
Systems

GC20-1803-1

IBM Virtual Machine
Facility /370:
BASIC Language
Reference Manual
Release 1 PLC 5

This publication describes the BASIC language facility of
the I BM Virtual Machine Facility/370 (VM/370). It
includes a precise description of the language as well as a
guide to creating and running BASIC programs under the
Conversational Monitor System (CMS) of VM/370.

This edition is a major revision of,and makes obsolete, GC20-1803-0. The
document has been reorganized to allow easy access to CP/CMS usage
information, BASIC language structure and elements, and reference
information. Changes herein also reflect changes and enhancements of the
BASIC language processor.

This edition corresponds to Release 1 PLC 5 (Program Level Change) of
the IBM Virtual Machine Pacility/370 and to all subsequent modifications
until otherwis(~ indicated in new editions or Technical Newsletters.

Changes are periodically made to the specifications herein; before using
this publication in connection with the operation of IBM system, refer
to the 11111 .§1f!!~l!!L36Q ~.!!£ .§l§!!il.!!!L .. UQ lli.!!.!ig,g.u.E!!Y, GTl22-6822, and the
Ill! .§l§!~l!!Lll~! Ag!~.!!£~£ Fu.!!£!i2.!! lli~.!i2g~2.E!!Y' GC20-1763, for the
editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If. the form has been removed, address comments to: IBM
Corporation, VM/370 Publications, 24 New England Executive Park,
Burlington, Massachusetts 01803. Comments become the property of IBM.

(c) Copyright International Business Machines Corporation 1972, 1973

This manual serves as a reference guide to the BASIC language facility
of VM/370. This BASIC language facility consists of the CALL-OS BASIC
(Version 1.2) Compiler and Execution Package and, therefore, has
complete programming language compatability with CALL-OS BASIC Version
1.2. The material is organized to provide a concise definition and
syntactical reference to the various elements of the language. Examples
are provided.

Major subjects include program structure, elements of statements, input
and output, Frogram statements, and the CMS BASIC command. Program
limits and error messages are covered in the appendixes.

Although some operating information is included, this book is not a
complete descriFtion of the CMS facilities which will be used by the
BASIC programmers. It contains general information needed when writing a
VM/370 BASIC program.

Because the VM/370 BASIC user enters his proqrams and data using the CMS
environment, three manuals are required for effective use of VM/370
BASIC:

l]~ !lI!yg!]~£hin§ Ig£i!i!~L]lQ~]]ll ~Yl~§' Order No. GC20-1805

IBM Virtual ~g£hi~ 19£i!i1YL11~11§I~lng!]§§!!§ gYig~, Order No.
GC20-1810---

In this publication, the term "3330 series" is used in reference to both
the IBM 3330 Models 1 and 2 Disk storage Facility and the IBM 3333 Model
1 Disk Storage and Control.

Information in this publication (if any) about the CMS Batch facility or
for the IBM system/370 Models 165 II and 168 is for planning purposes
only.

Terminals which are equivalent to those explicitly supported may also
function satisfactorily. The customer is responsible for establishing
equivalency. IBM assumes no responsibility for the impact that any
changes to IBM-supplied products or programs may have on such terminals.

Addition of the following VM/370 Program­
ming Functions

Specification Change

• The Virtual =Real Performance Option

• The Dedicated Channel Performance
Option

• The Virtual and Real Channel-to-Channel
Adapter

Support for the following devices

Specification Change

• The IBM 3211 Printer

• The IBM 3410/3411 Magnetic Tape
Subsystem

• The IBM 3330 Disk Storage Model 2

• The IBM System/370 Models 155 II
and 158

Availability of Programs that Execute

under CMS

New Program

The IBM Program Product PL/I Optimizing
Compiler is now available.

Miscellaneous Changes

Maintenance: Documentation Only

Additions, deletions, and corrections too
numerous to list are included in this revision.
Generally, the document has been rewritten
and reorganized to allow easy access to
CP/CMS usage information, BASIC language
structure and elements, and reference
information.

Summary of Amendments
for GC20-1803-1

VM/370 Release 1 PLC 5

CONTENTS

INTRODUCTION ••• 7
Syntax Conventions ••• 7

PART 1: PROGRAMMING IN VM/370 BASIC •••••••••••••••••••••••••••••••••• 9

USING BASIC UNDER VM/370 CMS ••• 11

CP and CMS for BASIC Users •• 11
CMS Files ••• 12
The eMS Editor •• 12
The BASIC Command ••• 12
A Sample Terminal Session ••• 13
References •• 14

PART 2: THE VM/370 PROGRAM STRUCTURE AND LANGUAGE ELEMENTS ••••••••••• 15

VM/370 BASIC PROGRAM STRUCTURE ••••••••••••••••••••••••••••••••••••••• 17
The EAST.C Statement Line ••• 17

The Line Number Field ••• 17
The Statement Field ••• 18
Use of Blanks andCommas •• 18
The BASIC Print Line •• 18
Executable and Non-Executable Statements •••••••••••••••••••••••••• 18

BASIC LANGUAGE ELEMENTS •• 19
VM/370 BASIC Character Set ••• 19
Comments ••• 19
Symbols Used in EASIC •• 19

Writing Constants in BASIC •• 20
Writing Variables in BASIC •• 24
Matrix Manipulation ••• 26

Functions in EAsIe ••• 28
Intrinsic Functions ••• 28
User-Defined Functions •• 29
Matrix Functions •• 30

VM/370 BASIC Operators ••• 30
Unary Operators •• 30
Arithmetic O~erators ••• 30
Relational Operators ••• 30
Writing Expressions in VM/370 EASIC •••••••••••••••••••••••••••••••••• 30
BASIC Input and output ••• 31

Internal specification •• 32
Terminal Input/Output ••• 32
Disk Input/Output ••• 34
rile Allocation ••• 36
Data File Storage ••• 37

Program Chaining ••• 37

PART 3: REFERENCE INFORMATION •• 39

FUNCTIONAL CLASSIFICATION OF BASIC STATEMENTS •••••••••••••••••••••••• 40

SUMMARY OF BASIC STATEMENTS •• 42
CHAIN Statement •• 42
CLOSE Statement •• 43
DATA Statement ••• 43
DEF Statement •• 44
DIM Statement •• 45
END statement •••••••••••••••••.••••••••••••••••••••••••••••••••••••••• 45

FOR Statement •••••••• ~ ••• ~ ••• 46
GET Statement~ ••••••••••• ~ ••••••••••••••••••••••••••••• ~ ••••••••••••• 47
GOSUB Statement •.•• 48
GOTe statement ••• 49

The Simple GOTO ••• 49
The Computed GOTO ••• 49

IF Statement ••• 50
IMAGE Statement •• 51
INPUT Statement •• 52
LET Statement._ •• 53
Matrix Addition Format ••• 54
Matrix Assignment Statement Format ••••••••••••••••••••••••••••••••••• 55
Matrix CON]~unction •••••••••••••••••••••• Q •••••••••••••••••••••• ••••• 55
MAT GET Statement •• 56
Matrix IDN Function •••••••••••••••••••••• " ••••••••••••••••••••••••••• 57
MAT INPUT Statement •• 57
Matrix InveJ:sion Function •• 58
Matrix Multiplication Format ••• 59
Matrix Multiplication (scalar) Format •••••••••••••••••••••••••••••••• 59
MAT FRINT Statement •• 60
MAT PRINT USING Statement •••••••••••••••• Q ••••••••••••••••••••••••••• 60
MAT PUT Statement •• 61
MAT READ Statement ••• 62
Matrix SubtI:action Format •••••••••••••••• e •••••••••••••••• ~ •••••••••• 62
Matrix Transposition Function •••••••••••• o ••••••••••••••••••••••••••• 63
Matrix ZER Function •• 63
NEXT Statement ••••••••••••••••••••••••••• o ••••••••••••••••••••••••••• 64
OPEN Statement ••• 65
PAUSE statement •• 66
PRINT statement •••••••••••••••••••••••••• G ••••••••••••••••••••••••••• 66

Print Lines and Print Fields •••••••••••••••••••••••••••••••••••••• 67
Print Zones ••• 67
Rules for Using Print Fields and Print Zones •••••••••••••••••••••• 67

PRINT USING Statement •• 69
PUT Statement •• 70
READ Statement ••• 71
REM Statement ••••••••••••••••••••••••••••••••••••••• ~ •••••••••••••••• 72
RESET statement •• 72
RESTORE Statement •• 73
RETURN Statement ••• 73
STOP StatemE!nt ••• 74
USE Statement •••••••••••••••..•• 75

APPENDIX A: VM/370 BASIC PROGRAM LIMITS ••••••••••••••••••••••••••••• 77
User Program Limits ••• 77
Intrinsic Function Limits" •• 78

APPENDIX B: VM/370 BASIC ERROR MESSAGES ••••••••••••••••••••••••••••• 79
Compilation Error Messages •• 82
Execution Error Messages ... 87

APPENDIX C:
Railroad

VM/370 BASIC SAMPLE PROGRAM ••••••••••••••••••••••••••••• 91
Tariff Calculation •••••••••••••••••••• ~ •••••••••••••••••• 91

Statement of Problem ... 91
Program Variables •••••••• " •• 92
Rate Base Table and Applicable Rates •••••••••••••••••••••••••••••• 93
Test Data •••••••••••••••• u •• 95
Program Flowchart •••••••••••••••••••••••••••••••••••••• ~ •••••••••• 96
Program Listing •••••••••• u •• 97
Program output ••••••••••• ~ •••••••••••••••••••••••••••••••••••• •••• 98
Index •••••••••••••••••••• Q •• 101

The BASIC language is a high level programming language designed to be
used in an interactive environment. BASIC is, as its name implies, a
language that can be learned quickly and used conveniently in both
scientific and commercial applications.

BASIC provides facilities for evaluation of ordinary algebraic
expressions containing various types of constants and variables, a
variety of input/output methods, and many intrinsic (built-in)
functions. It is powerful problem-solving tool when used under the IBM
Virtual Machine Facility/370 (VM/370) Conversational Monitor System
(CMS) •

For ease of use, this manual is divided in three parts. Part 1 tells how
to use the EASIC language in the VM/370 CMS environment. Part 2
describes the elements of the language, that is, the structure and
facilities of the language. Part 3 is reference information: A chart
summary of all the statements of the language and their uses, and an
alphabetical listing of all of the statements of the language with their
formats and usage rules.

The following conventions are used in this manual to describe the
formats of VM/370 BASIC statements:

• Uppercase letters, digits, and special characters must appear exactly
as shown.

• Information in lowercase letters must be supplied by the user.

• Information contained within braces { } represents alternatives, one
of which must be chosen.

• Information contained within brackets [] represents an option that
the user can omit.

•

•

An ellipsis (a series of three periods) indicates that
number of items may be included in a list. A list whose
variable is specified by t he format x (1), x (2), x (3) ,
indicating that from 1 to n entries may appear in the list.

a variable
length is

x (n)

The appearance of one or more
items, or their replacements,
order.

items in sequence indicates that the
should also appear in the specified

• A vertical bar I indicates that a choice must be made between the
item to the left of the bar and the item to the right of the bar.

Thus , the format description

MAT GET (u:lf,]m (d (,d])],m [Cd (,d])], ••• ,m (d [,d])]
1 11 12 2 21 22 n nl n2

indicates that:

Introduction 7

Q MAT GET, the colon or comma, and succeeding commas and parentheses
must appear as needed;

Q The user may enter a value for the variable represented by U QI f,
and for one or more m(d,d) specifications;

Q Either a U or f value (but not both) may be specified, and neither is
required~

• Use of (d,d) with each m specification, and of the second d within
each (d,d) is also optional.

8 VM/370 BASIC Language Reference Manual

Part 1 of this manual describes the VM/370 environment in which BASIC
programs may be coded.

This part is meant for use by those programmers who a~e not familiar
with the interactive terminal environment provided V1a CMS. It is,
therefore, brief and contains only enough information to use the VM/370
BASIC language processor. All of CMS facilities are described in the IBM
!!~!~g! ~g£h!n~ Ig£il!1~Ll1~1 £Q~!g~g 19~~y~~~ y§~~~§ ~~ig~, Order No:
GC20-1804.

programming in VM/370 BASIC 9

The VM/370 BASIC language processor runs under the VM/370 Control
Program (CP) and the Conversational Monitor system (CMS). CP is the
control program that controls the VM/370 system resources. CMS is an
operating system that provides a comprehensive set of conversational
facilities to a single user, among them the VM/370 BASIC language
processor.

CP AND CMS FOR BASIC USERS

The VM/370 BASIC programmer uses the facilities of both CP and CMS when
he enters his BASIC program.

The CP facilities are accessed by issuing the LOGIN command. This
command connects the terminal to VM/370, which permits access to CMS.
It takes the form:

r--------------- ------,
I
I login userid
I

I
I
I

L--_ ----------_. --------~

where userid is the user identification code that identifies the user
to-the VM/370 system.

If the userid is recognized, the system responds by asking the user for
his password.

After the userid and password are entered correctly, the user can access
CMS by means of the IPL command, which takes the form:

r--- -----,
I
I ipl sysname
I

I
I
I

I

------------------------~

where 2Y2ng~~ is the name of some VM/370 operating
case, the user types 'ipl ems', which loads
machine.

system. In this
his CMS virtual

Once in the CMS environment, the user can begin coding his BASIC program
using the facilities of the CMS EDIT command. When the program is
complete, it can be executed using the CMS BASIC command.

The sample terminal session at the end of this section shows how some of
the CP and CMS commands are used.

Using BASIC Under VM/370 CMS 11

eMS FILES

In VM/370, a collection of data
creating and naming files can be
!t!!£.b!!!~ li\~~!1!:!:IL11Q: £.2.!!!.!!!i\1!9
GC20-1804.

is called a file. The rules for
found in the publication IBM Virtual

1~1!g~i\g~ M§§~~2 gy!g~, -order--io:

Files writt(~n to be executed by the BASIC language processor must have a
filetype of BASIC. These BASIC files are created using the CMS Editor,
that is, written in CMS EDIT mode.

THE CMS EDI~roR

The CMS Editor provides the environment required for writing BASIC
programs. To use the EDIT command to write a BASIC program, the user
can type:

,.----------------..---------------..------------------,
edit filename basic

Il ________________________________ _

where !!!~n~!~ is the name of the program or data file being created.

All of the EDIT subcommands are available for creation and maintenance
of files (for example, INPUT, CHANGE, IMAGE, TYPE, SAVE, and QUIT).
Other EDIT subcommands are also available for use; see the publication
!lH~ Y!~.!:'!!i\! !1i\£l!!!!~ 1i\£!!!:tI.Ll1Q: ~12!.I Qy!g~ ,Or d erN 0 • GC 2 0-1 805, for
a complete description of the EDIT facilities.

When the BASIC program
subcommand FILE before
entered as follows:

file

is complete, it must be saved using the EDIT
it can be executed. The FILE subcommand is

------------------- ________________ ,---J

FILE causes the program or data file to be stored on the user's primary
disk,.

THE BASIC COMMAND

Once the program has been filed, it can be executed using the eMS BASIC
command. The BASIC command invokes the BASIC language processor and
takes the form:

12 VM/310 BASIC Language Reference Manual

r--
I
I basic filename [(LONG)]
I
I

where !!lg~A!g specifies the name of the file to be compiled and
executed. The file must have a filetype of BASIC and contain
fixed-length records of up to 256 characters.

J1Q!§l is the option for long-form precision numbers. If not
specified, short form is assumed.

A SAMPLE TERMINAL SESSION

The following example represents a terminal session for coding a BASIC
program using the facilities of VM/370.

ihen the user switches on his terminal and hits the Attention key,
VM/370 responds and the terminal session begins.

vm/370 online
(press attention)
login user1
ENTER PASSWORD:

READY MESSAGE

ipl ClllS

CMS 02/02/73 FRI
edit prog1 basic
NEW FILE:
EDIT:
input
INPUT:

10

60

BASIC
PROGRAM

(press return)
EDIT:
file
R;

08.12.38

Using BASIC Under VM/370 CMS 13

basic prog1

R;

PROGRAI1
OUTPUT

REFERENCES

The BASIC programmer is encouraged to reference the following two
publications to learn more about the functional capabilities of VM/370.
The complete EDIT facility is described in !!Ul .Y:.!!:tu~.! l!~.£.h.!.!!~
J::~£i.!i!.ILllJ~: l!~!1 Guide, Order No. GC20-1805. All other commands are
explained in the !~ii--!.!.I!!!~!_l!2£.hi~ £:2£.!.!i!.IL1121 ~.Q.!!.!!i!!l2 1i!.n.9!!i!.9~
Q§~I!§ §!!.!2!, Order No. GC20-1804. Some of the commands most frequently
used by the BASIC programmer are listed below:

ACCESS
EDIT
ERASE
LISTFILE
LINK
MOVEFILE
PRINT
PUNCH
QUERY
READCARD
RELEASE
RENAME
SET
TYPE

Sets up a device to write and/or read
Enters and modifies a file
Deletes a file from a read/write disk
Types file statistics to the terminal
Attaches a device to a virtual machine
Moves files from one device to another
Writes a file to the printer
Punches a file to the card punch
Obtains data about system characteristics
Reads a file from the virtual card reader
Frees up a device from the current read/write configuration
Changes the name of a file
Establishes system characteristics
Lists a file at the terminal

14 VM/370 BASIC Language Reference Manual

This part of the manual is in two sections: a description of the
structure of a VM/370 BASIC program and a description of the BASIC
language elements.

Using BASIC Under VM/370 CMS 15

This section describes the way in which the BASIC program is coded under
VM/370 CMS.

The procedure for coding a program is begun by using the CMS EDIT
command to create a new file. Once the file is created, the coding can
begin by typing in statement lines at the terminal.

Structurally, the statement line is coded in two fields. Logically, the
statement can be either executable or non-executable.

The BASIC statement line is structured in two fields:
field and the statement field, as shown below:

.--- -------------------....-----_._---_ .
I
I 10
I
L-

Line Number
Pield

LET X=2*Y + 7/Z

Statement
Pield

THE LINE NUMBER FIELD

the line number

Each BASIC program statement must be preceded by a line number. If the
program is being coded in the EDIT INPUT mode, the line numbers are
supplied automatically.

Line numbers may be entered in any numeric sequence; the processor
sequences all the statements before it executes a program.

The line numbers may be up to five characters long. The line number
may not contain embedded blanks.

Throughout this text, the term line nYm~~! is used to identify the
number preceding each statement. ThIs term is synonymous with 2i~i~~~n1
nY~B~! as used in other discussions of the BASIC language.

In all of the discussions of statements in this publication, the line
number is understood as a part of the line and is therefore not used in
the format specification.

BASIC Program Structure 17

THE STATEMENT FIELD

The statemc~nt field contains the actual BASIC statement being entered.

This field must be separated from the line number field by a blank. If
the program is in the EDIT INPUT mode, the line number and the required
space are printed automatically.

The statemE~nt field is terminated when the user hits the return key or
when he USHS the CMS logical line end symbol (the commercial pound sign
') .

USE OF BLANKS AND COMMAS

Blanks are v in general, ignored by the BASIC language processor. They
are inserted mainly to improve program readability.

However, in certain cases blanks are required. Elanks are required to
separate the line number and the EASIC statement. Also, in a statement
that requires operands, blanks must be entered to separate the operation
from the operands.

Commas are used to separate operands.

THE BASIC SOUBCE STATEMENT LINE

The source statement line is
statement. A source statement
hits the return key or when he
(the commercial pound sign i).

a line that contains a complete BASIC
line is terminated when the programmer
enters the CMS logical line end symbol

There is no means for continuing a source statement line in BASIC.

A SOQrce statement line may contain only one statement.

EXECUTABLE AND NON-EXECUTABLE STATEMENTS

Logically, BASIC statements can be either executable or non-executable.
An executable statement specifies a program action, for example X=5. A
non-executa.ble statement provides information necessary for program
execution, for example DATA 1, 2.5, 6E-7.

Executable and non-executable statements may be mixed.

Transfer of control to a non-executable statement causes control to pass
to the next executable statement.

18 VM/370 BASIC Language Reference Manual

This section includes descriptions of the BASIC language elements. The
.ajor topics are: symbols used in the language, the functions defined as
part of the language, how to write expressions in BASIC, Input/Output,
and program chaining.

A BASIC program is written for use under the CMS subsystem of VM/370
using the following character set:

1. Letters: ABC D E F G H I J K L M N 0 p Q R STU V W X y Z ~ • $

2. Digits: 0 1 2 3 4 5 6 7 8 9

3. Special characters:

Single quote
" Double quote

< tess than
<= Less than or equal to
= Equal to
=> Greater than or equal to
> Greater than
<> Not equal to
& Ampersand
+ plus

Minus

* Asterisk (Multiplication)
/ Right oblique (Slash)

(Division)
** Exponentiation
(Left parenthesis
) Right parenthesis
! Exclamation mark

Comma
Period
Semicolon
Colon
Blank
Vertical bar

Any valid terminal character not listed is a non-BASIC character and may
be used only where specifically noted.

Comments may be coded anywhere in a BASIC program using the REM
statement, for example:

10 REM THIS IS AN EXAMPLE STAT!MENT

If execution is directed to the line number of a REM statement, control
passes to the next statement in sequence.

There are two types of symbols in BASIC: constants and variables. A
constant is a symbol whose value does not change during program
execution. A variable is a symbol whose value may change during program
execution.

BASIC Language Elements 19

This section describes the various types of BASIC constants and
variables.

WRITING CONSTANTS IN BASIC

There are three types of constants in VM/370 BASIC: numeric constants,
internal constants, and literal constants.

There are three types of numeric constants: integer, fixed-point, and
floating-point. Also, there are two basic forms 1n which formatted
numeric constants can be entered in a program: short-form and long-form.

Decimal numbers are printed in either fixed-point form (F format) or
floating-point form (E format).

§~QEI=IQ~~ lNl]g~~ M~~~~~~: An integer format (I format) is used to
print inteqer values. Up to eight decimal digits may be printed for each
short-form integer whose absolute value is less than 16777216. For
example:

17
203167
5
9993456

SHORT-FORM INTEGER NUMBERS: An integer format (I format) is used to
print integer values. Up to eight decimal digits may be printed for each
short-form integer whose absolute value is less than 16777216. For
example:

1.2076
+7833Ln
-. 003L~24

SHORT-FORM 11~Jl1]g=IQ!]I]y~]]~~: The short-form floating-point format
fE-format) is used to specify numbers whose magnitude is less than 10- 6

or greater than 10 7 • The number takes the form:

[±]d.ddddE±ee

where ~ specifies a digit
~ specifies an exponent

E Format
- 1 :~i0834i+ 0 2
5.43311E-05
2.17787E+00
-6.72136E-02
9.68E-07

F Format
=1'70:834
+.000054
+2.17787
-.067214

.000000

!2.Q£!!!~!
--171

+0
+2
+0
+0

20 VM/370 BASIC Language Reference Manual

Equivalent
Number

=170:834--
+.000054331
+2.17787
-.0672136
+.000000968

If the exponerrtial notation (E format) is used, the value of the
constant is equal to the number on the left of the E multiplied by 10
r.aised to the power of the number following the E. The mdgnituue of a
numeric constant must be less than 1E+75 and greater than 1E-78.

LONG-FORM NUMEERS: An I format is used to print an integer value up to
1~-~I~I~i I~-j;~~th whose absolute value is-les5 th~n 10 15 , using either
the PRINT or the PRINT USING statement.

Decimal numbers written in F format are used to print decimal values of
up to 15 digits with decimal point. F format long-form numbers may be
printed using only the PRINT USING or MAT PRINT USING statement.

Decimal numbers written in E format are printed using either the PRINT,
PRINT USING, or MAT PRINT USING statement.

The PRINT statement is used to print a value with a sign, a decimal
point, up to ten decimal digits, the letter E and a signed exponent.
With the PRINT USING statement, a value having a sign, a decimal point,
up to 15 decimal digits, an E, and a siqned exponent can be printed.

R~!BI 1~~~!I: The print format that applies when a PRINT statement is
used depends on the value to be printed. I, F, or E format will be
selected as follows.

, -,
I BASIC (Short-Form) I BASICL (Long-Form) I

---I 1---------------1
I forma t I x an integer, I x an integer, I

I I Ixl < 16777216 I Ixl < 1E15 I
1--------1 I ---I
1 F format I x noninteger, I none I
1 I. 1 ~ 1 x 1 < 1 E6 I I
1 1----------------1 I
1 E format I other numeric values I other numeric values 1

.J

Alternatively, the user may enter PRINT USING or MAT PRINT USING
statements to format print lines.

ADDITIONAL CONSIDERATIONS: It is not possible to exactly represent all
io~ri~e~er ~ecImaj-~umbers in floating-point form. VM/370 BASIC uses a
"truncation-in/rounding-out" algorithm for decimal/floating-point
conversion. That is, when an input value is converted to floating-point
form, excess fractional digits are dropped so that the value to be
stored fits in either one word or two words (depending on whether
short-form or long-form arithmetic is to be used).

When the floating-point number is reconverted to decimal for output, it
is rounded up, to compensate for any fractional value discarded earlier.

For most
problems.

applications, decimal/floating-point conversion will cause no
However, the difference between decimal numbers and their

EASIC Language Elements 21

floating-point approximations as accumulated during a
calulations may be significant.

This effect can also be observed when using the INT function.

series of

The user can provide for calculation differences by any of several
methods. For example, he can:

1. Try running his program in BASICL to obtain greater precision.

2. Force rounding on input by adding a very small decimal fraction to
each input value.

3. Use multiplication to scale all numbers to integers prior to
calculation and then divide to position the decimal point for output.

Assume that a VM/370 BASIC program has been written to accept a decimal
value as input from the terminal and add that number to itself
repetitively. Such a program is shown below.

type test basic
10 INPUT A
20 FOR I=1T011
30 B=B+A
40 NEXT I
50 PRINT B
60 END

Now assume that the decimal fraction.3 is provided as input. If the
program is (~xecuted using short-form floating-point arithmetic, results
are as shown below.

basic test

1.3
3.29999

R;

To avoid this truncation error, any of the approaches described above
can be used, as shown by the following examples.

(1) T1:y running the program in long--form precisicn

basic test (long)

1 c' 3
~I. 300000000E+00

R· t

(2) Force rounding on input

basic test

1.300001
3.3

R· ,

22 VM/370 BASIC Language Reference Manual

(3) Scale numbers to integers for calculation (in this case, by
modifying program statements before running the program)

15 A=10*A

50 PRINT B/10

basic test

1.3
3.3

R;

Three internal constants are provided in VM/370 BASIC. They represent
Pi, §, and the square root of 2. The names of the internal constants
may be used in calculations where the values of the constants are
needed. They are called SPI, SE, and SSQR2. The values inserted by the
system are:

r
1 Name 1
1--------
1 SPI I
I SE I
I SSQR2 I
'--------
For example:

Short-form Value

3.141593
2.718282
1.414214

10 LET X=SPI*Y(2)
20 LET R=SE+4*Z**3
30 LET Y=SSQR2*C**4

--------------------,
Long-form Value I

--------------------1
3.141592653589793 1
2.718281828459045 1
1.414213562373095 1

--------------------~

A literal constant is a character string enclosed by a pair of single or
double quotation marks. The two general forms of a literal constant
are:

"[c •••]"

'[c •••]'

where £ is any character.

A single quote may appear in a character string bounded by double
quotes, and a double quote may appear in a character string bounded by
single quotes. However, when a character string contains the boundary
character, it must be identified by two consecutive boundary characters.

The following examples illustrate how character strings
represented as literal strings:

may be

BASIC Language Elements 23

~h~~~£!~~_§!Iing
ABCD
ABC'D
ABC"D

WRITING VARIABLES IN BASIC

1!!~~~1_§!~!l!g
"ABCD" or 'ABCD'
"ABC'D" or 'ABC"D'
"ABC""D" or 'ABC"D'

A variable is a symbol whose value may change during the execution of a
program. In BASIC, there are two general types of variables: simple
variables and array variables.

There are two types of simple variables: simple numeric variables and
simple alphameric variables, as explained below.

~J~R1] ~Q~]Bl£ !]B!!~1~: A simple numeric variable is named by a letter
(or a character from the extended alphabet) or a letter followed by a
digit. Examples are:

A, B1, W, #4, $9

A simple numeric variable can be assigned only a numeric value; the
initial value of all simple numeric variables is zero.

SIMPLE !1gB!~!]1£ 1]EJ!]1~: A simple alphameric variable is named by a
j;ii;~ followed by the character $. Examples are:

A$, B$, X$

A simple alphameric variable can contain only an 18-character literal
value; the initial value of all simple alphameric variables is 18 blank
characters.

An array is an ordered set of data members which may be one-dimensional
or two-dimensional.

There are two types of arrays in BASIC: alphameric arrays and matrixes
(also called numeric arrays).

Arrays are named by means of array variables. Alphameric
named with a single letter followed by a $. Matrixes are
single letters.

arrays are
named using

REFERENCING ARRAY MEMBERS: An array member is referenced using a
subscrI'pt-ar:r ay-na m e -Iii-the f' or m :

24 VM/370 BASIC Language Reference Manual

Arrays may be defined explicitly in the DIM statement or implicitly by
their appearance in a program. See the Reference Information Part of
this manual for rules on how to use the DIM statement.

An array is implicitly declared by the first reference to one of its
members (for exception, see MAT instructions), if the specified array
has previously not been defined by a DIM statement. The array is
declared to have one dimension (10) when a member is referenced by an
array variable with one subscript. The array is declared to have two
dimensions (10,10) when a member is referenced by an array variable with
two subscripts.

Array dimensions' and referencing start at one. That is, an array having
one dimension (n) has n members, and an array having two dimensions
(m,n) has! times n members, where ~ specifies the number of rows and D,
the number of columns.

The maximum storage capacity for arrays. is 28,668 bytes. The maximum
number of members in various types of arrays is shown below.

-,
1

Short-Form Long-Form Alphameric I
I

---'- ------ I
Number of bytes 4 8 18 I
per array member I

·-1
Maximum number of 7167 3583 1592 I
array melllbers I

.I

MATRIX MANIPULATION

A matrix is a system of values arranged in a one-dimensional or
two-dimensional numeric array.

The limits elf a matrix must be §.!.Eli.s:i!11 defined by a DIM statement, or
!!~li£!!!I defined by its appearance in al program, before the matrix is
used in any MAT operations. A matrix may then be redimensioned by
appending the new dimension (enclosed in parentheses) or dimensions
(enclosed in parentheses and separated by a comma) to any of the
following matrix statements:

Matrix CON function

Matrix ION function

Matrix ZER function

MAT GET

MAT READ

MAT INPUT

When a matrix is two-dimensional, the first dimension defines the number
of rows, and the second dimension defines the number of columns.

26 VM/370 BASIC Language Reference Manual

A matrix can be implicitly defined in a program by the use of a variable
name followed by two subscripts enclosed in parentheses. Implicitly
defined matrixes cannot be used in MAT operations.

Redimensioning of a matrix is the process of adjusting the contents of a
matrix into a new pattern of rows and columns. For example, adjusting a
5 by 10 matrix into a 2 by 25 matrix.

Redimensioning can neither increase the total size of a matrix nor
change the number of dimensions of the matrix. If redimensioning causes
the number of matrix elements as originally declared to be exceeded,
program execution is terminated.

Currently defined dimensions are observed when executing a
statement. Redimensioning occurs before the operation specified
statement containing the new dimensions.

The following example shows how redimensioning occurs:

120 DIM A(20,40)
130 DIM B(15,100)

250 MAT READ A(10,40)
260 MAT READ E(1,15)

matrix
in the

Matrix A is originally a 20 x 40 matrix. Line 250 redefines the limits
to 10 x 40. Similarly, matrix B is redefined from a 15 x 100 matrix to a
1 x 15 matrix.

The BASIC language allows arithmetic to be performed using matrix
elements as operands. There are five arithmetic operations permitted:
addition, subtraction, multiplication, scalar multiplication, and
assignment.

These operations cause entire matrixes to be added, subtracted, etc. For
format and usage rules for using these operations, see the Reference
Information part of this manual.

BASIC Language Elements 27

There are three types of functions in VM/370 BASIC: intrinsic functions,
user-defined functions, and matrix functions.

INTRINSIC FUNCTIONS

An intrinsic function is one whose meaning is predefined by the language
processor. These functions are provided to . facilitate the writing of
VM/370 BASIC programs. The available functions may be used very much as
a variable would be used. For example, let

A = SIN (23)
Z = LOG (X) + LOG(Y)

The intrinsic functions provided as part of the VM/370 BASIC language
are listed below. The allowable limits for arguments passed to these
functions are given in "Appendix A: VM/370 BASIC Program Limits."

!~.!!£.t!.Ql!
SIN (x)
COS (x)
TAN (x)
COT (x)
SEC (x)
CSC (x)
AS N (x)
ACS (x)
ATN (x)
HSN (x)
HCS (x)
HTN (x)
DEG (x)
R AD (x)
EXP (x)
ABS (x)
LOG (x)
LTW(x)
LGT (x)
SQR(x)
RND (x)

I NT (x)
SGN(X)

DET (A)

Allowable Limits sIne-of-x-radlans
Cosine of x radians
Tangent of x radians
Cotangent of x radians
Secant of x radians
Cosecant of x radians
Angle (in radians) whose sine is x
Angle (in radians) whose cosine is x
Angle (in radians) whose tangent is x
Hyperbolic sine of x radians
Hyperbolic cosine of x radians
Hyperbolic tangent of x radians
Convert x from radians to degrees
Convert x from degrees to radians
Natural exponent of x (~ to the power x)
Absolute value of x (Ixl)
Logarithm of x to the base ~ (In x)
Logarithm of x to the base 2
Logarithm of x to the base 10
positive square root of x
A random number between 0 and 1 (x is a
seed, if specified)
Integral part of x
Sign of x, defined as: SGN(x) = -1 if x < 0

SGN(x) = 0 if x = 0
SGN(x) +1 if x > 0

Determinant of the square matrix A

!Q!!: In VM/370 BASIC, Version 1.1, the RND function required an
argument, but that argument was not used. The same sequence of pseudo
random numbers was always generated. With Version 1.2, if an argument is
present, it is used as a seed for the pseudo random number generator. To
obtain successive numbers in this sequence, thus seeded, RND without an
argument should be specifiede For example:

28 VM/370 BASIC Language Reference Manual

10 A = RND(6)

20 FOR I = 1 to 1000
21 PRINT RND
22 NEXT I

If the first reference td the RND function contains no argument, VM/370
BASIC will supply a random seed. Thus, RND, in Version 1.1 and 1.2, can
be summarized as follows.

r-
Version 1.1

RND (x)

Version 1.2
RND (x)

RND

RND

Returns successive numbers of the one available
sequence of pseudo random numbers.

Returns the first number of a sequence of pseudo
random numbers; the sequence depends on the value
of x.

• When this is first reference to RND during this
running of the program:

Returns the first number of a sequence of pseudo
random numbers; the sequence depends on a system­
supplied seed.

• When this is not first reference to RND during
this running of the program:

Returns successive numbers of the sequence of
random numbers determined ty either means
indicated for Version 1.2, above.

,

This change to the RND function in Version 1.2 is the only instance
necessitating user changes to certain types of instruction sequences in
existing programs. An instruction sequence such as the following may
currently exist in a VM/370 BASIC program:

100 A = INT(10*RND(X»
110 IF A = 0 THEN 100

This program will loop if compiled under VM/370 EASIC Version 1.2 if the
seed., X, is such that A equals zero. The RND function will be reseeded
with the same value of X at each execution of line 100, and A will
always be zero.

USER-DEFINED FUNCTIONS

A user-defined function is one whose meaning is defined by the user via
the DEF statement. The user function is named by the characters FN
followed by a letter. For example, FNA(X) could be defined as:

10 DEF FNA(X)=2+3*X-S*X**2

FNA(X) can then be used in the same manner as an intrinsic function.

Rules for writing and using the DEl statement can be found in the
Reference Information part of this manual.

EASIC Language Elements 29

MATRIX FUNCTIONS

There are five functions in VM/370 BASIC for use in
matrixes. These functions are: CON, IDN, INV, TRN,
information on how to write these functions and use
Reference Information part of this manual.

manipulating
and ZER. For

them, see the

There are three types of operators used in BASIC for the formatien of
expressions: unary, arithmetic, and relational. The lists below show
how these operators are written in VM/370 BASIC.

UNARY OPERATORS

£.!HU:~£!!ii!!:;§ lI~Anin.9
+

ARITHMETIC OPERATORS

£h~!:~£!!ii!!:!i
+

*
/
**

RELATIONAL OPERATORS

£h£!!:£!£!.£!:
<
<=
>
>=

<>

the value of
the negative value of

!1!ii!~nin.9
Addition
subtraction
Multiplication
Di vision
Exponentiation

!1!ii!~!!i!!.9
Less than
Less than or equal
Greater than
Greater than or equal
Equal
Not equal

An expression consists of one or more numeric variables, numeric
constants, internal constants, and functions, together with unary and
arithmetic operators. As noted below, parentheses may be included if
necessary.

Alphameric variables, literal constants, and relational operators are

30 VM/370 BASIC Language Reference Manual

not allowed in expressions.

An expression is evaluated by performing the indicat~d operations as
shown below. When these rules are not definitive, operations are
performed from left to right in the expression.

1. Operations within parentheses are performed before operations not
within parentheses.

2. Operations on the same level are performed in the order in which
they appe~r from left to right in the expression.

The expression A**E**C is evaluated as (A**B)**C -- not as
A** (B**C) •

3. Operations are performed in sequence from the highest level to the
lowest level. The priorities of operation are:

a. operations within parentheses

b. ** (exponentiation)

c. * or /

d. + or -

~xamples of expressions are:

A1
-6.4
SIN (R)
X+Y-Z
X3/ (-6)
-(x-(x**2/2)+x**(y*z»

This last expression corresponds to the algebraic expression:

-(x-(x**2/2)+x**(y*z»

Expressions resulting in an imaginary or mathematically undefined value
are not evaluated. The system generates an error message appropriate to
the function involved and terminates execution (see "Execution Error
Messages" in Appendix B). If an arithmetic exception is involved, the
system continues program execution after taking the specified action
(see "Execution Exception Messages" appearing in "Appendix B: VM/370
BASIC Error Messages").

When using VM/370 EASIC in the solution of problems, it is often
necessary to be able to manipulate large groups of data. Groups of
associated data items are called data files. Methods of entering data
files into a BASIC program are:

1. Internal Specification

2. Terminal Input/Output

3. Disk Input/Output

BASIC Language Elements 31

INTERNAL SPECI'ICATION

The internal specification statements are READ, DATA, and RESTORE. The
use of the DATA statement causes data to be compiled into the program.
The data is stored with the program when the program is saved. The READ
and RESTORE statements utilize the data defined in DATA statements.

The DATA statement is used to create tables of data values in the
program4 For example:

DATA 100.7, -23.2, 438.8, 201.3, 816.9, 537.8

The values listed after the DATA statement can te accessed by the use of
a READ statement.

For example:

10 DATA 100.7, -23.2, 438.8, 2nl.3, 816.9, 537.8
20 READ X
30 READ I,A
40 RESTORE
50 READ Z

Line 20 would cause the first value in the data list (100.7), to be
stored in the variable X. Line 30 would assign the second value in the
list ~23.2) to the variable I and the third value (438.8) to A. The
RESTeRE statement in line 40 sets the list pointer back to the beginning
of the data list. Therefore, line 50 would assign the first value in the
list (100.7) to Z.

DATA statements may appear anywhere in the
statement is executed, the next sequentially
be assi~ned to the variable(s) specified in
will continue until the data list or lists
RESTORE statement is executed.

TERMINAL INPUT/OUTPUT

program. Each time a READ
av~ilable data value will
the READ statement. This

are exhausted, or until a

The statements used for terminal input/output are the INPUT statement
(in two forms) and the PRINT statement (in four forms).

The use of the INPUT statement allows data to be entered from the
terminal while a program is executing. For example:

10 INPU'l' H, W,L

When the line shown above is executed, a question mark (1) will print at
the terminal and the system will pause. The data must be entered into
the program. The values of Hu 'I, and L are entered from the keyboard.
When the carrier return is dE!pressed, the program continues processing,
using the entered values of Hw W, and L.

32 VM/370 BASIC Language Reference Manual

The MAT INPUT statement allows the user to enter data into matrixes
without specifying each element of the matrixes. For example:

20 MAT INPUT A

When the statement shown above is executed, a question mark will be
printed at the terminal, and the system will pause. The data values for
the first row of the matrix A must be entered, separated by commas. Then
the carrier return must be pressed. Two question marks will be printed
at the terminal, requesting values for the next row of A. The user must
then enter values for the second row of A, separated by commas and
terminated by a carrier return.

Printing of question marks and entry of a value by the user are repeated
until values have been entered for all rows of A.

The PRINT statement provides output from the program to the terminal.
For example:

20 PRINT 'THE VALUES OF H, W, AND L ARE'
30 PRINT H, W, L

Line 20 would cause the information enclosed within the quotes to be
printed at the terminal. Then line 30 would cause the current values of
H, W, and L to be printed.

The PRINT USING statement specifies
statement. This allows control of the
example:

20 PRINT USING 100,H

100 :VALUE OF H IS iii

data output using
format of the printed

an IMAGE
line. For

This statement causes the current value of H to be printed, in the
format specified by the IMAGE statement identified by line number 10~.
(For further explanation, refer to the PRINT USING and IMAGE statements
in the Reference Information part of this manual.

The MAT PRINT statement prints the values of a matrix without the need
to specify each element of the matrix.

Consider a three-by-three matrix A with values as follow:

BASIC Language Elements 13

A(1,1) = 11

A(2,1) = 21

A(3,1) = 31

A (1,2) = 12

A (2,2) = 22

A(3,2) = 32

A (1,3) 13

A(2,3) = 23

A(3,3) = 33

The MAT PRINT statement could be used to print the matrix with the
following statement:

50 MAT PRINT A

this would cause the values stored in A to be printed out in row and
col umn ordeI':

11

21

31

12

22

32

13

23

33

The MAT PRINT USING statement specifies printed output of a matrix using
an IMAGE statement. The values of the matrix are printed by row under
format control of the image statement. For example:

20 MAT PRINT USING 100,A

100 :VALUES OF A ARE #* ** **
This statement causes the current values of all members of the matrix A
to be printed by row, in the format specified by the IMAGE statement
identified by line number 100. (See the "MAT PRINT USING Statement" and
"IMAGE Statement" in "Part 3. Reference Information" of this manual for
details.)

DISK INPUT/OUTPUT

A collection of related data items, treated as a unit, is called a file.
There are two types of disk data files in VM/370 BASIC: data files and
program data files.

Data files are files created during execution of BASIC programs. These
files are assigned a filetype of BASDATA by the processor. Data files
have undefined length records of up to 3440 characters.

Data files may be created and accessed with the following program
statements and terminal commands:

34 VM/370 BASIC Language Reference Manual

• GET statement

• PUT statement

• OPEN statement

• CLOSE statement

• RESET statement

The GET statement is used to transmit records from the data file to the
program. The PUT statement transfers data from the program to the data
file. The OPEN statement is used to activate a data file preparatory to
data transmission. The OPEN statement associates a data file reference
number with a named data file; the named data file is referenced by this
number in the GET, PUT, RESET, and CLOSE statements. For example:

10 OPEN 21, 'AFILE', INPUT
12 OPEN 22, 'BFILE', OUTPUT

30 GET 21: V, D, T, X, S, F

40 PUT 22: D, T, F

50 CLOSE 21, 22

Line 10 opens AFIt! as input and assigns it to file number 21. tine 12
opens BFILE as output and assigns it to 22. Line 30 reads six data
values as input. The values are stored in the variables V, D, T, X, S,
andF, respectively. Line 40 writes output consisting of the three data
values from D, T, and F onto file number 22.

A file that has been opened is an active file. A CLOSE statement is used
to deactivate the file. Thus, the CLOSE statement in line 50 of the
above example causes files 21 and 22 to be deactivated. After a file is
closed, it cannot be referenced again until it is reopened.

The opening of a file may be implied in a GET or PUT statement. The
example above could have been written:

30 GET 'AFILB',V,D,T,X,S,F

40 PUT 'EFILE',D,T,F

50 CLOSE 'AFILE','BFILE'

A file can always be referenced by its file name. It can be referenced
by a file number only if it has been opened explicitly.

If a file is closed and then reopened, the file pointer is reset to the
first record in the file. Normally, a file should be left open until all
necessary transmission is completed between the program and the file.

EASIC Language Elements 35

The RESET statement is provided to reset the file pointer to the first
record in the file, as required. Four files may be active at anyone
time (that is, opened but not yet closed).

Program-data files are files created using the VM/370 CMS Editor. Record
format for program-data files is fixed with a record length of 80. The
filetype for program-data files is BASDATA, which must be specified by
the user.

The VM/370 terminal commands, line-entry techniques, and library
facilities used to create source program files are also used to create,
edit, and save prGgram-data files.

File items for program-data files are entered using the following
format:

r
I
I linenum constant 11[, constant2, •••]
I
'-----

where !iD~DY! is the line number of the entry.

------,
I
I
I

---I

constant is a numeric or literal constant being entered in the
program=data file.

A program-data file cannot be used for output; that is, it cannot be
written or modified by a VM/370 BASIC program.

Although a program-data file may be useful in various situations,
execution time and the disk space to store the data may be three times
greater than that required for an equivalent data file written by a
VM/370 BASIC program.

FILE ALLOCATION

Space allocation for data files is performed dynamically as records are
written. The limiting factor is the amount of space available on the
user's disk.

A program may specify a data file to be used with a program via the OPEN
statement. For example:

10 OPEN 4, 'AFILEt, INPUT

This statement would cause the data file AFILE to be attached to the
program as an input file. The file pointer would be set to the first
record in the data file. The file could then be accessed by a GET
statement in the program.

36 VM/370 BASIC Language Reference Manual

DATA FILE STORAGE

Data records are stored sequentially in each data file. The storage
requirements for data items are:

1. Alphameric data items require 18 bytes.

2. Short-form numeric data items require four bytes.

3. Long-form numeric data items require eight bytes.

Each file can contain a combination of alphameric data items, short-form
numeric data items, and long-form numeric data items. Numeric data items
are preceded by two bytes which specify data type (short-form or
long-form) and number of subsequent data items (255 bytes maximum in a
single block). Alphameric data items are preceded by two bytes that
specify data type and a length of 18 bytes.

Data records are stored in disk storage units. Many data records may be
stored in each storage unit. The maximum amount of storage in each
storage unit is 3440 bytes. The maximum number of storage units per file
is 3730.

The VM/370 BASIC user has the ability to chain one program to another
program in his user disk. This ability is provided by the CHAIN
statement, which terminates execution of the current (chaining) program
and initiates execution of a specified (chained) program. The CHAIN
statement may also be used to specify an argument whose value is passed
to the chained program.

The general form of the CHAIN statement is:

nnn CHAIN program-name[,argument]

where nnn is the line number.

E~Qg~~!=n~!§ identifies the chained program.

~~EYm~n~ identifies the value to be passed to the chained
program. (See CHAIN and USE in the Reference Information part of
this manual.)

The length of the value passed to the chained program cannot exceed 16
bytes. It is truncated or blank-filled on the right to 16 bytes when
passed to the chained program.

If a VM/370 BASIC program is to be invoked as a chained program and a
passed value is to be accessed by it, the chained program must contain a
USE statement. The statement may be placed anywhere in the program. Its
general form is:

nn USE parameter

where nn is the line number.

E~~~§1~£ is an alphameric variable. Sixteen bytes of parameter
information (plus two rightmost blanks) will be placed in the

BASIC Language Elements 37

designated alphameric variable before the chained program is
executed.

The general procedure by which the VM/370 BASIC user initiates program
chaining is shown by the following example.

Note that the intermediate READY message, which would normally follow
execution of the chaining program, is suppressed.

Total central processor (CPU) time is accumulated and printed in the
final READY message.

type programa basic

10 PRINT 'CHAIN PROM'
20 A$ = 'PROGRAMA'
JO CHAIN 'PROGRAMB', A$
40 END

Ri T=0.09/0.23 16:54:12

type programb basic

10 PRINT C$; , TO PROGRAMB'
20 USE C$
30 END

R; T=0.06/0~20 16:54:J3

basic programa

CHAIN PROM
PROGRAMA TO PROGRAMB
R; T=0.46/1~14 16:54:49

38 VM/370 BASIC Language Reference Manual

This part of the manual is designed as a reference aid and consists of
two sections: "Functional Classification of BASIC Statements" and
"Summary of BASIC Statements".

The functional classification simply delineates all the statements of
the language, classifying them in functional crder and giving a brief
definition of each statement.

The summary of BASIC statements lists the statements of the language
(including functions and statements specified using operators) and
provides the syntax and rules for coding and using them in Frograms.

Reference Information 39

The charts below functionally group the
BASIC language. A brief definition of
included.

statements that comprise the
the statement usage is also

Assignment statements
I --------.---------.----------------------,

I LET I Assigns values to variables. I
I DEF I Defines user-function formats. I L-_______ . _____________ . ________ . ______________________ -'

Internal Specification Statements
r
I READ
I
I
I DATA
I
I RESTORE
I

-------------------,
Reads variables into a data table where they I

are associated with values defined in the I
DATA statement. I

Constructs a data table containing values to I
be associated with READ variables. I

Resets the data table pointer to the first I
item in the table. I L-_____________________ . ------_._--'

Terminal IIO statements
r---------- .--.----------------------,
I INPUT Allows programmer to enter data into a pr~. I
I gram interactively. I
I PRINT Prints specified print fields at the user's I
I terminal. I
I PRINT USING Prints a formatted print line defined in the I
I user's program. I
I IMAGE Allows user to edit dynamically computed I
I values into print lines. I L-__________________ . ___________ . _______________________ -'

Array Declaration Statements
r--------- ---------------------------,
I DIM I Allocates storage for named arrays. I L-___ -'

Disk IIO statements

OPEN
GET

PUT
CLOSE
RESET

-----------------------------------,
Opens a data file for input or output. I
Accesses a data file and associates the file I
data with variables. I

Outputs data to a specified data file. I
Closes a data file for input or output. I
Resets a data file to the beginning of the I
file. I L-_______ _ --'

Program Chaining Statements
r-----------.---.---- -----------------------------,
I CHAIN Chains one program to another program. I
I USE Enables a variable to be passed to a chained I
I program. I
L-_________ ~

40 VM/370 BASIC Language Manual

Loop statements

FOR
NEXT

Branch statements

GOTO

IF
GOSUB
RETURN

atrix statements

Matrix Addition
Matrix Assignment

Matrix CON Function
Matrix GET
Matrix IDN Punction
Matrix INPUT

Matrix Inversion
Matrix Multiplication

Matrix Multiplication
(Scalar)

Matrix PRINT
Matrix PRINT USING

Matrix PUT
Matrix READ
Matrix Subtraction

Matrix Transposition

Matrix ZER Function
'---------

Remarks statement

• I REM
'--

---,
Defines a loop in a program.
Defines the range of a loop.

I
I

.I

---,
Directs execution to another place in a I

program. I
Defines a conditional statement. I
Directs execution to a subroutine. I
Directs execution from a subroutine to a I
calling program. I

----------------------.1

--,
Causes elements of matrixes to be added. I
Causes values in one matrix to be assigned to
corresponding elements in another matrix.

Sets all elements of a matrix equal to 1.
Reads values into a specified matrix.
Defines an identity matrix.
Allows data to be read into a matrix during

program execution.
Inverts the values in a matrix.
Causes elements of one matrix to be multi­
plied by elements in another matrix.

Causes elements in a matrix to be multiplied
by a constant.

Prints the elements in a matrix.
Prints the elem~nts in a matrix in a format-
ted print line.

Writes matrix data onto an output file.
Reads data into a specified matrix.
Subtracts elements of one matrix from
"another.
Transposes elements of one matrix onto
another.

Sets all elements of a matrix to o.

-------------------,
I Used to document programs. I

----------------------.1

Pause and Termination Statements
.--------
I PAUSE
I STOP
I END

-_._----------,
Causes program execution to pause. I
Causes program execution to terminate. I
Causes program compilation to terminate. I

'--- -------------------.1

Reference Information 41

This section is provided for quick reference of the statements that
comprise the EASIC languagE!. The statements are al~habetically listed.
Each description gives a definition of the statement, the syntax for
coding it, and rules for using the statement in programs.

The CHAIN statement is used to link an executing BASIC program with
another BASIC program existing on disk. The format for coding CHAIN is
as follows:

r----------
I
I CHAIN pname[, ar9]
I '-------------------

-,
I
I
I

------------.1

where Rn!mg (that is, the VM/370 BASIC filename) is the name of the
program being invoked; pname can be either an alphameric variable
or a literal constant.

!~g is an alphameric variable or a literal constant whose value
may be passed to the invoked program.

The CHAIN statement terminates execution of the current program and
initiates execution of the chained program.

The program being invoked must be named on the user's disk and must have
a filetype of BASIC.

If arg is being passed to the chained program, then that program must
contain a USE statement. Also, when arg is specified, it is truncated or
blank-filled on the right. It is always 16 characters in length.

The examples below show how to use the CHAIN statement:

110 CHAIN
300 CHAIN
210 CHAIN

'P1','DATEFILE'
'**PROG'

A$,B$

42 VM/370 BASIC Language Manual

The ClCSE statement causes a file that is active (open) in a program to
be deactivated. It takes the form:

r-
I
I
I
I CLOSE
I
I
I L-_______ _____

~ filenum1 [,filenum2] ~
l filename2 ,filename2 •••)

-----------------------,
I
I
I
I
I
I
I

-----------------------~

where filenum is an expression that specifies the numbers of the files
being-closed.

!i!~n~~~ that specifies the name of the file to be closed is a
literal constant.

The CLOSE statement causes the data file or the program-data file
specified by filenum or filename to be removed from the list of active
files in a ~rcgram.

If the specified file is not active, the CLOSE statement is ignored.

When a program is terminated, all currently active data and program-data
files are automatically closed.

The following example shows how to enter the CLOSE statement:

100 CLOSE 1,A,200,'FILE'

The DATA statement is used to define values for use in a program. The
statement takes the form:

r--- -,
I
I DATA
I
L-

constant1[,constant2, •••]
I
I
I
I

where constant is a numeric or literal constant that defines the value
to-he-used in the program.

During compilation, the BASIC compiler creates a table of the values
found in the DATA statement. The values are stacked in the table in
order of appearance.'

Reference Information 43

Entries in the DATA table are 18 characters in length. If the entry is
larger than 18 characters, it is truncated on the right. If it is
smaller than 18 characters, it is padded on the right with blanks. If a
literal constant of no characters is entered, it is entered in the DATA
table as 18 blank characters.

Generally, the DATA statement is used to define a tables of values which
are positionally associated with variables defined in the program by
means of the BEAD statement.

The following examples show how to enter DATA statements:

10 DATA
20 DATA
30 DATA

10, 15, 17
34E-51, 532, 3.021, 1E6
'JOHNSON','SMITH','BROWN','JONES'

The DEF statement is used to define user functions. It takes the form:

r------.-------------.--------------------------------,
I I
I DEF FNvar1(var2)=ae I
I I L---____ . __________ ._________________ .J

where var1 must be a simple numeric variable specified by a single
letter (or a character from the extended alphabet).

var2 is a simple numeric variable specified by a single letter
(or a character from the extended alphabet).

~~ is an arithmetic expression.

The function is evaluated by substituting a user expression for each
occurrence of the dummy variable var2 into the expression ae, and then
evaluating ae.

A function may be defined anywhere in the program (before or after its
use) •

Other functions may be invoked in DEF statements if no direct or
indirect recursive actions are involved. That is, the function being
defined (say FNA) may have another function (say FNE) as part of the
defining expression, and ae, provided that FNE does not, in turn, have
FNA as part of its definition. The following statements show how
function maybe defined and evaluated.

70 DEF FNB(X)=5*X**2+27
80 DEF FNA(X)=FNB(X)+X**3

140 LET R=FNA(Z)+23

Line 140 is equivalent to R=:«(5*Z**2+27)+Z**3)+23

44 VM/370 BASIC Language Manual

The DIM statement provides the ability to allccate storage space for
named arrays and matrixes. It takes the following form:

.-
I
I DIM
I

arrayl (row1[,coIl]) [,array2 (row2[,coI2]) •••]

----,
I
I
I

where ~±~~Ii specifies the name of the array for which storage is being
allocated.

±2~1 specifies the number of rows in ~±±~y!.

£2!1 specifies the number of columns in ~±±gYi.

±2~1 and £2!1 must be unsigned integers.

DIM allocates storage space for named arrays and matrixes and their
specified dimensions.

Once an array or matrix has been declared, either implicitly or
explicitly, in a program, that array or matrix name may not be used in a
DIM statement.

The following is an example of the DIM statement:

10 DIM A(10), B(2,3}, C(10,50)

The END statement is used to specify the end of a program. It takes the
form:

r-----------------------------
I
I END [comment]
I L-____________________ _

---,
I
I
I

.J

where comment may be any note the programmer wishes to include; it is Ignored by the language processor.

END causes program compilation and execution to terminate. Lines
following an end statement are ignored by the processor.

When the END statement is omitted the processor supplies the effect of
the END statement. An example of the END statement is:

100 END

Reference Information 45

The FOB statement is used in conjunction with the NEXT
define loops in BASIC programs. It takes the form:

statement to

r---------------------------------- ,
I
I FOB
I
I
I
I NEXT
I
I

var=initval TO limit(STEP increment]

var

I
I
I
I
I
I
I ..

where !~~ defines the index loop and is a simple numeric variable.

init"al is an arithmetic expression that specifies the value of
i~~-riie first time through the loop.

!imij: is an arithmetic expression that specifies the maximum
number of times the loop can be executed.

increment is an arithmetic expression that sFecifies the value
added-to-the initial value each time the loop is executed.

The range of the loop is defined by the NEXT statement. All statements
between the FOB and NEXT statements will be excuted sequentially each
time through the loop until the limit specified by limit is reached.

The statements of the loop are executed repeatedly with var equal to
initval, then with var equal to initval + increment, and so on, until
the value dE~fined by limit is reached. If STEP increment is omitted, an
increment value of one is assumed. When the value of increment is zero,
the only means of exiting the loop is via the NEXT statement.

The simple numeric variable var is the index of the FOR loop. Throughout
the range of the loop, the value of var i~ available for computation,
either as an ordinary variable or as the variable in a subscript, the
index is also available for computation when the loop is exited and is
equal to the last value it attained.

Branching into the range of the loop is permissable, but should be done
carefully.

The following example shows how the FOR loop is used.

20 FOB X = 3*Z+6 TO 25 STEP 2/A

60 NEXT X

46 VM/370 BASIC Language Manual

The GET statement is used to retrieve data from a
file and to assign variable names to the data. The
following form:

data or program-data
statement takes the

r--,
I I

: GET {filenum: } var1[,var2 •••] ~
I filename, I
I I
L- ______.J

where filenum is an arithmetic expression representing the number of
the-fIle being accessed.

filename is a literal constant specifying the name of the file
being-accessed.

X~~ specifies the variable names to be associated with data
retrieved from the file being accessed.

File specification in a GET statement may take one of three forms:

• File Name Specification. If the file specification is by file
name (filename, above), then the file is opened, if necessary,
before the GET is executed •

• File Number. If the file specification is an arithmetic
expression (fi1enum, above), th~n the truncated integer value of
the expression (1 S filenum S 255) is used as the file number.
The file number must refer to a file that has been opened by
means of an OPEN statement containing that number, and the
specified file must be active for input •

• Implied. If no file specification is present, a file number of 1
is assumed. As in the case of the file name specification, the
file must be opened for input, otherwise the program is
terminated.

The variables, vari, are associated with the input data positionally,
that is, var1 will be associated with the first input item from the
file, var2 with second input item, etc., etc.

The associaticn process ensures that all the variables specified have an
associated value. In the case where there are not as many input items as
there are vari, the program is terminated.

If a GET statement specifies a file which is not designated as an input
file, the program is terminated.

In the case where vari is a numeric variable, the corresponding data
input item must also be numeric; likewise, where the vari is an
alphameric variable, its corresponding data item must be a literal
constant.

Reference Information 47

The examples below show hOl' the

100 GET 'PILE' ,I"A (I)
100 GET A,B,C
100 GET F 1: D (I, J)
100 GET 200:X,Y,Z

Q.Q2Jl] 2!!1.;G11]]!

The GOSUB statement provides
subroutine. It takes the form:

,.-----
I
I GOSUB subname
I

GET statement is

the ability to

coded.

transfer control to a

,
I
I
I

'---
. _________ . ____________________ .J

where subname is the name of the subroutine to which control is being
transferred.

The GOSUB statement transfers control to the subroutine specified by
subname.

Control is returned to the calling program by means of the RETURN
statement located in the subroutine. When control is returned to the
statement following the GOSUB.

The following diagrams show the flow of control through routines and
subroutines.

50 GOSUB 100 --, 80 GOSUB 150 ------,
.--> 60 I .----->90 I
I 70 , , , 80 , , , 90 I ,
I .--- --, I ,.---- ----, I
I I 100 I , , 150 '<_.J
I I · I <--oJ I · ,
I I · I I · ,
I I · I I · I
'--I 140 HETURN I 1 160 GOSUB 250 1--,

L-__ __ .J
.-> I 170 1 I
1 I · I I
I I · I I , I · I I

'--t--+-200 RETURN I I
I

L-__
I

I ,
I .---- I I , , 250 '<_.J
I I · I
I I · I
I I · I
L __ ' 300 RETURN I __ -oJ

48 V~/370 BASIC Language Manual

The following example shows how the computed GOTO works.

4 0 GOT 0 3 4, 6 0 , 1, 3 4 , 1 0, 4 5 0 N 3-4/ X - Z

In this examfle, when 3-4/X-Z is evaluated as either 1 or 4, control
will be passed to statement 34; when the expression is evaluated as 2,
control passes to statement 60, etc., etc.

The IF statement provides the ability
a program depending on the evaluation
statement takes the form:

to branch to another statement in
of a relational expression. The

r-
I
I
I IF
I
I

--,
parm 1 operator parm2 { GOTO} linenum

THEN

I
I
I
I
I 1..-_______________________ . ____________________________ .J1

where E~Imi may be arithmetic expressions, alphameric variables, or
literal constants. These parameters are evaluated in the
relational expression defined by QE~!!!Q! •

.QE~.!:1!!.Q! may be any of the relational operators allowed in EASIC:

< less than
<= less than or equal to
> greater than
>= gr,eater than or equal to
= equal to
<> not equal to

linenum is a decimal number specifying the target line to which cont:rol is being directed.

E~!~l and Eg!~~ must be the same type of BASIC symbol, that is,
if Eg!~1 is a numeric variable, P.~!ID~ must be a numeric variable
also.

When the relational expression specified in the IF statement is
evaluated as true, then control is directed to the line number specified
in the IF statement. If the expression is false, control drops through
the IF statement to the next statement in the program.

Literal constants containing less than 18 characters are padded on the
right with blanks; literal constants containing more than 18 characters
are truncated on the right. Both padding with blanks and truncation
occur before the constants are compared in the expression.

A literal constant with no defined characters is interpreted as 18 blan~
characters.

50 VM/370 BASTC Language Manual

Differences in the floating-point approximations of decimal numbers
arrived at through different logical steps can affect comparisons. This
can be avoided by comparing numbers only within the afpropriate range of
precision. For example, rather than using the following comparison:

IF A<>E THEN 100

use of the following statement would be preferable:

IF ABS(A-B)=>.001 THEN 100

THEN and GOTO have the same effect of directing execution to the target
statement. Their use depends only on the programmer's preference.

The following examples show how to code the IF statement:

30 IF A(30»X+2/Z THEN 85
40 IF S1<=37.22 GOTO 67
50 IF A+B>C THEN 80
60 IF R$=A$ GOTO 120

The IMAGE statement is used to provide a formatted print line for use
with the PRINT USING statement. The IMAGE statement can contain image
areas designed to contain dynamically computed data. The statement takes
the form:

------------------------,
I

:[charstring1,imagearea1,charstring2,imagearea2, •••] I
I
~

where £hs~§!~iD~i is a character string which may contain any character
except a commercial pound sign, t. It may also be null.

im~~~s~~si is the area into which dynamically computed data from
the program may be substituted. This area is specified using
commercial pound sign, t.

In VM/370, the pound sign (t) is the line-end character and, therefore,
IMAGE statements must hide pound signs from the system. The CMS SET
command can be used to redefine the line-end symbol. Also, the pound
sign can be hidden by means of the CMS Escape Character, the double
quote.

In the PRINT USING statement, the user can specify an IMAGE statement
which has been formatted for his specific use. In this statement he can
specify any number of symbols (variables constants) and associate these
positionally with image areas in an IMAGE statement. When the IMAGE
statement is printed it will contain the current value of the variables
specified in the PRINT USING statement.

In the example below, for instance, the variables A and B represent a
question number and the answer to the question, which is a number.

20 PRINT USING 30 A,B
30 :THE ANSWER TO QUESTION i is ###.##

Reference Information 51

The colon begins the IMAGE statement; an:r blanks following the colon and
the first character will be included in the printed output.

There are rules for specifying the three types of numbers:

1. I format consisting of an optional sign followed by one or more t
characters. For example, ## is an I format specification.

2. F format consisting of an optional sign followed by the optional
occurrence of one or more i characters, a decimal point, and the
optional occurrence of one or more r characters. There must be at
least one # character in the specification. For example, +#.#####
is an F format specification.

3. E format is an I format or F format conversion specification
followed by either four !l!! characters of four II II characters

A format consisting only of # characters can be used to print a
character variable or literal constant. The character string will be
placed into the format left-justified and truncated or blank filled on
th~ right to the length of the format.

The IMAGE statement may also be used with the MAT PRINT USING statement
to specify image areas and to format output. See examples of this usage
in the section entitled MAT PRINT USING.

The INPUT statement provides the
variable names interactively at the
form:

.----------------
I
I INPUT var1[,var:2, •••]
I

ability to associate values with
terminal~ The statement takes the

,
I
I
I

'-------------------------------- .J

where YA~i are variable names typed at the terminal.

When the INPUT statement is encountered by the language processor, a
question mark is printed at the terminal. Data in the form of numeric
and/or literal constants, separated by commas, may then be entered from
the terminal.

Where the input line is not long enough to accept all of the data
required, that line may be continued by typing a comma and hitting the
carrier return.

The specified variables assume the values of the data in order of entry;
the number of items entered must equal the number of variables in the
INPU'!' statement list. NumE!ric constants must be . entered for numeric
variables; literal constants must be entered for alphameric variables.

52 VM/370 BASIC Language Manual

If a literal data entry is not empty or does not contain a comma, the
entry need not be bounded by quotation marks; leading blanks are ignored
but embedded blanks are significant.

A literal constant containing fewer than 18 characters is padded with
blanks on the right. A literal constant containing more than 18
characters is truncated on the right. A literal constant containing no
characters is interpreted as 18 blank characters.

The following examples show how to use the INPUT statement.

10 INFUT X,Y(X),Z(R+3),C1

90 END
basic pgname
? 20,15.5,4,.35
R;

The input response shown above causes a value of 20 to be assigned to
the variable X, a value of 15.5 to be assigned to Y(20), a value of 4 to
be assigned to the element of array Z identified by the computed value
of the subscript R+3, and a value of .35 to be assigned to C1.

10 INPUT A$,R

90 END
basic pgname
? YES,20
R;

The input response shown above causes the literal constant YES to be
assigned to the alphameric variable A$, and the numeric constant 20 to
be assigned to the numeric variable R.

The LET statement provides the ability to assign a value to a variable
or a series of variables. The statement takes the form:

(LET] var 1,[, var2, •••]=value

------,
I
I
I

'--__ ---.I

where yg!! are variables.

yglY~ may be an arithmetic expression, and alphameric variable,
or a literal constant.

Reference Information 53

BASIC provides the capability to equate all the elements in a matrix to
corresponding elements in another matrix. The statement takes the form:

.-
I
I MAT matrix1 = matrix2
I
I ,------------------,--------

where ~~!~i!! must be matrixes of identical dimensions.

,
I
I
I

---.I

This statement assigns the values of the elements of matrix2 to the
corresponding elements of matrix1.

The current dimensions of matrix1 and matrix2 must be identical.
Otherwise, the program is terminated.

An example of the matrix assignment statement is:

20 MAT A = B

The matrix CON function provides the ability to set all the elements
of a specified matrix to the value 1. Also, the CON function may
be used to redimension the matrix. The form for using the CON
function is:

.-------
I
I MAT matrix = CON ((dim1(,dim2])]
I
I

where m~!!i! specifies the target matrix for the function.

g!~i specify new dimensions for the matrix.

---,
I
I
I ___ .J

When CON is encountered, all the elements of matrix are redefined to the
value 1.

For information on how dimi are used to redimension a matrix, see the
section entitled "Matrix Manipulation".

The examples below show how the matrix CON function is used.

20 MAT A = CON
30 MAT B CON(J,K)

Reference Information 55

The MAT GET statement allows data to be read into a specified matrix (or
matrixes) without referencing each member of the matrixes individually.
The statement takes the form:

---,

MAT GET [
j~~lenum: Jmatrix 1((dim 1[,dim2Jl J[,matrix2[(dim 1[,dim2Jl JJ ••• !
t1lename, I

I I _________________________ ~.------
--.I

where i!!~n!~ is an expression specifying the value of the file number
being invoked.

i!!~~g~~ is the name of the file being invoked.

!g!!i~i specifies the matrix (or matrixes) whose elements are
being defined.

dimi are dimension specifications
respective matrixes.

used to redimension the

The MAT GET statement is similar to the GET statement. It allows numeric
data from an INPUT file to bE~ read into matrixes and associated with the
matrix elements without referencing each element separately.

Elements are read by rows from the specified data file or program data
file until the matrix is filled. If the data file is exhausted before
the matrix if filled, the program is terminated.

If the data file or program--data file specified by the MAT GET is not
active or not an output file~ program execution is terminated.

Note that the filenum/filename specification is optional; if the
specification is omitted, its value defaults to 1. If the truncated
integer value of filenum is less than 1 or greater than 255, program
execution is terminated.

For information on matrix redimensioning, see the section "Matrix
Manipulation".

The following statements are examples of the MAT GET statement.

20M A'I GET Z (E-3): A , B , C (1 0 , K)
30 MAT GET A
40 MAT GET 'FILE',C,B

56 VM/370 BASIC Language Manual

The matrix ION function is used to redefine the form (that is, the
dimensions) of a matrix by means of an identity matrix. The function
takes the form:

r
I
I MAT
I
I

matrix = ION((dim1[,dim2])]

----,
I
I
I

------------------.------~I

where ~g£~!Z is the name of the matrix whose' form is being redefined.

g!~! specify the dimensions which may be used to redimension
.!!1g£!!!.

If matrix is not conformable, program execution is terminated.

The following statements are examples of the ION function.

20 MAT A = IDN
30 MAT B = ION(4,4)

See the section "Matrix Manipulation"
redimensioning.

for information on matrix

The MAT INPUT statement provides the ability to enter numeric values
from the terminal into specified matrixes without referencing each
member of each matrix separately. The statement is similar to the INPUT
statement and takes the form:

r-
I
I MAT INPUT
I
L

matrix 1[(dim 1 (, di m2])][, ma trix2[(dim 1[, dim 2])] •••

,
I
I
I

.J

where .mg!!!~! specify the matrix or matrixes into which data is be
entered.

g!.m! specify the dimension(s) used to redimension a given matrix.

When the MAT INPUT is encountered by the language processor, a question
mark is printed at the terminal. At that point the programmer types in
values to be inserted into the matrix.

Reference Information 57

Values are entered by row. If an input line is not large enough to
contain a row, the' line may be continued by typing a comma as the last
character on the line and hitting the ca~rier return.

When the row has been completed, the system requests input for the
second row by printing two question marks. The user enters input values
for the row.,

printing of two question marks for each new row and single question
marks for the completion of a row, interspersed with user entry of input
values, continues until all data has been entered.

The number of values entered for a row must equal the number of elements
in a row of the matrix.

Only numeric entries are valid.

See "Matrix Manipulation" for an explanation of redimensioning.

type test basic
10 DIM A(10,10}
20 MAT INPUT A(2,2}

90 END

basic test

? 1,2

11 3,4

The input shown above causes the numeric constants 1 and 2 to be taken
as the values of the elements in the first row of the matrix A. The
numeric constants 3 and 4 are taken as the values of the elements in the
second row of A.

The matrix inversion function causes one matrix to be replaced by the
inverse of another matrix. It takes the form:

,------_._-
I
I MAT matrix1 = INV(matrix2}
I L ____ -- ----------------------

where m~!~i~i are matrixes.

If the matrixes are not conformable, program execution is terminated.

58 VM/370 BASIC Language Manual

-,
I
I
I

--.I

matrix1 cannot be identical to matrix2.

The following statement is an example of the INV function.

20 MAT A = INV(C)

BASIC provides the ability to multiply the elements of a matrix by the
corresponding elements in another matrix. The following form is used to
multiply matrix elements:

r-
I
I MAT
I

matrix1 = matrix2 * matrix3

---,
I
I
I

L
-------------------------------------~

where m~tr!~! are matrixes.

This statement
results of the
and matrix3.

causes the elements of matrix1 to
multiplication of the corresponding

be replaced by the
elements in matrix2

The following statement is an example of matrix multiplication.

20 MAT Q = P * R

Scalar multiplication of a matrix is permitted in BASIC. That is, each
element in a matrix is multiplied by a value and the results are placed
in another matrix. The statement takes the form:

r-
I
I MAT
I

matrix1 (expression) * matrix2

---,
I
I
1

where m~!~!~! are matrices.

~~E~~§§i2n is an arithmetic expression whose value is multiplied
times each element of the matrix.

This statement causes each element of matrix1 to be replaced by each
corresponding element of matrix2 multiplied by expression.

expression is evaluated before any scalar multiplication.

If the matrixes are not conformable, program execution is terminated.

The example below shows how to use scalar matrix multiplication.

20 MAT A = (A(3,2»*D

Reference Information 59

The MAT PRINT statement is used to
the contents have been converted
format for the statement is:

r-
I

print the contents of a matrix after
to a specified output format. The

--,
I MAT PRIN~r matrix1termchar1[matrix2termchar2 ••• [termcharN]]

I
I
I I L-_____________ . _________________ • ___________________ .A

where ~!1!il are matrixes.

1~!~£h§£i are terminal characters; commas or semicolons.

This statement causes each element of each specified matrix to be
converted to a specified output format and then printed. After the
element has been print~d, the carrier is positioned as specified by the
terminator character.

Rules for printing as described under the PRINT statement apply for the
MAT PRINT statement; however, literal strings are not allowed, and an
omitted final terminator character is treated as a comma.

The matrix is printed in order by rows. All of the elements of a row are
printed on as many print lines as are required with single line spacing.

A blank print line is used to separate rows.

Printing of the first element of a row always starts at the beginning of
a new print line.

The following statement is an example of the MAT PRINT statement.

20 MAT PRINT A,B,C

The MAT PRINT USING statement causes
to be edited into print lines as
statement takes the format:

r
I

each element of specified matrixes
directed by IMAGE statement~. The

----------------------,
I MAT PRINT USING linenum,matrix1[matrix2, •••]

I
I
I I

I .J

60 VM/370 BASIC Language Manual

where !ingnYill is the line number of the target IMAGE statement.

~~!~izi ~pecify matrixes.

The first row of a matrix is separated from the line immediately
preceding it by one blank line. A blank print line separates succeeding
rows of the matrix. Each element of the matrix is edited row by row into
the corresponding conversion specification in the IMAGE statement.

The first element of a row is printed at the beginning of a new print
line according to the first entry of the corresponding IMAGE statement.
The IMAGE statement is reused to complete a row on the next line if
necessary.

The following example shows how MAT PRINT USING can be used.

10 DIM A (2,3)
20 DATA 1,10,33,2,20,44
30 MAT READ A

100 PRINT USING 300
110 MAT PRINT USING 400,A
300 X
400 : TEST CASE.. • •••••

y

• •• •• •• 1111

The printout resulting from this sequence of statements appears as shown
by the representative printout below.

TEST CASE

TEST CASE 2

x

10.000

20.000

y

33.0000E+00

44.0000E+00

The MAT PUT statement causes specified matrixes to be written on an
output data file without referencing each element of the matrix
individually. It takes the form:

r-------'
I
I
I MAT PUT
I
I

[
filenum:]

matrix1[,matrix2, •••]
filename,

L-__________________ ___

,
I
I
I
I
I

.J

where filenum is an expression whose value specifies the file number of
the-target file.

fil~~s!~ is a literal constant which names the target file.

!2!!!X! specify the matrix (es) from which data is to be read.

Reference Information 61

The elements from the specified matrixes are written in row order to the
output file.

If the data file is not active or has not been specified as an output
data file, program execution is terminated.

If the data file is not large enough to contain the matrix elements,
program execution is terminated.

The following statements are examples of the MAT PUT statement.

20 MAT PUT 2: X, y, Z
30 MAT' PUT A,B
40 MAT PUT 'FILE',A,B

The MAT READ statement allows numeric data to be read into the specified
matrixes without referencing each member individually. The statement
takes the form:

.--------------------------_._-- ---,
I I
I MAT READ matrix1[(dim1[,dim2])][,matrix2[(dim1[,dim2])] •••] I
I I
i ~

where matrixi specifies a matrix or matrixes into which data is to be
read~~--

dimi are expressions used to redimension the matrixes. (See
;ii~rix Manipulation" for a discussion of matrix redimensioning.)

Elements are read in row order from data tables created by DATA
statements. If the data table is exhausted before a specified matrix is
filled, program execution is terminated.

The statement below is an example of the MAT READ statement.

20 MAT READ A(J,K),B,C(H)

The EASIC language processor permits matrix subtraction. The subtraction
is performed by subtracting elements of one matrix from the
corresponding elements of another and placing the results in a specified
matrix. The statement takes the form:

62 VM/370 BASIC Language Manual

r-------- ,
I
I MAT
I
L-

matrix1 = matrix2 - matrix3
I
I
I

------~

where matrix1 is a matrix used to
subtraction.

contain the results of the

matrix2 is a matrix from which corresponding elements in ~!~i~~
are-subtracted.

~~!!!~~ is a matrix, the values of whose elements are subtracted
from ~~!!!!l.

If the matrixes are nonconformable, program execution is terminated.

The example below shows how matrix subtraction is used.

20 MAT D = A - B

The matrix transposition function causes the elements of one matrix to
be transposed onto the elements of another. It takes the form:

r---
I
I MAT
I

--------------------------------.-------,
matrix1 = TRN(matrix2)

I
I
I L-_________ _

--------------------~

where matrix1 is a matrix whose values are replaced by the values of
matrli2.
~~!!j~1 is a matrix which is transposed onto !~1!i!l.

~~!!!!l may not be the same as ~§!!i~l.

The example below shows how the TRN function is used.

20 MAT D = TRN(X)

The matrix ZER function causes all the elements of the matrix specified
to assume the value zero. It takes the form:

Reference Information 63

.------_.
I
I MAT matrix = ZER[(dim 1(, dim2])]
I
L

where m!!trjJ~ specifies the matrix whose values are being zeroed.

,
I
I
I

.J

Qi~i are expressions used in redimensioning the matrix. (See
"Matrix Manipulation" for a discussion of redimensioning.)

The examples below show how the ZER function is used.

30 MAT A
LJO MA'I B

ZER
ZER(A+D,Q**Z)

The NEXT statement is used in conjunction with the FOR statement to
define the range of a program loop. It takes the form:

r--------·---------· ,
I I
I NEXT var I
I I
L .J

where var is a simple numeric variable identical to the corresponding
variable in the matching FOR statement.

The statement terminates the range of a loop.

The examples below show how FOR and NEXT are used to define multiple
loops and nested loops; there is also an example of an invalid loop
definition.

r---FOR I
I
I
I
L--NBXT I

r--FOR J
I
I
I
L-NEXT J

Multiple Loops

r--FCR I
I
I
I
I .---FOR
I I
I I
I I
I '---NEXT
I
I
I
L--NEXT I

Nested Loops

64 VM/370 BASIC Language Manual

r---FOR X
I
I
I

J I r-- FOR y

I I
I I
I I

J L--+-NEXT X
I
I
I
L--NEXT Y

Invalid

The OPEN statement is used to activate a data file for inFut or output
or a program-data file for input. The statement takes the form:

.-
I
I OPEN filenum ,filename
I
I
I

{
INPUT }

OUTPUT

,
I
I
I
I

.J

where filenum is an expression whose value is assigned to the file
Dumber-for reference purposes.

!il~D!!~ is an alphameric variable or a literal constant which is
the name of the file being opened.

The INPUT and OUTPUT options specify whether the file is being opened
for input or output.

The statement causes the data file or program-data file specified by
filename to be assigned the file number specified by filenum.

The status of the file is set to active and the pointer is reset to the
beginniag of the file.

Data files can be opened for either input or output. Program-data files
can be opened only for input.

If the truncated integer value of filenum is less than 1 or greater than
255, program execution is terminated.

If the OPEN statement references any file that is currently active, that
file is closed and reopened.

If an attempt is made to open more than four concurrent files, program
execution is terminated. (See CLOSE.)

If any program-data file is to be used by a program, a program-data file
must be the first file opened in the program (so that input areas are
of sufficient size). Otherwise, program execution is terminated when an
attempt is made, later in the program, to open a program-data file.

The following statements are examples of the OPEN statement.

100 OPEN F1,'SYSIN',INPUT
100 OPEN 1,A$,OUTPUT

Reference Information 65

The PAUSE statement causes program execution to halt and a line to be
printed at the terminal notifying the user of the halt. The stat~ment
takes the f,orm:

r-
I
I PAUSE
I
I

[comment]

,
I
I
I ______ .J

where £.Qn~H!! can be any note the programmer desires; it is ignored by
the language processor.

When the language processor encounters the PAUSE statement, the
following line is printed out at the user's terminal:

PAUS1~ AT LINE nn

where nn is the line number of the PAUSE statement.

Execution resumes when the user presses the carrier return or by
entering any character string and then pressing the carrier return.

The following example shows how PAUSE is used.

50 PAUSE

The PRINT statement is used to direct the printing of information at the
user's terminal. It takes the form:

tr-------·-
I
I PHI N'l'
I L-___ _

prfield1tchar1[prfield2tchar2 ••• [tcharN]]

--,
I
I
I

.J

where .E!ii~.!.2.! are print fi.elds used to specify the information to be
printed. Print fields may contain expressions, alphameric
variables, and literal constants.

tcharl are terminal characters, that is, the comma or the colon.
The-c;;mma indicates that another p:rint field follows; the colon
indicates the end of a print line.

66 VM/370 BASIC Language Manual

PRINT LINES AND PRINT FIELDS

Print lines are lines being typed in at the terminal specifying the type
and format of information the programmer wants printed.

Print lines are comprised of print fields, which are variable length
fields containing the programmer's specifications for the type of data
he wants calculated and printed.

PRINT ZONES

Each print line is divided into print zones of either of two types: full
or packed.

A full print zone is always comprised of 18 characters.

The size of a packed print zone depends on the length of the print field
it holds, as shown below:

gIiD!_li~lQ_1~Dg1E
2-4 characters
5-7 characters
8-10 characters

11-13 characters
14-16 characters

~g£k~g_Zon~_1~ng1h
6 characters
9 characters

12 characters
15 characters
18 characters

The first character of a packed print zone is always reserved for a +
or -; default is +.

RULES FOR USING PRINT FIELDS AND PRINT ZONES

If the print field is an alphameric variable, the size of a packed print
zone is 18 characters minus the number of trailing blanks. If the print
field is a literal constant, the size of a packed print zone equals the
size of the converted field. The print fi~ld is printed at the terminal
as described below.

1. If the print field is an alphameric variatle or a literal constant
and:

• 1£DgI is a comma with at least 18 spaces remaining on the print
line, printing starts at the current carrier position. If the
end of the print line is encountered before the print field is
exhausted, printing of remaining characters starts on the next
print line.

• tchar is a comma with less than 18 spaces remaining on the print
lI~e: printing starts at the beginning of the next line.

• 1£DgI is a semicolon, printing starts at the current carrier
position. If the end of the print line is encountered before the
field is exhausted, printing of remaining characters starts on
the next line.

Reference Information 67

2. If the print field is an expression, printing starts at the current
carrier position unless the print line does not contain sufficient
space to accommodate the value. In such cases, printing starts at
the beginning of the next line.

After the converted print field has been printed, the carrier is
positioned as specified by the terminator character.

1. When the print field is an expression or an alphameric variable,
the carrier is positioned as follows:

• If the terminator character is a comma, the carrier is moved
past any remaining spaces in the full print zone; if the end of
the print line is encountered, the carrier is moved to the
beginning of the next print line.

• If the terminator character is a semicolon, the carrier is moved
past any remaining spaces in the packed print zone; if the end
of the print line is encountered, the carrier is moved to the
beginning of the next print line.

• If the terminator character is omitted, and the print field is
the last print field in the statement, the carrier is moved to
the beginning of the next print line.

2. When the print field is a literal constant, the carrier is
positioned as follows:

• If the terminator character is a comma, the carrier is moved
past any remaining spaces in the full print zone; if the end of
the print line is encountered, the carrier is moved to the
beginning of the ~ext print line.

• If the terminator character is a semicolon, the carrier is not
moved unless at the end of the print line, in which case the
carrier is moved to the beginning of the next print line.

• If the terminator character is omitted, and the print field is
the last print field in the statement, the carrier is moved to
the beginning of the next print line.

3. When the print field is null, the carrier is positioned as follows:

• If the terminator character is a comma, the carrier is moved 18
spaces; if the end of the print line is encountered, the carrier
is moved to the beginning of the next print line.

• If the terminator character is a semicolon, the carrier is moved
three spaces; if the·end of the print line is encountered, the
carrier is moved to the beginning of the next print line.

• If the terminator character is omitted, the carrier is moved to
the beginning of the next line.

The f~llowing examples show how PRINT is used.

50 PRINT "X= "; 5, -6.78; (X (2) +4*Z)
60 PRINT Y$

68 VM/370 BASIC Language Manual

The PRINT USING statment is used in conjunction with the IMAGE statement
to edit specified print fields into a print line defined ty the IMAGE
statement. The PRINT USING statement takes the form:

r----------------------- ------,
I
I PRINT USING linenum[prfield1,prfield2, •••]

I
I
I I

where !in~nYm is the line number of the IMAGE statement to be used.

E~fi§!g! specify the values to be edited into the corresponding
print fields in the IMAGE statement. E!i!~!g! may be ~lphameric
variables, expressions, or literal constants.

The print fields specified (prfieldi) correspond positionally with the
print fields defined in the target IMAGE statement.

If the number of print fields in the PRINT USING statement exceeds the
·number of conversion specifications in the IMAGE statement, a carrier
return occurs at the end of the IMAGE statement and the IMAGE statement
is reused for the remaining print fields.

If the number of print fields in the PRINT USING statement is less than
the number of conversion specifications in the IMAGE statement, the
print line is terminated at the first unused conversion specification.

When the carrier is not positioned at the beginning of a new print line,
a carrier return occurs before printing of the edited print line. After
the edited print line is printed, the carrier is positioned at the
beginning of the next print line.

Each print field is converted to output format as follows:

1. The meaning of an alphameric variable or a literal constant is
extracted from the specified string and edited into the print line,
replacing all of the elements in the conversion specification
(including sign, #, decimal point, and! or I). If the edited
string is shorter than the conversion specification, tlank padding
occurs to the right. If the edited string is longer than the
conversion specification, truncation occurs to the right. A null
string results in blank padding of the entire conversion
specification.

2. An expression is converted in accordance with its conversion
specification:

a. If it contains a plus sign and the expression value is
positive, a plus sign is edited into the print line.

b. If it contains a plus sign and the expression value is
negative, a minus sign is edited into the print line.

Reference Information 69

c. If it contains a minus sign and the expression value is
positive, a blank is edited into the print line.

d. If it contains a minus sign and the expression value is
negative, a minus sign is edited into the print line.

e. If it does not contain a sign and the expression value is
negative, a minus sign is edited into the print line in front
of the first printed digit, and the length of the conversion
specification is reduced by one.

f. The expression value is converted according to the type of its
conversion specification:

1=!Q£~g1--the value of the expression is converted to an
integer, truncating any fraction.

l=!Q!~~!--the value of the expression is converted to a
fixed-point number, rounding the fraction or extending it with
zeros in accordance with the conversion specification.

E-format--the value of the expression is converted to a
iIoatIiig-point number with one decimal digit to the left of
the decimal point, rounding the fraction or extending i~ with
zeros in accordance with the conversion specification.

If the length of the resultant field is less than or equal to
the length of the conversion specification, the resultant
field is edited, right-justified, into the print line. If the
length of the resultant field is greater than the length of
the conversion specification, asterisks are edited into the
print line instead of the resultant field.

The example below shows how the PRINT USING statement is used.

10 AS = 'LOSS'
20 B = 42.0399
30 PRINT USING 40,A$,B
40 :RATE OF t ••• EQUALS '.tt .•• POUNDS.

The printout resulting from this sequence of statements is shown below:

RATE OF LOSS IS 42~04 POUNDS

The PUT statement is used to direct tha~ specified values be placed on
an output data file. The statement takes the form:

,-------- .-------------.--------._-------------,
I
I PUT

[
filenum:] data 1[, data2, J

I
I
I I filename,

I I
'------------------ -------------- .J

70 VM/370 BASIC Language Manual

where ~il~nYm is a number specifying the output data set.

filename is a literal constant specifying the name of the output data-set.
gg!!l may be an expression, an alphameric variable, or a literal
constant; ~!!!i specify the data items to be written to the
output data set.

The file specification may take one of three forms:

1. File name - If the file specification is a file name, enclosed in
quotes, followed by a comma, then the file is opened if necessary
before the PUT is executed.

2.

3.

File number - If the file specification is
by a colon, then the truncated intege~ value
exp S 255) is used as the file number. The
to a file that has been opened by means
containing that number, and that file must
output.

an expression followed
of the expression (1 S
file number must refer
of an OPEN statement
still be active for

Implied - If no file specification is present, a file
is assumed. As in 2 above, the file must be open for
not, program execution is terminated.

number of 2
output. If

A literal constant containing less than 18 characters is padded with
blanks on the right. A literal constant containing more than 18
characters is truncated on the right. A literal constant containing no
characters is interpreted as 18 blank characters.

If a PUT statement is executed when the specified data file is not
active or is assigned as an input file, program execution is terminated.
If a PUT statement is executed that causes the size of the data file to
be exceeded, program execution is terminated.

Note: Use of the filename in PUT statements should be avoided if the
program contains an OP!N statement for logical file number 2 as an
output file. In this case, it is not clear whether the default file
number 2 or the literal constant (filename) is being referenced. (See
execution exception message "FILE REFERENCE UNCLEAR".)

The examples below show how the PUT statement is coded.

30 PUT F1: Z3, 5*A-7, A, C, W$
40 PUT 2: 'DATA','STAT','LOG1'
50 PUT 1,2,B,C, (1,3)
60 PUT 'FILE',A

The READ statement is used in conjunction with the DATA statement. It
reads values defined in the DATA table, associating variables with those
values. The READ statement takes the form:

Reference Information 71

r---------------------------------
I
I READ var 1(, var2, •••]
I L-___________ _

where YA~~ are variables.

,
I
I
I

.J

The variables specified are assigned the next n values in the data
table, and the data table pointer is updated accordingly.

If a READ statement is executed when insufficient data remains in the
data table, program execution is terminated.

Numeric variables must correcpond to numeric data and alphameric
variables must correspond to literal data.

The examples below show how the READ statement is coded.

10 READ A,B,C
20 READ Z (4) , Z (5) ,A (K)

The REM statement is used to add comments to a program. It takes the
form:

r--------------------------
I
I REM [comments]
I
•

where £g!!~!!! may be any character string.

--------- i

I
I
I

oJ

If a GOTO, GOSUB, or THEN uses a REM statement as a target, then the
next executable statement after the REM will he executed.

The RESET statement is used to reset a data file to the first element in
that file. It takes the form:

r-------------------
I
I RESET [filenum 1] [,filenum2 J ...
I filename1 , filena.me2
I L--________ _

72 VM/370 BASIC Language Manual

----------,
I
I
I
I ---------------------.1

where filenumi specify the file number(s) being reset to the first element:
filenamei specify the names of the files being reset to the first ;lement:-

This statement causes the data file or program-data file specified by
the value of filenum to be reset to the beginning of the file. A
subsequent GET or PUT statement references the first item in the file.

If filenum is specified, but its truncated integer value is less than 1
or greater than 255, program execution is terminated.

If neither a file number nor a file name is specified, the value 1 is
assumed.

If a specified data file is not active, the RESET command is ignored.

The example below shows how to use RESET.

100 RESET F1,F2,'FILE'

The RESTORE statement causes the next READ statement to begin reading at
the first DAtA element in the program. It takes the form:

r--- --------------------------~
I
I RESTORE [comments]
I L-___ _

where £Qmm~n!2 may be any character string.

The example below shows how to use RESTORE:

50 RESTORE GO BACK TO ONE

The RETURN statement is used to transfer control out of
back to the calling program. It takes the form:

a subroutine

r-
I
I R!TURN [comments]
I L-____________________ . ______________________ __

where £g~~~!§ can be any character string.

,
I
I
I

------~

Reference Information 73

RETURN is the means of e:Kiting from a subroutine. RETURN transfers
control, to the statement following the last GOSUE executed.

More than one GCSUE statement may be executed before a RETURN statement
is executed, but when a RETURN statement is executed there must be at
least one a.ctive GOSUE. The character st.ring £2.!!.!!!,g!!~§ may be entered as
a comment; it is ignored during compilation and execution.

GOSUE/RETURN examples:

50 GOSUE 100 --, 80 GOSUB 150 -------,
.--> 60 1 r--->90 I , 70 I ,
I 80 I I , 90 , I
1 r-- '--, 1 r--- 1 , 1 100 1 I I 150 <_.I
I I · 1<--' 1 · I 1 · 1 1 · 1 1 · 1 1 · L-_I 140 RETURN I 1 160 GOSUE 250 ---,

L_
__ .J

.-> 1 170 1
1 I · I
1 I · 1 , I · ,

L--f--+- 200 RETURN 1
I

L ____
------' I

I ,
I r-- ----, 1
1 1 250 1<.:.-.1
I 1 · 1
1 1 · I
I I · 1
L--I 300 RETURN I L. __ ___ .J

The STOP statement causes program execution to terminate. It takes the
form:

.------_._--------
1
I STOP [comments]
I L-__ _

--,
I
I
I _.I

where £Q'!!'!!~~!§ can be any character string; it is ignored by the
proc(!ssor.

14 VM/370 BISIC Language Manual

USER PROGRAM LIMITS

!::&2g:&s.!!]!~.!!~!!1
Statement lines
Source characters
Object program size
Array storage
(included in program size)
Number of image statements
Number of FOR loops:

program limit
nest limit

Number of function references
and GOSUB's per nest

Number of files open at once
Number of storage units per file

Disk storage unit size

Limit
--SaO I

64,000 MaxI
114,688 bytes

28,668 bytes

25

80
15

47
4

size of user's disk 2

or 3730 storage units
3440 bytes

Limit is determined by whichever limit is reached first. The
actual limit on source characters is determined by the size of
the virtual machine, with a maximum of 64,000 characters. A
machine size of 268K allows the full 64,000 character maximum.

2 An approximation of the remaining storage unit capacity on a
disk can be found by dividing the current number of records
available (obtained from the statistics generated by the QUERY
DISK mode command) by 4.3 (the number of records required to
contain one BASIC data storage unit).

Appendix A: VM/370 BASIC Program Limits 77

INTRINSIC FUNCTION LIMITS

The following table gives the allowable limits for the arguments passed
to intrinsic functions.

r------ --------------- ---,
1 1 Valid Arguments (Minimum < x < Maximum) 1
1 1-----------------,-------------
1 1 Short-Form Arithmetic 1 Long-Form Arithmetic
II+-
t Function 1 Min. Value 1 Max. Value 1 Min. Value

----+---------1------------+---,-
SIN (x)
COS (x)
TA N (x)
COT (x)
SEC (x)
CSC (x)
AS N (x)
ACS (x)
ATN (x)
HSN (x)
HCS (x)
HTN (x)
DEG (x)
RAD (x)
EXP (x)
ABS (x)
LOG (x)
LTW (x)
LGT (x)
SQR (x)
RNI: (x)
INT (x)
SGN (x)

-PI*2 18 PI*2 18 -PI*2 50

-PI*2 18 PI*2 18 -PI*2 50

-PI*2 18 PI*2 18 -PI*2 50

-PI*2 18 PI*2 18 -PI*2 50

-PI*2 18 PI*2 18 -PI*2 50

-PI*2 18 PI*2 18 -PI*2 50

-1 1 -1
-1 1 -1

-1E75 1E75 -1E75
-174.673 174.673 -174.673
-174.673 174.673 -174.673
-1E75 1E75 -1E75
-1E75 1E75 -1E75
-1E75 1E75 -1E75
-180.218 174.673 -180.218
-1E75 1E75 -1E7~

o 1E75 0
o 1E75 0
o 1E75 0
o 1E75 0

-1E75 1E75 -1E75
-1E75 1E75 -1E75
-1E75 1~75 -1E75 L---______________________________ _

78 VM/370 BASIC Language Manual

Max. Value

PI*2 50

PI*2 5 o
PI*2 50

PI*2 50

PI*2 50

PI*2 50

1
1

1E75
174.673
174.673
1E75
1E75
1E75
174.673
1E75
1E75
1E75
1E75
1B75
1B75
1B75
1E75

--------'

Error messages are printed at the terminal if program syntax and
structure errors are detected, program limitations are exceeded, or
execution errors or exceptions occnr. Many of these conditions are
detected at compile time; others cannot be diagnosed until program
execution. If a problem persists, save the terminal output, enter CP and
request a dump of storage, and contact IBM for programming support.

Error messages are generated from two sources: 1)
Interface, and 2) the CALL-OS EASIC compiler. The
refer to preliminary command syntax checks and
limitations while the BASIC compiler messages apply
execution errors.

VM/370 BASIC INTERFACE ERROR MESSAGES

the VM/370 BASIC
interface messages

virtual machine
to compilation and

The types of BASIC Interface messages are identified by action codes as
follows:

l~E~
W
!
S
T

~~ning
Warning
Error
Severe Error
Terminal Error

When a condition arises during the execution of a command resulting in a
Warning, Error, Severe Error, or Terminal Error message, the command
will pass a nonzero return code in register 15. CMS return codes are
identified in the following EASIC interface messages as "RC=xx". A
description of the assignment of CMS return codes is included in the 1~~
!!I!Y!! ~!~hin~ 1!£!1!!ILllQ: ~l~!~~ ~~~~~~2 ~!nY!!, Order No.
GC20-1808.

DMSBSC001E NO FILENAME SPECIFIED

1!El!Eat!2E: The command requires the specification of a
filename.

~I§!~ !£!i2n: RC = 24
Execution of the command terminates. The system remains in
the same status as before the command was entered.

]~~I !cti2n: Retype the command, specifying the filename.

DMSBSC002E FILE 'fn ft' NOT FOUND

£!E!!n~!!2n: The specified file was not found on the accessed
disk(s). Either the file does not reside on this disk, the
file identification has been misspelled, or incomplete
identification has been provided to cause the appropriate
disk to be searched. (See the 1]~ !~LllQ £2~!!Eg_1~ngY!E~
]~~I!§ §y!g~, Order No. GC20-1804, for a description of the
file identification required by each command and the search
procedure used.)

Appendix B: VM/370 BASIC Error Messages 79

2~§!~! Af!!Qn: RC = 28
Execution of the command terminates. The system remains in
the same status as before the command was entered.

User Action: To make sure the file exists issue STATE fn ft *
~i-II~i-i~-ft *~ Correct and reenter the command.

DMSBSC003E INVALID OPTION "option'

1~£lan~!i2n: ThE! specified option appeared illegally in the
option list of the command. It may have been misspelled or,
if the option is truncatable, it may have been truncated
im~roperly.

2Y§!m! A£,!.!.Qn: u C = 24
Execution of the command terminates. The system remains in
the same status as before the command was entered.

~§~~ A£!i2n: Check the command line and try again.

DMSBSC007E FILE 'fn ft' IS NOT FIXED, OR GREATER THAN 256 CHAR. RECORDS

]~E1~n~!!2n: The input file must have fixed length records of
up to 256 characters each in order to execute the command.

2I§!~~ A£!.!.Qn: RC = 32
Execution of the command terminates. The system remains in
the same status as before the command was entered.

User Action: The record format and length may be corrected
usI~g-the-COPYFILE command.

DMSBSC025E NULL SOURCE LINE. COMPILER TERMINATED

E~E1~n~!i2n: There is a blank line in the source program.

2Y§!~! Af!i2n: RC = 32
Execution of the command terminates. The system remains in
the same status as before the command was entered.

User Action: Edit the BASIC source file and delete the blank
II~e.------

DMSBSC104S ERROR READING FILE 'fn ft' FROM DISK

]~E1~nati2n: An unrecoverable error
the file from disk. This error may
the following conditions:

• Given file not found.

occurred while
be caused by any

• Buffer area not within user storage limits.
• Permanent disk read error.
• Number of records SOar > 32768.

reading
one of

• Fixed/variable flag in file status table entry is not F or
V.

• Given memory area was smaller than actual size of the
records read. (This error is legitimate if reading the
first portion of a large record into a little buffer. It
does not cause the function to terminate.)

• File is open for writing and must be closed before it can
be read.

80 VM/370 BASIC Language Manual

• Only one record may be read for a variable length file. In
this case, the number of records is greater than 1.

• End-of-file (record number specified exceeds number of
records in file).

• Variable file has invalid displacement in active file
table.

• Invalid character detected in filename.
• Invalid character detected in filetype.

~~§!~m !fi!2n: RC = 100.
Execution of the command terminates.

User Action: Attempt to determine the problem from
'ExplanatIon', above, remedy the condition, and retry the
command. Or else retry the command, and if the problem
persists, contact installation maintenance personnel.

DMSBSC109S VIRTUAL STORAGE CAPACITY EXCEEDED

11El~~~!!2~: There is no more space available in the user's
virtual machine to successfully complete execution of the
command. Subsequent execution of certain CMS commands may
result in the same problem.

~~§!~~ !f!iQ~: RC = 104
The system remains in the same status as before the command
was issued.

User Action: Use the CP command DEFINE to increase the size
of--the--virtual machine, IPL CMS again and reenter the
command. Or reduce the size of the program and retry.

DMSBSC117S PROGRAM EXCEEDS SOURCE STATEMENT MAX 'nnn'

1!E!~~!!2n: nnn is the maximum number of statements allowed
in the program.

~y§!~~ !f!iQn: RC = 88
Execution of the command terminates. The system remains in
the same status as before the command was entered.

~§~I AfiiQn: Reduce the number of source statements and
retry.

DMSBSC146S UNEXPECTED BASIC COMPILER REQUEST 'nnn'

l1E!~n~!!Q~: An unsupported SVC request has been received
from the BASIC compiler.

~y§!~~ !f!i£~: RC = 88
Execution of the command terminates. The system remains in
the same status as before the command was entered.

M§~I !f!i2n: Retry. If the error persists, contact your
installation maintenance personnel.

DMSBSC147S RUN TIME PACKAGE NOT FOUND

]1£!~nat!Qn: The execution time package 'BSCRUN MODULE' could
not be found on any of the accessed disks.

Appendix B: VM/370 BASIC Error Messages 81

.2.I,§!~.!!! !£!i2!l:RC = 104.
Execution of the command terminates. The system remains in
the same status as before the command was entered •

.!l.§g! !£ti2!l: contact your installation maintenance personnel.

DMSBSC204W COMPILER ERROR CODE = 'nnnn'

I!E!~!lati2!l: A system error was detected during compilation.
A code 'nnnn' specifies the number returned from the
compiler r where 'nnnn' is one of the following:

151 (VERBS03) source ,pointers were destroyed while in' the
DIM statement processor.

152 (B$PHASE) source line is without a beginning line
number.

153 (B$PHASE) source line has been detected without an
end-of-line character.

154 (B$PHASE) source line has teen detected with an
invalid character.

155 (NUCLEUS) source pointer was destroyed while in an
identifier scan routine.

170 (FORMULA) the temporary storage counter was below its
limit.

171 (FORMULA) unknown operator (binary).
172 (FORMULA) unknown operator (unary).
173 (FORMULA) undefined identifier type.
174 (FORMULA) undefined delimiter.
175 (FORMULA) stack overflow •

.!l2~! !£1i2!l: RetrYr if the error ~ersists contact your
installation maintenance personnel.

DMSBSC906T UNEXPECTED RETURN CODE

EXEla!l~1i2!l: While scanning terminal output from the compiler
DMSBSC could not find an end of line character.

~~2!~.!!! !£1i2!l: RC = 256
Execution of the command terminates. The system remains in
the same status as before the command was entered.

User Action: RetrYr if the error persists cpntact your
InstallatIon maintenance person.

COMPILATION EBROR MESSAGES

Compilation error messages are issued by the BASIC compiler while the
program is being translated or prepared for execution. A line number is
printed before any message pertaining to a particular line. In other
cases r where it would be helpful in correcting a problem r a line number
will also be printed.

Compilation errors can be classified as syntax errors (errors in the
construction of a statement)r program structure errors (errors in the
ordering and relationship of statement lines)r or program limit errors.

82 VM/370 BASIC Language Manual

If any comFilation error occurs, the program is not executed. The
compiler generally continues to scan the rest of the program for
additional errors. If the error involves a program limit, compilation is
usually terminated. only one error per statement is detected for a
particular compilation.

The compilatien error messages are listed alphabetically below.

ARRAY ALREADY DEFINED

]zEl~~!!2B: A DIM statement has been entered to declare an array
which has already been defined, either through use or in another
DIM statement.

§Y§i~~ !£!iOB: Compilation is continued; execution is inhibited.

CHARACTER ARRAY IN MAT

~zElgn~!!2n: An alphameric array name has been specified in a MAT
statement. Only numeric array names can be used in MAT statements.

§Y2!~~ !£!i2n: Compilation is continued; execution is inhibited.

EXPRESSION TCO COMPLEX

~XElg~g!i2n: The line contains an expression requ1r1ng too much
work space to compile or teo many temporary storage locations to
compute.

~Y2!~m J£!i2B: Compilation is continued; execution is inhibited.

Q2~~ J£li2n: The user can
preassigning expressions
this condition.

FOR/NEXT LOOP INCOMPLETE

try deleting unnecessary parentheses and
to variables as a means of eliminating

~ZE1~gg!i2n: The program contaihs at least one incomplete FOR loop.

~y§!~m J£!!2n: Compilation is terminated; execution is inhibited.

FOR/NEXT NESTED INCORRECTLY

~zElgng!i2n: A NEXT statement does not match the preceding FOR
statement.

§Y§!~~ J£l!2n: Compilation is continued; execution is inhibited.

FOR/NEXT NESTED TCO DEEPLY

~zElgng!i2n: The program contains more than 15 nested FOR loops.

§Y§!~m J£!i2n: Compilation is terminated; execution is inhibited.

FOR/NEXT OUT OF SEQUENCE

~~Elgn~!i2n: A NEXT statement appears
incomplete FOR loop exists.

at a point where no

Appendix B: VM/370 BASIC Error Messages 83

21§~~m ~£~i2n: Compilation is continued; execution is inhibited.

INVALID ARGUMENT OF DET

~~Elgng~iQll: An argument supplied to the DET function is not a
matrix.

§y§~~~ ~£!i2n: Compilation is continued; execution is inhibited.

INVALID LITERAL CONSTANT

]~E!gD!!i2D: The line contains a literal constant for which the
boundary characters are missing or not balanced.

§Y§~~m 1£!i2n: Compilation is continued; execution is inhibited.

INVALID NUMERIC CONSTANT

]ZE!gn!!i2n: The line contains a numeric constant whose absolute
value is greater than 1E+75 or less than 1E-78.

§Y§1~ID 1£!i2n: Compilation is continued; execution is inhibited.

INVALID REDIM SPEC

E~E!gn2!i2n: Redimensioning has been attempted in a statement that
does not permit redimensioning, or has led to an attempt to change
the number of dimensions of the matrix.

~l§!~ID ~£!iQn: Compilation is continued; execution is inhibited~

INVALID USER FUNCTION

]zEl!D!!iQn: A user function has been defined more than once.

~l§~~m Action: Compilation is continued; execution is inhibited.

MATRIX NOT DRCLARED

]~E!!n!!iQn: A matrix referenced in a MAT statement has not been
declared by a DIM statement or through use.

§Y§1~~ ~£!i2D: Compilation a continued; execution is inhibited.

MATRIX NOT 2-DIMEN

]zEl!nn~i2n: A one-dimensional matrix has been referenced in a
matrix identity, multiplication, transposition, or inversion
operation.

21§!~m ~£!iQn: Compilation is continued; execution is inhibited.

NO. OF DIMENSIONS INVALID

84 VM/370 EASIC Language Manual

1. The number of subscripts
correspond to the number of
matrix.

in a reference to a matrix does not
dimensions originally declared for the

2. A reference to an alphameric array contains two subscripts.

~l§!~~ !~!12D: Compilation is continued; execution is inhibited.

NO. OF DIMENSIONS UNMATCHED

~ZE!gDg!!2D: The matrices specified in a MAT statement do not have
the same number of dimensions.

§Y2i~ID !£!~2D: Compilation is continued; execution is inhibited.

OBJECT PROGRAM TOO LARGE

~ZE!gng!!2D: The object program exceeds the maximum storage space
allowed.

§Y2i~ID !£!ion: Compilation is terminated; execution is inhibited.

User Action: The user can try combining duplicate source code in
G05UB-or-user function definitions as a means of eliminating this
condition. Program chaining may also provide a solution to this
problem.

PROGRAM ERROR. COMPILATION TERMINATED

~ZE!gDg!!2n: A program-check interrupt has occurred during the
compilation process.

~12!~ !£!i2D: Compilation is terminated; execution is inhibited.

~2~~ !£!!2ll: If the problem persists, the user should contact
installation management.

SAME MATRIX FOR RESULT/OPERAND

~ZE!gng!!2ll: The matrix specified to contain the result of a matrix
multiplication, transposition, or inversion operation is the same
as an operand matrix of the operation.

~12!~m !£ti2D: Compilation is continued; execution is inhibited.

SYNTAX ERROR IN EXPRESSION

~ZE!gng!!2D: The line does not contain a valid expression where one
is expected.

~Y2i§ID !£!12n: Compilation is continued; execution is inhibited.

SYNTAX ERROR IN STATEMENT

EZE!~n~!!2D: The line contains an error in the construction of the
statement.

~Y2!~ID !£!12n: Compilation is continued; execution is inhibited.

Appendix B: VM/370 EASIe Error Messages 85

SYSTEM ERROR HAS OCCURRED

lZElAQ!!!2n: A language processor error has occurred during the
compilation process.

§y§!,g]! !£!i.Qn: Compilation is terminated; execution is inhibited.

Q§~£ !£!i.Qn: If the problem persists, the user should contact
installation management.

TOO MANY ARRAY ELEMENTS

~ZE1!~!!i.Qn: The space required for array storage exceeds the
maximum allocation.

§y§!,g~ J£!i.Qn: Compilation is terminated; execution is inhibited.

TOO MANY FOR/NEXT LOOPS

I~El!~!!!.Qn: The program contains more than 80 FOR loops.

~y§!,g! J£!i2n: Co~pilation is terminated; execution is inhibited.

TOO MANY IMAGE STATEMENTS

.~~El!n!!i.Qn: PRINT USING and MAT PRINT USING statements reference
more than 25 image statements.

~y§!,gm J£!i.Qn: Compilation is terminated; execution is inhibited.

TOO MANY STATEMENT LINES

IZE1!n!!i.Qn: The program contains more than 800 statement lines.

~y§!,gill Jf!!.Qn: Compilation is terminated; execution is inhibited.

User Action: Program chaining may provide a solution to this probleiii:----

TOO MANY UNDEFINED LINE NUMBERS

~zEl!n~!i.Qn: An undefined line number is a line number that appears
as a reference in the text of a source-program line but does not
appear as a line ~umber preceding a line in the program. Up to ten
such references are permitted, because, for example, they may
precede statements not reached during program execution. When more
than ten undefined line numbers have been referenced, however,
compilation is terminated.

~y§!,gill Jf!i.Qg: Compilation is terminated; execution is inhibited.

TOO MANY VARIABLES OR CONSTANTS

I~El!!~!i.Q!: The space required to store variables and constants
exceeds the maximum allocation.

§y§!,gm !f!i.Q!: Compilation is terminated; execution is inhibited.

86 VM/370 BASIC Language Manual

y§~~ J£!!2n: Constants entered in DATA statements
arrays are not held in the area reserved for
variables. Therefore, the user can try substitut1ng
or array elements for constants and variables to
problem.

COMPILATION EXCEPTION MESSAGES

and storage for
constants and

DATA statements
circumvent this

Certain conditions encountered during compilation are recognized as
exceptions by the CALL-OS BASIC language processor but do not cause
execution to be inhibited. These conditions are identified and handled
as described below.

END SUPPLIED

~z£!2n!!!2n: There is no END statement in the program.

~~§!~ J£!i2n: Compilation is continued. The code for an END
statement is supplied at the end of the object program.

LINES AFTER END IGNORED

~Z£!2~2!!gn: One or more program lines follow the END statement of
a source program.

~y§!~~ J£!iQ~: Compilation is continued. The END statement is
treated as the last statement in the program.

EXECUTION ERROR MESSAGES

When a program error is detected during program execution, a message is
printed and execution is terminated. All messages at run time are
preceded by the line number of the statement being executed at the time
the error occurred with the exception of those messages where a line
number would be irrelevant.

ATTEMPT TO WRITE TO INPUT FILE ON LAST WRITE

]z£!2n!!!2n: An attempt was made to write to an input file.

DATA ERROR AT LINE nnnnn

]z£!!n!!!2n: A GET or MAT GET statement referring to a program-data
file has caused a type or format error in the data at the line
identified by line number nnnnn of the program-data file.

DIRECTORY SEARCH FAILED

]Z£!2D!!i2n: An attempt was made to open a shared file, but either
the *Directory was not validated for this user group, the file
itself was not available, or the file name was not found in the
indicated directory.

Appendix B: VM/370 BASIC Error Messages 87

END OF DATA

J1E!A!!!!Q!: A READ statement has been executed with insufficient
data in the data table.

END OF FILE

J1E!~nj!!!Qn: A GET or MAT GET operation referring to a data file
could not be completed because there was insufficient data in the
file.

END OF PROGRAM FILE AT LINE nnnnn

E1E!~n!!iQn: A GET or MAT GET operation referring to a program-data
file could not be completed because there was insufficient data in
the file.

ERROR IN ACS FUNCTION ••• ARGUMENT TOO LARGE

J1&E!An~!iQ!!: The ACS function has been called using an argument
whose magnitude is greater than one.

ERROR IN ASN FUNCTION ••• ARGUMENT TOO LARGE

J1Q!~n.E:!!Qn : The ASN function has been called using an argument
whose magnitude is greater than one.

ERROR IN COS FUNCTION ••• ARGUMENT TOO LARGE

J1&E!~n2!iQn: The COs function has been called using an argument
whose shcrt-form magnitude is equal to or greater than 2 18pi or
whose long-form magnitude is equal to or greater than 2 50 pi.

ERROR IN COT FUNCTION ••• ARGUMENT TOO LARGE

E1&El~~~!!gn: The COT function has been called using an argument
whose short-form magnitude is equal to or greater than 2 18pi or
whose long-form magnitude is equal to or greater than 2 50 pi.

ERRCR IN COT FUNCTION ••• INFINITE VALUE

I1&EIAE!!!B!: The COT function has been called using an argument
that causes the cotangent to approach infinity.

ERROR IN CSC FUNCTION ••• ARGUMENT TOO LARGE

J1&El!E!!!gn:The esc function has been called using an argument
whose short-form magnitude is equal to or greater than 2 18pi or
whose long-form magnitude is equal to or greater than 2 50 pi.

ERROR IN CSC FUNCTION.~.INFINITE VALUE

J1&E!A!!A1iQn: The CSC function has been called using an argument
that causes the cosecant to approach infinity.

88 VM/370 BASIC Language Manual

ERROR IN EXP FUNCTION ••• ARGUMENT TOO LARGE

~~E!g.!!g!!2!!: The EXP function has been called using an argument
whose magnitude is greater than 174.673.

ERROR IN HCS FUNCTION ••• ARGUMENT TOO LARGE

]~E!g.!!g!i.Q!!: The HCS function has been called using an argument
whose magnitude is greater than 174.673.

ERROR IN HSN FUNCTION ••• ARGUMENT TOO LARGE

I~.E!g.!!g!!.Q!!: The HSN function has been called using an argument
whose magnitude is greater than 174.673.

ERROR IN LGT FUNCTION ••• ARGUMENT ZERO OR NEGATIVE

]~E!g.!!~!!.Q!!: The LGT function has been called using an argument
whose value is ~qual to or less than zero.

ERROR IN LOG FUNCTION ••• ARGUMENT ZERO OR NEGATIV!

~~E!g.!!g!!.Q!!: The LOG function has been called using an argument
whose value is equal to or less than zero.

ERROR IN LTW FUNCTION ••• ARGUMENT ZERO OR NEGATIVE

IZ.E!g.!!g!!.Q!!: The LTW function has been called using an argument
whose value is equal to or less than zero.

ERROR IN SEC FUNCTION ••• ARGUMENT TOO LARGE

E~E!g.!!g!!2!!: The SEC function has been called using an argument
whose short-form magnitude is equal to or greater than 2 18pi or
whose long-form magnitude is equal to or greater than 250 pi.

ERROR IN SEC FUNCTION ••• INFINITE VALUE

jZE!g.!!~!!.Q!!: The SEC function has been called using an argument
that causes the secant to approach infinity.

ERROR IN SIN FUNCTION ••• ARGUMENT TOO LARGE

j~.E!g.!!g!!.Q!!: The SIN function has been called using an argument
whose short-form magnitude is equal to or greater than 2 18pi or
whose long-form magnitude is equal to or greater than 2 50 pi.

ERROR IN SQR FUNCTION ••• NEGATIVE ARGUMENT

IZE!g.!!g!!.Q!!: The SQR function has been called using an argument
whose value is negative.

Appendix B: VM/370 BASIC Error Messages 89

ERROR IN TAN FUNCTION ••• ARGUMENT TOO LARGE

1~E!~g!i2n: The TAN function has been called using an argument
whose short-form magnitude is equal to or greater than 2 18pi or
whose long-form magnitude is equal to or greater than 250 pi.

ERROR IN TAN PUNCTION ••• INPINITE VALUE

1.!E!!lH!!.!2!P The TAN function has been called using an argument
that causes the tangent to approach infinity.

EXPONENTIATION ERROR

Y has been attempted with X=o and Y=o.

FILE IS ALREADY IN USE

l.!E!!.!ll!!.!.2n: An OPEN statement has forced the closing of a file,
becaus-e the file is identified by the file number specified in the
OPEN statement. However, the file name specified in the OPEN
statement has been assigned to yet' another file, and this OPEN
and/or the other file-number entry is for output. For example, the
third OPEN statement below would cause this error message to be
generated:

OPEN 2, 'A', OUTPUT
OPEN 3, 'B', INPUT
OPEN 2, 'B', OUTPUT

FILE IS CLOSED OR UNASSIGNED

l.!El~~!.!.2n: A GET, MAT GET, PUT, or MAT PUT operation has been
attempted on an inactive file.

FILE IS FOR INPUT

].!E!!lll!!!.!21P A PUT or MAT PUT operation has been attempted on a
file opened as an input file.

90 VM/370 BASIC Language Manual

RAILROAD TARIFF CALCULATION

A railroad tariff for shipping a commodity between two points
depends upon two factors: the rate classification and the rate
base. The rate classification is related to the type and quantity
of the commodity being shipped. The railroads and the Interstate
Commerce Commission establish a minimum weight which qualifies a
shipment for a carload rate; any shipment weighing less than this
minimum is subject to a less-than-carload rate. Other factors, such
as type of packaging and special conditions, are sometimes
considered but are ignored in this example.

The rate base, which is also determined by the railroads and the
Interstate Commerce Commission, stipulates the charge for traffic
in a given direction between two given points. The rate from point
1 to point 2 is not necessarily the same as the rate from point 2
to point 1.

The tariff is calculated by multiplying the appropriate rate base
determined from the points of origin and destination by the
appropriate carload or less-than-carload rate determined from the
weight of the shipment.

In this example only one commodity is used; thus only one set of
data is necessary for the origin-destination rate base and for the
carload or less-than-carload rate.

STATEMENT OF PROBLEM

Write a EASIC program to read the rate tase table, the appropriate
minimum weight, and the carload and less-than-carload rates for a
given commodity from two disk data files. Read terminal input for
individual shipments and calculate the appropriate tariff for each
shipment. Print all relevant information.

Appendix C: VM/370 BASIC Sample program 91

PROGRAM VARIABLES

Flowchart BASIC
!21f!.t!2!! J!.2!f!!.!.2!!
RBASE,(IORIG, R (I, J)
IDEST)

IORIG 11

IDEST 12

COMMOIl(ITEM, C(I,Jl
IN)

ITEM I

IN 13

IN 1
IN 2
IN 3

IN = 4

TARIFF T

NUMB N

POUNDS P

92 VM/370 BASIC Language Manual

~~f!!!!!!.9
Rate base table for the or1g1n-

destination combination

Integer code for the point
of origin IORIG = 1,5

Integer code for the desti­
nation IDEST = 1,5

Data on the commodity number,
minimum weight, carload rate,
and less-than-carload rate

Index of the table row
ITEM = 1,6 for six
commodities as test data

Index of the table column
entries, coded as follows:

Master commodity number
Less-than-carload rate
Minimum weight to qualify

for carload rate .
Carload rate

Tariff for shipping the
commodity

Commodity number on the
input card

Weight of the commodity to
be shipped

The rate base table and the applicable rates are to be read during
program execution from two disk data files. These files must be
created and placed on the disk in a preceding step. The program
shown below performs the necessary operations. Instructions for
listing and executing the program are included in lower case.

type rtables basic

90 REM PROGRAM TO LOAD FILES FOR RAIL TARIFF PROGRAM
100 OPEN 2,"FILE1",OUTPUT
110 OPEN 3,"FILE2",OUTPUT
120 DIM A(5,5)
130 MAT READ A
140 MAT PUT 2: A
150 MAT READ A(6,4)
160 MAT PUT 3: A
170 CLOSE 2,3
180 PRINT 'WRAIL COMPLETE'
190 DATA 2.49,3.70,2.72;1.95,3.28,.93,3.03,2.26,1.55,4.25
200 DATA 1.59,3.92,2.94,1.05,3.29,.73,3.08,2.46,1.50,4.30
210 DATA 3.01,6.07,5.73,2.95,5.63
220 DATA 8750,100,24000,55,8790,250,12000,85
230 DATA 8820,125,20000,70,8863,200,20000,85
240 DATA 8885,125,12000,85,8900,70,36000,35
250 END
R;

basic rtables
WRAIL COMPLETE
R;

Appendix C: VM/370 BASIC Sample Program 93

RB7lSE(IORIG, IDEST)

IDEST = 2 3 4 5

IORIG = 1 2. L~ 9 3.70 2.72 1.95 3.28
2 0.93 3.03 2.26 1.55 4.25
3 1.59 3.92 2.94 1.05 3.29
4 0.73 3.08 2.46 1.50 4.30
5 3.01 6.07 5.73 2.95 5.63

COMMOD{ITEH, IN)

IN = 1 2 3 4
NUMBER LESS THAN MIN. CARLOAD

CARLOAD WEIGHT RATE
RATE

ITEM = 1 08750 100. 24000. .055.
2 08790 250. 12000. 085.
3 08820 125. 20000. 070.
4 08863 200. 20000. 085.
5 08885 125. 12000. 085.
6 08900 070. 36000. 035...

94 VM/370 BASIC Language Manual

TEST DATA

Test data appropriate for the railroad tariff calculation program
is shown below. One set of four values should be entered each time
that the terminal user is asked for input.

Number
08750-
08790
08820
08863
08885
08900
08900
08885
08863
08820
08790
08750
08820
08863
08900
08750
08790
07750
08862
09900

Pounds
20000:
10000.
18000.
18000.
10000.
30000.
40000.
15000.
21000.
21000.
13000.
25000.
20000.
20000.
36000.
24000.
12000.
24000.
20000.
36000.

From ,--
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5

To
'2-
3
4
5
1
3
4
5
1
2
4
5
1
2
3
5
1
2
3
4

Appendix C: VM/370 BASIC Sample Program 95

s=)
OPEN DISK]

FILES
FILE1 AND

FILE2

1

[

--:-OSE D~l FILES
FILE1 AND

FILE2

PRINT!

HEADIN:)

96 VM/370 BASIC Language Manual

END

IN = 2

1420

TARIFF =

RBASE (IORIG,
IDEST)~ COMMOD

(ITEM, IN)

YES

1400

YES

PROGRAM LISTING

type railtaf basic

1000 REM RAILROAD TARIFF CALCULATION
1010 REM VM/370 BASIC
1020 DIM R(5,5),C(6,4)
1030 REM NEXT TWO STATEMENTS OPEN THE TWO DATA FILES
1040 OPEN 1,'FILE1',INPUT
1050 OPEN 2,'FILE2',INPUT
1060 REM THIS SECTION READS THE DATA FROM THE FILES
1070 REM PILE1 HAS THE RATE BASE TABLE
1080 REM FILE2 HAS THE COMMODITY INFORMATION
1090 FOR 1=1 TO 5
1100 FOR J=1 TO 5
1110 GET 1: R(I,J)
1120 NEXT J
1130 NEXT I
1140 FOR 1=1 TO 6
1150 FOR J=1 TO 4
1160 GET 2: C(I,J)
1170 NEXT J
1180 NEXT I
1190 CLOSE 1,2
1200 REM PRINT HEADINGS
1210 PRINT 'RAILROAD TARIFF CALCULATIONS'
1220 PRINT
1230 PRINT 'c = CARLOAD RATE'
1240 PRINT 'LC = LESS THAN CARLOAD'
1250 PRINT
1260 PRINT 'ENTER NUMB,POUNDS,ORIG,DEST'
1270 REM TERMINAL USER IS ASKED FOR INPUT
1280 INPUT N,P,I1,I2
1290 IF N=O GO TO 1500
1300 FOR 1=1 TO 6
1310 IF N=C(I,1) GO TO 1370
1320 NEXT I
1330 REM NUMB NOT EQUAL TO ANY C(I,1), NUMB IN ERROR
1340 PRINT 'ITEM NUMBER IN ERROR'
1350 GO TO 1250
1360 REM CHECK FOR MIN. WEIGHT TO DETERMINE RATE
1370 IF P>=C(I,3) GO TO 1400
1380 13=2
1390 GO TO 1420
1400 13=4
1410 REM COMPUTE TARIFF
1420 T = R(I1,I2)*C(I,I3)
1430 IF 13<>2 GO TO 1470
1440 PRINT USING 1450 ,C(I,I3),T
1450 : RATE = ••••• tLC TARIFF = •••• tt
1460 GO TO 1250
1470 PRINT USING 1480 ,C(I,I3),T
1480 : RATE = •••••• C TARIFF = i.#.ft
1490 GO TO 1250
1500 END
R;

Appendix C: VM/370 BASIC Sample Program 97

PROGRAM OUTPUT

basic railtaf

RAILRCAD TARIFF CALCULATIONS

C = CARLOAD RATE
LC = LESS THAN CARLOAD

ENTER NUME,POUNDS,IORIG,IDEST? 8750,20000,1,2
RATE = 100.00LC TARIFP = 370.00

ENTER NUMB,POUNDS,IORIG,IDEST? 8790,10000,1,3
aATE = 250.00LC TARIFF = 680.00

ENTER NUMB,FCUNDS,IORIG,IDEST? 8820,18000,1,4
RATE = 125.00LC TARIFF = 243.75

ENTER NUMB,POUNDS,IORIG,IDEST? 8863,18000,1,5
RATE = 200.DOLC TARIFF = 656.00

ENTER NUMB,POUNDS,IORIG,IDEST? 8885,10000,2,1
RATE = 125.00LC TARIFF = 116.25

ENTER NUMB,POUNDS,IORIG,IDEST? 8900,30000,2,3
RATE 70.00LC TARIFF = 158.20

ENTER NUMB,PCUNDS,IORIG,IDEST? 8900,40000,2,4
RATE 35.00C TARIFF = 54.25

ENTER NUMB,POUNDS,IORIG,IDEST? 8885,15000,2,5
RATE 85.00C TARIFF = 361.25

ENTER NUMB,PCUNDS~IORIG,IDEST? 8863,21000,],1
RATE = 85.00C TARIFF = 135.15

ENTER NUMB,POUNDS,IORIG,IDESTl 8820,21000,3,2
RATE 70.00C TARIFF = 274.40

ENTER NUMR,PCUNDS,IORIG,IDEST? 8790,13000,3,4
RATE 85.00C TARIFF = 89.25

ENTER NUMB,POUNDS,IORIG,IDEST1 8750,25000,3,5
RATE 55.00C TARIFF = 180.95

ENTER NUMB,POUNDS,IORIG,IDEST? 8820,20000,4,1
RATE = 70.00C TARIFF = 51.10

ENTER NUMB,POUNPS,IORIG,IDEST? 8863,20000,4,2
RATE = 85.00C TARIFF = 261.80

ENTER NUMB,PCUNDS,IORIG,IDEST? 8900,36000,4,3
RATE = 35.00C TARIFF = 86.10

eNTER NUMB,POUNDS,IORIG,IDEST? 8750,24000,4,5
RATE 55.00C TARIFF = 236.50

ENTER NUME,PCUNDS,IORIG,IDEST? 8790,12000,5,1
RATE = 85.00C TARIFF = 255.85

ENTER NUMB,POUNDS,IORIG,IDEST? 7750,24000,5,2
ITEM NUMBER IN ERROR

ENTER NUMB,POUNDS,IORIG,IDEST? 8862,20000,5~3

98 VM/370 BASIC Language Manual

ITEM NUMBER IN ERROR

ENTER NUMB,POUNDS,IORIG,IDEST? 9900,36000,5,4
ITEM NUMBER IN ERROR

ENTER NUMB,POUNDS,IORIG,IDEST? 0,0,0,0

R;

Appendix C: VM/370 BASIC Sample Program 99

A
ABS intrinsic function 28
ACS intrinsic function 28
addition of matrix elements 54
arithmetic operators 30
array declaration statements 40
arrays

alphameric 25
declaring 25
defined 24
implicit declaration of 26
redimensioning 27
referencing members of 24
subscript evaluation for 25

ASH intrinsic function 28
assignment of values for matrix

elements 55
assignment statements 40
ATN intrinsic functions 28

B
BASIC CMS command 12
BASIC language

introduction 11
language elements 19
program structure 17

blanks, use of in BASIC 18
branch statements 40

C
CHAIN statement 37,40
character set 19
CLOSE statement 43
CMS, using BASIC with 11
commas, use of in BASIC 18
comments 18
computed GOTO 49
CON matrix function 55
constants

internal 23
literal 23
numeric 20

COS intrinsic function 28
COT intrinsic function 28
CP, using BASIC with 11
creating a CMS BASIC file 12
CSC intrinsic function 28

D
data files

accessing 34
active 35
allocation of 36
closing 35

defined 34
disk input/output for 34
implied opening of 34
internal specifications of 32
opening 35
storage of 37
terminal input/output for 36

DATA statement
defined 43
used with READ statement 32
used with RESTORE statement 32

DEF statement 44
DEG intrinsic function 28
DET intrinsic function 28
DIM statement 44
disk input/output 34
disk input/output statements 40

E
EDIT CMS subcommand 11,12
END statement 45
executable statements 18
EXP intrinsic function 28
expressions

F

defined 30
evaluation of 31

FILE CMS command 12

INDEX

fixed-point short-form numbers 20
floating-point short-form numbers 20
FOR statement 46
functions

G

intrinsic 28
matrix 29
user-defined 30

GET statement 47
GOSUB statement 48
GOTO stqtement 49

H
Hes intrinsic function 28
HSN intrinsic function 28
HTN intrinsic function 28

Index 101

I
IDN matrix function 57
IF statement 50
IMAGE statement 51
INPUT statement 32,52
INT intrinsic function 28
integer short-form numbers 20
internal constants 23
internal specification of data files 32
internal specification statements 32,40
intrinsic functions

ABS 28
ACS 28
ASN 28
ATN 28
COS 28
COT 28
CSC 28
DEG 28
DET 28
EXP 28
HCS 28
HSN 28
HTN 28
INT 28
LGT 28
LOG 28
LTW 28
RAD 28
RND 28
SEC 28
SGN 28
SIN 28
SQR 28
TAN 28

INV matrix function 58
inversion of matrix elements 58
IPL CP command 11

L
language elements, introduced 19
LET sta~ement 53
LGT intrinsic function 28
line number field 17
literal constants 23
tOG intrinsic function 28
LOGIN CP command 11
long-form numbers 20
loop statements 40
LTW intrinsic function 28

M
MAT GET statement 56
MAT INPUT statement 33,57
MAT PRINT statement 33,60
MAT PRINT USING statement 34,60
MAT PUT statement 61
MAT READ statement 62
matrix addition 54
matrix assignment 55

102 VM/370 BASIC Language Reference Manual

matrix functions
CON 55
IDN 57
INV 58
TRN 63
ZER 63

matrix multiplication 59
matrix statements 41
matrix subtraction 62
matrix transposition 63
ma trixes

arithmetic with 27
defined 26
manipulation of 26
redimenSioning 27

multiplying matrix elements 59

N
NEXT statement 64
non-executable statements 18
numeric constants 20

o
OPEN statement 65
operators

P

arithmetic 30
relational 30
unary 30

pause and termination statements 40
PAUSE statement 66
print fields 67
print format for numbers 21
print lines 67
PRINT statement 66
PRINT USING statement 33,69
print zones 67
program chaining 37
program chaining statements 37,40
program structure, description of 16
program-data files

accessing 36
creating 36

PUT statement 70

R
RAD intrinsic function 28
READ statement

defined 71
used with DATA statement 32
used with RESTORE statement 32

relational operators 30
REM statement 40,72
RESET statement 72

RESTORE statement
defined 73
used with DATA statement 32
used with READ statement 32

RETURN statement 73
RND intrinsic function 28

S
scalar matrix multiplication 59
SEC intrinsic function 28
SGN intrinsic function 28
short-form numbers

fixed-point 20
floating-point 20
integer 20

simple alphameric variables 24
simple GOTO 49
simple numeric variables 24
SIN intrinsic function 28
source statement 18
SQR intrinsic function 28
statement field 18
statement line 17
STOP statement 74
symbols

constant 20
defined 19
variable 24

syntax conventions 7

T
TAN intrinsic function 28
terminal input/output 32
terminal input/output statements 32,40
TRN matrix function 63

U
unary operators 30
USE statement 75
user-defined functions, rules for
writing 29

v
variables

array 24
defined 24
simple 24

VM/370, using BASIC with 17

Z
ZER matrix function 63

Index 103

. '
c: ' :J:
1/1' :c:
I- '
g':
0' « :
.§ :
~ :

READER'S COMMENTS

Title: IBM Virtual Machine
Facility /370:

Order No. GC20-1803-1

BASIC Language
Reference Manual

Please check or fill in the items; adding explanations/comments in the space provided.

Which of the following terms best describes your job?

o Programmer o Systems Analyst o Customer Engineer
o Manager o Engineer o Systems Engineer
o Operator o Mathematician o Sales Representative
o Instructor o Student/Trainee o Other (explain below)

Does your installation subscribe to the SL/SS? DYes o No

How did you use this publication?
o As an introduction o As a text (student)
o As a reference manual o As a text (instructor)
o ForanothMpu~o~~xp~~)~~~~~~~~~~~~~~~~~~~~~~~~

Did you find the material easy to read and understand? 0 Yes

Did you find the material organized for convenient use? 0 Yes

Specific criticisms (explain below)

o No (explain below)

o No (explain below)

Clarifications on pages ~~~_~~~~~~~ ___ ~~~ __
Additions on pages ~~~ ____ ~ _____ ~ __ ~_
Deletions on pages ~ __ ~ _________ ~ __ _

Errors on pages _~~~~~ __ ~ ____ ~~~ ______ _

Explanations and other comments:

Thank you for your cooperation. No postage necessary if mailed in the:: U.S.A.

GC20-1803-1

YOUR COMMENTS PLEASE ...

This manual is one of a series which sl~rves as a reference source for
systems analysts, programmers, and operators of I BM systems. Your
comments on thl! back of this form will be carefully reviewed by the
persons responsible for writing and publishing this material. All com­
ments and sugges1tions become the property of IBM.

Please note: Requests for copies of publications and for assistance in
utilizing your IBM system should be directed to your IBM representative
or to the IBM sale!s office serving your lo(:ality.

FOLD FOLD

• -t · ~ : 3'
: »
• 0' · ;:,
'(Q

: -I
• :r
• ;r
: j'

• :i'
: m

••••••••••••••••• & ••

[BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

IBM CORPORATION

VM/370 Publications
24 New England Executive Park
Burlington, Massachusetts 01803

C-- J FIRST CLASS

PERMI"r NO. 172

BURLINGTON, MASS.

" , •••••••• ~.~~~ •• ,) "'" I I I I I I I I I I I I I I. I I I "" I ••••••••••••••• I •• I. I ~"~~~" •••• ": 5'

,[ntlrnatianal Bu.inlas Machinls Corporation
IData PracI .. ing Division
1133 WI.tchlstarAvanua, White Plain I, New York 10604
(U.S.A. anlyJ

X B M World Trada Corporation
tJ21 Unitad Nation .. Plaza, Naw Yark, Naw York 10017
[Int,rnationall

I r+
• C'D .0.

:i'
c
en
~

.C)
:'0
.~

-'
.00
.0
·W
• I -'

