Systems

GC20-1803-1

IBM Virtual Machine
Facility/370:

BASIC Language
Reference Manual
Release 1 PLCH

This publication describes the BASIC language facility of
the IBM Virtual Machine Facitity/370 (VM/370). It
includes a precise description of the language as well as a
guide to creating and running BASIC programs under the
Conversational Monitor System (CMS) of VM/370.



This edition is a major revision of,and makes obsolete, GC20-1803-0. The
document has heen reorganized to allow easy access to CP/CHS usage
information, BASIC language structure and elements, and reference
information. Changes herein also reflect changes and enhancements of the
BASIC language processor.

This edition corresponds to Release 1 PLC 5 (Program Level Change) of
the IBM Virtual Machine Pacility/370 and to all subsequent modifications
until otherwise indicated in new editions or Technical Newsletters.

Changes are periodically made to the specifications herein; before using
this publication in connection with the operation of 1IBM system, refer
to the IBM System/360 and System/370 Bibliography, GA22-6822, and the
IBM System/370 Advanced Function Bibliography, GC20-1763, for the

editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, address comments to: IBM
Corporation, VM/370 Publications, 24 New England Executive Park,
Burlington, Massachusetts 01803. Comments become the property of IBN.

(c) Copyright International Business Machines Corporation 1972, 1973



PREFACE

This manual serves as a reference guide to the BASIC language facility
of VM/370. This BASIC language facility consists of the CALL-0S BASIC
(Version 1.2) Compiler and Execution Package and, therefore, has
complete programming language compatability with CALL-0S BASIC Version
1.2. The material is organized to provide a concise definition and
syntactical reference to the various elements of the language. Examples
are provided.

Major subjects include program structure, elements of statements, input
and output, rrogram statements, and the CMS BASIC command. Program
limits and error messages are covered in the appendixes.

Although some operating information is included, this book is not a
complete description of the CMS facilities which will be used by the
BASIC programmers. It contains general information needed when writing a
VM/370 BASIC program.

Prerequisite Publications

Because the VM/370 BASIC user enters his programs and data using the CHMS
environment, three manuals are required for effective use of VM/370
BASIC:

IBM Virtual Machine Facility/330:Command Language User's Guide, Order
No. GC20-1804

Virtual Machine Facility/370:Terminal User's Guide, Order No.
0-1810 .

Corequisite Publications

IBM Virtual Machine Facility/370: Command Language User's Guide, Order
No. GC20-1804

VM/370 BASIC Reference Summary, GX20-1924

In this publication, the term "3330 series" is used in reference to both
the IBM 3330 Models 1 and 2 Disk Storage Facility and the IBM 3333 Model
1 Disk Storage and Control,

Information in this publication (if any) about the CMS Batch facility or

for the IBM System/370 Models 165 II and 168 is for planning purposes
only.

Terminal Eguivalence

Terminals which are equivalent to those explicitly supported may also
function satisfactorily. The customer is responsible for establishing
equivalency. IBM assumes no responsibility for the impact that any
changes to IBM-supplied products or programs may have on such terminals,






Summary of Amendments
for GC20-1803-1
VM/370 Release 1 PLC 5

Addition of the following VM/370 Program-
ming Functions
Specification Change
® The Virtual =Real Performance Option
® The Dedicated Channel Performance
Option
® The Virtual and Real Channel-to-Channel
Adapter

Support for the following devices
Specification Change
® The IBM 3211 Printer

® The IBM 3410/3411 Magnetic Tape
Subsystem

® The IBM 3330 Disk Storage Model 2

® The IBM System/370 Models 155 II
and 158

Availability of Programs that Execute
under CMS

New Program

The IBM Program Product PL/I Optimizing
Compiler is now available.

Miscellaneous Changes
Maintenance: Documentation Only

Additions, deletions, and corrections too
numerous to list are included in this revision.
Generally, the document has been rewritten
and reorganized to allow easy access to
CP/CMS usage information, BASIC language
structure and elements, and reference
information.






CONTENTS

INTRODUCTION . ccocceccccasescccscccevsassscccscsnoscscsnoncecnsscsascncscsoel
Syntax ConventiONS.ceeecceccsscsscccsscscsacsascnosenncssccscsscscancnsescsl

PART 1: PROGRAMMING IN VM/370 BASIC.ecececoncecsscesacssosceccncsasanaced
USING BASIC UNDER VM/370 CMSececececsensccscscsacsncscanscscsncsassoncnnessll

CP and CMS fOor BASIC USEISeecsvceccssccsccscscscsscssassscccncsscccstl
CMS FileScaeececsccecacensacovnsnncsasascacscssasscsoscsscsanasssasncccacsns 12
The CMS EQitOTececcaccosscasccvnossscscncscsscsscancccsncscasensnaasascsnsnael?
The BASIC CONMMANdeeveveccccenscsnccsaaccccsccsscsansasccsssascnassanas 2
A Sample Terminal SeSSiONcceccccesccssccsscsscscncacsnssesccnasenansall

REefereNnCeSccecevcnavenscvscannsccscssosnsccsnscssoscsccnsnenvscensosanscea il

PART 2: THE VM/370 PROGRAM STRUCTURE AND LANGUAGE ELEMENTSeccecececss15

VM/370 BASIC PROGRAM STRUCTURE.«ccccacacccccecsascsancscocsnccnscsascossnasct?
The BASTC Statement LinNC.ccecececscesceccsccsscecccsconcessccaconanacnaall
The Line Number FielAuececesscecncscccssscssnsansncsscnscncsocccanel?
The Statement Fieldecceescceccccsaccscscscccacsancossnssencssscsncanall
Use of Blanks and COMMASceceveccnsascecsossccscnsscsssacnssssssesncsssnasl8
The BASIC Print LiN@e.ccccsccsccsccsscccecnsscscsccscsncsscsaccsnncnasl8
Executable and Non-Executable StatementS..ccecececcceceasasccccacncal8

BASIC LANGUAGE ELEMENTS.cevccccnsconsacacvsccsscsccssonncccsncssccosascnnssse 9
VM/370 BASIC Character Set.cecescccscccsccoscscsscccosssoscsssassssseeld
COMMENtSeeveceevssscsccscncncscossoscscssscsoscsccscsnscsancsssccsasacssesscssnscnee 9
Symbols Used in BASICececocrcsvcsccccscscssscsscsncnnnassssvcsnssansoveanld
Writing Constants in BASIC.cececsscccsccsasanncsccsasscsscscsssssessl
Writing Variables in BASICececccceccsacsccscscacscsncansccsscocscnsesnselll
Matrix ManipulatiONeecccecescccesecsaccscccsccosssnosanccassnccscssacsnsnceall
FUnctionsS in EASICececvacccccacsscsccssvansncscscsccscccssassssnsscssonsasoseall
Intrinsic FUNCtiONSeccecvecosescccosncsvsccssccnnccnssssnsessocsnsnslB
User-Defined PFUNCtiONSececcaccccsccosncscccccncsccansscaccsonsosncandeld
MatriXx FUNCLiONSecsecccevcccscscsccccssccsccncsnsoscccsescasencsescess30
VM/370 BASIC OpPeratOrSceecccccnccsscscccccvssocncnccsnsocsscssanssssnse30
Unary OperatoOrSecceccecccscscccscscsovccsnsscnssccssccsacnssanscscnsssscss30
Arithmetic OperatOrS.cceccecescscscccscsscsccsscsssscncsansscennsscacsss3l
Relational OperatoOrS..cceccsscccccsesccsscscscaascssasccsssscsscsasscsnssaell
Writing Expressions in VM/370 BASICe.eseecccccccacscccscsnsccscsoncscsess3l
BASIC Input and OutpUt.cececececsccsccocsscsososccassacccccenassncsscnsall
Internal SpecificatioN.iececeiscececcccccvssccnceencenssnsannoncasnassl2
Terminal Input/OUtpUt.eccecececcccccocssccccscaccssccseasocsccanscsncscnel2
Disk INput/OutpuUt..cecevccecsceccscsccecnncancsccncsacssssnscennsesase3lt
File Al1l0CAtiONecccccccsvsocseccsccccncccccsccnccccsscsssoscscsnccssascelb
Data File StOrag@.ccecacccscccscccncssosncsccncscsasccscsncosncsancnsssealdl
Ptogram Chaining--”....l.QOl...QII...l...‘.-..................I.....B?

PART 3: REFERENCE INFORMATIONuvccecacncccosnscascscssscaccsecncsscnsansel’d
FUNCTIONAL CLASSIFPICATION OF BASIC STATEMENTS.ceecoecscoccvescacossacclil

SUMMARY OF BASIC STATEMENT Secccccscccsacecssocccsasccsencsoncsscscsncsoncocncseld?
CHAIN StatemenNtecccccccececssacnacosccsnaccessascsonavcsccccsoscssnssscscanseli2
CLOSE StatemeNtecceccesacecvccsavcscscncasnssacsncsccacsscscscscscsnssssscscascsell
DATA StatemeNt.ececcccssccscconcsscossccscasssonasosncscssnscvncncsccssccscaseseolll
DEF Statement.ceccevescecscencscsscencosccscccsncossnsccanconscssnesoscccccsansll
DIM StatemMeNtececececccsnenscscsssnccncocscsocscscscncnocscscssssssvcssocnocald
END StatemeNt.ecececccccccescescscscsccncsocacsnsssccssscossssascsassscssnsneseld



FOR Statement.ceerecescescnrsoesscsacacsncsvenancsscsasascneanccncssacsssescceclibd
GET StatemeNtecececceenccesessencsscccsncassscasancsssssscsnssssceccsccsnld?
GOSUB Statemente . cececeacccucncanssasveancscscsasanccsccsccssssusasssasscocsccliB
GOTC StatemeNt.ceccecacesnecssssccnsasnsacsocsncaascscnnnoscnssscassscsaseald

The Simple GOTOusscveacaccncaccasacsnasassnassescenssscsscccananscassasltd

The COMPUtEd GOTOcmcecnccsonccccanasccsnscsccssscccansnsnnsccsoscecald
IF StatemeNtecececccsscsacsncsccsocsnsssssscsssassnasascscsscoscsascssccsceodl
IMAGE StateleNteiceaesoneconcesscscccoonnscacncsncsssacoscccsnssosenssossnsedl
INPUT StatemneNtececesessevencnscsccononsssosnsenansscscscascancsessssscncescl
LET StatemeNt.escececcessasccenccscesssscnncesacscsscocsncncosicncssncssasncescdl
Matrix Addition FOIMAt.eeceescecscscsacacncncscsncsssoncccssocsanccnssscsacsl
Matrix Assiqgnment Statement FOrMatececceecencecesvscaccacssasosvecsvaaaaa’d
Matrix CON FUNCtiONeeccaceccncncsacancccsssncscccssssssacseaccsnsssacccsnasnsadd
MAT GET StateMeNteassecccocseaveccccscaansscssnosansnssosansnvesanccccssscsassdd
Matrix IDN FUNCLiONeceececvcccoanscsccacencssnesncncsncsscsacsccsnsncscnsocccaedl
MAT INPUT StatelMeNtecececcsacscaccscanccassncennscssnsnscscannccsvasassncsas/
Matrix Inversion FUNCtiONiceenescoesecnssssasccacancsscsssnsncancoanaescd8
Matrix Multiplication FOrMaAt.cecceeccecescconcscccccacscsccancacsoccscnccasdd
Matrix Multiplication (scalar) FOIMat.ececcucaeccoccscccaccscscccnnnsucansed9
MAT ERINT StatemenNt.cecececcsceacsccnsonsesssocssssoscssssceccacccsanscccsascbl
MAT PRINT USING StatemeNtecescscnceccceasonccsccossasnsscsncscscscccasseeb0
MAT PUT StatemeNtceececacesccscancescocacsascosnsossconnssnseassacsscscesneabl
MAT READ StatemeNtecccescacssncsassscsescscssscscsnsnsasccsancnasancscesesnaebd2
Matrix Subtraction FOIBat.cceavesccccananccascsccasasnasnnsaanscscccnscsaseb2
Matrix Transposition FUNCtiON.eeecccceccccveccascsccancaccncccanncaseeeb3
Matrix ZER FUNCLiONeceacacccncacacsacscenacncscnsnsscsanncsasasscnsascseb3
NEXT StatemeNteecenceencscscoscsasnscsoasacsanscacsesscsnncsssssssaanseccscebdl
OPEN StateméNteveccescnsseacosnsarcanscssnosscacssscnscssassscoaccsssvsnnsassb)
PAUSE stateukent...l.I.IIC-.I...'....C.‘Q.lQl'QQ'.QC....Q..l.Q'.II'...66
PRINT StateneNteceecesecsecocccsssasananasncassasaasasncscscsscscsassaaseabb

Print Lines and Print PFPieldS.eccaccesccascsncscsccscnsccassassncanaceab’

Print ZONeSeecceecsscsccscennccssasacsssccaccstnsssasssescvasscsnsnsesbl

Rules for Using Print Fields and Print ZoNE€S.eccciceccscceccascsacasesb?
PRINT USING StatemeNt.ccsceccasscccscceccscccscsscccnscosncsassssencssssnesbd
PUT StatemeNtecececcsceccscacscanascsscsssassasacsossascsnsoascsssscconscscescsll
READ StatemeNt.eceececccsencssanncscsassscacnonscscscsasnscavccscsscsscascsscsnsell
REM StatemMeNteccecseascsccosansocaascsccsancsaasaancsscscscscensssscscccscsnnocsll
RESET StatemeNtecceccecceaccscencocscnansssscscacscsncscoscscncssscscscscccccnnsell
RESTORE StatemeNteccecascececsccnncssosasssccssccscsccscsnsnsscsssasencoscsnald
RETURN StatemeNtecececcsccancesesnsscosssncsscsnsscoasessssossnssccsscnccscansld
S5TOP Statement...........................-....--.-.....-......-...~..7u
USE StateMeNt.cceccacccecsasasacncecnsancnsossscccascsssacasscsscacssssaclD

APPENDIX A: VM/370 BASIC PROGRAM LIMITSecacecccccsvoccccaccssccnscnnall
User Program LimitS.cececsceacececcecsacacsscnuseacescscncosccocnncacl?
Intrinsic Function LimitS.cecececceccscsccvoscccesoncscssncscoacencsal8

APPENDIX B: VM/370 BASIC ERROR MESSAGESccceccesccccvcacccscsascncacsl?d
Compilation ErTrOr MeSSAgeSccecsccesscccsccscccsaccsccceascscscsccsnasecll
Execution EITOr MESSAQgeS.ucaccccssascccnacosccsccascsasccaccsncacccsald/

APPENDIX C: VM/370 BASIC SAMPLE PROGRAM..ccececccnaccsancossccccsccseadl
Railroad Tariff CalculatioNeeecceacecsssancssonscsoscaccsssscacncnsadl
Statement Of ProbleMececevcacsccesncsccncossccscsccncsancssccscncccccensedl
Program VariableS.cececceceencaccssccsessccacssccsecscccaccscacscasoesecad?
Rate Base Table and Applicable RateS.cccsccccesscaccacsasscsscosacesnsd3
TeSt Dat@ecescescscasencecosnascsccascesacscsscesccsasoacsascsssascaasccnseedd
Progral FlowChart..c.eceevevneecseseacaceascacascsnaconsessscscasanseadt
Program LiStinNgeeeececeecenecscaceveacacsssnnnsscacsvsassoscncnscanaed?
Program Output...........u............-.....-.....................98

INA@Xceaacsecsnsencssasncansnnssssanssssancsscsssasssscccasccsssasseelll



INTRODUCTION

The BASIC language is a high level programming language designed to be
used in an interactive environment. BASIC is, as its name implies, a
language that can bLe learned quickly and used conveniently in both
scientific and commercial applications.

BASIC provides facilities for evaluation . of ordinary algebraic
expressions containing various types of constants and variables, a
variety of input/output methods, and many intrinsic (built-in)
functions. It is powerful problem-solving tool when used under the IBM
Virtual Machine Facility/370 (VM/370) Conversational Monitor Systen
(CHS) .

For ease of use, this manual is divided in three parts. Part 1 tells how
to use the BASIC 1language in the VM/370 CMS environment. Part 2
describes the elements of the language, that is, the structure and
facilities of the language. Part 3 is reference information: A chart
summary of all the statements of the language and their uses, and an
alphabetical listing of all of the statements of the language with their
formats and usage rules.

SYNTAX CONVENTIONS

The following conventions are wused in this manual to describe the
formats of VM/370 BASIC statements:

e Uppercase letters, digits, and special characters must appear exactly
as shown.

e Information in lowercase letters must be supplied by the user.

e Information contained within braces {} represents alternatives, one
of which must be chosen.

e Information contained within brackets [ ] represents an option that
the user can onit.

e An ellipsis (a series of three periods) indicates that a variable
numker of items may be included in a list. A list whose 1length is
variable is specified by the format x(1), x(2), x(3), ... x(n)
indicating that from 1 to n entries may appear in the list.

e The appearance of one or more items in sequence indicates that the
items, or their replacements, should also appear in the specified
order.

e A vertical bar | indicates that a choice must be made between the
item to the left of the bar and the item to the right of the bar.

Thus , the format description
MAT GET [usif,Jm [(d [,@ DIm[(@ [,d D3recerm[(@ [,4 D]
1 11 12 2 21 22 n n

1 n2
indicates that:

Introduction 7



o MAT GET, the colon or comma, and succeeding commas and parentheses
must appear as needed;

e The user may enter a value for the variable represented by u or £,
and for one or more m(d,d) specifications;

o TFRither a u or £ value (but not both) may be specified, and neither is
required;

o Use of (d,d) with each m specification, and of the second 4 within
each (d,d) is also optional.

8 VM/370 BASIC Language Reference Manual



)
|
)
=]
[ Y

.o

PROGRAMMING IN VM/370 BASIC

Part 1 of this manual describes the VM/370 environment in which BASIC
programs may be coded.

This part is meant for use by those programmers who are not familiar
with the interactive terminal environment provided via CMS. It is,
therefore, brief and contains only enough information to use the VM/370
BASIC language processor. All of CMS facilities are described in the IBM
Virtual Machine Facility/370: Command Language User's Guide, Order No.
GC20-1804.

Programming in VM/370 BASIC 9






USING BASIC UNDER VM/370 CMS

The VM/370 BASIC language processor runs under the VM/370 Control
Program (CP) and the Conversational Monitor System (CMS). CP is the
control program that controls the VM/370 system resources. CMS 1is an
operating system that provides a comprehensive set of conversational
facilities to a single user, among them the VM/370 BASIC language
processor.

CP AND CMS FOR BASIC USERS

The V#/370 BASIC programmer uses the facilities of both CP and CMS when
he enters his BASIC progran.

The CP facilities are accessed by issuing the LOGIN command. This
command connects the terminal to VM/370, which permits access to CHMS.
It takes the form:

login userid

- —— o -
e — —

where userid is the user identification code that identifies the user

to the VM/370 systen.

If the userid is recognized, the system responds by asking the user for
his password.

After the userid and password are entered correctly, the user can access
CMS by means of the IPL command, which takes the form:

ipl sysnanme

o
o o —

where sysname is the name of some VM/370 operating system. In this

case, the user types 'ipl cms', which loads his CMS virtual
machine.

once in the CMS environment, the user can begin coding his BASIC program
using the facilities of the CMS EDIT command, When the program is
complete, it can be executed using the CMS BASIC command.

The sample terminal session at the end of this section shows how some of
the CP and CMS commands are used.

Using BASIC Under VM/370 CMS 11



CMS FILES

In VM/370, a collection of data is called a file. The rules for
creating and naming files can be found in the publication IBM Virtual
Machine Facility/370: Command Language User's Guide, order No.
GC20-~1804.

Files written to be executed by the BASIC language processor must have a
filetype of BASIC. These BASIC files are created using the CMS Editor,
that is, written in CMS EDIT mode.

THE CMS EDITOR

The CMS Editor provides the environment required for writing BASIC
programs. To use the EDIT command to write a BASIC program, the user
can type:

edit filename basic

P o o o

b = - =

where filename is the name of the program or data file being created.

All of the EDIT subcommands are available for creation and maintenance
of files (for example, INPUT, CHANGE, IMAGE, TYPE, SAVE, and QUIT).
Other EDIT subcommands are also available for use; see the publication
IBM Virtual Machine Facility/370: EDIT Guide, Order Wo. 6C20-1805, for
a complete description of the EDIT facilities.

When the BASIC program is complete, it must be saved using the EDIT
subcommand FILE before it can be executed. The FILE subcommand is
entered as follows:

file

o o

b o

FILE causes the program or data file to be stored on the user's primary
disk.

THE BASIC COMMAND

Once the program has been filed, it can be executed using the CMS BASIC
command. The BASIC command invokes the BASIC language processor and
takes the form:

12 VM/370 BASIC Language Reference Manual



basic filename { (LONG) ]

po
b o — — o

where filepame specifies the name of the file to be compiled and
executed. The file must have a filetype of BASIC and contain
fixed-length records of up to 256 characters.

(LONG) is the option for long-—form precision numbers. If not
specified, short form is assumed.

A SAMPLE TERMINAL SESSION

The following example represents a terminal session for coding a BASIC
program using the facilities of VM/370.

When the user switches on his terminal and hits the Attention key,
VM/370 responds and the terminal session begins.

vm/370 online
(press attention)
login user1
ENTER PASSWORD:

READY MESSAGE - - - - —
ipl cms

CMS 02/02/73 FRI 08.12.38
edit prog1 basic

NEW FILE:
EDIT:
input
INPUT:

10 N
BASIC
PROGRAM

60 .

(press return)
EDIT:

file

RS

Using BASIC Under VM/370 CMS 13



basic prog1

PROGRAMN

OUTPUT
R;
REFERENCES

The BASIC programmer is encouraged to reference the following two
publications to learn more about the functional capabilities of VM/370.
The complete EDIT facility is described in IBM Virtual Machine
Facility/37(Q: EDIT Guide, Order No. GC20-1805. All other commands are
explained in the IBM Virtual Machine Facility/370: Command Language
User's Guide, Order No. GC20-1804. Some of the commands most frequently

used by the BASIC programmer are listed below:

Conmand Action

ACCESS Sets up a device to write and/or read
EDIT Enters and modifies a file

ERASE Deletes a file from a read/write disk
LISTFILE Types file statistics to the terminal
LINK Attaches a device to a virtual machine
MOVEFILE Moves files from one device to another
PRINT Writes a file to the printer

PUNCH Punches a file to the card punch

QUERY Obtains data about system characteristics
READCARD Reads a file from the virtual card reader
RELEASE Frees up a device from the current read/write configuration
RENAME Changes the name of a file

SET Establishes system characteristics

TYPE Lists a file at the terminal

14 VM/370 BASIC Lanquage Reference Manual



HE ¥M/370 PROGRAM STRUCTURE AND LANGUAGE ELEMENTS

This part of the manual is in two sections: a description of the

structure

of a

VM/370 BASIC program and a description of the BASIC

language elements.

Using BASIC Under VM/370 CMS 15






BASIC PROGRAM STRUCTURE

This section describes the way in which the BASIC program is coded under
vM/370 CMS.

The procedure for coding a program is begun by using the CMS EDIT
command to create a new file. Once the file is created, the coding can
begin by typing in statement lines at the terminal.

Structurally, the statement line is coded in two fields. Logically, the
statement can be either executable or non-executable.

'HE BASIC STATEMENT LINE

The BASIC statement 1line is structured in two fields: the line number
field and the statement field, as shown below:

Ll L]
| | |
{1 10 | LET X=2%Y + 7/% |
| | |
L i |
Line Number Statement

Field ' Field

THE LINE NUMBER FIELD

Each BASIC program statement must be preceded by a line number. If the
program is being coded in the EDIT INPUT mode, the line numbers are
supplied automatically.

Line numbers may be entered in any numeric sequence; the processor
sequences all the statements before it executes a progran.

The line numbers may be up to five characters long. The 1line number
may not contain embedded blanks.

Throughout this text, the term line number is used to identify the

number preceding each statement. This term is synonymous with statement
number as used in other discussions of the BASIC language.

In all of the discussions of statements in this publication, the line
number is understood as a part of the 1line and is therefore not used in
the format specification.

BASIC Program Structure 17



THE STATEMENT FIELD
The statement field contains the actual BASIC statement being entered.

This field must be separated from the line number field by a blank., If
the program is in the EDIT INPUT mode, the line number and the required
space are printed automatically.

The statement field is terminated when the user hits the return key or
vhen he uses the CMS logical line end symbol (the commercial pound sign
*)-

USE OF BLANKS AND COMMAS

Blanks are, in general, ignored by the BASIC language processor. They
are inserted mainly to improve program readability.

However, in certain cases blanks are required. RBlanks are required to
separate the line number and the EASIC statement. Also, in a statement
that requires operands, blanks must be entered to separate the operation
from the operands.

Commas are used to separate operands.

THE BASIC SOURCE STATEMENT LINE

The source statement 1line is a line that contains a complete BASIC
statement. A source statement line is terminated when the programmer
hits the return key or when he enters the CMS logical line end symbol
(the commercial pound sign #).

There is no means for continuing a source statement line in BASIC.

A source statement line may contain only one statement.

EXECUTABLE AND NON-EXECUTABLE STATEMENTS

Logically, BASIC statements can be either executable or non-—executable.
An executable statement specifies a program action, for example X=5. A
non—-executable statement provides information necessary for program
execution, for example DATA 1, 2.5, 6E-7.

Executable and non—-executable statements may be mixed.

Transfer of control to a non—executable statement causes control to pass
to the next executable statement.

18 VM/370 BASIC Language Reference Manual



This section includes descriptions of the BASIC language elements. The
major topics are: symbols used in the language, the functions defined as
part of the language, how to write expressions in BASIC, Input/Output,
and program chaining.

VM/370 BASIC CHARACIER SET

A BASIC program is written for use under the CMS subsystem of VM/370
using the following character set:

1. letters: ABCDEFGHIJKLMNOPQRSTUVWIXYZOD?EH#S$
2. Digits: 0 12 3 456 789

3. special characters:

! Single quote * Asterisk (Multiplication)
®  Double gquote / Right oblique (Slash)
. (Division)
< Less than ** Exponentiation
<= Less than or egual to ( Left parenthesis
= Equal to ) Right parenthesis
=> Greater than or equal to ! Exclamation mark
> Greater than , Comma
<> Not equal to . Period
& Ampersand ; Semicolon
+ Plus : Colon

Minus Blank
: | Vertical bar

Any valid terminal character not listed is a non-BASIC character and may
be used only where specifically noted.

Comments may be coded anywhere in a BASIC program using the REM
statement, for example:

10 REM THIS IS AN EXAMPLE STATEMENT

If execution is directed tc the line number of a REM statement, control
passes to the next statement in sequence.

SYMBOLS USED IN BASIC

There are two types of symbols in BASIC: constants and variables. A
constant is a symbol whose value does not change during progran
execution. A variable is a symbol whose value may change during progranm
execution.

BASIC Language Elements 19



This section describes the various types of BASIC constants and
variakbles.

WRITING CONSTANTS IN BASIC

There are three types of constants in VM/370 BASIC: numeric constants,
internal constants, and literal constants.

Numeric Constants

There are three types of numeric constants: integer, fixed-point, and
floating-point. Also, there are two basic forms in which formatted
numeric constants can be entered in a program: short-form and long-fornm.

Decimal numbers are printed in either fixed-point form (F format) or
floating-point form (E format).

SHORT-FORM INTEGER NUMBERS: An integer format (I format) is used to
print integer values. Up to eight decimal digits may be printed for each
short-form integer whose absolute value is 1less than 16777216. For
exanple:

17
203167
5
9993456

SHORT-FORM INTEGER NUMBERS: An integer format (I format) is used to
print integer values. Up to eight decimal digits may be printed for each
short-form integer whose absolute value is 1less than 16777216. For
example:

1.2076
+783347
-.003424

SHORT-FORM FLCATING-EOINT NUMBERS: The short-form floating-point format
(E format) is used to specify numbers whose magnitude is less than 10-#
or greater than 10?. The number takes the form:

[(t]d.ddddEtee

where 4 specifies a digit
€ specifies an exponent

Equivalent
E_Format P_Format I_Format —_Number_ _
~1.70834E+02 -170.834 =171 -170.834
5.43311E-05 +.000054 +0 +.000054331
2.17787E+00 +2.17787 +2 +2.17787
-6.72136E-02 -.067214 +0 -.0672136
9.68E-07 .000000 +0 +.000000968

20 VM/370 BEASIC Language Reference Manual



If the exponential notation (E format) is wused, the value of the
constant is equal to the number on the 1left of the E multiplied by 10
raised to the power of the number following the E. The magnitude of a
numeric constant must be less than 1E+75 and greater than 1E-78.

LONG-FORM NUMBERS: An I format is used to print an integer value up to
i5 digits in length whose absolute value is less than 1015, using either
the PRINT or the PRINT USING statement.

Decimal numbers written in F format are used to print decimal values of
up to 15 digits with decimal point. F format long-form numbers may be
printed using only the PRINT USING or MAT PRINT USING statement.

Decimal numbers written in E format are printed using either the PRINT,
PRINT USING, or MAT PRINT USING statement.

The PRINT statement is used to print a value with a sign, a decimal
point, up to ten decimal digits, the letter E and a signed exponent.
With the PRINT USING statement, a value having a sign, a decimal point,
up to 15 decimal digits, an E, and a signed exponent can be printed.

PRINT FORMAT: The print format that applies when a PRINT statement is

used depends on the value to be printed. I, ¥, or E format will be
selected as follows.

BASIC (Short-Form) BASICL (Long-—Form)

r L}

{ | |
r | | |
i I format | x an integer, | X an integer, |
| | Ixt < 16777216 | Ix} < 1E15 |
| | | |
| F format | X noninteger, { none |
| | .1 < 1x] < 1E6 | |
| | | |
| E format | other numeric values | other numeric values |
1 ]

Alternatively, the user may enter PRINT USING or MAT PRINT USING
statements to format print lines.

ADDITIONAL CONSIDERATIONS: It 1is not possible to exactly represent all
noninteger decimal numbers in floating-point form. VM/370 BASIC uses a
“truncation-in/rounding-out" algorithm for decimal/floating-point
conversion. That is, when an input value is converted to floating-point
form, excess fractional digits are dropped so that the value to be
stored fits in either one word or two words (depending on whether
short-form or long-form arithmetic is to be used).

When the floating-point number is reconverted to decimal for output, it
is rounded up, to compensate for any fractional value discarded earlier.

For most applications, decimal/floating-point conversion will cause no
problems. However, the difference between decimal numbers and their

BASIC Language FElements 21



floating—-point approximations as accumulated during a series of
calulations may be significant.

This effect can also be observed when using the INT function.
The user can provide for calculation differences by any of several
methods. For example, he can:

1. Try running his program in BASICL to obtain greater precision.

2. Force rounding on input by adding a very small decimal £raction to
each input value.

3. Use multiplication to scale all numbers to integers prior to
calculation and then divide to position the decimal point for output.

Assume that a VM/370 BASIC program has been written to accept a decimal
value as input from the terminal and add that number to itself
repetitively. Such a program is shown below.

type test basic

10 INPUT A '

20 FOR I=1TO11

30 B=B+A

40 NEXT I

50 PRINT B

60 END

Now assume that the decimal fraction .3 is provided as input. If the
program is executed using short-form floating-point arithmetic, results
are as shown below.

basic test

?.3

3.29999

R;
To avoid this truncation error, any of the approaches described above
can be used, as shown by the following examples.

(1) Try running the program in long-form precisicn

basic test (long)

?2.3
3.300000000E+00

R
(2) Porce rounding on input
basic test

?.300001
3.3

R3

22 VM/370 BASIC Language Reference Manual



(3) Scale numbers to integers for calculation (in this case, by
modifying program statements before running the program)

15 A=10%A
50 PRINT B/10

basic test

Internal Constants

Three internal constants are provided in VM/370 BASIC. They represent
Pi, e, and the square root of 2. The names of the internal constants
may be used in calculations where the values of the constants are
needed. They are called &PI, &E, and &SQR2. The values inserted by the
system are:

T 1
| Name | Short-form Value | Long—-form Value |
| |
] &§P1 | 3.141593 | 3.141592653589793 |
| &E I 2.718282 | 2.718281828459045 |
l ESQR2 | 1.41u214 | 1.414213562373095 |
| N d

For example:
10 LET X=&PI*Y (2)

20 LET R=&E+U*Z**3
30 LET Y=6SQR2*C**y

Literal Constants

A literal constant is a character string enclosed by a pair of single or
double quotation marks. The two general forms of a 1literal constant
are:

"[c. .o ]l'

fceoa ]
where ¢ is any character.
A single gquote may appear in a character string bounded by double
quotes, and a double gquote may appear in a character string bounded by
single quotes. However, when a character string contains the boundary
character, it must be identified by two consecutive boundary characters.

The following examples illustrate how character strings may be
represented as literal strings:

BASIC Language Elements 23



Character_String Literal String

ABCD "ABCD" or *ABCD'
ABC'D “ABC'D" or 'ABC''D'
ABC"D "ABC""D" or 'ABC"D'

WRITING VARIABLES IN BASIC

A variable is a symbol whose value may change during the execution of a
program. In BASIC, there are two general types of variables: simple
variables and array variables.

Simple Variables

There are two types of simple variables: simple numeric variables and
simple alphameric variables, as explained below.

SIMPLE NUMERIC VARIABLE: A simple numeric variable is named by a letter
{or a character from the extended alphabet) or a letter followed by a
digit. Examples are:

A, B1, @, %4, $9
A simple numeric variable can be assigned only a numeric value; the

initial value of all simple numeric variables is zero.

SIMPLE ALPHAMERIC VARIABLE: A simple alphameric variable is named by a
letter followed by the character $. Examples are:

A$, B$, X%
A simple alphameric variable can contain only an 18-character literal

value; the initial value of all simple alphameric variables is 18 blank
characters.

Arrays and Array Variables

An array is an ordered set of data members which may be one-dimensional
or two-dimensional.

There are two types of arrays in BASIC: alphameric arrays and matrixes
(also called numeric arrays).

Arrays are named by means of array variables. Alphameric arrays are
named with a single letter followed by a $. Matrixes are named using
single letters.

REFERENCING ARRAY MEMBERS: An array member is referenced wusing a
subscript array name in the form:

24 VM/370 BASIC Language Reference Manual



arrayname (dim1{ dim2])

o -
b e

where arrayname is the name of the array being referenced.

dim1 is the dimension specification for row number.
din2 is the dimension specification for column number.
SUBSCRIPT EVALUATION: Subscripts (dimi) are expressions evaluated in

floating-point arithmetic and then truncated to an integer. For
instance, 3.61727E+00 would be truncated to the integer value 3.

The number of subscripts used to reference an array member must egual
the number of dimensions for the array.

The maximum value of the subscript number must be within the bounds
defined for the array.

. A matrix is a numeric array named using a single letter.
y be as many as 29 arrays in a VM/370 BASIC progranm.

A matrix may have one or two dimensions.

A matrix may contain only numeric values; the initial value of each
numeric array number is zero. Examples are:

40 GET I(10,12)
60 LET J(I)=A(K)*R
100 PUT L (*)

Yor more information on matrixes, see the section "Matrix Manipulation,"
below.

ALPHAMERIC ARRAYS: Alphameric arrays are named by a single 1letter
followed by a dollar sign and may have only one dimension.

Alphameric arrays contain 18-character members whose values are literal
constants; the initial value of each alphameric array member is 18
blank characters. Examples are:

40 GET I$(10)

60 LET J$(I)=A$ (K)
100 MAT A = B + C
140 MAT F = INV(G)

DECLARING ARRAYS: Array declaration is the process of allocating an
array to a user program. The name and dimensions of the array are
defined in the declaration.

BASIC Lanquage Elements 25



Arrays may be defined explicitly in the DIM statement or implicitly by
their appearance in a program. See the Reference Information Part of
this manual for rules on how to use the DIM statement.

An array is implicitly declared by the first reference to one of its
members (for exception, see MAT instructions), if the specified array
has previously not been defined by a DIM statement. The array is
declared to have one dimension (10) when a member is referenced by an
array variable with one subscript. The array 1is declared to have two
dimensions (10,10) when a member is referenced by an array variable with
two subscripts.

Array dimensions and referencing start at one. That is, an array having
one dimension (n) has 1n members, and an array having two dimensions
(m,n) has m times n members, where m specifies the number of rows and pn,
the number of columns.

The maximum storage capacity for arrays is 28,668 bytes. The maximum
number of members in various types of arrays is shown below.

|
short-Form | Long-Form | Alphameric

] 1
| |
| |
| | (
r d |
| Number of bytes | 4 | 8 | 18 |
| per array member | | | [}
| |
| Maximum number of | 7167 ] 3583 | 1592 |
| array menbers [ | | |
1 ']

MATRIX MANIPULATION

A nmatrix is a system of values arranged in a one-dimensional or
two-dimensional numeric array.

implicitly defined by its appearance in a program, before the matrix is

mahaesEs.an

used in any MAT operations. A matrix may then be redimensioned by
appending the new dimension (enclosed in parentheses) or dimensions
(enclosed in parentheses and separated by a comma) to any of the
following matrix statements:

Matrix CON function

Matrix IDN function

Matrix ZER function

MAT GET

MAT READ

MAT INPUT
When a matrix is two-dimensional, the first dimension defines the number

of rows, and the second dimension defines the nunker of columns.

26 VM/370 BASIC Language Reference Manual



Implicit Matrix Declaration

A matrix can be implicitly defined in a program by the use of a variable
name followed by two subscripts enclosed in parentheses. Implicitly
defined matrixes cannot be used in MAT operations.

Redimensioning A Matrix

Redimensioning of a matrix is the process of adjusting the contents of a
matrix into a new pattern of rows and columns. For example, adjusting a
5 by 10 matrix into a 2 by 25 matrix.

Redimensioning can neither increase the total size of a matrix nor
change the number of dimensions of the matrix. If redimensioning causes
the number of matrix elements as originally declared to be exceeded,
program execution is terminated.

Currently defined dimensions are observed when executing a matrix
statement., Redimensioning occurs bhefore the operation specified in the
statement containing the new dimensions.

The following example shows how redimensioning occurs:

120 DIM A (20,40)
130 DIM B(15,100)

o

250 MAT READ A(10,40)
260 MAT READ B(1,15)

Matrix A is originmally a 20 x 40 matrix. Line 250 redefines the limits
to 10 x 40. Similarly, matrix B is redefined from a 15 x 100 matrix to a
1 x 15 matrix.

Arithmetic With Matrixes

The BASIC 1language allows arithmetic to be performed using matrix
elements as operands. There are five arithmetic operations permitted:
addition, subtraction, multiplication, scalar multiplication, and
assignment.

These operations cause entire matrixes to be added, subtracted, etc. For

format and usage rules for using these operations, see the Reference
Information part of this manual. '

BASIC Language Elements 27



FPUNCTIONS IN BASIC

There are three types of functions in VM/370 BASIC: intrinsic functions,
user-defined functions, and matrix functions.

INTRINSIC FUNCTIONS

An intrinsic function is one whose meaning is predefined by the language
processor. These functions are provided to facilitate the writing of
VM/370 BASIC programs. The available functions wmay be used very much as
a variable would be used. For example, let

A
2

SIN(23)
LOG (X) + LOG (Y)

(]

The intrinsjic functions provided as part of the VM/370 BASIC language
are listed below. The allowable limits for arquments passed to these
functions are given in "Appendix A: VM/370 BASIC Program Limits."

Function Allowable Limits

SIN (x) Sine of x radians

COS (x) Cosine of x radians

TAN (x) Tangent of x radians

COT (x) Cotangent of x radians

SEC (x) Secant of x radians

CSC (x) Cosecant of x radians

ASN (x) Angle (in radians) whose sine is x

ACS (x) Angle (in radians) whose cosine is x

ATN (x) Angle (in radians) whose tangent is x

HSN (x) Hyperbolic sine of x radians

HCS (x) Hyperbolic cosine of x radians

HTN (x) Hyperbolic tangent of x radians

DEG (x) Convert x from radians to degrees

RAD (x) Convert x from degrees to radians

EXP (x) Natural exponent of x (e to the power x)

ABS (x) Absolute value of x (|x}|)

LOG (x) Logarithm of x to the base e (ln x)

LTW (x) Logarithm of x to the base 2

LGT (x) Logarithm of x to the base 10

SOR (x) Positive square root of x

RND (x) A random number between 0 and 1 (x is a

seed, if specified)

INT (x) Integral part of x

SGN (X) Sign of x, defined as: SGN(x) = -1 if x < 0
SGN(x) = 0 if x = 0
SGN(x) = +1 if x > 0

DET (A) Determinant of the square matrix A

Note: In VM/370 BASIC, Version 1.1, the RND function required an
argument, but that argument was not used. The same sequence of pseudo
random numbers was always generated. With Version 1.2, if an argument is
present, it is used as a seed for the pseudo random number generator. To
obtain successive numbers in this sequence, thus seeded, RND without an
argument should be specified. For example:

28 VM/370 BASIC Language Reference Manual



10 A = RND (6)

20 FOR I = 1 to 1000
21 PRINT RND
22 NEXT I

If the first reference td the RND function contains no argument, VM/370
BASIC will supply a random seed. Thus, RND, in Versicn 1.1 and 1.2, can
be summarized as follows.

r
|¥ersion 1.1 | Returns successive numbers of the one available
| RND(x) | sequence of pseudo random numbers.

Version 1.2
RND (x)

Returns the first number of a sequence of pseudo

random numbers; the sequence depends on the value

of x.

RND e When this is first reference to RND during this
running of the program:

|
|
|
|
|
|
l
| Returns the first number of a sequence of pseudo
| random numbers; the sequence depends on a system—
| suprlied seed.
l
RND | e When this is not first reference to RND during
| this running of the program:
|
|
|
|

Returns successive numbers of the sequence of
random numbers determined ky either means
indicated for Version 1.2, above.

b e e e . - — . —— — —

|
|
!
l
|
|
{
|
|
|
1
1
|
|
|
1
|
|
L

This change to the RND function in Version 1.2 is the only instance
necessitating user changes to certain types of instruction sequences in
existing programs, An instruction sequence such as the following may
currently exist in a VM/370 BASIC program:

100 A = INT(10%RND (X))
110 IF A = 0 THEN 100

This program will loop if compiled under VM/370 BASIC Version 1.2 if the
seed, X, is such that A equals zero. The RND function will be reseeded

with the same value of X at each execution of line 100, and A will
always be zero.

USER-DEFINED FUNCTIONS
A user—-defined function is one whose meaning is defined by the user via
the DEF statement. The user function is named by the characters FN
followed by a letter. For example, FNA(X) could be defined as:

10 DEF FNA (X) =24 3%X~5%X*%2
FNA(X) can then be used in the same manner as an intrinsic function.

Rules for writing and using the DEF statement can be found in the
Reference Information part of this manual.

BASIC Language Elements 29



MATRIX FUNCTICNS

There are five functions in VM/370 BASIC for use in manipulating
matrixes. These functions are: CON, IDN, 1INV, TRN, and ZER. For
information on how to write these functions and use thenm, see the
Reference Information part of this manual.

VM/370 BASIC OPERATORS

There are three types of operators used in BASIC for the formaticn of
expressions: unary, arithmetic, and relational. The lists below show
how these operators are written in VM/370 BASIC.

UNARY OPERATORS

Characters Meaning
+ the value of
- the negative value of

ARITHMETIC OPERATORS

a

+ Addition

- Subtraction

* Multiplication
/ Division

*% Exponentiation

RELATIONAL CPERATORS

Character Meaning
Less than
= Less than or equal

> Greater than

>= Greater than or equal
= Equal

<> Not equal

An expression consists of one or more numeric variables, numeric
constants, internal constants, and functions, together with wunary and
arithmetic operators. As noted below, parentheses may be included if
necessary.

Alphameric variables, 1literal constants, and relational operators are

30 VM/370 BASIC Language Reference Manual



not allowed in expressions.

An expression is evaluated by performing the indicated operations as
shown below. When these rules are not definitive, operations are
performed from left to right in the expression.

1. Operations within parentheses are performed before operations not
within parentheses.

2. Cperations on the same level are performed in the order in which
they appear from left to right in the expression.

Note: The expression A**B¥*C is evaluated as (A**B)**C -- not as
A%* (B*%C) .

3. Operations are performed in sequence from the highest level to the
lowest level. The priorities of operation are:

a. operations within parentheses

b. ** (exponentiation)

Ce * or /

d. + or -
Examples of expressions are:

A1l

-6.4

SIN(R)

X+Y-2

X3/ (-6)

= (X~ (X*%2/2) +x%% (y*2))
This last expression corresponds to the algebraic expression:

= (X~ (x¥%2/2) +X¥% (y*2))
Expressions resulting in an imaginary or mathematically undefined value
are not evaluated. The system generates an error message appropriate to
the function involved and terminates execution (see "Execution Error
Messages" in Appendix B). If an arithmetic exception is involved, the
system continues program execution after taking the specified action

(see "Execution Exception Messages" appearing in “Appendix B: VM/370
BASIC Error Messages").

BASIC IN

When using VM/370 BASIC in the solution of problems, it is often
necessary to be able to manipulate large groups of data. Groups of
associated data items are called data files. Methods of entering data
files into a BASIC program are:

1. Internal Specification

2. Terminal Input/Output

3. Disk Input/Output

BASIC Language Elements 31



INTERNAL SPECIFICATION

The internal specificaticn statements are READ, DATA, and RESTORE. The
use of the DATA statement causes data to be compiled into the progranm.
The data is stored with the program when the program is saved. The READ
and RESTORE statements utilize the data defined in DATA statements.

The DATA statement is used to create tables of data values in the
program. For example:

DATA 100.7, -23.2, 438.8, 201.3, 816.9, 537.8

The values listed after the DATA statement can ke accessed by the use of
a READ statement.

For example:

10 DATA 100.7, -23.2, 438.8, 201.3, 816.9, 537.8
20 READ X

30 READ Y,A

40 RESTORE

50 READ Z

Line 20 would cause the first value 1in the data 1list (100.7), to be
stored in the variable X. Line 30 would assign the second value in the
list (~23.2) to the variable Y and the third value (438.8) to A. The
RESTCRE statement in line 40 sets the list pointer back to the beginning
of the data list. Therefore, line 50 would assign the first value in the
list (100.7) to %.

DATA statements may appear anywhere in the program. Each time a READ
statement is executed, the next sequentially available data value will
be assigned to the variable(s) specified in the READ statement. This
will continue until the data 1list or lists are exhausted, or until a
RESTCRE statement is executed.

TERMINAL INPUT/CUTPUT
The statements used for terminal input/output are the INPUT statement

(in two forms) and the PRINT statement (in four forms).

INPUT Statement

The use of the INPUT statement allows data to be entered from the
terminal while a program is executing. For example:

10 INPUT H,W,L

When the line shown above is executed, a question mark (?) will print at
the terminal and the system will pause. The data must be entered into
the program. The values of H, W, and L are entered from the keyboard.
When the carrier return is depressed, the program continues processing,
using the entered values of H, W, and L.

32 VM/370 BASIC Language Reference Manual



MAT INPUT Statement

The MAT INPUT statement allows the user to enter data into matrixes
without specifying each element of the matrixes. For exanmple:

20 MAT INPUT A

When the statement shown above is executed, a question mark will be
printed at the terminal, and the system will pause. The data values for
the first row of the matrix A must be entered, separated by commas. Then
the carrier return must be pressed. Two question marks will be printed
at the terminal, requesting values for the next row of A. The user nmust
then enter values for the second row of A, separated by commas and
terminated by a carrier return.

Printing of gquestion marks and entry of a value by the user are repeated
until values have been entered for all rows of A.

PRINT Statement

el ESasSasos

The PRINT statement provides output from the program to the terminal.
For example:

20 PRINT 'THE VALUES OF H, W, AND L ARE'
30 PRINT H, W, L

Line 20 would cause the information enclosed within the quotes to be
printed at the terminal. Then line 30 would cause the current values of
H, W, and L to be printed.

PRINT USING Statement

The PRINT USING statement specifies data output using an IMAGE
statement. This allows control of the format of the printed 1line. For
example:

20 PRINT USING 100,H

100 :VALUE OF H IS ###
This statement causes the current value of H to be printed, in the
format specified by the IMAGE statement identified by line number 100.

(For further explanation, refer to the PRINT USING and IMAGE statements
in the Reference Information part of this manual.

e ARSas eaedmee e

The MAT PRINT statement prints the values of a matrix without the need
to specify each element of the matrix.

Consider a three-by-three matrix A with values as follow:

BASIC Language Elements 33



A(1l,1H = 11 A(1,2) = 12 A(1,3) = 13
A(2,1) = 21 A(2,2) = 22 A(2,3) = 23
A(3,1) = 31 A(3,2) = 32 A(3,3) = 33

MAT PRINT USING Statement

The MAT PRINT statement could be used to print the matrix with the
following statement:

50 MAT PRINT A

this would cause the values stored in A to be printed out in row and
column order:

11 12 13
21 22 23
31 32 33

The MAT PRINT USING statement specifies printed output of a matrix using
an IMAGE statement. The values of the ratrix are printed by row under
format control of the image statement. For example:

20 MAT EFRINT USING 100,R

-

.

100 :VALUES OF A ARE ## ## ##

This statement causes the current values of all members of the matrix A
to be printed by row, in the format specified by the INAGE statement
identified by line number 100. (See the "MAT PRINT USING Statement” and
"TMAGE Statement" in "Part 3. Reference 1Information" of this manual for
details.)

DISK INPUT/OUTPUT

A collection of related data items, treated as a unit, is called a file.
There are two types of disk data files in VM/370 BASIC: data files and
program data files.

Data Files

L2 Ay % 2

Data files are files created during execution of BASIC programs. These
files are assigned a filetype of BASDATA by the processor. Data files
have undefined length records of up to 3440 characters.

Data files may be created and accessed with the following program
statements and terminal commands:

34 VM/370 BASIC language Reference Manual



e GET statement

. PUT statement

L OPEN statement
. CLOSE statement

. RESET statement

The GET statement is used to transmit records from the data file to the
program. The PUT statement transfers data from the program to the data
file. The OPEN statement is used to activate a data file preparatory to
data transmission. The OPEN statement associates a data file reference
number with a named data file; the named data file is referenced by this
number in the GET, PUT, RESET, and CLOSE statements. For example:

10 OPEN 21, 'AFILE*, INPUT
12 OPEN 22, *BFILE', OUTPUT

0 GET 21: V, D, T, X, S, F
0 PUT 22: D, T, F

50 CLOSE 21, 22

Line 10 opens AFILE as input and assigns it to file number 21. Line 12
opens BFILE as output and assigns it to 22. Line 30 reads six data
values as input. The values are stored in the variables v, D, T, X, S,
and F, respectively. Line 40 writes output consisting of the three data
values from D, T, and F onto file number 22.

A file that has been opened is an active file. A CLOSE statement is used
to deactivate the file. Thus, the CLOSE statement in line 50 of the
above example causes files 21 and 22 to be deactivated. After a file is
closed, it cannot be referenced again until it is reopened.

The opening of a file may be implied in a GET or PUT statement. The
example above could have been written:

30 GET ‘AFILE',V,D,T,X,S,F

40 pUT ‘*BFILE',D,T,F

50 CLOSE 'AFILE','BFILE!'

A file can always be referenced bty its file name. It can be referenced
by a file number only if it has been opened explicitly.

If a file is closed and then reopened, the file pointer is reset to the
first record in the file. Normally, a file should be left open until all
necessary transmission is completed between the program and the file.

N

BASIC Language Elements 35



The RESET statement is provided to reset the file pointer to the first
record in the file, as required. Four files may be active at any one
time (that is, opened but not yet closed).

Program-Data Files

Program-data files are files created using the VM/370 CMS Editor. Record
format for program-data files is fixed with a record length of 80. The
filetype for program-data files is BASDATA, which must be specified by
the user.

The VM/370 terminal commands, line-entry techniques, and 1library
facilities used to create source program files are also used to create,
edit, and save program-data files.

File items for program-data files are entered using the following
format:

linenum constanti[ ,constant2,...]

n o — oy
e e

where linenum is the line number of the entry.

constant is a numeric or literal constant being entered in the
program-data file.

A program—data file cannot be used for output; that is, it cannot be
written or modified by a VM/370 BASIC progran.

Although a program-data file may be wuseful in various situations,
execution time and the disk space to store the data may be three times
greater than that required for an equivalent data file written by a
VM/370 BASIC progranm.

FPILE ALLOCATICN

Space allocation for data files is performed dynamically as records are
written. The 1limiting factor is the amount of space available on the
user's disk.

A program may specify a data file to be used with a program via the OPEN
statement. For example:

10 OPEN 4, 'AFILE?', INPUT
This statement would cause the data file AFILE to be attached to the
program as an input file. The file pointer would be set to the first

record in the data file. The file could then be accessed by a GET
statement in the progran,

36 VM/370 BASIC Language Reference Manual



DATA FILE STORAGE

Data records are stored sequentially in each data file. The storage
requirements for data items are:

1. Alphameric data items require 18 bytes.
2. Short-form numeric data items require four bytes.
3. Long-form numeric data items require eight bytes.

Each file can contain a combination of alphameric data items, short-form
numeric data items, and long-form numeric data items. Numeric data items
are preceded by two bytes which specify data type (short-form or
long-form) and number of subsegquent data items (255 bytes maximum in a
single block). Alphameric data items are preceded by two bytes that
specify data type and a length of 18 bytes.

Data records are stored in disk storage units. Many data records may be
stored in each storage unit. The maximum amount of storage in each
storage unit is 3440 bytes. The maximum number of storage units per file
is 3730.

PROGRAM CHAINING

The VM/370 BASIC user has the ability to chain one program to another
program in his user disk. This ability is provided by the CHAIN
statement, which terminates execution of the current (chaining) program
and initiates execution of a specified (chained) program. The CHAIN
statement may also be used to specify an argument whose value is passed
to the chained progranm.

The general form of the CHAIN statement is:
nnn CHAIN program—-name[ ,argument]
where nnn is the line number.

argument identifies the value to be passed to the chained
program. (See CHAIN and USE in the Reference Information part of
this manual.)

The length of the value passed to the chained program cannot exceed 16
bytes. It is truncated or blank-filled on the <right to 16 bytes when
passed to the chained progranm.

)
If a VM/370 BASIC program is to be 1invoked as a chained program and a
passed value is to be accessed by it, the chained program must contain a
USE statement. The statement may be placed anywhere in the program. Its
general form is:
nn USE parameter

where an is the line number.

=Sl

information (plus two rightmost blanks) will be placed in the

BASIC Language Elements 37



designated alphameric variable before the chained program is
executed.

The general procedure by which the VM/370 BASIC wuser initiates program
chaining is shown by the following example.

Note that the intermediate READY message, which would normally follow
execution of the chaining program, is suppressed.

Total central processor (CPU) time is accumulated and printed in the
final READY message.
type programa basic
10 PRINT *CHAIN FROM !
20 A3 = 'PROGRAMA'
30 CHAIN 'PROGRAMB', A$
40 END
R; T=0.09,/0.23 16:54:12
type programb basic
10 PRINT C$; ' TO PROGRAMB!
20 USE C$
30 END
R; T=0.06,0.20 16:54:33
basic programa
CHAIN FROM

PROGRAMA TO PROGRAMB
R; T=0.46/1.14 16:54:49

38 VM/370 BASIC Language Reference Manual



This part of the manual is designed as a reference aid and consists of
two sections: "Functional Classification of BASIC Statements" and
"Summary of BASIC Statements",

The functional classification simply delineates all the statements of
the language, classifying them in functional crder and giving a brief
definition of each statement.

The summary of BEASIC statements lists the statements of the language
(including functions and statements specified using operators) and
provides the syntax and rules for coding and using them in programs.

Reference Information 39



R SAA AR AL st

The charts below functionally group the statements that comprise the
BASIC language. A brief definition of the statement wusage is also
included.

Assignment Statements

Al
| LET | Assigns values to variables. |
| DEF | Defines user—function formats. |
L J
Internal Specification Statements
L} 1
| READ | Reads variables into a data table where they |
| | are associated with values defined in the |
| | DATA statement. |
{ DATA | Constructs a data table containing values to |
| | be associated with READ variables. |
| RESTORE | Resets the data table pointer to the first |
| | ditem in the table. |
L ")
Terminal I/0 Statements
L) Bl
| INPUT | Allows programmer to enter data into a pro- |
| | gram interactively. |
| PRINT | Prints specified print fields at the user's |
| | terminal. |
| PRINT USING | Prints a formatted print line defined in the |
| | user's program. |
| IMAGE | Allows user to edit dynamically computed |
| | values into print lines. |
L J

Array Declaration Statements

‘
| DIM | Allocates storage for named arrays.
L " ]

Disk I/0 Statements

OPEN
GET

| Opens a data file for input or output.
| Accesses a data file and associates the file
| data with variables.
PUT | Outputs data to a specified data file.
CLOSE | Closes a data file for input or output.
RESET | Resets a data file to the beginning of the
| file.

o o o —— — —
bt e e e ——

Program Chaining Statements

¥ 1
| CHAIN | Chains one program to another program. |
| USE | Enables a variable to be passed to a chained |
| | program. |
L 4

40 VM/370 BASIC Language Manual



Loop Statements

Ly A
| FOR | Defines a loop in a program. |
| NEXT | Defines the range of a loop. |
[ W ]
Branch Statements

r Ll
| GOTO | Directs execution to another place in a |
| | program. |
| IF | Defines a conditional statement. |
| GOSUB | Directs execution to a subroutine. |
| RETURN | Directs execution from a subroutine to a |
| | calling program. |
L 3

Matrix Statements

Matrix Addition
Matrix Assignment

Matrix CON Function
Matrix GET

Matrix IDN Function
Matrix INPUT

Matrix Inversion
Matrix Multiplication

(Scalar)
Matrix PRINT
Matrix PRINT USING

Matrix PUT

Matrix READ

Matrix Subtraction
Matrix Transposition

-
|

|

|

|

|

(

|

|

i

|

|

| Matrix Multiplication
|

|

|

|

|

|

|

{

|

|

| Matrix ZER Function
[

Causes elements of matrixes to be added.

Causes values in one matrix to be assigned to
corresponding elements in another matrix.
Sets all elements of a matrix equal to 1.
Reads values into a specified matrix.
Defines an identity matrix.

Allows data to be read into a matrix during
program execution.

Inverts the values in a matrix.

Causes elements of one matrix to be multi-
plied by elements in another matrix.

Causes elements in a matrix to be multiplied
by a constant.

Prints the elements in a matrix.

Prints the elements in a matrix in a format-
ted print line.

Writes matrix data onto an output file,
Reads data into a specified matrix.
Subtracts elements of one matrix from
another.

Transposes elements of one matrix onto
another.

Sets all elements of a matrix to O.

e o e s s o . — — . . — o — — -

Remarks Statement

1 ]

| REM

L

Used to document progranms.

Pause and Termination Statements

1 2 N
| PAUSE | Causes program execution to pause. |
| STOP | Causes program execution to terminate. |
| END | Causes program compilation to terminate. |
] o ]

Reference Information 4

1



SUMMARY OF BASIC STATEMENTS

This section is provided for quick reference of the statements that
comprise the EASIC language. The statements are algphabetically listed.
Each description gives a definition of the statement, the syntax for
coding it, and rules for using the statement in prograns.

CHAIN STATEMENT

The CHAIN statement is used to 1link an executing BASIC program with
another BASIC program existing on disk. The format for coding CHAIN is
as follows:

CHAIN pnane[ ,arg)

o —
e e - —

where pname (that 1is, the VM/370 BASIC filename) is the name of the
program being invoked; pname can be either an alphameric variable
or a literal constant.

arg is an alphameric variable or a literal constant whose value
may be passed to the invoked program.

The CHAIN statement terminates execution of the current program and
initiates executian of the chained progranm.

The progfam being invoked must be named on the user's disk and must have
a filetype of BASIC.

If arg is being passed to the chained program, then that program must
~ contain a USE statement. Also, when arg is specified, it is truncated or
blank-filled on the right. It is always 16 characters in length.

The examples below show how to use the CHAIN statement:
110 CHAIN 'P1','DATEFILE"

300 CHAIN '**PROG'
210 CHAIN A$,B$

42 vM/370 BASIC Language Manual



CLOSE STATEMENT

The CLCSE statement causes a file that is active (open) in a program to
be deactivated. It takes the form:

CLOSE

(filename?2

filenum1 [,filenumz
filename2

(o o ———— —— —
b e e - — — o

where filenum is an expressibn that specifies the numbers of the files

filename that specifies the name of the file to be closed is a

literal constant.

The CLOSE statement causes the data file or the program—data file
specified by filenum or filename to be removed from the 1list of active
files in a rrcgram.

If the specified file is not active, the CLOSE statement is ignored.

When a program is terminated, all currently active data and program-data
files are automatically closed.

The following example shows how to enter the CLOSE statement:

100 CLOSE 1,A,200,'FILE'

i

The DATA statement is used to define values for use in a program. The
statement takes the form:

DATA constant1{ ,constant2,...]

pr o ——— vy
e oo e e

where constant is a numeric or literal constant that defines the value

to be used in the program.

During compilation, +the BASIC compiler creates a table of the values
found in the DATA statement. The values are stacked in the table in
order of appearance.’

Reference Information 43



Entries in the DATA table are 18 characters in length. If the entry is
larger than 18 characters, it is truncated on the right. If it 1is
smaller than 18 characters, it is padded on the right with blanks. If a
literal constant of no characters is entered, it is entered in the DATA
table as 18 blank characters.

Generally, the DATA statement is used to define a tables of values which
are positionally associated with variables defined in the program by
means of the READ statement.
The following examples show how to enter DATA statements:

10 DATA 10, 15, 17

20 DATA 34E-51, 532, 3.021, 1E6
30 DATA "JOHNSON' ,*SMITH','BROWN', " JONES'

DEF STATEMENT

The DEF statement is used to define user functions. It takes the form:

DEF FNvar1(var2) =ae

o - a—
S ———

where varl must be a simple numeric variable specified by a single

letter (or a character from the extended alphabet).

var2 is a simple numeric variable specified by a single letter
(or a character from the extended alphabet).

ae is an arithmetic expression.

The function is evaluated by substituting a user expression for each
occurrence of the dummy variable var2 into the expression ae, and then
evaluating ae.

A function may be defined anywhere in the program (before or after its
use) .

Other functions may be invoked in DEF statements if no direct or
indirect recursive actions are involved. That 1is, the function being
defined (say FNA) may have another function (say FNE) as part of the
defining expression, and ae, provided that FNB does not, in turn, have
FNA as part of its definition. The following statements show how
function maybe defined and evaluated.

70 DEF FNB (X) =5%X*%2+27
80 DEF FNA (X)=FNB (X) +X*%3

140 LET R=FNA (Z)+23

Line 140 is equivalent to R=(((5*2%%2+27) +2%%3) +23

44 VM/370 BASIC language Manual



DIM STATEMENT

_———— S m e e

The DIM statement provides the ability to allccate storage space for
named arrays and matrixes. It takes the following form:

DIM array1l(rowl[ ,col1])[ ,array2(row2[,ccl2])...]

po o ——
b o o =

where arrayi specifies the name of the array for which storage is being
allocated.

rowi and coli must be unsigned integers.

DIM allocates storage space for named arrays and matrixes and their
specified dimensions.

Once an array or matrix has been declared, either implicitly or
explicitly, in a program, that array or matrix name may not be used in a
DIM statement.

The following is an example of the DIM statement:

10 DIM A(10), B(2,3), C(10,50)

END STATEMENT

The END statement is used to specify the end of a program. It takes the
form:

END [comment ]

oo — -
e o e o

where comment may be any note the programmer wishes to include; it is

ignored by the language processor.

END causes program compilation and execution to terminate. Lines
following an end statement are ignored by the processor.

When the END statement is omitted the processor supplies the effect of
the END statement. An example of the END statement is:

100 END

Reference Information 45



FOR STATEMENT

The FOR statement is used in conjunction with the NEXT statement to
define loops in BASIC programs. It takes the form:

FOR var=initval TO limit[ STEP increment]

NEXT var

o o - - o —— ——
T

where yar defines the index loop and is a simple numeric variable.

initval is an arithmetic expression that specifies the value of

var the first time through the loop.

limit is an arithmetic expression that specifies the maximum

numrber of times the loop can be executed.

increment is an arithmetic expression that specifies the value

added to the initial value each time the loop is executed.

The range of the 1loop is defined by the NEXT statement. All statements
between the FOR and NEXT statements will be excuted sequentially each
time through the loop until the limit specified by limit is reached.

The statements of the loop are executed repeatedly with var equal to
initval, then with var equal to initval + increment, and so on, until
the value defined by limit is reached. If STEP increment is omitted, an
increment value of one is assumed. When +the value of increment is zero,
the only means of exiting the loop is via the NEXT statement.

The simple numeric variable var is the index of the FOR loop. Throughout
the range of the loop, the value of var is available for computation,
either as an ordinary variable or as the variable in a subscript, the
index is also available for computation when the loop is exited and is
equal to the last value it attained.

Branching into the range of the loop is permissable, but should be done
carefully.

The following example shows how the FOR loop is used.

20 FOR X = 3%Z+6 TO 25 STEP 2/A

60 NEXT X

46 VM/370 BASIC Language Manual



The GET statement is used to retrieve data from a data or program—data
file and to assign variable names tc the data. The statement takes the
following form:

L] ALl
( |
| filenum: |
| GET varif ,var2...] |
| filenanme, |
( |
L 3
where filenum is an arithmetic expression representing the number of
the file being accessed.

filename is a literal constant specifying the name of the file

being accessed.

var specifies the variable names to be associated with data
retrieved from the file being accessed.

File specification in a GET statement may take one of three forus:

e File Name Specification. If the file srecification is by file
name (filename, above), then the file is opened, if necessary,
before the GET is executed.

e File Number. 1If the file specification is an arithmetic
expression (filenum, above), then the truncated integer value of
the expression (1 < filenum < 255) is used as the file number.
The file number must refer to a file that has been opened by
means of an OPEN statement containing that number, and the
specified file must be active for input.

e Implied. If no file specification is present, a file number of 1
is assumed. As in the case of the file name specification, the
file must be opened for input, otherwise the program is
terminated. :

The variables, vari, are associated with the input data positionally,
that is, var1!1 will be associated with the first input item from the
file, var2 with second input item, etc., etc.

The associaticn process ensures that all the variables specified have an
associated value. In the case where there are not as many input items as
there are vari, the program is terminated.

If a GET statement specifies a file which is not designated as an input
file, the program is terminated.

In the case where vari is a numeric variable, the corresponding data
input item must also be numeric; 1likewise, where the vari is an
alphameric variable, its corresponding data item must be a 1literal
constant.

Reference Information 47



The examples below show how the GET statement is coded.

100 GET  'FILE',I,A(I)
100 GET A,B,C

100 GET  F1:D(I,Jd)

100 GET  200:X,Y,%

GOSUE STATEMENT

The GOSUB statement provides the ability to transfer control to a
subroutine. It takes the form:

GOSUB subname

o —— e -y
b e —

where subname is the name of the subroutine to which control is being

transferred.

The GOSUB statement transfers control to the subroutine specified by
subname.

Control is returned to the calling program by means of the RETURN
statement located in the subroutine. When control is returned to the
statement following the GOSUB.

The following diagrams show the flow of control through routines and
subroutines.

50 6OSUB 100 —— 80 GOSUB 150 ——————mmwq
—> 60 —- | ———=>90 —
| 70— [ | . !
[ 80 — | | . [
| 90 — | ! . [
I — — | | - = |
| 1 100 — L [ I 150 — P <—*
I | <=4 | I - [
ol | | - |
Il [ [ I - [
t——| 140 RETURN } ] { 160 GOSUB 250 | ~——a
e S | e—=>1 170 — o
T Lot
[ I I
Lot ool
t—t——4—-200 RETURN | |
[ —
! [
| —— - |
I | 250 — | &—=1
L. [
(O [
1 [
t——{ 300 RETURN |
| S —_——

48 VM/370 BASIC language Manual



GOTO STATEMENT

The GOTO statement provides the ability to transfer control to a
different part of a progranm.

There are two types of GOTO's in BASIC, the simple GOTO and the computed
GOTO.

THE SIMPLE GOTO

The simple GOTO statement transfers control to the specified line in the
program. This statement takes the form:

GOTO linenun

e —— -
o o

where linepum is an arithmetic expression specifiying the target line
of the GOTO,

Examples of a Simple GOTO's arvre:

30 GOTO 845
80 GOTO 29

THE COMPUTED GOTO

The computed GOTO transfers control to a given line depending on the
value of an arithmetic expression. It takes the following form:

GOTO linenum1{,linenum2,...] ON ae

[ — = — -
o —

where linenumi are line number specifications.

ae is an arithmetic expression.

Control is passed to linenum?1 when the truncated integer value of ae is
evaluated as one. Control is passed to linenum2 when the truncated
integer value of ae is evaluated as two, etc., etc.

When the truncated integer value of ae 1is evaluated as less than 1 or

greater than the highest number of any line in the program, control
passes to the next sequential statement after the GOTO.

Reference Information 49



The following example shows how the computed GOTO works.
40 GOTO 34, 60, 1, 34, 10, 45 OW 3-U4/X-%
In this examgle, when 3-4/X-Z is evaluated as either 1 or 4, control

will be passed to statement 34; when the expression is evaluated as 2,
control passes to statement 60, etc., etc.

IF SIATEMENT

The IF statement provides the ability to branch to another statement in
a program depending on the evaluation of a relational expression. The
statement takes the form:

GOTO

———

IF parm1 operator parm2 { } linenunm

THEN

o o

where parmi may be arithmetic expressions, althameric variables, or
literal constants. These parameters are evaluated in the

operator may be any of the relational operators allowed in BASIC:

less than

less than or equal to
greater than .
greater than or equal to
equal to

> not equal to

AHVVAA

linenum is a decimal number specifying the target 1line to which
control is being directed.

parml and parm2 must be the same type of BASIC symbol, that is,
if parml is a numeric variable, parm2 must be a numeric variable
also.

When the relational expression specified in the IF statement is
evaluated as true, then control is directed to the line number specified
in the IF statement. If the expression is false, control drops through
the IF statement to the next statement in the program.

Literal constants containing 1less than 18 characters are padded on the
right with blanks; literal constants containing more than 18 characters
are truncated on the right. Both padding with blanks and truncation
occur before the constants are compared in the expression.

A literal ccnstant with no defined characters is interpreted as 18 blank
characters.

50 VM/370 BASIC Language Manual



Differences in the floating—point approximations of decimal numbers
arrived at through different logical steps can affect comparisons. This
can be avoided by comparing numbers only within the appropriate range of
precision. For example, rather than using the following comparison:

IF A<>DE THEN 100
use of the following statement would be preferatble:
IF ABS (A—-B)=>.001 THEN 100

THEN and GOTO have the same effect of directing execution to the target
statement. Their use depends only on the programmer's preference.

The following examples show how to code the IF statement:

30 IF A(30)>X+2/Z THEN 85
40 IF S1<=37.22 GOTO 67
50 IF A+B>C THEN 80

60 IF R$=A$ GOTO 120

FBamamems SRSESSSoa

The IMAGE statement is used to provide a formatted print line for use
with the PRINT USING statement. The IMAGE statement can contain image
areas designed to contain dynamically computed data. The statement takes
the form:

:[charstring1,imageareat,charstring2,imagearea2,...]

o e -
o e o e o

where charstringi is a character string which may contain any character

except a commercial pound sign, #. It may also be null.

imageareai is the area into which dynamically computed data from

the program may be substituted. This area is specified using
commercial pound sign, #.

In VM/370, the pound sign (#) 1is the line—end character and, therefore,
IMAGE statements must hide pound signs from the system. The CMS SET
command can be used to redefine the 1line—~-end symbol. Also, the pound
sign can be hidden by means of the CMS Escape Character, the double
quote.

In the PRINT USING statement, the user can specify an IMAGE statement
which has been formatted for his specific use. In this statement he can
specify any number of symbols (variables constants) and associate these
positionally with image areas in an IMAGE statement. When the IMAGE
statement is printed it will contain the current value of the variables
specified in the PRINT USING statement.

In the example below, for instance, the variaktles A and B represent a
question number and the answer to the question, which is a number.

20 PRINT USING 30 A,B
30 :THE ANSWER TO QUESTION # is ###.##

Reference Information 51



The colon begins the IMAGE statement; any blanks following the colon and
the first character will be included in the printed output.

There are rules for specifying the three types of numbers:

1. I format consisting of an optional sign followed by one or more #
characters. For example, ## is an I format specification.

2. F format consisting of an optional sign followed by the optional
occurrence of one or more # characters, a decimal point, and the
optional occurrence of one or more , characters. There must be at
least one # character in the specification. For example, +#.###%#
is an F format specification.

3. E format is an I format or F format conversion specification
followed by either four !!!! characters of four {||| characters

A format consisting only of # characters can be used to print a
character variable or literal constant. The character string will be
placed into the format left-—justified and truncated cr blank filled on
the right to the length of the format.

The IMAGE statement may also be used with the MAT PRINT USING statement
to specify image areas and to format output. See examples of this usage
in the section entitled MAT PRINT USING.

INPUT STATEMENT

The INPUT statement provides the ability to associate values with
variable names interactively at the terminal. The statement takes the
form:

INPUT vari[,var2,...]

o
b —— e o

where yvari are variable names typed at the terminal.

When the INPUT statement is encountered by the language processor, a
question mark is printed at the terminal. Data in the form of numeric
and/or literal constants, separated by commas, may then be entered from
the terminal. :

Where the input line is not long enough to accept all of the data
required, that line may be continued by typing a comma and hitting the
carrier return.

The specified variables assume the values of the data in order of entry;
the number of items entered must equal the number of variables in the
INPUT statement list. Numeric constants must be  entered for numeric
variables; literal constants must be entered for alphameric variables.

52 VM/370 BASIC Language Manual



If a literal data entry is not empty or does not contain a comma, the
entry need not be bounded by gquotation marks; leading blanks are ignored
but embedded blanks are significant.

A literal constant containing fewer than 18 characters is padded with
blanks on the right. A literal constant containing more than 18
characters is truncated on the right. A literal constant containing no
characters is interpreted as 18 blank characters.

The following examples show how to use the INPUT statement.

10 INEUT X,Y(X),Z(R+3),C1

90 END

basic pgname

? 20,15.5,4,.35
RS

The input response shown above causes a value of 20 to be assigned to
the variable X, a value of 15.5 to be assigned to Y(20), a value of 4 to
be assigned to the element of array Z identified by the computed value
of the subscript R+3, and a value of .35 to be assigned to C1.

10 INPUT A$,R

90 END
basic pgnane
? YEs,20

R;

The input response shown above causes the 1literal constant YES to be
assigned to the alphameric variable A$, and the numeric constant 20 to
be assigned to the numeric variable R.

LET STAIEMENT

The LET statement provides the ability to assign a value to a variable
or a series of variables. The statement takes the form:

[LET] var1,[ ,var2,... ]J=value

(o o o -
b e e e

where vari are variables.

value may be an arithmetic expression, and alphameric variable,

or a literal constant.

Reference Information 53



The variables on the left of the equal sign assume the value specified
on the right of the equal sign.

If value is an arithmetic expression, all vari must be numeric.

If value is an alphameric variable or a literal constant, then vari must
be alphameric.

All assignment of value and subscript evaluation take place serially,
from left to right. Thus, I,A(I)=7 is equivalent to I=7 and A (7)=7.

The actual specification of LET is optional, as shown below in lines 30
and 60. Lines 50 and 60 below are equivalent.

20 LET A1 = 2 (3) /Y (A+4)
30 X1=49+7 (4)

40 LET A=5

50 LET G$ = !MONDAY!

60 G$ = 'MONDAY!

110 LET ¥, X(Y+3), Z, X(42) 0.0967
120 LET A, B, C, D, E, F, =
130 LET D$, T$, P$, = B$

=1
0.0

The simple numeric variables Y AND 2, and the thirteenth and
forty-second elements of the numeric array X are assigned the value
10.0967. The numeric variables A, B, C, D, E, and P are set to 0.0; and
the alphameric variables D$, T$, and P$ are set to the current value of
the alphameric variable BS.

MATRIX ACDITICN FORMAT

BASIC provides for the addition of corresponding elements in matrixes.
The sums resulting from these additions are then placed in a specified
matrix. The format for coding this is:

MAT matrix1 = matrix2 + matrix3

r———-l

where pmatrixi are matrixes of identical dimensions.

If the matrixes are not conformable (having dimensions consistent with
the rules of matrix algebra), program execution is terminated.

The example below shows how matrixes can be added.

20 MAT A = A+B

54 VM/370 BASIC Language Manual



MATRIX ASSIGNMENT FORMAT

BASIC provides the capability to equate all the elements in a matrix to
corresponding elements in another matrix. The statement takes the form:

MAT matrix1 = matrix2

o o e ==
e o e

where matrixi must be matrixes of identical dimensions.

This statement assigns the values of the elements of matrix2 to the
corresponding elements of matrixi.

The current dimensions of matrix1 and matrix2 must be identical.
Otherwise, the program is terminated.

An example of the matrix assignment statement is:

20 MAT A =B

MATRIX CON FUNCTION

The matrix CON function provides the ability to set all the elements
of a specified matrix to the value 1. Also, the CON function may

be used to redimension the matrix. The form for using the COW
function is:

MAT matrix = CON { (dim1[ ,dim27) ]

o —— —
S

where matrix specifies the target matrix for the function.

dimi specify new dimensions for the matrix.
When CON is encountered, all the elements of matrix are redefined to the
value 1.
For information on how dimi are used to redimension a matrix, see the
section entitled "Matrix Manipulation®.
The examples below show how the matrix CON function is used.

20 MAT A
30 HMAT B

CON
CON (J,K)

Reference Information 55



The MAT GET statement allows data to be read into a specified matrix (or
matrixes) without referencing each member of the matrixes individually.
The statement takes the form:

filenum:
matrix1{ (dim1[ ,dim2]) J[ ,matrix2{ (dim1[,dim2]) J]...

¥

{

l [

| MAT GET

| filenanme,
]

L

b e s — )

where filepum is an expression specifying the value of the file number

matrixi specifies the matrix (or matrixes) whose elements are
being defined.

dini are dimension specifications used to redimension the
respective matrixes.

The MAT GET statement is similar to the GET statement. It allows numeric
data from an INPUT file to be read into matrixes and associated with the
matrix elements without referencing each element separately.

Elements are read by rows from the specified data file or program-data
file until the nmatrix is filled. If the data file is exhausted before
the matrix if filled, the program is terminated.

If the data file or program--data file specified by the MAT GET is not
active or not an output file, program execution is terminated.

Note that the filenum/filename specification is optional; if the
specification is omitted, its value defaults to 1. If the truncated
integer value of filenum is 1less than 1 or greater than 255, program
execution is terminated.

For information on matrix redimensioning, see the section "Matrix
Manipulation".
The following statements are examples of the MAT GET statement.

20 MAT GET Z(E-3): A,B,C(10,K)

30 MAT GET A
40 MAT GET 'FILE',C,B

56 VM/370 BASIC Language Manual



MATRIX IDN FUNCTION

The matrix IDN function is used to redefine the form (that is, the
dimensions) of a matrix by means of an identity matrix. The function
takes the form:

MAT matrix = IDN[ (dim1[,dim2]) )]

o -
e

where matrix is the name of the matrix whose form is being redefined.

dimi specify the dimensions which may be used to redimension

If matrix is not conformable, program execution is terminated.

The following statements are examples of the IDN function.

20 MAT A = IDN

30 MAT B = IDN (4,4)
See the section "Matrix Manipulation" for information on matrix
redimensioning.

MAT INPUT STATEMENT

The MAT INPUT statement provides the ability to enter numeric values
from the terminal into specified matrixes without referencing each
member of each matrix separately. The statement is similar to the INPUT
statement and takes the form:

MAT INPUT matrix1[ (dim1{ ,dim2]) ) ,matrix2( (dim1[,din2]) J...

(o = —
e e o

where matrixi specify the matrix or matrixes into which data is be

entered.

dimi specify the dimension(s) used to redimension a given matrix.

When the MAT INPUT is encountered by the language processor, a question
mark is printed at the terminal. At that point the programmer types in
values to be inserted into the matrix.

Reference Information 57



Values are entered by row. If an input 1line is not large enough to
contain a row, the " line may be continued by typing a comma as the last
character on the line and hitting the catrier return.

When the row has been completed, the system requests input for the
second row by printing two question marks. The user enters input values
for the row.

Printing of +two question marks for each new row and single question
marks for the completion of a row, interspersed with user entry of input
values, continues until all data has been entered.

The number of values entered for a row must equal the number of elements
in a row of the matrix.

Only numeric entries are valid.

See "Matrix Manipulation" for an explanation of redimensioning.

type test basic
10 DIM A(10,10)
20 MAT INPUT A(2,2)

96 END

basic test

? 1,2

?? 3,4
The input shown above causes the numeric constants 1 and 2 to be taken
as the values of the elements in the first row of the matrix A. The

numeric constants 3 and 4 are taken as the values of the elements in the
second row of A.

The matrix inversion function causes one matrix to be replaced by the
inverse of another matrix. It takes the form:

MAT matrix1 = INV (matrix?2)

po ann m —
e e —

where nmatrixi are matrixes.

If the matrixes are not conformable, program execution is terminated.

58 VM/370 BASIC Language Manual



matrix1 cannot be identical to matrix2.
The following statement is an example of the INV function.

20 MAT A = INV(C)

MATRIX MULTIIPLICATION FORMAT

BASIC provides the ability +to multiply the elements of a matrix by the
corresponding elements in another matrix. The following form is used to
rultiply matrix elements:

MAT matrix1 = matrix2 * matrix3

o e —— -
o e o o

where matrixi are matrizxes.

This statement causes the elements of matrix1 to be replaced by the
results of the multiplication of the corresponding elements in matrix2
and matrix3.

The following statement is an example of matrix multiplication.

20 MAT Q = P * R

MATRIX MULTIPLICATION (SCALAR) FORMAT

Scalar multiplication of a matrix is permitted in BASIC. That is, each
element in a matrix is multiplied by a value and the results are placed
in another matrix. The statement takes the form:

MAT matrix1 = (expression) * matrix2

o o - —
| S ——

where matrixi are matrices.

expression is an arithmetic expression whose value is multiplied

_—b e

times each element of the matrix.
This statement causes each element of matrix1 to be replaced by each
corresponding element of matrix2 multiplied by expression.
expression is evaluated before any scalar multiplication.
If the matrixes are not conformable, program execution is terminated.
The example below shows how to use scalar matrix multiplication.

20 MAT A = (A(3,2))*D

Reference Information 59



MAT PRINT STATEMENT

The MAT PRINT statement is used to print the contents of a matrix after
the contents have been converted to a specified output format. The
format for the statement is:

MAT PRINT matrixitermchari matrix2termchar2...[ termcharN]]

o —— e anm -
I

wvhere matrix are matrixes.

This statement causes each element of each specified matrix to be
converted to a specified output format and then printed. After the
element has been printed, the carrier is positioned as specified by the
terminator character.

Rules for printing as described under the PRINT statement apply for the
MAT PRINT statement; however, literal strings are not allowed, and an
omitted final terminator character is treated as a comna.

The matrix is printed in order by rows. All of the elements of a row are
printed on as many print lines as are required with single line spacing.

A blank print line is used to separate rows.

Printing of the first element of a row always starts at the beginning of
a new print line.

The following statement is an example of the MAT PRINT statement.

20 MAT PRINT a,B,C

MAT_PRINT USING STATEMENT

The MAT PRINT USING statement causes each element of specified matrixes
to be edited into print 1lines as directed by IMAGE statements. The
statement takes the format:

MAT PRINT USING linenum,matrix1{matrix2,...]

o an —
e e — e

60 VM/370 BASIC Language Manual



where 1linenum is the line number of the target IMAGE statement.

The first row of a matrix is separated from the line immediately
preceding it by one blank line. A blank print line separates succeeding
rows of the matrix. Each element of the matrix is edited row by row into
the corresponding conversion specification in the IMAGE statement.

The first element of a row is printed at the beginning of a new print
line according to the first entry of the corresponding IMAGE statement.
The IMAGE statement is reused to complete a row on the next 1line if
necessary.

The following example shows how MAT PRINT USING can be used.
10 DIM A(2,3)

20 DATA 1,10,33,2,20,44
30 MAT READ A

100 PRINT USING 300

110 MAT PRINT USING 400,R2

300 X Y

400 : TEST CASE ## AR 22 R R08%01 0

The printout resulting from this sequence of statements appears as shown
by the representative printout below.
X Y
TEST CASE 1 10.000 33.0000E+00

TEST CASE 2 20.000 44 .0000E+00

MAT PUT STATENENT

The MAT PUT statement causes specified matrixes to be writtem on an
output data file without referencing each element of the matrix
individually. It takes the form:

Al 1
! |
| filenum: |
| MAT PUT [ ]matrixl[,matrixZ,...] |
1 filenane, |
| |
[N N |
where filenum is an expression whose value specifies the file number of
the target file.

Reference Information 61



The elements from the specified matrixes are written in row order to the
output file.

If the data file is not active or has not been specified as an output
data file, program execution is terminated.

If the data file is not large enough to contain the matrix elements,
program execution is terminated.
The following statements are examples of the MAT PUT statement.

20 MAT PUT 2: X, Y, Z

30 MAT PUT A,B
40 MAT PUT 'FILE',A,B

MAT READ STATEMENT

The MAT READ statement allows numeric data to be read into the specified
matrixes without referencing each member individually. The statement
takes the form:

MAT READ matrix1[ (dim1{,dim2]) J[ ,matrix2[ (dim1[ ,dim2]) J...]

P
b o o o

where matrixi specifies a matrix or matrixes into which data is to be

———lsEsiRas

dimi are expressions used to redimension the matrixes. (See
"Matrix Manipulation" for a discussion of matrix redimensioning.)

Elements are read in row order from data tables created by DATA
statements. If the data table is exhausted before a specified matrix is
filled, program execution is terminated.

The statement below is an example of the MAT READ statement.

20 MAT READ A(J.,K),B,C(H)

MATRIX SUBTRACTION FORMAT

AR e AT e e i e i e it e

The EBASIC language processor permits matrix subtraction. The subtraction
is performed by subtracting elements of one matrix from the
corresponding elements of another and placing the results in a specified
matrix. The statement takes the form:

62 VM/370 BASIC Language Manual



MAT matrix1 = matrix2 - matrix3

e e o

where matrix1 is a matrix used to contain the results

subtraction.

of

the

natrix2 is a matrix from which corresponding elements in matrix3

————ims

matrix3 is a matrix, the values of whose elements are subtracted

If the matrixes are nonconformable, program execution is terminated.

The example below shows how matrix subtraction is used.

20 MAT D = A - B

MATRIX TRANSPOSITION FUNCTION

The matrix transposition function causes the elements of one matrix to

be transposed onto the elements of another. It takes the form:

MAT matrix1 = TRN(matrix2)

po = - —

b e —

where matrixl is a matrix whose values are replaced by the

The example below shows how the TRN function is used.

20 MAT D = TRN (X)

HMATRIX ZER EUNCIION

values

of

The matrix ZER function causes all the elements of the matrix specified

to assume the value zero. It takes the form:

Reference Information 63



MAT matrix = ZER[ (dim1[,dim2]) ]

- - - —
Ly

where matrix specifies the matrix whose values are being zeroed.
dimi are expressions used in redimensioning the matrix. (See
"Matrix Manipulation" for a discussion of redimensioning.)

The examples below show how the ZER function is used.

30 MAT A
40 MAT B

ZER
ZER (A+D,Q**Z)

NEXT STATEMENT

The NEXT statement is wused in conjunction with the FOR statement to
define the range of a program loop. It takes the form:

NEXT var

- — e —
R

where var is a simple numeric variable identical to the corresponding
variable in the matching FOR statement.

The statement terminates the range of a loop.

The examples below show how FOR and NEXT are used to define multiple
loops and nested loops; there is also an example of an invalid loop
definition.

————FOR I ——FCR I r————TFOR X

| . | . ! .

{ . [ . 1 .

| . ! . | .
L—-NEXT I | ———FOR J | +———FOR Y

. | | . | | -

. | | . | | .

. | | . | | .
r——FOR J | L———-NEXT J Le——dt—NEXT X
| . | . | .
| . | - | .
| . | . i .
L——NEXT J L———-NEXT I L _NEXT Y
Multiple Loops Nested Loops Invalid

64 VM/370 BASIC Language Manual



OPEN STATEMENT

The OPEN statement is used to activate a data file for input or output
or a program—data file for input. The statement takes the form:

INPUT
OPEN filenunm,filename
OUTPUT

e - —-
o = J

where filepum is an expression whose value is assigned to the file

the name of the file being opened.

The INPUT and OUTPUT options specify whether the file is being opened
for input or output.

The statement causes the data file or program-data file specified by
filename to be assigned the file number specified by filenun.

The status of the file is set to active and the pointer is reset to the
beginning of the file.

Data files can be opened for either input or output. Program-data files
can be opened only for input.

If the truncated integer value of filenum is less than 1 or greater than
255, program execution is terminated.

If the OPEN statement references any file that is currently active, that
file is closed and reopened.

If an attempt is made to open more than four concurrent files, program
execution is terminated. (See CLOSE.)

If any program—data file is to be used by a program, a program—data file
must be the first file opened in the program (so that input areas are
of sufficient size). Otherwise, program execution is terminated when an
attempt is made, later in the program, to open a program-data file,

The following statements are examples of the OPEN statement.

100 OPEN F1,'SYSIN',INPUT
100 CPEN 1,A$,0UTPUT

Reference Information 65



PAUSE STATEMENT

The PAUSE statement causes program execution to halt and a line to be
printed at the terminal notifying the wuser of the halt. The statement
takes the form:

PAUSE [comment ]

o - e
T ——

where comment can be any note the programmer desires; it is ignored by

the language processor.

When the language processor encounters the PAUSE statement, the
following line is printed out at the user's terminal:

PAUSE AT LINE nn
where nn is the line number of the PAUSE statement.
Execution resumes when the user presses the carrier return or by
entering any character string and then pressing the carrier return.

The following example shows how PAUSE is used.

50 PAUSE

PRINT STATEMENT

The PRINT statement is used to direct the printing of information at the
user's terminal. It takes the form:

PRINT prfielditchari[prfield2tchar2...[ tcharN]]

o ——
b e S

vhere prfieldi are print fields used to specify the information to be

printed. Print fields may contain expressions, alphameric
variables, and literal constants.

tchari are terminal characters, that is, the comma or the colon.

The comma indicates that another print field follows; the colon
indicates the end of a print line.

66 VM/370 BASIC Language Manual



PRINT LINES AND PRINT FIELDS

Print lines are lines being typed in at the terminal specifying the type
and format of information the programmer wants printed.

Print lines are comprised of print fields, which are variable length
fields containing the programmer's specifications for the type of data
he wants calculated and printed.

PRINT ZONES

Each print line is divided into print zones of either of two types: full
or packed.

A full print zone is always comprised of 18 characters.

The size of a packed print zone depends on the length of the print field
it holds, as shown below:

Print Field Length Packed Zone Length
2-4 characters 6 characters

5-7 characters 9 characters

8-10 characters 12 characters
11-13 characters 15 characters
14-16 characters 18 characters

The first character of a packed print zone is always reserved for a +
or —; default is +.

RULES FOR USING PRINT FIELDS AND PRINT ZONES

If the print field is an alphameric variable, the size of a packed print
zone is 18 characters minus the number of trailing blanks. If the print
field is a literal constant, the size of a packed print zone equals the
size of the converted field. The print field is printed at the terminal
as described Lelow.

1. If the print field is an alphameric variakle or a literal constant
and:

e tchar is a comma with at least 18 spaces remaining on the print
line, printing starts at the current carrier position. If the
end of the print line is encountered before the print field is
exhausted, printing of remaining characters starts on the next

print line.

e tchar is a comma with less than 18 spaces remaining on the print
line, printing starts at the beginning of the next line.

e tchar is a semicolon, printing starts at the current carrier
position. If the end of the print line is encountered before the
field is exhausted, printing of remaining characters starts on

the next line.

Reference Information 67



2. If the print field is an expression, printing starts at the current
carrier position unless the print 1line does not contain sufficient
space to accommodate the value. In such cases, printing starts at
the beginning of the next line.

After the converted print field has been printed, the carrier |is
positioned as specified by the terminator character.

1. When the print field is an expression or am alphameric variable,
the carrier is positioned as follows:

e If the terminator character is a comma, the carrier is moved
past any remaining spaces in the full print zone; if the end of
the print line is encountered, the carrier is moved to the
beginning of the next print line,

e If the terminator character is a semicolon, the carrier is moved
past any remaining spaces in the packed print zone; if the end
of the print line is encountered, the carrier is moved to the
beginning of the next print line.

e If the terminator character is omitted, and the print field is
the last print field in the statement, the carrier is moved to
the beginning of the next print line.

2. When the print field is a 1literal constant, the carrier |is
positioned as follows:

e If the terminator character is a comma, the carrier is moved
past any remaining spaces in the full print zone; if the end of
the print line is encountered, the carrier is moved to the
beginning of the next print line.

e If the terminator character is a semicolon, the carrier is not
moved unless at the end of the print 1line, in which case the
carrier is moved to the beginning of the next print line.

e If the terminator character is omitted, and the print field is
the last print field in the statement, the carrier is moved to
the beginning of the next print 1line.

3. When the print field is null, the carrier is positioned as follows:

e If the terminator character is a comma, the carrier is moved 18
spaces; if the end of the print line is encountered, the carrier
is moved to the beginning of the next print line.

e If the terminator character is a semicolon, the carrier is moved
three spaces; if the.end of the print line is encountered, the
carrier is moved to the beginning of the next print line.

e If the terminator character is omitted, the carrier is moved to
the beginning of the next line.

The following examples show how PRINT is used.

50 PRINT "X= "; 5, ~6.78; (X (2)+U4*Z)
60 PRINT Y$

68 VM/370 BASIC Language Manual



PRINT USING STATEMENT

The PRINT USING statment is used in conjunction with the IMAGE statement
to edit specified print fields into a print line defined ty the IMAGE
statement. The PRINT USING statement takes the form:

PRINT USING linenum{ prfieldt,prfield2,...]

o — e w—
b e

where linenum is the line number of the IMAGE statement to be used.

prfieldi specify the values to be edited into the corresponding

print fields in the IMAGE statement. prfieldi may be alphameric

The print fields specified (prfieldi) correspond positionally with the
print fields defined in the target IMAGE statement.

If the number of print fields in the PRINT USING statement exceeds the
-number of conversion specifications in the IMAGE statement, a carrier
return occurs at the end of the IMAGE statement and the IMAGE statement
is reused for the remaining print fields.

If the number of print fields in the PRINT USING statement is less than
the number of conversion specifications in the IMAGE statement, the
print line is terminated at the first unused conversion specification.

When the carrier is not positioned at the beginning of a new print 1line,
a carrier return occurs before printing of the edited print line. After
the edited print 1line is printed, the carrier is positioned at the
beginning of the next print line.

Bach print field is converted to output format as follows:

1. The meaning of an alphameric variable or a literal constant is
extracted from the specified string and edited into the print line,
replacing all of the elements in the conversion specification
(including sign, #, decimal wpoint, and ! or | ). If the edited
string is shorter than the conversion specification, klank padding
occurs to the right. If the edited string is longer than the
conversion specification, truncation occurs to the right. A null
string results in blank padding of the entire conversion
specification.

2. An expression 1is converted in accordance with 1its conversion
specification:

a. If it contains a plus sign and the expression value is
positive, a plus sign is edited into the print line.

b. If it contains a plus sign and the expression value is
negative, a minus sign is edited into the print 1line.

Reference Information 69



Ce

If it contains a m®inus sign and the expression value is
positive, a blank is edited into the print line.

If it contains a minus sign and the expression value is
negative, a minus sign is edited into the print line.

If it does not contain a sign and the expression value is
negative, a minus sign is edited into the print line in front
of the first printed digit, and the length of the conversion
specification is reduced by one.

The expression value is converted according to the type of its
conversion specification:

I-format--the value of the expression is converted to an

integer, truncating any fraction.

F-format--the value of the expression 1is converted to a

fixed-point number, rounding the fraction or extending it with
zeros in accordance with the conversion srecification.

E-format-—-the value of the expression 1is converted to a
floating-point number with cne decimal digit to the 1left of
the decimal point, rounding the fraction or extending it with

zeros in accordance with the conversion specification.

If the length of the resultant field is less than or equal to
the 1length of the conversion specification, the resultant
field is edited, right-justified, into the print line. If the
length of the resultant field is greater than the 1length of
the conversion specification, asterisks are edited into the
print line instead of the resultant field.

The example below shows how the PRINT USING statement is used.

10
20
30
40

A$ = 'LOSS!

B = 42.0399

PRINT USING 40,A$,B

tRATE OF #### EQUALS ####.#% POUNDS.

The printout resulting from this sequence of statements is shown below:

RATE OF LOSS IS 42.04 POUNDS

The PUT statement is used to direct that specified values be placed on

an output

data file. The statement takes the form:

PUT

o o o —

filenum: datail ,data2,...]
filenanme,

o e . —

70 vu/370

BASIC Language Manual



wvhere filenum is a number specifying the output data set.

data set.

datai may be an expression, an alphameric variable, or a literal
constant; datai specify the data items to be written to the

——————i=

output data set.

The file specification may take one of three forms:

1. File name - If the file specification is a file name, enclosed in
quotes, followed by a comma, then the file is opened if necessary
before the PUT is executed.

2. File number - If the file specification is an expression followed
by a colon, then the truncated integer value of the expression (1 <
exp < 255) is used as the file number. The file number must refer
to a file that has been opened by means of an OPEN statement
containing that number, and that file must still be active for
output.

3. Implied - If no file specification is present, a file number of 2
is assumed. As in 2 above, the file must be open for output. If
not, program execution is terminated.

A literal constant containing less than 18 characters is padded with
blanks on the right. A literal constant containing more than 18
characters is truncated on the right. A literal constant containing no
characters is interpreted as 18 blank characters.

If a PUT statement is executed when the specified data file is not
active or is assigned as an input file, program execution is terminated.
If a PUT statement is executed that causes the size of the data file to
be exceeded, program execution is terminated.

Note: Use of the filename in PUT statements should be avoided if the
program contains an OPEN statement for logical file number 2 as an
output file. In this case, it is not clear whether the default file
number 2 or the literal constant (filename) is being referenced. (See
execution exception message "FILE REFERENCE UNCLEAR".)

The examples below show how the PUT statement is coded.

30 PUT F1: 23, 5%A-7, A, C, W$
40 PUT 2: *DATA','STAT','LOG1’
50 PUT 1,2,B,C, (1,3)

60 PUT *'FILE',A

READ STATEMENT

The READ statement is used in conjunction with the DATA statement. It
reads values defined in the DATA table, associating variables with those
values. The READ statement takes the form:

Reference Information 71



READ vari[,var2,... ]

o e o e oy
ke e o o o

where varji are variables.

The variables specified are assigned the mRext n values 1in the data
table, and the data table pointer is updated accordingly.

If a READ statement is executed when insufficient data remains in the
data table, program execution is terminated.

Numeric variables must correcpond to numeric data and alphameric
variables must correspond to literal data.

The examples below show how the READ statement is coded.

10 READ A,B,C
20 READ Z(4),2(5) ,A(K)

REM STATEMENT

The REM statement is used to add comments to a program. It takes the

REM [comments ]

o e e =
e o e e

where comménts may be any character string.

If a GOTO, GOSUB, or THEN uses a REM statement as a target, then the
next executable statement after the REM will he executed.

RESET STATEMENT

The RESET statement is used to reset a data file to the first element in
that file. It takes the form:

RESET [filenum1 ][,filenumz ]...
filenamelli,filename2

o o - ——
e e o o

72 VM/370 BASIC Language Manual



where filenumi specify the file number(s) being reset to the first

element.

This statement causes the data file or program—data file specified by
the value of filenum tc be reset to the beginning of the file. A
subsequent GET or PUT statement references the first item in the file.

If filenum is specified, but its truncated integer value is less than 1
or greater than 255, program execution is terminated.

If neither a file number nor a file name is specified, the value 1 is
assumed.

If a specified data file is not active, the RESET command is ignored.
The example below shows how to use RESET.

100 RESET F1,F2,'FILE'

RESTORE STATEMENT

The RESTORE statement causes the next READ statement to begin reading at
the first DATA element in the program. It takes the form:

RESTORE [comments]

(o e
b e — e

where comments may be any character string.

The example below shows how to use RESTORE:

50 RESTORE GO BACK TO ONE

RETURN STATEMENT

The RETURN statement is used to transfer control out of a subroutine
back to the calling program. It takes the form:

RETURN [ comments]

- e -
b e s

where conmments can be any character string.

e e, e

Reference Information 73



RETURN is the means of exiting from a subroutine. RETURN transfers
control  to the statement following the last GOSUB executed.

More than cne GCSUB statement may be executed before a RETURN statement
is executed, but wvwhen a RETURN statement is executed there must be at
least one active GOSUB. The character string comments may be entered as

a comment; it is ignored during compilation and execution.

GOSUB/RETURN examples:

50 GOSUB 100 ——-q 80 GOSUB 150 —————————q
> 60 —— | ¢ >90 -~ |
| 80 —- | | . |
1 90 — | | . {
N — | | r — |
1 | 100 — { | | ] 150 — | <=4
I | <—- | | . |
I ( | I . {

{ I | ! [ |
Le—| 140 RETURN | | ] 160 GOSUB 250 | —=—
b — I —>1 170 — | |
[ I | |
I T I | |
[ I | 1
tp—=t4—-200 RETURN | |
I b— e |
| |
I r ————q |
| | 250 —— | <~
[ |
[ |
| | . )
t—| 300 RETURN |
L I

|
|

STOP STATEMENT

The STOP statement causes program execution to terminate. It takes the
Eorm:

STOP [comments]

(o — — -
e e ——

where comments can be any character string; it is ignored by the

e R e

processor.,

74 VM/370 BASIC Language Manual



USE STATEMENT

The USE statement is used in conjunction with the CHAIN statement to
pass a value to a chained program. It takes the form:

USE var

o —— ey
o e

where var is an alphameric variable.

This statement causes the specified alphameric variable to bhe
initialized to the value of the argument named in the CHAIN statement
causing this program to be executed. The CHAIN statement itself appears
in the chaining progranm.

The USE statement may be placed anywhere in the chained program.

If more than one USE statement is included in a program, the one having
the highest line number will be accepted as valid; others will be
ignored.

Sixteen bytes of parameter information (plus two rightmost blanks) will
be placed in the designated variable before the chained program is
executed.

If execution of the program containing the USE statement was not
initiated by means of a CHAIN statement, or if the CHAIN statement
contained no argument, the USE statement is ignored. The variable var
retains its initial value of 18 blanks.

Example:

110 USE A$

Reference Information 75






APPENDIX A: VM/370 BASIC PROGRAM_ LIMITS

USER PROGRAM LIMITS

Brogram Element Linmit
Statement lines 800!
source characters 64,000 Max!
Object program size 114,688 bytes
Array storage 28,668 Lytes
(included in program size)
Number of image statements 25
Number of FOR loops:

program limit 80

nest limit 15
Number of function references

and GOSUB's per nest 47
Number of files open at once 4

Number of storage units per file size of user's disk?
or 3730 storage units
Disk storage unit size 3440 trytes

- o e e ot s o s e e s e

! 1Limit is determined by whichever limit is reached first. The
actual limit on source characters is determined by the size of
the virtual machine, with a maximum of 64,000 characters. A
machine size of 268K allcws the full 64,000 character maximum.

2 An approximation of the remaining storage unit capacity on a
disk can be found by dividing the current number of records
available (obtained from the statistics generated by the QUERY
DISK mode command) by 4.3 (the number of records required to
contain one BASIC data storage unit).

Appendix A: VM/370 BASIC Program Limits 77



INTRINSIC FUNCTION LIMITS

The following table gives the allowable 1limits for the arguments passed
to intrinsic functions.

T A
| { Valid Arguments (Minimum < x < Maximum) |
| | (
{ | Short-Form Arithmetic | Long-Form Arithmetic |
| | + |
| Function | Min. Value | Max. Value | Min. Value | Max. Value |
| + + { f |
| SIN (x) | —PI*218 | PI*218 | —PI*2S0 | PI*2S0 |
| COS (%) | -PI*218 { PI*218 | —PI*2S0 | PI*2SO |
| TAN(x) | —PI*218 | PI%218 | -PI%*2S0 | PI*2S0 |
| COT(x) | -PI*218 | PI%218 | —PI*250 | PI*2S0 |
| SEC (x) | —PI*218 | PI%*218 | —=PI*2so | PI*2S0 1
| CsSC(x) | -PI*218 | PI*218 | —-PI*2S0 | PI*2S0 |
| ASN(x) | -1 I 1 | -1 | 1 [
| ACS (x) ( -1 | 1 | -1 | 1 |
| ATN(x) { =1E75 | 1E75 | —1E75 { 1E7S |
| HSN (x) | —174.673 | 174.673 { -174.673 { 174.673 |
| HCS (x) | -174.673 | 174.673 | -174.673 | 174.673 |
| HTN (x) | -=1E75 { 1E75 | -1E75 | 1E75 1
| DEG (x) | -1E75 | 1E75 | —1E75 | 1E7S |
| RAD(X) 1 -1E75 | 1E75 | —=1E75 | 1E75 |
| EXP(x) { -180.218 | 174.673 ! -180.218 | 174.673 |
| ABS (x) | -1E75 | 1E75 | -1E75 { 1E75 |
| LOG (x) | 0 | 1E75 1 0 { 1E75 i
| LTW (x) | 0 | 1E75 | 0 | 1E75 |
| LGT(x) | 0 { 1E7S ] 0 | 1E75 |
| SQR (x) | 0 | 1E75 | 0 | 1E75 |
| RNC (x) | -1E75 | 1E75 | =1875 | 1E75 |
| INT(x) | =1E75 | 1E75 | —=1E75 | 1E75 |
| SGN (x) | -1E7S | 1E75 | =1875 | 1E7S |
1 ']

78 vM/370 BASIC Language Manual



APPENDIX B: VM/370 BASIC ERBROR MESSAGES

Error messages are printed at the terminal if program syntax and
structure errors are detected, program limitations are exceeded, or
execution errors or exceptions occur. Many of these conditions are
detected at compile time; others cannot be diagnosed until program
execution. If a problem persists, save the terminal cutput, enter CP and
request a dump of storage, and contact IBM for programming support.

Error messages are denerated from two sources: 1) - the VM/370 BASIC
Interface, and 2) the CALL-0S BASIC compiler. The interface messages
refer to preliminary command syntax checks and virtual machine
limitations while the BASIC compiler messages apply to compilation and
execution errors.

VM/370 BASIC INTERFACE ERROR MESSAGES

The types of BASIC Interface messages are identified by action codes as
follows:
Iype Meaning
Warning
Error
Severe Error
Terminal Error

HuE ek

When a condition arises during the execution of a command resulting in a
Warning, Error, Severe FError, or Terminal Error message, the command
will pass a nonzero return code in register 15. CMS return codes are
identified in the following EASIC interface messages as “RC=xx"., A
description of the assignment of CMS return codes is included in the IBM
Virtual Machine Facility/370: System  Messages Manual, Order No.
GC20-1808.

DMSBSCO01E NO FILENAME SPECIFIED

Explanation: The command requires the specification of a
filename.

System Action: RC = 24
Execution of the command terminates. The system remains in
the same status as before the command was entered.

User Action: Retype the command, specifying the filenanme.

DMSBSCO02E FILE *fn £t*' NOT FOUND

Explanation: The specified file was not found on the accessed
disk(s). Either the file does not reside on this disk, the
file identification has been misspelled, or inconmplete
identification has been provided to cause the appropriate
disk to be searched. (See the IBM VM/370 Command Langquage

e e e

User's Guide, Order No. GC20-1804, for a description of the

file identification required by each command and the search
rrocedure used.)

Appendix B: VM/370 BASIC Error Messages 79



DMSBSCO03E

DMSBSCOO7E

DMSBSCO025E

DMSBSC1045S

System Action: RC = 28
Execution of the command terminates. The system remains in
the same status as before the command was entered.

User Action: To make sure the file exists issue STATE fn ft *

or LIST fn ft *, Correct and reenter the command.

INVALID OPTION ‘*option!

Explanation: The specified option appeared illegally in the
option list of the command. It may have been misspelled or,
if the option is truncatable, it may have been truncated
imgroperly.

System Action: RC = 24

Execution of the command terminates. The system remains in
the same status as before the command was entered.

User Action: Check the command line and try again.

FILE 'fn ft' IS NOT FIXED, OR GREATER THAN 256 CHAR. RECORDS

Explanation: The input file must have fixed length records of

up to 256 characters each in order to execute the command.

System Action: RC = 32
Execution of the command terminates. The system remains in
the same status as before the command was entered.

User Action: The record format and length may be corrected
using the COPYFILE command.

NULL SOURCE LINE. COMPILER TERMINATED

Explanation: There is a blank line in the source progranm.
System Action: RC = 32

Execution of the command terminates. The system remains in
the same status as before the command was entered.

User Action: Edit the BASIC source file and delete the blank

ERROR READING FILE *'fn ft' FROM DISK

Explanation: An unrecoverable error occurred while reading

the file from disk. This error may be caused by any one of
the following conditions:

Given file not found.

Buffer area not within user storage limits.

Permanent disk read error.

Number of records < 0 or > 32768,

Fixed/variable flag in file status table entry is not F or

V.

e Given memory area was smaller than actual size of the
records read. (This error 1is legitimate if reading the
first portion of a large record into a 1little buffer. It
does not cause the function to terminate.)

e File is open for writing and must ke closed kefore it can
be read. :

80 VM/370 BASIC Language Manual



DMSBSC109s

DMSBSC117s

DMSBSC1U46S

DMSBSC147S

e Only one record may be read for a variable length file. In
this case, the number of records is greater than 1.

e End-of-file (record number specified exceeds number of
records in file).

e Variable file has invalid displacement in active f£file
table.

e TInvalid character detected in filename.
Invalid character detected in filetype.

System Action: RC = 100.
Execution of the command terminates.

Userx Action: Attempt to deternine the problen from
'Explanation', above, remedy the condition, and retry the
command. Or else retry the command, and if the problen
persists, contact installation maintenance personnel.

VIRTUAL STORAGE CAPACITY EXCEEDED

Explanation: There is no more space available in the usert's
virtual machine to successfully complete execution of the
command. Subsequent execution of certain CMS commands may

result in the same problen.

System Action: RC = 104

The system remains in the same status as before the command
was issued.

n: Use the CP command DEFINE to increase the size
irtual machine, IPL CMS again and reenter the
command. Or reduce the size of the program and retry.

PROGRAM EXCEEDS SOURCE STATEMENT MAX ‘'nnn'

Explanation: nnn is the maximum number of statements allowed
in the progranm.

System Action: RC = 88
Execution of the command terminates. The system remains in
the same status as before the command was entered.

User Action: Reduce the number of source statements and

retry.

UNEXPECTED BASIC COMPILER REQUEST 'nnn!'

Explanation: An unsupported SVC request has been received

from the BASIC compiler.

System Action: RC = 88
Execution of the command terminates., The system remains in
the same status as before the command was entered.

User Action: Retry. If the error persists, contact your
ins

tallation maintenance personnel.

RUN TIME PACKAGE NOT FOUND

Explanation: The execution time package 'BSCRUN MODULE' could

not be found on any of the accessed disks.

Appendix B: VM/370 BASIC Error Messages 81



System Action: RC = 104.

Execution of the command terminates. The system remains in
the same status as before the command was entered.

User Action: Contact your installation maintenance personnel.
DMSBSC204¥W COMPILER ERROR CODE = *nnnn'

Explanation: A system error was detected during compilation.

A code 'nnnn' specifies the nunber returned from the
compiler, where 'nnnn' is one of the following:

151 (VERBSO03) source .pointers were destroyed while in'the
DIM statement processor.

152 (B$PHASE) source 1line is without a beginning 1line
number.

153 (B$PHASE) source line has been detected without an
end-of-line character.

154 (B$PHASE) source 1line has tLeen detected with an
invalid character.

155 (NUCLEUS) source pointer was destroyed while in an
identifier scan routine.

170 (FORMULA) the temporary storage ccunter was below its
limit.

171 (FORMULA) unknown operator (binary).

172 (FORMULA) unknown operator (unary).

173 (FORMULA) undefined identifier type.

174 (FORMULA) undefined delimiter.

175 (FORMULA) stack overflow.

System Action: RC = 'nnnn'

Action: Retry, if the error persists contact vyour

DMSBSC906T UNEXPECTED RETURN CODE

Explanation: While scanning terminal output from the compiler

DMSBSC could not find an end of line character.

System Action: RC = 256
Execution of the command terminates. The system remains in
the same status as before the command was entered.

User Action: Retry, if the -error persists contact your

installation maintenance person.

COMPILATICN ERRCR MESSAGES

Compilation error messages are issued by the BASIC compiler while the
program is being translated or prepared for execution. A line number is
printed before any message pertaining to a particular line. In other
cases, where it would be helpful in correcting a problem, a line number
will also be printed.

Compilation errors can be classified as syntax errors (errors in the

construction of a statement), program structure errors (errors in the
ordering and relationship of statement 1lines), or program limit errors.

82 VM/370 BASIC Language Manual



If any compilation error occurs, the program is not executed. The
compiler generally continues to scan the rest of the program for
additional errors. If the error involves a program limit, compilation is
usually terminated. Only one error per statement is detected for a
particular compilation.

The compilaticn error messages are listed alphabetically below.

ARRAY ALREADY DEFINED
Explanation: A DIM statement has been entered to declare an array
which has already been defined, either through use or in another
DIM statement.

System Action: Compilation is continued; execution is inhibited.

CHARACTER ARRAY IN MAT

Explanation: An alphameric array name has been specified in a MAT

statement. Only numeric array names can be used in MAT statements.

System Action: Compilation is continued; execution is inhibited.

EXPRESSION TCC COMPLEX

Explanation: The 1line contains an expression requiring too much
work space to compile or tco many temporary storage 1locations to
compute.

System Action: Compilation is continued; execution is inhibited.

User Action: The user can try deleting unnecessary parentheses and

preassigning expressions to variables as a means of eliminating
this condition.

FOR/NEXT LOOP INCOMPLETE
Explanation: The program contains at least one incomplete FOR loop.

A

System Action: Compilation is terminated; execution is inhibited.

Explanation: A NEXT statement does not match the preceding FOR

statement.

System Action: Compilation is continued; execution is inhibited.

FOR/NEXT NESTED TCO DEEPLY
Explanation: The program contains more than 15 nested FOR loops.

System Action: Compilation is terminated; execution is inhibited.

FOR/NEXT OUT CF SEQUENCE

Explanation: A NEXT statement appears at a point where no

incomplete FOR loop exists.

Appendix B: VM/370 BASIC Error Messages 83



System Action: Compilation is continued; execution is inhibited.

INVALID ARGUMENT OF DET

Explanation: An argument supplied to the DET function is not a

System Action: Compilation is continued; execution is inhibited.

INVALID LITERAL CONSTANT

Explanation: The 1line contains a literal constant for which the

boundary characters are missing or not balanced.

System Action: Compilation is continued; execution is inhibited.

INVALID NUMERIC CONSTANT

Explanation: The 1line contains a numeric constant whose absolute

Bxplanation: Redimensioning has been attempted in a statement that

does not permit redimensioning, or has 1led to an attempt to change
the number of dimensions of the matrix.

System Action: Compilation is continued; execution is inhibited.

INVALID USER FUNCTION
Explanation: A user function has been defined more than once.

System Action: Compilation is continued; execution is inhibited.

Explanation: A matrix referenced in a MAT statement has not been

MATRIX NOT 2~DIMEN

A one-dimensional matrix has been referenced in a

Explanation:
ntity, multiplication, transposition, or inversion

=anacion
e

matrix id
operation.

System Action: Compilation is continued; execution is inhibited.

NO. CF DIMENSIONS INVALID

84 VvM/370 BRASIC Language Manual



NO.

OBJE

PROG

SAME

SYNT

SYNT

1. The number of subscripts in a reference to a matrix does not
correspond to the number of dimensions originally declared for the
matrix.

2. A reference to an alphameric array contains two subscripts.

System Action: Compilation is continued; execution is inhibited.

OF DIMENSIONS UNMATCHED

Explanation: The matrices specified in a MAT statement do not have

the same number of dimensions.

System Action: Compilation is continued; execution is inhibited.

CT PROGRAM TOO LARGE

Explanation: The object program exceeds the maximum storage space

Sl e

allowed.

System Action: Compilation is terminated; execution is inhibited.

L}
User Action: The user can try combining duplicate source code in
GOSUB or user function definitions as a means of eliminating this
condition, Program chaining may also provide a solution +to this
problenm.

RAM ERROR. COMPILATION TERMIWATED

Explanation: A program-check interrupt has occurred during the

compilation process.

System Action: Compilation is terminated; execution is inhibited.

User Action: If the problem persists, the user should contact

installation management.

MATRIX FOR RESULT/OPERAND

—_— e wm L

multiplication, transposition, or inversion operation is the same
as an operand matrix of the operation.

System Action: Compilation is continued; execution is inhibited.

AX ERROR IN EXPRESSION

Explanation: The line does not contain a valid expression where one

—— e

is expected.

System Action: Compilation is continued; execution is inhibited.

AX ERROR IN STATEMENT

Explanation: The line contains an error in the construction of the

=

statement.

System Action: Compilation is continued; execution is inhibited.

Appendix B: VM/370 BASIC FError Messages 85



SYSTEM ERROR HAS OCCURRED

Explanation: R language processor error has occurred during the

compilation process.

System Action: Compilation is terminated; execution is inhibited.

User Action: If the problem persists, the user should contact

installation management.

TOO MANY ARRAY ELEMENTS

Explanation: The space required for array storage exceeds the

maximum allocation.

System Action: Compilation is terminated; execution is inhibited.

TOO MANY FOR/NEXT LOOPS

Explanation: PRINT USING and MAT PRINT USING statements reference

more than 25 image statements.

System Action: Compilation is terminated; execution is inhibited.

TOO MANY STATEMENT LINES

System Action: Compilation is terminated; execution is inhibited.

User Action: Program chaining may provide a solution to this

Froblen.

TOO MANY UNDEFINED LINE NUMBERS

Explanation: An undefined line number is a line number that appears
as a reference in the text of a source-program line but does not
appear as a line number preceding a 1line in the program. Up to ten
such references are permitted, because, for example, they may
precede statements not reached during program execution. When more
than ten undefined 1line numbers have been referenced, however,

compilation is terminated.

System Action: Compilation is terminated; execution is inhibited.

TOO MANY VARIABLES OR CONSTANTS

Explanation: The space required to store variables and constants

exceeds the maximum allocation.

System Action: Compilation is terminated; execution is inhibited.

86 VM/370 BASIC Language Manual



User Action: Constants entered in DATA statements and storage for
arrays are not held in the area reserved for constants and
variables. Therefore, the user can try substituting DATA statements
or array elements for constants and variables to circumvent this

problem.

COMPILATION EXCEPTION MESSAGES

Certain conditions encountered during compilation are recognized as
exceptions by the CALL-0S BASIC language processor but do not cause
execution to be inhibited. These conditions are identified and handled
as described below.

END SUPPLIEL

System Action: Compilation is continued. The code for an END
statement is supplied at the end of the object program.

LINES AFTER END IGNORED

Explanation: One or more program lines follow the END statement of
a source program,

System Action: Compilation is continued. The END statement is

treated as the last statement in the progranm.

EXECUTION ERROR MESSAGES

When a program error is detected during program execution, a message is
printed and execution is terminated. A1l nmessages at run time are
preceded by the line number of the statement being executed at the time
the error occurred with the exception of those messages where a line
number would be irrelevant.

ATTEMPT TO WRITE TO INPUT FILE ON LAST WRITE

Explanation: An attempt was made to write to an input file.

Explanation: A GET or MAT GET statement referring to a program-data

file has caused a type or format error in the data at ¢the line
identified by line number nnnnn of the program-data file.

DIRECTORY SEARCH FAILED
Explanation: An attempt was made to open a shared file, but either
the *Directory was not validated for this user group, the file

itself was not available, or the file name was not found in the
indicated directory.

Appendix B: VM/370 BASIC Error Messages 87



END CF DATA

Explanation: A READ statement has been executed with insufficient

data in the data table.

END OF FILE

Explanation: A GET or MAT GET operation referring to a data file

could not be completed because there was insufficient data in the
file.

END OF PROGRAM FILE AT LINE nnnnn

Explanation: A GET or MAT GET operation referring to a program-data

file could not be completed because there was insufficient data in
the file.

ERROR IN ACS FUNCTION...ARGUMENT TOO LARGE

Explanation: The ACS function has been called using an argument

whose magnitude is greater than one.

ERROR IN ASN FUNCTION...ARGUMENT TOO LARGE

Explanation: The ASN function has been called using an argument

whose magnitude is greater than one,

ERROR IN COS FUNCTION...ARGUMENT TOC LARGE

Explanation: The COS function has been called using an argument

whose shcrt-form magnitude is equal to or greater than 218pi or
whose long-form magnitude is equal to or greater than 250pi.

ERROR IN COT FUNCTION...ARGUMENT TOO LARGE

Explanation: The COT function has been called using an argument

whose short-form magnitude is equal to or greater than 218pi or
whose long-form magnitude is equal to or greater than 250pi.

ERRCR IN COT FUNCTION...INFINITE VALUE
Explanation: The COT function has been called using an argument
that causes the cotangent to approach infinity.

ERROR IN CSC FUNCTION...ARGUMENT TOO LARGE

Explapation:The CSC function has been called using an argument

whose short-form magnitude is equal to or greater than 2!8pi or
whose long-form magnitude is equal to or greater than 250pi.

ERROR IN CSC FUNCTION...INFINITE VALUE

Explanation: The CSC function has been called using an argument

that causes the cosecant to approach infinity.

88 VM/370 BASIC Language Manual



ERROR IN EXP FUNCTICN...ARGUMENT TOO LARGE

Explanation: The EXP function has been called using an argument

whose magnitude is greater than 174.673.

ERROR IN HCS FUNCTION...ARGUMENT TCO LARGE

Explanation: The HCS function has been called using an argument

whose magnitude is greater than 174.673.

ERROR IN HSN FUNCTION...ARGUMENT TOO LARGE

Explapation: The HSN function has been called using an argqument

whose magnitude is greater than 174.673.

ERROR IN LGT FUNCTION...ARGUMENT ZERO OR NEGATIVE

Explanation: The LGT function has been called using an argument

whose value is equal to or less than zero.

ERROR IN LOG FUNCTION...ARGUMENT ZERO OR NEGATIVE

Explanation: The LOG function has been called using an argqument

whose value is equal to or less than zero.

ERROR IN LTW FUNCTION...ARGUMENT ZERO OR NEGATIVE

Explanation: The LTW function has been <called using an argument

whose value is equal to or less than zero.

ERROR IN SEC FUNCTION...ARGUMENT TOO LARGE

Explanation: The SEC function has been called using an argument

whose short-form wmagnitude is equal to or greater than 218pi or
whose long-form magnitude is equal toc or greater than 250pi,.

ERROR IN SEC FUNCTION...INFINITE VALUE
Explanation: The SEC function has been called using an argument
that causes the secant to approach infinity.

ERROR IN SIN FUNCTION...ARGUMENT TOO LARGE

Explanation: The SIN function has been called using an argqument

whose short-form magnitude is egqual to or greater than 218pi or
whose long-form magnitude is equal to or greater than 250pi.

ERROR IN SQR FUNCTION...NEGATIVE ARGUMENT

Explanation: The SQR function has been called using an argument

whose value is negative.

Appendix B: VM/370 BASIC Error Messages 89



ERROR IN TAN FUNCTION...ARGUMENT T00 LARGE

Explanation: The TAN function has been called using an argument
whose short-form magnitude is equal to or greater than 218pi or
whose long-form magnitude is equal to or greater than 2S0pi.

ERROR IN TAN FUNCTION...INFINITE VALUE

Explanation: The TAN function has been called using an argument
that causes the tangent to approach infinity. .

EXPONENTIATION ERROR

Explanation: X Y has been attempted with X=9 and Y=0,

FILE IS ALREADY IN USE

Explanation: An OPEN statement has forced the closing of a file,
because the file is identified by the file number specified in the
OPEN statement, However, the file name specified in the OPEN
statement has been assigned to yet another file, and this OPEN
and/or the other file-number entry is for output. For example, the
third OPEN statement below would cause this error message to be

generated:
OPEN 2, 'A', OUTPUT
OPEN 3, 'B', INPUT
OPEN 2, 'B', OUTPUT
FILE IS CLOSED OR UNASSIGNED

Explanation: A GET, MAT GET, PUT, or MAT PUT operation has been

v o

attempted on an inactive file.
FILE IS FOR INPUT

Explanation: A PUT or MAT PUT operation has been attempted on a
file opened as an input file.

90 VM/370 BASIC Language Manual



APPENDIX C: VM/370 BASIC SAMPLE PROGRAM

RAILROAD TARIFF CALCULATION

A railroad tariff for shipping a commodity between two ©points
depends wupon two factors: the rate classification and the rate
base. The rate «classification is related to the type and gquantity
of the commodity being shipped. The railroads and the Interstate
Commerce Commission establish a minimum weight which qualifies a
shipment for a carload rate; any shipment weighing 'less than this
minimum is subject to a less-than-carload rate. Other factors, such
as type of packaging and special conditions, are sometimes
considered but are ignored in this example.

The rate base, which is also determined by the railroads and the
Interstate Commerce Commission, stipulates the charge for traffic
in a given direction between two given points. The rate from point
1 to point 2 1is not necessarily the same as the rate from point 2
to point 1.

The tariff is calculated by multiplying the appropriate rate base
determined from the points of origin and destination by the
appropriate carload or less-than-carload rate determined from the
weight of the shipment.

In this example only one commodity is wused; thus only one set of
data is necessary for the origin-destination rate base and for the
carload or less-than-carload rate.

STATEMENT OF PROBLEMN

Write a BASIC program to read the rate tase table, the appropriate
minimum weight, and the carload and less~than-carload rates for a
given commodity from two disk data files. Read terminal input for
individual shipments and calculate the appropriate tariff for each
shipment., Print all relevant information.

Appendix C: VM/370 BASIC Sample Program 91



PROGRAM VARIABLES

Meaning

Flowchart BASIC

Notation Notation

RBASE (IORIG, R(I,J)

IDEST)

IORIG I1

IDEST 12

COMMOD (ITEMN, c(1,J)

IN)

ITEM I

IN I3
IN = 1
IN = 2
IN = 3
IN = 4

TARIFF T

NUMB N

POUNDS P

92 VM/370 BASIC Language Manual

Rate base table for the origin-
destination combination

Integer code for the point
of origin IORIG = 1,5

Integer code for the desti-
nation IDEST = 1,5

Data on the commodity number,
minimum weight, carload rate,
and less~-than-carload rate

Index of the table row
ITEM = 1,6 for six
commodities as test data

Index of the table column
entries, coded as follows:

Master commodity number
Less-than-carlcad rate
Minimum weight to qualify

for carload rate
Carload rate

Tariff for shipping the
comnodity

Commodity number on the
input card

Weight of the commodity to
be shipped



RATE BASE IABLE AND APPLICABLE RATES

The rate base table and the applicable rates are to be read during
program execution from two disk data files. These files must be
created and placed on the disk in a preceding step. The progran
shown below performs the necessary operations. Instructions for
listing and executing the program are included in lower case.

type rtables basic

90 REM PROGRAM TO LOAD FILES FOR RAIL TARIFF PROGRAM

100 OPEN 2,"FILE1",QUTPUT

110 OPEN 3,"FILE2", OUTPUT

120 DIM A(5,5)

130 MAT READ A

140 MAT PUT 2: A

150 MAT READ A(6,4)

160 MAT PUT 3: A

170 CLOSE 2,3

180 PRINT *WRAIL COMPLETE®

190 DATA 2.49,3.70,2.72,1.95,3.28,.93,3.03,2.26,1.55,4.25
200 DATA 1.59,3.92,2.94,1.05,3.29,.73,3.08,2.46,1.50,4.30
210 DATA 3.01,6.07,5.73,2.95,5.63

220 DATA 8750,100,24000,55,8790,250,12000,85

230 DATA 8820,125,20000,70,8863,200,20000,85

240 DATA 8885,125,12000,85,8900,70,36000,35

250 END

R;

kasic rtables

WRAIL COMPLETE
R3

Appendix C: VM/370 BASIC Sample Program 93



RBASE (IORIG, IDEST)

IDEST = 1 2 3

IORIG = 1 2.49 3.70
2 0.93 3.03
3 1.59 3.92
4 0.73 3.08
5 3.01 6.07

COMMOD (ITEM, IN)

IN = 1 2
NUMBER LESS THAN MIN.
CARLOAD
RATE
ITEM = 1 08750 100. 24000.
2 08790 250. 12000.
3 08820 125. 20000.
4 08863 200. 20000.
5 08885 125. 12000.
6 08900 070. 36000.

94 VM/370 BASIC Language Manual

2.72
2.26
2.94
2.46
5.73

4
CARLOAD
WEIGHT

055.

085.
070.
085.
085.
035.

1.95
1.55
1.05
1.50
2.95

RATE

3.28
4.25
3.29
4.30
5.63



TEST DATA

Test data appropriate for the railroad tariff calculation progran
is shown below. One set of four values should be entered each time
that the terminal user is asked for input.

Number Pounds From Io
08750 20000, 1 2
08790 10000. 1 3
08820 18000. 1 4
08863 18000. 1 5
08885 10000. 2 1
08900 30000. 2 3
08900 40000. 2 4
08885 15000. 2 5
08863 21000. 3 1
08820 21000. 3 2
08790 13000. 3 4
08750 25000. 3 5
08820 20000. 4 1
08863 20000. 4 2
08900 36000. 4 3
08750 24000. 4 5
08790 12000. 5 1
07750 24000. 5 2
08862 20000. 5 3
09900 36000. 5 4

Appendix C: VM/370 BASIC Sample Program 95



PROGRAM FLOACHART

START >

i

OPEN DISK
FILES
FILET AND
FILE2

I

INPUT
RATE BASE
TABLE
FROM
FILE1

INPUT 7
COMMODITY
TABLE

FROM
FILE2

!

CLOSE DISK
FILES
FILET AND
FILE2

PRINT
HEADINGS

NUMBER = 0?

1S
NUMBER
IN COMMOD
TABLE?

1310

PRINT:
ITEM
NUMBER
IN ERROR

1250

INPUT FROM
TERMINAL:
NO., POUNDS
IORIG, IDEST

1370

IS
POUNDS

MINIMUM

1380 1400 |
IN=2 IN=4
1420
TARIFF =
RBASE (IORIG,
IDEST)* COMMOD
(ITEM, IN)
1470

PRINT OUT
DATA FOR
LESS-THAN-
CARLOAD
RATE

PRINT OUT
DATA FOR
CARLOAD
RATE

96 VM/370 BASIC Language Manual




PROGRAM LISTING

type

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
R;

railtaf Lasic

REM RAILROAD TARIFF CALCULATION

REM VM/370 BASIC

DIM R(5,5),C(6,4)

REM NEXT TWO STATEMENTS OPEN THE TWO DATA FILES
OPEN 1,'FILE1',INPUT

OPEN 2,'FILE2',INPUT

REM THIS SECTION READS THE DATA FROM THE FILES
REM FILE1 HAS THE RATE BASE TABLE

REM FILE2 HAS THE COMMODITY INFORMATION
FOR I=1 TO 5

FOR J=1 TO 5

GET 1: R(I,J)

NEXT J

NEXT I

FOR I=1 TO 6

FOR J=1 TO 4

GET 2: C(I,J)

NEXT J

NEXT I

CLOSE 1,2

REM PRINT HEADINGS

PRINT 'RAILROAD TARIFF CALCULATIONS'
PRINT

PRINT 'C = CARLOAD RATE!

PRINT 'LC = LESS THAN CARLOAD'

PRINT

PRINT 'ENTER NUMB,POUNDS,ORIG,DEST!

REM TERMINAL USER IS ASKED FOR INPUT
INPUT N,P,I1,I2

IF N=0 GO TO 1500

FOR I=1 TO 6

IF N=C(I,1) GO TO 1370

NEXT I

REM NUMB NOT EQUAL TO ANY C(I,1), NUMB IN ERROR
PRINT 'ITEM NUMBER IN ERROR'

GO TO 1250

REM CHECK FOR MIN. WEIGHT TO DETERMINE RATE
IF P>=C(I,3) GO TO 1400

13=2

GO TO 1420

I3=4

REM COMPUTE TARIFF

T = R(I1,I2)*C(I,I3)

IF I3<>2 GO TO 1470

PRINT USING 1450 ,C(I,I3),T

: RATE = ###.##LC TARIFF = #44.%¢%
GO TO 1250

PRINT USING 1480 ,C(I,I3),T

: RATE = ###.#4C TARIFF = ###.4%
GO TO 1250

END

Appendix C: VM/370 BASIC Sample Program

97



PROGRAM OUTPUT

basic

railtaf

RAILRCAD TARIFF CALCULATIONS

C = CARLOAD RATE
L

C =

ENTER
RATE

ENTER
RATE

ENTER
RATE

ENTER
RATE

ENTER
RATE

ENTER
RATE

ENTER
RATE

ENTER
RATE

ENTER
RATE

ENTER
RATE

ENTER
RATE

ENTER
RATE

ENTER
RATE

ENTER
RATE

ENTER
RATE

ENTER
RATE

ENTER
RATE

ENTER

LESS THAN CARLOAD

NUMB,POUNDS,IORIG,IDEST? 8750,20000,1,2
= 100.00LC TARIFF = 370.00

NUMB,POUNDS,IORIG,IDEST? 8790,10000,1,3
= 250.001LC TARIFF = 680.00

NUMB,ECUNDS,IORIG, IDEST? 8820,18000,1,4
= 125.00LC TARIFF = 2u43.75

NUMB,POUNDS,IORIG,IDEST? 8863,18000,1,5
= 200.001LC TARIFF = 656.00

NUMB,POQUNDS,IORIG, IDEST? 8885,10000,2,1
= 125.00LC TARIFF = 116.25

NUMB,POUNDS,IORIG,IDEST? 8900,30000,2,3
= 70.00LC TARIFF = 158.20

NUMB,PCUNDS,IORIG,IDEST? 8900,40000,2,U4
= 35.00C TARIFF = 54.25

NUMB,POUNDS,IORIG,IDEST? 8885,15000,2,5
= 85.00C TARIFF = 361.25

NUMB,FCUNDS,IORIG, IDEST? 8863,21000,3,1
= 85.00C TARIFF = 135.15

NUMB,POUNDS,IORIG,IDEST? 8820,21000,3,2
= 70.00C TARIFF = 274.40

NUMB,PCUNDS,IORIG,IDEST? 8790, 13000,3,4
= 85.00C TARIFF = 89.25

NUMB,POUNDS,IORIG,IDEST? 8750,25000,3,5
= 55.00C TARIFF = 180.95

NUMB,POUNDS,IORIG, IDEST? 8820,20000,4,1
= 70.00C TARIFF = 51.10

NUMB,POUNDS,IORIG,IDEST? 8863,20000,4,2
= 85.00C TARIFF = 261.80

NUMB,PCUNDS,IORIG,IDEST? 8900,36000,4,3
= 35.00C TARIFF = 86.10

NUMB, POUNDS,IORIG,IDEST? 8750,24000,4,5
= 55.00C TARIFF = 236.50

NUMEB,PCUNDS,IORIG,IDEST? 8790,12000,5,1
= 85.00C TARIFF = 255.85

NUMB,POUNDS,IORIG,IDEST? 7750,24000,5,2

ITEM WUMBER IN ERROR

ENTER

NUMB,POUNDS,IORIG,IDEST? 8862,20000,5,3

98 VM/370 BASIC Language Manual



ITEM NUMBER IN ERROR

ENTER NUMB,POUNDS,IORIG,IDEST? 9900,36000,5,4
ITEM NUMBER IN ERROR

ENTER NUMB,POUNDS,IORIG,IDEST? 0,0,0,0

R3

Appendix C: VM/370 BASIC Sample Program 99






A .
ABS intrinsic function 28
ACS intrinsic function 28
addition of matrix elements 54
arithmetic operators 30
array declaration statements 40
arrays
alphameric 25
declaring 25
defined 24
implicit declaration of 26
redimensioning 27
referencing members of 24
subscript evaluation for 25
ASN intrinsic function 28
assignment of values for matrix
elements 55
assignment statements 40
ATN intrinsic functions 28

B
BASIC CMS command 12
BASIC language
introduction 11
language elements 19
program structure 17
blanks, use of in BASIC 18
branch statements 40

C
CHAIN statement 37,40
character set 19
CLOSE statement 43
CMS, using BASIC with 11
comnmas, use of in BASIC 18
comments 18
computed GOTO 49
CON matrix function 55
constants

internal 23

literal 23

numeric 20
COS intrinsic function 28
COT intrinsic function 28
CP, using BASIC with 11
creating a CMS BASIC file 12
CSC intrinsic function 28

D

data files
accessing 34
active 35
allocation of 36
closing 35

INDEX

defined 34
disk input/output for 34
implied opening of 34
internal specifications of 32
opening 35
storage of 37
terminal input/output for 36
DATA statement
defined 43
used with READ statement 32
used with RESTORE statement 32
DEF statement 44
DEG intrinsic function 28
DET intrinsic function 28
DIM statement 44
disk input/output 34
disk input/output statements 40

E
EDIT CMS subcommand 11,12
END statement 45
executable statements 18
EXP intrinsic function 28
expressions

defined 30

evaluation of 31

F
FILE CMS command 12
fixed-point short-form numbers 20
floating-point short-form numbers 20
FOR statement 46
functions

intrinsic 28

matrix 29

user—defined 30

G

GET statement 47
GOSUB statement 48
GOTO statement 49

H

HCS intrinsic function 28
HSN intrinsic function 28
HTN intrinsic function 28

Index

101



I

IDN matrix function 57

IF statement 50

IMAGE statement 51

INPUT statement 32,52

INT intrinsic function 28

integer short-form numbers 20

internal constants 23

internal specification of data files 32
internal specification statements 32,40
intrinsic functions

ABS 28
ACS 28
ASN 28
ATN 28
cos 28
coT 28
csCc 28
DEG 28
DET 28
EXP 28
HCS 28
HSN 28
HTN 28
INT 28
LGT 28
LOG 28
LTH 28
RAD 28
RND 28
SEC 28
SGN 28
SIN 28
SQR 28
TAN 28

INV matrix function 58
inversion of matrix elements 58
IPL CP command 11

L

language elements, introduced 19
LET statement 53

LGT intrinsic function 28
line number field 17
literal constants 23

LOG intrinsic function 28
LOGIN CP command 11
long-form numbers 20

loop statements 40

LTW intrinsic function 28

M

MAT GET statement 56

MAT INPUT statement 33,57
MAT PRINT statement 33,60
MAT PRINT USING statement
MAT PUT statement 61

MAT READ statement 62
matrix addition 54

matrix assignment 55

34,60

102 vVM/370 BASIC Language Reference Manual

matrix functions

CON 55
IDN 57
INV 58
TRN 63
ZER 63

matrix multiplication 59
matrix statements 41
matrix subtraction 62
matrix transposition 63
matrixes
arithmetic with 27
defined 26
manipulation of 26
redimensioning 27
multiplying matrix elements 59

N

NEXT statement 64
non-executable statements 18
numeric constants 20

0

OPEN statement 65

operators
arithmetic 30
relational 30
unary 30

P

pause and termination statements 40
PAUSE statement 66

print fields 67

print format for numbers 21

print lines 67

PRINT statement 66

PRINT USING statement 33,69

print zones 67

program chaining 37

program chaining statements 37,40

program structure, description of 16
progran—-data files

accessing 36

creating 36
PUT statement 70

R
RAD intrinsic function 28
READ statement
defined 71
used with DATA statement 32
used with RESTORE statement 32
relational operators 30
REM statement 40,72
RESET statement 72



RESTORE statement
defined 73
used with DATA statement
used with READ statement
RETURN statement 73
RND intrinsic function 28

S

scalar matrix multiplication

SEC intrinsic function 28

SGN intrinsic function 28

short-form numbers
fixed-point 20
floating~point 20
integer 20

simple alphameric variables

simple GOTO 49

simple numeric variables 24

SIN intrinsic function 28

source statement 18

SQR intrinsic function 28

statement field 18

statement line 17

STOP statement 74

symbols
constant 20
defined 19

variable 24

32
32

59

24

syntax conventions 7

T
TAN intrinsic functio
terminal input/ocutput

terminal input/output statements

TRN matrix function

U
unary operators 30
USE statement 75

user-defined functions, rules for

writing 29

v

variables
array 24
defined 24
simple 24

n

63

28
32

VM/370, using BASIC with

z
ZER matrix function

63

17

32,40

Index

103






evessecsssscsessese

Trim Along This Line

READER'S COMMENTS

Title: IBM Virtual Machine Order No. GC20-1803-1
Facility/370:
BASIC Language 1
Reference Manual '

Please check or fill in the items; adding explanations/comments in the space provided.

Which of the following terms best describes your job?

0O Programmer O Systems Analyst O Customer Engineer
0 Manager O Engineer O Systems Engineer

O Operator O Mathematician O Sales Representative
O Instructor 0O Student/Trainee O Other (explain below)

Does your installation subscribe to the SL/SS? O Yes O No

How did you use this publication?
O As an introduction O As a text (student)
[J As a reference manual [0 As a text (instructor)
O For another purpose (explain)

Did you find the material easy to read and understand? [ Yes O No (explain below)
Did you find the material organized for convenient use? [J Yes O No (explain below)

Specific criticisms (explain below)
Clarifications on pages

Additions on pages

Deletions on pages

Errors on pages

Explanations and other comments:

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.



GC20-1803-1

YOUR COMMENTS PLEASE . ..

This manual is one of a series which serves as a reference source for
systems analysts, programmers, and operators of IBM systems. Your
comments on the back of this form will be carefully reviewed by the
persons responsible for writing and publishing this material. All com-
ments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in
utilizing your IBM system should be directed to your |BM representative
or to the |BM sales office serving your locality.

FOLD

D R R R I I N I N N A A N I N N I A Y D R A N N N I I W I N Y

FIRST CLASS
PERMIT NO. 172
BURLINGTON, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.

POSTAGE WILL BE PAID BY

IBM CORPORATION

VM/370 Publications
24 New England Executive Park
Burlington, Massachusetts 01803

BV

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New Yark 10604

[U.8.A. only|

IBM World Trade Corporation
#321 United Nations Plaza, New York, New York 10017
[Intarnational)

lenuely joy Bueq J1Sva :0LE/WA WEI

...........................................

aur siyy Buoly wiag

"V'S'N ul paug

1-€081-0299



