Systems

GC28-0725-2
File No. S370-37

0S/VS2 System
Programming Library:
MVS Diagnostic Techniques

Release 3.7

Includes Selectable Units:

Scheduler Improvements

Supervisor Performance *1

Supervisor Performance #2

Service Data Improvements

JES2 Release 4.1

3838 Vector Processing Subsystem Support
Dumping Improvements

Attached Processor System for Models 158/168
Hardware Recovery Enhancements

Interactive Problem Control System (IPCS)

VS§2.03.804
VS§2.03.805
VS§2.03.807
VS2.03.817
5752-825
5752-829
5752-833
5752-847
5752-855
5752-857

"qu“’i’u‘m'% E

Third Edition (September, 1978)

This is a major revision of, and obsoletes, GC28-0725-1 incorporating changes released in the
following System Library Supplement:

Interactive Problem Control 5752-857 GD23-0095-0 (dated March 31, 1978)
System (IPCS)

See the Summary of Amendments following the Contents for a summary of the changes that
have been made to this manual. A vertical line to the left of the text or illustration indicates

a technical change made in this edition; revision bars are not used, however, to indicate changes
made in previous editions, technical newsletters, or supplements.

This edition applies to release 3.7 of OS/VS2 and to all subsequent releases of OS/VS2 until
otherwise indicated in new editions or Technical Newsletters. Changes are continually made
to the information herein; before using this publication in connection with the operation of
IBM systems, consult the latest IBM System/370 Bibliography , GC20-0001, for the editions
that are applicable and current.

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader’s comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Publications Development,
Department D58, Building 706-2, PO Box 390, Poughkeepsie, NY 12602. IBM may use

or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information
you supply. '

©Copyright International Business Machines Corporation 1976, 1977, 1978

o~

Guide for Using This Publication

Thé following is a list of the requirements for using this publication.

o This publication contains information for the following Selectable Units:

Scheduler Improvements — SU4

Supervisor Performance # 1 — SUS

Supervisor Performance # 2 — SU7

Service Data Improvements — SU17

JES2 Release 4.1 — SU25

3838 Vector Processing Subsystem Support — SU29
Dumping Improvements — SU33

Attached Processor System for Models 158/168 — SU47
Hardware Recovery Enhancements — SUSS

Interactive Problem Control System (IPCS) — SU57

e To use this publication, you must have installed at least SUs 4, 5, 7, 17, 25,
(if you are a JES2 user), 33, and 55.

e The implied date of this publication, for the purpose of adding new
supplements/TNLs, is September 30, 1978. Always use the page with the latest
date (shown at the top of the page) when adding pages from different supple-
ments/TNLs.

Guide for Using This Publication iii

iv OS/VS2 System Programming Library: MVS Diagnostic Techniques

Preface

This publication describes diagnostic techniques and guidelines for isolating
problems on MVS systems. It is intended for the use of system programmers and
analysts who understand MVS internal logic and who are involved in resolving MVS
system problems.

This publication is intended for use only in debugging. None of the information
contained herein should be construed as defining a programming interface.
Organization and Contents

This publication stresses a three-step debugging approach:

1. Identifying the external symptom of the problem.

2. Gathering relevant data from system data areas in order to isolate the problem
to the component level.
3. Analyzing the comporient to determine the cause of the problem.

In support of this approach, the publication has been reorganized into three
basic parts consisting of five sections and three appendixes as follows:

~Part 1

Section 1. General Introduction — Describes the debugging approach that is used
and defines the external symptoms that are used to identify a system problem.

Section 2. Important Considerations Unique to MVS - describes concepts and
functions that should be understood prior to undertaking system diagnosis.
Included are: global system analysis, system execution modes and status saving,
locking, use of recovery work areas, effects of MP, trace analysis, debugging hints,
and general data gathering techniques.

Section 3. Diagnostic Materials Approach — provides guidelines for obtaining and
analyzing storage dumps of data areas affected by the problem.

Preface v

Part 2

Section 4. Symptom Analysis Approach — describes how to identify an external
symptom (loop, wait state, TP problem, performance degradation, or incorrect
output), and provides an analysis procedure for what kind of problem is causing the
symptom.

Section'5. Component Analysis — describes the operating characteristics and
. recovery procedures of selected system components and provides debugging
techniques for determining the cause of a problem that has been isolated to a
particular component. ’

Part 3

Appendixes _

A. — describes the flow of various MVS processes.

B. — provides a step-by-step approach to analyzing a stand-alone dump.

C. — contains definitions of abbreviations used throughout the publication.

vi OS/VS2 System Programming Library: MVS Diagnostic Techniques

Referenced Publications

The following publications either are referenced in this publication or provide
related reading:

System/370 Principles of Operation GA22-7000
Synchronous Data Link Control General Information GA27-3093
0OS/VS2 MVS Interactive Problem Control System (IPCS) User’s
Guide and Reference GC34-2006
O0S/VS Environmental Recording Editing and Printing (EREP)
Program GC28-0772
0OS/VS2 System Programming Library:
Initialization and Tuning Guide GC28-0681
Supervisor GC28-0628
Job Management G(C28-0627
Service Aids GC28-0674
SYS1.LOGREC Error Recording GC28-0677
Debugging Handbook (2 volumes) GC28-0751 and GC28-0752
JES3 Debugging Guide GC28-0703
OS/VS2 TCAM System Programmer’s Guide, TCAM Level 10 GC30-2051
OS/VS TCAM Debugging Guide, TCAM Level 10 GC30-3040
OS/VS2 MVS VTAM Debugging Guide GC27-0023
Operator’s Library.
OS/VS82 MVS System Commands GC38-0229
0S/VS2 MVS JES2 Commands GC23-0007
OS/VS2 MVS JES3 Commands G(C23-0008
VTAM Network Operating Procedures GC27-6997
' OS/VS TCAM Level 10 GC30-3037
OS/VS Message Library:
V82 System Messages GC38-1002
VS2 System Codes GC38-1008
3704/3705 Program Reference Handbook GY30-3012
0S/VS2 I/O Supervisor Logic SY26-3823
| 0S/VS2 System itialization Logic SY28-0623
0S/VS2 VSAM Logic SY26-3825
OS/VS2 Catalog Management Logic SY26-3826
0OS/VS2 VTAM Data Areas SY27-7267
| 0S/VS2 Access Method Services Logic SY35-0010
OS/VS2 VTAM Logic SY28-0621

OS/VS2 System Logic Library (7 volumes) SY28-0713 through SY28-0719

Preface vii

viii

0S/VS2 CVOL Processor Logic
OS/VS2 MVS JES2 Logic
0OS/VS2 VIO Logic
OS/VS2 MVS JES3 Logic
OS/VS2 TCAM Level 10 Logic
- IBM 3704 and 3705 Communications Controllers NCB/VS Logic

0S/VS2 Data Areas (microfiche)

" 3704/3705 Communications Controllers Principles of Operation

IBM 3704/3705 Communications Controllers Emulation
Program Generation and Utilities Guide and Reference Manual

IBM 3704/3705 Communications Controllers NCP/VS Generation
and Utilities Guide and Reference Manual

0S/VS2 System Programming Library: MVS Diagnostic Techniques

SY35-0011
SY24-6000
SY26-3834
SY28-0612
SY30-3032
SY30-3013
SYB8-0606
GC30-3004

GC30-3008

GC30-3007

Contents

Section 1. General Introduction 111
|~ Basic MVS Problem Analysis Techniqueso oo evnennnnn.. 1.1.1
IPCS — Interactive Problem Control System. 1.1.4
Section 2. Important Considerations UniquetoMVS 2.11
Global System Analysiso o ittt it it ettt e e e e e 2.1.3
Global Indicators that Determine the Current System State. 2.1.3
Work Queues, TCBs and Address Space Analysis 2.1.6
TCB SUMIMATY. « . v v v v et e e ot e et et et o ettt ettt teeane s 2.1.6
SRB DispatchingQueues.o v i ittt ittt 2.1.7
Address Space Analysis. oo e 2.1.7
Task Analysis o . oottt i e e e e e e e e e e e 2.1.8
SUMMALY. o ittt e e e e e e e e e e e e e e 2.1.10
System Execution Modes and Status Saving. 0L 2.2.1
System ExecutionModes i ittt e e e e 2.2.1
TaskMode. it e e e e e 221
SRBMode. F o e et e e e ettt 2.2.2
Physically DisabledMode it ittt ittt e 2.2.2
LockedMode e e e e e e e e 2.2.3
Determining Execution Mode From a Stand-aloneDump 224
Locating Status Informationina StorageDump 2.2.5
Task/SRB Mode INterruptions. « . « . o v v v oo v v oo vt et on e enns 2.2.5
Locally Locked Task Suspension« c vt v v v it it e v onnn. 2.2.6
SRB SUSPENSION. . . & v vt v it st et e e s e e 227
Locking e e e e e e et e e e e e e e 2.3.1
Classes Of LoCKS. « . v v vt it vt it i e e e e e e e et ettt e 2.3.1
Typesof Locks v v it it i i e e e e e e e e 2.3.2
Locking Hierarchy i vt i i it it tie e e e e e ettt aeeean 2.3.3
Determining Which Locks Are Held OnaProcessor 2.3.4
Content of Lockwords o v ittt et et e e e e e e e e e e 235
How to FInd LockWords. v vt vt vt et e e e e e et e e aee e vs 2.3.5
Results of Requests for Unavailable Locks. 2.3.7
Use of Recovery Work Areas for Problem Analysis. 2.4.1
SYSI.LOGREC Analysis.t o it it ettt e e e et e e e 24.2
Listing the SYSI.LOGREC Data Set v v v v v v v v i 24.2
SYSI.LOGREC RECOIAS. . v v v v v vt et v es oot emeeeanae e 24.3
Important Considerations About SYSI.LOGREC Records 2.4.13
SYS1.LOGREC Recording Control Buffer. 24.14
Formatting the LOGRECBuffer, 2.4.15
Finding the LOGREC Recording ControlBuffer 24.15
Format of the LOGREC Recording Control Buffer. 2.4.15
FRR SIACKS « . o it ittt it it it ettt et es s o nnennas 2.4.17
Extended Error Descriptor (EED)0t i i v ii i, 24.19
RTM2 Work Area (RTM2WA).ottt i it it it et e et et ans 2.4.19
Formatted RTM Control Blocks . . .« ¢« o e v v e v i i e i e oo e e 2.4.19
System Diagnostic Work Area (SDWA) UseinRTM2 2.4.20
Effects of Multi-Processing On Problem Analysis 2.5.1
Featuresof an MP Environment. ittt erennns 2.5.1
MPDump AnalysiS o v v v it e it et e e e e e e 2.5.2
Data Areas Associated With the MP Environment. 2.5.3
Parallelism vttt it i it e et e e e 2.5.4
General Hints for MP Dump Analysis. 2.5.6
Inter-Processor Communication. i ittt et e e e 2.5.7
Direct Services. . - . v v i v vt i it it et e e e e s, 2.5.8
Remote Pendable Services.o v it ittt i i e e 2.5.9
Remote Immediate Servicesot vttt it e 2.5.10
MPDebugging Hints i ittt i it ettt noneeernssnns 2.5.16

Contents ix

MVS Trace Analysis0cuv0..n. e e i e e et e e e e e 2.6.1

Trace Entries e e e e e e e e i e e e e 2.6.1
Trace EXamples i v vt vt it e e i e i e e e e e 2.6.3
NOteS fOr TIACES. &+ o v v v v v v v e e vieie v st e n e anoe oo man e 2.6.5
Tracing Procedure. e e e e et e e e 2.6.5
Cautionary NOtes . . o o v it it it e e et e e e e e e e e e 2.6.7
Miscellaneous DebuggingHints e e 271
Alternate CPU Recovery (ACR) Problem Analysis 271
Pattern Recognitionttt inennnennnns 2.7.3
Low Storage Overlays et e et e e e 2.7.4
CommonBad Addresses v oo it i it it i e e e 2.5
OPEN/CLOSE/EOV ABENDS. & . v v v vttt v e e et ettt e e ineee e 2.7.5
DebuggingMachineCheckso v v v it i i e e e e 2.7.6
Debugging Problem Program Abend Dumps. 2.7.11
Debugging from Summary SVCDumps oo it i v v v, 2.7.14
SUMDUMP Output for SVC-Entry SDUMP. 2.7.14
SUMDUMP .Output for Branch-Entry SDUMP 2.7.16
I Started Task Control ABEND and ReasonCodes.o v. ... 2.7.18
SWA Manager Reason Codes. o v it i it i et e e e 2.7.19
Additional Data Gathering Techniques.o iv i 2.8.1
Using the CHNGDUMP, DISPLAY DUMP, and DUMP Commands. 2.8.2
HowtoPrint Dumps v v ii et ittt e e e it e e e s onoenns 2.8.2
I How to Automatically Establish System Options for SVCDump 2.8.5
How to Copy PRDMP Tapes. v o v i vt vttt i it i i i i s eneans 2.8.5
Howto Rebuild SYSLLUADSottt it ettt e et i nn s 2.8.6
How to Print SYSI.DUMPXX vt ittt it it ittt en et e e ee e 2.8.7
How to Clear SYS1.DUMPxx WithoutPrinting. 2.8.7
How to Print the SYSI.COMWRITE DataSet.0.v.... 2.8.8
How to Printan LMOD MapofaModule 2.8.8
How to Re-create SYS1.STGINDEX ittt it ittt ee e nns 2.8.9
Software LOGREC Recording. v o et it ittt i e e i enean 2.8.9
Usingthe PSAasaPatch Area. v ittt i ittt e enne e 2.8.10
Usingthe SLIPCommand v v vttt it v et e et e e e ee e eee e 2.8.10
Designing an Effective SLIP Trap. e e 2.8.12
Enabling the PER Hardware to Monitor Storage Locations 2.8.15
System StopRoutine. 4 e e e 2.8.17
Using the MVS Trace to Monitor Storageot i v v v e v 2.8.18
How To Expand the Trace Table . « v v v v v v v v v e v e ot e eee e e 2.8.18
Section 3. Diagnostic Materials Approach. B e dae e e e 3.1.1
Standalone DUmPs ot v it i e e e e e e e e e e e e 3.1.3
SVCDUMPS « & . vt it et e e e e e e e e e e e e e e e e 3.1.5
How to Change the Contents of an SVC Dump Issued by an Individual
Recovery Routine. i ittt it i e et e e en e 3.1.6
SDUMP Parameter List. v o o v v e v i it ie e e v et e enan... 317
SYSABENDs, SYSMDUMPs,and SYSUDUMPS.o v v v e e e e nn . 3.1.9
“Software-Detected EIrors . . . ¢ . .o oot it it e e e e e e e 3.1.9
Hardware-Detected Errors e e e e e et e e e e 3.1.10
Section 4. Symptom Analysis Approach00vuuuu... 4.1.1
12N 4.1.3
Characteristics of Enabled Waitst vt v in e nensnen.. 4.1.3
Characteristics of DisabledWaits 4.1.4
Analysis Approach for Disabled Waits 4.1.5
Analysis Approach for EnabledWaits 4.1.7
Stage 1: Preliminary Global System Analysis. 4.1.8
Stage 2: Key Subsystem Analysis00 i et nn... 4.1.10
Stage 3: System Analysis v v it ittt e e e e e e .. 4.1.15
0T+ o T 421
Common Loop Situations ittt 4.2.1
AnalysisProcedure i e e et e, 422

x O0S/VS2 Systefn Programming Library: MVS Diagnostic Techniques

==

TP Problems. it i e e e e e e e e e e e e et 4.3.1

Message Flow Through the System 4.3.1
Typesof Traces v i ittt i i e et ettt e e ... 433
EPMOde Traces. « & v v v v vt ettt v ie e et e ot e an e 434
NCPMoOde Traces. o v v v v v i e o e it e e e e et et e et et et ie e 4.3.5
Trace Output Under Normal Conditions. 4.3.7
Example 1: VIAMI/OTrace. i vt it it e it e et it e ee e 4.3.7
Example 2: VTAMand GTF Traces.o v ii v e, 4.3.12
NotesonExamples 1and 2 . .« « v v v et vt it vttt vt et e e saean 4.3.27
SUMMALY. & . it e ittt e et e et it te e o s e an s snnsnsas 4.3.28
VTAM Buffer Trace Modification. 4.3.29
VTAM I/O Trace (RNIO) Modification 4.3.29
Other TracingMethods. 4.3.30
Performance Degradationo v it it ittt e 4.4.1
OperatorCommands oo v v vt o it it bt et e e e e 4.4.1
Dump Analysis Areas. . . . v v v v v i v e e e e e e e e e e e 442
IncorrectOutput e e e e e e e e e 4.5.1
Initial Analysis Steps e e 4.5.1
Isolating the Component.ot v v ittt ittt et et e e e 45.1
Analyzing System Functions i, 4.5.2
SUMMALIY. « v v v it e et et et e ettt i e ettt aee oo 453
Section 5. Component Analysiso vt i in it 5.1.1
Dispatcher.o i it e e e e e e e 5.1.3
Important Dispatcher Entry Points. 5.1.3
Dispatchable Units and Sequencing of Dispatching. 5.14
Dispatchability Tests v v v vt v vttt e e it ettt 5.1.10
Miscellaneous Notes About the Dispatcher 5.1.12
Dispatcher Recovery Considerations« v v v v v v v vt e v o ve e e 5.1.13
Dispatcher Error Conditions.o vv v iin ittt 5.1.14
JOS . e e e e e e e e e e e 5.2.1
Front-End Processing.o oo v i ittt ittt it e e e 5.2.1
Back-End Processing o v v v v it it e e e e e e e 5.2.1
IOS Problem Analysis . . . c v v v vt v vt et e et i et ettt e 5.2.1
IOS Abend Codes. . . . v o v vt vttt e e e e e e e 5.2.4
) 0T SO 5.24
TOSWait States .« v v v v v it i ettt et et s e e e 5.2.5
General Hints for IOS Problem Analysiso viv .. 5.2.6
Error Recovery Procedures (ERPs) i i i ... 5.2.8
JIOSand ERPProcessingo v o v v oo oot o s vt te o neaeoennas 5.2.8
Identifying ERP Module Names. . . v . .o v v v v v vt i e e i ee e e 5.2.9
How ERP TransfersControl. v i vttt v it i et ian e enn 5.29
Abnormal End Appendages v v it ittt e e e e 5.2.10
Retry/Restart the Channel Program0..... 5.2.11
ErrorInterpreter v v o v v v it e e e e 5.2.11
ERP Messagesand Logging. oo o vt it vt it in et ieee e 5.2.12
InterceptConditions it e e e 5.2.13
Unit Checkon SenseCommand. vt v vt vt v vt e . 5.2.13
Compound Errors. et et e e 5.2.13
Diagnostic Approach v v v vii vt i i it i e e e 5.2.14
Program Manager . . « . v v vt vttt e e e e e e e e e 5.3.1
Functional Description. ¢ v i v v v v vttt vt e i i e s 53.1
Program Manager Organization, 5.3.1
Program Manager Control Blocks 5.3.1
Program Manager Queues 5.3.2
Queue Validation. i vt it ittt i e e 534
System Initialization i e 5.3.5

Contents xi.

Xii

LINK . .o i e e e e e e e e e e e 5.3.5
ATTACH. . . oo e e et e e e e e e ae e e e 5.3.8
D4 ¥ 5.3.8
LOAD . .. i e e e e e e e e 5.3.11
DELETE. . it v ittt it i et i e e e e e e e e e e e e 5.3.11
Exit Resource Manager. o v v v v v v vt oo ot ot e, 5.3.11
SYNCH. . i it e i e e e e e e e e e e 5.3.12
IDENTIEY. . o i i e e e e e e e e e e e e e e e 5.3.12
Abend ResourceManager v v v it vttt e i e e e 5.3.13
806 Abend. L. e e e e e et e e e 5.3.14
APF Authorization i it it e i e e e e e e e e 5.3.14
Module SUbPOOIS . .« ccv i i e i e e e e e e e e e e e e e 5.3.19
Fetch/Program Manager Work Area (FETWK) 5.3.19
RB Extended Save Area (RBEXSAVE) 5.3.20
VM L e e e e e e e e e e e e e 54.1
Address Space Initialization. i . 543
Step Initialization/Termination 0ttt i, 5.4.5
Virtual Storage Allocation. O 5.4.6
GETMAIN’s Functional Recovery Routme 5.4.8
VSM Cell Pool Management e e e e e e e 54.10
Miscellaneous DebuggingHintst 5.4.10
Real Storage Manager (RSM) e i e e e e e 5.5.1
Major RSM Control BIOCKS .. © v v v vie v v n e ... e 5.5.1
PCB. . .. e e e e e e e e e e e e e 5.5.3
R3] 1 5.5.5
PFTE. S e e e e e e e e e 5.5.6
Page Stealing. e e e e e e 5.5.6
Reclaim T 5.5.8
Relate e e e e e e e e e e e e 5.5.8
RSM RECOVEIY . & o vt i it it i e e it e et it e et e e it e e en e 559
RSM Debugging Tips. oo oo ti i i it e e e e e 5.5.12
Converting a Virtual AddresstoaReal Address. 5.5.13
Example: Converting a Virtual Address to a Real Address. 5.5.15
Auxiliary Storage Manager (ASM)« o i it ittt i e 5.6.1
Component Functional Flow 5.6.2
Savingan LG L i e e e e e e 5.6.2
RequestingI/O . . .« . oo ittt e e 5.6.3
Requesting Swap I/O. L ittt e e 5.6.4
Component Operating Characteristicso 5.6.4
SystemMode . . . oo i i e e e e e e e e e e e e e e e e 5.6.4
Address Space, Task,and SRB Structure. 5.6.6
Storage Considerations. I 5.6.6
MP Considerations o v v v v v vt vt it e e e e 5.6.6
Interfaces With Other Components.ot ti i, 5.6.7
Register Conventions.o o v v vttt ittt it e it et e 5.6.7
Footprintsand Traces« i ¢ v v v it v it ittt et et e 5.6.7
General Debugging Approacho i i i e 5.6.8
PagingInterlocks e e e e 5.6.8
IncorrectPages e 5.6.9
Finding the LSID foraGivenPage 56.10
Finding LSIDsof VIO Data Sets 5.6.10.
Locate PART and PAT Bit. oo v it i oot 5.6.12
Converting a Slot Number to a Full Seek Address 5.6.14
Unusable Paging Data Sets. v vv v e v v vt it v o e e eeeten e 5.6.15
Page/Swap Data SEt EITOIS. & v 4 v v v v v o v v v et v e e e ee o e nneee e 5.6.17
Error Analysis Suggestions. e e 5.6.18
Validity Checking.o v v v i ittt it e it e et ettt e et 5.6.19

0S/VS2 System Programming Library: MVS Diagnostic Techniques

ASM Serialization. it i e e e e e e e e e e e 5.6.19

SALLOCLOCK . . v ittt ittt e it e e et e e e et e i e 5.6.19
ASMClass Locks . . . v v v v i ittt i e et e e e e e e e e 5.6.20
Local Lock of Current Address Spaceo v v vt vn v e 5.6.21
Compare and Swap (CS) Serialization 5.6.21
Serialization via Control Block Queues. 5.6.22
Recovery Considerations. v i ittt it e it et e 5.6.22
Recovery Traces. o v o v it ottt et e e e e e e e e e 5.6.23
Recovery Structure. o v v it i it i e et et e e e e e 5.6.23
Recovery asa DebuggingTool., 5.6.24
Recovery Footprints v o v ittt it e e e e e e e e e 5.6.24
FRR/ESTAE WOIK AT€aS « + v o v v v e ot oot e oot e e e e eane e 5.6.24
‘SDWA Variable Recording Area.0uuuireuee... 5.6.25
ASM Diagnostic Aids. 0 it ittt e e e e e e e e 5.6.25
COD ABEND Meaningsfor ASM e 5.6.26
ASM Recovery Control Blockso v v ittt it it i 5.6.26
ASM Tracking Area (ATA) i i 5.6.26
Recovery Audit Trail Path (EPATH) 5.6.29
Additional ASM Data ATeaS. .« « v v v v v v ettt e e e 5.6.32
BSHEADER. o i e e e e e e e e 5.6.32
BUFCONBK. . . .t e ittt e e e e e e e e et 5.6.33
DSNLIST . .ttt it e e et e e e e e e e 5.6.33
MSGBUFER. ittt e i et i et it eae e 5.6.34
System Resources Manager (SRM) i, 5.7.1
SRM Objectives e e e e e e e 5.7.1
Address Space States. @ e e e e e e e e e 5.7.2
SRMIndicatorso it it i e e e e e e e e 5.7.3
System Indicators. o v it i e e e e e e e e e e 5.7.3
Individual User Indicators ittt i it ittt e in e, 5.7.6
Other Indicators. v vt vt v it e it e et e e e e et et e e e 5.7.8
SRMError Recovery o o o ittt e e e e e e e e e e e e e e e 5.7.8
Module Entry Point Summaries. it 5.7.8
IRARMINT — SRM Interface Routine 5.7.9
IRARMEVT — SRM SYSEVENTRoutero vv v v iiin . 5.7.9
IRARMSTM — Storage ManagementRoutine.u0on... 5.7.9
IRARMSRV — SRM Service Routine. oo v v v ve e enn. 5.7.10
IRARMERR - SRM’s Functional Recovery Routine. 5.7.10
IRARMCPM — Processor Managementcuoveuoeunon 5.7.11
IRARMIOM — I/OManagementcuouuvuuueneeennenn 5.7.12
IRARMRMR - ReSOUrCE MANager "« . v v v v v v v e e e e eeae e s s 5.7.13
IRARMCTL — SRM Control Algorithms 5.7.13
IRARMWAR- Workload Activity Recording 5.7.15
IRARMWLM- SRM Workload Manager. oo v v i i i v v s on 5.7.16
VIAM e e e e e e e e e e e e e 5.8.1
VTAM’s Relationship WithMVS e e 5.8.1
Processing Work Through VTAM\t e it et e e et eeae e 5.8.2
VTAM Function Management Control Block (FMCB) 5.8.5
VTAM Operating Characteristics oo v v i v v v v it i e e e 5.8.6
Module Naming Convention. . . '\ oo v v e iit e ennn 5.8.6
Address Space Usage v v vt it i e e e e e e 5.8.6
LOoCKING . ot i i it i e e e e e e e e e e e e e 5.8.7
VTAM Recovery/Termination. -« v ovvininieeeeenennn . 5.8.8
VTAM Debugging. e e e e e e e e e e 5.8.10
Waitso i e e ettt e e . 5.8.11
Program Checks. . v v v v v v it v it et it et e e et e e e 5.8.15
Miscellaneous Hintson VTAM 0t i it ittt ittt eeenonn 5.8.15
VS AM L e e e e e e e e e e e e e e e e e e, 5.9.1
Record Managementttt it i i in it s et e i e 5.9.1
RPL. .. e e e e e e e e 5.9.1
50 5 59.2
BUFC. . . it e e e e e e e e e e e e e 593

Contents xiii

Record Management Debuggihg Aids. . . . o i e e e 5.9.3

Open/Close/End-of-Volume e e et e et a i e 5.9.6
O/C/EOV Debugging Aids v o v vt vttt et it eeaen e 5.9.7
JJOManager. . .o v it vt e e e e e e e e e e 59.8
I/OManager Debuggingo i ittt i e e 5.9.9
Catalog Management e e e et e e e e e 5.10.1
Major Registersand Control Blocks. v oo oo v m v vt e s e s e ee e 5.10.1
HowtoFindRegistersttt neenen. §.10.1
Major Registers - . . .o v v v it it it it ittt teteeeann e 5.10.2
Major Control Blocks. e e e e e 5.10.2
Module Structure. o et e e et e e e e e 5.10.9
VSAM Catalog Recovery Logic e e e e e 5.10.10
Establishing/Releasing a Recovery Environment 5.10.10
Maintaining a Pushdown List EndMarko e e 5.10.10
Tracking GETMAIN/FREEMAIN Activityo vnn s 5.10.11
CMSFunctionGate. v o v v i i e vttt e eaeesanen ... 5.10.11
Recovery RoutineFunctions 5.10.12
DiagnosticOutput o i i ittt it e e r e s e 5.10.12
Backout e e e e 5.10.13
Drop Catalog Orientation s 5.10.13
Storage FIeeup . o v v v v vt vt it it it e e e e e e e e 5.10.13
DEFINE/DELETE BacKOUt . + v v+ v v v e v oo e e oo e aemneeaans 5.10.14
Debugging Aids e e e e e e e e e e e e e e 5.10.15
Allocation/Unallocation« v vt v ettt i ettt ettt i 5.11.1
Functional Description. i, 5.11.1
Allocation i v it it e i e e e e e et e e e, 5.11.2
Unallocation. . . . o v v v v v it vt vt e s o bt o s ae oo n e 5.11.2
Batch InitializationandContiol.o it it 5.11.2
Dynamic InitializationandControl. oot i e v 5.11.3
JFCBHousekeepingo i i it vt i it ittt et 5.11.3
Common Allocationo v it ittt in ittt it e 5114
Fixed Device Allocation . . . v . . v v v v vt v i vt vt in e o nnn e 5.114
TP Allocationt vt ittt it ettt et it e e 5114
Generic Allocation e e e e e e e e e 5.11.5
Recovery Allocation v v v ittt it ittt s s aeononn 5.11.5
CommonUnallocation v vt vt vt e ettt ie e nenennn 5.11.5
Volume Mountand Verify.ttt 5.11.5
General Debugging Aids i i e 5.11.6
Allocation Module Naming Conventions. AR 5.11.6
Registersand Save Areas.ottt ittt 5.11.6
Common Allocation Control Block Processing 5.11.7
ESTAE Processing P e et e .. 5.11.10
Debugging Hints. it ittt ittt ittt een e 5.11.11
Allocation Serialization o, 5.11.11
Subsystem Allocation Serialization. 5.11.12
Device Selection Problems (Non-Abend). 5.11.12
Address Space Termination ¢ it v vt et et e e e 5.11.13
OBOAbend.uvveeuenn s e e et e 5.11.13
0C4 Abend in IEFAB4FC, or LoopinIEFDB413 5.11.13
~ Volume Mount and Verify (VM&V) Waiting Mechanism. 5.11.14
Allocation/Unallocation Reason Codes. . o v v v v v v o v v v v v neneennn 5.11.16
Common and Batch Allocation and JFCB Housekeeping Reason Codes 5.11.16
Common and Batch Unallocation ReasonCodes 5.11.19
Dynamic Allocation ReasonCodes. L. 5.11.19
JES2 . . e e e e e et e et e e 5.12.1
JobProcessing Through JES2 5.12.1
3 2 5.12.1
Conversion. e e e e e e e e et et e e e e 5.12.1
EXecution vt ittt it et e et e 5.12.1
OUEPUL . & o ot it et e e e e e e e et et e e, 5.12.1
g T L 5.12.2

Xiv OS[V 82 System Programming Library: MVS Diagnostic Techniques

JES2 StrUCTUIE . v v v v vttt e et o e et et s o et s oo n oo 5.12.2

HASJES20 Program StruCture, . . « v v v v v v v e v v e e e e e e n ... 5122
HASJES20 Module Structure v v v v v v vt e et ittt e e 5.12.3
HASP Control Table (HCT) v v v it e e e et et et e e e e v 5.12.4
HASPSSSM . . .ot e e e e e e e e 5.12.6
Subsystem Interface i i e e e 5.12.7
Dispatcher StruCture v v v vt i i it e et e e e e e e e e e 5.12.9
SWALT . . e e 5.12.9
B POST & . . e e e e e e e e 5.12.10
JES 2 WAIT . . e e e e e e e e e 5.12.10
Dispatcher Queue Structure v v it vt it et e e et e e 5.12.10
JES2 Error Services. & v v v v vt i e e e e e e e e e e e e e e e e e 5.12.11
Disastrous Error Routine., 5.12.11
JES2ESTAEROULING . & . v v v vt it e ettt it et it e e e e ae e as 5.12.13
Catastrophic ErrorRoutine 5.12.13
JES2ExitRoutine ittt i e e e e e e 5.12.13
Input/Output Error Logging Routine. 5.12.14
JES2 $DEBUG Functions In a Multi-Access Spool Configuration 5.12.14
Initialization. e 5.12.15
2 Vs R 5.12.15
Write e e e e e e e e e e e e e e e e e e 5.12.15
Release. . v o vt it it i e e e e 5.12.16
Miscellaneous Hintson JES2 it 5.12.16
Starting JES2 — Enqueue Waiton STCQUE. 5.12.16
Subsystem Interface (SSI). e e e e e e e e e e e e e e 5.13.1
System Initialization Processing. 5.13.1
Subsystem Interface Major Control Blocks 5.13.2
Requesting Subsystem Services v v v v v v i it i e s 5.13.5
Invoking the Subsystem Interface. 5.13.5
Logic Flow Examples. i ittt e 5.13.7
Notifying a Single Subsystemot il e 5.13.7
Notifying All Active Subsystemso, 5.13.8
Debugging Hints.o ittt i i it e e 5.13.9
Recovery Termination Manager (RTM) it nnnn. 5.14.1
Functional Description. . . « v v vt v vt v et s e e e e e e e e 5.14.1
WOIK AT€aS . o . vt i it e e e e et e e e e e e e e e e e 5.14.1
Major RTMModules ittt ittt it et 5.14.1
ProcessFlow. C e e e 5.14.2
Hardware Error Processing. « . o v v v v o v o v v e om oo e eeeen e 5.14.2
Normal Task Termination 5.14.4
Abnormal Task Termination. v, 5.14.5
Retry . & v it i e e e e e e e e 5.14.6
Cancel i e e e e e e e e 5.14.7
FORCECommandttt iiin i nnnnes 5.14.8
Address-Space Termination i ittt ittt 5.14.9
Error ID o v o e e e e e e e e e 5.14.10
SVCDump Debugging Aids« .o v v v it e e 5.14.11
Important SVC Dump Entry Points, 5.14.11
BRANCH=YESOption. i it ie e e 5.14.11
BRANCH=NO OpLION v v it it ittt e et e i oo 5.14.11
SVCDump Error Conditions v v i v ittt e e 5.14.12
SYS1.LOGREC Entries Produced for SVC Dump Errors 5.14.12
Fixed Data. . o o v v v o et e e e e e e e e 5.14.12
Variable Data . . . v v v vt e e e e e e e e e e 5.14.13
Control Blocks Used to Debug SVCDump Errors 5.14.14
Address Space Control Block (ASCB) 5.14.14
Recovery Termination Control Table (RTCT). 5.14.14
SVC Dump Work Area (SDWORK). o vt 5.14.14
Summary Dump Work Area (SMWK). 5.14.14
Resource Cleanup for SVCDump. o o oo v v i v oo e 5.14.15

Contents "xv

Xvi

COmMMUNICAtIONS TASK « + « v v v v v e e e e o et e me ee e e e te e 5.15.1

Functional Description.o v v it i ettt e e nan [P 5.15.2
Communications Task Control Blocks . . . o v v v v v v v i i it i i i i v e vt 5.154
DebuggingHints. ot it it ittt ittt ittt 5.15.6
Console Not Responding to Attention. Y 5.15.6
Enabled Wait State o0 i v it ittt ittt e e 5.15.6
Disabled Wait State.o o i ittt i et i i it 5.15.7
Messages or RepliesLost. e e e e, 5.15.7
No MessagesonOneConsoleo vt it vt in it i eennnas 5.15.8
Messages Routed to WrongConsole. v v vt v v i v e i oo v vnans 5.15.8
Truncated Messages. . . v v v o v v e ot v o vt oot ot e e 5.15.9
Console Switching e et et et e e e 5.159
DIDOCS Trace Table. e e et e e e e 5.159
DIDOCS-In-Operation Indicatort iiv i eaenn. 5.15.10
DIDOCSLOCKING . & v v v vt vt v e e e ettt tnaaneseeenns 5.15.10
Appendix A: Process FIOWs. v . i i it it it it it e et e e e nnasaen A.l.l
RSM Processing forPage Faults. i it ennnn A.l3
JEAVPIX TEStS « v v o oo ot i e e e i s aeme e e teneseenaesenen Al3
IEAVGFATESIS. o o v vt ittt it e it ettt st ancannonoeeneans A.l3
IEAVPIOP TEStS . o v v v vt et ot i ie s e vt s e s o nnansoennnaeans Al.6
IEAVIOCP TestS . . o v v vttt e v te e e et v ae s nnesonenneeean A.l.6
SWapping. i e e e e e e e e e e e A.2.1
SWap-IN Process. . . ¢ v i v i i et e et e e e e e et e e e e A.2.1
SWaP-OUL ProCesS. & « v v v v v ot i ettt ettt s ae et A2.3
00 (01 7] (00 A3l
GETMAIN/FREEMAIN It A4l
GETMAIN Processing . « o v v v v o o v e oot e te e to e easacenneas A4l
FREEMAIN Processing. e e et e Ad4.2
VTAMPIocess. . . v v i vttt it et et e it et ettt e et e e s A5
T80, & i e e e e e e i e e e e, A6.1
Time Sharing Initialization., A6.1
LOGONPIOCESSING . « v v v v v v o vt et e e ottt ie se s aonnns A64
LOGON Scheduling Diagnostic Aids« - v v v v i v v vt e vt v v e e A6.12
TSOLine Drop Processing. . . . o v ot v vttt it ettt v e e naennns A6.14
TMP and Command Processor Interface ettt e e e A6.17
TSO Command Processor Recovery it iiiennnnenns A.6.21
TSO Terminal /O OVerviEW v v vt vt vttt e it v v o eee e A.6.23
Terminal Output Flow it A.6.24
TerminalInput Flow ot ittt it it i et e e A.6.25
TSO/TIOC Terminal I/O Diagnostic Techniques vt e v A.6.26
TSO AttentionProcessing« v v vt vt i it e e A.6.27
Appendix B: Stand-aloneDump Analysis.ttt B.1.1
L0 55 4 T B.1.1
AnalysisProcedure it it e e e e et et et e e B.1.7
Appendix C: Abbreviations. ittt it e e e C.1.1
IndeX . . oo i e e e e e e e i e e i e e e LL.1

0S/VS2 System Programming Library: MVS Diagnostic Techniques

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2-14.
Figure 2-15.

Figure 2-16.
Figure 2-17.
Figure 2-18.

Figure 4-1.
Figure 4-2.
"Figure 4-3.
Figure 4-4.
_Figure 4-5.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.

Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 5-13.
Figure 5-14.
Figure 5-15.
Figure 5-16.
Figure 5-17.
Figure 5-18.
Figure 5-19.
Figure 5-20.
Figure 5-21.
Figure 5-22.
Figure 5-23.
Figure 5-24.

Figure 5-25.

Figure 5-26.
Figure 5-27.
Figure 5-28.
Figure 5-29.
Figure 5-30.

Figure 5-31.

Figure 5-32.
Figure 5-33.

Definition and Hierarchy of MVS Locks .

Bit Map to Show Locks Held on a Processor
Classification and Location of Locks . .
SYS1.LOGREC Software Incident Record 1.
SYS1.LOGREC Software Incident Record 2.
SYS1.LOGREC Software Incident Record 3.
Format of the LOGREC Recording Control Buffer

Format of Records Within the LOGREC Recording Control Buffer .

SIGP Return Codes .

External Call (XC) Process Flow

Emergency Signal (EMS) Process Flow

How to Locate the Trace Table

Types of Trace Entries . . i

MVS Trace of a Page Fault Wrthout I/O

MVS Trace of a Page Fault With I/O .

GTF Trace of a Page Fault Without I/O .

GTF Trace of a Page Fault With I/O .

Trace Example of PER Hardware Monitoring

Summary of EP and UCP Mode Traces

VTAM]/O Trace Example .

VTAM and GTF Traces Example .

JES2 Commands for Status Information .

System Use of Hardware Components .

Global SRB Queue Structure and Control Block Relatlonshlps
Local SRB Queue Structure and Control Block Relationships .
Dispatcher Processing Overview ..
10S Processing Overview . . .

Major I0S and EXCP Control Block Relatronshrps .

Program Manager Modules . .

Program Manager Control Blocks and Work Areas .

Program Manager Queues

IEAVNPOS Initialization’

New PRB Initialization — LINK

New RB Initialization — XCTL

XCTL RB Manipulation

CDE Initialization by IDENTIFY .. .
Module Search Sequence for LINK, ATT ACH XCTL and LOAD.
Module Search Sequence of Private Libraries N
CDE Allocation . . .

VSM’s View of MVS Storage

VSM’s Control Block Usage

VSM’s Global Data Area

SDWAVRA Error Indicators

VSM Cell Pool Management . .

Major RSM Control Blocks and Their Functlons
Relationship of Critical RSM Control Blocks

Page Stealing Process Flow .

Converting Virtual Addresses to Real Addresses

Relationship of Important ASM Control Blocks .

Locating an LSID From an LPID . .

Relating the Virtual Address to the PART and PAT
Page/Swap Data Set Error Action Matrix .

SRM Control Block Overview .

SRM Module/Entry Point Cross Reference

VTAM Control Block Structure

Several RPHs Waiting for the Same Lock

Figures

. 232
. 234
- 2.3.6
. 244
. 2.4.7
- 24.11

. 2.4.16
- 2.4.16
- 2.5.8

- 2.5.12
- 2.5.14
- 2.6.1

- 2.6.2
. 263

. 263
. 264
. 264
. 2.8.16
. 433
. 438
. 43.14
. 4.4.2
. 4.4.3
. 5.1.5
. 5.1.7
. 5.1.9
.5.2.2
.5.2.3
.53.2
.5.3.3
533
. 5.3.6
. 5.3.7
.5.3.9
. 5.3.10
. 5.3.13
. 5.3.15
. 5.3.16
.5.3.17
.54.2
. 5.4.4
. 5.4.7
. 5.4.9
L5411
.5.5.1
.5.5.2
. 5.5.7
. 5.5.14
. 5.6.5
. 5.6.11
. 5.6.13
. 5.6.17
574
. 5.7.20
. 583
. 5.89

Figures

xvii

Xviii

Figure 5-37.

Figure A-2.
" Figure A-3.-
Figure A4,
Figure A-S.
- Figure A-6.
Figure A-7.
Figure A-8.
Figure A-9.

Figure A-10.
Figure A-11.
Figure A-12.
Figure A-13.

Figure B-1.

Figure 5-34.
Figure 5-385.
Figure 5-36.

Figure 5-38.

Figure 5-39.
Figure 5-40,
Figure 5-41.
Figure 5-42.
Figure 5-43.
Figure 5-44.
Figure 5-45.
Figure 5-46.
Figure 5-47.
Figure 5-48.
Figure 5-49.
Figure 5-50.
Figure 5-51.
Figure 5-52.
Figure 5-53.
Figure 5-54.
Figure A-1..

Sample Storage Pool Dump .

Queueing of RPHs While Waiting for Storage

Relationship of the Six Major Functions of Allocatlon/Unallocatlon
Common Allocation Input . .
Common Allocation Control Blocks After Constructlon of Volumt
Table and EDLs . .. ; : :

VM&V Control Block Structure

HASJES20 Module Map .

Locating the JES2 Module Dlrectory in HASPNUC

HCT Major Vector Fields coe e

The Subsystem Vector Table .

HASPSSM - HASJES20 - OS/VS2 Relatlonshlp

Formal Subsystem-Interface Vectors .

JES2 Queue Control Fields. . .

JES2 Processor Control Element Relatlonshlps .

Example Dump of JES2 Processor Queue Chains

Major JES2 Control Blocks. .

Subsystem Interface Control Block Usage

Control Block Structure for Invoking Subsystem lnterface

Finding the SSIB for a Job When SSOB Pointer is Zero

Sequence of Communications Task Processing .

Communications Task Control Block Structure .

Page Fault Process Flow

Swap-In Process Flow

Swap-Out Process Flow. .

I0S/EXCP Process Flow

VTAM SEND Process Flow

Overview of Logon Processing .

TCAM Organization After a TSO Logon

Logon Work Area

LOGON Work Area Bits That Indlcate the Currently Executmg Module .

LOGON Scheduling Post Codes

Overview of TSO Line Drop Process .

Summary of Command Processor Recovery Act1v1ty
TSO Attention Flow

Standalone Dump Analysis Flowchart

0S/VS2 System Programming Library: MVS Diagnostic Techniques

. 5.8.13
. 5.8.14
. 5.11.1
. 5.11.8

.5.11.9
.5.11.15
. 5.123
. 5.124
. 5125
. 5.126
. 5126
. 5.12.8
. 5.12.9
. 51211
. 5.12.12
. 5.12.17
. 5.134
. 5.13.6
. 5.13.6
. 5.153
. 5.15.5
CAl4
. A22
. A24
. A32
. AS52
. A6.2
. A6.7
. A6.9
.A6.12
. A6.13
. A6.15
. A6.22
. A6.28
.B.16

TN

Summary of Amendments
for GC28-0725-2
VS2 Release 3.7

Changes have been made throughout this publication to reflect a Service Update to
0S/VS2 Release 3.7 and to include the following topics:

Diagnostic Aids Information

Information from OS/VS2 System Logic Library, Volume 7, SY28-0719, was
added in the following topics:

Started task control (STC) abend and reason codes.

Scheduler work area (SWA) manager reason codes.

Auxiliary storage manager (ASM) diagnostic aids and serialization information.
Allocation/unallocation reason codes.

TSO logon scheduling.

Communications task overview and diagnostic aids.

DIDOCS diagnostic aids.

Also, diagnostic aids information was added for:

o Error recovery procedures (ERPs).
e Converting virtual addresses to real addresses.
e JES2 miscellaneous hints.

Interactive Problem Control System (IPCS), SU57

Overview infbrmation was added for IPCS.

Miscellaneous Changes

Throughout the text:

e Minor technical and editorial changes were made.

o References to DSS (dynamic support system) were removed.

e References to EREPO were changed to EREP1 (environmental recording editing
and printing).

Summary of Amendments Xix

xx 0S8/VS2 System Programming Library: MVS Diagnostic Techniques

P

Section 1. General Introduction

This section introduces basic MVS problem analysis and provides an overview of the
interactive problem control system (IPCS).

| Basic MVS Problem Analysis Techniques

Problem isolation and determination are significantly more complex in MVS than
. in previous operating systems because of:

Enabled System Design which has made the internal and environmental status-
saving functions more extensive than those of previous system.

Multiprocessing (MP) which potentially allows the execution of code in
sequences not encountered in a uniprocessing (UP) environment. MP can also
cause contention for serially reuseable resources. (In this manual, MP refers to
multiprocessing on both multiprocessors and attached processors.)

Locking Mechanism which facilitates Enabled System Design and Multi-
processing functions and maintains data integrity.

Subsystems which are responsible for processing work requested from the
system. They maintain their own work queues, control block structures and
dispatching mechanisms — all of which must be understood in order to
effectively pursue problems in the MVS operating system.

Software Recovery which attempts to keep the system available despite errors.

The large number of new components which provide new functions and whose
internal logic must be understood for effective problem determination.

As a result of this complexity, MVS problem solvers have made two adjustments

in their diagnostic outlook:

Rather than learning the system logic at an instruction or module level, they
have learned the system in terms of component interactions at the interface
level.

They have learned that the most effective problem analysis at a system level is
obtained from a disciplined, almost formal, diagnostic approach.

Section 1. General Introduction 1.1.1

Section 1:- General Introduction (continued) -

This publication contains those debugging techniques and guidelines that have
proven the most useful to problem solvers with several years experience in
analyzing MVS system problems. These techniques are presented in terms of a
debugging “approach” that can be summarized in three steps:

1. Identifying the external symptom of the problem.

2. Gathering relevant data from system data areas in order to isolate the problem
to a component.

3. Analyzing the component to determine the cause of the problem.

The most important step in this approach is often the first — correctly
identifying the external symptom of a problem. To do this, it is best to get a
description of the problem as it was perceived by an eyewitness. You will want a
description that provides a context from which to start, such as:

“System is looping; can’t get in from console.”
““Job abended with 213”

“1/O error on 251.”

“Console locked out.”

“Terminal hung, keyboard locked.”

“System in wait, nothing running.”

“Bad output.”

“Job won’t cancel.”

“System degrading. Very slow.”

“System died.”

“0C4 in component abc.”

The list is endless, of course. Your objective is to fit one (or more) of these
descriptions to one of the following external symptoms.

o Enabled wait — The system is not executing any work and when it takes
interrupts, nothing happens. Something appears to be stuck.

- o Disabled wait — The system freezes with a disabled PSW that has the wait bit
on. This can be either an explicit and intentional disabled wait or a situation
that occurs because the PSW area has been overlaid. Unfortunately, the latter
is more often the case.

o Disabled loop — This is normally a small (fewer than 50 instructions) loop in
disabled code. o

e Enabled loop — This is normally a large loop in enabled code (and may
‘ include disabled portions — loops as a result of interrupts).

1.1.2 0S/VS2 System Programming Library: MVS Diagnostic Techniques

~

Section 1. General Introduction (continued)

® Program check — The program is automatically cancelled by the system,
usually because of improper specification or incorrect use of instructions or
data in the program. The program check message gives the location of the
failing operation and the condition code. If a SYSABEND, SYSMDUMP, or
SYSUDUMP DD statement was included in the JCL for the job, a dump of
the problem program will be taken.

| « ABEND — The system issues an SVC 13 with a specific code from 1 to 4095
to indicate an abnormal situation.

o Incorrect outpur — The system is not producing expected output. Incorrect
output can be categorized as: missing records, duplicate records or invalid
data that has sequence errors, incorrect values, format errors, or meaningless
data. If a program has apparently executed successfully, incorrect results will
not be detected until the data is used at some future time.

o Performance degradation — A bottleneck or system failure (hardware or
software) has severely degraded job execution and throughput.

e TPproblem — A problem, usually detected by the operator or terminal user,
that indicates malfunctions are affecting one or more terminals, lines, etc.

The chapters in Section 4 (Symptom Analysis Approach) will help you identify
these symptoms. The main rule at this stage of your analysis is to proceed
carefully. When first screening a problem, do not assume too much. Don’t even
assume that the original eye witness description was correct. Keep all initial
information about the problem as a reference for your later analysis.

In the course of identifying the correct external symptom, you will begin
gathering data that will lead you to other sections of the publication. Specific data
gathering techniques are contained in Sections 2 and 3. Section 2 describes the
major MVS debugging areas such as LOGREC records and recovery work areas,
Section 3 describes how to use a storage dump effectively as your main source of
diagnostic material.

Eventually you should have gathered enough data to isolate the problem to a
particular component or process. Section 5 and Appendix A provide techniques
for analyzing system components and processes so that you can determine the
cause of the problem. Appendix B contains a step-by-step procedure that can be
used as a guide for analyzing a stand-alone dump.

Note: Before you begin using this publication for problem analysis, scan
through it to find out where the various types of information are located.
Depending on your current debugging skill level, various sections will be more
important than others.

Always keep in mind that trouble-shooting a system of the internal complexity
of MVS is not always an “If A, then B” procedure. The guidelines and techniques
presented in this publication define “generally” what the analyst will discover. The
nature of the debugging process is such that the problem solver does not perform
the same analysis for every problem.

Section 1. General Introduction 1.1.3

 Section 1: General Introduction (continued)
IPCS — Interactive Problem Control System

The interactive problem control system (IPCS) provides MVS installations with
expanded capabilities for diagnosing software failures and facilities for managing
problem information and status.

IPCS includes facilities for:

e Online examination of storage dumps.
o Analysis of key MVS system components and control blocks.

e Online management of a directory of software problems that have occurred in
the user’s system.

e Online management of a directory of problem-related data, such as dumps or
the output of service aids.

IPCS runs as a command processor under TSO, allowing the user to make use
of existing TSO facilities from IPCS, including the ability to create and execute
command procedures (CLISTs) containing the IPCS command and its sub-
commands. :

IPCS supports three forms of MVS storage dumps:

I e High-speed stand-alone dumps produced by AMDSADMP.
o Virtual dumps produced by MVS SDUMP on SYS1.DUMP data sets.

- e Virtual dumps produced by MVS SDUMP on data sets specified by the
| SYSMDUMP DD statement.

Dumps on data sets specified by the SYSABEND or SYSUDUMP DD state-
ments cannot be analyzed using the IPCS facilities.

For information about IPCS, refer to the OS/VS2 MVS Interactive Problem
I Control System (IPCS) User’s Guide and Reference.

1.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques

PN

Section 2. Important Considerations Unique to MVS

This section describes concepts and functions that are unique to the MVS environ-
ment and useful to problem analysis. It also contains miscellaneous debugging
hints and general data gathering techniques.
SEC-
The chapters in this section are: TION 2

o Global System Analysis

o System Execution Modes and Status Saving

e Locking

e Use of Recovery Work Areas in Problem Analysis
o Effects of Multi-Processing on Problem Analysis
o MVS Trace Analysis

e Miscellaneous Debugging Hints

o Additional Data Gathering Techniques

Section 2: Important Considerations Unique to MVS 2.1.1

2.1.2 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Global System Analysis

In trying to isolate a problem to an internal symptom, a global system analysis
often uncovers enough data to provide a starting point for the actual problem
isolation and debugging. This chapter discusses the main considerations the analyst
should be aware of when analyzing a stand-alone dump, including:

The system areas that should be inspected to understand the current system
state at the time of a dump

The system areas that should be examined to understand the current state of
the work in the system and the current disposition of storage and tasks

Global Indicators That Determine the Current System State

The following areas should be examined to help determine the current state of the
system:

1.

PSA — occupies the first 4K bytes of real storage for each processor. Note that
absolute 0 is not used during normal system operation on a machine with the
MP feature — this is true whether the system is operating in MP or UP. (The
one exception is a control program that is system generated with
ACRCODE=NOQ.) During NIP processing the PSA(s) for the processor(s) are
initialized and the prefix register(s) are initialized to point to them.

Special Notes About Standalone Dumps:

® Before taking a stand-alone dump, it is necessary to perform a STORE
STATUS operation. This hardware facility does not use prefixing;
instead it stores values such as the current PSW, registers, CPU timer, and
clock comparator in the unprefixed PSA (the one used before NIP
initialized the prefix register) at absolute address 100. The dump program
subsequently saves these values and, in an MP environment, issues a
SIGP instruction to the other processor requesting a STORE STATUS
operation. As a result, these values in the unprefixed PSA are overlaid
by the second processor’s values.

Therefore, in an MP environment the status in the unprefixed PSA is
always that of the non-IPLed processor, not the one on which the stand-
alone dump was IPLed.

e In a machine not equipped with the MP feature and therefore without
prefixing, the IPLing of the stand-alone dump program causes low storage
(0-X18’) to be overlaid with CCWs. You should be aware of this and not
consider it as a low storage overlay.

Section 2: Important Considerations Unique to MVS 2.1.3

Global System Analysis (continued)

| o Inan MP environment, the STORE STATUS operation must be pérformed
only from the processor to be IPLed for the stand-alone dump program.

o [PLing the stand-alone dump program twice causes the storaée dump to
contain a dump of itself because it was read in for the first IPL. This
causes the dump program to overlay a certain portion of the nucleus
(generally starting at X*7000”) and the general purpose registers to con-
tain values associated with the stand-alone dump program and not MVS.

o If the operator does not issue the STORE STATUS instruction before
IPLing a stand-alone dump, the message “ONLY GENERAL PURPOSE
REGS VALID” appears on the formatted dump. The PSW, control
registers, etc., are not included. This greatly hampers the debugger’s
task.

2. Registers and PSW — The print dump program formats the current PSW and
the general, floating point, and control registers associated with each processor.
From these, you can determine the program executing on each processor.

If the current PSW is 070E0000 00000000 and the GPRs are all 0, you are
in the no:-work wait condition, which indicates no ready work is available
- for this processor to execute. -

If there is or should be work remaining, an invalid wait condition results.
(Refer to the chapter on “Waits” in Section 4.)

If the registers are not equal to zero and the PSW does not contain the wait
bit (X°0002°), there is an active program. If the wait task is dispatched, the
system is in the no-work wait condition,

3. ' ILC/CC — location X‘84’ for external interrupts; location X‘88’ for SVC
interrupts; location X‘8C’ for program interrupts. These fields'indicate the
last type of interrupt associated with each interrupt class for each processor.
The work active when each interrupt occurs is represented by the old PSWs
at locations: X‘18” (external); X‘20’ (SVC); X‘28’ (program). Common con-
tents of these fields are:

00001004 clock comparator
00001005 . CPU timer

00001201 SIGP-emergency signal
00001202 SIGP-external call

X84’

|

2.14 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Global System Analysis (continued)

X‘88" — 000200xx - where xx is the SVC number. This field should be
inspected for unusual SVCs such as:

—
|

WAIT: can indicate an enabled wait situation

D — ABEND: can indicate program error processing

F — ERREXCP: can indicate-a problem in I/O error processing
10 — PURGE: can indicate a problem in the swap process
38 — ENQ: can indicate a resource contention problem
4F — STATUS: canindicate a non-dispatchability problem

X‘8C’ — 000X0011 indicates a'page fault interrupt. Anything other than
‘ a code of 11 is highly suspect and must be inspected
further. Also with a code of 11, the program check
old PSW (location X‘28”) must be enabled (mask =
X‘07’) because disabled page faults are not allowed in
MVS and it is an error if one occurs.

4. PSA + X204’ (CPU ID)

5. PSA + X210’ (address of LCCA — 1 per processor) — The LCCA contains many
of the status-saving areas that were located in low storage in previous systems.
It is used for software environment saving and indications. The registers
associated with each of the interrupts you find in the PSA are saved in this
area. In addition, the system mode indicators for each processor are
maintained in the LCCA.

6. PSA +X224° (PSAAOLD) — This is the address of the ASCB of the work:last
dispatched on each processor. This field indicates the address space that is
currently executing. ’

7. PSA +X°21C’ (PSATOLD) — This is the address of the TCB of the work last
dispatched on each processor. This field in conjunction with PSAAOLD isolates to
a task within an address space. Note: PSATOLD=0 when SRBs are dispatched.

8. PSA +X228’ (PSASUPER) — This is a field of bits that represent various
supervisory functions in the system. If a loop is suspected, these blts should
be checked in an attempt to 1solate the looping process.

Note: Because of SRM timer processing in MVS, the external first level
interrupt handler bit (X‘20”) or the dispatcher bit (X‘04’) may be set in this
field even in the enabled wait situation.

9. PSA + X2F8’ (PSAHLHI) — This field indicates the current locks held on
each processor. Knowing which locks are held helps isolate the problem,
especially in a loop situation. -By determining the lock holders you can
isolate the current process. (See the chapter on “Locking” later in this
section.)

Section 2: Important Considerations Unique to MVS 2.15

Global System Analysis (continued)

£

Srereor T s 0100 PSA 4+ X380°. (PSACSTK) — This is the address of the active recovery stack |
: ¥ o which contains the addresses of the recovery routines to be routed control in
case of an error. If the address is other than X‘C00’ (normal stack), the type
" of stack (for example, program check FLIH or restart FLIH) is meaningful,
especially in-theloop situation.

- By searching the normal stack (X°C00’) and associating the recovery
routine to active mainline routines you may get an idea of the current process.
This is true only if the pointer to the current entry is not X'C34,” which would
indicate an’empty recovery stack.

Note: If aloop is suspected, the first word following each routine address in
the current stack should be scanned. A X‘80’ indicates that routine is in

~ control. A X440’ mdlcates that routine is in control and that it is a nested
recovery. routine.

I If X‘10” into the stack is non-zero, also check for an SDWA address at X‘44°
into the active stack. This block is mapped by the SDWA DSECT and is
described in the Debugging Handbook, (RTCA and SDWA are different names

| for the same control block.) If an SDWA address is present, an error has

. occurred and it can be related to the problem you are analyzing. If trapping
via RTM’s SLIP facility, the registers at entry to RTM are contained in this area.

At this pbi(nt' you should understand each processor’s current activity, any
possible errors that have been detected by recovery, and the current system
state or mode.

Work Qﬁeues,_ TCBs and AddréSQ:Space Analysis

Examine the following areas to help determine the current state of work in the
system.

TCB'Summary

The TCB summary report, produced by AMDPRDMP (print dump program),
contains a summary of the address spaces and their associated tasks. A quick scan
of the completion (CMP) field for each task reveals any abnormal terminations

- that have occurred. Discovery of an error completion code warrants further
investigation as.to the cause. Remember, however, that these codes are residual
and the job or task might have recovered from the problem.

- Also investigate multiple abnormal completion codes which all relate to the same
area of the system, or many tasks that all have the same completion code. These
“completion codes can all relate to one area of the system and perhaps to the problem
you are investigating. "Again, LOGREC should provide further documentation in an
error situation such as this.

2.1.6 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Global System Analysis (continued)

Once you understand the system’s history from a trace, LOGREC, and error
viewpoint, you should examine the work to be done as your next step to under-
standing the problem. :

SRB Dispatching Queues

The print dump program formats the SRB dispatching queues. Elements on any of
these queues should be investigated, especially in cases where no work appears to
be progressing through the system.

Elements on the global or local service manager queues (GSMQ/LSMQ) can
indicate that the dispatcher has not received control since these SRBs were
scheduled. This is an unusual condition that should be investigated. It can also
indicate that the CVT anchors for these queues have been inadvertently altered.
This again is an error condition.

Elements on the GSPLs/LSPLs should be explained. It is possible the dump was
taken before the SRB routines were able to execute. But it more likely indicates
some other system problem such as an enabled wait or disabled loop. If there
are SRBs on an LSPL, you should determine if the associated address space
is swapped-into storage and if it is not, why not. (Possible causes are real frame
shortage or a problem in the paging/swapping mechanism.) Again this is an indica-
tion of a potential system problem. The chapter on “Waits” in Section 4 and the
chapter on “Dispatcher” in Section 5 contain additional information on the
dispatching queues.

If, at this point, you can isolate the problem to a component, refer to the
“Component Analysis” for that component in Section 5. The chapter on “Waits”
in Section 4 should prove helpful if you have isolated to a problem in the system,

Address Space Analysis

If you have isolated the error to a given address space or wish to determine the
state of a given address space, analyze the ASCB.

Important indicators in the ASCB are:

e ASCBLOCK (ASCB +X‘80") —to determine the specific state of the local lock.
If it.contains 7FFFFFFF or FFFFFFFF (the lock suspend/interrupt IDs),
refer to the chapter on “Locking” later in this section for an explanation.

Note: When holding a suspend lock, code can only be suspended because it
attempts to obtain an unavailable higher suspend lock or because of a page fault.
To find the reason for the suspension, refer to the discussion of Task Analysis
later in this chapter and to the chapter on “Locking” later in this section.

Section 2: “Important Considerations Unique to MVS. ~ 2.1.7

Global System Analysis (continued) .-

e ASCBEWST (ASCB + X‘48’) — to determine the TOD clock value when the
address'space last executed. This field helps you determine how long an
address space has been swapped-out. By subtracting this field (middle four
digits) from the last timer value in the MVS trace table and converting to
seconds, you can discover the approximate swap-out time. (See the
chapter “MVS Trace Analysis” later in this section.)

o ASCBRCTF (ASCB +:X‘66”), — current status of the address space.
ASCBFLG1 (ASCB +X‘67’)

e ASCBASXB (ASCB + X‘6C’) — pointer to the ASXB that anchors the TCBs.

e ASCBSRBS (ASCB + X“76”) — number of SRBs active (currently executing or
: : suspended) in the address space. :

e ASCBOUCB (ASCB + X‘90’) — 'pointer to the OUCB, which is helpful when
determining why an address space is swapped-
out.

° ASCBFMCT (ASCB +X98’) — n‘umvberv of real frames currently occupied by
. R the address space.

e ASCBTCBS (ASCB + X‘7C’) — number of ready TCBs.

ASCBCPUS (ASCB + X‘ZO’) .— number of processors running tasks in this
address space.

Task Analysis

Once you understand the ASCB you should analyze the associated task structure.
Once again, scan the TCBs associated with your address space and look for an
abnormal completion field. While doingso, check the RB structure for each task.
Remember that the region control task, dump task, and started task control are
represented by the first three TCBs. “Normally” they will be waiting during

task execution. If one of them is not, you should determine why.

Assuming the first three TCBs are not obvious problem areas, continue
inspecting the remaining TCBs. You are trying to explain each RB. Starting with
~ the last RB created (the first RB, pointed to by the TCB + 0), determine what work
- is represented. If work is waiting, find out.why.

Note: The master scheduler address space has system task TCBs that differ from
other address spaces. Referto the diagrams for Master Scheduler Initialization, Start
Initiator, and Job Execution in the topic “General System Flow’’ in the Debugging
Handbook, Volume 1 for details of the TCB structures.

2.1.8. 0S/VS2 System Programming Library:- MVS Diagnostic Techniques

Global System Analysis (continued)

The RBOPSW indicates the issuer of an explicit WAIT. If an explicit WAIT

is not obvious, consider the following suspension possibilities and their associated
key indicators:

1.

If ASCBLOCK = X‘7FFFFFFF’ or X‘FFFFFFFF’, the status (registers and
PSW) of the suspended or interrupted task is saved in the IHSA (ASCB + X‘6C’
points to ASXB; ASXB + X‘20’ points to IHSA). The reason for suspension

is important. If it is for a lock, find out what address space or task owns that
lock and what the owners’ state is. (The chapter on “Locking” later in this
section shows how to determine lock owners.) If it is for a page fault, find

out of the state of that page fault. Note also that while the RBTRANS field
points to the page fault causing address, the RBWCF is 0.

Note: If atask owned the local lock at the time of the suspension or interrupt,
the TCB active indicators and the TCBCPUID (last processor on which this task
was dispatched) is set on. If no TCB in the task structure has these indicators
set, you can assume an SRB owned the lock. If no SRBs are on the CMS
suspend queue, the suspension is probably the result of a page fault.

An SRB can be suspended because of a page fault or a request for an
unavailable suspend lock. The save area for the suspended SRB is the SSRB
(see the Debugging Handbook). If suspended for page fault processing, the
SSRB is pointed to by the corresponding PCB+1C. PCBs are generally chained
together and anchored in two locations: (1) the RSMHDR for local address
space page faults; (2) the PVT for page faults caused by referencing commonly
addressable storage. Note that if real frames were not available when the page
fault occurred, even local page faults are queued from the PVT on the defer
queue (PVTGFADF, PVT + X‘754%). For a CMS lock request, the SSRB is on
the CMS lock suspended queue. Se¢ the chapter on “Waits” in Section 4 for
details on how to locate the SSRB. For Local lock suspensions, the SSRBs are
chained together on a queue anchored in the ASCB (ASCB + X‘84”).

A locked TCB can be suspended for the same reasons as an SRB. The save
area is the IHSA (described in the Debugging Handbook). The THSA is valid
during a page fault if the corresponding PCB+8 flag is on, indicating the lock
‘was held at the time of the page fault. Also, the TCBLLH (TCB + X‘114°)
is set to X‘01if the task was locally locked at the time of the page fault.

The THSA is valid for a CMS lock suspension if the ASCB is on the CMS
lock suspend queue at label CMSASBF in IEANUCO1. The TCB can be
suspended because of a page fault while holding both the local and CMS locks.
One way to tell is that the ASCB+X67’ flag for the CMS lock is turned on and
the ASCB address is in the CMS lockword.

Section 2: Important Considerations Unique to MVS 2.1.9

Global System Analysis (continued)

2. If ASCBLOCK = X‘00000000" and the memory/task is waiting, the status
is saved in the RB/TCB. (See the chapter on “System Execution Modes and
Status Saving™ later in this section.)

3. Suspended SRBs can cause bottlenecks. The chapter on “‘System Execution
Modes and Status Saving” can aid in locating any suspended SRBs that relate to
the address space. Note: Do not spend time looking for them unless other facts
about the problem indicate a potential problem in this area.

By far the most important consideration in task analysis is the RB structure of
each task. Generally if you have isolated the problem to an address space, RB
analysis shows a potential problem in the way of:

Long RB chains

Contention caused by an ENQ (SVC 38) request
Page fault waits

1/O waits

Abnormal termination processing, that is, SVC D RB

Once you have analyzed the RB structure you might want to go back and further
analyze the TCBs. Following are additional important fields in the TCB:

1. TCBFLGS (TCB + X‘1D’) — indicators of how the system currently considers
this task.

2. TCBGRS (TCB + X*30°) — -general purpose registers (0-15) saved when a
TYPE 1 SVC is issued or for an interruption for a non-locked task.

3. TCBSCNDY (TCB + X‘AC’) — additional system indicators for this task that
help to determine why this task is not executing.

4. TCBRTWA (TCB + X‘EQ’) — pointer to the RTM2 work area (mapped in the
Debugging Handbook) which contains information similar to the SDWA but
also data for RTM processing.

Summary

This chapter contains major considerations you must be aware of when

analyzing a stand-alone dump in MVS. A disciplined approach is important; resist
the tendency to go off on tangents upon finding the first unexplainable condition.
After gathering all the facts, try to resolve the “cause and effect” situations you are
bound to uncover. Generally, at this point you will have isolated the error and can
start a detailed component/process analysis.

2.1.10 OS/VS2 System Programming Library: MVS Diagnostic Techniques

System Execution Modes and Status Saving

MV differs significantly from previous operating systems by having multiple
execution modes. Status is saved and-restored from many different locations
depending upon the execution mode at the time control was lost. This chapter
explains those modes and how they affect problem analysis.

System Execution Modes

MYVS has four execution modes:

1. Task mode

2. SRB mode

3. Physically disabled mode
4. Locked mode

Code always executes in one of these modes or, in certain cases, in a combination
of modes. For instance, code running in task or SRB mode can also be either
locally locked or physically disabled.

Task Mode

Task mode describes code that is executing in the system because the dispatcher
selected work from the task control block (TCB) chain. To start execution, the
dispatcher sets up the environment (registers and PSW) and then passes control to
the code to be executed. The registers and PSW are found in one of two places:

1. Inthe TCB at TCBGRS (TCB+X30’), which is a register save area used when
unlocked, enabled TCB mode work is interrupted. The PSW is obtained from
the request block (RB) that is found through the TCB+0.

2. In the IHSA (interrupt handler save area), which is used to save registers when
locally locked task mode code is interrupted. IHSA is found through
ASXB+X20’; ASXB is found through ASCB+X‘6C’. The PSW for locally
locked tasks is obtained from the IHSA.

Task mode is probably the most common execution mode. All programs given
control via ATTACH, LINK, and XCTL operate in this mode.

- Section 2: Important Considerations Unique to MVS ~ 2.2.1

System Execution Modes and Status Saving (continued)

SRB Mode

SRB (service request block) mode describes code that is executing in the system

. because the dispatcher finds an SRB on one of the SRB queues. SRB set-up is
started by the SCHEDULE macro. SCHEDULE is an in-line macro that places the
requestor-furnished SRB on one of two service queues, local or global, depending
on the requestor’s speclﬁcatlon .These queues can be found from the CVT at
CVTGSMQ (CVT+X‘264°), which contains the address of the global service
manager queue, or at CVTLSMQ (CVT+X‘268’), which contains the address of the
local service manager queue. Whenever the dispatcher finds work on either queue,
the SRBs are moved to the corresponding system priority list queue. The global
system priority list queue (GSPL), which contains globally scheduled SRBs, is
found from the CVT at CVTGSPL (CVT+X26C).

There is also one local system priority list queue (LSPL) per address space.
Each LSPL, which is found from the ASCB at ASCBSPL (+X‘1C’), contains all
SRBs locally scheduled by the requestor and also those SRBs that were globally
scheduled when the targeted address space was swapped out.

SRBs are selected from these LSPLs by the dispatcher in order to start execution.
The dispatcher loads registers 0, 1, 14, and 15 from information in the SRB and
builds the PSW. The PSW key and address are the responsibility of the scheduler
of the SRB and are specified in the SRB. SRB mode has the characteristics of
being enabled, supervisor state, key requested and non-preemptable. Non-
preemptable means that the interrupt handler should return control to the
interrupted service routine (code running under SRB mode). However, service
routines can be suspended because of a page fault or because a lock (CMS or local)
is unavailable.

Physically Disabled Mode

Disabled mode is reserved for high-priority system code whose function is the
mampulatlon of critical system queues and data areas. It is usually combined with
supervisor state and key 0 in the PSW, and assures that the routine running disabled
is able to complete its function before losing control. It is restricted to just a

few modules in MVS (for example, interrupt handlers, the dispatcher, and
programs holding a global spin lock).

Physically disabled mode is used for one of two reasons:

1. To assure that data remains static while the code is referencing or updating the
data.

2. To assure that non-reentrant code does not lose control while performing
critical system functions. For example, JOS must run disabled while enqueueing
and dequeueing requests to UCBs and while updating UCBs at the start and end
of 1/O operations.

2.2.2 0S/VS2 System Programming Library: MVS Diagnostic Techniques

System Execution Modes and Status Saving (continued)

In the MVS system, physical disablement on a system basis because of MP must
be accompanied by locking in order to guarantee serialization. MVS disabled code
is also always accompanied by either a global spin lock or code executing under a
“super bit”. The “super bits” are located in each processor’s PSA (X‘228").

They are used primarily for recovery reasons — they allow RTM to recognize that
a disabled supervisory function was in control at the time of error even though
global locks were not held. This indicates that FRR recovery processing should
be initiated by RTM.

Note that type 1 SVCs do not execute disabled in MVS. Instead they are
entered with the local lock. Thus they are considered to be task mode physically
enabled, holding the local lock.

Locked Mode

Locked mode describes code executing in the system while owning a lock. (See
the chapter on “Locking” later in this section.) A lock can be requested during any
execution mode (SRB, TCB, physically disabled).

Status saving while in a locked mode requires unique considerations from the
system. An example is a program that invokes a type 1 SVC, such as EXCP
or WAIT, that executes in locked mode. When a type 1 SVC is enabled, it
can be interrupted. However, if the SVC is interrupted, the registers cannot be
saved in the TCB because it is being used to save registers active at the time of the
SVC request for return to the requestor. Therefore, status must be saved else-
where.

For programs executing in locked mode, status is saved according to the
condition surrounding the programs, as follows:

Locdlly locked task is interrupted. A new area, the IHSA interrupt handler save
area (IHSA), has been defined in MVS to contain the status when a locally locked
task is interrupted. The IHSA is found from the ASCB + X‘6C,” which points to
the ASXB; the ASXB + X‘20’ points to the IHSA.

Locally locked SRB is interrupted. When locally locked SRBs are interrupted,
there is no problem because SRBs are non-preemptable. The registers and PSW are
saved in the LCCA. When the system has handled the interrupt, the SLIHs return
to the FLIHs, the status is restored from the LCCA, and control is returned to the
interrupted SRB routine.

Locally locked SRB is suspended. Locally locked SRBs that are suspended must
have their status saved in a unique area. The process that suspends an SRB is
responsible for obtaining an SSRB (suspended SRB), which will contain the
interrupted status and will also serve as the control block used to reschedule the
service routine once the reason for suspension has been resolved. See “Locating
Status Information in a Storage Dump” later in this chapter for a detailed
description of how to find these SSRBs.

Section 2: Important Considerations Unique to MVS 2.2.3

System Execution Modes and Status Saving (continued)

Determining Execution Mode from a Stand-alone Dump

RN KnoWing the system’s execution mode at the time a stand-alone dump was taken is
important in analyzing a disabled coded wait state or a loop. The following areas
may help determine the mode of execution:

LCCA Indicators — There are two bytes of important dispatcher flags in the

PSA Indicators
o Super Bits —

® Recovery —
Stack

o Current —
Work

o Locks —

ASCB Indicators —

LCCA +X21C’.. At location X21D’, the LCCADSRW flag is
turned on just prior to any LPSW (Load PSW) for a global
SRB, a Local SRB, or task dispatch. For a global SRB, the
LCCAGSRB and LCCASRBM f{lags are also set on. For a
Local SRB, only the LCCASRBM flag is set on in addition to
LCCADSRW.

Flags in the supervisor control word located at PSA +
X228’ indicate whether the dump was taken while

‘in one of the interrupt handlers or dispatcher.

If the first two words of the RTM stack vector table

(PSA +X380) are not equal, then control is in one of the
interrupt handlers or the dispatcher. Compare the address
at PSA + X‘380° with each entry in the FRR stack vector
table starting at PSA + X384 to determine the owner of the
active stack. (See the chapter on “Use of Recovery Work
Areas for Problem Analysis™ later in this section for stack
vector table analysis.)

PSA + X218’ contains the addresses of the new TCB, old
TCB, new ASCB and old ASCB consecutively in a four-word
area. If the system is in SRB mode, the address of the old
TCB equals 0. If the addresses of the new and old ASCBs are
not equal, then the stand-alone dump was taken between the
time that an address space switch was requested and the time
the dispatcher dispatched an address space or a global SRB was
dispatched. In all cases, the old TCB and ASCB indicate the
current work.

The PSA also contains the lock indicators. (See the chapter on
“Locking” later in this section for a description of how to
determine the lock mode.)

The following ASCB locations help determine execution
mode:

X1C . — Address of the local service priority list,
which contains SRBs queued for dispatching.

X‘66-67" — RCT flags.

X“72-73° — Non-dispatchability flags.

2.24 OS/VS2 System Programming Library: MVS Diagnostic Techniques

~——

System Execution Modes and Status Saving (continued)

X176 — Count of SRBs dispatched in this address
space. ‘

X7C — Number of ready TCBs in this address space.

X80 — Local lock (see the chapter on “Locking™
later in this section for how to interpret this
field when #0).

X84’ — Address of the SRB suspend queue for

unavailable local lock requestors.

Keep in mind that mixed modes frequently occur. For
example, a local SRB can obtain a lock, be interrupted, and
the stand-alone dump taken while disabled in the I/O
supervisor. Depending on the system mode at the time of
the interrupt, a task’s status (registers, PSW, etc.) can be saved

I in one of several places.

Locating Status Information in a Storage Dump

Status information is located in a storage dump depending on the conditions
under which it was saved.

o Tusk and SRB Mode Interruptions: Status saving is required whenever the
code gives up control, whether voluntarily or involuntarily. Initial status
is saved by the first level interrupt handler (FLIH) as follows:

SVC FLIH (task mode only) — Initially:
registers saved at LCCA+X ‘380’ (LCCASGPR)

Then for Type 1 and Type 4 SVCs:
registers moved to TCB+X ‘30’ (TCBGRS)
PSW moved from PSA to requestor’s RB
I Then for Type 2, 3, and 4 SVCs: '
Registers moved to SVRB
PSW moved from PSA to requestor’s RB
I/O FLIH — [Initially:
registers saved at LCCA+X‘1C0’ (LCCAGPGR)
PSW saved at LCCA+X‘200’ (LCCAIOPS)
Then for unlocked tasks: _
Registers moved to TCB
PSW moved to RB

Section 2: Important Considerations Unique to MVS 2.2.5

System Execution Modes and Status Saving (continued)

For locked tasks (CMS or local):
registers moved to THSA ASCB+X‘6C’ —»ASXB

ASXB+X20’ —==IHSA
PSW moved to IHSA
For SRBs: registers remain in LCCA
PSW remains in LCCA
External FLIH — Initially:
registers saved at LCCA+X‘A0Q’ (LCCAXGR1)
Then for recursion purposes:
registers moved to LCCA+X‘EQ’ (LCCAXGR2)
PSW is in PSA+X240’ v (PSAEXPS1)
If first recursion:
registers moved from LCCA+X‘AQ’ (LCCAXGR1)
to LCCA+X‘120° (LCCAXGR3)
PSW is in PSA+X248’ (PSAWXPS2)
If second recursion:
registers moved to LCCA+X‘AQ’, (LCCAXGR1)
where they stay
PSW is in PSA+X‘18’ (FLCEOPSW)

Note: Subsequent status manipulation for tasks and SRBs is the same as for the
1/0 FLIH (that is, the movement from LCCA to TCB or IHSA is identical).

Program check — Initially:

, registers saved at LCCA+8 - (LCCAPGR1)
Then: registers moved to LCCA+X‘48” (LCCAPGR2)
PSW is in LCCA+X‘88’ (LCCAPPSW)

For page faults that require I/O the following occurs:

Unlocked tasks: registers moved to TCB
PSW moved to RB

Locked tasks: registers moved to IHSA
PSW moved to IHSA

SRBs: Are suspended: see “SRB Suspension” later in this
chapter.

- Note: For SRB code, status is not moved from the LCCA save areas. SRBs are
non-preemptable and aré given control back immediately, with the
status being restored from the LCCA.

® Locally Locked Task Suspension: Status saving is the same as for locked task
interruptions (described earlier under “I/O FLIH”) except that IHSA also
contains the floating point registers, the FRR stacks, and the PSW. The
ASCBLOCK field is updated to contain X“7FFFFFFF’.

2.2.6 O0S/VS2 System Programming Library: MVS Diagnostic Techniques

System Execution Modes and Status Saving (continued)

® SRB Suspension: An SRB can be suspended in two cases. If a service routine
encounters a page fault and a page-in is required, then the SRB routine must
give up control. In that event, an SSRB (suspended SRB) must be obtained and
the status saved in that control block. Then the SSRB is queued from the page
control block (PCB) in the real storage manager. When the paging I/O
completes, the SSRB is re-queued to the local service priority list (LSPL)

where it is found later by the dispatcher. The SSRB must be obtained
because the original SRB was not retained after the dispatch. Status saved in an

SSRB must include the current FRR stack.

The second case of SRB suspension is an unconditional request for an
unavailable lock. Status saving for SRB suspension for alock differs from the
page fault where the SSRB is queued and where control returns after the
redispatch of the SSRB. For a request for alocal lock that is unavailable, the
SSRB is queued from the ASCB. For a request for an unavailable CMS lock,
the SSRB is queued on the CMS suspend queue header. (For more detail see the
chapter on “Locking” later in this section.) In both cases of SRB suspension,
resumption is at the appropriate entry in the lock manager to try to
acquire the lock. Upon release of the CMS lock by the holder, any SSRBs are
rescheduled. Upon release of the local lock by the holder, the first SSRB that
was suspended is given the local lock and rescheduled.

Suspend SRB queues can be summarized:

Page Faults
PCB is chained from PVTCIOQF (at PVT+X‘“75C’) for a common area page
and from RSMLIOQ (at RSMHD+X‘24") for a private area page.
PCB+X‘1C’ points to SSRB. ‘

Local Lock Requests
SSRB is queued from ASCBLSQH (ASCB+X‘84°).

CMS Locked

SSRB is queued from the CMS SRB suspend queue in IEAVESLA as
shown:

PSALITA
(PSA + X'2FC") ?

LIT

+0| § DISP LOCK IEAVESLA

DISP LOCK

SALLOC LOCK

SRM LOCK

00000000

CMS lockword and | +10°{ CMS LOCK
queue header for
SRBs and ASCBs 14 CMS SUSPEND
suspended for CMS Q HDR

Section 2: Important Considerations Unique to MVS 2.2.7

2.2.8 0S/VS2 System Prograthing Library:' MYVS Diagnostic Teéhniques

Locking

Serialization of resources to provide data integrity and protection is a necessary
function of operating systems. In pre-MVS systems, resource serialization was
accomplished by physical disablement and by the ENQ/DEQ component. Physical
disablement controls only one processor and thus, in MP systems, does not
guarantee serialization.

To achieve‘ these requifements the locking facility provides:
e Serialization in a tightly-coupled MP system
o Serialization across address spaces for common resources
e Serialization within address spaces
A central lock manager acquires and maintains all locks. Use of the lock
manager is restricted to key O programs running in supervisor state, which prevents

- unauthorized problem programs from interfering with the serialization process.
The lock manager is located in the nucleus in CSECT IEAVELK.

Classes of Locks
MVS locks are divided into two classes:

e Global Locks, which protect serially reusable resources related to more than
one address space. These resources provide system-wide services or use
control information in the common area. Examples of resources protected by
global locks are UCBs and dispatcher control blocks.

e Local Locks, which protect serially reusable resources assigned to a particular
address space. When a task or SRB holds a local lock, the queues and control
blocks serialized by that lock can be used only by the task or SRB holding the
lock.

Figure 2-1 defines the MVS locks. All MVS locks, except the local lock, are ‘
global locks. ‘

Section 2: Important Considerations Unique to MVS 2.3.1 -

Locking (continued)

Name ‘ Description A

DisP Global dispatcher lock — serializes all functions associated with the
dispatching queues.

ASM ‘1 Auxiliary storage management lock — serializes the auxiliary storage
resources.
SALLOC ‘Space allocation lock — serializes real storage management (RSM)

" resources, virtual storage management (VSM) global resources, and
some auxiliary storage management (ASM) resources.

IOSYNCH 1/0 supervisor synchronization lock — serializes the 10S purge function
s : and other 1OS resources.

IOSCAT 10S channel availability table lock — serializes the 10S processor-
. related save area. o

10SUCB 10S unit control block iock — serializes access and updates to the unit
control blocks. There is one lock per UCB.

10SLCH 108 Iogicai channel queue lock — serializes access and updates to the
10S logical channel queues. There is one lock per channel queue.

SRM System resources manager lock — serializes use of the SRM control
blocks and' associated data.

CMS . Cross memory services lock — serializes on more than one address space
where this serialization is not provided by one or more of the other
global locks. Provides global serialization when enablement is required.

LOCAL Local storage lock — serializes functions and storage within a local
address space. There is one lock per address space.

Note: Locks are listed in hierarchical order, with DISP being the highest lock in the
hierarchy. . ‘

Figure 2-1. Definition and Hieraxchy of MVS Locks

Typv_elsp'f Locks

Two types of locks exist. The type determines what happens when a processor
| ‘makes an unconditional request for a lock that is unavailable. The types are:

- e Spin locks — prevent the requesting processor from doing any work until the
lock is cleared by the other processor. The requesting processor enters a loop
in the lock manager (IEAVELK) that keeps testing the lock until the other
processor releases it. As soon as the resource is free, the first processor can
obtain the resource and continue processing.

e Suspend locks — prevent the requesting program from doing work until the
lock is available, but allow the processor to continue doing other work. The
request is queued by suspending the requesting task or SRB, and the requesting
processor is dispatched to do other work. Upon release of the lock, the highest
priority queued requestor is given control of the lock, except in the case of the
local lock. Upon release of the local lock, the first SSRB will be given the lock
and rescheduled.

2.3.2 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Locking (continued)
Combining classes and types of locks provide three categories of locks:

Global Spin Lock, which is used primarily to provide serialization in MP systems.
While code is executing under a global spin lock, it is physically disabled. An

| unconditional request for an unavailable lock will cause the processor to spin in the
lock manager. Upon release of the global spin lock, the looping processor acquires
ownership and returns control to the requestor.

The global spin locks supported by MVS are: DISP, SALLOC, ASM, IOSYNCH,
| IOSCAT, IOSUCB, IOSLCH, and SRM.

Local Suspend Lock, which is used to serialize resources within an address space.
There is one local suspend lock per address space and it is located in the ASCB.
An unconditional request for the local lock when it is not available causes the
suspension of the requesting task or SRB until the lock is released.

Global Suspend Lock, which is used to serialize resources that are commonly
addressable from any address space. The requestor remains physically enabled
while owning the lock. The CMS (cross memory services) lock is the only

. supported global suspend lock. The local lock must be held in order to obtain
the CMS lock. An unconditional request for the CMS lock when it is unavailable

causes suspension of the requesting task or SRB.

Locking Hierarchy

To prevent a deadlock between processors, MVS locks are arranged in a hierarchy,
and a processor may unconditionally request only locks higher in the hierarchy
than locks that it currently holds. The locking hierarchy is the order in which the
locks are listed in Figure 2-1 with DISP being the highest lock in the hierarchy.

Some locks are single system locks (for example, DISP), and some locks are
multiple locks in which there is more than one lock within the lock level (for
example, IOSUCB). For those global lock levels that have more than one lock, a
processor may only hold one lock of each level. For example, if a processor holds
an IOSUCB lock, it may not request a different IOSUCB lock.

The local lock must be held by the caller when requesting the CMS lock. Also,
the local lock cannot be released while holding the CMS lock.

It is not necessary to obtain all locks in the hierarchy up to the highest lock
needed. Only the needed locks have to be obtained, but in hierarchical sequence.

Section 2: Important Considerations Unique to MVS 2.3.3

Locking (continued)

Determining Which Locks Are Held On a Processor °

To diagnose certain MVS problems, such as wait states and performance
degradation, it is necessary to determine the lock status of the system as well as
the back-up of work caused by lock contention.

Locks held by a particular processor are indicated in the processors PSA
(prefixed save area). There is a bit map in the PSA which the lock manager
checks when a request is made for a lock. This map is called PSAHLHI (PSA
highest lock held-indicator). Each bit corresponds to a particular lock in the
hierarchy. The bits are in the same order as the hierarchy so that the low-order bit
corresponds to the lowest lock in the lock hierarchy. When a bit is on, it means
that lock is held by the corresponding processor. Figure 2-2 shows the bit
assignments. ' ' ' ,
(Note: When a holder of a CMS or local lock is suspended, the corresponding bit in
the PSAHLHI field is reset to O even though the lock is still held.)

_ PSAHLHI (location X‘2F8’ in PSA)
.\ 2FA 2FB - ‘
10 ‘00 DISP
‘08 00 - ASM
04 00 SALLOC
02 00 IOSYNCH
o1 00 I0SCAT
00 80 j0suUcB
00 40 10SLCH
00 20 not assigned
00 . 10 not assigned
00 - 08 not assigned
00 04 "SRM -
00 02" cms
00 - 01 LOCAL

Figure 2-2. Bit Map to Show Locks Held on a Processor

2.34 0S/VS2:System Programming Library: MVS Diagnostic Techniques

~_7

Locking (continued)

Content of Lockwords

Each lock is represented by a lockword that defines the availability and status of
the lock. The contents of lockwords differ according to the type of lock they
describe:

Global Spin Lockword

X‘00000000° - Lock is available. -
X‘00000040° — Lock is held on processor 0.
X‘00000041° — Lock is held on processor 1.

Global Suspend Lockword (CMS Lock)
X‘00000000° — Lock is available.

X‘00xxxxxx’ — ASCB address of owner of lock. If an address space owned the
CMS lock but was interrupted or suspended, the ASCBCMSH flag
in ASCBFLGI is turned on and the CMS lock-held bit in
PSAHLHI is turned off until the address space is redispatched.

The ASCB address remains in the CMS lock until it is released.

Local Suspend Lockword (Local Lock)

X‘00000000° — Lock is available.

X‘00000040° — Lock is held on processor 0.

X‘00000041* — Lock is held on processor 1.

X“7FFFFFFF’ — Task or SRB suspended while holding the lock. The reason for

suspension is either a page fault or an unconditional request for
the CMS lock while it was unavailable.

X‘FFFFFFFF’— Task or SRB holding the local lock was suspended or interrupted
but is now dispatchable. The reasons for this state are:

® A page fault has been resolved for a locked task or SRB.

o The CMS lock, at one time unavailable, is now available.

® A higher priority address space was given control over this
locked task.

How To Find Lockwords

Lockwords for single system locks are located in a table called IEAVESLA
(PSA + X“2FC’ points to the lock interface table (LIT); LIT + O points to
IEAVESLA). They can also be located at the label IEAVESLA in a NUCMAP.

Lockwords for multiple system locks are supplied by the requestor of the lock.

The addresses of these are placed in the PSA for each processor at locations
X284’ to X298".

Section 2: Important Considerations Unique to MVS 2.3.5

Locking (continued)

 The location of all the lockwords-are shown in Figure 2-3. Note that all
lockwords must reside in fixed common storage.

Location of
Address of
Lock Lock (when
Name Class Type Number of Locks | Location of Lock | actually held)
DIsSP Global | Spin 1 IEAVESLA+0
ASM Global | Spin 1 per ASID ASMHD+X'14’ PSA+X'284'
SALLOC Global | Spin 1 . IEAVESLA+4
IOSYNC'H Global | Spin 1 IOCOM+X'38’ PSA+X'28C’
IOSCAT. Global | Spin 1. I0COM+X30’ PSA+X'290’
|osucs Global Spih 1 per UCB ucB-8 PSA+X'294'
IOSLCH Global | Spin 1 per LCH LCH+8 PSA+X'298’
SRM - Global | Spin 1 IEAVESLA+8
CMS Global | Suspend | 1 IEAVESLA+X'10’
LOCAL Local | Suspend | 1 per address space|] ASCB+X'80’
*PSA+X‘2FC’ points to the lock interface table; the lock interface table +0 points
to IEAVESLA. .

Figure 2-3. Classification and Location of Locks

2.3.6 0S/VS2 System Programming Library: MVS Diagnostic Techniques

5
o "

Locking (continued)

Results of Requests for Unavailable Locks

Global Spin Locks — An unconditional request for a global spin lock results in a
disabled loop in IEAVELK. In this case, register 11
contains the address of the requested lock and register 14
contains the address of the requestor.

Local Locks

CMS Lock

Tasks requesting an unavailable local lock are suspended. In
each case, the request block old PSW (RBOPSW) is set

to re-enter the lock manager, and the registers are saved in
the TCB. Note: The dispatcher will not dispatch any task
in the address space other than the holder of the lock until
the lock is released.

SRBs requesting an unavailable local lock are suspended.

In each case, the lock manager obtains an SSRB and places
the GPRs and the current FRR stack there.

Notes:

1.

The FRR stack can be used to help recreate the process
leading up to the point of suspension by interpreting the
recovery routines that are currently active. SSRBs for
local lock suspensions can be found by inspecting the
local lock suspend queue anchored in the ASCB from
field ASCBLSQH (ASCB+X‘84”). SSRBs are obtained
from SQA (SP 245). SSRBs on the local lock suspend
queue are chained together at SRB+4.

When interrogating a given address space, if the
ASCBLOCK field is not 0, check the ASCBLSQH to
determine the SRB work being delayed in this address
space because of lock contention.

Tasks unconditionally requesting the CMS lock when it is
unavailable are suspended. For each task:

e GPRs are saved in the IHSA which is pointed to from

ASXB + X20°.
The resume PSW is set to re-enter the lock manager.

The ASCB is queued on the CMS suspend queue. (The
first element of the CMS suspend queue is anchored in
CSECT IEAVESLA + X‘14’; this anchor points to either
an SSRB or an ASCB which is suspended for the CMS
lock. There is only one queue for suspended CMS lock
requesters.) Note: When a NUCMAP is not available,
locate the IEAVESLA through PSA + X2FC’ which
contains the address of the lock interface table; the
lock interface table + X‘O’ contains the address of
TIEAVESLA.

Section 2: Important Considerations Unique to MVS 2.3.7

Locking (continued)

PSALITA
(PSA+X'2FC’)

LIT

+0 | 4 pisPLOCK

{ IEAVESLA

DISP LOCK

SALLOC LOCK

SRM LOCK

CMS LOCK

+14 CMS SUSPEND y

Q HDR

The address spaces suspended on the CMS lock are
represented by the ASCBs on the CMS suspend queue.
The ASCBs are chained together at the field ASCBCMSF
(forward pointer).

Note: When an ASCB is on the CMS suspend queue, the
ASCBLOCK contains X“7TFFFFFFF’.

When the CMS lock is released, the ASCBLOCK is
changed to X‘FFFFFFFF’, which indicates that work was
interrupted but it is now ready to be resumed.

SRBs unconditionally requesting the CMS lock when it
is unavailable are suspended. For each SRB, the lock
manager:

" o Obtains an SSRB from SQA

Saves GPRs and the FRR stack in the SSRB
Sets ASCBLOCK to X‘7FFFFFFF’

Chains the SSRB on the CMS SRB suspend queue
located in IEAVESLA (IEAVESLA + X‘14)

Note: Since there is only one queue for suspended CMS
lock requesters, the SSRBs and ASCBs are chained on the
CMS suspend queue using either ASCBCMSF (ASCB +
X‘C’) or SRBFLNK (SSRB + 4). There are no backward
pointers. Thus the CMS suspend queue could have the
following appearance:

SSRB ASCB SSRB

+4] +4
+C E

SSRB ASCB ASCB

+4 _

<

+C 3

2.3.8 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Use of Recovery Work Areas For Problem Analysis

Recovery processing, which is unique to MVS, enhances the reliability of the
operating system. When an error occurs, ‘“‘active recovery” is given control, one
routine at a time, in an attempt to isolate the error to a unit of work. Recovery
terminates that work instead of the entire operating system and then continues
normal system operation. This process occurs whether the error is in the system or
an application.

Because system operation is not halted at the point of error, the resulting storage
dumps represent system status sometime after the original error(s). Often the
system can encounter numerous errors, fully recover, and continue. At other times
it can be a recovery failure that causes the system to cease operations and to take
a stand-alone dump. In either case, the obvious problem and its associated tracks
have been covered over. This makes the back-tracking process extremely difficult.

However, experience has shown that although recovery causes this difficulty, it
can very often provide valuable clues for the problem analyst. This chapter points
~out important recovery areas and explains how they can be used in the debugging
process.

CAUTION: Recovery is not designed to aid the problem solver; it is designed as
a means by which the system can prevent total loss. Because recovery maintains
system status information, its work areas often provide the same information to
the analyst. However, once recovery is invoked, the system is in a tenuous
position; it is attempting to maintain operation despite an error. It is possible that
the recovery process itself can encounter the same error or bad data. Most often
this is not the case; the system does recover and continues normal operation.
But the possibility of recursive errors in the recovery process does exist, in which
case the new error becomes of prime consideration. If you are dependent on
internal recovery conrol blocks and queues, be aware of this possibility. Don’t
get caught following a chain of blocks for some subsequent or unrelated problem
that will help your own error-finding efforts. This danger is most prevalent when
you use recovery work areas without following the normal work-related debugging
techniques. Do not immediately use the RTM2 work area without analyzing the
Task/RB structure and associated indicators.

The following work areas should be used carefully and only after traditional
techniques have failed. The exceptions to this rule are:

® When the durhp is taken as a result of a trap (for example, SLIP) and the analyst
understands that the current status at the time of error can only be found by
using the recovery save areas.

® When there are problems in the recovery process itself.
In other instances, be aware of the total environment so that what you discover

in these areas bears some relationship to the problem you are analyzing. These
areas are of great importance if used with understanding.

Section 2: Important Considerations Unique to MVS 2.4.1

. Use Of Recovery Work Areas For Problem Analysis (continued)
SYS1.LOGREC Analysis

For effective problem analysis, use the information in SYS1.LOGREC

to understand the error history of the system. Because of recovery

processing, MVS does not halt operation when an error occurs. Dump analysis
must be performed using a snapshot of storage as it appears sometime after the
error and recovery have occurred; therefore, some type of recording mechanism is
needed in order to trace the error.

The entries in SYS1.LOGREC provide information about a potential problem.
This is the most informative data about the error that you receive. The
SYS1.LOGREC entries serve as a diagnostic trace of the problem encountered by
the operating system; they usually provide a history of events leading up to a
system incident. Use this information to understand system problems, the recovery
actions that are taken as a result of these problems, and the outcome of the
recovery attempt. '

Often more than one record exists for the same software incident. You must
be able to relate these records in the proper sequence and understand the progress
_of recovery the various records indicate. Knowing the errors that have occurred

since the last IPL helps you understand the system behavior and explains:
your findings at dump analysis time.

In stand-alone dump analysis you should always inspect the in-storage LOGREC
buffer for entries that recovery routines have made but which weré not written to
the SYS1.LOGREC data set because of a system problem. Very often it is these
records that are the key to the problem solution. (There is a discussion of
LOGREC buffer analysis later in this chapter.) -

Information that is written by recovery routines to the SYS1.LOGREC data set

is used primarily to monitor incidents both when retry is attempted and when
percolation to the next recovery routine takes place.

Generally, functional recovery routines (FRRs) will write a SYS1.LOGREC
record whenever they are entered. The default for ESTAE routines, however, is to
not write a record. This means that unless the ESTAE routine specifically requests

" ‘recording, no SYS1.LOGREC record will be built.

Listing the SYS1.LOGREC Data Set

To get a listing of the SYS1.LOGREC data set, use the IFCEREP1 service aid as
described in OS/VS Environmental Recording Editing and Printing (EREP)

| Program. (The JCL required to print the SYSI.LOGREC data set is contained in
the chapter “Additional Data Gathering” later in this section. It is important to
obtain both an event history and a full report. The event history (EVENT=Y
parameter on the EXEC statement) prints an abstract for all records in
‘chronological order. This allows the analyst to recreate the sequence of events.)
IFCEREPI formats the standard area, the first X‘194° bytes of each SDWA, into
‘a series of titles, each followed by pertinent data found in the standard area.
IFCEREP1 will put the variable area, the last X‘6C’ bytes of each SDWA, in an
alphameric or hexadecimal format, whichever is specified. This variable area is

2.4.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Use of Recovery Work Areas For Problem Analysis (continued)

used by the recovery routines to construct messages and to provide data that often
contains valuable debugging information.

There are five different types of software incidents for which the failure is -
written to SYS1.LOGREC. They are:

ABEND (SVC 13)
Invalid SVC
MCH software recovery attempt

Program check

W B W N =

Restart key depressed

SYS1.LOGREC Records

This section contains examples and explanations of three different types of error
records that you can obtain from SYS1.LOGREC.

SYS1.LOGREC Software Incident Record 1

Figure 24 is an example of the data that is recorded in SYS1.LOGREC when a
software (source) entry is recorded as the result of an SVC 13. The following
explanations are called out by Notes A-E in the example:

Note A: The CSECT name is IDAVBPP1; it can be found in module IDDWI.
IDAVBPRI is the FRR that processed the error under consideration.
The EC PSW indicates that SVC D was issued at location X‘F4BB64°.

Note B: Approximately midway into the formatted record shown, you find
more specific information about why this particular LOGREC entry was
made. Note B points out three bits that reflect the status of the system
at the time this failure was detected:

e SVC was issued by a locked or SRB routine.

o Logically disabled (physically disabled, locked, or SRB) routine
was in control.

e Type 1 SVC routine was in control

Note C: For this LOGREC record there is no formatted entry for the system
completion code. Only a portion of the recorded software incidents are
assigned a system completion code. A system completion code can be
found at X‘04’ bytes into the SDWA, which can be found unformatted
at the bottom of the record. Also, if the cause of a record is an abend
SVC, a completion code is contained in register 1 under “Regs at time
of error”. The system completion code for this failure is OE3.

Section 2: Important Considerations Unique toMVS 24.3

Arexqry SupuuresSolq woYSAS TSA/SO T

.
B

sonbruyoa] ansouSerq SAW

Note A

Figure 2-4.

CATE TIKE CcPU CPU RELEASE
... _DAY_YR__ HH MM SS.TH__ SERIAL____1D LEVEL
-=- RECORD ENTRY SOURCE - SUFTWARE --= TYPE SOFTWARE(SVC 13) 11775 20 31 01 93 023732 0158 VS 2 REL. 03
-ERRORID=SEQ00056 CPU0O40 ASID0002 TIME 20.31.01 ‘ 4
TIOHNANE NWOTADF2
ABENDING RIUGRAM NASE N2 8C E_PSH AT_TIME G ERROR BC_MIDE PSW OF LAST 88
NAME OF MODULE. INVOLVED 10DA 1
NAME OF CSECT INVOLVED _ ___ IDAVRPPl__ 0000000Q_000000090 00000009 _0000000Q
FUNCTIONAL RECOVERY ROUTINE 1DavBPR1 '
REGS AT TIME OF ERROR /Notec
TTREGS 0-7 00000300 T000E3006# OUF4EESC 0OO0OCSC OOCA73F4 OOCALFC8 00100001 OCCA7CDO
__REGS 8=-15__ _ J0000000_ _40F4R774 _ COCCCOCG _ 0OCATB28 50F4B934 _ Q0CATB64 50F4BBE6 00030004

EC PSW AT TIME OF ABEND 270

€2000 00F4B366

EC,PSW FROUM ESTAE RB(O FOR ESTAI)

070C0000 QOF4EE90

ADDIT IORAL INFO:-

ADDITIONAL INFQ:

__INST LENGTH CDPE____ _ . ___ 02 INST_LENGTH-CODE 02
INTERRUPT "CADE 000D INTERRUPT CJIDE 0000
__VIRT_ADDR_QF TRANS_EXCEP___ 00202728 VIRT AJDR OF TRANS EXCEP 00202720
REGS OF RB LEVEL UF ESTAE EXIT_OR ZERQ_FOR ESTAL
___REGS. 9;.7—__ 0000000 0CCE30CC_ CCF4EESC _ COJ00CSC OOCATSBF4 QOCALFO8 00100001 Q0CA7¢DI
REGS 3-15 00002203 40F43774 CCCCJIDCO DOCATB28 - 50F4b9B4 00CA7364 50F433E6 00300004
T MCH FUAG BYTE “FCK INPUT INFO FRAME ERRUR INDICATDORS STORAGE ERROR INOICATCRS

STORAGE ADDRS ARE VALID_ . 0 STORAGE KEY FATLURE 9 STORAGE . ERROR_ALREADY SET O FRAME QOFFLINE(OR SCHED) o
MCK RECORD NOT RECORDED 0 REGISTERS UNPRECICTABLE 0 CHANGE INDICATOR ON 0 INTERCEPT 0
__ TIME. STAMP IS VALID _____O_. PSW UNPREDICTABLE 0 : STURAGE_ERROR_PERMANENT _ O
STURAGE IS RECONFIGURED O STORAGE DATA CHECK 0 PERMANENT RES. STORAGE 0
_RECUNFIGURE. STATUS AVAIL__Q ACR_REQUESYT __ o] FRAME IN_SQA_. o
200 f1GURE NOT ATTEMPTED O INSTRULCTICN FAILURE 0 FRAME IN.LSQA 0
SGFI_ ERRGR Q FRAME JS_PAGE Exxeo 0
TIMER ERRQOR 0) FRAME IS V=R 0
e e : TIME STAMP OF ASSOCIATED MACHINE CHECK RECGRO.
BEGINNING VIRT ADDR OF STORAGE CHECK 00C00020 DATE TIME
__ENDING VIRT ADDP_ OF STCRAGE_CHECK __C0CC0000_ DAY YR . HH MM _SS.TH
REAL STORAGE FAIL ING ADDRESS €aCceceo 000 00 00 00 00 00
T MACRINE CHECK 9 TYPE 1 SVC IN CONTRCU 1 PREV ESTA OR FRR FAILED O EXIT TO CLEANUP ONLY 0
___PRUGRAM CHECK - __ O__ ENABLED RB_IN CONJRGL__ /0 (E)STAI PREV IN CONTROL 0 RS _OF ESTA NJT_IN_CONTROL O
KESTART Kty DEPRESSED O DISABLED RTN IN CONTRO 1 IRB PRECEDED RSB 0 ESTA EXIT FOR PREV ABEND - O
_ TASK ISSUED SVC 13__ __0__ SYSTEM_IN SRB MOCE O _ THIS RIN_PERCOLATED_TO 0 STEP ABEND_REQUESTED 0
SYSTEM -FORCED SVC 13 o) LOWER LEVEL EXIT INFD 0, TASK ANCESTOR ABENCED 0
___SVC BY LOCKED OR_SRB RIN 1 ~— Note B : REGS AND PSW UNAVAILASLE 0O
TRANSLATION FAILURE 0 MCK INFO UNAVAILABLE 0
__PAGE 1/0 ER]RQR 0
o CURRENT 1/0 STATUS
MEMORY ASID 0000 1/0 1S RESTOREABLE 0
RECOVERY RETURN CODE 00 I/0 IS NOT RESTOREABLE 0
NG 1/C GUTSTANCING 0
NG I/C PROCESSING o}
SYS1.LOGREC Software Incident Record 1 (Part 1 of 2)
===

7 uonossy

S¥'7 SAI 01 anbjup) suonerspisuo) yurpiody

ADDiTIONAL PROCESSING GLOBAL LGCKS TO BE FREED

'LOCKWORDS

‘RECLIDING REJUESTED 1 DISPATCHER LOCK 0 e _
VALID SPIN . O -SRM LCCK 0
UPDATED REGS FOR KETRY € I0SCAT_LOCK 0 TQSCAT LOCKWORD 00792000
FREE RTCA BEFCRE RETRY 0 IUSUCE LOCK 0 10S5UCB LOCKWURD 00000000
e MOSLCE LCCK__ 0. 1OSLCH LOCKWURD 005006C0
IGSYNCH LOCK 0 IGSYNCH LGCKWORD 00009000
— ___NCB LCCK . _ _0___NCB LOCKWORD ___ 00090000
DiCR LCCK 0 DNCB LLCKWORD 60020000
ACBDEBS LOCK O ACBOESS LOCKWORD 000902003
ASMPAT LOCK 0 ASMPAT LOCKWJRD 00000000
SALLCC LOCK 0 ASID CURRENT 0002
CMS LOCK 0
i LOCAL_LOCK o} Note EL
DUMP CHARACTERISTICS \
. DUMP_RANGES APEA
DUMP FLAGS SDATA OPTICNS PDATA CPTIONS FR0OM 10
_SNAP DymMp REQUEST 0 DISPLAY NUCLEUS 9 DISPLAY_SAVE" AREAS 0 RANGE 1 00CA7B28 \f00CATD38
PARM LIST SUPPLIED 0 DISPLAY 5QA 0 DISPLAY SAVE AREA HEADER 0 RANGE 2 80CA1F08 JOOCALlF2C
_STGRAGE _LIST SUPPLIED 9 DISPLAY LSOQA 0. DISPLAY_REGISTERS 0 RANGE_3 00060000 _00C00000
DISPLAY SwA 1 DISPLAY TASK LPA MODULES 0 RANGE & 00000030 00000000
DISPLAY GIF TYRACE TABLE O DISPLAY TASK JPA 4MIDULES O :
DISPLAY CONTRCL BLGCKS 0 DISPLAY PSW 0
- e _DISPLAY GCB/QELS 0 DISPLAY USER SUBPOOLS 0 -
USER VARTABLE EBCDIC DATA :
Note D .
S NWC1ENPZ, VIO, 1DAVBPP 1 ATDSPEYSCATBZE,ALBLFCIZCALFOB
HEX_DUMP_OF RECORD
] Note C HEADER 40830800 €CCCCO000 OC75117F 11494895 00023782 0158C2A0 DSD6NSCS 60C6D909
2000 020092CYC 8C0E3000 009090C0 00000U0d 00000200 09200000 00000000 000E3000
0020 _COF4EE90Q ___ CO0200C9C Q0CATBFS 00CALFO8 00106001 00CATIN0 00650000 4OF4B7 74
0043 03030030 00CATB28 SCF 43534 CCCATRG4 50F4BBEG 000223204 00000000 00000000
0360 09090220 00200000 079C2000 00F43866 00920000 00202720 G70C 0000 00F4EES0D
C080 €062000D 002€272¢C 0cLcocco 000E3000 00 F4EESD 00000C9C 0JCAT73F4 00CA 1IF 08
004036120001 00CATCD0Q CC020C00_ " 4DFABTT4 00000090 00CATB28 5J0F4BSB4 00CA7B64
COCO S50F4B3E6 $0000004 00000000 00000000 50000000 00000000 0C009000 00C00¢00
= ___0JEQ__COGOCOJE _ccececoe C4CAOCCO 62009220 023002320 J3CCE35D 502023390 59896900
6100 00292309 20209090 00920200 000000060 00000000 00000202 0C00C000 00005000
0120 00020038 CSC4C4EL 9404040 CSC4CLES C2D7D7F1 C9C4CLES C2D7D9F1 COCCESCO
0140 90003390 1€200000 CCCATB28 03CA7D38 B8OCALFOB J0CALF2C 00000200 00000900
5160 00000290 05302009 0C000000 40000000 D506D5C5 60C6D9D9 00380040 00020008
0180 45320000 - GCCCOCOC CCCO0Co0 €0000000 006C4G33 DSESFOF1L C1C4D7F2 6BESCSDG
53140 68C9C4C1 €£5C20707 F163C 14D C4E207C 2 5D7EC3CL F7C2F2F8 68C140C2 E4C6C350D
C1CO 7EC3CLFl C6FOFE00 00003060 000000030 00000000 00000000 00000000 00C0GCO0
01E0 0CCOGLO0 ceceeocce €0C002¢C0 0£202000 000020230 229002309 0009000 00000000
Figure 2-4. SYS1.LOGREC Software Incident Record 1 (Part 2 of 2)

Use of Recovery Work Areas For Problem Analysis (continiued)

Given the name.of the module involved in the error, you can determine
the id of the failing component by using the “Module Summary” section
of the Debugging Handbook. This summary also names the corresponding
PLM for each component. Component microfiche numbers are found in
the “Component Summary’” section of the Debugging Handbook, Volume 1.

Note D: The “Diagnostic Aids™ section of the OS/VS2 VIO Logic describes the
diagnostic output for module IDAVBPPI. It explains that the recovery
routine sets starting and ending addresses for the DSPCT header and
the BUFC in the SDWADPSL field of the SDWA. A diagnostic message
is then built in the variable recording area in the SDWA (at X‘194°). This
message is formatted in the LOGREC record under the ‘User Variable
EBCDIC Data’ field, just above the unformatted SDWA. (Also see Note P.)

Note E: The entries in the ‘Dump Characteristics’ section of this LOGREC record
» reflect the SDATA and PDATA options specified by the recovery routine
l for a SYSABEND, SYSMDUMP, or SYSUDUMP. All recovery routines

can specify exactly what portions of storage are dumped. In addition, the
recovery routines can specify a list of storage ranges that are to be
dumped. In the dump for the failure in this example, the only area of
storage displayed would be the SWA. A range of addresses would also be-
included. Range 1 is from CA7B28 to CA7D38; range 2 is from CA1F08
to CA1F2C.

In summary, from studying this LOGREC entry you find that
the module IDAVBPP1 has detected an error. and has issued a OE3
ABEND, with a return code of 4. At the time of the failure, the system
was logically disabled and a type 1 SVC was in control. SVC 13 was
issued while the system was logically disabled, which is why the LOGREC
entry was written. A functional recovery routine, module IDAVBPRI,
was given control and tried to recover from the error. It was unsuccessful
so it dumped the scheduler work area (SWA) and two sections of storage
where the DSPCT and an important parameter list were located. The
module then percolated to. the next higher FRR in the stack. Note that
the ‘Recovery Return Code’ field (SDWA + X‘FC’) = 00; this indicates
percolation. A code of ‘04’ indicates that retry was requested.

SYS1.LOGREC Software Incident Record 2

Figure 2-5 is another example of the type of data recorded in

SYS1.LOGREC when a software incident occurs. Compare this example with
record 1 in order to understand the different types of information that you can
obtain from SYS1.LOGREC. ’

First compare the time stamp at the top of this record with that in record 1.
These times are either identical or just a fraction of a second apart whenever
the system is percolating through FRRs. '

2.4.6 0S/VS2 System Programming Library: MV'S Diagnostic Techniques

) L'vYT S AN 0} anbu() suopeIaPISUO) ;imuoduq AV bETY

DATE TIME cry cPU RELEASE
. I iDAY YR HH MM SS.TH_ SERTAL __ID LEVEL
—== RECORD ENTRY SUURCE — SOFTWARE —== - TYPE SOFTWARE(SVC 13) 117 75 20 31 01 93 023782 0158 VS 2 REL. 03
ERRORID=SEQ00056 CPU0040 ASID0002 TIME20.31.01.0
T JOBNAME T NWO1ADP2'
ABENDING _PROGRAM NAME e N/n BC Mgpé PSw AT TIME OF ERROR __BC_MODE PSW OF LASY RB
NAME UF MUDULE INVULVED 10DWI .
Note G\ NAME. OF CSECT INVOLVED . __ TODWITKM _£CCCI00Q 00000000 00900000 00000090,
FUNCTIONAL RECUVERY ROUTINE IDDWIFRR
REGS AT TIME OF EBT0R
REGS 0-7 00000000 OO0OE3000 QOF4EESC 00000C9C OOCAT8F4 OOCA1FO08 00100001 OOCA7CDO
_REGS 8-15____000€Q0000 4OF4B774 ~ COGCO0000 OQCA7B28 . 50F4B984 _ OOCATB64 SOF4BSE6 00000004

EC PSw AT TIME OF ABEND

070C 2000 00F48B66

EC,PSW FROM ESTAE RB({0 FOR ESTAI)

070C0000 OOF4ESFQ

ADDITIONAL INFO:

ADDITIONAL INFO3

__INST_LENGTH COODE 02_. INST_LENGIHCODE 02
INTERRUPT CODE 000D INTERRUPT CODE 000D
_VIRT_ADDR_OF_ TRANS_EXCEP___ 00202720 VIRY _ADDR QF TRANS EXCEP 00202720

REGS OF RB LEVEL OF £STAE EXIT OR ZERO FOR ESTAI

__REGS_ 2-7 00000000__ D00E3000 O0JF4EESC _ €J000CSC

00CA78F4 _ OOCAlFO08 _ 00100301

00CA7CDO .

REGS 3-15 G0000000. 40F4B774 €Q0C00000

00CA7B28 .

50F4B89B4 O0CA7364 50F438E6

00000004

‘MCH FLAG BYTE

MCK INPUT INFO

FRAME ERROR INDICATGRS

STORAGE ERKDOR INDICATORS

Figure 2-5.

__STORAGE ADDRS ARE VALID 0O STCRAGE KEY FAILURE 0 STORAGE_ERIIR ALREADY SET O FRAME OFFLINE(OR SCHED) 0
MCK PECU2D NOT RECOIDED . O REGISTERS UNPRECICTABLE 0O CHANGE INDICATOR ON 0 INTERCEPT 0
__JIME_STAMP IS VALID_ _____ 0 PSW_UNPREDICIAZLE 0 STORAGE_ERRNR PERMANENY O
STORAGE IS RECONFIGURED 0 STCRAGE DATA CHECK 0 PERMANENT RES. STOPAGE [}
RECCNFIGURE STATUS AVAIL __ 0 ACR REQUEST Q FRAME_IN_SQA_ . o___

{{CULT IGURE NOT ATTEMPTED 0O INSTRUCT ION FAILURE 0 FRAME IN LSQA 0
SGFT_ERRQOR 0 FRAME 1S PAGE FIXED 0
TIMER ERROR 0 FRAME IS V=R [+]

BEGINNING VIRT ADDP OF STORAGE CHECK

TIME STAMP JF ASSJOCIATED MACHINE CHECK RECORD =~

€0Ccco0co DATE TIME

__ENDING VIRT ADDR OF STORAGE "CHECK 00C00000 DAY YR HH MM SS.TH

REAL STGRAGE FAILING ADDRESS 00000000 000 00 ~ 00 00 00 00

MACHINE CHECK [¢] TYPE 1 SVC IN CCNTRCL 1 PREV ESTA OR FRR FAILED [+] EXIT TO CL:ANUP ONLY 0
___PROGRAM_CHECK__ 0 ENABLED_RB IN. CONTROL 9 LE)STAL PREV IN CONTROL O R3 OF ESTA NOT TN CONTROL O

RESTART KEY DEPRESSED 0 DISABLED &TN IN CCNTRGL 1 IRB PRECEDED RB 0~ ESTA EXIT FGR PREV ABEND O
__TASK_ISSUED SVC 13 O SYSTEM IN SRB MODE 0 THIS RTN_PERCOLATED YO 1 STEP_ABEND REQUESTED 0

SYSTEM FGRCED SVC 13 0 LOWEP LEVEL EXIT INFD 0 TASK ANCESTOR ABENDED 0

__SVYC BY LGCKED OR_SRB_RIN_ 1 REGS AND PSW UNAVATLABLE 0O

TRANSLATIUN FAILURE 0 Note F7 MCK INFO UNAVAILABLE 0
_PAGE I/0_ERRIR 0

o CURRENT 1/0 STATUS
MEMORY ASID 0000 1/0 1S RESTOREABLE
RECIVERY RETURN CODE co 1/0 1S NOT RESTCREABLE

NG 1/0 DUTSTANDING
NC 1/G_PROCESSING

[oNeliaNel

SYS1.LOGREC Software Incident Record 2 (Part 1 of 2)

T GLOBAL LGCKS T3 BE FREED

sonbruyds], onsouBerq SAW :Arexqry SunuuresSorg woysAg ZSA/SO 84T

TAUDITTONAL PROCESSING - LOCKWORD S
___RECCROING PEQUESTED . 1. _ DISPATCHER_LCCK 0 o
VALID SPIN 0 SRM LCCK 0
UPDATED REGS FOR _RETRY 0___1CSCAY_LGCK 0 JOSCAT_LOCKWORD 90000000
FREE RTCA BEFORE RETRY 0 10SUCB LOCK 0 I10SUCB LOCKWORD 00929909
_ ___.IcSLcr LeeK O____IOSLCH, LOCKWGPD 00000000,
I0SYNCH LOCK 0 - TUSYNCH LOCKWORD 00000030
NCB LCCK_ 0 ___NCB LOCKWCRD 00000020
DNCB LGCK 0 DNCB LOCKWORD 03006000
ACBDERS LOCK 0___ACBDEBS LOCKWORD 00790090
ASMPAT LOCK 0 ASHPAT LOCKWORD 00000000
. SALLCC LGCK 0__._ASID CURRENT 0002
“CMS LCCK o .
___LOCAL_LBCK 0

DUMP CHA2ACTERISTICS

DUMP. RANGES AREA’

Note |

DUMP FLASS SDATA OPTIONS PDATA UPTIONS FROM. TO :
___SNAP DUMP_REQUEST_ 0__ DISPLAY_NULCLEULS 0 DISPLAY_SAVE_AREAS. ONG (RANGE 1~ 00CB82A28 00C32C28
PARM LIST SUPPLIED [¢] DISPLAY SQA 0 DISPLAY SAVE AREA HEADER 0 RANGE 2 00C328B30 0©0CB2B20
STORAGE LIST SUPPLIED 0 DISFLAY LSOQA 1. __DISPLAY REGISTERS_ _ ~ 0 (RANGE 3 80CB2ACS8 ' COCB2AFS
DISPLAY SHWA 1 DISPLAY TASK LPA MUDULES 0 RANGE & 00000000 00000000
DISPLAY GTF VTRACE TABLE 0. DISPLAY TASK ,JPA MODULES O :
DISPLAY CCNTROL BLGCKS 0 DISPLAY PSW 0
— e e DISPLAY QCB/CELS O0__ DISPLAY USER_SUBPOOLS 0
USER VARI ABLE EBCDIC DATA Note H :
JUBNAME=N®OTADP 2, VIO LMOCZ10DWT wIEXCP,A(I1CB) = 00CB2B00,AIVDSCBI=00CATETO
HEX _DUMP OF RECORD v -
HEADER = 40330800 €C0Co000 0075117F 11494895 00023782 015802A0 D5D6D5C5 60C6D509
0000 32000CT7C 800E3000 00000000 00000000 00000000 00022000 00000000 000E3000
Y _._.. _0020_ 0DF4EES0 00000C9C 00CA7BF4 00CALFO8 00100001 O0CCA7CDO 00020000 40F 48774
0940 02000900 00CA 7828 5CE4BS84 QCCATB64 50F4BYE6 030929204 00000000 002009200
0060 00500009 600092000 070C€2990 007485366 00020090 00202720 07050000 QGF4E3FO
0080 0002000D 002C€2720 €CC00000 000E3000 00 F4EE9O 00000C9C . OOCA78F4 00CA 1F 08
00AD__90100001 00CA7CDO (A slolohv o] 40F4B774 0000C030 00CA7828 50F 48984 0ICAT364
00CO0 S50F4BEE6 00000004 06000000 00002000 00000000 00900000 00060000 00000C00
GOEO__00000GOF cceccoog 04CA1000 00009000 00900320 JJCCESS50 00000000 Q0800000
0100 00920000 02000000 00000000 00000000 00000000 00020000 00000000 00000000
G120 0000C000 CSC4C4ES €9404040 C9C4C4E6 C9E309D4 CIC4C4ES €9C 62909 00CCES500
0140 02209200 30000000 cCcC32428 00CB2C28 00C52520 00CB2820 80UCB2AC8 00CB2AF8
0160__ 00200090 00900000 00600000 40000000 D50605CS 60C6D509 00380040 00020008
0180 45340000 cceeecoo €00%C¢Co0 0000000 006C4048B D1D5C2D5 C1D4CS7E D5S6F OF 1
01A0_ CLL4D7F2 6BESCSD6 4CD3D4D6 C47ECIC4 C4E56C968 E6CIC5ET C30768C1 4DC9D6C2
01CO 5D407E40 FOFOC3C2 F2C2FOF0 66C14DES C4E2C3C2 SDTEFOFO C3C1lFIC5 F7F040C0
01EOQ 00000000 CCCCocoo €CC00CCo 000€2000 09000300 008000500

Figure 2-5. SYSLLOGREC Software Incident Record 2 (Part 2 of 2)

0000929290

00009000

Use of Recovery Work Areas For Problem Analysis (continued)

The following explanations refer to Notes F-I in Figure 2-5.

Note F:

Note G:

Note H:

Note I:

Look at the status bits that appear approximately midway through the
example. One additional bit has been turned on in this entry that was off
in record 1. This indicates that this routine received control through
percolation (SDWA + X‘EA’ = X‘10°). This indicator (that is, SDWA +
X‘EA’) is not set when recovery processing goes from the last active FRR
to the current ESTAE.

The name of the FRR in this example is IDDWIFRR. The completion
code and the register contents are the same as in record 1.

Look at the ‘User Variable EBCDIC Data’ field. This area gives the
location of two more control blocks that can be used in determining
exactly what failed. These two control blocks are:

e IOB, located at address X‘CB2B00’
o VDSCB, located at address X‘CA7E70’

Compare the IOB and VDSCB addresses to the ‘Dump Ranges Area’ that
have been specified. The VDSCB does not fall in one of these ranges
because it is part of the SWA. Using the ‘Diagnostic Aids’ section of.
OS/VS2 VIO Logic, you can identify the other two dump ranges that are
printed. Included in these ranges are the current channel program and
the DEB.

Section 2: Important Considerations Unique to MVS 2.4.9

Use of Recovery Work Areas For Problem Analysis (continued)

SYS1.LOGREC Software Incident Record 3

Figure 2-6 illustrates a SYS1.LOGREC software (source) entry that has been
recorded as a result of a program check (type). The following explanations refer to
Notes J-N in Figure 2-6.

Note J: Because there is no completion code in register 1 for this type of entry,
look for the completion code in SDWA+X‘4’ (in this case 0C9).

Note K: Check the status bits. They confirm the fact that the failure was a
program check that occurred while an enabled RB was in control.

Note L: The ‘Dump Characteristics’ bits are on only if the functional recovery
routine issues a SETRP macro with the DUMP=YES operand. This macro
uses the SDWA to contain its dump options and these are the fields
formatted in the LOGREC entry. Functional recovery routines can also
take dumps by issuing the SDUMP macro. The SDUMP macro uses a
different area for its dump options. You might receive a dump of certain
failures even though the LOGREC ‘Dump Characteristics’ are zeros.
Check the byte at displacement X4’ into the SDWA. This flag is turned
on if a dump was requested by a SETRP, CALLRTM, or ABEND macro.
As a general rule, ESTAE routines are the most common users of the
DUMP and DUMPOPT operands of the SETRP macro. Since the 0C9
abend code in this LOGREC entry was for a problem program (an enabled

: RB in control), a dump would also be taken if the job had a SYSUDUMP,
| SYSMDUMP, or SYSABEND DD statement in its JCL.

Note M: There is a dump associated with this failure because location SDWA+4
~ (X‘80) indicates a request for a dump. This can be seen from the
unformatted record.

Note N: For this entry, the data in the variable recording area (at X‘194’ under
‘Hex Dump of Record’) is not formatted under ‘User Variable EBCDIC
Data’. This data is formatted by specifying an option (see Note P) in the
individual recovery routine.

Note P: The two bytes of SDWA + X*190° specify the length of the variable
recording area that starts at X‘194’.

In the two bytes at SDWA + X‘192’: the first byte specifies how the
routine wants its data in the variable recording area printed (X80’ for
unformatted hexadecimal, X‘40’ for hexadecimal and formatted under
‘User Variable EBCDIC Data’); the second byte gives the length of the
: data. It is often helpful while reading LOGREC entries to refer to the

: SDWA layout in the Debugging Handbook for additional information
about individual bit settings. '

24.10 0S/vS2 System Programming Library: MVS ljiaglmostic Techniques

"IT¥'T SAW 03 enbiup) suonesepisuo)) juerrodw] iz uonosg

CATE TIME cpPuU cPU PELEASE
. DAY_YR __HH_MM_SS.TH _ SERIAL 10 LEVEL.
—-~ RECGRD ENTRY_SOURCE — SOFTWARE ——— TYPE PROGRAM CHECK 117 75 20 31 01 50 023782 0158 VS 2 REL. 03
]] ERRORID=SEQ00055 CPUOO40 ASID001B TIME20.31.01.0)
JUBNAME) NWO1ACP2
_ABENDING PROGRAM NAME N/A: BC_MCDE PSW_AT TIME_OF ERROR BC MODE _PSW_OF LAST RB
NAME OF MODULE INVOLVED 1660325A
__NAME OF CSECT INVOLVED ___ 166C3254 FF040009_40021CC0Q EE850020 50065850
FUNCT IONAL RECOVERY ROUTINE IFGCRRCA
REGS AT TIME OF ERROR
REGS 0-7 00003230 00CB2ESS OOCB2EEO0 00CB2CBO 00E6318C OOOOFFFF FFFFTFFF 80007E70
_ _REGS_8-15 00000000 00000090 ccccacoo CC0C3230 0O02FFCA 0OCB2FBB8_ 60E6323E 00021C4E

EC_©°SW AT TIME OF ABEND

070C00C0 00021CCO

ECy PSW FRUM ESTAE R%8{0 FOR ESTAI)

070C 0000 00021CCO

ADDITIUNAL INFO:

ADDITIONAL INFO:

_INST_LENGTH CODE 02 INST_LENGTHCODE 02
INTERRUPT CODE - 0009 - INTERRUPT CODE 0009
VIRT - ADDR _OF TRANS EXCEP___ '00D4464C VIRT ADDR OF TRANS EXCEP 00D44640
REGS OF RB LEVEL OF ESTAE EXIT OR ZERO FOR ESTAI
___REGS 0-7_ ouooazgg___gpgazsas CCCB2EEQ 00CB2CBO OO0E631BC__ OOQOFFFF FFFFTIFFF _ B0JDTETO
'REGS 8-15 00000000 C0C0000 ~ ©0000000 00003230 O0002FFCA OOCB2EB8 60E6323E 00021L4E
MCA FLAG BYTE VCK INPUT INFO FRAME ERROR INDICATIRS STGRAGE ERROR INDICATORS
STORAGE _ADDRS ARE VALID 0 STORAGE KEY FAILURE O STORAGE ERROR ALREADY SET o FRAME_OFFL INE{DR SCHED) o]
MCK RECURD NOT RQECORDED O REGISTERS UNPRECICTABLE 0 CHANGE INDICATOR ON INTERCEPT 0
___ TIME STAMP IS VALID____ O _PSW UNPREDICTASLE o] SYORAGE ERRODR_PERMANENT O
STORAGE IS RECONFIGURED O = STORAGE DATA CHECK 0 PERMANENT RES. STORAGE 0
RECONFIGURE STATUS_ AVAIL 0O ACR_REGUEST o] FEAME IN_SQA o__
RICLAFIGURE NOT ATTEMPTED O INSTRLCTICN FAILURE 0 FRAME IN LSQA 0
SOFY_ERROR 0 FRAME IS PAGE FIXED 0
TIMER ERRQOR 0 FRAME IS V=R 0
. TIME STAMP OF ASSOCIATED MACHINE CHECK RECORD
BEGINNING VIRT ADDR OF STORAGE CHECK 00000200 DATE TIME
___ENDING_VIRT ADDX UF_STURAGE_CHECK. €0CC0000 DAY YR HH MM SS.TH
T REAL STORAGE FATLING ACDRESS occeccct Note K 000 00 00 00 00 00
MACHINE CHECK 0 TYPE 1 SVC IN CONTRCL 0 PREV ESTA OR FRR FAILED O EXIT 10 CLEANUP ONLY 0
PROGRAM CHECK 1 ENABLED RB_IN CCATROL 1 {EFSTAI PREV IN CONTROL 0 RB OF ESTA NOT IN CONYROL O
RESTART KEY DEPRESSED 0 DISABLED RTN IN CONTROL O 1RB PRECEDED RB 0 ESTA EXIT FOR PREV ABEND O
___TASK ISSUED SVC_ 13 O SYSTEM IN SRB MOCE 0 THIS RTN PERCOLATED TO 0 STEP ABEND REQUESTED 0
SYSTEM FORCED SVC 13 0 LOWER LEVEL EXIT INFO 0 TASK ANCESTOR ABENDED 0
SVC BY LOCKED OR SRB RIN 0 REGS AND PSW UNAVAILASLE O
T2ANSLATION FAILURE 0 MCK INFO UNAVAILABLE 0
PAGE 1/0 ERROR 0
CURRENT 1/0 STATUS
MEMORY ASID co00 1/0 1S RESTOREABLE] 0
RECGVERY KETURN CODE 00 1/0 IS NOT RESTOREABLE 0
NG 1/0 QUTSTANCING 0
NC 1/C PROCESSING 1

Figure 2-6. SYS1.LOGREC Software Incident Record 3 (Part 1 of 2)

Arexqry SurwwresSord wa)sAS ISA/SO TI'VT

3], oysouelq SAW :

sonbiu

LADDITIONAL PROCESSING

"GLOBAL LOCKS 1O BE FRELED

“LGCKWORDS

PECSDING REQUESTED 1 __ DISPATCHER LUCK 0 .
VALID SPIN -0 S2V LCCK 0
__UPDATED SEGS_FUR_PETRY 0 TUSCAT _LGCK 0 IOSCAT_LQOCKWORD 00292090
FREE RTCA DBEFGRE RETRY 0 Iesuce LacK 0 I1CSUCB LOCKwWORD 00020000
o I I0SLCHE LGCK Q I0SLCH LOCKWORD, 00000000
IOSYNCH LOCK o} T0SYNCH LOCKWGRD 00200000
R — e NCBLCCK 0__ _NCB LOCKWORD. 00000000
DNCB LCCK 0 UNCB L OCKWORD 000C0000
ACBOERS LOCK 0 ACBDESS | OCKWORD 00002900
ASMPAT LOCK 0 ASMPAT LODCKWORD 00000000
S S SALLCC_LOCK 0 ASID CURRENT 0018
CMS LDCK o]
Note L ~__ LOCAL_LOCK 0
oump CHARACT:RISHCS
. DUMP_RANGES AREA
DuP FLAGS SDATA CPTIGNS PDATA UPTIONS FROM T0
__SNAP_DUMP_REQUEST __ 0 DISPLAY_NUCLEUS 0 DISPLAY SAVE' AREAS 0 RANGE 1 00000000__09G00000
PLRN . LIST SUPPLIED 0 DISFPLAY SQA 0 " DISPLAY SAVE AREA HEADER 0O RANGE 2 00000000 00000000
__STORAGE_LISY SUPPLIED O DISPLAY_LSQA 0 DISPLAY_REGISIEPS 0 RANGE_3 - 00000000 _ 00000000
Note J DISPLAY SWA] DISPLAY TASK LPA MGCOULES O RANGE 4 00000000 00000000
__DISPLAY GIF TRACE YABLE O DISPLAY TASK JPA MODULES 0O
Note N NoteM DISPLAY CCNTRCL BLOCKS 0. DISPLAY PSW 0
\ e \ __DISPLAY QCB/QELS ") DISPLAY USER SUSPOD_LS 0
HEX DUMP OF RECJRD :)
HEADER "2830800.._¥CC NC008___ 0C75117F 11454869 032323782 015832A0 05 E6FOF1 Cl1C4DTF2
0000 00CB2C90 ?5,._,9_000 FF040C09 40021CCO FF850020 50065890 00063230 00CB2E88
C020 OOCHB2EEO GCC32CBC CCE6318C 00)0F FFF FFFFIFFF 8JJ27E70 00002900 000009090
0040__00000320____ 00003230 0D02FFCA 00CB2EBS 60E6323E 00021C4E 00CCD958___ 00000000
0060 00000000 0C000000 G70C0C00 03021CCO 00020309 00044640 070C0000 00021CCO
L 0J8J _03023009____ _J004%640____000C3230_____COCB2ESS O0CB2ZEEQ. 00CB2CBO 00E531BC____ OJ00FFFFE
0CAQ FFFFIFFF 8’30\)7E70 00000060 00200020 c00000800 00003230 O0002FFCA 00CB2E38
00CO 6DES323F GCC21C4E E6QC0248 00003000 N 00000009 20990229 00009030 02090000
02EQ 00920000F 00000000 40040000 000010090 ote 00000000 00CA2F48 00000200 00800000 .
0100 _ 00300000, 0CC00000 00000000 00002000 P 00000000 00000200 00000000 00000000
0120 0GC00000 CSCTC7FO F3F2F5C1 C9C7CT7FO F3F2F5CL C9C6CTFO DSD9FOCL OOCA2EFS8
. 0140__00000900____ 00000000 00000000 00000092 00000030 00000000 00000000_____ 03000000
0160 00C0C000 CCU00000 00000000 06009000 N, 0090 00000000 00370000 001B00OB
2180 45300000 03000000 0CC50CCO 0CCC0000- 0J5L5018 A0090200 00CB2430 O0EACCAC
01A0 000000390 00000000 OOCA2FEBES8 C4TECSC4A C4E6L 968 EGCIC5ET £3D0768C1 4DCSDsC2
01C0__50407E40 FCFCC3C2 FCC2FQOFO 68C14DES C4E2C3C2 SDTEFJFO C3C2F2C3 C6f 04300
OlED0 00000000 30000000 00000000 00000000 00000000 03020000 00000000 40000000

Figure 2-6.

SYS1.LOGREC Software Incident Record 3 (Part 2 of 2)

Use of Recovery Work Areas For Problem Analysis (continued)

Important Considerations About SYS1.LOGREC Records

As shown in the three incident records the LOGREC records are mostly SDWAs the
system supplies, plus variable user data areas the individual recovery routines

supply.

Following are some special considerations pertaining to specific portions of
LOGREC entries:

® Jobname — If the jobname is “NONE-FRR”, this indicates that the record is
generated by an SRB’s FRR (Functional Recovery Routine) or the current
ASCB was invalid.

e “BCmode PSW at Time of Error, of Last RB” — You can ignore these fields.

o “EC PSW from ESTAE RB (0 for ESTAI)” — This field has the following
possible meanings:

a.

If the ESTAE is associated with an RB level other than the oné encountering
the error, this is the PSW at the time that the RB level associated with the
ESTAE last gave up control. Note: If this is the case, the “RB of ESTAE
Not in Control” flag shou]d also be set.

If the ESTARE is associated with the RB level in error, the PSW is equal
to the “EC PSW at Time of ABEND” because the last time the RB level gave
up control was when the error occurred.

. If the record was generated by an FRR, this is the PSW used to pass control

to the FRR and is therefore the address of the FRR.

. If the record was generated by an FRR (that is, a locked/disabled routine is in

control, or the system is in SRB mode), and the “EC PSW at Time of
ABEND” is equal to the EC PSW from ESTAE RB, this is a system-generated
record.

o “Regs of RB Level of ESTAE Exit or Zero for ESTAI”:

a. If the ESTAE exit is associated with the RB level that encountered the error,

these registers are the same as “Regs at Time of Error™.

b. If the ESTAE is associated with an RB level other than the one encountering

the error, then these are the registers at the time that RB last gave up control.

Section 2:- Important Considerations Unique to MVS 2.4.13

Use of Recovery Work Areas For Problem Analysis (continued)

c. If this is an FRR-generated record, the two sets of rggistérs are identical.
However, if the FRR or ESTAE has updated the registers for retry, these
registers are the new, updated registers.

® “SVC by Locked or SRB Routine” — This indicator can be misleading.
A forced SVC 13, which is often the way FRR-protected code passes control to
recovery, also causes this flag to be set if the SVC occurred in locked,
disabled, or SRB mode. Although the flag is set, this situation is not a key .
error indication in itself. The analyst must investigate why the issuing routine
invoked SVC 13. S

e Error Identifier ,

This field, as described in recovery termination management (Section 5),
contains pertinent information regarding the error described by this
SYS1.LOGREC entry, and provides a correlation to-other SYS1.LOGREC

. entries. Related software and MCH records have the same sequence (SEQ)
number that allows the correlation of records written in a particular recovery
path (that is, FRR and/or ESTAE percolation, or MCH and subsequent software
entries). For locked, disabled, or SRB routines, the processor identifier (CPU)
indicates the processor on which the routine was running when it encountered
an error. A zero processor identifier indicates that the record was written by an
ESTAE routine (that is, the processor identifier is not uniquely identifiable
because the ESTAE routine may be executing on a processor other than the
mainline). ASID indicates the current ASID at the time of the error. TIME
indicates the time that the ERROR ID was generated. It is normally very close
to the time:that the record was written, as indicated in the first line of the
record. TIME can be used to chronologically order related SYS1.LOGREC
entries that contain the same SEQ number. This ordering is useful in recon-
structing the environment as it was at the time of the error.

If an SVC dump is taken, the ERROR ID as it appears in the SYS1.LOGREC
record, will also appear in the SVC dump output and associated IEA9111
message. Do not be concerned if the ERROR ID sequence numbers seem to
have an increment of more than one. Although the RTM adds one
to the sequence number of each unique entry (not percolation or recursion),
there may be no associated recording of the error, thus, the sequence number
is updated internally but is not always externally written.

As shown above, the SYS1.LOGREC data set is a vital tool in debugging. At
times, the information in the LOGREC printout can be used to describe the
entire problem situation. A search of Retain for the CSECT, FRR, and abend
code will often identify the problem as a known one.

SYS1.LOGREC Recording Control Buffer

This is one of the most important areas to be used when analyzing problems in
- MVS. The previous discussion of LOGREC records analysis generally applies to the
in-storage LOGREC buffer as well.

2.4.14 OS/VS2 System Programming Library: MVS Diagnostic ’Ifechniquesv

Use of Recovery Work Areas For Problem Analysis (continued)

This buffer serves as the intermediate storage location for data that
the recovery process uses after it has completed but before the data reaches
SYS1.LOGREC. The physical I/O is done from this buffer. Its real significance
is in the error history it displays. Also, any records in the buffer that have not
reached SYS1.LOGREC are almost certainly related to the problem you are trying
to solve.

Formatting the LOGREC Buffer

The in-storage LOGREC buffer can be formatted by specifying the LOGDATA verb
under AMDPRDMP. This verb causes the entries still in the buffer to be formatted
in the same manner as those printed from SYS1.LOGREC. For detailed informa-
tion on how to invoke the AMDPRDMP service aid, see OS/VS2 SPL: Service Aids.

Finding the LOGREC Recording Control Buffer

The CVT + X23C’ points to the RTCT (recovery termination control table);

and RTCT + X“20’ points to the RTMRCB (LOGREC recording control buffer).
The buffer always resides in SQA on a page boundary, is 4K bytes in length, and is
generally located just beyond the trace table. Scanning the EBCDIC portion of
the dump following the trace table usually leads you to a series of module/job
names that are part of the individual records.

Format of the LOGREC Recording Control Buffer

The LOGREC recording control buffer is a “‘wrap-table’” similar to the MVS trace
table. The entries are variable in size. The latest entries are the most significant

- especially if they have not yet been written to SYS1.LOGREC. Knowing the areas
of the system that have encountered errors and the actions of their associated
recovery routines, information obtained from SYS1.LOGREC and the LOGREC
recording control buffer, helps provide an overall understanding of the
environment you are about to investigate. Figure 2-7 shows the format of the
buffer and Figure 2-8 shows the format of individual records within the buffer.

Section 2: Important Considerations Unique to MVS 2.4.15

Use of Recovery Work Areas For Problem Analysis (continued)

0 4 8 C E. 10
RCBBUFB | RCBBUFE | RCBFREE | RCBFLNG | RCBDUM | SRB used to post
start of end of next number Dummy Recording Task in Master
? record T record T available of bytes | Displace- Address Space in order to
area area space available | ment write record to
SYS1.LOGREC

l X‘40' ‘ X650’

Missing Record Header — This Processor serial number
record shows the number of times
space was requested but was not

available.
X'58' X'69’ X‘BE’
LCNT :
Missing FLGS RCBTLNG
record SRB in use Total buffer length
count flag

If the record contains a counter or is present in SYS1.LOGREC, you have a good indication of
a recovery loop. .)

X'60° = first possible record header

Figure 2-7. Format of the LOGREC Recording Control Buffer

Record Header

0 2 3 4 6 8 C 10
Length Record Options ‘ ASID ECB Reserved | Actual
of Types for Record
Record POST

Record Type — X‘80° — This record wrapsaround from the end of the buffer space back
through the beginning.

X'40" — This record is to go to SYS1.LOGREC,
X‘20" — This record isa WTO. -

Options — X'08" — Record not buffered; the address of the record exists at X’10.”
X‘04" — The recording requestor is to be posted when the record is written,
X‘01" — Record is ready to be written. If notset, the record is still being
constructed.

Note: The beginning of the actual record + X'20' is the start of the SDWA for software
’ records. The SDWA contains software diagnostic information at the time of the error
and is mapped in the Debugging Handbook.

Figure 2-8. Format of Records, Within the LOGREC Recording Control Buffer

2.4.16 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Use of Recovery Work Areas For Problem Analysis (continued)
FRR Stacks

The FRR (functional recovery routines) stacks are often useful for understanding
the latest processes on the processors. Entries are added and deleted dynamically as
processing occurs. The PSA + X‘380” contains the pointer to the current stack.

The format is described in Data Areas section of the Debugging Handbook under
FRRs. Experience has shown that the normal stack (located at X°C00’ in each.
PSA) is perhaps the most useful, although all stacks have been beneficial on
occasion.

The FRR stack +X‘C’ points to the current recovery stack entry. (Unless the
FRR stack +X‘C’ matches FRR stack +0, in which case no recovery is present on
the stack.) This entry +0 points to the recovery routine that is to gain control in
case of error. The entry +4 contains flags used for RTM processing; a X‘80°
indicates this FRR is currently in control, a X‘40’ indicates a nested FRR is
currently in control. The next 24 bytes serve as a work area for the mainline
function associated with the FRR pointed to by this entry. This parameter area
may contain footprints useful to your debugging efforts. The previous entry in the
stack (X20’ bytes in front of the current) represents the next most current
recovery routine. Only the current and previous entries are valid. The stacks do
contain residual information associated with recovery that was previously active but
is no longer valid. You should not rely on any information beyond the current
entry.

Also consider the case where:

A gains control and establishes recovery;
A passes control to B;

B establishes recovery, performs its function, deletes recovery, and passes
control to C;

C establishes recovery and subsequently encounters an errot.

The FRR stack will contain entries for module A’s and C’s recovery routines.
There is no indication from the FRR stack that B was ever involved in the process
although it might have contributed to or even caused the error. The debugger gains
an insight into the process but is not presented with the exact flow. Although you
can get an idea of the general process or flow, do not make assumptions based
solely on the FRR stack contents.

If you have trapped a specific problem, the stacks often contain valuable
information. The same is true of a stand-alone dump taken because of a suspected
loop. If RT1W +0 (at FRR stack +X‘10°) is not zero, the FRR stack contains
current, valid data. Following are some of the more valuable fields in the FRR
stacks from a debugging viewpoint:

Section 2: Important Considerations Unique to MVS 2.4.17

Use of Recovery Work Areas For Problem Analysis (continued)

1. FRR stack + X‘10’ — RTM 1 work area (RT1W)

In the case of an error, the RT1W + 2 (FRR stack + X‘12°) field indicates the
error type as follows:

1 — program check

2 — restart key

3 — SVC error (SVC was issued while in locked, disabled, or SRB mode)
4 — DAT error

| 5 — machine check
10 — paging I/O error
11 — abnormal termination v
12 — branch entry to abnormal termination (compatibility interface)
13 — cross memory abnormal termination
15 — memory termination
20 — MCH (machine check handler)

2. RTIW + X‘34’ (FRR Stack + X‘44”) — address of system diagnostic work area
(SDWA)

If no pointers can be found, the SDWA for each supervisor FRR stack can be
found at X20’ bytes past the start of the last entry in the respective stack.
(FRR +4 points to the last entry.) The SDWA for disabled errors on the normal
stack is at X‘330’ bytes past the start of the last entry on the restart stack.
(PSA +X‘3B8’ points to the restart stack.)

3. RT1W + X‘40’ (FRR stack + X‘50’) — mode at entry to RTM1

| X®80° — supervisor control mode (PSASUPER#0)
X40° — physically disabled mode
X20° — global spin lock held
X‘10° — global suspend lock held
X‘08 — local lock held

X‘04 — Type 1SVCmode
X‘02° — SRBmode
| X901 — unlocked task mode

This is the system mode at the time of entry to RTM1. The mode may
change as processing continues through recovery; the current mode is at RT1W
+X41’ (FRR stack + X‘51°).

2.4.18 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Use of Recovery Work Areas For Problem Analysis (continued)

Extended Error Descriptor (EED)

The extended error descriptor (EED) passes error information between RTM1 and
RTM2 and also between successive schedules of RTM1. The EED address is found
at RT1W + X‘3C’ (FRR stack + X‘4C’), at TCBRTM12 (TCB + X‘104°), or in the
RTM2 SVRB at X‘7C’. The EED is generally not present because RTM?2 releases
it early in its processing. The EED is described in the Debugging Handbook as part
of the RT1W. Important EED fields are:

EED + 0 — pointer to next EED

EED + 4 (byte 0) — description of contents of the rest of the EED
BYTEO = 1 - software EED
= 2 - dump parameters
= 3 — hardware EED
4 — errorid EED

For a software EED:

EED + X‘C’ — registers 0-15

EED + X‘4C" — PSW/Instruction Length Code (ILC)/Translation Exception
Address (TEA) at time of error

RTM2 Work Area (RTM2WA)

This is the work area used by RTM2 to control abend processing. Registers,
PSW, abend code, etc. at the time of the error are recorded in the RTM2WA.
This area is often useful for debugging purposes and is described in the Debugging
Handbook by RTM2WA. This work area can be found through TCB + X‘E0,

or RTM2 SVRB + X‘80".

Formatted RTM Control Blocks

I RTM control blocks are formatted either by AMDPRDMP as a TCB exit with the
FORMAT, PRINT CURRENT, and PRINT JOBNAMES control statements, or with
the ERR option under SNAP/ABEND. With the exception of the RTCT, the
formatted control blocks are all TCB-related, and are formatted only when they are
associated with the TCB. The formatted control blocks are:

o RTCT (recovery termination control table) — formatted with the first TCB of
the current address space on the processor on which the dump was initiated.
(This control block is formatted only by AMDPRDMP.)

o FRRS (functional recovery routine stack) — has the RT1W embedded within
it and is formatted with the current TCB if the local lock is held. (This control
block is formatted only by AMDPRDMP and it is mutually exclusive of the THSA).

Section 2: Important Considerations Unique to MVS 2.4.19

Use of Recovery Work Areas For Problem Analysis (continued)

THSA (interrupt handler save area) — has the FRR stack saved within it and is
formatted with the TCB pointed to by the IHSA, if the address space was
interrupted or suspended while the TCB was holding the local lock. (This
control block is formatted only by AMDPRDMP and it is mutually exclusive of
the FRRS).

- RTM2WA (RTM2 work area) — formatted if the TCB pointer to it is not zero. -

ESA (extended save area of the SVRB) bit summary — formatted only if the
RTM2WA formatted successfully and the related SVRB could be located.

SDWA (system diagnostic work area) — formats the registers at the time of error
only if the ESA formatted successfully and the SDWA could be located.

EED (extended error descriptor block) — formatted if the TCB or RT1W pointer

_to it is not zero.

SCB (STAE control block) — formatted under AMDPRDMP for abend tasks
only. It is formatted under SNAP/ABEND whenever the TCB pointer to it is
not zero.

' System Diagnostic Work Area (SDWA) Use in RTM2 .

This work area is used to pass information to ESTAE recovery routines. It is
found by: SVRB +X‘80’° points to RTM2WA; RTM2WA + X‘D4’ points to

SDWA. Also, register 1 contains the address of the SDWA when the recovery
routines are entered.

2.4.20 0OS/VS2 System Programming Library: MVS Diagnostic Techniques

Effects Of Multiprocessing On Problem Analysis

The multiprocessing (MP) capability of MVS allows two processors to share real
storage using one control program. (MP refers to multiprocessing on both multi-
processors and attached processors.) MVS also functions on a uniprocessor con-
figuration, which may be only one processor configured out of what is otherwise
an MP system. In MP mode, each processor has addressability to all of main
storage and executes under the contral of one set of supervisor routines.

Because various queue structures must be processed in a serial fashion, inter-
locking facilities are implemented in both the hardware and software to allow
serialization of portions of the control program where conflicts may arise. Queue
structures that don’t require serialization are processed in parallel, that is, without
regard to the other processor.

Features of an MP Environment
The main features of a multiprocessing configuration are:

PSA — Each processor has a unique real storage frame, called a prefixed save area
(PSA), referenced with addresses from O to 4K. Its [ocation in real storage is
determined by the processor’s prefix register.

Inter-Processor Communication — Malfunction alerts (MFA) are automatically
generated by failing processors before entering the check-stop state. Other inter-
processor signaling is accomplished with the SIGP instruction. (This feature is
discussed in detail later in this chapter.)

VARY Command — Performs three functions: (1) dynamically add or remove a
processor from the configuration; (2) dynamically increase or decrease the amount
of useable real storage; (3) control the availability of channels and devices.

QUIESCE Command — Quiesces the system so that 1/0O pools or two channel
switches or both can be reconfigured.

Locking — Access to various supervisory services is serialized by means of a
software locking structure.

Dispatching — Assures that highest-priority ready work is processed by available
processors.

PTLB (purge translation lookaside buffer) — When an entry is to be invalidated
in a page or segment table, the translation lookaside buffer (TLB) on every
processor must be purged before permitting subsequent references to the
corresponding virtual address.

Timing — The TOD clocks must be synchronized among the configured processors.

Section 2: Important Considerations Unique to MVS 2.5.1

Effects of Multiproéessing On Problem Analysis (continued)

RMS — When components of the hardware operating system fail, it becomes the
responsibility of the recovery management support (RMS) to help define the
extent of the damage. '

Compare and Swap — Two instructions assure interlocked update operations. They

are Compare and Swap (CS) and Compare Double and Swap (CDS). References to

~ storage for these instructions are interlocked the same way as the Test and Set (TS)
_ instruction.

I0S — I0S has the ability to initiate I/O activity to a device from whichever
processor has an available path.

ACR — When one processor fails in an MP configuration, the alternate CPU
recovery (ACR) function attempts to take the failing processor offline so that
system operation can continue with the remaining processor. (See Miscellaneous
Debugging Hints).

CPU Affinity — The ability to force a job step to execute on a particular processor
is a feature of MVS. (For example, because an emulator feature is generallﬂ/

- installed on only one of the processors in an MP environment, processor affinity
will force the execution of programs that require this feature to the proper
processor.) : 3 :

MP Dump Analysis

Experience with MVS has shown that there are comparatively few bugs unique to

. MP. Usually, problems encountered in an MP environment could also be discovered
in a UP environnient. The increased interaction (parallelism) between software
components in an MP environment tends to increase the probability of hitting bugs
that are not unique to MP. Thus, the odds are that the dump you are trying to
debug could also occur on a UP configuration.

The first step of MP dump analysis is to determine conclusively that it is an MP
dump. To do this, you must find the common system dgta area (CSD). The
CSD address is located at offset X294’ in the CVT. The halfword CSDCPUOL, at
offset X‘A’ in the CSD, gives the number of processors currently active. If this
number is two, you are looking at an MP dump. For the rest of this discussion, we
will assume that CSDCPUOL=2.

Several other fields in the CSD are informative. For example, the byte
CSDACR at offset X‘16’, indicates whether or not ACR is in progress. ACR in
progress (X‘FF’ in CSDACR) indicates that one of the processors in the configuration
is becoming inactive. If this is the case, the problem may be the result of a failure
during ACR processing, and the MP dump will probably present at least two
problems:

1. A hardware failure causing ACR to be invoked.

2. A failure during ACR processing. (S'e'e the discussion on ACR processing in the
“Miscellaneous Debugging Hints” chapter later in this section.)

2.5.2 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Effects of Multiprocessing On Problem Analysis (continued)

Data Areas Assdciated With the MP Environment

There are several processor-related areas with which you should be familiar:
1. The PCCA (physical configuration communication area)

2. The LCCA (logical configuration communication area)

3. The PSA (prefixed save area)

There is a set of these control blocks for each processor located as
follows:

CVT + X2FC’ points to the PCCAVT (contains the address of a PCCA for each
processor) '

CVT + X300’ points to the LCCAVT (contains the address of an LCCA for each
processor) '

PCCA + X‘18’ points to the virtual address of the PSA for that processor
PCCA + X1C poinfs to the real éddress of the PSA for that processor

The PSA is the “low storage area” (first 4K bytes of storage) and it contains,
among other things, the hardware-assigned storage locations. System/370 Principles
of Operation details the prefixing mechanism the hardware uses to reassign a block
of real storage for each processor to a different block in absolute main storage.
Prefixing permits processors to share main storage and operate concurrently.

The PCCA contains information about the physical facilities associated with its
processor, the LCCA contains save areas for use by the first level interrupt handlers
(FLIHs). The need for processor unique areas arises, for example, because external
interrupts could occur simultaneously on each processor, and therefore a processor-
related area must exist for status saving by the external FLIH. Such areas are in the
processor’s LCCA. After locating these control blocks, you can determine several
things about the status of each processor. *

e The PSWs at the time of the last program, I/0O, SVC, external, and machine
check interrupts for each processor (PSA)

The general purpose registers at each interrupt (LCCA)
The mode (SRB or task) of each processor (LCCA)

The last program interrupt on each processor (PSA)

The address of the device causing the last I/O interrupt on each processor
(PSA)

In addition, a work/save area vector table (WSAVTC) pointed to at LCCA +
X218’ is associated with each processor. This vector table contains pointers to
processor-related work/save areas. For example, there is a large save area for use by
. ACR, which is pointed to in the processor’s WSAVTC. It is important to be aware
of the existence.of these processor-related areas because GTF, SRM, ACR, IOS, etc.,
use them; but you must narrow your problem to one of these processes (such as GTF,
SRM, etc.) before the information in the associated work/save areas become helpful.

Section 2: Important Considerations Unique to MVS 2.5.3

Effects of Multipro‘cessing On Problem Analysis (continued)
Parallelism

The most important characteristics of the MVS MP capability is parallelism. In
looking at MP dumps, you must always remember that any two processes run in
parallel and reference the same main-storage locations. As a result, queue structures
and common data areas are vulnerable. In order to preserve their integrity, the
system must. insure that they are accessed serially. The resources that must be
serialized in order to guarantee their integrity are called serially reusable resources!
(SRRs). The use of shared resources is undoubtedly the key item to be kept in
mind in debugging an MP dump. There are various mechanisms. available for
serializing SRRs: \

ENQ/DEQ

WAIT/POST

Disablement

Locking

Compare and Swap (CS) instruction
Non-dispatchability

Test and Set (TS) instruction
RESERVE/RELEASE

® @ ® 0 ¢ 0 00

Obviously all users of a particular SRR must use the same serialization
mechanism. The integrity of an SRR is not enhanced if one user employs locking
and another uses ENQ/DEQ. The point is to understand the processes going on in
both processors at the time of the failure. The processor on which the failure occurred
may not be the one that caused the problem.

Use of the work/save areas pointed to from the ASXB is a good example. These
areas are serialized with the local lock. The following diagram shows what could
happen if the same address space is running on both processors and one of the
processes involved fails to serialize properly.

PROCESSOR 0 PROCESSOR 1
. 5 ‘ .
. °
° °
° , Gets local lock
Branch enters validity check routine Branch enters validity check routine
o ,
o * Releases local lock
.
°

In this example, assume that the process executing on processor O fails to get the
local lock before it branch enters the system validity check routine. The validity
check routine uses the local lock to serialize one of the save areas mentioned above
in order to save the caller’s registers. The registers saved by the validity check
routine on processor 1 can be overlaid by the registers saved by the validity check
routine on processor 0. ‘Thus, the failure would be encountered on processor 1,
but the processor O process would be the one that caused the failure.

2.5.4 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Effects of Multiprocessing On Problem Analysis (continued)

OI/NI(OR Immediate and AND Immediate) instructions also illustrate this
phenomenon. These instructions take more than one machine cycle to complete
(that is, the operand is fetched, altered, and then stored). In previous operating
systems, physical disablement and UP environments were enough to insure the
completion of one instruction before another was executed. In MVS, with multiple
processors, this is no longer true.

For example, suppose processor 0 issues OI and the operand has been fetched.
Before processor 0 stores the changed byte, processor 1 executes the fetch cycle of
an NI instruction to change a different bit in the same byte. Now, processor 0
stores the original status plus the OI change; subsequently the NI instruction com-
pletes, which erases the effect of the OI on the same byte. In MVS, locking is used
to solve some of the problems arising from such multi-cycle instructions. When
locking is not an appropriate solution, the CS instruction is. CS serializes the word
containing the byte against the other processor. The point is that in debugging an
MP dump, both processors must be considered because interaction between
processes and shared resources is generally.the key to solving the problem.

When a program serializes an SRR incorrectly, other programs can alter the SRR
before the first program completes its update. The other programs may be running
on the other processor, or they may have received control on the same processor
because the first program was pre-empted (for example, SRB suspension because of
~ a page fault) before completing its update. Proving that a problem resulted from
incorrect serialization is accomplished by finding both the “other” program and the
window (an interval in which a program opens a serialization exposure is called a
window).

"The system trace table can sometimes be used to find potential “other”
programs. If the occurrence of the error has not been overlaid in the trace table,

it may be possible to reconstruct the series of events leading up to the failure by:

1. Listing all events on that processor, in order, using the logical processor
address field in each event’s trace entry

2. Making a similar list of all of the events on the other processor

3. Comparing the two'lists to see if the processes executing in parallel
on the processors are altering a common resource

Try to relate these two processes to the serialization problem that caused the

dump. The existence of the window is confirmed by reading the code that alters
the state of the SRR and finding where the two programs serialize improperly.

" Section 2: Important Considerations Unique to MVS ~ 2.5.5

* Effects of Multiprocessing On Problem Analysis (continued)
- General Hints For MP Dump Analysis
The following is a list of géneral hints to help you analyée an MP dump.

1.:The use of PRIORITY and DPRTY parameters no longer ensures the order
in which tasks are dispatched. First, the SRM, when attempting to handle
- resources, can allow a task or job with a lower DPRTY to run prior to a job
-+ with a higher priority. Second, as the dispatcher dispatches tasks to both
i ‘ processors, tasks of different priority may be executing on both processors
' simultaneously.

2. The CHAPw(change' priority) SVC does not ensure that tasks are dispatched in
- the expected o;der when dispatching on two processors.

- 3. Attached tasks can execute at the same time as the mother task on different
processorts. Thergfore, if both tasks reference the same data, serialization of
the data is required.

4. Any feferences made to system‘control blocks that change dynamically after
IPL must be serialized to preserve the integrity of the data. The serialization
technique for the data item must match that employed by the system.

| 5. Tasks can be redispatched on a different processor from the one on which they
were previously operating. Therefore, do not use storage from 0-4K because
redispatch on a different processor.results in different data being referenced.

. 6. If subpools are shared between tasks, users must serialize the use of any data in
the subpools common to the two tasks.

7. SRBs can be dispatched on either processor unless they are scheduled with
affinity for a particular processor.

8. Asynchronous appendages can operate simultaneously with the task on the
other processor..

9." Recovery routines can run on either processor, not necessarily the one on
which the error was detected.

10. STATUS STOP does not prevent SRBs from being added to the local queue;
it merely quiesces the address space after any currently executing or suspended
SRBs have completed.

11. When access methods allow sharing of data sets between tasks in the same
address space, access to the data sets must be serialized between the tasks.

2.5.6 0OS/VS2 System Programming Library: MVS Diagnostic Techniques

PrEN

Effects of Multiprocessing On Problem Analysis (continued)
Inter-Processor Communication

MVS uses the inter-processor communication (IPC) function in doing its inter-
processor related work. The IPC function uses the SIGP (Signal Processor) instruc-
tion to provide the necessary hardware interface between the MP-configured
processors. This instruction provides twelve distinct functions. Two of these
functions are augmented by the control program to request services of the other
processor; external call (XC) and emergency signal (EMS) which are SIGP codes
02 and 03, respectively. Thus, there are two classes of IPC services:

1. Direct — These services are defined for those control program functions that
require the modification or sensing of the physical state of one of the pro-
cessors. Ten of the twelve SIGP functions are defined as IPC direct services:

Function Function Code
sense 01
start : 04
stop 05
restart 06
initial program reset 07
program reset 08
stop and store status 09
initial microprogram load 0A
initial processor reset 0B
processor reset 0C

Note: Codes 0A, OB, and OC are not valid on a Model 158.

2. Remote — These services are defined for those control program functions
that require the execution of a software function on one of the processors.
The two remaining SIGP functions, external call (XC) and emergency signal
(EMS), provide the hardware interface and interruption mechanism to initiate
the desired program on the proper processor. The remote service function is
provided in two categories:

o Pendable service — uses the XC function of SIGP

o Immediate service — uses the EMS function of SIGP

When processor A issues a SIGP (XC or EMS) instruction to processor B, a
request for an interrupt becomes pending in processor B for the external
class. If external interrupts are disabled in the current PSW for processor B,
the interrupt is not taken. If the PSW for processor B is enabled, then
separate mask bits for XC and EMS are interrogated in control register 0.
Interrupts are taken one at a time for those requests enabled in the control
register. If processor B is disabled, processor B keeps pending at most one
XC and one EMS request. XC requests can pend simultaneously. Each
specific XC request is encoded in a physical configuration communication
area (PCCA) buffer associated with the receiving processor.

Both the direct and remote services may be used to initiate the desired

function on any of the processors physically attached via the MP feature,
including the processor the request is initiated on.

Section 2: Important Considerations Unique to MVS 2.5.7

258

Effects of Multiprocessing On Problem Analysis (continued)
Direct Services

‘The direct service function consists of a macro instruction (DSGNL)and a SIGP
issuing routine (IEAVEDR): The DSGNL macro generates an in-line sequence of
instructions that:

‘1. Loads 'general register 0 with one of the ten SIGP function codes used to
perform the desired hardware action

2. Loads general register 1 with the address of the specified processor’s physical
- configuration communication area (PCCA)

3. Loads general register 15 with the address of IEAVEDR
4. BALRs 14,15
Upon return from IEAVEDR, register 15 contains a return code indicating the

status of the request. If the return code is 8, register O contains sense information
about the receiving processor as shown in Figure 2-9.

Return Code of 8: Register 0
Bit Meaning
0 Equipment check
1-23 Reserved
24 External call pending
25 Stopped '
26 Operator intervening
27 Check stop
28 Not ready
29 Reserved
30 . Invalid order
31 Receiver check

The other return codes are:

0 — SIGP instruction successfully initiated. The function is not necessarily
completed upon return to the calier.

4 — SIGP function not completed because path to the addressed processor
was busy or the addressed processor was in a state where it could not accept
and respond to the function code.

12 — Not operational, that is, the specified processor is either not installed
or is not configured into the system or is powered off.

16 — SIGP unsuccessful. Processor is a uniprocessor and does not have SIGP
sending and receiving capabilities.

Figure 2-9. SIGP Return Codes

08/VS2 System Programming Library: MVS Diagnostic Techniques

—

Effects of Multiprocessing On Problem Analysis (continued)
Remote Pendable Services

The remote pendable services function (external call) consists of a macro
instruction (RPSGNL) and a routine (IEAVERP) which are used to invoke the
execution of a specified program on a specifc processor. This service is used by
supervisor state, zero protection key functions that are not dependent upon the
completion of the specified service in order to continue their processing. The
RPSGNL macro generates an in-line instruction sequence that:

1. Loads register O with a code identifying one of the services to be initiated

2. Loads register 1 with the address of the PCCA of the processor on which the
service is to be initiated

3. Loads register 15 with the address of IEAVERP
4. BALRs 14,15

Upon return, register 15 contains a return code. If the return code is 8, register 0
contains sense information (see Figure 2-9). There are currently six functions that
can be initiated via external call:

1. Switch — specifies that the service routine (IEAVEMSI) used by the memory/
task switch function is to be executed.

2. SIO — specifies that the 10S start I/O routine (IECIPC) is to be executed on
the specified processor.

3. RQCHECK - specifies that the timer supervisor TQE check service routine
(IEAPRQCK) is to be executed. This routine ensures that the top TQE on the
real-time queue is being timed.

4. GTFCRM - specifies the GTF service routine (AHLSTCLS) that modifies the
Monitor Call (MC) control registers is to be executed.

5. MODE — specifies the recovery management services (RMS) service
routine (IGFPEXI2) that modifies the RMS oriented control registers is to be
executed.

6. MFITCH — specifies that the MF1 service routine (pointed to by

CVT + X*320%) is to be executed. This routine executes TCH (Test Channel)
instructions on the processor to which the channels are attached.

Section 2: Important Considerations Unique to MVS ~ 2.5.9

Effects of Multiprocessing On Problem Analysis (continued)

The remote pendable services routine (IEAVERP) sets the appropriate code in the
external call buffer of the receiving processor’s PCCA (offset X‘84°) as follows:

SWITCH ~ X‘80°
SIO x40’
RQCHECK X20’
GTFCRM X‘10°
MODE X04’
MFITCH X02’

Then IEAVERP sets the external call (XC) function code (X‘02’) in register O and
uses the DSGNL macro instruction to cause the SIGP instruction to be issued.

The receiving processor will take an external interrupt when it becomes enabled
for such interrupts. The external FLIH determines that the interrupt was an XC
and passes control to the XC SLIH. The XC SLIH locates the XC buffer (X‘84°) in
his PCCA, determines the function requested, and branches (BAL) to the
appropriate routine. Refer to Figure 2-10 for the XC process flow.

Remote Immediate Services

The remote immediate services function consists of a macro instruction, RISGNL,
‘and a routine, IEAVERI, which are used, like the remote pendable services, to
cause the execution of a specified program on any of the online MP-configured
processors. However, the immediate service differs from the pendable service in
two important ways: ’ '

¢ The processors in an MP configuration are enabled for the emergency signal
(EMS) interrupt at times when the processors are not enabled for the external
call interrupt. In particular, EMS interrupts are enabled when the processor
is in the “window spin” state in which all other asynchronous interrupts
(except machine check and malfunction alerts) are disabled. This “window
spin” state is entered by a routine, such as the lock manager, when a point is
reached in its processing that requires an action on the other processor in order
for processing to continue. The “window spin” state specifically allows either
the malfunction alert or EMS interrupts that are used to trigger the alternate
CPU recovery (ACR) function to be accepted and processed.

e An immediate service routine can be requested to execute serially or in parallel
with the function requesting the service. That is, IEAVERI will spin while
- waiting for the designated processor to signal either that the receiving routine
has completed execution (serial) or that the receiving routine has been given
control (parallel). '

Some of the functions that can be initiated via EMS are:

e HIO — A Halt I/O command is issued to the designated device by the
receiving processor.

o ACR Function — The receiving processor helps the sending processor from a
failure by alternate CPU recovery procedures.

2.5.10 OS/VS2 System Programming Library: ‘MVS Diagnostic Techniques

Effects of Multiprocessing On Problem Analysis (continued)

e Clock Synchronization — TOD clocks are adjusted so the same value is in
each clock.

e PTLB — The receiving processor purges its translation-lookaside buffer (TLB).

The remote immediate services macro, RISGNL, generates an in-line sequence of
instructions that:

1. Loads register 0 with the PARALLEL/SERIAL indication

2. Loads register 1 with the address of the PCCA of the processor on which the
- service is to be executed

3. Loads register 11 with the address of a parameter list to be passed to the
service routine

4. Loads register 12 with the entry point address of the service routine to be
executed

5. Loads register 15 with the address of IEAVERI
6. BALRs 14,15

As for direct and remote pendable services, upon return register 15 contains a
return code. Register O contains sense information in case the return code was
eight. (See Figure 2.9). :

TIEAVERI builds the emergency signal buffer in the sending processor’s own
PCCA at offset X‘88’, sets the EMS function code X‘03’ in register 0, and issues
the DSGNL macro to cause the SIGP to be issued. The receiving processor will
take an external interrupt when it becomes enabled. The external FLIH determines
that the interrupt is an EMS and routes control to the EMS SLIH. The SLIH
locates the EMS buffer of the sender and, for a parallel request, the SLIH turns
off the parallel bit and calls the receiving routine. For a serial request, the receiving
routine is given control, and, upon completion, the serial bit is tumed off. During
this interrupt handling process, the sending processor was in the window spin state
until the serial or parallel bit was turned off. Figure 2-11 shows the EMS process
flow.

Section 2: Important Considerations Unique to MVS 2.5.11

SENDING PROCESSOR

Invoked via Macro

B
(See Below) |EAVERP

1. Disables (STOSM)
External and 10 interrupt
Set up (see Note 1.}

input Registers

Ro | Function Code :> | 2. 'ts Receiving Processor
' Online ?

c " 5 Yes No RC=4
* R1 | Receiving Processor’s

PCCA

Ipec - 3. Turns On External Call’s
R14 | Return Address Sub-Function Code in
R15 | IEAVERP EP External Call’s Buffer In

Receiving Processor’s
PCCA. (Compare and
Swap On)

4. Sets External Call
Function Code, X'02"In
Reg 0

External Call Buffer (In-
Receiving Processor’s PCCA)

Code J I

Code: SWITCH X'80"
SIO X'40'
RQCHECK X‘20
GTFCRM X‘10°
RESERVED X'08’
MODE X'04"
MFITCH X02'

IIEAVEDB

5. Issues DSGNL (0), (1)

6. Checks Return Codes.
If R.C. = 8 and Status
is External Call Pending,
I Set Return Code = 0.

1y

7. Restores Caller's Status;
Return to Caller

|

Return Registers

Status Bits
R14 | Return Address
R15 | Return Code

I Note: R.C. 8 means
status bits are set in
Register 0.

RO

Input Registers

1.

Disables (STOSM)
External and 1/O Interrupts
Set up - see Note 1.

. Establishes SIGP Registers

a. Physical Processor Address
R2 = PCCACPUA based on R1

b. Establishes Parameter Register
R1=0

c. Establishes Function Code
R3=RO

SIGP R1,R2,0 (R3)’

3.. Checks Condition Code
CC2 - Busy — Retry (2) i
CC1 — Eq. Chk, Operator Intervention
Receiver Check — Retry
i Within Limits
CC1 — All Others —R.C.8
CC3 —R.C.8 (See Note 3.)
CCO -R.C.O
4. Restores Caller’s Status and

Returns to Caller

Function Code
RO | _ %92
R1 | Receiving Processor’s
PCCA
R14 | Return Address
R15 | IEAVEDR EP
Entry Point

JEAVERP Invoked via RPSGNL Macro Expansion:

SWITCH
sIo
RQCHECK
RPSGNL § GTFCRM
MODE
MFITCH
(0)

PCCA Entry Addresst

R =
,PROCESSO 3 P

Figure 2-10. External Call (XC) Process Flow (Part 1 of 2)

2.5.12 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Returns to
IEAVERP

Return Registers

Ro|. [status Bits
R14| Return Address
R16] Return Code

Note: R.C.8 means

status bits are set in
Register 0

{To Part 2)

RECEIVING PROCESSOR

(From Part 1) External FLIH

Determines Hf
Interrupt

Is An
External

Call

Input Registers External Call SLIH

R2 FLIH Return
Address 1. Turns On Active Bit

Ext. Cail SLIH
R1
° Entry Address 2

. Locates External Call Buffer
PSA —» PCCA

3. |If Buffer Equals O,
Returns to FLIH

4. Determines Subfunction

Requested Compare and Appropriate
Swap Bit Off and Bal 14 Routine

to Appropriate Routine:

X‘80' SWITCH IEAVEMS1

X'40° S10 IECIPC

X‘20' RQCHECK IEAPRQCK
X10' GTFCRM AHLSTCLS
X‘08' RESERVED

X'04' MODE IGFPEXI2
X02' MFITCH CVTMFRTR%

5. Turns Off Active Indicator and
Returns To External FLIH — BR 2

Notes:
1. Turns on active indicator
Saves callers registers
Establishes addressability
2. Disables/Enables Spin
1. Turns on SPIN indicator
2. Enables for MFA and emergency signal interrupts
3. Disables '
4. Turns off SPIN indicator
3. 1f CC = 3 and yet the processor is logically online, a SIGP
hardware failure may exist. A ‘Soft ACR'’ option is
available to the system operator to reconfigure to a
UP system.

Figure 2-10. External Call (XC) Process Flow (Part 2 of 2)

Section 2:" Important Considerations Unique to MVS ~ 2.5.13

RO
R1

R11
R12
R14
R156

SENDING PROCESSOR
See Macro Below

IEAVERI

1. Disables (STOSM)

External and {0 Interrupts
Sets up (see Note 1.)

Input Registers

Parallel/Serial :$. Is Receiving Processor Online ?
Receiving Processor's Yes No=»RC=4.
PCCA

4

Parameter Address

Receiving Routine EP

Return Address

|IEAVERI, EP

. Builds Emergency Signal Buffer in

Own PCCA.
a) Turn On Parallel or Serial
Indicator.

" b) Place Receiving

1) Routine’s EP

2) Routine's Parameter Address
3) Processor’s Address

In The Buffer

. Sets Emergency Signal Function

Code, X‘'03' In Reg 0.
Issue DSGNL. (0), (1)

. Checks Return Codes:.

Unsuccessful ﬁ{ :)
Successful
. Serial Parallel
Request Request
" 8pin Until Serial | Spin Until Parallel
Bit is Off. Bit is Off,
Note 2 Note 2

. Restore Caller's Statﬁs and

Returns To Caller :

Emergency Signal Buffer
{In Sending Processor's PCCA)

Bit O — Parallel

Bit 1 — Serial

Bit 31 — RMS Indicator
Receiving Routine’s
Entry Point

Receiving Routine’s
Parameter Address

Receiving Processor’s
Physical Processor ID

1EAVEDR

=R ¢

Return Registers l

x03' | status Bits
Return Address

Return Code

Input Registers

Function Code =

RO | x03'

. Disables (STOSM)

External and 1/0 Interrupts
Sets up (see Note 1.}

. Establishes SIGP Registers
a. Physical Processor Address

R2 = PCCACPUA based
on R1

b. Establishes Parameter
Register
R1=0

c. Establishes Function Code
R3=R0O
SIGP R1,R2,0(R3)

. Checks Condition Code

CC2 — Busy — Retry (2)
. CC1 — Eq. Chk, Operator

Intervention Receiver _
Check — Retries Within
Limits

CC1 — Ali Others — R.C.8

CC3 — R.C. 12 (See Note 3)

CCo —R.C.0

. Restores Callers Status and

Returns To Caller

R1 | Receiving Processor's
PCCA

R14 | Return Address

R15 | IEAVEDR

Figure 2-11. Emergency Signal (EMS) Process Flow (Part 1 of 2)

2.5.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques

ReturnTo
IEAVERI

Return Registers

RO | status Bits
R14 | Return Address
R15

Return Code

Note: RC 8 Means
Status Bits Are
Setin Reg 0

(To Part 2)

B>

(To Part .

RECEIVING PROCESSOR

(From Part 1) External FLIH

Determines
Interrupt
Is An
Emergency
Signal

Input Registers

FLIH Return Emergency Signal SLIH
R2 [Address -
LIt 1. Turns On Active Bit
R1o| EMSS

Entry Address
2. Locates EMS Buffer of Sender :

@ CVT = PCCAVT (Processor 1D) =»PCCA

(From Part 1) [3. If RMS Indicator On, Calls ACR

4, |If Receiving Processor 1D Equals This
Receiving Routine Processor 1D, Returns to FLIH.

Receiving Routine

5. Determines If This Is

" Serial or Parallel:
Calls Receiving Turns Off Paralle! Bit
Routine
Turns Off Calls Receiving
Input Registers Serial Bit Routine) Input Registers
R1 | Parameter Address R1 | Perameter Address

8. Turns Off Active Indicator

R14 | Return Address R14 | Return Address

Receiving Routine’s Receiving Routine’s
15 7. Ret to FLIH g
R Entry Address eturns to R15 Entry Address
IEAVERI Invoked via RISGNL Macro Expansion: Output Register
R2 | FLIH Return Address
RISGNL % Par.allel % _cPU =;P,CCA Entry Address
Serial (1)
_ {Address . § Address

Ep { (12) % ['P“"“ ; (11 }]

Notes:

1. Turns on active indicator
Saves callers registers
Establishes addressability
2. Disables/Enables Spin
1. Turns on SPIN indicator
2. Enables for MFA and emergency signal interrupts
3. Disables
4. Turns off SPIN indicator
3. 1f CC = 3 and yet the processor is logically online, a SIGP
hardware failure may exist. A ‘Soft ACR” option is
available to the system operator to reconfigure to a
UP system.

Figure 2-11. Emergency Signal (EMS) Process Flow (Part 2 of 2)

Section 2: Important Considerations Unique to MVS ~ 2.5.15

2.5.16

Effects of Multiprocessing On Prbblem Analysis (continued)

MP Debugging Hints

1.

Apparent disabled loop in IEAVERI on processor A.

This is probably caused when processor A sends an EMS to processor B, but
the receiving routine on processor B has not yet turned off the serial or
parallel bit in processor A’s PCCA. Thus, processor A is in the “window
spin” state in IEAVERL.

To find what processor A wanted processor B to do, locate processor
A’s PCCA.

CVT + X“2FC’ points to the PCCAVT
PCCAVT + 4 (CPUID for processor A) points to processor A’s PCCA.

PROCESSOR A’s
PCCA X‘80’ for Parallel
Request
X‘40’ for Serial
Request
X'88’
RISP
X‘8C’
Receiving Routine PARM address
X‘90’
Receiving Routine EP address
X‘94’
‘Receiving Processor’s PCCA
~address 7

By locating the proper PCCA (in this case processor A’s), you can determine
whether the EMS request was parallel or serial, the entry point, and, there-
fore, the name of the receiving routine. Although this information tells quite
a bit about the current process on processor A, the real problem, however, is
most likely on processor B. Three past experiences can help determine the
state of processor B.

e Processor B, if disabled for EMS interrupts, would never take the EMS
interrupt; therefore the receiving routine would never get control and the
parallel or serial bit would never get turned off.

o There could be a hardware problem with the SIGP circuitry. For example,
if IEAVERI got condition code O as a result of issuing the SIGP instruc-
tion on processor A, but the SIGP was never received on processor B, there
would be aloop in IEAVERI.

e Processor B was stopped in order to take a stand-alone dump. Before the
dump program was IPLed or processor A was stopped, processor A issued
the EMS for page invalidation. Thus, when the dump occurred, processor
A was looping while waiting for the page invalidation to complete. - So it
appeared that processor A’s looping was the problem when actually it was
caused by a previously-identified problem on processor B. -

0S/VS2 System Programming Library: MVS Diagnbstic Techniques

Effects of Multiprocessing On Problem Analysis (continued)
2. Locate External Call buffers
The external call buffer is located at offset X‘84” in the PCCA. Normally, the

buffer is clear, but it is worthwhile to check to make sure that there is no
XC work to process, as indicated by the request codes below:

PCCA Request Code:
X‘80° — SWITCH
: X'40" - SIO
X84’ X200 — RQCHECK

code X10" — GTFCRM
X'08 — RESERVED
X‘'04' - MODE
X‘02" ~— MFI1TCH

The code is set in the receiving processor’s PCCA so that a bit on in processor
B’s PCCA, for example, means that processor A initiated the request.

3. Determining Which Processor Has I/O Capability

The processor attribute bits, PCCAATTR, are located at offset x‘178 in the
PCCA. If bit 1 (PCCAIO) is 1, then this processor has 1/O capability, which
means that this processor has at least one channel logically online.

Bit 1 isset to 0 by:

IEAVNIPO: For each processor that has no channels physically online.
(Note: For Model 158 and Model 168 AP systems, PCCAIO=0
for the attached processing unit.)

IEEVCPU: When the last channel of a processor is varied offline.

Bit 1 is set to 1 by:
IEAVNIPO: For each processor that has channels physically online.

IEEVWKUP: When a processor is varied online and it has channels physcially
online.

When the first channel of a processor is varied online.

Section 2: Important Considerations Unique to MVS ~ 2.5.17

Effects of Multiprocessing On Problem Analysis (continued)

Bit 1 is referenced by:
| ~ IGFPTERM: When searching for a live processor, if that processor has I/O
capability (PCCAIO=1), a SIGP EMS is issued to that processor.
IGFPTSIG: When processing an EMS received from a failing processor.
When invoked during system termination, if executing on a

processor with I/O capability, IGFPTSIG writes to LOGREC and
the console.

IGFPXMFA: When processing an MFA received from a failing processor. If
executing on a processor that has 1/O capability, IGFPXMFA
invokes ACR.

IEAVTACR: If PCCAIO=1 for the failing processor, IEAVTACR invokes I/O
restart to handle outstanding I/O.

2.5.18 OS/VS2 System Programming Library: MVS Diagnostic Techniques

MYVS Trace Analysis

This chapter reviews the trace formats found in VS2 storage dumps. The

MVS trace (similar to the OS trace) and the GTF trace are available in both system-
initiated dumps (SNAP) and in stand-alone dumps. There are formatting routines
for most combinations. The trace table entry format can be found in the “Data
Areas” section (see TTE-Trace Table Entry) and the “Dump and Trace Formats”
section of the Debugging Handbook.

_The information in this chapter is provided to assist you in reviewing the various
formats as you will see them in a storage dump. The page fault path is used as the
vehicle for describing these formats in the following examples and descriptions.

Trace Entries

To have these entries formatted in a SYSUDUMP/SYSABEND/SYSMDUMP, the
installation must specify SDATA=(TRT) in the SYS1.PARMLIB members or use
the CHNGDMP command.

Note: SYSMDUMP produces a machine-readablé dump; AMDPRDMP must be
-used to print it. AMDPRDMP does not format the system trace table.

For unformatted trace table entries, the system queue area (SQA) must have
been printed. Use location X‘54” as shown in Figure 2-12 to locate the trace table.
Remember that ‘TRACE ON’ was required at IPL time. (Note that if GTF is active,
‘the system trace is turned off.)

Entry Pointers

Loc X'54' .
\Currem . First Last
FD95CO 00000000 000295C8 ‘O0FDAF00' 00FD9600 00FDC800' F5003240 00000000 00000000 *ooooa.n H...
FD9SEO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 e eiitnens
FD9600 078D206F 40F63284 00000004 00000004 00064F08 00400004 OOCEC410 07128A1B *ooee 6.
FD9620 070C3011 BOF647EE 00000000 00CBD00O 00CBD000 00400004 OOCEC410 07128A38 *oouon 6.....

FD9640 078D706F 40F63284 00000000 00000000 00000127 00400004 QOCEC410 07128A67 *.... 6.A...
FD9660 078D2003 40014C72 00FA903A 00000000 00064DE8 00400004 OOCEC410 07128A8D Fover tevnnn

FD9680 070C700C 60E470B4 OOFA903A 00000000 00064DES 00400004 0O0CEC410 07128A9F *..... U.....
FD96A0, 070 00EL470E6 00000; 0 41 ool U... .
N czoocbeozwosuj\ E470E 00000 00064 DES, ot:uooo:u \OOCEC410, 07128B48, U...U
.a < f 9
where:

a — address column in SQA

b— PSW or device address/CAW if an S10 operation

¢ — variable, see TTE in Debugging Handbook

d— CPU ID: 0040 for processor 0; 0041 for processor 1

e — ASID: 0001 is Master Scheduler; 0002 is usually JES;
0000 is Dummy Task or N/A

f — TCB address

g — Timer value

Figure 2-12. How to Locate the Trace Table

- Section 2: Important Considerations Unique to MVS ~ 2.6.1

MYVS Trace Analysis (continued)

If low address storage is overlaid and the trace table pointer (X‘54°) is lost, you
can locate the trace table (which is in the SQA) by searching through the high
address range of common storage. Each trace entry is X‘20’ bytes in length and
begins in the extreme left-hand column of a storage dump. Once you locate a
pattern of X‘07” and X‘04’ combinations, you have found the trace table.

If location X‘54” has not been overlaid, then it will point to the control informa-
tion for the trace; this information is directly in front of the actual table.

The trace routine places an entry (record) type indicator in the fifth position of
the PSW and moves the interrupt code in to make the PSW appear as BC mode.
. Figure 2-13 illustrates and explains each of the trace entry types.

(1D-¥p3820
FD98CO
FDISEO
FDB900
FDB920
FDBO40
FDBICO
FDBIEO
FDBAOO
FDBA20

FDI740
FD9760
FD9780
FDI7A0

(:)rFD97C0
FDI7EQ
FD9800
FD9820

(®-Fposuo
FD9860
FD9880

where:

@® -

Qe ©6 6 6
|

®
l

Position 5

000 50 000060F8 001F54F8 0C000000 O0FF5194 00400004 OOCEC410 07128D81
078D7000 O0F62F84 00F62F30 00000001 00064F08 00400004 OOCEC410 07128DSE
078D206F. 40F63284 00000004 00000004 00064F08 00400004 O0O0CECH10 07128DA9
07801004 00F63284 00000000 00000000 000002B0 00400000 OOFE99B8 0712B582
078D706F 40F63284 00000000 00000000 000002B0 00400004 OOCECH410 0712B5A8
078D2003. 40014C72 00FA903A 00000000 00064DE8 00400004 OOCEC410 0712B5CH4
078 6F 40F63284 00000004 00000004 00064F08 00400004 QOCEC410 0712B6B2
070 11 BOF647EE 00000000 00CB5000 00CB5000 00400004 O0OCEC410 0712B6DO
078D706F 40F63284 00000000 00000000 000002BF 00400004 OOCEC410 0712B700
078D2003 40014C72 OOFA903A 00000000 00064DE8 00400004 O0O0CECH10 0712B716

078D2003 40014C72 00FA903A 00000000 00064DE8 00400004 OOCEC410 07128BDF Fovve tevenerannanas Y.
070 50 3001A128 001F5258 0C000000 00000000 00400004 OOCECH10 O07128BEE *....iu.eeevoansonnanns
070 00 0001C760 00000004 O00FF5168 00FF5194 00400004 0OCEC410 07128C01 oo 0ee Gerosononnnnnas
070C700C 7001A128 00000000 00000088 00CC3CBO 00400004 OOCEC410 07128C10 st casettttatenonn
07006000 0003054C 00000004 O00OFFFF 00FF5258 00400004 00CEC410 07128CiC i eetereercctanaans
00000250 000060F8 001F5258 0C000000 OOFF5194 00400004 OOCEC410 07128CS8 ¥iieaann Beveoeriannens
070C700C 60E470B4 OOFA903A 00000000 00064DE8 00400004 OOCEC410 07128C65 f R I ¢ P Y.
070C200C 60E470B4 OOE470E6 00000000 00064DE8 00400004 OOCEC410 07128D10 *oeann U...UW..onnnn Y.
07802000 0OE470E6 00E470E6 00000000 00064DE8 00400004 OOCEC410 07128D25 *oeooUW.UW,. .Y,
078D5250 00F62F84 001FS54F8 0C000000 00000000 00400004 O0O0CEC410 07128D32 *ooeee 6evane - FA
070C4000 0001C760 00000004 OOFF5168 OOFF5194 00400004 QOCEC410 07128D43 ... Gevooonnnnnnnns

Fifth digit in first word is 0. This is an SO entry for device 250. The CAW
address is ‘60F8’, The CSW is residual from. the previous 1/O interrupt. The 0SB
address is ‘FF5194°,

Fifth digit = 1, an external type. This entry has an interrupt code of X‘1004’ so it
was generated by a clock comparator interrupt.

Fifth digit = 2, an SVC interrupt. An SVC ‘6F’ was issued from location F63284
{minus the interruption length code — ILC). Variable fields are registers 15, 0
and 1,

Fifth digit = 3, a program interrupt. Interrupt code of X’11’ is a page exception.
Word four is the referenced translation exception address (TEA).

Fifth digit = 4, an SRB dispatch. The address in the PSW (1C760) is the entry
point address. Word 3 contains the ASID to be dispatched. This illustrates the
scheduling of POST status after an 1/O interrupt. '

Fifth digit = 5, an 1/0 interrupt.” The device address (250) has been moved into the
PSW. Words 3 and 4 are the CSW with the channel end/device end.

Fifth digit = 6, SRB redispatch. SRBs can be suspended because of lock contention
or a page fault. The address in the PSW is the return address to the lock manager
or the instruction that caused a page fault.

Fifth digit = 7, Task dispatch. Interrupt code is from the last task interrupt. If the
interrupt code is O, it is a return from SVC 0 or the first dispatch of this request
block (RB) for the task.

Figure 2-13. Types of Trace Entries

2.6.2 0S/VS2 System Programming Library: - MVS Diagnostic Techniques

MVS Trace Analysis (continued)

Note: In previous systems, the program check trace entries had régisters 15,0, 1
in words 3,4, and 5. Also, the fourth word was the TEA for page fault entries.

This is changed in MVS; the fourth word for any type of program check is now
the TEA.

Trace Examples

Figures 2-14 through 2-17 illustrate different kinds of MVS and GTF traces, as
follows:

Figure 2-14. MVS Trace of a Page Fault Without I/O

Figure 2-15. MVS Trace of a Page Fault With 1/O

Figure 2-16. GTF Trace of a Page Fault Without I/O

Figure 2-17. GTF Trace of a Page Fault With 1/0

While trace tables do not include all system activity, they can be very helpful in
establishing a pattern. Remember that many MVS system services are branch

entered and therefore do not appear in any trace type entry.

Figure 2-14 illustrates a page fault that did not require I/O for completion.

DSP NEW PSW 071C700A 4009247E R15/R0 00000000 00000178 R1 00098E88 " IDS 0041000C TCB 008FC728 TME 48CB062C
(:) — PGM OLD PSW 071C3011 80092480 R15/R0 00000000 00098EBC R1 00098E88 1IDS 0041000C TCB 008FC728 TME 48CB0635
SVC OLD PSW 071C200A 600925F0 R15/R0 00000000 00000178 R1 00098E88 1IDS 0041000C TCB 008FC728 TME 48CB0670
DSP NEW PSW 071C700A 600925F0 R15/R0 00000000 00099000 'R1 00098E88 IDS 0041000C TCB 008FC728 - TME 48CBO6AS

@ — Fifth digit = 3 and the interrupt code is X'11." The faulting instruction is at
X'92480’ and is referencing X‘98E8C.” Because the next entry for this ASID and TCB
is not a redispatch of the same location, it can be assumed that the page exception was
satisfied by reclamation or the first time reference after a GETMAIN. No 1/O was
required and there are no additional trace entries illustrating the process.

Figure 2-14. MVS Trace of a Page Fault Without I/O

Figure 2-15 illustrates another possible format of a page fault. It shows an MVS
trace (formatted by the SNAP routine) and how it would appear in an SYSUDUMP
or SYSABEND dump if the TRT operand was specified in SYS1.PARMLIB or by
the CHNGDUMP command.

:: I DSP NEW PSW 070C7038 50040162 R15/R0 00040146 COC7C7F0 R1 F1FI9F9C6 IDS 0041000A TCB 008DD1C8 TME 48CB023B
(:)1___PGM OLD PSW 075C3011 80F8A000 R15/R0 OOF8A000 OOFBA000 R1 F1F9F9C6 . IDS 0041000A TCB 008DD1C8 TME u48CBO249
ISD OLD PSW 070C4000 0005B4A0 ASD/RO 00000001 O0FE7400 R1 00000000 IDS 00410001 TCB 00000000 TME 48CB028A

l (:)———-SIO CC/DEV/CAW 00005312 0000ES5AQ0 CSW 00076470 0C000001 ISB OQOFF0188 -IDS 00410001 TCB 00000000 TME 48CB02C2
DSP NEW PSW 070E7000 00000000 R15/R0 00000000 00000000 R1 00000000 IDS 00410000 TCB 0001DS8A8 TME 48CBO3B6

I/0 OLD PSW 070E5312 00000000 CSW 000768F0 0C000001 - RES 00000000 IDS 00410000 TCB 0001D8A8 TME 48CBO4D9Y

ISO OLD PSW 070C4000 00025B7A ASD/RG 0000000A 00FF8510 R1 00000001 IDS 0041000A TCB 00000000 TME 48CBO874
(:)J]::DSP NEW PSW 075C7038 40F8A0Q00 R15/R0 O0FB8A000 C9C7C7F0 R1 FI1FI9F9C6 1IDS 0041000A TCB 008DD1C8 TME 48CBOSAOD

— The page exception.

— The SRB dispatch to initiate ASM’s processing in address space 1.
The S10 by 108 after a branch entry from ASM.

— The 1/O interrupt with channel end/device end.

— SRB scheduled in page faulting address space to post the suspend task that 1/O
is complete.

CIOISIOIS)
|

)

— Redispatch at page faulting location.

Figure 2-15. MVS Trace of Page Fault With I/O (Formatted by SNAP in SYSUDUMP/SYSABEND)

Section 2: Important Considerations Uniqué toMVS 2.6.3

MVS Trace Analysis (continued)

Note that the sequence illustrated for the page fault path is not a mandatory one.
Frequently ASM finds more than one request for paging on the queue and can '
satisfy them with one 1/0. Also, if RSM queues a request and notes that a request
already exists, it does not interface with ASM. The ASM SRB has been scheduled
previously.

The next two examples are of GTF traces with the following options in effect:

FORMAT=SYS USR=YES

SVC=ALL GTF=NO

SIO=ALL DSP=YES

PI=ALL PCI=YES

I0=ALL ~RNIO=NO

EXT=YES SRM=YES

RR=YES USERTIME=YES
Note: The fields in GTF trace records are described in Debugging Handbook,
Volume 1.

Figure 2-16 illustrates one of two situations:

1. A first reference to a page after a GETMAIN was issued for it.

2. A reclaim; that is, a fault on a page which was stolen but whose real frame
v had not yet been reused.

PGM 017 ASCB 00FD5858 CPU 0000 JOBN USRT085 OLD PSW 075C0011 00D853F6 TCE 00BBSEBB ~MODN SVC-RES VPA 00885F5F
RC 00885F60 B1 000001A0 R2 00000050 R3 0050F602 R4 000000E6 R5 00D85000 R6 A0D85220 R7 C00000050
R8 0008B120 R9 00000001 R10 00D55D20 R11 008BE740 R12 000001A0 R13 00000000 R14 008B5E60 R15 00000000
TIME 44413,312955

. . .' ‘/‘
Figure 2-16. GTF Trace of a Page Fault Without I/O \
Figure 2-17 shows the steps taken to acquire a new page following a page fault.
PGM 017 ASCB 00FD5858 CPU 0000 JOBN USR1085 OLD PSW 075C0011 00C6B000 TCB 00888FB8 MODN SVC-RES VPA 00C68000
RO 00000058 R1 00000058 R2 8F8BS5B78 R3 40C69002 R4 008BS8F8 RS 01885F2C R6 008BSEE4 R7 018B5F20
R8 008B5FO4 R9 00000000 R10 00000008 R11 008BSAD4 R12 00000000 R13 00000058 R14 008BBEBS R15 00C6B00O
TIME 44413.341696
SRB ASCB 000167F0 CPU 0000 JOBN *MASTER* SRB PSW 070C0000 00061A40 SRB 00FE7400 PARM 00000000 TYPE GLOBAL -
TIME 44413.343055
SIO 0353 ASCB 00016780 CPU 0000 - JOBN *MASTER* R/V CPA 00078740 00078470 CAW O000EFBO DSID 00000000
FLGS 00000010 8801 STAT 0000 SK ADDR 00000000 0E000803 . CC 0
TIME 44413,344333 :
psp ASCB 00017058 CPU 0000 JOBN N/A DSP PSW 070E0000 00000000 TCB 00017158 MODN N/A
TIME 44413,345269
IO 0353 ASCB 00016780 CPU 0000 JOBN *MASTER* OLD PSW 070E0000 00000000 TCB N/A USID 00000000
| : CSW 00078498 0C000001 SNS N/A R/V CPA 00078470 00078470 FLG C0108801 A2000353 00
TIME 44413,372394
SRB ASCB 00FD5858 CPU 0000 JOBN USRT085 SRB PSW 070C0000 0004B6FA. SRB O0FFB480 PARM 00000001 TYPE LOCAL
TIME 44413.373942
psp ASCB 00FD5858 CPU 0000 < JOBN USRT085 DSP PSW 075C0000 00C6B000 TCB 008BBEB8 MODN SVC-RES
TIME 44413.375033
PGM 017 - The page fault. VPA=address of fault.
SRB ~ The dispatch of ASM’s part monitor routine in master’s address space.
§10 353 — The Start 1/O to page-in the requested page.
DSP — The dispatch of any ready work while the page-in 1/0 is in progress.
In this case, there is no ready work, so the wait task is dispatched.
10 3563 — The I/O interrupt from the paging device. ASM'’s disable interrupt exitk"
) (DIE) routine gets control. g
SRB — The dispatch of RSM’s IEAVIOCP page-in completion processor, to
validate the page table entry and post the faulter as ready to run.
lDSP — The faulter resumed where he left off.
Figure 2-17. GTF Trace of a Page Fault With 1/0- . q

2.6.4 0S/VS2 System Programming Library: MVS Diagnostic Techniques

~—

MYVS Trace Analysis (continued)

Notes for Traces

The trace provides a history of some of the events that lead to a storage dump.
Trace interpretation is one of the most important aspects of debugging.

Tracing Procedure

When attempting to recreate the process that was occurring on the processor(s)
when the dump was taken, start at the last entry in the trace table (identified either
by the trace header or by the highest clock value in the last column) and scan up-
wards. While scanning, look for unexpected events. These include:

Unit check, unit exceptions on I/O devices
" Non-CC = 0 on SIOs
Non-type 11 program checks
SVC D, 33 — (see number 6 under “Cautionary Notes™ later in this chapter)
Malfunction alerts (X‘1200’ external interrupt)

Entries that show both processors -executihg the same code as indicated by the
ICs (instruction counter) in the entries

Large time gaps in the TOD clock value

e MP environment and only one processor doing anything

* These entries indicate a potential for errors. Do not be distracted if you
discover an entry of this type. Record the incident for future use. Then continue
scanning back thrdugh the trace and try to determine what was happening in the
system that might have caused the failure.. Remember to conduct the scan by unique
~ processor. Separate the processes that occur on each processor and watch for any
obvious interactions in the processes.

You can further subdivide the activity by address space (as depicted by
ASID) or by task (TCB address; remember to stay under the same ASID). As you
recreate the situation, remember that you are relating individual
entries to real events that must occur in order to accomplish work. Do not be
distracted. For example, do not look for an I/O interrupt just because you see an
SIO. The two events should be associated, but you should also determine the
following:

e Why the I/O is occurring;

o If the I/O is related to the process, address space, task, page fault,
etc. that you are concerned with;

e If the I/O completion should trigger another event. This is the way work is
accomplished in MVS, that is, events triggering more events. As you become
familiar with trace coding you leam to expect this “event causing” sequence.
Certain sequences occur very frequently;you learn to recognize these and
to look for less familiar sequences.

Section 2: Important Considerations Unique to MVS 2.6.5

MVS Trace Analysis (continued)

As you are searching trace entries, watch for repeating patterns, which can
indicate aloop in the system. These patterns can'appearasconstantly repeating
ICs (generally the case in a tight enabled loop), or as a repeating sequence of
entries (often the case in a process loop, such as an ERP constantly retrying an
I/O operation). Note that in the latter case, other entries from other processes
can intervene periodically in the trace table, especially in an MP environment.

If you reach a point in the trace analysis where you are somewhat comfortable
with the processes you are uncovering and recreating, and you feel you have a
fair understanding of the activity in the system, pause. Try to understand
what you have found. Is there any way you can relate your findings to the reason
you have taken the dump in the first place ? Do the unexpected events have
anything to do with the problem, or ate they unrelated to the problem ? It can
happen that the events you have discovered are unrelated to the problem causing
the dump and you have exhausted the scope of the trace. In this case, you probably
have to go into the system and study the address space and task structures,
queues, and global data areas in order to zero in on the problem.

However, if the events you have discovered are related to the problem causing
the dump, you must then attempt to isolate the erroneous process. Try to
understand how the unexpected events relate to the process. Look on both
sides of the event: did the event trigger the bad process, orisit a result of the
bad process ? :

It is also necessary in trace analysis in MVS to understand whether you

are looking at the primary error or at some secondary problem. Is this
a mainline failure or a failure because of a problem in the recovery ? Also, you

- must decide if the problem is caused by a previous error from which the system has
recovered. Always be sure that it was not something several pages earlier in the
trace that caused recovery to be activated and eventually led to the current prob-
lem. If this is the case you must now decide which error to pursue. The original
error is probably more important; however, much of the required information
might be lost because of recovery and the subsequent recovery failure. Also keep in
mind that if you must attack the secondary error condition, your search of the
dump and the recovery areas can often uncover information about the first error.

The trace is one of the most useful tools available for back-tracking through a
problem sequence. You must use it in conjunction with system control blocks and
indicators in order to recreate the error sequence. This is still true in MVS despite
the fact that the trace contains less information than in previous systems.

In MVS, the SVC calls have been greatly reduced because of branch entry

logic for both transfer of control and supervisor services. This means that trace
entries are not provided as in previous operating systems. Also, many significant
events, such as lock acquisition and release, SRB scheduling, and SIGP issuance,
are not traced. Because of these MVS considerations, you must be able to under-
stand the processes and interpret the trace table rather than just read it.

2.6:6 0S/VS2 System Programming Library: MVS Diagnostic Techniques

MYVS Trace Analysis (continued)

Cautionary Notes

Listed below are some items the problem solver should understand when analyzing
an MVS trace table.

1.

I/O Processing:

o Much I/O is accomplished in MVS by the branch entry interface to I0S and
without the use of SVC 0 (EXCP). Therefore, you often find I/O
entries (SIO/I/O interrupt) that are not accompanied by SVC 0.

o Back-end I/O processing in MVS generally results in an SRB schedule of
IECVPST. This trace entry should appear soon after an I/O interrupt. The
register 1 slot will contain the IOSB address. The IOSB is the key to
tracking the I/O request.

Timer Value:

The last field of each trace entry contains the middle four bytes of the eight-
byte TOD clock at the time the entry was made. The clock can be of
considerable importance when trace entries and various system fields (such as
the ASCB or LCCA, which also contain TOD clock values) are used to deter-
mine how much time has elapsed between significant events. The last digit
represents a value that is increased every 16 microseconds. Also, the fourth
digit represents the value to be increased every second.

Enabled Wait State:

Because of recovery, the end symptom of many problems is an enabled wait
state. For tracing, the wait state presents particular problems in MVS. SRM
maintains a timer interval that causes a clock comparator interrupt (code
X¢1004") approximately every 1/2 second. These external interrupts are
recorded in the trace table. You then see the re-dispatch of the no-work

wait task followed by another clock comparator interrupt, and so on. Even
though this occurs, the sequerice is not repeatedly traced. In addition, in an
MP environment there are external calls (code X‘1202) issued between the two
processors requesting that the receiver look for ready work. These calls will be
followed by a re-dispatch of the no-work wait on the receiving processor. In
short, the wait state is a combination of dispatches of the no-work wait task,
clock comparator interrupts, and SIGP external calls. The IC (instruction
counter) will always be 0. At approximately 12- or 13-seconds intervals, an
SRB is dispatched in the master scheduler address space to run a section of
SRM in order to gather system statistics. When the SRB has completed, the
no-work wait task is again dispatched.

All this extraneous activity causes the trace to wrap around and overlay the
important trace entries of the events that led up to the enabled wait state.

Section 2: Important Considerations Unique to MVS ~ 2.6.7

MVS Trace Analysis (continued) .

4. MP Activity:

The communication between the two processors in the MP environment is
‘traced as the external interrupts are accepted by the receiving processor. An
external interrupt code of X‘1201’ is an emergency signal; and an external
interrupt code of X‘1202’ is an external call. (The previous chapter, “Effects
of MP on Problem Analysis,” explains this communication process.)

5. _Trace Currency: .

Various processes that occur in MVS turn off the MVS trace. The most
“prominent of these are GTF and SVC dump. Determine if the trace was
running when the dump occurred: if you are unaware that the trace was not
running when the dump was taken, you might go off on a fruitless chase and
“lose considerable time. The trace was still active when the dump occurred if
the CVT +X°191° value =X‘FA’.

Note: When SVC dump turns off the MVS trace, it sets bit 0 on in the CPU
identifier (offset X‘14°) in the current trace table entry.

6. SVC D Entries:

SVC D is the means by which termination is invoked. In previous operating
systems, SVC D meant abnormal termination. This is not always true in MVS.
RTM?2 is the mechanism for normal end-of-task processing as well as for
abnormal termination; RTM2 is invoked via SVC D. Consequently, SVC D
for normal termination is a valid situation and is traced. You

can determine whether SVC D implies normal or abnormal termination by
inspecting the register 1 slot associated with the SVC D entry. If the first
byte contains a X‘08”, RTM2 is being invoked for normal termination and this
is not an error situation. '

7. Important events not traced:

MVS design prevents locked, disabled, or SRB code from issuing SVCs. The
SVC FLIH abnormally terminates code that issues an SVC. Note that in this
case, the erroneous SVC invocation is not traced. Also note that locked, dis-
abled, or SRB code that issues SVC D does so as a means of entering RTM1;
this is a common technique used by IBM SCP code in order to invoke recovery.

RTM indicators.show SVC error, but the real problem is why the SVC D
- was issued.

2.6.8 OS/VS2 System Programming Library: MVS Diagnostic Techniques

MYVS Trace Analysis (continued)

8.

| 10.

Unit exception I/O interrupt on a 3705 communications controller:

The presence of unit exception conditions from the 3705 is a common
occurrence while running VTAM. This is a normal situation and should not be
considered erroneous. The host processor has issued a set of read commands to
the 3705, and the channel program has been terminated before all the reads
have completed because the NCP did not have enough data to satisfy each read
CCW.

GE TMAIN, FREEMAIN — SVC X‘A’, SVC X78”:

For SVC X‘A’, inspect the register 1 slot of the associated trace entry. A value
of X‘80’ in the high-order byte indicates GETMAIN; a value of X‘00’ indicates
FREEMAIN. SVC X*78’ uses a code in register 15 (see the Debugging
Handbook.) If a GETMAIN is indicated, the register 1 slot of the associated
re-dispatch of the SVC issuing code can be used to locate the storage allocated
by the GETMAIN process.

A GETMAIN for X‘3CC’ bytes is often seen soon after an SVC D is issued:

This is RTM2’s request for storage for an RTM2WA. By locating the re-
dispatch of RTM?2 and inspecting the register 1 slot, you can locate the
RTM2WA.

Section'2: Important Considerations Unique to MVS 2.6.9

2.6.10 OS/VS2 System Programming Library: MVS Diagnostic Techniques -

Miscellaneous Debugging Hints

This chapter is a collection of miscellaneous debugging hints to aid the problem
solver in specific situations not covered elsewhere in this book. It includes the
following topics:

Alternate CPU Recovery Problem Analysis
Pattern Recognition

OPEN/CLOSE/EOV ABENDs

Debugging Machine Checks

Debugging Problem Program ABEND Dumps
Debugging from Summary SVC Dumps

Started Task Control ABEND and Reason Codes
SWA Manager Reason Codes '

Alternate CPU Recovery (ACR) Problem Analysis

Alternate CPU recovery (ACR) is the process by which MVS dynamically adjusts
to the unexpected failure of a processor in a multiprocessing (MP) configuration.
ACR is initiated by the failing processor. If the failing processor’s hardware detects
the failure, it issues a malfunction alert (MFA) external signal to the other
processor. If the failing processor generates the severe machine check interrupt
(recursive or invalid logout) type, the machine check interrupt handler will initiate
ACR via the SIGP instruction, emergency signal (EMS) operand, which generates
an external interrupt on the receiving processor.

When the running processor detects that a failing processor is requesting ACR,
it places X‘FF’ in the CSDACR byte (CSD+X*‘16’) in the CSD control block. The
byte will be restored to X‘00’ after ACR is complete.

ACR works in three phases: pre-processing, intermediate, and post-processing
phase. Pre-processing is the initialization phase: the running processor copies the
PSA and normal functional recovery routine (FRR) stacks of both processor’s
and places them in the area pointed to from their respective LCCA’s WSACACR
pointer. The WSACACR pointer islocated at X‘10’ beyond the area pointed to
by LCCACPUS. Additionally, LCCAs are marked so that in both processor’s
LCCAs, LCCADCPU points to the LCCA of the failing processor and LCCARCPU
points to the LCCA of the running processor. By means of the LCCACPUA field
in the LCCA, you can determine which processor has failed and which is still
running.

Note that in a storage dump, the physical PSA of the failed processor is the
same as it was when the processor decided that ACR should be initiated. The
normal FRR stack, pointers to other FRR stacks, locks, PSASUPER bits etc. all
reflect the state of the processor at the time it failed. This will be useful for solving
problems in the recovery initiated for the process on the failed processor.

Section 2: Important Considerations Unique to MVS 2.7.1

Miscellaneous Debugging Hints (continued)

The ACR intermediate phase gets control from the MVS dispatcher, or lock
manager global spin lock routine. In this phase, ACR switches from the process
_on one logical processor to the process on the other logical processor. This
- switching continues until the RTM1 recovery (routing to FRRs) completes on
behalf of the process on the failed processor. At this point, the ACR post-
processing phase is entered.

ACR post-processing consists of cleanup activities performed by other
components and by ACR. Post-processing invokes I/O restart (IECVRSTI) to
initialize the channel reconfiguration hardware (CRH) function on a Model 168
or to mark outstanding I/O from the failed processor with a permanent error which
then initiates error recovery processing via error recovery procedures (ERPs).
Console switch is invoked via POST. Additionally, the system resources manager
(SRM) is notified of the loss of the processor. Finally, ACR performs additional
cleanup activities and sets the CSDACR flag to X‘00’.

Historically, the parts of the ACR process that have had software problems are
the FRRs (written by component developers to protect particular mainline
functions) and the ERPs (device-dependent routines). The mainline ACR routine
(IEAVTACR) is basic and has been quite free of problems.

Note: The I/O error processing mvoked durmg the ACR process has caused many
of the problems discovered to date. Of significant importance is EXCP I/O error
processing. The following flow describes the non-CRH situation for an MVS

| 158 MP system.

1. 1/O restart (IECVRSTI) détermines all devices that have outstanding requests
at the time of a machine check.

2. IECVRSTI simulates an I/O interrupt for each device of a channel control
check and interface control check (X00000000 00060000°) and sets the
pseudo interrupt bit in the IRT (IRTPINT bit at X‘02” in IR-TENVR). This
prevents IOS from interfacing with the channel check handler (CCH).

. IECVRSTI passes control to IOS via the I/O FLIH.

108 sets the IOSCOD field in IOSP to X*74’ and schedules IECVPST.
IECVPST routes control to the abnormal exit routine.

. For an EXCP, the EXCP compatability interface routine receives control.
. EXCP converts the X*74’ to X‘7F” in the 10B.

. EXCP branches to abnormal end appendage.

. Abnormal end appendage returns to EXCP, which returns to IECVPST.
10. IECVPST invokes normal ERP processing.

11. If no path remains to a device, subsequent I/O requests (either ERP retry or
normal new requests) are intercepted by IOS and flagged with IOSCOD = X‘51°
and IECVPST is scheduled.

" 12. IECVPST routes control to the abnormal exit routine.

(R - R I Y R

13. For EXCP requests, the abnormal exit is again the EXCP compatability
interface routine.

'2.7.2 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Miscellaneous Debugging Hints (continued)

14. EXCP converts the X‘51° to a X‘41’ (permanent error) in the IOB and enters
the abnormal end appendage. '

15. The abnormal end appendage retumns to EXCP; EXCP returns to IECVPST,
which enters the termination routine.

The important point in the above discussion is that EXCP changes the ACR
completion codes to conventional error post codes.

The most frequent I/O problems have been:

o ERP’s abnormal end appendages not coded for a 0 CCW address in CSW.

e ERP’s abnormal end appendages not recognizing that the last path to a device
has been lost (as with asymmetric 1/O) and thus going into an I/O retry loop.

Pattern Recognition

When analyzing a dump you should always be aware of the possibility of a storage
overlay. System incidents in MVS are often caused by storage overlays that
destroy data, control blocks, or executable code. The results of such an overlay
vary. For example:

o The system detects the problem and issues an abnormal completion code, yet
the error can be isolated to an address space.

o Referencing the data or instructions can cause an immediate error such as a
specification or op-code exception.

o The bad data can be used to reference a second location, which then causes an
evident error.

When you recognize that the contents of a storage location are invalid and
subsequently recognize the bit pattern as a certain control block or piece of data,
you generally can identify the erroneous process/component and start a detailed
analysis. This section discusses pattern recognition and potential causes of storage
overlays, and points out common patterns that aid the debugger.

Once you recognize an overlay, analyze the bit pattern. If you do not recognize
the pattern at all, try to determine the extent of the damaged area. Look at the
data on both sides of the obviously bad areas. See if the length is familiar; that is,
can you relate the length to a known control block length, data size, MVC length,
etc. ? If so, check various offsets to determine their contents and, if you recognize
some, try to determine the exact control block/data. Even if you do not recognize
the pattern, take one more step. Can you determine the offset from some base (X)
that would have to be used in order to create the bit pattern ? If so, the fact that
there is a certain bit pattern at a certain offset (Y) can be helpful. For example,

- a BALR register value (X‘40D21C58’) at an offset X‘C’ can indicate that a program
is using this storage for a register save area (perhaps caused by a bad register 13).
Another field in the same overlaid area might trigger recognition.

Section 2: Important Considerations Unique to MVS 2.7.3

Miscellaneous Debugging Hints (continued)

Look at the overlaid area and scan for familiar addresses such-as device addresses, Q
UCB addresses, and BAL/BALR register values (fullword with hlgh-order byte

containing some “17 bits). If you find any of these, try to detezmine what compenents

or modules are involved or what control blocks contain these addresses.

Repetition of a pattern can indicate a bad process. If you can recognize the bad

data you might be able to relate that data to the component or madule that is
causing the error. This provides a starting point for further analysis.

Low Storage Overlays

Low storage is a common location for storage overlays. The following should be

noted:

o Location X‘10° (CVT pointer) should contain a nucleus address. This location
is refreshed by the program check first level interrupt handler and so is often
valid when adjacent locations are bad. ‘

e Location X‘14’ should always be 0.

e Locations X‘18’ through X‘3F’ (old PSWs) should always contain valid PSWs.
The mask (first byte) of each PSW should be X‘07’, with the exception of
X*30” which can contain X‘0’, X‘04’, or X‘07.

Location X‘4C’ should be equal to location X‘10°.
e Locations X‘58’ through X‘7F’ (new PSWs) should contain valid PSWs.

If any of the above statements is not true, consider a low storage overlay.
Further analysis is required to determine what the cause may be. Also consider
that, on a non-prefixed machine, the low storage locations described above can be
overlaid by CCWs for the stand-alone dump program, starting at location X*10.
Do not consider this an error situation.

Two common low storage problems are:

e - A register save area starting at location X‘30°. This can happen when an area
of the system saves register status in a TCB at location 0. Or it can be caused
by a roufine using PSATOLD for a TCB address when the system is in SRB
mode; this is indicated by PSATOLD=0.

e An SRB/IOSB combination starting at location X‘0’. This can be caused by
a problem in the IOS storage manager. The contents vary depending upon

how many control blocks the code has initialized. Points to consider are:

1. The two blocks might point to each other (X‘1C’ into each).

2.74 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Miscellaneous Debugging Hints (continued)
2. An ASCB address might be at location 8.

3. Addresses of IECVEXCP routines might be at X‘68” and/or X‘6C’.

Common Bad Addresses
Three common bad addresses are:

e X‘C0000’, and this address plus some offset. These are generally the result of
some code using O as the base register for a control block and subsequently
loading a pointer from 0 plus an offset, thereby picking up the first half of a
PSW in the PSA.

Look for storage overlays in first level interrupt handlers or in code pointed
to by the old PSW. These overlays result when O plus an offset cause the
. second half (IC) of a PSW to be used as a pointer.

o X'CO0, X‘C34’, X‘C50°, X*'C54’, X‘C5C, X‘C7C’, and other pointers to
fields in the normal FRR stack. Routines often lose the contents of a
register during a SETFRR macro expansion and illegally use the address of
the 24-byte work area returned from the expansion.

e Register save areas. Storage might be overlaid by code doing an STM (Store
Multiple) instruction with a bad register save area address. In this case, the
registers saved are often useful in determining the component or module at

< fault.

OPEN/CLOSE/EOV ABENDs

When a dump shows an abend issued from O/C/EOV, the key area to start

your diagnosis in is the RTM2 work area. The failing TCB has a pointer

(at TCB+X‘EQ’) to this area. - This work area contains information current

at the time of the abend, the most important being the register contents.

Register 4 points to the current O/C/EOV work area. This work area is built by
IFGORROA during problem determination and contains key information about the
problem: the JFCB, IOB, DEB and other pertinent fields are all saved in the work
area for use later by the recovery routines. The O/C/EOV work area is documented
on microfiche in each O/C/EOV module.

The module in control at the time of the abend can be determined from the
“Where To Go” (WTG) table, which is pointed to by register 6 in the RTM2 work
area. The WTG table is contained within another work area called the O.C. work
area. IFGORROA saves a copy of the current DCB in this work area. If multiple
DCBs are involved, the prefix to the DCB work area points to another DCB
work area. These DCB areas are laid out precisely like a DCB. All these work
areas and their prefixes are documented at the end of every O/C/EOV module in
the microfiche.

Section 2: Important Considerations Unique to MVS 2.7.5

Miscellaneous Debugging Hints (continued) -

In an MVS environment, O/C/EOV must build these work areas rather than rely
on what is in real storage at the time of the dump. The main task is to find these
---areas and interpret their fields using microfiche. A quick way to find these work
areas is to find subpool 230 in the dump. All O/C/EOV data is in this subpool.

Assuming you have all the pertinent information about the failure, the problem
becomes the same as an O/C/EOV problem in OS. One more point: built into the
code is message IEC9991. This message indicates that there is a problem in the
O/C/EOV code that cannot be determined. While you may be able to circumvent
this problem, you should also submit an APAR for it.

Debugging Machine Checks

_The machine check interruption is the hardware’s method of informing the MVS
control program that it has detected a hardware malfunction. Machine checks vary

- considerably in their impact on software processing. Some machine checks notify
software that the processor detected and corrected a hardware problem that
required no software recovery action (software calls these errors soft errors). Hard
errors are hardware problems detected by a processor but that require software-initiated
action for damage repair. Hard errors also require software recovery to verify the
integrity of the process that experienced. the failure. Obviously, if there are soft-
ware problems after a machine check, it is more likely that the machine check was
a hard error. It is important to get-a feeling for which software components are
affected by particular hardware failures.

The machine check interrupt code (MCIC), located in the PSA, describes the
error causing the interrupt. The following discussion shows how to find MCICs and
how to interpret them for subsequent software processing. Machine checks can be
found in a LOGREC buffer (LRB), the SYS1.LOGREC data set, or in the storage
area used as a buffer prior to writing records to SYS1.LOGREC (see the discussion
of SYS1.LOGREC analysis in the “Recovery Work Areas” chapter earlier in this -
section). Also, a pointer to the LRB that describes the last machine check that occurred
on a processor can be found in that processor’s PCCA at PCCALRBV (PCCA+X‘AQ’).
The LRB contains the machine check interrupt code (MCIC), except when:

e The machine check old PSW is zero. The MCIC is also zero. The
LRBMTCKS bit (field LRBTERM at LRB+X‘20’) is turned on by
software.

o MCIC is zero and the machine check old PSW is non-zero. The LRBMTINV
bit (field LRBTERM at LRB+X‘20’) is turned on by software.

The MCIC is the principal driver of software processing after a machine check.
. It must be examined to determine the‘actions that MVS should take. The MCIC
~contains bits describing the conditions that caused the interupt. Note that more
than one failing condition can be described by a machine check at one time.
Software performs repair processing for each condition found; software recovery
processing is initiated if any hard error conditions are found (except in the cases
described on the following pages).

2.76 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Miscellaneous Debugging Hints (continued)

Because hard errors require FRR and ESTAE processing, identifying a hard
error is important. Important MCIC bits are listed below, with a description
of their hardware significance and impact on software. A handy MCIC reference
matrix, containing additional machine check and ensuing action-taken
information appears at the back of this section.

Bit 0 (System damage) — The processor is still useable, but damage occurred
while the processor was in the process of changing PSWs or otherwise changing
system control, and thus has lost the associated process or interrupt. Software
recovery routines (FRRs) are entered for this hard error.

Bit 1 (Instruction processing damage) — The processor is still useable but an
instruction has failed to operate as intended. Software recovery is initiated for
this hard error, unless the backed-up bit is on with storage error or key error
uncorrected on refreshable storage (see Bit 16 description).

Bit 2 (System recovery) — The processor detected and corrected a potential
hardware problem. The interrupted process is completely restored by software
for this soft error; no repair is performed and no recovery routines are entered.

Bit 3 (Timer damage) — The interval timer at PSA location X‘50” has failed.
Because MVS does not use this timer, this failure is ignored (indicated as a soft
error).

Bit 4 (Timing facility damage) — Damage has océurred to the CPU timer, clock
comparator, or time-of-day clock. The particular clock facility that is damaged

is described by MCIC bits 46 and 47. A first failure to a facility results in an
attempt to reuse it. Subsequent failures result in taking the facility offline
(described in the PCCA fields PCCATODE, PCCACCE, or PCCAINTE). If no clock
of a particular type remains in the system, any task which requests timing using
that type of clock is sent through software recovery. This is treated as a soft error
for the process current on the processor at the time of the interrupt.

Bit 5 (External damage) — Damage has occurred to a unit external to the
processor. MVS expects more information in a channel check I/O interrupt.
This is treated as a soft error.

Bit 7 (Degradation) — The system has detected that elements of the high-speed
buffer (cache) or translation look-aside buffer have had bit (parity) errors. The
bad elements are automatically reconfigured out of the buffer. Once a predefined
threshold of degradation machine checks is reached, the buffer and the translation
look-aside buffer are reset, thus making the entire buffer available again. This
threshold has a default value of 3 which can be changed by the operator via the
MODE command. Until then, the system might perform at a reduced rate because
of increased storage access time (cache element deletion) or increased time to
translate virtual addresses (because of translation look-aside buffer element
deletion). However, because no damage has been dane to any software process.or
data, this soft error is merely recorded in SYS1.LOGREC. The system state at the
time of the error is re-established, ignoring the occurrence of the buffer bit error.
It is treated as a soft error and no software recovery is initiated.

Section 2: Important Considerations Unique to MVS - 2.7.7

Miscellaneous Debugging Hints (continued)

Bit 8 (Warning) — Damage is.imminent; there is a cooling loss or a power drop, (
etc. Software determines if the error is transient or permanent. If it is transient,

the warning interrupt is treated as a soft error. If permanent, an attempt is

made to invoke the power warning feature software, to record the system state

at the time of this hard error.

. Bitr 16 (Storage error uncorrected) — There is a block in storage with a double bit

“error that is located at the real, prefixed address stored in PSA location X‘F8’. If
the frame’s page is refreshable, that is, unchanged, pageable, and in the current
address space, it is marked invalid so a future reference will cause a fresh copy
to be paged into a new frame. (Note: More than one error can occur before the
page goes offline.) In all cases, an attempt is made to take the damaged frame
offline (unless the frame is in the nucleus). For unchanged nucleus frames, the
page is refreshed from a copy paged-out at NIP time. When a storage error un-
corrected condition occurs in conjunction with a system recovery or external
damage error, it is treated as a soft error and no recovery routines are entered. If
the storage error occurs in conjunction with instruction processing damage when
the backed-up bit (bit 14) and storage logical validity-bit (bit 31) are on, and the
frame’s page is refreshable, the error is treated as soft and no recovery routines are
entered. ’

Any other occurrences of storage error uncorrected are treated as hard errors
and software recovery is initiated for the error.

Bit 17 (Storage error corrected) — A single-bit storage error was detected and
successfully corrected by hardware. Software treats this error as a soft error. This
error sometimes appears in conjunction with system recovery (bit 2).

Bit 18 (Storage key error uncorrected) — Hardware has detected a bit error in a
storage key. Software attempts to reset the storage key to its original value. If the
key is successfully reset, and the storage key error occurs in conjunction with
instruction processing damage when the backed-up bit (bit 14) and the storage
logical validity bit (bit 31) are on, the error is treated as soft and no recovery
routines are entered. When the storage key error occurs in conjunction with a
system recovery or external damage error, it is also treated as a soft error and

no recovery routines are entered. Change bits are set to one in case the frames have
been altered. Any other occurrences of storage key error are treated as hard

errors and software recovery is initiated for the error.

In addition to these error description bits there are other MCIC fields that
describe the time-of-occurrence of the machine check interrupt, or the validity of
the registers, PSW, and other data logged out during the machine check interruption
process.

The two time-of-occurrence bits are bits 14 and 15. The backed-up bit (bit 14),
when set to 1, indicates that the machine check occurred before actual damage
occurred. The delayed bit (bit 15) is set to 1 when the processor has been disabled
for one or more of the interrupt conditions described in the MCIC. The processor
had been processing after damage was detected.

2.7.8 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Miscellaneous Debugging Hints (continued)

Validity bits describe the validity of the associated field logged out during the
machine check interrupt. If a validity bit is O, the associated data logged out is
ineorrect. Validity bits are:

Bit 20 (PSW EMWP mask validity)

Bit 21 (masks and key validity)

Bit 22 (program mask and condition code validity)
Bit 23 (instruction address of machine check old PSW validity)
Bit 24 (failing storage address validity)

Bit 25 (region code validity)

Bit 27 (floating point register validity)

.

Bit 28 (general purpose register validity)

Bit 29 (control register validity)

Bit 30 (processor model-dependent logout validity)
Bit 46 (processor timer validity)

Bit 47 (clock comparator validity)
Additionally, the storage logical validity bit (bit 31 set to 1) indicates that all store

operations (that were to occur before the machine check interrupt) have
completed.

Section 2: Important Considerations Unique to MVS 2.7.9

Miscellaneous Debugging Hints (continued)

The following chart atteihpts to show the action taken for each error condition.
For example: In column 6 the condition involves recursive machine checks, or, a
check stop, or, invalid logout. The condition originated on either a Model 158 or
a Model 168 attached processor system, and did not involve the APU. The action
taken resulted in a disabled wait. Where multiple errors do exist, appropriate repair
action is taken for all errors, and recovery action is taken for the most severe error.

With the exception of I/O reserve outstanding, the status of each of the

_conditions can be determined from examination of MCH SYS1.LOGREC records.

CONDITION 1(2]3|4|65|6[7|8|[9(10(1(12{13|14 15[16(|17{18{19[20(21/22(23{24|25| 26|27 28|29 30
Recursion (MN(X) (XY(X(XY(X) 1 i)
Check Stop XXX)X} X
Invalid Logout . XN XN XXX
Subclass (MCIC) System Damage X
Inst. Proc’g. Damage BRI ESESES
System Recovery X
Timer Damage X
Clock Damage XX X|X]|X|X
External Damage X
Degradation X
Warning X
Time Backed Up X|X o
Delayed 0|0
Type Stor Err Uncorr X X X|X[X{X]X
Stor Err Corr X
Key Error X X[X
Key Err Unresetable X| X
Validity, > PSW (WP, MS, PM, IA). X1 X (o]
Failing Stor Addr X | X [
Registers (FP, GR, CR) X | X 9]
Logout
Storage Logical X | X
CPU Timer OO X|X{X{X
Clock Comparator X|X|0jo|X|X
Location Pageable X X X X | X @
Nucleus X X X X
LSQA, S0A X (X) X
Fixed X X X
V=R X X
Outside Curr. Memory 0}0 [¢] X
Storage State Changed X
Unchanged X X X X
System up X
MP X|IX|X
AP XX
Processor 158 X | X X
168 X XJ\X
APU X| 0
1/0 Reserve Qutstanding X
Occurrence 1st . X X X
2nd X X X
ACTION TAKEN
Reset timing component X X X
Mark CPU Timer perm. damaged X
Mark Clock Comp perm. damaged X X
Mark TOD Clock perm. damaged X
Invoke PWF if available X
Activate CRH X
Take frame offline immed. X X
- Take frame offline when avail. X | X X X X
Invalidate Page Table Entry X X
Repair SPF Key X X
Disabled Wait X X X
Restartable Wait X
Enter RTM for Recov.* X[X|X|X X X [X X|X|{X|X]|X XX [{X]|X]|X
Record X|X|{X|X]X XIX[X|[X|IX[X{X]X]| X]|X]X|X X|X|X[X|X]IX]|X|X|[X]X]|X
Take Processor offline X[X} X[X
Resume at MCOPSW X1 X XXX X[X]X]|X X
Refresh the nucleus page X
*Possible loss of Job.
Notes:
o Key. X = Condition must be present
O = Condition must not be present
@= The action is the same no matter which condition rep the si

2.7.10 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Miscellaneous Debugging Hints (continued)

Debugging Problem Program Abend Dumps

. The following steps may providé some initial assistance in this debugging process:

1. Locate the RTM2 work area (RTM2WA), which is pointed to by the TCBRTWA
field in the TCB and the ESART2WA field in the abend SVRB. It provides a
summary of the abend as follows:

Name Offset
RTM2CC 1D
RTM2ABNM 8C

" RTM2ABEP 94

RTM2EREG 3C
RTM2APSW 7C
~ RTM2ILCL 85

| RTM2ERAS 36C

| RTM2TRCU 37C

| RTM2TRFS 380
| RTM2TRLS 384

RTM2ERRA B4

Notes:

Explanation

Abend completion code.

Abending program name. This is the name of a
load module or an external entry point (ALIAS)

~ inthe load module.

Abending program address (the beginning of the
load module or an ALIAS in the load module).

Registers at time of error.

EC PSW at time of error.

Instruction length code for PSW at time of error.
Error ASID.

Address of current trace entry for saved system
trace table.

Address of first trace entry for saved system
trace table.

Address of last trace entry for saved system trace
table.

Error type.

e The RTM2ABNM and RTM2ABEP fields do not contain information about
the abending program if an SVC has abended.

- o Inarecursive abend (an abend occurring while the original abend is
“being processed by an ESTAE or other recovery routine), more than one
RTM2WA may be created, and the RTM2PREV or RTM2PRWA field points
to other RTM2WAs associated with the problem. The system diagnostic
work area (SDWA) is pointed to by the RTM2RTCA field during recovery
routine processing, and has register contents at time of error stored in the
SDWAGRSY field. These register contents may differ from those in the
RTM2WA after a recursive abend.

Section 2: Important Considerations Unique to MVS 2.7.11

Miscellaneous Debugging Hints (continued)

2. To find the abend code and its explanation, look at the completion code at
“the top of the abend dump. A user completion code is printed as a 4-digit
decimal number and a system completion code is printed as a 3-digit
hexadecimal number.

If the user code is nen-zero, a user program has specified the completion code
in an abend macro instruction. Looking up the name of the abending program
in the RTM2WA, and investigating why the program would issue this completion
code, should lead directly to the cause of the error in the user program.

Usually the system code is non-zero. This indicates that a system routine
issued the abend but a problem program might indirectly have caused the
abnormal termination. For example, a problem program might have branched to
an invalid storage address, specified an invalid parameter on a macro instruction,
or requested too much storage space.

Often the explanation of the system code gives enough information to
determine the cause of the termination. The explanations of system completion
codes, along with a short description of the action for the programmer to take to
correct the error, are contained in OS/VS Message Library: VS2 System Codes.
A summary of system codes is in the Debugging Handbook Volume 1.

Note: Completion codes are not printed at the top of abend dumps that are
formatted with the AMDPRDMP service aid. System completion codes can be
found in the third to fifth digits (00xxx000) of the abend completion code in
the RTM2 work area. User completion codes are located in the sixth to eighth
digits (00000xxx) of the abend code in the RTM2 work area, and in this case
are in 3-digit hexadecimal form.

3. To find the name of the abending program look in the RTM2 work area. System
routines usually start with the letters A or I; and module prefixes for system
routines are listed in the Debugging Handbook Volume 1.

Note: If the RTM2 work area is not available, or if the name of the abending
program is not given in the RTM2 work area, the routine name can be obtained
from the request blocks (RBs) that are formatted in the dump. If the ABEND
dump was taken to a data set (or to SYSOUT) specified with a SYSABEND,
SYSMDUMP, or SYSUDUMP DD statement, the last two RBs are SVRBs for
the SNAP and SYNCH SVCs used to take the dump. The SVC numbers can be
checked by obtaining the hexadecimal SVC number from the interruption code
of the WC-L-IC field in the RB. The Debugging Handbook contains a list of SVC
numbers. The SNAP SVC is hexadecimal ‘33’, and the SYNCH SVC is hexa-
decimal ‘OC’. The RB for the program that caused the abend is immediately
before these two RBs.

CSECTs within load modules in the private area of an address space can be
located using a linkedit map produced by the AMBLIST service aid. CSECTs
in load modules in the nucleus, FLPA, or PLPA can be located using a nucleus
or link pack area map, also produced by AMBLIST.

- 2.7.12 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Miscellaneous Debugging Hints (continued)

4. To find the instruction that caused a program interrupt (program check)

completion code (0Cx) in a problem program, examine the PSW at the time of
error. Itis at the top of the abend dump;, in the RTM2 work area, and in the

RB for the program that caused the abend. The instruction address field in
the PSW contains the address of the next instruction to be executed.

The length of the abend-causing instruction is printed following the
instruction length code’s title ‘ILC’ at the top of some abend dumps. It is
also located in the RTM2ILC1 field (see the RTM2 work area), and is formatted
in the third and fourth digits (00xx0000) of the WC-L-IC field in the PRB.
The address of the instruction that caused the termination can be found by
subtracting the instruction length from the address in the PSW.

Subtract the program address found in the RTM2WA (and in the last PRB)
from the instruction address. The resulting offset can be used to find the
matching instruction in the abending program’s assembler listing for this CSECT.

5. To find the cause of a program interrupt, check the explanation of the system
completion code and the instruction that caused the interrupt. Also check the
registers from the time of error which are saved in the RTM2WA and in the
SVRB following the RB for the program that caused the abend. The

- formatted save area trace can be used to check the input to the failing CSECT.

6. To find the cause of an abend code from an SVC or from a system I/O
routine, check the explanation of the system completion code, then find the last
instruction executed in the failing program and examine the related SVC and I/O
entries in the trace table or GTF trace records.
The last PRB in the formatted RBs has a PSW field containing the address

of the instruction following the instruction that issued the SVC. For 1/O
requests, check the entry point address (‘EPA’) field in the last PRB. The
formatted save area trace gives the address of the I/O routine branched to,
and the return address in that save area is the address of the last instruction
executed in the failing program.

The trace information can be checked for SVC entries that match the
formatted SVRBs, or for 1/O entries issued from addresses in the failing program.
The trace information is formatted in the dump if the installation has specified
it as a dump option. If the system trace table is not formatted, look in the
RTM2 work area for pointers to the copy of the system trace table that was
saved from the time of the error. Location X‘54°, which is the FLCTRACE
field in the prefixed save area (PSA), points to the system trace table header.
The system trace table is frequently overlaid with entries for other system
activity by the time the dump is produced.

If the dump contains trace records, begin at the most recent entry and
proceed backwards to locate the most recent SVC entry indicating the problem
state. From this entry, proceed forward in the table. Examine each entry for an
error that could have terminated the SVC or I/O system routine. The format of
system trace table entries is described in the Debugging Handbook under the
heading ‘TTE Trace Table Entry.” The format of GTF trace records is also
described in the Debugging Handbook.

Section 2: Important Considerations Unique to MVS 2.7.13

Miscellaneous Debugging Hints (continued)

Debugging from Summary SVC Dumps

The summary dump area formatted by the SUMDUMP option of SDUMP should
contain the most current data relevant to the problem present in the dump. It is
strongly recommended that the SUMDUMP output be reviewed prior to
investigating the usual portions of the dump. The SUMDUMP option provides
different output for SVC and branch entries. For example, branch entries general’
dump PSA, LCCA, and PCCA control blocks, and SVC entries generally dump
RTM2WA control blocks. Each output type is indicated by the header
“....f{ttt---- RECORD ID X‘nnnn’,” where t#¢t is the title for the type of
SUMDUMP output, and annn is the hexadecimal record identifier assigned to
the type. The record id values are described in the table below. They are also
described by the IHASMDLR mapping macro in the Debugging Handbook.

SUMDUMP Output for SVC-Entry SDUMP

. The following table summarizes the SUMDUMP output types for an SVC entry to

~ SDUMP:
SVC-ENTRY TABLE
Record ID Mapping Fields used to Dump
Dec. Hex Title Macro PSW or Register Areas
4 4 TRACETABLE - 'TTE -

46 2E SUMLIST RANGE - -
48 30 REGISTER AREA - -
49 31 PSW AREA - -
53 35 NORMALDATAEND - -

57 39 - RTM 2 WORK AREA IHARTM2A RTM2NXT1
RTM2EREG

58 3A RTM2WA TRACE TAB TTE —
60 3C ASIDINFO - -

For an SVC entry to SDUMP, the SUMDUMP output can contain information
that is not available in the remainder of the SVC dump if options such as regnon
LSQA, nucleus, and LPA were not specified in the dump parameters.

For each address space that is dumped, the SUMDUMP output is preceded
by a header with the ASID, plus the jobname and stepname for the last task
created in the address space. The SUMDUMP output contains RTM2 work
areas for tasks in address spaces that are dumped. Many of the fields in the
RTM2WA provide valuable debugging information. (See “Debugging Problem
Program ABEND Dumps’ for more details.)

2.7.14 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Miscellaneous Debugging Hints (continued)

Each RTM2WA is followed by ‘RTM2WA TRACE TAB’ output (record id
X‘3A’), if there is a copy of the system trace table associated with the RTM2WA
(RTM2TRCU, RTM2TRFS, and RTM2TRLS fields are non-zero). The current
entry in the trace table copy is pointed to by RTM2TCRU (offset 37C) in the
associated RTM2 work area. System trace table entries are mapped by the TTE
(Trace Table Entry) section in the Debugging Handbook.

Each RTM2WA is also followed by ‘PSW AREA’ output (record id X‘31°).
A PSW area, consisting of the instruction pointed to by the RTM2NXT!1 field in

"~ the EC PSW saved in the RTM2WA, and the preceding instruction with length

from the RTM2ILCL1 field, is dumped if the instructions can be accessed.

After information for all RTM2W As associated with a task is dumped, ‘PSW
AREA’ (record id X‘31°) and ‘REGISTER AREA’ (record id X‘30”) output appears.
This consists of 2K of storage before and after each valid unique address pointed to
by the PSW and the registers from the time of the error (RTM2NXT1 and
RTM2EREG fields) from all the RTM2 work areas. Up to 32 unique addresses can
be dumped for each task. Register addresses less than 2K are not dumped because
they are considered to be counters. If the storage that is 2K before and after an
address cannot be accessed, a length of 300 bytes is tried. If that amount of storage
cannot be accessed, the address’ record entry appears with a zero length.

‘TRACE TABLE’ output (record id X‘04’) appears if the first address space
dumped has no trace table saved in an RTM2 work area and the system trace was
active. The output includes the header (pointers to the current, first, and last
entries) and the entries in the system trace table. System trace table entries are
mapped by the trace table entry (TTE) described in the Debugging Hand-
book.

‘SUMLIST RANGE’ output (record id X‘2E’) appears at the beginning of the

SUMDUMP output if the SUMLIST keyword was specified in the SDUMP macro
instruction.

Section 2: Important Considerations Unique to MVS 2.7.15

Miscellaneous Debugging Hints (continued)

SUMDUMP Output for Branch-Entry SDUMP

The following table summarizes the SUMDUMP output types from a branch entry

to SDUMP:
BRANCH-ENTRY TABLE
Record ID ' , Mapping Fields used to Dump
Dec. Hex Title . Macro PSW or Register Areas
11 PCCA ‘ IHAPCCA -
2 2 LCCA - IHALCCA -
3 PSA IHAPSA FLCIOPSW, FLCPOPSW
. FLCEOPSW, FLCROPSW
4 4 TRACE TABLE TTE -
5 5 FRR STACK -IHAYSTAK -~
6 6 GWSA PAGE 10 ERR - -
7 7 GWSA GET/FREEMAIN - -
8 8 GWSARSM - -
9 9 GWSA RSM SUSPEND — —
10 A GWSA MEM SWITCH - —
11 ‘B GWSA STATUS — -
12 C GWSA SRM - —
13 D GWSA MEM TERM - -
14 E GWSA ENQ/DEQ -~ -
15 F GWSA STOP/RESTRT — -
16 10 GWSA IEAVESCO - —
17 11 CWSA LOW-LVLCMN - -
18 12 CWSA GTF : - —
19 13 CWSA SRM - -
20 14 CWSA TIMER - -
21 15 CWSA ACR ' - -
22 16 CWSA RTM/MACHK - —
23 17 CWSA 10S FLIH — -
24 18 CWSA DISPATCHER - -
25 19 CWSA MF1 - -
26 1A CWSA ABTERM - —
27 - 1B CWSA 1/O RESTART — —
28 1C CWSA STATUS — -
29 1D CWSA SUPR REPAIR — -
30 CWSA RTM-CCH - -

tr

2.7.16 OS‘/V S2 System Programming Library: MVS Diagnostic Techniques

Miscellaneous Debugging Hints (continued)

BRANCH-ENTRY TABLE (Continued)

Record ID Mapping Fields used to Dump
Dec. Hex Title Macro PSW or Register Areas

31 1F LWSA LOW-LVLCMN - -

3220 LWSAVALID’Y CHK - -

33 21 LWSA RTM - -

34 22 LWSA SDUMP — -

35 23 LWSA ABTERM - —

36 24 LWSA CIRB - -

37 25 LWSA STG2 EXT EF - —

38 26 LWSA EXIT (SVC3) - —

39 27 LWSA POST - -

40 28 LWSA WAIT - —

41 29 LWSA STATUS » — -

42 2A LWSA STAE - —

43 2B LWSA EVENTS — —

44 2C LWSA RSM - —

45 2D LWSA ASCB CHAP - —

46 2E SUMLIST RANGE - —

47 2F INT HANDLER SA THAIHSA THSAGPRS

48 30 REGISTER AREA - -

49 31 PSW AREA - —

50 32 GBLWSAVEC TABL IHAWSAVT —
(WSAVTG)

51 33 CPUWSA VEC TABL ITHAWSAVT -
(WSAVTC)

52 34 LCL WSA VEC TABL THAWSAVT -

, (WSAVTL)

53 35 NORMAL DATAEND - -

54 36 CWSA ASM DIE - -

55 37 CWSA ASM SRB-1/0 - -

56 38 SDWA IHASDWA SDWAGRSV

60 3C ASID INFO - -

The SUMDUMP output for a branch entry to SDUMP might not match the data
that is at the same addresses in the remainder of the dump. The reason for this is
that the SUMDUMP is taken at the entry to SDUMP, and while the processor is
disabled for interrupts. The system data in the remainder of the dump is often
changed because other system activity occurs before the dump is complete. The
SUMDUMP output is preceded by a header with the ASID for the failing address
space.

Section 2: Important Considerations Unique to MVS 2.7.17

Miscellaneous Debugging Hints (continued)

From a branch entry into SDUMP, the SUMLIST range and trace table output is
handled similarly to that from an SVC entry. However, SUMLIST addresses must
point to areas that are paged-in or they cannot be dumped.

The PSA, LCCA, and PCCA are dumped for each alive processor (record ids
x‘03’, x‘02°, and x°‘01” respectively).

The interrupt handler save area (IHSA — record id x2F’) is dumped for the
current address space. This save area includes the current FRR stack for suspended
address spaces. o '

The system diagnostic work area (SDWA — record id x‘38’) is dumped for the
current error if the RTM1 work area is currently valid and being used.

Unique register contents are obtained from the IHSA and the current SDWA.
Each unique register value is used as an address and storage is dumped from 2K plus
and minus this address for a total of 4K each. These ‘Register Areas’ are printed
with record id X‘30’.

The Super FRR Stacks (record id X‘05”), including RTM1 work areas are
dumped.

The global, local, and processor work save area vector tables (record id X‘32’,
X‘34’, and X‘33’ respectively) are dumped. The save areas pointed to by these save
area vector tables are also dumped. The branch-entry table at the beginning of this
description lists the record ids for each work save area.

2k of storage on either side of the address portion of the I/O old PSW, the
program check old PSW, the external old PSW, and the restart old PSW saved in
the PSA for all processors, is dumped. These ‘PSW Areas’ are printed with record
id X°31°.

Note: The SUMDUMP output from a branch entry to SDUMP only contains areas
that were already paged in when the SUMDUMP was taken.

| Started Task Control ABEND and Reason Codes

In case of an irreparable error, the started task control (STC) routines issue these

ABEND codes:

OB8 — An error occurred while STC routines were processing a START,
MOUNT, or LOGON command.
In each case, the command task is terminated; for a START or MOUNT
command, the STC routines issue message IEE8241.
The following error codes can appear in register 15 at the time of the
ABEND:

04 — Module IEEPRWI2 or IEFJSWT detected an invalid command
code in the CSCB; the command code was incorrect for a
START, MOUNT, or LOGON command.

2.7.18 0OS/VS2 System Programming Library: MYVS Diagnostic Techniques

Miscellaneous Debugging Hints (continued)

JBY -

0BA —

08 — Module IEESB60S5 invoked IEFAB4FC (an Allocation
routine) to build a TIOT for the START, MOUNT, or
LOGON task; IEFAB4FC returned control to IEESB605 with
a return code indicating failure.

12— Module IEESB605 invoked IEFJSWT (an STC routine) to
write the internal JCL text for the START, MOUNT, or
LOGON command into system data set; IEFJSWT returned
control to IEESB605 with a return code indicating that it
failed in its attempt to open the data set.

Module IEESB605 invoked the master subsystem via the subsystem
interface to determine whether a START command was issued to start
a subsystem; an error occurred during master subsystem processing.

The command task is terminated; for a START or MOUNT command,
IEESB60S issues message IEE8241.

Module IEESB60S5 invoked the master subsystem via the subsystem
interface to determine whether a START command was issued to start
a subsystem; an error occurred during subsystem interface processing.

The command task is terminated; for a START or MOUNT command,
IEESB605 issues message IEE8241.

| SWA Manager Reason Codes

oc —

10 -—

14 -

18 -

1cC -

20 -

In case of an ifreparable error, the SWA manager routines issue a 0BO ABEND.
Before abending, both object modules IEFQB550 and IEFQBS55 place a code in
register 15 indicating the exact cause of the error.

These are the error codes that can appear in register 15:
04 — The routine that called SWA manager requested an invalid function.
08 — The routine that called SWA manager passed an invalid SWA virtual

address (SVA). Either the SVA does not point to the beginning of a SWA
prefix or the SWA prefix has been destroyed.

A SWA manager routine has attempted to read a record not yet written
into SWA. '

Either IEFQB550 (move mode module) has attempted to read or write
a block which is not 176 bytes or IEFQBS555 (locate mode module) has
attempted to assign a block with a specified length of 0 or a negative
number.

The routine that called SWA manager has specified an invalid count

field. For move mode, an invalid count is O fora READ, WRITE, or
ASSIGN function; an invalid count for WRITE/ASSIGN is Q0.

The routine that called SWA manager by issuing the QMNGRIO macro
instruction specified both or neither of the READ or WRITE options.

The routine that called SWA manager was attempting to write into a
SWA block for the first time; it either passed a nonexistent ID or failed
to pass one at all.

IEFQBS555 has attempted to write a block using an invalid pointer to
the block.

Section 2: ‘Important Considerations Unique to MVS 2.7.19

2,7.20 0S/vSs2 System Programming Library: MVS Diagnostic Techniques

Additional Data Gathering Techniques

This chapter describes additional techniques for gathering data and circumventing
certain system problems. The superzaps should be checked out before they are
applied to your system. Displacements vary according to release level and PTF
activity.

The exarhplés were deliberately kept simple and are designed to illustrate a
technique rather than to be practical in themselves.

CAUTION: Extreme care must be used when you are considering a system
alteration in order to gather additional data about a problem. None of the Super-
zaps described in this chapter should be applied before the system programmer has
verified the logic being zapped and the trap logic itself. Remember if any one
location or offset within the module or trap changes, all offsets and base registers
must be verified. '

This chapter contains the following topics:

Using the CHNGDUMP, DISPLAY DUMP, and DUMP Commands
How to Print Dumps

How to Automatically Establish System Options for SVC Dump
How to Copy PRDMP Tapes ’

How to Rebuild SYS1.UADS

How to Print SYS1.DUMPxx

How to Clear SYS1.DUMPxx Without Printing

How to Print the SYS1.COMWRITE Data Set

How to Print an LMOD Map of a Module

How to Re-create SYS1.STGINDEX

Software LOGREC Recording

Using the PSA as a Patch Area

Using the SLIP Command

Enabling the PER Hardware to Monitor Storage Locations
System Stop Routine ,

Using the MV'S Trace to Monitor Storage

How to Expand the Trace Table

Section 2: Important Considerations Unique to MVS 2.8.1

_Additional Data Gathering Techniques (continued)
- Using the CHNGDUMP, DISPLAY DUMP and DUMP Commands

A dump obtained from MVS contains those storage areas specified in the dump
" request and those defined as system defaults in SYS1.PARMLIB for SYSABEND,
SYSMDUMP, and SYSUDUMP. Normal system defaults are:

SYSABEND: CB, ENQ, TRT, ALLPA, SPLS, LSQA, PSW, REGS, SA, DM,
I0, and ERR ‘
SYSMDUMP: LSQA, NUC, RGN, SQA, SWA, and TRT ,
SYSUDUMP: CB, ENQ, TRT, ALLPA, SPLS, PSW, REGS, SA, DM, IO,
, and ERR
| There are no defaults for an SVC dump other than SQA, ALLPSA, and

~SUMDUMP, which-are assumed by the:dump program if the options NOSQA,

NOALLPSA, and NOSUM are not specified.

. The CHNGDUMP operator command is used to dynamically alter the options
~ specified originally by SYS1.PARMLIB or by previous CHNGDUMP
commands. Dump mode may be set to ADD, OVER, or NODUMP. System action
for each setting is:

ADD — merges the options specified on the dump request with the options in
* the system dump options list.

OVER — ignores the options specified in the dump request and uses only the
options in the dump options list.

NODUMP — ignores the request and does not dump.

To determine the current system dump options, use the DISPLAY DUMP,
OPTIONS command. If an error is made while specifying the CHNGDUMP
command, the system rejects the command and issues an error message.

| The topic “How to Automatically Establish System Options for SVC Dump”’,
which appears later in this chapter, describes how to issue the CHNGDUMP
command during IPL. See Operator’s Library: OS/VS2 MVS System Commands
for the format of the CHNGDUMP command.

The DUMP command must be used carefully if the desired dump is to be
obtained. For instance, the following typical error can occur when requesting
a dump. The operator enters DUMP COMM=(title). The system responds with
message IEE094 requesting the dump parameters. If the operator replies ‘U’
to this message, the system dumps the current address space which is the
master scheduler address space. The operator must reply with ASID, Jobname,
or TSOname. See Operator’s Library: OS/VS2 MVS System Commands for the
format of the DUMP command.

How to Print Dumps

| The PRDMP control statements can be used to minimize the size of the output
produced from a stand-alone dump and still keep the number of reruns to a
minimum. This section discusses the DD statements and control statements used
in the following example:

2.8.2 0S/VS2 System Programming Library:- MVS Diagnostic Techniques

Additional Data Gathering Techniques (continued)

L]
//ASIDDMP JOB MSGLEVEL=1
/| EXEC PGM=AMDPRDMP
//PRINTER DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
/ITAPE DD UNIT=TAPE,LABEL=(1,NL),VOL=SER=ABCTPE,DISP=0LD
//SYSUT1 DD UNIT=251,SPACE=(TRK,(400,20}} DISP=NEW
//* PRINT STORAGE=ASID(X)=(X,X,X,X,X,X) IS PROPER FORMAT
CVTMAP
CPUDATA
SUMMARY
QCBTRACE
SUMDUMP
LPAMAP
FORMAT
EDIT
PRINT CURRENT,SQA
PRINT STORAGE=ASID{X)={xxxx,XXXX,XXXX,XXXX)
PRINT JOBNAME=(jobnames)
PRINT REAL={xxxx xxxx)
ASMDATA
END

The PRINTER DD statement defines the output data set for the dump itself. It
should be directed to a SYSOUT class as shown.

The SYSPRINT DD statement defines the data set for PRDMP messages, etc.

The TAPE DD statement defines the input data set to PRDMP. It can define one
of the SYS1.DUMPxx data sets, a stand-alone dump tape, or a GTF output data set
on either tape or DASD.

The SYSUT1 DD statement defines work space to PRDMP. It can be used to

- define the input data set. It is not required if the input data set is defined by the

TAPE DD statement. It does, however, significantly enhance the performance of
PRDMP when it is used in conjunction with the TAPE DD statement and when
the input is a tape data set.

The SPACE parameter is determined by the size of the dump. Generally 5
cylinders or 95 tracks or 285 4104 records should be specified for each megabyte
of real storage dumped by SADMP.

Control Statements

- The placément of the control statements determines the sequence in which the

dump is printed. Refer to the “Dump and Trace Formats™ section of the
Debugging Handbook for examples of how these statements format a dump.

The following statements should be included in every run of PRDMP:

SUMMARY — deﬁnes and prints the dump ranges of the dump, a(.twe processor,
active tasks, etc.

CVTMAP — formats the CVT and can be an aid in finding other significant control
blocks in the system.

CPUDATA - formats the CSD, PSA, PCCA and LCCA for each active processor.

Section 2: Important Considerations Unique toMVS 2.8.3

Additional Data Gathering Techniques (continued)

QCBTRACE — formats thé END/ DEQ control blocks in use at the time the dump q
- was taken. v ‘ S

SUMDUMP — locates and prints the summary dump data prdvided by SVC dump.
It should be used on all SVC dumps.

LPAMAP — provides a listing of the modules on the link pack area list. It
identifies the entry point address of those modules and their length. It does
not identify SVC modules since they are found by the SVC table.

The FORMAT statement can produce voluminous data depending on the number
of address spaces defined at the time the dump is taken. However, it should be

| included in the initial run of PRDMP because it produces the formatted TCB
summary showing the abend completion codes for each TCB in the system and
the global and local SPLs.

| The EDIT statement should also be included in every initial run of PRDMP. It
formats and prints the GTF buffers (that is, all internal trace buffers or those
external trace buffers that have not been written to the TRACE data set) if GTF
is active at the time the dump is taken. If GTF is not active, only an error
message is printed. The OS trace is not valid if GTF is running.

The PRINT statement can be used several ways:

e PRINT CURRENT, SQA — should be included in the initial run of
l PRDMP. It formats and prints the address space and task-related control
blocks of the address space active at the time the dump is taken. SQA
should be printed for the valuable data it contains such as trace table,
and logrec buffers. PRINT CURRENT prints only the current address
|. . space of the processor from which the SADMP program was IPLed.

e PRINT NUC, CSA — should not be included in the initial run of
PRDMP because of the volume of data it produces. Once a problem is
suspected in this area, the PRDMP program should be rerun specifying
only these parameters.

o PRINT STORAGE=ASID(x)=(xxxx xxxxX) — should not be included in
I the initial run of PRDMP. Once a problem is isolated to an address space
| or a range of storage addresses, rerun PRDMP specifying only these
parameters. Several ASIDs and several address ranges can be requested
| with one run of PRDMP. PRDMP does not duplicate address ranges for
every ASID but prints all storage dumped (NUC, CSA, SWA, LPA in
storage) if only ASIDs are specified without address ranges. PRINT
STORAGE is useful for printing SVC dumps. See the discussion ‘‘How
to Print SYS1.DUMPxx” later in this chapter.

e PRINT JOBNAME=(jobnames) — produces output equivalent to PRINT
CURRENT except it prints the private address space of job(s) requested.
| It should not be used for the initial run of PRDMP unless the jobname is
known from another source, such as the system log. -

2.84 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Additional Data Gathering Techniques (continued)

e PRINT REAL=(xxxxxxxx) — prints real storage in specified address
range pairs. Use this option only when the system cannot find adequate
data to format the dump.

ASMDATA — formats and prints all ASM control blocks. It produces voluminous
data and should not be run until an ASM failure is suspected.

How to Automatically Establish System Options for SYC Dump

| A potential problem is that the SVC dumps written to the SYS1.DUMPxx contains

only those address ranges that the FRR or ESTAE routine passes to SDUMP. When
these dumps are subsequently printed by PRDMP, the PRDMP formatting program
might not find sufficient data to format the dump properly. This can make it
difficult to find data in an SVC dump and it can provide erroneous indicators to the
problem solver.

The CHNGDUMP command can be used to alter the SVC dump system options
and provide a complete dump. The following job updates the COMMNDOO
member of SYS1.PARMLIB to issue the CHNGDUMP command automatically at
IPL time. The CHNGDUMP command can also be entered by the operator. (See
Operator’s Library: OS/VS2 MVS System Commands for a description of the
CHNGDUMP command.)

/IUPDAT JOB {(,,5,5) MSGLEVEL=1,REGION =100K

/I EXEC PGM=IEBUPDTE

//ISYSPRINT DD SYSOUT=A

/ISYSUT1 DD UNIT=SYSDA,VOL=SER=SYSRES,DISP=01L.D,DSN=SYS1.PARMLIB
//SYSUTZ DD UNIT=SYSDA,VOL=SER=SYSRES,DISP=0LD,DSN=SYS1.PARMLIB
/ISYSIN DD DATA

./ REPL NAME=COMMNDOO,LIST=ALL

./ NUMBER NEW1=10,INCR=20

COM="TRACE ON’ .

COM='CD SET,SDUMP=(PSA ,NUC,SQA LSQA RGN,TRT), 0=YES ADD’

./ ENDUP

How to Copy PRDMP Tapes

It is sometimes necessary to copy dump i:apes to supply another location with a
copy of the dump while retaining your own. It is particularly useful to be able to
supply a dump tape with an APAR.

A simple way to do this is to use PRDMP as a copy program. Define the input
tape with the TAPE DD statement and the output tape with the SYSUT2 DD
statement. It is also possible to put several dumps on one tape or take one dump
froma multiple dump tape by manipulating the file number parameters in the label
parameter. The following example shows how this is done:

Section 2: Important Considerations Unique to MVS ~ 2.8.5

- Additional Data Gathering Techniques (continued)

//ASIDDMP JOB MSGLEVEL=1
/l EXEC PGM=AMDPRDMP
//PRINTER DD SYSOUT=A
//ISYSPRINT DD SYSOUT=A
/ITAPE DD UNIT=TAPE,LABEL=(2 NL) VOL=SER=DMPIN,DISP=0OLD
//SYSUT2 DD UNIT=TAPE, LABEL (,NL),VOL=SER=DMPOUT,DISP=(NEW,KEEP)
//SYSIN DD *
END -
/*

| After'copying a PRDMP tépe_, a quiék run through PRDMP to verify that the CVT
can be formatted and printed will prove that the copy was successful.

//ADMP JOB MSGLEVEL=1
/I EXEC PGM=AMDPRDMP
" J/PRINTER DD SYSOUT=A
//ISYSPRINT DD SYSOUT=A
/ITAPE DD UNIT=TAPE,LABEL=(1,NL) VOL-SER DMPTPE,DISP=0OLD
//SYSUT1 DD UNIT=SYSDA SPACE=(TRK,(400,20)),DISP=NEW
- CVTMAP
END
/*

How to Rebuild SYS1.UADS |

The loss of the SYS1.UADS data set can sigﬁiﬁcantly impact a TSO environment.
However, it is possible to run the TMP as a batch job and recreate SYS1.UADS in

the background. The following is an example of a job that has been run
" successfully to scratch and recreate a SYS1:.UADS data set.

//BLDUADS JOB MSGLEVEL=1

// EXEC PGM=IEFBR14

//DD2 DD VOL=SER=SYSRES,DISP=(OLD, DELETE) UNIT=3330,

/l DSN=SYS1.UADS

/I EXEC PGM=IKJEFTO01

/ISYSPRINT DD SYSOUT=A
//SYSUADS DD DSN=SYS1.UADS,DISP=(NEW,KEEP),SPACE=(800,(20,9,30)),

/1
1 BLKSIZE=800)

//ISYSLBC DD DSN=5YS1.BRODCAST, DISP SHR

2.8.6 OSIV S2 S&stem Programming Libiary: MVS Diégﬁostic Techniques

UNIT=3330,VOL=SER=SYSRES,DCB= (RECFM FB,DSORG=PO,LRECL=80,

//SYSIN DD *
ACCOUNT
SYNC R
ADD (USERO1 TSOTEST * IKJACCNT) UNIT(SYSDA) ACCT OPER JCL MOUNT
ADD (USER02 TSOTEST * IKJACCNT) UNIT(SYSDA) ACCT OPER JCL MOUNT
ADD (USERO3 TSOTEST * IKJACCNT) UNIT(SYSDA) ACCT OPER JCL MOUNT
ADD (USER04 TSOTEST * IKJACCNT) UNIT(SYSDA) ACCT OPER JCL MOUNT
ADD (USERO5 TSOTEST * IKJACCNT) UNIT(SYSDA) ACCT OPER JCL MOUNT
" ADD:(USER06 TSOTEST * IKJACCNT} UNIT(SYSDA). ACCT OPER JCL MOUNT
© ADD (USER0O7 TSOTEST * IKJACCNT) .UNIT{SYSDA) ACCT OPER JCL MOUNT
- ADD.(USER08; TSOTEST * IKJACCNT) UNIT(SYSDA) ACCT OPER JCL MOUNT
ADD (USER09 TSOTEST * IKJACCNT) UNIT(SYSDA) ACCT OPER JCL MOUNT
ADD (USEROA TSOTEST * IKJACCNT) UNIT(SYSDA) ACCT OPER JCL MOUNT
ADD (USEROB TSOTEST * IKJACCNT) UNIT(SYSDA) ACCT OPER JCL MOUNT
ADD (USEROC TSOTEST * IKJACCNT) UNIT(SYSDA) ACCT OPER JCL MOUNT
LIST (*)
END
/*

Additional Data Gathering Techniques (continued)

| How to Print SYS1.DUMPxx

See the discussion under ‘“How To Print Dumps” earlier in this chapter to define
the control statements required. The same rules apply except in this case the TAPE
DD statement points to one of the SYS1.DUMPxx data sets. These are cataloged
data sets and require no further definition.

Be aware that the dump data sets contain only those address ranges passed to
SVC dump by the dump requestor and might not contain sufficient data for
PRDMP to properly format all requested control blocks.

Because SVC dumps usually contain a limited number of address ranges, printing
the entire SYS1.DUMPxx data set is feasible and assures that all the information
about the problem will'be available.

See the next topic “How To Clear SYS1.DUMPxx Without Printing” for a
description of how to clear the dump data sets for reuse. Note: Printing the dump
data sets does not clear them as it did on previous systems.

The following example shows how to priht SYS1.DUMPOO:

/IASIDDMP JOB MSGLEVEL=1
/I EXEC PGM=AMDPRDMP
/IPRINTER DD SYSOUT=A
/ISYSPRINT DD SYSOUT=A
/ITAPE DD DSN=SYS1.DUMPQ0,DISP=OLD
//SYSUT1 DD UNIT=SYSDA DISP=NEW SPACE=(CYL,(10,5))
SUMMARY
CVTMAP
CPUDATA
SUMDUMP
LPAMAP
PRINT STORAGE

o

| How To Clear SYS1.DUMPxx Without Printing

In previous systems, printing the dump data set also cleared it and made it available
for reuse. In MVS this‘is no longer true. The dump data sets can be cleared at
‘SPECIFY SYSTEMS PARAMETERS’ time during IPL. They can also be cleared
and made available for reuse by using PRDMP to copy the data set to tape with

the SYSUT2 DD statement pointing to the output data set. This must be a separate
job step from printing the dump. If it has been determined that the SYS1.DUMPxx
data set need not be saved, it can be cleared and made available for reuse by
running PRDMP with the SYSUT2 DD statement defined as DUMMY. The
following example shows how to clear SYS1 DUMPQO. See the example in the
discussion “How to Copy PRDMP Tapes” earlier in this chapter for how to define
the SYSUT2 DD statement to unload the SYS1.DUMPxx data sets.

Section 2: Important Considerations Unique to MVS 2.8.7

Additional Data Gatheting Techniques (continued)

//ASIDDMP JOB MSGLEVEL=1
-/l EXEC PGM=AMDPRDMP
//PRINTER DD SYSOUT=A
" J/ISYSPRINT DD SYSOUT=A
" JITAPE DD DSN=5YS1.DUMPOO, DISP—OLD
//SYSUT2 DD DUMMY
/ISYSIN DD *
END '

How To Print The SYS1.COMWRITE Data Set

The following job will format and print the TCAM SYS1.COMWRITE data set.
Note that the PARM fields in the EXEC statement define the traces to be

| formatted and printed. See OS/V.S TCAM Debugging Guide Level 10 for more
information on the use of the SYS1.COMWRITE data set.

//COMWRITE JOB MSGLEVEL=1

//STEP1 EXEC PGM=IEDQXB,PARM='STCB,IOTR,BUFF’
/ISYSPRINT DD SYSOUT=A '

/ISYSUT1 DD DSN=SYS1.COMWRITE,DISP=SHR

/%v

How To Print An LMOD Map Of a Modhle

The following job produces a module cross-reference of the nucleus, module

IEFW21SD, and a link pack area map. Inaddition, AMBLIST produces an IDR

listing or a complete hexadecimal dump of an object module. If you include the

RELOC parameter, the cross- reference listing is based at the address the module
~isloaded in LPA. :

- Note that the JCL must contain-a DD statement for every data set containing a
‘module you referenced in the control card section.

For more informatien about AMBLIST, see OS/VS2 System Programming
~Library: Service Aids. :

//IAMBLIST JOB MSGLEVEL=1
// EXEC PGM=AMBLIST
//SYSLIB-"DD" DSN=SYS1.LPALIB,DISP=0LD
[/LOADLIB DD DSN=SYS1.NUCLEUS DISP=OLD
/ISYSPRINT .DD SYSOUT=A
/ISYSIN DD * '
| LISTLOAD OUTPUT=XREF MEMBER= IEANUCO1 DDN=LOADLIB
LISTLPA
LISTLOAD OUTPUT=XREF MEMBER=IEFW21SD
,t/* j . . .

2.8.8 0S/VS2 System Programming Libtary: MVS Diagnostic Techniques

N

-

Additional Data Gathering Techniques (continued)

How To Re-Create SYS1.STGINDEX

It is possible for the SYS1.STGINDEX data set to be destroyed because of system
failure or operator intervention during an. IPL with the coldstart (CLPA,CVIO)
option. Loss of this data set prevents warmstarting the system or restarting jobs
using VIO data sets.

The followingjob has been run successfully to recreate this data set. Remember
to change the VOLUME and CYLINDERS parameters to apply to your system.

//STGINDEX JOB MSGLEVEL=1
//IEXEC PGM=1DCAMS
//SYSPRINT DD SYSOUT=A
//IVOL DD DISP=0LD,UNIT=3330,VOL=SER=SYSRES
//SYSIN DD * .
| DEFINE SPACE(VOLI(SYSRES)FILE(VOLICYL(7))
DEFINE CLUSTER-
(NAME(SYS1.STGINDEX)-
VOLUME(SYSRES)-
CYLINDERS(7)-
KEYS(12 8)-
BUFFERSPACE(5120)-
RECORDSIZE (2041 2041)-
REUSE)-
DATA-
(CONTROLINTERVALSIZE(2048))-
INDEX- .
(CONTROLINTERVALSIZE(1024))

Software LOGREC Recording

The following JCL defines a two-step job. The first step prints an event history
report for all SYS1.LOGREC records. The second step formats each software,
IPL, and EOD record individually. The event history report is printed as a result of
| the EVENT=Y parameter on the EXEC statement of the first step. It can be a very
useful tool to the problem solver because it prints the records in the same sequence
they were recorded and therefore shows an interaction between hardware error
" records and software error records.

/IEREP JOB MSGLEVEL=1

/IEREPA EXEC PGM=IFCEREP1,PARM="EVENT=Y ,ACC=N’,REGION=128K
/ISERLOG DD DSN=SYS1.LOGREC,DISP=SHR

/ITOURIST DD SYSOUT=A

//EREPPT DD SYSOUT=A,DCB=BLKSIZE=133 .

l //EREPB EXEC PGM=IFCEREP1,PARM="TYPE=SIE ,PRINT=PS,ACC=N',REGION=128K
//ISERLOG DD DSN=SYS1.LOGREC,DISP=SHR

/[TOURIST DD SYSOUT=A

//IEREPPT DD SYSOUT=A,DCB=BLKSIZE=133

* ‘

See the discussion on LOGREC analysis in the “Use of Recovery Work Areas”
chapter earlier in this section for an explanation of its use and for examples of the
output produced. ' :

Section 2: Important Considerations Unique to MVS 2.8.9

~Additional Data Gathering Techniques (continued)

Using The PSA As a Patch Area

" Theré are two areas:in' the PSA reserved for future expansion. They can be used
for quick implementation of a:trap without having to consider base registers. They
are X410’ — X‘BFF’ and X‘E54° — X‘FFF’. Both of these areas are frequently
used. in examples throughout this chapter.

CAUTION: Use extreme care when you use this method. Patches should be made
only to disabled code unless the patch is completly reentrant. Saving registers and
data in the PSA while the system is enabled could produce unpredictable results,
especially in an MP environment where more than one PSA exists and the code
could be interrupted and subsequently redispatched on the other processor.
Extreme care must be used when considering a system alteration in order to gather
additional data about a problem. No superzaps should be applied before the
system programmer has verified the logic being zapped and the trap logic itself.
Remember if any one location or offset within the module or trap changes, all
offsets and base registers must be verified.

Using the SLIP Command

SLIP (serviceability level indication processing) provides a way of getting informa-

tion from RTM prior to ESTAE or FRR recovery processing. This is in addition to

the information ordinarily supplied by dumping services during abnormal termina-
_ tion. The SLIP command, usually entered by a system programmer, either at the

console or via the input stream, can also reside in the COMMNDxx parmlib

member. The SLIP command’s purpose is to establish SLIP definitions of

the error circumstances under which interception of an error is to occur, and

of the action to be taken following the interception.

As long as enough system queue area storage is available, SLIP definitions may
be established at any time.-The recovery termination manager (RTM) compares
. the SLIP definitions with the dynamic system conditions at the time of the error.
If RTM detects a match, the requested action is taken.

The ACTION keyword has the following options:
e ACTION=SVCD indicates that an SVC dump will be scheduled for the current

ASID. Thisis the default option if ACTION is not specified. SDUMP parameters
in this case are: SUM, SQA, RGN, TRT, LPA, CSA, and NUC.

2.8.10 OS/VS2 System Programming Library: MVS Diagnostic Techniques

£ >

Al

AN~

Additional Data Gathering Techniques (continued)

One of the advantages of this dump over one taken by a recovery
routine is that nothing has been done to correct the error situation. Although
the bulk of the SVC dump is not taken until later, the summary dump portion
preserves as much volatile data as possible. An SVC dump also contains more
data than a SYSABEND or SYSUDUMP, and because it is machine readable, it
can, if necessary, be copied onto a tape to accompany an APAR, or used with
interactive dump display programs. The biggest advantage is in situations
where no dump was occurring.

ACTION=WAIT indicates that the system will be placed in a 01B wait state.
At this time, the operator can find the save area where the stop/restart routine
(IEESTPRS) saves the caller’s IEAVTSLP) registers. Register 2 contains the
address of the RTM work area for the error. This is either [IHAFRRS (RTM1)

or JHARTM2A (RTM2). Register 4 contains the address of the SLIP control
element (SCE), which contains the id for this trap.

- CVT ' IHAWSAVT Save Area

X'2AC’'{ CVTSPSAT X'24' WSAGREST‘/

Registers
0-14

ACTION=NODUMP indicates that SLIP is to set a flag in the RTM work area
which is checked by the dump programs ABEND/SNAP and SVC dump. If the
bit is on, all dump requests are ignored. Because the bit is in the RTM work
area, only dumps requested during processing of this error by RTM or its sub-
routines (FRR and ESTAE) are suppressed. Should the error involve recursive
entry into RTM, the bit setting is propagated to the next RTM work area.

This action is useful for preventing dumps that may not be needed (X22,
X37, etc.) because accompanying messages provide sufficient information. It
can also be used to prevent duplicate dumps for known problems which have
already been documented.

ACTION=IGNORE indicates that the system will not do any further SLIP pro-
cessing, and that normal system recovery will continue. This option is normally
chosen for known errors. For example, if trapping 0C4 completion codes and
SLIP SET,COMP=0C4,ACTION=IGNORE,LPAMOD=MODX,END is entered
after SLIP SET,COMP=0C4,A=SVCD,END had been issued, it results in

dumps for all 0C4 errors except those in module MODx. The ACTION=
IGNORE command must be issued after the original command because trap
conditions are checked LIFO.

Sectibn 2: Important Considerations Unique to MVS = 2.8.11

Additional Data Gathering Techniques (continued)

It is also possible to display information about SLIP definitions by using the
DISPLAY command at the operator’s console. For details concerning opérand
usage and entering the SLIP and DISPLAY commands, see Operator’s Library:
OS/VS2 MVS System Commands. The following is provided to demonstrate a
typical application of the SLIP command:

Obtaining a Dump with Queue Control Blocks and Elements

An error in the DEQ SVC routine is suspected because whenever program DVTRTN
executes, it abnormally terminates even though its parameter list is correct. The
resulting abend dump does not include queue control blocks and queue elements.
To get a dump that does include this information, issue the following SLIP com-
mand:

SLIP SET,ID=QELS,COMP=X30,ERRTYPE=ABEND,JSPGM=DVTRTN,END

ID identifies this SLIP definition as “QELS”; COMP specifies the applicable
system completion code; ERRTYPE specifies that an abend condition must exist
for this error interception; JSPGM identifies “DVTRTN” as the job step program
that must be executing for this error interception; END denotes the end of this
SLIP command.

Designing an Effective SLIP Trap

The design of a SLIP trap requires knowledge of the error conditions and what
makes the error unique. An effective trap should catch only the intended error.
To do this, the description should be as specific as possible.

The best way to design a trap is from a dump of the error. In the case of the
NODUMP action, a dump should be available. In other cases, an approximate dump
(one taken near the time of the error) or one without sufficient information to
‘debug might be available. The following chart lists several SLIP keywords and
indicates the data area fields that SLIP compares them with.

It should be understood that SLIP operates as a subroutine within the RTM.
SLIP is called from either RTM1 or RTM2, depending on whether the error
environment allowed FRR or only ESTAE recovery respectively. The level of RTM
in control affects the data areas available. The calls to SLIP are prior to calls to any
error recovery routines, therefore it is possible that the data areas contained in a
dump may have been changed since SLIP examined them. This is especially true of
the COMP keyword value. Many recovery routines change the abend completion
code to make it more specific. For example, a system service that receives a bad
address from a user parameter list will get an 0C4 which it converts to its own
completion code meaning a bad parameter list.

2.8.12 0S/VS2 System Programming Library: MVS Diagnostic Techniques

PN

Additional Data Gathering Techniques (continued)

SLIP Keywords and Corresponding Data Areas

Note: There may be several RTM2 work areas pointed to by the TCB if several
abends occurred. The oldest one (last on the queue) is probably the best one to use.

ERRTYP

entry into RTM1:

The reason for entry into RTM2 is indicated by flags in the RTM2 work area as

follows:

MODE

(RTM1)
In RT1TENPT of the RTM1 work area is the number indicating the reason for

1=PROG 5=MACH
2=REST 10=PGIO
3=SVCERR 15=MEMTERM
4=DAT

(RTM2)

RTM2MCHK=MACH
RTM2PCHK=PROG
RTM2RKEY=RESTART
RTM2SVCD=ABEND
RTM2ABTM=ABEND

RTM2SVCE=SVCERR
RTM2TEXC=DAT
RTM2PGIO=PGIO
RTM2EOM=MEMTERM

System mode at error time is indicated in the MODEBYTE as follows:

MODEDIS

. 1... MODELOC
MODETYP1
.1. MODESRB
MODETCB

Section 2: Important Considerations Unique to MVS 2.8.13

MODESUPR

MODEGSPN
R MODEGSUS

Supervisor Control
Physically disabled
Global spin lock held
Global suspend lock held

- Locally locked

Type 1 SVC
SRB mode
Task mode (uniocked)

Additional Data Gathering Techniques (continued)

 (RTM1)_

The MODEBYTE value is contained in RTIWMODE. The PSW from SDWAECI
is used for PP, Super, SKey, and PKey states. The SDWASTAF bit is used for
RECV. ' ‘

(RTM2)

In the ESAMODE field (SVRB + X‘8B’) of the SVRB pointed to by RTM2VRBC,
are bits mapped by MODEBYTE as indicated above. For the PSW values, SLIP
uses the RBOPSW field of the RB preceding the SVRB.

The RTM2RECR bit must be on for RECV, and in the previous RTM2 work
area the RTM2XIP bit plus the SCBINUSE bit of the SCB pointed to by
RTM2NSCBN must be on.

COMP
(RTM1)
In the SDWA, field SDWACMPC contains the original value.

’ (RTM2)
The RTM2CC field contains the original value for each work area.

JOBNAME
(RTMI and RTM2)

In the ASCB, fields ASCBIBNI or ASCBJBNS point to the job name for either
initiated or started jobs. '

JSPGM

This keyword does not apply to errors which enter RTM1, so if it is specified, the
trap is limited to RTM2 type errors only.

PVTMOD (RTM2 only)
LPAMOD

- ADDRESS ‘
"The address used for these keywords is obtained from the same PSW used when

checking values for the MODE keyword. Additionally, PVTMOD applies to RTM2
type errors only and restricts the trap accordingly. The module name for PVTMOD
is compared with those in the CDE list for the jobstep TCB of the current address
space.

2.8.14 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Additional Data Gathering Techniques (continued)

ASID

| (RTM1)
Both SDWAFMID and SDWAASID are checked.

(RTM2)
Both RTM2FMID and ASCBASID are checked.

Enabling The PER Hardware To Monitor Storage Locations

A convenient place to hook the system is.in the MVS trace table’s common
prologue code in IEAVTRCE. All interrupts and dispatcher entries enter this code.
Therefore a modification here will enter this trap after every interrupt and

before the dispatcher dispatches or redispatches any TCB or SRB, The trap in the
examples below was inserted in module IEAVTRCE three instructions after the
label STR in place of the code that normally stores the timer value in the trace
table.

This trap does not stop the system but traces in the MVS trace the PSWs that
alter a specified storage location. To stop the system, a branch from the program
check FLIH can be made to a patch area, and a test can be made for the interrupt
code of X‘80’ with a branch equal to a trap to stop the system. In the system
dump, the instruction that performs the modification is pointed to by X‘98’
in the PSA. :

Care should be used with this diagnostic aid since degradation occurs in pro-
portion to the number of interrupts taken. Only use it to monitor a section of
storage which is never modified or only infrequently modified. Once the trap
is in, there is nio need to re-IPL to remove it. Manually storing a word of zeros
in control register 9 prevents further interrupts. :

Section 2: Important Considerations Unique to MVS ~ 2.8.15

Additional Data Gathering Techniques (continued)
| Following is an example of the PER hardware trap to be applied by superzap.

NAME IEANUCO1 IEAVTRCE

VER 03A0 B2058000,4780B02C,D70380028002,D203C01C8002,947FC014
REP 03A0 47F00608,07000700,07000700,07000700,07000700,07000700

NAME 1EANUCO1 IEAVTRTS
VER 0796 82001078
REP 0796 47F00600

NAME IEANUCO1 IEAVFX00
VER 0600 00000000,00000000,00000000,00000000,00000000,00000000,00000000
VER 061C 00000000,00000000,00000000,00000000,00000000,00000000,00000000
REP 0600 96401078,82001078 TURN ON PER BEFORE ENTERING FRR
| REP 0608 96400300 ALWAYS TURN ON PER FOR DISPATCHER
REP 060C 4700B032,92F0060D BUT SET THE FIRST TIME SWITCH FOR THE REST
REP 0614 96400058,96400060,96400068,96400070,96400078 SET THE NEW PSW.

REP- 0628 B79B0630 - - LOAD FUNCTION CODE, LOW AND HIGH RANGE
REP 062C 47F0B032 RETURN TO MAINLINE

REP 0630 XX000000 FUNCTION CODE IN HIGH ORDER

REP 0634 XXXXXXXX LOW RANGE } .

REP 0638 XXXXXXXX . HIGH RANGE

*Note: To check a word in storage starting at 9F41C for example,
Low range address = 9F41C
High range address = 9F41F.
To check a byte, use the same address in low and high.

Because the switch is in the PSA, the control registers and NEW PSWs are
initialized on both processors in an MP environntent. However, they are set only
once and not each time through the routine.

| The example in Figure 2-18 shows trace entries using the storage alteration mask
(function code X‘20°). The interrupt address is the address of the instruction that
modified the monitored storage.

PGM OLD PSW 470C3080 A0009A0A R15/R0 00009970 00DF467A R1 OQOFFOBO8 IDS 00400002 TCB. 00000000 TME 9BD80401
PGM OLD PSW 470C3080 E0034126 . R15/R0 00014C20 QODF467A R1 OOFF837C IDS 00400002 TCB 00000000 TME 9BD80439
PGM OLD PSW 470C3080 AQO00BEF8 R1 5/R0O 0000BEB8 0ODF467A Rt O0OFF837C IDS 00400002, TCB 00000000 'TME 9BD8OS53F

Figure 2-18. Trace Example of PER Hardware Monitoring

On occasion it might be necessary to monitor when only one address space is active.
One way of doing this is to change the previous superzap example at address 060E
from B032 to 0640 and include the following superzap. This superzap turns PER
on only if the specified address space is active.

NAME ‘IEANUCO1 IEAVFX00
VER 0640 00000000,00000000,00000000,00000000,00000000,00000000,00000000

REP 0640 58D00224 GET CURRENT ASCB

REP 0644 48D0D024 GET CURRENT ASID

REP 0648 49D00664 IS THIS MY ASID?

REP 064C 47800658 YES — GO TURN PER ON

REP 0650 B7990660 TURN PER OFF

REP 0654 47F0B032 RETURN TO MAINLINE

REP 0658 B7980630 TURN PER ON

REP 065C 47F0B032 RETURN TO MAINLINE

REP 0660 00000000 THIS WORD IN CR9 TURNS OFF PER

REP 0664 xxxx ASID TO BE MONITORED

2.8.16 0S/VS2 System Programming Library: MVS Diagnostic Techniqlies

Additional Data Gathering Techniques (continued)

Caution: Extreme care must be used when considering a system alteration in order
to gather additional data about a problem. No superzaps should be applied before the
system programmer has verified the logic being zapped and the trap logic itself.
Remember if any one location or offset within the module or trap changes, all

offsets and base registers must be verified.

System Stop Routine

On occasion it is necessary to stop the system and take a stand-alone dump to fully
document a problem. Loading a wait state PSW is sufficient on a uniprocessor.
Stopping only one processor on an MP system is not adequate. This routine will stop
an MVS MP or UP system. The caller must be supervisor state and key zero. The
wait state code you wish displayed is placed at location X*756’. This trap also

moves the wait state PSW to storage location zero and loads the PSW from there to
prevent inadvertent restarts when the trap is hit.

NAME IEANUCO1 IEAVFX00
VER 0700 36F‘'00’

REP 0700 ACFCO74E DISABLE

REP 0704 900F0758 SAVE REGISTERS

REP 0708 58F00010 GET CVT POINTER

REP 070C B8E0F294 GET CSD POINTER

REP 0710 91COE008 TEST IF MP

REP 0714 47E00744 NO JUST LOAD WAIT PSW
REP 0718 41200000 SET REG2TOCPUO

REP 071C 41300001 SET REG 3TO CPU 1

REP 0720 48400204 GET CPU ADDRESS

REP 0724 1244 TEST FOR CPU O

REP 0726 4770073C NO, STOP CPU O FIRST

REP 072A AE030009 YES, STOP CPU 1 FIRST

REP 072E 4760072A SPIN TIL CC=0

REP 0732 D20700000750 MOVE THE WAIT PSW TO ZERO
REP 0738 82000000 LOAD WAIT STATEONCPU O
REP 073C AE020009 SIGP STOP CPU O :
REP 0740 4760073C SPIN TiL CC=0

REP 0744 D20700000750 MOVE THE WAIT PSW TO ZERO
REP 074A 82000000,0000 LOAD WAIT STATE ON CPU 1
REP 0750 000E0000,0000DEAD WAIT PSW

REP 0758 00000000 SAVE AREA

Caution: Extreme care must be used when considering a system alteration in order
to gather additional data about a problem. No superzaps should be applied before the
system programmer has verified the logic being zapped and the trap logic itself.
Remember if any one location or offset within the module or trap changes, all

offsets and base registers must be verified.

Section 2: Important Considerations Unique to MVS 2.8.17

Additional Data Gathering Techniques (continued)

Using The MVS Trace To Monitor Storage

The MVS trace code in module IEAVTRCE is an excellent place to hook the
system to monitor system operation and branch to a trap routine. Three instruc-
tions past label STR in IEAVTRCE is the code which stores the timer values in the
trace table. All trace entries pass through this code. Overlaying this code
allows you to monitor any place in the system as it runs disabled, key zero and
supervisor state. It must be understood that this code is physically disabled and
therefore the trap must not page fault. Also no reference can be made to private
area addresses since the trap can receive control in any address space. For larger
patches a branch from this code to a patch area in the PSA is possible. At entry to
this code, register 12 (C) points to the trace entry. This code normally stores the
timer value located at X‘1C’ into the trace table. Storing a word at register 12 (C)
"+ X‘1C’ would allow dynamic monitoring of that word in storage if addressability
is obtained. The other seven words of the trace table are built within the trace
entry code for each trace type. Monitoring for more than one word entails
changing all entries. : '

To eliminate certain trace entry types, it is only necessary to put a branch
instruction 07FB at the entry point for that entry.

Caution: Location X‘10’ cannot be monitored with this trap because the PCFLIH
refreshes location X‘10’ before it branches to the trace routine, Extreme care must
be used when considering a system alteration in order to gather additional data
about a problem. No superzaps should be applied before the system programmer has
verified the logic being zapped and the trap logic itself. Remember if any one
location or offset within the module or trap changes, all offsets and base registers
must be verified.

How To Expand The Trace Table

Use the following zap to force trace on during NIP processing.

l NAME [EEVWAIT IEEVWAIT
VER 0194 4710
REP 0194 47F0

To increase the size of the trace table, you may zap module IEAVNIPO at label
NVTTRACE to a greater value. It defaults to X‘190” (400 decimal). Do not
exceed a value of X400’ for the size of the trace table; 806-4 and 0C4 abends can
occur when the link pack area directory is accessed.

NAME IEANUCO1 IEAVNIPO

VER 2ECO 0190
REP 2ECO XXXX WHERE X IS THE NEW VALUE DESIRED.

Caution: Extreme care must be used when considering a system alteration in order
to gather additional data about a problem. No superzaps should be applied before the
system programmer has verified the logic being zapped and the trap logic itself.
Remember if any one location or offset within the module or trap changes, all

offsets and base registers must be verified.

2.8.18 OS/_V S2 System Programming Library: MVS Diagnostic Techniques

™

A 4

Section 3. Diagnostic Materials Approach

This section provides guidelines for analyzing storage dumps to find which data
areas were affected by the error and to isolate internal symptoms of the problem.

The three chapters in this section are:

o Stand-alone Dumps
| e SVC Dumps
I ¢ SYSABEND:s, SYSMDUMPS, and SYSUDUMPs

Section 3. Diagnostic Materials Approach 3.1.1

3.1.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques

A

N

Stand-alone Dumps

The stand-alone dump provides the problem solver with a larger quantity of data
than system-initiated dumps because it contains areas that belong

to the entire operating system rather than just a single address space or component.
One of the major problems for the analyst is finding the important data for his
problem and then isolating the problem area. Once this isolation is achieved, the
debugger uses unique system/component techniques to gain further insight into the
exact cause of the problem. :

This chapter points out where to look in a stand-alone dump to determine
various problem symptoms. The general approach is to analyze a stand-alone dump
to find out what the system is doing (or not doing). Important areas will be
described and possible reasons for their current state/contents will be explained.
The analysis starts at the global system level and, by gathering data and gaining an
understanding of the environment, works down to the address space and task level.

The experienced problem solver realizes that under certain conditions it may
be necessary or advantageous to omit interpreting various areas. For example,
if during system operation he observes that a given segment of the system (such
as VTAM) is not functioning (other areas.appear okay — jobs are executing,
SYSIN/SYSOUT is appearing, etc.), he may decide to take a stand-alone dump.
In this case, the current state of the system is probably not important. He
would not be interested in current PSW, registers, etc.; he would be interested
only in the address spaces that are using VT AM and the state of the TP network.
The dump is not taken for a problem that is “active” now, but to give the analyst
data with which to determine a problem that appears to have originated some
time ago. The point is that knowing why the dump was taken will often govern.
which, if any, of the stand-alone dump areas are of significance for a given problem.

Information contained in the chapter on “Waits” in Section 4 can be used as a
supplement to the following discussions. (Also, a step-by-step approach to
analyzing a stand-alone dump is contained in Appendix B of this manual.)

To analyze a stand-alone dump, you should always ask the following questions:

1. Why was the dump taken ?

Console sheets/logs are very important in stand-alone dump analysis. They are
often the key to solving “enabled wait” situations and may present valuable
information about system activity prior to taking the dump. Messages
concerning /O errors, condition code=3, SVC dumps, abnormal job termina-
tions, device mounts, etc. should be thoroughly investigated to determine if
they could possibly contribute to the problem you are tracking.

The dump title gives an'indication of the problem’s external signs or, possibly,

* a specific situation that must be investigated, such as “VTAM NOT
FUNCTIONING.”

* Section 3. Diagnostic Materials: Approach 3.1.3

Standalone Dumps (continued)

2. What is the current state of the system ?

Examine the available global data areas to determine what the system is
currently doing. The “Global System Analysis” chapter in Section 4 aids
in this process. Remember that at this point,you are gathering information and
trying to understand the system environment in order to isolate the internal

. symptom; you are not ready yet to debug.

3. Has your global analysis isolated the préblem to an internal symptom ?
If so, refer to the discussion of that.symptom in Section 4 of this manual.

4. What previous errors have occurred within the system,; could they possibly
have any affect on your current problem ?

The interpretation of SYS1.LOGREC and the in-storage LOGREC buffers are
. most important in determining error history. See the chapter on “Use of
Recovery Work Areas” in Section 2.

S. What is the recent system activity ?

The chapter on ‘*MVS Trace Analysis” in Section 2 aids in trace table
interpretation.

6. What is the work sidtus within the system ?

Your objective is to determme if the system has for some reason not completed
all scheduled work. Determining what that work is and why it is not
progressing can provide insight into the problem as well as answer some
questions that may have arisen during an earlier analysis. Understanding the
major control block structure and work queue status should aid in determining
the possible source of the error. Refer to the discussion of “Work Queues and

- Address Space Status” in the “Global System Analysis” chapter of Section 2.

At this point, you should have gathered enough data to have a definition of the
internal problem symptom. You should also have considerable information about
the system’s state, error history, and job status. You should refer to the
appropriate chapter in Section 4 “Symptom Analysis Approach” or, if you have
isolated the error to a component or process, Section 5 or Appendix A,
respectively.

3.1.4: 0S/VS2 System Prdgramming Library: MVS Diagnostic Techniques

| : . SVC Dumps

| SVC dumps (invoked by the SDUMP macro) are usually taken as a result of an
entry into a functional recovery routine (FRR) or ESTAE routine. The com-
ponent recovery routine specifies the address that will be dumped.

The “Component Analysis” chapters in Section 5 should help you identify what
areas of the system were dumiped dnd what they contain.

‘ The SVC dump is taken asynchronously and the global data areas (PSA, LCCA,
PCCA, etc.) usually contain no relevant data except in cases where overlays,
machine checks, channel checks, etc., have occurred.

SDUMP options SQA, ALLPSA, and SUMDUMP are the defaults for all requests.
The SUMDUMP option of SDUMP provides a summary dump within an SVC dump.
There is a twofold purpose for this. First, since dump requests from disabled,

I locked, or SRB-mode routines cannot be handled by SVC dump immediately,
system activity destroys much useful diagnostic data. With SUMDUMP, copies of
selected data areas are saved at the time of the request and then included in the

| SVC dump when it is taken. Second, SUMDUMP provides a means of dumping

" many predefined data areas simply by specifying one option.

The data areas saved in SUMDUMP can be printed out by using the
AMDPRDMP control statement SUMDUMP. This summary dump data is not
‘mixed with the SVC dump because in most cases it is chronologically out of step.
Instead, each data area selected in the summary dump is separately formatted
and identified.

' For information on print dump program changes needed to print the summary
dump, and multlple address-space output from SVC dump, see OS/VS2 System
Programming Library: Service Aids.

The RTM2WA pointed to by the TCB upon whose behalf the dump is being
taken is the most valid system status indicator available. The dump task is usually
the current task; the task upon whose behalf the dump is being taken will contain
a completion code in the TCB completion code field. It is possible for the ESTAE
routine to issue SVC D itself, in which case the current task is also the failing task.

Section 3: Diagnostic Materials Approach 3,1.5

| SVC Dumps (continued)

I Because of MVS recovery (retry and percolation), the SVC dump may be only
part of the documentation at the problem solver’s disposal. The problem solver
should attempt to obtain:

1. The system log for the time the dump was taken to ascertain if:

| e Any other SVC dumps were taken before or after the one he is
. investigating.

| . ® Any task subsequently abended. If so, a system dump that displays other
areas of storage that have meaningful data may be available.

2. The LOGREC formatted listing for the time immediately preceding the time of
| the SVC dump. If the component analysis procedure fails to determine the
cause of the problem, analyze the dump as you would a stand-alone dump.
Keep in mind that the information obtained via the CPCUDATA option on
AMDPRDMP is probably meaningless. Refer to the “Global System Analysis”
chapter in Section 2 for information on how to do a task analysis of available
address-space-related control blocks.

Keep'in mind that the system has detected the error and has attempted recovery,
at least on a system basis. Therefore, there will be a good indication of the type
(internal symptom) of error (loop, abend, problem check, etc.) that caused the

| problem. (See Section 4, “‘Symptom Analysis Approach.”)

| How to Change the Contents of an SVC Dump Issued by an Inleldual Recovery
Routine

I At times, SVC dump contents are not sufficient to solve a problem. The most
convenient way to change the contents is the CHNGDUMP command. It can be
used to establish system options to be added to the options on each SDUMP
‘request, or to totally override the SDUMP options. - See “Using the CHNGDUMP

| Command” in Section 2. If you do not want to affect all SVC dumps or if storage
lists are involved, you may want to change the parameter list in a particular ESTAE
exit instead.

You can usually find the name of the recovery routine by looking at the user
| data (or title) on the SVC dump printout. If not, search the ESTAE’s PRB for the
virtual address of the SDUMP SVC instruction.

, The following description of SDUMP’s parameter list can help you decide which

bits will provide the data you want. The SDUMP macro expansion generates the
parameter list and puts the address of the list in register 1.

3.1.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques

| SVC Dumps (continued)

| SDUMP Parameter List

Offset

1.......
I
i T
B T
. 1.,
. L.
....... 1
... ...,
B D
L1
B R
. 1.
others
...
S
B U
S R
R
...... 1.
....... 1

user-supplied DCB=

BUFFER=YES

user-specified STORAGE= or LIST=
user-specified HDR= or HDRAD=
user-specified ECB=

user-specified ASID=
QUIESCE=YES

BRANCH=YES

indicates SDUMP (as opposed to SNAP)

" indicates a SYSMDUMP request

indicates enhanced SVC Dump
user-specified ASIDLST=
user-specified SUMLIST=
reserved

SDATA options
ALLPSA

PSA

NUC

SQA

LSQA

RGN

LPA

TRT (MVS trace table)

Section 3. Diagnostic Materials Approach

, SVC Dumps (continued) -

10
14
16

18

1C
20
24
28
29

others

more SDATA options
CSA '
SWA

SUMDUMP
NOSUMDUMP

‘NOALLPSA
-NOSQA

" reserved

DCB address

address of storage list

address of header record
address of ECB

caller’s ASID

target ASID of scheduled dump

“address of ASID list

address of summary dump storage list

v address of SYSMDUMP 4K SQA area .

address of SYSMDUMP CSA work area
length of header record (less than 100)

header record (will appear as title)

3.1.8 0S/VS2.System Programming Library: MVS Diagnostic Techniques

SYSABENDs, SYSMDUMPs, and SYSUDUMPs

SYSABENDs, SYSMDUMPs, and SYSUDUMPs are produced by the system when a
job abhormally terminates and a SYSABEND, SYSMDUMP, or SYSUDUMP DD
statement was included in the JCL for the terminating step. In an MVS system, the
output produced is dependent on parameters supplied in the SYS1 . PARMLIB
members IEAABDO00O, IEADMRO00, and IEADMPOO for SYSABEND:s,
SYSMDUMPs, and SYSUDUMPs, respectively. See OS/VS2 System Programming
Library: Initialization and Tuning Guide for the IBM-supplied defaults and options
that are available.

If the IBM defaults are used, a hexadecimal dump of LSQA is produced when
the SYSABEND DD statement is specified. MVS systems do not dump the nucleus
or SQA as a default for SYSABEND or SYSUDUMPs. SYSMDUMP defaults
include NUC and SQA.

With a SYSABEND, SYSMDUMP, or SYSUDUMP, the system has detected the
error and therefore provided a starting point (such as a job step completion code)
for analysis. The analyst should always look at the JCL and allocation messages
that accompany the dump. The allocation messages contain error messages that can
sometimes be helpful. There will also be a JES2 job log that shows the operator
messages and responses that relate to the job. The error messages also contain
valuable information about the error and should always be investigated.

SYSABEND, SYSMDUMP, and SYSUDUMP errors can generally be divided into
two categories: software-detected errors and hardware-detected errors.
Software-Detected Errors
Software-detected errors are those in which one or more of the following occurs:
® A module detects an invalid control block queue.
o A called module returns with a bad return code.

e A program check occurs in system code and a recovery routine changes the
program check to a completion code and abnormally terminates the task.

The best approach for a software-detected error is:

1. Use the JES2 job log and allocation messages to investigate all error messages
produced. (Refer to the appropriate Message manual to determine the causes
and corrective action of each message.)

2. Check the abend code defined in the dump. (Refer to OS/VS Message Library:
V82 System Codes to determine causes and corrective actions of the code.)
Some abend codes define problem determination areas that can be used to
help define the problem.

Section 3. Diagnostié Materials Approach 3.1.9

- SYSABENDs, SYSMDUMPs, and SYSUDUMPs (continued)

3. In the event that sufficient data is not available in the Messages and Codes
manuals to resolve the problem, the analyst can go directly to the program
listing. The diagnostic sections of most PLMs contain a message/module and
abend/module cross-reference. Once the correct module has been located,
the program lis_ting‘(supplied‘ in the system microfiche) helps to define the
problem. ' C

SYSABENDs, SYSMDUMPs, and SYSUDUMPs normally do not produce
system-related data areas other than those which are formatted. Because of this
and the fact that error recovery will attempt to reconstruct invalid control block
chains before terminating the task, any error that does not occur in the private area
may be difficult to resolve from a SYSABEND, SYSMDUMP, or SYSUDUMP alone.

Because of the recovery and percolation aspects of MVS, the SYSABEND, .
SYSMDUMP, or SYSUDUMP c¢ould be the end result of an earlier system error. If
50, the analyst should determine if any LOGREC entries were made pertaining to
this task and if any SVC dumps were taken while this task was running. The system
error is normally reflected in either the LOGREC entries, the dump data sets, or
both.

Hardware-Detected Errors

A hardware-detected error is a program check that is not intercepted by a recovery
routine. This is identified by a system completion code of X‘0Cx’ where x is the
program check type. For this type of error, the analyst needs to know the address
of the module where the program check occurred, and the register contents when
the program check occurred. The best place to locate this information is in the
RTM2WA that is pointed to by the abending TCB.

Given the registers and PSW at the time of the error, the analyst should
determine the module that program checked by using the load list link edit maps
of the program. (If the module is outside the private area, a NUCMAP or LPA map
may be necessary.) Then he should examine the program listing for the module
until the cause of the program check is defined.

3.1.10 OS/VS2 System Programming Library: MVS Diagnostic Techniques

P

—

Section 4. Symptom Analysis Approach

This section describes how to identify correctly an external symptom, and provides
an analysis procedure for determining what kind of problem is causing the
symptom.

Each external symptom is described in a separate chapter, as follows:

o Waits

o Loops

e TP Problems

o Performance Degradation

e Incorrect Output

Section 4. Symptdm Analysis Approach 4.1.1

4.1.2 0S/vs2 System Programming Library: MVS Diagnostic Techniques

Waits

Wait states may be either enabled or disabled. The characteristics of each type
are described below.

haracteristics of Enabled Waits

Enabled waits have traditionally been the most difficult problem to analyze because
of the lack of an obvious failure. The enabled wait provides no indication of error
‘other than that the system apparently has nothing to do. In fact the enabled wait
has been accurately described as an end symptom of a problem with no obvious
causes. The task of determining the possible cause is left to the debugger. Other
types of software failures — abends, program checks, loops, messages — provide

a starting point for analysis; that is, software or hardware has indicated a violation
of interfaces or data integrity and has halted the erroneous process at the point of
error. The enabled wait provides none of these.

Note: The subsystem design of many components includes a dispatching
mechanism and internal control block structure not generally recognized by the
operating system. When these subsystems (for example, VTAM, TCAM, JES2)
malfunction, work through these components is often halted. Because of the
critical nature of these processes, external signs of the problem are often detectable.
Within this debugging discussion, these problems are often treated as wait states,
that is, the system may be capable of running batch work, but the TP network
‘appears “hung-up.” This general discussion of analysis-approach applies for
problems such as “‘permanently” swapped-out address spaces, TP network hung, and
no batch running. The advantage is that the external symptoms may allow

you to more easily isolate the problem component or at least a starting point — it
may be obvious that TCAM is not responding, or that JES2 is not processing

input.

Experience has shown that in MVS a much greater percentage of re-IPL situa-
tions are caused by enabled waits than in previous systems. One reason for this
characteristic of MVS is software recovery. Software recovery attempts to repair
the damage caused by a failure and allow the system to continue meaningful opera-
tion. The general philosophy of recovery is to isolate the error to a job, terminate
the job, and allow the system to continue. This philosophy dictates that under

- certain conditions innocent work may be forcefully terminated.

Section 4. Symptom Analysis Approach 4.1.3

Waits (continued)

Software recovery obviously may cause the termination of some critical process
which in turn causes dependent processes to wait indefinitely. For example,
assume that while processing a page-fault, an error occurred during the I/O interrup-
tion processing; software recovery was invoked and subsequently caused a cleanup
of the bad control blocks, but did not post the I/O requestor. It is possible
that the paging mechanism will wait indefinitely for the missing interrupt. This
in turn could cause a problem program to wait indefinitely for the paging operation
to complete. The end result is no work accomplished and also no external problem
symptom, although a problem clearly exists. The debugger must find the bottleneck —
the paging exception — and subsequently back-track enough to determine why the
bottleneck still exists. Very often, this back-tracking requires analysis of several
components in order to determine the original cause.

Characteristics of Disabled Waits

Situations can develop during execution of the MVS system that require the soft-
ware to abruptly terminate the system by loading a disabled PSW with the wait bit
set to 1. In previous systems, this occurred much more frequently, than it does in
MVS because, in MVS, many of these situations were removed from the code and
replaced with software error recovery. However, a few cases still remain that cause
this symptom. To understand these situations better, refer to the ‘Wait State
Codes’ section of OS/VS Message Library: VS2 System Codes.

A more critical situation for the analyst is a disabled wait that is caused when
data areas containing PSWs referenced by the dispatcher or hardware are overlaid
and subsequently fetched for use in an LPSW. This often occurs when a PSA over-
lay condition exists, that is, the low storage PSWs fetched by the hardware have
been inadvertently overlaid by a program running in supervisor state key 0. Other
data areas, such as PRBs, may contain PSWs used by the dispatcher and are also
potential sources of the disabled wait state. Bad LPSWs are difficult to track down.
The most common MVS uses of the LPSW in instructions are:

hardware loading from low storage for an interruption-processing sequence
dispatcher loading from X‘300’ into the PSA

RTM (IEAVTRTS) passing control to FRRs.

the system termination routine

SVC FLIH and IO FLIH LPSWs.

Storage overlays resulting in wait state PSWs are approached in the same manner
as other storage overlays. The important step is to realize the storage overlay has
occurred, then re-create the process that was possibly responsible. The discussion of
pattern recognition in the chapter “Miscellaneous Debugging Hints” in Section 2
should be helpful.

4.1,4 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Waits (continued)

Analysis Approach for Disabled Waits.

The following is a list of objectives that provides a systematic approach to
analyzing a disabled wait.

Objective I — Determine positively that an actual disabled wait condition exists.
Is the PSW the type that is used when MVS loads an exphcnt wait or is this an over-
laid PSW with the wait bit on ?

Analysis — Examine the current PSW contained in the dump according to the
technique described in the chapter “Standalone Dumps” in Section 3. The PSA
overlay should also be analyzed to determine if key PSWs have been overlaid.

If the PSW shows an explicit wait, look up the wait state code in OS/VS Message
Library: VS2 System Codes to find what conditions could cause the explicit wait.
You may need to do some extra analyzing before the condition can be related to a
component. (Note: No further analysis for explicit wait mtuauons is discussed
in this book.)

If the PSW suggests an overlaid PSA or some other error source, proceed to
Objective 3; otherwise proceed to Objective 2.

If, for any reason, the current PSW is not formatted in the dump, the last PSW
shown in the trace table, location X‘300’ (used by the dispatcher), or low storage
should be examined as possible sources of the last PSW.

. Objective 2 — Determine if the situation has been improperly diagnosed as a
disabled wait. This will eliminate a situation in which the locked console is
diagnosed as a disabled wait.

Analysis — In previous operating systems, the operator’s inability to communicate
with the system through the console was an external indication of a disabled wait
condition. In MVS, this same external symptom is often not a true disabled wait.
Console communication is dependent upon other services of the operating system,
such as paging, and the I/O subsystem. A problem in any of these services often
terminates console activity and causes an apparent ‘‘disabled wait” situation, when
the PSW does not actually reflect a disabled wait.

If the current PSW is not disabled for external and I/O interrupts or if the wait
bit (X‘0002°) in the PSW is not set to one (PSW = X‘070E0000 00000000°), you
should proceed to either the “Enabled Wait Analysis” topic later in this chapter or
to the chapter on “Loops” later in this section.

Objective 3 — Once you know that the disabled PSW is the result of an overlay in
low storage or in another data area, you must gather specific data about the overlay.
Ask such questions as: What was the damage to the PSW? When did the overlay
most likely occur ? Where did the PSW come from ?

Section 4. Symptom Analysis ‘Approach 4.1.5

Waits (continued)

Analysis ~ It is important to try to find out how the PSW was overlaid — was it a
byte, an entire word or doubleword, a single bit, or was a large portion of the
surrounding area destroyed along with the PSW ? (The discussion of Pattern
Recognition in the chapter “Miscellaneous Debugging Hints™ in Section 2 will help
you determine this.) Much of this analysis depends on your experience and
familiarity with the normal data for the subject PSW and the surrounding area.
You should try to gather enough data to know, for example that “n” bytes were
overlaid beginning at locatlon Xyz.

Also, examine the trace table, if available, and try to determine when the PSW
was probably last valid. Look for interrupts and unusual conditions in the trace
entries to try to reconstruct the process(es) leading up to the incorrect PSW.

If the trace indicates the overlay occurred after the most recent trace /e,m%y, the
registers are important because they may show recent BALs-and BALRs and :
they may contain the address of a routine or control block that was used to overlay
the subject PSW. This is actually a good situation because it will not take long to
relate the oveﬂay to some bad pointer in a control block and, hopefully, your
analysis will proceed to a specific component.

If the overlay occurred several trace entries earlier, determine a possible save
area that might contain the registers that were active at the time of the overlay by
examining interrupt entries or dispatch entries in the trace table.

If there is no trace table, it is almost impossible to define when the overlay
occurred. You might try to analyze, for example, TCB save areas, hoping for a
clue as to when the overlay occurred and to gather information concerning the
problem. However, this process is basically undefined and undisciplined. In most
cases, a trap for the overlay can be generated at this point and used as soon as
possible.

Objective 4 — Determine which component most likely caused the overlay and
choose a likely set of modules from that component to analyze at an instruction

level. Determine which data area field contains the bad address and who set up
the field.

Analysis — As mentioned earlier, by using the registers and trace table it is possible
to identify which code actually overlaid the PSW, but the source of the error must
still be found. This mostly involves screening code to reconstruct the path which
caused the overlay and locating the data that generated the bad address. At this
point, you want to learn which module set the bad field so you can start back-
tracking.

Shortcuts are possible according to the analyst’s familiarity with the modules
that are involved. Certainly the main objective should be to decide which com-
ponent is most likely responsible and then to proceed to the discussion of that
component’s analysis (in Section 5).

4.1.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Waits (continued)

Analysis Approach for Enabled Waits

It is most important that you understand the actions that must take place in

order to accomplish work in the operating system. This requires a basic under-
standing of the key system processes in MVS — paging, I/O, dispatching, locking,
WAIT/POST, ENQ/DEQ, VTAM, TCAM, SRM, JES2/3. These areas of the system
are responsible for directing work through MVS; a malfunction in any one may
cause global system problems. Several, if not all, must be investigated in order to
determine why work is not progressing.

This investigation requires a disciplined approach. The relationships of com-
ponent interfaces and their mutual dependencies must be understood. With this in
mind, the debugger should proceed to gather information about the varieus
processes and try to integrate his findings with his other information and assumptions
about the problem, always trying to isolate one cause of the bottle-neck. He must
avoid the tendency to guess, assume, and go off on tangents once the first
irregular item is uncovered. Instead, he should continue to gather known facts
and piece them together in some logical pattern that recreates the situation.

In the vast majority of wait state cases, more than one key process will appear
backlogged. The challenge is to determine how these problem processes relate
and which is the fundamental cause of the wait situation. After you gather the
facts and understand the bottlenecks, you must answer one question.

If I “pull the cork” on this given bottleneck will all the other intertwined situations
resolve themselves ? In every problem there is only one bottleneck for which the
answer to this question is “yes”. The other problems are consequences of this key
process’s failure to complete its designed function. Isolating the process is half
your battle; the other half is determining the cause of this one process’s failure,

Following is a suggested disciplined approach for the problem solver who is
approaching a system wait problem. The approach involves three distinct
stages of problem analysis:

Stage 1 — Preliminary global system understanding, including
e system externals

current system state

LOGREC analysis

trace analysis

determining the reason for waiting

- Stage2 — Key subsystem analysis — an in-depth analysis of the MVS components
that are responsible for accomplishing work.

Stage 3 — System analysis — using the information gathered in Stages 1 and 2 the
: problem solver must “‘step back”, get perspective about the known
facts by piecing them together in a logical fashion, and isolate the error
to a process, component, module, etc.

This approach is described in detail in the following sections.

Section 4. Symptom Analysis Approach 4.1.7

Waits (continued)

Stage 1: Preliminary Global System Analysis

1. System Externals — Completely understand the system externals of the
situation. Console sheets and the system log should be inspected.

e For any enabled wait (operators call it “system hung”) find out if a

display requests command was issued. (Lack of operator action can cause
system bottlenecks.)

e Often many pages of console sheets must be investigated to uncover
operational problems and explain events uncovered in the dump.
Scanning provides a feeling for the events, jobs, requests, etc. leading up to
the problem. ’ '

e Make sure all DDR SWAP requests, I/O error messages, SQA shortage
messages, etc..can be explained.

Always take the time to examine these external areas because a small
effort here could save many hours of detailed dump analysis. Do not over-
look obvious items such as a MOUNT PENDING message in the console
log that can cause system problems.

2. Current System State — Investigate fully the current situation as depicted by
the dump.

For enabled waits, the PSW should equal X‘070E000000000000’ (often called
the “no-work™ wait) or there should be a considerable recurrence of the
no-work wait in the OS trace table — see the chapter on “MVS Trace Analysis”
in Section 2. If this is not the case, use the disabled wait analysis approach
(earlier in this chapter).

If the PSW indicates the no-work wait situation, you have an enabled wait.
You should now check other global system data areas indicators to get the
whole picture. Following are key global indicators:

o There should be no bit set in the PSASUPER field (PSA+X228"). If
there is, some supervisor routine should be in control. This situation
can indicate incomplete processing by the associated routine. All

* possibilities should be pursued until the situation can be explained.

e Because of SRM timer/analysis processing, even when the system is in the
enabled wait situation, the state of the processor at the very instant the
dump was taken can indicate, via the “super bits” or locks indicator
(PSAHLHI), that some process was occurring. You must determine in
this case that these fields being set is normal and continue with wait
analysis. If the fields cannot be explained, you have isolated the error.

4.1.8 . OS/VS2 System Programming Library: MVS Diagnostic Techniques

Waits (continued)

e There should be nolocks held, as indicated by PSAHLHI on either
processor. This situation is similar to the one described just above. You
must try to discover the owner of the lock and determine why it is still
held despite the fact that the system is waiting. Often the purpose of the
lock will provide insight as to who the owner might be. The chapter on
“Locking” in Section 2 should be of help in your analysis.

3. LOGREC Analysis — Determine if key components have encountered
difficulty; determine previous errors encountered by the system. This can be
accomplished by inspecting SYS1.LOGREC as well as the in-storage LOGREC
buffer. Errors encountered in any of the key processes noted earlier (RSM,
ASM, 10S, JES2/3, SRM, ENQ/DEQ, VTAM, etc.) may provide further
information. If you do find an error associated with any of these areas,
determine whether it could lead to the bottleneck.

The LOGREC records generally contain the names of the error-
encountering routines and often the job on whose behalf the system was
processing at the time of the error. If the routine names are not present, you
may have to use system maps and the PSW/register information in the
LOGREC records in order to associate errors with components. The discussion

~af LOGREC analysis in the “Use of Recovery Work Areas” chapter in Section
2 should be helpful in your analysis.

4. Trace Analysis — Determine the last activity within the system.

Because of SRM’s timer processing, the trace table for most wait condi-
tions is not useful. However, on the rare occasion that the system has been
stopped or if for some reason the trace is not overlaid with timer interrupts
(X‘1004’ external interrupt entries), the trace should be analyzed to ensure
normal processing, for example, page faults are being processed, 1/0 is being
accomplished. Be suspicious of large (relative to most entries) time gaps
in the trace table. If the table has not wrapped-around, process re-creation
may be of some use in determining what the system was doing up to the point
of incident. (The chapter on “MVS Trace Analysis” in Section 2 should be
helpful.)

5. Determine the reason for waiting — Once it has been determined that the
system is waiting, it is always useful to determine what the various address
spaces or jobs are waiting for. This is accomplished by inspecting and scanning
the various tasks and their associated RB structure in a formatted stand-alone
dump. Remember the RCT, started task conrol (STC)/LOGON, and dump
task may all be waiting in each address space — this is normal. The question -
you should ask is: Why are the subtasks below the STC/LOGON waiting ?

Generally in an active system more than one address space will be waiting

for the same or similar resource in a problem situation. Therefore, as you
scan and analyze address space status, look for suspensions in common
modules (RB resume. PSWs containing similar addresses):

Section 4. Symptom Analysis Approach 4.1.9

Waits (continued)

e many tasks in page-fault wait can indicate the paging or I/O mechanism
- is faulty.

e The PVT can indicate a real frame shortage.

e Many tasks in terminal I/O wait can indicate something is wrong with
the TP access method or some part of the network.

e Several Resume PSWs pointing into the ENQ/DEQ routine, IEAVENQI,
‘can indicate an ENQ resource contention problem,

In general, be on the look-out. Try to compare and relate the system
activities as you encounter them. Often more than one process or address
space is held up because of a common bottleneck. It may be a global resource
required by more than one address space, for example, a lock or data set. It is
important that the exact cause be determined.

Stage 2: Key Subsystem Analysis

As part of this investigation, if nothing can be easily determined from a cursory
address space scan, you may have to delve: Afto the key components. Following are
some highlights of the important and potentially suspect areas:

1.

- 1/O Subsystem - Check for unprocessed I/O requests, bottlenecks in the /O

process will almost always log-jam the system. Since IOS is the central facility
for controlling I/O operations, I/O problems should always be suspected in an
enabled wait condition. Therefore, the IOS component and its associated
queues should be analyzed early in the subsystem analysis stage of debugging.
Two important IOS queues and control blocks will indicate whether problems
exist in the I/O process:

e Logical channel queues (LCH) contain lists of elements for I/O requests.
 If these queues (pointed to by the CVT + X‘8C’) are not empty in a waiting
system, I0S must be further investigated.

e Unit control blocks (UCBs) are a logical representation of each I/O
device containing I/O active indicators at offset 6/7. If any indicator
is set, this device must be further investigated. This condition can
indicate either a hardware or software problem.

Both the queued (LCH) and active (UCB/IOQE) requests must be further
investigated to determine the associated requestors and what effect their I/O
not being serviced will have on system operation (for example, if paging I/O or
cconsole 1/0 is not being serviced, the system will usually stop).

The UCB contains indicators for DDR, intervention required, and missing
interrupt handler processing. Any such indication must be further investigated.

An ENQ on the SYSZEC16 resource is an indication of a waiting condition
generally associated with swapping. The swapping process cannot complete
until active I/O finishes. In a quiesced system, an ENQ on this resource must
be further investigated.

4.1.10 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Waits (continued)

2.

Paging Mechanism — Check for unserviced page faults. ASM, RSM, and SRM
are closely related and depend upon each other to maintain real storage, the
swapping process, and page fault resolution. If, when you determined the
reason for waiting as described in stage 1, you discovered several page fault
wait conditions, be suspicious. Some key indicators in determining page

fault waits are:

e ASCBLOCK = X“7FFFFFFF’ — indicates suspension while holding the
local lock. If in task mode at the time of suspension, the resume PSW
instruction address (saved at IHSA + X*10°) should be checked. When the
instruction address = RBRTRAN (—C offset), it indicates
the task is suspended while it waits for a page fault resolution. The page
fault occurred when a new module (paged-out) was referenced. If in SRB
mode at the time of suspension, an SSRB will be queued from a PCB. The
anchor for these PCBs is the RSMHDR (private area page fault) or the PVT
(common area page fault).

¢ ASCBLOCK = 00000000 indicates no locks are held. The RB structure
can reveal the same situation as described above for RBOPSW instruction
address = RBRTRAN or RBXWAIT=0 gnd, in addition, an RB wait count
= 1. If you find several tasksin this state, check the dump for the page
represented by RBRTRAN. Is it in storage ? (Remember for private area
addresses to be sure that the address space you are investigating is printed.)
If the page is not in storage you may have a potential paging problem.
Again, if in SRB mode at page fault time, the SSRB must be found to
determine more about the process.

If you believe paging is a potential problem, check the PVTAFC (available
frame count). A “low” value may indicate a frame shortage. While “low” is
difficult to define, the value should certainly be above the PVTAFCOK value
(PVT+X‘6"). Beyond this, “low” is influenced by sizes of working sets of the
address spaces in your system. The working set size for each address space is
contained in the associated SRM-user control block (OUCB). This count
(plus an SRM constant of 10) is the number of frames required to swap-in the
corresponding address space. If enough frames are not available, the address
space will remain swapped-out.

ASM maintains a count of the number of paging requests received and the
number for which processing has completed in the ASMVT. If these counts
are not equal, ASM is backed-up and page faults have not been resolved. This
can be caused by an I/O problem or some internal ASM problem. The ASM
Component Analysis chapter in Section 5 describes the work queues in the
paging activity reference table entries (PARTEs). Finding unprocessed work on
these queues will aid in determining whether ASM is the problem component.
But again be careful: you are still gathering data about the wait state. Your
purpose now is not to debug ASM — it may not be the problem. Note the
apparent ASM problems and continue your investigation. Later when you
piece together your findings and find the real source of the problem, detailed
debugging and logic flow will be required.

Section 4. Symptom Analysis Approach 4.1.11

Waits (continued)

3.

ENQ/DEQ - Check for unresolveable resource contention. Finding an
ENQ/DEQ interlock and determining what work is being held up because of
this interlock can provide important information about the overall problem.
The QCBTRACE option of AMDPRDMP provides a formatted structure of
the resources and the work that is in contention for them. Determining who
owns the resources and the current status of the owners (if swapped-out,
why ? or if waiting, for what ?) often provides important clues in under-
standing the bottleneck.

Also in your scanning process, you should be on the alert for address spaces
that contain subtasks (usually below the STC/LOGON level) with multiple
RB levels, and with the lowest RB containing a resume PSW with an address
somewhere within ENQ code (nucleus resident) and with the RB wait count
RBWCEF = 1. The previous RB should be an RB with the ENQ
SVC (SVC X‘38’) indication in the “WC-L-IC” portion of the RB prefix (—4
offset). This indicates that this task and probably the address space are
suspended because of an unsatisfied ENQ request. If several address
spaces or tasks are found in this state you should find out why. The
QCBTRACE facility of AMDPRDMP can be most helpful. An illustration follows:

Investigation of QCBTRACE data shows many requests backed-up on
resource A. The analyst notes this and determines what ASID or TCB owns
resource A at this time (in this example, ASID 9). The other resources
represented in the QCBTRACE are now scanned. If ASID 9 is backed-up
behind someone else (ASID 10) waiting for anéther resource (B), you must now
determine ASID 10’s status with respect to other resources, including resource
A. Essentially you are looking for cases where:

e An address space has resource A and is waiting for resource B and a
second address space has resource B and is waiting for resource A. This
indicates a deadlock. You must determine the faulty process. In this
case you have probably isolated the error to the ENQ process and the way
it is being used. You must analyze the task structure of each address
space to determine how this situation occurred. Do not forget the
SYS1.LOGREC buffers. They may contain clues like errors in ENQ/DEQ
or one of the tied-up address spaces (jobs). Faulty recovery should be
suspected if the latter is the case.

It may be that a job requests control (via ENQ) of a resource and sub-
sequently encounters a software error. The task’s associated recovery
gains control and “recovers” from the error but does not dequeue (DEQ),
and therefore does not release the resource. Eventually, the contention
for this resource, depending on its importance, could cause severe
problems.

4.1.12 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Waits (continued)

® An address space has control of a resource and a lot of address spaces are
queued-up behind this address space. In this case, you must find out why
the holder is not releasing the resource. Also know your system. It is not
unusual to see activity on the master catalog resource: “SYSIGGVI1 —
Master Catalog Name.” But be suspicious of most resources. Determine
from the holder’s task structure what process it is attempting. Determine
whether the address space is waiting or swapped-out and why. If it is not
waiting or swapped-out, check the non-dispatchability bits and the
possibility that the address space is looping.

This second case is much more likely to be a sign of some other system
problem. Your clue is what is preventing the holder’s execution; this will
point you to another process which must be investigated and may lead to

~ the detection of the final problem.

Note: When analyzing a dump of a quiesced system you should be suspicious
of “unusual” ENQ resource names — resources that should not be a contention
factor in a quiesced system. The presence of these names should be understood
and explained because they very often will point you to the problem area.
Common resource names are:

“SYSZEC16 — PURGE” — Can indicate a problem in the 1/O process related
to the resource holders address space

Can indicate a bottleneck in the swapping process

“SYSZVARY — x” — indicates the reconfiguration component has been
invoked — why is it not completing ?

4. Dispatching — Determine if there is work to do in the system. A common
trouble indicator is an MVS dispatching queue containing elements that
indicate work is ready to execute in a waiting system. The GSMQ, LSMQ,
GSPL, and each LSPL should be empty. (The chapter on “System Modes and
Status Saving” in Section 2 contains details of these queues and how to find
them). Generally it is not a problem in the dispatching mechanism itself but
merely an error indication. Often the most useful information is just that
‘yes, there is work.” Why is it not being dispatched ? Is there a problem in
some other area of the system ? Is the address space swapped out ? Yes,
there may be a real storage problem delaying swap-in. Or perhaps SRM has not
been told to swap-in the address space via a “user-ready”” SYSEVENT. In
short, investigate the OUCB for the address space you are concerned with.

Another useful point is to find out what problems could arise if this work
- were not dispatched. Investigating the queued work will indicate what would
be accomplished if this work were executed. This is usually important because
it can clear up much of the “smoke” you may be encountering in your overall
system investigation.

* Section 4. Symptom Analysis Approach 4.1.13

Waits (continued)

‘ leewme 1nvest1gate the task structure. Generally, you can ask the same
_ questlons as above, but you must look in different places for the key
indicators. Among the most important indicators are:

e The ASCB, which contains a count of ready TCBs in the memory
e The TCB non-dispatchability flags
e The RTM work area, which contains status at time of error

. . The RB structure. Look for long RB chains or unusual SVCs and
interrupt codes. Look for page fault waits.

Again, use this information to lead you to processes or problems that
hold-up the system.

5. Locking — Determine if there is a locking conflict. The locking mechanism
causes system bottlenecks when it is not used properly. The global spin locks
cause obvious problem symptoms such as one processor spinning in the
lock manager (IEAVELK) in an MP environment. (Ina UP envuonment
global spin locks are generally not a problem unless a lock ~word or interface is
overlaid or bad, causing a disabled spin. The enabled locks (local/CMS) are
generally the problem ones.) The chapter “Locking” in Section 2 describes in
detail the considerations with which you should be concerned. Elements on
the CMS/local suspend queues may indicate a problem. The technique you
adopt-to resolve the conflicts is exactly the same as the ENQ interlock or log-
jam 31tuat10n

6. Teleprocessing — Determine if the TP network is responding. Problems in the
TP network often manifest themselves as waiting network or waiting
‘terminals, even waiting systems. The chapter “TP Problems” in Section 4
contains a detailed description of TP problem analysis. The VTAM and TCAM
chapters.in Section 5 contain techniques for VTAM and TCAM problem
analysis.

An important fact for the problem solver here is that these are
subsystems. As such, they maintain their own control blocks, queues, and
dispatching mechanisms. They are responsible for work being processed once
it enters the subsystem and they often have little direct dependency on MVS.
That is, normal MVS problem indicators will not generally solve the problem.
You must understand the subsystem’s work-processing mechanism in order to
be an effective analyst. For example, VTAM has its own address space with a
number of tasks used primarily for network start-up, shut-down, and operator
commands. In most VTAM problems, a look at the VTAM address space will
show these tasks are waiting. However, this is normal when no operator
processing is required. Even though VTAM is waiting, this is not the place to
be distracted. Again, remember this VTAM task structure, put it aside as part
of your information gathering, and then proceed to the analysis of VTAM’s
internal work queues as described in the VTAM chapter of Section 5.

4.1.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Waits (continued)

7.

Console Communications — Determine whether console communication is
possible. The system can appear or actually prove to be waiting because the
operator is not able to communicate with MVS, This could be the sign of

a problem almost anywhere in MVS, but it often indicates an error in the
communications task or its associated processing.

The communications task (comm task) runs as a task in the master
scheduler’s address space and is usually represented by the third TCB in the
formatted portion of the stand-alone dump and identified by a X‘FD’ in the
TCBTID field (TCB+X‘EE’). By inspecting the RB structure associated with
this task, you can to determine the current status. It is not unusual to
find one RB with a resume PSW address in the LPA and an RB wait count of
one. If more than one RB is chained from the TCB and you were not able to
enter commands, analyze the RB structure because this is not a normal
condition.

The key control block is the unit control module (UCM) which is located
in the nucleus. CVTCUCB (CVT+X‘64”) points to the base UCM. The base
UCM-4 contains-the address of the UCM MCS prefix and the base UCM-8
contains the address of the UCM extension. From the UCM you can determine
the status of the various consoles. The following should be considered and can
warrant further investigation:

Important WTOR:s are outstanding.
An out-of-buffer (WQEs, ORESs) situation exists.
There are unusual flags in the UCM.

There is a full-screen condition.

There is a console out of ready.

Remember that comm task processing is dependent on the rest of the operating
system. Most likely, some external service or process has caused comm task to
back-up, and this possibility should be investigated. Remember the debug
process: gather all the facts, then proceed with analysis.

Stage 3: System Analysis

At this point you should have a detailed understanding of the system and its key
components. You should know which components or processes are back-logged
and, correspondingly, what work (jobs) is not being processed by the system
because of these back-logs. You must now stand back from the problem.

Section 4. Symptom Analysis Approach 4.1.15

Waits (continued)

Answer this question: Which of these problems and situations can be related
to or attributed to each other ? For example, if I/O is queued for the paging
devices (indicated by IOQEs on the LCHs associated with the paging devices’ UCBs)
and you also found several address spaces are in “page-fault wait”, you can now relate
~ these findings. And if one of these address spaces performed an ENQ for a resource
and did not yet DEQ because of the page-fault suspension, it is very likely other
address spaces are also backlogged behind this job’s processing. Initially your
ENQ/DEQ analysis showed the problem, but at this point you can attribute the
ENQ contention problem to the page-fault suspension problem that you have
already attributed to the I/O problem.

This process must be repeated for all the potential error situations you un-
covered in your investigation, Do not forget to use the system indicators in your
attempt to arrive at the source of the problem. And most importantly, ask your-
self: If T unplug this bottleneck, will all the other intertwined situations
resolve themselves ? In the previous example, resolving the ENQ situation will
allow the work queued in the ENQ/DEQ component to execute but the ‘“‘page-fault
waiting” job will still be hung. That is, ENQ/DEQ is not the problem to pursue.
Indeed, if you resolve the I/O problem, this page fault is resolved, the DEQ will be
performed, and @/l work in the system will resume normal operation. Yes, the I/O
problem is the important consideration in this case. The I/O problem is the one
that must be pursued. When this problem is resolved, the enabled wait state
condition has been resolved. Global system areas, recovery work areas, LOGREC
analysis, and 10S component analysis will be necessary to further isolate, and
eventually solve, the problem. ‘

4.1.16. 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Loops

Loops are defined as disabled or enabled, depending upon their external
appearances. A disabled loop can be recognized externally by a solid system

light and the inability to communicate with the system through the consoles (that
is, no input or output). Usually, a disabled loop indicates a hardware

and/or software malfunction. There are several cases in MVS however in which a
disabled loop is purposely used and isnot an error indication. These cases are
discussed later in this chapter.

An enabled loop is generally much larger than a disabled loop. Observed from
the console it appears as a bottleneck: the system seems to be slowing down
periodically, suggesting performance degradation. The operator may notice that
a particular job remains in the system for a long time and does not terminate.

Common Loop Situations
There are two common loop situations:

1. Two processors of an MP environment communicate via the signal processor
(SIGP) instruction. Often the SIGP-issuing processor enters a disabled loop
until the receiving processor either accepts the SIGP-caused interrupt or
performs the operation requested by the issuing processor. This loop serializes
the processors in the MP configuration. The SIGP-issuing processor loops in a
nucleus-resident module, IEAVERI.

Often during an MP dump analysis you will find that one processor was in
this loop. This is not an error if: :

e The operator pushed the STOP button on one processor and not the other to
investigate a suspected problem.

o The receiving processor disabled for external interrupts thereby preventing
the SIGP-issuing processor from proceeding.

If this situation continues for an extended period, it means there is a system

_problem but the loop is a result of that problem and is not an error itself. Most
often, the other processor’s activities must be analyzed to determine the problem.
For a more detailed discussion of MP communication, refer to the chapter

“Effects of MP on Problem Analysis” in Section 2.

Section 4: Symptom Analysis Approach 4.2.1

Loops (continued)

2. The lock manager (IEAVELK), which resides in the nucleus and controls the
locking mechanism of MVS, contains a section of code that enters a disabled
loop when a global spin lock is requested but is not available. On a UP this is
an invalid condition and always signifies an overlaid lockword or invalid lock-
word address. On an MP system, this usually indicates that the other processor
is holding the lock and not releasing it. But it may indicate an overlaid lock-
word; if not, the problem is definitely on the other processor. In either case,
register 11 contains the pointer to the requested lockword and register 14
contains the address of the requestor. Check the value in the lockword. Valid
values-are a fullword of zeros, or three bytes of zeros and the logical processor
address in the fourth byte. Any other bit configuration will cause the system
to spin in a disabled loop and signifies an overlaid lockword or invalid lock-
word address. If the lockword is not valid, it is necessary to identify who
overlaid the lockword. It is possible that the lockword was overlaid in con-
junction with some other problem. Again, since the disabled loop may not be
the problem but a symptom of a possible error on the other processor,
determine why the requested lock is not available. For a detailed discussion of
“Locking” see Section 2. ‘

Analysis Procedure

Generally for loop analysis, you will have a stand-alone dump if the operator con-
sidered the problem serious enough to re-IPL the system, or an SVC dump,

SYSUDUMP, SYSMDUMP, or SYSABEND (provided by the software recovery) if
the operator pressed the RESTART key in order to break the apparent loop. For

l the SVC dump, SYSUDUMP, SYSMDUMP, and SYSABEND dumps there is an

abnormal completion code of X‘071’ associated with the looping task of a job if the
RESTART key was pressed when the program was actually looping. In addition, a
formatted SYS1.LOGREC listing should be available.

Before you can determine what problem is causing the loop, you must determine
first that a loop really exists, and second whether it is enabled or disabled.

First, verify that a loop exists. The disabled loop situation is fairly straight-
forward. The PSW contains a disabled mask (X‘40’ or X°00’) and all other
system activity will have stopped.

Recognizing that there is an enabled loop is often the most difficult step.
Enabled loops are often quite large and may encompass several distinct operations
— I/0 events, SVCs, module linkage, etc. Because the loop i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>