GC26-3873-0
File No. 8370-30.

0S/VS2 MVS Data Management
Systems Macro Instructions

VS2 Release 3.7

First Edition (November 1976)

This is the first edition of a new publication that applies to Release 3.7 of OS/VS2 MVS and to any
subsequent releases of that system unless otherwise indicated in new editions or technical newsletters.
Another new publication, OS/VS! Data Management Macro Instructions, GC26-3872, will contain
corresponding OS/VS1 informatien. OS/VS1 and OS/VS2 MVS information was previously
intermingled in OS/VS Data Management Macro Instructions, GC26-3793; this previous publication is
now out of date for OS/VS2 MVS and will be out of date for OS/VSI when the new OS/VSI
publication is issued.

Included in this new publication is the support for OS/VS2 MVS 3800 Printing Subsystem Selectable
Unit (VS2.03.810) and OS/VS2 MVS Data Management Selectable Unit (VS2.03.808).

Significant system changes are summarized under ““‘Summary of Amendments” following the list of
figures. In addition, miscellaneous editorial and technical changes have been made throughout the
publication.

Information in this publication is subject to significant change. Any such changes will be published in
new editions or technical newsletters. Before using the publication, consult the latest IBM System/370
Bibliography, GC20-0001, and the technical newsletters that amend the bibliography, to learn which
editions and technical newsletters are applicable and current.

Requests for copies of IBM publications should be made to the IBM branch office that serves you.

Forms for readers’ comments are provided at the back of the publication. If the forms have been
removed, comments may be addressed to IBM Corporation, P. O. Box 50020, San Jose, California
95150. All comments and suggestions become the property of IBM.

© Copyright International Business Machines Corporation 1976

PREFACE

This publication contains descriptions and definitions for the data management macro
instructions, other than those of VSAM (virtual storage access method), available in the
assembler language. It provides application and system programmers with the necessary
information to code the macro instructions.

This publication is divided into these parts:

“Introduction,” which contains a general description of macro instructions, the rules
to be followed when macro instructions are coded, and a description of the notational
conventions used throughout the publication.

“Macro Instruction Descriptions,” which describes the function of each macro
instruction and defines how each macro instruction is to be coded. The macro
instructions are presented in alphabetic order. The standard form of each macro
instruction is described first, followed by the description of the list and execute form
instructions; the list and execute forms are available only for those macro instructions
that pass parameters in a list.

“Appendix A: Status Information Following an Input/Output Operation,” which
includes information about error indications available following an input/output
operation.

“Appendix B: Data Management Macro Instructions Available by Access Method,”
which lists the macro instructions avallable for each of the data management access
methods..

“Appendix C: Device Capacities,” which lists device capacities that can be used as a
guide when coding the block size and logical record length operands in the DCB
macro instruction.

“Appendix D: DCB Exit List Format and Contents,” which describes the format and
content of the data control block exit list.

“Appendix E: Control Characters,” which contains information about the control
characters used to control spacing and skipping (printers) and stacker selection (card
read punch or card punch). ’

“Appendix F: Data Control Block Symbolic Field Names,” which lists the location,
alignment, and description of the data control block symbolic field names.

“Appendix G: Event Control Block,” which lists the location, alignment, and
description of the event control block symbolic field names.

“Appendix H: PDABD Symbolic Field Names,” which lists the location, ahgnment
and description of the PDABD dummy control section.

“Index,” which provides topic references to information in this book.

Prerequisite Publications

Before coding data management macro instructions, you should be familiar with the
information in the following publications:

os/ VS—DOS/ VS—VM/370 Assembler Language, GC33-4010
OS/VS2 MVS Data Management Services Guide, GC26-3875
OS/VS2 Supervisor Services and Macro Instructions, GC28-0683

Preface 3

Related Macro Instruction Publications

The following publications contain descriptions of macro instructions for VSAM and for
other specialized devices:

IBM 3800 Printing Subsystem Programmer’s Guide, GC26-3846

IBM 3890 Document Processor Machine and Programming Description,
GA24-3612

OS Data Management Services and Macro Instructions for IBM
1285/1287/1288 GC21-5004

OS Data Management Servzces and Macro Instructions for IBM 1419/1275,
GC21-5006

OS and OS/VS Programming Support for the IBM 3505 Card Reader and
IBM 3525 Card Punch, GC21-5097

OS/VS BTAM, GC27-6980

OS/VS Graphic Programming Services (GPS) for IBM 2250 Display Unit,
GC27-6971

OS/VS Graphic Programming Services (GPS) for IBM 2260 Display Station
(Local Attachment), GC27-6972

OS/VS IBM 3886 Optical Character Reader Model | Reference, GC24-5101

OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications, GC26-3819

OS/VS Virtual Storage Access Method (VSAM) Programmer’s Guide, GC26-3838

Related System Publications

This book refers to other publications that contain additional information about the
operating system. Depending on the requirements of the individual installation, an
application or system programmer may need these publications to code programs for the
data management access methods.

oS/VS Checkpoint [Restart, GC26-3784

OS/VS Linkage Editor and Loader, GC26-3813

0S/VS Utilities, GC35-0005

0S/VS2 JCL, GC28-0692

OS/VS2 Supervisor Services and Macro Instructions, GC28-0683
OS/VS2 System Programming Library: Data Management, GC26-3830

OS/VS2 System Programming Library: Debugging Handbook, Volume 1,
GC28-0708

OS/VS2 System Programming Library: Debugging Handbook, Volume 2,
GC28-0709

OS/VS2 System Programming Library: System Generation Reference, GC26-3792

4 OS/VS2 Data Management Macro Instructions

CONTENTS

PLEFACE ...coeiieiieiieirteeccre ettt e s e e rese s tre e sesnnraaeseasraseee s breaaesenataeasernrsteeennree 3
Prerequisite PUDLICAtIONSccveiiiiiieieeiiiiieieiietceiiieeesesneeecesites s e s sirereae s arbaeseseeneeeeeennnes 3.
Related Macro Instruction PUbliCationscccevcvviieeniiiiieeniiiier s ccrieses e csenreecenennes 4
Related System PUDICALIONScooccveeiieiiiereiiereertreeeeiiarreesssssreeeeesarareessesssesessecsseeseennne 4
FRBUEES ..o e eerreer s arereee s e s e s se s aeteanraeseesesesssnnssrarsrsanesasessesasrsrrnnsen 9
Summary of AMENAMENTSccooviiriiiiiiiiieiirieeerirreereireteeessreeeeessrsentereesssesrneasssssreessses 11
| OS/VS2 MVS 3800 Printing Subsystem (VS2.03.810)ccocecerrerieriieneenieieeenienens 11
0S/VS2 MVS Data Management (VS2.03.808)cccceieevrieievienreeeeiecreeeeereivenens 11
REIEASE 3.7 .oieiieiiiiciiiiieriteeeerieteesirtnesesereeessearesesssaieesssnnassasssassaeassssnssnaasssnsssseesararesessns 11
REIEASE 3 ittt ittt ettt es st tte e e s e e se et baes e s anree s s ntee e e e e e straeeeeareneeeennans 11
REIEASE 2 ..vovvevereneritiereteereseereeteteseeaeseessteseeseseesetsesesessesessebessesessesseneseessensssstessessaesssseneas 12
INEPOGUCHIONooeoviniiiiiiieir ittt rrteee e e ercs e e e e e eesesas s etatteaneeseaaassssesasnnnrnaaesasesan 13
Data Management Macro INStruCtionsccceevviierrreerieiniisniiciiieereserereeersoresineeneeesseens 13
Coding ANAS oottt er e e e s ere e eraenaes 13
T BOIA TYPE ettt s st e s e et a e s b e ae e s sa b bre e e e eeabeeseeesreeas 13
TEALIC TYPE ereeeieiiieiirieer e eeercrrte e e e e srnreeere e s s s s eersveteeeteesseesnnnsstnsseeressanesenssnssrnsseesaeeeas 14
Bracketsoocccieiiciiiinnireeeree s eeteeereerererertteteateeereaeae s rrataretreettaneereernntrrarrees 14
OR SiZN ..iiiiieiieiiere ettt st et e st et sr et see e et erere et e e e e nreae e 14
BIrACES ..uvuuiiiiiriee it ris et st bar et s e rrreeaassesasaseeaseesansseesstsssrarararss e snaaesnsnns 14
ELPSES ..eviiioiereriiieieeeet st teectte st e ste e e st ceere e sonbee s bae s s et aa s ba e st e e e e e raaanaaeeassaaessneeaanees 15
UNAETISCOTINE Leeveriiiereieeieieieiieesiaeeereesiseesssaeeeteeeassaesasssaassssasnseessnsssassssesssessssssssnseees 15
Blank SYMDOLooiiiiiiiiie et e e ee st a e e e e nbaeeeanaaraeaeens 15
Comprehensive EXAMPIEcoovviiiiiiiiriiieiriiiiiiereceriireeeseriereeseeesssrsessessessessesssssesns 15
Macro INStruction FOIMALcvvvivviviiriniesieiiiirecieee e s s 16
Rules for Register USAZEcccccviiiiiiieiiieiiieiiiiiieicrieesceeiieeeeseireessessaebeesssssseseesanenas 18
Rules for Continuation Linesc..cccooiviviiiiciiniininiiiiiiiccic et 18
Macro Instruction DeSCHPLIONSccoeiiiieriiireiiiniieerrieenitreesreesreaeessveeesseessenasssnsiens 21
BLDL—Build a Directory Entry List (BPAM)eoviiiiiiiiiiiiiiiiee et 21
ComPIEtion COAESovviiriiriieiiiiiieiiieeieerreseeiiiteesesstrtesseeasbseseaseassesssesssesssessnrsseesnns 22
BSP—Backspace a Physical Record (BSAM—Magnetic Tape and
DIrect AcCess ONLY) ..iveeveeiieriiieeieeecneerreeesrtreteostrereeetesreesssassmsesssesssesaseessees 23
ComPIEtion COUEScoiiviiiieiieiiieiieecttecieects e ee e st e eetseesaseesesseeanseeessssseessneenaseean 23
BUILD—BUuild a Buffer Pool (BDAM, BISAM, BPAM, BSAM,

QISAM, and QSAM)ooiciieiciiitieecreecrre et e et s e et e aeate e s e aaeeate s e sbeenan 24
BUILDRCD—BUuild a Buffer Pool and a Record Area (QSAM)ccceccvvvevrivenvrecnnen. 26
BUILDRCD LISt FOIM ..iccveiiiiiiiiiiiiieriecciiesicireneesssrtessesvreessenbesssessesssseseessssanseasnnns 28
BUILDRCD-—EXECULE FOTMucuiivuieiiiiniereeeeeeeseeiinsnrrereeseeeseensssenssssssesesseeessesissseses 29
CHECK—Wa it for and Test Completion of a Read or Write Operation (BDAM,

BISAM, BPAM, and BSAM)ooiiiiiiiiiiirineiicnnieiieeseceirestesseiivessesstaes s ansssneees 30
CHKPT—Take a Checkpoint for Restart Within a Job Step (BDAM, BISAM,

BPAM, BSAM, QISAM, and QSAM) eeeteeeerteeestteeeatee s nreetarearnaeraareean 31
CHEKPT—LISt FOIM ...icciiiiriiiiieieiiiaiiiinteesiesitiaeesessrasaassssesssessssssssassassensesasssnseesasoseseeeons 34
CHKPT—Ezxecute Formc.cccoeevvveennes eetreettteeeeeeeererara——taataeaeeaeaereeeaarrtraraanans e 35
CLOSE—Logically Disconnect a Data Set (BDAM BISAM, BPAM, BSAM,

QISAM, and QSAM) ..ottt e eeerar e e e e rraee i srrtteeeeseesntreeesaaneeseeanee s 36
CLOSE—List Form retrerreeerenaerrereaseneed e eeeeeieeeretesereeeieseaaereraaseatatetaeeeiaaaarrnrntaeaeran 39
CLOSE—EXECULE FOIMccccviiiuiiieiieniereireeiiteeiaessveecesteeeessasesssaeaessesssesessssassnsnasnses 40
CNTRL—Control Online Input/Output Device (BSAM and QSAM)cccoeeveruenne 41
DCB—Construct a Data Control Block (BDAM) ...c.oooviiiiiiiiiiiiciviiieeiiesieeneeeieeeeeeeeeeeeiens 44
DCB—Construct a Data Control Block (BISAM)c.cccceriuiiiiriiienieninenreneenseeeneas 52

Contents §

DCB—Construct a Data Control Block (BPAM)c..ccooeevvivveneeneeerenreeennee, RSN ¥ |

DCB—Construct a Data Control BlIock (BSAM)ccomrieriiniivrereeineiesinnnresreeeeeesiennns 64
DCB—Construct a Data Control Block (QISAM)ccccceciiirrieiviiririrennieenenreeessneeeieens 81
DCB—Construct a Data Control Block (QSAM)ccciiieiiiniriireieeeieessernrereeesesesssesens 90
DCBD—Provide Symbolic Reference to Data Control Blocks (BDAM, BISAM,

BPAM, BSAM, QISAM, and QSAM)ccciierimrirreeirenniieenreesnsiessnneesenneseseens 108
ESETL~—End Sequential Retrieval (QISAM) ...cccocviviiciieennirecivinneenrenns evreerrreseressnans 110
FEOV—Force End of Volume (BSAM and QSAM)ooovviveiriieirviiiieernieeeeeeeeesnnens 111
FIND—Establish the Beginning of a Data Set Member (BPAM)ccccoevveernveennnen. 112

COoMPIEtION COUES .iooicuvriiiriireriiretieiirereeesiretr e treeserenaeaeassueassessesasssnssnsssessarassssssanns 112
FREEBUF—Return a Buffer to a Pool (BDAM, BISAM, BPAM, and BSAM) 113
FREEDBUF—Return a Dynamically Obtained Buffer (BDAM and BISAM) e 114
FREEPOOL—Release a Buffer Pool (BDAM, BISAM, BPAM, BSAM, QISAM,

ANA QSAM) oottt cte et e et ee e s e e et e e et e e ebe e ata e e bt e s ba e e et br e s bt aaerannrens 115
GET—Obtain Next Logical Record (QISAM)cccccceieeiiviinniieniieernieiensreensesesssenessnees 116
GET—Obtain Next Logical Record (QSAM)ccoceevvverervcinennne s 117

GET Routing EXIfS ...c.cceoveriiivininniininiiiieinie it sressessesaesaes 119
GETBUF—Obtain a Buffer (BDAM, BISAM, BPAM, and BSAM)c.cceeevureenen. 120
GETPOOL—Build a Buffer Pool (BDAM BISAM, BPAM, BSAM, QISAM, and

QSAM) ettt e rre e ereeie b et e st ae s e et ere s e e e s e e baaese e tbas s rbreseesbtabaeesnatans 121
NOTE—Provide Relative Position (BPAM and BSAM—Tape and

Direct ACCeSS ONLY) oocevieeiiiiiieiiienieerserresiresnesserres st essreessraesssresssseessnsssesseess 122
OPEN—L.ogically Connect a Data Set (BDAM, BISAM, BPAM, BSAM,

QISAM, and QSAM) ..ottt cesiee i e e st te s s ae e ar e s baasesraneesnneaes 123
OPEN=—LISt FOIM ..ccoviiiiiiiiiiiiiiieeeiieniiiirertieresessesissenrneseesassessrantesessssssnsansessssrasssansness 127
OPEN—Execute FOrmcccoovevimiieiriciiicriccriieneieeene e reenneeen e iuersirsteresrirereteiesrtrnnaante 128
PDAB—Construct a Parallel Data Access Block (QSAM).ccocovieivviiieeerniieeerseninnnes 129
PDABD—Provide Symbolic Reference to a Parallel Data Access Block (QSAM) 130
POINT—Position to a Relative Block (BPAM and BSAM—Tape and

Direct Access Only)c....... et ae e aee 131
PRTOV—Test for Printer Carriage Overflow (BSAM and QSAM—Online

Printer and 3525 Card Punch, Print Feature)ccccocooevivinninvnniiinniceinas . 133
PUT—Write Next Logical Record (QISAM) ...cccoiiiiiiiiiiiviiininiiniiiniincinetcennnieensnnnne 135

PUT RoULINE EXit ..ovovvinievieiririerivieeeieeceevcevenierenreneseeeseesesens e ——————————— 135
PUT—Write Next Logical Record (QSAM)ooviviiiiiieniieiceinteetenneeeeseeesieeeeness 136
PUT ROULINE EXIL ..oovvviiieiiieiiiiireereciiiiiraeee s cessseinetiesesessnsssssansssssessssessosssssassasssssnass 137
PUTX—Write a Record from an Existing Data Set (QISAM and QSAM) 138
PUTX EXit ROULINE .ueeeiiiiiceeireeireieeiciirenreeereeeseressinvnrenseeseesssrssrneasessassssnssneassssessisess 138
READ—Read a BIock (BDAM) ...cocoiiiiiiiiiiiiiiicieeeeeeeeeeeneteeeteeeeseteeeeeeeraeeseeeesseseassennnnns 139
READ—Read a Block of Records (BISAM)ccceeccvennnns eeerrerierereesrirrrarraeseesearsanns 142
READ—Read a Block (BPAM and BSAM)coocoiiiiinieiieieeeeeeecrenriesnesseesnneesnsenns 144
READ—Read a Block (Offset Read of Keyed BDAM Data Set Using BSAM) 146
READ LISt FOIMuviiviiiiieieiieiieieeeeeesieeietitesesesessesessndaieiiaessnsssenssesssssssnsssesaassasasssonns 147
READ—Execute FOrmcccoovvvvveerrcioinreeeerenseeionsennees feererevereeeesarrrraretereeessassrunennanace 148
RELEX~—Release Exclusive Control (BDAM)c.iveverieiivenniiniinineecitresecseeesssonneens 149
COMPIELION COUESvvvivvverererireeieisetesesssetesesetebesesebesesesesesesesesesesssesesesesesasessasaes 149
RELSE—Release an Input Buffer (QISAM and QSAM INPUL)oooveiciimnncerieenianienns 150
SETL—Set Lower Limit of Sequential Retrieval (QISAM Input)ccceeeeveerenes eeene 151
SETL EXI .eoovvuovieeversereesesseieesesissessesssssssassesissesaesiesssssssssessssassessssasssessssessessssssssesans 152
SETPRT—Load UCS and FCB Images (BSAM QSAM, and EXCP)cccccevvveerrnene. 153
ComPletion COESueiierrrrrirrierecrrieeeesireiieesirrer et sesretesesretsessetessssseesssssansessossnsnes 158
Reason Codes—3800 Printer ONLYccccoeveeerieereeeneriernesseresesseressessesesessessenens 160
SETPRTALiSE FOIM ...ocovviiiiiiiiiiiiiieeeiieniinnreieeeesssesosermunenerecisassssinnsassssssssssnsssasssssssssons 161
SETPRT—EXecute FOrmc.cccivveverirnnerieerereennennas Sverdebesarasens et b s res 163

6 OS/VS2 Data Management Macro Instructions

STOW—Update Partitioned Data Set Directory (BPAM)cccovvvveviereenireeninererivenns 166

ComPIetion COAEScccvvvrrerrieeiiiiriiiiieieerirueereeesssassssrsssssrenssrressessassasssssssesnsaesessassanne 167
SYNADAF—Perform SYNAD Analysis Function (BDAM, BISAM, BPAM,

BSAM, EXCP, QISAM, and QSAM) ...coooiiiiiiiciiiiecerrieeeccrneeessernne s s evene e 169
ComPletion COAESccvvvrerirrieeiiiiriiieiiireesieerirrrareeeesesessasssnrereaseesesssssssssssssnnsanssssessanes 171
Message BUffer FOIMALceieviereiinieeieiieeieiieeesinicreesenianecessmrescassssessssssnnneranes 171

SYNADRLS—Release SYNADAF Buffer and Save Areas (BDAM, BISAM,
BPAM, BSAM, EXCP, QISAM, and QSAM)ccceviririineiniiinieneenniieeeesieeeens 173

TRUNC—Truncate an Output Buffer (QSAM Output—Fixed- or

Variable-Length Blocked Records)cccovivieeiuiiiriiiieciiiensienenneeeenseeesseeesseeeans 174
WAIT—Wait for One or More Events (BDAM, BISAM, BPAM, and BSAM) 175
WRITE—Write a Block (BDAM)cooiviiiiiiiiiiiirieceinerreessensnreessssraeessennne ereenreeeas 177
WRITE—Write a Logical Record or Block of Records (BISAM)cccoevveeiernrennnnn. 179
WRITE—Write a Block (BPAM and BSAM)ccccoooviiiiviiiiiiiecencireeesecereeeesvneneeenns 181
WRITE—Write a Block (Create a BDAM Data Set with BSAM)ooovvvveveeeeeiiiiinnn, 182
CompPletion COUEScceeiecieiieiireiericerieeeerreeeinrreeeteeresesesenrrnrererensteessrsssssssnusnarentessanns 184
WRITE—=LISt FOIM ..ceiitiiiiiiiiiriieiiiiieecriteeesitieeesinteessesseeseesssssssessssssssssssssssssessesssnsasns 185
WRITE—EXECULE FOIM ..cccoiiiiiiiiiiiiieeiiitieeecececirirtereeses e eeeese s esntvssesasssesessessssnntnnneees 186
XLATE—Translate to and from ASCII (BSAM and QSAM) ...ccccrvrieveeeeinienivinnnnnans 187
Appendix A: Status Information Following an Input/Qutput Operation 189
Data Event Control BIOCKciiiieiiiiiiieirieeciiiinterees e se s ececrienseeeeseesssssssssnnnsnnaeseens 189
Appendix B: Data Management Macro Instructions Available by Access Method 197
Appendix C: Device CapaCItiesccoccvorirrieriiiiieenreteniienniteesieeesieeeseseeesnesesasesesnses 199
Card Readers and Card PUNCREScooiiiieiriieeieiiieerinnineesienineeieesesesesessrssnressssnseasnnes 199
PIINLEES oovovverieeiieriirreeereieeeeeesieeeeesnrareeesersrnreeeessessnsantesreesasssesessssssnennsnaeastesessonssnnsmnennen 199
Paper-Tape REAAETccoivuriiiiieiieeririeeitteee e e cntee s e s ntre e e e s eesree s ssneseeesenneaeeesesaeeasan 199
Magnetic-Tape URILSccccveeiiiieirereineieniieieccrtnnicreeeeeesereecsereraeessonerte s sesssear e s snraesenes 199
Direct-AccesS DEVICES ...cvvvreiiiiriiiririreeeirnnrereeriesinsennrnerrnenresesisessesssrsvrserassaaessessessensnnees’ 200
Appendix D: DCB Exit List Format and Contentscccooveiiiminenieiecieeieniniiinneenns 201
Appendix E: Control Charactersococcciievvinieiiiiiiiiiieiierieeeerteeereeeraersesmsrmesssssnsennes 203
MaACHINE COAE ...ooviiieiieeeceee et ce e ceeeerre e e et as e s se s sassatenaeeessesenssasssnsnertaeaneasas 203
American National Standards Institute Control Charactersccccceverereerierierivinneneas 204
Appendix F: Data Control Block Symbolic Field Namesc..cccoeviniiinniiiininnnnn 205
Data Control Block—Common Fieldsc..covevviiiiiirieieeiiiieisrcrrienireereeeeeeesesseevneneeee s 205
Data Control Block—BPAM, BSAM, QSAMcccoeeoiienenens e ereerrtaeeeeerraraaearerans 206
Direct-Access Storage Devices Interface Feeerteee s e e ees st e e s snteeenne 208
Magnetic Tape INterfaceccccceeiiviiiiemreciiierrrr et resrrertre et e serees e 208
Paper Tape INtErfacec..ceviiriiiiiiiiincciecen ettt et st e s 209
Card Reader, Card Punch INterfacecccovveviieeieeeiioniiiciinneee e eveeneee e 209
Printer INTEITACeovveeieieireriirriieee st rrene e et ere e sesesesavsnreaaaeaesseeessasmsnnsmseresneeess 210
Access Method INEEIfACecoevuviereeevivieienieeeeeeereeeseesensesenees et anes 210
BSAM, BPAM INEEIFACE ...ocvveieiiciiiieeeiicciiinreereen e erees s nreneseseeaeeseesassssasssrasanaes 210
QSAM INEEITACE ...uvvreiiecireeeiiriineierieireireeessssrtessessanresassssseaesesassunsesessnsnesssessseesessasnenes 211
Data Control BIOCK—ISAMcoiiriiieinirneeeieniricniiireisrnseiaeaereessssssosssnnsseesseasssssansnnns 212
Data Control BIOCK—BDAMoiiiiciiiiiieeinrceeieersinriereeeseeeesesinssssasssssesesssssessesssnnnns 215
Appendix G: Event Control Blockcccocvvviiiiniiiniviiiiineie, 219
Appendix H: PDABD Symbolic Field Namesccccoooviiirviiiniiiiniiiricnnininneceiieniniennann. 221
INAEX oottt e e e etr e re e e e eae e e s e se s a b e e rrae s e aeanesasasessnrannneaseeesanearann 223

Contents 7

-

FIGURES

Figure
Figure
Figure
Figure
Figure
Figure

Figure

v

Exception Code Bits—BISAMcooiiiiiiiiiiiiiiieeeececeeiee e 190
Exception Code Bits—QISAMc.occiiiiiiiiiiiieiecriies ettt 191
Exception Code Bits—BDAMccoicciiiiiiiiiiiriiirrren e cesriree e s enes 193
Register Contents on Entry to SYNAD Routine—QISAMccouuee.. 194
Register Contents on Entry to SYNAD Routine—BISAM 195
Register Contents on Entry to SYNAD Routine—BDAM, BPAM,

BSAM, and OSAM ..ot eeeet e e e e e e eaeree et eaaeaeeaeaeeaeaeaans 195
Status Indicators for the SYNAD Routine—BDAM, BPAM,

BSAM, and QSAM ...ttt s re et 196

Figures 9

Page of GC26-3873-0
As Updated 30 Jul 1982
By TNL GN26-8042

SUMMARY OF AMENDMENTS

Data Facility Device Support — 3800 Compatibility
Feature

Information has been added to support the compatibility feature for the IBM 3800
Printing Subsystem.

Data Facility Device Support — 3375 Support
The information for the IBM 3375 has been added to the direct-access device tables.

0S/VS2 MVS Data Facility Device Support (DFDS)
Program Product

The information to support the IBM 3380 is included. For more information see,
Introduction to 3800 Direct Access Storage, GA26-1662.

OS/VS2 MVS 3800 Enhancements

Information to support the 3800 Enhancements has been included.

The DISP, LIBDCB, MSGAREA, and PRTMSG parameters of the SETPRT macro,
have been added to the standard, list, and execute forms of the macro.

The SETPRT completion and reason codes have been updated to include 3800
Enhancements support.

0OS/VS2 MVS Data Management Support for Mass
Storage System (MSS) Extensions Program Product

MSS Extensions program product is supported by specifying OPTCD=U in the DCB
macro for BSAM and QSAM data sets.

Sequential Access Method-Extended (SAM-E) Release 1
(5740-AM3)

BPAM, BSAM, and QSAM support of direct access storage devices (except BSAM
MACRF=WL, create BDAM data set) has been modified to internally use the EXCPVR
interface to IOS. This modification includes the functions of the chained scheduling
option (OPTCD=C) and the search-direct option (OPTCD=Z). These options,
therefore, need not be requested and are ignored if they are requested.

OS/VS2 MVS 3800 Printing Subsystem (VS2.03.810)
The 3800 Printing Subsystem is supported with this Selectable Unit.

The BURST operand has been added to the standard, list, and execute forms of the
SETPRT macro. Also, return code X‘3C’ has been added for the 3800.

Summary of Amendments 11

OS/VS2 MVS Data Management (VS2.03.808)

Release 3.7

This newsletter contains a change for the OPEN macro to support the EXTEND and
OUTINX options. These options allow the user to change the disposition of a data set to
MOD. In all other ways, EXTEND and OUTINX are equivalent to the OUTPUT and
OUTIN options, respectively.

These new options will allow users of SAM and ISAM to add records to the end of an
existing data set even though DISP=0OLD/NEW/MOD/SHR was specified. In the past,
the only way to add records to the end of the data set was to specify DISP=MOD on the
DD statement and OUTPUT on the OPEN macro or to specify INOUT on the OPEN
macro and read to end-of-file or use the OPEN TYPE=J macro.

The IBM 3350 Direct Access Storage and IBM 3344 Direct Access Storage Device are
now supported under VS2. This information is provided for planning purposes only until
the products become available.

12 OS/VS2 Data Management Macro Instructions

INTRODUCTION

Data Management Macro Instructions

Coding Aids

Bold Type

A set of macro instructions is provided by IBM for communicating service requests to the
data management access method routines. These macro instructions are available only
when the assembler language is being used, and they are processed by the assembler
program using macro definitions supplied by IBM and placed in the macro library when
the operating system is generated.

The processing of the macro instruction by the assembler program results in a macro
expansion, generally consisting of executable instructions and data in the form of
assembler-language statements. The data fields are the parameters to be passed to the
access method routine; the executable instructions generally consist of a branch around
the data fields, instructions to load registers, and either a branch instruction or supervisor
call (SVC) to give control to the proper program. The exact macro expansion appears as
a part of the assembler listing.

A listing of a macro definition from SYS1.MACLIB (the library in which macro
definitions are stored) can be obtained by using the utility program IEBPTPCH, which is
described in OS/VS Utilities.

Before macro instructions are coded using this publication, the user should be familiar
with the information contained in OS/VS2 MVS Data Management Services Guide.

When programs that request supervisor services are being coded, the user should be
familiar with the information contained in OS/VS2 Supervisor Services and Macro
Instructions.

When programs are being coded for more specialized applications such as teleprocessing,
graphics, character recognition, or to use VSAM (virtual storage access method), the
publication that describes the specific access method and/or device type should be used.
Publications containing descriptions of the macro instructions for teleprocessing,
graphics, character recognition devices, and VSAM are listed in the preface of this
publication. ‘

The operation of some macro instructions depends on the options selected when the
macro instruction is coded. For these macro instructions, either separate descriptions are
provided or the differences are listed within a single description. If no differences are
explicitly listed, none exist. The description of each macro instruction starts on a
right-hand page; the descriptions that do not apply to the access methods being used can
be removed. Appendix B provides a list of the macro instructions available for each
access method.

Bold type is used for elements that you must code exactly as they are shown. These
elements consist of macro names, keywords, and these punctuation symbols: commas,
parentheses, and equal signs. Examples:

. DCB
« CLOSE ,,,TYPE=T
« MACRF=(PL,PTC)
. SK,5

Introduction 13

Italic Type

Brackets

OR Sign

Braces

Italic type is used for elements for which you code values that you choose, usually
according to specifications and limits described for each parameter. Examples:

o number
o image-id

e count

Brackets, [], are used to enclose optional elements, which you may code or not code as
you choose. Examples:

o [length]
« [MF=E]

The OR sign, |, is used to separate alternative elements. Examples:
+ [LREREAD | ,LEAVE]
o [length |‘S’]

Braces, { }, are used to enclose alternative elements for which you must choose exactly
one element, but never more than one element and never no element. Alternative items
are usually separated by OR signs. Examples:

« BFTEK={S|E|A}
+ {K|D}
o {address|S|0}

Sometimes, alternative elements—especially complicated alternatives—are grouped in a
vertical stack of braces. Examples: :

« MACRF={R[C|P]) }
f(WIC|P|LD}
{R[CL,W[C) }

-« DEVD= {DA
[,KEYLEN= absexp] }
{TA
[LDEN={0]1]2]|3|4}]
[,TRTCH={C|E|ET|T}] }
{PT

[LCODE={A|B|C|F|I|N|T}]}

In these examples, you must choose exactly one element—one line—from the stack of
alternative elements.

- 14 0S/VS2 Data Management Macro Instructions

Ellipses
Ellipses, ..., indicate that elements may be repeated.
Example:
o (dcbaddr,[(options)]), ...)

Underscoring
Underscored elements indicate those alternative choices that are assumed if you don’t
make an explicit choice. Examples:
« HIARCHY={0]|1}
« BFALN={F|D}
Blank Symbol

The blank symbol, b, is used to indicate the absence of operands. Example:

b PDABD b

Comprehensive Example
« MF=(E,{address | (1)})

In this example, MF=(E, must be coded exactly as shown. Then, either address or (1)
must be coded; the parentheses around the 1 are required. Finally, the closing
parenthesis must be coded. Thus, MF=(E,(1)) might be coded.

« RECFM= {U[T][A | M] }
{V[B|S|T|BS|BTIA | M]}
{DI[B][A] }

{F[B|S|T|BS|BT][A[M]}

_ In this example, the first choice is among the four alternative elements (on four
separate lines). Then, choices must be made within the major element chosen.
Assuming that the major element beginning with F were chosen, you would code F;
then you would choose one of B, S, T, BS, or BT if you liked; and, finally, you would
choose one of A or M if you liked. Thus, FBTM or FA might be coded.

Introduction 15

Macro Instruction Format

Data management macro instructions are written in the assembler language and, as such,
are subject to the rules contained in OS/VS—DOS/VS—VM/370 Assembler Language.
Data management macro instructions, like all assembler language instructions, are

written in the following format:

Name Operation Operands Comments

Symbol or | Macro name | None, one or more operands separated
blank by commas

The operands are used to specify services and options to be used and are written
according to the following general rules:

« If the selected operand is shown in bold capital letters (for example, MACRF=WL),
code the operand exactly as shown. '

« If the selected operand is a character string in bold type (for example, if the type
operand of a READ macro instruction is SF), code the operand exactly as shown.

« If the operand is shown in italic lowercase letters (for example, dcbh address),
substitute the indicated address, name, or value.

« If the operand is a combination of bold capital letters and italic lowercase letters (for
example, LRECL=absexp), code the capital letters and equal sign exactly as shown
and substitute the appropriate address, name, or value for the italic lowercase letters.

« Commas and parentheses are coded exactly as shown, except that the comma
following the last operand coded should be omitted. The use of commas and
parentheses is indicated by brackets and braces in the same manner as brackets and
braces indicate the use of operands.

« Several macro instructions contain the designation ‘S’. This operand, when used, must
have the apostrophe on both sides of the S.

When substitution of a name, value, or address is required, the notation used to specify
the operand depends on the operand being coded. The following shows two examples of
the notations used to indicate how an operand can be coded:

DDNAME-=symbol
In the above example, the only type of operand that can be coded is a valid
assembler-language symbol.

dcb address —RX-Type Address, (2-12), or (1)
In the above example, the operand that can be substituted can be an RX-type address,
any of the general registers 2 through 12, or general register 1.

The following describes the meaning of each notation used to show how an operand can
be coded:

symbol ‘
When this notation is shown, the operand can be any valid assembler-language
symbol.

decimal digit
When this notation is shown, the operand can be any decimal digit up to the maximum
value allowed for the specific operand being described.

16 OS/VS2 Data Management Macro Instructions

(2-12)

When this notation is shown, the operand specified can be any of the general registers
- 2 through 12. All registers as operands must be coded in parentheses; for example, if
register 3 is coded, it is coded as (3). When one of the registers 2 through 12 is used,
it can be coded as a decimal digit, symbol (equated to a decimal digit), or an
expression that results in a value of 2 through 12.

1

When this notation is shown, general register 1 can be used as an operand. When used
as an operand in a macro instruction, the register must be specified as the decimal
digit 1 enclosed in parentheses as shown above.

(0)

When this notation is shown, general register 0 can be used as an operand. When used
as an operand in a macro instruction, the register must be specified as the decimal
digit O enclosed in parentheses as shown above.

RX-Type Address

When this notation is shown, the operand can be specified as any valid
assembler-language RX-type address. The following shows examples of each valid
RX-type address:

Name Operation Operand

ALPHAI1 L 1,39(4,10)

ALPHA2 L REG1,39(4,TEN)
BETAI1 L 2,ZETA(4)

BETA2 L REG2,ZETA(REG4)
GAMMAI L 2,ZETA

GAMMA2 L REG2,ZETA
GAMMA3 L 2,=F*1000’
LAMBDAI1 L 3,20(,5)

Both ALPHA instructions specify explicit addresses; REG1 and TEN are absolute
symbols. Both BETA instructions specify implied addresses, and both use index
registers. Indexing is omitted from the GAMMA instructions. GAMMA1 and
GAMMAZ2? specify implied addresses. The second operand of GAMMAS3 is a literal.
LAMBDAI1 specifies an explicit address with no indexing.

A-Type Address :

When this notation is shown, the operand can be specified as any address that can be
written as a valid assembler-language A-type address constant. An A-type address
constant can be written as an absolute value, a relocatable symbol, or relocatable
expression. Operands that require an A-type address are inserted into an A-type
address constant during the macro expansion process. For more details.about A-type
address constants, refer to OS/VS—DOS/VS—VM/370 Assembler Language.

absexp

When this notation is shown, the operand can be an absolute value or expression. An
absolute expression can be an absolute term or an arithmetic combination of absolute
terms. An absolute term can be a nonrelocatable symbol, a self-defining term, or the
length attribute reference. For more details about absolute expressions, refer to
OS/VS—DOS/VS—VM/370 Assembler Language.

relexp

When this notation is shown, the operand can be a relocatable symbol or expression.
A relocatable symbol or expression is one whose value changes by n if the program in
which it appears is relocated n bytes away from its originally assigned area of storage.
For more details about relocatable symbols and expressions, refer to
OS/VS—DOS/VS—VM/370 Assembler Language.

Introduction 17

Rules for Register Usage

Many macro instruction expansions include instructions that use a base register
previously defined by a USING statement. The USING statement must establish
addressability so that macro expansion can include a branch around the in line parameter
list, if present, and refer to data fields and addresses specified in the macro instruction
operands.

Macro instructions that use a BAL or BALR instruction to pass control to an access
method routine, normally require that register 13 contain the address of an 18-word
register-save area. The READ, WRITE, CHECK, GET, and PUT macro instructions are
of this type.

Macro instructions that use a supervisor call (SVC) instruction to pass control to an
access method routine may modify general registers 0, 1, 14, and 15 without restoring
them. Unless otherwise specified in the macro instruction description, the contents of
these registers are undefined when the system returns control to the problem program.

When an operand is specified as a register, the problem program must have inserted the
value or address to be used into the register as follows:

« If the register is to contain a value, it must be placed in the low-order portion of the
register unless the macro instruction description states otherwise. Any unused bits in
the register should be set to zero.

« If the register is to contain an address, the address must be placed in the low-order
three bytes of the register, and the high-order byte of the register should be set to
Zero.

Note that if the macro instruction accepts the RX-type address, the high-order byte of a
register can be efficiently cleared by coding the parameter as O (reg) rather than just
(reg). Then the macro instruction expands as:

LA parmreg,0{reg) by macro
rather than:
LA reqg,0(reg) by user
and

LR parmreqg, reg by macro

Rules for Continuation Lines

The operand field of a macro instruction can be continued on one ‘or more additional
lines as follows:

1. Enter a continuation character (not blank, and not part of the operand coding) in
column 72 of the line. '

2. Continue the operand field on the next line, starting in column 16. All columns to the
left of column 16 must be blank.

18 OS/VS2 Data Management Macro Instructions

o

Name

NAME1

NAME2

Operation

OP1

OP2

The operand field being continued can be coded in one of two ways. The operand field
can be coded through column 71, with no blanks, and continued in column 16 of the next
line, or the operand field can be truncated by a comma, where a comma normally falls,
with at least one blank before column 71, and then continued in column 16 of the next
line. An example of each method is shown in the following illustration:

Operand Comments

OPERAND1,OPERAND2, OPERAND3,OPERAND4 ,OPERANDS , OPERANDG , OPERAND7 , OPEX
RANDS THIS IS ONE WAY

OPERAND1,OPERAND2, THIS IS ANOTHER WAY X
OPERAND3, X
OPERAND4

Introduction 19-

MACRO INSTRUCTION DESCRIPTIONS

BLDL—Build a Directory Entry List (BPAM)

The BLDL macro instruction is used to complete a list of information from the directory
of a partitioned data set. The problem program must supply a storage area; the area must
include information about the number of entries in the list, the length of each entry, and
the name of each data set member (or alias) before the BLDL macro instruction is
issued. Data set member names in the list must be in alphameric order. All read and write
operations using the same data control block must have been tested for completion
before the BLDL macro instruction is issued.

The BLDL macro instruction is written as follows:

[symbol] | BLDL dch address
,list address

dcb address —RX-type Address, (2-12), (1), or the decimal digit O
The dcb address operand specifies the address of the data control block for an open
partitioned data set, or zero can be specified to indicate that the data set is in a job
library, step library, or link library.

list address —RX-Type Address, (2-12), or (0)
The list address operand specifies the address of the list to be completed when the
BLDL macro instruction is issued. The list address must be on a halfword boundary.
The following illustration shows the format of the list:

List Oor
List Description List More
Address - Field Entry (LL bytes) Entries (FF total)
f—— A A —~ A :
1
FF|LL NAME 1 TTR [K{ZiC USER DATA NAME 2 S g
Length
(bytes) 2 2 8 3 111 0to 62

FF: This field must contain a binary value indicating the total number of entries in the
list.

LL: This field must contain a binary value indicating the length, in bytes, of each entry
in the list (must be an even number of bytes). If the exact length of the entry is
known, specify the exact length. Otherwise, specify at least 58 bytes (decimal) if the
list is to be used with an ATTACH, LINK, LOAD, or XCTL macro instruction. The
minimum length for a list is 12 bytes.

NAME: This field must contain the member name or alias to be located. The name
must start in the first byte of the name field and be padded to the right with blanks
(if necessary) to fill the 8-byte field.

When the BLDL macro instruction is executed, five fields of the directory entry list
are filled in by the system. The specified length (LL) must be at least 14 to fill in the Z
and C fields. If the LL field is 12, only the NAME, TT, R, and K fields are returned.
The five fields are:

TT: Indicates the relative track number where the beginning of the data set member is
located.

R: Indicates the relative block (record) number on the track indicated by TT.

Macro Instruction Descriptions 21

K: Indicates the concatenation number of the data set. For the first or only data set,
this value is zero.

Z: Indicates where the system found the directory entry:

Code Meaning

0 Private library
1 Link library
2 Job, task, or step library

3-255 Job, task, or step library of parent task n, where n = Z-2

C: Indicates the type (member or alias) for the name, the number of note list fields
(TTRNSs), and the length of the user data field (indicated in halfwords). The following
describes the meaning of the eight bits:

Bit Meaning

0=0 Indicates a member name.

0=1 Indicates an alias.

1-2 Indicate the number of TTRN fields (maximum of three) in the user data field.

3-7 Indicate the total number of halfwords in the user data field. If the list entry is to be used

with an ATTACH, LINK, LOAD, or XCTL macro instruction, the value in bits 3
through 7 is 22 (decimal).

USER DATA: The user data field contains the user data from the directory entry. If
the length of the user data field in the BLDL list is equal to or greater than the user
data field of the directory entry, the entire user data field is entered into the list.
Otherwise, the list contains only the user data for which there is space.

Completion Codes

When the system returns control to the problem program, the low-order byte of register
15 contains a return code; the low-order byte of register 0 contains a reason code, as
follows:

Hexadecimal Codes
Return (15) Reason (0) Meaning

00 00 Successful completion.

04 00 One or more entries in the list could not be filled; the list supplied may be
invalid. If a search is attempted but the entry is not found, the R field (byte
11) for that entry is set to zero.

08 00 A permanent I/0O error was detected when the system attempted to search
the directory.
08 04 Insufficient virtual storage was available.

22 OS/VS2 Data Management Macro Instructions

BSP—Backspace a Physical Record (BSAM-—Magnetic
Tape and Direct Access Only)

Completion Codes

The BSP macro instruction causes the current volume to be backspaced one data block
(physical record). All input and output operations must be tested for completion before
the BSP macro instruction is issued. The BSP macro instruction should not be used if the
CNTRL, NOTE, or POINT macro instructions are being used. The BSP macro can be
used only on BSAM-created data sets.

Any attempt to backspace across a file mark will result in a return code of X‘04’ and
your tape or direct-access volume will not be repositioned. This means you cannot issue a
successful BSP macro instruction once your EODAD routine is entered unless you first
reposition the tape or direct-access volume into your data set. (CLOSE TYPE=T would
get you repositioned at the end of your data set.) ~

Magnetic Tape: A backspace is always made toward the load point.

Direct-Access Device: A BSP macro instruction must not be issued for a data set created
by using track overflow.

SYSIN or SYSOUT Data Sets: A BSP macro instruction is ignored, but a completion
code is returned.

The BSP macro instruction is written as follows:

[symbol] | BSP dcb address

dch address —RX-Type Address, (2-12), or (1)
The dcb address operand specifies the address of the data control block for the
volume to be backspaced. The data set on the volume to be backspaced must be
opened before issuing the BSP macro instruction.

When the system returns control to the problem program, the low-order byte of register
15 contains a return code; the lower-order byte of register O contains a reason code, as
follows:

Hexadecimal Codes
Return (15) Reason (0) Meaning

00 00 Successful completion.

04 01 A backspacing request was ignored on a SYSIN or SYSOUT data set.

04 02 Backspace not supported for this device type.

04 03 Backspace not successful; insufficient virtual storage was available.

04 04 Backspace not successful; permanent 1/0 error.

04 05 Backspace into load point or beyond start of data set on the current volume.

Macro Instruction Descriptions 23

BUILD—Build a Buffer Pool (BDAM, BISAM, BPAM,
BSAM, QISAM and QSAM)

The BUILD macro instruction is used to construct a buffer pool in an area provided by
the problem program. The buffer pool may be used by more than one data set through
separate data control blocks. Individual buffers are obtained from the buffer pool using
the GETBUF macro instruction, and buffers are returned to the buffer pool using a
FREEBUF macro instruction. Refer to OS/VS2 MVS Data Management Services
Guide for an explanation of the interaction of the DCB, BUILD, and GETBUF macro

instructions in each access method, as well as the buffer size requirements.

The BUILD macro instruction is written as follows:

{symbol]

BUILD

area address

s number of buffers,buffer length | (0)}

area address —RX-Type Address, (2-12), or (1)

The area address operand specifies the address of the area to be used as a buffer
pool. The area must start on a fullword boundary. The following illustration shows the

format of the buffer pool:

Area
Address

Area Length

Buffer Pool
Control Buffer Buffer
Block
Buffer Buffer
fe—— — te—
8 bytes Length Length

Area Length=(Buffer Length) x (Number of Buffers) +8

number of buffers —symbol, decimal digit, absexp, or (2-12)

The nurnber-of-buffers operand specifies the number of buffers in the buffer pool up

to a maximum of 255.

buffer length —symbol, decimal digit, absexp, or (2-12)

The buffer length operand specifies the length, in bytes, of each buffer in the buffer
pool. The value specified for the buffer length must be a fullword multiple; otherwise

the system rounds the value specified to the next higher fullword multiple. The

maximum length that can be specified is 32,760 bytes. For QSAM, the buffer length
must be at least as large as the value specified in the block size (DCBBLKSI) field of

the data control block.

24 OS/VS2 Data Ménagement Macro Instructions

BUILD

(0)—Coded as shown

The number of buffers and buffer length can be specified in general register 0. If (0)
is coded, register O must contain the binary values for the number of buffers and
buffer length as shown in the following illustration.

Register 0

Number of Buffers Buffer Length

Bits: |0 15 |16 31

Macro Instruction Descriptions 25

BUILDRCD—BAuild a Buffer Pool and a Record Area
(QSAM)

The BUILDRCD macro instruction causes a buffer pool and a record area to be
constructed in a user-provided storage area. This macro is used only for variable-length,
spanned records processed in QSAM locate mode. Use of this macro before the data set
is opened, or before the end of the DCB open exit routine, will provide a buffer pool that
can be used for a logical record interface rather than a segment interface for
variable-length spanned records. To invoke a logical record interface, specify BFTEK=A
in the DCB. The BUILDRCD macro cannot be specified when logical records exceed
32,760 bytes.

The standard form of the BUILDRCD macro instruction is written as follows (the list
and execute forms are shown following the description of the standard form):

[symbol] | BUILDRCD | area address
,number of buffers
ybuffer length
srecord area address
[,record area length]

area address —A-Type Address or (2-12)
The area address operand specifies the address of the area to be used as a buffer
pool. The area must start on a fullword boundary.

number of buffers —symbol, decimal digit, absexp, or (2-12)
The number of buffers operand specifies the number of buffers, up to a maximum of
255, to be in the buffer pool.

buffer length —symbol, decimal digit, absexp, or (2-12)
The buffer length operand specifies the length, in bytes, of each buffer in the buffer
pool. The value specified for the buffer length must be a fullword multiple; otherwise,
the system rounds the value specified to the next higher fullword multiple. The
maximum length that can be specified is 32,760.

-record area address —A-Type Address or (2-12)
The record area address operand specifies the address of the storage area to be used
as a record area. The area must start on a doubleword boundary and have a length of
the maximum logical record (LRECL) plus 32 bytes.

record area length —symbol, decimal digit, absexp, or (2-12)
The record area length operand specifies the length of the record area to be used.
The area must be as long as the maximum length logical record plus 32 bytes for
control information. If the record area length operand is omitted, the problem
program must store the record area length in the first four bytes of the record area.

26 OS/VS2 Data Management Macro Instructions

BUILDRCD--QSAM

The following illustration shows the format of the buffer pool:

~ Area
Address
BUFAD BUFLG|BUFNO| BUFLTH BUFRECAD
Address of First No. of Length of Address .
Available Buffer Flags |Buffers| Fach of Record Buffer Buffer
Req’d Buffer Area
4 bytes 1 byte 1 byte 2 bytes 4 bytes Buffer Buffer
12 bytes -
Buffer Pool Control Block Length Length
. Area Length
Area Length = (Buffer Length) x (Number of Buffers) +12
BUFLG Flags:
Bit Meaning
0=1 Record area present
1=1 Buffer control block extended

2-7 Reserved

Notes:

« The buffer control block contains the address of the record area and a flag that
indicates logical-record interface processing of variable-length, spanned records.

« It is the user’s responsibility to release the buffer pool and the record area after a
CLOSE macro instruction has been issued for all the data control blocks using the
buffer pool and the record area.

Macro Instruction Descriptions 27

BUILDRCD—List Form

The list form of the BUILDRCD macro instruction is used to construct a program
parameter list. The description of the standard form of the BUILDRCD macro
instruction provides the explanation of the function of each operand. The description of
the standard form also indicates which operands are totally optional and those required
in at least one of the pair of list and execute forms. The format description below
indicates the optional and required operands in the list form only.

The list form of the BUILDRCD macro instruction is written as follows:

[symbol] | BUILDRCD | area address
ynumber of buffers
sbuffer length
yrecord area address
[, record area length)
JMF=L

area address —A-Type Address

number of buffers —symbol, decimal digit, or absexp
buffer length —symbol, decimal digit, or absexp
record area address —A-Type Address

record area length —symbol, decimal digit, or absexp

MF=L—Coded as shown
The MF=L operand specifies that the BUILDRCD macro instruction is used to create
a control program parameter list, that will be referenced by an execute form
instruction.

Note: A control program parameter list can be constructed by coding only the MF=L
operand (without the preceding comma); in this case, the list is constructed for the area
address, number of buffers, buffer length, and record area address operands. If the
record area length operand is also required, the operands can be coded as follows:

[symbol] BUILDRCD ,,,,0, MF=L
The preceding example shows the coding to construct a list containing address constants

with a value of 0 in each constant. The actual values can then be supplied by the execute
form of the BUILDRCD macro instruction.

28 0S/VS2 Data Management Macro Instructions

A==

BUILDRCD—Execute Form

A remote control program parameter list is referred to, and can be modified by, the
execute form of the BUILDRCD macro instruction. The description of the standard form
of the BUILDRCD macro instruction provides the explanation of the function of each
operand. The description of the standard form also indicates which operands are totally
optional and those required in at least one of the pair of list and execute forms. The
format description below indicates the optional and required operands for the execute
form only.

The execute form of the BUILDRCD macro instruction is written as follows:

[symbol] | BUILDRCD | [area address]

s[number of buffers]

JLbuffer length}

J[Lrecord area address]

JLrecord area length]

| sMF=(E,{ control program list address | (1)})

area address —RX-Type Address or (2-12)
number of buffers —absexp

buffer length —absexp

record area address —RX-Type Address or (2-12)
record area length —absexp

MF=(E, control program list address |(1)})
This operand specifies that the execute form of the BUILDRCD macro instruction is
used, and an existing control program parameter list (created by a list-form
instruction) will be used. The MF= operand is coded as described in the following:

E—Coded as shown
control program list address —RX-Type Address, (2-12), or (1)

Macro Instruction Descriptions 29

CHECK—Wait for and Test Completion of a Read or
Write Operation (BDAM, BISAM, BPAM, and BSAM)

The CHECK macro instruction causes the active task to be placed in the wait condition,
if necessary, until the associated input or output operation is completed. The input or
output operation is then tested for errors and exceptional conditions. If the operation is
completed successfully, control is returned to the instruction following the CHECK
macro instruction. If the operation is not completed successfully, the error analysis
(SYNAD) routine is given control or, if no error analysis routine is provided, the task is
abnormally terminated. The error analysis routine is discussed in the SYNAD operand of -
the DCB macro instruction.

The fbllowing conditions are also handled for BPAM and BSAM only:

When Reading: The end-of-data (EODAD) routine is given control if an input request is
made after all the records have been retrieved. Volume switching is automatic for a
BSAM data set that is not opened for UPDAT. For a BSAM data set that is opened for
update, the end-of-data routine is entered at the end of each volume.

When Writing: Additional space on the device is obtained when the current space is filled
and more WRITE macro instructions have been issued.

For BPAM and BSAM, a CHECK macro instruction must be issued for each input and
output operation, and must be issued in the same order as the READ or WRITE macro
instructions were issued for the data set. For BDAM or BISAM, either a CHECK or
WAIT macro instruction can be used. For information on when the WAIT macro can be
used, see OS/VS2 MVS Data Management Services Guide.

If the ASCII translation routines are included when the operating system is generated,
translation can be requested by coding LABEL=(,AL) or (,AUL) in the DD statement,
or it can be requested by coding OPTCD=Q in the DCB macro instruction or DCB
subparameter of the DD statement. If translation is requested, the Check routine
automatically translates BSAM records, as they are read, from ASCII code to EBCDIC
code, provided that the record format is F, FB, D, DB, or U. Translation occurs as soon
as the Check routine determines that the input buffer is full. For translation to occur
correctly, all input data must be in ASCII code.

The CHECK macro instruction is written as follows:

[symbol] | CHECK decb address
[[DSORG={IS | ALL}]

decb address —RX-Type Address, (2-12), or (1)
The decbh address operand specifies the address of the data event control block
created by the associated READ or WRITE macro instruction or used by the
associated input or output operation.

DSORG={IS| ALL}
The DSORG operand specifies the type of data set organization. The following
describes the characters that can be coded:

IS

Specifies that the program generated is for BISAM use only.

ALL ‘
Specifies that the program generated is for BDAM, BISAM, BPAM, or BSAM use.

If the DSORG operand is omitted, the program generated is for BDAM, BPAM, or
BSAM use only.

30 OS/VS2 Data Management Macro Instructions

CHKPT—Take a Checkpoint for Restart Within a Job
Step (BDAM, BISAM, BPAM, BSAM, QISAM, and

QSAM)

The CHKPT macro instruction establishes a checkpoint for the job step. If the step
terminates abnormally, it is automatically restarted from the checkpoint. On restart,
execution resumes with the instruction that follows the CHKPT instruction. If the step
again terminates abnormally (before taking another checkpoint); it is again restarted
from the checkpoint. When several checkpoints are taken, the step is automatically
restarted from the most recent checkpoint.

Automatic restart from a checkpoint is suppressed if:

1. The job step completion code is not one of a set of codes specified at system
generation.

2. The operator does not authorize the restart.

3. The restart definition parameter of the JOB or EXEC statement specifies no restart
{(RD=NR) or no checkpoint (RD=NC or RD=RNC).

4. The CANCEL operand appears in the last CHKPT macro instruction issued before
abnormal termination.

Under any of these conditions, automatic checkpoint restart does not occur. Automatic
step restart (restart from the beginning of the job step) can occur, except under
condition 1 or 2, or when the job step was restarted from a checkpoint prior to abnormal
termination. Automatic step restart is requested through the restart definition parameter
of the JOB or EXEC statement (RD=R or RD=RNC).

When automatic restart is suppressed or unsuccessful, a deferred restart can be requested
by submitting a new job. The new job can specify restart from the beginning of the job
step or from any checkpoint for which there is an entry in the checkpoint data set.

The checkpoint data set contains the information necessary to restart the job step from a
checkpoint. The control program records this information when the CHKPT macro
instruction is issued. The macro refers to the data control block for the data set, which
must be on a magnetic tape or direct-access volume. A tape can have standard labels,
nonstandard labels, or no labels.

If the checkpoint data set is not open when CHKPT is issued, the control program opens
the data set and then closes it after writing the checkpoint entry. If the data set is
physically sequential and is opened by the control program, the checkpoint entry is
written over the previous entry in the data set, unless the DD statement specifies
DISP=MOD. By writing entries alternately into two checkpoint data sets, it is possible to
keep the entries for the two most recent checkpoints while deleting those for earlier
checkpoints.

The data control block for the checkpoint data set must specify:

DSORG=PS or PO, RECFM=U or UT, MACRF=(W), BLKSIZE= nnn, and
DDNAME= any name

where nnn is at least 600 bytes, but not more than 32,760 bytes for magnetic tape and
not more than the track length for direct access. (If the data set is opened by the control
program, block size need not be specified; the device-determined maximum block size is
assumed if no block size is specified.) For seven-track tape, the data control block must
specify TRTCH=C; for direct access, it must specify or imply KEYLEN=0. To request
chained scheduling, OPTCD=C and NCP=2 must be specified. With direct access,
OPTCD=W. can be specified to request validity checking for write operations, and
OPTCD=WC can be specified to combine validity checking and chained scheduling.

Macro Instruction Descriptions 31

The standard form of the CHKPT macro instruction is written as follows (information
about the list and execute forms follows this description):

[symbol] | CHKPT { dcbaddr [, checkid addr[,checkid length | ,*S’]]}

{CANCEL }

dcbaddr
The dcb address operand specifies the address of the data control block for the
checkpoint data set.. '

checkid address ,
The checkid address operand specifies the address of the checkpoint identification
field. The contents of the field are used when the job step is to be restarted from the
checkpoint. They are used by the control program in requesting operator authorization
for automatic restart. You can use it for requesting deferred restart.

If the next operand specifies the length of the field (checkid length), or if it is omitted
to imply a length of eight bytes, the field must contain the checkpoint identification
when the CHKPT macro instruction is issued. If the next operand is written as ‘S’, the
identification is generated and placed in the field by the control program. If both
operands are omitted, the control program generates the identification, but does not
make it available to the problem program. In each case, the identification is written in
a message to the operator.

The control program writes the checkpoint identification as part of the entry in the
checkpoint data set. For a sequential data set, the identification can be any
combination of up to 16 letters, digits, printable special characters, and blanks. For a
partitioned data set, it must be a valid member name of up to 8 letters and digits,
starting with a letter. The identification for each checkpoint should be unique.

If the control program generates the identification, the identification is 8 bytes in
‘length. It consists of the letter C followed by a 7-digit decimal number. The number is
the total number of checkpoints taken by the job, including the current checkpoint,
checkpoints taken earlier in the job step, and checkpoints taken by any previous job
steps. ‘

checkid length
The checkid length operand specifies the length in bytes of the checkpoint
identification field. The maximum length is 16 bytes if the checkpoint data set is
physically sequential, 8 bytes if it is partitioned. For a partitioned data set, the field
can be longer than the actual identification, if the unused portion is blank. If the
operand is omitted, the implied length is 8 bytes.

If you code ‘S’ the contrél program supplies the checkpoint identification. The implied
field length is 8 bytes.

CANCEL
The CANCEL operand cancels the request for automatic restart from the most recent
checkpoint. If another checkpoint is taken before abnormal termination, the job step
can be restarted at that checkpoint.

32 OS/VS2 Data Management Macro Instructions .

When control is returned, register 15 contains one of the following return codes:

Hexadecimal Meaning

Code
00

04

08

0C

CHKPT

Successful completion. Code 00 is also returned if the RD parameter was coded as
RD=NC or RD=RNC to totally suppress the function of CHKPT.

Restart has occirrred at the checkpoint taken by the CHKPT macro instruction during the
original execution of the job. A request for another restart of the same checkpoint is
normally in effect. If a deferred restart was performed and RD=NC, NR, or RNC was
specified in the resubmitted deck, a request for another restart is not in effect.

Unsuccessful completion. A checkpoint entry was not written, and a restart from this
checkpoint was not requested. A request for an automatic restart from a previous
checkpoint remains in effect.

One of the following conditions exists:
« The parameters passed by the CHKPT macro instruction are invalid.

¢« The CHKPT macro instruction was executed in an exit routine other than the
end-of-volume exit routine.

« A STIMER macro instruction has been issued, and the time interval has not been
completed.

« A WTOR macro instruction has been issued, and the reply has not been received.

« The checkpoint data set is on a direct-access volume and is full. Secondary space
allocation was requested and performed. (Secondary space allocation is performed for
a checkpoint data set, but the allocated space is not used. However, had secondary
allocation not been requested, the job step would have been abnormally terminated.)

« A graphics-type DSORG has been found in an open DCB. Graphic devices are not
supported in checkpoint/restart.
« The job step contains more than one task.
Unsuccessful completion. An uncorrectable error occurred in writing the checkpoint entry
or in completing queued access method input/output operations that were begun before
the CHKPT macro instruction was issued. A partial, invalid checkpoint entry may have
been written. If the entry has a programmer-specified checkid, and the checkpoint data
set is sequential, a different checkid should be specified the next time CHKPT is executed.
If the data set is partitioned, a different checkid need not be specified. This code is also
returned if the checkpoint routine tries to open the checkpoint data set and the DD «
statement for the data set is missing.

Successful completion with possible error condition. The task has control, by means of an
explicit or implied use of the ENQ macro instruction, of a serially reusable resource; if the
task terminates abnormally, it will not have control of the resource when the job step is
restarted. The user’s program must, therefore, reissue the ENQ macro instruction,

Checkpoint not taken. End of volume occurred while writing the checkpoint entry on a
tape data set. The checkpoint was canceled, but processing of the user’s program
continues.

When one of the errors indicated by code 08, 0C, 10, or 14 occurs, the system prints an
error message on the operator’s console. The message indicating code 08 or 0C contains
a code that further identifies the error. The operator should report the message contents
to the programmer.

Note: Successful use of the CHKPT macro instruction requires some care in the selection
of checkpoints. For a detailed discussion of checkpoint requirements, refer to OS/VS
Checkpoint [Restart.

Macro Instruction Descriptions 33

CHKPT—List Form

The list form of the CHKPT instruction is used to construct a control program parameter
list.

The description of the standard form of the CHKPT macro provides the explanation of
the function of each operand. The description of the standard form also indicates which
operands are optional and which are required in at least one of the list and execute
forms. The format description below indicates the optional and required operands in the
list form only. Note that the CANCEL operand, which can be coded in the standard
form, cannot be coded in the list form.

The list form of the CHKPT macro instruction is written as follows:

[symbol] | CHKPT [deb address]
J[checkid address]

s checkid length | ‘S’]
JMF=L

address
The address operand specifies any address that may be written in an A-type address
constant.

length
The length operand specifies any absolute expression that is valid in the assembler
language.

MF=L
The MF=L operand indicates the list form of the CHKPT macro instruction.

34 OS/VS2 Data Management Macro Instructions

PN

CHKPT—Execute Form

A control program parameter list is referred to, and can be modified by, the execute form
of the CHKPT macro.

The description of the standard form of the CHKPT macro provides the explanation of
the function of each operand. The description of the standard form also indicates which
operands are optional and which are required in at least one of the list and execute
forms. The format description below indicates the optional and required operands for the
execute form only. Note that the CANCEL operand, which can be coded in the standard
form, cannot be coded in the execute form. '

The execute form of the CHKPT macro instruction is written as follows:

[symbol] | CHKPT [dcb address]

,[checkid address]

oL checkid length | ‘S’]

JMF=(E,{ control program list address | (1)})

address .
The address operand specifies any address that is valid in an RX-type instruction, or
one of the general registers 2 through 12, previously loaded with the indicated
address. You may designate the register symbolically or with an absolute expression;
always code it in parentheses.

length
The length operand specifies any absolute expression that is valid in assembler
language, or one of the general registers 2 through 12, previously loaded with the
indicated value. You may designate the register symbolically or with an absolute
expression; always code it in parentheses.

MF=(E,{ control program list address |(1)})
This operand specifies the execute form of the macro instruction using a control
program parameter list. The address of the control program parameter list can be
coded as described under address, or can be loaded into register 1, in which case code
MF=(E,(1)).

Macro Instruction Descriptions 35

— OIS

CLOSE—Logically Disconnect a Data Set (BDAM,
BISAM, BPAM, BSAM, QISAM, and QSAM)

The CLOSE macro instruction causes output data set labels to be created, and volumes
to be positioned as specified by the user. The fields of the data control block are restored
to the condition that existed before the OPEN macro instruction was issued, and the data
set is disconnected from the processing program. Final volume positioning for the current
volume can be specified to override the positioning implied by the DD control statement
DISP parameter. Any number of dcb address operands and associated options may be
specified in the CLOSE macro instruction.

Associated data sets for a 3525 card punch can be closed in any sequence, but if one
data set is closed, I/O operations cannot be initiated for any of its associated data sets.
Additional information about closing associated data sets is contained in OS/VS2 MVS
Data Management Services Guide.

A FREEPOOL macro instruction should normaily follow a CLOSE macro instruction
(without TYPE=T) to regain the buffer pool storage space and to allow a new buffer
pool to be built if the DCB is reopened with different record size attributes.

A special operand, TYPE=T, is provided for processing with BSAM.

The standard form of the CLOSE macro instruction is written as follows (the list and
execute forms are shown following the description of the standard form):

[symbol] | CLOSE (dchb address ,[option],...)
L,TYPE=T]

dcb address —A-Type Address or (2-12)
The dcb address operand specifies the address of the data control block for the
opened data set that is to_be closed.

option
One of these options indicates the volume positioning that is to occur when the data
set is closed. This option has meaning only with the TYPE=T operand or for data sets
on magnetic tape. The options are:

REREAD
Specifies that the current volume is to be positioned to reprocess the data set. If
processing was forward, the volume is positioned to the beginning of the data set; if
processing was backwards (RDBACK), the volume is positioned to the end of the
data set.

LEAVE
Specifies that the current volume is to be positioned to the logical end of the data
set. If processing was forward, the volume is positioned to the end of the data set;
if processing was backwards (RDBACK), the volume is positioned to the beginning
of the data set.

REWIND
Specifies that the current magnetic tape volume is to be positioned at the load
point, regardless of the direction of processing. REWIND cannot be specified when
TYPE=T is specified. If FREE=CLOSE has been coded on the DD statement
associated with the data set being closed, coding the REWIND option will result in
the data set being freed at the time it is closed rather than at the termination of the
job step.

36 OS/VS2 Data Management Macro Instructions

s
L]

CLOSE

FREE
Specifies that the current data set is to be freed at the time the data set is closed,
rather than at the time the job step is terminated. For tape data sets, this means
that the volume is eligible for use by other tasks or to be demounted. Direct-access
volumes may also be freed for use by other tasks. They may be freed for
demounting if (1) no other data sets on the volume are open and (2) the volume is
otherwise demountable. Do not use this option with CLOSE TYPE=T.

DISP
Specifies that a tape volume is to be disposed of in the manner implied by the DD
statement associated with the data set. Direct-access volume positioning and
disposition are not affected by this parameter of the CLOSE macro instruction.
There are several dispositions that can be specified in the DISP parameter of the
DD statement; DISP can be PASS, DELETE, KEEP, CATLG, or UNCATLG.

Depending on how the DISP option is coded in the DD statement, the current
magnetic tape volume will be positioned as follows:

DISP Parameter Action

PASS Forward space to the end of the data set on the current
volume.

DELETE Rewind the current volume.

KEEP, CATLG, or UNCATLG The volume is positioned the same as for CLOSE
REREAD. Note that the volume is not rewound and
unloaded.

If FREE=CLOSE has been coded in the DD statement associated with this data
set, coding the DISP option in the CLOSE macro will result in the data set being
freed when the data set is closed, rather than at the time the job step is terminated.

Note: When the option operand is omitted, DISP is assumed. For TYPE=T, this is
processed as LEAVE during execution.

The LEAVE and REREAD options are meaningless except for magnetic tape and
CLOSE TYPE=T.

TYPE=T—Coded as.shown

You can code CLOSE TYPE=T to perform some close functions for sequential data
sets on magnetic tape and direct-access volumes processed with BSAM. When you use
TYPE=T, the DCB used to process the data set maintains its open status, and you
should not issue another OPEN macro instruction to continue processing the same
data set. This option cannot be used in a SYNAD routine nor can it be used in
conjunction with the FREE option.

The TYPE=T operand causes the system control program to process labels, modify
some of the fields in the system control blocks for that data set, and reposition the
volume (or current volume in the case of multivolume data sets) in much the same
way that the normal CLOSE macro does. When you code TYPE=T, you can specify
that the volume either be positioned at the end of data (the LEAVE option) or be
repositioned at the beginning of data (the REREAD option). Magnetic-tape volumes
are repositioned either immediately before the first data record or immediately after
the last data record; the presence of tape labels has no effect on repositioning.

Macro Instruction Descriptions 37

If you code the release (RLSE) operand on the DD statement for an output data set,
it is ignored by temporary close (CLOSE TYPE=T), but any unused space will be
released when you finally issue the normal CLOSE (without TYPE=T) macro
instruction.

Refer to OS/VS2 MVS Data Management Services Guide for additional
“information and coding restrictions.

38 OS/VS2 Data Management Macro Instructions

PN

CLOSE—List Form

The list form of the CLOSE macro instruction is used to construct a data mariagement
parameter list. Any number of operands (data control block addresses and associated
options) can be specified. ' ‘

The list consists of a one-word entry for each DCB in the parameter list; the high-order
byte is used for the options and the three low-order bytes are used for the DCB address.
The end of the list is indicated by a one in the high-order bit of the last entry’s option
byte. The length of a list generated by a list-form instruction must be equal to the
maximum length required by an execute-form instruction that refers to the same list. A
maximum length list can be constructed by one of two methods:

¢ Code a list-form instruction with the maximum number of parameters that are
required by an execute-form instruction that refers to the list.

« Code a maximum length list by using commas in a list-form instruction to acquire a list
of the appropriate size. For example, coding CLOSE (,,,,,,,,,),MF=L would provide a
list of five fullwords (five dcb addresses and five options).

Entries at the end of the list that are not referenced by the execute-form instruction are
assumed to have been filled in when the list was constructed or by a previous
execute-form instruction. Before using the execute-form instruction, you may shorten the
list by placing a one in the high-order bit of the last DCB entry to be processed.

A zeroed work area on a word boundary is equivalent to CLOSE (,DISP,...), MF=L and
can be used in place of a list-form instruction. The high-order bit of the last DCB entry
must contain a one before this list can be used with the execute-form instruction.

A parameter list constructed by a CLOSE macro instruction, list form, can be referred to
by either an OPEN or CLOSE execute-form instruction.

The description of the standard form of the CLOSE macro instruction provides the
explanation of the function of each operand. The description of the standard form also
indicates which operands are completely optional and those required in at least one of
the pair of list and execute forms. The format description below indicates the optional
and required operands in the list form only.

The list form of the CLOSE macro instruction is written as follows:

[symbol] | CLOSE ([dch address),[option], ...)
LTYPE=T]
sMF=L

dcb address —A-Type Address
option —Same as standard form

TYPE=T—Coded as shown
The TYPE=T operand can be coded in the list-form instruction to allow the specified
option to be checked for validity when the program is assembled.

MF=L—Coded as shown
The MF=L operand specifies that the CLOSE macro instruction is used to create a
data management parameter list that will be referred to by an execute-form
instruction.

Macro Instruction Descriptions 39

CLOSE—Execute Form

A remote data management parameter list is used in and can be modified by the execute
form of the CLOSE macro instruction. The parameter list can be generated by the list
form of either an OPEN macro instruction or a CLOSE macro instruction.

The description of the standard form of the CLOSE macro instruction provides the
explanation of the function of each operand. The description of the standard form also
indicates which operands are totally optional and those required in at least one of the
pair of list and execute forms. The format description below indicates the optional and
required operands in the execute form only.

The execute form of the CLOSE macro instruction is written as follows:

[symbol] | CLOSE [([dch address 1,[option], ...)]
[L,TYPE=T]
JMF=(E,{data management list address | (1)})

dcb address —RX-Type Address or (2-12)

option —If specified, same as the standard form. If not specified, the option specified in
the remote data management parameter list will be used.

TYPE=T—Same as standard form

MF=(E,{ data management list address |(1)})
This operand specifies that the execute form of the CLOSE macro instruction is being
used, and an existing data management parameter list (created by a list-form
instruction) will be used. The MF= operand is coded as described in the following:

E—Coded as shown _
data management list address —RX-Type Address, (2-12), or (1)

e

40 OS/VS2 Data Management Macro Instructions

CNTRL—Control Online Input/Output Device (BSAM

and QSAM)

The CNTRL macro instruction is used to control magnetic tape drives (BSAM only for a
data set that is not open for output), online card readers, 3525 card punches (read and
print features, VS2 only), printers (BSAM and QSAM), the 3886 Optical Character
Reader (BSAM only), and the 3890 Document Processor (QSAM only). For information
on additional operands for the CNTRL macro instruction for the 3886 and 3890, see
OS/VS IBM 3886 Optical Character Reader Model 1 Reference and IBM 3890
Document Processor Machine and Programming Description.

For information on additional operands for the CNTRL macro for the 1275 or 1419, see
OS Data Management Services and Macro Instructions for IBM 1419/1275.

The MACREF operand of the DCB macro instruction must specify a C. The CNTRL
macro instruction is ignored for SYSIN or SYSOUT data sets. For BSAM, all input and
output operations must be tested for completion before the CNTRL macro instruction is
issued. The control facilities available are as follows:

Card Reader: Provides stacker selection, as follows:

QSAM—For unblocked records, a CNTRL macro instruction should be issued after
every input request. For blocked records, a CNTRL macro instruction is issued after the
last logical record on each card that is retrieved. Whether reading blocked or unblocked
records, do not issue a CNTRL macro instruction after a GET macro has caused control
to pass to the EODAD routine. The move mode of the GET macro instruction must be
used, and the number of buffers (BUFNO field of the DCB) must be one. If a CLOSE
macro instruction is issued before the last card is read, the operator should clear the
reader before the device is used again.

BSAM—The CNTRL macro instruction should be issued after every input request.

Printer: Provides line spacing or a skip to a specific carriage control channel. A CNTRL
macro instruction cannot be used if carriage control characters-are provided in the
record. If the printer contains the universal character set feature, data checks should be
blocked (OPTCD=U should not appear in the data control block).

Magnetic Tape: Provides method of forward spacing and backspacing (BSAM only for a
data set that is not open for output). If OPTCD=H is indicated in the data control block,
the CNTRL macro instruction can be used to perform record positioning on DOS tapes
that contain embedded checkpoint records. - Embedded checkpoint'records encountered
during the record positioning are bypassed and are not counted as blocks spaced over.
OPTCD=H must be specified in a job control language DD statement. The CNTRL
macro instruction cannot be used to backspace DOS 7-track tapes that are written in
data convert mode that contain embedded checkpoint records (BSAM).

Note: The CNTRL macro should not be used with output operations on BSAM tape data
sets. ‘

3525 Printing: Provides line spacing or a skip to a specific printing line on the card. The
card contains 25 printing lines; the odd numbered lines 1 through 23 correspond to the
printer skip channels 1 through 12 (see the SK operand). For additional information
about 3525 printing operations, refer to OS and OS/VS Programming Support for
the IBM 3505 Card Reader and IBM 3525 Card Punch.

Macro Instruction Descriptions 41

The CNTRL macro instruction is written as follows:

[symbol] | CNTRL dcb address

{,SS,{1]2}
{,SP,{1]2]3}
{,SK,§1]2]..]11]12}
{ BSM

{ J;FSSM .

§{ JBSR[, number of blocks]}
§{ sSFSR[,number of blocks]}

dcb address
The dcb address operand specifies the address of the data control block for the data
set opened for the online device.

SS,{1]2}
The SS operand is coded as shown to indicate that the control function requested is
stacker selection on a card reader; either 1 or 2 must be coded to indicate which
stacker is to be selected.

SP,{1]2]3}
The SP operand is coded as shown to indicate that the control function requested is
printer line spacing or 3525 card punch line spacing; either 1, 2, or 3 must be coded to
indicate the number of spaces for each print line.

SK,{1[2]...]11]12}
The SK operand is coded as shown to indicate that the control function requested is a
skip operation on the printer or 3525 card punch, print feature; a number (1 through
12) must be coded to indicate the channel or print line to which the skip is to be
taken.

BSM—Coded as shown
The BSM operand indicates that the control function requested is to backspace the
magnetic tape past a tapemark, then forward space over the tapemark. When this
operand is specified, the DCBBLKCT field in the data control block is set to zero.

FSM—Coded as shown
The FSM operand indicates that the control function requested is to forward space the
magnetic tape over a tapemark, then backspace past the tapemark. When this operand
is specified, the DCBBLKCT field in the data control block is set to zero.

BSR—Coded as shown ,
The BSR operand indicates that the control function requested is to backspace the
magnetic tape the number of blocks indicated in the number-of-blocks operand.

FSR—Coded as shown
The FSR operand indicates that the control function requested is to forward space the
magnetic tape the number of blocks indicated in the number-of-blocks operand.

number of blocks —symbol, decimal digit, absexp, or (2-12)
The number-of-blocks operand specifies the number of blocks to backspace (see
BSR operand) or forward space (see FSR operand)-the magnetic tape. The
maximum value that can be specified is 32,767. If the number-of-blocks operand is
omitted, one is assumed.

If the forward space or backspace operation is not completed successfully, control is
passed to the error analysis (SYNAD) routine; if no SYNAD routine is designated, the
task is abnormally terminated. Register contents, when control is passed to the error

42 0S/VS2 Data Management Macro Instructions

CNTRL—BSAM and QSAM

analysis routine, are shown in Appendix A. If a tapemark is encountered for BSR or
FSR, control is returned to the processing program, and register 15 contains a count of
the uncompleted forward spaces or backspaces. If the operation is completed normally,
register 15 contains the value zero.

Macro Instruction Descriptions 43

DCB—Construct a Data Control Block (BDAM)

The data control block for a basic direct access method (BDAM) data set is constructed
during assembly of the problem program. The DCB macro instruction must not be coded
within the first 16 bytes of addressability for the control section (CSECT). The DSORG
and MACRF operands must be coded in the DCB macro instruction, but the other
operands can be supplied from other sources. Each of the BDAM DCB operand
descriptions contains a heading, “Source.” The information under this heading describes
the sources from which an operand can be supplied to the data control block.

Before a DCB macro instruction for a BDAM data set is coded, the following
characteristics of direct data sets should be considered:

L]

The problem program must synchronize I/O operations by issuing a CHECK or
WALIT macro instruction to test for completion of read and write operations.

A BDAM data set is created using the basic sequential access method (BSAM). A
special operand (MACRF=WL) specifies that BSAM is being used to create a BDAM
data set. Operand descriptions for the BDAM DCB macro instruction include
information about both creating and processing a BDAM data set.

Although a BDAM data set can contain blocked records, the problem program must

perform all blocking and deblocking of records. BDAM provides only the capability to

read or write a data block, but the data block can contain multiple logical records
assembled by the problem program.

When a BDAM data set is being created, buffers can be acquired automatically, but
buffer control must be provided by the problem program. The problem program must
place data in the output buffer before issuing a WRITE macro instruction to write the
data block.

When a BDAM data set is being processed, the problem program can control all
buffering, or dynamic buffering can be specified in the DCB macro instruction and
subsequently requested in a READ macro instruction.

The actual organization of a direct data set is determined by the programmer to meet
the needs of the application. The data set can be processed by using one of the
following addressing methods:

Actual device addresses (in the form MBBCCHHR).

Relative track addresses (in the form TTR). These addresses specify a track (and a
record on the track) of the direct-access device relative to the beginning of the data
set.

Relative block addresses can be used with fixed-length records. These addresses
specify a data block relative to the beginning of the data set.

For additional information about the charabteristics of BDAM data sets, refer to
0OS/VS2 MVS Data Management Services Guide.

44 OS/VS2 Data Management Macro Instructions

DCB—BDAM
The DCB macro for BDAM is written as follows:

[symbol] | DCB [BFALN={F | _I_)_}]
[BFTEK=R]
[BLKSIZE=absexp |
[BUFCB= relexp]
[BUFL=absexp |
[BUFNO=absexp]
[DDNAME-= symbol !
DSORG={DA | DAU}
[EXLST=relexp]
{KEYLEN=absexp]
[LIMCT=absexp]

MACRF= {(R{K[I] | BIX][SI[C] }
§(WHALK]I] | K] [13[CD) }
{(R{K] | BIX]SICL,W{AK]] | K[1] | B[CD}

[OPTCD=[R | AIE][FI[WI]]
[RECFM={U | V[S | BS] | F[T]}]
[SYNAD= relexp]

IThis parameter must be supplied before an OPEN macro is issued for this DCB;

it cannot be supplied in the open exit routine.
The following déscribes the DCB operands that can be specified for creating and
processing a BDAM data set:

BFALN={F | D}
The BFALN operand specifies the boundary alignment for each buffer in the buffer
pool. The BFALN operand can be specified when (1) BSAM is being used to create-a
BDAM data set and buffers are acquired automatically, (2) when an existing BDAM
data set is being processed and dynamic buffering is requested, or (3) when the
GETPOOL macro instruction is used to construct the buffer pool. If the BFALN
operand is omitted, the system provides doubleword alignment for each buffer. The
following describes the characters that can be specified:
F
~ Specifies that each buffer is aligned on a fullword boundary that is not also a

doubleword boundary.

D
Specifies that each buffer is aligned on a doubleword boundary.

If the BUILD macro instruction is used to construct the buffer pool or if the problem
program controls all buffering, the problem program must provide the area for the
bufferssand control buffer alignment.

Source: The BFALN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine. If both the BFALN and BFTEK operands are
specified, they must be supplied from the same source.

BFTEK=R
The BFTEK operand specifies that the data set is being created for or contains
variable-length spanned records. The BFTEK operand can be coded only when the
record format is specified as RECFM=VS.

Macro Instruction Descriptions 45

When variable-length spanned records are written, the data length can exceed the
total capacity of a single track on the direct-access device being used, or it can exceed
the remaining capacity on a given track. The system divides the data block into
segments (if necessary), writes the first segment on a track, and writes the remaining
segment(s) on the following track(s).

When a variable-length spanned record is read, the system reads each segment and
assembles a complete data block in the buffer designated in the area address operand
of a READ macro instruction.

Note: Variable-length spanned records can also be read using BSAM. When BSAM is
used to read a BDAM variable-length spanned record, the record is read one segment

- at a time, and the problem program must assemble the segments into a complete data
block. This operation is described in the section for the BSAM DCB macro
instruction.

Source: The BFTEK operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by .the problem program before completion
of the data control block exit routine. If both the BFTEK and BFALN operands are
specified, they must be supplied from the same source.

BLKSIZE=absexp (maximum value is 32,760)
The BLKSIZE operand specifies the length, in bytes, of each data block for
fixed-length records, or it specifies the maximum length, in bytes, of each data block
for variable-length or undefined-length records. If keys are used, the length of the key
is not included in the value specified for the BLKSIZE operand.

The actual value that can be specified in the BLKSIZE operand depends on the record
format and the type of direct-access device being used. If the track-overflow feature is
being used or if variable-length spanned records are being used, the value specified in
the BLKSIZE operand can be up to the maximum. For all other record formats (F, V,
VBS, and U), the maximum value that can be specified in the BLKSIZE operand is
determined by the track capacity of a single track on the direct-access device being
used. Device capacity for direct-access devices is described in Appendix C of this
publication. For additional information about device capacity and space allocation,
refer to OS/VS2 MVS Data Management Services Guide.

Source: The BLKSIZE operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

BUFCB=relexp
The BUFCB operand specifies the address of the buffer pool control block when the
buffer pool is constructed by a BUILD macro instruction. '

If the buffer pool is constructed automatically, dynamically, or by a GETPOOL macro
instruction, the system places the address of the buffer pool control block into the
data control block, and the BUFCB operand is not required. The BUFCB operand is
not required if the problem program controls all buffering. .

Source: The BUFCB operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

BUFL=absexp (maximum value is 32,760)
The BUFL operand specifies the length, in bytes, of each buffer in the buffer pool

when the buffers are acquired automatically (create BDAM) or dynamncally (existing
BDAM).

When buffers are acquired automatically (create BDAM), the BUFL operand is
optional; if specified, the value must be at least as large as the sum of the values
specified for the KEYLEN and BLKSIZE operands. If the BUFL operand is

46 0S/VS2 Data Management Macro Instructions

DCB—BDAM

omitted,the system constructs buffers with a length equal to the sum of the values
specified in the KEYLEN and BLKSIZE operands.

The BUFL operand must be specified when an existing BDAM data set is being
processed and dynamic buffering is requested. Its value must be at least as large as the
value specified for the BLKSIZE operand when the READ or WRITE macro
instruction specifies a key address, or the value specified in the BUFL operand must
be at least as large as the sum of the values specified in the KEYLEN and BLKSIZE
operands if the READ and WRITE macro instructions specify S’ for the key address.

The BUFL operand can be omitted if the buffer pool is constructed by a BUILD or
GETPOOL. macro instruction or if the problem program controls all buffering.

Source: The BUFL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BUFNO=absexp (maximum value is 255)
The BUFNO operand specifies the number of buffers to be constructed by a BUILD
macro instruction, or it specifies the number of buffers and/or segment work areas to
be acquired by the system.

If the buffer pool is constructed by a BUILD macro instruction or if buffers are
acquired automatically when BSAM is used to create a BDAM data set, the number of
buffers must be specified in the BUFNO operand.

If dynamic buffering is requested when an existing BDAM data set is being processed,
the BUFNO operand is optional; if omitted, the system acquires two buffers.

If variable-length spanned records are being processed and dynamic buffering is
requested, the system also acquires a segment work area for each buffer. If dynamic
buffering is not requested, the system acquires the number of segment work areas
specified in the BUFNO operand. If the BUFNO operand is omitted when
variable-length spanned records are being processed and dynamic buffering is not
requested, the system acquires two segment work areas.

If the buffer pool is constructed by a GETPOOL macro instruction or if the problem
program controls all buffering, the BUFNO operand can be omitted, unless it is
required to acquire additional segment work areas for variable-length spanned records.

Source: The BUFNO operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
‘of the data control block exit routine. :

DDNAME=symbol
The DDNAME operand specifies the name used to identify the job control language
-data definition (DD) statement that defines the data set being created or processed.

Source: The DDNAME operand can be supplied in the DCB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the data
set.

DSORG={DA | DAU} ‘ :
The DSORG operand specifies the data set organization and if the data set contains
any location-dependent information that would make it unmovable. For example, if
actual device addresses are used to process a BDAM data set, the data set may be
unmovable. The following describes the characters that can be specified:

DA
Specifies a direct organization data set.

Macro Instruction Descriptions 47

DAU
Specifies a direct organization data set that contains location-dependent
information. ‘

When a BDAM data set is created, the basic sequential access method (BSAM) is
used. The DSORG operand in the DCB macro instruction must be coded as

'DSORG=PS or PSU when the data set is created, and the DCB subparameter in the
corresponding DD statement must be coded as DSORG=DA or DAU. This creates a
data set with a data set label identifying it as a BDAM data set.

‘Source: The DSORG operand must be specified in the DCB macro instruction. See
the above comment about creating a BDAM data set.

EXLST=relexp
The EXLST operand specifies the address of the problem program exit list. The
EXLST operand must be specified if the problem program processes user labels during
the Open or Close routine, if the data control block exit routine is used for additional
processing, or if the DCB ABEND exit is used for ABEND condition analysis.

Refer to Appendix D of this publication for the format and requirements of exit list
processing. For additional information about exit list processing, refer to OS/V'S2
MVS Data Management Services Guide.

Source: The EXLST operand can be supplied in the DCB macro instruction or by the
problem program before the exit is needed.

KEYLEN=absexp (maximum value is 255)
The KEYLEN operand specifies the length, in bytes, of all keys used in the data set.
When keys are used, a key is associated with each data block in the data set. If the key
length is not supplied by any source, no input or output requests that require a key can
be specified in a READ or WRITE macro instruction.

Source: The KEYLEN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before the
completion of the data control block exit routine, or by an existing data set label. If
KEYLEN=0 is specified in the DCB macro instruction, a special indicator is set in
RECFM so that KEYLEN cannot be supplied from the DCB subparameter of a DD
statement or data set label of an existing data set. KEYLEN=0 can be coded only in
the DCB macro instruction and will be ignored if specified in the DD statement.

LIMCT=absexp
The LIMCT operand specifies the number of blocks or tracks to be searched when the
extended search option (OPTCD=E) is requested.

When the extended search option is requested and relative block addressing is used,
the records must be fixed-length record format. The system converts the number of
blocks specified in the LIMCT operand into the number of tracks required to contain
the blocks, then proceeds in the manner described below for relative track addressing.

When the extended search option is requested and relative track addressing is used (or
the number of blocks has been converted to the number of tracks), the system
searches for the block specified in a READ or WRITE macro instruction (type DK),
or it searches for available space in which to add a block (WRITE macro instruction,
type DA). The search is as follows:

« The search begins at the track specified by the block address operand of a READ
or WRITE macro instruction.

« The search continues until the search is satisfied, the number of tracks specified in
the LIMCT operand have been searched, or the entire data set has been searched.

48 OS/VS2 Data Management Macro Instructions

—~==

DCB—BDAM

If the search has not been satisfied when the last track of the data set is reached,
the system continues the search by starting at the first track of the data set if the
EOF marker is on the last track that was allocated to the data set. (This operation
allows the number specified in the LIMCT operand to exceed the size of the data
set, causing the entire data set to be searched.) You can insure that the EOF
marker is on the last allocated track by determining the size of the data set and
allocating space in blocks, or by allocating space in tracks and including the RLSE
parameter on the SPACE operand of the DD statement (RLSE specifies that all
unused tracks be returned to the system).

The problem program can change the DCBLIMCT field in the data control block at
any time, but if the extended search option is used, the DCBLIMCT field must not be
zero when a READ or WRITE macro instruction is issued.

If the extended search option is not requested, the system ignores the LIMCT
operand, and the search for a data block is limited to a single track.

Source: The LIMCT operand can be supplied in the DCB macro instruction, the DCB
subparameter of a DD statement, or by the problem program before the count is
required by a READ or WRITE macro instruction.

MACRF= {(R{K[I] | 3[X][S][C]) }

{(WHALK]I] | K[I] | BBICD t

{(R{K[I] | BIXI[SICLW{AIK]I] | K[I] | BICD }
The MACREF operand specifies the type of macro instructions (READ, WRITE,
CHECK, and WAIT) used when the data set is processed. The MACRF operand also
specifies the type of search argument and BDAM functions used with the data set.
When BSAM is used to create a BDAM data set, the BSAM operand MACRF=WL is
specified. This special operand invokes the BSAM routine that can create a BDAM
data set. The following describes the characters that can be specified for BDAM:

A
Specifies that data blocks are to be added to the data set.

C
Specifies that CHECK macro instructions are used to test for completion of read
and write operations. If C is not specified, WAIT macro instructions must be used
to test for completion of read and write operations.

Specifies that the search argument is to be the block identification portion of the
data block. If relative addressing is used, the system converts the relative address to
a full device address (MBBCCHHR) before the search.

K
Specifies that the search argument is to be the key portion of the data block. The
location of the key to be used as a search argument is specified in a READ or
WRITE macro instruction.

R
Specifies that READ macro instructions are used. READ macro instructions can be
issued when the data set is opened for INPUT, OUTPUT, or UPDAT.

S
Specifies that dynamic buffering is requested by specifying ‘S’ in the area address
operand of a READ or WRITE macro instruction.

Macro Instruction Descriptions 49

w
Specifies that WRITE macro instructions are used. WRITE macro instructions can
be issued only when the data set is opened for OUTPUT or UPDAT.
X v
Specifies that READ macro instructions request exclusive control of a data block.
When exclusive control is requested, the data block must be released by a
subsequent WRITE or RELEX macro instruction.

Source: The MACREF operand must be supplied in the DCB macro instruction.

OPTCD=[R | AJ[E][F][W]

The OPTCD operand specifies the optional services that are to be used with the
BDAM data set. These options are related to the type of addressing used, the
extended search option, block position feedback, and write-validity checking. The
following describes the characters that can be specified (the characters can be
specified in any order and no commas are allowed between characters):

A
Specifies that actual device addresses (MBBCCHHR) are provided to the system
when READ or WRITE macro instructions are issued.

Specifies that the extended search option is used to locate data blocks or available
space into which a data block can be added. When the extended search option is
specified, the number of blocks or tracks to be searched must be specified in the
LIMCT operand. The extended search option is ignored if actual addressing
(OPTCD—A) is also specified. The extended search option requires that the data
set have keys and that the search be made by key (by specifying DK in the READ
or WRITE macro or DA in the WRITE macro).

Specifies that block position feedback requested by a READ or WRITE macro
instruction is to be in the same form that was originally presented to the system in
the READ or WRITE macro instruction. If the F operand is omitted, the system
provides feedback, when requested, in the form of an 8-byte actual device address.
(Feedback is always provided if exclusive control is requested.)

R
Specifies that relative block addresses (in the form of a 3-byte binary number) are
provided to the system when a READ or WRITE macro-instruction is issued.

w .
Specifies that the system performs a validity check for each record written.

Note: Relative track addressing can only be specified by omitting both A and R from

"the OPTCD operand. If you want to specify relative track addressing after your data

set has been accessed using another addressing scheme (OPTCD=A or R), you should
either specify a valid OPTCD operand (E, F, or W) in the DCB macro or DD card
when you reopen your data set, or zero out the OPTCD=A or R bits in the data
control block exit routine. Note that the first method will prevent the open routines
from merging any of the other OPTCD bits from the format-1 DSCB in the DCB.

-Both methods will update the OPTCD in the DSCB if the open is for OUTPUT,

OUTIN, or UPDAT.

Source: The OPTCD operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the DCB open exit routine.

50 OS/VS2 Data Management Macro Instructions

DCB—BDAM

RECFM={U | V[S|BS]| F[T]}
The RECFM operand specifies the format and characteristics of the records in the
data set. The following describes the characters that can be coded (if the optional
characters are coded, they must be coded in the order shown above):

B
Specifies that the data set contains blocked records. The record format
RECFM=VBS is the only combination in which B can be specified. RECFM=VBS
does not cause the system to process spanned records; the problem program must
block and segment the records. RECFM=VBS is treated as a variable-length record
by BDAM.

F
Specifies that the data set contains fixed-length records.

S
Specifies that the data set contains variable-length spanned records when it is
coded as RECFM=VS. When RECFM=VBS is coded, the records are treated as
variable-length records, and the problem program must block and segment the
records.

T
Specifies that the track-overflow feature is used with the data set. The
track-overflow feature allows a record to be partially written on one track and the
remainder is written on the following track (if required).

8]
Specifies that the data set contains undefined-length records.

\4

Specifies that the data set contains variable-length records.

Source: The RECFM operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, the problem program before completion of the
data control block exit routine, or by the data set label of an existing data set.

SYNAD=relexp
The SYNAD operand specifies the address of the error analysis routine to be given
control when an uncorrectable input/output error occurs. The contents of the
registers when the error analysis routine is given control are described in Appendix A
of this publication.

The error analysis routine must not use the save area pointed to by register 13 because
this area is used by the system. The system does not restore registers when it regains
control from the error analysis routine. The error analysis routine can issue a
RETURN macro instruction which uses the address in register 14 to return control to
the system. When control is returned in this manner, the system returns control to the
problem program and proceeds as though no error had been encountered. When a
BDAM data set is being created, a return from the error analysis routine to the system
causes abnormal termination of the task.

If the SYNAD operand is omitted, the task is abnormally terminated when an
uncorrectable input/output error occurs.

Source: The SYNAD operand can be supplied in the DCB macro instruction or by the
problem program. The problem program can also change the error routine address at
any time.

Macro Instruction Descriptions 51

DCB—Construct a Data Control Block (BISAM)

The data control block for the basic indexed sequential access method (BISAM) is
constructed during assembly of the problem program. The DCB macro instruction must
not be coded within the first 16 bytes of addressability for the control section (CSECT).
The DSORG and MACRF operands must be coded in the DCB macro instruction, but
the other DCB operands can be supplied from other sources. Each BISAM DCB operand
description contains a heading, “Source.” The information under this heading describes
the sources from which the operand can be supplied to the data control block.

Before a DCB macro instruction for a BISAM data set is coded, the following
characteristics of BISAM data sets should be considered:

« BISAM cannot be used to create an indexed sequential data set.

« BISAM performs the functions of direct retrieval of a logical record by key, direct
update-in-place for a block of records, direct insertion of a new record in its correct
key sequence.

« Buffering can be controlled by the problem program, or dynamic buffering can be
specified in the DCB macro instruction and subsequently requested in a READ macro
instruction.

+ The problem program must synchronize 1/O operations by issuing a CHECK or
WAIT macro instruction to test for completion of Read and Write operations.

« Additional DCB operands provide the capability of reducing input/output operations
by defining work areas to contain the highest level master index and the records being
processed.

For additional information about the characteristics of BISAM processing, refer to
0S/VS2 MVS Data Management Services Guide.

The DCB macro for BISAM is written as follows:

[symbol] | DCB [BFALN={F | D}]
[BUFCB= relexp]
[BUFL=absexp]
[BUFNO= absexp |
[DDNAME= symbol]!

DSORG=IS

[EXLST= relexp]

MACRF= {(RIS[C]) }
{(W{U[A]| A}[CD }

{(R[U[S] | SI[CL,W{U[A] | A}[C]}

[MSHI= relexp]
[MSWA= relexp |
[NCP=absexp]
[SMSI= absexp]
[SMSW=absexp]
[SYNAD= relexp]

IThis parameter must be supplied before an OPEN macro is issued for this DCB;
it cannot be supplied in the open exit routine.

52 0S/VS2 Data Management Macro Instructions

N

DCB—BISAM

The following describes the DCB operands that can be supplied when the basic indexed
sequential access method is used:

BFALN={F | D} ,
The BFALN operand specifies the boundary alignment for each buffer in the buffer
pool when the buffer pool is acquired for use with dynamic buffering or when the
buffer pool is constructed by a GETPOOL macro instruction. If the BFALN operand
is omitted, the system provides doubleword alignment for each buffer. The following
describes the characters that can be specified:

F
Specifies that each buffer is on a fullword boundary that is not also a doubleword
boundary.

D
Specifies that each buffer is on a doubleword boundary.

If the BUILD macro instruction is used to construct the buffer pool or the problem
program controls all buffering, the problem program must provide an area for the
buffers and control buffer alignment.

Source: The BFALN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BUFCB=relexp :
The BUFCB operand specifies the address of the buffer pool control block when the
buffer pool is constructed by a BUILD macro instruction.

If dynamic buffering is requested or the buffer pool is constructed by a GETPOOL
macro instruction, the system places the address of the buffer pool control block into
the data control block, and the BUFCB operand must be omitted. The BUFCB
operand must be omitted if the problem program controls all buffering.

Source: The BUFCB operand can be supplied in the DCB macro instruction or by the’
problem program before completion of the data control block exit routine.

BUFL=absexp (maximum value is 32,760)
The BUFL operand specifies the length of each buffer to be constructed by a BUILD
or GETPOOL macro instruction. When the data set is opened, the system computes
the minimum length required and verifies that the length in the buffer pool control
block is equal to or greater than the minimum required. The system then inserts the
computed length into the BUFL field of the data control block.

If dynamic buffering is requested, the system computes the buffer length required, and
the BUFL operand is not required.

If the problem program controls all buffering, the BUFL operand is not required.
However, an ISAM data set requires additional buffer space for system use. For a
description of the buffer length required for various ISAM operations, refer to
OS/VS2 MVS Data Management Services Guide.

Source: The BUFL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

Macro Instruction Descriptions 53

BUFNO=absexp (maximum value is 255)
The BUFNO operand specifies the number of buffers requested for use with dynamic
buffering, or it specifies the number of buffers to be constructed by a BUILD macro
instruction. If dynamic buffering is requested but the BUFNO operand is omitted, the
system automatically acquires two buffers for use with dynamic buffering.

If the GETPOOL macro instruction is used to construct the buffer pool, the BUFNO
operand is not required.

Source: The BUFNO operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

DDNAME=symbol
- The DDNAME operand specifies the name used to identify the job control language
data definition statement that defines the ISAM data set to be processed.

Source: The DDNAME operand can be supplied in the DCB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the data
set. '

DSORG=IS
The DSORG operand specifies the indexed sequential organization of the data set. IS
is the only combination of characters that can be coded for BISAM.

Source: The DSORG operand must be coded in the DCB macro instruction as well as
in the DCB subparameter of a DD statement unless it is for a data set passed from a
previous job step. In this case, DSORG may be omitted from the DD statement.

EXLST=relexp
The EXLST operand specifies the address of the problem program exit list. The
EXLST operand is required if the problem program uses the data control block exit
routine for additional processing or if the DCB ABEND exit is used for ABEND
condition analysis.

Refer to Appendix D of this publication for the format and requirements for exit list
processing. For additional information about exit list processing, refer to OS/VS2
MVS Data Management Services Guide.

Source: The EXLST operand can be supplied in the DCB macro instruction or by the
problem program before the associated exit is required.

MACRF= {(R[S][C)) : }
{(W{U[A] | A}[CD }

{(R[U[S]| SI[CL,W{U[A] | A} CD}
The MACRF operand specifies the type of macro instructions (READ, WRITE,
CHECK, WAIT, and FREEDBUF) and type of processing (add records, dynamic
buffering, and update records) to be used with the data set being processed. The
operand can be coded in any of the combinations shown above; the following
describes the characters that can be coded: ‘

A .
Specifies that new records are to be added to the data set. This character must be
coded if WRITE KN macro instructions are used with the data set.

C
Specifies that the CHECK macro instruction is used to test 1/0 operations for
completion. If C is not coded, WAIT macro instructions must be used. 4
R 4
Specifies that READ macro instructions are used.

54 OS/VS2 Data Management Macro Instructions

DCB—BISAM

S
Specifies that dynamic buffering is requested in READ macro instructions. S should
not be specified if the problem program provides the buffer pool.

U .
Specifies that records in the data set will be updated in place. If U is coded in

combination with R, it must also be coded in combination with W. For example,
MACRF=(RU,WU).

w
Specifies that WRITE macro instructions are used.

Source: The MACRF operand must be coded in the DCB macro instruction.

MSHI=relexp
The MSHI operand specifies the address of the storage area used to contain the
highest level master index for the data sét. The system uses this area to reduce the
search time required to find a given record in the data set. The MSHI operand is
coded only when the SMSI operand is coded.

Source: The MSHI operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

MSWA=relexp
The MSWA operand specifies the address of the storage work area to be used by the
system when new records are being added to the data set. This operand is optional,
but the system acquires a minimum-size work area if the operand is omitted. The
MSWA operand is coded only when the SMSW operand is coded.

Processing efficiency can be increased if more than a minimum-size work area is
provided. For more detailed information about work area size, refer to OS/VS2
MVS Data Management Services Guide.

Note: QISAM uses the DCBMSWA, DCBSMSI, and DCBSMSW fields in the data
control block as a work area; these fields contain meaningful information only when
the data set is opened for BISAM.

Source: The MSWA operand can be supplied in the DCB macro instruction or by the
proble_m program before completion of the data control block exit routine.

NCP=absexp (maximum value is 99)
The NCP operand specifies the maximum number of READ/WRITE macro
instructions that are issued before the first CHECK (or WAIT) macro instruction is
issued to test for completion of the I/0 operation. The maximum number that can be
specified may be less than 99 dependlng on the amount of virtual storage available in
the region or partition. If the NCP operand is omitted, one is assumed. If dynamic
buffering is used, the value specified for the NCP operand must not exceed the
number of buffers specified in the BUFNO operand.

Source: The NCP operand can be supplied in the DCB macro instruction, in the DCB
subparameter of a DD statement, or by the problem program before completion of the
data control block open exit routine.

Macro Instruction Descriptions 55

SMSI—absexp {maximum value is 65,535)

The SMSI operand specifies the length, in bytes, required to contain the highest level
master index for the data set being processed. The size required can be determined
from the DCBNCRHI field of the data control block. When an ISAM data set is
created (with QISAM), the size of the highest level index is inserted into the
DCBNCRHI field. If the value specified in the SMSI operand is less than the value in
the DCBNCRHI field, the task is abnormally terminated.

Note: QISAM uses the DCBMSWA, DCBSMSI, and DCBSMSW fields as a work
area; these fields contain meaningful information only when the data set is opened for
BISAM.

Source: The SMSI operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

SMSW=gbsexp (maximum value is 65,535)

The SMSW operand specifies the length, in bytes, of a work area that is used by
BISAM. This operand is optional, but the system acquires a minimum-size work area
if the operand is omitted. The SMSW operand is coded only when the MSWA
operand is also coded. If the SMSW operand is coded but the size specified is less
than the minimum required, the task is abnormally terminated. OS/VS2 MVS Data
Management Services Guide describes the methods of calculating the size of the
work area.

If unblocked records are used, the work area must be large enough to contain all the
count fields (eight bytes each), key fields, and data fields contained on one
direct-access device track.

If blocked records are used, the work area must be large enough to contain all the
count fields (eight bytes each) and data fields contained on one direct-access device
track plus additional space for one logical record (LRECL value).

Note: QISAM uses the DCBMSWA, DCBSMSI, and DCBSMSW fields in the data
control block as a work area; these fields contain meaningful information only when
the data set is opened for BISAM.

Source: The SMSW operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

SYNAD=relexp

The SYNAD operand specnfles the address of the error anlaysis routine given control
when an uncorrectable input/output error occurs. The contents of the registers when
the error analysis routine is given control are described in Appendix A of this
publication. :

The error anlaysis routine must not use the save area pointed to by register 13 because
this area is used by the system. The system does not restore registers when it regains
control from the error analysis routine. The error analysis routine can issue a
RETURN macro instruction which uses the address in register 14 to return control to
the system. When control is returned in this manner, the system returns control to the
problem program and proceeds as though no error had been encountered. If the error
analysis routine continues processing, the results are unpredictable.

If the SYNAD operand is omitted, the task is abnormally terminated when an
uncorrectable input/output error occurs.

Source: The SYNAD operand can be supplied in the DCB macro instruction or by the
problem program. The problem program can also change the error analysis routine
address at any time. -

56 OS/VS2 Data Management Macro Instructions

DCB—Construct a Data Control Block (BPAM)

The data control block for the basic partitioned access method (BPAM) is constructed
during assembly of the problem program. The DCB macro instruction can be coded at
any point in a control section (CSECT). The DSORG and MACRF operands must be
specified in the DCB macro instruction, but the other DCB operands can be supplied
from other sources. Each of the BPAM DCB operand descriptions contains a heading,
“Source.” The information under this heading describes the sources which can supply the
operand to the data control block.

Before a DCB macro instruction for a.BPAM data set is coded, the following
characteristics of partitioned data sets should be considered:

« The entire partitioned data set must reside on one direct-access volume, but several
such data sets, on the same or different volumes, can be concatenated for input.

« When a partitioned data set is being created, the first (or only) DD statement for the
data set must contain a SPACE parameter defining the size of the entire data set and
its directory. From this information, the system allocates space for the data set-and
pre-formats the data set directory. As subsequent data set members are added, they
are added in the space originally allocated.

« A single member of a partitioned data set can be added or retrieved using BSAM or
QSAM without using the BLDL, FIND, or STOW macro instructions. In this case, the
data set member is being processed as a sequential data set (DSORG=PS). Processing
a member in this manner does not provide the full capability of the basic partitioned
access method. For more information about processing a member using BSAM or
QSAM, refer to OS/VS2 MVS Data Management Services Guide.

» A single member or multiple members can be added, retrieved, or updated using
BPAM (many of the routines used by BPAM are actually BSAM routines).

o Buffers for a BPAM data set can be acquired automatically, but buffer control must
be provided by the problem program. The problem program must issue a READ
macro instruction that provides a buffer address to fill an input buffer, and it must.
place the data in an output buffer before issuing a WRITE macro instruction to write
a data block.

« Although a BPAM data set can contain blocked records, the problem program must
perform all blocking and deblocking of records. BPAM provides only the capability to
read or write a data block, but the data block can contain multiple logical records
assembled by the problem program.

« The STOW macro instruction can be used to add, delete, change, or replace a member
name or alias in the directory.

« Multiple members of the data set can be processed by building a list of member
locations (with a BLDL macro instruction) and using the FIND macro instruction (in
conjunction with the list) to locate the beginning of each member.

« The problem program must synchronize I/0 operations by issuing a CHECK macro
instruction for each READ or WRITE macro instruction issued.

These characteristics of partitioned data sets and the basic partitioned access method are
described in more detail in OS/VS2 MVS Data Management Services Guide.

Macro Instruction Descriptions 57

The DCB macro for BPAM is written as follows:

[symbol] | DCB [BFALN={F | D}]
[BLKSIZE= absexp]
[BUFCB= relexp |
[BUFL=absexp]
[BUFNO=absexp]
[DDNAME=symbol]!
DSORG={PO | POU}
[EODAD=relexpl
[EXLST=relexp |
[KEYLEN= absexp]
[LRECL=absexp]
MACRF={(R | W|R,W)}!
[NCP=absexp]
[OPTCD={C | W[C]}]

[RECFM={U[T][A | M] }
{VIB[T]| TIIA I M1}
{FIB[T] | THA |M]}]

[SYNAD=relexp]

l'l'hls must be supplied before an OPEN macro is issued for this DCB;

it cannot be supplied in the open exit routine.

The following describes the DCB operands that can be specified when a BPAM data set
is being created or processed:

BFALN={F | D}

The BFALN operand specifies the boundary alignment for each buffer in the buffer
pool when the buffer pool is constructed automatically or by a GETPOOL macro
instruction. If the BFALN operand is omitted, the system provides doubleword
alignment for each buffer. The following describes the characters that can be specified
in the BFALN operand:

F
Specifies that each buffer is aligned on a fullword boundary that is not also a
doubleword boundary.

D
Specifies that each buffer is aligned on a doubleword boundary.

If the BUILD macro instruction is used to construct the buffer pool or if the problem
program controls all buffering, the problem program must provide an area for the
buffers and control buffer alignment.

Source: The BFALN operand can be supplied in the DCB ‘macr_o instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BLKSIZE=absexp (maximum value is 32,760)

The BLKSIZE operand specifies the length, in bytes, of each data block for
fixed-length records, or it specifies the maximum length, in bytes, for variable-length
or undefined-length records. If keys are used, the length of the key is not included in
the value specified for the BLKSIZE operand.

The actual block size that can be specified depends on the record format and the type
of direct-access device being used. If the track-overflow feature is used, the block size
can be up to the maximum. If the track-overflow feature is not used, the maximum

58 0S/VS2 Data Management Macro Instructions

o

~ =

DCB—BPAM

block size is determined by the track capacity of a single track on the direct-access
device being used. Device capacity for direct-access devices is described in Appendix
C of this publication. For additional information about device capacity and space
allocation, refer to OS/VS2 MVS Data Management Services Guide.

For variable-length records, the value specified in the BLKSIZE operand must include
the maximum logical record length (up to 32,756 bytes) plus four bytes for the block
descriptor word (BDW). ‘

For undefined-length records, the value specified for the BLKSIZE operand can be
altered by the problem program when the actual length becomes known to the
problem program. The value can be inserted into the DCBBLKSI field of the data
control block or specified in the length operand of a READ/WRITE macro
instruction.

Source: The BLKSIZE operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

BUFCB=relexp
The BUFCB operand specifies the address of the buffer pool control block when the
buffer pool is constructed by a BUILD macro instruction.

If the buffer pool is constructed automatically or by a GETPOOL macro instruction,
the system places the address of the buffer pool control block into the data control
block and the BUFCB operand can be omitted. Also, if the problem program controls
all buffering, the BUFCB operand should be omitted.

Source: The BUFCB operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

BUFL=absexp (maximum value is 32,760)
The BUFL operand specifies the length, in bytes, of each buffer in the buffer pool
when the buffer pool is acquired automatically. If the BUFL operand is omitted and
the buffer pool is acquired automatically, the system acquires buffers with a length
that is equal to the sum of the values specified in the KEYLEN and BLKSIZE
operands. If the problem program requires longer buffers, the BUFL operand should
be specified.

If the problem program controls all buffering, the BUFL operand is not required.

Source: The BUFL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine. :

BUFNO=absexp (maximum value is 255)
The BUFNO operand specifies the number of buffers to be constructed by a BUILD
macro instruction, or it specifies the number of buffers to be acquired automatically
by the system.

If the problem program controls all buffering or if the buffer pool is constructed by a
GETPOOL macro instruction, the BUFNO operand should be omitted.

Source: The BUFNO operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

DDNAME=symbol
The DDNAME operand specifies the name used to identify the job control language
data definition (DD) statement that defines the data set being created or processed.

Macro Instruction Descriptions 59

Source: The DDNAME operand can be supplied in the DCB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the data
set.

DSORG={PO | POU}

The DSORG operand specifies the data set organization and if the data set contains
any location-dependent information that would make it unmovable. The following
describes the characters that can be specified:

PO
Specifies a partitioned data set organization.

POU
Specifies a partitioned data set organization and that the data set contains
location-dependent information.

Note: If BSAM or QSAM is used to add or retrieve a single member of a partitioned
data set, a sequential access method is being used, and the DSORG operand is
specified as PS or PSU. The name of the member being processed in this manner is
supplied in a DD statement.

Source: The DSORG operand must be specified in the DCB macro instruction.

EODAD=relexp

The EODAD operand specifies the address of the routine given control when the end
of the input data set is reached. Control is given to this routine when an input request
is made (READ macro instruction) and there are no additional input records to
retrieve. The routine is entered when a CHECK macro instruction is issued and the
end of the data set is reached. If the end of the data set is reached and no EODAD
address has been supplied, the task is abnormally terminated. For additional
information on the EODAD routine, see 0S/VS2 MVS Data Management Services
Guide.

Source: The EODAD operand can be supplied in the DCB macro instruction or by the
problem program before the end of the data set is reached.

EXLST=relexp

The EXLST operand specifies.the address of the problem program exit list. The
EXLST operand is required if the problem program uses the data control block exit
routine for additional processing or if the DCB ABEND exit is used for ABEND
condition analysis.

Refer to Appendix D of this publication for the format and requirements of the exit
list processing. For additional information about exit list processing, refer to OS/VS2
MVS Data Management Services Guide.

Source: The EXLST operahd can be supplied in the DCB macro instruction or by the
problem program before the OPEN macro instruction is issued to open the data set.

KEYLEN=absexp (maximum value is 255)

The KEYLEN operand specifies the length, in bytes, of the key associated with each
data block in the direct-access device data set. If the key length is not supplied from

any source by the end of the data control block exit routine, a key length of zero (no
keys) is assumed.

Source: The KEYLEN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before the
completion of the data control block exit routine, or by the data set label of an
existing data set. If KEYLEN=0 is specified in the DCB macro instruction, a special
indicator is set in RECFM so that KEYLEN cannot be supplied from the DCB
subparameter of a DD statement or data set label of an existing data set. KEYLEN=0

60 0S/VS2 Data Management Macro Instructions

DCB—BPAM

can be coded only in the DCB macro instruction and will be ignored if specified in the
DD statement.

LRECL=absexp (maximum value is 32,760)
The LRECL operand specifies the length, in bytes, of each fixed-length logical record
in the data set; It is required only for fixed-length records. The value specified in the
LRECL operand cannot exceed the value specified in the BLKSIZE operand.

If the records are unblocked, the value specified in the LRECL operand must equal
the value specified in the BLKSIZE operand. If the records are blocked, the value
specified in the LRECL operand must be evenly divisible into the value specified in
the BLKSIZE operand.

Source: The LRECL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

MACRF={(R| W |R,W)}
The MACRF operand specifies the. type of macro instructions (READ, WRITE, and
NOTE/POINT) that are used to process the data set. The following describes the
characters that can be specified:

R
Specifies that READ macro instructions are used. This operand automatically
provides the capability to use both the NOTE and POINT macro instructions with
the data set.

w
Specifies that WRITE macro instructions are used. This operand automatically
provides the capability to use both the NOTE and POINT macro instructions with
the data set.

All BPAM READ and WRITE macro instructions issued must be tested for
completion using a CHECK macro instruction. The MACRF operand does not require
any coding to specify that a CHECK macro instruction will be used.

Source: The MACRF operand must be specified in the DCB macro instruction.

NCP=absexp (maximum value is 99)
The NCP operand specifies the maximum number of READ and WRITE macro
instructions that will be issued before the first CHECK macro instruction is issued.
The maximum number may be less than 99 depending on the amount of virtual
storage available in the region or partition. If chained scheduling is specified, the value
of NCP determines the maximum number of channel program segments that can be
chained and must be specified as more than one. If the NCP operand is omitted, one is
assumed.

Source: The NCP operand can be supplied in the DCB macro instruction, in the DCB
subparameter of a DD statement, or by the problem program before completion of the
data control block open exit routine.

Macro Instruction Descriptions 61

OPTCD={C | W[C]}

The OPTCD operand specifies the optional services performed by the system. The
following describes the characters that can be specified; they can be specified in any
order and no commas are allowed between characters:

C
Specifies that chained scheduling is used.

Note: Chained scheduling is supported whether requested or not, except where it is
not allowed. See OS/VS2 MVS Data Management Services Guide for
‘conditions where chained scheduling is not allowed.

W
Specifies that the system performs a validity check for each record written.

Source: The OPTCD operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before an OPEN
macro instruction is issued to open the data set. However, all optional services must be
requested from the same source.

RECFM= {U[T][A|M] }

{VIB[T]| TI[A | M]}

{F[B[T] | TI[A | M] }
The RECFM operand specifies the record format and characteristics of the data set
being created or processed. All the record formats shown above can be specified, but
in those formats that show blocked records, the problem program must perform the
blocking and deblocking of logical records; BPAM recognizes only data blocks. The
following describes the characters that can be specified:

A
Specifies that the records in the data set contain American National Standards
Institute (ANSI) control characters. Refer to Appendix E for a description of
control characters.

B
Specifies that the data set contains blocked records.

F
Specifies that the data set contains fixed-length records.

M .
Specifies that the records in the data set contain machine code control characters.
Refer to Appendix E for a description of control characters.

T
Specifies that the track-overflow feature is used with the data set. The
track-overflow feature allows a record to be written partially on one track of a
direct-access device and the remainder of the record written on the following track
(if required). Chained scheduling (OPTCD=C) cannot be used if the
track-overflow feature is used.

U
Specifies that the data set contains undefined-length records.

\
Specifies that the data set contains variable-length records.

Source: The RECFM operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

62 OS/VS2 Data Management Macro Instructions

=

DCB—BPAM

SYNAD=relexp
The SYNAD operand specifies the address of the error analysis (SYNAD) routine to
be given control when an uncorrectable input/output error occurs. The contents of
the registers when the error analysis routine is given control are described in
Appendix A.

The error analysis routine must not use the save area pointed to by register 13,
because this area is used by the system. The system does not restore registers when it
regains control from the error analysis routine. The error analysis routine can return
control to the system by issuing a RETURN macro instruction. If control is returned
to the system, the system returns control to the problem program and proceeds as
though no error had been encountered.

If the SYNAD operand is omitted, the task is abnormally terminated when an
uncorrectable input/output error occurs.

Source: The SYNAD operand can be supplied in the DCB macro instruction or by the
problem program. The problem program can also change the error routine address at
any time. '

Macro Instruction Descriptions 63

DCB—Construct a Data Control Block (BSAM)

The data control block for the basic sequential access method (BSAM) is constructed
during assembly of the problem program. The DSORG and MACREF operands must be
coded in the DCB macro instruction, but the other DCB operands can be supplied, to the
data control block, from other sources. Each DCB operand description contains a
heading, “Source.” The information under this heading describes the sources from which
an operand can be supplied.

Before a DCB macro instruction for creating or processing a BSAM data set is coded, the
following characteristics of BSAM data sets should be considered:

o Although several record formats with blocked records can be specified for BSAM, the
problem program must perform all blocking and deblocking of records. BSAM
provides only the capability to read or write a data block, but the block can contain
one or more logical records assembled by the problem program.

o Buffers for a BSAM data set can be acquired automatically, but buffer control must
be provided by the problem program. The problem program must issue a READ
macro instruction that provides a buffer address to fill an input buffer, and it must
place the data in an output buffer before issuing the WRITE macro instruction to
write a data block.

« The problem program must synchronize I/O operations by issuing a CHECK macro
instruction for each READ and WRITE macro instruction issued.

« BSAM provides capability for nonsequential processing by using the NOTE and
POINT macro instructions.

« Keys for direct-access device records can be read or written using BSAM.

o Specifying the DEVD operand in the DCB macro instruction can make the program
device dependent.

These characteristics of basic sequential access method data sets are described in more
detail in OS/VS2 MVS Data Management Services Guide.

For information on additional operands for the DCB macro for the 1275 or 1419, see
OS Data Management Services and Macro Instructions for IBM 1419/1275.

For information on additional operands for the DCB macro for the 3886, see OS/VS
IBM 3886 Optical Character Reader Model 1 Reference.

64 OS/VS2 Data Management Macro Instructions

DCB—BSAM
The DCB macro for BSAM is written as follows:

[symbol] | DCB [BFALN={F | D}]
[BFTEK=R]
[BLKSIZE=absexp |
[BUFCB=relexp]
[BUFL=absexp]
[BUFNO= absexp]
[BUFOFF={ absexp | L}]
[DDNAME-= symbol |1

[DEVD= {DA
[,LKEYLEN=absexp | }
{TA
[LDEN={0|1]2]3]4}]
[,TRTCH={C|E|ET|T}] }
{PT
[,CODE={A|B|C|F|I|N|T}] }
{PR
LPRTSP={0]1]2]3}] 1
{PC

[,LMODE=[C | E][R]]

[STACK={12}]

[,FUNC={I|P|PW[XT]|R|RP[D] |
RW[T] | RWP[XT][D] | W[T]}1}

{RD
LMODE=[C|E]J[O|R]]
[LSTACK={1| 2}]
LFUNC={I|P|PW[XT]|R | RP[D]|
RWI[T] | RWPIXT][D] | W[T]}]}]

DSORG={PS | PSU}
[EODAD= relexp]
[EXLST= relexp]
[KEYLEN= absexp]
[LRECL={absexp | X}]

MACRF= {(R[C|P)) }
f{WICIPILD }
{R[C | PLW[C | P}t
[NCP=absexp]

1This parameter must be supplied before an OPEN macro is issued for this DCB;)
it cannot be supplied in the open exit routine.

Continued on next page.

Macro Instruction Descriptions 65

Page of GC26-3873-0
As Updated March 30, 1979
By TNL GN26-0941

[OPTCD= {B }
{T }
fulc] }
{CITIBIU] }
{HIZIB] }
grerul 3
{WICITIBI[UR
{ZICITIBIU] }
 {QICIBIIT| Z]}]

[RECFM= {U[T][A | M] }
{VIB|S|T|BS|BTIA | M]}
{DIBJ[A] }
{F[B|S|T|BS|BTI[A | M]}]

[SYNAD=relexp]

The following describes the operands that can be specified in the DCB macro instruction
for a BSAM data set:

BFALN={F | D}
The BFALN operand specifies the boundary alignment for each buffer in the buffer
pool when the buffer pool is constructed automatically or by a GETPOOL macro
instruction. If the BFALN operand is omitted, the system provides doubleword
alignment for each buffer.

If the data set being created or processed contains ASCII tape records with a block
prefix, the block prefix is entered at the beginning of the buffer, and data alignment
depends on the length of the block prefix. For a description of how to specify the
block prefix length, refer to the DCB BUFOFF operand.

The following describes the characters that can be specified:

F
Specifies that each buffer is on a fullword boundary that is not also a doubleword
boundary.

D .
Specifies that each buffer is on a doubleword boundary.

If the BUILD macro instruction is used to construct the buffer pool or if the problem
program controls all buffering, the problem program must provide an area for the
buffers and control buffer alignment.

Source: The BFALN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine. If both the BFALN and BFTEK operands are
specified, they must be supplied by the same source.

BFTEK=R
The BFTEK=R operand specifies that BSAM is used to read unblocked
variable-length spanned records with keys from a BDAM data set. Each read
operation reads one segment of the record and places it in the area designated in the
READ macro instruction. The first segment enters at the beginning of the area, but

66 OS/VS2 MVS Data Management Macro Instructions

DCB—BSAM

all subsequent segments are offset by the length of the key (only the first segment has
a key). The problem program must provide an area in which to assemble a record,
identify each segment, and assemble the segments into a complete record.

Source: The BFTEK operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine. If both the BFTEK and BFALN operands are
specified, they must be supplied from the same source.

BLKSIZE=absexp (maximum value is 32,760)
The BLKSIZE operand specifies the maximum block length in bytes. For fixed-length,
unblocked records, this operand specifies the record length. The BLKSIZE operand
includes only the data block length; if keys are used, the length of the key is not
included in the value specified for the BLKSIZE operand.

The actual value that can be specified in the BLKSIZE operand depends on the device
type and the record format being used. Device capacity is shown in Appendix C of
this publication. For additional information about device capacity, refer to OS/VS?2
MVS Data Management Services Guide. For direct-access devices when the
track-overflow feature is used or variable-length spanned records are being processed,
the value specified in the BLKSIZE operand can be up to the maximum value. For
other record formats used with direct-access devices, the value specified for BLKSIZE
cannot exceed the capacity of a single track.

If fixed-length records are used for a SYSOUT data set, the value specified in the
BLKSIZE operand must be an integral multiple of the value specified for the logical
record length (LRECL); otherwise the system will adjust the block size downward to
the nearest multiple.

If variable-length records are used, the value specified in the BLKSIZE operand must
include the maximum logical record length (up to 32,756 bytes) plus the four bytes
required for the block descriptor word (BDW). For format-D variable-length records
(ASCII data sets), the minimum value for BLKSIZE is 18 bytes and the maximum
value is 2,048 bytes.

If ASCII tape records with a block prefix are processed, the value specified in the
BLKSIZE operand must also include the length of the block prefix.

If BSAM is used to read variable-length spanned records from a BDAM data set, the
value specified for the BLKSIZE operand must be as large as the longest possible
record segment in the BDAM data set, including four bytes for the segment descriptor
word (SDW) and four bytes for the block descriptor word (BDW).

If undefined-length records are used, the value specified for the BLKSIZE operand
can be altered by the problem program when the actual length becomes known to the
problem program. The value can be inserted directly into the DCBBLKSI field of the
data control block or specified in the length operand of a READ/WRITE macro
instruction.

Source: The BLKSIZE operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

Macro Instruction Descriptions 67

BUFCB=relexp

The BUFCB operand spec1f1es the address of the buffer pool control block in a buffer
pool constructed by a BUILD macro instruction.

If the buffer pool is constructed automatically or by a GETPOOL macro instruction,
the system places the address of the buffer pool control block into the data control
block, and the BUFCB operand should be omitted. If the problem program controls all
buffering, the BUFCB operand is not required.

Source: The BUFCB operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

BUFL=absexp (maximum value is 32,760)

The BUFL operand specifies the length, in bytes, for each buffer in the buffer pool
when the buffer pool is acquired automatically. The system acquires buffers with a
length equal to the sum of the values specified in the KEYLEN and BLKSIZE
operands if the BUFL operand is omitted; if the problem program requires larger
buffers, the BUFL operand must be specified. If the BUFL operand is specified, it
must be at least as large as the value specified in the BLKSIZE operand. If the data set
is for card image mode, the BUFL operand should be specified as 160. The description
of the DEVD operand contains a description of card image mode.

If ihe data set contains ASCII tape recdrds with a block prefix, the value specified in
the BUFL operand must include the block length plus the length of the block prefix.

If the problem program controls all buffering or if the buffer pool is constructed by a
GETPOOL or BUILD macro instruction, the BUFL operand is not required.

Source: The BUFL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BUFNO=absexp (maximum value is 255)

The BUFNO operand specifies the number of buffers constructed by a BUILD macro
instruction or the number of buffers to be acquired automatically by the system.

If the problem program controls all buffering or if the buffer pool is constructed by a
GETPOOL macro instruction, the BUFNO operand should be omitted.

Source: The BUFNO operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BUFOFF={ absexp |L}

The BUFOFF operand specifies the length, in bytes, of the block prefix used with an
ASCII tape data set. When BSAM is used to read an ASCII tape data set, the problem
program must use the block prefix length to determine the location of the data in the
buffer. When BSAM is used to write an output ASCII tape data set, the problem

program must insert the block prefix into the buffer followed by the data (BSAM

considers the block prefix as data). The block prefix and data can consist of any
characters that can be translated into ASCII code; any character that cannot be
translated is replaced with a substitute character. For format-D records, the RDW

. must be binary; if RECFM=D and BUFOFF=L, then the RDW and BDW must be

68 OS/VS2 Data Management Macro Instructions

A}

DCB—BSAM

binary. On output, the control program translates the BDW and RDW to zoned
decimal and on input, the control program converts them to binary. The following can
be specified in the BUFOFF operand:

absexp
Specifies the length, in bytes, of the block prefix. This value can be from O to 99
for an input data set. The value must be 0 for writing an output data set with
fixed-length or undefined-length records (BSAM considers the block prefix part of
the data record).

Specifies that the block prefix is 4 bytes long and contains the block length.
BUFOFF=L is used when format-D records (ASCII) are processed. When
BUFOFF=L is specified, the BSAM problem program can process the data records
(using READ and WRITE macro instructions) in the same manner as if the data
were in format-V variable-length records. For further information on this operand,
see “Variable-Length Records—Format D’ in OS/VS2 MVS Data Management
Services Guide.

If the BUFOFF operand is omitted for an input data set with format-D records, the
system inserts the record length into the DCBLRECL field of the data control block;
the problem program must obtain the length from this field to process the record.

If the BUFOFF operand is omitted from an output data set with format-D records, the
problem program must insert the actual record length into the DCBBLKSI field of the
data control block or specify the record length in the length operand of a WRITE
macro instruction.

Source: The BUFOFF operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before an OPEN
macro instruction is issued to open the data set. BUFOFF=absexp can also be

" supplied by the label of an existing data set; BUFOFF=L cannot be supplied by the
label of an existing data set.

DDNAME=symbol
The DDNAME operand specifies the name used to identify the job control language
data definition (DD) statement that defines the data set being created or processed.

Source: The DDNAME operand can be supplied in the DCB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the data
set. ‘

DEVD={DA | TA | PT | PR | PC | RD}|, options]
The DEVD operand specifies the device type on which the data set can or does reside.
The device types above are shown with the optional operand(s) that can be coded
when a particular device is used. The devices are listed in order of
device-independence. For example, if DEVD=DA is coded in a DCB macro
instruction (or the DEVD operand is omitted, which causes a default to DA), the data
control block constructed during assembly could later be used for any of the other
devices, but if DEVD=RD is coded, the data control block can be used only with a
card reader or card reader punch. Unless you are certain that device interchangeability
is not required, you should either code DEVD=DA or omit the operand and allow it to
default to DA.

If system input is directed to an intermediate storage device, the DEVD operand is
omitted, and the job control language for the problem program designates the system
input device to be used. Likewise, if system output is directed to an intérmediate

Macro Instruction Descriptions 69

storage device, the DEVD operand is omitted, and the job control language for the
problem program designates the system output device to be used.

If DEVD=PT is coded, the DCB macro should not be coded within the first 8 bytes
of addressability for the control section (CSECT). If DEVD=PR, PC, or RD is
coded, the DCB macro should not be coded within the first 16 bytes of addressability
for the control section.

The DEVD operand is discussed below accordingy to individual device type:

DEVD=DA
[LKEYLEN= absexp]
Specifies that the data control block can be used for a direct-access device (or any
of the other device types described following DA).

KEYLEN=absexp
The KEYLEN operand can be specified only for data sets that reside on
direct-access devices. Since the KEYLEN is usually coded without a DEVD
operand (default taken), the description of the KEYLEN operand is in
alphabetic sequence with the other operands.

DEVD=TA
LDEN={0|1]2]3]4}]
[, TRTCH={C|E |ET|T}]
Specifies that the data control block can be used for a magnetic tape data set (or
any of the other device types described following TA). If TA is coded, the following
optional operands can be coded:

DEN={0|1]2]3]4}
The DEN operand specifies the recording density in the number of bits-per-inch
per track as shown in the following chart:

Recording Density

DEN 7-Track Tape 9-Track Tape
0 200 —_
1 556 —_
2 800 800 (NRZD)!
3 — 1600 (PE)2
4 — 6250 (GCR)3

1 NRZI is for non-return-to-zero inverted mode
2 PE is for phase encoded mode

GCR is for group coded recording mode .
Note: Specifying DEN=0 for a 7-track 3420 tape attached to a 3803-1 will
result in 556 bits-per-inch recording, but corresponding messages and tape labels
will indicate 200 bits-per-inch recording density.

If the DEN operand is not supplied by any source, the highest applicable density
is assumed.

TRTCH={C|E|ET| T}
The TRTCH operand specifies the recording technique for 7-track tape. One of
the above four character combinations can be coded. If the TRTCH operand is

omitted, odd parity with no translation or conversion is assumed. The following
describes the characters that can be specified:

C

Specifies that the data-conversion feature is used with odd parity and no
translation.

E
Specifies even parity with no translation or conversion.

70 OS/VS2 Data Management Macro Instructions

==

—

DCB—BSAM

ET
Specifies even parity with BCDIC to EBCDIC translation required and no
data-conversion feature.

T
Specifies that BCDIC to EBCDIC translation is required with odd parity and
no data-conversion feature.

DEVD=PT
LCODE={A|B|C|F|I|N|T}]
Specifies that the data control block is used for a paper tape device (or any of the
other devices following PT). If PT is coded, the following optional operand can be
coded:

CODE={A|B|C|F|I|IN|T}
The CODE operand specifies the code in which the data was punched. The
system converts these codes to EBCDIC code. If the CODE operand is not
supplied by any source, CODE=I is assumed. The following describes the
characters that can be specified:

A
Specifies 8-track tape in ASCII code.

B
Specifies Burroughs 7-track tape.

C
Specifies National Cash Register 8-track tape.

F
Specifies Friden 8-track tape.

Specifies IBM BCD perforated tape and transmission code with 8 tracks.

N
Specifies that no conversion is required.

T
Specifies Teletype! 5-track tape.

DEVD=PR
[LPRTSP={0]1(2]3}] .
Specifies that the data control block is used for an on-line printer (or any of the
other device types following PR). If PR is coded, the following optional operand
can be coded:

PRTSP={0|1]2]3}
The PRTSP operand specifies the line spacing on the printer. This operand is not
valid if the RECFM operand specifies either machine (RECFM=M) or ANSI
(RECFM=A) control characters. If the PRTSP operand is not specified from
any source, one is assumed. The following describes the characters that can be
specified:
0

Specifies that spacing is suppressed (no space).

1 ;
Specifies single-spacing.

ITrademark of Teletype Corporation.

Macro Instruction Descriptions 71

2 .
Specifies double-spacing (one blank line between printed lines).

3 ,
Specifies triple-spacing (two blank lines between printed lines).

DEVD=PC
LMODE=[C | E][R]]
[,STACK={1]2}]
[,FUNC={I|P|PWIXT]| R | RP[D] | RW[T] | RWP[XT][D] | W[T1}]
Specifies that the data control block is used for a card punch (or any of the other
device types following PC). If PC is coded, the following optional operands can be
specified:

MODE=[C | E][R]
The MODE operand specifies the mode of operation for the card punch. The
following describes the characters that can be specified (if the MODE operand is
omitted, E is assumed):

C
Specifies that the cards are to be punched in card image mode. In card image
mode, the 12 rows in each card column are punched from two consecutive
bytes in virtual storage. Rows 12 through 3 are punched from the low-order 6
~ bits of one byte and rows 4 through 9 are punched from the low-order 6 bits
of the following byte.

E
Specifies that cards are to be punched in EBCDIC code.

R
Specifies that the program runs in read-column-eliminate mode (3505 card
reader or 3525 card punch, read feature).

Note: If the MODE operand is specified in the DCB subparameter of a DD
statement, either C or E must be specified if R is sp_ecified.

STACK={1]2}
The STACK operand specifies the stacker bin into which the card is placed after
punching is completed. If this operand is omitted, stacker number 1 is used. The
following describes the characters that can be specified:

1
Specifies stacker number 1.

2
Specifies stacker number 2.

FUNC={I| P | PW[XT}|R | RP[D] | RW[T] | RWP[XT][D] | W[T]}

The FUNC operand defines the type of 3525 card punch data sets that are used.

If the FUNC operand is omitted from all sources, a data set opened for input

defaults to read only, and a data set opened for output defaults to punch only.

The following describes the characters that can be specified in the FUNC

operand: ’

D \
Specifies that the data protection option is to be used. The data protection
option prevents punching information into card columns that already contain
data. When the data protection option is used, an 80-byte data protection
image (DPI) must have been previously stored in SYS1.IMAGELIB. Data
protection applies only to the output/punch portion of a read and punch or
read punch and print operation.

72 OS/VS2 Data Management Macro Instructions

DCB—BSAM

1 v
Specifies that the data in the data set is to be punched into cards and printed
on the cards; the first 64 characters are printed on line 1 of the card and the
remaining 16 characters are printed on line 3.

P
Specifies that the data set is for punching cards. See the description of the
character X for associated punch and print data sets.

R
Specifies that the data set is for reading cards.

T
Specifies that the two-line print option is used. The two-line print option
allows two lines of data to be printed on the card (lines 1 and 3). If T is not
specified, the multiline print option is used; this allows printing on all 25
possible print lines. In either case, the data printed may be the same as the
data punched in the card, or it may be entirely different data.

w
Specifies that the data set is for printing. See the description of the character
X for associated punch and print data sets.

X
Specifies that an associated data set is opened for output for both punching
and printing. Coding the character X is used to distinguish the 3525 printer
output data set from the 3525 punch output data set.

Note: If data protection is specified, the data protection image (DPI) must be
specified in the FCB parameter of the DD statement for the data set.

DEVD=RD
LMODE=[C|EJ[O|RI]
[LSTACK={1]2}]
LFUNC={I|P|PWI[XT]|R | RP[D] | RW[T] | RWP[XTI[D] | W[T]}]
Specifies that the data control block is used with a card reader or card read punch.
If RD is specified, the data control block cannot be used with any other device
type. When RD is coded, the following optional operands can be specified:

MODE=[C | E][O|R]
The MODE operand specifies the mode of operation for the card reader. The
following describes the characters that can be specified:

C
Specifies that the cards to be read are in card image mode. In card image
mode, the 12 rows in each card column are read into two consecutive bytes of
virtual storage. Rows 12 through 3 are read into one byte and rows 4 through
9 are read into the following byte.

E
Specifies that the cards to be read contain data in EBCDIC code.

0]
Specifies that the program runs in optical-mark-read mode (3505 card
reader).

R
Specifies that the program runs in read-column-eliminate mode (3505 card
reader or 3525 card punch, read feature).

Macro Instruction Descriptions 73

Note: If the MODE operand for a 3505 or 3525 is specified in the DCB
subparameter of a DD statement, either C or E must be specified if R or O is
specified.

STACK={12}
"The STACK operand specifies the stacker bin into which the card is placed after
reading is completed. If this operand is omitted, stacker number 1 is used. The
following describes the characters that can be specified:

1
Specifies stacker number 1.

2
Specifies stacker number 2.

FUNC={I|P|PWIXT]|R | RP[D] | RW[T] | RWP[XT][D] | W[T]}
The FUNC operand defines the type of 3525 card punch data sets that are used.
If the FUNC operand is omitted from all sources, a data set opened for input
defaults to read only, and a data set opened for output defaults to punch only.
The following describes the characters that can be specified in the FUNC
operand:

D
Specifies that the data protection option is to be used. The data protection
option prevents punching information into card columns that already contain
data. When the data protection option is used, an 80-byte data protection
image (DPI) must have been previously stored in SYS1.IMAGELIB. Data
protection applies only to the output/punch portion of a read and punch or
read punch and print operation.

Specifies that the data in the data set is to be punched into cards and printed
on the cards; the first 64 characters are printed on line 1 of the card and the
remaining 16 characters are printed on line 3.

Specifies that the data set is for punching cards. See the description of the
character X for associated punch and print data sets.

Specifies that the data set is for reading cards.

Specifies that the two-line print option is used. The two-line print option
allows two lines of data to be printed on the card (lines 1 and 3). If T is not
specified, the multiline print option is used; this allows printing on all 25
possible print lines. In either case, the data printed may be the same as the
data punched in the card, or it may be entirely different data.

w :
Specifies that the data set is for printing. See the description of the character
X for associated punch and print data sets.

X : ‘
Specifies that an associated data set is opened for output for both punching
and printing. Coding the character X is used to distinguish the 3525 printer
output data set from the 3525 punch output data set.

Note: If data protection is specified, the data protection image (DPI) must be
specified in the FCB subparameter of the DD statement for the data set.

74 OS/VS2 Data Management Macro Instructions

e

DCB—BSAM

Source: The DEVD operand can be supplied only in the DCB macro instruction.
However, the optional operands can be supplied in the DCB macro instruction, the
DCB subparameter of a DD statement, or by the problem program before
completion of the data control block exit routine.

DSORG={PS | PSU}
The DSORG operand specifies the organization of the data set and if the data set
contains any location-dependent information that would make it unmovable. The
following can be specified:

PS
Specifies a physical sequential data set.

PSU
Specifies a physical sequential data set that contains location-dependent
information that would make it unmovable.

Source: The DSORG operand must be coded in the DCB macro instruction.

EODAD=relexp
The EODAD operand specifies the address of the routine given control when the end
of an input data set is reached. If the record format is RECFM=FS or FBS, the
end-of-data condition is sensed when a file mark is read or when more data is
requested after reading a truncated block. The end of data routine is entered when the
CHECK macro instruction determines that the READ macro instruction reached the -
end of the data. If the end of the data set is reached but no EODAD address has been -
supplied, the task is abnormally terminated. See OS/VS2 MVS Data Management
Services Guide for additional information on the EODAD routine.

When the data set has been opened for UPDAT and volumes are to be switched, the
- problem program should issue a FEOV macro instruction after the EODAD routine
has been entered.

Source: The EODAD operand can be supplied in the DCB macro instruction or by the
problem program before the end of the data set is reached.

EXLST=relexp
The EXLST operand specifies the address of the problem program exit list. The
EXLST operand is required if the problem program requires additional processing for
user labels, user totaling, data control block exit routine, end-of-volume, block count
exits, to define a forms control buffer (FCB) image, use the JFCBE exit (for the 3800
printer), or to use the DCB ABEND exit for ABEND condition analysis.

Refer to Appendix D of this publication for the format and requirements of exit list
processing. For additional information about exit list processing, refer to 0S/VS2
MVS Data Management Services Guide.

Source: The EXLST operand can be supplied in the DCB macro instruction or by the
problem program any time before the exit is required by the problem program.

KEYLEN=absexp (maximum value is 255)
The KEYLEN operand specifies the length, in bytes, for the key associated with each
data block in a direct-access device data set. If the key length is not supplied from any
source before completion of the data control block exit routine, a key length of zero
(no keys) is assumed.

Macro Instruction Descriptions 75

Source: The KEYLEN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before the
completion of the data control block exit routine, or by the data set label of an
‘existing data set. If KEYLEN=0 is specified in the DCB macro instruction, a special
indicator is set in RECFM so that KEYLEN cannot be supplied from the DCB
subparameter of a DD statement or data set label of an existing data set. KEYLEN=0
can be coded only in the DCB macro instruction and will be ignored if specified in the
DD statement.

LRECL={absexp | X}
The LRECL operand specifies the length, in bytes, for fixed-length records, or it
specifies the maximum length, in bytes, for variable-length records. LRECL=X is used
for variable-length spanned records that exceed 32,756 bytes. Except when
variable-length spanned records are used, the value specified for the LRECL operand
cannot exceed the value specified for the BLKSIZE operand.

Except when variable-length spanned records are used, the LRECL operand can be
omitted for BSAM; the system uses the value specified in the BLKSIZE operand. If
the LRECL value is coded, it is coded as described in the following.

For fixed-length records that are unblocked, the value specified in the LRECL
operand should be equal to the value specified in the BLKSIZE operand. For blocked
fixed-length records, the value specified in the LRECL operand should be evenly
divisible into the value specified in the BLKSIZE operand.

For variable-length records, the value specified in LRECL must include the maximum
data length (up to 32,752 bytes) plus 4 bytes for the RDW.

For undefined-length records, the LRECL operand should be omitted; the actual
length can be supplied dynamically in a READ/WRITE macro instruction. When an
undefined-length record is read, the actual length of the record is returned by the
system in the DCBLRECL field of the data control block.

When BSAM is used to create a BDAM data set with variable-length spanned records,
the LRECL value should be the maximum data length (up to 32,752) plus four bytes
for the record descriptor word (RDW), or if the logical record length is greater than
32,756 bytes, LRECL=X is specified.

Source: The LRECL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

MACRF= {(R[C| P]) }
{(W[C|P|L]D }

{R[C|PLWIC|PD}
The MACRF operand specifies the type of macro instructions (READ, WRITE,
CNTRL, and NOTE/POINT) that are used with the data set being created or
processed. The BSAM MACREF operand also provides the special form
(MACRF=WL) for creating a BDAM data set. The MACRF operand can be coded in
any of the forms shown above. The following characters can be coded:

C ;
Specifies that the CNTRL macro instruction is used with the data set. If C is
specified to be used with a card reader, a CNTRL macro instruction must follow
every input request.

L
Specifies that BSAM is used to create a BDAM data set. This character can be
specified only in the combination MACRF=WL.

76 OS/VS2 Data Management Macro Instructions

Page of GC26-3873-0
As Updated March 30, 1979
By TNL GN26-0941

DCB—BSAM

Specifies that POINT macro instructions are used with the data set being created or
processed. Specifying P in the MACREF operand also automatically provides the
capability of using NOTE macro instructions with the data set. P should not be
coded for SYSIN or SYSOUT data sets. (See explanations of NOTE and POINT
macro instructions.)

R
Specifies that READ macro instructions are used.

w
Specifies that WRITE macro instructions are used.

Note: Each READ and WRITE macro instruction issued in the problem program must
be checked for completion by a CHECK macro instruction.

Source: The MACRF operand must be specified in the DCB macro instruction.

NCP=absexp (maximum value is 99)
The NCP operand specifies the maximum number of READ/WRITE macro
instructions that will be issued before the first CHECK macro instruction is issued to
test for completion of the I/O operation. The maximum number may be less than 99
depending on the amount of virtual storage available in the region or partition. If
chained scheduling is specified (OPTCD=C), the value of NCP determines the
maximum number of channel program segments that can be chained and must be
specified as more than one. If the NCP operand is omitted, one is assumed.

Source: The NCP operand can be supplied in the DCB macro instruction, in the DCB
subparameter of a DD statement, or by the problem program before completion of the
data control block open exit routine.

OPTCD= {B }
{T }
fulcl] }
{CIT][B][U] }
{H[Z][B] }
{J[ClU] }

{WICIITI[B][U}

{Z[CITI[B][U] }

{QICIBIIT|Z]}

The OPTCD operand specifies the optional services that are used with the BSAM data
set. Two of the optional services, OPTCD=B and OPTCD=H, cannot be specified in
the DCB macro instruction. They are requested in the DCB subparameter of a DD
statement. Since all optional services requests must be supplied by the same source,
the OPTCD operand must be omitted from the DCB macro instruction if either of

Macro Instruction Descriptions 77

Page of GC26-3873-0
As Updated March 30, 1979
By TNL GN26-0941

these options is requested in a DD statement. The following describes the characters
that can be specified—these characters can be specified in any order (in one of the
combinations shown above), and no commas are allowed between characters:

C
Requests that chained scheduling be used. OPTCD=C cannot be specified if
BFTEK=R is specified for the same data control block. Also, chained scheduling
cannot be specified for associated data sets or printing on a 3525. For 5740-AM3
chained scheduling is ignored for direct access devices.

Note: Chained scheduling is used whether requested or not, except where it is not
allowed. See OS/VS2 MVS Data Management Services Guide for conditions
where chained scheduling is not allowed.

Specifies that the first data byte in the output data line will be a 3800 table
reference character. This table reference character selects a particular character
arrangement table for the printing of the data line and can be used singularly or in
conjunction with ANSI or machine control characters. This option is valid only for
the 3800 Printing Subsystem. For information on the table reference character and
character arrangement table modules, see IBM 3800 Printing Subsystem '
Programmer’s Guide.

Requests that ASCII tape records in an input data set be converted to EBCDIC
code after the input record has been read. Translation is done at CHECK time for
input. It also requests that an output record in EBCDIC code be converted to
ASCII code before the record is written. For further information on this
conversion, see ‘‘Variable-Length Records—Format D’ in OS/VS2 MVS Data
Management Services Guide. To determine the ASCII to EBCDIC or EBCDIC to
ASCII translation codes, see System/370 Reference Summary, GX20-1850.

Requests the user totaling facility. If this facility is requested, the EXLST operand
should specify the address of an exit list to be used. T cannot be specified for
SYSIN and SYSOUT data sets.

Specified only for a printer with the universal character set (UCS) feature or the
3800 Printing Subsystem. This option unblocks data checks (permits them to be
recognized as errors) and allows analysis by the appropriate error analysis routine
(SYNAD routine). If the U option is omitted, data checks are not recognized as
errors.

For the IBM Mass Storage System(MSS): U requests window processing to reduce
the amount of staging space required to process large sequential data sets on MSS.
DSORG must specify physical sequential, allocation must be in cylinders, and type
of I/0O accessing must be either INPUT only or OUTPUT only.

W
Specifies that the system performs a validity check on each record written on a
direct-access device.

78 OS/VS2 MVS Data Management Macro Instructions

Page of GC26-3873-0
Added March 30, 1979
By TNL GN26-0941

DCB—BSAM

For magnetic tape, input only, the Z option requests the system to shorten its
normal error recovery procedure to consider a data check as a permanent I/O error
after five unsuccessful attempts to read a record. This option is available only if it is
selected when the operating system is generated. OPTCD=Z is meant to be used
when a tape is known to contain errors and there is no need to process every
record. The error analysis routine (SYNAD) should keep a count of permanent
errors and terminate processing if the number becomes excessive.

For direct-access devices only, the Z option requests the system to use the search
direct option to accelerate the input operations for a data set. OPTCD=Z cannot
be specified with spanned, standard, or track-overflow records.

5740-AM3 only: For direct-access devices only, the Z option is ignored.

Macro Instruction Descriptions 78.1

T

DCB—BSAM

Note: The following describes the optional services that can be requested in the DCB
subparameter of a DD statement. If either. of these options is requested, the complete
OPTCD operand must be supplied in the DD statement.

B
If OPTCD=B is specified in the DCB subparameter of a DD statement, it forces
the end-of-volume (EOV) routine to disregard the end-of-file recognition for
magnetic tape. When this occurs, the EOV routine uses the number of volume
serial numbers to determine end of file.

*

H
If OPTCD=H is specified in the DCB subparameter of a DD statement, it specifies
that the DOS/OS interchange feature is being used with the data set.

Source: The OPTCD operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, in the data set label for direct-access devices,
or by the problem program before completion of the DCB open exit routine or
JFCBE exit routine. However, all optional services must be requested from the same
source.

RECFM= {U[T][A | M] }

tVIB|S|T|BS|BT]A | M]3}
{D[B][A] 3

{F[B|S|T|BS|BT][A|[M]}
The RECFM operand specifies the record format and characteristics of the data set
being created or processed. All the record formats shown above can be specified, but
in those record formats that specify blocked records, the problem program must
perform the blocking and deblocking of logical records; BSAM recognizes only data
blocks. The following describes the characters that can be specified:

A
Specifies that the records in the data set contain American National Standards
Institute (ANSI) control characters. Refer to Appendix E for a description of
control characters.

B
Specifies that the data set contains blocked records.

D .
Specifies that the data set contains variable-length ASCII tape records. See
OPTCD=Q and the BUFOFF operand for a description of how to specify ASCII
data sets.

F
Specifies that the data set contains fixed-length records.

M
Specifies that the records in the data set contain machine code control characters.
Refer to Appendix E for a description of control characters. RECFM=M cannot be
used with ASCII data sets.

For fixed-length records, S specifies that the records are written as standard blocks;
the data set does not contain any truncated blocks or unfilled tracks, with the
exception of the last block or track in the data set. Do not code S to retrieve
records from a data set that was created using a RECFM other than standard.

Macro Instruction Descriptions 79

For variable-length records, S specifies that a record can span more than one block.
Spanned records can be read (reading a BDAM data set) or written (creating a
BDAM data set) using BSAM. '

T
Specifies that the track-overflow feature is used with the data set. The
track-overflow feature allows a record to be written partially on one track of a
direct-access device and the remainder of the record written on the following track

(if required). Chained scheduling cannot be used if the track-overflow feature is
used. :

U
Specifies that the data set contains undefined-length records.

\% .
Specifies that the data set contains variable-length records.

Notes:

« RECFM=YV cannot be specified for a card reader data set or an ASCII tape data
set. ’

« RECFM=VBS does not provide the spanned record function; if this format is used,
the problem program must block and segment the records.

« RECFM=VS or VBS cannot be specified for a SYSIN data set.

¢« RECFM=YV cannot be used for a 7-track tape unless the data conversion feature
(TRTCH=C) is used.

Source: The RECFM operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

SYNAD=relexp
‘ The SYNAD operand specifies the address of the error analysis (SYNAD) routine to
be given control when an uncorrectable input/output error occurs. The contents of
the registers when the error analysis routine is given control are described in Appendix
A of this publication.

The error analysis routine must not use the save area pointed to by register 13,
because this area is used by the system. The system does not restore registers when it
regains control from the error analysis routine. The error analysis routine can issue a
RETURN macro instruction which uses the address in register 14 to return control to
the system. If control is returned to the system, the system returns control to the
problem program and proceeds as though no error had been encountered.

If the SYNAD operand is omitted, the task is abnormally terminated when an
uncorrectable input/output error occurs.

Source: The SYNAD operand can be supplied in the DCB macro instruction or by the
problem program. The problem program can also change the error routine address at
any time.

80 OS/VS2 Data Management Macro Instructions

DCB—Construct a Data Control Block (QISAM)

The data control block for a queued indexed sequential access method (QISAM) data set
is constructed during assembly of the problem program. The DCB macro instruction
must not be coded within the first 16 bytes of addressability for the control section
(CSECT). The DSORG and MACRF operands must be coded in the DCB macro
instruction, but the other DCB operands can be supplied from other sources. Each
QISAM DCB operand description contains a heading, “‘Source.” The information under
this heading describes the sources which can supply the operand to the data control
block.

Before a DCB macro instruction for a QISAM data set is coded, the following
characteristics of QISAM should be considered:

« The characteristics of a QISAM data set are established when the data set is created;
these characteristics cannot be changed without reorganizing the data set. The
following DCB operands establish the characteristics of the data set and can be coded
only when creating the data set: BLKSIZE, CYLOFL, KEYLEN, LRECL, NTM,
OPTCD, RECFM, and RKP.

« The data set can contain the following record formats: Unblocked fixed-length
records (F), blocked fixed-length records (FB), unblocked variable-length records
(V), or blocked variable-length records (VB).

« QISAM can create an indexed sequential data set (QISAM, load mode), add
additional data records at the end of the existing data set (QISAM, resume load
mode), update a record in place, or retrieve records sequentially (QISAM, scan
mode).

« The track-overflow feature cannot be used to create an ISAM data set.

« When an indexed sequential data set is being created, space for the prime area of the
- data set, the overflow area of the data set, and the cylinder/master index(es) for the
data set can be allocated on the same or separate volumes. For information about

space allocation, refer to OS/VS2 JCL.

« The system automatically creates one track index for each cylinder in the data set and
one cylinder index for the entire data set. The DCB NTM and OPTCD operands can
be specified to indicate that the data set requires a master index(es); the system
creates and maintains up to three levels of master indexes. OS/VS2 MVS Data
Management Services Guide contains additional information about indexes for
indexed sequential data sets.

« A record deletion option can be specified (OPTCD=L) when the ISAM data set is
created. This option allows a record to be flagged for deletion by placing a
hexadecimal value of ‘FF’ in the first data byte of the record (first byte of a
fixed-length record or fifth byte of a variable-length record). Records marked for
deletion are ignored during sequential retrieval by QISAM.

« Reorganization statistics can be obtained by specifying OPTCD=R when the ISAM
data set is created. These statistics can be used by the problem program to determine
the status of the overflow areas allocated to the data set. Reorganization of ISAM
data sets’is described in OS/VS2 MVS Data Management Services Guide.

« When an ISAM data set is created, the records must be written with the keys in
ascending order. '

These characteristics of queued indexed sequential access method data sets are described
in more detail in OS/VS2 MVS Data Management Services Guide.

Macro Instruction Descriptions 81

| [symbol] | DCB [BFALN={F | D}]

The DCB macro for QISAM is written as follows:

[BLKSIZE=absexp]
[BUFCB=relexp]
[BUFL=absexp]
[BUFNO=absexp]
{CYLOFL=absexp]
[DDNAME-= symbol |1
DSORG=IS | ISU}
[EODAD= relexp]
[EXLST=relexp]
[KEYLEN= absexp]
[LRECL=absexp]

MACRF= {(PM) }
{(PL) }
{(GM[,S{K | 1}]) }
{(GL[,S{K | I}][,PUD}

[NTM=absexp]
[OPTCD=[I][L]IM][RI[UITWIY]]
[RECFM={V([B] | F[B]}]

[RKP= absexp]

[SYNAD= relexp]

1 This parameter must be supplied before an OPEN macro is issued for this DCB;
it cannot be supplied in the open exit routine.

The following describes the DCB operands that can be specified when a QISAM data set
is being created or processed:

BFALN={F | D}
The BFALN operand specifies the alignment of -each buffer in the buffer pool when
the buffer pool is constructed automatically or by a GETPOOL macro instruction. If
the BFALN operand is omitted, the system provides doubleword alignment for each
‘buffer. The following describes the characters that can be specified:

F

Specifies that each buffer is on a fullword boundary that is not also a doubleword
" boundary.
D

Specifies that each buffer is on a doubleword boundary.

If the BUILD macro instruction is used to construct the buffer pool,k the problem
program must provide a storage area for the buffers and control buffer alignment.

Source: The BFALN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

- BLKSIZE=absexp (maximum value is device-dependent)

The BLKSIZE operand specifies the length, in bytes, for each data block when
fixed-length records are used, or it specifies the maximum length in bytes, for each
data block when variable-length records are used. The BLKSIZE operand must be

specified when an ISAM data set is created. When an existing ISAM data set is @
processed, the BLKSIZE operand must be omitted (it is supplied by the data set |
label).

82 OS/VS2 Data Managemént Macro Instructions

DCB—QISAM

Track capacity of the direct-access device being used must be considered when the
BLKSIZE for an ISAM data set is specified. For fixed-length records, the sum of the
key length, data length, and device overhead plus 10 bytes (for ISAM use) must not
exceed the capacity of a single track on the direct-access device being used. For
variable-length records the sum of the key length, block-descriptor word length,
record-descriptor word length, data length, and device overhead plus 10 bytes (for
ISAM use) must not exceed the capacity of a single track on the direct-access device
being used. Device capacity and device overhead are described in Appendix C of this
publication. For additional information about device capacity and space allocation,
refer to OS/VS2 MVS Data Management Services Guide.

If fixed-length records are used, the value specified in the BLKSIZE operand must be
an integral multiple of the value specified in the LRECL operand.

Source: When an ISAM data set is created, the BLKSIZE operand can be supplied in
the DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an
existing ISAM data set is processed, the BLKSIZE operand must be omitted from the
other sources, allowing the data set label to supply the value.

BUFCB=relexp
The BUFCB operand specifies the address of the buffer pool control block
constructed by a BUILD macro instruction.

If the system constructs the buffer pool automatically or if the buffer pool is
constructed by a GETPOOL macro instruction, the system places the address of the
buffer pool control block into the data control block, and the BUFCB operand should
be omitted.

Source: The BUFCB operand can be supplied i the DCB macro‘instruction or by the
problem program before completion of the data control block exit routine.

BUFL=absexp (maximum value is 32,760)
The BUFL operand specifies the length, in bytes, of each buffer in the buffer pool
when the buffer pool is constructed by a BUILD or GETPOOL macro instruction.
When the data set is opened, the system computes the minimum buffer length required
and verifies that the length in the buffer pool control block is equal to or greater than
the minimum length required. The system then inserts the computed length into the
data control block.

The BUFL operand is not required for QISAM if the system acquires buffers
automatically; the system computes the minimum buffer length required and inserts
the value into the data control block. :

If the buffer pool is constructed with a BUILD or GETPOOL macro instruction,
additional space is required in each buffer for system use. For a description of the
buffer length required for various ISAM operations, refer to OS/VS2 MVS Data
Management Services Guide.

Source: The BUFL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine. '

BUFNO=absexp (maximum value is 255) ;
The BUFNO operand specifies the number of buffers to be constructed by a BUILD
macro instruction, or it specifies the number of buffers to be acquired automatically
by the system. If the BUFNO operand is omitted, the system automatically acquires
two buffers.

Macro Instruction Descriptions 83

Tf the GETPOOL macro instruction is used to construct the buffer pool, the BUFNO
operand is not required.

Source: The BUFNO operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

CYLOFL=absexp (maximum value is 99)

The CYLOFL operand specifies the number of tracks on each cylinder that is reserved
as an overflow area. The overflow area is used to contain records that are forced off
prime area tracks when additional records are added to the prime area track in
ascending key sequence. ISAM maintains pointers to records in the overflow area so
that the entire data set is logically in ascending key sequence. Tracks in the cylinder
overflow area are used by the system only if OPTCD=Y is specified. For a more
complete description of cylinder overflow area, refer to the space allocation section of
OS/VS2 MVS Data Management Services Guide.

Source: When an ISAM data set is created, the CYLOFL operand can be supplied in
the DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an
existing ISAM data set is processed, the CYLOFL operand should be omitted,
allowing the data set label to supply the operand.

DDNAME=symbol

The DDNAME operand specifies the name used to identify the job control language
data definition (DD) statement that defines the data set being created or processed.

Source: The DDNAME operand can be supplied in the DCB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the
data set.

DSORG={IS [ISU}

The DSORG operand specifies the organization of the data set and if the data set
contains any location-dependent information that would make it unmovable. The
following characters can be specified:

IS
Specifies an indexed sequential data set organization.

ISU
Specifies an indexed sequential data set that contains location-dependent
information. ISU can be specified only when an ISAM data set is created.

Source: The DSORG operand must be specified in the DCB macro instruction. When
an ISAM data set is created, DSORG=IS or ISU must also be specified in the DCB
subparameter of the corresponding DD statement.

EODAD=relexp .

The EODAD operand specifies the address of the routine to be given control when the
end of an input data set is reached. For ISAM, this operand would apply only to scan
mode when a data set is open for an input operation. Control is given to this routine

‘when a GET macro instruction is issued and there are no more input records to

retrieve. For additional information on the EODAD routine, sece OS/V.S2 MVS
Data Management Services Guide.

Source: The EODAD operand can be supplied in the DCB macro instruction or by the
problem program before the end of the data set is reached.

==

84 0S/VS2 Data Management Macro Instructions

<~

DCB—QISAM

EXLST=relexp
The EXLST operand specifies the address of the problem program exit list. The
EXLST operand is required only if the problem program uses the data control block
exit routine for additional processing or if the DCB ABEND exit is used for ABEND
condition analysis.

Refer to Appendix D of this publication for the format and requirements for exit list
processing. For additional information about exit list processing, refer to OS/VS?2
MVS Data Management Services Guide.

Source: The EXLST operand can be supplied in the DCB macro instruction or by the
problem program before the associated exit is required.

KEYLEN=absexp (maximum value is 255)
The KEYLEN operand specifies the length, in bytes, of the key associated with each
record in an indexed sequential data set. When blocked records are used, the key of
the last record in the block (highest key) is used to identify the block. However, each
logical record within the block has its own identifying key which ISAM uses to access
a given logical record. '

Source: When an ISAM data set is created the KEYLEN operand can be supplied in
the DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an
existing ISAM data set is processed, the KEYLEN operand must be omitted, allowing
the data set level to supply the key length value. KEYLEN=0 is not valid for an ISAM
data set.

LRECL=absexp (maximum value is device-dependent)
The LRECL operand specifies the length, in bytes, for fixed-length records, or it
specifies the maximum length, in bytes, for variable-length records. The value.
specified in the LRECL operand cannot exceed the value specified in the BLKSIZE
operand. When fixed, unblocked records are used and the relative key position (as
specified in the RKP operand) is zero, the value specified in the LRECL operand
should include only the data length (the key is not written as part of the fixed,
unblocked record when RKP=0).

The track capacity of the direct-access device being used must be considered if
.maximum length logical records are being used. For fixed-length records, the sum of
the key length, data length, and device overhead plus 10 bytes (for ISAM use) must
not exceed the capacity of a single track on the direct-access device being used. For
variable-length records, the sum of the key length, data length, device overhead,
block-descriptor-word length, and record-descriptor-word length plus 10 bytes (for
ISAM use) must not exceed the capacity of a single track on the direct-access device
being used. Device capacity and device overhead are described in Appendix C of this
publication. For additional information about device capacity and space allocation,
refer to OS/VS2 MVS Data Management Services Guide.

Source: When an ISAM data set is created, the LRECL operand can be supplied in the
DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an
existing ISAM data set is processed, the LRECL operand must be omitted, allowing
the data set label to supply the value.

Macro Instruction Descriptions 85

MACRF= {(PM) }
{(PL) }
{(GMLSIK|I}D '}
{(GLL,S{K | B],PUD }

' The MACRF operand specifies the type of macro instructions, the transmittal mode,
and type of search to be used with the data set being processed. The operand can be
coded in any of the combinations shown above; the following describes the characters
that can be coded.

The following characters can be specified only when the data set is being created
" ‘(load mode) or additional records are being added to the end of the data set (resume
load): =

PL
Specifies that PUT macro instructions are used in the locate transmittal mode; the
system provides the problem program with the address of a buffer containing the
data to be written into the data set.

PM
Specifies that PUT macro instructions are used in the move transmittal mode; the
system moves the data to be written from the problem program work area to the
buffer being used.

»

The following characters can be specified only when the data set is being processed
(scan mode) or when records in an ISAM data set are being updated in place:

GL
Specifies that GET macro instructions are used in the locate transmittal mode; the
system provides the problem program with the address of a buffer containing the
. logical record read.

GM
Specifies that GET macro instructions are used in the move mode; the system
moves the logical record from the buffer to the problem program work area.

I ,
Specifies that actual device addresses (MBBCCHHR) are used to search for a
record (or the first record) to be read.

K
Specifies that a key or key class is used to search for a record (or the first record)
to be read.

PU
Specifies that PUTX macro instructions are used to return updated records to the
data set.

S
Specifies that SETL macro instructions are used to set the beginning location for
processing the data set. ‘

Source’: The MACREF operand must be coded in the DCB macro instruction.

86 OS/VS2 Data Management Macro Instructions

DCB—QISAM

NTM=absexp (maximum value is 99)
The NTM operand specifies the number of tracks to be created in a cylinder index
before a higher-level index is created. If the cylinder index exceeds this number, a
master index is created by the system; if a master index exceeds this number, the next
level of master index is created. The system creates up to three levels of master
indexes. The NTM operand is ignored unless the master index option (OPTCD=M) is
selected.

Source: When an ISAM data set is being created, the NTM operand can be supplied in
the DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an
ISAM data set is being processed, master index information is supplied to the data
control block from the data set label, and the NTM operand must be omitted.

OPTCD=[I}{LIIM][RI[UNWI[Y]
The OPTCD operand specifies the optional services performed by the system when an
ISAM data set is being created. The following describes the characters that can be
specified (these characters can be specified in any order, and no commas are allowed
between characters):

I .
Specifies that the system uses the independent overflow areas to contain overflow
records. Note that it is only the use of the allocated independent overflow area that
is optional. Under certain conditions, the system designates an overflow area that
was not allocated for independent overflow by the problem program. See
“Allocating Space for an Indexed Sequential Data Set” in OS/VS2 MVS Data
Management Services Guide. '

L
Specifies that the data set will contain records flagged for deletion. A record is
flagged for deletion by placing a hexadecimal value of ‘FF’ in the first data byte.
Records flagged for deletion remain in the data set until the space is required for
another record to be added to the track. Records flagged for deletion are ignored
during sequential retrieval of the ISAM data set (QISAM, scan mode). This option
cannot be specified for blocked fixed-length records if the relative key position is
zero (RKP=0), or it cannot be specified for variable-length records if the relative
key position is four (RKP=4).

When an ISAM data set is being processed with BISAM, a record with a duplicate
key can be added to the data set (WRITE KN macro instruction), only when
OPTCD=L has been specified and the original record (the one whose key is being
duplicated) has been flagged for deletion. - '

M
Specifies that the system creates and maintains a master index(es) according to the
number of tracks specified in the NTM operand.

R
Specifies that the system places reorganization statistics in the DCBRORG1,
DCBRORG?2, and DCBRORGS3 fields of the data control block. The problem
program can analyze these statistics to determine when to reorganize the data set.
If the OPTCD operand is omitted completely, the reorganization statistics are
automatically provided. However, if the OPTCD operand is supplied, OPTCD=R
must be specified to obtain the reorganization statistics.

Macro Instruction Descriptions 87

U
Specifies that the system accumulates track index entries in storage and writes them
as a group for each track of the track index. OPTCD=U can be specified only for
fixed-length records. The entries are written in fixed-length unblocked format.

w B
Specifies that the system performs a validity check on each record written.

Y .
Specifies that the system uses the cylinder overflow area(s) to contain overflow
records. If OPTCD=Y is specified, the CYLOFL operand specifies the number of
tracks to be used for the cylinder overflow area. The reserved cylinder overflow
area is not used unless OPTCD=Y is specified.

Source: When an ISAM data set is created, the OPTCD operand can be supplied in
the DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before an OPEN macro instruction is issued to open the data set.
However, all optional services must be requested from the same source. When an
existing ISAM data set is processed, the optional service information is supplied to the
data control block from the data set label, and the OPTCD operand should be
omitted.

RECFM={V[B]| F[B]}

The RECFM operand specifies the format and characteristics of the records in the
data set. If the RECFM operand is omitted, variable-length records (unblocked) are
assumed. The following describes the characters that can be specified:

B
Specifies that the data set contains blocked records.

F
Specifies that the data set contains fixed-length records.

A%
Specifies that the data set contains variable-length records.

Source: When an ISAM data set is created, the RECFM operand can be supplied in
the DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before an OPEN macro instruction is issued to open the data set.
When an existing ISAM data set is processed, the record format information is
supplied by the data set label, and the RECFM operand should be omitted.

RKP=absexp

The RKP operand specifies the relative position of the first byte of the key within
each logical record. For example, if RKP=9 is specified, the key starts in the tenth
byte of the record. The delete option (OPTCD=L) cannot be specified if the relative
key position is the first byte of a blocked fixed-length record or the fifth byte of a
variable-length record. If the RKP operand is omitted, RKP=0 is assumed.

If unblocked fixed-length records with- RKP=0 are used, the key is not written as a
part of the data record, and the delete option can be specified. If blocked fixed-length
records are used, the key is written as part of each data record; either RKP must be
greater than zero or the delete option must not be used.

If variable-length records (blocked or unblocked) are used, RKP must be four or
greater if the delete option is not specified; if the delete option is specified, RKP must
be specified as five or greater. The four additional bytes allow for the block descrlptor
word in variable-length records.

88 OS/VS2 Data Management Macro Instructions

P

R

=

DCB—QISAM

Source: When an ISAM data set is created, the RKP operand can be supplied in the
DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an
existing ISAM data set is processed, the RKP information is supplied by the data set
label and the RKP operand should be omitted. '

SYNAD=relexp

The SYNAD operand SpeCIfleS the address of the error analysis routine given control
when an uncorrectable input/output error occurs. The contents of the registers when
the error analysis routine is given control are described in Appendix A of this
publication.

The error analysis routine must not use the save area pointed to by register 13,
because this area is used by the system. The system does not restore registers when it
regains control from the error analysis routine. The error analysis routine can issue a

. RETURN macro instruction which uses the -address in register 14 to return control to

the system. When control is returned in this manner, the system returns control to the
problem program and proceeds as though no error had been encountered; if the error
analysis routine continues processing, the results may be unpredictable.

For additional information on error analysis routine processing for indexed sequential
data sets, see OS/VS2 MVS Data Management Services Guide.

Source: The SYNAD operand can be suppliéd in the DCB macro instruction or by the
problem program. The problem program can also change the error analysis routine
address at any time.

Macro Instruction Descriptions 89

DCB—Construct a Data Control Block (QSAM)

The data control block for the queued sequential access method (QSAM) is constructed
during assembly of the problem program. The DSORG and MACRF operands must be

k ‘coded in the DCB macro instruction, but the other DCB operands can be supplied, to the
~ data control block, from other sources. Each DCB operand description contains a

heading, “Source.” The information under this heading describes the sources from which
the operand can be supplied.

Before a DCB macro instruction for creating or processing a QSAM data set is coded,
the following characteristics of QSAM data sets should be considered.

o All record formats can be processed.
« Automatic blocking and deblocking of records is provided.

. Automatic buffer control is provided; this function fills input buffers when they are
" empty and writés output buffers when they are full.

+ ‘A logical record interface is provided; a GET macro instruction retrieves the next
sequential logical record from the input buffer,'and a PUT macro instruction places
the next sequential logical record in the output buffer.

« I/0 operations are synchronized automatically.

+ Four transmittal modes (move, locate, data, and substitute) are provided. These
transmittal modes provide flexibility in buffer management and data movement
between buffers. ‘

« Keys for direct-access device records cannot be read or written using QSAM.

o Specifying the DEVD operand in the DCB macro instruction can cause the program to
be device-dependent.

These characteristics of queued sequential access method data sets are described in more
detail in OS/VS2 MVS Data Management Services Guide.

For information on additional operands for the DCB macro for the 3890, sce /IBM
3890 Document Processor Machine and Programming Description.

90 0S/VS2 Data AManag,ement Macro Instructions

DCB—QSAM

The DCB macro for QSAM is written as follows:

[symbol]

DCB

[BFALN={F | D}]
[BFTEK={S | E | A}]
[BLKSIZE = absexp |
[BUFCB=relexp]
[BUFL= absexp]
[BUFNO=absexp]
[BUFOFF={absexp | L}]
[DDNAME-= symbol]t

[DEVD= {DA}

{TA
LDEN={0]|1]2]3]4}]
LTRTCH={C|E|ET|T} }

{PT
[LCODE={A|B|C|F|IIN|T}] }

{PR
LPRTSP={0|1]2]3}] }

{PC
[,LMODE=([C | EI[R]]
[,STACK={1|2}]
[FUNC={ITP | PW[XT] | R | RP[D] |
RW(T] | RWP{XT][D] | W[T]}]

{RD
LMODE=[C | E][O | R]]
[LSTACK={1|2}]
LFUNC={I|P|PW[XT] |R|RP[D]|
RW[T] | RWP[XT][D] | W[T1}]}]

DSORG={PS | PSU}
[EODAD=relexp] ,
[EROPT={ACC | SKP | ABE}]
[EXLST=relexp]

[LRECL={ absexp | X}]

MACRF= {(G{M|L|T|D}[C]) }
{(P{M|L|T|DHCD }

{(GIM | L I T|D}CLP{M|L|T|D}[CD}

1This parameter must be supplied before an OPEN macro is issued for this DCB;
it cannot be supplied in the open exit routine.

Continued on next page.

Macro Instruction Descriptions 91

Page of GC26-3873-0
As Updated March 30, 1979
By TNL GN26-0941

[OPTCD= {B b
-qT t

{ulC] 3
{C[T]B][U] }

{H[Z][B] §

{J[CI[U] {
{WICIIT][B][U]}
{Z[C][TI[B][U] }
{QICIBIT|Z]}]

[RECFM={U[T][A | M] }
{VIB[SI[T] | S[T]| TI[A | M]}
{D[B][A] }

{F[B|S|T|BS|BT]J[A|M]}]
[SYNAD= relexp |

The following describes the operands that can be specified in the DCB macro instruction
for a QSAM data set: '

BFALN={F | D}

The BFALN operand specifies the boundary alignment of each buffer in the buffer
pool when the buffer pool is constructed automatically or by a GETPOOL macro
instruction. If the BFALN operand is omitted, the system provides doubleword
alignment for each buffer.

If the data set being created or processed contains ASCII tape records with a block
prefix, the block prefix is entered at the beginning of the buffer, and data alignment
depends on the length of the block prefix. For a description of how to specify the
block prefix length, refer to the BUFOFF operand.

The following describes the characters that can be specified:

F
Specifies that each buffer is on a fullword boundary that is not also a doubleword
boundary.

D
Specifies that each buffer is on a doubleword boundary.

If the BUILD macro instruction is used to construct the buffer pool, the problem
program must control buffer alignment.

Source: The BFALN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine. If both the BFALN and BFTEK operands are
specified, they must be supplied from the same source.

BFTEK={S|E | A}

The BFTEK operand specifies the buffering technique that is used when the QSAM
data set is created or processed. If the BFTEK operand is omitted, simple buffering is
assumed. The following describes the characters that can be specified:

S
Specifies that simple buffering is used.

92 0S/VS2 Data Management Macro Instructions

DCB—QSAM

Specifies that exchange buffering is used. Exchange buffering can be used only with
record formats (RECFM operand) F, FB, FBS, or FS; the track-overflow feature
cannot be used with exchange buffering. If exchange buffering is used with ASCII
tape records, the BUFOFF operand must be zero (no block prefix). Note:
BFTEK=E is ignored by VS2 systems.

A
Specifies that a logical record interface is used for variable-length spanned records.
When BFTEK=A is specified, the Open routine acquires a record area equal to the
length specified in the LRECL field plus 32 additional bytes for control
information. When a logical record interface is requested, the system uses the
simple buffering technique.

To use the simple or exchange buffering technique efficiently, the user should be
familiar with the four transmittal modes for QSAM and the buffering techniques as
described in OS/VS2 MVS Data Management Services Guide.

Source: The BFTEK operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine. If both the BFTEK and BFALN operands are
specified, they must be supplied from the same source.

BLKSIZE=absexp (maximum value is 32,760)
The BLKSIZE operand specifies the length, in bytes, of a data block for fixed-length
records, or it specifies the maximum length, in bytes, of a data block for
variable-length or undefined-length records.

The actual value that can be specified in the BLKSIZE operand depends on the device |
type and record format being used. Device capacity is shown in Appendix C of this
publication. For additional information about device capacity, refer to OS/VS2 MVS
Data Management Services Guide. For direct-access devices when the

track-overflow feature is used or variable-length spanned records are being processed,
the BLKSIZE operand can be up to the maximum value. For other record formats

used with direct-access devices, the value specified in the BLKSIZE operand cannot
exceed the capacity of a single track.

Since QSAM provides a logical record interface, the device capacities shown in
Appendix C also apply to a maximum length logical record. One exception to the
device capacity for a logical record is the size of variable-length spanned records.
Their length can exceed the value specified in the BLKSIZE operand (see the
description of the LRECL operand).

If fixed-length records are used for a SYSOUT data set, the value specified in the
BLKSIZE operand must be an integral multiple of the value specified in the LRECL
operand; otherwise, the system will adjust the block size downward to the nearest
multiple. If the records are unblocked fixed-length records, the value specified in the
BLKSIZE operand must equal the value specified in the LRECL operand if the
LRECL operand is specified.

If variable-length records are used, the value specified in the BLKSIZE operand must
include the data length (up to 32,756 bytes) plus four bytes required for the block
descriptor word (BDW). For format-D variable-length records, the minimum
BLKSIZE is 18 bytes and the maximum is 2,048 bytes.

_If ASCII tape records with a block prefix are processed, the value specified in the
BLKSIZE operand must also include the length of the block prefix.

Macro Instruction Descriptions 93

If variable-length spanned records are used, the value specified in the BLKSIZE
operand can be the best one for the device being used or the processing being done.
When unit record devices (card or printer) are used, the system assumes records are
unblocked; the value specified for the BLKSIZE operand is equivalent to one print
line or one card. A logical record that spans several blocks is written one segment at a
time. :

If undefined-length records are used, the problem program can insert the actual record
length into the DCBLRECL field. See the description of the LRECL operand.

Source: The BLKSIZE operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

BUFCB=relexp .
The BUFCB operand specifies the address of the buffer pool control block
constructed by a BUILD or BUILDRCD macro instruction.

If the buffer pool is constructed automatically or by a GETPOOL macro instruction,
the system places the address of the buffer pool control block into the data control
block, and the BUFCB operand should be omitted.

Source: The BUFCB operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

BUFL=absexp (maximum value is 32,760)
The BUFL operand specifies the length, in bytes, of each buffer in the buffer pool
when the buffer pool is acquired automatically. The system acquires buffers with a
length equal to the value specified in the BLKSIZE operand if the BUFL operand is
omitted; if the problem program requires larger buffers, the BUFL operand is
required. If the data set is for card image mode, the BUFL operand is specified as 160
bytes. The description of the DEVD operand contains a description of card image
mode.

If the data set contains ASCII tape records with a block prefix, the value specified in
the BUFL operand must also include the length of the block prefix.

If the buffer pool is constructed by a BUILD, BUILDRCD, or GETPOOL macro
instruction, the BUFL operand is not required.

Source: The BUFL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BUFNO=absexp (maximum value is 255)
The BUFNO operand specifies the number of buffers in the buffer pool constructed
by a BUILD or BUILDRCD macro instruction, or it specifies the number of buffers
to be acquired automatically. If chained scheduling is specified, the value of BUFNO
determines the maximum number of channel program segments that can be chained
and must be specified as more than one. If the BUFNO operand is omitted and the
buffers are acquired automatically, the system acquires three buffers if the device is a
unit-record device or two buffers for any other device type. For VS2 MVS, the system
acquires five buffers.

If the buffer pool is constructed by a GETPOOL macro instruction, the BUFNO
operand is not required.

Source: The BUFNO operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

94 OS/VS2 Data Management Macro Instructions

DCB—QSAM

BUFOFF={absexp | L}
The BUFOFTF operand specifies the length, in bytes, of the block prefix used with
ASCII tape data sets. When QSAM is used to read ASCII tape records, only the data
portion (or its address) is passed to the problem program; the block prefix is not
available to the problem program. Block prefixes (except BUFOFF=L) cannot be
included in QSAM output records. The following can be specified in the BUFOFF
operand:

absexp
Specifies the length, in bytes, of the block prefix. This value can be from 0 to 99
for an input data set. The value must be O for writing an output data set with
fixed-length or undefined-length records.

Specifies that the block prefix is 4 bytes long and contains the block length.
BUFOFF=L is used when format-D records (ASCII) are processed. QSAM uses
the four bytes as a block-descriptor word (BDW). For further information on this
operand, see ‘“Variable-Length Records—Format D” in OS/VS2 MVS Data
Management Services Guide.

Source: The BUFOFF operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before an OPEN
macro instruction is issued to open the data set. BUFOFF =absexp can also be
supplied by the label of an existing data set; BUFOFF=L cannot be supplied by the
label of an existing data set.

DDNAME=symbol
The DDNAME operand specifies the name used to identify the job control language
data definition (DD) statement that defines the data set being created or processed.

Source: The DDNAME operand can be supplied in the DCB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the data
set.

DEVD={DA | TA | PT | PR | PC | RD}|, options)
The DEVD operand specifies the device type on which the data set can or does reside.
The device types above are shown with the optional operand(s) that can be coded
when a particular device is used. The devices are listed in order of
device-independence. For example, if DEVD=DA is coded in a DCB macro
instruction (or the DEVD operand is omitted, which causes a default to DA), the data
control block constructed during assembly could later be used for any of the other
devices, but if DEVD=RD is coded, the data control block can be used only with a
card reader or card reader punch. Unless you are certain that device interchangeability
is not required, you should either code DEVD=DA or omit the operand and allow it to
default to DA.

If system input is directed to an intermediate storage device, the DEVD operand is

- omitted, and the job control language for the problem program must designate the
system input to be used. Similarly, if system output is directed to an intermediate
storage device, the DEVD operand is omitted, and the job control language for the
problem program must designate the system output to be used.

If DEVD=PT is coded, the DCB macro should not be coded within the first 8 bytes
of addressability for the control section (CSECT). If DEVD=PR, PC, or RD is
coded, the DCB macro should not be coded within the first 16 bytes of addressability
for the control section. '

" Macro Instruction Descriptions 95

The DEVD operand is discussed below according to individual device type:

DEVD=DA ,
Specifies that the data control block can be used for a direct-access device (or any
of the other device types described following DA).

DEVD=TA
LDEN={0|1]2|3]|4}]
[LTRTCH={C|E|ET|Ti}]
Specifies that the data control block can be used for a magnetic tape data set (or
any of the other device types described following TA). If TA is coded, the following
optional operands can be coded:

DEN={0]1]2{3|4}
The DEN operand specifies the recording density in the number of bits-per-inch
per track as shown in the following chart:

Recording Density

DEN 7-Track Tape 9-Track Tape
0 200 —_—
| 556 —_
2 800 800 (NRZD)!
3 —_ 1600 (PE)2
4 — 6250 (GCR)3

| NRZ1 is for non-return-to-zero inverted mode
2 PE is for phase encoded mode
3GCR s for group coded recording mode

Note: Specifying DEN=0 for a 7-track 3420 tape attached to a 3803-1 will
result in 556 bits-per-inch recording, but corresponding messages and tape labels
will indicate 200 bits-per-inch recording density.

If the DEN operand is not supplied by any source, the highest applicable density
is assumed.

TRTCH={C|E|ET| T} _
The TRTCH operand specifies the recording technique for 7-track tape. One of
the above character combinations can be coded. If the TRTCH operand is
omitted, odd parity with no translation or conversion is assumed. The following
describes the characters that can be specified:

C
Specifies that the data-conversion feature is used with odd parity and no
translation.

E
Specifies even parity with no translation or conversion.

ET
Specifies even parity with BCDIC to EBCDIC translation required, but no
data-conversion feature.

T .
Specifies that BCDIC to EBCDIC translation is required with odd parity and
no data-conversion feature.

96 OS/VS2 Data Managément Macro Instructions

Ppre=

DCB—QSAM

DEVD=PT
[LCODE={A[B|C|F|I|N|T}]
Specifies that the data control block is used for a paper tape device (or any of the
other devices following PT). If PT is coded, the following optional operand can be
coded:

CODE={A|B|C|F|I|N|T}
The CODE operand specifies the code in which the data was punched. The,
system converts these codes to EBCDIC code. If the CODE operand is not
supplied by any source, CODE=I is assumed. The following describes the
characters that can be specified:

A
Specifies 8-track tape in ASCII code.

B
Specifies Burroughs 7-track tape.

C .
Specifies National Cash Register 8-track tape. .

F
Specifies Friden 8-track tape.

1
Specifies IBM BCD perforated tape and transmission code with 8-tracks.

N
Specifies that no conversion is required.

T
Specifies Teletype! 5-track tape.

DEVD=PR
[PRTSP={01]213}]
Specifies that the data control block is used for an on-line printer (or any of the
other device types following PR). If PR is coded, the following optional operand
can be coded: '

PRTSP=§{0]1]2]3}
The PRTSP operand specifies the line spacing on the printer. This operand is not
valid if the RECFM operand specifies either machine (RECFM=M) or ANSI
(RECFM=A) control characters. If the PRTSP operand is not specified from
any source, one is assumed. The following describes the characters that can be
specified:)

0
Specifies that spacing is suppressed (no space).
1
Specifies single-spacing.
2
Specifies double-spacing (one blank line between printed lines).

3
Specifies triple-spacing (two blank lines between printed lines).

ITrademark of Teletype Corporation.

Macro Instruction Descriptions 97

{ : DEVD=PC

1 | | [,LMODE=[C | E][RI]

| [,STACK={1|2}]

|) , [LFUNC={I|P|PW[XT]| R | RP[D] | RW[T] | RWP[XT]}[D] | W[T1}]

\ Specifies that the data control block is used for a card punch (or any of the other

‘ device types following PC). If PC is coded, the following optional operands can be
specified:

MODE=[C | E][R]
The MODE operand specifies the mode of operation for the card punch. If the
MODE operand is omitted, E is assumed. The following describes the characters
that can be specified: '

C
Specifies that the cards are punched in card image mode. In card image mode,
the 12 rows in each card column are punched from two consecutive bytes of
virtual storage. Rows 12 through 3 are punched from the low-order 6 bits of
one byte, and row 4-9 are punched from the 6 low-order bits of the following
byte.

Specifies that cards are punched in EBCDIC code.

Specifies that the brogram runs in read-column-eliminate mode (3505 card
reader or 3525 card punch, read feature).

Note: If the MODE operand is specified in the DCB subparameter of a DD
statement, either C or E must be specified if R is specified. -

STACK={1]2}
The STACK operand specifies the stacker bin into which the card is placed after
punching is completed. If this operand is omitted, stacker number 1 is used. The
following describes the characters that can be specified:

1
Specifies stacker number 1.

2
Specifies stacker number 2.

FUNC={I|P|PW[XT] | R | RP[D] | RW[T] | RWP[XT][D] | W[TI}
The FUNC operand defines the type of 3525 card punch data sets that are used.
If the FUNC operand is omitted from all sources, a data set opened for input
defaults to read only, and a data set opened for output defaults to punch only.
The following describes the characters that can be specified in the FUNC
operand:

D
Specifies that the data protection option is to be used. The data protection
option prevents punching information into card columns that already contain
data. When the data protection option is used, an 80-byte data protection
image (DPI) must-have been previously stored in SYS1.IMAGELIB. Data
" protection applies only to the output punch portion of a read and punch or
read, punch, and print operation.

Specifies that the data in the data set is to be punched into cards and printed
on the cards; the first 64 characters are printed on line 1 of the card and the
remaining 16 characters are printed on line 3.

98 OS/VS2 Data Management Macro Instructions

pre=N

DCB—QSAM

|
Specifies that the data set is for punching cards. See the description of the
character X for associated punch and print data sets.

R
Specifies that the data set is for reading cards.

T
Specifies that the two-line option is used. The two-line print option allows