Gharacter is not 
copied. Up to eight nonblank characters may be specified. 

indicates that you are going to enter a specificaticn 
list to define how records should. be copied. See 
"Entering a COPYFILE Specification List~ for information 
on how you can define output records in a specification 
list. 

indicates tha~ no specification list is to he- entered. 

overlays the data in an existing output file 
. from the input file. You can use OVLY with 
option to overlay data in particular columns. 

with data 
the-SPECS· _ . 

36 IBM VM/370 eMS Command and Macro Reference 



APPEND 

COPYFILE 

appends the data from the input file at the end of the 
output file. 

Data Modification QE!i~~§: The following options can be used to 
change-the-recOrd- format of a file. See "Modifying Record Formats" 
for more details. 

RECFM { vF } is the record format 
specified, the output 
of the input file. 

of the output files. If not 
record format is the same as that 

LRECL nnnnn is the logical record length of the output file(s) if it 
is to be different from that of the input file(s]. The 
maximum value of nnnnn is 65535. 

TRUNC 

PACK 

UNPACK 

FILL c 
FILL hh 
1111 ~.Q 

EBCDIC 

UPCASE 

LOWCASE 

TRANS 

removes trailing bianks (or fill characters) when 
converting fixed-length files to variable-length format. 

suppresses the removal of trailing blanks 
characters] when converting fixed-length 
variable-length format. 

(or fill 
files to 

compresses records in a file so that they can be stored 
in packed format. 

£gutig~: A file in packed format should not be modified 
in any way. If such a file is modified, the UNPACK 
routines are unable to reconstruct the original file. 

reverses the PACK operation. If a file is inadvertently 
packed twice, you can restore the file to its original 
unpacked form by issuing the COPYFILE command twice. 

is the padding and truncation character for the TRUNC 
option or the principal packing character for the PACK 
option. The fill character may be specified as a single 
character, c, or by entering a two-digit hexadecimal 
representation of a character. The default is 40 (the 
hexadecimal representation for a tlank in EBCDIC). 

converts a file that was created with 026 
characters (BCD), to 029 keypunch characters 
The following conversions are made: 

{ to 
& to .. 
% to 
t to = 
m to • 
• to 

keypunch 
(EBCDIC) • 

converts all lowercase characters in each record to 
uppercase before writing the record to the output file. 

converts all uppercase characters i~ each record to 
lowerca~e before writing the record to the- output file. 

indicates that you are going to_ enter a list of character 
translations- to be- made as the file is copied. See. 
"Entering Translation ~pecifications" for details on 
entering a list of characters to be translated. 

Section 2. CMS Commands 37 



COPYFILE 

SINGLE suppresses multiple output mode regardless of the manner 
in which the file identifiers are specified. 

Figure 5 shows combinations of options 
together in the same COPYFILE command. 
column is specified, none of the options 
coded. 

that should not be specified 
If the option in the first 

in the second column should be 

Option 

APPEND 

EBCDIC 
FOR 
FRLABEL 
FROM 
LOWCASE 
LRECL 
NEWDATE 
NEWFILE 
NOPROMPT 
NOSPECS 
NOTRUNC 
NOTYPE 
OLDDATE 
OVLY 
PACK 

PROMPT 
RECFM 
REPLACE 
SPECS 
TOLABEL 
TRANS 
TRUNC 
TYPE 
UNPACK 

UPCASE 

Figure 5. 

. I Incompatible Options 

LRECL, NEWDATE, NEWFILE, OLDDATE, OVLY, PACK, RECF!, 
REPLACE, UNPACK 

PACK, UNPACK 
PACK, TOLABEL, UNPACK 
FROM, PACK, UNPACK 
FRLABEL, PACK, UNPACK 
PACK, UNPACK 
APPEND, PACK, UNPACK 
APPEND, OLDDATE 
APPEND, OVLY, REPLACE 
PROMPT 
PACK, SPECS, UNPACK 
PACK, TRUNC, UNPACK 
TYPE 
APPEND, NEWDATE 
APPEND, NEWFILE, PACK, REPLACE, UNPACK 
APPEND, EBCDIC, FOR, FRLABEL, FROM, LOWCASE, LRECL~ 

OVLY, RECFM, SPECS, TOLABEL, TRANS, TRUNC, UNPACK~ 
UPCASE 

NOPROMPT 
APPEND, PACK, UNPACK 
APPEND, NEWFILE, OVLY 
NOSPECS, PACK, UNPACK 
FOR, PACK, UNPACK 
PACK, UNPACK 
NOTRUNC, PACK, UNPACK 
NOTYPE 
APPEND, EBCDIC, FOR, FRLABEL, FROM, LOWCASE, LRECL 1 

OVLY, PACK, RECFM, SPECS, TOLAEEL, TRANS, TRUNC, 
UPCASE 

PACK, UNPACK 

COPYFILE option Incompatibilities 

USING THE COPYFILE COMMAND 

The simplest use of the COPYFILE command is for copying a single C~S 
file from one disk to another, or making a duplicate copy of the file cn 
the same disk. For example: 

copyfi1e test1 assemble a test2 assemble a 

makes a copy of the file TEST1 ASSEMBLE A and names it TEST2 ASSEMBLE A. 

38 IBM VM/370 CMS Command and Macro Reference 



For those portions of the file identifier that you want 
same, you may code an equal sign in the outFut fileid. 
command line above can be entered: 

copyfile testl assemble a test2 = = 

COPYFILE 

to stay the 
Thus, the 

The equal sign may be used as a prefix or suffix of a file 
identifier. For example, the command: 

copyfile abc file= type= = 

creates an output file called FILEA TYPEB C. 

When you copy a file from one 
the old and new filemodes, and any 
to make; for example: 

virtual disk to another, you specify 
filename or file type change you want 

copyfile test3 assemble c good = a 

This command makes a copy of the file TEST3 ASSEMBLE C, and names it 
GOOD ASSEMBLE A. 

If you want to copy only particular records in a file, you can use 
the FROM/FOR FRLABEL/TOLABEL options. For example: 

copyfile old test a new test a (frlabel start for 41 

copies 41 records from the file OLD TEST Al, beginning with the record 
beginning with the character string START into the file NEW TEST Al. 

You can combine two or more files into a single file with the COPYFILE 
command. For example: 

copy file test datal a test data2 = test data3 b 

copies the files TEST DATAl and TEST DATA2 from your A-disk and combines 
them into a file, TEST DATA3, on your B-disk. 

Note that if any input file has a filemode number of 3, it is 
possible that the file will be copied in a sequence different from its 
order on the disk. 

If you want to combine two more files without creating a new file: 
use the APPEND option. For example: 

copy file new list a old list a (append 

appends the file NEW LIST A to the bottom of- the existing file labeled 
OLD LIST A. 

Note: If the file NEW LIST A has a different LREeL from the file OLD 
LIST A, the appended data is padded, or truncated, to the LREeL of the 
file OLD LIST A. 

Whenever you code an asterisk (*) in an input fileid~ you may c~use 
one or more files to be copied, depending upon the number of_files that 
satisfy the remaining conditions. For example: 

copy file * test a combined test a 

copies all files with a filetype of TEST on yo~r A-disk into a single 
file named COMBINED TEST. If only one file with a file type of TEST 
exists, only that file- is -copied. 

Section 2. eMS Commands 39 



COPYFILE 

If you want to copy all the files on a particular disk to another 
disk, you could enter: 

copy file * * b = = a 

All the files on the B-disk are copied to the A-disk. The filenames and 
filetypes remain unchanged. 

You can also copy a group of files and change all the filenames or 
all the filetypes. For example: 

copy file * assemble b = test a 

copies all ASSEMBLE files in the B-disk into files with a filetype of 
TEST on the A-disk. The filenames are not changed. 

You can use the SINGLE option ~o override multiple output mode. For 
example: 

copy file * test a = = B (single 

copies all files on the A-disk with a filetype of TEST to the B-disk as 
one combined file, with the filename and filetype equal to the first 
input file found. 

Whenever an asterisk appears, it indicates that all files are to be 
copied; whenever an equal sign (=) appears, it indicates that the same 
files are to be copied. For example: 

copyfile x * a1 = file = 

combines all files with a filename of X on the A-disk into a single file 
named X FILE A1. 

Whenever an equal sign appears in the output fileid in a position 
corresponding to an asterisk in an input fileid, multiple input files 
produce multiple output files. When you perform copy operations of this 
nature you might wish to use the TYPE option, which displays the names 
of files being copied. For examFle: 

copy file * test a = output a = summary = (type 

might result in the display: 

COpy 'ALPHA TEST A l' TO 'ALPHA SUMMARY A l' (NEW F_ILE) 
COpy 'ALPHA OUTPUT A' 
COPY 'BETA TEST A l' TO 'BETA SUMMARY A l' (NEW FILE) 
COpy 'BETA OUTPUT A.' 

which indicates that files ALPHA TEST A and ALPHA OUTPUT - A were copied 
into a file named ALPHA SUMMARY A and that files BETA-TEST A and BETA 
OUTPUT A were copied into a file named BETA SUMMARY A. 

You can use the RECFM and LRECL options to change the record format of a 
file as you copy it. For e~&mple: 

copy file data file a (recfm f lrecl 130 

converts the file DATA FILE A1 to f~xed~length 130-character records. 

40 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev !arch 30, 1919 by Supp. SD23-9023-1 for 5148-X18 

COpy PILE 

If you specify an output fileid, for example: 

copy file data file a fixdata file a (recfm f lrecl 130 

the original file re.ains unchanged. The file FIXDATA FILE A contains 
the converted records. 

If the records in a file being copied are variable-length, each 
output record is padded with blanks to the specified record length. If 
any records are longer than the record length, they are truncated. 

When you convert files from fixed-length records to variable-length 
records, you can specify the TRUNC option to ensure that all trailing 
blanks are truncated: 

copy file data file a (recf. v trunc 

If you specify the LRECL option and RECF" v, the LRECL option is 
ignored and the output record length is taken from the longest record in 
the input file. 

When you convert a file from variable-length to fixed-length records, 
you may also specify a fill character to be used for padding instead of 
a blank. If you specify: 

copy file short recs a (recf. f fill * 
then each record 
record length. 
variable-length 
existing record. 
not altered. 

in the file SHORT RECS is padded with asterisks to the 
Assuming that SHORT REeS was originally a 

file, the record length is taken froD the longest 
Note that if SHORT RECS is already fixed-length, it is 

Similarly, when you are converting back to variable-length a file 
that was padded with a character other than a blank, you must specify 
the PILL option to indicate the pad character, so that character is 
truncated. 

The PILL option can also be used to specify the packing character 
used with the PACK option. When you use the PACK option, a file is 
compressed as follows: all occurrences of two or more blanks are 
encoded as one character, and four or more occurrences of any other 
character are written as three characters. If you use the PILL option 
to specify a fill character, then that character ~s treated as a blank 
when records are compressed. You must, of course, specify the PILL 
option to unpack any files packed in this way. Since most fixed-length 
files are blank-padded to the record length, y~u do not need to specify 
the FILL option unless you know that some other character appears more 
frequently. 

A file which is packed on an 800 byte blocksize disk will be fixed 
format file with a logical record length of 800. On a 1K, 2K, or. 4K 
blocksize disk, the file will be fixed format - with a - logical record 
length of 1024. A packed file of either logical record-length can be 
unpacked back to its original specifications regardless of the disk 
blocksize it resides on. A packed file with logical record lengtn 800 
on a disk with blocksize 1K, 2K, or 4K, and packed files with logical 
record length 1024 on 800 byte disks should be unpacked and re-packed if 
ainimal disk block usage is needed. 

Section- 2. CMS Commands 41 



March 30, 1979 

COpy FILE 

When you convert record formats on packed files with the COPYPILE 
command you can specify single or multiple output ,files, in accordance 
with the procedures outlined under "Bodifying Record Formats." For 
example: 

copyfile * assemble a (pack 

compresses all ASSEMBLE files in the A-disk without changing any file 
identifiers. The command: 

copyfile * assemble a = script = (recfm trunc 

converts all ASSEMBLE files to variable-length, and changes their 
filetypes to SCRIPT. 

j~tefing ~ ~QfI[I~ ~E~cifi£ati~~ ~is! 

When you use the COpy FILE command, you can specify particular columns of 
data to be manipulated or particular characters to be translated. 
Again, how you specify the file identifier determines how .any files are 
copied or modified. 

When you use the SPECS option on the COPYFILE command, you receive 
the message: 

DMSCPY601R ENTER SPECIFICATION LIST: 

and a read is presented to your virtual machine and you may enter a 
specification list. If you do not wish to receive this message, use the 
ROPROMPT option. The specification list you enter may consist of one or 
more pairs of operands in the following format: 

{ 
nn-mm } 
Istringl 
hxx ••• 

col 

~!!~~: 

nn-ma specifies the start and end columns of the input file that are to 
be copied to the output file. If mm exceeds the length of the 
input record, the end of the record is the assumed ending 
position. 

string'is any string of uppercase and lowercase characters or numbers 
delimited by any non-alphaaeric character. 

hxx ••• is an even number of hexadecimal digits prefixed with an h. 

col is the column in the output file at which the copy operation is 
to begin. 

You can enter as many pairs of specifications as you wish~ If you 
want to enter more than one line of specifications, enter two plus signs 
(++) as continuation indicators. 

A specification list may contain any combination of specificati~n 
pairs; for example: 

copyfile sorted list a (spe-cs 
DMSCPY601R ENTER SPECIFICATION LIST: 
III 1 1-8 3 /1/ 12 1***/ 14 +. 
9-80 18 

42 IBM VK/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev !arch 30, 1979 by Supp. SD23-9023-1 for 5748-118 

COpy PILE 

After this co.aand is executed, each record in the file SORTED LIST 
will look like the following: 

I 00000000 I *** 0000 •••• 

where the o's in coluans 3 through 10 indicate infor.ation originally in 
coluans 1 through 8; the o~s following the asterisks indicate the 
reaainder of each record, coluans 9 through 80. 

When you enter a specification list, you are actually constructing a 
file coluan by coluan. If you specify aultiple input or output files, 
the same copy operation is performed for each record in each output 
file. 

Section 2~ CftS Coa.ands 42.1 



Karch 30, 1919 

42.2 IBM V8/370 CftS Co •• and and Ilacro Reference 



COPYPILE 

Those columns for which you do not specify any data are filled with 
blanks or, if you use the FILL option, the fill character of your 
choice. Por example: 

copy file sorted list a (specs noprompt lrecl 20 fill $ 
1-15 6 

copies columns 1 through 15 beginning in column 6 and writes dollar 
signs($) in columns 1 through 5. 

If you do want to modify data in particular columns of a file but 
want to leave all of the rest of each record unchanged, you can use the 
OVLY (overlay) option. For eXamFle, the sequence: 

COpy PILE * bracket a (specs ovly noprompt 
had 1 hbd 80 

overlays the characters [ (X'AD') and ] (X'BD') in columns 1 and 80 of 
all the files with a filetype of BRACKET on your A-disk. 

When you copy fixed-length files, records 
the record length; variable-length files 
specified. 

are padded or truncated to 
are always written as 

You can perform conversion on particular characters in CMS files or 
groups of files with the TRANS option of the COPYFILE command. 

When you enter the TRANS option, you receive the message: 

DMSCPY602R ENTER TRANSLATION LIST: 

and a read is presented to your virtual machine. You may enter the 
translation list. If you do not wish to receive this message, use the 
NOPROMPT option. 

A translation list consists of one or more pairs of characters or hex 
digits, each pair representing the character you want to translate and 
the character you want to translate it to, respectively. Por example: 

copy test file a (trans 
DMSCPY602R ENTER TRANSLATION LIST: 
* - A fO 00 ff 

specifies that all occurrences of the character * are to be translated 
to -, all character A's are to be translated to X'PO' and all X'OO's are 
to be translated to X'PP's. 

If any translation specifications you enter conflict with the 
LOWCASE, EBCDIC, or UPCASE options specified on the same command line, 
the translaticn list takes precedence. In the preceding example, if 
LOWCASE had also been specified, all A's would be translated ~o X'PO's, 
not to a's. 

You can enter translation pairs on more than one line if you enter a 
++ as a continuation indicator. 

Section 2. CMS Commands 43 



COPYFILE 

DMSCPY601R ENTER SPECIFICATION LIST: 

This message prompts you to enter a specification list when you use 
the SPECS option. 

DMSCPY602R ENTER TRANSLATION LIST: 

This message prompts you to enter a translation list when you use 
the TRANS option. 

DMSCPY721I COpy 'fn ft fm' [TO I APPEND I OVLY] 'fn ft fm' [OLDINEW] FILE 

This message appears for each file copied with the TYPE option. It 
indicates the names of the input file and output file. When you 
have multiple input files, the output fileid is displayed only 
once. 

DMSCPY002E 
DMSCPY003E 
DMSCPY024E 
DMSCPY029E 

DMSCPY030E 
DMSCPY037E 
DMSCPY042E 
DMSCPY048E 
DMSCPY054E 
DMSCPY062E 
DMSCPY063E 
DMSCPY064E 

{INPUTIOVERLAY} FILE 'fn ft fm' NOT FOUND RC=28 
INVALID OPTION 'option' RC=24 
FILE 'fn ft fm' ALREADY EXISTS -- SPECIFY 'REPLACE' RC=28 
INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD 
RC=24 
FILE 'fn ft fm' ALREADY ACTIVE RC=28 
DISK 'mode' IS READ/ONLY RC=36 
NO FILEID(S) SPECIFIED RC=24 
INVALID MODE 'mode' RC=24 
INCOMPLETE FILEID 'fn eft'] SPECIFIED RC=24 
INVALID CHAR '[=I*Ichar]' IN FILEID '(fn ft fm]' RC=20 
NO {TRANSLATIONISPECIFICATION} LIST ENTERED RC=40 
INVALID [TRANSLATE] SPECIFICATION AT OR NEAR 
RC=24 

DMSCPY065E 'option' 
DMSCPY066E 'option' 
DMSCPY067E COMBINED 

OPTION SPECIFIED TWICE RC=24 
AND 'option' ARE CONFLICTING OPTIONS RC=24 

INPUT FILES ILLEGAL WITH PACK OR UNPACK OPTIONS 

DMSCPY068E 
DMSCPY101S 
DMSCPY102S 
DMSCPY103S 
DMSCPY156E 

RC=24 
INPUT FILE 'fn ft fm' NOT IN PACKED FORMAT RC=32 
'SPECS' TEMP STRING STORAGE EXHAUSTED AT , •••••••• , RC=88 
TOO MANY FILEIDS RC=88 
NUMBER OF SPECS EXCEEDS MAX 20 RC=88 
'FROM nnn' NOT FOUND --FILE 'fn ft fm' HAS ONLY 'nnn' RECORDS 
RC=32 

DMSCPY157E LABEL 'label' NOT FOUND IN FILE 'fn ft fm' RC=32-
DMSCPY172E TO LABEL 'label' {EQUALSI IS AN INITIAL SUBSTRING OF}-FRLABEL 

'label' RC=24 
DMSCPY173E NO RECORDS WERE COPIED TO OUTPUT FILE 'fn-ft fm' RC=40 
DMSCPY901T UNEXPECTED ERROR AT 'addr': PLIST 'plist' A~ 'addr', BASE 

'addr', RC Inn' RC=256 
DMSCPY903T IMPOSSIBLE PHASE CODE 'xx' RC=256 
DMSCPY904T UNEXPECTED UNPACK ERROR AT 'addr', BASE 'addr' RC=256 

44 IBM VM/370 CMS Command and Macro Reference 



March 30, 1979 

CP 

CP 

Use the CP command to transmit commands to the Vft/370 control progra. 
environment without leaving the CMS environment. The format of the CP 
command is: 

CP [ commandline ] 

~h~~: 

commandline is any CP command valid for your CP co •• and privilege class. 
If this field is omitted, you are placed in the CP 
environment and may enter CP commands without preceding each 
command with CP. To return to CftS, issue the CP command 
BEGIN. 

1. You must use the CP command to invoke a CP command: 

• Within an EXEC procedure 

• If the implied CP (IMPCP) function is set to OFF for your 
virtual machine 

• In a job you send to the CMS batch facility 

2. To enter a CP command from the CftS environment without CftS 
processing the command line, use the tcp function. 

3. When you enter an invalid CP command following the CP co.mand, you 
receive a return code of -1. In an EXEC, this return code is +1. 

All responses are from the CP command that was issued, and are followed 
by the CMS ready message. 

Section 2. CftS Commands 45 



Pg. of GC20-1818-2 Rev March 30, 1919 by Supp. 5D23-9023-1 for 5148-118 

DDR 

DDR 

Use the DASD Dump Restore (DDR) program to dump, restore, copy, or print 
VM/370 user minidisks. The DDR program may run as a standalone program, 
or under CMS via the DDR command. 

The DDR program bas five functions: 

1. Dumps part or all of the data from a DASD device to tape. 

2. Transfers data from tapes created by the DDR dump function to a 
direct access device. The direct access device must be the same as 
that which originally contained the data. 

3. Copies data from one device to another of the same type~ Data may 
be reordered, by cylinder or by block for fixed-block DA5D, when 
copied from disk to disk. In order to copy one tape to another, 
the original tape must have been created by the DDR DUMP function. 

4. Prints selected parts of DASD and tape records in hexadecimal and 
EBCDIC on the virtual printer. 

5. Displays selected parts of DASD and tape records in hexadecimal and 
EBCDIC on the terminal. 

The format of the DDR command is: 

r , 
DDR [fn ft Ifml ] 

I! I 
L .J 

r , 
fn ft Ifml 

1* I 
L .J 

is the identification of the file containing the control 
statements for the DDR program. If no file 
identification is provided, the DDR program attempts to 
obtain control statements from the console. The file.ode 
defaults to * if a value is not provided. 

!~te: If you use the CMS DDR command, CMS ignores the SYSPRINT control 
statement and directs the output to the CMS printer OOE. 

HQte: Be aware that DDR when run as a standalone 
error recovery support. However, when DDR 1S 
virtual machine environment, the I/O operation 
has better error recovery facilities). 

UDR CONTROL STATEMENTS 

program does not have 
invoked in eMS, in a 

is performed by CP (CP 

DDR control statements describe the intended precessing and-the needed 
I/O devices. I/O definition statements must be specified first. 

All control statements may be entered from either-the console or the 
card reader. Only columns 1 to .71 are inspected by the program. 111 
data after the last operand in a st&tement is ignored. An output-tape 
must have the DASD cylinder header records in ascending sequences; 
therefore, the extents must b-e entered in sequence· by DASD location, 
that is, in sequence by cylinder number if count-key-data or by block_ 
number if FB-512. Only 

46 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1919 by Supp. 5D23-9023-1 for 5148-118 

DDR 

one type of fu~ction -- dump, restore, or copy -- may be performed in 
one execution, but up to 20 statements describing cylinder or block 
extents may be entered. The function state.ents are delimited by an 
INPUT or OUTPUT statement, or by a null line if the console is used for 
input~ If additional functions are to be perfor.ed, the sequence of 
control cards must be repeated. If you do not use INPUT or OUTPUT 
control statements to separate the functions you specify vhen the input 
is read from a card reader or CMS file, an error message (DBKDDR102E) is 
displayed. The remainder of the input stream viII be checked for proper 
syntax, but no further DDR operations vill be performed. Only those 
statements needed to redefine the I/O devices are necessary for 
subsequent steps. All other I/O definition remain the same. 

To return to CftS, enter a null line (carriage return) in response to 
the prompting message (ENTER:). To return directly to CP, key in 'CP. 

The PRINT and TYPE statements work differently fro. other DDR control 
statements in that they operate on only one data extent at a time. If 
the input is from a tape created by the dump function, it Bust be 
positioned at the header record for each step. The PRINT and TYPE 
statements have an implied output of either the console (TYPE) or system 
printer (PRINT). Therefore, PRINT and TYPE statements need not be 
delimited by an INPUT or OUTPUT statement. 

I/O DEPINITION STATEMENTS 

The I/O definition statements describe the tape, DISD, and printer 
devices used while executing the DASD Dump Restore program. 

lB~IlQYTP~! £~A!~1 ~!at~.~~! 

An INPUT or OUTPUT statement describes each tape and DISD unit used. 
The format of the INPUT/OUTPUT statement is: 

r---------------------~---------------------------------~~-~~~--~------, 

INput 
OUTput 

r , 
cuu type Ivolserl [(options ••• )] 

laltapel 
L ~ 

QE1io!!.§: 
r 
ISKip 
la!~ 
L 

, r 
nn I IMOde 
Q. I IMOde 

.I IMOde 
L 

, r , 
6250 I I REWind I 
1600 I 1ID!!2!g' 
800 I 1 LEave 1-

.I L .I L-----~ _______________________________ ~_~ ___________________ ~~ __ ~~~ ____ ~ 

!h~: 

INPUT 

OUTPUT 

indicates that the device described is an input device. 

indicates that the -device described is an output device. 

RQi~: If the output device is a DASD device and DDR is running 
under CMS, the device_ is released using the CftS RELEASE 
command function and DDR processing-continues. 

Section 2. CMS Commands 41 



Pg. of GC20-1818-2 Rey March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

DDR 

cuu 

type 

is tne unit address of the device. 

is the device type (2314, 2319, 3330, 3330-11, 3340-35, 
3340-10, 3350, 2305-1, 2305-2, FB-512(FB), 2400, 2420,3420, 
or 8809) (no 7-track support for any tape devices). Specify a 
3410 as a 3420. specify a 3340-70F as a 3340-10, and a 3333 
as a 3330. Specify a 3350 that is in 3330-1 or 3330-11 
compatibility mode as a 3330 or 3330-11. Specify a 3344 as a 
3340-10, and specify 3350 for a 3350 operating in native mode 
(as opposed to compatibility mode). Note that both 3310 and 
3310 are denoted by specifying FB-512 or simply FB. 

!Qi~: The DASD Dump Restore (DDR) program, executing in a 
virtual machine, uses I/O DIAGNOSE 20 to perform I/O 
operations on tape and DASD devices. DDR under CMS requires 
that the device type entered agree with the device type of the 
real device as recognized by Vft/310. If there is a conflict 
with device types, the following message is issued: 

DMKDDR108E INVALID OPTION 

However, if DDR executes standalone in a virtual machine, DDR 
uses DIAGNOSE 20 to perfor. the I/O cperation if the device 
types agree. If the device types do not agree, error message 
DMKDDR708E is issued. 

The speed setting for 8809 tape drives is not under the user's 
control. When DDR is running as a command under eMS, the 8809 
is supported only in start/stop mode. If DDR is run 
stand-alone in a virtual machine, DDR attempts to run the 8809 
in high-speed mode. In this mode, the data transfer time is 
reduced. However, this does not mean that the time for a DDR 
job is reduced; job duration depends on many factors such as 
processor and device contention. 

volser is the volume serial number of a DASD device. If the keyword 
"SCRATCH" is specified instead of the volume serial number, no 
label verification is performed. 

altape is the address of an alternate tape drive. 

!Qi~: If multiple reels of tape are required and QaltapeQ is 
not specified, DDR types the following at the end of the reel: 

END OF VOLUME CIL xxx HD xxx, HOONT NEXT TAPE 

After the new tape is mounted, DDR continues automatically. 

QE1io!!~: 

SKIP nn 
o 

r , 

forward spaces nn files on the tape. nn is any number 
up to 255. The SKIP option is reset to zero after the 
tape has been posi tioned. -

MODE 162501 causes all output tapes that are opened for the first 
116001 time and at the load point to be written or read-in 
1 8001 the specified density. All subsequent tapes mounted 
L J are also set ~o the specified density. If no apde 

REW IND 

UNLOAD 

option is-specified~ then no mode set is performed -and 
the density s~ttLng remains as it previously was. 

rewinds the tape at the end of a function. 

rewinds and unloadi the tape at the en~ of a function. 

48 IBM VM/310 CMS Command and_Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118 

DDR 

LEAVE leaves the tape positioned at the end of the file at 
the end of a function. 

1. When the wrong input tape is mounted, the aessage DHKDDR709E is 
displayed and the tape will rewind and unload regardless of options 
REWIND, UNLOAD, or LEAVE being specified. 

Section 2. CMS Commands 48.1 



Plarch 30, 1979 

48.2 IBPl VPl/370 CPlS Co •• and and Placro Reference 



Pg. of GC20-1818-2 Rev March 30, 1919 by Supp. SD23-9023-1 for 5148-X18 

DDR 

2. If DDR is executed from CMS, failure to attach the tape drive or 
the disk device (or both) to your virtual .achine prior to 'invoking 
the input/output statement causes the following response to be 
displayed: 

INVALID INPUT OR OUTPUT DEPINITION 

~~I!I ~~A!!~! ~!~~!~! 

Use the SYSPRINT control statement (in the standalone DDR virtual 
.achine only) to describe the printer that is to print data extents 
specified by the PRINT state.ent. It also can print a map of the 
cylinder extents froa the DUMP, RESTORE, or COpy state.ent. If the 
SYSPRINT statement is not provided, the printer assign.ent defaults to 
OOE. CMS ignores the SYSPRINT stateaent when you invoke DDR as a 
co.mand under CftS, and CftS always directs the output to OOE. The foraat 
of the SYSPRIHT control stateaent is: 

r----------------------------------------------------------------------, 
I SYsprint I cuu I 
L----------------------------------------------------------------------~ 

!~: 

cuu specifies the unit address of the device. 

l~ncti~~ ~!~!~.~D!§ 

The function state.ents tell the DDR prograa what action to perfora. 
The function coa.ands also describe the extents to be duaped, copied, or 
restored. The for.at of the DUMP/COPY/RESTORE control statement is: 

r----------------------------------------------------------------------, 
I I r , I 
I DUap I Icyll [To] [cy12 [Reorder] [TO] [cy13]] I I 
I COpy I Iblock1 [To] [block2 [Reorder] [To] [block3]] I I 
I REstore I ICPvol I I 
I I 11LL I I 
I I INUcleus I I 
I I L ~ I 
L------------------------------------------------_---..... ------------------~ 

DU!P requests the progra. to .ove data fro. a direct access voluae 
onto a aagnetic tape or tapes. The format of the tape depends 
on the type of the direct access volu.e. The tape format is 
shown for both count-key-data and FB-512 devices. 

For count-key-data DASD, the· data is aoved 
cylinder-by-cylinder. Any number of cylinders can be _oved. 
The forllat of the resulting tap'e is: 

Record 1: a volume header 
descrIbIng th~ voluaes. 

record, consisting of data 

ft~£Q~g_~: a track header record, consisting of a li~t of count 
fields to restore the track, and the nu.b~r of data records 
written on tape. A~ter the last coun~field the ,record 
contains key and data records to fill the 4K buffer. 

Section 2. CftS Com.ands 49 



Pg. of GC20-1818-2 Rev March 30, 1919 by Supp. SD23-9023-1 for 5748-XX8 

DDR 

COpy 

RESTORE 

Record 3: track data records, cansisting of key and data 
records-packed into 4K blocks, with the last record truncated. 

Record ~: either the end-of-volume (EOV) or end-of-job (EOJ) 
triIi;r- label. The end-of-volume label contains the same 
information as the next volume header record, except that the 
ID field contains EOV. The end-af-job trailer label contains 
the salle information as r~cord 1 except that the cylinder 
number field contains the disk address of the last record an 
tape and the ID field contains EOJ. 

For F5-512 devices, the data is moved in 'sets' of blocks. 
Each set contains 95 blocks of data. (The last set moved may 
have less than 9S blocks.) Any number of blocks can be moved 
with one DUMP statement. The format of the resulting tape is: 

Record 1: a volume header record, consisting 
descrIbing the volume. 

of data 

Record 2: a aata header record. This consists of control data 
that-describes the set of blocks that follow (such as block 
numbers and the number of 4K tape records required to hold 
these FB-512 blocks). Following the control data is the 
actual FB-512 blocks filling out the 4K tape record. 

Record 3: FB-512 data records. These contain the rest of the 
blocks making up the set. 

!~£2£~ !: either the end-of-volume (BOV) or end-of-job (EOJ) 
trailer label. The EOV label contains the same information as 
the next header record, except that the ID field contains EOV. 
The EOJ trailer label °is just like record 1 except that it 
contains the number of the last DASD block dumped and the ID 
field contains EOJ. 

requests the program to copy data from one device to another 
device of the same or aquivalent type. Note that you cannot 
copy between FB-512 and count-key-data DASD. Data may be 
recorded on a cylinder or block basis from input device to 
output device. A tape-to-tape copy can be accomplished only 
with data dumped by this program. 

requests the program to return data that has been dumped by 
this program. Data can be restored cnly to a DASD volume of 
the same or equivalent device type from which it was dumped. 
It is possible to dump from areal disk and restore to a 
minidisk as long as the device types are the Same.-

cyll [TO] [cyl2 [REORDER] [TO] [cy13]] _ 
Only those cylinders specified are moved~ starting with the 
first track of the first cylinder (cyll), and ending with the 
last track of ~he second cylinder (cyI2). The REORDER operand 
causes the output to be reordered, that is, moved to different 
cylinders, starting at the specified cylinder (cyI3) or at ~he 
starting cylinder (cyI1) if cyl3 -is- not specified. The 
REORDER operand must not be specified unless specified limits 
are defined for the operation; the starting and, if required, 
ending cylinders (cyl1 and cyl2) must be specified. Note that 
if the input dev~ce cylinder extents exceed the ~umber- of 
cylinders specified on the output device, an error message 
results. 

50 IB! VM/310 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-IX8 

DDR 

blockl [TO] [block2 [Reorder] [To] [block3]] 
Only those blocks specified are moved, starting with the block 
indicated by blockl, up to and including the block indicated 
by block2. The REORDER operand causes the data to be moved to 
a different DASD location. The REORDER operand must not be 
specified unless specified limits are defined for the 
operation. If the input block extents exceed the capacity of 
the output device, an error message results. 

I CPVOL specifies that cylinder 0 (blocks 0-15 if FB-512) and all 
active directory and permanent disk space are to be copied, 
dumped, or restored. This indicates that both source and 
target disk must be in CP format; that is, the CP 
Format/Allocate program must have formatted them. 

I ALL specifies that the operation is to be performed on the entire 
DASD volume (all cylinders or all blocks). 

I NUCLEUS 

Note: The occurrence of message DftKDDR705E (issued upon 
completion of the copy, restore, or dump operation) indicates 
that an attempt was made to copy, restore, or dump the 
contents of DASD locations beyond the extents of the 
designated minidisk. 

specifies that record 2 on cylinder 0, track 0 and the nucleus 
on cylinder 0, track 0 (blocks 5-12 if FB-512) are dumped, 
copied, or restored. 

• Each track must contain a valid home address, containing the real 
cylinder and track location. 

• Record zero must not 'contain more than eight key and/or data 
characters. 

• Flagged tracks are treated just as any other track for all 2314, 
2319, 3340, and 2305 devices. That is, no attempt is made to 
substitute the alternate track data when a defective primary track is 
read. In addition, tracks are not inspected_ to determine whether 
they were previously flagged when written. Therefore, volumes 

Section 2. CMS Commands 50.1 



Karch 30, 1919 

50.2 IBK VK/310 eKS eom.and and Kacro Reference 



Pg. of GC20-1818-2 Rev 8arch 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

DDR 

containing flagged tracks should be restored to the same cylinders of 
the volume from which they were dumped. The message D!KDDR715E occurs 
each time a defective track is dumped, copied or restored, and the 
operation continues. 

• Flagged tracks on 3330, and 3350 devices are handled automatically by 
the control unit and may never be detected by the program. The 
program may detect a flagged track if, for example, no alternate 
track is assigned to the defective primary track. If a flagged track 
is detected by the program, the message D!KDDR715E occurs and the 
operation terminates. 

INPUT 191 3330 SYSRES 
OUTPUT 180 2400 181 (80DE 800 
SYSPRINT OOF 
DU8P CPVOL 
INPUT 130 3330 8INIOl 
DU8P 1 TO 50 REORDER 51 
60 70 101 

This example sets the density to 800 bpi, then dumps all pertinent 
data from the volume labeled SYSRES onto the tape that is mounted on 
unit 180. If the program runs out of space on the first tape, it 
continues dumping onto the alternate device (181). A map of the dumped 
cylinders is printed on unit OOF while the program is dumping. When the 
first function is complete, the volume labeled MINIOl is dumped onto a 
new tape. Its cylinder header records are labeled 51 to 100. A map of 
the dumped cylinders is printed on unit OOF. Next, cylinders 60 to 70 
are dumped and labeled 101 to 111. This extent is added to the cylinder 
map on unit OOF. When the DDR processing is complete, the tapes are 
unloaded and the program stops. 

If cylinder extents are being defined from the console, the user need 
only enter DUMP, COPY or RESTORE on the command line. The following is 
displayed: 

ENTER CYLINDER EXTENTS 
ENTER: 

For any extent after the first extent, the message: 

ENTER NEXT EXTENT OR NULL LINE 
ENTER: 

is displayed. 

You may then enter additional extents to be dumped, restored, or 
copied. A null line causes the job step to start. 

1. When a cylinder map is printed on the virtual printe~ (OOF as in 
the previous example) a heading precedes the map information. 
80dule D8KDDR controls the disk, time - and zone printed in the 
heading. Your installation must apply a local modification to 
DMKDDR to ensure that .local time, rather than GMT (Greenwich 
Meridian Time), is printed in the heading. 

2. Attempts to restore cylinders or biocks. beyond the capacity that 
had been recorded on the tap~ produces a successful ROJ, but the 
printout only indicates the last cylinder or block found on the 
tape. 

Section 2~ CMS Commands 51 



Pg. of GC20-1818-2 Rev l!arch 30, 1979 by Supp. SD23-9023-1 for 5748-118 

DDR 

~RIN!LI~ ly»£tion ~!~~~~»! 

Use the PRINT and TYPE function statement to print or type (display) a 
hexadecimal and EBCDIC translation of each record specified. The input 
device must be defined as direct access tape. The output is directed to 
the system console for the TYPE function, or to the SYSPRINT device for 
the PRINT function. (This does not cause redefinition of the output unit 
definition.) The format of the PRINT/TYPE control statement is: 

r----------------------------------------------------------------------, 
I PRint I[ cyl1 (hh 1 [rr 1 ]] [To cyl2 [hh2 (rr 2 ]]] [ (options ••• [) ]]]1 
I TYpe I [ block 1 [TO block2] ] I 
I I QEt!Q~§: I 
I I [Hex] [Graphic] [Count] I 
~----------------------------------------------------------------------~ 

cyl1 is the starting cylinder. 

hh1 is the starting track. If present, it must follow the cyl1 
operand. The default is track zero. 

rr1 is the starting record. If present, it must follow the hh1 
operand. The default is home address and record zero. 

TO cyl2 is the ending cylinder. If more than one cylinder is to be 
printed or typed, "TO cyl2" must be specified. 

hh2 is the ending 
operand. The 
cylinder. 

track. If present, it must 
default is the last track 

follow the cyl2 
on the ending 

rr2 is the record ID of the last record to print. The default is 
the last record on the ending track. 

block1 is the starting FB-S12 block number. 

To block2 is the ending block number. If more than one block is to be 
printed or typed, 'To block2' must be specified. 

QEtio~2: 

HEX prints or displays a hexadecimal representation of each 
record specified. 

GRAPHIC 

COUNT 

prints or displays an EBCDIC translation of each record 
specified. 

prints or displays only the count field for each record 
specified. This option is ignored for FB-S12 data. 

If the TYPE statement follows the occurrence of error message DftKDDR70SE 
and specifies the same cylinder, track, and record extents indicated ia 
the error message, the- contents of the printed - record must be 
interpreted in the context of the I/O error information given in th~ 
initial message. 

52 IBft Vft/370 CftS CommanQ and ~acro Reference 



Pg. of GC20-1818-2 Rev ftarch 30, 1919 by Supp. SD23-9023-1 for 5148-118 

DDR 

EXYE!~~ 

PRINT 0 TO 3 

Prints all of the records fro. cylinders or blocks 0, 1, 2, and 3. 

PRINT 0 1 3 

Prints only one record, fro. cylinder 0, track 1, record 3. 

Section 2. CftS Co •• ands 52.1 



Barch 30, 1979 

52.2 IB! V!/370 C!S Co •• and and !acro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

DDR 

PRINT 1 10 3 TO 1 15 4 

Prints all records starting with cylinder 1, track 10, record 3, and 
ending with cylinder 1, track 15, record 4. 

The example in Figure 6 shows the information displayed at the 
console (TYPE function) or system printer (PRINT function) by the DDR 
program. The listing is annotated to describe some of the data fields. 

The printed output for FB-512 data is self-explanatory. DDR prints a 
short heading telling the block number, then prints the 512 bytes of 
data in that block. 

DMKDDR711R VOLID READ IS volid2 [NOT vOlid1] 

volid2 

volid1 

DO YOU WISH TO CONTINUE? RESPOND YES NO OR REREAD: 

is the volume serial number fro. the VOL1 label on the 
DASD unit. 

is the volume serial number from the INPUT or OUTPUT 
control card. 

The volume serial number read from the device at cuu is not the 
same as that specified on the INPUT or OUTPUT control card. 

DMKDDR716R NO VOL1 LABEL POUND POR volser 

volser 

DO YOU WISH TO CONTINUE? RESPOND YES NO OR REREAD: 

is the volume serial number of the DASD device from the 
INPUT or the OUTPUT control card. 

The DASD device at cuu contains no volume serial number. 

DMKDDR717R DATA DUMPED FROM volid1 TO BE RESTORED TO volid2 
DO YOU WISH TO CONTINUE? RESPOND YES NO OR REREAD: 

volid1 

volid2 

is the volume serial number from the .input tape header 
record (volume dumped). 

is the volume serial number from the output DASD device. 

The above message is printed to verify the input parameters. 

ENTER CYLINDER EXTENTS 
ENTER: 

or ENTER BLOCK EXTENTS 
ENTER: 

This message is received only if you are entering input from yo~r 
terminal. 

END OP VOLU!E CYL xxx HD xx, MOUNT NEXT TAPE 
or END OF BLOCK xxxxxxxx, ·MOUNT NEXT TAPE 

DDR continues processing, after the mounting of the ~ett tape reel. 

Section 2. eftS Commands 53 



DDR 

Home Address 
Record 0 

HOME ADDRESS 0000130000 

Home Address of track 
in hexadecimal format 

Record 0 10 from the 
count field 

Data 
(hexadecimal) 

Record I --+--__ 

~-.. -... - re -;rth=:i:'a I;;;h r;;;; is =ze::- - .., 

I • A heading is printed containing the I 
data length from the count field first in 

I 
decimal, then in hexadecimal 

• The data is then printed in hexadecimal I 

J 
with graphic interpretation at the right 

_ ~t~nhere). ___ J 

04096 1000 DATA LENGTH _----------

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS ABOVE ... 

1st Halfof-+---_CYL 019.HD 00 REC 002 COUNT 0013000002 009A8 
Record 2 

Note: Data Length field repeated 
in heading. . 

02472 09A8 DATA LENGTH 

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS ABOVE ... 

ABOVE RECORD WRITTEN USING RECORD OVERFLOW e 
r:::-------, 
Ie This statement indicates that this portion I 

of Record 2 was written using the Write 

I 
Special Count, Key, and Data command. The 
remainder of Record 2 is found on the next I 
track as the first record after Record O. L ______ J 

Home Address+--____ CYL 019 HD 01 HOME ADDRESS 0000130001 RECORD ZERO 0013000100 00 0008 00000000 00000000 
Record 0 

2nd Half of 
Record 2 

CYL 019 HD 01 REC 002 COUNT 0013000102 00 0658-,..-----------------..J 

01624 0658 DATA LENGTH 

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS ABOVE ... 

ret --;f t-he-key -:;th ~ IS:;; z;;;: - - - ..., 

I • A headmg is printed contammg the key length I 

~ 
first in decimal, then m hexadecimal. I • The key is then printed m hexadecimal with I 

G -- - __ ..J :JT 
graphic mterpretatlon at the nght (not shown here). 

Record 3 --+---- CYL 019 HD 01 REC 003 COUNT 0013000103 800F80 

001280080 KEY LENGTH-'""""'-------

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS ABOVE ... 

03968 OF80 DATA LENGTH 

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS ABOVE ... 

Record4--t---- CYL 019 HD 01 REC 004 COUNT 0013000104 00 0000 

END OF FILE RECORD 

r::;-
CD I 

---, 

Figure 6. 

I 
L _ 

An Annotated Sample of output from 
Functions of the DDR program 

54 IBM VM/370 eMS Com.and and Macro Reference 

Whenever the data length field is zero 
an end-of-file prints next. 

I 
I 

_____ ..J 

the TYPE and PBIBT 



Karch 30, 1919 

RESTORING volser 

!h~~: 

volser is the volume serial number of the disk duaped. 

The RESTORE operation has begun. 

COPYING volser 

!.h~il: 

volser is the volulle serial number described by the input unit .• 

The COpy operation has begun. 

DUl!PING volser 

!.h~~: 

volser is the voluae serial number described by the input unit. 

The DUl!P operation has begun. 

PRINTING volser 

!.!H!!:~: 

volser is the volume serial number described by the input unit. 

The PRINT operation has begun. 

END OF DUl!P 

The DUMP operation has ended. 

END OF RESTORE 

The RESTORE operation has ended. 

END OF COPY 

The COpy operation has ended. 

END OF PRINT 

The PRINT operation has ended. 

END OF JOB 

All specified operations have completed. 

DDR 

Section 2. el!S Commands 55 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118 

DDR 

EITER: 

Prompts for input from the terminal. A null line (that is, 
press~ng the Enter key or equivalent) causes control to return to 
CMS if the virtual machine is in the CftS environment. 

DMKDDR725R ORIGINAL INPUT DEVICE WAS (IS) LARGER THAN OUTPUT DEVICE. 
DO YOU WISH TO CONTINUE? RESPONSE YES OR NO: 

I~Elg~g!i2B: 
RESTORE function - The number of 
original DASD input unit is compared 
device. 

cylinders or blocks on the 
with the number on the output 

COpy function - The input device contains more cylinders or blocks 
than the output device. 

QE~~~12~ Action: The operator must determine if the COpy or RESTORE 
function is to continue. The response is either yes or no. 

!Qte: Except as shown, there is no return code returned for the 
following messages. For FB-512 devices, DASD locations are described by 
a specific block number instead of by cchhr. 

DMKDDR700E INPUT UNIT IS NOT A CPVOL 
DMKDDR701E INVALID OPERAND - operand 
DMKDDR702E CONTROL STATEMENT SEQUENCE ERROR 
DMKDDR703E OPERAND MISSING 
DMKDDR704E DEV cuu NOT OPERATIONAL 
DMKDDR705E IO ERROR cuu CSW csw SENSE sense INPUT bbcchhlblock OUTPUT 

bbcchhlblock CCW ccw 
DMKDDR707E MACHINE CHECK RUN SEREP AND SAVE OUTPUT FOR CE 
DMKDDR708E INVALID INPUT OR OUTPUT DEFINITION 
DMKDDR709E WRONG INPUT TAPE MOUNTED 
DMKDDR710A DEV cuu INTERVENTION REQUIRED 
DMKDDR712E NUMBER OF EXTENTS EXCEEDS 20 
DMKDDR713E OVERLAPPING OR INVALID EXTENTS 
DMKDDR714E RECORD bbcchhlblock NOT FOUND ON TAPE 
DMKDDR715E LOCATION bbcchhlblock IS A FLAGGED TRACK RC=3 
DMKDDR718E OUTPUT UNIT IS FILE PROTECTED RC=l 
DMKDDR719E INVALID FILENAME OR FILE NOT FOUND 
DMKDDR720E ERROR IN routine RC=varies 
DMKDDR721E RECORD cchhrlblock NOT FOUND 
DMKDDR122E OUTPUT UNIT NOT PROPERLY FORMATTED FOR THE CP NUCLEUS 
DMKDDR723E NO VALID CP NUCLEUS ON THE INPUT UNIT 
DMKDDR724E INPUT TAPE CONTAINS A CP NUCLEUS DUftP 
DMKDDR756E PROGRA! CHECK ~SW=psw 

56 IBM VM/370 CMS Command and Macro Reference 



DEBUG 

DEBUG 

Use the DEBUG command to enter the debug environment from the c~s 
environment. In the debug environment you can use a variety of DEBUG 
subcommands that allow you to test and debug your programs. The DEBUG 
subcommands are described in "Section 4. DEEUG Subcommands." For 
tutorial information, including examples, see the !~LJ1~ £~E ~2~f~2 
.§yidg. The format of the DEBUG command is: 

DEBUG I L-___________________________________________________________________________ ~ 

1. The debug environment is also entered 
interruption or the result of a 
encountered during program execution. 

as a result of an external 
breakpoint (address stop) 

2. Once you are in the debug environment, you can enter only DEBUG 
subcommands and CP com.ands via the tcp function. 

3. To return to the CMS environment, enter the DEBUG subcommand 
RETURN. 

DMSDBG728I DEBUG ENTERED 

This message indicates that you are in the debug environment. 

Section 2. eMS Commands 57 



DISK 

DISK 

Use the DISK command to: 

• Punch CMS disk files to the virtual spooled card punch in a special 
format which allows the punched deck to be restored to disk in the 
form of the original disk file. 

• Restore punched decks created by the DISK tUMP command to a disk 
file. 

The format of the DISK command is: 

DISK 
{

DUMP 
LOAD 

fn ft [fm] } 

DUMP fn ft fm 

LOAD 

punches the specified file (fn ft fm). The file may have 
either fixed- or variable-length records. After all data is 
punched, an end-of-file card is created with an N in column 5. 
This card contains directory information and must remain in 
the deck. The original disk file is retained. 

loads a file or files from 
them as CMS files on your 
are obtained from the card 
same filename and filetype 
it is replaced. 

the spooled card reader and writes 
A-disk. The filename and filetype 
stream. If a file exists with the 
as one of those in the card stream, 

Note: DISK LOAD file identifiers are those of the specified 
iII; issued by the DISK DUM~ command. 

y§.ag~ !!.Q1~§ 

1. To read files with the DISK LOAD command, they must have been 
created by the DISK DUMP command. To load spooled reader files 
created in any other manner, you should use the READCARD command. 

2. To load reader files created by DISK DUMP, you mu-st issue the DISK 
LOAD command for each spool file. For example, if you enter: 

disk dump source1 assemble 
disk dump source2 assemble 

the virtual machine that receives the files must issue the DISK 
LOAD command twice to read the files onto disk. If you use the CP 
SPOOL command to spool continuous, for example: 

cp spool punch cont 
disk dump source1 assemble 
disk dump source2 assemble 
cp spool punch noco~t close 

then you only need to issue the DISK LOAD command once to read both 
files. 

58 IBM VM/370 CMS Command and Macro Reference 



DISK 

There is no response to the DISK DUMP command. The file identifiers of 
each file loaded are displayed when you issue the DISK LOAD command: 

fn ft fm 

DMSDSK002E FILE 'fn ft f.' NOT FOUND RC=28 
DMSDSK014E INVALID FUNCTION 'function' RC=24 
DMSDSK037E DISK 'A' IS READ/ONLY RC=36 
DMSDSK047E NO FUNCTION SPECIFIED RC=24 
DMSDSK048E INVALID MODE 'mode' RC=24 
DMSDSK054E INCOMPLETE FILEID SPECIFIED RC=24 
DMSDSK062E INVALID * IN FILEID ['fn ft fm'] RC=20 
DMSDSK070E INVALID PARAMETER 'parameter' RC=24 
DMSDSK077E END CARD MISSING FROM INPUT DECK RC=32 
DMSDSK078E INVALID CARD IN INPUT DECK RC=32 
DMSDSK104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100 
DMSDSK105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100 
DMSDSK118S ERROR PUNCHING FILE RC=100 
DMSDSK124S ERROR READING CARD FILE RC=100 
DMSDSK205W READER EMPTY OR NOT READY RC=8 

Section 2.CMS Co.mands 59 



DLBL 

DLBL 

Use the DLBL command: 

• In CMS/DOS, to define DOS and CMS sequential disk files for program 
input/output; to identify DOS files and libraries; to define and 
identify VSAM catalogs, clusters, and data -spaces; and to identify 
VSAM, DOS, or CMS files used for VSAM program input/output and access 
method services functions. 

• In CMS, to define and identify VSAM catalogs, clusters, and data 
spaces; to identify VSAM files used for program input/output; and to 
identify input/output files for AMSERV. 

The format of the DLBL command is: 

DLBL 
r r, , 
I ddnalle {mOde } I CMS fn ft I [ (optionA optionB [) ]] 
I DUMMY I~~~ lI1~ gg~~m~ I 
I L .J 

I 
I r , 
I ddname {mOde }IDSN qual1 [quaI2 ••• qualn] I 
I DUMMY IDSN ? I 
I L .J 

I [(optionA optionB optionC [)]] 
I 
Iddname CLEAR 
I * 
L 

.QJ2!.!.Q1!!: 
[SYSxxx] 

.Q.E!.!.Q1!!!: 
[PERM] 
r , 
I~!i!!§~ I 
I NOCHANGE I 
L .J 

r , 
IEXTENTI 
IMULT I 
L .J 

[CAT catdd] 
[BUFSP nnnnnn] 

!.Qte: The operands and options of the DLBL command are described below. 
Usage notes are provided for general usage, followed by additional notes 
for CMS/DOS users, and then additional notes for OS VSAM users. 

ddnalle 

mode 

pUMMY 

specifies a one- to seven-character program ddname (OS) or 
filename (DOS), or dname (as specified in the ¥ILE parameter 
of an access method services control statement). An asterisk 
(*) entered with the CLEAR operand indicates that all DLEL 
definitions, except those that are entered with the PEBM 
option, are to be cleared. 

specifies a valid CMS disk mode letter and 
file mode number. A letter must be specified; if 
not specified, it defaults to 1. The disk must 
when the DLBL command is- issued. 

optionally, 
a number is 
be accessed 

specifies that no real I/O is to be performed. A read 
operation results in an end-of-fi~e condition and a write 
operation results in a su~cessful return code. DUMMY shotild 
not be used for OS VSAM data sets (see Usage Note 3). 

60 IBM VM/370 CMS Command and Macro Reference 



CLEAR 

DLEL 

removes any eXisting definitions for the specified ddname. 
Clearing a ddname before defining it ensures that a file 
definition does not exist and that any options previously 
defined with that ddname no longer have any effect. 

CMS fn ft indicates that this is a CMS file, and the file identifier (fn 
ft) that follows is a CMS filename and filetype. 

FILE ddname is the default CMS file identifier associated with 
all non-CMS data sets. (See Usage Note 3 for CMS/DOS users.) 

DSN indicates that this is a non-eMS file. 

? indicates that you are going to enter the data set name 
interactively. When prompted, you enter the data set name or 
fi1eid in its exact form, including embedded blanks, hyphens, 
or periods. 

qua11 [qua12 ••• qualn] 

SYSxxx 

PERM 

is an OS data set name or DOS fi1e-id. Only data sets named 
according to standard OS conventions may be entered this way; 
you must omit the periods between qualifiers. (See Usage Note 
2. ) 

(CMS/DOS only.) indicates the system or programmer logical 
unit that is associated with the disk on which the disk 
file resides. The logical unit must have been previously 
assigned with the ASSGN command. If a DLBL definition is 
already in effect for the specified ddname, SYSxxx may be 
omitted; otherwise, it is required. 

indicates that this DLBL definition can be cleared only 
with an explicit CLEAR request. It will not be cleared 
when the DLBL * CLEAR command line is entered. 

All DLBL definitions, including those entered with the PERM 
option, are cleared as a result of a program abend or HX 
(halt execution) Immediate command. 

£B!!Q~ indicates that any existing DLBL for this ddname is not to 
be canceled, but that conflicting options are to be 
overridden and new options mer~ed into the old definition. 
Both the ddname and the file identifier must be the same in 
order for the definitions to be merged. 

NOCHANGE does not alter any exist~ng DLEL definition for the 
specified ddname, but creates a definition if none existed. 

VSAM indicates that the file is a VSAM data set. This option 
must be specified for VSAM functions unless the EXTENT, 
MULT, CAT, or BUFSP options _ are entered or the ddnames 
IJSYSCT or IJSYSUC are used. 

EXTENT indicates that you are going to use access- method services 
to ~efine a VSAM catalog, data space, or unique cluster and 
you ~ant to enter extent information~ 

MULT indicates that you are going to reference an existing 
multivolu-me data set and you want to e-nter t-h-e- volume 
specifications. 

Section 2. CMS Commands 61 



DLBL 

CAT catdd identifies the VSAM catalog (defined by a previous DLEL 
definition) which contains the entry for this data set. Yeu 
must use the CAT option when the VSAM data set you are 
creating or identifying is not cataloged in the current jeb 
catalog. catdd is the ddname in the DLBL definition fer 
the catalog. 

BUFSP nnnnnn 
specifies the number of bytes (in decimal) to be used fer 
I/O buffers by VSAM data management during program 
execution, overriding the BUFSP value in the ACB for the 
file. The maximum value for nnnnnn is 999999; embedded 
commas are not permitted. 

1. To display all of the disk file definitions in effect, enter: 

dlbl 

The response will be: 

ddname DISK fn ft 

If no DLBL definitions are in effect, the following message is 
displayed: 

DMSDLB3241 NO USER DEFINED DLBL'S IN EFFECT 

2. To enter an OS or DOS file identification on the DLBL command line, 
it must consist of 1- to a-character qualifiers separated by 
periods, with a maximum length of 44 characters, including periods. 
For example, the file TEST.INPUT.SOURCE.D could be identified as 
follows: 

dlbl dd1 c dsn test input source d (options ••• 

Or, it may be entered interactively, as follows: 

dlbl dd1 c dsn ? (options 
DMSDLB220R ENTER DATA SET NAME: 
test.input.source.d 

Note that when the data set name is entered interactively, the data 
set name must be entered in its exact form;-when entered on the 
DLBL command 'line, the periods must be omitted. -

You must use the interactive form to enter a DOS file-id that 
contains embedded blanks or hyphens. 

3. In DOS/VS, a VSAM data set that has been defined as DUMMY is opened 
with an error code of X'11'. CMS supports the DUMMY operand of the 
DLBL command in the same manner. OS users should not. rise the DUMMY 
operand in CMS, since a dummy data set does not return, on open, an 
end-of-file indication. 

62 IBM VM/370 CMS Command and Macro Reference 



!!arch 30, 1919 

DLBL 

!.4di!i2!lal !!2!!!2 fa!: £11~~ US!!!:2 

1. Each DLBL definition must be associated with a system or program.er 
logical unit assign.ent, previously made with an ISSGB command. 
Specify the SYSxxx option on the first, or only, DLBt definition 
for a particular ddname. !!any DLBL definitions may be associated 
with the same logical unit. For exa.ple: 

assgn sys100 b 
dlbl dd1 b cms test file1 (sys100 
dlbl dd2 b cms test file2 (sys100 
dlbl dd1 cms test file3 

is a valid command sequence. 

2. The following special ddna.es must be used to define DOS private 
libraries, and must be associated with the indicated logical units: 

gg!l!!.!~ 
IJSYSSL 
IJSYSRL 
IJSYSCL 

Logical 
Q.ni! __ 
SYSSLB 
SYSRLB 
SYSCLB 

J:ibr!!E.I 
Source statement 
Relocatable 
Core image 

These libraries must be identified in order to perform librarian 
functions (with the SSERV, ESERV, DSERV, or RSERV commands) for 
private libraries; or to link-edit or fetch modules or phases from 
private relocatable or core image libraries (with the DOSLKED and 
FETCH commands). 

3. Each DOS file has a CMS file identifier associated with it by 
default; the filename is always FILE and the filetype is always the 
same as the ddname. For example, if you enter a DLBL command for a 
DOS file KOD.TEST.STREIM as follows: 

dlbl test c dsn mod test stream 

then you can refer to this as data set as FILE TEST when you use 
the STITE com.and: 

state file test 

When you enter a DLBL command specifying only a ddnaae and Bode, as 
follows: 

dlbl junk a 

CMS assigns a file i1entifier of FILE JUNK 11 to the ddname JUNK. 

4. The FILEDEF command performs a function similar to that of the DLBL 
command; you need to use the FILEDEF command in C!!S/DOS only: 

• When you want to override a default ddname for an assembler 
input or output file. 

• When you want to use the MOVEFILE- cOllmand to process -a ~ile. 

5. If you use the DU!!!!Y operand,-you must have issued an ISSGB ~o.mand 
specifying a device type of 1GB, or ignore, for the SYSxxx unit 
specified in the DLBL command,-for exaaple, 

Section 2~ CftS Commands 63 



DLBL 

assgn sys003 ign 
dlbl test dummy (sys003 

2fECll!lNG !2!~ !XT~!! l!FOR~A!IQH: You must specify extent information 
when you use the access method services control statements DEFINE SPICE, 
DEFINE MASTERCATALOG, DEFINE USERCATALOG, DEFINE CLUSTER (UNIQUE); or 
when you use the IMPORT or IMPORTRA functions for a unique file. 

When you enter the EXTENT option of the DLBL command, you are 
prompted to enter the disk extents for the specified file. You must 
enter extent information in accordance with the following rules: 

I. For count-key-data devices, you must specify the starting track 
number and number of tracks for each extent, as follows: 

19 38 

This extent allocates 38 tracks, beginning with the 19th track, on a 
3330 device. 

I. For fixed-block devices, you must specify the starting block number 
I and the number of blocks for each extent. The following example 
I allocates 200 blocks, starting at block number 352, on a fixed-block 
I device. 

352 200 

Because VSAM rounds the starting block to the next highest cy~inder 
boundary, it is advisable to specify the starting block on a cylinder 
boundary. 

I • All count-key-data extents must begin and end on cylinder boundaries, 
regardless of whether the AMSERV file contains extent information in 
terms of cylinders, tracks, or records. 

• Multiple extent entries may be entered 
commas or on different lines. Commas 
ignored. 

on a single line separated by 
at the end of a line are 

• ~ultiple extents for the same volume must be entered in numerically 
ascending order; for example: 

20 400, 600 80 

These extents are valid for a 2314 device. 

• When you enter multivolume extents, you must specifi th~ mode letter 
and logical unit associated with each disk that contains extents; 
extents for each disk must be entered consecutively. For example: 

assgn sys001 b 
assgn sys002 c 
assgn sys003 d 
dlbl file1 b (extent sys001 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
100 60, 400 80, 60 40 d sys003 
200 100 c sys002 
400 100 c sys002 

(null line) 

specifies extents on disks accessed at modes B. C, and D. These 
disks are assigned to the logical un~ts SYS001,- SYS002, and SYS003. 
Since B is the mode specified on the DLBL command line, it does not 
need to be respecified along with the extent information. 

64 IBM VM/370 CMS Command and Macro Reference 



~9. OJ: b~.IW-HjHS-:l Rev March 30, 1919 by Supp. SD23-9023-1 for 5148-XX8 

DLBL 

• A DASD volume must be mounted, accessed, and assigned for each disk 
.ode referenced in an extent. 

When you are finished entering extent information, you must enter a 
null line to terainate the DLBL command sequence. If you do not, an 
error may result and you will have to reenter the DLBL command. If you 
make any error entering the extents, you must reenter all the extent 
information. 

Section 2. CMS Commands 64.1 



I'larcn .lV, 1":11":1 

64.2 lBB VB/310 CBS Co.mand and !aero Reference 



DLBL 

The DLBL command does not check the extents to see whether they are 
on cylinder boundaries or whether they are entered in the proper 
sequence. If you do not enter them correctly, the access method services 
DEFINE functien will terminate with an error. 

CMS assigns sequence numbers to the extents according to the order in 
which they were entered. These sequence numbers are listed when you use 
the LISTDS command with the EXTENT option. 

In order to display the actual extents that were entered for a VSAM 
data set at DLBL definition time, the following commands may be entered: 

DLBL (EXTENT) or QUERY DLBL EXTENT 

Either of these commands will provide the following information to 
the user: 

DDNAME The DOS filename or OS ddname. 

MODE The CMS disk mode identifying the disk on which the extent 
resides. 

LOGUNIT The DOS logical unit specification (SYSxxx). This operand 
will be blank for a data set defined while in CMS/CS 
environment; that is, the SET DOS ON command had not been 
issued at DLBL definition time. 

EXTENT Specifies the relative starting track number and number of 
tracks for each extent entered for the given dataset ddname. 

If no DLBL definitions with extent information are active, the, 
following message is issued: 

DMSDLB324I NO USER DEFINED EXTENTS IN EFFECT 

l~ENll!!J!§ ~~1I!!Q1~~~ !~!~ ~!I~!I~: When you want to execute a program 
or use access method services to reference an existing multivolume VSAM 
data set, you must use the MULT option on the DLBL command that 
identifies the file. 

When you use the MULT option, you are prompted to enter additional 
disk mode letters, as follows: 

assgn sys001 c 
assgn sys002 d 
assgn sys003 e 
assgn sys004 f 
assgn sys005 g 
dlbl infile c (mult sys001 
DMSDLB330R ENTER VOLUME SPECIFICATIONS: 
d sys002, e sys003 , f sys004 
g sys005 

(null line) 

The above identifies a file that has extents on disks accessed at modes 
C, D, E, F, and G. These disks have been assigned to the logical units 
SYS001~ SYS002, SYS003, SYS004, and SYS005. The rules for entering 
multiple extents ar~: 

• All disks must be m9unted, accessed, and assigned w~en you_ issue the 
DLBL command. 

• You must net repeat the mode letter and logical unit of the disk that 
is entered on the DLBL ~ommand line (C in the-abo~e exa~ple). 

Section 2. CMS Commands 65 



DLBL 

• If you enter 
they must be 
ignored. 

more ,than one mode letter and logical unit 
separated by commas; trailing commas on 

on a line, 
a line are 

• A maximum of nine disks may be specified; you do not need to specify 
them in alphabetical order. 

You must enter a null line to terminate the 
finished entering extents; if not, an error may 
reenter the entire command sequence. 

command when you are 
result and you must 

In order to display the volumes on which all multivolume data sets 
reside, the following commands are issued: 

DLBL (MULT) or QUERY DLBL MULT 

The following information concerning multiple volume datasets is 
provided: 

DDNAME 

MODE 

LOGUNIT 

The VOS filename or OS ddname. 

The CMS disk mode identifying one of the disks on which the 
dataset resides. 

The DOS logical unit specification (SYSxxx). This operand 
will be blank for a data set defined while in CMS/OS 
environment; that is, the SET DOS ON command had not been 
issued at DLBL definition time. 

If no DLBL definitions with multiple volume specifications are 
active, the following message is issued: 

DMSDLB3241 NO USER DEFINED MULTS IN EFFECT 

USING VSAM CATALOGS: There are two special ddnames you must use to 
Identify-i-vsii-iaster catalog and job catalog: 

IJSYSCT 

IJSYSUC 

identifies the master catalog when you initially define it 
(using AMSERV), and when you begin a terminal session. Yeu 
should use the PERM option when you define it. 

You must assign the logical unit SYSCAT to the disk on which 
the master catalog resides. If you are redefining a .aster 
catalog that has already been identified, you may omit the 
SYSCAT option on the DLBL command line. 

identifies a job catalog to be used for subsequent AftSERV jobs 
or VSAM programs. 

Any programmer logical unit may be used_ to assign a jo~ 
catalog. 

Only one VSAM catalog i$ ever searched when a VSAft function is 
performed. If a job catalog is defined, you may override it by using 
the CAT option on the DLBL command for a data set. The follo~ing DLEL 
command sequence illustrates the use of catalogs: 

assgn syscat c 
dlbl ijsysct c dsn mastcat (perm syscat 

identifies the master catalog, MASTCAT, for the terminal session. 

66 IBM VM/370 CMS Command and Macro Reference 



March 30. 1979 

DLBL 

assgn sys010 d 
dlbl ijsysuc d dsn .ycat (perm sys010 

identifies the job (user) catalog. MYCAT, for the terminal session. 

assgn sys100 e 
dlbl intest1 e dsn test case (vsaa sys100 

identifies a VSAM file to be used in a program. It is cataloged in the 
job catalog, MYCAT. 

assgn sys101 f 
dlbl cat3 f dsn testcat (cat ijsysct sys101 

identifies an additional user catalog. which has an entry in the master 
catalog. Since a job catalog is in use. you must use the CAT option to 
indicate that another catalog, in this case the master catalog. should 
be used. 

dlbl infile f dsn test input (cat cat3 5ys101 

identifies an input file cataloged in the user catalog TESTCAT, which 
was identified with a ddname of CAT3 on the DLBL command. 

The selection of a VSAM catalog for AMSERV jobs and VSAft programs 
running in CMS is summarized in Figure 7. 

IS THE 
CAT OPTION 

SPECIFIED ON THE 
DLBL 

COMMAND 
? 

NO 

NO 

USE THE 
MASTER 

CATALOG 

YES 

YES 

USE THE 
CATALOG 

DEFINED BY 
THAT DDNAME 

USE THE 
JOB CATALOG 

Figure 7. Determining Which VSAK Catalog to Use 

Section 2. CMS Commands 67 



DLBL 

~2~~ Notes IQ~ Q~ !~!~ Q~£2 

1. You must use the DLBL command to identify all access method 
services input and output files, and to identify all VSlft input and 
output files referenced in programs. 

For all other file definitions, including as or CftS disk files 
referenced in programs that use VSlft data management, you must use 
the FILEDEF command. 

2. A DLBL ddname may have a maximum of seven characters. If you have 
ddnames in your programs that are eight characters long, only the 
first seven characters are processed when the programs are executed 
in CMS. If you have two ddnames with the same first seven 
characters and you attempt to execute this program in CMS, you will 
receive an open error when the second file is opened. You should 
recompile these programs providing unique seven-character ddnames. 

3. If you release a disk for which you have a DLBL definition in 
effect, you should clear the DLBL definition before you execute a 
VSAM program or an AMSERV command. CMS checks that all disks for 
which there are DLBL definitions are accessed, and issues error 
message DMSSTT069E if any are not. 

~~EC1!I!NG !~!~ ~XT~!! IHlQR~!!IQ!: You must specify extent information 
when you use the access method services control statements DEFINE SPACE, 
DEFINE MASTERCATALOG, DEFINE USERCATALOG, DEFINE CLUSTER (UNIQUE); or 
when you use the IMPORT or IMPORTRA functions fer a unique file. Space 
allocation is made only for primary allocation amounts. 

When you enter the EXTENT option of the DLBL command, you are 
prompted to enter the disk extents for the specified file. You must 
enter extent information in accordance with the following rules: 

I. For count-key-data devices, you must specify the starting track 
number and number of tracks for each extent, as follows: 

19 38 

This extent allocates 38 tracks, beginning with the 19th track, on a 
3330 device. 

I. For fixed-block devices, you must specify the starting block number 
I and the number of blocks for each extent. The following example 
I allocates 200 blocks, starting at block number 352, on a fixed-block 
I device. 

352 200 

I Because VSAM rounds the starting block to the next highest cylinder 
I boundary, it is advisable to specify the sta~ting block on a cylinder 
I boundary. 
I. All count-key-data extents must begin and end on cylinder boundaries, 

regardless of whether the AMSERV file contains extent information in 
terms of cylinders, tracks, or records. 

• Multiple extent entries may be entered 
commas or on different lines. Commas 
ignored. 

on a single line separated by 
at the end of a line are 

68 IBM VM/370 CKS Command and ~acro Reference 



Pg. of GC20-1818-2 Rev Karch 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

DLBL 

• Multiple extents for the same volume must be entered in numerically 
ascending order; for example: 

20 400, 600 80 

These extents are valid for a 2314 device. 

• When you enter multivolume extents, you must specify the mode letter 
for extents on additional disks; extents for each disk must be 
entered consecutively. For example: 

Section 2. ces Commands 68.1 



March 30, 1979 

68.2 IBM VM/370 eMS Co.~and and _Macro Reference 



dlbl file1 b (extent 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
100 60, 400 80, 60 40 d 
200 100 c 
400 100 c 

(null line) 

DLEL 

specifies extents on disks accessed at modes E, C, and D. Since B is 
the mode specified on the DLBL command line, it does not need to be 
respecified along with the extent information. 

• A DASD volume must be mounted and accessed for each mode referenced 
in an extent. 

When you are finished entering extent information, you must enter a 
null line to terminate the DLBL command sequence. If you do not, an 
error may result and you will have to reenter the entire DLBL command. 
If you make any error entering the extents, you must reenter all the 
extent information. 

The DLBL command does not check the extents to see if they are cn 
cylinder boundaries or that they are entered in the proper sequence. If 
you do not enter them correctly, the access method services DEFINE 
function terminates with an error. 

CMS assigns sequence numbers to the extents according to the order in 
which they were entered. These sequence numbers are listed when you use 
the LISTDS command with the EXTENT option. 

1]EN11I!lHQ ~~11I!Q1Y~~ y~!~ ~!!~HI~: When you want to execute a program 
or use access method services to reference an existing multivolume VSAM 
data set, you must use the MULT option on the DLBL command that 
identifies the file. 

When you use the MULT option, you are prompted to enter additional 
disk mode letters, as follows: 

dlbl infile c (mult 
DMSDLB330R ENTER VOLUME SPECIFICATIONS: 
d, e, f 
g 

(null line) 

The above example identifies a file that has extents on disks accessed 
at modes C, D, E, F, and G. The rules for entering multiple extents are: 

• All disks must be mounted and accessed when you issue the DLEL 
command. 

• You must not repeat the mode letter of the ~isk that is entered on 
the DLBL command line (C in the above example) • 

• If you enter more than one mode letter on a line, they must be 
separated by commas; trailing commas on a ~ine are ignored. 

• A maximum of nine disks may be specified; you do not need to specify 
them in alphabetical order. 

You must enter a null line to. terminate the 
finished entering extents; if not, an error may 
re-enter the entire command sequence. 

command when 
result and 

you are 
you must. 

Section 2. CMS Commands 69 



DLBL 

USING VSAM CATALOGS: There are two special ddnames you must use to 
Identify-i-vsiM-iaster catalog and job catalog: 

IJSYSCT 

IJSYSUC 

identifies the master catalog, both when you initially define 
it (using AMSERV) and when you begin a terminal session. You 
should use the PERM option when you define it. 

identifies a job catalog to be used for subsequent AMSERV jobs 
or VSAM programs. 

Only one VSAM catalog is ever searched when a VSAM function is 
performed. If a job catalog is defined, you may override it by using 
the CAT option on the DLBL command for a data set. The following DLEL 
command sequence illustrates the use of catalogs: 

dlbl ijsysct c dsn mastcat (perm 

identifies the master catalog, MASTCAT, for the terminal session. 

dlbl ijsysuc d dsn mycat (perm 

identifies the job (user) catalog, MYCAT, for the terminal session. 

dlbl intest1 e dsn test case (vsam 

identifies a VSAM file to be used in a program. It is cataloged in the 
job catalog, MYCAT. 

dlbl cat3 dsn testcat (cat ijsysct 

identifies an additional user catalog, which has an entry in the master 
catalog. Since a job catalog is in use, you must use the CAT option to 
indicate that another catalog, in this case the master catalog, should 
be used. 

dlbl infile e dsn test input (cat cat3 

identifies an input file cataloged in the user catalog TESTCAT, which 
was identified with a ddname of CAT3 on the DLBL command. 

The selection of a VSAM catalog for AMSERV jobs and VSAM programs 
running in CMS is summarized in Figure 7. 

If the DLBL command is issued with no operands, the current DLEL 
definitions are displayed at your terminal: 

ddname1 device1 (fn1 ft1 fm1 (datasetname1]] 

ddnamen devicen (fnn ftn fmn (datasetnamen]] 

DMSDLB220R ENTER DATA SET NAME: 

This message is displayed when you use the DSN? form of the DLEL 
command. Enter the exa~tDOS or OS data set name. 

DMSDLB320I MAXIMUM NUMBER OF DISK ENTRIES RECORDED 

This message indicates that nine votumes have been specified for a 
VSAM data set, which is the maximum allowed under CMS. 

70 IBM VM/370 CMS Command and Macro Reference 



DLBL 

DMSDLB321I MAXIMUM NUMBER OF EXTENTS RECORDED 

This message indicates that 16 extents on a single disk or minidisk 
have been specified for a VSAM data space, catalog, or unique data 
set. This is the maximum number of extents allowed on a minidisk 
or disk. 

DMSDLB3221 DDNAME 'ddname' NOT FOUND; NO CLEAR EXECUTED 

This message indicates that the clear function was not performed 
because no DLBL definition is in effect for the ddname. 

DMSDLB323I {MASTERIJOB} CATALOG DLBL CLEARED 

This message indicates that either the master catalog or job 
catalog has been cleared as a result of a clear request. 

You also receive this message if you issue a DLBL * CLEAR command, 
and any DLBL definition is in effect for IJSYSCT or IJSYSUC that 
was not entered with the PERM option. 

DMSDLB330R ENTER VOLUME SPECIFICATIONS: 

This message prompts you to enter volume specifications for 
existing multivolume VSAM files. (See "Identifying Multivolume VSAM 
Extents" in the appropriate usage section.) 

DMSDLB331R ENTER EXTENT SPECIFICATIONS: 

This message prompts you to enter the data set extent or extents of 
a new VSAM data space, catalog or unique data set. (See 
"Specifying VSAM Extent Information" in the appropriate usage 
section.) 

DMSDLB001E NO FILENAME SPECIFIED RC=24 
DMSDLB003E INVALID OPTION 'option' RC=24 
DMSDLB005E NO '{CATIBUFSP}' SPECIFIED RC=24 
DMSDLB023E NO FILETYPE SPECIFIED RC=24 
DMSDLB048E INVALID MODE 'mode' RC=24 
DMSDLB050E PARAMETER MISSING AFTER DDNAME RC=24 
DMSDLB065E 'option' OPTION SPECIFIED TWICE RC=24 
DMSDLB066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24 
DMSDLB070E INVALID PARAMETER 'parameter' RC=24 
DMSDLB086E INVALID DDNAME 'ddname' RC=24 _ 
DMSDLB109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104-
DMSDLB221E INVALID DATA SET NAME RC=24 
DMSDLB301E 'SYSxxx' NOT ASSIGNED FOR DISK 'fm' RC=36 
DMSDLB302E NO SYSXXX OPERAND ENTERED RC=24 
DMSDLB304E INVALID OPERAND VALUE 'value' RC=24 
DMSDLB30SE INCOMPLETE EXTENT RANGE RC=24 
DMSDLB306E SYSXXX NOT ASSIGNED FOR 'IGNORE' RC=36 
DMSDLB307E CATALOG DDNAME 'ddname' NOT FOUND RC=24 
DMSDLB308E 'mode' DISK IN {CMSINON-CMSr FORM~T; INVALID FeR 

{NON-CMSICMS} DATASET RC=24 

Section 2. CMS Commands 71 



DOSLIB 

DOSLIB 

Use the DOSLIB command to delete, compact, or list information about tbe 
executable phases in a eMS/DOS phase library. The format 9f the DOStIB 
command is: 

DOSLIB 

l 
DEL libname phasename1 [ ••• phasenamen] 

COMP libname 

MAP libname [(options ••• [) ]] 

QE!!Q!!§: 
r , 
ITERM I 
IQ!~!S. I 
IPRINT I 
L .J 

DEL deletes phases from a eMS/DOS phase library. Tbe library is 
not erased when the last phase is deleted from the library. 

COMP compacts a CMS/DOS phase library. 

MAP lists certain information about the phases of 
Available information provided is phase name, 
relative location in the library. 

a DOStIE. 
size, and 

libname is the filename of a CMS/DOS phase library. The filetype must 
be DOSLIB. 

pbasenamel ••• phasenamen 
is the name of one or more phases that exist in the eMS/DeS 
phase library. 

~!R QE!i£D§: The following options specify the output device for the 
MAP function. If more than one option is specified, only the first 
option is used. 

TERM displays the MAP output at the terminal. 

writes the MAP output to a eMS disk file 
identifier of 'libname MAP AS'. If a file 
already exists, the old file is erased. 

PRINT spools the MAP outP~t to the virtual printer. 

Q§~.9'§ HQi.§§ 

with the 
with that 

file 
name 

1. The CMS/DOS environment does not have to be active when you issue 
the DOSLIB command. 

-
2. Phases may only be added to a DOSLIB by the CMS/DOS linkage editor 

as a result of the DOSLKED command. 

72 IBM VM/370 eMS Command and Macro Reference 



March 30, 1979 

DOSLIB 

3. In order to fetch a program phase from a DOSLIB for execution, you 
must issue the GLOBAL command to identify the DOSLIB. When a PZTCH 
command or dynamic fetch from a program 1S issued, all current 
DOSLIBs are searched for the specified phases. 

4. If DOSLIBs are very large, or there are many of them to search, 
program execution is slowed down accordingly. To avoid excessive 
execution time, you should keep your DOSLIBs small and issue a 
GLOBAL command specifying only those libraries that you need. 

When you use the TERM option on the DOSLIB MAP command line, the 
following is displayed: 

PHASE 
name1 

INDEX BLOCKS 
loc size 

DMSDSL002E PILE 'fn DOSLIB' NOT FOUND RC=28 
DMSDSL003E INVALID OPTION 'option' RC=24 
DMSDSL013W PHASE 'phase' NOT FOUND IN LIBRARY 'fn DOSLIB fm' RC=4 
DMSDSL014E INVALID FUNCTION 'function' RC=24 
DMSDSL037E DISK 'mode' IS READ/ONLY RC=36 
DMSDSL046E NO LIBRARY NAME SPECIFIED RC=24 
DMSDSL047E NO FUNCTION SPECIFIED RC=24 
DMSDSL069E DISK 'mode' NOT ACCESSED RC=36 
DMSDSL070E INVALID PARAMETER 'parameter' RC=24 
DMSDSL098E NO PHASE NAME SPECIFIED RC=24 
DMSDSL104S ERROR Inn' READING FILE 'fn DOSLIB fa' FROM DISK RC=100 
DMSDSL105S ERROR Inn' WRITING PILE 'fn DOSLIB f.' ON DISK RC=100 
DMSDSL213W LIBRARY 'fn DOSLIB fm' NOT CREATED RC=4 

Section 2. CMS Com.ands 73 



Pg. of GC20-1818-2 Rev l1arch3U, lY/Y by supp. SD~3-YU~j-l Lor S-"Hj-XXH 

DOSLKED 

DOSLKED 

Use the DOSLKED command in CMSjDOS to link-edit TEXT files from CMS 
disks or object modules from DOS/VSE private or system relocatable 
libraries and place them in executable form in a CMS phase library 
(DOSLIB). The format of the DOSLKED command is: 

DOSLKED 

fn 

r , 
fn I lib name I [(options ••• [) ]] 

Ifll I 
L ~ 

r , 
I!!I~K I 
IPRINTI 
ITERM I 
L .J 

specifies the name of the source 
link-edited. CMS searches for: 

file 

1. A CMS file with a filetype of DOStNK 

or module to be 

2. A module in a private relocatable library (if IJSYSRL has 
been def ined) 

3. A CMS file with a filetype of TEXT 

4. A module in the system relocatable library (if a mode was 
specified on the SET DOS ON command line) 

libname designates the name of the DOSLIB where the link-edited phase 
is to be written. The filetype is DOStIB. If libname is not 
specified, the default is fn. The output filemode of the 
DOSLIB is determined as follows: 

• If libname DOStIB exists on a read/write disk, that 
filemode is used and the output is appended to it. 

• If fn DOSLNK exists on a read/write disk, libname DOSLIB is 
written to that disk. 

• If fn DOSLNK exists on a read-only_ extension of a 
read/write disk, libname DOSLIB is written to the parent 
disk. 

• If none of the above apply, libname DOSLIB is written to 
your A-disk. 

QEtiQns: Only one of the following options should be specified. If 
more than one is specified, only the first -entry is used. 

!!!~K writes the DOS/VSE linkage editor map produced by the DOSLKED 
command on your A-disk into a file with the filename of fn and 
a filetype of MAP. This is the_default option. 

PRINT spools the linkage editor map to the virtual printer. 

14 IBM YM/310 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

DOSLKED 

TERM displays the linkage editor map at your terminal. 

Note: All error messages are sent to the terminal as well as to the 
specified device. 

1. You can \create a CMS file with a filetype of DOSLNK to contain 
DOS/VSBlinkage editor control statements and, optionally, CMS text 
files. 

2. If you want to link-edit a module from a private relocatable 
library, you must issue an ASSGN command for the loqical unit 
SYSRLB and enter a DLBL command using a ddname of IJSYSRL to 
identify the library: 

assqn sysrlb c 
dlbl ijsysrl c dsn reloc lib (sysrlb 

If you have defined a private relocatable library but do not want 
it to be searched, enter: 

assgn sysrlb ign 

to temporarily bypass it. 

3. CMS TEXT files may also contain linkage editor control statements 
INCLUDE, PHASE, and ENTRY~ The ACTION statement is ignored when a 
TEXT file is link-edited. 

4. To access modules on the DOS/VS system residence volume, you must 
have specified the mode letter of the system residence on the SET 
DOS ON command line: 

set dos on z 

5. The search order that eMS uses to locate object modules to be 
link-edited is: 

a. The specified object module on the DOS/VSE private relocatable 
library, if one is available 

b. CMS disks for a file with the specified filename and with a 
filetype of TEXT 

c. The specified object module on the DOS/VSE system relocatable 
library, if it is available 

6. When a phase is added to an existing DOSLIB, it is always written 
at the end of the library. If a phase that is being added has the 
same name as an existing phase, the DOSLIB- directory is updated to 
point to the new phase. The old phase is not deleted, however; you 
should issue the DOSLIB command with the COMP option to compress 
the space. 

If you run out 0(- space in a DOSLIB while you-are executing the 
DOSLKED com.and, you should reissue the DOSLKED command specifying 
a different DOSLIB, or compress the DOSLIB before a-t:tempti_ng_-to 
reissue the DOSLKED command. 

11NK!Q~ EDI!QB £QNTRQ~ ST!I~~ENI~: The CMS/DOS linkage editor recognizes 
and supports the DOS/VSE -lin~age editor control statements_ ACTION,­
PHASE, ENTRY, and INCLUDE. These control statements are described in 
~Q~!~! ~§!~~ £~nt~~1 Stg!~~~~!§. The CMS/DOS linkage -editor ignores: 

Section 2. CMS Commands 75 



Pg. of GC20-1S1S-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XXS 

DOSLKED 

• The SVI operand of the PHASE statement 
• The F+address form for specifying origin on the PHASE statement 
• The BG and Fn operands of the ACTION statement 

The S-form of specifying the origin on the PHASE statement corresponds 
tothe CMS user area under CMSjDOS. If a default PHASE statement is 
required, the origin is assumed to be S. The PBDY operand of the PHISE 
statement indicates that the phase is link-edited on a 4K page boundary 
under CMS/DOS as opposed to a 2K page boundary for DOS/VSE. 

In DOS/VSE, an ACTION CLEAR control statement clears the unused 
portion of the core image library to binary zeros. In DOS/VSE the core 
image library has a defined size, while in CMS/DOS the CMS phase library 
varies in size, depending on the number of phases cataloged. Therefore, 
in CMS/DOS an ACTION CLEAR control statement clears the current buffers 
to binary zeros before loading thea; CMSjDOS cannot clear the entire 
unused portion of the CMS phase library because that portion varies as 
phases are added to and deleted from the CftS phase library. In CftS/DOS 
if you want your phases cleared you must issue an ACTION CLEAR control 
statement each time you add a phase to the CMS phase library. 

LINKAGE EDITOR ~ARD ~If~~: The input to the linkage editor can consist 
of sii- card-types, produced by a language translator or a programaer. 
These cards appear in the following order: . 

~5!:g !IE~ 
ESD 
SYM 
TXT 
RLD 
REP 
END 

Definition 
ixternal-symbol dictionary 
Ignored by linkage editor 
Text 
Relocation list dictionary 
Replacement of text made by the programmer 
End of lIodule 

CMS/DOS supports these six card types in the same manner that DOS/VSE 
does. These card types are described in the ~OSL~~ ~§!~~ QQnt£Q! 
~iatg~!!!§.. 

When you use the TERM option of the DOSLKED command, the linkage editor 
map is displayed at the terminal. 

21011 INVALID OPERATION IN CONTROL STATEMENT 

This message indicates that a blank card was-enco~ntered in the 
process of link-editing a relocatable module~ This message also 
appears in the MAP file. The invalid card is ignored - and 
processing continues. 

DMSDLK001E NO FILENAME SPECIFIED RC=24 
DMSDLK003E INVALID OPTION 'option' RC=24 
DMSDLK006E NO READjiRITE DISK ACCESSED RC=36 
DMSDLK007E FILE 'fn ft fll' IS NOT FIlED, SO-CHAR. RECORDS RC=32 
DMSDLK070E INVALID PARAMETER 'parameter' RC=2-4 
DMSDLK099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40 
DMSDLK104S ERROR Inn' READING'FILE 'fn ft fm' FROM DISK RC=100 
DMSDLK105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100 
DMSDLK210E LIBRARY 'library' IS O~ READ-ONLY DISK RC=36 
DMSDLK245S ERROR 'nnn' ON PRINTER RC=100 

76 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118 

DSERV 

DSERV 

Use the DSERV command in CMS/DOS to obtain information that is contained 
in DOS/VSE private or system libraries~ The format of the DSERV command 
is: 

r 
I 

DSERV CD IPHASE {name 

r ., , 
Innl I 
11£1} I [d2 ••• dn] [(options ••• ()]] 

CD 
RD 
SD 
PD 
TD 
ALL 

RD 
SD 
PD 
TD 
ALL 

L L .J .J 

2:2!!2!!§: 
r , 
1!u~K I 
ITERl! I 
IPRINTI 
L .J 

[SORT] 

specifies that information concerning one or more types of 
directories is to be displayed or printed. The directory 
types that can be specified are: CD (core image library), 
RD (relocatable library), SD (source statement library), 
PD (procedure library), TD (transient directory), and 
ALL (all directories). 

There is no default value. The private libraries take 
precedence over system libraries. 

PHASE nalle 

nn 

specifies the name of the phase to be listed. If the 
phasename ends with an asterisk, all phases that start with 
the letters preceding the asterisk are listed. This operand 
is valid only for CD. 

is the displacement within the phase where the version and 
level are to be found (the default is 12). 

[ d2 ••• dn] indicates additional libraries whos~ directories are to be 
listed. (See Usage Note 1.) 

Q.21!2~: 

!u~K writes the output on your CKS A-disk to a file named DSERV KIP 
AS. This is the default value if TERM or PRINT is not 
specified. 

TERK displays the output at your terminal. 

PRINT spools the output to the system printer. 

SORT sorts the entries for each library alphamerically; otherwise, 
the order is· the order in which the entries were cataloged. 

Section 2. CftS Commands 11 



rye VI: \:I\...GU-Itl Itl-.:! HeV l1arCh 30, lY79 by Supp. SD23-9023-1 for 5748-XX8 

DSERV 

1. You may specify more than one directory on DSERV command line; for 
example: 

dserv rd sd cd phase $$bopen (term 

displays the directories of the relocatable and source statement 
libraries, as well as the entry for the phase $$BOPEN from the core 
image directory. 

You can specify only one phasename or phasename* at a time, 
however. If you specify more than one PHASE operand, only the last 
one entered is listed. For example, if you enter: 

dserv cd phase cor* phase idc* 

the file DSERV MAP contains a list of all phases that begin with 
the characters IDC. The first phasename specification is ignored. 

2. If you want to obtain information from the directories of private 
source statement library directories, relocatable library 
directories, or core image library directories, the libraries must 
be assigned and identified (via ASSGN and DLBL commands) when the 
DSERV command is issued. otherwise, the system library directories 
are used. System directories are made available when you specify a 
mode letter on the SET DOS ON command line. 

3. The current assignments for logical units are ignored by the DSERV 
command; output is directed only to the output device indicated by 
the option list. 

When you use the TERM option of the DSERV command, the contents of the 
specified directory are displayed at your terminal. 

DMSDSV003E INVALID OPTION 'option' RC=24 
DMSDSV021W NO TRANSIENT DIRECTORY RC=4 
DMSDSV022W NO CORE IMAGE DIRECTORY RC=4 
DMSDSV023W NO RELOCATABLE DIRECTORY RC=4 
DMSDSV024W NO PROCEDURE DIRECTORY RC=4 
DMSDSV025W NO SOURCE STATEMENT DIRECTORY RC=4 
DMSDSV026W 'phase' NOT IN LIBRARY RC=4 
DMSDSV027E INVALID DEVICE 'nne RC=24 
DMSDSV027W NO PRIVATE CORE IMAGE LIBRARY RC=4 
DMSDSV028W NO {PRIVATEISYSTEM} TRANSIENT DIRECTORY ENTRIES RC=4 
DMSDSV047E NO FUNCTION SPECIFIED RC=24 
DMSDSV065E 'option' OPTION- SPECIFIED TWICE RC=24 
DMSDSV066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24 
DMSDSV010E INVALID PARAMETER 'parameter' RC=24 
DMSDSV095E INVALID ADDRESS 'address' RC=24 
DMSDSV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40 
DMSDSV105S ERROR 'nn' WRITING FILE 'DSERV MAP A5' ON DISK RC=24 
DMSDSV245S ERROR 'nnn' ON PRINTER RC=100_ 
DMSDSV411S INPUT ERROR CODE 'nn' ON {SYRESISYSRLB} RC=24 

78 IBM VM/310 CMS Co.mand and Macro Reference 



EDIT 

EDIT 

Use the EDIT com.and to invoke the CMS editor to create, modify, and 
manipulate CMS disk files. Once the editor has been invoked, you may 
only execute EDIT subcommands and EDIT macro requests, and enter data 
lines into the disk file. A limited number of CMS commands may be 
executed in the CMS subset mode, entered from the edit environment. 

You can return control to the CMS environment by issuing the EDIT 
subcommands FILE or QUIT. 

For complete details on the EDIT subcommand formats and usage, see 
"Section 3. EDIT Subcommands and Macros." For tutorial information cn 
using the CMS editor, including examples, see the !~L170 ~~~ ]2~!~2 
Qy~g~. The format of the EDIT command is: 

Edit fn ft [fm] [(options ••• [)]] 

* £E!i£1!§: 
[LRECL nn] 
[NODISP] 

~---------------------------------------------------------------------------~ 

fn ft 

fm 

is the filename and file type of the file to be created or 
edited. If a file with the specified filen~e and filetype 
does not exist, the CMS editor assumes that you want to create 
a new file, and after you issue the INPUT subcommand, all data 
lines you enter become input to the file. If a file with the 
specified filename and filetype exists, you may issue EDIT 
subcommands to modify the specified file. 

is the filemode of the file to be edited, indicating the disk 
on which the file resides. The editor determines the filemode 
of the edited file as follows: 

~g~!~1!g ~!!2!i1!g fil~§: If the file does not reside on your 
A-disk or its extensions, you must_specify fm. 

When you specify fm, the specified disk and its extensions are 
searched. If a file is found on a read-only extension, the 
file mode of the parent disk is saved; when you issue a FILE or 
SAVE subcommand, the modified f1le is written to the parent 
disk. 

If you specify fm as an asterisk (*) all accessed disks are 
searched for the specified file. 

~!~~~!1!g D!! f!l~§: If you do not specify fm, the new file-is 
written on your A-disk when you iss~e the FILE or SAVE 
subcomman9s. 

Section 2. CMS Commands 79 



EDIT 

Q.E.:t io.!!.§: 

LRECL nn is the record length of the file to be created or edited. 
Use this option to override the default values supplied by 
the editor, which are determined as follows: 

~gi!i.!!g ~!i.§!i.!!g ~il~.§: Existing record length is keFt 
regardless of format. If the file has variable-length 
records and the existing record length is less than the 
default record length, the default record length is used. 

~!~gti.!!g H~! Files: All new files have a record length of 
80, with the following exceptions: 

~il~!I~ 
LISTING 
SCRIPT,VSBDATA 
FREEFORT 

LRECL 
--1"21-

132 
81 

The maximum record length supported by the editor is 160 
characters. 

NODISP forces a 3270 display terminal into line (typewriter) mode. 
When the NODISP option is in effect, all subcommands that 
control the display as a 3270 terminal such as SCROLL, 
SCROLLUP, and FORMAT (and CHANGE with no operands) are made 
invalid for the edit session. 

Note: It is recommended that the NODISP option always be 
used when editing on a 3066. 

NEW FILE: 

EDIT: 

The specified file does not exist. 

The edit environment is entered. You may issue any valid EDIT 
subcommand or macro request. 

INPUT: 

The input environment is entered 
REPLACE or INPUT with no operands. 
accepted as input to the file. 

by issuing the ~DIT subcommands 
All subsequent input lines are 

DMSEDl003E INVALID OPTION 'option' RC=24 
DMSEDI024E FILE 'EDIT CMSUT1 fm' ALREADY EXISTS RC=28 
DMSEDI029E INVALID PARAMETER 'parameter' IN THE OPTION_'LRECL'_FIELD RC=24 
DMSEDI044E RECORD LENGTH EXCEEDS ALLOWABLE MAXIMUM - RC=32 
DMSEDI054E INCOMPLETE FILEID SPECIFIED RC=24 
DMSEDI076E ACTUAL RECORD LENGTH EXCEEDS THAT SPECIFIED RC=40 
DMSEDI104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100 
DMSEDI105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100 
DMSEDI117S ERROR WRITING TO DISplAY TERMINAL RC=100 

- DMSEDI132S FILE 'fn ft fm' TOO LARGE RC=88 
DMSEDI143S UNABLE TO LOAD SAVED SYSTE-M OR LOAD MODULE RC=40 
DMSEDI144S REQUESTED FILE IS IN ACTIVE STATUS 

80 IBM VM/370 CMS Command and Macro Reference 



ERASE 

ERASE 

Use the ERASE command to delete one or more CMS files from a read/write 
disk. The format of the ERASE command is: 

ERASE I fn ft fm [ (options ••• [l ]] 2E!.!~gl§: 
I * * * I r , 
I 'Type , , 

'!2!IE~' , L .J 

.J 

fn is the filename of the file(s) to be erased. An asterisk coded 
in this position indicates that all filenames are to be used. 
fn must be specified, either with a name or an asterisk. 

ft is the filetype of the file(s) to be erased. An asterisk coded 
in this position indicates that all filetypes are to be used. 
This field must be specified, either with a name or an asterisk. 

fm is the filemode of the files to be erased. If this field is 
omitted, only the A-disk is searched. An asterisk coded in this 
position indicates that files with the specified filename and/or 
filetype are to be erased from all read/write disks. 

TYPE displays at the terminal the file identifier of each file 
erased. 

!QI!f~ file identifiers are not displayed at the terminal. 

1. If you specify an asterisk for both filename and filetype you must 
specify both a filemode letter and number; for example: 

erase * * as 

2. To erase all fiies on a particular disk, you can use the FORMAT 
command to reformat it or access the -disk u~ing the ACCESS command 
with the ERASE option. 

3. If an asterisk is entered as the filemode, then either the filename 
or the filetype or both must be specified by name. 

Section-2. CMS Commands 81 



ERASE 

!!§E~~§~§ 

If you specify the TYPE option, the file identification of each file 
erased is disFlayed. For example: 

erase oldfile temp (type 

results in the display: 

OLDPILE TEftP A1 
R; 

DftSERS002E PILE ('fn (ft [fa]]'] NOT POUND RC=28 
DftSERS003E INVALID OPTION 'option' RC=24 
DKSERS037E DISK 'mode' IS READ/ONLY RC=36 
DKSERS048E INVALID MODE '.ode' RC=24 
DMSERS054E INCOMPLETE PILEID SPECIPIED RC=24 
DMSERS069E DISK '.ode' NOT ACCESSED RC=36 
DMSERS070E INVALID PARAMETER 'parameter' RC=24 
DKSERS071E ERASE * * [*Imode] NOT ALLOWED RC=24 
DMSERS109T VIRTUAL STORAGE CAPACITY EXCEEDED 

Note: You can invoke the ERASE co.mand fro. the terminal, fro. an EXEC 
fIle, or as a function from a program. If ERASE is invoked as a function 
or from an EXEC file that has the SCONTROL NOMSG option in effect, no 
error message is issued. 

82 IBM VM/370 CMS Command and Macro Reference 



Pg~ of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

ESEBV 

ESERV 

Use the ESERV EXEC procedure in CMS/DOS to copy edited DOS/VSE macros 
from system or private source statement E sublibraries to CftS disk 
files, or to list de-edited· macros. The format of the ESEBV command is: 

ESERV I fn 

fn specifies the filename of the CMS file that contains the ESERV 
control statements; it must have a filetype of ESERV. The logical 
unit SYSIPT must be assigned to the disk on which the ESERV file 
resides. fn is also the filename of the LISTING and ftACRO files 
produced by the ESERV program. 

Q.§age l!2tes 

1. The input file can contain any or all of the ESERV control 
statements as defined in Qy!de iQ th~ DO~L!~~ !.§.§~~~ler. 

2. You must have a read/write A-disk accessed when you use the ESERV 
command. 

3. To copy macros from the system source statement library, you must 
have entered the CMS/DOS environment specifying the mode letter of 
the DOS/iSE system residence. To copy from a private source 
statement library, you must assign the logical unit SYSSLB and 
issue a DLBL command for the ddname IJSYSSL. 

4. The output of the ESERV program is directed (as in DOS/VSE) to 
devices assigned to the logical units SYSLST and/or SYSPCH. If 
either SYSLST or SYSPCH is not assigned, the following files are 
created: 

!!1!ii 
SYSLST 
SYSPCH 

QyiEyi r!l~ 
fn LISTING mode 
fn MACRO mode 

where mode is the mode letter of the disk on which the source file, 
fn ESERV resides. If fn ESERV is on a read~only disk, the files are 
written to your A-disk. 

You can override default assignments made by the ESERV EXEC as 
follows: 

• If you assign SYSIPT to TAPE or READER, the source statements 
are read from that device. 

• If you assign SYSLST or SYSPCH to another device!, th-e SYSLST or 
SYSPCH files are written to that device. 

5. The ESERV EXEC procedure clears all DLBL definitions, except those 
entered with the PERM ?ption. 

6. If you want to use the ESERV command in an EXEC ~rocedure, you must 
use the EXEC command (because ESEBV is also an EXEC). 

Section 2. C~S Commands 83 



Pg. of GC20-1818-2 Rev March 30, 1919 by Supp. SD23-9023-1 for 5148-118 

ESERV 

7. When you use the ESERV control statements PUNCH or DSPCH, the ESEBV 
program may generate CATAL.S, ENDI or /* records in the output 
file. When you add a MACRO file containing these statements to a 
CMS macro library using the MACLIB command, the statements are 
ignored and are not read into the MACLIB .e.ber. 

!!espo!!§!l§ 

None. The CMS ready message indicates that the ESERV program completed 
execution successfully. You may examine the SYSLST output to verify the 
results of the ESERV program execution. 

DMSERV001E NO FILENAME SPECIFIED RC=24 
DMSERV002E FILE 'fn ESERV' NOT FOUND RC=28 
DMSERV006E NO READ I WRITE DISK ACCESSED RC=36 
DMSERV027E INVALID DEVICE ' device ' FOR SYSxxx RC=28 
DMSERV037E DISK 'mode' IS READ ONLY RC=36 
DMSERV070E INVALID ARGUMENT ' argument' RC=24 
DMSERV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40 

Note: The ESERV EIEC calls other .CMS commands to perform certain 
functions, and so you may, on occasion, receive error messages that 
occur as a result of those commands. 

Non-CMS error messages produced by the DOS/VSE ESERV progra. are 
described in the 2y!g~ to !h~ QQ~L!~ A§§~mbl~. 

84 IBM VM/370 CMS Command and Macro Reference 



EXEC 

EXEC 

Use the EXEC command to execute one or more CMS commands or EXEC control 
statements contained in a specified EXEC file. The format of the EXEC 
command is: 

[EXec] fn [args ••• ] 

[EXec] indicates that the EXEC command may be omitted if you are 
executing the EXEC procedure from the eMS command environment 
and have not issued the command SET IMPEX OFF. 

fn is the filename of a file containing one or more CMS commands 
and/or EXEC control statements to be executed. The filetype of 
the file must be EXEC and the file can have either fixed- or 
variable-length records with a logical record length not 
exceeding 130 characters. EXEC files can be created with the 
EDIT command or by a user program. EXEC files created by the 
CMS editor have, by default, variable-length, 80-character 
records. 

args are any arguments you wish to pass to the EXEC. The arguments 
are assigned to the special variables &1 through &30 in the 
order in which they appear in the argument list. 

"Section 5. EXEC Control Statements" contains complete descriptions 
of EXEC control statements, special variables, and built-in functions. 
For information on designing EXEC procedures and examples of contrel 
word usage, see the !~LdlQ £~~ g§~;~§ Q]ig~. 

The amount of information disFlayed during the execution of an EXEC' 
depends on the setting of the &CONTROL control statement, which by 
default displays all CMS commands, responses, and error messages. In 
addition, it displays nonzero return codes from CMS in the format: 

+++ R (nnnnn) +++ 

where nnnnn is the return code from the CMS command. 

For details, see the description of the &CONTROL control statement in. 
"Section 5. EXEC Control Statements." 

Section 2. CMS Commands 85 



EXt:C 

~~2§~~~~ g~~ R~!Y£n £Qde§ 

If the EXEC interpreter finds an error, it displays the message: 

DMSEXT072E ERROR IN EXEC FILE filename, LINE nnnn - description 

The possible errors, and the associated return codes, are: 

Q~§££.!.E!.!g~ 
FILE NOT FOUND 
&SKIP OR &GOTO ERROR 
BAD FILE FORMAT 
TOO MANY ARGUMENTS 
MAX DEPTH OF LOOP NESTING EXCEEDED 
ERROR READING FILE 
INVALID SYNTAX 
INVALID FORM OF CONDITION 
INVALID ASSIGNMENT 
MISUSE OF SPECIAL VARIABLE 
ERROR IN &ERROR ACTION 
CONVERSION ERROR 
TOO MANY TOKENS IN STATEMENT 
MISUSE OF BUILT-IN FUNCTION 
EOF FOUND IN LOOP 
INVALID CONTROL WORD 
EXEC ARITHMETIC UNDERFLOW 
EXEC ARITHMETIC OVERFLOW 

DMSEXC001E NO FILENAME SPECIFIED RC=24 

Return 
£Qgg--
801 
802 
803 
804 
805 
806 
807 
808 
809 
810 
811 
812 
813 
814 
815 
816 
817 
818 

86 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-X18 

FETCH 

FETCH 

Use the FETCH co.mand in CMS/DOS to load an executable phase into 
storage for execution. The format of the FETCH command is: 

FETch 

.!here: 

phasename (options ••• [) ]] 
2£ti.Ql!§: 
[ START] 
[ COftP] 
[ORIGIN hexloc] 

phasename is the name of the phase to be loaded into virtual storage. 
CMS searches for the phase: 

• In a DOS/VSE private core i.age library, if IJSISCL has 
been defined 

• In CMS DOSLIBs that have been identified with the GLOBAL 
cOllmand 

• In the DOS/VSE system core image library, if you specified 
the .ode letter of the DOS/VSE system residence on the SET 
DOS ON command line 

START specifies that once the phase is loaded into storage, 
execution should begin immediately. 

COMP specifies that 
should contain 
Note 5.) 

when the phase is to te executed, 
the address of its entry point. 

register 1 
(See Usage 

ORIGIN bexloc 
fetches the program and loads it at tbe location specified by 
hexloc; this location must be in the CMS user area. The 
location, hexloc, is a hexadecimal number of up to eight 
characters. (See Usage Note 6.) 

!!§age !!~ 

1. If you do not use the START option, FETCH displays a message at 
your terminal indicating the name of the phase and the storage 
location of its entry point. At this time~ you can set address 
instruction stops - for testing. To continue, issue the START 
command to initiate execution of the phase just loaded. 

2. The fetch routine is also invoked by supervisor call (SVC) 
instructions 1, 2, 4, or 65. The search order for executable 
phases is the same as listed above. 

3. If you want to fetch a phase from a private core image-library, you 
must issue an ASSGN command for the logical unit SIseLB and define 
the library in a DLBL command using the ~dname IJSSYCL. For 
example: -

assgn sysclb c 
dlbl ijsyscl c dsn core image lib (sysclb perm 

Section 2. CMS Commands 81 



March 30, 1979 

FETCH 

4. Phases fetched from DOS core image libraries must have been 
link-edited with ACTION REL. 

5. CMS uses the COMP option when it fetches the DOS PL/I compiler 
because that compiler expects register 1 to contain its entry point 
address. This option is not required when you issue the FETCH 
command to load your own prograas. 

6. 

When CMS starts executing a phase that has COMP specified, the 
DMSLI07401 EXECUTION BEGINS ••• message is not displayed. 

The ORIGIN option is used 
procedure to load nonsharable 
not required when you issue 
programs, unless you want to 
20000. 

by the CMS/VSAM installation EXEC 
modules on a segment boundary. It is 
the FETCH co.mand to load your own 

load them at a location other than 

7. The FETCH command should only be used with the START command to 
execute a DOS program. It should not be used with GENMOD to 
attempt to create an executable CMS module file. 

DMSFET7101 PHASE 'phase' ENTRY POINT AT LOCATION xxxxxx 

This message is issued when the 
indicates the virtual storage 
loaded. 

DMSLI07401 EXECUTION BEGINS ••• 

START option is not specified. It 
address at which the phase was 

This message is issued when the START option is specified; it 
indicates that program execution has begun. 

D~SFCH104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100 
DMSFCH109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104 
DMSFCH113S DISK (cuu) NOT ATTACHED RC=100 
DMSFCH115E PHASE LOAD POINT LESS THAN 'address' RC=40 
DMSFCH411S INPUT ERROR CODE "nn" ON '{SYSRESISYSCLB}' RC=100 
DMSFCH777S DOS PARTITION TOO SMALL TO ACCOM!ODATE FETCH REQUEST RC=104 
DMSFET003E INVALID OPTION 'option' RC=24 
DMSFET004E PHASE 'phase' NOT FOUND RC=28 
DMSFET029E INVALID PARAMETER 'parameter' IN TaE OPTION 'ORIGIN' FIELD 

RC=24 
DMSFET070E INVALID PARAMETER 'parameter' RC=24 
DMSFET098E NO PHASE NAME SPECIFIED RC=24 
DMSFET099E eMS/DOS ENVIRONMENT NOT ACTIVE RC=40 
DMSLI0055E NO ENTRY POINT DEFINED RC=40 

88 IBM VM/370 CMS Command-and-Macro Reference 



March 30, 1919 

FILEDEF 

FILEDEF 

Use the FILEDEF command to establish data definitions for OS ddnames, to 
define files to be copied with the MOVEFILE command, or to override 
default file definitions made by the assembler and the os language 
processors. The format of the FILEDEF command is: 

r------------------------------------------------------------------------, 
FIledef 

'{ ddname} I nn 
I * 

L 

g.E1.!Q1!!: 
(PERM] 
r , 
I~!!!!!Q! I 
INOCHANGE I 
L .J 

Terminal [ (optionA optionD() ]] 

PRinter 
PUnch 
Reader 

[ (optionA() ]] 

r r " 
DISK I fn ft Ifm I' [(option! optionB[) ]] 

IrI~! ggn~~ 1!111 
L L .J.J 

rr ,r " 
IIDISK fn ft Ilfmlt {DSN ? } 
I I FI1! gg~!~II!11 I DSN qual1 qual2 ••• 
LL .JL .J.J 

DUMMY 

TAPn 

CLEAR 

[(option! optionB[) ]] 

[ (optionA[) ]] 

r 
ILABOFF 
IBLP-[ii] 
ISL en] [VOLID 
I SUL [n] [VaLID 
I NL [n] 
INSL filename 
L 

, 
I 
I 

vOlid] I 
vOlid] I 

I 
I 

.J 

[(optionA optionC optionE[)]] 

gE1i21!!!: 
[KEYLEN nnn] 
r , 
I XTEN T nnnnn I 
lITE!!! 2Q I 
L .J 

r , 
17TRACKI 
19TRACKt 
L 

[TRTCH a] 

Q:etiQ!l]2: 
r , 
IUPCASE I 
I LoweisEI 
L .J 

[RECFM a] 
[LRECL nnnnn] 

[LIMCT nnn] 
[OPTCD a] 
[DISP MOD] 

[DEN-den] gE1i2n!: 
- [LEAVE] 

r , 
I BLOCK nnnnn t 
IBLKSIZE nnnnni 
L 

[MEMBER membername] 
[CONCAT] 
r 
IDSORG 
I 
I 
L 

{
PS}' PO I 
DA I 

.J 

( NOEOV] 

, 

Section 2. CMS Commands 89 



FILEDEF 

ddname 
nn 

* 

l!arch 30, 1979 

is the name by which the file is referred to in your 
program. The ddname may be from one to eight alphameric 
characters, but the first character must be alphabetic or 
national. If a number nn is specified, it is translated to a 
FORTRAN data definition name of FTnnF001. An asterisk (*) may 
be specified with the CLEAR operand to indicate that all file 
definitions not entered with the PERl! option should be 
cleared. 

TERl!INAL is your terminal (terminal I/O must not be blocked) • 

PRINTER is the spooled printer. 

PUNCH is the spooled punch. 

READER 

DISK 

DUl!l!Y 

TAP[ n] 

CLEAR 

is the spooled card reader (card reader I/O must not be 
blocked). 

specifies that the virtual I/O device is a disk. As shown in 
the format, you can choose one of two forms for specifying the 
DISK operand. Both forms are described in "Using the FILEDEF 
DISK Operand." 

indicates that no real I/O takes place for a data set. 

is a magnetic tape. The symbolic number of the tape drive, n, 
can be 1, 2, 3, or 4, representing virtual units 181, 182, 
183, and 184, respectively. If n is not specified, TAP2 is 
the default. You can also specify the type of label 
processing you want on your tape. Specifying label processing 
is discussed in "Using the FILEDEF TAPn operand." 

removes any existing definition for the specified ddname. 
Clearing a ddname before defining it ensures that a file 
definition does not exist and that any options previously 
defined with the ddname no longer have effect. 

QE1i0n2: Whenever an invalid option is specified for a particular 
device type, an error message is issued. Figure 8 shows valid 
options for each device type. 

90 IBM VM/370 CMS Command and Macro Reference 



r 

Pq. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118 

PILEDEP 

, 
I OPERANDS I 

Options I READER, PURCH I DISK 
I PRINTER I TERMINAL TAPn 

BLOCK, BLKSIZE I X X X 
CHANGE, ROCHANGE X 1 X 
CONCAT 
DEN 1 
DISP MOD 
DSORG 
KElLEN 
LEAVE X 
LI!!CT 
LOWCASE, UPCASE X 
LRECL X X X 
!!EMBER 
HOEOV 1 
OPTCD 
PERM X X 1 
RECF!! X X X 
TRTCH X3 
ITENT 
7TRACK, 9TRACK X 

'RO options may be necessary but all disk options are accepted. 
2This option is aeaningful only for BDA8 files. 
3This option is for 7-track tapes only. 

DUMB!' 

X 
X 
X 

X 
X 
12 

12 

X 
1 

12 
X 
X 

X2 

Figure 8. Valid File Characteristics for Each Device Type of the 
FILEDEF Comlland 

Section 2. CMS ComBands 90.1 



March 30, 1979 

90.2 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1S1S-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 574S-XXS 

FILEDEF 

PERK 

NOCHANGE 

RECFM a 

retains the current definition until it either is 
explicitly cleared or is changed with a new FILEDEF 
com.and with the CHANGE option. If PER! is not 
specified, the definition is cleared when a FILEDEF * CLEAR command is executed. 

merges the file definitions whenever a file definition 
already exists for a ddname and a new FILEDEF command 
specifying the same ddname is issued; the options 
associated with the two definiticns are merged. Options 
from the original definition remain in effect unless 
duplicated in the new definition. New options are added 
to the option list. 

retains the current file definition, if one exists, for 
the specified ddna~e. 

is the record format of the file, where "a" can be one of 
the following: 

F 
FB 
V 
VB 
U 
FS, FBS 
VS,VBS 
A 
M 

fixed length 
fixed blocked l 

variable length 
variable blocked l 

undefined 
fixed length, standard blocks 
variable length, spanned records 
ASA print control characters 2 
machine print control codes 2 

LRECL nnnnn is the logical record length (nnnnn) of the file, in 
bytes. LRECL should not exceed 32760 bytes because of as 
restrictions. 

BLOCK nnnnn 
BLKSIZE nnnnn 

is the logical block size (nnnnn) of the file, in bytes. 
BLOCK should not exceed 32760 bytes because of as 
restrictions. If both BLOCK and BLKSIZE options are 
specified, the value of nnnnn for BLOCK is used and 
BLKSIZE is ignored. 

If a CMS £ile is fixed and has SO-byte CMS records, you 
should specify RECFM FB BLOCK 800 LRECL SO. Performance 
can be improved for CMS fixed files if the block size is 
a multiple of SOO. 

KEYLEN nnn is the size (nnn) of the key (in bytes). 
value accepted is 256. 

The maximum 

XTENT nnnnn is the number of records (nnnnn) in the extent for the 
file. The default is 50. The maximum value i~ 
16,777,215 •. 

LIMCT nnn is the maximum number of extra tracks or blocks (nnn) to 
be searched. - The -maximum value is 256. 

lFB and VB should not be used with TERMINAL or READER -devices. _ 
2A and M may be used with any of the valid RECFH settings (for example, 

FA, FBA, VA, VBA, etc.) M should not be used with TERMINAL devices. 

Section 2. CMS Commands 91 



FILEDEF 

OPTCD a 

March 30, 1919 

is the direct access search processing desired. The 
variable "a" .ay be any combination of up to three of the 
follow ing: (A and R are mutually excl usi ve.) 

Cog!! 
1 
E 
F 
R 

DASD Search 
Actual-devIce addressing 
Extend~d search 
Feedback addressing 
Relative block addressing 

Note: The KEYLER, XTENT, LIMCT, and OPTCD options should only be Qs~d 
with BDAM files. 

DISP MOD positions the read/write pointer after the last record in 
the disk file. This option should only be used for 
output files. 

MEMBER meabername 

CONCAT 

DSORG UH 
r , 

allows you to specify the name of a me.ber of an as 
partitioned data set; membername is the name of the PDS 
member. 

allows you to assign the same ddname to two or more os 
macro libraries so that you can refer to them in a single 
GLOBAL command. 

Any file format options you specify in the first FILEDEF 
command line remain in effect for subsequently 
concatenated libraries. For a detailed description of 
concatenated macro libraries, see "Using OS Macro 
Libraries" in !~L1IQ £~~ Y2~~2 ~uide. 

is the data set organization: physical sequential (PS), 
partitioned (PO), or direct access (DA). 

I 1TRACK I is the tape setting. 
I 9TRACK I 
L .I 

TRTCH a is the tape recording technique for 1-track tapes. Use 
the following chart to determine the value of "a" for 
1-track tapes. 

., 
a Parity Converter Translator I , 
0 odd off off I 

OC odd on off I 
OT odd off on I 

E even off off I 
ET even off on I 

The default value of TRTCH is ac. 

DEN den is tape density: den can be 200, 556, 800, 160Qw or &250 
bpi (bits per.inch). If 200 or 556 are specified, 1TRACK 
is assumed. If 800, 1600, or 6250 are specified 9TRACK is 
assumed. 

y~~!SE translates all terminal input data to uppercase. 

. LOWCISE retains all terminal input data as typed in •. 

92 IBM VM/310 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev ftarch 30, 1919 by Sapp. SD23-9023~1 for 5748-118 

PILED!F 

LEAVE 

HOEOV 

is only valid £or TAPn files that are SUL or SL (standard 
label). With this option selected, the tape is not .oved 
before label processing~ If LEAVE is not" $pecified, 
tapes with files specified as SL or SUL are rewound and 
then positioned before the files are processed. 

is only valid for TAPn files. wi th HOEOV selected, t·here 
is no autoaatic limited end-of-voluae processia, when end 
of tape is sensed on output. See the section ~C!S Tape 
Label processing" in the V8t~lQ £~~ Q2~£!2 Guid~ for a 
description of end-of-volume processing • 

. Section 2. CftS COlla"ands92.1 



92.2 IBM VM/370 eMS Com.and and ~acro Reference 



FILFDEF 

1. If you do not issue a PILEDEF command for an os input or output 
file, CMS uses the ddname on the DCB Bacro to issue the following 
default file definition: 

FILEDEF ddname DISK FILE ddname A1 

See "Usage Notes" under the discussion of the ASSEMBLE command fer 
inforaation on the default file definitions made by the assemtler. 

2. To identify DOS files for DOS program execution or to identify VSAM 
data sets for either OS or DOS program execution, you Bust use the 
DLBL co •• and. 

3. A file definition established with the FILEtEF command remains in 
effect until explicitly changed or cleared. The system clears file 
definiticns under the following circuBstances: 

• When the assembler or any of the language processors are 
invoked. (Note that FILEDEP definitions entered with the PERM 
option are not cleared.) 

• When a program abends or when you issue the Immediate command EX 
to halt co •• and or program execution. 

4. The FILEDEP com.and does not supply default values for LRECL and 
BLKSIZE. As under OS, if DCB information is unavailable when a 
file is opened, an open error is issued for the file. The 
following chart sUB.arizes the results of specifying LRECL and 
BLKSIZE options. 

BLKSIZE 

Not 
Specified 

Specified 

Not 
Specified 

Specified 

LRECL Resul ts 

Not IIf the input file exists on disk, the 
Specified litem length (or item length +4 for vari­

lable-length records) becomes the BLKSIZE. 

Not ILRECL=BLKSIZE (or LRECL=BLKSIZE-4, for 
Specified I variable-length records) • 

Specified IBLKSIZE=LRECL (or ELKSIZE=LRECL+4, for 
I variable-length records) • 

Specified IThe values specified are used. 

If V or VB is specified for BECPM, LRECL must be at least 4 bytes 
less than BLKSIZE. 

DOS sequential (SAM) files do not contain ELK SIZE, LRECL, or RECPM 
specifications~ These options .ust be specified by a FILEDEF 
command or DCB state.ent if OS macros are used to access DOS files. 
Otherwise the defaults, BLKSIZE=32160 and REC~M=U, are assu.ed. 
LRBeL is not used for RECFM=U files. 

5. There is an auxiliary processing option for FILEDEF that - is only 
valid when FILEDE~ is executed by an internal p~ogram call: this 
option cannot be entered as a terainal command. - The option, 
AUXPROC addr, allows an auxiliary processing routine to receive_ 
control during I/O operations. For det~ils on how t9 use this 
option of the FILEDEP- cOBmand, see !~11~ ~Ist~~- g£2gE~~~~§ 
Qyide. 

Section 2. C~S Commands 93 



PILEDEP 

6. If a FILEDEF command is issued with a DDNAME that matches a current 
DDNAME defined by a previous FILEDEF command and the devices are 
the same, the filename, filetype, filemode, and options previously 
specified remain in effect, unless respecified by the new FILEDEF 
command. If the devices are not the same, all previous 
specifications are removed. 

7. If the FILEDEF command is entered with no operands, a list of 
current definitions is displayed. 

There are two general forms for specifying the DISK operand in a FILEDEF 
command. If you specify the first form: 

FILEDEF ddname DISK fn ft [fm] 

fn and ft (filename and filetype) are assumed to be a CMS fileid. If fm 
is the filemode of an as disk, fn and ft are assumed to be the only two 
qualifiers of an as data set name. If fm is specified as an asterisk, 
(*) then the A-disk is assumed. 

You cannot use this form unless the as data set name or DOS file-id 
conforms to the as naming convention (1- to 8-byte qualifiers separated 
by periods, to a maximum of 44 characters, including periods). Also, 
the data set name can have only two qualifiers; otherwise, you must use 
the DSN ? or DSN quaI1 ••• form. For example, if the os data set name 
or DOS file-id is TEST.SAMPLE.MAY, you enter: 

FILEDEF MINE B1 DSN TEST SAMPLE MAY 

-- or --

FILEDEF MINE B1 DSN ? 
TEST.SAMPLE.MAY 

If the OS data set name or DOS file-id is TEST.SAMPLE~ then you may 
enter: 

FILEDEF MINE DISK TEST SAMPLE B1 

The second form of the DISK operand is used only-with as data sets 
and DOS files: 

r , r , 
FILEDEF ddname I DISK fn ft I I fm I {DSN ? - } 

I [!.1~ ggn2J!!~1 IAll DSN qual1 -(qua12 ••• ] 
I. .J I. .J 

This form allows you to to enter OS and DOS file identifications that do 
not conform to OS data set naming conventions. - The DSN operand 
corresponds to the DSN parameter on the as DD {data definitiori) 
statement. There are three ways you can specify this form: 

• FILEDEF ddname DISK fn ft fm DSN qua11 [qua12 ••• ] 

This form of the FILEDEF command associates the CMS filename and 
filetype you specify with _the DS data set name or DOS file-id 
specified following the DSN operan-d.- Once it is de~ined, you can 
refer to the OS data set name or DOS file-id by- _using the c~S 
filename and filetype. If you omit DISK, filename, filetype, and 
filemode, the default values "are-FILE ddname A1.-

94 IBM VM/370 CMS Command and Macro Reference 



March 30, 1979 

FILEDEF 

• FILEDEF ddname DSN 1 

This form of the FILEDEF command allows you to specify the as data 
set name or DOS file-id interactively. Using this form, you can 
enter an as data set name or DOS file-id containing embedded special 
characters such as blanks and hyphens. If you use this form, the 
default filename and filetype for your file, FILE ddname, is the CMS 
filename and filetype associated with the as data set name or DOS 
file-ide The file mode for this form is always the default, Al. 

To use the interactive DSN operand, you key in DSN 1; CMS then 
requests that you enter the as data set name or DOS file-id exactly 
as it appears in the data set or file. Do net omit the periods that 
separate the qualifiers of an OS data set name, but do not insert 
periods where they do not appear. 

qua11[.qua12 ••• ] 

where quall.qua12... are the qualifiers of the as data set name or 
DOS file-ide When you use this form, you must code the periods 
separating the qualifiers • 

• FILEDEF ddname mode DsN qua11 [qua12 ••• ] 

This form allows you to specify the as data set name or DOS file-id 
explicitly. (This form can be used for DOS file-ids only if they 
comply with the as naming convention of 1- to a-byte qualifiers 
separated by periods, to a maximum of 44 characters, including 
periods.) Again, the default value for the filename and filetype is 
FILE ddname. When you use this form, you must omit the periods that 
separate the qualifiers of the 05 data set nalle. For example, for an 
OS data set or DOS file nailed MY.FILE.IN, you enter: 

FILEDEF ddnaae B1 DsN MY FILE IN 

All of these foras have many variations, as is apparent frail the 
co •• and format. 

~§ing ~h~ 11~!~~~ TA~~ QE~~~g 

When you define a tape file with the FILEDEF command, you can specify 
the type of label processing to be done for the file. You do this by 
specifying a second operand after the word TAPn. The ~perands that you 
aay specify and their meanings are: 

LABOFF 

ELP 

sL 

SUL 

NL 

indicates that there is no CMS tape la-bel processing for this 
tape file. LABOFF is the default. The tap~ is not positioned 
if this operand is specified. 

indicates that the system is to bypass label processing but 
that the tape is to be positioned before the file- is processe-d. 

indicates that you are using IBM standard labels. 

indicates tha~ you are using 
processed for MOVEFILE). 

standard user labels (not 

indicates that your 
use this operand if 
will not be opened.) 

tape has no IBM standard labels. (Do not 
your tape has a VOLl label. A f~l~ on it 

NsL indicates that you are using nonstandard labels. 

Section 2. CMs Commands 95 



March 30, 1979 

FILEDE!' 

For the operands BLP, SL, and SUL: 

n indicates the position of the file on a multifile volume. When 
n is not specified, the default is 1. 

For SL and SUL files: 

valid specifies a 1- to 6-character volume serial number to be 
verified by reading the VOL1 label on the tape. If not 
specified in FILEDE!', valid may be sFecified on a L1BELDEF 
command. If specified on both commands, the aore recent 
specification is used. VOLID is only valid for SL or SUL tape 
files. If VOLID is not specified, the volume label on the taFe 
is not checked. 

For the NSL operand: 

filename is required for NSL files. rt is the filename of a file that 
contains a routine for processing nonstandard labels. The 
filename must be that of a TEXT or MODULE file. If you have 
both a MODULE and TEXT file with this name, the MODULE file is 
used. MODULE files must be created se that they start at an 
address that does not allow them to overlay a user program if 
they are to be used for NSL routines. See the section "Tape 
Labels in CMS" in the !~~IQ £~~ Y2~I~2 ~yide for details on 
writing routines to process nonstandard labels. 

You can define a file on tap2 with standard labels by using the the 
following com.and: 

filedef filea tap2 sl valid dept10 

When this tape file is opened, eMS checks to see that it has a VOL1 
label with a volume serial number of dept10. 

If you wanted to specify the second file on the same tape, you would use 

filedef filea tap2 sl 2 volid dept10 

The same file could be defined as having no labels by using 

filedef filea tap2 blp 2 filedef filea tap2 nl 2 

If you use the 
standard labels. 
open a file on it 
its first record. 
file. 

If you specify 

above specification, your tape must not contain IBB 
NL causes CMS to read your tape at the time you try to 
and checks to see if the tape contains a VOL1 label as 
If a VOL1 label is there, CMS does not open your tape 

filedef filea tap2 blp 2 

CMS positions the tape to the second file, but does not check to see 
whether or not the tape has a label. 

- -
!!Q~: If you mount a blank tape and specify NL, the- tape will run off 
the end of the reel. Write a taFe mark to prevent this from occurring. 

If you wanted to define a tape file with nonstand-a-rd labels, _ use the 
following command: 

filedef filea tap2 nsi nonstd 

96 IBM VM/310 CMS Command and-Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

FILEDEF 

The routine NONSTD must exist as a TEXT or MODULE file and be able to 
process the particular nonstandard labels you are using for your tapes. 

If you defined filea with no label parameter at all, for example, 

filedef filea tap2 

there is no label processing or positioning before the data in filea is 
processed. 

It is recommended that you read the 
!~L1I~ ~~~ ~2g£~2 ~y!~g before you 
tapes. 

section "Tape Labels in CMS" in the 
write programs that handle labeled 

The LEAVE and NOEOV options are used for tape files only. 

LEAVE indicates that a tape containing standard-label files is not to be 
moved before label processing. Using this option prevents CMS from 
rewinding the tape and checking the VOLl label as it otherwise does for 
SL and SUL files. The command 

filedef fileb tapl sl (leave 

defines a tape file on tapel but tells CMS not to position the tape 
before processing the labels for fileb. Note that you must position the 
tape properly yourself before using the LEAVE option. LEAVE may be used 
with SL. SUL, and BLP. However, it has no effect if used with Nt. Nt 
tapes are always rewound and positioned before a file on them is opened 
(even if you specify LEAVE). 

The LEAVE option is designed for use with multifile volumes where 
rewinding and repositioning a tape before each file is processed would 
be inefficient. You must not move the tape between files if you use 
this option. Note that for BLP files you can obtain the effect of LEAVE 
by defining the file as LABOFF rather than BLP. 

Using NOEOV, CMS does not do any end-of-tape precessing on output. If 
this option is not specified, CMS writes a tape mark after it encounters 
EOT on output and, for SL and SUL files, also writes an EOVl label and 
another tape mark after the first tape mark. The tape is then rewound 
and unloaded. NOEOV suppresses this limited EOV processing. 

ddnamel device1 [filename1 filetype1 filemode1 [da tasetname]] 

- . 
ddnameN deviceN [filenameN filetypeN filemoden ( da ta s et na me ] ] 

A list of current definitions is displayed if the FILEDEF command 
is entered with no operands. 

DMSFLD069I DISK 'mode' NOT ACCESSED 

The specified disk is not accessed; the file definition remain~ in 
effect. You should ac-cess the disk before you attemp-t -to read or 
write the file. 

DMSFLD220R ENTER DATA SET NAME: -

A FILEDEF command with the DSN ? operand was entered. Enter_the 
exact OS or DOS file identification, including embedded periods and 
blanks. 

Section 2. CMS Commands 96.1 



Pg_ of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 574S-XXS 

FILEDEF 

DMSFLD704I INVALID CLEAR REQUEST 

A CLEAR request was entered for a file definition that does not 
exist; no action is taken. 

DMSSTT228I USER LABELS BYPASSED ON DATA SET 'data set name' 

This message is displayed when you issue a FILEDEF command for an 
OS data set that contains user labels. The message is displayed the 
first time you issue the FILEDEF command after accessing the disk 
on which the data set resides. 

DMSFLD003E INVALID OPTION 'option' RC=24 
DMSFLD023E NO FILETYPE SPECIFIED RC=24 
DMSFLD027E INVALID DEVICE 'device name' RC=24 
DMSFLD029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD 

RC=24 
DMSFLD035E INVALID TAPE MODE RC=24 
DMSFLDOSOE PARAMETER MISSING AFTER DDNAME RC=24 
DMSFLD065E 'option' OPTION SPECIFIED TWICE RC=24 
DMSFLD066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24 
DMSFLD070E INVALID PARAMETER 'parameter' RC=24 
DMSFLD221E INVALID DATA SET NAME 'data set name' RC=24 
DMSFLD224E FILEID ALREADY IN USE RC=24 
DMSFLD420E NSL EXIT FILENAME MISSING OR INVALID RC=24 

96.2 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

FORftAT 

FORMAT 

Use the FORMAT command to: 

• Initialize a virtual disk (minidisk) for use with CftS files 
• count or reset the number of cylinders on a virtual disk 
• write a label on a virtual disk 

The format of the FORftAT command is: 

FORMAT cuu mode [nocyl] [ (options ••• [) ]] 
[noblk] 

!.!!~~: 

2Eti21l§: 
r 
IBlk§!!~ 
1 
1 
1 
1 
1 
1 
I 
I Noerase 
ILabel 
IRecoap 
L 

r " 1 8001 
110241 
120481 
140961 
1 1KI 
1 2KI 
1 4KI 
L .J 

cuu is the virtual device address of the virtual disk to be 
formatted. 

mode 

nocyl 

noblk 

Valid addresses are 001 through 5FF for a virtual machine in 
basic control mode and 001 through FFF for a virtual machine in 
extended control mode. 

is the filemode letter to be assigned to the specified device 
address. Valid filemode letters are A th~ough z. This field 
must be specified. If any other disk is accesse-d at- mode, it is 
released. 

is the number of cylinders to be made available for use. All 
available cylinders on the disk are used if the number specified 
exceeds the act~al number available. 

is the number of FB-S12 blocks to be made available for use. _If 
the number specified exceeds the actual riumber of blocks on the 
disk, then all the blocks on the disk are made -available for 
use. 

BLKSIZE specifies the physical DASD block size of the CftS minidisk. 
The block sizes 1024, 204a, and 4096- may alternately be 
specified as 1K, -2K, and 4K, - respectively. For FB-512 
devices, only block- sizes 1024, 2048, and 4096 are 
supported; for CKD (count key data) devices, all block sizes 
are supported. 

Section 2. CftS Commands 97 



FORMAT 

NOERASE specifies for FB-S12 devices that the permanently foraatted 
FB-S12 blocks are not to be cleared to zeros. If not 
specified, the FB-512 blocks will be cleared. For 
non-FB-S12 devices, this option is ignored. 

LABEL writes a label on the disk without formatting the disk. The 
CMS disk label is written on cylinder 0, track 0, record 3 
of the virtual disk or block1 of an FB-512 device. I 
prompting message requests a six-character disk label (fever 
than six characters are left-justified and blanks padded'). 

RECOMP changes the n~.ber of cylinders or FB-512 blocks on the disk 
that are available to the user. This number beco.es the 
actual number of minidisk cylinders or FB-512 blocks, or the 
number specified by nocyl/noblk, whichever is less. If 
nocyl is not specified and the disk is formatted in BOO-byte 
blocks, all cylinders are used. If the disk is formatted in 
lK, 2K, or 4K blocks, the maximum number of cylinders 
initially formatted on the disk is made available to the 
user. 

1. You can use the FORMAT command with any virtual 3310, 3330, 3340, 
3350, 3370, or 2319 device. 

2. When you do not specify either the RECOMP or LABEL option, the disk 
area is initialized by writing a device-dependent number of records 
(containing binary zeros) on each track. Any previous data on the 
disk is erased. A read after write check is made as the disk is 
formatted. For example: 

format 191 a 25 

initializes 25 cylinders of the disk located at virtual address 191 
in CMS format. The command: 

format 192 b 25 (recomp) 

changes the number of cylinders available at virtual address 192 to 
25 cylinders, but does not erase any existing data. To change only 
the label on a disk, you can enter: 

format 193 c (label) 

Respond to the prompting message with a six-character label. 

3. If you want to format a minidisk for VSAM files, you Bust use the 
IBCDASDI program. If you want to format an entire disk, you may 
use any OS or DOS disk initialization program. -

4. Because the FORMAT comMand requires heavy ~rocessor utilization and 
is heavily I/O bound, system performance may be degraded if there 
are many users on the system when you use_FORMIT. 

S. When formatting FB-512 devices, enough blocks of the minidisk area 
must be formatted to support the CMS ~isk structure, or message 
DMS216E will be displayed, and the FORMAT requ~st will- be 
terminated. The number of FB-512- blocks which must be-formatted 
for minidisks of lK, 2K, and 4K CMS blocksize is 12, 24, and 48, 
respectively. 

98 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. 5D23-9023-1 for 5748-118 

FORMIT 

DMSFOR603R FORMAT WILL ERASE ALL PILES ON DISK 'mode(cuu)'. DO YOU WISH 
TO CONTINUE? (YESINO): 

You have indicated that a disk area is to be initialized: all 
existing files are erased. This message gives you the option of 
canceling the execution of the PORMAT co.mand. Reply yes or no. 

DMSFOR605R ENTER DISK LABEL: 

You have requested that a label be written on the disk. 
one- tc six-character label. 

DMSPOR7051 DISK REMAINS UNCHANGED. 

Enter a 

The response to message DMSFOR603R vas NO or a null line was 
entered. 

DMSFOR7321 {'nnn' CYLINDERSI'nnnnnnnnnn' PB-512 BLOCKS} PORMATTED CN 
DISK 'mode(cuu)' 

The format operation is complete. 

DMSFOR7331 FORMATTING DISK 'mode' 

The disk represented by mode letter 'mode' is being for.atted. 

Section 2. CMS Commands 98.1 



March 30, 1919 

98.2 IBM VM/370 CMS Com.~nd ~nd Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118 

FORMAT 

LABEL CUU M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BLK TOTAL 
label cuu m R/i nnn type blksize nnnnn nnnn- I nnn nnnnnn 

This message provides the status of a disk when you use the RECOMP 
option. The response is the same as when you issue the QUERY 
command with the DISK operand. 

DMSFOR003E INVALID OPTION 'option' RC=24 
DMSFOR005E NO 'option' SPECIFIED RC=24 
DMSFOR017E INVALID DEVICE ADDRESS 'cuu' RC=24 
DMSFOR028E NO DEVICE SPECIFIED RC=24 
DMSFOR037E DISK 'mode[ (cuu)]' IS READ/ONLY RC=36 
DMSFOR048E INVALID MODE 'mode' RC=24 
DMSFOR069E DISK 'mode' NOT ACCESSED RC=36 
DMSFOR070E INVALID PARAMETER 'parameter' RC=24 
DMSFOR113S DEVICE 'cuu' NOT ATTACHED RC=100 
DMSFORl14S 'cuu' IS AN UNSUPPORTED DEVICE TYPE 

OR REQUESTED BLKSIZE IS NOT SUPPORTED 
FOR THE DEVICE RC=88 

DMSFOR125S PERMANENT UNIT CHECK ON DISK 'mode (cuu) , RC=100 
DMSFOR126S ERROR {READIWRIT}ING LABEL ON DISK 'mode (cuu) , RC=100 
DMSFOR214W CANNOT RECOMPUTE WITHOUT LOSS OF DATA. NO CHANGE RC=8 
DMSFOR216E INSUFFICIENT BLOCKS ON DISK TO SUPPORT 

CMS DISK STRUCTURE RC=100 

Section 2. CMS Co.mands 99 



.. _--- --, ----
GENDIRT 

GENDIRT 

Use the GENDIRT command to fill in a CftS auxiliary directory. The 
auxiliary directory contains the name and location of modules that would 
otherwise significantly increase the size of the resident directory, 
thus increasing search time and storage requirements. By using GENDIRT 
to fill in an auxiliary directory, the file entries for the given 
command are loaded only when the command is invoked. The format of the 
GENDIRT command is: 

, 
GENDIRT directory na lIIe [target.ode] I 

!.her~: 

directorynalle 

target mode 

is the entry point of the auxiliary directory. 

is the file.ode letter of the disk containing the .odules 
referred to in the directory. The letter is the file.ode of 
the disk containing the modules at execution tille, not the 
file mode of the disk at creation of the directory. At 
directory creation time, all modules named in the directory 
being created must be on either the A-disk or a read-only 
extension; that is, not all disks are searched. The default 
value for targetmode is S (system disk). It is your 
responsibility to determine the usefulness of this operand at 
your installation, and to inform all users whose programs are 
in auxiliary directories exactly what filemode to specify on 
the ACCESS command. 

Note: For information on creating aUXiliary directories and for further 
requirements for using the targetmode option, see the !AL170 ~~i~~ 
fE£gE~~m~~§ ~y!g~. 

DftSGND002W FILE 'fn ft fill' NOT FOUND RC=4 
DMSGND021E ENTRY POINT 'name' NOT FOUND RC=40 
DMSGND022E NO DIRECTORY NAME SPECIFIED RC=24 
DMSGND070E INVALID PARAMETER 'parameter' RC=24 

100 IBM VM/370 CMS Command and ftacro Reference 



GERMCD 

GENMOD 

Use the GENMOD command to generate a nonrelocatable (MODULE) file on a 
CMS disk. The format of the GENMOD command is: 

fn 

r , 
Genmod [fn ( MODULE I fm I ]] [(options ••• [) ]] 

I !..1 I 
L .J 

.2.E!!.Q1!§: ( FROM entry1 ] [ TO entry2 ] 
r , r , r , 
11J!R I ISTR I IQ'§ I 
IROMAPI INOSTRI IDOSI 
L .J L .J IALLI 
(SYSTEM] L .J 

is the filename of the MODULE file being created. If fn 
specified, the file created has a filename equal to that 
first entry Foint in the LOAD MAP. 

is not 
of the 

fm is the file.ode of the MODULE file being created. If fm is not 
specified, A1 is assumed~ 

Q.E!io~: If conflicting options are specified, the last one entered 
is used. 

FROM entry1 specifies an entry point or a control section name that 
represents the starting virtual storage location from 
which the nonrelocatable copy is generated. 

TO entry2 

NOMAP 

STR 

specifies an entry point or a control section name that 
represents the ending virtual storage location from which 
the nonrelocatable copy is generated. 

includes a load map in the MODULE file. The load map is 
a variable-length record placed at the end of the load 
module. 

specifies that a load map is not to be contained in the 
MODULE file. 

Rote: If a module is generated with the ROMAP option, 
that module cannot later be loaded and started with the 
CMS LOAD MOD and START commands. When ROMAP is specified, 
the information produced is not sufficient for the START 
command to execute properly~ However, a module generated 
with the NOMAP option can later be invoked as a command; 
that is, it can be invoked if its filename is entered. 

invokes the CMS storage initialization routiRe w~hen the 
MODULE file is subsequently loaded (see the LOADMCD 
command description). This routine frees any storage 
remaining from a previous program. STR is the- default 
setting if the' MODULE is to be loaded at the beginning of 
available user storage. 

Section 2. CMS Commands 101 



GENMOn 

NOSTR 

SYSTEM 

Q~ 

ooS 

ALL 

!g1~: If a program running in the user area calls a 
transient routine that was generated with the STR option, 
the user area storage pointers will be reset. This reset 
condition could cause errors upon return to the original 
program (for example, when OS GETMAIN/FREEMAIN macros are 
issued in the user program) • 

indicates that, when the KODULE is loaded, free storage 
pointers are not reset for any storage currently in use. 
NOSTR is the default setting if the MODULE file is to be 
loaded at a location other than the default load address. 

indicates that when the MODULE file is subsequently 
loaded, it is to have a storage protect key of zero. 

indicates that the program may~contain OS macros and, 
therefore, should be executed only when CMS/DOS is not 
active. ~n 

indicates that the program contains DOS macros; CMS/DCS 
must be active (that 1S, SET DOS ON must have been 
previously invoked) in order for this program to execute. 
(See Usage Note 2). 

indicates that the program: 

• Contains CMS macros and must be capable of running 
regardless of whether CMS/DOS is active or not 

• Contains no DOS or OS macros 

• Preserves and resets the DOS flag in the CMS nucleus 

• Does its own setting of the DOS flags 

Ig!!~ The ALL option is primarily for use by CMS system 
programmers. CMS system routines are aware of which 
environment is active and will preserve and reset the DCS 
flag in the CMS nucleus. 

1. The GENMOD command is usually invoked following the LOAD command, 
and possibly the INCLUDE command. For exam~le, the sequence: 

load myprog 
genmod testprog 

loads the file MYPROG TEXT into virtual storage and creates a 
nonrelocatable load module named TESTPROG MODULE. TESTPROG may now 
.be invoked as a user-written command from the CMS environment. 

2. The execution of MODULE files created from DOS programs is not 
supported and may give unpredictable results.. GENMOD is intended 
for use with the LOAD command, not the FETCH command. - Storage 
initialization for FETCH is different from that for LOAD. 

3. Before the file is written, undefined symbols are set to locaticn 
zero and the common reference control ~ection is initialized. - The 
undefined symbols are not retained as unresolved symbols in the 
MODULE file. Therefore p once the MODULE file is generated, those 
references cannot be resolved and may cause unpredictable results 
during execution. 

102 IBM VM/370 CMS Command and Macro Reference 



GENMCD 

4. If you load a program into the transient area you should issue the 
GENMOD command with the STR option. Be careful if the program uses 
OS GETMAIN or FREEMAIN macros because your program, plus the amount 
of storage obtained via GETMAIN, cannot exceed two pages (8192 
bytes). It is recommended that you do not use GETMAIN macros in 
programs that execute in the transient area. 

5. A transient module (loaded with the ORIGIN TRANS option) that was 
generated with the SYSTEM option 1S written on disk as a 
fixed-length record with a maximum length of 8192 bytes. 

6. If you are using FORTRAN under CMS, use FROM MAIN as an option to 
avoid un~redictable results. 

7. If FROM is not specified on the GENMOD command, the starting 
virtual storage location (entry point) of the module is either the 
address of fn (if~it is an external name) or the entry point 
determined according to the hierarchy discussed in Usage Note 4 of 
the LOAD command. This is not necessarily the lowest address 
loaded. If you have any external references before your START or 
CSECT instructions, you must specify the 'FROM entry1' operand on 
the GENMOD command to load your program properly. 

None. 

DMSMOD003E INVALID OPTION 'option' RC=24 
DMSMOD005E NO {FROMITO} ENTRY SPECIFIED RC=24 
DMSMOD021E ENTRY POINT 'name' NOT FOUND RC=40 
DMSMOD032E INVALID FILETYPE eft' RC=24 
DMSMOD037E DISK 'mode' IS READ/ONLY RC=36 
DMSMOD040E NO FILES LOADED RC=40 
DMSMOD070E INVALID PARAMETER 'parameter~ RC=24 
DMSMOD084E INVALID USE OF 'FROM' AND 'TO' OPTIONS RC=24 
DMSMOD105S ERROR Inn' WRITING FILE 'fn ft fa' ON DISK RC=100 
DMSSTT048E INVALID MODE 'mode' RC=24 
DMSSTT069E DISK 'mode' NOT ACCESSED RC=36 

Section 2. CMS Commands 103 



GLOBAL 

GLOBAL 

Use the GLOBAL co •• and to identify which CMS or eMS/DOS libraries are to 
be searched for macros, copy files, subroutines, or DOS executable 
phases when processing subsequent CMS commands. The format of the 
GLOBAL command is: 

GLobal 

!.b~: 

MACLIB 

TITLIB 

{ 

MACLIB } ( libnalle 1 ••• libname8] 
TITLIB 
DOSLIB 

precedes the specification of macro libraries that are to be 
searched for macros and copy files during the execution of 
language processor commands. The macro libraries may be CMS 
files or OS data sets. If you specify an OS data set, a 
FILEDEF command must be issued for the data set before you 
issue the GLOBAL command. 

precedes the specification of text libraries to be searched 
for missing subroutines when the LOAt or INCLUDE command is 
issued, or when a dynamic load occurs (that is, when an CS 
SVC 8 is issued). 

Note: Subroutines that are called by dynamic load should (1) 
ccntain only VCONs that are resolved within the· same text 
library member or (2) be resident in storage throughout the 
processing of the original CMS LOAt or INCLUDE command. 
Otherwise, the entry point is unpredictable. 

DOSLIB precedes the specification of DOS simulated core image 
libraries (that is, CMS/DOS phase libraries) to be searched 
for missing phases. This operand does not apply to system 
or private core image libraries residing on DOS/VS disks. 
DOSLIB can be specified regardless of whether the CMS/DCS 
environment is active or not. 

libname1 ••• are the filenames of up to eight libraries. Filetypes must 
be MACLIB, TITLIB, and DOSLIB, accordingly. The libraries 
are searched in the order in which they ~re named. If no 
library names are specified, the command cancels the effect 
of any previous GLOBAL command. 

1. A GLOBAL command remains in effect for an entire CMS session unless 
it is explicitly canceled or reissued. If a program failure forces 
you to IPL CMS again, you must reissue the GLOBAL command. 

2. There are no default libraries; 
libraries during every terminal 
command(s) in your PROFILE EXEC. 

if you wish to use the same 
session, place the GLOBAL 

104 IBM VM/370 CMS Command and Macro Reference 



Karch 30, 1979 

GLOBAL 

3. If you want to use an OS library during the execution of a language 
processor, you can issue a GLOBAL command to access the library, as 
long as you have defined the library via the FILEDEF command. If 
you want to use that library for more than one job, however, you 
should use the PERK option on the FILEDEF com.and, since the 
language processors clear nonpermanent file defin~tions. 

! 
4. You can find out what libraries have been specified by issuing the 

QUERY command with the KACLIB, TXTLIB, DOSLIB, or LIBRARY operands. 
(The LIBRARY operand requests a display of all libraries.) 

5. For information on creating and/or manipulating CMS libraries, see 
the discussion of the KACLIB, TXTLIB, and DOSLIB com.ands. 

None. 

DKSGLB002W FILE 'fn ft' NOT FOUND RC=28 
DMSGLB014E INVALID FUNCTION 'function' RC=24 
DKSGLB047E NO FUNCTION SPECIFIED RC=24 
D!!SGLB108S MORE THAN 8 LIBRARIES SPECIFIED RC=88 

Section 2. CKS Commands 105 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

HELP 

HELP 

The HELP command displays descriptions, formats, and parameters of CftS 
and CP commands and EXECs, and description of CftS and CP messages. 

r , 
HELP IIsg number I 

I 
I 

HELP 
r 

co.mand nalle I ftENU 
exec name 1 subcoamand 
filename L 

component name { IIEBO 
command name 
exec nalle 
subco •• and 

options: 

111 
FORM 
PARr! 
DESC 

r 
I , I , I 

I I 
.J I 

} 
L 

, 
(option ••• [ ) ]) I 

I 
I 
I 
I 
I 
I 
I 
I 

.J 

.J 

where: 

.sg nUllber 

!!~LP 

displays an explanation, reason, system action, user action, and 
return code as applicable for lIessages. Message text files for CP 
and CMS have the forll DMKnnnt or DMSnnnt respectively as the file 
nalle: 

nnn represents the specific number. 
t represents the message type. 

displays a description of the function of the HELP command, its 
syntax, keywords, operands, and options. HELP is the default if no 
parameters are specified. 

coaponent name 
identifies the specific component, such as CP or CftS, that is 
associated with this request. When you specify componen_t name, you 
must specify ftEaU, command, exec name, or subcommand. If it is not 
specified, it is ~reated as a CMS command request or a m~ssage 
request. 

I RENU 
I displays a list of those subcommand 'TEXT' files that are available 
I for a component, comlland, -or EXEC that supportssubcollmands~ 

command name 
identifies the specific command· to be displayed. 

106 IBM VM/370 CMS Command and -Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by supp. SD23-9023-1 for 5748-XX8 

HELP 

exec name 
identifies the specific EXEC name to be displayed. 

filename 
identifies any file that follows the HELP facility file naming 
conventions and contains HELP 'text' information to be displayed. 
See "Section 7. HELP Format Words" fer information on how to set 
up these files. 

subcommand 
identifies the specific subcommand of the command, filename, 
component, or EXEC specified as the first operand to be displayed. 

QEti.Q!l§: 

FORM 

PARM 

DESC 

displays all available informa tion. 

displays the syntax form of a command, subcommand, or EXEC. 

displays all applicable keywords, operands, or options for the 
specified command, subcommand, or EXEC~ 

displays a description of the function of the requested command, 
subcommand, or EXEC. 

!!§~g !!Qte§ 
1. If you specify aore than one option, only the first one is checked 

for validity. 

2. You can enter the CMS im.ediate co.mand HT when using a line-typing 
terminal to terminate a successful HELP command request. However, 
for graphic terminals, you can control the graphic display by 
typing the following input: 

NEXT (or PF10) 

BACK (or PF11) 

QUIT (or PF12) 

to display the next screen; if the 
current screen is the last, the HELP 
processing terminates. 

to scroll backwards in the file one 
screen at a time. 

to terminate the HELP facility 
execution. 

If program function keys are available, pressing the appropriate 
key as described above will perform the indicated function. The 
current screen will be redisplayed and the graphic terminal will 
sound an audible signal (if your terminal is equipped with that 
option) under the following conditions: 

• A terminal key other than those defined is pressed. -

• An incorrect response is entered. 

• The current screen b~ing displayed is the first screen of the 
file and the user requests BACK to view the previous screen. 

• The current screen being -displayed i$ the last screen . of the 
file and the user requests "EXT to view a- following screen .• 

Section 2. CftS Com.ands 106.1 



Pg. of GC20-1S18-2 Rev March 30, 1919 by Supp. SD23-9023-1 for 5148-XXS 

HELP 

If there is only a single screen of information available for 
display for a given HELP request, the audible signal sounds 
immediately after execution of the request. 

DMSHLP002E INPUT FILE(S) 'fn ft fm' NOT FOUND RC=28 
DftSHLP003E INVALID OPTION 'option' RC=24 
DMSHLP104S ERROR ff READING FILE 'fn ft fm' FROft DISK RC=104 
DMSHLP109E VIRTUAL STORAGE CAPACITY EXCEEDED RC=104 
DMSHLP250S I/O ERROR OR DEVICE ERROR RC=100 
DMSHLP251E HELP PROCESSING ERROR, CODE nnn 'description' RC=12 

~2g~ De§£~iE!!2n 

801 Output line too long. 
802 Format word paraaeter should be a number. 
S03 Invalid format word. 
S04 Format word parameter missing. 
805 Invalid format word parameter. 
806 Undent greater than indent. 
801 Excessive or negative space count generated. 
808 Numeric format word parameter is outside valid 

range. 

DMSHLP252E VALID OPTIONS ARE: DESC FORK PARM ALL RC=28 
DKSHLP907T I/O ERROR ON FILE 'fn ft fm' RC=256 

106.2 IBft VM/370 CMS Co.mand and Macro Reference 



Pg. of GC20-1818-2 Rev ~arch 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

INCLUDE 

INCLUDe 

Use the INCLUDE command to read one or more TEXT files (containing 
relocatable object code) from disk and to load them into virtual 
storage, establishing the proper linkages between the files. A LOAD 
co •• and must have been previously issued for the INCLUDE command to 
produce desirable results~ For information on the CftS loader and the 
handling of unresolved references, see the description of the LOAD 
command. The format of the INCLUDE command is: 

r--------------------------------------------------------------------------, INclude fn,... [(options., •• [)]] 

fn ••• 

Q~tiQA§': r , r , r , 
10RIGIN {heXIOC}' 

r , 
I!1AP , 
INOMAP I 
L .J 

r , 
I~Iltl I 
INOLIBEI 
L ~ 

ICLEAR I ,'RESET {e.ntry},' 
IHQ~~~ARI 
L ~ L ~ 

r , r , r 
ITYPE I lIN! I I}!EP 

I TRANS , 
L ~ 

, r , 
I I!!!IQ I 

I!!Q!!f~1 INOlNVI I NOREPI I NOAUTOI 
L .. L ~ L ~ L J 

r , 
[START] [SAME] Ig!!f I 

INODUPI 
L ~ 

are the names of the files to be loaded into storage. Files 
must have a filetype of TEXT and consist of relocatable object 
code such as that produced by the OS language processor. If a 
GLOEAL TXTLIE command has identified one or more TXTLlEs, fn may 
indicate the name of a TXTLIB member. 

QEiiQ~: If options vere specified with a previous LOAD or INCLUDE 
command, these options (with the exception of CLEAR and ORIGIN) 
remain set if SAME is specified when INCLUDE is issued. Otherwise, 
the options assume their default settings. If conflicting options 
are specified, the last one entered is in effect. 

CLEAR clears the load area in storage to binary zeros before the 
files are loaded. 

RQ~~~!R does not clear the load area before leading. 

RESET {en;ry} 

resets the execution starting point previously set by a LOAD 
or INCLUDE command. If entry is sFecified, the starting 
execution address is reset to the specified location. If an 
asterisk (*) is specified or if the RESET option is omitted, 
the loader input is searched for control sta te-ments. The 
entry point is selected from the last ENTRY statement 
encountered or from an assembler- - or compiler-produced E_ND 
statement. If none is found, a default entry point is 
selected as follows: if an asterisk was specified, the first 
byte of the first control section loaded by the INCLUDE 
command becomes the default entry point; 1f the RESE~ o~tion 
was omitted, the entry point defaults to the execution 
starting point previouslr set Hy a LOA~ or INCLUDE command. _ 

Section 2. CftS Commands 106.3 



March 30, 1919 

106.4 IBM Vft/310 CftS Co.mand and Macro Reference 



ORIGIN 

NOMAP 

TYPE 

{ 
heXloc} 
TRANS 

INCLUDE 

begins loading the program at the location specified by 
hexloc. The variable, hexloc, is a hexadecimal number of up 
to six characters. If this option is not specified, loading 
begins at the next available storage location. INCLUDE does 
not overlay any previously loaded files unless this option is 
specified and the address given indicates a location within a 
previously loaded object module. TRANS indicates that the 
file is loaded into the transient area. 

adds information to the load map. 

does not add any information to the load map. 

displays the load map of the files at the terminal, as well as 
writing it on the A-disk. This option is valid only if ~AP is 
specified or implied. 

~Q!I~~ does not display the load map at the terminal. 

I!! writes invalid card images in the LOAD MAP file. 

NOINV does not write invalid card images in the LOAt ~AP file. 

~jg writes Replace (REP) statement images in the LOAD ~AP file. 
See the explanation of the CMS LOAD command for a description 
of the Replace (REP) statement. 

NOREP sUPFresses the writing of Replace (REP) statements in the LOAD 
_MAP file. 

!!!!Q searches your disks for TEXT files to resolve undefined 
references. 

NOAUTO sUPFresses automatic searching for TEXT files. 

searches the text libraries defined by the GLOBAL command for 
missing subroutines. 

NOLIBE does not search any text libraries for unresolved references. 

START begins execution after loading is completed. 

SAME retains the same options (except ORIGIN and CLEAR) that were 
used by a previous INCLUDE or LOAD command. Otherwise, the­
default setting of unspecified options is assumed. If other 
options are specified with SA~E, they override previously 
specified options. _ (See Usage Note 1.) 

]!!g disFlays warning messages at your virtual console when a 
duplicate CSECT is encountered during processing. The 
duplicate CSECT is not loaded. 

NODUP does not display warning messages at-your virtual console when 
duplicate CSECTs are encountered during pr~cessing. The 
duplicate CSECT is not loaded. 

Section 2. C~S Commands 107 



INCLUDE 

1. If you have specified several nondefault options on the LOAD 
command, and you want those options to remain in effect, you should 
use the SAME option when you issue the INCLUDE command; fer 
example: 

include main subi data (reset main map start) 

brings the files named MAIN TEXT, SUBI TEXT, and DATA TEXT into 
virtual storage and appends them to files that were previously 
loaded. Information about these loaded files is added to the LOAD 
MAP file. Execution begins at entry point MAIN. 

load myprog (nomap nolibe norep) 

include mysub (map same) 
70 

During execution of the LOAD command, th~S~ile named MYPROG TEXT is 
brought into real storage. The following options are in effect: 
NOMAP, NOLIBE, NOREP, NOTYPE, INV, and AUTO. During execution of 
the INCLUDE com.and, the file named MYSUE TEXT is appended to 
MYPROG TEXT. The following options are in effect: 

MAP, NOLIBE, NOREP, NOTYPE, INV, AUTO 

2. When the INCLUDE command is issued, the loader tables are not 
reset. 

3. For additional information on the CMS loader, see the discussion of 
the LOAD command, or consult !~LllQ £~~ Q§~!~§ Qyid~. 

DMSLI0740I EXECUTION BEGINS ••• 

START was specified with INCLUDE and the loaded program has begun 
execution. Any further responses are from the program. 

INVALID CARD - xxx ••• xxx 

INV was specified with LOAD and an invalid card has been found. 
The message and the contents of the invalid card (xxx ••• xxx) are 
listed in the LOAD MAP file. The invalid card is ignored and 
loading continues. 

108 IBM VM/370 CMS Command and Macro Reference 



March 30, 1979 

DMSLGT0021 FILE Ifni TITLIB NOT FOUND RC=O 
rMSLI0001E NO FILENAME SPECIFIED RC=24 
DMSLI0002E FILE 'fn ft' NOT FOUND RC=28 
DMSLI0003E INVALID OPTION 'option' RC=24 
DMSLI0005E NO 'option' SPECIFIED RC=24 
DMSLI0021E ENTRY POINT 'name' NOT FOUND RC=40 

INCLUDE 

DMSLI0029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD 
RC=24 

DMSLI0055E NO ENTRY POINT DEFINED RC=40 
DMSLI0056E FILE 'fn ft' CONTAINS INVALID [NAMEIALIASIENTRYIESD] RECORD 

FORMATS RC=32 
DMSLI0099E CMS/DOS ENVIRONMENT ACTIVE RC=40 
DMSLI0104S ERROR 'nn' READING FILE 'fn ft fm' FRCM DISK RC=100 
DMSLI0105S ERROR 'nne WRITING FILE 'fn ft fm' ON DISK RC=100 
DMSLI0109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104 
DMSLI0116S LOADER TABLE OVERFLOW RC=104 
DMSLI0168S PSEUDO REGISTER TABLE OVERFLOW RC=104 
DMSLI0169S ESDID TABLE OVERFLOW RC=104 
DMSLI0201W THE FOLLOWING NAMES ARE UNDEFINED: RC=4 
DMSLI0202W DUPLICATE IDENTIFIER 'identifier' RC=4 
DMSLI0203W "SET LOCATION COUNTER" NAME 'name' UNDEFINED RC=4 
DMSLI0206W PSEUDO REGISTER ALIGNMENT ERROR RC=4 
DMSLI0907T I/O ERROR ON FILE 'fn ft fm' RC=256 

Section 2.-CMS Commands 109 



March 30, 1979 

LABELDEF 

lABElDEF 

Use the LABELDEFcommand to specify standard HDR 1 and EOF 1 tape label 
description information for CMS, CMS/DOS, and OS simulation. This 
command is required for CMS/DOS and CMS tape label processing. It is 
optional for as simulation but is needed if you want to specify a 
filename to be checked or the exact data to be written in any field of 
an output HDR1 and EOF1 label. The format of the LABELDEF command is: 

* 

LAbeldefl 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

filename 

CLEAR 

FID{ ? } 
fid 

VOLID volid 

{fi~ename } 
CLEAR 

r , 

IFID{ ? }' [VaLID vOlid] [VOLSER volseq] 
, fid, 
L .J 

[FSEQ fseq] [GENN genn] [GENV genv] 

(CRDTE yyddd] (EXDTE yyddd] 
[ (options ••• () ]] 
QE1i2!l§: 

r , 
[PERM ] '~!!!NG~ I 

INOCHANGEI 
L J 

r SEC{Q}' I 1 I 
I 3, 
L .J 

may be specified only with CLEAR. 
label definitions. 

It clears all existing 

is one of the following: 

ddname for FILEDEF files (OS simulation). 

filename in DTFMT macro (CMSjDOS simulation). 

labeldefid specified in the TAPEHAC or TAPPDS command or in 
the LABID field of the TAPESL macro (can be 1-8 characters). 

removes a label definition. 

LABELDEF filename CLEAR clears only the label definition for 
that filename. 

LABELDEF * CLEAR removes all existing -label definitions 
unless specified as PERM. 

supplies the file (data set for OS) i~entifie~ in the tape 
label. Use the FID ? form if t-he identifier exceeds 8 
characters (up to a maximum of 17) or the identifier contains 
special characters. The system responds by prompting you to 
supply the information. If the -file identifier does not 
exceed 8 characters, enter the fileid directly (FID-fid). -

is the volume serial number (1-6 numeric ~haracters). 

VOLSEQ volseq 
is the volume sequence number (1-4 numeric characters). 

110 IBM VM/370 CMS Command anq Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1919 by Supp. SD23-9023-1 for 5148-XX8 

LABELDEF 

FSEQ fseq 

GENN genn 

GENY genv 

CRDTE yyddd 

EXDTE yyddd 

SEC 

is the file (data set for OS) sequence number in the label 
(1-4 numeric characters) .• 

is the generation number (1-4 numeric characters). 

is the generation version (1-2 numeric characters) • 

is the creation date. 

is the expiration date. 

specifies security classification (0 , 1, or 3). See the IBM 
publication OSL!~ !~E~ ~~l§, GC26-3795, for the meaning of 
security classification on tape files. Note that this number 
has no effect on how the file is precessed. It is used only 
for checking or writing purposes. 

PERM retains the current definition until it either is explicitly 
cleared or is changed by a new LABELDEF command with the 
CHANGE option. If PERM is not specified, the definition is 
cleared when a LABELDEF * CLEAR command is executed. 

CHANGE merges the label definitions whenever a label definition 
already exists for a filename and a new LABELDEF command 
specifying the same filename is issued. In this situation, 
the options associated with the two definitions are merged. 
Options from the original definition remain in effect unless 
duplicated in the new definition. New options are added to 
the option list. 

NOCHANGE retains the current label definition, if one exists, for the 
specified filename. 

The following default values are used in output labels when a value is 
not explicitly specified: 

FID For OS simulation, fid is the ddname specified in the 
FILEDEF command for the file. 

For CMS/DOS, fid is the DTFMT symbolic-name. 

For the CMS TAPESL macro, fid is the LABELDEF specified in 
the LABID parameter. 

YOLID is CMS001. 

FSEQ is 0001. 

YOLSEQ is 0001. 

GENN is blanks. 

GENY is blanks. 

CRDTE is the date when the label is written. 

HXDTE is the date when the label is written. 

SEC is o. 

Section 2. eMS Commands 110.1 



Pg. of GC20-1818-2 Rev March 30, 1979 by SUpPa SD23-9023-1 for 5748-IX8 

LABELDEF 

1. If you want a field checked in an input label, you must specify it 
on your LABELDEF command for the label. If you do not specify a 
value for a particular field, this field is not checked at all for 
input. For output, any field you specify is written in the label 
exactly as you specify it on the LABELDEF command. If you do not 
specify a field for output, the default value for that field is 
written in the label. 

If you write the following LABELDEF command, 

labeldef filex fid master fseq 2 exdte 78285 

and use the state.ent for an input file, only the file identifier. 
file sequence number, and expiration date in HDR1 labels are 
checked. Error messages are issued when there fields in the tape 
label do not match those specified in the LABELDEF statement. If 
you use the same statement for an output file, the fields leave the 
following values: 

fileid 
file sequence number 
volume sequence number 
creation date 
expiration date 
security 
volume serial number 
generation number 
generation version 

MASTER 
0002 
0001 
date when label is written 
78285 
o 
CMS001 
blank 
blank 

2. If you issue LABELDEF without any operands, a list of all LABELDEFs 
currently in effect is displayed on your terminal. 

3. For as simulation, a LABELDEF statement may 
FILEDEF statement for a file. Use of a 
optional in this case. The statements 

filedef filez tap1 sl volid vol4 

be used as well as a 
LABELDEF statement is 

labeldef filez fid payroll fseq 2 exdte 78300 

define filez as a labeled tape file on tape 181. The volume serial 
is VOL4, the fileid is PAYROLL, and the file sequence number is 
0002. Expiration date is day 300 in 1978~ If you only use the 
FILEDEF com.and, you have only defined the VOLID (volume serial 
number). 

4. For CMS and eMS/DOS, a LABELDEF command is reguiLed. The command 

110.2 
-:. 

labeldef file14 valid supvol vseq 3 

defines a tape label with a volume serial_ of SUPVOL and a volume 
sequence number of 0003. This LABELDEF statement could be used by 
a CMS/DOS program containing a DTFMT macro with the for. 

FILE14 DTFMT ••• FILABL=STD, ••• 

or by a CMS program with a TAPESL macro similar to the following: 

TAPESL HOUT,181,iABID=PILE14 

A CMS TAPEMAC command could use the same LABELDEF as follows: 

tapemac maclib sl file14 

IBM VM/370 CMS Co~mand and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-X18 

L1BELDEP 

In all three preceding examples, the LABELDEF statement .ust be 
issued before the program or command is executed. 

s. See the section "Tape Labels in CMS" in the !~Ll1Q ~a Us~~§ §uig~ 
for more details on CMS tape label processing. 

DMSLBD003E INVALID OPTION-option RC=24 
DMSLBD029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' PIELD 

RC=24 
DMSLBD065E 'option' OPTION SPECIFIED TWICE RC=24 
D!SLBD066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24 
DMSLBD070E INV1LID PARAMETER 'parameter' RC=24 
DMSLBD221E INVALID DATA SET N1ME RC=24 
DMSLBD3241 NO USER DEFINED L1BELDEFS IN EFPECT RC=20 
D!SLBD7041 INVALID CLEAR REQUEST RC=24 

Section 2, CMS Commands 110.3 



Pg. of GC20-l8l8-2 Rev !arch 30, 1979 by supp~ SD23-9023-l for 5748-XX8 

LISTDS 

LISTDS 
j 

Use th~ LISTDS com.and to list, at your terminal, information about the 
data s$t~or files residing on accessed OS or DOS disks, or to display 
extent or free space information when you want to allocate space for 

. VSA·! files.; Tne forllat of theLISTDS cOllmand is: 

, 
I 
I· 

r , 
I 1 I [(options ••• [) ]] 

I LISTBS 
I 

Idsname I 
L .J 

{;1I } 2£1!.2M: 
[FORItAT] 
[PDS ] 
[ EXTENT] I 

I , 

1 

{;a} (FREE) 

indicates that you want to enter the OS data set name. DOS 
file-id, or VSA! data space nalle interactively. When you 
enter a question mark (1), eftS prompts you to enter the OS 
data set nalle, DOS file-id, or VSAft data space nalle exactly 
as it appears on the disk. This ferm allows you to enter 
naaes that contain embedded blanks or hyphens. 

dsname is the OS data set name or DOS file-id or VS1! data space 
nalle and takes the forll: 

qua11 [qua12 qualn] 

where quaIl, qua12, through qualn are one- to eight-character 
qualifiers nor.ally separated by periods. Each qualifier 
must be separated froll other qualifiers by blanks when you 
enter thea this way~ (See Usage Note 1.) 

f. is the file.ode of the disk to be searched for the specified 
file. If a dsname is not specified, a list of all the files 
or data sets on the specified disk is displayed. 

* indicates that you want all of your accessed DOS or OS disks 
searched for the specified data set or file. If a dsname is 
not specified, a list of all files on all accessed OS and DOS 
disks is displayed. 

QE!i~: The FREE and EXTENT options are mutuallY exclusive; the 
FORKAT and PDS options cannot be specified with .either PREE or 
EXTENT. 

FREE requests a display of all free space extents on 
ainidisk or on all accessed DOS and as disks. If 
the FREE option, you cannot specify a dsna.e. 

a specific 
you enter 

EXTENT requests a display of allocated extents for a.single file 
EX or for an entire disk or lIinidisk. If a dsname is specified, 

only the extents for that particular file or data set are 
listed; if fa is ~pecified as *, all disks are searched for 
extents occupied ~y that file~ . 

If a dsnaae is not specified, then a list of all currently 
allocated extents on .the specified disk, . or on all diSKS. is 
displayed. . 

110.4 IBM VK/370 CKS COllmand and Kacro Reference 



Karch 30, 1979 

LISTDS 

FORMAT requests a display of the date, disk label, filemode, and 
FO data set name for an OS data set as well as RECP!, LBECL, 

BLKSIZE, and DSORG information. Por a DOS file, LISTDS 
displays the date, disk label, filemode, and file-id, but 
g~ves no information about the RECPK, LRECL, and BLKSIZE (two 
blanks appear for each); DSORG is always PS. 

PDS displays the member names of referenced OS partitioned data 
sets. 

Por examples of the displays produced as a result of each of these 
options, see the "Responses" section, below. 

[saqg !2tes 

1. If you want to enter an as or DOS file identification on the LISTDS 
command line, it must consist of one- to eight-character qualifiers 
separated by periods. For example, the file TEST.INPUT.SOURCE.D 
could be listed as follows: 

2. 

listds test input source d * 
Or, you can enter the name interactively, as follows: 

listds ? * 
DMSLDS220R ENTER DATA SET NAME: 
test.input.source.d 

Note that when the data set name is entered interactively, it must 
be entered in its exact form; when entered on the LISTDS command 
line, the periods must be omitted. 

You must use the interactive fora to enter a DOS file-id that 
contains embedded blanks or hyphens. 

You should use the FREE option to determine 
available for allocation by VSAM when you are 
services. For example: 

listds * (free 

what free space is 
using access method 

requests a display of unallocated extents on all accessed OS or DOS 
disks. You can then use the EXTENT option o~ the DLBL com.and when 
you define the file for AMSERV. 

3. Full disk displays using the PREE option will display free 
alternate tracks as well as free space extents~ 

DMSLDS220R ENTER DATA SET NAME: 

This message prompts you to enter the data set name when you use 
the? operand on the LISTDS command. Enter the file identification 
in its exact form. A sample sequence might be: 

listds ? c 
DMSLDS220R ENTER DATA SET NAME: 
my.file.test 
FM DATA SET NAKE 
e MY.FILE.TEST 
R; 

Section 2. eMS Commands 111 



LISTDS 

The response shown above following the entry of the data set na.e 
is the same as the response given when you enter a data set name on 
the LISTDS command line. 

DMSLDS229I NO MEKBERS FOUND 

This ~essage is displayed when you use the PDS option and the data 
set has no members. 

DMSLDS233I NO FREE SPACE AVAILABLE ON 'fm' DISK 

This message is displayed when you use the FREE option and there is 
no free space available on the specified disk. 

R~2E~D2~§ !~ !h~ ~!I~!I QE!iQ~: A sample response to the EXTENT option 
is shown below. The headers and the type of information supplied are the 
saae when you request information for a specific file only, or for all 
disks. . 

listds g (extent 

EXTENT INFORMATION FOR 'VTOC' ON 'G' DISK: 
SEQ TYPE CYL-HD{RELTRK) TO CYL-HD{RELTRK) 
000 VTOC 099 00 1881 099 18 1899 

TRACKS 
19 

EXTENT INFORMATION FOR 'PRIVAT.CORE.IMAGE.LIB' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD{RELTRK) TRACKS 
000 DATA 000 01 1 049 18 949 949 

EXTENT INFORMATION FOR 'SYSTEM.iORK.FILE.NO.6' ON 'G' DISK: 
SEQ TYPE CYL-HD{RELTRK) TO CYL-HD{RELTRK) TRACKS 
000 DATA 050 00 950 051 18 987 38 

EXTENT INFORMATION FOR 'COBOL TEST PROGRAM' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD{RELTRK) TRACKS 
000 DATA 052 02 990 054 01 1027 38 

EXTENT INFORMATION FOR 'DKSQ01A' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD{RELTRK) TRACKS 
000 DATA 080 01 1521 081 00 1539 19 

or for a fixed-block device: 

EXTENT INFORMATION FOR 'DSQ01A' ON G DISK: 
SEQ TYPE REL-BLK TO REL-BLK I BLOCKS 
000 DATA 00500 00550 51 

SEQ indicates the sequence number assigned_ this extent when the 
extents were defined via the DLBL command._ CMS assigns the 
sequence numbers for VSAM data sets; the first extent set has a 
sequence of 000, ~he second extent has a sequence of 001, and so 
on. 

TYPE can have the following designations: 

II.E~ 
DATA 
VTOC 
SPLIT 
LABEL 
INDEX 
OVFLO 
MODEL 

!1~~ing 
Data area extent 
VTOC extent af the disk 
Split cylinder extent 
User label extent 
ISAM index area extent 
ISAM independent overflow area extent 
Model data set label in-the VToe. Does not define an extent 

112 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118 

LISTDS 

CYL-HD(RELTRK) TO CYL-HD(RELTRK) 
indicates the cylinder, head, and relative track numbers of the 
start and end tracks of this extent. 

TRACKS indicates the number of tracks in the extent. 

REL-BLK TO REL-BLK 
indicates the relative block numbers of the start and end of the 
extent. 

BLOCKS indicates the number of blocks in the extent. 

Section 2. cas Commands 112.1 



March 30, 1979 

112~2 IBM VM/370 CMS Co •• and and-Macro Reference 



_~_ -_ ~ __ .., .""."" .......... " Uy ... "'u ..JV, IJIJ lJ:J wU,t',t'. ';)lJ~~-;JV"~- I .1.V.1. ;;)1"0-"\"\0 

LISTDS 

g~§E2B§~ 12 !~~ FRE~ ~E1ioB: A sample response to the FREE option is 
shown below. The same headers and type of information is shown when you 
request free information for all accessed disks. 

listds g (free 
FREESPACE EXTENTS 
CYL-HD(RELTRK) TO 
052 00 988 
054 02 1028 
081 01 1540 

Fa R ' G' DISK: 
CIL-HD (RELTRK) 
052 01 989 
080 00 1520 
098 18 1880 

or for a fixed-block device: 

listds g (free 
FREESPACE EXTENTS FOR 'G' DISK: 
REL-BLK TO REL-BLK BLOCKS 

501 1330 830 
10310 29610 19301 
68990 69990 1001 

!h~: 

CIL-HD(RELTRK) TO CIL-HD(RELTRK) 

TRACKS 
2 

493 
341 

indicates the cylinder, head and relative track numbers of the 
starting and ending track in the free extent. 

TRACKS indicates the total nu_ber of free tracks in the extent. 

REL-BLK TO REL-BLK 
indicates the relative block number of the start and end of 
extents that are free on the fixed-block device. 

BLOCKS indicates the total number of blocks contained in each extent. 

~~§E2n§~ 12 1h~ !OR~!! gn~ PD~ QE1i2n§: If you enter the FORftAT and PDS 
options, you receive information similar to the following: 

listds d (fo pds) 

RECFM LRECL BLKSI DSORG DATE LABEL FM DATA SET NAME 
FB 80 800 PO 01/31/75 OSSISl D SIS1.ftACLIB 

MEftBER NAMES: 
ABEND ATTACH BLDL BSP CLOSE DCB DETACH DEVTIPE 
FIND PUT READ WRITE XDAP 
RECFM LRECL BLKSI DSORG DATE LABEL FM DATA SET NAME 

F 80 

DMSLDS002E 
DMSLDS003E 
DMSLDS048E 
DMSLDS069E 
DMSLDSl17E 
DMSLDS221E 
DMSLDS222E 

DMSLDS223E 
DMSLDS 226E 
DMSLDS227W 

DMSLDS 231E 

80 PS 01/10/75 OSSISl 

DATA SET NOT FOUND RC=28 
INVALID OPTION 'option' RC=24 
INVALID MODE 'mode' RC=24 
DISK 'mode' NOT ACCESSED RC=36 

D SAMPLE 

INVALID EXTENT FOUND FOR 'data set name'- ON 'fm'- DISK RC=24-
INVALID DATA SET NAME RC=24 
I/O ERROR READING 'data set name' FROM {fmIOSIDOS} DISK 
RC=28 
NO FILEMODE SPECIFIED RC=24 
NO DATA SET NAME AiLOWED WITH-FREE OPTION RC=24 
INVALID EXTENT FOUND FOR 'datasetname' ON {fmIOSIDOS} DISK 
RC=4 
I/O ERROR READING VTOe FROft {f*,OSIPOS} DISK RC=28 

section 2. CMS Commands 113 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748.,..XX8 

LISTFILE 

LISTFILE 

Use the LISTFILE com.and to obtain specified information about CftS files 
residing on accessed disks. The format of the LISTFILE command is: 

Listfile 
r r r ", 
I fn I ft I fm I II [(options ••• [) ]] 
1* 1* 1* III 
L L L .J.J.J 

2E1ion2: r , 
I Header I 
INOHeaderl 
L .J 

r , 
IExec I 
IAPpendl 
L .J 

r , 
IFName I 
IFType , 
IIMode I 
IFOrmatl 
IALloc I 
IDate I 
,Label I 
L .J 

fn is the filename of the files for which information is to be 
collected. If an asterisk is coded in this field, all filenames 
are used. If you code an asterisk preceded by any number of 
characters, then files that begin with the specified characters are 
listed. 

ft is the filetype of the files for which information is to be 
collected. If an asterisk is coded in this field, all filetypes 
are used. If you code an asterisk preceded by any number of 
characters, then files that begin with the specified characters are 
listed. 

fm is the filemode of the files for which information is to be 
collected. If this field is omitted, only the A-disk is searched. 
If an asterisk is coded, all disks are searched. 

HEADER 

NOHEADER 

includes column headings in the list~ng. HE_DER is ~he 
default if any of the supplemental information options 
(FORMAT, ALLOCATE, DATE, or LABEL) are specified. - The 
format of the heading is: 

FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS DATE ~IME LABEL 

does not include column headings ~n the list~ NOHEADER is 
the default if only filename, filetype, - or filemode 
information is requested. 

114 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 574S-XXS 

LISTPILE 

EXEC 

APPEND 

creates a CMS EXEC file of SO- or 88-character records (one 
record for each of the files that satisfies the given file 
identifier) on your A-disk. An SO-character record file is 
created unless you specify the LABEL option, in which case 
an S8-character record file is created. If a CBS EXEC 
already exists, it is replaced. The header is not included 
in the file. 

creates a CMS EXEC and appends it to the existing CMS EXEC 
file. If no CMS EXEC file exists, cne is created. 

Information R~Y!§! ~!!Qn§: Only one of these options need be 
speclfied:- If one is specified, any options with a higher priority 
are also in effect. If none of the following options are specified, 
the default information request options are in effect. 

PNAME 

FTYPE 

PMODE 

FORMAT 

ALLOC 

DATE 

LABEL 

creates a list containing only filenames. Option priority 
is 7. 

creates a list containing only filenames and filetypes. 
Option priority is 6. 

creates a list containing filenames, 
filemodes. Option priority is 5. 

filetypes, and 

includes the record format and logical record length of the 
of each file in the list. Option priority is 4. 

includes the amount of disk space that CMS has allocated to 
the specified file in the list. The quantities given are 
the number of SOO-byte blocks and the number of logical 
records in the file. Option priority is 3. 

includes the date the file was last written in the list. 

The form of the date is: 

aonth/day/year hour:minute 

for 800-byte block disks, or: 

month/day/year hour:minute:second 

for all other format sizes. 

Option priority is 2. 

includes the label of the disk on which the file resides i~ 
the list. Option priority is 1. 

Section 2. CMS Commands 115 



LISTFILE 

1. If you enter the LISTFILE command with no operands, a list of all 
files on your A-disk is displayed at the terminal. If you enter: 

listfile a* f* c 

you might see the display: 

AARDVARK FILE CS 
ANNA FILEDATA C1 
AUTHOR FLINDEX C1 

2. If you request any additional information with the supple.ental 
information options, that information is also displayed, along with 
the header. 

3. When you use the EXEC or APPEND option, the CftS EXEC 11 that is 
created is in the format: 

pa &2 filename filetype f ••• ~ 

where column 1 is blank. 

If you use any of the supplemental infarmation options, that 
information is included in the EXEC file. For information on using 
CMS EXEC files, see the ~LJ70 ~MS ~!§ ~y!~~. 

4. You can invoke the LISTFILE command froll the terminal, from an EXEC 
file, or as a function from a program. If LISTFILE is invoked as a 
function or fro. an EXEC file that has the &CONTROL NO!SG option in 
effect, the DMSLST002E FILE NOT FOUND error message is not issued. 

If the EXEC or APPEND option is not specified, the requested information 
is displayed at the terminal. Depending on the options specified, or 
discussed above, the information displayed is: 

FILENAME FILE TYPE FM FORMAT LRECL BECS BLOCKS 
{F} 

DATE TIME IAEEL 

fn ASSEMBLE f. {V} lreel norees nohlks mm/dd/yy hh:ma:ss volid 

fn 

ft 

fm 

lrecl 

norees 

noblks 

is the filename of the file. 

is the filetype of the file. 

is the filellode of the file 

is the file format: F is fixed-length, V is variable-
length. 

is the lo~ical record length of the lar.gest record in the' 
file. 

is the number of logic~l records in the file. -

is the number of physical blocks that the file occupies 
on disk. 

116 IBM VM/370 CKS Command and Macro Reference 

./ 



Pg •. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-X18 

LISTFILE 

mm/dd/yy is the date (month/day /year) that the file was last 
updated. 

hh:mll:ss is the time (hours: minutes: seconds) that the file was 
last updated. 

volid is the volume serial number of the virtual disk on which 
the file resides. 

One entry is displayed for each file listed. 

Section 2. C~S Commands 116.1 



March 30, 1979 

116.2 IBM VM/370 CMS Command and Macro Reference 



DMSLST002E FILE NOT FOUND RC=28 
DMSLST003E INVALID OPTION 'option' RC=24 
DMSLST037E DISK 'mode" IS READ/ONLY RC=36 
DMSLST048E INVALID MODE 'mode' RC=24 
DMSLST066E 'oFtion' and 'option' ARE CONFLICTING OPTIONS RC=24 
DMSLST069E DISK 'mode' NOT ACCESSED RC=36 
DMSLST070E INVALID PARAMETER 'parameter' RC=24 
DMSLST10SS ERROR 'nne WRITING FILE 'fn ft fm' ON DISK RC=100 

LISTFILE 

Section 2. eMS Commands 117 



LISTIO 

LISTIO 

Use the LISTIO command in CMS/DOS to display a list of current 
assignments for system and/or programmer logical units in your virtual 
machine. The format of the LISTIO command is: 

LISTIO 
SYS 
PROG 
SYSxxx 
A 

[ (options,. ' •• [) l} 

UA 
!11 

2l!!i2!!§: 
r , 
IEXEC I 
IAPPENDI 
L .J 

[ STAT] 

SYS requests a list of the physical devices assigned to all system 
logical units. 

PROG requests a list of the physical devices assigned to programmer 
logical units SYSOOO through SYS241. -

SYSxxx requests a display of the physical device assigned to the 
particular logical unit specified. 

A requests a list of only those logical units that have been 
assigned to physical devices. 

UA requests a list of only those logical units that hav~ not been 
assigned to physical devices; that is, that are unassigned. 

!11 requests a list of the physical units assigned to all system and 
programmer logical units. If no operand is specified# ALL is the 
default. 

Q£!~Q~§: The EXEC and APPEND options are mutually exclusive; if both 
are entered on the command line, the last one entered is in effect. 

EXEC erases the existing $LISTIO EXEC file, if one exists, and 
creates a new one. 

APPEND adds new entries to the end of an existing. $LISTIO EXEC file. 

STAT 

If no $LISTIO EXEC file exists, a new one is created. 

lists the status (read-only or read/write) of all disk devices 
currently assigned. 

!!§~.9~ lrQte.§ 

1. Logical units are assigned and unassigned with. the ASSGN command. 
For a list of logical units and valid device types, see the 
discussion of the ASSGN command. 

2. The $LISTIO EXEC contains one record for each logica~ unit listed. 
The format is: 

& 1 &2 SYSxxx { device .} 
mode [status] .. 

where column 1 is blank. 

118 IBM VM/310 CMS Command and Macro Reference 



LISTIO 

Depending on the operands specified, the following is displayed for each 
unit requested in the LISTIO command: 

SYSxxx {deVice .} 
mode [status] 

where device is the device type (READER, PRINTER, PUNCH, TERMINAL, TAPn, 
IGN, or UA). If the ~evice is a disk, the one-character mode letter is 
displayed. If the STAT option is specified, the status (R/O or R/W) is 
also displayed. 

DMSLLU003E INVALID OPTION 'option' RC=24 
DMSLLU006E NO READ/WRITE 'A' DISK ACCESSED RC=36 
DMSLLU070E INVALID PARAMETER 'parameter' RC=24 
DMSLLU099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40 
DMSLLU105S ERROR 'nne WRITING FILE '$LISTIO EXEC Al' ON DISK RC=100 

Section 2. CMS Commands 119 



LOAD 

LOAD 

Use the LOAD command to read one or more CMS or as TEXT files 
(containing relocatable object code) from disk and to load them into 
virtual storage, establishing the proper linkages between the files. 
The format of the LOAD command is: 

LOAD 

fn ••• 

fn ••• [(options., •• [) ]] 

r , 
'~!f , 
INOMAPI 
L .J 

r , 
ICLEAR I 
I!!Q~1~!!i1 
L .J 

r , 
ITYPE I 
I!!Q!!~~I 
L .J 

r , 
11IBE , 
INOLIBEI 
L .J 

[START] 

r , r , 
,ORIGIN { heXIOc}, : RESET {en;ry }: , TRANS , 

L .J L .J 

r , 
II!!! I 
INOINVI 
L .J 

r , 

I!HI~ I 
tNODUPI 
L .J 

r , 
IB~~ I 
INOREPI 
L .J 

r , 
IAUTQ I 
INOAUTOI 
L .J 

specifies the names of the files to be loaded into storage. The 
files must have a filetype of TEXT and consist of relocatable 
object code such as that produced by the OS language processors. 
If a GLOBAL TXTLIB command has been issued, fn may indicate the 
name of a TXTLIB member. 

QE112~§: If conflicting options are specified, the last one entered 
is in effect. Options may be overridden or added when you use the 
INCLUDE command to load additional TEXT files. 

CLEAR clears the load area in storage before the object files are 
loaded. Whole page frames are released; the remainder of 
storage that is not on a page boundary is set to binary 
zeros. 

!!Q£1~AR does not clear the load area before leading. 

RESET 

ORIGIN 

{en!ry } 

sets the starting location for the programs currently loaded. 
The operand, entry, must be an external name (for example, 
CSECT or ENTRY) in the loaded programs. If RESET is not 
specified, the default entry point is u~ed. '(See Usage Note 
4.) If * is entered the results are the-same as if the RESET 
option were omitted. 

Note: The RESET option should not be used when loading TEXT 
fIles created by any of the follow~ng OS/VS language 
processors under CMS: OS Code and Go FORTRAN, as FORTRAN I-V 
(G1), OS FORTRAN IV (H) Extended, OS/VS COBOL Compiler and 
Library, OS Full American National Standard COBOL Version 4 
Compiler and Library. 

{ 
hexloc } 
TRANS 
loads the program beginning at the location specified by-­
hexloc; this location must be in the CMS nucleus transient 
area or in the user area. The location~ hexloc, is' a 

120 IBM VM/370 CMS Command and Macro Reference 



LOAD 

hexadecimal number of up to six characters. If TRANS is 
specified, the file is loaded into the CMS nucleus transient 
area. If ORIGIN is not specified, loading begins at the 
first available storage location in the user program area. 

~~1~: Any program loaded into the transient area must have a 
starting address of X'EOOO'. See the discussion of the 
GENMOD command for information on loading programs in the 
transient area. 

~!l writes a load map on your A-disk~ named LOAD MAP AS. 

NOMAP does not create the LOAD MAP file. 

TYPE displays the load map at your terminal, as well as writing it 
on the A-disk. This option is valid only if the MAP option 
is in effect. 

!Q!If! does not display the load map at the terminal. 

1M! includes invalid card images in the load map. 

NOINV does not include invalid card images in the load map. 

!]l includes Replace (REP) statements in the load map. 

NOREP does not include the Replace (REP) statements in the load 
maF· 

searches your virtual disks for iEXT files to resolve 
undefined references. 

NOAUTO sUFpresses automatic searching for TEXT files. 

11~~ searches the text libraries for missing suhroutines. If text 
libraries are to be searched for TEXT files, they must 
previously have heen defined by a GLOEAL command. 

NOLIBE does not search the text libraries for unresolved references. 

START executes the program being loaded when loading is completed. 
LOAD does not normally begin execution of the loaded files. 
To begin execution immediately upon successful completion of 
loading, specify START. Execution hegins at the default 
entry point. (See Usage Note 4.) 

~Yf displays warning messages at your terminal when a duplicate 
CSECT is encountered during process~ng. T~e duplicate CSECT 
is not loaded. (See Usage Note 3.) 

NODUP 

Y§A9~ !f~1~§ 

does not display warning messages _ at your terminal when 
dUFlicate CSECTs are encountered during processing. The 
duplicate CSECT is not loaded. 

1. You must have a read/write CMS A-disk accessed when you issue the 
LOAD command; the loader creates a temporary workfile named DMSLDR 
SYSUT1 and writes ~t on the A-disk. 

Section 2. CMS Commands 121 



LOAD 

2. Unless the NOMAP option is specified, a load map is created on the 
A-disk each time the LOAD command is issued. A load map is a file 
that contains the location of control sections and entry points ef 
files loaded into storage. This load map is named LOAD MAP A5. 
Each time LOAD is issued, a new LOAD MAP file replaces any previous 
LOAD MAP file. 

If invalid card images exist in the file or files that are being 
loaded, they are listed with the message INVALID CARD in the LOAD 
MAP file. To suppress this listing in the load map, use the NOINV 
option. 

If Replace (REP) statements exist in the file being loaded, they 
are included in the LOAD MAP file. To suppress this listing of REP 
statements, specify the NOREP option. 

If the ENTRY or LIBRARY control cards are encountered in the 
file, the load map contains an entry: 

CONTROL CARD-

listing the card that was read. 

Mapping of any common areas that exist in the loaded files will 
occur when the program is prepared for execution by the START or 
GENMOD command or by the START option of the LOAD or INCLUDE 
command. An updated load map may be displayed prior to program 
execution if the START command is issued with the NO option to 
suppress execution. 

3. Duplicate CSECTs (control sections) are bypassed by the loader. 
Only the first CSECT encountered is physically loaded. The 
duplicates are not loaded. A warning message is displayed at your 
terminal if you specified the DUP option. If a section contains an 
ADCON that references a duplicate CSECT that has not been loaded, 
that ADCON may be resolved incorrectly. 

4. The loader selects the entry point for the loaded program according 
to the following hierarchy: 

• Frem the parameter list on the START command 

• From the last RESET operand in a LOAD or INCLUDE command 

• From the last ENTRY statement in the input 

• From the last LOT statement in the input 

• From the first 
that specifies 
input 

assembler- or compiler-produced END statement 
an entry point if no ENtRY stat_ement is in the 

• From the first byte of the first control section of the loaded 
program if there is no ENTRY statement and - no assembler- or 
compiler-produced END statement specifying an entry point 

5. The LOAD command should not be used to execute programs containing 
DOS macros. To link-edit and execute programs in the CMS/DeS 
environment, use the DOSLKED and FETCH commands. 

6. See Figure 9 for an illustration- of the loader search order. The 
loader uses this search order to locate the filename on the LOAD -­
and INCLUDE command lines, as well as in the hand-ling of unresolved 
references. 

122 IBM VM/370 CMS Command and Macro Reference 



r 
I 
I 
I 
I 
I 

Use standard order of search to 
locate the TEXT files specified 
by fn ••• 

* . * Any * 
*" unresolved * NO 

* references * 
*- 'I * 

* · · * 
* IYES 
I 

· * · 
* Is * 

* NOAUTO * YES 

* specified * 
* 'I * 

* · * 
* INO 
I 

Use standard order of search to 
locate files with a file type of 
TEXT and a filename correspond-
ing to the unresolved reference 

1< 
I 

· * '. . * Any * 
* unresolved * NO 

* references * 
* 'I * 

* · · * 
* IYES 
I 

· * · 
* Is * 

* NOLIBE * YES 

* specified * 
* 'I * 

* · * 
* INO 
I 

Search-active text libraries 
(those that were previously 
specified by a GLOBAL command). 
Files are searched in the ord"er 

LOAD 

Search 
complete 

Search 
complete 

Search 
complete 

-, 

I 
they are entered in the command. I 

Search complete 

Figure 9. Loader Search Order 

Section 2. CMS Commands 123 



LOAD 

7. The CMS loader also loads routines called dynamically by OS LINK, 
LOAD, and XCTL macros. Under certain circumstances, an incorrect 
entry point may be returned to the calling program. See the !~Ll1~ 
£~~ y§~~~§ §Y!Q~ for more details. 

LOADER CONTROL STATEMENTS 

You can add loader control statements to TEXT files either by editing 
the. or by punching real cards and adding them to a punched text deck 
before reading it into your virtual machine. The seven control cards 
recognized by the CMS loader are discussed below. 

The ENTRY and LIBRARY cards, which are discussed first, are similar 
to the as linkage editor control statements ENTRY and LIBRARY. The ces 
ENTRY and LIBRARY statements must be entered beginning in column 1. 

ENTRY Statement: The ENTRY statement specifies the first instruction to 
be-eiecnted:--It can be placed before, between, or after object modules 
or other control statements. The format of the ENTRY statement is shown 
in Figure 10. The external name is the name of a control section or an 
entry name in the input deck. It must be the name of an instruction, 
not of data. 

ENTRY I external name 

Figure 10. ENTRY Statement Format 

11BR!!I ~!g!~~~~!: The LIBRARY statement can be used to specify the 
never-call function. The never-call function (indicated by an asterisk 
(*) as the first operand) specifies those external references that are 
not to be resolved by the automatic library call during any loader step. 
It is negated when a deck containing the external name referred to is 
included as part of the input to the loader. The format of the LIBRARY 
statement is shown in Figure 11. The external reference refers to an 
external reference that may be unresolved after input processing. It is 
not to be resolved. Multiple external references within the parentheses 
must be separated by commas. The LIBRARY statement can be placed 
before, between, or after object decks or other control statements. 

LIBRARY * (external reference) 

Figure 11. LIBRARY Statement Format 

1~ad~~ ±~£~i~g!~ (1R~) 2!~!gmgn!: The LOT statement is used in _ a text 
library as the last record of a member. It indicates to the loader that 
all records for that member were processed. Th~ LDT statement can 
contain a name to be used as the eQtry point for the loaded member. The 
LDT statement has the format shown in Figure 12. 

124 IBM VM/370 CMS Command and Macro Reference 



LOAD 

r----------------------------------------------------------------------------, 
Column Contents 

1 X'02' (12-2-9 punch). 
Identifies this as a loader control statement. 

2-4 LDT -- identifies type of statement. 

5-16 Not used. 

17-24 Blank or entry name (left-justified and padded with 
blanks to eight characters) • 

25 Blank. 

26-33 May contain informatiorr specified on a SETSSl card 
processed by the TXTLlB command. 

34-80 Not used. 

Figure 12~ LDT Statement Format 

l~clyg~ ~~~!~£1 ~~1iQn (!£~) ~1~1g~gQ1: The Ies statement changes the 
length of a specified control section or defines a new control section. 
It should be used only when REP statements cause a control section to be 
increased in length. The format of an lCS statement is shown in Figure 
13. An lCS statement must be placed at the front of the file or TEXT 
file. 

Column Contents 

1 X'02' (12-2-9 punch). 
Identifies this as a loader control statement. 

2-4 ICS -- identifies the type of load statement. 

5-16 Blank. 

17-22 Control section name -- left-justified in these columns. 

23 Blank. 

24 (comma). 

25-28 Hexadecimal length in bytes of the control section. This 
must not be less than the actual length of the previously 
specified control section. It must be right-justified in 
columns with unused leading columns filled with zeros. 

29 Blank. 

30-72 Maybe used for comments or left blank. 

73-80 Not us~d by the loader. You may lea~e these columns blank 
or insert progr~m.identification for your own conven~ence. 

Figure 13~ ICS Statement Forma~ 

Section 2. CMS Commands 125 



LOAD 

Set Location counter (~1~) ~!~!~m~~!: The SLC statement sets tne 
locatIon-counter--used with the loader. The file loaded after the SLC 
statement is placed in virtual storage beginning at the address set by 
this SLC statement. The SLC statement has the format shown in Figure 
14. It sets the location counter in one of three ways: 

1. With the absolute virtual address specified as a hexadecimal number 
in columns 7-12. 

2. With the symbolic address already defined as a 
entry point •. This is specified by a symbolic 
columns 17-22. 

program name 
name punched 

er 
in 

3. If both a hexadecimal address and a symbolic name are specified, 
the absolute virtual address is converted to binary and added to 
the address assigned to the symbolic name; the resulting sum is 
the address to which the loader's location counter is set. For 
example, if 0000F8 was specified in columns 7-12 of the SLC card 
image and GAMMA was specified in columns 17-22, where GAMMA has an 
assigned address of 006100 (hexadecimal), the absolute address in 
columns 7-12 is added to the address assigned to GAMMA giving a 
total of 0061F8. Thus, the location counter would be set to 
0061 F8 • 

Column contents 

1 X'02' (12-2-9 punch). 
Identifies this as a loader control statement. 

2-4 SLC - identifies the type of load statement. 

5-6 Blank. 

7-12 Hexadecimal address to be added to the value of the symbol, 
if any, in columns 17-22. It must be right-justified in 
these columns, with unused leading columns filled with 
zeros. 

13-16 Blank. 

17-22 Symbolic name whose assigned location is used by the 
leader. Must be left-justified in these columns. If blank, 
the address in the absolute field is used. 

23 Blank. 

24-72 May be used for comments or left blank. 

73-80 Net used by the loader. You may leave these columns 
blank or insert p~ogram identification for your own 
convenience. 

Figure 14. SLC Statement Format 

126 IBM VM/370 CMS Command and Macro Reference 



LOAD 

£~£1~£~ (£!R) ~!g!g!gn!: A REP statement allows instructions and 
constants to he changed and additions made. The REP statement must he 
punched in hexadecimal code. The format of a REP statement is shown in 
Figure 15. The data in columns 17-70 (excluding the commas) replaces 
what has already been loaded into virtual storage, beginning at the 
address specified in columns 7-12. REP statements are placed in the 
file either (1) immediately preceding the last statement (END statement) 
if the text deck does not contain relocatable data such as address 
constants, or (2) immediately preceding the first RLD (relocatable 
dictionary) statement if there is relocatable data in the text deck. If 
additions made by REP statements increase the length of a control 
section, an ICS statement, which defines the total length of the control 
section, must be placed at the front of the deck. 

Column 

1 

2-4 

5-6 

7-12 

contents 

X' 02' (12-2-9 punch). 
Identifies this as a loader control statement. 

REP -- identifies the type of load statement. 

Blank. 

Hexadecimal starting address of the area to be replaced as 
assigned by the assembler. It must be right-justified 
in these columns with unused leading columns filled with 
zeros. 

13-14 Blank. 

15-16 ESID (External Symbol Identification) -- the hexadecimal 
number assigned to the control section in which replacement 
is to be made. The LISTING file produced by the compiler 
or assembler indicates this number. 

17-70 A maximum of 11 four-digit hexadecimal fields, separated by 
commas, each replacing one previously loaded halfword (two 
bytes). The last field must not be followed by a comma. 

71-72 Blank. 

73-80 Not used by the loader. This field may be left blank or 
program identification may be inserted. 

Figure 15. REP Statement Format 

~~! R~~~ ~g~~gg!I (~R~) ~!g!g!~n!: An SPB statement instructs the loader 
to update the location counter to point to the next page boundary. The 
SPB statement has the format shown in Figure 16. 

Section 2. CMS Commands 127 



LOAD 

Column Contents 

1 X'02' (12-2-9 punch). 
Identifies this as a loader control statement. 

2-4 SPB identifies the type of load statement. 

5-80 May be used for comments or left blank. 

Figure 16. SPB Statement Format 

DMSLI0740I EXECUTION BEGINS ••• 

START was specified with LOAD and the loaded program starts 
execution. Any further responses are from the program. 

INVALID CARD - xxx ••• xxx 

INV was specified with LOAD and an invalid statement was found. 
The message and the contents of the invalid statement (xxx ••• xxx) 
are listed in the file LOAD MAP. The invalid statement is ignored 
and loading continues. 

DMSLGT0021 FILE 'fn TXTLIB' NOT FOUND RC=O 
DMSLI0001E NO FILENAME SPECIFIED RC=24 
DMSLI0002E FILE 'fn ft' NOT FOUND RC=28 
DMSLI0003E INVALID OPTION 'option' RC=24 
DMSLI0005E ~O 'option' SPECIFIED RC=24 
DMSLI0021E ENTRY POINT 'name' NOT FOUND RC=40 
DMSLI0029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD RC=24 
DMSLI0055E NO ENTRY POINT DEFINED RC=40 
DMSLI0056E FILE 'fn ft' CONTAINS INVALID [NAMEIALIASIENTRYIESD] RECORD 

FORMATS RC=32 
DMSLI0099E CMS/DOS ENVIRONMENT ACTIVE RC=40 
DMSLI0104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100 
DMSLI0105S ERROR 'nn' WRITING FILE 'fn ft fm' ON DISK RC=100 
DMSLI0109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104 
DMSLI0116S LOADER TABLE OVERFLOW RC=104 
DMSLI0168S PSEUDO REGISTER TABLE OVERFLOW RC=104 
DMSLI0169S ESDID TABLE OVERFLOW RC=104 
DMSLI0201W THE FOLLOWING NAMES ARE UNDEFINED: RC=4 
DMSLI0202W DUPLICATE IDENTIFIER 'identifier' RC=4-
DMSLI0203W "SET LOCATION COUNTER" NAME 'name' UNIEFINE~ RC=4 

'DMSLI0206W PSEUDO REGISTER ALIGNMENT ERROR RC=4 
DMSLI0907T I/O ERROR ON FILE 'fn ft fm' RC=256 
DMSSTT062E INVALID * IN FILEID RC=20 

128 IBM VM/370 CMS Command and Macro Reference 



LOADMCD 

LOADMOD 

Use the LOADMOD command to load a 
must be in nonrelocatable format as 
format of the LOADMOD command is: 

MODULE file into storage. The file 
created by the GENMOD command. The 

fn 

LOADMod fn [MODULE [fm]] 
[ *]] 

is the filename of the file to be loaded into storage. 
filetype must be MODULE. 

The 

fm is the filemode of the module to be loaded. If not specified, cr 
specified as an asterisk, all your disks are searched for the file. 

!!2~~ !i.Q:t~2 

1. You can use the LOADMOD command when you want to debug a CMS MODULE 
file. After the file is loaded, you may set address stops or 
breakpoints before you begin execution with the START command; for~ 
example: 

loadmod progl 
cp adstop 210ae 
start 

2. If a MODULE file was created using the DOS option of the GENMeD 
command, the CMS/DOS environment must be active when it is loaded. 
If it was created using the OS option (the default), the CMS/DeS 
environment must not be active when it is loaded. 

3. MODULE files created with the ALL option, or with SYSTEM option and 
loaded into the transient area, may be loaded regardless of whether 
the CMS/DOS environment is active. If the LOADMOD command is 
called from a program, the loading is also done regardless of 
whether the CMS/DOS environment is active. 

None. 

DMSMOD001E NO FILENAME SPECIFIED RC=24 
DMSMOD002E FILE 'fn ft' NOT FOUND RC=28 
DMSMOD032E INVALID FILETYPE 'ft l RC=24 
DMSMOD070E IN,ALID PARAMETER 'parameter l - RC=24 
DMSMOD104S ERROR 'nnl READING FILE Ifn ft fm' FROM DISK RC=100-
DMSMOD109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104 
DMSMOD114E 'fn ft fm' NOT LOADED; CMS/DOS ENVIRONMENT [NOT] ACTIVE-

RC=40 or RC=-0005_ _ 
DMSMOD116S LOADER TABLE OVERFLOW RC=10~ 
DMSSTT048E INVALID MODE Imode' RC=24 

Section 2. CMS Commands 129 



M1CLIB 

MACLIB 

Use the MACLIB command to create and modify CftS macro libraries. The 
format of the MAC LIB command is: 

MAClib 

{
GEN} ADD libname fn1[fn2 ••• ] 
REP 

DEL libname membername1(membername2 ••• ] 

COMP libnalle 

MAP libname [(options ••• [) ]] 

.Q,E!!.QIl.§: 
r , 
ITERM I 
IRI~JS I 
IPRINTI 
L .J 

GEN generates a CMS macro library. 

ADD adds members to an existing macro library. No checking is 
dcne for duplicate names, entry points, or CSECTS. 

REP 

DEL 

CaMP 

replaces existing members in a macro library. 

deletes members from a macro library. If more than one member 
exists with the same name, only the first entry is deleted. 

comFacts a macro library. 

MAP lists certain information about the members in a macro 
library. Available information includes member name, size, 
and location relative to the beginning of the library. 

libname is the filename of a macro library. If the file 
exists, it must have a filetype of MACLIE; if it­
created, it is given a file type of MACLIB. 

already 
is_being 

fn1[fn2 ••• ] 
are the names of the macro definition files to be used. A 
macro definition file must reside on a CMS disk and its 
filetype must be either MACRO or COPY. Each file may contain 
one or more macros and must contain fixed-length, SO-character 
records. 

membername1[membername2 ••• ] 
are the names of the macros that exist in a macro library. 

~!f Q.E!1~~,§: The following options specify where the output of the 
MAP function is sent. Only one ~ption m~y be specified. If more 
than one option is specified, only the first one given is used. 

TERM displays the MAP output at the terminal. 

130 IBM VM/370 CMS Command and Macro Reference 



PRINT 

Q.§.2.9~ N o!~ 

writes the MAP output on a 
identifier of "libname MAP A1". 
already exists, the old file is 
specified, DISK is the default. 

8ACLIB 

C8S disk with the file 
If a file with that name 
erased. If no option is 

writes the file "libname MAP A1" to your A-disk and 
spools a copy to the virtual printer. 

1. When a MACRO file is added to a MACLIB, the membername is taken 
from the macro prototype statement. If there is more than one 
macro definition in the file, each macro is written into a separate 
MACLIB lIember. 

If the filetype is COpy and the file contains more than one macro, 
.ach macro must be preceded by a control statement of the following 
format: 

*COPY lIembername 

The nalle on the control statement is the name of the macro when it 
is placed in the macro library. If there is only one macro in the 
COpy file and it is not preceded by a COpy control statement, its 
name (in the macro library) is the same as the filename of the COFY 
file. If there are several macro definitions in a COpy file and 
the first one is not preceded by a COPY control statement, the 
entire file is treated as one macro. 

2. If any MACRO file contains invalid records between members, the 
MACLIB command displays an error message and terminates. Any 
members read before the invalid card is encountered are already in 
the MACLIB. The MACLIB command ignores CATAL.S, END, and 1* 
records when it reads MACRO files created by the ESERV program. 

3. If you want a macro library searched during an assembly or 
compilation, you must identify it using the GLOBAL command before 
you begin compiling. 

4. The MACLIBs distributed with the CMS system are: CMSLIB, OSMACRC, 
OSMACR01; TSOMAC, and DOSMACRO. 

5. The TERM or PRINT options will erase- the old MAP file, if one 
exists. 

When you enter the MACLIB MAP command with the TERM option, the names of 
the library members, their sizes, and their locations in the library are 
displayed .• 

MACRO INDEX SIZE 
name Icc size 

Section 2. CMS Commands 131 



MACLIB 

DMSLBM001E NO FILENAME SPECIFIED RC=2q 
DMSLBM002E FILE 'fn ft' NOT FOUND RC=28 
DMSLBM002W FILE'fn ft [fm]' NOT FOUND RC=q 
DMSLBM003E INVALID OPTION 'option' RC=2q 
DMSLBM013W MEMBER 'name' NOT FOUND IN LIBRARY 'fn ft fa' RC=q 
DMSLBM01QE INVALID FUNCTION 'function' RC=2Q 
DMSLBM037E DISK '.ode' IS READ/ONLY RC=36 
DMSLBMOQ6E NO LIBRARY NAME SPECIFIED RC=2Q 
DMSLBMOQ7E N6 FUNCTION SPECIFIED RC=2Q 
DMSLBM056E FILE 'fn ft f.' CONTAINS INVALID RECORD FORMATS RC=32 
DMSLBM069E DISK 'mode' NOT ACCESSED RC=36 
DMSLBM070E INVALID PARAMETER 'parameter' RC=2Q 
DMSLBM10QS ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100 
DMSLBM105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100 
DMSLBM109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=10Q 
DMSLBM157S 8ACLIB LIMIT EXCEEDED[, LAST MEMEER NAME ADDED WAS 

'me.berna.e'] RC=88 
DMSLBM167S PREVIOUS MACLIB FUNCTION NOT FINISHED RC=88 
DMSLBM213W LIBRARY 'fn ft fm' NOT CREATED RC=Q 
DMSLB8907T I/O ERROR ON FILE 'fn ft fm' RC=256 

132 IBM VM/370 CMS Command and Macro Reference 



MODMAP 

MODMAP 

Use the MODMAP command to display the load map associated with the 
specified MODULE file. The format of the MODMAP command is: 

MODmap fn 
~-------------------------.-----------------------------------------------------~ 

fn is the filename of the MODULE file whose load map is 
displayed. The filetype of the file must be MODULE; all 
accessed disks are searched for the specified file. 

to be 
of your 

You cannot issue a MODMAP command for 
area modules or that have been created 
GENMOD command. 

modules that are CMS transient 
with the NOMAP option of the 

The load map associated with the file is displayed at the terminal, in 
the format: 

name location 

DMSMDP001E NO FILENAME SPECIFIED RC=24 
DMSMDP002E FILE 'fn ft' NOT FOUND RC=28 
DMSMDP018E NO LOAD MAP AVAILABLE RC=40 
DMSMDP070E INVALID PARAMETER 'parameter' RC=24 

Section 2. CMS Commands 133 



MOVEFILE 

MOVEFILE 

Use the MOVEFILE command to 
VM/370 to any other device 
MOVEFILE command is: 

move data from any 
supported by VM/370. 

device supported by 
The format of tbe 

MOVEfile 

inddname 

outddname 

Q.E!.!.Q.!!: 

r 
linddname 
I 
11NMQ!~ 
L 

r , , 
I outddname I I 
I I I 
IQQ!~QY~ I I 
L .J J 

[ (PD S[) ]] 

is the ddname representing the input file 
ddname is not specified, the default input 
is used. 

definition. If 
ddname, INMOVE, 

is the ddname representing the output file definition. If 
ddname is not specified, the default output ddname, OUTMOVE, 
is used. 

PDS moves each of the members of the CMS MACLIB or TXTLIB or of 
an OS partitioned data set into a separate CMS disk file, 
with a filename equal to the member name and a filetYFe 
equal to the filetype of the output file definition. 

!!§.£9~ !.Q!~§ 

1. Use the FILEDEF command to provide file definitions for the ddnames 
used in the MOVEFILE command. If you use the ddnames INMOVE and 
OUTMOVE on the FILEDEF commands, then you need not specify tbem en 
the MOVEFILE command line. For example: 

filedef inmove disk sys1 mac lib b (member stow 
filedefoutmove disk stow macro 
movefile 

copies the member STOW from the OS partitioned data set SYS1.MACLIB 
into the eMS file STOW MACRO. 

If you enter: 

filedef indd reader 
filedef outdd printer 
movefile indd outdd 

a file is moved from your virtual card reader to your virtual 
printer. 

2. To copy an entire as partitioned data set into individual C!S 
files, yeu could enter: 

filedef test2 disk sys1 maclib b 
filedef macro disk 
movefile test2 macro (pds 

These commands copy members from the OS partitioned data set 
SYS1.MACLIB or the CMS file SYS1 MACLlfr into separate files, each 

134 IBM VM/370 CMS Command and Macro Reference 



MOVEFILE 

with a filename equal to the menbername and a filetype of MACRe. 
Note that the output ddname was not specified in full, so that C~S 
assigned the default file definition (FILE ddname). 

3. You cannot copy VSAM data sets with the MOVEFILE command. 

4. The MOVEFILE command does not support data 
records. Use of spanned records results in 
DMSSOP036E and an error code of 7. 

containing 
the error 

spanned 
message 

5. To copy an entire partitioned data set into another partitioned 
data set, use the COPYFILE command. If an attempt is made to use 
the MOVEFILE command without the PDS option for a partitioned data 
set, only the first member is copied and an end-of-file condition 
results. The resultant output file will contain all input records, 
including the header, until the end of the first member. 

If a record format (RECFM), blocksize (BLOCK), and logical record length 
(LRECL) are specified on the FILEDEF command, these values are used in 
the data control block (DCB) defining the characteristics of the move 
operation. If the FILEDEF was issued without a record format or 
blocksize specified, these values are determined according to the 
defaults listed in Figure 17. If the blocksize was not specif~ed, the 
default blocksize is used. If the logical record length was not 
specified, the default logical record length is determined as follows: 
for an F or U record format~ the logical record length equals the 
blocksize; for a V record format, the logical record length equals the 
blocksize minus 4. 

Input ddname Output ddname 

Device RECFM Blocksize RECFM Blocksize 

Card Reader F 80 I NA2 NA2 
I 

Card Punch NA2 NA2 I F 80 
I 

Printer NA2 NA2 I U 132 
I 

Terminal U 130 I U 130 
I 

Tape l U 3600 IRECFM of Blocksize of 
I - input - ddname input ddname 
I 

Disk file RECFM of Blocksize of IRECFM of Blocksize of 
file file I input ddname input ddname 

I 
Dummy NA2 NA2 I REeFM of Blocksize of 

I input ddname input ddname 

IIf the default record format and blocksize are used in a 
tape-to-tape move operation and an input record- is greater -than 3600 
bytes, it is truncated to 3600 bytes on the output tape. 

2Not applicable. 

Figure 17. Default Device Attributes for MOVEFILE Command 

section 2. CMS Commands 135 



MOVEFILE 

DMSMVE225I PDS MEMBER tmembername' MOVED 

The specified member of an OS partitioned data set was moved 
successfully to a CMS file. This response is issued for each 
member moved when you use the PDS option. 

DMSMVE2261 END OF PDS ~OVE 

The last member of the partitioned data set was moved successfully 
to a CMS file. 

DMSMVE7061 TERM INPUT -- TYPE NULL LINE FOR END OF DATA 

The input ddname in the MOVEFILE specified 
terminal. This message requests the input 
terminates input. 

a device type of 
data; a null line 

DMSMVE7081 DISK FILE 'FILE ddname A1' ASSUMED FOR DDNAME 'ddname' 

No file definition is in effect for a ddname specified on the 
MOVEFILE command. The MOVEFILE issues the default FILEDEF command: 

FILEDEF ddname DISK FILE ddname A1 

If file ddname does not exist for the input file, MOVEFILE 
terminates processing. 

DMSMVE002E FILE 'fn ft fm' NOT FOUND RC=28 
DMSMVE003E INVALID OPTION 'option' RC=24 
DMSMVE037E OUTPUT DISK 'mode' IS READ/ONLY RC=3E 
DMSMVE041E INPUT AND OUTPUT FILES ARE THE SAME RC=40 
DMSMVE069E OUTPUT DISK 'mode' IS NOT ACCESSED RC=36 
DMSMVE010E INVALID PARAMETER 'parameter' RC=24 
DMSMVE073E UNABLE TO OPEN FILE ddname RC=28 
DMSMVE015E DEVICE 'device name' ILLEGAL FOR {INPUTIOUTPUT} RC=40 
DMSMVE086E INVALID DDNAME 'ddname' RC=24 
DMSMVE127S UNSUPPORTED DEVICE FOR ddname RC=100 
DMSMVE128S I/O ERROR ON INPUT AFTER READING nnnn RECORDS: INPUT ERRCR 

code ON ddname RC=100 
DMSMVE129S I/O ERROR ON OUTPUT WRITING RECORD NUMBER nnnn: OUTPUT ERRCR 

code ON ddname RC=100 _ 
DMSMVE130S BLOCKSIZE ON V FORMAT FILE ddname IS LESS TH~N 8 RC=88 

136 IBM VM/370 eMS Command and Macro Reference 



Pg. of GC20-181a-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 57ija-XXa 

OPTION 

OPTIO,N 

Use the OPTION command to change any or all of the options in effect for 
the DOS/VS COBOL compiler in CMS/DOS. The format of the OPTION command 
is: 

OPTION [options ••• ] 

2E!!2!!§: 
r , 
IDUMP I 
Il!Q~UMf.1 

r , r , 

L .J 

1J2!CK I 
INODECKI 
L .J 

I~IST I 
INOLI5TI 
L .J 

r , 
IXREF I 
I!!Q!!i~£:I 
L ~ 

r , 
IERRS I 
INOERRS I 
L .J 

r , 
lijaCI 
I'§Q£I 
L .J 

r , 
ILISTX I 
I NO!!ISTII 
L .J 

r , 
I TERM I 
I!QTE~~I 
L .J 

r , 
I SYM I 
I NOS!!lI 
L .. 

QE!!QA2: If an invalid option is specified cn the command line, an 
error message is issued for that option; all other valid options are 
accepted. Only those options specified are altered, and all other 
options remain unchanged. 

DUMP dumps the registers and the virtual Fartition on the virtual 
SYSLST device in the case of abnormal program end. 

l!QR[~f. suppresses the DUMP option. 

R~£K punches the resulting object mod uleon the virtual SYSPCB 
device. If you do not issue an A5SGN command for the logical 
unit SY5PCB before invoking the comFiler, the text deck is 
written to your CMS A-disk. 

NODECK suppresses the DECK option. 

writes the output listing of the source module on the SYSLST 
device. 

NOLIST suppresses the LIST option. This option overrides the XREF 
option as it does in DOS/VS. 

LISTX produces a procedure division map on the-SYSLST device. 

!Q~I~TX suppresses the LISTX option. 

SYM prints a Data Division map on SYSLST. 

NOSI~ suppresses the SYM option. 

XREF' writes the output symbolic cross-reference list- on SYSLST. 

l!Q!R~~ suppresses the XREF option. 

writes an output listing of all errors in the source program 
on SYSLST. -

ROERRS suppresses the ERRS option. 

ijac Uses the ij8-character set. 

60£ Uses the 60-character set. 

Section 2~ CMS Commands 137 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1for 5748-XX8 

OPTION 

TERM Writes all compiler messages to the user's terminal. 

NOTERM Suppresses the TERM option. 

Q§gg~ !2~ 

1. If you enter the OPTION command with no options, all options are 
reset to their default values~ that is, the default settings that 
are in effect when you enter the ~MS/DOS environment. CMS/DOS 
defaults are not necessarily the same as the defaults generated on 
the DOS/VSE system being used and do not include additional options 
that are available with soae DOS co.pilers. 

2. The OPTION command has no effect on the DOS/VSE PL/I co.piler nor 
on any of the OS language co.pilers in CMS. 

None. To display a list of options currently in effect, use the QUERY 
command with the OPTION operand. 

DMSOPT070E INVALID PARAMETER 'parameter' RC=24 
DMSOPT099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40 

138 IBM VM/370 CMS Co •• and and- Macro Reference 



March 30, 1919 

PRINT 

PRINT 

Use the PRINT command to print a CMS file on the spooled virtual 
printer. The format of the PRINT command is: 

fn 

ft 

fm 

r , 
PRint fn ft I fill [(options ••• [) ]] 

CC 

is the 

is the 

is the 

filename 

filetype 

1* 1 
t. .J 

r , 
~ti21!~: ICC I 

I1!Q~~1 [UPCASE] 

r , 
I LINECOUN {nn} , 
I 55 I 

L .J L .J 

r , 

I MEMBER { * }' 
, membernalle I [HEX] 
L 

of the file to be printed. 

of the file to be printed. 

file.ode of the file to be printed. If this field is 
specified as an asterisk (*) , the standard order of search is 
followed and the first file found with the given filename and 
filetype is printed. If fll is not specified, the A-disk and its 
extensions are searched. 

interprets the first character of each record as a carriage 
control character. If the filety~e is LISTING, the CC 
option is assumed. If CC is in effect, the PRINT command 
does not perform page ejects nor count the nu.ber of lines 
per page; these functions are controlled by the carriage 
control characters in the file. The LINECOUN option has no 
effect if CC is in effect. 

does not interpret the first character of each record as a 
carriage control character. In- this case, the PRINT 
com.and ejects a new page and p~ints a heading after the 
number of lines specified by LINECOUN-are printed. If Nacc 
is specified, it is in effect even if CC was specified 
previously or if the filetype is LISTING. 

UPCASE 
UP 

translates the lowercase 
uppercase for printing. 

letters in the file to 

MEM meabername 
MEMBER {* } 

prints the-me.bers of macro or text libraries. This option 
aay be specified if the file is a simulated partitioned 
data set (filet,ype -MACLIB or TXTLIB). If an a_sterislc .(*) 
is entered, all individual members of- that library -are 
printed. If a membernalle is specified, only that .eaber is 
printed. 

HEX prints the file in graphic hexadeciaal format. If HEX is 
specified, the options CC and UPCASE are -ignored, even if 
specified, and even if the filetype is LISTING. 

- Section 2. CftS Commands - 139 



Pg. of GC20-1818-2 Rev !arch 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

PRINT 

LINECOUN 
LI {~i} 

allows you to set the number of lines to be printed on each 
Fage. nn can be any decimal number from 0 through 99. If a 
number is not specified, the default value is 55. If nn is 
set to zero, the effect is that of an infinite line count 
and page ejection does not occur. This option has no 
effect if the CC option is also specified. 

1. The file may contain carriage control characters and may have 
either fixed- or variable-length records, but no record may exceed 
132 characters for a 1403, 3203, or 3289 Model 4 printer or 150 
characters for a 3211 printer. There are two exceptions: 

• If the CC option is in effect, 
character longer (133 or 151) to 
character. 

the record length can be one 
allow for the carriage control 

• If the HEX option is in effect, a record of any length can be 
printed, up to the CMS file system maximum of 65,535 bytes. 

2. If you want the first character of each line to be interpreted as a 
carriage control character, you must use the CC option. When you 
use the CC option for files that do not contain carriage control 
characters, the first character of each line is stripped off. An 
attempt is made to interpret the first character for carriage 
control purposes, and the results are unpredictable. 

Files with a filetype of UPDLOG (produced by the UPDATE command) 
must be Frinted with the CC option. 

3. One spool printer file is produced for each PRINT command; for 
example: 

print mylib maclib (member get 

prints the member GET from the file MYLIB MACLIB. If you want to 
print a number of files as a single file (so that you do not get 
output separator pages, for example), use the CP command SPOOL to 
spool your virtual printer with the CONT option. 

4. The PRINT command has its own forms control buffer load. The 
format of the FCB macro used is: 

FCB NNNN, 6,66, (1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, 
11,64,12,65,9) 

This FCB macro is always loaded by the PRINT command and must be 
taken into account when the CC option is used. 

None. The CMS ready message indicates the com.and completed 
without error (that is, the file is written to the spoolad 
printer). The file is now under the control of CP-spooling 
functions. If a CP SPOOL co •• ~n~ option such as-HOLD or COpy is in 
effect, you may receive a message from CP. 

140 IBM V!/370 CMS Com.and and Macro Reference 



Karch 30, 1979 

DKSPRT002E FILE 'fn ft f.' NOT FOUND RC=28 
DKSPRT003E INVALID OPTION 'option' RC=2q 

PRINT 

DKSPRTOOSE DEVICE 'cuu' {INVALID OR NONEXISTENTIUNSUPPORTED DEVICE TYPE} 
RC=36 

DKSPRT013E KEMBER 'na.e' NOT FOUND IN LIBRARY RC=32 
DMSPRT029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD 

RC=2q 
DMSPRT033E FILE 'fn ft f.' IS NOT A LIBRARY RC=32 
DKSPRT039E NO ENTRIES IN LIBRARY 'fn ft f.' RC=32 
DMSPRTOQQE RECORD LENGTH EXCEEDS ALLOWABLE MAXIMUM RC=32 
DMSPRTOQSE INVALID MODE 'mode' RC=2Q 
DMSPRTOSQE INCOMPLETE FILEID SPECIFIED RC=2Q 
DMSPRT062E INVALID * IN FILEID RC=20 
DMSPRT070E INVALID PARAMETER 'parameter' RC=2Q 
DMSPRT10QS ERROR Inn' READING FILE 'fn ft f.' FROM DISK RC=100 
DMSPRT123S ERROR PRINTING FILE 'fn ft fa' Re= 100 

Section 2.- CMS Coa.ands 1 Q 1 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-IX8 

PSERV 

PSERV 

Use the PSERV command in CMS/DOS to copy, display, print, or punch a 
procedure from the DOS/VSE procedure library. The format of the PSERV 
command is: 

i 

I 
IPSERV 

r , 
procedure I ft I [(options... [)]] 

IfROCI I 
I 
I 
I 
I , 

procedure 

L.J 2E~i2~§: 
[ Q!§~] [ PRINT] 

[ PUNCH] [ TERM] 

specifies the name of the procedure in the DOS procedure 
library that you want to copy, print, punch, or display. 

ft specifies the filetype of the file to be created on your 
A-disk. ft defaults to PROC if a filetype is not specified; 
the filename is always the same as the procedure name. 

QE1i2n§: You may enter as many options as you wish, depending on the 
functions you want to perform. 

PRINT 

PUNCH 

TERM 

!!§age liQte§ 

copies the procedure to a CMS file. 
specified, DISK is the default. 

If no options are 

spools a copy of the procedure to the virtual printer. 

spools a copy of the procedure to the virtual punch. 

displays the procedure on your terminal. 

1. You cannot execute DOS/VSE procedures in CMS/DOS. You can use the 
PSERV command to copy an existing DOS/VSE procedure onto a CMS 
disk, use the CMS Editor to change or add _DOS/VSE job control 
statements to it, and then spool it to the reader of a DOS/VSE 
virtual machine for execution. 

2. The PSERV command ignores current assignments Of-logical units, and 
directs output according to the option list. 

When you issue the TERM option, the pro~edureis displayed at your 
terminal. 

142 IBM VM/370 CMS Command and Macro Reference 



DMSPRV003E INVALID OPTION 'option' RC=24 
DMSPRV004E PROCEDURE 'procedure' NOT FOUND RC=28 
DMSPRV006E NO READ/WRITE 'A'DISK ACCESSED RC=36 
DMSPRV037E DISK 'A' IS READ/ONLY RC=36 
DMSPRV070E INVALID PARAMETER 'parameter' RC=24 
DMSPRV097E NO 'SYSRES' VOLUME ACTIVE RC=36 
DMSPRV098E NO PROCEDURE NAME SPECIFIED RC=24 
DMSPRV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40 
D~SPRV105S ERROR Inn' WRITING FILE 'fn ft fm' TO DISK RC=100 
DMSPRV113S DISK (cuu) NOT ATTACHED RC=100 
DMSPRV411S INPUT ERROR CODE Inn' ON 'SYSRES' RC=100 

PSERV 

Section 2. CMS Commands 143 



PUNCH 

PUNCH 

Use the PUNCH command to punch a CMS disk file to your virtual card 
punch. The format of the PUNCH command is: 

PUnch 
r , 

fn ft Ifml 
1* I 
L .J 

[(options ••• [) ]] 

r , 
11!!!~ER I 
INOBEADERI 
L .J 

r , 

I ME M B ER { * } I 
I membername I 
L .J 

!1!.~.E~ : 

fn is the filename of the file to be punched. This field must be 
specified. 

ft is the filetype of the file to be punched. This field must be 
specified. 

fm is the filemode of the file to be punched. If you specify it as an 
asterisk (*), the standard order of search is followed and the 
first file found with the specified filename and filetype is 
punched. If fm is not specified, your A-disk and its extensions 
are searched. 

NOHEADER 
NOH 

inserts a control card in front of the punched output. 
This control card indicates the filename and filetype fer 
a subsequent READCARD command to restore the file to a 
disk. The control card format is shown in Figure 18. 

does not punch a header control card. 

MEMBER 
HEM { :embername } 

punches members of MACLIBs or TXTLIBs.- tf an asterisk 
(*) is entered, all individual members of that macro or 
text library are punched. If membername is specified, 
only that member is punched. If the filetype is MACLIB 
and the MEMBER membername option is sp€cified, the header 
contains MEMBER as the filetype. If· the filetype is 
TXTLIB and the MEMBER membername option is specified, the 
header card contains TEXT as the filetype. . 

144 IBM VM/370 CMS Command and Macro Reference 



PUNCH 

INu.ber of I I 
ColumnlCharacterslContentsl Meaning 

1 

2-5 

6-7 

8-15 

16 

17-24 

25 

26-27 

28 

29-34 

35 

36-43 

44-45 

46-50 

51-80 

1 

4 

2 

8 

1 

8 

1 

2 

1 

6 

1 

8 

2 

5 

30 

READ 

blank 

fnalle 

blank 

ftypl 

blank 

fmode 

blank 

valid 

blank 

Identifies card as a control card. 

Identifies card as a READ control card. 

Filename of the file punched. 

Filetype of the file punched. 

File.ode of the file punched. 

Label of the disk from which the file was 
read. 

mm/dd/yy The date that the file was last written. 

blank 

hh:mm 

blank 

The time of day that the file was written 
to disk. 

Figure 18. Header Card Format 

!!§A9~ l!Q:t~§ 

1. You can punch fixed- or variable-length records with the PUNCH 
command, as long as no record exceeds 80 characters. Records with 
less than 80 characters are right-padded with blanks. Records 

2. 

longer than 80 characters are rejected. -

If you 
option, 
member. 
option, 
deck. 

punch a MACLIB or TITLIB file specifying the ~EMBER * 
a read control card is placea in _front of each library 
If you punch a library without specifying the MEMBER * 

only one read control card is placed at the front of the-

3. One spool punch file is produce~ for -each PUNCH command; for 
example: 

punch compute assemble (noh 

punches the file COMPUTE ASSEMBLE, without inserting a header card. 
To transmit multiple CMS files as a single punch file, use the CP 
SPOOL command to spool the punc~ with the ceNT option. 

Section 2. CMS Commands 145 



PUNCH 

~~~~~2~2 

None. The CMS ready message indicates that the command completed
without error (the file was successfully spooled); the file is now under
tontrol of CP spooling functions. You may receive a message from CP
indicating that the file is being spooled to a particular user's virtual
card reader.

DMSPUN002E FILE 'fn ft fm' NOT FOUND RC=28
DMSPUN003E INVALID OPTION 'option' RC=24
DMSPUN008E DEVICE 'cuu' {INVALID OR NONEXISTENTIUNSUPPORTED DEVICE TYPE}

RC=36
DMSPUN013E MEMBER 'name' NOT FOUND IN LIBRARY RC=32
DMSPUN033E FILE 'fn ft fm' IS NOT A LIBRARY RC=32
DMSPUN039E NO ENTRIES IN LIBRARY 'fn ft fm' RC=32
DMSPUN044E RECORD LENGTH EXCEEDS ALLOWABLE MAXIMUM RC=32
DMSPUN054E INCOMPLETE FILEID SPECIFIED RC=24
DftSPUN062E INVALID * IN FILEID RC=20
DMSPUN104S ERROR Inn' READING FILE 'fn ft fm' PROM DISK RC=100
DMSPUN118S ERROR PUNCHING FILE 'fn ft fm' RC=100

146 IBM VM/370 CMS Command and Macro Reference

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118

QUERY

QUERY

Use the QUERY command to gather information about your CftS virtual
aachine. You can determine:

• The state of virtual aachine characteristics that are controlled by
the CMS SET command

• File definitions (set with the FIL~DEF and DLBL commands) that are in
effect

• The status of accessed disks

• The status of CftSjDOS functions

The format of the QUERY command is:

Query BLIP
RDYMSG
LDRTBLS
RELPAGE
IftPCP
IMPEl
ABBREV
REDTYPE
PROTECT
INPUT
OUTPUT
SYSNAMES
SEARCH

DISK [.ode]
[!]

{
SYSTEM}

SYNONYM .. USER
ALL

FILEDEF
LABELDEF
MACLIB
TXTLIB
LIBRARY

DLBL
DOS
DOSLIB
DOSPART
DOSLNCNT
OPTION
UPSI - I ~___J

-
QE~g.n.Q.§ !2~ IYjt~ti2.n.§ th!!! ~!!.n !!~. ~.Q1l!~.21le£ !i!! th~- ~~1 £.2!!!!an,Q:

BLIP displays the BLIP character(s).

BL IP = {XXXXXXXX}
OFF

Section 2. CMS Commands 147

QUERY

RDYMSG

LDRTBLS

RELPAGE

IMPCP

IMPEX

AEBREV

March 30, 1919

displays the RDYMSG message of the CMS Ready for.at.

!!~§l!2!!.2~: RDYMSG = {LMSG}
SMSG

LMSG is the standard CMS Ready Bessage:

R; T = 0.12/0.33 11:06:20

SMSG is the shortened CMS Ready Bessage:

R;

displays the number of loader tables.

!!~§E2n2~: LDRTBLS = nn

indicates whether pages of storage are to be released or
retained after certain co.mands cOBplete execution.

!!~§E2!!.2~: RELPAGE = {ON }
OFF

ON releases pages.
OFF retains pages.

displays the status of i.plied CP command indicator.

!!~§l!Q!l2~: IMPCP = {ON }
OFF

ON indicates that CP commauds can be entered fro. the CftS
environment.

OFF indicates that you must use the CP command or the 'CP
function to enter CP commands from the CftS
environment.

displays status of implied EXEC indicator.

= {ON}
OFF

ON indicates that EXEC files can be executed by entering
the filename of the file.

OFF indicates that the EXEC command must be explicitly
entered to execute EXEC files.

displays the status of the minimum truncation indicator.

!!~§EQn2~: ABBREV = {ON }
OFF

lqa IBM VM/310 CftS Command and Macro Reference

REDTYPE

PROTECT

INPUT

OUTPUT

ON

OFF

March 30, 1979

indicates that truncations are accepted for
commands.

indicates that truncations are not accepted.

displays the status of the REDTYPE indicator.

g~2£2ll§~: REDTYPE = {ON }
OFF

QUERY

CMS

ON types CMS error aessages in red, for certain terminals
equipped with the appropriate terminal feature and a
two-color ribbon. Supported terminals are described in
the !!LJIQ !erm!D~! Q§~£~2 ~~id~.

OFF does not type CMS error messages in red.

displays the status of CMS nucleus protection.

g~2~2~2~: PROTECT = {ON }
OFF

ON means CMS nucleus protection is in effect.
OFF means CMS nucleus protection is not in effect.

displays the contents of any input translate table in effect.

g~2~2ll2~: INPUT a1 xx1

an xxn

If you do not have an input translate table in effect, the
response is:

NO USER DEFINED INPUT TRANSLATE TABLE IN -USE

displays the contents of any output translqte table in effect.

xxn an

If you do not have an output translate table defined, -the
response is:

NO USER DEFINED OUTPUT TRANSLATE TABLE IN USE

SYSNAMES displays the names of the saved system currently being used by
your virtual machine.

Section 2. CMS Commands 149

I
·1
I

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8

QUERY

SEARCH

!!~'§.EQ!!§~: SY SNAMES: CMSSEG CMSVSAM CMSAMS CMSDOS
ENTRIES: entry ••• entry ••• entry ••• entry •• ~

SYSNAMES are the standard names that identify the
discontiguous saved systems.

ENTRIES are the names of the saved systems being used, if
the saved systems exist.

displays the search order of all disks currently accessed.

R~~£2~~: label cuu
r ,

mode {R/O} I-OS 1
R/ll I-DOS 1

L .J

label is the label assigned to the disk when it was
formatted: or, if it is an as or DOS disk, the volume
label.

cuu is the virtual device address.

aode is the filemode letter assigned to the disk when it was
accessed.

{RIO} indicates whether read/write or read-only is the status
II' of the disk.

DISK mode

r ,
lOS I indica tes an OS or DOS disk.
InoSI
L. J

displays the status of the single di~k represented by
"aode".

LABEL CUU M STAT CYL TYPE ELKSIZE
label cuu a {R/O} cyl ~ype blksize

R/i

FILES ELKS USED-(~) BLKS LEFT BLK TOTAL
nnnn nnnn-nn nnnn nnnnn

If the disk is an OS or DOS disk, the response is: -

LABEL CUU M STAT CYL TYPE ELKSIZE
label cuu m {R/O} {CYI} type

FILES BLKS USED-(~) BLKS LEFT ELK TO~AL

R/i FBA - {D~~}

label is the label assigned to .the disk when it was
formatted; or, if it is an as or-DOS disk, the volume
label.

cuu is the virtual device address.

150 IBM VM/370 CMS Command and Macro Reference

I ,
I
I

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. 5023-9023-1 for 5748-XX8

QUERY

m is the access mode letter.

{RIO}
R/W

STAT indicates whether read/write or read-only is the status of the disk.

cyl is the number of cylinders available on the disk. For an FB-512
device, this field contains the notation 'FBA' rather than the number of
cylinders.

type is the device type of the disk.

blksize is the CMS disk block size when the minidisk was
formatted.

nnnn FILES is the number of CMS files on the disk.

nnnn BLKS USED indicates the number of eMS disk blocks in use.

nn I indicates the percentage of blocks in use.

nnnn BLKS LEFT indicates the nu.ber of disk blocks left. This
is a high approximation because control blocks are included.

nnnnn BLK TOTAL indicates the total number of disk blocks.

Section 2. CMS Commands 150.1

March 30, 1979

150.2 IBM VM/370 eMS Com.and and ~acro Reference

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8

QUERY

DISK *

{
aS } indicates an as or DOS disk.
DOS

If the disk with the specified mode is not accessed,
the response is:

DISK 'mode' NOT ACCESSED

displays the status of all CMS disks.

R~§~Qg§g: Is the same as for QUERY DISK mode; one line is
displayed for each accessed disk.

SYRONYM SYSTEM
displays the CMS system synonyms in effect.

SYSTEM SHORTEST
COMMAND FORM

command minimum truncation

If no system synonyms are in effect, the following message is
displayed at the terminal:

NO SYSTEM SYNONYMS IN EFFECT

SYNONYM USER
displays user synonyms in effect.

SYSTEM USER SHORTEST
COMMAND SYNONYM FORM (IF ANY)

command synonym minimum-truncation

If no user synonyms are in effect, thg following message is
displayed at the terminal:

NO USER SYNONYMS IN EFFECT

SYNONYM ALL
displays all synonyms in effect.

R~§~Qg§~: The_ response to the command QUERY- SYNONYM SYSTEM -is
followed by the response to QUERY SYNONYM USER.

Section 2. CMS Commands 151

QUERY

FILEDEF

March 30, 1979

displays all file definitions in effect.

R~2EQn2~: ddname device [fn eft]]

If no file definitions are in effect, the following message is
displayed at the terminal:

NO USER DEFINED FILEDEF'S IN EFFECT

LABELDEF displays all label definitions in effect.

MACLIB

TXTLIB

LIBRARY

!~22Qn2~: ddname volid fseq volseq genn genv crdte exdte fid

Only fields you have explicitly specified are displayed.
Defaulted fields are not displayed. If no label definitions
are in effect, the following message is displayed at the
terminal:

NO USER DEFINED LIBELDEF'S IN EFFECT

displays the names of all files, with a filetype of MICLIB,
that are to be searched for macro definitions (that is, all
MICLIBs specified on the last GLOBAL MACLIB command, if any) •

!~§EQn2~: MICLIB = libname •••

If no macro libraries are
definitions, the response is:

MACLIB = NONE

to be searched for macro

displays the names of all files, with a filetype of TXTLIB,
that are to be searched for unresolved references (that is,
all TXTLIBs specified on the last GLOB~L TXTLIB co.mand, if
any).

!~§EQn2~: TXTLIB = libname •••

If no TXTLIBs are to be searched for unresolved references,
the following message is displayed at the terminal:

TXTLIB = NONE

displays the names of all library files with filetypes of
MACLIB, TXTLIB, and DOSLIB that are to be searched.

R~2EQn2~: MACLIB = {libname ••• }
NONE

TXTLIB = {l~bname~ •• }
NONE

DOSLIB = {-liDnaae ••• }
NONE

152 IBM VM/370 CMS Command and Macro Refer~nce

Pg. of GC20-1818-2 Rev Karch 30, 1979 by Supp. SD23-9023-1 for 5748-XX8

QUERY

DLBL in order to display the contents of the current data set
definitions, it is necessary only to enter:

DLBL or QUERY DLBL

Entering the command yields the following information:

DDNAME the DOS filename or OS ddname.

Section 2. CMS Commands 152.1

March 30, 1979

152.2 IBM VM/370 CMS Command and Macro Reference

MODE

LOG UNIT

TYPE

CATALOG

EXT

VOL

BUFSP

PERM

DISK

QUERY

the eMS disk mode identifying the disk on which the
data set resides.

the DOS logical unit specification (SYSxxx). This
operand will be blank for a data set defined while
in CMS/OS environment; that is, the SET DOS eN
command had not been issued at DLEL definition time.

indicates the type of data set defined. This field
may only have the values SEQ (sequential) and VSAM.

indicates the ddname of the VSAM catalog to be
searched for the specified data set. This field
will be blank for sequential (SEQ) dataset
definitions.

specifies the number of extents defined for the data
set. The actual extents may be displayed by
entering either the DLBL (EX~ENT) or the QUERY DLEL
EXTENT command. This field will be blank if DO

extents are active for a VSAM data set or if the
data set is sequential (SEQ).

specifies the number (if greater than one) of
volumes on which the VSAM data set resides. The
actual volumes may be displayed by entering either
the DLBL (MULT) or the QUERY DLBL MULT commands.
This field will be blank if the VSAM data set
resides only on on~ volume or if the data set is
sequential (SEQ).

indicates the size of the VSAM buffer space if
entered at DLBL definition time. This field will be
blank if the dataset is sequential (SEQ).

indicates whether the DLEL definition was made with
the PERM option. The field will contain YES or NO.

indicates whether the data set resided on a CMS or
DOS/OS disk at DLBL definition time. The values for
this field are DOS and CMS.

DATASET.NAME
for a data set residing on a CMS disk, the C~S
filename and filetype _are given; for a data set
residing on a DOS/OS disk, the data set name
(maximum 44 characters) is given. This field will
be blank if no DOS/OS data set name is entered at
DLBL definition time •.

If DO DLBL definitions are acti ve-, the following message is
issued:

DMSDLB324I NO USER DEfINED tLBL'S IN EFFECT

DOS displays whether the eMS/DOS environment is active or not.

DOSLIB

E§§.E.Q1!§§ : DOS = {O N }
_ . OFF

displays the names of all files with a filetype of DOSLIB that
are to be se-arched for executable phases (that is , aI-I· DOSLIEs
specified on the la~t GLOBAL DOSLIE co~mand, if any).

Section 2. CMS Commands 153

QUERY

DOSPART

!~~EB~~~: DOSLIB = {libname ••• }
NONE

displays the current setting of the virtual partition size.

!~~.EB~~~: {nnnnnK}
NONE

nnnnnK indicates the size of the virtual partition to be used
at program execution time.

NONE indicates that CMS determines the virtual partiticn
size at program execution time.

DOSLNCNT dis~lays the number of SYSLST lines per page.

OPTION

UPSI

R~~EB~~~: DOSLNCNT = nn

nn is an integer from 30 to 99.

displays the compiler options that are currently in effect.

!~~]BD§~: OPTION = options •••

displays the current setting of the UPSI byte. The eight
individual bits are displayed as zeros or ones depending upcn
whether the corresponding bit is on or off.

!~~]gD§~: UPSI = nnnnnnnn

!l§~~ !!Q1~§

1. You can specify only one QUERY command function at a time. If the
implied CP function is in effect and you enter an invalid QUERY
command function, you may receive the message DMKCQG045E.

2. If an invalid QUERY command function is specified from an EXEC and
the implied CP function is in effect, then the return code is
- 0003.

3. The DOSPART, OPTION, and UPSI functions are valid only if the
CMS/DOS environment is active.

DMSQRY005E NO 'option' SPECIFIED RC=24
DMSQRY014E INVALID FUNCTION 'function' RC=24
DMSQRY026E INVALID PARAMETER 'parameter' FOR 'function' FUNCTION RC=24
DMSQRY047E NO FUNCTION SPECIFIED RC=24
DMSQRY070E INVALID PARAMETER 'parameter' RC=24
DMSQRY099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40

154 IBM VM/370 CMS Command and Macro Reference

READCARD

READCARD

Use the READCARD command to read data records from your
reader and to create CMS disk files containing the data
format of the READCARD command is:

virtual card
records.. The

READcard r ,

fn

ft

* (*]

fm

fn ft I fa I
1 ! 1
L .I

r r ,
* I * I fm II -

I I ! II
L L .1.1

is the filename you want to assign to the file being read.

is the filetype you want to assign to the file being read.

indicates that file identifiers are to be assigned according
to READ control cards in the input deck.

is the file mode of the disk onto which the file is to be read.
If this field is omitted or specified as an asterisk (*), the
A-disk is assumed. Whenever a mode number is specified on the
command line, it is used; otherwise, the mode number on the
READ control card is used to create the disk file.

1. Data records read by the READCARD command must be fixed-length
records, and may be a minimum of 80 and a maximum of 151 characters
long.

2. CMS disk file identifiers are assigned according to READ control
cards in the input deck (the PUNCH command header card is a valid
READ control card). When you enter the command:

readcard *
CMS reads the first spool reader file in the queue and if there are
READ control cards in the input stream, it names the files as
indicated on the control cards.

If the first card in the deck is not a READ control card, CES
writes a file named READCARD CMSUT1 A1 to contain the data, until a
READ control - card is encountered or until the end-of-file is
reached.

3. If you sFecify a filename and file type on the READCARD command, fer
example:

readcard jun~ file

CMS does not check the input stream for READ control cards, but­
reads the entire spool_file onto disk and assigns it the specified -
filename and filetype.

Section 2. CMS Commands 155

READCARD

If there were any READ control cards in the deck, they
removed; you must delete them using the CMS Editor if you
want them in your file. If the file is too large, you can
increase the size of your virtual storage (using the CP
command), or use the COPYFILE command to copy all records
the READ control cards (using the FROM and FOR options).

are not
do net
either
DEFINE
except

4. To read a file onto a disk other than your A-disk, you can specify
the filemode letter when you enter the filename and filetype; for
example:

5.

readcard junk file c

Or, if you want READ control card to determine the filenames and
filetypes, you can enter:

readcard * * c

When you read a file
that of an existing
replaced.

that has the
file on the

same filename and filetype as
same disk, the old file is

6. If you are preparing real or virtual card decks to send to your own
or another user's virtual card reader, you may insert READ control
cards to designate filenames, filetypes, and optionally, filemode
numbers, to be assigned to the disk file(s) •

A READ control card must begin in column 1 and has the format:

:READ filename filetype filemode

Each field must be separated by at least one blank; the second
character of the filemode field, if specified, must be a valid
filemode number (0 through 5). The filemode letter is ignored when
this file is read, since the mode letter is determined by
specifications on the READCARD command line.

7. To send a real card deck to your own or another user's virtual card
reader, you must punch a CP ID card to precede the deck. The ID
card has the keyword ID or USERID in column 1, followed by the
userid you want to receive the file and optionally, spool file
class and name designations; for example:

ID CONCARNE CLASS A NAME CHILI PEPPER

Each field must be separated from the others by at least one blank.

156 IBM VM/370 CMS Command and Macro Reference

READCABD

When the READCARD * command is issued, control cards encountered in the
input card stream are displayed at the terminal (see message
DMSRDC702I), to indicate the names assigned to each file.

DMSRDC701I NULL FILE

The spooled card reader contains no records after the control card.

DMSRDC702I :READ filename filetYFe fn (other information)

A READ control card has been processed; the designated file is
being written on disk.

DMSRDC702I READ CONTROL CARD IS MISSING. FOLLOWING ASSUMED:
DMSRDC702I :READ READ CARD CMSUTl Al

The first card in the deck is not a READ control card. Therefore,
the file READCARD CMSUT1 A1 is created.

DMSRDC738I RECORD LENGTH IS 'nnn' BYTES

The records being read are not 80 bytes long; this message gives
the length.

DMSRDC008E DEVICE 'cuu' {INVALID OR NONEXISTENTIUNSUPPORTED DEVICE TYPE}
RC=36

DMSRDC042E NO FILEID SPECIFIED RC=24
DMSRDC054E INCOMPLETE FILEID SPECIFIED RC=24
DMSRDC062E INVALID * IN FILEID RC=20
DMSRDC105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSRDC124S ERROR READING CARD FILE RC=100
DMSRDC205W READER EMPTY OR NOT READY RC=8

Section 2. eMS Commands 157

RELEASE

RELEASE

Use the RELEASE command to free an accessed disk and make the files on
it unavailable. The format of the RELEASE command is:

RELease
{ cuu }

mode
[(DET[)]]

cuu is the virtual device address of the disk that is to be released.

mode

Valid addresses are 001 through 5FF for a
basic control mode and 001 through FFF for a
extended control mode.

virtual machine in
virtual machine in

is the mode letter at which the disk is currently accessed.

DET specifies that the disk is to be detached from your virtual
machine configuration; CMS calls the CP command DETACH.

1. If a disk is accessed at more than one mode letter, the RELEASE cuu
command releases all modes. If you access a disk specifying the
mode letter of an active disk, the first disk is released.

2. You cannot release the system disk (S-disk).

3. When a disk is released, the user file directory is freed from
storage and that storage becomes available for other CMS commands
and programs. When you release a read/write CMS disk, either with
the RELEASE command or implicitly with the FORMAT command, the user
file directory is sorted and rewritten on disk; user(s) who may
subsequently access the same disk may have a resultant favorable
decrease in file search time.

4. When a disk is released, any read-only extensions it may have are
not released. The extensions may be referred to by their own mode
letters. If a disk is then accessed with the same mode as the
original parent disk, the original read-only extensions remain
extensions to the new disk at that mode.

5. In CMS/DOS, when you release a disk, any s~stem or programmer
logical unit assignments made for the disk are-una~signed.

DASD cuu DETACHED

This is a CP message that is issued when you use the DET option.
It indicates that the disk has been detached.

158 IBM VM/370 CMS Command and Macro Reference

DMSARE017E INVALID DEVICE ADDRESS 'cuu' RC=24
DMSARE028E NO DEVICE SPECIFIED RC=24
DMSARE048E INVALID MODE 'mode' RC=24
DMSARE069E DISK {'mode'!'cuu'} NOT ACCESSED RC=36
DMSARE070E INVALID PARAMETER 'parameter' RC=24

RELEASE

Section 2. CMS Comaands 159

R EHAKE \

RENAME

Use the RENAME command to change the fi1eid of one or more eMS files cn
a read/write eMS disk. The format of the RENAME command is:

Rename

fi1eid1

fi1eid2

TYPE
T

!!QI!f!1
!!QI

YRQ1R1
YR

NOUPDIRT
NOUP

Y§A9~ !!Q t e §

fi1eid 1 fi1eid2 [(options ••• ()]]

r ,
ITYPE I
Il!QI!R~1
L .J

r ,

IYRQ!Bl I
INOUPDIRTI
L .J

is the file identifier of the original file whose name is to
be changed. All components of the fi1eid (filename,
filetype, and file mode) must be coded, with either a name cr
an asterisk. If an asterisk is coded in any field, any file
that satisfies the other qualifications is renamed.

is the new file identifier of the. file. All components of
the file (filename, filetype, and filemode) must be coded,
with either a name or an equal sign; if an equal sign (=) is
coded, the corresponding file identifier is unchanged. The
output filemode Can also be specified as an asterisk (*),
indicating that the file mode is not changed.

displays, at the terminal, the new identifiers of all
the files that are renamed. The file identifiers are
displayed only when an asterisk (*) is specified for one
or more of the file identifiers (fn, ft, or fm) in
fileid1.

suppresses at the terminal, displaying of the new file
identifiers of all files renamed.

updates the master file directory upon completion of this
command.

suppresses the updating of the
upon completion of this command.

master file directory
(See Usage Note 3.)

1. When you code an asterisk (*) in any portion of the input fileid,
any or all of the files that satisfy the other qualifiers may be
renamed, depending upon how you specify the output fileid. For
example:

rename * assemble a test file a

results in the first ASSEMBLE-file Eound on the A-disk being
renamed to TEST FILE. If more -than one ASSEMBLE file exists, errcr
messages are issued to indicate that they cannot be renamed.

160 IBM VM/370 eMS Command and Macro Reference

2.

March 30, 1979

If you code an equal sign (=) in an output fileid in
corresponding to an asterisk in an input fileid, all
satisfy the condition are renamed. For example:

rename * assemble a = oldasm =

RENIME

a position
files that

renames all files
filetype of OLDASM.

with a filetype of ASSEMBLE to
Current filenames are retained.

files with a

You cannot use the
another. You must
filemode letters.

RENAME command to move a file from one disk to
use the COPYFILE command if you want to change

You can use the RENAME co •• and to modify filemode nu.bers, for
example,

rename * module a1 = = a2

changes the filemode number on all MODULE files that have a mode
number of 1 to a mode number of 2.

Note: You can invoke the RENAME co.mand froa the terminal, fro. an
iXEC file, or as a function from a program. If RENAME is invoked as
a function or frum an EXEC file that has the &CONTROL BOMSG option
in effect, the message DMSRNM002E FILE 'fn ft fa' NOT FOUND is not
issued.

3. Normally, the file directory for a CMS disk is updated whenever you
issue a command that affects files on the disk. When you use the
NOUPDIRT option of the RENAME command, the file directory is not
updated until you issue a co.mand that writes, updates, or deletes
any file on the disk, or until you explicitly release the disk
(with the RELEASE command).

newfn newft new fa

The new filename, filetype, and file.ode of each file altered is
displayed when the TYPE option is specified and an asterisk was
specified for at least one of the file identifiers (fn, ft or fm)
of the input fileid.

DMSRNM002E FILE 'fn ft fm' NOT FOUND RC=28
DMSRNM003E INVALID OPTION 'option' RC=24
DMSRNM019E IDENTICAL PILEIDS RC=24
DMSRNM024E PILE 'fn ft fa' ALREADY EXISTS RC=28
DMSRNM030E FILE 'fn ft fm' ALREADY ACTIVE RC=28
DMSRNM037E DISK 'mode(cuu), IS READ/ONLY RC=36
DMSRNM048E INVALID FILE MODE 'fm' RC=24
DMSRNM051E INVALID MODE CHANGE RC=24
DMSRNM054E INCOMPLETE PILEID SPECIPIED RC=24
DMSRNM062E INVALID * IN OUTPUT FILEID RC=20

section 2. CMS Co •• ands 161

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8

RSERV

RSERV

Use the RSERV command in CMSjDOS to copy, display, print, or punch a
DOS/VSE relocatable module from a private or system library. The format
of the RSERV command is:

RSERV
r ,

mcdnaae I ft I [(options ••• [)]]
II~!!I
L ~ 2E1i2~2:

[DI~!]
[PUNCH

[PRINT]
[TERM]

modname specifies the name of the module on the DOS/VSE private or
system relocatable library. The private library, if any, is
searched before the system library.

ft specifies the filetype of the file to be created on your
A-disk. ft defaults to TEXT if a filetype is not specified.
The filename is always the same as the module name.

QEiiQ~2: You may specify as many options as you wish on the RSERV
command, depending on which functions you want to perform.

copies the relocatable module onto your A-disk.
options are specified, DISK is the default.

If no other

PUNCH punches the relocatable module on the virtual punch.

PRINT prints the relocatable module on the virtual printer.

TERM displays the relocatable module at your terminal.

!!2ag:~ !21~2

1. If you want to copy modules from a private relocatable library, you
must issue an 155GB command for the logical unit SYSRLB and
identify the library on a DLBL comman~- line using the ddname
IJSYSRL.

To copy modules from the system relocatable library, you must have
entered the CMS/DOS environment specifying a mode letter on the SET
DOS ON command line.

2. The RSERV command ignores the assignment of logical units, and
directs output to the devices specified on the option list.

If you use the TERM option, the relocatable module is displa.yed at- the
terminal.

162 IBM VM/370 CftS Command and Macro Reference

DMSRRV003E INVALID OPTION 'option' RC=24
DMSRRV004E MODULE 'module' NOT FOUND RC=28
DMSRRV006E NO READ/WRITE 'A' DISK ACCESSED RC=36
DMSRRV070E INVALID PARAMETER 'parameter' RC=24
DMSRRV097E NO 'SYSRES ,. VOLUME ACTIVE RC=36
DMSRRV098E NO MODULE NAME SPECIFIED RC=24
DMSRRV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSRRV10SS ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSRRV113S DISK (cuu) NOT ATTACHED RC=100
DMSRRV411S INPUT ERROR CODE Inn' ON '{SYSRESISYSRLB}' RC=100

RSERV

Section 2. CMS Commands 163

RUN

RUN

Use the RUN EXEC procedure to initiate a series of functions on a file
depending on the filetype. The RUN command can select or combine the
procedures required to compile, load, or start execution of the
specified file. The format of the RUN command is:

RUN fn [ft [fm]] [(args ••• [)]]

fn is the filename of the file to be manipulated.

ft is the filetype of the file to be manipulated. If filetype is net
specified, a search is made for a file with the specified filename
and the filetype of EXEC, MODULE~ or TEXT (the search is performed
in that order). If the filetype of an input file for a language
processor is specified, the language processor is invoked to
compile the source statements and produce a TEXT file. If no
compilation errors are found, LOAD and START may then be called to
initiate program execution. The valid filetypes and resulting
action for this command are:

l.!l~!Il:~ Action
EXEC The-EXEC processor is called to process the file.

MODULE The LOAD MOD command is issued to load the program into
storage and the START command begins execution of the
program at the entry point equal to fn.

TEXT The LOAD command brings the file into storage in an
executable format and the START command executes the
program beginning at the entry point named by fn.

FORTRAN The FORTRAN processor module that is called is FORTRII,
FORTGI, GOFORT, or FORTHI, whichever is found first.
Object text successfully compiled by the FORTGI or FORTHX
processors will be loaded and executed.

FORTTEST The FORTRAN processor module that is called is either
FORTRAN or FORTGI, whichever is found first. The
processor is called with the TEST option. -

TESTFORT The TESTFORT module is called to initiate FORTRAN
Interactive Debug and will process a TEXT file that has
been compiled with the TEST option.

FREEFORT The GOFORT module is called to process the file.

COBOL The COBOL processor module that is called is _COBOL er
TESTCOB, whichever is found first.- After successful
compilation, the program text will be loaded and
executed.

PLI The PLIOPT processor module_ is called to process
PLIOPT the file. After successtul compilation, the program text

will be loaded and executed.

164 IBM VM/370 CMS Co.mand and Macro Reference

RUN

fm is the filemode of the file to be manipulated. If this field is
specified, a filetype must be specified. If fm is not specified,
the default search order is used to search your disks for the file.

args are arguments you want to pass to your program. You can specify up
to 13 arguments in the RUN command, provided they fit on a single
input line. Each argument is left-justified, and any argument more
than eight characters long is truncated on the right.

1. The RUN command is an EXEC file; if you want to execute it from
within an EXEC, you must use the EXEC command.

2. If you are executing an EXEC file, the arguments you
RUN command line are assigned to the variable symbols
so on.

enter on the
&1, &2, and

3. If you are executing a TEXT or MODULE file, or compiling and
executing a program, the arguments are placed in a parameter list
and passed to your program when it executes. The arguments are
placed ~n a series of doublewords in storage, terminated by X'FF'.
If you enter:

run myprog (charlie dog

the arguments *, CHARLIE, and DOG are placed in
parameter list, and the address of the list is in
your program receives control.

doutlewords in a
register 1 when

!Q!~: You cannot use the argument list to override default options
for the compilers or for the LOAD or START commands.

4. The RUN command is not designed for use with CMS/DeS.

5. The RUN EXEC cannot be used for COBOL and PL/I programs that
require facilities not supported under CMS. For specific language
support limitations, see !~L11Q f!g~~!~g gn~ ~I§te~ Ge~~at~£~
Qy~de.

Any responses are from the programs or procedures that executed within
the RUN EXEC.

DMSRUN001E NO FILENAME SPECIFIED RC=24
DMSRUN002E FILE['fn [ft [fm]j'] NOT FOUND RC=28
DMSRUN048E INVALID MODE 'fm' RC=24
DMSRUN070E INVALID PARAMETER 'parameter' RC=24
DMSRUN999E NO eft] PROCESSOR FOUND RC=28

Section 2. CMS Commands 165

SET

SET
Use the SET command to establish, turn off, or reset a particular
function in your CMS virtual machine. Only one function may be
specified per SET command. The format of the SET command is:

SET function
r ,

!y~£!i£~§: IBLIP string[(count)]1

[LDRTBLS nn]

IBLIP ON 1
IBLIP OFF I
L

r ,

1!!~1~!~~ QM 1
IRELPAGE OFFI

r

r ,
Ij~I!1'§§ 1!1.§.§1
IRDYMSG SMSGI
L

r ,
IINPUT 1 a xxi
I Ixx yyl

,
I
I

L .J L L .J .J

r , r ,
1!!HnU~! Q! I IREDTYPE ON I
IABBREV OFFI I!!!~!!.f! Q!:!:I
L .J L .J

r , r ,
1111.f£,f Q! I I.R!!QTE£! QM I
IIMPCP OFFI IPROTECT OFFI
L .J L .J

r SYSNAME {~:~~~iM} entryname 'I
I CMSAMS 1
L CMSSEG .J

£~~LQQ~ !YD£!i~n§:

[OUTPUT [xx a]
r ,
1!11.f!1 ON I
IIMPEX OFFI
L .J

r ,
IAUTOREAD ON I
IAUTOREAD OFFI
L .J

]

r {CMSDOS }' INONSHARE CMSVSAM I
I CMSAMS I
L CMSSEG.J

r , .r ,
I DOS ON [mode [(VSAM[)]]] I
IDOS OFF I

IDOSLNCNT nnl
L

L .J

r , r ,
IUPSI nnnnnnnni IDOSPART nnnnKI
IUPSI OFF I IDOSPART OFF I
L .J L .J

.J

BLIP string[(count)]

BLIP ON

defines the characters that are displayed at the terminal to­
indicate every two seconds of virtual interval timer time.
This time is made up of virtual processor time-plus, if the
REALTIMER option is in effect, self-imposed wait time. Blips
may also be caused by the execution of the STIMER macro.

You can define up to eight characters as ~ blip strin9; if you
want trailing blanks, you must specify count. ON and PFF must
not be used as BLIP characters. .

sets the BLIP characte~ string to its default, which is a
string of nonprintable_ characters. ON is the default- for
typewriter devices. The default BLIP character provides no
visual or a udio-visual signal on a 3767 terminal,. You must
define a BLIP character .f~r a 3767 if you - want the BLI~
function..

166 IBM VM/370 CMS Command and Macro Reference

SET

BLIP OFF turns off BLIP. OFF is the default for graphics devices.

Note: The BLIP operand will be ignored when issued from the
CMS batch machine~

!!]YM.§§ LMSG
---Indicates that the standard CMS

current and elapsed time, is used.
Ready message is:

R; T=s. mm/s·. mm hh: mm: ss

ready message, including
The format of the standard

where the virtual processor time, real processor time~ and
clock time are listed.

RDYMSG SMSG

LDRTBLS

RELPAGE

nn

ON

indicates that a shortened form of the CMS ready message (R;)
which does not include the time is used.

defines the number (nn) of pages of storage to be used for
loader tables. By default, a virtual machine having up to
384K of addressable real storage has two pages of loader
tables; a larger virtual machine has three pages. Each loader
table page has a capacity of 204 external names. During LOAD
and INCLUDE command processing, each unique external name
encountered in a TEIT deck is entered in the loader table.
The LOAD command clears the table before reading TEIT files;
INCLUDE does not. This number can be changed with the SET
LDRTBLS nn command provided that: (1) nn is a decimal number
between 0 and 128, and (2) the virtual machine has enough
storage available to allow nn pages to be used for loader
tables. If these two conditions are met, nn pages are set
aside for loader tables. If you plan to change the number of
pages allocated for loader tables, you should deallocate
storage at the high end of storage so that the storage for the
loader tables may be obtained from that area. Usually, you
can deallocate storage by releasing one or more of the disks
that were accessed.

--releases page frames of storage and sets them to binary zeros
after the following commands complete execution: ASSEMBLE,
COPYFILE, COMPARE, EDIT, MACLIB, SORT, TITLlB, UPDATE, and the
program product language processors supported by VM/370.
These processors are listed in the !~L]lQ In!£Q~Y£!!Qn.

OFF
does not release pages of storage after the commands listed in
the RELPAGE ON description complete -execution. Use the SET
RELPAGE OFF function when debugging- or analyzing a problem so
that the storage used is not released and can be examined.

INPUT a xx
translates the specified character a to the- specified
hexadecimal code xx for characters entered from the terminal.

INPUT xx yy

INPUT

allows yon to reset the hexadecimal code xx to the sp~~ified
hexadecimal code yy in your translate table.

!g1~: If you- issue SET INPUT and SET OUTPUT ~ommanas- for the
same characters,- issue the SET OUTPUT-command first.

returns all ~haracters to their default translation.-

Section 2. eMS Commands 167

SET

OUTPUT xx a

OUTPUT

ABBREV OFF

REDTYPE ON

translates the specified hexadecimal representation xx to the
specified character nan for all xx characters displayed at the
terminal.

returns all characters to their default translation.

!~1~: Output translation does not occur for SCRIPT files when
the SCRIPT command output is directed to the terminal, nor
when you use the CMS editor on a display terminal in display
mode.

accepts system and user abbreviations for system commands. The
SYNONYM command makes the system and user abbreviations
available.

accepts only the full system command name or the full user
synonym (if one is available) for system commands.

For a discussion of the relationship of the SET ABBREV and
SYNONYM commands, refer to the SYNONYM command description.

types CMS error messages in red for certain terminals equipped
with the appropriate terminal feature and a two-color ritton.
Supported terminals are described in the !~1~ 1~~~~~~1
.Y'§~f~'§ ~J!!gg.

!!]DTlf] OFF
--suppresses red typing of error messages.

IMPEX OFF

IMPCP OFF

f!!OT]~I ON

treats EXEC files as commands; an EXEC file is invoked when
the filename of the EXEC file is entered.

does not consider EXEC files as commands. You must issue the
EXEC command to execute an EXEC file.

passes command names that CMS does not recognize to CP; that
is, unknown commands are considered to be CP commands.

generates an error message at the terminal if ~ command is not
recognized by CMS.

protects the CMS nucleus against writing in its storage area.

PROTECT OFF
does not protect the storage area containing the CMS nucleus.

AUTOREAD ON

AUTOREAD

specifies that a console read
after command execution. ON is
ncnbuffered terminals.

OFF

is to be issued immediately
the default for nondisplay,

specifies that you do not want a console read to be issued
until you press the Enter key or its equivalen·t. OFF is the
default for display terminals because. the display terminal
does not lock, even when ther.e is no READ active for it.

168 IBM VM/370 CMS Command and Macro Reference

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118

SET

l!.Q:t.~: If
reconnect
unchanged.

you
on

disconnect from
another type,

one· type of terminal and
the AUTOREAD status remains

SYSNAME {~:;~~iM} entryname
CMSAMS
CMSSEG

allows you to replace a saved system name entry in the
SYSNAMES table with the name of an alternative, or backup
system. A separate SET SYSNAME command must be issued for
each name entry to be changed. CMSDOS, CMSVSAM, CMSAMS. and
CMSSEG are the default names assigned to the systems when the
CMS system is generated.

NONSHARE {~:;~~iM}
CMSAMS
CMSSEG
specifies that you want your own nonshared copy of a normally
shared named system.

The following functions describe the SET operands that apply to the
CMS/DOS environment.

DOS ON

I mode

VSAM

places your CMS virtual machine in the CMSjDOS environment.
The logical unit SYSLOG is assigned to your terminal.

specifies the mode letter at which the DOS/VSE system
residence is accessed; the logical assignment of SYSRES is
made for the indicated mode letter.

specifies that you are going to use the AMSERV command or you
are going to execute programs to access VS1M data sets.

returns your virtual machine to
All previously assigned system
are unassigned.

the normal CMS environment.
and programmer logical units

DOSLNCNT nn
specifies the number of SYSLST lines per page.
integer from 30 to 99.

UPSI nnnnnnnn

nn is an

sets the UPSI (User Program Switch Indicator) byte to the
specified bit string of O's and 1's. If you enter fewer than
eight digits, the UPSI byte is filled in from the left and
zero-padded to the right. If you enter an "x" for any digit,
the corresponding bit in the UPSI byte- is left unchanged~

g~SI Q!! resets the UPSI byte to binary zeros.

DOSP1RT nnnnnK
specifies the-size of the virtual partitioh in which you want
a program to execute. The value, nnnnnK, may not exceed the
amount of user free storage available in your virtual mach~ne.
You should use this function only when you can control the
performance of a particular program by reducing the amount of
available virtual storage.

section 2. CMS -Commands 169

SET

March 30, 1979

R2~g: In rare circumstances, it may happen that when a program
is executed, the amount of storage available is less than the
current DOSPART. Then, only the amount of storage available is
obtained; no message is issued.

~QSP!.HI OFF
--specifies that you no longer want to control your virtual

machine partition size. When the DOSPART setting is OFF, CMS
computes the partition size whenever a program is executed.

1. If you issue the SET command specifying an invalid function and the
implied CP function is in effect. you may receive message
DMKCFC003E.

2. If an invalid SET command function is specified from an EXEC and
the implied CP function is in effect. then the return code is
-0003.

None. To determine or verify the setting of a function. use the QUERY
command.

DMSLI00021 FILE 'fn' TXTLIB NOT FOUND RC=O
DMSSET014E INVALID FUNCTION 'function' RC=24
DMSSET026E INVALID PARAMETER 'parameter' FOR 'function' FUNCTION RC=24
DMSSET031E LOADER TABLES CANNOT BE MODIFIED RC=40
DMSSET047E NO FUNCTION SPECIFIED RC=24
DMSSET048E INVALID MODE 'mode' RC=24
DMSSET050E PARAMETER MISSING AFTER 'function' RC=24
DMSSET061E NO TRANSLATION CHARACTER SPECIFIED RC=24
DMSSET070E INVALID PARAMETER 'parameter' RC=24
DMSSET098W CMS OS SIMULATION NOT AVAILABLE RC=4
DMSSET099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSSET100W SYSTEM NAME 'name' NOT AVAILABLE RC=4
DMSSET142S SAVED SYSTEM NAME 'name' INVALID RC=2~
DMSSET333E nnnnnK PARTITION TOO LARGE FOR THIS VIRTUAL MACHINE RC=24
DMSSET400S SYSTEM 'sysname' DOES NOT EXIST RC=44
DMSSET401S V.M. SIZE (size) CANNOT EXCEED· 'DMSDOS' START ADDRESS

(address) RC=104
DMSSET410S CONTROL PROGRAM ERROR INDICATION 'retcode' RC=nnn

NQ!g: In RC=nnn, the nnn represents the actual error code
generated by CP.

DMSSET444E VOLUME 'label' IS NOT A DOS SYSRES RC=32

170 IBM VM/370 CMS Command and Macro Refe~ence

SORT

SORT

Use the SORT command to read fixed-length records from a CMS input file,
arrange them in ascending EBCDIC order according to specified sort
fields, and create a new file containing the sorted records. The format
of the SORT command is:

SORT

fileid1

fileid2

Q.§A,g~ !!21~

fileid1 fileid2

is the file identifier (filename, filetype, filemode) of the
file containing the records to be sorted.

is the file identifier (filename, filetype, filemode) of the
new output file to contain the sorted records.

The input and output files must not have the same file identifiers,
since SORT cannot write the sorted output back into the space occupied
by the input file. If a file with the same name as the output file
already exists, the old file is erased.

~~te!iDg 22!1 Control Fields: After the SORT command is entered, C~S
responds with the~ollovlng-message on the terminal:

DMSSRT604R ENTER SORT FIELDS:

you should respond by entering one or more pairs of numbers of the form
"xx yy" separated by one or more blanks. Each "xx" is the starting
character position of a sort field within each input record and "yy" is
the ending character position. The leftmost pair of numbers denotes the
major sort field. The number of sort fields is limited to the number of
fields you can enter on one line. The records can be sorted on up to a
total of 253 Fositions.

!irtY~l 212!gg~ g~gY!!~!~n1§ f2! 2Q£1ing: The sorting operation takes
place with two passes of the input file. The first pass creates an
ordered pointer table in virtual storage. The second pass uses the
pointer table to read the input file in a random manner and write the
output file. Therefore, the size of storage and the size and number of
sort fields are the limiting factors in determining the number of
records that can be sorted at anyone time. _ An estimate of tb-e maximum
number of records that can be sorted is:

VMSIZE - 132K
NR = -------------

14 + NC

where: NR is the estimated maximum number of input records; NC is the
total number of characters in the defined sort fields; VMSIZE is the
storage size of the virtual machine; and 132K is the size of the
resident CMS nucleus. For example, enter the command and ~espond- to the
prompting message:

Section 2. eMS Commands 171

SORT

sort name address a1 sortedna address b1

DMSSRT604R ENTER SORT FIELDS:

1 10 25 28

The records in the NAME ADDRESS file are sorted on positions 1-10 and
25-28. The sorted output is written into the newly created file
SORTEDNA ADDRESS. If you have a 320K virtual machine, you can sort a
maximum of 6815 records.

VMSIZE-132K 320K-132K 188K 192,512
NR = ------- 6815

14 + NC 14 + 14 28 28

DMSSRT604R ENTER SORT FIELDS:

You are requested
them in the form
Fields."

to enter SORT control fields. You should enter
described previously in "Entering Sort Contrel

DMSSRT002E FILE 'fm ft fm' NOT FOUND RC=28
DMSSRT009E COLUMN 'col' EXCEEDS RECORD LENGTH RC=24
DMSSRT019E IDENTICAL FILEIDS RC=24
DMSSRT034E FILE 'fn ft fm' IS NOT FIXED LENGTH RC=32
DMSSRT031E DISK 'mode' IS READ/ONLY RC=36
DMSSRT053E INVALID SORT FIELD PAIR DEFINED RC=24
DMSSRT054E INCOMPLETE FILEID SPECIFIED RC=24
DMSSRT062E INVALID * IN FILEID RC=20
DMSSRT063E NO LIST ENTERED RC=40
DMSSRT010E INVALID PARAMETER 'parameter' RC=24
DMSSRT104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSSRT105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSSRT212E MAXIMUM NUMBER OF RECORDS EXCEEDED RC=40

172 IBM VM/370 CMS Command and Macro Reference

Pg_ of GC20-1818-2 Rev March 30, 1919 by Supp_ SD23-9023-1 for 5748-XX8

SSERV

SSERV

Use the SSERV command in CMS/DOS to copy, dis~lay, print, or punch a
book from a DOS/VSE source statement library. The format of the SSEBV
command is:

r--,
r ,

SSERV sublib bookname I ft I
I£Q~!I
L .J

[(0 P ti 0 n s _ •• [)]]

QE1!2!H~:
[QI2!]
[PUNCH

[PRINT]
[TERl!]

I
I
I
I
I
I
I

~---~

sublib specifies the source statement sublibrary in which the book is
cataloged.

bookname specifies the name of the book in the DOS private or system
source statement sublibrary. The private library, if any, is
searched before the system library.

ft specifies the filetype of the file to be created on your
A-disk. ft defaults to COpy if a filetype is not specified.
The filename is always the same as the bookname.

QE1!Qn2: You may enter as many options as you wish, depending upon
the functions you want to perform.

RI2~ copies the book to a CMS file.

PUNCH punches the book on the virtual punch.

PRINT spools a copy of the book to your virtual printer.

TERM displays the book on your terminal.

1. If you want to copy books from private lib~aries, you must issue an
ASSGN command for the logical unit SYSSLB and ~dentify the library
on a DLBL command line using a ddname of IJSYSSL.

If you want to copy books from the system library, you must have
entered the CMS/DOS environment specifying the mode letter of the
system residence volume.

2. You should not use the SSERV command to copy books fro.m .acro (E)
sublibraries, since they are in "edited" (that is, compressed)
form. Use the ESERV command to copy and de-edit macros from·a
macro (E) sublibrary.

When you use the TERM option, the specified beak is di?played at the
terminal.

Section 2. CftS-Commands 173

March 30, 1979

SSEBV

DMSSBV003E INV1LID OPTION 'option' BC=2'
DMSSRV004B BOOK 'subI.book' NOT FOUND RC=28
DftSSRV006B NO RB1D/WRITB 'I' DISK ACCESSED BC=36
DMSSRV070E INVALID PARAKETER 'parameter' RC=24
DftSSRV097E NO 'SYSRES' VOLUME ACTIVE RC=36
DftSSRV098E NO BOOK NAKE SPECIFIED RC=24
DMSSRV099E CKS/DOS ENVIRONMENT NOT ACTIVE RC=40
D!SSRV1055 EBROR Inn' WRITING FILE 'fn ft fa' 01 DISK RC=100
D!SSRV113S DISK (cuu) NOT ATTACHED RC=100
D!SSRV411S INPUT ERROR CODE Inn' ON '{SYSRESISYSSLB}' RC=100
D!SSRV194S BOOK 'subl.book' CONTAINS BAD RECORDS RC=100

174 IBM V!/370 CKS Co.aana and_Kacro Reference

START

START

Use the START command to begin execution of CMS, OS, or DOS programs
that were previously loaded or fetched. The format of the START command
is:

START

entry

args •••

Q.Eti.2.!!:

NO

r
I entry
I *
L

,
[args •••] I

I
J

[(option[)]]
2.E1i2!!1

NO __ -------J

passes control to the control section name or entry point
name at execution time. The operand, entry, may be a
filename only if the filename is identical to a contrel
section name or an entry point name.

passes control to the default entry
discussion of the LOAD command for a
default entry point selection.

point. See
discussion of

the
the

are arguments to be passed to the started program. If user
arguments are specified, the entry or * operands must be
sFecified; otherwise, the first argument is taken as the
entry point. Arguments are passed to the program via
general register 1. The entry operand and any arguments
become a string of doublewords, one argument per doubleword,
and the address of the list is placed in general register 1.

suppresses execution of the program. Linkage editor and
loader functions are performed and the program is in storage
ready to execute, but control is not given to the program.

1. Any undefined names or references specified in the files loaded
into storage are defined as zero. Thus, if there is a call or
branch to a subroutine from a main program, and if the subroutine
has never been loaded, the call or branch transfers control to
location zero of the virtual machine at execution time.

2. Do not use the START command for programs that are generated via
the GENMOD command with the NOMAP option. The START command does
not execute properly for such programs~

DMSLI07401 EXECUTION BEGINS •••

is displayed when the designated entry point is validated.

This message is suppressed if CMS/DQS is active and the COMP option
is specified in the FETCH command.

DMSLI0021E ENTRY POINT 'name~ NOT FOUND RC=40
DMSLI0055E NO ENTRY POINT DEFINED RC=40-

Section 2. CMS Commands 175

STATE, STATEi

STATE/STATEW

Use the STATE command to verify the existence of a CMS, as, or DOS file
on any accessed disk; use the STATEW command to verify the existence cf
a CMS, as, or DOS file on any accessQd read/write disk. The formats cf
the STATE and STATEW commands are:

{
STATE }
STATEW

:!.!!er,g:

fn is the filename of the file whose existence is to be verified. If
fn is specified as *, the first file found satisfying the rest of
the fileid is used.

ft is the filetype of the file whose existence is to be verified. If
ft is specified as *, the first file found satisfying the rest cf
the fileid is used.

fm is the filemode of the file whose existence is to be verified. If
fm is omitted, or specified as *, all your disks are searched.

!!.§A9,g !!.Q:!:~'§:

1. If you issue the STATEW command specifying a file that exists on a
read-only disk, you receive error message DMSSTT002E.

2. When you code an asterisk in the fn or ft fields,
the file is ended as soon as any file satisfies any
conditions. For example, the command:

state * file

the search for
of the other

executes successfully if any file on any accessed disk (including
the system disk) has a filetype of FILE.

3. To verify the existence of an as or DOS file when DOS is set OFF,
you must issue the FILEDEF command to establish a. CMS file
identifier for the file. For example, to verify the existence cf
the as file TEST.DATA on an as C-disk you could enter:

filedef check disk check list c dsn test data
state check list

where CHECK LIST is the CMS filename and file~ype associated with
the as data set name.

4~ To verify the existence of an as or DOS file when the CMS/DeS
environment is active, you must issue the DLEL command to establish
a CMS file identifier for the file. For example, to verify the
existence of the DOS file TEST.DATA on a DOS C-disk, -you could
enter:

dlbl check c dsn test data
state file check

where FILE CHECK is the default CMS filename and filetype (FILE
ddname) associated with the DOS file-id~

176 IBM VM/370 CMS Command and Macro Reference

STATE, STATEW

5. You can invoke the STATE/STATEW command from the terminal, from an
EXEC file, or as a function from a program. If STATE/STATEW is
invoked as a function or from an EXEC file that bas the &CONTRCL
NOMSG option in effect, the message DMSSTTC02E FILE 'fn ft fm' NCT
FOUND is not issued.

!!~.§.E.QJ!~~'§

The CMS ready message indicates that the specified file exists.

DMSSTT227I PROCESSING VOLUME 'no' IN DATA SET 'data set name'

The specified data set has multiple volumes; the volume being
processed is shown in the message. The STATE command treats
end-of-volume as end-of-file and there is no end-of-volume
switching.

DMSSTT228I USER LABELS BYPASSED ON DATA SET 'data set name'

The specified data set has disk user latels; these labels are
skipped.

DMSSTT002E FILE 'fn ft fm' NOT FOUND RC=28
DMSSTT048E INVALID MODE 'mode' RC=24
DMSSTT054E INCOMPLETE FILEID SPECIFIED RC=24
DMSSTT062E INVALID 'char' IN FILEID 'fn ft' RC=20
DMSSTT069E DISK 'mode' NOT ACCESSED RC=36
DMSSTT070E INVALID PARAMETER 'parameter' RC=24
DMSSTT229E UNSUPPORTED OS DATA SET, ERROR 'code' RC=code

Section 2. CMS Commands 177

SVCTRACE

SVCTRACE

Use the SVCTRACE command
supervisor calls occurring
SVCTRACE command is:

to trace and record
in your virtual machine.

information about
The format of the

SVCTrace

ON starts tracing all SVC instructions issued within CMS.

OFF stops SVC tracing.

1. The trace information recorded on the printer includes:

• The virtual storage location of the calling SVC instruction and
the name of the called program or routine

• The normal and error return addresses

• The contents of the general registers both before the SVC-called
program is given control and after a return from that program

• The contents of the general registers when the SVC handling
routine is finished processing

• The contents of the floating-point registers before the
SVC-called program is given control and after a return from that
program

• The contents of the floating-point registers when the SVC
handling routine is finished processing

• The parameter list passed to the SVC

2. To terminate tracing previously established by the SVCTRACE
command, issue the HO or SVCTRACE OFF commands. SVCTRACE OFF and
HO cause all trace information recorded, up to the point they are
issued, to be printed on the virtual spooled printer. Cn
typewriter terminals SVCTRACE OFF can be issued only when tbe
keyboard is unlocked to accept input to the CMS command
environment. To terminate tracing at any other point in system
processing, HO must be issued. To suspend tracing temporarily
during a session, interrupt processing and enter the Immediate
command SO (Suspend Tracing). To resume tracing that was suspended
witb the SO command, enter the Immediate command RO (Resume
Tracing) •

If you issue the CMS Immediate command HX or you log off the
VM/370 system before termination of tracing previously set by tbe
SVCTRACE command, the switches are cleared automatically ~nd all
recorded trace information is printed on the vi~tual spooled
printer.

If a user timer exit _is activated while SVCTRACE is
SVCTRACE is disabled for the duration of the timer exit.
issued during the timer exit are not reflected -in the
listing.

178 IBM VM/370 CMS Command and Macro Reference

active,
Any svCs-­
SVCTRACE

SVCTRACE

3. When tracing on a virtual machine with only one printer r the trace
data is intermixed with other data sent to the virtual printer.

A variety of information is printed whenever the:

SVCTRACE ON

command is issued.

The first line of trace output starts with a dash or plus sign or an
asterisk (- or + or *). The format of the first line of trace output
is:

{ ;} RID =
xxx/dd name FROM loc OLDPSW = psw1 GOPSW psw2 [RC=rc]

indicates information recorded before processing the SVC.

+ indicates information recorded after processing the SVC, unless
the asterisk (*) applies.

* indicates information recorded after processing a CMS SVC that
had an error return.

N/D is an abbreviation for SVC number and depth (or level).

xxx

dd

name

loc

psw1

psw2

rc

is the number of the SVC call (they are numbered sequentially).

is the nesting level of the SVC call.

is the macro or routine being called.

is the program location from which the SVC was issued.

is the PSW at the time the SVC was called.

is the PSi with which the routine being called is invoked, if­
the first character of this line is a dash (-). If the first
character of this line is a plus sign or asterisk (+ or *), PSW2
represents the PSi that returns control to the user.

is the return code from the SVC handling- routine in general
register 15. This field is omitted if the first character of
this line is a dash (-), or if this is an as svc call. For a
CMS SVC, this field is 0 if the line begins with a plus sign
(+), and nonzero for an asterisk (*). Also, this field equals
the contents of R15 in the "GPRS AFTER" line.

The next two lines of output are the
registers when control is passed to the. SVC
output is identified at the left by ".GPRSB"~
is:

contents of the general
handling routine. This
The format of the output

.GPRSB = h h h h h h h h *dddddddd*
= h h h h h h h h -*ddddaddd*

Section 2. CMS Commands 179

SVCTRACE

where ~ represents the contents of a general register in hexadecimal
format and ~ represents the EBCDIC translation of the contents of a
general register. The contents of general registers 0 through 7 are
printed on the first line, with the contents of registers 8 through F cn
the second line. The hexadecimal contents of the registers are printed
first, followed by the EBCDIC translation. The EECDIC translation is
preceded and followed by an asterisk(*)~

The next line of output is the contents of general registers 0, 1,
and 15 when control is returned to your program. The output is
identified at the left by ".GPRS AFTER :n. The format of the output is:

~GPRS AFTER : RO-Rl = h h *dd* R15 = h *d*

where b represents the hexadecimal contents of a general register and g
is the EBCDIC translation of the contents of a general register. The
only general registers that CMS routines alter are registers 0, 1, and
15 so only those registers are printed when control returns to your
program. The EBCDIC translation is preceded and followed by an asterisk
(*) •

The next two lines of output are the contents of the general
registers when the SVC handling routine is finished processing. This
output is identified at the left by ".GPRSS." !he format of the output
is:

.GPRSS = h h h h h h h h *dddddddd*
= h h h h h h h h *dddddddd*

where ~ represents the hexadecimal contents of a general register and g
represents the EBCDIC translation of the contents of a general register.
General registers 0 through 7 are printed on the first line with
registers 8 through F on the second line. The EECtIC translation is
preceded and followed by an asterisk (*).

The next line of output is the contents of the
floating-point registers. The output is identified
n.FPRS". The format of the output is:

~FPRS = f f f f *gggg*

calling routine's
at the left by

where ! represents the hexadecimal contents of a floating-point register
and 3 is the EBCDIC translation of a floating-point register. Each
floating peint register is a doubleword; each f and g represents a
doubleword of data. The EBCDIC translation is preceded and followed by
an asterisk (*).

The next line of output is the contents of floating~point registers
when the SVC handling routine is finished processing. The" output is
identified by n.FPRSS" at the left. The format of the output is:

.FPRSS = f f f f *gggg*

"where! represents the hexadecimal contents of a floating-point register
and 3 is the EBCDIC translation. Each floating-point register is a
doubleword and each f and g represents a doubleword of data. The EBCDIC
translation is preceded and followed by an asterisk - (*f. -

The last two lines of output are printed only if the address in
register 1 is a valid address for the virtual machine. If printed, the
output is the parameter list - passed to _ the SVC. The outpu± is -
identified by ".PARM" at the left. Th~ output format is:

~PARM = h h h h h h h h *dddddddd*
= h h h h h h h h *dddddaad*

180 IBM VM/370 CMS Command and Macro Reference

SVCTRACE

where ~ represents a word of hexadecimal data and d is the EBCDIC
translation. The parameter list is found at the address contained in
register 1 before control is passed to the SVC handling program. The
EBCDIC translation is preceded and followed by an asterisk (*).

Figure 19 summarizes the types of SVC trace output.

Identification

.GPRSB

.GPRS AFTER

.GPR SS

,.FPRS

.FPRSS

• PARM

Comments

IThe SVC and the routine that issued the SVC.
I
I
I
IContents of general registers when control is passed
I to the SVC handling routine.
I
Contents of general registers 0, 1, and 15 when

control is returned to your program.

Contents of the general registers when the SVC
handling routine is finished processing.

Contents of fleating-point registers before the
SVC-called program is given control and after
returning from that program.

Contents of the floating-point registers when the
SVC handling routine is finished processing.

The parameter list, when one is passed to the SVC •

Figure 19. Summary of SVC Trace Output Lines

DMSOVR014E INVALID FUNCTION 'function' RC=24
DMSOVR047E NO FUNCTION SPECIFIED RC=24
DMSOVR104S ERROR Inn' READING FILE 'DMSOVR MODULE' ON DISK RC=100
DMSOVR109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104

section 2. CMS Commands 181

SYNONYM

SYNONYM

Use the SYNONYM command to invoke a table of synonyms to be used with,
or in place of, eMS and user-written command names. You create the
table yourself using the CMS editor. The form for specifying the
entries for the table is described under "The User Synonym Table."

The names you define can be used either instead of or in conjunction
with the standard eMS command truncations. However, no matter what
truncations, synonyms, or truncations of the synonyms are in effect, the
full real name of the command is always accepted. The format of the
SYNONYM command is:

SYNonym
r r r ",
Ifn 1~!NQ1!!!1 Ifml II (options ••• [)]]
I I IAjll1
L L 1* IJJ

L J
r ,

2E!i2D§: I§I~ I [CLEAR]
INOSTDI
L J

fn is the filename of the file containing your synonyms table.

fm is the filemode of the file containing your synonyms; if omitted,
your A-disk and its extensions are searched. If you specify fm,
you must enter the keyword, SYNONYM. If you specify fm as an
asterisk (*), all disks are searched for the specified SYNONYM
file.

1 •

§!Q

NOSTD

CLEAR

specifies that standard eMS abbreviations are accepted.

standard eMS abbreviations are not to be accepted. (The
full eMS command and the synonyms you defined can still
be used.)

removes any synonym table set by a previously entered
SYNONYM command.

If you enter the SYNONYM command with no
synonym table and the user synonym table
listed.

operands, the system
(i£ one exists) are

2. The SET ABBREV ON or OFF cOlllmand, in conjunction with the S-YNONYM
command, determines which standard and user-defined forms of a
particular eMS command are acceptable.

182 IBM VM/370 eMS Command and Macro Reference

SYNONYM

THE USER SYNONYM TABLE

You create the synonym table using the CMS editor. The table must be a
file with the filetype SYNONYM. The file consists of 80-byte
fixed-length records in free-form format with columns 73-80 ignored.
The format for each record is:

systemcommand usersynonym count

systemcommand
is the name of the CMS command or ~ODULE or EXEC file for which you
are creating a synonym.

usersynonym
is the synonym you are assigning to the command name. When you
create the synonym, you must follow the same syntax rules as for
commands; that is, you must use the character set used to create
commands, the synonym may be no longer than eight characters, and
so on.

count is the minimum number of characters that must be entered for the
synonym to be accepted by CMS. If omitted, the entire synonym must
be entered (see the following example) •

A table of command synonyms is built from the contents of this file.
You may have several synonym files but only one may be active at a time.
For example, if the synonym file named ~YSYN contains:

MOVEFILE MVIT

then, after yeu have issued the command:

synonym mysyn

the synonym MVIT can be entered as a command
MOVEFILE command. It cannot be truncated since no
If MYSYN SYNONYM contains:

name to execute the
count is specified.

ACCESS GETDISK 3

then, the synonyms GET, GETD, GETDI, GETDIS, or GETDISK can be entered
as the command name instead of ACCESS.

If you have an EXEC file named TDISK, you might have a synonym entry:

TDISK TDISK 2

so that you can invoke the EXEC procedure by specifying the truncation
TD.

Ih~ ~~l~!i~~§hiE be!!~g~ !hg ~~! !~~~~y ~~£ ~X!Q!X~ f2~~nds

The default values of the SET and SYNONYM commands are such
system synonym abbreviation table ia available unless
specified.

that the
otberwise

The system synonym abbreviation table for the FILEDEF command states
that FI is the minimum truncation. The~efore, the ~cceptable
abbreviations for FILEDEF. are: FI, FIL, FILE, FILED, .FILEDE, and
FILEDEF. The system synomym abbreviation _table is available whenever
both SET ABBREV ON and SYNONYM (STD) are in effect.

Section 2. CMS Commands 183

SYNONYM

If you have a synonym table with the file identification USERTAB
SYNONYM A, that has the entry:

FILEDEF USENAME 3

then, USENAME is a synonym for FILEDEF, and acceptable truncations cf
USENAME are: USE, USEN, USENA, USENAM, and USENAME. The user synonym
atbreviation table is available whenever both SET AEEREV ON and SYNONYM
USERTAB are specified.

No matter what synonyms and truncations are defined, the full real
name of the ccmmand is always in effect.

Figure 20 lists the forms of the system command and user synonyms
available for the various combinations of the SET ABBREV and SYNONYM
commands.

When you enter the SYNONYM command with no operands, the synonym
table(s) currently in effect are displayed.

SYSTEM
COMMAND

USER
SYNONYM

SHORTEST
FORM (IF ANY)

This response is the same as the response to the command QUERY
SYNONYM ALL.

DMSSYN7111 NO SYSTEM SYNONYMS IN EFFECT

This response is displayed when you issue the SYNONYM command with
no operands after the command SYNONYM (NOSTE) has been issued.

DMSSYN7121 NO SYNONYMS (DMSINA NOT IN NUCLEUS)

The system routine which handles SYNONYM command processing is net
in the system.

DMSSYN002E FILE 'fn ft fm' NOT FOUND RC=28
DMSSYN003E INVALID OPTION 'option' RC=24
DMSSYN007E FILE 'fn ft fm' NOT FIXED, 80 CHAR RECORDS RC=32
DMSSYN032E INVALID FILETYPE 'ft' RC=24
DMSSYN056E FILE 'fn ft fm' CONTAINS INVALID RECORD FORMATS RC=32
DMSSYN066E 'option AND 'option' ARE CONFLICTING OPTIONS -RC=24
DMSSYN104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100

184 IBM VM/370 CMS Command and Macro Reference

Options

SET ABBREV ON
SYN USERTAB (STD

SET ABBREV OFF
SYN USERTAB (STD

SET ABBREV ON I
SYN USERTAB (NOSTDI

I
I
I
I
I
I
I
I

SET ABBREV OFF I
SYN USERTAB (NOSTDI

I
I
I
I
I
I
I
I
I

SET ABBREV ON
SYN (CLEAR STD

SET ABBREV OFF
SYN (CLEAR STD

SET ABBREV ON
SYN (CLEAR NOSTD

SET ABBREV OFF
SYN (CLEAR NOSTD

March 30, 1979

Acceptable
Command
Forms

FI
FIL

FILEDEF
USE
USEN

USENAME

FILEDEF
USENAME

FILEDEF
USE
US EN

USENAME

FILEDEF
USENAME

FI
FIL

FILEDEF

FILEDEF

SYNONYM

Comments

The ABBREV ON option of the SET
command and the STD option of the
SYNONYM command make the system
table available. The user synonym,
USENAME, is available
because the synonym table
(USERTAB) is specified on the

SYNONYM command. The truncations
for USENAME are available because
SET ABBREV ON was specified with
the USERTAB also available.

IThe user-defined synonym, USENAME,
I is permitted because the user
I synonym table (USERTAB) is speci­
I fied on the SYNONYM command~ No
I system or user truncations are
I permitted.

IThe system synonym table is un-
I available because the NOSTD option
I is specified on the SYNONYM com-
I mand. The user synonym, USENAME,
I is available because the user syno­
I nym table (USERTAB) is specified on
I the SYNONYM command and the trunca­
I tions of USENAME are permitted
I because SET ABBREV ON is specified
I with USERTAB also available.

IThe system synonym table is made
unavailable either by the SET
ABBREV OFF· command or by the SYN
(NOSTD command. The synonym,
USENAME, is permitted because the
user-defined synonym table
(USER TAB) is specified on the
SYNONYM command. The truncations
for USENAME are not permitted
because the SET ABBREV OFF option
is in effect.·

IThe user-defined table is now un­
available. The system synonym
table is available because both
the ABBREV ON ~ption of the SET
command and theSTD option of the
SYNONYM command are specified.

IBecause CLEAR is specified on the
I SYNONYM command, the-synonym and· I
I its truncations are no longer I
J available. Either the SET ABBREV - I
I OFF command or the SYNONYM - (NOSTI) _. I
I ~ommand make the system synonym I
I table unavailable. . . . I
I ·1

Figure 20. System and User-Defined Truncations

Section 2. CMS Commands 185

rye UL b~~U-I~J~-~ Rev March 30, 1919 by Supp. SD23-9023-1 for 5748-XI8

TAPE

TAPE

Use the TAPE command to dump CMS-formatted files from disk to tape, load
previously dumped files from tape to disk, and perform various control
operations on a specified tape drive. Files processed by the TAPE
command must be in a unique CMS format. The TAPE command does not
process multivolume files. Disk files to be dumped can contain either
fixed- or variable-length records. The format of the TAPE command is:

r--~

TAPE DUMP

LOAD

SCAN

SKIP

DVOLl

r

r ,
Ifml
1* I
L .I

r ,

I { fn} {ft} I fm I
I * * IA I
L L J

r ,
I

{;n} {;t}
I

I I
L .I

r ,
I

{;n} {;t}
I

I I
L .I

[(optionA optionB optionD[)]]

,
I ((optionB optionC optionD()]]
I

.I

((optionB optionC optionD[)]]

[(optionB optionC optionD[)]]

iVOLl vo1id [owner]
[(optionD optionE[)]]
[(optionD optionEe)]]

MODESET

tapcllld

QEli~H!!:

((OptionD()]]
r ,
I nl [(optionD()]]
111
L .I

r , r ,
liTH I IBLKSIZE{!Q2§.} I
I!QWT!!I I 800 I
L J I.

r ,
INOPRintl
IPRint I
II~9! I
IDISK I
I. J

r ,
IEOT I
IEOF nl
I!lQ~ 11
L .I

rr "
IITAPn II
III!~l II
I I. .. I
I r , I
II-cuu II
Ill!!! II
LL .1.1

r ,
I REWIND 1-
11.!l!!~ 1
L ..

r ,
17TRACKI
19TRACKI
L .J

.J

(DEN den] [TRTCH a]

186 IBM VM/370 CMS Command and Macro Reference

DUMP

LOAD

SCAN

SKIP

March 30, 1919

{ fn}{ft}[fll]
* * [*]

dumps one or lIore disk files to
specified as an asterisk (*) all
file identifier are dUllped.

TAPE

tape. If fn and/or ft is
files that satisfy the other

If f. is coded as a letter, that disk and its extensions are
searched for the specified file(s). If fm is coded as a
letter and nUllber, only files with that mode number and letter
(and the extensions of the disk referenced by that f. letter)
are dumped. If fm is coded as asterisk (*), all accessed
disks are searched for the specified file(s). If fm is not
specified, only the A-disk and its extensions are searched.

[{ f n }{ f t } [f m]]
[* * [A]]

reads tape files onto disk. If a file identifier is
specified, only that one file is loaded. If the option EOF n
is specified and no file identifier is entered, n tape files
are written to disk. If an asterisk (*) is specified for fn
or ft, all files within EOF n that satisfy the other file
identifier are loaded.

The files are written to the disk indicated by the file.ode
letter. The filemode nUllber, if entered, indicates that only
files with that filellode nu.ber are to be loaded.

f{;n}{;t }~
positions the tape at a specified point, and lists the
identifiers of the files it scans. Scanning occurs over n
tape marks, as specified by the option EOF n (the default is 1
tape file). However, if a file identifier (fn and ft) is
specified, scanning stops upon encountering that file; the
tape reaains positioned ahead of the file.

f{;n}{;t}~
positions the tape at a specified point and lists the
identifiers of the files it skips. Skipping occurs over n
tape marks, as specified by the option EOF n (the default is 1
tape mark). However, if a file identifier (fn and ft) is
specified, skipping stops after encountering-that file; the
tape remains positioned immediately following the file.

MODESET sets the values specified by the DEN, -TRACK, and TRTCB
options. After initial specification in a TIPE cOlllland, these
values remain ~n effect for the virtnal tape device until they
are changed in a subsequent TAPE command.

r ,
tapc.dlnl specifies a tape control function (tapemd) to b~ executed n

111 times (default is 1 if n is not specified). These functions
L.I also work on tapes in a non-CMS format.

~gE£.!!g
BSF
BSR
ERG
FSF
FSR
REi

Action -
Backspace ~ tape marks
Backspace ~-tape records
Erase gap -
Forward-space !l tape lIarks­
Forward-space !l tape records
Rewind tape to load point

Section 2. CMS Commands 181

Pg. of GC2Q-18l8-2 Rev March 30, 1979 by Supp. SD23-9023-1 £or 5748-XX8

TAPE

DVOLl

VVOLl

!~]£~g
RUN
WTM

Action
RewInd tape and unload
~rite ~ tape marks

displays an 80-character VOL1 label in EBCDIC on the user's
terminal if such a label exists on the tape. If the first
record on the tape is not a VOLl label, an error message is
sent to the user.

volid [owner]
writes a VOLl label on a tape. All fields are set to the
same values they are set to when a VOL1 label is written by
the IBM-supplied IEHINITT utility program (see the
publication Q~L!~~ ~!~ ~1ilili~§ for details). The volid is
set to the 1- to 6-character volid specified on the command.
If the user specifies owner field, it is written in the owner
name and address code field of the label. It can be up to
eight characters long and left-justified in the lO-byte field
in the label. If not specified, the owner field is set to
blanks. The WVOLl option also writes a dummy HDR1 label and
tape mark after the VOL1 label.

QE1iQ~§:
If conflicting options are specified, the last one entered is in
effect.

WTM writes a tape mark on the tape after each file is du.ped.

writes a tape mark after each file is dumped, then backspaces
over the tape mark so that subsequent files written on the
tape are not separated by tape marks.

BLKSIZE 4096
BLKSIZE 800

specifies the size of the tape data block at which the files
are to be dumped (not including a five-byte prefix).

NOPRINT does not spool the list of files dumped, loaded, scanned, or
skipped to the printer.

PRINT

DISK

EOT

TAPn
18n

spools the list of files dumped, loaded, scanned, or skipped
to the printer.

displays a list of files dumped. loaded, scanned~ or skipped
at the terminal.

creates a disk file containing the list- of files dumped,
loaded, scanned, or skipped. The disk file has the file
identification of TAPE MAP AS.

reads the tape until an end-of-tape indication is received.-

reads the tape through a maximum of ~ tape marks.
default is EOF 1.

fte

specifies the symbolic tape identification (TAPn) or the
actual device address of the tape to be read from or written
to where n is 1, 2,_ ~, or 4~ The def~ult is TAP1_ ot 181.
The unit specified by cuu must previcusly have been attached_
to your CMS virtual machine before any tape I/O operation ~an
be attempted. Only symbolic names TAP1 through TAP4 and
virtual device addresses 181 through 184 are supported.

188 IBM VM/370 CMS Command and Macro Reference

rye VL u~~V-'OIO-~ HeV aarch 3D, 1979 by Supp. SD23-9023-1 for 5748-XX8

TAPE

7TRACK specifies a 7-track tape. Odd parity, data convert on, and
translate off are assumed unless TRTCH is specified.

9TRACK specifies a 9-track tape.

DEN den is the tape density where den is 200, 556, 800, 1600, or
6250. If 200 or 556 is specified, 7TRACK is assumed. If
1600 or 6250 is specified, 9TRACK is assumed; if 800 is
specified, 9TRACK is assumed unless 7TRACK is specified. In
the case of either 800/1600 or 1600/6250 dual-density drives,
1600 is the default if the 9TRACK option is specified. If
neither the 9TRACK option nor the DEN option is specified,
the drive operates at whatever bpi the tape drive was last
set.

TRTCH a is the tape recording technique for 7-track tape. If TRTCH
is specified, 7TRACK is assumed. One of the following must
be specified as "a":

Section 2. CMS Com.ands 188.1

March 30, 1979

188.2 IBK VM/370 eMS Co •• and and Macro Reference

Pg_ of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 57q8-X18

REWIND
~EA!~

~2aqe !Qte2

~ ~~~niDg
o Odd parity, data convert off, translate off
OC Odd parity, data convert on, translate off
OT Odd parity, data convert off, translate on
E Even parity, data convert off, translate off
ET Even parity, data convert off, translate on

TAPE

are only valid for the DVOLl and WVOLl functions. They
specify the positioning of a tape after the VOLl is
processed. If REWIND is specified, the tape is rewound and
positioned at load point. If LEAVE (the default) is
specified, the tape is positioned at the record immediately
after the VOLl label.

1. Tape records written by the CMS TAPE DUMP command are either 805
bytes long, if the option BLKSIZE is specified as 800; or Q101
bytes long if the BLKSIZE is specified as Q096, or defaulted to
Q096. The first character is a binary 2 (1'02'), followed by the
characters CMS and a file format byte. For a variable format file,
the file format byte is V. For a fixed format file without null
blocks, the file format byte is Fi otherwise the file format byte
is S. In the final record, the character N replaces the file
format byte, and the data area contains CMS file directory
information. A tape created at Q096-byte block size is not
reloadable on a CMS system that does not have the multivalue
BLKSIZE option on the TAPE command; however, the 800-byte BLKSIZE
option provides backward compatibility to such a system.

2. If a tape file contains a large number of CMS files that would not
fit on disk, the tape load operation may terminate if there is not
enough disk space to hold the files. To prevent this, when you
dump the files, separate logical files by tape marks, then forward
space to the appropriate file.

3. Because the CMS file directory is the last record of the file, the
TAPE command creates a separate workfile so that backspacing and
rereading can be avoided when the disk file is built. If the load
criteria is not satisfied, the workfile is erased; if it is
satisfied, the workfile is renamed. This workfile is named TAPE
CMSUT1, which may exist if a previous TAPE command has abnormally
terminated. If the work file is accidentally dumped to tape and
subsequently loaded, it appears on your disk as ~APE CMSUT2.

Q. The RUN option (rewind and unload) indicates completion before the
physical operation is completed. Thus, a subsequent operation to
the same physical device may encounter a device busy situation.

5. DVOLl and WVOLl are the only TAPE command functions that
automatically process tape labels. TAPE DUMP does not
automatically write labels on a tape when it writes the dump file,_
and TAPE LOAD does not recognize tape labels wnen loadrng a file.

6. Do not use TAPE DVOLl for a tape that you suspect to be blank. If
you do, and the tape is blank, it will run off the reel.

7. The options for the 8809_ tape drive- must be 9TRACK and DEN 1600.
Note that these are the default values, so you dQ not need to
specify them.

8. For more information on tape_file handling, see the !AL~70 ~~~
Q§~~§ QYig~.

Section 2. CMS Commands 189

March 30, 1979

TAPE

DMSTPE701I NULL FILE

A final record was encountered and no prior records were read in a
TAPE LOAD operation. No file is created on disk.

If the TERM option is in effect, the following is displayed at the
terminal depending on the operation specified:

LOADING •••••
fn ft fm

SKIPPING •••••
fn ft fm

DUMPING •••••
fn ft fm

SCANNING •••••
fn ft fm

When a tape mark is encountered, the following is displayed at the
terminal if the TERM option is specified:

END-OF-FILE OR END-OF-TAPE

190 IBM VM/370 CMS Command and Macro Reference

Pq. of GC20-1818-2 Rev Karch 30, 1979 by Supp. SD23-9023-1 for 5748-XX8

TAPE

DKSTPE002E FILE 'fn ft fs' NOT FOUND RC=28
DKSTPE003E INVALID OPTION 'option' RC=24
DKSTPE010E PREKATURE EOF 01 FILE 'fn. ft f.' RC=40
DMSTPE014E INVALID FUNCTIOI 'function' RC=24
DKSTPE017E INVALID DEVICE ADDRESS 'cuu' RC=24
DMSTPE023E NO FILETYPE SPECIFIED RC=24
DMSTPE027E INVALID DEVICE 'device name' RC=24
DKSTPE029E IBVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD

RC=24
DKSTPE037E DISK '.ode' IS READ/ONLY RC=36
DMSTPE042E NO FILEID SPECIPIED RC=24
DMSTPE043E 'TAPn(cuu), IS PILE PROTECTED RC=36
DMSTPE047E BO FUNCTION SPECIFIED RC=24
DMSTPE048E INVALID MODE '.ode' RC=24
DKSTPEOS7E INVALID RECORD FOR!AT RC=32
DKSTPE058E END-OF-FILE OR END-OF-TAPE RC=40
D!STPE070E INVALID PARAMETER 'parameter' RC=24
D!STPE096E FILE 'fn ft' DATA BLOCK COUNT INCORRECT RC=32
D!STPE104S ERROR Inn' READING FILE 'fn ft fa' FROM DISK RC=100
D!STPE10SS ERROR Inn' IRITING FILE 'fn ft fa' ON DISK RC=100
DKSTPE110S ERROR READING 'TAPn(cuu)' RC=100
DMSTPE111S ERROR IRITING 'TAPn(cuu)' RC=100
DKSTPE113S TAPn(cuu) NOT ATTACHED RC=100
D!STPE11SS {CONVERSIONI{719}-TRACKI{800162S0} BPIITRABSLATIOHIDUAL

DENSITY} FEATURE NOT SUPPORTED OB DEVICE 'cuu' RC=88
D!STPE431E 'TAPn(cuu)' VOLl LABEL MISSING RC=32

Section 2. CMS Co •• ands 199. 1

I..lu. ,.,u ...,IV, ,.",,..,

190.2 IBft Vft/370 CftS Command and ftacro Reference

rJarcn .:iU, 1~/~

TAPEMAC

TAPEMAC

Use the TAPEMAC command to create a CMS MACLIB from an unloaded
partitioned data set (PDS) from a tape created by the IEHMOVE utility
program under as. The PDS from which the tape was created can be
blocked, but the logical record length must be 80. The format of the
TAPEMAC command is:

TAPEMAC

fn

SL

r ,
fn I~~ [labeldefid] I [(options[)]]

INSL filename [ID=identifier]1
L .J

QEtiQ.!t2l.
r , r ,
ITAPn IIITEMCT YYY1Y I
ITAPll l!l~~~l_~~OOQI
L .J L .J

specifies the filename of the first, or only, CMS MACLIB to be
created on the A-disk. If fn MACLIB already exists on the
A-disk, the old one is erased; no warning message is issued.

means that the tape has
without a labeldefid.
standard header labels
terminal. If labeldefid
not displayed, but are
routine.

standard labels. The default is SL
with the default specification, the
are only displayed on the user's

is specified, the standard labels are
checked by the tape label checking

NSL means that the tape has nonstandard labels.

labeldefid
identifies the LABELDEF command that supplies descriptive
label information for the file tc be processed. The
labeldefid given here must match the 1- to 8-character
identifier specified as the filename on the LABELDEF command
that was previously issued.

filename is the CMS filename of a routine to process nonstandard
labels. The filetype must be TEXT or ~OD_ULE. If both TEXT
and MODULE files exist, the MODULE file is used~ MODULE files
that are used for NSL routines with the TAPEMAC command must
be created so that they start at an address above X'21000'.
This prevents the NSL modules from overlaying the command.
See the section "Tape Labels in CMS" in the !!1L1IQ ~~2 !I~~£~§
Guide for details on how to write routines to process
nonstandard labe~s.

ID=identifier
specifies a 1- to 8-character identifier to be passed to a
user-written NSL routine. You may use the identifier in a~y
way you want to identify the file being processed_ The
identifier is passed-to the user routine exactly as specifi~d
in the ID operand. If an - identifier is not specified, blanks
are passed. See the section "Tape Labels in CMS" in the
!~L1IQ ~~2 Q§~£~§ ~Yigg for details on communicating with
routines that process nonstandard labels. -

Section 2. CMS Commands 191

March 30, 1979

TAPEMAC

TAPn specifies the symbolic address of the tape, where n is a number
hetween 1 and 4 corresponding to virtual device addresses 181
through 184, respectively. The default is TAP1.

ITEMCT yyyyy
specifies the item count threshold of each MACLIB to be
created, which is the maximum number of records to be written
into each file. yyyyy is a number between 0 and 62500 (commas
are not allowed). If ITEMCT is not specified, the default is
50000.

1. Tape records are read and placed into fn MACLIB until the file size
exceeds the ITEMCT (item count); loading then continues until the
end of the current member is reached. Then another CMS file is
created; its filename consists of the number 2 appended to the end
of the filename specified (fn) if the filename is seven characters
or less. The appended number overlays the last character of the
filename if the name is eight characters long. Loading then
continues with this new name. For example, if you enter the
command:

tape mac mylib

you may create files named MYLIB MACLIB, MYLIB2 MACLIB, MYLIE3
MACLIB, and so on.

This process continues until up to nine CMS files have been
created. If more data exists on the tape than can fit in nine CMS
files, processing is terminated with the error message DMSTMA139S.
The maximum size of the unloaded PDS Which can be loaded into CMS
MAC1IBs would be aFproximately 9 times 62500 or 584,500 records.

2. Only header labels of the first file encountered are displayed or
checked if SL or S1 labdefid is specified. Trailer labels are not
processed or displayed; they are skipped.

3. The following examples illustrate the different ways tape labels
are processed by TAPEMAC. The command

tapemac mac6 sl

displays any standard VOL1 or HDR1 labels on a tape before loading
maclib MAC6. It does not stop before loading the KACLIB.

If you specify

labeldef taplab fid macfile crdte 77106
tape mac mac8 s~ taplab

CMS checks the HDR1 label on the tape before loading _MAC8. It uses
the information you supplied in the LABELDEF command TAPLAB to
check the label. If there are discrepancies between fields you
specified in the LABE1DEF command and in the actual tape label, the
MACLIB is not loaded.

If you specify

tapemac mac10 nsl ns13-

CMS uses your own routine-NSL3 to process tape labels befor~
loading MAC10.

192 IBM VM/370 eMS Command and Macro Reference

Pg. of GC20-1818-2 Rev March 30, 1919 by Supp. SD23-9023-1 for 5748-XX8

TAPEMAC

The TAPEMAC command displays the .essage:

LOADING fn MACLIB

for each macro library created.

DMSTMA001E NO FILENAME SPECIFIED RC=24
DMSTMA003E INVALID OPTION 'option' RC=24
DMSTMA057E INVALID RECORD FORMAT RC=32
DMSTMA070E INVALID PARAMETER 'parameter' RC=24
DMSTMA105S ERROR nn WRITING FILE fn ft ON DISK RC=100
DMSTMA109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSTMA110S ERROR READING TIPn RC=100
DMSTMA131S ERROR nn ON STATE FOR fn ft RC=100
DMSTMA138S ERROR nn ERISING 'fn ft' BEFORE LOADING TAPE RC=100
DMSTMA139S TAPE FILE EXCEEDS 9 CMS MACLIBS RC=104
DMSTMA420E NSL EXIT FILENAME MISSING OR INVALID RC=24

Section 2. CMS Commands 192.1

l'larch 3U,1':J1':J

192.2 IBa va/370 CKS Command ~nd Kacro Reference

-- -- - - - -. . - . .,

TIPPDS

TAPPDS

Use the TAPPDS command to create CMS disk files fro. tapes that are used
as input to or output from the following os utility programs:

• IEBPTPCH -- tape files must be the
operation from either a
set in os. The default
have been issued:

result of an IEBPTPCB punch
sequential or partitioned data
attributes (IEEPTPCH DCB) aust

DCB=(RECFM=FA,LRECL=81,BLKSIZE=81)

tape files may be blocked or unblocked and .ust be in the
for.at accepted by IEBUPDTE as "control data set" (SYSIN)
input with a control statement

./ ADD •••

preceding the records to be placed in each partitioned
data set member (OS) or separate C~S file (eMS».

• IEBUPDTE tape files may be blocked or unblccked.

• IEH~OVE unloaded partitioned data sets are read.

The tape can contain OS standard labels or be unlabeled. The format
of the TAPPDS command is:

r r
TAPPDS Ifn 1ft

I * I *
I I
L L

Q£t!Q!l~:

wh~~:

r ",
Ifm III
IA 1111
1* III
L .J.J.J

r ,
IfR~ I
INOPDS I
I UPDATE I
L .J

r ,
I END I
I 1!Qn~1
L .J

r ,
ISL [labeldefid] I
IMSL filename [ID=identifier]1
L .J

[(options[)]]
r ,
I COL 1 I
U!Q£QL 11
L .I

r ,
IMAXTEN I
I1!Q~A!TE!1
L .J

r ,
I TAPn I
11!~1'
L .J

fn is the filename of the disk file to be created fro. the sequential
tape file. If the tape contains me.bers of a partitioned data set
(PDS), fn .ust be specified as an asterisk (*); one file is created
for each me.ber with a filename the same as the me.ber na.e. If
NOPDS or UPDATE is specified and you do nQt specify fn or specify
it as an asterisk (*), the default filename is TAPPDS. -

ft is the filetype of the newly created files. The default filetyp~s
are CMSUT1 (for PDS or NOPDS) and ASSEMBLE (for UPDAT~). The
defaults are used if ft is omitted or specified as *.

f. is the .ode of the disk to contain the new files. If this field is
omitted or specified as an qsterisk C*), ~1 is assumed.

Section 2. CftS Co •• ands 193

"-'&Q.L·vU ..JV I ·1., • ..."

TAPPDS

SL means that the tape has standard labels. The default is SL
without a 1abe1defid. With the default specification, the
standard labels are displayed on the user's terminal. If
1abe1defid is specified, the standard labels are not
displayed, but are checked by the tape label checking
routine.

BSL means that the tape has nonstandard labels.

1abeldefid identifies the LABELDEF command, which supplies descriptive
label information for the file to be processed. The
1abeldefid given here must match the 1- to 8-character
specified as the filename on the LABELDEF co •• and that was
previously issued.

filename is the C~S filename of a routine to process nonstandard
labels. The fi1etype must be TEXT or MODULE. If both TEXT
and ~ODULE files eXist, the MODULE file is used. MODULE
files that are used for NSL routines with the TIPPDS co.mand
must be created so that they start at an address above
1'21000'. This prevents the MODULE files from overlaying the
comlland. See the section "Tape Labels in CMS" in the VML11Q
CMS Users's Guide for details on writing routines to process
nonstandard labels.

ID=identifier
specifies a 1- to 8-character identifier to a user-written
NSL routine. yOU may use the identifier in any way you want
to identify the file being processed. The identifier is
passed to the user routine exactly as specified in the
operand. If an identifier is not specified, blanks are
passed. See' the section "Tape Labels in CMS" in the VMLJ.IQ
CMS User's G~ide for details on communication with routines
that-process-nonstandard labels.

IQte: If either SL or NSL is specified for tape label processing. the
fn, ft, and fm operands must all be specified. They may be specified by
asterisks (*) if you want default values; however, none of the three
operands may be omitted.

optiQ~: If conflicting options are specified, the last one entered
is the one that is used. All options, except TAPn, are ignored when
unloaded (IEHftOVE) PDS tapes are read.

PDS indicates that the tape contains members of an as partitioned
data set, each preceded by a MEMBER NAME=name statement. The
tape must have been created by the-OS IEBPTPCH service
program if this option is specified.

NOPDS indicates that the contents of the taFe will be placed in one
CMS file.

UPDATE indicates that the tape file is in IEBUPDTE control file
format. The filename of each file is taken from the NAME=
paraaeter in the ".1 ADD" record that precedes each lIember.
(See Usage Note 2.) -

CaLl reads data from columns 1-80. YQu should specify this option
when you use the_UPDATE option.

!!Q~Q!=.l reads data from- co1ullns 2- 81; col uan 1 contains control
character information. This is the format produced by the OS
IEBPTPCH service program.

194 IBM V~/370 CMS Command and Macro Reference

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118

TAPPDS

TAPn

END

is the tape
representing
respectively.

unit number. n can be 1, 2,
virtual units 181, 182, 183,
If not specified, TAP1 is assumed.

3, or 4,
and 184,

considers an END state.ent (characters 'END ' in columns 2-5)
a delimiter for the current .e.ber.

specifies that END statements are not to be treated as me.ber
delimiters, but are to be processed as text.

MAXTEN reads up to ten members.
option is selected.

This is valid only if the PDS

NO!AXTEN
--------reads any number of members.

Q§age HQte2

1. You can use the TAPE command to position a tape at a particular
tape file before reading it with the TAPPDS command. If the tape
has os standard labels, TAPDDS will read and display the "VOL1" and
"HDR" records at the terminal. If the file you want to process is
not at the beginning of the tape, the TAPE command must be used to
position the tape at a particular tape file before reading it with
the TAPPDS command. Be aware that each file on an as standard
label tape is actually three physical files (HDR, DATA, TRAILER).
If positioning to other than the first file~ the user must skip
more physical tape files (3n-3 if positioning to the header labels,
3n-2 if positioning to the data file~ where n is the number of the
file on the tape).

2. If you use the UPDATE option, you must also specify the COLl
option. Each tape record is scanned for a ".1 ADD" record
beginning in column 1. When a ".1 ADD" record is found, subsequent
records are read onto disk until the next ".1 ADD" record is
encountered or until a ".1 ENDUP" record is encountered.

Section 2. CMS Commands 194.1

194.2 IBM VM/370 CMS Command and Macro Reference

March 30. 1979

TAPPDS

A ".1 ENDUP" record or a tape mark ends the TAPPDS command
execution; the tape is not repositioned.

"./ label" records are not recognized by CMS and are included in
the file as data records.

If the NAME= parameter is missing on the 11.1 ADD" record or if it
is followed by a blank, TAPPDS uses the default filename, TAPPDS,
for the CMS disk f~le. If this happens more than once during the
execution of the command, only the last unnamed member is contained
in the TAPPDS file.

3. If you are reading a macro library from a tape created by the
IEHMOVE utility, you can create a CMS MACtIB file directly by using
the TAPEMAC command.

4. Only header labels of the first file encountered are displayed or
checked if SL or SL labeldefid is specified. Trailer labels are
not processed or displayed; they are skipped. When more than one
file is processed by one issuance of the TAPPDS command, only the
first file has its standard labels processed. Standard labels are
skipped on succeeding files.

5. The following examples illustrate different ways in which tape
labels are processed by TAPPDS. If you specify

tappds fileg cmsut1 * sl

then, before loading the PDS into fileg, CMS displays a VOtl and
HDR1 label if it exists on the tape. It does not stop before the
PDS is loaded; therefore, you cannot use the tape label to suppress
loading if the wrong tape has been mounted.

If you specify

labeldef labe12 fid pdsl volid xyz
tappds fileh cmsutl * sl labe12

CMS uses the label information specified to check the label on the
tape before loading your PDS. If there are discrepancies. the PDS
is not loaded.

If you specify

tappds filej * * nsl nonstd

CMS uses your own routine called NONSTD to process tape labels
before loading the PDS.

DMSTPD7031 FILE 'fn ft [fm]' COPIED

The named file is copied to disk.

DMSTPD7071 TEN FILES COPIED

The MAXTEN option was specified and ten memters have been copied.

Note: If the tape being read contains standard OS labels, the labels are
dIsplayed at the terminal.

section 2.- CMS Commands 195

Pg.of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8

TAPPDS

DMSTPD003E INVALID OPTION 'option' RC=24
DMSTPD058E END-OF-FILE OR END-OF-TAPE RC=40
DMSTPD105S ERROR 'nn'WRITING FILE 'fn ft fm' ON DISK RC=100
DMSTPD109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSTPD110S ERROR Inn' READING 'TAPn(cuu)' RC=100
DMSTPD420E NSL EXIT FILENAME MISSING OR INVALID RC=24

196 IBM VM/370 CMS Command and Macro Reference

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118

TXTLIB

TXTLIB

Use the TXTLIB command to update CMS text libraries. The format of the
TITLIB command is:

TITlib GEN libname fn1 [fn2 ...]
ADD lib name fn1 [fn2 ...] QEtiQD.§:

r ,
DEL lib name memberna me 1 [melllbername2 .•••] ITER!! I

IDISK I
MAP libnaae [(0 p ti 0 n s ••• [)]] I PRINTI

L .I

GEN creates a TITLlB on your A-disk. If a TXTLIB with the same
name already exists, it is replaced.

ADD adds TEXT files to the end
read/write disk. No checking
entry points, or CSECTs.

of an existing TITLIB on a
is done for duplicate names,

DEL deletes members from a TITLIB on a read/write disk and
compresses the TXTLIB to remove unused space. If aore than
one member exists with the same naae, only the first entry is
deleted.

MAP lists the names (entry points) of TITLIB members, their
locations in the library, and the number of entries.

libname specifies the filename of a file
which is to be created or listed
be deleted or added.

with a file type of TITLIB,
or from which members are to

fn1[fn2 •••]
specifies the name(s) of file(s) with filetype(s) of TEXT,
that you want to add to a TITLIB.

lIlembernamel [membername2 •• ~]
specifies the name(s) of TXTLIB member(s) that you want to
delete.

TERM displays information about the TXTLIB on your terminal.

writes a CMS file, named libname MAP AS, that contains a list
of TITLIB members.

PRINT spools a copy of the TXTLIB map to the virtual print~r.

!!§.~~ ~Q1~§.

1. When a TEXT file is added to-a library, its membername(s)_ are taken
from the CSECT names or-NAME statements in the TEXT file. Deletions
and LOAD or INCLUDE command references must be made on these names.
For example, a TEXT file with a filename of TESTPROG that contains
CSECTs named CHECK and - -RE~HECK, when added to a TXTLIB, _creates
members named CHECK and RECHECK.

Section 2. CMS Commands 196.1

March 30, 1979

196.2 IBM VM/370 CMS Command and Macro Reference

TXTLIB

2. Members must be deleted by their initial entry in the dictionary
(that is, their "name" or the first ID name). Any attempt to
delete a specific alias or entry point within a member will result
in a "Not found" message.

3. If you want your TXTLIBs to be searched for missing subroutines
during CMS loader processing; you must identify the TITLIB on a
GLOBAL ccmmand; for example:

global txt lib newlib

4. You may add OS linkage editor control statements NAME, ALIAS,
ENTRY, and SETSSI to a TEXT file before adding it to a TXTLIB. Yeu
must follow OS linkage editor conventions concerning format (column
1 must be blank) and placement within the TEXT file. The specified
entry point must be located within the CSEC~.

5. TITLIB members are not fully link-edited, and may return erroneous
entry points during dynamic loading.

6. The total number of members in the TXTLIB file cannot exceed 1000.
When this number is reached, an error message is displayed. The
total number of entry points in a member cannot exceed 255. When
this number is reached, an error message is displayed and the next
text file (if there is one) is processed. The text litrary created
includes all the text files entered up to (but not including) the
one that caused the overflow.

7. TERM or PRINT options will erase the old MAP file, if one exists.

When the TXTLIB MAP command is issued with the TERM option, the contents
of the directory of the specified text library are displayed at the
terminal. The number of entries in the text library (xxx) is also
displayed.

ENTRY INDEX
name lecation

xxx ENTRIES IN LIBRARY

DMSLBT001E NO FILENAME SPECIFIED RC=24
D~SLBT002E FILE 'fn ft' NOT FOUND RC=28
DMSLBT002W FILE 'fn ft' NOT FOUND RC=4
DMSLBT003E INVALID OPTION 'option' RC=24
DMSLBT013E MEMBER 'name' NOT FOUND IN LIBRARY 'in ft fm' RC=32
DMSLBT014E INVALID FUNCTION 'function' RC=24
DMSLBT037E DISK 'mode' is READ/ONLY RC=36
DMSLBT046E NO LIBRARY NAME SPECIFIED RC=24
DMSLBT047E NO FUNCTION SPECIFIED RC=24
DMSLBT056E FILE 'fn ft fm' CONTAINS [NAKEIALIASfENTRYIESD] INVALID

RECORD FORMATS RC=32
DMSLBT056W FILE. 'fn ft fm' CONTAINS [{NAMEIALIASIENTRYIESD}] INVALID

RECORD FORMATS RC=4
DMSLBT069E DISK 'mode' NOT ACCESSED RC=36
DMSLBT104S ERROR Inn' READING- FILE- 'fn ft fm' FROM DISK RC=100
DMSLBT105S ERROR 'nn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSLBT1 06 S NUMBER OF MEMBER _NAMES EXCEEDS MAX -' nnnn ' • FILE -' fn ft' NCT -

ADDED RC=88
DMSLBT213W LIBRARY 'fn ft fm! NOT CREATED -RC=4

Section 2. CMS Commands 197

TYPE

TYPE

Use the TYPE command to display all or part of a CMS file at the
terminal in either EBCDIC or the hexadecimal representation of the
EBCDIC code. The format of the TYPE command is:

r r"
Type fn ft [fm] I recl Irecnll [(options ••• ()]]

* 1* 1* II
111 II
L L .1.1

r r"
[HEX] 1 COL { XXXXX}-1 yyyyy I I

I 1 11!:§! cl I ,
L L.:I.I

r ,

I MEMBER { * }'
, name I
L .I

fn is the filename of the file to be displayed.

ft is the filetype of the file to be displayed.

fm is the filemode of the file to be displayed. If this field is
omitted, the A-disk and its extensions are searched to locate
the file. If fm is specified as an asterisk (*), all disks are
searched, and the first file found is displayed.

recl is the record number of the first record to be displayed. This
field cannot contain special characters. If rec1 is greater
than the number of records in the file, an error message is
displayed. If this field is omitted or entered as an asterisk
(*), a record number of 1 is assumed.

recn is the record number of the last record to be displayed. This
value cannot contain embedded commas. If this field is not
specified, is entered as an asterisk (*) , or is greater than the
number of records in the file, displaying continues until end of
file is reached.

COL xxxxx-yyyyy
displays only certain columns of each record. - xxxxx specifies
the start column and yyyyy the end column of the field within
the record that is to be displayed. The string xxxxx-yyyyy
may have a maximum of eight characters; additional characters
are truncated. -

If columns are not specified, the entire record is displayed
unless the filetype is LISTING, in which case the first
position of each re~ord is not displayed, since it is assumed
to be a carriage control character.

HEX displays the file in hexadecimal format.

198 IBM VM/370 CMS Command and Macro Reference

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8

TYPE

MEMBER
ME!! {n:me}

displays member(s) of a library. If ft is MACLIB or TXTLIB, a
MEMBER entry can be specified. If an asterisk (*) is
specified, all members of the library are displayed. If a name
is specified, only that particular member is displayed.

1. If the HEX option is specified, each record can be displayed in its
entirety; if not, no more than 130 characters of each record can be
displayed.

2. The length of each output line is
current terminal linesize (as
command), whichever is smaller.

limited to 130 characters or the
specified by the CP TERMINAL

The file is
specifications.
a header record:

displayed at the terminal according to the given
When you use the HEX option, each record is preceded by

RECORD nnnnnnnnnn LENGTH=nnnnnnnnnn

DMSTYP002E FILE 'fn ft fm' NOT FOUND RC=28
DMSTYP003E INVALID OPTION 'option' RC=24
DMSTYPOOSE NO 'option' SPECIFIED RC=24
DMSTYP009E COLUMN 'col' EXCEEDS RECORD LENGTH RC=24
DMSTYP013E MEMBER 'name' NOT FOUND IN LIBRARY RC=32
DMSTYP029E INVALID PARAMETER 'parameter' [IN THE OPTION 'option' FIELD]

RC=24
DMSTYP033E FILE 'fn ft fm' IS NOT A LIBRARY RC=32
DMSTYP039E NO ENTRIES IN LIBRARY 'fn ft fm' RC=32
DMSTYP049E INVALID LINE NUMBER 'line number' RC=24
DMSTYP054E INCOMPLETE FILEID SPECIFIED RC=24
DMSTYP062E INVALID * IN FI1EID RC=20
DMSTYP104S ERROR Inn' READING FILE 'fn ft tm' FROM DISK RC=100

Section 2. CMS Commands 199

March 30, 1979

UPDATE

UPDATE

Use the UPDATE command to modify program source files. The UPDATE
command accepts a source input file and one or more files containing
UPDATE control statements and updated source records; then it creates an
updated source output file, an update log file indicating what changes,
if any, were made, and an update record file if more than a single
update file is applied to the input file. The format of the UPDATE
command is:

Update

fn1 ft1 fm1

fn2 ft2 fm2

REP

r r " fn1 Ift1 Ifm1 [fn2 (ft2 (fIl2]]]11 [(options ••• [)]]
I!SS~lHH~~ III II
L L .1.1

r , r , r , r ,
QEtig!!§: IREP I I SEQ!! I IINC I ICTt I

IHQR~~I INOSEQ81 I!!QI!!£I INO~TLI
L .I L .I L .I L .I

r , r , r , r ,
ISTK I ITERA I IRISK I ISTOR I
IHQ~!KI INOTERMI IPRINTI 1l!Q~!ORI
L .I L .I L .I L .I

is the file identifier of the source input file. The file
must consist of 80-character card image records with
sequence fields in positions 73 through 80 or 76 through 80.
If the filetype or filemode are omitted, ASSEMBLE and A1 are
assumed, respectively.

is the file identifier of the update file. If the NOCTL
option is in effect, this file must contain UPDATE control
statements and updated source records. The default file
identifier is fn1 UPDATE A1. If the CTt option is
specified, this file must be a control file that lists the
update files to be applied; the default file identifier is
fn1 CNTRL A1.

creates an output source file with the salle filename as
the input_source file. If the output file is placed on
the same disk as the input file, the input file is
erased.

retains the old file in its original form, ~nd assigns a
different filename to the new file, consisting of a
dollar sign ($) plus the fir-st seven characters of -the
input filename (fn1).

specifies that the entire sequence field (columns 73
through 80) contains an -eight-digit sequence number on
every record of source input.

200 IBM VM/370 eMS Command and Macro Reference

NOSEQ8

INC

CTL

STK

NOTERM

PRINT

STOR

UPDATE

specifies that columns 73-75 contain a three-character
label field, and that the sequence number is a five-digit
value in columns 76-80.

BQte: Source files sequenced by the CMS editor are
sequenced, by default, with five-digit sequence numbers.

increments sequence numbers in celumns 73 through 80 in
each record inserted into the updated output file,
according to specifications in UPtATE control statements.

puts asterisks (********) in the sequence number field of
each updated record inserted from the update file.

specifies that fn2, ft2, and fm2 describe an
control file for applying multiple update files
source input file. (See "The CTL Option. It)

Note~ The CTL option implies the INC option.

update
to the

specifies that a single update file is to be applied to
the source input file.

stacks information from the centrol file in the CMS
console stack~ STK is valid only if the CTL option is
also specified and is useful only when the UPDATE command
is executed in an EXEC procedure.

does not stack control file infermation in the console
stack.

displays warning messages at the terminal whenever a
sequence or update control card error is discovered.
(Such warning messages appear in the update log, whether
they are displayed at the terminal or not.)

suppresses the display of warning messages at the
terminal. However, error messages that terminate the
entire update procedure are displayed at the terminal.

places the update log file on disk. This file has a file
identifier "fn UPDLOG", where "fn" is the filename of the
file being updated.

prints the update log file directly on the virtual
printer.

specifies that the source input file is to be read into
storage and the updates performed in storage prior to
placing the updated source file en disk. This option is
meaningful only when used with the CTL option since the
benefit of increased processing ~peed is realized when
processing multiple updates. STCR is the default when
CTL is specified.

specifies that no updating is to take place in_ storage-.
NOSTO~ is the default when single updates are being
applied (CTL is omitted from the command line).

section 2. CMS Commands 201

UPDATE

UPDATE CONTROL STATE~ENTS

The UPDATE control statements let you insert, delete, and replace source
records, as well as resequence the output file.

All references to the sequ~nce field of an input record refer to the
nu.eric data in colu.ns 73-80 of the source record, or columns 76-80 if
NOSEQ8 is specified. Leading zeros in sequence fields are not required.
If no sequence numbers exist in an input file, a preliminary UPDATE with
only the '.1 S' control statement can be used to establish file
sequencing.

Sequence numbers are checked while updates are being applied; an
error condition results if any sequence errors occur in the update
control statements, and warn1ngs are issued if an error is detected in
the sequencing of the input f~le. Any source input records with a
sequence field of eight blanks are skipped, without any indication of a
sequence error. Such records may b~ replaced or deleted only if they
occur within a range of records that are being replaced or deleted
entirely and if that range has limits with valid sequence numbers.
There is no means provided for specifying a sequence field of blanks on
an UPDATE centrol statement.

All UPDATE control statements are identified by the characters '.1' in
columns 1 and 2 of the 80-byte record, followed by one or more blanks
and additional, blank-delimited fields. Control statement data must net
extend beyond column 50.

~~2Q]!~~ ~g~1fg1 St~!~!~~1 -- resequences the updated source output file
in columns 73-80 (if SEQ8 is specified), or in columns 76-80 with the
label placed in columns 73-75 (if NOSEQ8 is specified). The format ef
the SEQUENCE control statement is:

./S [seqstrt [seqincr [label]]]
~------------_________________________________--J

seqstrt

seqincr

label

is a one- to eight-digit numeric fiel~ specifying the
first decimal sequence number to be used~ - The_ default
value is 1000 if SEQ8 is specified and 10 if NOSEQ8 is
specified.

is a one- to eight-digit numeric field specifying tbe
decimal increment for resequencing the output file.
The default- is the "seqstrt" value.

is a three-character field to be-dup~icated ~n columns
73-75 of each source record if NOSEQ8 is specified.
The default value is the first three characters of the
input filename (fn1).

If you use-the SEQUENCE statement, it ~ust be the first statement in the
update file. If any valid control statement precedes it, the resequence

- operation is suppressed.

202 IBM VM/370 CMS Command and Macro Reference

UPDATE

Each source record is resequenced in columns 73-80 as it is written
onto the output file, including unchanged records from the source file
and records inserted from the update file.

INSERT Control Statement -- inserts all
next-controI-statement:-into the output
control statement is:

records following it, up to the
file. The format of the INSEBT

./ I seqno [$ [seqstrt [seqincr]]]

seqno

$

seqstrt

seqincr

is the sequence number of the record in the source
input file following which new records are to be added.

is an optional delimiter indicating that the insert~d
records are to be sequenced by increments.

is a one- to eight-digit numeric field specifying the
first decimal number to be used for sequencing the
inserted records.

is a one- to eight-digit numeric field specifying the
decimal increment for sequencing the inserted records.

All records following the "./ I" statement, up to the next control
statement, are inserted in the output file following the record
identified by the "seqno" field. If the NOINC option is specified, each
inserted record is identified with asterisks (********) in columns
73-80. If either the INC or CTL option is specified, the records are
inserted unchanged in the output file, or they are sequenced according
to the "seqstrt" and "seqincr" fields, if the dollar sign ($) key is
specified.

The default sequence increment, if the dollar sign is included, is
determined by using one tenth of the least significant, nonzero digit in
the seqno field, with a maximum of 100. The default seqstrt is computed
as seqno plus the default seqincr. For example, the control statement:

./ I 2600 $ 2610

causes the inserted--re<;ords to be sequenced XXX02610, XXX02620, and so­
forth (NOSEQ8 assumed here). For the control statement:

./ I 240000 $

the defaulted seqincr is the maximum, 100,
number is 240100. SEQ8 is assumed, so
sequenced 00240100, 00240200, and so forth.

and the starting sequence
the inserted records are

If either INC or CTL is sFecified but -the dollar sign is not
included, whatever sequence number appears on the insert~d records in
the update file is included in the output file.

Section 2. CMS Commands 203

UPDATE

DELETE Control Statement -- deletes one or more records from the source
11le:- The-format-of-the DELETE control statement is:

./ D seqn01 [seqn02] ($]

seqn01

seqn02

$

is the sequence number identifying the first or only
record to be deleted.

is the sequence number of the last record to be
deleted.

is an optional delimiter indicating the end of the
control fields.

All records of the input file, beginning at seqnol, up to and
including the seqn02 record, are deleted from the output file. If the
seqn02 field is omitted, only a single record is deleted.

REPLACE Control ~!~!~m~~! -- replaces one or more input records with
updated records from the update file. The format of the REPLACE control
statement is:

I

./ R seqnol [seqn02] [$ [seqstrt (seqincr]]]1

seqn01

seqn02

$

seqstrt

seqincr

is the sequence number of the first input record to be
replaced.

is the sequence number of the last record to be
replaced.

is an optional delimiter key indicating that the
substituted records are to be sequenced incrementally.

is a one- to eight-digit numeric field specifying the
first decimal number to be used for sequencing the
substituted records.

is a one- to eight-digit numeric field specifying the
decimal increment for sequen~1ng the substituted
records.

All records of the input file, beginning with the seqnol record, up
to and including the seqn02 record, are replaced in the output file by
the records fcllowing the "./ R" statement in the update file, up to the
next control statement. As with the "./ D" (delete) function, if the
seqn02 field is omitted, only a single record is replaced, but it may be
replaced by more than a single inserted record. The "./ R" (replace)
function is performed as a delete followed by an insert: thus, the
number of statements inse~ted need not match the number - deleted. The

- dollar sign ($), seqstrt, and seqincr processing is identical to that
for the insert function.

204 IBM VMj370 CMS Command and Macro Reference

UPDATE

£QMM]!~ ~!~!~~~! --allows inserting supplemental information that the
user may want. The format of the COMMENT statement is:

~/ * [comment]
J

* indicates that this is a comment statement and is only
copied into the update log file.

SUMMARY OF FILES USED BY THE UPDATE COMMAND

The following discussion shows input and output files used ty the UPDATE
command for a:

• Single-level update
• Multilevel update
• Multilevel update with an auxiliary control file

~i§! ~Qg~ Q! QY!EY! I11g§: If several read/write disks are accessed when
the UPDATE command is invoked, the following steps are taken to
determine the disk upon which the output files are to be placed (the
search stops as soon as one of the following steps is successful):

1. If the disk on which the original source file resides is
read/write, then the output files are placed on that disk.

2. If that disk is a read-only extension of a read/write disk, then
the output files are placed on that particular read/write disk.

3. If neither of the other steps is successful, the output files are
placed on the primary read/write disk (the A-disk).

section 2. eMS Commands 205

UPDATE

r---------,
I I fn ASSEMBLE r---------,
I I fn UPDATE I I $fn ASSEMBLE
I I I I fn UPDLOG
L---------..J I I

L----_----..J
update fn

!D !~~~~~b~ is the source input file.

fn UPDATE contains UPDATE control statements and updated source input recoril:s:-
$fn ASSEMBLE is the updated source file, incorporating changes,
additions;--and deletions specified in the update file. The output
filetype is always the same as the filetype of the input file. These
default filetypes and filemodes can be overridden on the command line;
for example:

update testprog cobol b fix cobol b (rep

results in a source file TESTPROG COBOL B being updated with contrel
statements contained in the file FIX COBOL B. The output file replacEs
the existing TESTPROG COBOL B.

!D Q~~bQ§ contains a record of updates applied. If you do not want this
file written cn disk, specify the PRINT option.

r---------,
I I
I I
I I
I I
I I
L---------.J

fn ASSEMBLE
fn CNTRL
fn UPDTABC
fn UPDTXYZ

update fn (ctl

r---------,
I I
I ,
I I
I I
L---------.J

·!D !~~~~~b~ is the source inp~t file.

$fn ASSEMBLE
fn UPDLOG
fn UPDATES

!D £!IRb is the control file that lists updates to be applied to the
source file. These default filetypes and filemodes·· can be over-ridden cn
the command line; for example:

update acct pliopt a test cntrl a (ctl
-

results in the file TEST CNTRL . bein~ used by the UPDATE command to
locate the update files for ACCT PLIOPT.

206 IBM VM/310 CMS Command and Macro Reference

UPDATE

!~ Q~~1!~£ g~g!~ QfQ!!!~ are update files containing UPDATE control
statements and new source records. These files must have filenames that
are the same as the source input file. 'The first four characters of the
filetype must be "UPDT." The UPDATE command searches all accessed disks
to locate the update files.

$fn ASSEMBLE is the updated source file, incorporating changes,
additIons~-and deletions specified in the update files. The filetype is
always the same as the filetype of the source input file.

!~ QfQ~Q~ contains a record of updates applied. If you do not want this
file written on disk, specify the PRINT option.

!~ Qf~!1~~ summarizes the updates applied to the source file.

!]~ £Q!!RQ~ FILE (fn CNTRL) may not contain UPIATE control statements.
It may only lIst the filetypes of the files that contain UPDATE control
statements. This control file contains the records:

TEXT MACS CMSLIB
TWO UPDTABC
ONE UPDTXYZ

where UPDTABC and YRQ~!l~ are the filetypes of the update files. The
UPDATE-command applies these updates to the source file beginning with
the last record in the control file. Thus, the updates in fn UPD~X1Z
are applied before the updates in fn UPDTABC.

When you create update files whose filetypes begin with 'UPDT', you
may omit these characters when you list the updates in the control file;
thus, the CNTRL file may be written:

TEXT MACS CMSLIB
TWO ABC
ONE XYZ

!]XT, 1!Q, Q!~: The first column of the control file consists of an
update level identifier, which may be from one to five characters long.
These identifiers are used by VM/370 updating procedures, like the
VMFASM EXEC, to locate and identify text decks produced by multilevel
updates.

MACS: The first record in the control file mrrst be a MACS record which
contains an update level identifier (TEXT) and, optionally, lists up to
eight macro library (MACLIB) filenames.

The information provided in the MACS ~ar~ and the update level
identifier are not used by the UPDATE command unless the STK option is
specified. They are, however, required in the CNTRL file.

Section 2. CMS Commands 207

UPDATE

r---------,
I I
I I
I I
I I
I I
L--,-------.J

fn ASSEMBLE
fn CNTRL
fn UPDTABC
fn UPDTXYZ
fn AUXLIST
fn FIXO 1
fn FIX02

update fn (ctl

r----------,
1 I
I I
I I
1 I
L----------.J

$fn ASSEMBLE
fn UPDLOG
fn UPDATES

1~ !~~]~~1!, !~ £!~R1, fn ggRI!~~, fn UPDTXYZ, $fn !~SE~BL~, !n]]Q1~~,
and fn UPDATES are used as described -;E~i;: f~i- "Multilevel Update,"
except that-the CNTRL file contains:

TEXT MACS CMSLIB
TWO UPDTABC
ONE UPDTXYZ
TEXT AUXLIST

!]! in the filetype AUXLIST indicates that this is the filetype of an
auxiliary control file that contains an additional list of updates. The
first three characters of the fi1etype of an auxiliary control file must
be "A UX"; t he remaining character (s) (to a maximum of 5) may be
anything. The filename must be the same as the source input file.

An auxiliary file may also be specified as:

xxxxx AUX

in the control file. For eXample, the record:

FIX TEST AUX

identifies the auxiliary file fn AUXTEST.

Note that if you give an auxiliary control file the filetype AUXPTF, the
UPDATE command assumes that it is a simple update file and does net
treat it as an auxiliary file.

I PREFERRED AUX FILE: A preferred AUX file may be specified. A preferred
I AUX-iIle-contaIns-the version of an update that applies to your version
I of the source file. (There may be more than one- version of the same
I update if there is more than one version of the soutce file. Fer

.1 example, you need one version for the source file that has a system
1 extension program product installed, and you need another version for
I the source file that does not have a program product installed.)

When you specify an auxiliary control file, you can specify more than
one fi1etype. The first fi1etype indicates a file that UPDATE uses only
on one condition: the files that the second and subsequent filetypes
indicate do not exist. If they do exist, this AUX file ent~y is ignored
~nd no updating is done. - The files that the second and subsequent
fi1etypes indicate are preferred because, if they exist, UPDATE does not
use the file that the first fi1etype indicates. For example, assum~
that the file 'fn ASSEMBLE' does exist.- -The control file_MYMODS CNTRL: --

208 IBM VM/370 CMS Command and Macro Reference

UPDATE

TEIT MACS MYMACS CMSLIB OSMACRO

MY2 AUXTEST

MYl AUIMINE AUITEST

and the command:

UPDATE fn ASSEMBLE * MYMODS CNTRL (CTL

would result in UPDATE finding the preferred auxiliary control file 'tn
AUXTEST', and therefore not using 'fn AUIMINE' to update 'tn ASSEMBLE'.
UPDATE would then proceed to the MY2 AUITEST entry and update 'tn
ASSEMBLE' with the updates listed in 'fn AUITEST.' It is assumed that
AUXTEST and AUXMINE list similar but mutually exclusive updates.

The search for a "preferred" auxfile will continue until one is found cr
until the token is an invalid filetype; that is, less than four or more
than eight characters. This token and the remainder of the line are
considered a comment.

!~ !l!Ql and fn lI!Ql are update files containing UPDATE control
statements and -new source records to be incorporated into the input
file. When update files are listed in an auxiliary control file, they
can have any filetype you choose but the filename must be the same as
the source input file. The update files, as well as the AUX file, may
be on any accessed disk. These are indicated in fn AUXLIST as follows:

FII02
FIXOl

The updates are applied from the bottom of the auxiliary file. Thus, fn
FIXOl is applied to the source file before fn FIX02. Since the
auxiliary file is listed at the bottom of the control file, these
updates are applied before UPDTXYZ and UPDTAEC.

ADDITIONAL CONTROL FILE RECORDS: In addition to the MACS record, the
lIletypes-of-update (UPDT,-fIles, and the filetypes of auxiliary control
(AUX) files, a control file may also contain:

• Comments. These records begin with an asterisk (*) in column 1.
Comments are also valid in AUX files.

• PTF records. If the characters PTF appear in the update level
identifier field, the UPDATE comman~ expects the second field to
contain the filetype of an update file. The filetype may be
anything; the filename must be the same as the source input file.

• Update level identifiers not associated with update files.

The following example of a control file shows a-II the valid types of
records:

* Example of a control file
ABC MACS MILIB
TEXT
004 UPDTABC
003 XIZ
002 AUXLISTl
001 LIST2 AUX
PTF TESTFIX

THE ~lK QflIQ!: The STK (stack) option is valid only with the CTL opticn
and is meaningful only when the UPDATE command is invoked within an EXEC
procedure.

Section 2. CMS Commands 209

UPDATE

When the STK option is specified, UPDATE stacks the following data
lines in the console stack:

first line: * update level identifier
second line: * library list from MACS record

The update level identifier is the identifier of the most recent update
file that was found and applied. For example, if a control file
contains

TEXT MACS CMSLIB OSMACRO TESTMAC
OFA UPDTOFA
PFA UPDTOFA

and the UPDATE command appears in an EXEC as follows:

UPDATE SAMPLE (CTL STK
&READ VARS &STAR &TEXT
&READ VARS &STAR &LIB1 &LIB2 &LIB3 &LIB4

then the variable symbols set by the &READ VARS statements have the
following values if the file SAMPLE UPDTOFA is found and applied to the
file SAMPLE ASSEMBLE:

~YJ!!~.Ql
&STAR
&TEXT
&LIB1
&LIB2
&LIB3
&LIB4

!glu!!

* OFA
CMSLIB
OSMACRO
TESTMAC
null

The library list may be useful to establish macro libraries in a
subsequent GLOBAL command within the EXEC procedure. If no update files
are found, UPDATE stacks the update level identifier on the MACS record.

FILE 'fn ft fm,' REC in = update control statement

This message is displayed when the TERM option is specified and an
error is detected in an update file. It identifies the file and
record number where the error is found.

DMSUPD177I WARNING
IGNORED.]

MESSAGES ISSUED (SEVERI'IY=nn). [. REP' OPTICN

Warning messages were issued during the updating process. The
severity shown in the error message l.n the "nn"- field is the
highest of the return codes associated with the warning messages
that were generated during the updating process.

The warning return codes have the following meanings:

RC = 4; Sequence errors were detected in the original source file
being uFdated.

RC = 8; Sequence errGrs, which did not previously-exist in the
source file being updated, were introduced in the output file
during the updating process~

210 IBM VM/370 CMS Command and Macro Reference

UPDATE

RC = 12; Any other nonfatal error detected during the updating
process. Such errors include invalid update file control
statements and missing update or PTF files.

The severity value is passed back as the return code from the
UPDATE command. In addition, if the REP option is specified in
the command line~ then it is ignored, and the updated source file
has the fileid "$fn1 ftl", as if the REP option was not specified.

DMSUPD1781 UP~ATING ['fn ft fm'] WITH 'fn ft fm'

The specified
This message
command line.

update file is being applied to the source file.
appears only if the CTL option is specified in the

The updating process continues.

DMSUPD3041 UPDATE PROCESSING WILL BE DONE USING DISK

An insufficient amount of virtual storage was available to perform
the updating in virtual storage, so a CMS disk must be used. This
message is displayed only if NOSTOR was specified in the UPDATE
command line.

DMSUPD001E NO FILENAME SPECIFIED RC=4
DMSUPD002E FILE 'fn ft fm' NOT FOUND RC=28
DMSUPD003E INVALID OPTION 'option' RC=24
DMSUPD007E FILE 'fn ft fm' IS NOT FIXED, 80 CHAR. RECORDS RC=32
DMSUPD010W PREMATURE EOF OF FILE 'fn ft fm' --SEQ NUMBER , ••••••• ~, NeT

FOUND RC=12
DMSUPD024E FILE 'UPDATE CMSUTl fm' ALREADY EXISTS RC=28
DMSUPD037E DISK 'mode' IS READ/ONLY RC=36
DMSUPD048E INVALID MODE 'mode' RC=24
DMSUPD065E 'option' OPTION SPECIFIED TWICE RC=24
DMSUPD066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSUPD069E DISK 'mode' NOT ACCESSED RC=36
DMSUPD070E INVALID PARAMETER 'parameter' RC=24
DMSUPD104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSUPD105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSUPD174W SEQUENCE ERROR INTRODUCED IN OUTPUt FILE: •••••••• TO

•••••••• , RC=8
DMSUPD176W SEQUENCING OVERFLOW FOLLOWING SEQ NUHEER' •••••••• ' RC=8
DMSUPD179E MISSING OR DUPLICATE 'MAeS' CARD IN CONTROL FILE 'fn ft fm'

. RC=32
DMSUPD180W MISSING PTF FILE 'fn ft fm' RC=12
DMSUPD181E NO UPDATE FILES WERE FOUND RC=40
DMSUPD182W SEQUENCE INCREMENT IS ZERO RC=8
DMSUPD183E INVALID {CONTROLIAUX} FILE CONTROL CARt RC=32
DMSUPD184W './S ' NOT FIRST CARD IN INPUT FILE --IGNORED· RC=12
DMSUPD185W INVALID CHAR IN SEQUENCE FIELD ,; •••• ~ •• , RC=12
DMSUPD186W SEQUENCE NUMBER , •••••••• , NOT FOUND RC=12
DMSUPD187E OPTION 'STK' INVALID WITHOUT 'CTL' RC=24
DMSUPD207W INVALID UPDATE FILE CONTROL CARD RC=12
DMSUPD210W INPUT FILE SEQUENCE ERROR: , ••••••••• , TO , ••••••••• , RC=4
DMSUPD299E INSUFFICIENT STORAGE TO COMPLETE UPDATE RC=41
DMSUPD300E INSUFFICIENT STORAGE TO BEGIN UPDATE RC=41-

Section 2. CMS Commands 211

Immediate Commands

Immediate Commands

You can issue an Immediate command from the terminal only after causing
an attention interruption by pressing the Attention key (or its
equivalent). These commands are processed as soon as they are entered.
The HT and RT Immediate commands are also recognized when they are
stacked in an EXEC procedure, and the HT Immediate command can be
appended to a CMS command preceded by a logical line end symbol (').
Any program execution in progress is suspended until the Immediate
command is Frocessed.

None of the Immediate commands issue responses.

Use the HB command to stop the
at the end of the current job.
is:

HB

execution of a CMS batch virtual machine
The format of the HE Immediate command

~---~

1. If the batch virtual machine is running disconnected, it must be
reconnected.

2. When the HB command is executed, CMS sets a flag such that at the
end of the current job, the batch processor generates accounting
information for the current job and then logs off the CMS batch
virtual machine.

]Q

Use the HO command during the execution of a command or one of your
programs to stop the recording of trace information. Program execution
continues to its normal completion, and all recorded trace information
is spooled to the printer. The format of the HO command is:

HO ~ ____ . ___ J

212 IBM VM/370 CMS Command and Macro Reference

Immediate Commands

Use the HT command to suppress all terminal output generated by any C~S
command or your program that is currently executing. The format of the
HT command is:

HT
~--,--------------------------~

1. Program execution continues. When the
normal terminal output resumes. Use
typing or displaying.

ready message is displayed,
the RT command to restore

2. CMS error messages having a suffix letter of W, E, S, or T cannot
be suppressed.

Use the HX command to stop the execution of any CMS or CMS/DOS command
or program, close any open files or I/O devices, and return to the C~S
command environment. The format of the HX command is:

HX
~--~

1. HX clears all file definitions made via the FILEDEF or DLEL
commands, including those entered with the PERM option.

2. The HX command is executed when the next SVC or I/O interruption
occurs: therefore a delay may occur between keying HI and the
return to CMS. All terminal output generated before HX is
processed is displayed before the command is executed.

Use the RO command, during the execution of a command or one of your
programs, to resume the recording of trace information that was
temporarily suspended by the SO command. Program execution co~tinues to
its normal completion, and all recorded trace' information is spooled to
the printer. The format of the RO command is:

RO
--~

Section 2. CMS Commands 213

Immediate Commands

Use the RT command to restore terminal output from an executing CMS
command or one of your programs that was previously suppressed by the HT
command. The format of the RT command is:

RT

Program execution continues, and displaying continues from the current
point of execution in the program. Any terminal output that is
generated after the HT command is issued and up to the time the RT­
command is issued is lost. Execution continues to normal program
completion.

Use the so command during the execution of a command or one of your
programs to temporarily suspend the recording of trace information.
Program execution continues to its normal completion and all recorded
trace information is spooled to the printer. The format of the SO
command is:

r---,
so I

To resume tracing, issue the RO command.

214 IBM VM/370 eMS Command and Macro Reference

EDIT Subcommands

Section 3. EDIT Subcommands and Macros

This section describes the formats and operands of the EDIT subcommands
and macros. EDIT subcommands are valid only in the environment of the
CMS editor, which is invoked with the EDIT command. The EDIT command
format is described in "Section 2. CMS Commands."

The editor has two modes of operation: edit mode and input mode.
Whenever the EDIT command is issued, edit mode is entered; when the
INPUT or REPLACE subcommands are issued with no operands, input mode is
entered. In input mode, all lines you enter are written into the file
you are editing. To return to edit mode fro~ input mode, you must enter
a null line (one that has no data on it) •

For a functional description of the CMS e9itor and tutorial
information on how to use it, consult the !~Ll1~ ~~~]§~E~ QY~~~.

For a summary of the default settings assumed by the editor for CMS
reserved filetypes, see "Appendix A: Reserved Filetype Defaults."

EDIT Subcommands

The EDIT subcommands are listed in alphabetical order for easy
reference. Each subcommand description includes the format, a list of
operands (if any), usage notes, and responses. For those subcommands
that operate somewhat differently on a 3270 display terminal than on a
typewriter terminal, an additional discussion, "Display .Mode
Considerations, " is added.

Subcommands that are valid only with 3270 display terminals, namely
SCROLL, SCROLLUP, and FORMAT have the notation "(3270 only)" next to the
subcommand names. The FORWARD and BACKWARD subcommands, which were
designed for use with 3270 terminals but can be issued at any terminal,
have the notation "(primarily 3270)" next to the subcommand names.

Section 3. EDIT Subcommands and Hacros 215

EDIT Subcomaands-ALTER

ALTER

Use the ALTER subcommand to change a specific character to another
character, one that may not be available on your terminal keyboard. The
ALTER subcommand allows you to reference characters by their hexadecimal
values. The format of the ALTER subcommand is:

ALter char1 char2
r r"
In IG II
I * I * II
11 I II
L L.J.J L-----------__ .J

char1 specifies the character to be
either as a single character or
(00 through FF).

altered. It may be specified
as a pair of hexadecimal digits

char2 specifies the character to which char1 is to be altered. It may
be specified either as a single character or as a pair of
hexadecimal digits.

n

G

indicates the number of lines to be searched for the specified
character. If you specify an asterisk (*), all lines in the
file, beginning with the current line, are searched. If this
option is omitted, then cnly the current line is searched.

requests the editor to alter every occurrence of char1 in the
lines specified. If G or * 1S not specified, only the first
occurrence of char1 in each line specified is altered.

1. If char2 is a hexadecimal value that cannot be represented on your
terminal, it may appear as a blank, for example:

input ISLC
alter X 02

5LC

Column 1 contains an X'02', which cannot be displayed.

2. Use the ZONE subcommand if you want only particular columns
searched for a specific character.

When verification is on, alte-red lines are displayed at your terminal.

When you request a global change on a 3270, the display is changed only
once, to reflect the final position of the current line point~r. The­
editor displays a message to indi.ca te the nUlDber of lines changed:

{ ~gnn } LINE (5) CHANGED

216 IBM VM/370 CMS Command and Macro Reference

March 30, 1979

EDIT Subcommands-AUTOSAVE

AUTOSAVE

Use the AUTOS AVE subcommand to set, reset, or display the automatic save
function of the editor. When the automatic save function is in effect.
the editor automatically issues the SAVE subcommand each time the
specified number of changes or insertions are made. The format of the
AUTOSAVE subcommand is:

r
I
I AUTOsave

I r ,
I In I
I IOFFI
I L .J

I
I

n is a decimal number between 1 and 32767, indicating the frequency
of the automatic save function. One SAVE subcommand is issued for
every n lines that are changed, deleted, or added to the file.

OFF turns off the automatic save function.
setting.

!:!2~~ RQte2

This is the initial

1. Each line affected by the $MOVE macro is treated as one update.
However, all changes caused by a single CHANGE, DELETE, DSTRING,
GETFILE, or OVERLAY subcommand are treated as a single update, no
matter how many lines are affected.

2. If you are editing a file on a read-only disk, and an automatic
save request occurs, the message:

SET NEW FILEMODE AND RETRY

is issued. You can enter CMS subset and access the disk in
read/write mode, or use the FMODE subcommand to change the file.ode
to the mode of a read/write disk. If you were in input mode, you
are placed in edit mode.

3. The message "SAVED" is displayed at the terminal each time the save
operation occurs.

If you issue the AUTOS!VE subcommand with nc operands, the editor
displays the current setting of the automatic save function.

S~ction 3. EDIT Subcommands and Macros 217

aarcn .:JU,I~/~

EDIT Subcommands-BACKWARD, BOTTO!

BACKWARD (Primarily 3270)

Use the BACKWARD subcommand to move the current line pointer towards the
beginning of the file you are editing. The format of the BACKWARD
subcommand is:

r ,
BAckward Inl

111
L ..I

n is the number' of records backward you wish to move the current line
pointer. If n is not specified, the current line pointer is moved
backward one line, toward the top of the file.

!!§age !!.Qte

The BACKWARD subcommand is equivalent to the UP subcommand; it is
provided for the convenience of 3270 users.

When verification is on, the current line on the screen contains the
record located by the BACKWARD n value. on the screen contains the
record located by the BACKWARD n value. If n exceeds the number of
records above the current line, TOF is displayed on the current line.

On a typewriter
verification is on.

BOTTOM

terminal the new current line is typed if

Use the BOTTOM subcommand to make the last line of the file the new
current line. The format of the BOTTOM subcommand is:

Bottom

Use the BOTTO! subcommand followed by the INPUT subcommand to begin
entering new lines at th~ end of a file.

When verification is on, the last line in the file is displayed.

Q.!splaI Mod~ ~.Q.!l2idg.£ati0l!'§

If the BOTTO! subcommand is issue_d at a ~270 disFlay. terminal in display
mode, EOF: is displayed on the line following the current line, ,preceded
by the last records of the file; the rest of the screen's output area is­
blank.

218 IB! VM/370 CMS Command and Macro Reference

EDIT Subcommands-CASE, CHANGE

CASE

Use the CASE subcommand to indicate how the editor is to process
uppercase and lowercase letters. The format of the CASE subcommand is:

CASE
I r ,
I 1M I
I I U I
I L .J

J

M indicates that the editor is to accept any mixture of uppercase and
lowercase letters for the file as they are entered at the terminal.

U indicates that the editor is to translate all lowercase letters to
uppercase letters before the letters are entered into the file. U
is the default value for all filetypes except MEMO and SCRIPT.

If you enter the CASE subcommand with no operand, the current setting is
displayed at the terminal.

If you specify CASE M when using a 3210 that does not have the lowercase
feature (RPQ), you can key in lowercase characters, but they appear cn
the screen as uppercase characters.

CHANGE

Use the CHANGE subcommand to change a specified group of characters to
another group of characters of the same or a different length. You may
use the CHANGE subcommand to change more than one line at a time. The
format of the CHANGE subcommand is:

Change
r r "

[/stringl[/string2[/lnIGII]1]
1* 1* II -
111 II
L L .J.J

,
I
I
I
I
I

/ (diagonal) signifies any unique delimiting character that does not
appear in the character strings involved in" the change. -

string1

string2

specifies a group of characters to" be changed (old data).
string1 may be a null string.

specifies the group of characte~~ that are to-" replace
stringl (new data) • string2 - may be a nu-llstring; if
omitted, it is assumed null.

Section 3. EDIT Subcommands and Macros 219

EDIT Subcommands-CHANGE

n or * indicates the number of lines to be searched, ~tarting at
the~current line. If * is entered, the search is performed
until the end of the file is reached. If this option is
omitted, then only one line is searched.

G or * requests the editor to change every occurrence of string1
in the lines specified. If G or * is not specified, only
the first occurrence ofstring1 in each line specified is
changed. If string1 is null, G or * may not be specified.

1 • The first nonblank character following the CHANG!
any of its truncations) is considered the delimiter.

c.VM/310.CMS.*

subcommand (or
For example:

changes the first occurrence of VM/310 to CMS on every line frem
the current line to the end of the file.

2. If string2 is omitted, it is assumed to be a null string. Fer
example:

THIS ISN THE LINE.
change In
THIS IS THE LINE.

A null string causes a character deletion. If string1 is null,
characters are inserted at the beginning of the line. For example:

THIS IS THE LINE.
change liSa /
so THIS IS THE LINE~

3. To change multiple occurrences of the same string on one line,
enter:

change/string1/string2/ 1 *

4. The CHANGE subcommand can be used on typewriter terminals to
display, without changing, any lines that contain the informatien
specified in string1. Enter:

change /string1/string11 * *

5. Use the ZONE subcommand to indicate which columns are to be
searched for string1. If string1 is wider than the current zone,
you receive the message:

ZONE ERROR

and you should either reenter the CHANGE subcommand or change the
zone setting.

6. If the character string inserted causes the data line to extend
beyond the truncation column or the zone column, any- excess
characters are truncated. (See the description of the TRUNC
subcommand for additional information on truncation.)

7. You should use the ALTER
single character to some
available on your keyboard) •

subcommand when you want
special character -(one

220 IBM VM/310 CMS Command and Macro Reference

to change a
that is not

March 30, 1979

EDIT Subcommands-CHANGE

8. When the IMAGE subcommand is set with the CANON operand, backspace
characters at the beginning or end of string1 are ignored.

9. To stack a CHANGE subcommand with no operands from a fixed-length
EXEC, you should use the SSTACK control statement.

When verification is on, every line that is changed is displayed.

Qispl~I Mog~ £g~2id~~~!ion§

If you issue the CHANGE subcommand without operands at a 3270 display
terminal in display mode, the following occurs:

1. The record pointed to by the current line pointer appears in the
user input area of the display. If the line is longer than the
current truncation setting, it is truncated.

2. You can then alter the record in the user input area by retyping
part or all of the line, or by using the Insert, Delete, or Erase
EOP keys to insert or delete characters.

3. When the line is modified, press the Enter key, which causes the
record in the user input area to replace the old record at the
current line in the output display area.

If you bring a line down
change it, press the Erase
line is not changed.

to the user input area and decide
Input key and then the Enter key,

not to
and the

When a line is moved to the user input area, all nonprintable
characters (including tabs, backspaces, control characters, and so on)
are stripped from the line. Also, any characters currently assigned to
VM/370 logical line editing symbols (t, w, ¢, II) are reinterpreted when
the line is reentered. You should issue an explicit CHANGE subcommand
to change lines containing special characters.

The CHANGE subcommand is treated as
issued without operands at a typewriter
terminal that is not in display mode.

an invalid subcommand if it is
terminal or at a 3270 display

When you request a global change on a 3270 terminal, the display is
changed only once, to reflect the final position of the current line
pointer. The editor displays, in the mess~ge area of the display
screen:

{~gnn} LINE(S) CHANGED

to indicate the
request resulted
displayed as:

number of lines that vere
in the truncation of any

updated.
lines,

nnnn LINE(S) CHANGED nnnn LINE(S) TRUNCATED

If the change
the message is

If the change request moves the current line pointer beyond the end
of the file, the word EOF: -is displayed on the current line,-preceded by
the last records of the file. The' rest of the oqtput area is blank.

Section 3. EDIT Subcommands and Macros 221

EDIT Subcollllands-CftS

eMS

Use the CMS subco •• and to cause the editor to enter the CftS subset Bode,
where you may execute those CMS commands that do not need to use the
main storage being used by the editor. The format of the CftS subcommand
is:

CMS

1.

2.

In CMS subset, you can execute
nucleus-resident or that executes
nucleus-resident CMS commands are:

CP
DEBUG
ERASE
FETCH

GENMOD
INCLUDE
LOAD
LOAD MOD

any CftS cOII.and that
in the transient area.

START
STATE
STATEW

The com.ands that execute in the transient area are:

ACCESS HELP RELEASE
ASSGN LISTFILE RENAftE
COMPARE MODMAP SET
DISK OPTION SVCTRACE
DLBL PRINT SYNONYI!
FILEDEF PUNCH TAPE
GENDIRT QUERY TYPE
GLOBAL READCARD

To return to edit lIode, use the CMS subset command RETURN.

is
The

If you attempt to execute a CMS command that requires main storage,
you receive the message:

INVALID SUBSET COMMAND

Results are unpredictable at this point. You should not attempt to
execute any progra. that executes in the user program area. Using
the LOAD, INCLUDE (RESET), FETCH, START, and RUN commands could
load programs that would overlay the editor's storage area and its
contents. Use these commands only for programs-that. execute in the
transient area. .

3. In an edit macro, if you attempt to use a ~ommand that is invalid
in the CMS subset, you receive a return code of ~0002.

4. If you atteapt to execute a CMS command that fails because of
insufficient storage, your EDIT session may abnormally terminate.
You should save input you have entered befor~ youen~er CftS subset
mode.

222 IBM VM/370 CftS Co •• and and Macro Reference

~arch 30, 1919

EDIT Subcoamands-CftS

After you issue the CMS subcommand, you receive the message:

C~S SUBSET

to indicate that you are in eftS subset mode. On a display terminal, the
screen is cleared before the editor issues this message; the display of
the file is restored when you enter the RETUBN command.

S~ction 3. EDIT Subcomaands and ftacros 223

March 30, 1979

EDIT Subcommands-DELETE, DOWN

DELETE

Use the DELETE subcomaand to delete one or more lines
beginning with the current line. The line immediately
last line deleted becomes the new current line. The
DELETE subcommand is:

DELete
r ,
Inl
1* I
111
L .I

from a file,
following the

format of the

n indicates the number of lines to be deleted, starting at the
current line. If an asterisk (*) is entered, the remainder of the
file is deleted. If n is omitted, only one line is deleted.

None. If you delete the last line in the file, or if you issue the
DELETE subcommand when the current line pointer is already at the end of
the file, the editor displays the message:

EOF:

~ispl~I ~2g~ ~~id~~~~ioD§

If you delete a record when using a display terminal in display mode,
the editor rewrites the output display area with the records above the
current line pointer unchanged. The record at the current line pointer
and the remaining records on the screen move up by one, and a new record
(if one exists) moves into the bottom of the output display area.

DOWN

Use the DOWN subcommand to advance the current line pointer forward in
the file. The line pointed to becomes the new current line. The format
of the DOWN subcommand is:

f

I
I DOwn
I
I

.. ,
Inl
111
L J L-___ .1

n indicates the number of lines to advance the pointer, starting at
the current line. If n is not specified, the current line po~nter
is advanced one line.

224 IBM VM/370 CKS Command and Macro Reference

EDIT Subcommands-DOWN, DSTRING

DOWN is equivalent to the NEXT and FORWARD subcommands.

When verification is on, the new current line is displayed at the
terminal; if the end of the file is reached, the message:

EOF:

is displayed.

DSTRING

Use the DSTRING subcommand to delete one or more lines beginning with
the current line, down to, but not including, the first line containing
a specified character string. The current line is not checked for the
character string. The format of the DSTRING subcommand is:

r---,
DString I I[string[/]] I

~.b~~:

I (dia~onal) signifies any unique delimiting character that does not
appear in the string.

string

!!§A9~ H.Q!~

specifies the group of characters for which a search is to
be made. If string is not specified, only the current line
is deleted.

The zone set by the ZONE subcommand or the default zone setting is
checked for the presence of the character string. A character string
with a length greater than the current zone setting causes tb~error
message ZONE ERROR.

If the character string is not found by the end of the file, no
deletions occur, the current line pointer is unchanged, and the message:

STRING NOT FOUND, NO DELETIONS MADE

is displayed.

If verification is on when the DSTRING subcommand is issued at a display
terminal in display mode, the screen is changed- to reflect the- deletions
from the file.

Section 3. EDIT Subcommands and Macros 225

EDIT Subcommands-FILE, FIND

FILE

Use the FILE subcommand to write the edited file on disk and,
optionally, override the file identifier originally supplied in the EDIT
command. The format of the FILE subcommand is:

r--,
FILE I [fn [ft (fm]]] I

~--~---------------------~

fn indicates the filename for the file. If filename is
filetype and filemode cannot be specified, and the
filename, filetype, and filemode are used.

ft indicates the filetype for the file.

fm indicates the filemode for the file.

omitted,
existing

1. When you specify a file identifier, any existing file that has an
identical fileid is replaced. If the file being edited had been
previously written to disk, that copy of the file is not altered.

2. You can change the filename and filemode during the editing session
using the FNAME and FMODE subcommands.

The CMS ready message indicates that the file has been written to disk
and control is returned to the CMS environment.

FIND

Use the FIND subcommand to locate a line based on its initial character
string. The format of the FIND subcomm~nd is:

r--,
Find I [line] I

~----~--.-------------------------~

line is any character string, including blanks and tabs, that you
expect to find beginning in column 1 of an input record. At
least one non-blank character must be specified. If line is not
specified, the current line pointer is moved down one line.

1. Only one blank can be used as a delimiter following tbe FIND -
subcommand; additional blanks are considered part of the character
string.

2. If the image setting is ON, the editor- exp&nds tab characters to
the appropriate number of blanks before searching for the line.

226 IBM VMj370 CMS Command and Macro Reference

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8

EDIT Subcommands-FIRD, FMODE

3. If the current line pointer is at the bottom of the file when the
FIND subcommand is issued the search begins at the top of the file.

When verification is on, the line is displayed at the terminal. If the
line is not found, the message:

EOF:

is displayed and you may use the REUSE (=) subcommand to search again,
beginning at the top of the file.

FMODE

Use the FMODE subcommand to display or change the file.ode of a file.
The format of the FMODE subcommand is:

FMode I [fm]

fa indicates the filemode that is to replace the current file.ode
setting. You can specify a file mode letter (A-Z) or a filemode .
letter and number (0-5). If you specify a filemode letter, the
existing filemode number is retained.

!!saqg !!Qte§

1. The specified file.ode is used the next time a FILE, SAVE, or
automatic save request is issued. If the file being edited had
been previously filed or saved, that copy of the file remains
unchanged.

2. If the disk specified by filemode already contains a file with the
same filename and filetype, that file is replaced when a FILE,
SAVE, or automatic save request is issued; no warning message is
issued.

3. If the filemode specified is that of a read-only disk, then when an
attempt is made to file or save the file, the editor displays an
error message.

If you enter the FMODE subcommand without specifying- fm, the ~ditor
displays the current filemode.

When you specify a new filemode with the FMODE subcommand, the editor
writes the new filemode in the filemode field at the ~op of the ~creen~

Section 3. EDIT Subcommands and Macros 227

March 30, 1979

EDIT SUbcommands-FNAME, FORMAT

FNAME

Use the FNAME subcommand to display or change the filename of a file.
The format of the FNAME subcommand is:

FName I [fn]

fn indicates the filename that is to replace the current filename.

1. The specified filename is used the next time a FILE, SAVE, or
automatic save request is issued. If the file being edited had
been previously filed or saved, that copy of the file remains
unchanged.

2. If a file already exists with the specified filename and the same
filetype and filemode, that file is replaced; no warning message is
issued.

3. You can use the FNAME subcommand when you want to make multiple
copies of a file, with different filenames, without terminating
your edit session.

If you enter the FNAME subcommand without specifying fn, the editor
displays the current filena~e.

Q!2Elgy Mod~ ~g~§iderg!io~§

When you issue the FNAME subcommand specifying a new filename, the
editor writes the new name in the filename field at the top of the
screen.

FORMAT (3270 Only)

Use the FORMAT subcommand to change the mode of a local or remote 3270
terminal from display to line or line to display ~ode. The format of
the FORMAT subcommand is:

FORMat I {DISPLAY}
I LINE

~----------------------.---~

DISPLAY

LINE

specifies that a full screen display of data is to occur.
Subcommands do not app~ar as part of the data displ~yed.

specifies that the-display station-is to operata as a
typewriter terminal. Every line you enter is displayed on the
screen; the screen -looks like a typewriter -terminal 'a console­
sheet.

228 IBM VM/370 CMS Comman~ an9 Macro Reference

EDIT Subcommands-FORMAT, FORWARD

1. Line mode is the default for remote 3270s. If you are using a
remote 3270 in display mode, and you enter the INPUT subcommand,
you are Flaced in line mode while you enter input. When you return
to edit mode, the full screen display is restored.

2. The FORMAT subcommand is treated as invalid under any of the
following conditions:

a. The NODISP option of the EDIT command was used to invoke the
editor.

b. The edit session was initiated on a typewriter terminal. (The
session may optionally be continued on a 3270 after a
reccnnection.)

To obtain a full screen display, you must save your file and
restart your edit session.

3. The column settings for the VERIFY, TRUNe, and ZONE subcommands
remain unchanged when you issue the FORMAT subcommand.

None.

FO RWAR D (Primarily 3270)

Use the FORWARD subcommand to move
end of the file you are editing.
is:

r ,
FOrward I nl

111
L .J

the current line pointer towards the
The format of the FORWARD subcommand

,
I
I
I
I
•

n is the number of records you wish to move_forward in the file being
edited. If n is not specified, 1 is assumed.

The FORWARD subcommand is equivalent to the DOWN and NEXT subcommands;
it is provided for ~he convenience of 3270 users.

When verification is on, the new current line is displayed. If the
number specifi~d exceeds the number of lines remaining in the file, the
current line pointer is positioned at EfrF:.

Section 3. EDIT Sub~ommands and Macros 229

EDIT Subcomllands-FORMAT, FORWARD

GETFILE

Use the GETFILE subcommand to insert all or part of a specific eMS file
into a file that you are editing. The format of the GETFILE subcommand
is:

r---,
r r r r "" I

Getfile fn 1ft Ifm Ifirstrec Inumrecll II I
I
I

fn

ft

fill

I I 11 I! 1111
L L L L .J..I.J .J

is the filename of tha file that contains the data to be
inserted into the file you are editing.

is the filetype of the file that contains the data to be
inserted. If ft is not specified, the filetype of the file yeu
are editing is assumed.

is the filemode of the file that
inserted. If fm is not specified,
are searched for the file.

contains the data to be
all of your accessed disks

firstrec indicates the record number of the first record you want to
copy.

numrec indicates the number of lines to be inserted, starting with
the line specified by firstrec. If numrec is not specified,
or specified as *, then the remainder of the file between
firstrec and the end of the file is inserted.

1. The GETFILE operand list is positional; if you omit
you cannot specify any operands that follow. Thus, if
specify firstrec and lastrec, you must specify the
filemode of the file.

2. The last line inserted becomes the new current line.

one operand,
you want to

filetype and

3. If the record length of the records in the file containing the data
to be inserted exceeds that of the file being edi~ed, an errcr
message is displayed, and the GETFILE is not executed; if shorter,
the records are padded to the record length of the file being
edited and inserted in the file.

4. If you use the GETFILE subcommand to insert lines into a VSBASIC
file, you must also use the RENUM subcommand to resequence the
file.

5. If the editor fills up available storage while executing a GETFILE
request, it may not be -~ble to copy all of the file. You shoul~
determine how many records were actually copied, and then write the
current file on disk.

230 IBM VM/370 CMS Command and Macro Reference

EDIT Subcommands-GETFILE, IMAGE

When verification is on, the last line inserted into the file is
displayed. If the end of the file has been reached, the message:

EOF REACHED

is displayed, followed by the display of the last line inserted.

IMAGE

Use the IMAGE subcommand to control how the editor should handle
backspaces and tab characters or to display the current image setting.
The format of the IMAGE subcommand is:

IMAGE
I r ,
I ION I
I IOFF I
I ICANON I
I L J

ON specifies that any text entered while in input mode or as a.line
of data following a FIND, INPUT, OVERLAY, or REPLACE subcommand,
is expanded into a line image; backspaces are removed and tabs
are replaced by blanks.

OFF

CANON

Text entered in the form of delimited strings, as in CHANGE,
LOCATE, and ALTER, is not expanded; tabs and backspaces are
treated in the same way as other characters.

IMAGE ON is the default for all filetypes except SCRIPT~

specifies that tabs and backspaces are treated
characters in the same way as other characters. They
deleted, translated, expanded, or reordered.

as data
are net

specifies that backspaces may be used to produce compound
characters such as underscored words, headings, or phrases.
Before they are inserted in the file, compound characters are
ordered, with backspaces arranged singly b~tween the characters
that overlay each other; the overlaying characters ar_e arranged
according to their EBCDIC values. Tab characters are handled as
for IMAGE OFF.

CANON is th~ default for SCRIPT files.

Q.§MI.!!! !!2te.§

1. When the image setting is ON, tab characters are expanded to an
appropriate number of blanks, according to the current settings of
the TABSET subcommand. The TAB SET command has -no-effect if the
image setting is either OFF or CANON.

Section 3. EDIT Subcommands and Macros 23)

EDIT Subcommands-IMAGE, INPUT

2. When the image setting is on, backspaces are handled as follows:

• Backspace characters act in a similar manner to the logical
character delete symbol, in deleting the previous characters if
a sufficient number of other characters or blanks follow the
backspace characters. However, backspace characters that
immediately follow a command naRe are interpreted as separator
characters and do not delete any part of the command name.

• If a backspace character is the last character in the input
line, it is ignored.

When you issue the IMAGE subcommand with no operand, the current IMAGE
setting is displayed.

INPUT

Use the INPUT subcommand to insert a single line into a file, or, if DO
data line is specified, to leave edit mode and enter input mode. The
format of the INPUT subcommand is:

Input I. [line]
L ---~

line specifies the input line to be entered into the file.
contain blanks and tabs; if you enter at least two
following the INPUT subcommand and no additional text,
line is inserted into the file.

It can
blanks

a blank

1. Each line that is inserted into the file tecomes the new current
line.

2. When you are using line-number editing (LINEMODF LEFT or LINEMODE
RIGHT) you cannot use the INPUT subcommand to insert a single line
of data; use the nnnDn subcommandu

3. To stack an INPUT subcommand in order to enter input mode from a
fixed-length EXEC, you should use the &STACK control statement.

When you i~~u€ the INPUT subcommand without operands, and verification
is on, the editor displays:

INPUT:

All subsequent lines you entered-are written into the file, until yeu
enter a null line to return to edit mode.

232 IBM VM/370 CMS Command and Macro Reference

1.

March 30, 1979

EDIT Subcommands-INPUT, LINEMODE

When you insert lines while using
display mode, the editor writes each
The old current line and all records
except for the topmost record formerly
from the screen.

a local display terminal in
record on the current line.
above it move up one line,

on line 2, which is deleted

2. If you are using a remote display terminal in display mode and you
issue the INPUT subcommand with no text, the terminal is forced
into line mode. The display of the file on the screen disappears
and the word INPUT: appears. As you enter input lines, they appear
in the output display area. When you leave input mode by entering
a null line, the remote terminal returns to display mode. The
display of the file reappears on the screen, with the lines you
have just entered in their proper place in the file.

3. When you are entering data in input mode at a display terminal that
is in line mode, a tab character generated by a program function
(PF) key only generates one character, and appears as one character
on the screen. That is, the line does not appear spaced according
to the tab settings.

LINEMODE

Use the LINEMODE subcommand to set, cancel, or display the status of
line-number editing. When you use line-nuDber editing, you can input,
locate, and replace lines by referencing their record numbers.
Line-number editing is the default for VSBASIC and FREEFORT files. The
format of the LINEMODE subcommand is:

LIHEmode
I r ,
I ILEFT I
I IRIGHTI
I IOFF I
I L ..

!h~:

LEFT
L

initializes line-number editing and places sequence numbers
on the left, in columns 1 through 5, right-justified and padded
with blanks; the near zone is set to 7.- If the filetype is
FREEFORT, columns 1 through 8 are used for serial numbers; the
near zone is set to 9.

You should never use left-handed line-number editing for files in
which data must occupy columns 1 through 6, for example ASSEMBLE
files.

RIGHT initializes line~number editing and places_ -sequence numbers
R on the right, in columns 76 to 80, right-justified and padded

with zeroes. The end zone and truncation columns are set to 72.

This operand is val~d 6nly
80-character records.

for files - -with fixed-length

Section 3. EDLT Subcommands and Macros 233

March 30, 1979

EDIT Subcommands-LINEMODE

OFF cancels line-number editing and (if you were using left-handed
line-number editing) resets the first logical tab setting to
column 1. The VERIFY, TRUNC, and ZONE sutcommand settings remain
unchanged. Serialization may still be in effect. OFF is the
default for all filetypes except VSBASIC and FREEFORT.

1.

!otg: If you enter LINEMODE OFF while editing a FREEFORT file,
line-number editing cannot be resumed for the remainder of the
edit session.

When you enter input mode while
you are prompted with a line
default prompting increment is
PROMPT subcommand.

you are using line-number editing,
number to enter each line. The
10; you may change it using the

If you enter input mode after using the nnnnn SUbcommand to
position the current line pointer, the prompted line number is the
next higher multiple of the current prompting increment or an
adjusted line number, whichever is smaller. The adjusted line
number is determined according to the following formula:

pppp = 1 + cccc + _Iln!U!_=_££££ (Any fractional remainder is
4 dropped.)

where:

pppp is the prompt line nUllber.

cccc is the current line number.

nnnn is the next sequential line nu.ber in the file.

2. When you are prompted on a typewriter terminal, enter your input
line on the same line as the prompted line number. If you are
using right-handed line-number editing, on a typewriter terminal or
on a display terminal in line mode, the serial numbers are not
redisplayed in columns 76 to 80 (unless you use the VERIFY
subcommand to increase the verification setting). When a line is
displayed in edit mode, the line numbers always aFpear on the left
even though they are on the right in the qisk copy of the file.
Whether or not the line numbers are displayed on the right depends
on the current verification setting.

3. You cannot use the INPUT or REPLACE subcom~ands to input a single
data line when you are using line-number- ed~ting; use the nnnnn
subcommand instead.

4. When you initialize line-number editing for files that already
exist, the editor assumes that the records are in the proper format
and numbered in ascending order.

5. If you want to place serial numbers in columns 76
you do not wish to use line-number editing,
subcommand.

through 80, but
use the SERIAL

When you issue the LINEMODE subcommand with no operands, the current
setting is displayed.

234 IBM VM/370 CMS Command and-Macro Reference

ErIT Subcommands-LINEMODE

When you use line-number editing on a display terminal in display mode,
the prompting numbers in input mode appear on line 2 of the display
screen, in the editor message area. Enter your input lines in the user
input area. Regardless of whether you are using right- or left-handed
line-number editing, the line numbers always appear in their true
position in the file.

LOCATE

Use the LOCATE subcommand to scan the file beginning with the next line
for the first occurrence of a specified character string. The format of
the LOCATE subcommand is:

I
I[Locate] I /[string[/]] ~ __ J

/ (diagonal)

string

signifies any unique delimiting character that does not
appear in the string. The delimiter may be any nonblank
character. The closing delimiter is optional.

specifies any group of characters to be searched for in
the file.

1. If the beginning delimiter is I, you can omit the subcommand name
LOCATE. If you enter only:

I

on a line, the current line pointer is moved down one line.

2. If string is null or blank, the search is successful on the first
line encountered. If the line pointer is at the end of the file
when the LOCATE subcommand is issued, scanning starts from the tcp
of the file.

3. Use the ZONE subcommand when you want the editor to search only a
specific column. If you specify a character string longer than the
current zone width, the editor issues the message ZONE ERROR.

When verification is on, the line containing the spe~ified string is
displayed. If the string is not found, ~he messages:

NOT FOUND
EOF:

are displayed, and you may use the REUSE (~ subcommand to request that
command be repeated, beginning at th~ top of the-file.

Section 3. EDIT Subcommands and Macros 235

EDIT Subcommands-LONG, NEXT

LONG

Use the LONG subcommand to cancel a previous SHORT subcommand request.
The format of the LONG subcommand is:

r ,
I LONG I

When the LONG subcommand is in effect (it is the default), the editor
responds to invalid subcommands with the message:

'?EDIT: line •••

None.

NEXT

Use the NEXT subcommand to advance the line pointer a specified number
of lines toward the end of the file. The line pointed to becomes tbe
new current line. The format of the NEXT subcommand is:

,
r , I

Next I n I I
111 I
L .J I

.J

n indicates the number of lines to move the line pointer. If ~ is
omitted, then the pointer is moved down only one line.

NEXT is equivalent to DOWN and FORWARD.

When verification is on, the new current line is displayed. If the end
of the file is reached, the message:

EOF:

is displayed.

236 IBM VMj370 CMS Command and Macro Reference

EDIT Subcommands-OVERLAY

OVERLAY

Use the OVERLAY subcommand to selectively replace one or more character
strings in the current line with the corresponding nonblank characters
in the line being keyed in. The format of the OVERLAY subcommand is:

Overlay I [line]
~------------------__ J

line specifies an input line that replaces corresponding character
positions in the current line. On a typewriter terminal, if yeu
enter the OVERLAY subcommand with no data line, the input record
remains unchanged.

1. Blank characters in the input line indicate that the corresponding
characters in the current line are not to be overlaid. Fer
example:

CHARMIE
o L
CHARLIE

Blanks in columns 3, 4, 5, and 6 of the OVERLAY line indicate that
columns 1, 2, 3, and 4 of the current line are not to be changed.
(At least one blank must follow the OVERLAY subcommand, which can
be truncated as 0).

2. This subcommand may be entered at a typewriter terminal by typing
the letter "0", followed by a backspace, followed by the overlaying
characters. This sets up the correct alignment on the terminal.

3. An underscore in the overlaying line must be used to place a blank
into the corresponding position of the current line. Thus, an
underscore cannot be placed (or replaced) in a line.

4.

OVERLAY should be used with care on lines containing underscored
words or other compound characters.

To perform a global overlay
just prier to issuing the
you enter:

operation, issue the REPEAT subcommand
OVERLAY subcommand. For example, when

repeat *
overlay X

an X is placed
beginning with
with the IMAGE
setting.

in the leftmost column of each record in the file,
the current line. The leftmost column, for files
setting ON, is determi~ed by the first logical tab

When verification is on, the line is displayed at the terminal after it
has been overlaid.

Section 3. EDIT Subcommands and Macros 237

EDIT Subcommands-OVERLAY, PRESERVE, PROMPT

~i§El~I tt2£~ ~~~§id~!g1i2n§

In addition to using the OVERLAY subcommand in the normal way, you may
also issue the OVERLAY subcommand with no operands. The next line yeu
enter is treated as overlay data. To cancel the overlay request, press
the Erase Input key and then the Enter key.

PRESERVE

Use the PRESERVE subcommand to save the settings of various EDIT
subcommands until a subsequent RESTORE subcommand is issued. The format
of the PRESERVE subcommand is:

~--,
PREserve I ~ __ J

Settings are saved for the following subcomm~nds:

CASE
FMODE
FNAME
IMAGE
LINEMODE

None.

PROMPT

LONG
PROMPT
RECFM
SERIAL
SHORT

TAB SET
TRUNC
VERIFY
ZONE

Use the PROMPT subcommand to change the prompting increment for input
line numbers when you are using line-number editing. The format of the
PROMPT subcommand is:

,
I r , I

PROMPT I In 1 I
1 11QI I
I L J I

J

n specifies the prompting increment; the default. value is 10. The
value cf n should not exceed 32,767.

Wnen you issue the PROMPT subcommand with no operands, the current
setting is displayed.

238 IBM VM/370 CMS Command and Macro Reference

EDIT Subcommands-QUIT, RECFM

QUIT

Use the QUIT subcommand to terminate the current editing session and
leave the previous copy of the file, if any, intact on the disk. The
format of the QUIT subcommand is:

QUIT
~--.--------------------------~

1. You can use the QUIT subcommand when you have made a global change
that introduced errors into your f~le; or whenever you disccver
that you have made errors in editing a file and want to cancel your
editing session.

If a SAVE subcommand or automatic save request has been issued, the
file remains as it was when last written.

2. The QUIT subcommand is a convenient way to terminate an edit
session when you enter an incorrect filename on the EDIT command
line, or when you edit a file merely to examin~, but not to change,
its contents.

The CMS ready message indicates that control has been returned to CMS.

RECFM

Use the RECFM subcommand to indicate to the editor whether the record
format of the file is fixed-length or variable-length, or to display the
current RECFM setting. The format of the RECFM subcommand is:

r--,
RECfm

r ,
IFI
IVI
L ~

F indicates fixed-length records.

V indicates variable-length records.

I
I
I
I

1. V is assumed by defa ul t for all new. EXEC, LI-STING, FREEFORT,
VSBDATA, and SCRIPT files. Usually, a variable-length format file
occupies a smaller amount of disk space because trailing blanks are
deleted from each line before it is written ontQ disk. - When
variable-length VSBDATA -files are written to disk, however,
trailing blanks are not truncated (to allow VSEDATA file to span
records) •

Section 3. EtIT Subcommands and Macros 239

EDIT Subcomllands-RECFM, RENUM

2. When you use the RECFM subco~mand to change the format of a file
from fixed-length to va-riable-length records, trailing blanks are
removed when the file is written to disk; when you are changing
variable-length records to fixed-length. all records are padded to
the record length.

When you use the RECFM subcommand without specifying F or V, the current
setting is displayed.

~i§El~I ~££~ £~~§ig~E2!i~~§

When you specify a new record format with the RECFM subcommand. the
editor writes the new record format in the format field at the top of
the screen.

RENUM

Use the RENUM subcommand to recompute the line numbers for VSBASIC and
FREEFORT source files. The format of the RENUM subcommand is:

~--,

RENum

strtno

incrno

I r r ~,
I I strtno Ii ncrno I I
I I 1Q I §!!J~!!~ I I
ILL .J.J

I
I
I
I

.J

indicates the number from which you wish to start renumbering
your file. Because RENUM renumbers the whole file frcm
beginning to end, the number you specify as strtno becomes the
statement number of the first statement in the newly
renumbered file. This number may not exceed 99999 for VSBASIC
files or 99999999 for FREEFORT files. The default start
number value is 10 and the specified start number must not be
zero.

indicates the increment number value by which you wish to
renumber your file. This value may not exceed 99999 fer
VSBASIC files or 99999999 for FREEFORT files. -The default fer
incrno is strtno, the first sequence number in th~ renumbered
file, and the specified incrno must not be zero.

_ Q§~~ !!21~§

1. If you do not specify strtno and incrno, the default value for ~oth
is 10. If you specify only strtno, incrno defaults to the same
value as strtno.

2. The current line pointer remains as it was before you entered the
RENUM subcommand regardless of whether or not RENUM completes
successfully. If you are eijitinq a V~BASIC file, the file ~o be
renumbered must either originate from a read/write disk or you must
issue an FMODE subcommand to change the file destination to a
read/write disk.

240 IBM VM/310 CMS Command and Macro Reference

EDIT Subcommands-RENUM, REPEAT

3. All VSBASIC statements that use statement numbers for operands are
updated to reflect the new line numbers. The VSBASIC statements
with line number operands are:

4.

CLOSE
CLOSEFILE
DELETE
EXIT
GET
GOSUB
GOTO

If any error
terminates the
unchanged.

IF
ON
OPEN
OPENFILE
PRINT USING
PUT

occurs during the
RENUM operation and

READFILE
REREADFILE
RESET
RESE'IFILE
REWRITEFILE
WRI'IEFILE

RENUM operation, the editcr
the file being edited remains

When verification is on, the message EDIT: indicates that the RENUM
subcommand co.pleted processing.

REPEAT

Use the REPEAT subcommand to execute the immediately following OVERLAY
subcommand (or an X or Y subcommand assigned to invoke OVERLAY) for the
specified number of lines or to the end of the file. The format of the
REPEAT subcommand is:

,
r , I

REPEAT I n I I
1* I I
111 I
L .J I

.J

.!.!!.§!:~ :

n indicates the number of times to repeat the OVERLAY request that
immediately follows, beginning with the current line. An asterisk
(*) indicates that the request is to b~ repeated until the end of
the file is reached. If neither n nor * is specified, then only
one line is handled. The last line processed becomes the new
current line.

1. If the next subcommand issued after the REPEAT subcommand is not an
OVERLAY subcommand, the REPEAT subcommand is ignored.

2. For an example of a REPEAT subcommand followed by an OVERLAY
subcommand, see the discussion of the OVERLAY subcommand.

None.

Section 3~ EDIT Subcommands and Macros 241

EDIT Subcommands-REPLACE, RESTORE

REPLACE

Use the REPLACE subcommand to replace the current line with a specified
line or to delete the current line and enter input mode. The format of
the REPLACE subcommand is:

r------------------------------~---,
I Replace I [line] I

line specifies an input line that is to replace the current line. If a
line is specified, then the editor puts it into the file in place
of the current line. If no line is specified, the editor deletes
the current line and enters input mode (see Usage Note 2 for
exception) •

1. If the LINEMODE subcommand with a LEFT or RIGHT operand is in
effect, then issuing the REPLACE subcommand specifying a line is
not valid. If the REPLACE subcommand is used without any operands
when LINEMODE is set to LEFT or RIGHT, you are prompted for tbe
next available line number; the first data line you enter replaces
the current line number.

2. If you use the REPLACE subcommand with no operands to enter input
mode, and the next line you enter is a null line, then the current
line is not deleted, and you are returned to edit m6de.

3. To stack a REPLACE subcommand in order to enter input mode from a
fixed-length EXEC, you should use the &STACK control statement.

When verification is on and you issue the REPLACE subcommand with no
data line, the message:

INPUT:

indicates that your virtual machine is in input mode.

RESTORE

Use the RESTORE subcommand to restore the settings of EDIT subcommands
_ to their values when the PRESERVE subcommand was last issued or to their
default values if a PRESERVE-subcommand has not been issued. The format
of the RESTORE subcommand is:

r --------~-------------,
I REStore I

--~

242 IBM VM/370 CMS Command and Macro Reference

EDIT Subcommands-RESTORE, RETURN, REUSE (=)

The settings are restored for the following subcommands:

None.

CASE
FMODE
FNAME
IMAGE
LINEMODE

RETURN

LONG
PROMPT
RECFM
SERIAL
SHORT

TABSET
TRUNC
VERIFY
ZONE

Use the RETURN subcommand to return to edit mode from the eMS subset
environment. RETURN is not an EDIT subcommand, but is listed here as a
companion to the CMS subcommand. The format of the RETURN command is:

r--------------------------- --,
I RETURN I

When verification is on, the editor responds:

EDIT:

to indicate that your virtual machine is in edit mode.

REUSE (=)

Use the REUSE subcommand (which can also be specified as =) to stack
last in, first out (LIFO) the last EDIT request, except for REUSE or a
question mark, and then execute the stacked_subcommands. The format of
the REUSE (or =) subcommand is:

r---,
[subcommand] I

I
--~

subcommand sFecifies any valid EDIT subcommand.

1. If the subcommand you enter on the REUSE subcommand line is an
invalid subcommand, the-editor clears the stack.

Section 3. EDIT Subcommands and Macros 243

EDIT Suhcoamands-REUSE (=)

2. You can use the REUSE subcommand to repeat a subcommand request
that was not satisfied the first time, for example, a LOCATE
subcommand that resulted in an end-of-file condition. If you
enter:

=

the LOCATE suhcommand is stacked, then read hy the editor and
executed again. This time the search hegins from the top of the
file.

3. You can also enter more than one equal sign (=) on a single line,
to stack the last issued subcommand more than once. For example:

locate /xyz/
XYZ IS MY FAVORITE
= = = =
I FIRST MET XYZ
XYZ'S NAME IS DERIVED
LAST SAW XYZ
EOF:

the LOCATE subcommand is stacked four times, and then the editor,
reading from the stack, executes the four stacked suhcommands.

4. You can do the following if you issue a CHANGE subcommand before
positioning your current line pointer:

c/xx/yy
NOT FOUND
= l/x/
LINE XXXX
LINE YYXX

In this example, the CHANGE request was issued and string1 was not
found. The REUSE subcommand stacks the CHANGE subcommand and
stacks a LOCATE subcommand in front of it. The LOCATE suhcommand is
read and executed, followed by the CHANGE subcommand.

5. You can stack an INPUT or REPLACE subcommand in front of a data
line you mistakenly entered in edit mode, for example:

roses are red, violets are blue
?EDIT: ROSES ARE RED, VIOLETS ARE BLUE
= input
INPUT:
without cms
i would be, too.

The = subcommand stacks the INPUT suhcommand in front of the data
line. Reading from the stack, the editor executes the INPUT
subcommand, then reads in, as the first line of data, the line
beginning with ROSES. The file contains:

ROSES ARE RED, VIOLETS ARE BLUE
WITHOUT CMS
I WOULD BE, TOO.

Responses are those that are issued to the stacked suhcommands.

244 IBM VM/310 CMS Command and Macro Reference

March 30, 1979

EDIT Subcommands-SAVE, SCROLL/SCROLLUP

SAVE

Use the SAVE subcommand to write the file that is currently being edited
onto the disk, without returning control to eMS, and optionally to
change the file identifier. The format of the SAVE subcommand is:

SAVE I [fn (ft (fm]]]

fn indicates the filename of the file to be saved. If you specify
only fn, then the fi1etype and fi1emode are the same.

ft indicates the fi1etype of the file to be saved.

fa indicates the fi1emode of the file to be saved.

1. If you specify a new file identifier, any existing file with the
same file identifier is replaced; no message is issued. The file
being edited, if previously written to disk, is not altered.

2. To write a file on disk and terminate the editing session, use the
FILE subcommand.

3. If you want to save the contents of a file at regular intervals,
use the AUTOSAVE subcommand.

When verification is on, the editor displays:

EDIT:

to indicate the SAVE request completed successfully and you may continue
to enter EDIT subcommands.

SCROLL/SCROLLUP (3270 Only)

Use the SCROLL and SCROLLUP subcommands to scan the contents of a file
on a display screen.

SCROLL causes the editor to scan forward through
causes the editor to scan backward through the file.
SCROLL and SCROLLUP subcommands is:

{
Scroll }
S[croll]U[p]

I r ,
I In I
1 1 * I
I 11 I
I t. .I

the file; SCROLLUP
The format of tbe

i
- I

I
I
I ,

Section 3. EDIT Subcommands and Macros 245

March 30, 1919

EDIT Subcommands-SCROLL/SCROLLUP, SERIAL

n is a number from 1 to 255 that specifies the number of successive
screens of data to be displayed. If an asterisk (*) is specified,
the entire file, from the current line to the end or beginning of
the file, is displayed. If n is not specified, 1 is the default.

!!,§age !!,ote§

1. The SCROLLUP subcommand can be specified by any combination of the
truncation of SCROLL and UP; the minimum truncation is SUe

2. The number of lines shifted forward or backward depends on the
current verification setting. If the verification setting is 80
characters or less, then a scroll request displays a file in
increments equal to the number of lines that can be displayed in
the output display area of the screen. equal to the number of
lines that can be displayed in the output display area of the
screen. If the verification setting is more than 80 characters,
then a SCROLL request displays a file in increments equal to half
the number of lines that can be displayed in the output area.

Therefore, a single SCROLL on a 3210 Kodel 2 display terminal equal
to half the number of lines that can be displayed in the output
area. Therefore, on a 3210 Model 2 display terminal, is the
equivalent of DOWN 20 or DOWN 10, depending on the record length,
and SCROLL UP is the equivalent of UP 20 or UP 10.

3. When you use the SCROLL or SCROLLUP subcommands to display more
than one screenful, each display is held for one minute, and the
screen status area indicates MORE •••• To hold the screen display
longer, press the Enter key.

TO halt scrolling before all the requested screenfuls are
displayed, enter the HT Immediate command and press the Cancel key
twice.

4. When you begin scrolling from the top of the file, the first
screenful contains only the first seven lines. When you scroll to
the end of the file, the last screen may duplicate lines displayed
in the previous screen.

The screen display is shifted forward or backward.

SERIAL

Use the SERIAL subcommand to control the serialization 9f records in
columns 73 through 80. The format of the SERIAL subcommand is:

SERial

l
OFF

ON
ALL
seq

r ,
lincrl
1.1Q. ,
l. ~

246 IBM VM/310 eMS Command and Kacro Reference

!DIT Subcommands-SERIAL

!~~~:

OFF indicates that neither serialization numbers nor identifiers are
to be placed in columns 73-80.

ON indicates that the first three characters of the filename are to
be used in columns 73-75 as an identifier.

ALL indicates that columns 73-80 are to be used for serialization
numbers.

seq specifies a three-character identification to be used in columns
73-75.

incr specifies the increment for the line number in columns 76-80 (or
73-80). This number also becomes the first line number. If incr
is not specified, then 10 is assumed.

1. The SERIAL subcommand is valid only for files with fixed-length,
80-character records. To renumber VSBASIC or FR!EFORT files, use
the RENUM subcommand.

2. The serialization setting is ON, by default, for the following
filetypes:

ASSEMBLE
COBOL
DIRECT
FORTRAN
MACRO

PLI
PLIOPT
UPDATE
UPDTxxxx

3. When serialization is in effect, records in a file are resequenced
each time a FILE, SAVE, or AUTOSAVE request is issued. If you are
using line-number editing, you must issue the subcommand:

linemode off

before issuing a FILE or SAVE subcommand if you wish the records to
be resequenced.

If you issue the SERIAL subcommand in a file with a zone column greater
than 72, the message:

END ZONE SET TO 72

is displayed, to indicate that the zone has been changed. If the zone
column is 72 or less, but the truncation column is greater than 72, the
message:

TRUNC SET TO 72

is displayed.

Section 3. EDIT Subcommands and Macros 247

EDIT Subcommands-SHORT, STACK

SHORT

Use the SHORT subcommand to request the editor to respond
subcommand lines with the short form of the ?EDIT message.
of the SHORT subcommand is:

SHORT

to invalid
The format

~__J

1. When the SHORT subcommand is in effect, the editor responds:

to an invalid subcommand line, and responds:

to an invalid macro request.

2. To resume displaying the long form of the ?EDIT message, use tbe
LONG subcommand.

None.

STACK

Use the STACK subcommand to stack data lines or EDIT subcommands in tbe
console stack for subsequent reading. The format of the STACK
subcommand is:

~----.--,
f' ,

I n I
STACK 1 subcommand I

10 I
1..1 1
L J

1
I
I
I
I
I ~ __ J

n indicates the number of lines to be stacked beginning with
the current line. If a number or a subcommand is net
sFecified, then one line is assumed by default. A maximum
of 25 lines can be stacked.

If the current line Fointer is at the top of the file, then
n-1 lines are stacked. If fewer than n lines remain in the
file, only the lines remaining are stacked.

subcommand specifies an EDIT srrbcommand to be stacked.

o stacks a null line.

248 IBM VM/370 CMS Command and Macro Reference

1.

March 30, 1979

STACK subcommands are used
from a file so that they
additional subcommands.

EDIT Subcomaands-ST1CK, T1BSET

to write edit macros, to stack lines
can be moved around, or to stack

2. All lines stacked with the STACK subcommand are stacked FIFO (first
in, first out).

3. The length of input lines
current TRUNC setting.
characters.

that are stacked is determined
The maximum length, however,

by the
is 130

None. If you issue the STACK subcommand
line, the stacked subcommand is executed
those to the stacked subcommands, if any.

to stack an EDIT subcommand
immediately; responses are

TABSET

Use the TABSET subcommand to set logical tab stops for a file. The
format of the TABSET subcommand is:

TABSet nl [n2 ••• nn]
L-__ • _______ ~

nl [n2 ••• nn] indicates column positions for logical tab settings. You
may specify up to 25 numbers, separated from each other
by at least one blank. nl indicates the first column in
the file that may contain data.

1. The editor assigns the following tab settings by default:

!!!ety]~§ g~I~Y!1 I~Q ~~!!!ng§
ASM3705, ASSEMBLE, 1, 10, 16, 31, 36, 41, 46, 69, 72, 80

MACRO, UPDATE,
UPDTxxxx

AMSERV

FORTRAN

FREEFORT

BASIC, VSBASIC

PLIOPT, PLI

COBOL

Others

2, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51,
61, 71, 80

1, 7, 10, 15, 20, 25, 30, -80

9, 15, 18, 23, 28, 33, 38, 81

7, 1Q, 15, 20, 25, 30, 80

2, 4~ 7, 10, 13, 16, 19, 22, 25, 31, 37,
43, 49, 55, ?9, 80

1, 8, 12, 20, 28, 36, 44, 68, 72, 80

1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51,
61, 71, 81, 91, 101, 111, 121, 131

Section 3. EDIT Subcommands and Macros 249

March 30, 1919

EDIT Subcommands-TABSET, TOP, TRUNC

2. Tab setting operands have no effect if the IMAGE subcommand's
operand is either OFF or CANON. (CANON is the default for SCRIPT
filetypes). A tab entered into a file under these conditions
appears as X'05'.

3. The margins set by the TABSET subcommand are used by the INPUT,
REPLACE, OVERLAY, and FIND subcommands.

None.

TOP

Use the TOP subcommand to move the line pointer to the top of the file.
The null top line becomes the current line. The format of the TOP
subcommand is:

TOP

R~~2!!§~2

When verification is on, the message:

TOF:

is displayed.

When you are using a
verification is on, the
characters TOr (indicating
are blank, and the rest of
first lines of the file.

TRUNC

display terminal, if you specify TOP and
current line (see Figure 29) contains the
the top of the file), the lines preceding it
the screen's output display area contains the

Use the TRUNC subcommand to change the truncation column of records or
to display the current truncation column setting. The format of the
TRUNe subcommand is:

TRUNC
I r ,
I In I
I 1* 1
1 L J

n indicates the column at which truncation is to- occur. If n is
specified as an asterisk (*), the truncation column is set to the
record length for the filetype.

250 IBM VM/370 CMS Command and-Macro Reference

EDIT Subcommands-TRUNC, TYFE

1. The editor assigns the following truncation setting by default:

I.!1~1I.E~§
ASSEMBLE, MACRO, UPDATE, UPDTxxxx
AMSERV, COBOL, DIRECT, FORTRAN,

PLI, PLIOPT
All Others

'Iruncation ~21!!.!!!! --------:ri-

72
Record Length

2. The truncation value is used by the INPO'!, REPLACE, STACK, and
OVERLAY subcommands also, and, for display terminals in display
mode, the CHANGE subcommand when it is used with no operands.

3. If your virtual machine is in input mode and you enter a line that
is longer than the current truncation setting, the message:

TRUNCATED

is displayed along with a display of the truncated line. Your
virtual machine is still in input mode.

When you enter the TRUNC subcommand with no operands, the editcr
displays the current setting.

TYPE

Use the TYPE subcommand to display all or any part of a file at the
terminal. The format of the TYPE subcommand is:

I r r " Type I 1m In " I 1* 1* " I 11 I II
1 L L .J.J

~!.l!er~ :

indicates the number of lines to be displayed, beginni~g with
current line. An asterisk (*) indicates all lines between
current line and the end of the file. If- m is omitted, only
line is displayed. If the number of lines specified exceeds
number remainipg in the file, displaying stops at the end of
file.

I

I
I
1
I
I

the
the
one
the
the

n indicates the column at which displaying- is to s-top, overriding the
current end column for verification. If n is specified as an
asterisk (*), it indicates that displaying is to take place for the
full reccrd length.

1. Use the TYPE subcommand to display lines when you are editing a
file with verification Gff.

Section 3. EDIT Sub_commands and Macros 251

EDIT Subcommands-TYPE, UP

2. If you display one line, the current line pointer does not move; if
you display more than one line, the current line is positioned at
the last line displayed, or at the end of the file if you specified
an asterisk (*).

3. If you have set an end verification column to a value less than the
record length, and you want to display an entire record, enter:

type 1 *
4. If you do not specify an end column, the length of the line(s)

displayed is determined by the current end verification setting.
If you are using right-handed line-number editing on a typewriter
terminal or a display terminal in line mode, the line numbers are
displayed on the left.

The requested lines are displayed.

Since the TYPE subcommand was designed for printing terminals, it is cf
marginal value on a display terminal, except when you use line mode.
However, if the display screen is interrupted by communication from the
control program (CP), you should use the TYPE subcommand to restore the
full screen display.

UP

Use the UP subcommand to reposition the current line pointer toward the
beginning of the file. The format of the UP subcommand is:

,
r , I

Up In I I
11 I I
L J 1

J

~h~~:

n indicates the number of lines the pointer is to be moved toward the
beginning of the file. If a number is not specified, then the
pointer is moved up only one line. The line pointed to becomes the
new current line.

UP is equivalent to BACKWARD.

~~§£~D§~§

When verification is on, the l~ne ~ointed to is displayed at-your­
terminal. If the UP subcommand causes the current line po-inter to move
beyond the beginning of the file, th~ following message- is ~isplayed:

TOF:

252 IBM VM/370 CMS Command and Macro Reference

EDIT Subcommands-VERIFY

VERIFY

Use the
setting.

Verify

ON

VERIFY subcommand to set or display the
The format of the VERIFY subcommand is:

current verificatien

I r , rr , ,
I ION I Iistartcoll endcoll
I I OFF I II 1 I * I
I L .J LL .J .J

specifies
disFlayed,
indicated.

that lines located, altered,
and changes between edit and
ON is the initial setting.

or changed
input mode

,
I
I
I
I

are
are

OFF specifies that lines that are located, altered, or changed are
not displayed, and changes between edit and input mode are not
indicated.

startcol indicates the column in which verification is to begin, when
verification is on. The default is column 1. startcol must
not be greater than the record length nor greater than endcol.

endcol indicates the last column to be verified, when verification is
on. endcol must not be greater than the record length. If
endcol is specified as an asterisk (*), each record is
disFlayed to the end of the record.

!!§A9~ !!.Q:!:~§

1. If you issue the VERIFY subcommand with only one operand, that
operand is assumed to be the endcol operand. For example, if yeu
issue VERIFY 10, verification occurs in columns 1 through 10.

2. The editor assigns the following settings, ty default:

!.!l~:!:I.E~§
AMSERV, ASSEMBLE, COBOL,

DIRECT, FORTRAN, MACRO,
PLI, PLIOPT, UPDATE, UPDTxxxx

Others (Including FREEFORT)

verification End £.Q1Y~ ----Column-72---

- Record Length

If you issue the VERIFY subcommand with no operands, the current
startcol and endcol settings are displayed, regardless of whether
verification is on or off.

Section 3. EDIT Subcommands and Macros 253

EDIT Subcommands-X, Y

X or Y

Use the X or Y subcommands to assign a given EDIT subcommand to be
executed whenever X or Y is entered, or to execute the previously
assigned subccmmand a specified number of times. The format of the X
and Y subcommands is:

r,
I subcommand I
1 n 1
11 1
L .J

,
1
I
1
1
1

subcommand indicates any EDIT subcommand line. The editor assumes that
yeu have specified a valid EDIT subcommand, and no error
checking is done.

n indicates the number of times the previously assigned
subcommand is to be executed. If X or Y is entered with no
oFerands, 1 is assumed.

1. Advancement of the current line pointer depends upon the EDIT
subcommand that has been assigned to X or Y. If a number or a
subcommand is not specified, the previously assigned subcommand is
executed once.

2. X and Yare initially set to null strings. If you enter X or Y
without having previously assigned a subcommand to it, the editor
issues the ?EDIT error message.

3. You can use the X and Y subcommands in many instances where yeu
must repeat a subcommand line many times while editing a file, but
the situation does not lend itself to a global request. For
example, if you assign X to a LOCATE and Y to a CHANGE subcommand,
issue:

x

to execute the LOCATE request, and after examining the line, you
can change it and continue searching, by entering the Y subcommand
followed by the X subcommand:

ytx

or just continue searChing:

x

Responses are issued for the EDIT subc~mmands that are assigned to_X and­
Y, in accordance with the current verification setting.

254 IBM VM/370 CMS Command and Macro Reference

EDIT Subcommands-ZONE

ZONE

Use the ZONE subcommand to specify the columns of each record (starting
position and ending position) to be scanned when the editor searches for
a character string or to display the current ZONE settings. The format
of the ZONE subcommand is:

-,
I r r " Zone I Ifirstcol Ilastcolll
I 1* 1* II
I 11 1 II
I L L .J.J

firstcol indicates the near zone column of each record to be scanned.
If firstcol is specified as an asterisk (*), the default is
column 1.

lastcol indicates the end zone column of each record to be scanned.
If lastcol is specified as an asterisk (*), the default is the
record length.

1. The editor assigns the following settings by default:

ASSEMBLE, MACRO, UPDATE,
UPDTxxxx

AMSERV, PLI, PLIOPT
COBOL, DIRECT, FORTRAN
BASIC, VSBASIC
FREEFORT
Others

Near Zone
(£Q!y!!!r-

1

2
1
7
9
1

End Zone
(fQly!!!)"

71

72
72

Record Length
Record Length
Record Length

2. The ZONE settings are used by the ALTER, CHANGE, and LOCATE
subcommands to define the columns that will be scanned. If you
specify a character string longer than the zone, you receive the
message:

ZONE ERROR

and the subcommand is not executed.

3. If you issue a CHANGE subcommand that increases the length of a
line beyond the-end zone setting, the line is truncated.

Section 3. EDIT Subcommands and Macros 255

I
1
1
1
I

EDIT Subcommands-ZONE, ?

4. You can use the ZONE subcommand to protect data in particular
columns, for example:

edit newfile memo
NEW FILE:
EDIT:
zene

1 80
zone 10 20
input the zone is now set for columns 10-20

EDIT:
change /0/*/
the zone is n*w set for columns 10-20

Note that the LOCATE and CHANGE
now, not the word zone, because
not in position 1.

subcommands operated on the word
scanning started in position 10,

When you enter the ZONE subcommand without specifying zone settings, the
editor displays the current setting.

? (QUESTION MARK)

Use the ? subcommand to display the last EDIT subcommand executed except
for a REUSE (=) or ? (question mark) subcommand. The format of the?
subcommand is:

r--,
? I

--~

After an X, Y,
subcommand that
subcommand.

or = subcommand,
was executed as

the last
a result

EDIT subcommand
of issuing the

is the
X or Y

When you issue the ? subcommand using a 3270 in display mode, the last
EDIT subcommand that was executed is redisplayed in the user input area.
Press the Enter key to execute it again; you may modify the line before
reentering it.

256 IBM VM/370 CMS Command and Macro Reference

EDIT Subcommands-nnnnn

nnnnn

Use the nnnnn subcommand to enter and locate lines when you are using
line-number editing. The format of the nnnnn subcommand is:

I

I{nnnnn }
I nnnnnnnn

[text]
~ __ J

nnnnn

text

indicates a line number between 0
BASIC or VSBASIC, or a line number
filetYFe is FREEFORT.

and 99999 if the filetype is
between 0 and 99999999 if the

specifies a line of text to be inserted into the file at the
specified line number. If a line with that number already
exists, it is replaced. If no text line is specified, the
current line pointer is positioned at the line number specified.

The nnnnn subcommand
editing; that is, you
RIGHT or LEFT operand.
and FREEFORT files.

is valid only when you are using line-number
have issued the LINEMot! subcommand using the
Line~number editing is the default for VSBASIC

When you issue the nnnnn subcommand with no operands, the line with the
specified line number is displayed. If the line is not found, the
editor displays the message:

LINE NOT FOUND

and the current line pointer is set at the next line number greater than
nnnnn.

Section 3. EDIT Subcommands and Macros 257

Edit Macros-$DUP

EDIT Macros

Edit macros are CMS EXEC files that execute sequences of EDIT
subcommands. The following edit macros are supplied with VM/370 for
your convenience. For additional information on creating and invoking
your own edit macros and EXEC files, see the !~L~lQ ~~~ y§~£~§ ~y!~~.

!12UP

Use the $DUP to duplicate the current line. the format of the $DUP
macro is:

I r ,
$DUP lin 1

I 11 1
1 L J

~--~

n indicates the number of times you want to duplicate the line; the
maximum value you can specify is 25. If n is omitted, the current
line is duplicated once.

1. The last copy of the line duplicated becomes the new current line.

2. If you use the logical line end symbol (#) to stack additional
subcommands on the same line with the $DUP edit macro those
subcommands are cleared from the console stack and the message:

STACKED LINES CLEARED BY $DUP

is issued. The stacked subcommand(s) are not executed.

3. Because it
duplicating
characters.

uses console functions, $DUP cannot
records containing binary zeros _ or
Truncated duplicate records will result.

be used when
nonprintable

4. When using line-number editing, you can insert duplicate lines
between existing numbered lines if the interval ~etween line
numbers is large enough. Execution of $DUP stop~ after the last
valid line number has been assigned. You can renumber your file to
increase the interval between line numbers.

The last line duplicated (the new current line) is displayed.

258 IBM VM/370 CMS Command and Macro Reference

Edit Macros-$eOVE

Use the $MOVE edit macro to move one or more lines from one place in a
file to another place. The format of the $eOVE macro is:

r---.---------------------------,
$MOVE

n

n {UP -m } DOWN m
TO label

indicates the number of records you want to move, beginning
with the current line. The maximum number of lines you can
move is 25.

UP m indicates that you want to move the lines toward the top of
the file, m lines above the current line.

DOWN m

TO label

indicates that you want to move the lines toward the end of
the file, m lines below the last line you are going to move.

indicates that you want the lines inserted
specified label. The label must be one to
characters and must start in column 1.

following the
eight uppercase

1. The last line moved becomes the new current line.

2. If the label is not found or if the DOWN value exceeds the number
of lines remaining before end of file, the lines are inserted at
the end of the file. If the UP value exceeds the number of lines
remaining before top of file, the lines are inserted at the top of
the file.

3. If you use the logical line end symbol (#) to stack additional
subcommands on the same line with the $MOVE request, those
subcommands are cleared from the console stack and the message:

STACKED LINES CLEARED BY $MOVE

is displayed. The stacked subcommands are not "executed.

4. Because it uses console functions, $MQVE will truncate duplicated
records containing binary zeros or nonprintable characters.

When verification is on, the last line moved is displayed.

Section 3. EDIT Subcommands and Macros 259

I
I
I

260 IBM VM/370 eMS Command and Macro Reference

DEBUG Sutcommands

Section 4. DEBUG Subcommands'

This section describes the subcommands that
you use the debug environment to test and
debug environment is entered when:

are available to you when
debug your programs. The

• The DEBUG command is issued from the CMS environment.
command is described in "Section 2. CMS Commands.")

(The DEBUG

• An external interruption occurs.
by the CP EXTERNAL command.)

(An external interruption is caused

• A breakpcint (instruction address stop) is encountered during program
execution. (Breakpoints are set with the DEBUG subcommand BREAK.)

When the debug environment is entered, the contents of all general
registers, the channel status word (CSW), and the channel address word
(CAW) are saved so they may be examined and changed before being
restored when leaving the debug environment. If debug is entered via an
interruption, the old program status word (PSW) for that interruption is
also saved. If DEBUG is the first command entered after an abnormal
termination (a bend) occurs, the contents of all general registers, the
CSW, the CAW, and the old PSW are available from the time of the abend.

For hints on debugging your programs using the CMS debug environment,
consult the !~LJIQ £~~ q§~!~§ QYi~~.

Section 4~ DEBUG Subcommands 261

DEBUG Subcommands-BREAK

BREAK

Use the BREAK subcommand to stop execution of a program or module at a
specific instruction location called a breakpoint. The format of the
BREAK subcommand is:

BReak

id

symbol

hexloc

id {SymbOl}
hexloc

is a decimal number, from 0 to 15, which identifies the
breakpoint. A maX1mum of 16 breakpoints may be in effect at
one time; if you specify an identification number that is
already set for a breakpoint, the previous breakpoint is
cleared and the new one is set.

is a name assigned to the storage location where the
breakpoint is set. symbol, if used, must have previously been
set using the DEFINE subcommand.

is the hexadecimal storage location (relative to the current
origin) where the breakpoint is to occur. hexloc must be on a
halfword boundary and its value added to the current origin
must not exceed your virtual machine size.

1. To set breakpoints before beginning program execution, enter the
debug environment with the DEBUG command after you load the program
into storage. After setting the breakpoints, use the RETURN
subcommand to leave the debug environment and issue the START
command to begin program execution. For example:

load myprog
debug
break 1 20016
break 2 20032
return
start

2. When you assign hexloc to a breakpoint, you must know the current
origin (set with the ORIGIN subcommand). The hexloc-you specify is
added to the current origin to determine the breakpoint address.

3. When a breakpoint is found during program execution, the message:

DMSDBG728I DEBUG ENTERED BREAKPOINT yy AT xxxxxx

is displayed at the terminal. To resume program execution, use the
GO subcommand.

4. Breakpcints are cleared after they are encountered; thus, if a
breakpoint is encountered during a program l09P you must reset the
breakpoint if you want to in~errupt execution the next time that
address is encountered.

p. When you set a breakpoint, the half word at the address specified is
replaced with B2Ex, where x represents the identification number
you assigned. After the breakpoint 1S ~ncountered during
execution, B2Ex is replaced with the original operation code.

262 IBM VM/370 CMS Command and Macro Reference

DEEUG Subcommands-BREAK. CAW

6. You should set breakpoints only at valid operation code addresses;
the BREAK subcommand does not check to see whether or not the
specified location contains a valid operation code.

7. If you reference a virtual storage
segment, yeu are given a nonshared
receive the message:

address that is in
copy of the segment

SYSTEM sysname REPLACED WITH NON-SHAREt copy

a shared
and you

None.

CAW

Use the CAW subcommand to display at the terminal the contents
CAW (channel address word) as it existed at the time the
environment was entered. The format of the CAW subcommand is:

of the
debug

CAW I

1. Issue the CAW subcommand to check that the command address field
contains a valid CCW address, or to find the address of the current
CCW so you can examine it.

2. The three low-order bits of the command address field must be zeros
in order for the CCW to be on a doubleword boundary. If the CCW is
not on a doubleword boundary or .if the command address specifies a
location protected from fetching or outside the storage of a
particular user, the Start I/O instruction causes the status
portion cf the CSW (channel status word) to be stored with the
program check or protection check bit on. In this event, the I/O
operation is not initiated.

The CAW, located at storage location X'48',· is displayed. Its format is:

r --------'---,
I KEY I 0000 I Command Address . I
~ __ J

o

~lts
0-3

4-7

8-31

3 4 7 8 31

Contents
The-protection key for all commands associated with Start I/C.
The prote~tion key in the CAW is compa~ed to a key in storage
whenever a reference is made to storage.

This field is' not used.and must contain binary ~eros.- _.

The command address field contains the storage address {in
hexadecimal r~presenta tion) of th.e first C_CW (channel com.mand
word) associated 'with the next or most racent Start I/O.

Section 4. tEEUG Subcommands 263

DEBUG Subcommands-CSW

csw

Use the CSW subcommand to display at the terminal the contents
CSW (channel status word), as it existed at the time the
environment was entered. The format of the CSW subcommand is:

of the
debug

CSW
~--------__ J

1. The CSW indicates the status of the channel or an input/output
device, or the conditions under which an I/O operation terminated.
The CSW is formed in the channel and stored in storage location
X'40' when an I/O interruption occurs. If I/O interruptions are
suppressed, the CSW is stored when the next Start I/O, Test I/O, or
Halt I/O instruction is executed.

2. Whenever an I/O
subcommand. The
is very useful
address of the
command address

operation abnormally terminates, issue the
status and residual count information in the

in debugging. Also, use the CSW to calculate
last executed CCW (subtract eight bytes from
to find the address of the last CCW executed) .•

csw
CSW
the
the

The contents of the CSW are displayed at the terminal in hexadecimal
representation. Its format is:

,
I KEY 10000 I Command Address Status Eyte Count

03478 31 32 47 48 63

Bits
0=3

4-7

8-31

32-47

48-63

Contents
The-protection key is moved to the CSW from the CAW. It shows
the protection key at the time the I/O operation started. The
contents of this field are not affected by programming errors
detected by the channel or by the condition causing
termination of the operation.

This field is not used and must contain binary zeros.

The command address contains a storage address (in hexadecimal
representation) that is eight bytes greater than the address
of the last ccw executed.

The status bits indicate the conditions in the device or
channel that caused the CSW to be stored.

The residual count is the difference between the number af
bytes specified in the last executed CCW and the number of
bytes that were actually transferred. When an input operation
is terminated, the difference between the origipal count in
the CCW and the residual count in the CSW is equal to the
number of bytes transferred to storage; on an output
operation, the difference is equal to the number of byte~
transferred to the 1/6 device .•

264 IBM VM/370 CMS Command and Macro Reference

rEBUG Subcommands-DEFINE

DEFINE

Use the DEFINE subcommand to assign a symbolic name to a specific
storage address. Once a symbolic name is assigned to a storage address,
that symbolic name can be used to refer to that address in any of the
other DEBUG subcommands. The format of the DEFINE subcommand is:

DEFine symbol hexloc
r ,
Ibytecountl
I ~ I
L .J L-__ .J

symbol

hexloc

hytecount

is the name to be assigned to the storage address derived frem
the second operand, hexloc. Symbol may be from one to eight
characters long, and must contain at least one nonhexadecimal
character. Any symbolic name longer than eight characters is
left-justified and truncated on the right after the eighth
character.

is the hexadecimal storage location, in relation to the
current origin, to which the name specified in the first
operand (symbol), is assigned.

is a decimal number, between 1 and 56 inclusive, which
specifies the length in bytes of the field whose name is
specifed by the first operand (symbol) and whose starting
location is specified by the second operand (hexloc). ~hen
bytecount is not specified, 4 is assumed.

1. Issuing the DEFINE subcommand creates an entry in the debug symbel
table. The entry consists of the symbo~ name, the storage address,
and the length of the field. A maX1mum of 16 symbols can be
defined in the debug symbol table at any given time.

2. When a DEFINE subcommand specifies a symbol that already exists in
the debug symbol table, the storage address derived from the
current request replaces the previous storage address. Several
symbols may be assigned to the same storage addre~s, but each of
these symbols constitutes one entry in the debug symbol table. The
symbols remain defined until they are redefined or until an IFL
subcommand loads a new copy of eMS.

3. When you assign a symbolic name to a storage location, you must
know the current origin (set by the ORIGIN subcommand). The hexloc
you specify is added to the current origin to create the entry in
the symbel table used by DEBUG subcommands. If you change the
current origin, existing entries are not chang~d. _

4. You can use symbolic names to refer_to storage locations when you
issue the DEBUG sub~ommands BREAK, DUMP, GO, ORIGI~, STORE, and X.

None.

Section 4. DEBUG Subcommands 265

DEBUG Subcommands-DUMP

DUMP

Use the DUMP subcommand to print part or all of your virtual storage on
the printer. The requested information is printed offline as soon as
the printer is available. First, a heading:

ident FROM starting location TO ending location

is printed. Next, the general registers 0-7 and 8-15, and the
floating-point registers 0-6 are printed, followed by the PSW, CSW, and
CAW. Then the specified portion of virtual storage is printed with the
storage address of the first byte in the line printed at the left,
followed by the alphameric interpretation of 32 bytes of storage. The
format of the DUMP subcommand is:

,.. ,.. , ,
DUmp I symbol1 I symbol2 I I

I hexlocl I hexloc 2 [ident] I I
I Q I * I I
I I].f I I
L L .J .J L-__.J

symboll

hexloc1

symbol2

hexloc2

*

ident

is the name assigned (via the DEFINE subcommand) to the
storage address that begins the dump.

is the hexadecimal storage location, in relation to current
origin, that begins the dump.

is the name assigned (via the DEF~NE subcommand) to the
storage address that ends the dump.

is the hexadecimal storage location, in relation to the
current origin, that ends the dump.

indicates that the dump ends at your virtual machine's last
virtual storage address.

is any name (up to eight characters) that identifies the dump.

1. If you issue the DUMP subcommand with no operands, 32 bytes of
storage are dumped,-s-tarting a t the current origin. _

2. The first and second operands must designate storage addresses that
do not exceed your virtual machine storage size. Also, the storage
address derived from the second operand must be greater than the
storage address derived from the first operand.-

None.

266 IBM VMj370 CMS Command and Macro Reference

DEBUG Subcommands-GO

GO

Use the GO subcommand to exit from the debug environment and begin
program execution. The format of the GO subcommand is:

r ,
GO I symbol I

I hexloc I

symbol

hexloc

L

is the symbolic name assigned to the storage location where
you want execution to begin.

is the hexadecimal location, in relation to the current
origin, where you want execution to begin.

1. When you issue the GO subcommand, the general registers, CAW
(channel address word), and CSW (channel status word) are restored
either to their contents upon entering the debug environment, or,
if they have been modified, to their modified contents. Then the
old PSW is loaded and becomes the current PSW. Execution begins at
the instruction address contained in bits 4C-63 of the PSi.

2~ When you specify symbol or hexloc with the GO subcommand, the
specified address replaces the instruction address in the old PSW,
so execution will begin at that address. If you entered the debug
environment with the DEBUG command, you must specify an address
with the GO subcommand.

3. The address you specify must be within your virtual machine and it
must contain a valid operation code.

program execution is resumed.

Section 4. DEBUG Subcommands 267

DEBUG Subcommands-GPR, HX

GPR

Use the GPR subcommand to display the contents of one or more general
registers at the terminal. The format of the GPR subcommand is:

GPRI reg1 [reg2]

reg1 is a decimal number (from 0-15 inclusive) indicating the first
or only general register whose contents are to be displayed.

reg2 is a decimal number (from 0-15 inclusive) indicating
general register whose contents are to be displayed.
be larger than reg1.

the last
reg2 must

The register or registers specified are displayed, in hexadecimal
representation:

xxxxxxxx

HX

Use the HX subcommand to leave
reason the debug environment
subcommand is:

the debug environment, regardless of the
was entered. The format of the HX

-------,
HX I

~---~

If you entered the debug environment following a program interruption,
you receive the message:

CMS

to indicate a return to the CMS environment. If you entered the debug
environment by issuing the DEBUG command, you receive the message:

DMSABN148T SYSTEM ABEND 2E4 CALLED FROM xxxxxx

where xxxxxx is the address of the debug routine. -

268 IBM VM/310 CMS Command and Macro Reference

tEBUG Subcommands-ORIGIN

ORIGIN

Use the ORIGIN subcommand to set an origin or base address to be
the debug environment. The format of the ORIGIN subcommand is:

used in

,
ORigin I {SymbOl}

I hexloc
I Q

I
I
I

symbol

hexloc

.J

is a symbolic name that was previously assigned (via the
DEFINE subcommand) to a storage address.

is a hexadecimal location within
storage. If you do not explicitly
a value of O.

the limits of your virtual
set an origin, then it has

1. When the ORIGIN subcommand specifies a symbol, the debug symbcl
table is searched. If a match is found, the value corresponding to
the symbcl becomes the new origin. When a hexadecimal location is
specified, that value becomes the or1g1n. In either case, the
operand cannot specify an address greater than your virtual storage
size.

2. Any origin set by an ORIGIN subcommand remains in effect until
another ORIGIN subcommand is issued, or until you obtain a new cOFY
of CMS. Whenever a new ORIGIN subcommand is issued, the value
specified in that subcommand overlays the previous origin setting.
If you obtain a new copy of CMS (via IPL), the origin is set to 0
until a new ORIGIN subcommand is issued.

3. Iou can use the ORIGIN subcommand to set the origin to your
program's base address, and then refer to actual instructicn
addresses in your program, rather than to virtual storage
locaticns.

None.

Section 4. tEBUG Subcommands 269

DEBUG Subcommands-PSi, RETURN

PSW

Use the PSi
status word).

PSi

~.§~.§ !21.§.§

subcommand to display the contents of
The format of the PSi subcommand is:

the PSi (program

1. If the debug environment was entered because of a program
interruption, the program old PSi is displayed. If the debug
environment was entered because of an external interruption, the'
external old PSi is displayed. If the debug environment was
entered for any other reason, the following is displayed in
response to the PSi subcommand:

01000000xxxxxxxx

where the 1 in the first byte means that external interruptions are
allowed and xxxxxxxx is the hexadecimal storage address of the
debug program.

2. The PSi contains some information not contained in storage or
registers but required for proper program execution. In general,
the PSi is used to control instruction sequencing and to hold and
indicate the status of the system in relation to the program
currently executing. For a description of the PSi, refer to
"Appendix A: System/370 Information" in the .!~Ll1.Q .2Y.§1~.!!!
fE2gEg.!!!.!!!~E~§ ~Yigg·

The PSi is displayed in hexadecimal representation.

RETURN

Use the RETURN subcommand to exit from the debug erivironment and enter
the eMS command environment. The format of the RETURN subcommand is:

r----------------------------------.--~
I RETurn
~--~------------------~

The RETURN subcommand is valid only when the debug environment was
entered via the DEBUG command.

The eMS ready message indicates that c.ontrol has been returned- to tb~.
eMS environment.

270 IBM VM/310 eMS Command and Macro Reference

DEEUG Sutcommands-SET

SET

Use the SET subcommand to change the contents of the control words and
general registers. The format of the SET subcommand is:

SET

{

CAW
CSW
PSW
GPR

hex info
hexinfo
hexinfo
reg

(hexinfo]
(hexinfo]
hexinfo [hexinfo] l L-__ ~

CAW bexinfo
stores the specified information (hexinfo) in the CAW (channel
address word) that existed at the time the debug environment
was entered.

CSW hexinfo (hexinfo]
stores the specified information (hexinfo (hexinfo]) in the
CSW (channel status word) that existed at the time the debug
environment was entered.

PSW hex info (bexinfo]
stores the specified information (hexinfo (hexinfo]) in the
old PSW (program status word) for the interruption that caused
the debug environment to be entered.

GPR reg hexinfo (hexinfo]
stores the specified information (hexinfo (bexinfo]) in the
specified general register (reg).

1. The SET subcommand can only change the contents of one control word
at a time. For example, you must issue the SET subcommand three
times:

set caw hex info
set csw hexinfo [hexinfo]
set psw hexinfo [hexinfo]

to change the contents of the threecontrql words.

2. The SET subcommand can change the contents of one or two general
registers each time it is issued. When four or fewer bytes of
information are specified, only the contents of the specified
register are changed. When more than four bytes of information are
specified, the contents of the specified register and the next
sequential register are changed. For example, the SET subcommand:

set gpr 2 xxxxxxxx

changes cnly the contents of general register 2. But, the SET
subcommand:

set gpr 2 xxxxxxxx xxxxxxxx

changes the contents o~ gener~l registers 2 and 3.

Section 4. DEBUG Subcommands 211

DEEUG Subcommands-SET, STOBE

3. Each hexinfo operand should be from one to four bytes long. If an
operand is less than four bytes and contains an uneven number of
hexadecimal digits (representing half-byte information), the
information is right-justified and the left half of the uneven byte
is set to zero. If more than eight hexadecimal digits are
specified in a single operand, the information is left-justified
and truncated on the right after the eighth digit.

4. The number of bytes that can be stored using the SET subcommand
varies depending on the form of the subcommand. With the CAW form,
up to four bytes of information may be stored. with the CSW, GPB,
and PSW forms, up to eight bytes of information may be stored, but
these bytes must be represented in two operands of four bytes each.
When two operands of information are specified, the information is
stored in consecutive locations (or registers), even if one or both
operands contain less than four bytes of information.

None. To display the contents of control words or registers after you
modify them, you must use the CAW, CSW, PSW, and GPR subcommands.

STORE

Use the STORE subcommand to store up
information in any valid virtual storage
STORE subcommand is:

to 12 bytes of hexadecimal
location. The format of the

r--,
STore

symbol

hexloc

hexinfo

{
sy mbOl}
hexloc

hex info [hexinfo [hexinfo]] I
I

is the symbolic name assigned (via the DEFINE subcommand) to
the storage address where the first byte of specified
infcrmation is to be stored.

is the hexadecimal location, relative to the current origin,
where the first byte of information is to be stored.

is the hexadecimal information~ four bytes or less in length
(that is, two to eight hexadecimal digits), to be stored •

.!!§g,g~ li2!~§

1. If an operand is less than four bytes long and ccintains an uneven
number of hexadecimal digits (representing half-byte information),
the information is right-justified and the left half of the uneven
byte is set to zero. If more than eight hexadecimal digits are
specified in a single operand, the information js -left-justified
and truncated on the right after the eighth digit.

2. The STORE subcommand can store a maximum of 12 bytes at one time.
By specifying all three -information operands, each containing four
bytes of information, the maximum 12 bytes can be stored. If less
than four bytes are specified in any or all of the operands, the
informatLon given is arran~ed ~nto a string of consecutive tytes,- - -
and that string is stored starting at the lecation derived from- the
first operand.

272 IBM VM/370 CMS Command and Macro Reference

DEfUG Subcommands-STORE, x

For example, if you have defined a four-byte symbol named FENCE
that currently contains X'FFFFFFFF' and you enter:

store fence 0

FENCE contains X'OOFFFFFF'.

None. To display the contents of a storage location after you have
modified it, you must use the X subcommand.

x

Use the X subcommand to examine and display the contents of specific
locations in virtual storage. The format of the X (examine) subcommand
is:

r ,
x symbol I n I

I l~llg!ll I
L .I

r ,
hexloc I n I

I ~ I
L .I

.I

symbol n is the name assigned (via the DEFINE subcommand) to the
storage address of the first byte to be displayed. n is a
decimal number from 1 to 56 inclusive~ that specifies the
number of bytes to be examined. If a symbol is specified
without a second operand, the length attribute associated with
that symbol in the debug symbol table specifies the number cf
bytes to be examined.

hexloc n is the hexadecimal location, in relation to the current
or~g~n, of the first byte to be examined. If hexloc is
specified without a second operand, four bytes are displayed.

!!'§A9~ !f~te

The address represented by symbol or hexloc must -be within your virtual
machine storage size.

~~~.Q1l'§~'§ 

The requested information is displayed at the terminal in hexadecimal 
format,. 

Section 4. tEBUG Subcommands 273 



274 IBM VM/370 CMS Command and Macro Reference 



EXEC Control Statements 

Section 5. EXEC Control Statements 

Tbis section describes the formats, usage rules, and default values for 
EXEC control words, including: 

• Control statements 
• Built-in functions 
• Special variables 

An EXEC procedure is a CMS file that contains a sequence of C5S 
commands and/or EXEC control statements. Control statements determine 
the logic flow for EXEC, provide terminal communications, and may be 
used to maniFulate CMS disk files. For an introduction to the EXEC 
facilities, and for complete tutorial information, including examples, 
consult the !~LJIQ ~~~ g§~f~§ ~y!~~. 

EXEC procedures may be invoked with the EXEC command, described in 
"Section 2. eMS Commands." You may also execute an EXEC procedure by 
specifying its filename, as long as the implied EXEC function is in 
effect. 

Section 5. EXEC Control Statements 275 



EXEC Control Statements-Assignment Statement 

The Assignment Statement 

Use the assignment statement in an EXEC procedure to assign a value to a 
variable symbol. Variable symbols may be tested and manipulated to 
control the execution of an EXEC procedure. The format of the 
assignment statement is: 

r-----------------------------------------------------------------------------, 
I 

&variable = 
{

string 
ae 
function 
X'xxxxxx 

I 
I 
I 

&variable 

string 

ae 

function 

X'xxxxxx 

indicates the variable symbol which is assigned the 
specified value. A variable may contain a maximum of eight 
alphameric characters, including the initial ampersand, 
which is required. Except in the EXEC special variables &* 
and &DISK*, a variable must not contain any special 
characters. 

is a data item of up to eight characters. It may also te a 
variable symbol or null. Whether a numeric string is 
treated as numeric or character data depends on how it is 
used in the EXEC. If a string containing variable symbols 
expands to more than eight characters, it is truncated. If 
the string consists of eight X'FF' characters, the variable 
is set to a null string. 

is an arithmetic expression consisting of a sequence of data 
items that possess positive or negative integral values and 
are separated by plus or minus signs: 

&1 - 4 + &CALC - 6 

is an EXEC built-in function followed by at least one token. 

indicates up to six hexadecimal digits to be converted- to 
decimal before assignment. For example: 

&A = X'CO 

results in &A having the decimal value 192~ 

Hexadecimal conversion is not performed unless you have used 
the &HEX ON control statement. 

All variable symbols occurring in executable statements are substituted 
before the statement is executed. An executable staiement is (1) a c~S 
command line, or (2) an EXEC control statement (inc-luding assignment 
statements). 

276 IBM VM/370 CMS Command and Macro Beference 



EXEC Control Statements-Assignment Statement, &ARGS, &BEGEMSG 

Variable substitution is performed on all symbols on the left-hand 
side of an assignment statement, except the leftmost variable. For 
example: 

&I = 2 
&X&I = 5 

sets &X2 to 5. 

If a variable on the left-hand side of an assignment statement has 
already been assigned a value, it is replaced by the new value specified 
in the assignment statement. 

If the special form, X'&symbol, is 
converted to its hexadecimal equivalent. 

&A = 192 
&TYPE X'&A 

results in the display: 

co 

used, the specified symbol 
For example: 

is 

If a variable symbol that has not been defined is used in an 
executable statement the symbol is set to a null token and ignored. In 
some instances this may cause an EXEC processing error. 

All executable statements in an EXEC are scanned into eight-character 
tokens, and padded or truncated as necessary. Tokens are formed of words 
delimited by blanks and parentheses. If there is no blank before or 
after a parenthesis, one is added in either case. If more than one 
blank separates a word or a parenthesis from another, the extra blanks 
are removed from the line. For example, the line: 

&TYPE THIS IS AN EXAGGERATED (MESSAGE 

scans as: 

&TYPE THIS IS AN EXAGGERA ( MESSAGE 

Variable symbols are substituted after each line is scanned, and each 
token is scanned repeatedly until all symbols in it are substituted. 

In an executable statement, a token beginning with the character 
X' FF' (or a variable to which such a token is assigned as a value) 
usually prevents the processing of data following it on the ~ame line. 
However, if an assignment sta tement sets - a variable to eight X' FF' 
characters, data following the variable in an e~ecutable statement is 
processed. 

&ARGS 

Use the &ARGS control statement to redefine the value of one or more of­
the special variables, &1 through &30. ~he format of the SARGS ~ontrol 
statement is: 

&ARGS [arg1 [arg2 ••• {arg30]-] ] 

Section 5. EXEC Control Statements 277 



EXEC Control Statements-&BEGEMSG 

[arg1 [arg2 ••• [arg30]]] 
specify up to 30 tokens to be assigned to the special 
variables &1 through &30. If no arguments are specified, all 
of the variables &1 through &30 are set to blanks. When fewer 
than 30 argu.ents are entered, the remaining arguments are set 
to blanks. An argument is also set to blanks if it is 
specified as a percent sign (%). 

Q.§~.§ !!Qte.§ 

1. To enter an argument list fro~ the terminal, use the &READ ARGS 
control statement. 

2. An &ARGS control statement resets the values of the &INDEX, &*, and 
&$ special variables. 

&BEGEMSG 
Use the &BEGEMSG control statement to introduce one or more unscanned 
lines to be edited as VM/370 error messages. 1he list of lines to be 
displayed must be terminated by an &END control statement, which must 
appear beginning in column 1. The format of the &BEGEMSG contrel 
statement is: 

&BEGEMSG I (ALL] 

ALL specifies, for fixed-length EXEC files, that the entire line (to a 
maximum of 130 characters) is to be displayed. 

Q.§.2.9~ !!Q!~.§ 

1. To qualify for error message editing, the first data item on each 
line following the &BEGEMSG control statement must be seven 
characters long, in the format: 

mlllmnnns 

mmmnnn is a six-character message identification you can supply 
for the error message. Standard VM/370 error messages use a 
three-character module code (mmm) and a three-characte~ 
message number (nnn). 

s indicates the severity code. The following codes qualify 
the message for-error message editing: 

l1~§§~g~ IIE~ 
Informa tional 
Error 
Warning 

When the severity -code is E. 
displayed in accordance with the 
CODE, or TEXT). You can change 
SET command, described -in !11Ll1.Q 
Q~1!~E~l !!§~E'§· 

I, or W, the message is 
CP EMSG setting (ON, OFF, 
this-setting with the CP 
~R ~Q~!gng B~!.§£~n£.§ !£E 

278 IBM VM/370 CMS Command and Macro Reference 



EXEC Control Statements-&BEGEMSG 

2. When you use the &BEGEMSG control statement to display error 
messages, the character string "DMS" is inserted in front of the 
seven-character message identification. For example, if the EMSG 
setting is ON, the lines: 

&BEGEMSG 
TEST01E INSURMOUNTABLE ERROR 
&END 

result in the display: 

DMSTEST01E INSURMOUNTABLE ERROR 

Note: Since the maximum length of a line that you can display at your terminal is 130 characters, the insertion of the characters 
DMS will cause lines greater than 127 characters long to be 
truncated. 

3. Messages that are displayed as the result of an &BEGEMSG control 
statement are not scanned by the EXEC interpreter. Therefore, no 
variable substitution is performed and no data items are truncated. 
To display variable data, use the &EMSG control statement. 

·&BEGPUNCH 

Use the &BEGPUNCH control statement to delimit the beginning of a list 
of one or more data lines to be spooled to your virtual card punch. The 
list of lines to be punched is terminated by the control statement &END, 
which must occur beginning in column 1. The format of the &BEGPUNCH 
control statement is: 

&BEGPUNCH (ALL] 

ALL specifies that data occupying columns 73 through 80 should be 
punched. If ALL is not specified, input records are truncated 
at column 72 and columns 73 through 80 of the output record 
are padded with blanks. 

1. Lines that are punched as the resqlt of an &BEGPUNCH control 
statement are not scanned by the EXEC interpreter. Therefore, no 
variable substitution is performed and no data items are truncate~. 
To punch variable data, you must use the &PUNCH control statement. 

2. When you are finished punching lines -in an EXEC procedure, you 
should use the CP CLOSE command to closeyo~r virtual punch. 

Section 5. EXEC Control Statements 279 



EXEC Control Statements-&BEGPUNCH, &BEGSTACK 

&BEGSTACK 

Use the &BEGSTACK control statement to delimit the beginning of a list 
of one or more data lines to be placed in the console input stack. The 
list of lines to be stacked is terminated by the control statement &END 
which must occur beginning in column 1. The format of the &BEGSTACK 
control statement is: 

r- , r , 
&BEGSTACK Il!lQI 

ILIFOI 
.. .J 

IALLI 
L .J 

~------------------_______________________________________________________ .J 

LIFO 

specifies that the lines that follow are to be stacked on a 
first in, first out basis. This is the default value. 

specifies that the lines that follow are to be stacked on a 
last in, first out basis. 

ALL specifies, for fixed-length EXEC files, that the entire line 
(to a maximum of 130 characters) is to be stacked. If ALL is 
not specified, the lines are truncated in column 72. 

1. Lines that are stacked as the result of an &BEGSTACK control 
statement are not scanned by the EXEC interpreter. Therefore, no 
variable substitution is performed, and data items are not 
truncated. To stack variable data, you must use the &STACK control 
statement. 

2. To stack a null line in an EXEC file you must ~se the &STACK 
control statement. A null line following an &BEGSTACK control 
statement is interpreted as a line of blanks. To stack an INPUT, 
REPLACE, or CHANGE subcommand to enter input mode from a 
fixed-length EXEC, you should use the &STACK control statement. 

&BEGTYPE 

Use the &BEGTYPE control statement to delimit the beginning of a list of 
one or more data lines to be displayed at the terminal. The list ef 
lines to be displayed is terminated by the control statem~nt &END, which 
must occur beginning in column 1. The format of the &BEGTYPE control 

-statement is: 

&BEGTYPE [ALL] 

.!.!!~~: 

ALL specifies, for fixed-length-EXEC - files, that data occupying 
columns 73 through 130 is to be displayed. If ALL is net 
specified, the lines are truncated at column 7_2. 

280 IB~ V~/370 C~S Command and ~acro Reference 



EXEC Control Statements-&BEGSTACK, &BEGTYPE, &CONTINUE 

Q§.s.g~ li.Q1~ 

Lines that are displayed as the result of an &EEGTYPF 90ntrol statement 
are nO,t scanned by the EXEC interpreter. "Ihere"fore, no variable 
substitution is performed, a nd data items are n"ot,1:,~un"c/ated. To display 
variable data, you must use the &TYPE control statement. 

&CONTINUE 

Use the &CONTINUE control statement to 
process the next statement in the 
&CONTINUE centrol statement is: 

&COlITINUE 

instruct the EXEC interpreter to 
EXEC file. The format of the 

___ .I 

&CONTINUE is generally used with an EXEC latel (for example, -LAB 
&CONTINUE) ta p~ovide a branch address for &ERROR, &GOTO, and other 
branching statements. &CONTINUE is the default action taken when an 
error is detected in processing a CMS command. 

Section 5. EXEC Control statements 281 



EXEC Control Statements-&CONTROL 

&CONTROL 

Use the &CONTROL control statement to specify the amount of data to be 
displayed in the execution summary of an EXEC. The format of the 
&CONTROL control statement is: 

r , r , r , 
&CONTROL 

r , 
IOFF I 
IERRORI 
1~11~ 1 
IALL I 

111~§' I 
INOMSGI 
L .J 

ITIME I 
Il!Q!!~~1 

I~!f~ I 
INOPACKI 
L .J 

OFF 

ERROR 

L .J 

L .J 

sUPFresses the display of CMS commands and EXEC 
statements as they execute and of any return codes 
result from CMS commands. 

control 
that may 

displays only those CMS commands that result in an error and 
also displays the error message and the return code. 

~11~ displays each CMS command as it is e~ecuted and all nonzero 
return codes. 

ALL 

NOMSG 

TIME 

NOPACK 

displays CMS commands and EXEC executable statements as they 
execute as well as any nonzero return codes from CMS commands. 

does not suppress the "FILE NOT FOUND" message if it is issued 
by the following commands when they are invoked from an EXEC 
procedure: ERASE, LISTFILE, RENAME, or STAT!. 

suppresses the "FILE NOT FOUND" message if it is issued when 
the ERASE, LISTFILE, RENAME, or STATE commands are invoked 
from an EXEC procedure. 

includes the time-of-day value with each CMS command printed 
in the execution summary; for example: 

14:36:30 TYPE A B 

This operand is effective only if CMS or ALL is also 
specified. 

does not include the time-of-day valu~ with CMS commands 
printed in the execution summary. 

packs the lines of the execution summary so that surplus 
blanks are removed from the displayed lines. 

does not pack the lines of the execution summary. 

-1. The execution summary may consist of CMS commands, responses, errcr 
messages, and return codes, as well as EXEC control statements and 
assignment statements. When EXEC statements are displayed, they_­
are displayed in their scanned f~rmat, with al~ variable symbols 
substituted. --

282 IBM VM/370 CMS Command and Macro Reference 



EXEC Control Statements-&CONTROL, &EMSG 

2. Each operand remains set until explicitly reset by another &CONTRCL 
statement that specifies a conflicting operand. When &CONTROL is 
used with no operands, all operands are reset to their default 
values. 

3. There is no global setting for &CONTROL. ~hen an EXEC is nested 
within another EXEC, the execution summary is controlled by the 
nested EXEC's &CONTROL setting. When control returns to the outer 
EXEC, the original &CONTROL setting is restored. 

&EMSG 

Use the &EMSG control statement to display a line of tokens to be edited 
as a VM/370 error message. The format of the &EMSG control statement is: 

r---------------------------------------------------.-------------------------, 
&EMSG I mmmnnns [tok1 ••• [tokn]] I 

mmmnnn is a six-character identification you may supply for the error 
message. Standard VM/370 messages are coded using a 
three-character module code (mmm) and a three-character 
message number (nnn). 

s indicates the severity code. The following codes qualify the 
message for error message editing: 

~~§§s.g~ nE~ 
Informa tion 
Error 
Warning 

tok1 ••• [tokn ] 
is the text of the message to be displayed. 

Y§.2.9,g !.Qte§ 

1. When the severity code is I, E, or W, the message is displayed in 
accordance with the CP EMSG setting (ON, OFF, CODE, or TEXT). You 
can change the setting with the CP SET command, described in !~Ll1Q 
~f ~.Q~~g]g n~i~!~]~ f.Q! ~~~~!~! Q§~E§· 

2~ When an &EMSG code is displayed, it is prefixed with DMS. For 
example, the statement: 

&EMSG ERROR1E INVALID ARGUMENT 

displays as follows when the EMSG setting is ON: 

DMSERROR1E INVALID ARGUMENT 

3. To display an error message with unsubstituted data, or to display 
a line with words ~f more than eight characters, use the &BEGEMSG 
control statement. 

Section 5. EXEC Control Statements 283 



EXEC Control Statements-SEND, SERROR 

&END 

Use the SEND control statement to terminate a list of one or more lines 
that began with an SBEGEMSG, SBEGPUNCH, SBEGSTACK, or SBEGTYPE contrel 
statement. The format of the SEND control statement is: 

SEND 
~--~----------------------------------------~----------------------------~~. 

The word "SEND" must be entered beginning in column 1. 

&ERROR 

Use the SERROR control statement to specify the action to be taken when 
a CMS command results in an error and returns with a nonzero return 
code. The format of the SERROR control statement is: 

'I 
SERROR I 

I 
1 

r , 
1 executable-statement I 
1~~Q!I!!g~ I 
L J 

executable-statement 
specifies any executable statement, which may be an EXEC control 
statement or assignment statement or a CMS command. If you specify 
an EXEC control statement that transfers control to another line in 
the EXEC, execution continues at the specified line. Otherwise, 
execution continues with the line following the CMS command line that 
caused the error • 

.Y~~~ !Qi~~ 

1. If your EXEC does not contain an SERROR control statement, then the 
default is SCONTINUE; that is, EXEC processing is to continue with 
the line following the CMS command that caused the error. You can 
use SERROR SCOHTINUE to reset a previous &ERROR statement. 

2. The words foll~jing an SERROR control statem~nt are not scanned 
until a CMS comm.and returns a nonzero return -code. - Therefore, if 
you specify an:t,nvalid EXEC statement, the error- is not detect ed 
until a CMS commali'tl,failure triggers the SERROR statement. If the 
&ERROR statement executes a CMS command that also results in an 
error, EXEC processing is terminated. 

284 IBM VM/370 CMS Command and Macro Reference 



EXEC Control Statements-&EXIT 

&EXIT 

Use the &EXIT control statement to terminate processing the EXEC file. 
If the exit is taken from a first-level EXEC procedure, control passes 
to CMS. If the exit is taken from a nested EXEC procedure, control 
passes to the calling EXEC Frocedure. The format of the &EXIT contrel 
statement is: 

&EXIT 
r , 
Ireturn-codet 
t Q t 
L .J 

~ ___________________________________________________________________________ .J 

return-code 
specifies a numeric value, which may be a variable symbol, to 
be used as the return code from this EXEC. If the return code 
is not specified, it defa ul ts to 0,. 

1. If contrel is returned to CMS, the CMS ready message indicates the 
return code value. Thus, the statement: 

&EXIT 12 

results in the ready message: 

R(00012);T=0/02 15:32:34 

2. If you specify: 

&EXIT &RETCODE 

the return code va1ue displayed is the return code from the most 
recently executed CMS command. 

Section 5. EXEC Control Statements 285 



EXEC Contr.ol Statements-&GOTO, &HEX 

&GO-TO 

Use the &GOTO control statement to transfer control to a specific 
location in the EXEC procedure. Execution then continues at the 
location that is branched to. The format of the &GOTO control statement 
is: 

&GOTO 

TOP 

line-number 

-label 

{
TOP } 
line-number 
-label 

transfers control to the first line of the EXEC file. 

transfers control to a specific line in the EXEC file. 

transfers control to a specific label in the EXEC file. A 
label must begin with dash (-), and it must be the first 
token on a line. The remainder of the line may contain an 
executable statement or it may be nUll. 

1. Scanning for an EXEC label starts on the line following the &GOTC 
statement, goes to the end of the file, then to the top of the 
file, and (if unsuccessful) ends on the line above the &GOTC 
statement. If more than one statement in the file has the same 
label, the first one encountered by these rules satisfies the 
search. 

2. To provide a branch up or down a specific number of lines in the 
EXEC, use the &SKIP control statement. 

&HEX 

Use the &HEX control statement to initiate or 
conversion in an EXEC procedure. The format of 
statement is: 

inhibit hexadecimal 
the &HEX control 

r-----------------------------------------------------------------------------, 
&HEX I­

I 

ON indicates that tokens beginning with the string X' are to be 
interpreted as hexadecimal notation. 

Ql! indicates that no hexadecimal conversion is to be done by EXEC. 
OFF is the default setting. 

286 IBM VM/370 CMS Command and Macro Reference 



EXEC Control Statements-&GOTO q &HEX 

.!!§.2.9§ !!2te§ 

1. You should use the &HEX control statement when you want to display 
a hexadecimal value. For example~ 

&HEX ON 
&TYPE X'40 
&HEX 

results in the display: 

28 

If you did not use the &HEX ON control statement, the &TYFE 
statement would result in the display: 

X'40 

2. To convert a hexadecimal value to its decimal equivalent, use an 
assignment statement. 

3. The !~L1IQ CMS User's Guide should be consulted for 
examples of correct--usage-of EXEC control statements 
in effect. 

details and 
with &HEX eN 

&IF 

Use the &IF control statement to test a condition in an EXEC procedure 
and to perform a particular action if the test is valid. If the test is 
invalid, execution continues with the statement following the &IF 
control statement. The format of the &IF statement is: 

&IF 

L 

token1 
token2 

operator {!!ken2} executable-statement 

may be numeric constants, character 
symbols. All variable symbols are 
statement is executed. 

strings, or EXEC variable 
substituted before the &IF 

&$ tests all of the arguments entered - when the EXEC was invoked. 
If at least one of the arguments satisfies the specified 
condition, the &IF statement is true. 

&* tests all of the arguments entered when the EXEC was invoked. 
All of the entered arguments must meet the specified condition 
in order for the &IP statement to be true. 

operator indicates the test to be performed on the tokens. If both 
tokens are numeric, an arith~etic test is performed. 
Otherwise, a logical (alphabetic) test is performed. The 
comparison operators, listed below, may be spec~fied either_in 
symbolic or mnemonic form: 

~Y.!!!12£.! 
= or EQ 

...,.= or NE 
< or LT 
<= or L-E 
) or GT 
)= or GE 

QEg!:~!!£Jl 
equals 
-not equal_ 
less than 
les~ than or equal to (not greater than) 
greater than 
greater than or equal to (not less than) 

Section 5. EXEC Control statements 287 



EXEC Control Statements-&IF, &LOOP 

executable-statement 
is any valid EXEC executable statement which may be a C~S 
command, an EXEC control statement, or an assignment 
statement. You may also specify another &IF statement; the 
number ~f &IF statements that may be nested is limited only by 
the record length of the file. In fixed-length EXEC files, 
only the first 72 characters of the line are scanned. 

1. The values &* and &$ are reset when an &ARGS or &READ ARGS contrel 
statement is executed. They are not changed when you reset a 
specific numeric variable (&1 through &30) • 

2. If a variable symbol used in an &IF control statement is undefined, 
the EXEC interpreter cannot properly compare it. In cases where a 
variable may be null, or to check for a null symbol, you should use 
a concatenation character when you write the &IF statement; for 
example: 

&IF .&1 EQ • &GOTO -NOARGS 

tests for a null symbol &1. 

3. If the symbols &* or &$ are null because no arguments were entered, 
the entire &IF statement is treated as a null statement. 

&LOOP 

Use the &LOOP control statement to describe a loop in an EXEC procedure, 
including the conditions for exit from the loop. The format of the 
&LOOP control statement is: 

----------------------------------------------------~---------------, 

&LOOP { ~label } { ~ondi tion } : 

n 

-label 

m 

condition 

.J 

is a positive integer from 0 to 4C95 that indicates the 
number of executable and nonexecutable lines in the IOOF. 
These lines must immediately follow the &LOOP statement. 

specifies that all of the lines following the &Leep 
statement down to, and including the line with. the specified 
label, are to be executed in the loop. The first character 
of the label must be a hyphen, and it must be the first 
token on a line. The remainder of the line may contain an 
executable statement, or it may be nUll. 

is a positive integer from 0 to 4C95 that indicates the 
number of times the loop is to be executed. 

specifies the condition that must be met. The syntax of the 
exit condition is the same as that in the SIF statement, 
that is: 

288 IBM VM/370 CMS Command and Macro Reference 



EXEC Control Statements-SLOOP, &PUNCH 

1. When loop execution is complete, control passes to the next 
statement following the end of the loop. 

2. The condition is always tested before the loop is executed. If the 
specified condition is met, then the loop is not executed. For 
example, the statement: 

&LOOP 3 &COUNT = 100 

specifies that the next three lines are interpreted until the value 
of &COUNT is 100. 

3. Loops may be nested up to four levels deep. All nested loops may 
end at the same label. 

&PUNCH 

Use the &PUNCH control statement to punch a line of tokens to the 
virtual card punch. The format of the &PUNCH control statement is: 

&PUNCH [ to k 1 [t 0 k 2 .••• [t 0 k n ] ] ] 

tok1 [tok2 ••• [tokn] ] 
specifies the tokens to be punched. All tokens are padded or 
truncated to eight characters. The punched line is right-padded 
with blanks to fill an 80-column card. If no tokens are specified, 
a line consisting of 80 blank characters is punched. 

1. Lines punched with the &PUNCH control statement are scanned by the 
EXEC interpreter and variable symbols are substituted before the 
line is punched. In fixed-length EXEC files, only the first 72 
characters of the record are scanned. To punch one or more lines 
of unscanned data, use the &BEGPUNCH or &~EGPUNCH ALL control 
statement. 

2~ When you have finished punching lines in an EXEC procedure, you can 
use the CP command CLOSE to close the spool punch file and release 
it for processing. 

&READ 

Use the &~EAD control statement to read one or more lines from the 
terminal or console st~ck. _The lines may contain d~ta- or ex~cutable 
statements. The format-of the &READ control statement is: 

Section 5. EXEC Control Statements 289 



EXEC Control Statements-&READ, &SKIP 

r 
I 
I 
I 
I 
I 
I 

n 

1 

&READ 

ARGS 

r 
I n 
I 1 
IARGS 
IVARS [&var1 [&var2 ••• 
L 

, 
I 
I 
I 

[&varn]]]1 
J 

reads the nextn lines from the terminal and treats them as if 
they had been in the EXEC file. Reading from the terminal 
stoFs when n lines have been read, or when an &LOOP statement 
or a statement that transfers control is encountered. If an 
&READ statement is encountered, the number of lines to be read 
by it is added to the number outstanding. 

If n is not specified, the default 1 is assumed, and the EXEC 
continues processing after reading a single line. 

reads a single line, assigns the entered tokens to the special 
variables &1, &2, ~ •• , &n, and resets the special variables 
&INDEX, &*, and &$. 

If any of the tokens is specified as a percent sign (%) or 
begins with the character X'FF', the corresponding argument is 
set to blanks. 

VARS [&var1 [&var2 ••• [&varn]]] 
reads a single line and assigns the tokens entered to the 
variable symbols &var1, &var2, ••• , &varn (up to 17). 

The~e variables are scanned in the same way as though they 
appeared on the left-hand side of an assignment statement. If 
no variable names are specified, any data read from the 
terminal is lost. 

If any of the tokens is specified as a percent sign (%) or 
begins with the character X'FF', the corresponding variable is 
set to bla nks. 

You can test the special variable &READFLAG to determine whether the 
next &READ statement will result in a physical read to your terminal 
(the value of &READFLAG is CONSOLE) or in reading a line from the 
console stack (the value of &READFLAG is STACK) • 

&SKIP 

Use the &SKIP control statement to cause a specified number of lines in 
the EXEC file to be skipped. The format of the &SKIP control statement 
is: 

&SKIP 
r , 
I n I 
111 
L .J 

290 IBM VM/370 CMS Command and Macro Reference 

I , 
I 
I 

-I 



EXEC Subcommands-SSKIP, SSPACE 

n specifies the number of lines to be skipped: 

• If n is greater than 0, the specified number of lines are 
skipped. Execution continues on the line following the skipped 
lines. If the value of n surpasses the number of lines 
remaining in the file, the EXEC terminates processing. 

• If n is equal to 0, no lines are skipped, and execution 
continues with the next line. 

• If n is less than 0, execution continues with the line. that is n 
lines above the current line. An attempt to skip beyond the 
beginning of the file results in an error exit from the EXEC. 

• The n may be coded as a variable symbol. 1 is the default value 
that is used when no value is specified for n. 

To pass control to a particular label in an EXEC procedure, use the 
SGOTO control statement. The SGOTO control statement provides more 
flexibility when you want to update your EXEC procedures. The SSKIP 
statement, however, is more efficient, in terms of execution time. 

&SPACE 

Use the SSPACE control statement to display a specified number of blank 
lines at your terminal. The format of the SSPACE control statement is: 

n 

SSPACE 

specifies 
terminal. 
default. 

r , 
I n I 
I 1 I 
L .J 

the 
If 

number of 
no number 

blank lines 
is specified, 

to be 
SSPACE 

displayed at 
1 is assumed 

the 
by 

1. You may want to use the SSPACE control statement to control the. 
format of the ~xecution summary that displays while your EXEC 
executes. 

Section 5. EXEC Control statements 291 



EXEC Control Statements-SSTACK 

&STACK 

Use the SSTACK control statement to stack a single data line in the 
console input stack. Stacked lines may be read by the EXEC, by CMS, or 
by the CMS editor. The format of the &STACK control statement is: 

SSTACK 

LIFO 

r , r , 
I ~!~Q I Ito k 1 . [ to k 2 ••• [to k n ] )I 
ILIFOI I HT I 
L .J I RT I 

L .J 

specifies that the line is to be stacked in a first in, first 
out sequence, and is the default if not specified otherwise. 

specifies that the line is to be stacked in a last in, first 
out sequence. 

tok1 [tok2 ••• [tokn]] 

HT 

RT 

speGi~y the tokens to be stacked. If no tokens are specified, 
a null line is stacked. The tokens are in expanded form. 

stacks the CMS Immediate command HT (halt typing), which is 
executed immediately. All terminal display from the EXEC is 
suppressed until the end of the file or until an RT (resume 
typing) command is read. 

stacks the CMS Immediate command RT (resume typing), which is 
executed immediately. If terminal display has been suppressed 
as the result of an HT (halt typing) request, display is 
resumed. 

1. Lines stacked with the &STACK control statement are scanned by the 
EXEC interpreter and variable symbols are substituted before the 
line is stacked. To stack one or more unscanned lines, use the 
&BEGSTACK or &BEGSTACK ALL control statement. 

2. You must use the &STACK control statement when·you-wan~ to stack a 
null line,. 

3,. Any CM S Immedia te command may be executed in -an EXEC, using the 
&STACK control statement. 

- 4. A complete discussion ~f techniques you can use to stack commands 
and data in the console stack is provided in the !~Ll1~ ~~~ ]2~!~2 
Q.!!i.Q~· 

292 IBM VM/370 CMS Command and Macro Reference 



EXEC Control Statements-&TI~E 

&TIME 

Use the &TIME control statement to request timing information to be 
displayed at the terminal after each eMS command that is executed. The 
format of the &TIME control statement is: 

r-----------------------------------------------------------------------------, 
r , I 

&TIME ION I 
IQ~~ I 
IRESETI 
ITYPE I 
L .J 

I 
I 
I 
I 
I 

ON 

RESET 

TYPE 

___________________________________________________________ J 

resets the processor's time before every CMS command, and 
prints the timing information on return. If the &CONTRCL 
control statement is set to CMS or ALL, the display of the 
timing information is followed by a blank line. 

does not automatically reset the processor's time before every 
CMS command, nor does it print the timing information on 
return. 

performs an immediate reset of the processor's time. 

displays the current timing information (and resets the 
processor' s time) .• 

1. When timing information is displayed, it is in the format: 

T=x.xx/y.yy hh:mm:ss 

where: 

x.xx 

y.yy 

is the virtual processor's time used since it was last 
reset in the current EXEC file. 

is the total of the processor's time used since it was 
last reset in the current EXEC file. 

hh:mm:ss is the actual time of day in hours:minutes:seconds. 

2. The processor's time is set to zero before the execution of the 
first statement in the EXEC file, and is ~gain set to zero (reset) 
whenever timing information is printed. 

Section 5. EXEC Control statements 293 



EXEC Control Statements-STIPE 

&TYPE 

Use the &TIPE control statement to display a line of tokens at the 
terminal. The format of the &TIPE control statement is: 

&TIPE I [tok1 [tok2 ••• [tokn]]] 

tok1 [tok2 ••• [tokn]] 
specify the tokens to be displayed. 
truncated to eight characters. If 
null line is displayed. 

All tokens are padded or 
no tokens are specified, ~ 

Lines displayed with the &TIPE control statement are scanned by the EXEC 
interpreter and variable symbols are substituted before the line is 
displayed. To display one or more unscanned lines, use the &BEGTIPE or 
&BEGTIPE ALL control statements. 

294 IBM VM/370 CMS Command and Macro Reference 



EXEC Built-In Functions-&CONCAT 

Built-In Functions 

You can use the 
variable symbc1s. 
may be used only 
f.o11ows: 

EXEC built-in functions to assign and manipulate 
With the exception of &LITERAL, built-in functions 

on the right-hand side of an assignment statement, as 

&MIX = &CONCAT &1 &2 

Built-in functions may not be combined with arithmetic expressions. 

Each of the built-in functions (&CONCAT, 
&LITERAL, and &SUBSTR) is described separately. 

&DATATYPE, &LENGTH, 

&CONCAT 

Use the &CONCAT function to concatenate two or more tokens and assign 
the result to a variable symbol. The format of the &CONCAT function is: 

&variab1e = &CONCAT tok1 [tok2 ••• [tokn]] 

&variable is the variable symbol whose value is determined by the 
&CONCAT function. 

tok1 [tok2 ••• [tokn]] 
specifies the tokens that are to be concatenated into a 
single token; for example: 

&A = ** 

&B = &CONCAT XX &A 45 
&TYPE &B 

results in the printed line: 

XX**45 

If the concatenated token is longer than eight characters, the data is 
left-justified and truncated on the right. 

section 5. EXEC Control Statements 295 



EXEC Built-In Functions-DATATIPE, &LENGTH 

&DATATYPE 

Use the &DATATIPE function to determine whether the value of the 
specified token is alphabetic or numeric data. The format of the 
&DATATIPE function is: 

&variable = &DATATIPE token ~L __________________________________________________________________________ ~ 

&variable 

token 

is the variable symbol whose value is determined by the 
&DATATIPE function. 

specifies ,the target token 
alphabetic or numeric data. 
function has the value NUM or 
type of the specified token. 

&CHECK = &DATATIPE ABC 
&TIPE &CHECK 

results in the display: 

CHAR 

that is to be examined fer 
The result of the &DATATIFE 

CHAR, depending on the data 
For example: 

A null token is considered character data. 

&LENGTH 

Use the &LENGTH function to determine the number of characters in a 
token. The fermat of the &LENGTH function is: 

&variable = &LENGTH token 
~------------------------.-------------------------------------------------~ 

&variable 

token 

is the variable symbol whose value is - determined by the 
&LENGTH function. 

specifies the target token that 
nonblank characters. The result of 
the number of nonblank characters 
For example: 

&LEN = &LENGTH ALPHA 
&TIPE &LEN 

results in the display: 

5 

is to be examined fer 
the &LENGTE function is 

in the _ specified token. 

296 IBM VM/370 CMS Command and Macro Reference 



EXEC Built-in Functions-&LITERAL, &SUBSTR 

&LITERAL 

Use the &LITERAL function to inhibit variable substitution on the 
specified token. The &LITERAL function may appear in any EXEC contrel 
statement, as follows: 

r--------------------------------------------------------------------------, 
[ ••. ~] &LITERAL token[ ••• ] I 

token specifies the token whose literal value is to be used without 
substitution. For example: 

&X = ** 
&TYPE &LITERAL &X EQUALS &X 

results in the printed line: 

&X EQUALS ** 

&SUBSTR 

Use the &SUBSTR function to extract a character string from a specified 
token and te assign the substring to a variable symbol. The format ef 
the &SUBSTR function is: 

&variable = &SUBSTR token i [j] 
~------------------------------------.-------------------------------------~ 

&variable is the variable symbol whose value is determined by the 
&SUBSTR function. 

token 

i 

j 

is the token from which the character string is to be 
extracted. 

specifies the character position in the token of the first 
character to be used in the substring. 

specifies the number of charac~ers in the string. 
omitted, the remainder of the token is used. 

If 

The values of i and j (if given) must be positive-integers. fOL 
example: 

&A = &SUBSTR ABCDE 2 3 
&TYPE &A 

results in the printe~ line: 

BCD 

Section 5. EXEC Control statements 297 



EXEC Special Variables 

Special Variables 

Special variables are variable symbols that are assigned values by the 
EXEC interpreter, and that you can test or display in your EXEC 
procedures. In some cases, you may assign your own values to EXEC 
special variables; these cases are noted in the variable descriptions. 

&n 

The &n special variable represents the numeric variables &1 through &30. 
When an EXEC is invoked, the numeric variables from &1 through &30 are 
initialized according to the arguments that are passed to the EXEC file 
(if any). 

The numeric variables can be reset by either an &lRGS or SREAD lRGS 
control statement; when fewer than 30 arguments are set or reset, the 
remainder of the &n variables ar~ set to blanks. 1 particular argument 
can be set to blanks by assigning 'it a percent sign (%) when invoking 
the EXEC procedure, in an &ARGS control statement, or in an SREAD ARGS 
control statement. An argument is also set to blanks if it begins with 
the character X'FF' and is specified when invoking the EXEC procedure or 
in an &READ ARGS control statement. 

You may set the values of specific 
statements. Any value of n, however, that 
than 0 is rejected by the EXEC interpreter. 

&* and &$ 

arguments using assignment 
is greater than 30 or less 

These variables can be used to perform a collective test on all of the 
arguments passed to the EXEC procedure. &* and &$ may only be used in 
the &IF and SLOOP control statements and are described under the 
description of the &IF control statement. 

You may not assign values to the special variables &* and &$. 

&0 

The SO special variable contains the filename of the EXEC file. You may 
test andmaniFulate this variable. 

&DISKx 

You can use the &DISKx special variable to determine whether a disk is 
an OS, DOS, or eMS disk. x represents the mode letter at which-the disk 
is accessed. For eXample, if you access an as disk with a mode letter 
of C, then the special variable SDISKC has a value of as. The possible 
values for the SDISKx special variable are as (fo~ an os disk), DOS (for 
a DOS disk), CMS (for a CMS disk), and NA (when the disk_is not 
accessed). 

You may set or change the values ~f an SPISKX s~ecial variable; if 
you do so, however, you will no longer be able to _test the status of-the 
disk at mode x. 

298 IBM VM/370 CMS Command and Macro Reference 



&018K* 

The &DISK* 
the first 
read/write 
NONE. 

EXEC Special variables 

sFecial variable contains the one-character mode letter cf 
read/write disk in the eMS search order. If you have no 
disks accessed, this special variable contains the value 

You may assign a value to the &DISK* special variable for your own 
use; if you do so, however, you will not be able to use it to obtain the 
filemode letter of a read/write disk. 

&018K? 

You can use the &DISK? special variable in an EXEC to determine Which 
read/write disk that you have accessed has the most space on it. If you 
have no read/write disks accessed, &DISK? contains the value NONE. 

You may assign a value to the &DISK? special variable for your own 
use; if you do so, however, you will no longer be able to locate the 
read/write disk with the most space. 

&008 

The &DOS special variable contains one of the two character values ON or 
OFF, depending on whether the eMS/DOS environment is active. If you 
have issued the command: 

set dos on 

then the &DOS special variable contains the value ON. 

You may set or change the value of the &DOS special variable for your 
own use; if you do so, however, you will not be able to test whether the 
CMS/DOS environment is active. 

&EXEC 

The &EXEe special variable is the filename-of tha EXEC file. You cannot 
set this variable explicitly but you can examine and test it. 

&GLOBAL 

The &GLOBAL special variable contains the recursion level of the EXEC 
currently executing. Since the EXEC interpreter ~an handle -up ta 19 
levels of recursion, the value of &GLOBAL ranges from 1 to 19. You 
cannot set this variable explicitly, but you can examine and test ~t. 

Section 5. EXEC Control Statements 299 



EXEC Special Variables 

&GLOBALn 

The &GLOBALn special variable represents the variables &GLOBALO through 
&GLOBAL9. You can set these variables only to integral numeric values. 
They are all initially set to 1. Unlike other EXEC variables, these can 
be used to communicate between different recursion levels of the EXEC 
interpreter. 

&INDEX 

The &INDEX special variable contains the number of arguments passed to 
the EXEC procedure. Since up to 30 arguments can be passed to an EXEC 
procedure, the value of &INDEX can range from 0 through 30. 

Although you cannot set this variable explicitly, it is reset by an 
&ARGS or &READ ARGS control statement. &INDEX can be examined to 
determine the number of active arguments in the EXEC procedure. 

&LINENUM 

The &LINENUM special variable contains the current line number in the 
EXEC file. You cannot explicitly set this variable but you can examine 
and test it. 

&READFLAG 

The &READFLAG special variable contains one of two literal values: 
CONSOLE or STACK. If there are stacked lines in the terminal input 
buffer (console stack) &READF1AG contains the value STACK and the next 
read request results in a line being read from the stack. If not, then 
the next read request results in a physical read to the terminal, and 
the value of &READFLAG is CONSOLE. You cannot explicitly set this 
variable but you can examine and test it. 

&RETCODE 

The &RETCODE special variable contains the return code-from the most 
recently executed CMS command. &RETCODE can contain only integral 
numeric values (positive or negative), and is set after each CMS command 
is executed. You can examine, test, and change this variable but 
changing it is not recommended. 

&TYPEFLAG 

The &TYPEFLAG special variable_contains one of two literal values: BT 
(resume typing) or HT (halt typing). -It contains the_ value "lIT when- -
terminal display has been suppressed by the Immediate command HT. . It 
contains the value RT when the terminal is displaying output. Yo~ 
cannot explicitly set this variable~ but you can examine and test it. 

300 IBM VM/370 CMS Command and Macro Beference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

eMS Macros 

Section 6. eMS Macro Instructions 

This section describes the formats of the CMS assembler language macros, 
which you can use when you write assembler language programs to execute 
in the CMS environ.ent. To assemble a program using any of these 
macros, you must issue the GLOBAL command specifying CMSLIB MACLIB, 
which is the macro library (located on the system disk) which contains 
CMS macros. To assemble a program to execute in a CMS environment that 
includes VM/370 Basic System Extensions (program No. 5748-XX8), you must 
add DMSB20 MACLIB (also on the system disk) to the GLOBAL command 
statement. 

For functional descriptions and usage examples of the CMS macros, see 
the !~L170 ~~~ Q§~~§ gui£~. 

Coding conventions for 
assembler language macros. 
operands in the format: 

[ , operand] 

CMS macros are the same as 
The macro format descriptions 

those for all 
show optional 

indicating that if you are going to use this operand, it must be 
preceded by a comma (unless it is the first operand coded). If a macro 
statement overflows to a second line, you must use a continuation 
character in column 72. No blanks may appear between operands. 
Incorrect ceding of any macro results in assembler errors and MNOTEs. 

Where applicable, the end of a macro description contains a list of 
the possible error conditions that may occur during the execution of the 
macro, and the associated return codes. These return codes are always 
placed in register 15. The macros that produce these return codes have 
ERROR= operands, that allow you to specify the address of an error 
handling routine, so that you can check for particular errors during 
macro processing. If an error occurs during macro processing and no 
error address is provided, execution continues at the next sequential 
instruction following the macro. 

Section 6. CMS Macro Instructions 301 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118 

COMPSWT, FSCB Macros 

COMPSWT 

Use the COMPSWT macro instruction to turn the compiler switch (COMPSWT) 
flag on or off. The COMPSWT flag is in the OSSFLAGS byte of the nucleus 
constant area (NUCON). The format of the COMPSWT macro instruction is: 

[label] COMPSiT 

label 

ON 

FSCB 

is an optional statement label. 

turns the COMPSWT flag on. When this flag is on, any program 
called by a LINK, LOAD, ICTL, or ATTACH macro instruction must 
be a nonrelocatable module in a file with a filetype of ftODULE; 
it is loaded via the CMS LOADMOD com.and. 

turns the COMPSWT flag off. When this flag is 
called by a LIBK, LOAD, XCTL, or ATTACH macro 
be a relocatab1e object module residing in 
filetype of TEIT or TXTLIB; it is loaded via 
command. 

off, any program 
instruction must 

a file with a 
the CMS INCLUDE 

Use the FSCB macro instruction to create a file system control block 
(lSCB) for a CMS input or output disk file. The format of the FSCB 
macro instruction is: 

[label] 

!A!£!: 

label 

fileid 

RECFM=format 

FSCB 
, 

[fileid] [,RECFM=format] [,BUFFER=buffer][ ,FORM=E] I 
[,BSIZE=size] [.RECNO=number] [,NOREC=nuarec] I 

I 

is an optional statement label. 

specifies the CMS file identifier, which must be enclosed 
in single quotation marks and -separated by blanks 
('filename filetype filemode'). If filemode is omitted, 

A1 is assumed. 

indicates whether the records are fixed- (F) or var1able­
(V) length format. The default is F. 

BUFFER=buffer specifies-the address of an I/O buffer, from ~hich 
records are to be read or written. 

FORM=E specifies-the extended forllat FSCB is to be generated. 
This extended format FSCB allows you to specify a yalue 
(up to 2 31 -1)- -for RECNO and NOREe. If -you -do not_ specify 
FORM=E, the RECNO and NOREC values cannot exceed 65533. 

302 IBM VM/370 CftS Command and- Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

BSIZE=size 

RECNO=number 

FSCB, FSCBD ftacros 

specifies the number of bytes to be read or written for 
each read or write request. 

specifies the record number of the next record to be 
accessed, relative to the beginning of the file, record 
1. The default is 0, which indicates that records are-to 
be accessed sequentially. 

Section 6. eMS Macro Instructions 302.1 



March 30, 1979 

302.2 IBM VK/370 eMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-X18 

FSCB, FSCBD Macros 

NOREC= numrec specifies the number of records to be read in the next 
read operation. The default is 1. 

1. The options RECFM, BUFFER, BSIZE, RECNO, and NOREC aust all be 
specified as self-defining terms. 

2. You can use the salle FSCB to reference several different files; you 
can override the fileid, or any of the options, on the FSOPER, 
FSWRITE, or FSREAD macro instructions when you reference a file via 
its FSCB. However, if the FSOPEN macro instruction is used to 
ready an existing file, the BSIZE and RECFM fields in the FSCB are 
reset to reflect actual file characteristics. 

3. You can use multiple FSCBs to reference the same file, for example, 
if you wanted one FSCB for writing and a different FSCB for reading 
the file. Keep in mind, however, that the file characteristics are 
inherent to the file and not to the FSCB. If you establish a read 
or write pointer using the RECNO option in one FSCB, that pointer 
remains unchanged unless you specify the RECNO option again on the 
same or any other FSCB for that file. 

FSCBD 

Use the FSCBD macro instruction to generate a DSECT for the file system 
control block (FSCB). The format of the FSCBD macro instruction is: 

I 

I [label] I FSCBD I , 

label is an optional statement label. The first statement in the 
FSCBD macro expansion is labeled FSCBD. 

1. You can use the labels established in the FSCB DSECT to modify the 
fields in an FSCB for a particular fi~e. An FSCB is created 
explicitly by the FSCB macro instruction, and implicitly by the 
FSREAD, FSWRITE, and FSOPEN macro instructions. 

2. The FSCBD macro instruction expands -as follcws: 

FSCBD 
FSCBD DSECT 
FSCBCOMM DS CL8 Command 
FSCBFN DS CL8 Filename 
FSCBFT DS CL8 - Filetype 
FSCBFM DS CL2 Filemode 
FSCBITNO DS H Re-Iati ve record (item) number 
FSCBBUFF DS A Addr.es-s of read/wri te ~uffer 
FSCBSIZE DS F Length of buffer 
FSCBFV DS CL 1 Record format (F or V) 
FSCBFLG DS X ~LIST flag -
FSCBNOIT DS H Number· of records to be read/written 
FSCBNORD DS A Number of records actually read 
FSCBAITN DS F Extended item number 

Section 6 .• - CMS Macro Instructions - -303 



~g. OI ~C~U-l~l~-~ Mev aarch 3U, 1~/~ by supp. SD~3-YU23-1 for 5748-XX8 

FSCB, FSCBD Macros 

3. 

FSCBANIT DS 
FSCBWPTR DS 
FSCBRPTR DS 

F 
F 
F 

Extended number cf items 
Write pointer 
Read pointer 

If you specify FORM=E as the parameter of the FSCB marco 
instruction, the fields FSCBITNO and FSCBNOlT are no longer used. 
They are replaced with FSCBAITN and FSCBANlT. The X'20' bit of the 
FSCBFLG flag is turned on. The fields FSCBWPTR and FSCBRPTR are 
used by the FSPOINT function. FORM=E plists must be used to 
manipulate files larger than 65,533 items. 

304 IBM VM/310 eMS Command and_Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

FSCLOSE Macro 

FSCLOSE 

Use the FSCLOSE macro instruction to close an open file and save its 
current status on disk. The format of the FSCLOSE macro instruction is: 

[label] FSCLOSE 
{ 

fileid[,FSCB=fscb] } [,ERROR=erraddr] 
FSCB=fscb 

label is an optional statement label. 

fileid specifies the CMS file identifier. It may be: 

'fn ft fill' fileid enclosed in single quotation marks and 
separated by blanks. If fm is omitted, 11 is 
assumed. 

(reg) a register other than 0 or 1 containing the 
address of the fileid ( 18 characters) • When 
register format is used, the fileid must be 
exactly 18 characters in length; 8 for the 
filename, 8 for the filetype, and 2 for the 
filemode. Shorter names must be filled with 
blanks. 

FSCB=fscb specifies the address of an FSCB. It may be: 

label 
(reg) 

the label on the FSCB macro instruction. 
a register containing the address of an FSCB. 

ERROR=erraddr 

1. 

specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

Although CMS routines close files when a command 
completes execution, you must use the FSCLOSE macro 
when you are executing a program from within a~ EX~C, 
are going to read and write records in the same file. 

or program 
instruction 
or when you 

2. If you specify both fileid and FSCB, the fileid is used to fill in 
the FSCB. 

If an error occurs, register 15 contains the following error code: 

!1~!!!!!1!g 
File not open 

·Section 6. C~S Macro Instructions 304.1 



March 30, 1979 

304.2 IEM VM/370 CMS Command and Macro Reference 



March 30, 1979 

FSERISE !acro 

FSERASE 

Use the FSERASE macro instruction to delete a CMS disk file. The format 
of the FSERASE macro instruction is: 

[label] 

label 

fileid 

FSERISE 
{ 

fileid[, FSCB=fscb] } [,ERROR=erraddr] 
FSCB=fscb 

is an optional statement label. 

specifies the CMS file identifier. It may be: 

, fn ft fm' fileid enclosed in single quotation marks 
separated by blanks. If fm is omitted, 11 
assumed. 

(reg) a register other than 0 or 1 containing 
address of the fileid (18 characters). 
register format is used, the fileid must 
exactly 18 characters in length; 8 for 
filename, 8 for the filetype, and 2 for 
file.ode. Shorter names must be filled 
blanks. 

and 
is 

the 
When 

be 
the 
the 

with 

FSCB=fscb specifies the address of an FSCB. It may be: 

label 
(reg) 

ERROR=erraddr 

the label of an FSCB macro instruction. 
a register containing the address of an FSCB. 

specifies the address of an error routine to be given control 
if an error occurs. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

1. On return from the FSERASE macro, register 1 points to a parameter 
list. The second, third, and fourth words of the list contain the 
filename, filetype, and filemode of the file. 

2. If fileid and FSCB= are both coded, the fileid is used to fill in 
the FSCB. 

~!:£Q!: ~.Q!!g!1!.Q!!§ 

If an error occurs, register 15 contains one- of the following error 
codes: 

~~an!!!g 
Parameter list-error 
File not found. 
Disk not accessed 

section 6. CMS Macro Instructions 305 



March 30, 1979 

FSOPEN Macro 

FSOPEN 

Use the 
output. 

FSOPEN macro instruction to ready a file for either 
The format of the FSOPEN macro instruction is: 

input or 

I 

[label) FSOPEN 
{ 

fileid [,FSCB=fscb) } (,ERROR=erraddr][,optionS],' 
FSCB=fscb 

label 

fileid 

I 

is an optional statement label. 

specifies the CMS file identifier. It may be: 

'fn ft fm' the fileid enclosed in single quotation marks and 
separated by blanks. If fm is omitted, 11 is 
assumed. 

(reg) a register other than 0 or 1 containing the 
address of the fileid (18 characters). When 
register format is used, the fileid must be 
exactly 18 characters in length; 8 for the 
filena.e, 8 for the filetype, and 2 for the 
filemode. Shorter names must be filled with 
blanks. 

FSCB=fscb specifies the address of an FSCB. It may be: 

label 
(reg) 

ERROR=erraddr 

the label on an FSCB macro instruction. 
a register containing the address of an FSCB. 

specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

You can specify any of the following FSCB macro options on the FSOPEN 
macro instruction: 

BUFFER=buffer 
RECNO=number 
BSIZE=size 
RECFM=format 
NOREC=numrec 

These options may be specified either as the actual value (for 
example, NOREC=1) or as a register that ccntains the value (for 
example, NOREC=(3) where register 3 contains the ~alue 1). 

When you use any of these options, the associated field in the 
FSCB is modified. 

!!§~g !!Qte§ 

1. On return from the FSOPEN macro,- register 1 poi~ts to the FSCS-for 
the file. If no FSCB exists, one is created in the FSOPEN macro 
expansion. However, if the FSOPEN macro instruction is us~d to 
ready an existing file, the BSIZE and RECFM fields are reset to­
reflect actual file characteristics. 

306 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-IX8 

FSOPEN, FSPOINT Macro 

2. If you code both fileid and FSCB=, the fileid is used to fill in 
the FSCB. 

3. You can use the FSOPEN macro instruction to verify the existence of 
a file to be opened for reading or writing and to create an FSCB 
for it. 

~!:~!: £~ndi!i£1!§ 

If an error occurs, register 15 contains one of the following error 
codes: 

!1~ani1!g 
Invalid file identifier 
File does not exist 

FSPOINT 

Use the FSPOINT macro instruction to reset the write and/or read 
pointers for a file. The format of the FSPOINT macro instruction is: 

(label] 

label 

fileid 

FSPOINT 
{ 

fileid[,FSCB=fSCb]}(,ERROR=erraddr] 
FSCB=fscb 

[,WPTR=wptr] [,RPTR=rptr] [,FORM=E] 

is an optional statement label. 

specifies the CMS file identifier. It may be: 

, fn ft fm' the fileid enclosed in quotation marks 
separated by blanks. If fm is omitted, 11 
assumed. 

(reg) a register other than 0 or 1 containing 
address of the fileid (18 characters) • 

, 
I 
I , 

and 
is 

the 

FSCB=fscb specifies the address of an FSCB. It may be: 

label 
(reg) 

ERROR=erraddr 

the label of an FSCB macro instruction.-
a register containing the address of an FSCB. 

specifies the address of an error routine to be given control 
if an error is found. If you don't code ERROR= is not coded 
and an error occurs, control returns to the next sequential 
instruction in the calling program, as ~t does if no error 
occurs. 

WPTR=wptr sFecifies the new value of the write pointer. 

number 
(reg) 

any assembler symbol or number. 
a register co-ntaining the binary number. 

RPTR=rptr specifies the new value_of the ~ead pointer. 

number 
(reg) 

any assembler symbol or number. 
a register containing the binary number. 

Section 6. CMS Macro Instructions 307 



Pg. of GC20-1818-2 Rev March 30, 1919 by Supp. SD23-9023-1 for 5148-XI8 

FSPOINT, FSREAD Macros 

I FORM=E specifies the extended format FSCBis being used. 

!!~age No~ 

1. Both write and read pointers may be changed at the same tiae, and 
zero indicates no change. 

2. Minus one used for a write pointer indicates that the next item is 
to be put at the end of the file. 

~~ £2nditi2~§ 

If an error occurs, register 15 contains one of the following error 
codes: 

£2de 
20 
24 
28 
36 

Me~ni1l9 
Invalid character in fileid 
Invalid file.ode 
File not found 
Disk not accessed 

FSREAD 

Use the FSREAD macro instruction to read a record fro. a disk -file into 
an I/O buffer. The format of the FSREAD macro instruction is: 

[label] FSREAD 
{ 

fileid(,FSCB=fscb] }[,ERROR=erraddr] [,FORM=E] 
FSCB=fscb [,options] 

!l!~: 

label is an optional statement label. 

fileid specifies the CMS file identifier. It may be: 

'fn ft fll' the fileid enclosed in single quotation marks and 
separated by blanks. If fa is omitted, A1 is 
assumed. 

(reg) a register other than 0 or 1 containing the 
address of the fileid (18 characters) • When 
register format is used-, the fileid must be 
exactly 18 characters in l-ength; 8 for the 
filename, 8 for the filetype, and 2 for the 
filemode. Shorter names must be filled with 
blanks. 

FSCB=fscb specifies the address of an FSCB. It may be: 

label 
(reg) 

ERROR=erraddr 

the label of an FSCB macro instruction. 
a register containing the address of an FSeB. 

specifies the address of an error routine to be given control 
if an error is found. If ERR~R= is not- coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as-it does if no-error occurs. 

308 IBM VM/310 eMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5148-118 

FSREID "acro 

FORM=E 

1. 

specifies the extended format FSCB is being used. 

Q.E1;!.Q!l§ 

You can specify any of the following FSCB macro options on the FSREID 
macro instruction: 

BUFFER=buffer 
NOREC=numrec 
BSIZE=size 
RECNO=number 

These options may be specified either as the actual value (for 
example, NOREC=1) or as a register that contains the value (for 
example, NOREC=(3) where register 3 contains the value 1). 

When you use any of these options, the associated field in the 
FSCB is modified. 

If an FSCB macro instruction has not been coded for a file (and 
FSCB= operand is not coded), you must specify the BUFFER= 
BSIZE= options to indicate the address of the buffer and 
length. When reading variable-length records, a record that 
longer than the buffer length is truncated. 

the 
and 
its 
is 

2. On return from the FSREAD macro, register 1 points to the FSCB for 
the file. If no FSCB exists, one is created following the FSREID 
macro instruction. 

3. If you specify both fileid and FSCB=, the fileid is used to fill in 
the FSCB. 

4. Register 0 contains, after the read operation 
number of bytes actually read. This information 
in the FSCBNORD field of the FSCB. 

is complete, the 
is also contained 

5. To read records sequentially beginning w~th a particular record 
number, use the RECNO option to specify-the first record to be 
read. On the next FSREAD macro instruction, - use RECNO=O so that 
reading continues sequentially following the first record read. 

-Section 6. C_MS Macro Instructions 308.1 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

FSREAD Macro 

~!~! £ondi!!~~§ 

If an error occurS r register 15 contains one of the following error 
codes: 

7 

8 
9 

11 
12 

13 

14 
15 
25 

26 

!1~~nillil 
File not found 
Invalid buffer address 
Permanent I/O error 
Number of records to be read is less than or equal to zero 

(or greater than 32 r 76S for an SOO-byte for.atted disk) 
Invalid record format (only checked when the file is first 

opened for reading) 
Incorrect length 
File open for output (for an SOO-byte formatted disk) 
Number of records greater than 1 for variable-length file 
End of filer or record number greater than number of records 

in data set 
variable-length file has invalid displacement in active file 

table 
Invalid character in filename 
Invalid character in filetype 
Insufficient free storage available for file manage.ent 

control areas. 
Requested item number is negative or item number plus nu.her 

of items exceeds file system capacity. 

30S.2 IBM VM/310 CMS Command _and Macro Reference 



Pg. of GC20-1818-2 Rev March 30-,1979 by Supp. SD23-9023-1 for 5748-IX8 

FSSTATE Macro 

FSSTATE 

Use the FSSTATE macro instruction to determine whether a particular file 
exists. The format of the FSSTATE macro instruction is: 

[label] 

label 

fileid 

FSSTATE 
{ 

fileid [,FSCB=fscb] 
FSCB=fscb } 

[ ,ERROR=erraddr] 
[ , FORM=E] 

is an optional statement label. 

specifies the CMS file identifier. It may be: 

• fn ft fm' the fileid enclosed in single quotation marks 
separated by blanks. If fm is omitted, A1 
assumed. 

(reg) a register other than 0 or 1 containing 
address of the fileid (18 characters) • 
register format is used, the fileid must 
exactly 18 characters in length; 8 for 
filename, 8 for the filetype, and 2 for 
filemode. Shorter nalles must be filled 
blanks. 

and 
is 

the 
When 

be 
the 
the 

with 

FSCB=fscb specifies the address of an FSCB. It may be: 

label 
(reg) 

the label on an FSCB macro instruction. 
a register containing the address of an FSCB. 

ERROR=erraddr 

FORM=E 

specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next seq-uential instruction in 
the calling program, as it does if no error occurs. 

specifies that the extended format FSCB is being used. 

1. If the specified file exists, register 15 contains a 0 return code. 

2. When the FSSTATE macro completes execution, register 1 contains the 
address of the file status table (FST) for the specified file. 

The file status table contains the following info~mation: 

Section 6. eMS Macro Instructions 309 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

FSSTATE Macro 

Decimal 
Displacement 

o 
8 

16 
18 
20 
22 
24 
26 
28 
30 
32 
36 
38 

Field Description 

Filename 
Fi1etype 
Date (mmdd) last written 
Time (hhmm) last written 
write pointer (number of item) 
Read pointer (number of item) 
Fi1emode 
Number of records in file 
Disk address of first chain link 
Record format (F/V) 
Logical record length 
Number of 800-byte data blocks 
Year (yy) last written 

If an error occurs, register 15 contains one of the following error 
codes: 

£.Qg~ 
20 
24 
28 
36 

FSWRITE 

Me~!!Hl 
Invalid character in fi1eid 
Invalid file mode 
File not found 
Disk not accessed 

Use the FSWRITE macro instruction to write a record from an IIO buffer 
to a CMS disk file. The format of the FSWRITE macro instruction is: 

[label] FSWRITE I { fileid(,FSCB=fscb] } [,ERROR=erraddr] 
I FSCB=fscb [,FORK=E] [,options] 

~-------------------------------------------------------------------------~ 

label is an optional statement label. 

fi1eid specifies the CMS file identifier. It may be: 

'fn ft fm' the fileid enclosed in single quotation marks 
separated by blanks. If fm is omitted, A1 
assumed. 

(reg) a register other than 0 or 1 containing 
address of the fileid (.18 characters) • -
register format is used, the fi1eid must 
exactly 18 characters in length; - 8 for 
filename, 8 for the fi1etype,_ and 2 for 
fi1emode. Shorter names must be filled 
blanks. 

FSCB=fscb specifies the address of an FSCB. It may ~e: 

label 
(reg) 

the label on an FSCB macro instruction. 
a reqist~r containing the address of an FSCB~ 

310 IBM VM/370 CMS Com~and and-Macro Reference 

and 
is 

the 
When 

be 
the -
the 

with 



Pg. of GC20-1818-2 Rev Karch 30,1979 by Supp. SD23-9023-1 for 5748-118 

PSWRITE tlacro 

ERROR=erraddr 

FORM=E 

specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

specifies that the extended format FSCB is being used. 

~!i.QB2 

You can specify any of the following FSCB macro options on the 
FSWRITE macro instruction: 

BUFFER=buffer 
RECNO=nulRber 
BSIZE=size 
NOREC=nuarec 
RECFft=forllat 

Section 6. CftS Macro Instructions 310.1 



March 3U, l'j/'j 

310.2 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30,1979 by Supp. SD23-9023-1 for 5748-XX8 

FSWRITE Macro 

These options may be specified either as the actual value (for 
example, NOREC=l) or as a register that ccntains the value (for 
example, NOREC=(3) where register 3 contains the value 1). 

When you use any of these options, the associated field in the FSCB 
for the file is filled in or modified. 

Usage !2te§ 

1. If an FSCB macro instruction has not been coded for a file (and the 
FSCB= operand is not coded on the FSWRITE macro instruction), you 
must specify the BUFFER= and BSIZE= options to indicate the 
location of the read/write buffer and the length of the record to 
be written. For the filemode, you must specify both a letter and a 
number,. If the file is a variable-length file, you Blust also 
specify RECFM=V. 

2. On return from the FSWRITE macro, register 1 contains the address 
of the PSCB for the file. If no FSCB exists, one is created 
following the FSWRITE macro instruction. 

3. If you specify both fileid and FSCB=, the fileid is used to fill in 
the FSCB. 

4. If the RECNO option is specified (either on the FSWRITE macro 
instruction or in the FSCB), that specified record is written. 
Otherwise, the next sequential record is written. For new files, 
writing begins with record 1; for existing files, writing begins 
with the first record following the end of the file. 

5. To write records sequentially beginning with a particular record 
number, use the RECNO option to specify the first record to be 
written. On the next FSWRITE macro instruction, use RECBO=O so that 
writing continues sequentially, following the first record written. 

6. To write blocked records (valid for fixed-length files only), use 
the BSIZE and BOREC options to specify the blocksize and number of 
records per block, respectively. For eXample, to write 80-byte 
records into 800-byte blocks, you should specify BSIZE=800 and 
NOREC=10. The buffer you use must be at least 800 bytes long. 

If an error occurs, register 15 contains one of the following error 
codes: 

£~g~ 
2 
4 
5 
6 

7 
8 
9 

10 

11 
12 
13 

t!~~J:.!!g 
Invalid buffer address 
First character of filemode is invalid 
Second character of file mode is invalid 
Item number too large (more than 65,513 for an 800-byte 

formatted disk) -
Attempt to skip over unwritten variable-length i-tem 
Buffer size not specified 
File open for input (for an 800-byte formatted disk) 
Maximum number of files per minidisk reached (3400 for an 

800-byte formatted disk) 
Record format not F-or V 
Attempt to write on read-only disk 
Disk is full 

__ Section 6.. CBS Macro Instructions 311 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 57Q8-XX8 

FSWRITE Macro 

15 
16 
17 
18 
19 

20 
21 
22 
25 

26 

~!ani~g 
Number of bytes to be vritten is not integrally div~sible 

by the number of records to be written 
Length of fixed-length item not the same as previous item 
Record format specified not the same as file 
Variable-length item greater than 65K bytes 
Number of records greater than 1 for variable-length file 
Maximum number of data blocks per file reached (16060 fer 

an 800-byte formatted disk) 
Invalid character detected in filename 
Invalid character detected in fi1etype 
Virtual storage capacity exceeded 
Insufficient free storage available for file directory 

buffers 
Requested item number is negative or item number plus 

number of items exceeds file system capacity. 

312 IBM VM/370 CMS Command and Macro Reference 



HNDEXT Macro 

HNDEXT 

Use the HNDEXT macro instruction to trap external interruptions and pass 
control to an internal routine for processing. External interruptions 
are caused, in a virtual machine, by the CP EXTERNAL command. The 
format of the HNDEIT macro instruction is: 

[label] HNDEXT 
{

SET, address } 
CLR 

label is an optional statement label. 

SET specifies that you want to trap external interruptions. 

address specifies the address in your program of the routine to be 
given control when an external interruption occurs. 

CLR specifies that 
interruptions. 

you no longer want to trap external 

1. External interruptions (other than timer interruptions) normally 
place your virtual machine in the debug environment. 

2. When your interruption handling routine is given control, all 
virtual interruptions, except multiplexer, are disabled. If you 
are using the CMS blip function, all blips are stacked. 

3. You are responsible for providing proper entry and exit linkage for 
your interruption handling routine. When your routine receives 
control, register 1 points to a save area in the format: 

1912~1 
GRS 
FRS 
PSi 
UAREA 
END 

-!!~£­
o 

64 
96 

104 
176 

Hex --0--
40 
60 
68 
BO 

Register 13 points to the user save area at label UAREA. 

Register 15 contains the entry point address of your routine; it 
must return control to the address in register 14. 

Section 6. CMS Macro Instructions 313 



HNDINT Macro 

HNDINT 

Use the HNDINT macro instruction to trap interruptions for a specified 
I/O device. The format of the HNDINT macro instruction is: 

[label] 

label 

SET 

HNDINT 

{ 

SET,(deVl,{a~dr},CUU'{~~~i.p(,(dev2 ••• ) ••• ] l 
C L R, (d e v 1) [ , (d e v 2) [ ••• ] ] ) 

[,ERROR=erraddr] 

is an optional statement label. 

specifies that you want to 
specified device. 

trap interruptions for the 

dev specifies a four-character symbolic name for the device whose 
interruptions are to be trapped. 

addr specifies the address in your program of the routine to be 
given control when the interruption occurs. An address of 0 
indicates that interru~tions for the device are to be ignored. 

cuu specifies the virtual device address, in hexadecimal, of the 
device whose interruptions are to be trapped. 

ASAP 

WAIT 

specifies that the routine at addr is to be given control as 
seon as the interruption occurs. 

specifies that the routine at addr is to be given contrel 
after the WAITD macro is issued for the device. 

CLR specifies that you no longer want to trap interruptions fer 
the specified device. HNDINT CLR should not be issued frem 
within the interruption handling routine. 

ERROR=erraddr 
specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

1. You can define interrUPtion handling routines for more than one 
device in a single HNDINT macro instruction. The argument list fer 
each device must be enclosed in parentheses and separated from the 
next list by a comma. 

2. If you specify WAIT, then the routine at the specified address in 
your program receives control when a WAITD macro instruction that 
specifies the same symbolic-device name is issued. If the WAITD 
macro instruction has already been issued for the device when the 
interruption occurs, then the routine at the specified address I 

receives control immediately. 

314 IBM VM/370 CMS Command and Macro Reference 



HNDINT, HNDSVC 8acros 

3. You are responsible for establishing proper entry and exit linkage 
for your interruption handling routine. When your routine receives 
control, the significant registers contaLn: 

!!.ggi.2~~~ 
0-1 
2-3 

4 
14 
15 

~~.!!te.!!~.2 
I/O old PSW 
Channel status word (CSW) 
Address of interrupting device 
Return address 
Entry point address 

Your routine must return control to the address in register 14, and 
indicate, via register 15, whether processing is complete. A 0 in 
register 15 means that you are through handling the interruption; 
any nonzero return code indicates that you expect another 
interruption. 

4~ The interruption handling routine that you code should not perform 
any I/O operations. When it is g~ven control, all riO 
interruptions and external interruptions are disabled. 

If an error condition occurs, register 15 will contain one of the 
following return codes: 

l1.§s.!!i1!g 
Invalid device address (cuu) or interruption handling routine 
address (addr). 

2 Trap item replaces another of same device name. 

3 Attempting to clear a nonexisting interruption. 

HNDSVC 

Use the HNDSVC macro 
specific supervisor call 
macro instruction is: 

instruction to trap 
(SVC) instructions. 

interruptions caused by 
The format of the HNDSVC 

[label] 

label 

HNDSVC 
{

SET, (svcnum, address) [ , (svcnum, address) ••• ] } 
CLR,svcnum[,svcnum.~.] 

[,ERROR=erraddr] 

is an optional statement label. 

SET specifies that you want to trap SVCs of the specified 
number(s). 

svcnum 

address 

specifies the number of the SVC you want to trap. SVC ~umbers 
o through 200 and 206 through 255 are valid. 

specifies- the address of the routine in your program that 
should receive control whenever ~he specif~ed SVC is ~ssued~ 

Section 6. CMS Macro Instructions 315 



HNDSVC, LINEDIT Macros 

CLR specifies that you no longer want to trap the specified 
SVC (s) • 

ERROR=erraddr 
specifies the address of an error routine to be given contrel 
if an error is· found. If ERROR= is not coded and an errer 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

You are responsible for providing the proper entry and exit linkage fer 
your SVC-handling routine. When your program receives control, the 
register contents are as follows: 

R~gi§!~! Contents 
12 Address-of your SVC-handling routine 
13 Address of an 18-fullword save area (for your use) 
14 Return address 

Your routine must return control to the address in register 14. 

If an error occurs, register 15 contains one of the following error 
codes: 

!1!H!1l11lg 
Invalid SVC number or address 
SVC number set replaced previously set number 
SVC number cleared was not set 

316 IBM VM/310 CMS Command and Macro Reference 



HNDSVC, LINEDIT Macros 

LINEDIT 

Use the LINEDIT macro instruction to convert decimal values into EBCDIC 
or hexadecimal and to display the results at your terminal. The format 
of the LINEDIT macro instruction is: 

[label] LINEDIT 
f" 

I,TEXT='messagetext' 
I,TEXTA=address 

, f" , f" , 

I I,DOT={1]~}1 I ,COMP={l]~}1 
I I NO II NO I 

L .J L .JL .J 

[,SUB=(substitutionlist) ] 
f" , r , 
I,DISP= !!~] I I , BUFFA= <{ address}) I 
I NONE I I (reg) I 
I SIO I L .J 

I PRINT I 
I CPCOMM I 
I ERRMSG I 
L .J 

r, MF= {I } I I L I 
I ({E,addreSS}) I 
I (reg) I 

[,MAXSUES=number] 

L .J 

r , 

I ,RENT= {!~~} I 
I NO I 
L .J 

The LINEDIT macro operands are listed below, briefly. For detailed 
formats, descriptions, and examples, refer to the appropriate heading 
following "LINEDIT Macro Operands." 

Section 6. CMS Macro Instructions 317 



LINEDIT Macro 

TEXT=' message text' 
specifies the text of the message to be edited. 

TEXTA=address 

DOT 

CaMP 

SUB 

DISP 

BUFFA 

MF 

specifies the address of the message text. It may be: 

label 
(reg) 

the symbolic address of the message text. 
a register containing the address of the message text. 

specifies whether a period is to be placed at the end of the 
line. 

specifies whether multiple blanks are to be removed from the 
line. 

specifies a substitution list describing the conversions to be 
performed on the line. 

specifies how the edited line is to be used. When DISP is net 
coded, the message text is displayed at the terminal. 

specifies the address of the buffer in which the line is to be 
copied. 

specifies the macro format. 

MAXSUBS specifies the maximum number of substitutions (MAXSUBS is used 
with the list form of the macro) • 

RENT specifies whether reentrant code must be generated. 

1. You should never use registers 0, 1, or 15 as address registers 
when yeu code the LINEDIT macro instruction; these registers are 
used by the macro. 

2. When message text for the LINEDIT macro instruction contains two er 
more consecutive periods, it indicates that a substitution is to be 
performed on that portion of the message. The number of periods 
you code indicates the number of characters that you want to appear 
as output. To indicate what values are to replace the periods, code 
a substitution list using the SUB operand. 

3. When you use the standard (default) form of the LINEDIT_ macro 
instruction, reentrant code is produced, except when you specify 
more than one substitution list, or when you us~ register notation 
to indicate an address on the TEXTA or BUFFA operands, When any ef 
these conditions occur, an MNOTE message is produced, indicating 
that the code is not reentrant. 

If you do not care whether the code is reentrant, you can specify 
the RENT=NO operand to suppress the MNOTE message~ Otherwise, yeu 
can use the list and execute forms of the macro to write reentrant 
code (see "MF Operand"). 

318 IBM VM/370 CMS Command and Macro Reference 



LINEDIT Macro 

Use the TEXT oper~nd to specify the exact text of the message on the 
macro instruction. The message text must appear within single quotation 
marks, as fellows: 

TEXT=' message text' 

If you want a single quotation mark 
text, you must code two of them. 

Text specified on the LINEDIT macro 
appear as only a single blank, and a 
line, for example: 

to appear within the actual message 

is edited so that multiple blanks 
period is placed at the end of the 

LINEDIT TEXT='IT ISN"T READY' 

results in the display: 

IT ISN'T READY. 

Use the TEXTA operand when you want to display a line that is contained 
in a buffer. You may specify either a symbolic address or use register 
notation, as follows: 

TEXTA={label} 
(reg) 

In either case, the first byte at the address specified must contain the 
length of th~ message text, for example: 

LINEDIT TEXTA=MESSAGE 

X' 16' MESSAGE DC 
DC CL22'THIS IS A LINE OF TEXT' 

If you use register notation with either the standard or list forms of 
the macro, the code generated is not reentrant. To suppress the MNOTE 
that informs you that code is not reentrant, use the RENT=NO operand. 

Use the DOT operand_when you do not want a period-placed at the end of 
the message text. The format of the DOT operand is: 

For example, if you cod~: 

Section 6. CMS Macro Instructions 319 



LIBEDIT Macro 

LINEDIT TEXT='HI!',DOT=NO 

the line is displayed as: 

HI! 

Use the COMP operand when you want to display multiple hlanks within 
your message text. The format of the COMP operand is: 

For example, if you code: 

LINEDIT TEXT='TOTAL 5',COMP=NO 

the line is displayed as: 

TOTAL 5. 

Use the SUB operand to specify the type of substitution to be performed 
on those portions of the message that contain periods. For each set of 
periods, you must specify the type of substitution and the value to be 
substituted or its address. The format of the SUE operand is: 

SUB= ( HEX{, (reg) } 
DEC ,expression 

HEXA{ ,addreSS} 
DECA , (reg) 

HEX4A {,address 
CHARA , (reg) 
CHAR8A , ({address}, {length}) 

(reg) (reg) 
} 

Each of the possible substitution pairs is described below, followed by 
discussions of length specification and multiple substitution lists. 

HEX, (reg) 
converts the value in the specified register to graphic hexadecimal 
format and substitutes it in the message text. If you code fewer 
than eight consecutive periods in the message text, then leading 
digits are truncated; leading zeros are not suppressed. 

For example, if register 3 contains the value C0031FC8, ~hen the 
macro instruction: 

LINEDIT TEXT='VALUE = .~.',SU~=(HEX,(3» 

results in the display: 

VALUE = FC8. 

320 IBM VM/370 CMS Command and Macro Reference 



LINEDIT Macro 

HEX, expression 
converts the giv7n expression to graphic hexadecimal format and 
substitutes it 1n the message text. The expression may be a 
symbolic address or symbol eguate; it is evaluated by means of a 
LOAD ADDRESS (LA) instruction. For example, if your program has a 
label BUFF1, the line: 

LINEDIT TEXT='BUFFER IS LOCATED AT .~ •••• ',SUB=(HEX,BUFF1) 

might result in the display: 

BUFFER IS LOCATED AT 0201AC. 

If you code fewer than eight periods in the message text, leading 
digits are truncated; leading zeros are not suppressed. 

DEC, (reg) 
converts the value in the specified register into graphic decimal 
format and substitutes it in the message text. Leading zeros are 
suppressed. If the number is negative, a leading minus sign is 
inserted. For example, if register 3 contains the decimal value 
10,345, then the macro instruction: 

LINEDIT TEXT='REG 3 = •••••• ·,SUB=(DEC,(3) 

results in the line: 

REG 3 = 10345. 

DEC, expression 
converts the given expression to graphic decimal format and 
substitutes it in the message text. The expression may be a 
symbolic label in your program or a symbol equate. For example, if 
your program contains the statement: 

VALUE EQU 2003 

then the macro instruction: 

LINEDIT TEXT='VALUE IS •••••• ·,SUB=(DEC,VALUE+5) 

results in the display: 

VALUE IS 2008. 

HEXA,address 
converts the fullword 
hexadecimal format and 
code fewer than eight 
are truncated; leading 
code: 

at the specified address to graphic 
substitutes it in the message text. If you 
periods in the-message text, leading digits 
zeros a~e not removed. For example, if you 

LINEDIT TEXT='HEX VALUE IS ••••• ',SUE=(HEXA,CODE) 

then the last five hexadecimal digits of the fullword at the label 
CODE are substituted into the message text. 

HEXl, (reg) 
converts the fullword at the address indicated in the specified 
register into graphic hexadecimal format and substitutes it in the 
message text. For- example, if you code: 

LINEDIT TKXT='REGISTER 5 -) •••••• ~~SUE=(HEXA,(5» 

Section 6. CMS Macro Instructions 321 



L INEDIT Macro 

then the last six hexadecimal digits of the fullword whose address 
is in register 5 are substituted in the message text. 

If you cede fewer than eight digits, leading digits are truncated; 
leading zeros are not suppressed. 

DECA,address 
converts the fullword at the specified address to graphic decimal 
format. Leading zeros are suppressed; if the number is negative, a 
minus sign is inserted. For example, if you code: 

LINEDIT TEXT='COUNT = •••••• ',SUB=(DECA,COUNT) 

then the fullword at the location COUNT is converted to graphic 
decimal format and substituted in the message text. 

DECA, (reg) 
converts the fullword at the address 
register into graphic decimal format 
message text. For example: 

specified in the indicated 
and substitutes it in the 

LINEDIT TEXT='SUM = •••••••• ~.·,SUB=(DECA, (3» 

causes the value in the fullword whose address is in register 3 to 
be displayed in graphic decimal format. 

HEX4A,address 
converts the data at the specified address into graphic hexadecimal 
format, and inserts a blank character following every four bytes 
(eight characters of output). The data to be converted does net 
have to be on a full word boundary. 

When you code periods in the message text for substitution, you 
must code sufficient periods to allow for the blanks. Thus to 
display 8 bytes of information (16 hexadecimal digits), you must 
code 17 Feriods in the message text. 

For examFle, to display seven bytes of hexadecimal data beginning 
at the location STaR in your program, you could code: 

LINEDIT TEXT='STOR: ~~ •••••• ~ •••••• ',SUE=(HEX4A,STOR) 

This might result in a display: 

STaR: OA23F115 78ACFE 

Note that 15 periods were coded in the message text, to allow for 
the blank following the first four bytes displayed. 

HEX4A, (reg) 
converts 
register 
character 
output) • 

the data at the address indicated in the specified 
into graphic hexadecimal format and inserts a blank 
following every four bytes displayed (eight characters of 

When you code the 
sufficient periods 
inserted. 

message text for substitutioi, you must code 
to allow for the blank characters to -be 

For example, the line: 

LINEDIT TEXT='BUFFER: ~ •• ~ ••••• ~ •••••••••• ',SUB=(HEX4A, (61) 

322 IBM VM/370 CMS Command and Macro Reference 



LINEDIT Macro 

results in the display of the first nine bytes at the address in 
register 6, in the format: 

hhhhhhhh hhhhhhhh hh 

CHARA,address 
substitutes the character data at the specified address into the 
message text. ~or example: 

LINEDIT TEXT='NAME IS " •••••••••• "',SUB=(CHARA,NAME) 

causes the 10 characters at location NAME to be substituted into 
the message text. Multiple blanks are removed. 

CHARA, (reg) 
substitutes the character data at the address indicated in the 
specified register into the message text. For example: 

LINEDIT TEIT='CODE IS ••• ~',SUB=(CHARA,(7» 

the first four characters at the address indicated in register 7 
are substituted in the message line. 

CH!R8A,address 
substitutes the character data at the specified address into the 
message text, and inserts a blank character following each eight 
characters of output. 

When you code the m~ssage text, you must code enough periods to 
allow for the blanks that will be substituted. 

This substitution list is convenient for displaying CMS parameter 
lists. Fer example, to display a fileid in an FSCB, you might cede 

LINEDIT TEIT='FILEID IS ••••••••••• ~ ••••••••• , 
SUB= (CHAR8! ,OUTFILE+8) 

where OUTFILE is the label on an FSCB 
this file were TEST OUTPUT Al, then the 
would result in the display: 

macro. If the fileid for 
LINEDIT macro instruction 

FILEID IS TEST OUTPUT Al. 

In the final edited line, multiple blanks are reduced to a single 
blank. 

C aAR 8A, (reg) 
substitutes the character data at the address indicated in 
specified register and inserts a blank character following 
eight characters of output. 

the 
each 

When you code the message text, you must include sufficient periods 
to allow for the blanks. For example: 

LINEDIT TE IT=' PLIST: •• ' ••••• I •••• !" ••• ~ •••••••• - •••• I •••••••• -, , 

SUB= (CHAR8A, (7) ) 

results in a display of four dQublewords of character- data,­
beginning at the ad~ress indicated in register 7. 

Section 6. CMS Macro Instructions 323 



LINEDIT Macro 

SPECIFYING THE LE!Q!~ ~Q! 1I!~~I! ~!£jQ SUBSTITUTION: In all the 
examples--shown, the length of the argument--beIng--substituted was 
determined by the number of periods in the message text. The number of 
periods indicated the size of the output field, and indirectly 
determined the size of the input da ta area .• 

For hexadecimal and decimal substitutions, the input data is 
truncated on the left. To ensure that a decimal number will never be 
truncated, you can code 10 periods (11 for negative numbers) in the 
message text where it will be substituted. For hexadecimal data, code 
eight periods to ensure that no characters are truncated when a fullword 
is substituted. 

When you are coding substitution lists with the CHARA, 
HEI4A options, however, you can specify the length of the 
field. You must code the SUB operand as follows: 

SUB=(type, (address,length» 

CHAR8A, and 
input data 

Both address and length may be specified using register notation. Fer 
example: 

SUB= (HEI4A, (LOC, (4» ) 

shows that the characters at location 
message text; the number of characters 
contained in register 4, but it cannot 
periods coded in the message text. 

LOC are substituted into the 
is determined by the value 

be larger than the number ef 

You can use this method in the special case where only one character 
is to be substituted. Since you must always code at least two periods 
to indicate that substitution is to be performed, you can code two 
periods and specify a length of one, as follows: 

LINEDIT TEIT='INVALID MODE LETTER ~.',SUB=(CHARA, (PLIST+24,1» 

~gEC1!!1!Q ~Q11IfLE ~g~~!I!Q!IQ~ 1!~!§: When you want to make several 
substitutions in the same line, you must enter a substitution list for 
each set of periods in the message text. For example: 

LINEDIT TEXT='VALUES ARE ••••• and •••••• ', 
SUB=(DEC, (3),HEXA,LOC) 

might generate a line as follows: 

VALUES ARE -45 AND FFE3C2. 

You should remember that if you are using the standard form -of the 
macro instruction, and you want to perform more than one substitution in 
a single line, the LINEDIT macro will not generate ~eentrant code. If­
you code ~ENT=NO on the macro line, then you will not receive the KNOTE 
message indicating that the code is not reentrant. If you want reentrant 
-code, you must use the list a~d execute forms of the macro instruction. 

324 IBM VM/370 CMS Command and Macro Reference 



LINEDIT Macro 

Use th€ DISP operand to specify the output disposition of the edited 
line. The format of the DISP operand is: 

DISP= I!f~ 

DISP=TYPE 

NONE 
PRINT 
510 
CPCOMM 
ERRMSG 

specifies that the message is to be displayed on the terminal. 
This is the default disposition. 

DISP=NONE 
specifies that no output occurs. This option is useful with the 
BUFFA operand. 

DISP=SIO 
specifies that the message is to be displayed, at the terminal, 
using SIO instead of TYPLIN, which is normally used. This option 
is used by CMS routines in cases where free storage pointers may be 
destroyed. Since lines are not stacked in the console buffer, no 
CON WAIT function is performed. 

DISP=PRINT 
specifies that the line is to be printed on the virtual printer. 
The first character of the line is interpreted as a carriage 
control character and as such does not appear on the printed 
output. (See the discussion of the PRINiL macro for a list cf 
valid ASA control characters.) 

DISP=CPCOMM 
specifies that the line is to be passed to CP to be executed as a 
CP command. For example: 

LINEDIT TEXT='QUERY USERS',DOT=NO,DISP=CPCOMM 

results in the CP command line being passed to CP and executed. Cn 
return, register 15 contains the return code from the CP command 
that was executed. 

DISP=ERRMSG 
specifies that the line is to be checked to see if it qualifies for 
error message editing. If it does, -it is displayed as an errcr 
message rather than as a regular line. 

The standard format of VM/370 error messages is: 

xxxmmmnnns 

where xxxmmm is the name of the module issuing the ~essage, nnn is 
the mes~age number, and s is the severity code. You can code 
whatever you want for the first nine characters of the code when 
you write error messages for your programs, but the tenth- character 
must specify one of the following VM/370 message types: 

~~§§gg~ !YEg 
Information 
Warning 
Error 

Section 6. CMS Macro Instructions 325 



LINEDIT Macro 

Then, the line is displayed in accordance with the CP EMSG setting. 
If EMSG is set to ON, then the entire message is displayed; if EMSG 
is set tc TEXT, then only the message portion is displayed; if EMSG 
is set to CODE, then only the 10-character code is displayed. 

Use the BUFFA operand to specify the address of a buffer into which the 
edited message is to be written. The message is copied into the 
indicated buffer, as well as being used as specified in the DISP 
operand. The format of the BUFFA operand is: 

BUFFA= {addreSS} 
(reg) 

When the text is copied into the buffer, the length of the message 
text is inserted into the first byte of the buffer, and the remainder cf 
the text is inserted in subsequent bytes. 

If you use register notation to indicate the tuffer address, the code 
generated will not be reentrant. To suppress the MNOTE that informs you 
that code is not reentrant, use the RENT=NO operand. 

Use the MF operand to specify the macro format when you want to code 
list and execute forms when you write reentrant programs. The format cf 
the MF operand is: 

MF={~E,{addr })} 
(reg) 

MF=I (Standard form) 
generates an inline operand list for the LINEDIT macro instruction, 
and calls the routine that displays the message. This is the 
default. It generates reentrant code, except under the following 
circumstances: 

• When you specify more than one substitution ~ist 
• When you use register notation with the TEXTA or BUFFA operands 

- MF=L (List form) 
generates a parameter list to be filled in when the execute form cf 
the macrc is used. 

The size of the area reserved 
substitutions to be made, which you 
operand. For example: 

LINEDIT MF=L,MAXSUBS=5 

depends upon the number -cf 
can specify with the MAXSUES 

reserves space for 
substitution lists. 
macro instructions. 

a parameter 1iit 
This same list may 

that may hold up to five 
be used fiy several LINEDIT 

326 IBM VM/370 CMS Command and Macro Reference 



LINEDIT Macro 

MF=(E,address) (Execute form) 
generates code to fill in the parameter list at the specified 
address, and calls the routine that displays the message text. 

The address specified (either a symbolic address or in register 
notation) indicates the location of the list form of the macro. 
The following example shows how you might use the list and execute 
forms of the LINEDIT macro to write reentrant code: 

WRITETOT LINEDIT TEXT='SUBTOTAL ••••• TOTAL ••••• 
SUB=(DEC, (4) ,DEC, (5» ,KF=(E,LINELIST) 

LIBELIST LINEDIT MF=L,MAXSUBS=6 

When the execute form of the LINEDIT macro instruction is used, the 
parameter list for the message is built at label LINELIST, where 
the list form of the macro was coded~ 

~!XSQ~~ QE~f~~g 

Use the MAXSUBS operand when you code the list form (KF=L) form of the 
LINEDIT macro instruction. The format of the MAXSUBS operand is: 

MAXSUBS=number 

where number specifies the maximum number of substitutions that will be 
made when the execute form of the macro is used. 

Use the RENT operand when you are going to use the standard form of the 
LINEDIT macro instruction and you do not care whether the code that is 
generated is reentrant. The format of the RENT operand is: 

RENT={II~} 
NO 

When RENT=YES (the default) is in effect, the LINEDIT macro expansion 
issues an MNOTE message indicating that nonreentrant code is being 
generated. This occurs when you use the standard form of the macro 
instruction and you specify one of the following: 

• TEXTA=(reg) 
• BUFFA=(reg) 
• More than ene substitution pair 

If you do not care whether the code is reentrant, and you do not wish 
to have the MNOTE -appear, code RENT=NO. The RENT=NO coding merely 
suppresses the KNOTE statement; it has no effect on the expansion of the 
LINEDIT macro instruction. 

Section 6. CMS Macro Instructions 327 



PRINTL Macro 

PRINTL 

Use the PRINTL macro instruction to write a line to a virtual printer. 
The format of the PRINTL macro instruction is: 

[label] I PRINTL I line [~length] [,ERROR=erraddr] 

label 

line 

is an optional statement label. 

specifies the line to be printed. It may be: 

'linetext' 
lineaddr 
(reg) 

text enclosed in quotation marks. 
the symbolic address of the line. 
a register containing the address of the line. 

length sFecifies the length of the line to be printed. (See Note 1.) 
It lIay be: 

(reg) 
n 

a register containing the length. 
a self-defining term indicating the length. 

ERROR=erraddr 
specifies the address of an error routine to be given contrel 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

Jl§.a9,g !Q~,g§ 

1. The. maximum length allowed is 151 characters on a virtual 3211 er 
133 characters on a virtual 1403 or 3203. If you do not specify 
the length, it defaults to 133 characters, unless 'linetext' is 
specified. In this case, the length is taken from the length of the 
line text. 

2. The first character of the line is 
control character, which may be either 
The valid ASA control characters are: 

interpreted as a carriage 
AS! (ANSI) or machine cede. 

~.hg!g£~g! Hex Code 11~?!!!i!!g 
}1 ---40--- Space 1 line before printing 
0 FO Space 2 lines before printing 

60 Space 3 lines before printing 
+ 4E Suppress space before printing 
1 F1 Skip to channel 1 
2 F2 Skip to channel 2 
3 F3 Skip to channel 3 
4 F4 Skip to channel 4 
5 F5 Skip to channel 5 
6 F6 Skip to channel 6-
7 F7 Skip to channel 7 
a Fa Skip to channel a 
9 F9 Skip to channel 9 
A C1 Skip to channel 10 
B C2 Skip to channel 11 
C C3 Skip to channel 12 

328 IBM VM/370 CMS Command and Macro Reference 



PRINTL, PUNCHC Macres 

3. Hex codes X'Cl' and X'C3' are used in both machine code and ASA 
code. CMS recognizes these codes as ASA control characters, not as 
machine control characters. 

4. If the line does not begin with a valid carriage control character, 
the line is printed with a write command to space one line before 
printing (ASA X'40'). 

5~ When the macro completes, register 15 may contain a 2 or a 3, 
indicating that a channel 9 or channel 12 punch was sensed, 
respectively. You can use these codes to determine whether the end 
of the page is near (channel 9), or if the end of the page has been 
reached (channel 12). You might want to check for these codes if 
you want to print particular information at the bottom or at the 
end of each page being printed. 

When the channel 9 or channel 12 punch is sensed, the write 
operation terminates after carriage spacing but before writing the 
line. If you want to write the line without additional space, you 
must modify the carriage control character in the buffer to a code 
that writes without spacing (ASA code ~ or machine code 01). 

6. You must issue the CP CLOSE command to close the virtual printer 
file. Issue the CLOSE command either from your program (using an 
SVC 202 instruction or a LINEDIT macro instruction) or from the CMS 
environment after your progra~ completes execution. The printer is 
automatically closed when you log off or when you use the CMS PRINT 
command. 

If an error occurs register 15 contains one of the following error 
codes: 

Code --"1-
2 
3 
4 
5 

100 

l1.§~.!!.!.!!g 
Line too long 
Channel 12 punch sensed (virtual 3203 or 3211 only) 
Channel 9 punch sensed (virtual 3203 or 3211 only) 
Intervention required 
Unknown error 
Printer not attached 

PUNCHC 

Use the 
punch. 

PUNCHC macro instruction to write a line to 
The fermat of the PUNCHC mac~o instruction is: 

a virtual 

[label] I PUNCHCI line [,ERROR=erraddr] 

label 

line 

is an opti?nal statement label. 

specifies the line to be punched. It may be: 

'linetext' 
lineaddr 
(reg) 

text enclosed in quotation .m-arks. 
- the stmbolic address of ~he line. 

a _register containing the addres_s of the line .• 

card 

section 6. CMS Macro Instructions 329 



PUNCH Macros 

ERROR=erraddr 
specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program. as it does if no error occurs. 

1. No stacker selecting is allowed. The line length must be 80 
characters. 

2. You must issue the CP CLOSE command to close the virtual punch 
file. Issue the CLOSE command either from your program (using an 
SVC 202 instruction) or from the eMS environment when your program 
completes execution. The punch is closed automatically when you log 
off or when you use the CMS PUNCH command. . 

If an error occurs, register 15 contains one of the following error 
codes: 

£g~~ 
2 
3 

100 

~~g~i~g 
Unit check 
Unknown error 
Punch not attached 

330 IBM VM/370 CMS Command and Macro Reference 



RDCARD Macro 

RDCARD 

Use the RDCARD macro instruction to read a line from a virtual card 
reader. The format of the RDCARD macro instruction is: 

[label] I RDCARD I buffer[,length][,ERROR=erraddr] 

label 

buffer 

length 

is an optional statement label. 

specifies the buffer address into which the card is to be 
read. It may be: 

bufaddr 
(reg) 

the symbolic address of the buffer. 
a register containing the address of the buffer. 

specifies the length of card to be read. If omitted, 80 is 
assumed. The length may be specified in one of two ways: 

n 
(reg) 

a self-defining term indicating the length. 
a register containing the length. 

ERROR=erraddr 
specifies the address of an error routine to be given 
centrol if an error is found. If ERROR= is not coded and an 
error occurs, control returns to the next sequential 
instruction in the calling program, as it does if no error 
occurs. 

1. No stacker selecting is allowed. 

2. When the macro completes~ register a contains the length of the 
card that was read. 

3. You may not use the RDCARD macro in jobs that run under tbe ces 
batch machine. 

If an error occurs, register 15 contains one of the following error 
codes: 

~~g~ 
1 
2 
3 
5 

100 

~~g]i]g 
End of file 
Unit check 
Unknown error 
Length not_equal to requested length 
Device not attached 

Section 6. eMS Macro Instructions 331 



RDTAPE Macro 

RDTAPE 

Use the RDTAPE macro instruction to read a record from the specified 
tape drive. The format of the RDTAPE macro instruction is: 

[label] 

label 

1:uffer 

length 

device 

RDTAPE buffer,length [,device] [,MOtE=mode] 
[,ERROR=erradr] 

, 
I 
I 

.J 

is an optional statement label. 

specifies the buffer address into which the record is to be 
read. It may be specified in either of two ways: 

lineaddr 
(reg) 

the symbolic address of the buffer. 
a register containing the address of the buffer. 

specifies the length of the largest record to be read. A 
65,535-byte record is the largest record that can be read. It 
may be specified in either of two ways: 

n 
(reg) 

a self-defining term indicating the length. 
a register containing the length. 

specifies the device from which the 
omitted, TAP1 (virtual address 181) 
specified in either of two ways: 

line is to 1:e 
is assumed. 

read. If 
It may be 

TAPn 

cuu 

indicates the symbolic tape number (TAP1 through 
TAP4) • 
indicates the virtual device address. 

MODE=mode specifies the number of tracks, density, and tape recording 
technique options. It must be in the following form: 

([ track ],[ density ],[ trtch]) 

ERROR=erraddr 

track 7 indicates a 7-track tape (implies density=800 and 
trtch=O) • 

density 

trtch 

9 indicates a 9-track tape (implies density=800). 

200, 556, or 800 for a 7-track tape. 
800, 1600, or 6250 for a 9-track tape. 

indicates the 
7- track tape. 
specified: 

tape recording technique 
One of the following must 

for 
be 

o odd parity, converter off, translator off. 
OC - odd parity, converter on, translator off. 
OT - odd parity, converter of£, t~anslator on. 
E - even parity, converter off, translator off~ 
ET - even parity, converter off, translator qn. 

specifies the addr~ss of an error routine to b9 given contrel 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to- the next sequential instruction in -
the calling program, as it does if no error occurs. -

332 IBM VM/370 CMS Command and Macro Reference 



RDTAPE, RDTERM Macros 

1. When the macro completes, register 0 contains the number of bytes 
read. 

2. You need not specify the Mode option when you are reading from a 
9-track tape and using the default density of the tape drive nor 
when you are reading from a 7-track tape with a density of 800 bpi, 
odd parity, with the data converter and translator off. 

If an error occurs, register 15 contains one of the following error 
codes: 

~~g~ 
1 
2 
3 
4 
5 
8 

!1~g1!.!1!g 
Invalid function or parameter 
End of file or end of tape 
Permanent 1/0 error 
Invalid device address 
Tape not attached 
Incorrect length error 

list 

RDTERM 

Use the RDTERM macro instruction to read a line from the terminal into 
an I/O buffer. The format of the RDTERM macro instruction is: 

~---------------------------------------------------------------------------, 

[label] 

label 

buffer 

r , I 
buffer[ ,EDIT=code][,LENGTH=length]I,ATTREST={YES}1 I 

I NO II 
RDTERM 

L J I 

is an optional statement label. 

specifies the address of a buffer into which the line is to be 
read. The buffer is assumed to be- 130 bytes long, unless 
EDIT=PHYS is specified. The address may be sp~cified as: 

lineaddr 
(reg) 

the symbolic address of -the buffer. 
a register containing the address of the buffer. 

EDIT=code specifies ~he type of editing, if any, to be performed on the 
input line. 

NO indicates that a logical line is to be read and no 
editing is to be done. 

PAD requests that the i~put line be pa~ded with blanks 
to the len~th specified. 

UPCASE re~uests that the line be translated to uppercase. 

indicates both padding ~nd translation to uppercase. 
YES is the default. 

Section 6. CMS Macro Instructions 333 



RDTERM, REGEQU Macros 

PHYS 

LENGTH=length 
specifies 
assumed. 
specified 
specified 

n 

(reg) 

ATTREST=YESINO 

indicates that a physical line is to ·be read. When 
PHYS is specified, the LENGTH and ATTREST=NC 
operands may also be entered. This option causes 
the input line to be translated using the user 
translation table. 

the length of the buffer. If not specified, 130 is 
The maximum length is 2030 bytes. The length may be 
only if EDIT=PHYS (see Usage Note 2). It may be 
in either of two forms: 

a. self-defining term indicating the length of the 
buffer 
a register containing the length of the buffer. 

specifies whether an attention interruption during a read 
should result in a restart of the read operation. (See Usage 
Note 2.) 

1. When the macro completes, register 0 contains the number of 
characters read. 

2. You can use the ATTREST=NO and LENGTH operands only when you are 
reading ~hysical lines (EDIT=PHYS)~ When ATTREST=NO, an attenticn 
interruption during a read operation signals the end of the line 
and does not result in a restart of the read. These operands are 
used primarily in writing VS APL programs. 

When an error occurs, register 15 contains one of the following 
error codes: 

f.Q.9~ 
2 
4 

l1'§~.ll.!.llg 
Invalid parameter 
Read was terminated by an attention signal (possible only when 
ATTREST=NO) 

REGEQU 

Use the REGEQU macro instruction to generate a list of EQU (equate) 
statements to assign symbolic names for the general, -floa_ting-point, and 
extended control registers. The format of the REGEQUmacro instructian 
is: 

I , 

l REGEQU -I L _____________________________________________________________________________ ~ 

334 IBM VM/370 eMS Command and Macro Reference 



March 30. 1919 

REGEQU. TAPECTL Macros 

The REGEQU macro instruction causes the following equate statements to 
be generated: 

g~1!~al 
RO 
Rl 
R2 
R3 
R4 
R5 
R6 
R7 
R8 
R9 
Rl0 
R 11 
R12 
R13 
R14 
R15 

R~g!2!!!!:§ 
EQU 0 
EQU 1 
EQU 2 
EQU 3 
EQU 4 
EQU 5 
EQU 6 
EQU 7 
EQU 8 
EQU 9 
EQU 10 
EQU 11 
EQU 12 
EQU 13 
EQU 14 
EQU 15 

l!.Qg!ilHI=f~i nt R!!gis~!.§ 
o FO EQU 

F2 EQU 2 
F4 EQU 4 
F6 EQU 6 

Extended -----CO-
Cl 
C2 
C3 
e4 
C5 
e6 
C1 
C8 
C9 
Cl0 
ell 
e12 
C13 
C14 
e15 

£2~!!2! H~gis!~~§ 
EQU 0 
EQU 1 
EQU 2 
EQU 3 
EQU 4 
EQU 5 
EQU 6 
EQU 1 
EQU 8 
EQU 9 
EQU 10 
EQU 11 
EQU 12 
EQU 13 
EQU 14 
EQU 15 

TAPECTL 

Use the TAPECTL macro instruction to position the specified tape 
according to the specified function code. The format of the TAPECTL 
macro instruction is: 

• I [label] I TAPECTL I function [.device][IMODE=mode][.ERROR=erraddr] 

label is an optional statement label. 

function specifies the control function to be Ferformed. It must be 
one of the following codes: 

device 

£.Qg!! 
REW 
RUN 
ERG 
BSR 
BSF 
FSR 
FSF 
WTM 

Function 
Rewind-the tape 
Rewind and unload the tape 
Erase a gap 
Backspace one record 
Backspace one file 
Forward-space one record 
Forward- space one f:l.le 
Write a t~pe mark 

specifies the tape on which the control -operation is to be 
performed. If omitted •. TAP 1 (virtual. address 181) is assulled. 
It may be: 

TAPn indicates the symbolic tape number (TAPl through 

Section 6. CMS Macro Instructions 335 



March 30, 1979 

TAPECTL Macro 

TAP4). 
cuu indicates the virtual device address. 

MODE=mode specifies the number of tracks, density, and tape recording 
technique options. It must be in the following form: 

([ track ], [ density], [ trtch]) 

ERROR=erraddr 

track 7 indicates a 7-track tape (implies density=800 and 
trtch=O) • 

density 

trtch 

9 indicates a 9-track tape (implies density=800). 

200, 556, or 800 for a 7-track tape. 
800, 1600, or 6250 for a 9-track tape. 

indicates the 
7-track tape. 
specified: 

tape recording technique for 
One of the following must be 

a - odd parity, converter off, translator off. 
OC - odd parity, converter on, translator off. 
aT - odd parity, converter off, translator on. 
E - even parity, converter off, translator off. 
ET - even parity, converter off, translator on. 

specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

You need not specify the MODE option when you are manipulating a 9-track 
tape and you are using the default density for the tape drive, nor when 
you are' writing a 7-track tape with a density of 800 bpi, odd parity, 
with data converter and translator off. 

If an error occurs, register 15 contains one of the' following error 
codes: 

~~g1!!}1.g 
Invalid function or parameter list. 
End of file or end of tape 
Permanent I/O error 
Invalid device id 
Tape is not attached 
Tape is file-protected 

336 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118 

TAPESL !acro 

TAPESL 

The TAPESL macro processes IB! standard HDR1 and EOFl labels without 
using DOS or OS OPEN and CLOSE macros~ This macro is used in 
conjunction with RDTAPE, WRTAPE, and TAPECTL. TAPESL processes only 
HDRl and EOF1 labels. It does not process other labels such as standard 
user labels or HDR2 labels. It does not perform any functions of 
opening a tape file other than label checking or writing. The same 
macro is used both to check and to write tape labels. A LABELDEF 
command must be supplied separately to use the macro. The tape must be 
positioned correctly (at the label to be checked or at the place where 
label is to be written) before issuing the macro. TAPECTL may be used 
to position the tape. TAPESL reads or writes only one tape record 
unless SPACE=YES is specified. The format of the TAPESL macro is: 

[label] 

function 

device 

TAPESL function[,device],LABID=labeldefid[,aODE=mode] 
[,BLKCT=blkct][,ERROR=erraddr] 
r , r , 
I, SPACE={!I~}11 'TM={IES}I 
I NO II NO I 
L .JI. .J 

is one 
HID 
HOUT 
EIN 
EOUT 
EVOUT 

of the following: 
checks input HDRl label. 
writes HDRl label. 
checks input EOF1 label. 
writes output EOF1 label. 
writes output EOVl label. 

is one of the following: 
TAPn n=1-4. If omitted, 181 is assumed. 
cuu 181-184 are the only values allowed. 

MODE=mode specifies the number of tracks, density, and tape recording 
technique options. It must be in this form: 

([ track ], ( density], [ trtch ]) 

track 

density 

trtch 

LABID=labeldefid 

7 indicates a 7-track tape (implies density=800 and 
trtch=O) • 

9 indicates a 9-track tape (implies density=800). 

200, 556, or 800 for a 7-track t.ape. 
800, 1600, or 6250-for a 9-track tape. 

indicates the 
7-track tape. 

tape recording technique for 
One of these must be specifie~: 

o 
OC 
OT -
E-~ 

- odd parity, converter off, translator-off. 
odd parity, converter on, translator off. 
odd parity, converter off, ttansla tor on .• 
even parity, converter off; translator off. 
even parity, converter off, translator on. ET -

specifies the 1- to 8--character name on - the LABELDEP- command 
to be used for the file. (A separate LABELDEF statement must 
be specified for the file before the program -containin~ TAPESt 
is executed.) 

-section 6. CMS !acro Instruc_tions 336.1 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

TAPESL Macro 

BLKCT=blkct 
specifies the block count to be inserted in an EOF1 or EOV1 
label on output or used to check against on input. This field 
is only used for functions EOUT, BOUT, or EVOUT. If not 
specified, the output block count is set to O. This field may 
also be specified as a register number enclosed within 
parentheses when a general register contains the block count. 

ERROR=erraddr 
sFecifies the address of an error routine to be given control 
if an error of any kind occurs during label processing. If 
ERROR= is not coded and an error occurs, control is returned 
to the next sequential instruction in the calling program. If 
you request the EIN function and a block count error is 
detected, control is transferred to your error routine if you 
specify an ERROR= parameter that contains an address different 
from the next sequential instruction. If no error return is 
specified or the ERROR= address is the same as the normal 
return, a block count error causes message 425R to be issued. 

SPACE={ ~~S} 
may be specified for functions BIN and EIN. If YES is 
specified, the tape is spaced, after processing, beyond the 
tapemark at the end of the label record. If NO is specified, 
the tape is not moved after the label has been processed. YES 
is the default. 

may be specified for functions BOUT, EOUT, and EVOUT. If YES 
is specified, a single tapemark is wri tten after a HDR 1 or 
EOV1 label. Two tapemarks are written after an EOP1 label. 
If NO is specified, no tapemarks are written. YES is the 
default. 

1. The input functions HIN and EIN read a tape label and check to see 
if it is the type specified. They also check any fields in the 
tape label that have been specified explicitly (no defaulted) in 
the LABELDEF statement (indicated by LABID). Any discrepancies 
between the fields in the LABELDEF statement and the fields on the 
tape label cause an error message to be issued and an error return 
to be made. 

2. The output functions HOUT, EOUT, and EVaUT write a tape label of 
the requested type on the specified tape. The values of fields 
within the labels are those specified o~ defaulted to in the 
LABELDEF command. See the description of the LABELDEF command in 
this publication for information about the default fields. 

3. For a more complete discussion of tape label processing, see the 
section "CMS Tape Label processing" in the !~L11.Q £1i~ .!!.§~~§- IDl!~~. 

336.2 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118 

TIPESL Macro 

When an error occurs, register 15 contains one of the following error 
codes: 

Code --24 
28 
32 
36 
40 

100 

!1~.!!ing 
Invalid device type specified. 
LABELDEF cannot be found. 
Error in checking tape label or block count error. 
Output tape is file-protected. 
End of file or. end of tape occurred. 
Tape I/O error occurred. 

Section 6. CftS Macro Instructions 336.3 



March 30, 1979 

TlPEst Macro 

336.4 IBM VM/370 CMS Co.mand and Macro Reference 



WAITD Macro 

WAITD 

Us~ the WAITD macro instruction to cause the program to wait until the 
next interruption occurs on the specified device. The format of the 
WAITD macro instruction is: 

[label] I WAITD I device ••• [,devicen] [,ERROR=erraddr] 

label is an optional statement label. 

devicen specifies the device(s) to be waited for. 
following may be specified: 

One of the 

symn indicates the symbolic device name and number, where: 

sym is CON, DSK, PRT, PUN, RDR, or TAP. 
n indicates a device number. 

user is a four-character symbolic name specified a HNDINT 
macro issued for the same device. 

ERROR=erraddr 
specifies the address of an error routine to be given contrel 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

1. Use the WAITD macro instruction to ensure completion of an I/O 
operation. If an interruption has been received and not processed 
from a device specified in the WAITD macro instruction, the 
interruption is processed before program execution continues. 

2. When the interruption has been completely processed, control is 
returned to the caller with the name of the interrupting device in 
register 1. 

3. If an HNDINT macro instruction issued for the same device specified­
ASAP and an interruption has already been processed for the device, 
the wait condition is satisfied. 

4. If an HNDINT macro instruction issued for the same device specified 
WAIT and an interruption for the device- has been received, the 
interruption handling routine is given control. 

5. The interruption routine determines if an interruption 
considered processed or if more ·inter~uptions are necessary 
satisfy the wait condition. For additional information see 
discussion of the HNDINT macro instruction. 

is 
to 

the 

When an error is detected, register 15 contains a 1 to indicate that an 
invalid device number was specified. 

section 6. eMS Macro Instructions 337 



WAITT~WRTAPE Macros 

WAITT 

Use the WAITT macro instruction to cause the program to wait until all 
of the pending terminal I/O is complete. The format of the WAITT macro 
instruction is: 

r 
I [label] I WAITT I 
• .J 

label is an optional statement label. 

The WAITT macro instruction synchronizes input and output to the 
terminal; it ensures that the console stack is cleared before the 
program continues execution. Also, you can ensure that a read or write 
operation is finished before you modify an I/O buffer. 

WRTAPE 

Use the WRTAPE macro instruction to write a record on the specified tape 
drive~ The format of the WRTAPE macro instruction is: 

~~------------------------------------------------.--------------'------------, 
I [label] WRTAPE buffer,length [,device] (,.MODE=mode] I 
I [ ,ERROR=erraddr] I 

label 

buffer 

length 

device 

is an optional statement label. 

specifies the address of the record to be written. It may be: 

lineaddr 
(reg) 

the symbolic address of the line. 
a register containing the address of the time. 

specifies the length of the line to be written. It may be 
specified in either of two ways: 

n 
(reg) 

a self-defining term indicating the length. 
a register containing the length. 

specifies the device to which the record is to be written. If 
omitted, TAP1 (virtual address 181) is assumed. It may be: 

TAPn 

cuu 

indicates the symbolic tape·· nuuiber(TAP1 through 
TAP4) • 
indicates the virtual device address. 

MODE=mode specifies the number -of tracks, _ density, and tape rec.ording­
technique. It must be in the following form: 

([ track ], (densi ty],( trtch ]} 

338 IBM VM/370 CMS Command and Macro Reference 



March 30, 1979 

WRTAPE Macro 

track 7 indicates a 7-track tape (implies density=800 and 
trtch=O) • 

density 

trtch 

9 indicates a 9-track tape (implies density=800). 

200, 556, or 800 for a 7-track tape 
800, 1600, or 6250 for a 9-track tape. 

indicates the 
7-track tape. 
specified: 

tape 
One 

recording technique 
of the following must 

for 
be 

o - odd parity, converter off, translator off. 
OC - odd parity, converter on, translator off. 
OT - odd parity, converter off, translator on. 
E - even parity, converter off, translator off. 
ET - even parity, converter off, translator on. 

ERROR=erraddr 
specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

you need not specify the MODE option when you are writing to a 9-track' 
tape and want to use the default density, nor when you are writing to a 
7-track tape with a density of 800 bpi, odd parity, with data converter 
and translator off. 

If an error occurs, register 15 contains one of the following error 
codes: 

~QQ~ 
1 
2 
3 
4 
5 
6 

!ieall.!llg 
Invalid function or parameter 
End of file or end of tape 
Permanent I/O error 
Invalid device identification 
Tape not attached 
Tape is file-protected 

WRTERM 

list 

Use the iRTER! macro instruction to display a line at the terminal. The 
format of the iRTERM macro instruction is: 

[label] I WRTERM I line (,length] (,EDIT=code ] [,COLOR=color] 
-I 

!h~: 

label is an optional statement label. 

Section 6. CMS Macro Instructions 339 



March 30, 1979 

WRTERM Macro 

line 

length 

specifies the line to be displayed. 
forms: 

It may be one of three 

'linetext' 
lineaddr 
(reg) 

the actual text line enclosed in quotation marks. 
the label on the statement containing the line. 
a register containing the address of the line. 

specifies the length of the line. If the line is specified 
within quotation marks in the macro instruction, the length 
operand may be omitted. The length may be specified in either 
of two ways: 

n 
(reg) 

a self-defining term indicating the length. 
a register containing the length. 

EDIT=code specifies whether the line is to be edited: 

I!~ indicates that trailing blanks are to be removed and a 
carriage return added to the end of the line. YES is the 
default value. 

NO indicates that trailing blanks are not to be removed and 
no carriage return is to be added. 

LONG indicates the line may exceed 130 bytes. 
performed. 

COLOR=color 

No editing is 

indicates the color in which the line is to be typed, if the 
typewriter terminal has a two-color ribbon: 

~ indicates that the line is to be typed in black. This is 
the default. 

R indicates that the line is to be typed in red. 

1. The maximum line length is 130 characters for a black line and 126 
characters for a red line. 

2. If EDIT=LONG, COLOR must be specified as "B~. In this case, you may 
write as many as 1760 bytes with a single WRTERM macro instruction. 
You are responsible for embedding the proper terminal control 
characters in the data. (This operand is for use primarily with VS 
APL programs.) 

3. You may want to use the WAITT macro instruction to ensure that 
terminal I/O is complete before continuing program execution. 

340 IBM VM/370 CMS Com_mand and Macro Reference 



~g. ox GC~O-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

FORMAT WORDS 

Section 7. HELP Format Words 

This section describes the formats, operands, and defaults of the HELP 
facility format words. In each of the format word descriptions, the 
default values are those that are implied when you enter a format word 
with no operands or parameters. For example, the default operand of the 
.FO (FORMAT MODE) format word is 'on'. Therefore, the format lines 

.fo 

.fo on 

are equivalent, and in the format box of the .FO format word the 'on' 
operand is underscored. 

HELP format words are used only in HELP description files when the user 
wants HELP to do output formatting when the file is processed. Figure 
20.1 is a summary of the HELP facility format words. 

section 7. HELP FORMAT WORDS 340.1 



Pg. of GC20-1818-2 Rev March 3U, 1~/~ nJ ~upp. ~u~~-~v~~- I ~V~ J'~v AAV 

FORMAT WORDS 

Format Operand Default 
word Format Function Break Value 

• BX (BOX) I V1 V2 ••• Vn Draws horizontal and I Yes IDraws a 
I OFF vertical lines around I Ihorizontal 
I subsequent output text in I Iline. 
I blank col ullns. I I , , I 

.CM I Comments Places comments in a I No I 
(COMMENT) I file for future reference. I I 

I I I 
• cs I nON/OFF Allows conditional I No t 

(CONDI- t inclusion of input in I 
TIONAL I the forma tted output. I 

SECTION I I 
I I 

.FO t ON/OFF Causes concatenation of , Yes On 
(FORMAT input lines, and left and 

-MODE) right-justification of 
output. 

• IL (IN- nl+nl-n Indents only the next Yes 0 
DENT LINE) line the specified 

number of spaces. 

• IN (IN- nl+nl-n Specifies the number Yes 0 
DENT) of spaces subsequent 

text is to be indented. 

.OF (OFF- nl +nl-n Provides a technique Yes 0 
SET) for indenting all but 

the first line of a 
section. 

.SP n Specifies the number Yes 1 
(SPACE) of blank lines to be 

inserted before the 
next output line. 

• TR (TRANS- s t Specifies the final No 
LATE) output representation. 

of any input character. 

Figure 20.1. HELP Format Word Summary 

340.2 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

HELP Format Words - .BX 

.BX (BOX) 
The BOX format word defines and initializes a horizontal rule for output 
and defines vertical rules for subsequent output lines~ 

The format of the .EX format word is: 

.BX 

vl-vn 

Off 

r , 
Ivl v2 [ ••• [vn]]1 
10FF I 
L .J 

are the positions at which you want to plae vertical rules in 
output text. This format of the format word initializes the 
box and draws a horizontal line with vertical descenders at 
the columns indicated. Subsequently entering the .BX format 
word with no operands causes HELP to print a horizontal line 
with vertical bars at the columns indicated. 

causes HELP to finish drawing the box by printing a horizontal 
line with vertical ascenders at the columns specified in a 
previous .BX format word. 

1. The .BX format word describes an overlay structure for subsequent 
text that is processed by HELP. After the ·.BX v1 v2 •••• line is 
processed, HELP continues processing output lines as usual. 
However, before a line is printed, HELP places vertical bars in the 
columns indicated by v1, v2, and so on, unless a column is already 
occupied by a data character. In this case, HELP does not place a 
vertical bar in the column. 

2. The .BX control word causes a break in the text. 

3. The terminal output characters for boxes are formed with dashes 
(-), vertical bars (I), and plus signs (+). 

4. You can specify a .BX format word with different columns while a 
box is being drawn. When this happens, HELP - puts in vertical 
ascenders for all the old columns and vertical descenders for all 
the new columns. The vertical rules then appear in all subsequent 
output lines in the new columns designated. 

I 5. The column specification for the .BX format word uses a different 
I rule than is used elsewhere in HELP. In some control words the 
1 numbers in the format word represent not columns but displacements. 
1 For example the HELP format word .IN 5 means that a blank character 
I should be expanded-to enough blanks to fill up ihrough column 5; 

-I the next word starts in column 6. In the .BX control word, .BX 5 
I means to put vertical rules - i!! column 5. Thus, you ca_~ use_ tlie 
1 same numbers for a .IN control _word as for a .BX_control word, and 
I the vertical bar will appear in the column -immediately preceding 
I the first word on that line. 

Section 7. HELP FORMAT WORDS 340.3 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023~1 for 5748-XX8 

HELP Format Words - .BX 

~~A!Elg 

Consider the HELP file called 'MARYHADA' that looks like this: 

.bx 1 43 

.in 5 
Mary had a little lamb, 
Whose fleece was white as snow, 
And everywhere that Mary went, 
The lamb was sure to go • 
• bx off 

This file, when processed by HELP, creates the following output: 

Mary had a little lamb, 
Whose fleece was white as snow, 
And everywhere that Mary vent, 
The lamb was sure to go. 

340.4 IBM VM/370 CMS C~mmand-and Macro Reference 



Pg. of GC20-1818-2 Rev ~arch 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

HELP Format Words - .CM 

.CM (COMMENT) 

Use the COMMENT format word to place comments within a HELP file. 

The format of the .eM format word is: 

• eM comments 

comments may be anything; this input line is not used in formatting the 
output. 

1. The .CM format word enables you to store comments in the HELP files 
for future reference. The comments can be seen 2nly by editing the 
HELP file. 

2. You can use comments to store unique identifications to be used to 
locate a specific region of the file during editing • 

• eM Remember to change the date. 

The line above is seen only when edit~ng the HELP file, and it reminds 
you to change the date used in the text. 

Section 7. HELP FORMAT_WORDS 340.5 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

HELP Format Words - .CS 

.CS (CONDITIONALSECTION) 
The CONDITIONAL SECTION format word identifies to HELP the sections of 
the input file that are to be conditionally processed based on the 
specified HELP command option. 

The format of the .CS format word is: 

.CS n [ON ] 
[ OFF ] 

I n specifies the conditional section code number from 1 to 3. 

on marks the beginning of conditional section n. 

off marks the end of conditional section n. 

1. The .CS format word enables you to identify the specific sections 
of the input file that are directly associated with the HELP 
facility command 'options', and that will be included in the output 
based on the HELP command option specified. 

If you choose to implement any HELP description files using the 
ALL, PARM, FORM, and DESC options, the format word .CS is required 
in the file. You must use the following form: 

Top of file 
.CS 1 on 

(Text for DESC option) 
.CS 1 off 
.cs 2 on 

(Text for FORM option) 
.CS 2 off 
.CS 3 on 

(Text for PARM option) . 
.CS 3 off 
End of file 

2. A conditional section can contain HELP format vords as well as 
text. If the section is ignored when processed by HELP, all format 
words contained in that section are ignored, except-th~ format 
word: 

.cs n off 

which marks the end of the section. 

3. Imbedding .CS format words (that is, specifying the beginriing of a. 
conditional section befor~ you have specified the end of a previous 
conditional section) produces unpredictable results. 

340.6 IBM VM/370 CMS Command-and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

HELP Format Words - .FO 

.FO (FORMAT MODE) 
Use the FORMAT MODE format word to cancel or restore concatenation of 
input lines and right-justification of output lines. 

The format of the .FO format word is: 

r 
I 
I 
I 
I 

.FO 
r , 
I Q!! I 
I OFF I 
l. J 

ON restores default HELP formatting, including both justification 
and concatenation of lines. If you use the .FO format word 
with no operands, ON is assumed. 

Off cancels concatenation of input lines and justification of 
output lines. Subsequent text is printed 'as is'. 

1. When format mode is in effect, lines are formed by shifting words 
to or from the next line (concatenation) and padding with extra 
blanks to produce an aligned right margin (justification). 

2. This format word acts as a break. 

3. When format mode is in effect, a 
exceeds the current line length is 
If a line is processed so that only 
word is left-justified. 

line without any blanks that 
extended into the right margin. 

one word fits on the line, the 

4. If n2 formatting is to be done by HELP, HELP description files !Y21 
contain a '.fo off' format word as the first line of the file. 

1. .FO off 

Justification and concatenation are 
completed for 
the preceding line or lines, but the following 
lines are 
typed exactly as they aFpear in the file. 

2. • FO 

Justification and formatting are 
output from this point on in the 
right margin on the output page. 

resumed with the 
file is padded to 

next input lin_e. 
produce an alig~ed 

Section 7. HELP FORMAT WORDS 340.7 



I 
I 
I 
I 
I 
I 

Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. 5D23-9023-1 for 5748-XX8 

HELP Format Words - .IL 

.IL (IDENT LINE) 

Use the INDENT LINE format word to indent the ~~~! l!n~ only a specified 
number of characters. 

The format of the .IL format word is: 

.IL 
r , 

In' 
I +n I 
I -n I 
L .J I I~ _________________________________________________________________________ J 

I n 
I 
I 

specifies the number of character spaces to shift the next 
line from the current margin. +n specifies that text is 
shifted to the right, and -n shifts text to the left. 

1. The .IL format word provides a way to indent the next output line. 
The line is shifted to the right or the left of the current margin 
(which includes any indent or offset values in effect) • 

2. This format word acts as a break. 

3. The .IL format word is useful for beginning new paragraphs. 

4. When successive .IL format words are encountered without 
intervening text, or when you specify positive or negative 
increments for .IL format words entered without intervening text, 
the indent amount is modified to reflect the last .IL encountered; 
that is, the increments are added together. Thus the lines: 

.il 4 

.il +6 

result in the next line being indented 10 spaces. 

5. When you use the .IL format word with a negative value (undenting), 
an error message is generated if the resulting amount would cause a 
shift to the left of character position one. 

340.8 IBM VM/370 CMS Co~man~_and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

HELP Format Words - .IN 

.IN (INDENT) 
Use the INDENT fermat word to change the left margin displacement of 
HELP output. 

The format of the .IN format word is: 

r 
I r , 
I • IN , n I , , +n I 
I I -n I 
I I Q I 
I L .J 

I n 
I 

specifies the number of spaces to be indented. If omitted, 0 
is assumed, and indentation reverts to the left margin. If 
you use +n or -n, the current left margin increases or 
decreases by the amount specified. 

I 
I 

1. The .IN format word resets the current left margin. This 
indentation remains in effect for all following lines until another 
.IN format word is encountered. '.IN 0' cancels the indentation, 
and output continues at the original left margin setting. 

2. The value of n represents the number of blank spaces left before 
text margins. Thus, '.in 5' sets the left margin at column 6, 
leaving 5 blank spaces at the left. 

3. This format word acts as a break. 

4. The .IN format word cancels any .OF (OFFSET) setting. The .OF 0 
request cancels the current offset, but leaves the left margin 
specified by the .IN format word unchanged. 

~xali.El~ 

1. • in 10 

2. • in 0 

All lines processed after this request are indented 10 spaces 
from the current left margin setting. This indentation 
continues until-another .IN format word is-encountered. 

The effect of any current indentation is canceled, and out~ut 
continues at the original left margi~ setting. 

Section 7. HELP FORMAT WORDS 340.9 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

HELP Format Words - .OF 

.OF (OFFSET) 

Use the OFFSET format word to indent all but the first line of a block 
of text. 

The format of the .OF format word is: 

I n 
I 

specifies the number of spaces to be indented after the next 
line is formatted. If oaitted, 0 is assumed, and indentation 
reverts to the original margin setting. If you use +n or -n, 
the current offset value increases or decreases the specified 
amount, and a new offset is started. 

I 
I 
I 

I 
I 

!!§age !Qte§ 

1. The .OF format word does not take effect until after the next line 
is formatted. The indentation remains in effect until a .IN 
(INDENT) format word or another OFFSET control word is encountered. 

2. 

3. 

You can use the .OF format word within a section that is also 
indented with the .IN format word. Note that .IN settings take 
precedence over .OF, however, and any .IN request causes a previous 
offset to be cleared. 

If you want to start a new section with the same offset as the 
previous section, you need only repeat the • OF n request • 

This for.at word acts as a break,. 

You can use the .IL (INDENT LINE) format word to shift only the 
next line to the left or right of the current margin. 

1. Starting an offset: 
'. of 10 

The line immediately following the .OF format word is printed 
at the current left margin.. All lines· thereafter (untl1 the 
next indent or offset request) are indented ten _spaces from 
the current margin setting. These two examples were processed 
with OFFSET control words in the positions shown~ 

2. Ending an offset: 

.of 

The effect of any previous .OF request is canceled, and all output -after 
the next line continues at -the-current left margin set~irig. 

340.10 IBM VM/370 eMS Command· and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

HELP Format Words - .SP 

.SP (SPACE LINES) 
Use the SPACE LINES format word when you want blank lines to appear 
between text lines of output. 

The format of the .SP format word is: 

.SP 
r , 
I n I 
I 1 I 
L .J ~ _____________________________________________________________________ J 

I n 
I 

specifies the number of blank lines to be inserted in the 
output. If omitted, 1 is assumed. 

Section 7. HELP FORftAT WORDS 340.11 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XX8 

HELP Format Words - .TR 

.TR (TRANSLATE CHARACTER) 

The TRANSLATE CHARACTER format word allows you to specify the output 
representation of each character in the source text. For example, you 
could specify that all exclamation points in the file appear as blanks 
in the output. 

The format of the .TR format word is: 

I s 
I 

t 

.TR ( s t ] 

is a source character under consideration. It may be a single 
character or a two-character hexadecimal code. 

is the intended output representation of the source character. 
It may be a single character or a two-character hexadecimal 
code. 

!!§~~ !Qte§ 

1. After formatting of an input source line has been completed and 
immediately before actual output, each character of the output line 
may be translated to a different output code. 

2. Since format words are only processed internally, they are never 
translated in the file. 

3. Translate character specifications 
explicitly respecified. 

remain in effect until 

4. A .TR format word with no operands causes the translation table to 
be reinitialized and all previously specified translations to be 
reset. 

5. The .TR format word does not cause a break. If you have a section 
of text that has translation characters in effect," followed by a 
.TR to reset the translations, the last line of the text may not 
yet have been printed. In this case, that last line is _ not 
translated. 

~!n£l~ 

.tr 40 1 

This causes all blanks in the file to be typed"as question marks (1) on 
output. 

340.12 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-XXa 

Appendixes 

The following appendixes are provided for your convenience: 

• Appendix A: Reserved Filetype Defaults 

• Appendix B: VSE/VSAM Functions Not supported in CMS 

• Appendix C: OS/VS Access Method Services and VSAM Functions 
Not Supported in CMS 

Appendixes 341 



March 30, 1979 

342 IBM VM/370 eMS Command and Macro Reference 



Appendix A: Reserved Filetype Defaults 

REPORT 
UPDTPROC 

update report assemble a (etl 

REPORT 
AUXLlST 

REPORT 
FIXIN 

REPORT 
CNTRL 

TEXT MACS 
UP2 UPDTPROC 
LIST AUXLlST 
UPl UPDTREPl 
TEXT AUXFIX 

REPORT 
FIXOUT 

UPDATING 'REPORT ASSEMBLE Al' WITH 'REPORT RTNA Al'. 
UPDATING WITH 'REPORT RTNB Al'. 
UPDATING WITH 'REPORT UPDTREPl Al'. 
UPDATING WITH 'REPORT FIXOUT Al'. 
UPDATING WITH 'REPORT FIXIN Al'. 
UPDATING WITH 'REPORT UPDTPROC Al'. 
R; 

REPORT 
RTNA 

REPORT 
AUXFIX 

REPORT 
RTNB 

Figure 21. Default EDIT Subcommand settings for-eMS Reserved Filetypes 

Appendix A: Reserved Filetype Defaults 343~ 



344 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev Mat .. ch. 30,1979 by Supp. SD23-9023-1 for 5748-XX8 

Appendix B: VSE/VSAM Functions Not 
Supported in eMS 

Refer to the publication Us!ng !~~L!~!~ £Q!mgn~§ gn~ ~g£EQ2' SC24-5144, 
for a description of access method services functions available under 
DOS/VSE, and, therefore, under CMS. This knowledge of access method 
services is assumed throughout this publication. 

All of VSE/VSAM is supported by CMS, except for the following: 

• Non-VSAM data sets with data formats that are not supported by 
CMS/DOS (for example, BDAM and IS1M files are not supported). 

• The SH1REOPTIONS operand has no function in eMS. However, you should 
specify SHAREOPTIONS 3 in your DEFINE control statement for more 
efficient operations. When you specify SH1REOPTIONS 3, CMS does not 
execute the code that attempts to reserve and release system 
resources. 

App~ndi~.B: VSE/VSAM Functions Not Supported 345 



March 30, 1979 

346 IBM VM/370 eMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp. SD23-9023-1 for 5748-118 

Appendix C: OS/VS Access Method Services 
and VSAM Functions Not Supported in CMS 

In CMS, an OS user is defined as a user that has not issued the command: 

SET DOS ON (VSAM) 

OS users can use all of the access method services functions that are 
supported by DOS/VSE, with the following exceptions: 

• Non-VSAM data sets with data formats that are not supported by 
CMS/DOS (for example, BDAM and ISAM files are not supported). 

• The SHAREOPTIONS operand has no function in CMS. However, you should 
specify SHAREOPTIONS 3 in your DEFINE control statement for more 
efficient operation. When you specify SHAREOPTIONS 3, CMS does not 
execute the code that attempts to reserve and release system 
resources. 

• Do not use the AUTHORIZATION (entrypoint) operand in the DEPINE and 
ALTER commands unless your own authorization routine exists on the 
DOS core image library, the private core image library, or in a CMS 
DOSLIB file. In addition, results are unpredictable if your 
authorization routine issues an OS SVC instruction. 

• The secondary space allocation parameter in the following DEFINE 
commands is not used by access method services nor DOS/VS VSAM: 
DEFINE SPACE, DEFINE USERCATALOG# and DEFINE CLUSTER with the UNIQUE 
parameter. However, you may code this parameter to make your control 
statement file compatible with an OS/VS VSAM control file. 

• The OS access method services GRAPHICS TABLE options and the TEST 
option of the PARM command are not supported. 

• The filename in the FILE (filename) operands is limited to seven 
characters. If an eighth character is specified, it is ignored. 

• The OS access method services CNVTCAT and CHKLIST commands are not 
supported in DOS/VS access method services. In addition, alIOS 
access method services commands that support the 3850 Mass Storage 
System are not supported in DOS/VS access method ~ervices. 

• Figure 22 is a list of as operands, by control statement, tha~ are 
not supported by the CMS interface to DOS/VS a~cess method services. 

If any of 
specified, the 
error message. 

the unsupported 
AMSERV command 

operands or commands in Figure 22 are 
terminates and displays an appropriate 

When you use the PRINT, EIPORT, IMPORT, IMPORTRA~ EIPORTRA, and REPRO 
control statements for sequential access method (SAM) data sets, you 
must specify the ENVIRONMENT operand with the required DOS options (th~t 
is, PRIME DATA DEVICE, BLOCKSIZE, RECORDSIZE~ or RECORDFORMAT). You 
must have previously issued a _DLBL for the SAM file. 

AMSERV can write SAM data sets only to a eMS .disk, but can read them 
from DOS, OS, or CMS disks. 

Appendix C:-OS/VS VSAM Functions Not Supported 341 



naL"cn ..JV, 1::1' ::1 

OS Access Method Services 
Control Statement 

ALTER 

BLDINDEX 

DEFINE 

DELETE 

EXPORT 

IMPORT 

LISTCAT 

PRINT 

REPRO 

VERIFY 

operands Not supported in CMS 

EMPTY/NOEI!PTY 
SCRATCH/NOSCRATCH 
DESTAGEWAIT/NODESTAGEWAIT 
STAGE/BIND/CYLINDERFAULT 

INDATASET 
OUTDATASET 

ALIAS 
EMPTY/NOEMPTY 
GENERATIONDATAGROUP 
PAGESPACE 
SCRATCH/NOSCRATCH 
DESTAGEWAIT/NODESTAGEWAIT 
STAGE/BIND/CYLINDERFAULT 
TOIFOR/OWNER1 

ALIAS 
GENERATIOBDATAGROUP 
PAGES PACE 
SCRATCH/BOSCRATCH 

OUTDATASET 

INDATASET 
OUTDATASET 
IMPORTA 

ALIAS 
GENERATIONDATAGBOUP 
LEVEL 
OUTFILE2 
PAGESPACE 

INDATASET 
OUTFILE2 

INDATASET 
OUTDATASET 

DATASET 
====================================================================== 
lThe TO/FOR/OWNER operands are supported for the access. method 
services interface, but are not supported for the DEFINE BONVSAt! 
control statement. 

2The OUTFILE operand is supported by the access' method services 
interface, but is not supported for the LISTCAT and- PRINT control 
statements. 

Figure 22. OS Access Method Services Operands Not Supported in CMS 

348 IBM VM/370 eMS Command and Macro Reference 



Pg~ of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

Index 

The entries in this Index are accumulative and reflect the additions of the VM/370 Basic 
System Extensions Program Product, Program Number 5748-XX8. 

./ * (comments) UPDATE control statement 
205 

./ D (DELETE) UPDATE control statement 204 

./ I (INSERT) UPDATE control statement 203 

./ R (REPLACE) UPDATE control statement 
204 

./ S (SEQUENCE) UPDATE control statement 
202 

.BX (BOX) format word (57~~=!X8) 340.3 

.CM (COMMENT) format word (~148=!!~) 340.5 

.CS (CONDITIONAL SECTION) format word 
(~1~~=!!~) 340.6 

.FO (FORMAT MODE) format word (~l~~=XX~) 
340.7 

.IL (INDENT LINE) format word (~1~~=!!~) 
340.8 

.IN (INDENT) format word (~74~=!!~) 340.9 

.OF (OFFSET) format word (5748-XX8) 340.10 

.SP(SPACE LINES) format word-(51~~=!!!!> 
340.11 

.TR (TRANSLATE CHARACTER) format word 
(~748=!!~) 340.12 

&$ special variable 298 
in &IF control statement 287 
setting 277 

&* special variable 298 
in &IF control statement 287 
setting 277 

&ARGS control statement, description 277 
&BEGEMSG control statement 

ALL operand 278 
description 278 

&BEGPUNCH control statement 
ALL operand 279 
description 279 

&BEGSTACK control statement 
ALL operand 280 
description 280 
FIFO operand 280 
LIFO operand 280 

&BEGTYPE control statement 
ALL operand 280 
description 280 

&CONCAT built-in function, description 295 
&CONTINUE control statement 281 

used with &ERROR control statement 284 
&CONTROL control statement 

ALL operand 282 
- CMS operand 282 

description 282 
ERROR operand 282 
MSG operand 282 
NOMSG operand 282 
NOPACK operand 282 
NOTIME operand 282 

OIP operand 282 
PACK operand 282 
TIME operand 282 

&DATATYPE built-in functian, description 
296 

&DISR* special variable 299 
&DISR? special variable 299 
&DISRx special variahle 298 
&DOS special variahle 299 
&EMSG control statement, description 283 
&END control statement 284 

with &BEGEMSG control statement 278 
with &BEGPUNCH control statement 279 
with &BEGSTACK control statement 280 
with &BEGTYPE control statement 280 

&ERROR control statement, description 284 
&EXEC special variable 299 
&EXIT control statement, description 285 
&GLOEAL special variable 299 
&GLOEALn special variable 300 
&GOTO control statement 

description 286 
TOP operand 286 

&HEX control statement 
description 286 
OFF operand 286 
ON operand 286 

&IF control statement, description 287 
&INDEX special variable 300 

setting 277,290 
&LENGTH built-in function, description 296 
&LINENUM special variable 300 
&LITERAL built-in function, description 

297 
&LOOP control statement, description 288 
&n special -variable 298 
&PUNCH control statement, description 289 
&REAt control statement 

ARGS operand 290 
description 290 
VARS oper~nd- 290 

&REAtFLAG special variable 300 
testing 290 

&RETCODE special variable 300 
&SKIP control statement, description 290 
&SPACE control -statement, desGription 291 
&STACK contr~l statement 

description 292 
FIFO operand 292 
LIFO operand 292 
stacking CHANGE subcommand 220 
stacking INPUT suhcommand 232_ 
stacking REPLACE subcommand- _242 

&SUESTR huilt-in function, description 297 
&TIME control statement 

description 293 
OFF operand 293-
ON operand 293 

Index 349 



Pg. of GC2~1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5148-XX8 

RESET operand 293 
TYPE operand 293 

STYPE control statement, description 294 
STYPEFLAG special variable 300 
SO special variable 298 

SDUP edit macro 258 
SLISTIO EXEC file 

appending information to 118 
creating 118 
format 118 

SMOlE edit macro 259 
DOWN operand 259 
TO operand 259 
UP operand 259 

* (asterisk) 
entered in fileid 5 
in ACCESS command 16 

216 in ALTER subcommand 
in CHANGE subcommand 
in COPYFILE command 

examples 39 

220 
35 

in DELETE subcommand 224 
in DLBL command 60 
in DSERV command 17 
in EDIT command 19 
in FILEDEF command 89 
in GETFILE subcommand 230 
in LISTDS command 110 
in LISTDS command (~148-!!~) 
in LISTFILE command 115 
in PRINT command 139 
in PUNCH command 144 
in READCARD command 156 
in RENAME command 160 
in REPEAT subcommand 241 

110.4 

in SCROLL/SCROLLUP subcommand 246 
in START command 115 
in STATE and STATEW commands 176 
in TAPPDS command 193 
in TRUNC subcommand 250 
in TYPE subcommand 251 
in VERIFY subcommand 253 
in ZONE subcommand 255 
with DISK option, of CMS QUERY command 

151 
with RESET option 

of INCLUDE command 106 
of INCLUDE command (~l~~=XX~) 106.3 
of LOAD command 120 

* (comment) com.and 3 
*COPY statement 131 

/ (diagonal), used in ACCESS command 16 

%, used to pass null argument to EXEC 
procedure 298 

? 
subcommand. description 256 
used with DSN option of DLEL command 61 
used with FILEDEF DISK option 95 

= (equal sign) 
in COpy FILE command 35 

examples 39 
in RENAME command 161 

= sutcommand (2~~ REUSE subcommand) 

A 
A option of LISTIO command 118 
ABBR!V option 

of CMS QUERY command 148 
of CMS SET command 168 

relationship to SYNONYM command 183 
abbreviation 

of command names 4.168.183 
querying acceptability of 148 
setting acceptability of 168 

used with synonyms 183 
abnormal termination (abend) 

effect on DLBL definitions 61 
effect on FILEDEF definitions 93 
encountered by CMSBATCH command 32 
entering debug environment after 261 

ACCESS command 
description 16 
ERASE option 16,18 
examples 11 
first command after IPL 16 
NODISK option 11 
NOPROF option 16 
usage with DEFINE command 18 

access method services 
allocating VSAM space 68 

in CMS/DOS 64 
control statements. operands not 

supported in CMS (OS users) 348 
determine free space extents for 111 
invoking in CMS 20 
LISTING file-created by 20 
restrictions 

for DOS/VS users 345 
for DOS/VSE users (~l~~=lI~) 345 
for OS/VS users 347 

ADD option 
of MACLIB command 130 
of TXTLIB command 196 
of TXTLIE command (~14~=!X8) 196,.1 

A-disk, accessed after IPLing eMS "11 
ALIGN option of ASSEMBLE command 26 
alignment of boundaries in assembler 

program_ statements 26 

350 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

ALL 
operand 

of &BEGEMSG control statement 
of &BEGPUNCH control statement 
of &BEGSTACK control statement 
of &BEGTYPE control statement 
of &CONTROL control statement 
of SERIAL subcom.and 241 

option 
of GENMOD command 102 
of LISTIO command 118 

278 
219 
280 

280 
282 

ALL option, of HELP command (~148=!X8) 
106.1 

ALLOC option of LISTFILE command 115 
ALOGIC option of ASSEMBLE command 24 
ALTER subcommand 

description 216 
effect of zone setting 255 

AMSERV 
command 

description 
LISTING file 
PRINT option 
TAPIN option 
TAPOUT option 

filetype 21 

20 
20 
20 
20 

20 

default editor settings 343 
APPEND option 

of COPYFILE command 31 
of LISTFILE command 115 
of LISTIO command 118 

AUGS operand of &READ control statement 
290 

arguments 
on RUN command 164 
on START command 115 
passed to EXEC procedure 85,277 

initializing 277 
passing to nested EXEC procedures 

300 
reading from terminal or console 
stack 290 

testing how many were passed 300 
ASA carriage control characters 328 
ASAP operand of HNDINT macro 314 
ASSEMBLE 

assembler input ddname 27 
command 1 

ALIGN option 26 
ALOGIC option 24 
BUFSIZE option 26 
DECK option 25 
description 23 
DISK option 25 
ESD option 24 
FLAG option 24 
LIBMAC option 24 
LINECOUN option 24 
LIST option 24 

listing control options for 24 
ftCALL option 24 
ftLOGIC option 24 
NOALIGN option 26 
NOALOGIC option 24 
NODECK option 25 
NOESD option 24 
NOLIBMAC option 24 
NOLIST option 24 
NOMCALL option 24 
NOMLOGIC option 24 
NONUM option 25 
NOOEJECT option 25 
NOPRINT option 25 
NORENT option 26 
NORLD option 24 
NOSTMT option 26 
NOTERM option 26 
NOTEST option 25 
NOXREF option 25 
NOYFLAG option 26 
NUMBER option 25 
OBJECT option 25 
PRINT option 25 
RENT option 26 
RLD option 24 
STMT option 26 
SYSPARM option 26 
SYSTERM listing 25 
TERMINAL option 26 
TEST option 25 
XREF option 25 
YFLAG option 26 

filetype 
created by TAPPDS command 193 
default editor settings 343 
used as input to assembler 23 

assembler 
conditional assembly statements, listing 

24 
overriding CMS file defaults 27 
using under CftS 1,23 

ASSGN command 
DEN option 30 
description 29 
IGN option 30 
LOWCASE option 30 
PRINTER option 29 
PUNCH -option 29 
READER option 29 
SYSxxx option 29 
TAPn option 29 
TERMINAL option 29 
TRTCH option 30 
UPCASE option 30 
7TRACK option 30 
9TRACK option 30 

assignment statement 276 

Index 351 



Pg. of GC20-1818-2 Rev ftarch 30~ 1979 by Supp SD23-9023-1 for 5748-XX8 

assignments 
logical unit~ listing 118 
system and programmer~ unassigning 158 

attention interruption~ causing 9 
ATTREST operand of RDTERM macro 334 
AUTO option 

of INCLUDE command 107 
of LOAD command 121 

automatic 
read function, setting 168 
save function of CftS editor 

canceling 217 
invoking 217 

AUTOREAD option of CftS SET command 168 
AUTOSAVE subcommand 

description 217 
OFF operand 217 

auxiliary directory, creating 100 
AUXPROC, option of FILEDEF command 
(~148=!!.!!) 93 

AUXPROC option of FILEDEF command 93 

B 
hackspace 

characters~ how editor handles 232 
key, used with OVERLAY subcommand 237 

BACKWARD subcommand, description 218 
BASDATA filetype, default editor settings 

343 
base address, for debugging, set with 

ORIGIN subcommand 269 
BASIC filetype, default editor settings 

343 
BCD characters, converting to EBCDIC 31 
BDAft, files, specifying in CftS 91 
blank lines, displaying at terminal during 

EXEC processing 291 
blanks 

as delimiters 2 
FIND subcommand 226 

as delimiters (~74~=!!~) 2.1 
displaying in LINEDIT message text 320 
overlaying characters with 237 
trailing 

removing with WRTERM macro 340 
truncating from variable-length file 

240 
blip 

characters 
for virtual machine 166 
for virtual machine, displaying 147 

function 
querying setting of 147 
setting 166 

BLIP option 
of CftS QUERY command 147 
of CMS SET command 166 

BLKCT operand, of TAPESL macro (~1!!8-!!.!H 
336.2 

BLK~IZE option 
of FORMAT command (~1~8-!!§) 97 
of TAPE command (~l!!§=XX§) 188 

BLKSIZE option ofFILEDEF command 91 
BLOCK option of FILEDEF command 91 

blocksize, specifying with FILEDEF command 
93 

BLP operand, of FILEDEF com.and (57!8-!X8) 
95 

books 
from DOS/VS source statement libraries, 

copying 173 
from DOS/VSE source statement libraries, 

copying (~1~~=XX8) ~73 
BOTTOM subcommand, description 218 
boundary alignment, of statements in 

assembler program 26 
BOX (.BX) format word (~1!~=XX8) 340.3 
BREAK subcommand, description 262 
breakpoints, setting 262 
BSF, tape control function 187 
BSIZE operand of FSCB macro 302 
BSIZE operand of FSCB macro (57!8-X!~) 

302.1 
BSR, tape control function 187 
BUFFA operand of LINEDIT macro 325 
buffer 

size 
controlling for assembler 26 
for VSAM programs 62 
specifying with FSCB macro 302 
specifying with FSCB macro (~1!8-!X8) 

302.1 
specifying for RDTERM macro 333 
specifying for read/write operations', 

FSCB macro 302 
to copy LINEDIT message text 325 

BUFFER operand of FSCB macro 302 
BUFSIZE option of ASSEMBLE command 26 
BUFSP option, of DLBL command 62 
BUFSP option of DLBL command 62 
built-in functions, EXEC 295 

C 
CANON operand of IMAGE subcommand 231 
card reader 

reading files from, READCARD command 
155 

reading records from, RnCIRD macro 331 
carriage control characters 

ASI, summary 328 
handling by PRINT command 139,140 
machine code 328 

CASE subcommand 
description 219 
M operand 219 
U operand 219 

CAT option 
of DLBL co'mmand 62 

example of usage in CMS/DOS 66 
CAT option of DLBL command~ example of 

usage 70 
catalogs (§~ VS!M ~atalogs) 
CAW -

operand of SET suhcommand 271 
suhcommand, description_ 263 

CAW (channel addr~ss word) 
cbanging in- dehug environment 271 
displaying in debug environment 263 
format 263 

352 IBM VM/370 CftS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 'for 5748-XX8 

CC option of PRINT command 139 
CD option of DSERV command 77 
CHANGE 

option 
of DLBL command 61 
of FILEDEF command 91 
of LABELDEF command (57!!!!=!!!!) 110.1 

subcommand 
descL:iption 219 
effect of zone setting 255 
stacking with SSTACK control 
statelllent 220 

channel address word (§gg CAW (channel 
address word» 

channel status word (§gg CSW (channel 
status word» 

CHAR, result of SDATATYPE built-in function 
296 

character 
altering 

with ALTER subcommand 216 
with CHANGE subcommand 219 
with COPYFILE command 43 

data 
determining if token contains 296 
displaying with LINEDIT macro 323 

determining how many in token 296 
for blip string 

displaying 147 
setting 166 

overlaying, with OVERLAY subcommand 237 
sets, used in CMS 3 
special, changing on 3270 220 
strings 

assigning to variable symbols 276 
changing 219 
copying 41 
extracting in EXEC procedure 297 
locating 235 

valid in CMS cOllmand lines 3 
CLEAR option 

of DLBL command 61 
of FILEDEF command 91 
of INCLUDE command 106 
of INCLUDE command (57~!!=XX8) 106,.3 
of LABELDEF command (~1~8-XX!!) 110 
of LOAD command 120 
of SYNONYM command 182 

CLR operand 

CftS 

of HNDEXT macro 313 
of HNDINT macro 314 
of HNDSVC macro 315 

operand of &CONTROL control statement 
282 

option of DLBL command 61 
subcommand, description 222 

CMS (Conversational Monitor system) 1 
accessing with no virtual disks attached 
to virtual machine 17 

basic description of 1 
batch facility (§~ CMS batch facility) 
command language, basic description 1 
commands (§~g CMS commands) 
editor 2 
files (~~ file) 
loader (§~ loader) 
macros (see CMS macro instructions) 
subset (§ee CMS subset) 

CMS batch facility 32 
halting 212 

CMS commands 
ACCESS 16 
A!SERV 20 
ASSEMBLE 23 
ASSGN 29 
CMSBATCH 32 
COMPARE 33 
COPYFILE 35 
CP 45 
DrR 46 
DEBUG 57 
DISK 58 
displaying during EXEC processing 282 
DLBL 60 
DOSLIB 72 
DOSLKED 74 
DSERV 77 
EDIT 79 
entering 2 
entering by synonym 183 
ERASE 81 
ESERV 83 
EXEC 85 
FETCH 87 
FILEDEF 89 
FORMAT 97 
GENDIRT 100 
GENMOD 101 
GLOBAL 104 
halting execution 213 
HELP (~1!!!!=!!!!) 106 
INCLUDE 106 
INCLUDE (~1!!!!=!!!!) 106.3 
LABELDEF (~1!!!!=!!!!) 110 
LISTDS 110 
LISTDS (~l!!!!=!!.!n 110.4 
LISTFILE 114 
LISTIO -118 
LOAD 120 
LOADMOD 129 
MACLIB 130 
MOtMAP 133 
MOVEFILE 134 

Index 353 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

not for general users 7 
nucleus-resident 7 
OPTION 137 
PRINT 139 
PSERV 142 
PUNCH 144 
QUERY 147 
READCARD 155 
RELEASE 158 
RENAME 160 
RSERV 162 
RUN 164 
search order 7 
SORT 171 
SSERV 173 
START 175 
STATE 176 
STATEW 176 
summary 10 
SVCTRACE 178 
SYNONYM 182 
TAPE 186 
TAPEMAC 191 
TAPPDS 193 
transient area 7 
TXTLIB 196 
TITLIB (57 ~!!=!X8) 196. 1 
TYPE 198 
UPDATE 200 
valid in CMS subset 222 

CMS EXEC file 
appending information to 115 
creating 115 
format 116 

CMS file (see file) 
CMS Immediate-commands (§~~ Immediate 

commands) 
CMS macro instructions 301 

COMPSWT 302 
entering operands on 301 
FSCB 302 
FSCBD 303 
FSCLOSE 304 
FSCLOSE (~l~!!=XX!!) 304.1 
FSERASE 305 
FSOPEN 306 
FSPOINT (~1~!!=!!!!) 307 
FSREAD 307 
FSSTATE 309 
FSWRITE 310 
HNDEXT 313 
HNDINT 314 
HNDSVC 315 
LINEDIT 317 
PRINTL 328 
PUNCHC 329 
RDCARD 331 
RDTAPE 331 
RDTERM 333 
REGEQU 334 

TAPECTL' 335 
TAPESL (~1~8-!!~) 336.1 
WAITD 336 
WAITD (~1~8-11~) 337 
WAITT 338 
WRTAPE 338 
WRTERM 340 

CMS subset 
entering 222 
returning to edit mode 243 

CMSAMS, saved system name 169 
CMSBATCH command 

description 32 
recursive abends encountered by 32 

CMS/tOS 
beginning program execution in 87 
defining files for 60 
environment 

description 2 
initializing 169 
leaving 169 
testing whether it is active 153 
testing whether it is active, in EXEC 
procedure 299 

CMSDOS, saved system name 169 
CMSLIB, assembler macro library ddname 27 
CMSSEG, saved system name 169 
CMSUT1 file 

created by READCARD command 155 
created by TAPE LOAD command 189 
created by TAPPDS command 193 

CMSVSAM, saved system name 169 
COBOL 

compiler 
querying options in effect for 154 
specifying options for in CMS/DOS 

137 
filetype, default editor settings 343 

COL option 
of COMPARE command 33 
of TYPE command 198 

COLOR operand of WRTERM macro 340 
columns 

comparing disk files by 33 
displaying particular 

with TYPE command 198 
with TYPE subcommand 251 

of data, copying 42 
specifying 

for copy operations 41 
for ierification setting 253 
for zone setting for edit session 

255 
COL1 option of TAPPDS command 194 
command 

a1:breviating 4 
defaultsi shown by underscore in command 

format box 5 
entering 2 

354 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev ftarch 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

environment 
CftS 1 
CP 1 
definition 1 

execution, halting 213 
keyboard differences in entering 9 
language, CMS 1 

~languages, VM/370 1 
modules, creating 101 
operands 3 
options 3 
stacking in console buffer 9 
truncating 4 
valid in CftS subset 222 
when to enter 9 

COMMENT (. CM) format word (.2148=!!!!) 340,.5 
comments, in CMS command lines 3 
COMP 

operand, of LINEDIT macro 320 
option 

of DOSLIB command 72 
of FETCH command 87 
of MACLIB command 130 

COMPARE command 
COL option 33 
description 33 

comparison operators, in EXEC procedure 
287 

comFilers, using under CMS 1 
components, of VM/370 1 
COMPSWT macro, description 302 
CONCAT option, of FILEDEF command 92 
conditional execution 

&IF control statement 287 
&LOOP control statement 288 

CONDITIONAL SECTION (.CS) format word 
(~148=!!~) 340.6 

console 
read, after CMS command execution, 
controlling 168 

stack 
reading data in EXEC procedure 290 
stacking lines, &BEGSTACK control 
statement 280 

stacking lines, &STACK control 
statement 292 

stacking lines, STACK subcommand 248 
testing whether it is empty 300 

CONSOLE, valuG of &READFLAG special 
variable 300 

constants 
altering 

with LOAD command 121 
with STORE subcommand 272 

continuation character 
on COPYFILE specification list 42 
on COPYFILE translation li~t 43 

~ontrol program (§~ CP (control program» 
control statements 

for access method services 21 
for DDR command 46 
for UPDATE command 202 

conventions, notational 4 

Conversational Monitor System (~CMS 
(Conversational ftonitor System» 

COPY 
filetype 

adding to MACLIBs 131 
created by SSERV command 173 

function statement 
of DDR command 49 
of DDR command (57~~=!!~) 50 

COPYFILE command 
APPEND option 37 
description 35 
EECDIC option 37 
examples 38 
FILL option 37 
FOR option 36 
FRLABEL option 36 
FROf! option 36 
incompatible options 38 
LOWCASE option 37 
LRECL option 37 
NEWDATE option 36 
NEWFILE option 36 
NOPROftPT option 36 
NOSPECS option 36 
NOTRUNC option 37 
NOTYPE option 36 
OLDDATE option 36 
OVLY option 36 
PACK option 37 
PROftPT option 36 
RECFM option 37 
REPLACE option 36 
SINGLE option 38 
specification list 41 
SPECS option 36 
TOLABEL option 36 
TRANS option 37 
TRUNC option 37 
TYPE option 36 
UNPACK option 37 
UPCASE option 37 
usage 38 

core image 
libraries (DOS/VS), disFlaying 
directories of 77 

libraries (DOS/VSE), displaying 
directories of (5748-XX8) 77 

phases, in CMS/DO~--72---
COUNT option of DDR command TYPE/PRINT 
function control statement 52-

CP (control-program) 
basic descript-ion 1 
commands (~~ CP commands) 

CP commands 
description 45 
executing 

in C~S command environment 45,168 
in EXEC procedure 45 
in jobs for CftS batch facility 45 
with LINEDIT macro 325 

implied 168 
when to use 45 

Index 355 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XI8 

CRDTE operand, of LABELDEF command 
(.2148-!l!!> 110. 1 

cross-reference table, assembler, listing 
25 

CSECTs, duplicate, for LOAD command 122 
CSW 

operand of SET subcommand 271 
subcommand, description 264 

CSW (channel status word) 
changing in debug environment 271 
displaying in debug environment 264 
forllat 264 

CTL option, of UPDATE command 206 
CTL option of UPDATE command 201 
current line pointer 

position after deleting lines 224 
positioning 

at top of file 250 
BACKWARD subcommand 218 
based on character st~ing 235 
BOTTOM subcommand 218 
DOWN subcommand 224 
FIND subcommand 226 
FORWARD subcommand 229 
LOCATE subcommand 235 
NEXT subcommand 236 
nnnnn subcommand 257 
UP subcommand 252 

cylinder 

D 

extents for VSAM files 68 
in CMS/DOS 64 

on virtual disk 
counting number of cyli~ders 97 
counting number of cylinders 
(2148-!I~) 98 

resetting number of cylinders 97 
resetting number of cylinders 
(2148=!!~) 98 

DASD Dump Restore (DDR) program, invoking 
via DDR command 46 

data 
displaying at terminal 

with &BEGTYPE control statement 280 
with &TYPE control statement 294 

overlaying in file 36 
data sets, defining with FILEDEF command 

95 
DATE option of LISTFILE command 115 
DD (data definition), simulating in CMS 89 
D-disk, accessed after IPL of CMS 17 
ddnames 

defining 
with DLBL command 60 
with FILEDEF command 89 

entering tape ddnames for AMSERV 21 
for DLBL command, restrictions for OS 
users 68 

relating to CMS file 89 
to identify VSAM catalogs 69 

in CMS/DOS 66 
used by assembler 27 

used in eMS/DOS 
for DOS/VS libraries 63 
for DOS/VSE libraries (21!~=!I8) 63 

used in MOVE FILE command 134 
DDR command 

control statements w entering 46 
COpy function statement 49 
COpy function statement (5748-X!~) 50 
COUNT option of TYPE/PRINT function 
control statement 52 

description 46 
DUMP function statement 49 
example of TYPE/PRINT output 52 
GRAPHIC option of TYPE/PRINT function 
control statement 52 

HEX option of TYPE/PRINT function 
control statement 52 

INPUT control statement 47 
PRINT function statement 51 
RESTORE function statement 50 
SYSPRINT control statement 49 
TYPE function statement 51 

DEBUG 
command 2 

description 57 
subcommands 

BREAK 262 
CAW 263 
CSi 264 
DEFINE 265 
DUMP 266 
GO 267 
GPR 268 
HX 268 
ORIGIN 269 
PSi 270 
RETURN 270 
SET 271 
STORE 272 
I 273 

debug environment 2w57 
entering 

via breakpoint 261 
via DEBUG command 261 
via external interruption 261 

leaving 
with GO subcommand 267 
with HI subcommand 268 
with RETURN subcommand 270 

setting origin value ~69 
decimal 

converting to EBCDIC, LINEDIT- macro 321 
converting to hexadecimal, LINEDIT macro 

320 
DECK option 

of ASSEMBLE command 25 
of OPTION command 137 

DEFINE, subcommand, description 265 
DEL option· 

of DOSLIB command 72 
of MACLIB command 130 
of TXTLIB command 196 
_of TXTLIB command (21!~=.xX8) 1"96 .• 1 

DELETE 
control ~tatement, for UPDATE command 

204 
subcommand, description 224 

356 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

delimiters 
on CHANGE subcommand 220 
on command line 3 
on DSTRING subcommand 225 
on LOCATE subcommand 235 

DEN option 
of ASSGN command 30 
of FILEDEF command 92 
of TAPE command 188 
of TAPE command (21~~=XX~) 

density of tapes 
specifying 188 
specifying (21~~-X!~) 188.1 

188.1 

DESC option, of HELP command (21~~=XX~) 
106.1 

DET option of RELEASE command 158 
DETACH command 158 
device types 

default attributes for MOVEFILE command 
135 

valid for FILEDEF command options 91 
devices 

waiting for interruptions 336 
waiting for interruptions (274~=XX~) 

337 
DIRECT, filetype, default editor settings 

343 
directories 

CMS auxiliary 100 
CMS file, writing to disk 158 
of DOS/VS libraries 

obtaining information from 77 
sorting 77 

of DOS/VSE libraries 
obtaining information from (21~8-XX~) 

77 
sorting (21~~-X!~) 77 

discontiguous, shared segment, saved system 
names 169 

DISK 
command 

DUMP option 58 
LOAD option 58 

option 
of ASSEMBLE command 25 
of CMS QUERY command 150 
of DOSLIB command 72 
of DOSLKED command 74 
of DSERV command 77 
of FILEDEF command 91 
of FILEDEF command, examples 94 
of FILEDEF command, interactive use 

disks 

of 95 
of MACLIB command 
of PSERV command 
of RSERV command 
of SSERV command 
of TAPE command 
of TXTLIB command 
of TXTLIB command 
of UPDATE command 

accessing 16,17 
A-disk 17 
D-disk 17 
detaching 158 

131 
142 
162 
173 

188 
196 
(~1~~=!!~) 
201 

196.1 

determining 
if disk is accessed, in EXEC 

procedure 298 
if disk is CMS OS or DOS, in EXEC 
procedure 298 

if disk is full 150 
read/write status of 150 

DOS, accessing 18 
dumping to and restoring from tape 46 
erasing files from 81 
files (§~~ file) 
formatting 97 
OS, accessing 18 
read/write, sharing 18 
releasing 158 

effect on logical unit assignments in 
CMS/DOS 30 

in CMS/DOS 158 
when DLBL definitions are active 68 

S-disk 17 
storage capacity, displaying status of 

150 
writing 
writing 
writing 
Y-disk 

DISP 

files to 226 
labels on 97 
labels on (574~=!X8) 
17 

operand of LINEDIT macro 325 
option of FILEDEF command 92 

display 
mode, of CMS editor 80 
terminal 

display mode 228 
line mode 80 

98 

DISPLAY operand of FORMAT subcommand 229 
DLBL 

command 
CAT option 62 
CHANGE option 61 
CLEAR option 61 
CMS option 61 
ddname restrictions (OS user~) 68 
description 60 
displaying volumes on which 

multivolume data sets reside 66 
displaying VSAM data set extents 65 
DSN option 61 
DUMMY option 60 
entering SYSxxx operand 63 
establishing file definitions for 

STATE _command 176 
EXTENT option 61 
lfULT option 61 
NOCHANGE option 61 
PERM option 61 
SYSxxx op-tion 61 
to identify files for AMSERV 21 
VSAM option 61 
when to use (OS users) 68 

definitions 
cleared bi ESERV EXEC 83 
clearing 61,68 
displaying 62,152_ 
displaying_ (21~~=XX8) 152.1 

option 
of CMS QUERY command 152 
of eMS QUERY command J21~~=!!~-) 

152.1 

Index 357 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

DKSLDR SYSUT1 file 121 
DOS (Disk Operating System) 

disks, accessing 18 
files 

listing information 110 
listing information (57!!l=!!!!) 110.4 
specifying FILEDEF options for 93 

DOS option 
of CMS QUERY co.mand 153 
of CKS SET command 169 
of GENMOD command 102 

DOSLIB 
command 

COMP option 72 
DEL option 72 
description 72 
DISK option 72 
MAP option 72 
PRINT option 72 
TERK option 72 

files 72 
adding phases to 75 
fetching phases from 87 
identifying for fetching 104 
listing information about members 72 
output file mode 74 
size considerations 73 
space considerations 75 
which DOSLIBs will be searched 153 

option 
of CMS QUERY command 153 
of GLOBAL command 104 

DOSLKED command 
description 74 
DISK option 74 
PRINT option 74 
TERM option 75 

DOSLNCNT option 
of CMS QUERY command 154 
of CMS SET command 169 

DOSLNK 
filetype 

CMS/DOS linkage editor input 74 
creating 75 

DOSPART option 
of CMS QUERY command 154 
of CMS SET command 169 

DOT operand of LINEDIT macro 319 
DOWN 

operand of $MOVE edit macro 259 
subcommand, description 224 

DSECT, for file system control block (FSCB) 
303 

DSERV command 
CD option 77 
description 77 
DISK option 77 
PD option 77 
PRINT option 77 
RD option 77 
SD option 77 

_ SORT option 77 
TD option 77 
TERM option 77 

DSN option of DLBL command 61 
DSORG option of FILEDEF command 92 
DSTRING subcommand, descriFtion 225 
DUMMY option 

of DLBL command 60 
restrictions for OS VSAK user 62 
using in CMS/DOS 63 

of FILEDEF command 91 
DUMP 

function statement, of DDR command 49 
option 

of DISK command 58 
of OPTION command 137 
of TAPE command 187 

subcommand, description 266 
DUP option 

of INCLUDE command 107 
of LOAD command 121,122 

duplicate CSECTs, for LOAD command 122 
DVOL1 operand, of TAPE command (57!~=XX!l) 

188 

E 
EBCDIC 

display file in 198 
option, of COPYFILE command 37 

ED1T 
command 2 

description 79 
LRECL option 80 
NODISP option 80 

operand 
of RDTERK macro 333 
of WRTERM macro 340 

subcommand environment 2 
subcommands (2~ EDIT subcommands) 

edit macros 
$DUP 258 
$KOVE 259 

edit mode 2,215 
entering 79 
leaving 

with FILE subcommand 226 
with QUIT subcommand 239 

EDIT subcommunds 2 
= 243 
affected by zone setting 255 
ALTER 216 
AUTOSAVE 217 
BACKWARD .?18-

-BOTTOM 218 
CASE 219 
CEANGE 219 
CMS 222 
DELETE 224 
displayin~ last one executed 256 
DOWN 224 
DSTRING 225 
FILE 226 
FIND 226 
FMODE 227 
FNAME 228 

358 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

FORMAT 228 
FORWARD 229 
GETFILE 230 
IMAGE 231 
INPUT 232 
LINEMODE 233 
LOCATE 235 
LONG 236 
NEXT 236 
nnnnn 257 
OVERLAY 237 
PRESERVE 238 
PROMPT 238 
QUIT 239 
RECFM 239 
re-executing 243,254 
RENUM 240 
REPEAT 241 
REPLACE 242 
RESTORE 242 
REUSE 243 
SAVE 245 
SCROLL 245 
SCROLL UP 245 
SERIAL 246 
settings saved by PRESERVE subcommand 

238 
SHORT 248 
STACK 248 
TABSET 249 
TOP 250 
TRUNC 250 
TYPE 251 
UP 252 
VERIFY 253 
X 254 
Y 254 
ZONE 255 

edited 
error messages 

displaying with LINEDIT macro 325 
in EXEC procedure 278 

macros 
DOS/VS copying 83 
DOS/VSE copying (2148=!!~) 83 

edit1ng, lines read with RDTERM macro 333 
editor 

invoking 2,79 
settings 

for reserved filetypes, default 343 
IMAGE subcommand, default 231 
preserving 238 
restoring 242 
TABSET subcommand, default 250 
TRUNC subcommand, defau1t- 251 
ZONE subcommand, default 255 

verifying changes made by 253 
ERD, option of TAPPDS command (57~~=!X8) 

194.1 
end of file 

effect of LOCATE subcommand 235 
position current line Fainter at - 218 

ERD option of TAPPDS command 194 
ENTRY, loader control statement 124 
-entry point 

determined by loader 122 
displayed with FETCH command 87 

specifying 
with ENTRY statement 
with GENMOD command 
with INCLUDE command 
with INCLUDE command 

106,.3 

124 
101 

106 
(5748-!!!!) 

with LOAD command 120 
with START command 175 

environments of CMS 1 
CMS editor 2 
CMS/DOS 2 
debug 2 
EXEC facilities 2 

EOF option of TAPE command 188 
EOT option of TAPE command 188 
EQO statements, generating for registers, 

REGEQU macro 334 
ERASE 

comllland 
description 81 
NOTYPE option 81 
TYPE option 81 

option 
of ACCESS command 16,18 

ERG, tape control function 187 
ERROR 

operand 
of TAPESL macro (21~~=!!~) 336.2 
of WAITD macro (5748=!X8) 337 

error messages 
CMS, determining display during EXEC 
processing 282 

displaying with LINEDIT macro 325 
editor 

long form 236 
short form 248 

issued in EXEC procedure 
&BEGEMSG control statement 278 
&EMSG control statement 283 

typing in red 168 
VM/370 format 278 

ERROR operand 
of &CONTROL control statement 282 
of FSCLOSE macro 304 
of FSCLOSE macro (5748-!!~) 304.1 
of FSERASE macro 305 
of FSOPEN macro 306 
of FSPOINT macro (5748-!!~) 307 
of FSREAD macro 307-
of FSSTATE macro 309 
of FSWRITE macro 310 
of FSWRITE macro (57~~=!X8) 310.1 
of HNDINT macro 314 
of HNDSVC macro 316 
of PRINTL macro 328 
of PUNCHC macro 330 
of RDCARD-macro 331 
of RDTAPE macro 3~1 
of TAPECTL macro 336 
of W~ITD macro 336 
of WRTAPE macro 339 

errors 
encountered in macro instruction 

execution 301 
-from access-method services 20,21 
in EXEC procedure, specifying act~on to 

be taken 284 

Index 359 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

ERRS option of OPTION command 137 
ESD option of ASSEMBLE command 24 
ESERV, command, description 83 
EXDTE operand, of LABELDEF command 

C.2148=!!!D 110.1 
EXEC 

built-in functions 295 
&CONCAT 295 
&DATATYPE 295 
&LENGTH 296 
&LITERAL 297 
&SUBSTR 297 

command 2 
description 85 
implied 168 

control statements 275 
&ARGS 277 
&BEGEMSG 278 
&BEGPUNCH 279 
&BEGSTACK 280 
&BEGTYPE 280 
&CONTINUE 281 
&CONTROL 282 
&EMSG 283 
&END 284 
&ERROR 284 
&EXIT 285 
&GOTO 286 
&HEX 286 
&IF 287 
&LOOP 288 
&PUNCH 289 
&READ 290 
&SKIP 290 
&SPACE 291 
&STACK 292 
&TIME 293 
&TIPE 294 
assignment statement 276 
displaying during EXEC processing 

282 
files 

$LISTIO EXEC created by LISTIO 
command 118 

CMS EXEC created by LISTFILE command 
115 

executing with RUN command 164 
filetype 

default editor settings 343 
record format 85 

option 
of LISTFILE command 115 
of LISTIO command 118 

procedures 
branching with &GOTO control 
statement 286 

branching with &SKIP control 
statement 290 

comparing tokens in 287 
concatenating tokens in 295 
defining synonyms for 182 
ESERV 83 
executing 7,85,275 

exiting from 285 
halting terminal outFut during 292 
passing arguments to nested EXEC 
procedures 300 

reading data from terminal during 
290 

resuming terminal outFut during 292 
RUN 164 

special variables 298 
&$ 298 
&* 298 
&DISK* 299 
&DISK? 299 
&DISKx 298 
&DOS 299 
&EXBC 299 
&GLOBAL 299 
&GLOBALn 300 
&INDEX 300 
&INDEX, setting 277 
&LINENUM 300 
&n 277,298 
&READPLAG 300 
&RETCODE 300 
&TIPEFLAG 300 
&0 298 
&1 through &30 277 

executable statements 276 
in &ERROR control statement 284 
in &IF control statement 288 

execute form of LINEDIT macro 326 
execution 

entry point 
resetting, with INCLUDE command 106 
resetting, with INCLUDE command 
(~74~=XX~) 106.3 

summary of EXEC procedure 282 
packing 282 

extensions 
read-only 16 

accessing 17 
editing files on 79 
releasing 158 

EXTENT option 
of DLBL command 61,68 

in CMS/DOS 64 
of LISTDS command 110 
of LISTDS command (21!~=!X8) 110.4 

extents 
for VSAM files 

determining free space for 110 
determining free space for <21!8-XX8) 

110.4. 
entering 66 
entering in CMS/DOS 64 

occupied by OS and DOS files 
displaying 110 
displaying (57!8-!X8) 110.4 

EXTERNAL, command 261-
external interruption 

effect in eMS 261 
providing processing routine for 313 

external-symbol dictionary (ESD) 24 

360 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-IX8 

F 
FCB macro, loaded by PRINT command 140 
FETCH command 

COMP option 87 
description 87 
ORIGIN option 87 

FID operand, of LABELDEF command (~1!8-!!~) 
110 

FIFO operand 
of &BEGSTACK control statement 280 
of &STACK control statement 292 

file 
accessing 

only particular files on disk 17 
with FSREAD macro 307 

appending one file to another 37 
blocking 

with FILEDEF command 91,93 
with FSiRITE macro 311 

calculating logical record length 93 
canceling changes made during edit 
session 239 

closing 304 
closing (21!~=xxft) 304.1 
comparing one file to another 33 
copying 35 

from one device to another 46 
from one disk to another 39,227 
into file being edited 230 
parts of file 39 
to a file with a different filename 

228 
creating 

from OS partitionAd data sets 134 
from tapes created by os utility 
programs 193 

with CMS editor 79 
with COPYFILE command 35 
with FSiRITE macro 310 
with READCARD command 155 

defining for CMSjDOS 60 
definitions 

displaying DLBL definitions 152 
displaying DLBL definitions 
(~148=!!~) 152.1 

displaying FILEDEF definitions 152 
for MOVEFILE command 134 
for STATE command 176 

deleting lines in 
with DELETE subcommand 224 
with DSTRING subcommand 225 
with UPDATE command 204 

directories 
auxiliary 100 
set up with ACCESS command 16 

displaying 198 
in hexadecimal format 198 
on 3270 screen 245 
particular columns of file 198,253 
particular records in file 198 
with TYPE subcommand 251 

dumping to tape 187 
editing 215 
erasing 81 

all files on disk 16 
during program execution 305 

format 91 
identifier 

assigned with READCABD command 155 
assigned with TAPPDS command 193 
changing with FILE subcommand 226 
changing with RENA!E command 160 
changing with SAVE subcommand 245 
default for DLBL command 63 
default for FILEDEF command 93 
entering on DLBL command 61 
entering on FILEDEF command 95 
entering on LISTDS command 111 
in command syntax 5 

inserting lines in 
with INPUT subcommand 232 
with UPDATE command 203 

listing information about 114 
loading 

from tape to disk 187 
from virtual reader to disk 58 

modifying 35 
moving from device to device 134 
numbering lines in 246 
opening, during program execution 306 
overlaying data in 

specifying number of lines to overlay 
241 

with COPYFILE command 36,42 
with eVERLAY subcommand 237 

packing 37 
specifying fill character 41 

printing 139 
in hexadecimal format 139 
specifying number of lines per page 

140 
processed by TAPE command, listing 188 
protecting data during edit session 256 
punched 

restoring to disk 58,155 
punching to virtual card punch 58,144 
reading -

during program execution 307 
from virtual card reader 58 
sequentially 308 

relating to OS ddname 89 
renaming 160 

- displaying new names for 160 
renumbering lines in 240,246 
replacing lines in 

with BEPL4CE subcommand 242 
with UPDATE command 204-

replacing old file with new copy 36 
serializing lines in 246 

with line-number editing 247 
sorting records- in 171 

Index 361 



Pg. of GC2D-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

tape, writing to disk 187 
transferring, with DISK DUMP command 58 
unpacking 37 
updating, FSWRITE macro 311 
verifying existence of 

with FSOPEN macro 307 
with FSSTATE macro 309 
with STATE and STATEW commands 176 

writing to disk 
with AUTOSAVE subcommand 217 
with FILE subcommand ~26 
with FSWRITE macro 311 
with SAVE subcommand 245 

FILE NOT FOUND error message, suppressing 
during EXEC processing 282 

file status table (FST) 309 
FILE subcommand, description 226 
file system control. block (FSCB) (§gg 

FSCB) 
FILEDEF 

command 
AUXPROC option 93 
BLKSIZE option 91 
BLOCK option 91 
BLP operand (57~§=!~§) 95 
CHANGE option 91 
CLEAR option 91 
CONCAT option 92 
default FILEDEF commands issued by 
assembler 27 

definitions for MOVEFILE command 134 
DEN option 92 
description 89 
DISK option 91 
DISP option 92 
DSORG option 92 
DUMMY option 91 
establishing file definitions for 

STATE command 176 
examples 94,95 
KEYLEN option 91 
LABOFF operand (~l~§=XX§) 95 
LEAVE option (~1~§=~!§) 92.1 
LIMCT option 91 
LOWCASE option 92 
LRECL option 91 
MEMBER option 92 
NL operand (~74§=!!§) 95 
NOCHANGE option 91 
NOEOV option (57~§=~!§) 92.1 
NSL operand (574§=!X8) 95 
OPTCD option 92 
PERM option 91 
positioning read/write pointer 92 
PRINTER option 91 
PUNCH option 91 
READER option 91 
RECFM option 91 
SL operand (~74§=!!§) 95 
SUL operand (57~§=!~§) 95 
TAPn option 91 
TERMINAL option 91 
TRTCH option 92 
UPCASE option 92 
VOLID operand (~1~§=!!§) 96 

when to use (OS users) 68 
when to use in CMS/DeS 63 
XTENT option 91 
7TRACK option 92 
9TRACK option 92 

definitions 
clearing 91,93 
displaying 96,152 

option of CMS QUERY command 152 
fileid, in command syntax 5 
file mode 

changing 
with COPYFILE command 39 
with FMODE subcommand 227 

displaying, FMODE subcommand 227 
letter 

establishing 16 
replacing 158 

numbers, changing 161 
specifying, for FSWRITE macro 311 
specifying on READCARD command 156 

filename 
changing, with FNAME subcommand 228 
of EXEC file 

testing 298,299 
filetypes, reserved, default editor 
settings for 343 

FILL option of COPYFILE command 37 
FIND subcommand 

description 226 
effect of image setting 231 

first-in first-out stacking, in EXEC 
procedure 280,292 

fixed-length files, converting to 
variable-length 40,239 

FLAG option of ASSEMBLE command 24 
FMOD! 

option of LISTFILE command 115 
subcommand, description 227 

fn ft fm, used to represent file identifier 
5 

FNAME 
option of LISTFILE command 115 
subcommand, description 228 

FOR option of COPYFILE command 36 
FORM operand 

of FSCB macro (57~8-XX~) 302 
of FSPOINT ma~ro (57~~=!!~) 307 
of FSREAD macro (5748-!1~) 308 
of FSSTATE macro (5748-!X8) 309 
of FSWRITE macro (57~8-!!~) 3-10,.1 

FORM option, of HELP command (5748=!!§) 
106.1 -

FORMAT 
command 

BLKSIZE option (~1~~=XX8) 97 
description 97 
examples 98 
LABEL option 97 
LABEL option (~148=!!~') 98 
NOERASE option (57~~=XX8) 98 
performance considerat~on 9~ 
RECOMP option 97 
RECOMP. option (574~=!X8) 98 

362 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-118 

option 
of LISTDS command 111 
of LISTFILE command 115 

subcommand 
description 228 
DISPLAY operand 229 
LINE operand 229 

FORMAT MODE (,.FO) forllat vord (~1~~=!X8) 
340.7 

FORTRAN filetype, default editor settings 
343 

FORWARD subcommand, description 229 
FREE option of LISTDS cOllmand 110 
FREE option of LISTDS command (57~~=!X8) 

110.4 
FREEFORT 

files, renumbering 240 
filetype, default editor settings 343 

FRLABEL option of COPYFILE command 36 
FROM option 

of COPYFILE command 36 
of GENMOD command 101 

FSCB 
macro 

BUFFER operand 302 
description 302 
FORM operand (2I~8-!!§) 302 
NOREC operand 303 
RECNO operand 302 
RECNO operand (2148=!!§) 302.1 

operand 
of FSCLOSE macro 304 
of FSCLOSE macro (21~8-!!§) 304.1 
of FSERASE macro 305 
of FSOPEN macro 306 
of FSPOINT macro (21~§=!!~) 307 
of FSREAD macro 307 
of FSSTATE macro 309 
of FSWRITE macro 310 

FSCB (file system control block) 
creating 302 
format 303 

FSCBD macro, description 303 
FSCLOSE macro 

description 304 
description (2I~8-!!§) 304.1 
ERROR operand 304 
ERROR operand (2748-!!!D 304,.1 
FSCB operand 304 
FSCB operand (5748=!!§) 304.1 

FSEQ operand, of LABELDEF command 
(.2148=!X8) 110.1 

FSERASE macro 
description 305 
ERROR operand 305 
FSCB operand 305 

FSF, tape control function 187 
FSOPEN macro 

description 306 
ERROR operand 306 
FSCB operand 306 

FSPOINT macro 
description (.2148=XI8) 307 
ERROR operand (5748-XI8) 307 
FORM operand (.2748-XX8) 307 
FSCB operand (274~=XX8) 307 
RPTR operand (.2748-XX8) 307 
WPTR operand (.274~=lX8) 307 

FSR, tape control function 187 
FSREAD macro 

description 307 
ERROR operand 307 
FORM operand (.2748-XI8) 308 
FSCB operand 307 

FSSTATE macro 
description 309 
ERROR operand 309 
FORM operand (.21!!~=1X8) 309 
FSCB operand 309 

FST (§~~ file status table) 
FSWRITE macro 

description 310 
ERROR operand 310 
ERROR operand (57~8-IX8) 310.1 
FORM operand (.274~=lX8) 310.1 
FSCB operand 310 

FTYPE option, of LISTFILE command 115 

G 
GEN option 

of MACLIB command 130 
of TXTLIB command 196 
of TXTLIB command (5748-XX~) 196.1 

GENDIRT command, description 100 
general registers 

changing, in debug environment 271 
displaying, in debug environment 268 
generating list of EQU statements for 

334 
printing contents of 266 

GENMOD command 
ALL option 102 
description 101 
DOS option 102 
FROM option 101 
MAP option 101 
NOMAP option 101 
NOSTR option 102 
OS option 102 
S'IR option 101 
SYSTEM option 102 
TO option- 101 

GENN operand, of LABELDEF command 
( 5 7 ~~= X X ~) 11 0 • 1 

GENV operand, of LABELDEF command 
(.21!!!!=lX8) 110.1 

GETFILE subcommand, description 230 
global changes 

with ALTER subcommand 216 
with CHANGE subcommand 220 
with OVERLAY-subcommand 237 

Index 363 



Pg. of GC2o-1818-2 Rev March 30, 1979 by Supp SD23~9023-1 for 5748-XX8 

GLOBAL command 
description 104 
DOSLIB option 104 
MACLIB option 104 
querying which DOSLIBs were last 
specified 153 

querying which ftACLIBs were last 
specified 152 

querying which TXTLIBs were last 
specified 152 

TXTLIB option 104 
GO subcommand, description 267 
GPR 

operand of SET subcommand 271 
subcommand, description 268 

GRAPHIC option of DDR command TYPE/PRINT 
function control statement 52 

H 
HB Immediate command 212 
header 

card 
as READ control card 155 
punched by PUNCH command 144,145 

for LISTFILE command output 114 
format 116 

HEADER option 
of LISTFILE command 114 
of PUNCH command 144 

HELP 
command 

ALL option (,274!!=!!!!) 106.1 
DESC option (57~!!=!!~) 106.1 
description (57~!!=!X8) 106 
FORM option (57~!!=!!!!) 106.1 
HELP option (57~!!=!!~) 106 
MENU option (57~~=!!~) 106 
PARM option (57~!!=!!!!) 106.1 
usage (21~!!=!X8) 106.1 

option, of HELP command (,21!!!=!!!!) 106 
HELP format words 

• BX (BOX) (21!8- XX!!) 340.3 
.CM (COMMENT) (,274!!=!!~) 340,.5 
.CS (CONDITIONAL SECTION) (,274!!=!!!!) 
340.6 

.FO (FORMAT MODE) (,21~8-!!!!) 340.7 

.IL (INDENT LINE) (21~8-ll!!) 340 .• 8 

.IN (INDENT) (,2148=!!!!) 340.9 

.OF (OFFSET) (2148=!!!!) 340.10 

.SP (SPACE LINES) (,21~8-XX!!) 340,.11 
• TR (TRANSLATE CHARACTER) (,274!!=XX!!) 
340.12 

summary (21~!!=!!!!) 340.2 
HEX option 

of DDR command TYPE/PRINT function 
control statement 52 

of PRINT command 139 
of TYPE cOllmand 198 

hexadecimal 
conversion, in assignment statement 276 
converting to decimal, LINEDIT macro 

320 
converting to EBCDIC, LINEDIT macro 317 
display file in 198 
printing file in 139 
representations of characters, 
translating 167 

substitution 
in EXEC procedure 277 
invoking in EXEC procedure 286 
suppressing in EXEC procedure 286 

values, displaying in EXEC procedure 
287 

HNDEXT macro 
CLR operand 313 
description 313 
SET operand 313 

HNDINT macro 
ASAP operand 314 
CLR operand 314 
description 314 
ERROR operand 314 
SET operand 314 
used with WAITD macro 336 
used with WAITD macro (,21!!!=!X8) 337 

HNDSVC macro 
CLR operand 315 
descriptio'n 315 
ERROR operand 316 
SET operand 315 

HO Immediate command 212 
HT Immediate command 213 

HX 

I 

stacking in EXEC procedure 292 

DEBUG sutcommand 268 
Immediate command 213 

effect on DLBL definitions 61 
effect on FILEDEF definitions 93 

ICS control statement (2~~ include control 
section (rCs) statement) 

ID card, CP, example 156 
ID operand (57!~=!X8) 

of TAPEMAC command 191 
of TAPPDS command 193 

IEBPTPCH utility-program, creating CftS 
fi.les from tapes created by 193 

IEBUPDTE utility program, creating CMS 
files from tapes created by 193,194 

IEHMOVE utility program 
creating -CMS -files from tape_s created by 

193 
creating CMS ftACLIBs f~om-tapes created 

by 191 

364 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30 1 1979 ty Supp SD23-9023-1 for 5748-118 

1GN option 
of ASSGN command 30 

with DUMMY data sets 63 
IJSYSCL, defining in CMS/DOS 63 
IJSYSCT 

defining 69 
in CMS/DOS 66 

IJSYSRL, defining in CMS/DOS 63 
IJSYSSL, defining in CMS/DOS 63 
IJSYSUC 

defining 69 
in CMS/DOS 66 

image setting 
effect on FIND subcommand 226 
effect on logical tab settings 250 

IMAGE subcommand 
CANON operand 231 
description 231 
OFF operand 231 
ON operand 231 

1. mediate commands 
HB 212 
HO 212 
HT 213 
HX 213 
RO 213 
RT 214 
SO 214 
summary 9 

IMPCP option 
of CMS QUERY command 148 
of CMS SET command 168 

IMPEX option 
of CMS QUERY command 148 
of CMS SET command 168 

implied 
CP function 45 

query status of 148 
setting 168 

EXEC function 85 
query status of 148 
setting 168 

INC option of UPDATE command 201 
INCLUDE command 

AUTO option 107 
called to load files dynamically 302 
CLEAR option 106 
CLEAR option (2148=!X8) 106 .• ~ 
description 106 
description (21~§=!!§) 106.3 
DUP option 107 
effect on loader tables 167 
examples 107 
following LOAD command 101 
identify TXTLIBs to be searched 104 
INV option 107 

LIBE option 101 
MAP option 101 
NOAUTO option 107 
NOCLEAR option 106 
NOCLEAR option (2148-XX8) 106.3 
NODUP option 107 
NOINV option 107 
NOLIBE option 101 
NOREP option 101 
NOTYPE option 107 
ORIGIN option 107 
REP option 101 
RESET option 106 
RESET option (214~-XX8) 106.3 
SAME option 107 
START option 107 
TYPE option 107 

include control section (ICS), loader 
control statement 125 

increment 
specifying for line-number editing 238 
specifying for sequence numbers in file 

247 
INDENT (.IN) format word (214~=!X8) 340.9 
INDENT LINE (.IL) format word (214§=!X8) 

340.8 
INMOVE, MOVEFILE command ddname 134 
INPUT 

control statemen't, for DDR command 47 
option 

of CMS QUERY command 149 
of CMS SET command 161 

subcommand 
description 232 
effect of image setting 231 
on = subcommand line 244 
stacking with &STACK control 
statement 232 

input mode 2,215 
during line-number editing 234 
entering 232,242 
leaving 215 

INSERT control statement, for UPDATE 
command 203 

instructions 
addresses, halting program execution at 

262 ' 
altering 

with LOAD command - 121 
with STORE subcommand 212 

Interactiv~ Problem Control System (IPCS) 
1 

interruptions 
entering debug environment after 261 
handling 

external 313 

Index 365 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

I/O 314 
SVC 315 

I/O 
waiting 336 
waiting (2148-X!~) 337 

INV option 
of INCLUDE command 107 
of LOAD command 121 

I/O, devices, handling interruptions for 
314 

IPCS (Interactive Problem Control System) 
1 

ITEMCT option of TAPEMAC command 191 

J 
job catalog 

identifying 70 
in CMS/DOS 66 

K 
keyboard, unlock to enter commands 9 
KEYLEN option of FILEDEF command 91 
keypunch characters, converting 37 

L 
LABEL option 

of FORMAT command 97 
of FORMAT command (21!8-!!~) 98 
of LISTFILE command 115 

LABELDEF (574~=!!~) 
command 

CHANGE option 110.1 
CLEAR operand 110 
CRDTE operand 110.1 
descripticn 110 
EXDTE operand 110.1 
FID operand 110 
FSEQ operand 110.1 
GENN operand 110.1 
GENVoperand 110.1 
NOCHANGE option 110.1 
PERM option 110.1 
SEC operand 110.1 
VOLID operand 110 
VOLSEQ operand 110 

operand of CMS QUERY command 152 
labels 

for file system control block, 
generating 303 

in EXEC procedure 
object of &GOTO control statement 

286 
object of &LOOP control statement 

288 
using &CONTINUE 281 

on CMS disks 
writing 97 
writing (~1!~-XX8) 98 

LABlt operand, of TAPESL macro (57!~=XX8) 
336.1 

LABOFF operand, of FILEDEF command 
(~1!!~-XX8) 95 

language processors, using under CMS 1 
last-in first-out stacking, in EXEC 
procedure 280,292 

LDRTELS option 
of CMS QUERY command 148 
of CMS SET command 167 

LDT statement (§~~ loader terminate (LDT) 
statement) 

LEAVE option 
of FILEDEF command (5748-XX8) 92 
of TAPE command (~748=11~)--189 

LEAVE option of DDR command INPUT/OUTPUT 
control statement 48 

LEAVE option of DDR command INPUT/OUTPUT 
control statement (~l!~=j!~) 48.1 

LEFT operand of LINEMODE subcommand 233 
length 

of token in EXEC procedure, determining 
296 

specifying for LINEDIT macro 
substitution list 324 

LENGTH operand of RDTERM macro 333 
LIBE option 

of INCLUDE command 107 
of LOAD command 121 

LIBMAC option of ASSEMBLE command 24 
libraries 

CMS (see also DOSLIB, MACLIB, TXTLIB) 
displayIng-members of 199 
displaying those to be searched 
during processing 152 

identifying 104 
macro libraries 130 
printing members of 139 
querying 152 
used when processing CMS commands 

104 . 
DOS/VS procedure 

copying procedures from 142 
displaying directories of 77 
displaying procedures frrom 142 
printing procedures from 142 
punching procedures from 142 

366 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

DOS/VS relocatable 
assigning SYSRLB 162 
copying modules from 162 
defining IJSYSRL 63 
displaying modules from 162 
link-editing modules from 74 
printing modules from 162 
punching modules from 162 

DOS/VS source statement 
assigning SYSSLB 173 
copying books 173 
copying macros from 83 
defining IJSYSSL 63 
displaying books 173 
printing books 173 
punching books 173 

DOS/VSE 
assigning logical units (57~~=XX~) 

30 
obtain information about (~1~~=XX8) 

77 
DOS/VSE core image 

defining IJSYSCL (21~§=XX§) 63 
fetching phases from (21~~=XX~) 87 

DOS/VSE procedure 
copying procedures from (57~~=XX8) 

142 
displaying directories of (~l~§=!X~) 

77 
displaying procedures from (~1~~=!!~) 

142 
printing procedures from (~l~~=XX~) 

142 
punching procedures from (~l~~=XX~) 

142 
DOS/VSE relocatable 

assigning SYSRLB (274§=XX~) 162 
copying modules from (~l~'§=XX'§) 162 
defining IJSYSRL (~l~'§=XX~) 63 
displaying modules from (~l~'§=XX'§) 

162 
link-editing modules from (~l~~=!X~) 

74 
printing lIodules from (~74,§=XX8) 162 
punching modules from (~l~'§=XX'§) 162 

DOS/VSE source statement 
assigning SYSSLB (21~'§=XX~) 173 
copying books (21~'§=!!'§) 173 
copying macros from (21~'§=XX~) 83 
defining IJSYSSL (21~~=XX'§) 63 
displaying books (~l~'§=XX'§) 173 
printing books (21~8-XX§) 173 
punching books (21~8-XX.§) 173 

OS, macro libraries (see macro 
libraries, OS) ---

punching member files in 144 
LIBRARY 

loader control statement 124 
option of CMS QUERY command 152 

LIFO operand 
of &BEGSTACK control statement 280 
of &STACK control statement 292 

LIMCT option of FILEDEF command 91 
line 

duplicating, in CMS file 258 
image, of record 231 
locating by beginning character- string 

226 

mode 
of CMS editor 80 
of 3270 229 

moving, within CMS file 259 
number, of EXEC statement, testing 300 
printing 

with LINEDIT macro 325 
with PRINTL macro 328 

punching 
in EXEC procedure 279,289 

punching with PUNCHC macro 329 
reading from console stack 248 

LINE operand of FORMAT subcommand 229 
LINECOUN option 

of ASSEMBLE command 24 
of PRINT command 140 

LINED!T macro 
EOFFA operand 325 
CaMP operand 320 
description 317 
DISP operand 325 
DOT operand 319 
MAXSUES operand 326 
MF operand 326 
RENT operand 327 
SOB operand 320 
SUbstitution list, specifying 320 
TEXT operand 319 
TEXTA operand 319 

LINEMODE subcommand 
description 233 
LEFT operand 233 
OFF operand 234 
RIGHT operand 233 

line-number editing 
displaying line numbers 234 
inserting single line 257 
left-handed 233" 
reserializing records in file 247 
right-handed 233 
setting prompting increment for 238 

LINK command, accessing disks after 17 
linkage editor control statements 

DOS/VS supported in CMS/DOS 75 
DOS/VSE supported in CMS/DCS (2748=XX8) 

75 
OS 

read by TXTLIB command 197 
required format for TXTLIB command 

197 
link-editing. 

in CMS/DOS 74 
modules from DOS/VS relocatable 
libraries 75 

modules_ from DOS/VSE relocatable 
libraries (5748-XX8) 75-

TEXT files iii-storage 120 
TXTLIB members 197 

list form of LINED IT macro 326 
LIST option 

of ASSEMBLE command 24 
of OPTION command 137 

LISTDS command 
description _ -11 0 
description (21~.§=XX8) 110.4 
examples 111 
EXTENT" optio~ lTO . 
EXTENT option (21~8-1X8) 110.4 

Index 367 



Pg. of GC20-1818-2 Rev March 30 r 1979 by Supp SD23-9023-1 for 5748-XX8 

FORMAT option 111 
FREE option 110 
FREE option (21~~=!!~) 110.4 
PDS option 111 

LISTFILE command 
ALLOC option 115 
APPEND option 115 
DATE option 115 
description 114 
exallples 115 
EX~C option 115 
PMODE option 115 
FNAME option 115 
FORMAT option 115 
FTYPE option 115 
HEADER option 114 
LtBEL option 115 
NOHEADER option 114 

LISTING filetype 
created by access method services 20 
created by ASSEMBLE command 24 

controlling 24 
created by ESERV program 83 
default editor settings 343 
printing 139 

LISTIO command 
A option 118 
ALL option 118 
APPEND option 118 
description 118 
EXEC option 118 
PROG option 118 
STAT option 118 
StS option 118 
StSll1 option 118 
U1 option 118 

LISTI option, of O'TION co •• and 137 
lit.~.l •• lu.a, uain9 in BXEC procedure 

2'" L01D 
cOllana 

lUTO option 121 
called to load files dynamically 302 
CLEAR option 120 
description 120 
DUP option 121r122 
duplicate CSECTs 122 
effect on loader tables 167 
executing program using 121 
identify TXTLIBs to be searched 104 
INV option 121 
MAP option 121 
NOAUTO option 121 
NOCLEAR option 120 
NODUP option 121 
NOINV option 121 
NOLIBE option 121 
NOMAP option 121 
NOREP option 121 
NOTYPE option 121 
ORIGIN option 120 
REP option 121 
RESET option 120 
START option 121 
TYPE option 121 
used with GENMOD command 102 

option 
of DISK command 58 
of TAPE command 187 

load map 
creating 122 

with INCLUDE command 107 
with LOAD command 121 

displaying 121 
generated by GENMOD command 101 
invalid card images in 122 
of MODULE file, displaying 133 
replace card image in 107 

load point, specifying 107 r 120 
loader 

CMS 122 
control statements 

ENTRY statement 124 
include control section (ICS) 
statement 125 

LIBRARY statement 124 
loader terminate (LDT) statement 125 
replace (REPl statement 127 
set location counter (SLC) statement 

126 
set page boundary (SPB) statement 

127 
search order, for unresclved references 

123 
tables 

defining storage for 167 
displaying number of 148 

loader terminate (LDT), loader control 
statement 125 

LOAD MOD command 
called to load files dynamically 302 
CMS/DOS considerations 129 
description 129 

LOCATE subcommand 
description 235 
effect of zone setting 255 

logical 
operators, in EXEC procedure 287 
record length r of CMS file, defaults 

used by CMS editor 80 
units 

assigning 29 
ignoring-assignments 30 
listing 118 
un assigning 169 
unassigning in CMS/DCS 30 

LONG sUbcommand r description 236 
looping, in EXEC_procedure 288 
LOWCASE option 

of ASSGN command 30 
of COPYFILE command 37 
of FILEDEF ~ommand 92 

lowercase letters -
suppressing translation to uppercase 

219 
translating to uppercase 

with CASE subco-mmand 219 
with COPYFILE-command 37 
with PRINT command 139 

LRECL option 
of COPYPILE command 37 

example 40 
of EDIT command 80 
of FILEDEF command 91 

368 IBM VM/370 CMS Co.mand and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-IX8 

M 
M operand of CASE subcommand 219 
MACLIB 

command 
ADD option 130 
COMP option 130 
DEL option 130 
description 130 
DISK option 131 
GEN option 130 
MAP option 130 
PRINT option 131 
reading files created by ESERV 

program 84 
REP option 130 
TERM option 130 

files 
creating 130 
displaying names of MACLIBs to be 
searched 152 

distributed with CMS system 131 
specifying for assembly or 
compilation 104 

option 
of CMS QUERY command 152 
of GLOBAL command 104 

MACRO 
files, created by ESERV program 83 
filetype 

adding to MACLIBs 131 
default editor settings 343 
invalid records in, handling by 

MACLIB command 131 
macro definitions 

in assembler listing 24 
in MACRO files 131 

macro libraries 

MAP 

CMS 
adding to 130 
compacting members of 130 
creating 130 
deleting members of 130 
displaying information about members 
in 130 

reading OS macro libraries into 191 
replacing members of 130 

creating 
from OS partitioned data sets on tape 

191 
from tapes created by IEHMOVE utility 

program 191 
DOS/VS, copying macros from 83 
DOS/VSE, copying macros from (~l~~=XX~) 

83 
identifying for assembly 27,104 
OS 

concatenating 92 
reading into CMS MACLIBs 191 
using in CMS 27 

filetype 
created 
created 
created 

by DOSLIB command 
by DSERV command 
by LOID command 

72 
77-

122 

created by MACLIB command 130 
created by TAPE command 188 
created by TXTLIB command 196 
created by TXTLlB command (~l~~-X!~) 

196.1 
option 

of DOSLIB command 72 
of GENMOD command 101 
of INCLUDE command 107 
of LOAD command 121 
of MICLIB command 130 
of TXTLIB command 196 
of TXTLIB command (~1~8-!X8) 196.1 

maps 
created by DOSLIB command 72 
created by GENMOD command 101 
created by LOAD command 122 
created by MACLlB command 130 
created by TXTLlB command 196 
created by TXTLlB command (5748-X!~) 

196.1 
linkage editor, in CMS/DOS 74 

margins, setting left margin for input with 
editor 250 

master catalog (VSAM) 
identifying 70 
identifying in CMS/DOS 66 

master file directory 
contents of 17 
suppressing updating after RENAME 

command 161 
updating entries in 160 
updating on disk 158 

MAXSUES operand of LlNEDIT macro 326 
MAXTEN option of TAPPDS command 194 
MAXTEN option of TAPPDS command (21~~-XX8) 

194.1 
MCALL option of ASSEMBLE command 24 
MEMBER option 

of FlLEDEF command 92 
of PRINT command 139 
of PUNCH command 144 
of TYPE command 199 

MEMO filetype, default editor settings 343 
MENU option, of HELP command (57~~=!X~) 

106 
message, text for LINEDlT macro 319 
MF operand of LlNEDlT macre 326 
minidisks (see also disks) 

copying 4~ ----
counti~g cylinders on 97 
counting cylinders on (~l~~=XX~) 98 

MLOGIC option of ASSEMBLE command 24 
MODE 

operand 
of RDTAPE macro 331 
of TAPECTL macro 336 
of TAPESL macrQ (57~~=!!~) 336.1 
of WRTAPE macro 338 

option of DDR command INPUT/OUTPUT 
control statement 48 

mode letter (see filemode letter) 
MODESET option-of TAPE command 187 

Index 369 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

MODMAP command, description 133 
MODULE files 

creating 101 
debugging 129 
defining synonyms for 182 
DOS/VS, link-editing 74 
executing with RUN command 164 
forllat 101 
generating 101 
loading dynamically during program 
execution 302 

loading into storage for execution 129 
mapping 133 

modules, DOS/VSE, link-editing (21!8-XX8) 
74 

MOVEFILE command 
default device attributes 135 
description 134 
examples 134 
PDS option 134 

MSG operand of &CONTROL control statement 
282 

MULT option of DLBL command 61 
lIultilevel updates using UPDATE command, 

examples 206,208 
multiple 

extents for VSAM files 
specifying 68 
specifying in CMS/DOS 64 

FSCBs 303 
input files 

for UPDATE command 201 
with COPYFILE command 39 

output files 
with COPYFILE command 35,39,41 
with RENAME command 161 

substitution lists, LINEDIT macro 324 
multivolume data sets, displaying volumes 

on which they reside 66 
multivolume VSAM extents 

identifying with DLBL command 69 
in CMS/DOS 65 . 

maximum number of disks 69 
in CMS/DOS 65 

rules for specifying 69 
in CMS/DOS 65 

N 
nesting 

&IF statements in EXEC procedure 288 
EXEC procedures 

effect on &CONTROL 283 
passing variable data 300 
testing recursion level 299 

loops in EXEC procedure 289 
never-call function, specifying in CMS TEXT 
file 124 

NEWDATE option of COPYFILE command 36 
NEWFILE option of COPYFILE command 36 
NEXT subcommand, description 236 
NL operand, of FILEDEF command (21!8-!X8) 

95 
nnnnn subcommand, description 257 

NO option of START command 175 
NO'LIGN option of ASSEMBLE command 26 
NOALOGIC option of ASSEMBLE command 24 
NOAUTO option 

of INCLUDE command 107 
of LOAD command 121 

NOCC option of PRINT command 139 
NOCHINGE option 

of DLBL command 61 
of FILED!F command 91 
of LAB!LtEF command (57!~=1X8) 110.1 

NOCLEAR option 
of INCLUDE comm~nd 106 
of INCLUDE command (~1~~=1X8) 106.3 
of LOlD command 120 

NOCOL1 option of TAPPDS command 194 
NOCTL option of UPDATE command 201 
NODECK option 

of ASSEMBLE command 25 
of OPTION command 137 

NODISK option of ACCESS command 17 
NODISP option 

of EDIT command 80 
effect on FORMAT subcommand 229 

NODUMP option of OPTION command 137 
NODUP option 

of INCLUDE command 107 
of LOAD command 121 

NOEND option of TAPPDS command 194 
NOENt option of TAPPDS command (57!8-XX8) 

194.1 
NOEOV option, of FILEDEF command (5748-XX8) 

92.1 
NOERISE option. of FORMAT command 
(21.!!~-XX8) 98 

NOERRS option of OPTION command 137 
NOESt option of ASSEMBLE command 24 
NOHEADER option 

of LISTFILE command 114 
of PUNCH command 144 

NOINC option of UPDATE command 201 
NOINV option 

of INCLUDE command 107 
of LOAD command 121 

NOLIEE option 
of INCLUDE command 107 
of LOAD command 121 

NOLIEMAC option of ASSEMBLE command 24 
NOLIST option 

of ASSEMBLE command 24 
of OPTION command 137 

NOLISTX option of OPTION command 137 
NOMAP option 

of GENMOD command 101 
of LOAD command 121 

NOMAXTEN option of TAPPDS command 194 
NOMAXTEN option of TAPPDS command 

(57.!!.§=1X8)- 194.1 -
NOMCALL option of ASSEMBLE command 24 
NOMLOGIC option of ASSEMBLE command 24 _ 
NOMSG operand of &CONTROL control statement 

282 
nonreentrant code. writing for LINEDIT 

macro 327 

370 IBM VM/37D CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 ty Supp SD23-9023-1 for 5748-XX8 

nonrelocatable modules, in CMS 101 
NONSHARE option of CMS SET command 169 
nonshared copy 

of named system, obtaining 169 
of saved system, obtained during debug 

263 
NONUM option of ASSEMBLE command 25 
NOOBJECT option of ASSEMBLE command 25 
NOPACK operand of &CONTROL control 
statement 282 

NOPDS option of TAPPDS command 194 
NOPRINT option 

of ASSEMBLE command 25 
of TAPE command 188 

NOPROF option of ACCESS command 16 
NOPROMPT option of COPYFILE command 36 
NOREC operand of FSCB macro 303 
NORENT option of ASSEMBLE command 26 
NOREP option 

of INCLUDE command 107 
of LOAD command 121 
of UPDATE command 20C 

NORLD option of ASSEMBLE command 24 
NOSEQ8 option of UPDATE command 201 
NOSPECS option of COPYFILE command 36 
NOSTD option of SYNONYM command 182 
NOSTK option of UPDATE command 201 
NOSTMT option of ASSEMBLE command 26 
NOSTOR option of UPDATE command 201 
NOSTR option of GENMOD command 102 
NOSYM option of OPTION command 137 
notational conventions 4 
NOTERM option 

of ASSEMBLE command 26 
of OPTION command (~1~8-XX~) 138 
of UPDATE command 201 

NOTEST option of ASSEMBLE command 25 
NOTIME operand of &CONTROL control 
statement 282 

NOTRUNC option of COPYFILE command 37 
NOTYPE option 

of COPYFILE command 36 
of ERASE command 81 
of INCLUDE command 107 
of LOAD command 121 
of RENAME command 160 

NOUPDIRT option of RENAME command 160 
NOWTM option of TAPE command 188 
NOXREF option 

of ASSEMBLE command 25 
of OPTION command 137 

NOYFLAG option of ASSEMBLE command 26 
NSL operand (21~§=!X8) 

of FILEDEF command 95 
of TAPEMAC command 191 
of TAPPDS command 193 

nucleus 
CMS, protected storage 168 
protection feature 

displaying status of 149 
setting 168 

resident commands, list 7 
null 

arguments in EXEC procedure, setting 
with % 298 

block, dumping to tape 189 
line 

stacking in console stack 248 
stacking in EXEC 292 
to return to edit mode from inFut 

mode 215 
when entering VSAM extents 69 
when entering VSAM extents, in 

CMS/DOS 64 
when entering VSAM extents, in 

CMS/DOS (~148=XX8) 64.1 
symbols in EXEC statement 288 

NUM, result of &DATATYPE built-in function 
296 

number 
of characters in token in EXEC 

procedure, determining 296 
of records to be read or written, 
specifying 303 

NUMfER option of ASSEMBLE command 25 
numeric 

o 

data, determining if token contains 296 
variables in EXEC procedure 298 

object deck, assembler, generating 25 
OBJECT option, of ASSEMBLE ccmmand 25 
OFF operand 

of &CONTROL control statement 282 
of &HEX control statement 286 
of &TIME control statement 293 
of AUTOSAVE subcommand 217 
of IMAGE subcommand 231 
of LINEMODE subcommand 234 
of SERIAL subcommand 247 

OFFSET (.OF) format word (.21~!!=!X8) 340.10 
OLDDATE option of COPYFILE command 36 
ON operand 

of &HEX control statement 286 
of &TIME control statement 293 
of IMAGE subcommand 231 
of SERIAL sutcommand 247 

operands, command 3 
operators, comparison, in EXEC procedure 

287 
O?TCt option- of FILEDEF command 92 
OPTION 

command 
DECK option 
description 
DUMP option 
ERRS option 
LIST option 
LISTX optio_n 
NODECK option 

137 
137 
137 
137 
137 -

137 
137 

Index 371 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

NODUMP option 137 
NOERRS option 137 
NOLIST option 137 
NOLISTX option 137 
NOSYM option 137 
NOTERM option (~1~!!=.!X8) 138 
NOXREF option 137 
SYM option 137 
TERM option (57 ~!!=!X8) 138 
XREF option 137 
48C option 137 
60C option 137 

option, of CMS QUERY command 154 
options 

command 3 
for DOS/VS COBOL compiler, specifying 

137 
for DOS/VS COBOL compiler in CMS/DOS, 

querying 154 
for DOS/VSE COBOL compiler, specifying 
(.21~.f1=XX8) 137 

for DOS/VSE COBOL compiler in CMS/DOS, 
query ing (.21~8- XX!!) 154 

LOAD and INCLUDE command, retaining 107 
or igin 

for debug environment 
setting 269 
used to compute symbol location 265 

ORIGIN 

OS 

option 
of FETCH command 87 
of INCLUDE command 107 
of LOAD command 120 

subcommand, description 269 

data sets 
defining in CMS 89 
listing information 110 
listing information (.21~!!=!!.f1) 110.4 

disks, accessing 18 
linkage editor control cards, adding to 
T~XT files 197 

macro libraries 
reading into CMS MACLIBs 191 
used in assembly 27 

option, of GENMOD command 102 
partitioned data sets (2~~ partitioned 
data sets) 

tapes 
containing partitioned data sets 194 
standard-label processing 194 
standard-label processing (.21~~=!!~) 

194.1 
utility programs 

creating CMS files from tapes created 
by 193 

IEBPTPCH 193 
IEBUPDTE 193 
IEHMOVE 193 

OUTMOVE, MOVEFILE command ddname 134 
OUTPUT 

control statement, for DDR command 47 
option 

of CMS QUERY command 149 
of CMS SET command 168 

OVERLAY subcommand 

description 237 
effect of image setting 231 

OVLY option 
of COPYFILE command 36 

example 42 

P 
PACK 

operand of &CONTROL centrol statement 
282 

option 
of COPYFILE command 37 
of COPYFILE command, example 41 

parameter list 
displaying with LINEDIT macro 323 
passed by RUN command 165 
passed by START command 175 
passed to SVC instruction, recorded 178 

parent disk, of read-only extension 16 
parentheses 

before option list 3 
scanned ty EXEC interpreter 277 

PARM option, of HELP command (21~!!=XX!!) 
106.1 

partition size, for CMS/DOS, setting 169 
partitioned data sets 

copying into CMS files 134 
copying into partitioned data sets 135 
displaying member names 111 
listing members of 111 
on tapes, creating CMS files 194 

PD option of DSERV command 77 
PDS (§~~ partitioned data sets) 
PDS option 

of LISTDS command 111 
of MOVEFILE command 134 
of TAPPDS command 194 

periods 
as concatenation character for EXEC 
variables 288 

indicating message substitution in 
LINEDIT macro 318 

placing at end of message text in 
LINEDIT macro 319 

PERM option 
of DLBL command 61 
of FILEDEF command 91 
of LABELDEF command (21~.f1=!X8) 110.1 

permanent file definitions 91 
phase library 

clearing to zeros 76 
eMS/DOS 72 
deleting phases from 72 

phases 
executing in ~MS/DOS 87 
in DOS/VS core image libraries, 
obtaining information about- 78 

in DOS/VSE core image libraries, 
obtaining infor~ation about (21~~=!!~) 
78 

PLI filetype, default editor settings_ 343 
PLIOPT filetype, default ed~tor settings 

3-43 
preferred auxiiiaryfiles 208 

372 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 ty Supp SD23-9023-1 for 5748-XX8 

prefixes 
identifying sets of files 

with ACCESS command 17 
with LISTFILE command 115 

prefixing, error messages issued in EXEC 
with DMS 278 

PRESERVE subcommand, description 238 
PRINT 

command 
CC option 139 
description 139 
HEX option 139 
LINECOUN option 140 
MEMBER option 139 
NOCC option 139 

function statement of DDR command 51 
option 

of AMSERV command 20 
of ASSEMBLE command 25 
of DOSLIB command 72 
of DOSLKED command 74 
of DSERV command 77 
of MACLIB command 131 
of PSERV command 142 
of RSERV command 162 
of SSERV command 173 
of TAPE command 188 
of TXTLIB command 196 
of TXTLIB command (~148=!!!!) 196 .• 1 
of UPDATE command 201 

PRINT command, FCB macro loaded by 140 
printer, printing records at 46 
PRINTER option 

of A5SGN command 29 
of FILEDEF command 91 

printers, virtual, closing after using 
PRINTL macro 328 

PRINTL macro 
description 328 
ERROR operand 328 

private libraries (~~ libraries, DOS/VS) 
private libraries (~g libraries, DOS/VSE) 
(21~.§=1!~ ) 

PROC, files, creating in CMS/DOS 142 
procedures 

DOS/VS, copying into CMS files 142 
DOS/VSE, copying into CMS files 
(~1~~=XX8) 142 

processor time, displaying in EXEC 
procedure 293 

PROFILE EXEC, suppressing execution of 16 
PROG option of LISTIO command 118 
program 

compilation and execution, with RUN 
command 164 

entry point 
selection during CMS loader 

processing 122 
specifying 120 

execution 
considerations for closing files in 

EXEC procedures 304 
considerations for closin~ files in 

, EXEC procedures (57~8-XX8) 304.1 
displaying data at terminal 317 
displaying parameter lists 323 
displaying storage 322 
halting 213,262 
handling external interruptions 313 
handling I/O interru~tions 314 
handling SVC interru~tions 315 
in CMS subset 222 
in CMS/DOS 87 
modifying control words 271 
modifying general registers 271 
modifying storage 272 
resuming after breakpoint 267 
with INCLUDE command 107 
with LOAD command 121 
with START command 175 

loading into storage 
while using editor 222 
with INCLUDE command 106 
with INCLUDE command (21~~=!!~) 

106.3 
program status word (~~ PSi (program 
status word}) 

programmer logical units 
for job catalogs 66 
listing assignments for in CMS/DOS 118 
valid assignments in CMS/DOS 29 

PROMPT 
option of COPYFILE command 36 
subcommand, description 238 

prompting 
increment for line-number editing 234 

setting 238 
PROTECT option 

of CMS QUERY command 149 
of CMS SET command 168 

PSERV command 
description 
DISK option 
PRINT option 
PUNCH option 
TERM option 

PSi 

142 
142 

142 
142 

142 

operand of SET subcommand 271 
subcommand, description 270 

PSi (program status word) 
changing, in debug environment 271 
displaying in debug environment 270 

PUNCH 
assembler punch output ddname 27 
command _ 

description 144 
HEADER card format 145 
HEADER option 144 
MEMBER option 144 
NOHEAtER option- 144 

option-
of ASSGN command 29 
of FILEDEF command 91 
of PSERV command 142 
of RSERV command - 1&2 
of SSERV command 173 

Index 373 



Pg. of GC2o-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

punch, virtual, closing after PUNCHC macro 
330 

PUNCHC macro 
description 329 
ERROR operand 330 

punched files, restoring to disk 58 

Q 
QUERY command (CMS) 

ABBREV option 148 
BLIP option 147 
description 147 
DISK option 150 
DLBL option 152 
DLBL option (21~8-!!~) 152.1 
DOS option 153 
DOSLIB option 153 
DOSLNCNT option 154 
DOSPART option 154 
FILEDEF option 152 
IMPCP option 148 
IMPEX option 148 
INPUT opti~n 149 
LABELDEF operand (21~~=1!~) 152 
LDRTBLS option 148 
LIBRARY option 152 
MACLIB option 152 
OPTION option 154 
OUTPUT option 149 
PROTECT option 149 
RDYMSG option 148 
REDTYPE option 149 
RELPAGE option 148 
SEARCH option 150 
SYNONYM ALL option 151 
SYNONYM SYSTEM option 151 
SYNONYM USER option 151 
SYSNAMES op~ion 149 
TXTLIB option 152 
UPSI option 154 

QUIT subcommand, description 239 

R 
RD option of DSERV command 77 
RDCARD macro 

description 331 
ERROR operand 331 

RDTAPE macro 
description 331 
ERROR operand 331 
MODE operand 331 

RDTERM macro 
ATTREST operand 334 
description 333 
EDIT operand 333 
LENGTH operand 333 

RDYMSG option 
of CMS QUERY command 148 
of CMS SET command 167 

read, console read after CMS command 
execution 168 

READ control card 155 
deleting 156 
format 156 

REAICARD command, description 155 
reader 

virtual 
reading file from 58,155 

READER option 
of ASSGN command 29 
of FILEDEF command 91 

read-only 
disks, editing files on 217 
extensions 

editing files on 79 
releasing 158 

read/write 
status of disks 

controlling 17 
finding first read/write disk in the 
standard search order 299 

finding read/write disk with the most 
space 299 

listing for disk assignments in 
CMS/DOS 118 

querying 150 
read/write pointer, positioning, FSWRITE 

macro 311 
ready message 

displaying return code from EXEC 
processing 285 

format 167 
long form 167 
query setting of 148 
setting 167 
short form 167 
special format in EXEC 85 

RECFM 
operand of FSCB macro 302 
option 

of COPYFILE command 37 
of COPYFILE command, examples 40 
of FILEDEF command 91 

subcommand 
description 239 
F operand 239 
V operand 239 

RECNO operand of FSCB macro 302 
RECNO operand of FSCB macro (~1~~=!!~) 

302.1 
RECOMP option of FOB MAT command 97 
RECOMP option of FORMAT command (57~~-X!~) 

98 
record format 

of CMS file 
changing ~7,40,239 
listing 115 

of file, specifying 91 
records. that can be punched 145· 
specifying, for FSWRIT~ macro 311 

374 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

record length 
default used by CMS editor 80 
modifying 80 
of CMS file 

changing 37,40 
listing 115 
maximum lengths for PRINT command 

140 
specifying truncation setting for input 

250 
specifying with FILEDEF command 93 

record number 
specifying next record to be accessed 

302 
specifying next record to be accessed 

(.21.!:H!::XX§) 302. 1 
records 

displaying selected positions of 198 
in file, numbering with UPDATE command 

200 
red type 

display lines with WRTERM macro 340 
for error messages 168 

REDTYPE option 
of CMS QUERY command 149 
of CMS SET command 168 

reentrant code, writing for LINEDIT macro 
326 

references 
unresolved 

resolving with INCLUDE command 107 
resolving with LOAD command 121 

REGEQU macro, description 334 
registers (§~~ general registers) 
RELEASE command 

description 158 
DET option 158 

relocatable 
libraries (DOS/VS), displaying 
directories of 77 

libraries (DOS/VSE), displaying 
directories of (.21~§::!!§) 77 

modules, link-editing in CMS/DOS 74 
relocation dictionary, assembler 24 
RELPAGE option 

of CMS QUERY command 148 
of eMS SET command 167 

remote terminals, using CMS editor 229 
RENAME command 

description 160 
NOTYPE option 160 
NOUPDIRT option 160 
TYPE option 160 
UPDIRT option 160 

RENT 
operand of LINEDIT macro 327 
option of ASSEMBLE command 26 

RENUM subcommand, description 240 
REP option 

of INCLUDE command 107 
of LOAD command 121 
of MACLIB command 130 
of UPDATE command 200 

REPEAT subcommand 241 
used with OVERLAY subcommand 237 

REPLACE 
control statement, for UPDATE command 

204 
option of COPYFILE command 36 
subcommand 

description 242 
effect of image setting 231 
restriction while using line-number 
editing 234 

stacking with &STACK control 
statement 242 

repl ace (REP) 
loader control statement 127 

image of in load map 107 
RESET 

operand of &TIME control statement 293 
option 

of INCLUDE command 106 
of INCLUDE command (2748-XX8) 106.3 
of LOAD command 120 

responses, CMS editor, controlling format 
of 236 

RESTORE 
function statement, of CDR command 50 
subcommand, description 242 

restrictions 
access method services and VSAM 

DOS/VS users 345 
DOS/VSE users (21~8-]X8) 345 
as/vs users 347 

RETURN 
command, description 243 
subcommand (DEBUG) 270 

return codes 
C~S, in EXEC procedure 85 
displaying during EXEC processing 282 
from access method services 22 
from C~S commands, testing in EXEC 
procedure 300 

from CMS macro instructions 301 
from EXEC, displaying in ready message 

285 
from EXEC interpreter 86 
specifying in EXEC procedure 285 

REUSE subcommand 
description 243 
examples 243 

REW, tap~ control function 187 
REWIND option, ~f TAPE command (57~8-XX§) 

189 -
REWIND option of DDR command INPUT/OUTPUT 
control statement 48 

ribbon, two-color, controlling use of 149 
RIGHi oper~nd of LINE MODE subcommand 233 
RLD option of ASSEMBLE command 24 
RO Imnediate command 21J 
RPTR operand, of FSPOINT macro (21~§=XX8) 

307 
RSCS (Remote Spooling Communications 

Subsystem) 1 

Index 375 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

RSERV command 
description 162 
DISK option 162 
PRINT option 162 
PUNCH option 162 
TERM option 162 

RT Immediate command 214 
stacking in EXEC procedure 292 

RUN 

S 

command, description 164 
tape control function 187 

SAME option of INCLUDE command 107 
SAVE subcommand, description 245 
saved system 

names 
querying 149 
setting 169 

sharing 169 
SCAN option of TAPE command 187 
scanning 

&ERROR control statement 284 
in EXEC procedure 277 

SCRIPT, filetype, default editor settings 
343 

SCROLL subcommand, description 245 
SCROLLUP subcommand, description 245 
SD option of DSERV command 77 
S-disk, accessed after IPLing CMS 17 
SEARCH option of CMS QUERY command 150 
search order 

for CMS commands 7 
for CMS loader 122,123 
for executable phases in CMS/DOS 87 
for relocatable modules in CMS/DOS 75 
of CMS disks, querying 150 

SEC operand, of LABELDEF command (~748-!!~) 
110.1 

SEQUENCE control statement, for UPDATE 
command 202 

sequence numbers 
assigned to VSAM extents 69 

in CMS/DOS 65 
SEQ8 option of UPDATE command 200 
SERIAL subcommand 

ALL operand 247 
description 246 
OFF operand 247 
ON operand 247 

SET command (CMS) 
ABBREV option 168 
AUTOREAD option 168 
BLIP option 166 
description 166 
determining status of SET operands for 
virtual machine environment 147 

DOS option 169 
DOSLNCNT option 169 
DOSPART option 169 
IMPCP option 168 
IMPEX option 168 
INPUT option 167 

LtRTBLS option 167 
NONSHARE option 169 
OUTPUT option 168 
PROTECT option 168 
RDYMSG option 167 
REDTYPE option 168 
RELPAGE option 167 
SYSNAME option 169 
UPSI option 169 

set location counter (SLC), loader control 
statement 126 

SET operand 
of HNDEXT macro 313 
of HNDINT macro 314 
of HNDSVC macro 315 

set page boundary (SPB), leader control 
statement 127 

SET subcommand (DEBUG) 271 
CAW operand 271 
CSW operand 271 
GPR operand 211 
PSi operand 271 

SHORT subcommand, description 248 
SINGLE option of COPYFILE command 38 
SKIP option 

of DDR command INPUT/OUTPUT contrel 
statement 48 

of TAPE command 187 
SL operand (~1~~=!X8) 

of FILEDEF command 95 
of TAPEMAC command 191 
of TAPPDS command 193 

SLC statement (§~~ set location counter 
(SLC) statement) 

SO Immediate command 214 
SORT 

command 
description 171 
storage requirements 171 

option of DSERV command 77 
sort fields, defining 171 
source file, numbering reccrds with UPDATE 

command 200 
source files 

assembling 
identifying macro libraries 27,104 

for assembler 23 
updating 200 

source statement libraries 
DOS/VS, displaying directories of 77 
DOS/VS~, displaying directories of 
(.21~Jl=1!Jl) _77-

source symbol table, assembler, generating 
25 

space 
determine free extents for VSAM 110 
determine free extents for VSA~ 

(.2 7 4 ~=! X 8) 11 0 • 4 
SPACE LINES (.SP) format vord (274~=!X8) 

340.11 
SPACE operand, of TAPESL macro (51~~=XX8) 
336.2 

special variables (§~ EXEC special 
yariables) 

376 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

specification list, for COPYFILE command, 
format 41 

SPECS option 
of COPYFILE command 36 

usage 41 
SPOOL command 

used with DISK DUMP command 58 
used with PRINT command 140 

SSERV command 
description 
DISK option 
PRINT option 
PUNCH option 
TERM option 

173 
173 

173 
173 

173 
STACK 

subcommand, description 248 
value of &READFLAG special variable 300 

stackin~ 
EDIT subcommands 248 
in EXEC procedure, testing whether there 
are lines in stack 300 

lines in console stack 

START 

&BEGSTACK control statement 280 
&STACK control statement 292 

command 
description 175 
NO option 175 
passing arguments 175 

option 
of FETCH command 87 
of INCLUDE command 107 
of LOAD command 121 

starting pOint for execution of module, 
setting 120 

STAT option of LISTIO command 118 
STATE command, description 176 
STATEW command, description 176 
status of virtual machine environment 147 
STD option of SYNONYM command 182 
STK option, of UPDATE command 209 
STK option of UPDATE command 201 
STMT option of ASSEMBLE command 26 
STOR option of UPDATE command 201 
storage 

clearing to zeros 
in CMS/DOS 76 
with INCLUDE command 106 
with INCLUDE command (~~~~=l!~) 

106.3 
with LOAD command 120 

displaying with LINEDIT macro 322 
examining in debug environment 213 
initializi~g for MODULE file execution 

101 _ 
modifying d~ring program execution 272 
printing contents of 266 
releasing pages of after command 
execution 148,167 
requirement~ for SORT command 171 
specifying storage for CMS/DOS partition 

169 
used by GETFILE subcommand 230_ 

STORE, subcom~and, description 272 
STR option of GENMOD command 101 

SUE operand of LINEDIT macro 320 
sublibraries 

of DOS/VS source statement, copying 
books 173 

of DOS/VSE source statement, copying 
books (2148-!!~) 173 

subset, CMS (§~~ CMS subset) 
substitution 

in EXEC procedure, inhibiting 297 
list for LINEDIT macro 320 

specifying length 324 
of message text in LINEDIT macro 318 

substrings, extracting in EXEC procedure, 
&SUESTR built-in function 297 

SUL operand, of FILEDEF command (~1~~=!!~) 
95 

summary, of HELP format words (21!~=!X8) 
340.2 

SVC 
instructions 

handling interruptions during program 
execution 315 

tracing 178 
SVCTRACE command 

description 178 
output 182 

SYM option of OPTION command 137 
symbol table, debug 265 
symbolic names, assigning to storage 
locations, in debug envircnment 265 

symbols 
debug 

defining 265 
modifying 272 
used to set breakpoints 262 

in EXEC procedure 
effect of undefined symbols in &IF 
statement 288 

reading from terminal or console 
stack 290 

substituted in EXEC procedure, 
displaying 282 

variable (~~ variable symbols) 
SYNONYM 

command 
CLEAR option 182 
description 182 
example 183 
NOSTD option- 18~ 
relationship to SET AEEREV command 

183 
STn -option 182 

option, of C~S QUERY command 151 
synonym table 

clearing 182 
defining 183 
format for entrie$ in 183 
invoking 182· 

synonyms 
for CMS and user-written commands 182 

defining 183 
displaying 151,-183. 
examples 183 

system, displaying 151 
SYS optio-n of _LISTIO command _ 118 
SYSCAT~ assigning in CMS/Des 66 

Index 377 



Pg. of GC2o-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-X18 

SYSIN 
assembler input 27 
logical unit assignment in CMS/DOS 30 

SYSIPT, assigning for ESERV prog=am 83 
SYSLOG, assigning in CMS/DOS 30 
SYSLST lines per page 

displaying number of 154 
setting number of 169 

SYSNAME option of CMS SET command 169 
SYSNAMES option of CMS QUERY comma~d 149 
SYSPARM option of ASSEMBLE command 26 
SYSPRINT control statement of DDR command 

49 
SYSRES, assigning in CMS/DOS 30 
system and programmer logical units, 

entering on DLBL command 63 
system disk 

files available 17 
releasing 158 

system logical units 
invalid assignments in CftS/DOS 30 
listing assignments for in CMS/DOS 118 
valid assignments in CMS/DOS 29 

SYSTEM option of GENMOD command 102 
system residence volume, DOS/VS, specifying 

169 
SYSTERM option of ASSEMBLE command 25 
SYSxxx option 

T 
tab 

of ASSGN command 29 
of DLBL command 61 
of LISTIO command 118 

characters, how editor handles ~3:1 
settings, used by editor 250 

TABSET subcommund 
affected by IMAGE subcommand 231 
description 249 

tape 
assigning to logical units ~-1\ CMS/DOS 

30 
tackward spacing 187 
control functions 187 

restrictions when using 189 
TAPECTL macro 335 

controlling, TAPECTL macro 335 
creating CMS disk files 193 
density of 

specifying 188 
specifying (274§.=!!!!) 188.1 

displaying filenames on 187 
dumping and loading CMS files 187 
dumping and restoring disk data 46 
files 

created by OS utility programs 193 
created by TAPE command 189 
writing to disk 187 

forward spacing 187 
labels (2I~§'=!!§') 

displaying definitions in effect 152 
displaying VOL1 label 188 
in FILEDEF command processing 95 
in TAPEMAC command processing -191 
in TAPESL macro processing _ 336.1 

in TAPPDS command processing 
193,194.1 

specifying descriptive information 
110 

writing VOL1 label 188 
marks 

OS 
writing 187,188 

standard-label processi~g 194 
standard-label processing (2148=!18) 

194.1 
positioning 187 

after VOL1 label is processed 
(5748-XX8) 189 

at-spec~.fIed file 187 
TAPECTL macro 335 

reading records from, RDTAPE macro 331 
recording technique 

specifying 188 
specifying (57~8-.!X8) 188.1 

rewinding 187 
used for AMSERV input and output 20 

entering ddnames 21 
in CMS/DOS 21 

writing records to, WRTAPE macro 338 
TAPE command 

ELKSIZE option (2148=.!X8) 188 
control functions 

BSP 187 
BSR 187 
ERG 187 
FSF 187 
FSR 187 
REW 187 
RUN 187 
WTM 187 

DEN option 188 
DEN option (~1~8-XX8) 188.1 
description 186 
DISK option 188 
DUMP option 187 
dumping null block 189 
DVOL1 operand (57~8-XX8) 188 
BOP option 188 
EOT option 188 
LEAVE option (~748-.!X8) 189 
LOAD option 187 
MODESET opfion 187 
NOPRINT option 188 
NOWTM option 188 
PRINT option 188 
REWIND option {57~~XX8) 189 
S~AN option - 187 
SKIP option 187 
TAPn option 188 
TERM option 188 
TRTCH option 188 
TRTCH option (274~=XX8) 188.1 
WTM option 188 
WVOL1 operand (57~8-.!X8} 188 
7TRACK option, 188 
7TRACK option (51~~=.!X8) 188-.1 
9TRACK option 188 
9TRACK option (57~~=XX8) 188.1_ 

TAPECTL macro 
description.. 3-3-5 
ERROR operand 336 
MODE operand 336 

378 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 ty Supp SD23-9023-1 for 5748-XX8 

TAPEMAC command 
description 191 
ID operand (5748-XX8) 191 
ITEMCT option--'9'--
NSL operand (~I~8-!!~) 191 
SL operand (~I~§=!!§) 191 
TAPn option 191 

TAPESL macro (2I~8-XX§) 
BLKCT operand 336.2 
description 336.1 
ERROR operand 336.2 
LABID operand 336.1 
MODE operand 336.1 
SPACE operand 336.2 
TM operand 336.2 

TAPIN option of AMSERV command 20 
TAPn option 

of ASSGN command 29 
of FILEDEF command 91 

usage (2I~§=!X8) 95 
of TAPE command 188 
of TAPEMAC command 191 
of TAPPDS command 194 

TAPOUT option of AMSERV command 20 
TAPPDS command 

COLl option 194 
description 193 
END option 194 
END option (21~~=!!§) 194.1 
ID operand (~I~~-X!§) 193 
MAXTEN option 194 
MAX TEN option (2I~8-XX§) 194.1 
NOCOL1 option 194 
NOEND option 194 
NOEND option (2148=!X8) 194.1 
NOMAXTEN option 194 
NOMAXTEN option (2I~~=XX§) 194.1 
NOPDS option 194 
NSL operand (21~8-!!§) 193 
PDS option 194 
processing OS standard-label tapes 194 
processing OS standard-label tapes 

(5748-XX8) 194.1 
SL-operand (21~§=!!§) 193 
TAPn option 194 
UPDATE option 194 

TD option of DSERV command 77 
TERM option 

of DOSLIB command 72 
of DOSLKED ccmmand 75 
of DSERV command 77 
of MACLIB command 130 
of OPTION command (21~8-!!§) 138 
of PSERV command 142 
of RSERV command 162 
of SSERV command 173 
of TAPE command 188 
of TXTLIB command 196 
of TXTLIB command (21~~=!!~) 196.1 
of UPDATE command 201 

terminal 
displaying lines at, WRTERM macro 340 
displaying records at 46 
output 

determining if terminal is displaying 
300 

halting 213 
halting in EXEC procedure 292 
restoring 214 
restoring in EXEC procedure 292 

reading data from 
during EXEC procedure 290 
with RDTERM macro 333 

waiting for I/O to complete, WAITT macro 
338 

TERMINAL option 
of ASSEMBLE command 26 
of ASSGN command 29 
of FILEDEF command 91 

TEST option of ASSEMBLE command 25 
TEXT 

assembler output ddname 27 
files 

automatic loading 121 
cards read by loader 122 
creating with assembler 25 
executing with RUN command 164 
link-editing in CMS/DOS 74,75 
linking in storage 120 
loading into storage during program 
execution 302 

loading into virtual storage 120 
resolving unresolved references with 

LOAD command 121 
libraries (§~~ TXTLIE) 
operand of LINEDIT macrc 319 

TEXT files 
loading into storage for execution 106 
loading into storage for execution 
(214~=]]~) 106.3 

setting starting pOint for execution 
120 

TEXTA operand of LINEDIT macro 319 
time information, displaying during EXEC 

processing 293 
time of day, displaying during EXEC 

processing 282 
TIME operand of &CONTROL centrol statement 

282 
timers, virtual interval 166 
TM operand,. of TAPESL macro (21~§=!!§) 

336.2 
TO 

operand of $MOVE edit macro 259 
option of GENMOD command 101 

tokens 
comparing in EXEC procedure 287 
description 277 _ 

TOLAEEL option of COPYFILE command 36 

Index 379 



Pg. of GC2o-1818-2 Rev March 30 r 1979 by Supp SD23-9023-1 for 5748-118 

TOP 
operand of &GOTO control statement 286 
subcommand r description 250 

tracing 
resuming after temporarily halting 213 
suspending recording temporarily 214 
SVC instructions 178 

halting 212 
trailing fill characters r removing from 
records 41 

TRANS option of COPYFILE command 37 
transient area 

CMS commands that execute in 7 
creating modules to execute in 103 
loading programs into 121 

transient directories in DOS/VS, displaying 
77 

transient directories in DOS/VSE, 
displaying (21!~-XX8) 77 

TRANSLATE CHARACTER (.TR) format word 
(~148=!!~) 340.12 

translate tables 
defining input characters for 
translation 167 

defining output characters for 
translation 168 

displaying 149 
translation list r for COPYFILE command, 
description 43 

TRTCH option 
of ASSGN command 30 
of FILEDEF command 92 
of TAPE command 188 
of TAPE command {21!~=!!~} 188.1 

TRUNC 
option of COPYFILE command 37 

example 40 
subcommand r description 250 

truncation 
column r for input mode 251 
of command names 

querying acceptability of 148 
setting acceptability of 168 

of commands 4 
of input reccrds with editor, default 
settings 250 

of records in CMS file 37 
during GETFILE subcommand 230 
following CHANGE subcommand 220 

of tokens in EXEC procedure 277 
of trailing blanks from CMS file 37 

two-color ribbon, controlling use of 
149,168 

TXTLIB 
command 

ADD option 196 
ADD option (274~=!!!D 196.1 
DEL option 196 
DEL option (274~=!!!!) 196.1 
descripticn 196 
description (57 !~=!X8) 196. 1 
DI~K option 196 
DISK option (57!~=!X8) 196.1 
GEN option 196 
GEN option (.274~=!!!!) 196.1 

MAP option 196 
MAP option (57!~=lX8) 196.1 
PRINT option 196 
PRINT option (~748-1X8) 196.1 
TERM option 196 
TERM option (.2148-1X8) 196.1 

file, searching for unresolved 
references 107 

files 
adding members 196 
adding members (57!~=!X8) 196.1 
creating 196 
creating (.21!~=XX8) 196 .• 1 
deleting members 196 
deleting members (57.!!~=lX8) 196 .• 1 
determining which TITLIBs are 
searched 152 

identifying for LOAD and INCLUDE 
command processing 104 

listing members in 196 
listing members in (21!!~=!X8) 196.1 
maximum number of members 197 
search for unresolved references 121 
searched during INCLUDE command 

processing 106 
searched during INCLUDE command 

processing (.21!8-XX8) 106.3 
searched during LOAD command 

processing 120 
option 

of CMS QUERY command 152 
of GLOBAL command 104 

TYPE 
command 

COL option 198 
description 198 
HEX option 198 
MEMBER option 199 

function statement of DDR command 51 
operand of &TIME control statement 293 
option 

of COPYFILE command 36 
of COPYFILE command (example) 40 
of ERASE command 81 
of INCLUDE command 107 
of LOAD command 121 
of RENAME command 160 

subcommand, description 251 
TYPE/PRINT outpu~ of DDR command 52 

U 
U operand of CASE subcommand 219 
UA option 

of ASSGN command 30 
of LISTIO command 118 

underscore _ 
character, on OV~RLAY subcommand 237 
data records, using backspaces 232 

UNLOAD option of DDR command INPUT/OUTPUT 
control statement 48 

UNPACK option, of COPYFILE c~mmand - 37 

380 IBM VM/370 CMS Command and Macro Reference 



Pg. of GC20-1818-2 Rev March 30, 1979 ty Supp SD23-9023-1 for 5748-XX8 

unresolved references 

UP 

during MODULE file generation 103 
loader handling of 123 
resolving with INCLUDE command 107 
searching for TEXT files 121 
searching TXTLIBs for 121 

operand of $MOVE edit macro 259 
su~command, description 252 

UP CASE option 
of ASSGN command 30 
of COPYFILE command 37 
of FILEDEF command 92 
of PRINT command 139 

UPDATE 
cOllmand 

control statements 202 
CTL option 201,206 
description 200 
DISK option 201 
error handling for 210 
INC option 201 
input files 205 
multilevel updates, example with 
auxiliary control ~ile 208 

NOCTL option 201 
NOINC option 201 
NOREP option 200 
NOSEQ8 option 201 
NOSTK option 201 
NOTERM option 201 
output files 205 
PRINT option 201 
REP option 200 
SEQ8 option 200 
STK option 201,209 
STOR option 201 
TERM option 201 
warnings by 210 

control statements 
comments 205 
DELETE 204 
INSERT 203 
REPLACE 204 
SEQUENCE 202 

filetype, default editor settings 343 
option of TAPPDS command 194 

update log 
for UPDATE command operations 201 

generating at your terminal 201 
UPDIRT option of RENAME command 160 
uppercase letters 

converting to lowercase, with COPYFILE 
command 37 

suppressing translation of lowercase 
letters with editor 219 

UPSI 
byte 

querying setting nf 154 
setting 169 

option 
of CMS QUERY command 154 
of CMS SET command 169 

UPTDxxxx filetype, default editor settings 
343 

user catalog 
identifying 70 

in eMS/DOS 66 
user file directory 16 

contents of 17 
creating 16 
updating on disk 158 

user-defined synonyms, displaying 151 
user-written commands 

V 

assigning synonyms for 182 
creating 102 

variable data 
in EXEC procedure 

displaying 294 
punching 289 
stacking 292 

variable symbols 
assigning values to in EXEC procedures 

276 
reading from terminal or ccnsole stack, 

in EXEC procedure 290 
substituting, in EXEC procedure 276 
testing, in EXEC procedure 287 

variable-length files 
converting to fixed-length 40 

using RECFM sutcommand 239 
reading and writing with CMS macros 311 

VARS operand of &READ control statement 
290 

verification setting, for editor, changing 
253 

VERIFY subcommand, description 253 
virtual disks (2~~ ~12Q disks) 

counting cylinders on 97 
counting cylinders on (21~~=~~~) 98 
initializing 97 
resetting number of cylinders on 97 
resetting number of cylinders on 

(21~'§=.!]'§) 98 
valid addresses for 16 

virtual machines 
components of 1 
console - 1 
definition 1 
environment, determining status of 147 

VM/370, basic description 1 
VOLID ~perand (21~'§=]]'§) 

of FILEDEF command 96 
of LAEELIEF command 110 

VOLSEQ operand, of LABELDEF command 
(214 8=]~.§) 110 

VSAM 
catalogs 

determining which ~atalog is searched 
67 

identifying _ 69 
identifying in CMS/DCS 66 

data set extents, displaying 65 
determining free space extents- 110 
determining free spac'e extents· 
<'21~~=~X8) - -110.4 

Index 381 



Pg. of GC20-1818-2 Rev March 30, 1979 by Supp SD23-9023-1 for 5748-XX8 

files 
defining with DLBL command 60 
specifying disk extents 68 
specifying disk extents in CMS/DOS 

64 
master catalcg 

identifying 70 
~dentifying in CMS/DOS 66 

option 
of DLBL command 61 
of SET DOS ON command 169 

restrictions 
for DOS/VS users 345 
for DOS/VSE users (~1~§=!X8) 345 
for OS/VS users 347 

VSBASIC 
files, renumbering 240 
filetype, default editor settings 343 

VSBDATA filetype, default editor settings 
343 

W 
wait, for terminal I/O to complete, WAITT 

macro 338 
WAITD macro 

description 336 
description (21~8-!!§) 337 
ERROR operand 336 
ERROR operand (~748-!!~) 337 
used with HNDINT macro 314 

WAITT macro, description 338 
WPTR operand, of FSPOINT macro (~1~~=!X8) 

307 
WRTAPE macro 

description 338 
ERROR operand 339 
MODE operand 338 

WRTERM macro 

WTM 

COLOR operand 340 
description 340 
EDIT operand 340 

option of TAPE command 188 
tape control function 187 

WVOLl operand, of TAPE command (~1~§=!!~) 
188 

x 
X 

DEBUG subcommand 273 
EDIT subcommand 

descripticn 254 
example 254 

XREF option 
of ASSEMBLE command 25 
of OPTION command 137 

XTENT option of FILEDEF command 91 

Y 
Y subcommand 

description 254 
example 254 

Y-disk, accessed after IPLing CMS 17 
YFLAG option of ASSEMBLE command 26 

Z 
zone settings, for edit session 255 
ZONE subcommand, description 255 

1 
19E virtual disk address" accessed as 
Y-disk 17 

190 virtual disk address, accessed as 
S-disk 17 

191 virtual disk address, accessed as 
A-disk 17 

192 virtual disk address, accessed as 
D-disk 17 

195 virtual disk address, formatted by 
batch facility 32 

3 
3350, restriction on use in CMS/DOS 31 

4 
48C option of OPTION command 137 

6 
60C option of OPTION command 137 

7 
7TR1CK option 

of ASSGN command 30 
of FILEDEF command 92 
of TAPE command 188 
of TAPE command (~1~~=.!.!~) 188,.1 

7-track tapes 

CMS 

specifying on TAPE command 188 
specifying on TAPE command (~1~§=.!X8) 

188.1 

9 
9TRACK option 

of ASSGN command 30 
of FILEDEF command 92 
of TAPE command 188 
of TAPE command (~1~8-.!.!~) 188.1. 

9-track tap·es 
specifying on TAPE command 188 
specifying on TAPE command (~148=!!~) 

188.1-

382 IBM VM/370 CMS Command and Macro Reference 



--- ------ ----- ---- - ---- - - ---------- - .~-

System ·Library 
Supplement 

This Supplement No. S023-9023-1 

Date March 30, 1979 

File No. 8370-36 

For Base Publication GC20-1818-2, IBM Virtual Machine Facility/370: 
CMS Command and Macro Reference, Release 6 PLC 1 

© Copyright IBM Corp. 1976, 1977, 1979 

Prerequisites None 

IBM Virtual Machine Facility/370 
Basic Syste. Extensions 
progra. No. 5748-118 

This supple.ent contains replace.ent pages for 
!~370 CMS Co •• and and Macro Reference to support 
VM/370 Basic-Syste.-iitensions:--------

Before inserting any of the attacbed pages into 
!~J1Q £MS £2~g gna !acro Reference. read 
£![eful!I the instructions-on--this-Cover: They 
indicate when and how you should insert pages. 

Do not insert the attacbed pages unless you 
install the proqra. product. 

Pages to 
~~ Re~2y~g 

Contents vii-x 
1-2 
7-14 
17-18 
27-32 
41-42 
45-56 
63-64 
67-68 
73-78 
83-84 
87-92 
95-100 
105-106 
109-116 
137-142 
147-152 
161-162 
169-170 
173-174 
185-196 
199-200 
217-218 
221-224 
227-228 
233-234 
245-246 
249-250 
301-312 
335-336 
339-342 
345-348 
Index 349- 382 

Attached Pages 
12 !l.~ !.n§.!i!~1 ed * 

Contents vii-xi 
1-2.2 
7-14 
17-18 
27-32 
41-42.2 
45-56 
63-64.2 
67-68.2 
73-78 
83-84 
87-92.2 
95-100 
105-106.4 
109-116.2 
137-1-42 -
1.47-152.2 
161-162 
169-170 
173-174 
185-196.2 . 
199-200 
217-218 
221-224 
227-228 
233-234 
245-246 
249-250 
301-312 
335-336.4 
339-342 
345-348 
Index 349-382 

IBM Corporation, Publications Development, Department 058, Poughkeepsie, New York 12602 

Printed in U.S.A. 



*If you are inserting pages froa different 
Newsletters/Suppleaents and !,gn!.!s:~1 page nuabers 
are involved, always use the pages with the latest 
date (shown in the slug at the top of the page). 
The page with the latest date contains the aost 
coaplete inforaation. 

Changes or additions to the text or illustrations 
are indicated by a vertical line to the left of 
the change. 

Summary of Amendments 

This supplement contains new 
inforaation in support of VB/370 
Extensions. It contains functions 
release and: 

and updated 
Basic System 

of the initial 

• Interactive Help Facility under CBS 
• CBS File Systea Extensions 
• CBS/DOS Uplevel to DOS/VSI 
• Display Control for the 3270 
• Support for the IBB 3289 Model 4 Printer 
• Support for the IBB 8809 ~ape Unit 
• Support for the IBB 3310 and 3370 Direct Access 

Devices 

For a complete list of publications that support 
i8/370 Basic Systea Extensions, see IBn Virtual 
~g£hi~ Igs:.!1.!!IL170 ~gsis: ~Ist~A --ix!~~si~ns 
QgngI!1 Inf2I!!!ion ~gnYg!, GC20-1828. 

Note: Please file this cover letter at the back of 
the- base publication to provide a record of 
changes. 


	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002.0
	002.1
	002.2
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042.0
	042.1
	042.2
	043
	044
	045
	046
	047
	048.0
	048.1
	048.2
	049
	050.0
	050.1
	050.2
	051
	052.0
	052.1
	052.2
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064.0
	064.1
	064.2
	065
	066
	067
	068.0
	068.1
	068.2
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090.0
	090.1
	090.2
	091
	092.0
	092.1
	092.2
	093
	094
	095
	096.0
	096.1
	096.2
	097
	098.0
	098.1
	098.2
	099
	100
	101
	102
	103
	104
	105
	106.0
	106.1
	106.2
	106.3
	106.4
	107
	108
	109
	110.0
	110.1
	110.2
	110.3
	110.4
	111
	112.0
	112.1
	112.2
	113
	114
	115
	116.0
	116.1
	116.2
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150.0
	150.1
	150.2
	151
	152.0
	152.1
	152.2
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188.0
	188.1
	188.2
	189
	190.0
	190.1
	190.2
	191
	192.0
	192.1
	192.2
	193
	194.0
	194.1
	194.2
	195
	196.0
	196.1
	196.2
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302.0
	302.1
	302.2
	303
	304.0
	304.1
	304.2
	305
	306
	307
	308.0
	308.1
	308.2
	309
	310.0
	310.1
	310.2
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336.0
	336.1
	336.2
	336.3
	336.4
	337
	338
	339
	340.00
	340.01
	340.02
	340.03
	340.04
	340.05
	340.06
	340.07
	340.08
	340.09
	340.10
	340.11
	340.12
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384

