
Systems

GC26-3838 -3
File No. S370-30

OS/VS Virtual Storage
Access Method (VSAM)
Programmer's Guide

VS1 Release 6
VS2 Release 3.7

Includes Selectable Units:

MVS Supervisor Performance #2
MVS Data Management

--- - ----- ------- - - --- - ---- ---- - ---- - ---- - - ---- - - ------------------ _.-

VS2. 03. 807
VS2.03.808

USING THIS PUBLICATION

This publication describes the use of VSAM (Virtual Storage Access
Method), an access method of OS/VS (Operating System/Virtual Storage). It
is intended for Assembler language programmers who intend to use VSAM
macro instructions to process data and for higher-level language programmers
who may want to use ISAM programs to process data. The publication has
the following major divisions:

• "Introduction," which introduces basic VSAM concepts that the reader
needs in order to use VSAM.

• "Processing Options and Considerations," which describes the types of
access that can be used with VSAM.

• "Sharing a VSAM Data Set," which discusses how VSAM data sets may be
shared by different operating systems, by different jobs in a single
operating system, and by different subtasks in an address space.

• "Optimizing VSAM's Performance," which describes many of the concepts
and parameters that influence VSAM performance.

• "Job Control Language," which describes JCL for VSAM, including DD
statements for catalogs and the DD AMP parameter.

• "Macro Instruction Descriptions and Return Codes," which briefly
describes the macros used to open and close a data set, manage control
blocks, and issue data management requests. This chapter also contains all
the macro return codes.

• "Macro Instruction Formats and Examples," which describes the syntax of
each macro and includes coded examples of each one.

• "Using ISAM Programming with VSAM," which describes how data sets
dm be converted to VSAM's format and can be processed using an ISAM
processing program.

• "User-Written Exit Routines," which describes how to write the exit
routines that can be used with VSAM.

• "Appendix A: Summary of Macros," which summarizes, for ease of
reference, the format of the macros used to communicate with VSAM.

• "Appendix B: List, Execute, and Generate Forms of GENCB, MODCB,
SHOWCB, and TESTCB," which explains how to code reentrant programs
with the macros that generate, modify, test, and display control blocks at
execution.

• "Appendix C: Operand Notation for GENCB, MODCB, SHOWCB, and
TESTCB," which gives all of the ways of coding operands in the macros
that generate, modify, test, and display control blocks at program
execution time.

• "Glossary," which defines VSAM terms.

• "Index," which is a subject index to this publication.

Using This Publication 3

Conventions Used in the Publication

The conventions used in this publication for writing the macro and JCL
statements indicate whether an operand is optional, how to specify the value
for an operand, and how to punctuate a macro or statement. The conventions
are:

• Expressions enclosed in brackets, [], are optional.

• Items separated by an OR sign, I, and enclosed in braces, {}, are
alternatives, only one of which may be specified.

• An underlined item, item, is the default when you don't specify anything
for an operand.

• Ellipses, "', indi~ate that you may repeat the preceding item.

Capitalized BOLD expressions, parentheses, commas, and equal signs must
be entered as shown, except that, unless otherwise noted, parentheses
aren't required if you specify only one item.

• Lowercase italic expressions are variables for which you may specify one
of a number of expressions.

VSAM and Access Method Services Publications

This publication makes frequent references to the VSAM and Access Method
Services publications. Rather than list all the titles at each reference point, the
text will refer to the appropriate publication for the particular subject.

The VSAM and Access Method Services publications are:

• OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications, GC26-3819, which provides information about advanced
applications of VSAM. The topics, which do not apply to normal use
of VSAM, include: gaining access to control intervals; I/O buffering;
constructing parameter lists for the macros that generate, modify, and
examine control blocks at execution; processing the index as data; sharing
resources; and displaying fields of the catalog.

• OS/VSl Access Method Services, GC26-3840, and OS/VS2 Access
Method Services, GC26-3841, which contain a complete description of
the commands that are used to copy, print, and load data sets. They also
describe the relationships among components, the structure of components,
the use of the catalog, and Access Method Services commands that are
used to define and delete data sets, list catalog entries, and move data sets
from one operating system to another. These publications are directed to
the person responsible for establishing and maintaining data sets in an
installation.

• OS/VSl Access Method Services Logic, SY35-0008, and OS/VS2 Access
Method Services Logic, SY35-0010, which describe the intemallogic of
Access Method Services.

• OS/VSl Virtual Storage Access Method (VSAM) Logic, SY26-3841,
which describes the internal logic of VSAM and of VSAM catalog
management.

• OS/VS2 Catalog Management Logic, SY26-3826, which describes the
internal logic of MVS VSAM catalog management.

4 GS/VS Virtual.Storage Access Method (YSAM) Programmer's Guide

,', ,'; 1\

f, f

Other Required Publications

Related Publications

• OS/VS2 Virtual Storage Access Method (VSAM) Logic, SY26-3825,
which describes the internal logic of VSAM, excluding VSAM catalog
management.

The reader also needs to be familiar with some of the information presented
in the following publications:

OS/VS1 Data Management Services Guide, GC26-3874, and OS/VS2
MVS Data Management Services Guide, GC26-3875, which presents
basic concepts such as access method. direct-access storage, and the
distinction between data-set organization and data-set processing.

• OS/VS1 JCL Reference, GC24-S099, which describes the JCL
parameters for VSl referred to in this publication.

• OS/VS2 JCL, GC28-0692, which describes the JCL parameters for VS2
referred to in this publication and describes dynamic allocation.

• OS /VS2 System Programming Library: Job Management, GC28-0627,
which describes dynamic allocation.

The reader may need to be familiar with some of the information presented in
the following publications:

• OS/VS2 TSO Command Language Reference, GC28-0646, and
OS/VS2 TSO Terminal User's Guide, GC28-0645, which describe the
TSO option of OS/VS2.

Other publications referred to in this publication are:

I : ~:~::~ ~;~k~~:~;:;~::~:~:'6:~::_3877
• OS/VS Message Library: VS1 System Messages, GC38-1001

• OS/VS Message Library: VS2 System Messages, GC38-1002

• OS/VS1 Utilities, GC26-3901

• OS/VS2 MVS Utilities, GC26-3902

• OS/VS1 System Data Areas, SY28-060S

• OS/VS2 Data Areas, SYB8-0606

• OS/VS2 System Programming Library: Debugging Handbook Volume 1,
GC28-0708, and Volume 2, GC28-0709. (Both manuals may be ordered
using GBOF-8211)

• OS/VS2 MVS Resource Access Control Facility (RACF) General
Information Manual, GC28-0722

Using This Publication 5

CONTENTS

Using This Publication .. 3
Conventions Used in the Publication .. 4
VSAM and Access Method Services Publications 4
Other Required Publications ... 5
Related Publications .. 5

Figures .. 13

OS/VSl Summary of Amendments .. 15

OS/VS2 Summary of Amendments 19

Introduction .. 23
Types of Data Sets ... 24

Key-Sequenced Data Set ... 25
Entry-Sequenced Data Set .. 25
Relative Record Data Set .. 25

Alternate Indexes ... 26
Alternate-Index Clusters ... 27
Alternate-Index Paths ... 27
Alternate-Index Records ... 27

System Header Information .. 27
Alternate-Index Keys .. 27
Alternate-Index Pointers ... 28

Alternate-Index Maintenance ... 28

Processing Options and Considerations ... 31
Types of Access .. : .. 32

Retrieve by Key ... 33
Delete by Key· .. 34
Store by Key .. 34
Retrieve by Address .. 35
Delete by Address ... 36
Store by Address ... 36

I User Restrictions During Create (Load) Mode ... 36
Exit Routines for Special Processing ... 37
Key Ranges .. 38
Deferred and Forced Writing of Buffers ... 38
Record Insertions ... 38
Multi-String Processing .. 39

Multi-String Index Buffers .. 40
Multi-String Data Buffers .. 41
Request Positioning ... 41

Utility Functions Carried Out by Access Method Services 42
Processing a VSAM Data Set with an ISAM Program 42
Using the Time Sharing Option .(TSO) with VSAM 42

Sharing a VSAM Data Set, .. 43
Subtask Sharing ... 45

Subtask Sharing in a Single Control Block Structure 45
Cross-Region Sharing .. 46

Read Integrity During Cross-Region Sharing ... 46
Write Integrity During Cross-Region Sharing ... 47

Cross-System Sharing.. 48

Contents 7

Optimizing VSAM's Performance ... 49
Control Interval Size .. ; 49

Data Control Interval Size .. 52
Data Space Utilization .. 52
Random Processing ... 52
Sequential Processing .. 52

Index Control Interval Size ... 53
Summary of Control Interval Size Strategy .. 53

Some Additional Control Interval Considerations 54
Control Area Size .. 55

Impact of Small Control Areas .. 55
I/O Buffer Space Management ... 56

Buffer Space .. 56
Buffer Allocation for a Key-Sequenced Data Set 56
Buffer Allocation for a Path ... 59
Things You Should Know About Buffer Allocation 60

Units of Allocation .. 62
Multiple Cylinder Data Sets .. 62
Small Data Sets .. 62
Choosing Allocation Parameters ... 62

Distributed Free Space .. 64
Free Space Computation ... 65

Index Options .. 65 I Index-Set Records in Virtual Storage .. 66
Size of the Index Control Interval.. ... 66
Index and Data on Separate Volumes ... 66
Replication of Index Records .. 66
Sequence-Set Records Adjacent to Control Areas 67
Index Option Summary ... 67

The SPEED and RECOVERY Options .. 67
VSAM Catalogs ... 68

, Sharin~ Services With User Cata~ogs ... 68
Improvmg Catalog Performance m MVS ... 68

Performance Measurement .. 48

Job Control Language ... 71
How to Code JCL ... 71

I JCL Parameters Not Used with VSAM .. 72
Coding a DD Statement for a User Catalog .. 72
Coding the AMP Parameter .. 75

I Defining a VSAM Data Set ... 77

Macro Instruction Descriptions and Return Codes .. 79
Opening a Data Set .. 79

Return Codes from OPEN .. 79
Closing a Data Set ... 82

Return Codes from CLOSE .. 82
I OPEN/CLOSE/TCLOSE Message Area ... 83

Control Block Macros .. 85
Specifying Options at Assembly or Execution .. 86
Return Codes From GENCB,MODCB, SHOWCB, and TESTCB
Macros ... 87

Request Macros ... 89
Return Codes from Request Macros ... 89
Feedback-Field Codes ... 90
Function Codes ... 91

8 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

POINT (Position for Access) .. 250
PUT (Store a Record) ... 250
RPL (Generate a Request Parameter List) ... 250
SHOWCB (Display Fields of an Access-Method Control Block) 251
SHOWCB (Display Fields of an Exit List) ... 252
SHOWCB (Display Fields of a Request Parameter List) 252
TESTCB (Test a Field of an Access-Method Control Block) 253
TESTCB (Test a Field of an Exit List) ... 254
TESTCB (Test a Field of a Request Parameter List) 254

Appendix D: List, Execute, and Generate Forms of GENCD, MODCD,
SHOWCD, and TESTCD ... 255
List-Form Keyword ... 255
Execute-Form Keyword .. 256
Generate-Form Keyword ... 257
Optional and Required Operands .. 257

List Form of GENCB .. 257
Execute Form of GENCB ... 258
Generate Form of GENCB ... 258
List Form of MODCB ... 258
Execute Form of MODCB .. 258
Generate Form of MODCB .. 258
List Form of SHOWCB .. 259
Execute Form of SHOWCB .. 259
Generate Form of SHOWCB .. 259
List Form of TESTCB ... 259
Execute Form of TESTCB .. 260
Generate Form of TESTCB .. 260

Use of List, Execute, and Generate Forms .. 260
Example: Generate Form (Reentrant) ... 261
Example: Remote-List Form (Reentrant) .. 261
Example: Execute Form (Reentrant) ... 261

Appendix C: Operand Notation for GENCD, MODCD, SHOWCD,
and TESTCD .. 263
Operands with GENCB ... 264
Operands with MODCB .. 265
Operands with SHOWCB .. 266
Operands with TESTCB .. 267

Glossary .. 269

Index .. 273

Contents 11

FDBK Code (Logical Errors) ... 91
FDBK Code (Physical Errors) .. : 96

Macro Instruction Formats and Examples... 101
ACB (Generate an Access Method Control Block) : 103

Example: ACB Macro .. 110
CHECK (Suspend Processing)' .. 111

Example: Check Return Codes after an Asynchronous Request 112
Example: Check Return Codes after a Synchronous Request 113
Example: Overlap Processing.................................... 113
Example: Suspend a Request for Many Records 115

CLOSE (Disconnect Program and Data) .. 117
ENDREQ (Terminate a Request) ... 119

Example: Release Positioning for Another Request 120
ERASE (Delete a Record) .. 123

Example: Keyed-Direct Deletion .. 124
Example: Addressed-Sequential Deletion ... 125

EXLST (Generate an Exit List) .. 127
Example: EXLST Macro .. 129

GENCB (Generate an Access Method Control Block) 131
Example: GENCB Macro (Generate an Access Method
Control Block ... 136

GENCB (Generate an Exit List) ... 139
Example: GENCB Macro (Generate an Exit List) 141

GENCB (Generate a Request Parameter List) ... 143
Example: GENCB Macro (Generate a Request Parameter List) 148

GET (Retrieve a Record) .. 149
Example: Keyed-Sequential Retrieval (Forward)........ 150
Example: Keyed-Sequential Retrieval (Backward) 151
Example: Skip-Sequential RetrievaL : 152
Example: Addressed-Sequential Retrieval .. 154
Example: Sequential Retrieval for a Relative Record Data Set 156
Example: Keyed-Direct Retrieval ... 157
Example: Addressed-Direct Retrieval .. 158
Example: Switch from Direct tp Sequential Retrieval 159

MODCB (Modify an Access Method Control Block) 161
Example: MODCB Macro (Modify an Access.Method Control
Block ... ' .. '\ 162

MODCB (Modify an Exit List) ... 163
Example: MODCB Macro (Modify an Exit List) 164

MODCB (Modify a Request Parameter List) ... 165
Example: MODCB Macro (Modify a Request Parameter List) 166

OPEN (Connect Program and Data) .. 167
Example: OPEN Macro .. 169

POINT (Position for Access) .. 171
Example: Position with POINT .. 172

PUT (Store a Record) .. 173
Example: Keyed-Sequential Insertion ... 174
Example: Record RBAs When Loading : 175
Example: Load a Relative Record Data Set (Skip-Sequential
and Direct Processing) : ... 177
Example: Keyed-Sequential Insertion (Relative Record Data Set) 178
Example: Skip-Sequential Insertion .. 179
Example: Keyed-Direct Insertion ... 181
Example: Addressed-Sequential Addition .. 182
Exampl.e: Keyed-Sequential Update ... 183

Contents 9

Example: Keyed-Direct Update .. 184
Example: Addressed-Sequential Update ... 185
Example: Mark Records Inactive .. 186

RPL (Generate a Request Parameter List) ... 187
Example: RPL Macro ... 194

SHOWCB (Display Fields of an Access Method Control
Block) .. 195

Example: SHOWCB Macro (Display an Access Method
Control Block) .. 199
Example: SHOWCB Macro (Display an Exit List Address) 199

SHOWCB (Display an Exit List) .. 201
Example: SHOWCB Macro (Display the Length of an Exit List) 202

SHOWCB (Display a Request Parameter List) ... 203
Example: SHOWCB Macro (Display a Physical Error Message) 205

TESTCB (Test an Access Method Control Block) 207
Example: TESTCB Macro (Test for Data Set Attributes) 211

TESTCB (Test an Exit List) .. 213
Example: TESTCB Macro (Use a Branch Table) 215

TESTCB (Test a Request Parameter List) .. 217
Example: TESTCB Macro (Test a Request Parameter List) 219

Using ISAM Programming with VSAM ... 221
How an ISAM Program Can Process a VSAM Data Set 222
Converting an Indexed-Sequential Data Set. ... 226

JCL for Converting from ISAM to VSAM ... 227
JCL for Processing with the ISAM Interface .. 227

AMP Parameter Specification ... 229
Restrictions in the Use of the ISAM Interface .. 231

Example: Converting a Data Set .. 233
Example: Issuing a SYNADAF Macro ... 234

User-Written Exit Routines .. 235
LERAD Exit Routine to Analyze Logical Errors 235
SYNAD Exit Routine to Analyze Physical Errors 236
Exception Exit Routine ... 237
EODAD Exit Routine to Process End-of-Data 238
JRNAD Exit Routine to Journalize Transactions 238
UP AD Exit Routine for User Processing .. 240
User-Security -Verification Routine ... 242
Returning to Your Main Program ... 242

Example: User-Written Exit Routine ... 244

Appendix A: Summary of Macros ... 245
ACB (Generate an Access-Method Control Block) 245
CHECK (Suspend Processing) ... 245
CLOSE (Disconnect Program and Data) ; 245
ENDREQ (Terminate a Request) ... 245
ERASE (Delete a Record) ; 245
EXLST (Generate an Exit List) .. 246
GENCB (Generate an Access-Method Control Block) 246
GENCB (Generate an Exit List) .. 246
GENCB (Generate a Request Parameter List) 247
GET (Retrieve a Record) .. 248
MODCB (Modify an Access-Method Control Block) 248
MODCB (Modify an Exit List) ... 248
MODCB (Modify a Request Parameter List) ... 249
OPEN (Connect Program and Data) .. 250

10 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

FIGURES

Figure 1. Comparison of Key-Sequenced, Entry-Sequenced,
and Relative Record Data Sets ... 26

Figure 2. JCL DD Parameters ... 73
Figure 3. OPEN Return Codes in the ERROR Field of the

Access-Method Control Block .. ." 80
Figure 4. CLOSE Return Codes ... 82
Figure 5. GENCB, MODCB, SHOWCB, and TESTCB Error

Codes ... 88
Figure 6. Logical-Error Return Codes in the Feedback Field

of the Request Parameter List.. .. 92
Figure 7. Physical-Error Return Codes in the

Field of the Request Parameter List .. 96
Figure 8. Physical-Error Message Format. .. 97
Figure 9. MACRF Options ... 109
Figure 10. OPTCD Options .. 192
Figure 11. FIELDS Operand Keywords for an Access-Method

Control Block ... 197
Figure 12. FIELDS Operand Keywords for a Request Parameter

List ... 204
Figure 13. Use of ISAM Processing Programs .. 221
Figure 14. QISAM Error Conditions ... 223
Figure 15. BISAM Error Conditions ... 224
Figure 16. Register Contents for DCB-Specifjed ISAM SYNAD

Routine ... 224
Figure 17. Register Contents for AMP-Specified ISAM SYNAD

Routine ... 225
Figure 18. ABEND Codes Issued by the ISAM Interface 225
Figure 19. DEB Fields Supported by ISAM Interface 226
Figure 20. DCB Fields Supported by ISAM Interface 228
Figure- 21. Contents of Registers at Entry to LERAD Exit Routine 236
Figure 22. Contents of Registers at Entry to SYNAD Exit Routine 237
Figure 23. Contents of Registers at Entry to EODAD Exit Routine 238
Figure 24. Contents of Registers at Entry to JRNAD Exit Routine 239
Figure 25. Communication with User-Security-Verification Routine 242
Figure 26. Reentrant Programming ... 260
Figure 27. GENCB Operands ... 264
Figure 28. MODCB Operands ~ 265
Figure 29. SHOWCB Operands .. 266
Figure 30. TESTCB Operands .. 267

Figures 13

OS/VSl SUMMARY OF AMENDMENTS

Service and Editorial Changes

Release 6

Release 5

• Control Interval Split Interruption: Before VSAM splits a control interval,
VSAM writes the control interval to the direct-access device with the
CIDF "busy flag" set. When VSAM completes the control interval split,
VSAM resets the busy flag. Whenever a control interval with a busy flag is
accessed, VSAM detects a previous control interval split failure. VSAM
attempts to remove any duplicated records from that control interval.

• A new chapter, "Sharing a VSAM Data Set," has been added, describing
VSAM share options.

• A description of the OPEN/CLOSE/TCLOSE Message Area has been
included .

• ' The section "Buffer Space"has been expanded to include more detail about
buffer management.

• Numerous other service and editorial changes have been made throughout
the book.

• A new keyword, HALCRBA, can be specified in the FIELDS operand of
the SHOWCB-ACB macro. This keyword allows a user to determine the
high-allocated RBA for either the data or index component.

• UPAD, a new exit routine, allows the user to perform special processing
during a VSAM ~quest.

There are no system changes for this release; however, the book has been
reorganized and new chapters and topics have been added.

New Chapters and Reorganization

• A new chapter, "Optimizing VSAM's Performance," describes control
interval and control area sizes and how they are determined, buffer
management, distributed free space, index options, the SPEED and
RECOVERY options, and performance measurement.

• A new chapter, "Processing Options and Considerations," includes some
processing information from the previous edition and also some new
subjects, such as multi-string processing, record insertion, deferred and
forced writing of buffers, and key ranges.

• All macro instructions, regardless of type, are presented in alphabetic order
in a new chapter, "Macro Instruction Formats and Examples."

• All return codes, regardless of type, are described in the chapter "Macro
Instruction Descriptions and Return Codes."

OS/VS 1 Summary of Amendments 15

Retum Code Cha,

Miscellaneous Changl

16 OS/VS Virtual Storage Access M

Release 4

New Programming Support

The IBM 3850 Mass Storage System (MSS) is supported with this release.
The MSS virtual volumes are functionally equivalent to the 3330/3333 Disk
Storage, Modell. For information on MSS, see OS/VS Mass Storage System
(MSS) Planning Guide, GC35-0011.

New VSAM Functions and Data Structures

Support for the new functions and data structures listed below has been
added to this publication.

• Multiple indexes enable subsets of a single data set to be uniquely named,
mounted, and processed.

• Control interval size is no longer dependent upon the size of the largest
record in a data set. Logical records may span control intervals within a
single control area.

• New options allow the sharing of I/O-related control blocks, channel
programs, and buffers among several VSAM data sets open at the same
time. Definitive descriptions of these options are published in OS/VS
Virtual Storage Access Method (VSAM) Options for Advanced
Applications.

• Relative record data sets, a new type of data organization, permit the
arithmetic calculation of the control interval containing a required record
and of the record's positioJ} within the control interval.

• GET -previous processing, a v~riation of sequential retrieval, returns the
previous record (relative to current positioning) rather than the next
record.

• Improved control-interval processing is an optional performance
enhancement that reduces the time and the number of CPU instructions
re9uired to gain access to a control interval. This processing is described in
OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications.

• Enhanced space reclamation makes it possible to reuse a single data set
many times as a work file.

OS/VS 1 Summary of Amendments 17

OS/VS2 SUMMARY OF AMENDMEN11S

Semce and Editorial Changes
• Control Interval Split Interruption: Before VSAM splits a control interval,

VSAM writes the control interval to the direct-access device with the
CIDF "busy flag" set. When VSAM completes the control interval split,
VSAM resets the busy flag. Whenever a control interval with a busy flag is
accessed, VSAM detects a previous control interval split failure. VSAM
attempts to remove any duplicated records from that control interval.

• A new chapter, "Sharing a VSAM Data Set," has been added, describing
VSAM share options.

• A description of the OPEN/CLOSE/TCLOSE Message Area has been
included.

• The section "Buffer Space"has been expanded to include more detail about
buffer management .

• Numerous other service and editorial changes have been made throughout
the book.

OS/VS2 MVS Data Management (VS2.03.808)

Alternate Key Support

Feedback code OS (paired with the 0 indicator in register 15) has been
changed. For GET requests, the code indicates that a duplicate key follows;
for PUT requests, it indicates that a duplicate key was created in an alternate
index with the nonunique attribute.

OS/VS2 MVS Supenisor Performance #2 (VS2.03.807)
Provides a description of Resource Access Control Facility (RACF), an IBM
program product that allows additional access-control measures on MVS
system only.

For a complete list of publications that support Supervisor Performance #2,
see OS/VS2 AIVS Supervisor Performance #2 System Information,
GC2S-0727.

OS/VS2 Summary of Amendments 19

Release 3.7

Enhanced VSAM

The Enhanced VSAM functions and data structures, available previously as
an independent component, are a part of this release. In addition, this
publication has been reorganized and new chapters and topics have been
added.

• MUltiple indexes enable subsets of a ·single data set to be uniquely named,
mounted, and processed.

• Control interval size is no longer dependent upon the size of the largest
record in a data set. Logical records may span control intervals within a
single control area.

• New options allow the sharing of I/O-related control blocks, channel
programs, and buffers among several VSAM data sets open at the same
time. Definitive descriptions of these options are published in OS/VS
Virtual Storage Access Method (VSAM) Options for Advanced
Applications.

• Relative record data sets, a new type of data organization, permit the
arithmetic calculation of the control interval containing a required record
and of the record's position within the control interval.

• GET -previous processing, a variation of sequential retrieval, returns the
previous record (relative to current positioning) rather than the next
record.

• Improved control interval processing is an optional performance
enhancement that reduces the time and the number of CPU instructions
required to gain access to a control interval. This processing is described in
OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications.

• Enhanced space reclamation makes it possible to reuse a single data set
many times as a work file.

• A new keyword, HALCRBA, can be specified in the FIELDS operand of
the SHOWCB-ACB macro. This keyword allows a user to determine the
high-allocated RBA for either the data or the index component.

• UPAD, a new exit routine, allows the user to perform special processing
during a VSAM request.

• Control Blocks in Common (CBIC) option (MVS only). This option
allows a user to place the VSAM control blocks associated with a VSAM
data set into the Common Service Area (CSA) of MVS. This option is
described in OS /VS Virtual Storage Access Method (VSAM) Options for
Advanced Applications.

20 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

New Chapters and Reorganization

Retum Code Changes

Miscellaneous Changes

• A new chapter, "Optimizing VSAM's Performance," describes control
interval and control area sizes and how they are determined, buffer
management, distributed free space, index options, the SPEED and
RECOVERY options, and performance measurement.

• A new chapter, "Processing Options and Considerations," includes some
processing information from the previous edition and also some new
subjects, such as multi-string processing, record insertion, deferred and
forced writing of buffers, and key ranges.

• All macro instructions, regardless of type, are presented in alphabetic order
in a new chapter, "Macro Instruction Formats and Examples."

• All return codes, regardless of type, are described in the chapter "Macro
Instruction Descriptions and Return Codes."

• Two new OPEN return codes have been added:

200(C8)-Format-4 indication of an unusable volume

236(EC)-MSS staging error

• One new CLOSE return code has been added:

236 (EC)-MSS destaging error

• One new control block return code has been added:

21 (15)-Block to be displayed or tested does not exist because the data
set is a dummy data set

• Two new FDBK codes have been added:

120(78)-Request was issued under an incorrect TCB

208(DO)-ENDREQ was issued against an RPL that has an outstanding
WAIT

• A table has been added that describes (for each FDBK code) whether
VSAM was able to maintain positioning.

• A table has been added that indicates (for various OPTCDs) the return
code you can expect when a search argument is greater than the highest
k~y in the data set.

• Exit routines that are used by a program doing asynchronous processing
with multiple RPLs must be able to handle entries made before the
previous entry's processing is complete. See "User-Written Exit Routines."

• Descrip~_Jns of the ACB MACRF options have been expanded.

• Examples have been added to illustrate: (1) keyed-sequential retrieval in a
backward (OPTCD=BWD) mode, (2) addressed-sequential retrieval of
records in a relative record data set, (3) retrieval of records by way of an
alternate index path with the nonunique key option, (4) creating a relative
record data set using SKP and DIR, and (5) keyed-sequential insertion of
records into a relative record data set.

OS/VS2 Summary of Amendments 2 t

Release 3

New Programming Support

The IBM 3850 Mass Storage System (MSS) is supported with this release.
MSS virtual volumes are functionally equivalent to the 3330/3333 Disk
Storage, Modell. For information on MSS, See OS/VS Mass Storage
(MSS) Planning Guide, GC35-001l.

There are no significant VSAM changes in this release.

22 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

INTRODUCTION

VSAM gives you both direct access to records in any order and sequential
access to records that follow one another. You can identify a record for
retrieval by its key (a unique value in a predefined field in the record), by its
displacement from the beginning of the data set, or by its relative record
number. These alternative types of access and access options enable you to
design a program to suit your requirements for processing data.

With VSAM you can build one or more alternate indexes over a single base
data set, so that you need not keep multiple copies of the same information
organized in different ways for different applications. In terms of access, an
alternate index serves the same purpose as a primary index, but it does not
account for space in the base data set and does not require unique keys.

The Access Method Services commands are used to establish and maintain
data sets and to copy and print data sets. These commands are described in
the appropriate Access Method Services publication.

The macros described in this publication include control block macros and
request macros. The macros that are used to build control blocks, described in
the chapter "Macro Instruction Descriptions and Codes," are:

• ACB, which is used. to build an access-method control block at assembly
time.

• EXLST, which is used to build an exit list, which identifies available exit
routines; the exit list is built at assembly time. -

• RPL, which is used to build a request parameter list at assembly time.

• GENCB, which is used to build an access-method control block, an exit
list, or a request parameter list at execution time.

The macros that are used to modify, display, and test the contents of control
blocks, also described in the chapter "Macro Instruction Descriptions and
Codes," are:

• MODCB, which is used to modify an access-method control block, an exit
list, or a request parameter list at execution time.

• SHOWCB, which is used to display fields in an access-method control
block, an exit list, or a request parameter list at execution time.

• TESTCB, which is used to test the contents of fields in an access-method
control block, an exit list, or a request parameter list at execution time.

The macros used to store, retrieve, and erase records, to position VSAM in a
data set, to suspend processing, and to terminate requests, described in the
chapter "Macro Instruction Descriptions and Return Codes," are:

• GET, which is used to retrieve a record.

• PUT, which is used to store a record.

• ERASE, which is used to delete a record.

• POINT, which is used to position VSAM at a record.

• CHECK, which is used to suspend processing.

• ENDREQ, which is used to terminate a request.

Introduction 23

Types of Data Sets
VSAM has key-sequenced, entry-sequenced, and relative record data sets.
The primary difference among the three is the sequence in which data records
are loaded into them.

Records are loaded into a key-sequenced data set in key sequence: that is, in
the order defined by the collating sequence of the contents of the key field in
each of the records. Each record has a unique value, such as employee
number or invoice number, in the key field. To determine where to insert a
new record into the data set in key sequence, VSAM uses an index that pairs
the key of a record with the record's location.

Records are loaded into an entry-sequenced d(lta set without respect to the
contents of the records. Their sequence is determined by the order in which
they are stored: their entry sequence. Each new record is stored after the last
record in the data set.

Records are loaded into a relative record data set in relative record number
sequence, or you can supply the relative record number of each record and
load them in random order. The data set may be described as a string of
fixed-length slots, each of which is identified by a relative record number.
When a new record is sequentially inserted, VSAM assigns the record either
the next available relative record number in sequence or the number you
supplied.

When a data set is created, it is defined as a cluster. A cluster can be a
key-sequenced data set, which consists of a data component and an index
component, or it can be an entry-sequenced or relative record data set, which
consists of only a data component.

When you define a VSAM data set, your data set may be either unique or
suballocated. A unique data set occupies an entire VSAM data space. This
space is acquired and assigned for the data set concurrent with the data set
definition. A suballocated data set, on the other hand, is a data set which gets
its space from a previously defined VSAM data space. There can be several
suballocated VSAM data sets in a VSAM data space.

Any suballocated VSAM data set that does not have an alternate index and is
not associated with key ranges may be used as a work file. That is, you can
treat a filled data set as if it were empty and use it again and again, regardless
of its old contents.

All VSAM data sets are stored on direct-access storage devices. The records
of a data set n~ed not be stored in a continuous area of storage. From your
point of view, the area is continuous, starting at address O. VSAM addresses a
point in the area by its displacement, in bytes, from 0, called its RBA (relative
byte address). For example, the first record in a data set has RBA O. The
second record has an RBA equal to the length of the first record, and so on.
RBAs are independent of a data set's being stored in nonadjacent areas on a
volume or on several volumes.

All VSAM data sets must be cataloged in a VSAM catalog. See Planning for
Enhanced VSAM under OS/VS for a description of the catalog.

The total space of a data set is considered to be divided into a continuous set
of areas called control areas, which are further divided into control intervals.
When you retrieve a record, the contents of the control interval in which it is
stored are read in by VSAM. A control interval is thus the unit of data
transmission between virtual and auxiliary storage.

24 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Key-Sequenced Data Set

Entry-Sequenced Data Set

. Relative Record Data Set

Key-sequenced and entry-sequenced data records whose lengths exceed
control interval size may cross, or span, one or more control interval
boundaries within a single control area. Such records are called spanned
records. You must specify your intent to use spanned records when you
define the data set.

The following sections briefly describe VSAM data sets and alternate indexes.
For detailed information about these data structures, see Planning for
Enhanced VSAM under OS!VS.

A key-sequenced data set always includes an index, which is a mechanism for
keeping track of records. An index relates key values to the relative locations
of the records.

The RBAs of records can change in a key-sequenced data set when records
are added, deleted, shortened, or lengthened.

A key-sequenced data set permits the full range of options for gaining access
to data: retrieval, insertion, deletion, and changing the length of a record.
Records in a key-sequenced data set can be accessed using keyed access,
addressed access, and control interval access. VSAM keeps track of records in
a key-sequenced data set by key field, so that you need refer to a record only
by its key field, and not in some location-dependent manner.

A key-sequenced data set must be created in sequential mode.

The records in an entry-sequenced data set are in the order f.qey are stored in
time. That is, each new record is stored at the end; none is inserted. Records
cannot be shortened, lengthened, or moved from one location to another.
Records cannot be deleted, although they can be replaced with records of the
same length. Once a record is added to an entry-sequenced data set, it stays
there and keeps its original RBA. An entry-sequenced data set is essentially a
sequential data set, but one whose records can be retrieved at random by
direct access and can be updated. The search argument for direct retrieval is a
record's RBA.

An entry-sequenced data set is appropriate for applications that require no
special ordering of data by the contents of a record. It is appropriate for a log
or a journal, because its order corresponds to the chronology of events. To
retrieve records randomly from an entry-sequenced data set, you must keep
track of the records' RBAs and associate RBAs with the contents of records .

A relative record data set has no index. It is a string of fixed-length slots, each
of which is identified by a relative record number from 1 to n, where n is the
maximum number of records that can be stored in the data set. Each record
occupies a slot and is stored and retrieved by the relative record number of
the slot.

Records in a relative record data set are grouped together in control intervals,
just as they are in a key-sequenced or an entry-sequenced data set. Each
control interval contains the same number of slots. The size of each slot is the
record length you specified when you defined the data set.

Introduction 25

Alternate Indexes

Relative record data sets can be processed by key or by control interval. With
keyed access, a relative record number is treated like a key. You can update
records in place, delete records, and insert new records into empty slots.
Control-interval processing is described in OSjVS Virtual Storage Access
Method (VSAM) Options for Advanced Applications.

You can use a relative record data set in much the same way you would use a
BDAM (basic direct-access method) data set in which the data records are
not ordered by their contents or their entry sequence.

Figure 1 compares key-sequenced, entry-sequenced, and relative record data
sets.

Key-Sequenced Data Set

Records are in collating
sequence by key field

Access is by key through an
index or by RBA

May have one or more
alternate indexes

A record's RBA can change

Distributed free space is used
for inserting records and
changing their length in place

Entry-Sequenced Data Set

Records are in the order in
which they are entered

Access is by RBA

May have one or more
alternate indexes

Relative Record Data Set

Records are in relative
record number order

Access is by relative
record number, which is
treated like a key

May not have alternate
indexes

A record's RBA cannot change A record's relative
record number cannot
change

Space at the end of the data set Empty slots in the data
is used for adding records set are used for adding

records

Space given up by a deleted or A record cannot be deleted, Space given up by a
deleted record can be
reused

shortened record is but you can reuse its space for
automatically reclaimed within a record of the same length
a control interval

Can have spanned records Can have spanned records Cannot have spanned
records

Can be reused as a work file Can be reused as a work file Can be reused as a work
unless it has an alternate index, unless it has an alternate index file unless it exceeds 16
is associated with key ranges, is or exceeds 16 extents per extents per volume
unique, or exceeds 16 extents volume
per volume

Figure 1. Comparison of Key-Sequenced, Entry-Sequenced, and Relative Record J.)ata
Sets

An alternate index provides a unique way to gain access to a related base data
set, so that you need not keep mUltiple copies of the same information
organized in different ways for different applications. For example, a payroll
data set indexed by employee number can also be indexed by other fields such
as employee name or department number. See the appropriate Access Method
Services publication for a complete description of the commands used to
define and build an alternate index.

In terms of access, an alternate index performs the same function as the prime
index of a key-sequenced data set. The data set over which the alternate
index is built is the base cluster. The base cluster can be a key-sequenced or
an entry-sequenced data set, but not a relative record or a reusable data set.

26 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Altemate-Index Clusters

Altemate-Index Paths

Altemate-Index Records

System Header Information

Alternate-Index Keys

The alternate index is an indexed cluster (the alternate-index cluster). It
consists of an index component and a data component. The index component
is identical in structure, format, and function to the prime index of a
key-sequenced cluster. Likewise, the format of the alternate-index data
component is identical to the base data set. Therefore, each entry in the
sequence set of an alternate-index index component points to a control
interval in the alternate-index data component.

When building an alternate index, you can use as the alternate key any field
in the base data set's records having a fixed length and a fixed position within
each record. The alternate key must be in the first segment of a spanned
record. For each alternate key, the data component of the alternate index
contains a unique record. This record consists of the alternate key itself,
followed by a pointer that is the prime key or RBA of the base data record
that contains the alternate key. If more than one base data record contains
the alternate key then the alternate index record contains a pointer to each
base data record. These duplicate, or non unique keys are discussed in the
section" Alternate-Index Keys."

A path logically relates a base cluster and each of its alternate indexes. It
provides a way to gain access to the base data through a specific alternate
index. You define a path through Access Method Services. You must name it
and you can give it a password, if you choose. The path name subsequently
refers to the base cluster/alternate-index pair. This means that when you
refer to a path (by way of the OPEN macro, for example), both the base
cluster and the alternate index are affected (opened).

Each record in the data component of an alternate-index cluster is
variable-length and contains system header information, the alternate key,
and at least one pointer to a base data record. Data component records may
span control intervals.

System header information is fixed length and indicates:

• Whether the alternate index record contains (1) prime keys or RBA
pointers and (2) unique or nonunique keys

• The length of each pointer

• The length of the alternate key

• The number of pointers

Unless the base data records span control intervals, any field in the base data
record that has a fixed length and a fixed position within the record can be an
alternate key. The alternate key must be in the first control interval of a
spanned record. When an alternate index is created, the alternate keys are
extracted from the base data records and ordered in collating sequence. If you

Introduction 27

Alternate-Index Pointers

build several alternate indexes over a base cluster, the alternate key fields of
the different alternate indexes may overlap each other in the base data
records. An alternate index key can also overlap the prime key.

Keys in the index component of an alternate index or of a key-sequenced
base cluster are compressed. Keys in the data compopent of an alternate
index are not compressed. That is, the entire key is represented in the
alternate-index record.

An alternate key may refer to more than one record in the base cluster. For
example, if an alternate index is established by department number over a
payroll data set organized by employee number, there will be several
employees with the same department number. In other words, there will be
several prime-key pointers (employee numbers) in the alternate-index record,
one for each occurrence of the alternate key (department number) in the base
data set. When multiple pointers are associated with a given alternate key
value, the alternate key is said to be nonunique; if only one pointer is
associated with the alternate key, it is unique.

An alternate index uses prime keys if the base cluster is a key-sequenced data
set and RBAs if the base cluster is an entry-sequenced data set.

For a nonunique key, multiple pointers are associated with it. The pointers are
ordered by their arrival times. That is, if a base data record is updated with a
key change, or if a new record is .inserted with the same alternate key value
the new prime-key pointer is added to the end of the alternate-index record.
In the case of a key change, the old pointer is deleted.

A prime-key pointer has the same length as the prime key field of the base
data record it points to. The maximum number of pointers that can be
associated with a given alternate key is 32,767, provided the maximum record
length for spanned records is not exceeded.

Alternate-Index Maintenance

VSAM assumes alternate indexes are synchronized with the base cluster at all
times and makes no synchronization checks during open processing;
therefore, all structural changes made to a base cluster must be reflected in its
alternate index or indexes. This maintenance is called index upgrade. You can
maintain your alternate indexes or you can have VSAM maintain them. When
the data set is defined with the UPGRADE attribute, VSAM will update the
alternate index immediately when there is a change to the associated base
data cluster. VSAM opens all the UPGRADE alternate indexes for a base
cluster whenever the base cluster is opened for output and updates them if
necessary.

All the alternate indexes of a given base cluster that have the UPGRADE
attribute belong to the upgrade set. The upgrade set is updated whenever a
base data record is inserted, erased, or updated. The upgrading is part of a
request and VSAM completes it before returning control to your program. If
the upgrade fails because of a logical error, any modifications made to the
base data or to another alternate index are nullified, and the request that
caused the upgrade is rejected.

If you specify NOUPGRADE when the alternate index is defined, you must
provide a way to reflect insertions, deletions, and changes made to the base
cluster in the associated alternate index.

28 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

When a path is opened for update, the base cluster and all the altern~te
indexes in the upgrade set are allocated. If updating an alternate ind$;X is
unnecessary, you can specify NOUPDA TE when you define the patl}']n this
case, only the base cluster is allocated and VSAM does no automatic~
upgrading.

Introduction 29

PROCESSING OPTIONS AND CONSIDERATIONS

Processing options include:

• Types of access (keyed or addressed, and sequential, skip sequential, or
direct)

• Exit routines for special processing

You can gain access to a data set with a mixture of options. For instance, if
you were processing two portions of a data set concurrently, you might
process one portion directly, asynchronously, using a work area; you might
process the other sequentially, synchronously, in the I/O buffer. You could
also alternate among the options to process a data set, switching, say, from
direct to sequential access when you got to a point where you wanted to
process records in ascending sequence.

Processing options are specified in macros that generate control blocks when
your program is assembled (ACB, EXLST, and RPL macros) or executed
(GENCB macro). Each request for some action is associated with a request
parameter list, which, in association with other control blocks, supplies the
processing options for the request. See the chapter "Control Block Macros"
for a description of the macro instructions and of the specification of the
processing options.

When you issue a request for a record, you can either wait until the request is
completed to continue processing or goon with processing that is not
dependent upon the first request while it is being carried out. Overlapping
processing in this way can improve the performance of your job.

VSAM can keep track concurrently of positions in a data set for many
requests to a data set. You can thus process many portions of a data set
during the same period of time. Such concurrent access may be used to
increase throughput~ where each request can be processed independently of
the others.

The standard request for access retrieves, stores, or deletes a single record.
The standard request is described by a parameter list that indicates a single
record. By chaining parameter lists together, you can retrieve or store many
records with one request. You may not use chained parameter lists to update
or delete records; you may use chained parameter lists only to retrieve records'
or to store new records.

Processing Options and Considerations 31

Types of Access
VSAM allows both sequential and direct access for each of its three' types of
data sets. Sequential access of a record depends on the position, with respect
to the key, the relative byte address of the previously processed record, or the
relative record number; direct access does not. During sequential access,
records retrieved by key are in key sequence, records retrieved by RBA are in
entry sequence, and records retrieved by relative record number are in
relative record number sequence. To retrieve records after initial positioning,
you don't need to specify a key, an RBA, or a relative record number. VSAM
automatically retrieves or stores the next record in order, either next in key
sequence, next in entry sequence, or next in relative record number sequence,
depending on whether you're processing by key, by RBA, or by relative
record number.

With direct access, the retrieval or storage of a record is not dependent on the
key, the RBA, or the relative record number of any previously retrieved
record. You must fully identify the record to be retrieved or stored by key, by
RBA, or by relative record number.

GET-previous processing is a variation of normal keyed or addressed
sequential processing. Instead of retrieving or updating the next record in
ascending sequence (relative to current positoning in the data set),
GET -previous processing returns or updates the next record in descending
sequence. You can select GET-previous processing for POINT, GET, PUT
(update only), and ERASE operations. GET-previous processing is not
permitted with control-interval or skip-sequential processing.

When GET-previous processing is specified with either a POINT or a
GET -direct request, the exact key of the request record must be specified.

VSAM allows a processing program or its sub tasks to process a data set with
multiple concurrent sequential and/or direct requests, each requiring that
VSAM keep track of a position in the data set, with a single opening of the
data set. Access can be to the same part or to different parts of a data set.

You can use a suballocated VSAM data set as a work file, if the data set does
not have an alternate index and is not associated with key ranges. That is, you
can treat a filled data set as if it were empty and use it again and again
regardless of its old contents. To reuse a data set, you need only to define it
as reusable and specify that it be reset when you open it.

For a key-sequenced data set the primary form of access is keyed access,
using an index. For an entry-sequenced data set without an alternate index,
the only forms of access are addressed (using the RBA determined for a
record when it was stored in the data set) and control-interval access. For a
relative record data set, the only forms of access are keyed (using the relative
record number as the key) and control-interval access. Control-interval access
is described in OS/VS Virtual Storage Access Method (VSAM) Options for
Advanced Applications.

If you use addressed access to process key-sequenced data, you should
consider the possibility that RBAs may have changed during previous keyed
access.

For examples of keyed and addressed retrieval, storage, deletion, and update,
see the chapter "Request Macros" later in this publication.

32 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

"Retrieve by Key

.)

Keyed sequential access for a key-sequenced data set depends on where the
previous macro request positioned VSAM with respect to the key sequence
defined by the index. When your program opens the data set for keyed access,
VSAM is positioned at the first record in the data set in key sequence to begin
keyed sequential processing. The POINT macro instruction positions VSAM
at the record whose key you specify. If the key is a leading portion of the key
field, a generic key, the record positioned to is the first of the records having
the same generic key. A subsequent sequential GET macro retrieves the
record VSAM is positioned at. The GET then positions VSAM at the next
record in key sequence. VSAM checks positioning when processing modes are
changed between requests. The POINT macro can position for either forward
or backward processing, depending on whether FWD or BWD was specified
for the RPL OPTeD operand.

When you are processing by way of a path, records from the base cluster are
returned according to ascending or, if you are retrieving the previous record,
descending alternate key values. If there are -several records with a nonunique
alternate key, those records are returned in the order in which they were
entered into the alternate index. VSAM sets a return code in the RPL when
there is at least one more record with the same alternate key. For example, if
there are three data records with the alternate key 1234, the return code
would be set during the retrieval of records one and two and would be reset
during retrieval of the third record.

Keyed sequential retrieval for a relative record data set causes the records to
be returned in ascending or, if you are retrieving the previous record,
descending numerical order, based on the current positioning for the data set.
Positioning is established in the same way as for a key-sequenced data set,
and the relative record number is treated as a full key. If a deleted record is
encountered during sequential retrieval, it is skipped over and the next record
is retrieved. The relative record number of the retrieved record is returned in
the ARG field of the RPL.

Keyed Skip Sequential: When you indicate the key of the next record to be
retrieved during skip-sequential retrieval, VSAM skips to the next record's
index entry by using horizontal pointers in the sequence set to get to the
appropriate sequence-set index record to scan its entries. The key of the next
record to be retrieved must always be higher in sequence than the key of the
preceding record retrieved.

Keyed direct retrieval for a key-sequenced data set does not depend on prior
positioning; VSAM searches the index from the highest level down to the
sequence set to retrieve a record. You can specify the record to be retrieved
by supplying one of the following:

• The exact key of the record

• An approximate key, less than or equal to the key field of the record

• A generic key

You can use approximate specification when you do not know the exact key.
If a record actually has the key specified, VSAM retrieves it; otherwise, it
retrieves the record with the next higher key. Generic key specification for
direct processing causes VSAM to retrieve the first record having that generic
key. If you want to retrieve all the records with the generic key, specify NSP
in your direct request. That causes VSAM to position itself at the next record
in key sequence. You can then retrieve the remaining records sequentially.

Processing Options and Considerations 33

Delete by Key

Store by Key

When GET-previous processing is specified with either a POINT or a
GET -direct request, the exact key of the requested record must be specified.

When you use direct or skip-sequential access to process a path, a record
from the base data set is returned according· to the alternate key you have
specified in the ARG operand of the RPL macro. If the alternate key is not
unique, the record which was first entered with that alternate key is returned
and a return code (duplicate key) is set in the RPL. To retrieve the remaining
records with the same alternate key, specify the NSP option when retrieving
the first recoId with a direct request and then switch to sequential processing.

To use direct or skip-sequential access to process a relative record data set,
you must supply the relative record number of the record you want in the
ARG operand of the. RPL macro. If you request a deleted record, the request
will cause a no-record-found logical error.

A relative record data set has no index; VSAM takes the number of the
record to be retrieved and calculates the control interval that contains it and
its position within the control interval.

An ERASE macro instruction that follows a GET for update deletes the
record that the GET retrieved. A record is physically erased in the data set
when you delete it. The space the record occupied is then available as free
space.

You can erase a record from the base cluster of a path only if the base cluster
is a key-sequenced data set. If the alternate index is in the upgrade set (that
is, UPGRADE was specified when the alternate index was defined), it is
modified automatically when you erase a record. If the alternate key of the
erased record is unique, the alternate index data record with that alternate key
is also deleted.

You can erase a record from a relative record data set after you have
retrieved the record for update. The record is set to binary zeros and the
control information for the record is updated to indicate an empty slot. You
can reuse the slot by inserting another record of the same length into it.

To store records in ascending key sequence throughout a data set, you can use
sequential, skip-sequential, or direct access. For sequential or skip-sequential
processing, VSAM scans the sequence set of the index; for direct processing,
VSAM searches the index from top to bottom.

After a data set is created (loaded), it must be closed and reopened before
update or insert requests can be issued.

A PUT macro instruction stores a record. A PUT for update following a GET
for update stores the record that the GET retrieved. To update a record, you
must previously have retrieved it for update. A PUT for non-update inserts or
adds a new record into the data set.

When VSAM detects that two or more records are to be inserted in sequence
into a collating position (between two records) in a data set, VSAM uses a
technique called mass sequential insertion to buffer the records being
inserted, thereby reducing I/O operations. Using sequential instead of direct
access in this case enables you to take advantage of this technique. You can
also extend your data set (resume loading) by using sequential insertion to

34 OS!VS Virtual Storage Access Method (VSAM) Programmer's Guide

Retrieve by Address

add records beyond the highest key or relative record number. There are'
possible restrictions to extending a data set into a new control area depending
on the sharing options you specify. See the chapter "Sharing a VSAM Data
Set. "

Mass sequential insertion observes control interval and control area freespace
specifications when the new records are a logical extension of the control
interval or control area (that is, when the new records are added beyond the
highest key or relative record number used in the control interval or control
area).

Sequential insertion in a relative record data set causes a record to be assigned
the next available number in sequence, which is the next available relative
record number greater than the position established by a previous record. The
assigned number is returned in the ARG field of the RPL.

Direct or skip-sequential insertion of a record into a relative record data set
causes the record to be placed as specified by the relative record number in
the ARG field of the RPL. You must insert the record into a slot that does
not contain a record. If the slot specified does contain a record, VSAM sets
an error return code in the RPL and rejects the request.

You can insert and update data records in the base cluster by way of a path
provided:

• The PUT request does not resultiri nonunique alternate keys in an
alternate index which you have defined with the UNIQUEKEY attribute.

• You do not change the key of reference between the time the record was
retrieved for update and the PUT is issued. The prime key is never
changed.

If the alternate index is in the upgrade set (that is, you specified UPGRADE
when you defined the alternate index), the alternate index is modified
automatically when you insert or update a data record in the base cluster. If
the updating of the alternate index results in an alternate-index record with no
pointers to the base cluster, the alternate-index record is erased. If the
updating creates a nonunique key in the alternate index, VSAM sets a
non-error return code in the RPL. If the alternate index has the UNIQUE
attribute, VSAM sets an error return code in the RPL and rejects the update
request.

Positioning for addressed sequential retrieval is done by RBA rather than by
key. When a processing program opens a data set for addressed access,
VSAM is positioned at the record with RBA of zero to begin addressed
sequential processing. A POINT positions VSAM for sequential access
beginning at the record whose RBA you have indicated. A sequential GET
causes VSAM to retrieve the data record at which it is positioned and
positions VSAM at the next record in forward or backward direction.

With direct processing, you can optionally specifyNSP in your RPL to
indicate that the position be maintained following the GET. Your program
can then process the subsequent records sequentially in either a forward or
backward direction.

Addressed sequential access retrieves records in forward or backward
direction. If addressed sequential retrieval is used for a key-sequenced data

Processing Options and Considerations 35

Delete by Address

Store by Address

set, records will not be in their key sequence if there have been control
interval or control area splits.

Addressed direct retrieval requires that the RBA of each individual record be
specified, since previous positioning is not applicable. The address specified
for a GET or a POINT must correspond to the beginning of a data record;
otherwise, the request is invalid.

The ERASE macro can be used only with a key-sequenced data set to delete
a record that you have previously retrieved for update.

With an entry-sequenced data set, you are responsible for marking a record
you consider to be deleted. As far as VSAM is concerned, the record is not
deleted. You can reuse the space occupied by a record marked as deleted by
retrieving the. record for update and storing in its place a new record of the
same length.

VSAM does not insert new records into an entry-sequenced data set, but adds
them at the end. With addressed access of a key-sequenced data set, VSAM
does not insert or add new records.

After a data set is created (loaded), it must be closed and reopened before
update or addressed direct requests can be issued.

A PUT macro instruction stores a record. A PUT for update following a GET
for update stores the record that the GET retrieved. To update a record, you
must previously have retrieved it for update. You can update the contents of a
record with addressed access, but you cannot alter the record's length.
Neither can you alter the prime key field of a record in a key-sequenced data
set.

To change the length of a record in an entry-seqeunced data set, you must
store it either at the end of the data set (as a new record) or in the place of an
inactive record of the same length. You are responsible for marking the old
version of the record as inactive.

User Restrictions During Create (Load) Mode
The terms "create mode," "load mode," and "initial data set load" are
synonymously applied to the process of placing records into an empty VSAM
data set. This type of processing is initiated when VSAM OPEN is called to
open a data set whose high-used RBA is zero. It continues while records are
added following the (successful) open and concludes when the data set is
closed.

Certain restrictions apply during load mode processing. You should be aware
of the following:

• Direct (DIR) processing is not permitted (except relative record keyed
direct).

(Note: If your application calls for direct processing during create mode,
you can get around this restriction by doing the following:

1) Open the empty data set for create mode processing
2) Write one or more records. (These may be "dummy" records.)

36 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

3) Close the data set to terminate create mode processing.
4) Reopen the data set to do your normal processing.

• The only request macros allowed during create mode are PUT and
CHECK.

• ICI (Improved Control Interval) processing is not permitted.

• Create mode must be terminated via CLOSE before the data set can be
used for other processing.

• You cannot specify more than one string in the ACB (STRNO> 1 is not
permitted) .

• LSR (Local Shared Resources) or GSR (Global Shared Resources) cannot
be specified.

• Data set opened for input is not allowed.

Exit Routines for Special Processing
An exit is a branch that VSAM takes to an optional user-supplied routine
when certain unusual conditions occur or when certain recurrent but
unpredictable events happen. Exits are defined for:

• Logical error (LERAD), which is used when the processing program makes
an invalid request for access to data.

• Physical error (SYNAD), which is used to handle physical-error conditions.

• Exception handling (EXCEPTIONEXIT), which monitors physical-error
conditions on a data set basis. This exit is specified via the Access Method
Services DEFINE command and it is taken before a SYNAD exit if both
are specified.

• End of data set (EODAD), which is used when the processing program has
attempted to point to or retrieve sequentially a record beyond the last
record in the data set.

• Journalizing a transaction or keeping track of RBA change (JRNAD),
which is used to keep track of any change to the RBAs of records.

• Returning to a user's exit routine for special processing (UPAD) before a
synchronous VSAM request completes.

• User-security-verification (USVR), which is used to make security checks
in addition to verification of passwords.

The routine to which VSAM exits may be a subroutine in the processing
program or a separate load module. An exit routine is identified as available
for use in an exit list associated with one or more access-method control
blocks. See the chapter "Control Block Macros" for information on how the
exit list is created, modified, tested, and displayed. See the chapter
"User-Written Exit Routines" for detailed information about the exit
routines. For information about exception exits, see the appropriate Access
Method Services publication.

Processing Options and Considerations 37

Deferred and Forced Wr.

Record Insertions

V

\\

ta
ba
fol

Foret

Defer

An E~

Record

Type I
Type II
Type III
Type IV

38 OS/VS Virtual Storage Access Method (YSAM)

Multi-String Processing

Insertions into a key-sequenced data set use the free space provided during
the definition of the data set or the free space that deyelops as a result of
control interval and control area splits. Type III insert requests are used to
create a data set or to do mass insertions. This type of insertion maintains free
space during create mode and during mass insertions. This request type uses
the sequential insert strategy. All of the other types use the direct insert
strategy. Note that if MACRF=SIS is specified in the ACB, all inserts use
sequential insert strategy.

Using sequential insert strategy, a record is inserted as follows:

• If the new record goes after the last record of the control interval and the
free space limit has not been reached, the new record will go into the
existing control interval. If the free space does not exist in the control
interval, then a control interval split will occur at the point of insertion.

• If the new record does not belong at the end of the control interval and
there is free space in the control interval, it will be placed in sequence into
the existing control interval.

Using direct insert strategy, a record is inserted as follows:

• A new record is inserted into an existing control interval if free space exists
in the control interval. If no free space exists, then the control interval is
split in half.

Sequential insert strategy results in better performance than direct insert
strategy; fewer I/O operations are required by VSAM. Therefore, when a
group of records is to be inserted into a data set between two existing records,
the sequential insert strategy should be used. When several groups of records
in sequence are to be mass inserted, each group may be preceded by a POINT
KEQ to establish positioning.

For an entry-sequenced data set, records can be added only at the end of the
data set.

Insertions into a relative record data set go into empty slots.

In mUltiple string processing, there may be multiple independent RPLs within
a region or partition for the same data set. The data set may be shared by a
common control block structure by multiple tasks. There are several ACB and
RPL arrangements that indicate that multiple string processing will occur:

• In the first ACB opened, STRNO or BSTRNO is greater than 1

• Multiple ACBs are opened for the same data set within the same partition
or region and are connected to the same control block structure

• Multiple concurrent RPLs are active against the same ACB using
asynchronous requests

• Multiple RPLs are active against the same ACB using synchronous
processing with each requiring positioning to be held

If you are doing multiple string update processing, you need to be aware of
VSAM look-aside processing and the rules surrounding exclusive use.
Look-aside means that when referring to an index or data control interval,

Processing Options and Considerations 39

Multi-String Index Buffers

VSAM checks its buffers to see if the control interval is already present.
Look-aside proceeds as follows:

1. For a nonupdate GET request, there is no look-aside across strings. As a
result, a down-level copy of the data may be obtained either from buffers
attached to this string or from secondary storage.

2. For GET-update requests, there is a complete look-aside across all strings
associated with the ACB. This may lead to an exclusive control conflict
be~ause of update activity to the same control interval under other strings.

The exclusive-use rules are as follows:

1. If a given string has control of any record in a control interval, that control
interval is not available for update or insert processing by another string.

2. If a given string is in the process of a control area split caused by an update
with length change or an insert, that string obtains exclusive control of the
entire control area being split. Other strings cannot process insert or
update requests against this control area until the split is complete.

Since VSAM doesn't queue requests that have exclusive control conflicts, user
action is required. If a conflict is encountered, VSAM returns a logical error
return code, and you must quiesce activity and clear the conflict. If the RPL
that encountered the conflict had exclusive control of a control interval from
a previous request, you should issue an ENDREQ against it before you
attempt to clear the problem. You can clear the conflict in one of two ways:
(1) queuing until the RPL holding exclusive control of the control interval
releases that control and then reissuing the request or (2) issuing an
ENDREQ against the RPL holding exclusive control to force it to release
control immediately.

Each string requires one index buffer. If there are four strings active, then
there will be a minimum of four index buffers. Buffers in excess of the
minimum are used for index set control intervals and are shared among the
strings. The number of index buffers should be set to the number of strings
(STRNO) plus X, where:

X=O, if all strings are sequential;

X= 1, if the data set is a 2-level index and any string is not sequential;

X=n, where n is the number of index control intervals in the index set, if
any string is doing random accessing, the number of index levels is greater
than 2, and if the entire high-level index fits in storage;

X= 1 plus the number of non-sequential strings, if the entire high-level
index won't conveniently fit in storage.

Assume you have the following situation:

• 1024-byte index control interval

• 3-level index

• 50 index control intervals at the second level

• 4 strings doing random processing

Then, set BUFNI=STRNO+ 1 +STRNO' =9, where STRNO' is the number
of non-sequential strings. It is usually best to round this number up to the
next 4K multiple. That is, BUFNI= 12 (I2K of index buffers). If you wanted

40 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Multi-String Data Buffers

Request Positioning

to keep the entire high-level index in storage, then BUFNI would set to
1 +50+4=55. This would be rounded to BUFNI=56 and would require 56K
of index buffers.

One data buffer per string, plus one additional buffer are required as a
minimum per data set. Extra data buffers are used by sequential strings or for
read-ahead on a first come, first served basis. When the extra buffers are
released by a string (by issuing ENDREQ or a DIR request that releases
positioning), they may be used by another string. Consider this example:

• Three strings (two direct and one sequential)

• 3-k~vel index (five control intervals in the index set)

• 1024-byte index control interval

• 2048-byte data control interval

Set BUFNI=8 (8K for index buffers) and BUFND=6 (12K for data buffers).
Each direct string will use one data and one index buffer. The sequential
string will use one index and three data buffers. There will be one data buffer
reserved for insert requests that cause a control interval split, and the index
set will use the extra five index buffers.

Some operations will retain positioning while' others will release it. In a similar
way, some operations will hold onto a buffer and others will release it with its
contents. The following table shows you which options result in the retention
of data buffers and positioning, and which options result in the release of data
buffers and positioning:

Buffers and Positioning Retained

Buffers and Positioning Released

Notes:

DIR. OIR
SEQ SKP NSP (No NSP)

x x x

x

• GET SEQ for new control intervals releases the previous buffer

• The ENDREQ and ERASE macros release data buffers and positioning.

• Certain options which retain positioning and buffers upon normal
completion may not do so if the request fails with an error code. Refer to
the table in the section "FDBK Codes (Logical Errors)" to determine
whether or not positioning will be maintained in the case of a logical error.

The operation that uses but immediately releases a buffer and does not
establish positioning is:

GET DIR,NUP,MVE

Processing Options and Considerations 4 t

Utility Functions Carried Out by Access Method Services
Access Method Services is a multifunction service program that is used to
define a VSAM data set and load records into it, convert a sequential or an
indexed-sequential data set to the VSAM format, list VSAM catalog
information or data-set records, copy a data set for reorganization, create a
backup copy of a data set, recover from certain types of damage to a data set,
and make a data set portable from one operating system to another.
Definitive descriptions of all Access Method Services commands are in
OS/VSl Access Method Services and OS/VS2 Access Method Services.

Processing a VSAM Data Set with an ISAM Program
VSAM provides an interface program that permits you to use programs coded
to use ISAM (indexed-sequential access method) to process VSAM data sets.
To use the ISAM interface, you must convert indexed-sequential data sets to
VSAM data sets, convert ISAM JCL to VSAM JCL, and ensure that your
existing ISAM programs meet the restrictions for using the interface.

To convert an indexed-sequential data set to a VSAM data set that you can
process either with an ISAM program by way of the ISAM interface or with a
VSAM program, you use Access Method Services to define a key-sequenced
data set in a VSAM catalog and allocate space for it. You may use an ISAM
program by way of the ISAM interface to load records into the data set, or
you may use Access Method Services REPRO command. For more details
about the procedure, see the chapter "Using ISAM Programming with
VSAM."

Using the Time Sharing Option (TSO) with VSAM
TSO is a subsystem of OS/VS2 that provides conversational time sharing
from remote terminals. You can use TSO with VSAM to:

• Execute Access Method Services commands directly as TSO commands (in
MVS only).

• Execute a program to process a VSAM data set.

• Execute a program to call Access Method Services.

• Dynamically allocate a VSAM data set and use VSAM macros to process
the data set (in MVS only).

• Allocate a VSAM data set by way of a LOGON procedure and use either
VSAM or ISAM macros to process the data set.

For details about writing and executing programs and allocating data sets with
TSO, see OS/VS2 TSO Terminal User's Guide, and OS/VS2 TSO
Command Language Reference. For information about dynamic allocation,
see OS/VS2 System Programming Library: Job Management.

42 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

SHARING A VSAM DATA SET

A VSAM data set can be shared by different operating systems, by different
jobs in a single operating system, and by different sub tasks in an address
space or partition. There are guidelines- for accessing shared data sets and
provisions for controlling data sharing that are intended to prevent the loss of
data.

When you define a data set, you can select the level of sharing you intend to
allow for it. Before you define the data set's level of sharing, evaluate the
consequences of reading incorrect data (a loss of read integrity) and writing
incorrect data (a loss of write integrity)-situations that might result when
one or more of the data set's users do not adhere to recommended guidelines
for accessing shared data sets.

When your program issues a GET request, VSAM reads an entire control
·interval into virtual storage (or obtains a copy of the data from a control
interval already in virtual storage). If your program modifies the control
interval's data, VSAM ensures that you have exclusive control over the
control interval until it is written back to the data set. However, if the data set
is accessed by more than one program at a time and more than one control
block structure contains buffers for the data set's control intervals, VSAM
can't ensure that your program has exclusive control over the data set and you
must obtain exclusive control yourself. (One way of obtaining exclusive
control is by using ENQ and DEQ macros.)

The extent to which your data set can be shared is determined by:

• The SHAREOPTIONS value, specified when the VSAM data set is defined
(using the Access Method Services DEFINE command), which indicates
the level at which the data set can be shared by users in the same operating
system (cross-region sharing) and by users in different operating systems
(cross-system sharing).

• The use of the DISP=SHR and DISP=OLD parameters in the DD
statement that identifies the data set to be opened.

• The type of processing (specified with the ACB's MACRF field) for which
the data set is opened.

• Your program's use of the ENQ and DEQ macros to obtain exclusive
control of the data set within your program's operating system.

• The ability of the data set's direct-access device to be accessed by more
than one processor (and, co~sequently, by more than one operating
system). If the data set's direct-access device can be shared between two or
more operating systems, your program should use the RESERVE and
RELEASE macros to obtain exclusive control of the device.

If the VSAM data set cannot be shared and is not available when your
program issues the OPEN macro, the request is terminated and a return code
is set in the ACB's ERROR field. If the VSAM data set can be opened, the
Open routine issues an ENQ macro to gain exclusive control over all
components of the data set.

Before your program opens a data set to be shared (with cross-region
SHAREOPTION 3 or 4, and with cross-system SHAREOPTION 3), you
should note that:

Sharing a VSAM Data Set 43

• In a shared environment, VSAM does not allow you to process the data set
in. create or reset mode. (VSAM forces your data set to be processed as
though it were defined with SHAREOPTIONS (1,3).)

• A user program cannot share a system data set.

• The user's program must serialize all VSAM requests against the data set,
using the ENQ and DEQ macros (or a similar function).

• The user's program must use the ENDREQ macro to:

Force VSAM to immediately write sequential update and insert
requests.

Release VSAM's positioning within the data set before releasing the
data set from exclusive control via the DEQ macro.

• VSAM invalidates buffers used with SHAREOPTION 4 data sets, but does
not invalidate buffers used with SHAREOPTION 3 data sets. When a
buffer is marked "invalid" (that is, it is invalidated), it is identified as a
buffer that VSAM must refresh (that is, read in a fresh copy of the control
interval) before your program can use the buffer's contents.

• The GSR or LSR user's program can invalidate and force writing of buffers
using the MRKBFR and WRTBFR macros. (See OSjVS Virtual Storage
Access Method (VSAM) Options for Advanced Applications for more
information on the MRKBFR and WRTBFR macros.)

• When the data set is shared under cross-system or cross-region
SHAREOPTION 4, VSAM doesn't allow the data set's control areas to be
split. Instead, VSAM returns a logical error control to the user's program,
which the user's program can use to detect that a control area split was
unsuccessful.

When a shared data set is opened with DISP=OLD, or is opened for create or
reset processing, the SHARE OPTION values specified in the data set's
catalog record are ignored. The data set is processed as though it were defined
with SHAREOPTIONS(1,3). VSAM provides your program with exclusive
control of the data set within your region. If the data set can be shared
between operating systems, a user's program in another system might
concurrently access the data set. Before you open the data set with
DISP=OLD, you can issue the RESERVE macro to prevent another system's
user from accessing the direct-access device containing your data set. After
your program closes the data set, you can issue the RELEASE macro to
relinquish exclusive control of the device.

44 OS/VS Virtual Storage Access Method (YSAM) Programmer's Guide

Subtask Sharing
Subtasks within a region can share a data set by identifying it with a single
DO statement, or by using a separate DO statement for each subtask using
the data set.

When separate DO statements are used and the ACB DSN option is not
specified, and one or more subtasks intend to perform output processing, each
DO statement must specify DISP=SHR. In addition, the cross-region share
option specified must be consistent with the level of sharing to be performed.
Each subtask should adhere to the guidelines that apply to the specified
cross-region share option.

When a single DO statement is used, or when separate DO statements are
used and the ACB's DSN option is specified, several subtasks can update the
data set concurrently, independently of the DISP specification. If DISP=SHR
is specified for the data set, subtask sharing and cross-region sharing can
occur concurrently.

Subtask Sharing in a Single Control Block Structure

A data set can be shared by many subtasks, each of which accesses the data
set through a single control block structure or each of which has a separate
control block structure. The following discussion applies only when the data
set is described with a single control block structure.

When your program issues a GET -for-update request to be followed by a
PUT -update request, VSAM obtains exclusive control over the control
interval that will contain the record. VSAM also ensures that your program
obtains exclusive control over the control interval will contain the record
when your program issues a PUT request. When a subtask has exclusive
control of a control interval, another subtask's GET -for-update and PUT
requests for that control interval are refused. The other subtask's requests can
be reissued after the first sub task releases exclusive control.

VSAM relinquishes control over the control interval when the controlling
subtask accesses a record that is outside the control interval or issues an
ENDREQ request.

When a subtask issues GET requests, the data set can be shared so that other
sub tasks are allowed to issue GET and PUT requests. When a sub task issues
update or output requests, however, VSAM ensures that the control interval
being updated is not accessed by other subtasks. Subtasks that share the data
set are prevented from updating it until the update request completes; the
subtasks are allowed to read the data set.

Sharing a VSAM Data Set 45

Cross-Region Sharing
Independent job steps in an operating system can access a VSAM data set
simultaneously. To share a data set, each user must specify DISP=SHR in the
data set's DD statement. The level of cross-region sharing allowed by VSAM
is established (when the data set is defined) with the SHAREOPTION value:

• Cross-region SHAREOPTION 1: The data set can be shared by any
number of users for read processing, or the data set can be accessed by
only one user for read and write processing. With this option, VSAM
ensures complete data integrity for the data set.

• Cross-region SHAREOPTION 2: The data set can be accessed by any
number of users for read processing and it can also be accessed by one
user for write processing. With this option, VSAM ensures write integrity
by obtaining exclusive control for a control interval when it is to be
updated. If a user desires read integrity, it is his responsibility to use the
ENQ and DEQ macros app~opriately to provide read integrity for the data
his program obtains.

• Cross-region SHAREOPTION 3: The data set can be fully shared by any
number of users. With this option, each user is responsible for maintaining
both read and write integrity for the data his program accesses. User
programs that ignore the write integrity guidelines can cause VSAM
program checks, lost or inaccessible records, uncorrectable data set
failures, and other unpredictable results. This option places heavy
responsibility on each user sharing the data set.

• Cross-region SHAREOPTION 4: The data set can be fully shared by any
number of users and buffers used for direct processing are refreshed for
each request. This option requires your program to use the ENQ and DEQ
macros to maintain data integrity while sharing the data set. Improper use
of the ENQ macro can cause problems similar to those described under
SHAREOPTION 3. When a shared data set is opened with DISP=SHR,
VSAM doesn't allow:

PUT requests which cause the data set's control areas to be split

PUT requests which add to the end of the data set

PUT requests which add to the end of a key range

If the above conditions are encountered, VSAM returns a logical error
code to the user's program indicating the data set may not be extended.

Read Integrity During Cross-Region Sharing

The user is responsible for ensuring read integrity when the data set is opened
for sharing with cross-region SHAREOPTION 2, 3, and 4. When your
program issues a GET request, VSAM obtains a copy of the control interval
containing the requested data record. Another program sharing the data set
might also obtain a copy of the same control interval, and might update the
data and write the control interval back into the data set. When this occurs,
your program has lost read integrity: the control interval copy in your
program's buffer is no longer the current copy.

When your program requires that no updating occur before it completes
processing the requeste<J data record, your program can issue the ENQ macro
to obtain exclusive control over the VSAM data set. (This discussion assumes
your program only reads the data record and does not update it. When your

46 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

program updates the data record, its primary concern is ensuring write
integrity.) When your program completes processing, it can relinquish control
of the data set with a DEQ macro. When your program is only reading data
and not updating it, your program usually won't require that updating activity
by other users of the data set cease.

Your program might issue a GET request while another program issues a PUT
request that results in a control area or control interval split. If this occurs,
your GET request might result in a "no record found". If you share a VSAM
data set with other users, your program should retry the GET request (on a
"no record found" error) before issuing an error message.

Write Integrity During Cross-Region Sharing

The user is responsible for ensuring write integrity if a data set is opened with
cross-region SHAREOPTION 3 or 4. When your program issues a
GET -for-update request or a PUT request, VSAM doesn't usually write your
program's copy of the control interval into the data set immediately. Another
program sharing the data set might also want to write its updated copy of the
same control interval into the data set.

To maintain write integrity for the data set, your program should ensure that
there is no activity against the data set until your program completes updating
the control interval. Your program can issue the ENQ macro to obtain
exclusive control over the VSAM data set. When your program completes
updating the control interval's data, it can issue an ENDREQ macro to force
writing the control interval. Your program can then relinquish control over
the data set with a DEQ macro.

Your program should serialize the following types of requests (that is, precede
the request with an ENQ macro and, when the request completes, issue a
DEQ macro):

• All PUT requests.

• POINT, GET-direct-NSP, GET-skip, and GET-for-update requests that
are followed by a PUT -insert or PUT -update request.

• VERIFY requests. When VERIFY is executed by VSAM, your program
must have exclusive control of the data set.

• Sequential GET and PUT requests.

In addition to serializing requests:

• When your program issues sequential GET and PUT requests it must issue
the ENDREQ macro to force VSAM to write each sequential PUT -update
and PUT -insert request, and to release VSAM's positioning within the data
set before your program releases control of the data set.

• When your program processes a shared data set asynchronously, you must
issue the CHECK macro to ensure that your 110 request has completed
before you release control of the data set.

Sharing a VSAM Data Set 47

Cross-System Sharing
Job steps of two or more OS/VS operating systems can gain access to the
same VSAM data set regardless of the disposition specified in each step's DD
statement for the data set. To get exclusive control of the data set's volume, a
task in one system issues the RESERVE macro. The level of cross-system
sharing allowed by VSAM applies only in a multiple operating system
environment. It is established with the SHAREOPTION value when the data
set is defined:

• Cross-system SHAREOPTION 3: The data set can be fully shared. With
this option, each user is responsible for maintaining both read and write
integrity for the data his program accesses. User programs that ignore
write-integrity guidelines can cause VSAM program checks, uncoaectable
data set failures, and other unpredictable results. This option places heavy
responsibility on each user sharing the data set.

• Cross-system SHAREOPTION 4: This option is only valid if the data set
to be shared resides on a shared DASD device. The data set can be fully
shared. Buffers used for direct processing are refreshed for each request.
This option requires that you use the RESERVE and RELEASE macros to
maintain data integrity while sharing the data set. Control area splits within
a data set are not permitted. Writing is limited to PUT -update and
PUT -insert processing that does not change the high-used RBA if your
program opens the data set with DISP=SHR. A PUT request which causes
the high-used RBA to change will return a logical error code to the user
indicating the data set cannot be extended. Data set integrity cannot be
maintained unless all jobs accessing the data set in a cross-system
environment specify DISP=SHR. Improper use of the RESERVE macro
can cause problems similar to those described under SHAREOPTION 3.

48 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

OPTIMIZING VSAM'S PERFORMANCE

Control Interval Size

This chapter describes many of the options and factors that either influence
or, in some cases, determine VSAM's performance as well as the performance
of the operating system. The main topics include control interval and control
area size, buffer management, allocation units, distributed free space, and
index options.

Most of the options are specified in the Access Method Services DEFINE
command when a data set is created. The DEFINE command is described in
OS/VSl Access Method Services and OS/VS2 Access Method Services. In
some cases, options can be specified in the ACB and GENCB macro
instructions and in the DD AMP parameter, allof which are described in this
publication.

Control interval size, which can be specified for VSAM data sets, affects
record-processing speed and storage requirements in these ways:

• For data sets containing large data records, you might want larger control
intervals, even though VSAM allows records to cross control interval
boundaries.

I • For data sets containing large control interval sizes, more buffer space is
required in virtual storage for each control interval.

I • For data sets contraining large control interval sizes, fewer I/O operations
(control interval accesses) are required to bring a given number of records
into virtual storage; fewer index records must be read. This is usually
significant only for sequential and skip sequential access.

• Free space will probably be used more efficiently (fewer control interval
splits and less wasted space) as control interval size increases relative to
data record size, especially with variable-length records. (Free space in a
control interval isn't used if there isn't enough for a complete data record.)

You can let the system select the size of a control interval for a data or index
component or you can request a particular control interval size in the
DEFINE command. The size you specify must, however, fall within
acceptable limits determined by the system, or the DEFINE will fail. These
limits depend on the maximum size of the data records, which you specify by
the required RECORDSIZE parameter of the DEFINE command, and on the
smallest amount of virtual storage space your processing programs will
provide for I/O buffers, which you specify by the optional parameter
BUFFERSP ACE.

In the first place, the size of a control interval must be a mUltiple of 512
bytes, because a control interval is a whole number of physical records and
physical-record size is 512, 1024, 2048, or 4096 bytes (The physical record
size of 4096 bytes does not apply to the IBM 2314/2319 Disk Storage; the
physical record size of 2048 does not apply to the IBM 3340 Disk Storage.)
The size of a control interval in the data component of a duster can be any
multiple of 512, up to 32,768, except that if it is over 8192 bytes, it must be a
multiple of 2048: 512, 1024,1536,2048,2560, ... , 8192,10240,12288, ... ,
32768. A control interval in an index is the same size as a physical record,
and its size is therefore restricted to 512, 1024, 2048, or 4096.

Optimizing VSAM's Performance 49

The information recorded on a track is divided into physical records that are
limited by the capacity of a track. The physical record sizes that VSAM uses
are 512, 1024, 2048, and 4096 bytes. (The physical record size of 4096
bytes does not apply to the IBM 2314/2319 Disk Storage; the physical record
size of 2048 does not apply to the IBM 3340 Disk Storage.) Control interval
size is limited by the requirements that it be a whole number of physical
records (up to 64, or a maximum of 32,768 bytes) and that, if it is greater
than 8192 bytes, it be a multiple of 2048. A data set whose control intervals
correspond with the tracks of one device might have more or less than one
control interval per track if it were stored on a different device. The figure
below illustrates the independence of control intervals from physical records.

I Physica
Record s

'I'

Control Interval

1 I I
Track I

Control Interval

I I
Track 1

Control Interval Control Interval

t 1 I 1 I I
Track 2 Track 3

I Control Interval I Control Interval

I I I I I I
Track 2 Track 3 Track 4

The table below shows the physical blocksize selected by VSAM for all of the
possible control interval sizes for the IBM 2314, 3330, 3340, and 3350
direct-access devices, together with the resulting track utilization (all numbers
are in K-bytes):

50 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Physical Blocksize Track Space Used

CI Size 2314 3340 3330 3350 2314 3340 3330 3350

.5 .5 .5 .5 .5 5.5 6 10 13.5

1 1 1 1 1 6 7 1 1 15

1.5 .5 .5 .5 .5 5.5 6 to 13.5

2 2 1 2 2 6 7 12 16

2.5 .5 .5 .5 .5 5.5 6 10 13.5

3 1 1 1 1 6 7 11 15

3.5 .5 .5 .5 .5 5.5 6 10 13.5

4 2 4 4 4 6 8 12 16

4.5 .5 .5 .5 .5 5.5 6 to 13.5

5 1 1 1 1 6 7 11 15

5.5 .5 .5 .5 .5 5.5 6 to 13.5

6 2 1 2 2 6 7 12 16

6.5 .5 .5 .5 .5 5.5 6 to 13.5

7 1 1 1 1 6 7 11 15

7.5 .5 .5 .5 .5 5.5 6 to 13.5

8 2 4 4 4 6 8 12 16

10 2 1 2 2 6 7 12 16

12 2 4 4 4 6 8 12 16

14 2 1 2 2 6 7 12 16

16 2 4 4 4 6 8 12 16

18 2 1 2 2 6 7 12 16

20 2 4 4 4 6 8 12 16

22 2 1 2 2 6 7 12 16

24 2 4 4 4 6 8 12 16

26 2 1 2 2 6 7 12 16

28 2 4 4 4 6 8 12 16

30 2 1 2 2 6 7 12 16

32 2 4 4 4 6 8 12 16

If you specify a control interval size that is not a proper multiple, VSAM
increases it to the next mUltiple. For example, 2050 is increased to 2560.

The size of a control interval in a data component must be large enough to
hold a data record of the maximum size specified in the RECORDSIZE
parameter unless the data set was defined with the SPANNED attribute. The
minimum amount of control information in a control interval is 7 bytes.
Therefore, a control interval is normally at least 7 bytes larger than the largest
record in the component.

The use of the SPANNED attribute removes this constraint by allowing data
records to be continued across control intervals. The maximum recordsize is
then equal to the number of control intervals per control area multiplied by
(control interval size minus 10). The use of the SPANNED attribute places
certain restrictions on the processing options that can be used with a data set.
For example, records of a data set with the SPANNED attribute cannot be
read or written in locate mode.

Because VSAM transmits the contents of a control interval between
direct-access storage and virtual storage, the amount of space allowed for I/O
buffers limits the size of a control interval. The BUFFERSP ACE parameter

Optimizing VSAM's Performance 51

Data Control Interval Size

Data Space Utilization

Random Processing

Sequential Processing

of the DEFINE command indicates the smallest amount of virtual storage
space a processing program will provide for buffers.

BUFFERSP ACE, if you specify it, limits control interval size to values such
that the buffer space can hold at lease two data control intervals and one
index control interval. If you don't specify BUFFERSP ACE, control interval
sizes are set independently, and the buffer space value is then set equal to the
size of two data control intervals and one index control interval.

If you don't specify a size for a data control intervals, the system calculates a
default value for the given average record size but at least large enough to
accommodate the maximum record size. For a key-sequenced data set, after
control interval size has been set, the systemdetermines the number of bytes
to be reserved for free space, if specified. For example, if control interval size
is 4096, and the percentage of free space in a control interval has been defined
as 200/0, approximately 820 bytes are reserved.

With a key-sequenced data set, if you don't specify a size for index control
intervals, the system uses 512, if possible. After the system determines the
number of control intervals in a control area (see the next section), it
estimates whether an index record is large enough to handle all of the control
intervals in a control area. If not, the size of an index control interval is
increased, if possible. If it's not possible, the size of the control area is
decreased by decreasing the number of control intervals.

To find out what values are actually set in a defined data set, you can issue
the Access Method Services LISTCAT command.

Normally, a 4096-byte data control interval will be reasonably good
regardless of the DASD device used, processing patterns, or CPU model.
Thert~ are some special considerations that might affect this choice.

A given logical record size may fit some control interval sizes better than
others. Generally, large control interval sizes provide the best fits. Also, some
control interval sizes fit a track of a given device better than others. For
example, on a 3340 track, a 2048-byte control interval yields a potential 7168
bytes of usable space per track, whereas a 4096-byte control interval yields
8192 bytes (2 control intervals) of data on a 3340 track. Assuming a
300'-byte record, in one case there would be 21 records per track and in the
other case there would be 24 records per track.

A small data control interval is preferable when random processing is
predominant. In general, select the smallest data control interval that yields a
reasonable space utilization. Normally, 1024- or 2048-byte control intervals
are good.

If the processing is predominantly sequential, even larger data control
intervals may be good choices. Given a 16K data buffer space, it is better to
read two 8K control intervals with one I/O operation than four 4K control
intervals with two I/O operation. After insertions have occurred, very large

52 OS/YS Virtual Storage Access Method (YSAM) Programmer's Guide

Index Control Interval Size

data control intervals often result in fewer out-of-sequence control intervals
than small control intervals than do small control intervals.

The table that follows summarizes the generally acceptable data control
interval sizes.

Accessing
Pattern

Random

Sequential

Ordered Direct

Random Batch
or
Sorted Batch

Condition
or Device

3340
2314
3330

3340
2314
3330

If there are
fewer than 2
records referenced
per track

Otherwise

If number of
records per group
is less than the
number of records
in a 2048 byte CI

Otherwise

Data CI Size

1024
1024 or 2048
1024 or 2048

4096 or 8192
4096 or 6144
4096 or 6144

Then choose the CI
size as done for
Random.

4096

Then choose the CI
size as done for
Random

4096

A 512-byte index control interval is usually the best choice. If the number of
data control intervals per control area is small, the full key size is not too
large, and if the key compresses well, then a 5l2-byte index control interval is
possible. The best way to find out if 512 bytes is big enough is to run an
experiment using the data control interval size chosen and 512 bytes for index
control interval size. Allow (0,0) free space and load enough records to equal
one control area. At the end of the run, list the catalog index entry. If there is
one level of index, then the 512-byte index control interval was big enough.

Summary of Control Interval Size Strategy

For random processing, choose the smallest data control interval that provides
for reasonable space utilization. Choose an index control area size that is
compatible with the data control area size. When a choice between large data
and index control interval sizes exists, choose the combination that yields the
smallest buffer space value (data control interval size + index control interval
size). This combination requires the least amount of active real storage and
results in the least amount of data transfer time.

For other than random processing, choose the data control interval size that
yields the smallest index control interval size. When a conflict exists, it is
better to increase the data control interval size rather than the index control
interval size.

Optimizing VSAM's Performance 53

Some Additional Control Interval Considerations

Pick the smallest index control interval size you can for a given data control
interval size. If a 512-byte index control interval is too small, increase the
data control interval size. If the 512-byte index control interval is still too
small with a 4096-byte data control interval, try a 1024-byte index control
interval.

Do not choose data control interval sizes that result in multiple, small physical
blocks.

Specify control interval size at the data and index levels, not at the cluster
level.

For variable length records, a small data control interval will result in poor
DASD space utilization: more control information than fixed length records
and free space that cannot be used.

Keep in mind that if you specify the UNIQUE attribute in your DEFINE
command for a key-sequenced cluster (indicating that the cluster is to
uniquely occupy its own data space) VSAM allocates a whole cylinder to
each area in the data component. If you select too small a data control
interval size, the number of data control intervals in a control area may be
large enough to cause the index control interval size to exceed the maximum,
thus causing your DEFINE to fail.

You need real storage to support large control intervals. In an overcommitted
system, excessive paging may result. The control interval sizes you specify
when the data set is defined are not necessarily the ones you will have in the
catalog. VSAM makes adjustments so that control interval size conforms to
proper size limits, minimum bufferspace, adequate index-to-data size, and
record size. This is done when your data set is defined.

For example:

1. You specify data and index control interval size. After VSAM determines
the number of control intervals in a control area, it estimates whether one
index record is large enough to handle all control intervals in the control
area. If not, the size of the index control interval is increased, if possible. If
the size cannot be increased and if your data space is nonunique, VSAM
decreases the number of control intervals in the control area.

2. Assume no spanned records. You specify maximum record size as 2560
and data control interval size as 2560. VSAM adjusts the data control
interval size to 3072 to allow space for control information in the data
control interval.

3. You specify buffer space as 4K, index control interval size as 512, and data
control interval size as 2K. VSAM will decrease the data control interval to
1536. Buffer space must include space for two data control intervals and
one index control interval at DEFINE time.

54 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Control Area Size
A control area is never larger than one cylinder. If the original space
allocation is in cylinders, then the control area size is one cylinder; if space
allocations are in tracks or records, then the control area size is equal to the
lesser value of the primary or secondary allocation. The size of control area
depends on the device type. For a key sequenced data set, the size of a
control area is also determined on the basis of the space allocation request,
user-specified or default data and index control interval size, and available
buffer space.

Control area size has significant performance implications. When a whole
number of control areas occupies a cylinder, performance is better than when
a fractional number of control area occupies a cylinder (for example, when a
control area is two-thirds of a cylinder). If you allocate space in a DEFINE
command using the CYLINDERS parameter, or if the data set is defined as
unique (the only one in its data space), VSAM sets the control area size to
one cylinder. If the control area is smaller than a cylinder, its size will be an
integral multiple of tracks, and it can span cylinders. However, a control area
can never span an extent of a data set; that is, an extent of a data set is made
up of a whole number of control areas.

Aside from specifying space in terms of cylinders or defining a data set as
unique, you don't have a direct way of specifying that a whole number of
control areas will occupy a cylinder. But you can provide values in the
DEFINE command that will influence the control area size as computed by
VSAM.

VSAM checks the smaller of the primary and secondary space values against
the specified device's cylinder size. If the smaller space quantity is less that or
equal to the device's cylinder size, the size of the control area is set equal to
the smaller space quantity. If the smaller quantity is greater than the device's
cylinder size, the control area size is set equal to cylinder size.

You specify space in number of tracks, cylinders, or records; the system
preformats space in control areas. By calculating the size of a control area as
it does, VSAM is able to meet your primary and secondary space
requirements without overcommitting space for this data set.

An index record must be large enough to address all of the control intervals in
a control area. The more control intervals an index record addresses, the
fewer reads for index records are required for sequential access. Generally,
the greater the size of the control area, the better the performance and space
utilization for sequential processing.

Impact of Small Control Areas

Control areas may be from one track to one cylinder in size. The smaller the
control area, of course, the more areas there will be. Since an index record
can contain only so many entries, more index records, and more important,
probably more index levels will be required if the control area is small.

The IMBED option requires one track per control area for sequence set
information. If the control area is three tracks of 3340, and the IMBED
option is taken, one-third of the direct access storage space is required for
sequence sets. If the control area on a 3340 is a cylinder, only one-twelfth the
DASD space is required. If the data control interval size is 4K, the smaller
control area would force another level of indexing.at 232, rather than 1276
control intervals.

Optimizing VSAM's Performance 55

I/O Buffer Space Management

Buffer Space

I/O buffer space is important because VSAM; transmits the contents of a
control interval to a buffer in virtual storage; therefore, control interval size is
limited by the size of I/O buffers. When you define a data set, you can
specify enough buffer space for the control intervals in the data set to be large
enough for your largest stored record. For keyed access with the ACB
operand STRNO= 1, VSAM requires a minimum of three buffers, two for
data control intervals and one for an index control interval. You may specify a
minimum buffer space in the DEFINE command; if you do not specify a
minimum buffer space, the default is enough buffer space for the m,inimum of
three buffers.

VSAM keeps in virtual storage as many index set records as the buffer space
will allow. Ideally, the index would be small enough to allow the entire index
to remain in virtual storage. Because the characteristics of the data set may
not allow a small index, you should be aware of how index I/O buffers are
used to enable you to determine the number you want to provide.

The one-buffer minimum assumes that requests that require concurrent
data-set positioning are not being issued. If such requests are issued, each
requires exclusive control of an index I/O buffer. Therefore, the value
specified for the STRNO operand (ACB or GENCB macro or AMP
parameter), is the minimum number of index I/O buffers required when
requests that require concurrent positioning are used.

If the number of I/O buffers provided for index records is greater than the
number of requests that require concurrent positioning, one buffer is used for
the highest-level index record. Any additional buffers are used, as required,
for other index set index records.

To improve performance when you have adequate real storage available, you
can increase the I/O buffer space for index records in virtual storage by
specifying I/O buffers for index records through the BUFNI and BUFSP
operands of the ACB macro. With direct access, you should provide at least
enough index buffers to be equal to the value of the STRNO operand of the
ACB plus one to allow VSAM to keep the highest-level index record always
resident. With sequential access, having only one index I/O buffer doesn't
hinder performance, because VSAM uses the horizontal pointer in a
sequence-set record, not vertical sequence sets in the index set, to get to the
next control interval.

BUFFERSPACE, specified in the Access Method Services DEFINE
command, is the minimum amount of virtual storage that will ever be
provided for I/O buffers when the data set is being proc~ssed. BUFSP,
specified in the ACB or GENCB macro or in the DD AMP parameter, is the
maximum amount of virtual storage to be used for the data set's I/O buffers.
It is important that VSAM must always have sufficient space available to
process the data set as the specified processing options direct it to.

Buffer Allocation For A Key-Sequenced Data Set

VSAM allocates buffers to a key-sequenced data set according to the
following parameters and values:

56 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

• The amount of space for buffers (in the catalog record, established when
the data set is defined):

BUFFERSPACE = n

• Buffer and processing options specified for the data set (with the ACB in
the user's program):

MACRF = (SEQ I DIR I SKP)
STRNO = n
BUFSP = n
BUFND = n
BUFNI = n

• Buffer and processing options specified for the data set (with the AMP
parameter in the user's JCL DD statement):

STRNO = n
BUFSP = n
BUFND = n
BUFNI = n

When a key-sequenced VSAM data set is opened, VSAM determines the size
and number of data and index buffers to allocate for use when the data set is
accessed. The process used by VSAM to determine this is described below.

1. VSAM determines the current values for BUFND, BUFNI, and BUFSP:

A. If the parameters are specified with J CL (using the AMP parameter),
VSAM uses the JCL-specified value. Otherwise,

B. If the parameters are specified with the ACB, VSAM uses the
ACB-specified value. Otherwise,

C. Via catalog values specified at define time. Otherwise,

D. VSAM assigns default values:

If STRNO is not specified, its default is 1.

BUFND = STRNO + 1
BUFNI = STRNO
BUFSP is not assigned a value at this time.

2. VSAM determines the minimum amount of space (MINSPACE) needed to
support the data set:

A. VSAM determines the minimum number of data buffers (MINBUFD)
and index buffers (MINBUFI):

MINBUFD = STRNO + 1
MINBUFI = STRNO

B. VSAM adjusts the values of BUFND and BUFNI, so that

BUFND is the larger of BUFND or MINBUFD, and
BUFNI is the larger of BUFNI or MINBUFI.

C. VSAM calculates the minimum buffer space requirement (MINSPACE)
based on data control interval size (CISIZE.D AT A) and index control
interval size (CISIZE.INDEX):

MINSP ACE = (MINBUFD x CISIZE.DAT A) + (MINBUFI x
CISIZE.lNDEX)

Optimizing VSAM's Performance 57

3. VSAM also determines the requested amount of buffer space
(REQSPACE), using the values of BUFND and BUFNI as adjusted in step
2B:

REQSP ACE = (BUFND x CISIZE.DA T A) + (BUFNI x
CISIZE.lNDEX)

4. The user can specify the amount of buffer space he wants allocated by
using the BUFSP parameter with JCL or with the ACB. When the data set
is defined, the user can specify an amount of buffer space with the
BUFFERSP ACE parameter. If neither BUFSP nor BUFFERSP ACE is
specified, VSAM obtains space and allocates buffers based on the
REQSP ACE value.

5. If the user specified BUFFERSPACE and did not specify BUFSP:

A. And if REQSPACE is less than BUFFERSPACE, VSAM increases the
number of buffers (see step 7), obtains the space, and allocates the
buffers based on the BUFFERSP ACE value. Otherwise,

B. VSAM obtains space and allocates buffers based on the REQSP ACE
value.

6. If the user specified BUFFERSPACE and BUFSP, or BUFSP alone:

A. VSAM adjusts the value of BUFSP so that BUFSP is the larger of
BUFSP or BUFFERSPACE.

B. If BUFSP is smaller than MINSPACE, VSAM terminates processing
with an error (ERROR code = 136). Otherwise, BUFSP is larger than
MINSP ACE, and

C. VSAM compares BUFSP to REQSP ACE:

If BUFSP is larger than REQSPACE, VSAM increases the number of
buffers (see step 7), obtains the space, and allocates buffers based on
the BUFSP value.

If BUFSP is equal to REQSP ACE, VSAM obtains the space and
allocates the buffers based on the BUFSP value.

If BUFSP is smaller than REQSP ACE, VSAM reduces the number of
buffers (see step 8), obtains the space, and allocates buffers based on
the BUFSP value.

7. Increase number of buffers. When calculating the buffer space requirements
for the data set, VSAM determined that the user allowed for more space
than was actually needed for the BUFND and BUFNI values (see step 3).
Therefore, VSAM increases the BUFND or BUFNI values to account for
the extra space:

A. If the data set is being opened for direct processing (that is, SEQ=OFF
and SKP=OFF), VSAM increases BUFNI until the amount of space
used for the data and index buffers equals (as nearly as possible)
BUFSP.

The effect of this is to support the data set for direct processing with as
many index buffers as possible, so that as much of the index as possible
is in virtual storage.

58 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Buffer Allocation For a Path

B. If the data set is being opened for sequential or skip sequential
processing:

- VSAM increases BUFNI by 1.

- VSAM increases BUFND until the amount of space used for the data
and index buffers equals (as nearly as possible) BUFSP.

The effect of this is to support the data set with as many data buffers as
possible, to maximize the number of control intervals accessed during a
single 110 operation.

8. Reduce number of buffers. When calculating the buffer space requirements
for the data set, VSAM determined that the user allowed enough space for
minimum buffer requirements, but not enough space for the number of
data and index buffers he specified. Consequently, VSAM reduces the
BUFND and BUFNI values until the amount of bufferspace is equal to (as
nearly as possible) BUFSP:

A. If the data set is being opened for direct processing only (that is,
SEQ=OFF and SKP=OFF), VSAM reduces BUFND until either:

- The space required for buffers equals (as nearly as possible) BUFSP,
or

- BUFND = MINBUPD (the minimum number of data buffers needed
for the data set)

If BUFND = MINBUFD and BUFSP is still less than the space needed
for buffers, VSAM reduces BUFNI until the space required for buffers
equals (as nearly as possible) BUFSP.

B. If the data set is being opened for sequential or skip sequential
processing:

- VSAM reduces BUFNI until either:

The space required for buffers equals (as nearly as possible) BUFSP,
or

BUFNI = MINBUFI + 1

- If BUFNI = MINBUFI + 1 and BUFSP is still less than the space
needed for buffers, VSAM reduces BUFND until either:

The space required for buffers equals (as nearly as possible) BUFSP,
or

BUFND = MINBUFD

- If BUFSP is still less than the space needed for buffers, VSAM
reduces BUFNI by 1. The values of BUFND and BUFNI are now at
their minimum and can be accommodated by BUFSP.

A path typically consists of a base cluster, an alternate index for the base
cluster, and the alternate indexes that are included in the upgrade set. The
base cluster can be key-sequenced or entry-sequenced. The upgrade set
identifies each alternate index that VSAM is to update when the base cluster
is updated (there might be no alternate indexes in the upgrade set). The
alternate index provides the user with an alternate key sequence to access
records in the base cluster.

Optimizing VSAM's Performance 59

The BUFSP, BUFND, BUFNI, and STRNO parameters apply only to the
path's alternate index when the base cluster is opened for processing with its
alternate index. The minimum number of buffers are allocated to the base
cluster unless the cluster's BUFFERSP ACE value (in the cluster's catalog
record) allows for more buffers (VSAM assumes direct processing and extra
buffers are allocated between data and index components accordingly).

If the path's alternate index is a member of the upgrade set, the minimum
buffer allocation is increased by 1 for both the data and index buffers. Buffers
are allocated to the alternate index as though it were a key-sequenced data
set. Two data buffers and one index buffer are always allocated to each
alternate index in the upgrade set.

Things You Should Know About Buffer Allocation

When processing a VSAM data set sequentially (SEQ or SKP):

• For mixed processing situations (SEQ and DIR), start with two data
buffers and increase BUFND to three if paging is not a problem. For
straight sequential processing environments, start with four data buffers.

• Extra index buffers have little effect during sequential processing, because
VSAM usually searches the sequence set and does not refer to the higher
levels of the index.

• Large data control intervals or small data control intervals with many
buffers can produce similar results. With proper buffering, the same
amount of data can be accessed with one 110 operation.

• Allocate more data buffers, because the data buffers will be used to
support the read-ahead function. When share option 4 is specified for the
data set, the read-ahead function can be ineffective because the buffers are
refreshed when each control interval is read. Therefore, for SHR(4),
keeping data buffers at a minimum can actually improve performance.

• If your operation is 110 bound, you should specify more data buffers to
improve your job's run time. However, an excessive number of buffers can
cause performance problems; see note below.

When processing a VSAM data set directly (DIR):

• The read-ahead function is inactive for direct processing. The minimum
data buffers are needed.

• For optimum operation, specify the number of index buffers equal to the
number of index set control intervals plus one to contain the entire index
set and one sequence set control interval in virtual storage. For large data
sets, specify the number of index buffers equal to the number of index
levels. Unused index buffers do not degrade performance.

• If you specify more data buffers than the minimum requirement, this has
little beneficial effect with direct processing.

Note: More buffers (either data or index) than necessary might cause
excessive paging or excessive internal processing. There is an optimum
point at which more buffers will not help. What you should aim for is to have
data available just before it is to be used. If data is read into buffers too far
ahead of its use in the program, it might be paged out.

Data and index buffers are acquired and allocated only when the data set is
opened. Buffer space is released when the data set is closed.

60 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

VSAM dynamically allocates buffers based on parameters in effect when the
program opens the data set. Parameters that influence the buffer allocation
are in the program's ACB: MACRF=(IN lOUT, SEQ I SKP, OIR),
STRNO=n, BUFSP=n, BUFNO=n, and BUFNI=n. Other parameters that
influence buffer' allocation are in the 00 statement's AMP specification for
BUFSP, BUFND, and BUFNI, and the BUFFERSPACE value in the data
set's catalog record.

If you open a data set whose ACB includes MACRF=(SEQ,DIR), buffers
are allocated according to the rules for both sequential and direct processing.
If the RPL is modified later in the program, the buffers allocated when the
data set was opened do not change.

Data and index buffer allocation (BUFNO and BUFNI) can only be specified
by the user with an assembler-language coded program or via the AMP
parameter of the DO statement.

Any program can be assigned additional buffer space by modifying the data
set's BUFFERSPACE value, or by specifying a larger BUFSP value with the
AMP parameter in the data set's DO statement.

Bufferspace is aligned on page boundaries. VSAM checks to determine if an
index or data control interval is in storage before rereading it, unless
shareoption 4 is specified for the data set.

When processing the data set sequentially, VSAM will read ahead and provide
overlap as buffers become available. For output processing (PUT -add or
PUT -update), VSAM does not immediately write the updated control interval
from the buffer unless a control interval split is required.

The POINT macro does not cause read-ahead processing, unless SEQ is
specified, because its purpose is to position the data set for subsequent
sequential retrieval. POINT SEQ causes read-ahead processing. When POINT
completes, only one data buffer is filled.

When processing a data set directly, VSAM reads only one data control
interval at a time. For output processing (PUT-add or PUT-update), VSAM
immediately writes the updated control interval.

When a buffer's contents are written, the buffer's space is not released. The
control interval remains in storage until overwritten with a new control
interval, so that if your program refers to that control interval VSAM does
not have to reread it. Because VSAM checks to see if the desired control
interval is in storage, when your program processes records in a limited key
range throughput might be increased if extra data buffers are provided.

VSAM does not read-ahead index buffers, but you can have your entire index
in storage. Index buffers are loaded when the index is referred to. When many
index buffers are provided, index control intervals are not reread until a
desired index control interval is not in storage. If you provide as many index
buffers as there are index control intervals (assuming a non-imbedded index),
the data set's entire index will be read into storage as needed.

Optimizing VSAM's Performance 61

Units of Allocation

Multiple Cylinder Data Sets

Small Data Sets

The parameters you specify that determine how VSAM allocates space are in
the DEFINE command. Allocation may be specified at many levels:
cluster / alternate index data, and data and index levels.

It is usually best to calculate the number of cylinders needed for data in a
newly created data set and specify this amount in cylinders for the primary
allocation of the data component. Make the secondary allocation equal to or
greater than one cylinder but less than the primary allocation. If the IMBED
option is used, when doing the calculation, deduct the one track per cylinder
used for the replicated imbedded sequence set records. Assuming a 3340,
calculate based on 11 tracks per cylinder rather than 12. An allocation of 3
primary and 1 secondary track for the index set is a good choice when the
REPLICATE option is used. When the REPLICATE option is not used,
specify 1 primary and 1 secondary track for the index set.

VSAM uses track allocation when you define a data set if you specify either
track allocation or record allocation requiring less than one cylinder. For data
sets less than 1 cylinder in size, it is more advantageous to specify the
maximum number of tracks required in the primary allocation of the data
component, 1 track for the non-imbedded sequence-set index, and no
secondary for either data or index. The buffer allocations for this data set
should be set so that only 1 index buffer is allocated.

Choosing Allocation Parameters

The following list suggests some items you should consider when allocation
parameters are specified:

• A control area is never larger than one cylinder. Improved performance is
obtained when an integral number of control areas occupy a cylinder.

• A control area can never span an extent boundary. A cluster extent
consists of a whole number of control areas.

• VSAM checks the smaller of primary and secondary space values against
the specified device's cylinder size. If the smaller quantity is greater than
the device's cylinder size, the control area is set equal to the cylinder size.
If the smaller quantity is less than or equal to the device's cylinder size, the
size of the control area is set equal to the smaller space quantity.

For example:

CYL(5,10)-Results in a'l-cylinder control area

TRK(100,3)-Results in a 3-track control area

REC(2000,5)-Assuming 10 records would fit on a track, results in a
I-track control area (minimum control area is 1 track)

TRK(3,100)-Results in a 3-track control area

62 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

To force VSAM to select cylinder control areas:

Define the data set using the CYLINDERS parameter or

Define the data set as unique or

Define the data set using the RECORDS or TRACKS parameter,
with the smaller of primary or secondary allocation resulting in at
least one allocated cylinder. Note that migration to a different
device type may result in a case of less than a cylinder, unless the
allocation parameter is adjusted accordingly.

• If allocation is specified at the cluster/alternate index level only, the
amount needed for the index is subtracted from the specified amount. The
remainder of the specified amount is assigned to data.

• If allocation is specified at the data level only, the specified amount is
assigned to data. The amount needed for the index is in addition to the
specified amount.

• If allocation is specified at both the data and index levels, the specified
data amount is assigned to data and the specified index amount is assigned
to the index.

• If secondary allocation is specified at the data level, secondary allocation
must be specified at the index level (when it is not specified at the cluster
level).

• If IMBED is specified (to place the sequence set with the data), the data
allocation includes the sequence set. More space must be given for data
allocation when IMBED is specified.

• If secondary allocation is specified, space for a data set can be expanded to
a maximum of 123 extents (provided there is sufficient data space). For a
key-sequenced data set, the index component as well as the data
component can have up to 123 extents. When the sequence set is
imbedded with the data, each data extent is also considered an index
extent: the number of extents for the index component equals the number
of data extents plus the number of index set extents.

• A data set with the unique attribute can have a maximum of 16 extents per
volume.

• A spanned record cannot be longer than a control area less the control
information (10 bytes per control interval), so don't specify large spanned
records and small primary or secondary allocation.

• VSAM acquires space in increments of control areas. For example, if the
allocation amount is 20 tracks and the device is a 3330, the control area
size is 1 cylinder and 2 cylinders of space (2 control areas) are allocated.

Optimizing VSAM's Performance 63

Distributed Free Space
You can specify in the DEFINE command the percentage of free space in a
control interval and the percentage of free control intervals in a control area.
This free space improves performance by reducing the likelihood of control
interval and control area splits, which, in turn, reduce the likelihood of VSAM
moving records to a different cylinder away from other records in key
sequence.

The amount of free space to be provided depends on the number and location
of records to be inserted, lengthened, or deleted. Too much free space
increases the number of index levels, which affects run times for direct
processing. It also uses more direct-access storage to contain the data set, and
it requires more 110 operations to sequentially process the same number of
records. Too little free space may result in an excessive number of control
interval and control area splits, which are time consuming at the time of the
split. After the splits occur, additional time is required for sequential
processing because the data set is not physically in sequence. Control area
splits increase the seek time during processing. Consider using LISTCA T or
the ACB JRNAD exit to monitor control area splits and reorganize the data
set when they become prevalent.

VSAM uses available free space when there is a direct insert and when a mass
sequential insert does not result in a split.

Control interval free space should be consistent with the expected insertion
activity. Determine the free space based on the percentage of additions
between reorganizations. If there are to be no additions and if record sizes are
not changed, there is no need for free space.

Your free space specification can be altered after the data set is loaded. To
take full advantage of mass insertion, use the ALTER command to change
free space to (0,0) after the data set is loaded.

If additions will occur only in a specific part of the data set, load those parts
where additions will not occur with a free space of (0,0). Then, alter the
specification to (n,n) and load those parts of the data set that will receive
additions. Remember that if SPEED is specified, it will be in effect for
loading the initial portion only. When subsequent portions are loaded,
RECOVERY will be in effect, regardless of the DEFINE specification.

If additions will be unevenly distributed throughout the data set, specify a
small amount of free space. Additional splits, after the first, in that part of the
data set with the most growth will produce control intervals with only a small
amount of unneeded free space.

If there will be few additions to the data set, consider a free space
specification of (0,0). When records are added, new control areas will be
created to provide room for additional insertions and unused free space will
not be provided.

Records are loaded or mass inserted at the end of a control interval until the
free space threshold would be passed. The. threshold is the point at which free
space would be less than the amount specified in the catalog.

VSAM ensures that at least one record or a portion of one spanned record
will be placed in a control interval. Also, if the control area percentage free
space is not zero, but is less than one control interval, the result is one free
control interval in the control area.

64 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Free Space Computation

Index Options

Since a control interval contains logical records, free space, and control
information (CIDFs and RDFs), a 4K control interval cannot contain four lK
logical records. A 4K control interval with (25,0) free space specified will
contain at least lK free space. Only two lK fixed-length records could be
loaded in the control interval, and only one more lK record could be added
before a control interval split would be required.

If a control interval can contain four logical records and (25,0) free space is
specified, the control interval would contain three logical records and 25 %

free space. If (20,0) is specified, the result is three logical records and 25%
free space. If (33,0) is specified, the result is two logical records and 500/0
free space. If (80,0) is specified, the result is one logical record and 75% free
space.

Determine the growth of the data set between creation and reorganization.
Apportion this amount of growth between free control intervals in a control
area and free space within a control interval. Make sure that the computations
yield full records and full control intervals with a minimum amount of
unusable space.

Let

Determine:
Find:
Compute:

NDS = original data set size
ODS = grown data set size
PCTO = growth percentage = (ODS-NDS)/NDS
HALFO = PCTO/2
CICA = control intervals per control area
ReI = records per control interval = (CISZ-lO)/RECSZ

(fixed length records)
FSPC 1 = free space within control interval·percentage

. FSPC2 = free space within control area percentage
NCI = number of free control intervals per control area
NREC = number of free records per control interval
CEIL = Result rounded up to the nearest integer
FLOOR = Result rounded down to the nearest integer

NDSandGDS
HALFG,CICA, and RCI

NCI=CEIL(HALFG*CI CA)
FSPC2=CEIL(NCI* 1 00/ CI CA)

X=«PCTG*CICA)-(FSPC2*CICA/lOO»/CICA
NREC=CEIL(X*RCI)
FSPC 1 =FLOOR(NREC/RCI)

Five options influence performance through the use of the index of a
key-sequenced data set. Each option improves performance, but some of
them require that you provide additional virtual storage or auxiliary storage
space. The options are:

• Index-set records in virtual storage

• Size of index control interval

• Index and data set on separate volumes

• Replication of index records (REPL option)

• Sequence-set records adjacent to control areas (IMBED option)

Optimizing VSAM's Performance 65

I Index-Set Records in Virtual Storage

To retrieve a record from a key-sequenced data set or store a record in it
using keyed access, VSAM needs to examine the index of that data set.
Before your processing program begins to process the data set, it must specify
the amount of virtual storage it is providing for VSAM to buffer index
records. Enough space for one I/O buffer for index records is the minimum,
but a serious performance problem would occur if an index record were
continually deleted from virtual storage to make room for another and then
retrieved again later when it is required. Ample space to buffer index records
can improve performance by preventing this situation.

You ensure that index-set records will be in virtual storage by specifying
enough virtual storage for index I/O buffers when you begin to process a
key-sequenced data set. VSAM keeps as many index-set records in virtual
storage as the space will hold. Whenever an index record must be retrieved to
locate a data record, VSAM makes room for it by deleting from the space the
index record that VSAM judges to be least useful under the circumstances
then prevailing. It is generally the index record that belongs to the lowest
index level or that has been used the least.

Size of the Index Control Interval

The second option you might consider is ensuring that the index-set control
interval is large enough to cover a full control area. Thus, the index-set
control intervals might be larger than actually required to contain the pointers
to the sequence-set level. However, this option also keeps to a minimum the
numb.er of index levels required, thereby reducing search time and improving
performance. This option increases rotational delay and transfer time.

Index and Data on Separate Volumes

When a key-sequenced data set is defined, the entire index or the index set
alone can be placed on a volume separate from the data, either on the same or
on a different type of device.

Using different volumes enables VSAM to gain access to an index and to data
at the same time. Additionally, the smaller amount of space required for an
index makes it economical to use a faster storage device for it than for the
data.

Replication of Index Records

You can specify that each index record be replicated (written on a track of a
direct-access volume as many times as it will fit). Replication reduces the time
lost waiting for the index record to come around to be read (rotational delay).
Average rotational delay is half the time it takes for the volume to complete
one revolution. Replication of a record reduces this time, for example, if ten
copies of an index record fit on a track, average rotational delay is only
one-twentieth of the time it takes for the volume to complete one revolution.

On an IBM 3340, the time usually is reduced by 50%. On a 3330 and a
2314, the time is reduced to 1/ n, where n is the number of times the index is
replicated on the track.

Since there are usually few control intervals in the index set, the cost in terms
of direct-access storage space is small. If the entire index set is not being held
in storage and there is significant random processing, then replication is a

66 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

good choice. If not, replication does very little. Since its cost is small and it is
an attribute that cannot be altered, it may be desirable to choose this option.

Sequence-Set Records Adjacent to Control Areas

Index Option Summary

When the data set is defined, you can specify that the sequence-set index
record for each control area is to be imbedded on the first track of the control
area. This reduces disk-arm movement because it is not necessary to do
separate seeks to locate both the sequence-set index record and the data
record. One arm movement enables VSAM to retrieve or store both the index
record and the contents of the control interval in which the data record is
stored.

When the IMBED option is chosen, sequence-set records are replicated,
regardless of whether you also chose the REPL option. This means that one
track of each control area is used for sequence set records. In some situations,
this may be too much space for index in relation to the data. For example, the
space required for the sequence-set is one-twelfth of the data space on a 3340,
but only one-nineteenth of the data space on a 3330. IMBED must be
specified explicitly to get the performance benefits of a replicated, imbedded
sequence-set.

On a 3340, place the index and data on separate volumes and do not replicate
or imbed. Provide index buffer space to hold the entire index set plus one
sequence set when doing random processing. If direct-access storage space is
not a problem, if index and data cannot be put on different volumes, or if
index buffer space is not available, specify REPL IMBED for random
processing.

I
On a 2314 or a 3330, arbitrarily specify REPL IMBED and ensure that the
allocation unit is in cylinders.

The SPEED and RECOVERY Options
The SPEED and RECOVERY options may improve performance when a
data set is loaded. RECOVERY preformats (clears to zeros) each control
area before any records are loaded into it and allows you to find the software
end-of-file if an abnormal termination occurs during data set load.
RECOVERY is most useful when your program has a recovery procedure
that allows you to resume loading after a system failure.

SPEED reduces the number of writes required when records are initially
loaded into a data set, and since data set load is probably not a significant
part of your total processing time, it is normally a good choice. If you specify
SPEED and a system failure does occur, the data set can be deleted,
redefined, and loaded again from the beginning.

Optimizing VSAM's Performance 67

VSAM Catalogs

Sharing Services With User Catalogs

A large number of concurrent requests for information (that is, for catalog
entries) from a VSAM catalog might result in some of the requests being
answered more slowly than they would be if the entries were distributed
among several user catalogs. You might have the VSAM master catalog
primarily contain pointers to user catalogs, which would contain entries for
most data sets, indexes, and volumes. Be decentralizing data set entries, you
also reduce the time required to search a given catalog and minimize the
effect of a catalog's being inoperative or unavailable.

Improving Catalog Peformance in MVS

To improve catalog performance in an MVS system, you can:

• Mount the catalog volume on an un sharable direct-access device.

• Define entries into a catalog that is not protected with an update-level
password. This results in greatly improved performance when you are using
the CNVTCAT command to convert OS catalog entries to VSAM catalog
entries.

• Specify a large buffer space value when defining your catalog. This is an
important factor in catalog performance, especially if there are many
concurrent users. The value specified via BUFFERSPACE helps determine
the number of catalog RPLs to be set up at catalog OPEN time.
Insufficient RPLs cause subsequent users to have to wait until an RPL is
available. Also, a large buffer space can result in catalog index control
intervals staying in main storage, thus avoiding I/O to the index. Note that
maximum buffer value is 8096.

For more details about catalog performance and operation, see the Access
Method Services publication for MVS.

Performance Measurement
VSAM keeps statistical information about a data set in its catalog record.
Some statistics, such as number of extents in a data set, number of records
retrieved, added, deleted, and updated, and number of control-interval splits,
can help you decide when to take action, such as reorganizing a data set or
altering the type of processing, to improve performance.

You can list the entire catalog record, the statistics and the parameters
selected when tlie data set was defined, by using the LISTCA T command.
You can use the SHOWCB and TESTCB macros in a processing program to
display or test one or more data set statistics. These statistics include:

• Control interval size

• Percent of free control intervals per control area

• Number of bytes of available space (includes distributed free control
intervals and allocated space beyond the last used control interval)

• Length and displacement of the key

• Maximum record length

• Number of levels in the index

68 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

• N umber of extents

• Number of records retrieved, added, deleted, and updated

• Number of control interval splits in the data and in the sequence set of the
index

• Number of EXCPs that VSAM has issued for access to a data set

Note: When a cluster or component is exported, that is, is named in an
EXPORT command, the statistics are exported with the catalog record. When
the cluster is imported (with the IMPORT command), it is reorganized. Its old
statistics aren't lost-they just don't apply to the reorganized data. When the
cluster is loaded (as a result of IMPORT), its statistics are revised to reflect
the newly-loaded cluster.

Optimizing VSAM's Performance 69

JOB CONTROL LANGUAGE

How to Code JCL

This chapter describes the job control language, required in VS 1 and optional
in MVS, used to connect a data set and the program that is to use it, how to
code the VSAM AMP parameter, and how to identify user catalogs for jobs
or job steps.

A necessary link between a processing program and the data set to be
processed is the data-set name. When JCL is used, the access-method control
block gives the name of the DD statement so that the OPEN macro can make
the connection between the program and the data set named in the DD
statement, and thus connect program and data. JCL is used in MVS to
catalog, uncatalog, and delete non VSAM data sets in a VSAM catalog. Also
in MVS, you can invoke dynamic allocation of auxiliary storage. Although this
publication does not describe the dynamic allocation function, you can
dynamically allocate VSAM data sets and user catalogs. See OS/VS2 JCL
and OS/VS2 System Programming Library: Job Management for an
explanation of dynamic allocation.

The catalog contains most of the information required by VSAM to process a
data set, so VSAM requires minimal information from JCL. Data set name
and disposition are sufficient to describe the data set. A key-sequenced data
set is described with a single DD statement.

To allow only one job step to access the data set, specify DISP=OLD. You
can specify DISP=SHR in the DD statements of separate jobs to enable two
or more job steps to share a data set, provided the data set's share options
allow the type of sharing your program anticipates. For more details on
sharing data sets, see the chapter, "Sharing a VSAM Data Set."

All VSAM data sets are cataloged in a VSAM catalog. To identify a VSAM
data set through JCL, it is sufficient to specify a DD statement of the form:

/ /ddname DD DSNAME=dsname ,DISP= {OLD I SUR}

The DSNAME parameter specifies the name of the data set you are
processing. Each VSAM data set is defined as a cluster of one or two
components: a key-sequenced data set is made up of a data component and
an index component; and an entry-sequenced and a relative record data set
are made up of only a data component. If you need to process a component
separately, you may specify the component's name in the DSNAME
parameter.

If a data set has been defined in a user catalog, it is also necessary to identify
the user catalog by means of either a JOBCA T or a STEPCAT DD statement.

When separate DD statements are used and one or more subtasks are to
perform output processing, the DD statements must specify DISP=SHR.
With separate DD statements, several sub tasks can share a data set under the
same rules as for cross-region sharing.

Because the operating system does not disallow OS/VS DD parameters and
sub parameters that don't apply to a VSAM data set, you should be aware of
the DD parameters and subparameters that have clear and unambiguous
meaning when used with VSAM. Figure 2 shows the DD parameters and
subparameters that can be used with VSAM and indicates their meaning for a

Job Control Language 71

VSAM data set. DD parameters and subparameters not shown in Figure 2
should be avoided. For an explanation of potential problems you may
encounter with those parameters and subparameters, see the appropriate
Acces.s Method Services publication.

To niount some, but not all, of the volumes on which a data set is stored
(called subset mount), you specify the DD parameters VOLUME and UNIT.
Specifying those parameters to open a DCB (to be processed through the
ISAM interface program) prevents a reference to the VSAM catalog and
requires that you use the AMP subparameter AMP='AMORO' to identify
the data set as a as a VSAM data set. If you specify VOLUME and UNIT to
open a VSAM ACB, AMORO is not required.

JCL Parameters Not Used With VSAM

VSAM ignores parameters for defining tape data sets; data-set sequence
numbers, NSL, NL, BLP, and AL. You cannot use the parameters for a
sequential data set (DATA, SYSOUT, and *) for specifying a VSAM data set.
DD names that are invalid for VSAM data sets are: JOBLIB, STEPLIB,
SYSABEND, SYSUDUMP, and SYSCHK.

DD parameters that are invalid are: UCS, QNAME, DYNAM, TERM, and
the forms of DSNAME for ISAM, PAM (partioned access method), and
generation data groups. VSAM does not allow for temporary data sets or
concatenated data sets. VSAM does not allow you to concatenate STEPCA T
and JOBCA T DD statements.

Coding a DD Statement for a User Catalog

The master catalog is always available, without specifying it via JCL. You
make user catalogs available by describing them in DD statements with
special names for a job (JOBCAT) or a job step (STEPCAT). You describe a
catalog sufficiently by giving its data set name and specifying DISP=SHR. A
user catalog can be either a JOBCAT or a STEPCAT catalog. If both
JOBCAT and STEP CAT catalogs are specified, the STEPCAT catalog is
available for the step for which it is specified, and the JOBCA T catalog is
available for all steps for which STEPCA T is not specified. VSAM uses a data
set's name as a search argument to search a catalog. In OS/VS2 MVS, you
can minimize the use of JOBCAT and STEPCAT DD statements for your
jobs when you name your data set with a qualified entryname whose first
qualifier is the name or alias of the catalog in which the data set is defined.
When the catalog is not identified with a DD statement, the OS/VS2 MVS
scheduler searches the master catalog for the data set's entryname. If the
entryname is not found, the system uses the entryname's first qualifier as a
search argument and attempts to locate either a user-catalog entry or a user
catalog's alias entry in the master catalog. If the system finds a user catalog or
alias entry whose name is the same as the data set name's first qualifier, the
system searches that user catalog for the data set's catalog record, using the
data set's full entryname.

72 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Parameter Subparameter Comment

DDNAME ddname Works as in OS/VS.

DISP SHR Indicates that you are willing to share the data set with other
jobs. This subparameter alone, however, does not guarantee
that sharing will take place. See the appropriate Access
Method Services publication for a full description of data-set
sharing.

OLD

PASS

Works as in OS/VS; if specified for a VSAM catalog,
however, defaults to SHR.

DSNAME dsname

For VSAM, KEEP is assumed for PASS.

Works as in OS/VS.

DUMMY

UNIT address

Works as in OS/VS, except that an attempt to read results in
an end-of-data condition, and an attempt to write results in a
return code that indicates the write was successful. If
specified, AMP='AMORG' must also be specified (see
"Coding the AMP Parameter" later in this chapter).

Must be the address of a valid device for VSAM. If not,
OPEN will fail.

type Must be a type supported by VSAM. If not, OPEN will fail.

group Must be a group supported by VSAM. If not, OPEN will fail.

p There must be enough units to mount all of the volumes
specified. If sufficient units are available, UNIT=p can
improve performance by avoiding the mounting and
demounting of volumes.

unitcount

DEFER

If the number of devices requested is greater than the number
of volumes on which the data set resides, the extra devices are
allocated anyway. If data and index components reside on
unlike devices, the extra devices are allocated evenly between
the unlike device types. If the number of devices requested is
less than the number of volumes on which the data set resides
but greater than the minimum number required to gain access
to the data set, the devices over the minimum are allocated
evenly between unlike device types. If devices beyond the
count specified are in use by another task but are shareable
and have mounted on them volumes containing parts of the
data set to be processed, they will also be allocated to this
data set.

Works as in OS/VS.

Figure 2 (Part 1 of 2). JCL DO Parameters

The master catalog is assumed to contain the definition of the data set
described in a nn statement if no user catalog is indicated or if the definition
is not found in the user catalog(s) that are indicated. A user catalog is
specified either for all of the steps of a job or for a particular step. To specify
a job user catalog, place a nn statement with the ddname JOBCA T before
the first EXEC statement after the JOB statement and after a JOBLIB
statement, if any:

/ /EXAMPLE JOB
/ /JOBLIB DD
/ /JOBCAT DD
/ / EXEC

DSNAME=USER.LIB,DISP=SHR
DSNAME=usercatalogname,DISP=SHR

Job Control Language 73

VOLUME PRIVATE

RETAIN

SER

Works as in OS/VS.

Works as in OS/VS.

The volume serial number(s) used in the Access Method
Services DEFINE command for the data set must match the
volume serial numbers in the VOLUME=SER specification
in the job in which the data set is defined. After a VSAM data
set is defined, the volume serial number(s) need not be
specified on a DD statement to retrieve or process the data
set.

If VOLUME=SER and UNIT=type are specified, only those
volumes specifically named are initially mounted. Other
volumes may be mounted when they're needed if at least one
of the units allocated to the data set is not shareable and the·
number of OPENs issued against the volume is less than or
equal to 1, or the unit count is· greater than the total number
of volumes initially mounted. One unit is made unshareable
when unit count is less than the number of volume serial
numbers specified or when DEFER is specified. If
VOLUME=SER is specified and the data set is cataloged in a
user catalog, include a JOBCAT or STEPCAT DD statement
to identify the catalog to the current job step.

Figure 2 (Part 2 of 2). JCL DD Parameters

To specify a job-step user catalog, place a DD statement with the ddname
STEPCAT after the ~XEC statement of the step:

/ / EXEC ...
//STEPCAT DD DSNAME=usercatalogname,DISP=SHR

The order in which catalogs are searched when an existing entry is to be
located is:

• If a catalog is specified in a CATALOG parameter of the Access Method
Services DEFINE command, only that catalog is searched. In VS 1, if a
catalog is specified in the CATALOG parameter and it is not also a master,
STEPCAT, or JOBCAT catalog, the dname parameter must also be
specified in CATALOG.

• Any user catalog(s) specified in the current job step (STEPCAT) or, if
none is specified for the job step, any user catalog(s) specified for the
current job (JOBCAT). If more than one catalog is specified for the job
step or job, the job-step or job catalogs are searched in order of
concatenation.

• For VS 1, if the entry is not found, the master catalog.

• For VS 1, if the entry is not found, the system catalog.

• For VS2, if the entry is not found and the entry's name is a qualified name
and the first qualifier (that is, the first one to eight characters before any
period) is the same as the name or alias of a user catalog or the alias of a
control volume, that user catalog or control volume is searched; otherwise,
the master catalog.

Restriction: Control volumes are not searched when (1) an existing data set is
to be deleted except when the data set to be deleted is anon VSAM data set,
or (2) when an existing data set is to be altered.

74 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Coding the AMP Parameter

VSAM uses one additional JCL parameter: AMP. It has subparameters for:

• Overriding operands specified by way of the ACB, EXLST, and GENCB
macros

• Supplying operands missing from the ACB or GENCB macro

• Indicating checkpoint/restart options

• Indica'ting options when using ISAM macros to process a key-sequenced
data set

• Indicating that the data set is a VSAM data set when you specify unit and
volume information or DUMMY in the DD statement

• Indicating that you want VSAM to supply storage dumps of the
access-method control block(s) that identify this DD statement

The AMP parameter takes effect when the data set defined by the DD
statement is opened.

The format of the AMP parameter is:

/ / ... DO . .. [AMP=['AMORG']
[,'BUFND= number']
[,'BUFNI= number']
[, 'BUFSP= number']
[,'CROPS={RCK I NCK I NRE I NRC}']
[,'OPTCD={I I L IlL}']
[,'RECFM={F I FB I V I VB}']
[, 'STRNO= number']
[, 'SYNAD=modu lename']
[, 'TRACE']]

where:

AMORG
specifies that the DD statement defines a VSAM data set. When you
specify unit and volume information for a DCB (through the ISAM
interface program) or DUMMY in the DD statement, you must specify
AMORG. Under these conditions, the system doesn't have to search a
catalog to find out what volume(s) are required, and therefore doesn't
know that the DD statement defines a VSAM data set. You never have to
specify unit and volume information unless you want to have a subset of
the volumes on which the data set is stored mounted or want to cause
mounting to be deferred. If volume and unit information is coded on the
DD card, a STEPCAT or JOBCAT DD card is also required if the data set
is cataloged in a usercatalog.

BUFND=number
BUFNI=number
BUFSP=number

specifies that one or more of these values is to override whatever was
specified in the ACB or GENCB macro, or that one or more of these
values is to be provided if not previously specified.,

Job Control Language 75

CROPS={RCKINCKI NRE I NRC}
specifiesOOe of four checkpoint/restart options, which are described in
detail in OS/VS Checkpoin t/ Restart. If you specify an option that is not
applicable for a data set, such as the data-erase test for an input data set,
the option is ignored.

RCK
specifies that a data-erase test and data-set-post-checkpoint
modification tests are to be performed.

NCK
specifies that data-set-post-checkpoint modification tests are not to be
performed.

NRE
specifies that a data-erase test is not to be performed.

NRC
specifies that neither a data-erase test nor data-set-post-checkpoint
modification tests are to be performed.

OPTCD= {I I L IlL}
specifies the type of processing of records flagged for deletion (binary Is in
the first byte) with an ISAM processing program using the ISAM interface.
I and L are described in the chapter "Using ISAM Programming with
VSAM."

RECFM={F I FB I V I VB}
specifies record format in the same way as the DCB (data control block)
parameter that is used for processing an indexed-sequential data set. You
use it when processing a VSAM data set with an ISAM processing program
to indicate what record format the processing program assumes. The
options are described in the chapter "Using ISAM Programming with
VSAM."

STRNO=number
specifies a value that is to override the STRNO value specified in the ACB
or GENCB macro, or to provide a value if one was not specified.

SYNAD=modulename
specifies a value that is to override the address of a SYNAD exit routine
specified in the EXLST or GENCB macro that generates the exit list. The
exit list intended is the one whose address is specified in the access-method
control block that links this DD statement to the processing program. If no
SYNAD exit was specified, the SYNAD parameter of AMP is ineffective.
You can also use this parameter, when you are processing a VSAM data
set with an ISAM processing program, to provide an ISAM SYN AD
routine or to replace one with another.

TRACE
specifies that Generalized Trace Facility (GTF) is to be active, along with
your processing job, to gather information associated with opening and
closing data sets and end-of-volume processing. You can print the trace
output with the IMDPRDMP service program.

Trace also causes the VSAM Record Management Trace Faclity to be
activated. Prompts to the operator from the trace facility will occur when
the cluster with this parameter is processed by VSAM. See "Record
Management Trace Facility" in the Diagnostic Aids section of the
appropriate (VSl or VS2) VSAM Logic manual.

76 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Defining a VSAM Data Set

Note: See "AMP Parameter Specification" in the chapter "Using ISAM
Programming with VSAM" for additional information on the use of the AMP
parameter with an ISAM processing program.

If you have more than one subparameters they must be enclosed in
apostrophes. Apostrophes can enclose each individual subparameter or group
of subparameters. If you have more than one pair of apostrophes, you must
enclose all of the subparameters in a pair of parentheses. For example,
AMP='AMORG,TRACE' or AMP=('AMORG','TRACE'). If the
subparameters continue from one line to another, a pair of apostrophes
cannot extend from one line to the next, and you must therefore use a pair of
parentheses to enclose all of the subparameters.

The AMP parameter cannot be defined as a symbolic parameter (a symbol
preceded by an ampersand that stands for a parameter or the value assigned
to a parameter or subparameter in a cataloged or in-stream procedure).

When you define a data set, no DD statement is required if Access Method
Services can allocate space for the data space from an existing data space. If a
data space must be created to allocate spae for the data set that you're
defining, you need a DD statement (in OS/VSl) for OS/VS job management
to provide device allocation: you specify storage unit, volume and
DISP=OLD. You never specify space parameters (SPACE, SPLIT, or
SUBALLOC, DELETE, CATLG, UNCATLG, or DISP=NEW), since you
use Access Method Services to define and delete all VSAM objects.

"\

Job Control Language 77

)

MACRO INSTRUCTION DESCRIPTIONS AND
RETURN CODES

Opening a Data Set

Return Codes from OPEN

This chapter identifies and briefly describes the macro instructions that are
used to open and close a data set, manage VSAM control blocks, and issue
data processing requests. The return codes you may get from these macros are
also described here. Format descriptions and examples of each macro are in
the following chapter.

Before your processing program can gain access to a data set, it must issue the
OPEN macro to open the data set for processing. OPEN causes VSAM to
construct the control blocks it needs to process your requests, mount the
volume(s) on which the data set is stored, verify that the data set matches the
one you have identified via ACB or GENCB, and check the password that
your program specified against the password (if any) in the catalog definition
of the data set.

When your program receives control after it has issued an OPEN macro,
register 15 indicates whether all of the VSAM data sets were opened
successfully:

Reg.15 Condition

o All data'sets were opened successfully.

4

8

All data sets were opened successfully, but one or more warning messages were
issued (codes less than X'80').

At least one data set (VSAM or nonVSAM) was not opened successfully; the
access-method control block was restored to the contents it had before OPEN
was issued, or, if the dataset was already open, the access-method control block
remains open and usable, and is not changed.

12 A nonVSAM data set was not opened successfully when a nonVSAM and a
VSAM data set were being opened at the same time; the nonVSAM data control
block was not restored to the contents it had before OPEN was issued (and the
data set cannot be opened without the control block's being restored).

If register 15 contains 4, 8, or 12, you can find out whether a VSAM data set
had a warning message, or wasn't opened successfully and why, by issuing
SHOWCB to display the ERROR field in each access-method control block
specified in OPEN. (See "SHOWCB Macro (Display an Access-Method
Control Block)" in the chapter "Macro Instruction Descriptions and Return
Codes.") Figure 3 shows the possible return codes that you may get from
OPEN in the ERROR field in the access-method control block. In addition to
these return codes, VSAM writes a message to the operator console and the
programmer's listing to further explain the error. See OSjVS Message
Library: VSl System Messages and OSjVS Message Library: VS2 System
Messages for a listing of VSAM messages for VSl and VS2, respectively.

Macro Instruction Descriptions and Return Codes 79

Code

0(0)

4(4)

96(60)

100(64)

104(68)

108(6C)

116(7.4)

128(80)

132(84)

136(88)

144(90)

148(94)

152(98)

160(AO)

164(A4)

168(A8)

176(BO)

Condition

When register 15 = 0, no error.

When register 15 = 8, one of the following conditions exists:

• VSAM is processing the access-method control block for some other
request.

• The access-method control block is already open.

• DDNAME was not specified correctly in the access-method control
block.

• The access-method control block address is invalid.

The data set indicated by the access-method control block is already open.

Warning message: an unusable data set was opened for input.

Warning message: OPEN encountered an empty alternate index that is
part of an upgrade set.

Warning message: the time stamp of the volume on which a data set is
stored doesn't match the system time stamp in the data set's catalog
record; this indicates that extent information in the catalog record may not
agree with the extents indicated in the volume's VTOC.

Warning message: the time stamps of a data component and an index
component do not match; this indicates that either the data or the index
has been updated separately from the other.

Warning message: the data set was not properly closed. A previous VSAM
program may have abnormally terminated. Data may be lost if processing
continues; the Access Method Services VERIFY command may be used to
cause the data set to be properly closed. See the appropriate Access
Method Services pUblication for a description of the VERIFY command.
In fl cross-system shared DASD environment, a return code of t t 6 can
have two meanings: (t) Data set was not properly closed, or (2) the data
set is opened for output on-another CPU.

DD statement for this statement is missing.

An uncorrectable I/O error occurred while VSAM was reading the job file
control block (JFCB).

Not enough virtual-storage space is available in your program's address
space for work areas, control blocks, or buffers.

An uncorrectable I/O error occurred while VSAM was reading or writing
a catalog record.

No record for the data set to be opened was found in the available
catalog(s), or an unidentified error occurred while VSAM was searching
the catalog.

Security verification failed; the password specified in the access-method
control block for a specified levelof access doesn't match the password in
the catalog for that level of access.

The operands specified in the ACB or GENCB macro are inconsistent
with each other or with the information in the catalog record.

An uncorrectable I/O error occurred while VSAM was reading the volume
label.

The data set is not available for the type of processing you specify, or an
attempt was made to open a reusable data set with the reset option while
another user had the data set open.

An error occurred while VSAM was attempting to fix a page of virtual
storage in real storage.

Figure 3 (Part 1 of 2). OPEN Return Codes in the ERROR Field of the
Access-Method Control Block

80 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

~

Code

180(B4)

184(B8)

188(BC)

192(CO)

196(C4)

200(C8)

204(CC)

208(DO)

212(D4)

216(D8)

220(DC)

224(EO)

228(E4)

232(E8)

236(EC)

240(FO)

244(F4)

Condition

A VSAM catalog specified in JCL either does not exist or is not open, and
:10 :-::~ord fer the data set to be o~e!'!ecj W::I" found in any other catalog.

An uncorrectable I/O error occurred while VSAM was completing an I/O
request.

The data set indicated by the access-method control block is not of the
type that may be specified by an access-method control block.

An unusable data set was opened for output.

Access to data was requested via an empty path.

The format-4 DSCB indicates that the volume is unusable. There was an
error in CONVERTV to convert the volume from either real to virtual or
virtual to real.

The ACB MACRF specification is GSR and caller is not operating in
supervisor protect key 0 to 7, or ACB MACRF specification is CBIC
(Control Blocks in Common)l and caller is not operating in supervisor
state with protect key 0 to 7.

The ACB MACRF specification is GSR and caller is using a VSl system1.

The ACB MACRF specification is GSR or LSR and the data set requires
create processingl.

The ACB MACRF specification is GSR or LSR and the key length of the
data set exceeds the maximum key length specified in BLDVRP1.

The ACB MACRF specification is GSR or LSR and the data set's control
interval size exceeds the size of the largest buffer specified in BLDVRpl.

Improved control interval processing is specified and the data set requires
create mode processingl.

The ACB MACRF specification is GSR or LSR and the VSAM Shared
Resource Table (VSRT) does not exist (no buffer pool is available).

Reset was specified for a nonreusable data set and the data set is not
empty.

A permanent st~ging error occurred in MSS (ACQUIRE).

Format-4 DSCB and volume timestamp verification failed during volume
mount processing for output processing.

The volume containing the catalog recovery area was not mounted and
verified for output processing.

1 Options and restrictions are described in OS/VS Virtual Storage Access Method (VSAM)
Options for Advanced Applications.

Figure 3 (Part 2 of 2). OPEN Return Codes in the ERROR Field of the Access-Method
Control Block

Macro Instruction Descriptions and Return Codes 81

Closing a Data Set
The CLOSE macro disconnects your program from a data set and causes
VSAM to put back into the catalog the updated information that was brought
into virtual storage when the data set was opened; write records in the SMF
data set, if you are using SMF; and write out buffers of data or index whose
contents have changed and which haven't already been written out.

If your program enters an abnormal termination routine, all data sets
remaining open are closed. The VSAM CLOSE invoked by ABEND does not
update the data set's catalog information, it does not complete outstanding
I/O requests, and buffers are not flushed. This means that the catalog might
not properly reflect the cluster's status, and the index might not accurately
reference some of the data records. If your VSAM data set is closed as a
result of ABEND, you should issue an Access Method Services VERIFY
command to restore the data set's end-of-file values.

Return Codes from CLOSE

When your program receives control after it has issued a CLOSE macro,
register 15 indicates whether all of the VSAM data sets were closed
successfully:

Reg. IS Condition

o All data sets were closed successfully.

4 At least one data set (VSAM or nonVSAM) was not closed successfully.

If register 15 contains 4, you can use SHOWCB to display the ERROR field
in each access-method control block to find out whether a VSAM data set
wasn't closed successfully and why. (See "SHOWCB Macro (Display an
Access-Method Control Block)" in the chapter "Macro Instruction
Descriptions and Return Codes.") Figure 4 gives the return codes that the
ERROR field may contain following CLOSE. In addition to these return
codes, VSAM writes a message to the operator's console and the
programmer's listing to further explain the error. See OS/VS Message
Library: VSl System Messages and OS/VS Message Library: VS2 System·
Messages, for a listing of messages for VS 1 and VS2, respectively.

Code

. 0(0)

4(4)

132(84)

136(88)

144(90)

148(94)

184(B8)

236(EC)

Condition

No error (set when register 15 contains 0) .

The data set indicated by the access-method control block is already
closed.

An uncorrectable I/O error occurred while VSAM was reading the job file
control block (JFCB).

Not enough virtual storage was available in your program's address space
for a work area for CLOSE.

An uncorrectable I/O error occurred while VSAM was reading or writing
a catalog record.

An unidentified error occurred while VSAM was searching the catalog.

An uncorrectable I/O error occurred while VSAM was completing
outstanding I/O requests.

A permanent destaging error occurred in MSS (RELINQUISH). With
temporary CLOSE, a destaging error or a staging error (ACQUIRE)
occurred.

Figure 4. CLOSE Return Codes

82 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

I
OPEN /CLOSE/TCLOSE Message Area

During the execution of an OPEN, CLOSE, or TCLOSE macro, more than
one error condition may be detected. However, the ACB error Hag fieid can
only accommodate one warning or error condition. In order to receive
multiple error or warning conditions, you may specify an option~l message
area. VSAM will accumulate error messages from OPEN, CLOSE, or
TCLOSE in this message area. .

Multiple messages will be supplied when you specify nonzero values in the
MAREA and MLEN parameters of the ACB. If MAREA or MLEN is not
specified or is zero, no error or warning information is stored into the message
area. The ACB error flag field is then the only indication for errors or
warnings. If MARE A and MLEN are specified and if the message area is too
small to accommodate all messages, the last incoming messages are dropped.
However, you will be given an indication of the number of warnings and
messages which occurred:

The message information provided by VSAM is subdivided into two parts:

• The message area header, and
• The message list

The message area header contains statistical, pointer, and general
information. Its contents are unrelated to the individual messages. The format
of the message area header is as follows:

Byte 0

Bytes 1-2

Byte 3

Bytes 4-11

Bytes 12-13

Bytes 14-15

Bytes 16-19

Flag Byte

\

bit 0= 1 Full message area header has
been stored.

byte 0=0 Only flag byte of message area
header has been stored. (Implies
that no messages have been stored.)

bits 1-7 Reserved (set to binary zeros)

Length of message area header
(includes flag-and length-byte)

Request type code

X '01'
X'02'
X'03'

OPEN
CLOSE
TCLOSE

ddname used for ACB

Total number of messages (error or
warning conditions) issued by
OPEN/CLOSE/TCLOSE

Number of messages stored by
OPEN / CLOSE/TCLOSE into message
area

Address of message list, Le., of first
message in message area

The function of the ACB error flag field remains unchanged regardless of
whether or not this optional message area is specified. It contains, at the end
of an OPEN, CLOSE, or TCLOSE, either X'OO' indicating no error or
warning condition occurred or a nonzero code. The nonzero code stored into
the ACB error flag byte is the OPEN/CLOSE/TCLOSE error code

Macro Instruction Descr!ptions and Return Codes 83

corresponding to the error or warning condition that occurred with the highest
severity.

Message area header information is only stored when a warning or error
condition is detected, that is, the ACB error flag field is set to nonzero.
Furthermore, the header information will consist of the flag byte only, if the
length of the message area (MLEN) is not large enough to accommodate the
full message area header. In this case, bit 0 of the flag byte will be zero.
Before accessing the message header information (bytes 1-19), you must test
byte 0 to see whether further information is stored or not. If MLEN=O, no
header information is stored at all, not even the flag byte. If the full message
area header is stored, bytes 1-2 contain the actual length of the message area
header, and your program should be sensitive to this length when
interrogating the message area header. .

The message list contains the individual messages corresponding to the
warning or error conditions detected. The message list does not start at a
fixed location in the message area. It is pointed to by bytes 16-19 of the
message area header. This implies that the message list is not provided if the
message area header is not stored completely (bit 0 of byte 0 being 0). Within
the message list, individual messages are stored continuously one after
another in the form of variable-length records. The number of messages
stored is contained in the message area header (bytes 14-15). Before
investigating the message list, you must check whether or not the
stored-message count is zero. A nonzero content of the ACB error flag byte
and the setting of bit 0 of byte 0 of the message area header do not
guarantee that messages are stored: for example, if MLEN is not large enough
to allow at least one message to be stored, no message will be stored.

The format of the individual messages is as follows:

Bytes 0-1

Byte 2

Byte 3

Length of message including these two

A CB error flag code corresponding to the
warning condition represented by this message.

Function type code:

Specifies whether and which dsname is stored
in bytes 4-47 of the message.

X'OO' -

X'Ol' -

X'02'-

X'03'-

No dsname stored. Bytes 4-47 of the message
contain binary zeros. The error warning condition is
not clearly related to a component, or VSAM was
unable to identify or obtain the cluster name of the
component in error. This code is used only if, in
addition, the ddname of the ACB does not identify a
valid DD statement or VSAM was unable to obtain
the dsname contained in the DD statement.

dsname contained in DD statement is stored. The
error or warning condition is not clearly related to
a component, or VSAM was unable to identify or
obtain the cluster name of the component in error.

dsname (cluster name) of base cluster stored. Error
occurred during OPEN/CLOSE/TCLOSE for base
cluster.

dsname (cluster name) of AIX component stored.
Error occurred during OPEN/CLOSE/TCLOSE for
AI{(component.

84 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Control Block Macros

X'04'-

Bytes 4-47

dsname (cluster name) of member of upgrade set
stored. Error occurred during
OPEN/CLOSE/TCLOSE for this member of the
upgrade set.

Binary zeros (function type code=X'OO') or a
dsname as described by byte 3.

Bytes 0 and 1 of each message specify the actual length of the individual
message and you must inspect the length. Your processing should take the
variable-length nature of the message into account.

You cannot conclude from the ACB error flag code in byte 2 of a message
whether there is a dsname. Neither can you tell what type of dsname is
contained in bytes 4-47 of the message. For one and the same ACB error flag
code, none or different types of dsnames (DD, base cluster, AIX, or upgrade
set member) may be stored depending on the individual condition which
raised the appropriate ACB error flag code (the same condition may be
detected when opening the base cluster when opening a member of the
upgrade set; for example, an I/O error may occur when trying to obtain the
dsname for the component in error). You must inspect byte 3 of the message
to learn whether a dsname has been stored and to determine the type of
dsname stored.

The control block macros are used to build control blocks and to modify,
display, and test their contents. Some of these macros work at assembly time;
others work at execution time. The macros are:

• ACB, which is used to generate an access-method control block at
assembly time. An access-method control block must exist before a data
set can be opened.

• EXLST, which is used to generate an exit list at assembly time. An exit list
is a list of user-written routines that can be associated with one or more
access-method control blocks. Except for an exception exit, which is
specified via Access Method Services, a user-written routine must be
identified in an exit list to be available to handle unusual conditions.

• RPL, which is used to generate a request parameter list at assembly time. A
request parameter list is required for use with the request macros to define
the characteristics of the request.

• GENCB, which is used to generate an access-method control block, an exit
list, or a request parameter list at execution time. An access-method
control block must exist before a data set can be opened. An exit list
identifies any user-written routines provided. A request parameter list is
required to define (specify processing) an action for a request macro.

• MODCB, which is used to modify or make an addition to an
access-method control block, an exit list, or a request parameter list at
execution time.

SHOWCB, which is used to display fields in an access-method control
block, an exit list, or a request parameter list at execution time.

• TESTCB, which is used to test the contents of fields in an access-method
control block, an exit list, or a request parameter list at execution time.

Macro Instruction Descriptions and Return Codes 85

Generating a control block at assembly time (ACB, EXLST, and RPL
macros) has the advanta~e of generating the control block only once. When a
control block is generated at assembly time, you are, however, exposed to the
possibility of having to reassemble your program if you adopt a new version
of VSAM in which the format of a control block has changed. Generating a
control block at execution time (GENCB macro) has the advantage of not
requiring reassembly of a program if the format of a control block changes in
a subsequent version of VSAM. It has the disadvantage of having to execute
the macro each time the program is executed. .

Specifying Options at Assembly or Execution

For specifying processing options, you can use macros that generate control
blocks when your program is assembled (ACB, EXLST, and RPL macros) or
use a macro that generates control blocks when the program is executed
(GENCB macro).

The macros that work at assembly time allow you to specify values for
operands as absolute numeric expressions, as character strings, as codes, as
expressions that generate valid relocatable A-type address constants. The
macros that work at execution allow you to specify them in those ways and
also in:

• Register notation, where the expression designating a register from 2
through 12 is enclosed in parentheses; for example, (2) and (REG), where
REG is a label equated to a number from 2 through 12

• An expression of the form (S,scon), where scon is an expression valid for
an S-type address constant, including the base-displacement form

• An expression of the form (* ,scon), where scon is an expression valid for
an S-type address constant, including the base-displacement form, and the
address specified by scon is indirect-that is, it gives the location of the
area that contains the value for the operand

For most programming applications, you can conveniently use register
notation or absolute numeric expressions for numbers, character strings for
names, and register notation or expressions that generate valid A-type address
constants for addresses. "Appendix C: Operand Notation for GENCB,
MODCB, SHOWCB, and TESTCB" gives all the ways of coding each
operand for the macros that work at execution time.

You can write a reentrant program only with execution-time macros.
"Appendix B: List, Execute, and Generate Forms of GENCB, MODCB,
SHOWCB, and TESTCB" describes alternate ways of coding these macros
for reentrant programs. The standard form of these macros is describe4 in this
chapter.

86 OSjVS Virtual Storage Access Method (VSAM) Programmer's Guide

Retum Codes from the GENCB, MODCB, SHOWCB, and
TESTCB Macros

The GENCB, MODCB, SHOWCB, and TESTCB macros are executable
(unlike the ACB, EXLST, and RPL macros): they cause control to be given
to VSAM to perform the indicated task. VSAM indicates the task was
completed by a return code in register 15:

Reg. 1S Coadition

o Task completed.

·4 Task not completed.

8 An attempt was made to use the execute form of a macro (see "Appendix B:
List, Execute, and Generate Forms of GENCB, MODCB, SHOWCB, and
TESTCB") to modify a keyword that isn't in the parameter list.

When register 15 contains 4, register 0 contains an error code indicating the
reason VSAM couldn't perform the task. Figure 5 describes each error code
that can be returned in register O.

These macros build a parameter list that describes in codes the actions
indicated by the operands you specify. The parameter list is passed to VSAM
to take the indicated actions. An error can occur because you specified the
operands incorrectly or, if you constructed the parameter list yourself,
because the parameter list was encoded incorrectly. If you construct the list
yourself you can get in register 0 error codes 1, 2, 3, 10, 14, 20, and 21. See
OS!VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications for an explanation of these error codes and for an explanation of
how to construct parameter lists for GENCB, MODCB, SHOWCB, and
TESTCB.

Macro Instruction Descriptions and Return Codes 87

Error Applicable
Code Macros*

00) G,M,S,T

2(2) G,M,S,T

3(3) G,M,S,T

4(4) M,S,T

5(5) S,T

6(6) S,T

7(7) M,S

8(8) G

9(9) G,S

IO(A) G,M

l1(B) M

12(C) M

13(0) M

14(E) G,M,T

15(F) G,S

16(10) G,M,S,T

19(13) M,S,T

20(14) S

21 (1 5) S,T

Reason VSAM Couldn't Perform the Task

The request type (generate, modify, show, or test) is invalid.

The block type (access-method control block, exit list, or request parameter list) is invalid.

One of the keyword codes in the parameter list is invalid.

The block at the address indicated is not of the type you indicated (access-method control
block, exit list, or request parameter list).

Access-method control block fields were to be shown or tested, but information available only
when th~ data set is an open VSAM data set, and either it isn't open or it is not a VSAM data
set.

Access-method control block information about an index was to be shown or tested, but no
index was opened with the data set.

An exit list was to be modified, but the list was not large enough to contain the new entry; or
an exit was to be modified or shown, but the specified exit wasn't in the exit list. (With
TESTCB, if the specified exit address isn't present you get an unequal condition when you test
for it.)

There isn't enough virtual storage in your program's address space to generate the
access-method control block(s), exit list(s), or request parameter list(s) and no work area
outside your address space was specified.

The work area specified was too small for generation or display of the indicated control block
or fields.

With GENCB, exit-list control-block type was specified and you specified an exit without
giving an address. With MODCB, exit-list control-block type was specified and you specified
an exit without giving an address; in this case, either active or inactive must be specified, but
load cannot be specified.

Either (t) a request parameter list was to be modified, but the request parameter list defines
an asynchronous request that is active (that is, no CHECK or ENDREQ has been issued on
the request) and thus cannot be modified, or (2) MODCB is already issued for the control
block, but hasn't yet completed.

An access-method control block was to be modified, but the data set identified by the
access-method control block is open and thus cannot be modified.

An exit list was to be modified, and you attempted to activate an exit without providing a new
exit address. Because the exit list indicated does not contain an address for that exit, your
request cannot be honored.

One of the option codes (for MACRF, ATRB, or OPTCD) has an invalid combination of
option codes specified (for example, OPTCD=(ADR,SKP».

The work area specified did not begin on a fullword boundary.

A VT AM keyword or subparameter was specified but the AM = VT AM parameter was not
specified. AM= VT AM must be specified in order to process a VT AM version of the control
block.

A keyword was specified which refers to a field beyond the length of the control block located
at the address indicated (for example, a VT AM keyword, but the control block pointed to is a
shorter, non VT AM block.

Keywords were specified which apply only if MACRF=LSR or GSR.

The block to be displayed or tested does not exist because the data set is a dummy data set.

'G=GENCB, M=MODCB, S=SHOWCB, T=TESTCB

Figure 5. GENCB, MODCB, SHOWCB, and TESTCB Error Codes

88 OS/VS Virtual Storage Access Method (V SAM) Programmer's Guide

)

Request Macros
This section describes the macro instructions that cause some action to be
taken regarding data or processing. The request macros are:

• GET, which causes a record to be retrieved.

• PUT, which causes a record to be stored.

• ERASE, which causes a record previously retrieved for update to be
deleted from a key-sequenced data set.

• POINT, which causes VSAM to position at the desired record.

• CHECK, which causes processing to be suspended to await the completion
of some event.

• ENDREQ, which causes a specified request to be terminated.

GETIX and PUTIX, which are used to process the index of a key-sequenced
data set, and VERIFY, which ensures that the catalog end-of -data-set
information agrees with the actual end of data set, are described in OS/VS
Virtual Storage Access Method (VSAM) Options for Advanced Applications.

Each request macro makes use of a request parameter list; the request
parameter list defines the action to be taken. For example, when a GET
macro points to a request parameter list that specifies synchronous, sequential
retrieval, the next record in sequence is retrieved. When an ENDREQ macro
points to a request parameter list, any current request (for example, a PUT)
for that request parameter list is ended immediately.

A return code in register 15 and a code in the feedback field of the request
parameter list indicate what happened as a result of a request macro. The
return codes in register 15, feedback-field codes, and the request macros are
described below.

Retum Codes from Request Macros

After you issue a request macro for access to data or a CHECK or ENDREQ
macro, register 15 contains a return code. The meaning of the return code
depends on whether processing is asynchronous or synchronous.

After you issue an asynchronous request for access to a data set, VSAM
indicates in register 15 whether the request was accepted, as follows:

Reg.15 Condition

o Request was 'accepted.

4 Request was not accepted because the request parameter list indicated by the
request (RPL=address) was active for another request.

If the asynchronous request was accepted, you issue a CHECK after doing
your other processing so VSAM can indicate in register 15 whether the
request was completed successfully, set a return code in the feedback field,
and exit to any appropriate exit routine. If the request was not accepted, you
should either wait until the other request is complete (for example, by issuing
a CHECK on the request parameter list) or terminate the other request (using
ENDREQ). Then you can reissue the rejected request.

Macro Instruction Descriptions and Return Codes 89

Feedback-Field Codes

After a synchronous request, or a CHECK or ENDREQ macro, register 15
indicates whether the request was completed successfully, as follows:

Reg. 15 Condition

o Request completed successfully.

4 Request was not accepted because the request parameter list indicated by the
request (RPL=address) was active for another request.

8 Logical error; specific error is indicated in the feedback field in the RPL.

i2 Physical error; specific error is indicated in the feedback field in the RPL.

The feedback field in the RPL consists of three bytes. Each byte represents
an error code as follows:

Return Code
(Register 15)

Function Code
(FTNCD Code)

FDBK Code

The Return Code is the code returned to you in register 15. Function and
FDBK codes are described later in this chapter. Refer to the appropriate logic
manual, OS/VSl Virtual Storage Access Method (VSAM) Logic or
OS/VS2 Virtual Storage Access Method (VSAM) Logic for more
information on the feedback field of the RPL.

Paired with the 0, 8, and 12 indicators in register 15 are codes in the feedback
field of the request parameter list. The feedback codes for the 0, or
successful, indicator in register 15, which doesn't cause VSAM to exit to an
exit routine, are:

FDBK
Code When Condition
Register 15=0

o Request completed successfully.

4 Request completed successfully. For retrieval, VSAM mounted another
volume to locate the record; for storage, VSAM allocated additional
space or mounted another volume.

8 For GET requests, indicates a duplicate alternate key exits (applies only
when accessing a data set using an alternate index that allows nonunique
keys); for PUT requests, indicates that a duplicate key was created in an
alternate index with the non unique attribute.

12 Write-buffer suggested (shared resources
only).

16 The sequence-set record does not have enough space to allow
it to address all of the control intervals in the control area that
should contain the record. The record was written into a new
control area.

20

24

28

Reserved

Reserved

Control interval split indicator was detected during an addressed
GET NUP request.

You can examine the function and FDBK codes of the feedback field of the
request parameter list with the SHOWCB or TESTCB macro. You may code
your examination routine immediately following the request macro. However,
logical errors, physical errors, and reaching the end of the data set all cause
VSAM to exit to the appropriate exit routine, if you provide it.

90 OS/VS Virtual Storage Access Method (VS"AM) Programmer's Guide

Function Codes

I FDBK Code (Logical Errors)

Coordinate error checking in your program with your error-analysis exit
routines. If they terminate the program, for instance, you would not need to
code a check for an error after a request. But if a routine returns to VSAM to
continue processing, you might check register 15 after a request to determine
whether there was an error. Even though the error was handled by an exit
routine, you may want to modify processing in light of the error.

When a logical or physical error occurs, VSAM provides a code in the RPL
that identifies the function being attempted when the error occurred and
indicates whether the alternate-index upgrade set is correct following the
request that failed. The function code can be displayed and tested by the
SHOWCB and TESTCB macros. The codes and their meanings are:

FTNCD Function Upgrade Set Status
Code

0(0)

1(1)

2(2)

3(3)

4(4)

5(5)

An attempt to access the
base cluster

An attempt to access the
base cluster

An attempt to access the
alternate index over a
base cluster

An attempt to access the
alternate index over a
base cluster

Upgrade processing

Upgrade processing

Correct

May be incorrect

Correct

May be incorrect

Correct

May be incorrect

If a logical error occurs and you have no LERAD routine (or the LERAD exit
is inactive), VSAM returns control to your program following the last
executed instruction. Register 15 indicates a logical error (8), and the
feedback field in the request parameter list contains a code identifying the
error. Register 1 points to the request parameter list. Figure 6 gives the
logical-error return codes in the feedback field and explains what each one
means.

Macro Instruction Descriptions and Return Codes 91

FOBK
Code When
Register 15=8 Condition

4(4) End of data set encountered (during sequential or skip-sequential
retrieval), or the search argument is greater than the high key of the data
set. Either no EODAD routine is provided, or one is provided and it
returned to VSAM and the processing program issued another GET.

8(8) You attempted to store a record with a duplicate key, or there is a
duplicate record for an alternate index with the unique key option.

12(C) A key sequence check was performed and an error was detected in one of
the following processing conditions:

16(10)

20(14)

24(18)

28(1 C)

32(20)

36(24)

40(28)

44(2C)

64(40)

68(44)

72(48)

76(4C)

• For a KSDS

PUT sequential or skip-sequential processing

GET sequential, single string input only

GET skip-sequential processing and the previous request is not a
POINT

For an RRDS

GET skip-sequential processing

PUT skip-sequential processing

Record not found.

Control Interval for record already held in exclusive control by another
requester.

Record resides on a volume that can't be mounted.

Data set cannot be extended because VSAM can't allocate additional
direct-access storage space. Either there is not enough space left to make
the secondary allocation request or you attempted to increase the size of a
data set while processing with SHROPT=4 and DISP=SHR.

You specified an RBA that doesn't give the address of any data record in
the data set.

Key ranges were specified for the data set when it was defined, but no
range was specified that includes the record to be inserted.

Insufficient virtual storage in your address space to complete the request.

Work area not large enough for the data record (GET with
OPTCD=MVE).

As many requests are active as the number specified in the STRNO
parameter of the ACB macro; therefore, another request cannot be
activated.

You attempted to use a type of processing (output or control-interval
processing) that was not specified when the data set was opened.

You made a keyed request for access to an entry-sequenced data set, or
you issued a GETIX or PUTIX to an entry-sequenced or ~elative record
data set.

You issued an addressed or control-interval PUT to add to a
key-sequenced data set, or you issued a control-interval PUT to a relative
record data set.

Figure 6 (Part 1 of 3). Logical-Error Return Codes in the Feedback Field of the Request
Parameter List

92 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

FDRK
Code When
Register 15-8 Condition

80(50) You issued an ERASE request for access to an entry-sequenced data set, or
you issued an ERASE request for access to an entry-sequenced data set via
a path.

84(54) You specified OPTCD=LOC for a PUT request or in a request parameter
list in a chain of request parameter lists.

88(58) You issued a sequential GET request without having caused VSAM to be
positioned for it, or you changed from addressed access to keyed access
without causing VSAM to be positioned for keyed-sequential retrieval;
there was no positioning established for sequential PUT insert for a
relative record data set, or you attempted an illegal switch between
forward and backward processing.

92(5C) You issued a PUT for update or an ERASE without a previous GET for
update or a PUTIX without a previous GETIX.

96(60) You attempted to change the prime key or key of reference while making
an update.

100(64) You attempted to change the length of a record while making an addressed
update.

104(68) The RPL options are either invalid or conflicting in one of the following
ways:

108(6C)

112(70)

116(74)

120(78)

132(84)

136(88)

(1) SKP was specified and either KEY was not specified or BWD was
specified

(2) BWD was specified for CNV processing

(3) FWD and LRD were specified

(4) Neither ADR, CNV, nor KEY was specified in the RPL

(5) WRTBFR, MRKBFR, or SCHBFR was issued, but either TRANSID
was greater than 31 or the shared resource option was not specified

(6) ICI processing was specified, but a request other than a GET or a PUT
was issued

(7) MRKBFR MARK=OUT or MARK=RLS was issued but the RPL did
not have a data buffer associated with it.

(8) The RPL specified W AITX, but the ACB did not specify LSR or GSR.

RECLEN specified was larger than the maximum allowed, equal to 0, or
smaller than the sum of the length and the displacement of the key field;
RECLEN was not equal to record (slot) size specified for a relative record
data set.

KEY LEN specified was too large or equal to O.

During initial data-set loading (that is, when records are being stored in
the data set the first time it's opened), GET, POINT, ERASE, direct PUT,
skip-sequential PUT, or PUT with OPTCD=UPD is not allowed. For
initial loading of a relative record data set, the request was other than a
PUT insert.

The request was operating under an incorrect TCB. For example, an
end-of-volume call or a GETMAIN would have been necessary to
complete the request, but the request was issued from a job step other than
the one that opened the data set. The request can be resubmitted from the
correct task, if the new request reestablishes positioning.

An attempt was made in locate mode to retrieve a spanned record.

You attempted an addressed GET of a spanned record in a key-sequenced
data set.

Figure 6 (Part 2 of3). Logical-Error Return Codes in the Feedback Field of the Request
Parameter List

Macro Instruction Descriptions and Return Codes 93

I

FDBK
Code When
Register 15-8 Condition

t40(8C) Inconsistent spanned record.

144(90) Invalid pointer (no associated base record) in an alternate index.

148(94) The maximum number of pointers in the alternate index has been
exceeded.

152(98) Not enough buffers are available to process your request (shared resources
only).

156(9C) An invalid control interval was detected during keyed processing, or an
addressed GET UPD request failed because the control interval flag was
on. The RPL contains the invalid control interval's RBA.

192(CO) Invalid relative record number.

t96(C4) You issued an addressed request to a relative record data set.

200(C8) You attempted addressed or control-interval access through a path.

204(CC) PUT insert requests are not allowed in backward mode.

208(DO) The user has issued an ENDREQ macro instruction against an RPL that
has an outstanding WAIT against the ECB associated with the RPL. This
can occur when an ENDREQ is issued from a ST AE or EST AE routine
against an RPL that was started before the ABEND. No ENDREQ
processing has been done.

Figure 6 (Part 3 of 3). Logical-Error Return Codes in the Feedback Field of the Request
Parameter List

VSAM is not able to maintain positioning after every logical error. If
positioning is maintained following a POINT or a direct request that
encountered a logical error, then it may be in one of four states: (1) no
position, if no positioning had been established at the time the request in error
was issued (No), (2) the position in effect before the request in error was
issued (Yes), (3) a new position (New), or (4) an unpredictable position (U).
The table below shows what cases; apply to a given logical code for
sequential, direct, and skip-sequential processing. If case (3) applies, "New"
appears in the appropriate column; otherwise, "Yes," "No," or "U."

Whenever positioning is not maintained following an error request, you must
reestablish it before processing resumes.

94 OS/VS Virtual Storage Access Method (VSAM) Programmer's 1

FOBK Code When
Register 15=8 Sequential Direct Skip-Sequential

4(4) Yes N/A Yes
,-..,,-.,\1

yt;~ i~u J~t::w 0\0,-

12(C) Yes N/A Yes
16(10) No No No
20(14) U N02 N02
24(18) Yes No No
28(1 C) Yes No Yes
32(20) No No N/A
36(24) Yes No New
40(28) Yes No No
44(2C) Yes New Yes
64(40) No No No
68(44) Yes Yes Yes
72(48) Yes Yes Yes
76(4C) Yes Yes Yes
80(50) Yes Yes Yes
84(54) Yes Yes Yes
88(58) Yes Yes Yes
92(5C) Yes Yes Yes
96(60) Yes Yes Yes
100(64) Yes Yes Yes
104(68) Yes New Yes
108(6C) Yes New Yes
112(70) Yes Yes Yes
116(74) Yes Yes Yes
120(78) Yes No No
132(84) Yes New Yes
136(88) No No N/A
140(8C) Yes New Yes
144(90) Yes Yes Yes
148(94) Yes Yes Yes
152(98) Yes No No
156(9C) Yes No No
192(CO) Yes Yes Yes
196(C4) Yes Yes Yes
200(C8) Yes Yes Yes
204(CC) Yes Yes Yes
208(DO) Yes Yes Yes

1 A subsequent GET SEQ will retrieve the duplicate record; however, a subsequent GET
SKP for the same key will get a sequence error. In a relative record data set, a
subsequent PUT SEQ positions to the next slot (whether the slot is empty or not).

2 PUT UPD, DIR or UPD, SKP retains positioning. The RPL contains an RBA that
could not be obtained for exclusive control.

When the search argument you supply for a POINT or GET request is greater
than the highest key in the data set, the return code in the feedback field
depends on the request RPL's OPTeD options, as illustrated in the table
below:

Request
Type

POINT
POINT
POINT
POINT
GET
GET
GET
GET
GET
GET
GET
GET

RPLsOPTCO
Options

GEN,KEQ
GEN,KGE
FKEY,KEQ
FKEY,KGE
GEN,KEQ,DIR
GEN,KGE,DIR
FKEY,KEQ,DIR
FKEY,KGE,DIR
GEN,KEQ,SKP
GEN,KGE,SKP
FKEY,KEQ,SKP
FKEY,KGE,SKP

FOBK Code When
Register 15=8

16(10)
4(4)
16(10)
4(4)
16(10)
16(10)
16(10)
16(10)
16(10)
4(4)
16(10)
4(4)

Macro Instruction Descriptions and Return Codes 95

I FDBK Code (Physical Errors)

If a physical error occurs and you have no SYNAD routine (or the SYNAD
exit is inactive), VSAM returns control to your program following the last
executed instruction. Register 15 indicates a physic'\l error (12), and the
feedback field in the request parameter list contains a code identifying the
error; the message area contains more details about the error. Register 1
points to the request parameter list. Figure 7 gives the physical-error return
codes in the feedback field and explains what each one indicates.

FDRK Code When
Register 15= 12 (OC) Condition

4(4) Read efl'or occurred for a data set.

8(8) Read error occurred for an index set.

12(C) Read error occurred for a sequence set.

16(10) Write error occurred for a data set.

20(14) Write error occurred for an index set.

24(18) Write error occurred for a sequence set.

Figure 7. Physical-Error Return Codes in the Feedback Field of the Request Parameter
List

Figure 8 gives the format of a physical-error message. The format and some
of the contents of the message are purposely similar to the format and
contents of the SYNADAF message, which is described in OS/VS Data
Management Macro Instructions.

96 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Field Bytes Length Discussion

Message 0-1 2 Binary value of 128
Length

2-3 2 Unused (0)

Message 4-5 2 Binary value of 124
Length - 4 (provided for compatibility with SYNADAF

message)

6-7 2 Unused (0)

Address of 8-11 4 The I/O buffer associated with the data in relation
I/O Buffer to which the error occurred

The rest of the message is in printable format:

Date 12-16 5 YYDDD (year and day)

17 Comma (,)

Time 18-25 8 HHMMSSTH (hour, minute, second, and tenths and
hundredths of a second)

26 Comma (,)

RBA 27-34 8 Relative byte address of the record in relation to
which the error occurred.

35 Comma (,)

Component 36-41 6 "DATA" or ··INDEX"
TYPE

42· Comma (,)

Volume Serial 43-48 6 Volume serial number of the volume in relation
Number to which the error occurred

49 Comma (,)

Figure 8 (Part 1 of 3). Physical-Error Message Format

Macro Instruction Descriptions and Return Codes 97

· Field

Job Name

Step Name

Unit

Device Type

ddname

Channel
Command

Message

Bytes

50-57

58

59-66

67

68-70

71

72-73

74

75-82

83

84-89

90

91-105

Length

8

8

3

2

8

6

15

Discussion

Name of the job in which error occurred

Comma (,)

Name of the job step in which error occurred

Comma (,)

The unit, CUU (channel and unit), in relation to
which the error occurred

Comma (,)

The type of device in relation to which the error
occurred (always DA for direct access)

Comma (,)

The ddname of the DO statement defining the data
set in relation to which the error occurred

Comma (,)

The channel command that caused the error in the
first two bytes, followed by "- OP"

Comma (,)

Messages are divided according to ECB condition
codes:

X·41' "INCORR LENGTH"
·'UNIT EXCEPTION"
·'PROGRAM CHECK"
·'PROTECTION CHK"
"CHAN DATA CHK"
"CHAN CTRL CHK"
·'INTFCE CTRL CHK"
"CHAINING CHK"
··UNIT CHECK"

If the type of unit check can be determined, the 'UNIT CHECK' message
is replaced by one of the following:

106

•• CMD REJECT'
" INTREQ"
"BUSOUTCK"
"EQPCHECK"
"DATA CHECK"
"OVERRUN"
"TRACK CONO CK"
"SEEK CHECK"
"COUNT DATA CHK"
"TRACK OVERRUN"
"CYLINDER END"
"INVALID SEQ"
·'NO RECORD FOUND"
"FILE PROTECT'
"MISSING A.M."
"OVERFL INCP"

X·48'-"PURGED REQUEST"

X·4F'-"R.HA.RO. ERROR"

For any other ECB completion code-'·UNKNOWN
COND."

Comma (,)

Figure 8 (Part 2 of 3). Physical-Error Message Format

98 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Field Bytes Length Discussion

Physical 107-120 14 BBCCHHR (bin, cylinder, head,
Direct-Access and record)
Address

121 Comma (,)

Access 122-127 6 "VSAM"
Method

Figure 8 (Part 3 of 3). Physical-Error Message Format

Macro Instruction Descriptions and Return Codes 99

MACRO INSTRUCTION FORMATS AND
EXAMPLES

Macro Instruction Formats and Examples 101

ACB

ACB Macro (Generate an Access-Method Control Block)

Before you can open a data set for processing, you must create an
access-method control block that identifies the data set to be opened,
specifies the type of processing (for example, sequential processing) to be
done, specifies basic options (for example, buffer size), and indicates whether
exit routines are to be used while the data set is being processed.

The ACB macro can be used to build an access-method control block when
the program is assembled. If you adopt a subsequent release of VSAM in
which the format of a control block has changed and have generated
access-method control blocks using the ACB macro, you will have to
reassemble your program.

Values for ACB-macro operands can be specified as absolute numeric
expressions, character strings, codes, and expressions that generate valid
relocatable A-type address constants.

VSAM allows multiple access-method control blocks to gain access to the
same data set and conserves resources by connecting those ACBs to the same
control block structure. The ACBs must be in the same region, and they must
be opening to the same base cluster. The connection occurs independently of
the path selected to the base cluster. For OS/VS2 MVS, if the ATTACH
macro is used to create a new task that will be processing a shared data set,
the ATTACH keyword SZERO should either be allowed to default to YES or
SZERO= YES should be coded. This will cause subpool 0 to be shared with
the subtask(s). For more information on the ATTACH macro, refer to
OSjVS2 Supervisor Service and Macros.

Through MACRF options, you specify whether sharing is to be based on
DDNAME (MACRF=DDN) or data set name (MACRF=DSN). If the DDN
option is selected (or taken as the default), two ACBs that specify the same
DDNAME will share the same control block structure. If the DSN option is
selected, the new ACB will be connected to an existing control block
structure if:

• The existing control block structure also specifies DSN and

• The new and existing control block structures have compatible processing
options

To be compatible, both the new ACB and the existing control block structure
must be consistent in their specification of the following processing options:

• Structure of both is either an entry-sequenced data set or a key-sequenced
data set.

• Structure is a relative record data set

• Structure has MACRF =DFR

• Structure has MACRF=UBF

• Structure has MACRF =ICI

• Structure has MACRF=LSR

• Structure has MACRF=GSR

Macro Instruction Formats and Examples 103

Those options that apply to the existing structure must also be specified in the
new ACB. Conversely, the options that apply to the new ACB must also be
specified in the e?,isting structure. For example, if the new ACB and the
existing structure both specify MACRF=DFR, the connection will be made.
If the new ACB specifies MACRF=DFR and the existing structure specifies
MACRF=DFR,UBF, no connection will be made.

If compatibility cannot be established, OPEN tries (within the limitations of
the share options specified when the data set was defined) to build a new
control block structure. If it can't, the OPEN fails.

The other information that you specify enables Open to prepare for the kind
of processing to be done by your program:

• The address of a list of exit routine addresses that you supply. You use the
EXLST macro to construct the list.

• For processing concurrent requests, the number of requests that are
defined for processing the data set. The control blocks for the set of
concurrent strings you specify are allocated on contiguous virtual storage.
If the number you specify is not sufficient, OS/VS dynamically extends the
number of strings as needed by concurrent requests for the ACB. Strings
allocated by dynamic extension are not necessarily on contiguous storage.

• The size of the virtual storage space for I/O buffers and the number of
I/O buffers that you are supplying for VSAM to process data and index
records.

• The password that is required for the type of processing desired.

• The processing options used: keyed, addressed, or control interval, or a
combination; sequential, direct, or skip sequential access, or' a
combination; retrieval, storage, or update (including deletion), or a
combination; shared or nonshared resources.

• Address and length of an area for error messages from VSAM.

104 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

ACB

The format of the ACB macro is:

[label] ACB IAM=VSAM]
[,BSTRNO= number]
[,BUFND= number]
[,BUFNI=number]
[,BUFSP= number]
[,CATALOG=YES I NO]
[,CRA=SCRA I UCRA]
[,DDNAME=ddname]
[,EXLST = address]
[,MACRF=([ADR][,CNV][,KEY]

[,CFX I NFX]
[,DDN I DSN]
[,DFR I NDF]
[,DIR][,SEQ][,SKP]
[,ICI I NCI]
[,IN][,OUT]
[,NIS I SIS]
[,NRM I AIX]
[,NRS I RST]
[,NSR I LSR I GSR]
[,NUB I UBF])]

[,MAREA= address]
[,MLEN = number]
[,PASSWD= address]
[,STRNO= number]

where:

label
is one to eight characters that provides a symbolic address for the
access-method control block that is assembled and also, if you omit the
DDNAME operand, serves as the ddname.

AM=VSAM
specifies that the access method using this control block is VSAM.

BSTRNO=number
specifies the number of strings initially allocated for access to the base
cluster of a path. The default is STRNO. BSTRNO is ignored if the object
being opened is not a path. If the number specified for BSTRNO is
insufficient, VSAM will dynamically extend the number of strings as
needed for the access to the base cluster. BSTRNO can influence
performance. The VSAM control blocks for the set of strings specified by
BSTRNO are allocated on contiguous virtual storage, whereas this is not
guaranteed for the strings allocated by dynamic extension.

BUFND=number
specifies the number of I/O buffers VSAM is to use for transmitting data
between virtual and auxiliary storage. A buffer is the size of a control
interval in the data compo!1ent. The minimum number you may specify is 1
plus the number specified for STRNO (if you omit STRNO, BUFND must
be at least 2, because the default for STRNO is O. The number can be
supplied by way of the JCL DD AMP parameter as well as by way of the

Macro Instruction Formats and Examples 105

macro. The default is the minimum number required. Note, however, that
minimum buffer specification does not provide optimum sequential
processing performance. Generally, more data buffers specified, the better
the performance. Note also that additional data buffers will benefit direct
inserts or updates during control area splits and will b~nefit spanned record
accessing. See the chapter "Optimizing VSAM's Performance" for more
information.

BUFNI=number
specifies the number of I/O buffers VSAM is to use for transmitting the
contents of index entries between virtual and auxiliary storage for keyed
access. A buffer is the size of a control interval in the index. The minimum
number is the number specified for STRNO (if you omit STRNO, BUFNI

. must be at least 1, because the default for STRNO is O. You can supply
the number by way of the JCL DD AMP parameter as well as by way of
the macro. The default is the minimum number required.

Additional index buffers will improve performance by providing for the
residency of some or all of the high-level index, thereby minimizing the
number of high-level index records to be retrieved from DASD for
key-direct processing. See the chapter "Optimizing VSAM's Performance"
for more information.

BUFSP=number
specifies the maximum number of bytes of virtual storage to be used for
the data and index I/O buffers. VSAM gets the storage in your program's
address space. If you specify less than the amount of space that was
specified in the BUFFERSPACE parameter of the DEFINE command
when the data set was defined, VSAM overrides your BUFSP specification
upward to the value specified in BUFFERSPACE. (BUFFERSPACE, by
definition, is the least amount of virtual storage that will ever be provided
for I/O buffers.) You can supply BUFSP by way of the JCL DD AMP
parameter as well as by way of the macro. If you don't specify BUFSP in
either place, the amount of storage used for buffer allocation is the largest
of:

• the amount specified in the catalog (BUFFERSPACE),

• the amount determined from BUFND and BUFNI, or

• the minimum storage required to process the data set with its specified
processing options

If BUFSP is specified and the amount is less than the minimum amount of
storage required to process the data set, VSAM cannot open the data set.

A valid BUFSP amount takes precedence over the amount called for by
BUFND and BUFNI. If the BUFSP amount is greater than the amount
called for by BUFND and BUFNI, the extra space is allocated as follows:

• When MACRF indicates direct access only, additional index buffers are
allocated.

• When MACRF indicates sequential access, one additional index buffer
and as many data buffers as possible are allocated.

106 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

ACB

If the BUFSP amount is less than the amount called for by BUFND and
BUFNI, the number of data and index buffers is decreased as follows:

• When MACRF indicates direct access only, the number of data buffers
is decreased to not less than the minimum number. Then, if required, the
number of index buffers is decreased until the amount called for by
BUFND and BUFNI complies with the BUFSP amount.

• When MACRF indicates sequential access, the number of index buffers
is decreased to not less than 1 more than the minimum number. Then, if
required, the number of data buffers is decreased to not less than the
minimum number. If still required, 1 more is subtracted from the
number of index buffers.

• Neither the number of data buffers nor the number of index buffers is
decreased to less than the minimum number.

If the index doesn't exist or isn't being opened, only BUFND, and not
BUFNI, enters into these calculations.

CATALOG=YES I NO
specifies whether a catalog is being opened as a catalog (YES) or as a data
set (NO). When NO is coded (or taken as the default), you can process the
catalog with request macros (GET, PUT, etc). In OS/VS2 MVS systems,
your program must be APF-authorized to process a catalog as a data set.
To open a password-protected catalog for processing with VSAM macros,
you must supply its master password. When CAT ALOG= YES is coded,
the catalog must be processed with an SVC designed for that purpose.
Access Method Services, for example, processes catalogs with SVC 26.
The request macros are invalid for processing a catalog "as a catalog."
IBM recommends that VSAM users alter the contents of a VSAM catalog
only by way of Access Method Services commands.

CRA=SCRAIUCRA
specifies that a catalog recovery area is to be opened and that the control
blocks are to be built in either system storage (SCRA) or user storage
(UCRA).1f you specify SCRA and issue record management requests, you
must operate in key O. If you specify UCRA, you must be authorized by
the system and you must supply the master password of the master catalog.

DDNAME=ddname
is one to eight characters that identifies the data set that you want to
process by specifying the JCL DD statement for the data set. You may
omit DDNAME and provide it by way of the label or by way of the
MODCB macro before opening the data set. MODCB is described later in
this chanter.

EXLST =address
specifies the address of a list of addresses of exit routines that you are
providing. The list is established by the EXLST or GENCB macro. If you
use the EXLST macro, you can specify its label here as the address of the
exit list. If you use GENCB, you can specify the address returned by
GENCB in register 1 or the label of an area you supplied to GENCB for
the exit list. Omitting this operand indicates that you have no exit routines.
Exit routines are described in the chapter "User-Written Exit Routines."

Macro Instruction Formats and Examples 107

MACRF=([ADR][,CNV][,KEY]
[,CFX I NFX] -
[,DDN I DSN]
[,DFRINDF]
[,DIR][,SEQ][,SKP]
[,ICI I NCI]
[,IN][,OUT]
[,NIS I SIS]
[,NRM I AIX]
[,NRS I RST]
[,NSR I LSR I GSR]
[,NUB I UBF])

. specifies the kind(s) of processing you will do with the data set. The
options must be meaningful for the data set. For example, if you specify
keyed access for an entry-sequenced data set, you cannot open the data
set. You must specify all of the types of access you're going to use,
whether you use them concurrently or by switching from one to the other.
Figure 9 gives the options; they are arranged in groups, and each group has
a default vaJue (indicated by underlining). You may specify options in any
order. You may specify both ADR and KEY to process a key-sequenced
data set. You may specify both DIR and SEQ; with keyed access, you may
specify SKP as well. If you specify OUT and want simply to retrieve some
records as well as update, delete, or insert others, you need not also specify
IN.

MAREA=address
specifies the address of an optional OPEN/CLOSE/TCLOSE message

I area. See "OPEN / CLOSE/TCLOSE Message Area" for more
information.

MLEN =number
specifies the length of an optional OPEN/CLOSE/TCLOSE message

I area. Default=O; maximum=32K. See "OPEN/CLOSE/TCLOSE
Message Area" for more information.

PASSWD=address
specifies the address of a field that contains the highest-level password
required for the type(s) of access indicated by the MACRF operand. The
first byte of the field pointed to contains the length (in binary) of the
password (maximum of 8 bytes). Zero iridicates that no password is
supplied. If the data set is password-protected and you don't supply a
required password in the access-method control block, VSAM gives the
console operator the opportunity to supply it when you open the data set.

STRNO = number
specifies the number of requests requiring concurrent data-set positioning
VSAM is to be prepared to h,andle. The default is 1. A request is defined
by a given request parameter list or chain of request parameter lists. See
"RPL Macro (Generate a Request Parameter List)" and "GENCB Macro
(Generate a Request Parameter List)" later in this chapter for information
on request parameter lists. When records are loaded into an empty data set,
the STRNO value in the access-method control block must be 1.

OS/VS dynamically extends the number of strings as needed by concurrent
requests for this ACB, and this automatic extension can influence
performance. The VSAM control blocks for the set of strings specified by
STRNO are allocated on contiguous virtual storage, but this is not guaranteed

108 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

~

)

ACB

Option Meaning

ADR

CNV
KEY

'CFX
NFX

DDN
DSN

DFR

NDF

DIR
SEQ
SKP

ICI

NCI

IN
OUT

NIS
SIS

NRM
AIX

NRS
RST

NSR
LSR

GSR

NUB
UBF

Addressed access to a key-sequenced or an entry-sequenced data set; RBAs are used as search arguments and sequential
access is by entry sequence
Access is to the entire contents of a control interval rather than to an individual data record1

Keyed access to a key-sequenced or relative record data set; keys and relative record numbers are used as search
arguments and sequential access is by key or relative record number

Control blocks and I/O buffers are to be fixed in real storage; MACRF=ICI must also be specified1

Control blocks and I/O buffers are fixed in real storage only during I/O operations1

Subtask shared control block connection is based on common ddnames
Subtask shared control block connection is based on common data set names

With shared resources, writes for direct PUT requests are deferred until the WRTBFR macro is issued or until VSAM
needs a buffer to satisfy a GET request; deferring writes saves I/O requests in cases where subsequent requests can be
satisfied by the data already in the buffer pooP
Writes are not to be deferred for direct PUTs

Direct access to a key-sequenced, entry-sequenced, or a relative record data set
Sequential access to a key-sequenced, entry-sequenced, or a relative record data set
Skip-sequential access to a key-sequenced or a relative record data set; used only with keyed access in a forward direction.

Processing is limited to improved control-interval processing; access is faster because fewer CPU instructions are
executed1

Processing other than improved control-interval processing

Retrieval of records of a key-sequenced, entry-sequenced, or a relative record data set; (not allowed for an empty data set)
Storage of new records in a key-sequenced, entry-sequenced, or relative record data set (not allowed with addressed access
to a key-sequenced data set); update of records in a key-sequenced, entry-sequenced, or relative record data set; deletion
of records from a key-sequenced data set

Normal insert strategy
Sequential insert strategy (split control intervals and control areas at the insert point rather than at the midpoint when
doing direct PUTs); although positioning is lost and writes are done after each direct PUT request, SIS allows more
efficient space usage when direct inserts are clustered around certain keys

The object to be processed is the one named in the specified ddname
The object to be processed is the alternate index of the path specified by ddname, rather than the base cluster via the
alternate index

Data set is not reusable
Data set is reusable (high-used RBA is reset to 0 during OPEN processing)

Nonshared resources
Local shared resources; each partition or address space may have one resource pool independently of other partitions or
address spaces 1

Global shared resources (OS/VS2 MVS only); all address spaces in the system share one resource pool; OS/VS2 MVS
systems may have local and global resources pools, where tasks in an address space with a local resource pool may use
either the local resource pool or the global resource pool.

Management of I/O buffers is left up to VSAM
Management of I/O buffers is left up to' the user; the work area specified by the RPL (or GENCB) AREA operand is, in
effect, the I/O buffer-VSAM transmits the contents of a control interval directly between the work area and direct
access storage; valid when MACRF=MVE and CNV are specified; when ICI is specified, UBF is assumed

1 Described in OS/VS Virtual Storage Access Method (VSAM) Options for Advanced Applications

Figure 9. MACRF Options

for the strings allocated by dynamic extension. Exceptions to dynamic string
expansion are:

• Create mode
• ICI
• LSR or GSR

You could specify for STRNO the total number of request parameter lists or
chains of request parameter lists that you are using to define requests.
(VSAM needs to remember only one position for a chain of request

Macro Instruction Formats and Examples t 09

Example: ACB Macro

parameter lists.) However, each position beyond the minimum number that
VSAM needs to be able to remember requires additional virtual storage space
for:

• A minimum of one data I/O buffer and, for keyed access, one index I/O
buffer (the size of an I/O buffer is the control-interval size of a data set)

• Internal control blocks and other areas

In this example, the ACB macro is used to identify a data set to be opened
and to specify the types of processing to be performed. The access-method
control block generated by this example is built when the program is
assembled.

BLOCK ACB

FIELD DC

AM=VSAM, BUFND=4 , BLOCK gives symbolic address of the
BUFNI=3, access-method control block.
BUFSP=19456,
DDNAME=DATASETS,
EXLST=EXITS,
MACRF=(KEY,DIR,
SEQ,OUT) ,
PASSWD=FIELD,
STRNO=2

FL 1 '6' ,C' CHANGE' The update password: CHANGE has 6
characters.

The ACB macro's opet:'ands are:

• BUFND, BUFNI, and BUFSP, which specify four I/O buffers for data;
three I/O buffers for index entries; and 19,456 bytes of buffer space,
enough space to accommodate control intervals of data that are 4096 bytes
and control intervals of index entries that are 1024 bytes.

• DDNAME, which specifies that this access-method control block is
associated with a DD statement named DAT ASETS.

• EXLST, which specifies that the exit list associated with this
access-method control block is named EXITS.

• MACRF, which specifies keyed-direct and keyed-sequential processing for
both insertion and update.

• PASSWD, which specifies the location, FIELD, of the password provided.
FIELD contains the length of the password as well as the password itself.

• STRNO, which specifies that two requests will require concurrent
positioning.

t to OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

CHECK

The CHECK macro is used to suspend processing to await the completion of
VSAM's processing of the request.

The format of the CHECK macro is:

I [label] I CHECK I RPL= address

where:

label
is one to eight characters that provides a symbolic address for the CHECK
macro.

RPL= address
specifies the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Macro Instruction Formats and Examples 111

Example: Check Return Codes after an Asynchronous Request

In this example, return codes are checked after an asynchronous request. The
CHECK macro is used to cause an exit to be taken if there is a logical or
physical error or if the end of the data set is reached.

REQPARMS RPL

REJECTED

FAILURE

GET

LTR

BNZ

CHECK

LTR

BNZ

OPTCD=ASY

RPL=REQPARMS

15, 15

REJECTED

RPL=REQPARMS

15, 15

FAILURE

Was the request completed
successfull y?

Zero indicates the request was
accepted. If it wasn't accepted, register
15 contains 4: REQPARMS is active
for another request.
Continue to work on something that is
not dependent on the request.

CHECK would cause one of the three
exits to be taken if there was a logical
or physical error or if the end of the
data set was reached and an active exit
list exists.

Test return indication in register 15.

Zero indicates the request completed
successfully. If it failed, register 15
contains 8 or 12: there was a logical or
a physical error.

Always test register 15 after the CHECK unless you provide exit routines
that terminate processing. If a routine returns to VSAM, register 15 is reset
and control is passed back to your program immediately after the CHECK.
An error-analysis routine normally issues SHOWCB or TESTCB to examine
the feedback field in the request parameter list, so that when your processing
program gets control back, it doesn't have to analyze the error-but it may
alter its processing if there was an error. If you don't provide an error-analysis
routine, your program can issue SHOWCB or TESTCB to analyze an error
when it gets control back following the CHECK.

112 OS/YS Virtual Storage Access Method (YSAM) Programmer's Guide

CHECK

Example: Check Return Codes after a Synchronous Request

Example: Overlap Processing

-
With synchronous processing, you should test register 15 ~fter the request
because the request may not have been accepted (register 15 contains 4) or
because an error might have occurred (8 or 12):

GET RPL=REQPARMS

LTR 15,15

BNZ REJFAIL

REJFAIL

Was the request completed
successfully?

If branch isn't taken, request was
accepted and completed successfully.

In this example, the CHECK macro is used to await completion of a request
before continuing to other processing. Access is asynchronous.

BLOCK

LIST

LOOP

ACB

RPL

GET

LTR

BNZ

Do other processing.

CHECK

LTR

BNZ

Process the record.

B

NOTACCEP

ERROR

WORK DS

ACB=BLOCK,
AREA=WORK,
AREALEN=50,
OPTCD=ASY

RPL=LIST

15,15

NOTACCEP

RPL=LIST

15, 15

ERROR

LOOP

CL50

Asynchronous access.

Suspends your processing to await
completion of GET if necessary and to
cause VSAM to indicate return codes.

Request wasn't accepted.

Request failed.

Work area.

After issuing the request, make sure that VSAM accepted it before you go on
to do other processing. When you have done as much other processing as you
can, issue the CHECK macro. VSAM will not give you back control now
until the request is complete. If you don't want to issue CHECK until you
know the request is complete, use the ECB operand of the RPL macro or the
IO=COMPLETE operand of the TESTCB macro. After you issue the

Macro Instruction Formats and Examples 113

CHECK, VSAM immediately returns a code and takes an exit, if necessary.
See "RPL Macro (Generate a Request Parameter List)" and, "GENCB Macro
(Generate a Request Parameter List)" in this chapter for information on the
ECB operand.

114 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

CHECK

Example: Suspend a Request for Many Records

In this example, a CHECK macro is issued for the first request parameter list
in a chain of parameter lists. If an error occurred for one of the request
parameter lists in the chain and you have supplied error-analysis routines,
VSAM takes a LERAD or SYNAD exit before it returns control to your
program after the CHECK.

FIRST RPL

SECOND RPL

THIRD RPL

LOOP GET

LTR
BNZ

Do other processing.

CHECK
LTR

BNZ

ACB=BLOCK,
AREA=AREA 1 ,
AREALEN=50,
NXTRPL=SECOND,
OPTCD=ASY
ACB=BLOCK,
AREA=AREA2,
AREALEN=50,
NXTRPL=THIRD,
OPTCD=ASY
ACB=BLOCK,
AREA=AREA3,
AREALEN=50,
OPTCD=ASY

RPL=FIRST

15, 15
NOTACCEP

RPL=FIRST
15, 15

ERROR

Last list doesn't indicate a next list.

Request gives the address of the first
request parameter list.

Process the three records retrieved by the GET.

B LOOP
NOTACCEP Request wasn't accepted.

ERROR Display the feedback field
(FIELDS=FDBK) of each request
parameter list to find out which one
had an error.

AREA 1 DS CL50 A single GET request causes VSAM to
put a record in each of AREA 1,
AREA2, and AREA3.

AREA2 DS CL50
AREA3 DS CL50

After the CHECK, register 15 is set to indicate the status of the request. A
code of 0 indicates that no error was associated with any of the request
parameter lists. Any other code indicates that an error occurred for one of the
request parameter lists. You should issue a SHOWCB macro for each request
parameter list in the chain to find out which one had an error. VSAM doesn't
process any of the request parameter lists beyond the one with an error.

Macro Instruction Formats and Examples 115

CLOSE

CLOSE Macro (Disconnect Program and Data)

The Close routine completes any operations that are outstanding when a
processing program issues a CLOSE macro for a data set. For instance, the
Close routine causes VSAM to write out any data or index buffers whose
contents have been changed and which haven't already been written out.

The Close routine updates the catalog with any changes in the attributes of a
data set. The addition of records to a data set may cause its end-of-file
indicator to change, in which case the Close routine updates the end-of -file
indicator in the catalog. End-of-file indicators help ensure that the entire data
set is accessible. If an error prevents VSAM from updating the indicators, the
data set is flagged as improperly closed. The Close routine also causes VSAM
to write records to the SMF data set if you are using SMF.

The Close routine restores control blocks to the status that they had before
the data set was opened and frees the virtual-storage space that Open used to
construct VSAM control blocks.

There is another way in which VSAM data sets are closed. Whenever you
enter an abnormal termination routine, any data sets remaining open are
closed. The VSAM CLOSE invoked by ABEND does not update the data
set's catalog information, it does not complete outstanding 110 operations,
and it does not flush buffers. This means that the index may not reflect the
status of the data component and the catalog may not properly reflect the
status of the cluster. If this happens, you should issue an Access Method
Services VERIFY command to store the data set's end-of-file values.

When you issue a temporary or a permanent CLOSE macro, the VSAM Close
routine rewrites the AMDSB information in the data set's catalog records.
The AMDSB information includes statistics about device and volume,
high-used RBA, free space, record size, etc. All the fields that are updated are
described in the appropriate VSAM Logic publication.

The format of the CLOSE macro is:

[label] CLOSE (address [,(options)], •••)
[,TYPE=T]

where:

label
is one to eight characters that provides a symbolic address for the CLOSE
macro.

address
specifies the address of the access-method control block or DCB for each
data set to be closed. You may specify the address in register notation .
(using a register from 2 through 12-in parentheses) or specify it with an
expression that generates a valid relocatable A-type address constant. If
you specify only one address with a register, you must enclose the
expression identifying the register in two sets of parentheses: for example,
CLOSE «2)).

Macro Instruction Formats and Examples 117

options
are options parameters for use only in closing nonVSAM data sets. If any
options are specified with the address of an access-method control block,
VSAM ignores them. Because the CLOSE operands are positional, include
a comma for options (even if you don't specify options) before a
subsequent operand.

TYPE=T
specifies that VSAM is to complete outstanding I/O operations and update
the catalog, but not disconnect the program from the data.

You can issue a temporary CLOSE macro to cause VSAM to complete
outstanding I/O operations, put back into the catalog the updated
information that was brought into virtual storage when the data set was
opened, and write records in the SMF data set if you are using SMF. A
temporary CLOSE doesn't disconnect the program from the data set, so your
program can continue to process the data set without issuing an OPEN macro
again.

You must close and reopen a newly created VSAM data set before you can
issue non-create requests. A temporary close is not adequate for this purpose.

Note: ' If you are subtask-sharing or if you have issued an asynchronous
request for access to a data set, you must issue a CHECK or an ENDREQ on

I all RPLs before you issue a CLOSE or CLOSE TYPE=T; otherwise,
concurrent data set I/O activity will cause unpredictable results during a
temporary close.

. 118 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

ENDREQ

Vl\ . .rnnv,,", l\1J.,.~_ IT _!_n. D ,... ~ ... \
.£11 JJ.a.L:.J'l 1'-.Ut,-." \ ... ~ •• IIII.A"~ A ... ,,~ U~., ... ,

The ENDREQ macro is used to terminate a request. Issuing an ENDREQ has
the effect of releasing exclusive control as well as releasing positioning. In
addition, buffers are written out if required.

The format of the ENDREQ macro is:

I [label] I ENDREQ I RPL= address

where:

label
is one to eight characters that provides a symbolic address for the
ENDREQ macro.

RPL= address
specifies the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Note: The ENDREQ macro must not be issued when records are being
loaded into a VSAM data set (create mode). ENDREQs issued while in
create mode are ignored.

Macro Instruction Formats and Examples t t 9

Example: Release Positioning for Another Request

In this example, the ENDREQ macro is used to cause VSAM to release
exclusive control of a control interval containing a record. There are two
request parameter lists, both of which require VSAM to have the ability to
remember its position until V~AM is explicitly requested to forget its position.

BLOCK

SEQ

DIRUPD

LOOP

ACB

RPL

RPL

GET

MACRF=(SEQ,
DIR), STRNO=2

ACB=BLOCK,
OPTCD=SEQ

ACB=BLOCK,
OPTCD=(DIR,UPD)

RPL=SEQ

LTR 15,15

BNZ ERROR

GET RPL=DIRUPD

LTR 15,15

BNZ ERROR

Decide whether to update the record.

FORGET

ERROR

B FORGET

PUT RPL=DIRUPD

LTR 15,15

BNZ ERROR

B LOOP

ENDREQ RPL=DIRUPD

LTR

BNZ

B

15, 15

ERROR

LOOP

VSAM must remember its position.

VSAM must remember its position and
maintain exclusive control until
explicitly requested to forget it by PUT
or ENDREQ.

VSAM now remembers its position for
this request only while it is processing
the request.

VSAM can remember its position for
this request. The C.1. will be placed in
exclusive control until either ENDREQ
or PUT UPD is issued.

No: do not update the record.

Yes, update the record, causing VSAM
to forget its position for DIRUP.

Cause VSAM to forget its position for
DIRUPD. Release exclusive control.

Request wasn't accepted or failed.

The use of ENDREQ illustrated here causes VSAM to release exclusive
control of the C.I. for a record. When PUT is issued after a DIRUPD GET
request, ENDREQ need not be issued, since PUT causes VSAM to release
exclusive control (the next DIRUPD GET doesn't depend on VSAM's
remembering its position). Another result of ENDREQ is that buffers are
written out if required.

To cause VSAM to give up its position associated with a chain of request
parameter lists, specify the first request parameter list in the chain in your
ENDREQ macro.

120 OS/VS Virtual Storage Access Method (YSAM) Programmer's Guide

ENDREQ

ENDREQ can also be used to cancel an asynchronous request-rather than
suspending processing with CHECK. But simply ignoring a request whose
completion you are not interested in is adeq~ate.

Because VSAM remembers its position after a direct GET with
OPTCD= UPD, if no PUT or ENDREQ follows, you can switch to sequential
access and use the positioning for a GET.

Macro Instruction Formats and Examples t 2 t

The ERASE macro is used with the GET macro to delete records in a
key-sequenced or relative record data set.

The format of the ERASE macro is:

I [label) I ERASE I RPL= address

where:

label

ERASE

is one to eight characters that provides a symbolic address for the ERASE
macro.

RPL= address
specifies the address of a request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Macro Instruction Formats and Examples t 23

Example: Keyed-Direct Deletion

In this example, GET and ERASE macros are used to retrieve and delete
records. Not every record retrieved for deletion is deleted. The search
argument is a full key (5 bytes), compared equal.

DELETE ACB

LIST RPL

SYN,UPD,
MVE,FKS,
KEQ)

MACRF=(KEY,DIR,
OUT)

ACB=DELETE,
AREA=WORK,
AREALEN=50,
ARG=KEYFIELD,

.OPTCD=(KEY,DIR,

UPD indicates deletion.

LOOP MVC KEYFIELD, source Search argument for retrieval, from a
table or transaction record.

GET RPL=LIST

LTR 15,15

BNZ ERROR

Decide whether to delete the record.

B LOOP

ERASE RPL=LIST

LTR 15, 15

BNZ ERROR

B LOOP

ERROR

WORK DS CL50

KEYFIELD DS CL5

No, retrieve the next record.

Yes, delete the record.

Request wasn't accepted or failed.

Examine the data record here.

Search argument.

When you retrieve a record for deletion (OPTCD= UPD, same as retrieval for
update), VSAM is positioned at the record retrieved, in anticipation of a
succeeding ERASE (or PUT) request for that record. You are not required to
issue such a request, though. Another GET request nullifies any previous
positioning for deletion or update.

Keyed-sequential retrieval for deletion varies from direct in not using a search
argument (except for possible use of the POINT macro). Skip-sequential
retrieval for deletion (OPTCD=(SKP,UPD» has the same effect as direct,
but it is faster or slower depending on the number of control intervals
separating the records being retrieved.

124 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

~

ERASE

Example: Addressed-Sequential Deletion

In this example, the ERASE macro is used to delete records from a
key-sequenced data set. Not every record retrieved for deletion is deleted.
Skipping is effected by POINT macro.

DELETE ACB

REQUEST RPL

UPD,MVE)

LOOP

B
MVC

POINT

LTR
BNZ

CHECK
LTR

BNZ
RETRIEVE GET

LTR
BNZ

CHECK

LTR
BNZ

MACRF=(ADR,SEQ,
OUT)

ACB=DELETE,
AREA=WORK.,
AREALEN=100,
ARG=ADDR,
OPTCD=(ADR,SEQ,
ASY,

RETRIEVE

ADDR,source

RPL=REQUEST

15, 15

ERROR
RPL=REQUEST
15, 15

ERROR

RPL=REQUEST
15,15
ERROR

RPL=REQUEST
15,15
ERROR

UPD indicates deletion.

Decide whether you need to skip to
another position (forward or
backward).

No, bypass the POINT.

Yes, move search argument for POINT
into search-argument field.

Position VSAM to the record to be
retrieved next.

Decide whether to delete the record.

ERROR

ADDR
WORK

B
ERASE
LTR
BNZ

CHECK
LTR

BNZ
B

DS
DS

LOOP
RPL=REQUEST
15, 15
ERROR

RPL=REQUEST
15, 15

ERROR
LOOP

F

CL100

No, skip ERASE and CHECK.

Yes, delete the record.

Request wasn't accepted or failed.

RBA search argument for POINT.

Work area.

Macro Instruction Formats and Examples 125

Addressed deletion is allowed only for a key-sequenced data set. The records
of an entry-sequenced data set are fixed. When records are deleted using
addressed deletion from a key-sequenced data set, the index is not updated.

126 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

EXLST

EXLST Macro (Generate an Exit List)

You use the EXLST macro to specify the addresses of optional exit routines
that you can supply for analyzing physical and logical errors, processing an
end-of-data-set condition, noting RBA changes, and writing in a journal. Any
number of ACB macros in a program can indicate the same exit list for the
same exit routines to do all the special processing for them, or they can
indicate different exit lists. You can use exit routines for:

Analyzing physical errors: When VSAM encounters an error in an 1/0
operation that OS/VS's error routine cannot correct, the error routine
formats a message for your physical-error analysis routine (the SYNAD exit)
to act on.

Analying logical errors: Errors not directly associated with an 110 operation,
such as an invalid request, cause VSAM to exit to your logical-error analysis
routine (the LERAD exit).

End-of-data-set processing: When your program requests a record beyond the
last record in the data set, your end-of-data-set routine (the EODAD exit) is
given control. The end of the data set is beyond either the highest addressed
or the highest keyed record, depending on whether your program is using
addressed or keyed access.

Writing a journal: To journalize the transactions against a data set, you might
specify a journal routine (the JRNAD exit). To process a key-sequenced data
set by way of addressed access, you need to know whether any RBAs
changed during keyed processing. When you're processing by key, VSAM
exits to your routine for noting RBA changes before writing this control
interval in which there is an RBA change.

See the chapter "User-Written Exit Routines" for a description of the exit
routines. The EXLST macro is coordinated with the EXLST operand of an
ACB or GENCB macro used to generate an ACB: you must code the EXLST
operand to make use of the exit list.

Values for EXLST macro operands can be specified as absolute numeric
expressions, character strings, codes, and expressions that generate valid
relocatable A-type address constants.

The format of the EXLST macro is:

[label] EXLST [AM=VSAM]
[,EODAD=(address [,A I N][,L])]
[,JRNAD=(address [,AI N][,L])]
[,LERAD=(address [,A I N][,L])]
[,SYNAD=(address [,~ i N][,L])]
[,UPAD=(address [,A I N][,LD]

where:

label
is one to eight characters that provides a symbolic address for the exit list
that is established.

AM=VSAM
specifies that the access method using the control block is VSAM.

Macro Instruction Formats and Examples 127

EODAD=(address [,A I N][,L])
JRNAD=(address [,AI N][,L])
LERAD=(address [,A I N][,L])
SYNAD=(address [,~ I N][,L])

I UPAD=(address[,A I N][,AD
specify that you are supplying a routine for the exit specified. The exits and
values that can be specified for them are:

EODAD
specifies that an exit is provided for special processing when the end of
a data set is reached by sequential access.

JRNAD
specifies that an exit is provided for journalizing as you process data
records.

LERAD
specifies that an exit is provided for analyzing logical errors.

SYNAD
specifies that an exit is provided for analyzing physical errors.

UPAD
specifies that an exit is provided for user processing during a VSAM
request. The GENCB, MODCB, SHOWCB, and TESTCB macros do
not support the UP AD user exit routine.

address
is the address of a user-supplied exit routine. The address must
immediately follow the equal sign.

UPAD
specifies that an exit is provided for user processing during a VSAM
request. The GENCB, MODCB, SHOWCB, and TESTCB macros do
not support the UP AD user exit routine.

AIN

L

specifie"s that the exit routine is active (A) or not active (N). VSAM
does not enter a routine whose exit is marked not active.

specifies that the address is the address of an eight-byte field that
contains the name of an exit routine in a partitioned data set that is
identified by a JOBLIB or STEPLIB DD statement or in
SYSl.LINKLIB. VSAM is to.1oad the exit routine for exit processing. If
L is omitted, the address gives the entry point of the exit routine in
virtual storage. L may precede or follow the A or N specification.

128 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: EXLST Macro

EXLST

In this e~ample, an EXLST macro is used to identify exit routines that are
provided for analyzing logical and physical errors. The label, EXITS, of the
EXLST macro is used in an ACB or GENCB macro that generates an
access-method control block to associate the exit list with an access-method
control block. The exit list generated by this example is built when the
program is assembled.

EXITS EXLST EODAD=(ENDUP, N), EXITS gives symbolic address of the

ENDUP

LOGICAL

ROUTNAME DC

LERAD=LOGICAL, exit list.
SYNAD=(ROUTNAME,
L)

C'PHYSICAL'

EODAD routine.

LERAD routine.

Pad shorter names with blanks:
C'SYN 'or CL8'SYN'.

The EXLST macro's operands are:

• EODAD, which specifies that the end-of-data routine is located at ENDUP
and is not active.

• LERAD, which specifies that the logical-error routine is located at
LOGICAL and is active .

• SYNAD, which specifies that the physical-error routine's name is located
at ROUTNAME.

Macro Instruction Formats and Examples 129

GENCB Macro (Generate an Access-Method
Control Block)

GENCB-ACB

Before you can open a data set for processing, you must create an
access-method control block that identifies the data set to be opened,
specifies the type of processing (for example, sequential processing) to be
done, specifies basic options (for example, buffer size), and indicates whether
exit routines are to be used while the data set is being processed.

The GENCB macro is used to build an access-method control block when the
program is executed. Generation at execution has the advantage of requiring
no reassembly of a program when you adopt a new version of VSAM in
which control block formats might have changed.

The operands of the GENCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" for information on the return codes used to indicate whether the
GENCB request was successful.

Macro Instruction Formats and Examples 131

The format of the GENeB macro used to generate an access-method control
block is:

[label] GENCB BLK=ACB
[,AM=VSAM]
[,BSTRNO= number]
[,BUFND= number]
[,BUFNI= number]
[,BUFSP= number]
[,CATALOG=YES I NO]
[,COPIES= number]
[,CRA=SCRA I UCRA]
[,DDNAME=ddname]
[,EXLST = address]
[,LENGTH = number]
[,MACRF = ([ADR][,CNV][,KEY]

[,CFX I NFX]
[,DDN I DSN]
[,DFR I NDF]
[,DIR][,SEQ][,SKP]
[,ICI I NCI]
[,IN][,OUT]
[,NIS I SIS]
[,NRMJ AIX]
[,NRS I RST]
[,NSR I LSR I GSR]
[,NUB I UBF])]

[,MAREA= address]
[,MLEN = number]
[,PASSWD= address]
[,STRNO= number]
[, W AREA = address]

where:

label
is one to eight characters that provides a symbolic address for the GENeB
macro.

BLK=ACB
specifies that you are generating an access-method control block.

AM=VSAM
specifies that the access method using this control block is VSAM.

BSTRNO=number
specifies the number of strings initially allocated for access to the base
cluster of a path. The default is. STRNO. BSTRNO is ignored if the object
being opened is not a path. If the number specified for BSTRNO is
insufficient, VSAM will dynamically extend the number of strings as
needed for the access to the base cluster. BSTRNO can also influence
performance. The VSAM control blocks for the set of strings specified by
BSTRNO are allocated on contiguous virtual storage, whereas this is not
guaranteed for the strings allocated by dynamic extension.

132 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

GENCB-ACB

BUFND=number
specifies the number of I/O buHers VSAM is to use for transmitting data
between virtual and auxiliary storage. A buffer is the size of a control
interval in the data component. The minimum number you may specify is 1
plus the number specified for STRNO (if you omit STRNO, BUFND must
be at least 2, because the default for STRNO is 1). The number can be
supplied by way of the JCL DD AMP parameter as well as by way of the
macro. The default is the minimum number required. A larger number for
BUFND can improve the performance of sequential access.

BUFNI=number
specifies the number of I/O buffers VSAM is to use for transmitting index
entries between virtual and auxiliary storage for keyed access. A buffer is
the size of a control interval in the index. The minimum number is the
number specified for STRNO (if you omit STRNO, BUFNI must be at
least 1, because the default for STRNO is 1). You can supply the number
by way of the JCL DD AMP parameter as well as by way of the macro.
The default is the minimum number required. A larger number for BUFNI
can improve the performance of keyed-direct retrieval.

BUFSP=number
specifies the maximum number of bytes of virtual storage to be used for
the data and index I/O buffers. VSAM gets the storage in your program's
address space. If you specify less than the amount of space that was
specified in the BUFFERSP ACE parameter of the DEFINE command
when the data set was defined, VSAM overrides your BUFSP specification
upward to the value specified in BUFFERSP ACE. (BUFFERSP ACE, by
definition, is the least amount of virtual storage that will ever be provided
for I/O buffers.) You can supply BUFSP by way of the JCL DD AMP
parameter as well as by way of the macro. If you don't specify BUFSP in
either place, the amount of storage used for buffer allocation is the largest
of:

• the amount specified in the catalog (BUFFERSPACE),

• the amount determined from BUFND and BUFNI, or

• the minimum storage required to process the data set with its specified
processing options

If BUFSP is specified and the amount is less than the minimum amount of
storage required to process the data set, VSAM cannot open the data set.

A valid BUFSP amount takes precedence over the amount called for by
BUFND and BUFNI. If the BUFSP amount is greater than the amount
calle.d for by BUFND and BUFNI, the extra space is allocated as follows:

• When MACRF indicates direct access only, additional index buffers are
allocated.

• When MACRF indicates sequential access, one additional index buffer
and as many data buffers as possible are allocated.

Macro Instruction Formats and Examples t 33

If the BUFSP amount is less than the amount called for by BUFND and
BUFNI, the number of data and index buffers is decreased as follows:

• When MACRF indicates direct access only, the number of data buffers
is decreased to not less than the minimum number. Then if required, the
number of index buffers is decreased until the amount called for by
BUFND and BUFNI complies with the BUFSP amount.

• When MACRF indicates sequential access, the number of index buffers
is decreased to not less than 1 more than the minimum number. Then, if
required, the number of data buffers is decreased to not less than the
minimum number. If still required, 1 more is subtracted from the
number of index buffers.

• Neither the number of data buffers nor the numl?er of index buffers is
decreased to less than the minimum number.

If the index doesn't exist or isn't being opened, only BUFND, and not
BUFNI, enters into these calculations.

CATALOG=YES I NO
specifies whether a catalog is being opened as a catalog (YES) or as a data
set (NO). When NO is coded (or taken as the default), you can process the
catalog with request macros. (GET,PUT,etc.) To open a
password-protected catalog for processing with VSAM macros, you must
supply its master password. When CATALOG = YES is coded, the catalog
must be processed with an SVC designed for that purpose. Access Method
Services, for example, processes c3:talogs with SVC 26. The request macros
are invalid for processing a catalog "as a catalog." IBM recommends that
VSAM users alter the con!ents of a VSAM catalog only by way of Access
Method Services commands.

COPIES=number
specifies the number of copies of the access-method control block VSAM
is to generate. All of the copies are identical. You can use MODCB to
tailor each one for the data set and processing you want for it. MODCB is
described in this chapter.

CRA=SCRAIUCRA
specifies that a catalog recovery area is to be opened and that the control
blocks are to be built in either system storage (SCRA) or user storage
(UCRA). If you specify SCRA and issue record management requests, you
must operate in key o. If you specify UCRA, you must be authorized by
the system and you must supply the master password of the master catalog.

DDNAME=ddname
is one to eight characters that identifies the data set that you want to
process by specifying the JCL DD statement for the data set. You may
omit DDNAME and provide it by way of the MODCB macro before
opening the data set. MODCB is described later in this chapter.

EXLST = address
specifies the address of a list of addresses of exit routines that you are
providing. The list is established by the EXLST or GENCB macro. If you
use the EXLST macro, you can specify its label here as the address of the
exit list. If you use GENCB, you can specify the address returned by
GENCB in register 1. Omitting this operand indicates that you have no
exit routines. Exit routines are described in the chapter "User-Written Exit
Routines. "

134 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

GENCB-ACB

LENGTH =n umber
specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the access-method control block(s). (See the WAREA
operand.)

MAeRF=([ADR][,CNV][,KEY]
[,eFX I NFX] -
[,DDN I DSN]
[,DFRI NDF]
[,DIR][,SEQ][,SKP]
[,leI I NeI]
[,IN][,OUT]
[,NIS I SIS]
[,NRM I AIX]
[,NRS I RST]
[,NSR I LSR I GSR]
[,NUB I UBF])

specifies the kind(s) of processing you will do with the data set. The
options must be meaningful for the data set. For example, if you specify
keyed access for an entry-sequenced data set, you cannot open the data
set. You must specify all of the types of access you're going to use,
whether you use them concurrently or by switching from one to the other.
The options are shown earlier in Figure 9; they are arranged in groups, and
each group has a default value (indicated by underlining). You may specify
options in any order. You may specify both ADR and KEY to process a
key-sequenced data set. You may specify both DIR and SEQ; with keyed
access, you may specify SKP as well. If you specify OUT and want simply
to retrieve some records as well as update, delete, or insert others, you
need not also specify IN.

MAREA=address
specifies the address of an optional OPEN / CLOSE/TCLOSE message
area.

MLEN = number
specifies the length of an optional OPEN / CLOSE/TCLOSE message
area.

PASSWD=address
specifies the address of a field that contains the highest-level password
required for the type(s) of access indicated by the MACRF operand. The
first byte of the field contains the length (in binary) of the password
(maximum of 8 bytes). Zero indicates that no password is supplied. If the
data set is password-protected and you don't supply a required password in
the access-method control block, VSAM gives the console operator the
opportunity to supply it when you open the data set.

STRNO=number
specifies the number of requests requiring concurrent data-set positioning
VSAM is to be prepared to handle. A request is defined by a given request
parameter list or chain of request parameter lists. See "RPL Macro
(Generate a Request Parameter List)" and "GENCB Macro (Generate a
Request Parameter List)" in this chapter for information on request
parameter lists.

Macro Instruction Formats and Examples 135

W AREA=address
specifies the address of an area in which the access-method control
block(s) is to be generated. (Otherwise VSAM obtains virtual-storage
space for the area and returns its address to you in register 1 and its length
in register 0.) The area must begin on a fullword boundary. This operand is
paired with the LENGTH operand, which must be given if you specify an
area address.

If you did not specify an area in which the access-method control block was
to be generated, VSAM returns to your program the address of the area
containing the control block(s) in register 1 and the length of the area in
register O. You can find out the length of each control block by dividing the
length of the area by the number of copies. The address of each control block
can then be calculated by this offset from the address in register 1. You can
find the length of an access-method control block with the SHOWCB macro.
SHOWCB is described later in this chapter.

If you are generating control blocks by issuing several GENCBs, specifying
an area (·W AREA and LENGTH parameters) for them enables you to
address all of them with one base register and to avoid repetitive requests for
virtual storage.

Example: GENCB Macro (Generate an Access-Method Control Block)

In this example, a GENCB macro is used to identify a data set to be opened
and to specify the types of processing to be performed. The access-method
control block generated by this example is built when the program is
executed.
GENCB GENCB

ST

ACBADDR DS

FIELD DC

BLK=ACB,AM=VSAM,
BUFND=4,BUFNI=3,
BUFSP=19456,
DDNAME=DATASETS,
EXLST=EXITS,
MACRF=(KEY,DIR,
SEQ, OUT),
PASSWD=FIELD,
STRNO=2

1,ACBADDR

F

FL 1 ' 6' , C ' CHANGE'

The GENCB macro's operands are:

1 copy generated; VSAM gets the
storage for it, because the W AREA and
LENGTH operands have been omitted.

Save the address of the access-method
control block.

The address of the access-method
control block is saved in ACBADDR.

CHANGE, the password, has 6
characters.

• BUFND, BUFNI, and BUFSP, which.specify four I/O buffers for data;
three I/O buffers for index entries; and 19,456 bytes of buffer space,
enough space to accommodate control intervals of data that are 4096 bytes
and of index entries that are 1024 bytes.

• DDNAME, which specifies that this access-method control block is
associated with a DD statement named OAT ASETS.

• EXLST, which specifies that the exit list associated with this
access-method control block is named EXITS.

• MACRF, which specifies keyed direct and keyed sequential processing for
_ both insertion and update.

• PASSWD, which specifie.s the location, FIELD, of the password provided.

136 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

GENCB-ACB

positioning.

Macro Instruction Formats and Examples 137

)

GENCB-EXLST

The GENCB macro can be used to generate an exit list when the program is
executed. The GENCB macro is coordinated with the EXLST operand of the
ACB or GENCB macro used to generate an access-method control block to
make use of the exit list. One or more access-method control blocks may use
the same exit list-the exit routines indicated by the list would do all the exit
processing for the data sets identified by the control blocks.

The operands of the GENCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" for information on return codes used to indicate whether the
G EN CB request was successful.

The format of the GENCB macro used to generate an exit list is:

[label] GENCB BLK=EXLST
[,AM=VSAM]
[,EODAD=(address [,A I N][,L])]
[,JRNAD=(address [,AI N][,L])]
[,LERAD=(address [,A I N][,L])]
[,SYNAD=(address [,~ I N][,L])]
[,COPIES= number]
[,LENGTH= number]
[, W AREA = address]

where:

label
is one to eight characters that provides a symbolic address for the GENCB
macro.

BLK=EXLST
specifies that you are generating an exit list.

AM=VSAM
specifies that the access method using this control block is VSAM.

[,EODAD=(address [,A I N][,L])]
[,JRNAD=(address [,AI N][,L])]
[,LERAD=(address [,A I N][,L])]
[,SYNAD=(address [,~ I N][,L])]

specify that you are supplying a routine for the exit named. If none of
these is specified, VSAM generates an exit list with inactive entries for all
of the exits. The exits and values that can be specified for them are:

EODAD
specifies that an exit is provided for special processing when the end of
a data set is reached by sequential access.

Macro Instruction Formats and Examples 139

JRNAD
specifies that an exit is provided for journalizing as you process data
records.

LERAD
specifies that an exit is provided for analyzing logical errors.

SYNAD
specifies that an exit is provided for analyzing physical errors.

address
is the address of a user-supplied exit routine. The address must
immediately follow the equal sign.

AIN

L

specifies that the exit routine is active (A) or not active (N). VSAM
does not enter a routine whose exit is marked not active.

specifies that the address is the address of an eight-byte field that
contains the name of an exit routine in a partitioned data set that is
identified by a JOBLIB or STEPLIB DD statement or in
SYS 1.LINKLIB. VSAM is to load the exit routine for exit processing. If
L is omitted, the address gives the entry point of the exit routine in
virtual storage. L may precede or follow the A or N specification.

COPIES=number
specifies the number of copies of the exit list you want generated. GENCB
generates as many copies as you specify (default is 1) when your program
is executed. All of the copies are the same. You can use MODCB to
change some or all of the addresses in a list. MODCB is described later in
this chapter.

LENGTH = number
specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the exit list(s). (See the WAREA operand.)

W AREA=address
specifies the address of an area in which the exit list(s) is to be generated.
(Otherwise VSAM obtains virtual-storage space for the area and returns its
address in register 1 and its length in register 0.) The area must begin on a
fullword boundary. This operand is paired with the LENGTH operand,
which must be given if you specify an area address.

If you do not specify an area in which the exit list is to be generated, VSAM
returns to your program the address of the area in which the exit list(s) is
generated in register 1, and the length of the area in register O. You can find
out the length of each exit list by dividing the length of the area by the
number of copies. The address of each exit list can then be calculated by this
offset from the address in register 1. You can find the length of an exit list
with the SHOWCB macro, described under "SHOWCB Macro (Display an
Exit List)" later in this chapter.

If you are generating control blocks by issuing several GENCBs, specifying
an area (W AREA and LENGTH) for them enables you to address all of them
with one base register and to avoid repetitive requests for virtual storage.

140 OS/YS Yirtual Storage Access Method (YSAM) Programmer's Guide

GENCB-EXLST

EX2m~!e: GENCB M~~rl) (Ge~er~te ~n Rxit List)

In this example, a GENCB macro is used to generate an exit list when the
program is executed.

EXITS

EOD

LOGICAL

ERROR

GENCB BLK=EXLST,
EODAD=(EOD,N),
LERAD=LOGICAL,
SYNAD=(ERROR,
A,L)

LTR

BNZ

ST

DC

R15,R15

ERROR

1,EXLSTADR

EXLSTADR DS

C'PHYSICAL'

F

The GENCB macro's operands are:

Address of the exit list is saved.

EODAD routine.

LERAD routine.

Name of the SYNAD module.

Save area for exit-list address.

• BLK, which specifies that an exit list is to be generated.

• EODAD, which specifies that the end-of-data routine is located at EOD
and is not active.

• LERAD, which specifies that the logical-error routine is located at
LOGICAL; because neither A nor N is specified, the LERAD routine is
marked active by default.

• SYNAD, which specifies that the physical-error routine's name is located
at ERROR.

Because no area was specified in which the exit list was to be generated,
VSAM obtained virtual storage for the exit list and returned the address in
register 1. Immediately after the GENCB macro, the address of the exit list,
contained in register 1, is moved to EXLSTADR. EXLSTADR may be
specified in a GENCB macro that generates an access-method control block
or in a MODCB, SHOWCB, or TESTCB macro that modifies, displays, or
tests fields in an exit list.

Macro Instruction Formats and Examples 141

)

GENCB-RPL

After you have connected your program to the data set, you can issue
requests for access to it. A request parameter list defines a request. Each
request macro (GET, PUT, ERASE, POINT, CHECK, and ENDREQ) gives
the address of a request parameter list that defines the request.

The GENCB macro can be used to generate the request parameter list when
the program is executed. Using the GENCB macro gives you independence
from possible changes in the format of the request parameter list in future
releases of VSAM. It also gives you the ability to generate many copies of the
list.

If you use GENCB to generate request parametf?r lists as you need them, and
later free the space, you should first issue the ENDREQ macro for each
request parameter list to free the VSAM resources used for keeping track of
positions in the data set.

The operands of the GENCB macro to generate a request parameter list are
optional in some cases, but required in others. It is not necessary to omit
operands that are not required for a request; they are ignored. Thus, for
example, if you switch from direct to sequential retrieval with a request
parameter list, you don't have to zero out the address of the field containing
the search argument (ARG=address).

The operands of the GENCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" for information on the return codes used to indicate whether the
GENCB request was successful.

Macro Instruction Formats and Examples 143

The format of the GENCB macro used to generate a request parameter list is:

[label] GENCB BLK=RPL
[,ACB= address]
[,AM=VSAM]
[,AREA= address]
[,AREALEN = number]
[,ARG= address]
[,COPIES= number]
[,ECB= address]
[,KEYLEN= number]
[,LENGTH= number]
[,MSGAREA= address]
[,MSGLEN = number]
[,NXTRPL= address]
[,OPfCD=([ADR I CNV I KEY]

[,DIR I SEQ I SKP]
[,ARD I LRD]
[,FWD I BWD]
[,ASY I SYN]
[,NSP I NUP I UPD]
[,KEQ I KGE]
[,FKS I GEN]
[,LOC I MVE])]

[,RECLEN=number-] -
[,TRANSID= number]
[,WAREA= address]

where:

label
is one to eight characters that provides a symbolic address for the GENCB
macro. See the discussion of the COPIES operand for addressing lists
generated by GENCB.

BLK=RPL
specifies that you are generating a request parameter list.

ACB=address
specifies the address of the access-method control block that identifies the
data set to which access will be requested. If you omit this operand, you
must issue MODCB to specify the address of the access-method control
block before you issue a request. MODCB is described later in this
chapter.

AM=VSAM
specifies that the access method using this control block is VSAM.

AREA = address
specifies the address of a work area.to and from which VSAM moves a
data record if you request it to do so (with the RPL operand
OPTCD=MVE). If you request to process records in the I/O buffer
(OPTCD=LOC), VSAM puts into this work area the address of a data
record within the I/O buffer.

144 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

GENCB-RPL

AREA 1 ,EN =number
specifies the length, in bytes, of the work area whose address is specified
by the AREA operand. Its minimum for OPTCD=MVE is the size of a
data record (or the largest data record, for a data set with records of
variable length). For OPTCD=LOC the area should be 4 bytes to contain
the address of a data record within the I/O buffer.

ARG=address
specifies the address of a field that contains the search argument for direct
retrieval, skip-sequential retrieval, and positioning. For a relative record
data set, the ARG field must be 4 bytes long. For direct or skip-sequential
processing, this field contains your search argument, a relative record
number. For sequential processing (OPTCD=(KEY,SEQ», the 4 bytes
are required for VSAM to return the feedback RRN. For keyed access
(OPTCD=KEY), the search argument is a full or generic key; for
addressed access (OPTCD=ADR), it is an RBA. If you specify a generic
key (OPTCD=GEN), you must also specify in the KEYLEN operand how
many of the bytes of the full key you are using for the generic key.

COPIES=number
specifies the number of copies of the request parameter list you want
generated. GENCB generates as many copies as you specify (default is 1)
when your program is executed.

The copies of a request parameter list can be used to:

• Chain lists together to gain access to many records with one request.

• Define many requests to gain access to many parts of a data set
concurrently.

All of the copies generated are identical; you have to use MODCB to tailor
them to specific requests. MODCB is described in this chapter.

ECB=address
specifies the address of an event control block (ECB) that you may supply.
VSAM indicates in the ECB whether a request is complete or not (using
standard OS/VS completion codes, which are described in OS/VSl
System Data Areas, and OS/VS2 Data Areas). This operand is always
optional.

KEYLEN =number
specifies the length, in bytes, of the generic key (OPTCD=GEN) you are
using for a search argument (given in the field addressed by the ARG
operand). This operand is required with a search argument that is a generic
key. The number can be 1 through 255. For full-key searches, VSAM
knows the key length, which is taken from the catalog definition of the
data set when you open the data set.

LENGTH= number
specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the request parameter list(s). (See the WAREA
operand.) You can find out how long a request parameter list is with the
SHOWCB macro, described later in this chapter.

Macro Instruction Formats and Examples 145

MSGAREA=address
specifies the address of an area that you are supplying for VSAM to send
you a message in case of a physical error. The format of a physical-error
message is given under "Physical Errors" in the chapter "Request
Macros." This operand is always optional.

MSGLEN =number
specifies the size, in bytes, of the message area indicated in the
MSGAREA operand. The size of a message is 128 bytes; if you provide
less than 128 bytes, no message is returned to your program. This operand
is required when MSGAREA is coded.

NXTRPL=address
specifies the address of the next request parameter list in a chain. Omit this
operand from the macro that generates the only or last list in the chain.
When you issue a request that is defined by a chain of request parameter
lists, indicate in the request macro the address of the first parameter list in
the chain. A single request macro can be defined by multiple request
parameter lists, such that a GET, for example, can cause VSAM to retrieve
two or more records.

OPTCD=([ADR I CNV I KEY]
[,DIR I SEQ I SKP]
[,ARD I LRD]
[,FWD I BWD]
[,ASY I SYN]
[,NSP I NUP I UPD]
[,KEQ I KGE]
[,FKS I GEN]
[,NWAIT I WAITX)
[,LOC I MVEl)

specifies the options that govern the request defined by the request
parameter list. Each group of options has a default; options are shown in
Figure 10 with defaults underlined. Only one option from each group is
effective for a request. Some requests do not require an option from all of
the groups to be specified. The groups that aren't required are ignored;
thus, you can use the same request parameter list for a combination of
requests (GET, PUT, POINT, for example) without zeroing out the
inapplicable options each time you go from one request to another.

RECLEN =number
specifies the length, in bytes, of a data record be~ng stored. With
fixed-length records, set it and forget it. This operand is required for PUT
requests. For GET requests, VSAM puts the length of the record retrieved
in this field in the request parameter list. It will be there if you update and
store the record.

TRANSID= number
specifies a number that relates modified buffers in a buffer pool. Used in
shared resource applications and described in OS/VS Virtual Storage
Access Method (VSAM) Options for Advanced Applications.

WAREA=address
specifies the address of an area in which the request parameter list(s) is to
be generated. (Otherwise VSAM obtains virtual-storage space for the area
and returns its address to you in register 1 and its length in register 0.) The
area must begin on a fullword boundary. This operand is paired with the
LENGTH operand, which must be given if you specify an area address.

146 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

GENCB-RPL

If you do not specify an area in which the request parameter list is to be
generated, VSAM returns to your program the address of the area in which
the request parameter list(s) was generated in register 1, and the length of
the area in register O. You can find the length of each list by dividing the
length of the area by the number of copies. You can then calculate the
address of each list by using the length of each list as an offset.

If you are generating control blocks by issuing several GENCBs, specifying
an area (WAREA and.LENGTH parameters) for them enables you to
address all of them with one base register and to avoid repetitive requests for
virtual storage.

You can use the ECB to determine that an asynchronous request is complete
before issuing a CHECK macro. (If you issue a CHECK before a request is
complete, you give up control and must wait for completion.) You can also
test for completion with the TESTCB I/O=COMPLETE operand.

When GENCB is used to build a chain of request parameter lists, the request
parameter lists may be chained using only GENCB macros or using GENCB
and MODCB macros together. When only GENCB is used, the request
parameter lists are created in reverse order, as follows:

SECOND

FIRST

GENCB BLK=RPL
LR 2,1
GENCB BLK=RPL,NXTRPL=(2)

SECOND GENCB creates the second request parameter list, which makes its
address available for the first request parameter list. The address of the
request parameter list is returned in register 1 and is loaded into register 2.
FIRST GENCB creates the first request parameter list and supplies the
address of the next request parameter list using register notation. GENCB
and MODCB macros may be used together to create a chain of request
parameter lists, as follows:

GENCB
LR
SRL
LR
LA
MODCB

BLK=RPL,COPIES=2
2,0
2, 1
3, 1
4, O(2,3)
RPL=(3),NXTRPL=(4)

The GENCB macro creates two request parameter lists. The length of the
parameter lists is returned in register 0 and loaded into register 2. The address
of the area in which the lists were created (and, therefore, the address of the
first one) is returned in register 1 and loaded into register 3. The SRL
statement divides the total length of the area (register 2) by 2. The LA
statement loads the address of the second request parameter list into register
4. The MODCB macro modifies the first request parameter list (register 3) by
supplying the address of the second request parameter list (register 4) in the
NXTRPL operand.

Each request parameter list in a chain should have the same OPTCD options.
Having different options may cause logical errors. You can't chain request
parameter lists for updating or deleting records-only for retrieving records
or storing new records. You can't process records in the I/O buffer with
chained request parameter lists. (OPTCD= UPD and LOC are invalid for a
chained request parameter list.)

With chained request parameter lists, a POINT, a sequential or
skip-sequential GET, or a direct GET with positioning requested

Macro Instruction Formats and Examples 147

(OPTCD=NSP) causes VSAM to position itself at the record following the
record identified by the last request parameter list in the chain.

Example: GENCB Macro (Generate a Request Parameter List)

In this example, a GENCB macro is used to generate a request parameter list.

ACCESS GENCB BLK=RPL,
ACB=ACCESS,
AM=VSAM,
AREA=WORK,
AREALEN=125,
ARG=SEARCH,
MSGAREA=MESSAGE,
MSGLEN=128,
OPTCD=(SKP,UPD)

ACCESS ACB MACRF=(SKP,OUT)

WORK DS CL125

SEARCH DS

MESSAGE DS

CL8

CL128

The GENCB macro's operands are:

• BLK, which specifies that a request parameter list is to be generated.

• ACB, which specifies that the request parameter list is associated with a
data set and processing options identified by ACCESS.

• AREA and AREALEN, which specify a 125-byte work area to be used for
processing records.

• ARG, which specifies the address of the search argument.

• MSGAREA and MSGLEN, which specify a 128-byte area to be used for
physical-error messages.

I · OPTCD, which specifies the options that govern the request defined by the
request parameter list identified by SKP and UPD.

148 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

GET

GET l¥iacro (Retrieve a Record)

The GET macro is used to retrieve a record.

The GET macro is used with the PUT macro to update records. See "PUT
Macro (Store a Record)" later in this chapter for examples that show the use
of the GET macro to update records. The GET macro is used with the
ERASE macro to delete records in a key-sequenced or relative record data
set. See "ERASE Macro (Delete a Record)" in this chapter for examples that
show the use of the GET macro to delete records.

You cannot update records in the I/O buffer. A direct GET for update
positions VSAM at the record retrieved, in anticipation of storing back (or
deleting) the record. This positioning allows you to switch to sequential access
to retrieve another record.

You are not required to store back a record that you retrieve for update;
however, another GET request nullifies any previous positioning for deletion
or update.

The format of the GET macro is:

I [label] I GET I RPL= address

where:

label
is one to eight characters that provides a symbolic address for the GET
macro.

RPL= address
specifies the address of the request parameter list that defines this GET
request. You may specify the address in register notation (using a register
from 1 through 12, enclosed in parentheses) or specify it with an
expression that generates a valid relocatable A-type address constant.

Macro Instruction Formats and Examples 149

Example: Keyed-Sequential Retrieval (Forward)

In this example, a GET macro is used to sequentially retrieve records by key.
Retrieval is in a forward direction. Fixed-length, 100-byte records are moved
to a work area. Processing is synchronous.

INPUT

RETRVE

LOOP

ERROR

IN

ACB

RPL

GET

LTR

BNZ

B

DS

MACRF=(KEY,
SEQ, IN)

ACB=INPUT,
AREA=IN,
AREALEN=100,
OPTCD=(KEY,SEQ,
SYN,NUP,MVE)

RPL=RETRVE

15, 15

ERROR

LOOP

CL100

All MACRF and OPTCD options
specified are defaults and could have
been omitted.

This GET or identical GETs can be
issued, with no change in the request
parameter list, to retrieve subsequent
records in key sequence.

Request wasn't accepted or failed.

IN contains a data record after GET is
completed.

The records are retrieved in key sequence in a forward direction. No search
argument has to be specified; VSAM- is positioned at the first record in key
sequence when the data set is opened, and the next record is retrieved
automatically as each GET is issued. The branch to ERROR could also be
taken if the end of the data set is reached.

150 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

~

GET

This example is the same as the previous one except that a POINT macro
instruction is issued to the last record in the data set and the records are
retrieved in a backward direction.

INPUT ACB

RETRVE

EXLST1 EXLST
POINT

LTR
BNZ

LOOP GET
LTR

B
EOD EQU
ERROR

IN DS

DDNAME=INPUT,
EXLST=EXLST1
RPL
ACB=INPUT,
AREA=IN,
AREALEN=100,

Define RPL for last record positioning
and backward processing

OPTCD=(KEY,SEQ,
LRD,BWD)

EODAD=EOD
RPL=RETRVE

15, 15

ERROR
RPL=RETRVE
15, 15

LOOP

*

CL100

Define end of data

Position to last record (no argument is
required)

Get previous record

Come here for end of data

Request failed

Area for retrieved record

Macro Instruction Formats and Examples 151

Example: Skip-Sequential Retrieval

In this example, a GET macro is used to retrieve variable-length records
synchronously. Records are to be processed in the I/O buffer. The search
argument is full key, compared greater-than-or-equal; key length is eight
bytes.

The records are retrieved in key sequence, but some reccrds are skipped.
Skip-sequential retrieval is very similar to keyed-direct retrieval, except that
you must retrieve records in ascending sequence (with skips) rather than in a
random sequence.

LOOP

ERROR

CHECKO

GENCB BLK=ACB,
DDNAME=INPUT,
MACRF=(KEY,
SKP, IN)

LTR

BNZ

LR

GENCB

LTR

BNZ

LR

MVC

15, 15

CHECKO

2, 1

BLK=RPL,
ACB=(2),
AREA=RCDADDR,
AREALEN=4,
ARG=SRCHKEY,
OPTCD=(KEY,SKP,
SYN,NUP,KGE,
FKS,LOC)

15, 15

CHECKO

3, 1

SRCHKEY, source

GET RPL=(3)

LTR 15, 15

BNZ ERROR

SHOWCB AREA=RCDLEN,

LTR

BNZ

B

. FIELDS=RECLEN,
LENGTH=4,
RPL=(3)

15, 15

CHECKO

LOOP

152 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

VSAM gets an area in virtual storage to
generate the access-method control
block and returns the address in
register 1.

Address of the request parameter list.

Search argument for retrieval, moved
in from a table or a transaction record.

Display the length of the record.

Request wasn't accepted or failed.

Generation or display failed.

RCDADDR DS

SRCHKEY DS

RCDLEN DS

F

CL8

F

GET

Work area into which VSAM puts the
address of a data record wilhin the i/O
buffer (OPTCD=LOC).

Search argument for retrieval.

For displaying variable record lengths.

The macros and instructions are described, as follows:

• The first GENCB generates an access-method control block, which
specifies keyed, skip-sequential, and input processing. The address of the
access-method control block is stored in register 2.

• The second GENCB generates a request parameter list. The address of the
request parameter list is stored in register 3.

• MVC moves the search argument into SRCHKEY, the area defined for the
search argument.

• GET specifies that the record pointed at by the request parameter list
whose address is in register 3 is to be retrieved. Records are retrieved by a
skip-sequential search through the sequence set of the index.

Macro Instruction Formats and Examples 153

Example: Addressed-Sequential Retrieval

In this example, one GET macro is used to retrieve multiple fixed-length,
20-byte records. The records are moved to a work area (only option).

BLOCK ACB

GENCB

LTR
BNZ

LA

LR
LR

SR

DR

LR

LR
LA

AR
MODCB

LTR

BNZ

AR
LA

LOOP GET
LTR
BNZ

B

DDNAME=INPUT,
MACRF=(ADR,SEQ,
IN)

BLK=RPL,
COPIES=10,
ACB=BLOCK,
OPTCD=(ADR,S~Q,
SYN,NUP,MVE)
15,15

CHECKO
3,10

2, 1
1 ,0

0,0

0,3

3, 1

4,2
5,RECAREA

4,3
RPL=(2),
NXTRPL=(4) ,
AREA=(5),
AREALEN=20
15, 15

CHECKO

2,3
5, 20(5)

RPL=(2)
15, 15

ERROR

LOOP

154 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Number of lists (to).

Address of the first list.

Length of all of the lists. Registers 0
and I contain length and address of the
generated control blocks when VSAM
returns control after GENCB.

Prepare for following division.

Divide number of lists into length of all
of the lists.

Save the resulting length of a single list
for an offset.

Save address of the first list.

Address of the first work area.

Do the following six instructions ten
times to set up all of the request
parameters lists. The tenth time,
register 4 must be set to 0 to indicate
the last request parameter list in the
chain.

Address the next list.

In each request parameter list, indicate
the address of the next list and the
address and length of the work area.

Address the next list.

Address the next work area.

Restore register 2 to address the first
list before continuing to process.

Process the ten records that have been
retrieved by the GET.

CHECKO

ERROR

RECAREA DS CL200

GET

Display the feedback field
(FIELDS=FDBK) of each request
parameter list to find out which one
had an error.

Space for a work area for each of the
ten request parameter lists.

The GENCB macro generates ten request parameter lists; the lists are
subsequently chained together by using the MODCB macro to modify the
NXTRPL operand in each copy. Because SEQ is specified in each request
parameter list and no previous request has been issued against the
access-method control block since it was opened, retrieval begins at the
beginning of the data set. Each time the GET macro is executed, VSAM is
positioned at the next record in RBA sequence. VSAM moves each record
into the work area provided for the request parameter list that identifies the
record.

If an error occurred for one of the request parameter lists in the chain and·
you have supplied error-analysis routines, VSAM takes a LERAD or SYNAD
exit before returning to your program. Register 15 is set to indicate the status
of the request. A code of 0 indicates that no error was associated with any of
the request parameter lists. Any other code indicates that an error occurred
for one of the request parameter lists. You should issue a SHOWCB macro
for each request parameter list in the chain to find out which one had an
error. VSAM doesn't process any of the request parameter lists beyond the
one with an error.

Macro Instruction Formats and Examples 155

Example: Sequential Retrieval for a Relative Record Data Set

In this example, a GET macro is used to sequentially retrieve records by
relative record number. Fixed-length, tOO-byte records are moved to a work
area. Processing is synchronous.

INPUT

RETRVE

ACB

RPL

MACRF=(KEY,SEQ,
IN)

ACB=INPUT,
AREA=::IN,
AREALEN=100,
ARG=RCDNO,
OPTCD=(KEY,SEQ,
SYN,

NUP ,MVE) .

LOOP GET RPL=RETRVE

LTR 15, 15

BNZ ERROR

LOOP

B

ERROR

IN DS CL100

RCDNO DS CL4

All MACRF and OPTCD options
specified are defaults and could have
been omitted

This GET or identical GETs can be
issued, with no change in the RPL, to
retrieve subsequent records in relative
record number sequence

Request was not accepted or it failed

IN contains a data record after GET is
completed.

VSAM returns relative record number
of retrieved record in this field.

The records are retrieved in relative record number sequence. Empty records
are bypassed for sequential retrieval. A four-byte search argument must be
specified. The relative record number of each record retrieved is stored in the
search argument. VSAM is positioned at the first relative record when the
data set is opened, and the next nonempty record is retrieved automatically as
each GET is issued. The branch to ERROR would also be taken if the end of
the data set is reached.

156 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: Keyed-Direct Retrieval

GET

In this example, a GET macro is used to retrieve fixed-length, 100-byte
records directly by key. The key length is 15 bytes; the search argument is a
five-byte generic key, compared equal. The control blocks are generated at
assembly.

INPUT ACB

RETRVE RPL

LOOP MVC

GET

LTR
BNZ

B
ERROR

IN DS

KEYAREA DS

MACRF=(KEY,
DIR, IN)
ACB=INPUT,
AREA=IN,
AREALEN=4,
OPTCD=(KEY,DIR,
SYN,NUP,KEQ,
GEN,OPTCD=(KEY,
DIR,SYN,NUP,
KEQ, GEN , LOC) ,
ARG=KEYAREA,
KEYLEN=5

KEYAREA,source

RPL=RETRVE

15, 15
ERROR

LOOP

CL4

CL5

You specify all parameters for the
request in the RPL macro.

Search argument for retrieval, moved
in from a table or a transaction record.

This GET or identical GETs can be
issued with no change in the RPL: just
specify each new search argument in
the field KEY AREA.

Process the record.

Request wasn't accepted or failed.

VSAM puts here the address of the
record within the I/O buffer.

You specify the search argument here.

The generic key specifies a class of records. For example, if you search on the
first third of employee number, VSAM positions at and retrieves the first of
presumably several records that start with the specified characters. To retrieve
all of the records in that class, either switch to sequential access or to a
full-key search with greater-than-or-equal comparison.

Macro Instruction Formats and Examples 157

Example: Addressed-Direct Retrieval

In this example, a GET macro is used to retrieve fixed-length, 20-byte
records. The records are to be moved to a work area.

BLOCK

LOOP

CHECKO

ERROR

IN

DDNAME=INPUT,
MACRF=(ADR,DIR,
IN)

GENCB BLK=RPL,
COPIES=1,
ACB=BLOCK,
OPTCD=(ADR,DIR,
SYN,NUP,MVE),

LTR 15,15

BNZ CHECKO

LR 2,1

MVC SRCHADR,sQurce

GET RPL=(2)

LTR 15, 15

BNZ ERROR

B LOOP

DS CL20

SRCHADR DS CL4

Access-method control block generated
at assembly.

ARG=SRCHADR,AREA=IN,
AREALEN=20
Request parameter list generated at
execution.

Address of the list.

Search argument for retrieval,
calculated or moved in from a table or
a transaction record.

Process the record.

Generation failed.

Request wasn't accepted or failed.

VSAM puts a record here for each GET
request.

You specify the RBA search argument
here for each request.

The RBA provided for a search argument must match the RBA of a record.
Keyed insertion and deletion of records in a key-sequenced data set will
probably cause the RBAs of some records to change. Therefore, if you
process a key-sequenced data set by addressed-direct access (or by
addressed-sequential access using POINT), you need to keep track of
changes. You can use the JRNAD exit for this purpose. See "EXLST Macro
(Generate an Exit List)" in this chapter.

158 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

GET

Example: Switch from Direct to Sequential Retrieval

In this example, GET macros are used to retrieve fixed-iength, 100-byte
records. The retrieval is via an alternate index path which is defined with the
nonunique key option. Every time a nonunique key is retrieved, the program
switches to sequential processing to retrieve the other records with the same
key. The control blocks were generated at assembly, but the MODCB macro
is used to modify the request parameter list to permit switching from
keyed-direct to keyed-sequential retrieval. For the direct request preceding
sequential requests, the search argument is an eight-byte, generic key,
compared equal. Positioning is requested for direct requests.

INPUT

RETRVE

LOOP

LOOP 1

SEQ

SEQGET

ACB

RPL

MVC

GET

LTR

BNZ

SHOWCB

LTR

BNZ

CLI

BE

B

MODCB

LTR

BNZ

GET

LTR

BNZ

MACRF=(KEY,DIR,
SEQ, IN)

ACB=INPUT,
AREA=IN,
AREALEN=100,
OPTCD=(KEY,DIR,
SYN,NSP,KEQ,
GEN,MVE) ,
ARG=KEYAREA,
KEYLEN=8

KEYAREA,source

RPL=RETRVE

15, 15

ERROR

RPL=RETRVE,
AREA=FDBAREA,
FIELDS=FDBK

R15,R15

ERROR

ERRCD,8

SEQ

LOOP

RPL=RETRVE,
OPTCD=SEQ

15, 15

CIlECKO

RPL=RETRVE

15, 15

ERROR

SHOWCB RPL=RETRVE,
AREA=FDBAREA,
FIELDS=FDBK

LTR R15,R15

Both direct and sequential access
specified.

NSP specifies that VSAM is to
remember its position.

Search argument for direct retrieval,
moved in from a table or a transaction
record.

Extract feedback information

Does a duplicate key follow

Yes; retrieve duplicates sequentially

No; retrieve next record in direct mode

Alter request parameter list for
sequential access.

Do sequential retrieval

Test for error

Extract feedback information

Macro Instruction Formats and Examples 159

BNZ ERROR

CLI ERRCD,8 Does a duplicate key follow

BE SEQdET Yes; retrieve sequentially

DIR MODCB RPL=RETRVE, Alter request parameter list for direct
OPTCD=DIR access

LTR 15, 15
BNZ CHECKO

B -LOOP Prepare new search argument.

ERROR Request wasn't accepted or failed

CHECKO Modification failed.

IN DS CL100 VSAM puts retrieved records here.

KEY AREA DS CL8 Specify the generic key for a direct
request here.

FDBAREA DS OF Feedback area for SHOWCB

DS 1C Reserved

TYPECD DS 1C Error type code

CMPCD DS 1C Component Code

ERRCD DS 1C Error code

Positioning is associated with a request parameter list; the MODCB macro is
used to modify a single request parameter list that alternately defines requests
for both types of access rather than use a different request parameter list for
each type.

With direct retrieval, VSAM doesn't remember its position for subsequent
sequential retrieval unless you explicitly request it (OPTCD=NSP or UPD).
After a direct GET for update, VSAM is positioned for a subsequent PUT,
ERASE, or sequential GET. If you modify OPTCD=(DIR,NUP) to
OPTCD=SEQ, you must issue POINT to get VSAM positioned for sequential
retrieval, as NUP indicates that no positioning is desired with a direct GET.

If you have chained many request parameter lists together, one position is
remembered for the whole chain. For example, if you issue a GET that gives
the address of the first request parameter list in the chain, the position of
VSAM when the GET request is complete is at the record following the
record defined by the last request parameter list in the chain. Therefore,
modifying OPTCD=(DIR,NSP) in each request parameter list in a chain to
OPTCD=SEQ implies continuing with sequential access relative to the last of
the direct request parameter lists.

160 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

MODCB-ACB

l\JfOOrR M • .:u~rn (Mtvlifv ~n &rrp..:..:-Mpthotl rontrol "''''''&''-'.&.1'",-"",&1 .Ly " , ", ... ___ _____ .a. .. ______________ _

Block)

The MODCB macro can be used to modify the contents of an access-method
control block. By using MODCB, you don't have to know the format of the
control block.

MODCB allows you to tailor access-method control blocks generated with
the GENCB macro for specific uses.

The operands of the MODCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" for information on the return codes used to indicate whether the
MODCB request was successful.

The format of the MODCB macro used to modify an access-method control
block is:

[label] MODCB ACB=address
[,BSTRNO= number]
[,BUFND= number]
[,BUFNI= number]
[,BUFSP= number]
[,CATALOG = YES I NO]
[,CRA=SCRA I UCRA]
[,DDNAME=ddname]
[,EXLST == address]
[,MACRF=([ADR][,CNV][,KEY]

[,CFX I NFX]
[,DDN I DSN]
[,DFRI NDF]
[,DIR][,SEQ][,SKP]
[,ICI I NCI]
[,IN][,OUT]
[,NIS I SIS]
[,NRM I AIX]
[,NRS I RST]
[,NSR I LSR I GSR]
[,NUB I UBF])]

[,MARE..\.= address]
[,MLEN = number]
[,PASSWD= address]
[,STRNO= number]

Macro Instruction Formats and Examples 161

where:

label
is one to eight characters that provides a symbolic address for the MODCB
macro.

ACB=address
specifies the address of the access-method control block to be modified.
The data set identified by the access-method control block must not be
opened. A request to modify the access-method control block of an open
data set will fail.

The remaining operands represent operands of the ACB macro that can be
modified. The value specified replaces the value, if any, presently in the
access-method control block. There are no defaults. See "ACB Macro
(Generate an Access-Method Control Block)" earlier in this chapter for an
explanation of these operands.

If MODCB is used to modify a MACRF option, other options are unaffected,
except when they are inconsistent. For example, if you specify
MACRF=ADR in the MODCB and MACRF=KEY is already indicated in
the control block, both ADR and KEY will now be indicated. But if you
specify MACRF=UBF in the MODCB and NUB is indicated, only UBF will
now be indicated.

If MODCB is used to change the address of an ACB, you must first issue an
ENDREQ macro.

Example: MODCB Macro (Modify an Access-Method Control Block)

In this example, a MODCB macro is used to modify the name of the exit list
in an access-method control block.

MODCB ACB=BLOCK,
EXLST=EGRESS

162 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

BLOCK was generated at assembly.

)

MODCB-EXLST

MODCB Macro (Modify an Exit List)

The MODCB macro can be used to modify an exit list.

The operands of the MODCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" earlier in this chapter for information on the return codes used to
indicate whether the MODCB request was successful.

The format of the MODCB macro used to modify an exit list is:

[label] MODCB EXLST = address
[,EODAD=([address][,A I N][,L])]
[,JRNAD = ([address][,A I N][,L])]
[,LERAD=([address][,A I N][,L»]
[,SYNAD = ([address][,A I N][,L])]

where:

label
is one to eight characters that provides a symbolic address for the MODCB
macro.

EXLST =address
specifies the address of the exit list to be modified. You can modify an exit
list at any time-that is, before or after opening the data set(s) for which
the list indicates exit routines. You cannot, however, add an entry to the
exit list if it will change the exit list's length; the exit list must already be
large enough to contain the new exit address. The order in which addresses
are stored in the EXLST control block is: EODAD, SYNAD, LERAD,
JRNAD, and UP AD. For example, if you generate an exit list with only the
LERAD exit, you can add entries for EODAD and SYNAD later; you
cannot add the JRNAD exit address because doing so would increase the
size of the EXLST control block. The MODCB macro does not support
the UP AD user exit.

The remaining operands represent operands of the EXLST macro that can be
modified or added to an exit list. See "EXLST Macro (Generate an Exit
List)" earlier in this chapter for an explanation of these operands.

Macro Instruction Formats and Examples 163

Example: MODeD Macro (Modify an Exit List)

In this example, a MODCB macro is used to activate an exit in an exit list.

EOD

MODCB EXLST=(*,
EXLSTADR) ,
EODAD=(EOD,L,A)

DC

EXLSTADR OS

C'ENDUP'

F

The MODCB macro's operands are:

Indirect notation is used to specify the
address of the exit list, which was
generated at execution.

When the exit list was generated, its
address was saved here.

• EXLST, which specifies that the address of the exit list to be modified is
located at EXLST ADR.

• EODAD, which specifies that the entry for the end-of -data routine is to be
marked active in the exit list whose address resides at EXLST ADR. The
name of the end-of-data routine, ENDUP, is located at EOD.

164 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

MODCB-RPL

MODCB Macro (Modify a Request Parameter List)

The MODCB macro can be used to modify a request parameter list.

The operands of the MODCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODeB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" for information on the return codes used to indicate whether the
M9DCB request was successful. Typical modifications to a request parameter
list are to change the indication of length of a record (RECLEN) when you're
processing a data set with variable-length records and to change the type of
request (OPTCD), such as from direct to sequential access or from full-key
search argument to generic-key search argument.

The format of a MODCB macro used to modify a request parameter list is:

[label] MODCB RPL= address
[,ACB= address]
[,AREA = address]
[,AREALEN = number]
[,ARG= address]
[,ECB= address]
[,KEYLEN= number]
[,MSGAREA= address]
[,MSGLEN= number]
[,NXTRPL= address]
[,OPTCD=([ADR I CNV I KEY]

[,DIR I SEQ I SKP]
[,ARD I LRD]
[,FWD I BWD]
[,ASY I SYN]
[,NSP I NUP I UPD]
[,KEQ I KGE]
[,FKS I GEN]
[,LOC I MVE])]

[,RECLEN = number]
[, TRANSID= number]

where:

label
is one to eight characters that provides a symbolic address for the MODCB
macro.

RPL=address
specifies the address of the request parameter list to be modified. You may
not modify an active request parameter list; that is, one that defines a
request that has been issued but not completed. To modify such a request
parameter list, you must first issue a CHECK or an ENDREQ macro.

Macro Instruction Formats and Examples 165

The remaining operands represent operands of the RPL macro that can be
modified. The value specified replaces the value, if any, presently in the
request parameter list. There are no defaults. See "GENCB Macro (Generate
a Request Parameter List)" earlier in this chapter for an explanation of these
operands.

If MODCB is used to modify an OPTCD option within a group of options,
the current option for that group is changed, because only one option in a
group is effective at a time. Only the OPTCD option specified is changed; all
other OPTCD options remain unchanged.

Example: MODCD Macro (Modify a Request Parameter List)

In this example, a MODCB macro is used to modify the record-length field in
a request parameter list.

L 3,length

MODCB RPL=(2) ,

RECLEN=(3)

The MODCB macro's operands are:

Load the new record length.

Register 2 contains the address of the
request parameter list. Register 3
contains the record length.

• RPL, which specifies that register 2 contains the address of the request
parameter list to be modified.

• RECLEN, which specifies that the record-length field is to be modified.
The contents of register 3 will replace any current value in the RECLEN
field.

166 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide .

OPEN

OPEN Macro (Connect Program and Data)

Before your program can issue requests for access to a data set, it must open
the data set for processing. Opening a data set causes VSAM to have the
volume(s) on which it is stored mounted if necessary and to verify that the
data set matches the description implied by the ACB or GENCB macro (for
example, MACRF=KEY implies that the data set is a key-sequenced data
set).

OPEN causes VSAM to construct control blocks (other than those you
caused to be built by the ACB, EXLST, and GENCB macros) that it needs to
process your requests for access to the data set. It determines what processing
options are to be used by merging the information in the DD statement and
the catalog definition of the data set with the information in the
access-method control block and the exit list. The order of precedence is:

1. The DD-statement AMP parameters

2. The ACB, EXLST, or GENCB operands

3. The catalog entry for the data set

For example, if information about buffer space is specified both in the DD
statement and in the ACB or GENCB macro, the values in the DD statement
override those in the macro. Catalog information acts as a default when
buffer space specified in the DD statement or in the macro is less than the
minimum specified when the data set was defined or when buffer space is
specified in neither the DD statement nor the macro. By examining the DD
statement indicated by the ACB macro and the volume information in the
catalog, VSAM calls for the necessary volumes to be mounted. If you are
opening a key-sequenced data set, an alternate index, or a path. Open checks
for consistency of updates of the prime index and data components. If a data
set and its index have been updated separately. VSAM issues a warning
message to indicate a time stamp discrepancy.

VSAM also checks the password that your program specified against the
appropriate password (if any) in the catalog definition of the data set. The
password required depends on the kind of access specified in the
access-method control block (for example, access for retrieval or for update).
as follows:

• Full access allows you to perform all operations (retrieving, updating,
inserting, and deleting) on a data set and any index or catalog record
associated with it. The master password allows you to delete or alter the
catalog entry for the data set or catalog it protects.

• Control-interval access requires the control password. The control
password allows you to use control-interval access and to retrieve, update,
insert, or delete records in the data set it protects. See OSjVS Virtual
Storage Access Method (VSAM) Options for Advanced Applications, for
information on the use of control-interval access.

• Update access requires the update password. The update password allows
you to retrieve, update, insert, or delete records in the data set it protects.

Macro Instruction Formats and Examples 167

• Read access requires the read password. The read password allows you to
examine records in the data set it protects; the read password does not
allow you to add, change, or delete records.

A password of one level authorizes you to do everything that a password of a
lower level authorizes you to do. Password protection is further described in
the appropriate Access Method Services publication.

In addition to passwords, you can have the access control measures provided
by the Resource Access Control Facility (RACF), an IBM program product
for use with MVS systems only. When RACF protection and password
protection are both applied to a data set, password protection is bypassed,
and use is authorized solely through the RACF checking system. RACF is
described in OS/VS2 MVS Resource Access Control Facility (RACF)
General Information Manual.

The form,at of the OPEN macro is:

I [label] I OPEN I (address ,[(options)], ...)

where:

label
is one to eight characters that provides a symbolic address for the OPEN
macro.

address
specifies the address of the access-method control block or DCB for the
data set(s) to be opened. You may specify the address in register notation
(using a register from 2 through 12-in parentheses) or specify it with an
expression that generates a valid relocatable A-type address constant. If
you use register notation to open only one data set, you must enclose the
expression identifying the register in two sets of parentheses: for example,
OPEN «2».

options
are options parameters for use only in opening non VSAM data sets. If any
options are specified with the address of an access-method control block,
VSAM ignores them.

Because the OPEN operands are positional, include a comma for options
(even if you don't specify options) before a subsequent operand.

168 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: OPEN Macro

)

OPEN

In this example, an OPEN macro is used to open two data sets. The
access-method control block for one data set was generated at execution; the
other was generated at assembly.

GENCB

LTR

BNZ

LR

OPEN

BLOCK ACB

BLK=ACB,
DDNAME=DATA

R15,R15

ERROR

2, 1

(BLOCK, , (2))

An access-method control block.

Address of the control block.

A label is used for the access-method
control block generated by ACB;
register notation is used for the one
generated by GENCB. The two
commas indicate the omission of
options.

Another access-method control block.

Macro Instruction Formats and Examples t 69

PO TNT M ~I'ro (Poc;;:ition r or A I'l'pc;;:c;;:) ... """'-.. - ,- --- ---- - -- .. ------,

The POINT macro is used to position for access.

The format of the POINT macro is:

I [label] I POINT I RPL= address

where:

label

POINT

is one to eight characters that provides a symbolic address for the POINT
macro.

RPL= address
specifies the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Macro Instruction Formats and Exainples 171

Example: Position with POINT

In this example, the POINT macro is used to position at a record identified by
a full key (five-byte) search argument, compared equal.

BLOCK ACB

POSITION RPL

LOOP MVC

POINT

LTR

BNZ

LOOP 1 GET

LTR

BNZ

DDNAME=IO

ACB=BLOCK,
AREA=WORK,
AREALEN=50,
ARG=SRCHKEY,
OPTCD=(KEY,SEQ,
SYN,KEQ,FKS)

SRCHKEY, source

RPL=POSITION

15, '15

ERROR

RPL=POSITION

15, 15

ERROR

Process the record. Decide whether to skip to
another position (forward or backward).

ERROR

B

B

SRCHKEY DS

WORK DS

LOOP

LOOP 1

CL50

CL50

Default MACRF options sufficient.

ARG operand and KEQ and FKS
OPTCD options define the POINT
request.

Search argument for positioning,
moved in from a table or a transaction
record.

Yes, skip.

No, continue in consecutive sequence.

Request wasn't accepted or failed.

VSAM puts a record here for each GET
request.

VSAM puts a record here for each GET
request.

No access is gained to a record with POINT. POINT causes VSAM to be
positioned ahead or back to the specified record for a subsequent sequential
GET request, which retrieves the record. If, after positioning, you issue a
direct request by way of the same request parameter list, VSAM doesn't
remember the position established by the POINT. VSAM would then either
be positioned somewhere else or not positioned at all, depending on whether
OPTCD=NSP or UPD was specified or OPTCD=NUP.

Positioning by address is identical to positioning by key, except that the
search argument is an RBA, which must be matched equal to the RBA of a
record in the data set.

When a POINT is followed by a VSAM GET/PUT request, both the POINT
and the subsequent request must be in the same processing mode. For
example, a POINT with OPTCD=(KEY,SEQ,FWD) must be followed by
GET /PUT with OPTCD(KEY,SEQ,FWD); otherwise, the GET/PUT
request will be rejected.

172 OS/VS Virtual Storage Access Method (YSAM) Programmer's Guide

PUT

The PUT macro is used to store a record.

The format of the PUT macro is:

I [label] I PUT I RPL= address

where:

label
is one to eight characters that provides a symbolic address for the PUT
macro.

RPL= address
specifies the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Note: If the PUT macro is being used to load records into an empty data set,
the STRNO value in the access-method control block must be 1, and RPL
OPTCD=DIR must not be specified. However, for an empty RRDS, DIR is
allowed.

Macro Instruction Formats and Examples 173

Example: Keyed-Sequential Insertion

In this example, a PUT macro is used to perform keyed-sequential insertion.
Variable-length records with a key length of 15 bytes are to be moved from a
work area. Some records will be inserted between existing records; other
records will be added at the end of the data set.

BLOCK ACB

LIST RPL

LOOP L

MODCB

LTR

BNZ

PUT

LTR

BNZ

B

CHECKO

ERROR

BUILDRCD DS

DDNAME=OUTPUT,
MACRF=(KEY,SEQ,
OUT)

ACB=BLOCK,
AREA=BUILDRCD,
AREALEN=250,
OPTCD=(KEY,SEQ,
SYN,NUP,MVE)

2,sQurce

2 .

. RPL=LIST,
RECLEN=(2)

15, 15

CHECKO

RPL=LIST

15, 15

ERROR

LOOP

CL250

Put length of record to be inserted into
register

Indicate record length in request
parameter list.

Modification failed.

Request wasn't accepted or failed.

Work area for building records.

The request parameter list, LIST, is associated with the access-method control
block, BLOCK. The length of each record to be inserted is put into register 2,
which is subsequently used by MODCB to change the record length in the
request parameter list. The record length is, therefore, correctly indicated in
the request parameter list before the PUT macro is issued. The execution of
the PUT macro causes VSAM to skip ahead (never back) to the next record.

174 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

~

)

PUT

Example: Record RBAs When Loading

In this example, a PUT macro is used to record the RBAs of records as they
are loaded into a key-sequenced data set. The RBAs are recorded in a table
with 20-byte entries (4 bytes for RBA, 15 bytes for associated key, and 1
byte of padding so the next entry begins on a full word boundary).

LA 3,RBATABLE

LOOP L 2,sQurce

MODCB RPL=LIST,
RECLEN=(2)

LTR 15, 15
BNZ CHECKO
PUT RPL=LIST
LTR 15, 15
BNZ ERROR
SHOWCB AREA=(3),

FIELDS=RBA,
LENGTH=4,
RPL=LIST

LTR 15, .1 5

BNZ CHECKO
MVC 4(15,3),

keyfield
LA 3, 20(3)
B LOOP

ERROR
CHECKO

DSECT

RBATABLE DS OF

RBA
KEY

DS

DS
DS

CL4
CL15
CLl

Address of the beginning of the table.

Put length of record to be inserted into
register 2.

Indicate record length in request
parameter list.

Each SHOWCB puts a record's RBA
into the table.

Put the record's key field in the table.

Point to the next entry_

Request wasn't accepted or failed.

Modification or display failed.

Get enough virtual storage for as many
table entries as there are records in the
data set.

Padding to keep each RBA entry on a
fullword boundary: SHOWCB's display
area must be on a fullword boundary.

Macro Instruction Formats and Examples 175

The need to process a key-sequenced data set by address should be unusual,
but by recording the RBA of each record in a key-sequenced data set, you
have search arguments for possible processing of the data set by
addressed-direct retrieval and by addressed-sequential retrieval using the
POINT macro. (You don't need to know RBAs to process a key-sequenced
data set by simple addressed-sequential retrieval, since you go from the
beginning without any skips.)

You can display the RBA of a record after you issue a GET or a POINT, as
well as after you issue a PUT.

176 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

~

Example: Load a Relative Record Data Set (Skip-Sequential and Direct
Processing)

PUT

In this example, a PUT macro is used to store twenty 100-byte records in
slots 5, 10, 15, ... ,100 of the data set. MODCB is used to switch to direct
processing, and a PUT is used to store records in slots 26 and 51 of the data
set.

OUTACB ACB

GENCB

LTR

BNZ

LR

LR

LA

ST

LA

LOOP

PUT

LTR

BNZ

L

AR

ST

BCT

MODCB

LTR

BNZ

LA

ST

PUT

LTR

BNZ

LA

ST

PUT

LTR

BNZ

B

MACRF=(SKP,OUT,
DIR,KEY)

BLK=RPL,
ACB=OUTACB,
AREA=WORK,
AREALEN=100,
ARG=RCDNO,
OPTCD=(KEY,SKP)

15, 15'

GENFAIL

5,0

6, 1

7,5

7,RCDNO

10,20

RPL=(6)

15, 15

PUTERR

1,RCDNO

1 , 7

1,RCDNO

10,LOOP

RPL=(6),
OPTCD=(DIR,KEY)

15, 15

GENFAIL

7,51

7,RCDNO

RPL=(6)

15, 15

PUT ERR

7,26

7,RCDNO

RPL=(6)

15, 15

PUTERR

RETURN

Generate a request parameter list at
execution'1ime.

Save length of RPL

Save address of RPL

Initialize increment value

Initialize argument to slot 5

Initialize loop counter

Move new record into work

Store record

Request was not accepted or it failed.

Increment argument by 5

Switch to direct processing to store
records in slots 51 and 26

Initialize argument to slot 51

Move new record into WORK

Store record in slot 51

Request was not accepted or it failed.

Initialize argument to slot 26

Move new record into WORK

Store record in slot 26

Request was not accepted or it failed.

Macro Instruction Formats and Examples 177

GENFAIL

PUTERR

RETURN

WORK

RCDNO

DS

DS

CL100

CL4

Generation or modification failed.

PUT request was not accepted or it
failed.

Terminate program

lOO-byte work area that contains record
to be stored by PUT macro

4-byte relative record number

Both skip-sequential and direct processing can be used to create a relative
record data set. The ACB is opened for output. The four-byte search
argument (RCDNO) indicates the slot number where the record is to be
stored.

Example: Keyed-Sequential Insertion (Relative Record Data Set)

In this example, a PUT macro is used to insert twenty 100-byte records into
empty slots of a previously loaded relative record data set. If the slot is empty
when the PUT is issued, the record is stored and the slot number (returned in
the argument field) is stored in a table. If the slot is not empty when the PUT
is issued, a duplicate record error irn:lication is returned. When a duplicate
record is indicated, the PUT is reissued until the record is successfully stored
in an empty slot in the data set.

OUTACB

WRITERCD

ACB

GENCB

LTR

BNZ

LR

LA

LA

PUT

LTR

BZ

LA

CLR

BNE

MACRF=(KEY,SEQ,
OUT)

BLK=RPL,
ACB=OUTACB,
AREA=WORK,
AREALEN=100,
ARG=RCDNO,
OPTCD=(KEY,SEQ)

15, 15

GENERR

6, 1

4,RRNTABLE+80

3,RRNTABLE

RPL=(6)

15, 15

STRCDNO

10,8

10, 15

PUT ERR

Generate a request parameter list

Save the address of the RPL

Initialize address of end of table

Initialize index to relative record
number table

Move record into work area.

Branch, if'PUT is successful

Test for logical error

TESTCB RPL=(6) , FDBK=8, Test for duplicate record
ERET=TESTERR

BE WRITERCD

B PUTERR

Branch, if duplicate record, and try to
store record in next slot

178 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

S'1'RCDNO

MVC

LA

CLR

BE

B

GENERR

TESTERR

PUTERR

RETURN

RCONO OS

RRNTABLE DS

WORK OS

o (4 , 3) , RCONO

3, 4(3)

3,4

RETURN

WRITERCO

CL4

20F

100

Store relative record number in
RRNTABLE

Increment to next table entry

If table full, return to caller

Write next record

Error routine for GENeB macro

Error routine for TESTeB macro

Error routine for PUT macro

PUT

Return to caller or terminate program

4-byte relative record number
(argument) field

Relative record number table

tOO-byte work area that contains record
to be stored by PUT macro

Each record is stored in the next available slot in the data set. When a record
is successfully stored, its relative record number is recorded in a table.

Example: Skip-Sequential Insertion

In this example, one PUT macro is used to insert mUltiple fixed-length,
100-byte records. Records are to be moved asynchronously from a work area.

OUTPUT ACB MACRF=(KEY,SKP,
OUT)

GENCB BLK=RPL, Generate 5 request parameter lists at
COPIES=5, execution.
ACB=OUTPUT,
AREALEN=100,
OPTCD=(KEY,SKP,
ASY , NUP , MVE) ,
RECLEN=100

LTR 15, 15

BNZ CHECKO

Calculate length of each list and use register
notation with the MODCB macro te complete
each list.

MOOCB RPL=(2) ,
AREA=(3),
NXTRPL=(4)

LTR 15, 15

BNZ CHECKO

Increase the value in each register and repeat the
MODeB until all five request parameter lists
have been completed. The last time, register 4
must be set to O.

LOOP Restore address of first list in register 2.

Macro Instruction Formats and Examples t 79

PUT RPL=(2)

LTR 15,15

BNZ NOTACCEP

CHECK RPL=(2)

LTR 15, 15

BNZ ERROR

B LOOP

CHECKO

NOTACCEP

ERROR

WORK DS CL500

Build 5 records in WORK.

Register 2 points to the first request
parameter list in the chain. The five
records in WORK are stored with this
one PUT request.

Generation or modification failed.

Display the feedback field in each
request parameter list to find out which
one had an error.

Contains five lOO-byte work areas.

You give no search argument for storage: VSAM knows the position of the
key field in each record and extracts the key from it. Skip sequential insertion
differs from keyed-direct insertion in the sequence in which records may be
inserted (ascending nonconsecutive sequence versus random sequence) and in
performance.

With skip-sequential insertion, if you insert two or more records into a control
interval, VSAM doesn't write the contents of the buffer to direct-access
storage until you have inserted all of the records. With direct insertion,
VSAM writes the contents of the buffer after you have inserted each record.

180 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: Keyed-Direct Insertion

PUT

In this example, a PUT macro is used to move fixed-length, IOO-byte records
from a work area.

OUTPUT ACB

DIRECT RPL

LOOP PUT

MACRF=(KEY,DIR,
OUT)

ACB=OUTPUT,
AREA=WORK,
AREALEN=100,
OPTCD=(KEY,DIR,
ASY,NUP,MVE),
RECLEN=100

RPL=DIRECT

LTR 15,15

NOTACCEP

ERROR

WORK

BNZ NOTACCEP

CHECK RPL=DIRECT

LTR

BNZ

B

DS

15, 15

ERROR

LOOP

CL100

The macros are described, as follows:

Request wasn't accepted.

Request failed.

Work area.

• ACB specifies that the data set, OUTPUT, into which records are to be
inserted, is opened for keyed-direct, ouput processing .

• RPL specifies that the record to be inserted into the OUTPUT data set
resides in a IOO-byte area, WORK.

VSAM extracts the key from the key field of each record found at WORK.
U sing keyed-direct access is very similar to using skip sequential access.

Macro Instruction Formats and Examples 18 t

Example: Addressed-Sequential Addition

In this example, a PUT macro is used to add variable-length records to a data
set. The data set is assumed to be an entry-sequenced data set because
records cannot be inserted into or added to a key-sequenced data set with
addressed access.

BLOCK ACB

LIST RPL

LOOP

L

MODCB

LTR

BNZ

PUT

LTR

BNZ

B

CHECKO

ERROR

NEWRCD DS

MACRF=(ADR,SEQ,
OUT)

ACB=BLOCK,
AREA=NEWRCD,
AREALEN=100,
OPTCD=(ADR,SEQ,
SYN,MVE)

3,source

RPL=LIST,
RECLEN=(3)

15,15

CHECKO

RPL=LIST

15,15

ERROR

LOOP

CL100

Build the record.

Put the length of the record into
register 3.

Indicate length of new record.

Modification failed.

Request wasn't accepted or failed.

Build record in this work area.

Each record is stored in the next position after the last record in the data set.
You do 'not have to specify an RBA or do any explicit positioning (with the
POINT macro). Addressed addition of records is always identical to loading a
data set: when additional space is required, VSAM extends the data set.

The only difference between addressed-sequential and addressed-direct
addition is when the buffers are written to external storage. The buffer is
written to external storage only when it is full for sequential addition; it is
written after each record for direct addition. You cannot use direct storage to
load records into a data set for the first time; you must use sequential storage.

182 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

PUT

Example: Keyed-Sequential Update

In this example, GET and PUT macros are used to retrieve and update
fixed-length, 50-byte records. Records are updated synchronously in a work
area. This example requires the use of a work area because you cannot update
a record in the I/O buffer.

UPDATA ACB

LIST RPL

LOOP GET

MACRF=(KEY,SEQ,
OUT)

ACB=UPDATA,
AREA=WORK,
AREALEN=50,
OPTCD=(KEY,SEQ,
SYN,UPD,MVE)

RPL=LIST

LTR 15,15

BNZ ERROR

Decide whether to update the record.

B

Do update the record.

ERROR

WORK

PUT

LTR

BNZ

B

DS

LOOP

RPL=LIST

15, 15

ERROR

LOOP

CL50

UPD indicates the record may be
stored back (or deleted).

Don't update it; retrieve another.

Store the record back.

Request wasn't accepted or failed.

VSAM puts the retrieved record here.

A GET for update (OPTCD=UPD) must precede a PUT for update. Besides
retrieving the record to be updated, GET positions VSAM at the record
retrieved, in anticipation of the succeeding update (or deletion). It is not
necessary for you to store back (or delete) the record that you retrieved for
update. VSAM's position at the record previously retrieved allows you to
issue another GET to retrieve the following record. You cannot then,
however, store back the previous record: the position for update has been
forgotten because of the following GET.

Macro Instruction Formats and Examples 183

Example: Keyed-Direct Update

In this example, GET and PUT macros are used to retrieve and update
records. The MODCB macro is used to modify record length (RECLEN) in
the request parameter list when an update causes the record length to change.
The maximum record length is 120 bytes. The search argument is a full key
(five bytes), compared equal.

INPUT ACB

UPDTE RPL

MACRF=(KEY,DIR,
OUT)

ACB=INPUT,
AREA=IN,
AREALEN=120,
OPTCD=(KEY,DIR,
SYN,UPD,KEQ,
FKS,MVE) ,
ARG=KEYAREA,
KEYLEN=5

Process input and get search argument into
KEY AREA; proceed to retrieve a record.

LOOP GET RPL=UPDTE

LTR 15,15

BNZ ERROR

SHOWCB RPL=UPDTE,
AREA=RLNGTH,
FIELDS=RECLEN,
LENGTH=4

LTR 15, 15

BNZ CHECKO

Update the record. Does the update change the
record's length?

5.

list.

STORE

ERROR

CHECKO

IN

KEYAREA

RLNGTH

B

L

MODCB

LTR

BNZ

PUT

LTR

BNZ

B

DS

DS

DS

STORE

5,length

RPL=UPDTE,
RECLEN=(5)

15, 15

CHECKO

RPL=UPDTE

15, 15

ERROR

LOOP

CL120

CL5

F

UPD indicates the record may be
stored back (or deleted).

Display the length of the record.

No, length not changed.

Yes, load new length into register

Modify length indication in the request
parameter

Request wasn't accepted or failed.

Display or modification failed.

Work area for retrieving, updating, and
storing a record.

Search argument for retrieving a
record.

Area for displaying the length of a
retrieved record.

184 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

PUT

You cannot update records in the I/O buffer. A direct GET for update
positions VSAM at the record retrieved, in anticipation of storing back (or
deleting) the record. This positioning also allows you to switch to sequential
access to retrieve the next record.

You don't have to store back a record that you retrieve for update, but if you
don't store it back before another retrieval, it's too late to do so.

Example: Addressed-Sequential Update

In this example, GET and PUT macros are used to retrieve and update
records in an entry-sequenced data set. The records are variable in length,
maximum 200 bytes. The lengths of the records are not changed by update
(the length of a record can never be changed by addressed access).

ENTRY ACB MACRF=(ADR, SEQ,
OUT)

ADRUPD RPL ACB=ENTRY, UPD indicates update (or deletion).

·I..,OOP

ERROR

CHECKO

WORK

RLNGTH

AREA=WORK,
AREALEN=200,
OPTCD=(ADR,SEQ,
SYN,UPD,MVE)

GET RPL=ADRUPD

LTR 15,15

BNZ ERROR

SHOWCB RPL=ADRUPD,

LTR

BNZ

PUT

LTR

BNZ

B

DS

DS

AREA=RLNGTH,
FIELDS=RECLEN,
LENGTH=4

15, 15

CHECKO

RPL=ADRUPD

15, 15

ERROR

LOOP

CL200

F

Find out how long the record is.

Request wasn't accepted or failed.

Display failed.

Record-processing work area.

Display area for length of records.

Macro Instruction Formats and Examples 185

Example: Mark Records Inactive

If you have inactive records in your entry-sequenced data set, you may reuse
the space they occupy by retrieving the records for update and restoring a
new record in their place. .

With a key-sequenced data set, it is not possible to change the length of
records by addressed update because the index is not used and VSAM could
not split a control interval if required because of changing record length.

Addressed-direct update varies from sequential update in the specification of
an RBA for a search argument.

In this example, GET and PUT macros are used to retrieve a record from an
entry-sequenced data set and to mark it as inactive. The record is marked as
inactive by putting a hexadecimal 'FF' in first byte of a record. The inactive
record will not be sequentially retrieved except for update.

ENTRYSEQ ACB MACRF=(ADR,DIR,
OUT)

LIST RPL ACB=ENTRYSEQ, UPD indicates update: storing the
AREA=RECORD, record back marked inactive.
AREALEN=100,
OPTCD=(ADR,DIR,
SYN,UPD,MVE),
ARG=RBAAREA

LOOP GET RPL=LIST

LTR 15,15

BNZ ERROR

Decide whether you still want the data in the
record.

ERROR

RECORD

RBAAREA

B

MVI

PUT

LTR

BNZ

B

DS

DS

LOOP

RECORD,X'FF'

RPL=LIST

1.5, 15

ERROR

LOOP

CL100

F

Yes, retrieve the next record.

No, flag the record inactive.

Storing the record with an inactive
indicator is equivalent to deletion for
an entry-sequenced data set.

Request wasn't accepted or failed.

Work area for marking records.

Search argument for retrieving the
record.

Records of an entry-sequenced data set can't be deleted. If a record loses its
usefulness for your application, your program can mark it inactive by placing
a unique flag in some conventional part of the record so that when your
programs retrieve the record thereafter they can recognize and bypass it. You
can use the space occupied by an inactive record by retrieving it for update
and storing a new record in its place.

186 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

RPL

RPL Macro (Generate a Request Parameter List)

After you have connected your program to the data set, you can issue
requests for access to it. A request parameter list defines a request. Each
request macro (GET, PUT, ERASE, POINT, CHECK, and ENDREQ) gives
the address of the request parameter list that defines it. See the chapter
"Request Macros" for information on these macros.

The RPL macro can be used to generate a request parameter list when your
program is assembled. It identifies the data set to which the request is directed
by naming the ACB macro that defines the data set. The operands of the RPL
macro are optional in some cases, but required in others. It is not necessary to
omit operands that are not required for a request; they are ignored. Thus, for
example, if you switch from direct to sequential retrieval with a request
parameter list, you don't have to zero out the address of the field containing
the search argument (ARG=address). You can use the MODCB macro to
modify some of the parameters to change the type of processing. For
exampl~, you can change from direct to sequential processing or from update
to nonupdate processing.

For concurrent requests that require VSAM to keep track of more than one
position in a data set, you can use up to 255 RPL macros to specify requests
that your processing program or its subtasks can issue concurrently. The
requests can be sequential or direct or both, and they can be for records in the
same or different parts of the data set.

You need specify only the RPL parameters appropriate to a given request:

Address of the exit request parameter list in the chain: You can chain request
parameter lists together to define a series of actions for a single GET or PUT.
For example, each parameter list in the chain could contain a unique search
argument and point to a unique work area. A single GET macro would
retrieve a record for each request parameter list in the chain. A chain of
request parameter lists is processed serially as a single request (chaining
request parameter lists is not the same as processing in parallel concurrent
requests, requiring VSAM to keep track of many positions in a data set).

When using chained RPLs, the RPLs in the chain are processed serially. If an
error occurs anywhere in the chain, the RPLs following the one in error are
made available without being processed and are posted complete with a
feedback code of zero.

Processing options for a request: A request gains access to a data record or a
control interval. Access can be gained by address (RBA), key, or relative
record number. Address access can be sequential or direct; keyed access can
be sequential, skip sequential, or direct. Access can be forward (next
sequential record) or backward (previous sequential record). Access can be
for updating or not un dating. A nonupdate direct request to retrieve a record
can optionally cause VSAM to position to the following record for subsequent
sequential access. Other characteristics that can be specified are:

• A request (including a request defined by a chain of request parameter lists
is either synchronous, so that VSAM does not give control back to your
program until the request completes, or asynchronous, so that your
program can continue to process or issue other requests while the request is

Macro Instruction Formats and Examples 187

active. Your program must later use the CHECK macro to suspend its
processing until the asynchronous request completes.

• For a keyed request, you. specify either a generic key or a full key to which
the key field of the record is to be compared. A generic-key search
argument is matched for either an equal or a greater-than-or-equal
comparison to a user-defined subset of the key field; a full-key search
argument is matched for either an equal or a greater-than-or-equal
comparison to the key field.

• For retrieval, a request is either for a data record to be placed in a work
area in the user's program or for the address of the record within VSAM's
buffer to be passe~l to the user's program. For all other requests (requests
that involve updating or inserting), the work area in the user's program
contains the data record.

• For a request to directly access a control interval, you specify the RBA of
the control interval. With control-interval access, you are responsible for
maintaining the control information in the control interval. If VSAM's
buffers are used, VSAM allows control-interval and stored record
operation to be intermixed. If your program provides its own buffers,
intermixing is not allowed.

Address and size of the work area to contain a data record: You must provide a
work area large enough to contain a data record or the address of the data
record within one of VSAM's buffers.

Length of the data record being processed: For storage, the user's program
indicates the length to VSAM; for retrieval, VSAM indicates the length of the
user's program.

Length of the key: This parameter is required only for processing by generic
key. For full key access, the key length is available to VSAM.

Address of the area containing the search argument: The search argument is
either a key value or an RBA (a relative record number is considered a key
value).

Address and length of an area for error messages from VSAM: Your routine for
analyzing physical errors (your SYNAD routine) receives messages in this
area. The minimum length required for a message is 128 (X'80') bytes.

Values for RPL-macro operands can be specified as absolute numeric
expressions, character strings, codes, and expressions that generate valid
relocatable A-type address constants.

188 OS/VS. Virtual Storage Access Method (VSAM) Programmer's Guide

RPL

The format of the RPL macro is:

[label] RPL (ACB= address)
(,AM=VSAM]
[,AREA= address]
[,AREALEN = number]
[,ARG= address]
[,ECD = address]
[,KEYLEN= number]
[,MSGAREA= address.]
[,MSGLEN = number]
[,NXTRPL= address]
[,OPTCD=([ADR I CNV I KEY]

[,DIR I SEQ I SKP]
[,ARD I LRD]
[,FWD I DWD]
[,ASY I SYN]
[,NSP I NUP I UPD]
[,KEQ IKGE]
[,FKS I GEN]
[,LOC I MVE])]
["NW~ITXJ IWAITX]

[,RECLEN= numoer J
[,TRANSID= number]

where:

label
is one to eight characters that provides a symbolic address for the request
parameter list that is generated. You can use it in the request macros to
give the address of the list. You can use it in the NXTRPL operand of the
RPL macro, when you are chaining request parameter lists, to indicate the
next list.

ACD =address
specifies the address of the access-method control block that identifies the
data set to which access will be requested. If you used the ACB macro to
generate the control block, you may specify the label of that macro for the
address. If the ACB operand is not coded, you must specify the address
before issuing the request.

AM = VSAM
specifies that the access method using the control block is VSAM.

AREA=address
specifies the address of a work area to and from which VSAM moves a
data record if you request it to do so (with the RPL operand
OPTCD=MVE). If your request is to process records in the I/O buffer
(OPTCD=LOC), VSAM puts into this work area the address of a data
record within the I/O buffer.

Macro Instruction Formats and Examples 189

AREALEN =number
specifies the length, in bytes, of the work area whose address is specified
by the AREA operand. Its minimum for OPTCD=MVE is the size of a
data record (of the largest data record, for a data set with records of
variable length). For OPTCD=LOC the area should be 4 bytes to contain
the address of a data record within the I/O buffer.

ARG=address
specifies the address of a field that contains the search argument for direct
retrieval, skip-sequential retrieval, and positioning. For a relative record data
set, the ARG field must be 4 bytes long. For direct or skip-sequential
processing, this field contains your search argument, a relative record number.
For sequential processing (OPTCD=(KEY,sEQ)), the 4 bytes are required
for VSAM to return the feedback RRN. For keyed access (OPTCD=KEY),
the search argument is a full or generic key or relative record number; for
addressed access (OPTCD=ADR), it is an RBA. If you specify a generic key
(OPTCD=GEN), you must also specify in the KEYLEN operand how many
of the bytes of the full key you are using for the generic key. ARG is also
used with WRTBFR and MRKBFR. Its usage with these macros is described
in OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications.

ECB =address
specifies the address of an event control block (ECB) that you may supply.
VSAM indicates in the ECB whether a request is complete or not (using
standard OS/VS completion codes, which are described in OS/VSI
System Data Areas and OS/VS2 Data Areas). This operand is always
optional.

KEYLEN =number
specifies the length, in bytes, of the generic key (OPTCD=GEN) you are
using for a search argument (given in the field addressed by the ARG
operand). This operand is specified as a number from 1 through 255; it is
required when the search argument is a generic key. For full-key searches,
VSAM knows the key length, which is taken from the catalog definition of
the data set when you open the data set.

MSGAREA=address
specifies the address of an area that you may optionally supply for VSAM
to send you a message in case of a physical error. The format of a
physical-error message is given under "Physical Errors" in the chapter
"Request Macros."

MSGLEN =number
specifies the size, in bytes, of the message area indicated in the
MSGAREA operand. If MSGAREA is specified, MSGLEN is required.
The size of a message is 128 bytes; if you provide less than 128 bytes, no
message is returned to your program.

NXTRPL=address
specifies the address of the next request parameter list in a chain. Omit this
operand from the macro that generates the last list in the chain. When you
issue a request that is defined by a chain of request parameter lists, indicate
in the request macro the address of the first parameter list in the chain.

190 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

OPTCD=([ADR I CNV I KEY]
[,DIR I SEQ I SKP]
[,ARD I LRD]
[,FWD I BWD]
[,ASY I SYN]
[,NSP I NUP I UPD]
[,KEQ I KGE]
[,FKS I GEN]
[,NW AITX I W ArTX)]
[,LOC I MVE])

RPL

specifies the options that govern the request defined by the request
parameter list. Each group of options has a default; options are shown in
Figure 10 with defaults underlined. Only one option from each group can
be specified. Some requests do not require an option from all of the groups
to be specified. The groups that aren't required are ignored; thus, you can
use the same request parameter list for a combination of requests (GET,
PUT, POINT, for example) without zeroing out the inapplicable options
each time you go from one request to another.

RECLEN =number
specifies the length, in bytes, of a data record being stored. This parameter
is required for a PUT request.

For GET requests, VSAM puts the length of the record retrieved in this
field in the request parameter list. It will be there if you update and store
the record. .

TRANSID=number
specifies a number that relates modified buffers in a buffer pool. Used in
shared resource applications and described in OS/VS Virtual Storage
Access Method (VSAM) Options for Advanced Applications.

You can use the ECB to determine that an asynchronous request is complete
before issuing a CHECK macro. (If you issue a CHECK before a request is
complete, you give up control and must wait for completion.) You can also
test for completion with the TESTCB I/O=COMPLETE operand. TESTCB
is described later in this chapter.

Each request parameter list in a chain should have the same OPTCD options.
Having different options may cause logical errors. You can't chain request
parameter lists for updating or deleting records-only for retrieving records
or storing new records. You can't process records in the I/O buffer with
chained request parameter lists. (OPTCD=UPD and LOC are invalid for a
chained request parameter list.)

With chained request parameter lists, a POINT, a sequential or
skip-sequential GET, or a direct GET with positioning requested
(OPTCD=NSP) causes VSAM to position itself at the record following the
record identified by the last request parameter list in the chain.

Macro Instruction Formats and Examples 191

Option

ADR

CNV

KEY

DIR
SEQ

SKP

ARD
LRD

FWD
BWD

ASY

SYN

NSP

NUP

UPD

KGE

Meaning

Addressed access to a key-sequenced or an entry-sequenced data set: RBAs
are used as search arguments and sequential access is done by entry sequence
Control-interval access (this type of access is described in OS/VS Virtual
Storage Access Method (VSAM) Options for Advanced Applications)
Keyed access to a key-sequenced or relative record data set: keys or relative
record numbers are used as search arguments and sequential access is done by
key or relative record number sequence

Direct access to a key-sequenced, entry-sequenced, or relative record data set
Sequential access to a key-sequenced, entry-sequenced, or relative record data
set
Skip sequential access to a key-sequenced or a relative record data set: used
with keyed access only

User's argument determines record to be located, retrieved, or stored
Last record in the data set is to be located (POINT) or retrieved (GET direct);
requires OPTCD=BWD.

Processing to proceed in forward direction
Processing to proceed in backward direction; for keyed (KEY) or addressed
(ADR) sequential (SEQ) or direct (DIR) requests; valid for POINT, GET,
PUT, and ERASE operations; establish positioning by a POINT with
OPTCD=BWD or by a GET direct with OPTCD=(NSP, BWD). When
OPTCD=BWD is specified, options KGE and GEN are ignored; options
KEQ and FKS are assumed.

Asynchronous access; VSAM returns to the processing program after
scheduling a request so the program can do other processing while the request
is being carried out
Synchronous access; VSAM returns to the processing program after
completing a request

With OPTCD=DIR only, VSAM is to remember its position (for subsequent
sequential access); that is, the position is not to be forgotten unless an
ENDREQ macro is issued
A data record that is being retrieved will not be updated or deleted: a record
that is being stored is a new record; VSAM doesn't remember its position for
direct requests into a work area
A data record that is being retrieved may be updated or deleted; a record that
is being stored or deleted was previously retrieved with OPTCD=UPD;
VSAM remembers its position for sequential and direct GET requests

For GET with OPTCD=(KEY,DIR) or (KEY,SKP) and for POINT with
OPTCD=KEY, the key (full or generic) that you provide for a search
argument must equal the key or relative record number of a record. For an
RRDS, KEQ is assumed except for POINT.
For the same cases as KEQ, if the key (full or generic) that you provide for a
search argument doesn't equal that of a record, the request applies to the
record that has the next higher key For a relative record data set and POINT,
KGE positions to the specified relative record number whether the slot is
empty or not. If the relative record number is greater than the highest existing
record, an EOD is returned. A subsequent PUT will insert the record at this
position.

Figure 10 (Part 1 of 2) OPTCD Options

192 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

FKS
GEN

NWAITX
WAITX

RPL

Meaning

A full key is provided as a search argument
A generic key is provided as a search argument; give the length in the
KEY LEN operand

Never take the user's UP AD exit
If OPTCD=SYN and the ACB's MACRF=LSR GSR and UPDAD exit
routine is specified, VSAM takes the UP AD exit at points when VSAM would
normally issue aWAIT.

LOC For retrieval, VSAM leaves the data record in the I/O buffer for processing;
not valid for PUT or ERASE; valid for GEt with OPTCD=UPD, but to
update the record, you must build a new version of the record in a work area
and modify the request parameter list OPTCD from LOC to MVE before
issuing a PUT

MVE For retrieval, VSAM moves the data record to a work area for processing,
and for storage, VSAM moves it from the work area to the I/O buffer

Figure to (Part 2 of 2) OPTCD Options

Macro Instruction Formats and Examples 193

Example: RPL Macro

In this example, an RPL macro is used to generate a request parameter list
named PARMLIST. "'
ACCESS ACB

PARMLIST RPL

WORK DS

SEARCH DS

MESSAGE DS

MACRF=(SKP,OUT),
DDNAME=PAYROLL

ACB=ACCESS,
AM=VSAM,
AREA=WORK,
AREALEN=125,
ARG=SEARCH,
MSGAREA=MESSAGE,
MSGLEN=128,
OPTCD=(SKP,UPD)

CL125

CL8

CL128

Most OPTeD defaults are appropriate
to assumptions.

The ACB macro, named ACCESS, specifies skip-sequential retrieval for
update. Further details may be provided on a DD statement named
PAYROLL.

The RPL macro's operands are:

• ACB, which associates the request parameter list with the access-method
control block generated by ACCESS.

• AREA and AREALEN, which specify a work area, WORK, that is 125
bytes long.

• ARG, which specifies that the search argument is defined at SEARCH.
The search argument is eight bytes long.

• MSGAREA and MSGLEN, which specify a message area, MESSAGE,
that is 128 bytes long. The message area is provided for physical-error
messages.

• OPTCD, which specifies skip-sequential processing and specifies that a
retrieved record may be updated or deleted.

Because KEYLEN is not coded, a full-key search is assumed.

t 94 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Control Block)

SHOWCB-ACB

The SHOWCB macro can be used to cause VSAM to move the contents of
various fields in an access-method control block into your work area. You
might want to learn the reason for an error or to collect information about a
data set in order to alter your program logic or print a message or report as a
result of the examination.

The operands of the SHOWCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" for information on the return codes used to indicate whether the
SHOWCB request was successful.

The format of the SHOWCB macro used to display fields in an access-method
control block is:

[label] SHOWCB ACB= address
,AREA = address
,LENGTH = number
[,OBJECT=DATA I INDEX]
,FIELDS=([ACBLEN][,AVSPAC][,BFRFND]

[,BSTRNO][,BUFND][,BUFNI]
[,BUFNO][,BUFRDS][,BUFSP]
[,CINV]~DDNAME][,ENDRBA 1
[,ERROR] [,EXLST] [,FS]
[,HALCRBA][,KEYLEN][,LRECL]
[,MAREA] [,MLEN][,NCIS][]
[,NDELRl [,NEXCP] [,NEXT] [,NINS]
[,NIXL,NLOGR] [NRETR] [,NSSS]
[,NUIW ,NUPDR][,P ASSWD][,RKP]
[,STMST] [,STRMAX][,STRNO]
[,UIW])

where:

label
is one to eight characters that provides a symbolic address for the
SHOWCB macro.

ACB=address
specifies the address of the access-method control block whose fields are to
be displayed. If you used the ACB macro with a label, you can specify the
label here. The ACB operand is optional when you wish to display the
length of an access-method control block (FIELDS=ACBLEN). (All
access-method control blocks have the same length, so you need not
specify the address of a particular one.)

Macro Instruction Formats and Examples 195

AREA=address
specifies the address of a work area that you are supplying for VSAM to
display the contents of the fields you specify in the FIELDS operand. The
contents of the fields are displayed in the order you specify them. The area
must begin on a fullword boundary.

LENGTH=number
specifies the length, in bytes, of the work area that you are providing for
VSAM to display the indicated fields in. See the FIELDS operand for the
fields that can be displayed and for the length of each field. If the area is
not large enough for all of the fields, VSAM doesn't display any of their
contents and returns an error code indicating it (see "Return Codes from
the GENCB, MODCB, SHOWCB, and TESTCB Macros" earlier in this
chapter).

OBJECT=DATA I INDEX
specifies whether fields are to be displayed for the data or for the index.

FIELDS= ([ACBLEN,][A VSP AC,][BFRFND,][,BSTRNO][,BUFND)
[,BUFNI][,BUFNO][,BUFRDS][,BUFSP]
[,CINV][,DDNAME][,ENDRBA]

, [,ERROR][,EXLST][,FS][,HALCRBA]
[,KEYLEN][,LRECL][,MAREA][,MLEN][,NCIS]
[,NDELR] [,NEXCP][,NEXT]
[,NINSR] [,NIXL] [,NLOGR]
[,NRETR] [,NSSS] [,NUIW] [,NUPDR]
[,P ASSWD] [,RKP][,STMST][,STRMAX]
[,STRNO][,UIW])

specifies the fields whose contents are to be displayed. Some of the fields
can be displayed at any time; others only after a data set is opened. The
ones that can be displayed only after a data set is opened can, in the case
of a key-sequenced data set that has been opened for keyed access, pertain
either to the data or to the index. See the OBJECT operand. Figure 11
explains the keywords you can code in the FIELDS operand for an
access-method control block.

196 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Key­

word

SHOWCB-ACB

r." __ 11

ruu-

words Description of the Field

The following fields can be displayed at any time

ACBLEN

BSTRNO

BUFND

BUFNI

BUFSP

DDNAME 2

ERROR

EXLST

MAREA

MLEN

PASSWD

STRMAX

STRNO

Length of an access-method control block (displaying the length of an
access-method control block gives your program independence from
changes in the length that may occur from release to release of
VSAM)

Number of strings initially allocated for access to the base cluster by a
path

Number of I/O buffers to be used fQr data, as specified in the ACB
(or GENCB)

Number of I/O biJffers to be used for index entries, as specified in the
ACB (or GENCB)

Amount of space specified in the ACB (or GENCB) for I/O buffers

Name of the DD statement that identifies the data set

The code returned by VSAM after the opening or closing of the data
set (see "OPEN Macro" and "CLOSE Macro")

Address of the exit list, if any; 0 if none

Address of the message area, if any; 0 if none

Length of the message area, if any; 0 if none

Address of the field containing the password; the first byte of the field
contains the length of the password (in binary)

Maximum number of strings concurrently active

Number of requests for which VSAM is prepared to remember its
position in the data set

The following fields can be displayed only after the data set is opened

AVSPAC

BFRFND

BUFNO

BUFRDS

CINV

ENDRBA

FS

HALCRBA

KEYLEN

LRECL

Amount of available space in the data component or index
component, in bytes

Number of successfullooks-aside1

Number of I/O buffers actually in use for the data component or
index component

Number of buffer reads l

Control-interval size for the data component or index component

Ending RBA of the space used by the data component or index
component; not the RBA 9f any record in the data set, but of the last
used byte in the data set

Number of free control intervals per control area in the data
component (0 for OBJECT=INDEX)

High-allocated RBA; the relative byte address of the end of the data
component (OBJECT=DATA) or the index component
(OBJECT =INDEX)

Length of the key of reference of the key field of data records in the
data component (whether OBJECT=DATA or INDEX)

Length of data records in the data component (maximum length for
variable-length data records) or of index records in the index
component (control-interval length minus 7)

Figure 11 (Part 1 of 2). FIELDS Operand Keywords for an Access-Method Control Block

Macro Instruction Formats and Examples 197

Key- FuU-
word words Description of the Field

NCIS

NDELR

NEXCP

NEXT

NINSR

NIXL

NLOGR

NRETR

NSSS

NUIW

NUPDR

RKP

STMST

UIW

2

Number of control intervals that have been split in the data
component (0 for OBJECT=INDEX)

Number of records that have been deleted from the data component
(0 for OBJECT=INDEX)

Number of EXCP macros that VSAM has issued for access to the data
component or index component since it was opened

Number of extents now allocated to the data component or index
component (the maximum that can be allocated is 123)

Number of records that have been inserted into (or added to) the data
component (0 for OBJECT=INDEX)

Number of levels in the index of the data component (0 for
OBJECT =IND EX)

Number of data records in the data component (0 for
OBJECT =INDEX)

Number of records that have ever been retrieved from the data
component (0 for OBJECT=INDEX)

Number of control areas that have been split in the data component
(0 for OBJECT=INDEX)

Number of writes not initiated by user l

Number of records in the data component that have ever been
updated (0 for OBJECT=INDEX)

Displacement of the key of reference of the key field from the
beginning of a data record (whether 0 BJECT = D AT A or IND EX)

System time stamp, which gives the time and day of the last time the
data component or index component was closed, with bit 5 I (counting
from 0 at the left) equivalent to one microsecond and bits 52 through
63 unused

Number of user-initiated writes l

1 Described in OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications

Figure I I (Part 2 of 2). FIELDS Operand Keywords for an Access-Method Control Block

198 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

SHOWCB-ACB

Example: SHOWCB Macro (Display an Access-Method Control Block)

In this example, a SHOWCB macro is used to display fields in an
access-method control block. The fields displayed (KEYLEN, LRECL, and
RKP) permit the program to modify variables to process anyone of a number
of data sets that have different-sized key fields and records and different
placements of key field in a record.

SHOWCB ACB=CONTROL,
AREA=DISPLAY,
FIELDS=(KEYLEN,
LRECL, RKP) ,
LENGTH=12

DISPLAY OS OF Align on fullword boundary.

KEY LEN OS F

LRECL OS F

RKP OS F

The SHOWCB macro's operands are:

• ACB, which specifies the address of the access-method control block to be
displayed.

• AREA, which specifies that the area to be used to display access-method
control block fields is to begin on a fullword boundary.

• FJELDS, which specifies that the KEYLEN, LRECL, and RKP fields are
to be displayed.

• LENGTH, which specifies that the length of the area to be used for the
display is 12 bytes, enough to accommodate the specified fields.

This display enables the program to set up its variables for the particular data
set it has opened.

Example: SHOWCB Macro (Display an Exit List Address)

In this example, a SHOWCB macro is used to get the address of an exit list by
displaying the address in an access-method control block that uses the exit
list.

SHOWCB ACB=address,
AREA=address,
FIELDS=EXLST,
LENGTH=4

The SHOWCB macro's operands are:

• ACB, which specifies the address of an access-method control block from
which the address of an exit list is to be displayed.

• AREA and LENGTH, which specify an area and length, four bytes, to be
used to display the address of the exit list.

• FIELDS, which specifies that the EXLST field in an access-method control
block is to be displayed.

Macro Instruction Formats and Examples 199

SHOWCD-EXLST

The SHOWCB macro can be used to display fields in an exit list.

The operands of the SHOWCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" for information on the return codes used to indicate whether the
SHOWCB request was successful.

The format of the SHOWCB macro used to display fields in an exit list is:

[label] SHOWCD EXLST = address,
AREA= address
,LENGTH= number
,FIELDS = ([EOD AD II,EXLLEN][,JRNAD]

[,LERAD][,SYNAD])

where:

label
is one to eight characters that provides a symbolic address for the
SHOWCB macro.

EXLST = address
. specifies the address of the exit list whose fields are to be displayed. If you

used the EXLST macro with a label, you can specify the label here. The
EXLST operand is optional only when you wish to display the length that
an exit list can have (see FIELDS=EXLLEN below). The SHOWCB
macro does not support the UP AD user exit.

AREA=address
specifies the address of a work area that you are supplying for VSAM to
display the contents of the fields you specify in the FIELDS operand. The
contents of the fields are displayed in the order you specify them. The area
must begin on a fullword boundary.

LENGTH=number
specifies the length, in bytes, of the work area that you are providing for
VSAM to display the indicated fields in. Each exit-list field requires a
fullword. If the area is not large enough for all of the fields, VSAM doesn't
display any of their contents and returns an error code indicating it (see
"Return Codes from the GENCB, MODCB, SHOWCB,and TESTCB
Macros" earlier in this chapter).

FIELDS = ([EODAD][,EXLLEN][,JRNAD]
[,LERAD][,SYNAD])

specifies the values to be displayed, as follows:

EODAD
specifies that the address of the end-of-data-set routine is to be
displayed.

Macro Instruction Formats and Examples 201

EXLLEN
specifies that the length of the exit list indicated in the EXLST operand
or if EXLST is omitted, the maximum length an exit length can have, is
to be displayed.

JRNAD
specifies that the address of the journaling routine is to be displayed.

LERAD
specifies that the address of the logical-error analysis routine is to be
displayed.

SYNAD
specifies that the address of the physical-error analysis ro.utine is to be
displayed.

You can use SHOWCB to display the address of an exit routine only if the
exit routine is indicated in the exit list. If it isn't, the SHOWCB request will
fail. Use TESTCB to test whether an entry for a given exit type is present in
the exit list and to find out whether the exit is active and whether the routine
is to be loaded.

Example: SHOWeD Macro (Display the Length of an Exit List)

In this example, a SHOWCB macro is used to display the maximum length of
an exit list. The maximum length of an exit list is subsequently used in a
GENCB macro to get virtual storage for an exit list.

SHOWCB AREA=LENGTH,
FIELDS=EXLLEN,
LENGTH=4

L O,LENGTH

GETMAIN R,LV=(O)

LR 2,1

GENCB BLK=EXLST,
LENGTH=(*,
LENGTH) ,
WAREA=(2)

LENGTH DS F

The SHOWCB macro's operands are:

Amount of storage for GETMAIN.

Address of storage for GENCB.

Indirect notation for length of work
area.

Contains the length of GENCB's work
area.

• AREA and LENGTH, which specify the area, which begins on a fullword
- boundary, and its length, four bytes, that is to be used for the display.

• FIELDS, which specifies that the maximum length of an exit list is to be
displayed. Because only EXLLEN is specified, the EXLST operand is
omitted.

The GENCB macro specifies a work area in which an exit list is to be
generated. The length of the work area is located at LENGTH, where the
maximum length of an exit list was put as a result of the SHOWCB macro.

202 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

SHOWCB-RPL

SHoweD Macro (Display a Request Parameter List)

The SHOWCB macro can be used to display fields in a request parameter list.

The operands of the SHOWCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution. See "Return
Codes from the GENCB, MODCB, SHOWCB, and TESTCB Macros" for
information on the return codes used to indicate whether the SHOWCB
request was successful.

The format of the SHOWCB macro used to display fields in a request
parameter list is:

[label] SHOWCB RPL= address
,AREA= address
,LENGTH= number
,FIELDS = ([ACB][,AIXPC] [,AREA] [,AREALEN]

[,ARG][,ECB][,FDBK][,FfNCD]
[,KEYLEN][,MSGAREA]
[,MSGLEN]
[,NXTRPL] [,RBA]
[,RECLEN]
[,RPLLEN]
[,TRANSID])

where:

label
is one to eight characters that provides a symbolic address for the
SHOWCB macro.

AREA = address
specifies the address of a work area that you are supplying for VSAM to
display the contents of the fields you specify in the FIELDS operand. The
contents of the fields are displayed in the order you specify them. The area
must begin on a fullword boundary.

LENGTH=number
specifies the length, in bytes, of the work area that you are providing for
VSAM to display the indicated fields in. Each request parameter list field
requires a fullword. If the area is not large enough for all of the fields,
VSAM doesn't display any of their contents and returns an error code
indicating it (see "Return Codes from the GENCB, MODCB, SHOWCB,
and TESTCB Macros" earlier in this chapter).

RPL = address
specifies the address of the request parameter list whose fields are to be
displayed. If you used the RPL macro with a label, you can specify the
label here. The RPL operand is optional when you wish to display the
length of a request parameter list (FIELDS=RPLLEN). (All VSAM
request parameter lists have the same length, so you need not specify the
address of a particular one.)

Macro Instruction Formats and Examples 203

F1ELDS=([ACB][,AIXPC] [,AREA] [,AREALEN] [,ARG]
[,ECB] [,FDBK][,FTNCD] [,KEYLEN]
[,MSGAREA] [,MSGLEN]
[,NXTRPL][,RBA][,RECLEN]
[,RPLLEN][, TRANSID])

specifies the fields whose contents are to be displayed. Figure 12 explains
the keywords you can code in the FIELDS operand for a request
parameter list.

Key- Full-
word words Description of the Field

ACD Address of the access-method control block that relates the request
parameter list to the data

AIXPC Number of alternate-index pointers

AREA Address of the work area which the program uses to process a data
record to which access is defined by the request parameter list

AREALEN Length of the work area whose address is given in AREA

ARG Address of the field containing a search argument, if search arguments
are being used

ECD Address of an event control block, if any, in which VSAM indicates the
completion of requests defined by the request parameter list

FDBK The feedback field into which VSAM puts a return code upon
completion of a request (for asynchronous requests, you must issue a
CHECK to cause VSAM to put a return code into the feedback field;
the meaning of the code in this field depends on the contents of register
15, which indicates whether the request was successful or failed because
of a logical or physical error-see HReturn Codes from the Request
Macros" in the HMacro Instruction Descriptions and Return Codes"
chapter)

FTNCD Code that describes the function in which a logical or physical error
occurred; indicates whether the upgrade set may have been modified
incorrectly by the request

KEY LEN Length of the search argument, if a generic key is used for a search
argument

MSGAREA

MSGLEN

NXTRPL

RDA

RECLEN

RPLLEN

TRANSID

Address of the area, if any, into which VSAM puts physical-error
messages

Length of the message area, if any

Address of the next request parameter list, if another one is chained to
this one

Relative byte address of the most recently processed record; you could
use it to record the RBAs of records that you are retrieving or storing
sequentially or by key

Length of the data record, access to which is defined by the request
parameter list

Length of a request parameter list

Number that relates modified buffers in a buffer pool; described in
OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications

Figure t 2. FIELDS Operand Keywords for a Request Parameter List

204 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

SHOWCB-RPL

Example: SHOWCB Macro (Display a Physical-Error Message)

In this example, a SHOWCB macro is used to display a physical-error
message. This example assumes that there is no SYNAD routine (or the
SYNAD exit is inactive), in which case, VSAM returns control to your
program following the last executable instruction if a physical error occurs.
Register 15 indicates a physical error (12), and the feedback field in the
request parameter list contains a code identifying the error; the message area
contains more details about the error. Register 1 points to the request
parameter list.

REQUEST RPL MSGAREA=
MESSAGES,
MSGLEN=128

CHECKO

SHOWCB AREA=MSGADDR,
FIELDS=MSGAREA,
LENGTH=4,
RPL=REQUEST

LTR

BNZ

15, 15

CHECKO

MESSAGES DS CL128

MSGADDR DS F

Display failed.

For VSAM to give you a detailed
message about a physical error.

For displaying the address of the
message area with SHOWeB.

The RPL macro in this example provides for a message area, MESSAGES, of
128 bytes to be used for any physical-error message.

The SHOWCB macro's operands are:

• AREA and LENGTH, which specify a four-byte area, MSGADDR, to be
used for displaying the address of the message area for the associated
request parameter list.

• FIELDS, which specifies that the address of the message area is to be
displayed.

• RPL, which specifies the name, REQUEST, of the request parameter list
for which the message-area address is to be displayed.

Macro Instruction Formats and Examples 205

TESTCB-ACB

With the TESTCB macro, you can cause VSAM to set the condition code in
the PSW (program status word) as a result of a comparison between the
contents of a field that you specify and a value that you specify. Only one
keyword can be specified each time TESTCB is issued. You might want to do
this to:

• Find out whether an action (for example, opening a data set or activating
an exit) has been done by VSAM or your program

• Find out what kind of a data set is being processed in order to alter your
program logic as a result of the test.

You examine the PSW condition code after issuing a TESTCB macro (and
examining the return code in register 15). For keywords specified as an option
or a name, you test for an equal or unequal comparison; for keywords
specified as an address or a number, you test for an equal, unequal, high, low,
not-high, or not-low condition.

VSAM compares A to B, where A is the contents of the field and B is the
value to which it is to be compared. A low condition means, for example, that
A is lower than B-that is, that the value in the control block is lower than
the value you specified. You may specify only one keyword to be tested.
These keywords are the same as those that can be specified in the SHOWCB
macro to display fields in an ACB. Fields can be tested at the same time they
are displayed. If you specify a list of option codes for a keyword (for example,
MACRF=(ADR,DIR», each of them must equal the corresponding value in
the control block for you to get an equal condition.

Some of the fields can be tested at any time; others only after a data set is
opened. The ones that can be tested only after a data set is opened can, in the
case of a key-sequenced data set, pertain either to the data or to the index.
See the OBJECT operand.

The operands of the TESTCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" for information on the return codes used to indicate whether the
TESTCB request was successful.

Only one keyword can be specified each time you issue the macro. The
format of the TESTCB macro used to test a field in an access-method control
block is:

Macro Instruction Formats and Examples 207

[label] TESTCB ACB= address
[,ERET= address]
[,OBJECT=DATA I INDEX]
,{ATRB=([ESDS][,KSDS][,REPL]

[,RRDS][,SP AN][,SSWD]
[,WCK] I

ATRB=UNQI
CATALOG=YES I NO I
CRA=SCRAIUCRAI
MACRF=([ADR][,AIX][,CFX][,CNV]

[,DDN][,DFR][,DIR][,DSN]
[,GSR][,ICI][,IN][,KEY]
[,LSR][,NCI][,NDF][,NFX]
[,NIS][,NRM][,NRS][,NSR]
[,NUB][,OUT][,RST][,SEQ]
[,SIS][,SKP][,UBF]) I

OFLAGS=OPEN I
OPENOBJ=PATH I BASE I AIX I
ACBLEN=number I
AVSPAC=number I
BSTRNO= number I
BUFND= number I
BUFNI= number I
BUFNO= number I
BUFSP= number I
CINV = number I
DDNAME=ddname I
ENDRBA= number I
ERROR= number I
EXLST = address I
FS=number I
KEYLEN = number I
LRECL= number I
MAREA= address I
MLEN=number I
NCIS= number I
NDELR= number I
NEXCP= number I
NEXT=number I
NINSR= number I
NIXL= number I
NLOGR= number I
NRETR= number I
NSSS= number I
NUPDR= number I
PASSWD= address I
RKP= number I
STMST= address I
STRNO= number}

208 OSjVS Virtual Storage Access Method (VSAM) Programmer's Guide

TESTCB-ACB

where:

ACB=address
specifies the address of the .access-method control block whose information
you want to test. You may omit it only if you're testing the length of an
access-method control block (ACBLEN=number). (All VSAM
access-method control blocks have the same length.)

ERET = address
specifies the address of a routine that VSAM is to give control if, because
of an error, it is unable to test for the condition you specify. For example,
testing AVSPAC in an access-method control block for an unopened data
set would fail. VSAM indicates in register 15 whether it could do the test
and, if not, indicates in register 0 the reason it couldn't. (The reasons are
discussed under "Return Codes from the GENCB, MODCB, SHOWCB,
and TESTCB Macros.") A failure trying to execute TESTeB indicates a
basic logical problem in the processing program, so the error routine would
probably issue an ABEND. If it lets the program continue, it must branch
to the continuation point itself-and not return to VSAM.

OBJECT = {DATA I INDEX}
specifies whether you want to test a field for data or for index.

A TRB= «ESDSJ(,KSDS)(,REPL)(,RRDS)(,SPAN](,SSWD)(, WCK))
specifies, for an open data set, the attribute that is to be tested for, as
follows:

ESDS
entry-sequenced data set

KSDS
key-sequenced data set

REPL
some portion of the index is replicated

RRDS
relative record data set

SPAN
data set contains spanned records

SSWD
sequence set is adjacent to the data

WCK
write operations for the data set are being verified

ATRB=UNQ
specifies, for an open alternate index or path, that the alternate index
requires unique keys. The test for ATRB=UNO must be made with a
separate TESTCB macro. VSAM examines the path control blocks for
the UNO attribute; VSAM examines the base cluster's control blocks
for the other attributes. If other attributes are tested for, VSAM
examines the base cluster's control blocks for all attributes: the test for
ATRB= UNO would give inaccurate results when applied to the base
cluster's control blocks.

Macro Instruction Formats and Examples 209

CATALOG = YES I NO
specifies that a test is to be made to determine, anytime, whether or not the
access-method control block specifies a catalog data set.

CRA=SCRA I UCRA
specifies that a test is to be made to determine, anytime, whether catalog
recovery area control blocks are to be built in system storage or user
storage.

MACRF=([ADR][,AIX][,CFX][,CNV][,DDN][,DFR]
[,DIR][,DSN][,GSR][,ICI][,IN][,KEY][,LSR][,NCI]
[,NDF][,NFX][,NIS][,NRM][,NRS][,NSR][,NUB][,OUT][,RST]
[,SEQ][,SIS][,SKP][, UBF])

specifies that a test is to be made to determine, anytime, what option or
combination of options is being used for processing.

OFLAGS=OPEN
specifies that a test is to be made to determine, after open, whether the
data set identified by the control block has been opened.

OPENOBJ=PATH I BASE I AIX
specifies that a test is to be made to determine, after open, whether an
opened object is a path, a base cluster, or an alternate index.

The remaining operands represent fields in an access-method control block
that can be compared with the value specified. These fields are the same as
those that can be displayed by using the SHOWCB macro. See Figure 12 for
an explanation of these fields.

If you omit a routine to handle error conditions, you can examine register 15
following TESTCB by using a branch table, for example, but don't alter the
PSW condition code that VSAM set to indicate the result of a test until
you've had a chance to test it.

210 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

TESTCB-ACB

In this example, a TESTCB macro is used to determine whether a data set is a
key-sequenced or an entry-sequenced data set.

LIST RPL

KEYSEQ

CHECKO

SHOWCB AREA=DATAFACT,
FIELDS=ACB,
LENGTH=4,
RPL=LIST

LTR 15, 15

BNZ CHECKO

TESTCB ACB=(*,
DATAFACT) ,
ATRB=KSDS,
ERET=CHECKO

BE KEYSEQ

DATAFACT DS F

The SHOWCB macro's operands are:

Is the data set key-sequenced?

YES.

Data set is key sequenced.

Display or test failed.

For displaying address of
access-method control block.

• AREA and LENGTH, which specify. a four-byte area, DATAFACT,
aligned on a fullword boundary, to be used for the display.

• FIELDS and RPL, which specify that the address of the access-method
control block in the LIST request parameter list is to be displayed.

The TESTCB macro's operands are:

• ACB, which specifies that a field in the access-method control block, the
address of which is located at DATAFACT, is to be tested. The SHOWCB
macro put the address of the access-method control block at DATAFACT.

• A TRB, which specifies that the access-method control block is to be tested
to determine whether it is a key-sequenced data set.

• ERET, which specififies that a routine named CHECKO is to be given·
control if an error occurs that makes it impossible to make the test.

There is no need to examine the feedback field in an EODAD routine because
it can be assumed to contain the end-of -data-set indication.

Macro Instruction Formats and Examples 211

)

TESTCD-EXLST

The TESTCB macro can be used to test fields in an exit list.

The operands of the TESTCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

The format of the TESTCB macro used to test fields in an exit list is:

[label] TESTCD EXLST = address
[,ERET = address]
,EODAD={O I ([address][,A I N][,L])} I

JRNAD={O I ([address][,A I N][,L])} I
LERAD={O I ([address][,A I N][,L])} I
SYNAD= {O I ([address][,A I N][,L])}

[,EXLLEN = number]

where:

label
is one to eight characters that provides a symbolic address for the TESTCB
macro.

EXLST =address
specifies the address of the exit list whose information you want to test.
You may omit it only if you're testing the maximum length of an exit list
(EXLLEN=number). The TESTCB macro does not support the UPAD
user exit.

ERET =address
specifies the address of a routine that VSAM is to give control if, because
of an error, it is unable to test for the condition you specify. For example,
testing AVSPAC in an access-method control block for an unopened data
set would fail. VSAM indicates in register 15 whether it could do the test
and, if not, indicates in register 0 the reason it couldn't. (The reasons are
discussed under "Return Codes from the GENCB, MODCB, SHOWCl3,
and TESTCB Macros.") A failure trying to execute TESTCB indicates a
basic logical problem in the processing program, so the error routine would
probably issue an ABEND. If it lets the program continue, it must branch
to the continuation point itself-and not return to VSAM.

Macro Instruction Formats and Examples 213

EODAD={O I ([address][,A I N][,L])} I
JRNAD={O I ([address][,A I N][,L])} I
LERAD= {O I ([address][,A I N][,L])} I
SYNAD={O I ([address][,A I N][,L])}

specifies the exit about which you are asking a yes-no question. If you code
more than one operand for an exitname, each of them must equal the
corresponding value in the control block for you to get an equal condition.
The values that can be tested are:

o
specifies that a test is to be made to determine whether an entry is
provided for the exit in the exit list.

address
specifies that a test is to be made to determine whether this is the
address of the exit. Tests for an address result in an equal, unequal,
high, low, not-high, or not-low condition. Tests for a combination of an
address and A, N, or L result in an equal or unequal condition.

AIN

L

specifies that a test is to be made to determine whether an exit is active
(A) or not active (N). Tests for A or N result in an equal or unequal
condition.

specifies that a test is to be made to determine whether the address is
the location of an 8-byte field containing the name of a module to be
loaded rather than the entry point of the routine. Tests for L result in an
equal or unequal condition.

EXLLEN =number
specifies either the maximum length that an exit list can have (if you don't
code the EXLST operand) or the actual length of the exit list indicated by
the EXLST operand. If you specify an exit, you may not also specify
EXLLEN; if you specify EXLLEN, you may not also specify an exit.

If you omit a routine to handle error conditions, you can examine register 15
following TESTCB by using a branch table, for example, but don't alter the
PSW condition code that VSAM set to indicate the result of a test until
you've had a chance to test it.

214 OS/VS Virtual Storage Access Method (VSAM.) Programmer's Guide

)

TESTCB-EXLST

Exampie: TESTeB iviacro (Use a nnltu::h TaMe)

In this example, a TESTCB macro is used to test whether ENDPROC is the
routine supplied for the EODAD exit in the exit list EXITS, and whether the
EODAD exit is active. A branch table is used to determine whether the test is
successful.

TESTCB EODAD=(ENDPROC,
A) , EXLST=EXITS

B *+4(15)

If the test was made successfully, register 15
contains 0 and the next instruction is executed.

B TEST1

If it was unsuccessful, register 15 contains 4 and
the next instruction is executed.

TEST1
YES'

NO

ABEND 2 , DUMP

BNE NO

Is ENDPROC supplied and is the exit
active?

Yes, ENDPROC is supplied and active.

ENDPROC isn't supplied, or the exit
isn't active.

Macro Instruction Formats and Examples 215

)

TESTCB-RPL

The TESTCB macro can be used to test fields in a request parameter list.

The operands of the TESTCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address con9tants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" for information on the return codes used to indicate whether the
TESTCB request was successful.

The format of the TESTCB macro to test fields in a request parameter list is:

[label] TESTCB RPL= address
[,ERET = address]
{AIXFLAG=AIXPKP I
AIXPC= number I
FTNCD= number I
I/O=COMPLETE I
OPTCD=([ADR][,ARD][ASY][,BWD]

[,CNV][,DIR][,FKS][,FWD]
[,GEN][,KEQ][,KEY][,KGE][,LOC]
[,LRD] [,MVE][,NSP][,NUP][,SEQ]
[,SKP][,SYN][,UPD]) I

ACB= address I
AREA= address I
AREALEN= number I
ARG=address I
ECB=address I
FDBK= number I
KEYLEN=number I
MSGAREA= address I
MSGLEN = number I
NXTRPL= address I
RBA= number I
RECLEN = number I
RPLLEN=number I
TRANSID= number}

where:

label
is one to eight characters that provides a symbolic address for the TESTCB
macro.

RPL = address
specifies the address of the request parameter list whose information you
want to test. You may omit it only if you're testing the length of a request
parameter list (RPLLEN=number). (All request parameter lists have the
same length.)

Macro Instruction Formats and Examples 217

ERET =address
specifies the address of a routine that VSAM is to give control if, because
of an error, it is unable to test for the condition you specify. For example,
testing A VSP AC in an access-method control block for. an unopened data
set would fail. VSAM indicates in register 15 whether it could do the test
and, if not, indicates in register 0 the reason it couldn't. (The reasons are
discussed under "Return Codes from the GENCB, MODCB, SHOWCB,
and TESTCB Macros.") A failure trying to execute TESTCB indicates a
basic logical problem in the processing program, so the error routine would
probably issue an ABEND. If it lets the program continue, it must branch
to the continuation point itself-and not return to VSAM.

AIXFLAG= AIXPKP
specifies that prime-key pointers are used rather than RBAs.

AIXPC = number
specifies the pointer count.

FTNCD= number
specifies whether the upgrade set is correct or may have been modified by
a request. These codes are described under "Function Codes" in the
chapter "Macro Instruction Descriptions and Return Codes."

10= COMPLETE
specifies that a test is to be made to determine whether an asynchronous
request has been completed. (When you issue a CHECK macro, you
suspend processing until a request has been completed if it hasn't yet been
completed.)

OPTCD= ([ADR][,ARD][,ASY][,BWD][,CNV][,DIR][,FKS][,FWD]
[,GEN][,KEQ][,KEY][,KGE][,LOC][,LRD] [,MVE][,NSP]
[,NUP][,SEQ][,SKP][,SYN][,UPD])

specifies that a test is to be made to determine what option or combination
of options is being used for the request. See Figure 10 for a description of
these options.

The remaining operands specify fields in a request parameter list and values;
the contents of a field are to be compared to the specified value. These fields
are the same as those that can be displayed by using a SHOWCB macro. See
-Figure 12 in chapter "SHOWCB Macro (Display a Request Parameter List)"
for an explanation of these fields. Fields can be tested at the same time they
are displayed.

You may specify only one keyword. If you code a list of option codes (for
example, OPTCD=(KEY,DIR)), each of them must equal the corresponding
value in the control block for you to get an equal condition.

If you omit a routine to handle error conditions, you can examine register 15
following TESTCB by using a branch table, for example, but don't alter the
PSW condition code that VSAM set to indicate the result of a test until
you've had a chance to test it. Examples of using an ERET routine and using
a branch table are given at the end of the section.

218 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: TESTeB Macro (Test a Request Parameter Li8l)

CHANGE

NOCHNGE

TESTCB RPL=(3),
RECLEN=80

BE NOCHNGE

The TESTCB macro's operands are:

TESTCB-RPL

Because the record length in the request
parameter list was not 80, the length
indicator must be modified so that it is
80.

Because the record length in the request
parameter list was 80, no change is
required.

• RPL, which specifies that the address of the request parameter list to be
tested is contained in register 3.

• RECLEN, which specifies that the record length indicated in the request
parameter list is to be tested to determine whether it is 80.

Macro Instruction Formats and Examples 219

)

USING ISAM.PROGRAMMING WITH VSAM

New Data Sets .

VSAM, through its ISAM interface program, enables a debugged program
that processes an indexed-sequential data set to process a key-sequenced data
set. The key-sequenced data set may have been converted from an
indexed-sequential or a sequential data set (or another VSAM data set) or
may have been loaded by one of your own programs. The loading program
may be coded with VSAM macros or with IS AM macros or PL/I or COBOL
statements. That is, you can load records into a newly defined key-sequenced
data set with a program that was coded to load records into an
indexed-sequential data set.

There are some minor restrictions on the types of processing an ISAM
program may do if it is to be able to process a key-sequenced data set. These
restrictions are described in "Restrictions in the Use of the ISAM Interface"
later in this chapter.

Significant performance improvement can be gained by modifying an ISAM
program that issues multiple OPEN and CLOSE macros to switch between a
QISAM and BISAM DCB. The ISAM program can be modified to open the
QISAM and BISAM DCBs at the beginning of the program and to close them
when all processing is complete. The performance improvement is
proportional to the frequency of OPEN and CLOSE macros in the ISAM
program.

Figure 15 shows the relationship between ISAM programs processing VSAM
data with the ISAM interface and VSAM programs processing the data.

ISAM
Interface

Access

Interpret Each Request

New
VSAM
Programs

Access

Existing ISAM Programs

Unmodified

Modified to
Meet Restrictions

ISAM Programs
Converted to
VSAM Programs

(To take advantage of
additional functions
of VSAM)

Figure 13. Use of ISAM Processing Programs

Using ISAM Programming With VSAM 221

How an ISAM Program Can Process a VSAM Data Set
When a processing program that uses ISAM (assembler-language macros,
PL/I or COBOL) issues an OPEN to open a key-sequenced data set, the
ISAM interface is given control to:

• Construct control blocks that are required by VSAM.

• Load the appropriate ISAM interface routines into virtual storage.

• Initialize the ISAM DCB (data control block) to enable the interface to
intercept ISAM requests.

• Take the DCB exit requested by the processing program.

The ISAM interface intercepts each subsequent ISAM request, analyzes it to
determine the equivalent keyed VSAM request, defines the keyed VSAM
request in a request parameter list, and initiates the request.

The ISAM interface receives return codes and exception codes for logical and
physical errors from VSAM, translates them to ISAM codes, and routes them
to the processing program or error-analysis (SYNAD) routine by way of the
ISAM DCB or DECB. Figure 14 shows QISAM error conditions and the
meaning they have when the ISAM interface is being used.

Figure 15 shows BISAM error conditions and the meaning they have when
the ISAM interface is being used.

If invalid requests occur in BISAM that didn't occur previously and the
request parameter list indicates that VSAM isn't able to handle concurrent
data-set positioning, the value specified for the STRNO AMP parameter
should be increased. If the request parameter list indicates an e~clusive-use
conflict, reevaluate the share options associated with the data.

Figure 16 gives the contents of registers 0 and 1 when a SYNAD routine
specified in a DCB gets control.

You may also specify a SYNAD routine by way of the DD AMP parameter
(see "JCL for Processing with. the ISAM Interface" later in this chapter).
Figure 17 gives the contents of registers 0 and 1 when a SYNAD routine
specified by way of AMP gets control.

222 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Request Parameter

Byte and Offset QISAM Meaning Error Detected By List Error Code Interface/VSAM Meaning

DCBEXCDI

Bit 0 Record not found Interface Record not found (SETL K for a deleted
record)

VSAM 16 Record not found

VSAM 24 Record on non-mountable volume

Bit 1 Invalid device address Always zero

Bit 2 Space not found VSAM 28 Data set cannot be extended

VSAM 40 Virtual storage not available

Bit 3 Invalid request Interface Two consecutive SETL requests

Interface Invalid SETL (l or ID)

Interface Invalid generic key (KEY =0)

VSAM 4 Request after end-of-data

VSAM 20 Exclusive use conflict

VSAM 36 No key range defined for insertion

VSAM 64 Placeholder not available for concurrent
data-set positioning

VSAM 96 Key change attempted

Bit 4 Uncorrectable input VSAM 4 Physical read error (register 15 contains
error a value of 12) in the data component

VSAM 8 Physical read error (register 15 contains
a value of 12) in the index component

VSAM 12 Physical read error (register 15 contains
a value of 12) in the sequence set of the
index'

Bit 5 Uncorrectable output VSAM 16 Physical write error (register 15 contains
error a value of 12) in the data component

VSAM 20 Physical write error (register 15 contains
a value of 12) in the index component

VSAM 24 Physical write error (register 15 contains
a value of 12) in the sequence set of the
index

Bit 6 Unreachable block VSAM Logical error not covered by other
(input) exception codes

Bit 7 Unreachable block VSAM Logical error not covered by other
(output) exception codes

DEBEXCD2

Bit 0 Sequence check VSAM 12 Sequence check

Interface Sequence check (occurs only during
resume load)

Bit I Duplicate record VSAM 8 Duplicate record

Bit 2 DCB closed when error VSAM Error in Close
routine entered

Bit 3 Overflow record Interface Always one

) Figure 14 (Part 1 of 2). QISAM Error Conditions

Using ISAM Programming With VSAM 223

Byte and Offset QISAM Meaning Error Detected By

Bit 4 Length of logical recor Interface

VSAM

Bits 5 - 7 Reserved

Figure 14 (Part 2 of 2). QISAM Error Conditions

Byte and Offset DISAM Meaning

DECBEXCI

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

DECBEXC2

Bits 0 - 5

Bit 6

Record not found

Record length check

Space not found

Invalid request

Uncorrectable I/O
error

Unreachable block

Overflow record

Duplicate record

Reserved

Channel program initia

Error Detected By

VSAM

VSAM

VSAM

VSAM

Interface

VSAM

VSAM

VSAM

VSAM

VSAM

VSAM

Interface

VSAM

Bit 7 Previous macro was R Interface

Figure 15. BISAM Error Conditions

Reg. BISAM QISAM

Request Parameter
List Error Code

108

Kequest Parameter
List Error Code

16

24

108

28

20

36

64

96

8

Interface/VSAM Meaning

Length of Logical record is greater than

Invalid record length

Always zero

Interface/VSAM Meaning

Record not found

Record on non-mountable volume

Record length check

Data set cannot be extended

No request parameter list available

Exclusive-use conflict

No key range defined for insertion

Placeholder not available for concurrent

Key change attempted

Physical error (register 15 will contain a

Logical error not covered by any other e

Always one for READ requests

Duplicate record

Always zero

Always zero

Previous macro was READ KU

o Address of the DECB 0, or, for a sequence check, the address of a field containing the higher key involved in the
check

Address of the DECD 0

Figure 16. Register Contents for DCB-Specified ISAM SYNAD Routine

224 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

~

)

Reg. BISAM

o Address of the DEeB

Address of the DCB

QISAM

0, or, for a sequence check, the address of a field containing the higher key involved in the
check

Address of the DCB

Figure .17. Register Contents for AMP-Specified ISAM SYNAD Routine

ABEND Code Error Detected By

03B OPEN

031 VSAM

VSAM

LOAD

LOAD

039 VSAM

001 VSAM

BISAM

BISAM

If your SYNAD routine issues the SYNADAF macro, registers 0 and 1 are
used to communicate. When you issue SYNADAF, register 0 must have the
same contents it had when the SYNAD routine got control and register 1
must contain the address of the DCB.

When you get control back from SYNADAF, the registers have the same
contents they would have if your program were processing an
indexed-sequential data set: register 0 contains a completion code and register
1 contains the address of the SYNADAF message.

The completion codes and the format of a SYNADAF message are given in
OS/VS Data Management Macro Instructions.

Figure 18 shows abnormal-end (ABEND) codes issued by the ISAM interface
when there is no other method of communicating the error to the user.

If a SYNAD routine specified by way of AMP issues the SYNADAF macro,
the operand ACSMETH may specify either QISAM or BISAM, regardless of
which of the two is used by your processing program.

A dummy DEB is built by the ISAM interface to support:

• References by the ISAM processing program

DCB/DECB Set By ABEND
Module/Routine Issued By Error Condition

OPEN/OPEN ACB and OPEN Validity check; either (I) Access Method Services
VALID CHECK and DCB values for LRECL, KEYLE, and RKP

do not correspond, (2) DISP~OLD, the DCB was
opened for output, and the number of logical
records is greater than zero (RELOAD is implied),
or (3) OPEN ACB error code 116 was returned for
a request to open a VSAM structure

SYNAD SYNAD SYNAD (ISAM) was not specified and a VSAM
physical and logical error occurred

SCAN/GET and SETL SYNAD SYNAD (ISAM was not specified and an invalid
request was found

LOAD/RESUME LOAD SYNAD (ISAM) was not specified and a sequence
check occurred

LOAD LOAD SYNAD (ISAM) was not specified and the RDW
(Record Descriptor Word) w~s greater than
LRECL

SCAN/EO DAD SCAN End-of-data was found, but there was no EODAD
exit

SYNAD I/O error detected

SYNAD BISAM I/O error detected during check

BISAM BISAM Invalid request

Figure 18. ABEND Codes Issued by the ISAM Interface

Using ISAM Programming With VSAM 225

• Checkpoint/ restart

• Abnormal end

Figure 19 shows the DEB fields that are supported by the ISAM interface;
field 'meanings are the same as in ISAM, except as noted.

DEB Section Bytes Fields Supported

PREFIX 16 LNGTH

BASIC 32 TCBAD, OPATB, DEBAD, OFLGS (DISP ONLY),
FLGSI OSAM-interface bit), AMLNG (104), NMEXT(2),
PRIOR, PROTG, DEBID, DCBAD, EXSCL (O-DUMMY
DEB),APPAD

ISAM DEVICE 16 EXPTR, FPEAD

DIRECT ACCESS 16 UCBAD (VSAM UCB)

ACCESS METHOD 24 WKPT5 OSAM-interface control block pointer), FREED
(pointer to IDAIIFBF)

Figure 19. DEB Fields Supported by ISAM Interface

Converting an Indexed-Sequential Data Set
Access Method Services is used to convert an indexed-sequential data set to a
key-sequenced data set. Assuming that a master and/or user catalog has been
defined, define a key-sequenced data set with the attributes and performance
options you want. Then use the Access Method Services REPRO command to
convert the indexed-sequential records and load them into the key-sequenced
data set. See the appropriate Access Method Services publication for
information about defining a key-sequenced data set and about converting an
indexed-sequential data set. VSAM builds the index for the key-sequenced
data set as it loads the data set.

Each volume of a multivolume component must be on the same type of
device; -the data component and the index component, however, may be on
volumes of devices of different types.

When you define the key-sequenced data set into which the
indexed-sequential data set is to be copied, you must specify the attributes of
the VSAM data set for variable- and fixed-length records. For variable-length
records:

• VSAM record length equals ISAM DCBLRECL-4

• VSAM key length equals ISAM DCBKEYLE

• VSAM key position equals ISAM DCBRKP-4

For fixed-length records:

• VSAM record length (average and maximum must be the same) equals
ISAM DCBLRECL (+ DCBKEYLE, if ISAM DCBRKP equals 0 and
records are unblocked)

• VSAM key length equals ISAM DCBKEYLE

• VSAM key position equals ISAM DCBRKP

Care should also be taken with the level of sharing allowed when the
key-sequenced data set is defined. If the ISAM program opens multiple DCBs
pointing to different DO statements, a share-options value of 1, which is the

226 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

default, allows only the first DD statement to be opened. See the appropriate
Access Method Services publication for a description of the share-options
values.

JCL for Converting from [SAM to VSAM

JCL is used to identify data sets and volumes for allocation. In an OS/VS2
MVS system, data sets can also be allocated dynamically. See OS/VS2 JCL
and OS/VS2 System Programming Library: Job Management for a
description of dynamic allocation.

If JCL is used to describe an indexed-sequential data set to be converted to
VSAM using the Access Method Services REPRO command, include
DCB=OSORG=IS. The key-sequenced data set that is to receive the
converted data set need not be described in J CL if it is to reside in a
previously defined data space. If it is to reside alone in a data space, the data
set is either allocated dynamically by name (in which case the volume on
which it is to reside must be mounted) in an MVS system or is defined in a
DD statement in VSl or SVS that includes DISP=OLD, volume and unit
information, the AMP parameter, and DSNAME=dsname, where dsname is
the name of the key-sequenced data set. In either system, use a STEPCA T or
JOBCAT DD statement as described in the chapter "Job Control Language"
to make user catalogs available; in an OS/VS2 MVS system, you may also
use dynamic allocation.

With ISAM, deleted records are flagged as deleted, but are not actually
removed from the data set. If your program depends upon a record's only
being flagged and not actually removed, you may want to keep these flagged
records when you convert and continue to have your programs process these
records. The Access Method Services REPRO command has a parameter
(ENVIRONMENT) that causes VSAM to keep the flagged records when you
convert.

JCL for Processing with the ISAM Interface
To execute your ISAM processing program to process a key-sequenced data
set, replace the ISAM DD card with a VSAM DD card using the ODNAME
that was used for ISAM. The VSAM DO card names the key-sequenced data
set and gives any necessary VSAM parameters (by way of AMP). Specify
DISP=MOD for resume loading and DISP=OLD or SHR for all other
processing. You don't have to specify anything about the ISAM interface
itself. The interface is automatically brought into action when your processing
program opens a DCB whose associated DD statement describes a
key-sequenced data set (instead of an indexed-sequential data set). If you
have defined your VSAM data set in a user catalog, specify the user catalog in
a JOBCAT or STEPCAT DD statement.

The DCB parameter in the DD statement that identifies' a VSAM data set is
invalid and must be removed. Certain DCB-type information may be
specified in the AMP parameter, which is described later in this chapter.

Figure 20 shows the DCB fields supported by the ISAM interface.

Using ISAM Programming With VSAM 227

Field
Name

BFALN

BLKSI

BUFCB

BUFL

BUFNO

DDNAM

DEBAD

DEVT

DSORG

EO DAD

ESETL

EXCDI

EXCD2

EXLST

FREED

GET/PUT

KEYLE

LRAN

LRECL

LWKN

MACRF

NCP

NCRHI

OFLGS

OPTCD

RECFM

RKP

RORGt

RORG2

RORG3

SETL

ST

------ ---

Meaning

Same as in ISAM; defaults to a doubleword

Set equal to LRECL if not specified

Same as in ISAM

The greater value of AMDLRECL or DCBLRECL if not specified

For QISAM, one; for BISAM, the value of STRNO if not specified

Same as in ISAM

During the DCB exit, contains the address of the OPEN work area; after
the DCB exit, contains the address of the dummy DEB built by the ISAM
interface

Set from the VSAM UCB TYPE

Same as in ISAM

Same as in ISAM

Address of the ISAM interface ESETL routine

See the QISAM exception codes

See the QISAM exception codes

Same as in ISAM (except that VSAM does not support the JFCBE exit)

Address of the ISAM-interface dynamic buffering routine (IDAIIFBF)

For QISAM LOAD, the address of the ISAM-interface PUT routine; for
QISAM SCAN, 0, the address of the ISAM-interface GET routine, 4, the
address of the ISAM-interface PUTX routine, and 8, the address of the
ISAM-interface RELSE routine

Same as in ISAM

Address of the ISAM-interface READ K/WRITE K routine

Set to the maximum record size specified in the Access Method Services
DEFINE command if not specified (adjusted for variable-length, fixed,
unblocked, and RKP=O records)

Address of the ISAM-interface WRITE KN routine

Same as in ISAM

For BISAM, defaults to one

Set to a value of 8 before DCB exit

Same as in ISAM

Bit 0 (W), same as in ISAM; bit 3 (I), dummy records are not to be
written in the VSAM data set; bit 6 (L), dummy records are to be treated
as in ISAM; all other options ignored

Same as in ISAM; default to unblocked, variable-length records

Same as in ISAM

Set to a value of 0 after DCB exit

Set to a value of X'7FFFF' after DCB exit

Set to a value of 0 after DCB exit

For BISAM, address of the ISAM-interface CHECK routine; for QISAM,
address of the ISAM-interface SETL routine

Bit 1 (key-sequence check), same as in ISAM; bit 2 (loading has
completed), same as in ISAM

Figure 20 (Part 1 of 2).DCB Fields Supported by ISAM Interface

228 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

Field
Name

SYNAD

TIOT

WKPTI

WKPT5

WKPT6

Meaning

Same as in ISAM

Same as in ISAM

For QISAM SCAN, WKPTI + 112=address of the WICBF field pointing
to the current buffer

Address of the ISAM-interface control block (IICB)

For QISAM LOAD, address of the dummy DCB work area vector
pointers; the only field supported is ISL VPTRS+4=pointer to KEYSA VE

Figure 20 (Part 2 of 2). DCB Fields Supported by ISAM Interface

AMP Parameter Specification

When an ISAM processing program is run with the ISAM interface, the AMP
parameter enables you to specify:

• That a VSAM data set is to be processed (AMORG)

• The need for extra index buffers for simulating the residency of the highest
level(s) of an index in virtual storage (BUFNI)

• The need for additional data buffers to improve sequential performance
(BUFND)

• Whether to remove records flagged (OPTCD)

• What record format (RECFM) is used by the processing program

• The number of concurrent BISAM and QISAM (basic and queued
indexed-sequential access methods) requests that the processing program
may issue (STRNO)

• The name of an ISAM exit routine to analyze physical and logical errors
(SYNAD)

The AMP parameter has some subparameters that are peculiar to the ISAM
interface. The other subparameters of AMP (BUFSP, CROPS, and TRACE),
which can also be used with the interface, are described in the chapter "Job
Control Language." The format of the AMP parameter (with the
subparameters discussed here) is:

I I ... DO [AMP='AMORG'
r, 'BUFND=number']
[, ' BUFNI= number ']
[, ·OPTCD={I I L IlL})'
[,'RECFM={F I FB I V I VB},]
[,'STRNO= number']
[,'SYNAD= modu/ename ']]

where:

AMORG
specifies that a VSAM data set is to be processed. When you specify unit
and volume information for a DCB (through the ISAM interface program)
or when you specify DUMMY in the DD statement, you must specify
AMORG. Under these conditions, the system doesn't have to search a
catalog to find out what volume(s) are required, and therefore doesn't
know that the DD statement defines a VSAM data set. You never have to
specify unit and volume information unless you want to have mounted

Using ISAM Programming With VSAM 229

I some, but not all, of the data set's volumes, or you want to defer the
volume mounting.

BUFND= number
specifies the number of I/O buffers VSAM is to use for data records. The
minimum number you may specify is 1 plus the number specified for
STRNO (if you omit STRNO, BUFND must be at least 2, because the
default for STRNO is I),

BUFNI=number
specifies the number of I/O buffers VSAM is to use for index records. If
you don't specify BUFNI, VSAM uses as many index buffers as the
number specified for STRNO (1 if you don't specify STRNO). You may
specify for BUFNI a number 1 greater than STRNO (2 if you don't specify
STRNO) to simulate having the highest level of an ISAM index resident. If
you specify for BUFNI a number 2 or more greater than STRNO, you
simulate having intermediate levels of the index resident.

OPTCD= {I I L IlL}
specifies how records flagged for deletion are to be treated. The values that
can be specified are:

L

I

IL

specifies that a record marked for deletion by your processing program
is to be kept in the data set. Although this parameter has the same
meaning and restrictions for the ISAM interface as it has for ISAM, it
may have. to be specified in the AMP parameter when it wasn't
previously needed in the ISAM job control language. It is required when
OPTCD=L is not specified in the DCB in the processing program
because OPTCD is not merged into the DSCB when the ISAM interface
is used.

specifies, when coded along with OPTCD=L in the DCB, that records
marked for deletion by your processing program are not written into the
data set .by the ISAM interface. If OPTCD=I is speci~ied in the AMP
parameter, but OPTCD=L isn't specified in the processing program's
DCB, records flagged for deletion are treated like any other records:
that is, AMP='OPTCD=I', without L anywhere specified, has no
effect.

specifies that if your processing program writes a record marked for
deletion, the ISAM interface is not to put the record into the data set.
(It issues a VSAM ERASE to delete the old record if your processing
program had previously read the record for update.) The result of this
parameter is the same as when AMP='OPTCD=I' is coded along with
OPTCD=L in the DCB in the processing program.

REC~={FIFBIVIVB}
specifies the ISAM record format that your processing program is coded
for. Although this parameter has the same meaning and restrictions for the
ISAM interface as it has for ISAM, it may have to be specified in the AMP
parameter when it wasn't previously required in the ISAM job control

. language. RECFM is required when it is not specified in the DCB in the
processing program because RECFM is not merged into the DSCB when
the ISAM interface is used. All VSAM requests are for unblocked records.
If your program issues a request for blocked records, the ISAM interface
sets the overflow-record indicator for each record to indicate that each is

230 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

being passed to your program unblocked. If RECFM isn't specified in the
AMP parameter or in the processing program's DCB, V is the default.

STRNO=number
specifies the number of request parameter lists the processing program can
tie up concurrently. Neither VSAM nor the ISAM interface can anticipate
the number, so you must indicate it in the STRNO parameter. Specify a
number at least equal to the number of BISAM and QISAM requests that
your program can issue concurrently. (If you have subtasks, add the
number of such requests for each sub task together, plus an additional one
for each subtask that sequentially processes the same data set.) In a create
step, STRNO cannot be greater than 1.

SYNAD=modulename
specifies the name of a routine that the ISAM interface is to load and exit
to if a physical or logical error occurs when you are gaining access to the
key-sequenced data set. If your processing program already indicates a
SYNAD routine, the routine specified in the AMP SYNAD parameter
replaces it.

The ISAM interface uses a request parameter list to describe a request that
your program issues. The interface uses the same request parameter list over
and over:

• With BISAM, a READ for update ties up a request parameter list until a
WRITE or FREEDBUF is issued (at which time the interface issues an
ENDREQ for the request parameter list).

• With QISAM, a request parameter list is tied up until an ESETL is issued
(at which time the interface issues ENDREQ).

If the processing program issues an ISAM request when no more request
parameter lists are available, the ISAM interface returns an ISAM code that
indicates an invalid request. If you're running subtasks, it's possible to reissue
the invalid request and have it complete successfully when another subtask
frees a request parameter list. .

The SYNAD routine must not issue VSAM macros or check for VSAM return
codes. The ISAM interface translates all VSAM codes to appropriate ISAM
codes.

You need not modify or replace a SYNAD routine that issues only a CLOSE,
ABEND, SYNADAF, or SYNADRLS macro or merely examines DCB or
DECB exception codes.

Restrictions in the Use of the ISAM Interface
Some restrictions were indicated earlier in this chapter that may require you
to modify an ISAM processing program to process a key-sequenced data set.
All VS and VSAM restrictions apply to the use of the ISAM interface; for
example:

• VSAM doesn't allow the OPENJ macro: if your program issues it, remove
it or replace it with the OPEN macro.

• If your processing program was coded on the assumption that the
indexed-sequential data set it was processing was a temporary data set, you
may need to modify the program: a VSAM data set cannot be temporary.

Using ISAM Programming With VSAM 231

Additional restrictions are:

• A program must run successfully under ISAM using standard ISAM
interfaces; the interface doesn't check for parameters that are invalid for
ISAM.

• If your DCB exit list contains an entry for a JFCBE exit routine, remove it.
The interface doesn't support the use of a JFCBE exit routine. If the DCB
exit list contains an entry for a DCB open exit routine, that exit is taken.

• If your ISAM program creates dummy records with a maximum key to
avoid overflow, remove that code for VSAM.

• If your program counts overflow records to determine reorganization
needs, its results will be meaningless with VSAM data sets.

• The work area into which data records are read must not be shorter than a
record. If your processing program is designed to read a portion of a record
into a work area, you must change the design. The interface takes the
record length indicated in the DCB to be the actual length of the data
record. The record length in a BISAM DECB is ignored except when you
are replacing a variable-length record with the WRITE macro.

• You may share data among sub tasks that specify the same DD statement in
their DCB(s), and VSAM ensures data integrity. But if you share data
among sub tasks that specify different DD statements for the data, you are
responsible for data integrity. The ISAM interface doesn't ensure DCB
integrity when two or more DCBs are opened for a data set. Not all of the
fields in a DCB can be counted on to contain valid information.

• When a data set is shared by several jobs (DISP=SHR), you must use the
ENQ and DEQ macros to ensure exclusive control of the data set.
Exclusive control is necessary to ensure data integrity when your program
adds or updates records in the data set. You can share the data set with
other users (that is, relinquish exclusive control) when reading records.

• If your processing program issues the SETL I or SETL ID instruction, you
must modify the instruction to some other form of the SETL or take it out.
The ISAM interface cannot translate a request that depends on a specific
block or device address.

• Although asynchronous processing may be specified in an ISAM
processing program, all ISAM requests are handled synchronously by the
ISAM interface; WAIT and CHECK requests are always satisfied
immediately. The ISAM CHECK macro doesn't result in a VSAM
CHECK macro's being issued but merely causes exception codes in the
DECB (data event control block) to be tested.

• For processing programs that use locate processing, the ISAM interface
constructs buffers to simulate locate processing.

• For blocked-record processing, the ISAM interface simulates
unblocked-record processing by setting the overflow-record indicator for
each record. (In ISAM, an overflow record is never blocked with other
records.) Programs which examine ISAM internal data areas (for example,
block descriptor words (BDW) or the MBBCCHHR address of the next
overflow record) must be modified to use only standard ISAM interfaces.
The ISAM RELSE instruction causes no action to take place.

232 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: Converting a Data Set

)

• If your ISAM SYNAD routine examines information that cannot be
supported by the ISAM interface (for example, the lOB), specify a
repiacemeni iSAivi SYNAn routine in the At,,1P parameter of the VSAivl
DD statement.

I
· Your ISAM program (on TSO) cannot dynamically allocate a VSAM data

set (use LOGON PROC).

• CATA~OG/DADSM macros in the ISAM processing program must be
replaced with Access Method Services commands.

• The ISAM interface uses the same RPL over and over, thus for BISAM a
READ for update ties up an RPL until a WRITE or FREEDBUF is
issued (at which time the interface issues an ENDREQ for the RPL).
(When using ISAM you may merely issue another READ if you don't want
to update a record after is~uing a BISAM READ for update.)

• ISAM programs will run, with sequential processing, if the key length is
defined as smaller than it actually is. This is not permitted with the ISAM
interface.

In this example, the indexed-sequential data set to be converted
(lSAMDAT A) is cataloged either in the system catalog or in a VSAM
catalog. A key-sequenced data set, VSAMDA T A, has previously been
defined in user catalog USERCTLG. Because both the indexed-sequential
and key-sequenced data set are cataloged, unit and volume information need
not be specified.

ISAMDATA contains records flagged for deletion; these records are to be
kept in the VSAM data set.

IICONVERT JOB
IIJOBCAT DD DISP=SHR,DSNAME=USERCTLG
IISTEP EXEC PGM=IDCAMS
IISYSPRINTDD SYSOUT=A
IIISAM DD DISP=OLD,DSNAME=ISAMDATA,DCB=DSORG=IS
IIVSAM DD DISP=OLD,DSNAME=VSAMDATA
IISYSIN DD *

1*

REPRO INFILE(ISAM ENVIRONMENT(DUMMY))
OUTFILE(VSAM)

To drop records flagged for deletion in the indexed-sequential data set, omit
ENVIRONMENT(DUMMY).

For details on the use of the REPRO command and its parameters, see the
Access Method Services publication appropriate for your system.

Using ISAM Programming With VSAM 233

Example: Issuing a SYNADAF Macro

The following example illustrates how a SYNAD r.outine specified by way of
AMP may issue a SYNADAF macro without preliminaries-registers 0 and 1
already contain what SYNADAF expects to find.

AMPSYN CSECT

USING *, 15

SYNADAF ACSMETH=QISAM

STM 14,12,12(13)

BALR 7,0

USING *,7

L 15,132(1)

L 14,128(1)

TM 42 (15) , X ' 40 '

BO QISAM

TM 43 (15) , X ' 40'

BO QISAM

BISAM TM 24(14),X'10'

BO INVBISAM

QISAM TM 80 (15) , X ' 10'

BO INVQISAM

INVBISAM EQU *

INVQISAM EQU *

LM 14,12,12(13)

DROP 7

USING AMPSYN,15

SYNADRLS

BR 14

END AMPSYN

Register 15 contains the entry address
toAMPSYN.

Either QISAM or BISAM may be
specified.

Load address of next instruction into
register 7 for base register.

The address of the DCB is stored 132
bytes into the SYNADAF message.

The address of the DECB is stored 128
bytes into the SYNADAF message.

Does the DCB indicate QISAM scan?

Yes.

Does the DCB indicate QISAM load?

Yes.

Does the DECB indicate an invalid
BISAM request?

Yes.

The routine might print the SYNADAF
message or issue ABEND.

Does the DCB indicate an invalid
QISAM request?

Yes.

The routine might print the SYNADAF
message or issue ABEND.

When the processing program closes the data set, the interface issues VSAM
PUT macros for ISAM PUT locate requests (in load mode), deletes the
interface routines from virtual storage, frees virtual-storage space that was
obtained for the interface, and gives control to VSAM.

234 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

USER-WRIlTEN EXIT ROUTINES

User-written routines may be supplied to:

• Analyze logical errors

• Analyze physical errors

• Perform end-of-data processing

• Record transactions made against a data set

• Perform user-security verification

If the exit routine is used by a program that is doing asynchronous processing
with multiple request parameter lists or if the exit routine is used by more
than one data set, it must be coded so that it can handle an entry made before
the previous entry's processing is completed. A particularly sensitive area is
the saving and restoring of registers by the exit routine or by other routines
called by the exit routine. The best way to do this is to code the exit routine
reentrant; another way is to develop a technique for associating a unique save
area with each request parameter list.

. If the LERAD, EODAD, or SYNAD exit routine reuses the request
parameter list passed to it, the exit routine should be aware that:

• Recursion occurs (that is, the exit routine is called again) if the request that
issues the reused RPL results in the same exception condition that caused
the exit routine to be entered originally.

• The original feedback code is replaced with the feedback code that
indicates the status of the latest request issued against the RPL. If the exit
routine returns to VSAM, VSAM (when it returns to the user's program)
sets register 15 to also indicate the status of the latest request.

LERAD Exit Routine to Analyze Logical E"ors

A LERAD exit routine should examine the feedback field in the request
parameter list to determine what logical error occurred. What the routine does
after determining the error depends on your knowledge of the kinds of things
in the processing program that may have caused the error. When your
LERAD exit routine completes processing, return to your main program as
described in "Returning to Your Main Program." If the error cannot be
corrected, close the data se~ and either terminate processing or return to
VSAM.

Figure 21 gives the contents of the registers when VSAM exits to the LERAD
exit routine.

If the LERAD exit routine issues GENCB, MODCB, SHOWCB, or TESTCB
and returns to VSAM, it must restore registers 1, 13 and 14, which are used
by these macros. It must also provide two save areas; one, whose address
should be loaded into register 13 before the GENCB, MODCB, SHOWCB,

, or TESTCB is issued, and the second, to separately store registers 1, 13, and
14.

If a logical error occurs and no LERAD exit routine is provided (or the
LERAD exit is inactive), VSAM returns codes in register 15 and in the
feedback field of the request parameter list to identify the error. See "Logical

User-Written Exit Routines 235

Reg. Contents

o Unpredictable.

Address of the request parameter list that contains the feedback field the routine
should examine. The register must contain this address if you return to VSAM.

2-13 Same as when the request macro was issued. Register 13, by convention, contains
the address of your processing program's 72-byte save area, which may not be
used as a save area by the LERAD routine if the routine returns control to
VSAM.

14 Return address to VSAM.

15 Entry address to the LERAD routine. The register doesn't contain the
logical-error indicator.

Figure 21. Contents of Registers at Entry to LERAD Exit Routine

Errors" in the chapter "Request Macros" for a description of these return
codes.

SYNAD Exit Routine to Analyze Physical En-ors

VSAM exits to a SYNAD routine if a physical error occurs when you request
access to data. It also exits to a SYNAD routine when you close a data set if a
physical error occurs while VSAM is writing the contents of a buffer out to
direct-access storage.

A SYNAD routine should examine the feedback field in the request
parameter list to identify the type of physical error that occurred. It should
then get the address of the message area, if any, from the request parameter
list, so that it can examine the message for detailed information about the
error.

The main problem with a physical error is the possible loss of data. You
should try to recover your data before continuing to process. Input operations
(ACB MACRF=IN) are generally less serious than output or update
operations (MACRF=OUT), because your request was not attempting to
alter the contents of the data set.

If the routine cannot correct an error, it might print the physical-error
message, close the data set, and terminate the program. If the error occurred
while VSAM was closing the data set, and if another error occurs after the
exit routine issues a CLOSE macro, VSAM doesn't exit to the routine a
second time.

When your SYNAD exit routine completes processing, return to your main
program as described in "Returning to Your Main Program."

If the SYN AD routine returns to VSAM, whether the error was corrected or
not, VSAM drops the request and returns to your processing program at the
instruction following the last executed instruction. Register 15 is reset to
indicate that there was an error, and the feedback field in the request
parameter list identifies it.

Physical errors affect positioning: if a GET was issued that would have
positioned VSAM for a subsequent sequential GET and an error occurs,
VSAM is positioned at the control interval next in key (RPL OPTCD=KEY)
or in entry (OPTCD=ADR) sequence after the control interval involved in
the error. The processing program can therefore ignore the error and proceed
with sequential processing. With direct processing, the likelihood of

236 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Exception Exit Routine

)

reencountering the control interval involved in the error depends on your
application.

I'igurc 22 gives the CO!1te!1ts of the registers when VSAM exits to the SYNAD
routine.

Reg. Contents

o Unpredictable.

Address of the request parameter list that contains a feedback return code and
the address of a message area, if any. If you issued a request macro, the request
parameter list is the one pointed to by the request macro; if you issued a CLOSE
macro, the request parameter list was built by VSAM to process the close
request. Register 1 must contain this address if the SYNAD routine returns to
VSAM.

2-13 Same as when the request macro or CLOSE macro was issued. Register 13, by
convention, contains the address of your processing program's 72-byte save area,
which may not be used by the SYNAD routine if it returns control to VSAM.

14 Return address to VSAM.

15 Entry address to the SYNAD routine. The register doesn't contain the
physical-error indicator.

Figure 22. Contents of Registers at Entry to SYNAD Exit Routine

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB and
returns to VSAM, it must provide a save area and restore registers 13 and 14,
which are used by these macros.

See "Physical Errors" in the chapter "Request Macros" for the format-of a
physical-error message that can be written by the SYN AD routine.

If a physical error occurs and no SYN AD routine is provided (or the SYN AD
exit is inactive), VSAM returns codes in register 15 and in the feedback field
of the request parameter list to identify the error. See "Physical Errors" in the
chapter "Request Macros" for a description of these return codes.

You can provide an exception exit routine to monitor 110 errors associated
with a data set. The name of your routine is specified via the Access Method
Services DEFINE command.

If an 110 error occurs while a program with a specified SYN AD routine is
processing a data set with a specified exception exit, the exception exit is
taken first.

When your exception exit routine completes processing, return to your main
program as described in "Returning to Your Main Program."

See the appropriate Access Method Services publication for information about
how exception exits are established, changed, or nullified.

User-Written Exit Routines 237

EODAD Exit Routine to Process End-o/-Data

VSAM exits to an EODAD routine when an attempt is made to sequentially
retrieve or point to a record beyond the last record in the data set (one with
the highest key for keyed access and the one with the highest RBA for
addressed access). (VSAM doesn't take the exit for direct requests that
specify a record beyond the end.) If the EODAD exit isn't used, the condition
is considered a logical error (FDBK code X'04') and can be handled by the
LERAD routine, if one is supplied.

The typical actions of an EODAD routine are to issue completion messages,
close the data set, and terminate processing without returning to VSAM. If
the routine returns to VSAM and another GET request js issued for access to
the data set, VSAM exits to the LERAD routine. When your EODAD routin~
completes processing, return to your main program as described in "Returning
to Your Main Program."

If a processing program retrieves records sequentially with a request defined
by a chain of request parameter lists, the EODAD routine must determine
whether the end of the data set was reached for the first request parameter
list in the chain. If not, then one or more records have been retrieved but not
yet processed by the processing program.

Figure 23 gives the contents of the registers when VSAM exits to the
EODAD routine.

Reg. Contents

o Unpredictable.

Address of the request parameter list that defines the request that occasioned
VSAM's reaching the end of the data set., The register must contain this address if
you return to VSAM.

2- 13 Same as when the request macro was issued. Register 13, by convention, contains
the address of your processing program's 72-byte save area, which may not be
used as a save area by the EO DAD routine if it returns control to VSAM.

14 Return address to VSAM.

15 Entry address to the EODAD routine.

Figure 23. Contents of Registers at Entry to EODAD Exit Routine

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB and
returns to VSAM, it must provide a save area and restore registers 13 and 14,
which are used by these macros.

The type of data set whose end was reached can be determined by examining
the request parameter list for the address of the access-method control block
that connects the program to the data set and testing its A TRB
characteristics.

JRNAD Exit Routine to Journalize Transactions

A JRNAD routine can be provided to record transactions against a data set
and to keep track of changes in the RBAs of records. VSAM takes the
JRNAD exit each time the processing program issues a GET, PUT, or
ERASE; each time data is shifted right or left in a control interval or is moved
to another control interval to accommodate a record's being deleted, inserted,
shortened, or lengthened; and each time an 110 error occurs.

Because the JRNAD is taken for I/O errors, a journal exit may zero out, or
otherwise alter, the physical-error return code, so that a series of operations

238 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

may continue to completion, even though one or more of the operations
failed.

Figure 24 gives the contents of the registers when VSAM exits to the JRNAD
routine.

Reg. Contents

o Unpredictable.

Address of a parameter list with the following format:

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

I byte

1 byte

Address of the request parameter list that defines the request that
caused VSAM to exit to the routine

Address of a 5-byte field that identifies the data set being processed.
This field has the format:

4 bytes Address of the access-method control block that is specified
by the request parameter list that defines the request that
occasioned the JRNAD exit's being taken

I byte Indication of whether the data set is the data (X'On or the
index (X'02') component

For RBA changes only, the RBA of the first byte of data that is being
shifted or moved

For RBA changes orlly, the number of bytes of data that is being
shifted or moved (this number doesn't include free space, if any, or
control information-except for a control-area split, when the whole
contents of a control interval are moved to a new control interval)

For RBA changes only, the RBA of the first byte to which data is
being shifted or moved

Indication of the reason VSAM exited to the JRNAD routine:

X'OO'
X'04'
X'08'
X'OC'
X'to'
X'14'
X'18'
X'Ie'

GET request
PUT request
ERASE request
RBA change
Read spanned record segment
Write spanned record segment
Reserved
Reserved

For shared resources: 1

X'20'
X'24'
X'28'
X'2C'
X'30'
through
X'FC'

Reserved.

Control area split
Input error
Output error
Buffer write

Reserved

2-13 Unpredictable.

14 Return address to VSAM.

15 Entry address to the JRNAD routine.

1 Described in OS/VS Virtual Storage Access Method (VSAM Options for Advanced
Applications

Figure 24. Contents of Registers at Entry to JRNAD Exit Routine

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB, it must
restore register 14, which is used by these macros, before it returns to VSAM.

User-Written Exit Routines 239

If the exit routine uses register 1, it must restore it with the parameter-list
address before returning to VSAM. (The routine must return for completion
of the request that caused VSAM to exit.)

For journalizing transactions (when VSAM exits because of a GET, PUT, or
ERASE), you can use the SHOWCB macro to display information in the
request parameter list about the record that was retrieved, stored, or
deleted-FIELDS=(AREA,KEYLEN,RBA,RECLEN), for example. You
can also use the TESTCB macro to find out whether a GET or a PUT was for
update (OPTCD=UPD).

For recording RBA changes, you must calculate how many records there are
in the data being shifted or moved, so you can keep track of the new RBA for
each one. With fixed-length records, you calculate the number by dividing the
record length into the number of bytes of data being shifted. With
variable-length records, you could calculate the number by using a table that
not only identifies the records (by associating a record's key with its RBA),
but also gives their length.

Some control-interval splits involve data being moved to two new control
intervals, and control-area splits normally involve many control intervals'
contents being moved. In these cases, VSAM exits to the JRNAD routine for
each separate movement of data to a new control interval.

You should provide a routine to keep track of RBA changes caused by
control-interval and control-area splits. RBA changes that occur by way of
keyed access to a key-sequenced data set must also be recorded if you intend
to process the data set later by direct-addressed access.

If your JRNAD routine only journals transactions it should ignore reason
X'OC' and return to VSAM; conversely, it should ignore reasons X'OO',
X'04', and X'08' if it only records RBA changes.

The JRNAD exit must be indicated as active before the data set for which the
exit is to be used is opened, and the exit must not be made inactive during
processing. If you define more than one access-method control block for a
data set and want to have a JRNAD routine, the first ACB you open for the
data set must specify the exit list that identifies the routine.

UPAD Exit Routine for User Processing

The user can perform special processing during a VSAM request with the
UP AD exit routine. For example, VSAM takes the UP AD exit immediately
prior to issuing a WAIT for I/O completion or for a serially reusable resource.
VSAM exits to the UP AD routine when the request's RPL specifies
OPTCD=(SYN, WAITX) and the ACB specifies MACRF=LSR or
MACRF=GSR.

The UP AD exit routine must be active before the data set is opened. The exit
must not be made inactive during processing. If the UP AD exit is desired and
many ACBs are used for processing the data set, the first ACB that is opened
must specify the exit list that identifies the UP AD exit routine.

240 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

When the UP AD exit routine is entered, register contents passed by VSAM
are:

Reg. Conlenb

o Unpredictable
'1 Address of a parameter list built by VSAM
2-13 Unpredictable
14 Return address to VSAM
15 Entry address of the UP AD routine

The contents of the parameter list built by VSAM, pointed to by register 1,
can be examined by the UPAD exit routine:

Offset

0(0)

4 (4)

8 (8)

12 (OC)

20 (14)

Bytes

4

4

4

8

Description

Address of the RPL

Address of a 5-byte data set identifier.
The first four bytes of the identifier
is the ACB address; the last byte
identifies the component: data (X'Ot'),
or index (X'02').

Address of the request's ECB

Reserved

Reason code:

X'OO' VSAM is about to wait
X'04'-'FC' Reserved

If the UP AD exit routine modifies register 14 (for example, by issuing a
TESTCB, the routine must restore register 14 before returing to VSAM. If
register 1 is used, the UP AD exit routine must restore it with the parameter
list address before returning to VSAM.

The UP AD routine must return to VSAM under the same TCB from which it
was called for completion of the request that caused VSAM to exit. Note that
the UP AD exit routine cannot use register 13 as a save area pointer without
first obtaining its own save area.

When VSAM regains control from a UP AD exit that was taken for reason
code zero, VSAM tests the ECB for completion. If the I/O request has not
completed, VSAM issues a WAIT. Once the ECB has been posted complete,
VSAM clears it in preparation for the next WAIT.

The UP AD exit routine, when taken prior to aWAIT during LSR or GSR
processing, might issue other VSAM requests to obtain better processing
overlap (similar to asynchronous processing). However, the UP AD routine
must not issue any synchronous VSAM requests that do not specify W AITX
because a started request might issue aWAIT for a resource owned by a
starting request. If the UP AD routine starts requests that specify W AITX, the
UP AD routine must be reentrant. Once mUltiple requests have been started,
they should be synchronized by waiting for one ECB out of a group of ECBs
to be posted complete rather than waiting for a specific ECB or for many
ECBs to be posted complete. (Posting of some ECBs in the list might be
dependent upon the resumption of some of the other requests that entered the
UP AD routine.)

User-Written Exit Routines 241

User-Security- Verification Routine

If you use VSAM password protection, you may also have your own routine
to check a requester's authority. VSAM transfers control to your routine,
which must reside in SYS 1.LINKLIB, when a requester gives a correct
password other than the master password.

You may, through the Access Method Services DEFINE command, identify
your user security-verification routine (USVR) and associate up to 256 bytes
of your own security information with each data set to be protected. This
information-the user security-authorization record (USAR)-is made
available to the USVR when the routine gets control. You may restrict access
to the data set as you choose; for example, you may require that the owner of
a data set give his ID when he defines the data set and then allow only the
owner to gain access to the data set.

Figure 25 gives the contents of the registers when VSAM gives control to the
USVR.

If the USVR is being used by more than one task at a time, you must code the
USVR reentrant or develop another method for handling simultaneous
entries.

Reg. Contents

o Unpredictable.

Address of a parameter list with the following format:

44 bytes Name of the data set for which authority to process is to be verified
(the name you specified when you defined it with Access Method
Services)

8 bytes Prompting code (or Os)

8 bytes Owner identification (or Os)

8 bytes The password that the requester gave (it has been verified by YSAM)

2 bytes Length of the USAR (in binary)

The USAR

2-13 Unpredictable.

14 Return address to YSAM.

15 Entry address to the USYR. When the routine returns to YSAM, it indicates by the
following codes in register 15 whether the requester has been authorized to gain
access to the data set:

o Authority granted

not 0 Authority withheld

Figure 25. Communication with User-Security-Yerification Routine

Returning to Your Main Program

Five exit routines can be entered when your main program issues a VSAM
request macro (GET, PUT, POINT, and ERASE) and the macro fails to
complete successfully: LERAD, SYNAD, EODAD, UP AD, or the exception
exit routine. (The exception exit routine is described in the Access Method
Services publication appropriate for your system.) When your exit routine

242 OS!VS Virtual Storage Access Method (VSAM) Programmer's Guide

completes its processing, it can return to your main program in one of two
ways:

A. The exit rOiitine can rctuiii to VS.A~A ('.'ia the ret!.!rn address in register
14); VSAM then returns to your program at the instruction following the
VSAM request macro that failed to complete successfully.

B. The exit routine can determine the appropriate return point in your
program then branch directly to that point. Note that when VSAM enters
your exit routine, none of the registers contains the address of the
instruction following the failing macro.

Method A provides the easier way to return to your program. However, there
is a special situation that requires you to return via method B; your exit
routine, during the error recovery and correction process, has issued a GET,
PUT, POINT, or ERASE macro that refers to the request parameter list
referred to by the failing VSAM macro (that is, the request parameter list has
been reissued by the exit routine). In this case, VSAM has lost track of its
reentry point to your main program. If the exit routine returns to VSAM,
VSAM issues an ABEND.

If your error recovery and correction process needs to reissue the failing
VSAM macro against the request parameter list in order to retry the failing
request or to correct it:

• Your exit routine can correct the request parameter list (using MODCB),
then set a switch to indicate to your main program that the request
parameter list is now ready to retry. When your exit routine completes
processing, it can return to VSAM (via register 14), which returns to your
main program. Your main program can then test the switch and reissue the
VSAM macro and request parameter list.

• Your exit routine can issue a GENCB macro to build a request parameter
list, and then copy the request parameter list (for the failing VSAM macro)
into the newly-built RPL. At this point, your exit routine can issue·VSAM
macros against the newly-built RPL. When your exit routine completes
processing, it can return to VSAM (via register 14), which returns to your
main program.

User-Written Exit Routines 243

Example: User- Written Exit Routine

This example demonstrates a user-written exit routine. It is a SYNAD exit
routine that examines the FDBK field of the RPL checking for the type of
physical error that caused the exit. After the checking, special processing may
be performed as necessary. The routine returns to VSAM after printing an
appropriate error message on SYSPRINT.

ACB1

EXITS

RPLl

PHYERR

*

*

ACB EXLST=EXITS

EXLST SYNAD=PHYERR

RPL ACB=ACB1,
MSGAREA=PERRMSG,
MSGLEN=128

USING *, 15

LA 13,SAVE

SHOWCB RPL=RPL 1,
FIELDS=FDBK,
AREA= ERR cn D 8,
LENGTH=4

PUT PRTDCB,ERRMSG

BR 14

ERRCODE DC

PERRMSG DS

DS

F'O'

OXL128

XL12

XLl16 ERRMSG

PRTDCB

SAVE

SAVREG

DS

DCB

DS

DS

18F

3F

244 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

This routine is non-reentrant,

Register 15 is entry address

Save caller's registers (1,13,14)

Point to routine's save area

If register 1 = address of RPL 1, then
error did not occur for a CLOSE

Show type of physical error

Examine error, perform special
processing

Print physical error messa&e

Restore caller's registers (1.13,14)

Return to VSAM

RPL error code from SHOWCB

Physical error message

Pad for unprintable part

Printable format part of message

QSAM DeB

SYNAD routine's save area

Save registers I, 13, 14

APPENDIX A: SUMMARY OF MACROS

For easy reference, the formats of aii of the macros described in this book are
repeated in this one place in alphabetic order.

BLDVRP, DLVRP, GETIX, MRKBFR, PUTIX, SCHBFR, SHOWCAT,
VERIFY, and WRTBFR are described in OS/VS Virtual Storage Access
Method (VSAM) Options for Advanced Applications.

ACB (Generate an Access-Method Control Block)

[label] ACB [AM=VSAM]
[,BSTRNO= number]
[,BUFND= number]
[,BUFNI= number]
[,BUFSP= number]
[,CATALOG = {YES I NO}]
[,CRA={SCRA I UeRA}]
[,DDNAME=ddname] I

[,EXLST = address]
[,MACRF=([ADR][,CNV][,KEY]

[,CFX I NFX]
[,DDN I DSN]
[,DFR I NDF]
[,DIR][,SEQ][,SKP]
[,ICI I NCI]
[,IN][,OUT]
[NIS I SIS]
[,NRMI AIX]
[NRSt RST]
[NSR I LSR I GSR]
[,NUB I UBF])]

[,MAREA= address]
[,MLEN = number]
[,PASSWD= address]
[,STRNO= number]

CHECK (Suspend Processing)

I [label] I CHECK I RPL= address

CLOSE (Disconnect Program and Data)

[label] CLOSE (address [,(options)] •.•]
[,TYPE=T]

ENDREQ (Terminate a Request)

I [label] I ENDREQ I RPL= address

ERASE (Delete a Record)

I [label] I ERASE I RPL= address

Appendix A: Summary of Macros 245

EXLST (Generate an Exit List)

[label] EXLST [AM = VSAM]
[,EODAD=(address [,~ I N][,L])]
[,JRNAD=(address [,~ I N][,L])]
[,LERAD=(address [,~ I N][,L])]
[,SYNAD=(address [,~ I N][,L])]
[UPAD=(address[,A I N][,LD]

GENCB (Generate an Access-Method Control Block)

[label] GENCB BLK=ACB
[,AM=VSAM]
[,BSTRNO= number]
[,BUFND= number]
[,BUFNI= number]
[,BUFSP= number]
[,CATALOG = {YES I NO}]
[,COPIES= number]
[,CRA= {SCRA I UCRA}]
[,DDNAME=ddname]
[,EXLST = address]
[,LENGTH= number]
[,MACRF=([ADR][,CNV][,KEY]

[,CFX I NFX]
[,DDN I DSN]
[,DFR I NDF]
[,DIR][,SEQ][,SKP]
[,ICI I NeI]
[,IN][,OUT]
[,NIS I SIS]
[,NRM I AIX]
[,NRS I RST]
[,NSR I LSR]
[,NUB I UBF])]

[,MAREA= address]
[,MLEN = number]
[,PASSWD= address]
[,STRNO= address]
[,WAREA=address]

GENCB (Generate an Exit List)

[label] GENCB BLK=EXLST
[,AM=VSAM]
[,COPIES= number]
[,EODAD=(address [,A I N][,L])]
[,JRNAD=(address [,~I N][,L])]
[,LENGTH= number]
[,LERAD=(address [,A I N][,L])]
[,SYNAD=(address [,~ I N][,L])]
[,WAREA= address]

246 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

GENCB (Generate a Request Parameter List)

I [label 1 I GENCB

)

I BI,K=RPL
[,ACB= address]
[,AM=VSAM]
[,AREA = address]
[,AREALEN = number]
[,ARG= address]
[,COPIES= number]
[,ECB= address]
[,KEYLEN = number]
[,LENGTH= number]
[,MSGAREA= address]
[,MSGLEN = number]
[,NXTRPL= address]
[,OPTCD=([ADR I CNV I KEY]

[,DIR I SEQ I SKP]
[ARD I LRD]
[FWDIBWD]
[,ASY I SYN]
[,NSP I NUP I UPD]
[,KEQ I KGE]
[,FKS I GEN]
[,LOC I MVE])]

[,RECLEN = number-] -
[,TRANSID= number]
[,W AREA = address]

Appendix A: Summary of Macros 247

GET (Retrieve a Record)

I [label] I GET I RPL= address

MODCB (Modify an Access-Method Control Block)

[label] MODCB ACB=address
[,BSTRNO= number]
[,BUFND= number]
[,BUFNI= number]
[,BUFSP= number]
[,CATALOG = {YES I NOn
[,CRA={SCRA I UCRA}]
[,DDNAME=ddname]
[,EXLST = address]
[,MACRF=([ADR][,CNV][,KEY]

[,CFX I NFX]
[,DDN I DSN]
[,DFR I NDF]
[,DIR][,SEQ][,SKP]
[lCI I NCI]
[,IN][,OUT]
[,NIS I SIS)
[,NRM I AIX]
[,NRS I RST]
[,NSRI LSR_
[,NUB I UBF])]

[,MAREA= address]
[,MLEN = number]
[,PASSWD= address]
[,STRNO= number]

MODCB (Modify an Exit List)

[label] MODCB EXLST = address
[,EODAD=(address [,A I N][,L])]
[,JRNAD=(address [,A I N][,L])]
[,LERAD=(address [,A I N][,L])]
[,SYNAD=(address [,A I N][,L])]

248 OS!VS Virtual Storage Access Method (VSAM) Programmer's Guide

MODCB (Modify a Request Parameter List)

I [lahel] I MODCB I RPL= address
[,ACB= address]
[,AREA = address]
[,AREALEN= number]
[,ARG= address]
[,ECB= address]
[,KEYLEN= number]
[,MSGAREA= address]
[,MSGLEN = number]
[,NXTRPL= address]
[,OPTCD=([ADR I CNV I KEY]

[,ARD I LRD]
[,FWD I BWD]
[,DIR I SEQ I SKP]
[,ASY I SYN]
[,NSP I NUP I UPD]
[,KEQ I KGE]
[,FKS I GEN]
[,LOC I MVED

[,RECLEN = number]
[,TRANSID= number]

Appendix A: Summary of Macros 249

OPEN (Connect Program and Data)

rv;l] I OPEN I (address [,(options)] ...)

POINT (Position for Access)

I [l~bel] I POINT I RPL= address

PUT (Store a Record)

I [label] I PUT I RPL= address

RPL (Generate a Request Parameter List)

[label] RPL ACB= address
[,AM=VSAM]
[,AREA= address]
[,AREALEN= number]
[,ARG= address]
[,ECB= address]
[,KEYLEN= number]
[,MSGAREA= address]
[,MSGLEN = number]
[,NXTRPL= address]
[,OPTCD=([ADR I CNV I KEY]

[,DIR I SEQ I SKP]
[,ARD I LRD]
[,FWD I BWO]
[,ASY I SYN]
[,NSP I NUP I UPD]
[,KEQ I KGE]
[,FKS I GEN]
[,NW AITX I W AITX]
[,LOC I MVE])]

[,RECLEN = number]
[, TRANSID= number]

250 OS!VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

SHOWCB (Display Fields of an Access-Method Control Block)

I I I
[label] SHOWCB ACB= address

,AREA= address
,LENGTH= number
[,OBJECT={DATA I INDEXn
,FIELDS = ([,ACBLEN][,AVSPAC][,BFRFND]

[,BSTRNO][,BUFND][,BUFNI]
[,BUFNO][,BUFRDS][,BUFSP]
[,CINV][,DDNAME][,ENDRBA]
[,ERROR] [,EXLST] [,FS]
[,HALCRBA][,KEYLEN] [,LRECL]
[,MAREA][,MLEN][,NCIS]
[,NDELR] [,NEXCP] [,NEXT]
[,NINSR][,NIXL][,NLOGR]
[,NRETR) (NSSS][,NUIW]
[,NUPDR][,P ASSWD][,RKP]
[,STMST][,STRMAX][,STRNO]
[UIW])

Appendix A: Summary of Macros 251

SHOWCD (Display Fields of an Exit List)

[label] SHOW CD AREA= address
,EXLST= address
,FIELDS = ([EODAD][,EXLLEN][,JRNAD]

[,LERAD][,SYNAD])
,LENGTH= number

SHOWCD (Display Fields of a Request. Parameter List)

[label] SHOWCD AREA = address
,FIELDS=([ACD][,AIXPC][,AREA][,AREALEN]

[,ARGJ[,ECD][,FDBK][,FTNCD]
[,KEYLEN][,MSGAREA]
[,MSGLEN] [,NXTRPL] [,RDA]
[,RECLEN][,RPLLEN][, TRANSID]

,LENGTH= number
,RPL= address

252 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

TESTCB (Test a Field of an Access-Method Control Block)

I _ _ I ____ _
L label J T~STLIS

! . -- "
Al:IS= aaaress
[,ERET = address] .
[,OBJECT=DATA I INDEX]
, {ATRB= ([ESDS][,KSDS][,REPL][,RRDS]

[,SPAN][,SSWDlr.WCKl) I
ATRB=UNQ
CATALOG = {YES I NO} I
MACRF = ([ADR][,AIX][,CFX][,CNV][,DDN]

[,DFR][,DIR][,DSN][,GSR][,ICI]
[,IN][,KEY][,LSR][,NCI][,NDF]
[,NFX][,NIS],NRM][,NRS][,NSR]
[,NUB][,OUT][,RST][,SEQ][SIS]
[,SKP][,UBF],) I

OFLAGS=OPEN I
OPENOBJ={PATH I BASE I AIX} I
ACBLEN = number I
A VSPAC= number I
BSTRNO= number I
BUFND= number I
BUFNI= number I
BUFNO= number I
BUFSP= number I
CINV = number I
DDNAME=ddname I
ENDRBA= number I
ERROR= number I
EXLST = address I
FS=number I
KEYLEN = number I
LRECL= number I
MAREA= address I
MLEN=number I
NCIS= number I
NDELR= number I
NEXCP= number I
NEXT = number I
NINSR= number I
NIXL= number I
NLOGR= number I
NRETR= number I
NSSS= number I
NUPDR= number I
PASSWD= address I
RKP= number I
STMST = address I
STRNO= number}

Appendix A: Summary of Macros 253

TESTCD (Test a Field of an Exit List)

[label] TESTCD ,EXLST = address
[,ERET = address]
{EODAD={O I {[address][,A I N][,L])} I
JRNAD= {O I ([address][,A I N][,L])} I
LERAD={O I {[address][,A I N][,L])} I
SYNAD={O I {[address][,A I N][,L])}}
[,EXLLEN= number]

TESTCD (Test a Field of a Request Parameier List)

[label] TESTCD RPL= address
[,ERET= address]
{IO=COMPLETE I
OPTCD=([ADR][,ARD][,ASY][,DWD][,CNV]

[,DIR][,FKS][,FWD](,GEN][,KEQ]
[,KEY] [,KGE],LOC][,LRD][,MVE]
[,NSP] [,NUP][,SEQ] [,SKP][,SYN]
[,UPD]) I

RDA= number I
RECLEN = number I
RPLLEN = number I
ACD=address I
AIXFLAG=AIXPKP I
AIXPC= number I
AREA= address I
AREALEN = number I
ARG= address I
ECD= address I
FDDK=number I
FfNCD= number I
KEYLEN= number I
MSGAREA= address I
MSGLEN=nu~ber I
NXTRPL= address I
TRANSID= number}

254 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

APPENDIX B: LIST, EXECUTE, AND GENERATE
FORMS OF GENCB~ MODCB~ SHOWCB" AND
TESTCB

List-Form Keyword

The standard forms of the GENCB, MODCB, SHOWCB, and TESTCB
macros build a parameter list describing in codes the actions indicated by the
operands you specify and pass the list to VSAM to take the indicated action.
The list, execute, and generate forms of GENCB, MODCB, SHOWCB, and
TESTCB allow you to write reentrant programs, share parameter lists, and to
modify a parameter list before using it.

Following is a brief description of the list, execute, and generate forms:

• The list form is used to build the parameter list either inline (referred to as
simple list) or in an area remote from the macro expansion (referred to as
remote list). Both the simple- and the remote-list forms allow you to build
a single parameter list that can be shared.

• The execute form is used to modify a parameter list and to pass it to
VSAM for action.

• The generate form is used to build the parameter list in a remote area and
to pass it to VSAM for action.

The list, execute, and generate forms of the GENCB, MODCB, SHOWCB,
and TESTCB macros have the same format as the standard forms, with the
exception of:

• An additional keyword, MF

• Some operands' being optional or not allowed

The sections that follow describe the format of the MF keyword and the use
of list, execute, and generate forms. They indicate the optional and required
operands.

The format of the MF keyword for the list form is:

MF= {L I (L,address [, label])}

where:

L
specifies that this is the list form of the macro.

address
specifies the address of a remote area in which the parameter list is to be
built. The area must begin on a fullword boundary. You can specify the
address in register notation or as an expression valid for a relocatable
A-type address constant or a direct or indirect S-type address constant.

label
is a unique name that is used in an EQU instruction in the expansion of the
macro; label is equated to the length of the parameter list. You do not have
to know the length of the parameter list if you code label; the expansion of
th~ macro determines the amount of storage required.

Appendix B: List, Execute, and Generate Forms of GENCB, MODCB, SHOWCB, and TESTCB 255

Execute-Form Keyword

Because the MF =L expansion does not include executable code, register
notation and expressions that generate S-type address constants cannot be
use-d.

If you code MF =L, the parameter list is built inline, which means that the
program is not reentrant if the parameter list is modified at execution.

If you code MF=(L,address), the parameter list is built in the remote area
specified, and the area must be large enough for the parameter list.

The size, in fullwords, of a parameter list is:

• For GENCB, 4, plus 3 times the number of ACB, EXLST, or RPL
keywords specified (plus 1 for DDNAME, EODAD, JRNAD, LERAD, or
SYNAD)

• For MODCB, 3, plus 3 times the number of ACB, EXLST, or RPL
keywords specified (plus 1 for DDNAME, EODAD, JRNAD, LERAD, or
SYNAD)

• For SHOWCB, 5, plus 2 times the number of fields specified in the
FIELDS operand

• For TESTCB, 8 (plus 1 for DDNAME, STMST, EODAD, JRNAD,
LERAD, or SYNAD)

If you code MF = (L,address,label), the parameter list is built in the remote
area specified. The expansion of the macro equates label with the length of
the parameter list.

The format of the MF keyword for the execute form is:

MF =(E, address)

where:

E
specifies that this is the execute form of the macro.

address
is the address of the parameter list.

The expansion of the execute form of the macro results in executable code
that causes:

1. A parameter list to be modified if requested

2. Control to be passed to a routine that satisfies the request

You may not use the execute form to add an entry to a parameter list. If you
try to add an entry, an error code of 8 is returned to you in register 15.

256 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Generate-Form Keyword
The format of the MF keyword for the generate form is:

MF = (G, address [, label])

where:

G
specifies that this is the generate form of the macro.

address
specifies the address of a remote area in which the parameter list is to be
built. The area must begin on a full word boundary.

label
is a unique name that is used in an EQU instruction in the expansion of the
macro; label is equated to the length of the parameter list. You do not have
to know the length of the parameter list if you code label; the expansion of
the macro determines the amount of storage required.

If you code MF=(G,address), the parameter list is built in the remote area
specified.

If you code MF=(G,address,label), the parameter list is built in the remote
area specified. The expansion of the macro equates the length of the
parameter list to label.

Optional and Required Operands

List Form of GENCB

Keywords that are required in the standard forms of the GENCB, MODCB,
SHOWCB, and TESTCB macros may be optional in the list, execute, and
generate forms or may not be allowed in the execute form. The meaning of
the keywords, however, and the notation that may be used to express
addresses, names, numbers, and option codes are the same. See the chapter
"Control Block Macros" for the meaning of keywords. See "Appendix C:
Operand Notation for GENCB, MODCB, SHOWCB, and TESTCB" for an
explanation of how operands may be coded.

The format of the list form of GENCB is:

[label] GENCB BLK={ACBIEXLSTIRPL}
[,AM=VSAM]
[,COPIES= number]
[, keyword ={ address Iname I number I option }, •..]
[,LENGTH= number]
,MF={L I (L,address [, label])}
[, W AREA = address]

Appendix B: List, Execute, and Generate Forms of GENCB, MODCB, SHOWCB, and TESTCB 257

Execute FonD of GENCD

Generate Fonn of GENCD

List Fonn of MODCD

Execute Fonnof MODCD

Generate Fonn of MODCD

The format of the execute form of GENCB is:

[label] GENCD DLK={ACB!EXLST!RPL}
[,AM = VSAM]
[COPIES= number]
[, keyword = {address ! name ! number ! option} , •.•]
[,LENGTH= number]
,MF=(E,address)
[,WAREA= address]

The format o~ the generate form of the GENCB macro is:

[label] GENCD DLK={ACB!EXLST!RPL}
[,AM=VSAM]
[,COPIES= number]
[,keyword ={address ! name! number! option }, •••]
[,LENGTH= number]
,MF=(G,address [, label])
[,W AREA = address]

The format of the list form of MODCB is:

[label] MODCD {ACB!EXLST!RPL{=addre~
, keyword = {address ! name ! number ! option} , •••
,MF= {L ! (L,address [, label])}

Note: If the execute form of MODCB is used and EXLST is used as a
keyword to be processed, the block must be identified by ACB=.

The format of the execute form of MODCB is:

[label] MODCD [{ACD ! EXLST! RPL} = address]
[, keyword = {address ! name ! number ! option} , •••]
,MF = (E, address)

The format of the generate form of MODCB is:

[label] MODCB {ACD ! EXLST ! RPL{ = address
, keyword = {address ! name ! number ! option} , •.••
,MF=(G,address [,label])

258 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

List Form of SHOWCD

Execute Form of SHOWCD

Generate Form of SHOWCD

List Form of TESTCD

The format of the list form of SHOWCB is:

[label] SHOWCD [{ACD I EXLST I RPL} = address]
,AREA= address
,FIELDS=(keyword[,keyword , •.•])
,LENGTH= number
,MF={L I (L,address [, labeiJH
[,OBJECT ==tDATA I INDEX}]

The format of the execute form of SHOWCB is:

[label] SHOWCB [lACB I EXLST I RPL}=address]
,AREA= address
,MF=(E,address)
[,OBJECT={DATA I INDEXJj

The format of the generate form of SHOWCB is:

[label] SHOWCB [{ACB I EXLST I RPL} = address]
,AREA= address
,FIELDS=(keyword[, keyword , ••.])
,LENGTH= number
,MF=(G, address [, label])
[,OBJECT = {DATA I INDEX}]

Note: If the execute form of TESTCB is used and EXLST is used as a
keyword to be processed, the block must be identified by ACB=.

The format of the list form of TESTCB is:

[label] TESTCB [{ACD I EXLST I RPL}=address]
[,ERET = address]
,keyword= {address I name I number I option}
,MF = {L I (L, address [, label])}
[,OBJECT = {DATA I INDEX}]

Appendix B: List, Execute, and Generate Forms of GENCB, MODCB, SHOWCB, and TESTCB 259

Execute Form of TESTCD

Generate Form of TESTCB

Note: If the execute form of TESTCB is used and EXLST is used as a
keyword to be processed, the Qlock must be identified by ACB=.

The format of the execute form of TESTCB is:

[label] TESTCB [{ACB I EXLST I RPL} = address]
[,ERET = address]
[, keyword = {address I name I number I

option}]
,MF= (E, address)
[,OBJECT={DATA I INDEX}]

The format of the generate form of TESTCB is:

[label] TESTCB [{ACB I EXLST I RPL}= address]
[,ERET = address]
,keyword = {address I name I number I option}
,MF=(G,address [, label])
[,OBJECT={DATA I INDEX}]

Use of List, Execute, and Generate Fonns
Again, the list, execute, and generate forms allow you to use GENCB,
MODCB, SHOWCB, and TESTCB in reentrant programs and allow you to
share parameter lists. Figure 26 indicates which forms of these macros should
be used in reentrant/ nonreentrant and shared/ nonshared environments.

Reentrant Nonreentrant

Shared MF=(L,address [,label]) MF=L
MF=(E,address) MF=(E,address)

Nonshared MF=(G,address [,label]) Standard Form

Figure 26. Reentrant Programming

The figure shows that:

• To share parameter lists in a reentrant program, the remote-list form
should be used in conjunction with the execute form.

• To share parameter lists in a nonreentrant program, the simple-list form
should be used in conjunction with the execute form.

• If you do not intend to share parameter lists, the generate form should be
used in reentrant programs and the standard form should be used for
nonreentrant programs.

The examples that follow illustrate how the list, execute, and generate forms
work.

260 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: Generate Form (Reentrant)

!r:. this example, the ge!!e!'~te fl}!,!!! of GENCB i~ u~ed to create a default
request parameter list (RPL) in a reeentrant environment.

LA 10, LEN1

GETMAIN R,LV=(10)

Get length of the parameter list.

Get storage for the area in which the
parameter list is to be built.

LR 2 , 1 Save address of parameter-list area.

GENCB BLK=RPL,
MF= (G , (2) , LEN 1)

The macro expansion equates LENt to the length of the parameter list, as
follows:

+LENI EQU 16

The parameter list will be built in the area acquired by the GETMAIN macro
and pointed to by register 2. This list is used by VSAM to build the RPL.
VSAM returns the RPL address in register 1 anq the RPL length in register O.
If the W AREA and LENGTH parameters are used, the RPL will be built at
the W AREA address.

Example: Remote-List Form (Reentrant)

In this example, the remote-list form of MODCB is used to build a parameter
list that will later be used to modify the MACRF bits in the access-method
control block ANY ACB.

LA 8,LEN2

GETMAIN R,LV=(8)

Get length of the parameter list.

Get storage for the area in which the
parameter list is to be built.

LR 3 , 1 Save address of the parameter-list area.

MODCB ACB=ANYACB,
MACRMF=(L,(3),LEN2)

The macro expansion equates the length of the parameter list to LEN2, as
follows:

+LEN2 EQU 24

This parameter list is built in the remote area pointed to by register 3. The list
will be used by VSAM to modify the ACB when an execute form of MODCB
is issued (see next example). The list form only creates a parameter list; it
does not modify the ACB. .

Example: Execute Form (Reentrant)

In this example, the execute form of MODCB is used to modify the address
of the access-method control block and MACRF codes in the parameter list
created by the remote-list form of MODCB in the previous example.

MODCB ACB=MYACB,MACRF=(ADR,SEQ,OUT),MF=(E,(3))

The parameter list pointed to by register 3 is changed so that the ACB and
MACRF parameter values in the execute form override the ones in the list
form. The access-method control block MYACB is then modified to
MACRF=ADR,SEQ,OUT). The access-method control block at ANYACB
is not changed by either of these examples.

Appendix B: List, Execute, and Generate Forms of GENCB, MODCB, SHOWCB, and TESTCB 261

)

APPENDIX C: OPERAND NOTATION FOR
GENCB~ MODCB~ SHOWCB, AND TESTCB

The addresses, names, numbers, and options required with operands in
GENCB, MODCB, SHOWCB, and TESTCB can be expressed in a variety of
ways:

• An absolute numeric expression, for example, STRNO=3 and
COPIES = 10

• A character string, for example, DDNAME=DAT ASET

• A code or a list of codes separated by commas and enclosed in
parentheses, for example, OPTCD=KEY or OPTCD=(KEY,DIR,IN)

• An expression valid for a relocatable A-type address constant, for example,
AREA=MYAREA+4

• A register from 2 through 12 that contains an address or numeric value, for
example, SYNAD=(3); equated labels can be used to designate a register,
for example, SYNAD=(ERR), where the following equate statement has
been included in the program: ERR EQU 3

• An expression of the form (S,scon), where scon is an expression valid for
an S-type address constant, including the base-displacement form. The
contents of the base register will be added to the displacement to obtain
the value of the keyword. For example, if the value of the keyword being
represented is a numeric value (that is, COPIES, LENGTH, RECLEN),
the contents of the base register will be added to the displacement to
determine the numeric value. If the value of the keyword being represented
is an address constant (that is, WAREA, EXLST, EODAD, ACB), the
contents of the base register will be added to the displacement to
determine the value of the address constant.

• An expression of the form (* ,scon), where scon is an expression valid for
an S-type address constant, including the base-displacement form; the
address specified by scon is indirect, that is, it is the address of an area that
contains the value of the keyword. The contents of the base register will be
added to the displacement to determine the address of the fullword of
storage that contains the value of the keyword.

If an indirect S-type address constant is used, the value it points to must meet
the following criteria:

• If it is a numeric quantity or an address, it must occupy a fullword of
storage.

• If it is an alphameric character string, it must occupy two words of storage,
be left aligned, and be filled on the right with blanks.

The expressions that can be used depend on the keyword specified.
Additionally, register and S-type address constants cannot be used when
MF=L is specified. See "Appendix B: List, Execute, and Generate forms of
GENCB, MODCB, SHOWCB, and TESTCB."

Appendix C: Operand Notation for GENCB, MODCB, SHOWCB, and TESTCB 263

Operands with GENeB
Figure 27 shows the expressions that can be used in the GENCB macro.

Indirect
Absolute Character S-Type S-Type A-Type
Numeric Code String Register Address Address Address

GENCB Keywords

AM X
BLK X
COPIES X X' X X
LENGTH X X X X
WAREA X X X X

ACB Keywords (BLK=ACB)

BSTRNO X X X X
BUFND X X X X
BUFNI X X X X
BUFSP X X X X
CATALOG X
CRA X
DDNAME X X
EXLST X X X X
MACRF X
MAREA X X X X
MLEN X X X
PASSWD X X X X
STRNO X X X X

EXLST Keywords (BLK=EXLSn

EODAD X X X X
JRNAD X X X X
LERAD X X X X
SYNAD X X X X
A X
N X
L X

RPL Keywords (BLK=RPL)

ACB X X X X
AREA X X X X
AREALEN X X X X
ARG X X X X
ECB X X X X
KEY LEN X X X X
MSGAREA X X X X
MSGLEN X X X X
NXTRPL X X X X
OPTCD X
RECLEN X X X X
TRANSID X X X X

Figure 27. GENCB Operands

264 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide •

Operands with MODCB
Figure 28 :;hcws the expressio!!s th~t C~!! be n~ed in the MODCB macro.

Indirect
Absolute Character S-Type S-Type A-Type
Numeric Code String Register Address Address Address

MODCB Keyword

{ACB I EXLST I RPL} X X X X

ACB Keywords

BSTRNO X X X X
BUFND X X X X
BUFNI X X X X
BUFSP X X X X
CATALOG X
CRA X
DDNAME X X
EXLST X X X X
MACRF X
MAREA X X X X
MLEN X X X X
PASSWD X X X X
STRNO X X X X

EXLST Keywords

EODAD X X X X
JRNAD X X X X
LERAD X X X X
SYNAD X X X X
A X
N X

~
L X

RPL Keywords

ACB X X X X
AREA X X X X
AREALEN X X X X
ARG X X X X
ECB X X X X
KEY LEN X X X X
MSGAREA X X X X
MSGLEN X X X X
NXTRPL X X X X
OPTCD X
RECLEN X X X X
TRANSID X X X X

Figure 28. MODCB Operands

)

Appendix C: Operand Notation for GENCB, MODCB, SHOWCB, and TESTCB 265

Operands with SHOWCB
Figure 29 shows the expressions that can be used in the SHOWCB macro.

Indirect
Absolute Character S-Type S-Type A-Type
Numeric Code String Register Address Address Address

SHOWCB Keywords

{ACB I EXLST I RPL} X X X X
AREA X X X X
FIELDS X
LENGTH X X X X
OBJECT X

Figure 29. SHOWCB Operands

266 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Operands with TESTeD
Figure 30 shows the expressions that can be used in the TESTCB macro.

Indirect
Absolute Character S-Type S-Type A-Type
Numeric Code String Register Address Address Address

TESTCB Keywords

{ACB I EXLST I RPL} X X X X
ERET X X X X
OBJECT X

ACB Keywords

ACBLEN X X X X
ATRB X
AVSPAC X X X X
BSTRNO X X X X
BUFND X X X X
BUFNI X X X X
BUFNO X X X X
BUFSP X X X X
CATALOG X
CRA X
CINV X X X X
DDNAME X X
ENDRBA X X X X
ERROR X X X X
EXLST X X X X
FS X X X X
KEYLEN X X X X
LRECL X X X X
MACRF X
MAREA X X X X
MLEN X X X X
NCIS X X X X
NDELR X X X X
NEXCP X X X X
NEXT X X X X
NINSR X X X X
NIXL X X X X
NLOGR X X X X
NRETR X X X X
NSSS X X X X
NUPDR X X X X
OFLAGS X
OPENOBJ X
PASSWD X X X X
RKP X X X X
STMST X
STRNO X X X X

EXLST Keywords

EODAD X X X X
EXLLEN X X X X
JRNAD X X X X
LERAD X X X X
SYNAD X X X X
A X
N X
L X

Figure 30 (Part 1 of 2). TESTCB Operands

)
Appendix C: Operand Notation for GENCB, MODCB, SHOWCB, and TESTCB 267

Indirect
Absolute Character S-Type S-Type A-Type
Numeric Code String Register Address Address Address

RPL Keywords

ACB X X X X
AIXFLAG X
AIXPC X X X X
AREA X X X X
AREALEN X X X X
ARG X X X X
ECB X X X X
FDBK X X X X X
FTNCD X
10 X
KEYLEN X X X X
MSGAREA X X X X
MSGLEN X X X X
NXTRPL X X X X
OPTCD X
RBA X X X X
RECLEN X X X X
RPLLEN X X X X
TRANSID X X X X

Figure 30 (Part 2 of 2). TESTCB Operands

268 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

)

GLOSSARY

The following terms are defined as they are used in this book.
If you do not find the term you are looking for, refer to the
index or to the IBM Data Processing Glossary, GC20-1699.

Access Method Services: A multifunction service program that
is used to define VSAM data sets and allocate space for them,
convert indexed-sequential data sets to key-sequenced data
sets, modify data-set attributes in the catalog, reorganize data
sets, facilitate data portability between operating systems,
create backup copies of data sets, help make inaccessible data
sets accessible, list the records of data sets and catalogs,
define and build alternate indexes, and convert as catalogs
to OS/VS2 catalogs.

addressed-direct access: The retrieval or storage of a data
record identified by its RBA, independent of the record's
location relative to the previously retrieved or stored record.
(See also keyed-direct access, addressed-sequential access,
and keyed-sequential access.)

addressed-sequential address: The retrieval or storage of a data
record in its entry sequence relative to the previously
retrieved or stored record. (See also keyed-sequential access,
addressed-direct access, and keyed-direct access.)

alternate index: A collection of index entries organized by the
alternate keys of its associated base data records. It provides
an alternate means of locating records in the data component
of a cluster on which the alternate index is based.

alternate key: One or more consecutive characters taken from
a data record and used to build an alternate index or to locate
one or more base data records via an alternate index. (See also
generic key, key, key field, and prime key.)

alternate index cluster: The data and index components of an
alternate index.

application: As used in this publication, the use to which an
access method is put or the end result that it serves;
contrasted to the internal operation of the access method.

base cluster: A key-sequenced or entry-sequenced data set
over which one or more alternate indexes are built.

catalog: (See master catalog and user catalog.)

catalog recovery area: (See CRA.)

chained RPL: (see RPL string.)

cluster: A named structure consisting of a group of related
components (for example, a data component with its index
component). A cluster may consist of a single component.
(See also base cluster and alternate-index cluster.)

collating sequence: An ordering assigned to a set of items, such
that any two sets in that assigned order can be collated. As
used in this publication, the order defined by the System/370
8-bit code for alphabetic, numeric, and special characters.

component: A named, cataloged collection of stored records.
A component, the lowest member of the hierarchy of data
structures that can be cataloged, contains no named subsets.

control area: A group of control intervals used as a unit for
formatting a data set before adding records to it. Also, in a
key-sequenced data set, the set of control intervals pointed to
by a sequence-set index record; used by VSAM for

distributing free space and for placing a sequence-set index
record adjacent to its data.

control-area split: The movement of the contents of some of
the control intervals in a control area to a newly created
control area, to facilitate the insertion or lengthening of a
data record when there are no remaining free control
intervals in the original control area.

control interval: A fixed-length area of auxiliary-storage space
in which VSAM stores records. It is the unit of information
transmitted to or from auxiliary storage by VSAM.

control-interval access: The retrieval or storage of the contents
of a control interval.

control-interval split: The movement of some of the stored
records in a control interval to a free control interval, to
facilitate the insertion or lengthening of a record that won't
fit in the original control interval.

eRA: Catalog recovery area. An entry-sequenced data set
that exists on each volume owned by a recoverable catalog,
including the catalog itself. The CRA contains self-describing
records that are duplicates of catalog records that describe
the volume.

data integrity: Preservation of data or programs for their
intended purpose. As used in this publication, the safety of
data from inadvertent destruction or alteration.

data record: A collection of items of information from .he
standpoint of its use in an application, as a user supplies it to
VSAM for storage.

data security: Prevention of access to or use of data or
programs without authorization. As used in this publication,
the safety of data from unauthorized use, theft, or purposeful
destruction.

data set: The major unit of data storage and retrieval in the
operating system, consisting of data in a prescribed
arrangement and described by control information to which
the system has access. As used in this publication, a collection
of fixed- or variable-length records in auxiliary storage,
arranged by VSAM in key sequence or in entry sequence.
(See also key-sequenced data set and entry-sequenced data
set.)

data space: A storage area defined in the volume table of
contents of a direct-access volume for the exclusive use of
VSAM to store data sets, indexes, and catalogs.

direct access: The retrieval or storage of data by a reference to
its location in a data set rather than relative to the previously
retrieved or stored data. (See also addressed-direct access and
keyed-direct access.)

distributed free space: Space reserved within the control
intervals of a key-sequenced data set for inserting new
records into the data set in key sequence; also, whole control
intervals reserved in a control area for the same purpose.

entry sequence: The order in which data records are physically
arranged (according to ascending RBA) in auxiliary storage,
without respect to their contents. (Contrast to key sequence.)

entry-sequenced data set: A data set whose records are
loaded without respect to their contents, and whose RBAs

Glossary 269

cannot change. Records are retrieved and stored by addressed
access, and new records are added at the end of the data set.

field: In a record or a control block, a specified area used for
a particular category of data or control information.

generic key: A high-order portion of a key, containing
characters that identify those records that are significant for a
certain application. For example, it might be desirable to
retrieve all records whose keys begin with the generic key AB,
regardless of the full key values.

index: As used in this publication, an ordered collection of
pairs, each consisting of a key and a pointer, used by VSAM
to sequence and locate the records of a key-sequenced data
set.

index record: A collection of index entries that are retrieved
and stored as a group. (Contrast to data record.)

index replication: The use of an entire track of direct-access
storage to contain as many copies of a single index record as
possible; reduces rotational delay.

ISAM interface: A set of routines that allow a processing
program coded to use ISAM (indexed-sequential access
method) to gain access to a key-sequenced data set.

job catalog: A catalog made available for a job by means of
the JOBCAT DD statement.

key: One or more characters within an item of data that are
used to identify it or control its use. As used in this
publication, one or more consecutive characters taken from a
data record, used to identify the record and establish its order
with respect to other records. (See also key field and generic
key.)

key field: A field located in the same position in each record
of a data set, whose contents are used for the key of a record.

key sequence: The collating sequence of data records,
determined by the value of the key field in each of the data
records. May be the same as, or different from, the entry
sequence of the records.

key-sequenced data set: A data set whose records are loaded in
key sequence and controlled by an index. Records are
retrieved and stored by keyed access or by addressed access,
and new records are inserted in the data set in key sequence
by means of distributed free space. RBAs of records can
change.

keyed-direct access: The retrieval or storage of a data record
by use of either an index that relates the record's key to its
relative location in the data set or a relative record number,
independent of the record's location relative to the previously
retrieved or stored record. (See also addressed-direct access,
keyed-sequential access, and addressed-sequential access.)

keyed-sequential access: The retrieval or storage of a data
record in its key or relative record sequence relative to the
previously retrieved or stored record, as defined by the
sequence set of an
index. (See also addressed-sequential access, keyed-direct
access, and addressed-direct access.)

master catalog: A catalog that contains extensive data-set and
volume information that VSAM requires to locate data sets,
to allocate and deallocate storage space, to verify the
authorization of a program or operator to gain access to a
data set, and to accumulate usage statistics for data sets.

password: A unique string of characters stored in a catalog
that a program, a computer operator, or a terminal user must
supply to meet security requirements before a program gains
access to a data set.

path: A named, logical entity composed of one or more
clusters (an alternate index and its base cluster, for example).

physical record: A physical unit of recording on a medium. For
example, the physical unit between address markers on a
disk.

pointer: An address or other indication of location. For
example, an RBA is a pointer that gives the relative location
of a data record or a control interval in the data set to which
it belongs.

portability: The ability to use VSAM data sets with different
operating systems. Volumes whose data sets are cataloged in
a user catalog can be demounted from storage devices of one
system, moved to another system, and mounted on storage
devices of that system. Individual data sets can be transported
between operating systems using Access Method Services.

prime index: The index component of a key-sequenced data
set that has one or more alternate indexes. (See also index
and alternate index.)

prime key: (See key.)

RACF: Resource Access Control Facility

random access: (See direct access.)

RBA: Relative byte address. The displacement (expressed as a
fullword binary integer) of a data record or a control interval
from the beginning of the data set to which it belongs;
independent of the manner in which the data set is stored.

record: (See index record, data record, stored record.)

recoverable catalog: A catalog defined with the recoverable
attribute. Duplicate catalog entries are put into CRAs that
can be used to recover data in the event of catalog failure.
(See also CRA.)

relative byte address: (See RBA.)

relative record data set: A data set whose records are loaded
into fixed-length slots.

relative record number: A number that identifies not only the
slot, or data space, in a relative record data set but also the
record occupying the slot. Used as the key for keyed access to
a relative record data set.

replication: (See index replication.)

reusable data set: A VSAM data set that can be reused as a
work file, regardless of its old contents. Must not be a base
cluster.

RPL string: A set of chained RPLs (the set may contain one or
more RPLs) used to gain access to a VSAM data set by action
macros (GET, PUT, etc). Two or more RPL strings may be
used for concurrent direct or sequential requests made from a
processing program or its subtasks.

RRN: A number (expressed as a fullword binary integer)
which represents the position of a record in a relative record
data set. The record is located in the data set based on its
relative record number.

security: (See data security.)

270 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

sequence checking: The process of verifying the order of a set
of records relative to some field's collating sequence.

ScqiiciiC~ i~t: The !cv.,,~~t !eve! {)f the !!!de~ of a key-~equenced
data set; it gives the locations of the control intervals in the
data set and orders them by the key sequence of the data
records they contain. The sequence set and the index set
together comprise the index.

sequential access: The retrieval or storage of a data record in
either its entry sequence, its key sequence or its relative
record number sequence, relative to the previously retrieved
or stored record. (See also addressed-sequential access and
keyed-sequential access.)

shared resources: A set of functions that permit the sharing of
a pool of I/O-related control blocks, channel programs, and
buffers among several VSAM data sets open at the same
time.

skip-sequential access: Keyed-sequential retrieval or storage of
records here and there throughout a data set, skipping
automatically to the desired record or collating position for
insertion: VSAM scans the sequence set to find a record or a
collating position. Valid for processing in ascending
sequences only.

slot: For a relative record data set, the data area addressed by
a relative record number which may contain a record or be
empty.

spanned record: A logical record whose length exceeds control
interval length, and as a result, crosses, or spans, one or more
control interval boundaries within a single control area.

step catalog: A catalog made available for a step by means of
the STEPCAT DO statement.

stored record: A data record, together with its control
information, as stored in auxiliary storage.

upgrade set: All the alternate indexes that VSAM has been
instructed to update whenever there is a change to the data
component of the base cluster.

user catalog: An optional catalog used in the same way as the
master catalog and pointed to by the master catalog. It also
lessens the contention for the master catalog and facilitates
volume portability.

vertical pointer: A pointer in an index record of a given level
that gives the location of an index record in the next lower
level or the location of a control interval in the data set
controlled by the index.

Glossary 271

INDEX

For additional information about any sub.iect listed in this
index, refer to the publications that are listed under
the same subject in either OS/VSJ Master Index,
GCi4-5104, or OS/VS2 Master Index, GC28-0693.

This index makes no page references to the glossary.

A
A option, in EODAD, JRNAD, LERAD, and SYNAD

operands
specified in EXLST macro 128
specified in GENCB macro 140
specified in MODCB macro 163
tested in TESTCB macro 214

ABEND codes issued by ISAM interface 225
abnormal CLOSE 1 17
ACB macro 105

examples 1 10
ACB operand

in BLK operand in GENCB macro 132
in FIELDS operand 204
in GENCB macro 144
in MODCB macro

modifying access-method control block 162
modifying request parameter list 165

in RPL macro 189
in SHOWCB macro 195
in TESTCB macro

testing access-method control block 209
testing request parameter list 217

ACBLEN operand
h FIELDS operand 196
in TESTCB macro 209

access (see keyed access and addressed access)
mixing types of 31
specifying type of 32

access-method control block
changing 161

. defining with ACB macro 105
fields of, displayed with the SHOWCB macro 195
generating with the GENCB macro 131
modifying 16.1 .
specifying number to be generated 134
testing a field of 207

Access Method Services 42
active exit 127,140,163,213
addressed access

deletion 36
direct processing 32,35-36
marking records inactive with entry-sequenced data

sets 36
positioning YSAM for subsequent access 36,171
retrieval 35
sequential processing 32,35
storage 36

addressed-direct access 32,35
examples 158

addressed-sequential access 32,35
examples 125,154,182,185

ADR option
in MACRF operand 110
in OPTCD operand 146

AIX option
in MACRF operand 110
in OPENOBJ operand 210.

AIXFLAG operand, in TESTCB macro 218
AIXPC operand, in TESTCB macro 218
AIXPC option, in FIELDS operand 204
AIXPKP value, in AIXFLAG operand in TESTCB

macro 218
allocation 71

examples 62
of buffers 58
of data sets with key ranges 37
units of 62

alternate index
compared to prime index 26
defined 26

alternate-index cluster 27
alternate-index maintenance 28
alternate-index path 27

keyed access to 33-35
retrieval by 159

alternate-index pointers
maximum number 28
mUltiple 28
prime keys 28
RBAs 28

alternate-index records 27
alternate keys 27

compression of 27
overlapping of 27
restriction in spanned records 27

AM operand
in ACB macro 106
in EXLST macro 127
in GENCB macro 132
in RPL macro 189

amendments, summary of 15,17
AMORG subparameter, in AMP parameter 75
AMP J CL D D parameter 75

checkpoint/restart 75
general description 75
ISAM interface 229

ARD option, in OPTCD operand 136
AREA operand

in FIELDS operand 204
in GENCB macro 144
in MODCB macro 165
in RPL macro 133
in SHOWCB macro 195,201,203
in TESTCB macro 217

AREALEN operand
in FIELDS operand 204
in GENCB macro 163
in MODCB macro 165
in RPL macro 189
in TESTCB macro 217

ARG operand
in FIELDS operand 204
in GENCB macro 145
in MODCB macro 165
in RPL macro 189
in TESTCB macro 217

Index 273

assembly time, specifying processing options at 86
using the ACB macro 105
using the EXLST macro 127
using the RPL macro 188

ASY option, in OPTCD operand 136
asynchronous processing 32,136
A TRB operand, in TESTCB macro 209
authorization record, user-security 242
authorization to process a data set

passwords 170
user-security-verification routine 242

A VSPAC operand

B

in FIELDS operand 197
in TESTCB macro 209

backward processing 32,136
example 151

base cluster 26
restriction 26

BASE option, in OPENOBJ operand 210
basic direct-access method (BDAM) 26
basic indexed sequential access method (BISAM), error

conditions 216,218
BDAM (basic direct-access method) 26
beginning sequential access 33
BFRFND option, in FIELDS operand 197
BISAM (basic indexed sequential access method), error

conditions 224
BLK operand, in GENCB macro

generating access-method control block 132
generating exit list 139
generating request parameter list 143

bold expressions, in notational conventions 4
braces, use of 3
brackets, use of 3
BSTRNO operand

in ACB macro 106
in FIELDS operand 197
in GENCB macro 132
in MODCB macro 162
in TESTCB macro 209

buffer allocation 60
buffer, I/O

deferred writing of 38
defining minimum space 107,132
for data control intervals 41,106,132
for index control intervals 41,107,132
forced writing of 38
multiple request parameter lists 108,219
overriding values for 75
provided by user 1 10
relatio~ to processing program work area 193
releasing 42

. retaining 42
specifying size and number 107,132
writing 38

buffer space management 56
allocation 60
direct processing 60
random processing 60
sequential processing 60

BUFND operand
in ACB macro 106
in FIELDS operand 196
in GENCB macro 133
in MODCB macro 162
in TESTCB macro 208
interaction with BUFNI and BUFSP

operands 107,110,135
BUFND subparameter, in AMP parameter 75
BUFNIoperand

in ACB macro 106
in FIELDS operand 196
in GENCB macro 133
in MODCB macro 162
in TESTCB macro 209
interaction with BUFND and BUFSP operands 107,110

BUFNI subparameter, in AMP parameter 75
ISAM interface 229

BUFNO operand
in FIELDS operand 197
in TESTCB macro 209

BUFRDS option, in FIELDS operand 197
BUFSP operand

in ACB macro 107
in FIELDS operand 197
in GENCB macro 133
in MODCB macro 162
in TESTCB macro 209
interaction with BUFND and BUFNI operands 107,110
relation to BUFFERSPACE parameter of DEFINE

command 107,110
BUFSP subparameter, in AMP parameter 75
BWD option

c

example 151
in OPTCD operand 192
relative to POINT macro 32

capitalization, in notational conventions 4
catalog, JCL used 71

examples 71,74
CA T ALOG operand

in ACB macro 108
in GENCB macro 134
in MODCB ma~ro 162
in TESTCB macro 209

catalogs
improving performance 68
sharing services 68

CFX option, in MACRF operand 110
chaining request parameter lists

specified in GENCB 146
specified in RPL 187

changes in RBA
exit routine for recording 238
key-sequenced data set 25

changing a record's length (see shortening a record and
lengthening a record)

changing control blocks and lists 162,163,165
CHECK macro 1 13

examples· 1 14
checking return codes (see return codes)
checkpoint/restart, specifying in AMP JCL DD

parameter 75

274 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

CINV operand
in FIELDS operand 197
!!! TESTCB m~cro 20i)

CLOSE macro
disconnecting program from data 117
error return codes from 82
ISAM interface 231
processing at ABEND 87
temporary 117

cluster 24
CNVoption

in MACRF operand 110
in OPTCD operand 192

COBOL language 231
codes, return

from alternate index upgrade requests 96
from CLOSE macro 82
from GENCB, MODCB, SHOWCB, and TESTCB

macros 88
from OPEN macro 80,81
f rom request macros 89

coding the VSAM JCL parameter AMP 75,229
collating sequence 25
COMPLETE (in 10 operand in TESTCB macro) 218
concurrent access, effect on amount of I/O buffer space 109
concurrent requests, dynamic string extension for 109
condition code, PSW, set with TESTCB macro 207
connecting program to data 167
control area

allocation 55
effect of IMBED option 55
size 55

control area split, recording RBA changes for 239
control block

access-method control block 85
changing

access-method control block 161
exit list 163
request parameter list 165

displaying contents of
access-method control block 195
exit list 201
request parameter list 203

exit list 85
macros 85
modifying

access-method control block 161
exit list 165
request parameter list 165

request parameter list 85
sharing 105
testing contents of

access-method control block 207
exit list 213
request parameter list 217

control interval,relationship to physical record size 50
control-interval access

password 167
restriction with GET-previous 33
specifying in the macros 110,192

control interval size 49-54
control-interval split, recording RBA changes for 239
conventions, notational 3
converting data sets to VSAM format

example 233
indexed-sequential data sets 226

COPIES operand, in GENCB macro
copies of access-method control blocks 134
copies of exit lists 140
copies of request parameter lists 145

CRAoperand
in ACB macro 108
in GENCB macro 134
in MODCB macro 161
in TESTCB macro 209

CREATE mode 36
restrictions 36

CROPS subparameter, in AMP parameter 75
cross-region sharing 46
cross-system sharing 48

D
data buffer, specifying space for 106,108,132
data control interval size 52
data I/O buffers 106,108,132
data integrity

checkpoint/restart 75
passwords 167

DATA option, in OBJECT operand 195,209
data security

authorization routine 242
passwords 167

data set
allocation 71
alternate-index cluster 27
base cluster 26
cataloging 71
closing 117
cluster 24
entry sequenced 25
indexed sequential 226
key ranges 38
key sequenced 25
opening 167
organization 24
relative record 25
reusing 24
sharing 43
size 62
statistics 68
suballocated 24
types of 24
unique 24

DCB fields supported by ISAM interface 228
DD statement

(see JCL)
DDN option, in MACRF operand 105
DDNAME (as basis for sharing resources) 105
DDNAME operand

in ACB macro 108
in FIELDS operand 196
in GENCB macro 134
in MODCB macro 162
in TESTCB macro 209

DDNAME parameter, in JCL 73
DEB fields supported by ISAM interface 226
DEFER subparameter, in JCL 73
deferred writing of buffers 38
defining requests for access to data 89

Index 275

deleting a record
addressed 36,125
changing RBAs 25
comparison with ISAM 227
keyed 34,123
marking record inactive with entry-sequenced data set 36

DFR option, in MACRF operand 110
DIR option

in MACRF operand 110
in OPTCD operand 192

direct access
addressed 33,35
keyed 33,34
positioning for subsequent sequential access 33,34

direct insert strategy
defined 38
effect on free space 38
specified in ACB 110

direct processing, buffer management 62
disconnecting a program from data 117
DISP parameter, in JCL 73
displaying a control block

access-method control block 195
exit list 201
request parameter list 203

distributed free space 64-65
used by direct and sequential inserts 39

DLVRP macro 243
DSN option, in MACRF operand 110
DSNAME (as basis for sharing resources) 105
DSNAME parameter, in JCL 73
DUMMY parameter, in JCL 73
duplicate keys 27
dynamic string extension 106,110

E
ECB operand

in FIELDS operand 204
in GENCB macro 145
in MODCB macro 165
in RPL macro 190
in TESTCB macro 217

ellipses, in notational conventions 3
end of data set, method of indicating 117
end-of-data set processing 238
end-of-file indicator, updated by CLOSE macro 117
ENDRBA operand

in FIELDS operand 197
in TESTCB macro 209

ENDREQ macro 119
examples 120

entry sequence 24
entry-sequenced data set

(see also data set)
compared to a key-sequenced and a relative record data

set 26
definition 24
keeping track of relative byte addresses 238,239
marking records inactive 186

EODAD exit routine
coding 238
contents of registers at entry 238
handling end-of-data-set processing 238,239
specifying the exit with EXLST macro 127,139

EODAD operand
in EXLST macro 127
in FIELDS operand 201
in GENCB macro 139
in MODCB macro 163
in TESTCB macro 213

ERASE macro 123
examples 123,125

erasing a record
addressed 125
changing relative byte addresses 25
comparison with ISAM 230
keyed 123
marking record inactive with entry-sequenced data

set 186
ERET operand, in TESTCB macro

used to test a request parameter list 218
used to test an access-method control block 209
used to test an exit list 213

error codes, VSAM and ISAM comparison 223,224
error exit routine

logical errors 236
physical errors 237

ERROR field, in access-method control block
displaying 196
return codes from CLOSE macro 82
return codes from OPEN macro 80
testing 209

error messages 96
ERROR operand

in FIELDS operand 196
in TESTCB macro 209

error return codes
from alternate index upgrade requests 91
from CLOSE macro 82
from GENCB, MODCB, SHOWCB, and TESTCB

macros 87
from OPEN macro 79
from request macros 89

ESDS attribute, in A TRB operand 209
event control block

specified in GENCB 145
specified in RPL 190
used to indicate completion of request 145,190

examining a control block
displaying

fields in access-method control block 195
fields in exit list 201
fields in request parameter list 203

testing
fields in access-method control block 207
fields in exit list 213
fields in request parameter list 217

examples
ACB macro 111
CHECK macro

after asynchronous request 114
after synchronous request 114
overlap processing 115
suspend a request 116

converting data set from ISAM to VSAM 233
DD statement for job-step catalog 75
DD statement for user catalog 71
ENDREQ macro 120

276 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

ERASE macro
addressed sequential 125
keyed direct 123

EXLST macro 128
GENCB macro

ACB 131
EXLST 139
RPL 143

GENCB macro, example
ACB 136
EXLST 141
RPL 150

GET macro
addressed direct 158
addressed sequential 154
keyed direct 157
keyed sequential (backward) 151
keyed sequential (forward) 150
sequential for relative record 156
skip sequential 152
switch from direct to sequential 159

JCL for VSAM data set 71
MODCB macro

ACB 164
EXLST 163
RPL 169

OPEN macro 167
POINT macro 171
PUT macro

addressed sequential 182
addressed sequential update 185
keyed direct 181
keyed direct update 184
keyed sequential (KSDS) 174
keyed sequential (RRDS) 178
keyed sequential update 183
load a relative record data set 177
mark records inactive 186
record RBAs when loading 175
skip sequential 179

RPL macro 189
SHOWCB macro

ACB 195
EXLST address 201
EXLST length 203
physical error message 205

SYNADAF macro 235
TESTCB macro

ACB 207
EXLST 213
RPL 217

TESTCB macro, examples
data set attributes 209
RPL 219
use a branch table 215

exception exit 36,238
exclusive use 40
execute form 255

example 261
of GENCB macro 260
of MODCB macro 258
of SHOWCB macro 259
of TESTCB macro 262

execution time, specifying processing options at 86

exit list
changing 163
defining with the EXLST macro 127
dlspiaying fieids of 20 i
generating with the GENCB macro 139
modifyin'g 163
testing a field of 213

exit routines 25,236
EO DAD 238
example 244
exception exit 91
for alternate-index upgrade requests 91
for end-of-data condition 238
for journalizing a transaction 239
for logical-error condition 236
for physical-error condition 237
JRNAD 239
LERAD 236
returning to your main program 242
SYNAD 237
UPAD 240
user-security-verification routine 242
USVR 242

EXLLEN operand
in FIELDS operand 201
in T~STCB macro 214

EXLST macro 127
example 128

EXLST operand
in ACB macro 108
in BLK operand in GENCB macro 107
in FIELDS operand 196
in GENCB macro 134
in MODCB macro

modifying access-method control block 161
modifying exit list 165

in SHOWCB macro 201
in TESTCB macro

testing access-method control block 209
testing exit list 213

extension, dynamic string 106,110

F
I

FDBK field, in request parameter list
displaying

fields in access-method control block 196
fields in exit list 201
fields in request paremeter list 204

return codes from request macros 89
testing

fields in access-method control block 207
fields in exit list 213
fields in request parameter list 217

FDBK operand
in FIELDS operand 204
in TESTCB macro 217

feedback-field codes 90
fields, examining control-block

displaying
fields in access-method control block 196
fields in exit list 201
fields in request parameter list 204

Index 277

fields, examining contr?l~block displaying (continued)
testing

fields in access~method control block 207
fields in exit list 213
fields in request parameter list 217

FIELDS operand, in SHOWCB macro
fields in access~method control block 196
fields in exit list 201
fields in request parameter list 204

FKS option, in OPTCD operand 193
forced writing of buffers 38
FS operand

in FIELDS operand 197
in TESTCB macro 209

FTNCD field, in request parameter list
displaying 204
testing 218

FTNCD option
in FIELDS operand 204
in TESTCB macro 218

function codes 91
FWD option

G

in 0 PTCD operand 192
relative to POINT macro 33

GEN option, in OPTCD operand 193
GENCB macro

examples 136,141,148
execute form 258
generate form 258
list form 257
operand notation for 264
return codes from 87
used to code a reentrant program 255,260
used to generate

access method control block 131
exit list 139
request parameter list 143

generate form 255
example 260
of GENCB macro 260
of MODCB macro 258
of SHOWCB macro 259
of TESTCB macro 260

generating control blocks and lists 85
generic key (partial key) 33
GET macro 149

examples 150
positioning 33

G ETIX macro 90
GET-previous processing

defined 33
restriction 33
specifying in RPL macro 192

getting a record
addressed 35
keyed 33
positioning 33
skipping 33

GSR option, in MACRF operand 110

H
HALCRBA option in FIELDS operand 197
high-level languages 221

I
ICI option, in MACRF operand 110
IMBED option 55,67
index and data on separate volumes 67
index control interval size 53
index options

IMBED 55,67
index and data on separate volumes 67
replication 67
summary 68

index upgrade 28
insertion, mass sequential 34
I/O buffer (See buffer, I/O)
10 operand in TESTCB macro 218
IN option, in MACRF operand 1 to
inactive exit

specified in EXLST macro 127
specified in GENCB macro 140
specified in MODCB macro 163
tested for in TESTCB macro 213

inactive records, in entry-sequenced data set, marki ng 186
index I/O buffers 107,110
INDEX option, in OBJECT operand 195,209
indexed-sequential access method (see ISAM)
indexed-sequential data set, converting to VSAM format 226
input/output buffer (see I/O buffer)
inserting a record 173

changing RBAs 25,239
example 174,179,181

integrity of data
checkpoint/restart 75
passwords 167

interface (see ISAM interface)
interpreting ISAM requests 222
10 operand, in TESTCB macro 218
ISAM (indexed~sequential access method)

(see also indexed-sequential data set and ISAM interface)
data set, converted to a key-sequenced data set 226
program, used to process a VSAM data set 222

ISAM data set (see indexed-sequential data set)
ISAM interface

ABEND codes issued by 225
BISAM error conditions, meaning of 224
converting data sets and JCL 226
DCB fields supported by 228
DEB fields supported by 226
error conditions, correspondence to VSAM 222,224
processing with 222
purpose 42
QISAM error conditions, meaning of 223
restrictions 231
SYNAD, registers when routine is specified by AMP 225
SYNAD, registers when routine is specified by DCB 224
use of AMP parameter 229

italics, in notational conventions 4

278 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

J
JCL (job control language)

AMP DD p~!"~m~t~!" 75
converting from ISAM to VSAM 227
ISAM interface 227
parameters and subparameters used with VSAM 73
processing a VSAM data set 72
specifying VSAM catalogs 72

job control language (see JCL)
JOBCAT JCL statement 72
journalizing transactions 239
JRNAD exit routine

coding 239
contents of registers at entry 242
journalizing transactions 239
specifying the exit with EXLST macro 127

JRNAD operand

K

in EXLST macro 127
in FIELDS operand 202
in GENCB macro 139
in MODCB macro 163
in TESTCB macro 213

KEQ option, in OPTCD operand 192
KEY

alternate 26,27
compressed 27
generic 33
nonunique 27
prime 28
unique 27

KEY option
in MACRF operand 110
in OPTCD operand 192

key ranges 38
key sequence 25
key-sequenced data set

comparison with entry-sequenced and relative record data
set 26

definition 24
keeping track of relative byte addresses 238
key ranges 38

keyed access
addition 34
deletion 34
insertion 34
retrieval 33
skipping 34
storage 34

keyed access to a key-sequenced data set 33
keyed access to a path 33
keyed access to a relative record data set 33
keyed-direct access

examples 123,157,159,181,184
for deletion 34
for retrieval 33
for storage 34

keyed-sequential access
backward 151
examples 150,159,174,183
for deletion 34
for retrieval 33
for storage 34

KEYLEN operand
in FIELDS operand

length of key field 197
length of search argument 204

in GENCB macro 145
in MODCB macro 165
in RPL macro 190
in TESTCB macro

length of key field 209
length of search argument 217

KGE option, in OPTCD operand 192
KSDS attribute, in A TRB operand 209

L
L option, in EODAD, JRNAD, LERAD, and SYNAD

operands
specified in EXLST macro 128
specified in GENCB macro 140
specified in MODCB macro 163
tested in TESTCB macro 214

languages, programming 221
LENGTH operand

in GENCB macro
area for access-method control block 134
area for exit list 140
area for request parameter list 145

in SHOWCB macro
area for access-method control block 196
area for exit list 201
area for request parameter list 203

lengthening a record
changing RBAs 25,239
entry-sequenced data set 25

LERAD exit routine
analyzing logical errors 236
coding 236
contents of registers at entry 236
specifying the exit with EXLST macro 127

LERAD operand
in EXLST macro 127
in FIELDS operand 202
in GENeB macro 139
in MODCB macro 163
in TESTCB macro 213

list form 255
example 261
of GENCB macro 257
of MODCB macro 258
of SHOWCB macro 259
of TESTCB macro 259

load mode 36
restrictions 36

LOC option, in OPTCD operand 193
locate processing

retrieval 33,35
simulatIon by ISAM interface 233

logical-error-analysis exit routine 236
logical-error effect on positioning 91
logical-error function codes 91
logical-error return codes from request macros 89
look-aside processing 40
lower case, in notational conventions 4
LRD option, in OPTCD operand 192
LRECL operand _

in FIELDS operand 197
in TESTCB macro 209

Index 279

LRECL operand
in FIELDS operand 197
in TESTCB macro 209

LSR option, in MACRF operand 110

M
MACRF operand

in ACB macro 109
in GENCB macro 135
in MODCB macro 162
in TESTCB macro 210
interaction with P ASSWD operand 109,135
restriction with shared control blocks 105

macros, VSAM
(see also Access Method Services)
ACB 105,
CHECK 113--
CLOSE 117
control block 55
ENDREQ 119
ERASE 123
EXLST 127
GENCB

used to generate an access-method control block 131
used to generate an exit list 139
used to generate a request parameter list 143

GET 149
GETIX 243
MODCa-

used to modify an access-method control block 161
used to modify an exit list 163
used to modify a request parameter list 165

OPEN 167
POINT 171
PUT 173
PUTIX 243
return codes from

control block macros 87
request macros 89

RPL 188
SHOWCB used to display an access-method control

block 195
used to display an exit list 201
used to display a request parameter list 203

summary of VSAM macros 243
TESTCB

used to test an access-method control block 207
used to test an exit list 213
used to test a request parameter list 217

maintaining an alternate index 28
making a user catalog available 71
managing I/O buffer space 56,57
MAREA operand

in ACB macro 109
in FIELDS operand 197
in GENCB macro 134
in MODCB macro 161
in TESTCB macro 209

marking records inactive in an entry-sequenced data set,
example 186

mass sequential insertion 34
master password 168
measuring VSAM performance 68
message area for OPEN/CLOSE/TCLOSE 83
messages 96
method of indicating the end of a data set' 1 17

MF operand, in GENCB, MODCB, SHOWCB, and TESTCB
macros 255

MLEN operand
in ACB macro 109
in FIELDS operand 197
in GENCB macro 134
in MODCB macro 161
in TESTCB macro 209

MODCB macro
examples 163,165
execute form 258
generate form 258
list form 258
operand notation for 265
return codes from 87
used to code a reentrant program 255,260
used to modify

access-method control block 161,163
exit list 163
request parameter list 165

modifying a control block
access-method control block 161
exit list 163
request parameter list 165

monitoring data set errors 238
MRKBFR macro 243
MSGAREA operand

in FIELDS operand 204
in GENCB macro 145
in MODCB macro 165
in RPL macro 190
in TESTCB macro 217

MSGLEN operand
in FIELDS operand 204
in GENCB macro 146
in MODCB macro 165
in RPL macro 190
in TESTCB macro 217

multiple-request processing 40
number of I/O buffers used in 109,111,135
specifying the number of requests 109,111,135

MVE option, in OPTCD operand 193

N
N option, in EO DAD, JRNAD, LERAD, and SYNAD

operands
specified in EXLST macro 128
specified in GENCB macro 140
specified in MODCB macro 163
tested in TESTCB macro 214

NCI option, in MACRF operand 109
NCIS operand

in FIELDS operand 198
in TESTCB macro 209

ND ELR operand
in FIELDS operand 198
in TESTCB macro 209

NDF option, in MACRF operand 109
NEXCP operand

in FIELDS operand 198
in TESTCB macro 209

NEXT operand
in FIELDS operand 198
in TESTCB macro 209

NFX option, in MACRF operand 109

280 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

NINSR operand
in FIELDS operand 198
in TESTCB macro 209

NIS option, in MACRF operand 1O~

NIXL operand
in FIELDS operand 198
in TESTCB macro 209

NLOGR operand
in FIELDS operand 198
in TESTCB macro 209

nonunique keys 27
NO option, in CATALOG operand

in ACB macro 108
in GENCB macro 134
in MODCB macro 162
in TESTCB macro 210

notation, operand, for GENCB, MODCB, SHOWCB, and
TESTCB macros 263

notation~conventions 3
noting RBA changes 238

for control area splits 239
for control interval splits 239

NRETR operand
in FIELDS operand 198
in TESTCB macro 209

NRM option, in MACRF operand 109
NRS option, in MACRF operand 109
NSP option, in OPTCD operand 192
NSR option, in MACRF operand 109
NSSS operand

in FIELDS operand 198
in TESTCB macro 209

NUB option, in MACRF operand 109
NUIW option, in FIELDS operand 198
NUP option, in OPTCD operand 192
NUPDR operand

in FIELDS operand 198
in TESTCB macro 209

NWAITX subparameter in RPL macro 189,191
NXTRPL operand

o

in FIELDS operand 204
in GENCB macro 146
in MODCB macro 165
in RPL macro 191
in TESTCB macro 217

OBJECT operand
in SHOWCB macro 195
in TESTCB macro 209

OFLAGS operand, in TESTCB macro 210
OLD, subparameter in JCL 73
OPEN (in OFLAGS operand in TESTCB macro) 210
OPEN macro

connecting program to data 167
error return codes from 80
example 169
ISAM interface 222,231

OPEN/CLOSE/TCLOSE message area
description 83
in ACB macro 108
in FIELDS operand 197
in GENCB macro 135
in MODCB macro 162
in TESTCB macro 209

OPENOBJ operand, in TESTCB macro 210

operand notation for GENCB, MODCB, SHOWCB, and
TESTCB macros 263

o PTCD operand
• ",...,...... . ____ , _ ,AI".
In \.11:.1"1\....0 1I1<1~lU l"tU

in MODCB macro 166
in RPL macro 191,192
in TESTCB macro 218
with chained request parameter lists 191,146

OPTCD subparameter, in AMP parameter 75
optimizing VSAM performance 49

buffer space management 56
control area size 55
control interval size 49-55
deffered writing of buffers 38
distributed free space 64
index options 67
RECOVERY option 68
Space allocation 62
SPEED option 68
writing buffers 38

options
exit routines 36
types of access 32
types of data sets 24

OR sign (I), in notational conventions 3
OUT option, in MACRF operand 109
overlapping processing, example 115

p
parameter list

exit list 85
specified in EXLST macro 127
specified in GENCB macro 139

of GENCB, MODCB, SHOWCB, or TESTCB macro 255
estimating size for list form of macros 256
sharing among macros 260

request parameter list 85
parentheses, in notational conventions 4
partial key (generic key) 33
PASS subparameter, in JCL 73
P ASSWD operand

in ACB macro 108
in FIELDS operand 167
in GENCB macro 135
in MODCB macro 162
in TESTCB macro 209
interaction with MACRF 108,135

passwords
field containing password for OPEN 168
levels of authorization 168

path 27
path, buffer allocation for 59
PATH option, in OPENOBJ operand 210
performance (See optimizing VSAM performance)
physical-error analysis

ISAM interface 224
SYNAD exit routine 237

physical-error function codes 91
physical-error message 96
physical-error return codes from request macros 90
PL/I language i21
POINT macro 171

example 172
relative to GET-previous processing 33
restriction t 72

Index 281

positioning, concurrent
additional buffer required for 109

positioning after logical error 91
positioning for sequential access

by entry sequence 35
by key sequence 33,171
by relative record number 33
done by POINT macro 171

preparing to open a data set 71
prime keys 28
PRIVATE subparameter, in JCL 73
processing options 31

direct access 32
identifying record by key, address, or relative record

number 32
multiple strings 40 .

overlapping processing 115
providing exit routines 36
specified at assembly or execution 31,86

processing types 32
(see also keyed access and addressed access)
specifying 86

processing with the ISAM interface 42,221
program, reentrant 255
programming languages 221
PSW condition code, set with TESTCB 207
publications

related 5
required 5
VSAM and Access Method Services 4

punctuation, in notational conventions 4
PUT macro 172

examples 174
PUTIX macro 90

Q
QISAM (queued indexed-sequential access method) 222
queued indexed-sequential access method (QISAM) 222

R
random access (see direct access)
ranges of keys 38
RBA (relative byte address)

changeability in control area and control interval
splits 239

changeability in key-sequenced data set 25
definition 24
example, recording when loading records 175
unchangeability in entry-sequenced data set 26

RBA operand
in FIELDS operand 204
in TESTCB macro 217

read-ahead processing 41
reading a record

addressed 35
keyed 33
skipping 33

read-only password 168
RECFM sub parameter, in AMP parameter 75
RECLEN operand

in FIELDS operand 204
in GENCB macro 146
in MODCB macro 166
in RPL macro 191
in TESTCB macro 217

record
alternate-index 27
format with ISAM interface, specified in RECFM

parameter 230
insertions, types of 39
length, specified in GENCB 146
length, specified in RPL 191
relative 25
size relative to control interval size 52
spanned 20,51

record management trace facility 76
recording data set errors 238
RECOVERY option 68
reentrant program

form of GENCB macro used to code 255
form of MODCB macro used to code 255
form of SHOWCB macro used to code 255
form of TESTCB macro used to code 255

reestablishing high-used RBA after ABEND 117
register notation

in CLOSE macro 117
in GENCB, MODCB, SHOWCB, and TESTCB

macro 260
in OPEN macro 167
in request macros 149,173,123,171,111,119

relative byte address (see RBA)
relative record data set

compared with entry-and key-sequenced data sets 26
defined 24
keyed access 23,33.

relative record number
defined 25
used as a key 25,156

release position, example 120
remote terminals 43
REPL attribute, in A TRB operand 209
replication of index records 67
request macros 89

CHECK 111
ENDREQ 119
ERASE 123
GET 149
logical-error return codes from 89
physical-error return codes from 96
POINT 171
PUT 173

request parameter list
chaining 188,146
changing 165
defining with the RPL macro 187
displaying fields of 203
fields of, displayed with the SHOWCB macro 203
generating with the GENCB macro 141
modifying 165
testing a field of 217

requesting access to data 89
resource sharing 105
restart 75
restrictions during CREATE mode 36
restrictions in the use of the ISAM interface 231
RETAIN subparameter, in JCL 73

282 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

)

)

retrieving a record
addressed 35
by alternate index path 159
by key ;;1 b~ck'.'!ard !!!0M 15 t
by relative record number 156
keyed 33 .
skipping 33

retrieving an index record 90
return codes

checking, example 112
from alternate index upgrade reque!its 91
from CLOSE macro 82
from GENCB, MODCB, SHOWCB, and TESTCB

macros 87
from OPEN macro 79
from request macros 89

reusable data set 24
restrictions 24
specifying in ACB macro 109

RKP operand
in FIELDS operand 198
in TESTCB macro 209

RPL macro 188
chained 187
examples 192

RPLoperand
in BLK operand in GENCB macro 144
in CHECK macro 111
in ENDREQ macro 119
in ERASE macro 123
in GET macro 149
in MODCB macro 165
in POINT macro 171
in PUT macro 173
in SHOWCB macro 203
in TESTCB macro 217

RPLLEN operand
in FIELDS operand 204
in TESTCB macro 217

RRDS attribute, in A TRB operand 209
RST option, in MACRF operand 109

s
SCHBFR macro 243
SCRA option, in CRA operand

in ACB macro 107
in GENCB macro 134
in MODCB macro 161
in TESTCB macro 209
retriction 107,134

search argument
full key 33,192
generic (partial) key 33,193

greater than highest key in data set 95
RBA 25
relative record number 33

searching catalogs, order of 75
security of data

authorization routine 242
passwords 168

security-authorization record, user 242
security-verification routine, user 242
SEQ option

in MACRF operand 109
in OPTCD operand 192

sequential access
addressed 33,35
keyed 33
positioning 33,171
skipping 33

sequential insert strategy
defined 39
effect on free space 39
specified in ACB 109

SER subparameter, in JCL 73
service program (see Access Method Services)
shared resources 105
share options 43-48
sharing control blocks

based on DDNAME 105
based on DSNAME 105

sharing data sets 43-48
sharing parameter lists among GENCB, MODCB,

SHOWCB, and TESTCB 260
shortening a record

changing RBAs 25
entry-sequenced data set 26

SHOW CAT macro 243
SHOWCB macro

examples 199,202,205
execute form 259
generate form 259
list form 259
operand notation for 263
return codes from 87
used to code a reentrant program 255
used to display fields of

access-method control block 195
exit list 201
request parameter list 203

SHR subparameter, in JCL 73
SIS option, in MACRF operand 109
skip-sequential access

examples 152,179
restriction with GET-previous 33

SKP option
in MACRF operand 109
in OPTCD operand 192

space allocation 62,63
SP AN attribute, in A TRB operand 209
spanned records 24,51
SPEED option 68
SSWD attribute, in A TRB operand 209
STEPCA T J CL statement 71
STMST operand

in FIELDS operand 198
in TESTCB macro 209

storage requirements, I/O buffers 107,132
storing a record

addressed 36
keyed 34
skipping 33

storing an index record 90
string extension, dynamic 106,109
STRMAX option, in FIELDS operand 197

Index 283

STRNO operand
example 110
in ACB macro 108
in FIELDS operand 197
in GENCB macro 135
in MODCB macro 162
in TESTCB macro 209

STRNO subparameter, in AMP parameter 76
[SAM interface 230

subtask sharing 45
substituting processing parameters by way of JCL 75
summary of amendments 15
summary of index options 68
summary of macros used to gain access to data 243
suspending processing, example 116
SYN option, in OPTCD operand 192
SYNAD exit routine

analyzing physical errors 236
coding 237
contents of registers at entry 237
physical-error message 96
specifying the exit with EXLST macro 127
using ISAM interface 230

contents of registers at entry 225
example 235

SYNAD operand
in EXLST macro 128
in FIELDS operand 201
in GENCB macro 139
in MODCB macro 163
in TESTCB macro 213

SYNAD subparameter, in AMP parameter
with ISAM 231
with VSAM 76

SYNADAF macro, in ISAM program 225
synchronous processing

specified in MODCB macro 165
specified in RPL macro 192

system catalog, in order of catalog search 75

T
T (in TYPE operand in CLOSE macro) 82
temporary CLOSE macro 82
terminals 43
terminating a request before completion 119
TESTCB macro

examples 210,211,219
execute form 259
generate form 260
list form 259
operand notation for 267
return codes from 87
setting PSW condition code 207
used to code a reentrant program 265
used to test a field of

access-method control block 207
exitlist 213
request parameter list 217

testing a control block
access-method control block 207
exit list 213
request parameter list 217

Time Sharing Option (TSO) 43
TRACE subparameter, in AMP parameter 76
tracing 76 -
transactions, journalizing 239

TRANSID operand
in GENCB macro 145
in MODCB macro 165
in RPL macro 191
in TESTCB macro 217

TRANSID option, in FIELDS operand 204
translating ISAM requests 222
TSO (Time Sharing Option) 43
TYPE operand, in CLOSE macro 82

u
UBF option, in MACRF operand 109
UCRA option, in CRA operand

in ACB macro 107
in GENCB macro 134
in MODCB macro 161
in TESTCB macro 209
restrictions 107,134,161

UIW option, in FIELDS operand 198
underlining, in notational conventions 3
unique keys 27
UNIT parameter, in JCL 73
UNQ attribute, in ATRB operand 209
UP AD exit routine for user processing 240
UPD option, in OPTCD operand 192
update password 168
updating a record, example 183

(see also storing a record, lengthening a record, and
shortening a record)

upgrade set 24
status following request that fails 91

upper case, in notational conventions 4
USAR (user security-authorization record) 242
user buffering 109
user catalog

JCL 71
order of search 75
specified for job 71
specified for job step 71

user security-authorization record 242
user security-verification routine 242

contents of registers at entry 242
user-written exit routine, example 244
using passwords to authorize access to data 168
USVR (user security-verification routine) 242
utility program (see Access Method Services)

v
verification routine, user-security 242
VOLUME parameter, in JCL 73
VSAM performance (see optimizing VSAM performance)

w
W AITX subparameter in RPL macro 189,191
WAREA operand, in GENCB

generating access-method control block 135
generating exit list 140
generating request parameter list 146

WCK attribute, in A TRB operand 209

284 OS/VS Virtual Storage Access Method (YSAM) Programmer's Guide

)

work area
processing a record in 145,189
relati\./n to I/O buffer 145,189
speciiying

generating access-method control block 135
generating exit list 140
generating request parameter list 146

work data set 24
restrictions 24
specifying in ACB macro 109

writing a buffer 38
writing a record

addressed 37
keyed 35
skipping 37

WRTBFR macro 243

y
YES option, in CATALOG operand

in ACB macro 107
in GENCB macro 134
in MODCB macro 161
in TESTCB macro 209
restrictton 107,134

123
2314 Direct-Access Storage Facility 49,53,67,68
2319 Disk Storage 49,53,67,68
3330 Disk Drive 53,67,68
3340 Disk Storage 53,67,68

Index 285

GC26-3838-3

®
------ ------- ----- - ---- --------------- -------- -- - ------ - . -

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N. Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

I BM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

4l
(5
z

)

OS/VS Virtual Storage Access Method

(VSAM) Programmer's Guide

GC26-3838-3

Reader's
Comment
Form

This manual is part of a library that serves as a reference Source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not reg uired.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, in any
form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving YOllr locality.

Fold on tWJ lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

GC26-3838-3

Reader's Comment Form

Fold and Tape
•••••••••••• 0 ••••••••• • •• ••••••••••••••••••••••••••••• .. .

" II

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID BY ADDRESSEE:

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

ARMONK, N.Y.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

, •••••• oc- •• CI ••••••••••••••••••••••••• O ••••••••••••••• 0 •••••••••••••••••• ••••

Fold and Tape

®

-- ---- - ---- - - ---------"-------- ------- -- . -
International Business Machines Corporation
Data Processing Division
1133 Westchester .Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

I BM World Trade Europe/Middle East/ Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

o
Cf) -<
Cf)

<
"'"
c:
OJ

<
Cf)

l>
~

."
Ci)

Z
o
Cf)
tv
-....J
o
W
8

