GC28-0645-4
File No. S370-39

0S/VS2 TSO

ot .‘mw.‘»_, "W?' . .
o Terminal User’s Guide

VS2 Release 3.8

Includes Selectable Units:

TSO/VTAM Level 1 VS2.03.813
System Security Support 5752-832
TSO/VTAM Level 2 5752-858

Page of GC28-0645-4
As Updated July 30, 1980
By TNL GN28-4753

Fifth Edition (June, 1978)

This is a major revision of, and obsoletes, GC28-0645-3 and incorporates changes
released in the following Selectable Unit Newsletters and System Library Supplements:

TSO/VTAM Level 1 VS2.03.813 GN28-2651 (dated May 28, 1976)
System Security Support 5752-832 GC28-0849 (dated May 27, 1977)
TSO/TCAM Level 2 5752-858 GD23-0044 (dated September 30, 1977)

See the Summary of Amendments following the Contents for a summary of the changes
that have been made to this manual. A vertical line to the left of the text or illustration
indicates a technical change made in this edition; revision bars are not used, however, to
indicate changes made in previous editions, technical newsletters, or supplements.

This revision incorporates OS/VS2 MVS information formerly contained in OS/MVT
and OS/VS2 TSO Terminals, GC28-6762, with supplement GD21-0001.

This edition with Technical Newsletters, GN28-4753 and GN28-2953 applies to Release
3.8 of OS/VS2 and to all subsequent releases until otherwise indicated in new editions
or Technical Newsletters. Changes are continually made to the information herein;
before using this publication in connection with the operation of IBM systems, consult
the latest System/370 Bibliography, GC20-0001, for the editions that are applicable and
current.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming or services which are not announced
in your country. Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming or services in your country.

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader’s comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Programming

Systems Publications, Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y.

12602. IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

© Copyright International Business Machines Corporation 1972,1974,1975,1976,1978

»

Systems

GC28-0645-4
File No. S370-39

0S/VS2 TSO
Terminal User’s Guide

VS2 Release 3.7

Includes Selectable Units:

TSO/VTAM Level 1 VvS2.03.813
System Security Support 5752-832
TSO/VTAM Level 2 5752-858

vllll

Fifth Edition (June, 1978)

This is a major revision of, and obsoletes, GC28-0645-3 and incorporates changes
released in the following Selectable Unit Newsletters and System Library Supplements:

TSO/VTAM Level 1 VS52.03.813 GN28-2651 (dated May 28, 1976)
System Security Support 5752-832 GC28-0849 (dated May 27, 1977)
TSO/TCAM Level 2 5752-858 GD23-0044 (dated September 30, 1977)

This revision incorporates OS/VS2 MVS information formerly contained in OS/MVT and
0S/VS2'TSO Terminals, GC28-6762, with supplement GD21-0001.

This edition applies to release 3.7 of OS/VS2 and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters. Changes are continually
made to the information herein; before using this publication in connection with the
operation of IBM systems, consult the latest System/370 Bibliography, GC20-0001, for the
editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Programming

Systems Publications, Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y.

12602. Commentshecome the property of IBM.)
© Copyright Intef‘ationa] Business Machines Corporation 1972,1974,1975,1976

3 J?’.f ’\a\
.

\/77 \

Technical Newsletter
This Newsletter No. GN28-4753
Date July 30, 1980
Base Publication No. GC28-0645-4
File No. S370-39

Prerequisite Newsletters/ GN28-2953
Supplements

TSO Terminal User’s Guide

© Copyright IBM Corp. 1972, 1974, 1975, 1976

This newsletter contains replacement pages for 7SO Terminal User’s Guide.

Before inserting any of the attached pages into TSO Terminal User’s Guide, read
carefully the instructions on this cover. They indicate when and how you should insert the

pages.

Pages to Attached Pages
be Removed to be Inserted*
Cover - Edition Notice Cover - Edition Notice
iii - iv il - iv

xi - xii xi - xii

9-10 9-10

15-16 15-16.2
35-38 35-38

57 - 58 57 - 58.2

83 -84 83 -84

89 - 90 89 - 90
115-118 115 - 118

123 - 124 123 - 124

129 - 130 129 - 130

169 - 170 169 - 170
189 - 190 189 - 190

199 - 204 199 - 204

*If you are inserting pages from different Newsletters/Supplements and identical page
numbers are involved, always use the page with the latest date (shown in the slug at the
top of the page). The page with the latest date contains the most complete information.

A change to the text or to an illustration is indicated by a vertical line to the left of the
change.
Summary of Amendments

See the Summary of Amendments, following the contents, on page xi, for a description of
the changes that have been made to this manual.

Note: Please file this cover letter at the back of the base publication to provide a
record of changes.

IBM Corporation, Publications Development, Department D58, Building 706-2,
PO Box 390, Poughkeepsie, New York 12602

Printed in U.S.A.

X

[[0}
T]
<|l
i

/Technical Newsletter

This Newsletter No. GN28-1036
Date December 14, 1984

®

Base Publication No. GC28-0645-4
File No. S370-39

Prerequisite Newsletters/ GN28-4753
Supplements

OS/VS2 TSO
Terminal User’s Guide

©Copyright IBM Corp. 1984
TSO Extensions, Program No. 5665-285
This newsletter contains replacement pages for OS/VS2 TSO Terminal User’s Guide.

Before inserting any of the attached pages into OS/VS2 TSO Terminal User's Guide, read carefully the
instructions on this cover. They indicate when and how you should insert pages.

Pages to Attached Pages
be Removed to be Inserted*
Cover - Edition Notice Cover - Edition Notice
X1 - xii ‘ X1 - Xii
9-10 9-10
*If you are inserting pages from different Newsletters/Supplements and identical page numbers are
) involved, always use the page with the latest date (shown in the slug at the top of the page). The page
~

with the latest date contains the most complete information.

A change to the text or to an illustration is indicated by a vertical line to the left of the change.

Summary of Amendments
This technical newsletter contains changes to the description of attention interruption.

Note: Please file this cover letier at the back of the publication to provide a record of changes.

O IBM Corporation, Information Development, Dept. D58, Building 921-2,
P.0O. Box 390, Poughkeepsie, New York 12602

Printed in U.S.A.

@

=2:s= / Technical Newsletter

This Newsletter No. GN28-4753
Date July 30, 1980

0 Base Publication No. GC28-0645-4
File No. S370-39

Prerequisite Newsletters/ GN28-2953
Supplements

TSO Terminal User’s Guide

© Copyright IBM Corp. 1972, 1974, 1975, 1976

This newsletter contains replacement pages for TSO Terminal User’s Guide.

Before inserting any of the attached pages into 7SO Terminal User’s Guide, read
carefully the instructions on this cover. They indicate when and how you should insert the

pages.
Pages to Attached Pages
be Removed to be Inserted*
Cover - Edition Notice Cover - Edition Notice
iii - iv iii - iv
Xi - xii xi - Xii
9-10 9-10
0" 15-16 15-16.2
35-38 35 - 38
57 - 58 57 - 58.2
83 -84 83 - 84
89 - 90 89 - 90
115-118 115-118
123 - 124 123 - 124
129 - 130 129 - 130
169 - 170 169 - 170
189 - 190 189 - 190
199 - 204 199 - 204

*If you are inserting pages from different Newsletters/Supplements and identical page
numbers are involved, always use the page with the latest date (shown in the slug at the
top of the page). The page with the latest date contains the most complete information.

A change to the text or to an illustration is indicated by a vertical line to the left of the
change.
Summary of Amendments

See the Summary of Amendments, following the contents, on page xi, for a description of
the changes that have been made to this manual.

Note: Please file this cover letter at the back of the base publication to provide a
record of changes.

IBM Corporation, Publications Development, Department D58, Building 706-2,
PO Box 390, Poughkeepsie, New York 12602

Printed in U.S.A.

«m\ly

\

EFS /Technical Newsletter
This Newsletter No. SN28-1037

Date December 15, 1984

0 Supplement No. SD23-0241-0
Base Publication No. GC28-0645-4

File No. S370-39

Prerequisite Newsletters/ GN28-1036
Supplements GN28-4753

OS/VS2 TSO
Terminal User’s Guide

©Copyright IBM Corp. 1984
TSO Extensions, Program No. 5665-285

This newsletter contains replacement pages for OS/VS2 TSO Terminal User's Guide.

Before inserting any of the attached pages into OS/VS2 TSO Terminal User’s Guide, read carefully the
instructions on this cover. They indicate when and how you should insert pages.

Pages to Attached Pages
be Removed to be Inserted*
Xi - Xxil Xi - xii

9-10.2 9-10.2

*If you are inserting pages from different Newsletters/Supplements and identical page numbers are
involved, always use the page with the latest date (shown in the slug at the top of the page). The page
0 with the latest date contains the most complete information.

A change to the text or to an illustration is indicated by a vertical line to the left of the change.

Summary of Amendments
This technical newsletter contains changes to the description of attention interruption.

Note: Please file this cover letter at the back of the publication to provide a record of changes.

0) IBM Corporation, Information Development, Dept. D58, Building 921-2,
P.0O. Box 390, Poughkeepsie, New York 12602

C

System Library
~Supplement

C

This Supplement No. SD23-0241-0
Date November 30, 1981

File No. S370-37

For Base Publication GC28-0645-4, OS/VS2 TSO Terminal User’s Guide
© Copyright IBM Corp. 1972, 1976

Prerequisites GN28-2953
GN28-4753 ;

TSO Extensions (TSO/E)
Program Number 5665-285

This supplement contains replacement pages for Terminal User’s Guide to
support TSO/E.

Before inserting any of the attached pages into Terminal User’s Guide, read
carefully the instructions on this cover. They indicate when and how you should
insert the pages.

\ Pages to Attached Pages
C be Removed to be Inserted*
v - xii v - xii
9-14 9-14
63 - 64 63 - 64.2
67 - 68 67 - 68
93 - 94 93 - 94
97 - 98 97 - 98
101 - 102 i01 - 102
187 - 190 187 - 190
4 199 - 202.2 199 - 202.2
! 223 - 231 223 - 231

*If you are inserting pages from different Newsletters/Supplements and identical
page numbers are involved, always use the page with the latest date (shown in the
- slug at the top of the page). The page with the latest date contains the most
complete information.

A change to the text or to an illustration is indicated by a vertical line to the left of
the change.

IBM Corporation, Publications Development, Department D58, Building 706-2,
PO Box 390, Poughkeepsie, New York 12602

Printed in U.S.A.

Summary of Amendments
This edition of the publication supports TSO/E. It describes simplified ways of
assigning attributes to a new data set; how to provide RACF protection to a new
DASD data set or tape volume and; how to request formatted copies of an output
data set. A description of full screen logon processing has been added to Appendix
. F. Also TSO/E includes functions provided by TSO Command Package. In support
of that release, the built-in function & NRSTR and the control variable & SYSENV
are documented in this edition.

Note: Please file this cover letter at the back of the base publication to provide
a record of changes.

July 30, 1980

Preface

This publication explains how to use the TSO command language and the
terminals supported by TSO. TSO commands, entered at a terminal, can be
used to perform the following functions:

o Start and end a terminal session.

« Enter and manipulate data.

« Execute programs at the terminal.

s Test a program.

« Write and use command procedures.

This publication is intended as a guide for all TSO users and includes
information specifically for new users. For details on how to code each
command, refer to OS/VS2 TSO Command Language Reference.

Organization

The information in this book is divided into six sections and the
Appendixes. The first three sections contain information that every TSO
user must be familiar with, while Sections IV through VI describe more
complex operations you may wish to perform. Each Appendix discusses one
type of TSO-supported terminal. You need only refer to the Appendix that
describes the terminal you are using.

Section I, “Basic Information for Using TSO,” outlines introductory
information for all system users. The section defines the format of TSO
commands, system-provided aids, and the data set naming conventions.

Section II, “Starting and Ending a Terminal Session,”” provides a sample
terminal session to familiarize new users with TSO. During the sample
session the user logs on to the system, creates a data set, makes changes in
the data, and logs off. The section goes on to discuss in more detail what
was done during the sample session.

Section III, “Entering and Manipulating Data,” describes how to use the
EDIT command and its subcommands to create a data set and modify its
contents. The chapter also discusses the TSO commands used to rename,
protect, and delete data sets, and to list information about your data sets.

Section IV, “Executing a Program at a Terminal,” explains how to compile,
link-edit, and execute a program using TSO commands.

Section V, “Testing a Program at the Terminal,”” describes how the TEST
command can be used to test a program for proper execution and
programming €rrors. ’

Section VI, “Command Procedures,” explains how to write and use
command procedures to perform frequently repeated functions. The section
describes the use of built-in functions, control variables, and command
procedure statements, followed by examples of command procedures.

Preface iii

Page of GC28-06454
As Updated July 30, 1980
By TNL GN28-4753

The Appendixes describe the operation and characteristics of the
following TSO-supported terminals:

N
N

IBM 2741 Communication Terminal

IBM 1052 Printer-Keyboard

Teletype* Model 33

Teletype* Model 35

IBM 2260 Display Station

IBM 2265 Display Station

IBM 3270 Information Display System

IBM 3767 Communication Terminal

IBM 3770 Data Communication System

Each Appendix includes sections on how to start and end a terminal
session, how to enter data, and how to interrupt operations from the
terminal. (Additional information is also provided for some terminals.)

The examples in this publication:

Assume that you are using an IBM 3270 Display Station and that you
must press the ENTER key to enter data. For information on other
types of terminals see the Appendixes.

Show. the user’s input in lowercase letters and the system output in
uppercase letters.

Related Publications

0S/VS2 TSO Command Language Reference, GC28-0646

OS/VS2 Access Method Services, GC26-3841

0S/VS2 JCL, GC28-0692 oo
OS/VS Data Management Services Guide, GC26-3783 N
OS/VS Linkage Editor and Loader, GC26-3813

OS/VS2 MVS System Programming Library: Debugging Handbook,

GC28-0708, GC28-0709, and GC28-0710

OS/VS2 System Programming Library: TSO, GC28-0629

IBM System/370 Principles of Operation, GA22-7000

OS/VS TCAM Concepts and Applications, GC30-2049

0S/VS2 TCAM System Programmer’s Guide, TCAM Level 10,

GC30-2051

VTAM Concepts and Planning, GC27-6998

Introductien to VTAM, GC27-6987

ACF/VTAM General Information: Introduction, GC27-0462

ACF/VTAM General Information: Concepts, GC27-0463

OS/VS2 System Programming Library: VTAM, GC28-0668

ACF/VTAM Installation, SC27-0468

Network Terminal Option Generation Information, GC38-0297

Network Terminal Option Installation, SC38-0298

See the following publications for more information on IBM 3767 and
IBM 3770 terminals:

IBM 3767 Communication Terminal Operation Guide, GA18-2000
IBM 3770 Data Communication System: System Component, GA27-3097 _

{,_,;\
{]
{)
*Trademark of Teletype Corporation

iv OS/VS2 TSO Terminal User’s Guide

o

November 30, 1981

Contents

Summary of Amendments e e e e e e e Lo.oLoxi
Introduction e e e e e e e e e e e e e e e e 1
Section I: Basic Information for Using TSO e e e e e e e 3
Using a Terminal e e e e e e e e ... 3
Entering Information at a Terminal 3
Correcting Typing Errorso oo 3
Using TSO Commands v v v v v v v v i v .. 3
Positional Operandso o0 4
Keyword Operands00 4
Abbreviating Keyword Operands 4
Delimiters L L oo e e e e e e e e e e e e e 5
Subcommands0 L Ll L L Lo L s e e e e e 5
Syntax Notation Conventions e e e e e e e e e ... 6
When to Enter a Command or Subcommand L. 7
Line Continuation oL .. o000 s 7
Comments o . . . oLt e e e e e e e e e e e e 8
Using System-Provided Aids o0, 8
The Attention Interruption 9
Messages ot e e e e e e e e e e e e e e e e e e 9
Mode Messages L. Lol oo oo e e e e e e 9
Informational Messages B 10
Broadcast Messages oo 10
Prompting Messages o e e 0. 10.1
Canceling a Prompting Sequence N |
Requesting Assistance at the Terminal 12
The HELP Command e e e e e e e e e e 12
Explanations of Commands A VA
Syntax Interpretation of HELP Information 13
Explanations of Subcommands 13
Using Data Set Naming Conventions« 14
Exceptions to Data Set Naming Conventions 15
Specifying Data Set Passwords 16
Partitioned Data Setso o000 16
Data Set Types for the EDIT Command 17
Section II: Starting and Ending a Terminal Session 19
Getting a TSO User Identification 19
Running a Sample TSO Terminal Session 19
Contacting TSO L e e e e e e e 19
Entering Datao o e e e e e e 21
Listing and Saving the Data Set 22
Ending the Edit Function 22
Modifying an Existing Data Set 22
Listing the Catalog oo e 23
Recalling a Stored Data Set 23
Deletinga Lineof Data 23
Inserting Linesof Data 23
Replacinga Lineof Data 24
Deleting Modified Data oL 24
Deleting the Data Set and Logging Off - 25
Identifying Yourself to the System Lo 26
User Attributes oL 0L L oL s e e e e e e e 26
Logging On e e e e e e e e e e e e e 27
Print-Inhibiting Your Password L. 27
Defining Operational Characteristics 28
Terminal Characteristics 28
Your User Profileo Lo Lo e 28
Receiving and Sending Broadcast Messages 29
Receiving Broadcast Messages0 e e e e e e 29
Sending MeSSages . . - i e e e e e e e e e e e e e e 30
Displaying Session Time Used oo 31
Ending Your Terminal Session 32

Contents v

Page of GC28-06454
As Updated November 30, 1981
By Suppl. SD23-0241-0 for 5665-285

Section III: Entering and Manipulating Data 33
Using the EDIT Command 0 v v 33
Entering Data inInput Mode 33
Entering Subcommands in EDITMode 33
Switching Modes e e e e 34
Functions of EDIT Subcommands 34
Functions of Other Commands« ... 35
Identifying Data Sets0 i e e e e e e e e e e 35
CreatingaDataSet e 35
Placing Datainto Columns v v v i v e e e e 37
Finding and Positioning the Current Line Pointer 38
Finding the Current Line Pointer 38
Positioning the Current Line Pointer 39
UpdatingaData Set e e e e e e e e e e 41
Deleting Data fromaDataSet., .. 4?2
Inserting DatainaDataSet 42
Replacing DatainaDataSet 45
Quoted String Notation v i v e e e e e 49
Renumbering Linesof Data 50
Removing Line Numbers oo 51
Listing the Contentsof aDataSet 52
Moving or Copying Data withina DataSet 53
Specifying Databy Line Number 54
Specifying Data by Character String Identification 55
StoringaNew DataSet00 ..., 56
Creating an Updated Copyof aDataSet 57
Saving UpdatestoaDataSet 57
Ending the EDIT Functions v v 58
RenamingaData Set L e e e e e e 59
Renaming a Member of a Partitioned Data Set 59
Assigning an AliastoaMember Lo 0 .. 59
Renaming Common Qualifiers00, 60
Listing Information about Your DataSet 61
Protecting Your Data Sets 0o 62
DeletingaDataSet 0 e e e e e e e e 62
Section IV: Executing Programs at a Terminal e e e e e e e e e 63
AllocatingaData Set L. e e e e 64
Allocating Data Sets Required by a Program or Compiler 64
Allocatinga New DataSet 67
Modeling a New Data Set After an Existing Data Set (5665-285) 67
Assigning Attributes on the ALLOCATE Command (5665-285) 67.0
Assigning Attributes with the ATTRIB Command (5665-285) 67.1

Assigning the SPACE and the DCB Block Size Attributes (5665-285) 67.2
Using the COPIES and FCB Operands on the ALLOCATE

Command (5665-285) e e e e .. 67.3
Using the PROTECT Operand on the ALLOCATE Command (5665-285) . . 67.4
Freeing an Allocated Data Set 68
Creatinga Program v .ot i s e e e e e e e e 68
CompilingaProgram L0000 e e e e e e e 69
Link-Editing a Compiled Program 70
ExecutingaProgram L L0000 e e e e e 72
Loading a Program e e e e e e e e 74
Section V: Testing a Program at a Termimal T
WhentoUse TEST o o v i v i it i e e e 79
Addressing Restrictions L0 e e e e e e 81
Executing a Program under the Controlof TEST 82
Establishing and Removing Breakpoints within a Program 82
Displaying Selected Areas of Storage 83
Changing Instructions, Data Areas, or Register Contents 85
Forcing Execution of Program Subroutines 85
Using TEST after a Program ABEND 86
Determining Data Set Information 86
Section VI: Using Command Procedures 87
Creating a Command Procedure 87
How to Invoke a Command Procedure« 88
Using the Explicit Formof EXEC 88
Using the Implicit Form of EXEC v v v 88

vi - OS/VS2 TSO Terminal User’s Guide

O

November 30, 1981

Command Procedure Facilities 0. 90
Terminology L oo e e e e e e e e e e e 91
Operators and Expressionso 0o e 91
Symbolic Variables L . oL L oo oo s e e e e e e 92
Labeling within Command Procedures 93
Built-In Functionso e e e e e e e e 94
Determining an Expression’s Type v v v v v v e e e 94
Evaluating an Arithmetic Expression Immediately 95
Determining an Expression’s Length 95
Defining a Character String for Symbolic Substitution 95
Defining a Substring for Symbolic Substitution 96
Control Variables L0 Lo e 97
User-Oriented Control Variables 99
&SYSUID - User’s Identification 99
&SYSPROC -- LOGON Procedure Name 99
&SYSPREF -- Data Set Name Prefix 99
Control Variables Related to the Current Command Procedure 99
& LASTCC -- Most Recent Return Code 99
&MAXCC - Highest Return Code 99
&SYSICMD -- Implicit Execution Member Name 100

& SYSSCAN -- Symbolic Substitution Rescan Limit 100
&SYSDLM - Terminal Delimiter 100
&SYSDVAL -- Terminal Parameters 100
&SYSNEST -- Nested Procedure Indicator 100
&SYSPCMD -- Current Primary Command Name 101
&SYSSCMD -- Current Subcommand Name 101
Control Variables Related to the System Environment 101
&SYSDATE - Current Date 101
&SYSTIME -- Current Time v o v v v v v v v v v v 101
Command Procedure Statements 103
Establishing Initial Parameters 104
Use of the PROC Statement oo . 104
Establishing Processing Options« oo v v oo . 106
Setting the Message Option 107
Setting the Prompt Option o o000 . 107
Setting the Display Options o o oo 108
Setting the Input Stack Flushing Options 108
Substituting a String for an END Delimiter 109
Assigning Values to Symbolic Variables 110
Assigning a Quantity to a Symbolic Variable 110
Assigning a Character String to a Symbolic Variable 111
Controlling Execution Flow 111
Unconditional Branching00, 112
Conditional Statements and Commands 112
DO-Groups and the DO-WHILE-END Sequence 112
The IF-THEN-ELSE Sequence« v v« oo .. 114
The WHEN Command oo o oo v oo i16
Communicating with the Terminal User 117
Writing Messages to the Terminal User 118
Requesting Terminal Input 118
Reading Input from the Terminal 120
Performing File Input/Outputo ..., 122
OpeningaPFile oo 0oL oo 123
Reading a Record fromanOpen File 123
Writing a Recordtoan Open File 0. . 123
Closingan Open Fileo .. 124
Executing Nested Command Procedures 124
Establishing Global Symbolic Variables 125
Exiting from a Nested Command Procedure 127
Establishing Exit Routineso 128
Error EXitS o L o e e e e e e e e e e e e e e e 128
Attention Exits e e e e e e e e e e e e e e e e 129
Returning Control from an Attention or Error Exit 130
Command Procedure Exampleso 130
Example 1 Lo e e e e e e e e e e e e e e 132
PIZZA.CLIST (Part 10f2) ¢ . o v v e v v v ... 132
PIZZA.CLIST (Part 20f2) v v v v v e e e e e e e 133
Example 2 L oL o e e e e e e e e e e e e e e e e e e 135
Sample PROFILE Session 135
PROF Command Procedure 136
SETUP Member o 0 v v v i e e e e e 136

Contents vii

viii

November 30, 1981

‘D9SMRT2.CLIST(PROFILE) Command Procedure (Part 1of 4) 137
‘DISMRT2.CLIST(PROFILE) Command Procedure (Part 2 of 4) 138
‘D9SMRT2.CLIST(PROFILEY Command Procedure (Part 30of 4) 139
‘DISMRT2.CLIST(PROFILE) Command Procedure (Part 4of 4) 140
‘D9SMRT2.CLIST(PRINTA) Command Procedure (Part 1 of 4) 141
‘DISMRT2.CLIST(PRINTA) Command Procedure (Part2 of 4) 142
‘DISMRT2.CLIST(PRINTA) Command Procedure (Part 30of 4) 143
‘D9SMRT2.CLIST(PRINTA)Y Command Procedure (Part40of 4) 144
‘DISMRT2.CNTL(SUBMITPA)Y v i v v i i e .. 145
Example 300 L0 oo s e e e e e e e 146
Appendix A: IBM 2741 Communication Terminal 147
How To Start a TSO Terminal Session 147
Contacting the Computer00 e e 147
Contacting TCAM o . . o v it e e e e e e e e e e e e 149
Contacting TSO & o i i e e e e e e e e e e e e e e e 149
How ToEnter Data o . oo 150
Correcting Typing Errorso 000 151
How To Interrupt Operations from the Terminal 151
The ATTN Key o o o o i ot e e e e d e e e e 153
TSO Responses to an Attention Interruption 153
Simulated Attention Interruptions 153
Attention Interruption Levels 000000 oL 154
How To End a TSO Terminal Session 156
Appendix B: IBM 1052 Printer-Keyboard L. 157
How to Start a TSO Terminal Session 158
Contacting the Computer 158
Contacting TCAM i it e e e e e e e e e e e 160
Contacting TSO © . . oL oo e e e 160
HowtoEnterData o e 161
Correcting Typing Errors L0000 oL 162
How to Interrupt Operations from the Terminal 162
The LINE RESET/ATTN Key and the EOT Key 163
TSO Responses to an Attention Interruption 163
Simulated Attention Interruptions 164
Attention Interruption Levels Lo .. 164
How to End a TSO Terminal Session 165
Appendix C: Teletype* Model 33 and 35 167
How to Start a TSO Terminal Session 168
Contacting the Computer o v v v e 168
Contacting TCAM oL o e e e e e 168
Contacting TSO o . . o o e e e 168
Howto Enter Data 0000 oo 170
Correcting Typing Errors00 000 170
How to Interrupt Operations from the Terminal e e e e 171
TSO Responses to an Attention Interruption 171
Simulated Attention Interruptionso ... 171
Attention Interruption Levels 172
How to End a TSO Terminal Session 173
Appendix D: IBM 2260 and 2265 Display Stations 175
How to Control the Cursor Symbol 175
How to Start a TSO Terminal Session 177
HowtoEnter Data oL 0o 178
Correcting Typing Errors 00000 L. 180
How to Use the Terminal Command 180
How to Interrupt Operations from the Terminal 181
TSO Responses to an Attention Interruption 182
Attention Interruption Levels . . . [. Lo 183
How to Control the Display« o v v v v v v 184
Handling a Full Display Screen 184
How to End a TSO Terminal Session’ 185
Appendix E: IBM 3270 Information Display System (Using TSO/TCAM) 187

*Trademark of the Teletype Corporation

0S/VS2 TSO Terminal User’s Guide

O

Page of GC28-0645-4
As Updated November 30, 1981
By Suppl. SD23-0241-0 for 5665-285

How to Control the Cursor Symbol 189
How to Start a TSO Terminal Session 189
Logon Processing for 12 by 40 and 12 by 80 Display Screens 190
HowtoEnterData vt v v v v v, 190
EnteringData e 191
Correcting Typing Errors 000 e e e . 191
NewLineKey 0 i 0 i i i it i e e e e e e 191
Field Mark Key i 0 i i e e e e e e e e e e e e e e 191
How to Use the Terminal Command 192
How to Interrupt Operations from the Terminal 192
TSO Responses to an Attention Interruption 193
Attention Interruption Levels, 195
How to Control the Display 196
Handling a Full Display Screen 196
How to End a TSO Terminal Session 197
Appendix F: IBM 3270 Information Display System (Using TSO/VTAM) 199
How to Control the Cursor Symbol 199
How to Start a TSO Terminal Session 200
Full Screen Logon Processing (5665-285) 201
Command Entry Field (5665-285) 201
Full Screen Logon Menus (5665-285) 201.0
Error Prompting (5665-285) 201.2
Program Function Key Support for Full Screen Logon (5665-285) 201.2
HowtoEnter Data 201.3
Entering Data e e e e e e e e e e e 201.3
Correcting Typing Errors v v v v v i e e e 201.3
Clear Key o i i i e e e e e e e e e e e e e e e e e 202
NewLineKey o . i i v it e e e e e e 202
How to Interrupt Operations from the Terminal 202
TSO Responses to an Attention Interruption 202
How to Handle a Full Display Screen 203
How to End a TSO Terminal Session 203
Invoking Unformatted System Services LOGOFF Type (COND) to Force a
Reconnect Environment (TSO/VTAM) (5735-RC2) « v v . .. 204
Appendix G: IBM 3767 Communication Terminal 205
How to Start a TSO Terminal Session 208
Setting the Switches e e e e e e e e e e e e e e e e 208
Contacting the Computer e 208
Contacting TSO« t i e i e e e e e e e e e e 209
HowtoEnterData 000 oo 210
Transmitting a Single Lineof Data 210
Transmitting Multiple Linesof Data 210
Making Corrections v v . v 4 e i e e e e e e e e e e e e e e 211
Basic SDLC Corrections v v v v v v v v v et e e e e e e 211
Buffered SDLC Data Correction ¢ v v v v v v v .. 212
How to Interrupt Operations from the Terminal 213
How to End a TSO Terminal Session 214
Invoking Unformatted System Services LOGOFF Type (COND) to Force a
Reconnect Environment (TSO/VTAM) (§735-RC2) « v v . .. 214.1
Appendix H: IBM 3770 Data Communication System 215
How to Start a TSO Terminal Session 215
Setting the Switches e e e 215
Contacting the Computer 0. 217
Contacting TSO e e e e e e e e e e e e e 218
HowtoEnterData i i v v i v, 218
Basic SDLC Transmission - ¢ . . v v v v v v v v v v e v e e 219
Buffered SDLC Transmission« v v v v v v v v v v v T.219
Basic SDLC Data Correction & v v v v v v v v o u 219
Buffered SDLC Data Correction ¢« . « v o v v v v v v v v 220
How to Interrupt Operations from the Terminal 221
How to End a TSO Terminal Session 222
Invoking Unformatted System Services LOGOFF Type (COND) to Force a
Reconnect Environment (TSO/VTAM) (5735-RC2) 222

Contents ix

X

November 30, 1981

Appendix I: Devices Supported by the Network Terminal Option (NTO) (5735-RC2) . 222.1

Contacting TSO (5735-RC2) i i i i it i e e i 222.1
How to Interrupt Operations from the Terminal (§735-RC2) 222.1
How to End a TSO Terminal Session (5735-RC2) 222.2
Index e e e e e e e e e e e e e e e 223

0S/VS2 TSO Terminal User’s Guide

@

O

Page of GC28-06454
As Updated November 30, 1981
By Suppl. SD23-0241-0 for 5665-285

Figures

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure

Figure

SR

90 90 00 90

26.
217.
28.
29.
30.
31.

32.
33.
34.
35.
36.
37.
38.
39.

41.
42.

43.

R N i

Descriptive Qualifierso 0L, 15
Descriptive Qualifiers Supplied by Default 15
Default Tab Settings 37

How EDIT Subcommands Affect the Current Line Pointer Position 39
Sample Text Data Set for Illustrating the EDIT MOVE/COPY

Functiono e 54
Sample Text Data Set after a Move Operation 54
Allocating Data Sets for the Assembler 66
Assigning Attributes to a New Data Set with the LIKE Operand . . 67
Overriding Model Data Set Attributes (5665-285) 67.0
Assigning Attributes on the ALLOCATE Command (5665-285) . . 67.0
Assigning Attributes with the ATTRIB Command (5665-285) . . . 67.1
Using BLOCK as Space Unit and BLKSIZE to Assign

DCB Block Size (5665-285) 67.2
Using CYLINDERS as Space Unit and BLKSIZE to Assign

DCB Block Size (5665-285) 67.3
Allowing Space Allocation to Default and Assigning DCB

Block Size Using BLKSIZE (5665-285) 67.3
Using FCB and COPIES Operands to Request Formatted

Copies of an Output Data Set (5665-285) 67.3

Providing RACF Protection for a New DASD Data Set (5665-285) 67.4
Providing RACF Protection for a New Tape Data Set (5665-285) . 67.4

Creating an Assembler Source Program 68
COBOL Compilation 70
Link-Editing and Executing a Program 74
Loading a Program 76
The TEST Subcommands 81
Arithmetic, Comparative, and Logical Operators 92
Built-In Functions 94
Control Variables, 98
Summary of Command Procedure Statement Categories 103
Results of Entering Positional and Keyword Parameters 105
Divergent-Convergent IF-THEN-ELSE Sequence 115
Divergent IF-THEN-ELSE Sequence with an Unconditional Branch 115
IF Statement without an ELSE Clause 116
Nested Command Procedures 125
Telephone Modem Technique for the IBM 2741 Communication
Terminalo e e e e e e e e 148
Acoustic Coupler Technique for the IBM 2741 Communication

Terminalo e e e e e e e e e e e 148
Sign-On Technique for Terminals Attached to an IBM

3704/3705 Communications Controller MTA Line 148
IBM 2741 Communication Terminal Keyboards 152
IBM 1052 Printer-Keyboard Control Panel 157
Proper Switch Settings on the IBM 1052 Printer-Keyboard 157

Telephone Modem Technique for the IBM 1052 Printer-Keyboard . 158
Acoustic Coupler Technique for the IBM 1052 Printer-Keyboard . . 159
Sign-On Technique for Terminals Attached to an IBM 3705

Communications Controller MTALine 159
Keyboard of the IBM 1052 Printer-Keyboard 159
Teletype Model 33 Keyboard 167
Teletype Model 35 Keyboard 167
IBM 2260 and 2265 Display Screen Control Symbols 175
Keyboards for IBM 2260 and 2265 Display Station 176
Basic Keyboards for the IBM 3270 Information Display System . . 188
IBM 3767 Communications Terminal Keyboards 205
Acoustic Coupler Technique for the IBM 3767 Communication

Terminalo o e 208
Telephone Modem Technique for the IBM 3767 Communication
Terminal Lo o o e 208
IBM 3770 Data Communication System Keyboards 216
Acoustic Coupler Technique for the IBM 3770 Data Communication
System L . L e e e e e e e e e e e e e e e e 217
Telephone Modem Technique for the IBM 3770 Data Communication
System L L L L e e e e e e e e e e e e e e e e e e 217

Contents xi

Summary of Amendments
for GC28-0645-4

as Updated by SD23-0241-0
OS/VS2 Release 3.8

This manual has been updated to support TSO Extensions
(TSO/E) and describes enhancements to the ALLOCATE
command and full screen logon processing. This edition also
incorporates information that was released in the following
System Library Supplement:

OS/VS2 MVS TSO Command Package, SD23-0206

Summary of Amendments

for GC28-0645-4

as Updated by TNL GN28-4753
OS/VS2 Release 3.8

This manual has been updated to note the fact that if a
terminal is powered off before entering a logoff command
that the session may be accessed by an unauthorized user.

Summary of Amendments
for GC28-0645-4
OS/VS2 Release 3.7

This publication contains information that was released in
the following Selectable Unit Newsletters and System
Library Supplements:

TSO/VTAM Level 1 (VS2.03.813) GN28-2651
System Security Support (5752-832) GC28-0849
TSO/VTAM Level 2 (5752-858) GD23-0044

Section VI: Command Procedures has been rewritten.
Technical changes in this section have not been barred;
therefore, the section should be read in its entirety. Also,
any references to 2741 Communication Terminals and their
use have been changed to 3270 Display Stations.

This publication also contains OS/VS2 MVS information
that was formerly contained in OS/MVT and 0S/VS2 TSO

Summary of Amendments
for GC28-0645-3
0OS/VS2 Release 3.7

Changes have been made throughout this publication to
reflect a Service Update to OS/VS2 Release 3.7. In addition
pertinent technical and editorial changes have been made.
All references to the ITF:BASIC and ITF:PLI Program
Products have been deleted from this manual. As
announced in P73-70, these program products have been

xii OS/VS2 TSO Terminal User’s Guide

Page of GC28-06454
As Updated November 30, 1981
By Suppl. SD23-0241-0 for 5665-285

In addition, several other technical and editorial changes
have been made throughout the manual.

Terminals, GC28-6762, with supplement GD21-0001. This -
information is in Appendixes A through H. Technical

changes in the Appendixes have not been barred; the

Appendixes should be read in their entirety.

Miscellaneous editorial and technical changes have been
made throughout this publication. Significant technical
changes have been made to the following areas:
« “Positioning the Current Line Pointer” in Section III
— clarify use of the TOP subcommand of EDIT.
« “Ending the EDIT Functions” in Section III — clarify
use of the END and SAVE subcommands of EDIT.
« “Assigning Attributes to a Data Set” in Section IV —
clarify use of the ATTRIB command.

withdrawn and reclassified to programming service
classification “C” effective June 28, 1974.

Section I: Basic Information for Using TSO

e Line Continuation

Page of GC28-06454

As Updated July 30, 1980

By TNL GN284753

Summary of Amendments

for GC28-0645-4

as Updated by TNL GN28-4753
OS/VS2 Release 3.8

This manual has been updated to note the fact that if a
terminal is powered off before entering a logoff command
that the session may be accessed by an unauthorized user.

Summary of Amendments
for GC28-0645-4
OS/VS2 Release 3.7

This publication contains information that was released in
the following Selectable Unit Newsletters and System
Library Supplements:

TSO/VTAM Level 1 (VS2.03.813) GN28-2651
System Security Support (5752-832) GC28-0849
TSO/VTAM Level 2 (5752-858) GD23-0044

Section VI: Command Procedures has been rewritten.
Technical changes in this section have not been barred;
therefore, the section should be read in its entirety. Also,
any references to 2741 Communication Terminals and their
use have been changed to 3270 Display Stations.

This publication also contains OS/VS2 MVS information
that was formerly contained in OS/MVT and OS/VS2 TSO

Summary of Amendments
for GC28-0645-3
OS/VS2 Release 3.7

Changes have been made throughout this publication to
reflect a Service Update to OS/VS2 Release 3.7. In addition
pertinent technical and editorial changes have been made.
All references to the ITF:BASIC and ITF:PLI Program
Products have been deleted from this manual. As
announced in P73-70, these program products have been

In addition, several other technical and editorial changes
have been made throughout the manual.

Terminals, GC28-6762, with supplement GD21-0001. This
information is in Appendixes A through H. Technical
changes in the Appendixes have not been barred; the
Appendixes should be read in their entirety.

Miscellaneous editorial and technical changes have been
made throughout this publication. Significant technical
changes have been made to the following areas:
« ‘““Positioning the Current Line Pointer” in Section III
— clarify use of the TOP subcommand of EDIT.
« “Ending the EDIT Functions” in Section III — clarify
use of the END and SAVE subcommands of EDIT.
« ‘““Assigning Attributes to a Data Set” in Section IV —
clarify use of the ATTRIB command.

withdrawn and reclassified to programming service
classification ““C” effective June 28, 1974.

Section I: Basic Information for Using TSO

+ Line Continuation

Summary of Amendments xi

July 30, 1980

i“‘k__,;:ﬁ’;

xii 0S/VS2 TSO Terminal User’s Guide

Figures
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure

Figure

26.
27.
28.
29.
30.
31.

32.
33.
34,
35.
36.
37.
38.
39.

41.
42.

43,

December 15, 1984

Descriptive Qualifiers00 0oL L. 15
Descriptive Qualifiers Supplied by Default 15
Default Tab Settings 37

How EDIT Subcommands Affect the Current Line Pointer Position 39
Sample Text Data Set for Illustrating the EDIT MOVE/COPY

Function 00 e e e e e e 54
Sample Text Data Set after a Move Operation 54
Allocating Data Sets for the Assembler 66
Assigning Attributes to a New Data Set with the LIKE Operand . . 67
Overriding Model Data Set Attributes (5665-285) 67.0
Assigning Attributes on the ALLOCATE Command (5665-285) . . 67.0
Assigning Attributes with the ATTRIB Command (5665-285) . . . 67.1
Using BLOCK as Space Unit and BLKSIZE to Assign

DCB Block Size (5665-285) 67.2
Using CYLINDERS as Space Unit and BLKSIZE to Assign

DCB Block Size (5665-285) 67.3
Allowing Space Allocation to Default and Assigning DCB

Block Size Using BLKSIZE (5665-285) 67.3
Using FCB and COPIES Operands to Request Formatted

Copies of an Output Data Set (5665-285) 67.3

Providing RACF Protection for a New DASD Data Set (5665-285) 67.4
Providing RACF Protection for a New Tape Data Set (5665-285) . 67.4

Creating an Assembler Source Program 68
COBOL Compilation 70
Link-Editing and Executing a Program 74
Loadinga Program 76
The TEST Subcommands « ¢« v v v o o . 81
Arithmetic, Comparative, and Logical Operators 92
Built-In Functions 94
Control Variables 98
Summary of Command Procedure Statement Categories 103
Results of Entering Positional and Keyword Parameters 105
Divergent-Convergent IFF-THEN-ELSE Sequence 115
Divergent IF-THEN-ELSE Sequence with an Unconditional Branch 115
IF Statement without an ELSE Clause 116
Nested Command Procedures 125
Telephone Modem Technique for the IBM 2741 Communication
Terminal Lo e 148
Acoustic Coupler Technique for the IBM 2741 Communication

Terminal L0000 e e e 148
Sign-On Technique for Terminals Attached to an IBM

3704/3705 Communications Controller MTA Line 148
IBM 2741 Communication Terminal Keyboards 152
IBM 1052 Printer-Keyboard Control Panel 157
Proper Switch Settings on the IBM 1052 Printer-Keyboard 157

Telephone Modem Technique for the IBM 1052 Printer-Keyboard . 158
Acoustic Coupler Technique for the IBM 1052 Printer-Keyboard . .- 159
Sign-On Technique for Terminals Attached to an IBM 3705

Communications Controller MTA Line 159
Keyboard of the IBM 1052 Printer-Keyboard 159
Teletype Model 33 Keyboard 167
Teletype Model 35 Keyboard 167
IBM 2260 and 2265 Display Screen Control Symbols 175
Keyboards for IBM 2260 and 2265 Display Station 176
Basic Keyboards for the IBM 3270 Information Display System . . 188
IBM 3767 Communications Terminal Keyboards 205
Acoustic Coupler Technique for the IBM 3767 Communication

Terminal L. oo e e e e e e e 208
Telephone Modem Technique for the IBM 3767 Communication
Terminal e e e e 208
IBM 3770 Data Communication System Keyboards 216
Acoustic Coupler Technique for the IBM 3770 Data Communication
System L . e e e e e e e e e e e e e e e e e e 217
Telephone Modem Technique for the IBM 3770 Data Communication
System e e e e e e e e e e e e e e e e e e 217

Contents xi

Page of GC28-0645-4
As updated December 15, 1984
By TNL SN28-1037 for 5665-285

Summary of Amendments

for GC28-0645-4

as Updated December 14, 1984

By Techincal Newsletter SN28-1037

This technical newsletter contains changes to the description of
attention interruption.

Summary of Amendments
for GC28-0645-4

as Updated by SD23-0241-0
OS/VS2 Release 3.8

This manual has been updated to support TSO Extensions
(TSO/E) and describes enhancements to the ALLOCATE
command and full screen logon processing. This edition also
incorporates information that was released in the following
System Library Supplement:

0S/VS2 MVS TSO Command Package), SD23-0206

Summary of Amendments

for GC28-0645-4

as Updated by TNL GN28-4753
OS/VS2 Release 3.8

This manual has been updated to note the fact that if a terminal
is powered off before entering a logoff command that the session
may be accessed by an unauthorized user. In addition, several

other technical and editorial changes have been made throughout

the manual.

Xil OS/VS2 TSO Terminal User’s Guide

Introduction

TSO is a time sharing system that lets you use the facilities of a computer
at a terminal. A terminal is a typewriter-like device connected through
telephone or other communication lines to the computer. A terminal can be
at any distance from the computer -- in the same room or in another city.
Because the system processes instructions much faster than you can enter
them through the terminal, it can process input from many terminals at the
same time it is processing work entered in the conventional manner in the
computer room. Due to the speed of the system, however, you will be able
to work almost as though you had exclusive use of the system.

You can tell the system what work you want done by typing in one or
more of the commands that form the TSO command language. The
command language can be used to:

« Enter, store, modify, and retrieve data at the terminal.

» Develop programs written in assembler, FORTRAN, COBOL, PL/],
or other languages.

« Execute programs.

When you enter a command, the system performs the work requested by
that command and sends messages back to your terminal. Messages tell you
the status of your program and whether the system is ready to accept
another command.

If you fail to include some necessary information with the command, the
system sends you a message prompting you for the required information.
You may then respond by typing in the information requested.

Whenever you are not sure which command to use or how to use a
particular command, you can type HELP. The HELP command provides
you with information about all the other TSO commands.

This manual explains how to perform various functions using the
command language. The manual consists of the following sections:

Section I: Basic Information for Using TSO
Section II: Starting and Ending a Terminal Session
Section III: Entering and Manipulating Data
Section IV: Executing Programs at a Terminal
Section V: Testing a Program at a Terminal
Section VI: Command Procedures

The first three sections must be understood by all system users. Sections
IV through VI describe specific functions that you may wish to perform.

This manual tells you how commands are used to perform the functions
mentioned above. For details on how to enter each command, refer to
0OS/VS2 TSO Command Language Reference.

Introduction 1

2 OS/VS2 TSO Terminal User’s Guide

N

Section I: Basic Information for Using TSO

Before using TSO you should know how to use:

« A terminal

e TSO commands

« System-provided aids

« Data set naming conventions

Using a Terminal

A terminal session is relatively simple: a terminal user identifies himself to
the system and then issues commands to request work from the system. As
the session progresses, the terminal user has a variety of aids available,
which he can use if he encounters any difficulties.

Entering Information at a Terminal

All TSO terminals have a typewriter-like keyboard. The features of each
keyboard vary from terminal to terminal; for example, one terminal may
not have a backspace key, while another may not allow for lowercase
letters. The features of each terminal as they apply to TSO are described in
the appendixes. However, the examples in this book address only the use of
an IBM 3270 Display Station. For details on how to use the 3270, see
Appendixes E and F.

Correcting Typing Errors

If you wish to correct typing errors, you must correct them before you
press the ENTER key. Move the cursor under the error and type the
correct character. To replace a character with a space, move the cursor
under the character and press the space bar.

Using TSO Commands

A command consists of a command name, usually followed by one or more
operands. A command name is typically a familiar English word, that
describes the function of the command; for instance, the RENAME
command changes the name of a data set.

Nearly all TSO commands have abbreviations that you can use in place
of the long English name for the function. These abbreviations save you
entry time at the terminal. In general, these abbreviations are as short as
possible, while still providing uniqueness among them; for example, you |,
may enter ‘“‘alloc” instead of “allocate”, or “‘e” instead of “edit”. However,
for readability and clarity in this book, all the references to commands and
all examples of their use appear in the long English form.

Section 1: Basic Information for Using TSO 3

Operands provide the specific information required for the command to
perform the requested operation. For instance, operands for the RENAME
command identify the data set to be renamed and specify the new name:

RENAME OLDNAME NEWNAME
command name operand-1 operand-2
(old data-set-name) (new data-set-name)

Two types of operands are used with the commands: positional and
keyword.

Positional Operands

Positional operands follow the command name in a prescribed sequence. In
the command descriptions within this manual, the positional operands
appear in lowercase characters. A typical positional operand is:

data-set-name

You must replace “data-set-name” with an actual data set name when
you enter the command.

When you want to enter a positional operand that is a list of several
names or values, the list must be within parentheses. The names or values
must not include unmatched right parentheses.

Keyword Operands .

Keywords are specific names or symbols that have a particular meaning to
the system. You can include keywords in any order following the positional
operands. In the command descriptions within this book, keywords appear
in uppercase characters. A typical keyword is:

TEXT

In some cases you may specify values with a keyword. You must enter
the value within parentheses following the keyword. The way a typical
keyword with a value appears in this book is:

LINESIZE(integer)

Continuing this example, you would select the number of characters that
you want to appear in a line and substitute that number for the “integer”
when you enter the operand:

LINESIZE(80)

Note: If you enter conflicting keywords, the last keyword entered
overrides the previous ones.

Abbreviating Keyword Operands

You may enter keywords spelled exactly as they are shown, or you may use
an acceptable abbreviation. An acceptable abbreviation is as much of the
keyword as is necessary to distinguish it from the other keywords of the
command or subcommand; for instance, the LISTBC command has four
keywords:

4 O0S/VS2.TSO Terminal User’s Guide

2N

N

O

MAIL NOTICES
NOMAIL NONOTICES

The abbreviations are:

M for MAIL (also MA and MAI)

NOM for NOMAIL (also NOMA and NOMAI)

NOT for NOTICES (also NOTI, NOTIC, and NOTICE)

NON for NONOTICES (also NONO, NONOT, NONOTI, NONOTIC,
and NONOTICE)

Certain keyword operands may also have synonyms (aliases). Although
these aliases may have shorter forms than the operands they replace, they
are not abbreviations because their form is entirely different. They do,
however, mean the same to TSO as the operands they replace.

An example of a keyword operand and its alias are respectively ““file”
and “ddname”, either of which is permissible for use with the ALLOCATE
command. Specifying ALLOCATE with either operand produces identical
results. Where aliases are permissible, the syntax descriptions point them
out in OS/VS2 TSO Command Language Reference.

Delimiters

When you type a command, you must separate the command name from
the first operand by one or more blanks. You must separate operands by
one or more blanks or a comma. Using a blank or a comma as a delimiter,
you can type the LISTBC command like this:

LISTBC NOMAIL NONOTICES

or like this:

LISTBC NOMAIL,NONOTICES

or like this:

LISTBC NOMAIL NOTICES

A list of items may be enclosed in parentheses and separated by blanks
or commas, for example:

LISTDS (MYDSA MYDSB,MYDSC)

Subcommands

The work done by some of the commands is divided into individual
operations. Each operation is defined and requested by a subcommand. To
request one of the individual operations, you must first enter the command.
You can then enter a subcommand to specify the particular operation that
you want performed, and you can continue entering subcommands until you
enter the END subcommand.

Section I: Basic Information for Using TSO §

The commands that have subcommands include EDIT, OUTPUT and

TEST. Some program product commands (such as PLIC) have
subcommands as well.

Syntax Notation Conventions

The notation used to define the command syntax and format in this
publication is described in the following paragraphs.

'6 0S/VS2 TSO Terminal User’s Guide

1. The set of symbols listed below is used to define the format but you

should never type them in the actual statement. The special uses of
these symbols are explained in paragraphs 4-8.

hyphen -
underscore __
braces {}
brackets []

ellipsis ...

. You should type uppercase letters, numbers, and the set of symbols

listed below in an actual command exactly as shown in the statement
command syntax.

apostrophe ’
asterisk *
comma ,
equal sign =
parentheses ()

period .

. Lowercase letters and symbols that appear in the command syntax

represent variables for which you should substitute specific
information in the actual command.

Example: If “name” appears in the command syntax, you should
substitute a specific value (for example, ALPHA) for the variable
when you enter the command.

. Hyphens join lowercase words and symbols to form a single variable.

Example: If member-name appears in the command syntax, you should

substitute a specific value (for example, BETA) for the variable in the '

actual command.

. An underscore indicates a default option. If you select an underscored .

alternative, you need not specify it when you enter the command

because the system provides it for you by default.

Example: The representation

A
B

C

indicates that you are to select either A or B or C; however, if you
select B, you need not specify it because it is the default option.

N

6. Braces group related items, such as alternatives.

Example: The representation

A
ALPHA=({B ¢ ,D)
c

indicates that you must choose one of the items enclosed within the
braces. If you select A, the result is ALPHA=(A,D).

7. Brackets also group related items; however, everything within the
brackets is optional, so that you may omit all bracketed items.

Example: The representation

A
ALPHA=(|{ B | ,D)
C

indicates that you may choose one of the items enclosed within the
brackets or that you may omit all of the items within the brackets. If
you select only D, you may specify ALPHA=(,D).

8. An ellipsis indicates that the preceding item or group of items can be
entered more than once.

Example: The representation

ALPHA[,BETA...]
indicates that ALPHA can appear alone or can be followed by ,BETA
any number of times in succession.
When to Enter a Command or Subcommand

The system lets you know when it is ready to accept a new command by
sending you the message:

READY

The system remains able to receive commands until you enter one of the
commands that have subcommands. The system then accepts only that
command’s subcommands until you request a READY message by entering
the END subcommand.

Line Continuation

When it is necessary to continue to the next line, use a plus sign or a minus
sign as the last character of the line being worked on. A plus sign will cause
leading delimiters to be removed from the continued line.

Delimiters affected by the plus sign are blanks, tabs, commas, and the
/*. The plus sign will left-justify a continued line that begins with any of
these delimiters.

The minus sign continues the line without regard to the delimiters
present on the continued line.

Section I: Basic Information for Using TSO 7

Example 1

Continuation using a minus sign:

list (data-set-list) /* this is a list of my -
active data sets #*/

Example 2

Same example using a plus sign:

list (data-set-list) /* this is a list of my +
active data sets */

Note:

All of the leading blanks in the second example were deleted and the data
was left justified.

Comments

You may insert comments into your TSO command sequences at any place
where a blank would ordinarily appear. Simply start the comments with a
slash-asterisk sequence, like this:

/* This is a comment. TSO ignores it as a command. */

The trailing asterisk-slash sequence is optional unless you follow the
comment with a command on the same line.

Comments may continue from line to line without limit. To continue a
comment to the next line, enter either a plus sign or a minus sign (hyphen)
as a continuation character, and immediately press the ENTER key, like
this:

change 20 ?br?bt /* This comment begins on a command+
line and continues on consecutive following lines-
beginning in column one or following columns */

TSO considers the valid comments field in a line to be in columns 1-72
for fixed-length record formats, or to the end of the line for variable-length
record formats.

Using System-Provided Aids
Several aids are available for your use at the terminal:

« The attention interruption stops processing so that you can enter a
command.

« The conversational messages guide you at the terminal.

e The HELP command provides information about the commands.

8 OS/VS2 TSO Terminal User’s Guide

O

Page of GC28-0645-4
As updated December 15, 1984
By TNL SN28-1037 for 5665-285

The Attention Interruption

Messages

Mode Messages

The attention interruption allows you to interrupt processing at any time so that
you can enter a command or subcommand. If you are executing a program and
the program gets in a loop, for instance, you can use the attention interruption to
halt execution. As another example, when you are having data displayed at your
terminal and the data that you need has been displayed, you may use the
attention interruption to stop the displaying operation instead of waiting until the
entire data set has been displayed.

If, after causing an attention interruption, you want to continue with the
interrupted operation, you can do so by pressing the ENTER key before typing
anything else; however, input data that was being typed or output data that was
being displayed at the time of the attention interruption may be lost. You can
also request an attention interruption while at the command level, enter the TIME
command, and then resume the interrupted operation by pressing the ENTER
key. One output record from the interrupted programs may be displayed at the
terminal after you enter your next command. This is normal for some programs.

If you request an attention interruption after issuing a CANCEL, STATUS,
or SUBMIT command, the attention interruption might terminate that
command’s processing. In this case, pressing the ENTER key would not cause
command processing to continue.

You can use the TERMINAL command to specify particular operating
conditions that the system is to interpret as a request for an attention
interruption. More specifically, you can specify a sequence of characters that the
system is to interpret as a request for an attention interruption. In addition, you
can request the system to pause after a certain number of seconds of processing
time has elapsed or after a certain number of lines of output have been displayed
at your terminal. When the system pauses, you can enter the sequence of
characters that you define as a request for an attention interruption.

The conversational messages that TSO issues to your terminal guide you through
your TSO session. There are four categories of messages: mode messages,
informational messages, broadcast messages, and prompting messages.

A mode message tells you when the system is ready to accept a new command or
subcommand. When the system is ready to accept a new command it displays:

READY

When you enter a command that has subcommands and the system is ready to
accept that command’s subcommands, it displays the name of the command, for
example:

EDIT

You can then enter the subcommands you want to use. The EDIT message
also appears after each EDIT subcommand has been processed. If the system has

Section I: Basic Information for Using TSO 9

December 15, 1984

to display any output or other messages as a result of the previous command or

EDIT subcommand, it does so before displaying the mode message. (The use of @
mode messages in the EDIT command is discussed in the section “Entering and

Manipulating Data.”)

Sometimes you can save a little time by entering two or more commands in
succession without waiting for the intervening READY message. The system then
displays the READY messages in succession after the commands. If you enter the
following commands without waiting for the intervening mode messages, your
display will be:

READY
attrib...
allocate...
edit...
READY
READY

EDIT

Unless you are sure that there are no mistakes in your input, you should wait
for a READY message before entering a new command. When the system detects
a mistake, it sends you messages telling you of your mistake, and then it cancels
the remaining commands you have entered. After you correct the error, you have
to reenter the other commands.

Note: Some terminals lock the keyboard after you enter a command, and
therefore you cannot enter commands without waiting for the intervening

READY message. Terminals that do not ordinarily lock the keyboard may —w
occasionally do so, for example, when all buffers allocated to the terminal are ij
used. .

Informational Messages

An informational message tells you about the status of the system and your
terminal session; for example, an informational message can tell you how much
time you have used. Informational messages do not require a response.

If an informational message ends with a plus sign (+) you can request an
additional message by entering a question mark (?) after READY. Informational
messages have only one second level message, while prompting messages may
have more than one.

Broadcast Messages

Broadcast messages are messages of general interest to users of the system. Both
the system operator and any user of the system can send broadcast messages. The
system operator can send messages to all users of the system or to individual
users. For example, he may send the following message to all users:

DO NOT USE TERMINALS # 4,5 AND 6 ON 6/30. THEY ARE
RESERVED FOR DEPARTMENT 791.

10 0S/VS2 TSO Terminal User’s Guide

¢

Prompting Messages

December 15, 1984

You, or any other user, can send messages to other users or to the system
operator. For example, you may send, or receive, the following message:

DEPARTMENT NO.4672 WILL BE CHANGED TO 4675 STARTING
8/25

A message sent by another user will show his user identification so you will know
who sent you the message.

A prompting message tells you that required information is missing, or that you
specified the information incorrectly, and asks you to supply or correct that
information. For example, partitioned-data-set-name is a required operand of the
CALL command; if you enter the CALL command without that operand the
system will prompt you for the data-set-name, and your display will look like this:

READY
call
ENTER DATA SET NAME -

You should respond by entering the requested operand, in this case the data
set name, and by pressing the ENTER key to enter it. If the data set name is
ALPHA .DATA, you would complete the prompting message as follows:

ENTER DATA SET NAME-
alpha.data

If you wish, you will receive prompting messages when appropriate; however,
you may also use the PROFILE command to suppress prompting.

Section I: Basic Information for Using TSO 10.1

December 15, 1984

10.2 0S/vS2 TSO Terminal User’s Guide

SN28-1037-00

(L

November 30, 1981

Informational messages have only one second level message, while
w prompting messages may have more than one.

To request an additional message:

1. Type a question mark (?) in the first position of the line.
2. Press the ENTER key.

System: ENTER DATA SET NAME+
Type: ?
- System: ENTER THE NAME OF A PARTITIONED DATA SET
AND MEMBER THAT CONTAINS THE PROGRAM TO BE
EXECUTED.

» If you enter a question mark, and there are no messages to provide
further detail, you receive the following message:

NO INFORMATION AVAILABLE

When unsure of how to respond to a message in a prompting sequence,
continue requesting additional messages regardless of whether or not the
previous message ended with a plus sign (+).

Canceling a Prompting Sequence

To stop any prompting sequence, enter an attention interruption. Ordinarily,
the entry of the correct information to satisfy the prompting messages
terminates the prompting sequence. However, you may find yourself
occasionally unable to respond to the system’s satisfaction, and you would
prefer to get out of the prompting sequence entirely, either to try something

0 another way, or to re-enter the correct information. Entering the attention
interruption stops the prompting sequence and puts TSO back into a
command or subcommand reception mode.

Section I: Basic Information for Using TSO 11

November 30, 1981

Requesting Assistance at the Terminal

; O
There are two ways to request assistance at the terminal. .)'

If TSO is prompting you for a parameter, to receive online usage
information, you must type in a question mark (?). If TSO is not prompting
you for a parameter, to receive online usage information, you must use the
HELP command.

The HELP Command y -

You may enter the HELP command to request some or all of the
information necessary to use any TSO command. TSO displays the
requested information at the terminal.

Explanations of Commands

To receive a list and a description of all the TSO commands in the HELP
data set, enter the HELP command as follows:

help

Information about installation-written commands may also be in the
HELP data set, if your installation’s system programmer chooses to put it
there.

You can also get all the information available on a specific command by

entering that command name as an operand on the HELP command, as
follows:

. C_\\
f
help call ‘ “..

If you want to know just the function of a particular command
(DELETE, for instance), enter the HELP command as follows:

help delete function

If you want to know just the syntax of a particular command (TEST, for
instance), enter the HELP command as follows:

help test syntax

If you want to know both the function and the operands of a particular
command (EXEC, for instance), enter the HELP command as follows:

help exec function operands

12 OS/VS2 TSO Terminal User’s Guide

. Page of GC28-0645-4
As Updated November 30, 1981
By Suppl. SD23-0241-0 for 5665-285

w ‘ Syntax Interpretation of HELP Information

The syntax notation used to present HELP information at your terminal is
different from the syntax notation used in this publication. Since the HELP
information resides in the SYS1.HELP data set, it is restricted to characters
that can be represented at your terminal. If you want to use the HELP
command, you should become familiar with the syntax interpretation by
entering the HELP command as follows:

- help help
FUNCTION -
, THE HELP COMMAND PROVIDES FUNCTION, SYNTAX, AND
. OPERAND INFORMATION ON COMMANDS. MESSAGE IDENTIFIER
INFORMATION IS SUPPLIED WHEN AVAILABLE
SYNTAX -

HELP'COMMAND NAME' FUNCTION SYNTAX
| OPERANDS('KEYWORD LIST') POSITIONAL('NN')
ALL/ MSGID('MESSAGE IDENTIFIER LIST')

DEFAULTS ALL IF FUNCTION, SYNTAX, OPERANDS,
| POSITIONAL, OR MSGID NOT SPECIFIED.
NOTE - MSGID CANNOT BE SPECIFIED WITH THE
I FUNCTION, SYNTAX, OPERANDS, POSITIONAL,
OR ALL KEYWORDS.

NOTE - 'KEYWORD LIST' IS OPTIONAL WHEN OPERANDS
IS USED.
NOTE - IF HELP IS ENTERED WITHOUT ANY OPERANDS A

LIST OF AVAILABLE COMMANDS WITH A SHORT
DESCRIPTION OF EACH WILL BE DISPLAYED.

Syntax Interpretation -

1. USER SUPPLIED VALUES ARE IN APOSTROPHES. TWO SETS OF

APOSTROPHES MEANS THE VALUE SHOULD BE SUPPLIED WITHIN
‘) A SET OF APOSTROPHES.

WORDS WITHOUT APOSTROPHES ARE TO BE ENTERED AS SHOWN.

3. COMMAS, PERIODS, PARENTHESES, AND ASTERISKS ARE TO BE
ENTERED AS SHOWN.

4. EXCLUSIVE CHOICES ARE INDICATED BY SLASH (/).
5. MUTUALLY EXCLUSIVE FORMATS ARE SEPARATED BY 'OR'.

\S]

Explanations of Subcommands

You can also receive a list of all of a command’s applicable subcommands.
To get a list of the subcommands of EDIT, for example, you must first get
the system to issue the EDIT mode message. The following simulated
display shows how to enter the EDIT command to specify a an existing
data set, and to receive the EDIT message: '

.....

READY

edit cmdlang old asm
. EDIT

help

HELP entered without any operands produces a list of subcommands of
EDIT.

Section I: Basic Information for Using TSO 13

November 30, 1981

Using Data Set Naming Conventions

The name you give a data set should follow the TSO naming conventions.
A TSO data set name normally has three fields:

« Identification qualifier (used to make the data set name unique)
« User-supplied name (optional for a partitioned data set)
« Descriptive qualifier, which has meaning to the TSO commands

When you create a data set you only need to specify the user—subplied
name. The system supplies values for the other two fields. The fields must
be separated by periods. Each field consists of 1-8 alphameric characters
and begins with an alphabetic or national ($, @, and #) character. The
total length of the name, including periods, must not exceed 44 characters.
A typical data set name is:

SMITH.ACCTS.DATA
Identification qualifier
User-supplied name
Descriptive qualifier

In this example, the identification qualifier is SMITH. The identification
qualifier is either the user identification you specified with the LOGON
command, or a qualifier you assign by using the PROFILE command.

The uSer-supplied name in this example is ACCTS. The user-supplied
name can be either a single field or several fields separated by periods.

The descriptive qualifier in this data set name is DATA. The possible
descriptive qualifiers are listed in Figure 1. The system determines what the
descriptive qualifier should be from the command being processed and the
contents of the data set. Figure 2 lists the default descriptive qualifiers that
the system supplies when various commands are issued. The system may
also determine the descriptive qualifier from the data set type operand
entered on the EDIT command. See the EDIT command in the TSO
Command Language Reference for a description of the data set type operand.

14 0S/VS2 TSO Terminal User’s Guide

N

O

July 30, 1980

Descriptive Qualifier

ASM Assembler input

CLIST TSO commands and subcommands

CNTL *JCL and SYSIN for SUBMIT command

COBOL American National Standard COBOL statements

DATA Uppercase text

FORT FORTRAN IV (Gl or H) statements and free- or
fixed-format Code and Go FORTRAN statements

LINKLIST Output listing from linkage editor

LIST Listings

LOAD Load module

LOADLIST Output listing from loader

OBIJ Object module

OUTLIST *Qutput listing from OUTPUT command

PLI PL/I Checkout or PL/I Optimizing compiler statements

TESTLIST Output listing from TEST command

TEXT Uppercase and lowercase text

VSBASIC VSBASIC statements

Data Set Contents

*Refer to Appendix A in OS/VS2 TSO Command Language Reference.

Figure 1. Descriptive Qualifiers

DESCRIPTIVE QUALIFIERS

Command Input Output Listing
ASM ASM OBJ LIST
CALL LOAD — —
COBOL COBOL OBJ LIST
CONVERT FORT FORT —
EXEC CLIST — —
FORMAT TEXT — LIST
FORT FORT OBJ LIST
LINK OBJ LOAD LINKLIST
LOAD — -
LOADGO OBJ — LOADLIST
LOAD — —
OUTPUT — — OUTLIST
RUN ASM — —
FORT - -
COBOL — —
SUBMIT CNTL — -
TEST OBJ — TESTLIST
LOAD — -

Figure 2. Descriptive Qualifiers Supplied by Default

Exceptions to Data Set Naming Conventions

You may specify a fully-qualifi.ed name (a name with all three qualifiers) by
enclosing it in apostrophes, for example:

'JONES . PROG1.ASM'

This is necessary when you have to use a data set with an identification
qualifier other than your own user identification. This procedure also

Section I: Basic Information for Using TSO 15

Page of GC28-06454
As Updated July 30, 1980
By TNL GN28-4753

reduces response time because it causes the system to perform fewer
functions.

Any name that does not conform to the naming conventions must be
enclosed in apostrophes. For example, if you have a data set named
RECORDS, with no identification or descriptive qualifiers, enter:

'records'

The system will not append the identification and descriptive qualifiers to
data set names that are enclosed in apostrophes.

You can refer to an existing data set by its user-supplied name and
descriptive qualifier. If your data set is named:

SMITH.PART1.DATA

You may want to specify the data set name as:

parti1.data

or you may specify the data set type if you are using the EDIT command:

edit partl old data

Specifying Data Set Passwords

When referencing password-protected data sets, you must specify the
password as part of the data set name or you will be prompted for it.
Separate the password from the data set name by a slash (/) and
optionally, by one or more standard delimiters (tab, blank, or comma).

Caution: You should not separate the data set name from the password
with a field mark character (semicolon (;)).

Partitioned Data Sets

You can also create and edit partitioned data sets. A partitioned data set
consists of one or more data sets called members. You can create and edit
each member separately, giving each one a unique name. Enclose a member
name in parentheses and append it to the right of the fully qualified data
set name. For example, the fully qualified name of member MEM1 of the
SMITH.PART1.DATA data set is:

SMITH.PART1.DATA(MEM1)

You only need to use the user-supplied name and member name to refer
to the member. The system appends the identification and descriptive
qualifiers and moves the member name to the end to form the fully
qualified name. Thus, to refer to member MEMI1 you can specify:

part1(mem1l)
or you might specify

partl.data(mem?l)

16 OS/VS2 TSO Terminal User’s Guide

CE

Page of GC28-0645-4
As Updated July 30, 1980
By TNL GN28-4753

In the second example, the system appends only the identification
qualifier.

The following example uses the EDIT command to create member ONE
of a partitioned data set named JONES.T42.DATA. The second EDIT
command creates member TWO of JONES.T42.DATA. Note that the

Section I: Basic Information for Using TSO 16.1

16.2 0S/VS2 TSO Terminal User’s Guide

July 30, 1980

NEW operand must be specified in both cases. The third EDIT command
specifies that changes are to be made to member ONE (the OLD operand
is the default).

READY
edit t42.data(one) new
INPUT

READY
edit t42.data(two) new
INPUT

READY
edit t42.data(one)
EDIT

Data Set Types for the EDIT Command

After you specify the data set name and the NEW or OLD operand, specify
the data set type. The data set type is an operand that describes the
contents of the data set. The type operand is one of the sources from which
the system can obtain the descriptive qualifier. (If the descriptive qualifier is
a valid data set type, you may specify the descriptive qualifier as part of the
data set name, rather than giving data set type: specify EDIT MYDS.DATA
instead of EDIT MYDS DATA.) The valid types are:

ASM

CLIST

CNTL

COBOL

DATA

FORTGI

FORTH

GOFORT

PLI

PLIF

TEXT
VSBASIC

Note: Any user data set types, specified at system generation time, are
also valid data set types.

If the system cannot determine the data set type from other sources, it
prompts you for it.

Section I: Basic Information for Using TSO 17

18 OS/VS2 TSO Terminal User’s Guide

Section II: Starting and Ending a Terminal Session

This section tells you how to identify yourself to TSO and describes a
sample introductory terminal session that you can perform to get valuable
hands-on experience and easy familiarity with using a terminal. Following
the sample session are discussions of the things you did during the exercise,
plus additional discussions of most commonly encountered terminal
situations. These discussions include descriptions of how you can use TSO
commands to:

» Identify yourself to the system.

« Define operational characteristics of your session.
« Receive and send broadcast messages.

« Display the session time you use.

« End your terminal session.

Getting a TSO User Identification

The first step in becoming a TSO user is to make yourself recognizable to
the system by getting a TSO user identification (userid). You will have to
ask your supervisor to provide you with the exact local procedure for doing
this.

Running a Sample TSO Terminal Session

After getting your userid, you are ready to use an available terminal to
familiarize yourself with the mechanics of a terminal session.

O

Remember that this description assumes that you are using an IBM 3270
Display Station. Using a different terminal may disclose some minor
operational differences, but basically, this example will work on any TSO
terminal. You may wish to consult the appendixes to pinpoint the
differences and clarify the procedure where necessary.

It will save you time while at the terminal to have previewed the example
and determined what you should expect to do during the session, but you
can run this terminal session without having done so first. It would also be

l useful to read the more detailed discussions about conducting a terminal
\ session that follow this example to broaden your understanding of the
points- this example illustrates.

\ Contacting TSO

To start a TSO terminal session:
1. If power is off:

« Pull out the POWER control knob on the left side panel of the
display screen. The terminal should now be in contact with the
system. If not, special procedures may be necessary. Contact your
system programmer.

« Turn the POWER control knob clockwise to brighten the image or
0 counterclockwise to darken the image.

Starting and Ending a Terminal Session 19

If power is on: @
« Press the (;/LEAR key and then the RESET key. The cursor moves w4
to the upper left corner of the screen and the INPUT INHIBITED
light goes off.

2. If your terminal is an SDLC (synchronous data link control) 3270,
before you can log on to TSO a SNA (systems network architecture)
session must first be established between the terminal and TCAM.
There are several ways for automatically establishing this session;
your installation should define the method to be used. If your
installation does not automatically establish the SNA session with
TCAM, you must enter the installation-defined character string
required and press the TEST REQ key. For BSC and local 3270s,
perform step 4.

3. If your installation does not start the TSO session in step 2, then step
4 must be performed. Your installation should provide this
information.

4. Enter the LOGON command to identify yourself to TSO. Type the
word LOGON, a space, and your user identification (userid).

5. Transmit the LOGON command to TSO by pressing the ENTER
key; the INPUT INHIBITED light comes on. Wait for TSO to reply
to your LOGON command. TSO may display a preliminary message:

LOGON PROCEEDING

but when you are logged on, TSO displays the message: ‘
N
READY _ L

and turns the INPUT INHIBITED light off. You can now enter any
command.

As part of the LOGON command (see the LOGON command in
0S/VS2 TSO Command Language Reference), installations may also
require a password, an accourit number, and a cataloged procedure
name.

First type the word LOGON,; 4 space, and your userid. If a password

is required, type it after the userid, separating the two with a slash }

(/). If required, an account number and a cataloged procedure name |

follow, separated with spaces or commas. :
|

Example

The userid is MYNUM. The cataloged procedure name is TRYOUT1. |

Type: ‘
logon mynum proc(tryout?l) |

Press the ENTER key; the INPUT INHIBITED light comes on. Wait for ‘
TSO to display the message READY and to turn the INPUT INHIBITED
light off. You may now enter any command. |

Example

The userid is MYSEVEN. The password is APASS. The account number is ‘
AN38. Type: O

logon myseven/apass acct (an38)

20 OS/VS2 TSO Terminal User’s Guide

Press the ENTER key; the INPUT INHIBITED light comes on. Wait for
TSO to display the message READY and to turn the INPUT INHIBITED
light off. You may now enter any command.

Entering Data

Now you are going to use the TSO EDIT command to open a data set and
enter data into it. [E] means press the ENTER key.

Type: edit roster data new

System: INPUT
00010

Your EDIT command just told TSO that you want to open a new,
data-type data set named “roster.” TSQO’s response is an implicit recognition
that it has opened the data set for you, and an explicit statement that it has
placed the terminal in “input mode” so that you may begin entering data
into ‘“roster.” The number 00010 is a “line prompt” to show you where to
begin typing in your data. Now start typing this data where TSO left the
cursor after the line prompt.

Type:
cosman ba csr lisbon yes
dockswell br nrm kingston no E
reed dj Dbsr clayton yes
stone jl1 dsh rochester vyes

At this point, your listing should look like this:

00010 cosman ba csr lisbon yes
00020 dockswell br nrm kingston no
00030 reed di bsr clayton yes
00040 stone jl dsh rochester ves
00050

TSO prompted you for line 50 as a matter of course, because the system
cannot anticipate when you are going to terminate your data entry. Press
the ENTER key again to signal TSO that you are through entering data.

Type: [E]
System: EDIT

TSO has acknowledged the extra ENTER as a request for edit mode,
and now you can change your data. Suppose you entered Dockswell’s
initials incorrectly. With the CHANGE subcommand, you can correct your
error.

Typé: change 20 /br/bt
System: (no response)
Type: list 20

System: 00020 DOCKSWELL BT NRM KINGSTON NO

Starting and Ending a Terminal Session 21

At this point, you have directed TSO to change Dockswell’s initials in
* line 20 from “BR” to “BT”, and then you had TSO display line 20 at the
terminal.

Listing and Saving the Data Set

To display your entire data set, simply type the EDIT subcommand LIST
(you are still in edit mode).

Type: list

System:

00010 COSMAN BA CSR LISBON YES
00020 DOCKSWELL BT NRM KINGSTON NO
00030 REED DJ BSR CLAYTON YES
00040 STONE JL DSH ROCHESTER YES

END OF DATA

To save the data set in permanent storage, enter the EDIT SAVE
subcommand. '

Type: save

System: EDIT

Ending the EDIT Function

At this point, suppose that you wish to terminate work on the data set
named “‘roster” and move on to some other work. You can end the edit
function for “roster” by entering the EDIT END subcommand.

Type: end
System: READY

Because you previously saved “roster” in permanent storage, TSO tells
you it is ready to accept a new command. However, if you had failed to
save the data set before entering the END subcommand, TSO would have
given you another chance to save the data set (in case you had forgotten
to) by issuing the message:

NOTHING SAVED
ENTER SAVE OR END-

This second chance that TSO gives you to save your data set permits you to
do away with it if you wish, simply by entering END the second time.

You can also use SAVE as an operand of the END subcommand in
order to save your data set and end the EDIT function in a single command
line by entering:

end save

In this case, TSO saves your data set before ending the EDIT session.

Modifying an Existing Data Set

At this point you can recall your data set from permanent storage for
additional modification by means of the EDIT command. Suppose, however,
you had several data sets in permanent storage and you wanted to refresh

22 0S/VS2 TSO Terminal User’s Guide

AN

.

=

your memory about the names by which you stored them. The LISTCAT
command provides you with this capability. When you invoke it, the
command causes the (partially qualified) names of each of your data sets in

permanent storage (which TSO cataloged for you when you saved them) to
be listed.

Listing the Catalog

Now use LISTCAT to list the name of your one stored data set.
Type: listcat [E]

System: IN-CATALOG: (catalog name)
ROSTER.DATA
READY

By displaying the READY message, TSO is prompting you for another
command.

Recalling a Stored Data Set

Recalling the data set with the EDIT command is very similar to creating it
in the first place, but now the data set is “old” rather than ‘“new.” Recall it
like this:

Type: edit roster data old

System: EDIT

With its response, TSO has told you that it has obtained a copy of your
data set and it is now available for you to edit.

Deleting a Line of Data

You can delete a line of data simply by typing its line number, but TSO
does not acknowledge the deletion at the terminal.

Type: 20

System: (no response)

Type: list 20

System: 1LINE NUMBER 20 NOT FOUND

When you tried to list line 20 to verify that the deletion took place, TSO
could not find the line because it had already deleted it.

Inserting Lines of Data

You can insert new lines of data by entering the line number and following
it with the data you wish to insert. Now make a new roster entry at
Dockswell’s old line position.

Type: 20 henry ra aoh albany no

System: (no response)

Type: list 20

System: 00020 HENRY RA AOH ALBANY NO

Starting and Ending a Terminal Session 23

In this example, TSO made the insertion and you listed the new line. @

You can also insert new lines of data between existing lines in the data
set by assigning line numbers that fall between the TSO-assigned numbers
(which are in increments of ten, by default).

Type: 35 reed pY jsr clayton yes

System: (no response)
Type: list 30 40

System: 00030 REED DJ BSR CLAYTON YES
00035 REED PY JSR CLAYTON YES
00040 STONE JL DSH ROCHESTER YES

This time, you verified the line insertion by directing TSO to list a range
of lines that included your insertion.

Replacing a Line of Data

You can replace an entire line of data without first having deleted it simply
by entering the line number and following it with the replacement
information. (This function is just like inserting a new line of data, except
that you are specifying a line number where there is already some data, all
of which you will lose.)

Type: 40 smith ra dsh montrose no B
N
Type: list "

System: 00010 COSMAN BA CSR LISBON YES
00020 HENRY BA AOH ALBANY NO
00030 REED DJ BSR CLAYTON YES
00035 REED PY JSR CLAYTON YES
00040 SMITH RA DSH MONTROSE NO
END OF DATA

By listing your entire data set, you can verify that all the editing that
took place since you recalled a copy from permanent storage has produced
all the desired results. Note that STONE is no longer in the roster, and the
other changes have also been made. \

Deleting Modified Data |

The simplest way to delete this session’s modifications is to end the EDIT ‘
session without explicitly saving them. ‘

Type: end

System: NOTHING SAVED
ENTER SAVE OR END-

Type: end

System: READY

Type: listcat

24 OS/VS2 TSO Terminal User’s Guide

System : IN-CATALOG: catalog name
ROSTER.DATA
READY

Type: edit roster.data old

System: EDIT

Type: list

System: 00010 COSMAN BA CSR LISBON YES
00020 DOCKSWELL BT NRM KINGSTON NO
00030 REED DJ BSR CLAYTON YES
00040 STONE JL DSH ROCHESTER YES
END OF DATA

The data set you just listed is the one you created initially, before you
recalled it for changes. Note that TSO did not save your changes when you
ended the EDIT function without. entering SAVE.

Now end the EDIT function again.

Type: end
System: READY

Because you used the EDIT function this time only to list the data set
(you made no changes that could be saved), TSO accepted your initial
END entry without prompting you for a SAVE.

Deleting the Data Set and Loggzing Off

You can explicitly delete one or more data sets from permanent storage by
using the DELETE command. DELETE removes the indicated catalog
entries and frees the permanent storage. It is a good idea to review your
catalog periodically and delete data sets you no longer need.

Now review your catalog entries, delete your data set, and log off.
Type: listcat

System: IN-CATALOG: catalog name
ROSTER.DATA
READY

Type: delete roster.data

Systen: READY

Type: listcat

System: ENTRY catalog name. NOT FOUND

Type: logoff

System: CFT086 LOGGED OFF TSO AT 09:24:10 ON JUNE 26,

1974+

This command sequence has just reviewed your catalog, deleted its entry,
verified the deletion, and terminated your terminal session.

Starting and Ending a Terminal Session 25

Now turn off your terminal to leave it available for the next user. This
concludes your sample terminal session. The remainder of this section
reiterates in greater detail the techniques you just used and discusses many
that you did not.

‘5

Identifying Yourself to the System

After you activate the terminal you must use the LOGON command to
identify yourself to the system. You supply, as operands of LOGON, the
user attributes assigned to you by your installation. Your user attributes will
consist of, at the minimum, a userid. The others listed below are optional
unless your installation makes them necessary, in which case, the system
prompts you for them.

« User identification (required) -- the name or code by which the
system knows you

+ Password (required if your installation assigns you one) -- a further
identification used for additional security protection

o Account number (optional) -- the account to which your terminal
session is charged

« Procedure name (optional) -- the name of a series of statements that
defines your job to the system

« Performance group (optional) -- the performance group you wish to
use during the session

Your user attributes are in the system together with the attributes of all
other terminal users. When you log on, the system compares the attributes
you specify in the LOGON command to the attributes recorded in your TN
user profile, to determine if you are an authorized user of the system. \

User Attributes
You can have a simple set of attributes, such as the following:
SMITH user identification
LOCK password
79345 account number ‘
|
P79 procedure name

or a more complex set, such as |

SM user identification
LOCK SEVEN Y passwords |
!

79345 79374 74325 account numbers
P79 PE0 P81 P82 procedure names |

The latter set has three passwords (LOCK, SEVEN, and KEY) a
associated with your user identification. If you use the password LOCK,
you can have your processing charged only to account 79345 and you can ‘,
use only procedure P79. If you use the password SEVEN, you can have - ‘
your processing charged to either account 79374 or 74325. If you choose ‘
account 79374, you can use either procedure P80 or P81. If you choose I

26 OS/VS2 TSO Terminal User’s Guide]

O

account 74325, you can use only procedure P82. Another way of using
procedure P82 is to choose password KEY. KEY only has account 74325
and procedure P82 associated with it.

Logging On

The LOGON command tells the system your user identification, password,
account number, procedure name, performance group, and whether you
want the reconnect option. If you want to use procedure P81, for example,
you must enter:

logon smith/seven acct(79374) proc(p81)

Whenever there is only one account number or procedure name
associated with the user identification and password the system selects it by
default. Account 79345 and procedure P79 are the only account and
procedure associated with password LOCK. Therefore, when you log on
you only need to enter:

logon smith/lock

instead of:

logon smith/lock acct(79345) proc(p79)

If you choose password SEVEN, you must specify which account
number you want. If you select account 74325, you do not have to specify
the procedure because there is only one procedure associated with the
account.

logon smith/seven acct(74325)

If you select account 79374, you must also select a procedure name
because there are two procedures associated with the account. For example,

logon smith/seven acct(79374) proc(p80)

If you choose the password KEY, you do not have to specify the
account number and procedure name because there is only one account
number and one procedure name associated with KEY.

Print-Inhibiting Your Password

Some terminals provide the capability to inhibit the display of data that you
are entering on the keyboard. This print-inhibit feature suppresses a display
of your password, thereby decreasing its exposure to people unauthorized to
know it.

To return to the previous example involving Smith for a moment, initially
Smith could enter:)

logon smith

Note that he enters only his userid -- no slash, no password.

Starting and Ending a Terminal Session 27

The system responds with a prompt for the password, which will look ‘
like this:

ENTER PASSWORD FOR SMITH

The system puts the terminal in print-inhibit mode. Then Smith types one
of his authorized passwords. Special care is necessary because the
print-inhibit feature is preventing the characters from being displayed on the
screen, thereby preventing Smith (or anyone else) from checking on the
password entry. Note that, after entering the correct password, the user
may be prompted for other information such as account number and
procedure name.

If Smith makes a mistake in entering his password, the system prompts
him to try again before logging him off as a potentially invalid user.

Defining Operational Characteristics

Operational characteristics include terminal characteristics and a user-
profile. Terminal characteristics identify:

« How you can request an attention interruption

« Whether the keyboard is to lock up if you do not enter anything after
a specified number of seconds

« The length of the line that can be displayed at your terminal

Some of the characteristics a user profile identifies are:

« What your character-deletion and line-deletion characters are _
« Whether you want to receive prompting messages N
+ Whether you will accept messages from other terminals \\‘\‘/"

Refer to the PROFILE and TERMINAL commands in OS/VS2 TSO
Command Language Reference for additional information about defining
terminal and user profile characteristics.

Terminal Characteristics

- Your installation establishes default terminal characteristics for all the TSO
terminals. If you want to change any of those characteristics for the
duration of your session, you can use the TERMINAL command. After
your session is over, the defaults selected by the installation will again be
valid for that terminal. Assume that 50 is the default for the number of
lines of continuous output that are displayed before you receive an
automatic interruption. You can use the TERMINAL command to request
that 100 lines be displayed before you receive an interruption. When you
log on for your next session at that terminal, 50 lines will again be the
default, provided there has been a logoff prior to the logon. The terminal
characteristics remain the same for a re-logon terminal session and assume i
the default values with a logoff. ‘

Your User Profile

The system has a user profile for you and when you log on, that profile will
be in effect. If you want to change any item in your profile, you can do so
with the PROFILE command. Any change you make becomes a permanent
part of your profile. Assume that the line-deletion character in your profile
is a percent (%) sign. You could use the PROFILE command to change it

28 OS/VS2 TSO Terminal User’s Guide

g s e

to a number (#) sign for the current session and subsequent sessions. If you
want to change it back to the original percent sign, you must again use the
PROFILE command.

Receiving and Sending Broadcast Messages

There are two types of broadcast messages you can receive: notices and
mail. Notices are messages that the system operator sends to all users. Mail
consists of messages sent by the operator or another user directly to you.
You can send mail to other users and to the system operator.

Receiving Broadcast Messages

You can use three commands to control which broadcast messages you
receive: LOGON, PROFILE, and LISTBC.

When you log on, broadcast messages sent to all users (notices) and
those intended only for you (mail) are displayed at your terminal. You can
use the following operands of the LOGON command to prevent display of
either type of message at your terminal:

« NONOTICES suppresses display of broadcast messages intended for
all terminal users.
« NOMAIL suppresses display of broadcast messages intended

specifically for you.

For example, if you enter:

logon smith acct(72411) nomail

you will not receive mail but you will receive all notices that are available at
the time.

NONOTICES and NOMAIL suppress those broadcast messages
outstanding at the time you log on. You will automatically receive any
broadcast messages issued after you log on. You cannot stop the operator
from sending you notices, but you can specify that you do not want to
receive any mail by using the NOINTERCOM operand of the PROFILE
command. If you enter the following commands:

READY
profile nointercom

you request that all available broadcast messages (notices and mail) be
displayed when you log on, but that all mail sent to you after logon be
suppressed throughout your session. (Note that NOINTERCOM can be a
default of your user profile, and therefore you may not have to specify it
with the PROFILE command.)

At any time during your session you can use the LISTBC command to
request that either all available notices for users, or all your mail (or both)
be displayed. If you enter:

listbc
you will get all broadcast messages (notices and mail).

If you enter:

listbc nomail

Starting and Ending a Terminal Session 29

you will get only notices.

If you enter: @

listbc nonotices
you will get only your mail.

The notices you get are both the notices available at the time you logged
on and those issued throughout your session. This enables you to see what
notices were available at logon time if you specified NONOTICES in your
LOGON command. (The system operator can delete notices at any time.
Consequently, you will get only those notices he has not deleted.)

Mail messages sent directly to you are automatically deleted by the
system after you receive them. Therefore, the mail you get when you use
the LISTBC command are those messages available at logon time if you
specified NOMAIL in your LOGON command, and those suppressed as a
result of the NOINTERCOM operand of the PROFILE command. After
you use the LISTBC command to see your mail, the NOINTERCOM
operand is still in effect.

‘If there are no messages available when you use the LISTBC command,
you will receive the following message:

NO BROADCAST MESSAGES

If you want to cancel the effect of the NOINTERCOM operand, enter:

profile intercom

N

You will receive any mail issued after you enter this command. To obtain /)

your mail messages issued before you entered INTERCOM, use the s
LISTBC command.

Sending Messages

You can use the SEND command to send mail messages to another
terminal user or to a system operator. The SEND command can be used at
any time after you log on, except when you are in the TEST mode.

You can send a mail message to another user only if you know his user
identification. For example, the command:

send 'do not use procedure 245 until notified'-
user(jones,smith)

will send the message enclosed in quotes to the two users whose
identifications are JONES and SMITH.

When you send a message to another user, he will receive it immediately !
if he is logged on and is accepting messages. If he is not logged on or is not
accepting messages, you are notified and your message is deleted. Assume !
that SMITH is not logged on, JONES is not accepting messages, and
CLARK is both logged on and accepting messages. When you send the
following message:

send 'this is a message' user(smith,jones,clark)

SMITH and JONES do not receive the message, you are notified, and the
message is deleted. CLARK receives the message.

30 O0S/VS2 TSO Terminal User’s Guide

N

You can request the system to save your message until the user you sent
it to logs on or decides to accept messages, by using the LOGON operand
of the SEND command. For example, if you enter:

send 'this is a message' user(smith, jones,clark) logon

SMITH will receive your message when he logs on, JONES will receive it
when he uses the LISTBC command, and CLARK will receive it
immediately.

You can also send a message to a user for his later perusal, even though
he is currently logged on. That user in turn may read your stored message
at his convenience by using the LISTBC command. To store your message,
enter:

send 'this is a message' user(smith) save

Furthermore, you can ensure that a logged-on user receives an important
message, even though his terminal is busy, by entering:

send 'this is a message' user(smith) wait

This message entry causes the system to wait until Smith’s terminal is no
longer busy, and can accept the message. It also causes your terminal to
wait until Smith receives the message.

You can send a message to only one operator at a time by identifying
him with a number, for example:

send 'important message' operator(7)

If there is only one operator at your installation, you can omit the
operand by entering:

send 'important message'

If there are several operators and you omit the operand, your message is
sent to the main operator.

Displaying Session Time Used

Use the TIME command to obtain the following information:

o Cumulative CPU time (from logon)

« Cumulative session time (from logon)
« Service units used

o Local time of day

« Today’s date

If you wish to enter the TIME command while executing a program or
command, you must first cause an attention interruption. The TIME
command has no effect upon the executing program.

If a TSO command has been executing longer than expected, you can
interrupt it to check its CPU and execution time. Then, depending on your
analysis of the times returned, you can either resume processing from the
point of interruption, or you can cancel the processing of that command.
The following example shows how a LOADGO command was interrupted,
a TIME command was entered successfully, and a null line was entered to
resume the processing of the LOADGO command.

Starting and Ending a Terminal Session 31

READY

loadgo pehtest

|

READY

time

(Your time information is printed here)

READY

(Press the ENTER key)

VALID TYPES FOR DATA SET PEHTEST ARE LOAD AND OBJ
ENTER TYPE-

obj

READY (indicates that LOADGO has completed successfully)

- Note: If the user had decided to cancel the processing of LOADGO, he
would only have had to issue another command after the third READY to
cancel LOADGO.

Ending Your Terminal Session
You can end your terminal session in two ways:

+ By entering the LOGOFF command to end the session
« By entering the LOGON command to start a new session

The LOGOFF command logically disconnects your terminal from the
system. If LOGOFF HOLD is specified, the terminal remains physically
connected and you can enter a new LOGON command; however, terminal
characteristics established by a TERMINAL command during the previous
session are no longer in effect. A typical logoff follows:

READY
logoff
D58PEH LOGGED OFF TSO AT 15:24:47 on MAY 22, 1973+

The LOGON command terminates your current session and starts a new
one at the same time. A typical logon follows:

READY

logon d58peh/d58paswd 10781525

D58PEH LOGGED OFF TSO AT 10:14:06 ON MAY 23, 1973+
D58PEH LOGON IN PROGRESS AT 10:14:40 ON MAY 23, 1973
READY

Note: In the case of a re-logon as shown above, the terminal
characteristics of the old session are carried over into the new session.

32 0S/VS2 TSO Terminal User’s Guide

)

C

‘@ Section III: Entering and Manipulating Data
.[‘

The processing of data is an important part of almost all system
applications. Therefore, you should learn how to enter data into the system
and how to modify, store, and retrieve data after it has been entered. A
data set may contain:

« Text used for information storage and retrieval
e A source program
« Data used as input to a program

When you create a data set you must give it a name. The system uses
the name to identify the data set whenever you want to modify or retrieve
it.

Using the EDIT Command

The EDIT command, which is used to enter and manipulate data sets,
operates in either of two modes: input mode or edit mode. When you use
the EDIT command to enter data into a data set, you are using the input
mode. When you use the EDIT command to enter subcommands to
manipulate the data in a data set, you are using the edit mode.

Entering Data in Input Mode

In input mode, you can type a line of data and then enter it into the data
set by pressing the ENTER key. You can continue entering lines of data as
long as EDIT is operating in input mode. If you enter a command or
subcommand while in input mode the system adds it to the data set as input
data. The command or subcommand is taken as data and is not executed.

O

You can also have the system assign a line number to each line as it is
entered. Line numbers make later operations much easier, since you can
refer to each line by its own number. When you are working with a
line-numbered data set, you can request the system to display the new line
number at the start of each new input line. If the data set does not have
line numbers, you can request that a prompting character be displayed at
the terminal before each line is entered.

After you finish entering data in the data set, you can switch to edit
mode by entering a null line. (Press the ENTER key to enter a null line.)

The system lets you know you are in edit mode by displaying the
following message:

EDIT

Entering Subcommands in Edit Mode

In edit mode you can enter subcommands to point to particular lines of the
data set, to modify or renumber lines, to add and delete lines, or to control
editing of input.

When EDIT is operating in edit mode, it uses an internal indicator called
w the current line pointer to keep track of the next line of data to be
processed. The operations you indicate with the subcommands are

|
|
Entering and Manipulating Data 33

performed starting at the line indicated by the pointer; for example, the
DELETE subcommand deletes the line indicated by the pointer. After a
subcommand is executed, the system repositions the pointer in accordance
with the subcommand you are using.

You may want to reposition the pointer before a subcommand is
executed. You can do so by using one of two methods: line number editing
or context editing. Line number editing can be used only if your data set
has line numbers. You can specify a line number as an operand of a
subcommand and the system will move the pointer to that line before it
executes the subcommand. Context editing can be used for data sets with
or without line numbers. A set of subcommands UP, DOWN, TOP,
BOTTOM, and FIND allows you to move the pointer up or down a
specified number of lines, or to find a line with a particular series of
characters in it and move the pointer to it. After the pointer is positioned,
you can enter the subcommand that performs the functions required. You
may also use an asterisk in place of a line number in a subcommand to
indicate that you wish to use the current line pointer.

Switching Modes

After you finish editing the data, you can switch to input mode in two
ways:

¢ Entering the INPUT or INSERT subcommand.
« Entering a null line. (Press the ENTER key to enter a null line.)

The system lets you know you have selected input mode by displaying
the following message:

INPUT

You can terminate the EDIT command at any time by switching to edit
mode (if not already in edit mode) and entering the SAVE parameter on
the END subcommand. The system then displays a READY message, and
you can enter any command you choose.

Note: 1If you want to enter a blank line in your data set, you must enter a
blank by pressing the space bar, and then press the ENTER key. You can
then enter other lines after the blank line. If you fail to enter a blank and
press only the ENTER key, you are entering a null line which causes EDIT
to switch modes from input mode to edit mode.

Functions of EDIT Subcommands

The remainder of this chapter describes how you can use the subcommands
of EDIT to:

« Identify data sets.

+ Create a data set.

+ Place data into columns.

» Find and position the current line pointer.
+ Update a data set.

o List the contents of a data set.

« Store a new or updated data set.

+ Move or copy data within a data set.

« Allocate a data set.

34 OS/VS2 TSO Terminal User’s Guide

Page of GC28-06454
As Updated July 30, 1980
By TNL GN28-4753

Y « Submit a data set for batch execution.
b
« Send a message.

« End the EDIT functions.

Functions of Other Commands

The following functions described in this chapter are performed with
commands other than EDIT:

« Rename a data set.

« Delete a data set.

« Allocate a data set.

« Free an allocated data set.

« List information about your data sets.

Nofe: A data set may be allocated by using the ALLOCATE command or
the ALLLOCATE subcommand of EDIT.

Identifying Data Sets

Use the EDIT command to specify the name of a data set and whether you
want to create it or edit it. If you indicate that you are going to create a
new data set, the system enters input mode. If you indicate that you are
going to edit an existing data set, the system enters edit mode. For
example, the NEW operand in the following EDIT command specifies that
you are going to create a new data set named ACCTS.DATA,; the system
enters input mode.

‘ h READY
v edit accts.data new

INPUT
00010

In the following example, the OLD operand of the EDIT command
specifies that you want to edit an existing data set named PARTS.TEXT;
the system enters edit mode.

READY
edit parts.text old
EDIT

Creating a Data Set

You request the input mode when you enter one of the following:

The NEW operand in the EDIT command

The INPUT subcommand while in edit mode

The INSERT subcommand with no operands, while in edit mode
A null line if the system is in edit mode

The system sends you the following message:

INPUT

After this message, the system displays the first line number of your data
set, unless you specified NONUM in the EDIT command. The first line
| number displayed is 00010. Type the first line of input to the right of the
-~ line number and press the ENTER key to enter it. The system then displays
the second line number, which is 00020, and you may then enter your
second line of input, and so on.

Entering and Manipulating Data 35

July 30, 1980

Note: A hyphen at the end of an input line indicates logical continuation
of the line. In input mode, logical continuation is meaningful only if you are
using the syntax checking facility. Whether or not you are syntax checking,
however, the input processor will delete the hyphen from the end of the
line except in a few special instances. The rules governing handling of a
hyphen at the end of a line in input mode are detailed in OS/VS2 TSO
Command Language Reference.

When you reach the end of the data you want to enter, press the
ENTER key to enter a null line and the system switches to edit mode, as
the following example illustrates:

READY

edit accts new data

INPUT

00010 #23942 5 22.75 acme inc
00020 #32135 21 83.90 bbb corp
00030 #32174 12 21.80 alpha inds
00040 #49213 35 a7.95 xyz dist
00050 #52221 50 @2.35 beta mfg
00060 (null line)

EDIT

In the preceding example, the line numbers have the standard increment
of 10. If you prefer a different increment, you can use the INPUT
subcommand to specify another increment. To do this you must first
request a switch to edit mode by entering a null line after you receive the
INPUT message. Then enter the INPUT subcommand specifying the
number of the first line and the size of the increment. After entering the
INPUT subcommand the system switches to input mode and prompts you
with the first line number. For example, to start with line 5 and use
increments of 5, you could use the following sequence:

READY

edit accts new data

INPUT

00010 (null line)

EDIT

input 5 5

INPUT

00005 #23942 5 22.75 acme inc
00010 #32135 21 23.90 bbb corp
00015 #32174 12 21.80 alpha inds
00020 #49213 35 a7.95 xyz dist
00025 #52221 50 a2.35 beta mfg
00030 (null line)

EDIT

You can create the same data set in edit mode; however, you must enter
the line numbers you wish to use.

READY

edit accts new data

INPUT

00010 (null line)

EDIT

5 #23942 5 82.75 acme inc
10 #32135 21 23.90 bbb corp
15 #32174 12 21.80 alpha inds
20 #49213 35 a7.95 xyz dist
25 #52221 50 22.35 beta mfg

Note: Requesting an increment larger than one will make it easier to insert
lines in your data set later on.

36 OS/VS2 TSO Terminal User’s Guide

Page of GC28-0645-4
As Updated July 30, 1980
By TNL GN28-4753

Placing Data into Columns

If you want the system to place your data into columns, you must establish
logical tab settings with the TABSET subcommand of the EDIT command
or use the defaults provided by the system. (See the appropriate appendix
to determine if your terminal supports tab settings.) If you have established
logical tab settings for your data set, the system will arrange each item in
its proper column whenever you press the TAB key. The maximum number
of logical tab settings that can be defined is ten.

If you do not use the TABSET subcommand, the default tab settings
used by the system vary with the data set type. The defaults are shown in
Figure 3.

Descriptive Qualifier Default Tab Setting Columns
ASM 10,16,31,72

CLIST 10,20,30,40,50,60

CNTL 10,20,30,40,50,60

COBOL 8,12,72

DATA 10,20,30,40,50,60

FORT 7,72

PLI 5,10,15,20,25,30,35,40,45,50
TEXT 5,10,15,20,30,40

VSBASIC 10,15,20,25,30,35,40,45,50,55

User Defined Qualifier 10,20,30,40,50,60

Figure 3. Default Tab Settings

If you want to change the default settings or other settings you
previously established, or nullify all tabs, you must use the TABSET
subcommand. If you want to change the default settings, you will probably
do so before you create the data set. That means you must request edit
mode after you enter the EDIT command, then enter the TABSET
subcommand and return to the input mode to create the data set. For
example, if you want to create a TEXT data set with the logical tabs at
columns 10, 25, and 35, you can use the following sequence:

READY

edit series new text

INPUT

00010 (null line)

EDIT

tabset on (10 25 35)
(null line)

INPUT
00010

Entering and Manipulating Data 37

July 30, 1980

If you prefer, you can define tab settings by entering a line containing t’s Y
in positions corresponding to desired tab settings. To establish tab settings (})

in columns 10, 25, and 35 you can use the TABSET subcommand as
follows:

tabset image
123456789tbbbbbbbbbbbbbbtaaaaaaaaat

You must fill the spaces between the t’s with blanks or characters other
than t. Do not use the TAB key when entering the IMAGE line, nor the
backspace except as a character-delete character.

If you want to nullify the existing tab settings for the data set, enter the
TABSET subcommand as follows:

tabset off

Finding and Positioning the Current Line Pointer

Unless you plan to use line numbers for all your editing operations, you
should know how to find and reposition the current line pointer. These
operations are described in the following paragraphs.

Finding the Current Line Pointer

The location of the current line pointer depends on the last subcommand
you entered. If you are editing an old data set, the current line pointer is
positioned at the first line of the data set upon initial entry into edit mode.
Figure 4 shows the location of the pointer at the end of each subcommand. /)
If you do not remember this information, you can use the LIST e
subcommand with the * operand to find the line at which the pointer is

positioned:

list *
THIS IS THE LINE THE CURRENT LINE POINTER IS INDICATING

You can also have the system display the line at which the pointer is
positioned every time the pointer changes as a result of one of the EDIT
subcommands, and each time the CHANGE subcommand makes a
modification to one or more lines. To do this, issue the VERIFY
subcommand as follows:

verify

The VERIFY function is in effect for an EDIT session until you enter it
again with the OFF operand:

verify off

38 O0S/VS2 TSO Terminal User’s Guide

EDIT Subcommands
ALLOCATE
BOTTOM
CHANGE

COPY

DELETE

DOWN

END
EXEC
FIND
HELP
INPUT
INSERT

Insert/Replace/Delete

LIST
MOVE
PROFILE
RENUM
RUN
SAVE
SCAN
SEND
SUBMIT
TABSET
TOP
UNNUM
UP

VERIFY

Value of the Pointer at Completion of Subcommand
No change

Last line (or line zero for empty data sets)

Last line changed

Last line copied

Line preceding deleted line, if any, else zero

The line n down from where you were at the start of the
subcommand, or the bottom of the data set. (n is the value
of the ‘count’ parameter.)

No change

No change

Found line, if any, else no change
No change

Last line entered

Last line entered

Inserted or replaced line, or line preceding the deleted line,
if any, or zero.

Last line listed

Last line moved

No change

Same relative record
No change

No change

Last line referred to, if any
No change

No change

No change

Zero value

Same relative record

The line n lines up from where you were at the start of the
subcommand, or the top of the data set. (n is the value of
the ‘count’ parameter.)

No change

Figure 4. How Edit Subcommands Affect the Current Line Pointer Position

Positioning the Current Line Pointer

You can use the UP, DOWN, TOP, BOTTOM and FIND subcommands to
move the current line pointer.

The UP subcommand moves the pointer a specified number of lines up,
relative to the pointer’s current position in your data set. For example, to
move the pointer so that it refers to a line located five lines before the
location it currently refers to, enter:

up 5

Entering and Manipulating Data 39

The DOWN subcommand moves the pointer a specified number of lines
down, relative to the pointer’s current position in your data set. For
example, to move the pointer so that it refers to a line located 12 lines after
the location currently referred to, enter:

down 12

The TOP subcommand is used to change the current line pointer to zero.
After execution, the current line pointer precedes the first line of an
unnumbered data set or the first line of a numbered data set that does not
have a line number of zero. However, if the data set is numbered and
contains a line number zero, the current line pointer points to the line
numbered zero. TOP is often used in combination with the DOWN
subcommand. For example, if you want the pointer to refer to the third line
of your data set, use the following sequence:

top
down 3

The BOTTOM subcommand moves the pointer to the last line of the
data set.

The FIND subcommand moves the pointer to a line that contains a
specified sequence of characters. For example, to move the pointer to the
line that contains PLACED BEFORE ENTRY enter:

find xplaced before entry

The "x'" inserted before '"placed" is a special delimiter that marks the
beginning of the sequence of characters for which the system has to search.
The special delimiter can be any character other than a number, apostrophe,
semicolon, blank, tab, comma, parenthesis, asterisk, a slash followed by an
asterisk, or one of the characters in the sequence you want to find. The
special delimiter must be next to the first character of the sequence you
want to find. Any blanks inserted between the special delimiter and the first
character are considered to be part of the sequence of characters.

An alternate method for specifying the sequence of characters for FIND
is quoted-string notation. With this method, the specified sequence must
start and end with an apostrophe. If an apostrophe is one of the characters
in the specified sequence, you must enter two apostrophes for the single
apostrophe in the specified sequence. For example, to find the character
sequence:

single 'gquote'

using quoted-string notation, enter:

FIND 'single ''quote'''

If you prefer, you can have the system search for the sequence of
characters starting at the same column of each line. If you want to search
for PLACED BEFORE ENTRY in column seven of each line, for example,
enter:

find xplaced before entry x 7
or

find 'placed before entry ' 7

40 OS/VS2 TSO Terminal User’s Guide

—
=3

N
Y

Notice that the same special delimiter or apostrophe used at the
beginning of the sequence of characters must also precede the column
number.

The FIND subcommand starts looking for the sequence of characters
beginning with the line at which the pointer is located. Therefore, unless
you are sure the characters are in a line following the one indicated by the
pointer, you should use the TOP subcommand to move the pointer to the
beginning of the data set:

top
find xplaced before entry

The following data set illustrates the examples of positioning the current
line pointer. Although this data set has line numbers, they have no bearing
on the examples, which depend rather on relative pointer positions.

00010 TEMPERATURE DATA FOR 7/29/70

00020 HIGHEST, 90 AT 12:30 P.M.

00030 LOWEST, 73 AT 5:40 A.M.

00040 MEAN, 83

00050 NORMAL ON THIS DATE, 77

00060 DEPARTURE FROM NORMAL, +6

00070 HIGHEST TEMPERATURE THIS DATE, 99 IN 1949
00080 LOWEST TEMPERATURE THIS DATE, 59 IN 1914
00090 TEMPERATURE HUMIDITY INDEX, 81

Assume that you do not know the present location of the current line
pointer, and would like to move it to the fifth line (00050). Enter:

top
down 5

To move the pointer from the fifth line (00050) to the third line
(00030), enter:

up 2
To move the pointer to the line that contains (FROM NORMAL) enter:

find xfrom normal

To move the pointer to the last line (00090), enter:

bottom

Updating a Data Set

The subcommands of the EDIT command allow you to update a data set;
that is, they allow you to:

« Delete data from a data set.

« Insert data in a data set.

« Replace data in a data set.

« Move or copy lines within a data set.
« Renumber lines of a data set.

« Remove line numbers from a data set.

The descriptions of these functions follow.

Entering and Manipulating Data 41

Deleting Data from a Data Set ﬂ
(g

If you want to delete only one line of data you do not need a subcommand.
Indicate only the line number or an asterisk. For example, if you want to
delete line 30, enter:

30
To delete the line indicated by the current line pointer, enter:

*

You can also use the DELETE subcommand to perform the same
function:

delete 30
or

delete *

DELETE also allows you to delete more than one consecutive line. To
do so you can specify the line numbers of the first and last lines to be
deleted, or the number of lines to be deleted starting with the line indicated
with the current line pointer. For example, to delete all the lines between
and including lines 15 and 75, enter:

delete 15 75

To delete 12 lines starting with the line indicated by the current line
ointer, enter: .
p ' ’/,/ \\
delete * 12 w7

To delete all the lines in your data set, use the TOP and DELETE
subcommands in combination, specifying for DELETE a number of lines
greater than the number of lines in your data set.

top
delete * 99999999

After the system deletes the lines you requested, the current line pointer
points at the line before the first deleted line.

Inserting Data in a Data Set

To insert only one line of data in a line-numbered data set, you do not
need a subcommand; indicate only the line number. In order to prevent
overlaying an existing line of data, refer to an unused line number. (That is,
the new line number should fall between two existing line numbers in the
data set.) Thus, if you want to insert "RECORDED DAILY IN
CENTRAL" as line 22, between lines 20 and 30, enter:

22 recorded daily in central

The characters you want to enter must be separated from the line
number by a single blank or a comma. Any additional blanks or commas
are considered to be part of the input data. You may optionally use the tab
key to separate characters from the line number. (See the appendix to
determine if your terminal supports tab settings.) In this case all blanks, C
including the first, resulting from the tab will be part of your input data. J‘/

42 0S/VS2 TSO Terminal User’s Guide

I em— =S

The number of blanks resulting from the tab is determined by the logical
tab setting. The logical tab setting results from the TABSET subcommand
or the default tab setting.

To insert one line of data after the current line, use the INSERT
subcommand with the insert-data operand:

list *
TAKE ME OUT
insert to the ballgame

The rules for separating inserted data from the subcommand name are
the same as for separating data from line numbers.

To insert more than one line, use the INSERT or INPUT subcommands.
INPUT or INSERT can be used for data sets with or without line numbers.

Both subcommands have similar functions. However, the INPUT
subcommand starts adding lines immediately after the last line of the data
set or the last line affected by the last input activity. The INSERT
subcommand inserts data following the location pointed to by the current
line pointer.

Assume that you have the following data set:

A. CARSON DEPT A72
T. DANIELS DEPT 792
C. DICKENS DEPT 981
R. EMERSON DEPT 245
E. FARRELL DEPT B32
C. LEVI DEPT 229
D. MADISON DEPT D49

To insert three lines after the entry for E. FARRELL and before the
entry for C. LEVI, you must first position the current line pointer at the
fifth line. Your listing would look like this:

EDIT

top

down 5

insert

INPUT

e. glotz dept 741
p. henry dept 333
h. hill dept R92

(null line)

EDIT

You must enter a null line to indicate the end of your input.

Use an asterisk in the INPUT subcommand to indicate that the lines of
input that follow are to be inserted in the location following the current line
pointer. Assume that you have the following data set:

A. CARSON DEPT A72
T. DANIELS DEPT 795
C. DICKENS DEPT 981
R. EMERSON DEPT 245
E. FARRELL DEPT B32
C. LEVI DEPT 229
D. MADISON DEPT D49

Entering and Manipulating Data 43

4

To insert three lines after the line for E. FARRELL and before the line 2N
for C. LEVI, your display would look like the following: @

EDIT

top

down 5

input *

INPUT

e. glotz dept 741
p. henry dept 333
h. hill dept R92
(null line)

EDIT

Note: After you enter the INSERT or the INPUT subcommand, EDIT
switches to input mode.

If your data set has line numbers, you may use either the INPUT or
INSERT subcommand to insert one or more lines of data between two
existing lines of the data set. You can also indicate a smaller increment for
the new line numbers so that they fit between the line numbers of the
existing lines. Assume you have the following data set:

00010 1932 $1.50
00020 2579 $1.39
00030 4798 $1.75
00040 5344 $2.49

To insert three lines between lines 20 and 30, to have the first line
numbered 22, and to increase this number by two in the following lines,
your display would look like this:

N
EDIT N
input 22 2
INPUT
00022 2795 $0.79
00024 3241 $2.81
00026 4152 $1.79
00028 (null line)
EDIT

The updated data set would look like this:

00010 1932 $1.50
00020 2579 $1.39
00022 2795 $0.79
00024 3241 $2.81
00026 4152 $1.79
00030 4798 $1.75
00040 5344 $2.49

Another way to insert three lines between lines 20 and 30 is to use the
INSERT subcommand, as follows:

EDIT

top

down 2

insert

INPUT

00021 2795 $0.79

00022 3241 $2.81

00023 4152 $1.79 !
00024 (null line) I

EDIT ({\\

0S/VS2 TSO Terminal User’s Guide I

updated data set would look like this:

Note: INSERT automatically increases the line numbers by one. The

00010
00020
00021
00022
00023
00030
00040

1932
2579
2795
3241
4152
4798
5344

$1.50
$1.39
$0.79
$2.81
$1.79
$1.75
$2.49

If you do not change the increment, and there is no room for the new
lines, you receive an error message. If you wish, you can renumber the lines
of your data set. This procedure is explained in the paragraph entitled

"Renumbering Lines of Data."

To enter lines at the end of the data set, enter the INPUT subcommand
without operands. If the data set has line numbers you will be prompted
with the line number, for example:

EDIT

input
INPUT
00050
00060
00070
EDIT

Replacing Data in a Data Set

6211
7199

$3.95
$0.85

(null line)

You can replace an entire line or a sequence of characters in a line or a

(/\ range of lines.

If you are only replacing one line of data, you do not need a
subcommand. Indicate only the line number or an asterisk; for example, if
you want to replace the contents of line 70 with "SEVERAL REPORTS
WERE MADE'", enter:

70 several reports were made

If you want to replace the contents of the line indicated by the current

line pointer, enter:

* several reports were made

The characters you want to enter must be separated from the line
number or the asterisk by a single blank or a comma. The system considers
any additional blanks or commas to be part of the input data. You may
optionally use the tab key to separate characters from the line number or
asterisk. (See the appendix to determine if your terminal supports tab
settings.) In this case all blanks, including the first, resulting from the tab
will be part of your input data. The number of blanks resulting from the
tab is determined by the logical tab setting. The logical tab setting results
from the TABSET subcommand or the default tab setting.

Entering and Manipulating Data 45

You can also replace lines of data when you use the INPUT

subcommand. If you use the R operand, the lines starting with the line
indicated by the line number or the asterisk are replaced by the lines you
enter. Assume that you have the following data set:

COMPLETION SCHEDULE

STAGE 1 7/19
STAGE 2 8/15
STAGE 3 9/29

To replace the third and fourth lines, you must first position the current

line pointer at the third line.

EDIT

top

down 2

input * r

INPUT

stage 2 8/21
stage 3 9/15
(null line)

EDIT

Your updated data set would look like this:

COMPLETION SCHEDULE

STAGE 1 7/19
STAGE 2 8/21
STAGE 3 9/15

In the following example, assume that the data set has line numbers:

00010 COMPLETION SCHEDULE

00020 STAGE 1 7/19
00030 STAGE 2 8/15
00040 STAGE 3 9/29

To replace lines 30 and 40, your display should look like this:

EDIT

input 30 r

INPUT

00030 stage 2 8/21
00040 stage 3 9/15
00050 (null line)
EDIT

Your updated data set will look like this:

00010 COMPLETION SCHEDULE

00020 STAGE 1 7/19
00030 STAGE 2 8/21
00040 STAGE 3 9/15

If the data set has line numbers, you can replace a line and insert

additional lines. Assume the same data set:

46 OS/VS2 TSO Terminal User’s Guide

00010 COMPLETION SCHEDULE

00020 STAGE 1 7/19
00030 STAGE 2 8/15
00040 STAGE 3 9/29

O

To replace line 30 and insert two lines with a line increment of 2, your
display should look like this:

EDIT

input 30 2 r

INPUT

00030 stage 2 part 1 8/15
00032 stage 2 part 2 8/21
00034 stage 2 part 3 9/15
00036 (null line)

EDIT

Your updated data set will look like this:

00010 COMPLETION SCHEDULE
00020 STAGE 7/19

00030 STAGE PART 1 8/15
00032 STAGE PART 2 8/21
00034 STAGE PART 3 9/15
00040 STAGE 9/29

WNNN —

To replace more than one line with a greater number of lines, you can
also use the DELETE subcommand to delete those lines and then use either
INPUT or INSERT to insert the replacement lines. Use this procedure
when the data set does not have line numbers.

Use the CHANGE subcommand to change only part of a line or lines.
For example, to change the characters “DAILY INVENTORY” to
“WEEKLY REPORT” in line 12 of your data set, enter:

change 12 /daily inventory/weekly report/

The /> placed before the characters to be changed and before the
replacement characters is a special delimiter that marks the beginning of
those sequences of characters. The special delimiter can be any character
other than a number, blank, tab, comma, semicolon, apostrophe,
parenthesis, slash followed by an asterisk, or asterisk. Make sure the
character you select as a special delimiter does not appear in the sequence
of characters you specify. If you leave blanks between the last character to
be replaced and the special delimiter for the replacement characters, the
system considers the blanks as significant parts of the characters to be
replaced. The special delimiter need not appear at the end of the
replacement characters unless other parameters are to follow.

Instead of using a line number you can use an asterisk. For example, if
the change is to be made to the line indicated by the current line pointer,
enter:

change * xdaily inventoryxweekly reportx

You can also have the system search for a sequence of characters in a
range of lines rather than in only one line. You can indicate the range of
lines by giving the numbers for the first and last lines of the range, or by
indicating the current line pointer and the number of lines you want to have
searched. For example, if the characters “DAILY INVENTORY” appear
somewhere between lines 15 and 19, enter:

change 15 19 !daily inventory!weekly report!

Entering and Manipulating Data 47

If the characters appear within the 10 lines starting with the one
indicated by the current line pointer, enter: @

change * 10 ?daily inventory?weekly report?

You can also change the sequence of characters every time it appears
within the range of lines. To do this, specify the ALL operand after the
replacement sequence. You must use the special delimiter to terminate the
replacement string before type “all”:

change 15 19 l!daily inventory!weekly report! all
or
change *# 10 !daily inventory!weekly report! all

If you wish, you can have the system locate a sequence of characters in
a line and display that line up to those characters. You can then type new
characters to complete the line and enter the new line when you press the
ENTER key. Assume that you want to change the characters “TUESDAY”
in the following line:

00015 PARTS DELIVERIES ARE MADE ON TUESDAY

Your display will look as follows:

change 15 /tuesday
00015 PARTS DELIVERIES ARE MADE ON

If the characters you want to change are in the line indicated by the
current line pointer, your display would look like this:
AN
change * /tuesday i X
00015 PARTS DELIVERIES ARE MADE ON N

In either of the two examples above, the cursor would have stopped at
the space where “TUESDAY” originally began, and would have remained
there, awaiting your change to the line. You could, for example, type
“wednesday.” and then press the ENTER key. Your display (in the latter
example) would then look like this:

change * /tuesday
00015 PARTS DELIVERIES ARE MADE ON wednesday.

Another way to do the same thing is to request that the system display a *
specified number of characters of a given line. Then you can enter the ‘
characters you want to replace the remaining characters in the line. For
example, you can request that the first 26 characters of the line “PARTS
DELIVERIES ARE MADE ON TUESDAY” be displayed:

change 15 26
00015 PARTS DELIVERIES ARE MADE

You can have the system display the first several characters of a range of
lines. This is particularly useful when you want to change a column in a
table. Assume that you have the following data set:

00010 ENROLLMENT DATES

00012 P. JONES MAY 15 JUNE 12 ‘
00014 A. SMITH MAY 31 JULY 19 '}
00016 J. DOE JUNE 7 JULY 17

00018 B

. GREEN JUNE 9 AUGUST 3 @ ‘k
|

48 OS/VS2 TSO Terminal User’s Guide i

If you want to change the data in the last column, which begins in
position 17, enter:

change 10 18 16

00010 ENROLLMENT DATES
00012 P. JONES MAY 15
00014 A. SMITH MAY 31
00016 J. DOE JUNE 7
00018 B. GREEN JUNE 9

For each line displayed, the cursor stops at column 17 and you can enter
new data or press the ENTER key to delete the data that was there.

If you want to change the data in the last column and the current line
pointer is at line 10, enter:

change * 5 16

00010 ENROLLMENT DATES
00012 P. JONES MAY 15
00014 A. SMITH MAY 31
00016 J. DOE JUNE 7
00018 B. GREEN JUNE 9

You can insert a sequence of characters at the beginning of the line. For
example, if line 15 of your data set is as follows:

00015 EMPLOYEE ABSENTEEISM

enter:

change 15 //weekly report of /

to obtain:

00015 WEEKLY REPORT OF EMPLOYEE ABSENTEEISM

You can also delete a sequence of characters using the CHANGE
subcommand. To delete WEEKLY from line 15 above, enter:

change 15 /weekly//

to obtain:

00015 REPORT OF EMPLOYEE ABSENTEEISM

Quoted-String Notation

In the previous examples of the CHANGE subcommand of EDIT,
special-delimiter notation specified the character sequences. You may,
however, use an alternate form of notation, the quoted-string notation.
General rules for quoted-string notation are:

+ Begin and end each sequence with an apostrophe. (The system will
ignore the apostrophes in its operations on your character sequence.)

+ Separate character sequences with a blank.

» Specify two apostrophes in place of one whenever you wish to include
an apostrophe within a character sequence.

For example, to replace WEEKLY with DAILY in the current line, you
can use the special-delimiter notation:

change * /weekly/daily/

Entering and Manipulating Data 49

or the quoted-string notation:

change * 'weekly' 'daily'

To delete DAILY from the current line, you can use:

change * 'daily' ''

instead of:

change * /daily//
To insert WEEKLY at the beginning of line 15, you can use:

change 15 '
or
change 15 //weekly/

'weekly'

To replace characters after TUESDAY’S in line 30 of your data set, you
can use the special-delimiter notation:

00030 THIS IS TUESDAY'S CHILD
change 30 /tuesday's/
00030 THIS IS monday's child

or the quoted-string notation:

00030 THIS IS TUESDAY'S CHILD
change 30 'tuesday''s'
00030 THIS IS monday's child

Renumbering Lines of Data

The RENUM subcommand of EDIT assigns line numbers to a data set
without line numbers, or renumbers the lines of a data set with line
numbers. If you enter:

renum

the system assigns new line numbers to all the lines of the data set. The
first line will be assigned the number 10 and subsequent line numbers will
be increased by 10.

You can assign a number to the first line of the data set. For example, if
you want the first line to have number 5, enter the following:

renum 5
The remaining line numbers will be 15, 25, 35, etc.

You can specify an increment other than 10 in addition to the number of
the first line. For example, if you want the first line to be number one, and
the remaining line numbers to increase by 3, enter:

renum 1 3

If your data set already has line numbers, you can specify that
renumbering is to start at a given line. You must also specify the new
number for this line (which must be equal to or greater than the old line
number) and the increment. Suppose that starting at line 23 you wish the
new line number to be 25 and the increment to be 5. Enter:

renum 25 5 23

50 OS/VS2 TSO Terminal User’s Guide

The preceding example shows renumbering of all lines following a given
line. You may want to limit the renumbering to a range of lines. You must
specify the new line number (greater than the line prior to the old line
number), the increment to be used, the old line number (first line to be
renumbered), and the end line number (last line to be renumbered). For
example, if you want to renumber lines 25 through 50, assigning line
number 40 to the first renumbered line and using an increment of 2, enter:

renum 40 2 25 50

If you use the RENUM subcommand to renumber your data set, the
renumber increment that you specify is used when you enter the INPUT
subcommand the next time during the edit session. Thus, if the following
sequence occurred:

list

00010 LINE 1 OF DATA
00020 LINE 2 OF DATA
00030 LINE 3 OF DATA
END OF DATA

renum 3 3

input

INPUT

00012 line 4 of data
00015 line 5 of data
00018 (null line)
EDIT

your data set would look like this:

00003 LINE 1 OF DATA
00006 LINE 2 OF DATA
00009 LINE 3 OF DATA
00012 LINE 4 OF DATA
00015 LINE 5 OF DATA

If you want to override the existing line number increment, use the
increment operand on the INPUT subcommand.

The RENUM subcommand capability is also available as an operand of
the SAVE subcommand. This means that you can make any of these line
number changes as you store a new data set or save updates to an old one,
using only a single command line at the terminal. For additional information
about this capability, refer to the section “Storing a New Data Set.”

Removing Line Numbers

You can use the UNNUM subcommand of EDIT to remove line numbers
from a numbered data set. To remove the numbers from all the lines in a
data set, enter:

unnum

If the following sequence of terminal activity occurred:

list

00010 LINE 1 OF DATA
00020 LINE 2 OF DATA
00030 LINE 3 OF DATA
END OF DATA

unnum

Entering and Manipulating Data 51

your data set would look like this: @

LINE 1 OF DATA
LINE 2 OF DATA
LINE 3 OF DATA

The UNNUM subcommand capability is also available as an operand of
the SAVE subcommand. This means that you can remove a data set’s line
numbers as you save it, using only a single command line. Additional
information about this capability is in the section “Storing a New Data .
Set.”

Listing the Contents of a Data Set

The LIST subcommand of EDIT allows you to display the contents of a
data set at your terminal. To list the entire contents of the data set, enter:

list

To list a group of lines, enter the number of the first and last lines of the
group. For example, to list lines 20 through 110 of the data set, enter:

list 20 110

If your data set does not have line numbers, you can use the current line
pointer and the number of lines to be listed. To list the 20 lines that begin
with the line indicated by the pointer enter:

list * 20
. c AN
To list only one line, indicate the line number or the current line pointer. \“\.)/
For example, if you wish to list line 22, enter: g
list 22
To list the line pointed at by the current line pointer, enter:
list *
You can use the SNUM operand of LIST to suppress listing the line
numbers of a line-numbered data set. (If your data set does not have line
numbers, this operand has no effect.) Any of the following commands ‘
produces a listing of the lines indicated without their line numbers: ?
|
list snum
list 20 110 snum
list * 20 snum
list 22 snum
list * snum
The LIST subcommand uses a standard listing format. If you list a |
non-line-numbered data set, or a line-numbered data set using the SNUM
operand (to suppress line numbers), the lines displayed will consist of only
the data portion of the records. To list a non-line-numbered data set your
display will look like this:
list ¥
LINE 1 OF DATA
LINE 2 OF DATA H
LINE 3 OF DATA \\ .
END OF DATA

52 0S/VS2 TSO Terminal User’s Guide

If you list a line-numbered data set, the system will suppress up to three
leading zeros in each line number, and separate the line number from the
data with a blank. The line number is displayed to the left of the data. For
example, data with an 8-digit line number would display:

list

00010
00020
00030

LINE 1 OF DATA
LINE 2 OF DATA
LINE 3 OF DATA

END OF DATA

If you are editing a line-numbered COBOL data set, with a six-character
sequence (line number) field, either one or three leading zeros will be
suppressed, depending on the command. For the INPUT subcommand, one
leading zero is suppressed; for the LIST subcommand three leading zeros
are suppressed, as follows:

edit a new cobol

INPUT
00010
00020
00030
00040
EDIT

list

identification division
program-id. calc.
environment division
(null line)

010 IDENTIFICATION DIVISION
020 PROGRAM-ID. CALC.

030 ENVIRONMENT DIVISION
END OF DATA

Moving or Copying Data within a Data Set

You can move or copy any part or all of your data set’s content to any
other place within the data set. Copying the data implies that when the
operation is complete, identical data will be in two or more places within
the data set. Moving implies that there will be only a single copy of the
data, but that it will be in a new place.

There are two ways to specify the data you wish to move or copy:

« By line number
« By string identification

If you specify your data by line number, the beginning line number in
your subcommand is the line in your data set where the move or copy
operation is to begin. If you specify your data by string identification, TSO
must search for the string of characters to find the line at which to begin
moving or copying data.

Entering and Manipulating Data 53

Specifying Data by Line Number l

Suppose you are working with the text data set in Figure 5.

00010 This data set is a sample to

00020 show you some things about the
00030 way the EDIT command's MOVE

00040 and COPY subcommands work.

00050 It contains eleven lines.

00060

00070 The first five lines are

00080 for moving and copying. The

00090 sixth line is a blank line to show
00100 a convenient place to move data,
00110 and these last lines complete this thought.

Figure 5. Sample Text Data Set for Illustrating the EDIT MOVE/COPY Function

Consider the following sample subcommand for moving a range of
line-numbered data:

move 10 50 60 incr(2)

In this command, the data to move begins with line 10 and ends with
line 50, the place to move this data begins at line 60, and once the data is
in its new place, its line numbers should be in increments of two. (The
default increment is 10.)

The results of entering this subcommand anne-: in Figure 6.

Because the sample data set already has a line numbered 60, the
subcommand apparently conflicts with the space available in the data set. AN
TSO resolves this conflict by adding the increment (in this case 2) to line \\)
60, the line specified for the beginning of the new data, and then it inserts B
the new lines at the specified increment. In this case, the five moved lines
of data begin at line 62 and extend through line 70. To keep from
overlaying the original line 70, TSO renumbers that line by adding 1. In this
case the newly moved-in line 70 displaces the original line at that position
to line 71.

00060 ‘
00062 This data set is a sample to

00064 show you some things about the

00066 way the EDIT commands's MOVE

00068 and COPY subcommands work.

00070 It contains eleven lines.
00071 The first five lines are
00080 for moving and copying. The
00090 sixth line is a null line to show

00100 a convenient place to move data,

00110 and these last lines complete this thought.

Figure 6. Sample Text Data Set after a Move Operation

Note that the beginning line of the data set is now 60, (the blank line)
because the first five data lines are now in positions 62-70. This illustrates
that after a move operation, a data set retains its original number of lines,
although the line numbering is different.

|
|

\

\

\

|

|

|

|

|

54 OS/VS2 TSO Terminal User’s Guide i

®

Lines 10-50 could also be moved using the COPY subcommand;
however, the first data set would retain lines 10-50 as well as adding lines
62-70 as copies of lines 10-50.

You can move or copy a whole data set to precede or follow itself,
simply by specifying its entire range of line numbers. Consider the sample
data set again, with this subcommand:

copy 10 110 120 incr(10)

This subcommand replicates the original data set, starting at line 120.
You could also change the increment of the copied data set at the same
time.

Consider the same data set with this subcommand:

move 10 110 120 incr(10)

This subcommand effectively renumbers the data set. Its new line
numbers are 120-230, and the original line numbers of 10-110 are no
longer in the data set (although they are available for use for future
assignments of data). The RENUM subcommand provides a simpler way to
achieve this result, however.

Specifying Data by Character String Identification

Refer to the sample data set in Figure 5 again and note that line 10
contains the character string "is a sample'. To move the first five lines as
in the first example, you could enter:

top
move '‘is a sample’ 5 60 incr(2)

The MOVE subcommand’s operands mean:

is a sample - the data to move includes this unique string of characters in its
first line; TSO uses the character string to find the line
containing it. This is the beginning line to be moved.

5 - the data to move consists of the five lines beginning with the line that
contains the requested character string

60 - the place to move the five lines of data begins at line 60.

incr(2) - the moved lines will be in increments of two.

The results of this subcommand are identical to those in the previous
MOVE example, as Figure 6 shows:

1. The data set now begins with line 60, a null line.

2. The original first five lines now occupy line numbers 62, 64, 66, 68,
and 70.

3. The original line numbers 70-110 are now 71-110.

4. The data set’s total line count remains the same.

While character string identification of the lines you wish to move or
copy works as just explained for numbered data sets, its primary use is in
editing unnumbered data sets. For editing data sets without line numbers,
the use of this "finding' scheme and relative line counting capability is
necessary.

Entering and Manipulating Data 55

Storing a New Data Set

The data set you create or change remains in the system only until you
finish using the EDIT command and its subcommands. That is, as soon as
you notify the system that you want to use another command and you get a
READY message, the system discards your newly created data set, or your
changes. If you want the system to make your new data set permanent, or
if you want the system to incorporate your changes into the existing data
set, you must use the SAVE subcommand of the EDIT command, or the
SAVE keyword on the END subcommand.

In the following sequence you create a data set named RECORDS and
ask the system to store it as a permanent data set. This example uses the
SAVE keyword on the END subcommand.:

READY

edit records new data

INPUT

00010 project 21 7/10-8/25 a. jones
00020 project 23 7/10-9/12 p. smith
00030 project 39 8/1-9/15 r. brown
00040 (null line)

EDIT

end save

READY

In the following sequence you add a line to the RECORDS data set and
ask the system to make it part of the data set:

edit records old data

EDIT

40 project 42 8/15-9/21 S. green
save

EDIT

end

READY

When you save your data set, you may also make line numbering
changes by adding operands to the SAVE subcommand. You can make any
of the changes outlined in ''Renumbering Lines of Data" by using RENUM
as an operand of SAVE, or you may remove the line numbers entirely by
using UNNUM.

Suppose in the example above you wish to have TSO store the four-line
data set with line numbers beginning with two in increments of three.
Instead of the SAVE subcommand shown, enter:

save * renum (2 3)

The asterisk tells TSO to save and renumber the data set currently being
edited.

The next time you list your data set, it will look like this:

00002 project 21 7/10-8/25 a. jones
00005 project 23 7/10-9/12 p. smith
00008 project 39 8/1-9/15 r. brown
00011 project 42 8/15-9/21 S. green

To delete the line numbers as you save the data set, enter:

save *¥ unnum

56 OS/VS2 TSO Terminal User’s Guide

O

O

July 30, 1980

Note that causing an attention interrupt during SAVE processing when
either the RENUM or UNNUM operands were specified may cause
undesirable results. It is possible to terminate the entire subcommand or just
the RENUM/UNNUM function, depending on the point in execution at
which the attention interrupt was entered.

Creating an Updated Copy of a Data Set

In some cases you may want to preserve the existing data set intact and
have the system make the changes to a data set that is a copy of the
original data set. To do this you must enter a new data set name for the
copy when you enter the SAVE subcommand. For example, if you want to
keep the RECORDS data set intact, and you want your changes to be
made to a copy of RECORDS named PROJS, use the following sequence:

READY

edit records old data

EDIT

40 project 42 8/15-9/21 S. green
save projs

EDIT

end

READY

Now you have two data sets. The one named RECORDS looks like this:

00010 PROJECT 21 7/10-8/25 A. JONES
00020 PROJECT 23 7/10-9/12 P. SMITH
00030 PROJECT 39 8/1-9/15 R. BROWN

The data set named PROJS looks like this:

00010 PROJECT 21 7/10-8/25 A. JONES
00020 PROJECT 23 7/10-9/12 P. SMITH
00030 PROJECT 39 8/1-9/15 R. BROWN
00040 PROJECT 42 8/15-9/21 S. GREEN

Saving Updates to a Data Set

You can use the SAVE subcommand whenever you are using the EDIT
command: you can create a data set and save it, you can start making
changes to the data set and once you are satisfied with those changes, you
can save them to make them part of the data set. For example, in the
following sequence you create a data set, save it, replace line 30, insert
three lines after line 50, list the data set, delete line 56, renumber the data
set, and save it.

Entering and Manipulating Data 57

Page of GC28-0645-4
As Updated July 30, 1980

By TNL GN28-4753
READY
AN

edit phones new text Vo)
INPUT K
00010 telephone listing - sales dept
00020 j. adams 1291
00030 c. allan 2431
00040 a. bailey 3255
00050 b. crane 4072
00060 e. foster 1384
00070 f. graham 2291
00080 d. murphy 9217
000290 (null line)
EDIT
save
EDIT
30 c. alden 2241
input 52 2
INPUT
00052 1. davis 4119
00054 j. egan 6835
00056 e. foster 1384
00058 (null line)
EDIT
list
00010 TELEPHONE LISTING - SALES DEPT
00020 J. ADAMS 1291
00030 C. ALDEN 2241
00040 A. BAILEY 3255
00050 B. CRANE 4072
00052 L. DAVIS 4119
00054 J. EGAN 6835
00056 E. FOSTER 1384
00060 E. FOSTER 1384
00070 F. GRAHAM 2291 O
00080 D. MURPHY 9217 \o
delete 56 o
save ¥ renum
EDIT
end
READY

Note: The two blank lines in the above examples resulted from the
cursor position at the time of availability.

Ending the Edit Functions

Use the END subcommand to terminate the operation of the EDIT
command. You can enter the SAVE or NOSAVE operands on the END
subcommand to indicate whether or not you want to save the modified data
set. Note that causing an attention interrupt during the execution of an
END SAVE subcommand may cause undesirable results. It is possible to
terminate the SAVE portion of the operation but the END function may
continue. Nothing would be saved even though the EDIT mode message
may be produced. In this case, subsequent subcommands are ignored
because EDIT has completed its function.

If you have made changes to your data set and have not entered the
SAVE subcommand or the SAVE/NOSAVE operand on the END
subcommand, the system issues a message to respond to this message by
entering the word SAVE, if you want to save the modified data set or
END, if you do not want to save the modifications. (You cannot enter any N
operands with SAVE or END at this time.) (}//

58 OS/VS2 TSO Terminal User’s Guide

Page of GC28-06454
As Updated July 30, 1980
By TNL GN28-4753

P After ending EDIT, you will receive the READY message. You can then
m enter another command.

Entering and Manipulating Data 58.1

58.2 0OS/VS2 TSO Terminal User’s Guide

July 30, 1980

Renaming a Data Set

The RENAME command allows you to:

« Change the name of a non-VSAM data set. (The Access Method
Services ALTER command changes the name of a VSAM data set or
a non-VSAM data set in a VSAM catalog. For additional information
about ALTER, refer to OS/VS2 Access Method Services.)

« Change the name of a member of a partitioned data set.
o Assign an alias to a member of a partitioned data set.
« Rename common qualifiers.

If your LOGON user identification is SMITH and you have a data set
named SMITH.RECPT.DATA that you want to change to
SMITH.ACCT.DATA, you can do so with any of the following RENAME
commands:

rename 'smith.recpt.data' 'smith.acct.data'
rename recpt.data acct.data
rename Yrecpt acct

Notice that the fully-qualified name must be enclosed in apostrophes.

The simple user-supplied name can be used if you have only one data set
under that name. However, if you have two data sets under the same
user-supplied name, SMITH.RECPT.DATA and SMITH.RECPT.TEXT,
you must specify either RECPT.DATA or ‘SMITH.RECPT.DATA’ in the
RENAME command. If you do not specify the descriptive qualifier, the
system will prompt you for it.

The following examples show how you can use RENAME to change
either the identification qualifier or the descriptive qualifier.

rename ‘'smith.acct.data' 'jones.acct.data'
rename acct.data acct.text

The following examples show how you can change more than one
qualifier at a time.

rename 'smith.acct.data' 'jones.recpt.text'
rename acct.data recpt.text

Renaming a Member of a Partitioned Data Set

When changing the name of a member of a partitioned data set, you must
specify the existing data set name and member name along with the new
member name. For example, to change the name of a member of
SMITH.AB79.DATA from INPUT to ENTRY, you can do so with any of
the following commands:

rename ‘'smith.ab79.data(input)' (entry)
rename ab79.data(input) (entry)
rename ab79(input) (entry)

Assigning an Alias to a Member

Use the ALIAS operand to indicate that the new member name is an alias
and not a replacement. To assign the alias DAILY to member INPUT of

Entering and Manipulating Data 59

SMITH.AB79.DATA, use any of the following:

O

rename 'smith.ab79.data(input)' (daily) alias
rename ab79.data(input) (daily) alias
rename ab79(input) (daily) alias

After entering this command the member can be referred to as either
SMITH.AB79.DATA(INPUT) or SMITH.AB79.DATA(DAILY).

Renaming Common Qualifiers

Sometimes you may have two or more data set names that are identical in
all but one of their qualifiers. For example, you may have these data sets:

JONES . ALPHA.DATA
JONES.BETA.DATA

or

JONES . ALPHA .DATA
JONES .ALPHA.ASM

or
JONES .ALPHA.DATA
SMITH.ALPHA.DATA

You can use the RENAME command to replace one or both of their
common qualifiers. You may want to change the group:

JONES .ALPHA.DATA
JONES .BETA.DATA TN

i \
to _/

JONES . ALPHA . TEXT
JONES . BETA. TEXT

or to

SMITH.ALPHA.DATA
SMITH.BETA.DATA

or to

SMITH.ALPHA.TEXT
SMITH.BETA.TEXT

In order to make the change, replace the dissimilar qualifier with an
asterisk. For example,

jones.*.data

stands for “all data sets whose identification qualifier is JONES and whose
descriptive qualifier is DATA.” If your logon identifier is JONES, you can
then enter the RENAME command as follows:

rename *.data *.text

to change the group

JONES . ALPHA . DATA
JONES . BETA . DATA .

o O

60 OS/VYS2 TSO Terminal User’s Guide

JONES .ALPHA.TEXT

CE JONES . BETA . TEXT

Enter the command

rename 'Jjones.¥.data' 'smith.*.data'

to change the group

JONES.ALPHA.DATA
JONES.BETA.DATA

to

SMITH.ALPHA.DATA
SMITH.BETA.DATA

Enter the command

rename 'Jjones.*.data' ‘'smith.*.text'

to change the group

JONES .ALPHA.DATA
JONES.BETA.DATA

to

SMITH.ALPHA.TEXT
SMITH.BETA.TEXT

(":\’ Listing Information about Your Data Sets

To list the names of your data sets and obtain further information about
them, use the LISTALC, LISTCAT, and LISTDS commands.

LISTALC lists the data sets presently allocated to you. Other
information is available about these data sets depending on the parameters
you specify.

LISTCAT lists the names of all cataloged data sets that have your user
identification as the high level qualifier. The names of the catalogs
containing these data sets will also be displayed. Using the optional
LISTCAT subparameters will give you information about VSAM data sets
! much like LISTDS gives for non-VSAM data sets. Detailed explanations of

LISTCAT definition and output are in the publication, OS/VS2 Access
Method Services.

LISTDS gives you information on specific data sets that are currently
| cataloged, allocated, or both. The information you receive, which is
described in detail in OS/VS2 JCL, includes:

| « The serial number of the volume on which the data set resides
o The record format, logical record length, and blocksize of the data set
« The data set organization
« Directory information for a member of a partitioned data set

For more information on the LISTALC and LISTDS commands refer to
0S/VS2 TSO Command Language Reference. LISTCAT is discussed in

) l OS/VS2 Access Method Services.
|

Entering and Manipulating Data 61

Protecting Your Data Sets

The PROTECT command protects only non-VSAM data sets; TSO issues
an error message if you attempt to protect a VSAM data set. To protect
VSAM data sets, use the Access Method Services ALTER and DEFINE
commands. Discussions of these commands are in OS/VS2 Access Method
Services.

@

Deleting a Data Set

Use the Access Method Services DELETE command to delete one or more
data sets, or one or more members of a partitioned data set. DELETE is
discussed in OS/VS2 Access Method Services.

N
s

62 O0S/VS2 TSO Terminal User’s Guide

O

November 30, 1981

Section IV: Executing Programs at a Terminal

You can use the TSO commands to compile, link-edit, and execute (or
compile and load) your source program at the terminal. TSO also allows
you to use other programs, such as utilities, at the terminal. That is, instead
of taking your job to the computing room to run it, you can use the TSO
commands to enter it through your terminal. These commands reduce your
job turnaround time because you get immediate results at the terminal.
Since TSO commands are designed to operate on cataloged data sets, you
should catalog the background data sets created for use with TSO in the
foreground.

You can also use the terriinal to submit your job for processing at the
computer in the conventional manner. That is, instead of receiving the
immediate results at the terminal, you can either have the results sent to
you from the computer room after your job is executed or obtain them at
the terminal later. Jobs submitted in this manner are called batch jobs.

Most compilers or assemblers that are available under MVS or
MVS/System Product are also available from your TSO terminal, for either
foreground or background jobs. In addition to these programs, your
installation may have one or more of the special TSO programs for your
use at the terminal. Some of these programs are:

e Code and Go FORTRAN -- a FORTRAN compiler designed for a
very fast compile-execute sequence at the terminal

« FORTRAN IV (G1) -- a version of the FORTRAN IV (G) compiler
modified for the terminal environment

« TSO FORTRAN Prompter -- an initialization routine to prompt you
for options and invoke the FORTRAN IV (G1) Processor

« FORTRAN Interactive Debug -- a tool for dynamic debugging of
FORTRAN programs (used in conjunction with Code and Go
FORTRAN or FORTRAN G1)

« FORTRAN 1V Library (Mod I) -- execution-time routines for use
with either Code-and-Go FORTRAN or FORTRAN IV (G1)

o Full American National Standard COBOL Version 3 or Version 4
--versions of the American National Standard COBOL compilers with
extensions for the terminal environment

« TSO COBOL Prompter -- an initialization routine to prompt you for
options and invoke the full American National Standard COBOL
Version 3 or 4 Processor

e COBOL Interactive Debug -- a tool for dynamic debugging of
COBOL programs (used in conjunction with ANS COBOL Version 4)

« TSO Assembler Prompter -- an initialization routine to prompt you for
options and invoke the Assembler

« PL/1 Optimizing compiler and PL/I Checkout compiler -- both
compilers include the PL/I Prompter, which is an initialization rouiine
that prompts you for options and invokes the compiler

If your installation has the PL/I Optimizing compiler or the PL/I
Checkout compiler, you can compile and execute PL/1 programs under

Executing Programs at a Terminal 63

November 30, 1981

TSO. These compilers are program products, and each includes the PL/I
Prompter, which is an initialization routine that checks compiler options,
allocates data sets required by the compiler, and then invokes the compiler.

If your installation has one or more of the TSO program product PL/I
compilers, it will provide you with documentation that explains how to use
them. This section explains how to use only the programs that are standard,
as part of MVS or MVS/System Product. The following paragraphs
describe how you can:

« Allocate a data set and assign data set attributes.
« Free an allocated data set.

« Create a program.

o Compile your program.

+ Link-edit a compiled program.

« Execute a program.

o Load a program.

It is assumed that you are familiar with a programming language. The
options and data set requirements of the compilers, linkage editor, and
loader are summarized in the programmer’s guide for the compiler you are
using.

Allocating a Data Set

There are two reasons for allocating data sets with the ALLOCATE
command or the ALLOCATE subcommand of EDIT:

« To allocate existing data sets required by the program or compiler you
intend to invoke, e.g. the linkage editor or loader when you use the
CALL command

« To create new data sets that have unique characteristics

You should identify the data set requirements for any program that you
intend to invoke. In some cases, compilers have prompters that allocate the
required data sets for you. The documentation for a program or compiler
specifies data set requirements. Since, at times, you allocate new data sets
among those required by a program or a compiler, you should read
“Allocating a New Data Set” along with ‘“Allocating Data Sets Required by
a Program or a Compiler.”

This section is intended for those users who are going to compile, link
edit, or execute (or load) a program. Knowledge of a programming
language (such as assembler, COBOL, FORTRAN or PL/I) and of the job
control language (JCL) statements required to compile, link-edit, and
execute the program is useful for understanding this section. Examples of
using TSO commands to allocate data sets are provided. For descriptions of
command syntax, restrictions, and syntax definitions, refer to OS/VS2 TSO
Command Language Reference. For additional information related to the
operands of the ALLOCATE and ATTRIB commands, refer to OS/VS2
MVS JCL.

Allocating Data Sets Required By a Program Or a Compiler

The compiler, linkage editor, loader, and your own program require data
sets in order to operate. In an operating system without TSO these data sets
are defined with data definition (DD) JCL statements. In TSO, these data

64 0OS/VS2 TSO Terminal User’s Guide

C

November 30, 1981

sets are defined through the EDIT and ALLOCATE commands. You can
use the EDIT command to define and create input data sets. You can use
the ALLOCATE command to define output and work data sets and
libraries, and to allocate the data sets you created with the EDIT command.
This section discusses the ALLLOCATE command and the ALLOCATE
subcommand of EDIT.

Executing Programs at a Terminal 64.1

November 30, 1981

.

-,

64.2. OS/VS2 TSO Terminal User’s Guide

o

Note: Compilers that have prompters associated with them will allocate
data sets for you. Your installation can tell you if these program product
facilities are available to you. The data sets for the linkage editor and
loader are allocated for you by the LINK and LOADGO commands,
respectively. You only need to allocate them if you invoke the linkage
editor or the loader with the CALL command.

The number of data sets you need is determined by the program
(compiler, linkage editor, loader, or your own program) you are going to
use. (The publications associated with the IBM-supplied programs list the
data set requirements.) The number of data sets you can allocate depends
on the number of data sets assigned to you in your LOGON procedure.
The LOGON procedure defines a series of data sets. Some of these data
sets are fully defined and correspond to data sets that you always need in
your processing. The remaining data sets are left undefined; they are
defined when you define a data set with an ALLOCATE or EDIT
command. (For additional information about defining LOGON procedures
refer to OS/VS2 System Programming Library: TSO.)

When you define a data set with the ALLOCATE command or
subcommand, it remains allocated until you use the FREE command or
subcommand to free it, or until you log off. You may allocate a data set to
the terminal by using an asterisk (*) as the data set name.

When you create a data set with the EDIT command, the system uses
one of the undefined data sets in the LOGON procedure to define the data
set. When you save the data set and end the EDIT command, the system
saves the data set, enters its name in the system catalog, and frees the
definition in the LOGON procedure for further use. When you again use
the EDIT command to make changes to the saved data set, the system finds
the data set through the system catalog and uses another of the available
definitions to define the data set. When you end the EDIT command, the
system frees the data set definition. If you want the data set to remain
allocated in your LOGON procedure, you must use the ALLOCATE
command or subcommand.

You can list the data sets allocated to you with the LISTALC command
(described in "Listing the Names of Your Data Sets").

You can allocate as many data sets as there are available definitions. If
you need more data sets you can free a previously allocated data set with
the FREE command. After you free a data set, you can use the available
definition to allocate another data set with the ALLOCATE command.

If you have to allocate the same data sets every time you log on, you can
have your installation allocate them in the form of fully defined data sets in
the LOGON procedure or you can build a command procedure containing
your ALLOCATE commands and execute that procedure as soon as you
are logged on. In either case you do not have to type the same
ALLOCATE commands every time you log on. (For information about
writing the LOGON procedure, refer to OS/VS2 System Programming
Library: TSO.)

Executing Programs at a Terminal 65

The example in Figure 7 illustrates the use of the ALLOCATE command
for allocating the data sets required for an execution of the Assembler. The
assembler requires eight data sets for this compilation. They are:

SYSLIB The macro library (usually SYS1.MACLIB).
SYSUT1 Work data set.
SYSUT2 Work data set.
SYSUT3 Work data set.

SYSPRINT Output listing data set. Your terminal
is allocated for this purpose.
SYSPUNCH Data set for a punched deck of an object
module. It is to be produced on the
standard message output
class. (To change this output class
to a punch output class, see “Freeing
an Allocated Data Set.””)
SYSGO Data set for the object module.
SYSIN Input source statements to the
assembler. It is entered with the EDIT
command and defined to the
assembler with the ALLOCATE command.

READY
allocate
READY
allocate
READY
allocate
READY
allocate
READY
allocate
READY
allocate
READY
allocate
READY
allocate
READY

dataset('sys1.maclib') file(syslib) shr

file(sysut1) new block(400) space(400,50)

file(sysut2) new block(400) space(400,50)

file(sysut3) new block(400) space(400,50)

dataset(*) file(sysprint)

file(syspunch) sysout

dataset(prog.obj) file(sysgo) new block(80) space(200,50)

dataset(input.asm) file(sysin) old

Figure 7. Allocating Data Sets for the Assembler

66 OS/VS2 TSO Terminal User’s Guide

O

Page of GC28-06454
As Updated November 30, 1981
By Suppl. SD23-0241-0 for 5665-285

Allocating a New Data Set

When you allocate a new non-VSAM data set, you supply certain data set
characteristics to the system. If you want to use the data set when
executing a program, you must supply certain required characteristics. Once
you have assigned these characteristics, or attributes, you do not have to
reassign them.

There are a number of ways to assign required attributes to a new data
set.

Modeling a New Data Set After an Existing Data Set

The easiest way to assign attributes to a new data set is to model it after an
existing data set that serves a similar function. For example, if you are
allocating a new input data set, you can model it after an existing input
data set by specifying the name of the existing (model) data set on the
LIKE operand of the ALLLOCATE command.

You may specify the LIKE operand only when you are allocating a new
data set. The model data set must be cataloged and reside on a direct
access device; the volume must be mounted. (The model data set need not
be allocated in your present session.)

Figure 8 provides an example of using the LIKE operand to model a new
data set after an existing data set.

READY
alloc da(new.ds) like(model.ds)

Figure 8. Assigning Attributes to a New Data Set with the LIKE Operand

When ALLOCATE command processing assigns attributes to new.ds, it
copies all of the following attributes from model.ds, thus eliminating the
need to specify explicitly the keywords associated with the attributes.

+ primary space quantity (SPACE)

« secondary space quantity (SPACE)

« space unit (BLOCK, AVBLOCK, TRACKS, CYLINDERS)
« directory space quantity (DIR)

« data set organization (DSORG)

« record format (RECFM)

« optional services code (OPTCD) - for ISAM data sets only
« logical record length (LRECL)

o key length (KEYLEN)

« block size (BLKSIZE)

» volume sequence number (VSEQ)

« expiration date (EXPDT)

Overriding Attributes Copied from a Model Data Set: You may use the
LIKE operand even if none of your existing data sets have the exact
attributes you want to use for a new data set. You may override an
attribute copied from the model data set by specifying (one of) its
corresponding keyword(s) along with the value, if any, that will replace the
model data set value on the ALLOCATE command. Note that you may

Executing Programs at a Terminal 67

Page of GC28-06454
~As Updated November 30, 1981
By Suppl. SD23-0241-0 for 5665-285

override the model data set’s space unit without overriding its primary or
secondary space quantity and vice versa. @

Figure 8.1 shows how to list some of the attributes of the data set you
want to use as the model data set and how to override two of these
attributes when modeling a new data set after that data set.

READY
listds model
USERID.MODEL.DS ~
—--RECFM - LRECL - BLKSIZE - DSORG
F 200 200 PS
--VOLUMES--
200640 v
READY
alloc da(new.ds) like(model.ds) lrecl(100) recfm(f,b)

Figure 8.1 Overriding Model Data Set Attributes

When model.ds was allocated, ALLOCATE command processing
allocated the space requested for the data set on volume number 200640
and cataloged the data set. ALLOCATE command processing also assigned
model.ds a logical record length of 200 bytes, a DCB block size-of 200
bytes, and a record format of fixed. The data set organization is sequential.

When new.ds is allocated, ALLOCATE command processing allocates
space on any eligible direct access volume. ALLOCATE command
processing also assigns a logical record length of 100 bytes (the overriding

LRECL value), a DCB block size of 200 bytes, and a record format of N
fixed-blocked (the overriding RECFM value). The data set organization is (\‘ J
sequential. e
Notes:

1. When overriding attributes, make sure you do not create incompatible
operand combinations that cause errors or unpredictable results when
you try to use the new data set.

2. As shown in Figure 8.1, only some of the attributes that you may
override are displayed by the LISTDS command. When you model a
data set after another data set, e.g. a system macro data set, the
space allocated for your new data set may be much larger than what
is necessary or desirable. Consequently, you may want to specify
more appropriate space attributes for the new data set.

Assigning Attributes on the ALLOCATE Command

As an alternative to using the LIKE operand, you may assign attributes to a
new non-VSAM data set on the ALLOCATE command itself. Figure 8.2
shows how to assign attributes on the ALLOCATE command. -

READY

alloc da(new.ds) space(3,2) tracks blksize(200) dsorg(ps
lrecl(100) recfm(f,b) new

Figure 8.2. Assigning Attributes on the ALLOCATE Command C\

Y

67.0 0S/VS2 TSO Terminal User’s Guide

O

Page of GC28-0645-4
As Updated November 30, 1981
By Suppl. SD23-0241-0 for 5665-285

When new.ds is allocated, ALLOCATE command processing allocates
three tracks of primary space on any eligible direct access volume. It also
assigns a DCB block size of 200 bytes, a data set organization of
sequential, a logical record length of 100 bytes, and a record format of
fixed-blocked.

Assigning Attributes with the ATTRIB Command

In general, to assign data set attributes, explicit specification on the
ALLOCATE command and/or the LIKE operand is sufficient. However, in
certain circumstances, e.g. when allocating a number of data sets that have
some or all of the same attributes, you may want to use the ATTRIB
command or the ATTRIB subcommand of EDIT to build a list of data
control block (DCB) and other attributes. Then, to assign the attributes in
the list to a new non-VSAM data set you are allocating, specify the name
of the attribute list on the USING operand of the ALLOCATE command.

Figure 8.3 illustrates how to use the ATTRIB command in conjunction
with the ALLOCATE command to assign attributes to a number of data
sets.

READY

attr dcbparms lrecl(24) blksize(96) recfm(f,b) dsorg(po)

READY

alloc da(attr.show) using(dcbparms) sp(10,10) block(80) +
dir(2) vol(231400) new

READY

alloc da(attr.show?!) using(dcbparms) sp(2,2) cyl dir(5) +
vol(231400) new

READY .

alloc da(attr.show2) using(dcbparms) sp(1,1) cyl dir(5) +
vol(234000) new

Figure 8.3. Assigning Attributes with the ATTRIB Command

When attr.show is allocated, ALLOCATE command processing allocates
800 bytes of space on volume number 231400 and assigns two directory
blocks to the data set. ALLOCATE command processing also refers to the
attribute list, dchparms, to assign a logical record length of 24 bytes, a DCB
block size of 96 bytes, a record format of fixed-blocked, and a data set
organization of partitioned.

While some of the characteristics of the other data sets in Figure 8.3 are
different from those of attr.show, the three attributes that are the same for
all of the data sets -- logical record length, DCB block size, and record
format -- can be isolated on the ATTRIB command and assigned simply by
referring to the attribute list name, dcbhparms. In this case, using the
ATTRIB command is more practical and less time-consuming than modeling
every data set in Figure 8.3 after another data set or typing out all of the
attributes on the ALLLOCATE command for each of them.

Note: If you specify the USING parameter on the ALLOCATE command,
any DCB attributes (ATTRIB command operands) you also specify on the
ALLOCATE command are ignored and you will receive a warning message
informing you that they have been ignored.

Executing Programs at a Terminal 67.1

Page of GC28-06454
As Updated November 30, 1981
By Suppl. SD23-0241-0 for 5665-285

To allow flexibility in assigning attributes to different types of data sets,
in a given session you may enter multiple ATTRIB commands to build
different attribute lists.

If you are using the ATTRIB command to assign attributes, you must
enter the ATTRIB command(s) during your present session so that you can
refer to the attribute list(s) when you allocate new data sets. You may refer
to the attribute list(s) any number of times during your session. However,
since the attribute list is a null file allocation that other commands can use
and modify, it is advisable to allocate data sets requiring it before issuing
any subsequent commands such as LINK or RUN. These commands may
cause additional null file allocations.

Once you have assigned attributes using an attribute list, you do not
have to reassign them (reenter the USING operand) during subsequent
allocations of the data set.

Assigning the Space and the DCB Block Size Attributes

On the ALLOCATE command, there are five space unit keywords
associated with the SPACE keyword: BLOCK, AVBLOCK, TRACKS,
CYLINDERS, and BLKSIZE. AVBLOCK, TRACKS, and CYLINDERS
are space units only. The space unit is used to determine the amount of
space to be reserved for the data set.

When allocating space in blocks, normally you use BLOCK as a space
unit and BLKSIZE to assign DCB block size. However, when you have not
entered BLKSIZE, USING, or LIKE, TSO uses BLOCK both as the space
unit and to assign DCB block size. When you have specified the SPACE
keyword without specifying LIKE or one of the four other space units, TSO
uses BLKSIZE both as the space unit and to assign DCB block size.

It is suggested that you adhere to the normal use of these two operands,
examples of which are provided below.

When you specify both BLOCK and BLKSIZE (or USING),
ALLOCATE command processing uses BLOCK as the space unit and the
BLKSIZE value as the DCB block size, as is shown in Figure 8.4.

READY
alloc da(ex84.ds) space(10,2) block(1000) lrecl(100) +
blksize(200) dsorg(po) recfm(f,b) dir(4) new

Figure 8.4. Using BLOCK as Space Unit and BLKSIZE to Assign DCB Block Size

When ex84.ds is allocated, ALLOCATE command processing uses the
BLOCK value, 1000 bytes, to calculate the space to be allocated and
allocates that space on any eligible direct access volume. ALLOCATE
command processing uses the BLKSIZE value, 200 bytes, as the DCB block
size.

If you use TRACKS as the space unit, the primary space quantity
represents the number of tracks reserved for the data set when it is
allocated. The same is true for CYLINDERS. AVBLOCK indicates the
average length, in bytes, of the records that will be written to the data set.
If you specify AVBLOCK, you should use the longest record length-as the

67.2 0OS/VS2 TSO Terminal User’s Guide

®

o

Page of GC28-0645-4
As Updated November 30, 1981
By Suppl. SD23-0241-0 for 5665-285

value for this keyword. Figure 8.5 provides an example of using
CYLINDERS as the space unit.

READY
alloc da(exB85.ds) space(2,2) cylinders lrecl(100) +
dsorg(po) dir(10) blksize(300) recfm(f,b)

Figure 8.5. Using CYLINDERS as Space Unit and BLKSIZE to Assign DCB Block Size

When ex85.ds is allocated, ALLOCATE command processing allocates
two cylinders for the data set. ALLOCATE command processing uses the
BLKSIZE value, 300 bytes, as the DCB block size value.

You may allow the space quantity to default; the default values are
SPACE(10,50) AVBLOCK(1000). In this case, you should still supply a
value for DCB block size on the BLKSIZE keyword. Figure 8.6 provides an
example of allowing space to default.

READY
alloc da(ex86.ds) blksize(800) lrecl(80)
dsorg(ps) recfm(f,b) new

Figure 8.6. Allowing Space Allocation to Default and Assigning DCB Block Size Using
BLKSIZE

When ex86.ds is allocated, ALLOCATE command processing allocates
10,000 bytes of space for the data set. ALLOCATE command processing
uses the BLKSIZE value, 800 bytes, as the DCB block size.

Using the COPIES and FCB Operands on the ALLOCATE Command

When you allocate an output data set, you may request the number of
copies you want printed using the COPIES operand. Using the FCB
operand, you may specify either the forms control image to be used to print
an output data set on a 3800 or 3211 printer, or the data protection image
to be used for the 3525 card punch or for sysout data sets. The forms
control buffer is used to store vertical formatting information for printing,
where each position corresponds to a line on the form.

Figure 8.7 illustrates how to use these two operands on the ALLOCATE
command to request 10 copies of an output data set to be formatted using
the standard FCB image STD1. (Refer to OS/VS2 MVS JCL for a
description of the FCB operand.)

READY
alloc da(output) new fcb(stdl) copies(10)

Figure 8.7. Using FCB and COPIES Operands to Request Formatted Copies of an Output
Data Set

‘Executing Programs at a Terminal 67.3

Page of GC28-0645-4
As Updated November 30, 1981
By Suppl. SD23-0241-0 for 5665-285

Using the PROTECT Operand on the ALLOCATE Command

You may provide RACF protection for a new DASD data set or for a tape
volume containing a tape data set by entering the PROTECT operand on
the ALLOCATE command. See OS/VS2 TSO Command Language
Reference for details on this operand.

Figure 8.8 provides an example of allocating a new DASD data set that
has RACF protection.

READY
alloc da(racf.ds) new keep space(5,5) tracks blksize(266)+
lrecl(133) recfm(f,b) dsorg(po) dir(4) protect

Figure 8.8. Providing RACF Protection for a New DASD Data Set

Figure 8.9 provides an example of allocating a new tape data set as the
first file on a tape volume that has RACF protection.

READY
alloc da(racf.tapeds) unit(2400) label(sl) +
position(1) volume(t49850) protect new

Figure 8.9. Providing RACF Protection for a New Tape Data Set

674 0S/VS2 TSO Terminal User’s Guide

Q

®

O

November 30, 1981

Executing Programs at a Terminal 67.5

November 30, 1981

Freeing an Allocated Data Set

To release any data sets allocated to you use the FREE command or
subcommand. You can also use this command to change the output class of
a SYSOUT data set, or to release attribute lists created by the ATTRIB
command.

To free a data set, specify its data set name or its file name (ddname). If
your terminal has been allocated as a data set, you must free it through its
file name. You can use the LISTALC command to obtain the file names
and data set names of the data sets allocated to you.

The following example frees the data sets allocated in Figure 7. The
output class of the SYSPUNCH and SYSPRINT data sets is changed to B.

free dataset('sysl.maclib',prog.obj,input.asm)-
file(sysuti,sysut2,sysut3,sysprint,syspunch) sysout(b)

Creating a Program

To create your source program use the EDIT command as described in the
section “Entering and Manipulating Data.”

When you enter the EDIT command you must specify the type operand
or give a descriptive qualifier to the data set name. The type (or descriptive
qualifier) tells the system which programming language you are using. If
you are writing a program and JCL statements to be submitted as a
background job, use CNTL as the type or descriptive qualifier.

The EDIT command allows you to specify certain options for your
source program. You can use the SCAN operand to request syntax checking
when the data set type is GOFORT, FORTGI, FORTH, PLIF, or PLI You
can use the LINE or the LRECL operands to specify the length of the
input line for PL/I source programs. The length of the input line for the
assembler, FORTRAN, and COBOL is 80 characters.

After you create your source program you must use either the SAVE
subcommand or the SAVE keyword on the END subcommand to save the
data set before you end the EDIT command. Your source program is now
ready for compilation.

The example in Figure 9 shows the creation of an assembler source
program.

READY
edit progi new asm
INPUT

source program

EDTT
end save
READY

Figure 9. Creating an Assembler Source Program

68 OS/VS2 TSO Terminal User’s Guide

(3

G

®

Compiling a Program

If you are using a TSO program product compiler and prompter, you can
ignore this section. The prompter allocates data sets and calls the compiler
for you.

You can use the CALL command to invoke the compiler that will
compile your source program. Before you use the CALL command to
invoke the compiler you must use ALLOCATE commands to allocate all
the data sets required for compilation. The data sets required by your
compiler are described in that program product’s user’s guide publication.

You must give the data set name of your compiler in the CALL
command by which you invoke it.

In addition to the compiler’s data set name, you can enter the compiler
options you desire in the CALL command. These options are those
specified with the PARM parameter of the EXEC statement in JCL. For
example, if you want to use the MAP, NOID, and OPT=2 options of the
FORTRAN H compiler, enter:

READY
call 'sys1.linklib(iekaa00)' 'map noid opt=2'

Any messages and other output produced by the compiler will be
displayed after the CALL command. Once the compiler completes its
processing you receive the READY message. You can then free any
allocated data sets you no longer need.

Figure 10 shows the commands required to create a COBOL source
program, allocate the eight data sets required for compilation, call the
COBOL compiler, and free all allocated data sets except the one that
contains the compiled program (object module). This procedure assumes
that you are using your user identification as part of all data set names
except SYS1.COBLIB.

Executing Programs at a Terminal 69

READY q::b
edit prog2 new cobol ;
INPUT

. source program

EDIT

end save

READY

allocate dataset('sysl.coblib') file(syslib) shr

READY

allocate file(sysutl) new block(460) space(700,100)

READY

allocate file(sysut2) new block(460) space(700,100)

READY

allocate file(sysut3) new block(460) space(700,100)

READY

allocate file(sysut4) new block(460) space(700,100)

READY

allocate dataset(*) file(sysprint)

READY

allocate dataset(prog2.obj) file(syslin) new block(80) space(500,100)
READY

allocate dataset(prog2.cobol) file(sysin) old

READY

call 'sys1.linklib(ikfcbl00)' 'map load nodeck flagw'

COBOL listings and messages

N
READY S
free file(syslib,sysutl,sysut2,sysut3,sysut4,sysprint,sysin)
READY

Figure 10. COBOL Compilation
Link-Editing a Compiled Program

The LINK command makes the services of the linkage editor available to
you. The linkage editor processes the compiled program (object module)
and readies it for execution. The processed object module becomes a load |
module. Optionally, the linkage editor can process more than one object \
module and/or load module and transform them into a sirngle load module. :

In your LINK command you must first list the name or names of the
object modules you want to link-edit. (If you omit the descriptive qualifier
the system assumes OBJ.) After the names of the object modules you
should use the LOAD operand to indicate the name of a member of a !
partitioned data set where you want the load module placed. (If you omit !
the user-supplied name of the load module data set, the system assumes it
has the same user-supplied name as the object module. If you omit the ‘\
descriptive qualifier, the system assumes LOAD. If you omit the member i
name, the system assumes TEMPNAME.) For example, if you want to
link-edit the load module in the JONES.PROG2.0BJ data set and place the
resultant load module in member TEMPNAME of the
JONES.PROG2.LOAD data set, enter:

.
link prog2 (ﬂ)

70 OS/VS2 TSO Terminal User’s Guide

To link-edit the load module in the JONES.PROG?2.0BJ data set and
place the resultant load module in member ONE of the
JONES.MODS.LOAD data set, enter:

link prog2 load(mods(one))

The following example shows how to link edit the two object modules in
the SMITH.PGM1.0BJ and SMITH.PGM2.0BJ data sets. The resultant
load module goes into member TEMPNAME of the SMITH.LM.LOAD
data set.

link (pgmi,pgm2) load(lm)

You can control the link-editing process with linkage editor control
statements. These control statements can be in a previously created data
set, or can be introduced through the terminal. You must give the name of
the data set, or an asterisk (indicating that you will introduce the control
statements through the terminal) in the list of input data sets. The following
example shows how to link-edit the object module in the
CARTER.TRAJ.OBJ data set. There are control statements in the
CARTER.CNTL.DATA data set. The load module goes into member
TEMPNAME of CARTER.TRAJ.LOAD.

link (traj,cntl.data)

Using the same example, if you want to introduce the control statements
through your terminal, enter:

link (traj,*)

The system prompts you for the control statements at the appropriate
time. You must follow your last control statement with a null line.

You can also have the linkage editor search a subroutine library to
resolve external references (external references are references to other
modules). The subroutine library is usually one of the language libraries,
and you can specify it with one of the following operands:

Operand Subroutine Library
COBLIB SYS1.COBLIB
FORTLIB SYS1.FORTLIB
PLILIB SYS1.PLILIB

In addition to, or instead of a language library, you can use the LIB
operand to specify the name of one or more user libraries. The system
searches the libraries in the order you specify.

The following example shows how to link-edit the object module in
JAMES.PRG.OBJ. The load module is placed in
JAMES.PRG.LOAD(TEMPNAME). The libraries SYS1.PLILIB, and
DEPT39.LIB.SUBRT?2 are to be searched to resolve external references.

link prg plilib lib('dept39.lib.subrt2')

Executing Programs at a Terminal 71

The LINK command also lets you specify the linkage editor options.
These options are those specified with the PARM parameter of the EXEC
statement when you are running the linkage editor directly under the
operating system rather than through TSO. For example, to use the LET
and XCAL options when the object module in AGNES.RET.OB]J is
link-edited and placed in AGNES. TBD.LOAD(MOD), enter:

link ret load(tbd(mod)) let xcal

Linkage editor listings (specified with the MAP, XREF, and LIST
options) are directed to a data set or to your terminal. You indicate your
choice with the PRINT operand. The following example shows that the
object module in BILL.PRGM.OBJ is to be link-edited and placed in
BILL.PRGM.LOAD(TEMPNAME). The listing produced by the MAP
option is to be placed in the BILL.LIST.LINKLIST data set.

link prgm map print(list)

Note that if you omit the descriptive qualifier from the print data set name,
the system assumes LINKLIST. If you omit the user-supplied name, it has
the saime user-supplied name as the object module. For example, if you
want the listing to go in the BILL.PRGM.LINKLIST data set, enter:

link prgm map print

Using the same example, if you want the listing to be displayed on your
terminal, enter an asterisk in the PRINT operand.

link prgm map print(*)

Error messages appear at the terminal as well as on the print data set
when you specify a data set name instead of an asterisk. If you want the
error messages to appear only on the print data set, enter the NOTERM
operand.

link prgm map print noterm

Executing a Program

You can use the CALL command to execute your program after it has been
link-edited. You can also use CALL to execute any other program in the
load module form, such as utilities and compilers.

Before you use CALL to execute your program, you can use the EDIT
and ALLLOCATE commands to define your data sets. Use EDIT to create
your input data sets, and ALLOCATE to allocate your input, work, and
output data sets.

You must specify the data set name and member name of the member
that contains your program in load module form. If you want to execute a
program that resides in DEPTB.PROGS.DAILY(NUM3), enter:

call 'deptb.progs.daily(num3)'

72 0S/VS2 TSO Terminal User’s Guide

®)

If you omit the descriptive qualifier and member name, the system
assumes LOAD and TEMPNAME, respectively. For example, if your
LOGON identifier is “JONES” and if your program resides in
JONES.LIB.LOAD(MEM?2), enter:

call lib(mem2)

If your program resides in JONES.LIB.LOAD(TEMPNAME), enter:

call lib

You can pass parameters to your program if you wrote it in assembler.
These are the parameters you would specify with the PARM parameter of
the EXEC statement in JCL. For example, if you want to pass the
parameters OPTION1 and OPTIONS to a program that resides in
JONES.ASMPG.LOAD(MEM3), enter:

call asmpg(mem3) 'optionl option5'

Figure 11 shows the commands for link-editing and executing the
COBOL program created and compiled in Figure 10. In Figure 10, the
commands placed the compiled program (object module) in PROG2.0BJ.
After link-editing, the load module is placed in
PROG2.LOAD(TEMPNAME). Your program requires three data sets for
execution. The input data set, INPUT.DATA, is created with the EDIT
command. ALLOCATE commands are used to allocate the input data set, a
work data set, and an output data set. CALL is used to execute your
program. The PROG2.COBOL,, PROG2.0BJ, PROG2.LOAD, and
INPUT.DATA data sets are deleted. (The other data sets, allocated in
Figure 10, are automatically deleted because they were not given a data set
name when allocated.) This procedure assumes that you are using your user
identification as part of the data set names.

If your program has an error termination, you can use the facilities of the
TEST command to debug your program.

Executing Programs at a Terminal 73

READY
link prog2 print(*) map

linkage editor messages and listings

READY

edit input.data new
INPUT
input data
EDIT
end save
READY
allocate dataset(input.data) file(input) old
READY
allocate file(work) new block(100) space(300,10)
READY
allocate dataset(*) file(print)
READY
call prog2
output from your program
READY
delete (prog2.* input.data)
READY

Figure 11. Link-Editing and Executing a Program

Loading a Program

The LOADGO command makes the services of the loader available to you.
The loader combines the basic functions of the linkage editor and program
fetch. That is, the loader link-edits and executes your program. Therefore,
the LOADGO command combines the basic functions of the LINK and
CALL commands, without needing to produce a load module. For complete
information on the loader, refer to the publication, OS/VS Linkage Editor
and Loader.

The loader can process and execute a compiled program (object module)
or a link edited program (load module). Optionally, it can combine object
modules and/or load modules and execute them. (If you want to load and
execute a single load module, the CALL command is more efficient.)

Before you use the LOADGO command you can use the EDIT and
ALLOCATE commands to create and allocate any data sets required to
execute your program.

In your LOADGO command you must list the name or names of the
object and load modules you want to load. For example, if you want to
load the object module in JONES.PROG3.0BJ, enter:

loadgo prog3

74 OS/VS2 TSO Terminal User’s Guide

"

To load the object modules in JONES.PROG3.0BJ, JONES.COB.OBJ
and the load module in JONES.COB.LOAD(TWO), enter:

loadgo (prog3 cob.obj cob.load(two))

You can also pass parameters to your program if you wrote it in
assembler. These are the parameters you would specify with the PARM
parameter of the EXEC statement in JCL. For example, if you want to
pass the parameters OPTION1 and OPTIONS to a compiled program that
resides in JONES.ASMPG.OBJ, enter:

loadgo asmpg 'optionl option5'

You can have the loader search a subroutine library to resolve external
references. The subroutine library is usually one of the language libraries,
and if so, you can specify it with one of the following operands:

Operand Subroutine Library
COBLIB SYS1.COBLIB
FORTLIB SYS1.FORTLIB
PLILIB SYS1.PLILIB

In addition to, or instead of, a language library you use the LIB operand
to specify the name of one or more user libraries. The system searches the
libraries in the order you specify.

The following example shows how to load the object module in
JONES.PRG.OBJ. The libraries SYS1.PLILIB, and DEPT39.LIB.SUBRT2
are to be searched to resolve external references.

loadgo prg plilib lib('dept39.lib.subrt2')

The LOADGO command also lets you specify the loader options. These
options are those specified with the PARM parameter of the EXEC
statement in JCL. For example, to use the LET and EP(MAIN) options
when the object module in JONES.CIR.OBJ is loaded, enter:

loadgo cir let ep(main)

Loader listings (specified with the MAP option) are directed to a data
set or to your terminal. You indicate your choice with the PRINT operand.
The following example shows that the object module in JONES.PRGM.OBJ
is to be loaded. The listing produced by the MAP option is to be placed in
the JONES.LISTING.LOADLIST data set.

loadgo prgm map print(listing)

Note: 1If you omit the descriptive qualifier from the print data set name,
the system assumes LOADLIST. If you omit the user-supplied name, the
system assumes it has the same user-supplied name as the object module.
For example, if the listing is to be placed in the JONES.PRGM.LOADLIST
data set, enter:

loadgo prgm map print

Executing Programs at a Terminal 75

Using the same example, if you want the listing to be displayed on your
terminal, enter an asterisk in the PRINT operand.

(
loadgo prgm map print(*)

Error messages appear at the terminal as well as on the print data set
when you specify a data set name instead of an asterisk. If you want the
error messages to appear only on the print data set, enter the NOTERM
operand; for example,

loadgo prgm map print noterm

Figure 12 shows the commands for loading the COBOL program created
and compiled in Figure 10. The loading operation shown in Figure 12 is the
equivalent of the link-editing and execution shown in Figure 11. The same
data sets required for execution of your program in Figure 11 are also
necessary in this example. The object module resides in PROG2.0BJ. The
loader does not produce a load module, and therefore only
PROG2.COBOL, PROG2.0BJ, and INPUT.DATA are deleted at the end.
This procedure assumes that you are using your user identification as part
of the data set names.

READY
edit input.data new
INPUT

input data

EDIT

end save

READY

allocate dataset(input.data) file(input) old
READY

allocate file(work) new block(100) space(300,10)
READY

allocate dataset(*) file(print)

READY

loadgo prog2 map print(*)

loader listings and output from your program

READY
delete (prog2.#* input.data)
READY

Figure 12. Loading a Program

76 0S/VS2 TSO Terminal User’s Guide

C

—

O

o

Section V: Testing a Program at a Terminal

The operating system provides you with facilities to test your program from
the terminal. They are the test facilities, if any, provided by your compiler,
and the TSO TEST command. The compiler test facilities are described in
the publications associated with the compiler. A brief description of the
TEST command follows.

The TEST command allows you to test a program for proper execution
and to find programming errors. To use TEST effectively, you should be
familiar with the assembler language. If you are using another language, you
can still use the TEST command to obtain information to give to your
installation’s system programmer who can help you debug your program.
(You can use the full facilities of the TEST command to debug your
program if you can correlate the statements in your source program listing
to the resultant assembler language statements in the object listing.) Refer
to OS/VS2 TSO Command Language Reference for a complete description of
the facilities of the TEST command.

If you are not an assembler language programmer, your system
programmer will probably provide you with a test procedure. The most
common situation he may provide for occurs when your program is
executing and you receive a message that the program has abnormally
terminated. If you press the ENTER key after the error message and
"READY", the system will take a dump. Your other choices are to enter
any command, or to enter the word ‘TEST” with no operands. Your system
programmer may tell you to enter the TEST command and then the LOAD
subcommand with the name of a program that will test your program. For
example, if the name of the program that will test yours is DPTEST, use
the following sequence.

MYPROG ENDED DUE TO ERROR +
?

SYSTEM ABEND CODE 0C1
READY

test

TEST

load (dptest)

If the system programmer does not give you the name of a testing
program, he may instruct you to use the TEST command and a set of its
subcommands that display pertinent information about your program. For

example, he could ask you to perform procedures similar to the following
examples.

Testing a Program at a Terminal 77

Example 1

O

MYPROG ENDED DUE TO ERROR +

READY .

test

TEST

listpsw

XRXXXTIE KEY CMWP SPM CC PROG MASK INSTR ADDR

00000111 8 1101 O 00 0000 00067AB8

TEST

where 67ab8.

67AB8. LOCATED AT +38 IN (load-module name.csectname)
UNDER TCB LOCATED AT 660DO.

TEST

list 67ab8.-32n length(32)

Begin testing by entering the TEST command, and then use the
subcommands of TEST to debug your program.

Enter the LISTPSW subcommand to determine the address of the
instruction that failed in your program. You can then enter the last five
characters of the PSW that is listed with the WHERE subcommand, and
the system will provide the location and the program name in which the
ABEND occurred. When you enter LIST in the proceeding manner, the
system displays the 32 bytes of instructions prior to the ABEND.

At this time you may list all the registers in the following manner to aid
you in solving the problem.

list Or:15r

Example 2

If you wish to trace the execution of your program, enter the following:

at +0:+200 (go)
at +32

at +8c

at +10a

go +0

In this case, TEST sets breakpoints at every instruction in your program
between relative addresses 0 and 200 (inclusive), stopping at the first
invalid instruction encountered. Breakpoints set at relative address 32, 8C,
and 10A override the previous settings. The last GO causes the program to
resume execution from the beginning (assuming the first address contains a
valid instruction). Before execution of the instruction at any of the
breakpoint locations, a message appears at the terminal. If the location is
other than 32, 8C, or 10A, execution continues because of the GO i
subcommand in the subcommand list of the first AT. Before 32, 8C or 10A !
are executed, the associated AT subcommand causes control to return to \
the terminal so that you can enter any TEST subcommands before
continuing execution.

Example 3

To supply new values for a range of registers, enter:

Or=(x'0',x'0',x'0")

78 - OS/VS2 TSO Terminal User’s Guide

The values specified would be assigned to register 0, register 1, and
register 2.

Example 4

If you want to display storage at a known relative address enter:

list +34
+34 47F0C220

If you want to display storage and find the absolute address associated
with the relative address, enter:

list +34+0
A0680. 47F0C220

Example 5

To list an area of storage greater than 256 bytes, you must use the
MULTIPLE keyword of the LIST subcommand. For example, to find a
module name that is a DC within the instructions of a module, enter:

list a0680. c 1(256) m(4)

(List the storage beginning at location A0680, translate into printable
characters, for length 4 x 256.)

When To Use TEST

There are two basic situations in which you might want to use the TEST
command:

« To TEST a currently active program.
« To TEST a program not currently being executed.

You may want to TEST a currently executing program either because it
is terminating abnormally, or because you want to check through the
current environment to see that the program is executing properly.

If a program is terminating abnormally, you will receive a diagnostic
message from the terminal monitor program (TMP) and then a READY
message. If you respond with anything but TEST, the system’s ABEND
routine abnormally terminates your program. If, however, you issue the
TEST command (and supply no program name), the TEST command
processor gets control, and you can use the TEST subcommands to debug
the defective program. '

If you just want to look at the current environment of an executing
program that is not terminating abnormally, enter an attention interruption.
The currently active program remains attached and the TMP responds to
your interruption by issuing a READY message. When you issue the TEST
command (no program name), the currently active program remains in
storage under the control of the TEST command processor. You can then
use the TEST subcommands to examine the current environment.

Note: In the case of both the ABEND and the attention interruption, you

should not enter a program name following the TEST command. If you do,
you will lose the current in-storage copy of the program, whereupon TEST
loads a new copy.

Testing a Program at a Terminal 79

Testing a program not currently being executed requires that you enter a
program name along with the TEST command. (There are other optional
operands of the TEST command, but they are not necessary for this
example.) The TEST command processor gets control and loads a copy of
the named program. The program can be a newly written TMP, a command
processor, or an application program.

Programs to be tested in this manner must be link-edited members of
partitioned data sets, or object modules in sequential or partitioned data
sets, loadable by the system’s loader program. Testing object modules
requires a special keyword,; refer to OS/VS2 TSO Command Language
Reference.

While your program is under the control of TEST, you can execute it,
one instruction at a time, investigate or alter its environment at any time,
change instructions or register contents, force entry into various
subroutines, and perform other debugging operations. Note that when
testing code that is executing in an abend recovery environment, results are
unpredictable and TEST may have to terminate unexpectedly.

The following discussion primarily addresses the debugging of newly
written code.

For additional discussion of the TEST command and its operands, see
0OS/VS2 TSO Command Language Reference. The TEST subcommands are
listed in Figure 13.

80 OS/VS2 TSO Terminal User’s Guide

O

e

G/Y/q\\’
%

Subcommand Name
= (Assignment)
AT

CALL

COPY
DELETE
DROP

END

EQUATE
FREEMAIN
GETMAIN

GO

HELP
LIST

LISTDCB

LISTDEB

LISTMAP

LISTPSW

LISTTCB

LOAD
OFF
QUALIFY

RUN

WHERE

Function
Assigns values to one or more locations.
Establishes breakpoints at specified locations.
Initiates execution of a program at a specified address.
Moves data fields or addresses.
Deletes a load module.
Removes symbolic addresses from the symbol table.
Terminates all functions of the TEST command.
Adds symbolic address to the symbol table.
Frees a specified number of bytes of real storage.

Acquires a specified number of bytes of real storage for use by
the program being processed.

Restarts a program at the point of interruption or at a specified
address.

Obtain the syntax and function of the TEST subcommands.

Displays the contents of specified areas of real storage or the
contents of specified registers.

Lists the contents of a data control block (DCB). You must
specify the address of the DCB.

Lists the contents of a data extent block (DEB). You must
specify the address of the DEB.

Displays a storage map of any real storage assigned to a
program.

Displays the program status word (PSW). You may specify the
address of any PSW.

Lists the contents of the task control block (TCB). You may
specify the address of any TCB.

Loads a program into real storage for execution.
Removes breakpoints.

Establishes the starting or base location for symbolic or relative
addresses; resolves external symbols within load modules.

Voids all breakpoints so that a program can execute to
termination.

Displays the absolute address of a symbol or entrypoint, and its
relative location within the CSECT.

Figure 13. The TEST Subcommands

Addressing Restrictions

The TEST command processor can resolve internal and external symbolic
addresses only if these addresses are available to TEST. Within certain
limitations, symbolic addresses are available for both object modules
(processed by the loader) and load modules (fetched by contents
supervision). To ensure availability of symbols, use the EQUATE
subcommand of TEST to define the symbols you intend to use.

External symbols, such as CSECT names, can be available for both
object modules and load modules. Object modules require that the Loader
have enough real storage to build in-storage composite external symbol

Testing a Program at a Terminal 81

dictionary entries. LOAD modules must have been processed by the linkage
editor with the TEST parameter specified, or must have been fetched to
main storage by the TEST command or its LOAD subcommand.

Internal symbols are available only for load modules. You can refer to
most internal symbols in load modules if you specified the TEST parameter
during both assembly and link-editing. Certain internal symbols, however,
are not available. These include the names on EQU, DSECT, LTORG, and
ORG assembler statements, and the symbolic names contained in system
routines that operate in zero protection key.

Symbolic addresses normally cannot be obtained for modules fetched
from data sets that have been concatenated to SYS1.LINKLIB by use of a
link library list in a member of SYS1.PARMLIB. However, if the TEST
command processor brings these modules into real storage (with the LOAD
subcommand, or as an operand on the TEST command), then the symbolic
addresses within these modules are available to TEST.

If the necessary conditions for symbol processing are not met, you can
use absolute, relative, or register addressing, but you cannot refer to
symbols, unless you have previously defined them with the EQUATE
subcommand of TEST.

Executing a Program under the Control of TEST

Any program, that is a link-edited member of a partitioned data set or an
object module in a sequential or partitioned data set can be executed under
the control of the TEST command processor. Note that TEST is not an
authorized program and cannot be used to test an authorized program. For
additional information on authorized program execution, see OS/VS2 System
Programming Library: TSO.

Issue the command TEST followed by the program name and those
operands of the TEST command that either define the program or are
necessary to its operation. These operands may consist of parameters
necessary to the operation of the program under test, the keyword LOAD
or OBJECT (depending upon whether the program is a load or an object
module), and the keyword CP or NOCP (depending upon whether or not
the program to be tested is a command processor).

Any parameters that you specify in the TEST command are passed to
the named program as a standard operating system parameter list; that is,
when the program under test receives control, register one contains a
pointer to a list of addresses that point to the parameters.

If the program to be tested is a command processor, include the keyword
CP (the default is NOCP). This causes the test routine to create a
command processor parameter list (CPPL), whose address it places into
register 1 before loading the program.

Establishing and Removing Breakpoints within a Program

To establish breakpoints within the program under test, use the AT
subcommand. Then issue the GO subcommand to begin execution of the
program. To begin executing a newly-loaded program, enter the
subcommand GO; no address is necessary.

82 0S/VS2 TSO Terminal User’s Guide

@

July 30, 1980

------ When the TEST command processor encounters the executing program’s

5 breakpoints, processing temporarily halts, and the message “AT address”
appears at the terminal. You can then examine the executing program, its
registers, and data areas to see whether it has been executing properly.

There are two ways to do this:

o Specify a list of subcommands when you issue the AT subcommand.

« Wait for the TEST command processor to return control to you at the
terminal each time it encounters a breakpoint.

When the TEST command processor encounters a breakpoint, it issues
each of the specified subcommands as though you had entered each of
them at the terminal at that time. The subcommands execute and display
the results of their execution at the terminal. If you specify GO as the last
subcommand, control automatically returns to the program under test at the
point of interruption. Otherwise, control returns to you at the terminal after
the last TEST subcommand completes execution.

If you determine from the information displayed by the subcommands
that your program has executed correctly up to that breakpoint, then issue
the GO subcommand to return control to your program. Your program can
then resume execution at the point of interruption and continue, either to
another breakpoint or to its normal conclusion.

If you choose to establish breakpoints with the AT subcommand without
specifying additional subcommands with it, TEST passes control directly to
your terminal at each breakpoint and awaits your entry of the additional

(™ subcommands. This procedure permits you to check on the progress of your
" program’s execution, one TEST subcommand at a time.

To remove all previously established breakpoints, issue the OFF
subcommand without an address operand. To remove only specific
breakpoints, or specific ranges of breakpoints, enter their appropriate
addresses, or ranges of addresses, as operands of the OFF subcommand.

Displaying Selected Areas of Storage

Use the various LIST subcommands to display the contents of a specified
area of real storage, registers, or various control blocks at your terminal, or
to write this information to a data set. There are six variations of the LIST
subcommand:

LIST
LISTMAP
LISTTCB
LISTDEB
LISTDCB
LISTPSW

LIST: The LIST subcommand displays areas of storage or the contents of
registers. The address required as an operand of the LIST subcommand can
be one address, a list of addresses, or a range of addresses. You may
- specify the address as a symbolic address if there is a symbol table that
(:"\ contains the requested symbolic address. If there is no symbolic address
(the program was not link-edited or did not have a symbol table), you can

Testing a Program at a Terminal 83

Page of GC28-06454
As Updated July 30, 1980
By TNL GN28-4753

use the EQUATE subcommand to create a symbolic address for any ra ™
location within the program, or you can specify the address as a relative k %
address, an absolute address, or as a register containing an address.

If you use the LIST subcommand to list information found at an address
specified by a symbol contained in a symbol table, the listed information
appears in the character type and the length specified in the symbol table.
You can, however, override the attributes contained in the symbol table by
including attribute operands on the LIST subcommand.

Use the LIST subcommand at any point during the execution of your
program (use the AT subcommand or an attention interruption to stop the
execution of the program) to determine whether data areas and registers
contain proper data. If the data displayed is not what it should be, use the
TEST subcommands to determine why the data is not as expected, or to
modify the data in real storage and continue execution of the program.

LISTMAP: The LISTMAP subcommand displays a map of all real storage
assigned to the program under test. Some of the information in this map is:

« Region size

« Task control block (TCB) address

« Program name, length, and location in real storage

« Active request blocks (RBs), RB types, and the names of the
programs associated with each of the RBs

LISTTCB: The LISTTCB subcommand displays the entire task control

block (TCB) of the program under test, or any fields of that TCB. The

displayed information is formatted, and each field is identified according to !
| the field names contained in OS/VS2 MVS Debugging Handbook. R

If you want to display the TCB for the program under test, enter the
subcommand LISTTCB with no address. If you want to display another
TCB on the TCB queue, you must include the address of the TCB as an
operand of the LISTTCB subcommand.

LISTDEB: The LISTDEB subcommand displays the basic section and any
direct access sections of any valid data extent block (DEB), or any fields of
that DEB. The displayed information is formatted according to the field

| names of the DEB as contained in OS/VS2 MVS Debugging Handbook.

The LISTDEB subcommand requires the address of a DEB as an
operand.

LISTDCB: The LISTDCB subcommand displays the contents of a data

control block (DCB). The information displayed is formatted, and each

field is identified according to the field names of the DCB contained in
| OS/VS2 MVS Debugging Handbook.

The LISTDCB subcommand requires the address of a DCB as an
operand. If you have created the DCB within the program under test, use
the address of the DCB macro instruction used to create the DCB. You can
also obtain the address of the DCB from the DEBDCBAD field of the
DEB displayed with the LISTDEB subcommand.

LISTPSW: The LISTPSW subcommand displays the current program status P
word (PSW) or any of the PSWs. If you issue the subcommand LISTPSW “
with no address following the subcommand, the current PSW is displayed at -

84 OS/VS2 TSO Terminal User’s Guide

your terminal. If you want to display any of the other PSWs at your
terminal, supply the address of the PSW you want to see as an operand of
the LISTPSW subcommand. A list of the permanent real storage locations
of all PSWs can be found in the IBM System/370 Principles of Operation.

Changing Instructions, Data Areas, or Register Contents

Once you have listed those areas of real storage that help you determine
what has occurred in your program, you can use the assignment function of
the TEST command to make changes within the real storage copy of the
code, or to change the contents of data areas or registers.

Enter the address at which you want the new data entered, a code
indicating the data type, and the new data you want entered at that
address. The address must conform to the address restrictions already
discussed. The new data must be within single quotes. The data type codes
are listed in OS/VS2 TSO Command Language Reference.

One problem that can arise during a debugging session occurs when you
want to replace a section of the program under test but the replacement
code is longer than the section to be replaced. If you type in the beginning
address of the section to be replaced, followed by a portion of code longer
than the segment to be replaced, you will overlay some functional code.
You can solve this problem with the GETMAIN subcommand of TEST.

1. Issue the GETMAIN to obtain a work area in which to build your
replacement segment of code. (The GETMAIN subcommand displays
at your terminal the address of the beginning of the real storage area
it got for you.)

2. Use the assignment of values function of the TEST command to
place a branch instruction to the getmained area at the address in
your program that begins the code you want to replace.

3. Use the assignment function again, this time to build your
newly-written code segment in the getmained area.

You can then use the GO subcommand to restart your program at some
point before the branch. Your program will execute through the branch
instruction, into the new instructions, and branch back into your original
code. Later, you can use the LIST subcommand to display the newly
written code in a form useful to you, enter it into your program with the
TSO EDIT command, and reassemble your module.

Forcing Execution of Program Subroutines

You may need to test your module’s response to return codes set by other
modules or, possibly, by unwritten code. To do this type of testing, you can
use the following procedure:

1. Use the AT subcommand to insert a breakpoint in your program at
the point where it passes control to the unwritten code.

2. Use the assignment function of TEST to set register 15 to an
expected return code.

3. Use the GO subcommand to restart your program executing at the
point where it would ordinarily get back control.

Testing a Program at a Terminal 85

By using this procedure, you can test your program’s response to each
possible return code.

Using TEST after a Program ABEND

If a program running under TSO terminates abnormally (ABEND), a
diagnostic message containing the ABEND code appears at the terminal,
ABEND processing halts, and control returns to either the TMP or TEST.
If the program was running under the control of the TEST command
processor, control returns to TEST and you can immediately begin to use
the TEST subcommands to determine the cause of the error. If the program
was not running under TEST, control returns to the TMP. You can then
enter the TEST command (without a program name), to place the
abnormally terminating program under control of the TEST command
processor.

Issue the WHERE subcommand to determine where the interruption
occurred. The WHERE subcommand displays the current instruction
address at the terminal. If you then enter WHERE followed by that
instruction address, WHERE responds by displaying the program name, the
CSECT name, the offset of the current instruction address within the
CSECT, and the address of the abnormally terminating task’s TCB. The
instruction address and the information returned by the WHERE
subcommand pinpoint the point of error.

The LIST subcommand displays the instructions leading up to the error
condition, and the data areas and registers used in those instructions. This
information should be sufficient to determine the cause of the error.

Determining Data Set Information

If you want to investigate the condition of any of your data sets, perform
the following operations:

1. Use the LISTTCB subcommand to display the TCB for the
terminating task.

2. Use the contents of the TCBDEB field as an operand of the
LISTDEB subcommand to gain access to the data extent block queue.

3. Use the contents of the DEBDCBAD field in each of the DEBs in
the DEB queue, or the addresses of any DCB macro instructions
coded within your program, as an operand of the LISTDCB macro
instruction, to list the data control blocks.

These control blocks contain the addresses of other control blocks useful
in the debugging process.

86 OS/VS2 TSO Terminal User’s Guide

e

L

N

(/ﬁ
7

Section VI: Using Command Procedures

Command procedures are executable sequences of TSO commands,
subcommands, and command procedure statements. The entire TSO
command language is available to command procedures. Additionally,
command procedure statements, symbolic substitution facilities, control
variables, and built-in functions give command procedures capabilities
similar to those of high-level languages.

The following topics describe how to create and store a command
procedure and how to invoke it. There is also an overview of the command
procedure facilities.

Creating a Command Procedure

To create a command procedure, use the EDIT command to put the
commands, subcommands, and command procedure statements into a data
set. This CLIST (command list) data set may be either sequential or
partitioned. A sequential CLIST data set consists of only one command
procedure, while a partitioned data set may contain more than one
command procedure. When a partitioned data set consists entirely of
command procedures it is called a command procedure library.

The following sample EDIT session shows how to create a sequential
CLIST data set that contains the command procedure named “listpgm”
This command procedure loads and passes control to a program called
“weekly” after allocating three data sets that “weekly” requires.

edit listpgm clist new

INPUT

00010 allocate dataset(input) file(indata) old

00020 allocate dataset(output) block(100) space(300,10) +
00030 file(outdata)

00040 allocate dataset(list) file(print)

00050 call weekly

00060 (null line)

EDIT

end save

As a result of the END subcommand, TSO stores your data set with the
fully-qualified name of:

userid.LISTPGM.CLIST

The CLIST qualifier identifies the data set as a command procedure.

To create a command procedure library, use EDIT to make the command
procedure a member of a partitioned data set. For example, to create a
partitioned data set named “clistlib”’ and make the command procedure
named “listpgm’’ a member of “clistlib”, invoke EDIT as follows:

edit clistlib(listpgm) clist new

Command procedures are stored and cataloged like any other TSO data
sets. Your installation may allocate a partitioned data set to be used as a

Command Procedures 87

central command procedure library. Or you may create your own command A ™
procedure library by making your command procedures members of a ‘k ,»)
partitioned data set.

How to Invoke a Command Procedure

To invoke a command procedure, use the EXEC command or EXEC
subcommand of EDIT. (Be aware that command procedures executing
under EDIT are in the subcommand environment and, therefore, can
execute only EDIT subcommands and command procedure statements --
not other commands.)

Use of EXEC (either command or subcommand) can be in one of two
forms:

« Explicit form of EXEC -- enter the word EXEC and the command
procedure’s name.

o Implicit form of EXEC -- enter only the command procedure’s name.
This will work only for command procedures that are members of a
partitioned data set allocated to a file named SYSPROC.

Using the Explicit Form of EXEC

You can use the explicit form of EXEC to invoke any command procedure.
To do so, enter EXEC followed by the command procedure’s name. The
command procedure name can be either the name of a sequential data set
or the name of a member of a partitioned data set. For example, to execute

a command procedure named “listpgm”, which is;; é“'§equenMLIST data AN
set, enter: e oo «__\ J
,AW““"’NMWW -

e

exec listpgm s

This command causes TSO to execute the procedure named
“userid.listpgm.clist”.

If the command procedure is a member of a partitioned data set, you
must enter both the data set.name and the member name. For example, if

“listpgm” is a_member of a partitioned data et named “clistlib”, enter:

exec clistlib(listpgm) ==~

This command causes TSO to execute the procedure named “listpgm”,
which is a member of the partitioned data set named
‘userid. CLISTLIB.CLIST.

Using the Implicit Form of EXEC

You can use the implicit form of EXEC to invoke command procedures
that are members of a partitioned data set allocated with a filename of
SYSPROC. To do so, enter just the procedure name.

Before you implicitly invoke a command procedure, you may want to 1
ensure that the partitioned data set has a filename of SYSPROC. Assume
the command procedure name is “listpgm” and it is a member of a data set

|

|

named “clistlib”. Enter: (\ ‘
)

listalc status J ‘

|

88 OS/VS2 TSO Terminal User’s Guide

™
wuv/

July 30, 1980

This command lists all the names of data sets that you have allocated with
the ALLOCATE command, that were allocated in your LOGON procedure,
and that were temporarily allocated by command processors. If “clistlib”
does not appear in this list with a file name of SYSPROC, allocate it by
entering:

allocate dataset(clistlib.clist) file(sysproc) shr

Allocating the file with a shared disposition allows others to use the
command procedure library concurrently.

You can now invoke the command procedure. Enter:

listpgm

Shortening TSO’s Search Time

Ordinarily, when you invoke a command procedure implicitly, TSO searches
several libraries before it searches the SYSPROC file. It does this to
determine first if the name you entered is a TSO command. You can have
TSO search only the SYSPROC file by prefixing a percent sign (%) to the
command procedure name. For example, enter:

%1listpgm

Concatenating Data Sets to SYSPROC

You may concatenate data sets and allocate them to the file SYSPROC to
create a command procedure library that spans several data sets. This is
useful if your installation has defined a command procedure library to
which you would like to add a library of your own command procedures.
You could similarly concatenate your library to one or more of someone
else’s libraries or concatenate them all to the installation’s library.

To concatenate data sets with the ALLOCATE command, enter their
names (separated by delimiters) in the order in which you wish TSO to
concatenate them. The concatenation order establishes the order by which
TSO will search the data sets to find specified command procedures.
Therefore, you should specify the data set you expect to use most
frequently first.

The blocksizes of data sets can affect their concatenation order. Where
blocksizes vary, the system requires that you specify the dataset with the
largest blocksize first. If, for example, you wish to concatenate your private
library to the installation’s library so that your library is the first in the
concatenation order, make sure that your library’s blocksize is at least as
large as that of the installation’s library. To determine the blocksize of the
installation’s library, display its data set attributes with the LISTDS
command.

For example, assume your userid is D58JSG1 and you wish to
concatenate the command procedure libraries whose fully-qualified data set
names are as follows:

D58DEW1.CLISTLIB.CLIST
D58JSG1.CMPRCLIB.CLIST
D95MRT1.PROFLIB.CLIST

Command Procedures 89

Page of GC28-0645-4
As Updated July 30, 1980
By TNL GN28-4753

The following ALLOCATE command concatenated them in the order listed
and allocates them to file SYSPROC so that command procedures from any
of them may be invoked implicitly:

allocate file(sysproc) dataset('d58dewl.clistlib.clist'-
'd58jsgl.cmprclib.clist' 'd95mrti1.proflib.clist') shr

The hyphen at the end of the first line indicates that more command
information follows on the next line. The single quotes are necessary
because the names are fully-qualified names. The disposition of SHR
permits concurrent use of the allocated data sets by other users.

Command Procedure Facilities

A command procedure can be basic, consisting only of a series of TSO
commands, or complex, using some or all of the command procedure
facilities. These facilities include built-in functions, which perform
immediate evaluations of character strings; control variables, which contain
information pertinent to the currently executing command procedure; and
command procedure statements, which give the writer of command
procedures the capabilities of a high-level language. These facilities are
described in detail in following topics.

The descriptions of these facilities often refer to expressions, symbolic
variables, and labels. You should understand these terms, as used in
command procedures, before you attempt to use the command procedure
facilities. These terms are defined in the following topics.

90 OS/VS2 TSO Terminal User’s Guide

™

NS

Id

{ }
NS

Terminology

Throughout this section on command procedures, certain terms are used
extensively. The next topics define expressions, operators, symbolic
variables, and labels, as used in command procedures.

Operators and Expressions

Operators are used in command procedures to specify operations to be
performed on terms in an expression. Expressions are used as parameters
on some command procedure statements.

Operators are in three categories:

« Arithmetic operators, which specify fixed-point arithmetic operations
to be performed on numeric operands. These operators connect whole
numbers, character strings, symbolic variables, control variables, and
built-in functions to form simple expressions.

« Comparative operators, which specify comparison functions to be
performed between two simple expressions, and thereby form
comparative expressions. Comparative expressions are often used to
determine conditional branching within a command procedure. Note
that, to compare character strings, TSO uses the standard EBCDIC
collating sequence.

» Logical operators, which specify a logical connection between two
comparative expressions, and thereby form logical expressions. Logical
expressions are ofter used to determine conditional branching within a
command procedure.

When using expressions in command procedures, you should be aware of
the valid range which a numeric variable can have. This range is -2, 147,
483, 648 (the maximum negative number) to +2, 147, 483, 647 (the
maximum positive number). This range covers values from a minus two to
the 31st power through a plus two to the 31st power minus one.

If a number outside the valid range is entered directly in a command
procedure statement, an error code is issued and evaluation of the statement
terminates. If the result of any arithmetic calculation (even an intermediate
result) is outside the valid range, an error code is issued and, for any
statement other than SET, evaluation of the statement terminates. For a
SET statement, the error code can be ignored and evaluation of the
statement continues if NOFLUSH has been specified in the command
procedure.

Figure 14 lists the operators in the three categories and shows how to
enter them.

Command Procedures 91

For the f E ™
or the function: nter: U

Arithmetic Addition +

Subtraction -

Multiplication *

Division /

Exponentiation **(see Note 1)

Remainder //
Comparative Equal = or EQ

Not equal = = or NE

Less than <orlLT

Greater than > or GT

Less than or equal < = or LE

Greater than or equal > = or GE

Not greater than —/> or NG

Not less than -< or NL
Logical And & & or AND

Or || or OR

Note 1: Negative exponents are handled as exponents of zero.

Figure 14. Arithmetic, Comparative, and Logical Operators

Symbolic Variables

The term ‘“‘symbolic variable” refers to any character string in a command
procedure for which different values may be substituted at different times.
Symbolic variables add flexibility to command procedures by symbolizing SN
real values that can change during execution of a command procedure.. _/

Symbolic variables can be used on TSO commands and subcommands,
on certain command procedure statements, as file names for file
input/output processing, and as global parameters. TSO has predefined a
set of special-purpose symbolic variables; these are control variables and
built-in functions (see “Built-In Functions” and “Control Variables” in this
section). The writer of the command procedure can also define his own
symbolic variables; before he can use them, though, they must appear on
certain command procedure statements (see PROC, READ, READDVAL,
GLOBAL, SET, and OPENFILE statements).

A symbolic variable consists of an ampersand (&) followed by a
maximum of 31 alphameric characters, the first of which is alphabetic. The
real values to be substituted for a symbolic variable are supplied by the
invoker of the command procedure, by the writer of the command
procedure, or by the system.

TSO scans each line in a command procedure and replaces the symbolic
variables with their real values in a process called symbolic substitution. The
real value substituted for a symbolic variable may actually be another
symbolic variable (nested symbolic variables). If there are nested symbolic
variables, the line is scanned more than once until all symbolic variables are
resolved.

The use of double ampersands requires special processing by the
symbolic substitution routine. Each pair of ampersands is replaced by a
single ampersand. This substitution takes place only after all other symbolic @
substitution in a line is complete. : =

|
92 0S/VS2 TSO Terminal User’s Guide J;
E

November 30, 1981

You can concatenate symbolic variables to modify existing variable
names. For example, symbolic variable & N can be set to a value of 1 and
concatenated to a symbolic variable & DSN:

EDSNEN

As the value of & DSN changes during command procedure processing, you
could have the following real values:

ALPHA1
BETA1
KAPPA1

You could then reset the value of & DSN and increase & N. You could
then have the following real values:

ALPHA2
BETAZ2
KAPPA2

This is a useful technique when portions of several character strings are
identical.

Concatenating symbolic variables and character string requires a period
as a delimiter when the symbolic variable name precedes the character
string. For example:

EDSN. 1

No delimiter is required when the character string precedes the symbolic
variable. For example;

ALPHAEN

Labeling within Command Procedures

Labels are names by which you can identify particular TSO commands,
TSO subcommands, or command procedure statements for branching
purposes. Labels must be one to eight alphameric characters, the first being
alphabetic, and must be unique names within the command procedure.

To use a label, enter it first in a line, then follow it immediately with a
colon, one or more delimiters (blanks, commas, or tabs), and the command,
subcommand, or command procedure statement. The following examples
show two valid labels:

target: alloc dataset (input) file(indata) old
here1234: set &a = &a+1

Note the following restrictions on the use of labels:

« Labels cannot be used on PROC statements or on ENDDATA
statements.

« TSO never lists labels even though you may have specified the
CONLIST option on the CONTROL statement.

Command Procedures 93

Page of GC28-0645-4
As Updated November 30, 1981
By Suppl. SD23-0241-0 for 5665-285

Built-In Functions

Built-in functions provide the ability to perform certain evaluations of
expressions and character strings. To request a built-in function, specify the
appropriate symbolic variable with an expression or character string on a
command procedure statement. TSO evaluates the expression first, if
necessary, and then performs the requested function. The symbolic variable
is then replaced by the result of performing the built-in function. Note that
the expression is normally another symbolic variable which may have been
set previously in the command procedure.

Figure 15 lists the available built-in functions and a brief explanation of
their use. They are explained in more detail in the following topics.

Symbolic Variable Use

&DATATYPE(expression) To determine if an expression is entirely numeric.

& EVAL(expression) To determine the result of an arithmetic
expression.

& LENGTH(expression) To determine the number of characters in the
result of an evaluated expression.

& NRSTR(string) To define a non-rescannable character string for
symbolic substitution.

& STR(string) To use a string of characters as a real value.

& SUBSTR (expression To use a portion of a character

[:expression],string) string as a real value.

Figure 15. Built-In Functions

Example 3 in the fo]lowing topic, “Command Procedure Examples,”
shows the use of the built-in functions & DATATYPE, & LENGTH,
& STR, and & SUBSTR in a command procedure.

Determining an Expression’s Type

Entering the & DATATYPE symbolic variable causes the associated built-in
function to determine whether or not the evaluated expression is entirely
numeric. The expression to be evaluated appears within the parentheses
after the symbolic variable:

édatatype(expression)

After evaluating the expression, TSO replaces this variable with either:

o CHAR -- The evaluated expression contains at least one non-numeric
character.

¢« NUM -- The evaluated expression is entirely ‘numeric.

The following examples show the evaluations of various expressions:

Built-In Function Expression Resulting Evaluation
& datatype(alphabet) CHAR

& datatype(1234) NUM
&datatype(sysl.proclib) CHAR
&datatype(3*2/4) NUM

& datatype(A1234) CHAR

94 0S/VS2 TSO Terminal User’s Guide

O

C

Evaluating an Arithmetic Expression Immediately

Entering the & EVAL symbolic variable causes the associated built-in
function to evaluate the indicated arithmetic expression. To indicate that
immediate evaluation is required within a statement, enter:

Eeval(expression)

The expression may be any valid arithmetic expression. TSO evaluates it
and places the result in the space represented by & EVAL(expression)
within the statement. During execution of the statement, therefore, a
numeric value replaces & EVAL(expression). For example, consider the
following:

geval(3+5-2)

The result of evaluating the arithmetic expression within the parentheses is
six. The value “6”, therefore, replaces the entire string * & eval(3+5-2)”
during execution of the statement in which the string appears.

Determining an Expression’s Length

Entering the & LENGTH symbolic variable causes the associated built-in
function to determine the number of characters in the evaluation of an
indicated expression. To indicate the expression you want evaluated, put it
in parentheses following & LENGTH, as follows:

glength(expression)
The result after performing the built-in function is a numeral representing
the number of characters constituting the evaluated expression.

For example, the numeral replacing & LENGTH in the following quept:

glength(1 + 1)
is “1” because, although the evaluation of one plus one is two, that answer
is only one character.

If there are leading zeroes in the expression, they are ignored when
evaluating & LENGTH. The numeral replacing & LENGTH in the
following example is 2:

ELENGTH(00045)

Defining a Character String for Symbeolic Substitution

Entering the & STR symbolic variable causes the associated built-in
function to use the indicated character string as a real value for symbolic
substitution. To use the & STR built-in function, enter:

Estr(string)

The string within the parentheses may be any valid expression. Within
this parenthesized expression, nested built-in functions and symbolic
substitution take place. After these operations, however, no further
evaluation is done.

Command Procedures 95

Consider the following:

Estr(1+1)

Because the & STR built-in function inhibits arithmetic evaluation, the
result of using this built-in function is the character substitution “1+1”’, not
“2’,‘

Assume that the value of & ONE is 1 and consider this second example:

&str(éone + &one)

The value substituted for this expression is also “1 + 1.

The & STR symbolic variable serves as a “mask” for a syntactically
misleading or invalid expression, thereby permitting the procedure writer to
code his intended expression so that unintentional results will not occur.

Defining a Substring for Symbolic Substitution

Entering the & SUBSTR symbolic variable causes the associated built-in
function to use a part of the indicated string of characters as a real value
during symbolic substitution. When using & SUBSTR, enter the substring
and character string information in parentheses following & SUBSTR. To
designate the substring, indicate numerically where in the character string
the substring of characters is to start and end. This substring can be only
one character or can be the entire character string.

The syntax of the & SUBSTR built-in function is:

gsubstr(start-expression:end-expression,
character-string)

The information in parentheses may be characters or symbolic variables in
any combination, as long as the final values of “start-expression” and
“end-expression” are numeric values.

Assume you designate the alphabet as a character string and wish to
select a range of letters from it. The most direct way to do this is as
follows:

&substr(2:8,abcdefghijklmnopgrstuvwxyz)
This entry specifies that you wish to use the letters B, C, D, E, F, G,
and H from the alphabet for symbolic substitution.

You could enter the same information with symbolic variables. Assume
that you have assigned the following values to symbolic variables:

« & alphabet contains abcdefghijkimnopqgrstuvwxyz
o & range contains 2:8
o & testcond contains abcdefg

If you compared & substr(& range, & alphabet) to & testcond, the result
would show that they are not equal.

96 OS/VS2 TSO Terminal User’s Guide

N

N S

a

@

O

November 30, 1981

Control Variables

Control variables represent information relevant to the current command
procedure environment and user. Command procedures can access the
information represented by these variables by including the appropriate
symbolic variable in a command procedure statement. TSO replaces the
symbolic variable with the requested information.

A command procedure may explicitly set four of the control variables.
The contents of all the other control variables are the result of TSO’s
monitoring of the current command procedure environment. An attempt by
a command procedure to change their contents results in an error.

The control variables can be divided into three categories: user-oriented
variables, variables related to the current command procedure, and variables
related to the system environment. Figure 16 summarizes the control
variables in each category, the information each variable represents, and
whether the information can be modified by the command procedure.

Command Procedures 97

Page of GC28-0645-4
As Updated November 30, 1981
By Suppl. SD23-0241-0 for 5665-285

This line left blank

background
execution

Category Symbolic Information Represented Can be
Variable by the Variable Modified
by the
Procedure
User-oriented & SYSUID Current user's No
identification
& SYSPROC LOQON procedure name No
& SYSPREF Data set name prefix No
Related to the & LASTCC Most recent return Yes
current code
command
procedure
& MAXCC Highest return code Yes
& SYSICMD Implicit execution No
member name
& SYSSCAN Symbolic substitution Yes
rescan limit
& SYSDLM Terminal delimiter No
& SYSDVAL Terminal parameters Yes
& SYSNEST Nested procedure No
indicator
& SYSPCMD Current primary command No
name
& SYSSCMD Current subcommand No
name
Related to the & SYSTIME Current time No
system
environment
& SYSDATE Current date No
& SYSENV Foreground or No

Figure 16. Control Variables

98 OS/VS2 TSO Terminal User’s Guide

Example 2 in the following topic ‘“Command Procedure Examples”
shows the use of several control variables in a command procedure named
“DI9SMRT2.CLIST(PROFILE)”.

User-Oriented Control Variables

The user-oriented control variables represent information directly related to
the TSO user who invoked the command procedure. This information is the
user’s identification, the LOGON procedure name, and the data set name
prefix.

&SYSUID -- User’s Identification

The & SYSUID control variable contains the userid associated with the
current terminal session. TSO maintains this variable; a command procedure
can access this variable but cannot modify it.

&SYSPROC -- LOGON Procedure Name

The & SYSPROC control variable contains the procedure name specified
when the current command procedure user logged on to TSO. TSO
maintains this variable; a command procedure can access this variable but
cannot modify it.

&SYSPREF -- Data Set Name Prefix

The & SYSPREF control variable contains the current data set name prefix,
which the user sets by using the PROFILE command. TSO maintains this
variable; a command procedure can access this variable but cannot modify
it.

Control Variables Related to the Current Command
Procedure

The control variables related to the current command procedure represent
information that pertains to the command procedure currently being
executed. This information includes return codes, command names, and
terminal input.

&LASTCC -- Most Recent Return Code

The & LASTCC control variable contains the return code from the last
TSO command, TSO subcommand, command procedure statement, or
nested command procedure executed. The command procedure can modify
this control variable.

The return codes from command procedure statements and TSO
commands are listed in OS/VS2 TSO Command Language Reference.

&MAXCC -- Highest Return Code

The & MAXCC control variable contains the highest return code from a
TSO command, subcommand, or command procedure statement in the
currently executing command procedure, or from a nested command
procedure. The command procedure can modify this control variable.

Command Procedures 99

&SYSICMD -- Implicit Execution Member Name

",
The & SYSICMD control variable contains the name by which the user QJ/
implicitly invoked the currently executing command procedure. If the user
invoked the command procedure explicitly, this variable has a blank value.
TSO maintains this variable; a command procedure can access this variable
but cannot modify it.

The writer of the command procedure can use this variable to determine
by which of several alias names the user invoked the procedure. Each alias
could indicate a different path within a general-purpose command procedure
that provides: several related functions.

&SYSSCAN -- Symbolic Substitution Rescan Limit

The & SYSSCAN control variable contains a value limiting the number of
times that the TSO symbolic substitution routine may scan each line in
order to substitute values for all the symbolic variables that the line may
contain. The default scan limit is 16. A command procedure may modify
this variable, specifying a value from 0 to 23t. A zero limit inhibits all scans,
preventing any substitution of values for symbolic variables.

&SYSDLM -- Terminal Delimiter

The & SYSDLM control variable contains a number that identifies by
position (first, second, third, etc.) the TERMIN delimiter string entered by
a terminal user to return control to the command procedure. TSO maintains

this variable; a command procedure can access this variable but cannot N
modify it. { |

This variable can be used to determine what action should be taken
when the terminal user returns control to the command procedure, based on
the user’s choice of the TERMIN delimiter.

&SYSDVAL -- Terminal Parameters
The & SYSDVAL control variable contains either:

« Any parameters the terminal user entered, besides the delimiter, when
he returned control to the command procedure after a TERMIN
statement

« The terminal user’s response after a READ statement requests
terminal input

A command procedure may modify the contents of & SYSDVAL. The
initial value of & SYSDVAL is blank, and it remains blank if the user does
not specify any parameter information after the TERMIN delimiter, or if
the user’s response to a READ statement is a blank line.

&SYSNEST -- Nested Procedure Indicator

The & SYSNEST control variable contains ‘YES’ if the currently executing

command procedure is a nested procedure, or ‘NO’ if it is not. (A nested

procedure is one that was invoked by another command procedure rather

than by the terminal user.) TSO maintains this control variable; the ‘
command procedure can access this variable but cannot modify it. N

100 OS/VS2 TSO Terminal User’s Guide

Page of GC28-0645-4
As Updated November 30, 1981
By Suppl. SD23-0241-0 for 5665-285

&SYSPCMD -- Current Primary Command Name

The & SYSPCMD control variable contains the name of the TSO command
that the command procedure has most recently executed. The initial value
of & SYSPCMD is EXEC or, if EXEC was issued as a subcommand of
EDIT, EDIT. TSO maintains this control variable; the command procedure
can access this variable but cannot modify it.

This variable can be used, for example, as an identifier in a message
written from an error exit routine.

&SYSSCMD -- Current Subcommand Name

The & SYSSCMD control variable contains the name of the TSO
subcommand that the command procedure has most recently executed. The
initial value of & SYSSCMD is blank, if the EXEC command was issued, or
EXEC, if the EXEC subcommand of EDIT was issued. TSO maintains this
control variable; the command procedure can access this variable but
cannot modify it.

The & SYSSCMD and & SYSPCMD control variables are correlational.
For example, the contents of & SYSPCMD could be “EDIT” and the
contents of & SYSSCMD could be “END”. Then the procedure might
execute the CALL command. At this point, the contents of & SYSPCMD
become “CALL” and the contents of & SYSSCMD become blank. The
& SYSSCMD variable is useful as an identifier in a message written from
an error exit routine.

Control Variables Related to the System Environment

Control variables related to the system environment represent information
that is dependent on the current TSO environment. This information is the
time of day and the date.

&SYSDATE -- Current Date

The & SYSDATE control variable contains the current date in the format
mm/dd/yy, where mm is month, dd is day, and yy is year. TSO maintains
this variable; a command procedure can access this variable but cannot
modify it.

&SYSENY -- Current System Environment

The & SYSENV (System Environment) control variable contains the
characters FORE or BACK to indicate whether the command procedure is
executing in the foreground or background environment respectively. This
variable cannot be modified by a command procedure.

&SYSTIME -- Current Time

The & SYSTIME control variable contains the current time of day in the
format hh:mm:ss, where hh is hours, mm is minutes, and ss is seconds. TSO
maintains this variable; a command procedure can access this variable but
cannot modify it.

Command Procedures 101

102 - OS/VS2 TSO Terminal User’s Guide

November 30, 1981

£
N/

Command Procedure Statements

Command procedure statements supplement the TSO command language
and can be used in both the command and subcommand environments.

There are four categories of command procedure statements:

« Control statements, which influence execution by naming functions to
be performed, setting processing options, redirecting control, and

altering execution sequence.

o Assignment statements, which assign values to variables.
« Conditional statements, which establish and test conditions in the
sequence of commands and statements to determine the logical flow

of execution.

« File access statements, which open, access, and close QSAM data sets

to give command procedures 1/O capability.

Figure 17 summarizes these categories of statements.

Type of Statement:
Control Assignment Conditional

ATTN READ IF-THEN-ELSE
CONTROL READDVAL DO-WHILE-END
DATA-ENDDATA SET (WHEN TSO command)
ERROR

EXIT

GLOBAL

GOTO

PROC

RETURN

TERMIN

WRITE

WRITENR

File Access

OPENFILE
GETFILE
PUTFILE
CLOSFILE

Figure 17. Summary of Command Procedure Statement Categories

The following topics describe the functions that are performed by the

various command procedure statements:

» Establishing initial parameters

« Establishing processing options

« Assigning values to symbolic variables
« Controlling execution flow

« Communicating with the terminal user
o Performing file input and output

« Executing nested command procedures
« Establishing exit routines

Command Procedure Statements 103

Establishing Initial Parameters

Most command procedures use symbolic variables. There are two ways that
real values can be assigned to symbolic variables:

« The writer of the command procedure can assign real values to
symbolic variables by using command procedure statements.

« The writer of the command procedure can require the invoker of the
procedure to supply real values for certain symbolic variables when he
invokes the procedure.

Parameters on the PROC statement identify the symbolic variables for
which the invoker must supply real values. These values cannot be
predetermined by the writer of the command procedure; the invoker must
determine the values before he invokes the procedure. Also, the invoker can
change these values to get different results each time he invokes the
command procedure. For example, these values could be data set names
that are to be used within the command procedure or indications of
optional functions to be performed, such as listing the commands at the
terminal.

There are two types of parameters that can be specified on the PROC
statement:

« Positional parameters, for which the invoker must supply real values.
These must appear in the same order as they appear on the PROC
statement.

« Keyword parameters, which are optional and, if specified, can be in
any order after the positional parameters.

Use of the PROC Statement

You need to code a PROC statement in a command procedure only if the
procedure requires the invoker to supply information. If the PROC
statement is coded, it must be the first statement in the procedure. The
format of the PROC statement is:

proc n [positl ... positn] [keyword [([subparameter])]}

The n denotes the number of positional parameters coded on the PROC
statement. This number cannot exceed eight digits. If there are no positional
parameters, n must be 0.

Positl ... positn indicates the positional parameters for which the invoker
must supply real values. TSO prompts him for any values he does not enter.
Each positional parameter name cannot exceed 252 alphameric characters
and the first character must be alphabetic.

Keyword indicates an optional symbolic variable for which the invoker
may supply a real value. The keyword name cannot exceed 31 alphameric
characters and the first character must be alphabetic. Keyword parameters
can have a subparameter associated with them. The subparameters can have
a default value to be used if the invoker does not supply a value.

Figure 18 lists the types of parameters that can be specified on a PROC
statement and, for each type, how the writer of the command procedure
would code it on the PROC statement, how the invoker of the procedure
would specify it in the value-list on the EXEC command, and what the
results would be.

104 OS/VS2 TSO Terminal User’s Guide

¢

O

Parameter type

Specified by
writer

of procedure on
PROC statement

Specified by invoker
of procedure in
EXEC value-list

Result

positional

keyword without
subparameter

keyword with
subparameter
and no default

keyword with
subparameter
and default

proc 1 dsname

proc O list

proc O list()

proc O list(none)

mylib.asm

nothing specified

list
nothing specified

list

list(all)
nothing specified

list

list(some)

nothing specified

Symbolic variable
& dsname has a
real value of
“mylib.asm’".

User is prompted;
assume he then

enters ‘“‘cmdproc.clist”;
symbolic variable

& dsname then

has a real value of
“emdproc.clist”.

Symbolic variable & list
has a real value of
“list’”.

Symbolic variable & list
has a real value of
blanks.

User is prompted;
assume he then enters
“all”’; symbolic

variable & list then

has a real value of “all”.

Symbolic variable & list
has a real value of
l‘a“'l)'

Symbolic variable & list
has a real value of
blanks.

User is prompted;
assume he then enters
“all’”’; symbolic

variable & list then has
a real value of “all”’.

Symbolic variable & list
has a real value of
“‘some’’.

Symbolic variable & list
has a real value of
“none’’, the default.

Figure 18. Results of Entering Positional and Keyword Parameters

Command Procedure Statements

105

Note that use of quoted-string notation affects the way a user passes a
dataset name to a command procedure when the substituted data set name
is to be enclosed in single quotes. If a keyword with value is being
substituted, the invoker of the command procedure must:

« Enclose the dataset name in three single quotes on an implicit EXEC

command.
« Enclose the dataset name in six single quotes on an explicit EXEC
command.
For example, assume a command procedure named EXAM has these
statements:
PROC O LIB()
ALLOC DA(&§LIB.) SHR
END

If the invoker of the command procedure wanted to substitute
‘SYS1.TSO.CLIST’ for LIB, then he would code on an explicit EXEC
command:

EXEC EXAM 'LIB(''''''SYS1.TSO.CLIST'''''')'

On an implicit EXEC command he would code:

EXAM LIB('''SYS1.TSO.CLIST''")

By following this procedure, the ALLOC command in the command
procedure would then be:

ALLOC DA('SYS1.TSO.CLIST') SHR

Establishing Processing Options

The CONTROL statement establishes basic processing options to be in
effect during the execution of a command procedure. These options include
whether prompting can be done while the procedure is executing, what type
of displays are desired while the procedure is executing, and whether
informational messages are to be displayed at the terminal. Because the
CONTROL statement can set options for an entire procedure, it is
commonly among the first executable statements in a procedure. You may,
however, reset the options further along in a command procedure by writing
a new CONTROL statement with different operands.

The format for the CONTROL statement is as follows:

control [optionl ... optionN]

All but two of the CONTROL statement’s options occur in
mutually-exclusive pairs. When selecting options, you should choose only
one from the pair. The options, described in the following topics, are:

MSG/NOMSG
PROMPT/NOPROMPT
LIST/NOLIST
CONLIST/NOCONLIST
SYMLIST/NOSYMLIST
FLUSH/NOFLUSH
MAIN

END(string)

106 OS/VS2 TSO Terminal User’s Guide

Command procedures without CONTROL statements will execute with
these predefined options: MSG, NOLIST, NOPROMPT, NOCONLIST,
NOSYMLIST, and FLUSH. The user may preset the PROMPT and LIST
options by entering them as keywords on the EXEC command with which
he invokes the procedure; for example:

exec myproc.clist prompt list

There are, however, no default operands on the CONTROL statement.
Entering CONTROL with no operands causes TSO to display only those
options already in effect because they are the predefined set or because of
a previous CONTROL statement with operands.

Note: TSO’s symbolic substitution routine does not scan the CONTROL
statement. As a result, CONTROL options may not be in the form of
symbolic variables.

Setting the Message Option

You can request that informational messages from commands or statements
in the procedure be displayed or suppressed. To request message display,
code:

control msg

To suppress this display, code:

control nomsg

TSO has predefined the MSG option for command procedures. If you
want your command procedure to display informational messages, it is
unnecessary for you to specify the MSG option unless you are overriding a
previous NOMSG specification in the same procedure. Note that this option
has no effect on error messages.

Setting the Prompt Option

You can permit a command procedure to prompt the terminal user for
input, or you can prohibit the procedure from doing so, if it ordinarily has
prompting capability. To permit prompting, code:

control prompt
To prohibit prompting, code:

control noprompt

TSO provides no predefinition for the PROMPT option. You must
explicitly set the prompting environment for any command procedure with
prompting capability by including a CONTROL PROMPT statement as
shown above. A user can request the PROMPT option by specifying the
PROMPT keyword on the EXEC command when he invokes your
procedure.

Command Procedure Statements 107

Setting the Display Options

You can permit or suppress the display at your terminal of three different
categories: TSO commands and subcommands after symbolic substitution
but before execution; command procedure statements after symbolic
substitution but before execution; TSO commands and subcommands and
command procedure statements before symbolic substitution.

To permit the display of TSO commands and subcommands after
symbolic substitution, code:

control list

To suppress their display, code:

control nolist

TSO provides no predefinition for the LIST option. If you want your
command procedure to display its commands and subcommands at the
terminal prior to execution, it is necessary to include a CONTROL LIST
statement as shown above. A user of a command procecure can request the
LIST option by specifying the LIST keyword on the EXEC command when
he invokes the procedure.

To permit the display of command procedure statements at the terminal
after symbolic substitution but before execution, code:

control conlist

To suppress their display, code:

control noconlist

TSO has predefined the NOCONLIST option for command procedures.
It is unnecessary for you to explicitly suppress the display of command
procedure statements unless you are overriding a previous CONLIST
specification in the same procedure.

To permit the display at your terminal of the TSO commands and
subcommands and command procedure statements before symbolic
substitution, code:

control symlist

To suppress their display, code:

control nosymlist

TSO has predefined the NOSYMLIST option for command procedures.
It is unnecessary for you to explicitly suppress the display of your command
procedure’s executable statements unless you are overriding a previous
SYMLIST specification in the same procedure.

Setting the Input Stack Flushing Options

The input stack is a queue that indicates the source of TSO’s next input.
This source can be a terminal or command procedure. When an execution

108 OS/VS2 TSO Terminal User’s Guide

®

G

iR

error occurs, TSO purges this queue (flushes the stack) and gets its next
input from the terminal.

You should prevent TSO from flushing the stack if your command
procedure has an error exit that processes non-zero return codes. In this
case, you would not want to flush the stack so that your command
procedure could continue processing.

There are two ways to control stack flushing: by specifically requesting
or suppressing stack flushing or by designating a command procedure as the
main procedure in the invoker’s TSO environment.

To specifically prohibit stack flushing, code:

control noflush

To request stack flushing, code:

control flush

TSO has predefined the FLLUSH option for command procedures. You
must use the CONTROL NOFLUSH (or CONTROL MAIN as described
below) statement in any command procedure that has an error exit.
However, for command procedures where you wish TSO to perform stack
flushing normally, it is unnecessary to explicitly specify the FLLUSH option
except to override a previous CONTROL statement that specified the
NOFLUSH option.

You can prevent your command procedure from being deleted by stack
flushing requests from the system by designating it as the main procedure in
the invoker’s TSO environment. The MAIN option provides the same
function as the NOFLUSH option previously described and also prevents
the attention exit in TSO’s terminal monitor program from deleting the
command procedure. To designate the MAIN option, code:

control main

Because the MAIN option performs the same function as the NOFLUSH
option, TSO ignores either FLUSH or NOFLUSH on a CONTROL
statement that also specifies the MAIN option.

Substituting a String for an END Delimiter

You can specify a character string to be used in place of the normal
“END” statement to denote the conclusion of DO-groups. This provides a
way for TSO to distinguish between END commands or subcommands you
may wish to place within DO-groups and the end of the DO-group itself.
To substitute another delimiter for END, code:

control end(string)

The string within the parentheses may be one to four alphameric
characters with the first character alphabetic. For example, you could code:

control end(stop)

Command Procedure Statements 109

In this case, you could use “STOP” to denote the end of DO-groups in a
procedure, until overridden by a subsequent CONTROL statement.

Assigning Values to Symbolic Variables

The SET statement assigns values to symbolic variables. The values may be
alphabetic or numeric. The SET statement is useful in any situation where
you must assign some specific value to a symbolic variable initially or where
you need to change some already established value.

A simple use of the SET statement is in a loop ¢f instructions. You can
use SET to set the loop control counter initially and also to increase the
counter for each execution of the loop.

To use the SET statement, enter it in the form:

set symbolic-variable-name = expression

The symbolic variable may be a parameter from a PROC statement, a
control variable, or a previously undefined symbolic variable. In any case,
you may enter the symbolic variable with or without its leading ampersand.

Assigning a Quantity to a Symbolic Variable

To assign a quantity to a symbolic variable, set the variable equal to a
number; for example:

set n=5

After this statement executes, the variable & N will have the value of 5

until you change it, regardless of whether or not it had some previous value.

Another way to assign a numeric value to a symbolic variable is to set
the variable equal to some other variable that already has a numeric value.
Consider this sequence:

5
&n

set n
set a

The second SET statement assigns the value of 5 to & A from the
variable & N, whose value you previously set to S.

You can also set a variable to the result of an arithmetic expression; for
example:

set b=4 + 5

The variable & B is assigned the value of 9. The arithmetic expression
itself could also incorporate variables; for example:

set n =5

set a = é&n

set b = 4+5

set ¢ = &b * (&a * &n)

To resolve the fourth expression (that is, &b * (& a * & n)), TSO uses
the values assigned to the symbolic variables & B, & A, and & N and
performs the indicated arithmetic operations. In this case, variable & C is
assigned the value 255.

110 OS/VS2 TSO Terminal User’s Guide

&

®

o)

The expressions on SET statements may also contain built-in functions.
(See the preceding topic “Built-In Functions.””) Assume an arithmetic
expression uses the length of a particular character string as one of its
factors. The representation of this character string is symbolic so that it can
apply to different character strings (of differing lengths) during the course
of command procedure execution. The & LENGTH built-in function is
performed on the symbolic variable & STRING in the following SET
statement:

set price = 5 * glength(&string)

The variable & PRICE is assigned a value that is five times the length of
the string represented by the variable & STRING.

Assigning a Character String to a Symbolic Variable

To assign a character string to a symbolic variable, substitute the characters
directly; for example:

set alphabet = abcdefghijklmnopgrstuvwxyz

The variable & ALPHABET is assigned a character string value of the
letters A through Z.

You may also use symbolic values that already represent character strings
to make such assignments:

set string = harry
set arnold = &string

As a result of these two SET statements, the character string value
represented by the variable & ARNOLD is HARRY.

You can concatenate character string values by entering them
successively without intervening delimiters or operators. Concatenated
strings may also consist of symbolic variables representing character strings.
Note the following examples:

set combo = alfred
or

set namel = al

set name2 = fred

set combo &namel1&name?2

The resulting value of & COMBO in either case is ALFRED.

Controlling Execution Flow

The execution sequence in a command procedure is controlled by
unconditional branching and by conditional statements and commands.
Unconditional branching is implemented by GOTO statements. Conditional
statements and commands are DO-groups, IF-THEN-ELSE sequences, and
WHEN commands. The following topics describe how to use these types of
unconditional and conditional execution control techniques.

Command Procedure Statements 111

Unconditional Branching

&

The GOTO statement causes an unconditional branch within a command
procedure. Code the statement in one of the following forms:

goto label-name
goto symbolic-variable

The label-name must be a valid label within the command procedure.
The symbolic-variable is one whose value, after symbolic substitution, is a
label within the command procedure.

To use the GOTO statement with a label name, code GOTO followed by
one or more delimiters and a label that identifies a command, subcommand,
or statement within the procedure; for example:

goto thatspot

Assuming that the procedure uses a label called THATSPOT, before or
after the GOTO statement, TSO branches to the command, subcommand,
or statement designated by THATSPOT when the GOTO statement is
executed. After the branch, execution continues with the instruction
identified by the label.

The target of the GOTO statement may also be a symbolic variable that
the procedure has resolved as a label name by symbolic substitution. For
example, assume a variable called & ALIAS has been assigned a value of
THATSPOT, which is a label in the procedure. You enter:

goto &alias //n\

P

When the command procedure executes this GOTO statement, TSO ~

branches to the label THATSPOT, as in the previous example.

Conditional Statements and Commands
Conditional execution is controlled by the following techniques:

« DO-groups -- sets of related instructions

« DO-WHILE-END sequences -- sets of related instructions that
execute repeatedly as long as a specified condition exists

« IF-THEN-ELSE sequences -- sets of related instructions that execute
only under certain conditions

e WHEN command -- a TSO command that causes action to be taken
for certain system return codes

DO-Groups and the DO-WHILE-END Sequence

DO-groups consist of commands, subcommands, and command procedure

statements placed between DO and END statements. These groups are to

be executed consecutively or not at all, depending on the result of a

decision coded previously in the command procedure. Using indentation for

instructions between DO and END provides an easily readable structure; i
for example: i

target: do
allocate dataset(éinput) file(indata) old
allocate datsset(&list) file(print)
end

112 O0S/VS2 TSO Terminal User’s Guide

The END statement is required. For every DO statement, there must be
a corresponding END statement to denote the end of the DO-group.
DO-WHILE-END sequences are DO-groups that execute repeatedly. The
number of repetitions depends on conditions established by WHILE.
WHILE, therefore, is a loop control operand. Consider the following
execution loop:

set &counter = 10
do while &counter gt O

sét counter = g&counter - 1
end

The variable & COUNTER is a loop counter initially set to a value of
10. WHILE causes a test of the value of this counter each time the
command procedure begins to execute the DO-WHILE-END sequence. As
long as the value of & COUNTER is greater than zero (the test condition
is true), the procedure executes the sequence, whose last instruction
decreases the counter’s value by one. When the counter’s value reaches
zero, the test condition is false, the command procedure bypasses the
sequence, and resumes processing at the instruction following the END
statement.

Entering END Commands or Subcommands within DO-Groups: There are
two ways to use END commands or subcommands within DO-groups
without denoting the end of the group to TSO.

One way is to use a control option to establish a substitute character
string (like “stop”) that TSO can recognize as the end of a DO-group
rather than the normal string “end”. A description of this control option is
in the preceding description of “Establishing Processing Options”.

Another method permits the conclusion of DO-groups with the normal
END statement. To use it, place any necessary END commands that are in
DO-groups between DATA and ENDDATA statements; for example:

set counter = 10
do while &counter gt O

(command procedure statements)

aata
edit 'dS58dewl.datapak.clist' old

(EDIT subcommands)
énd
enddata

(more command procedure statements)

ené

Only TSO commands and subcommands can appear within the DATA
and ENDDATA statements. If a command procedure statement is included,
TSO attempts to execute it as a TSO command and the result is an error. If
a command procedure statement that has the same name as a TSO
command or subcommand (for example, END) is included within the
DATA and ENDDATA statements, it is executed as a TSO command or
subcommand.

Command Procedure Statements 113

Results of Branching into a DO-group: A branch to a labeled statement
within a DO-group (via a GOTO statement) results in the execution of the
labeled statement and all remaining commands, subcommands, and
statements in the group (that is, up to the END statement that denotes the
end of the DO-group).

If the DO-group has a WHILE condition in effect, the command
procedure checks the condition when execution reaches the END statement
and re-executes the entire DO-group each time the WHILE condition is
true.

For example, consider this segment:

éet n="1

set ans 0

goto mid

do while &én le 2
mid: set ans = gans + 2 * &n
set n = &n +1
end

The result of executing the GOTO statement is as follows:

1. & ANS is set to 2; that is, (0 + 2 * 1).

C

2. & N is increased from 1 to 2.

3. The END statement is reached, and since & N satisfies the WHILE
condition, the DO-group is re-executed.

4. & ANS is set to 6; that is, (2 + 2 * 2).
5. &N is increased from 2 to 3.

6. The END statement is reached and, since the WHILE condition is
now false, the DO-group is not executed again. |

The IF-THEN-ELSE Sequence |

The IF-THEN-ELSE sequence tests a condition or set of conditions, then
determines the path for further execution based on the results of the test.
The form for using the sequence is: :

1
i
if logical-expression then action ‘
[else [actionl]] ‘

The ‘““action” may be any executable command or statement, or a |
DO-group. A logical expression consists of comparative expressions 1
connected by logical operators. !
\

For every IF statement, there must be a THEN on the same line or a B
continuation line. The ELSE action, however, is optional. If ELSE is ~ ‘ ‘
specified, it cannot be on the same line as IF-THEN. (|

i

—

114 0S/VS2 TSO Terminal User’s Guide

»
Y

July 30, 1980

Figures 19 - 21 show representations of the three primary ways of
writing IF statements. Figure 19 shows an IF-THEN-ELSE sequence
followed by additional instructions outside the sequence.

THEN
.m<
ELSE

Figure 19. Divergent-Convergent IF-THEN-ELSE Sequence
This IF-THEN-ELSE sequence would be coded as follows:

if €a + &b ge &c - &4 then do
) (an action represented by a DO-group)

end
else do

(another DO-group, providing ELSE-action)

end
. (command procedure instructions following the
IF-THEN-ELSE sequence)

In this example, the IF statement tests whether the sum of & A and & B
is greater than or equal to the difference of & C and & D. If it is (that is, if
the test for conditions is ““true’’), the THEN-action is executed. Otherwise,
the procedure executes the ELSE-action. Execution resumes after either
path of processing is complete. Note that THEN is on the same line as IF.

Figure 20 illustrates a type of IF-THEN-ELSE sequence that uses an
unconditional branch.

THEN GOTO—
-IF.
ELSE : >
Figure 20. Divergent IF-THEN-ELSE Sequence with an Unconditional Branch
The following example shows this use of IF-THEN-ELSE:

if €a = &b then goto label3
else do

: (DO-group providing an alternative to the
. unconditional branch)

énd
iabel3: ... (a command procedure instruction)
In this case, processing takes the unconditional branch only if & A equals

& B. Otherwise, the procedure executes the DO-group and the instructions
that follow it.

Command Procedure Statements 115

Page of GC28-0645-4
As Updated July 30, 1980
By TNL GN28-4753

Figure 21 shows an IF statement that provides an action (in the THEN
clause) only if the test condition is true. Otherwise, the command procedure
executes the instruction following the IF-THEN-ELSE sequence.

2=

Figure 21. IF Statement without an ELSE Clause
This IF-THEN-ELSE sequence would be coded as follows:

-IF

=
v

if &a = &b then do
) {DO-group providing an optional action)

énd

In this case, the DO-group constituting the THEN clause executes only if
& A equals & B. Otherwise, the execution sequence is from the IF
statement to the statement following END.

Indenting and Continuing Statement Lines: To help show the structural
relationship among the statements in the IF-THEN-ELSE sequence, you
should use some indentation scheme similar to the one in the previous
examples. This indentation makes your command procedures easier to read.

You can continue an IF statement to successive lines to accommodate
lengthy series of test conditions. To continue a line, enter a plus sign or a
hyphen at the end of the line you wish to continue. (Nofe: If you use the
hyphen sign for continuation reasons, it will result in a space between the
substrings; however, if you use the plus sign the space will not be included.)
Then continue the statement on the next line, for as many lines as
necessary, like this:

if &alpha ng &beta and &beta = &gamma and-
¢delta le é&epsilon and &epsilon ne €&beta and +
étheta ge &iota and &iota eq &alpha +

then . . .

This example illustrates an indentation pattern and the use of both kinds
of continuation characters. Note the exact placement of the plus sign. There
is at least one blank between it and the variable preceding it. This blank is
necessary to keep TSO from parsing the end of the second line and the
beginning of the third as AND & THETA, which would makethe logical
operator “AND” in the third line unrecognizable.

The WHEN Command

The WHEN command tests the return codes from programs that a
command procedure has invoked by the CALL or LOADGO command.
When the result of the test is true, the command or subcommand specified
on the WHEN command is executed. When the result is false, execution
proceeds with the next sequential command procedure instruction. In this
way, the WHEN command allows you to insert checkpoints into a

116 OS/VS2 TSO Terminal User’s Guide

Page of GC28-0645-4
As Updated July 30, 1980
By TNL GN28-4753

command procedure. These checkpoints can, for example, cause the
procedure to bypass certain processing when program errors make normal
execution unnecessary.

Command Procedure Statements 116.1

116.2 0S/VS2 TSO Terminal User’s Guide

July 30, 1980

(

“u
ra

Page of GC28-0645-4
As Updated July 30, 1980
By TNL GN28-4753

To use the WHEN command, specify its system return code (SYSRC)
operand, a comparison operator, a numeric value representing a return
code, and a command.

when sysrc(operator integer) command

The following example shows how to code the WHEN command. It
illustrates a command procedure that allocates three data sets, invokes a
program that uses them, and conditionally invokes an alternate procedure
named ‘“‘checkout” if the return code from the called program equals 8:

allocate dataset(input) file(indata) old
allocate dataset(output) block(100) space(300,10)
allocate dataset(list) file(print)

call weekly

when sysrc(= 8) exec checkout

Another example could end the preceding procedure if ‘“weekly”’ returns
an error code equal to or greater than 12:

when sysrc(ge 12) end

The END command is the default command for the WHEN command. If
you do not specify any other command after the condition, TSO assumes
that you wish to terminate the command procedure.

The WHEN command will work only in the TSO command environment.
You cannot use it successfully in any command procedure operating in the
subcommand environment. You must also ensure that procedures executed
as nested procedures are invoked in the command environment, if they
contain WHEN commands. (Do not invoke a nested procedure containing
WHEN from a procedure that is using EDIT EXEC, even though the
primary command procedure was invoked by the EXEC command.) The
WHEN command does not support the use of command procedure
statements in place of TSO commands after the statement of return code
test conditions. Note that the IF-THEN-ELSE sequence can make any test
that the WHEN command can make without being subject to the foregoing
restrictions. The IF-THEN-ELSE sequence can operate in the subcommand
environment and make use of command procedure statements as well as the
TSO command language.

Communicating with the Terminal User

Note: This section is intended for the user in a time-sharing environment;
this information works slightly different for background users.

WRITE, WRITENR, TERMIN, READ, and READDVAL statements
provide an interactive link between the command procedure and the
terminal user.

WRITE and WRITENR statements issue messages to the terminal user,
perhaps to tell him why he received control and to prompt him about what
he is supposed to do. The TERMIN statement causes a command procedure
to pass control to the terminal user. This statement temporarily suspends
procedure execut<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>