File No. S$370-36
Order No. GC20-1812-1

IBM Virtual Machine
Facility /370:
Systems EXEC User’s Guide

Release 2 PLC 11

This publication is for those VM/370 users who want
to use the Conversational Monitor System (CMS) EXEC
facilities, The CMS EXEC facilities enable a user to
define new CMS commands that are combinations of
existing CP and CMS commands. The new commands,
called EXEC procedures, are usually created using the
CMS Editor.

This publication tells the user how to:

® Use the CMS EXEC facilities.

® Code EXEC control statements.

® Build EXEC procedures.

® Enter EXEC procedures into the system.
® Invoke EXEC procedures.

A prerequisite publication is the /BM Virtual Machine
Facility/370: EDIT Guide, Order No. GC20-1805.

Second Editiop (april 1975)

This edition, 6C20-1812-1, is a reprint of 6C20-1812-0 incorporating
changes released in the following Technical Newsletters:

GN20-2635 (dated December 17, 1973)
GN20-2637 (dated March 29, 1974)
GN20-2651 (dated January 30, 1975)

This edition applies to Release 2 PLC 11 (Program Level Change) of IBM
virtual Machine Facility/370 and to all suktsequent releases until
otherwise indicated in new editions or Technical Newsletters This

edition does not make GC20-1812-0, or the above listed TNLs obsolete.

Changes are periodically made to the specifications herein; before using
this publication in connection with the operation of IBM systeas,
consult the latest IBM System/360 and System/370 Bibliography, Order No.
GA22-6822, and its Virtual Storage Supplement, Order No. GC20-0001, for
the editions that are applicable and current.

Technical changes and additions to text and illustrations are indicated
by a vertical bar to the left of the change.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Corporation, VM/370 Publications, 24 New England Executive Park,
Burlington, Massachusetts 01803. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972, 1973,
1974, 1975

This publication describes the
Conversational Monitor System (CMS) EXEC
facilities available to VM/370 users. It

contains both introductory and reference
information about the EXEC facilities for
any VM/370 users who want to use them. 1In
addition, it contains a section that
illustrates many useful techniques of EXEC
procedure design and implementation.

To use this book effectively, you should
have a general understanding of basic
programming techniques such as branching
and looping, as well as an understanding of
CMS procedures, CMS commands, and the CHS
Editor.

This book contains four
and an Appendix:

major sections

e The "Introduction" discusses the EXEC
facilities and their relationship to the
VM/370 system. It also tells how to
invoke and create an EXEC procedure.

EXEC Facilities"
parts of the CMsS

e "OUsing the CHMS
describes the three
EXEC facilities:

- The EXEC command.
- The EXEC files.
- The EXEC interpreter.

e M"EXEC Control Statements"® defines three
types of EXIRC statesents ({execution
control, built-in functions, and special
variables), and describes each control
statement in detail. This section
contains the main portion of the
reference material in the book.

e ®Building EXEC Procedures™ illustrates

several techniques of EXEC design. This

section shows you how to create EXEC
procedures and control their execution.

It contains most of the examples to be

found in this book.

e "Aappendix A: EXEC Control Statement
Summary" provides a quick-reference
summary of the EXEC control statements,
vhich you may £find helpful after you
have learned to use thes.

Exanmples of EXEC statements and
procedures are found throughout this book,
but they are concentrated in the "Building
EXEC Procedures" section. You can refer to
this section for examples as you read the
control statement descriptions, oOr yjou camn
read the entire book once fror front to

back, then use the "EXEC Control
Statements" section and "Appendix A: EXEC
Control Statement Summary® for reference

purposes.

Users of the IBM 3277 Display Station
(also called the "3270") should note the
3270 equivalents of terms in this book that
refer to IBM 2741 Commupnication Terminals.
These are as follows:

e The equivalent of the RETURN key on a
2741 is the ENTER key on a 3270.

e Output that is "typed® at a 2741 is

"displayed"™ at a 3270.

Because there is no TAB kevy on a 3270,
one of the 3270 program function keys
should be set to define tab characters.

The differences between 3270s and 2741s
are fully described in the IBM Virtual
Machine Facility/370: EDIT cunide, Order No.

GC20-1805.

PREREQUISITE PUBLICATION

The IBM Virtual Machine Pacility/370: EDIT
Guide, Order No. GC20-1805, is a

prerequisite for understanding the use of
the CMS Editor and BEDIT subcommands, which
you will need in order to create EXEC
procedures.

1}

OPERANDS FOR SCONTROL

New: Program Feature

Two new operands, MSG and NOMSG, have
been added +to the &CONTROL comntrol
statement.

DOCUMENTATICN CHANGES

The information about PROFILE EXEC
procedures, return codes, stacking,
EXEC file record lengths, and EDIT
macros has been clarified.

Sunmary of Amendments
for GC20-1812-0

as updated by GN20-2651
VM/370 Release 2 PLC 11

Summary of Amendments
for GC20-1812-0

as updated by GN20-2637
VM/370 Release 2 PLC 1

GEXEC SPECIAL VARIABLE

We have included informaticn about the

§BEXEC special variable.

EDIT MACRCS

Re have corrected the example of EDIT
macro usage.

ASSIGNMENT STATEMENT

Maintenance: Documentation Only

This change clarifies the paragraph
under "Executable Statements"™ on page
it. This change also affects

"Assignment Statements" on page 13 and
the sample EXEC procedure on page 59.

USE CF EXEC PROCEDURES OR

FACILITY

HE CMS BATCH

Maintenance: Documentation Only

The EXEC procedure example on page 59
of the section titled *Building EXEC
Procedures' is changed.

Summary of Amendments
for GC20-1812-0

As Updated by GN20-2635
V#/370 Release 1 PLC 13

INTRODUCTION .
Invoking An EXEC Procedure .
Writing an EXEC Procedure. .

USING THE CMS EXEC FACILITIES.

The EXEC Cosmand . « « « « .«
EXEC FileS ¢« o« o« o o o o «
Nonexecutable Statements
Executable Statements. .
The EXEC Interpreter . . .

CQETROT STATREMENTS,

BXEC NTROL
Execution Control Statements

&ARGS control Statement. .

—-2s s s

-
.

E§BEGPUNCH Control Statement.
&BEGSTACK Control Statement.
SBEGTYPE Control Statement .
&ECONTINUE Control Statement.

&CONTROL Control Statement
&END Control Statement . .
SERROR Control Statement
&EXIT Control Statement.
§GOTO Control Statement.
&IF Control Statement. .
&LOOP Control Statement.
SPUNCH Control Statement
&EREAD Control Statement.
§SKIP Control Statement.
&SPACE Control Statement
&§STACK Control Statement
&TIME Control Statement.
S§TYPE Control Statement.
Built-in PFunctions
&CONCAT Built-in Function.

e o & 5 s g & 5 o6 & ¢

e & g & o 9 8 5 8 4 0 & * a2 ¢

SDATATYPE Built-in Function.

~ &LENGTH Built-in Function.
S§LITERAL Built-in Function
&SUBSTR Built-in Function,
Special Variables. . « . . .
&EXEC Special Variable . .
&én Special variable. . . .
&GLOBAL Special variable .

S 8 » & o 6 o % 4 8 e P 4 o 0 o & s o a2 & o 0 ¢ » g s 4 s g

® o 8 & a2 s s & o & 4 % g 6 % o 6 2 O » O & s b o 8 s s 8 v ¢

o o o o o o

4 o & & & & o 5 a2 s 0 % 2 6 0 4 b a2 v s 6 2 s b o 2 s s s 0

" & & 9 o o

¢ o 8 & 5 0 s & s 0 a2 8 5 » 6 4 % B 0 & % o 8 6 0 6 8 % o 0 0

¢ 6 & & o 5 2 b 3 B B b o+ B 2 6 e+ o 6 s 4 6 2 0 s e s 8 o0

CONTENTS

§GLOBALn Special Vvariable. 30
&INDEX Special Variable. . « 31
ELINENUM Special Variable. 31
EREADFLAG Special Variable « « 31
ERETCODE Special Variable. 31
§TYPEPLAG Special vVariable 31
User-Defined Variables . . . « . . « « « 32
BUILDING EXEC PROCEDURES . . . « « « « « 33
Passing Arguments to an EXEC Procedure . 33
Checking for the Proper Number of
Arguments - N - - « 34

Checking for the Length of an Argunent

Checking for a Specific Argqument . . . 35
Communicating with a Terminal. 35
Reading Data from a Terminal 36
Typing Data at a Terminal. 37
Logic Control in an EXEC Procedure . . . 40
Labels in an EXEC Procedure. 40
Conditional Execution with the &IF
Statement « o o o o « o 41
Branching with the SGOTO Statenent « « 43
Branching with the §SKIP Statement . . 44
Using Counters for Loop Control. . . . 44
Loop Control with the &LOOP Statement. 45
Controlling Execution of CMS Commands. . 47

Placing a Command in the Console Stack 47
Checking for Execution Errors. . « . . . 49
Identifying Error Handling Routines. . 50
Cbecking for CMS Error Return Codes. . 50
Recognizing EXEC Processing Errors . . 5i
Special EXEC Piles « « « o « o « o« o« « o« 53
PROPILE EXEC « o« ¢ o o « = « « « « « « 54
CHS BXEC ¢ ¢ ¢ ¢ o o o o« o« = « o« o« o « 55
EDIT MacCroSe. « o« « « « o o « « « 56
Controlling the CMS Batch Pac111ty « o ¢ 57
Sample Procedures for Batch Execution. 58
An Annotated EXEC Procedure. « « « « « « 61
APPENDIX A: BEXEC CORTROL STATEMENT
SUMMARY ¢« ¢ « « o o o « « o o« ¢« o« « s » 63
INDEX. « o« o © o o « o« o« « o o o o« =« o« « 67

INTRODUCTION

The CMS EXEC facilities enable you to define new CMS commands that are
combinations of existing CP and CMS commands. The new commands, called
EXEC procedures, are usually created using the CMS Editor.

In some respects, an EXEC procedure provides facilities similar to
those of an 0S cataloged procedure. When an EXEC procedure is invoked,
it represents a sequence of commands that are executed acccrding to the
logic control statements defined in the EXEC procedure.

You can create simple EXEC procedures that execute several frequently
used commands, or you can devise complex EXEC procedures that test

gawvaral 1’\’\“.ﬂa1 nnnﬂ{i—{nns h’\:n-e Aan~s d-:n.-. whatlbar Ar nad dn Avamiba o
STy¥yCida 4AVUJaLlasr LUNBULCAVU (AP OP N uciLlirliny wiuonTiL UL uUu LU TarTluLe a

command. The logical capabilities in the EXEC processor are controlled
with statements similar to the IF/THEN, GOTO, DO, and LOOP statements
familiar to high-level language users.

An EXEC procedure 1is created by placing a selected sequence cf
commands in an EXEC file. An EXEC file can have any valid CMS filename
and filemode, but it must have a filetype of EXEC. EXEC files are made
up of fixed 1length reccrds up to 130 characters 1long. Each record
consists of one CMS command or EXEC control statement. (A CP command can
be entered in an EXEC file by using the CMS command CPB.)

Although EXEC files are usually created by using the CMS Editor, they
can also be created by an option of the LISTFILE command, by reading a
card file from the user's virtual reader, or by a user progranm.

INVOKING AN EXEC PROCEDURE

To invoke an EXEC procedure, you enter the CMS command EXEC, followed by
the filename of the EXEC file wanted and, optionally, a 1list of
arguments. When you are in CMS command mode, you may omit the initial
word EXEC, thus invoking the EXEC procedure simply by entering the

filenane.

You can invoke an EXEC procedure by filename because when a CMS
command is entered at a terminal, CMS first searches for an EXEC
procedure by that name, then for a regular CMS command module by that
name. Therefore, if an EXEC procedure has the same name as a CMS
command module, the EXEC procedure is always executed instead of the
command. The CMS command of the same name can then be invoked within
the EXEC prodedure.

Note: When a CMS command is issued in a user program, the request is
handled by an SVC (Supervisor Call), and the search of EXEC procedures
is not nmade. In this case, an EXEC procedure can be 1invoked
explicitly.

When an EXEC file is invoked, the EXEC interpreter controls the

execution of the procedure, substituting values for EXEC variables where
required, and passing control to CMS for execution of CMS commands.

Introduction 7

The EXEC interpreter can manipulate argument lists, thus allowing the
user to pass arquments to the EXEC procedure when it is invoked. EBefore
a command in the EXEC file is executed, each variable in it is
temporarily replaced by the corresponding argument from the argument
list that was specified when the EXEC procedure was invoked. Use cf
these variable arquments thus permits great flexibility in command
execution within the EXEC procedure. -

The concepts introduced in the preceding paragraphs are discussed in
greater detail later in this book. At this point, however, you can see
that the EXEC facilities provide you with a powerful tool that you can
use to develop your own command 1language or set c¢f operating
procedures.

WRITING AN EXEC PROCEDURE

Once you have designed an EXEC procedure, you can enter it into the
VM/370 system in several ways:

1. By punching cards, which are then read via the real system card
reader and the user's virtual reader.

2. By using the CMS Editor to enter input lines into a CMS file.

EXEC files can also be created by a user program or by the CHMS
LISTFILE command. Regardless of which method is used, the format of the
entered statements is basically the same. Only one CMS command or EXEC
control statement may be entered per card or card image. CMS commands
must be in the same format as they would be if you entered them from a

. terminal-. - . . . L - . - R . R

To use the CMS Editor to create an EXEC file, enter the command:
EDIT filename EXEC

where the filename is any valid CMS filename. The filetype of EXEC is
required. The CMS Editor automatically places a limit of 80 characters
on the input 1line 1length, and translates all entered 1lowercase
characters to uppercase.

If the EXEC file specified in the EDIT command is a new file, the
message:

NEW FILE:
EDIT:

is displayed at the terminal. You can then type in the INPUT subcommand
and start entering input 1lines as soon as the Editor replies, as
follows:

input
INPUT:
(Begin entering input 1lines.)

End each input 1line by pressing the RETURN key (or the ENTER key on a
3270 display station). When you have finished entering input, return to
EDIT mode by pressing the RETURN key again. If the file needs no
corrections, you can save it by typing in the FILE subcommand. The data
is stored and control returns to the CMS environment.

8 IBM VM/370: EXEC User's Guide

You can execute an EXEC file created in this way by typing in “EXEC
filename", or simply by typing in the filename. You can examine its
contents either by displaying it at a terminal wusing the CMS TYPE
command, or by printing it on the system printer using the CMS PRINT
command.

The preceding description of the CMS Editor identifies only a few of
the Editor functions that may be useful in creating and editing EXEC
files. PFor a more complete discussion of the CHS Editor, refer to the
VM/370: EDIT Guigde.

Introduction 9

USING THE CMS EXEC FACILITIES

This section describes the three major parts of the CMS EXEC facility:
1. The EXEC command, which initiates CMS execution of an EXEC file.

2. The EXEC files, which contain sequences of CMS commands and EXEC
control statements.

3. The EXEC interpreter, which analyzes each statement in an EXEC file
before CMS executes the procedure.

Each of these items is described in greater detail under a serarate
heading.

THE EXEC CCMMAND

The EXEC command executes one or more CMS commands or EXEC contrcl
statements contained 1in a specified EXEC file, allowing a sequence of
commands to be executed by issuing a single command. If this command is
entered from the CMS command mode, but not nested within another EXEC
procedure, the initial word EXEC may be omitted. This technique is
known as "implied EXEC."™ The format of the EXEC command is:

' 1
| -EXec | ---fname - [args...] - - v I
- Jd

fname specifies the filename c¢f a file containing one or more CHMS
commands to be executed. The filetype of the file must be EXEC
and the file must be fixed format, with a logical record length
of up to 130 characteys.

args specify the arguments to replace the numeric variables in the
specified EXEC file. Within an EXEC file, up to thirty symbolic
variables may be used, each one indicated ty an ampersand (§)
followed by an integer ranging from 1 to 30, to indicate values
which are to be replaced when the EXEC file is executed.

The EXEC interpreter assigns the arguments to symbolic
variables in the order in which +they appear in the argument
list. For example, each time an &1 appears in a line within the
EXEC, the first argument specified with the EXEC command
temporarily replaces the &1, the second argument specified with
the EXEC command replaces &2, and so on, to the nth argument cf
the EXEC command.

If the percent sign (%) is used in place of an argument, the
EXEC interpreter ignores the corresponding variable in all the
commands that refer to that variable. If the EXEC file contains
more variables than arguments given with the EXEC command, the
EXEC interpreter assumes that the higher-numbered variables are
missing, and CMS ignores the higher-numkered variables whenp it
executes the command.

10 IBM VM/370: EXEC User's Guide

EXEC FILES

An EXEC file is a CMS data file that can contain CMS commands and EXEC
control statements.

EXEC files can be created with the CMS Editor, by punching cards, by
a user program, or by the CMS LISTFILE command. An EXEC file can
contain up to 4096 lines. When you create an EXEC file using the CMS
Editor, the record length defaults to 80 characters, unless you use the
LRECL option of the EDIT command to specify up to 130 characters.
However, the EXEC interpreter only processes the first 72 characters of
the records (no matter what the record length actually is) unless you do
one of the following:

1. Specify &BEGPUNCH ALL, to give you access to the first 80
characters of each record that follows, up to the next &END control
statement.

2. Specify &EBEGTYPE ALL or &BEGSTACK ALL, to give you access to all
130 characters of each record that follows, up to the next SEND
control statement.

If you do not specify the ALL option, EXEC will use only 72 characters
of each record.

If you have a command line longer tham 72 characters, you can stack
that command following an §BEGSTACK ALL statement. This will enable ycu
to issue a command line up to 130 characters long.

EXEC files consist of two types of statements: executable and
nonexecutable. Each type is discussed below.

NONEXECUTABLE STATEMENTS

A nonexecutable statement in an EXEC file is one that begins with an
asterisk (*) and may or may not contain text. These statements are for
use as comment statements and are ignored during EXEC interrretation and
processing.

EXECUTABLE STATEMENTS

An executalle statement in an EXEC file is any statement that does not
begin with an asterisk. These statements consist of data items which
are strings of contiguous nonblank characters separated by blanks. Four
classes of executable statements are recognized by the EXEC interpreter:

1. BHNull statements.

2. CHMS commands.

3. Assignment statements.
4. Control statements.

Each of these statement classes is discussed under a separate
heading. In addition, labels, user-defined variables, and special EXEC
variables are discussed in relation to assignment statements and control
statements.

Using the CMS EXEC Facilities 11

Null Statements

A null statement is an executable statement in which the number of data
items is zero. A blank line is a null statement.

A label in an EXEC procedure begins with a hyphen (dash), and contains
up to seven additional alphameric characters. A label can be placed in
front of (on the same line as) a CMS command or EXEC control statement.
A lakel is often the object of a branching control statement, such as
&GOTO or §LOOP.

When searching for a label, the EXEC interpreter examines only the
first word on a 1line. Therefore, avoid any label names that appear as
the first word of a line within the scope of an §BEGPUNCH, EBEGSTACK, or
EBEGTYPE control statement.

CMS Commands

The EXEC interpreter considers an executable statement as a CMS command
if the first data item does not start with an ampersand or asterisk. (A
label can precede a CMS command.) CMS executes the command immediately.
When CHMS finishes execution, it returns control to the EXEC file, and
Places the . completion code from the .CMS command. .in the . special EXEC
variable ERETCODE.

‘Any valid CMS command may be included in an EXEC file. CP commands
may be included by prefixing the desired command with the CMS "CpP"
command. Another EXEC procedure may be invoked by prefixing its
filename with the CMS command "EXEC".

Hote: When in CMS command mode, the commands CP and BRXEC are not
required; they can be implied. These prefixes are required only when
these commands are invoked from an EXEC procedure or a user program, Or
vhen you have used the CHS command SET to set implied CP commands
(IMPCP) or implied EXEC commands (IMPEX) off.

—————

In an EXEC procedure you can use two types of variables: user-defined
variables and special EXEC variables.

User-defined variable names begin with an ampersand (&) amd contain
up to seven additional characters. These variables can contain numeric
or alphameric data, and must be initialized bLy the user. They can be
used for almost any purpose, much as user-defined variables in a
high-level language program are used.

12 IBM VM/370: EXEC User's Guide

Special EXEC variables follow the same naming conventions as
user-defined variables, and also contain the same types of data (numeric
or character values). The special EXEC variables, however, are
initialized and set by the EXEC interpreter. The user can examine their
contents, but in general, he cannot change then.

Variables are used extensively in assignment statements, which are
discussed next.

Using the CMS EXEC PFacilities 12. 1

Assignment Statements

An assignment statement is a statement in which a variable symbol is
assigned a value. The statement takes the form:

T

{ &Evariable = ae
L

&variable is a variable symbol which must be preceded by the ampersand
and followed by a blank.

ae is an arithmetic expression, the value of which is assigned
to &variable each time the statement is executed. ae must
be preceded by a blank and may be any of the following:

1. A single data item, such as ABC or 194.

2. An arithmetic expression, consisting of a sequence of
data jtems that possess positive or negative integral
values and are separated by rlus or minus signs, such
as 3 - 4 + -11 - 00.

3. A built-in function followed by its arguments, for
example, &SUBSTR &1 2 1. (Built-in functions are
discussed under a separate heading.)

As in other programming languages, the result of the expression to
the right of the equal sign is placed in (assigned to) the variable
named on the left of the equal sign (the target).

Leading zeros can be removed from a numeric quantity by performing
some arithmetic operation on it and assigning the result to some
variable. For example, the statements:

&X = 00012
ETYPE &X
EX = 8X + 0
ETYPE &X

result in the printed lines:

00012
12

when the statements are executed in an EXEC procedure.

Note: The data item immediately following the target of an assignment
statement must be a literal equal sign (=), and not an EXEC variable
that has the value of an equal sign. Conversely, if an equal sign is to
be the first data 1item following an EXEC control word (see “Control
Statements" below), then it must be specified as an EXEC variable that
has the value of an equal sign, and not as a 1literal equal sign.
Otherwise, the statement is interpreted as an assignment statement, and

(if it 1is valid as such) the control word is thereafter treated as a
variable.

Using the CMS EXEC Facilities 13

Control Statements

An executable statement is a control statement if the first data item is
an EXEC control word and the second data item is not an equal sign,
except that a control statement may be preceded by a label. Examples of
control words are:

&§GOTO
EEXIT
§IF

Control statements begin with a control word, which 1is usually
followed by a list of data items and, in some cases, by additional lines
of data. Control statements provide the means by which the user can
control the execution of his EXEC procedure. The &§IF control word, for
example, can establish a conditional test, and a branch (&GOTO) can be
taken if the test condition is nmet. Techniques for controlling EXEC
logic are described in the section entitled "Building EXEC Procedures."
The control words, and the rules for their use, are described
individually in a later section entitled "EXEC Control Statements."

THE EXEC INTERPRETER

The EXEC interpreter examines each statement in an EXEC file when the
file is invoked for execution. Except where specifically stated
otherwise, data lines read from an EXEC file are truncated at column 72,
and 1lines read from a terminal are truncated at column 130. A1l
nonexecutable statements (comments) are ignored. Executable statements
are interpreted, one at a time, in the following sequence.

1. Except for those commands that accept a line of data (an arbitrary,
unsubstituted, collection of words) as an argument, the words
forming a statement are "tokenized." That is, each word is treated
as an eight character quantity and is padded with blanks or
truncated, as necessary.

2. The tokens are then searched for the names of any special EXEC
variables, which are replaced by their values. However, if a token
is the target of an assignment statement, the name of the variable
is retained. Tokens in a statement are then searched for the names
of user-defined variables, which are replaced by values as follows:

e Each token is scanned for ampersands (&), starting with the
rightmost character of the token.

e If an ampersand is found, then it, with the rest of the token to
the right, is taken as a name. Then:

IF it is the name of an active variable,

THEN it is replaced (in the token) by the value assigned to the
variable;

1F it is the name of an EXEC keyword,

THEN it is left unaltered;
ELSE it is replaced (in the token) by blanks.
An EXEC keyword is a control word, a built-in function, or

either of the special tokens &% and &*. RAny token formed is

14 IBM VM/370: EXEC User's Guide

padded with blanks or truncated (as necessary) to maintain a
length of eight characters.

Scanning resumes at the next character to the 1left, and the
procedure is repeated until the token is exhausted. However, if
the token is the target of an assignment statement, scanning for
ampersands effectively stops before the leftmost character of
the token is reached, because a variable name nust be retained
as the assignment target.

Using the CMS EXEC Facilities 14.1

Note that any characters that are substituted are not scanned
for ampersands. They are, however, included in the next name if
another ampersand is found to the left.

This processing makes it possible to simulate the effects of
subscripted variables. For example, the sequence:

&€X = 123
ETYPE ABC &X ABCE&X 000000&X

yields the printed line:
ABC 123 ABC123 00000012

The sequence:

Entered After Substitution
&L = 2

&X&I = 5 §X2 =5

&I = &I - 1 &§I = 1

EXEI = &I + 1 £§X1 = 2

&§X = &XEI + &X&X&I &X = 6X1 + X2 or €X = 2 + 5
ETYPE ANSWER IS &X

vields the printed line:

ANSWER Is 7

3. If at this point a token is entirely blank, it is discarded from
the statement. The next token is deemed to immediately follow the
previous one.

A final token of blanks is added to any EXEC statement that is
syntactically invalid if doing so makes the statement syntactically
valid. For example:

§BLANK =
&§TYPE
&LCOP 3 &X NE

4. The statement is analyzed syntactically, and either passed to CMS
or executed. When control returns from CMS, or the EXEC control
statement has been executed, the EXEC interpreter examines the next
statement in the file.

Note: The substitution process is performed each time a statement is
interpreted. Thus, a variable could contain a different value each time
the statement containing the variable is interpreted. In this way, the
same line can be executed as an entirely different statement on
different occasions. For example, in the following EXEC procedure:

&ARGS ASSEMBLE MYFILE

&SKP = 0

-EX &1 &2 €3 &4

&SKIP &SKP

&EARGS PRINT MYFILE LISTING
ESKP = 3

&§GOTO -EX

Using the CMS EXEC Facilities 15

the statement labeled -EX is executed the first time as:
ASSEMBLE MYFILE

and the second time as:
PRINT MYFILE LISTING

at which point the ESKIP statement branches to the end of the EXEC file.

16 IBM VM/370: EXEC User's Guide

EXEC CONTROL STATEMENTS

The EXEC control statements are grouped into three main categories:

e FExecution control statements, which control the 1logic flow of the
EXEC procedure.

¢ Built-in functions, which provide special services to the EXEC user.
e Srpecial variables, which contain particular values or perform

specific functions during EXEC processing.

Fach of these categories is discussed in this section. The
individual control statements are discussed under the category headings.

P{FCCTIOCF CONTROL STATEMENTS

Tre execution control statements determine what 1s to be done within an
EXEC procedure. They are used to control 1logic flow; to communicate
with a terminal, a wuser program, or the Vi/370 system; ocr to create
output files via the user's virtual punch.

Each of the execution control statements is fully described under a
separate heading, including syntactic specifications, They are presented
ir alphabetical order. Usage examples and implementation techniques and
suggestions are found in the section entitled "Building EXEC
Procedures."

5ARGS CONTROL STATEMENT

The &ARGS control statement allows the user to redefine the value of one
or more arguments during EXEC processing. The format of the &ARGS
control statement is:

{ &ARGS | [argl [arg2 ... [argn]] 1 |

5ARGS is used to redefine the variables &1, &2, ..., &n with the
values specified by argt, arg2, ..., argn, and reset the special
variable §INDEX to the number of variables thus redefined. Up to 18
numeric variables can be redefined by an &ARGS control statement. The
remaining variables (through &30) are set to blanks. (The &READ control
Word can be used to read a list of arguments from the termimnal.)

EXEC Control Statements 17

EBEGPUNCH CONTROL STATEMENT

The &BEGPUNCH control statement heads a list of one or more lines to be
spooled to the user's virtual punch. The list of lines to be punched is
followed by the control statement &§END. The format of the &BEGPUNCH
control statement is:

1 1
| EBEGPUNCH | [ALL] (
+ 4
1 line1 |
< 1line2 >
< : >
< ¢ >
| linen |
+ 1
i &END | |
L]

&BEGPUNCH punches line1, line2, ..., linen to the card punch, without
tokenizing them. No substitution is performed on any untokenized data.
The lines are normally truncated at column 72 and padded with blanks to
£fill an 80-column card; truncation can be avoided by specifying the
option ALL, in which case data can occupy columns 73 to 80. The list of
lines to be punched 1is terminated by a line in which the control
statement &END starts in column 1. (The &PUNCH control word can be used
to spool a single line of tokens to the punch.)

&EBEGSTACK CONTROL STATEMENT

The EBEGSTACK control statement heads a list of one or more lines to be
placed in the user's console input stack. The 1list of 1lines to be
stacked is followed by the control statement &END. The format of the
EBEGSTACK control statement is:

r 2]
I I r 1 |
| G&BEGSTACK | |FIFO| |[ALL| |
| | ILIFO} t {
l It 4 |
[, 1
v 1
| line1 |
< line2 >
< : >
< * >
| linen |
L 4
[o ¥
| & END | |
L)

&EBEGSTACK stacks linel1, 1line2, ..., linen in the terminal input
buffer, without tokenizing them. No substitution 1is performed on any
untokenized data. The lines are normally stacked FIFO (first in, first
out), but this can be changed by specifying the option LIFO (last in,
first out). The lines are normally truncated at column 72, but this can
be avoided by specifying the option ALL, in which case data can occupy
columns 73 to 130. The list of lines to be stacked is terminated by a
line in which the control statement &END starts in column 1. (The &STACK

18 IBM VM/370: EXEC User's Guide

control word can be used to place a single line of tokens in the console
input buffer.)

&EBEGTYPE CONTROL STATEMENT

The &BEGTYPE control statement heads a list of one or more lines to be
typed on the user's terminal. The list of lines to be typed is followed
by the control statement &END. The format of the &BEGTYPE control
statement is:

L 1
| &BEGTYPE | ([ALL] |
o 4
1 line1 |
< line2 >
< . >
< : >
| linen |
+ 4
{ &END l]
L J

&EBEGTYPE types line1l, 1line2, ..., linen at the user's terminal,
without tokenizing them. No substitution is performed on any
untokenized data. The lines are normally truncated at column 72, but
this can be avoided by specifying the option ALL, in which case data can
occupy columns 73 to 130. The list of lines to be typed is terminated
by a line in which the control statement E&END starts in column 1. (The
ETYPE control word can be used to type a single line of tokens at the
terminal.)

ECONTINUE CONTROL STATEMENT

The &CONTINUE control statement instructs the EXEC interpreter to
process the next statement in the EXEC file. The format of the &CONTINUE
control statement is:

r
| &CONTINUE | |

| B)

&ECONTINUE is generally used in conjunction with an EXEC label (for
example, —-LAB &CONTINUE) to provide a branch address for &ERROR, &GOTO,
and other branching statements. &CONTINUE is the default action taken
when an error is detected in processing a CMS conmand.

&CONTROL CONTROL STATEMENT

The &CONTROL control statement instructs the EXEC interpreter how to
handle the typing of various information wmessages at the user's
terminal. The format of the §CONTROL control statement is:

EXEC Control Statements 19

L B 1
| I r Mar T r T 0r] |
G&CONTROL		OFF		TIME		BPACK		[MSG	
		ERRCR		ROTIME		NOPACK		NOMSG		
	ICAS	¢+ 4t L 4								
		ALL								
l [4 |
L o |

ECONTROL sets the characteristics of terminal typecut of executicn
messages until further notice.

OFF Do not type any CMS commands as they are executed in this EXEC
procedure, nor any return codes that may result.

ERROR Type only those CMS commands that result in a nocnzeroc return
code, and type the return code.

CMs Type each CMS command as it is executed, but type the return
code only if it is nonzero.

ALL Type every executable statement as it is executed, and type any
nonzero return codes from CMS commands.

TIME Include the time-of-day value with each CMS command printed in
the execution summary. This operand is effective only if CMS cr
ALL is specified.

NOTIME Do not include the time-of-day value with CMS commands printed
in the execution sunmmary.

" PACK -~ Pack ‘the linmes of the execution summary so —that surplus blanks
are removed from the typed lines.

NOPACK Do not pack the lines of the execution summary.

MSG Do not suppress the WFILE NOT FOUND" message if it is issued by
the following commands when they are invoked from an EXEC
procedure: ERASE, LISTFILE, RENAME, or STATE.

NOMSG Suppress the "FILE NOT FCUNL" message if it is issued when the
ERASE, LISTFILE, RENAME, or STATE commands are invoked from an
EXEC procedure.

On entry to an EXEC file, the default settings for ECONTROL are:
CMS NOTIME PACK MSG

Each operand remains set until explicity reset by another &§CONTROL
statement.

&END CONTROL STATEMENT

The SEND control statement marks the end of a list of one or more lines
that began with an &BEGPUNCH, &BEGSTACK, or &BEGTYPE control statement.
The format of the &END control statement is:

T L

| &END | |

—_ J

20 IBM VM/370: EXEC User's Guide

The 1lines between the &BEGPUNCH, &BEGSTACK, or §&BEGTYPE control
statement and the terminating &END control statement are handled as
untokenized lines of data. The &END control word must begin in column 1
to be recognized as a termination instruction.

EERRCR CONTRCL STATEMENT

The S§ERROR control statement specifies an action to be taken when a CMS
command returns with an error —return code. The format of the &ERROR
control statement is:

]
| &ERROR | action

L 3

&ERROR tells the EXEC 1interpreter to perform the specified action
following any CMS command that yields an error return code (that is, a
return code that is not zero). The action can bLbe any executable
statement.

What happens next depends upon the type and consequences of the
action. If the action specified is a CMS command that also yields an
error return code, then the EXEC interpreter types an error message and
exits from the file; otherwise (unless the action causes a transfer of
control), execution resumes at the line following the CMS command that
caused the action to be executed. On entry to an EXEC file, the action
is set to continue processing (that is, &CONTINUE).

The error message typed by the EXEC interpreter is:

(811) EEROR IN SERRCR ACTION

Additional information about +this and other error messages is found

under the heading "Recognizing EXEC Processing Errors®™ in the secticn
entitled "Building EXEC Procedures."

Note: The words following the &ERROR control word are saved in an
unscanned format, and substitution for any variatles among them is
performed dynamically (if the occasion arises) after obtaining a nonzero
return code from a subsequent CMS command.

&GEXIT CONTROL STATEMENT

The SEXIT control statement causes an exit from the current EXEC file.
The format of the &EXIT control statement is:

1
return-code|
0 |

4

EEXIT

rF——n
e e o —)

r-‘—”_-—ﬂ

EEXIT tells the EXEC interpreter to exit to the next higher level cf
control with the specified return code. If the exit is taken from a
nested EXEC procedure, control passes to the calling EXEC procedure. If
the exit is taken from a first-level EXEC procedure, control passes to
CHMs.

EXEC Control Statements 21

If you do not specify a return code, a normal exit with a return code
of zero is taken. You can specify the special variable &RETCODE to
return the completion code from the most recently executed CMS command.

Alternatively, in the &EXIT control statement, you can specify your
own variable, which you set to a numeric value earlier in the EXEC
procedure, Then when 7you exit from the procedure, this value will
appear as the return code. This can be useful if your EXEC procedure
sets the variable to one value if it executes one branch and another
value if it executes another branch; the EXIT return code will shcw
vhich branch was executed.

6GOTO CONTRCL STATEMENT

The §GOTO control statement transfers control to a specific location in
the EXEC procedure. Execution then continues at the location that is
branched to. The format of the §GOTO control statement is:

r
| &GOTO | TOP

| | line-number

l | label

e e —" —

—

€GOTO transfers control to the top of the EXEC file, to a given line,
or to the line starting with the specified label.

The first character of a label must be a hyphen (minus sigmn). 7You
can attach a label to any executable statement as the first token on tlhe
line. Scanning for a label starts on the line following the §&GOTO
statement, goes to the end of the file, then to the top of the file, and
(if unsuccessful) ends on the line above the €GOTO statement. If more
than one statement in the file has the same 1label, the first one
encountered by these rules satisfies the search.

&§GOTO is commonly used to branch based on some conditional test, such
as an &IF control statement.

&IF CONTROL STATEMENT

The &IF control statement allows you to conditionally execute statements
in your EXEC procedure. The format of the §IF statement is:

v t
| &IF | token1 EQ token2 executable-statenment i
| | &% NE 123 |
| | &x LT | &% |
| | LE {
| | GT |
| | GE |
L N |

&IF tells the EXEC interpreter to determine whether the condition
expressed is true or false. If the condition is true, the executable
statement is processed. If the condition is false, processing continues
with the next line in the EXEC procedure.

22 IBM VM/370: EXEC User's Guide

The analysis of the conditional expression proceeds as follows:

1. Token1 and token2 are syntactically examined, and any substitutions
to be made are performed.

2. The tokens are compared according to the comparison operation
specified.

3. If the comparison is true, the executable statement is processed

4. If the comparison is false, control passes to the next statement in
the EXEC procedure.

The executable statement can be any valid EXEC control stat
CMS command. (Another &IF control statement can be specified as the
executable statement for up to three levels of nesting.)

The special token &$ is interpreted as f*any of the variables &1, &2,
...&N," and the special token &% is interpreted as "all of the variables
&1, €2, eoe, &M

The comparison is arithmetic only when both comparands are numeric;
in all other cases, a logical comparison 1is made. The comparison
operators must be specified as shown. They are interpreted as follows:

EQ equals

NE not equal

LT less than

LE less than or equal to (not greater than)
GT greater than

GE greater than or equal to (not less than)

§1.00P CONTROL STATEMENT

The &LOOP control statement describes a loop through the FXEC procedure,
including the conditions for exit from the loop. The format of the &LOOP
control statement is:

- ——— -

§LOOP | n m
| label condition

R —

&LOOP executes the following n lines, or down to (and including) the
lipe starting with label, for m times, or until the specified condition
is satisfied. A value nust be specified for each parameter in the &LOOP
statement.

The values of n and m (if given) @must be positive integers from 0 to
4G95.

The first character of the label name (if given) must be a hyphen,
and the label must be specified, as the first token on the line, in an
executable statement that lies below the ELOOP statement.

EXFC Control Statements 23

The syntax of the exit condition (if given) is the same as that in
the &IF statement. The condition is always tested before executing the
loop. Thus, if the condition is met, the loop is not executed.

When loop execution is complete, control passes to the next statement
following the end of the loop. Loops may be nested up to four levels
deep. All nested loops may end at the same label, if desired.

EPUNCH CONTROL STATEMENT

The &PUNCH control statement causes a string of eight-character tokens
to be directed to the user's virtual punch. The format of the &PUNCH
control statement is:

r 1

| &PUNCH | tok1 [tok2 ... [tokn]] |

L (]

GPUNCH punches a card containing the tokens tok1, tok2, ..., tokn.
The card is padded with blanks or truncated, as necessary, to fill an
80—column card. The tokens, as punched, are separated <from each other
by a single blank. Any tokens longer than eight characters are left
justified and truncated on the right.

To punch one or more lines of untokenized data, use the &BEGPUNCH and
EEND control statements.

ERFAD CONTROL STATEMENT

The &READ control statement reads one or more 1lines of data from the
user's terminal. The format of the &READ control statement is:

EREAD

ARS varl [var2 ... [varn]]

r h |
in |
11 |
| ARGS I
v |
L p]

o — o ——
b e - —— — —]

GREAD reads the next n lines from the terminal and treats them as if
they had been in the EXEC file; or it reads a single line, assigns the
tokens in it to the arguments &1, &2, ..., &n, and resets the special
variable EINDEX to the number of arguments thus set; or it reads a
single line and assigns the tokens in it to the variables var1, var2,
..., varn (this does not reset SINDEX).

If n is specified, reading from the terminal stops when n lines have
been read, or when an &LOOP statement or a statement that transfers
control 1is encountered. If an &READ statement is encountered, the
number of lines to be read by it is added to the number outstanding.

24 IBM VM/370: EXEC User's Guide

The variables vart, var2, ..., varn, if specified, are scanned in the
same way as if they appeared on the left-hand side of an assignrent
statement. If no variable names are specified, no data is read from the
terminal. 2ny data entered is lost.

If no operands are specified, &READ 1 is assumed by default.

&SKIP CONTROL STATEMENT

The &SKIP control statement causes a specified number of lines in the
EXBC file to be skipped. The format of the &SKIP control statement is:

r i
| I v a |
| &SKIP { | n | {
| I I |
| i ¢ 4 |
["

&SKIP passes over and ignores the next n 1lines of the EXEC file if n
is greater than zero. If n is less then zero, &SKIP transfers control
to the line that is n lines above the current line. If n equals zero,
&SKIP transfers control to the next line. If end—of-file is reached
during the skip operation, the EXEC file returns control to CHS.

If n specifies a position before the beginning of the EXEC file, an
error results. See the discussion of error messages under the heading
WRecognizing EXEC Processing Errors" in the "Building EXEC Procedures"
section.

If no number is specified, &SKIP 1 is assumed by default.

&§SPACE CONTROL STATEMENT

The &SPACE control statement types a specified number of blank lines at
the user's terminal. The format of the &SPACE control statement is:

&§SPACE

o o — -
—_——— —
r——-

N -]
[M |
b o — e

If no number is specified, &SPACE 1 is assumed by default.

EXEC Control Statements 25

&ESTACK CONTROL STATEMENT

The &STACK control statement causes a single data line to be stacked in
the terminal input buffer. The format of the §&STACK control statement
is:

& STACK [tok1 [tok2 ... [tokn 1]]]

[allc]

r 1
IEIEOQ|
|LIFO|
L 3

P
e o — ——

&STACK places a line in the terminal input buffer containing the
tokens tok1, tok2, ..., tokn, or places a null line in the buffer if no
tokans are specified. The 1line is normally stacked FIFO (first in,
first out), but this can be changed by specifying the LIFO option (last
in, first out). The tokens, as stacked, are separated from each other
by a single blank.

You can stack CMS Immediate commands in the terminal input buffer,
just as you can stack any other commands. In fact, you can stack any
data at all in the terminal input buffer. The data need not be a valid
commanc .

Note: The Llogical Tine 'End ~character 'is a hexadecimal '15%. CHMs
routines do not process the symbolic pound sign (#) as a logical line
end character (that 1is, do not translate 1t to X'15') unless the user
does the following:

1. Changes or turns off the Logical Line End character via the CP
TERMINAL command.

2. Uses the EDIT subcommand ALTER to cause the CMS Editor to
automatically convert the # character (or some other character) to
X'15¢,

To enter one or more untokenized 1lines into the terminal input
buffer, use the &BEGSTACK and &END control statements.

&ETIME CONTROL STATEMENT

The &TIME control statement determines what timing information 1is typed
at the user's terminal after each CMS command is executed. The format
of the &§TIME control statement is:

ETIME |ON
| OFF
|RESET

| TYPE

[—— e - —
- ————
e e —— ——— —)

26 IBM VM/370: EXEC User's Guide

The &§TIME control statement can be used to type timing information in
the form:

T=X.XX/Y.YY hh:mm:ss

ihere:
XXX is the virtual CPU time used since it was last reset in
the current EXEC file.
Y-YY is the total CPU time used since it was last reset in the

current EXEC file.
hh:mm:ss is the actual time of day in hours:minutes:seconds.
The CPU times are set to zero before the execution of the first

statement in the EXEC file, and are set to zero (reset) whenever timing
information is printed.

ON Resets the CPU times before every CMS command, and prints the
timing information on return. If the &CONTROL control statement
is set to CMS or ALL, the printing of the timing information is
followed by a blank line.

OFF Does not automatically reset the CPU times before every CHMS
conmand, nor does it print the timing information on return. OFF
is the initial setting.

RESET Performs an immediate reset of the CPU times.

TYPE Types the current timing information (and resets the CPU times).

&€TYPE CONTROL STATEMENT

The &TYPE control statement prints a 1line of tokens at the user's
terminal. The format of the &§TYPE control statement is:

L
{ &TYPE | tok1 [tok2 ... [tokn]]

v 3

ETYPE prints at the terminal a line containing the tokens tok1, tok2,
..., tokn. The tokens, when typed, are separated from each other by a
single blank. To print one or nmore untokenized lines at the terminal,
use the &BEGTYPE and &END control statements,

BUILT-IN PUNCTIONS

an EXEC built-in function consists of the name of the function and,
usually, a 1list of arqguments. Built-in function names are EXEC
keywords, and start with an ampersand. With the exception of &LITERAL,
a built-in function is recognized only if it appears as a token
immediately following the equal sign of an assignment statement. Each of
the built-in functions is described under a separate heading.

EXEC Control Statements 27

ECONCAT BUILT-IN FUNCTION

The &CONCAT function creates a concatenated string of tokens to be
assigned to a user-~defined variable. The format of the &CONCAT function
is:

v 1

Ll
| &CONCAT | tok1 [tok2 ... [tokn]] |

L ¥]

ECONCAT concatenates the tokens tok1, tok2, ..., tokn into a single
token, with a maximum length of eight characters. This function is
recognized only on the right-hand side of an assignment statement. For
example:

&A % ¥

&B §CONCAT XX &A 45
ETYPE &B

Results in the printed line:

XX*%45

If the concatenated - token is longer than eight characters, the data
is left justified and truncated on the right.

EDATATYPE BUILT-IN FUNCTION

The &DATATYPE function determines whether the contents of the specified
token is alphabetic or numeric data. The format of the &DATATYPE
function is:

¥ 1
| &DATATYPE | token |

L '}

The result of the SDATATYPE function has the value NUM or CHAR,
depending on the data type of the specified token. This function is
recognized only on the right-hand side of an assignment statement.

ELENGTH BUILT-IN FUNCTION

The &LENGTH function determines the number of nonblank characters in the
specified token. The format of the &LENGTH function is:

L)
| ELENGTH | token

[& J

28 IBM VM/370: EXEC User's Guide

The result of the &LENGTH function is the number of nonblank
characters in the specified token. This function is recognized only on
the right-hand side of an assignment statement.

&GLITERAL BUILT-IN FUNCTION

The &LITERAL function instructs the EXEC interpreter to handle the
specified token literally, without substituting for any variables in it.
The format of the ELITERAL statement is:

r 1
{ SLITERAL | token i

L J

The &SLITERAL function causes the EXEC interpreter to use the literal
value of the specified token without substitution. This function is
recognized anywhere in an executable statement. For example:

§X = ®x%
ETYPE &LITERAL §X EQUALS &X

Results in the printed line:

&§X EQUALS *x*

&SUBSTR BUILT-IN FUNCTION

The $SUBSTR function creates a substring of specified characters from a
specified token. The format of the &SUBSTR function is:

i t

| &SUBSTR | token i [Jj] i
L]

The result of the §&SUBSTR function extracts part of the specified
token that starts at character i, with length of j; or that starts at
character i and runs to the end of the token if j is not specified. The
values of 1 and Jj (if given) must be positive integers. This function
1s recognized only on the right-hand side of an assignment statement.
For example:

&2 = &SUBSTR ABCDE 2 3
&ETYPE &A

Results in the printed line:

BCD

EXEC Control Statements 29

SPECIAL VARIABLES

EXEC special variables are of two types: numeric and keyword. The
numeric variables are those from &0 through §30. Keyword variables are
those that have special meaning to the EXEC interpreter. They include
the special variables &* and &$, which are used to define conditioms in
&IF and ELOOP control statements. The special variables are discussed
under separate headings in alphabetical order.

EEXEC SPECIAL VARIABLE

The &EXEC special variable is the name of the EXEC file. This variable
cannot be set explicitly by the user, but it can be examined and tested.

&N SPECIAL VARIABLE

The &n special variable represents the numeric variables &0 through §30.
When an EXEC file is invoked, &0 is set to its filename by the EXEC
interpreter. The other numeric variables from &1 to &30 are initialized
to arquments that are passed to the EXEC file (if any). Each numeric
variable can contain up to eight alphameric characters.

The numeric variable &n is ignored when n is negative or greater than
30, or when n is greater than the number of arguments supplied when the
EXEC command is issued. The numeric variables can be reset by either an
&EARGS or &SREAD ARGS control statement.

An argument can be set to blanks by assigning it a percent sign (%)
vhen invoking the EXEC procedure, in an &ARGS control statement, or in
an &READ ARGS control statement.

&EGLOEAL SPECIAL VARIABLE

The §GLOBAL special variable contains the recursion level of the EXEC
interpreter. Since the EXEC interpreter can handle up to 19 levels of
recursion, the value of &GLOBAL can range from O through 19. This
variable cannot be set explicitly by the user, but it can be examined
and tested.

&EGLOEALN SPECIAL VARIABLE

The EGLOBALn special variable represents the variables §GLOBALQO through
EGLOEAL9. These variables hold integral numeric values that can be set
explicitly by the user. They are all initially set to 1. Unlike other
EXEC variables, these can be used to communicate between different
recursion levels of the EXEC interpreter.

Note: The EXEC interpreter can handle up to 19 levels of recursion.

30 IBM VM/370: EXEC User's Guide

&EINDEX SPECIAL VARIABLE

The EINDEX special variable contains the number of arguments passed to
the EXEC procedure. Since up to 30 arguments can be passed to an EXEC
procedure, the value of §INDEX can range from ¢ through 30.

Although the user does not set this variable explicitly, it is reset
by an &ARGS or &READ ARGS control statement. &INDEX can be examined to
determine the number of active arguments in the EXEC procedure.

ELINENUM SPECIAL VARIABLE

The SLINENUM special variable contains the current line number in the
EXEC file. Since an EXEC file can contain up to 4096 lines, the value
of ELINENUM can range from 0 +to 4095. This variable cannot be set
explicitly by the user, but it can be examined and tested.

SREADFLAG SPECIAL VARIABLE

The E&READFLAG special variable contains the value CONSOLE or STACK,
depending on whether an attempt to read from the user's terminal would
obtain a physical line from the terminal or a 1logical line from the
terminal input buffer (console stack). This variable cannot be set
explicitly by the user, but it can be examined and tested.

ERETCODE SPECIAL VARIABLE

The ERETCODE special variable contains the return code from the most
recently executed CMS command. ERETCODE can contain only integral
numeric values (positive or negative), and is set after each CMS command
is executed. This variable can be examined, tested, and changed by the
user, but changing it is not recommended. To specify a return code cn
exit from an EXEC procedure, use the EEXIT control statement.

ETYPEFLAG SFECIAL VARIABLE

The &TYPEFLAG special variable contains the value RT (resume typing) or
HT (halt typing), depending on the value of the console output flag.
This variable cannot be set explicitly by the wuser, but it can be
examnined and tested.

EXEC Control Statements 31

23183 W18 2 Qe it 14

An EXEC wuser can define and manipulate his own variables in an EXEC
procedure. The name of a user-defined variatle must begin with an
ampersand (&) that is followed by a string of up to seven alphameric
characters, at least one of which is not a number.

When you <choose a name for a variable, be careful not to choose a
name that is an BXEC special variable (§EXEC, SRETCODE, etc.).

The EXEC subcoammands that begin with an ampersand can also be used as
user variables, but then they will not be executed as subccmmands. For
example, if you specify:

ETYPE = QUERY
&ETYPE USERS

the EXBC interpreter will execute the command:

QUERY USERS

User-defined variables can be used for any purpose in an EXEC
procedure, and can contain any type of data. The user is, therefore,
responsible for validating any data in a variatle before using it. For
example, a character variable should not be added to a numeric variable
under normal circumstances.

A user variable 1is most often defined by entering it into the EXEC
file as the receiving field of an assignment statement. It is usually
initialized by the expression that makes up the other half of the same
assignment statement. For example, to define a counter and initialize
it to 99, the user could enter:

&ECOUNTER = 99
This counter could then be manipulated by such control statements as:
&LOOP -LOOPEND &COUNTER LE 0
ECOUNRTER = &COUNTER - 1
~LOOPEND &CONTINUE

This loop decreases the value of the counter by one each time through
the loop, then exits when the counter value equals zero.

The user can define similar variables throughout his EXEC file.
FPurther examples of user variables are found throughout the next
section, "Building EXEC Frocedures."

32 IBM VM/370: EXEC Usert's Guide

BUILDING EXEC PROCEDURES

Previous sections have described the functions and syntax of the BXEC
control statements, built-in functions, and special variables. This
section shows you how to use these EXEC facilities, along with CHMS
commands, to simplify operation of your CMS virtual machine. Using EXEC
procedures, you can:

ences of commands, such as those used to
B

««««« hla

assefloie O COmpl

e Catalog frequently u
pil
e Create interactive procedures for such purposes as form letters,
teaching a new user about the system, or generating reports.
e Control the execution of jobs by the CMS Batch Facility.

¢ Define special EXEC files, called EDIT macros, that can be used by
the CMS Editor.

e Specify the operating characteristics of your virtual machine in a
spacial EXEC file called the PROFILE EXEC.

The following discussions 1illustrate some of the techniques you can
use to create EXEC files and control their execution.)

EASSING ARGUMENTS TO AN EXEC PROCEDURE

Arguments can be passed to an EXEC procedure in two ways:

1. By specifying them when the EXEC file is invoked.

2. By entering them from the terminal in response to an &READ ARGS
control statement.

In addition, arguments can be set. explicitly within the EXEC file by
issuing an &ARGS control statement. The arquments are assigned to the
numeric variables &1, &2, ..., &n, and the special variable §&INDEX is
set to the number of arguments that are assigned to numeric variables.

While up to 30 arguments can be passed to an EXEC file, only 19
tokens can appear in any single EXEC statement. Thus, to pass arguments
to all 30 numeric variables, you may need to use the &READ ARGS control
statement. For example, to assign values to the 30 numeric EXEC
variables, you could use the following EXEC statement:

SREAD ARGS
This statement reads an input 1line from the terminal and assigns the
arquments specified to their corresponding numeric variables. Thus, if

30 arquments are entered in response, then all 30 numeric variables are
set.

Building EXEC Procedures 33

An arqument can be set to blanks by assigning it a percent sign (%)
when invoking the EXEC procedure, when issuing an &ARGS control
statement, or when responding to an &READ ARGS control statement. For
example, the statements:

EARGS A % B
ETYPE &1 &2 ** §3

result in the printed line:
A ** B

After the arguments have been assigned to their corresponding numeric
variables, they can be examined, tested, and manipulated at will. Two
useful tests are discussed under the next two headings.

CHECKING FOR THE PROPER NUMBER OF ARGUMENTS

Although you <can pass up to 30 arguments to an EXEC procedure, it is
more conmnmon for an EXEC procedure to be designed to expect a few
specific arquments that determine how it is executed.

One way to find out if all the expected arguments are present is to
check the §INDEX special variable. For example, if you create an EXEC
procedure that manipulates a CMS file, you may need to know the filename
and filetype of the file. 1In this case, your EXEC procedure can check
to make sure that at least two arguments are entered (which could be a
filename and filetype), as follows:

&IF &INDEX LT 2 &EXIT 16

The result of this statement is to execute the next instruction in
the EXEC file if the value of EINDEX is equal to or greater than 2, or
to exit from the current EXEC procedure with a return code of 16 if the
value of §INDEX is less than 2.

After you have determined that the number of arguments passed is
correct, then you can examine the individual arguments for correctness.

CHECKING FOR THE LENGTH OF AN ARGUMENT

An argument passed to an EXEC procedure can be up to eight characters
long. Arguments longer than eight characters are left justified and
truncated on the right when they are assigned to their corresponding
numeric variables.

In many cases, you may know that an argument should be a specific
number of characters. When the proper length of an argument is known,
you can use the &LENGTH built-in function to see if the entered data is
the correct length. For example, suppose that the first argument can be
a number up to five digits long. 1In this case, you can make sure that
this limit is observed by coding:

ELIMIT = SLENGTH &1
EIF SLIMIT GT 5 &EXIT ELIMIT

34 IBM VM/370: EXEC User's Guide

The result of these statements is to assign the 1length of the
variable §1 to the user-defined variable &LIMIT, then if the value in
SLIMIT is equal to or less than 5, execute the next instruction in the
EXEC file. If the value of &LIMIT is greater tham 5, an exit is taken
from the EXEC procedure with a return code that specifies the erroneous
value in &SLIMIT.

If your EXEC procedure expects an arqgument that is exactly five
characters 1long, you can perform a similar test by changing the GT
(greater than) to NE (not equal) in the &IF statement.

After the preliminary checking of arquments has been done, ycu can
perform any other tests that seem necessary. In many cases, You may
want to check for specific values. Some techniques for doing this
checking are discussed under the next heading.

CHECKING FOR A SPECIFIC ARGUMENT

When your EXEC procedure expects a specific value to be passed in the
argument list, you can check for the presence of the argument in two
ways, depending on its positional importance.

When the arqgument is expected to be in a specific location in the
list, you can check for it in that position. For example, if you create
ah EXEC procedure to handle files with a specific filetype, you can make
sure that the filetype 1is entered as the second argument. If the
filetype you expect is ASSEMBLE, the checking statement could be:

&IF &2 NE ASSEMBLE EEXIT 4

In this case, if the second argument is ASSEMBLE, the next statement
in the EXEC procedure 1is executed. Otherwise, an exit is taken with a
return code of 4.

When it does not matter where in the arqument list the expected value
appears, you could code:
EIF &* NE ASSEMELE &EXIT 4
In this case, the exit is taken only when none of the arqguments
passed has a value of ASSEMBLE. If any one of them is the character

string ASSEMBLE, then the next sequential statement in the EXEC
procedure 1is executed.

COMMUNICATING WITH A TERMINAL

One of the facilities available to the EXEC wuser is the ability to
communicate with an interactive terminal. EXEC procedures can be
designed to display informational messages, prompt the user for specific
data, produce form letters, and perform other similar functiomns. This
section shows you how to create EXEC control statements to do some of
these things.

Building EXEC Procedures 35

READING DATA FROM A TERMINAL

When an EXEC procedure is invoked, arguments can be passed to it in the
invoking command line. After the EXEC procedure begins execution,
however, the only way you can pass new data to it from your terminal is
in response to an &READ control statement. For example, suppose you
want to enter some CMS command under a particular set of circumstances,
but not at any other time. You can avoid testing for the particular set
of «circumstances in the EXEC procedure by simply issuing the &READ
control statement, as follows:

&EREAD

The person at the terminal now has to decide what to enter. If the
situation calls for the defined CMS command, it can be entered; if the
required conditions are not met, he can simply press the Return key to
enter a null line. The entered line is treated as though it had been in
the EXEC file all along.

If you want to read in some new arguments, simply code:

&EREAD ARGS

The arguments entered at the terminal are tokenized and assigned to
th2ir corresponding numeric variables (the first argument to &1, the
second to £2, and so on). Up to 30 arguments can be entered in response
to an &READ ARGS control statement.: - : - :

When you want to assign arguments to specific variables 1in the EXEC
procedure, you can do this by coding:

&EREAD VARS &varnamel &varnpame2 [...]

where &varnamel is the name of the variable to which the first argument
is assigned, &varname2 is the name of the variable to which the next
argument is assigned, and so on, Since a line in an EXEC procedure can
contain up to 19 tokens, up to 17 named variables can be set by the
response to a single EREAD VARS control statement.

Note: Be aware of the difference between &READ ARGS and &READ VARS.
&READ ARGS always assigns the response tokens to the numeric variables
&1, &2, etc. EREAD VARS assigns the response tokens to the variables
specified in the variable list. Thus, if you want to pass more than 30
data items to the EXEC, you can assign the first 30 to the numeric
variables with a response to &READ ARGS, then assign as many more as
desired to named variables with responses to &READ VARS statements.

Just as you can instruct an EXEC procedure to read data from your
terminal, so can you have the EXEC procedure type data at your terminal.
The next section shows you some of the techniques for typing data at a
terminal.

36 IBM VM/370: EXEC User's Guide

TYPING DATA AT A TERMINAL

An EXEC procedure can be coded to type three different kinds of data at
a terminal:

1. Lines of tokenized data, which are typed one at a time by the &TYPE
control statement.

2. Lines of untokenized data, which are typed by specifying the
EBEGTYPE control statement, then the lines of data, then the &END
control statement.

3. Records from a CMS file, which are typed by specifying the CMS TYPE
command with appropriate parameters.

You can also <check a special EXEC variable (&TYPEFLAG) to determine
whether or not to send output to a terminal. For example, if the
terninal has suppressed typing, it 1is a waste of system resources to
send data to it.

In addition to these methods of explicitly controlling typing of data
at a terminal, the user can occasionally receive messages from the EXEC
interpreter and CMS commands. You can control the typeout of some of
these messages by specifying certain options of the &CONTROL statement,
as described in the section on "Checking for Execution Errors.®

Typing a Single Line of Tokens

The &TYPE control statement can be used to type a line of tokens at a
terminal. The tokens can be user-defined variables, special EXEC
variables, self-defining terms, or any of the 30 numeric variables. If
a token 1in an &TYPE statement is longer than eight characters, it is
left~justified and truncated on the right.
To type a line of data to a terminal, for example, you could enter:
&TYPE THIS IS THE MESSAGE
These tokens are all self-defining terms less than eight characters
long. The resulting typed line appears at the terminal as:
THIS IS THE MESSAGE
To type the value of an EXEC variable, simply enter the variable as
one of the tokens in the &TYPE statement, as follows:
>YPE SINDEX &RETCODE
The terminal output will display the current values of E&INDEX and
&RETCODE. For example,
3 0
would type at the terminal if the current value of §INDEX 1is 3 and the

current value of &RETCODE is 0.

Building EXEC Procedures 37

Up to 18 tokens can be typed by a single &TYPE control statement. If
you want to type a line longer than 18 words, or if you want to type one
or more lines of untokenized data, you can use the &BEGTYPE and &END
control statements, which are described next.

Note: If you want to type variable data, such as the value of &INDEX,
you must use ETYPE instead of &BEGTYPE.

Typing More Than One Line of Data

When you want to type a word longer than eight characters at a terminal,
you need to use the &BEGTYPE control statement, since the §&TYPE
statement edits data items into 8-character tokens. One or more data
lines can be specified between the E&BEGTYPE statement and a following
&FND control statement, which terminates the list of data lines.

Under normal circumstances, data lines are truncated at column 72.
If you want to type data lines longer than this (up to 130 characters),
you can specify the ALL option on the &BEGTYPE control statement, as
follows:

EBEGTYPE ALL

data line of 85 characters
data line of 108 characters
data line of 63 characters
GEND

This specification turns off the truncation at column 72, and permits
the first two lines (of 85 and 108 characters) to type as specified.

Because the data 1lines controlled by &BEGTYPE are not tokenized, no
substitution for EXEC variables is made before typing begins. Thus, if
you want to type the contents of an EXEC variable, you must use the
ETYPE control word (you cannot use &BEGTYPE). For example, the entered
lines:

&EBEGTYPE
&INDEX ARGUMENTS WERE PASSED
&FEND

would type at the terminal, when the EXEC procedure is executed, as
follows:

EINDEX ARGUMENTS WERE PASSED
The &INDEX specification is not recognized as an EXEC variable
because it appears in an untokenized data line. Note that if the &TYPE
control statement is used to type this data line, the word ARGUMENTS is
truncated to eight characters, as follows:
ETYPE &INDEX ARGUMENTS WERE PASSED
yields, when the value of E&INDEX is 3:
3 ARGUMENT WERE PASSED
where the last letter of ARGUMENTS has been truncated.
In addition to using the §TYPE and &BRGTYPE control statements, you

can use the CMS TYPE command to display part or all of a selected CHS
file at a terminal. Use of the CMS TYPE command is discussed next.

38 IBM VM/370: EXEC User's Guide

Iyping a CHMS File

———— ==

You can use the CMS TYPE command to type part or all of a CMS file at a
terminal. A complete description of the TYPE command is found in the
¥n/370: Command Lanquage Guide for General Users, Order No. GC20-1804.
For purposes of this discussion, however, you need to know that the the
filename and filetype of the file to be typed must be entered. and that
you can specify the lines where typing is to begin and end, as followus:

TYPE filename filetype [begin [end]]

The filename, filetype, begin, and end values can be specified when
the EXEC file is created, or they can te coded as EXEC variables and
assigned values when the EXEC procedure is executed.

Note: If you do not specify a tkeginning line for typing the first line
cf the file 1is assumed. If you do not specify an ending line for
typing, the last line of the file is assumed.

Fcr example, to type the first 23 1lines of a CMS file named PGM3
ASSEFBLE at a terminal, you could create: an EXEC prccedure that
explicitly defines these values, as follows:

TYPE PGM3 ASSEMBLE 1 23

If you want to make your EXEC procedure more general, however, you
can let the TYPE parameters Le numeric variables that are assigned
values when the command line is analyzed by the EXEC interpreter. For
example, the line:

TYPE &1 &2 &3 &4

can be set up to type any part of any CMS file ty invoking the EXEC that
contains it with different arquments. If the name of the EXEC file
containing this line is TYPEOUT, a specification of:

TYFEOUT MYFILE EXEC

causes all the 1lines in the CMS file named MYFILE EXEC to be typed at
the requestor's terminal, while a specification of:

TYPEOUT PGM9 COBOL 1 130

causes lines 1 through 130 in the CMS file named PGMI9 COBOL to be typed
out at the requestor's terminal.

Although the examples shown here do little more than the TYPE command
itself, you can see how inclusicn of a generalized CMS TYPE command in
an EXEC file can extend the communication facilities between EXEC
procedure and terminal. The EXEC procedure can find out what values to
assign to the TYPEF parameters by issuing an &READ ARGS control
statement, or Ly wusing arguments that were passed when the EXEC
procedure was invoked.

Before typing any data at a terminal, your EXEC procedure may want to
check the output flag to make sure the terminal is receiving typed data.
This procedure is discussed next.

Building EXEC Procedures 39

The special EXEC variable &TYPEFLAG always contains one of two character
string values, RT or HT. The RT characters mean that the terminal is
accepting typeout, while the!HT characters mean that the terminal has
suppressed typeout. Since the typeout to a terminal involves overhead in
both CMS and CP, you can make more efficient use of system resources if
you do not use CMS and CP functions when they are not required.

When a terminal has suppressed typing, you can set up an EXEC control
statement that avoids any attempt to type data at the terminal, as
follows:

6IF &TYPEFLAG EQ HT &GOTCO -NOTYPE
&§TYPE ANY NUMBER OF DATA LINES
-NOTYPE &CONTINUE

The execution of this EXEC segment 1is determined by the setting of
&§TYPEFLAG., If it contains the value RT, the branch to -NOTYPE is not
taken, and the next instruction is executed. If it contains the value
HT, the branch to -NOTYPE is taken, and no data lines are typed at the
terminal,

Note: While you cannot explicitly set the &§TYPEFLAG variable in your
EXEC procedure, you can examine its contents at any time, and move its
value to some other variable if desired.

LOGIC CONTROL IN AN EXEC PROCEDURE

Another major facility available to the EXEC user is the ability to
control the execution of an EXEC procedure by testing conditions and
branching to different statements based on the results of testing. This
section shows you how to set up conditional execution paths in an EXEC
procedure, including such techniques as IF/THEN, GOTO, and fixed loops.

LABELS IN AN EXEC PROCEDURE

In many instances, an execution control statement in an EXEC procedure
causes a branch to a particular statement that is identified by a label.
The rules and conventions for creating syntactically corrent EXEC labels
are relatively simple:

1. A label must begin with a hyphen (dash), and must have at least one
additional character following the hyphen.

2. Up to seven additional alphameric characters may follow the hyphen
(with no intervening blanks).

3. A label name may be the object of an §&GOTO or &LOOP control
statement.

4. A label that is branched to must be the first token on a line. It

may stand by itself, with no other tokens on the line, or it may
precede an executable CMS command or EXEC control statement.

40 IBM VM/370: EXEC User's Guide

The following are examples of correct use of labels:

&§GOTO -LAB1

~-LAB1

-LAB2 &CONTINUE

-CHECK &IF &INDEX EQ 0 &GOTO -EXIT
&IF &INDEX LT 5 &SKIP

-EXIT &EXIT &

ETYPE ELITERAL &INDEX VALUE IS SINDEX

The following examples of label usage are incorrect for the reas
indicated:

~LABELING More than 8 characters
&SKIP -4LINES Not object of &GOTO or &LOOP
- No alphameric characters included

EEXIT -EXIT Label not first token on line
—- BLANKS Blanks between hyphen and other characters
You will find that EXEC labels are useful in contrelling the logic
flow through your EXEC procedures. Further examples of label usage are

found throughout the rest of this book.

CCN¥DITIONAL EXECUTION WITH THE &IF STATEMENT

The main tool available to you for controlling conditional execution in
an EXEC procedure is the §&IF control statement., The &IF control
statement provides the decision~making ability that you need to set up
copditional branches in your EXEC procedure.

One approach to decision-making with &IF is to compare the equality
(or inequality) of two tokens, and perform some action based on the
result of the comparison. When the comparison specified is true, the
executable statement is executed., When the comparison is false, control
passes to the npext sequential statement in the EXEC procedure. An
axanple of a simple §IF statement is:

&IF 1 EQ 2 &TYPE MATCH FOUND

Since the equality specified 1is false, the executable statement
(GPYPE MATCH FOUND) is not executed, and control passes to the next
statement in the EXEC procedure.

Although this example is coded correctly, it is not very useful. 1In
fact, most §IF statements establish a comparison between a variable and
a constant, or between two or more variables. For example, if a
terminal user could properly enter a YES or NO response to a prompting
message issued to him, you could set up &IF statements to check the
response as follows:

&READ ARGS

&IF €1 EQ YES &§GOTO -YESANS

&IF &1 EQ NO §GOTO -NOANS

&ETYPE &1 IS NOT A VALID RESPONSE (MUST BE YES OR NO)
SEXIT

-YESANS

Building EXEC Procedures 41

In this example, the branch to -YESANS is taken 1if the entered
arqgument is YES; otherwise, control passes to the next &IF statement.
The branch to -NOANS is then taken if the argument is NO; otherwise,
control passes to the &TYPE statement, which types the entered arqument
in an error messagdge and exits.

The test performed in an &§IF statement need not e a simple test cf
equality between two tokens; other types of comparisons can be tested,
and more than two variables can be 1involved. The tests that can be
performed are:

Symbol Meaning.
EQ A equals B
NE A does not equal B
LT A is less than B
LE A is less than or equal to B (not greater than)
GT A is greater than B
GE A is greater than or equal to B (not less than)

The special tokens &3 and &* can be specified to include the entire
range of numeric variables §1 through €30, as follows:

e The special token &$ is interpreted as "any of the variables &1, &2,
eees &30." That is, if the value of any one of the numeric variables
satisfies the established condition, then the &IF statement is
considered to be true. The statement is false only when none of the
variables fulfills the specified requirements.

e The special token &% is interpreted as "all of the variables &1, &2,
eees £30." That 1is, if the value of each of the numeric variables
satisfiés the éstdablished condition, then the &IF statement is
considered to be true. The statement is false when at 1least cne cf
the variables fails to meet the specified requirements.

If an §IF statement specifies a special token (6* or &$) that is null
because no values were supplied for any of the numeric variables, the
token cannot be successfully compared. The &IF statement 1is therefore
considered a null statement. Execution continues at the next sequential
statement.

As an example of using special tokens, suppose you want to make sure
that some particular value is passed to the EXEC. You can check to see
if any of the arqguments satisfy this condition, as follows:

&IF &$ EQ PRINT &SKIP 2
STYPE FARM LIST MUST INCLUDE PRINT
&§EXIT

In this example, the path to the ETYPE statement is taken only when
none of the arquments passed to the EXEC equal the character string
PRINT.

The action to be executed as a result of §IF testing is frequently an
§GOTO control statement. The next discussion examines the use of §GOTO
in conjunction with &IF, as well as by itself as an unconditional branch
instruction.

42 IBM VM/370: EXEC User's Guide

BRANCHING WITH THE &§GOTO STATEMENT

The §&GOTO options allow you to transfer control within yonr EXEC
procedure in three ways:

1. Directly to the top of the EXEC file (&GOTO TOP).

2. To a particular line within the EXEC file (§GOTC linenum, where
linenum specifies the line number to which control is passed).

3. To a specified EXEC label somewhere in the EXEC file (&GOTO label,
where label specifies the label to which control is passed) .

The scan for a line number or label begins on the line following the
§GOTO specification, proceeds to the bottom of the file, then wraps
around to the top of the file and continues to the line immediately
preceding the &GOTO specification.

If the label or line number is not found during the scan, an error
exit from the EXEC procedure is taken and an error message is typed. If
the label or 1line number is found, control is passed to that location
and execution continues.

The &GOTO control statement can be coded wherever an executable
statement is permitted in an EXEC procedure. One of its common uses is
in conjunction with the &IF control statement. For example, in the
statement:

&IF EINDEX EQ 0 &GOTO -ERROR

the branch to the statment labeled -FRRCR is taken only when the value
of the G&INDEX special variable is zero. In all other cases, control
passes to the next sequential statement in the EXEC procedure.

Another common use of &§GOTO is to specify where to pass control if an
error occurs in CMS command processing. You can determine whether or
not an error occurred in CMS command processing by examining the special
variable &RETCODE, but you may want to perform this analysis in a single
subroutine instead of checking the return code after each CMS command
completes execution. To pass control to a subroutine labeled -FINDERR,
for example, you could code the &EERROR control statement as follows:

EERROR &§GOTO -FINDERR

The use of the SERROR control statement is more fully illustrated in
the section on "Checking for Execution Errors".

An &GOTO statement can also stand alone as an EXEC control statement.
When coded as such, it forces an unconditional branch to the specified
location. For example, to pass control unconditionally to the top of
the EXEC procedure, simply enter:

&§GOTO TOP

Further examples of &§GOTO usage are found throughout the rest of this
book.

Building EXEC Procedures 43

BRANCHING WITH THE &SKIP STATEMENT

The &SKIP control statement provides you with a second method of passing
control to various points in an EXEC procedure. Instead of branching to
a nam=2d or numbered location in an EXEC procedure, &SKIP passes control
a specified number of lines forward or backward in the file.

When you want +to pass control tc a point that precedes the current
line, simply determine how may lines backward you want to go, and code
6SKIP with the desired negative value. For example, to use §&SKIP for
loop control, you could enter statements as follows:

$IF &INDEX EQ O &EXIT 12
ETYPE COUNT IS &1

&1 = &1 - 1

&IF &1 GT 0 &SKIP -2

When this EXEC procedure is invoked, it checks to make sure that at
least one arqument was passed to it. If an argument is passed, it is
assumed to be a number that indicates how many times the loop is to
execute. The 1loop executes wuntil the count in &1 is zero. If the
argument entered is zero, the loop executes only once, typing out:

COUONT IS O
If no argument is passed, an exit is taken with a return code of 12.

Just as you can pass control backward wusing &SKIP, you can also pass
control forward by specifying how many lines to skip. For example, to
hardle a <conditional exit from an EXEC procedure, you could code the
tollowing:

&IF ERETCODE EQ O &SKIP
EEXIT &RETCODE

where the branch around the &EXIT statement is taken whenever the value
of &RETCODE equals zero. If the value of &RETCODE does not equal zero,
control passes out of the current EXEC procedure with a return code that
is the nonzero value in &RETCODE. Note that when no SSKIP operand is
specified, a value of 1 is assumed.

USING COUNTERS FCR LOOP CONTROL

A primary consideration in designing a section of an EXEC procedure that
is to be executed a number of times is how the number of executions is
controlled. One simple way to control the execution of a sequence of
instructions is to create a loop that tests and modifies a counter.

Refore entering the 1loop, the counter is initialized to some value.
Each time through the loop, the counter is adjusted (up or down) toward
some limit value. When the limit value is reached (the counter value is
the same as the 1limit value), control passes out of the 1loop and it is
not executed again.

The example in the previous section, "Branching With the &SKIP
Statement," uses a counter to control the execution of the 1loop. The
counter in that example is the numeric variable &1, which is initialized
by an argument passed when the EXEC procedure is invoked. Each time
throngh the loop, the value in §1 is decremented by one. When the value
of &1 reaches zero, control passes from the loop to the next sequential
statement (in the example, control returns to CMS).

uu IBM VYM/370: EXEC User's Guide

There are several ways of setting, adjusting, and testing counters.
Some ways to set counters are:

e By reading arguments from a terminal, such as:

EREAD VARS &COUNT1 E&ECOUNT2

s Bv arbitrary assignment, such as:

SCOUNTER = 43

» By assignment of a variable value or expression, such as:

&ECOUNTS = &INDEX - 1

Counters can be adjusted up or down by any increment or decrement
that mneets your purposes. For example:

ECOUNTEM = ECOUNTEM - &ERETCODE
&COUNTT = &COUNT + 100

Counters can be tested by the &IF control statement for a specific
valus, a range of values, or a simple equality to zero. For example,
suppose a counter should contain a value from 5 to 10 inclusive:

EIF &COUNT LT 5 &SKIP
SIF &COUNT LE 10 &SKIP
&ETYPE &COUNT IS NOT WITHIN RANGE 5-190

If the value of &COUNT is less than 5, control passes to the &TYPE
controi statement, which types out the erroneous value and an
explanatory message. If the value of §COUNT is greater than or equal to
5, the next statement checks to see if it is less than or equal to 10.
£f this is true, then the value is between 5 and 10 inclusive, and the
typeout of the error message is skipped.

Purther examples of counter usage for 1loop control are found
throughout the rest of this book.

LOOP CTCONTROL WITH THE &LOOP STATEMENT

A convenient way of controlling execution of a sequence of EXEC
statements is with the &LOOP control statement. An &LOOP statement can
be set up in four ways:

1. To execute a particular number of statements a specified number of
times.

2. To execute a particular number of statements until a specified
condition is satisfied.

3. To execute the statements down to (and including) the statement
identified by a label a specified number of times.

4. To execute the statements down to (and including) the statement
identified by a label until a specified condition is satisfied.

Building EXEC Procedures 45

The numbers specified for the number of lines to execute and the
number of times through the loop must be positive. In addition, if a
label is used to define the limit of the loop, it must follow the &LOOP
statement (it cannot precede the §LOOP statement).

The decision as to which form of the §LOOP statement is intended is
based on the number of tokens in the statement after scanning and
substitution for any BXEC variables. If the conditional form is
intended, and the first comparand or the comparator is given in the form
of an EXEC variable, then the value of the variatle must not be blank at
the time the statement is interpreted.

In the conditional form, the tokens forming the conditional phrase
are saved in an wunscanned format, so that substitution for any EXEC
variables can be performed dynamically before each execution of the
loop. For example, the statements:

E§X = 0
&§LOOP -END &X EQ 2
§X = &X + 1

-END &TIYPE &X

are interpreted and executed as follows:

1. The variable &X is assigned a value of 0.

2. The &LOOP statement is interpreted as a conditional fcrm; that is,
to loop to -END until the value of &X equals 2.

3. The variable &X is incremented by one and is then typed.-

4. Control returns to the head of the 1loop, where &X is tested to see
if it equals 2. If it does not, the loop is executed again. When
§X does equal 2, control is passed to the EXEC statement
immediately following the end of the 1loop (in this case, an exit
from the EXEC procedure is taken).

The typed lines resulting from a execution of this EXEC are:

1
2

at which time the value of &X equals 2, and the lcop is not executed
again.

Another example of conditional loop control is as fcllows:

&Y = ELITERAL A&B

E§LOOP 2 .&X BQ SLITERAL .§
&X = &SUBSTIR &Y 2 1

E§TYPE §&X

These statements are interpreted and executed as follows:
1. The variable &Y is set to the literal A&B.
2. The two statements following the SLCCP statement are tc be executed
until the value of &€X is &. Notice the periods that precede the
values to be compared in the §LOOP statement. The first time this

statement is executed, the variable §X has not been initialized to
any value and, therefore, is considered a null string. Since the

46 IBM VM/370: EXEC User's Guide

EXEC interpreter ignores null strings, a period has been added to
the §X to give it a recognizable value. A period must alsoc be added
to the constant & so the two values can compare correctly. (Any
character that is not significant to the EXEC interpreter can be
used instead of a period.)

3. The variable &X is set to the value of the second character in the
variable &Y, which is a literal ampersand (§).

4. The ampersand 1is typed once, and the loop does not execute again

because the condition that the value of &X be a literal ampersand
is met.

Further examples of 1loop control with the €LOOP statement are found
throughout this book.

Building EXEC Procedures 46.1

CONTROLLING EXECUTION OF CMS COMMANDS

CMS commands in an EYXEBC preocedure can be executed sequentially, under
control of EXEC control statements, or they can be placed (stacked) in
the terminal input buffer for later execution. You already know how to
set up an EXEC procedure to control execution of CMS commands, and also
how to execute CHMS commands sequentially. This section shows you how to
stack CMS commands for later execution.

PLACING A COMMAND IN THE CONSOLE STACK

g
nIr

12

A co cl statement allows you to stac 1 th
1 input buffer (also called the console stack). Normally, the
line of tokens comprises a CMKS command (or subcommand) and its
parameters, although a null line can also be stacked by omitting the
tokers. In fact, the data placed in the stack need not be a conmand at
all. See the heading "iAn Annotated EXEC Procedure" for an example of
such stacking.

-

Lines placed in the console stack by &STACK are normally stacked FIFO
(first in, first out), but you can explicitly specify LIFC (last in,
first out) by entering LIFO as the first token following &STACK.

Note: The Logical Line BEnd character 1is a hexadecimal '15°'. CHMS
routines do not process the symbolic line end character (#).

The stacking facilities are especially wuseful in designing EXEC
procedures that use such CMS commands as EDIT. You can use the &STACK
control statement to set EDIT subcommands in the console stack, then
execute the EDIT command itself. For example, suppose you wanted to
define a special filetype that is to contain uppercase and lowercase
characters. Since the EDIT command assumes only uppercase characters
for all filetypes except MEMO and SCRIPT, you need to specify the EDIT
subcomnmand CASE M each time you edit a file with the special filetype.
If the special filetype is called TABLE, you could use the following
RXEC procedure to control the CMS EDIT command:

&EIF &INDEX LT 2 &EXIT 12
&IF &2 NE TABLE &SKIP
&STACK CASE M

EDIT &1 &2 &3 &4 €5 &6

¥hen this EXEC is invoked, it expects to find at least two arguments,
although up to six may be passed. The first argument must be a
filename, and the second a filetype. If fewer than two arguments are
passed, an exit with a return code of 12 is taken.

If the <filetype specified (&2) is not TABLE, the next sequential
statement 1is skipped. In this case, an EDIT cowmmand 1is issued by
specifying the arguments that were passed to the EXEC procedure. An
exit is taken on return from CHMS.

If the filetype specified 1is TABLE, control passes to the next
sequential statement in the file. This statement stacks the EDIT
subcommand CASE M in the terminal input buffer. When the EDIT command
is issued (in the next statement), the first time the Editor reads fronm
the terminal buffer, it reads the CASE M subcommand. The person working
at the terminal is thus freed from having to enter CASE ¥ when editing a
TABLE file.

Building EXEC Procedures 47

If you want to stack one or more untokenized lines in the console
stack, you can use the &BEGSTACK and &END control statements, which are
discussed next.

Inserting More Than One Line

Using the &BEGSTACK and &END control statements, you can place
untokenized lines of data in the terminal input buffer ({also called the
console stack). Normally, a 1line consists of a CMS command (or
subcommand) and its parameters. Since the 1line is untokenized, no
substitution is performed by the EXEC interpreter before the 1line is
placed in the console stack.

As with the &STACK control statement, you can specify whether the
lines are to be executed on a FIFO (first in, first out) or LIFO (last
in, first out) basis.

Lines of data are normally truncated at column 72, but you can
specify the option ALL in the &BEGTYPE statement to extend the data
entry area to 80 characters (or to 130 characters if the EDIT command
sypecifies LRECL 130).

Consider another example using subcommands of the CMS EDIT command.
This time, in addition to allowing uppercase and lowercase characters,
you want to set tabs at columns 1, 10, and 20, and you want the short
prompting message to appear when an 1invalid EDIT subcommand is entered.
Using a filetype of TABLE for files that require this special treatment,
vou could enter the EXEC procedure as follows:

IF GINDEX LT 2 SEXIT 12

6IF &2 NE TABLE &GOTO -EDIT
&EBEGSTACK

CASE M

TABSET 1 10 20

SHORT

&END

~EDIT EDIT &1 &2 &3 &4 &5 &6

The analysis of the arguments passed is similar to that discussed in
the previous example for &STACK. In this EXEC procedure, a branch is
taken to the label -EDIT when the filetype specified in the variable §2
is not TABLE. When the filetype is TABLE, control passes to the
EBEGSTACK control statement, which places the 1lines down to &END in the
console stack. The EDIT command is then executed. The first three
lines read from the terminal buffer are the subcommands that were
stacked there. Thus, the person working at the terminal is freed from
having to enter the CASE M, TABSET 1 10 20, and SHORT subcommands when
editing a TABLE file.

You can check the status of the console stack within your EXEC
procedure by examining the &READFLAG special variable, which is
discussed next.

48 IBM VM/370: EXEC User's Guide

Exapining the Read Status Flag

During EXEC processing, you may need to know whether or not any data
lines are stacked in the terminal input buffer. You can determine this
quickly and easily by examining the special variable &SREADFLAG. If
&READFLAG contains the value CONSOLE, the next attempt to read from the
terminal obtains a physical line from the real terminal. If &READFLAG
contains the value STACK, the next attempt to read from the terminal
obtains a line from the terminal input buffer.

Note: You cannot set this variable explicitly, but you can examine it
and save its value in some other variable at any point in an EXEC

For example, if successful completion of an EXEC procedure requires
at least one data 1line to be stacked in the terminal input buffer, you
might set up the following test just before leaving the EXEC procedure:

&IF &READFLAG EQ STACK &EXIT
&§TYPE PROCESS ERROR; NO LINES IN STACK
GEXIT 16

If at least one line is in the stack, the normal exit is taken with a
return code of =zerc. When no lines appear in the stack, the value of
SREADFLAG is not STACK, so control passes to the following &TYPE
statement, which types an error message and exits with a return code of
16.

Note: G&READFLAG can contain only the two values CONSOLE and STACK.

CHECKING FOR EXECUTION ERRORS

Pt L B A 13

It 1is usually good programming practice to check for errors during
execution of a program. This is as true for EXEC procedures as it is
for any formal programming language. Three major types of errors can be
detected during EXEC processing:

1. Errors in number, type, or contents of arguments passed to an EXEC
procedure. Checking for these kinds of errors has already been
discussed under the heading "“Passing Arguments to an EXEC
Procedure."

2. Errors in CHMS command processing. Checking for these kinds of
errors is controlled by specifying an &ERROR control statement that
passes control to an analysis routine whenever a CMS command error
occurs, These techniques are discussed under the following
headings, "Identifying Error Handling Routines" and "Checking for
CMS Error Return Codes."

3. Errors in EXEC interpreter processing. These kinds of errors
usually result in an error exit from the EXEC procedure. The EXEC
interpreter types an error message and a return code, and returns
to CHMS. The messages and return codes are discussed under the
heading "Recognizing EXEC Processing Errors."

Building EXEC Procedures u9

IDENTIFYING ERROR HANDLING ROUTINES

when an error is detected 1in processing a CMS command, a return code
indicating the severity of the error is passed back to the EXEC
interpreter. The EXEC interpreter then activates the &ERROR control
statement currently in effect. 1If none has been specified, &CONTINUE is
assumed, and no error processing is performed.

An S§ERROR control statement can specify that any executable statement
be processed when an error is recognized. However, if the action taken
is itself a CMS command thdat also yields an error return code, the EXEC
interpreter types an error message and exits from the EXEC procedure.

Note: An &ERROR control statement must be set up before the CHMS
commands for which it is +to handle errors are executed. Thus, the
effect of an &ERROR control statement ranges from the point at which it
is entered until the next &ERROR statement is encountered.

A simple error action is to exit from the EXEC procedure, passing the
return code from the CMS command back to the user. For example:

SERROPR GEXIT &RETCODE

In another EXEC procedure, you may want to check the severity of the
etror before taking any action. For example:

EERROR &IF &RETCODE LT 12 §GOTO -FIX
EEXIT SRETCODE

-

~-FIX (Analysis routine begins here.)

When the value of &RETCODE is 12 or more, the branch to -FIX is not
taken, and the &EXIT statement that follows is executed. When the
return code is less than 12, the branch to the error analysis routine at
-FIX is taken.

Oonce control passes to the error analysis section of an EXEC
procedure, you can test the &RETCODE special variable to determine what
kind of error occurred. This technique is discussed next.

CHECKING FOR CMS ERROR RETURN CODES

When an EXEC procedure passes control to an error analysis routine, it
is usually because the error discovered is not very serious, and may be
one that can be contained by performing some corrective action. Before
you can take any corrective action, though, you need tc know exactly
what the error is., One way to determine the cause of the error is to
examine the return cede in the special EXEC variable &RETCODE.

50 IBM VM/370: EXEC User's Guide

For example, suppose you want to set up an analysis routine to
identify return codes 1 through 11 (anything greater than 11 is set up
to cause an immediate exit). When a return code is identified, control
is passed to a corresponding routine that attempts to correct the error.
You could set up such an analysis routine as follows:

~ERRANAL

ECNT = O

§LOOP 2 &CNT EQ 12

&€Ir ERETCODE EQ &CNT &GOTO —-FIX&CNT
ECNT = &CNT + 1

~FIX0 &GOTOC -ALLOK
-FI¥t...
-FIX2...

-FIX10...
~FIXx11...
~ALLOK...

When the value of the &§CNT variable equals the return code value in
SRETCODE, the branch to the corresponding -FIX routine 1is taken. Each
corrective routine performs actions depending on its code.

#hen you want to pass the value of G&RETCODE out of the EXEC
crocedure, you can simply specify it in the &EXIT statement, as follows:
SEXIT &RETCODE

Further examples of the use of the &RETCODE special variable are
found throughout the rest of this book.

RECOGNIZING EXEC PROCESSING ERRORS

Just as errors can occur in CMS conmand execution, so can they occur in
EXEC control statement processing. When the EXEC interpreter finds an
error, it types the message:

ERROR IN EXEC FILE fname, LINE nn -- error description
where:

fnane
is the filename of the EXEC file in which the error was detected.

nn
is the line number in the file at which the error occurred.

error description
is one of the conditions described below. A return code is passed
back to the calling program; the return codes are shown with the
messages to which they belong.

Building EXEC Procedures 51

52

Return
Code

802

804

805

806

807

808

809

810

Message and Explanation
&SKIP OR &GOTO ERROR

An error occurred in attempting to process an &SKIP or &GOTO
statement. For &SKIP, a value that specifies a position
before the beginning of the EXRC file wmay have been
specified., For &GOTO, the target specification may have been
omitted.

TOO MANY ARGUMENTS

The user has tried to pass more than 30 arguments to the
specified EXEC at the 1line indicated. If more than 30
variables must be wused, define your own and initialize them
with an &READ VARS control statement.

MAX DEPTH OF LOOP NESTING EXCEEDED

Up to four nested loops using the §LOOP control statement may
be specified. If more than this are required, use another
technique for loop control for additional levels of nesting.

DISK OR TERMINAL READ ERROR

An error occurred while reading from a disk or user terminal.
Try the EXEC procedure again. If the error persists, contact
you computer center for assistance.

INVALID SYNTAX

The syntax of the indicated statement is incorrect. Correct
the error and try the EXEC procedure again.

INVALID FORM OF CONDITION

The conditional expression in the indicated statement is
invalid. This error can arise due to faulty 1logic, but when
the logic is correct, it occurs most ofter when some required
argument is not passed to the EXEC procedure.

INVALID ASSIGNMENT

The assignment in the indicated statement is invalid. The
types of errors that can cause this message to appear are
like those for INVALID FORM OF CONDITION (808).

MISUSE OF SPECIAL VARIABLFE

One of the special EXEC variables was improperly used in the
indicated statement. Review the rules for use of the special
EXEC variables and correct the error before attempting to use
the EXEC procedure again.

IBM VM/370: EXEC User's Guide

Return
Code Message and Explanation
811 ERROR IN &ERROR ACTION

The action specified when the indicated &ERROR statement was
executed resulted in a processing error. You should correct
both errors before attempting to wuse the EXEC procedure
again.

812 CONVERSION ERROR

An error occurred in the indicated statement when the EXEC
interpreter attempted to convert one type of data to another.
This can happen when you try to perform arithmetic operations
on alphabetic data. Correct the error and try the EXEC
procedure again.

813 TOO MANY TOKENS IN STATEMENT

No more than 19 tokens can appear in a single EXEC statement.
Reduce the number of tokens in the indicated statement and
try the EXEC procedure again.

814 MISUSE OF BUILT~-IN FUNCTION

One of the EXEC built-in functions was improperly used in the
indicated statement. Review the rules for wuse of the
built-in functions and correct the error before attempting to
use the EXEC procedure again.

815 EOF FOUND IN LOGOP

The end of the EXEC file was encountered at the indicated
statement while execution was being controlled by an &LOOP
control statement. Check for an incorrect limit value or a
failure to attain an exit condition during loop execution.
When the error is corrected, try the EXEC procedure again.

816 INVALID CONTROL WORD

The EXEC interpreter does not recognize a control word in the
indicated statement. Locate and correct the error before
using the EXEC procedure again.

Note: ©HNone of the EXEC processing errors can be corrected dynamically.
Depending on the error, you must either correct the indicated error and
invoke the EXEC procedure again, or simply invoke the EXEC again with
correct arguments.

SPECIAL EXEC FILES

Certain EXEC files have special wuses in a CMS virtual machine. They
are:

e PROFILE EXEC, which allows a wuser to set up his own operating
environment within CMS. :

e CMHS EXEC, which is a file of 80-character records created by the CHS
LISTFILE command.

e EDIT macros, which are special EXEC files that contain only EXEC
control words and EDIT subcommands.

Building EXEC Procedures 53

Bach of these special EXEC files is discussed in this section under a
separate heading.

PROFILE EXEC

A PROFILE EXEC is an EXEC procedure that tailors a CMS virtual machine
to the user's specifications. If you usually enter several commands to
change your virtual machine after you load CMS, you should set up your
own PROFILE EXEC to execute these commands for you. This will save you
the trouble of entering these commands every time you IPL CMS.

A PROFILE EXEC can be as simple or as complex as you require. It is
a normal EXEC file, and thus it can contain any valid EXEC control
statements or CMS commands. The only thing that makes it special is its
filename, PROFILE, which causes it to be executed the first time you
press the RETURN key after loading CHMS.

Usually, the first thing you do after 1loading CMS is to type a CMS
compand. When you press the RETURN key to enter this command, CMS
searches your A-disk for a file with a filename of PROFILE and a
filetype of EXEC. If such a file exists, it 1is executed before the
first CMS command entered is executed. Because you do not do anything
special to cause your PROFILE EXEC to execute, you can say that it
executes "automatically."

Note: You can prevent your PROFILE EXEC from executing automatically by
entering:

ACCESS (NOPROF)

as the first CMS command after you IPL CMS. You can enter:
PROFILE

at any time during a CMS session to execute the PROFILE EXEC.

For example, if you want to set up a CMS virtual machine that
redefines the blip characters and CMS Ready message, you could create
the following PROFILE EXEC:

ECONTROL OFF
SET BLIP *
SET RDYMSG SMSG

In addition to establishing an operating environment, you could also
perform such functions as linking to another minidisk, accessing it, and
manipulating files that are found on it. An Assembler Language
programmer may want to include a GLOBAL command in his PROFILE EXEC to
ensure access to the CMS and 0S macro libraries, while a PL/I user would
want to have the PL/I Program Product libraries available,

An example of a PROFILE EXEC to do some of these things is:

§CONTROL OFF

LINK PUBS 191 291 RR RDPAS
ACCESS 291 B/A

GLOBAL MACLIB CMSLIB OSMACRO
SET BLIP Z

SET RDYMSG SMSG

Note: You can use &EXIT to specify a return code to be displayed when

the PROFILE EXEC finishes processing. If the return code ycu specify in

54 IBM VM/370: EXEC User's Guide

this way depends on the value of &RETCODE, the return code is displayed
only if you have executed the PROFILE EXEC by entering

PROFILE
If the PROFILE EXEC is executed automatically, however, the return code
is not displayed. Only the normal CMS ready message (R;) is displayed,
to show that CMS has executed the PROFILE EXEC.

For example, suppose your PROFILE EXEC is:

&CONTROL OFF

SET RDYMSG SMSG

GLOBAL TXTLIB CDMLIB

EIP ERETCODE NE O &EBXIT 1

SEXIT

If this PROFILE EXEC is executed automatically and CDMLIB cannot be
found., the following message is issued:

FILE 'CDMLIB TXTLIB* NOT FOUND.
R;

If the same EXEC is executed by your entering
PROFILE
the return code is displayed, as follows:

FILE *CDMLIB TXTLIB' NOT FOUND.
R (00001) ;

If the file is found, the normal CMS ready message 1is issued in either
case.

CHS EXEC

A CHS EXEC file is a special file of 80-character records that is
created on a user's primary disk by the CHS LISTFILE command. The
format of each record in the file is:

&1 &2 filename filetype filemode
The variables &1 and &2 are standard EXEC numeric variables. The
filename, filetype, and filemode are those specified in the LISTFILE

command. (The LISTFILRE command is described in the VM/370: Command
Language Guide for General Users.)

Judicious use of the LISTFILE command and CMS EXEC can save much
repetitive work in certain situations. For example, if you have several
files with a filetype of ASSEMBLE that you want punched so that they can
be transferred to some other user, you can do this in two ways:

1. You can enter the command:
DISK DUMP filename ASSEMBLE

for each file to be moved. If many files are involved, this can be
a tedious, time-consuming procedure.

Building EXEC Procedures 55

2. You can create a CMS EXEC file by entering the cosmand:
LISTFILE * ASSEMBLE * (EXEC)

which creates a file named CMS EXEC with 80-character records in
the format described previously. One record is created for each
file found with a filetype of ASSEMBLE. You could then issue the
command:

CMS DISK DUMP

When the CMS EXEC is executed, the argument DISK is assigned to &1,
DUMP is assigned to &2, and a DISK DUMP command is thus created for
each record in the file.

If your virtual punch is spooled to the user to whom you want
the files to go, each file is punched to that user.

The CMS EXEC variables &1 and §2 can be assigned any arquments that
create a valid CMS command or EXEC control statement. (No arguments
need be specified at all, if desired).

A more comprehensive example of the use of the LISTFILE command and
CMS EXEC is found in the section entitled “An Annotated EXEC
Procedure."

EDIT MACROS

If you have a good knowledge of the CMS EXEC facilities, you can write
your own EDIT macros. You must ensure that any EDIT macro you write
checks the ~validity of its operands and displays an error message if
necessary.

The conventions followed when creating EDIT macros are:

1. EXEC files that are EDIT macros have a filename that starts with a
dollar sign ($) and a filetype of EXEC. These files are referred
to as EDIT macro files.

2. An EDIT macro subcommand consists of the name of an EDIT macro file
(including the initial $), possibly followed by operands.

3. An EDIT macro file contains only EDIT subcommands and EXEC control
statements. EDIT macros can execute only in EDIT mode.

Operands of an EDIT macro must be separated from the macro name, and
from each other, by at 1least one blank. Percent signs (%) cannot be
entered as operands, since they have a special meaning to the EXEC
interpreter. Operands passed to an EDIT macro are subject to the same
rules as any other EXEC file (that is, the lenqth of an operand must not
exceed eight characters).

When you create the macro, IMAGE mode must be off if you include tab
characters (X'05').

All EDIT subcommands in EDIT macros must Le stacked (that 1is, you
must specify &STACK or &BEGSTACK before the EDIT subcommands). If your
EDIT macro uses variables, you should use &STACK rather than &BEGSTACK,
since §BEGSTACK inhibits substitution of variables.

If an EDIT macro is issued, and the EDIT macro file does not exist,
the Editor issues the message ?EDIT:. If an EDIT macro is used

56 IBM VM/370: EXEC User's Guide

incorrectly, the Editor displays a message, and the macro 1is ignored.
If an EDIT macro is assigned to X or Y, it is an error to issue that X
or Y subcommand with a numeric operand other than 0 or 1.

Some EDIT macros use the CMS DESBUF command during their execution
(for example, $DUP and $MOVE). If stacked lines exist when one of these
macros is invoked, the macro deletes the stacked lines and issues the
message STACKED LINES CLEARED BY (macro name). This also occurs in
user-written macros if the CMS line end character has tkeen used to stack
additional subcommands after the macro is issued.

A user-written EDIT macro that uses first-in, first-out (FIFOQ)
stacking should ensure that the stack is initially clear. You do this
by including in your EDIT macro the line

&IF SREADFLAG EQ STACK DESBUF

before 7you stack anything. The TCESBUF command clears the ccnsole
stack. Alternatively, vour EDIT macro can use last-in, first-out (LIFO)
stacking to avoid having to initially clear the console stack.

If the operation of an EDIT macro is completed without an error, the
Bditor clears any stacked 1lines and issues the message STACKED LINES
CLEARED. Thus, the macro has no effect on the Editor or its contents.

To avoid having the Editor type during execution of your EDIT macros,
you can specify that your EDIT macros operate with verification off.
You can accomplish this without losing your setting Ly stacking PRESERVE
and VERIFY OFF for execution first, and RESTORE for execution last.

Do not interrupt the execution of an EDIT macro ty pressing the ATTN
(attention) key or its equivalent.

An example of an EDIT macro that you could write is the following,
which puts a continuation character in <column 72 of an Assembler
Language source statement. Remember to issue the EDIT subcommand IMAGE
OFF before you create this EXEC, because it includes tab characters.

&CONTROL OFF

&BEGSTACK

PRESERVE

VERIFY QFF

TRUNC *

TABS 1 72

&END

ESTACK REPEAT &1

&BEGSTACK

OVERLAY C
(Enter a blank and a tab character between OVERLAY and C.)

RESTCRE

EEND

If you name this file $CONT EXEC, then when you want to put a
continuation character in column 72, you can:

1. Enter the Assembler Language source statement (except for the
continuation character).

2. Enter a null line to get into EDIT mode (from INPUT mode).

3. Invoke the $CONT EXEC to put a continuation character in column
72.

4, Enter INPUT mode and continue entering source statements.

Building EXEC Procedures 56.1

Two EDIT macros are supplied with VM/370: $DUP and $MOVE. These are
described in "“Section 4. EDIT Macros"® in the VM/370: EDIT Guigde.
"Appendix B. User-Written EDIT Macros"™ in the ¥M/370: EDIT Guigde
describes other EDIT macros that you can create and may find useful.

56.2 IBM VM/370: EXEC User's Guide

CONTROLLING THE CMS BATCH FACILITY

The EXEC facilities provide you with a convenient way of controlling the
CHMS Batch Facility. Using EXEC procedures, you can simulate terminal
control of your batch job execution, while freeing yourself of the
repetitious tasks involved in preparing input for the batch card reader.

Since the CMS Batch Facility executes commands in the same way as a
nornal CMS virtual machine, you can submit data to it in three primary
Wwavs:

1. Invoke EXEC procedures in your virtual machine to punch the
necessary commands to the batch card reader.

2. Punch EXEC files to the batch card reader in such a way that the
EXEC files are loaded on the batch machine's primary disk, and are
then executed in the batch machine.

3. Punch appropriate commands to the batch card reader to cause the
batch machine to link to a user disk and invoke an EXEC procedure
that resides on that disk.

0f course, any combination of these (or other) methods may serve the
purpose of a particular user job. Methods 2 and 3 also show how to make
a data file (such as a source file for an assembly) available to the
batch machine. You can either punch the data file (preceded by
appropriate CMS commands) directly to the batch reader, or punch a
series of commands that enable the batch machine to link to a user disk
and have access to the data file.

To simulate actual console input, the batch machine truncates
trailing blanks from every record it reads from its card reader and
determines the length of the 1line read accordingly. Thus, a Dblank
record is treated as a null line.

The only exception to the normal batch machine handling of /* (end of
job} and blank records is that of using /* as an end-of-file indicator
when MOVEFILE 1is executing and reading from the console (batch card
reader). The /% is translated to a null line so that blank data records
can be read in as data, and so that MOVEFILE can recognize an
2nd-of-file from the console. This is the only +time that the batch
machine does not interpret /* as an end-of-job indicator, and the only
condition when a blank record is treated as a blank card-image record
rather than as a null line.

This use of the MOVEFILE command is helpful with input method 2
above, in which the data file may be preceded with two FILEDEF commands
and a MOVEFILE command, and followed by a /* record. If the input data
file is defined as residing at the console, MOVEFILE reads the data file
from the console and recognizes the null line (the /* record translated
by the CMS Batch Facility) as the end of the data file.

Building EXEC Procedures 57

SAMPLE PROCEDURES FOR BATCH EXECUTION

The sample EXEC procedures in this section can be used to assemble
Assembler Language source files under control of the CMS Batch Facility.
The three EXEC files are named BATCH EXEC, 1INPUT EXEC, and ASSEMBLE
EXEC.

1. BATCH EXEC
THIS EXEC SUBMITS ASSEMBLIES/COMPILATIONS TO CMS BATCH
- PUNCH BATCH JOB CARD;

= CALL INPUT EXEC TO PUNCH DATA FILE;
~ CALL APPROPRIATE LANGUAGE EXEC (&3) TO PUNCH EXECUTABLE COMMANDS

LK R B B

§CONTROL ERROR
§IF SINDEX GT 2 &SKIP 2

§TYPE CORRECT FORM IS: BATCH USERID FNAME FTYPE (LANGUAGE)
SEXIT 100

&§ERROR &§GOTO -ERR1

CP SPOOL D CONT TO BATCHCHMS

EPUNCH ,/JOB &1 1111 &2

EXEC INPUT &2 &3

EXEC &3 &2 &1

EPUNCH /%

CP SPOOL D NOCONT

CP CLOSE D

CP SPOOL D OFF

SEXIT

-ERR1 &EXIT 100

2. INPUT EXEC
CORRECT FORM IS: INPUT FNAME FTYPE
PUNCH DATA FILE FOR BATCH PROCESSOR; THE /% LINE BEHIND THE

DATA FILE IS TRANSLATED TO A NULL LINE BY BATCH SO THAT MOVEFILE
RECOGNIZES THE END OF THE DATA SET.

* O O 3 W

§CONTROL ERROR

§ERROR §GOTO -ERR3

§PUNCH FILEDEF INMOVE TERM (BLOCK 80 LRECL 80 RECFM F
S§PUNCH FILEDEF OUTMOVE DISh &1 &2 (BLOCK 80 LRECL 80 RECFM F
&PUNCH MOVEFILE

PUNCH &1 &2 * (NOHEADER)

EPUNCH /*

SEXIT

-ERR3 &EXIT 103

3. ASSEMBLE EXEC
CORRECT FORM IS: ASSEMBLE FNAME USERID
PUNCH COMMANDS TO:

- INVOKE CMS ASSEMBLER
~ RETURN TEXT DECK TO CALLER

#* % * ¥ I

&CONTROL ERROR

EERROR &GOTO ~ERR2

&PUNCH CP LINK &2 191 199 RR PASS= RPASS
EBEGPUNCH

ACCESS 199 B/B

GLOBAL MACLIB UPLIB CMSLIB OSMACRO
RELEASE 199

58 IBM VM/370: EXEC User's Guide

EEND

EPUNCH CP MSG &2 ASMBLING *&1 *
EPUNCH ASSEMBLE &1 (PRINT NOTERM)
EPUNCH CP MSG &2 ASSEMBLY DONE
§PUNCH CP SPOOL D TO &2 NOCONT
EPUNCH PUNCH &1 TEXT A1 (NOHEADER)
EBEGPUNCH

CP CLOSE D

CP SPOOL D OFF

CP DETACH 199

SEND

EEXIT

-ERR2 &EXIT 102

These EXEC files use both methods of making data files available to
the batch machine for job execution, that is, the wuser's macro library
UPLIB is on his 191 disk, Instead of punching +the file to +the batch
card reader and using MOVEFILE to write the file to the batch machine‘s
disk (as he dces with the source file), the user enables the batch
machine to link to his disk and gain access to the macro library needed

for the assembly.

This section describes the sequence of events that occur when the sample
job is submitted to the CMS Batch Facility. The BATCH EXEC is invoked,
with arquments, as follows:

Terminal Typeout Source
batch name payroll assemble User

PUN FILE 0073 TO BATCHCMS Cp
Rs CHMs

At this point, the BATCHCMS reader file contains the following
statements (in the same general form as a FIFO console stack):

/JOB NAME 1111 PAYROLL

h-2 2% -F -1 BCT QN DR

FILEDEF INMOVE TERY (BLCCK 80 LRECL 80 RECF
FILEDEF OUTMOVE DISK PAYROLL ASSEMBLE (BLOCK 80 LRECL 80 RECFM F
MOVEFILE

M P

.

source file (PAYROLL ASSEMBLE)

/*

CP LINK NAME 191 199 RR PASS= RPASS
ACCESS 199 B/B

GLOBAL MACLIB UPLIB CMSLIB OSMACRO
RELEASE 199

CP MSG' NAME ASMBLING 'PAYROLL®
ASSEMBLE PAYROLL (PRINT NOTERM)

CP MSG NAME ASSEMBLY DONE

CP SPOOL D TO NAME NOCONT

PUNCH PAYROLL TEXT A1 (NOHEADER)
CP CLOSE D

CP SPOOL D OFF

CP DETACH 199

/#

Building EXEC Procedures 59

Eventually, the following messages appear on the user console (if
connected) :

Hessage Source

FROM BATCHCMS: JOB 'PAYROLL' STARTED Batch

FROM BATCHCMS: ASMBLING 'PRYROLL! User job
FROM BATCHCMS: ASSEMBLY DONE. User job
PUN FILE 0082 FROM BATCHCHS Ccp

FROM BATCHCMS: JOB 'PAYROLL' ENDED Batch

At this point, the user has the resultant object deck (PAYROLL TEXT)
in his card reader.

A Batch EXEC for a Non-CMS User

If an installation is running the CMS Batch Facility for non-CMS users,
a series of EXEC files could be stored on the system disk so that each
user need only include a card to invoke the system EXEC, which in turn
would execute the correct CMS commands to process his data.

For example, if a non-CMS wuser wanted to compile FORTRAN source
files, the following BATFORT EXEC file could be stored on the systenm
residence disk:

SCONTROL OFF

RILEDEF INMOVE TERM (RECFM F BLOCK 80 LRECL.80

FILEDEF OUTMOVE DISK &1 FORTRAN A1 (RECFM F LRECL 80 BLOCK 80
MOVFILE IN OUT

GLOBAL TXTLIB FORTRAN

FORTGI &1 (PRINT)

EFORTRET = &RETCODE

&IF &RETCODE NE 0 &GOTO -EXIT

PUNCH &1 TEXT A1 (NOHEADER)

-EXIT &EXIT &FORTRET

sing this EXEC, the non-CMS user could place a real card deck in the
system card reader (the first job must have a CP wuserid card). The
statements to invoke the BATFORT EXEC would be as follows:

/JOB JOEUSER 1234 JOoB10
BATFORT JOEFORT

source file
/* (end-of-file indicator)
/* (end-of~job indicator)

The BATFORT EXEC moves the source file onto the batch machine work
disk with a file didentification of JOEFORT FORTRAN. The FORTRAN G1
compiler is then invoked, and if the return code is 0, the JOEFORT TEXT
file is punched for JOEUSER.

Additional functions may be added to this EXEC procedure, or others
may be written and stored on the system disk to provide, for example, a
compile, load, and execute facility. These EXEC procedures would allow
an installation to accommodate the non-CMS users and maintain common
user procedures.

60 IBM VM/370: EXEC User's Guide

AN ANNOTATED EXEC PROCEDURE

PSS PN

The following EXEC procedure could be used to assemble all the ASSEMBLE
files on a user's primary disk (A-disk). The numbers to the 1left of
each statement are not part of the EXEC file, but are simply reference
points for the discussion that follows the EXEC procedure.

&CONTROL ERROR

LISTFILE * ASSEMBLE A1 (EXEC)
EXEC CMS &STACK

GLOBAL MACLIB &2 CMSLIB
&LOOP —-LOOPEND EREADFLAG EQ CONSOLE
&READ ARGS

ASSEMBLE &1

SASMRET = &RETCODE

&IF SRETCODE GT 4 &SKIP 2

10 PRINT &1 LISTING A1

11 ERASE &1 LISTING A1

12 ~-LOOPEND &CONTINUE

13 &EXIT &ASMRET

WONOUVEWN -

The function of each of the statements in this sample EXEC procedure

is as follows:

1.

The &CONTROL statement specifies that only those CHWS commands that
result in a nonzero return code are to be typed at the user's
terminal. In addition, the return code is typed in the CHMS ready
message.

The LISTFILE command creates a CMS EXEC file that contains the
names of all the files on the user's A-disk that have a filetype of
ASSEMBLE. For each ASSEMBLE file found, a record is created in the
CHMS EXEC file in the following format:

&1 &2 filename ASSEMBLE A1

The CMS EXEC is invoked with the argument &STACK. Thus, each
record in the CMS EXEC file is placed in the terminal input buffer
in the following format:

filename ASSEMBLE A1

The GLOBAL command locates and gains access to the macro libraries
required for the assembly. The user can specify any 1library he
wishes by passing an argument to the EXEC procedure in the second
argument position.

The loop that is created by &LOOP executes each statement down to,
and including, the label -LOOPEND, until such time as the special
variable &READFLAG has a value of CONSOLE. 2As long as there are
records in the console stack (placed there by statement 3), the
loop continues to execute.

The &READ statement reads a line from the console stack, assigning
it tokens to the numeric variables &1, &2, &3, etc.

The ASSEMBLE command causes the file named in the variable &1 to be
assembled.

This statement saves the return code from the Assembler in the
user-defined variable SASMRET.

f
Building EXEC Procedures 61

9. The G&IF statement checks to see if the return code from the
Assembler is greater than four. If it is, the next two lines are
skipped. 1If not, no skipping of lines occurs, and control passes
to the next sequential statement.

10. The PRINT command causes the LISTING file of assembled source
statements to be spooled to the user's virtual printer.

11. When the LISTING file has been spooled, it is erased to make roonm
for the next one (if any).

12. This statement marks the end of the loop defined in statement 5.

13. When the 1loop is through executing, &EXIT passes control back to
CMS with the return code from the most recent assembly (contained
in &ASMRET), not from the most recently executed CMS command (which
might be ERASE).

Many other combinations and variations are possible in the
construction of EXEC procedures. The reader is encouraged to
investigate the capabilities of the EXEC facilities in depth. The uses
to which EXEC procedures can be put in your VK/370 system should be
limited only by your imagination and any performance criteria that must
be met.

62 IBM VM/370: EXEC User's Guide

APPENDIX A: EXEC CONTROL STATEMENT SUMMARY

The charts in this section provide a gquick reference summary of the EXEC
control statements and built-in functions. Should you need more
information than that in the charts, see the appropriate discussion in
the body of this book.

EXEC Command |
Description | Control Statements and Built-in Functions

EXEC
Invokes EXEC files.

EXec f£fn [args...]
The formats of the EXEC control statements
and built-in functions are as follows:

Defines or redefines
arguments in the
EXEC file.

§ARGS [argl [arg2 ...]]

Punches the
following lines of
this EXEC file
into cards.

E¢BEGPUNCH [ALL]

Stacks the following EBEGSTACK
lines of this EXEC
file into the
terminal input

buffer.

=

|-

1G]

olo
o =
-

b

=

[l

- —— -

Types the follow-
ing lines of this
EXEC file at the

terminal.

§BEGTYPE [ALL]

Concatenates tok1
and tok2 into a
single token.

SCONCAT tok1 {tok2 ...}

Used in conjunction ECONTINUE
with an EXEC label
to provide an

address for branch

statements.

r 1 r Tr 1T r]
Supplies the ECONTROL |OFF | |TIME | |PACK | [MSG |
console printout |[ERROR| |NOTIME| |NOPACK]| |NOMSG|
parameters for the |ICMS | ¢ 4 0t 4 ¢ 4
execution phase of |ALL |
the EXEC file. L <4

Allows the token SDATATYPE tok
to be known from
this point on by its
composition (that
is, numeric or

|
|
l
|
|
|
|
|
|
|
|
|
!
|
|
i
|
|
{
|
i
l
i
|
|
|
{
|
l
|
i
|
|
|
|
|
|
{
|
|
|
|
(
|
|
character data). |

o e s E — T " — —— —— — ——— — — — T ———— — T ———_— A —— O —— ——— — ——_ T — — o, St
b s e e e e e e . e G e e . T e T S o e me e e T e S A . S — — d— - G — . — — — — — T — —— a—

Appendix A: EXEC Control Statement Summary 63

EXEC Command
Description

Control Statements and Built-in Functions

Indicates the
completion of the
action started by

& BEGPUNCH, &BEG-
STACK, or &BEGTYPE.

Provides an execu-
tion path for a
previous EXEC file
statement that
resulted in a non-
zero return code.

Exits from the
EXEC file with a
given return code.

Transfers control
to a defined
location.

Rllows statement
execution if the
comparison is
satisfied.

Indicates the num-—
ber of nonblank
characters in the
following token.

Allows the use of
the literal value
of the token with-—
out substitution.

Repetitively exe-—
cutes a sequence
of statements a
defined number of
times or until a
specific condition
is achieved.

Punches a card
with the defined
tokens.

Reads the next
line (or lines)
from the terminal
and treats the
data as part of
the EXEC file.

[n e o e o o o — — — e — —— — o — v — o — — —— N —— ——= e oo T T — —— M — i o — — — . —— o — — — o = ———

o e e e o e e o e e - — o ——— —— e —— — — —— _——— — — - —— —— — o — o — o it s it o i v s e oo o

EEND

EERROR action

r hi
EEXIT |return-codel|
| a |
|8 2
&GOTO TOP
line—-number
label
GIF tok1 EQ tok2) executable
&% NE &5 statement
&* LT &*
LE
GT
GE

ELENGTH tok

SLITERAL tok

§L0OQP {n } m
label condition

&EPUNCH tok1 {tok2 ...]

r
EREAD |n

i1

|ARGS

|VARS wvar1 {var2 ...]
L

| N —

L o e e e e i e . s e —— — — —— —— —— — T — — —— — — i — —— A —— p—— ——— — — o —— — s — i — n W— s o o ootin m aams —

64 IBM VM/370: EXEC User's Guide

|
{
|

[o o e e h ot M iy s it o—n WA o b o P e AR o mma B e o S s T oo o e W e ama)

EXEC Command
Description

Control Statements and Built-in Functions

Skips subsequent
statements or
transfers control
up or down in the
EXEC file.

Types blank lines
at the terminal.

Stacks a line of
tokens in the
terminal input
buffer.

Txtracts the
desired string cf
characters from
the given token.

Types at the

terminal time infor-

gration pertainin
to EXEC file
execution.

Types at the
terminal a line
containing the
indicated tokens.

|
|
|
|
|
!
|
I
|
|
i
i
1
|
{
|
1
|
1
|
|
!
|
|
1
|
!
|
|
|
|

C 1
ESKIP | n |
P13
[N 4
h |
§SPACE| n |
i1
L 4
§STACK {FIFO! [tok1 [tok2 -..]
|LIFO|
L E]

&SUBSTR tok i [J]

ETIME 0
0

r——-

E§TYPE tokl [tok2 ...]

N
FF

Tor 1
| |RESETI
| ITYPE |
4 L d

Appendix A:

EXEC Control Statement Summary 65

&$ special token 23
use of 42

&* special token 23
use of 42

& character, use of in variable names

8§ARGS control statement 17
use of 33

EBEGPUNCH control statement 18
use of 11

SBEGSTACK control statement 18
use of 11,48

EBEGTYPE control statement 19
use of 11,38

ECONCAT built-in function 28

ECONTINUE control statement 19
use of 61

ECONTROL control statement 19
use of 61

SDATATYPE built-in function 28

SEND control statement 20
use of 38

S§ERROR control statement 21
use of 43,50

SEXIT control statement 21
use of U4,61

§GLOBAL special variable 30

&GLOBALn special variable 30

&§GOTO control statement 22
use of 43

§IF control statement 22
use of 41,42,61

EINDEX special variable 31
use of 34§

&LENGTHE buiit-in function 28
use of 34

SLINENUM special variable 31

SLITERAL built-in function 29
use of 46

§LOOP control statement 23
use of 45,61

&én special variable 30
use of 61

&PUNCH control statement 24

SREAD control statement 24
use of 33,36,61

S§READFLAG special variable 31

. use of 49,56.1,61

ERETCODE special variable 31
use of 22,50,61

&§SKIP control statement 25
use of 44

&SPACE control statement 25

ESTACK control statement 26
use of 47,61 .

§SUBSTR built-in function 29
use of 46

ETIME control statement 26

ETYPE control statement 27
use of 37

STYPEFLAG special variable 31
use of 40

12

Index

$DUP BDIT macro 56.1,56.2
$MOVE EDIT macro 56.1,56.2

% sign, use of 10,56

= sign, use of 13

A
adjusting counters 45
ampersand (§), use of in variable names
analysis, of EXEC statements 15
annotated EXEC procedure 61
arguments
checking for number of 34
checking for specific 35
checking length of 34
deteraining number of 31
in EXEC command 10
passing to an EXEC procedure 33
reading from a teraminal 24,36
ASSEMBLE command 61
assigning a value to a counter 45
assigning values to symbolic variables
assignment statements 13
avoiding substitution in a token 29

B
Batch PFacility
CHS
controlling with EXEC procedures

59
for non-CMS users 60
sample BXEC procedures for 58
blank lines, typing 25
blank tokens, handling of 15
branch statesents
&§GOTO 22
&§SKIP 25
use of 43
branching
with §GOTO 22,43
with 8§SKIP 25,44
building BXEC procedures 33
built-in functions

EXEC
&CORCAT 28
EDATATYPE 28
ELENGTH 28
SLITERAL 29
§SUBSTR 29

Index

12

10

57
executing the sample EXEC procedure

67

c
cataloged procedures, 0S 7
checking
for a specific argument 35
for CMS error return codes 50
for execution errors 49
for length of an argument 34
for number of arguments 34
CHS
Batch FPacility, controlling 57
Editor 8
error return codes, checking for 50
execution, comtrolling 47
files, typing at a terminal 39
CMS commands
as EXEC statements 12
ASSEMBLE 61
CP 12
DISK 55
EDIT 8
EXEC 7,10
executing 7
GLOEBAL 61
LISTFILE 8,61
PRINT 9,61
TYPE 9,39
CMS EXEC
described 55
example of 55
code
return
examining 31
specifying 21
command line, length of 11
coamands
as EXEC statements 12
ASSEMBLE 61 o
CMs, executing 7
cp 12
DESBUF 56.1
DISK 55
EDIT 8
EXEC 7,10
GLOBAL 61
invoking from an EXEC procedure 12
LISTFILE 8,61
longer than 72 characters 11
placing in a console stack 47
PRINT 9,61
reading from a terminal 24
TERMINAL 26
TYPE 9,39
communicating with a terminal 35
comparison operations
examples of 42
specifying 23
concatenating a string of tokens 28
conditional execution
control of 22
with &IF statement 41
with £LOOP statement 45
console output flag 31
console stack
clearing 56.1
placing lines in 18
example of 48
placing tokens in 26
example of 47
using to control CMS execution 47

68 IBM VM/370: EXEC User's Guide

control
logical, setting up 40
of conditional execution 22
of EXEC processing loops 23
of message typing 19
passing via §GOTO 22,43
passing via &§SKIP 25
control program (see CP)
control statements
EXEC 17
&EARGS 17
&BEGPUNCH 18
EBEGSTACK 18
&EBEGTYPE 19
ECONTINUE 19
&ECONTROL 19

SEND 20
EERROR 21
EEBXIT 21
§GOTO 22
&§IF 22
§LOOP 23
&PUNCH 24
E§READ 24
§SKIP 25
ESPACE 25
&§STACK 26
&ETIHE 26
&§TYPE 27

built-in functions 27
execution control 17
skipping 25
special variables 30
summary of 63
in EXEC procedures 14
control word, defined 14
controlling execution of CMS commands 47
controlling the CMS Batch Facility 57
Conversational Monitor System (see CMS)
counters, defining and using 44
CP command 12
CP commands
invoking from an BEXEC procedure 12
TERMINAL 26

D
data
placing in a console stack 18
punching 18,24
reading from a terminal 24,36
typing at a terminal 19,37
data length, determining 28
data type, determining 28
defining variables 32
DESBUF coamand 56.1
DISK command 55

E
EDIT command 8
EDIT macros
$DUP 56.1,56.2
$MOVE 56.1,56.2
described 56
example of 56.1
Editor, CMS 8
ending EXEC processing 21
equal sign (=), use of 13 .
error handling routines, identifying 50

error messages, EXEC processing 51
error return codes, checking for 50
errors

CMS command processing

default action 19
handling 21

execution, checking 49
examining the output flag 40
examining the read status flag 49
example of an EDIT macro 56.1
example of an EXEC procedure 61
EXEC built-in functions 27

&CONCAT 28

EDATATYPE 28

ELENGTH 28

ELITERAL 29

&SUBSTR 29
EXEC command 10
EXEC control statements 17

&ARGS 17

&BEGPUNCH 18

EBEGSTACK 18

&BEGTYPE 19

ECONTINUE 19

&CONTROL 19

SEND 20
§ERROR 21
§EXIT 21
§GOTO 22
&IF 22
§LOOP 23
EPUNCHE 24
&READ 24
§SKIP 25
&§SPACE 25
&STACK 26
ETIME 26
&§TYPE 27

summary of 63
EXEC facilities, using 1
EXEC files
described 11
format of 7
number of lines in 11
record lenght of 11
special types 53
writing 8
EXEC interpreter
function of 14
processing 7
EXEC procedure
annotated 61
building 33
creating 7
for a non-CMS user 60
invoking 7
labels in 40
passing arguments to 33
writing 8
EXEC statements
described 11
summary of 63
EXEC variables
defined 12
special
E§GLOBAL 30
&GLOBALn 30
SINDEX 31
SLINENUM 31
én 30

n
v

&READFLAG 31
SRETCODE 31
ETYPEFLAG 31
executable statements 11
execution
conditional
control of 22
with &§IF statement 41
with §LOOP statement 45
controlling via conscle stack 47
of an EXEC procedure 7
execution contrcl statements 17
execution errors, checking for 49
execution paths, defining 42
exit, from an EXEC procedure 21
extracting a substring 29

F
fiiename, in EXEC command 10
files
CMsS, typing at a terminal 39
EXEC
defined 11
format of 7
number of lines in 11
record length of 11
special 53
writing 8
flag

output status 31
checking 40
read status 31
checking 49
format, of EXEC files 7
functions, EXEC built-in 27

G
GLOBAL command 61
global variables, using 30

I

identifying error handling routines
IMAGE subcommand 56

interpreter, EXEC, function of 14
invoking an EXEC procedure 7

L
labels

examples of use 41

for EXEC statements 12

in an EXEC procedure 40

syntax and use 40
leading zeros, removal of 13
length of arguments, checking 34
length of data, determining 28
length of record, changing default
line number, determining 31
lines

blank, typing 25

typing at a terminal 38
LISTFILE command 8,61
lists, argument, in EXEC command 10

Index

logic control
in an EXEC procedure 40
passing of 22,25
setting up 40

loop control 23
with &LOOP 45
with counters 44

LRECL option 11

M
macros, EDIT, described 56
messages

control of typing 19

error, from EXEC processing 52

N
nonexecutable statements 11
null statements 12
number of argquments
checking 34
determining 31
numeric variables
assigning values to 10
defined 30

0]
operators, comparison, specifying 23
0S, cataloged procedures 7
output status flag 31
checking 40

P
rarameters, reading from a terminal 24
passing arguments to an EXEC procedure 33
passing control

with &GOTO 43

with &SKIP 44
paths, defining 42
percent sign (%), use of
period (.), use of 46
placing a coammand in the console stack 47
placing several lines in the console stack
48

10,56

PRINT command 9,61
procedure, EXEC (see EXEC procedure)

processing
control of 22
errors
default action 19
EXEC 51

specifying handling of 21
messages, default action 19
PROFILE EXEC
described 54
example of 54
punching data 18,24

R
read status flag 31
checking 49

70 IBM VM/370: EXEC User's Guide

reading data from a terminal 24,36
recognizing EXEC processing errors 51
record length, changing default 11
removal of leading zeros 13
repetitious statements, control of 23
return codes

CMS, checking for 50

determining 31

EXEC processing 51,52

specifying 21
routines, for error handling 50

S
sample EXEC procedure

annotated 61

for CMS Batch Facility 58

executing 59

scanning, of tokens 14
sequence, of EXEC interpretation 14
setting counters 45
simulation, of subscripted variables 15
skipping lines in an EXEC file 25
spaces, inserting between lines 25
special EXEC files 53

CMS EXEC 55

EDIT macros 56

PROFILE EXEC 5S4
special tokens (&$ and &%)

defined 23

null 42

use of 42
special variables 12.1,30
specific arqueents, checking for 35
stack, console, using to control CHNS

" execution 47

stacking, LIFO 50,56.1
stacking EDIT subcommands in EDIT macros
56
stacking lines in the console stack
statements
EXEC control 17
executable 11
assignment 13
CMS commands 12
control 14
null 12
nonexecutable 11
status flag
ocutput 31
read 31
stopping EXEC processing 21
subscripting variables, simulation of 15
substitution
avoiding 29
of EXEC variables 15
substring, taking a 29
summary, of EXEC control statements 63
suppressed typing, avoiding 40
symbolic variables
assigning values to 10
defining 30
syntcx, of EXEC labels 40
syntax analysis, procedure 15

18, 26

T
tab characters 56

terminal
communication with 35
reading data from 36
timing information typed at 26
typing CHS files at 39
typing data at 37
TERMINAL command 26

terminal input buffer (see console stack)

testing counters 45
tests, conditional 42
timing information, typed at terminal
token, defined 14
tokens
blank 15
concatenating 28
creation of 14
placing in a console stack 26,47
punching 24
special (&¢$ and &*) 23
typing at a terminal 27,37
transferring comtrol 22,25
TYPE command 9,39
type of data, determining 28
typeout flag, checking 40
typing
data 19,27,37
messages, control of 19
of blank lines 25
records from a CMS file 37
suppressed 40
timing information 26
tokens 27
variable data 38
typing a CMS file 39
typing a single line of tokenms 37
typing data at a terminal 37
typing more than one line of data 38

26

1}
user-defined variables 32
use of 22,61
using counters for loop control 44
using the CMS BXEC facilities 10

v

variables
numeric 30
reading from a terminal 24,36
special EXEC 30
§GLOBAL 30
&§GLOBALn 30
&INDRBX 31
ELINENUM 31
&n 30
&READFLAG 31

nemfrnAnD 1
[DiIVVUVD 3'

ETYPEFLAG 31

numeric 30
subscripted, simulating 15
substitution for 15
typing contents of 37
used in EXEC statements 12
user-defined 32

W
word, control, defined 14
writing an EXEC procedure 8

4
zeros, leading, removal of 13

Index

71

Trim Along This Line

6000000000000 000s0s00ccosttssIssO00sn 0

eetevsssccse

sessssen

“sesencscessssesersesosssotsesso e

®ecesccssssssesssecssssnsse

sesee

READER’S COMMENTS

Title: IBM Virtual Machine Facility/370: Order No. GC20-1812-1
EXEC User’s Guide

Please check or fill in the items; adding explanations/comments in the space provided.

Which of the following terms best describes your job?

O Customer Engineer O Manager O Programmer O Systems Analyst
O Engineer 0 Mathematician O Sales Representative [0 Systems Engineer
O Insiructor J Operator {J Student/Trainee O Other (expiain beiow)

How did you use this publication?
0O Introductory text O Reference manual O Student/ O Instructor text
O Other (explain)

Did you find the material easy to read and understand? O Yes O No (explain below)
Did you find the material organized for convenient use? I Yes 03 No (explain below)

Specific criticisms (explain below)
Clarifications on pages

Additions on pages
Deletions on pages
Errors on pages

Explanations and other comments:

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC20-1812-1

YOUR COMMENTS PLEASE . ..

This manual is one of a series which serves as a reference source for
systems analysts, programmers, and operators of IBM systems. Your
comments on the back of this form will be carefully reviewed by the
persons responsible for writing and publishing this material. All com-
ments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in
utilizing your IBM system should be directed to your IBM representative
or to the IBM sales office serving your locality.

FOLD ---------- FOLD
FIRST CLASS
PERMIT NO. 172
BURLINGTON, MASS.
]
BUSINESS REPLY MAIL I
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A, e
]
POSTAGE WILL BE PAID BY I
L]
IBM CORPORATION I
VM/370 PUBLICATIONS —
24 NEW ENGLAND EXECUTIVE PARK —-..l
BURLINGTON, MASS. 01803 —
]
|
]
T
.......... L

TSI

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International)

aulT siyt Buojy wiay

aping s,19sn J3X3 OLS/M!IM"I”W HIA NGl

"V'S'N U1 parung

AhZ181-020D

GC20-1812-1

by

ﬁé
0

(3¢,

/3]

o
7

_8pInY 5,850 93X 3 QLS

wSnupRuLd

1-ZL8L-0229

m B .i‘

1133 Westchester tyenu , W
(US.’A‘MWI” L
IBM World TMe corpontion

821 United Nations Plaza, Mcw York, New Yoﬂt 10017
(Inhmatloml) ‘ ‘ |

ite Plains, New York 10604

	01
	02
	03
	04a
	04b
	04c
	06
	07
	08
	09
	10
	11
	12.0
	12.1
	13
	14.0
	14.1
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46.0
	46.1
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56.0
	56.1
	56.2
	57
	58
	59
	60
	61
	62
	63
	64
	65
	67
	68
	69
	70
	71
	replyA
	replyB
	xBack

