
GC28-0692-1
File No. S370-36

Systems OS/VS2 JCL

VS2 Release 3

Second Edition (February, 1975)

This is a major revision of, and obsoletes, GC28-0692-0 and Technical Newsletter
GN28-2576. See the Summary of Amendments following the Contents. Changes or
additions to the text and illustrations are indicated by a vertical line to the left of the
change.

This edition applies to Release 3 of OS/VS2 and to all subsequent releases of OS/VS2
until otherwise indicated in new editions or Technical Newsletters. Changes are
continually made to the information herein; before using this publication in connection
with the operation of IBM systems, consult the latest Virtual Storage Supplement to IBM
System/360 and System/370 Bibliography, GC20-0001, for the editions that are applicable
and current.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Publications
Development, Department 058, Building 706-2, PO Box 390, Poughkeepsie, N.Y. 12602.
Comments become the property of IBM.

© Copyright International Business Machines Corporation 1974,1975

About This Book

This publication contains the information necessary to code job control language (JCL), job
entry subsystem 2 (JES2) control statements, and job entry subsystem 3 (JES3) control
statements. It is intended for use by programmers who code JCL, JES2, and JES3 control
statements and who understand the concepts of job management and data management.

JES3 and Mass Storage System information contained in this publication is for planning
purposes only until the availability of the products.

The book is divided into several chapters:

• The Introduction and the first seven chapters are a guide to using JCL, JES2, and JES3
control statements, written primarily for the inexperienced user of JCL. It contains
background information necessary to understand why to code certain parameters, sample
situations illustrating when to code these 'parameters, and descriptions of how to code
combinations of parameters to perform particular functions. Examples of jobs involving a
variety of parameters are included. The descriptions of JCL services are grouped into
seven chapters: Requesting Resources and Identifying Data, Routing a Job Through the
System (JES2 only), Obtaining Output (JES2 only), Routing a Job Through the System
(JES3 only), Obtaining Output (JES3 only), Special Data Sets, and Cataloged and
In-stream Procedures.

• The next four chapters describe the parameters, their syntax, and rules for coding. The
descriptions include the format of each JCL, JES2, and JES3 control statement and the
format of the parameters associated with each statement. Parameters for the control
statements are presented in alphabetical order giving a brief definition and a reference to
the appropriate publication or section for a detailed explanation of the facility or service
to be used. The· definition and reference are followed by a default, rules for coding, and
at least one example of how to code the control statement or parameter. The descriptions
are grouped into four chapters: Programming Notes, JCL statements, JES2 statements, and
JES3 statements.

• The last three sections contain reference tables, the glossary, and the index for quick
retrieval of information.

JCL Statements no Longer Supported or Supported Differently

A few parameters introduced in os are no longer supported in VS2 Release 3. Main storage
heirarchy support and the rollout/rollin features are not available in vs. The system will check
the HIERARCHY and ROLL parameters only for correct syntax.

The SEP and AFF parameters and the VOL=(,RETAIN) and UNIT=SEP subparameters have no
meaning in VS2. If they are coded, they are ignored. If JES2 is used, PRTY is ignored.

JCL 00 parameters supported differently are SPLIT and SUBALLOC. Their values are
internally converted to SPACE requests. The REGION parameter on the JOB and EXEC
statement has a new meaning. In virtual storage requests, REGION can be coded to act as an
upper limit for variable-length GETMAIN requests.

JCL Statements New to VS2 Release 3

The following parameters are new for VS2 Release 3: OSlO identifies data sets on a 3540
diskette; MSVGP defines groups of mass storage volumes; JOBPARM SYSAFF indicates the
systems eligible to process a given job (for JES2); TYPRUN-COPY specifies that the input deck
is converted directly to a SYSOUT data set and scheduled for output processing, bypassing job
initiat,ion; the PRTY parameter specifies the job's initial priority within its job class (for JES3),
and the CHKPT parameter specifies that checkpoints are to be taken for the data set.

The book assumes the reader has a basic knowledge of computer operating systems and
some familiarity with job controllanguage. Background information on VS2 is included in the
OS/VS2 Planning Guide for Release 2, GC28-0667.

About This Book 3

Prerequisite Publications

Introduction to Virtual Storage in System/370, GR20-4260.
Introduction to OS/VS2 Release 2, GC28-0661.

Publications to which the text refers:

Data Processing Glossary, GC20-1699.

OS/VS2 Planning Guide for Release 2, GC28-0667.

OS/VS Checkpoint/Restart, GC26-3784.

OS/VS2 System Programming Library: Data Management, GC26-3830.

OS/VS2 System Programming Library: Debugging Handbook, GC28-0632.

OS/VS2 System Programming Library: Job Management, GC28-0627.

OS/VS2 Supervisor Services and Macro Instructions, GC28-0683.

OS/VS Tape Labels, GC26-379S.

OS/VS Data Management Macro Instructions, GC26-3793.

Operator's Library: OS/VS2 Reference (JES2), GC38-0210.

OS/VS2 System Programming Library: Initialization and Tuning Guide, GC28-0681.

OS/VS Data Management Services Guide, GC26-3783.

OS/VS2 Access Method Services, GC26-3841.

OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide, GC26..:3838.

OS/VS Utilities, GC3S-000S.

OS/VS System Management Facilities (SMF), GC3S-0004.

OS Programming Support for the IBM 35.05 Card Reader and IBM 3525 Card Punch, GC21-S097.

OS/VS2 Using OS Catalog Management with the Master Catalog: CVOL Processor, GC35-0010.

OS/VS2 TCAM Programmer's Guide, GC30-2041.

OS/VS BTAM, GC27-6980.

Graphic Programming Services for 225.0, GC27 -6971.

Graphic Programming Services for 226.0, GC27 -6972.

IBM 334.0 Fixed Head Feature Users Guide, GA26-1632.

OS/VS Mass Storage System (MSS) Services for Space Management, GC35-0012.

OS/VS2 System Programming Library: System Generation Reference, GC26-3792.

OS/VS2 System Programming Library:. Service Aids, GC28-0674.

OS/VS2 IBM 354.0 Programmer's Reference, GC24-5111.

OS/VS2 TSO Command Language Reference, GC28-0646.

4 OS/VS2 JCL (VS2 Release 3)

About This Book , ,
JCL Statements no Longer Supported or Supported Differently
JCL Statements New to VS2 Release 3
Prerequisite Publications
Publications to which the text refers

Summary of Amendments

Contents

3
3
3
4
4

15

Introduction 19
The JCL Statements 19
The JES2 Statements 20
The JES3 Statements 21
Catalog and In-stream Procedures 22
Processing Your Job 22

Requesting Resources and Identifying Data 25
Requesting Storage for Execution of a Program 25

When to Request Real Storage 25
Specifying Storage Requirements with the REGION Parameter 26
Example of Requesting Storage 26

Requesting Units and Volumes 26
Specifying Volume Information 27

Specific Volume Requests 27
Nonspecifi~ Volume Requests 27
Using Private Volumes . . . 28
Sharing Volumes Between Data Sets 28
Multivolume Data Sets 29

Specifying Unit Information 29
Requesting More than One Unit 30
Deferred Mounting of Volumes 30
When You Do Not Have to Code the UNIT Parameter 30
Sharing a Unit Between Data Sets on Different Volumes 31

Example of Requesting Units and Volumes 34
Requesting Space for Non-VSAM Data Sets 34

The Basic Request: Unit of Measurement and Primary Quantity 35
How the System Satisfies Your Primary and Secondary Requests 35
A Secondary Request for Space 36
Requesting Directory Space for a Partitioned Data Set 36
Requesting Index Space for an Indexed Sequential Data Set 37

Assigning Specific Tracks 37
Example of Requesting Space 37

Mass Storage System (MSS) Considerations 38
Mass Storage Volume Groups 38
Nonspecific Volume Requests for Mass Storage Volumes 38
Specific Volume Requests for Mass Storage Volumes 38
Requesting Space for Non-VSAM Data Sets on Mass Storage Volumes 39

Dynamically Allocating and Deallocating Data Sets 39
Example of Dynamically Allocating and Deallocating Data Sets 39

Identifying Data Sets to the System 40
Specifying the DDNAME Parameter . . . 40
When You Code the DDNAME Parameter 40
Specifying the DSNAME Parameter 41
Creating or Retrieving a Nontemporary Data Set 41

Nontemporary Data Sets 41
Members of a Partitioned Data Set 42
Generations of a Generation Data Group 42
Areas of an Indexed Sequential Data Set 42

Creating or Retrieving a Temporary Data Set 42
Temporary Data Sets 43
Members of a Temporary Partitioned Data Set 43
Areas of a Temporary Indexed Sequential Data Set 43

Associated Data Sets (3540 Diskette) 43
Copying the Data Set Name From an Earlier DD Statement 44
Specifying the DSNAME Parameter in Apostrophes 44
Specifying the LABEL Parameter 45

Contents 5

The Data Set Sequence Number Subparameter . . .
The Label Type Subparameter
The PASSWORD and NOPWREAD Subparameters
The IN and OUT Subparamctcrs
The RETPD and EXPDT Subparameters

Example of Identifying Data Sets to the System
Disposition Processing of Non-VSAM Data Sets

Specifying Data Set Status
Specifying a Disposition for the Data Set

Deleting a Data Set
Keeping a Data Set
Cataloging a Data Set
Uncataloging a Data Set
Passing a Data Set
Disposition Processing of Unreceived Passed Data Sets

Default Disposition Processing
Bypassing Disposition Processing
Insuring Data Set Integrity

Exclusive Control of a Data Set
Shared Control of a Data Set .
How the System Performs Data Set Integrity Processing

Example of Disposition Processing of Non-VSAM Data Sets

Routing a Job Through the System (JES2 only)
Job Scheduling

Assigning a Job to a Job Class
Assigning a Priority to a Job
Assigning a Dispatching Priority to Job Steps
Performance of Jobs and Job Steps

Passing Information to the Job in Execution
Identifying the Program to be Executed

Temporary Library
Private Library

The lEFBR14 Program
Selecting a Cataloged Procedure Library

Delaying Job Initiation
Bypassing job Initiation
Conditional Execution of Job Steps

Specifying Return Code Tests
Restarting a Job
Example of Routing a Job Through the System

Obtaining Output (JES2 only)
Requesting Listings of JCL Statements and System Messages
Requesting an Abnormal Termination Dump
Writing Output Data Sets

Assigning Output Data Sets to Output Classes
Specifying the Device
Processing Output Classes
Delaying the Writing of an Output Data Set
Suppressing the Writing of an Output Data Set
Limiting Output Records
Requesting Page Overflow Processing
Interpretation of Punched Output
JES2 Support of the 3211 Indexing Feature
Requesting Multiple Copies of an Output Data Set
Requesting Forms and Print Chain Control

Requesting a Special Output Form
Requesting a Special Character Set
Requesting a Specific Image

Controlling Output Destination
Example of Obtaining Output (JES2 only)

Routing a Job Through the System (JES3 only)
Scheduling a Job
Selecting a Processor
Allocating Data Resources

Types of JES3 Setup
Selecting a Job

Deadline Scheduling

6 OS/VS2 JCL (VS2 Release 3)

45
45
46
47
47
48
48
48
49
49
50
50
51
51
51
51
52
52
52
52
53
54

55
55
55
56
56
56
57
57
57
57
57
58
58
58
59
59
59
60

61
61
61
62
62
62
62
63
63
64
64
64
64
64
65
65
65
66
66
66

69
69
70
70
71
73
73

Postponing Job Selection
Performance of Jobs and Job Steps
Assigning a Dispatching Priority to Job Steps

Execution Priority (for ASP Main Processors only)
Dependent Job Control

How to Code NET Statements
Examples of Dependent Job Control

Network Job Processing
Conditional Execution of Job Steps

Specifying Return Code 'Tests
Passing Information to the Job in Execution

Identifying the Program to be Executed
Temporary Library
Private Library

The IEFBR 14 Program
Testing JCL Without Execution
Selecting a Cataloged Procedure Library
Reading Column Binary Input

Restarting a Job ,............
Example of Routing a Job Through the System

Obtaining Output (JES3 only)
Requesting Listings of JCL Statements and System Messages
Requesting an Abnormal Termination Dump
Writing Output Data Sets ,......

Assigning Output Data Sets to Output Classes
Specifying the Device
Processing Output Classes
Delaying the Writing of an Output Data Set
Suppressing the Writing of an Output Data Set
Limiting Output Records
Requesting MUltiple Copies of an Output Data Set
Requesting Forms and Print Control

Requesting a Special Output Form
Requesting a Special Character Set
Requesting a Specific Image
Requesting Forms Overflow and Printer Spacing
Requesting Punch Output Interpretation on a 3525

Controlling Output Destination . .
TSO on an ASP Main Processor . . .

Remote Job Processing
Example of Obtaining Output (JES3 only)

Special Data Sets
Creating and Using Private and Temporary Libraries

Creating a Private Library
Adding Members to a Private Libr'ary

Retrieving an Existing Private Library
Concatenating Private Libraries

Using Private Catalogs
Temporary Libraries

Defining a Dummy Data Set . . .
Coding the DUMMY Parameter
Coding DSNAME=NULLFILE
Requests to Read or Write a Dummy Data Set

Using Virtual Input/Output (VIO) for Temporary Data Sets
Defining a VIO Temporary Data Set
Backward References for VIO Data Sets
Using Virtual Input/Output (VIO) to Pass Temporary Data Sets Among Job Steps

Entering Data Through the Input Stream
VSAM Data Sets
Creating and Retrieving Indexed Sequential Data Sets

Creating an Indexed Sequential Data Set
The DSNAME Parameter
The UNIT Parameter
The VOLUME Parameter
The LABEL Parameter
The DCB Parameter .
The DISP Parameter
The SPACE Parameter
Nonspecific Allocation Technique

74
74
74
75
75
76
77
79
80
80
81
81
81
81
81
82
82
82
82
83

85
85
85
86
86
86
87
87
87
88
88
88
88
89
89
89
90
90
90
91
91

93
93
93
94
94
95
96
96
:96
97
97
97
98
98
98
99
99

100
104
104
104
105
105
105
105
106
106
106

Contents 7

Absolute Track Technique
Area Arrangement of an Indexed Sequential Data Set

Retrieving an Indexed Sequential Data Set
The DSNAME Parameter
The UNIT Parameter
The VOLUME Parameter
The DCB Parameter . . .
The DISP Parameter

Examples of Creating and Retrieving an Indexed Sequential Data Set
Creating and Retrieving Generation Data Sets

Building a Generation Data Group Base Entry
Creating a Model Data Set Label
Referring the System to a Cataloged Data Set

Creating a Generation Data Set
The DSNAME Parameter
The DISP Parameter
The UNIT Parameter
The SPACE Parameter
The LABEL Parameter
The DCB Parameter .

Retrieving a Generation Data Set
The DSNAME Parameter
The DISP Parameter
The UNIT Parameter
The VOLUME Parameter
The LABEL Parameter
The DCB Parameter . . .

Submitting a Job for Restart .
Example of Creating and Retrieving Generation Data Sets

Cataloged and In-Stream Procedures
Writing Cataloged and In-Stream Procedures

Identifying an In-stream Procedure . . .
Placing a Cataloged Procedure in a Procedure Library
Allowing for Changes in Cataloged and In-stream Procedures

Using Cataloged and In-Stream Procedures
How to Call Cataloged and In-Stream Procedures
Modifying Cataloged and In-Stream Procedures .

Modifying Parameters on an EXEC Statement
Modifying Parameters on a DD Statement . .
Modifying Parameters on DD Statements that Define Concatenated Data Sets

Adding DD Statements to a Procedure
Identifying Procedure Statements on an Output Listing

Using Symbolic Parameters
Defining Symbolic Parameters When Writing a Procedure

Assigning Default Values to Symbolic Parameters
Assigning Values to and Nullifying Symbolic Parameters

Assigning a Value to a Symbolic Parameter
Nullifying a Symbolic Parameter
Caution Concerning Leading and Trailing Commas .

Example of a Procedure Containing Symbolic Parameters

Coding JCL Statements
Notation for Defining Control Statement Parameters
Fields in JCL Control Statements
Parameters in the Operand Field
Continuing Control Statements
Character Sets
Using Special Characters

The JOB Statement
The Accounting Information
The ADDRSPC Parameter
The CLASS Parameter
The COND Parameter ...
The MSGCLASS Parameter
The MSGLEVEL Parameter
The NOTIFY Parameter . .
The PERFORM Parameter .
The Programmer's Name Parameter

8 OS/VS2 JCL (VS2 Release 3)

106
107
107
107
107
108
108
108
\08
109
109
109
110
110
110
110
110
110
110
111
III
111
III
112
112
112
112
112
113

115
115
115
116
116
117
117
117
117
119
120
120
121
121
122
122
123
123
124
124
126

127
127
128
129
130
131
131

133
134
135
136
137
138
139
140
141
142

The PRTY Parameter
The RD Parameter
The REGION Parameter
The RESTART Parameter
The TIME Parameter
The TYPRUN Parameter

The EXEC Statement . .
The ACCT Parameter .
The ADDRSPC Parameter
The COND Parameter . .
The DPRTY Parameter
The DYNAMNBR Parameter
The P ARM Parameter . .
The PERFORM Parameter
The PGM Parameter
The PROC Parameter .
The RD Parameter
The REGION Parameter
The TIME Parameter

The DD Statement . .
The JOBCAT Facility
The JOBUB Facility
The STEPCAT Facility
The STEPUB Facility .
The SYSABEND and SYSUDUMP Facilities
The SYSCHK Facility
The * Parameter
The AMP Parameter
The CHKPT Parameter
The COPIES Parameter
The DATA Parameter .
The DCB Parameter . .
The DDNAME Parameter
The DEST Parameter
The DISP Parameter
The DLM Parameter
The DSID Parameter
The DSNAME Parameter
The DUMMY Parameter
The DYNAM Parameter
The FCB Parameter .
The FREE Parameter
The HOLD Parameter
The LABEL Parameter
The M'SYGP Parameter
The OUTUM Parameter
The QNAME Parameter
The SPACE Parameter
The SYSOUT Parameter
The TERM Parameter
The UCS Parameter ..
The UNIT Parameter
The VOLUME Parameter

The Command Statement

The Comment Statement

The Delimiter Statement

The Null Statement

The PEND Statement

The PROC Statement

143
144
146
147
149
ISO

151
152
153
154
156
157
158
160
161
163
164
166
167

169
171
172
175
176
179
181
183
185
188
189
190
192
204
206
208
211
212
213
216
218
219
221
222
223
226
22'8
229
230
234
236
237
239
242

247

249

251

253

255

257

Contents 9

Coding JES2 Control Statements
The Command Statement
The JOBPARM Statement
The MESSAGE Statement
The OUTPUT Statement
The PRIORITY Statement
The ROUTE Statement
The SETUP Statement

Coding JES3 Control Statements
The Command Stateml~nt
The DATASET Statement . .
The ENDDAT ASET Statement
The FORMAT Statement
The AC Parameter
The NJP Parameter . .
The PRINT Parameter .
The PUNCH Parameter
The MAIN Statement
The NET Statement . .
The OPERATOR Statement
The PAUSE Statement

Reference Tables

Glossary

Index

to OS/VS2 JCL (VS2 Release 3)

259
260
261
263
264
266
267
269

271
272
274
275
276
277
279
280
283
285
291
294
295

297

313

317

Figures
Figure 1. New and Changed JCL Parameters
Figure 2. Job Control· Statements .
Figure 3. JES2 Control Statements
Figure 4. JES3 Control Statements
Figure 5. A Job in the Input Stream
Figure 6. A Job with Several Job Steps
Figure 7. Job Boundaries in the Input Stream
Figure 8. How Device Status Affects Eligibility for Allocation
Figure 9. Unit and Volume Affinity
Figure to. Special Character Sets for the 1403 and 3211 Printers (JES2 only)
Figure 11. Example of JES3 Setup
Figure 12. Special Character Sets for the 1403 and 3211 Printers (JES3 only)
Figure 13. DD Parameters used with VSAM
Figure 14. DD Parameters you should avoid with VSAM (Part 1 of 2) .. .
Figure 14. DD Parameters you shollid avoid with VSAM (Part 2 of 2) .. .
Figure 15. ldentification of Cataloged Procedure Statements on the Output Listing
Figure 16. Identification of In-stream Procedure Statements 'on the Output Listing
Figure 17. JCL Control Statement Fields ,'
Figure 18. Character Sets
Figure 19. DD Parameters for Creating a Data Set (Part 1 of 2)
Figure 19. DD Parameters for Creating a Data Set (Part 2 of 2)
Figure 20. DD Parameters for Retrieving a Data Set
Figure 21. DD Parameters for Extending a Data Set
Figure 22. DD Parameters for Retrieving or Extending an lndexed

Sequential Data Set
Figure 23. Area Arrangement of Indexed Sequential Data Sets
Figure 24. Table of Mutually Exclusive DD Parameters
Figure 25. Disposition Processing Chart
Figure 26. Direct Access Capacities
Figure 27. Track Capacities
Figure 28. The JOB Statement
Figure 29. The EXEC Statement .. .
Figure 30. The DD Statement (Part 1 of 3)
Figure 30. The DD Statement (Part 2 of 3)
Figure 30. The DD Statement (Part 3 of 3)

17
19
20
21
23
24
24
27
32
65
72
89

101
t02
t03
121
121
128
131
298
299
300
301

302
303
304
305
306
306
307
308
309
310
311

Contents t t

12 OS/VS2 JCL (VS2 Release 3)

The JOB Statement
Accounting Information
ADDRSPC
CLASS
COND

The EXEC Statement

MSGCLASS
MSGLEVEL
NOTifY
PERFORM

ACCT DYNAMNBR PROC
ADDRSPC
COND
DPRTY

PARM
PERFORM
PGM

SYSCHK

RD
REGION
TIME

DCB

Programmer's Name
PRTY
RD
REGION

DSNAME

The DD Statement
JOBCAT
JOBUB
STEPCAT
STEPUB
SYSABEND
SYSUDUMP

DDNAME DUMMY

AMP
CHKPT
COPIES
DATA

Miscellaneous JCL Statements
Command
Comment
Delimiter

The JES2 Statenlents
Command
JOBPARM
MESSAGE
OUTPUT

The JES3 Statements
Command
DATASET
ENDDATASET

Reference Tables

Glossary

Null
PEND
PROC

PRIORITY
ROUTE
SETUP

FORMAT
AC
NJP
PR
PU

DEST
DISP
DLM
DSID

DYNAM
FCB
FREE
HOLD

MAIN
NET
OPERATOR
PAUSE

Contents Directory

RESTART
TIME
TYPRUN

LABEL
MSVGP
OUTUM
QNAME
SPACE
SYSOUT

TERM
UCS
UNIT
VOLUME

Contents Directory 13

14 OS/VS2 JCL (VS2 Release 3)

Summary of Amendments
for GC28-0692-1
OS/VS2 Release 3

.)"ES3 (for planning purposes only)

Includes all JCL related information and parameters' for
JES3.

AMP and DCB Parameters

DCB rewritten: AMP and DCB relocated in alphabetical
order in the 00 statements.

Allocation

Additional information on device status affecting eligibility
for allocation: additions to specific volume and unit
requests; additions to unit affinity; additions to UNIT and
VOLUME parameters.

Space Requests

Additional information in requesting space and in the
SPACE parameter.

Restart

Checkpoint data sets must have UNIT and VOLUME
specified even if cataloged.

Label

Additions to label type subparameter and creating a model
data set label for generation data groups.

Job Initiation Priority

JES3 supports the PRTY parameter on the JOB statement.

Testing JCL without Execution

PGM=JCLTEST, in addition to TYPRUN=SCAN, tests
JCL syntax.

Dynamic Allocation

Additional rules for coding the OYNAM parameter.

Comment Statement

Clarification of continuing the comments statement.

Device Sharability

Describes what device types are sharable between jobs,
including the 3340 fixed head feature drive.

JES2 JOBPARM Statement

SYSAFF is a new parameter that indicates the systems
eligible to process a given job (for JES2).

DEST Parameter

The DEST parameter value is clarified for JES2 and
non-JES2 users.

Reference Tables

The tables arc updated to reflect the Release 3 changes.

Miscellaneous

The SPACE, UNIT, and VOLUME parameters are some of
the parameters clarified in this release.

Unit Affinity

Data sets requesting unit affinity can be overridden in
certain circumstances.

Mass Storage System (MSS) (for planning purposes
only)

Mass storage volumes are virtual direct access- devices
defined in groups of volumes by the MSVGP parameter.

Associated Data Sets

These are data sets on a 3540 diskette and are identified by
the OSlO parameter.

TYPRUN=COPY

The input deck is converted directly to a SYSOUT data set
and scheduled for output processing, bypassing job
initiation.

VIO Data Sets

When allocating VIO data sets by average block length, the
secondary request is determined by the average block length
specified in the SPACE parameter.

TIME=O

On the JOB statement: no CPU time limit is assigned. On
the EXEC statement: the remaining time from the previous
step is used.

DD * and DD DATA

New keywords are allowed on these two statements.

Summary of Amendments 15

Summary of Amendments
for GC28-0692-0
as Updated by GN28-2576
OS/VS2 Release 2

Region size requirements

There is a minimum region size associated with requests for
AD 0 RSPC= REAL.

Directory space for partitioned data sets

The directory is included in the beginnini'of the primary
space.

Deferred restarting of a job

You must specify UNIT and VOLUME information even if
the checkpoint data set is cataloged.

Testing of cataloged procedures

You should test catalog procedures without overrides before
placing them in a procedure library.

Summary of Amendments
for GC28-0692
OS/VS2 Release 2

Dynamic allocation and deallocation

Dynamic allocation and deallocation allows you to request
resources as you need the'm.

Job priority

JES2 schedules jobs, assigns requested resources, and selects
jobs for execution according to priority. PRTY is not
supported for JES2; priority has nothing to do with the
actual execution.

Performance

By making performance group associations between your
job and a system defined performance group number, you
influence your job's execution.

Obtaining output

JES2 handles output processing.

Virtual input/output (VIO)

Virtual input/output (VIO) is a new method for handling
temporary data sets.

16 OS/VS2 JCL (VS2 Release 3)

SYSCHK facility on the DD statement

If a checkpoint data set is cataloged, you must always code
the DSNAME, DISP, UNIT, and VOLUME parameters.

SPACE parameter on the DD statement

Delete the second sentence on page 175 of "primary
quantity."

Disposition processing of unretrieved passed data sets

If a job step abnormally terminates, unretrieved data sets
that specified a conditional disposition when passed are
processed as specified in their conditional disposition unless
this disposition requires an update to a user catalog.

DeB parameter

FRIO and DEN=4 are additional subparameters for the
DCB parameter. All the access methods are updated to
reflect VS2 Release 2 information.

Virtual Storage Access Method (V SAM)

VSAM is a new high-performance access method of OS/VS
for use with direct-access storage. The AMP parameter
replaces the DCB parameter for describing VSAM data sets.

Restarting a job

The discussion on restarting a job has been condensed.

Requesting space for a group of data sets

The two parameters, SPLIT and SUBALLOC, are no longer
supported.

Dedicated data sets

Dedicated data sets are no longer supported. VIO is used to
handle temporary data sets.

Channel separation

SEP and AFF parameters are no longer supported.

Statement

JOB

Parameter Change

accounting a In addition to standard OS usage, this field can be used for JES2 parameters.
information field

ADDRSPC

CLASS

PERFORM

PRTY

REGION

ROLL

TYPRUN

• Assigns pageable or nonpageable storage space, and defaults for pageable storage.

a (A-Z,0-9). The job entry subsystem enqueues the job on the associated class queue.

a Associates jobs with performance group definitions.

@ This parameter is ignored when JES2 is used. Priority values, can be specified on a subsystem
control card. PRTY specifies a job's initiation priority within its job class when JES3 is used.

a Limits the size of variable GETMAIN requests.

• This parameter is ignored. a If TYPRUN=SCAN, the JCL is converted but does not execute.

e!) If TYPRUN=COPY, the input deck is copied to SYSOUT .
...-----+---------1--=::....-+-------------.:-----~-------- .. -.----- ----------t

EXEC ADDRSPC

DPRTY

DYNAMNBR

PERFORM

REGION

• Assigns pageable or nonpageable storage space, and defaults for pageable storage.

a The default is the value of the APG priority.

a Limits the number of data sets that a job step may hold for reuse.

a Associates job steps with performance group definitions.

a Li mits the size of variable G ETMAI N requests.

ROLL • This parameter is ignored; the job is not failed------+---------1---+----'--------==----------_._ .. _-_._----_ _.
DO AFF

AMP

CHKPT

COPIES

DCB

DEST

OSlO

DYNAM

FREE

JOBCAT

MVSGP

OUTLIM

RETAIN

SEP

SPACE

SPLIT

STEPCAT

SUBALLOC

SYSOUT=(c,p,f)

UNIT

VOLUME

a This parameter is ignored; the job is not failed.

a Completes information in an access method control block (ACB) for the virtual storage access
method (VSAM) data sets.

e!) Checkpoints are taken for the data set.

a Specifies multiple copies of an output data set.

a DEN=4 subparameter indicates 6250 bits-per-inch for 9-track tape.

a FRIO subparameter specifies the SYS1.IMAGELI B member to be used to interpret
documents read by a 3886 OCR device.

• HIARCHY subparameter is ignored; the job is not failed.

a Allows you to route output to specified destinations.

@ Identifies a data set on a 3540 diskette.

a Total is added to DYNAMNBR value, if any.

a Indicates when a data set is to be deallocated.

a Defines a private user catalog.

@ Identifies a group of mass storage volumes on a mass storage system (MSS) device.

a With SYSOUT=, this parameter will specify the maximum number of logical records (for
example, print lines) that may be written into this SYSOUT data set. An SMF exit routine is
entered when this number is exceeded.

a
a
a
a
a
a
a

This parameter is ignored; the job is not failed.

This parameter is ignored; the job is not failed.

Has a new default value for VIO data sets.

Converted to an equivalent SPACE parameter.

Defines a private VSAM user catalog.

Converted to an equivalent SPACE parameter.

c - (A-Z, 0-9) (* is valid in JES2 only.) This output class designation is used to queue the
associated output. Data is dequeued in much the same manner as the MVT output writer.
p - (p=INTRDR). This data set is sent directly to input service for processing as an input
job stream.
p - (p f. INTRDR). This data set is enqueued separately for the named writer.
f - Data is enqueued separately with this alphameric forms designation.

a The SEP subparameter is ignored, the job is not failed.

a The RETAIN subparameter is ignored; the job is not failed.
1-------'---------l.--.L..-----.-----------------.--.- ---.- ------- ----

• New or changed from MVT

a New or changed from MVT and VS2 Release 1

(!) New or changed from VS2 Release 2

Figure 1. New and Changed JCL Parameters

Summary of Amendments 17

18 OS/VS2 JCL (VS2 Release 3)

Introduction

You can write programs in anyone of a number of languages. The operating system will
translate the language into machine language so that the instructions can be executed and the
work performed. There is also a language, called job control language (JCL), that directs the
operating system in the handling of application programs. When submitting programs to the
operating system, you can provide JCL statements to define the work to be done, the methods
to be used, and the resources needed. In addition, you can obtain special input and output
processing by including JES2 and JES3 control statements for the job entry subsystems. A
collection of related problem programs is submitted to the operating system as a job. A job is
made up of one or more job steps, each of which is a unit of work associated with the overall
processing program.

The JCL Statements
Job control language consists of nine statements. The name and purpose of each statement is
summarized in Figure 2.

Every job requires the use of the, JOB statement (to identify the job), EXEC statements (to
identify each job step), and DD statements (to identify data sets used by the job). The null
statement is optional. Placing it within the job cau~es JCL statements other than the JOB

statement behind the null statement to be ignored. JES2 ignores the null statement. The
delimiter statement can be used to indicate the end of data in the input stream. PROC and
PEND statements are used to define a set of JCL statements to be used as an in-stream
procedure. The command statement allows operator commands to be submitted through the
input stream; this statement is used primarily by the operator. The.comment statement can be
used to make the programs readily understandable by other programmers and by yourself.

iName of Statement Purpose

II JOB (job) marks the beginning of a job; assigns a name to the job.
II EXEC (execute) marks the beginning of a job step; identifies the programs to be

executed or the cataloged or in-stream procedure to be called; assigns a
name to the step.

II DO (data definition) identifies a data set and describes its attributes.
1* (or two characters indiCates the end of data placed in the input stream.

designated by the user
to indicate delimiter)

II (null) marks the end of a job.
II PROC '(procedure) for cataloged procedures, assigns default values to parameters defined in

the procedure; for in-stream procedures, marks the beginning of the
procedure.

II PEND (procedure end) marks the end of in-stream procedure.
I 1* (comment) con;tains comments.
II (command) enters system operator commands through the input stream.

-

Figure 2. Job Control Statements

In addition to identifying data sets, job steps, and the job, you can code parameters on JCL

statements to request resources and services from the operating system. The operating system
is responsible for managing all the resources of the computing system. It automatically
performs many services in processing jobs; however, you can influence the processing of a job
by including JCL parameters. For example, JES2 selects a job for execution, but you can
influence when the job is selected or delay its selection by coding parameters on the JOB

statement (or on the MAIN statement for JES3 processed jobs). You can also ask for a specific
volume on which to write a data set. The following paragraphs describe some of the functions
that are available on the major JCL statements:

Introduction 19

JOB statement: By using the parameters allowed on the JOB statement, you can provide
accounting information for the installation's accounting routines, define execution
characteristics, specify conditions for early termination of the job, request a specific class for
job scheduler messages, hold a job for later execution, and Jimit the maximum amount of time
the job can use the central processing unit (CPu).

EXEC statement: Parameters on the EXEC statement can define the program that the system
is to execute. They can also be used to provide job step accounting information, to give
conditions for bypassing or executing a job step, to assign a limit on the CPU time used by a
job step, and to pass information to a processing program such as the linkage editor.

DD statement: Parameters on the DD statement provide the system with such information as
the name of the data set, the name of the volume on which it resides, the type of I/o device
that holds the data set, the format of the records in the data set, whether a data set is old or
new, the size of newly created data sets, and the access method that will be used to create or
refer to the data.

The JES2 Statements
You can control the input, output, and processing of a program by coding JES2 control
statements and placing them in the input stream. There are seven JES2 statements that can be
used with JCL to direct the execution of the program. Figure 3 shows the name and purpose of
each statement.

-----.~

Name of Statement Purpose

/*$command enters JES2 operator commands through the input stream.
j*JOBPARM indicates job related parameters that can be specified at input time.
j*MESSAGE sends messages to the operator via the operator console.
j*OUTPUT specifies characteristics and options of a specific SYSOUT data set or groups of

SYSOUT data sets.
j*PRIORITY assigns a job selection priority.
j*ROUTE specifies the default output destination.
j*SETUP indicates volumes needed for executing your job.

Figure 3. JES2 Control Statements

Use JES2 control statements to request more efficient use of resources. Three of these
statements contain specific functions that are discussed below.

JOBPARM statement: Parameters on the JOBPARM statement specify the estimated number of
cards to be produced as output from a job, the number of copies of printed output desired, the
default print or punch forms, the number of output lines on each page, the estimated total
number of output lines from the job, your room number, any system affinity that may be
required, the estimated job execution time, the printing of the JES2 job log, and the name of
the cataloged procedure library to be used to convert the JCL for the job.

OUTPUT statement: Parameters on the OUTPUT statement specify the number of copies of
each data set that is desired, the destination device of the output, any special forms required,
the indexing print position offset and forms control buffer image (FCB) (3211 only), and the
use of the universal character set (UCs).

ROUTE statement: Parameters on the ROUTE statement route the printed or punched output
to any local device, remote terminal, or remote device.

20 OS/VS2 JCL (VS2 Release 3)

The JES3 Statements
You can also control the input, output, and processing of a program by coding JES3 control
statements and placing them in the input stream. There are eight JES3 statements that can be
used with JCL to direct the execution of a program. Figure 4 shows the name and purpose of
each statement.

Name of Statement Purpose

//**command enters JES3 operator commands, except *DUMP and *RETURN, through the input
stream.

/1* DATASET permits additional input data sets from the input stream.
//*ENDDATASET terminates the creation of an input data set.
//*FORMAT specifies special. destination and format related instructions for a specific SYSOUT or

JES3-managed print and punch data set.
//*MAIN defines selected processing parameters for the current job.
/I*NET identifies relationships between predecessor and successor jobs in a dependent job

control net.
/I*0PERATOR transmits messages to the operator.
/I**PAUSE halts the input reader.

Figure 4 .• mS3 Control Statements

Several of the JES3 statements contain keyword parameters that define options available to
help improve the processing of the job. Two of these statements are briefly defined here.

FORMAT statement: Parameters on the FORMAT statement differ according to the type of
request you are making. For print and punch data sets, keyword parameters specify such
options as output destination, number of output copies, and types of output forms. For JES3

created data sets (AC) under MVT or VS2 Release 1, keyword parameters specify options for
TSO users or local users wishing to route data sets to TSO users on MVT or VS2/1 ASP main
processors. For network job processing data sets (NJP), keyword parameters specify the JES3

system name from which and to which the job will be transmitted.

MAIN statement: Parameters on the MAIN statement specify such options as the main
processor name or type of system to be used for the job, the type of control program to be
used, the estimated number of cards or lines of output, the job class for the job, and the time
that the job is due to be completed.

Nonstandard job processong. A job, in addition to being a collection bf related problem
programs identified by a JOB statement, is also a collection of JES3 processing segments, called
job segments. A job that consists only of a collection of releated problem programs to be
processed by VS2 and that requires no special job segments is called a standard job. A
non-standard job requires one or more special job segments in place of or in addition to the
standard job segments of interpreter service, main service, and output service. Specify a
nonstandard job by following the JOB statement with a JES3 PROCESS statement for each job
segment. The ENDPROCESS statement ends the definition of the job segments for the job. How
to code these statements and the use of nonstandard jobs is explained in OS/VS2 System
Programming Library: Job Management, GC28-0627.

Introduction 21

Cataloged and In-Stream Procedures

Often the same set of JCL statements are used repeatedly with little or no change (for
example, to specify compilation, link-editing, and execution of programs). To save
programming time and to reduce the possibility of error, standard job step definitions can be
prepared and placed (or cataloged) in a partitioned data set known as the procedure library. A
set of JCL statements placed in the procedure library is called a cataloged procedure. A
cataloged procedure consists of EXEC and DD statements.

By simply using a JOB statement and an EXEC statement, you can retrieve a specific
cataloged procedure. Specify the name of the procedure on the EXEC statement.

The effect is the same as if the JCL statements of the cataloged procedure appeared in the
input stream in the place of the EXEC statement that calls the procedure. If necessary, you can
modify the cataloged procedure by a process known as overriding.

Before putting a procedure into the procedure library, you may want to test it. This can be
done by converting the procedure to an in-stream procedure. An in-stream procedure is a set
of JCL statements that can be used repeatedly by referencing it in an EXEC statement. Another
advantage of in-stream procedures is that they can give you the facility of a cataloged
procedure without being placed in the procedure library. After testing the procedure, keep it in
card form and simply insert it in the input stream whenever you want to use it.

Processing Your Job

To have a job processed, submit the JCL statements and any related input data to the
operating system through an input/outpt:t (I/o) device chosen by the operator. The input unit
can be a card reader, a magnetic tape, a terminal, or a direct access device. The sequence of
JCL statements and input data for all the jobs being submitted through an input unit is called
the input stream.

A job control language (JCL) statement consists of one or more 80-byte records. Many jobs
are submitted to the operating system for execution in the form of 80-colpmn punched cards.
The operating system is able to distinguish a job control statement from data included in the
input stream. In columns 1 and 2 of all the statements except the delimiter statement, code / /.
For the delimiter statement, code /*. For a comment statement, code / /* in the first three
columns.

A job can be simple or complicated; you can have a procedure in the input stream or call a
cataloged procedure. Figure 5 shows some examples of what jobs can look like. Although only
one example shows the use of the JES2 statements, these statements could have been placed
with all of the jobs. (JES3 statements can also be used with any of the jobs and are placed
after the JOB statement.)

22 OS/VS2 JCL (VS2 Release 3)

delimiter

data

DO

EXEC

delimiter

/I EXEC

1/ JOB

delimiter

II EXEC

PEND

II DO

EXEC

II PROC

II JOB

DO

1* PRIORITY

I Figure 5. A Job in the Input Stream

SYS1.PROCLIB

A Job With One Job Step

The EXEC statement defines the program to be
executed; the DO statements define the data to
be used. In this case, the data is in the input
stream.

A Job With a Cataloged Procedure

The EXEC statement is calling a cataloged
procedure to process the data in the input
stream.

_.::JI" DDNAME=XY

A Job With an In-stream Procedure

The EXEC statement refers to an in-stream
procedure which is shown using the PROC and
PEND statements.

A Job With JES2 Statements

A simple job using JES2 control statements. The
PRIORITY, command, and any comment
statements would be the only control statements to
be placed in front of the JOB statement.

Introduction 23

Figure 6 shows ajob that contains several job steps: a compilation, a link-edit, and a
program.

input data

Figure 6. A Job with Several Job Steps

Figure 7 shows how several jobs run one after another through the input stream. Your job would be
one job in a group of jobs that make up an input stream.

DO

EXEC

JOB

PRIORITY

delimiter

I Figure 7. Job Boundaries in the Input Stream

24 OS/VS2 JCL (VS2 Release 3)

Requesting Resources and Identifying Data

To execute a program, define its requirements for resources and data. For example, if the job
is to use only real storage, that is, it cannot be paged, you must indicate this on a JCL
statement. You can also request certain units and volumes to be used and define the amount of
space required by the job. If you request dynamic allocation, you are requesting resources
during program execution as they are needed.

Define temporary or nontemporary data sets or request the use of a nontemporary data set
that is cataloged. Whether a data set is old or new, should be kept or deleted, are a few of the
options you can define in establishing the disposition of data sets in the job.

This section contains six topics:

• Requesting Storage for Execution of a Program
• Requesting Units and Volumes
• Requesting Space for Non-vsAM Data Sets
• Dynamically Allocating and Deallocating Data Sets
• Identifying Data Sets to the System
• Disposition Processing of Non-VSAM Data Sets

Requesting Storage for Execution of a Program
In OS/VS, storage available for a program consists of real storage and virtual storage:

• Real storage is the storage of System/370 from which the central processing unit can
directly obtain instructions and data and to which it can directly return results.

• Virtual storage is addressable space that appears to the user as real storage, from which
instructions and data are mapped into real storage locations. The user address space is 16
million bytes which consists of the commonly addressable system storage, the nucleus, and
the private address space (which includes the user's region).

When a program is selected, it is brought into virtual storage and divided into pages (a page
is 4K in VS2). The supervisor is responsible for transferring pages of a program into real
storage for execution. This paging is done automatically by the supervisor; to you, it appears as
if the entire program exists in real storage. (The concept of paging is described in greater
detail in the Introduction to Virtual Storage in System/370, GR20-4260.)

When to Request Real Storage

For most programs, the supervisor transfers pages of a program to real storage as they are
required for execution; not all pages of a program are necessarily in real storage at one time .
and the pages that are in real storage at once do not necessarily occupy contiguous space.
Certain programs, however, must have all their pages in contiguous real storage while they are
executing-they cannot be paged during execution. The programs include:

• Programs that modify a channel program while it is active.
• Programs that are highly time dependent.

These programs must be placed into an area of virtual storage called the nonpageable
dynamic area, whose virtual addresses are identical to real addresses; they are the only
programs for which you should request real storage. If a job or job step must not be paged
during execution, identify it by coding ADDRSPC=REAL on either the JOB or the EXEC
statements. Request the amount of real storage needed with the REGION parameter. For more
information concerning real and virtual storage, see the Introduction to OS/VS2 Release 2,
GC28-0661.

Requesting Resources and Identifying Data 25

Specifying Storage Requirements with the REGION Parameter

The meaning of the REGION parameter differs depending on whether the program can be
paged during execution (if ADDRSPC=VIRT is coded or implied) or cannot be paged during
execution (if ADDRSPC=REAL is coded).

When ADDRSPC=VIRT is coded or implied, a region value is established internally from
either the REGION parameter or an installation-supplied default. The internal value is used to
limit variable-length GETMAINS.

When you code ADDRSPC=REAL and the REGION parameter, the amount of space
requested is allocated to the program from the address space-the request is actually a request
for real storage. If you are requesting space in real storage, the amount of space requested
must include any additional requests the program makes during its execution (for example, a
request made with the GET MAIN macro instruction). Also, the amount of real storage
requested must include sufficient space for the task termination function. Task termination
invokes certain system resource managers that can issue GETMAIN macro instructions for space
in the user's region. The region must have enough deallocated storage during task termination
to allow the task termination function to complete. The minimum request for real storage must
be 8K if the program to be executed is reenterable and resides in an authorized library, and
12K in all other cases. Note that this is the minimum region for successful execution, but not
necessarily the minirnum region size for successful job completion. It is suggested that
programs to be run in an ADDRSPC=REAL environment perform as much clean-up as possible
before terminating.

Example of Requesting Storage

The purpose of this job is to indicate how to request storage for a program when it is
important that it not be paged.

//OBJ
//STEP1
//DDl
//STEP2
//DD2

JOB
EXEC
DD
EXEC
DD

BROWN,CLASS=D,MSGLEVEL=l
PGM=REAL,REGION=20K,ADDRSPC=REAL
DSN=DISK1,DISP=OLD
PGM=VIRT,REGION=75K,ADDRSPC=VIRT
DSN=DISK2,DISP=OLD

1. The JOB statement assigns jobs to class D and requests all JCL statements and messages
to be printed.

2. STEPl is to be executed in real storage.

3. STEP2 is to be executed in virtual storage.

Requesting Units and Volumes
On the DD statement defining a data set, indicate the device and volume on which the data set
can be found or will be written by specifying unit and volume information. Input/output
devices are grouped according to class; a device class is a kind of device: direct access,
magnetic tape, unit record, graphic, and communications equipment. A unit is a particular
device: a 2314 direct access device, a 1403 printer, etc.; a volume is a section of auxiliary
storage that is serviced by a single read/write mechanism-for example, a reel of magnetic
tape, a drum, or a disk pack.

Device status can affect the device eligibility for allocation. Figure 8 shows the various
devices and the possible status each may have.

26 OS/VS2JCL (VS2 Release 3)

Device Type
Status

I I Direct Access Tape Unit Record Graphic Teleprocessing

Online Eligible for allocation

Offline Eligible for allocation when the operator brings device online Eligible for
allocation

Pending Unload Eligible for allocation when not applicable
volume is specifically requested

~~ , __ __. __ w.

Pending Offline Eligible for allocation when Eligible for allocation when the
the operator brings the device operator brings the device not applicable
online and when the volume is online
specifically requested

Figure 8. How Device Status Affects Eligibility for Allocation

Specifying Volume Information

Data sets exist on direct access and magnetic tape volumes which must be mounted on devices
before they can be used. To inform the system on which volume an existing data set can be
found, make a specific volume request; to create a new data set, make a specific or nonspecific
volume request. If you request mUltiple disk volumes to be mounted in JES3, they must all be
either mountable or permanently resident; a mixture of both is not allowed.

Specific Volume Requests

A specific volume request informs the system of the volume serial number of the volume
required. Make a specific volume request for an existing data set; make either a specific or
nonspecific volume request when creating a data set.

A specific request occurs when:

• Specifying the serial numbers in the SER subparameter of the VOLUME parameter, that is,
VOL=SER=(948762,945231).

• Refering the system to an earlier specific volume request to copy the volume serial numbers
by coding the name of a passed or cataloged data set or a previous DD statement in the REF
subparameter of the VOLUME parameter. To refer the system to a passed or cataloged data
set, code VOL=REF=dsname. To refer to a DD statement in the same step, code
VOL=REF=* .ddname; in a preceding step, VOL=REF=* .stepname.ddname; or in a procedure
step that is in a procedure called by a preceding step,
VOL=REF=*.stepname.proestepname.ddname. (If you refer to a multi-device type VSAM data
set, only the volume serial number of the first device type listed in the catalog will be used.)

• Passing the data set from an earlier step or from the catalog. The system obtains the volume
serial numbers from the passed data set information or from the catalog; you need not code
the VOLUME parameter unless requesting a private volume, coding a volume sequence
number, or requesting additional volumes. If a cataloged data set is cataloged in, or is to be
cataloged or l.lncataloged from, a private catalog other than JOBCAT and STEPCAT, then the
system automatically allocates that private catalog to the job step. (The private catalog must
be on a permanently resident volume in JES3). If this allocation is not successful, then the
job fails.

Nonspecific Volume Requests

Nonspecific volume requests can be made only for new data sets. When making a nonspecific
volume request, do not specify volume serial numbers. You need not code the VOLUME
parameter unless you are requesting a private volume or a volume count.

Requesting Resources and Identifying Data 27

There are four types of nonspecific volume requests that can be made:

1. A private volume for a temporary data set.
2. A private volume for a nontemporary data set.
3. A nonprivate volume for a temporary data set.
4. A nonprivate volume for a nontemporary data set.

How the system satisfies these different types of requests are described below. Since the
system satisfies the first two types of requests in the same way, these two requests are
described together.

• When making a nonspecific volume request for a private direct access or tape volume, the
system always requests the operator to mount a volume. The operator should mount a
volume whose space is unused. This allows you to have control over all space on the
volume. Once mounted, the volume is assigned the use attribute of private.

• When making a nonspecific volume request for a non private direct access volume that is to
contain a temporary data set, the system assigns a public or storage volume that is already
mounted, or requests the operator to mount a removable volume. If a mounted volume is
selected, its use attribute is not affected. If a removable volume is mounted, it is assigned
the use attribute of public.

When making a nonspecific volume request for a nonprivate tape volume that is to
contain a temporary data set, the system assigns a public volume that is already mounted, or
it requests the operator to mount a tape volume. Once mounted, the volume is assigned the
use attribute of public.

• When making a nonspecific volume request for a nonprivate direct access volume that is to
contain a nontemporary data set, the system assigns a storage volume if one is mounted.
Otherwise, the request is treated as a nonspecific volume request for a private volume.

When making a nonspecific volume request for a nonprivate tape volume that is to
contain a nontemporary data set, the request is treated as a nonspecific volume request for
a private volume.

U sing Private Volumes

A private volume is one that can be used exclusively unless a specific request is made for that
volume. Code PRIVATE as the first subparameter in the VOLUME parameter with both specific
and nonspecific volume requests. When making a specific volume request for a direct access
volume, code PRIVATE if you want a private volume; tape volumes for which you make a
specific volume request are automatically made private, so you need not code the PRIVATE

subparameter.

A volume already made private cannot be allocated to satisfy other nonspecific volume
requests. Therefore, if you request a private volume, you will be the only user using that
volume, unless another job makes a specific volume request for that volume.

Sharing Volumes Between Data Sets

To conserve space and use fewer volumes, request that data sets be assigned the same volume.
Data sets on the same volume have volume affinity.

You can request volume affinity either:

• Implicitly, by specifying the same volume serial numbers for the data sets in the SER

subparameter of the VOLUME parameter.
• Explicitly, by using the REF subparameter of the VOLUME parameter to indicate that

volumes identified in the catalog or on an earlier DD statement in the job are to be assigned
to the data set being defined.

28 OS/VS2 JCL (VS2 Release 3)

Volume affinity influences the allocation of devices. The system can modify a request for a
specific number of units if a data set has volume affinity with at least one other data set. For
examples of volume affinity, see the end of this chapter.

Multivolume Data Sets

If you are creating or extending a data set that can require more than one volume, request the
maximum number of volumes that can be required in the volume count subparameter of the
VOLUME parameter. The maximum number of volumes you can request is 255. For some jobs,
each volume requested must be mounted on a unit before it can be used. For these jobs,
request as many units as volumes. When making a specific volume request for more volumes
than units, the system automatically indicates that the volumes on the same unit cannot be
shared.

When reading or lengthening an existing multivolume data set, instruct the system to begin
processing other than the first volume by coding the volume sequence number subparameter.
Usually a volume sequence number is coded when you are defining an existing cataloged or
passed data set.

Specifying Unit Information

Provide the system with the information it needs to assign a device to a data set in the UNIT
parameter. To indicate what unit or type of unit you want, code one of the following:

• Uhit address.
• Device type (generic name).
• User-assigned group name (esoteric name).

The unit address is a 3-character address made up of the channel, control unit, and unit
number. For example, UNIT=180 indicates channel 1, control unit 8, and unit number O.
Specifying a unit address, however, limits unit assignment: the system caQ assign only that
specific unit, and, if the unit is being used, the job must be delayed or canceled. Unit
addresses should only be specified when necessary since these specifications restrict the system.

A device type corresponds to a particular set of features of input/output devices. When
coding a device type, allow the system to assign any available device of that device type. For
example, UNIT=2314 indicates that you want the system to assign an available 2314 disk
storage facility.

Each installation can also define user-assigned group names during system generation to
signify a group of devices that mayor may not all be of the same type. When coding a
user-assigned group name, allow the system to assign any available device included in the
group. For example, if the group named DISK includes all 2314 and 3330 disk storage facilities
and you code UNIT=DISK), the system assigns an available 2314 or 3330 device. If the group
named 2314A includes particular 2314's and you code UNIT=2314A, it could refer to one of
several groups of 2314 devices.

If a group contains more than one device type or class (for example, SYSSQ can refer to all
tape and direct access device~), you should not code the group name when defining an existing
data set or requesting a specific volume. The volume on which the data set resides may require
a device different from the one assigned to it. For example, if the data set resides on a tape
volume, it must be assigned to a tape device.

The same is true if the data set resides on a 3348 Model 70F Data Module and the group
name includes 3340 drives with and without the Fixed Head Feature. The 3348 Model 70F
must be assigned to a 3340 with the feature. For more information 011 the Fixed Head
Feature, see the IBM 3340 }'ixed Head Feature Users Guide, GA26-1632.

Requesting Resources and Identifying Data 29

Only direct access devices can be simultaneously allocated for two or more jobs.
Teleprocessing equipment is not allowed to be allocated more than once in the same job step.
If a unit record, teleprocessing equipment, or -graphics device is designated as a console, it is
not eligible for allocation by a job.

Requesting More than One Unit

To increase operating efficiency, request multiple units for a multivolume data set or for a data
set that may require additional volumes. When each required volume is mounted on a separate
device, execution of the job step is not interrupted to allow the operator to demount and
mount volumes. You should always request mUltiple units when the data set can be extended
to a new volume if the data set resides on a permanently resident or reserved
volume-permanently resident and reserved volumes cannot be demounted in order to mount a
new volume.

You request multiple units by:

• Coding the unit count subparameter in the UNIT parameter.
• Requesting parallel mounting.

Request parrallel mounting when making a specific or non-specific volume request. The
system counts the number of volumes requested (by counting the volume serial numbers
specified on the DD statement or counting the volume serial numbers in cataloged or passed
data sets). This is compared with the volume count, if it has been specified, and the system
assigns the larger of the specified number of devices. Code P in place of the unit count
subparameter.

Deferred Mounting of Volumes

If the job step includes a data set that might not be used, depending on conditions determined
in the job step, you can request (using the DEFER subparameter) that the system not mount
the volume containing the data set until the data- set is opened. This can save operator action
of mounting volumes on direct access devices. Note: No other job step can use this volume
until the job step specifying DEFER ends. If DEFER is coded for a new data set which could be
placed on a direct access device, then DEFER is ignored.

When You Do Not Have to Code the UNIT Parameter

The system can obtain unit information from sources other than the UNIT parameter. In these
cases, you do not have to code the UNIT parameter:

• When the data set is cataloged. For cataloged data sets, the system obtains unit and volume
information from the catalog. However, if VOL=SER=serial number is coded on a DD
statement that defines a cataloged data set, the system does not look in the catalog. In this
case, you must code the UNIT parameter.

• When the data set is passed from a previous job step. For passed data sets, the system
obtains unit and. volume information from passed data set information. However, if
VOL=SER=serial number is coded on a DD statement that defines a passed data set, the
system does not look in the passed data set information. In this case, you must code the
UNIT parameter.

• When the data set is to use the same volumes assigned to an earlier data set, that is,
VOLUME=REF=reference is coded. In this case, the system obtains unit and volume
information from an earlier DD statement that specified the volume serial number or from
the catalog.

30 OS/VS2 JCL (VS2 Release 3)

In all of the '~ases listed above, code the UNIT parameter when you want additional devices
assigned or when you want to influence device allocation. If the coded UNIT parameter is a
subset of the unit type referenced, then it will be used. Otherwise, it is ignored. Do not code
the UNIT parameter when defining a data set included in the input stream. If UNIT is coded on
a DD * or DD DATA statement, the job is abnormally terminated.

Sharing a Unit Between Data Sets on Different Volumes

To conserve the number of devices used in a job step, request that an existing data set be
assigned to the same device or deviees as assigned to a data set defined earlier in the job step.
When two or more volumes are assigned the same device, the volumes are said to have unit
affinity. Unit affinity implies deferred mounting for all except one of the volumes, since all
volumes cannot be mounted on the same device at the same time.

Request explicit unit affinity by coding UNIT=AFF=ddname on a DD statement. The ddname
is the name of an earlier DD statement in the same job step. The data set defined on the DD
statement that requests unit affinity is assigned the same device or devices as the data set
defined on the named DD statement. If the ddname refers to a DD statement that defines a
dummy data set, the data set defined on the DD statement requesting unit affinity is assigned a
dUQlmy status. Unit affinity also exists on one DD statement when there are more volumes
than units. This is implied unit affinity. See examples of unit affinity.

If all of the following conditions are present, the data set defined on the DD statement
requesting unit affinity might be written over by the named data set:

• The named DD statement requests a scratch tape.
• The data set defined on the DD statement requesting unit affinity is opened prior to that on

the named DD statement.
• The tape is not unloaded prior to the OPEN of the data set defined on the named DD

statement.

Unit and Volume Affinities: Unit and volume affinity can occur in the same step and, within
the step, on the same DD statement. There are three relationships possible between unit and
volume affinity.

1. All volume affinity requests are unrelated to any of the unit affinity requests. For
example,

//DDl
//DD2
//DD3
//DD4

DD
DD
DD
DD

VOL=SER=A
UNIT=AFF=DD1,VOL=SER=B
VOL=SER=(C,D)
VOL=SER=C

2. All volume affinity requests are contained in the unit affinity requests. For example,

//DDl
//DD2
//DD3

DD
DD
DD

VOL=SER=(A,D)
UNIT=AFF=DD1,VOL=SER=(A,B)
VOL=SER=X

3. Some volume affinity requests are contained in the unit affinity requests, but not all. For
example,

//DDl
//DD2
//DD3

DD
DD
DD

VOL=SER=A
UNIT=AFF=DD1,VOL=SER=B
VOL=SER=B

Requesting Resources and Identifying Data 31

If both unit and volume affinity do exist in the same step, sometimes only one requested
affinity can be honored at a time. Figure 9 indicates what will happen when you code unit and
volume affinity for either tape or direct access devices.

Relationship of
unit and volume
affinities

Unit and volume
affinities
unrelated.

All volume affinities
contained in unit
affinities.

Some volume affinities
contained in unit
affinities.

Figure 9. Unit and Volume Affinity

Tape
-

Because there is no
conflict, both unit
and volume affinity
requests are honored.

Ali volumes will use
the same unit; that
is, volume .affinity
is ignored and unit
affinity is honored.

-

For those volumes having
volume affinity that are
contained in the unit
affinity requests, unit
affinity is ignored. That
is, they will share the same
unit while the remaining
requests in the unit affinity
will use a different unit.

.-

Direct Access
--.--

Because there is no
conflict, both unit
and volume affinity
requests are honored.

--
For those volumes having
volume affinity that are
contained in the unit
affinity requests, unit
affinity is ignored. That
is, they will share the
same unit while the
remaining requests in the
unit affinity will .use
a different unit.

--
For those volumes having
volume affinity that are
contained in the unit
affinity requests, unit
affinity is ignored. That
is, they will share the
same unit while the
remaining requests in the
unit affinity will use
a different unit.

Note: If a requested volume is mounted on an eligible permanently resident or reserved unit,
it must be allocated to that unit regardless of any relationships to other requests. This is done
because no dismount of that particular volume can take place.

32 OS/VS2 JCL (VS2 Release 3)

Example of UNIT and VOLUME Affinities: The purpose of this job is to show several job
steps that use either unit or volume affinity for their processing.

//AFFIN
/ /STEPl
//001
//002
//STEP2
/ /0011
//0012
//STEP3
//0021
//0022
//0023
//STEP4
//0031
//0032
//STEP5
//0041
//0042
//STEP6
/ /0051
//0052

JOB
EXEC
00
00
EXEC
00
00
EXEC
00
00
00
EXEC
00
00
EXEC
00
00
EXEC
00
00

(8526,831),WOON,CLASS=J,PERFORM=50
PGM=TESTAFF
UNIT=2400,VOL=SER=111111
UNIT=AFF=001,VOL=SER=222222
PGM=TESTAFF
UNIT=(3330,2),VOL=SER=(A,B)
UNIT=AFF=OOll,VOL=SER=(C,O)
PGM=TESTAFF
UNIT=(3330,2),VOL=SER=(A,B)
UNIT=AFF=0021,VOL=SER=(C,0)
UNIT=3330,VOL=SER=B
PGM=TESTAFF
UNIT=(3330,2),VOL=SER=(E,F)
UNIT=AFF=0031,VOL=SER=(G,H)
PGM=TESTAFF
UNIT=2400,VOL=SER=(111111,222222)
UNIT=AFF=OD41,VOL=SER=(222222)
PGM=TESTAFF
UNIT=3330,VOL=SER=(ABCOEF,GHIJKL)
UNIT=AFF=0051,VOL=SER=(ABCOEF)

1. The JOB statement assigns jobs to class J in performance group 50.

2. STEP1 assigns one unit for both volumes. Volume 111111 will be mounted first, then
222222 will be mounted when DD2 is opened. (This processing is true for both tape and
direct access.)

3. STEP2 allocates two units to DDll and volumes A and B are mounted. DD12 gets
allocated to the same two units but volumes C and D will be mounted when 0012 is
opened.

4. STEP3 is a direct access example of volume affinity for volume B. The actual allocation
of units will cause volumes A and C to share one unit and volumes Band D to have
their own units.

5. STEP4 is a direct access example. Assume that volume E is currently mounted and has
been assigned the permanently resident or reserved attribute. In this case, since volume
E cannot be dismounted, a separate unit will be allocated for it. Volume G will have its
own unit and volumes F and H will share one unit. Therefore, three volumes will be
allocated for these requests, instead of two, because of the permanently resident or
reserved mount attributes.

6. STEPS is a tape example. Volume affinity is ignored between the DO statements because
only one tape data set for each tape volume can be open at a time.

7. STEP6 is a direct access example where unit affinity is ignored for the common volume.
Volume ABCDEF of both DD statements will share the same unit while the remaining
request (GHIJKL) will use a different unit.

For more information, see OS/VS2 System Programming Library: Job Management,
GC28-0627.

Requesting Resources and Identifying Data 33

Example 0/ Requesting Units and Volumes

This job shows the unit and volume parameters.

IITEST JOB WIBORG,CLASS=C
IISTEPl EXEC PGM=TESTSYSO
IIDD11 DD DSN=A01DD1,UNIT=3330,DISP=(,PASS),
II SPACE=(TRK,l),VOL=SER=333001
IISTEP2 EXEC PGM=TESTSYSO

DSN=SYSLIB,UNIT=2314,VOL=(PRIVATE,SER=123456),
DISP=OLD
DSN=SYSABC,UNIT=AFF=DD21,VOL=SER=777777,
DISP=(OLD,KEEP)
DSN=SYSTAPE,UNIT=(2400,P,DEFER),DISP=OLD,
VOL=SER=(240001,240002,240003,240004,240005)
DSN=SYSDISK,DISP=(SHR,KEEP),UNIT=(,P),
VOL=SER=(333005,333008,333010)
UNIT=2314,VOL=REF=*.STEP2.DD21,SPACE=(TRK,(5,2))
UNIT=3330,VOL=REF=SYSDISK,SPACE=(TRK,(10,5))

IIDD21 DD
II
IIDD22 DD
II
IIDD23 DD
II
IIDD24 DD
II
IIDD25 DD
IIDD26 DD

1. The job is assigned to class C.

2. DDt1 defines a new data set named A01DDl. It is to be on volume 333001 which is
mounted on a 3330 device.

3. DD21 defines an old data set named SYSLIB that exists on a private volume, 123456. The
volume is mounted on a 2314 device.

4. DD22 defines an old data set named SYSABC that is to be kept after this job step is
complete. SYSABC is on volume 777777. This volume is to be mounted on the same
2314 device as the volume defined on DD21.

5. DD23 d~fines an old data set named SYSTAPE. There are five volumes that are to be
mounted only after the data set is opened (caused by the DEFER subparameter). The P
requests parallel mounting; that is, all five volumes are to be mounted at the same time
on five different 2400 devices.

6. DD24 defines an old data named SYSDISK that can be shared by another job since it will
only be read. It is to be kept after this job step. The number of units used is determined
by the number of volumes requested.

7. DD25 is a temporary data set (no DSNAME specified) and therefore, assumes a
disposition of NEW,DELETE. The volume to be used is the same one used in STEP2

DD21; that is, volume 123456.

8. DD26 is also a temporary data set. The backward reference for volume information is to
STEP2 DD24 where the data set named SYSDISK is located.

Requesting Space for Non-VSAM Data Sets
You must request space for every non-VSAM data set created on a direct access volume. To
request space, code the SPACE parameter on the DO statement that defines the data set. The
SPACE parameter provides two ways to request space:

• Tell the system how much space you want and let the system assign specific tracks.
• Tell the system the specific tracks on which you want the data set written.

34 OS/VS2 JCL (VS2 R.elease 3)

Letting the system assign specific tracks is the easiest and most frequently used method of
requesting space. Only the unit of measurement to be used to compute the space requirement
and how many of the units of measurement the data set requires needs to be specified. In
addition, this form of the SPACE parameter offers several options:

• A secondary quantity, to be used if the data set runs out of space.
• Space for a directory or index.
• Release of unused space.
• Contiguous space.
• Whole cylinders.

OS/MVT and VS2 Release 1 included the SPLIT and SUBALLOC parameters for requesting
space for a group of data sets on a single direct access volume. These two parameters are now
internally converted to SPACE requests.

The Basic Request: Unit of Measurement and Primary Quantity

To have the system assign specific tracks, specify only the unit of measurement the system
should use to allocate space and the primary quantity of space needed. As the unit of
measurement, you can specify:

• Average block length of the data, for blocks.
• TRK, for tracks.
• CYL, for cylinders.

As the primary quantity, code an integer, indicating how many blocks, tracks, or cylinders
are required.

It is easiest to specify an average block length: the system will allocate the least number of
tracks required to contain the number of blocks specified. Specifying block length also
maintains device independence; you can change the device type in the UNIT parameter without
altering the space request or code a group name that includes different direct access devices in
the UNIT parameter.

When specifying TRK or CYL, compute the number of tracks or cylinders required; consider
such variables as the device, type, track capacity, tracks per cylinder, cylinders per volume,
data length (blocksize), key length, and device overhead. These variables, and examples of
estimating space requirements for partitioned and indexed sequential data sets, are described in
OS/VS Data Management Services Guide, GC26-3783.

Cylinder allocation allows faster input/output of sequential data sets than does track
allocati0n. When requesting space in terms of average block length, request that the space
allocated begin and end on cylinder boundaries: code ROUND as the last subparameter in the
SPACE parameter. The smallest number of whole cylinders needed to contain the request will
be allocated.

How the System Satisfies Your Primary and Secondary Request

Enough available space must exist on one volume to satisfy the primary request. If enough
space is not available on a single volume, the system will terminate the job or search another
volume, depending on the type of volume request made:

Specific volume request (for example, volume. selial numbers are specified): If sufficient space
is not available on the first volume specified, the job is terminated.

Requesting Resources and Identifying Data 35

Nonspecific volume request (for example, the system chooses the volume): If space is not
available on the first volume chosen, the system will choose another volume and continue the
search, causing volumes to be mounted if necessary, until a volume with sufficient space is
found or the operator cancels the job.

The system attempts to allocate the primary and secondary quantity in contiguous tracks or
cylinders. If contiguous space is not available, the system satisfies the request with up to five
noncontiguous extents (blocks) of space. (If user labels are specified - that is, you code SUL
in the LABEL parameter-the system allocates up to four noncontiguous extents of space. The
system allocates a track for user labels separate from the primary quantity; this one track is
considered an extent, and therefore, up to four additional extents can be allocated to satisfy
the primary quantity.)

A Secondary Request for Space

In the primary quantity, you need not anticipate all future demands for space for a data set.
Code a secondary request for space to be used only if the data set exceeds its allocated space.
Do this by coding an integer following the primary quantity that indicates how much additional
space should be allocated. For data sets whose disposition is NEW or MOD, this space is
allocated on the same volume as the primary quantity until: (1) there is not enough space
available on the volume to allocate the secondary quantity, or (2) a total of 16 extents, less
the number of extents for primary quantity and user label space, have been allocated to the
data set. (BDAM data sets cannot be extended.) If either of these conditions is satisfied, the
system must allocate the secondary quantity or another volume. However, this can be done
only if you request more than one volume in the VOLUME parameter (for a nonspecific volume
request, code PRIVATE; for a specific volume request, request more volumes than devices).

When allocating a secondary quantity for a data set whose disposition is OLD (in other
words, a data set that is preallocated or is being written over), the system will go to the next
volume, if one is specified, and see if there is already a secondary quantity allocated there. If
you did specify another volume and there is already a secondary quantity, the system will use
that space instead of making another allocation or will allocate space if no space is already
allocated there for the data set. If you didn't specify another volume, the space will be
allocated on the current volume.

A secondary quantity can be requested when creating a data set or when retrieving an
existing data set, whether or not you coded a secondary quantity in the original request. A
secondary request for an existing data set is in effect only for the duration of the job step and
overrides an original request if one was made.

If you specify SPACE in terms of average block length, code the maximum block length of
the data in either the DCB macro instruction or the BLKSIZE subparameter of the DCB
parameter on the DO statement: the system uses the maximum block length to compute how
many additional tracks to allocate.

Re'luesting Directory Space for a Partitioned Data Set

To create a partitioned data set, request a primary quantity large enough to include space for a
directory. A directory is an index used by the syste~ to locate members in a partitioned data
set. It consists of 256-byte records, and you must specify, as the third quantity in the SPACE
parameter, how many records the directory is to contain. The directory is included in the
beginning of the primary space, which must be large enough to contain the directory. Request
enough directory space to allow for growth of the data set: you cannot lengthen the directory
as you can lengthen the data set itself by requesting a secondary quantity. If the directory runs
out of space, recreate the data set. For a complete description of the directory, including
details on member entries that will enable you to compute how many records to request, see
OS/VS Data Management Services Guide, GC26-3783.

36 OS/VS2 JCL (VS2 Release 3)

Requesting Index Space for an Indexed Sequential Data Set

If you are creating an indexed sequential data set that occupies more than one cylinder, and
are not defining the index on a separate DD statement, you can request index space in addition
to a primary quantity. (Request index space as the third quantity in the SPACE parameter. The
space request for an indexed sequential data set must be in terms of cylinders or absolute track
allocation.) The system determines whether the request is for a directory or an index by
examining the DSORG subparameter of the DCB parameter on the DO statement.
DCB=DSORG=IS or DCB=DSORG=ISU must be included on any OD statement defining an
indexed sequential data set.

The index quantity is added to the primary quantity when considering the space
requirements.

Assigning Specific Tracks

You can request that specified tracks on a volume be allocated to a data set. This is the most
stringent request for space: if any of the tracks requested are occupied, the space cannot be
allocated and the job is terminated. An example of where specific track allocation is required is
a data set that is to reside under the fixed heads of a 3348 Model 70F Data Module (cylinders
1-5).

To request specific tracks, you must code:

• ABSTR as the first subparameter, indicating absolute tracks.
• A primary quantity, specifying the number of tracks to be allocated.
• The relative track number of the first track to be allocated.

For a partitioned data set, specify how many records you want allocated for a directory. If
requesting a user-label track, this track will be the first of the space requested.

If defining an indexed sequential data set using absolute track allocation, the number of
tracks for the index, primary, or overflow areas must be equal to an integral number of
cylinders and on a cylinder boundary. All of the DD statements defining the indexed sequential
data sets must request specific tracks.

Example of Requesting Space

One purpose of this job is to request space for two temporary data sets. The following steps
refer to these data sets for volume information.

//ALLOC
//STEPl
/ /DDll
//DD12
//SYSABEND
//STEP2
//DDl
//DD2
//SYSABEND

JOB
EXEC
DD
DD
DD
EXEC
DD
DD
DD

(3416,354),STONER,MSGLEVEL=1,MSGCLASS=C
PGM=TESTSYSO
UNIT=2314,DISP=(,PASS),SPACE=(TRK,(10,5))
UNIT=3330,DISP=(,PASS),SPACE=(TRK,(10,5))
SYSOUT=L
PGM=TESTSYSO
DSN=*.STEP1.DDll,DISP=(OLD,DELETE,DELETE)
VOL=REF=*.STEP1.DD12,S~ACE=(TRK,(3,1)),UNIT=3330
SYSOUT=L '

1. The JOB statement specifies that all job related output is to be printed and that system
messages for the job are to be written to output class C.

2. STEPI defines two temporary data sets. Step 2 refers to these data sets for volume
information.

3. The space requirements for these requests indicate that for DDll and DDl2 in STEPI you
want 10 primary and 5 secondary tracks; for DD2 in STEP2 you want 3 primary and 1
secondary track; and, for DDll in STEP3 you want 5 primary and 2 secondary tracks.

Requesting Resources and Identifying Data 37

Mass Storage System (MSS) Considerations
Mass storage volumes are virtual direct access devices. All previously defined descriptions of
direct access device resource requests apply, with several additional functions also available.
The mass storage volume device type is 3330V.

Mass Storage Volume Groups

The mass storage system (3850) can contain up to 4,720 mass storage volumes (3330V). To
assist the installation in managing the volumes, the mass storage system utilities are used to
assign the volumes ,to groups. When creating a new data set with a nonspecific request, the
desired group can be specified using M~vGP=id. The system then selects the best volume for
the requirements from the specified group and causes it to be mounted.

The installation can define as many groups as necessary; one group and its name are
standard in all systems (SYSGROUP). The installation then assigns each mass storage volume to
a user group, SYSGROUP, or to no group.

Nonspecific Volume Requests for Mass Storage Volumes

Previously defined descriptions of nonspecific DASD volume requests apply to mass storage
volumes. The type of request can be modified by the MSVGP parameter that specifies an
installation defined subset of all mass storage volumes to be used by the system to satisfy the
request. MSVGP implies a private, volume and will always cause a mount of a mass storage
volume. The system will select a volume from the defined group that has sufficient space to
satisfy the space requirements of the DD statement. (See the section on mass storage volume
control in OS/VS Mass Storage System (MSS) Services for Space Management, GC35-0012,
concerning selection of MSVGP volumes to satisfy space requirements.) If you code the MSVGP
parameter, the VOLUME parameter can be used to specify a volume count, but must not be
used for volume serial numbers. VOLUME=PRIVATl~ is redundant when MSVGP is used.

If MSVGP is not specified-

• when you make a nonspecific request for a private mass storage volume, the system always
causes a default group of volumes to be llsed (MSVGP=SYSGROUP).

• when you make a nonspecific request for a non-private mass storage volume that is to
contain a temporary data set, the sY'item assigns a public or storage mass storage volume
that is already mounted. Otherwise, the request is treated as a nonspecific volume request
for a private volume.

• when you make a nonspecific request for a non-private mass storage volume that is to
contain a nontemporary data set, the system assigns a storage mass storage volume, if one is
mounted. Otherwise, the request is treated as a nonspecific volume request for a private
volume.

Specific Volume Requests for Mass Storage Volumes

Previously defined descriptions of specific DASD volume requests (direct access storage
volumes) also apply to mass storage volumes.

Because there is no operator involvement or decision making in mounting mass storage
volumes, it is recommended (for data integrity pruposes) that all permanent data sets on mass
storage volumes be cataloged. All specific requests for these data sets should always reference
the volumes using the catalog, not the VOLUME parameter. Reference to the catalog is required
when extending an existing multivolume data set to one or more volumes. The reason is that
the system must know a11 volumes on which the data set currently resides before it selects the
new volume. Parallel mounting must al')o be specified to ensure proper multivolume extensions.

38 OS/VS2 JCL (VS2 Release 3)

Requesting Space for Non-VSAM Data Sets on Mass Storage Volumes

When an installation defines mass storage volume groups, each group is given a default for
space. Specific volume requests for new data sets require the SPACE parameter. Nonspecific
volume requests with the MSVGP parameter can optionally specify the SPACE parameter.
Nonspecific volume requests without the MSVGP parameter can optionally specify the SPACE
parameter if the request will default to MSVGP=SYSGROUP. The space default will always be
contiguous cylinders. If other types of space attributes are desired, the SPACE parameter can
be coded to override the specified default. Neither directory nor index quantities can be
provided in the default; therefore, the SPACE parameter must be coded for new BPAM or ISAM
data sets on mass storage volumes.

Before using mass storage volumes, refer to OS/VS Mass Storage System (MSS) Services for
Space Management, GC3S-0012.

Dynamically Allocating and Deallocating Data Sets
Dynamic allocation allows you to acquire resources as they are needed. Oile reason to use
dynamic allocation is that you may not know all of the device requirements for a job prior to
execution. Another reason is that it allows resources to be used more efficiently; that is,
resources can be acquired' just before their use and/or released immediately after use.
(Resources, as used here, refer to a ddname-data set combination with its associated volumes
and devices, if any.) The number of dynamic allocations indicated by coding the DYNAM and
DYNAMNBR parameters are used to establish a control value for tracking resources held in
anticipation of reuse.

You can dynamically deallocate resources during the execution of a job step (at the time the
data set is closed) by coding the FREE=CLOSE parameter. If you do dynamically deallocate a
resource at close time, it cannot be reopened in the same step. If you do not want to
dynamically deallocate the resource, either specify nothing or specify FREE=END to let the
system deallocate the resources at the end of the job step.

For more information on how to use dynamic allocation and de allocation, see OS/VS2
System Programming Library: Job Management, GC28-0627.

Example of Dynamically Allocating and Deallocating Data Sets

//PROS
//STEP1
//DD1
//DD2
//OUT1
//OUT2
//SYSIN

/*

JOB
EXEC
DD
DD
DD
DD
DD

data

CLASS=A,MSGLEVEL=(2,O),PERFORM=70
PGM=TEST,DYNAMNBR=4,PARM=(P3,123,MT5)
DYNAM
DYNAM
SYSOUT=C 1 FREE=CLOSE
SYSOUT=A

*

1. The JOB statement specifies that this job will be processed in class A in performance
group 70. Only JCL statements will be printed.

2. The control value is the total DYNAMNBR and DYNAM parameters coded, in this case, 6.
If this control value is exceeded and a request for another dynamic allocation is made,
the request is not honored unless resources can be deallocated so that the control value
is not exceeded.

3. When OUTl is closed, it is immediately ready for printing.

Requesting Resources and Identifying Data 39

Identifying Data Sets to the System

Specifying the DDNAME Parameter

The DDNAME parameter is most often used in cataloged procedures and in job steps that call
procedures. It is used in cataloged procedures to postpone defining data in the input stream
until a job step cans the procedure. (Procedures cannot contain DD statements that define data
in the input stream; that is, DD * or DO DATA statements). It is used in job steps that call
procedures to postpone defining data in the input stream on an overriding DD statement until
the last overriding DD statement for a procedure step. (Overriding DD statements must appear
in the same order as the corresponding Dn state.ments in the procedure).

Wi,en You Code the DDNAME Parameter

When the system encounters a DO statement that contains the DDNAME parameter, it saves
the ddname of that statement. The system also temporarily saves the name specified in the
DDNAME parameter so that it can relate that name to the ddname of a later DD statement.
Once a DD statement with that corresponding name is encountered, the name is no longer
saved. For example, jf the system encounters this statement

IIXYZ DD DDNAME=-PHOB

the system saves XYZ and, temporarily, PIIOR. Until the ddname is encountered in the input
stream, the data set is a dummy data set.

When the system encounters a statement whose ddname has been temporarily saved, it does
two things. It uses the information contained on this statement to define the data set; it
associates this information with the name of the statement that contained the DDNAME

parameter. The value that appeared in the DDNAME parameter is no longer saved by the
system. To continue the above example, if the system encounters this statement

IIPHOB nn DSNAMF-:-nrn, Dl S1'''''''(NE\'J ,KEEP), UNIT=2400

the system uses the data set name and the disposition and unit information to define the data
set; it also associates the ddname of the statement that contained the DDNAME parameter with
this information. In this example, the ddname used is XYZ; the ddname PHOB is no longer
saved. The data set is now defined, ju')t as it would be if you had coded

IIXYZ DD DSNAHK=NIN,DlSP=(NEW,KEEP),UNIT=2400

The system associates the ddname of the statement that contains the DDNAME paramefer
with the data set definition information. It does not use the ddname of the later statement that
defines the data set. Therefore, any references to the data set, before or after the data set is
defined, must refer to the DD statement that contains the DDNAME parameter, not the DD

statement that defines the data set. The following sequence of control statements illustrates
this:

IIDDl

IILATEP
II

IIDD12
II

40 OS/VS2 JCL (VS2 Release 3)

DD

D[l

Dn

L1nNAt1E:::-: LATER

DSN=SET12,DISP=(NEW,KEEP),UNIT=2314,
V()T.TJ~~F>:-SFR=46? 11 , SPACE=(TRK, (20,5))

DSN=SET13,DISP=(NEW,KEEP),VOLUME=REF=*.DD1,
SPACE-=(THY., (40,5))

When you want to concatenate data sets, the unnamed DD statements must follow the DD
statement that contains the DDNAME parameter, not the DD statement that defines the data
set. The following sequence of control statements illustrates this:

DDNAME=DEFINE IIDDA
II
II

DD
DD
DD

DSN=A.B.C,DISP=OLD
DSN=SEVC,DISP=OLD,UNIT=2314,VOL=SER=52226

IIDEFINE
/*

DD
data *

You can use the DDNAME parameter up to five times in a job step or procedure step.
However, each time the DDNAME parameter is coded, it must refer to a different ddname.

Specifying the DSNAME Parameter

When creating a data set, use the DSNAME parameter to assign a name to the data set. The
data set name is part of the information stored with the data set on a volume. Later, when
another job step or job wants to use the data set, it identifies the data set name in the
DSNAME parameter; the system uses the data set name to locate the data set on the volume.

How you code the DSNAME parameter depends on the type of data set and whether the
data set is nontemporary or temporary.

Creating or Retrieving a Nontemporary Data Set

If the data set is nontemporary, you can identify:

• A permanent data set by coding DSNAME=dsname.
• A member of a nontemporary partitioned data set by coding DSNAME=dsname(member

name).
• A generation of a nontemporary generation data group by coding

DSNAME=dsname(number).
• An area of a nontemporary indexed sequential data set by coding DSNAME=dsname(area

name).

Nontemporary Data Sets

When a nontemporary data set is created, it is assigned a name in the DSNAME parameter and
is assigned a disposition of KEEP or CATLG. (A data set assigned a disposition of KEEP may be
assigned a disposition of CA TLG by a later job step or job). The name assigned to a
nontemporary data set must be specified in the DSNAME parameter by all other steps and jobs
that want to use the data set.

A nontemporary data set name can be either an unqualified or qualified name. An
unqualified data set name consists of 1 through 8 characters. The first character must be an
alphabetic or national (@,#,$) character; the remaining characters can be any alphameric or
national characters, a hyphen, or a plus zero (10-12) punch.

A qualified data set name consists of 1 through 44 characters (including periods), except
when the qualified name identifies a generation data group. In this case, the data set name
may consist of only 1 through 35 characters (including periods). For each eight characters or
less there must be a period, and the first character of the name and the character following a
period must bean alphabetic or national (@,#,$) character.

Requesting Resources and Identifying Data 4 t

When requesting a data set that is cataloged on a control volume or a private catalog, the
system attempts to mount this control volume if it is not already mounted. After the system
obtains the pointer to this data set, the control volume or private catalog can then be
demounted by the system if the unit on which it was mounted is required by another volume.
The control volume or private catalog is assigned to the job step and is available for
disposition processing when the job step ends.

In the following cases, the control volume or private catalog is not mounted when
disposition is processed:

• The job fails or abnormally terminates and data sets with a conditional disposition of
CATLG, UNCATLG have been passed but not received.

• A job step is deallocated during system warmstart.

Members of a Partitioned Data Set

A partitioned data set consists of independent groups of sequential records, each identified by
a member name in a directory. When you want to add a member to a partitioned data set or
retrieve a member, specify the partitioned data set name and follow it with the member name.
The member name is enclosed in parentheses and consists of 1 to 8 characters. The first
character must be an alphabetic or national (@,$,#) character, the remaining characters can be
any alphameric or national characters.

Generations of a Generation Data Group

A generation data group is a collection of chronologically related data sets that can be referred
to by the same data set name. When you want to add a generation to a generation data group
or retrieve a generation, specify the generation data group name and follow it with the
generation number. The generation number is enclosed in parentheses and the number is a
zero or a signed integer. A zero represents the most current generation of the group, a
negative integer (for example, -1) represents an older generation; a positive integer (for
example, + 1) represents a new generation that has not as yet been cataloged.

To retrieve all generations of a generation data group (up to 255 generations), code only
the group name in the DSNAME parameter and the DISP parameter.

A complete discussion of creating and retrieving generation data sets is contained in
"Creating and Retrieving Generation Data Sets."

Areas of an Indexed Sequential Data Set

The areas used for an indexed sequential data set are the index, prime, and overflow areas.
When you are creating the data set and define any of these areas on a DD statement, you must
identify the data set name and follow it with the area name you are defining. The area name is
enclosed in parentheses and is either PRIME, INDEX, or OVFLOW. If you are using only one
DD statement to define the entire data set, code DSNAME=dsname or
DSNAME=dsname(PRIME). When you retrieve the data set, you code only the data set name;
you do not include the terms PRIME, INDEX, or OVFLOW.

Creating or Retrieving a Temporary Data Set

If the data set is temporary, you can identify:

• A temporary data set by coding DSNAME= & & dsname.
• A member of a temporary partitioned data set by coding DSNAME= & & dsname(member

name).
• An area of a temporary indexed sequential data set by coding DSNAME= & & dsname(area

name).

42 OS/VS2 JCL (VS2 Release 3)

Temporary Data Sets

Any data set that is created and deleted within the same job is a temporary data set. A DD
statement that defines a temporary data set need not include the DSNAME parameter; the
system generates one for you.

If you do include the DSNAME parameter, the temporary data set name can consist of 1
through 8 characters and is preceded by two ampersands (& &). The character following the
ampersands must be alphabetic or national (@,#,$) characters; the remaining characters can be
any alphameric or national characters. (A temporary data set name that is preceded by only
one ampersand is treated as a temporary data set name as long as no value is assigned to it
either on the EXEC statement for this job step when it calls a procedure, or on a PROC
statement within the procedure. If a value is assigned to it by one of these means, it is treated
as a symbolic parameter).

The system generates a qualified name for the temporary data set, which begins with SYS
and includes the jobname, the temporary name assigned in the DSNAME parameter, and other
identifying characters.

If you attempt to keep or catalog a temporary data set (you specify a disposition of KEEP or
CATLG in the DISP parameter), the system changes the disposition to PASS and the data set is
deleted at job termination. However,this change is not made for a data set on a tape volume
when the following conditions exist: (1) the data set is new; (2) the data set is not assigned a
name; and (3) DEFER is specified in the UNiT parameter. The data set is deleted at job
termination, but the system tells the operator to keep the volume on which the data set resided
during the job. To simplify processing of temporary data sets, see "Using Virtual Input/Output
(VIO) for Temporary Data SetsH

• If you code a conditional disposition for temporary data sets,
it is ignored.

Members of a Temporary Partitioned Data Set

When adding a member to a temporary partitioned data set or retrieve a member during the
job, specify the partitioned data set's temporary name and follow it with the member name.
The member name is enclosed in parentheses and consists of 1 through 8 characters. The first
character must be an alphabetic or national (@,$,#) character; the remaining characters can be
any alphameric or national characters.

Areas of a Temporary Indexed Sequential Data Set

The areas used for indexed sequential data set are the index, prime, and overflow areas. When
you are creating a temporary indexed sequential data set and define any of these areas on a
DD statement, you must identify the data set's temporary name and follow it with the area
name you are defining. The area name is enclosed in parentheses and is either PRIME, INDEX,
or OVFLOW. If you are using only one DD statement to define the entire temporary data set,
code DSNAME= & & dsname or DSNAME= & & dsname(PRIME). If you want to retrieve the
temporary data set on the same job, you code only the data set's temporary name; you do not
include the term PRIME, INDEX, or OVFLOW.

Associated Data Sets (3540 Diskette)

Associated data sets are data sets on 3540 diskette volumes that are separate from the job
stream data set and are to be spooled as SYSIN data sets. Associated SYSIN data sets are
identified by specifying a data set identifier (on the DD DSID parameter) and, optionally, a
volume identifier on the DD * or DD DATA statements in the job stream.

Requesting Resources and Identifying Data 43

To have associated data sets merged into the job stream, the job stream containing the
diskette associated data set requests must be processed by the diskette reader program; it
cannot be read by either JES2 or JES3.

Data sets are created on 3540 diskette volumes only by using SYSOUT. The SYSOUT DD
statement must contain the DSID parameter and a sysout class (or classes) designed by the
installation to be used by data sets on a. 3540 diskette. The diskette writer must be started to
the sysout class to transfer the data sets to diskettes.

For more information on the 3540 diskette, refer to OS/VS2 IBM 3540 Programmer's
Reference, GC24-5111.

Copying the Data Set Name from an Earlier DD Statement

The name of a data set that is used several times in a job, whether specified in the DSNAME
parameter or assigned by the system, can be copied after its first use in the job. This allows
you to easily change data sets from job to job and eliminates your having to assign names to
temporary data sets. To copy a data set name, refer to an earlier DD statement that identifies
the data set. When the earlier DD statement is contained in an earlier job step, you code
DSNAME= * . stepname.ddname; when the earlier DD statement is contained in the same job
step, you code DSNAME= * .ddname; when the earlier DD statement is contained in a cataloged
procedure step called by an earlier job step, you code
DSNAME= * .stepname. procstepname.ddname.

Specifying the DSNAME Parameter in Apostrophes

Sometimes, it may be necessary or desirable to specify a data set name that contains special
characters. If the name contains special characters, you must enclose the name in apostrophes
(5-8 punch), for example, DSNAME='DAT+5'. If one of the special characters is an
apostrophe, you must identify it by coding two consecutive apostrophes (two 5-8 punches) in
its place, for example, DSNAME='DAY"SEND'. A data set name enclosed in apostrophes can
consist of 1 through 44 characters.

There are cases when the data set name must contain required special characters, which tell
the system something about the data sct (for example, & & in DSNAME= & & name are
required special characters that tell the system that this is a temporary data set). In these
cases, the data set name must not be enclosed in apostrophes because the system will not
recognize the required special characters as having any special significance. The following data
set names contain special characters that tell the system something about the data set and,
therefore, cannot be enclosed in apostrophes:

• DSNAME=name(member name)
• DSNAME=name(area name)
• DSNAME=name(generation number)
• DSNAME= & & name
• DSNAME= * .stepname.ddname

Keep the following rules in mind:

• If the data set is to be cataloged, the data set name cannot have special characters.
• If the data set name ends with a blank character, the blank is ignored.
• If the only special character is a period, a hyphen, or plus zero (10-12 punch), you need not

enclose the data set name in apostrophes.

44 OS/VS2 JCL (VS2 Release 3)

Specifying the LABEL Parameter

Labels are used by the operating system to identify volumes and the data sets they contain,
and to store data set attributes. Data sets residing on magnetic tape volumes usually have data
set labels. If data set labels are present, they precede each data set on the volume. Data sets
residing on direct access volumes always have data set labels. These data set labels are
contained in the volume table of contents of the direct access volume.

A data set label may be a standard or nonstandard label. Standard labels can be processed
by the system; nonstandard labels must be processed by nonstandard label processing routines,
which the installation includes in the system. Data sets on direct access volumes must have
standard labels. Data sets on tape volumes usually have standard labels, but can have
nonstandard labels or no labels.

The LABEL parameter must be coded if:

• You are processing a tape data set that is not the first data set on the reel; in this case,
indicate the data set sequence number.

• The data set labels are not IBM standard labels; you must indicate the label type.
• You want to specify what type of labels a data set is to have when it is written on a scratch

volume; indicate the label type.
• The data set is to be password protected; specify PASSWORD when creating the data set.
• The data set is to be processed only for input or output and this conflicts with the

processing method indicated in the OPEN macro instruction; specify IN, for input, or OUT,
for output.

• The data set is to be kept for a specific period of time; indicate a retention period (RETPD)
or expiration data (EXPDT).

The Data Set Sequence Number Subparameter

When placing a data set on a tape volume that already contains one or more data sets, specify
where the data set is to be placed, that is, whether the data set is to be the second, third,
fourth, etc., data set on the volume. The data set sequence number causes the tape to be
positioned properly so that the data set can be written on the tape or retrieved.

The data set sequence number subparameter is a positional subparameter and is the first
subparameter that can be coded. The data set sequence number is a 1- to 4-digit number. The
system assumes 1 (this is the first data set on the reel) if you omit this subparameter or code
0, unless the data set is a passed or cataloged data set. If a data set is cataloged, the system
obtains the data set sequence number from the catalog; for a passed data set, the data set
sequence number is obtained from the passing step.

The Label Type Subparameter

The label type subparameter tells the system the type of labels associated with the data set.
The label type subparameter is a positional subparameter and must be coded second, after the
data set sequence number subparameter. You can omit this subparameter if the data set has
IBM standard labels.

The label type subparameter is specified as:

• SL - if the data set has IBM standard labels.
• SUL - if the data set has both IBM standard and user labels.
• AL - if the data set has American National Standard labels.
• AUL - if the data set has Americal National Standard labels and American National

Standard user labels.
• NSL - if the data set has nonstandard labels.
• NL - if the data set has no labels.
• BLP - if you want label processing bypassed.
• L TM - bypass leading tape mark, if encountered, on unlabeled tape. (OS/DOS interchange)

Requesting Resources and Identifying Data 45

SL or SUL is the only label type that can be specified for data sets that reside on direct
access volumes. SL, SUL, AL, AUL, NSL, and NL are the only label types that can be specified
for data sets that reside on tape volumes. BLP and LTM are label type subparameters that can
also be coded for tape.

When SL or SUL is specified, or the label type subparameter is omitted and the data set has
IBM standard labels, the system can ensure that the correct tape or direct access volume is
mounted. When specifying NSL, installation-provided nonstandard label processing routines
must ensure that the correct tape volume is mounted. When specifying NL or BLP, the operator
must ensure that the correct tape volume is mounted. If you specify NL, the data set must have
no standard labels. When specifying AL or AUL, the system ensures that the correct American
National Standard labeled tape is mounted.

For cataloged and passed data sets, label type information is not kept. Therefore, refering to
a cataloged or passed data set that has other than standard labels, code the LABEL parameter
and specify the label type.

BLP is not a label type, but a request that the system bypass label processing. This
specification allows you to use a blank tape or overwrite a seven-track tape that differs from
the current parity or density specifications. If the bypass label processing option is not selected
by the installation and you have coded BLP, the system assumes NL.

Note for BLP: When requesting the system to bypass label processing and the tape volume
has labels, the system treats anything hetween tapernarks as a data set. Therefore, in order for
a tape with labels to be positioned properly, the data set sequence number subparameter of the
LABEL parameter must be coded and the subparameter must reflect all labels and data sets that
precede the desired data set. The OS/VS Tape J.abels publication illustrates where tapemarks
appear.

Nonspecific \'olume request: The label type subparameter can also be specified when making a
nonspecific volume request for a tape volume (that is, no volume serial numbers are specified
on the DD statement) and when having a certain type of labels. If the volume that is mounted
does not have the corresponding label type desired, you may be able to change the label type.

When specifying NL or NSL and the operator mounts a tape volume that contains standard
labels, you can use the volume provided: (1) the expiration data of the existing data set on the
volume has passed; (2) the existing data set on the volume is not password protected; and (3)
you make a nonspecific volume request. All of these conditions must be met. If they are not,
the system requests the operator to mount another tape volume.

If you specify SL and make a nonspecific volume request, but the operator mounts a tape
volume that contains other than IBM standard labels, the system asks the operator to identify
the volume serial number and the volume's new owner before the IBM standard labels are
written. If the tape volume has American National Standard labels, the system asks the
operator for permission to destroy the labels. If you specify SL and make a specific volume
request, but the volume that is mounted does not contain IBM standard labels, the system
rejects the tape and requests the operator to mount the tape volume specified.

The PASSWORD and NOPWREAD Subparameters

The PASSWORD and NOPWREAD subparameters tells the system that you want the data set to
be password protected. If you specify PASSWORD, the data set cannot be read from, written
into, or deleted by another job step or job unless the operator can supply the system with the
correct password. If you specify NOPWREAD (no password read), the data set can be read
without the operator supplying the password, but the password is still required for writing or
deleting data sets.

46 OS/VS2 JCL (VS2 Release 3)

The PASSWORD and NOPWREAD subparameters are positional and must be coded third,
after the data set sequence number subparameter and the label type subparameter or the
commas that indicate their absence. If you want the data set password protected, specify
PASSWORD when the data set is created. Password protected data sets must have standard
labels, either IBM standard or American National Standard labels.

The IN and OUT Subparameters

The bas~c sequential access method (BSAM) permits a specification of INOUT or OUT IN in the
OPEN macro instruction as the processing method. If you have specified either of these
processing methods in the OPEN macro instruction and want to override it, you may be able to
do so by coding either the IN or OUT subparameter. For FORTRAN users, the IN and OUT
subparameters specify whether the data set is for input or output.

When INOUT is specified in the OPEN macro instruction and you want the data set
processed for input only, you can specify the IN subparameter. When the IN subparameter is
coded, any attempt by the processing program to process the data set for output is treated as
an error.

When OUTIN is specified in the OPEN macro instruction and you want the data set
processed for output only, you can specify the OUT subparameter. When the OUT
subparameter is coded, any attempt by the processing program to process the data set for input
is treated as an error.

The IN and OUT subparameters are positional subparameters. If either is coded, it must
appear as the fourth subparameter, after the data set sequence number subparameter, the label
type subparameter,' and the PASSWORD subparameter, or the commas that indicate their
absence.

The RETPD and EXPDT Subparanleters

Wben it is necessary that a data set be kept for some period of time you can tell the system
how long it is to be kept when you create the data set. As long as the time period has not
expired, a data set that resides on a direct access volume cannot be deleted by or overwritten
by another job step or job. (If it is necessary to delete a data set, you can use the Access
Methods Services DELETE command, as described in OS/VS Access Method Services,
GC26-3836.)

When the expiration date of a data set is the current date, the data set is considered expired
and can be deleted or written over by another data set.

There are two different ways to specify a time period: (1) tell the system how many days
you want the data set kept, the RETPD subparameter, or (2) tell the system the exact date
after which the data set need not be kept, the EXPDT subparameter.

If you code the RETPD subparameter, you specify a 1- to 4-digit number, which represents
the number of days the data set is to· be kept. If you code the EXPDT sub parameter , you
specify a 2-digit year number and a 3-digit day number (for example, January 1 would be 001,
July 1 would be 182), which represents the date after which the data set need not be kept.
When neither the RETPD or EXPDT subparameter is specified for a new data set, the system
assumes a retention period of zero days.

The RETPD or EXPDT subparameter must follow all other subparameters of the LABEL
parameter. If no other subparameters are coded, you can code LABEL=RETPD=nnnn or
LABEL=EXPDT=yyddd.

Requesting Resources and Identifying Data 47

Example of Identifying Data Sets to the System

This job shows how to use the DSNAME parameter.

I*PRIORITY
I/DATASETS
IISTEPl
IIDl
II
IID2
IID3
IID4

1*

8
JOB
EXEC
DD

DD
DD
DD

data

FREEMAN, MSGLEVEL=l
PGM=IEFBR14
DSN=ABC,DISP=(NEW,CATLG),UNIT=2314,
VOL=SER=333001,SPACE=(CYL,(12,1,1),CONTIG)
DSN=&&NAME,UNIT=3330,SPACE=(TRK,(10,1))
DSN=SYSLIB,DISP=(OLD,KEEP)

*

1. This job runs in priority 8, the meaning of which is defined by the installation.

2. The job statement specifies that system messages and JCL statements are to be printed.

3. D 1 catalogs a newly created data set. The space request is 12 primary cylinders, 1
secondary, 1 directory, and the space is to be contiguous.

4. D2 creates a temporary data set on a 3330. The space request is for 10 primary tracks
and 1 secondary.

5. D3 defines an old cataloged data set.

6. D4 defines a SYSIN data set. This will be followed by data in the input stream.

Disposition Processing of Non-VSAM Data Sets
Disposing of data sets at the end of a job step is known as disposition processing. You request
disposition processing for non-VSAM data sets by coding the DISP parameter on the DD
statement defining the data set. (VSAM data sets are handled differently. For information on
VSAM, refer to OS/VS Access Method Services, GC28-3836.) In the DISP parameter, you can
code:

• Data set status as the first subparameter, indicating if the data set is new, is old, can be
shared with other jobs, or can be lengthened.

• Normal disposition as the second subparameter, indicating how the data set should be
handled if the job step terminates normally.

• Conditional disposition as the third subparameter, indicating how the data set should be
handled if the job step terminates abnormally.

If you do not code one of the subparameters, or omit the DISP parameter entirely, the
system supplies default values, as described under "Default Disposition Processing".

Specifying Data Set Status

Indicate a data set's status by coding one of the following:

• NEW - the data set is being created in this job step.
• OLD - the data set existed before this job step.
• SHR - the data set existed before this job step and can be read simultaneously by other

jobs.

48 OS/VS2 JCL (VS2 Release 3)

• MOD - the system assumes the data set exists and will position the read/write 'mechanism
after the last record in the data set; if the system cannot find volume information for the
data set, the system assumes the data set will be created in the job step.

When coding SHR, you are requesting shared control of the data set and the job should be
reading the data set only. When coding NEW, OLD, or MOD, you are requesting exclusive
control of the data set. Shared and exclusive control are described in this chapter under
"Insuring Data 'Set Integrity".

Specifying a Disposition for the Data Set

You can specify one disposition, called a normal disposition, to be used when the job step
terminates normally (successfully) and another disposition, called the conditional disposition, to
be used when the job step terminates abnormally.

For normal disposition, you can request as the second subparameter that the data set be:

• Deleted by coding DELETE.
• Kept by coding KEEP.
• Cataloged by coding CA TLG.
• Uncataloged by coding UNCATLG.
• Passed by coding PASS.

Note: The disposition of a data set is solely a function of the DISP parameter; however, the
disposition of the volumes on which the data set resides is a function of the volume status
when the volume is demounted.

For conditional disposition (the third subparameter of the DISP parameter), you can code all
of the above with the exception of PASS.

Data sets allocated to steps that abnormally terminated and that do not have automatic
restart are disposed of as specified by the conditional disposition. If a job step abnormally
terminates during execution and a conditional disposition is not specified, the normal
disposition is processed. If a job step fails during step allocation:

• A data set created in that job step is deleted.
• A data set that existed before that job step is kept.

Disposition processing differs for data sets on direct access volumes and data sets on
magnetic tape volumes. A direct access volume contains a volume table of contents (VTOC)
which consists of control blocks describing the non-VSAM data sets and available space on the
volume. The handling of tape and direct access volumes when specifying a particular
disposition is described below.

When specifying KEEP or PASS for a cataloged data set, the system assumes that you want
the data set recataloged if volume information was obtained from the catalog and it is
determined that the catalog entry must be updated. If the job step performs catalog
maintenance and you wish to avoid recataloging, refer to the data set by its specific unit and
volume serial when coding the DD statement.

Deleting a Data Set

Specifying DELETE requests that the data set's space on the volume be released at the end of
the job step (when coded as the normal disposition) or if the step abnormally terminates
(when coded as the conditional disposition). If the data set resides on a public tape volume,
the tape is rewound and the volume is available for use by other job steps. If the data set
resides on a private volume, the tape is rewound and unloaded. In this case, it is rewound and
unloaded and a KEEP message is issued. If the data set exists on a direct access volume, the
control block describing the data set is removed from the VTOC and the space on the volume
is then available to other data sets.

. Requesting Resources and Identifying Data 49

In one case, however, a data set on a direct access volume will not be deleted, even though
you specify DELETE: when the expiration date or retention period has not expired. Specify a
length of time that a data set must be kept by assigning a retention period or expiration date
in the LABEL parameter on the DD statement. Specifying a retention period or expiration date
is described under "Specifying the LABEL Parameter".

If you are deleting a cataloged non-VSAM data set, the entry for the data set in the system
catalog is also removed, provided the system obtained volume information for the data set
from the catalog (that is, the volume's serial number was not coded on the DD statement). If
the system did not obtain volume information from the catalog, the -data set is still deleted but
its entry in the catalog remains. If an error is encountered while attempting to delete a data
set, its entry in the catalog will not be removed. (The data set will or will not be deleted,
depending on where the error occurs). Use the Access Method Services DELETE command or
the IEHPROGM UNCATLG command to delete a non-VSAM entry from the catalog.

DELETE is the only valid conditional disposition for a data set with no name or a temporary
name. If a disposition other than DELETE is specified, the system assumes DELETE.

Keeping a Data Set

Specifying KEEP instructs the system to keep a data set intact until a subsequent job step or
job requests that the data set be deleted or until the expiration date or retention period is
passed. (You can specify an expiration date or retention period, indicating the length of time a
data set must be kept, in the LABEL parameter on the DD statement. If you do not specify a
time period, the system assumes a retention period of zero days. Coding an expiration date or
retention period is described under "Specifying the LABEL Parameter" in this publication.

For data sets on direct access devices, the entry describing the data set in the VTOC and the
data set itself is kept intact. For data sets on tape, the volume is rewound and unloaded and a
KEEP message is issued to the operator.

Cataloging a Data Set

Cataloging allows you to keep track of and retrieve data sets. Data sets can be cataloged in
the system master catalog or in user (private) catalogs. When retrieving a cataloged data set,
you do not have to specify volume information, you need only code the DSNAME parameter
and a status in the DISP parameter other than NEW.

To catalog a non-VSAM data set, code CATLG as the disposition; the system creates an
entry in the catalog that points to the data set. The disposition CA TLG implies KEEP.

You can specify a disposition of CATLG for an already cataloged data set. This should be
done when lengthening the data set with additional output (a status of MOD is coded) and the
data set can exceed one volume. If the system obtained volume information for the data set
from the catalog (that is, the volume's serial number was not coded on the DD statement) and
you code DISP=(MOD,CATLG), the system updates the entry to include the volume serial
numbers of any additional volumes.

A collection of cataloged data sets that are kept in chronological order can be defined as a
generation data group (GDG). The entire GDG is stored under a single data set name; each
data set within the group, called a generation data set, is associated with a generation number
that indicates how far removed the data set is from the original generation. For more
information on defining and creating generation data groups, see "Generation Data Groups" in
this publication, and OS/VS Access Method Services, GC26-3836.

50 OS/VS2 JCL (VS2 Release 3)

Uncataloging a Data Set

To remove the entry describing a non-VSAM data set from the catalog, code UNCATLG as the
disposition. Specifying UNCATLG does not request the initiator to delete the data set - just
the reference in the catalog is removed. When you request use of the data set in a subsequent
job or job step, you must include volume information on the DD statement.

Passing a Data Set

If more than one step in a job requests the same data set, each step using the data set can
pass the data set for use by a subsequent step. A data set can only be passed within a job.

To pass a data set, you code PASS as the normal disposition; PASS cannot be specified as
the conditional disposition. You continue to code PASS each time the data set is referred to
until the last time it is used in the job. At this time, you assign it a final disposition.

Specifying the data set name of a passed data set without specifying volume serial number
or a volume reference is called "receiving" the data set. Identical data set names (whether or
not the same data set is referred to) can be passed at the same time. Such identical data set
names are received in the same order in which they are passed. A data set name that has been
passed n times can be received no more than n times. A data set can not be passed and
received within the same step.

Disposition Processing of Unreceived Passed Data Sets

A data set can be passed by a job step and not subsequently received by another job step. In
such a case, if a job step abnormally terminates, unreceived data sets that specified a
conditional disposition when passed are processed as specified in their conditional disposition,
with four exceptions. If the conditional disposition requires an update to a user catalog:

• and CATLG is specified for a data set with a first-level qualifier of a catalog name or alias,
the data set will not be cataloged.

• and UNCATLG or DELETE (of a cataloged data set) is specified for a data set with a
first-level qualifier of a catalog name or alias, the data set will not be uncataloged.

• and CATLG is specified for a data set with no qualifier or with a qualifier that is not a
catalog name, the data set will be cataloged in the master catalog.

• and UNCATLG or DELETE (of a cataloged data set) is specified for a data set with no
qualifier or with a qualifier that is not a catalog name, an attempt will be made to uncatalog
the data set from the master catalog.

Data sets that do not specify a conditional disposition, that is, those that were specified as
(NEW,PASS) in this job, are deleted; all others are kept.

If no job step abnormally terminates, unreceived data sets that were specified as
(NEW,PASS) are deleted; other data sets are kept.

De/ault Disposition Processing

If you do not code the DISP parameter, or omit one of the subparameters, the system supplies
default values.

If you do not specify a data set status, the system assumes NEW. If you do not code the
second or third subparameters, the system determines how a data set should be handled
according to the status of the data set: data sets that existed before the job step are
automatically kept (data sets for which OLD, SHR, or MOD is coded when volume information
is available): data sets created in the job step are automatically deleted (data sets for which
you coded NEW or MOD when volume information is not available, or for which you did not
code a status).

Requesting Resources and Identifying Data 51

If a step abnormally terminates before it actually begins execution (for example, during
allocation of units and volumes or direct access space), the system ignores the disposition you
code and again automatically keeps existing data sets and deletes new data sets.

For example, if you code:

DISP=(,PASS,CATLG)

the system assumes the data set is new. If the job step abnormally terminates during its
execution, the system will catalog the data set,· as instructed by the conditional disposition of
CATLG. If, however, the step abnormally terminates before it actually begins execution, the
system will delete the data set, since it is a new data set.

Bypassing Disposition Processing

If you define a data set as a dummy data set, the DISP parameter, if coded, is ignored and
disposition processing is not performed. For details, see "Defining a Dummy Data Set."

Insuring Data Set Integrity

When a job must receive control of the data sets it requests, you can request either exclusive
control, allowing no other job to use the data set, or shared control, allowing the data set to
be used by other jobs that also request shared control. The process of securing control of data
sets for use by a job is called data set integrity processing.

Data set integrity processing avoids conflict between two or more jobs that request use of
the same data set. For example, two jobs, one named READ and another named MODIFY, both
request the data set FILE. READ wants only to read and copy certain records, MODIFY deletes
some records and changes other records in the data set FILE. If both jobs have control of FILE
concurrently, READ cannot be certain of the records contained in FILE -- cannot be sure of
the integrity of the data set. MODIFY should have exclusive control of the data set; READ can
share control of FILE with other jobs that also want only to read the data set. Indicate the
type of control a data set requires in the DISP parameter on the DD statement defining the
data set.

Exclusive Control of a Data Set

When a job has exclusive control of a data set, no other job can use that data set until
termination of the job that refers to the data set. A job should have exclusive control of a data
set in order to modify, add, or delete records.

In some cases, you may not need exclusive control of the entire data set. You can request
exclusive control of a block of records by coding the DCB, READ, WRITE, and RELEX macro
instructions. (These instructions are described in OS/VS Data Management Macro Instructions,
GC26-3793.)

To request exclusive control of a data set, you code NEW, OLD, or MOD as the first
subparameter of the DISP parameter.

Shared Control of a Data Set

A data set on a direct access storage device can be used concurrently by several jobs, if these
jobs request shared control of the data set; however, none of the jobs should change the data
set in any way.

To request shared control, you code SHR as the first subparameter in the DISP parameter. If
more than one step of your job requests a data set, you must code SHR every time you define
the data set if it is to be used by concurrently executing jobs. Data set integrity processing is

52 OS/VS2 JCL (VS2 Release 3)

performed once for a job; a data set has either shared or exclusive control. If you code NEW,
OLD, or MOD on any reference to a data set, the system assigns exclusive control to the data
set for the entire job; a reference requesting exclusive control will override any number of
references requesting shared control.

How the System Performs Data Set Integrity Processing

Data set integrity processing is performed for:

• N ontemporary data sets.
• Non-VIO temporary data sets (see "Using Virtual Input/Output (VIO) for Temporary Data

Sets").
• Data sets with alias names (created with the Access Methods Services DEFINE command;

see OS/VS Access Methods Services, GC26-3836).
• Members of generation data groups.

To secure control of a data set for a job, the system enqueues on the data set, marking the
data set as requested by that job and noting what kind of control was requested. The job will
receive control of the data set if:

• The data set is not being used by another job, or
• The data set is being used by another job but both the job requesting the data set and the

job using the data set request shared control.

For example, a job named READ requests shared control of a data set named FILE; if FILE
is being used by a job named LOOKAT and LOOKAT also requests shared control, both READ
and LOOKAT can use the data set at the same time.

A job will not receive control of a data set if:

• The data set is being used by another job and that job has exclusive control, or
• The data set is being used by another job (with either exclusive or shared control), but the

job requesting use of the data set requests exclusive control.

For example, the job named MODIFY requests exclusive control of the data set FILE; FILE is
already being used by the job LOOKA T. MODIFY cannot receive control of the data set until
LOOKAT has terminated.

If a job requests data sets that are not available, the system issues the message "JOB IS
WAITING ON DATA SETS". The initiator that started the job will automatically wait until the
required data sets become available, unless the operator cancels the job. However, a job will
fail if it requests a data set with an alias name, or a member of a generation data group, and
the data set is not immediately available.

Requesting Resources and Identifying Data 53

Examples of Disposition Processing of Non- VSAM Data Sets

IIDISP
IIS1
IID1
IID2
IID3
II
IID4
II
IIS2
IID1
II

J"OB
EXEC
DD
DD
DD

DD

EXEC
DD

MSGLEVEL=1
PGM=IEFBR14
DSN=ABC,DISP=(SHR,KEEP)
DSN=SYSA,DISP=(OLD,DELETE,UNCATLG)
DSN=SYSB,UNIT=2314,VOL=SER=231401,
SPACE=(CYL,(4,2,1)),DISP=(NEW,KEEP,CATLG)
DSN=&SYS1,DISP=(MOD,PASS),UNIT=2314,
VOL=SER=231404,SPACE=(TRK,(15,5,1))
PGM=IEFBR14
DSN~&&SYS1,DISP=(MOD,DELETE),UNIT=2314,
VOL=SER=231404,SPACE=(TRK,(15,5,1))

1. The JOB statement requests that all JCL statements and system messages be printed.

2. D 1 in 81 defines a data set that already exists and can be shared with other data sets. It
is to be kept on the volume after this job step.

3. D2 in 81 defines a data set that already exists, cannot be shared with other data sets, is
to be deleted at the end of the job step, and is to be uncataloged if the program
abnormally terminates.

4. D3 in 81 defines a new data set that is to be assigned a specific volume (231401) on a
2314 device. The data set is to be kept on the volume at the end of this job step for
normal processing but is to be cataloged if the program abnormally terminates.

5. D4 in S 1 defines a temporary data set that is to be created in this job step. It is to be
assigned to volume 231404 on a 2314 device with the space request of 15 primary
tracks, five secondary, and a directory. This data set is to be passed for subsequent use
by a job step in this job.

6. Dl in 82 defines the same temporary data set that was defined in D4 of S1. When this
step is completed, the data set is to be deleted.

IIPASS
IIs1
IIDD1
II
IIDD2
IIDD3
IIDD4
IIs2
IIDD5
IIDD6
IIDD7
IIDD8
IIs3
IIDD9

JOB
EXEC
DD

DD
DD
DD
EXEC
DD
DD
DD
DD
EXEC
DD

MSGLEVEL=l
PGM=IEFBR14
DSN=A,DISP=(NEW,PASS),VOL=SER=231400,
UNIT=2314,SPACE=(TRK,1)
DSN=A,DISP=(OLD,PASS),VOL=REF=*.DD1
DSN=B,DISP=(OLD,PASS),VOL=SER=231400,UNIT=2314
DSN=B,DISP=(OLD,PASS),VOL=SSR=231401,UNIT=2314
PGM=IEFBR14
DSN=A,DISP=OLD
DSN=A,DISP=OLD
DSN=B,DISP=OLD
DSN=B,DISP+(OLD,PASS)
PGM=IEFBR14
DSN=B,DISP=OLD

1. DDt and DD2 pass the same data set. DD5 and DD6 receive that same data set.

2. DD3 and DD4 pass different data sets of the same name, DD7 receives the data set
passed by DD3 and DD8 receives the one passed by DD4. DD8 also continues to pass the
data set originally passed by DD4.

3. DD9 receives the data set passed by DD4 and DD8.

54 OS/VS2 JCL (VS2 Release 3)

Routing a Job Through the System (JES2 only)

The operating system interprets JCL statements to determine the resource requirements of jobs
and job steps. The job entry subsystem 2 (JES2) reads a job into the system, satisfies the
requirements requested on JCL and JES2 statements, schedules the job, and selects it for
execution. JES2 automatically performs most of these services for you, but you can code JCL

and JES2 parameters to influence how these services are performed. For example, JES2

schedules a job for execution, but you can influence when the job is selected by coding the
JES2 PRIORITY control statement and the CLASS parameter of the JOR statement.

This section contains six topics:

• Job Scheduling
• Passing Information to the Job in Execution
• Delaying Job Initiation
• Bypassing Job Initiation
• Conditional Execution of Job Steps
• Restarting a Job

Job Scheduling

The job entry subsystem (JES2) controls the selection of jobs for processing. As JES2 reads a
job into the system, JCL statements' and any input stream data are placed on respective logical
data sets. The JCL and JES2 statements are checked for syntax errors and appropriate error
messages are issued. If the JeL statements are syntactically correct, the job is plac.ed on an
execution queue. The execution queue is divided into job class queues and, within each job
class queue, jobs are placed according to their priority. Jobs in the same class with the same
priority are placed on the execution queue in the order they were read into the system. A JES2

initiator is assigned job classes to process. It selects jobs from the first class assigned to it
according to the priority of the jobs until no more jobs exist in that class, and then selects jobs
from the next class assigned. You can influence how a job is placed in the execution
queue-therefore, when it is selected for execution-by assigning a job class and priority to
the job. Do this by coding the CLASS parameter on the JOB statement and the JES2 PRIORITY

control statement.

To insure that one job is stHected before another or that the desired volumes are mounted
before a job is executed, delay the job's selection by coding TYPRUN=HOLD on the JOB

statement, by coding a job class that will force TYPRlJN=HOLD, or by coding a SETUP control
statement.

The job initiation stage can be entirely bypassed by coding TYPRUN=SCAN or
TYPRUN=COPY on the JOB statement or by coding a job class that will force either of these
options.

VS2 includes support for controlling the processing rate of jobs and job steps. The
installation defines a certain number of performance group definitions. Each of these defines a
particular processing rate formula which is to be used for associated jobs or job steps. To
associate a job or job step with performance group definitions, code the PERFORM parameter
on either the JOB or EXEC statements.

Assigning a Job to a Job Class

Job classes are established by an installation to group jobs. By assigning jobs to job classes,
the installation tries to avoid contention between jobs that require the same resources by
preventing them from running concurrently and tries to provide a better mix of jobs for more

Routing a Job Through the System (JES2 only) 55

efficient system use. The installation determines which characteristics are most important in
achieving a good balance of jobs in the computing system. Assign a job to a job class by
coding the CLASS parameter on the JOB statement.

Assilrning a Priority to a Job

Within a job class, jobs are selected for execution from the execution queue according to job
priority. Jobs with the same class and priority are placed in the execution queue in a first
in/first out order. In most cases, JES2 will calculate the job's priority. However, for certain
jobs, you or the operator can be instructed to assign different priorities. ·Specify job priority by
coding a JES2 PRIORITY statement.

Priority is explicitly stated on a PRIORITY statement and used by JES2. The estimated
number of cards, lines of output, and the time for job execution are used according to
installation algorithms to calculate the priority, and are also used by JES2 to monitor job
execution time and output. If these estimates are not stated, installation defaults are assumed.
If any of these estimates are exceeded, the operator is notified. In some cases, the installation
can specify that the job be canceled. For example, an installation might specify that the lower
the estimated execution time and output, the higher the priority. This can enforce correct
amounts to be specified or the job will be canceled.

Assigning a Dispatching Priority to Job Steps

In most jobs, you will want the job's dispatching priority to default to an automatic priority
group (APG) instead of assigning your own dispatching priority. The automatic priority group
function is an algorithm that the system resources manager will use to attempt to increase
system throughput by dynamically adjusting the dispatching priority of associated address
spaces.

If you do assign a dispatching priority, code the DPRTY parameter on the EXEC statement.
In the DPRTY parameter, you can code two values. The system substitutes these values in the
following formula to fOIDl the dispatching priority:

(valuel x 16) + value2 = step's dispatching priority

If valuel is not coded, the system assumes the APG value for the default. (Value2 has a
default of 11.) If you omit the DPRTY parameter completely or if DPRTY is equal to the APG

value, the step has the same dispatching priority as the APG value.

Performance of Jobs and Job Steps

You can associate a job or job step with anyone of several performance group definitions.
Performance group definitions which are supplied by the installation, describe the
workload-dependent processing rate which should be afforded to an associated job or job step.
Most performance group definitions prescribe good pro_cessing rates under light system
workload conditions. However, when the system workload is moderate or heavy, some
performance group definitions will specify significantly lower processing rates than for other
performance groups. The .installation defines the number and definition of performance groups
needed to meet the response requirements of its various users and will probably publish this
information for your use. Make the performance group association with the job or job step by
coding an appropriate performance group number on the PERFORM parameter of the JOB or
EXEC statement.

For further information concerning performance, refer to the OS/VS2 System Programming
Library: Initialization and Tuning Guide, GC28-0681.

56 OS/VS2 JCL (VS2 Release 3)

Passing Information to the Job in Execution

Some information required by a program can vary from application to application, such as
module attributes and options requited by the compiler, assembler, and linkage editor
programs. In order to provide this information to the program at the time it is executed, code
the P ARM parameter on the EXEC statement. The program must include instructions that can
retrieve this information. (The exact location and format of the information passed to a
processing program are included in OS/VS2 Supervisor Services and Macro Instructions,
GC28-0683.)

The PARM parameter can also be coded on the EXEC statement of a cataloged or in-stream
procedure step. This establishes fields in which you can pass information to the job. By coding
the P ARM parameter on the EXEC statement of the job calling a cataloged or in-stream
procedure, you can override, add, or nullify parameters in the procedure or define symbolic
parameters. For more information on the PARM parameter for these features, see "Cataloged
and In-stream Procedures."

Identifying the Program to be Executed

All executable programs are members of partitioned data sets (libraries). The library that
contains the program can be a temporary library or a private library. In order to execute a
program contained in these libraries, code the PGM parameter as the first parameter on the
EXEC statement.

Temporary Library

If in a job you want to assemble, linkage edit, and then execute a program, make the output of
the linkage editor a member of a partitioned data set. This is accomplished by creating a
temporary library. A temporary library is a partitioned data set created in the job to store a
program as a member of the data set until it is executed in a subsequent job step. When the
program is required, refer back to the DD statement that defines the temporary library and the
member by code PGM=*.stepname.ddname or PGM=*.stepname.procstepname.ddname. You
can also request use of a program that is a member of a temporary library by coding
PGM=program name and including a DD statement named JOBUB or STEPLIB that defines the
temporary library. To keep this program available for use by other jobs, make the program a
member of a private library.

Private Library

Request use of a program that is a member of a private library by coding PGM=program name
and including a DD statement named JOBLIB or STEPLIB that defines the private library. The
system automatically looks in the private library for a member with the corresponding name.

A program that resides in a private library can also be executed by coding
PGM=*.stepname.ddname or PGM=*.stepname.procstepname.ddname. This can be done only
when the named DD statement defines the program as a member of a private library.

The IEFBR14 Program

This program is used to check the syntax of the control statements, allocate space, or satisfy
requests for disposition processing prior to execution of a job. To do this, substitute IEFBR14
for the program name on the EXEC statement. (If you created a data set when using this
program, the data set's status will be old when you execute your own program.)

Routing a Job Through the System (JES2 only) 57

Selecting a Cataloged Procedure Library

You can choose which of the installation specified cataloged procedure libraries will be used
for resolving catalog procedure references in the JCL by coding the PROCLIB parameter on the
JOBPARM statement. If this parameter is omitted, a cataloged procedure library associated with
your job's class will be used.

Delaying Job Initiation

Although you can influence a job's selection by assigning a job class and priority to the job,
you cannot predict whether a job in one job class queue will be selected for execution before
another job in a different job class queue. When jobs exist in the same job class queue, you
cannot be certain that one job will complete execution before the other job is selected, even if
you assign a higher priority to the first job. In some cases, when submitting two jobs, JOBA
and JOBB, JOBA must complete execution before JOBB is initiated-JOB A might create records
that JOBB will use. JOBB's initiation will have to be delayed until JOBA completes execution. It
is also possible that resources a job requires will not be available-in this case, you will want
to delay the job's initiation until required resources are available. Delay a job's initiation by
coding TYPRUN=HOLD on the JOB statement or by specifying a job class defined by the
installation to force a TYPRUN=HOLD default. You can also delay a job's initiation and have
specific volumes mounted before the job executes, by coding the SETUP control statement to
notify the operator which volumes are required.

To delay a job's initiation, code SETUP, TYPRUN=HOLD, or job class; the job remains on
the execution queue but cannot be selected for processing until the operator releases the job.
When the operator releas'es the job, it is again eligible for selection according to class and
priority.

If you code a SETUP control statement, you are able to notify the operator what volumes
are to be retrieved from the library. The operator will mount the requested volumes and then
should release the job.

Bypassing Job Initiation

Under certain conditions you may wish to scan the control statements for syntax errors
without submitting the associated input data sets, or you may wish to produce a copy of your
input deck without actually initiating any steps.

To scan the control statements for syntax errors without initiating the job, code
TYPRUN=SCAN on the JOB statement or select a job class which the installation has defined to
force the TYPRUN=SCAN default. With this option coded, the job is first scanned for control
statement syntax errors and then passed directly to the output stage for processing.

To produce a copy of the input deck without initiating any steps, code TYPRUN=COPY on
the JOB statement or select a job class which the installation has defined to force the
TYPRUN=COPY default. With this option coded, the input deck (as submitted) is converted
directly to a SYSOUT data set and scheduled for output processing. The class of the SYSOUT
data set is the same as the message class of the job and can be controlled by the MSGCLASS
parameter on the JOB statement. The SYSOUT data set generated can be processed by either
the JES2 output processor or by the external writer, but is not available to the TSO OUTPUT
command. JES2 control statements encountered in the input stream are interpreted before being
added to the SYSOUT data set; job control language (JCL) statements are copied without any
processing (that is, no JCL conversion).

58 OS/VS2 JCL (VS2 Release 3)

Conditional Execution of Job Steps

Depending on the results of one step of a job, you may not wish to execute subsequent
steps-if a compilation fails, you would not want to waste computing time attempting
subsequent link-editing or execution steps. Specify tests to determine whether to bypass or
execute job steps, based on the results from previous steps by coding the COND parameter on
either a JOB or EXEC statement.

The results of a job step can be reflected in a return code, a number from 0 to 4095. The
COND parameter can be coded to test the return codes which are issued by the compiler,
assembler, and linkage editor programs. Some return codes are standard for certain programs;
for example, a return code of 8 issued by a compiler or linkage editor indicates that serious
errors were found and execution is likely to fail. In problem programs, assign a number as the
return code to signify a certain condition. For example, if STEP} of a job reads accounts to be
processed in subsequent job steps, you might set a return code of 10 if no delinquent accounts
are found. Before STEP3 is executed to process delinquent accounts, test the return code from
STEP}; if the return code from STEPl is 10-there are no delinquent accounts-you can skip
STEP3. Specify the test to check the return code from STEPl by coding the COND parameter.

You can also instruct the system to execute a step even if a previous step has abnormally
terminated or only if a previous step has abnormally terminated by coding EVEN or ONLY in
the COND parameter on a EXEC statement. For example, STEPl of a job updates records in a
data set. If STEP} abnormally terminates, you want to execute STEP2, which will print the data
set. Specify that STEP2 should be executed only if STEP} abnormally terminates by coding
ONLY in the COND parameter on the EXEC statement for STEP2.

Specifying Return Code Tests

In the COND parameter, specify tests to determine if the system should bypass a job step. If
the system determines that a comparison is true, the job step is skipped (if COND was coded
on the EXEC statement) or all remaining job steps are skipped (if COND was coded on the JOB
statement) .

For example, if you code COND=«10,GT),(20,LT», you are asking, "Is 10 greater than the
return code or is 20 less than the return code?"

If the return code is 12, neither test is satisfied: no job step is skipped. All the tests you
specify must be false if processing is to continue without skipping any job steps. If the return
code is 25, the first test is still false, but the second test is satisfied: 20 is less than 25. The
system will bypass one job step or all remaining job steps, depending on if the COND
parameter was coded on the EXEC statement or on the JOB statement.

Restarting a Job
When a job step abnormally terminates, you may have to resubmit the job for execution; this
means lost computer time and a delay in obtaining the desired results. The operating system
provides restart facilities to reduce the effects of abnormal termination.

There are two types of restarts:

• Step restart, from the beginning of a job step.
• Checkpoint restart, from a checkpoint within a job step. (You establish checkpoints in a job

step by coding the CHKPT macro instruction for each checkpoint. The CHKPT macro is
described in OS/VS Data Management Macro Instructions, GC26-3793.) See also the DD
CHKPT parameter. It specifies that checkpoints are to be taken at end of volume for the
data set defined by the DD statement on which it is coded.

Routing a Job TItrough the System (JES2 only) 59

Whether using step restart or checkpoint restart, the restart facility can be automatic or
deferred.

Automatic restart: To use automatic restart, code the RD (restart definition) parameter on the
JOB or EXEC statement. If you use this facility, the presence of a job journal is required. (A
job journal is established at JES2 initialization in order to hold restart information for each
program in execution.) When a system failure occurs or a job step abnormally terminates and
you have a job journal, the restart facility allows you to have automatic restart by coding
RD=R on the JOB or EXEC statements. If you have taken checkpoints, automatically restart at
the last checkpoint regardless of whether you have coded the RD parameter. When a job step
abnormally terminates or a system failure occurs while the job is in execution and you do not
have a job journal, these jobs are ineligible for automatic restart regardless of whether or not
the RD parameter is coded.

Deferred restart: To use deferred restart, code the RESTART parameter on the JOB statement.
This required parameter specifies a job step or a step of a cataloged procedure and can specify
a checkpoint identifier if you are using deferred checkpoint restart. The effect of the parameter
is simply to restart the job at the beginning of the specified step or checkpoint. The SYSCHK
DD statement is required when a job is being submitted for deferred checkpoint restart and
must specify explicit UNIT and VOLUME information even if the checkpoint data set is
cataloged.

Refer to OS/VS Checkpoint/Restart, GC26-3784, for a complete description of planning for
and using the checkpoint restart facility.

Example of Routing a Job Through the System (JES2 only)

The purpose of this job is to execute five steps to perform an unspecified function. Not all of
the steps will execute because conditions are placed on them.

/*PRIORITY
//ROUTE
//STEP1
//DD1
//STEP2
//DD2
//STEP3
//DD3
//STEP4
//DD4
//STEP5
//DD5

* JOB
EXEC
DD
EXEC
DD
EXEC
DD
EXEC
DD
EXEC
DD

(D58706),ROEGER,MSGLEVEL=(1,1),CLASS=E
PGM=IEFBR14
SYSOUT=A
PGM=IEFBR14,COND=EVEN
SYSOUT=A
PGM=IEFBR14,COND=ONLY
SYSOUT=A
PGM=ABEND806
SYSOUT=A
PGM=IEFBR14,COND=ONLY
SYSOUT=A

1. This job will use the installation-defined priority default.

2. The JOB statement specifies that only JCL statements and messages are to be written,
that the job is assigned to job class E.

3. All SYSOUT data sets will be processed by output class A.

4. STEPI will execute normally.

5. STEP2 will execute normally.

6. STEP3 will not execute.

7. STEP4 will execute and will abnormally terminate.

8. STEP5 will execute because a preceding step did abnormally terminate.

60 OS/VS2 JCL (VS2 Release 3)

Obtaining Output (JES2 only)

By coding JCL statements, you can request output data sets, listings of JCL statements, system
messages, and abnormal termination dumps. By coding JCL and JES2 statements, you can
request special forms processing, routing of output to specific devices, and mUltiple original
printing by data sets within a job. rhe JES2 statements have the same options as JCL with
some additional features such as mUltiple destination, left and right indexing feature for the
3211 printer, and data set grouping.

This section includes four topics:

• Requesting Listings of JCL Statements and System Messages
• Requesting an Abnormal Termination Dump
• Writing Output Data Sets
• Controlling Output Destination

Requesting Listings of JCL Statements and System Messages

The system produces messages about a job concerning allocation of units and volumes,
disposition of data sets, and termination of job steps and the job. You can request that these
messages and/or the JCL statements from the job and from cataloged procedures called by the
job be included on an output listing.

By coding the MSGLEVEL parameter on the JOB statement, you inform the system of what
statements and messages you want included on the output listing. (The notation used on the
output listing to iden,tify cataloged and in-stream procedure statements is described in the
chapter "Using Cataloged and In-stream Procedures. ")

By coding the MSGCLASS parameter on the JOB statement, you assign messages and JCL

statements to an output class. A default is assigned if MSGCLASS is not coded.

Requesting an Abnormal Termination Dump

To obtain a dump in the event of abnormal termination of a job step, code a Dn statement
defining a dump data set. The name of the DD statement must be either SYSABEND or
SYSUDUMP. If b.oth are presnet, the last occurance will be used.

The SYSABEND or SYSUDUMP DD statements can provide a dump containing the processing
program's virtual storage area, the system nucleus, the entire system queue area, all local
system queue areas, and any active link pack area (LPA) modules for the failing task. If the
generalized trace facility (GTF) is active in the system and performing an internal trace, you
receive GTF trace records. If GTF is active but performing an external trace, no trace
information is included in the dump. Determine what dump features are wanted in addition to
the installation defaults and define them in a dump option list. How to do this is explained in
the System Programming Library: Supervisor, GC28-0628.

Descriptions of dumps and information on reading dumps are included in the OS/VSl System
Programming Library: Debugging Handbook, GC28-0632.

To have the dump printed, either assign the dump to an output class in the SYSOUT

parameter on the DD statement or code the UNIT parameter and specify the printer you want.
To store the dump, define the data set as you would any other data set, code the DSNAME,

DISP, UNIT, and VOLUME parameters. If the data set will go to a direct access device, code the
SPACE parameter.

Obtaining Output (JES2 only) 61

If a private data set is specified and more than one dump is possible, the data set should be
specified with a disposition of MOD as it will be closed after each dump.

Writing OUtput Data Sets

There are two ways to write output data sets:

• Assign the data set to an output class.
• Specify the device on which the output should be written.

When you assign a data set to an output class, it is handled by JES2. The data set is first
written to the JES2 spool device and then written to the final output device by either JES2 or
an external writer. When you specify the device on the UNIT parameter, if the device is
available, it is exclusively assigned to your job and under the control of your program.

Output data sets to be written to a 3540 diskette must be assigned to an output class that is
processed by the diskette writer (an external writer) as described in OS/VS2 IBM 3540
Programmer's Reference, GC24-5111.

Assigning Output Data Sets to Output Classes

Output classes include output with similar characteristics that are written to the same device.
There are 36 possible output classes that can be coded on either the SYSOUT or MSGCLASS

parameters. The letter and number names have no inherent meaning;-each installation defines
its own output classes. For example, output class W might contain low priority output; class X
might be reserved for high-volume output. If you want the output data set and messages from
the job to be printed on the same output listing, specify SYSOUT=* or the same output class in
the SYSOUT parameter as specified for messages in the MSGCLASS parameter.

The installation can designate certain SYSOUT data sets as reserved. Reserved classes can
cause the data sets to be held; that is, not sent to JES2 output processing. If the output class
specified for the MSGCLASS parameter is not designated as a reserved class, it will not be held
and none of the job's data sets assigned to reserved classes will be held. Data sets can be
explicitly held by coding either the HOLD=YES JCL parameter or the HOLD parameter on the
ALLOCATE and FREE TSO commands. (Refer to OS/VS2 TSO Command Language Reference,
GC28 ... 0646, for information on the TSO commands.) Jobs can be released from the hold state
by the operator or by the time-sharing user with the OUTPUT TSO command. By using reserved
classes, the controlling of the holding or not holding of all desired print data sets is done by
means of the MSGCLASS parameter on the JOB statement.

Specifying the Device

To write an output data set without using the JES2 SYSOUT service, code the UNIT parameter
on the DD statement defining the device on which the data set is written. The system will
allocate the device exclusively to the job if the device is available: no other job can write
output to that device until it is released. Jobs cannot share an output device as they can when
output is assigned to output classes.

Data management routines write the output from the program to the device specified in the
UNIT parameter. Specifying a particular output device in the UNIT parameter generally is not
the most efficient method for obtaining system output.

Processing Output Classes

Using JES2 is an efficient way to write output. JES2 supports the use of local and remote
printers and punches as devices on which output classes are written. An external writer
supports tape and direct- access devices and user-written writer routines.

62 OS/VS2 JCL (VS2 Release 3)

Job related output is output that is neither held nor spun off nor processed by a
user-written writer. (A spun off data set is made available for output processing before job
termination.) Job related output will be retained until the end of the job and printed by JES2.
All dynamically deallocated SYSOUT data sets are spun off and, as with held output, are not
considered part of the job related output.

Output will be printed on the same listing if such parameters as CLASS, FORMS, FCB, UCS,
and DEST have similar characteristics for all data sets and a user-written writer is not specified.
The installation may choose to put all data sets that specify the same output class as the
MSGCLASS parameter out on the same listing, even though FORMS, ues, FCB, and DEST are
different.

For an external writer, the operator will determine what data set will be selected. This can
cause certain output to print out on the same listing even though all of the FORMS, DEST, UCS,
and FeB parameters do not indicate the same characteristics.

Either an IBM-supplied external writer or a user-written writer can process the output. The
external writer must be started by the operator to have the data written to an output device. If
you want to know more about how to write an external writer routine, refer to OS/VS2 System
Programming Library: Job Management, GC28-0627.

Delaying the Writing of an Output Data Set

Data sets can be delayed from normal printing or delayed for inspection from a time sharing
terminal prior to actually printing on that terminal by specifying reserved classes and by coding
the HOLD parameter. For example, the installation can direct the delayed printing of a very
large data set to prevent monopolizing an output device until smaller data sets are written. If a
data set requires special forms that are not immediately available, it canbe held until the
operator supplies those forms. When HOLD=YES is specified on the DO statement, the data set
is placed on a hold queue until the operator releases it. Notify the operator (using the NOTIFY
parameter for TSO or the MESSAGE statement for JES2) when that data set is ready for
processing because no message will be sent to the operator. The data set can be released by
the operator or time-sharing user for printing.

Suppressing the Writing of an Output Data Set

Whether writing an output data set by coding the SYSOUT parameter or the UNIT parameter,
you can suppress the writing of the data set by defining it as a dummy data set. This is useful
when testing a program and you do not want data sets printed until you are sure they will
contain meaningful output. Suppressing the writing of a data set saves processing time.

If you are routing an output data set by coding the SYSOUT parameter, code the DUMMY
parameter to define the data set as a dummy data set. When DUMMY is coded, the SYSOUT
parameter is ignored and the data set is not written.

You can also suppress the writing of an output data set by specifying a particular
installation-defined class defined to delete the data set before it is printed. This technique is
used by the installation to suppress the output of started tasks such as START and MOUNT
commands.

If the device on which the data set will be written is specified in the UNIT parameter, you
can assign the data set a dummy status by coding DUMMY or by assigning the data set name
NULLPILE. All parameters other than DUMMY or DSNAME= NULLFILE and DCB are ignored;
no units are assigned to the data set. When the program requests that the data set be written,
the request is recognized but no data is transmitted. The facility is available by use of the basic
sequential access method (BSAM) or queued sequential access method (QSAM) in a request to
write a dummy data set. If any other access method is used, the job is terminated.

Obtaining Output (JES2 only) 63

Limiting Output Records

The number of logical records in the output data set can be limited by specifying a maximum
number of records through the use of the OUTUM parameter. For example, a program is
printing and goes into an endless loop. You can anticipate this problem and only have a
maximum number of records printed before having the system discontinue the output
processing.

Requesting Page Ol'er/low Processing

JES2 will automatically limit the number of lines printed per page, thus preventing printing over
the edge of the form, if requested either by the installation during JES2 generation or by the
programmer coding LlNECT or the JOBPARM statement. The installation specified number of
lines per page can be overridden by the JOBPARM UNECT parameter or line limiting can be
turned off by coding LINECT=O. Set the line count sufficiently large to prevent unwanted page
ejects for output from programs that provide page eject carriage control parameters.

Interpretatioll of Punched Output

Cards punched on a 3525 card punch from output spooled by JES2 will be interpreted if you
code FUNC=1 as a DCB subparameter on the SYSOUT card and if the spooled output is
processed by a JES2 writer rather than the external writer. The FUNC=I subparameter will be
ignored if the spooled output is processed by the JES2 writer onto a card punch other than the
3525. You could check with the installation to determine if a special output class has been set
aside for 3525 output. Card interpretation by the external writer is an operator specified
function. Output to be interpreted should be placed in a class designated by the installation as
a punch with interpretation class.

JES2 Support of the 3211 Indexing Feature

You can specify that output that is printed by the JES2 writer onto a 3211 printer be indexed
to the right or to the left by coding the IDNEX or UNDEX parameters, respectively, on the
OUTPUT statement. These parameters will be ignored if the output is processed by the external
writer or is processed to a device other than a 3211. Determine whether an output class has
been set aside to designate output to be processed by a JES2 writer onto a 3211 printer by
asking the installation's system programming staff.

Requesting Multiple Copies of an Output Data Set

You can control the number of hard copies produced by the SYSOUT data sets. As many as
255 copies of an output data set are obtained by coding the COPIES parameter on the SYSOUT
DO statement defining the data set or on the JES2 OUTPUT control statement. As many as-255
copies of the entire job related output are obtained by coding the COPIES parameter on the
JES2 JOBPARM control statement.

If you request multiple copies of job related output by coding the OUTPUT or SYSOUT DO
statements and the JOBPARM control statement, JES2 output processing will give the multiple of
the requested amount for each SYSOUT data set. For example, if you request two copies of the
entire .lob output (code COPTES= 2 on the JOBPARM statement) and three copies of a certain
output data set (code COPIEs=3 on a SYSOUT DO statement or OUTPUT control statement),
you will receive two copies of the entire job output but will receive a total of si~ copies of the
SYSOUT data set. If the data set has been written directly to an output device, held, spun off,
or processed by an external writer, however, it is no longer a job related data set and is not
affected by the COPIES parameter on the JOBPARM statement. In this example, you would
receive three copies of the requested output data set.

64 OS/VS2.reL (VS2 Release 3)

Requesting Forms and Print Chain Control

When requesting that an output data set be printed, you can give JES2 special instructions on
how to print the data set. You can request:

• A special output form.
• A special character set, when output is being printed by a 3211 or 1403 printer with the

universal character set.
• A specific image, which controls how many lines per inch are printed and the length of the

form, when the data set is written to a 3211 printer.
• A specific carriage control tape, when the data set is written to a 1403 printer.

Requesting a Special Output Form

Special forms are requested for output data set printing by including the form name in the
SYSOUTparameter on the DO statement defining the data set or on the OUTPUT control
statement. For example, assign a data set to an output class to be routed to a printer and
specify the data set be printed on a special form. (For example, code SYSOUT=(A"FMS2).) JES2
and the external writer insure that the proper form is mounted.

The entire job can be printed on a special form by coding the FORMS parameter on the
JOBPARM statement. If you code a forms name on either the SYSOUT or the OUTPUT
statements, it will override the forms name in the JOBPARM statement.

Requesting a Special Character Set

Universal character set (UCs) features are requested by coding the DCS parameter on a DD
statement defining an output or SYSOUT data set or by coding UCS on the OUTPUT control
statement for SYSOUT data sets. You can request UCS features for different sets of characters
to be printed for various applications.

To request a special character set for a 3211 or 1403 printer, specify the code identifying
the character set in the ucs parameter or the OUTPUT statement. The codes for the IBM
standard special character sets are in Figure 10.

1403 3211 Characteristics

AN A11 Arrangement A, standard EBCDIC character set, 48 characters
HN H11 Arrangement H, EBCDIC character set for FORTRAN and cobol, 48 characters

011 ASCII character set
PCAN Preferred alphameric character set, arrangement A
PCHN Preferred alphameric character set, arrangement H
PN PIt PL/I alphameric character set
QN PL/I preferred alphameric character set for scientific applications
RN Preferred character set for commercial applications of FORTRAN and COBOL
SN Preferred character set for text printing
TN Ttl Character set for text printing, 120 characters
XN High-speed alphameric character set for 1403, Model 2
YN High-speed preferred alphameric character set for 1403, Model 3 or Nl

Figure 10. Special Character Sets for the 1403 and 3211 Printers (JES2)

Note: Where two values exist (for the 1403 and 3211 printers), either can be coded and JES2
will select the set corresponding to the device onto which the data set is printed.

Not all of these character sets may be available at your installation. In addition, the
installation can design character sets to meet special needs and assign a unique code to them.
See the system programming staff for a complete list of available character sets for the
installation.

Obtaining Output (JES2 only) 65

Requesting a Specific Image

Specific images (for example, the number of lines per page or number of characters per line)
for a 3211 printer are requested by coding an image identifier in the FCB parameter in JCL or
by coding FCB on the OUTPUT control statement. The FCB parameter can also specify a
specific carriage control tape for the 1403 printer for JES2 output processing only (it is ignored
by the external writer).

IBM provides four standard FCB images, STDl, STD2, 6, and 8. STDI and 6 specify that six
lines per inch are to be printed on an 11 inch form. STD2 and 8 specify that eight lines per
inch are to be printed on an 8.5 inch form. (Do not specify STDI and STD2 for JES2 processing
unless instructed by your installation). Additional FCB images can be specified by the
installation.

Controlling Output Destination

JES2 allows you to submit jobs to a central computing center from a work station and to route
output to work stations.

The default output location is the submitting location, either a remote work station or the
central site (destination of LOCAL). To receive the output at the submitting location, simply
assign output data sets to any output class (with the SYSOUT parameter) and messages from
your job to an output class (with the MSGCLASS parameter). JES2 at remote stations offers
most of the same options for writing data sets that are requested when submitting the job at
the central computing center. You can request:

• That a data set be held until the operator requests that it be printed.
• That a special output form be used by specifying a form name in the SYSOUT parameter.
• That multiple copies of the data set be used.

Whether at a remote station or at the central computing center, you can also request that a
data set be routed to another destination. To route an output data set to another destination,
code the identification of that destination in the DEST parameter on the DD statement defining
the data set or code DEST on the OUTPUT statement. If you code a destination on either the
SYSOUT or the OUTPUT statements, it will override the destination in the ROUTE statement.
Work stations are identified by a destination identification that has been established by the
system programmer. The destination parameter will cause output to be routed to local printers
or punches or to any remote station.

Example of Obtaining Output (JES2 only)

This example shows the use of JES2 and JCL statements that can be used to obtain output.

/*PRIORITY
//OUTJOB
/*JOBPARM
/*OUTPUT
/*SETUP
//STEP1
//DDl
/1
//DD2
II
/IDD3
/IDD4
/IDD5

66 OS/VS2 .JCL (VS2 Release 3)

5
JOB BAKER,PERFORM=100,MSGCLASS=J
COPIES=2,LINECT=20,ROOM=233,FORMS=GRNl
PSET DEST=PRINTER8,FCB=STD3,FORMS=2PRT,UCS=TN
253194
EXEC
DD

DD

DD
DD
DD

PGM=TESTSYSO
DSN=DATA,UNIT=2314,VOL=SER=SCHLIB,
DISP=(OLD,KEEP),SPACE=(TRK,(5,2))
DSN=&TEMP,UNIT=2314,DISP=(NEW,DELETE),
SPACE=(TRK,(10,5))
SYSOUT=(A, , PSET)
SYSOUT=(A, ,GRPH)
SYSOUT=L

1. The job will be selected at priority levelS.

2. The job will run in performance group 100; the meaning of 100 is defined by the
installation. All system messages are to be written to output class J.

3. The JOBP ARM statement indicates that:

a. Two copies of the entire job related output will be printed.
b. No more than 20 lines per page will be printed (LINECT=20).

c. The programmer's office number is 233. This appears on the separator page and is
used for distributing output.

d. Forms name GRNI is the name of the form to be used by all data sets unless a specific
form is defined on a DD statement.

4. The OUTPUT statement indicates that:

a. PSET is the code that, when indicated on a DD statement, causes all parameters on the
OUTPUT statement to override default parameters.

b. The destination for the output is a printer and is number 8 if it is local print/punch
routing; otherwise, PRINTER8 is equalvalent to LOCAL.

c. If the printer has the forms control buffer feature, STD3 must be the name of a
member of SYS1.IMAGELIB. STD3 defines the special forms control buffer image to be
used for processing the job.

d. Forms name 2PRT is the name of the forms for data sets coding PSET in the SYSOUT

parameter.
e. TN means text printing on a 1403 printer.

5. The SETUP statement indicates that volume 253194 should be mounted before this job
begins processing.

6. SYSOUT data sets and message class are printed on green (GRN) paper except DD3 and
DD4. The DD4 SYSOUT data set is printed on graph (GRPH) paper; the DD3 SYSOUT data
set is on 2 part paper.

Obtaining Output (JES2 only) 67

68 OS/VS2 JCL (VS2 Release 3)

Routing a Job Through the System (JES3 only)

The job entry subsystem 3 (JES3) reads a job into the system, satisfies the requirements
requested on JCL and JES3 statements, optionally preschedules JES3 supported devices, selects
the job for execution, and controls the processing of SYSOUT data sets. JES3 automatically
performs most of these services, but by coding JCL and JES3 parameters you can influence how
these services are performed. For example, JES3 schedules a job for execution but you can
customize how and when the job is processed by coding one or more of the parameters on the
JES3 MAIN statement. The MAIN SYSTEM parameter is used to direct a job to a specific
processor in a loosely-coupled multiprocessing environment and the MAIN SETUP parameter is
used to modify JES3 device selection algorithms. In loosely-coupled multiprocessing systems,
processors are connected by channel-to-channel adapters that pass information among the JES3
system operating on each processor and between global and local processors are connected by
shared direct access devices that contain JES3 and system control blocks and user data. One
processor, the global, controls job selection for all processors in the system. The other
processors are local processors and/or MVT or VS2/1 systems that are configured as ASP main
processors.

To ensure that one job is selected before another, use dependent job control (DJC). To
ensure that a job is scheduled by a certain time, use deadline scheduling (MAIN DEADLINE).
To hold a job for any other purpose, such as availability of input data, code TYPRUN==HOLD
on the JOB statement or use the HOLD parameter on the MAIN statement.

MVS includes support for controlling the processing rate of jobs and job steps. The
installation defines a certain number of performance groups. Each of these defines a particular
processing rate to be used for associated jobs or job steps. To associate a job or job step with
an MVS performance group, code the PERFORM parameter on either the JOB or EXEC
statements.

This section contains six topics:

• Scheduling a Job
• Selecting a Processor
• Allocating Devices
• Selecting a Job
• Passing Information to the Job in Execution
• Restarting a Job

Scheduling a Job

JES3 controls the selection. of jobs for processing. When a job is read into the system, it is
initially placed on a spooling disk pack. The JCL and JES3 statements are checked for syntax
errors and if they are correct, JES3 determines allocation requirements for the job. JES3 device
selection takes place next. Devices are selected based on device requirements for JES3-managed
devices established in the JCL. Any n~cessary volumes that require mounting are requested.
(More information on this subject is found in the Allocating Devices section.) Once all
JES3-managed devices are selected and the first volume on each device is mounted (unless
deferred mounting is requested or implicit high watermark setup is used), the job is placed in
the queue for execution. (Implicit high watermark allocates a minimum number of devices to
run a job.)

When JCL and JES3 statements have syntax errors, appropriate error messages are issued
and the job is terminated. When the job has JES3 allocation errors, error messages are issued
and execution is bypassed.

Routing a Job Through the System (JES3 only) 69

The execution queue is logically divided into groups of job classes specified by the
installation and within each job class group, jobs are placed according to their job priority.
Jobs in the same job class group with the same job priority are placed in the execution queue
in the order they were read into the system. The various job class groups are assigned priorities
by the installation. JES3 starts system initiators on each processor and assigns them a job class
group to process based on the installation priorities. It selects jobs from any class assigned to
it. Jobs are selected by job class, processor eligibility, workload balancing, and priority order as
described in the section, "Selecting a Job".

Selecting a Processor

JES3 usually automatically selects a processor for a job based on device, volume, and data set
dependencies known to it. However, if any of the dependencies are not known to JES3, the job
can be processed incorrectly or can fail. The next section, "Allocating Devices," discusses
these dependencies in more detail. There can also be processor dependencies; that is, a special
system feature such as an emulator, non-standard catalog, or system-managed device, that JES3
will not recognize unless you define which processor or control program is required on the
SYSTEM and TYPE parameters on the MAIN statement. The MAIN SYSTEM parameter specifies
the processor and the MAIN TYPE parameter specifies the control program for the job.

The MAIN SYSTEM subparameters, JGLOBAL and JLOCAL, request a specific VS2 processor;
ASP requests an ASP main processor. To specify particular processors or exclude particular
processors, code the main-name value on the MAIN SYSTEM parameter for each processor.

The MAIN TYPE subparameters, MVT and VS2/1, request a specific control program on an
ASP main processor; VS2 requests a specific control program for either a global or local
processor.

It is not necessary to specify both SYSTEM and TYPE unless you want to exclude particular
processors. For example, TYPE=VS2,SYSTEM=/x indicates that the job can execute on any VS2
processor except x.

Not all classes are eligible to run on all processors; therefore, make sure that the job class
for the job is eligible before selecting a specific processor.

A job is flushed if it specifies a job class (on the JOB or MAIN statements) and a specific
processes) (on the SYSTEM and TYPE subparameters on the MAIN statement) that are
incompatible. A processor(s) is defined for each valid job class on the CLASS initialization
statement during JES3 initialization. For example, if a job specifies CLASS=C and SYSTEM=SYl,
then the processor SYI must have been defined on the CLASS initialization statement for class
c.

Allocating Data Resources

Data resources, that is, devices, data sets, and volumes that are required for each DD request,
are allocated either by JES3 or by the system according to DSNAME, DISP, and UNIT on the DD

statement. If your data set is an existing data set and specifies or requires a unit managed by
JES3, JES3 will allocate the request on a job basis before the job executes by examining the
request in relation to other data requests in this and other jobs. Otherwise, the system will
allocate the request on a step basis as the step enters execution.

Devices are divided into three catagories in a JES2-controlled system: system-managed,
jointly managed, or JES3-managed. The following chart indicates what type of devices are
eligible for each type of allocation.

70 OS/VS2 JCL (VS2 Release 3)

Attribute of Device
How Managed

Permanently Resident Removable

System-managed X X
- _'"_

Jointly managed X
~-, -~-~

JES3-managed X

JES3 allocation (job setup, high watermark setup, and explicit setup explained later in this
topic) will utilize JES3-managed devices and jointly managed devices. System allocation will
utilize system-managed and jointly managed devices. The system programmer defines the
devices that are in each catagory managed by either jointly or by JES3.

The system and JES3 must determine which one will handle the device allocation. The first
consideration is, is the data set name permanently resident (as defined by the system
programmer)? If it is permanently resident and no volume is specified, the system allocates the
request. If the data set is permanently resident and a volume is specified, it is handled like all
other requests that are not permanently resident. If the data set is not permanently resident,
the volume is a specific request, and the unitname is assigned to JES3, then JES3 allocates the
request. Otherwise, the system will allocate it. All nonspecific, non-private direct access devices
are allocated by the system. Refer to OS/VS2 System Programming Library: Job Management,
GC28-0627, for additional information on JES3 and system allocation. Refer to "Requesting
Units and Volumes" earlier in this book for a brief discussion of system allocation.

Types of JES3 Setup

JES3 supports three types of setup: job setup, high watermark setup, and explicit setup.

Job setup. Job setup results in allocation of all JE'S3-managed units required in the job. By
specifying SETUP=JOB on the MAIN statement, JES3 will mount the initial volumes necessary to
run all steps before the job executes. When volumes are no longer needed, they will be
demounted and the devices deallocated (that is, made available for use by another job). If
FREE=CLOSE is specified, the deallocation takes place when the data set is closed.

High watermark setup. High watermark setup attempts to allocate a minimum number of
devices to run the job. SETUP=THWS, SETUP=DHWS, and SETUP=HWS on the MAIN statement
define whether the high watermark setup is for tapes, disks, or both. When volumes are no
longer needed, they can be demounted and the devices deallocated (that is, made available for
use by another job). If FREE=CLOSE is specified, the de allocation takes place when the data
set is closed. When it is advantageous to use fewer devices for a job, high watermark setup is
preferable to job setup. In Figure 11, two volumes A and K, are mounted for use in STEPl and
then demounted when not in use until they are needed in STEP4. They are mounted in STEP4
on any available device.

Explicit setup. Explicit setup is user directed and can allocate more than the minimum number
of devices requested to run the job, sometimes eliminating remounts of volumes.
SETUp=ddname or SETuP=/ddname on the MAIN statement'specifies explicit setup and the
ddname request to be setup or to be removed from consideration for setup. An advantage of
explicit setup over high watermark setup is that volumes can be forced to remain mounted on
devices until they are no longer needed. However, there is one disadvantage if explicit setup is
specified: there is no early de allocation of devices. Job setup and high watermark setup can
deallocate devices at the end of any step if the devices are no longer needed. Explicit setup,
however, allocates a certain number of devices before job execution and docs not deallocate
any until the job completes execution.

If Figure 11, four devices are allocated for both tape and disk instead of the three allocated
using high watermark setup. By explicitly requesting that certain volumes be mounted, volumes
A and K can avoid being deallocated and remounted for the last step.

Routing a Job Through the System (JES3 only) 71

Three Types of JES3 Setup

Devices and Volumes to be Allocated

Volumes on Devices Set Up Prior to
Execution

Steps in a Job2

STEP1 tape volume=A, B

disk volume=K, L

STEP2 tape volume=B, C, D

disk volume=K

STEP3 tape volume=D

disk volume=L, M, N

STEP4 tape volume=A, E, F

disk volume=K, N, 0

Total devices used by the job for setup

LEGEND:

_ The device is allocated and in use

The device is allocated but not in use

Job Setup
(SETUP=JOB)

Tape

___ 1 The device is no longer needed and can be deallocated

1 High watermark setup can express combinations of tape and disk allocations.

Disk

HWS request allocation of the minimal number of devices required to run the job.
THWS requests high watermark setup for tapes and job setup for disks.
Job setup requests units for every unique volume in the job.
OHWS requests high watermark setup for disks and job setup for tapes.
Job setup requests units for every unique volume in the job.

2Volumes mounted after STEP1 are indicated by placing the volume name in the
box for the step in which it is allocated. For example, in high watermark setup,
volume C is mounted at STEP2.

Figure 11. Example of JES3 Setup

72 OS/VS2 JCL (VS2 Release 3)

High Watermark
Setupl

(SETUP=HWS)

Tape Disk

Explicit Setup
(SETUP=ddname)

Tape Disk

To avoid holding devices until the step needs them for any of the forms of JES3 allocation,
use dependent job control. See the topic, "Dependent Job Control," later in section to
determine how to split a job into smaller, dependent jobs for execution.

Selecting a Job
Jobs are selected for execution according to processor eligibility, job class, job processing
balancing, and priority order. A job must first be eligible for a particular processor, then
selection is by class (as defined by installation criteria) and optionally by workload
characteristics and by priority. Processor eligibility is discussed in the section, "Selecting a
Processor. "

Assigning a job to a job class. A job class is a description of the type of job being submitted;
that is, production, testing, and so forth. It is established by the installation and has no
inherent meaning except as the installation has defined it. It is used by the installation for
scheduling jobs on eligible processors. To assign a job to a job class, code the CLASS
parameter on the JOB statement or the CLASS parameter on the MAIN statement. If neither of
these parameters are coded, the job will be assigned an installation-defined standard class
default.

Establishing job processing balance. The MAIN IORATE parameter specifies a value for the job
~o determine the mix of jobs for each processor. It defines the relationship between CPU-bound
processing and I/o-bound processing for that job which is expressed as being high, medium, or
low I/O. JES3 attempts to provide a balance of CPU-bound and I/o-bound jobs to improve the
scheduling of jobs for execution. The MAIN IORATE parameter regulates how a job is
scheduled as contrasted with the PERFORM parameter on either the JOB or EXEC statement
that regulates how a job executes. The PERFORM parameter is discussed in the section,
"Performance of Jobs and Job Steps."

Assigning a priority to a job. Within a job class group, jobs are selected for execution
according to job priority. Jobs with the same priority are placed in a first in/first out order.
Specify job priority by coding the PRTY parameter on the JOB statement.

The priority order for jobs can be changed by the operator, by priority aging, or by deadline
scheduling. How the operator changes priority is discussed in the JES3 operator's reference.

Priority aging allows JES3 to increase the priority of a job after it has been passed over by
JES3 an installation-specified number of times because of an insufficient number of devices or
contention for a volume or data set. The installation defines priority aging; it cannot be
specified using J CL.

Deadline scheduling allows you to specify a time of day when the job should be scheduled.
If the job is not scheduled by this time, JES3 will increase the priority of the job at
installation-defined intervals until it is scheduled. For more information on deadline scheduling,
refer to the- next section.

In addition to job selection, raising a job's priority will cause the job to be given preferential
treatment in JES3 device selection. For more information on JES3 device selection, see
"Allocating Devices."

Deadline Scheduling

When a job must be scheduled by a certain time of the day, week, month, or year, specify this
on the MAIN DEADLINE parameter. By indicating that there are time restrictions, you influence
the priority of the job and help insure that the job will be scheduled when necessary. For

Routing a Job Through the System (JES3 only) 73

example, a job must be shceduled every Friday by 2 p.m. to calculate the payroll. Request that
the job be scheduled by that time by coding / /*MAIN DEADLINE=(1400,A,6,WEEKLY). The
subparameter values mean the following:

1400 is 2 p.m. on a 24-hour clock.
A defines the deadline type that determines the periodic increment of the job's priority (the meaning for A

is defined bv the installation).
6 is the sixth ~iay of the week (the first day is Sunday; the seventh day is Saturday).
WEEKLY is the cycle indicating the frequency of scheduling this job.

The purpose of deadline scheduling is to allow submission of a job at its true priority level
and have JES3 schedule it to best use the available resources. The priority level will be
increased only if the job is not scheduled on time. For example, if you work first shift and
submit a job at the end of the day, you do not need results until the next morning. Indicate
that the job must be scheduled by 7 a.m. and assign an initial lower priority, then the job can
be scheduled at any time. If it has not been scheduled a few hours before the '7 a.m. deadline,
the priority will be increased periodically to increase the job's chances for being selected by 7
a.m.

If you have requested that a job be scheduled by a certain time on a certain day and the
job is submitted after the deadline time, the priority of the job is incremented to the same
level it would have been if it had been submitted prior to the deadline and not completed.

Postponing Job Selection

It is possible that resources other than those managed by JES3 will not be available; for
example, you may want to read a job before all input is available. In this case, delay the job's
selection by coding TYPRUN=HOLD on the JOB statement or HOLD=YES on the MAIN
statement. When delaying a job's initiation, the job remains on the selection queue but cannot
be selected for processing until the operator releases the job. Notify the operator when to
release the job on the JES3 OPERATOR statement or on the JCL command statement. When the
operator releases the job, it is again eligible for selection.

Performance of Jobs and Job Steps

To regulate the execution performance of a job, associate a job or job step with a performance
group. The installation defines performance groups that determine the rate at which a given
job will have access to the CPu, storage, and I/O channels. Most performance groups designate
good processing rates under light system workload conditions. However, when the system
workload is moderate or heavy, some performance groups will have significantly lower
processing rates than others. The installation defines the performance groups needed to meet
the response requirements of its various users and will probably publish this information for
your use. Associate the performance group with a job or job step by coding a performance
group number on the PERFORM parameter on the JOB or EXEC statements. The PERFORM
parameter regulates how a job executes as contrasted with the MAIN IORATE parameter that
regulates how a job is scheduled. The MAIN IORATE parameter is described in the section,
"Selecting a Job."

For further information concerning system performance, refer to OS/VS2 System
Programming Library: Initialization and Tuning Guide, GC28-0681.

Assigning a Dispatching Priority to Job Steps

For most jobs run on MVS, the job's dispatching priority will default to an automatic priority
group (APG) instead of being assigned. The automatic priority group function is an algorithm
that the system resources manager will use to attempt to increase system throughput by
dynamically adjusting the dispatching priority.

74 OS/VS2 JCL (VS2 Release 3)

If you do assign a dispatching priority, code the DPRTY parameter on the EXEC statement.
This parameter has two values that the system uses in the following formula to calculate the
dispatching priority:

(valuel x 16) + value2 = step's dispatching priority

If valuel is not coded, the system assumes the APG value for the default. (Value2 has a
default of 11.) If the DPRTY parameter is omitted completely, or if it is equal to the APG
value, the step has the same dispatching priority as the APG value. A job run on an ASP main
processor can have the dispatching priority be the default execution priority.

Execution Priority (for ASP Main Processors only)

If MAIN JPRTY=JOB is coded, the execution priority default is the same as the value specified
on the PRTY parameter. If MAIN JPRTY==JES3 is coded, the PRTY parameter on the JOB
statement value is not the default execution priority. The default is the priority value stated on
the CLASS initialization statement. A job run on MVS will ignore any JPRTY value.

Dependent Job Control

Dependent job control (DJC) is used when jobs must be executed in a specific order
determined by job dependencies. There are several reasons for requiring one job to process
before another. For example, in JES3, data set information is fetched from the catalog before
the job is scheduled. If JOBA changes or adds to a catalog that JOBB will refer to, use
dependent job control to ensure that JOBA runs before JOBB is processed by JES3 allocation.
Another reason for using DJC is to achieve better device utilization. If a job requires only one
device for the first four steps but requires five devices for the fifth step, break the job into two
jobs (one for the first four steps and one for the fifth step). Use DJC to make the second job
dependent on the first; that is, the second job can run only after the first job has completed.
DJC is also useful in controlling the scheduling of jobs that have data dependencies.

To define a dependent job net, submit a NET statement with each job. The NET statement
identifies a job's net and specifies the dependency that must be satisfied before the job can be
scheduled. Jobs normally must wait for scheduling until a predecessor job completes. Jobs that
depend on one or more predecessor jobs to complete are called successor jobs. To specify the
number of predecessor/successor relationships of a given job in a net, specify the number of
predecessor jobs on the NHOLD parameter and the name of each successor job in the RELEASE
parameter of the NET statement. The number of predecessors is the number of jobs
immediately prior to the job dependent upon other jobs completing; the number of successors
is the total number of all jobs remaining to be processed in the net that depend on this job
completing.

A normal or abnormal predecessor completion can be the requirement established for going
to the next job. For example, JOBAB might not be requested unless the predecessor job
abnormally terminates. The NORMAL and ABNORMAL parameters on the NET statement
specify the kind of predecessor completion required for the successor dependent job to
execute.

The number of immediate predecessor jobs that must complete before a job is released for
scheduling, including jobs from another network that are predecessors to the dependent job,
are specified on the NHOLD parameter. When this parameter is defined, the job is placed into
dependent job control hold status when it enters the system. A job is made eligible for JES3
allocation and scheduling when its NHOLD count, which is decremented when each predecessor
job completes execution or by the operator, becomes zero. However, the NHOLD value can be
decremented before the predecessor job completes execution by issuing a special WTO
(write-to-operator) in the predecessor job problem program. Refer to OS/VS2 System
Programming Library: Job Management, GC28-0627, for the format of the write-to-operator
command.

Routing a Job Through the System (JES3 only) 7S

To place jobs in operator hold that are in a dependent job net, code the NET OPHOLD
parameter. This parameter action prevents scheduling of the job until it is explicitly released
from hold by the operator.

Upon either normal or abnormal completion of a predecessor job, a successor job can have
its NHOLD count decremented, can be flushed from the system, or can be retained pending
operator action. If it is flushed, the job and all of its successor jobs (and their successor jobs)
are canceled, printed, and flushed from the system. If it is retained in the system in the held
state, the NHOLD count is not decremented and the job and all of its successor jobs are
suspended from scheduling until either the predecessor is resubmitted or the operator
decrements the NHOLD. You can control external dependencies by setting the NHOLD value
one greater than normally assigned and asking the operator to decrement the NHOLD count
when the dependency is satisfied.

Early setup of successor job resources is indicated on the RELSCHCT parameter. It allows a
job to enter JES3 allocation before all precedessor jobs have completed. The job is then placed
in a hold status until all of its predecessors complete processing. Early setup of successor job
resources is invoked when the NHOLD count becomes less than or equal to the RELSCHCT
count. This option must not be used with jobs that have catalog dependencies. Coding the
RELSCHCT parameter can tie up devices and data sets for an extended period of time, so it
should be used carefully.

Dependencies can be established between jobs in different nets. To indicate that a job in
one network is the predecessor to a job in another network, specify the NETREL parameter.
See the of dependent job control example on the following pages to show the use of the
NETREL parameter.

Devices can be dedicated to a dependent job net by coding the DEVPOOL parameter. When
the DEVPOOL parameter is coded in the first job in a net, (it is ignored if not coded in the first
job) the devices specified are dedicated for device allocation and volume mountil1g only by
jobs in the same net. To release these devices prior to all jobs completing in the network, code
the DEVRELSE parameter. This parameter may be specified on one or more jobs in the net,
except the first job. The first completing job that contains DEVRELSE= YES will cause the
dedicated devices to be released. If no such job is encountered, the devices are released when
the net is purged.

How to Code NET Statements

When a job is part of a net, the number of predecessor jobs and the names of all successor
jobs must be indicated on the NET statement. A diagram is a good way to graphically show the
relationship of jobs in a net. Once a net of dependent jobs have been described in a diagram,
the dependencies can be listed in a table and then translated into NET statements. (See the
following three examples.) The following is a guideline for defining dependent job control nets:

1. Draw a diagram of the net, connecting dependent jobs with lines indicating the flow of
job dependencies. Give the net a name (such as EXAMl) to identify the net; this
becomes the NETID parameter value.

2. List the jobname of each job in the net in the order of their dependencies on one
another. Note next to each jobname the number of predecessors to the job, including
predecessors of other job-nets, if applicable. The number of predecessors becomes the
NHOLD parameter value. If early setup scheduling is desired, specify it as RS=count
(RELSCHcT=count) where count specifies setup of a dependent job's resources before
all of its predecessors have completed execution.

3. List the disposition of each successor jobname based on normal or abnormal predecessor
completion.

76 OS/VS2 JCL (VS2 Release 3)

4. List the successor jobnames for each job in the diagram. If there is a successor in a
different net, then list the successor jobname and successor net-id in parentheses. The
successors become the RELEASE parameter values.

5. Construct the necessary NET statements based on the diagram.

One way to verify the net is to execute the IEFBR14 program for each job in the net,
simulating normal and abnormal completions. The general format for each job of the net is:

//jobname JOB
//*NET your specific parameters
//STEP1 EXEC PGM=IEFBR14
/*

In this way, all DJe net functions and definitions can be tested without using actual jobs.

Examples of Dependent Job Control

Instead of coding the full name of the parameters for every job, the following example includes
the short form for each parameter.

Parameter Short Form
NETIO 10
NHOLO HC
RELEASE RL
NORMAL NC
ABNORMAL AB
OPHOLO OH
RELSCHCT RS
NETREL NR

1. A simple net

Given: five jobs, A, B, C, D, and E.

NETIO Jobname Predecessors Successors
EXAMl (NHOLO) (RELEASE)

X
A 0 job C
B 0 job C
C 2 jobs O,E
0 1 none

o E E 1 none

How to code EXAM 1 :

Jobname
A
B
C
o
E

Control
/ /*NET

/ /*NET
/ /*NET
//*NET
/ /*NET

Statement
NETIO - EXAMl,RELEASE - (C)
NETIO - EXAMl,RELEASE - (C)
NETIO - EXAMl,NHOLO - 2,RELEASE - (O,E)
NETIO - EXAM 1 ,NHOLO - 1
NETIO - EXAMl,NHOLO'" 1

If the system scheduled this net of jobs with defined dependencies, each of the five jobs
would have to run consecutively. By using JES3 dependent job control, jobs A and B can run
concurrently, followed by job C, and then jobs D and E can run concurrently.

Routing a Job Through the System (JES3 only) 77

2. Multiple predecessor jobs

Given: six jobs, A, B, C, D, E, and F.

the NETID is EXAM2.

NETID Jobname Predecessors
EXAM2 (NHOLD)

A 0
B 0

C 2

0 2

E

r 3

Successors
(RELEASE)

jobs C,D
jobs C,O,E

job F

job F

job F

none

Disposition

AB = R (retain job)
NC = 0 (decrement job)
AB = R (retain job)
NC = 0 (decrement job)
AB = F (flush job)
NC = 0 (decrement job)
AB = R (retain job)
NC = 0 (decrement job)
AB == R (retain job)
NC = 0 (decrement job)

How to code EXAM2:

Jobname
A
B
C
o
E
F

Control Statement
/ /*NET NETIO = EXAM2, RELEASE = (C,O)

/ /*NET NETIO = EXAM2,RELEASE = (C,O,E)
/ /*NET NETIO = EXAM2,RELEASE = (F),NHOLO = 2
/ /*NET NETIO = EXAM2,RELEASE = (F),NHOLO = 2,ABNORMAL = F
/ /*NET NETIO = EXAM2,RELEASE = (F),NHOLO = 1
/ /*NET NETIO = EXAM2,NHOLO = 3

If either job A or B abnormally terminates, job D is flushed from the system and causes job
F to be flushed. Jobs C and E remain in the system. In this situation, the predecessor should
be corrected and resubmitted to the system. When it completes normally, its successors, C and
E, are made eligible for scheduling.

3. Complex network

Given: two networks, EXAM4 and EXAM3.

EXAM4 contains four jobs, W,X,Y, and Z.

EXAM3 contains ten jobs, A,B,C,D,E,F,G,H,I, and J.

The net to be released (NETREL) for job I is EXAMl, the release jobname is Y.

EXAM4 Jobname Predecessors Successors Disposition
(NHOLD) (RELEASE)

W 0 job X
X 1 job Y AB = R (retain job)

NC = 0 (decrement job)
Y 1 job Z AB = F (flush job)

NC = 0 (decrement job)
Z none AB = F (flush job)

NC = 0 (decrement job)

78 OS/VS2 JCL (VS2 Release 3)

EXAM3 Jobname Predecessors
(NHOLD)

A 0
B 0

C 2

- - - (EXAM4, Y) D

E 2

F

G

H

J

Successors
(RELEASE)

job C
jobs C,D

job E

jobs E,I

jobs F,H

job G

none

none

(EXAMl,Y)
job J
none

How to code EXAM4:

Jobname

w
X
Y
z

Control Statement
(using short form of parameters)
/ /*NET ID = EXAM4,RL = (X)
/ /*NET ID = EXAM4,RL = (Y),HC = 1
/ /*NET ID = EXAM4,RL = (Z),HC = l,AB = F
/ /*NET ID = EXAM4,HC = l,AB = F

How to code EXAM3:

Jobname Control Statements
(using short form of parameters)
/ /*NET ID = EXAM3,RL = (C)

/ /*NET 10 = EXAM3,RL = (C,D)
/ /*NET 10 = EXAM3,RL = (E),HC = 2
/ /*NET ID = EXAM3,RL = (E,I),HC = 1
/ /*NET ID = EXAM3,RL = (F,H),HC = 2,RS = 1
/ /*NET ID = ExAM3,RL = (G),HC = 1
/ /*NET ID = EXAM3,HC = l,NC = F
/ /*NET ID = EXAM3,HC = l,AB = F

Disposition

AB = R (retain job)
NC == D (decrement job)
AB = R (retain job)
NC == D (decrement job)
AB = R (retain job)
NC == D (decrement job)
AB = R (retain job)
NC == D (decrement job)
AB = R (retain job)
NC == D (decrement job)
AB = R (retain job)
NC == F (flush job)
AB = F (flush job)
NC == D (decrement job)
AB = R (retain job)
NC == D (decrement job)
AB = R (retain job)
NC == D (decrement job)

A
B
C
D
E
F
G
H
I
J

/ /*NET 10 = EXAM3,RL = (J),HC = l,NR = (EXAMl,Y)
/ /*NET ID = EXAM3,HC == 1

Network Job Processing

Network job processing (NJP) permits two or more JES3 systems to route jobs from one to the
other using communication lines. Jobs, individually or in groups, can be scheduled for
processing on another system by operator or by JCL. (See OS/VS~ System Programming Library:
Job Management, GC28-0627, for an explanation of job scheduling by JCL using nonstandard
job processing.) The operator specifies what job or classification of jobs are to be scheduled,
where the jobs are to be run, and what functions will be executed. For example, a job might
execute on another system, but return to the original system for output processing. Or perhaps
both execution and output processing will take place at the other system after beginning at the
original system. Another possibility is that only output processing will be handled by the other
system.

Routing a Job Through the System (JES3 only) 79

A group or class of jobs is identified by using the NJPCLASS parameter on the MAIN
statement. This is a convenient method of identifying a group of jobs eligible to run on
another JES3 system. the NJPCLASS parameter has no inherent meaning; it must be defined by
the installation.

When the operator tries to schedule a job for processing on a remote JES3 system, network
job processing will determine whether the job is eligible for processing. The job may not be
eligible if:

• the job is already scheduled for network job processing.
• the job is a member of dependent job control net.
• the function to be processed has already completed.
• the job is currently active (being processed by JES3).

Conditional Execution of Job Steps

Dep~nding on the results of one step of a job, you may not wish to execute subsequent steps
- if a compilation fails, you would not want to waste computing time attempting subsequent
link-editing or execution steps. Specify tests to determine whether to bypass or execute job
steps based on the results from previous steps by coding the COND parameter on the JOB or
EXEC statements.

The results of a job step can be reflected in a return code, a number from 0 to 4095. The
COND parameter can be coded to test the return codes which are issued by the compiler,
assembler, and linkage editor programs. Some return codes are standard for certain programs;
for example, a return code of 8 issued by a compiler or linkage editor indicates that serious
errors were found and execution is likely to fail. In problem programs, assign a number as the
return code to signify a certain condition. For example, if STEPI of a job reads accounts to be'
processed in subsequent job steps, set a return code of 10 if no delinquent accounts are found.
Before STEP3 is executed to process delinquent accounts, test the return code from STEPI; if
the return code from STEPI is 10 - there are no delinquent accounts - skip STEP3. Specify
the test to check the return code from-STEPI by coding the COND parameter.

You can also instruct the system to execute a step even if a previous step has abnormally
terminated or only if a previous step has abnormally terminated by coding EVEN or ONLY in
the COND parameter on a EXEC statement. For example, STEPI of a job updates records in a
data set. If STEP 1 abnormally terminates, you want to execute STEP2, which will print the data
set. Specify that STEP2 should be executed only if STEPI abnormally terminates by coding
ONLY in the COND parameter on the EXEC statement for STEP2.

Specifying Return Code Tests

In the COND parameter, specify tests to determine if the system should bypass a job step. If
the system determines that a comparison is true, the job step is skipped (if COND was coded
on the EXEC statement) or all remaining job steps are skipped (if COND was c,oded on the JOB
statement). A bypassed step has a return code of zero (0).

For example, COND=«(tO,GT),(20,LT», asks "Is 10 greater than the return code or is 20 less
than the return code?" If ~he return code is 12, neither test is satisfied: no job step is skipped.
All the tests specified must be false if processing is to continue without skipping any job steps.
If the return code is 25, the first test is still false, but the second test is satisfied: 20 is less
than 25. The system will bypass one job step or all remaining job steps, depending on whether
the COND parameter was coded on the EXEC statement or on the JOB statement.

80 OS/VS2 JCL (VS2 Release 3)

Passing Information to the Job in Execution
Some information required by a program may vary from application to application, such as
module attributes and options required by the compiler, assembler, and linkage editor
programs. To provide this information to the program at the time it is executed, code the
P ARM parameter on the EXEC statement. The program must include instructions that can
retrieve this information. (The exact location and format of the information passed to a
processing program are included in OS/VS2 Supervisor Services and Macro Instructions,
GC28-0683.)

The P ARM parameter can also be coded on the EXEC statement of a cataloged or in-stream
procedure step. This establishes fields in which information is passed to the job. Override, add,
or nullify parameters in a procedure or define symbolic parameters by coding the P ARM
parameter on the EXEC statement of the job calling a cataloged or in-stream procedure. For
more information on the PARM parameter for these features, see "Cataloged and In-stream
Procedures. "

Identifying the Program to be Executed

All executable programs are members of partitioned data sets (libraries). The library that
contains the program can be a temporary library or a private library. In order to execute a
program contained in these libraries, code the PGM parameter as the first parameter on the
EXEC statement.

1remmporary Library

To assemble, link edit, and then execute in a single job, make the output of the linkage editor
a member of a partitioned data set. This is accomplished by creating a temporary library; that
is, a partitioned data set used to store a program until it is executed in a subsequent job step.
When the program is required, refer back to the DD statement that defines the temporary
library and the member by coding PGM= * . stepname.ddname or
PGM= * .stepname. procstepname.ddname. Also request use of a program that is a member of a
temporary library by coding PGM=program name and including a DD statement named JOBLIB
or STEPLIB that defines the temporary library. To keep this program available for use by other
jobs, make the program a member of a private library. For more information on temporary
libraries, refer to the section, "Creating and Using Private and Temporary Libraries."

Private Library

To use a program that is a member of a private library, code PGM=program name and include
a DD statement named JOBLIB or STEPLIB that defines the private library. The system
automatically looks in the private library for a member with the corresponding name.

A program that resides in a private library can also be executed by coding
PGM=*.stepname.ddname or PGM=*.stepname.procstepname.ddname. This can be done only
when the named DD statement defines the program as a member of a private library. For more
information on private libraries refer to the section, "Creating and Using Private and
Temporary Libraries."

The IEFBR14 Program

This program is used to check the syntax of the control statements, allocate space, or satisfy
requests for disposition processing prior to execution of a job. To do this, substitute IEFBR14
for the program name on the EXEC statement. When this program is called, it gives a return
code of 0 and returns to the calling routine. For an example of the IEFBR14 program, see the
the example in the topic "How to Code NET Statement" in this section.

Routing a Job Through the System (JES3 only) 81

Testing JCL Without Execution

There are two methods for testing JCL other than IEFBR14. The TYPRUN=SCAN parameter on
the JOB statement and the PGM=JCLTEST on the EXEC statement both cause the system to
scan the JCL for syntax errors without processing the job or setting up devices. Both
parameters will check for invalid keywords, illegal characters, parentheses errors, and excessive
parameters.

Selecting a Cataloged Procedure Library

You can choose which of t~e installation specified cataloged procedure libraries will be used
for resolving catalog procedure references in the JCL by coding the PROC parameter on the
MAIN statement. If this parameter is omitted, the installation standard library, denoted by ST,

will be used.

If you want to update a cataloged procedure library, whether or not that library was used to
resolve the job's library references, code the UPDATE parameter on the MAIN statement
pointing to the library to be updated by that job. JES3 will effectively disable the use of that
library, placing all jobs that request it into a held state until the updating job terminates. This
prevents the use of the library while the update occurs.

Reading Column Binary Input

Jobs that require input from column binary cards can receive this input directly from the DD

statement if JES3 is used by coding the MODE=C DCB subparameter on the DD * or DD DATA
statement that precedes the column binary card input and by notifying the operator to read
this job into a card reader for which he has specified .. mode C processing.

The DATASET statement can also be used to read column binary input for jobs to be run on
ASP main processors only and for installation-written routines executed as part of nonstandard
jobs. This is more fully discussed in OS/VS2 System Programming Library: Job Management,
GC28-0627.

Restarting a Job
When a job step abnomlally terminates, you may have to resubmit the job for execution; this
means delay and lost computer time. The operating system provides restart facilities to reduce
the effects of abnormal termination.

There are three types of restarts:

• Step restart, from the beginning of a job step.
• Checkpoint restart, from a checkpoint within a job step. Establish checkpoints in a job step

by coding the CHKPT macro instruction for each checkpoint. The CHKPT macro is described.
in OS/VS Data Management Macro Instructions, GC26-3793.} See also the DD CHKPT
parameter. It specifies that checkpoints are to be taken at end of volume for the data set
defined by the DO statement on which it is coded.

• System failure restart, by specifying the FAILURE=RESTART parameter on the JES3 MAIN
statement. In the event the job cannot complete executing because of system failure, JES3
will automatically reschedule the job from the beginning. Other options on the FAILURE

parameter are CANCEL, HOLD, and PRINT. All of the values are described on the MAIN
FAILURE parameter in the section, "Coding JES3 Statements."

Whether using step restart or checkpoint restart, the restart facility can be automatic or
deferred.

82 OS/VS2 JCL (VS2 Release 3)

Automatic restart: To use automatic restart, code the RD (restart definition) parameter on the
JOB or EXEC statement. JES3 creates a job journal for any job specifying the RD parameter. (A
job journal is established to hold restart information for each program in execution.) When a
system failure occurs or a job step abnormally terminates and you have a job journal, the
restart facility allows automatic restart when RD=R is coded on the JOB or EXEC statements. If
checkpoints are taken, you can automatically restart at the last checkpoint regardless of
whether or not the RD parameter is coded. When a job step abnormally terminates or a system
failure occurs while the job is in execution and the installation has not implemented job
journaling, these jobs are ineligible for automatic restart.

Deferred restart: To use deferred restart, code the RESTART parameter on the JOB statement.
This required parameter specifies a job step or a step of a cataloged procedure and can specify
a checkpoint identifier if you are using deferred checkpoint restart. The effect of the parameter
is simply to restart the job at the beginning of the specified step or checkpoint. The SYSCHK

DD statement is required when a job is being submitted for deferred checkpoint restart and
must be placed immediately after a JOBLIB DD statement.

Jobs running on ASP Main Processors: The MAIN JOB STEP parameter specifies the job step
checkpoint option for jobs on ASP main processors only. The checkpoint option will not be
taken if JOBSTEP=NOCHKPT is coded or if nothing is coded; the checkpoint will be taken at
the end of each job step if JOBSTEP=CHKPT is coded. If a checkpoint is requested, it means
that the ASP user can see the output up through the last completely executed step if the system
crashes and the job is not restarted. Otherwise, there is no job produced output. The MAIN

JOB STEP parameter is ignored in MVS; the job step checkpoint feature is standard.

Refer to OS/VS Checkpoint/Restart, GC26-3784, for a complete description of planning for
and using the checkpoint restart facility.

Example of Routine a Job Through the System (JES3 only)

IIEXAM JOB
II*MAIN SYSTEM=(MAIN1,MAIN2),SETUP=(DD1,DD2),
II*FAILURE=RESTART
IISTEP1 EXEC
IIDD1 DD
II
IISTEP2
IIDD2

EXEC
DD

PGM=IEFBR14
UNIT=3330,VOL=SER=VOL1,DISP=OLD,
DSN=JES3.EXAM
PGM=IEFBR14
UNIT=3330,SPACE=(TRK,1),VOL=SER=VOL2

1. This job is assigned to an installation defined job class default.

2. The selection for processing is based on the priority assigned to the default class.

3. The MAIN statement specifies that this job can be processed on either MAIN1 or MAIN2.
The job requires that the volumes associated with the DDt and DD2 statements must be
mounted.

Routing a Job Through the System (JES3 only) 83

84 OS/VS2 JCL (VS2 Release 3)

Obtaining Output (JES3 only)

You can request output by coding JCL and JES3 control statements. By coding JCL statements,
you can request output data sets, listings of JCL statements, system messages, and abnormal
termination dumps. By coding JCL and JES3 statements, you can request special forms
processing, routing of output to specific devices, and multiple original printing by data sets
within a job. The JES3 statements have the same options as JCL with some additional features
such as the FORMAT statement forms overflow, forms control, and multiple data set
characteristics.

This section includes five topics:

• Requesting Listings of JCL Statements and System Messages
• Requesting an Abnormal Termination Dump
• Writing Output Data Sets
• Controlling Output Destination
• Remote Job Processing

Requesting Listings of JCL Statements and System Messages

Th.e system produces messages about a job concerning allocation of units and volumes,
disposition of data sets, and termination of job steps and the job. Request that these messages
and/ or the JCL statements from the job and from cataloged procedures called by the job be
included on an output listing.

By coding the MSGLEVEL parameter on the JOB statement, you inform the system of what
statements and messages you want included on the output listing. (The notation used on the
output listing to identify cataloged and in-stream procedure statements is described in the
chapter "Using Cataloged and In-stream Procedures.")

By coding the MSGCLASS parameter on the JOB statement, you assign messages and JCL

statements to an output class. A default is assigned if MSGCLASS is not coded.

The JES3 FORMAT statement allows you to specify the ddname of the DD statement that
defines the output data set characteristics you want to specify. If you want system messages,
code DDNAME=SYSMSG; if you want the jclfile including statement messages, code
DDNAME=JESJCL; or if you want JES3 and system operator messages (job log), code
DDNAME=JESMSG.

Requesting an Abnormal Termination Dump

To obtain a dump in the event of abnormal termination of a job step, code a DD statement
defining a dump data set. The name of the DD statement must be either SYSABEND or
SYSUDUMP. If both are present, the last occurance will be used.

The SYSABEND or SYSUDUMP DD statements can provide a dump containing the processing
program's virtual storage area, the system nucleus, the entire system queue area, all local
system queue areas, and any active link pack area (LPA) modules for the failing task. If the
generalized trace facility (GTF) is active in the system and performing an internal trace, you
receive GTF trace records. If GTF is active but performing an external trace, no trace
information is tncluded in the dump. Determine what dump features are wanted in addition to
the installation defaults and define them in a dump option list. How to do this is explained in
the OS/VS2 System Programming Library: Supervisor, GC28-0628.

Obtaining Output (JES3 only) 85

Descriptions of dumps and information on reading dumps are included in the OS/VS2 System
Programming Library: Debugging Handbook, GC28-0632.

To have the dump printed, either assign the dump to an output class in the SYSOUT

parameter on the DD statement or code the UNIT parameter and specify the printer you want.
To store the dump, define the data set as you would any other data set, code the DSNAME,

DISP, UNIT, and VOLUME parameters. If the data set will go to a direct access device, code the
SPACE parameter.

If a private data set is specified and more than one dump is possible, the data set should be
specified with a disposition of MOD as it will be closed after each dump.

Writing Output Data Sets

There are two ways to write output data sets:

• Assign the data set to an output class.
• Specify the device on which the output should be written.

When you assign a data set to an output class, it is handled by JES3. The data set is first
written to the JES3 spool device and then written to the final output device by either JES3 or
an external writer. When you specify the device on the UNIT parameter, if the device is
available, it is exclusively assigned to your job and up-der the control of your program.

Assigning Output Data Sets to Output Classes

Output classes include output with simila,' characteristics that ate written to the same device.
There are 36 possible output classes that can be coded on either the SYSOUT or MSGCLASS

parameters. The letter and number names have no inherent meaning; - each installation
defines its own output classes and can assign special processing characteristics for each class.
For example, output class W might contain low priority output; class X might contain output
to be printed on a special form (eliminating the need to request the form directly); class J
might be reserved for high-volume output. If you want the output data set and messages from
the job to be printed on the same output listing, specify SYSOUT=* or the same output class in
the SYSOUT parameter as specified for messages in the MSGCLASS parameter.

The installation can designate certain SYSOUT data sets as reserved. Reserved classes can
cause the data sets to be held; that is, not sent to JES3 output processing. If the output class
specified for the MSGCLASS parameter is not designated as a reserved class, it will not be held
and none of the job's data sets assigned to reserved classes will be held. Data sets can be
explicitly held by coding either the HOLD=YES JCL parameter or the HOLD parameter on the
ALLOCATE and FREE TSO commands. (Refer to OS/VS2 TSO Command Language Reference,
GC28-0646 for information on the TSO commands.) Jobs are released from the hold state for
the entire job by the operator or by the time-sharing user, with the OUTPUT TSO command. By
using reserved classes, the controlling of the holding or not holding of all desired print data
sets is done by means of the MSGCLASS parameter on the JOB statement.

Specifying the Device

To write an output data set without using JES3 output service, code the UNIT parameter on the
DD statement defining the device on which the data set is written. The system will allocate the
device exclusively to the job if the device is available; no other job can write output to that
device until it is released. Jobs cannot share an output device as they can when the output is
assigned to output classes.

86 OS/VS2 JCL (VS2 Release 3)

Data management routines write the output from the program to the device specified in the
UNIT parameter. Specifying a particular output device in the UNIT parameter generally is not
the most efficient method for obtaining system output.

Processing Output Classes

Using JES3 is an efficient way to write output. JES3 supports the usc of local and remote
printers and punches as devices on which output classes are written. An external writer
supports tape and direct access devices and user-written writer routines.

Output will be printed on the same listing if such parameters as CLASS, FORMS, FCB, UCS,
and DEST have similar characteristics for all data sets and a user-written writer is not specified.

For an external writer, the operator will determine what data sets will be selected. When an
external writer is specified, an IBM-supplied writer or a user-written writer will receive the
output. The external writer must be started by the operator to have the data written to an
output device. If you want to know more about how to write an external writer routine, refer
to OS/VS2 System Programming Library: Job Management, GC28-0627.

Output data sets to be written to a 3540 diskette must be assigned to an output class that is
processed by the diskette writer (an external writer) as described in OS/VS2 IBM 3540
Programmer's Reference, GC24-5111. For the diskette writer to receive data sets, the JES3
initialization deck must specify the SYSOUT classes to be reserved for diskette output. To write
data sets on a diskette, the operator must start the diskette writer to a 3540 device.

Delaying the Writing of an Output Data Set

Data sets can be delayed from normal printing or delayed for inspection from a time sharing
terminal prior to actually printing on that terminal by specifying reserved classes (as discussed
next) and by coding the HOLD parameter. For example, the installation can direct -the delayed
printing of a very large data set to prevent monopolizing an output device until smaller data
sets are written. If a data set requires special forms that are not immediately available, it can
be held until the operator supplies those forms. When IIOLD=YES is specified on the DO
statement, the data set is placed on a hold queue until the operator releases it. Notify the
operator (using the OPERATOR statement for JES3) when that data set is ready for processing
because no message will be sent to the operator. The data set must be released by the operator
or time-sharing user for printing.

Suppressing the Writing of an Output Data Set

Whether writing an output data set by coding the SYSOUT parameter or the UNIT parameter,
you can suppress the writing of the data set by defining it as a dummy data set. This is useful
when testing a program and you do not want data sets printed until you are sure they will
contain meaningful output. Suppressing the writing of a data set saves processing time.

If you are routing an output data set by coding the SYSOUT parameter, code the DUMMY
parameter to define the data set as a dummy data set. When DUMMY is coded, the SYSOUT
parameter is ignored and the data set is not written.

You can suppress the writing of an output data set by specifying particular
installation-defined class defined to delete the data set before it is printed. This technique is
used by the installation to suppress the output of started tasks such as START and MOUNT
commands. You can also suppress the writing of an output data set by specifying COPIES=O on
the FORMAT PR or PU (print or punch) statements.

Obtaining Output (JES3 only) 87

If the device on which the data set will be written is specified in the UNIT parameter, you
can assign the data set a dummy status by coding DUMMY or by assigning the data set name
NULLFILE. All parameters other than DUMMY or DSNAME=NULLFILE and DCB are ignored;
no units are assigned to the data set. When the program requests that the data set be written,
the request is recognized but no data is transmitted. The facility is available by use of the basic
sequential access method (BSAM) or queued sequential access method (QSAM) in a request to
write a dummy data set. If any other access method is used, the job is terminated.

Limiting Output Records

The number of logical records in the output data set can be limited by specifying a maximum
number of records through the use of the OUTLIM parameter on the DD statement. For
example, a program is printing and goes into an endless loop. You can anticipate this problem
and only have a maximum number of records printed before having the system discontinue the
output processing.

To limit the printed or punched output of a job, specify the estimated number of lines of
output or the estimated number of cards associated with your job's output by coding the LINES

and CARDS parameters on the MAIN statement. This information is used by JES3 to monitor
output and take whatever action is specified if you exceed the estimates. These actions request
that the operator receive a warning (the WARNING subparameter), that the job is canceled
(the CANCEL subparameter), or that the job is canceled with a storage dump (the DUMP

subparameter). (Initialization parameter values are used if you omit the estimates.)

Reqllesting Multiple Copies of an Output Data Set

You can control the number of hard copies produced by the SYSOUT data sets. As many as
255 copies of an output data set are obtained by coding the COPIES parameter on the SYSOUT

DD statement defining the data set or on the JES3 FORMAT PR control statement.

Requesting Forms and Print Control

When requesting that an output data set be written, you can give JES3 special instructions on
how to write the data set. You can request:

• A special output form.
• A special character set, when output is being printed by a 3211 or 1403 printer with the

universal character set.
• A specific image, which controls how many lines per inch are printed and the length of the

form, when the data set is written to a 3211 printer.
• A specific carriage control tape, when the data set is written to a 1403 printer.
• A test for printer overflow and spacing.
• Interpretation of punch output on the 3525.

Requesting a Special Output Form

Special forms are requested for output data set printing by including the form name in the
SYSOUT parameter on the ~D statement defining the data set or on the FORMAT control
statement. For example, assign a data set to an output class to be routed to a printer and
specify the data set be printed on a special form. (For example, code SYSOUT=(A"FMS2).) JES3

and the external writer insure that the proper form is mounted.

88 OS/VS2 JCL (VS2 Release 3)

Requesting a Special Character Set

Universal character set (UCs) features are requested by coding the ucs parameter on a DD

statement defining an output or SYSOUT data set or by coding the TRAIN parameter on the
FORMAT PR control statement for SYSOUT data sets. You can request UCS features for
different sets of characters to be printed for various applications.

To request a special character set for a 3211 or 1403 printer, specify the code identifying
the character set in the ucs parameter or the FORMAT statement. The codes for the IBM

standard special character sets are in Figure 12.

1403 3211 Characteristics

AN All Arrangement A, standard EBCDIC character set, 48 characters
HN Hll Arrangement H, EBCDIC character set for FORTRAN and COBOL, 48 characters
ON GIl ASClI character set
PCAN Preferred alphameric character set, arrangement A
PCHN Preferred alphameric character set, arrangement H
PN Pll PL/l alphameric character set
QN PL/l preferred alphameric character set for scientific applications
QNC PL/l preferred alphameric character set for commercial applications
RN Preferred character set for commercial applications of FORTRAN and COBOL
SN Preferred character set for text printing
TN Tll Character set for text printing, 120 characters
XN High-speed alphameric character set for 1403, Model 2
YN High-speed preferred alphameric character set for 1403, Model 3 or Nt

Figure 12. Special Character Sets for the 1403 and 3211 Printers (JES3)

Note: Where two values exist (for the 1403 or 3211 printers), either can be coded and JES3

will select the set corresponding to the device onto which the data set is printed.

Not all of these character sets may be available at your installation. In addition, the
installation can design character sets to meet special needs and assign a unique code to them.
See the system programming staff for a complete list of available character sets for the
installation.

Requesting a Specific Image

Specific images (for example, the number of lines per page or number of characters per line)
for a 3211 printer are requested by coding an image identifier in the FCB parameter in JCL or
by coding the CARRIAGE parameter on the FORMAT PR control statement. The FCB parameter
can also specify a specific carriage control tape for the 1403 printer for JES3 output processing
only (it is ignored by the external writer).

IBM provides two standard FCB images, STDI and STD2. STDI specifies that six lines per
inch are to be printed on an 11 inch form. STD2 specifies that eight lines per inch are to be
printed on ,an 8.S inch form. (Do not specify STD1 and STD2 for JES3 processing unless
instructed by your installation.) Additional FCB images can be specified by the installation.

Requesting Forms Overflow and Printer Spacing

You can prevent the printing of a data set across the folds in the forms by coding the OVFL

parameter on the JES3 FORMAT PR statement. An example of this is having many SYSMSG data
sets that have been printed one after another.

Obtaining Output (JES3 only) 89

The FORMAT CONTROL parameter specifies the type of forms control used. You can force
single or double spacing or indicate that the carriage control character is the first character of
each logical record in the data set. You might force single spacing, for example, when testing
the first character of each logical record to see if all the characters indicate the spacing
required on an actual run. By coding the PROGRAM parameter, you are specifying that you
want to use the DCB RECFM value. OVFL should not be specified when PROGRAM is used.

Requesting Punch Output Interpretation on a 3525

Punched output mayor may not be interpreted depending on the installation-defined standard
for the SYSOUT class. You can specify punched output to be interpreted by coding the
INT = YES parameter on the JES3 FORMAT PR 1itatement. If you omit the device name that
specifies a 35251, JES3 attempts to find one for the output. If you specify a non-interpreting
punch device, output is punched on it but not interpreted.

Cards punched on a 3525 card punch from output spooled by JES3 will be interpreted if you
code FUNC=I as a DCB subparameter on the SYSOUT card and if the spooled output is
processed by a JES3 writer rather than the external writer. The FUNC=I subparameter will be
ignored if the spooled output is processed by the JES3 writer onto a card punch other than the
3525. You should check with the installation to determine if a special output class has been set
aside for 3525 output. Card interpretation by the external writer is an operator specified
function. Output to be interpreted should be placed in a class designated by the installation as
a punch with interpretation class.

Controlling Output Destination
JES3 allows you to submit jobs to a central computing center from a work station and to route
output (submitted anywhere) to work stations.

When submitting a job from a local CPU or a work station, the output is returned to the
place where it is submitted unless you code ORG or you specifically route the output; simply
assign output data sets to an output class (with the SYSOUT parameter) and messages. from the
job to an output class (with the MSGCLASS parameter). JES3 at remote stations offers most of
the same options for writing data sets that are requested when submitting the job at the central
computing center. You can request:

• That a data set be held until the operator requests that it be printed.
• That a special output form be used by specifying a form name in the SYSOUT parameter.
• That multiple copies of the data set be used.

Whether at a remote station or at the central computing center, you can also request that a
data set be routed to another destination. To route an output data set to another destination,
code the identification of that destination in the DEST parameter on the DD statement defining
the data set, code the MAIN ORG statement, or code the FORMAT PR or PU DEST parameters.
Work stations are identified by a destination identification that has been established by the
system programmer. The DEST parameter on the DD statement and the DEST parameter on the
FORMAT PR and PU statements route individual data sets to a remote destination (work
station), a local destination (central computing center), or a specific local device. For more
information on TSO support on ASP main processors, see the next section.

TSO on an ASP Main Processor

TSO users on an ASP main processor who want to use special FORMAT AC options or retrieve
data from other than an AC class and users who want to route data sets to TSO users on an
ASP main processor must code the FORMAT AC statement. This statement defines output to be
accessed, output destination, and other parameters concerning output handling. If the data set
is processed at any time by the ASP main processor, regardless of where the job is processed,
you must code the FORMAT AC statement.

90 OS/VS2 JCL (VS2 Release 3)

Remote Job Processing

Jobs can be submitted to JES3 for processing from remote binary synchronous work stations
using remote job processing (RJP). Any job submitted from a remote work station will, by
default, have its output (print and punch) returned to the originating work station unless JES3

has been instructed to do otherwise using FORMAT or MAIN ORG statements. The remote user
has almost all the capabilities of the local JES3 user with the restriction that column binary
input and output can not be used. In addition, you can not uniquely specify printer overflow
specifications.

Routing output to other destinations is also possible using the DEST parameter on the
FORMAT statement and the DEST JCL parameter. Refer to the previous section for more
information.

Example of Obtaining Output (JES3 only)

This example shows the use of JES3 and JCL statements that can be used to obtain output.

IIOUTJOB JOB BAKER,PERFORM~100,MSGCLASS~J
11* FORMAT PR,DDNAME=,COPIES~2,FORMS~GRN1
II * FORMAT PR,DDNAME~DD3,DEST=PRINTER8,CARRIAGE=STD3,
II*FORMS~2PRT,TRAIN=TN
IISTEP1 EXEC PGM~TESTSYSO
IIDD1 DD DSN~DATA,UNIT=2314,VOL=SER=SCHLIB,
II DISP=(OLD,KEEP),SPACE=(TRK,(5,2))
IIDD2 DD DSN=&TEMP,UNIT=2314,DISP=(NEW,DELETE),
II SPACE=(TRK,(10,5)
IIDD3 DD SYSOUT=(A)
IIDD4 DD SYSOUT~(A"GRPH)
IIDD5 DD SYSOUT=L

1. The job will run in performance group 100; the meaning of 100 is defined by the
installation. All system messages are to be written to output class J.

2. The first FORMAT statement indicates that:

a. All print data sets (according to class) with no FORMAT statements will be printed
according to the parameters on this statement unless the output class defines specific
processing characteristics (DDNAME is coded without a name).

b. Two copies are printed.
c. Forms name GRNI and two copies are to be used by all data sets unless a specific

form or number of copies is defined on a DD statement or by class by the installation.

3. The second FORMAT statement indicates that:

a. The destination for the output is a printer that has an installation-defined name of
PRINTER8.

b. If PRINTER8 has the forms control buffer feature, STD3 must be the name of a
member of SYS1.IMAGELIB. STD3 defines the special forms control buffer image or
carriage tape to be used for processing the job.

c. Forms name 2PRT is the name of the forms for DD3.
d. TN means text printing on a 1403 printer.

Obtaining Output (JES3 only) 91

92 OS/VS2 JCL (VS2 Release 3)

Special Data Sets

Data sets can be defined to satisfy a special purpose. Such data sets are usually defined with a
special ddname, a specific data set name, or a specific parameter.

This section includes seven topics:

• Creating and Using Private and Temporary Libraries
• Defining a Dummy Data Set
• Using Virtual Input/Output (VIO) for Temporary Data Sets
• Entering Data Through the Input Stream
• VSAM Data Sets
• Creating and Retrieving Indexed Sequential Data Sets
• Creating and Retrieving Generation Data Groups

Creating and Using Private and Temporary Libraries
A library is simply a partitioned data set - a data set in direct access storage that is divided
into partitions, called members, each of which can contain a program or part of a program.
Each partitioned data set contains a directory (or index) that the control program can use to
locate a program in the library. All programs that can be executed must exist in a library; that
is, they must be members of a partitioned data set.

A private library is a partitioned data set that contains user-written programs. You inform
the system that a program exists in a private library by coding a DD statement defining that
library. You can define a private library to be used throughout the job by coding a DD
statement with the ddname JOBLIB, or define a library to be used in a specific step by coding a
DD statement with the ddname STEPLIB.

A temporary library is a partitioned data set created in the job to store a program, as a
member of the partitioned data set, until it is executed in a following step. For example, if in
the job you want to assemble, linkage edit, and then execute a program, make the output of
the linkage editor a member of a library. Any library that created and deleted in the same job
is a temporary library.

Code the PGM parameter as the first parameter on the EXEC statement to execute a
program contained in a library. If the program exists in a private library, code PGM=program
name and either a JOBLIB or STEPLIB DD statement. If the program exists in a temporary
library, code either PGM=* . stepname.ddname or PGM=* .stepname.procstepname.ddname.
Ddname is a temporary library created in and pointed to by stepname and procstepname. They
identify the job step or job step and procedure step defining the library. If you define a private
library, the system looks in that library for the program you want executed.

This chapter describes how to code JCL statements to create or retrieve private and
temporary libraries. Complete information on creating a partitioned data set, adding members
to and deleting members from a partitioned data set, is included in OS/VS Data Management
Services Guide, GC26-3783.

Creating a Private Library

Use the JOBLIB DD statement to create a private library. The JOBLIB DD statement must
appear immediately after the JOB statement - do not use the ddname JOBLIB unless you are
defining a private library. The library defined with a JOBLIB DD statement is automatically
available to every step in the job. (The STEPLIB DD statement is included among the DD
statements in a step and is available only to that step unless you pass the library or redefine it
in subsequent steps; since the library on a JOB LIB DD statement is available to every step, it is
easier to create a library with the JOBLIB DD statement.)

Special Data Sets 93

When creating the library on the JOBLIB DD statement, you are creating a partitioned data
set. Steps in the job must add members to the library before those members (programs) can be
used by subsequent steps.

On the JOBLIB DD statement, assign the library a name in the DSNAME parameter, give unit
and volume information in the UNIT and VOLUME parameters (a partitioned data set must be
contained on one direct access volume; if, however, you make a nonspecific volume request,
you need not code the VOLUME parameter), request space for the entire library in the SPACE
parameter, and assign a data set status and disposition in the DISP parameter. Code NEW as
the data set status and either CA TLG or PASS as the data set disposition. When specifying
CA TLG, the library is cataloged, available throughout the job, and kept at the end of the job.
When specifying PASS, the library is available throughout the job, but is deleted at job
termination. (If you do not code a disposition, or code a disposition other than CA TLG or
PASS, the system assumes PASS.) You must also code the DCB parameter if complete data
control block information is not included in the data set label.

Adding Members to a Private Library

Add members to the library in job steps within the job by coding a DD statement that defines
the library and names the member to be added to the library. In the DSNAME parameter,
follow the library name with the name of the program being added to the library, for example,
DSNAME=LIBRARY(PROGRAM). Do not code the SPACE parameter; requested space for the
entire library on the JOBLIB DD statement. In the DISP paramder, specify MOD as the data set
status; the partitioned data set already exists since you created it in the JOBLIB statement, and
you are lengthening it with a new member. If you cataloged the library in the JOBLIB DD
statement, that is, coded DISP=(NEW,CATLG), do not respecify CATLG when adding a
member: you need not code a disposition at all. For a cataloged library, you do not have to
specify unit and volume information, except in one instance: if you are adding a member to
the library in the first step of the job, supply unit and volume information; the library is not
cataloged until the first step completes the execution. Refer to the JOBLIB DD statement for
unit and volume information by coding VOL=REF=*.JOBLIB.

In the following example, JOBLIB DD statement creates a library named GROUPLIB;STEPI
adds the program RATE to the library; STEP2 calls the program RATE:

IIEG
IIJOBLIB
II
II
IISTEPl
IIADDPGMD
II
IISTEP2

JOB
DD

EXEC
DD

EXEC

MSGLEVEL=l
DSNAME=GROUPLIB,DISP=(NEW,CATLG),
UNIT=2314,VOL=SER=727104,
SPACE=(CYL,(50,3,4))
PGM=FIND
DSNAME=GROUPLIB(RATE),DISP=OLD,
VOL=REF=*.JOBLIB
PGM=RATE

In STEPl, the system looks for the program named FIND in SYSl.LlNKLIB - the private
library created on the JOBLIB DD statement does not actually exist until a member is added to
it. In STEP2, the system looks for the program named RATE first in the private library.

Retrieving an Existing Private Library

If you are retrieving several programs from one library (several steps in the job will be using
the library), use the JOBLIB DD statement to define the library: the library will be available in
every step of the job for which you do not code a STEPLIB DD statement. The JOBLIB DD
statement must appear immediately after the JOB statement. To make a library available in a
single step, define the library on a STEPLIB DD statement. The STEPLIB DD statement is
included with the DD statements for a step (in no specific order) and is available only to that
step, unless you pass the library and retrieve it in a subsequent step. Use the ddnames JOBLIB
and STEPLIB only when defining private libraries.

94 OS/VS2 JCL (VS2 Release 3)

The system will search for a program in the private library you define. If both JOBUB and
STEPUB DD statements appear in a job, the STEPLIB definition has precedence, that is, the
private library defined by the JOBUB DD statement is not searched for any step that contains
the STEPUB definition. If you want JOBUB definition ignored but the step does not require use
of another private library, define a system library on the STEPUB DD statement:

IlsTEPLIB DO DSNAME=SYS1.LINKLIB,DISP=SHR

Retrieve a private library. as 'you would any partitioned data set: if the library is cataloged,
or in the case of a STEPUB definition, passed from a previous step, you need not specify unit
and volume information; otherwise, you must code the UNIT and VOLUME parameters.

For both cataloged and uncataloged libraries, code: the DSNAME parameter, specifying the
name of the library; the DCB parameter, if complete data control block information is not
included in the data set label; and the DISP parameter, specifying data set status and
disposition. Normally, you will want to specify SHR as the data set status: SHR indicates that
the data set is old, but also allows other jobs to simultaneously use the library. All references
to the library in the job must specify SHR if the data set is to be shared; do not code SHR,
however, if you will be adding members to the library in the job. (A more thorough discussion
of sharing a.data set is included in the chapter "Insuring Data Set Integrity.") Code PASS as
the data set disposition for a library defined on the JOBUB DD statement: PASS makes the
li~rary available throughout the job. (If you do not code a disposition, the system assumes
PASS.) For a library defined on a STEPUB DD statement, code any valid disposition, depending
on how you want the data set treated after its use in the job step: for example, if the library is
not cataloged, and you want it to be cataloged, code CATLG; if you want the library deleted,
code DELETE.

The following job includes both JOBUB DD and STEPUB DD statements:

IICAMILLE
IIJOBLIB
IISTEP1
IisTEP2
IlsTEPLIB
II

JOB
DO
EXEC
EXEC
DO

MSGLEVEL=1
DSNAME=LIB5.GRP4,DISP=SHR
PGM=FIND
PGM=GATHER
DSNAME=ACCOUNTS,DISP=(SHR,KEEP),
UNIT=2314,VOL=SER=727104

In STEPl, the system searches the library named LIB5.GRP4, defined on the JOBUB DD

statement, for the program named FIND. In STEP2, the system searches the library named
ACCOUNTS, defined on the STEPLIB DD statement, for the program named GATHER.

Add a program to an existing library by coding a DD statement in a job step that defines
the library and names the program to be added - see "Adding Members to a Private Library"
for details on coding this DD statement. The new member must be added to the library before
it can be executed (the step that adds the program to the library must precede the step that
calls the program). Do not code SHR as the data set's status when modifying the library.

Concatenating Private Libraries

If the job uses programs contained in several libraries, you can concatenate these libraries on
one JOBUB DD statement or one STEPUB DD statement; all the libraries concatenated must be
existing libraries. Omit the ddname from all the DO statements defining the libraries, except
the first:

IIJOBLIB
II
II
II

DO
DD

DO

DSNAME=D58.LIB12,DISP=(SHR,PASS)
DSNAME=D90.BROWN,DISP=(SHR,PASS),
UNIT=3330,VOL=SER=411731
DSNAME=A03.EDUC,DISP=(SHR,PASS)

Special Data Sets 95

This entire group must appear immediately after the JOB statement. When concatenating
libraries using STEPUB as the ddname, the entire group appears as part of the DD statements
for the step.

The system will search the libraries for the program in the order in which the DD statements
defining the libraries are coded.

Using Private Catalogs

Use Access Method Services to define private user catalogs, as explained in OS/VS Virtual
Storage Access Method (VSAM) Programmer's Guide, GC26-3838. The primary function of the
special ddnames STEPCA T and JOBCAT is to change the order of the search of the catalogs to
cause the STEPCAT and JOBCAT catalogs to be searched first. JOBCAT applies to each step of a
job in which a STEPCAT has not been specified. To locate a data set, VSAM searches catalogs
in the following order:

1. User catalogs specified in the current job step (STEPCAT), or user catalogs specified in
the current job (JOBCAT), if no user catalogs are specified for the job step.

2. A CVOL or user catalog indicated by the first qualifier of the data set name, if any.
3. The master catalog.

Temporary Libraries

Temporary libraries are libraries that are created and deleted within the job. It is not necessary
to define a temporary library on a JOBUB DD or STEPLIB DD statement: simply code a DD
statement creating a partitioned data set and adding the program to it in the step that produces
the program. You can then retrieve this program in a subsequent step. (You can also use the
VIO facilities to define temporary data sets. For more information, refer to "Defining a VIa
Temporary Data Set" later in this section.)

For example, STEP2 illustrated below calls the program IEWL, which linkage edits object
modules to form a load module that can be executed. Place the results of the linkage edit step
in a library so that a subsequent step can use those results. Since the results are not a program
other jobs will call, it is logical to place the program in a temporary library:

IISTEP2
IIRESULT
II
IisTEP3

EXEC
DD

EXEC

PGM=IEWL
DSNAME=&&PARTDS(PROG),UNIT=2314,
DISP=(NEW,PASS),SPACE=(1024,(50,20,1))
PGM=*.STEP2.RESULT

Call the program in STEP3 by naming the step in which the library was created and the
name of the DD statement that defines the program as a member of a library. If STEP2 had
called a procedure, and the DD statement named RESULT was included in PROCSTEP3 of the
procedure, you would code PGM=*.STEP2.PROCSTEP3.RESULT.

Defining a Dummy Data Set
To save processing time, you might not want a data set to be processed every time the job is
executed. For example, while testing a program, you might want to suppress the writing of an
output data set until you are sure it will contain meaningful output; you might want to skip the
reading of a data set to be used only once a week. When defining a dummy data set',
input/ output operations are bypassed, disposition processing is not performed, and devices and
storage are not allocated to the data set.

Define a dummy data set by:

• Coding the DUMMY parameter on the DD statement .
• Assigning the data set name NULLFILE in the DSNAME parameter on the DD statement.

96 OS/VS2 JCL (VS2 Release 3)

Coding the DUMMY Parameter

Code DUMMY as the first parameter on the DO statement. DUMMY is a positional parameter: it
must precede all keyword parameters on the DD statement.

When the DUMMY parameter is coded, all other parameters on the DD statement, with the
exception of the DCB parameter, are ignored. (The parameters are checked for syntax,
however; if a parameter is coded incorrectly, a JCL error message is issued.) Therefore,
although you can code UNIT, VOLUME, and DISP, no devices or external storage is allocated to
the data set and no disposition processing is performed. The DCB parameter must be coded if
you would code it for normal I/O operations. For example, when an OPEN routine requires a
BLKSIZE specification to obtain buffers and BLKSIZE is not specified in the DCB macro
instruction, you should supply this information in the DCB parameter on the DD statement.

When a DD statement that overrides a procedure DD statement contains the DUMMY

parameter, all of the parameters coded on the procedure DD statement are nullified, except for
the DCB parameter.

If you request unit or volume affinity with a dummy data set, the data set requesting
affinity is assigned a dummy status. (Unit and volume affinity is described in the chapter
"Requesting Units and Volumes.")

When you want the data set to be processed, replace the DD statement containing the
DUMMY parameter with a DD statement containing the parameters required to define thc data
set. When a procedure DD statement contains the DUMMY parameter, nullify it by coding the
DSNAME parameter on the overriding DD statement and assigning a data set name other than
NULLFILE.

Coding DSNAME=NULLFILE

Assigning the name NULLFILE in the DSNAME parameter has thc same effect as coding
DUMMY. The data set is assigned a dummy status; no devices or storage is allocated and no
disposition processing is performed. All parameters except for DSNAME and DeB are ignored.
(Code the DCB parameter when defining a dummy data set if you would code it for normal
I/O operations.)

When you want the data set to be processed, replace the name NULLFILE with another data
set name. (Assigning names to data sets is described under "Specifying the DSNAME
Parameter. ")

Requests to Read or Write a DumnlY Data Set

When the program asks to read a dummy data set, an end-of-data-set exit is taken
immediately. When the program requests that the data set be written, the request is recognized
but no data is transmitted. VSAM supports dummy data sets for both read and write
processing. Otherwise, use the basic sequential access method (BSAM) or queued sequential
access method (QSAM) when requesting to write a dummy data set; if any other access method
is used, the job is terminated.

If you define a data set as a dummy data set, the D1SP parameter, if coded, is ignored and
disposition processing i, not performed ..

Special Data Sets 97

Using Virtual Input/Output (VIO) for Temporary Data Sets
Temporary data sets can be handled by a new facility called virtual I/O (via). (VIO processing
does not apply to nontemporary data sets.) Data sets for which VIO is specified reside within
the paging space; however, to a problem program and the access method, the data sets appear
to reside on some other real direct access storage device.

During system generation, new and/or existing unit names can be defined as eligible for
VIa. These unit names can be coded on a DD statement defining a data set to specify VIO
processing for any system-named temporary data set.

Defining a VIO Temporary Data Set

The DD statement for a via data set is similar to the DD statement for a conventional
temporary data set, with the following exceptions:

• The UNIT keyword in the VIO DD statement must specify a name that has been defined as
eligible for VIO.

• If the SPACE parameter is not coded for virtual 1/0 data sets, the default value is 10
primary and 50 secondary blocks with an average block length of 1000. Up to a one volume
limit, you will always obtain the full amount of space requested (that is, the primary
quantity plus fifteen secondary requests). If the primary quantity for space is larger than the
simulated volume, the job will fail. If the primary request is met, but the secondary request
is greater than one volume, you will get up to one volume. When allocating by average
block length for a VIO data set, the secondary· request is determined by the average block
length specified in the SPACE parameter.

• VIO does not support ISAM or VSAM, so you can not specify ISAM or VSAM indicators in the
DSORG parameter of a DD statement for a VIO data set. The "area" of an ISAM data set
cannot be specified in the DSNAME parameter.

• The DISP parameter must be specified as NEW or PASS when creating a data set. Do not
specify KEEP or CATLG any time for the DISP parameter.

• The DSNAME parameter need not be coded, but if it is, it must only be specified in & name
form.

• Volume serial numbers cannot be specified for VIO. A VIO data set will be allocated to
non-VIO if any of the above exceptions are violated, except the SPACE parameter request.

• The unit count subparameter of the UNIT parameter is ignored.

Backward References to VIO Data Sets

If the referring DD statement (VOL=REF=) defines a temporary data set and 'refers to a DD
statement that defines a VIO data set, the data set is assigned to external pC:,lge storage as a VIO
data set.

If the referring DD statement requests unit affinity but does not define a temporary data set,
the referring statement assumes the unit specification of the DD stateinent to which reference
is made, but not the VIO status.

The following examples assume that the user-assigned group name SYSDA and the device
type name 3330 have been defined at system generation with the UNITNAMEmacro instruction
as group names eligible for VIO processing.

The data sets defined by the following DD statements are assigned to external page storage
for VIO processing:

//DDl DD UNIT=SYSDA

//DD2 DD UNIT=3330

98 OS/VS2 JCL (VS2 Release 3)

IIDD3

IIDD1
IIDD2

IIDDA
IIDDB

DD

DD
DD

DD
DD

DSN=&&A,DISP=(NEW),SPACE=(CYL,(30,10)),UNIT=SYSDA

UNIT=SYSDA
VOL=REF=*.DD1

UNIT=SYSDA
VOL=REF=*.DDA,UNIT=3330

In each of the following examples, the data set defined on the first DD statement is assigned
to external page storage for VIO processing. The second DD statement does not request VIO
because it defines a nontemporary data set.

IIOD1
IIDD2
II

IIDD1
IIDD2
II

DD
DD

DD
DD

UNIT=SYSDA
DSN=NONTEMP,DISP=(,KEEP),
VOL=REF=*.DD1,SPACE=(CYL,10)

UNIT=SYSDA
DSN=TEMP,DISP=(,KEEP),VOL=SER=665431,
SPACE=(CYL,10),UNIT=AFF=DD1

Using Virtuallnput/Olltput (VIO) to Pass Temporary Data Sets Among Job Steps

VIO data sets are passed the same as conventional data sets. For example, the following JCL
statements show the DD statements required by VIO for a job with compilation, linkage editor,
and go steps. The VIO data sets in the various job steps are defined as system-named
temporary data sets. The unit name PAGEDEV has been defined as eligible for VIO with the
UNITNAME macro instruction during system generation.

(1) IIASM EXEC

IIASM.SYSGO DD

(2) IILKED EXEC

IISYSLIN

II
IISYSLMOD

II

(3) I!GO

DD

DD

DD

EXEC

PGM=IFOXOO

DSN=&&OBJ,UNIT=PAGEDEV,DISP=(NEW,PASS)

PGM=IEWL

DSN=&&OBJ,DISP=(OLD,DELETE)

DDNAME=SYSIN

DSN=&&LOAD(A),DISP=(NEW,PASS),UNIT=PAGEDEV,

DCB=DSORG=PO

PGM=*.LKED.SYSLMOD

Entering Data Through the Input Stream
You can enter data through the inp1,1t stream by coding either the * or DATA parameters on
the DD statements. The DD * statement precedes data in an input stream; the DD DATA
statement precedes data in an input stream when the data contains JCL statements. The DLM

parameter allows the use of a delimiter other than / * to terminate data defined in the input
stream. Code this parameter on either the DD * or DD DATA parameters.

You can include several distinct groups of data in the input stream. Two types of data are
for job steps specifying a program name or for job steps that call a cataloged or in-stream
procedure. However, cataloged and in-stream procedures cannot contain DO statements
defining data in the input stream.

Special Data Sets 99

VSAM Data Sets
Virtual Storage Access Method (VSAM) is an access method of OS/VS for use with
direct-access storage. It is different from all other access methods and you need to take certain
precautions when coding VSAM data sets. You can use JCL parameters to identify cataloged
VSAM data sets and to specify options for them. To process a VSAM data set, specify a DD

statement in the form:

//ddname DD DSNAME=dsnamefDISP={OLD}
SHR

The DSNAME parameter specifies the name of the cluster to which the data set you are
processing belongs. The DISP parameter must specify either OLD or SHR because the data set is
cataloged. You cannot use JCL to create VSAM data sets; you must use Access Method
Services commands. VSAM data sets cannot be passed within a job.

Some DD parameters and subparameters have different meanings for VSAM data sets. For
example, VSAM data sets are described by the access-method control block (ACB), not the
DCB. Therefore, the DCB parameter is not applicable to VSAM. Parameters that can be used
without modification are explained in Figure 13; parameters that either should not be used or
should be used only with caution are explained in Figure 14. The STEPCAT and JOBCAT

facilities identify user catalogs. These parameters are similarly used for all data sets and are
discussed in this section under "Creating and Using Private Libraries."

VSAM has one JCL parameter of its own: AMP. The AMP parameter takes effect when the
data set defined by the DD statement is opened. It has subparameters for:

• Overriding operands specified with the ACB, EXLST, or the GENCB macro instructions.
• Supplying operands missing from the ACB or GENCB matro instruction.
• Indicating checkpoint/restart options.
• Indicating options when using ISAM macro instructions to process a key-sequenced data set.
• Indicating that the data set is a VSAM data set when you specify unit and volume

information or DUMMY in a DD statement.
• Indicating that you want VSAM to supply storage dumps of the access,-method control

block(s) that identify this DD statement.

100 OS/VS2 JCL (VS2 Release 3)

Parameter

DDNAME

DISP

DSNAME

DUMMY

I UNIT

VOLUME

Sub parameter Comment

ddname Works as in OS/VS.

SHR Indicates that you are willing to share the data set with other jobs. This
subparameter alone, however, does not guarantee that sharing will take place. See
OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide for a full
description of data-set sharing.

OLD

PASS

dsname

address

type

group

p

unit count

DEFER

PRIVATE

SER

Works as in OS/VS.

Works as in OS/VS if a key-sequenced data set and its index don't reside on unlike
devices.

Works as in OS/VS.

Works as in OS/VS, except that an attempt to read results in an end-of-data
condition, and an attempt to write results in a return code that indicates the write
was successful. If specified, AMP='AMORG' must also be specified.

Must be the address of a valid device for VSAM (2305, 2314, 3340, 3330V, 3330).
If not, OPEN will fail.

Must be a type supported by VSAM. If not, OPEN will fail.

Must be a group supported by VSAM. If not, OPEN will fail.

There must be enough units to mount all of the volumes specified. If sufficient
units are available, UNIT=p can improve performance by avoiding the mounting
and demounting of volumes.

If the number of devices requested is greater than the number of volumes on which
the data set resides, the extra devices are allocated anyway. If a key-sequenced
data set and its index reside on unlike devices, the extra devices are allocated evenly
between the unlike device types. If the number of devices requested is less than the
number of volumes on which the data set resides but greater than the minimum
number required to gain access to the data set, the devices over the minimum are
allocated evenly between unlike device types. If devices beyond the count specified
are in use by another task but are shareable and have mounted on them volumes
containing parts of the data set to be processed, they will also be allocated to this
data set.

Works as in OS/VS.

Works as in OS/VS.

The volume serial number(s) used in the Access Method Services DEFINE command
for the data set must match the volume serial numbers in the VOLUME=SER
specification when the data set is defined. After a VSAM data set is defined, the
volume serial number(s) need not be specified on a DD statement to retrieve or
process the data set. If, however J VOLUME=SER and UNIT=type are specified,
only those volumes specifically named are initially mounted. Other volumes may
be mounted when they're needed if at least one of the units allocated to the data
set is not shareable or the unit count is equal to the total number of volumes
allocated to the data set. A unit is unshareable when unit count is less than the
number of volume serial numbers specified or when DEFER is specified.

Figure 13. DD Parameters Used With VSAM

Special Data Sets 101

Parameter

DATA

DCB

DISP

DSNAME

LABEL

Sub parameter

All

CATLG

DELETE

MOD

KEEP

NEW

UNCATLG

dsname(areaname)

dsname(generation)

dsname(member)

All temporary
dsnames

All backward
DD references
of the form
*.ddname

BLP,NL,NSL

IN

OUT

NOPWREAD

PASSWORD

SL, SUL

Comment

Because there is no way to get VSAM data into the input stream, this
parameter is not applicable to VSAM.

The access-method control block, not the DCB, describes VSAM data sets;
therefore, the DCB parameter is not applicable to VSAM. An access-method
control block is generated by an ACB or GENCB macro, and can be modified
by a MODCB macro.

VSAM data sets are cataloged and uncataloged as a result of an Acess Method
Services command; if CATLG is coded, a message is issued, but the data set
is not cataloged.

VSAM data sets are deleted as a result of an Acess Method Services command;
if DELETE is coded, a message is issued, but the data set is not deleted.

For VSAM data sets, MOD is treated as if OLD were specified, except for
processing with an ISAM program, in which case MOD indicates resume load.

Because KEEP is implied for VSAM data sets, it need not be coded.

VSAM data spaces are initially allocated as a result of the Access Method
Services DEFINE command. If NEW is specified, OS/VS also allocates space,
and it is never used by VSAM. Moreover, an Access Method Services request
for space may fail if the DISP=NEW acquisition of space causes too little space
to remain available. .

VSAM data sets are cataloged and uncataloged as a result of Access Method
Services commands; if UNCATLG is coded, a message is issued, but the data
set is not uncataloged.

The name is used; areaname is ignored.

The name is used; generation is ignored.

The name is used; member is ignored.

Because VSAM data sets are built by Access Method Services, which uses the
data-set name supplied in the DEFINE command, temporary names cannot
be used with VSAM.

If the object referred to is a cluster and the data set and index reside on
unlike devices, the results of a backward DD reference are unpredictable.

Because these subparameters have no meaning for direct-access devices, they
do not apply for VSAM data sets, which all reside on direct-access storage.

Because IN is used to override DCB subparameters and the DCa parameter
does not apply toVSAM data sets, IN does not apply.

Because OUT is used to override DCB subparameters and the DCB parameter
does not apply to VSAM data sets, OUT does not apply.

The password-protection bit is set for all VSAM data sets, regardless of the
PASSWORD/NOPWREAD specification in the LABEL parameter.

The password-protection bit is set for all VSAM data sets, regardless of the
P ASSWORD/NOPWREAD specification in the LABEL parameter.

Although these parameters apply to direct-access storage devices, SL is always
used for VSAM, whether you specify SL, SUL, or neither.

Figure 14. DD Parameters You Should Avoid With VSAM (Part 1 of 2)

102 OS/VS2 JCL (VS2 Release 3)

Parameter

SPACE

SYSOUT

UCS

UNIT

VOLUME

Sub parameter

All

AFF

REF

vol seq number

vol count

Comment

VSAM data spaces are initially allocated as a result of the Access Method
Services DEFINE command. If SPACE is specified, therefore, an extent is
allocated that is never used by VSAM. Moreover, an Access Method Services
request for space may fail as a result of the SPACE acquisition of space.

If SYSOUT is coded with a mutually exclusive parameter (for example, DISP),
the job step is terminated with an error message.

Because this parameter applies only to unit-record devices, it does not apply to
VSAM.

You must use this subparameter carefully. If the cluster components, the
data and its index, reside on unlike devices, the results of UNIT=AFF are
unpredictable.

You must use this subparameter carefully. If the referenced volumes arc not
a subset of those contained in the catalog record for the data set, the results
are unpredictable.

Results are unpredictable.

This subparameter is used to request some number of nonspecific volumes.
Because all VSAM volumes must be specifically defined before processing,
volcount is not applicable to VSAM data sets.

Because there is no way to get VSAM data into the input stream, this
parameter has no application with VSAM.

Figure 14. DD Parameters You Should Avoid With VSAM (Part 2 of 2)

Special Data Sets 103

Creating and Retrieving Indexed Sequential Data Sets
Indexed sequential (ISAM) data sets are created and retrieved using special subsets of DO
statement parameters and subparameters. Each data set can occupy up to three different areas
of space:

1. Prime area -- This area contains data and related track indexes. It exists for all indexed
sequential data sets.

2. Overflow area - This area contains overflow from the prime area when new data is
added. It is optional.

3. Index area -- This area contains master and cylinder indexes associated with the data
set. It exists for any indexed sequential data set that has a prime area occupying more
than one cylinder.

Indexed sequential data sets must reside on direct access volumes. The data set can -reside
on more than one volume and the device types of the volumes may in some cases differ.

Creating an Indexed Sequential Data Set

One to three DD statements can be used to define a new indexed sequential data set. When
using three DD statements to define the data set, each DD statement defines a different area
and the areas must be defined in the following order:

1. Index area.
2. Prime area.
3. Overflow area.

When using two DD statements to define the data set, the areas must be defined in the
following order:

1. Index area. 1. Prime area. (optionally, Index area)
or

2. Prime area. 2. Overflow area.

When using one DD statement to define the data set, you are defining the prime area and,
optionally, the index area.

When more than one DD statement is used to define the data set, assign a ddname only to
the first DD statement; the name field of the other statements must be blank.

The only DD statement parameters that can be coded when defining a new indexed
sequential data set are the DSNAME, UNIT, VOLUME, LABEL, DCB, DISP, and SPACE
parameters. When to code each of these parameters and what restrictions apply are described­
in the following paragraphs.

The DSNAME Parameter

The DSNAME parameter is required on any DD statement that defines a new temporary or
nontemporary indexed sequential data set. To identify the- area you are defining, you follow
the DSNAME parameter with the area: DSNAME=name(INDEx). DSNAME=name(PRIME), or
DSNAME=name(ovERFLO~). If you are using only one DD statement to define the data set,
code DSNAME=name(PRIME) or DSNAME=name.

When reusing previously allocated space to create an ISAM data set, the DSNAME parameter
must contain the name of the old data set to be overlaid.

104 OS/VS2 JCL (VS2 Release 3)

The UNIT Parameter

The UNIT parameter is required on any DD statement that defines a new indexed sequential
data set unless VOLUME=REF=reference is coded. You must request a direct access device in
the UNIT parameter and must not request DEFER.

If there are separate DD statements defining the prime and index areas, request the same
number of direct access devices for the prime area as there are volumes specified in the
VOLUME parameter. You request only one direct access volume for an index area and one for
an overflow area.

A DD statement for the index area or overflow area can request a device type different than
the type requested on the other statements.

Another way to request a device is to code UNIT=AFF=ddname (except for new data sets),
where the named DD statement requests the direct access device or device type you want.

The VOLUME Parameter

The VOLUME parameter is required only if you want an area of the data set written on a
specific volume or the prime area requires the use of more than one volume. (If the prime area
and index area are defined on the same statement, you cannot request more than one volume
on the DD statement.) Either supply the volume serial number or numbers in the VOLUME
parameter or code VOLUME=REF=reference. In all cases, the VOLUME parameter can be used
to request a private volume (PRIVATE).

Note: If a new ISAM data set is being created with a nonspecific volume request and its
DSNAME already exists on a volume eligible for allocation, the job may fail due to duplicate
names on the volume. If the volume selected for the new data set already contains a data set
with the same name, the job fails. If the old data set with a duplicate name resides on another
volume than the one selected for the new data set, however, the new data set is not affected
and will be added to the volume. Failure of this type can be corrected by either scratching the
old data set or renaming the new data set before resubmitting the job.

The LABEL Parameter

The LABEL parameter need only be coded to specify a retention period (EXPDT or RETPD) or
password protection (PASSWORD).

The DCB Parameter

The DCB parameter must be coded on every DD statement that defines an indexed sequential
data set. At minimum, the DCB parameter must contain DSORG=IS or DSORG=ISU. Other DCB
subparameters can be coded to complete the data control block if it has not been completed
by the processing program. When more than one DD statement is used to define the data set,
code all the D<;B subparameters on the first DD statement. Code DCB=* .ddname on the
remaining statement or statements; ddname is the name of the DD statement that contains the
DCB subparameters.

When reusing previously allocated space and recreating an ISAM data set, desired changes in
the DCB parameter must be coded on the DD statement. Although you are creating a new data
set, some DCB subparameters cannot be changed if you want to use the space the old data set
used. The DCB subparameters you can change are: BFALN, BLKSIZE, CYLOFL, DSORG,
KEYLEN, LRECL, NCP, NTM, OPTCD, RECFM, and RKP.

Special Data Sets 105

The DISP Parameter

If you are creating a new data set and not reusing preallocated space, the DISP parameter need
only be coded if you want to keep, DlSP=(,KEEP), catalog, DISP=(,CATLG), or pass,
DISP=(,PASS), the data set. If reusing previously allocated space and recreating an ISAM data
set, code DISP=OLD. The newly created data set will overlay the old one.

In order to catalog the data set when DISP=(,CATLG) is coded or pass the data set when
DISP=(,PASS) is coded, the data set must be defined on only one DD statement. If the data set
was defined on more than one DD statement and the volumes on which the data set now
resides correspond to the same device type, use the Access Method Services DEFINE command
to catalog the data set. Refer to the OS/VS Access Method Services, GC26-3836 publication for
details.

The SPACE Parameter

The SPACE parameter is required on any DD statement that defines a new indexed sequential
data set. Use either the recommended nonspecific allocation technique or the more restricted
absolute track (ABSTR) technique. If more than one DD statement is used to define the data
set, all must request space using the same technique.

Nonspecific Allocation Technique

You must request the primary quantity in cylinders (CYL). When the DD statement that defines
the prime area requests more than one volume, each volume is assigned the number of
cylinders requested in the SPA~E parameter.

One of the subparameters of the SPACE parameter, the "index" subparameter, is used to
indicate how many cyJinders are required for an index. When one DD statement is used to
define the prime and index areas and you want to explicity state the size of the index, code
the "index" subparameter.

The CONTIG subparameter can be coded in the SPACE parameter. However, if CONTIG is
coded on one of the statements, it must be coded on all of them.

You cannot request a secondary quantity for an indexed sequential data set. Also, you
cannot code the subparameters RLSE, MXIG, ALX, and ROUND.

Absolute Track Technique

The number of tracks requested must be equal to one or more whole cylinders. The address of
the beginning track must correspond with the first track of a cylinder other than the first
cylinder on the volume. When the DD statement that defines the prime area requests more
than one volume, space is allocated for the prime area beginning at the specified address and
continuing through the volume and onto the next volume until the request is satisfied. (This
can only be done if the volume table of contents of the second and all. succeeding volumes is
contained within the first cylinder of each volume.)

One of the subparameters of the SPACE parameter, the "index" subparameter, is used to
indicate how many tracks are required for an index. The number of tracks specified must be
equal to one or more cylinders. When one DD statement is used to define the prime and index
areas and you want to explicity state the size of the index, code the "index" subparameter.

Note: If the indexed sequential data set is to reside on more than one volume and an error is
encountered as the volumes are being allocated to the data set, follow this procedure before
resubmitting the job: Use the IEHPROGM utility program to scratch the data set labels on any
of the volumes to which the data set was successfully allocated. This utility program is
described in the chapter "The IEHPROGM Program" in OS/VS Utilities, GC35-0005.

106 OS/VS2 JCL (VS2 Release 3)

Area Arrangement of an Indexed Sequential Data Set

When creating an indexed sequential data set, the arrangement of the areas is based on two
criteria:

1. The number of DD statements used to define the data set.

2. What area each DD statement defines.

An additional criterion is used when you do not include a DD statement that defines the
index area:

3. Is an index size coded in the SPACE parameter on the DD statement that defines the
prime area?

Figure 23 in the "Reference Tables" section illustrates the different arrangements that can
result based on the criteria listed above. In addition,. it indicates what restrictions apply on the
number and types of devices that can be requested.

Retrieving an Indexed Sequential Data Set

If all areas of an existing indexed sequential data set reside on volumes of the same device
type, you can retrieve the entire data set with one DD statement. If the index or overflow
resides on a volume of a different device type, use two DD statements. If the index and
overflow reside on volumes of different device types, use three DD statements to retrieve the
data set. The DO statements are coded in the following order:

1. First DD statement - defines the index area
2. Second DD statement - defines the prime area
3. Third DD statement - defines the overflow area

The only DD statement parameters that c,an be coded when retrieving an indexed sequential
data set are the DSNAME, UNIT, VOLUME, DeB, and DISP parameters. When to code each of
these parameters and what restrictions apply are described in the following paragraphs.

The DSNAME Parameter

The DSNAME parameter is always required. Identify the data set by its name, but do not
include the term INDEX, PRIME, or OVFLOW. If the data set was passed from a previous step,
identify it by a backward reference.

The UNIT Parameter

The UNIT parameter must be eoded unless the data set resides on one volume and was passed.
You identify in the UNIT parameter the device type and how many of these devices are
required.

If the data set resides on more than one volume and the volumes correspond to the same
device type, you need only one DD statement to retrieve the data set. Request one device in
the UNIT parameter per volume. If the index or overflow area of the data set resides on a
different type of volume than the other areas, you must use two DD statements to retrieve the
data set. On one DD statement, request the device type required to retrieve the index or
overflow area. On the other DD statement, request the device type and the number of devices
required to retrieve the prime area and the overflow area if the overflow area resides on the
same device type. If the index and the overflow areas reside on different device types from the
prime area, a third DD statement is needed.

Special Data Sets 107

The VOLUME Parameter

The VOLUME parameter must be coded unless the data set resides on one volume and was
passed from a previous step. Identify in the VOLUME parameter the serial numbers of the
volumes on which the data set resides. Code the serial numbers in the same order as they were
coded on the DD statements used to create the data set.

The DCB Parameter

The DCB parameter must be coded unless the data set was passed' from a previous step. The
DCB parameter must always contain DSORG==IS or DSORG==ISU. Other DeB subparameters can
be coded to complete the data control block if it has not been completed by the processing
program.

The DISP Parameter

The DISP parameter must always be coded. The first subparameter of the DISP parameter must
be SHR or OLD. You can, optionally, assign a disposition as the second subparameter.

Examples 0/ Creating and Retrieving an Indexed Sequential Data Set

The following job creates an indexed sequential data set on one 3330 volume.

IIISAMJOB
IISTEP1
IIDD1
II
II
II
II
II
II

JOB
EXEC
DD

DD

DD

"MSGLEVEL=(1,1),PERFORM=25
PGM=INCLUDE
DSN=DATASET,1 (INDEX) , DISP=(NEW, KEEP) , UNIT=3330,
VOL=SER=777777,SPACE=(CYL,(10)"CONTIG),
DCB=(DSORG=IS,RECFM=F,LRECL=80,RKP=1,KEYLEN=8)
DSN=DATASET1(PRIME),DISP=(NEW,KEEP),UNIT=3330,
VOL=REF=*. DOl, SPACE=(CYL, (25), , CON'l'IG), DCB=*. 001
DSN=DATASET1(OVFLOW),DISP=(NEW,KEEP),UNIT=3330,
VOL=REF=*.DD1,SPACE=(CYL,(25)"CONTIG),DCR=*.DD1

The following job includes the DD statements required to retrieve the indexed sequential
data set created above.

IIRETRISAM
IISTEP1
IIDDISAM
II

JOB
EXEC
DD

"MSGLEVEL=(l,l),PERFORM=25
PGM=RETRIEVE
DSN=DATASET1,DCB=DSORG=IS,UNIT=3330,DISP=OLD,
VOL=SER=777777

The following job creates an indexed sequential data set on one 3330 and two 2314
volum~s.

IIISAMJOB JOB
IISTEP1 EXEC
IIDDISAM DO
II
II
II DD
II
II DO
II

108 OS/VS2 JCL (VS2 Release 3)

"MSGLEVEL=(l,l),PERFORM=25
PGM=IEFISAM
DSN=DATASET2(INDEX),DISP=(NEW,KEEP},UNIT=3330,
VOL=SER=888888,SPACE=(CYL,10"CONTIG),DCB=(DSORG=IS,
RECFM=F,LRECL=80,RKP=1,KEYLEN=8)
DSN=DATASET2(PRIME),DISP=(,KEEP),UNIT=2314,
VOL=SER=999999,SPACE=(CYL,10"CONTIG),DCB=*.DDISAM
DSN=DATASET2(OVFLOW),DISP=(,KEEP),UNIT=2314,
VOL=SER=AAAAAA,SPACE=(CYL,10"CONTIG),DCB=*.DDISAM

The following job includes the DD statements required to retrieve the indexed sequential
data set created above.

IIRERISAM
IISTEP1
IIDDISAM
II
II
II

JOB
EXEC
DD

DD

"MSGLEVEL=(1,1),PERFORM=25
PGM=IEFISAM
DSN=DATASET2,DCB=DSORG=IS,DISP=OLD,UNIT=3330,
VOL=SER=888888
DSN=DATASET2,DCB=DSORG=IS,DISP=OLD,UNIT=(2314,2),
VOL=SER=(999999,AAAAAA)

Creating and Retrieving Generation Data Sets
A generation data set is one of a collection of successive, historically related, cataloged data
sets known as a generation data group. The system keeps track of each data set in a
generation data group as it is created so that new data sets can be chronologically ordered and
old ones easily retrieved.

To create or retrieve a generation data set, identify the generation data group name in the
DSNAME parameter and follow the group name with a relative generation number. When
creating a generation data set, the relative generation number tells the system whether this is
the first data set being added during the job, the second, the third, etc. When retrieving a
generation data set, the relative generation number tells the system how many data sets have
been added to the group since this data set was added.

A generation data group can consist of cataloged sequential, partitioned, and direct data sets
residing on tape volumes, direct access volumes, or both. If the generation data group resides
on more than one device type, all generations cannot be retrieved together. Generation data
sets can have like or unlike DCB attributes and data set organizations. If the attributes and
organizations of all generations in a group are identical, the generations can be retrieved
together as a single data set (up to 255 data sets can be retrieved in this way).

Building a Generation Data Group Base Entry

Before defining the first generation data set, build a generation data group base entry in a
VSAM or OS CVOL catalog. This provides for as many generation data sets (up to 255) as you
would like to have in the generation data group. The system uses the base to keep track of the
chronological order of the generation data sets. Use the Access Method Services DEFINE

command to build generation data group bases in a VSAM catalog. This command is described
in OS/VS Access Method Services, GC26-3836.

Another requirement of generation data groups is that a data set label list exist on the same
volume as the catalog. The system uses this label to refer to DCB attributes when you define a
new generation data set. There are two ways to satisfy this requirement: (1) create a model
data set label before defining the first generation data set; or (2) use the DCB parameter to
refer the system to an existing cataloged data set each time you define a new generation data
set.

Creating a Model Data Set Label

To create a model data set label, define a data set and request that it be placed on the same
volume as the generation data group base. This ensures that there is always a data set label on
the same volume as the catalog to which the system can refer.

The name assigned to the data set can be the same or different than the name assigned to
the generation data group. (If you assign the same name for both, the data set associated with
the model data set label cannot be cataloged.) Request a space allocation of zero tracks or
cylinders. The DCB attributes that can be supplied are DSORG, OPTCD, BLKSIZE, LRECL,

KEYLEN, and RKP.

Special Data Sets 109

You need not create a model data set label for every generation data group whose indexes
reside on the same volume. Instead, create one model data set label to be used by any number
of generation data groups. When creating a generation data set, specify the name of the model
in the DCB parameter and follow the name with a list of all the DCB subparameters required
for the new generation data set that arc different than specified in the model; that is,
DCB=(dsname,list of attributes).

Ref erring the System to a Cataloged Data Set

If there is a cataloged data set that resides on the same volume as the generation data group
index and you are sure that data set will exist as long as you are adding data sets to the
generation data group, you need not create a model data set label. When creating a generation
data group, specify the name of the cataloged data set in the DCB parameter by coding
DCB=dsname .. If all the DeB attributes are not contained in the label of the cataloged data set,
or if you want to override certain attributes, follow the data set name with these attributes;
that is, DCB=(dsname,list of attributes).

Creating a Generation Data Set

When defining a new generation data set, always code the DSNAME, DISP, and UNIT
parameters. Other parameters you might code are the VOLUME, SPACE, LABEL, and DCB
parameters.

The DSNAME Parameter

In the DSNAME parameter, code the name of the generation data group followed by a number
enclosed in parentheses. This number must be 1 or greater. If this is the first data set you are
adding to a particular generation data group during the job, code + 1 in parentheses. Each time
during the job you add a data set to the same generation data group, increase the number by
one.

Any time you refer to this data set later in the job, use the same relative generation number
as was used earlier. At the end of the job, the system updates the relative generation numbers
of all generations in the group to reflect the additions.

Note: Unpredictable results can occur if you use a relative generation number that causes the
actual generation number to exceed G9999.

The DISP Parameter

New generations are assigned a status of NEW and a disposition of CATLG in the DISP
parameter; that is, DISP=(NEW,CATLG).

The UNIT Parameter

The UNIT parameter is required on any DD statement that defines a new generation data set
unless VOLUME=REF=reference is coded. In the UNIT parameter, identify the type of devices
you want (tape or direct access).

The SPACE Parameter

The SPACE parameter is coded only when the generation data set is to reside on a direct
access volume.

The LABEL Parameter

You can specify label type, password protection (PASSWORD), and a retention period (EXPDT
or RETPD) in the LABEL parameter. If the data set will reside on a tape volume and is not the
first data set on the volume, specify a data set sequence number.

110 OS/VS2 JCL (VS2 Release 3)

The DCB Parameter

A model data set label that has the same name as the group name may exist. If this is so, and
if the label contains all the attributes required to define this generation, you need not code the
DCB parameter. If all the attributes are not contained in the label, or if you want to override
certain attributes, code DCB = (list of attributes).

If a model d(lta set label has a different name than the group name and if the label contains
all the attributes required to define this generation data set, only the name of the data set
associated with the model data set label need be coded. Code the name in the DCB parameter,
that is, DCB=dsname. If all the attributes are not contained in the label, or if you want to
override certain attributes, follow the data set name with these attributes; that is,
DCB=(dsname,list of attributes).

If a model data set label does not exist, you must code the name of a cataloged data set
that resides on the same volume as the generation data group index. If all the attributes are
not contained in the label for this data set, or if you want to override certain attributes, follow
the data set name with these attributes.

Retrieving a Generation Data Set

To retrieve a generation data set, always code the DSNAME and DISP parameters. Other
parameters you might code are the UNIT, LABEL, and DCB parameters.

The DSNAME Parameter

In the DSNAME parameter, code the name of the generation data group followed by a number
enclosed in parentheses. The number coded depends on how many new generation data sets
have been added to the gr~)Up since this generation data set was added. If none have been
added prior to the job, code a zero (0). If one has been added prior to the job, code (-1).
Reduce the number by 1 until you determine the present relative generation number of the
data set, then code this number.

Any time you refer to this data set later in the job, use the same relative generation number
as was used earlier, even if another generation has been added during the job.

Note: Relative generation numbers are based on the catalog as it existed at the start of the
job, plus any changes made by cataloging new members of the data set during the job.

If you want to retrieve all generations of a generation data group as a single data set, or
retrieve all generations of a generation data group by concatenation, in order, starting with the
most recent data set and with unit affinity to the mO,st recent data set, specify the generation
data group name without a generation number; for example, DSNAME==WEEKLY.PAYROLL.
You can retrieve all generations by concatenating them only if the attributes and organization
of all generations are identical.

The DISP Parameter

The DISP parameter must always be coded. The first subparameter of the DISP parameter must
be OLD, SHR, or MOD. You can, optionally, assign a disposition as the second subparameter.
The second subparameter must be specified for a generation data group. You should avoid
coding PASS as the second subparameter when you retrieve all generations of a generation data
group as a single data set. In all such retrievals the unit and volume information for each
generation level. is obtained from the catalog, and not from the pass mechanism.

Special Data Sets 111

The UNIT Paralneter

Code the UNIT parameter when you want more than one device assigned to the data set. Code
the number of devices you want in the unit count subparameter, or, if the data set resides on
more than one volume and you want as many devices as there are volumes, code P in place of
the unit count subparameter.

The VOLUME Parallleter

You can assign a volume in the VOLUME parameter or lef the system assign one for you. The
VOLUME parameter can also be used to request a private volume (PRIVATE) and to indicate
that more volumes can be required (volume count). A volume serial number for an old
generation data group is ignored; the value used is in the catalog.

The LABEL Parameter

Code the LABEL parameter when the data set has other than standard labels. If the data set
resides on a volume and is not the first data set on the volume, specify the data set sequence
number.

The DCB Parameter

Code the DCB parameter when the data set has other than standard labels and DCB
information is required to complete the data control block.

Subn.itting a Job for Restart

Certain rules apply when you refer to generation data sets in a job submitted for restart (the
RESTART parameter is coded on the JOB statement).

For step restart: If step restart is performed, generation data sets that were created and
cataloged in steps preceding the restart step must not be referred to in the restart step or in
steps following the restart step by means. of the same relative generation numbers that were
used to create them. Instead, you must refer to a generation data set by means of its present
relative generation number. For example, if the last generation data set created and cataloged
was assigned a generation number of + 2, it would be referred to as 0 in the restart step and in
steps following the restart step. In this case, the generation data set assigned number of + 1
would be referred to as -1.

For checkfHJint restart: If generation data sets created in the restart step were kept instead of
cataloged, that is, DISP=(NEW,CATLG,KEEP) was coded, you can, during checkpoint restart,
refer to these data sets and generat.ion data sets created and cataloged in steps preceding the
restart. step by means of the same relative generation numbers that were used t.o create them.

112 OS/VS2 JCL (VS2 Release 3)

Example of Creating and Retrieving Generation Data Sets

The following job step includes the DD statements that could be used to add three data sets to
a generation data group.

IISTEPA
IIDD1
II
IIDD2
II
IIDD3
II
II

EXEC
DD

DD

DD

PGM=PROCESS
DSNAME=A.B.C(+l),DISP=(NEW,CATLG),UNIT=2400,
VOL=SER=13846,LABEL=(,SUL)
DSNAME=A.B.C(+2),DISP=(NEW,CATLG),UNIT=3330,
VOL=SER=10311,SPACE=(480,(150,20))
DSNAME=A.B.C(+3),DISP=(NEW,CATLG),UNIT=2314,
VOL=SER=28929,SPACE=(480,(150,20)),
DCB=(LRECL=120,BLKSIZE=480)

The first two DD statements do not include the DCB parameter; therefore, a model data set
label must exist on the same volume as the generation data group index and must have same
name as the generation data group (A.B.c). Since the DCB parameter is coded on the third DD

statement, the attributes LRECL and BLKSIZE, along with the attributes included in the model
data set label, are used.

The following job includes the DD statements required to retrieve the generation data sets
defined above when no other data sets have been added to the generation data group.

IIJWC
IISTEP1
IIDDA
IIDDB
IIDDC

JOB
EXEC
DD
DD
DD

CLASS=B
PGM=REPORT9
DSNAME=A.B.C(-2),DISP=OLD,LABEL=(,SUL)
DSNAME=A.B.C(-l),DISP=OLD
DSNAME=A.B.C(O),DISP=OLD

Special Data Sets tt3

114 OS/VS2 JCL (VS2 Release 3)

Cataloged and In-Stream Procedures

Applications that require many control statements and are used on a regular basis can be
considerably simplified through the use of cataloged and in-stream procedures. A cataloged
procedure is a set of job control statements that are placed in a partitioned data set known as
the procedure library; an in-stream procedure is a set of job control statements that are placed
in the input stream within a job. You can execute a procedure simply by specifying its name
on an EXEC statement in your job. This section describes how to write and use cataloged and
in-stream procedures.

This section includes three topics:

• Writing Cataloged and In-Stream Procedures
• Using Cataloged and In-Stream Procedures
• Using Symbolic Parameters

Writing Cataloged and In-Stream Procedures
Cataloged and in-stream procedures are simply the job control statements needed to perform
an application. A procedure contains one or more procedure steps, each step consisting of an
EXEC statement that identifies the program to be executed and 00 statements defining the
data sets to be used or produced by the program. The program requested on the EXEC

statement must exist in a private or the system library. If you do request a program that is
contained in a private library, the procedure step calling that program must include a a 00

statement with the ddname STEPLIB that defines the private library; the STEPLIB 00 statement
is described in the chapter, "Creating and Using Private and Temporary Libraries."

Cataloged and in-stream procedures cannot contain:

• EXEC statements that refer to other cataloged or in-stream procedures;
• JOB, delimiter, or null statements;
• 00 statements defining private libraries to be used throughout the job (00 statements with

the ddname JOBLIB);

• 00 statements defining data in the input stream (statements including the * or OAT A
parameters) .

• Any JES2 or JES3 control statements; they are ignored.

Identifying an In-Stream Procedure

To identify an in-stream procedure, code the PROC and PENO job control statements.

On the PROC statement, which must be the first statement in an in-stream procedure, assign
the procedure a name. This name is the name that a programmer codes to call the procedure.
Optionally, you can also assign default values to symbolic parameters contained in the
procedure and code comments. (A symbolic parameter is a symbol preceded by an ampersand
that stands for a parameter, a subparameter, or a value in a procedure; including symbolic
parameters in a procedure is described in detail in the chapter "Using Symbolic Parameters.")
If you do not assign default values to symbolic parameters on the PROC statement, you cannot
code comments. The simplest form of the PROC statement, to identify an in-stream procedure
named PAYROLL, would be:

//PAYROLL PROC

Cataloged and In-Stream Procedures 115

The PEND statement marks the end of the in-stream procedure. You can include a name on
the PEND statement and comments, but these are optional. Both of the following examples are
acceptable:

IIENDPROC
II

PEND
PEND

end of in-stream procedure

The following example illustrates an in-stream procedure named SALES consisting of two
procedure steps. Note that STEP2 includes a STEPLIB DD statement to define the private library
in which the program JUGGLE can be founa.

IISALES
IISTEPl
IIDD1A
IIDD1B
IISTEP2
IISTEPLIB
IIDD2A
II

PROC
EXEC
DD
DD
EXEC
DD
DD
PEND

PGM=FETCH
DSNAME=RECORDS(BRANCHES),DISP=OLD
DSNAME=RECORDS(MORGUE),DISP=MOD
PGM=JUGGLE
DSNAME=PRIV.WORK,DISP=OLD
SYSOUT=A

Placing a Cataloged Procedure in a Procedure Library

The major difference between cataloged and in-stream procedures is where they are placed.
Cataloged procedures must be placed in a procedure library before being used. In-stream
procedures are placed within the job that calls them. A procedure library is simply a
partitioned data set containing cataloged procedures. IBM supplies a procedure library named
SYS1.PROCLIB, but the installation can have additional procedure libraries with different names.
When a programmer calls a cataloged procedure, he receives a copy of the procedure;
therefore, a cataloged procedure can be used by more than one programmer simultaneously.

To add a procedure to a procedure library, use the IEBUPDTE utility program. You can also
use the IEBUPDTE utility to permanently modify an existing procedure. (Before modifying an
existing cataloged procedure, however, you must notify the operator; he must delay the
execution of jobs that might use the procedure library while it is being updated.) Details on
using the IEBUPDTE utility are included in OS/VS Utilities, GC3S-000S. Before placing a
cataloged procedure in a procedure library, test it without overriding any parameters to ensure
that the procedure statements are symtactically correct. Additionally, test the procedure by first
running it as an in-stream procedure.

No special job control statements are used to identify a cataloged procedure. The PEND

statement is never used and the PROC statement is optional. You need code the PROC

statement as the first statement in a cataloged procedure only when you want to assign default
values to symbolic parameters. The name of the PROC statement is not necessarily the name of
the cataloged procedure; you assign the procedure a name when adding it to the procedure
library.

Allowing for Changes in Cataloged and In-Stream Procedures

The usefulness of cataloged and in-stream procedures is destroyed if a programmer who uses
the procedure has to permanently modify the procedure every time he wants to make a
change. When writing a procedure, you can define, as symbolic parameters, those parameters,
subparameters and values that are likely to vary each time the procedure is used. For details
on coding symbolic parameters, see the chapter "Using Symbolic Parameters."

116 OS/VS2 JCL (VS2 Release 3)

Using Cataloged and In-Stream Procedures
To use a cataloged or in-stream procedure, specify the procedure name on an EXEC statement.
You can modify the procedure by adding DD statements, overriding, adding, or nullifying
parameters on EXEC c;lnd DD statements, and assigning values to symbolic parameters. Calling
and modifying procedures is explained in greater detail in the following paragraphs.

How to Call Cataloged and In-Stream Procedures

To call a cataloged or in-stream procedure, you identify the procedure on the EXEC statement
of the step calling the procedure by coding as the first operand on the EXEC statement .

• The procedure name.
• PROC= the procedure name.

A cataloged procedure must exist in the procedure library before you attempt to use it. JES2

or JES3 is responsible for fetching cataloged procedures. Refer to "Routing a Job Through the
System" to see how JES2 or JES3 determines what library to select. When using an in-stream
procedure, include the procedure, beginning with a PROC statement and ending with a PEND

statement, with the job control language for the job; the procedure must follow the JOB

statement but appear before the EXEC statement that calls it. You can include as many as
fifteen uniquely named in-stream procedures in one job and can use each procedure as many
times as you wish in the job.

To call a cataloged procedure named PROCESSA, you would code:

//CALL
//CALL

EXEC
EXEC

PROCESSA
PROC=PROCESSA

or

On the EXEC statement, you can also code changes you would like to make for this
execution of the procedure.

Modifying Cataloged and In-Stream Procedures

You can modify a procedure by:

• Assigning values to or nullifying symbolic parameters contained in the procedure.
• Overriding, adding, or nullifying parameters on EXEC and DD statements in the procedure.
• Adding DD statements to the procedure.

All changes you make are in effect only during the current execution of the procedure. For
a discussion of symbolic parameters, see the chapter "Using Symbolic Parameters." Other
modifications are described in the following sections.

Modifying Parameters on an EXEC Statement

To override, add, or nullify a parameter on an EXEC statement in a procedure, identify on the
EXEC statement that calls the procedure the parameter you are changing, the name of the
EXEC statement on which the parameter appears, and the change to be made:

//CALL EXEC procedurename,parameter.procstepnarne=value

When overriding a parameter, the value coded for the parameter on the EXEC statement
calling the procedure replaces the value assigned in the procedure. When adding a parameter,
that parameter is used in the execution of the procedure step. When nullifying a parameter,
you do not follow the equal sign with a value; the value assigned to the parameter in the
procedure is ignored. All changes made are in effect only for the current execution of the
procedure.

Cataloged and In-Stream Procedures 117

You can make more than one change to each EXEC statement in the procedure, and you
can change parameters on more than one EXEC statement in the procedure. You cannot,
however, change the PGM parameter. When making changes on different steps in the
procedure, do not code all changes for one procedure step before changes to a subsequent
step.

For example, the first three EXEC statements in a procedure named IRISH are:

IISTEP1
IisTEP2
IISTEP3

EXEC
EXEC
EXEC

PGM=YEATS,PARM=' *14863 ,
PGM=NOLAN
PGM=SYNGE,TIME=(2,30)

and you want to make the following changes:

• Nullify the PARM parameter in STEPl.
• Add the COND parameter, specifying the test (8,LT), in STEP2.
• Change the time limit in the TIME parameter in STEP3 to 4 minutes.

On the EXEC statement calling the procedure, you would code:

IICALL
II

EXEC IRISH,PARM.STEPI=,
COND.STEP2=(8,LT),TIME.STEP3=4

You can omit naming the procedure step when changing a parameter. When you do this, the
procedure is modified as follows:

• If the PARM parameter is coded, it applies only to the first procedure step. If a PARM
parameter appears in a later EXEC statement in the called procedure, it is nullified.

• If the TIME parameter is coded, it applies to the total procedure. If the TIME parameter
appears on any of the EXEC statements in the called procedure, it is nullified.

• If any other parameter is coded, it applies to every step in the called procedure. Nullifying
the parameter on the EXEC statement calling the procedure causes the parameter to be
ignored on every EXEC statement in the procedure; if you assign a value to the parameter
on the EXEC statement calling the procedure, the parameter is overridden where it appears
in the procedure and added to EXEC statements in the procedure on which it does not
appear.

For example, assume the EXEC statements in the procedure named COMPUTE are:

IISTEP1
IisTEP2
I/STEP3

EXEC
EXEC
EXEC

PGM=LIST,TIME=(1,30)
PGM=UPDATE,RD=NC,TIME=2
PGM=CHECK,RD=RNC,COND=ONLY

You want to make the following changes:

1. Assign a time limit of 4 minutes to the entire procedure; TIME parameters on individual
EXEC statements in the procedure will be nullified.

2. Allow automatic step restart for each step of the job by coding RD=R. The RD
parameter will be added to the first step of the job and will override the RD parameters
in STEP2 and STEP3.

To call the procedure and make these changes, you would code:

/ICALL EXEC COMPUTE,TIME=4,RD=R

During the processing of the JCL statements for the job, the EXEC statements appear as:

IISTEP1
IisTEP2
IisTEP3

EXEC
EXEC
EXEC

tt8 OS/VS2 JCL (VS2 Release 3)

PGM=LIST,RD=R
PGM=UPDATE,RD=R
PGM=CHECK,RD=R,COND=ONLY

Any parameter changes that affect every step of the job (by omitting the procedure step
name) must be coded on the EXEC statement calling the procedure before changes to
parameters on different steps (that is; you include the procedure step name). Time will be a
total of four minutes, each step using the remaining amount of time available from the total. If
m0re than four minutes is required, the step will abnormally terminate.

Modifying Parameters on a DD Statement

To override, add, and nullify parameters on a DD statement in a procedure, you include a DD
statement containing the changes you want to make after the EXEC statement that calls the
procedure. The name of the DD statement containing the changes is composed of the
procedure step name and the ddname of the DD statement in the procedure:

Ilprocstepname. ddname DD parameter=value

When overriding a parameter, the ,value you code replaces the value assigned to the
parameter in the procedure. You can also override a parameter in the procedure by coding a
mutually exclusive parameter on the DD statement containing the changes. (A table of
mutually exclusive parameters qn the DD statement is included in this publication as Figure
18.) When adding a parameter,the parameter is added to the DD statement in the procedure
for the current execution of the procedure. When nullifying a parameter, you do not follow the
equal sign with a value; that parameter in the procedure is ignored. You do not have to nullify
a parameter when you are replacing it with a mutually exclusive parameter. All changes you
make are in effect only for the current execution of the procedure.

You can change more than one parameter on a DD statement and you can change
parameters on more than one DD statement in the procedure. However, the DD statements
containing the changes must be coded in the same order as the corresponding DD statements in
the procedure. Test all new procedures without overriding any parameters to ensure that the
procedure statements are syntactically correct.

For example, the first two steps of the cataloged procedure TEA are:

IISTEPl
IIDD1A
II
IIDD1B
IISTEP2
IIDD2A
II

EXEC
DD

DD
EXEC
DD

PGM=SUGAR
DSNAME=DRINK,DISP=(NEW,DELETE),
UNIT=2400,VOL=SER=568998
UNIT=SYSSQ
PGM=LEMON
UNIT=23l4,DISP=(,PASS),
SPACE=(TRK,(20,2))

You want to make the following changes:

1. Change the dispositon on the DD statement named DDIA to CATLG.
2. Change the unit on the DD statement named DD 1 B to TAPE.
3. Change the SPACE parameter on the DD statement named DD2A to SPACE=(CYL,(4,l)).

When calling the procedure, you would code:

IICALL
IlsTEP1.DD1A
IlsTEP1.DD1B
IISTEP2.DD2A

EXEC
DD
DD
DD

TEA
DISP=(NEW,CATLG)
UNIT=TAPE
SPACE=(CYL,(4,1))

When changing DCB subparameters, you need code only those subparameters you are
changing. The DCB subparameters you do not code (and for which you do not code a mutually
exclusive subparameter) remain unchanged. For example, a DD statement named DDI in a
procedure step named STEP1 contains DCB=(BUFNO=1,BLKSIZE=80,RECFM=F,BUFL=80).
To change the block size to 320 and the buffer length to 320, you would code:

IISTEP1.DD1 DD DCB=(BLKSIZE=320,BUFL=320)

Cataloged and In-Stream Procedures 119

The subparameters BUFNO and RECFM remain unchanged.

To nullify the DCB parameter, you must nullify each subparameter. For example, if a DD
statement in a procedure contains DCB=(RECFM=FB,BLKSIZE= 160,LRECL=80), you must
code DCB=(RECFM=,BLKSIZE=,LRECL=) in order to nullify the DCB parameter.

To nullify the DUMMY parameter, code the DSNAME parameter on the overriding DD
statement and assign a data set name other than NULLFILE. To nullify all the parameters on a
DD statement other than DCB, code DUMMY on the overriding DD statement. (The DUMMY
parameter is described in detail in the chapter, "Defining a Dummy Data Set.")

Modifying Parameters on DD Statements that Define Concatenated Data Sets

When a concatenation of data sets is defined in a cataloged procedure and you attempt to
override the concatenation with one DD statement, only the first (named) DD statement is
overridden. To override others, you must include an overriding DD statement for each DD
statement; the DD statements in the input stream must be in the same order as the DD
statements in the procedure. The second and subsequent overriding statements must not be
named. If you do not wish to change one of the concatenated DD statements, leave the
operand field blank on the corresponding DD statement in the input stream. (This is the only
case where a blank operand field for a DD statement is valid.)

For example, suppose you are calling a procedure that includes the following sequence of
DD statements in STEPC:

IIDD4
II
II
II

DD
DD
DD
DD

DSNAME=A.B.C,DISP=OLD
DSNAME=STRP,DISP=OLD,UNIT=2314,VOL=SER=X12182
DSNAME=TYPE3,DISP=OLD,UNIT=2314,VOLUME=SER=BL1421
DSNAME=A.B.D,DISP=OLD

To override the DD statements that define the data sets named STRP and A.B.D, you would
code:

IISTEPC.DD4 DD
II DD
II DD
II DD

DSNAME=INV.CLS,DISP=OLD

DSNAME=PAL8,DISP=OLD,UNIT=2314,VOL=SER=125688

Adding DD Statements to a Procedure

You can add DD statements to a procedure when calling the procedure. These additional DD
statements are in effect only during the current execution of the procedure.

To add a DD statement to a procedure step, follow the EXEC statement that calls the
procedure and any overriding DD statements for that step with the additional DD statement.
The ddname of the DD statement identifies the procedure step to which this statement is to be
added and must be assigned a name that is different from all the ddnames in the procedure
step. If you do not identify the procedure step in the ddname, the system assumes you are
adding the DD statement to the first step of the procedure.

For example, the first step of a cataloged procedure named MART is:

IISTEP1
IIDDM
II
IIDDN

EXEC
DD

DD

120 OS/VS2 JCL (VS2 Release 3)

PGM=DATE
DSN=BPS(MEMG),DISP=OLD,
UNIT=2314,VOLUME=SER=554982
UNIT=SYSSQ

You want to make the following changes:

1. Change the UNIT parameter on the statement named DDN to UNIT = 180.
2. Add a DD statement, specifying UNIT=181.

When calling the procedure, you would code:

II EXEC
IISTEP1.DDN DD
IISTEP1.DDO DD

PROC=MART
UNIT=180
UNIT=181

Identifying Procedure Statements on an Output Listing

You can request that cataloged and in-stream procedure statements be included on the output
listing by coding 1 as the first subparameter in the MSGLEVEL parameter on the JOB

statement. (For a description of the MSGLEVEL parameter, see "Requesting Listings of JCL
Statements and System Messages.")

Procedure statements are identified on the output listing as illustrated in Figures 15 and 16.
The output listing will also show the symbolic parameters and the values assigned to them.

Columns.
1 ,2,3

XX cataloged procedure statement you did not override
XI cataloged procedure statement you did override
XX* cataloged procedure statement, other than a comment

statement, that the system considers to contain
only comments

*** comment statement, JES2, and JES3 statements

Figure 15. Identification of Cataloged Procedure Statements on the Output Listing

Columns,
1 ,2,3

++ in-stream procedure statement you did not override
+1 in-stream procedure statement you did override
++* in-stream procedure statement, other than a comment

statement, that the system considers to contain only
comments

*** comment statement, JES2, and JES3 statements

Figure 16. Identification of In-stream Procedure Statements on the Output Listing

Using Symbolic Parameters
In order to be modified easily, cataloged and in-stream procedures can contain symbolic
parameters. A symbolic parameter is a symbol preceded by an ampersand that stands for a
parameter, a subparameter, or a value. In the following procedure step, the symbolic
parameters are underlined:

IISTEP1
IIDD1
IIDD2

EXEC
DD
DD

PGM=UPDATE,ACCT=(PGMG,&DEPT)
DSNAME=INIT,UNIT=&DEVICE,SPACE=(CYL,(&SPACE,10))
DSNAME=CHNG,UNIT=2400,DCB=BLKSIZE=&LENGTH

Cataloged and In-Stream Procedures 121

When this procedure is executed, every symbolic parameter must either be assigned a value
or nullified; the changes are in effect only for the current execution of the procedure.
Therefore, the procedure can be modified each time it is executed, without being permanently
changed. Details on how to assign values to or nullify symbolic parameters are included under
"Assigning Values to and Nullifying Symbolic Parameters." How to include symbolic
parameters when writing a cataloged or in-stream procedure is described in the next section,
"Defining Symbolic Parameters When Writing a Procedure."

Defining Symbolic Parameters When Writing a Procedure

Any parameter, sub parameter , or value in a procedure that can vary each time the procedure is
called is a good candidate for definition as a symbolic parameter. For example, if different
values can be passed to a processing program by means of the P ARM parameter on one of the
EXEC statements, you could define the PARM field as one or more symbolic parameters, for
example, PARM= &ALLVALS or PARM= &DECK&CODE.

The symbolic parameter itself is one to seven alphameric and national (#,@,$) characters
preceded by a single ampersand. The first character must be alphabetic or national. Since a
single ampersand defines a symbolic parameter, you code double ampersands when not
defining a symbolic parameter. For example, if you want to pass 543 &LEY to a processing
program by means of the PARM parameter, you must code PARM='543&&LEY'. The system
treats the double ampersand as if a single ampersand had been coded, and only one ampersand
appears in the results.

Keyword parameters that can be coded on the EXEC statement (such as ACCT, COND, and
PARM) cannot be used as the name of a symbolic parameter. For example, you can not code
®ION=200K or REGION=®ION on the EXEC statement, but you can code
REGION= &SIZE.

The definitions used to signify symbolic parameters should be consistent in all the cataloged
and in-stream procedures at an installation. For example, every time the programmer is to
assign his department number to a symbolic parameter, no matter which procedure he is
calling, the symbolic parameter could be defined as &DEPT. In different procedures, you could
code ACCT=(43877,&DEPT) and DSNAME=LIBRARY.&DEPT.TALLY. The programmer would
assign his department number to the symbolic parameter wherever that symbolic parameter
appears in a procedure.

The same symbolic parameter can appear more than once in a procedure, as long as the
value assigned to the symbolic parameter is a constant in the procedure. Therefore, you could
use & DEPT more than once in a procedure, if the department number to be assigned is the
same in each use. But if you have two DO statements and include a symbolic parameter for the
primary quantity of the space request on each DD statement, you would not want to use the
same symbolic parameter, since the requests for primary quantity could be different for the
two data sets. Only one value can be assigned to each symbolic parameter used in a procedure;
if you assign more than one value to a symbolic parameter, only the first value is used and
that value is substituted wherever the symbolic parameter occurs.

Assigning DeC ault Values to Symbolic Parameters

You can assign default values to the symbolic parameters coded in the procedure on the PROC

statement. The PROC statement must always appear as the first statement in an in-stream
procedure; the PROC statement must be coded as the first statement in a cataloged procedure
only if you want to assign defaults. Generally, you should assign defaults to every symbolic
parameter in a procedure to limit the amount of coding necessary each time the procedure is
called. See the next section, "Assigning Values to and Nullifying Symbolic Parameters", for
details.

122 OS/VS2 JCL (VS2 Release 3)

Assigning Values to and Nullifying Symbolic Parameters

When a procedure containing symbolic parameters is used, each symbolic parameter must
either be assigned a value or nullified. Symbolic parameters are assigned values or nullified in
one of two ways:

• the programmer who uses the procedure codes the symbolic parameter on the EXEC
statement calling the procedure, either assigning it a value or nullifying it;

• the programmer who writes the procedure assigns a default value to or nullifies the symbolic
parameter on the PROC statement, which must be the first statement in an in-stream
procedure and can be the first statement in a cataloged procedure.

The default assigned to a symbolic parameter on a PROC statement is overridden when that
symbolic parameter is assigned a value or nullified on the EXEC statement that calls the
procedure.

Default values are not necessarily assigned to symbolic parameters in a procedure. Before
using any procedure, find out what symbolic parameters are used, the meaning of each
symbolic parameter, and what default, if any, is assigned. The PROC statement is optional in
cataloged procedures; if the PROC statement is not included, no default values can be assigned
to symbolic parameters in the procedure.

You need not code the symbolic parameters in any specific order when you assign values to
or nullify them.

Assigning a Value to a Symbolic Parameter

To assign a value to symbolic parameter, you code:

symbolic parameter=value

Omit the ampersand that precedes the symbolic parameter in the procedure. For example, if
the symbolic parameter & NUMBER appears on a DD statement in the procedure, code
NUMBER=value on the PROC statement (if you are writing the procedure and assigning
defaults) or on the EXEC statement that calls the procedure (if you are using the procedure
and want this value to be in effect only for the current execution of the procedure).

There are some rules for assigning values to symbolic parameters:

• The length of the value assigned is limited only in that the value cannot be continued onto
another statement. However, when a symbolic parameter is concatenated with other
information (for example, a data set name is LIBRARY. &DEPT .. MACS), the combined length
of the value you assign and the concatenated information cannot exceed 120 characters.

• If the value contains special characters, enclose the value in apostrophes (the enclosing
apostrophes are not considered part of the value). If the special characters include
apostrophes, each apostrophe must be shown as two consecutive apostrophes.

• If more than one value is assigned to a symbolic parameter as a default on the PROC
statement, only the first value encountered is used; likewise, if more than one value is
assigned to a symbolic parameter on an EXEC statement, only the first value encountered is
used.

• If a symbolic parameter is a positional parameter followed by other parameters in the
statement, it should be followed in the procedure by a period instead of a comma; for
example:

//DEFINE DD &POSPARM.DSN=ATLAS,DISP=OLD

Cataloged and In-Stream Procedures 123

• A value of literal blanks, that is, v ALUE=' " should not be used to nullify a symbolic
parameter.

Symbolic parameters that are keyword subparameters should appear in the procedure
without a preceding comma; for example:

VOLUME=SER=(111111&SERNO)

This is necessary so that, if the symbolic parameter is nullified, a leading or trailing comma
will not cause a JCL syntax error. (For a more complete discussion of this, see "Caution
Concerning Leading and Trailing Commas.")

In these cases, you must include a comma when you assign a value to the symbolic
parameter; that is:

POSPARM=' DUMMY, ,
SERNO=' ,222222'

Since the comma is a special character, the value must then be enclosed in apostrophes.

Nullifying a Symbolic Parameter

To nullify a symbolic parameter, code:

symbolic parameter=

Omit the ampersand that precedes the symbolic parameter in the procedure and do not
follow the equal sign with a value.

For example, a DD statement in an in-stream procedure named TIMES is:

//DD8 DD UNIT=3211,UCS=&UCSINFO

If you are writing the procedure and want to nullify &UCSINFO as a default on the PROC

statement, code:

//TIMES PROC UCSINFO=

If you are calling the procedure, and no default was assigned to &UCSINFO, or if
& UCSINFO was assigned a value on the PROC statement, nullify the parameter on the EXEC

statement that calls the procedure by coding:

//CALL EXEC TIMES,UCSINFO=

Caution Concerning Leading and Trailing Commas

All symbolic parameters must be assigned values or nullified before the procedure is executed.
(When you write a procedure, you can assign default values to the symbolic parameters, or the
programmer can assign values when he calls the procedure; for details, see "Assigning Values
to and Nullifying Symbolic Parameters.") When a symbolic parameter is nullified, a delimiter,
such as a leading or trailing comma, is not automatically removed. Only when the symbolic
parameter is a positional subparameter followed by other subparameters should the comma
remain. In other cases, the remaining comma will cause a syntax error.

124 OS/VS2 JCL (VS2 Release 3)

For example, you code for a unit request:

UNIT=(2314,&MORE,DEFER)

If &MORE is nullified, the comma before it must remain, since the unit count subparameter
is positional and a comma must indicate its absence if other subparameters follow. When
&MORE is nullified, the parameter will appear as:

UNIT=(2314"DEFER)

However, if you code:

VOLUME=SER=(111111,&SERNO)

and &SERNO is nullified, a leading comma will remain and cause a JCL syntax error. If a
symbolic parameter is a positional parameter followed by other parameters in the statement,
such as

//DEFINE DD &POSPARM,DSN=ATLAS,DISP=OLD

the comma will remain at the beginning of the operand field if &POSPARM is nullified and
again cause a syntax error.

In these cases, you should not code the comma. When a symbolic parameter follows
information that does not vary, such as in VOLUME=SER=(l1111l,&SERNO), you do not have
to code any delimiter. The system recognizes the symbolic parameter when it encounters the
single ampersand. For this example, you would code:

VOLUME=SER=(111111&SERNO)

When a value is assigned to the symbolic parameter, a comma must be included in the
value, that is, SERNO=',222222'. (Since the comma is a special character, the value is enclosed
in single apostrophes.

When a symbolic parameter precedes information that does not vary, a period may be
required after the symbolic parameter to distinguish the end of the symbolic parameter from
the beginning of the information that does not vary. A period is required after the symbolic
parameter when the character following the symbolic parameter is:

• An alphabetic, numeric, or national (#,@,$) character.
• A left parenthesis or a period.

The system recognizes the period as a delimiter and the period does not appear in the
procedure after the symbolic parameter is assigned a value or nullified. (A period will appear
after the value when two consecutive periods are coded.)

Therefore, you should place a period after a symbolic parameter that stands for a positional
parameter followed by other parameters in the statement:

//DEFINE DD &POSPARM.DSN=ATLAS,DISP=OLD

If &POSPARM is nullified, the statement appears as:

//DEFINE DD DSN=ATLAS,DISP=OLD

Cataloged and In-Stream Procedures 125

When assigning a value to & POSPARM, you must include a comma:

POSPARM.= ' DUMMY, ,

These rules are in effect whenever concatenating a symbolic parameter with information
that does not vary. For example, place a symbolic parameter after infoffilation that does not
vary:

• DSNAME=LIBRARY(&MEMBER)

• DSNAME=USERLIB. &LEVEL

In these examples, the system recognizes the symbolic parameter when it encounters the &.

Place a symbolic parameter before information that does not vary:

• PARM=' &OPTION+ 15' &OPTION is not followed by period because of the +.
• DSNAME= &QUAL.246 The period is required because a numeric character follows the

symbolic parameter.
• DSNAME=&LIBRARY.(MEMG) The period is required because a left parenthesis follows the

symbolic parameter.
• DSNAME= &DOCNO .. TXT The period is required because a period follows the symbolic

parameter. A single period will appear in the results.

You can also define two or more symbolic parameters in succession without including a
comma, for example, PARM=&DECK&CODE. If a comma is desired in the results, a comma
must then be included in the value assigned to the symbolic parameter.

Example of a Procedure Containing Symbolic Parameters

The cataloged procedure named TESTPROC contains the following statements:

IITESTPROC PROC
II
IISTEP EXEC
IIDD1 DD
II

A=IMB406,B=ABLE,C=3330,D=WXYZ1,
E=OLD,F=TRK,G=' 10,10,1 ,
PGM=&A
DSN=&B,UNIT=&C,VOL=SER=&D,DISP=&E,
SPACE=(&F, (&G))

To execute the above cataloged procedure with certain overrides (change DSN to BAKER,

PGM to IEFBR14, DISP to (NEW, KEEP), and leave the remainder of the parameters the same),
code the following statements:

IITESTJOB
IISTEPX

JOB
EXEC

"MSGLEVEL=(1,1),PERFORM=25
TESTPROC,A=IEFBR14,B=BAKER,E=(NEW,KEEP)

After the symbolic substitution, the statements will look like the following:

IISTEP
IIDD1
II

EXEC
DD

PGM=IEFBR14
DSN=BAKER,UNIT=3330,VOL=SER=WXYZ1,
DISP=(NEW,KEEP),SPACE=(TRK,(10,10,1))

To execute the above cataloged procedure and change DOl to resemble a temporary scratch
space.

IITESTJOB
IISTEPX

JOB
EXEC

"MSGLEVEL=(1,1),PERFORM=25
TESTPROC,A=IEFBR14,B=,C=2314,D=,E=

After the symbolic substitution, the statements will look like the following:

II STEP
IIDD1

EXEC
DD

126 OS/VS2 JCL (VS2 Release 3)

PGM=IEFBR14
DSN=, UNIT=2314, VOL=SER=, DISP=, SPACE=:(TRK, (10, 10, 1))

Coding JCL Statements

There are certain rules common to all parameters. Syntax rules define how to code each
parameter; that is, what is required or optional for the specific purpose or process you are
requesting. Certain fields on the control statements are common to most parameters, such as,
the name field, the operation field,and the operand field. Special characters can be coded on
the parameters if you follow guidelines established in the rules for coding.

Notation for Defining Control Statement Parameters
The formats of the parameters described in this publication for the JOB, EXEC, DO, JES2, and
JES3 statements appear at the beginning of the chapter on the corresponding parameter.
Notations used in the format descriptions are described below.

1. Uppercase letters and words are coded on the control statement exactly as they appear
in the format description, as well as the following characters:

ampersand &
asterisk *
comma
equal sign
parenthesis 0
period

2. Lowercase letters, words, and symbols appearing in the format description represent
variables for which specific information is substituted when the parameter is coded.

For example, CLASs=jobclass is the format description for the CLASS parameter. When
you code the CLASS parameter on a JOB statement, you substitute a number for the
word "jobclass".

3. Braces {} are a special notation and are never coded on a control statement. Braces are
used to group related items; they indicate that you must code one of the items.

{

TRK } is part of the format description for the SPACE parameter.
CYL
block size

For example,

When coding the SPACE parameter, you must code either T~K, CYL, or a substitute for
"block size", which would be a number.

4. Brackets [] are a special notation and are never coded on a control statement. Brackets
indicate that the enclosed item or items are optional and you can code one or none of
the items.

For example, [,DEFER] is part of the format description for the UNIT parameter. When
you code the UNIT parameter, you can include ,DEFER in the UNIT parameter or omit it.

An example of more than one item enclosed in brackets is

r EXPDT=yydddl
L RETPD==nnnn J

which is part of the format description for the LABEL parameter. When coding the LABEL
parameter, you can include either EXPDT=yyddd or RETPD=nnnn in the LABEL
parameter or omit both.

Coding JCL Statements 117

Sometimes, one of a group of items enclosed in brackets is a comma. Code the comma
when none of the other items in the group is used and a following part of the parameter
is still to be coded.

For example, [progname] [,form number]

is part of the format description for the SYSOUT parameter. When you code the SYSOUT
parameter, you have the option of coding both "progname" and ",form number",
omitting both, or coding only one. The comma enclosed in brackets with" ,progname"
must be coded when" ,progname" is not coded but" ,form number" is coded; that is, you
would code: "form number.

5. An ellipsis ... (three consecutive periods) is a special notation and is never coded on a
control statement. An ellipsis is used to indicate that the preceding item can be coded
more than once in succession.

For example, COND=((code,operator), ...) is the format description for the COND
parameter on the JOB statement. The ellipsis indicates that (code,operator) can be
repeated.

6. Two consecutive periods (..) are used to concatenate symbolic parameters to other
information. For example, &DEPT .. MACS is the symbolic parameter. &DEPT=D58.
Therefore, the actual value is D58MAC.

Fields in JCL Control Statements
Every control statement is logically divided into different fields. There are four fields - name
field, operation field, operand field, comments field - but not all of the control statements
can contain all of these fields. Figure 17 shows the fields for each statement.

JOB

EXEC

DD

Statement

PROC (cataloged)

PROC (in - stream)

PEND

Command

Delimiter

Null

Statement

Comment

1 Optional

Columns 1 and 2

II
II
II
II
II
II
II
1*
II

Columns 1, 2, 3

11*

Fields

name operation (JOB) operand 1 comments 2

name' operation (EXEC) operand comments 2

name' operation (DD) operand comments 2

name' operation (PROC) operand comments 2

name operation (PROC) operand 1 comments 2

name' operation (PEND) comments 1

operation (command) operand comments 2

comments 1

Field

comments

'-

2 Optional -- If operand
If operand

(s) are not coded, comments cannot be coded.
(s) are coded, comments are optional.

--
Figure 17. JCL Control Statement Fields

The name field identifies the control statement so that other statements and system control
blocks can refer to it. The name field is 1 to 8 alphameric and national ('#,@,$) characters;
the first character must be alphabetic or national. The name field must begin in column 3.

128 OS/VS2 JCL (VS2 Release 3)

The operation field specifies the type of control statement, or, in the case of the command
statement, the command. The operation field must follow the name field and must be preceded
and followed by at least one blank.

The operand field contains parameters separated by commas. The operand field must follow
the operation field and must be preceded and followed by at least one blank. The operand
field is described in more detail in the next chapter "Parameters in the Operand Field."

The comments field contains any information deemed helpful by the person who codes the
control statement. The comments field must follow the operand field and must be preceded by
at least one blank. The operand field can be continued; it does not have to be completed
before you add the comments field.

Control statement fields - except the name field, which must begin in column 3 - can be
coded in free form. Free form means that the fields need not begin in a particular column.
Separate each field with a blank; the blank serves as a delimiter between fields.

Except for the comment statement, which can be coded through column 80, fields cannot be
coded past column 71. If the total length of the fields will exceed 71 columns, you must
continue the fields onto one or more succeeding statements. How to continue fields is
described under "Continuing Control Statements."

Parameters in the Operand Field
The operand field is made up of two types of parameters: one type is characterized by its
position in the operand field in relation to other parameters (a positional parameter); the other
type is positionally independent with respect to others of its type, and is characterized by a
keyword followed by an equal sign and variable information (a keyword parameter). Both
positional parameters and the variable information associated with keyword parameters can
assume the form of a list of several items (subparameters) of information.

All positional and keyword parameters and subparameters coded in the operand field must
be separated from one another by commas.

Positional parameters must be coded first in the operand field in a specific order. The absence
of a positional parameter is indicated by a comma coded in its place. However, if the absent
parameter is the last one, or if all later positional parameters are also absent, you need not
code replacing commas. If all positional parameters are absent from the operand field, you
need not code any replacing commas.

Keyword parameters can be used anywhere in the operand field with respect to one another.
Because of this positional independence, you need not indicate the absence of a keyword
parameter.

A positional parameter or the variable information in a keyword parameter sometimes
assumes the form of a list of subparameters. Such a list may be composed of both positional
and keyword subparameters that foHow the same rules and restrictions as positional and
keyword parameters. You must enclose a subparameter list in parentheses, unless the list
reduces to a single subparameter.

The EXEC statements and DD statements in cataloged procedures can contain one other
type of parameter - a symbolic parameter. A symbolic parameter is characterized by a name
preceded by an ampersand (&); a symbolic parameter stands as a symbol for a parameter, a
subparameter, or a value. Symbolic parameters allow you to make any information in the
operand field of a procedure EXEC statement or DD statement variable. A value to be assumed
by a symbolic parameter may be coded on the EXEC statement that calls the procedure. This
value is in effect only while the procedure is being executed. For a detailed discussion on how
to use symbolic parameters in a set of control statements that you plan to catalog as a
procedure, refer to the section "Using Symbolic Parameters."

Coding JCL Statements 129

Continuing Control Statements
When the total length of the fields on a control statement will exceed 71 columns, you must
continue the fields onto one or more succeeding statements.

The command, comment, delimiter, and null statements cannot be continued.

You can continue the operand field or the comments field of other JCL statements. To
continue either of these fields, you must follow the continuation conventions.

To continue the operand field:

1. Interrupt the field after a complete parameter or subparameter, including the comma that
follows it, at or before column 71.

2. Comments can be included by following the interrupted field with at least one blank.

3. Code a non blank character in column 72 when you are continuing a comments field.
Optionally, code any nonblank character in column 72 for all other continued
statements. If you do not code a character in column 72 when continuing the operand
field, the system treats the next statement as a continuation statement as long as you
follow the conventions outlined in items 4, 5, and 6.

4. Code the identifying characters / / in columns 1 and 2 of the following statement.

5. Continue the interrupted operand beginning in any column from 4 through 16. If you
begin coding after column 16, the system assumes that no other operands are present
and treats any characters you code as a comment field.

6. If there is a nonblank in column 3, the system assumes that this is a new statement. The
job fails and an error message is issued saying no continuation is found.

To continue the comments field:

1. Interrupt the comment at a convenient place before column 72.
2. Code a nonblank character in column 72.
3. Code the identifying characters / / in columns 1 and 2 of the following statement.
4. Continue the comments field beginning in any column after column 3.

Any control statements in the input stream, other than a comment statement, that the
system considers to contain only comments have / / * in columns 1 through 3 on an output
listing. Any control statements in a cataloged procedure, other than a comment statement, that
the system considers to contain only comments have XX* in columns 1 through 3 on an
output listing. For a comment statement, *** appears in columns 1 through 3 on an output
listing. Any control statements in an instream procedure show + + in columns 1 and 2 of an
output listing.

130 OS/VS2 JCL (VS2 Release 3)

Character Sets
Job control statements are coded using a combination of the characters from three different
character sets. The contents of each of the character sets are described in Figure 18.

Character Set Contents

Alphameric Alphabetic A through Z

Numeric 0 through 9
~. -' -" .. -~-, ",-- --- -

"At" sign @

National Dollar sign $

Pound sign #
.. -

Comma ,
Period

Slash /
Apostrophe I

Left parenthesis (

Special Right parenthesi s)

Asterisk *
Ampersand &

Plus sign +

Hyphen -
Equal sign =

Blank

Figure 18. Character Sets

When coding any special characters, certain rules must be followed. These rules and the use
of special characters are described next.

Using Special Characters
Special characters are used in the job control language to:

1. Delimit parameters (the comma).

2. Delimit fields (the blank).

3. Perform syntactical functions. (For example, the appearance of & & as the first two
characters following DSNAME= tells the system that a temporary data set name follows.
The appearance of / in the UNIT parameter, UNIT=293/5, tells the system that a
specific device is desired.)

Sometimes you can code a special character that does not satisfy one of the three uses of
special characters. In most of these cases, indicate that special characters are being used by
enclosing the item that contains the special characters in apostrophes (5-8 punch), for
example, ACCT='123+456'. If one of the special characters is an apostrophe, you must code
two consecutive apostrophes (two 5-8 punches) in its place, for example, 'O"NEILL'.

Coding JCL Statements 131

The following list contains those parameters that can have special characters as part of their
variable information, and indicates when the apostrophes are not required.

1. The accounting information on the JOB statement. The account number and additional
accounting information can contain hyphens without being enclosed in apostrophes.

2. The programmer's name on the JOB statement. The programmer's name can contain
periods without being enclosed in apostrophes.

3. The checkid field in the RESTART parameter on the JOB statement may contain an *.
4. The ACCT parameter on the EXEC statement. The ACCT parameter can contain hyphens

and plus zero without being enclosed in apostrophes.

5. The PARM parameter on the EXEC statement may contain an ampersand for symbolic
parameters.

6. The DSNAME parameter on the DD statement. The DSNAME parameter can contain
hyphens without being enclosed in apostrophes. If the DSNAME parameter contains a
qualified name, it can contain periods without being enclosed in apostrophes. If the DD

statement identifies a generation of a generation data group, the generation number in
the DSNAME parameter can contain a plus or minus (hyphen) sign without being
enclosed in apostrophes. If the DD statement defines a temporary data set, the DSNAME

parameter can contain, as the first two characters, ampersands without being enclosed in
apostrophes. If the DD statement defines a member of a partitioned data set, a
generation of a generation data group, or an area of an indexed sequential data set, the
DSNAME parameter contains parentheses that enclose the member name, generation
number, or area name; these parentheses are not enclosed in apostrophes.

7. The volume serial number in the VOLUME parameter on the DD statement. The volume
serial number can contain hyphens without being enclosed in apostrophes.

132 OS/VS2 JCL (VS2 Release 3)

The JOB Statement 4
Control Statement

The JOB statement marks the beginning of a job and, when jobs are stacked in the input
stream, marks the end of the control statements for the preceding job.

(/ /jobname JOB operands comments

The JOB statement consist of the characters / / in columns 1 and 2, and four fields - the
name, operation (JOB), operands, and comments fields.

Rules for Coding

• Code a JOB statement for each job. Code a unique jobname in every JOB statement. The
jobname must consist of 1 through 8 alphameric and national (#,@,$) characters; the first
character must be alphabetic or national.

• The are two types of parameters that can be coded on the JOB statement:

Positional parameters, which must precede any keyword parameters and must be coded in the
following order.

accounting information
programmer's name

Keyword parameters, which can be coded in any order after the positional parameters. Any of
the following keyword parameters can be coded on the JOB statement.

ADDRSPC
CLASS
COND
MSGCLASS
MSGLEVEL
NOTIFY
PERFORM
PRTY
RD
REGION
RESTART
TIME
TYPRUN

• All parameters in the operand field are optional unless the account number and
programmer's name parameters are required by the installation.

• If you code no parameters in the operand field of the JOB statement, code no comments.

Sample JOB Statements

//ALPHA

//LOS

//MART

JOB

JOB

JOB

//TRY8 JOB

843,LINLEE,CLASS=F,MSGLEVEL=(1,1)

,BROWNLY,TIME=(4,30),MSGLEVEL=(2,O)

1863,RESTART=STEP4

The JOB Statement 133

The Accounting Information Parametef.-positional, optional (according to
installation procedures)

The accounting information parameter identifies an account number and any information that
may be required by the installation.

For information on how to add accounting facilities, refer to OS/VS System Management
Facilities (SM n, GC35-0004.

([account LUmber) [I addi tional accounting information I •••])

General Rules for Coding

• This field may also contain JES2 parameters similar to those on the JOBPARM control
statement 10 maintain compatability with HASP.

• When accounting information consists of more than one item, enclose the information in
either parentheses or apostrophes, for example, (5438,GROUP6) or '5438,GROUp6'. If you
use apostrophes, all accounting information enclosed in the apostrophes in considered as one
field.

• If you code an ampersand or an apostrophe as part of the accounting information, you must
code them as double characters. For example, '2570" AB'.

• The accou:~t number and other accounting information must not exceed 142 characters in
total, including the commas that separate the items.

• If you mu:-,i. continue the accounting information on another statement, enclose the
information in parentheses.

Special Characters

• If any of tae included items contain special characters (except hyphens), either:
-Enclose the accounting information in apostrophes.
-Enclose the item in apostrophes and the accounting information in parentheses. The
enclosing apostrophes are not considered part of the information. If an apostrophe is part of
the data, {')de two consecutive apostrophes.

• If one of the special characters is an ampersand or apostrophe and you are not defining a
symbolic parameter, code two consecutive ampersands or apostrophes in its place.

Examples of the Accounting Information Parameter
//JOB43 JOB D548-8686

//JOB44 JOB (D548-8686,'12/8/73' ,ERICKSON)

Accounting number plus additional information; parentheses are required.

134 OS/VS2 JCL (VS2 Release 3)

The ADDRSPC Parametef.-keyword, optional

The ADDRSPC parameter indicates whether or not job can be paged.

For further information on the ADDRSPC parameter, see "Requesting Storage."

ADDRSPC=
{

VIRT}
REAL

VIRT

a keyword indicating that the job can be paged.
REAL

a keyword indicating that the job cannot be paged.

Default: If you omit the ADDRSPC parameter, the default is VIRT, unless the installation has
changed the default.

General Rules for Coding

• The ADDRSPC parameter coded on a JOB statement will override any ADDRSPC parameter
coded on an EXEC statement for that job.

• Requests for real and virtual storage can be made in the same job. Each step will honor the
request for either real or virtual storage if there is no ADDRSPC parameter on the JOB
statement.

Rule for Coding when Using Real Storage

Code the REGION parameter to specify how much real storage is needed.

Rule for Coding when Using Virtual Storage

The installation provides a default region size if the REGION parameter is not specified when
ADDRSPC=VIRT is coded. If the REGION parameter is coded, the value sets the upper
boundary to limit region size for variable-length GETMAINs. If the value is exceeded, the job
or job step win abnormally terminate.

Examples of the ADDRSPC Parameter

IIPEH JOB , BAKER, ADDRSPC=VIRT

The ADDRSPC parameter requests virtual storage. Since the address space requested is virtual,
the area size available to the user is the entire private address space.

IIDEB JOB ERIC,ADDRSPC=REAL,REGION=100K

The ADDRSPC parameter requests real storage. The REGION parameter specifies the
amount; in this case, lOOK.

The JOB Statement 135

acct
AD[

The CLASS Parametef.-keyword, optional

The CLASS parameter assigns a job class to each job, depending on the characteristics of the
job and the installation's rules for assigning a job class.

For further information on the use of the CLASS parameter, see "Assigning a Job to a Job
Class."

CLASS=jobclass

jobclass
any character A-Z or 0-9, defined by the installation.

Default: Determined by the source of the job; that is, the particular card reader or work
station, or whether the job was submitted by a time-sharing user. JES2 and JES3 use the
installation-defined default.

When Coding JES3

A valid CLASS parameter on the JES3 MAIN statement overrides a valid CLASS parameter on
the JOB statement.

Example of the CLASS Parameter

//SETUP JOB 1249,CORNER,CLASS=M

This job is assigned to class M.

136 OS/VS2 JCL (VS2 Release 3)

The COND Parametef.-keyword, optional

The COND parameter specifies whether a job will continue processing based on return codes
issued by one or more of its job steps. Each test specified by the COND parameter is
performed using the return code of a completed job step. If any of the tests are satisfied, the
remaining job steps are bypassed and the job is terminated.

For further information on the use of the COND parameter, see "Conditional Execution of
Job Steps."

COND=((code,operator), ...)

code
a decimal number from 0 through 4095. This number is compared with the return code
issued by each job step.

operator
the type of comparison to be made with the return code. Operators and their meanings are:

GT ... greater than
GE ... greater than or equal to
EQ ... equal to
NE ... not equal to
LT .. .less than
LE .. .less than or equal to

Rilles for Coding

• If you code only one return code test, you need not code the outer parentheses.
• You can code up to eight different return code tests for each job. If specifying more than

eight tests, a JCL error message is issued and the job abnormally terminates.
• If you code the COND parameter on the JOB statement and on one or more of the job's

EXEC statements, the return code tests requested on the JOB statement take precedence over
those requested on the EXEC statements. Therefore, any return code test requested on the
JOB statement that is satisfied causes termination of the job, even if the return code test is
not satisfied for a particular step.

Examples of the COND Parameter

//TYPE JOB (611,402),BOURNE,COND=(7,LT)

If 7 is less than the return code, the job is terminated. (Any return code less than or equal to
7 allows the job to continue.)

//TEST JOB 501,BAXTER,COND=((20,GE),(30,LT))

If 20 is greater than or equal to the return code, or 30 is less than the return code, the job
is terminated. (Any code of 21 through 30 allows the job to continue.)

The JOB Statement 137

c
o

The MSGCLASS Parametef.-keyword, optional

The MSGCLASS parameter specifies the output class to which system messages and JCL

statements for the job are to be written.

For further information on use of the MSGCLASS parameter, see "Obtaining Output" for
either JES2 or JES3.

MSGCLASS=output class

output class
an alphabetic (A-Z) or numeric (0-9) character.

Default: Determined by the source of the job; that is, the particular card reader or work
station, or whether the job was submitted by a time-sharing user.

Rule for Coding

System messages and output data sets can be routed to the same output class. To do this, code
the same output class in both the MSGCLASS parameter on the JOB statement and the SYSOUT

parameter on the DO statements for the data sets. Or, code SYSOUT=* on all DD statements
for the SYSOUT data sets you want to default to the MSGCLASS output class of the job.

Examples of the MSGCLASS Parameter

//IN JOB GEORGE,MSGCLASS=F

Specifies an output class.

//BOTLE JOB MENTLE,MSGLEVEL=(2,O)

Specifies no output class. In this case, the output class will default to the MSGCLASS value
specified by your installation.

//A1403
//STEP1
//OUTPUT

JOB
EXEC
DD

MSGCLASS=L
PGM=PRINT
SYSOUT=L

Specifies that a job's system messages MSGCLASS parameter and output data set SYSOUT

parameter are to be routed to the same output class.

138 OS/VS2 JCL (VS2 Release 3)

The MSGLEVEL Parameter-keyword, optional

The MSGLEVEL parameter indicates what job output is to be written clS part of the output
listing. The following output can be requested:

• The JOB statement
• All input job control statements
• All cataloged procedure statements for procedures called by any 0, the job's steps and the

internal representation of procedure statement parameters after sy,ubolic parameter
substitution.

• Allocation, disposition, and allocation recovery messages (allocatio ~1/ termination messages.)

For further information on the MSGLEVEL parameter, see "Obtair"ng Output" for either
JES2 or JES3.

MSGLEVEL=([statements] , [messages])

statements

a number that indicates which job control statements are to be wr:tten as output from a job.
The choices are:

o only the JOB statement is to be written.
1 all input job control statements, cataloged procedure statements, and the internal

representation of procedure statement parameters after symboli parameter substitution
are to be written.

2 only input job control statements are to be written.

messages
a number that indicates what allocation/termination messages are ,0 be written.
Choices are:

o no allocation/termination messages are to be written, unless th~ job terminates
abnormally.

1 allocation/termination messages are to be written.

Default: For JES2, it is associated by job class and for JES3, it is ass,·ciated by the operator
with the particular reader.

Rille lor Coding

If the second (messages) subparameter is omitted, you do not need t, I code the parentheses.

Examples 01 the MSGLEVEL Parameter
I //GD40 JOB GEORGE,MSGLEVEL=(2,1)

Requests that only input statements and all allocation/termination ill ssages be written.

//PAUL JOB MENTLE,MSGLEVEL=O

Requests that only the JOB statement be written.

The JOB Statement 139

MSGCL
MSGLE

The NOTIFY Parameter-keyword, optional

The NOTIFY parameter is used to request that a message be sent to a user's time-sharing
terminal when his background job has completed processing.

NOTIFY=user identification

user identification
a 1 to 7 alphameric identification of the user to be notified. The first character must be
alphabetic.

Rules for Coding

• Code the same user identification that you specify when you start a terminal session (at
LOGON).

• Receiving notification that the job has completed processing. For JES2, if you are logged on to
any processor, you will be immediately notified when the job completes. If you are not
logged on, the message will be saved and presented when you log on to the system you
originally submitted the job from. For JES3, if you are logged on to the processor you
submitted the job from, you will be notified when it completes. If you are not logged on,
the message will be saved and presented when you log on to the system you originally
submitted the job from.

Example of the NOTIFY Parameter

//SIGN JOB NOTIFY=POK1,MSGLEVEL=(2,1)

When the job "SIGN" has completed processing, a message will be sent to the user "POK 1"

informing him that his job has completed processing.

140 OS/VS2 JCL (VS2 Release 3)

The PERFORM Parametef.-keyword, optional

The PERFORM parameter specifies the performance group definition with which a job is
associated.

For information on the performance groups, see "Performance of Jobs and Job Steps" for
either JES2 or JES3.

PERFORM=n

n
a number between 1 and 255 inclusive, identifying a performance group that has been
defined by the installation.

Default: The interpreter will obtain a default from the system resources manager and issue a
warning message indicating a system default is set.

• For non-TSO jobs, the IBM-supplied default is one (1).
• For TSO jobs, the IBM-supplied default is two (2).
• If PERFORM is specified on the JOB statement, its value will supersede any PERFORM

specifications on EXEC statements associated with the job.
• If an invalid performance group is specified, the interpreter will obtain a default from the

system resources manager and issue a warning message indicating nonverification and
default substitution.

• If no PERFORM parameter appears on the JOB statement and a PERFORM parameter appears
on an associated EXEC statement, the parameter value appearing on the EXEC statement will
be used during the associated job step.

• If no PERFORM parameter appears on either the JOB or EXEC statements for batch jobs, the
performance group default is one.

Example of the PERFORM Parameter

//STEP1 JOB MARLA,CLASS=D,PERFORM=25

Class D determines in which class the job will be executed. Once in the system, the job will
run in performance group 25. The significance of this performance group is defined by the
installation.

The JOB Statement 141

NOTIF
PERF<

Programmer's Name Parametef.-positional, optional (according to installation
procedures)

The programmer's name parameter identifies the person or group responsible for a job.

programmer's name

Rules for Coding

• If the programmer's name parameter is coded, place it after the accounting information
parameter.

• Code the pmgrammer's name parameter before any or all keyword parameters.
• The programmer's name must not exceed 20 characters, including all special characters.
• When the programmer's name contains special characters, other than periods, enclose the

name in ap,)strophes. If the special characters include apostrophes, each apostrophe must be
coded as two consecutive apostrophes.

• If the programmer's name parameter is not required, you need not code a comma to
indicate its absence.

Examples of the Programmer's Name Parameter

//APP JOB ,C.L.BROWN

Programmer's name, no accounting information.

//DELTA JOB 'T.O' 'NEILL'

Programmer'~ name containing special characters, no accounting information required. (The
leading comnu may be optional. Check with your installation.)

//#308 JOB (846349,GROUP12),GREGORY

Account numher plus additional accounting information and programmer's name.

142 OS/VS2 JCL (VS2 Releas(~ 3)

The PRTY Parametef.-keyword, optional (JES3 only)

The PRTY parameter specifies a job's initiation or selection priority within its job class group.
(For ASP main processors, when the job is initiated, the system will convert the job's priority
into dispatching priority so that the job's tasks can compete with other tasks for use of main
storage and CPU resources.)

For further information, see "Routing a Job Through the System (JES3 only)".

PRTY=priority

priority
a number from 0 to 14 indicating a job's priority. The highest priority is 14.

Default: Installation default.

Rule for Coding

If the priority value is not between 0 and 14, a JCL error will occur.

Examples of the PRTY Parameter

//#1930 JOB RICHARDSON,CLASS=C,PRTY=8

The job will have an initiation priority of 8 in the job class C.

//RING JOB WILLIAMS,PRTY=4

The job will have an initiation priority of 4.

The JOB Statement 143

prog n

PRTY

The RD Parametef.-keyword, optional

The RD (restart definition) parameter specifies how the step restart facilities are used with the
CHKPT macro instruction, and whether automatic restart is permitted or suppressed.

For detailed information on the checkpoint/restart facility, refer to OS/VS
Checkpoint/Restart GC26-37 84.

RD=IR I RNC
NC
NR

R

indicates that automatic step restart is permitted.
If the processing program used by a job step does not include a CHKPT macro instruction,
coding RD=R allows execution to be resumed at the beginning of the abnormally terminated
step.

If the program does include a CHKPT macro instruction, coding RD=R permits automatic
step restart if the step abnormally terminates before execution of the CHKPT macro
instruction; thereafter, only checkpoint restart can occur.

If you cancel the effects of the CHKPT macro instruction before a checkpoint restart is
performed, the request for automatic step restart is again in effect.

RNC

NC

NR

indicates that automatic step restart is permitted and automatic and deferred checkpoint
restart are not permitted.

indicates that automatic step restart and automatic and deferred checkpoint restart are not
permitted.

indicates that a CHKPT macro instruction can establish a checkpoint, but neither automatic
step restart nor automatic checkpoint restart is permitted. Coding RD=NR allows you to
resubmit the job at a later time and specify in the RESTART parameter, (on the JOB

statement of the resubmitted job) the checkpoint at which execution is to be resumed.

Rules for Coding

• Automatic restart will not be honored if you do not have a job journal (a job journal is an
initialization option).

• Even if you do not code the RD parameter, the job is eligible for automatic
checkpoint/restart if checkpoints have been issued. However, the job is not eligible for
automatic step restart.

• If you code the RD parameter on the JOB statement, any RD parameters coded on the job's
EXEC statements are ignored and the value coded on the JOB statement is effective for all
steps.

• The RD parameter values NC and RNC can be used to suppress the action of the CHKPT

param~ter.

144 OS/VS2 JCL (VS2 Release 3)

Examples of the RD Parameter

//JILL JOB 333,ERIC,CLASS=C,RD=R,MSGLEVEL=(1,1)

Permits execution to be automatically restarted with a step that abnormally terminates.

//TRY56 JOB 333,ERNEST,RD=RNC,MSGLEVEL=(1,1)

Permits execution to be automatically restarted beginning with a step that abnormally
terminates; suppresses the action of CHKPT macro instruction.

//PASS JOB (721,994),PEOPLE,RD=NR,MSGLEVEL=(O,1)

Neither automatic step nor checkpoint restart can occur, but CHKPT macro instruction can
establish checkpoints.

The JOB Statement 145

The REGION Parameter-keyword, optional

The REGION parameter specifies the amount of real address space to be allocated to a job.

For further information on the REGION parameter, see "Requesting Storage."

REGION=valueK

valueK
a number that indicates how many bytes of storage are to be allocated to a job.

Default: the installation-defined default; by job class in JES2 and operator with the particular
reader in JES3.

General Rules for Coding

• Code an even number. (If you code an odd number, the system treats it as the next highest
even number.)

• When you want to specify a different region size for each job step, code the REGION

parameter on the EXEC statements, instead of the JOB statement.
• If you code the REGION parameter on the JOB statement, REGION parameters coded on the

job's EXEC statements are ignored.

Rul(! for Coding when Using Virtual Storage

The installation provides a default region size if the REGION parameter is not specified when
ADDRSPC=VIRT is coded. If the REGION parameter is coded, the value sets the upper
boundary to limit region size for variable-length GETMAINS. If the value is exceeded, the job
or job step will abnormally terminate.

Examples of the REGION Parameter
//SANDY JOB A23,COFFEE,REGION=100K,ADDRSPC=REAL

lOOK of real storage will be assigned.

//ACCT4 JOB 175,FRED,REGION=250K

The REGION parameter will be ignored for a job that can be paged and the entire private
address space will be assigned unless you have variable-length GETMAIN requests. In that case,
the REGION parameter value (250K) will be used as a maximum value for each variable-length
GETMAIN request.

146 OS/VS2 JCL (VS2 Release 3)

The REST ART Parametef.-keyword, optional

The RESTART parameter indicates that the restart facilities are to be used to resubmit a job for
execution. Execution can be restarted at the beginning of a step (step restart) or within a step
(checkpoint restart).

For detailed information on the checkpoint/restart facilities, refer to OS/VS
Checkpoint/Restart, GC26-3784.

-- -_. ----
RESTART=(

1* I
[, checkid])

stepname
stepname.procstepname

*
indicates that execution is to be restarted at or within the first job step.

stepname
specifies that execution is to be restarted at or within the named job step.

stepname.procstepname
specifies that execution is to be restarted at or within a cataloged procedure step. Stepname
is the name of the job step that calls the cataloged procedure, and procstepname is the
name of the procedure step.

checkid
specifies the name of the checkpoint at which execution is to be restarted. When checkid is
coded, execution is restarted within the specified job step at the named checkpoint. If
checkid is not coded, execution is restarted at the specified job step.

Rules for Coding

• Code * in place of stepname. procstepname if the first job step calls a cataloged procedure
and execution is to be restarted at or within the first procedure step.

• The first character of step name must be alphabetic.
• You need not code the parentheses if execution is to be restarted at a job step; that is, if

you do not code the checkid subparameter.
• If the checkpoint name contains special characters, the name must be enclosed in

apostrophes. If one of the special characters is an apostrophe, identify it by coding two
consecutive apostrophes in its place.

• Include the SYSCHK DD statement when execution is to be restarted within a job step. (The
SYSCHK DD statement is described in the section on DDstatements in this publication.)

• Before resubmitting a job, check all backward references to steps that precede the restart
step. Eliminate all backward references for the following keywords: PGM and COND on the
EXEC statements, and VOLUME=REF=reference on the DD statements. A backward
reference of VOLUME=REF=reference is allowed if the statement to which reference is
made includes VOLUME=SER=(serial number, ...).

Generation Data Sets

In the restart step or in steps following it, do not use the original relative generation numbers
to refer to generation data sets that were created and cataloged in steps preceding the restart
step. Instead, refer to a generation data set by its present relative generation number. For
example, if the last generation data set created and cataloged was assigned a generation
number of + 2, refer to it as 0 in the restart step and in steps following the restart step. In this
case, refer to the generation data set assigned a generation number of + 1 as -1.

The JOB Statement 147

REGI
RESl

If generation data sets created in the restart step were kept instead of cataloged (that is
,DISP=(NEW,CATLG,KEEP) was coded and abnormal termination occurred), refer to generation
data sets during checkpoint restart by the same relative generation numbers that were used to
create them.

Examples of the RESTART Parameter

//LINES JOB RESTART=COUNT

Specifies that execution is to be restarted at the job step name COUNT.
I

//@LOC5
//SYSCHK

JOB
DD

RESTART=(PROCESS,CHKPT3)
DSN=CHK,UNIT=3330,DISP=OLD

Specifies that execution is to be restarted within the job step named PROCESS at the
checkpoint named CHKPT3. This JOB statement must be followed by a DD statement named
SYSCHK, which defines the data set on which an entry for the checkpoint name CHKPT3 was
written.

//WORK
//SYSCHK.

JOB
DD

RESTART=(*,CKPT2)
DSNAME=CHKPT,UNIT=3330,DISP=OLD

Specifies that execution is to be restarted at the checkpoint name CKPT2 in the first job
step. This JOB statement is followed by a DD statement name SYSCHK, which defines the data
set on which an entry for the checkpoint name CKPT2 was written.

//CLIP5
//SYSCHK

JOB
DD

RESTART=(PAY.WEEKLY,CHECK8)
DSN=CHKPT,UNIT=2314,DISP=OLD

Specifies that execution is to be restarted within the procedure step named WEEKLY at the
checkpoint name CHECK8. PAY is the name of the job step that calls the cataloged procedure
that contains the procedure step named WEEKLY. This JOB statement must be followed by a
DD statement named SYSCHK, which defines the data set on which an entry for the checkpoint
named CHECK8 was written.

148 OS/VS2 JCL (VS2 Release 3)

The TIME Parametef.-keyword, optional

The TIME parameter specifies the maximum amount of time that a job may use the CPU. The
CPU time used by the job is written on the output listing.

TIME=

minutes

{
([minutes] , [seconds])}
1440

a number that specifies the maximum number of minutes the job can use the CPU. The
number of minutes must be less than 1440 (24 hours).

seconds
a number that specifies the maximum number of seconds beyond the specified number of
minutes the job can use the CPU, or if no minutes are specified, the maximum number of
seconds the job can use the CPU. The number of seconds must be less than 60.

1440.
specifies that the job is not to be timed.

Default: For JES2, it is associated by job class and for JES3, it is associated by the operator
with the particular reader.

Rules lor Coding

• If you code the CPU time limit in minutes only, you need not code the parentheses. If you
code the CPU time limit in seconds only, code a comma preceding the seconds to indicate
the absence of minutes.

• Code 1440 if the job can use the CPU for 24 hours or more or if any of the job's steps
should be allowed to remain in a wait state for more than the established time limit.

• A job that exceeds the specified limit causes termination of the job unless you use a user
exit routine to extend the time.

• TIME=O is not supported. Results are unpredictable when used on the JOB statement.

Examples 0/ the TIME Parameter

//SEED JOB TIME=(12, 10)

Specifies that the maximum amount of time the job can use the CPU is 12 minutes, 10
seconds.

//TYPE41 JOB TIME=(,30)

Specifies that the maximum amount of time the job can use the CPU is 30 seconds.

//PORMS JOB TIME=5

Specifies that the maximum amount of time the job can use the CPU is 5 minutes.

//RAINCK JOB TIME=1440

Specifies that the job is not timed. Therefore, the job may use the CPU and may remain in
wait state for an unspecified period of time.

The JOB Statement 149

RE~

TIN

The TYPRUN Parameter--keyword, optional

The Ty'PRUN parameter specifies special JES2 and JES3 processing. The operator must be
informed of what event is to occur. When the event has occurred, the operator releases the job
from hold status, thereby allowing it to be selected for processing. The TYPRUN parameter can
also specify that the JCL for a job be scanned for syntax errors and, for JES2, that the input
deck is converted directly to a SYSOUT data set and scheduled for output processing.

For further information on the TYPRUN parameter, see "Delaying Job Initiation" and
"Bypassing Job Initiation."

----_._-----------------------

~ HOLD ~ TYPRUN= SCAN
COpy

HOLD
specifies that the job is to be held in the input queue until the operator releases the job.

SCAN
specifies that the JCL for a job is to be scanned for syntax errors but that the job is not to
be executed. For example, SCAN will check for invalid keywords, illegal characters, and
parentheses errors. SCAN will not check for parameter value errors or excessive parameters
in JES2 but will check for these in JES3.

COPY

(For JES2 only) specifies that the input deck (as submitted) is converted directly to a
SYSOUT data set and scheduled for output processing. The class of the SYSOUT data set is
the same as the message class of the job and can be controlled by the MSGCLASS

parameter. This feature is available in JES3 by using nonstandard job processing. See
OSjVS2 System Programming Library: Job Management, GC28-0627, for information
concerning nonstandard job processing.

Example of the TYPRUN Parameter

//UPDATE JOB

//LIST JOB TYPRUN=HOLD

Jobs UPDATE and LIST are to be submitted for execution. The job UPDATE uses a program
that adds and deletes members to a library; the job LIST uses a program that lists the members
of a library. For an up-to-date listing of the library, UPDATE must be executed before LIST.

This is accomplished by coding TYPRUN=HOLD on the JOB statement for the job named LIST.

If a MONITOR JOBNAMES command is issued by you or the operator, the operator is notified
on the console when UPDATE has completed processing. The operator releases LIST, which can
then be selected for execution.

150 OS/VS2 JCL (VS2 Release 3)

The EXEC Statement

Control Statement

The EXEC statement is the first statement of each job step and cataloged procedure step. It
identifies the program to be executed or the cataloged procedure to be called.

(ilstepname EXEC operands comments

The EXEC statement consists of the characters / / in columns 1 and 2 and four fields - the
name, operation (EXEC), operand, and comments fields.

General Rules for Coding

• Code an EXEC statement for each job step.
• A stepname is optional. However, when you want to perform certain functions, you should

code a valid and unique stepname in the name field for each job step within the job. A
step name is necessary to:
• Make backward references to the step.
• Override parameters on an EXEC statement or DO statement in a cataloged procedure

step, and add DO statements to a cataloged procedure step.
• Perform a step or checkpoint restart at or within the step.

• The stepname must consist of 1 through 8 alphameric and national (@,#,$) characters. The
first character must be an alphabetic or national character.

• The two types of parameters that can be coded in the operand field of the EXEC statement
are:

Positional parameters, that must precede any keyword parameter. One of the following two
positional parameters can be coded:

PGM
PROC

Keyword parameters, that can be coded in any order after the positional parameter. Any of the
following keyword parameters can be coded on the EXEC statement:

ACCT
ADDRSPC
CONO
DPRTY
OYNAMNBR
PARM
PERFORM
RD
REGION
TIME

Sample EXEC Statements

IISTEP4
II
IIFOR

EXEC

EXEC

EXEC

PGM~DREC,PARM='3018,NO'

PGM=ENTRY,TIME=(2,30)

PROC=PE489,TIME=4

The EXEC Statement 151

The ACCT Parametef.-keyword, optional

The ACCT parameter specifies one or more sub parameters of accounting information to be
passed to the installation's accounting routines.

For further information concerning the accounting routines, see OS/VS System Management
Facilities (SMF), GC35-0004.

ACCT[.procstepname]=(accounting information, ...)

accounting information
specifies one or more subparameters established by the installation as accounting
information to be passed to the accounting routines.

Rult.~s for Coding

• If the accounting information consists of only one subparameter, you need not code the
parentheses.

• The maximum number of characters of accounting information, including the commas that
separate the subparameters, is 142.

• If a subparameter contains special characters (other than hyphens), enclose the
subparameter in apostrophes. The apostrophes are not considered part of the information. If
one of the special characters is an apostrophe, code two consecutive apostrophes in its
place.

• If the job step calls a cataloged procedure, the ACCT parameter overrides any ACCT
parameters coded in the procedure steps. This pertains to all procedure steps.

• If different steps in a cataloged procedure required different accounting information, code
ACCT.procstepname=(accounting information, ...) for each step that requires unique
accounting information. Accounting information will then pertain only to the named
procedure step.

Examples of.the ACCT Parameter

IISTEP1 EXEC PGM=JP5,ACCT=(LOCATION8,'CHGE+3'

Specifies that this accounting information pertains to this job step.

IISTP3 EXEC LOOKUP,ACCT=('/83468')

Specifies that this information pertains to this job step. Since this step calls a cataloged
procedure, the accounting information pertains to all the steps in the procedure.

IISTP4
II

EXEC BILLING,ACCT.PAID=56370,ACCT.LATE=56470,
ACCT.BILL='121+366'

Specifies that different accounting information pertains to each of the named procedure
steps (PAID,LATE, and BILL).

152 OS/VS2 JCL (VS2 Release 3)

The ADDRSPC Parametef.-keyword, optional

The ADDRSPC parameter indicates whether the job step will use virtual or real storage, that is,
whether or not the job step can be paged.

For further information on the ADDRSPC parameter, see "Requesting Storage".

ADDRSPC=
{

VIRT}
REAL

VIRT

a keyword indicating that the job step can be paged to virtual storage .
. REAL

a keyword indicating that the job step cannot be paged. The job step must exist in real
storage.

Default: If you omit the ADDRSPC parameter, the default is VIRT, unless the installation has
changed the default.

General Rule for Coding

• The ADDRSPC parameter coded on a JOB statement will override any ADDRSPC parameter
coded on an EXEC statement for that job.

• Requests for real and virtual storage can be made in the same job. Each step will honor the
request for either real or virtual storage if there is no ADDRSPC parameter on the JOB
statement.

Rule for Coding when Using Virtual Storage

The installation provides a default region size if the REGION parameter is not specified when
ADDRSPC=VIRT is coded. If the REGION parameter is coded, the value sets the upper
boundary to limit region size for variable-length GETMAINS. If the value is exceeded, the job
or job step will abnormally terminate.

Rule for Coding when Using Real Storage

Code the REGION parameter to specify how much storage is needed.

Examples of the ADDRSPC Parameter

//CACl EXEC A,ADDRSPC=VIRT

The ADDRSPC parameter requests virtual storage. Since the address space requested is virtual,
the area size available to the user is the entire private address space.

//CAC2 EXEC B,ADDRSPC=REAL,REGION=80K

The ADDRSPC parameter requests real storage. The REGION parameter specifies the amount,
in this case, 80K.

The EXEC Statement 153

ACI
AD

The COND Parameter:-keyword, optional

The COND parameter specifies whether a job step will be executed based on completion codes
issued by one or more of the preceding job steps. This parameter allows the specification of
conditions for bypassing a job step, as well as for executing a job step.

Each test specified by the COND parameter is performed using the return code of a
completed job step. If any of the tests are satisfied, the particular job step is bypassed.

For further information on the use of the COND parameter, see "Conditional Execution of
Job Steps."

COND=

code

(~(code ,operator)]
(code,operator,stepname)
(code,operator,stepname.procstepname)

, .. [,] [EVEN])
ONLY

a number from 0 through 4095. This number is compared with the return code issued by all
previous steps or a specific step.

operator
the type of comparison to be made with the return code. Operators and their meanings are:

GT ... greater than
GE ... greater than or equal to
EQ ... equal to
L T .. .less than
LE .. .less than or equal to
NE ... not equal to

stepname
the name of a preceding job step that issued the return code to be tested.

stepname.procstepname
the "stepname"is the name assigned to the step requesting execution of a procedure and
"procstepname" is the name of the step within the procedure that issued the return code to
be tested.

EVEN
specifies that the job step is to be executed even if one or more preceding job steps have
abnormally terminated. If return code tests are to be made and any tests· are satisfied, this
job step will be bypassed.

ONLY
specifies that the job step is to be executed only if one or more preceding job steps have
abnormally terminated. If the current job step specifies that return code tests are to be
made and if any tests are satisfied, this job step will be bypassed.

Rules lor Coding

• A condition code for a step that does not run is zero (0).
• If COND is coded on the JOB statement, then it will be ignored on the EXEC statement.
• If you code neither EVEN nor ONLY, you can make up to eight tests on return codes issued

by preceding job steps or cataloged procedure steps that completed normally. If you code
EVEN or ONLY, you can make up to seven tests on return codes. If you specify more than
eight tests, a JCL error message is issued and the job fails.

• If you code only EVEN or ONLY, or if you code only one test, you need not code outer
parentheses.

154 OS/VS2 JCL (VS2 Release 3)

• If a job step that specifies the EVEN or ONLY subparameter refers to a data set that was to ;
be created or cataloged in a preceding step, the data set may be incomplete if the step
creating it abnormally terminated.

• You can code the EVEN or ONLY subparameters before, between, or after return code tests.
• If you want each return code test to be made on the return code issued by every preceding

step, do not code a step name or procstepname.
• If ONLY is specified on the first job step and a JOBUB is being used, the unit and volume

information are not passed to the succeeding step and the catalog will be searched for the
JOBUB data set.

• If a job step refers to a data set created in a preceding step, that data set will not exist if
the preceding step was bypassed. If a data set was cataloged in a preceding job step and
you make a backward reference to that data set, unit and volume information for the data
set will not be available if the preceding step was skipped.

Code COND on the EXEC statement for any of the following:

• When you want to specify different tests for each job step.
• If a test you specify is true, you want to skip just that one step, rather than bypassing all

subsequent steps in the job.
• When you want to name a specific step whose return code is to be tested.
• When you want to specify special conditions for executing a job step.

Examples of the COND parameter

IISTEP6 EXEC PGM~BAB,COND=(4,GT,STEP3)

If 4 is greater than the return code issued by STEP3 the system will bypass the step. (A return
code of 4 or greater from STEP3 allows this step (STEP6) to be executed.) Since neither EVEN

nor ONLY is specified, this job step· will be automatically bypassed if a preceding step
abnormally terminates.

IITEST2 EXEC PGM=BACK,COND=((16,GE),(90,LE,STEPl),ONLY)

If 16 is greater than or equal to the return code issued by any of the preceding job steps or
if 90 is less than or equal to the return code issued by STEPl, this step will be bypassed. If
none of the tests are satisfied and a preceding job step has abnormally terminated, this step
will be executed because ONLY is coded.

IIsTP4
II
II

EXEC BILLING,COND.PAID=((20,LT),EVEN),
COND.LATE=(60,GT,FIND),
COND.BILL=((20,GE),(30,LT,CHGE))

This example specifies that different return code tests _ pertain to each of the named
procedure- steps (PAID, LATE, and BILL). If the return code test specified for the procedure
step named PAID is not satisfied, the step will be executed even if a preceding step abnormally
terminates.

The EXEC Statement 155

The DPRTY Parameter--keyword, optional

The DPRTY parameter assigns a dispatching priority to a job step. Dispatching priority will be
used by the system resources manager in determining the order .in which tasks will be
executed.

For further information on the use of the DPRTY parameter, see "Assigning a Dispatching
Priority to Job Steps" for either JES2 or JES3.

DPRTY[.procstepname]=([value1] [,value2])

valuel
a number from 0 through 14 which indicates whether the job step is to have the same
priority or a different priority than the job. The job priority is coded on the PRIORITY
statement or calculated from values specified in the accounting information on the JOB
statement, the JOBPARM values, or an installation default.

value2
a number from 0 through 15 which the system adds to valuel to form the dispatching
priority. The system forms the internal priority by converting the value assigned to valuel in
the DPRTY parameter.

Default: If you do not code the DPRTY parameter, the job step is assigned the APG priority.

General Rules for Coding

• If you omit value 1, you must code a comma preceding value2 to indicate the absence of
valuel.

• If you omit value2, you need not code the parentheses.

Cataloged Procedures

• You can code the DPRTY parameter on the EXEC statement of a cataloged procedure.
• If a job step calls a cataloged procedure:

To override all DPRTY parameters code the DPRTY parameter on the EXEC statement that calls
the cataloged procedure. This will establish one dispatching priority for all steps in the
procedure.

To override only certain DPRTY parameters code DPRTY[.procstepname] on the EXEC statement
that calls the procedure for each procedure step that you want to override. The dispatching
priority will than pertain only to the named procedure step.

Example of the DPRTY Paloameter

//BP2 EXEC PGM=FOUR,DPRTY=(13,9)

The system uses these numbers to form a dispatching priority for this step. Since the numbers
are high, the dispatching priority will be high.

156 OS/VS2 JCL (VS2 Releas.e 3)

The DYNAMNBR Parametef.-keyword, optional

The DYNAMNBR parameter specifies that a number of resources can be held in anticipation of
reuse. DYNAMNBR can be coded instead of coding several DD DYNAM statements.

For further information on the DYNAMNBR parameter, see "Dynamically Allocating and
Deallocating Data Sets."

DYNAMNBR[.procstepname]=n DPRl ___ DyN)

procstepname
specifies the procedure step to which "n" applies.

n
specifies the number of DD DYNAM statements that you would otherwise have had to code~
from 1 to 1635.

Default: 0
• If DYNAMNBR is coded incorrectly, zero is assumed and a warning message is issued.

Rules for Coding

• The maximum number of DD DYNAMs plus the number of DYNAMNBRs which can be
concurrently allocated is 1635.

• If procstepname is omitted, DYNAMNBR applies to all steps in the procedure.

Example of the DYNAMNBR Parameter

//STEP1 EXEC ACCT,DPRTY=(13,9),DYNAMNBR.CALC=12

This statement specifies that 12 allocations in the step CALC can be held in anticipation of
reuse.

The EXEC Statement 157

The P ARM Parametef.~keyword, optional

The PARM parameter passes variable information to a program in execution. For further
information on the PARM parameter, see OS/VS2 Supervisor Services and Macro Instructions,
GC28-0683.

PARM=value

value
up to 100 characters of information which the system is to pass to a processing program.

Rules for Coding

• Before coding the PARM parameter, see figure 12, "Character Sets" for an explanation of
an alphameric, national, and special characters.

• If the value contains more than one expression separated by commas, you must enclose it in
apostrophes or parentheses; that is, PARM='Pl,123,MTS' or PARM=(Pl,123,MTS).
Enclosing apostrophes and parentheses are not passed to the processing program; commas
within apostrophes and parentheses are passed as part of the value.

• If you include special characters in any expression, either (1) enclose the value in
apostrophes, or (2) enclose the expression in apostrophes and the value in parentheses; that
is, PARM='PSO,12'80' or PARM=(P50,'12+80'). (The enclosing apostrophes and
parentheses are not passed as part of the value.)
If one of the special characters is an ampersand and you are not defining a symbolic
parameter, code two consecutive ampersands in its place; that is, PARM + '3462&&5'.
When two apostrophes or two ampersands are coded, only one is passed to the processing
program.

• If you must continue the value on another statement, enclose it in parentheses. The
continuation comma is considered part of the value field and counts toward the maximum of
100 characters of data. You may not continue any value enclosed in apostrophes.

Calling Cataloged or In-stream Procedures

• If a job step calls a cataloged or in-stream procedure, you can pass information to the first
procedure step and nullify all other PARM parameters in the procedure or override some of
the PARM parameters contained in the procedure.

• To nullify the PARM parameters in the procedure, code the PARM parameter on the EXEC

statement that calls the procedure. The information contained in the PARM parameter is
passed to the first procedure step and P ARM parameters in all other procedure steps are
nullified.

• To override some of the PARM parameters contained in the procedure, code, on the EXEC

statement that calls the procedure, PARM.procstepname for each procedure step that you
want to override. Information provided in the PARM value will be passed only to the named
procedure step.

158 OS/VS2 JCL (VS2 Release 3)

Example of the PARM Parameter

IIRUN3 EXEC PGM=APG22,PARM=(P1,123, 'P2=5')

Passes the information in the PARM parameter, except the apostrophes and the parentheses, to
the processing program name APG22.

II EXEC PROC81,PARM=MT5

Passes this information to the first step of the procedure named PROC81. If any of the other
procedure steps in PRoc81 contain the PARM parameter, those parameters are nullified.

IISTP6 EXEC ASMFCLG,PARM.LKED=(MAP,LET)

Passes this information to the procedure step named LKED. If any of the other procedure
steps in LKED contain the ASMFCLG parameter, these parameters will still be effective.

The EXEC Statement 159

The PERFORM Parametef.-keyword, optional

The PERFORM parameter specifies the performance group definitions to which a job step is
associated.

For further information on the performance groups, see "Performance of Jobs and Jobs
Steps."

PERFORM[.procstepname]=n

procstepname
specifies the name of a step within a procedure invoked by this EXEC statement.

n
is a number between 1 and 255, inclusive, identifying a performance group that has been
defined by the installation.

Default: The interpreter will obtain a default from the system resources manager and issue a
warning message indicating a system default is set.

• For non-TSO jobs, the IBM-supplied default is one (1).
• For TSO jobs, the IBM-supplied default is two (2).
• If an invalid performance group is specified, the interpreter will obtain a default from the

system resources manager and issue a warning message indicating nonverification and
default substitution.

• Specifying an invalid procstepname also results in a warning message, but no other action.
• If no PERFORM parameter is specified on either the JOB or EXEC statements, the

performance group defaults to one.

Rule for Coding

• If PERFORM is specified for a procedure, the specified value is effective for the entire
procedure. If PERFORM.procstepname is coded for a procedure, the value is effective only
for the procedure step named.

• [f PERFORM is specified on the JOB statement, its value will supercede any PERFORM
specifications on EXEC statements associated with the job. If no PERFORM parameter
appears on the JOB statement and a PERFORM parameter appears on an associated EXEC
statement, the parameter value appearing on the EXEC statement will be used during the
associated job step.

Example of the PERFORM" Parameter

//STEPA EXEC PGM=ADAM,PERFORM=60

This job step will be run in performance group 60. The significance of this performance group
is defined by the installation.

160 OS/VS2 JCL (VS2 Release 3)

The PGM Parametef.-positional, optional

The PGM parameter specifies a program to be executed. The specified program must be a
member of a temporary library, a system library, or a private library.

For further information on identifying programs and on libraries (partitioned data sets), see ~

"Identifying Data Sets to the System. " ~

PGM=

program name

{

program name }
*.stepname.ddname
*.stepname.procstepname.ddname

specifies the member name or alias of the program to be executed.
* .stepname.ddname

specifies a backward reference to a DD statement that defines, as a member of a partitioned
data set, the program to be executed. Step name is the name of the step in which the DD

statement appears~ ddname is the name that appears on the DD statement.
This form of the parameter is usually used when a previous job step has created a
temporary partitioned data set to store a program until the program is required.

* .stepname.procstepname.ddname
specifies a backward reference to a DD statement within a cataloged procedure step that
defines, as a member of a partitioned data set, the program to be executed. Step name is the
name of the step that calls the procedure~ procstepname is the name of the procedure step
that contains the DD statement .

Rules for Coding

• If you code the PGM parameter, code it as the first parameter on the EXEC statement. The
program you specify must be a member of a partitioned data set.

• The program name must consist of up to 8 alphameric or national characters, the first of
which must be alphabetic or national.

• For compatability with ASP (running under JES3), if you code PGM=JCLTEST, you can scan
the job's JCL without executing the job or setting up devices. This is the same function as
coding TYPRUN=SCAN on the JOB statement.

Examples of the PGM Parameter

//STEP1 EXEC PGM=TABULATE

Specifies that the program named TABULATE is a member of SYS1.LlNKLlB.

//JOB8
//JOBLIB
//STEP1

JOB
DD
EXEC

MSGLEVEL=(2,O)
DSNAME=DEPT12.LIB4,DISP=(OLD,PASS)
PGM=USCAN

Specifies that the system is to look for the program name USCAN in a private library named
DEPT12.LlB4.

The· EXEC Statement t 6 t

PEF
PGr

//CREATE
//SYSLMOD

//EXECUTE

EXEC
DD

EXEC

PGM=IEWL
DSNAME=&&PARTDS(PROG),UNIT=2314,DISP=(MOD,PASS),
SPACE(1 02L.J, (50,20,1))
PGM=*.CREATE.SYSLMOD

Uses a backward reference to a DD statement that defines a temporary library created in
the step named CREATE. The program name PROG is stored as a member of the partitioned
data set named & &PARTDS and will be executed in the step name EXECUTE. & &PARTDS will
be deleted at the end of the job.

//STEP2
//DDA
//STEP3

EXEC
DD
EXEC

PGM=UPDT
DSNAME=SYS1.LINKLIB(P40),DISP=OLD
PGM=*.STEP2.DDA

Uses a backward reference to a DD statement that defines a system library. The program
named P40 is stored as a member of SYSl.LINKLIB and is executed in the step named STEP3.

//CHECK EXEC PGM=IEFBR14

Executes the program named IEFBR 14, allowing you to satisfy space allocation and
disposition processing requests prior to executing your program. The remaining job control
statements in the job are also checked for syntax.

162 OS/VS2 JCL (VS2 Release 3)

The PROC Parametef.-positional, optional

The PROC parameter specifies that a cataloged procedure or an in-stream procedure is to be
called and executed.

For further information on cataloged and in-stream procedures, see "Using Cataloged and ~

In-Stream Procedures. " ~

{
PRoc=procedure name}
procedure name

procedure name
the member name (or alias) of a cataloged procedure or the name of an in-stream procedure
to be called and executed.

Rules for Coding

• The procedure name must consist of one through eight alphameric or national characters of
which the first must be alphabetic or national.

• The PROC and PGM parameters are mutually exclusive. Therefore, if you code PGM, do not
code PROC. If you code the PROC parameter, code it as the first parameter on the EXEC

statement, instead of the PGM parameter. You can code only the cataloged or in-stream
procedure name, omitting PROC.

• When the EXEC statement specifies a cataloged or in-stream procedure, parameters in the
operand field of the EXEC statement will override EXEC parameters in the called procedure.

• Any DD statements that follow the EXEC statement will be treated as overriding DD
statements or DD statements that are to be added to the cataloged or in-stream procedure
for the duration of the job step.

Examples of the PROC Parameter

IISP3 EXEC PROC=PAYWKRS

Specifies that the cataloged or in-stream procedure named P A YWKRS is to be called.

IIBK EXEC OPERATE

Specifies that the cataloged or in-stream procedure named OPERATE is to be called. This
specification has the same effect as coding PROC=OPERATE.

The EXEC Statement 163

The RD Parametef.-keyword, optional

'The RD (restart definition) parameter specifies how the step restart facilities are used with the
CHKPT macro instruction, and whether automatic restart is permitted or suppressed.

For detailed information on the checkpoint/restart facilities, refer to: OS/VS
Checkpoint/Restart GC26-3784.

RNC

{
R }

RD[.procstepname]= ~~

procstepname

R

indicates that the RD parameter applies to the step corresponding to the statement referred
to by the statement.

indicates that automatic step restart is permitted.
If the processing program used by a job step does not include any CHKP~t' macro
instructions, coding RD=R allows execution to be resumed at the beginning of the
abnormally terminated step.
If the program does include a CHKPT macro instruction, coding RD=R permits automatic
step restart to occur if the step abnormally terminates before execution of the CHKPT macro
instruction; thereafter, only checkpoint restart can occur.
If you cancel the effects of the CHKPT macro instruction before a checkpoint restart is
performed. the request for automatic step restart is again in effect.

RNC

NC

NR

indicates that automatic step restart is permitted and automatic and deferred checkpoint
restart are not permitted.

indicates that automatic step restart and automatic and deferred checkpoint restart are not
permitted

indicates I ttat a CHKPT macro instruction can establish a checkpoint, but neither automatic
step restell t nor automatic checkpoint restart is permitted. Coding RD==NR allows you to
resubmit the job at a later time and specify in the REST ART parameter (on the job
statement of the resubmitted job) the checkpoint at which execution is to be resumed.

Rules for Coding

• Automatic restart will not be honored if you do not have a job journal (a job journal is an
initializati(Jll option).

• Even if you do not code the RD parameter, you job is eligible for automatic checkpoint
restart if checkpoints have been issued. However, the job is not eligible for automatic step
restart.

• Code the RD parameter on EXEC statements instead of the JOB statement when you want to
make different restart requests for each job step.
If you code the RD parameter on the JOB statement, any RD parameters coded on the job's
EXEC statements are ignored and the value coded on the JOB statement is effective for all
steps.

164 OS/VS2 JCL (VS2 Relea ... e 3)

• The RD parameter can be coded on the EXEC statement of a cataloged procedure. If the job
step does call a cataloged procedure:
To override all RD parameters, code the RD parameter on the EXEC statement that calls the
procedure. This establishes one restart for all the steps in the procedure.
To override only certain RD parameters, code, on the EXEC statement that calls the
procedure, RD.procstepname for each procedure step that you want to override. The restart
request will then pertain only to the named procedure step.

• The RD parameter applies to the step corresponding to the statement or to all steps of the
cataloged procedure referred to by the statement.

• RD.procstepname applies to the specified procedure step and overrides the RD parameter
that may be coded on the EXEC statement of the procedure step. It can be coded once for
each step of the procedure.

• The RD parameter values NC and RNC can be used to suppress the action of the CHKPT
parameter.

Examples of the RD Parameter

//STEPl EXEC PGM=GIIM,RD=R

Permits execution to be automatically restarted with this step if it abnormally terminates.

//NEST EXEC PGM=T18,RD==RNC

Permits execution to be automatically restarted with this step if it abnormally terminates;
suppresses the action of CHKPT macro instructions issued in the program this job step uses.

-----"---

//CARD EXEC PGM=WTE,RD=NR

Neither automatic step restart nor automatic checkpoint restart can occur, but CHKPT macro
instructions issued in the program that this job step executes can establish checkpoints.

//STP4 EXEC BILLING,RD.PAID=NC,RD.BILL=NR

Specifies that different restart requests pertain to each of the named procedure steps (PAID
and BILL).

The EXEC Statement 165

The REGION Parametcr.-keyword, optional

The REGION parameter specifies the amount of real address space to be allocated to a job.

For further information on the REGION parameter, see "Requesting Storage."

REGION=valueK

valueK
specifies a number that indicates how many bytes of storage are to be allocated to a job
step.

Default: the installation-defined default.

General Rules for Coding

• Code an even number. (If you code an odd number, the system treats it as the next highest
even number.)

• When you want to specify a different region size for each job step, code the REGION

parameter on the EXEC statements, instead of the JOB statement .
• If the REGION parameter is coded on the JOB statement, REGION parameters coded on the

job's EXEC statements are ignored.

Rule for Coding when Using Virtual Storage

• The installation provides a default region size if the REGION parameter is not specified
when ADDRSPC=VIRT is coded. If the REGION parameter is coded, the value sets the upper
boundary 10 limit region size for variable-length GETMAINS. If the value is exceeded, the
job or job step will abnormally terminate.

Examples of the REGION Parameter
//MKBOYLE EXEC A,ADDRSPC=REAL,REGION=40K

40K of real "tor age will be assigned to this job step.

//STP6 EXEC PGM=CONT,REGION=120K

The REGION parameter will be ignored for a job that can be paged and the entire private
address space will be assigned unless you have variable-length GETMAIN requests. In that case,
the REGION parameter value (l20K) will be used as a maximum value for each variable-length
GETMAIN request.

166 OS/VS2 JCL (VS2 ReIert<.:e 3)

The TIME Parameter:-keyword, optional

The TIME parameter specifies the maximum amount of time that a job step can use the CPU.
The CPU time used is written on the output listing.

TIME=

minutes

{
([minutes] [, seconds])}
1440

specifies the maximum number of minutes the job step can use the CPU. The number of
minutes must be less than 1440 (24 hours).

seconds
specifies the maximum number of seconds beyond the specified number of minutes the job
step can use the CPU. The number of seconds must be less than 60.

1440
specifies that the job step is not to be timed.

Default: defined by your installation. The IBM default is 30 minutes.

Rules for Coding

• If you code the CPU time limit in minutes only, you need not code the parentheses.
• Code 1440 if the job step can use the CPU for 24 hours or more or if the job step should

be allowed to remain in a wait state for more than the established time limit.
• You can code the TIME parameter on the EXEC statement of a cataloged procedure step.

To override all TIME parameters in a cataloged procedure, code the TIME parameter on the
EXEC statement that calls the procedure. This establishes a CPU time limit for the entire
procedure, and nullifies any TIME parameters that appear on EXEC statements in the
procedure.
To override only certain TIME parameters, code, on the EXEC statement that calls the
procedure, TIME.procstepname, for each procedure step that you want to override. The CPU
time limit will then pertain only to the named procedure step.

• The remaining job time may affect the amount of time the step can use the CPU. If the
remaining CPU time for the job is less than the CPU time limit specified on the EXEC
statement, the step can use the CPU only for the job's remaining CPU time.

• A step that exceeds the specified limit causes termination of the job unless you use a user
exit routine to extend the time.

• TIME=O is not supported. When coded on the EXEC statement, the step will fail only after
the unexpired time from the previous step is used up.

The EXEC Statement 167

R
TI

Examples of the TIME Parameter

//STEP1 EXEC PGM=GRYS,TIME=(12,10)

Specifies that the maximum amount of time the step can use the CPU is 12 minutes 10
seconds.

//FOUR EXEC PGM=JPLUS,TIME=(,30)

Specifies that the maximum amount of time the step can use the CPU is 30 seconds.

//INT EXEC PGM=CALC,TIME=5

Specifies that the maximum amount of time the step can use the CPU is 5 minutes.

//LONG EXEC PGM=INVANL,TIME=1440

Specifies that the job step is not to be timed. Therefore, the step can use the CPU and can
remain in a wait state for an unspecified period of time.

//STP4 EXEC BILLING,TIME.PAID=(45,30),TIME.BILL=(112,59)

Specifies that different time limits pertain to each of the named procedure steps.

168 OS/VS2 JCL (VS2 Release 3)

The DD Statement

Control Statement

The DO (data definition) statement describes a data set to be used in a job step and specifies
the input and output facilities required for the data set.

//ddname DD operands comments

The DO statement consists of the characters / / in columns 1 and 2, and four fields - the
name, operation (~o), operand, and comments field.

Rules lor Coding

• Code a DO statement for each data set to be used in a step.
• Code a ddname, beginning in column 3, and consisting of 1 through 8 alphameric and

national (@,#,$) characters. The first character must be alphabetic or national.
• Code unique ddnames within a job step. If duplicate ddnames exist in a step, allocation of

devices and space and disposition processing are done for both DO statements~ however, all
references are directed to the first such DO statements in the step.

• Apart from the restricted use of certain special ddnames (listed below), there are two
instances when you should not code a ddname at all:
• A DO statement is to define a data set that is concatenated with a data set defined by a

preceding DO statement.
• The DO statement is the second or third consecutive DO statement that defines an

indexed sequential data set.
• Special ddnames: Do not use the following seven special ddnames unless you wish to make

use of the particular facilities which these names represent to the system~ these facilities are
explained in detail in the following pages.

JOBCAT
JOBUB
STEPCAT
STEPUB
SYSABENO
SYSUOUMP
SYSCHK

• Although all DO statement parameters are optional, a blank operand field is invalid, except
when you are overriding DO statements that define concatenated data sets.

• The maximum number of DO statements allowed per job step is 1635.
• There are two types of parameters that can be coded on a DO statement: keyword and

positional. The positional parameters, which must precede any keyword parameters, are:

*
DATA
DUMMY
OYNAM

The keyword parameters are:

AMP OISP HOLD
CHKPT DLM LABEL
COPIES OSID MSVGP
DCB DSNAME aUTUM
ODNAME FCB QNAME
DEST FREE SPACE

SYSOUT
TERM
UCS
UNIT
VOLUME

The DD Statement 169

Rules for Coding DD Statements when Using Cataloged Procedures

• If a job step uses a cataloged procedure, you can make modifications to the DD information
within the procedure for the duration of the job step. To do this, code modifications on the
DD statements immediately following the EXEC statement that calls the cataloged procedure.

• To override parameters on a DD statement within a cataloged procedure, code the name of
the procedure step in which the DD statement appears, followed by a period, followed by
the name of the DD statement that you want to override.

• To override two or more DD statements in a procedure step, the sequence of the overriding
statements must be the same as the sequence of the procedure statements being overridden.

• To add DO statements to a procedure step, code the name of the procedure step in which
the DD statement appears, followed by a period, followed by a ddname of your choosing.
Added statements must follow all overriding statements.

• To supply a procedure step with data in the input stream, code the name of the procedure
step that is to use the data, followed by a ddname. This ddname may _be predefined in the
procedure step by means of the DDNAME parameter. In this case, the ddname that follows
the procedure step name must be the name code in the DDNAME parameter.

• Do not use a JOBLIll DD statement in a cataloged procedure.

Examples of Valid Ddnames

II INPUT
II

DD
DD

DSN=FGLIB,DISP=(OLD,PASS)
DSN=GROUP2,DISP=SHR

Because the ddname is missing from the second DD statement, the data sets defined in these
statements will be concatenated.

IIPAYROLL.DAY DD

If the procedure step named PAYROLL includes a DD statement named DAY, this statement
will override parameters on the statement named DAY. If the step does not include a DD

statement named DAY, this statement will be added to the procedure step. for the duration of
the job step.

IISTEPSIX.DD4 DD
II DD

This sequence defines data sets that are to be concatenated and added to the procedure
step. On the first DD statement, the procedure step to which statements are to be added is
identified and followed by any valid ddname. On the second DD statement, the ddname is
omitted.

170 OS/VS2 JCL (VS2 Release 3)

The JOBCAT Facility

D D statement

The JOBCAT DD statement defines a private user catalog that is searched for data sets before
the master catalog or a private catalog associated with the first qualifier of data set names for
the duration of a job.

IIJOBCAT DD

General Rules for Coding

DISP= {OLD},DSNAME=usercatalOgn~me SHR

• JOBCAT applies to each job step in which a STEPCA T has not been specified.
• The location of the user catalog is given in the master catalog, so do not specify any unit or

volume information.
• To specify more than one user catalog for a job, include after the JOBCAT statement an

unlabeled DD statement that names another user catalog.
• OS CYOLs cannot be specified as JOBCAT. Access to an as CYOL is only possible with a

CYOL pointer in the master catalog.
• The JOBCAT statement must appear after the JOB statement, but before the first EXEC

statement.
• A JOBLIB statement must precede the JOBCA T statement, if specified.

Example of the JOBCAT DD Statement

The following example specifies a private user catalog. Place a JOBCAr DD statement before
the first EXEC statement after the JOB statement. The JOBCAT DD sL.ltement should also
appear after any JOBLIB statements.

IIEXAMPLE
II,JOBLIB
IIJOBCAT
II

JOB
DD
DD
EXEC

WILLIAMS,MSGLEVEL=1
DSNAME=USER.LIB,DISP=SHR
DSNAME=LYLE,DISP=SHR
PGM=SCAN

The DD Statement 171

JOI

The: JOBLIB Facility

DD statement

The JOBLIB DD statement defines a private library to be made available by the system to each
step of a job.

//JOBLIB DD

General Rules for Coding

• Code JOBLIB as the ddname on the first DO statement. Never use the ddname JOBLIB

except to define a private library for an entire job.
• Omit the ddname from all subsequent DO statements that define data sets that are to be

concatenated to the first one. These DO statements must immediately follow the JOBLIB

statement, and the JOB LIB statement must immediately follow the JOB statement.
• If you include a JOBLIB DO statement in the JCL for a job, each time the job requests a

program, the system first searches the private library; if it does not find the program there,
it next searches the system library.

• Use a STEPLIB DO statement, described under the STEPLIB Facility, to define a private
library to be made available to one job step in a job. If you include a STEPLIB DO statement
for a job step and a JOBLIB DO statement for the entire job, the system first searches the
step library and then the system library for the requested program. The job library is
ignored for that step.

• To make the private library available throughout the job, code the DISP parameter to specify
the library's status and disposition. One of the following combination of DISP parameter
values must be coded:

DISP=(NEW,PASS)
DISP=(OLD,PASS)
DISP=(SHR,PASS)
DISP=(NEW,CATLG)
DISP=(OLD,CATLG)
DISP=(SHR,CATLG)

For further explanation, refer to the DISP parameter in the index of this publication.

• The rules for coding parameters on the JOBLIB DO statement depend on whether or not the
private library is cataloged. These rules are discussed below under separate headings.

• Do not use a JOBLIB statement in a cataloged procedure.
• If COND=ONLY is specified 0.n the first job step and a JOBLIB is being used, the unit and

volume information are not passed to the succeeding step and the catalog will be searched
for the JOBLIB data set.

Rules for Coding When the Library is Cataloged

• Code the DSNAME parameter to specify the name of the private library.
• Code the DISP parameter. The DISP parameter must be other than NEW.

• Do not code VOL=SER to request a cataloged data set.
• Code the DCB parameter if complete data control block information is not contained in the

data set label.
• To refer to the private library in a later DO statement, code DSNAME=*.JOBLIB and the

DISP parameter.

172 OS/VS2 JCL (VS2 Release 3)

If a later DO statement defines a data set that is to be placed on the same volume as the
private library, code VOLUME=REF=*.JOBUB to obtain volume and unit information.

Rules for Coding When the Library is Not Cataloged

• Code the DISP parameter. The DISP parameter must be one of the following values:

DISP=(OLD,PASS)
DISP=(SHR,PASS)
DISP=(NEW,PASS)

• Code the UNIT parameter to specify the device to be allocated to t he library.
• Code the DSNAME parameter unless the data set has been assigned a disposition of

(NEW,PASS).
• Code the VOLUME parameter unless the status of the data set is NEW.
• If the status of the data set is NEW, you must code the SPACE parameter to allocate space

for the data set on the designated volume.
• Code the DCB parameter if complete data control block information is not contained in the

data set label.
• To refer to the private library in a later DO statement, code

DSNAME=*.JOBUB,VOLUME=REF=*.JOBUB (or VOLUME=SER=serial number, UNIT=unit
information), and the DISP parameter, DISP=(OLD,PASS).

If a later DO statement defines a data set that is to be placed on the same volume as the
private library, code VOLUME=REF=*.JOBUB to obtain volume and unit information.

Examples of the JOBLIB DD Statement

IlpAYROLL JOB JONES,CLASS=C
IIJOBLIB DD DSNAME=PRIVATE.LIB4,DISP=(OLD,PASS)
IISTEP1 EXEC PGM=SCAN
IISTEP2 EXEC PGM=UPDATE
IIDD1 DD DSNAME=*.JOBLIB,DISP=(OLD,PASS)

The private library defined on the JOBUB DO statement is cataloged. The statement named
DO 1 refers to the private library defined in the JOBUB DD statement.

IIPAYROLL
IIJOBLIB
II
IlsTEP
IISTEP2
IIDD1
II

EXEC
EXEC
DD

FOWLER,CLASS=L
DSNAME=PRIV.DEPT58,DISP=(OLD,PASS),
UNIT=2314,VOLUME=SER=D58PVL
PGM=DAY
PGM=BENEFITS
DSNAME=*.JOBLIB,VOLUME=REF=*.JOBLIB,
DISP=(OLD,PASS)

The private library defined on the JOBUB DO statement is not cataloged. The statement
named DOl refers to the private library defined in the JOBUB DO statement.

IITYPE
IIJOBLIB
II
II
IisTEP1
IIDDA
II
IISTEP2

JOB
DD

EXEC
DD

EXEC

MSGLEVEL=(1,1)
DSNAME=GROUP8.LEVEL5,DISP=(NEW,CATLG),
UNIT=2314,VOLUME=SER=148562,
SPACE=(CYL,(50,3,4))
PGM=DISC
DSNAME=GROUP8.LEVEL5(RATE),DISP=OLD,
VOL=REF=*.JOBLIB
PGM=RATE

The private library defined on the JOBUB DO statement does not exist yet; therefore, all the
parameters required to define the private library are included on the JOBUB DO statement. The
library is not created until STEPl when a new member is defined for the library. The system
looks for the program named DISC in SYS1.UNKUB; the system first looks for the program
named RATE in the private library.

The DD Statement t 73

JO

IIPAYROLL
IIJOBLIB
II
II
II

JOB
DD
DD
DD

LIEF,TIME=1440
DSNAME=KRG.LIB12,DISP=(OLD,PASS)
DSNAME=GROUP31.TEST,DISP=(OLD,PASS)
DSNAME=PGMSLIB,UNIT=2314,
DISP=(OLD,PASS),VOLUME=SER=34568

Several private libraries are concatenated. The system searches libraries for each program in
this order: KRG.L1BI2, GROUP3I.TEST, and PGMSLlB.

174 OS/VS2 JeL (VS2 Release 3)

The STEPCAT Facility

DD statement

The STEPCAT DO statement defines a private VSAM user catalog that is searched for data sets
before the master catalog or a private catalog associated with the first qualifier of data set
names for the duration of a job step.

IIISTEPCAT DD

General Rules for Coding

DISP=
{

OLD}, DSNAME=usercatalogname
SHR

• A STEPCAT DD statement can appear in any position among the DO statements for a job
step.

• The location of the user catalog is given in the master catalog, so do not specify any unit or
volume information.

• To specify more than one user catalog for a job step, include after the STEPCA T statement
an unlabeled DO statement that names another user catalog.

• If you want to override the JOBCAT with the master catalog for a particular job step, code
the following:

IISTEPCAT DD DISP=OLD,DSNAME=master catalog name

• OS CVOLs cannot be specified as STEPCAT. Access to an OS CVOL is only possible with a
special CVOL pointer in the master catalog.

Example of the STEPCAT DD Statement

The following example specifies a job-step user catalog named BETTGER by placing a DO

statement with the ddname STEPCAT after the EXEC statement for the job step:

II
IISTEPCAT

EXEC
DO

PROC=SNZ12
DSNAME=BETTGER,DISP=SHR

The DO Statement 175

JOSL
STEF

The STEPLIB Facility

DD Statement

The STEPLIB DD statement defines a private library to be made available by the system to a
job step.

//STEPLIB DD

General Rules for Coding

• The ddname on this statement must be STEPLIB. Never use the ddname STEPLIB except to
define a private library for a job step.

• A STEPUB DO statement can appear in any position among the DO statements for a step.
• A private library defined on a STEPLIB DO statement can be referred to by, or passed on to,

later job steps in the same job.
• If you include a STEPLIB DD statement in the JCL for a job, when the jobstep for which the

library is defined requests the program, the system searches the private library.
Use a JOBUB 00 statement, described under the JOBUB facility, to define a private library
to be made available to an entire job. If you include a JOBUB DO statement for the entire
job and a STEPLIB DO statement for an individual job step, the system searches the step
library. The job library is ignored for that step.

• A STEPLIB DO statement can appear in a cataloged procedure.
• To concatenate libraries, that is, to arrange a sequence of 00 statements that define

different data sets:

Code STEPUB as the ddname of the first 00 statement.

Omit the ddname from all subsequent OD statements that define private libraries for the
particular step.

• If you want the system to ignore the JOBUB for a particular job step, use the following
STEPUB 00 statement:

//STEPLIB DD DSNAME=SYS1.USERLIB,DISP=SHR

For the particular job step, the system will first search the system library for the required
data set.

• The rules for coding parameters on the STEPUB DO statement depend on whether the
library is cataloged, not cataloged, or passed by a previous job step. These rules are
discussed below under separate headings.

Rules for Coding When the Library is Cataloged

• Code the DSNAME parameter to specify the name of the private library.
• Code the OISP parameter to specify the library's status and its disposition. Its status must be

either OLO or SHR. Its disposition may be any valid disposition.
• Code the DCB parameter if complete data control block information is not contained in the

data set label.

176 OS/VS2 JCL (VS2 Release 3)

Rules for Coding When the Library has been Passed by a Previous Step i
• Within a job, a previously defined step library must be made avai+ble for use by

subsequent job steps by assigning a disposition of PASS. I

• To refer to a previously defined step library: ,
Code the DSNAME parameter, specifying either the name of the stfi p library or a backward
reference of the form * .stepname.ddname. If the step library was . efined in a cataloged
procedure, the backward reference must include the procedure ste name
* .stepname.procstepname.ddname. I
Code the DISP parameter, specifying a status of OLD and a disposition, depending on what
you want done with the private library after its use in the job ste~.
Code the DeB parameter if complete data control block informatiqn is not contained in the
data set label. !

Rules for Coding When the Library is Neither Cataloged Nor Passed i 4
• Code the DSNAME parameter, specifying the name of the privatet,'brary.

Code the DISP parameter, specifying the library's status, either OL or SHR and a
disposition, depending on what you want done with the private li Irary after its use in the ST

job step.
Code the VOLUME parameter, identifying the volume serial numb~r.

• Code the UNIT parameter, specifying the device to be allocated tol the library.
• Code the DeB parameter if complete data control block informati~n is not contained in the

data set label. ;

Examples of the STEPLIB DD Statement

IIPAYROLL JOB BROWN,MSGLEVEL=1 I
IISTEP1 EXEC LAB14 I
IISTEP2 EXEC PGM=SPKCH I
IISTEPLIB DD DSNAME=PRIV.LIB5,DISP=(OLD,KEEP) i
IISTEP3 EXEC PGM=TIL80 I
IISTEPLIB DD DSNAME=PRIV.LIB13,DISP=(OLD,KEEPl

The private libraries defined in STEP2 and STEP3 are cataloged. i
i----

IIPAYROLL
IIJOBLIB
IisTEP1
IISTEP2
IISTEPLIB
II
IisTEP3
IISTEP4
IISTEPLIB
II

JOB
DD
EXEC
EXEC
DD

EXEC
EXEC
DD

BAKER,MSGLEVEL=1 i
DSNAME=LIB5.GROUP4,DISP=(OLD,PAS~)
PROC=SNZ12 !
PGM=SNAP10 1

DSNAME=LIBRARYP,DISP=(OLD,PASS), I
UNIT=2314,VOLUME=SER=55566 I
PGM=A1530 I
PGM=SNAP11
DSNAME=*.STEP2.STEPLIB,
DISP=(OLD,KEEP)

The private library defined in STEP2 is not cataloged. The STEPLIB D statement in STEP4
refers to the library defined in STEP2. Since a JOBLIB DD statement s included, STEP} and
STEP3 could execute programs from LIB5.GROUP4 or, if the program are not found there,
from SYS1.LINKLIB. STEP2 and STEP4 could execute programs from IBRARYP or SYSl.LINKLIB.

The DD Statement 177

IIPAYROLL
IIJOBLIB
IISTEPl
IISTEPLIB
IISTEP2
IISTEP3
IISTEPLIB
II
II
II
IISTEP4

JOB
DO
EXEC
DO
EXEC
EXEC
DO
DO

DO
EXEC

THORNTON,MSGLEVEL=l
DSNAME=LIB5.GROUP4,DISP=(OLD,PASS)
PGM=SUM
DSNAME=SYS1.LINKLIB,DISP=OLD
PGM=VARY
PGM=CALC
DSNAME=PRIV.WORK,DISP=(OLD,PASS)
DSNAME=LIBRARYA,DISP=(OLD,KEEP),
UNIT=2314,VOLUME=SER=44455
DSNAME=LIB.DEPT88,DISP=(OLD,KEEP)
PGM=SHORE

All steps can use programs contain in the private library named LlBS.GROUp4, which is
defined in the JOBLlB DO statement. STEP} can use a program from the system library, since
the library defined on the STEPLlB 00 statement is the system library. A concatenation of
private libraries is defined in STEP3. The system searches for the program named CALC in this
order: PRIV.WORK,LlBRARYA,LlB.OEPT88,SYSl.LlNKLlB. If a later job step refers to the
STEPLlB 00 statement in STEP3, the system will search for the program in the private library
named PRIV.WORK, and if it is not found there, in SYSl.LlNKLlB.

178 OS/VS2 JCL (VS2 Release 3)

The SYSABEND and SYSUDUMP Facilities

DD Statements

The SYSABEND DD statement defines a data set on which a dump can be written if the step in
which the statement appears abnormally terminates. The dump provided by this facility
includes the system nucleus, the processing program storage area, and a trace table.

The SYSUDUMP DD statement defines a data set on which a dump can be written if the step
in which the statement appears abnormally terminates. The dump provided by this facility
includes only the processing program storage area.

For information on how to interpret dumps, see OS/VS2 System Programming Library:
Debugging Handbook, GC28-0632.

IISYSABEND DD
IISYSUDUMP DD

STEPL
SYSAI

--- SYSUI

Rules for Coding

To Dump to a Unit Record Device: Code the UNIT parameter, specifying the unit record
device to which you want to write the dump, or code the SYSOUT parameter, specifying the
output class through which you want the data set routed.

• If you want to store the dump and do not want it written immediately to any output device,
code the following parameters:
• The DSNAME parameter, specifying the name of the data set.
• The UNIT parameter, specifying the device to be allocated to the data set.
• The VOLUME parameter, identifying the serial number of the volume to which the dump

is to be written.
• The DISP parameter, specifying the data set's status and disposition. Since you want to

store the data set, make the data set's conditional disposition KEEP or CATLG.

• The SPACE parameter (for direct access devices), specifying the amount of space you
want allocated to the data set.

Examples of the SYSABEND and SYSUDUMP DD Statements

IisTEP2 EXEC
IISYSUDUMP DD

PGM=A
SYSOUT=A

The SYSUDUMP DD statement specifies that you want the dump routed through the standard
output class A.

IISYSUDUMP DD
II

DSNAME=DUMP,DISP=(NEW,KEEP),
UNIT=2400,VOL=SER=147958

This step causes the dump to be stored on a standard labeled tape.

The DO Statement 179

IISTEP1 EXEC PGM=PROGRAM1
IISYSABEND DD DSNAME=DUMP,UNIT=2314,DI£P=(,PASS,KEEP),
II VOLUME=SER=1234,SPACE=(TRK,(40,20))
IISTEP2 EXEC PGM=PROGRAM2
IISYSABEND DD DSNAME=*.STEP1.SYSABEND,DISP=(OLD,DELETE,KEEP)

The SYSABEND DO statement specifies that you want the 'dump stored. The space request in
STEP! is large (40 tracks or 340 maximum tracks) so that the dumping operation will not be
inhibited due to insufficient space; if STEP1 does not abnormally terminate but STEP2 does,
the dump will be written using the space allocated in STEP 1. In both steps, a conditional
disposition of KEEP is specified. This will allow storing of the dump if either of the steps
abnormally terminates. If both of the steps are successfully executed, the second subparameter
of the DISP parameter (DELETE) in STEP2 will delete the data set and free the space acquired
for dumping.

IISTEP1 EXEC
IISYSUDUMP DD
II
IISTEP2 EXEC
II IN DD
II

PGM=WWK
DSNAME=DUMP,UNIT=2314,DISP=(,DELETE,
KEEP),VOLUME=SER=54366,SPACE=(1680,(160,80))
PGM=PRINT,COND=ONLY
DDNAME=*.STEP1.SYSUDUMP,DISP=(OLD,DELETE),
VOLUME=REF=*.STEP1.SYSUDUMP

Step 1 specifies that the dump is to be stored if the step abnormally terminates. Because
COND=ONLY is specified in STEP2, the step will be executed only if STEPl abnormally
terminates. STEP2 uses a program that prints the dump.

180 OS/VS2 JCL (VS2 Release 3)

The SYSCHK Facility

DD Statement

The SYSCHK DD statement defines a checkpoint data set written during the original execution
of a processing program.

For detailed information about the checkpoint/restart facilities, see OS/VS
Checkpoint/Restart, GC26-37 84.

//SYSCHK DD

General Rules for Coding 4
• The SYSCHK DD statement must immediately precede the first EXEC statement of the SYS

resubmitted job when restart is to begin at a checkpoint. (If the first EXEC statement is SYS

preceded by a DO statement named SYSCHK and restart is to begin at a step, the SYSCHK SYS

DO statement is ignored.)
• The SYSCHK DD statement supports cataloged data sets.
• Include a SYSCHK DO statement among the DO statements for a job whenever a deferred

checkpoint restart is to occur, that is whenever a job is resubmitted for restart of execution
at a particular checkpoint.

• If you include a JOBUB DD statement, the SYSCHK DO statement must follow it.
• Code the RESTART parameter on the JOB statement; otherwise the SYSCHK DO statement

will be ignored.
• The rules for coding parameters on the SYSCH.K DO statement depend on whether or not the

checkpoint data set is cataloged. These rules are discussed below under separate headings.

When the Checkpoint Data Set is Cataloged

If the checkpoint data set is cataloged, you must always code the DSNAME and DISP

parameters.

• The DSNAME parameter specifies the name of the checkpoint data set.
• The DISP parameter must specify or imply a status OLD and a disposition of KEEP.

• The UNIT parameter specifies the type and the number of devices assigned to the data set.
• The VOLUME parameter specifies the volume(s) on which the data set resides.
• If the checkpoint entry exists on a tape volume other than the first volume of the

checkpoint data set, you must indicate this by coding the volume serial number or volume
sequence number in the VOLUME parameter. (The serial number of the volume on which a
checkpoint entry was written is contained in the console message printed after the
checkpoint entry is written.) If you code the volume serial number, you must also code the
UNIT parameter, since the system will not look in the catalog for unit information.

The DD Statement 181

When the Checkpoint Data Set is Not Cataloged

If the checkpoint data set is not cataloged, you must always code the DSNAME, DISP,

VOLUME, and UNIT parameters.

• The DSNAME parameter specifies the name of the checkpoint data set. If the checkpoint
data set is partitioned, do not include a member name in the DSNAME parameter.

• The DISP parameter must specify or imply a status of OLD and disposition of KEEP.

• The VOLUME parameter specifies the volume serial number of the volume on which the
checkpoint entry resides. (The serial number of the volume on which a checkpoint entry
was written is contained in the console message printed after the checkpoint entry is
written.)

• The UNIT parameter specifies the device to be allocated to the data set.

Example of the SYSCHK DD Satement

IIJOBl
IISYSCHK
II
IISTEPl

JOB
DD

EXEC

RESTART=(STEP3,CK3)
DSNAME=CHLIB,UNIT=2314,
DISP=OLD,VOLUME=SER=456789

The checkpoint data set defined on the SYSCHK DO statement is not cataloged.

IIJOB2
IIJOBLIB
IISYSCHK
II
IISTEPl

JOB
DD
DD

EXEC

RESTART=(STEP2,NOTE2)
DSNAME=PRIV.LIB3,DISP=(OLD,PASS)
DSNAME=CHECKPTS,DISP=(OLD,KEEP),
UNIT=2400,VOLUME=SER=438291

The checkpoint data set defined on the SYSCHK DO statement is not cataloged. Note that
the SYSCHK DO statement follows the JOBUB DO statement.

182 OS/VS2 JCL (VS2 Release 3)

The * Parametef.-positional, optional

The * parameter specifies that data for a processing program follows the DD statement. The *
parameter causes the system to check for an input delimiter (/*, / /, or when the card reader
runs out of cards or whatever you specify on the DLM parameter that overrides /*) on the
input reader device.

//ddname DD *

General Rules for Coding

• You can code more than one DO * statement for each job step. 4
• Code the OAT A parameter instead of the * parameter when the data contains statements

starting with / /.
• When preceding the data with a DO * statement, a delimiter statement (/*) following the S'V

data is optional.
• You must code input stream data records in BCD or EBCDIC.

• If the processing program does not read all the data in an input stream, the remaining data
is skipped without causing abnormal termination of the job.

• The OLM parameter can be used to define other than the standard delimiter.
• The OSlO and the VOL=SER parameters can be used to indicate to a diskette reader that a

diskette data set is to be merged into the JCL stream following this DO statement.

Rules for Coding a Catalog Procedure

• A cataloged procedure cannot contain a DO * statement.
• If you call a cataloged procedure with the EXEC statement, you can include the data for

each procedure step in the input stream. You can add more than one DO * statement to
each procedure step.

Restriction when Coding *
• The keywords allowed on the DO * statement are: DLM, OCB=BLKSIZE, DCB=BUFNO,

OCB=LRECL, VOL=SER, and OSlO. All other keywords will cause an error.
• The VOL=SER, DCB=BLKSIZE, DCB=BUFNO, OCB=LRECL, and OSlO parameters are ignored

except when they are detected by a diskette reader as a request for an associated data set as
described in OS/VS2 IBM 3540 Programmer's Reference, GC24-S111.

Separating Groups of Data

• You can include several distinct groups of data in the input stream for a job step or a
procedure step. The system will recognize each group of data if you precede each group
with a DO * statement, or if you follow each group with a delimiter statement (/*), or both.
(If you leave out the DO * statement for a group of data, the system provides a DO *
statement having SYSIN as its ddname.)

The DD Statement 183

Exalnples of the * Parameter

//INPUTl

/*
//INPUT2

/*

data

data

DD *

DD *

Defines several groups of data in the input stream.

//STEP2
//SETUP.WORK
//SETUP.INPUTl

/*
//PRINT.FRM
//PRINT.INP

/*

data

data

EXEC
DD
DD

DD
DD

PROC=FRESH
UNIT=2400,LABEL=(,NSL)

*

UNIT=180

*

Defines data in the input stream. The input data defined by the DD statement named
SETUP.lNPUTl is for use by the cataloged procedure step named SETUP; the input defined by
the DD statement named PRINT.INP is for use by the cataloged procedure step named PRINT.

//INPUT2 DD *

data

/*

Defines data in the input stream.

184 OS/VS2 JCL (VS2 Release 3)

The AMP Parametef.-keyword, optional

The AMP parameter completes information in an access method control block (ACB). The ACB

is a control block for entry-sequenced data sets or key-sequence data sets.

For further information on AMP and the ACB, see OS/VS Virtual Storage Access Method
(VSAM) Programmer's Guide, GC26-3838.

AMP=

AMORG

'AMORG'
[, 'BUFND=number']
[, 'BUFNI=number']

~: : ~~~~~:nu{m~~~}' ,J I
NRC

[, 'OPTCD~ {~L}' J

[, 'RECFM~ n:}.l
[, 'STRNO=number']
[, 'SYNAD=modulename']
[,'TRACE']

indicates that the DD statement defines a VSAM data set. You must specify AMORG only
when you include unit and volume information or DUMMY in the DD statement. You never
have to specify unit and volume information unless you want to have only some of the
volumes mounted on which the data set is stored, or if you want to defer mounting.

BUFND

specifies the number of I/O buffers to be used for transmitting the contents of data control
intervals between virtual and auxiliary storage. A minimum of two data buffers is required.
If the number of buffers is not specified in the AMP parameter or the ACB or GENCB macro
instructions, the default is the number specified for STRNO, plus one additional buffer.

BUFNI

specifies the number of L<O buffers to be used for transmitting the contents of index control
intervals between virtual and auxiliary storage. A minimum of one index buffer is required.
If the number of index buffers is not specified in the AMP parameter or ACB or GENCB

macro instructions, the default is the number specified for STRNO. If the ISAM interface
program is being used, a search of the high-level index in virtual storage can be simulated
by adding one additional index buffer.

BUFSP

specifies the size of the user area to be allocated for data and index buffers. With
entry-sequenced data sets, the minimum number of buffers required is two; with
key-sequenced data sets, the minimum number of buffers required is three. If you specify
less space than was specified in the BUFFERSPACE parameter of the DEHNE command of
Access Method Services when the data set was defined, the BUFFERSPACE amount BUFSP

has precedence over BUFND and BUFNI.

The DD Statement 185

CROPS

specifies one of four checkpoint/restart options, described in the OS/VS Checkpoint/Restart,
GC26-3784.
RCK

specifies that a data-erase test and data set post-checkpoint modification tests are
performed. RCK is the default for CROPS.

NCK

specifies that data·-set-post-checkpoint modification tests are not performed.
NRE

specifies that a data-erase test is not performed.
NRC

specifics that neither a data-erase test nor data set post-checkpoint modification tests are
performed.

If no value for CROPS is specified, RCK is assumed. If you specify an option which is not
applicable for a data set, such as the data-erase test for an input data set, the option is
ignored.

OPTCD

specifies how records flagged for deletion are to be processed with an ISAM processing
program using the ISAM interface.
I

L

IL

specifies, when coded along with OPTCD=L in the DCB, that records marked for deletion
by your processing program are not written into the data set by the ISAM interface. If
OPTCD=I is specified in the AMP parameter, but OPTCD=L is not specified in the
processing program's DCB, records flagged for deletion are treated like any other records;
that is, AMP='OPTCD=I', with L not specified, has no effect.

specifies that a record marked for deletion by your processing program is to be kept in
the data set. Although this parameter has the same meaning and restrictions for ISAM

interface as it has for ISAM, it may have to be specified in the AMP parameter when it
wasn't previously needed in the ISAM job control language. It is required when OPTCD=L

is not specified in the DCB processing program because OPTCD is not merged into the
DSCB when ISAM interface is used.

specifies that if processing programs marks a job for deletion, the ISAM interface does
not put the record into the data set.

RECFM

specifies the ISAM record format that the processing program is coded for. Although this
parameter has the same meaning and restrictions for the ISAM interface as it has for ISAM,

it may have to be specified in the AMP parameter when it wasn't previously required in the
ISAM job control language. RECFM is required when it is not specified in the DCB in the
processing program because RECFM is not merged into the OSCB when the ISAM interface is
used. All VSAM requests are for unblocked records. If your program issues a request for
blocked records, the ISAM interface sets the overflow-record indicator for each record to
indicate that each is being passed to your program unblocked. If RECFM isn't specified in
the AMP parameter or in the processing program's DCB, V is the default.
f'

indicates fixed-length records.
FB

indicates blocked fixed-length records.
v

indicates variable-length records.
VB

indicates blocked variable-length records.

186 OS/VS2 JCL (VS2 Release 3)

STRNO

indicates the number of VSAM requests that require concurrent data set positioning. STRNO
is an operand of the ACB or GENCB macro instruction and is fully described in OS/VS
Virtual Storage Access Method (VSAM) Programmer's Guide, GC26-3838.

SYNAD

is an operand of the EXLST macro instruction. It can be used to override the address of a
SYNAO exit routine specified in the EXLST (or GENCB) macro instruction that generates the
exit list. The address of the intended exit list is specified in the access method control block
that links this DO statement to the processing program. If no SYNAO exit is specified, the
AMP SYNAD parameter is ignored.
You can also use this parameter when processing a VSAM data set with an ISAM processing
program to provide an ISAM SYNAD routine or to replace one with another.

TRACE

specifies that the generalized trace facility (GTF) executes with your job to gather
information about opening and closing of data set, and end-of-volume processing. You can
print the trace output with the AMDPRDMP program (see OS/VS2 System Programming
Library: Service Aids, GC28-0674.

Rules for Coding

• If the number of buffers specified in the BUFND and BUFNI subparameters causes the virtual
storage requirements to exceed the BUFSP specification, the number of buffers is reduced to
comply with BUFSP. If BUFSP specifies more space than required by BUFNO and BUFNl, the
number of buffers is increased.

• For a key-sequenced data set, the total minimum buffer requirement is three; two data
buffers and one index buffer. For an entry-sequenced data set, two data buffers are
required.

• Apostrophes must enclose each subparameter or group of subparameters if they contain
special characters, for example, AMP='BUFSP=value'.

• If the subparameters continue from one line to another, each line of subparameters must
begin and end with an apostrophe and the entire group of subparameters must be enclosed
in parentheses.

Additional rules for coding and further explanation of the AMP parameter are in the OS/VS
Virtual Storage Access Method (VSAM) Programmer's Guide, GC26-3838.

Examples of the AMP Parameter
IIAMPDD DD DSN=SYS1.MACLIB,DISP=SHR,AMP=('BUFSP=200,BUFND=2',
II 'BUFNI=3,STRNO=4,SYSNAD=ERROR')

This DD statement defines the size of the user area for data and index buffers; specifies the
number of data and index buffers; specifies the number of requests that require concurrent
data set positioning and specifies an error analysis routine. ERROR will override the error
analysis routine specified in the EXLST macro.

IIAMPDD
II

DD DSN=SYS1.MACLIB,DISP=SHR,AMP=('BUFSP=23456,BUFND=5',
'BUFNI=10,STRNO=6,SYNAD=ERROR2,CROPS=NCK,TRACE')

This DO statement defines the values for BUFSP, BUFNI, STRNO, and SYNAO as in the
previous example. It also specifies that a data-set-post-checkpoint modification test is not to be
performed when restarting at a checkpoint and that OPEN is to provide a module trace.

IIAMPDD
II
II

DD DSN=SYS1.MACLIB,DISP=SHR,AMP=('BUFSP=23456',
'BUFND=5' ,'BUFNI=10' ,'STRNO=6' ,'SYNAD=ERROR2',
'CROPS=NCK' ,'TRACE')

Another way of continuing subparameters from one line to another.

The DD Statement 187

The CHKPT Parametef.-keyword, optional

The CHKPT parameter is used to invoke the checkpoint at end-of-volume facility. It specifies
that checkpoints are to be taken for the data set defined by the DO statement on which it is
coded. For more information, see osivs Checkpoint/Restart, GC26-3784.

CHKPT=EOV

EOV

specifies that checkpoints are to be taken at end of volume for that data set.

Rule.s for Coding

• The CHKPT parameter is specified only for multi-volume data sets using QSAM or BSAM.

(CHKPT is ignored for non-multivolume QSAM or BSAM data sets or for (SAM, BDAM, BPAM,

or VSAM data sets.)
• Checkpoints can be taken on either input or output data sets.
• CHKPT is mutually exclusive with DO *, 00 DATA, SYSOUT, DYNAM, and DONAME

parameters. Coding CHKPT with any of these parameters will result in a JCL error.
• For concatenated BSAM or QSAM data sets, CHKPT must be coded on each DD in the

concatenation if checkpoint is desired for each OD.

• If this parameter is specified on one or more DD statements in a job step, a SYSCKEOV DD

must be provided (as outlined in the discussion on SYSCKEOV in OS/VS Checkpoint/Restart,
GC26-3784).

• The RO parameter values NC and RNC on the JOB or EXEC statements override the CHKPT
parameter.

• The CHKPT parameter overrides cataloged procedure values or START console values for
checkpoints at end of volume.

Examples of the CHKPT Parameter

IIDSl
II

DD DSNAME=INDS,DISP=OLD,CHKPT=EOV,
UNIT=SYSSQ,VOLUME=SER=(TAPE01,TAPE02,TAPE03)

INOS is a multivolume QSAM (or BSAM) data set for which a checkpoint is to be taken
twice-once after end of volume on T APEOl and once after end of volume on T APE02.

IIDS2
II

DD DSNAME=OUTDS,DISP=(NEW,KEEP),
CHKPT=EOV,UNIT=SYSDA,VOLUME=(",8)

OUTOS is a multi-volume data set being created that will require eight volumes. Seven
checkpoints will be taken at the end of volumes one through seven.

188 OS/VS2 JCL (VS2 Release 3)

The COPIES Parametef.-keyword, optional

The COPIES parameter allows you to request one or more copies of the output data set.

For further information on the use of the COPIES parameter, see "Obtaining Output" for
either JES2 or JES3.

COPIES=nnn

nnn
specifies the number of SYSOUT copies (between 1 and 255) of the SYSOUT data set to be
written to the printer, punch, or external writer, subject to an installation limit.

Default: 1
• If COPIES is incorrectly coded, a default of 1 is supplied and a warning message is issued.

Rules for Coding

• The COPIES parameter can be coded only on a DD statement that includes the SYSOUT

parameter. Otherwise, the COPIES parameter is ignored.
• If you request copies of the entire job (on the JES2 JOBPARM statement) as well as

additional copies of the data set (on the JCL DD COPIES parameter) and if the data set is
part of the job related output, you may receive a number of copies equal to the product of
the two requests.

• Numbers of copies can also be specified on the OUTPUT control statement.

Example of the COPIES Parameter

//RECORD DD SYSOUT=W,COPIES=32

Request 32 copies of the data set defined by the DO statement named RECORD.

The DD Statement 189

c
c

The D AT A Parametef.-positional, optional

The DATA parameter specifies that data for a processing program is to follow the DD

statement. This data can contain statements with the characters / / in columns 1 and 2.

//ddname DD DATA

General Rules for Coding

• You can code more than one DD DATA statement for each job step.
• Code the * parameter instead of the D AT A parameter when the data does not contain

statements starting with / /.
• You must code input stream data records in BCD or EBCDIC.

• If the processing program does not read all the data in an input stream, the remaining data
is skipped without causing abnormal termination of the job.

• You must code a delimiter to end data in the input stream. Define this parameter as either
/* or use the DLM parameter.

• The DSID and VOL=SER parameters can be used to indicate to a diskette reader that a
diskette data set is to be merged into the JCL stream following this DO statement.

Rules for Coding a Catalog Procedure

• If you had an EXEC statement for the job step that calls a cataloged procedure, you can add
more than one DD DATA statement to a procedure step.

• A cataloged procedure cannot contain a DD DATA statement.

Restrictions when Coding DATA

• The keywords allowed on the DD * statement are: DLM, DCB=BLKSIZE, DCB=BUFNO,

DCB=LRECL, VOL=SER, and DSID and DCB=MODE=C for JES3 only. All other keywords will
cause an error.

• The VOL=SER, DCB=BLKSIZE, DCB=BUFNO, DCB=LRECL, and DSID parameters are ignored
except when they are detected by a diskette reader as a request for an associated data set as
described in OS/VS 3540 Programmer's Reference, GC24-S111.

Separating Groups of Data

• You can include several distinct groups of data in the input stream for a job step or a
procedure step. Precede each group of data with a DD DATA statement and follow it with a
delimiter statement (/*). The data contained between the DD DATA statement and the
delimiter statement and the delimiter must not contain /* in columns 1 and 2. See the DLM

parameter.

190 OS/VS2 JCL (VS2 Release 3)

Examples 0/ the DD DATA Parameter

//INPUT DD

data

/*

Defines data in the input stream.

//STEP2
//PREP.DD4
1/
//
//PREP.INPUT

/*
I/ADD.IN

/*

data

data

EXEC
DD

DD

DD

DATA

PROC=UPDATE
DSNAME=A.B.C,VOLUME=SER=D88,
UNIT=2314,SPACE=(TRK,(10,5)),
DISP=(,CATLG,DELETE)
DATA

*

Defines data in the input stream. The input defined by the DO statement name PREP. INPUT

is for use by the cataloged procedure step name PREP. This data contains job control
statements. The input defined by the DO statement named ADD.lN is for use by the cataloged
procedure step named ADD. Since this data is defined by a DD * statement, it must not
contain job control statements.

//INPUT

/*
I/INPUT3

1*

data

data

DD DATA

DD DATA

Defines several groups of data in the input stream.

The DD Statement 191

The DCB Parametef.-keyword, optional

The DeB parameter is used to complete information in a data control block (DeB) about a data
set at execution time. The data control block is originally constructed in a processing program
by a DeB macro instruction.

For further information on the formation of the data control block, see OS/VS Data
Management Services Guide, GC26-3783.

{

DCB=(list of attributes)
DCB= ({ ds name }

*.ddname
*.stepname.ddname [,list of attributes])

__ ~ __________ *_._stepname.procs:_~e_p_n_a_l_n_e_._d_d_n_a_m_e ______________________________ ~.

list of attributes
those DeB keyword subparameters that describe the data set and are needed to complete
the data control block. The DeB keyword subparameters are listed alphabetically in this
section in the pages immediately following.

dsname
the name of a cataloged data set from which the system is to copy DeB information. The
information is contained in the data set label of the cataloged data set; the data set must
reside on a direct access volume and the volume must be mounted before execution of the
job step.

*.ddname
the name of an earlier DO statement in the same job step from which the system is to copy
DeB information.

* .stepname.ddname
the name of a DD statement (ddname) in a earlier job set (stepname) from which the
system is to copy DeB information.

* .stepname.procstepname.ddname
the name of a Of) statement (ddname), which appears in a procedure step (procstepname);
the procedure step is part of a cataloged procedure that was called by an earlier job step
(stepname) .

General Rules for Coding

• Separate DeB keyword subparameters by a comma.
• You need not enclose the DeB parameter value in parentheses if it consists of only one

keyword subparameter, a data set name, or a backward reference.
• All DeB subparameters, except BLKS]ZE, nUFNo, and DIAGNS are mutually exclusive with

the DDNAME parameter; therefore, when the DDNAME parameter is coded, do not code any
DeB subparameters except BLKSIZE, BUFNO, and DIAGNS.

• Code the DeB parameter on the DO statement unless the data control block is completed by
another source, for example, the DeB macro instruction in the processing program. There
are several ways of specifying DeB information on the DO statement. The following
methods are explained in detail in the next three groups of syntax rules:

• Supplying all pertinent DeB keyword subparameters on the DO statement.
• Copying the DeB information from the data set label of an existing cataloged data set.
• Copying the DeB information from an earlier DO statement.

192 OS/VS2 JCL (VS2 Release 3)

Supplying DCB Keyword Subparameters

• You must code the DCB macro instruction in a processing program written in assembler
language. However, you can supply some DCB operands as DCB subparameters on a DCB

statement.
• List the information required to complete the data control block as keyword subparameters

in the DCB parameter.
• If the processing program and the DCB parameter supply the same subparameter, the

subparameter on the DO statement is ignored.
• The DCB keyword subparameters are listed alphabetically in this section in the pages

immediately following.

Copying DCB Information From a Data Set Label

• You can copy DCB information from the data set label of a cataloged data set on a
currently mounted direct access volume. A permanently resident volume is the most likely ~
place from which to copy information because it is always mounted. ~

• Code in the DCB parameter the data set name of the cataloged data set. The data set name
cannot contain special characters, except for periods used in a qualified name.

• The following DCB keyword subparameters can be copied from the data set label:

DSORG (used in a backward reference)
RECFM
OPTCD
BLKSIZE
LRECL
KEY LEN
RKP

The volume sequence number, system code, creation date, and expiration data of the
cataloged data set will also be copied unless you specify them in the DD statement.

• If you code any DCB keyword subparameters following the name of the cataloged data set,
these subparameters override any of the corresponding subparameters that were copied.

• The DCB subparameters are listed alphabetically in this section in the pages immediately
following.

Copying DCB Information From an Earlier DD Statement

• The earlier DO statement from which DCB information can be copied can be contained in
the same job step, an earlier job step, or a cataloged procedure step. Code in the DCB

parameter one of the following types of reference names, depending on the location of the
DD statement you want to use:

*.ddname
* .stepname.ddname
*. stepname. procstepname.ddname

• If you code any DCB keyword subparameters following the reference to the DD statement,
these subparameters override any of the corresponding subparameters that were copied.

• The system copies only those subparameters from the earlier DJ) statement that are not
again specified on the referencing DO statement.

• The DCB subparameters are listed alphabetically in this section in the pages immediately
following.

The DD Statement 193

Examples of the DCB Parameter

IIDDl
II
II

DD DSNAME=ALP,DISP=(,KEEP),VOLUME=SER=44321,
UNIT=2400,DCB=(RECFM=FB,LRECL=240,BLKSIZE=960,
DEN= 1 , TRTCH=C)

This DD statement defines a new data set and contains the information necessary to complete
the data control block.

IIDD2
II
IIDD3
II

DD

DD

DSNAME=BAL,DISP=OLD,DCB=(RECFM=F,LRECL=80,
BLKSIZE=80)
DSNAME=CNANN,DISP=(,CATLG,DELETE),UNIT=2400,
LABEL=(,NL),VOLUME=SER=663488,DCB=*.DD2

The statement named DD3 defines a new data set and requests the system to copy the OCB

subparameters from the DO statement named 002, which is in the same job step.

IIDD4
II

DD DSNAME=JST,DISP=(NEW,KEEP),UNIT=2314,
SPACE=(CYL,(12,2)),DCB=(A.B.C,KEYLEN=8)

This DD statement defines a new data set and requests the system to copy DCB information
from the data set label of the cataloged data set named A.B.C.. If the dat.a set label contains a
key length specification, it is overridden since KEY LEN is coded on the DO statement.

IIDD5
II

DD DSNAME=SMAE,DISP=OLD,UNIT=2314,
DCB=(*.STEP1.PROCSTP5.DD8,BUFNO=5)

This OD statement defines an existing data set and requests the system to copy the OCB

subparameters from the OD statement named 008, which is contained in the procedure step
named PROCSTP5. The cataloged procedure was called by the job step named STEPl. If any of
the DCB sub parameters coded on the procedure DO statement have been previously defined for
this data set, they are ignored. If the BUFNO subparameter has not been previously specified
for the data set, then five buffers are assigned to the data control block.

The following is a brief description of the OCB subparameters. For more detail on each of
them, refer to the book describing the access method you are using.

Access Method
BDAM, BISAM, BPAM,
BSAM, QISAM, QSAM
TCAM
GAM

EXCP

BTAM

194 OS/VS2 JCL (VS2 Release 3)

Publication

OS/VS Data Management Macro Instructions, GC26-3793.
OS/VS2 TeAM Programmer's Guide, GC30-2041.

Graphic Programming Services for 2250, GC27-6971.
Graphic Programming Services for 2260, GC27-6972.
OS/VS2 System Programming Library: Data Management,
GC26-3830.

OS/VS BTAM, GC27-6980.

~ :!E :!E :!E :!E :!E :!E Q. :!E :!E Method « « « « « 0 :!E « « « Description of Subparameters Sub- C CI)
Q. ~ l- X « CI)

CI) 0
parameters OJ Ql OJ OJ w C!J a 0 I-

BFALI\I X X X X X X x BFALN=(FI D)

Specifies that each buffer starts either on a word boundary that is not also
a doubleword boundary or on a doubleword boundary. If both BFALN and
BFTEK are specified, they must be supplied from the same source.

Default: D (doubleword)
1--.

BFTEI< X X X X BFTEK=R (for BDAM and BSAM) BFTEK= {SIEIA} (for aSAM)
R specifies that the data set is being created for or contains variable-length
spanned records. S, E, and A specify simple, exchange, or locate mode
logical record interface for spanned records. It can only be coded when
RECFM=VS. If both BFALN and BFTEK are specified, they must be
supplied from the same source.

c------ 1--- . ~ -"------._-

BLKSIZE X X X X X X X BLKSIZE=number of bytes
Specifies the maximum length, in bytes, of a block. The minimum length is
18. The largest number allowed is 32,760 except for blocks of ASCII records
on magnetic tape. This maximum length is 2048. If you code the BLKSIZE
subpt;lrameter in the DCB macro instruction or on a DD statement that defines
an existing data set with standard labels, the subparameter overrides the block
size specified in the label. BLKSIZE may be coded but will have no effect on

. ---
EXCP processing .

1----

BUFIN X BUFIN=number of buffers

Specifies the number of buffers to be assigned initially for receiving operations
for each line in the line group. The number of buffers specified in the
combined BUFI Nand BUFOUT operands must be no greater than the number
of buffers in the buffer pool for this line group (not including those for disk
activity only).

Default: 1

BUFL X X X X X X X X BUFL=number of bytes

Specifies the length, in bytes, of each buffer in the buffer pool.
The maximum length allowed is 32,760.

BUFMAX X BUFMAX=number of buffers

Specifies the maximum number of buffers to be allocated to a line at one time.
The number must be greater than 1 but may not exceed 15. It must be at
least equal to the larger of the numbers specified by the BUFIN and BUFOUT
subparameters.

Default: 2

BUFNO X X X X X X X X BUFNO=number of buffers

Specifies how many buffers are to be assigned to the DCB; the maximum
normally is 255, but can be less because of the size of the partition or region.

BUFOFF X X BUFOFF=(nIU

Specifies the buffer offset; that is, the length of an optional block prefix that
can precede a block of one or more ASCII records on magnetic tape. For
input, n can be 0 through 99, unsigned. For output, n can only be O.
L can be specified only when RECFM=D, indicating a four byte field
containing block length.

BUFOUT X BUFOUT=number of buffers

Specifies the number of buffers to be assigned initially for sending operations
for each line in the line group. The combined number of BUFIN and BUFOUT
values must not be greater than the number of buffer in the buffer pool for
this line group (not including those for disk activity only) and cannot
exceed 15.

Default: 2
- _.

BUFSIZE X BUFSIZE=number of bytes

Specifies the length, in bytes, of each of the buffers to be used for all lines in
a particular line group. This length must be at least 31 bytes, but cannot
exceed 65,535.

The DD Statement 195

~
~ ~ :; :; ~ :;

Method ~ :; Q. « « « « « CJ :; « « « Description of Subparameters Sub- C (I)
Q. ~ l- X « ~(I) CJ

parilmeters CO a CO CO w C!I 0 0 I-

CODE X X x CODE={AIBlcIFIIINIT}
Specifies the paper tape code used for punched data. The subparameters
CODE, DEN, KEYLEN, MODE, PRTSP, STACK, and TRTCH are mutually
exclusive.

A ASCII (8 track) I IBM BCD perforated tape
B Burroughs (7 track) transmission code (8 track)
C National Cash Register (8 track) N No conversion required
F Friden (8 track) T Teletype l (5 track)

Default: I
'---

CPRI X CPRI= {RI Els}
Specifies the relative transmission priority assigned to the lines in this line
group.

R Specifies that CPU receiving has priority over CPU sending.
E Specifies that receiving and sending have equal priority.
S Specifies that CPU sending has priority over CPU receiving.

CYLOFL X CYLOFL=number of tracks
Specifies how many tracks on each cylinder are to hold the records that
overflow from other tracks on that cylinder. The maximum is 99.
Specify CYLOFL only when OPTCD=Y.

DEN X X X DEN= {011121314}
Specifies the magnetic density in number of bits-per-inch used to write a
data set.

DEN 7-track tape 9-track tape

0 200 -
1 556 -
2 800 800 (NRZI)
3 - 1600 (PE)
4 - 6250 (GCR)

NRZI is for non-return-to-zero inverted recording mode.
PE is for phase encoded recording mode.
GCR is for group coded recording mode.

Default: 800 bpi assumed for 7-track tape and 9-track without dual density.
1600 bpi assumed for 9-track with dual density or phase-encoded

drives.
6250 bpi assumed for 9-track with 6250/1600 bpi dual density or

group coded recording tape.

The subparameters CODE, DEN, KEYLEN, MODE, PRTSP, STACK, and
TRTCH are mutually exclusive.

DIAGNS X X X X X X X X X DIAGNS=TRACE
Specifies the OPEN/CLOSE/EOV trace option which gives a module-by-
module trace of OPEN/CLOSE/EOV's work area and the DCB. When GTF is
not running and tracing user events, DIAGNS is ignored.

1 Trademark of Teletype Corporation, Skokie, I II.

196 OS/VS2 JCL (VS2 Release 3)

~~ ~
~ ~ ~ ~ ~ ~ ~ a. S Method c.1: c.1: c.1: c.1: c.1: u ~ ~ c.1: c.1: Description of Subparameters ub- C (I) a. ~ l- X c.1: a ~ ~ parameters m iii m m w ~

DSORG X X X X X X X X X X DSORG=data set organization

Specifies the organization of the data set and indicates whether the data set
contains any location-dependent information that would make the data set
unmovable.

PS physical sequential data set. BSAM, EXCP, QSAM, TCAM
PSU physical sequential data set that contains BSAM, QSAM, EXCP

location-dependent information.

DA direct access data set. BDAM

DAU direct access data set that contains BDAM, EXCP
location-dependent information.

IS indexed sequential data set. BISAM, QISAM
ISU indexed sequential data set that contains QISAM, EXCP

location-dependent information

PO partitioned data set. BPAM, EXCP

POU partitioned data set that contains BPAM, EXCP
location-dependent information.

CX communications line group. BTAM

GS graphic data control block. GAM

TX TCAM line group data set. TCAM

TQ TCAM message queue or checkpoint TCAM
data set

EROPT X X EROPT=n

BTAM: Requests the BTAM on-line terminal test option. n=T
QSAM: Specifies the option to be executed if an error occurs in reading or

writing a record.
n=ACC system is to accept the block causing the error.

SKP system is to skip the block causing the error.
ABE system is to cause abnormal end of task.

Default: ABE

FRID X F R I D=identifier

Specifies a 1 to 4 character load module name identifying the first format
record of the 3886 data set. FRID is mutually exclusive with the FCB
parameter.

FUNC X X FUNC={IIRlplwIDlxIT}

Specifies the type of data set to be opened for the 3305/3525 card reader/
card punch. Unpredictable results will occur if coded with other than the
3505/3525 devices.
I data in a data set is to be punched into and printed on cards.
R data set is for reading cards.
P data set is for punching cards.
W data set is for printing.
D data protection for a punch data set.
X data set is for both punching and printing.
T two-line print option.

Default: output data set is P; input data set is R.

GNCP X GNCP=number of channel programs

Specifies the maximum number of input/output macro instructions that will
be issued before a WAIT macro instruction.

INTVL X INTVL= {integerlO}

Specifies the number of seconds of delay between passes through an
invitation list.

Default; 0

The DD Statement 197

~
::E ::E ::E ::E ::E ::E

Sub- Method « « ::E ::E Q. ::E « « « « (J « « Description of Subparameters 0 en Q. ~ l- X « ~ ~ (J

parameters Ql iii Ql Ql W c;, 0 I-

KEYLEN X X X X X X KEYLEN=number of bytes

Specifies the length, in bytes, of the keys used in a data set. The largest
number allowed is 255. The key length information can be supplied from the
data set label for an existing data set. If a key length is not specified, no input
or output requests that require a key can be used.

LlMCT X LlMCT=number of blocks or tracks

Specifies how many blocks (if relative block addressing is used) or how many
tracks (if relative track addressing is used) are to be searched for a free block
or available space. This kind of search occurs only when the extended search
option is specified (OPTCD=E); otherwise, LlMCT is ignored. If the number
specified in the LlMCT subparameter equals or exceeds the number of blocks
or tracks in the data set, the entire data set is searched.

-- f--- - ------.. -

LRECL X X X X X X LRECL=number of bytes

Specifies the length, in bytes, for fixed-length records or it specifies the
maximum length, in bytes, for variable-length records. The length cannot
exceed the blocksize (BLKSIZE) except for variable-length spanned records.
For unblocked records with a relative key position (RKP) of zero, the record
length includes only the data portion of the record. The record length can be
specified only when the data set is being created.
LRECL may be coded but will have no effect on EXCP processing.

QSAM: LRECL=x

Specifies the logical record length when it exceeds the maximum block size
for variable-length spanned records. ---- - - --

MODE X X X
MODE= {{C} eE} [~]}
Specifies the mode of operation to be used with a card reader, a card punch,
or a card read-punch.

C indicates card image (column binary) mode.
E indicates EBCDIC mode.
0 indicates optical mark read mode.
R indicates read column eliminate mode.

If R is specified then either C or E must be specified. Do not code the MODE
subparameter for data entered through the input struam. The subparameters
MODE, CODE, DEN, KEYLEN, PRTSP, STACK"and TRTCH are mutually
exclusive.

Default: E -- -" -- .

NCP X X X NCP=number of channel programs

Specifies the maximum number of READ or WRITE macro instructions that
can be issued before a CH ECK macro instruction is issued to test for
completion of the I/O operation. The largest number that can be specified is
99, but may be less depending 6n the size of the region or partition. If
chained scheduling is used, NCP must be greater than 1.

Default: 1 ------ 1---- 1-. 1----1---- --

NTM X NTM=number of tracks

Specifies the number of tracks to be used for a cylinder index. When the
specified numbe~ of tracks has been filled, a master index is created. This
information is required only when the master index option (OPTCD=M) has
been selected. If you omit NTM information and OPTCD=M is specified, the
master index option is ignored.

198 OS/VS2 JeL (VS2 Release 3)

~
~ ~

ethod ~ ~ ~ ~ Q. ~ ~
c:t c:t c:t c:t c:t u ~ c:t c:t c:t Description of Subparameters Sub- 0 en Q. en l- X c:t ~ en U

parameters a:I Q5 a:I a:I a:I w c.::J 0 0 I-

OPTCD X X X X X X X X X Specifies the optional services to be performed by the control program. All
optional services must be requested by one method, that is, by the problem
program, the DCB macro, or the DO DCB parameter. The characters may be
coded in any order and when used in combination, no commas are permitted
between characters.

BDAM: OPTCD= {{~l [E] [F] [W]}

A indicates that the actual device addresses are to be specified in READ and
WRITE macro instructions.

R indicates that relative block addresses are to be specified in READ and
WRITE macro instructions.

E indicates that an extended search (more than one track) is to be performed
for a block or available space. (LlMCT must be coded but do not code
LlMCT=O because it will cause an ABEND when a READ or WRITE macro
instruction is issued.l

F indicates that feedback can be requested in READ and WRITE macro
instructions and the device address returned is to be in the same form as
that presented to the control program.

W requests a validity check for write operations on direct access devices.

BISAM: OPTCD={[L] [R] [W]}

L requests that the control program delete records that have a first byte of
all ones. (These records can be deleted when space is required for new
records. To use the delete option, RKP must be greater than zero for
fixed-length records and greater than four for variable-length records'!

R indicates that relative block addresses are to be specified in READ and
WRITE macro instructions.

W requests a validity check for write operations on direct access devices.

BPAM: OPTCD={clwlcw}
C requests that chained scheduling be used.
W requests a validity check for write operations on direct access devices.

BSAM and aSAM: OPTCD= {B}
{T}
{U [C]}
{C [THB] }
{H [Z][B]}
{W [C][T][B] }
{Z [C][T][B] }
{a [C][T][B] }
{z}

B requests that end-of-file recogn ition be disregarded for tapes.
C requests that chained scheduling be used.
H requests hopper empty exit for Optical Readers or bypass of DOS

checkpoint records.
a specifies that translation from ASCI I input is required or that translation

from EBCDIC to ASCII output is required.
T requests user totaling facility. (T cannot be specified for a SYSI N or

SYSOUT data set'!
U only for 1403 or 3211 prihters with the Universal Character Set feature;

unblocks data checks and allows analysis by an appropriate error analysis
routine. (If U is omitted, data checks are blocked, that is, not recognized
as errors.)

W requests a validity check for write operations on direct access devices.
Z for magnetic tape input - requests the control progt:am to shorten its

normal error recovery procedure. When specified, a data check is
considered permanent after five unsuccessful attempts to read a record
for direct access storage device input - specifies search direct (SO) for
sequential data sets.

The DD Statement 199

~ ~
~ ~

Sub- Method ~ ~ ~ a.. ~ ~
<C <C <C <C <C C.J ~ <C <C <C Description of Subparameters
0 en a.. en l- X <C en en C.J

parameters al Ui al al al w e,:, a 0 I-

OPTCD BTAM and EXCP: OPTCD=Z
(continued) Z for magnetic tape input - requests the control program to shorten its

normal error recovery procedure. When specified, a data check is
considered permanent after five unsuccessful attempts to read a record.

BTAM Only: for direct access storage device input - specifies search direct
(SO) for sequential data sets.

QISAM: OPTCD={[I] [L] [M] [R] [U] [W] [Y]}
I requests that the problem program use the independent overflow areas

for overflow records.
L requests that the problem program delete records that have a first byte

of all ones. (These records can be deleted when space is required for new
records. To use the delete option, RKP must be greater than zero for
fixed-length records and greater than four for variable-length records.)

M requests that the system create and maintain a master index(es) according
to the number of tracks specified in the NTM subparameter.

R requests that the control program place reorganization criteria information
in certain fields of the data control block. (The problem program can
analyze these statistics to determine when to reorganize the data set.
This option is provided whenever the OPTCD subparameter is omitted
from all sources.)

U requests that the system accumulate track index entries in storage and
write them as a group for each track of the track index. This can only be
specified for fixed-length records.

W requests a validity check for write operations on direct access devices.
Y requests that the system use the cylinder overflow areas for overflow

records.

TCAM: OPTCD={clu/w}
C specifies that one byte of the work area be used to indicate if a segment

of a message is the first, middle, or last segment.
U specifies that the work unit to be handled is a message. If U is omitted,

the work unit is assumed to be a record.
W specifies that the name of each message source is to be placed in an

eight-byte field in the work area.

PCI X

PCI= {[~[~J }
Specifies whether or not a program-controlled interruption (PCI) is to be used
to control the allocation and freeing of buffers; the PCI subparameter also
specifies how these operations are to be performed. The operands shown in
the format above apply to receiving and sending operations, respectively.
N specifies that no PClsare taken during filling (on receiving operations)

or emptying (on sending operations) of buffers.
R specifies that after the first buffer is filled or emptied, a PCI occurs during

the filling or emptying of each succeeding buffer. The completed buffer
is freed, but no new buffer is allocated to take its place.

A specifies that after the first buffer is filled or emptied, a PCI occurs during
the filling or emptying of the next buffer. The first buffer is freed and a
buffer is allocated to take its place.

X specifies that after a buffer is filled or emptied, a PCI occurs during the
filling or emptying of the next buffer. The first buffer is not freed, but a
new buffer is allocated.

Default: (A, A)

200 OS/VS2 JCL (VS2 Release 3)

~~ :E :E :E
Method :E :E :E 1:1. :E :E

<C <C <C <C <C (J :E <C <C <C Description of Subparameters Sub- 0 VJ 1:1. ~ l- X <C VJ
~ (J

parameters al iii al al w e" a I-
--

PRTSP X X x PRTSP={0111213}
Specifies the line spacing on a printer as 0, 1,2, or 3. It is valid only if the
control characters A and M are not specified in the RECFM subparameter.
The subparameters PRTSP, CODE, DEN, KEYLEN, MODE, STACK, and
TRTCH are mutually exclusive.
0 specifies that spacing is suppressed.
1 specifies single spacing._
2 specifies double spacing.
3 specifies triple spacing.
Default: 1

---- ---" "--" -----
RECFM X X X X X X X Specifies the format and characteristics of the records in the data set. The

format and characteristics must be completely described by one source;
that is, the problem program, the DCB macro, or the DD DCB parameter.

ROAM· RECFM= {~ISI } . [BS)
F[TJ-

U indicates that the records are of undefined length.
V indicates that the records are of variable length.
VS indicates that the records are of variable length, and spanned.
VBS indicates that the records are of variable length, blocked and spanned

and the problem program must block and segment the records.
F indicates that the records are of fixed length.
T indicates that the records may be written using the track-overflow feature.
Default: undefined-length, unblocked records.

(u IT) [~r

BPAM: RECFM= I V [~TJ~] I

F [~J~J
\ BT J

A indicates that the record contains American National Standards Institute
control characters.

B indicates that the records are blocked.
F indicates that the records are of fixed length.
M indicates that the records contain machine code control characters.
T indicates that the records may be written using the track-overflow feature.

Chained scheduling (OPTCD=C) will be ignored.
U indicates that the records are of undefined length.
V indicates that the records are of variable length.
Default: U

--

The DD Statement 20t

-

~
:E :E Method :E :E :E :E Q. :E :E

Sub- <t <t <t <t <t u :E <t <t <t Description of Subparameters
C CI)

Q.CI) l- X <t CI)
CI) U

parameters m co m m m w (!) a 0 I-

RECFM "u [T) [~1
....

(continued)

BSAM, EXCP, and QSAM: RECFM= ~

B [i~ l[~]
BST

>-

....

B [i~ r~]
BST ..

For BSAM, EXCP, and QSAM using ASCII data sets on tape:

{D [BI [AI}
RECFM= U [A]

F [B) [A]

A or M cannot be specified if the PRTSP subparameter is specified.

A indicates that the record contains ANSI device control characters.
B indicates that the records are blocked.
D indicates that the records are variable-length ASCII tape records.
F indicates that the records are of fixed length.
M indicates that the records contain machine code control characters.
S for fixed-length records, the records are written as standard blocks, that

is, no truncated blocks or unfilled tracks within the data set, with the
exception of the last block or track. For variable-length records, a record
can span more than one block.

T indicates that the records can be written using the track-overflow feature
if required. Chained scheduling (OPTCD=C) will be ignored.

U indicates that the records are of undefined length.
V indicates that the records are of variable length. Variable length records

cannot be used for an ASCII tape data set or for a card reader data set.
RECFM=V cannot be used for a 7-track tape unless the data conversion
feature (TRTCH=C) is used.

Default: U

QISAM: RECFM={~ [B) }
[B)

B indicates that the records are blocked.
F indicates that the records are of fixed length.
V indicates that the records are of variable length; variable length records

cannot be in ASCII. When indexed sequential data sets are created, you
can code the RECFM subparameter; when existing indexed sequential
data sets are processed, FECFM must be omitted.

Default: V

TCAM: RECFM"{U }
V [B)
F

B indicates that the records are blocked.
F indicates that the records are of fixed length.
U indicates that the records are of undefined length.
V indicates that the records are of variable length.

Default: U
1---- -----------

FIESERVE X RESERVE=(number1,number2)
Specifies the number of bytes (from 0 to 255) to be reserved in a buffer for
insertion of data by the DATETIME and SEQUENCE macros.

number1 indicates the number of bytes to be reserved in the first buffer that
receives an incoming message.

number2 indicates the number of bytes to b8 reserved in all the buffers
following the first buffer in a multiple-buffer header situation.

Default: 0

202 OS/VS2 JCL (VS2 Release 3)

~~ :!E :!E :!E :!E :!E :!E :!E :!E 1:1.
Sub- Method « ~ « « « (.) :!E « « « Description of Subparameters

C 1:1. ~ l- X « tJ)
tJ) (.)

parameters a:I a:I a:I a:I W ~ a 0 I-

RKP X X RKP=number

Specifies the position of the first byte of the record key within each logical
record. The beginning byte of a record is addressed as O.

If RKP=O is specified for blocked fixed-length records, the key begins in the
first byte of each record, and the delete option (OPTCD=L) must not be
specified.

If RKP=O is specified for unblocked fixed-length records. the key is not
written in the data field; the delete option can be specified.

For variable-length records, the relative key position must be 4 or greater,
when the delete option (OPTCD=L) is not specffied.

The relative key position must be 5 or greater if the delete option is specified.

When indexed sequential data sets are created, you can code the RECFM
subparameter; when existing indexed sequential data sets are processed
RECFM must be omitted.

Default: 0

RKP can be coded but will have no effect on EXCP processing.

STACK X X X STACK={112}

Specifies which stacker bin is to receive a card. The subparameters STACK,
CODE, DEN, KEYLEN, MODE, PRTSP, TRTCH are mutually exclusive.

Default: 1
--

THRESH X THRESH=number

Specifies the percentage of the non-reusable disk message queue records to be
used before a flush closedown occurs.

Default: closedown occurs when 95% of the records have been used.

TRTCH X X X TR'TCH= {CIEITIET}

Specifies the recording technique for seven-track tape. The subparameters
TRTCH, CODE, KEYLEN, MODE, PRTSP, and STACK are mutually
exclusive.

C specifies that the data conversion feature is to be used, with odd parity
and no translation.

E specifies even parity, with no translation and no conversion.
T specifies that BCDIC to EBCDIC translation is required with odd parity

and no data-conversion feature.
ET specifies even parity and no conversion with BCOIC to EBCDIC translation

required.

Default: C

The DD Statement 203

'The DDNAME Parametef.-keyword, optional

The DDNAME parameter allows the postponing of defining a data set until later in the same
job step. In the case of cataloged and in-stream procedures, this parameter allows you to
postpone defining a data set in the procedure until the procedure is called by a job step.

DDNAME=ddnarne

ddname
the name of the DD statement on which the data set is defined.

General Rules for Coding

• Only the DCB subparameters DIAGNS, BLKSIZE, and BUFNO can be coded with the
DDNAME parameter. If this subparameter is coded both on the DO statement that contains
the DDNAME parameter and on the DO statement that actually defines the data set, the
subparameter coded with the DDNAME parameter is ignored.

• You can code the DDNAME parameter up to five times in a job step or procedure step.
However, each time the DDNAME parameter is coded, it must refer to a different ddname.

• If the data set, which will be defined later in the job step, is to be concatenated with other
data sets, the DD statements that define these other data sets must immediately follow the
DO statement that includes the DDNAME parameter.

• The DDNAME parameter cannot appear on a DO statement named JOBLIB, JOBCAT, or
STEPCAT.

• The DDNAME parameter cannot refer to a DO statement that has DYNAM coded on it.
• If you postpone the definition of a data set by coding the DDNAME paramete:, and then do

not define the data set later in the job step, the job step is abnormally terminated.
• The DDNAME parameter is mutually exclusive with the *, AMP, DATA, DISP, DSNAME,

DYNAM, FCB, FREE, LABEL, QNAME, SPACE, SYSOUT, UCS, UNIT, and VOLUME parameters.
Therefore, do not code these parameters when you code DDNAME.

Rules for Coding Backward References

• In any backward reference to a data set, you must use the ddname of the DO statement
containing the DDNAME parameter, not the ddname specified in the DDNAME parameter.

• The DO statement that actually defines the data set cannot contain any backward references
to a DO statement that follows the one with the DDNAME parameter.

204 OS/VS2 JCL (VS2 Release 3)

Example of the DDNAME Parameter

The following procedure step is included in a cataloged procedure named CROWE:

//PROCSTEP
//DD1
//POD

EXEC
DD
DD

PGM=FLORA
DDNAME=DAVE
DSNAME=JEREMY,DISP=OLD

The DD statement named DDI is meant to contain weekly records, in the form of data in
the input stream, that are processed by this step. Since the * and DATA parameters cannot be
included in cataloged procedures, the DDNAME parameter is used to postpone defining the
data set until the procedure is called by a job step. When calling thc procedure, you would
code:

//STEPA EXEC CROWE
//DAVE DD *

data

/*

The DO Statement 205

4
001

The DEST Parametef.-keyword, optional

JES2 and JES3 allow you to route output to specified destinations. The DEST parameter
specifies a remote destination (work station), a TSO user's location as the destination, a
destination (central computing center), or a specific local device for an output data set.

For further information on the DEST parameter, see "Obtaining Output" for either JES2 and
JES3.

JES2

DEST= {~~~8~~n}
LOCAL

JES2

RMTnnn

JES3

{

ANYLOCAL }
device-name
device-address
group-name

where nnn is a 1-3 alphameric or national character string indicating a destination for the
output data set.

REMOTEn

where n is an alphameric or national character indicating a destination for the output data
set.

LOCAL

a local device is the destination for the output data set.
JES3

ANYLOCAL

any device (either a printer or punch as defined by the output class on the DD statement)
attached to the central CPU to received the output data set.

device-name

1-8 alphameric or national character name of a local printer or punch (as defined by the
system programming staff) to receive the output data set.

device-address

three character physical device address of the device to receive the output data set.
group-name

name of a group of local devices, an individual remote station, or a group of remote
stations to receive the output data sets. Specify LOCAL to define the default group-name
for local devices (that is, those local devices that are in no other group).

Default: name of the source of the job (whoever submitted the request).

• If the destination specified is invalid, the job is failed.

Rules for Coding

• The DEST parameter can only be coded on a DD statement that includes the SYSOUT

parameter. Otherwise, DEST is syntax-checked and ignored.
• Output destination can also be coded on the JES2 OUTPUT and ROUTE control statements

and the]ES3 MAIN ORG and FORMAT PR and PU DEST parameters.

206 OS/VS2 JCL (VS2 Release 3)

Example of the DEST Parameter

IIJOBOl
IISTEPl
IIDEB
IIGWB

JOB
EXEC
DD
DD

,'REBECCA BARNHARDT' ,MSGLEVEL=l
PGM=INTEREST
SYSOUT=A
SYSOUT=A,DEST=RMTl

In this example, the workstation from which the job was submitted receives the output
described by the DEB DD statement. The user identified by the station-id RMTI receives the
output described by the GWB DD statement.

The DD Statement 207

The DISP Parametef.-keyword, optional

Status

The DISP parameter describes the status of a data set to the system. It also indicates what is to
be done with the data set after termination of the job step or job that processes it. You can
indicate in the DISP parameter one disposition to apply if the step terminates normally after
execution and another to apply if the step terminates abnormally (conditional disposition). For
further information on the DISP parameter, see "Disposition Processing".

DISP=

[

NEW.] OLD
SHR
MOD
, [

,DELETE] ,KEEP
,PASS
,CATLG
;UNCATLG

[

,DELETE]
,KEEP
,CATLG
,UNCATLG

Note: The disposition of a data set is solely a function of the DISP parameter; however, the
disposition of the volumes on which the data set resides is a function of the volume status
when the volume is demounted.

NEW

specifies that the data set is to be created in this job step.
OLD

specifies that the data set existed before this job step.
SIIR

specifies that the data set existed before this job step and can be used simultaneously
(shared) by another job, since it will only be read.

MOD
specifies that the read/write mechanism is to be positioned after the last record in the data
set. If the system cannot find the data set on the specified volume, MOD specifies that the
data set is to be created.

specifies that NEW is assumed and that a normal or conditional disposition follows.

Normal Termination Disposition

,DELETE

specifies that the data set is no longer needed and its space on the volume is to be released
at the end of this job step for use by other data sets.

,KEEP

specifies that the data set is to be kept on the volume at the end of this job step.
,PASS

specifies that the data set is to be passed for use by a subsequent job step in the same job.
,CATLG

specifies that the data set is to be kept at the end of this job step and an entry pointing to
the data set is to be placed in the system or user catalog. Any missing index levels will be
created.

,UNCATLG

specifies that the data set is to be kept at the end of this job step but the entry pointing to
the data set in the system or user catalog, and unneeded indexes, with the exception of the
highest level, are to be deleted.

208 OS/VS2 JCL (VS2 Release 3)

specifies no explicit disposition for the data set, but indicates that a conditional disposition
follows. A new data set is deleted and a data set that existed before execution of the job
step is kept at step termination.

Abnormal Termination Disposition

,DELETE
specifies that the data set is no longer needed and its space on the volume is to be released
for use by other data sets if this step abnormally terminates.

,KEEP

specifies that the data set is to be kept on the volume if this step abnormally terminates.
,CATLG

specifies that an entry pointing to the data set is to be placed in the system or user catalog
if this step abnormally terminates. Any missing index levels will be created.

,UNCATLG

specifies that the entry pointing to the data set in the system or user catalog, and unneeded
indexes, with the exception of the highest level, are to be deleted if this step abnormally
terminates.

General Rules for Coding

• If you code only the first subparameter, you need not enclose it in parentheses.
• If the data set is new, you can omit the subparameter NEW. However, if you specify a

disposition or conditional disposition, you must code a comma to indicate the absence of
NEW.

• You can omit the DISP parameter if a data set is created and deleted during a job step.
• If you do not want to change the automatic disposition processing performed by the system,

you need not code the second subparameter. (When the second subparameter is not coded,
the system automatically deletes data sets that did not exist before the job.) If you omit the
second subparameter and code a conditional disposition, you must code a comma to indicate
the absence of the second subparameter.

• The DISP, SYSOUT, and DDNAME parameters are mutually exclusive: therefore, when
SYSOUT or DDNAME is coded, do not code the DISP parameter.

• You must specify a disposition of PASS or DELETE for a temporary data set or a data set
with a system-generated name; that is, when DSNAME=dsname or DSN=dsname is omitted
from the DD statement. Any other disposition will be overridden by the system with PASS.

• If a job step abnormally terminates and a conditional disposition is not specified, the normal
disposition (second subparameter) is processed.

• If a temporary data set name is specified, any conditional disposition other than DELETE is
ignored.

• If the data set name has special characters, you must not assign the CA TLG disposition to it.
• A data set can only be passed within a job. VSAM data sets cannot be passed.
• If a job step abnormally terminates, conditional dispositions of CATLG, UNCATLG, or

DELETE (of a cataloged data set) for unrecieved data sets will not update a user catalog.

The DD Statement 209

Examples of the DISP Parameter

IIDD2
II

DD DSNAME=FIX,UNIT=2400-1,VOLUME=SER=44889,
DISP=(OLD"DELETE)

This DO statement defines an existing data set and implies that the data set is to be kept if the
step terminates normally. (For an existing data set, the system assumes it is to keep the data
set if no disposition is specified.) The statement requests that the system delete the data set if
the step abnormally terminates.

IISTEPl
IIDDl
II
IISTEP2
IIDD2
IIDD3
IISTEP3
IIDD4

EXEC
DD

EXEC
DD
DD
EXEC
DD

PGM=FILL
DSNAME=SWITCH.LEVEL18.GROUP12,UNIT=2314,
VOLUME=SER=LOCAT3,SPACE=(TRK,(80,15)),DISP=(,PASS)
PGM=CHAR
DSNAME=XTRA,DISP=OLD
DSNAME=*.STEP1.DD1,DISP=(OLD,PASS,DELETE)
PGM=TERM
DSNAME=*.STEP2.DD3,DISP=(OLD,CATLG,DELETE)

The OD statement named DDl in STEP1 defines a new data set and requests that the data
set be passed. If STEP 1 abnormally terminates, the data set will be deleted since it is a new
data set and a conditional disposition was not specified. The DD statement named DD3 in
STEP2 receives the passed data set and requests that the data set be passed. If STEP2

abnormally terminates, the data set will be deleted because of the conditional disposition of
DELETE. The DD statement named DD4 in STEP3 receives the passed data set and requests that
the data set be cataloged at the end of the step. If STEP3 abnormally terminates, the data set
will be deleted because of the conditional disposition of DELETE.

210 OS/VS2 JCL (VS2 Release 3)

The DI~M Parametef.-keyword, optional

The DLM parameter allows you to use a delimiter other than /* to terminate data defined in
the input stream. By assigning a different delimiter in the DLM parameter, you can include a
standard delimiter (/*) as data in the input stream.

DLM=delimiter

delimiter
specifies two characters that will indicate the end of a group of data in the input stream.

Default: /*

Rules for Coding

• For JES2, if the DLM parameter is specified incorrectly, such as misspelling the keyword,
then it is ignored. However, if an incorrect delimiter is coded, such as coding a three
character delimiter, then the system creates a probable delimiter and scans for it at the end
of your data. For JES3, the job is flushed.

• The delimiter can be any two characters.
• If the delimiter contains special characters, enclose them in apostrophes. If you include an

ampersand or an apostrophe in the delimiter, you must code each ampersand or apostrophe
as two consecutive ampersands or apostrophes.

• The DLM parameter has meaning only on statements defining data in the input stream (OD
* and DD DATA statements).

• If you do code the DLM parameter on a DO DATA statement, the characters you assign as
delimiters override any delimiter implied by the DD DATA statement. You must terminate
the data with the characters you assigned in the D LM. parameter.

• If the system encounters an error on the DD statement before the OLM parameter, it will
not recognize the value assigned as a delimiter. When the card reader is empty, the input
reader device will also cause the system to end an input data set.

• JES2 statements will not be recognized if they are in an input stream.

Example of the DLM Parameter

//DDl DD *,DLM=AA

data

AA

The DLM parameter assigns the characters AA as the valid delimiter for the data defined in the
input stream by DD 1. In this case, the characters / / would also serve as valid delimiters since
a DD * statement was used.

The DD Statement 21 t

The DSID Parametef.-keyword, optional

The OSID parameter specifies the data set identifier of an input or output data set on diskette
for the 3540 diskette reader or writer utilities. Output data sets to be written to a 3540
diskette must be assigned to an output class that is processed by the diskette writer (an
external writer). For the diskette writer to receive data sets, reserved classes for diskette
output must be defined. To write data sets on a diskette, the operator must start the diskette
writer to a 3540 device.

For more information about associated data sets, refer to the section, "Associated Data Sets
(3540 Diskette)" in this book and to OS/VS2 IBM 3540 Programmer's Reference, GC24-5111.

DSID=(id, [V])

id
specifies the data set identifier. The identifier can be 1 - 8 characters in length. The
characters must be alphameric, national, minus (hyphen), or left bracket (12-0 punch). The
first character must be alphabetic or national.

v
specifies that the data set label must have been previously verified on a 3741 data entry
terminal. (SYSlN only)

General Rules for Coding
• DSlO is mutually exclusive with DDNAME, MSVGP, and OYNAM. OSID can be specified with

the DO *, DO DATA, and DO SYSOUT parameters; otherwise, it is ignored.
• If only the id is coded, you can omit the parentheses.
• OSlO on the DO * or DD DATA statement is ignored except when the JCL is processed by a

diskette reader.
• Along with OSlO, you can specify volume serial and logical record length information on the

DO * and DO DATA statements.

Example of the DSID Parameter

IIJOBl
IISTEP
IISYSIN
II
IISYSPRINT

JOB
EXEC
DD

DD

, , MSGLEVEL=(1 , 1)
PGM=AION
*,DSID=(ABLE,V),VOL=SER=123456,
DCB=LRECL=80
SYSODT=E,DCB=LRECL=128,DSID=BAKER

In this example the input is found on diskette 123456 in data set ABLE and must have been
verified. The output will be created on diskette in data set BAKER.

212 OS/VS2 JCL (VS2 Release 3)

The DSNAME Parametef.-keyword, optional

The OSNAME parameter specifies the name of a data set. For new data sets, the name
specified is assigned to the data set; for existing data sets, the system uses the name to locate
the data set on the volume.

For further information on indexed sequential data sets and generation data groups, see
"Special Data Sets.". Partitioned data sets are described in OS/VS Data Management Services
Guide, GC26-3783.

{
DSNAME} =
DSN

dsname

dsname
dsname(member name)
dsn~me(generation number)
dsname(area name)
&&dsname
&&dsname(member name)
&&dsname(area name)
*.ddname
*.stepname.ddname
*.stepname.procstepname.ddname

specifies a data set name.
dsname(member name)

specifies a nontemporary partitioned data set name and the name of a member within that
data set.

dsname(generation number)
specifies the name of a generation data group (GOG) and the generation number (zero or a
signed integer) of a generation data set within the GDG.

dsname(area name)
specifies the name of a nontemporary indexed sequential data set and an area of that data
set (INDEX, PRIME, or OVFLOW).

&&dsname
specifies the name of a temporary data set.

&&dsname(member name)
specifies the name of a temporary partitioned data set and a member within that data set.

&&dsname(area name)
specifies the name of a temporary indexed sequential data set and an area of that data set
(INDEX, PRIME, or OVFLOW).

*.ddname
specifies that the data set name is to be copied for an earlier DD statement in th~ job step.

* .stepname.ddname
specifies that the data set name is to be copied from an earlier DD statement, ddname,
which appears in an earlier step, stepname, in the same job.

* .stepname.procstepname.ddname
specifies that the data set name is to be copied from an earlier DO statement in a cataloged
procedure. Stepname is the name of the job step that calls the procedure, procstepname is
the name of the procedure step that includes the named D D statement, and ddname is the
name of the DD statement that contains the data set name.

General Rules for Coding

• The DSNAME parameter can be abbreviated DSN .

• The DSNAME, DSID, and DDNAME parameters are mutually exclusive; therefore, if you code
the DDNAME or OSlO parameters, do not code the OSNAME parameter.

The DD Statement 213

• If the data set name begins with a 'blank character, the system assigns the data set a
temporary data set name. Blank charaCters at the end of a data set name are ignored.

Spe,cial Characters

• If a data set name includes special characters as part of the name (the characters do not
have special significance to the system), you must enclose the name in apostrophes (5-8
punch). If one of the special characters is an apostrophe, identify it by coding two
consecutive apostrophes, for example, DSNAME= 'OA YS"ENO'

• If the only special character is a period or a hyphen, you need not enclose the data set
name in apostrophes.

• The following special characters have significance to the system and must not be enclosed in
apostrophes: ampersands coded to identify temporary data sets; parentheses enclosing the
member name of a partitioned data set, the area name of an indexed sequential data set, or
the generation number of a generation data set; and the asterisk, used in the backward
reference.

• If a data set is to be cataloged, the data set name cannot contain special characters.

Nontemporary Data Sets

• You can assign a non temporary data set either an unqualified or qualified name. An
unqualified name consists of 1 to 8 characters. The first character must be an alphabetic or
national (@,#,$) character; the remaining characters can be any alphameric or national
charactcrs, a hyphen, or a plus zero (12-0) punch. A qualified name consists of multiple
names joined by periods. The rules for coding each name within a qualified name are the
same as for coding an unqualified name. A qualified data set name can include as many as
44 characters, including periods, unless the data set is a generation data set. Qualified names
of generation data groups cannot exceed 35 characters, including periods.

Telnporary Data Sets

• You need not code the OSNAME parameter when defining a data set that is created and
deleted within a job (a ~emporary data set). The system will generate a name for the data
set.

• If you do code the OSNAME parameter, the data set name consists of 1 to 8 characters and
is preceded by two ampersands (& &). The first character following the ampersands must
be an alphabetic or national (@,#,$) character; the remaining characters can be any
alphameric or national characters, a hyphen, or a plus-zero (12-0) punch. The system
generates a qualified name for the temporary data set that begins with SYS and includes the
jobname, the temporary name assigned in the DSNAME parameter, and other identifying
characters.

• A single ampersand preceding a data set name in a cataloged or in-stream procedure
normally signifies a symbolic parameter. However, if no value is assigned to the name on
either the EXEC statement that calls the procedure or on a PROC statement within the
procedure, the name is treated as a temporary data set name.

Special Data Sets

• An indexed sequential data set can be either temporary or nontemporary. If you use only one
DO statement to define an indexed sequential data set, omit the area name or code PRIME
for the area name; for example, OSNAME=dsname or OSNAME=dsname(PRIME). To
retrieve an indexed sequential data set, code only the data set name and omit the area
name.

214 OS/VS2 JCL (VS2 Release 3)

• If you assign a qualified name to a generation data grQUp, the qualified name cannot exceed
35 characters, including periods. To retrieve all generations of a generation data group, omit
the relative generation number in the DSNAME parameter.

Examples of the DSNAME Parameter

IIDD1
II

DD DSNAME=ALPHA,DISP=(,KEEP),
UNIT=2400,VOLUME=SER=389984

This DD statement defines a new data set whose name is ALPHA. Later job steps or jobs may
retrieve this data set by supplying the data set name in the DSNAME parameter, unit
information in the UNIT parameter, and volume information in the VOLUME parameter.

IIDD2
II

DD DSNAME=PDS(PROG12),DISP=(OLD,KEEP),UNIT=2314,
VOLUME=SER=882234

This DD statement retrieves a member of a partitioned data set named PDS.

IIDD3 DD DSNAME=&&WORK,UNIT=2400

This DD statement defines a temporary data set. Since the data set is to be deleted at the
end of the job step, the DSNAME parameter can be omitted. However, it may be included to
facilitate a later reference to a passed data set; for example, DSNAME= & & WORK,DISP=OLD,

in which case you must add DISP=(,PASS) to DD3.

IISTEP1
IIDD4
II
II
IisTEP2
IIDD5

EXEC
DD

EXEC
DD

PGM=CREATE
DSNAME=&&ISDATA(PRIME),DISP=(,PASS),UNIT=(2311,2),
SPACE=(CYL,(lO"2),,CONTIG),VOLUME=SER=33489,
DCB=DSORG=IS
PGM=OPER
DSNAME=*.STEP1.DD4,DISP=(OLD,DELETE)

The DD statement named DD4 in STEP1 defines a temporary indexed sequential data set
whose name is ISDATA. This DD statement is used to define all of the areas of an indexed
sequential data set. The DD statement named DDS in STEP2 retrieves the data set by referring
to the earlier DD statement that defines the data set. Since the temporary data set will be
passed when it is defined in STEP1, STEP2 can retrieve the data set.

The 00 Statement 215

Dl

The DUMMY Parameter--positional, optional

The DUMMY parameter specifies that:

• No device or external storage space is to be allocated to the data set.
• No disposition processing is to be performed on the data set.
• For BSAM and QSAM, no input or output operations are to be performed on the data set.

For further information on the DUMMY parameter, see "Defining a Dummy Data Set."

//ddname DD DUMMY

General Rules for Coding

• Code the DUMMY parameter by itself or follow it with all the parameters you would
normally code when defining a data set, except the DDNAME parameter. The DONAME and
DUMMY parameters are mutually exclusive.

• Code the DCB parameter if you would code it for normal I/O operations. DCB information
can be established in the DUMMY DD statement.

• Code AMP=ORG if you are using VSAM and specify DUMMY for a data set.
• If you used the DUMMY parameter to test a program, when you want input or output

operations performed on the data set, replace the DO statement. that contains the DUMMY
parameter with a DD statement that contains all of the parameters required to define this
data set.

• When nullifying a procedure DD statement that contains the DUMMY parameter, code the
DSNAME parameter on the overriding DD statement. However, be sure that the data set
name is not NULLFILE. Assigning the name NULLFILE in the DSNAME parameter has the
same effect as code DUMMY.

• If you code the DUMMY parameter and also request an access method other than the basic
sequential access method (BSAM) or queued sequential access method (QSAM) to read or
write the data set, or if the DUMMY parameter is coded and the access method of BOAM
load mode (BSAM with DCB MACRF==WL) is requested, a programming error will occur.

• Besides bypassing input or output operations on a data set, the DUMMY parameter causes
the UNIT, SPACE, and DISP parameters, when coded on the DD DUMMY statement, to be
ignored; however, these parameters are checked for syntax.

• Backward references: If you code DUMMY on a 00 statement and a later DD statement in
the same job refers to this DD statement when requesting unit affinity (UNIT=AFF==ddname)
or volume affinity (VOLUME-REF=*.stepname.ddname), the data set defined on the later
DD statement will be assigned a dummy status.

• Data sets concatenated to a DUMMY data set will also be treated as a DUMMY data set by
the system.

• If you use DO DUMMY and either VOL"",REF=dsname or DCB=REF=dsname, then the
referenced dsname must be cataloged or passed or the job will fail.

216 OS/VS2 JCL (VS2 Release 3)

Examples of the DUMMY Parameter

//OUTPUT
//

DO DUMMY,DSNAME=X.X.Z,UNIT=2314,
SPACE=(TRK,(10,2)),DISP=(,CATLG)

This DD statement defines a dummy data set. The parameters coded with the DUMMY

parameter will not be used.

//IN DO DUMMY,DCB=(BLKSIZE=800,LRECL=400,RECFM=FB)

This DD statement defines a dummy data set. The DCB parameter will supply information
that was not supplied in the DCB macro instruction for the data control block. Otherwise,
abnormal termination may occur.

If you are calling a cataloged procedure that contains the following DD statement in STEP4,

//IN DO DUMMY,DSNAME=ELLN,DISP=OLD,VOL=SER=11257,UNIT=2314 ~

you can nullify the effects of the DUMMY parameter by coding: ~

//STEP4.IN DO DSNAME=ELLN

If you are calling a cataloged procedure that contains the following DD statement in STEPl,

//TAB DO DSNAME=APP.LEV12,DISP=OLD

you can make this DD statement define a dummy data set by coding:

//STEP1.TAB DO DUMMY

If you are calling a cataloged procedure that contains the following DD statement in a
procedure step named LOCK,

//MSGS DO SYSOUT=A

you can make this DD statement define a dummy data set by coding:

//LOCK.MSGS DO DUMMY

The DD Statement 217

The DYNAM Parametef.-positional, optional

The DYNAM parameter specifies that a resource can be held in anticipation of reuse.

For further information, see "Dynamically Allocating and Deallocating Data Sets."

//ddname DD DYNAM

Rules for Coding

• Do not code any other parameters with the DYNAM parameter.
• Do not use the DDNAME parameter to refer to a DD DYNAM statement.
• To nullify the DYNAM parameter in a cataloged procedure, code the SYSOUT or DSNAME

parameter in the overriding DD statement, but do not use the DSNAME=NULLFILE.

• Coding DYNAM on DD statements that will require dynamic allocation no longer establishes
this DD statement as a DUMMY request. Rather, the number of DYNAM requests are added
to the DYNAMNBR value only to acquire a control value necessary to track the resources to
be held for reuse.

• Do not use any type of DD parameter referback to a DD DYNAM statement.
• Do not code the DYNAM parameter on the first DD statement of a group of DD statements

defining a data set concatenation.
• Do not code the DYNAM parameter on a DD statement having a ddname that is meaningful

to the system; for example, JOBUB, SYSCHK, etc.

Example of the DYNAM Parameter

//INPUT DD DYNAM

This statement specifies that the control value for dynamically allocated resources held for
reuse is incremented by one for dynamic allocation.

218 OS/VS2 JCL (VS2 Release 3)

The FeB Parametef.-keyword, optional

The FCB parameter specifies the forms control image to be used to print an output data set on
a 3211 or 1403 printer, the data protection image to be used for the 3525 card punch or for
SYSOUT.

For further information on the forms control buffer, see OS/VS2 System Programming
Library: Data Management, GC26-3830 and OS and OS/VS Programming Support for the IBM
3505 Card Reader and IBM 3525 Card Punch, GC21-5097.

FCB=(image-id
[

,ALIGN])
,VERIFY

imagc-id ~
specifics 1-4 alphameric or national characters that identify the image to be loaded into the ~
forms control buffer. The first character must be alphabetic or national. 0

ALIGN F

requests that the operator check the alignment of the printer forms before the data set is
printed.

VERIFY

requests that the operator verify that the image displayed on the printer is the desired one.
The operator is also given an opportunity to align the printer forms.

Default: For 3211, the image currently in the buffer. If one is not there, the operator will be
requested to specify an image. For JES2, the buffer value must have a default flag. For JES3,
the FCB parameter defaults to an installation-defined default or by job class,

Rules for Coding

• The ALIGN and VERIFY subparameters are ignored for SYSOUT data sets.
• If you do not code ALIGN or VERIFY, you need not enclose the image-id in parentheses.
• The FCB parameter is ignored for the 3525 for SYSOUT only and is saved by JES2 and JES3

and is used either to request a carriage tape for a non-FCB printer or to load the FCB on a
printer having the FCB feature.

• The FCB parameter is mutually exclusive with the OONAME parameter and the OCB
subparameters RKP, CYLOPL, TNTVL, and FRIO. Therefore, if you code the DONAME
parameter or one of the DCB subparameters (RKP, CYLOFL, INTVL, or FRIO), do not code
the FCB parameter or the job will abnormally terminate.

• STOI and STD2 should not be used for SYSOUT unless specified by your installation.

Examples of the FCB Parameter

//DD1 DD UNIT= 3211 ,FCB=(IMG 1 ,VERIFY)

This DD statement defines the output data set that is to be written to a 3211 printer. The FCB
parameter requests that the data set be written using the control information corresponding to
the forms control image with the code IMG 1. Since VERIFY is coded, the forms control image
will be displayed on the printer before the data set is printed and the operator will be asked to
align the printer forms.

The DD Statement 219

//DD2 DD SYSOUT=A,FCB=IMG2

[f output class A routes output to a printer having the forms control buffer feature, JES2

loads the image identified by IMG2 into the forms control buffer. If the printer does not have
the forms control buffer feature, the operator receives a message to mount the specified
carriage tape (in this case, IMG2) on the printer.

//OUTPUT DD UNIT=3211,FCB=(6,ALIGN)

This DD statement requests that the operator check the alignment of the printer forms
before the data set is printed.

//PUNCH DD UNIT=3525,FCB=DP2

The unit specification is for the 3525 card reader. Therefore, the FeB parameter is defining
the data protection image to be used for the 3525.

220 OS/VS2 JCL (VS2 Release 3)

The FREE Parameter--keyword, optional

The FREE parameter causes de allocation when the data set defined by a DD statement is
closed.

Code CLOSE whenever you don't want to monopolize resources - for example, devices,
volumes, exclusive access rights to a data set-any longer than necessary.

FREE=
{

END }
CLOSE

END

specifies that the data set is to be deallocated at the end of the step.
CLOSE

specifies that the data set is to deallocated at the time it is closed.

Default: END

• If the value is incorrectly coded, the default value is substituted and a warning message is
issued.

Rules for Coding

• Code the FREE=CLOSE parameter on a SYSOUT DD statement to cause JES2 and JES3 to
spin off the data set.

• FREE=CLOSE should not be specified for a data set that is opened and closed more than
once during a job step. If the data set is reopened, the job step will abnormally terminate
unless there is an intervening dynamic allocation.

• FREE and DDNAME are mutually exclusive parameters; therefore, if you code FREE, do not
code DDNAME or your job will abnormally terminate.

• FREE=CLOSE is mutually exclusive in a DD statement that also contains DYNAM, DATA, or
*. It is ignored for a DO statement that also has a ddname of JOBCAT, JOBUB, STEPCAT, or
STEPUB, or that is a member of a concatenated group.

Example of the FREE Parameter

IIEA33 DD SYSOUT=D,FREE=CLOSE

The data set allocated to class D will be deallocated and spun off (available for printing) when
the data set is closed rather than at the end of the job.

IIEA33 DD DSN=SYBIL,DISP=OLD,FREE=CLOSE

The data set is dequeued when deallocated and available for someone else to use.

The DD Statement 221

The IIOLD Parameter--keyword, optional

The HOLD parameter specifies that an output data set is to be held on a queue until released
by a central or remote operator at the target destination, or by the time··sharing user who is
eligible to free the data set. If you are receiving the output at the destination (work station)
you should inform either the central operator or the work station to which the output will be
sent to release the data set for processing.

For further information on the HOLD parameter, see "Obtaining Output" for either JES2 or
JES3 ..

HOLD=

YES

specifies that processing of the output data set is to be deferred until the data set is
released.

NO

specifies that processing of the output data set is to proceed normally,

Default: NO

• If an incorrect value is coded, the default is assumed and a warning message is issued. The
job continues.

Rule for Coding

• The HOLD parameter can be coded only on a DO statement that includes the SYSOUT

parameter. Otherwise, it is ignored.

Example of the HOLD Parameter

IIJOBOl
IISTEPl
11001

JOB
EXEC
DO

, 'HAROLD DUQUETTE' , MSGLEVEL=l
PGM=MJCOSCO
SYSOUT=B,DEST=RMT6,HOLD=YES

The output from JOB01 will be held on a queue until the user identified by RMT6 or the
central or remote operator requests that the data set be released.

222 OS/VS2 JeL (VS2 Release 3)

The LABEL Parametef.-keyword, optional

The LABEL parameter indicates the type and contents of the label or labels associated with a
data set.

For detailed information on tape label definitions and processing, see OS/VS Tape Labels,
GC26-379S; labels on direct access devices are described in OS/VS Data Management Senices
Guide, GC26-3783. A detailed description of protecting a data set by assigning a password is
included in OS/VS2 System Programming Library: Data Management, GC26-3830.

lABEl=([data set sequence number] ,Sl
,SUl
,Al
,AUl
,NSl
,Nl
,BlP
,lTM

[

PASSWORD] [IN J [,RETPD])
,NOPWREAD ,OUT ,EXPDT
, ,

data set sequence number
specifies the relative position of a data set on a tape volume.

SL
specifies that a data set has IBM standard labels.

SUL
specifies that a data set has both IBM standard and user labels.

AL
specifies that a tape data set has American National standard labels.

AUL
specifies that a tape data set has American National standard and user labels.

NSL
specifies that a tape data set has nonstandard labels.

NL
specifies that a tape data set has no labels.

BLP
specifies that the system is to bypass label processing for a tape data set.

LTM

specifies that the· data set can have a leading tapemark.

specifies that a data set has only IBM standard labels and another subparameter follows.
PASSWORD

specifies that a data set cannot be read, changed, deleted, or written to unless the operator
or time-sharing user supplies the correct password.

NOPWREAD

specifies that a data set cannot be changed, deleted, or written to unless the operator or
time-sharing user supplies the correct password. No password is necessary for reading the
data set.

specifies that another subparameter follows and, for a new data set, the data set is not to be
password-ptotected.

The DD Statement 223

IN

specifies that a BSAM data set is to be processed for input only. This subparameter overrides
the INOUT option in the OPEN macro instruction.

OUT

specifies that a BSAM data set is .to be processed for output only. This subparameter
overrides the OUTIN option in the OPEN macro instruction.

specifies that either the RETPD or EXPDT subparameter follows and one or more
subparameters precede it.

EXPDT =yyddd

specifies the date that the data set can be deleted or written over by another data set.
Assign a 2-digit year number and a 3-digit day number. For example, February 2, 1973
would be specified as 73033.

RETPD=nnnn

specifies the number of days that the data set must be kept before it can be deleted or
written over by another data set.

General Rules for Coding

• All the subparameters except the last subparameter in the LABEL parameter are positional.
Therefore, if you code one subparameter and omit a previous subparameter, indicate its
absence with a comma.

• If you only want to specify the data set sequence number, RETPD, or EXPDT, you can omit
the parentheses and code LABEL=data set sequence number, LABEL=RETPD=nnnn, or
LABEL= EXPDT=yyddd.

• The LABEL, DDNAME, and SYSOUT parameters are mutually exclusive. If DDNAME or
SYSOUT is coded, do not specify LABEL.

• Do not specify both the DCB FUNC subparameter and the LABEL parameter; unpredictable
results will occur.

Data Set Sequence Number Subparameter

• Default: If you omit this subparameter or code 0, the system assumes that this is the first
data set on the tape volume, unless the data set is passed or cataloged. If a data set is
cataloged, the system obtains the data set sequence number from the catalog. The data set
sequence number for a passed data set is obtained from the passing step.

• The data set sequence number is a 1- to 4-digit number.

Label Type Subparameter

• Default: If you omit this subparameter, the system assumes that the data set has only IBM
standard labels (SL).

• Data sets on direct access devices always have standard labels; they can optionally have
user labels also. Therefore, only SL or SUL can be coded for data sets on direct access
devices. SUL cannot be coded for partitioned or indexed sequential data sets.

• Label type information is not retained for cataloged or passed data sets. You must code the
LABEL parameter and specify label type if you refer to a cataloged or passed data set that
does not have IBM standard labels only. '

• If the system does not have the bypass-label-processing (BLP) feature, specifying BLP has
the same effect as specifying NL.

• If you specify BLP and the tape volume has laQels, a tapemark delimits the data set. For a
tape with labels to be positioned properly, the data set sequence number subparameter must
be coded and must reflect all labels and data setk that precede the desired data set.

• If you are processing ASCII data on unlabeled ta'pes (NL), you must code OPTCD=Q in the
DCB macro instruction or in the DCB parameter' on the DD statement.

224 OS/VS2 JCL (VS2 Release 3)

• Direct access devices used when referring the system to an earlier volume request, obtain
label type information from the LABEL parameter specified in the DD statement and not from
the source you refer it to.

PASSWORD and NOPWREAD (no-password-read) Subparameters

• Only data sets with IBM or American National standard labels can be password-protected.
• When adding or increasing password protection for an existing data set by coding

PASSWORD or NOPWREAD, you must open the data set for output processing the first time
it is used during the job step.

• When specifying PASSWORD or NOPWREAD for a data set, a password must be assigned to
that data set in the PASSWORD data set. If a password is not assigned, attempts to open
that data set for output (if NOPWREAD is coded) or for input or output (if PASSWORD is
coded) result in abnormal termination.

IN and OUT Subparameters

• When the IN subparameter is coded, any attempt by the processing program to process the
dataset for output results in abnormal termination. If OUT is coded and the processing
program attempts to process the data set for input, the step is abnormally terminated.

RETPD and EXPDT Subparameters

• To delete a data set before the expiration date or retention period has passed, use the
DELETE command, as described in OS/VS Access Method Services, or the IEHPROGM

program, as described in OS/VS2 System Programming Library: Service Aids.
• Do not specify or imply RETPD or EXPDT for a temporary data set.

Examples of the LABEL Parameter

11001
II

DO OSNAME=HERBI,OISP=(NEW,KEEP),UNIT=TAPE,
VOLUME=SER=T2,LABEL=(3,NSL,RETPD=188)

This DD statement defines a new data set. The LABEL parameter tells the system: (1) this data
set is to be the third data set on the tape volume; (2) this tape volume has nonstandard labels;
(3) this data set is to be kept for 188 days.

11002
II

DO OSNAME=A.B.C,OISP=(,CATLG,DELETE),UNIT=2400=2,
LABEL=(, NL)

This DD statement defines a new data set and requests that the system catalog it. The
catalog entry for this data set will not indicate that the data set has no labels. Therefore, each
time this data set is referred to by a DD statement, the statement must include LABEL=(,NL).

11003
II

DD DSNAME=SPECS,UNIT=2400,VOLUME=SER=10222,
OISP=OLO,LABEL=4

This DD statement defines an existing data set. The LABEL parameter indicates that the data
set is the fourth data set on the tape volume.

IISTEP1
IIOOX
II
IISTEP2
IIOOY

EXEC
DD

EXEC
DD

PGM=FIV
OSNAME=CLEAR,OISP=(OLO,PASS),UNIT=2400-4,
VOLUME=SER=1257,LABEL=(,NSL)
PGM=BOS
DSNAME=*.STEP1.0DX,DISP=OLD,LABEL=(,NSL)

The DO statement named DDX in STEP1 defines an existing data set that has nonstandard
labels and requests that the system pass the data set. The DD statement named DDY in STEP2

receives the passed data set. Unit and volume information is not specified since this
information is available to the system; the label type is not available to the system and must
be coded.

The DD Statement 225

The MSVGP Parameter--keyword, optional

The MSVGP parameter specifies the identification of a group of mass storage volumes that
reside on a mass storage system (MSS) device.

MSVGP=id

id
indicates a 1-8 alphameric or national character identifier (in any order) that defines the
mass storage volume group.

General Rules for Coding

• MSVGP is ignored for specific volume requests. The following rules apply only to nonspecific
volume requests.

• MSVGP is mutually exclusive with the SYSOUT, COPIES, QNAME, OONAME, OSlO, DYNAM,
*, and DATA parameters and the SPACE ABSTR and VOL=SER subparameters.

• Positional parameters related to the VOLUME parameter can be specified with MSVGP.
• The SPACE parameter is not required when MSVGP is used on nonspecific requests except

for BPAM and ISAM data organization.
• The unit count in the UNIT parameter must be less than the volume count in the VOLUME

paramter to guarantee allocation of a non-sharable unit.
• MSVGP results in a private volume for nonspecific volumes; therefore, coding VOL=PRIVATE

is redundant.
• For anew, nonspecific, permanent data set request where MSVGP is not specified, a

mounted 3330V storage volume is used, if one exists. If one does not exist, a volume is
selected from SYSGROUP. If a volume is selected from SYSGROUP, the SPACE parameter
must be coded or the job is failed.

• For a new, nonspecific, temporary data set request where MSVGP is not specified, a
mounted 3330V public or storage volume is used, if one exists. If one does not exist or
there is not enough space, a volume is selected from SYSGROUP.

• To guarantee allocation to SYSGROUP for nonspecific requests, specify MSVGP=SYSGROUP.

Example of the MSVGP Parameter

IIDDl
II

DD DSN=ACCOUNT,DISP=(NEW,CATLG),UNIT=3330V,
MSVGP=AB$1234@,VOLUME=(,,3)

A new, cataloged data set is to be created on one, two, or three mass storage volumes in the
group called AB$1234@. (The installation has previously defined such a group using a mass
storage system service and has assigned at least three volumes to this group.) Assume that this
utility also provides a space default of SPACE=(CYL,(200,100)).

The system will first mount any other specific mass storage volumes required for this step.
This assumes a reference to all old data sets in the catalog and a request for parallel mounting
if they are multivolume. This ensures that remaining unmounted volumes in the group
AB$1234@ do not contain other data sets required by this step.

The system now selects an unused 3330V device to allocate to this job step. The unit will
be marked private because MSVGP was specified. It will also be marked non-sharable because
the volume count exceeds the unit count. The system then selects a volume from the remaining
volumes in the group that contains at least 200 cylinders of contiguous space and causes it to
be mounted on the allocated unit.

226 OS/VS2 JCL (VS2 Release 3)

During step execution, if more than 200 cylinders are required, end of volume is entered. If
100 more cylinders are not available on the mounted volume, it is dismounted. The system
again selects a volume from group AB$1234@ that has at least 100 contiguous cylinders and
causes this volume to be mounted. A volume count of three will allow the data set to extend
over up to three volumes. If more are required, the step abnormally terminates.

The DD Statement 227

The OUTLIM Parametef.-keyword, optional

The aUTUM parameter specifies a limit for the number of logical records you want included in
the output data set being routed through the SYSaUT data set, When the limit is reached, an
exit may be taken to a user-supplied routine that determines whether to cancel the job or
increase the limit. If the exit routine is not supplied, the job is terminated. For more
information, see OS/VS System Management Facilities (SMF), GC35-0004.

OUTLIM=number

number
specifies any number between 1 and 16777215, indicating the maximum number of logical
records to be included in the output data set being routed through the output stream.

Default: For JES2 no output limiting; for JES3, it is an installation default.

Rules for Coding

• The aUTUM parameter is ignored unless SYSaUT is coded in the operand field of the same
DO statement.

• The aUTUM and DDNAME parameters are mutually exclusive. Do not code them together
on one DO statement or your job will abnormally terminate.

Example of the OUTLIM Parameter

//OUTPUT DD SYSOUT=F,OUTLIM=1000

The limit for the number of logical records is 1000.

228 OS/VS2 JeL (VS2 Release 3)

The QNAME Parameter--keyword, optional

The QNAME parameter allows you access to messages received through TeAM for processing
by an application program.

QNAME=process name

process name
specifies as eight alphameric or national characters the name of a TPROCESS macro
instruction that defines a destination queue for messages that are to be processed by an
application program. (The first character must be alphabetic or national).

Rules for Coding

• The process name must be identical to the symbolic name on the TPROCESS macro.
• The DCB parameter is the only parameter that can be coded on a DO statement with the

QNAME parameter. BLKSIZE, BUFL, LRECL, OPTCD, and RECFM are the only operands that
can be specified as subparameters.

Example of the QNAME Parameter

//DYD DD QNAME=FIRST,DCB=(RECFM=F,LRECL=80,BLKSIZE=320)

This DO statement is used in an application program to define data that will be used by TCAM.

"FIRST" is the name of the TPROCESS macro that specifies the destination queue through
which messages that must be processed by the application program will be routed. The DCB

parameter will supply information that was not supplied in the DCB macro instruction for the
data control block.

The DD Statement 229

a
a

The SPACE Parameter-keyword, optional

The SPACE parameter indicates how much space should be allocated on a direct access volume
for a new data set.

SPACE=(l· TRK ! ' (primary quantity f,secondary qUantity] ['~irectory]) f,RLSE] [CONTIG] [,ROUND 1)
CYL t ,Index t ' MXIG
blocklength , ALX

,

SPACE=(ABSTR,(primary quantity,address ['~irectory] I)
,Index

TRK

specifies that space is to be allocated by track.
CYL

specifies that space is to be allocated by cylinder.
block length

specifies the average block length of the data. The system computes how many tracks to
allocate.

primary quantity
specifies how many tracks or cylinders are to be allocated, or how many blocks of data are
to be contained in the data set.

secondary quantity
specifies how many more tracks or cylinders are to be allocated if additional space is
required. This allocation can be done up to 16 times for each volume, less the number of
extents for primary quantity and user-label space (BDAM data sets cannot be extended.)

specifies that the system is not to allocate additional space if it is required, and that either a
directory space requirement or index space requirement follows.

directory
specifies the number of 256-byte records that are to be contained in the directory of a
partitioned data set.

index
specifies how many cylinders are required for the" index of an indexed sequential data set.
The number of tracks must equal one or more cylinders.

RLSE

specifies that space allocated to an output data set that is not used when the data set is
closed, is to be released.

specifies that unused allocated space that is not used, is not to be released and that another
subparameter follows.

CONTIG

specifies that space allocated to the data set must be contiguous. This subparameter applies
only to the primary space allocation.

MXIG

specifies that the space allocated to the data set must be the largest area of contiguous
space on the volume, and the space must be equal to or greater than the space requested.
This subparameter applies only to the primary space allocation.

23'e OS/VS2 JCL (VS2 Release 3)

ALX
specifies that up to five different contiguous areas of space are to be allocated to the data
set and each area must be equal to or greater than the space requested. This subparameter
applies only to the primary space allocation.

specifies that CONTIG, MXIG, or ALX is not specified and that the ROUND subparameter
follows.

ROUND

specifies that space is requested by specifying the average block length of the data and that
the space allocated to the data set must be equal to an integral number of cylinders.

ABSTR

specifies that the data set is to be placed at a specific location on the volume.
primary quantity

specifies the number of tracks to be allocated to the data set.
address

specifies the track number of the first track to be allocated.
directory

specifies the number of 256-byte records in the directory of a partitioned data set.
index

specifies the number of tracks that are required for the index of an indexed sequential data
set. The number of tracks must be equal to one or more cylinders.

General Rules for Coding

• The SPACE and DDNAME parameters are mutually exclusive.
• The SPACE parameter has no meaning for tape volumes; however, if you assign a data set to

a device class that contains both direct access devices and tape devices, (for example.
UNIT =SyssQ) you should code the SPACE parameter.

• [f you do not code secondary, directory, or index quantities, you need not enclose the
primary quantity in parentheses.

• Code the second format of the SPACE parameter when you want a data set placed in a
specific position on a direct access volume.

Rules for coding when using mass storage volumes (new data sets only)

Blocklength

• The SPACE parameter must be coded when VOL=SER is coded. It is optional when MSVGP is
coded. If you do not code VOL=SER or MSVGP, SPACE must be coded whether or not you
code VOL=PRIV ATE.

• Contiguous space is the MSVGP default. If you want non-contiguous primary space
allocation, you must specify the SPACE parameter.

• When you request space in units of blocks, the average blocklength cannot exceed 65,535.
• If the blocks have keys, code the DCB subparameter KEYLEN on the DD statement and

specify the key length.

The DD Statement 231

s

Primary Quantity

• There must be enough available space on one volume to satisfy the primary quantity. If you
request a particular volume and there is not enough space available on the volume to satisfy
your request, the job step is terminated. You must consider track overflow when computing
track requirements.

• When specifying tracks and cylinders, the primary quantity inclU(~es the number of tracks
and cylinders assigned to the directory.

Secondary Quantity

Directory

RLSE

• The system computes the number of tracks required for the secondary quantity based on
what is specified in the DCB subparameter BLKSIZE, the DCB macro, or the SPACE

parameter (average blocksize).
• If you do specify a secondary quantity and the data set requires additional space, the system

allocates this space based on the quantity you specified. The system attempts to allocate the
secondary quantity in contiguous tracks or cylinders. If contiguous space is not available, the
system attempts to allocate the secondary quantity in up to five noncontiguous blocks
(extents) of space.

• Each time the data set requires mote space, the system allocates the secondary quantity.
This space is allocated on the same volume on which the primary quantity was allocated
until: (1) there is not enough space available on the volume to allocate the secondary
quantity, or (2) a total of 16 extents have been allocated to the data set. If either of these
conditions is satisfied, the system must allocate the secondary quantity on another volume.
You can specify this for a volume request by coding more than one volume in the VOLUME
parameter.

• If there is no more space available on those volumes that you requested, if at least one
volume is demountable, the system will request that scratch (non-specific) volumes be
mounted until the secondary allocation is complete. If there is no demountable volume, the
job step will abnormally terminate.

• When creating a partitioned data set, you must request space for a directory.

• If you specify RLSE and an abnormal termination occurs, unused space is not released.
• The RLSE subparameter is ignored when the TYPE-T option is coded in the CLOSE macro

instruction.

MXIG, ALX, and CONTIG

• Do not code either the MXIG or ALX subparameters for an indexed sequential data set.
• If CONTIG is specified and contiguous space is not available, the job is terminated.
• If you code a secondary quantity and request contiguous space, the primary request will be

satisfied with contiguous space, but the secondary quantity will not necessarily be
contiguous.

232 OS/VS2 JCL (VS2 Release 3)

Bxtl"p"'~s 0/ tlte SPA CE Parameter

IIDD1 DD DSNAME=&&TEMP,UNIT=MIXED,SPACE=(CYL,10)

This DO statement define,S a temporary data set and requests that the system assign any
available tape or direct access volume. (UNIT-MIXED specifies a user-assigned group name of
units that consists of tape and direct access devices). If a tape volume is assigned, the SPACE

parameter will be ignored; if a direct access volume is assigned, the SPACE parameter will be
used to allocate space to the data set. The SPACE parameter includes only the required
subparameters (that is, the type of units and a primary quantity), and requests that the system
allocate 10 cylinders.

IIDD2
II

DD DSNAME=PDS12,DISP=(,KEEP),UNIT=2314,
VOL=SER=25143,SPACE=(CYL,(10"10),,CONTIG)

This DO statement defines a new partitioned data set. The system will allocate 1 0 cylinders
to the data set and" ten 256-byte records for a directory. Since the CONTIG subparameter is
coded, the system will allocate 10 contiguous cylinders on the volume.

IIREQUES'I'
II

DD

DSNAME=PET,DISP=NEW,UNIT=3330,VOL=SER=606674,
SPACE=(1-024, (75)) , DCB=KEYLEN=8

The average blocklength of the data is 1024 bytes and 75 blocks of data are expected as
output. Each block is preceded by a key eight bytes long. The system computes how many
tracks are needed, depending on what device is requested in the UNIT parameter.

The DD Statement 233

The SYSOUT Parametef.-keyword, optional

The SYSOUT parameter assigns an output class to an output data set.

For further information on the SYSOUT parameter, see "Obtaining Output" for either JES2

or JES3.

SYSOUT=(class name [,program name] {' form name})
, ,code name

class name
specifies as an alphameric character (A-Z, 0-9) or * the class associated with the output
device to which you want your output data set written.

program name
specifies the member name of an installation-written program in the system library that is to
write the output data set, instead of JES2 or JES3. If a user-written writer is specified, it is
~xecuted under the control of an external writer rather than by JES2 or JES3. Notify the
operator that such a data set exists so he will start an external writer. Two names, INTRDR

and STDWTR are reserved for JES2 and JES3. (For their use and definition, see OSjVS2
System Programming Library: Job Management, GC28-0627.)

form name
is a 1-4 alphameric or national character string that specifies that the output data set should
be printed or punched on a special output form.

code name
(JES2 only) is a 1-4 alphameric or national character string that points to the OUTPUT

statement from which output characteristics will be obtained.

General Rules for Coding

• If you omit program name and form name, you need not enclose the class name in
parentheses.

• The OUTUM, UCS, FCB, HOLD, FREE, COPIES, DSID, and DCB parameters can be coded
with the SYSOUT parameter. Besides the mutually exclusive parameters listed next, other
parameters coded with the SYSOUT parameter are ignored.

• The DISP, DDNAME, VOLUME, LABEL parameters and the SYSOUT parameter are mutually
exclusive.

• To print the output data set and the messages from your job on the same output listing,
specify the same output class in the SYSOUT parameter as you specified for messages in the
MSGCLASS parameter. Or, specify SYSOUT=* for all data sets you want to default to the
MSGCLASS output class.

• INTRDR causes the data set to be treated as a job stream.

234 OS/VS2 JCL (VS2 Release 3)

Examples of the SYSOUT Parameter

//DDl DD SYSOUT=P

This statement specifies that the data set is to be written to the device corresponding to class
P.

//JOBSO
//STEPl
//DDX

JOB
EXEC
DD

,'C. BROWN' , MSGCLASS=C
PGM=SET
SYSOUT=C

The DD statement named DDX specifies that the data set is to be written to the device
corresponding to class C. Since the classnames in the SYSOUT parameter and the MSGCLASS

parameter on the JOB statement are the same, the system messages resulting from this job and
the output data set can be written to the same unit record device.

//DDS DD SYSOUT=(F,,2PRT)

This DD statement specifies that the data set is to be written to the device corresponding to
class F and the output data set is to be printed on a special form. The form name is 2PRT.

The nn Statement 235

s

The TERM Parametef.-keyword, optional

The TERM parameter notifies the operating system that a data set is coming from or going to a
time-sharing terminal.

TERM=TS

TS

indicates to the system that the input or output data being defined is coming from or going
to a time sharing terminal.

Rules for Coding

• Concatenate a DD statement with a DO statement that contains TERMS=TS only if it is the
last DO statement in a job step .

• Code only the DeB parameter with the TERM parameter. Any other parameters coded on a
DO statement with TERM are ignored.

• If you code TERM on a SYSOUT DO statement and if the job is from a foreground terminal,
the output goes to the terminal; if the job is submitted in batch, the output goes to
whatever has been designated as the output device according to the definition given to
SYSOUT.

Examples of the TERM Parameter

IIDD1 DD TERM=TS

This data set (001) is either coming from or going to a time-sharing terminal.

IIDD3
II

DD UNIT=2400,DISP=(MOD,PASS),TERM=TS,LABEL=(,NL),
DCB=(LRECL=80,BLKSIZE=80)

All of the parameters in this example except TERM and DeB are ignored.

236 OS/VS2 JCL (VS2 Release 3)

The ues Parametef.-keyword, optional

The ues parameter describes the character set to be used for printing an output data set on a
1403 or 3211 printer or for SYSOUT.

For further information on the ues parameter, see "Obtaining Output" for either JES2 or
JES3 and OS/VS2 System Programming Library: Data Management, GC26-3830.

UCS=(character set code ~ FOLD] [, VERIFY])

character set code
specifies up to four alphameric characters that identify the special character set you want 4
for printing the data set.

,FOLD

specifies that you want the chain or train corresponding to the desired character set loaded
in the fold mode. The fold mode is described in the publication IBM 2821 Control Unit. The
fold mode is most often requested when uppercase and lowercase data is to be printed only
in uppercase.

,VERIFY

specifies that the operator is to visually verify that the character set image corresponds to
the graphics of the correct chain or train which is mounted before the data set is printed.
The character set image is displayed on the printer before the data set is printed.

Default: For the 3211, the image currently in the buffer. For JES2, the buffer value must have
a default flag. For JES3, by installation default or by job class.

• If the chain or train mounted on the printer does not correspond to a valid character set,
the operator is requested to identify the character set to be used, and mount the
corresponding chain or train.

• If you code the ues parameter and the data set is not written to a printer with the universal
character set (ues) feature, the ues parameter will be ignored.

Rules for Coding

• If you omit the FOLD and VERIFY subparameters, you need not enclose the character set
code in parentheses.

• The FOLD and VERIFY subparameters are ignored for SYSOUT data sets.

General Rules and Restrictions

• For both the 3211 and 1403 printers, you can code the ues parameter with the UNIT

parameter.
• The ues parameter is mutually exclusive with the DDNAME parameter and the DeB

subparameters RKP and eYLOFL. Therefore, if you eo de the DDNAME parameter or one of
the DeB subparameters (RKP and eYLOFL), do not code the ues parameter, or the job will
abnormally terminate.

• In order to use a particular special character set, an image of the character set must be
contained in SYS1.IMAGELIB and the chain or train corresponding to the character set must
be available for use. IBM provides standard special character sets and the installation may
provide user-designed special character sets.

The DD Statement 237

Examples of the UCS Parameter

//DD1 DD UNIT=1403,UCS=(YN"VERIFY)

The 00 statement defines an output data set that is to be written to a 1403 printer. The UCS

parameter requests that the data set be written using the chain or train corresponding to the
special character set with the code YN. Since VERIFY is coded, the character set image will be
displayed on the printer before the data set is printed.

//DD2 DD SYSOUT=G,UCS=PN

This 00 statement defines an output data set that is to be written to the unit record device
that corresponds to class G. If the device is a printer with the universal character set, the
request in the ucs parameter for the special character set with the code PN will be recognized.
Otherwise, the ucs parameter will be ignored.

238 OS/VS2 JCL (VS2 Release 3)

The UNIT Parametef.-keyword, optional

The UNIT parameter specifies the types and number of devices you want assigned to a data
set.

For further information on the use of the UNIT parameter, see "Requesting Units and
Volumes".

[

unit address J [,Unit count]
UNIT= (device t~pe ,P [,DEFER])

user-assigned group name ,

UNIT=AFF=ddname

unit address
specifies 3 numeric characters that identify a particular unit by its address, which consists of
the channel, control unit, and unit numbers.

device type (generic name)
is an IBM-supplied name (for example, 2314) that identifies a particular device by its device
number. A list of IBM device types is included in OS/VS2 System Programming Library:
System Generation Reference, GC26-3792.

user-assigned group name (esoteric name)
is a 1 to 8 alphameric character name that identifies a particular group of devices. The
user-assigned name and the devices that make up a group are specified during system
generation.

,unit count

,P

is a value from 1 to 59 that indicates the number of devices you want assigned to thc data
set.

specifies the number of units to be allocated (equal to the number of volumes).

specifies that only one device is required and that another subparameter follows.
DEFER

specifies that the system should assign a device(s) to the data set but the volume(s) on
which the data set resides should not be mounted until the data set is opened.

AFF

indicates that within a job step, different data sets residing on different volumes can be
allocated to the same unit provided that the volumes are removable (unit affinity).

ddname
is the name of an earlier DO statement in th~; ,job step that defines a data set with which
you want unit affinity.

General Rules for Coding

• If you receive a passed dataset or refer to a cataloged data set or earlier DD statement for
volume and unit information (VOL=REF=referenee), the system will assign one device, even
if more devices were requested in 'an earlier DO statement. Therefore, you must code unit
count for more than one device.

• If the only subparameter you code in the UNIT parameter is the first subparameter, you do
not have to code the parentheses.

• The UNIT and DDNAME parameters are mutually exclusive.

The DD Statement 239

• Do not identify a device by its address unless it is absolutely necessary. Specifying a unit
address limits unit assignment and can result in a delay of the job if the unit is being used
by another job.

• For installations where 3340 drives with and without the fixed head feature exist, the device
type should not be used for the UNIT parameter. Instead, use the unit address or a
user-assigned group name.

• If you code SYSOUT and UNIT on the same statement, the SYSOUT specification overrides
the UNIT specification.

• You can receive more units than you specified if you have specified volume affinity and/or
a permanently resident or reserved volume.

U sing the 3330 mod 11

• If you request a 3330 mod 11, code UNIT=3330-1.

Using Mass Storage Volumes (MSS)

• If you are using mass storage volumes, code UNIT=3330V.
• To extend multivolume data sets to a non-mounted volume, the unit count must be less than

the volume count.
• If an old, multivolume data set resides on volumes within a group, specify parallel mount or

specify unit count equal to the number of volumes containing the data set.
• Deferred mounting should not be specified for volumes belonging to a MSVGP if there are

new data set requests in that job step using MSVGP from the same group. The delay in
selection can result in volume conflicts within the job or between jobs causing performance
slowdown.

User-assigned Group Names

• A user-assigned group name can identify a device or a group of devices. The group can
consist of devices of the same type or class, direct access and tape device classes, or
different types of devices.

• When you code a user-assigned group name, you allow the system to assign any available
device from the group. If a group consists of only one device, the system will assign that
device.

• If a group consists of more than one device type, the units r~quested are allocated from the
same device type. For example, if SYSDA contains 3330 and 2314 device types, a request
for two units would be allocated to two 3330s or to two 2314s. .

• If a data set that was created using the user-assigned name subparameter is to be extended,
additional units allocated to it will be of the same type as specified in the original group
name. However, the units allocated to the data set may not necessarily be of that same
name.

The unit count, volume count, and volume serial number may be used to determine the
number of units and volumes required. The greatest of the three numbers is used.

Def erred Mounting

• If you request deferred mounting of a volume and the data set on that volume is never
opened by the processing program, the volume will not be mounted during the execution of
the job step.

• DEFER will be ignored if a new, direct access data set is specified.

240 OS/VS2 JCL (VS2 Release 3)

Unit Override

Volume serial information is obtained from a volume reference to a data set name, a volume
reference to an earlier DO statement (VOL=REF), a passed data set or a cataloged data set.
The unit description is also available from these same sources. However, you can override the
retrieved unit information if the unit you specify is a subset of the retrieved unit. For example,
if the retrieved unit grouping is 2314, and the specified unit description is 2314A (a subset of
2314) or 237 device address (a subset of 2314), then the only units considered for allocation
are those contained within 2314A or at the device address of 237.

The AFF Subparameter

• You can conserve the number of devices used in a job step by requesting that an existing
data set be assigned the same device(s) as assigned to a data set defined earlier in the job
step.

• If a request specifying unit affinity is for a new data set and the referenced request is for a 4
direct access device, the job terminates. If the referenced request is eligible for both tape
and direct access devices, the job is not terminated, but both requests will only be allocated
to tape devices.

Examples of the UNIT Parameter

IISTEP2
IIDDX
II
IIDDY
IIDDZ
II

EXEC
DD

DD
DD

PGM=POINT
DSNAME=EST,DISP=MOD,VOLUME=SER=(42569,42570),
UNIT=(2314,2)
DSNAME=ERAS,DISP=OLD,UNIT=2400-2
DSNAME=RECK,DISP=OLD,
VOLUME=SER=(40653,13262),UNIT=AFF=DDX

The DD statement named DDZ requests that the system assign the same unit to this data set
that it assigns to the data set defined on the statement named DDX. Since DDX requests two
devices, these two devices are assigned to the data set defined on DOZ.

IIDDl
II

DD DSNAME=AAG3,DISP=(,KEEP),
VOLUME=SER=13230,UNIT=2400

This DD statement defines a new data set and requests that the system assign any 2400
9-track (that can read/write 800 bpi) tape drive to the data set.

IIDD2 DD DSNAME=X.Y.Z,DISP=OLD,UNIT=(,2)

This DO statement defines a cataloged data set and requests that the system assign two devices
to the data set. The device type will be obtained from the catalog.

IIDD3
II

DD DSNAME=COLLECT,DISP=OLD,
VOLUME=SER=1095,UNIT=(3330"DEFER)

This DD statement defines an existing data set that resides on a direct access volume and
requests that the system assign a 3330. Since DEFER is coded, the volume will not be mounted
until the data set is opened.

IISTEPA DD DSN=FALL,DISP=OLD,UNIT=237

The volume and unit device type will be retrieved from the catalog. You can override the
unit by specifying UNIT=237 if that unit is a subset of the device type specified in the catalog.

The DD Statement 241

The VOLUME Parametef.-keyword, optional

The VOLUME parameter identifies the volume(s) on which a data set resides or will reside.

For further information on the use of the VOLUME parameter, see "Requesting Units and
Volumes."

{
VOLUME}=(lPRIVATE]
VOL , l: REF =clsname

[,] [,VOlume sequence numbe1f.volume count] [,] [SER=(seriai number, ...) -

REF=*.ddname
REF==*.stepname.ddname
REF=*.stepname.procstepname.ddname_

PRIVATE

specifies a request for exclusive use of a volume.

for compatability with former systems, a comma must be coded if either the volume
sequence number or volume count are coded.

volume sequence number
specifies which volume of an existing multivolume data set you want used to begin
processing.

volume count
specifies the maximum number of volumes an output data set requires.

specifies that the volume count is omitted and either the SER or REF subparameter follows.
SER=

indicates that serial numbers of the volumes on which the data set resides or is to reside, are
specified.

(serial number, ...)
specifies the serial numbers of the volumes on which the data set resides or will reside.

REF=

indicates that the serial numbers of the volumes on which the data set resides or is to reside
are identified on an earlier DO statement in the job or in the catalog or an earlier passed
data set.

dsname
specifies the name of a cataloged or passed data set. The system locates the information
about the data set and assigns your data set to the same volumes as are assigned to the
cataloged or passed data set.

*.ddname
specifies that the system must obtain the volume serial numbers from an earlier DO

statement named "ddname" in the same job step.
* .stepname.ddname

specifies that the system must obtain the volume serial numbers from a DO statement named
"ddname", which was defined in an earlier job step name "stepname."

* .stepname.procstepname.ddname
specifies that the system must obtain the volume serial numbers from a DO statement named
"ddname", which was defined in an earlier procedure step named "procstepname"; the
procedure step is part of a procedure that was called by an earlier job step named
"stepname. "

242 OS/VS2 JeL (VS2 Release 3)

General Rule for Coding

• The VOLUME, OONAME, and SYSOUT parameters are mutually exclusive.

Rules for Coding when using Mass Storage Volumes (new data sets only)

• VOL=SER is mutually exclusive with the MSVGP parameter.
• If VOL=SER is coded, the SPACE parameter is required.
• To guarantee allocation to SYSGROUP for a nonspecific request, specify VOL=PRIVATE or

MSVGP=SYSGROUP.

The PRIV ATE Subparameter

• If you code only PRIV ATE, you need not enclose it in parentheses.
• When you do not code PRIV ATE, and you code the volume sequence number or volume

count subparameter, you must code a comma to indicate the absence of PRIV ATE.

The Volume Sequence Number

• The volume sequence number must be less than or equal to the number of volumes on
which the data set exists; it can be up to 255. If a unit count greater than the remaining
specific volumes is specified, nonspecific volumes are assigned to the remaining units.

• Normally, you code a volume sequence number when you have not specified volume serial
numbers on the DO statement (that is, you are retrieving a cataloged data set or you have
coded a reference to an earlier DO statement or data set). If you code both a volume
sequence number and a volume serial number in the VOLUME parameter, the system will
begin processing with the volume that corresponds to the volume sequence number.

• The volume sequence number must correspond to a specific volume serial number or the job
will fail.

• The volume sequence number is ignored for NEW data sets.

The Volume Count

• The volume count value can range from 1 to 255.
• If the volume count is greater than the number of specific volume serial numbers,

non-specific volumes are added to make up the total. If the number of specific volume serial
numbers is greater than the volume count, the volume count is ignored.

• If the request is for a nonspecific direct access device, volume count is ignored. (The
number of volumes equals the number of units.)

• When you make a specific volume request and the data set may require more volumes than
there are serial numbers, specify in the volume count subparameter the total number of
volumes that may be used. By requesting mUltiple volumes in the volume count
subparameter, you can ensure that the data set can be written on more than one volume if
it exceeds one volume.

The Volume Serial Number

• You can specify a matimum of 255 volume serial numbers for each DO statement.
• Volume serial information is obtained from a volume reference to a data set name, a volume

reference to an earlier DD statement (VOL=REF), a passed data set, or a cataloged data set.
• A volume serial number must be 1 to 6 characters in length. If the number is less than 6

characters, it will be padded with trailing blanks. It can contain any alphameric and national
characters, and the hyphen. You must enclose any volume serial number than includes
special characters other than the hyphen in apostrophes whenever you code that number in
the volume parameter.

The DO Statement 243

va

• When using some typewriter heads or printer chains, difficulties in volume serial recognition
may arise if you use other than alphameric characters.

• The SER subparameter appears as the last subparanieter in the VOLUME parameter. Follow
SER= with the volume serial numbers. The serial numbers must be enclosed in parentheses
unless there is only one serial number. If SER is the only subparameter you are coding, you
can code VOLUME=SER=(serial number, ...) or VOLUME=SER= serial number.

• Do not use SCRTCH, PRIV AT, or Lnnnnn (L with five numerics) as a volume serial number
because they are used as special messages to notify the operator to mount a volume. For
optical readers, if no volume serial number is specified, VOLUME=SER=OCRINP is assumed.

• Each volume must have different volume serial numbers regardless of the volume type (for
example, tape and disk).

Backward References

• To refer the system to a cataloged data set or to a data set passed earlier in the job that has
not been assigned a temporary data set name, code REF as the last subparameter in the
VOLUME parameter. Follow REF with the data set name of the cataloged or passed data set.
The data set name cannot contain special characters except for periods used in a qualified
name. References to SYSTN (DD * or DD DATA) or SYSOUT DD statements are ignored.

• To refer the system to a data set defined earlier in the job that was not passed or was
passed but assigned a temporary name, code REF= with a backward reference to the DD
statement that contains the volume serial numbers.

• If the ddname refers to a DD statement that defines a dummy data set, it also is assigned a
dummy status.

• When refering the system to a data set that resides on more than one tape volume, the
system begins with the last volume. When you refer the system to a data set that resides on
more than one direct access volume, the system assigns all of the volumes. In either case,
you can code the volume count subparameter if additional volumes may be required.

• When coding a volume reference to a previous DD statement that uses user-assigned names,
the system will allocate from the same device type name you made reference to rather than
from user-assigned group names.

• When refering to a multi-volume VSAM data set, you will receive only the first device type.
• If the reference is to a DD statement, the label type is also copied from this referenced DD.

Checkpoint/Restart

• When a checkpoint data set is not cataloged, code the VOLUME parameter and specify the
volume serial number of the volume on which the checkpoint entry is written.

• If a checkpoint clata set is cataloged, you do not need to code the VOLUME parameter
unless the checkpoint entry exists on a tape volume other than the first volume of the data
set~ then, code either a volume sequence number or the volume serial number. If you code
the volume serial number, you must code the UNIT parameter.

Examples 0/ the VOLUME Parameter

IIDD1
II

DD DSNAME=STEP,UNIT=2314,DISP=OLD,
VOLUME=(PRIVATE,SER=548863)

This DD statement defines an existing data set and informs the system that the data set resides
on the volume whose serial number is 548863. Since PRIVATE is coded in the VOLUME
parameter, the system will not assign the volume to any data set for which a nonspecific
volume request is made and will cause the volume to be demounted at the end of the job.

244 OS/VS2 JCL (VS2 Release 3)

IIDD2
II

DD DSNAME=QUET,DISP=(MOD,KEEP),UNIT=(2400,2),
VOLUME=(",4,SER=(96341,96342))

This DO statement defines an existing data set that resides on the volumes whose serial
numbers are 96341 and 96342, and requests that a total of 4 volumes be used to process the
data set if required.

IIDD3 DD DSNAME=QOUT,DISP=NEW,UNIT=2400

This DO statement defines a temporary data set and, by omission of the VOLUME

parameter, requests that the system assign a suitable volume to the data set.

The DO Statement 245

246 OS/VS2 JCL (VS2 Release 3)

The COMMAND Statement

Control Statement

The COMMAND statement specifies an operator command to be executed.

For further information on commands and for descriptions of their operands, see Operator's
Library: OS/VS2 Reference (JES2), GC38-0210 or the operator's reference for JES3.

(II command operand comments

The command statement consists of the characters / / in columns 1 and 2, and three
fields-the operation (command), operand, and comments fields.

The following JCL commands can be entered through the input stream.

CANCEL MOUNT STOP
CHNGDUMP RELEASE STOPMN
DISPLAY REPLY UNLOAD
HOLD RESET VARY
LOG SEND WRITELOG
MODIFY SET
MONITOR START

Rules for Coding

• Follow the / / in columns 1 and 2, with one or more blanks.
• Follow the command with one or more blanks.
• Code any required operands. Separate each operand with a comma.
• Follow the operands with one or more blanks.
• Code any comments.
• The command statement cannot be continued.
• A command statement can appear immediately before a JOB statement, an EXEC statement,

a null statement, or another command statement, but not before the first job in the input
stream in JES2. All OS command statements are ignored in JES3.

• If a command statement appears in the input stream between the boundaries of two jobs
and it contains errors, the command will not be executed. Furthermore, you will receive no
indication that the command was not executed.

• If you includes a command statement as part of your job control statements, the command
will usually be executed as soon as it is read. Because of this, it is not likely that the
command will be synchronized with the execution of the job step to which it pertains.
Therefore, you should preferably tell the operator which commands you want issued and
when they should be issued, and let him issue them.

• Disposition is determined by JES2 according to installation options specified for each job
class. Disposition is determined by JES3 according to the input source and according to
installation options specified for each job class.

Example of the Command Statement

II DISPLAY TS,LIST

This command will display the number and user-id of all active time-sharing users of the
system.

The COMMAND Statement 247

C4

248 OS/VS2 JCL (VS2 Release 3)

The Comment Statement

Control Statement

The comment statement specifies a comment to be included in the output listing.

(//*comments

The comment statement consists of characters / / * in columns 1, 2, and 3, and the
comments field.

Rules for Coding

• Code the comments in columns 4 through 80.
• You cannot continue comment statements using continuation conventions. If you cannot

include all of the comments on one comment statement, code another comment statement.
• The comment statement can appear anywhere after the JOB statement, including between

continuations of statements.
• With the MSGLEVEL parameter, you can request an output listing of all the control

statements processed in your job. You will be able to identify comment statements by the
appearance of / /* in columns 1, 2, and 3. ~

Example of the Comment Statement

//*THE COMMENT STATEMENT CANNOT BE CONTINUED,
//*BUT IF YOU HAVE A LOT TO SAY, YOU CAN FOLLOW A
//*COMMENT STATEMENT WITH MORE COMMENT
//*STATEMENTS.

The Comment Statement 249

250 OS/VS2 JCL (VS2 Release 3)

The Delimiter Statement

Control Statement

The delimiter statement indicates the end of data submitted through an input stream for a step.

(/* comments

The delimiter statement consists of the characters /* in columns 1 and 2 and the comments
field. You must have at least one blank before the comments field.

Rules for Coding

• The system will recognize a delimiter other than /* if the DLM parameter is coded on the
DD statement defining the data.

• Code /* (or the value assigned in the DLM parameter) in columns 1 and 2, followed by any
comments you have. The comments cannot be continued.

• The beginning of data to be submitted through an input stream is indicated by a DO * or
DD DATA statement.

• If the data is preceded by a DD * statement and you do not code the DLM parameter, you
need not code a delimiter statement.

Example of the Delimiter Statement

//JOB54
//STEPA
//DD1

JOB ,'C BROWN' ,MSGLEVEL=(2,O)
EXEC PGM=SERS
DD *

data

/* END OF DATA FOR THIS STEP

The Delimiter Statement 251

252 OS/VS2 JCL (VS2 Release 3)

The Null Statement

Control Statement

The null statement indicates the end of JCL statements for a job.

The null statement consists only of the characters / / in columns 1 and 2. The remainder of
the statement must be blank.

Rules for Coding

• The null statement is ignored by JES2.

• Place a null statement at the end of a job's control statements or at the end of all the
statements in an input stream.

• If you do not follow the job's control statements and data with a null statement, the system
will place the job on the queue when it encounters another JOB statement in the input
stream.

• If the job is the last job in the input stream and it is not followed by a null statement, the 4
system will recognize it as the last job in the input stream and place it on the queue.

• The system will flush statements between a null statement and the next valid JOB statement.
• If a nun statement follows a control st~tement that is being continued, the system treats the

null statement as a blank comment field and assumes that the control statement contains no
other operands.

Example of the Null Statement

IIMYJB
IISTEPl
IISTEP2
IIDDl
IIDD2

1*
II

JOB
EXEC
EXEC
DD
DD

data

, 'c BROWN'
PROC=FIELD
PGM=XTRA
UNIT=2400
*

The Null Statement 253

254 OS/VS2 JeL (VS2 Release 3)

The PEND Statement

Control Statement

The PEND statement marks the end of an in-stream procedure.

(I I name PEND comments

The PEND statement consists of the characters / / in columns 1 and 2 and three fields -
the name field, the operation (PEND) field, and the comments field.

Rules for Coding

• Code / / in columns 1 and 2 then code a name (1 to 8 characters) or one or more blanks.
• If you code a name, follow it with one or more blanks.
• Code PEND, and follow it with one or more blanks.
• Code any desired comments.
• Do not continue a PEND statement. The PEND statement terminates an in-stream procedure

at that point, whether or not the statement is continued. The PEND statement must not be
included in cataloged procedures.

Examples of the PEND Statement

IIPROCEND1 PEND THIS STATEMENT IS REQUIRED FOR INSTREAM PROCEDURES

This PEND statement contains a comment.

II PEND

A PEND statement can contain only the coded operation field preceded by / / and one or
more blanks and followed by blanks.

The PEND Statement 255

256 OS/VS2 JCL (VS2 Release 3)

The PROC Statement

Control Statement

The PROC statement is the first control statement in an in-stream procedure; the PROC

statement can also be the first control statement in a cataloged procedure. [n either an
in-stream procedure or a cataloged procedure, a PROC statement can he used to assign default
values to symbolic parameters in the procedure.

(/ /name PROC operands comments

The PROC statement consists of the characters / / in columns 1 and 2 and four fields - the
name field, the operation (PROC) field, the operand field, and the comments field.

General Rules for Coding

• A PROC statement is required for an in-stream procedure; it must appear as the first control
statement of the in-stream procedure.

• A PROC statement is optional for a cataloged procedure; if a PROC statement is included in
a cataloged procedure, it must appear as the first control statement. 4

• Code / / in columns 1 and 2; then code a 1 to 8 character name or one or more blanks. A
name is required for in-stream procedures.

• Cataloged procedures with no symbolic parameters can be created and executed.
• If you code a name, follow it with one or more blanks. Then code PROC, followed by one

or more blanks.
• In the operand field, you can assign default values to symbolic parameters in a procedure.

Code a comma after a symbolic parameter and its default value, if you are coding more
than one. Do not code a comma after the last symbolic parameter and its default value.

• The operand field is required in an in-stream procedure only if symbolic parameters are
defined as in the example at the end of this section.

• Follow the operands with one or more blanks and any desired comments.
• You can continue the PROC statement onto another statement. Code / / in columns 1 and 2

of the continuation statement.
• To assign a value to a symbolic parameter, code:

symbolic parameter=value
Omit the ampersand that precedes the symbolic parameter in the procedure.

• The value assigned to a symbolic parameter can be any length, hut it cannot be continued
onto another statement.

• If the symbolic parameter value contains special characters, enclose the value in apostrophes
(the enclosing apostrophes will not be considered part of the value).
If the special characters include apostrophes, you must code each apostrophe as two
consecutive apostrophes.

• If you assign more than one value to a symbolic parameter with some other information,
(for example, &JOBNO.321), the information and value cannot exceed a total of 120
characters.

• You can override a default value appearing on a PROC statement by assigning a value to the
same symbolic parameter on the EXEC statement that calls the procedure.

The PROC Statement 257

Examples 0/ the PROC Statement

I/DEF
IINOTIFY
IIDDl
II
IIDD2
II

PROC
EXEC
DD

DD

STATUS=OLD,LIBRARY=SYSLIB,NUMBER=777777
PGM=ACCUM
DSNAME=MGMT,DISP=(&STATUS,KEEP),UNIT=2400,
VOLUME=SER=888888
DSNAME=&LIBRARY,DISP=(OLD,KEEP),UNIT=2314,
VOLUME=SER=&NUMBER

Three symbolic parameters are defined in this cataloged procedure: &STATUS, &LIBRARY, and
& NUMBER. Values are assigned to the symbolic parameters on the PROC statement. These
values will be used when the procedure is called and values have not been assigned to the
symbolic parameters by the programmer.

IICARDS PROC

This PROC statement can be used to mark the beginning of an in-stream procedure named
CARDS.

258 OS/VS2 JCL (VS2 Release 3)

Coding JES2 Control Statements

The JES2 control statements are coded with JCL statements to control the input and output
processing of jobs. Rules for coding JCL, including syntax, in the section, "Coding JCL

Statements," apply to the JES2 control statements. However, there are additional rules for
coding JES2 statements. They are:

• Columns 1 and 2 always contain the characters / * .
• JES2 statements cannot be continued. You can use multiple control statements if more than

one statement is needed.
• Do not place JES2 control statements in a cataloged procedure; they are ignored.
• If you code more than one statement with the same parameters, the last statement coded

will override any other statements.
• If you code more than one of the same parameters on the same statement, the last

parameter coded will override any other parameters.
• You can code the JES2 control statements in any order. However, the COMMAND and the

PRIORITY statements must be placed in front of the JOB statement and all other JES2

statements should follow the JOB statement.
• The JOBPARM statement overrides the installation default but can itself be overridden by a

specific output statement.

Coding JES2 Control Statements 259

The Command Statement

Control Statement

The command statement specifies JES2 operator commands that can be entered through the
card reader or the system console. Examples in this book illustrate the format for commands
entered through the card reader. Commands entered through the system console should omit
the / * from the message.

For a detailed description of the command statement and the names of the correct JES2

verbs and operands, see Operator's Library: OS/VS2 Reference (JES2), GC38-0210. The
command statement consists of the characters / * in columns 1 and 2. Column 3 contains a
character either established at JES2 generation by the installation or defaults to '$'. There are
two fields - a JES2 command verb starting in column 4 followed by one or more operands.
An "N" may be coded in column 72. Columns 73-80 are ignored.

/*$command verb operand [,operand ...] [N]

command verb
an operand indicating which JES2 operator command is to be performed.

operand
one or more variable length operands.
The following JES2 commands can be entered through the input stream.

$A $E $L $R $Z
$8 $F $N $S
$C $H $0 $T
$0 $1 $P $VS

N

indicates that the command will not be repeated on the operator's console.

Rules for Coding

• Code as many command statements as are needed, but do not continue them from one
statement to the next.

• Command statements must be placed before jobs being entered through the input stream.
Any command statements within a job will be ignored.

• Commands that are entered on the command statement are executed immediately. They
cannot be linked with any execution process of a job.

• JES2 commands entered through the input stream are of the form /*$command. The $ is a
JES2GEN option.

Example of the Command Statement

/*$SI3-5

This command will start initiators three through five. The command is $S and the operand is
13-5.

260 OS/VS2 JCL (VS2 Release 3)

The JOBP ARM Statement

Control Statement

The JOBPARM statement specifies job related parameters for JES2.

The JOBPARM statement consists of the characters /* in columns 1 and 2, the word
JOBPARM in columns 3-9, a blank in column 10, and parameters in columns 11-71. Columns
72-80 are ignored.

For further information, see "Obtaining Output (JES2 only)."

/*JOBPARM parameters

Code one or more of the following parameters in the longer form (full word) or the shorter
form (one letter abreviation).

{
CARDs==nnn}
C==nnn

{
,LINECT==nnn}
,K==nnn

{
,ROOM==XXX}
,R==xxx

CARDS-nnn

,COPIEs==nnn} !,FORMS=XXX}
,N-nnn ,F-xxx

,LINEs=nnn} ,NOLOG}
,L==nnn ,J

,SYSAFF==CCCC} {,TIME==nnn}
,s==cccc ,T==nnn {

,PROCLlB==XXX}
,P==xxx

a value estimating the number of output cards from this job (from 0 to 9999999 cards)
COPIES=nnn

a value indicating the number of printed output copies of a job related output that is to be
produced (from 1 to 255 copies)

FORMS==xxx
an alphameric value indicating the print and punch forms for this job's output that are not
further defined in this job (from 1 to 4 characters)

LINECT=nnn
a value showing the number of lines to put on each output page for JES2 page overflow
processing (from 0 to 255 lines)

LINES-nnn
a value estimating the number of output lines from this job - in thousands of lines (from 0
to 9,999)

NOLOG
a parameter meaning that you do not want the JES2 job log as output. (The job log contains
a list of job related console messages and operator replies' produced during processing of the
job.)

ROOM-nnn
an alphameric value indicating a programmer's room number to be placed on job's separator
page for routing back to programmer. (from 1 to 4 characters)

SYSAFF -cccc
1 to 7 system affinities can be specified indicating systems to be eligible to pr,ocess this job.
In order to specify more than one system, code: SYSAFF=(CCCC,cccc, ...). cccc is an
alphameric value indicating one or more of the following:
• * indicates the system into which the job was read.
• ANY indicates any system in the JES2 multi-access spool complex.

Coding JES2 Control Statements 261

coml
JOBI

• cccc indicates a specific system. "cccc" must be the four alphameric character system-id
of one of the systems in the JES2 multi-access spool complex.

• IND when added to any of the above specifications, indicates systems scheduling in
ind~pendent mode.

TlME=nnn

a value estimating the job execution time in minutes of real time (from 0 to 279,620
minutes)

PRQCLlB=xxx

an alphameric value indicating the DDNAME of the cataloged procedure library that is to be
used to convert the JCL for this job. (This name refers to a DD statement in the JES2

cataloged procedure.)

Rules for Coding

• Any JOBPARM statement parameter value will supersede the equivalent parameter value
from the accounting field (in HASP format) of the JOB statement or from any preceding
JOBPARM statement in this job's JCL. All of these statements override the default
established by the installation.

• Any number of the above parameters may be placed on a single JOBPARM statement and as
many JOBPARM statements as desired may be placed together with a given input stream.
JOBPARM statement cannot be continued.

• Place the JOBPARM statement after the JOB statement.
• If you code the PROCLIB parameter on the JOBPARM statement, the name of the DD

statement should be in the JES2 cataloged procedure. If it is not, the JES2 default procedure
is used.

• If you code LINECT=O, JES2 will not eject to a new page when the number of lines has
exceeded the page limit that was established at JES2 generation.

Example of the JOBPARM Statement

/*JOBPARM L=60,R=4222,T=50

The three specifications mean the following:

L=60
R=4222

The job's estimated printed output will be 60,000 lines.
The programmer's room is 4222. This information will be placed in the separators
for both printed and punched data sets.
The job's estimated execution time is SO minutes.

262 OS/VS2 JCL (VS2 Release 3)

The MESSAGE Statement

Control Statement

The MESSAGE statement permits you to send messages to the operator (via the operator
console) at JES2 job input time.

The MESSAGE statement consists of the characters /* in columns 1 and 2, the word
MESSAGE in columns 3-9, a blank in columns 10 and 11, and the message in columns 12-7l.
Columns 72-80 are ignored.

/*MESSAGE message to be written

Rules for Placement

• Place the MESSAGE statement after the JOB statement. This allows the job number to be
appended to the beginning of the message.

• If the MESSAGE statement is not included within the boundaries of a job, the input device
name is appended to the beginning of the message.

Example of the MESSAGE Statement

/*MESSAGE CALL DEPT58 WHEN PAYROLL JOB IS FINISHED--EX.1946

This message requests that department 58 be called when the payroll job is complete.

Coding JES2 Control Statements 263

JOBF
MES:

The OUTPUT Statement

Control Statement

The OUTPUT statement specifies characteristics and/or options of a specific SYSOUT data set
or groups of SYSOUT data sets.

For further information on the OUTPUT statement, see "Obtaining Output (JES2 only)".

The OUTPUT statement consists of characters / * in columns 1 and 2, the word OUTPUT in
columns 3-8, and a code beginning in column 10 followed by the keyword parameters.
Columns 72-80 arc ignored.

j*OUTPUT code parameters

Code one or more of the following parameters in the longer form (full word) or the shorter
form (one letter abreviation).

{
COPIEs=nnn}
N=nnn

{
,FORMS=XXX}
,F=xxx

code

{
,DEST=nnn}
,D=nnn

{
,INDEx=nnn}
,I=nnn

{
,FCB=XXX}
,C=xxx

{
,LlNDEx=nnn} {,UCs=xxx}
,L=nnn ,T=xxx

alphameric characters referencing all SYSOUT data sets within your job whose code in the
form number subparameter of the SYSOUT parameter matches the "code" specified on the
OUTPUT statement (from 1 to 4 characters)

COPIES=nnn
a value indicating the number of copies of printed job related output that is to be produced
(from 1 to 255 copies)

DEST=nnn
1 to 4 different destinations can be specified for each output data set. In order to specify
more than one destination, code: DEsT=(nnn,nnn,nnn,nnn). DEST is an alphameric value
indicating one of the following devices:
• LOCAL-any local device.
• RMTn-remote terminal, "N" indicating a 1 to 3 digit numeric value which is left

justified with no leading zero. (For HASP compatibility, REMOTEn (n is one character) is
also an acceptable way of defining a valid device specification.)

• PRINTERn-printer, "N" indicating a I-digit numeric value, defining to which printer the
output is to be sent.

• PRINTRnn-printer, "N" indicating a 2-digit numeric value, defining to which printer the
output is to be sent.

• PUNCHn-card punch, "N" indicating a 1- or 2-digit numeric value, left justified with no
leading zero, defining to which card punch the output is to be sent.

FCB=xxx
an alphameric value indicating the data set forms control or carriage specifications (from 1
to 4 characters).

FORMS=xxx
an alphameric value indicating the print and punch forms (from 1 to 4 characters).

INDEX=nnn
a value indicating the data set indexing print position offset (to the right) for the 3211
printer (from 1 to 31).

264 OS/VS2 JCL (VS2 Release 3)

LINDEX=nnn

a value indicating the data set indexing print position offset (to the left) for the 3211
printer (from 1 to 31).

UCS=xxx
an alphameric value indicating the universal character set specification (from 1 to 4
characters) .

Rules for Coding

• PRINTERn, PRINTRnn, and PUNCHn are the same as LOCAL unless the specified printer or
punch is subject to local print/punch routing.

• Parameters specified on the OUTPUT statement will replace any equivalent parameters
specified on the referenced DD statement.

• Code as many OUTPUT statements as you need. If more than one OUTPUT statement has
the same "code" starting in column 10, the first OUTPUT statement parameters will be used.
If there are duplicate parameters on the same OUTPUT statement, the last parameter will
override any preceding duplicate parameter.

• Place the OUTPUT statement after the JOB statement.

Coding the DEST Parameter

If more than one destination is coded, the destinations must be in parentheses. If only one
destination is coded, the parentheses are optional.

Coding the FCB Parameter

• If the printer on which the data set is to be printed does not have the forms control buffer
feature, the operator is sent a message to mount the proper carriage control tape.

• Do not specify STD 1· or STD2 unless the installation indicates that you should.

Coding the INDEX and LINDEX Parameters

• If th 3211 printer has the INDEX feature, it will offset the first physical print position to the
right by the number of print positions specified to cause the total print line width to be
reduced by the number of print positions specified. (That is, a specification of 30 will mean
that the maximum line width is now 30 positions less than the original value.) These
parameters are ignored on other than 3211 printers.

Example of the OUTPUT Statement

/*OUTPUT ABCD COPIES=4,DEST=RMT23

This statement refers to all SYSOUT data sets within the job whose DD statement specified
SYSOUT=(C"ABCD).

Coding JES2 Control Statements 265

au

The PRIORITY Statement

Control Statement

The PRIORITY statement assigns a job selection priority to a job.

For further information on the use of PRIORITY, see "Routing a Job Through the System
(JES2 only)".

The PRIORITY statement consists of the characters /* in columns 1 and 2, the word
PRIORITY in columns 3-10, and the code "p" in columns 16-17. Columns 18-80 are ignored.

/*PRIORITY P

p
either a number between 0 and 15 or the character "*,, indicating the priority of the job.

Default: If PRIORITY is not present, priority will be derived using information from (1) the
JOBPARM statement, (2) the accounting information (in HASP format) on the JOB statement,
or (3) an installation-defined default.

Rules lor Coding

• If "p" is a number, the value of "p" will be assigned as the priority of your job.
• If "p" is the character "*", the installation-defined default will be used.
• The PRIORITY statement must immediately precede the JOB statement. If it does not, the

PRIORITY statement will be ignored and the input stream will be flushed until a JOB

statement or another PRIORITY statement is found.

Example 0/ the PRIORITY Statement

/*PRIORITY 7

The job will have a selection priority of 7. This value only has meaning in relation to other
jobs in the system.

266 OS/VS2 JCL (VS2 Release 3)

The ROUTE ·Statement

Control Statement

The ROUTE statement specifies the destination of the output which is not specifically routed
using the DEST parameter.

The ROUTE statement consists of the characters /* in columns 1 and 2, PRINT or PUNCH in
columns 10-14, and one of the device specifications in columns 16-23. Columns 24-80 are
ignored.

For further information, see "Obtaining Output (JES2 only)."

/*ROUTE

PRINT

{ PRINT} {LOCAL } PUNCH RMTn
PRINTERn
PRINTRnn
PUNCHn

specifies that the job's printed output is to be routed.
PUNCH

specifies that the job's punched output is to be routed.
LOCAL

any local device.
RMTn

remote terminal, "n" indicating a 1 to 3-digit numeric value, left-justified with no leading
zero, defining which remote terminal the output is to be sent. (For purposes of HASP
compatibility, REMOTEn is also an acceptable way of defining a valid device specification.)

PRINTERn
printer, "n" indicating a I-digit numeric value, defining to which printer the output is to be
sent.

PRINTRnn
printer, "nn" indicating a 2-digit numeric value, defining to which printer the output is to be
send.

PUNCHn
card punch, "n" indicating a 1- or 2-digit numeric value, left justified with no leading zero,
defining to which card punch the output is to be sent.

Rules for Coding

• A ROUTE statement can be used to direct either print or punch routing of output, but not
both. If both print and punch are to be routed, two cards must be used.

• Place the ROUTE statement after the JOB statement.
• PRINTERn, PRINTRnn, and PUNCHn are the same as LOCAL, unless the specified printer or

punch is subject to local print/punch routing.

Coding JES2 Control Statements 267

PRI(
ROL

Examples 0/ the ROUTE Statement

/*ROUTE PRINT RMT6

This statement will route printed output to remote terminal 6.

/*ROUTE PUNCH PUNCH2

This statement will route punched output to card punch 2.

268 OS/VS2 JCL (VS2 Release 3)

The SETUP Statement

Control Statement

SETUP is a control statement which is used to indicate volumes needed for executing a phase
of the job.

For further information on the use of the SETUP statement, see "Routing a Job Through the
System (JES2 only)".

The SETUP statement consists of the characters /* in columns 1 and 2, the word SETUP in
columns 3-7, and volume serial numbers that begin in column 16. Columns 72-80 are ignored.

j*SETUP volume serial number[,volume serial number ...]

volume serial number
identifies the volume or volumes required for execution of the job.

Rules for Coding

• All SETUP statements should be placed after the JOB statement.
• As many SETUP statements as necessary can be used.

Example of the SETUP Statement

j*SETUP 666321,149658

The two volumes requested will be listed on the console when the job enters the system. The
job is then placed in the hold status awaiting release by the operator when the required 4
volumes are available. The message informs the operator that the volumes should be mounted
before the job is run.

Coding JES2 Control Statements 269

F
S

270 OS/VS2 JeL (VS2 Release 3)

Coding JES3 Control Statements

The JES3 statements are coded with JCL statements to control the input and output processing
of jobs. Rules for coding JCL, including syntax. in the section "Coding JCL Statements." apply
to the JES3 statements. However, there are additional rules for coding JES3 statements. They
are:

• Columns 1 through 3 always contain the characters / /*. (Column 4 must be a non-blank).
For compatability, ASP version 2 control statements supported by JES3 can be coded with a
/* in columns 1 and 2. (Note: SETUP statements from ASP version 2 will be ignored.)

• JES3 statements can be continued by punching a comma as the last character of the first
card, punching / /* in columns 1 through 3 of the continuation card, and resuming the text
in column 4 of the continuation card.

• JES3 control statements, except command, must appear after the JOB statement, including all
JOB continuation cards. JES3 statements that appear before or in the middle of the JOB

statement are ignored.
• Do not place JES3 control statements in a cataloged procedure; they are ignored.
• A / means not or all but those listed. For example, / ddname means consider all ddnames

except this one named.

Coding JES3 Control Statements 271

The Command Statement

Control Statelnent

The command statement specifies JES3 operator commands, except *DUMP and *RETURN, that
are entered through the card reader or the system console. Examples in this book illustrate the
format for commands entered through the card reader. Commands entered through the system
console should omit the / /* from the command.

For a detailed description of the command statement and the names of the correct JES3

verbs and operands, see the operator's reference for JES3. There are two fields-a JES3

command verb starting in column 4 followed by one or more operands. An "N" can be coded
in column 72. Columns 73-80 are ignored.

//**command veLb [operand ,operand ... J [NJ

*command verb
an operand indicating which JES3 command the operator is to perform.

operand
one or more operands.

N

CALL
CANCEL
DELAY
DISABLE
ENABLE
ERASE
FAIL
FREE

x
C
D
II
N
E

INQUIRY I
MESSAGE Z
MODIFY F
RESTART R
SEND T
START S
SWITCH
VARY V

indicates that the command will not be printed on the operator's console.

Rules for Coding

• Begin the command in column 5; code it in the same format as if it were being entered
from a console.

• All command statements must precede the first JOB statement in the input stream if jobs are
also being submitted. If any command statements follow the JOB statement, they are
considered comments statements.

• Multiple command statements can be entered at one time.
• These statements can be placed as the first cards in an active card reader that is being

restarted.
• Command statements cannot be continued from one statement to another.
• Commands that arc entered on the command statement are executed immediately. They

cannot be linked with any execution process of a job.

272 OS/VS2 JCL (VS2 Release 3)

Examples of the Command Statement

//**VARY,280,OFFLINE
//**V,281,OFFLINE
//**VARY,282,OFF

-or­
//**V,280-282,OFF

Several devices are varied offline by coding either three separate commands or one command
for all devices to be varied offline. If these cards are placed in card reader Ole, for example,
and it is currently not in use, the operator would then enter:

*X CR,IN=OlC

//**MESSAGE,CN1,OUTPUT FROM JOB X REQUIRES SPECIAL CONTROLS

This example gives a special instruction to the operation staff from a remote location. This
card is placed in front of the first job.

Coding JES3 Control Statements 273

COl

The DATASET Statement

Control Statement

The OAT ASET statement defines the beginning of an additional input stream data set that can
contain JCL and/or data. Terminate a data set by coding an ENDOATASET statement. This
statement is used as input to an ASP main processor only.

//*DATASET DDNAME=ddname[,MODE=

Defaults: J=NO and MODE=E

DDNAME=ddname

defines the ddname used to reference the spooled data. set.
MODE

J

Defines the card reading mode.
E

specifies that the cards are read as EBCDIC with validity checking.
C

specifies that the cards are read in card image form (column binary or data mode 2).

Determines how the data set is terminated.
NO

indicates that a JOB statement will terminate the data set.
YES

indicates that JOB statements can be included in the data set and an ENDOATASET

statement will terminate the data set.

Rules for Coding when MODE=C

• The J parameter is ignored when MOOE=C is specified. The data set must be terminated
with an ENDDAT ASET statement.

• You must ensure that the operator includes MOOE=C for the reader that reads this job.

Genera I Ru les for Coding

• MOOE=C is invalid for jobs read from disk or tape, and for jobs submitted from remote
work stations.

Example of the DATASET Statement

//*DATASET DDNAME=MYPRINT
data cards

//*ENDDATASET
//*PROCESS OUTSERV

//*FORMAT PR,DDNAME=MYPRINT,COPIES=5

This example will create a data set, DDNAME=MYPRINT, and print five copies.

274 OS/VS2 JCL (VS2 Release 3)

The ENDDATASET Statement

Control Statement

The ENODATASET statement terminates the creation of an ASP input stream data set that was
defined by the OAT ASET statement.

//*ENDDATASET

Rule for Coding

• The ENOOAT ASET statement must appear immediately after the last card for that data set.

Examples of the ENDDATASET Statement

//*DATASET DDNAME=MYPRINT

data cards

//*ENDDATASET

//*PROCESS OUTSERV

//*FORMAT PR,DDNAME=MYPRINT,COPIES=5

This example will create a data set, ODNAME=MYPRINT, and print five copies.

DATASE
ENDDA·

Coding JES3 Control Statements 275

Th(~ FORMAT Statement

Control Statement

The FORMAT statement communicates special destination and format related instructions to the
system for processing the print and punch data sets.

//*FORMAT

AC

indicates data sets that are destined for TSO terminal users connected on ASP main
processors.

NJP

indicates this card is associated with network job processing.
PR

indicates this card is associated with a print data set.
PU

indicates this card is associated with a punch data set.

General Rules for Coding

• There must be at least one blank between FORMAT and PR, PU, and AC.

• The text depends on the type of data set and is explained on the following pages.
• Multiple FORMAT statements can be used for any data set to specify special requirements

for each copy of the data set.
• Classes are established at initialization that group characteristics for job output. See the

system programmer to determine if you should use one of the defaults or should code the
FORMAT statement.

• FORMAT statements are required for special data set processing such as multiple
destinations, multiple copies of output having different attributes, forced single or double
space control, and printer overflow checking. For information on special (nonstandard) jobs,
see OS/VS2 System Programming Library: Job Management, GC28-0627.

276 OS/VS2 JCt (VS2 Release 3)

The AC Parameter

JES3 created data sets are routed to TSO users running on ASP main processors. ASP main
processor TSO users should use the installation-defined ASP TSO output class to retrieve their
output. This will reduce the need for FORMAT AC control statements. (Jobs of TSO users
running on ASP main processors are physically connected to an ASP system regardless of where
the job is run.) For further information, see "Obtaining Output (JES3 only)."

//*FORMAT AC , DDNAME= {ddname}
SYSMSG
JESJCL
JESMSG

[,DEST=printer-name]
[, USER=userid]
[,PRINT= {~~S}]

[, HOLD= {~5S}]

l,MAIN=main-name]

Defaults: PRINT= NO

HOLD=NO

DDNAME

specifies the ddname of the DD statement that defines the output class that the user desires
to access.
SYSMSG

system messages.
JESJCL

jclfile including statement messages.
JESMSG

JES3 and system operator messages (job log).
DEST

specifies the device name of a printer used to print the output in the event this output is not
sent to the user.

USER

specifies a user-id other than your own. The user-id informs the TSO user when his output
can be accessed.

PRINT

specifies whether or not the output is to be printed. If PRINT = YES, the data set will be
printed. If PRINT=NO, the data set will not be printed.

HOLD

HOLD indicates that the data set is eligible for printing and placed in a special data set for
retrieval at a TSO terminal.
HOLD=YES

means the data set is available when the operator releases it.
HOLD=NO

means the data set is eligible for immediate printing. HOLD is meaningful only if
PRINT=YES. If PRINT==NO, the data set cannot be printed by JES3 but is placed in a
terminal data set.

Coding JES3 Control Statements 277

FO

MAIN

specifies an ASP main processor that has TSO resident. MAIN is not required to return
control 'to TSO submitter.

Rul(~s for Coding DDNAME

The referenced DO statement must be in the form:

//name DD SYSOUT=class

Rul(~ for Coding DEST

The printer-name must be a valid JES3 printer name, group name, or remote destination~ that
is, one defined by the installation.

Rule for Coding MAIN

The MAIN parameter specifies on what processor the TSO user will be connected for receiving
output when the input comes from another destination. This parameter is not required when
submitting and receiving from the same TSO destination.

Example of the AC Parameter

//*FORMAT AC,DDNAME=SYSMSG,DEST=PR2,USER=TSOA,PRINT=YES

In this example, the data set, SYSMSG, will be printed on PR2 and TSO user, TSOA, will be
notified.

278 OS/VS2 JCL (VS2 Release 3)

The NJP Parameter

The network job processing (NJP) parameter defines the remote station from which and to
which the job will be transmitted.

//*FORMAT NJP,FROM=system-name,DEST=system-name

FROM

specifies the name of the JES3 system name from which the job will be transmitted.
DEST

specifies the name of the JES3 system name to which the job will be transmitted.

Rules for Coding

• The system-name is determined at initialization time. For information on these cards, see
the system programming staff.

• The keywords. FORM and DEST can be coded in any order.

Example of the NJP Parameter

//*FORMAT NJP,FROM=NYC,DEST=LA

The job will be transmitted from NYC to LA for processing.

Coding JES3 Control Statements 279

F(

The Print Parameter

The PR parameter specifies print characteristics of a JES3 output data set.

For further information, see "Obtaining Output (JES3) only."

//*FORMAT PR,DDNAME= [ddnameJ
SYSMSG
JESJCL
JESMSG

[, DEST={~~~t~;~~ame)}]
device-address
(type[,qroup-name]

{
PROGRAM}

[,CONTROL= SINGLE]
DOUBLE

l , COPIES= {~n}]
{ STANDARD '}

[,FORMS= form-name

{ 6LPI }
[,FCB= image-name]

{
6LPI l

[,CARRIAGE= carriage-tape-name f
[, TRAIN= {STA~DARD}]

tra l.n-name

{OFF}
[,OVFL= ON 1

Defaults: CONTROL=PROGRAM

COPIES=I

DDNAME

FORMS=ST ANDARD

FCB=6LPI

CARRIAGE=6LPI

TRAIN=ST ANDARD

OYFL=ON

specifies the ddname of the data set to which this card applies. This ddname should be
qualified to the level required (stepname.procstepname.ddname).
SVSMSG

system messages
JESJCL

jclfile including statement messages
JESMSG

JES3 and system operator messages (job log)
DEST

specifies the printer used for output.
ANVLOCAL

any device (either a printer or punch as defined by the output class on the DD statement)
attached to the contral CPU to receive the output data set.

device-name

1-8 alphameric or national character name of a local printer or punch (as defined by the
system programming staff) to receive the output data set.

280 OS/VS2 JCL (VS2 Release 3)

device-address

three character physical device address of the device to receive the output data set.
type

in the format gggssss where ggg is the general device classification (for example, PRT)
and ssss is the specific device classification (for example, 3211) as defined by the system
programming staff.

group-name

name of a group of local devices, an individual remote station, or a group of remote
stations to receive the output data set. Specify DEST =(,LOCAU to define the default
group-name for local devices (that is, those local devices that arc in no other group).

CONTROL

specifies the type of forms control used.
• PROGRAM indicates that the carriage control character is the first character of each

logical record in the data set.
• SINGLE indicates forced single spacing.
• DOUBLE indicates forced double spacing.

COPIES

specifies the number of original copies printed for this data set.
FORMS

specifies the printer forms used.
• ST ANDARD indicates that standard installation forms are used.
• form-name indicates the form name or form number of special forms to be mounted.

FCB

specifies the name of the forms control buffer used (for 3211 's only).
CARRIAGE

specifies the carriage tape for either 3211 or 1403 to print onto this SYSOUT class.
TRAIN

specifies the printer train used. The IBM-supplied train names are in the chapter "Obtain
Output (JES3 only)". Check with the system programming group for installation-supplied
and supported names.

OVFL

specifies whether or not the printer program should test for forms overflow.
• ON specifies that the printer program should eject whenever the end-of-forms indicator

(channel 12) is sensed.
• OFF specifies that forms overflow control is not used.

Rules for Coding DDNAME

• The ddname should be qualified to the level required.
• When DDNAME= is given and no ddname follows, the parameters specified on this

statement become the defaults for the job and apply to all print data sets that have no
FORMAT statements.

Rules for Coding DEST

• If the parameter is omitted, the first available printer in the origin group (the group of
printers defined for the local or remote submitting locations) that fulfill all processing
requirements is assigned. If the job originated at a remote RJP terminal, the output is
returned to the originating terminal group .

• The MAIN ORG parameter overrides the PR DEST parameter.

Coding JES3 Control Statements 28 t

F

Rule for Coding CONTROL

When coding CONTROL=PROGRAM, the character specified can be either the extended UASSI
code or the actual channel command code for the System/360 and System/370 channel.

Rules for Coding COPIES

• Maximum copies is 255.
• [f zero is specified, printing for this data set is bypassed.

Rule for Coding FORMS

The form-name can be from 1-8 characters in length.

Rules for Coding FCB

• FCB and CARRIAGE are mutually exclusive on the FORMAT statement.
• FCB should only be used when requesting a 3211 printer; otherwise it is ignored.
• Image-name is a 1-4 character description of the last characters of the FCB2xxxx module

used to define the print image.

Rules for Coding CARRIAGE

• CARRIAGE and FeB are mutually exclusive on the FORMAT statement.
• If 6LPI is coded or if the parameter is omitted, the installation standard carriage tape is used.
• This field has a maximum of eight characters.
• For 3211 printers, a module must be included in SYS1.IMAGELIB for each carriage tape

name.

Rules for Coding TRAIN

• If STANDARD is coded or if the parameter is omitted, the installation defined default
(specified at initialization) is used. Since these are not standard machine features, verify that
the installation has the required printer train before specifying one of the parameter values.

• The TRAIN parameter should not be used for output destined for a remote RJP terminal.
• The IBM-supplied train names are the chapter "Obtaining Output (JES3 only)". Check with

the system programming group for installation-supplied and supported names.

Rule for Coding OVFL

For remote job processing, the overflow test is a responsibility of the terminal package for the
remote RJP terminal. OYFL is ignored fo! remote job processing.

Examples of the Pri'!t Parameter

//*FORMAT PR,DDNAME=REPORT,COPIES=2

This statement specifies that two original copies of the REPORT data set are requested. Any
printer with standard forms, train, and carriage tape mounted can be used.

//*FORMAT PR,DDNAME=,DEST=ANYLOCAL

This statement specifies that all data sets without FORMAT statements are printed on any
local printed.

282 OS/VS2 JCL (VS2 Release 3)

The Punch Parameter

The PU parameter specifies punch characteristics of a JES3 output data set.

For further information, see "Obtaining Output (JES3 only)."

//*FORMAT PU,DDNAME=ddname

['DEST={~~;r~~~~ame }l
device-address
(type[,group-name])

[,COPIES= {~n} 1
jSTANDARD }

[,FORMS= 1 form-name
jYES}

[,INT= lNO 1

Defaults: COPIES= I'

FORMS=ST ANDARD

INT=NO

DDNAME
specifies the qualified ddname of the data set to which this statement applies.

DEST
specifies the punch unit used for output.
ANY LOCAL

any device (either a printer or punch as defined by the output class on the DO statement)
attached to the central CPU to receive the output data set.

device-name

1-8 alphameric or national character name of a local printer or punch (as defined by the
system programming staff) to receive the output data set.

device-address

three character physical device address of the device to receive the output data set.
type

in the format gggssss where ggg is the general device classification (for example, PRT)

and ssss is the specific device classification (for example, 3211) as defined by the system
programming staff.

group-name

name of a group of local devices, an individual remote station, or a group of remote
stations to receive the output data set. Specify DEST=(,LOCAL) to define the default
group-name for local devices (that is, those local devices that are in no other group).

COPIES

specifies the number of copies of the data set that are punched.
FORMS

specifies the card forms used.
(NT

specifies whether or not the output is interpreted.
• YES will cause an attempt to obtain a device type PUN35251 (a card punch with the

interpret feature). If DEST does not include a 35251, INT=NO is substituted.

• NO will cause no interpreting of these cards.

Coding JES3 Control Statements 283

FC

Rule for Coding DDNAME

When DDNAME=, is coded, the parameters specified on that statement apply to all punch data
sets without FORMAT statements.

Rul(~s for Coding DEST

• If the parameter is omitted, the first available punch unit in the job origin group (the group
of printers defined for the local or remote submitting locations) that fulfill all processing
requirements are assigned. If the job originated from a remote RJP terminal, the output is
returned to the originating terminal group.

• The MAIN ORO parameter overrides the PU DEST parameter.

Rules for Coding COPIES

• Maximum copies is 255.
• If zero is specified, punching for this data set is bypassed.

Rules for Coding FORMS

• This field has a maximum length of eight characters.
• If the STANDARD initialization parameter is coded or if the FORMS parameter is omitted,

the installation forms defaults are used.

Example of the Punch Parameter

//*FORMAT PU,DDNAME=PUNCHOUT,DEST=PU1,FORMS=RED-STRP

One copy of the data set named PUNCl-IOUT is punched on unit PU 1. Before processing, the
operator is requested to insert "RED-STRP" cards into the designated punch.

284 OS/VS2 JCL (VS2 Release 3)

The MAIN Statement

Control Statement

The MAIN statement defines the processor requirements for the current job. Many of the
parameters are used to override parameters of the STANDARDS initialization control card.

(
//*MAIN [SYSTEM=

[,LI N ES=(nnn

ANY
JGLOBAL
JLOCAL

main-name
(main-name, main-name, ...)
Imain-name
I(main-name,main-name, ...)

,WARNING)]
,W

,CANCEL
,C

,DUMP
,0

[,JOBSTEP= {NOCHKPNT}]
CHKPNT

[,TYPE= {ANY }]
MVT
VS2/1
VS2

[,NJ PC LASS=class -na me]

[,HOTJOB= {NO }]
YES

[,IORATE= 1 MED I]
HIGH
LO

[,ORG=group- name]
[,CARDS=nnn ,WARNING)]

,W

,CANCEL
,C

[,DEADLlNE=(time, type, [, {date }])]
rel,cycle

,DUMP

[,HOLD= {NO }]
YES

[,SETUP= JOB
HWS

,0

THWS
DHWS
ddname
(ddname,ddname, ...)
Iddname
I(ddname,ddname, ...)

[,C LASS=class -na me]

['FAILURE={RESTART }]
CANCEL
HOLD
PRINT

[,FETCH= ALL]
NONE
SETUP
ddname
(ddname,ddname, ...)
Iddname
I(ddname,ddname, ...)

[,JPRTY= {JES3}1
JOB

[,LREGION=nnnnK]

[,PRDe-{~: } I

[,UPDATE=ST]

[,RINGCHK= {~~S} 1

Coding JES3 Control Statements 285

F~

M

Defaults:

• SYSTEM=ANY

• TYPE=ANY

• HOTJOB=NO

• JPRTY=HES3

• RINGCHK=YES

• PROC=ST
• If SETUP is not specified, the device requirements for mountable tape and disk volumes is

based on an initialization parameter.
• If LINES, CARDS. FETCH, or IORATE are not specified, the installation default for this job

class will be used.
• If CLASS or LREGION are not specified, JES3 will determine the value of LREGION based on

initialization parameters.

SYSTEM

specifies the processor by name or class of system used for this job.
• ANY defaults to any system (global, local, or ASP) that will satisfy the job's requirements.
• JGLOBAL specifies that the job is to run on the global processor only.
• JLOCAL specifies that the job is to run on a local processor only.
• ASP specifies that the job is to run on any ASP main processor that will satisfy the job

requirements. The definition implies TYPE=MVT or TYPE=VS2/1.

• main-name specifies the specific processors considered for this job.
• / main-name specifies the specific processors excluded from consideration for this job.

TYPE

specifies the control program used.
LINES

specifies the estimated number of lines of data, in thousands, printed for this job. The
second group of sub parameters (WARNING. CANCEL, DUMP) specifies the action taken
when the line estimates are exceeded.

CARDS

specifies the estimated number of cards, in hundreds, punched for this job. The second
group of subparameters (WARNING, CANCEL. DUMP) specifies the action taken when the
line estimates are exceeded.

HOLD

specifies that the job will enter into the system in operator hold status and will be withheld
from processing until the operator requests its release. This parameter is the same function
as TYPRUN=HOLD on the JOB statement.

SETUP

modifies the standard setup algorithm used in assigning devices to a job prior to its
execution.
• JOB indicates that device requirements for mountable units are calculated by the system

for the entire job.
• HWS requests allocation of the minimal number of devices required to run the job (high

watermark setup).
• THWS requests high watermark setup for tapes and job setup for disks. Job setup

requests units for every unique volume in the job.
• DHWS requests high watermark setup for disks and job setup for tape.
• ddname specifies the DD statements (fully qualified) that are set up before a job enters

execution (explicit setup).
• /ddname removes the specified DD names from consideration for setup (explicit setup).

CLASS

specifies the job class for this job.

286 OS/VS2 JCL (VS2 Release 3)

FAILURE

specifies the job recovery option used in case of system failure. This does not apply to
continuously active jobs (for ASP main processors only).
• CANCEL cancels the job for printing.
• HOLD holds the job for restart.
• PRINT prints the job and then puts the job in hold for restart.
• RESTART restarts the job when the failing processor is restarted.

JOBSTEP

specifies the job step checkpoint option for jobs on ASP main processors only.
• CHKPNT causes a checkpoint to be taken at the end of each job step on the ASP main

processor.
• NOCHKPNT stops the checkpoint option.

NJPCLASS

specifies that this job is to be placed into an identifiable group of jobs that can be
transmitted by network job processing.

HOTJOB

specifies a non-ending task scheduled by JES3 on an ASP main processor.
IORATE

specifies the I/O to CPU ratio for a job. This is used i.n an attempt to balance the mixture of
jobs selected for execution On the processor.

ORG

specifies an override origin group name of the device used to enter the job on the JES3

system. This parameter will cause any output to be directed to the specified origin group.
Normally, output from a job is directed to the same group of devices from which it
originated.

DEADLINE

specifies the time that the job is due to be scheduled.
• time can be specified in minutes, hours, or 24-hour clock time. For example 1 M is one

minute, IH is one hour, and 0800 is eight a.m.
• type is a single character identifier from A to Z or 0 to 9 and must match one of the

installation deadline types. If the type is not defined, the job is flushed.
• date specifies the date when the time parameter will expire.
• reI specifies the day within the cycle when the deadline falls.
• cycle specifies weekly, monthly, or yearly periods for meeting the deadline.

FETCH

specifies an override of the installation defined FETCH parameter and determines whieh
fetch messages will be issued to the operator for disk and tape volumes for this job.
• ALL specifies that all volumes in DO statements using JES3 setup devices, except

permanently resident volumes, should be fetched.
• NONE specifies no fetch messages.
• SETUP specifies that volumes in DO statements specified in the MAIN SETUP parameter

should be fetched. If no SETUP parameter is specified, the FETCH default is ALL.

• ddname specifies that only the volumes in DO statements specified will be fetched.
• / ddname specifies that all volumes specified should be not fetched.

JPRTY

specifies the execution priority used for a job (for ASP only).
• JES3 specifies that the job will execute using the DPRTY value from the SELECT

initialization card.
• JOB specifies that the job will use the PRTY parameter from the JOB statement or the

default for the job.

Coding JES3 Control Statements 287

LREGION

specifies the approximate size of the largest step's working set in real storage during
execution. LREGION (logical region) is used by JES3 to improve scheduling on a YS2/ I ASP

main processor.
PROC

defines the private library searched for the catalog procedure to run the job.
ST specifies that the standard default procedure library is searched.
xx specifies that a particular procedure is searched.

UPDATE

indicates that this job updates the specified procedure library. This parameter causes all jobs
using this library to be held until the update is complete.

RINGCHK

indicates whether a validation is to be made to determine the correct status of the tape reel
ring for tape devices set up by JES3. RINGCHK=NO indicates that ring checking is to be by
passed for this job.

Rules for Coding TYPE and SYSTEM

• [f the TYPE control program requested is not active on the system, the job will wait
indefinitely until the control program is active.

• If the control program IS inconsistent with the SYSTEM parameter, the job will flushed. For
example SYSTEM=REAL,TYPE=YS2 will not run. It must also be consist ant with PROCESS

statements as discussed in OS/VS2 System Programming Library: Job Management,
GC28-0627.

• You do not always need to code either the TYPE or SYSTEM parameters becuase the
installation often establishes defaults according to job class. Check this with the system
programmer.

Rules for Coding LINES

• Definitions of the subparameters:
WARNING - issue operator warning and continue processing.
CANCEL - cancel the job.
DUMP - cancel the job with a storage dump.

• LINES=O only applies to jobs in the execution phase. After the first line is sent out for
writing, the job will issue a warning, a cancel, or a dump, depending on what is requested.
When printing the output, however, LINES=O is ignored.

Rules for Coding CARDS

• Definitions of the subparameters:
WARNING - issue operator warning and continue processing.
CANCEL - cancel the job.
DUMP - cancel the job with a storage dump.

• CARDS=O only applies to jobs in the execution phase. After the first line is sent for
punching, the job will issue a warning, a cancel, or a dump, depending on what is requested.
When punching the output, however, CARDS=O is ignored.

Rule for Coding SETUP

When specifying ddname, enough devices must be specified to allow JES3 allocation for the
maximum number of devices required at anyone time. If specified devices are insufficient, the
job is canceled.

288 OS/VS2 JCL (VS2 Release 3)

Rules for Coding CLASS

• The class-name can be 1-8 characters.
• If a single character class-name is used, it may be specified on the JOB statcment.
• A valid CLASS parameter on the MAIN statement overrides a valid class paramctcr on thc

JOB statement.

Rule for Coding FAILURE

FAILURE is ignored if HOTJOBS is codcd.

Rules for Coding NJPCLASS

• The class-name can be alphameric and consist of 1-8 characters. It can be specified as an
actual terminal name if desired.

• The operator can initiate transmission of the entire group of jobs with one operator
command rather than entering a separate command for each individual job.

Rules for Coding HOTJOB (for ASP main processors only)

• If a JES3 system failure occurs whilc a continuously active job is executing, JES3 can bc
restarted without interrupting its execution.

• If the continuously active jobs are using JES3 setup, the allocated devices will be rescrved
over a JES3 restart. As a result, there are no rescheduling requircments for these jobs after a
JES3 restart.

• Continuously active jobs cannot use SYSIN or SYSOUT (if JES3 or ASP processes them), or
run on global or local processors. The HOTJOB parameter is ignored for jobs scheduled on
MVS processors.

Rules for Coding ORG

• The FORMAT statement will override the ORG parameter if specified for the particular data
set.

• The MAIN ORG statement should precede all FORMAT statements that do not contain the
DEST parameter. If it does not, the default for these data sets is where the job entered the
system.

Rules for Coding DEADLINE

• Specify time in minutes, hours or 24-hour clock time.
• Specify type as a single character that is defined by the installation.
• Specify the date in the format MMDDYY. If the date is omitted, thc current date is assumed

provided that the current time is less than the deadline time. If the current time is greater,
the next day's date is assumed.

• Specify cycle as WEEKLY, MONTHLY, or YEARLY for those production runs made
periodically.

• Speicfy reI as a decimal digit from 1-366. Specifying reI modifies the cycle to indicate what
day within the cycle the deadline falls. To specify Sunday of every week, codc (I, WEEKL Y)

and to specify SATURDAY, code (7,WEEKLY). Weekly values default to 7 if specified greater
than 7. Monthly values are 1-31; 29, 30, and 31 are treated as the last day of the month
even for months with less days. Monthly values default to 31. Yearly values are 1-365; 365
is treated as the last day (the default) of the year for all non-leap years. Leap year defaults
to 366.

Coding JES3 Control Statements 289

• If the current date is specified and the job is submitted after the deadline time, all of the
priority changes are applied to make the job the same priority level it would have been if
it had been submitted prior to the deadline and not completed.

Rules lor Coding JPRTY

• If the parameter is omitted or if JES3 is specified, the execution priority is assigned from the
DPRTY value on the SELECT statement.

• Job priority is changed after job selection but before job execution. Therefore the original
priority is used for job selection and for any post-execution processing.

• PRTY does not apply to job execution. JPRTY overrides the PRTY field and establishes job
execution priority if JPRTY=JES3.

Rule lor Coding LREGION

Consult the system programming staff for guidance in using the LREGION parameter. If the
values selected for LREGION are too small, the job may run slower.

Rules lor Coding PROC

• If a procedure is specified for which there is not corresponding PROCLIB entry, the job is
flushed.

• ST is the default private procedure library.

Rules lor Coding UPDATE

• If a procedure is specified for which there is no corresponding PROCLIB entry, the job is
flushed.

Examples 01 Coding the MAIN Statement
//*MAIN SYSTEM=SY1,LINES=(5,C),SETUP=HWS,
//*FAILURE=RESTART,DEADLINE=(0800,A,3,WEEKLY)

The job will execute on system SYl. It is estimated to produce 5000 lines of printed output
and if the output exceeds 5000 lines, the job will be canceled. HWS specifies that a minimum
number of devices required for this job will be allocated. In the event of a system failure, the
job will be restarted on the ASP main processor. JES3 will attempt to complete this job by 8
a.m. every Tuesday (Tuesday is day number 3) by adjusting the job's scheduling priority using
the installation-defined A type deadline scheduling parameters.

//*MAIN TYPE=VS2/'I,HOLD=YES,CLASS=TEST1,FAILURE=CANCEL

The job will execute on an ASP main processor that is using OS/VS2 Release 1 as its control
program. The job will initially be placed in hold status until the operator reque8ts its release.
The job is assigned to a class called TESTl. TEST1 must be installation-defined. Job selection
will be based on the priority of class TESTI. In the event of system failure, the job will be
canceled.

290 OS/VS2 JCL (VS2 Release 3)

The NET Statement

Control Statement

The NET statement defines the dependencies between jobs in a dependent job net.

For more information, see "Dependent Job Control" earlier in this book.

/ /*NET {NIDETID t r =name

{ NHOLD}
[, HC =n]

{
RELEASE}

[, RL =(jobname1,jobname2, ... jobnamen)]

[, {~gRMAL} {n
{ ABNORMAL} {D~ }

[, AB =

[, {g~HOLD}

[, {~~LSCHCT}
=n]

jNNERTREL}
[, 1 =(netid,jobname)]

{
ANY}

[, DEVPOOL=(NET , device-name, number [, device-name, number, ...])]

{
YESl

[,DEVRELSE= NO f]

Defaults: NORMAL=D

ABNORMAL=R

OPHOLD=NO

DEVPOOL=ANY

DEVRELSE=NO

NETID

specifies the name of the job-net containing this job.
NHOLD

specifies the number of immediate predecessor job completions required before this job can
be· released for scheduling.

RELEASE

specifies the jobnames of successor jobs for this particular job.
NORMAL and ABNORMAL

specifies the action taken for this job when any predecessor normally or abnormally
completes execution.
• D means decrement the NHOLD count (the number of predecessors) of this job. If the

NHOLD count goes to zero, this job becomes eligible for scheduling.
• F means flush the job and its successors from the system. The job is canceled, any output

printed, and all successors canceled regardless of their normal or abnormal specifications.
• R means retain this job in the system and do not decrement the NHOLD count. This

suspends the job and its successors from scheduling until either the precedessor job is
resubmitted or the operator decreases the NHOLD count.

Coding JES3 Control Statements 291

OPIIOLD

specifies that the job is placed in DJe - operator hold. T~is prevents scheduling of this job
until it is explicitly released from OJe operator hold by the operator.

RELSCHCT

specifies set up of a dependent job's resources and holding of jobs before all of its
predecessors have completed execution.

NETREL

specifies that a job in one job net can be a predecessor to a job in another job net.
DEVPOOL

specifies devices to be dedicated to this dependent job control net.
• ANY indicates that jobs in the net can use any dedicated or non-dedicated device, but

will attempt allocation from this dedicated pool first.
• NET indicates that jobs can use only devices dedicated to the net.
• device-name and number indicates the name and number of dedicated devices.

DEVRELSE

specifies that all devices dedicated to dependent job control net should be released.

Genl.~ral Rules for Coding

• Only one NET statement can be defined for each job of a job net.
• The parameters on the NET statement can be coded in any order.
• The RELEASE parameter is the only parameter on the NET statement that can be split and

continued on a NET statement.

Rules for Coding NETlD

• The NETID name can be 1-8 characters in length, the first character must be alphabetic.
• All jobs put into the system with the same net-id form a dependent job control (DJe) net.
• NETIDs must be unique within the JES3 system. Duplicate job nets cannot exist since a job

has the same NETID as an existing job net is added as a member of that job net.

Rules for Coding NHOLD

• N has a range of 1 to 32,767 to designate predecessor jobs.
• If N is zero or is not specified, then this job has no predecessors and is immediately eligible

for scheduling.
• If an incorrect NHOLD count is specified, two situations can occur:

1. If N is greater than the actual number of predecessor jobs, then this job is not released
from OJe hold when all of its predecessors complete execution.

2. If N is less than the actual number of predecessor jobs, this job is prematurely released
from DJe hold.

Rules for Coding RELEASE

• From 1 to 50 successor jobnames can be specified.
• J obnames can be from 1-8 characters, the first character must be alphabetic.
• RELEASE values can be split on a NET continuation statement.

292 OS/VS2 JCL (VS2 Release 3)

Rules for Coding RELSCHCT

• N has a range of 1 to 32,767
• If N is zero or is not specified, there is no early set up of dependent jobs.
• This parameter must not be specified for a job that may have catalog dependencies in

dependent job control.
• Do not specify RELSCHCT for nonstandard DlC jobs. Nonstandard DlC jobs are explained in

OS/VS2 System Programming Library: Job Management, GC26-0627.

Rules for Coding NETREL

• To identify the successors to this job that are in another net, the successor's jobname and
the NETID must be defined as parameters of the NETREL keyword.

• The NETREL parameter can be specified once for each job of a given job-net. NETREL

values identify all networks and jobs released.

Rules for Coding DEVPOOL

• This parameter is only recognized when found in the first job entered into the system
specifying this job net-id.

• The first subparameter indicates what devices are eligible for volume mounting by jobs in
the net.

• The device-name can be any name specified in the UNIT subparameter except unit address
or an installation-defined name (that is, names defined to lES3 by the installation).

• The device-name and number can be repeated for additional devices eligible for volume
mounting up to a maximum that will fit on one card.

Rules for Coding DEVRELSE

• This parameter can be specified on one or more jobs in the net but cannot be specified on
the first job.

• The first completing job that has specified DEVRELSE=YES causes the devices dedicated to
the net to be released. If DEVRELSE is not specified, all dedicated devices are released when
the last job in the net ends.

Example of Coding the NET Statement

//*NET ID=NET01,NHOLD=O,AB=F,DEVPOOL=3330,2

In this example, the job defines a job net named NET01. There are no predecessor jobs. In the ~
event the job fails, all successor jobs in NETOI are flushed. The DEVPOOL parameter (which ~
must be coded with the first job in the net) requests a device pool of two 3330s to be
established for the job net.

Coding JES3 Control Statements 293

The OPERATOR Statement

Control Statement

The OPERATOR statement transmits any desired message to the operator. Columns 1 through
80 are sent to the LOG console when the job enters the JES3 queue.

//*OPERATOR text

Exalnpie of the OPERATOR Statement

//*OPERATOR CALL EXT. 641 WHEN THIS JOB STARTS

294 OS/VS2 JeL (VS2 Release 3)

The PAUSE Statement

Control Statement

An input reader can be halted temporarily by punching the psuedo command, PAUSE, starting
in column 5. The PAUSE statement can be entered through any reader. The reader then issues
a message and waits for operator reply. The use of the PAUSE statement is intended primarily
for system checkout and test. It is recognized only if submitted before the JOB statement in the
input stream. It is recommended for remote users only.

//**PAUSE

Rules for Coding

• At least two blanks must follow the word PAUSE before comments are added.
• The PAUSE statement can be entered through any reader.

Example of the PAUSE Statement

//**PAUSE

Coding JES3 Control Statements 295

OPEF
PAU~

296 OS/VS2 JCL (VS2 Release 3)

Reference Tables

The first section of this appendix summarizes the DO statement parameters required to perform
the following functions:

• Create a data set on an unit record device (card punch or printer)
• Create a data set on a system output device
• Create a data set on magnetic tape
• Create a data set on a direct access device
• Retrieve a data set fron an unit record device (card reader or paper tape reader)
• Retrieve a data set from the input stream
• Retrieve a passed data set (magnetic tape or direct access)
• Retrieve a cataloged data set (magnetic tape on direct access)
• Retrieve a kept data set (magnetic tape or direct access)
• Extend a passed data set (magnetic tape or direct access)
• Extend a cataloged data set (magnetic tape or direct access)
• Extend a kept data set (magnetic tape or direct access)

Also included are tables for:

• retrieving or extending an Indexed Sequential pata Set
• area arrangement of Indexed Sequential Data Sets
• mutually-exclusive DO parameters
• disposition processing
• direct access capacities
• track capacities
• the JOB statement
• the EXEC statement
• the DO statement

Refer~nce Tables 297

--
Device Parameter Type Parameter Comments

Unit Location of the Data Set UNIT Required
Record --

Data Attributes DCB Optional
Devices --

Special Processing Options UCS Optional (for a printer with the universal character set feature) --
FCB Optional (for a 3211 printer if forms control information is to be

specified) --
FREE Optional

DUMMY Optional --
System Location of the Data Set SYSOUT Required. Specifies the output class
Output --

Data Attributes DCB Optional
Devices

Special Processing Option OUTUM Optional --
FREE Optional

DEST Optional

OSlO Required for output to a 3540 diskette

HOLD Optional --
COPIES Optional --

Ma!Jnetic Data Information DSNAME Required if the data set is to be cataloged or used by a later job
Tape (or DSN)

DISP Required if the data set is to be cataloged, used by a later step in this
job, or used by another job --

Location of the Data Set UNIT Required unless you request (with the VOLUME parameter) the same
volume used for an earlier data set in your job --

VOLUME Required if you want a specific volume. If you do not use this
(or VOL) parameter you will get a scratch tape

--
LABEL Required if .you do not want to use IBM standard labels for the dataset

Data Attributes DCB Optional

Special Processing Options DUMMY Optional

CHKPT Optional

FREE Optional --
Direct Data Set Information DSNAME Required if the data set is to be cataloged or used by a later job
Access (or DSN) --Devices DISP Required if the data set is to be cataloged, used by a later step in this

job, or used by another job --
Location of the Data Sot UNIT Required unless you request (with the VOLUME parameter) the same

volume used for an earlier data set in your job

VOLUME Required if you want a specific volume or multiple volumes. If you do
(or VOL) not use this parameter your data set will be allocated on any suitable

volume

LABEL Required if you want the data set to have both IBM standard
and user labels --

Size of the Data Set SPACE SPACE must be used for ISAM data sets --
Data Attributes DUMMY Optional

DYNAM Optional

FREE Optional

I Figure 19. DD Parameters for Creating a Data Set (Part 1 of 2)

298 OS/VS2 JCL (VS2 Release 3)

Device Parameter Type Parameter Comments

Mass Data Set Information DSNAME Required if the data set is to be cataloged or used by another job
Storage (or DSN)
System DISP Required if the data set is to be cataloged, used by a later step in the
(MSS) job, or used by another job

Location of Data Set UNIT Required unless you request (with the VOLUME parameter)
the same volume used for an earlier data set in your job

VOLUME Required for specific volume requests. Use MSVGP instead of
(or VOL) VOL=SER if a nonspecific volume in a specific MSS volume group is

desired. If neither is coded, the system will select an already mounted
3330V volume (storage or public) unless PRIVATE is coded

LABEL Required if you want the data set to have both IBM standard and
user labels

MSVGP Required if a nonspecific volume in a specific MSS volume group is
required

Size of Data Set SPACE Required unless MSVGP is coded

Data Attributes DUMMY Optional

DYNAM Optional

FREE Optional

Figure 19. DD Parameters for Creating a Data Set (Part 2 of 2)

•

Reference Tables 299

Data Set Parameter Type Parameter Comments

Unit Location of the Data Set UNIT Required
Record Data Attributes DCB Optional
Devices

Special Processing Option DUMMY Optional

FREE Optional --
Input Location of the Data Set * You must specify one of these parameters
Stream DATA

r---'
Special Processing Option DLM Optional

FREE Optional

Associated Location of Data Set * You must specify one of these parameters
Data Set DATA

Data Set Information OSlO Required for 3540 associated data sets

VOL=SER Optional for 3540 associated data sets

Passed Data Set Information DSNAME Required
Data Set DISP Required

Location of the Data Set UNIT Required only if you want more units

LABEL Required only if the data set does not have IBM
standard labels

~,

Data Attributes DCB Optional
~. --

Special Processing Option FREE Optional --
CHKPT Optional

DUMMY Optional

Cataloged Data Set Information DSNAME Required
Data Set DISP Required

1---'
Location of the Data Set UNIT Optional

VOLUME May be required if you want to begin processing with a
volume after the first

LABEL Required only if the data set does not have IBM
standard labels

Special Processing Options DUMMY Optional
--

DYNAM Optional

FREE Optional

CHKPT Optional

Kept Data Set Information DSNAME . Required
Data Set DISP Required

Location of the Data Set UNIT Required

VOLUME Required

LABEL Requ ired on Iy if the data set does not have IBM
standard labels

Data Attributes DCB Optional

Special Processing Options DUMMY Optional

DYNAM Optional

FREE Optional

CHKPT Optional

Figure 20. DD Parameters for Retrieving a Data Set

300 OS/VS2 JeL (VS2 Release 3)

Data Set Parameter Type Par,ameter Comments

Passed Data Set Information DSNAME Required
Data Set

DISP Required

Location of the Data Set UNIT Required only if you want more units

VOLUME Required only if you need more volumes

LABEL Required only if the data set does not have IBM standard
labels

Size of the Data Set SPACE Required only if you want to override the secondary quantity

Data Attributes DCB May be required if data set does not have IBM standard labels

Special Processing Option FREE Optional

CHKPT Optional

DUMMY Optional

Cataloged Data Set Information DSNAME Required
Data Set

DISP Required

Location of the Data Set UNIT Optional

VOLUME Required only if you need more volumes

LABEL Required only if the data set does not have I BM standard
labels

Size of the Data Set SPACE Required only if you want to override the secondary quantity

Data Attributes DCB Required only if the data set does not have I BM standard
labels

Special Processing Options DUMMY Optional

FREE Optional

CHKPT Optional

Kept Data Set Information DSNAME Required
Data Set

DISP Required

Location of the Data Set UNIT Required

VOLUME Required

LABEL Required only if data set does not have I BM standard labels

Size of the Data Set SPACE Required only if you want to override the secondary quantity

Data Attributes DCB Required only if the data set does not have I BM standard
labels

Special Processing Options DUMMY Optional

DYNAM Optional

FREE Optional

CHKPT Optional

Figure 21. DD Parameters for Extending a Data Set

Reference Tables 301

Area Parameter Type Parameter Comments

Index (used only it Data Set Information DSNAME Required. You must code the same value
index area 110t on same as in second DD statement.
device type as prime
area) DISP Required. You must code the same value

as in second DD statement.
--

(First DD statement) Location of the data UNIT Required
set --

VOLUME Required
--

Data Attributes DCB Required

Prime and Overflow; Data Set Information DSNAME Required
or Index, Prime, and
Overflow; or Index DISP Required. Specifies whether you are
and Prime (required) retri evi ng the data set.

Location of the data UNIT Required unless it is a passed data
(Second DD set set with all three areas on one volume.
statement)

VOLUME Some requirement as UNIT. If used,
code volumes in order they were defined.

--
Data Attri butes DCB Required

--
Overflow (used only Data Set Information DSNAME Required. You must code the some
if overflow area not value as in second DD statement.
on some devke type
as prime area) DISP Required. You must code the same

value as in the second DD statement.

(Third DD Statement) Location of the data UNIT Required
set

VOLUME Required

Data Attributes DCB Required

Figure 22. DD Parameters for Retrieving or Extending an Indexed Sequential Data Set

302 OS/VS2 JCL (VS2 Release 3)

CRITERIA

1. Number of DD 2. Area defined on a 3. Index size RESTRICTIONS ON DEVICE RESULTING
statements DD statement coded ? TYPES AND NUMBER OF ARRANGEMENT OF

DEVICES REQUESTED AREAS

3 INDEX - None Separate index, prime,
PRIME and overflow areas.

OVFLOW

2 INDEX - None Separate index and

PRIME prime areas. 1

2 PRIME No None Separate prime and

OVFLOW overflow areas. An
index area is at the end
of the overflow area.

2 PRIME Yes The statement defining Separate prime and
OVFLOW the prime area cannot overflow areas. An

request more than one index area is embedded
device. in the prime area.

1 PRIME No None Prime area with index
area at its end. 2

1 PRIME Yes Cannot request more Prime area with
than one device. embedded index area.

1 If both areas are on volumes that correspond to the same device type, an overflow area is establ ished if one of the
cylinders allocated for the index area is only partially used. The overflow area is established in the unused
portion of that cylinder.

2 If the unused portion of the index area is less than one cylinder, it is used as an overflow area.

Figure 23. Area Arrangement of Indexed Sequential Data Sets

Reference Tables 303

Legend: This table shows which DD parameters cannot be coded together.
At the intersection of the horizontal and vertical columns, the square will
be black if the parameters are mutually exclusive and white if they can be
coded together on the same DD statement.

For example, to see if DISP and SYSOUT are mutually exclusive, look
down the column marked DISP and across the column marked SYSOUT.
In this case, they are mutually exclusive.

As indicated by the table, each DD parameter is mutually exclusive with
itself; that is, it cannot appear twice on the same DD statement.

Figure 24. Table of Mutually Exclusive DD Parameters

304 OS/VS2 JCL (VS2 Release 3)

:;iIC
til ...
til

~
= r')
til

-l
~
is''
'"
~

~

Action Taken
Status Requested Disposition Conditional Disposition at Normal

End of Step
1

none none deleted

KEEP none kept

DELETE none deleted

CATLG none cataloged

NEWor MOD
2

PASS none passed

PASS any passed

any except PASS KEEP requested disposition

any except PASS DELETE requested disposition

any except PASS CATLG I requested disposition

none none kept

KEEP none kept

DELETE none i deleted

CATLG none I cataloged 3

UNCATLG none I uncataloged
OLD or MOD

PASS passed
or SHR

none

PASS i
passed any I

any except PASS KEEP requested disposition

any except PASS DELETE requested disposition

any except PASS CATLG requested disposition

any except PASS UNCATLG requested disposition

Footnotes:

1 See list of exceptions in right-hand column.

2 If volume information is not available to the system, a MOD data set is considered
1_ L_ _ ___ I __ .L_

~ .

4 If the step was attempting to receive a passed data set which was new when
initially passed, the data set is deleted.

5 If any job steps reached abnormal termination, the conditional disposition will
be processed. Otherwise, the data set is de leted .

6 If any job steps reached abnormal termination, the conditional disposition wi II
be processed. Otherwise, the data set is kept if it was old when initially passed
in the job, or deleted if it was new when originally passed in the job.

Figure 25. Disposition Processing Chart

I
I

Action Taken at Abnormal End of Step 1,

when Step Fai Is Due to: Action Taken at
Program canceled or Subsequent data set allocation End of Job

abnormally terminated for same step fai led

deleted deleted

kept deleted

deleted deleted

cataloged deleted

passed passed deleted

passed passed deleted 5

kept deleted

deleted deleted

cataloged deleted

kept i kept

kept i kept

I deleted
I

kept

cataloged 3
i

kept

I uncataloged I kept

I passed I passed kept

I passed ! passed kept 6

I kept I kept 4 I

deleted kept 4

cataloged 3 kept 4

uncataloged I kept4

List of Exceptions:

• When a nontemporary data set is passed and the receiving step does not assign it a
disposition, the system will, upon termination of this step, do one of two things.
If th .. ,.(ntn c .. t \Alnc n"\AI \Alh .. n it \Alnc initinllv nnccA,.(_ it will h .. deleted_ If thA

of OLD are kept. All data sets in the restart step with a status of NEW are deleted.

• If automatic checkpoint restart is to occur, all data sets currently in use by the
job are kept.

• If a data set is assigned a temporary name or no name, a conditional disposition
other than DELETE is invalid. The system assumes DELETE.

• If a tape data set is unopened, it receives no disposition processing.

• If the data set is not allocated, then no action is taken.

Device
2314

2305 3330 3330 tv\od II 3340 (each volume)

Storage Medium Disk Disk Disk Disk Disk
-----_ .. _ .. _------

Cylinders 200 tv\odel 1: 48 404 808 696 (70-megabytes)
Model 2: 96 348 (35-megabytes)

I--------~-----f--~--~---- -~----- ---- -_ _- --.- _ .. -- --
Tracks Per Cylinder 20 8 19 19 12

r-----.--------- _______ ~ _______ ._ " __ 0'_0_'" _ ... - .. _.- --" -------- --"----------- ~--- -------
Bytes Per Track 7,294 Model 1: 14, 136 13,030 13,030 8368

Model 2: 14,660
r--~-----.----- ... -... ----- -- ---.- ._" "- --- ---"--"---- --.-~-.-.----

Bytes Per Cylinder 145,880 Model 1: 113,088 247,570 247,570 100,416
Model 2: 117,280

-- -------~-----1--- -- ---------
Byte:; Per Devi ce 29.17 Model 1: 5.4 101.6 201.7 _ 69.8 (70-megabytes)
(in mi lIions) Model 2: 11.3 34.9 (35-megabytes)

--
Figure 26. Direct Access Capacities

Maximum Bytes per Record Formatted without Keys Maximum Bytes per Record Formatted with Keys
~- --

Records per Track
2314 2305-1 2305-2 3330 and 3340 2314 2305-1 2305-2 3330 and 3340

3330 Mod II 3330 Mod II

7294 14136 14660 13030 8368 1 7249 13934 14569 12974 8293
3520 6852 7231 6447 4100 2 3476 6650 7140 6391 4025
2298 4424 4754 4253 2678 3 2254 4222 4663 4197 2603
1693 3210 3516 3156 1966 4 1649 3008 3425 3100 1891
1332 2480 2773 2498 1540 5 1288 2278 2682 2442 1465

1--- ---_._- -----"- ---_._ .. _---- -----

1092 1996 2278 2059 1255 6 1049 1794 2187 2003 1180
921 1648 1924 1745 1052 7 877 1446 1833 1689 977
793 1388 1659 1510 899 8 750 1186 1568 1454 824
694 1186 1452 1327 781 9 650 984 1361 1271 706
615 1024 1287 1181 686 10 571 822 1196 1125 611

1------- --- --------~-
~ - •.. ~-----

550 892 1152 1061 608 11 506 690 1061 1005 533
496 782 1040 962 544 12 452 580 949 906 469
450 688 944 877 489 13 407 486 853 821 414
411 608 863 B05 442 14 368 406 772 749 367
377 538 792 742 402 15 333 336 701 686 327

t------ --- - -------1---

3'~7 478 730 687 366 16 304 276 639 631 291
321 424 676 639 335 17 277 222 585 583 260
298 376 627 596 307 18 254 174 536 540 232
276 334 584 557 282 19 233 132 493 501 202
258 296 544 523 259 20 215 94 453 467 184

1------ ------- -----... --.. - -~---.,---.... "- --
241 260 509 491 239 21 198 58 418 435 164
226 230 477 463 220 22 183 386 407 145
211 200 448 437 204 23 168 357 381 129
199 174 421 413 188 24 156 330 357 113
187 150 396 391 174 25 144 305 335 99

r------- -_._-- _ .. _-- --_ .. _------"-- -.-... -.-.---.. -~ -_._ ... _--"._----- .-----._- _ .. - ---_. .. _---
176 128 373 371 161 26 133 282 315 86
166 106 352 352 149 27 123 261 296 74
157 88 332 335 137 28 114 241 279 62
148 70 314 318 127 29 105 223 262 52
139 52 297 303 117 30 96 206 247 42

Figure 27. Track Capacities

306 OS/VS2 JCL (VS2 Release 3)

The JOB Statement
/ /Name Operation Operand P /K Comments

//jobname JOB ([account number] [,additional accounting information, •••]) P Identifi es accounting information.
Can be made mandatory.

[ADDRSPC = {~~!~}] K Requests storage type.

[C LASS=jobc lass] K Assigns a job class to each job.

[COND=«code,operator), •••)] K Specifies test for a return code.

[MSGCLASS=output class] K Assigns an output c lass for the job.

K Specifies what job output is to be
written.

[NOTIFY=user identification] K Requests a message be sent to a
time-sharing terminal.

[PERFORM=n] K Specifies the performance group a
job belongs to.

[programmer's name] P Idenfi fi es programmer.
Can be made mandatory.

[PRTY=priority] K In JES3, specifies a job's initiation
priority wIthin its job class.

K Speci fi es restart faci liti es to be used.

[REGION=valueK] K Speci fi es amount of storage space.

rRESTART=(!:tepname I [,checkid])l l stepname. procstepname J K Specifies restart facilities for
deferred restart.

[TIME= {([~!~~tes] [,secondS])}] K Assigns a job a CPU time limit.

[TYPRUN=) ~~i~ }J
tCOpy

K Holds a job in job queue, scans 4 JCL for syntax errors, or copies
the input deck to SYSOUT.

--
Legend:

P Positional parameter.
K Keyword parameter
{} Choose one.
[] Optional; if more than one line is enclosed, choose one or none.

Figure 28. The JOB Statement

Reference Tables 307

The EXEC Statement

//Name Operation Operand

/ / [stepname] EXEC [ACCT [.pro cstepname] = (accounting information, •••)]

[ADDRSPC= {
VIRT }]
REAL

ocstepname] = ((code,operator,stepname) [COND [.pr I
(code,operator) I
(code ,operator, stepname • procstepname)

, ... [,] [EVEN])]
ONLY

[DPRTY[.p rocstepname]=([value 1] ['value2])]

[DYNAMNB R [. procstepname] =n]

[PARM [.pro cstepname] =value]

[PERFORM [.procstepname] =nJ

rro [PGM= * .st g;:~a~:~~dname I]
* .st epname • procstepname • ddname

[[PROC=J p

[RD [.procst

rocedure name]

R
epname] = RNC]

NC
NR

[REGION=v alueKJ

[TIME [.proc stepname] = j ([minutes] [,seconds])}J
t 1440

leg&nd:

K Keyword parameter.
p Posl tiona I parameter.
n Choose one.
[] Optional; if more than one line Is enclosed, choose one or none.

Figure 29. The EXEC Statement

308 OS/VS2 JCL (VS2 Release 3)

P /K Comments

K Accounting information
for step.

K Requests storage type.

K Specifies a test for a
return code.

K Specifies dispatching
priority for a job step.

K Specifies dynamic
allocation.

K Passes variable informa-
tion to a program at
execution time.

K Specifies a performance
group for a job.

P Identifies program.

P Identifies a cataloged
or instream procedure.

K Speci fi es restart faci li-
ti es to be used.

K Specifies amount of
storage space.

K Assigns step CPU time
limit.

The DO Statement
//Name Operand

Oper­
ation

~------+::":':"::"-'---t----------------,--,-----------------,----

//[ddname J
procstepname.

ddname

DD

AMP=

AMORG
, 'BUFNO=number'
, 'BUFNI=number'
, 'BUFSP=number'

, 'CROPS= (~c:~.' l
)NCK'
)NRE'
~NRC'

, 'OPTCD= { ~', l
I L' f

J, 'RECFM= (F' }
, FB'

)V'
~VB'

, 'STRNO"'number'
, 'SYNAD=modu!ename'
, TRACE

[CHKPT=EOV]

[COPI ES~nnn]

[DATA]

\

.

[

DCB=(list of attributes) J
dsname

(* .ddname [I' f 'b]) DCB= * t dd ' 1st 0 attn utes .s epname. name
{ '. "'pnam,. p,o""pname. dd name 1

[DDNAME=ddname]

[DEST~cdesti nation]

[[

' DELETE 1 1
DISP=([~~~] ;~!~~ [;~~~~TE])

SHR ,CATLG ,CATLG
MOD ,UNCATLG ,UNCATLG
, ,

[DLM=delimiter]

[DSID=(id [, V])]

Figure 30. The DD Statement (Part 1 of 3)

I

P/K Comments
- - -----,----------1
P Defines data set in the input

stream.

K Completes the access method
control block (ACB) for VSAM
data sets.

K For checkpoint at end of
volume.

K Requests multiple copies of
output data set.

P Defines data set in the input
stream.

K Completes the data control
black (used for all data sets
except VSAM).

K Postpones the definition of a
data set.

K Specifi es remote desti nation
for output data set,

K Assi gns a status, di sposi tion,
and conditional disposition
to the data set.

K Assigns delimiter other than

/*.

K Indicates to a diskette reader
that data is to be merged into
the JCL stream at this point or
specifi es the name to be given
to a SYSOUT data set written
on a diskette.

Reference Tables 309

_____ ,, _______ • __ ti~ __________ •••• _. ___ ._.~ •• _ ... _. __ ._

T he DO Statement (con't)

//Name I ~r:~l=---"~=~=-~=- ~:~~n~~~~~=~---------~=~=-=~E1K" =- ~:ments __ ._

II [ddname FDD I ~ dsname K Assigns a nome to a new data
procstepname. dsname(member nome) set or to identify an existing

ddname i dsname(generation number) data set.

II dsname(area name) I
{

DSNAME} &8 .. dsname

, &&dsname(area nome) I
DSN = l&&dsname(member nome)

k .ddname I
* .stepname.ddname !
* .stepname.procstepname.ddname I

[DUMMY]

[DYNAM]

[FCB=(image-id [:~~~~~])]

rFREE = {E~~D I]
L CLOSE(

LABEL =([data set seq /I]

[MSVGPid]

[OUTLlM=number]

[QNAME=proces~ name]

,SL
,SUL
,AL
,AUL
,NSL
,NL
,BLP
,LTM

[

,PASSWORD] [,IN] [EXPDTC7'Yddd]
:NOPWREAD ,OUT [I] RETPDo'nnnn)

~ TRK I
SPACE=C CYL ,,(primary quantity [,secOndary qUantity] [,?irectory])

t blocklength) , ,Index

[,] [,RLSEJ ,MXIG [,ROUND]) l'CONTIGJ

,ALX

SPACE=(ABSTR,(primary quantity ,address [,~irectory]))
,Index

[SYSOUT=(C lass nome [: program name] [, form number])]

[TERM=TS]

K 1 Bypasses I/O operations on a
data set (BSAM and QSAM).

I Specifies dynamic allocation.

K I Specifies forms control infor-
I motion. The FCB parameter is
I ignored if the data set is not
I written to Cl 3211 or 1403
: printer.

K Specifies dynamic
deal location •

K Specifies whether output
processing is to be deferred or
processed normally.

K Supplies label information.

K Identifies a mass storage group
for a mass storage system (MSS)

idevice.

K 'I Limits the number of logical
records you want included in
the output data set.

K Specifies the name of a

I

" TPROCESS macro which
defines a destination queue
for messages recei ved by

I means of TCAM .

K Assigns space on a direct
access volume for a new data
set.

K Assigns specific tracks on a
direct access volume for a
new data set.

K Assi gns an output c lass to an
output data set.

K Identifies a time-sharing user.
----------....-'----'-----._------:1

Figure 30. The DD Statement (Part 2 of 3)

310 OS/VS2 JCL (VS2 Release 3)

IIName Oper­
ation

The DO Statement <con't)
Operand p/K Comments

r--------------+----~--.------~--~--------------------------

DD II [ddname]
procstepname.

ddname

Legend:

P Positional parameter.
K Keyword parameter.
11 Choose one.

[UCS=(Character set code [:FOLD] [,VERIFV])]

[{

[

uni t address J [, uni t coun

J
}]

UNIT=(device t,ype ,P [,DEFER])
user-assigned graup name ,

UNIT=AFF=ddname

r~gtUME} =([PRIVATE][,] [volume seq number] [volume count] [,]

[

SER=(Serial number, •••)]
REF=dsname
REF=* .ddname)
REF=* . stepname .ddname
REF=* . stepname. procstepname .ddnarne

K Requests a special character
set for a 3211 or a 1403
printer.

K Provides the system with unit
i nformati on.

K Provides the system with
volume information,

[] Enclosing subparameter, indicates that subparameter is optional; if more than one line is enclosed,
choose one or more.

~--__ ----___ . ___________ ------____________ -J

Figure 30. The DD Statement (Part 3 of 3)

Reference Tables 311

312 OS/VS2 JCL (VS2 Release 3)

The following terms are defined as they are used in
this manual. If you do not find the term you are
looking for, refer to the Index or to the IBM Data
Pro~essing Glossary, GC20-1699.

IBM is grateful to the American National
Standards Institute (ANSI) for permission to
reprint its definitions from the American National
Standard Vocabulary for Information Processing
(Copyright © 1970 by American National
Standards Institute, Incorporated), which was
prepared by Subcommittee X3KS on Terminology
and Glossary of American National Standards
Committee X3. ANSI definitions are marked with
an *.
address space. The virtual storage assigned to a job,

TSO user, or a task initiated by the ST ART command.
Each address space consists of the same range of
addresses.

affinity. (See volume affinity, unit affinity.)
anocate. To assign a resource for use in performing a

specific task.
ASP. Asymmetric multiprocessing system that provides

supplimentary support for job management, data
management, and task management, performing such
functions as scheduling input readers and output writers.

ASP main processor. The MVT or SVM processor
that executes jobs assigned to it by a JES3 global
processor.

associated data set. Data set on a 3540 diskette volume
that is separate from the job stream data set and is to be
spooled as a SYSIN data set.

automatic priority group (APG). In VS2, a group of
tasks at a single priority level that are dispatched
according to a special algorithm that attempts to provide
optimum use of CPU and I/O resources by these tasks.

automatic restart. A restart that takes place during the
current run, that is, without resubmitting a job; an
automatic restart can occur within a step or at the
beginning of a step. Contrast with deferred re~tart.

auxlliary storage. Data storage other than mamstorage;
secondary storage.

backward reference. A facility of the job control
language that permits you to copy information from or
refer to DD statements that appear earlier in the job.

card image form. Column binary.
catalog. The collection of all data set indexes that are

used by the control program to locate a volume
containing a specific data set.

cataloged data set. A data set that is represented in an
index or hierarchy of indexes in the system catalog; the
indexes provide the means for locating the data set.

cataloged procedure. A set of job control statements
that has been placed in a partitioned data set called the
procedure library and that can be retrieved by coding
the name of the procedure on an execute (EXEC)
statement or started by a START command.

Glossary

checkpoint data set. A sequential or partitioned ~ata set
containing a collection of records (called checkpomt
entries) that contain the status of a job and the system
at the time the records are written. These records
provide the information necessary for restarting a job
without having to return to the beginning of the job.

checkpoint restart. The process of resuming a job at a
checkpoint within the job step that was abnormally
terminated. The restart can be automatic or deferred,
where deferred restart involves resubmitting the job.
Contrast with step restart.

checkpoint/restart facility. A facility for restarting
execution of a program at some point other than at the
beginning, after the program was terminated due to a
program or system failure. A restart can begin at a
checkpoint within a job step or at the beginning of a job
step.

command statement. A job control statement,]ES2
control statement, and JES3 control statement that is
used to issue commands to the system through the input
stream.

comment statement. A job control statement used to
include information that may be helpful in running a job
or reviewing an output listing.

concatenated data sets. A group of logically connected
data sets that are treated as one data set for the duration
of a job step.

converter/interpreter. The job segment that converts
and interprets JCL for the MVS system.

cylinder. The tracks of a disk storage device that c.an be
accessed without repositioning the access mechamsm.

data definition (DD) statement. A job control
statement that describes a data set associated with a
particular job step.

data management. A major function of the oper~ting
system that involves organizing, cataloging, locatmg,
storing, retrieving, and maintaining data.

data set. The major unit of data storage and retrieval in
the operating system, consisting of a collection of data in
one of several prescribed arrangements and described by
control information to which the system has access.

ddname (data definition name). A name assigned to a
D D statement. This name corresponds to the ddname
appearing in a data control block. .

deadline scheduling. An automatic method of controlhng
a job's scheduling priority to increase the probability of
the job being scheduled by a given deadline.

deferred restart. A restart performed by the system on
resubmission of a job by the programmer; deferred
restart can begin within a step or at the beginning of a
step. Contrast with automatic restart.

delimiter statement. A job control statement used to
mark the end of data.

dependent job control (DJC). In JES3, .the orga~~zing
of a collection of jobs that must execute m a speclfic
order. OJC manages jobs that are dependent upon one
another.

device type. A number that corresponds to a type of
input/ output device. Coding the device type in the UNIT
parameter is one way of indicating what input/ output ~
device you want allocated to a job step. ~

Glossary 313

directory. A series of 256-byte records at the beginning of
a partitioned data set that contains an entry for each
member in the data set.

dispatching priority. A number assigned to tasks, used to
determine the order in which they will use the central
processing unit.

disposition processing. A function performed by the
initiator at the end of a job step to keep, delete, catalog,
or uncatalog data sets, or pass them to a subsequent job
step, depending on the data set status or the disposition
specified in the DISP parameter of the DD statement.

dummy data set. A data set for which operations such as
disposition processing, input! output operations, and
allocation are bypassed.

*dump. (1) to copy the contents of all or part of storage,
usually from an internal storage into an external storage.
(2) the data resulting from the process as in 0).

dynamic allocation. Assignment of system resources to a
program at the time the program is executed rather than
at the time it is loaded into main storage.

dynamic de allocation. Freeing of system resources
during program execution rather than at the end of the
job.

dynamic support program (DSP). Transient program
of JES3 that runs in parallel with the other support
functions of JES3.

execute (EXEC) statement. A job control statement
that marks the beginning of a job step and identifies the
program to be executed or the cataloged or in-stream
procedure to be used.

execution priority. A rank assigned to a task that
determines its precedence in being selected for
execution.

external page storage. The portion of auxiliary storage
that is used to contain pages.

external writer. A writer other than JES2 for
user-written writer routines and for devices not
supported by JES2.

forms control buffer (FCB). A buffer containing 18
positions that is used to store vertical formatting
information for printing, each position corresponding to
a line on the form; the FCB is part of the 3811 control
unit, which serves as an interface between the system
and a 3211 or 1403 printer, or the data protection image
to be used for the 3525 card punch.

generation data group (GDG). A collection of data sets
that are kept in chronological order; each data set is
called a generation data set.

gener,ation data set. One generation of a generation
data group.

global processor. JES3 processor that controls the job
sekction for all processors in the system running under
JES3.

group name. See user-assigned group name.
HASI). The HASP system provides supplimentary

support for job management, data management,
and task management, performing functions such
as scheduling input readers and output writers.

input service. [n JES3 a set of dynamic support programs
that read the input data and build the system input data
set and control table entries for each job.

input stream. The sequence of control statements and
data submitted to the operating systt~m on an input
device especially activated for this purpose by the
operator.

314 OS/VS2 JCL (VS2 Release 3)

in-stream procedure. A set of job control statements
placed in the input stream that can be used any number
of times during a job by naming the procedure on an
execute (EXEC) statement.

integrity. Preservation of data or programs for their
intended purpose.

JES2 control statement. A statement that controls the
input and output processing of jobs run under JES2.

JES3 control statement. A statement that controls the
input and output processing of jobs run under JES3.

job. A collection of related problem programs, identified
in the input stream by a JOB statement followed by one
or more EXEC and DD statements.

job' class. Anyone of a number of job categories that can
be defined by the installation to classify jobs. By
classifying jobs and directing initiators to initiate specific
classes of jobs, it is possible to control the mixture of
jobs that are performed concurrently.

job class queue. A waiting list of job definitions within
the input queue in which jobs assigned the same class
are arranged in order of priority; jobs with the same
class and priority are placed in a first in/first out order.

job control language (JCL). A high-level programming
language used to code job control statements.

*job control statement. A statement in a job that is
used in identifying the job or describing its requirements
to the operating system.

job journal. Established at JES2 initialization to hold
restart information for each program in execution.

job Hbrary. See private library.
job management. A general term that collectively

describes the functions of the job scheduler and master
scheduler.

job related output. Output that is neither held nor spun
off nor processed by a user-written writer.

job (JOB) statement. The job control statement that
identifies the beginning of a job. It contains such
information as the name of the job, an account number,
and the class and priority assigned to the job.

job step. A unit of work associated with one processing
program or one cataloged procedure and related data. A
job consists of one or more job steps.

job step task. A task that is initiated by an initiator
according to specifications in ad execute (EXEC)
statement.

jobname. The name assigned to a JOB statement; it
identifies the job to the system.

K. 1024 bytes.
keyword. A symbol that identifies a parameter or

su bparameter.
keyword parameter. A parameter that consists of a

keyword, followed by one or more values.
local devices. Devices attached to local processors for

sending input and receiving output.
local processor. The JES3 (MVS) processor that executes

the jobs assigned to it by the global processor.
local station. A station whose control unit is connected

directly to a computer I/O channel. Contrast with
remote station.

logical record. A record that is defined in terms of the
information it contains rather than by its physical traits.
You may have to specify the length of the logical record
to complete the data control block; one way to specify
this is in the LRECL sub parameter of the DCB
parameter.

logical region. The amount of real storage required by a
job a job step to execute efficiently on an ASP main
processor when running under JES3.

loosely-coupled multiprocessing. two or more
computing systems interconnected by an I/O
channel-to-channel adapter. The CPUs can be of
different types and have their own unique
configurations.

main service. In JES3, a dynamic support program
schedules problem programs for execution and manages
the flow of data (system input, print, and punch) across
the channel-to-channel adapter to and from the global
processor.

Mass storage system group (l\lSVGP). a named
collection of mass storage volumes defined by the person
in charge of controlling space. Both active and inactive
mass storage volumes can be in the group. The volume
group is identified by name in JCL on the MSVGP
parameter.

mutually exclusive parameters. Parameters that cannot
be coded on the same job control statement.

nonpageable dynamic area. An area of virtual storage
whose virtual addresses are identical to real addresses; it
is used for programs or parts of programs that are not to
be paged during execution.

nonsharable volume. A volume that cannot be assigned
to two or more data sets.

nonspecific volume request. A request that allows the·
system to select suitable volumes.

nontemporary data set. A data set that exists after the
job that created it terminates.

null statement. A job control statement used to mark the
end of a job's control statements and data.

*operating system (OS). Software which controls the
execution of computer programs and which may provide
scheduling, debugging, input/output control, accounting,
compilation, storage assignment, data management, and
release services.

output class. Anyone of up to 36 different categores,
defined at an installation, to which output data produced
during a job step can be assigned. When an output
writer is started, it can be directed to process from one
to eight different classes of output data.

*output data. (SC l) Data to be delivered from a device
or program, usually after some processing.

output listing. A form that is printed at the end of a job
that can contain such information as job control
statements used by the job, diagnostic messages about
the job, data sets created by the job, or a dump.

output service. A JES3 service that prints and punches
the data sets created during main service.

page. A fixed-length block of instructions, data, or both,
that can be transferred between real storage and external
pflge storage.

partitioned data set. A data set in direct access storage
that is divided into partitions, called members, each 01
which can contain a program or part of a program. Each
partitioned data set contains a directory (or index) that
the control program can use to locate a program in the
library.

passed data set. A data set allocated to a job step that is
not deal10cated at step termination but that remains
available to a subsequent step of the same job.

PEND statement. A job control statement used to mark
the end of an in-stream procedure.

permanently resident volume. A volume that cannot be
physically demounted or that cannot be mounted until it
is varied offline (that is, removed from the control of the
central processing unit).

physical record. A record that is defined in terms of
physical qualities rather than by the information it
contains (logical record).

positional parameter. A parameter that must appear in a
specified order.

priority. A value assigned to a job that is used to
determine when a job is selected for execution.

private library. A user-owned library that is separate and
distinct from the system library.

private volume. A mounted volume that the system can
allocate only to a data set for which a specific volume
request is made.

PROC statement. A job control statement that must
mark the beginning of an in-stream procedure; it can
also be used, in both cataloged and in-stream
procedures, to assign values to symbolic parameters in
the procedure.

procedure library. A partitioned data set containing
cataloged procedures; the IBM-supplied procedure
library is named SYSl.PROCLIB.

procedure step. That unit of work associated with one
processing program and related data within a cataloged
or in-stream procedure. A cataloged or in-stream
procedure consists of one or more procedure steps.

public volume. The term applied to a mounted volume
that the system can allocate to an output data set for
which a nonspecific volume request is made. A public
volume remains mounted until the device on which it is
mounted is required by another volume.

qualified name. A data set name that is composed of
multiple names separated by periods (for example,
A.B.c.). For a cataloged data set, each name
corresponds to an index level in the catalog.

queue. A waiting line or list formed by items in a system
waiting for service; for example, tasks to be performed
or output to be written by a writer.

reader /interpreter. The job segment that reads and
interprets JCL for jobs on ASP main processors.

real storage. The storage of a system/370 computing
system from which the central processing unit can
directly obtain instructions and data, and to which it can
directly return results.

record. A general term for any unit of data that is distinct
from all others.

region. In systems with MVT, a subdivision of the
dynamic area of main storage set aside for a job step or
a system task. You can specify in the REGION
parameter on the JOB statement or EXEC statement
how large this area of main storage should be.

remote devices. Devices attached to remote work
stations for sending input and receiving output.

remote job entry. Submission of job control statements
and data from a remote terminal, causing the jobs
described to be scheduled and executed as though
encountered in the input stream. Also known as remote
job processing in JES3.

remote job processing (RJP). The processing of jobs
submitted from remote terminals.

remote station. (1) * Data terminal equipment for
communicating with a data processing system from a
location that is time, space, or electrically distant. (2)
Contrast with local station.

Glossary 315

reserved volume. A volume that remains mounted until
the operator issues an UNLOAD or VARY OFFLINE
command.

resolJll'ce. Any facility of the computer system or
operating system required by job or task and includes
main storage, input/output devices, the CPU, data sets,
and control and processing programs.

restart. The process of resuming a job after it abnormally
terminates. When a restart is performed, processing is
continued either at the beginning of a job step that
caused the abnormal termination or at a checkpoint
within this job step.

restart facility. See checkpoint/restart facility.
return code. A value placed in the return code register at

tht! completion of a program. The value is established by
the user and may be used to influence the execution of
succeeding programs or, in the case of an abnormal end
of task, may simply be printed for programmer analysis.

scheduling priority. a rank assigned to a task that
determines its precedence in being scheduled.

sequential data set. A data set whose records are
organized on the basis of their successive physical
positions, such as they are on magnetic tape.

specific volume request. A request for volumes that
informs the system of the volume serial numbers.

spoolled data set. A data set written on an auxiliary
storage device.

standard job. a JES3 job that consists of input service
main service, output service, and purge performed in
that order.

step restart. A restart at the beginning of a job step that
abnormal1y terminates. The restart may be automatic
(depending on an eligible completion code and the
operator's consent) or deferred, where deferred involves
resubmitting the job and coding the RESTART
parameter on the JOB statement of the resubmitted job.

stepname. The name assigned to an EXEC statement; it
identifies a job step within a job.

storage volume. The main function of a storage volume
is to contain nontemporary data sets for which a
nonspecific volume request was made and PRIV ATE
was not coded in the VOLUME parameter. A direct
access volume becomes a storage volume when so
indicated in a MOUNT command or in a member of
SYS 1.PARMLIB named V ATLSTxx.

symbolic parameter. A symbol preceded by an
ampersand that stands for a parameter or the value
assigned to a parameter or subparameter in a cataloged
or in-stream procedure. Values are assigned to symbolic
parameters when the procedure in which they appear is
called.

system generation. The process of using an operating
system to assemble and link together all of the parts that
constitute another operating system.

system library. A partitioned data set named
SYSl.LINKLIB that contains programs used by the
system.

316 OS/VS2 JCL (VS2 Release 3)

system messages. Messages issued by the system that
pertain to a problem program. These messages appear
on an output listing and may include such messages as
error messages, disposition messages, and
allocation/ deallocation messages.

system output device. A device assigned to record
output data for a series of jobs.

system resources manager. A group of programs that
controls the use of system resources in order to satisfy
the installation's performance objectives.

SYS.LINKLIB data set. See system library.
SYS1.PROCLIB data set. See procedure library.
task. A unit of work for the central processing unit from

the standpoint of the control program; therefore, the
basic multiprogramming unit under the control program.

temporary data set. A data set that is created and
deleted in the same job.

temporary library. A library that is created and deleted
within a job.

*track. The portion of a moving storage medium, such as
drum, tape, or disk, that is accessible to a given reading
head position.

unit. A particular device specified by its unit address,
device type, or user-assigned group name.

unit address. The three-character address of a particular
device, specified at the time a system is installed; for
example, 191 or 293.

unit affinity. A condition under which two or more
volumes are located on the same device.

universal character set (UCS) feature. A printer
feature that permits the use of a variety of character
arrays.

user-assigned group name. Installation defined name to
signify a group of devices that mayor may not all be of
the same type (specified through JCL in the UNIT
parameter) .

virtual input/output (VIO). Facility to handle
temporary data sets that causes them to reside within the
paging data sets. To problem program or access method,
the data sets appear to reside on some other real direct
access storage device.

virtual storage. Addressable space that appears to the
user as real storage, from which instructions and data
are mapped into real storage locations. The size· of
virtual storage is limited by the addressing scheme of the
computing system and by the amount of auxiliary
storage available, rather than by the actual number of
real storage locations.

volume. That portion of an auxiliary storage device that is
accessible to a single read/write mechanism.

volume affinity. A condition under which two or more
data sets are located on the same volume.

volume table of contents (VTOC). A table on a direct
access volume that describes each data set on the
volume.

work station. A terminal device that mayor may not be
a CPU. At a workstation, an operator can connect into a
central system via LOGON, enter jobs, and receive
output.

working set. The estimate of bytes of real storage used
by the steps of a job.

Where more than one page reference is given, the major
reference is first.
Indexes to OS/VS publications are consolidated in the
OS/VS Master Index, GC28-0602, and the OS/VS Master Index
of Logic, GY28-0603. For additional information about
any subject listed below, refer to other publications listed
for the same subject in the Master Index.

b use 127
{} braces, use 127
[] brackets, use 127-128
... use 128
++ (instream procedure) 121
++* (instream procedure) 121
+/ / (instream procedure) 121
& use 122
& & identifying temporary data set 43
$A 160
$B 160
$C 160
$D 160
$E 160
$F 160
$H 160
$1 160
$L 160
$N 160
$p 160
$0 160
$R 160
$S 160
$T 160
$VS 160
$Z 160
* parameter on DD statement 183-184

creating a data set 183-299
data in input stream 183-184
description 99
restriction for cataloged or in-stream procedure 115
retrieving a data set 300
separating groups of data 184
(see also DATA and DLM parameters)

* in PGM parameter 161-162
* in PRIORITY statement 266
* subparameter in RESTART parameter 147-148
*** comment statement 121
*.ddname

in the DCB parameter 192
in the DSNAME parameter 213

* .stepname.ddname
in the DCB parameter 192
in the DSNAME parameter 213
in the PGM parameter 161-162

* .stepname. procstepname.ddname
in the DCB parameter 192
in the DSNAME parameter 213
in the PGM parameter 161-162

/* delimiter 251
/* for JES2 control statements 259

ABEND dumps
(see abnormal termination dump)

I ABNORMAL parameter on NET statement (JES3)
291,75-79

abnormal termination dump
JES2 61
JES3 85-86

absolute track technique
for IS AM data set 106

ABSTR (absolute tracks) subparameter of SPACE
parameter

assigning specific tracks 37
description 230-232
for ISAM data sets 106

AC parameter on FORMAT statement (JES3)
277-278,276

accessing TCAM messages 229

Index

accounting information parameter on JOB statement
description 134
special characters 134

ACCT parameter on EXEC statement
description 152
used in calculating priority 56

address space 313
address subparameter on SPACE parameter 230-231
address, unit

on UNIT parameter 239
specifying unit information 29

ADDRSPC parameter on EXEC statement
default 153
description 153
requesting storage 25-26

ADDRSPC parameter on JOB statement
default 135
description 135
requesting storage 25-26

AFF subparameter of UNIT parameter 239-240
affinity 313

unit (see 'unit affinity)
volume (see volume affinity)

AL subparameter of LABEL parameter
(American National standard labels) 223

ALIGN subparameter of FCB 219
alignment of forms 65

I
alloc.ating devices (JES3)

description 70-73
on MAIN SETUP 285,286,288

allocation
absolute track 106
coding SPACE parameter 230-232
definition 313
devices eligible 27
nonspecific 106

allocation, dynamic
allocation of resources 38-39
DYNAM 218
DYNAMNBR 157

allocation/ termination messages
(see system messages)

alphameric character sets 65,89
ALX subparameter of SPACE parameter 230,232
American National standard labels 223
AMORG subparameter of AMP parameter 185
AMP parameter on DD statement

defines VSAM data set 100-103
desc,ription 185-187

ampersand
as special character 127
identifying symbolic parameter 122
identifying temporary data set 52

AN character set (1403) 65,89
ANSI printer control characters in

RECFM subparameter 201-202
ANSI tape labels 223-225

Index 317

APG (automatic priority group) 56,74
apostrophe, specifying 44
ASCII magnetic tape

(see DCB parameter)
(see LABEL parameter)

ASP 313
ASP main processor

definition 313
how to specify 70
restarting a job 83
TSO on 90,285,287,289

associated data sets 43-44,313
(see also OSlO parameter on DO statement)

attributes, DCB
(see DCB subparameters)

AUL subparameter on LABEL parameter
(American National standard and user labels) 223

automatic priority group 56,74,313
(s{~e also priority)

automatic restart
description 144-145,164-165,313
use of (JES2) 60

I use of (JES3) 83
automatic step restart (JES2) 59

I automatic step restart (JES3) 83
auxiliary storage 313
average block length, space request

(s{~e block length subparameter)
A 11 character set (3211) 65,89

backward reference
copying a data set name 44
DDNAME parameter 204
definition 313
DUMMY parameter 216
generation data group 111-112
VOLUME parameter 242,244

basic direct access method
(see BDAM subparameters on DCB parameter)

basic indexed sequential access method
(see BISAM subparameters on DCB parameter)

basic partitioned access method
(see BPAM subparameters on DCB parameter)

basic sequential access method (BSAM)
(see BSAM sub parameters on DCB parameter)

basic telecommunications access method
(s(~e BT AM subparameters on DCB parameter)

BDAM subparameters on DCB parameter 195-203
BFALN subparameters on DCB parameter 195-203
BFTEK subparameters on DCB parameter 195-203
B1SAM subparameters on DCB parameter 195-203
blank 128
BLKSIZE subparameter of DCB parameter

coded with
* parameter 183
DATA parameter 190
DDNAME parameter 204

block length, average
description of parameter 230-232
space requests 35

blocklength subparameter
SPACE parameter 230-233
when requesting space 35

blocks, directory, for BPAM
(see directory)

blocksize (see BLKSIZE subparameter)
BLP subparameter on LABEL parameter

(bypass label processing) 223
braces {} 127
brackets [] 127 -128

318 OS/VS2 JCL (VS2 Release 3)

buffers
boundary (see BFALN subparameter)
length of (see BUFL subparameter)
number of (see BUFNO subparameter)
for all lines (see BUFSIZE subparameter)
for one line (see BUFMAX subparameter)
for receiving operation (see BUFIN subparameter)
for sending operation (see BUFOUT subparameter)
offset (see BUFOFF subparameter)
type (see BFTEK subparameter)

BSAM sub parameters on DCB parameter 195-203
BUFIN subparameter of DCB parameter 195
BUFL subparameter of DCB parameter 195
BUFMAX subparameter of DCB parameter 195
BUFND suparameter of AMP parameter 185
BUFNI subparameter of AMP parameter 185
BUFNO subparameter of DCB parameter

coded with
*parameter 183
DATA parameter 190
DDNAME parameter 204
defined 195

BUFOFF sub parameter of DCB parameter 195
BUFOUT subparameter of DCB parameter 195
BUFSIZE sub parameter on DCB parameter 195
BUFSP subparameter on AMP parameter 185
bypassing data set allocation

defining a dummy data set 96-97
bypassing disposition processing 52

I bypassing job initiation (JES2) 58
bypassing label processing 223
bypassing I/O operations

(see DUMMY parameter)
bypassing job steps

COND parameter 154-155

I CALL operator command (JES3) 272
CANCEL operator command 247
CANCEL operator command (JES3) 272
card forms (JES3)

on FORMAT PU,FORMS parameter 283-284
card image form 313
CARDS parameter on JOBPARM statement 261
CARDS parameter on MAIN statement (JES3)

285,286,288
CARRIAGE parameter on FORMAT PR statement (JES3)

280-282
carriage tape (JES3)

on FORMAT PR,CARRIAGE 280-282
catalog 313
cataloged and in-stream procedures

calling 115,158-159
changes, allowing for 116
DO statements, modifying 119-120
definition of 115
EXEC statements, modifying 117-119
identifying (in-stream procedure) 115
introduction 22
modifying 117
passing information (JES2) 57
passing information (JES3) 81
procedure library 116
procedure statement identifying 121
restriction on contents of 115
symbolic parameter 121-126
using 117 -121
writing 115-116

cataloged data set 313
cataloged procedure

adding to procedure library 116
calling 117,158-159
DO statements 119-120,169

definition 22,313
description of 121
example of 126
JOBUB statement 172
selecting a catalog procedure library 58
symbolic parameters 121-126
TIME parameter 167-168

cataloging a data set
CATLG subparameter of DISP parameter

204-205,50-51
CA TLG subparameter on DISP parameter

description 204-206
use of 50-51

channel affinity (see AFF parameter)
channel program, active

requesting real storage 25
character set codes (JES2)

for 1403 printer 65
for 3211 printer 65

character set codes (JES3)
for 1403 printer 89
for 3211 printer 89

character set, requesting
universal (UCS) 65,89
examples 238
description 131-132

checkpoint for jobs on ASP main processors 83
checkpoint data set

coding SYSCHK parameter 181-182
definition of 313

checkpoint restart
description 144-145,164-165,313
for generation data 'group 112
use of (JES2) 59-60
use of (JES3) 82-83,285,287,289
(see SYSCHK facility)

checkpoint/restart facility 313
(see also restart facility)

CHKPT macro instruction
RD parameter 144-145,164-165
RESTART parameter 147 -148
SYSCHK parameter 181-182
use of (JES2) 59-60
use of (JES3) 82-83

CHNGDUMP operator command 247
class

job classes (JES2) 55-56
job classes (JES3) 73,285-286
suppressing output (JES2) 63
suppressing output (JES3) 87-88

CLASS parameter on JOB statement
description 136
override when using JES3 136
use of (JES2) 55-56
use of (JES3) 73

CLASS parameter on MAIN statement (JES3)
285,286,289

class name subparameter on SYSOUT parameter 234
CLOSE subparameter on FREE parameter

description 221
dynamic allocation 39

CODE subparameter on DCB parameter 196
CODE subparameter on OUTPUT statement 264
comma

continuing control statements 130
leading and trailing commas, caution 124-126
purpose 127
when defining symbolic parametets 122

command statement for JCL
description 247,313
introduction 19

command statement for JES2

description 260
introduction 20

command statement for JES3
description 272-273
introduction 21

comment statement
description 249,313
introduction 19

comments field
continuing 130

completion codes 137,154-1 55
concatenated data sets 313
concatenation

data sets 120
private libraries 95-96
symbolic parameters 121-126

concurrent use, data set 52
COND parameter on EXEC statement

description 154-155
use of (JES2) 59
use of (JES3) 80

COND parameter on JOB statement
description 137
use of (JES2) 59
use of (JES3) 80

conditional disposition of data set
CATLG 50,51
DELETE 49,50
KEEP 50
UNCATLG 51
specified in DISP parameter 208-209,49-51

conditional execution of job steps (JES2)
COND parameter on EXEC statement 154-155
COND parameter on JOB statement 137
example of (JES2) 59
testing return codes 59

conditional execution of job steps (JES3)
COND parameter on EXEC statement 154-155
COND parameter on JOB statement 137
example of 80
testing return codes 80

CONTIG subparameter on SPACE parameter
use of 106
description 230-231

contiguous space
requesting 34-37
for indexed sequential data sets 106

control of nontemporary data set
exclusive control 52
shared control 52-53
when a job can receive control 52
when a job cannot receive control 52

CONTROL parameter of FORMAT PR statement (JES3)
280,282

control printing (JES2)
length of form and lines per inch 65-66
special character sets 65

control program (JES3)
how to code MAIN TYPE parameter 285,286,288
use of 70

control statements
continuing 130

converter/interpreter 313
COPIES parameter on FORMAT PR statement (JES3)

88,280,282
COPIES parameter on FORMAT PU statement (JES3)

283,284
COPIES parameter on JOBPARM statement (JES2)

requesting multiple copies 64
description 261

COPIES parameter on OUTPUT statement (JES2)
requesting multiple copies 64
description 264

Index 319

COPIES subparameter on SYSOUT statement
requesting multiple copies 64,88
description of 234

copy input deck and bypass job initiation 58
COPY subparameter on JOB TYPRUN parameter 150

(see also bypassing job initiation)
copying the data set name 44
CPU time limit

011 EXEC statement 167
on JOB statement 149

CROPS subparameter on AMP parameter 185
I CPRI subparameter on DCB parameter 196

CYL (cylinders) subparameter of SPACE parameter
space request 34-37
dt:scription 230-232

cylinders
ddinition 313
description 230-232
space requests 34-37

CYLOFL subparameter on DCB parameter 196

data
identifying 25-54

data control block
(see DCB parameter)

data definition (DD) statement 313
(see also DD statement)

data management 313
DATA parameter on DD statement

creating a data set 298-299
data in input stream 99,115
description 190-191
restrictions 193
retrieving a data set 300
separating groups of data 190
(see also * and DLM parameter)

data set, non-YSAM
cataloging 50
creating 298-299
ddinition 313
delaying writing of (JES2) 63
delaying writing of (JES3) 87
deleting 49-50
disposition processing 48
exclusive control of 52
extending 301
identifying to system 40-48
integrity 53
keeping 50
multivolume 30
nontemporary, creating 41
nontemporary, retrieving 41
passing 51
parameters 40-41
retrieving 300
shared control of 52-53
temporary, creating 42-43
temporary, retrieving 42-43
ul1cataloging 51
writing output (JES2) 61-67
writing output (JES3) 85-91

data set disposition
(see DISP parameter)

data set integrity 53
data set label

completing the data control block 192-194
copying attributes from 193
model 109-110

data set name
copying 44

320 OS/VS2 JCL (VS2 Release 3)

in apostrophes 44
special characters, rules of 44,214
temporary 214
nontemporary 214

data set organization
(see DSORG subparameter of DCB parameter)

data set sequence number subparameter on LABEL
parameter 223-224,45

data set status
MOD 48-49,208
NEW 48-49,208
OLD 48-49,208
SHR 48-49,208

I
DATASET statement for JES3

description 274
introduction 21

DCB macro instruction
coding the DCB parameter 192-194
requesting exclusive control of part

of a data set 52
DCB parameter on DD statement

for dummy data set 97
definition 192-194
description by access method 192-203
identifying data sets 40
indexed sequential data sets 104-106
modifying in cataloged or in stream

procedures 117-120
for private libraries 93-96
BDAM subparameters 195-203
BISAM subparameters 195-203
BPAM sub parameters 195-203
BSAM sub parameters 195-203
BT AM subparameters 195-203
EXCP sub parameter 195-203
GAM subparameters 195-203
QISAM sub parameter 195-203
QSAM subparameters 195-203
TCAM subparameters 195-203

DD statement
command statement 169-170
data in input stream,

restriction 115
definition 309-311,313
introduction 20,19
special ddnames 169

ddname 313

I DDNAME parameter on DATASET statement (JES3)
274

DDNAME parameter on DD statement
backward references 204
ddname, relation to 40
description 204
specifying 40
when to code 40

DDNAME parameter on FORMAT AC statement (JES3)
277-278

DDNAME parameter on FORMAT PR statement (JES3)
280,281

deadline scheduling (JES3) 73-74,313
(see also DEADLINE parameter on JES3 MAIN

statement)
how to specify 73,287,289-290,285
purpose 73

deallocation, dynamic 39
FREE parameter 221

dedicated devices
dedicated to dependent job control 76
released from dependent job control 76

default disposition processing 51-52
DEFER subparameter on UNIT parameter

use of 30

description 239-240
deferred mounting

using DEFER subparameter 239-240,30
deferred restart 59-60,82-83,144-145,164-165,313
DELAY operator command (JES3) 272
delaying job initiation (JES2) 58

TYPRUN=HOLD parameter 150,54
SETUP control statement (JES2) 269,54

delaying the writing of an output data set (JES2) 63
delaying the writing of an output data set (JES3) 87
DELETE sub parameter of DISP parameter

definition 208
direct access data sets 49-50
tape data sets 49-50

deleting a data set
in DISP parameter 49-50

deleting records
exclusive control 52

deleting unused space
RLSE subparameter of SPACE 230,232

delimiter statement
description 251,313
input stream data 99
introduction 19
(see also DLM, DATA, and * parameters)

delimiter other than /*
(see OLM parameter)

DEN subparameter on DCB parameter 196
dependent job control

(see also NET statement (JES3»
dedicating devices to 75-76
definition 313
dependencies between jobs in different nets 75-76
examples of 77-79
how to code 76-77
when used 75-76

DEST parameter on DD statement
default 206
description 206-207
output destination (JES2) 66
output destination (JES3) 90
(see also OUTPUT and ROUTE statements for JES2

and FORMAT statement for JES3)
DEST parameter on FORMAT AC statement (JES3)

277-278
DEST parameter on OUTPUT control statement (JES2)

description 264,265
use of 66

destination (JES2)
(see DEST parameter on JCL and OUTPUT)
(see also ROUTE cont statement)

destination (JES3)
on FORMAT AC parameter 277-278
on FORMAT PR parameter 279
on FORMAT PU parameter 280-282

devices
dedicated to dependent job control 76
JES3 setup 71-73
released from dependent job control 76
specifying JES2 62

device type
description 239-240,313
list of found in SPL: System Generation Reference 239
use of 28

DEVPOOL parameter on NET statement (JES3)
291,292,75-79

DEVRELSE parameter on NET statement (JES3)
291,292,75-79

DIAGNS subparameter on DCB parameter 196
dispatching priority

assigning 56,74
APG default 56,74

execution priority (JES3) 75
direct access capacities 306
direct access data sets

disposition processing 49,51
shared control 52-53

I
direct access device

eligible for allocation 27
sharable between jobs 27

direct access volumes
for partitioned data sets 94
for passed data sets 51

directory
definition 36,314
description, SPACE parameter 230-231

I DISABLE operator command (JES3) 272
DISP parameter on DD statement

on JOBUB DO statement 172-174
on STEPUB DD statement 176-178
on SYSABEND DO statement 179-180
on SYSCHK DD statement 181-182
on SYSUDUMP OD statement 179-180
for generation data set 110,111
for private library 94
for ISAM data set 106,108
description 208-210
normal disposition 49-53

dispatching priority (JES2)
assigning 56
calculating 56
coding DPRTY 156
default 56
definition 314
use of APG· 56

dispatching priority (JES3)
assigning 74-75
calculating 75
coding DPRTY 156
default 75
definition 314
use of APG 75

DISPLAY operator command 247
disposition, non-V SAM data set

bypassing 52
conditional 51
default 51-52
processing of 48-49,305,314
specifying 48-49
unretrieved passed 51

DLM parameter on DD statement
(see also DATA and * parameters and delimiter

statement)
input stream data 99
description 211

DPRTY parameter on EXEC statement
calculating dispatching priority 56,74-75
default 56,75,156
description 156

DSID parameter on DD statement
associated data sets 43-44
creating a data set 212
description 212
retrieving a data set 300

DSN parameter on DD statement
(see DSNAME parameter)

DSNAME parameter on DD statement
adding members to a private library 94
apostrophes, specifying 44
on JOBUB DD statement 172-174
on STEPLIB DD statement 176-178
on SYSABEND DD statement 179-180
on SYSCHK DD statement 181-182
on SYSUDUMP DD statement 179-180

Index 321

DSNAME parameter on DD statement (cont'd.)
for generation data set 110,111,42
for private library 93-96
for lSAM data sets 104-109
members of a partitioned data set 43
nontemporary data set 214,41-42
special characters, specify 214
specifying DSNAME 41
storing a dump (JES2) 62
storing a dump (JES3) 85-86
temporary data set 214,43

DSNAME=NULLFILE 97
DSORG subparameter of DCB parameter 197

requesting space for an index 37
dummy data set

bypassing disposition processing 52
bypassing I/O operations (JES2) 63
bypassing I/O operations (JES3) 87
defining 97,3 14
reading 97
suppressing output (JES2) 63
suppressing output (JES3) 87
writing 97

DUMMY parameter on DD statement
backward references 216
creating a dummy data set 97
description 216-217
nullifying a procedure 216
suppressing output (JES2) 63
suppressing output (JES3) 87

dump, abnormal termination
definition 314
requesting (JES2) 61
requesting (JES3) 85-86
storing 179

DYNAM parameter on DD statement
default 218
description 218,39

dynamic allocation
definition 39,314
DYNAM 218
DYNAMNBR 157
use of 39

dynamic deallocation
definition 314
FREE parameter 221,39

I dynamic support program (DSP) 314
DYNAMNBR parameter on EXEC statement

default 157
definition 39
description 157

ellipsis 129
I ENABLE operator command (JES3) 272

END subparameter on FREE parameter
description 221
dynamic deallocation 39

end-of-data-set exits
for dummy data set 97

enqueing on a data set 52
ENDDA T ASET statement for JES3

description 275
introduction 21

ENDPROCESS statement for JES3
introduction 21

ERASE operator command (JES3) 272
EROPT subparameters on DCB parameter 197
error option

(see EROPT subparameter on DCB parameter)
esoteric name

(see user-assigned group name)
EVEN subparameter of COND parameter

322 OS/VS2 JCL (VS2 Release 3)

coded on EXEC statement 154-155
use of (JES2) 59
use of (JES3) 80

Examples
disposition processing 53-54
generation data sets 113
identifying data sets 48
obtaining output (JES2) 66-67
obtaining output (JES3) 91
requesting space 37
requesting storage 26
requesting units and volumes 34
routing a job (JES2) 60
routing a job (JES3) 83
unit and volume affinities 33

exclude particular processors (JES3) 70
EXCP (execute channel program) subparameters on DCB

parameter 195-203
EXEC statement

cataloged procedure. use with 115
description 151,308,314
introduction 19
modifying parameters on 117 -119
parameters, keyword 151
parameters, positional 151
restriction on changing PGM parameter 117

execute statement (EXEC)
(see EXEC statement)

execute channel program
(see EXCP subparameter on DCB parameter)

execution priority (for ASP only)
definition 314
description 75
on MAIN JPRTY parameter 287,290,285

existi ng data sets
default disposition processing 51-52
volume request 27

expiration date
when DELETE is coded 49-50
when KEEP is coded 50
(see also LABEL parameter)

explicit setup (JES3) 71,286,288,285
extending a data set

additional space 36
multiple units 30

external page storage 314
(see also virtual storage)

external writer 314
EXPDT subparameter of LABEL parameter

description 223,225
use of 47

FAIL operator command 272
FAILURE parameter on MAIN statement (JES3)

285,287.289
FCB parameter on DO statement

default 219
description 219-220,314
IBM standard FCB images 65,89
restriction for JES2 219

FCB parameter on FORMAT PR statement (JES3)
280-282

FCB parameter on OUTPUT statement (JES2)
description 264,265
use of 65

FETCH parameter on MAIN statement (JES3) 287,285
fetching devices

on MAIN FETCH parameter 287,285
fixed-length record

(see RECFM subparameter on DCB parameter)
FOLD subparameter on UCS parameter 237

folding 237
form number sub parameter on SYSOUT parameter

234,65
FORMAT AC parameter for JES3

description 277-278,276,90
output 90

FORMAT statement for JES3
AC (TSO on ASP main processor) 90,277-278,276
description 89-90
NJP 279,276
introduction 21
PR (print) 89-90,280-282,276
PU (punch) 90,283-284,276

FORMAT PR parameter for JES3
description 280-282,276
output 89-90

FORMAT PU parameter for JES3
description 283-284,276
output 90

forms
FORMS parameter on JOBPARM statement (JES2)

261 .
FORMS parameter on OUTPUT statement (JES2) 264
FORMS parameter on FORMAT PR parameter (JES3)

280,281
FORMS parameter on FORMAT PU statement (JES3)

283-284
FORMS subparameter on SYSOUT parameter 234
requesting (JES2) 65
requesting (JES3) 88
special output forms requested (JES2) 65
special output forms requested (JES3) 89

forms control buffer feature 314
(see FCB parameter on the DD statement as well as the

OUTPUT statement (JES2) and FORMAT
PR,CONTROL (JES3»

forms and print chain control (JES2) 65
forms control (JES3) 88,280,281

'forms overflow (JES3) 89,280,281
FORMS parameter on JOBPARM control statement (JES2)

definition 261,262
use of 65

FORMS parameter OUTPUT control statement (JES2)
description 264,265
use 65

FORMS subparameter on FORMAT PR parameter (JES3)
280-282

FREE operator command (JES3) 272
FREE parameter on DD statement

default 221
description 221
dynamic de allocation 39

FRID subparameters on DCB parameter 197
FROM parameter on FORMAT NJP statement (JES3)

279
FUNC subparameter on DCB parameter 197

GDG (generation data groups)
building a base entry 109
creating 109-111
creating a model data set label 109-110
data set definition 313
definition 314
examples of creating and retrieving 113
generations of 42
parameters, creating a GDG 110-111
parameters, retrieving a GDG 111-112
restarting a job 112
retrieving 111-113

generation data groups
(see GDG)

generation data set 314
(see also GDG)

generation numbers, relative 42,109
GETMAIN

virtual storage requirements 25-26
generic name

(see device type)
global processor

description 314
how to specify 70,239

GNCP subparameter on DCB parameter
for GAM 197

graphics access method
(see GAM subparameter on DCB parameter)

graphic device
eligible for allocation 27

group name 314
(see also user-assigned group name)

Gil character set (3211) 65,89

HASP 314
high watermark setup 70,286,288,285
HN character set (1403) 65,89
HOLD operator command 247
HOLD parameter on FORMAT AC statement (JES3) 277
HOLD subparameter on TYPRUN parameter

(see TYPRUN parameter)
HOLD parameter on DD statement

delaying the writing of an output data set (JES2) 63
delaying the writing of an output data set (JES3) 87
description 222,63,87
default 222

HOLD parameter on MAIN statement (JES3) 285,286
hold output (JES3)

on FORMAT AC parameter 277
on MAIN statement 286,285

HOTJOB parameter on MAIN statement (JES3)
285,287,289

Hl1 character set (3211) 65,89

IBM standard labels 45-47
(see also LABEL parameter)

IEFBR14 program 57,81
image for printing a data set, requesting 66,89
image identifier

in FCB parameter 219,66,89
in FORMAT PR,CARRIAGE parameter (JES3)

280,89
in OUTPUT parameter (JES2) 264,66

IN subparameter on LABEL parameter
description 223-224
use of 47

incremental quantity
(see secondary quantity)

index
description on OUTPUT control statement 264
description on SPACE parameter 230
space requirement for 37
used with indexed sequential data set 37

INDEX parameter on OUTPUT statement 264,265
index print position 264-265
index area, specifying space for 37
indexed sequential data set

area arrangement 107,303
creating 104-107,36,302
creating, example of 108-109
general 104
index space 37
parameters, creating 104-106,302
parameters, retrieving 107 -109,302

Index 323

indexed sequential data set (cont'd.)
retrieving 107-109,302
retrieving, example of 108-109
specific tracks 37
temporary 43

INOUT specification (OPEN macro instruction)
for BSAM, overriding 47

input service 314
input stream

definition 23-24,314
entering data 99,171,23
entering commands 247

input/ output operations, bypassing 97,63
INQUIRY operator command (JES3) 272
installation-written writer routine 62
in-stream procedure

definition of 22,314
description of 115-126
example of 126
passing information 22
symbolic parameters 121-126
(see also PEND and PROC statements)

INT parameter on FORMAT PU statement (JES3) 283
integrity, data set

definition 314
how system processes 53
insuring 53

interpret card output (JES3) 89
introduction 19-24
INTVL subparameter on DCB parameter 197
IORATE parameter on MAIN statement (JES3)

285,287,69-70
ISAM data set

(see indexed sequential data set)

J parameter on OAT ASET statement (JES3) 272
JCL statements

fields of 128-129
how to code 127-132
introduction 19-20
no longer supported 3
requesting listings of (JES2) 61
requesting listings of (JES3) 85

JESJCL 277,280
JESMSG 277,280
JCLTEST 82
JES2 operator commands 260
JES2 statements

coding 259
description 259-269,314
example of 24
introduction 20
scheduling a job 55-56

JES3 statements
definition 314
description 271-295
how to code 271
introduction 21
setup 70-73

job (JlES2)
assigning class 55-56
assigning priority 56
definition 314
delaying initiation 58
in input stream 23-24
introduction 19,23-24

job (JES3)
assigning class 73
assigning priority 73
definition 314
delaying initiation 74

324 OS/VS2 JCL (VS2 Release 3)

introduction 19,23-24
job class (JES2)

CLASS parameter on JOB statement 136
definition 314
delaying job initiation 58

job class (JES3)
CLASS parameter on lOB statement 136
CLASS parameter on MAIN statement 286,289,285
definition 314
delaying job initiation 74

job class queue 314
job control language

definition 314
introduction 19-20

job control language statements 314
(see also JCL statements)

job entry subsystem (2)
(see lES2 statements)

job entry subsystem (3)
(see lES3 statements)

job failure
lES2 recovery 59-60
lES3 recovery 82,83

job initiation, delaying (JES2) 58
job initiation, delaying (JES3) 74
job journal 314
job library 314

(see also JOBLIB OD statement)
job log, JES2 261
job management 314
job performance 57,74
job priority

coding PRIORITY statement (lES2) 266
coding PRTY parameter (lES3) 143
use of 57,74,143,266

job related output 314
job scheduling

deadline scheduling (lES3) 73-74
improving 69-70
using JES2 and lCL statements 55-56
using JES3 and lCL statements 69-70

job selection (lES2)
assigning class 55-56
assigning priority 58
delaying selection 58

job selection (lES3)
(see also MAIN statement (JES3»
assigning class 73
assigning priority 73
postponing 7 4
I/O to CPU ratio 69-70,287,289

job setup 70,286,288,285
lOB statement

description 133,307,314
examples of 133
introduction 20
parameters, keyword 133
parameters, positional 133

job step
definition 314
dispatching priority (lE82) 56
dispatching priority (lES3) 74-75
in input stream 23-24
introduction 19
performance 56,74

job step task 314
10BCAT DO statement

description 171
master catalog 94-95
private library 95-96
V8AM 100-103

jobclass subparameter in the CLASS parameter 136

JOBUB DD statement
cataloged library 93
concatenating private libraries 95-96
creating a private library 93-94
defining temporary libraries 96
description 171
effect with STEPUB DD statement 94-95
placement of statement in job 93
retrieving a private library 94-95
when COND=ONLY is coded 154-155

I jobname 314
JOBPARM statement (JES2)

COPIES parameter 65
description 261-262
FORMS subparameter on OUTPUT 264
introduction 20
UCS parameter 237,66

I
JOBSTEP parameter on MAIN statement (1ES3)

285,287,289
1PRTY parameter on MAIN statement (JES3) 287.290

KEEP subparameter of DISP parameter
description 208-210
use of 50

keeping a data set
KEEP subparameter on DISP parameter 208-210,50

KEY LEN subparameter of DCB parameter 198
keylength

(see KEYLEN subparameter of DCB parameter)
I keyword 3 14

keyword parameters
definition 129,314
on DD statement 169
on EXEC statement 151
on JOB statement 133

label (see LABEL parameter)
LABEL parameter on DD statement

data set sequence number 223,45
default 223
description 223-225
for indexed sequential data sets 105,111,112
label type 223,224,45-46
requirements for coding 45-46
retention period 50
use of 45-47

label type subparameter of LABEL parameter
description 223,224
specified for direct access 27
specified for tape 27
use of 45-46

length restriction
for symbolic parameters 125

lengthening a data set
additional space 35-37
exclusive control 52
MOD subparameter of DISP parameter 48,208
multivolume data set 29

library
adding members to a private 94
concatenating private 95-96
creating a priVate 94
definition 93
JOBLIB parameter 172
retrieving an existing private 94-95
STEPLIB parameter 176
temporary 96

LIMCT subparameter of DCB parameter 198
limiting output records

coding OUTLIM parameter 228,64

LINDEX parameter on OUTPUT statement (JES2)
264-265

LINECT parameter on 10BPARM statement (JES2) 261
LINES parameter on JOBPARM statement (JES2) 261
LINES parameter on MAIN statement (1ES3)

285,286,288
listings of 1CL statements & system messages (JES2)

cataloged and in-stream procedures 115
MSGCLASS parameter 138
MSGLEVEL parameter 139
messages 61
requesting 61

listings of 1CL statements and system messages (1ES3)
MSGCLASS parameter 138
MSGLEVEL parameter 139
messages 85
requesting 85

local devices 314
local processor

description 314
how to specify 70

local station 314
LOCAL subparameter on OUTPUT statement (1ES2)

description 264
LOCAL subparameter on ROUTE statement (J ES2)

description 267-268
LOG operator command 247
logical record length 314

(see also LRECL subparameter of DCB parameter)
logical region 315
loosely-coupled mUltiprocessing 315
LRECL subparameter on DCB parameter 298
L TM subparameter on LABEL parameter 223

main service 315
MAIN parameter on FORMAT AC statement (JES3)

277-278
MAIN statement for 1ES3

description 285-290
introduction 21

mass storage system
definition 315
mass storage volume groups 38-39
space requests 39
volume requests 38
MSVGP requests 226-227

mass storage volumes
specifying SPACE parameter 39
specifying UNIT parameter 38
specifying VOLUME parameter 38
specifying MSVGP parameter 226-227

mass storage volume groups 38-39
(see also MSVGP parameter)

memory
(see address space)

message class parameter
(see MSGCLASS parameter)

message level parameter
(see MSGLEVEL parameter)

MESSAGE operator command (JES3) 272
message queue records

(see THRESH sub parameter of DCB parameter)
MESSAGE statement

description 263
introduction 20

message, system 61,85
minimqm region size 25-26
MOD subparameter of DISP parameter

description 208
use of 48

1 MODE parameter on DATASET statement (1ES3) 274

Index 325

MODE subparameter of DCB parameter 198
modi! for card reader/punch

(see MODE subparameter of DCB parameter)
MODIFY operator command 247
MODIFY operator command (JES3) 272
MONITOR operator command 247
MOUNT operator command 247
MSGCLASS parameter on JOB statement

description 138
printing output 61-62,86

MSGLEYEL parameter on JOB statement
default 139
description 139
listing JCL and messages 61,85

MSS (see mass storage system)
MSVGP parameter on DO statement

defining mass storage volumes 38-39
description
nonspecific volume requests 38
specific volume requests 38

multiple copies, output data set
COPIES on FORMAT PR parameter (JES3)

280-282,88
COPIES on FORMAT PU parameter (JES3)

283-284,88
COPIES on JOBPARM statement (JES2) 261,64
COPIES on OUTPUT statement (JES2) 264,64
COPlES on SYSOUT DD statement 234,64,88
example of 64

multiple units 29
multivolume data sets 30
mutually exclusive parameters

definition 315
table of 304
us,ed to override a parameter in a procedure 119-120

MXIG subparameter on SPACE parameter 230-231

name of a data set
temporary 52
nontemporary 52

name field in control statements 128
natio nal character set 13 I
NC subparameter of RD parameter

on EXEC statement 164-165
on JOB statement 144-145

NCK subparameter on AMP parameter 185
NCP subparameter on DCB parameter 198
NET statement for JES3

description 291-293
introduction 21
dependent job control 75-79
how to code 76-77
examples of 77-79

NETID parameter on NET statement (JES3)
291 :,292,75-79

NETREL parameter on NET statement (JES3)
291 "292,75-79

network job processing (JES3) 79-80,279
NEW subparametel' on DISP parameter

description 208-210
exclusive control 53
use of 48-49

new data sets
default disposition 52
on direct access devices 34
specifying status of 48-49
volume request 27

NHOLD parameter on NET statement (JES3)
291.292,75-79

NJP 279,276
(s{:e also network job processing)

326 OS/VS2 JCL (VS2 Release 3)

NJPCLASS parameter on MAIN statement (JES3)
80,285,287,289

NL subparameter of LABEL parameter 223
NO subparametel' on HOLD parameter 222
NOLOG parameter on JOBPARM statement (JES2) 261
nonpageablc dynamic area 25,315
nonsharablc volume

definition 315
for multivolume data set 29

nonspecific volume requests
definition 315
mass storage volumes 38-39
space requests for 27
types of 27

nonstandard job processing (JES3) 21
nonstandard labels 223,45
nontemporary data set

creating 41-42
definition 315
names of 41
retrieving 41-42

NOPWREAD subparameter on LABEL parameter
description 223,224
use of 46-47

normal disposition of data sets 49-51
NORMAL parameter on NET statement (JES3) 291,75-79
NOTIFY parameter on JOB statement 140
NR subparameter on RD parameter

on EXEC statement 164-165
on JOB statement 144-145

NRC subparameter on AMP parameter 185
NRE subparameter on AMP parameter 185
NSL subparameter on LABEL parameter 223
NTM subparameter on DCB parameter 198
null statement

description 253,315
introduction 19

NULLFILE, assign to DSNAME 97
(see also DUMMY parameter)

nullifying parameters in a procedure
DCB parameter 120
DUMMY parameter 120
on D D statements 119-120
on EXEC statements 117-119
symbolic parameters 121-126

old data sets
specifying status of 48-49
coding DISP parameter 208

OLD subparameter of DISP parameter
description 208-209
use of 48-49

ONLY subparameter of COND parameter
on EXEC statement 154-155
use of 59,80

OPEN/CLOSE/EOY trace option
(see DIAGNS subparameter on DCB parameter)

operand field in control statements 129
operating system (OS) 315
operation field in control statements 129
operator comman.d 247,259
OPERATOR statement for JES3

description 294
introduction 21

operator subparameter on the COND parameter
on EXEC statement 154-155
on JOB statement 137

operator verification
of image 65,88-90
of special character set 65,88-90

OPHOLD parameter on NET statement (JES3) 292,75-79

OPTCD subparameter on AMP parameter 185-186
OPTCD subparameter on DCB parameter 199-200
optional services

(see OPTCD subparameter on AMP parameter)
(see OPTCD subparameter on DCB parameter)

ORG p<!rameter on MAIN statement (JES3) 285,287,289
OUT subparameter of LABEL parameter

description 223,224
use of 47

OUTIN specification for BSAM, overriding 47
OUTUM parameter on DD statement

default 228
description 228
limiting output records 64,88

output (JES2)
assigning to classes 62
cataloged and in-stream procedures 120
data sets 125
delaying 63
limiting 64
listing JCL messages 61
obtaining 61-67
printing dumps 61-62
writing 62-67

output (JES3)
assigning to classes 87
cataloged and in-stream procedures 120
data sets 125
delaying 87
limiting 88
listing JCL messages 85
obtaining 85-91
printing dumps 85-86
remote job processing 91
writing 86-90

output cards, estimating (JES3) 90
output classes (JES2)

assigning data sets to 62
assigning messages to 61
definition 315

output classes (JES3)
assigning data sets to 87
assigning messages to 85
definition 315

output class subparameter on MSGCLASS parameter
137,61-62,85-87

output data 315
output data set

allocating space for 34-39,230-233
creating 231,299
lengthening 231-232,301
OUT subparameter 230,231,47
with UCS feature

(see UCS parameter)
routing of

(see SYSOUT parameter)
output data set

conditional disposition (see COND parameter)
disposition (see DISP parameter)
status (see DISP parameter)
unit information (see UNIT parameter)
volume information (see VOLUME parameter)

output device
(see system output device)

output form
in FORMAT PR parameter (JES3) 280-282
in JOBPARM parameter (JES2) 261
in OUTPUT parameter (JES2) 264
in SYSOUT parameter 234

output listing
definition 315
dumps 61-62,85-86

identifying cataloged
and in-stream procedures 122

JCL statements 61,85
suppressing of (JES2) 63
suppressing of (JES3) 87
system messages (JES2) 61

I system messages (JES3) 85
output service 315
OUTPUT statement (JES2)

COPIES parameter 189
description 264-265
DEST 206,66,90
destination 66,90
forms control buffer 65,89
FORMS sub parameter on SYSOUT 234
introduction 20
UCS 237,66,90
universal character set 65,90

override
of catalog procedures 22,171,117 -121
of original secondary quantity request for space 36
of symbolic parameters 121-126
parameters in a procedure

on a DD statement 119-121
on an EXEC statement 117-119

overflow area
for indexed sequential data set 104

OVFL parameter on FORMAT PR statement (JES3)
280-282

P subparameter of UNIT parameter 239-240,30
page 25,315
parameters

adding, nullifying, overriding 123-126
in cataloged or in-stream procedure 115-122
notation for defining 127
symbolic 121-126
on DD statement 119-121
on EXEC statement 117-119

parentheses
to enclose subparameter list 127
inclusion in variables 124-126

P ARM parameter on EXEC statement
description 158-159
modified in procedure 117-119
passing information 57

partitioned data set
absolute track allocation 37
adding member to 42
concatenating 120
creating 41-42,298
definition 315
directory space for 36
lengthening 301
library, as a 42
member name 42
nontemporary name 41
retrieving a member of 41-42,300
temporary name 43

PASS subparameter of DISP parameter
description 208
use of 51,48-49

passed data set
definition 315
disposition of 51,48-49

passing information to a job (JES2) 57
passing information to a job (JES3) 81
passing a private library

JOBUS' DD statement 172,93-96
STEPUB DD statement 176,93-96

Index 327

password protection
PASSWORD (LABEL subparameter) 46-47.223
NOPWREAD (LABEL sub parameter) 46-47.223
when to code 46-47

PASSWORD subparameter of LABEL parameter
description 223-224
use of 46-47

PAUSE statement for JES3
description 295
introduction 21

PCAN character set (1403) 65,89
PCHN character set (1403) 65,89
PCI subparameter on DCB parameter 200
PEND statement

description 255,315
introduction 19
use of 115

performance
PERFORM parameter 141,160
group definitions (JES2) 56
group definitions (JES3) 74

PERlFORM parameter on EXEC statement
default 160
dt!scription 160
use of 56,74

PERFORM parameter on JOB statement
default 141
descri pt ion 141
use of 56,74

permanently resident volume
definition 315
private volume not demounted 28

PGM parameter on EXEC statement
for private library 93
identifying the program 57,81
JCLTEST 82
restriction, cataloged procedures 1 15

physical record 315
PN character set (1403) 65,89
positional parameters

definition 129,315
DUMMY parameters 97
on DO statement 169
on EXEC statement 151
on JOB statement 133
in operand field 129
symbolic 122

positioning, multivolume 29
PR parameter on FORMAT statement (JES3) 280-282
predecessor job

dependent job control 75-79
primary quantity

description 230-231
satisfying request 35
space request 35-37

prime area 104,214
PRINT parameter on FORMAT AC statement (JES3)

277
PRINT parameter on ROUTE statement (JES2)

description 267
(see also output)

Print chain control (JES2)
re:questing 64-66
(see also UCS parameter)

print output (JES3) 280-282
PRINTER (JES2)

on OUTPUT statement 264
on ROUTE statement 267

printer forms (JES3) 88-89
printer train (JES3) 89
printers

character sets for 1403 printer 65,89
character sets for 3211 printer 65,89

328 OS/VS2 JCL (VS2 Release 3)

image for 3211 printer 65,89
images, requesting 65,89
VERIFY subparameter of UCS parameter 237

PRINTR (JES2)
on OUTPUT statement 264
on ROUTE statement 267

priority
aging (JES3) 74-75
assigning to a job 56,74-75
automatic priority group 56,74-75
definition 315
PRIORITY statement 266

PRIORITY statement (JES2)
default 266
description 266
determining job selection (JES2) 56
introduction 20

private catalogs
JOBCAT 95,171
STEPCAT 96,175

private library
adding members to 94
concatenating 96
creating 93-94
defining JES3 catalog procedure 288,290
definition 315
retrieving 94-96
with PGM parameter 57
using 93
JOBLIB statement 93,172
STEPLIB statement 93,176

PRIV ATE subparameter of VOLUME parameter
description 242
use of 28

private volume
coding PRIVATE subparameter of VOLUME parameter

242
definition 315
requesting 28

PROC parameter on MAIN statement (JES3) 288,290,285
PROC statement

description 257-258,315
introduction 19
symbolic parameter 121-126
use of 115-120

procedure end
(see PEND statement)

procedure library (SYS t.PROCLIB)
definition 22,315
cataloged procedure 22,115-126

procedure statement 315
(see also PROC statement)

procedure step 115,315
PROCESS statement (JES3) 21
PROCLIB parameter on JOBPARM statement 261
program, calling 57
program name subparameter on SYSOUT parameter 234
programmer's name parameter on JOB statement 142
PRTSP subparameter on DCB parameter 201
PRTY parameter on JOB statement 143
PU parameter on FORMAT statement (JES3) 283-284
public volume 315
PUNCH parameter (JES2)

on OUTPUT statement 264··265
on ROUTE statement 267-268

Pl1 character set (2311) 65,89

QISAM subparameters on DCB parameter 195-203
(see also indexed sequential data set)

QN character set (1403) 65,89
QNAME parameter on DO statement 229

QSAM subparameters on DCB parameter 195-203
qualified data set name 42,315
queue 315
queued indexed sequential access method

(sec QISAM subparameters on DCB parameter)
queued sequential access method

(see QSAM subparameters on DCB parameter)

R subparameter on RD parameter
on EXEC statement 164-165
on JOB statement 144-145

RCK sub parameter on AMP parameter 185
RD parameter on EXEC statement

description 164-165
usc of 59-60,82-83

RD parameter on JOB statement
description 144-145
use of 59-60,82-83

reader/interpreter 315
reading a data set

dummy 96
multivolume 29
shared control 53

READ/WRITE macros before a CHECK macro
(sec NCP subparameter on DCB parameter)

REAL subparameter in the ADDRSPC parameter
on EXEC statement 153
on JOB state men 135

real storage
definition 315
REGION parameter 146,166
when to request 25-26

RECFM subparameter on AMP parameter 185-186
RECFM subparameter on DCB parameter 201-202
record 315
record format

(see RECFM subparameter on DCB parameter)
record key position

(see RKP subparameter on DCB parameter)
record length

(see LRECL subparameter of DCB parameter)
REF sub parameter on VOLUME parameter

description 242,243
specific volume request 27-29
volume affinity 31-33

references, backward
(see backward references)

REGION parameter on EXEC statement
default 166
description 166,315
requesting storage 25-26

REGION parameter on JOB statement
default 146
description 146,315
requesting storage 25-26

region request, example 26
region size, default 146,166
relational operators on the COND parameter

on EXEC statement 154-155
on JOB statement 137
use of 59-60,80

relative generation number 110
relative track number

determining 37
on SPACE parameter 230
specifying data set on a volume 37

RELEASE operator command 247
RELEASE parameter on NET statement (JES3)

291,292,75-79
releasing space

deleting a data set 48-49

unused space 230-231
RELSCHCT parameter on NET statement (JES3)

291,292,75-79
remote devices 315
remote job entry 315
remote job processing (JES3)

definition 315
description 91

remote station 315
remote terminal

on OUTPUT statement 264
on ROUTE statement 267-268

removable volume 242-244
REPLY operator command 247
repositioning, tape

(see REPOS subparameter on DCB parameter)
RESERVE subparameter on DCB parameter 202
reserved volumes

definition 316
private volume not demounted 28

RESET operator command 247
resources

definition 316
dynamic allocation of 39-40
requesting 25-54

restart definition 59-60,82-83,316
(see also SYSCHK parameter)

restart facility 316
(see also SYSCHK, RESTART, and RD parameters)

RESTART operator command (JES3) 272
REST ART parameter on JOB statement

description 147-148
use of 59-60,82-83
(see also SYSCHK DD parameter)

restart (JES2)
at beginning of step 59
automatic restart 59
checkpoint restart 59-60
description 59-60
RD parameter on EXEC statement 164-165
RD parameter on JOB statement 144-145
referring to a GDG 112
RESTART parameter on JOB statement 147-148
step restart 59-60
SYSCHK DD statement 181-182
within a step 59-60

restart (JES3)
at beginning of step 83
automatic restart 83
checkpoint restart 82
description 82-83
jobs on ASP main processors 83
RD parameter on EXEC statement 164-165
RD parameter on JOB statement 144-145
referring to a GDG 112
RESTART parameter on JOB statement 147-148
step restart 82
SYSCHK DD statement 181-182
within a step 82-83

retention period
for DELETE 49-50
for KEEP 50

RETPD subparameter on LABEL parameter
description 223,225
use of 47

return code
conditional disposition 59-60,80,316

return code tests 59-60
rewinding tapes

for DELETE 49-50
for KEEP 50
for PASS 51

Index 329

RINGCHK parameter on MAIN statement (JES3)
288,285

RKP subparameter on DCB parameter 203
RLSE subparameter on SPACE parameter 230,232
RMT subparameter on OUTPUT statement 264
RMT subparameter on ROUTE parameter 267-268
RN character set (1403) 65,89
RNC subparameter on RD parameter

on EXEC statement 164-165
on JOB statement 144-145

ROOM parameter on JOBPARM statement (1ES2) 261
ROUND subparameter on SPACE parameter

description 230
requesting space 35-37

ROUTE statement (JES2)
description 267-268
introduction 20
rOllting output 66

routing a job (1ES2)
conditional execution 59-60
delaying job initiation 58
example of 60
job scheduling 55-56
passing information 57
restarting 59-60

routing a job (1ES3)
allocating data resources 70-73
conditional execution 80
delaying job initiation 87
example of 83
1ES3 setup 71-73
job scheduling 69-70
passing information 81-82
selecting a job 73
selecting a processor 70

routing output data sets (JES2) 66
routing output data sets (1ES3) 90
routing system messages 61,85
routing TSO output (JES3) 90

scheduling jobs (JES2) 55-56
scheduling jobs (JES3) 69-70
scheduling priority 56,316
SCAN subparameter on TYPRUN parameter 150
scanning 1CL for syntax errors 150
scanning job without execution 82
scheduling a job (JES3) 69-70
scratch volume

(see storage volume)
secondary quantity

description 230-231
requesting space 34-37

secondary request for space
when to code 231,36
allocation of secondary request 36

selecting jobs (JES2)
delaying job selection 58
job class 55-56
job priority 56

selecting jobs (1ES3)
allocating data resources 70-73
deadline scheduling 73-74
delaying job selection 74
job class 73
job priority 73
job process balance 73
postponing job selection 74
processor eligibility 70

selecting a processor (JES3) 70
(see also SYSTEM and TYPE parameters on the MAIN

statement)

330 OS/VS2 JCL (VS2 Release 3)

SEND operator command 247
SEND operator command (JES3) 272
separating groups of data 183-190
SEQUENCE macro

(see RESERVE subparameter of DCB parameter)
sequence of DO statements

concatenated data sets 96
sharing cylinders 35

sequence number subparameter on LABEL parameter
definition 223,224
use of 45

sequential data set 316
SER subparameter on VOLUME parameter

how to code 242,243
specific volume request 27

SET operator command 247
setup of devices (1ES3) 70-73
SETUP parameter on MAIN statement (JES3)

285,286,288
SETUP statement (JES2)

delaying job initiation 58
description 269
introduction 20

seven track tape
(see TRTCH sub parameter on DCB parameter)

sharing cylinders 35
sharing a data set 52-53

DISP parameter 208-210
sharing a library 94
sharing units

(see unit affinity)
sharing volumes

(see volume affinity)
SHR subparameter of DISP parameter

data set status 48-49
definition 208
shared control 52-53
private library 94

SL subparameter on LABEL parameter 223
SN character set (1403) 65,89
space

for directory 36
for index 37
for non-VSAM data sets on mass storage volumes 39
for partitioned data sets 36
primary requests 35
secondary requests 35
specific tracks 37

SPACE parameter on DO statement
creating a private library 93-94
definition 230-233
description for non-VSAM data sets 35-37
for generation data groups 110
for indexed sequential data set 107
index subparameters 37
requesting space 35-37
storing a dump 179
using mass storage volumes 38-39,231

space on a printer
(see PRTSP subparameter on DCB parameter)

special characters 131-132
special character set

alphameric 131
national 131
universal 131
use of 131-132

special data sets
dummy 96
in the input stream 99
ISAM 104-109
generation data groups (GDG) 109-112
private and temporary libraries 93-96

virtual input/output (VIO) 97-99
VSAM 100-103

specific image
CARRIAGE sub parameter on FORMAT PU parameter·

(JES3) 283-284
FCB parameter on DD statement 219-220
FCB parameter on OUTPUT statement (JES2)

264-265
use of 65

specific tracks
for partitioned data set 37
how to request 34-37
restrictions 37

specific volume request
definition 316
for mass storage volumes 38
restriction using multi-device type VSAM data set 101
restriction using private catalog
system action 27,37

specifying device for an output data set (JES2) 62
specifying device for an output data set (JES3) 70-73
SPLIT subparameter on DD statement

value converted to space request 3,34
spooled data set 316
STACK subparameter on DCB parameter 203
stacker bin

(see STACK subparameter of DCB parameter)
standard job 21,316
standard labels 223
START operator command 247
START operator command (JES3) 272
status, data set

MOD 48-49
NEW 48-49
OLD 48-49
SHR 48-49

STDl, standard FCB image 65,219-220
STD2, standard FCB image 65,219-220
step restart

description 144,147,164-165,316
referring to generation data group 112
use of 59-60,82-83

STEPCAT DD statement
description 175
master catalog 96
private catalog 96
VSAM 100-103

STEPLIB DD statement
for private library, cataloged 93-94,176-178
for private library, not cataloged 176-178
for private library, passed 176-178
concatenating private libraries 96
defining temporary libraries 96
description 176-178
to make a library available in a single step 66
(see also JOBLIB DD statement)

stepname, assigning 151,316
STOP operator command 247
STOPMN operator command 247
storage

real 25
requesting real storage 25-26
specifying the REGION parameter 25-26,146,166
virtual 25

storage volume 316
STRNO subparameter on AMP parameter 185,186
SUBALLOC subparameter on DD statement

value converted to space request 3,34
subparameter, definition 128
successor job

dependent job control 75-79
early setup of 75

SUL subparameter on LABEL parameter
(standard and user labels) 223

suppressed processing, data set
CHKPT macro instruction 59-60,181-182
DSNAME=NULLFILE 97
Dummy parameter 97

suppressed writing, data set
coding DUMMY parameter 63
specifying installation-defined class 63
with BSAM and QSAM 63

SWITCH operator command (JES3) 272
symbolic parameters

assigning values to 124-126
def ault values 124
defining 124,316
example of 126
nullifing 125
use of commas 122-124
with PROC statement 163

SYNAD subparameter on AMP parameter 185-186
syntax

checking 57,150
for JES2 259
for JES3 271

SYSABEND parameter on DD statement
description 179-180
requesting abnormal termination dumps 61-62,85-86
storing a dump 179

SYSAFF parameter on JOBPARM statement (JES2)
261-262

SYSCHK DD parameter
description 181-182
use of 59-60,82-83
when checkpoint data set is cataloged 182
when checkpoint data set is not cataloged 182
(see also RESTART parameter)

SYSOUT parameter on DD statement
description 234-235
multiple copies of output 64,88
print a dump 61-62,85-86

system affinities (JES2) 261-262
system generation 316
system library (SYS 1. LINKLIB) 316
system messages

definition 316
requesting 61,85,139
routing 61,85,139

system output device 61,85,316
SYSTEM parameter on MAIN statement (JES3)

description 285,286,288
use of 70

system resources manager 316
SYSUDUMP parameter on DD statement

description 179-180
requesting abnormal termination dump 61-62,85-86
storing a dump 179

SYS 1. LINKLIB data set
(see system library)

SYS l.PROCLIB data set
(see procedure library)

tape density
(see DEN subparameter on DCB parameter)

tape device
eligible for allocation 27

tape labels, ANSI 45-48,223-225
tapemark 45-48
task 316
TCAM

NOTIFY parameter 140
QNAME parameter 229

Index 331

TeAM (cont'd.)
TERM parameter 236
(see also TCAM subparameters on DCB parameter)

telecommunication· access method
(see TCAM subparameters on DCB parameter)

teleprocessing device
eligible for allocation 27
restriction if designated as a console 27

temporary data set
coding DISP parameter 208-210
creating 42-43
definition of 42,316
deletion, conditions of 42
DSNAME parameter, use of 44
member name 43
VIa, use of 98-99

temporary library
definition of 96,316
with PGM parameter 59

TERM parameter on DD statement 236
testing JCL without execution

(sl;!e also PGM parameter)
THRESH subparameter on DCB parameter 203
TIME parameter on JOBPARM statement 261
TIME parameter on EXEC statement

cataloged procedure 115-126
default 167
description 167-168

TIME parameter on JOB statement
default 149
description 149

time-dependent program
requesting real storage 25

time limit for CPU
on EXEC statement 167
on JOB statement 149

TN character set (1403) 65,89
TRACE subparameter on AMP parameter 185-186
track number, relative 35
tracks

capacities 306
space requests 35-36
d{~scription 230,316
cylinder index

(see NTM subparameter of DCB parameter)
overflow

(see CYLOFL subparameter of DCB parameter)
searching

(see LIMCT subparameter of DCB parameter)
TRAIN parameter on FORMAT PR statement (JES3)

280-282
TRK subparameter on SPACE parameter

space requests 34
description 230

TRTCH subparameter on DCB parameter 203
TSO on an ASP main processor 90

(see also FORMAT AC parameter (JES3»
TYPE parameter on MAIN statement (JES3)

dl!scription 285,286,288
defining control program 70

TYPRUN parameter on JOB statement
TYPRUN=COPY 150
TYPRUN=HOLD 150,57
delaying job initiation 57
description 150

TIl character set (3211) 65,89

UCS (universal character set)
requesting 65,89
(see also U CS parameter)

UCS parameter on DD statement
coded with UNIT parameter 65,89

332 OS/VS2 JCL (VS2 Release 3)

coded with SYSOUT parameter 65,89
default 237
description 237-238
requesting universal character set 65,89

UCS parameter on OUTPUT statement (JES2) 264
uncataloging a data set

UNCA TLG sub parameter 5 1,208
UNCATLG subparameter on DISP parameter

description 208
use of 50-51

unit
definition 26,316
information from other than UNIT parameter 30
specifying output device 62
type of unit you can specify 29
(see also UNIT parameter)

unit address subparameter of UNIT parameter
description 316
use of 29

unit affinity
definition 31,316
example of 31,33
how to request 31-33
restriction when data set opened early 31

unit count subparameter of UNIT parameter 239
unit information, other than UNIT parameter 30
unit of measurement

cylinders, blocks and tracks 35-37
unit override 240
UNIT parameter on DD statement

creating a private library 93-94
description 239-241
generation data groups 110,112
indexed sequential data sets 105-107
multiple units 29
requesting units 29-31
unit affinity 31-33,239-241
storing a dump 61-62,85-86
using mass storage volumes 38-39
write output data set 62,86

unit record device
eligible for allocation 27
restriction if designated as a console 27

universal character set 316
(see also UCS parameters on DD and OUTPUT

statements)
unlabeled tapes 223-225
UNLOAD operator command 247
UPDATE parameter on MAIN statement (JES3)

288,290,285
USER parameter on FORMAT AC statement (JES3) 277
user-assigned group name

description 239,240,316
use of 29

user labels
description 223
space allocation 36

V. format
(see RECFM subparameter on DCB parameter)

V =R dynamic area
(see nonpageable dynamic area)

V=V
(see virtual storage)

V AR Y operator command 247
VARY operator command (JES3) 272
VERIFY subparameter of FCB parameter 219
VERIFY subparameter of UCS parameter 237
VIO (see virtual input/output)
VIRT subparameter of ADDRSPC parameter

on EXEC statement 153

on JOB statement 135
requesting storage 25-26

virtual direct access device
(see mass storage volumes)

virtual input/output (VIO)
backward references for 98
defining data set 98-99
definition 316
example of temporary data sets 99
examples of backward references for 98-99
parameters 98
system generation requirements 98
using for temporary data sets 99
using to pass temporary data sets 99

virtual storage
definition 316
REGION parameter on EXEC statement 166
REGION parameter on JOB statement 146
requesting storage 25-26

virtual storage access method (VSAM) 100-103
virtual volumes

mass storage system 38-39
MSVGP parameter 226

VOL parameter on DD statement
(see VOLUME parameter on DD statement)

volume
deferred mounting 30
definition 316
maximum volume request 28
(see also VOLUME parameter)

volume affinity
definition 28,316
example of 31
how to request 31-33

volume count subparameter on VOLUME parameter
maximum number of volumes you can request 28
description 242-245

VOLUME parameter on DD statement
creating a private library 93
description 242-245
generation data groups 111
ISAM requirement for 105,108
nonspecific volume request 27
for multivolume data set 29
for private volumes 28
for volume affinity 31-33
specific volume request 27
using mass storage volumes 38-39

volume sequence number on VOLUME parameter
description 242-245
use of 28

volume serial number
SETUP control statement (JES2) 269

volumes, requesting

(see VOLUME parameter)
volume table of contents 316
VOLUME=REF

(see REF subparameter on VOLUME parameter)
VSAM (virtual storage access method)

for private catalogs 96
processing VSAM data sets 100-103

wait-state time limit 149,167
work station, controlling output to 66,90,316
working set 316
WRITELOG operator command 247
writing a dummy data set 97
writing output data sets (JES2)

assigning to output class 62
specifying device 62
using JES2 62-66
using an external writer 62

writing output data sets (JES3)
assigning to output class 86
specifying device 86-87
using JES3 85-91

XN character set (1403)
XX (cataloged procedure)
XX* (cataloged procedure)
X/ (cataloged procedure)

65,89
121

121
121

YES subparameter of HOLD parameter (DO statement)
222

YN character set (1403) 65,89

6, FCB image 65
8, FCB image 65
1403 printer

requesting a special character set 65,89
requesting specific image 65,89

1440
(see TIME parameters on JOB and EXEC statements)

3211 printer
requesting a special character set 65,89
requesting specific image 65,89

3330 model 11
description 239
track capacities 306

3330V virtual volume 226,38
3340 fixed head feature 29
3348 model 70F data module 29
3525 punch interpretation 90
3540 diskette reader writer 43-44,183,190
3850 mass storage system 38-39,226-227

Index 333

GC28-0692-1

llrnlli1
(!)

International Business Machines Corporation
Data Prol:essing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

c
~
<
c.
" t
C
r
c.
c.

~
(.

~

OS/VS2 JCL

GC28-0692-1

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation?

Number oflatest Technical Newsletter (if any) concerning this publication:

Please indicate your address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

READER'S
COMMENT
FORM

GC28-0692-1

Your comments, please ...

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

I
Fold Fold

- - -- --- - - - - --- - - ----~

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

I nternational Business Machines Corporation
Department 058, Building 706-2
PO Box 390
Poughkeepsie, New York 12602

First Class
Permit 81
Poughkeepsie
New York

o
~
<
CJ)
I\,)

t...
(')
r
CJ)
w
-...J
o

I w
I~

I
-----------------------~

Fold

llrn~
(!)

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

