
GC33-5373-2
File No. 5370-30

DOS/VS
Systems Supervisor and 1/0 Macros

Release 29

Summary of Amendments

This edition reflects the availability of virtual storage enhancements and support of the
following new devices:

System/370 Model 115
3203 and 5203 Printers
3340 Disk Storage
3540 Diskette I/O Unit
3780 Data Communication Terminal
5425 Multifunction Card Unit

In addition, technical changes and editorial corrections have been made throughout the
book.

Changes in content are indicated by a vertical bar to the left of the change.

Third Edition (November 1973)

This is a major revision of, and obsoletes, GC33-5373-1.

This edition applies to Version 5, Release 29, of the IBM Disk Operating System,
DOS/VS, and all the subsequent versions and releases until otherwise indicated in new
editions or Technical Newsletters.

Changes are continually made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/360 and
System /370 Bibliography, GA22-6822, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

Comments may be addressed to IBM Laboratory, Programming Publication Dept.,
P.O.Box 210,703 Boeblingen, Germany.

Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972, 1973

IS THIS THE RIGHT BOOK FOR YOU?

This book is intended as a reference for the pro­
grammer using DOS/VS macro instructions
(macros). Both the DOS/VS Input/Output Con­
trol System (lOCS) macros and the DOS/VS su­
pervisor macros are described. After a brief intro­
duction to the use of macros, and a chapter on
label processing, descriptions are given of the logi­
cal 10CS (LIOCS) macros for the access methods
SAM, DAM, ISAM, and VSAM. Then follow de­
scriptions of physical 10CS (PIOCS) macros, su­
pervisor macros, multitasking macros, and program
linkage macros.
Those familiar with DOS Versions 3 or 4 (up to
and including Release 27) may note that this book
is based on DOS Supervisor & I/O Macros,
GC24-5037, as modified by TNL GN33-8689 and
by DOS Version 4, GC33-5007. This manual
includes information on the macro support for the
following DOS/VS features that were not part of
Release 27:

•

•

•

•

•

VSAM macros

virtual storage macros

changes to the program loading macros

modified and new interval timer macros

modified and new dump macros

macro usage for I/O devices specific to Mod­
els 115 and 125 such as 5425 Multi-Function
Card Unit and the 5203 Printer

macro usage for the IBM 3881 Optical Mark
Reader and the IBM 3886 Optical Character
Reader.

macro usage for the IBM 3540 Diskette I/O
Unit

As this book is intended for reference only, you
should, before consulting it, be familiar with three
others which introduce macro concepts and give
important prerequisite information on macro us­
age:

Introduction to DOS /VS, GC33-5770

DOS/VS Data Management Guide,
GC33-5372

DOS/VS System Management Guide,
GC33-5371

In addition, you should be familiar with the device
manuals for those devices which you intend to use.

Systems publications related to this one are listed
below.

IBM System/3 70 Principles of Operation,
GA22-7000

OS / VS and DOS / VS Assembler Language,
GC33-4010

Guide to DOS / VS Assembler, GC33-4024

DOS/VS System Control Statements,
GC33-5376

DOS/VS DASD Labels, GC33-5375

DOS/VS Tape Labels, GC33-5374

DOS/VS System Generation, GC33-5377

DOS/VS Serviceability Aids and Debugging
Procedures, GC33-5380

I

Table of Contents

Is this the right book for you? 3

Part 1. Introduction

Macro Types and Their Usage 11
Macro Definitions 11
Source-Program Macros 11

Supervisor Macros 11
IOCS Macros 11

Macro Processing . 12
DTF Declarative Macros 13

Processing with SAM 13
Processing with DAM 14
Processing with ISAM 14
Processing with PIOCS 14
Referencing the DTF Table 14
Symbolic Unit Address in the DTFxx Macro 14

Logic Module Generation Macros 16
Providing the Logic Modules 16
Keeping Modules Small 16
Subsetting/Supersetting 16

Interrelationship of the Macros 17
Module Names 17

Link-Editing Logical IOCS Programs 18
Program, DTF, and Logic Module Assembled

Together 18
Program, DTF, and Logic Module Assembled

Separately 18
Using the Relocatable Library 18

Self-Relocating Programs and IOCS 19
Macro Format 19

Cards for Declarative Macros 19
Notational Conventions 20
Register Usage . 21

Label Processing . 23
DASD Standard Labels 23

OPEN and OPENR Macro Processing 23
End-of -Volume Processing 23
End-of-File Processing 24
User Standard Labels 24

Diskette Labels 25
OPEN and OPENR Macro Processing 25
End-of -Volume Processing 25
End-of-File Processing 25

Tape Labels . 26
Tape Output Files 26
Tape Input Files . 28

Reading a Tape Backwards 29
Checking Standard Labels on Tape 29
Checking Nonstandard Labels on Tape 29
Unlabeled Input Files on Tape 30

Part 2. Sequential Access Method

Declarative Macros 34
DTFCD Macro 34
CDMOD Macro 40
DTFCN Macro 42
DTFDI Macro 44
DIMOD Macro 47
DTFDR Macro 48
DRMOD Macro 51
DFR Macro 52
DLINT Macro 56
DTFDU Macro 58
DUMODFx Macro 62
DTFMR Macro 63
MRMOD Macro 67
DTFMT Macro 67
MTMOD Macro 76
DTFOR Macro 78
ORMOD Macro 83
DTFPR Macro 84
PRMOD Macro 88
DTFPT Macro 90
Paper Tape Processing Considerations 94
PTMOD Macro 96
DTFSD Macro 98
SDMODxx Macro 105
DTFSR Macro 108
The DTFEN Card 117

Imperative Macros 124
Initialization Macros 124

OPEN and OPENR Macros 124
LBRET Macro 127

Processing Macros] 27
GET Macro 128
PUT Macro 130
PUTR Macro 136
RELSE Macro 136
TRUNC Macro 137
CNTRL Macro 137
CHNG Macro 144
ERET Macro 144

PRTOV Macro 144
READ Macro 145
CHECK Macro 145
WAIT Macro 146
DISEN Macro 146
LITE Macro 146
Optical Reader Macros-1287 147
GET Macro 147
CNTRL Macro 147
DSPLY Macro , 147
READ Macro 148
RESCN Macro 148
RDLNE Macro 149
WAITF Macro 149
Optical Character Reader Macros-3886 . .. 149
READ Macro 149
WAITF Macro 150
CNTRL Macro 150
SETDEV Macro 150
Work File Macros for Tape and Disk 150
READ Macro 151
WRITE Macro 151
CHECK Macro 152
NOTE Macro 152
POINTR Macro 152
POINTW Macro 153
POINTS Macro 153
Completion Macros 154
FEOV Macro 154
FEOVD Macro 155
CLOSE and CLOSER Macros 155

Part 3. Direct Access Method

Concepts of DAM 159
Record Types 159
IOAREA Specification 159
Reference Methods 161
Creating a File or Adding Records 162
Data Area .. , 164
Additional Information 164

Declarative Macros 165
DTFDA Macro 165
DAMOD Macro 176

Imperative Macros 1 79
Initialization Macros 179

OPEN and OPENR Macro 179
LBRET Macro 180

Processing Macros 180
READ Macro 181
WRITE Macro 181
W AITF Macro 183

CNTRL Macro 183
Completion Macros 184

CLOSE and CLOSER Macros 184

Part 4. Indexed Sequential Access Method

Concepts of ISAM 187
Record Types 187
Storage Areas 187
Organization of Records on DASD 187

Indexes .. 189
Addition of Records and

Overflow Areas 190
Programming Considerations 191
Example of an ISAM File 192

Declarative Macros 194-
DTFIS Macro 194
ISMOD Macro 201

Imperative Macros . 205
Initialization Macros 205

OPEN and OPENR Macros 205
Processing Macros 206

ERET Macro 206
Loading or Extending a File 207
WRITE Macro 207
ENDFL Macro 208
Adding Records to a File 208
WRITE Macro 208
Random Retrieval of Records 209
READ Macro 210
WRITE Macro 210
WAITF Macro 210
Sequential Retrieval of Records 211
SETL Macro 211
GET Macro 212
ESETL Macro 213

Completion Macros 21 3
CLOSE and CLOSER Macros 213

Part 5. Virtual Storage Access Method

Concepts of VSAM 217
Types of Processing 217
Types of Macros 218

Control Block Generating Macros 220
ACB Macro 220
EXLST Macro 222
RPL Macro 224

Examples of ACB, EXLST, and RPL
Macros 226

Control Block Manipulating Macros 228
GENCB Macro 228
MODCB Macro 230
SHOWCB Macro 231
TESTCB Macro 234

Opening and Closing FOes 239
OPEN Macro 239
CLOSE Macro 240
TCLOSE Macro 241

Requesting Access to FOes 242
GET Macro 242
PUT Macro 242
POINT Macro 243
ERASE Macro 243
ENDREQ Macro 243

Return Codes for Request Macros 243

Part 6. Physical IOCS

Concepts of Physical IOCS 249
Physical IOCS Macros 249

CCB Macro 249
EXCP Macro 253
WAIT Macro 254
DTFPH Macro 254
OPEN and OPENR Macros 257
LBRET Macro 259
FEOV Macro 260
SEOV Macro 260
CLOSE and CLOSER Macro 260

Part 7. Supervisor, Multitasking, Program
Linkage

Supervisor Macros 265
Program Loading 265

FETCH Macro 265
GENL Macro 266
LOAD Macro 266

Virtual Storage . 266
PFIX Macro 267
PFREE Macro 268
RELPAG Macro 268
FCEPGOUT Macro 269
PAGEIN Macro 270
RUNMODE Macro 271
SETPFA Macro 271

VIRTAD Macro 271
REALAD Macro 272
GETVIS Macro 272
FREEVIS Macro 272

Program Communication 273
COMRG Macro 274
MVCOM Macro 274

Releasing I/O Units 274
RELEASE Macro 274

Time of Day Macro 275
GETIME Macro 275

Interval Timer and Exit Macros 275
Entering a Routine When Time

Elapses 276
SETIME Macro 276
ITIMER Macro 276
STXIT Macro 276
EXIT Macro 280
Executing a Program at

Given Intervals 281
TECB Macro 281
SETIME Macro 281
ITIMER Macro 281
WAIT Macro 281
WAITM Macro 282

DUMP Macros 282
PDUMP Macro 282
DUMP Macro 282
JDUMP Macro 283

Cancel and EO] Macros 283
CANCEL Macro 283
EOJ Macro 283

Checkpointing a Program 283
CHKPT Macro 283
Checkpoint File 285
Repositioning I/O Files 285
DASD Operator Verification

Table 287

Multitasking Macros 288
Subtask Initiation and Normal

Termination Macros 288
AITACH Macro 288
DETACH Macro 289

Resource Protection Macros 289
RCB Macro 289
ENQ Macro 290
DEQ Macro 290

Intertask Communication Macros 291
WAITM Macro 291
POST Macro 291

DASD Protection Macro 292
FREE Macro 292

Shared Modules and Files 293

Program Linkage Macros 295
Linkage Registers . 297
Save Areas 297

CALL Macro 298
SAVE Macro 300
RETURN Macro 300

Appendix A: Control Character Codes 301
CTLCHR=ASA . 301
CTLCHR= YES . 301

Appendix B: Assembling Your Program,
DTFs, and Logic Modules 304

Appendix B.l: Assembling a Format Record
for the 3886 Optical Character
Reader 319
Document Example 319
Format Record Assembly Example 319

Appendix C: Reading, Writing, and
Checking with Nonstandard Labels 324

Appendix 0: Writing Self-Relocating
Programs 326
Rules for Writing Self-Relocating Programs .. 326
Advantage of Self-Relocating Programs 328
Another Way--The Relocating Loader. 328
Programming Techniques 328

Appendix E: MICR Document Buffer Format . 331

Appendix F: American National Standard
Code for Information Interchange (ASCII) ... 335

Appendix G: Page Fault Handling Overlap 339
Register Usage 339
Entry Linkage 339
Page Fault Queue 339
Processing at the Initiation of a Page Fault 340
Processing at the Completion

of a Page Faul.. 340

Appendix H: Operand Notation for VSAM GENCB,
MODCB, SHOWCB, and TESTCB Macros . . 341

GENCB Macro Operands 342
MODCB Macro Operands 343
SHOWCB Macro Operands 343
TESTCB Macro Operands 344

Appendix I: Parameter Lists for VSAM GENCB,
MODCB, SHOWCB, and TESTCB Macros . . 345

The GENCB Parameter List 346
The MODCB Parameter List 347
The SHOWCB Parameter List 348
The TESTCB Parameter List 349

Appendix J: Using ISAM Programs with
VSAM Files . 351

Glossary 353

Index 357

PARTl

INTRODUCTION

Macro Types aDd their Usage

Label Processing

MACRO TYPES AND THEIR USAGE

A macro is a single assembler language instruction
which generates a sequence of assembler language
instructions. The macros you code in your program
are called the source program macros. The assem­
bler uses what is called the macro definition to
generate the sequence of instructions requested by
the source program macro. Use of macros simpli­
fies the coding of programs and reduces the possi­
bility of programming errors.

Macro Definitions

A macro definition is a set of statements which
defines the name of, format of, and conditions for
generating a sequence of assembler language in­
structions from a single macro instruction. Macro
definitions are stored in the Macro Sublibrary of
the source statement library.

Source-Program Macros

Source-program macros are those you specify in
your program; they indicate to the assembler which
macro definition is to be called from the library.
With a source-program macro you specify operands
and parameters which the assembler uses, together
with the called macro definition, to determine what
assembler instructions to generate. There are two
different types of source-program macros: supervi­
sor macros and IOCS macros.

Supervisor Macros

These macros enable you to make use of functions
performed by the supervisor. The RUNMODE ma­
cro, for example, determines whether your program
is to run in virtual or real mode.

IOCS Macros

IOCS macros are divided into basic categories:
imperative 10CS macros and declarative 10CS
macros.

Imperative IOCS Macros
These macros identify what 110 operation you

want to perform. The GET macro, for example,
indicates that you want to obtain a record.

Declarative IOCS Macros
Declarative 10CS macros for all access methods
except VSAM are of two related types--DTFxx
macros and logic module generation (xxMOD)
macros. Declarative 10CS macros for VSAM are
the ACB, EXLST, and RPL macros. For further
details on DTF declarative macros see the section
on DTF Declarative Macros. The logic module
generation macros and VSAM declarative macros
are briefly discussed below and described in detail
later on.

Logic Module Generation Macros. Logic module
generation macros give information about the type
of logic module to be generated. The module is the
object code routine which will handle the condi­
tions you specify in the module generation macro.
For example, the CDMOD macro could generate a
module to handle card input on a 2540 (as shown
in the example in Appendix B).

VSAM Macros. The Virtual Storage Access Method
(VSAM) has a set of declarative macros different
from the DTFxx and logic module generation mac­
ros described above. VSAM declarative macros are
ACB, EXLST, and RPL.

The ACB macro produces an access method con­
trol block which connects your program to the file.
The access method control block contains informa­
tion about the kind of processing to be done, and
is usually specified only once in a program.

The EXLST macro produces an exit list containing
addresses of routines you supply to handle special
situations--such as an end-of -data routine, or a
routine to manage I/O buffers. This macro is also
usually specified only once in your program.

The RPL macro produces a request parameter list
containing such information as a buffer address
that is needed for execution of the VSAM impera­
tive macros.

VSAM has no logic module generation macros.
Standard VSAM modules are placed in the core
image library during system generation, and loaded
into your partition when a VSAM file is opened.
The possibility of coding your own modules with a

Part 1. Introduction 11

logic module generation macro, and of assembling
or link-editing modules with your program, does
not exist with VSAM.

Macro Processing

A direct relationship exists between the two basic
parts of the macro system--between the source­
program macros and the macro definitions--as de­
scribed above.

During assembly, the source-program macro speci­
fies which macro definition is to be called from the
library. Figure 1-1 depicts schematically the source
program before and after inclusion of the macro
expansion. This is accomplished by a selection and
substitution process using the general information
in the macro definition and the specific information
in the macro itself. The insertion consists of a mo­
dule, a table, or a small in-line routine and is called
the macro expansion.

After the insertion is made, the complete program
consists of both source program statements and
assembler language statements generated from the
macro definition. In subsequent phases of the as­
sembly, the entire program is processed to produce
the machine-language program.

Source

SOURCE PROGRAM
(Before)

1-----2 ____ _

,-

ASSEMBLER
OPERATIONS

Locate Mac ro
Definition

Program 15 _____ Perform Indicated
Statements 16 Macro -------...... < Selection and

17 Substitution

IBM provides a number of tested macro definitions.
The macro instructions needed to use these defini­
tions are described in this manual. You can also
write your own macro definitions and include them
in the source statement library of your system. For
additional information on this subject, see OS / VS
and DOS/VS Assembler Language, GC33-4010.

The IBM-supplied macros, which are explained in
this book, are organized as follows:

Part 2. Sequential Access Method (SAM) LIOCS
macros.

Part 3. Direct Access Method (DAM) LIOCS mac­
ros.

Part 4. Indexed Sequential Access Method (lSAM)
LIOCS macros.

Part 5. Virtual Storage Access Method (VSAM)
LIOCS macros.

Part 6. PIOCS macros.

Part 7. Supervisor macros.

Multitasking macros.

Program Linkage macros.

Source
Program
Statements

SOURCE PROGRAM
(After)

1 ____ _
2 ____ _

15 ____ _

16 Mocro

Merge with }
Source Program _________ Mocro

Expansion ~

,,-----

1
17

~:~='ts ----------

Figure 1-1 Schematic of macro processing

12 DOS/VS Supervisor & I/O Macros

DTF Declarative Macros

With all access methods except VSAM, whenever
you use logical IOCS imperative macros (such as
GET, PUT, READ, or WRITE) in your program to
control the input/output of records in a file, that
file must be defined by a declarative macro called a
DTF (Define The File). The DTF macro describes
the characteristics of the file, indicates the type of
processing for the file, and specifies the virtual
storage areas and routines to be used in processing
the file.
For example, if a GET is issued, the DTF macro
supplies such information as:

Record type and length.

Input device from which the record is to be
retrieved.

Address of the area in storage where the record
is to be located for processing by your pro­
gram.

Device-oriented DTF macros are available for de­
fining files processed by LIOCS (Logical
Input/Output Control System). An additional DTF
macro is available for magnetic tape or DASD files

I...,.,....
1-· 0"-'[

,. , - a-,~ ~~ . I. " I, ,. 10

OL DM STR Drr Flrtn
BL KS IZ E - 40 o.
DE VA DD R- SY SO o 1 ,

Elo FA DID R - EO F~ ST R,
F I L~ B L - S TID,
10 ~R EIA 1 - AR EA ON E ,
ER RP PT -C K~ LD B L K,
HD R I NF 0- YE S,

10 IAR EIA 2 - AR E~ T~ 0,

10 RE G- (3) ,

LA BA DD R-icK len DB LK
RE AD - F OR IWIA RD,
RE CF OR M- F I XB L:K,

RE CS I Z E - 80 ,

RE tNl ND -u NL ~DI,

SE pIA S~ B- YE S.
TY P E FL E- IN PU T,
~L RE RI~ -R EG8

I

Figure 1-2 Sample DTFMT macro

.,

!

I

I

processed by PIOCS (Physical Input/Output Con­
trol System). Figure 1-2 contains an example of a
DTF source statement. For LIOCS operations, the
DTF macro used depends on the type of processing
that will be performed and upon the type of device
used. For detailed information on LIOCS and
PIOCS, please refer to the DOS / VS Data
Management Guide, GC33-5372.

The following is a list of DTFs available for the
various types of processing.

Processing with SAM

This applies to input/output with serial or diskette
devices, or with direct access devices when records
are processed sequentially. (ISAM and VSAM may
also be used with direct access devices when re­
cords are to be processed sequentially). The macros
used for SAM processing are listed by device name
in alphabetical order in Figure 1-3. For details ref­
er to Part 2 of this manual.

~I, ,(.... 'h,C I C·"·,c I I I PACE Of

'.~ 'lie Icr,' I 'UNCH I I I ICARDflECTRONUMlfII

ldenl,f'O:OI,,,,,-

c_"" s. ... nc.
" " " .. ., " 7J 80

I
[X
I X

X

I
X

I X
' I P<

I X
11 X

: X
,1 X

X
: " X

! X
I X

I: I X

' i X
: I X

I i

I

I
I I

I

Part I. Introduction 13

File to be processed on Macro

Card device DTFCD
Console printer-keyboard DTFCN
DASD sequential DTFSD
Device independent DTFDI

3540 Diskette I/O Unit DTFDU

Display operator console DTFCN
Magnetic reader (MICR) DTFMR
Magnetic tape DTFMT

Optical reader (excluding 3886) DTFOR

3886 Optical character reader DTFDR

Optical reader/sorter DTFMR

Paper tape reader DTFPT
Paper tape punch DTFPT

Printer DTFPR

Sequential DASD DTFSD

Serial type device (for compatibility DTFSR
only)

Figure 1-3 SAM declarative macros

Processing with DAM

Whenever a file on a direct access device is to be
processed by DAM, DTFDA must be used. For
details refer to Part 3 of this manual.

Processing with ISAM

Whenever a file on a direct access device is to be
organized or processed by ISAM, DTFIS must be
used. For details refer to Part 4 of this manual.

Processing with PIoes

When PIOCS macros (EXCP, WAIT, etc.) are
used for a file, the DTFPH macro is required only
if standard labels are to be checked or written on a
file on a direct access device or magnetic tape, or if
the file on a direct access device is file-protected.
For details refer to Part 6 of this manual.

Referencing the DTF Table

A DTFxx macro generates a DTF table that con­
tains indicators and constants describing the file.
You can reference this table by using the symbol
filename+constant, or filenamex where x is a letter.
When referencing the DTF table, you must ensure
address ability through the use of an A-type con­
stant, or through reference to a base register.
Should you need to reference a DTF table in your

14 DOS/VS Supervisor & I/O Macros

program, you can obtain detailed information on
the layout of DTF tables in the LIOCS Program
Logical Manuals, SY33-8559, SY33-8560 and
SY33-8561.

Symbolic Unit Addresses in the DTFxx
Macro

In most of the DTF macros you can specify a sym­
bolic unit name in the DEV ADDR operand. This
symbolic unit name is also used in the ASSGN job
control statement to assign an actual 110 device
address to the file. For files on diskettes or direct
access devices, the symbolic unit name is supplied
in the DEV ADDR operand and I or with the
EXTENT job control statement (if both are pro­
vided the EXTENT specification overrides the
DEV ADDR specification).

The symbolic unit name of a device is chosen from
a fixed set of symbolic names. Programs are writ­
ten considering only the device type (tape, card,
etc.). At execution time, the actual physical device
is determined and assigned to a given symbolic
unit. For instance, a program that processes tape
records can call the tape device SYSOOO. At execu­
tion time the operator (using ASSGN) assigns any
available tape drive to SYSOOO.

Figure 1-4 shows the relationship between the
source program, the DTF table, and the job control
110 assignment.

Source Program DTF Table
Supervisor I/o
Tables (Job Con-

GET FllEl FllEl DTFCD trol Initiated)
SYSOOO,cuu

L....I _--It ,'---__ DEVADDR=SYSOOO

Figure 1-4 Relationship between source program, DTF
table, and job control I/O assignment

The fixed set of symbolic names that can be used
with a DTF macro for a program in any partition is
the same and is represented by SYSxxx. Programs
in different partitions can reference the same logi­
cal unit providing different devices, or DASD ex­
tents, are assigned.

These symbolic units are divided into system logical
units and programmer logical units.

System Logical Units
SYSRDR Card reader, magnetic tape unit, disk

extent, or diskette extent primarily for
job control statements.

SYSIPT Card reader, magnetic tape unit, disk
extent, or diskette extent as the prima­
ry input unit for programs.

SYSPCH Card punch, magnetic tape unit, disk
extent, or diskette extent as the prima­
ry unit for punched output.

SYSLST Printer, magnetic tape unit, disk extent,
or diskette extent as the primary unit
for printed output.

SYSLOG Console printer-keyboard or display
operator console for operator messages
and for logging job control statements.
Can also be assigned to a printer.

SYSLNK Disk extent as input to the linkage edi­
tor.

SYSVIS Disk extent for the page data set.

SYSCA T Disk extent for the VSAM catalog.

SYSCLB Disk extent for a private core image
library.

SYSRLB Disk extent for a private relocatable
library.

SYSUSE Disk extent used by the system for
internal purposes.

SYSSLB Disk extent for a private source state­
ment library.

SYSREC Disk extent for error log records and
for the hard copy file of the display
operator console.

SYSIN Can be used if you want to assign
SYSRDR and SYSIPT to the same card
reader or magnetic tape unit. Must be
used if you want to assign SYSRDR
and SYSIPT to the same disk extent.

SYSO UT Must be used if you want to assign
SYSPCH and SYSLST to the same
magnetic tape unit. Cannot be used to
assign SYSPCH and SYSLST to disk
because these two units must refer to
separate disk extents.

SYSIN and SYSOUT are valid only to
job control and cannot be referenced in
a user program. Examples for the use
of SYSIN and SYSOUT are given in
the section System Files on Tape or
Disk in the DOS/VS Systems Man­
agement Guide, GC33-5371.

Programmer Logical Units
SYSnnn SYSnnn represents all the other sym­

bolic units in the system. These units
vary from SYSOOO to SYSmax, where
SYSmax represents the highest num­
bered programmer logical unit available
for the system:
SYSmax=255-NPART x 14
where NPART is the number of parti­
tions.

Each of these programmer logical units
can be assigned to any partition with­
out a prescribed sequence, except when
using DAM (see Note, below). For a
given part~tion, the maximum number
of programmer logical units is equal to
SYSmax minus the sum of all program­
mer logical units assigned to other par­
titions.

Note: For DAM the EXTENT job control state­
ments must be supplied in ascending order, and the
symbolic units for multivolume files must be as­
signed in consecutive order.

Each declarative macro requiring a symbolic unit to
be specified has a list of symbolic units that are
valid for that macro. In that list, SYSnnn represents
programmer logical units, while SYSxxx indicates
either a system or a programmer logical unit.

For files processed by either SAM or DAM, only
one symbolic unit may be assigned to all extents of
a file on one volume.

In physical IOCS, the symbolic unit name is speci­
fied in the CCB and in the DTFPH macros. In­
stead or additionally it is specified with the EX­
TENT job control statement. (If more than one of
these is used to provide the specification, an EX­
TENT specification overrides a DTFPH specifica­
tion, and a CCB specification overrides an EX­
TENT and/or a DTFPH specification.)

Figure 1-5 shows the relationship between the
source program and the job controlI/O assign­
ment.

Part 1. Introduction 15

Source program~ CCB Supervisor I/o Table
(Job Control Initiated)

EXCP ccbname sySxxx-+----·- SYSxxx,cuu

Figure 1-5 Relatioship between source program and
job control I/O assignment

Logic Module Generation Macros

Each DTF except DTFCN DTFPH, and DTFSR
must link to an IOCS logic module. A logic module
is generated by a logic module generation
(xxMOD) macro. The modules provide the neces­
sary instructions to perform the input/output func­
tions required by your program. For example, the
module reads or writes data, tests for unusual
input/ output conditions, blocks or deblocks records
if necessary, or places records in a work area. Most
imperative macros enter a logic module to perform
the necessary function.

Providing Logic Modules:

There are two ways of providing logic modules for
your DTFs:

1. Do not code the logic module generation macro
needed by your DTF(s). In this case, the stand­
ard logic modules needed for your installation
should have been assembled and cataloged (in
the relocatable library) at system generation
time. You can then autolink needed modules
from the relocatable library at link-edit time.

2. Code the logic module generation macro need­
ed by your DTF(s), assembling it either in-line
with your program or supplying it at link-edit
time.

Keeping Modules Small

Some of the module functions are provided on a
selective basis, according to the parameters speci­
fied in the xxMOD macro. If you code the
xxMOD macro yourself, you have the option of
selecting or omitting some of these f~nctions ac­
cording to the requirements of your program. If, as
described above, you do not code the xxMOD ma­
cro yourself, IOCS will automatic~lly select or omit

16 DOS/VS Supervisor & I/O Macros

the appropriate functions. In either case the omis­
sion of unneeded functions saves storage space for
a particular module.

Note: If you issue an imperative macro, such as
WRITE or PUT, to a module that does not contain
that function, an invalid supervisor call (SVC 50)
is generated, the job is terminated, and a message
is displayed.

Subsetting/Supersetting

Some modules may be subset modules to a superset
module. A superset module is one which performs
all the functions of its subset or component mo­
dules, avoiding duplication and thereby saving stor­
age space. The functions required by several similar
DTFs (that is, several DTFCDs, or several
DTFPRs, etc.) are thus available via a single
xxMOD macro, even if the DTFs have slightly dif­
ferent parameters. An example 'is shown in Figure
1-6.

Superset Module Subset Module Subset Module
Functions Functions Functions

Optional use of CNTRL macro Optional use of
CNTRL macro cannot be used CNTRL macro

Workarea and Work area and I/O area proc-
I/O area proc- 1/ 0 area proc- essing only
essing essing

Support of print- No printer over- Support of print-
er overflow flow support er overflow

Support of user- Support of user- Support of user-
specified error specified error specified error
actions actions actions

Figure 1-6 Subset and superset module example

If you do not code the logic modules yourself,
IOCS will automatically perform all
sub setting/ supersetting which is possible.

If you code the logic modules yourself,
subsetting/ supersetting can be achieved by coding
a single xxMOD macro which contains all of the
functions needed by all of the DTFs which will use
that macro. In this case you may either:

Not name the module and let IOCS name it for
you--that is, specify no name for the xxMOD

macro and also no MODNAME operands in
the DTFs; or

Name the module--specifying a name for the
xxMOD macro and also specifying the same
name in the MODNAME operands of all of the
DTFs which will use that module.

Subsetting/ supersetting cannot be performed if you
supply an xxMOD macro for each DTF of a given
device type. In this case:

If you did not name the modules, the assembler
program will detect a double declaration error
condition, or

If you did name the modules, they will be gen­
erated without any subsetting/ supersetting.

Interrelationship of the Macros

Figure 1-7 shows the relationship between the pro­
gram, the DTF, and the logic module. Imperative
macros initiate the action to be performed by
branching to the logic module entry point generat­
ed in the DTF table. TAPE is the name of the file.
IJFFBCWZ is the name of the logic module.

Program

GET TAPE,WORK

Figure 1-7

DTF Table M~ule

TAPE ~TFMJIJFF~CWZ

UFFBCWZ

Relationship between program, DTF and
logic module

Linkage between the program, DTF, and logic mo­
dule is accomplished by the assembler and the link­
age editor.

Module Names

As mentioned under Logic Module Generation
Macros, you can have IOCS provide a name for the

required logic module, or you can specify that
name. Both methods are discussed below.

IOCS Supplies the Name
In order to make use of this facility omit the
MODNAME operand from the DTF macro; the
IOCS macro will then generate a standard module
name as determined by the functions required by
the DTF.

Likewise, if you code your own module, the name
should be omitted from the name field, and IOCS
will generate a standard module name matching
that referenced in the DTF.

Standard module names used by IOCS are given
under Standard CDMOD Names, Standard DI­
MOD Names, etc., following the discussion of the
appropriate xxMOD macro.

IOCS Subset/Superset Names IOCS performs
subsetting/ supersetting of modules with standard
module names by collecting the services required
by the DTFs and generating a single module with
different entry points corresponding to the standard
module names. If you are interested in seeing how
IOCS forms subset/superset names, charts showing
the name-building conventions are given through­
out the book for the various logic modules-- under
Subset/Superset CDMOD Names Subset/Superset
DIMOD Names, etc., following the discussion of
the appropriate module. The following is a model
for these charts:

* + + + *
I ~T x F BeN Y

u Z Y Z Z
V + + ,v E N

Z S
Z

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

The letters indicate functions which can be per­
formed by the logic module (these are fixed for a
given module and are explained in the sections
Standard CDMOD Names, Standard DIMOD
Names, etc.). If a module name were composed of
letters from the top row exclusively, it could only
be a superset name; and names including letters
from the second or lower rows would then be sub­
set names to the top-row superset name. For ex­
ample, the module IJxWESZZ is a subset module
to superset module IJxWENZZ. IJxWEZZZ is 'an-

Part I. Introduction 17

other subset module to superset module IJx­
WENZZ. Similarly, IJxWEZZZ is also a subset
module to superset module IJxWES~Z.

An asterisk (*) over a column indicates that no
sub setting or supersetting is permitted, while a plus
(+) sign in a column indicates that both are per­
mitted. Two plus signs in a single column divide
that column into mutually exclusive sets. In this
example, C is not a superset of N, S, or Z, and
conversely, N, S, or Z is not a subset of C.

The vertical arrangement of letters within a column
is always in alphabetical order. If a column is divid­
ed by plus and/or asterisk signs into sets, then the
vertical arrangement of letters within each set of a
column is in alphabetical order.

You Supply the Name
Specify the name of the module in the MOD­
NAME operand of the DTF macro. A module with
this name must then be present in your program, or
be supplied to your program when it is link-edited.
Subsetting/ supersetting will occur if one module
contains all of the functions needed by all of the
DTFs which will use the module (all must refer­
ence it by the same name).

Nothing is gained by giving your modules standard
laCS names (see IOCS Supplies the Name,
above), for lacs will supply the same name for
you if you let it name the modules. Should you
decide to name your modules, use names which are
meaningful to you in the context of your program.

Link-Editing Logical IOCS Programs

You have the option of assembling your DTFs, and
any logic modules which you code yourself, either
with your main program or separately for later
link-editing with the main program. These possibili­
ties are discussed below and are illustrated in
Appendix B.

Program, DTF, and Logic Module Assembled
Together

If you assemble DTFs and logic modules with the
main program, the linkage editor searches the input
stream and resolves the symbolic linkages between
tables and modules. This is accomplished by
external-reference information (V -type address
constants generated in DTF tables) and the control
section definition information (CSECT definitions

18 DOS/VS Supervisor & I/O Macros

in logic modules). Further information on linkage
editing can be found in the section Linkage Editor
of the DOS / VS System Control Statements,
GC33-5376.

Program, DTF, and Logic Module Assembled
Separately

Specify the operand SEP ASMB= YES in the DTF
macro or xxMOD macro which is to be separately
assembled. For DTFs which are separately assem­
bled, there are some symbolic linkages which you
must define yourself in the form of EXTRN­
ENTRY symbols. See Appendix B for a full de­
scription of which symbolic linkages you must de­
fine yourself.

Supplying the SEP ASMB= YES operand in a DTF
macro causes a CAT ALR card with the filename to
be punched ahead of the object deck and defines
the filename as an ENTRY point in the assembly.
Specifying the SEP ASMB = YES operand in an
xxMOD macro causes a CATALR card with the
module name to be punched ahead of the object
deck and defines the module name as an ENTRY
point in the assembly. In either case, a START
card must not be used in a separate assembly.

Using the Relocatable Library

As stated earlier, considerable coding effort is
saved if logic modules are cataloged in the relocat­
able library. The same applies to DTFs. Using
DTFs cataloged in the relocatable library requires
that you take care in naming the DTFs--that is,
that you develop a set of standard names and then
use them both for your DTFs and in all references
your program makes to the DTFs. However, should
you decide to name modules yourself, instead of
letting lacs do it, then you make sure that you
refer to precisely those modules in your DTFs by
using their exact names (see Module Names
above).

If, at system generation time, a standard set of
logic modules needed by your installation has been
generated, auto linking the appropriate modules to
your DTFs presents no problem. This is particularly
true if both the modules and DTF references to
them use standard module names.

Using logic modules which you named yourself--as
opposed to those named by IOCS--cataloged in the
relocatable library requires care. You should verify
that the desired modules have been cataloged in

the library by consulting a DSERV listing of the
library. The linkage editor can perform an autolink
only if there is an exact match of module names
specified in the DTFs and the names of the mo­
dules themselves.

Self-Relocating Programs and IOCS

The Relocating Load feature, an option in supervi­
sor generation, makes it unnecessary for you to
write your own self-relocating programs. If, how­
ever, your supervisor does not have this feature
and you want to make lacs imperative macros
(except VSAM macros) and supervisor macros self­
relocating you must do the following:

1. Use the OPENR and CLOSER macro.

2. Use register notation within all your imperative
macros (see Register Notation later in this
chapter).

Appendix D gives detailed instructions on writing
self -relocating programs.

Macro Format

Macros, like assembler statements, have a name
field, operation field, and operand field as shown
below. Comments can also be included as in as­
sembler statements.

The name field in a macro may contain a symbol­
ic name. Some macros require a name; for exam­
ple, CCB, TECB, DTFxx.

The operation field must contain the mnemonic
operation code of the macro.

The operands in the operand field must be written
in either positional, keyword, or mixed formats.

Positional Operands
In this format, the parameter values must be in the
exact order shown in the individual macro discus­
sion. Each operand, except the last, must be fol­
lowed by a comma, and no embedded blanks are
allowed. If an operand is to be omitted in the ma­
cro and following operands are included, a comma
must be inserted to indicate the omission. No com­
mas need to be included after the last operand.
Column 72 must contain a continuation punch (any

nonblank character) if the operands fill the operand
field and overflow onto another card.

For example, GET uses the positional format. A
GET for a file named CDFILE using WORK as a
work area is punched:

GET CDFILE,WORK

Keyword Operands
The exact parameters used are expressed as a key­
word value. An operand written in keyword format
has this form for example:

LABADDR= MYLABELS

where LABADDR is the keyword, MYLABELS is
the parameter, and LABADDR=MYLABELS is
the complete operand. The keyword operands in
the macro may appear in any order, and any that
are not required may be omitted. Different key­
word operands may be punched in the same card,
each followed by a comma except for the last ope­
rand of the macro. Or, they may be punched in
separate cards as in Figure 1-2.

Mixed Format
The operand list contains both positional and key ...
word operands. The keyword operands can be writ­
ten in any order, but they must be written to the
right of any positional operands in the macro.

For additional information on coding macro state­
ments, see os / VS and DOS / VS Assembler
Language, GC33-4010.

Cards for Declarative Macros

The operands of the DTFxx and the module gener­
ation macros can be punched in a set of cards in
the assembler format. Figure 1-2 shows an example
of the cards used for a DTFMT macro. The DTF
macros may be assembled in any order.

The first card is a header card, and the continua­
tion cards are detail cards. The header card is
punched with:

The symbolic name of the file in the name
field. Programming Note: avoid using IJ as the
first two letters when defining symbols as they
may conflict with lacs symbols beginning with
11. Avoid symbols that are identical to a filen­
ame plus a single character suffix because
lacs generates symbols by concatenating the
filename with an additional character--for the

Part 1. Introduction 19

filename RECIN, for example, IOCS generates
the symbols RECINS, RECINL, etc.

In a DTF, the symbolic filename may be up to
seven characters long. This filename, if it is
required on any of the standard label job con­
trol statements, must be the same as that used
in the DTF header card.

For a module generation macro, the name may
or may not be specified. See Module Names,
above.

The mnemonic operation code of the macro in
the operation field.

Keyword operands in the operand field, if de­
sired.

• A continuation punch in column 72, if a con­
tinuation card is necessary.

The detail cards follow the header card, and may
be arranged in any order. Each detail card is
punched, beginning in column 16, with one or
more keyword operands separated by commas. All
detail cards except the final one must be punched
with a comma immediately following the last ope­
rand and with a continuation punch in column 72.
Comments may be included if a space is left after
the comma following the last operand--or, for the
last detail card, if a space is left after the last ope­
rand.

Notational Conventions

The following conventions are used in this book to
illustrate the format of macros:

1. Uppercase letters and punctuation marks
(except as described in these conventions) rep­
resent information that must be coded exactly
as shown.

2. Lowercase letters and terms represent informa­
tion which you must supply. More specifically,
an n indicates a decimal number, an r indicates
a decimal register number, and an x indicates
an alphameric character.

3. Information contained within brackets [] repre­
sents an optional parameter that can be includ­
ed or omitted, depending on the requirements
of the program.

20 DOS/VS Supervisor & I/O Macros

4. Stacked options contained within brackets rep­
resent alternatives, one of which can be chosen
for example:

~~?:sJ
A name-field symbol
in this assembly, or
an operand of an
EXTRN statement,
or * (the Location
counter).

5. An ellipsis (a series of three periods) indicates
that a variable number of items may be includ­
ed.

6. Stacked options contained within braces {}
represent alternatives, one of which must be
chosen. When the alternatives appear in a
string, they are separated by a vertical bar
(logical or)

7. filename

9. length

10'{A l
~)

11.{name }
(r)

12.~ (~)e l
) name
~ (1)

Symbol appearing in the name field
of a DTF macro.

Self-defining value, such as 3,
X'04', (15), B'010'.

Absolute expression, as defined in
OS/VS and DOS/VS Assembler
Language, GC33-4010.

Underlined elements represent an
assumed value in the event a par­
ameter is omitted.

Ordinary register notation. Any
register except 0 or 1.

Special register notation (ordinary
register notation can be used).

Register Notation
Certain operands can be specified in either of two
ways:

1. You may specify the operand directly and

I produce code which cannot be executed in the
SV A because it is not reentrant.

2. You may load the address of the value into a
register before issuing the macro. This way the
macro is reentrant and will be executed in the
SV A. When using register notation, the register
should contain only the specific address and
high order bits should be set to O.

In the latter case, you must specify the register in
the macro. (The registers that can be used for this

purpose are discussed under Register Usage, be­
low.) This method is known as ordinary register
notation.

When the macro is assembled, instructions are gen­
erated to pass the information contained in the
specified register to IOCS or to the supervisor. For
example, if an operand is writteq as (8), and if the
corresponding parameter is to be passed to the
supervisor in register 0, the macro expansion con­
tains the instruction LR 0,8.

You can save both storage and execution time by
using what is known as special register notation. In
this method, the operand is expressed as either (0)
or (1). This notation is special for two reasons:

• The use of registers 0 and 1 is not allowed
unless specifically designated.

The designation must be made by the specific
three characters (0) or (1). When special regis­
ter notation is indicated by (0) or (1) in a ma­
cro, you can use ordinary register notation and
the macro expansion will contain an extra LR
instruction.

The format description for each macro shows
whether special register notation can be used, and
for which operands. The following example indi­
cates that the filename operand can be written as
(1) and the workname operand as (0):

2 f filename 'l [{workname}]
GET) ('

~) (0)

If either of these special register notations is used,
your program must load the designated parameter
register before executing of the macro expansion.
Ordinary register notation can also be used.

Register Usage

Registers for Special Use

General registers 0, 1, 13, 14, and 15 have special
uses, and are available to your program only under
certain conditions.

The following paragraphs describe the general uses
of these registers by IOCS, but the description is
not meant to be allinclusive. For more information
on subroutine linkage through registers, refer to the
Linkage Registers section of the Program Link­
age Macros chapter. In addition, special applica-

tions, such as a MICR stacker selection routine,
may require different registers.

Registers 0 and 1:
Logical IOCS macros, the supervisor macros, and
other IBM-supplied macros use these registers to
pass parameters. Therefore, these registers may be
used without restriction only for immediate compu­
tations. However, if you use these registers for
computations not completed before IOCS requires
them, you must save their contents and reload
them later when required.

Register 13:
Control program subroutines, including logical
IOCS, use this register as a pointer to a 72-byte,
doublewordaligned save area. When using the
CALL, SAVE, or RETURN macros, you can set
the address of the save area at the beginning of
each program phase, and leave it unchanged there­
after. However, when sharing a reentrant (read
only) logic module among tasks, each time that
module is entered by another task, register 13 must
contain the address of another 72-byte save area to
be used by that logic module.

Registers 14 and 15:
Logical IOCS uses these two registers for linkage.
Register 14 contains the return address (to the
program) from DTF routines, called programs, and
your subroutines. Register 15 contains the entry
point into these routines, and is used as a base
register by the OPEN, OPENR, CLOSE, CLOS­
ER, and certain DTF macros.

IOCS does not save the contents of these registers
before using them. If you use these registers, you
must either save their contents yourself (and reload
them later) or finish with them before IOCS uses
them.

Registers for Your Use

Registers 2-12 are available for general usage.
There are, however, a few restrictions.

The assembler instruction for translate and test
(TRT) makes special use of register 2. It is your
responsibility to save the contents of this register
before executing the TR T instruction if register 2
contains valuable information (such as pointers or
counters) for later use in your program. After the
TRT instruction has been executed, you can then
restore the contents of register 2.

Part I. Introduction 21

If an ISMOD logic module precedes a USING
statement or follows your program, the use of reg­
isters 2-12 remains unrestricted even at assembly
time. However, if the ISMOD logic module lies
within the problem program, you should issue the
same USING statement (which was issued before
the logic module) directly following the logic mo-

22 DOS/VS Supervisor & I/O Macros

dule. This action is necessary because the ISMOD
logic module uses registers 1, 2, and 3 as base reg­
isters, and the ISMOD CORDATA logic module
uses registers 1, 2, 3, and 5 as base registers. Each
time either module is assembled, these registers are
dropped.

LABEL PROCESSING

This section provides the information you need on
order to process labels with the IOCS macros.
More detailed information about labeling conven­
tions and label processing considerations will be
found in the DOSjVS Data Management Guide,
GC33-5372, DOSjVS DASD Labels,
GC33-5375, and DOSjVS Tape Labels,
GC33-5374.

DASD Standard Labels

Labels are required when processing files on direct
access devices. Accordingly you must supply both a
DASD label (DLBL) job control statement for
each logical file to be processed, and one or more
extent (EXTENT) job control statements to allo­
cate one or more areas on a direct access device.
Also, when processing standard labels, a LBL TYP
job control statement is required to define virtual
storage needed at link-edit time for label processing
for files defined by DTFDA or DTFIS macros or
by a DTFPH macro with the MOUNTED=ALL
operand (more information will be found in
DOSjVS System Control Statements, GC33-
5376).

OPEN and OPENR Macro Processing

The OPEN and OPENR macros use the informa­
tion supplied in the DLBL and EXTENT job con­
trol statements as well as information from the
DTF for the file.

For input, the extent(s) for a file must either coin­
cide with, or be within, the existing extent(s) as
defined in the Volume Table of Contents (VTOC).
This is necessary input, IOCS opens only an exist­
ing file or a subset of an existing file. For output,
the file to be written cannot overlap existing unex­
pired files. IOCS does not destroy an unexpired
file without your explicit request, except when an
internal system file (IJSYS) overlays an identical
system file. However, if OPEN (or OPENR) deter­
mines that the output file will overlay an existing
file that has expired, the macro OPEN (or
OPENR) deletes the expired label(s) from the
VTOC. This in effect removes the file from tht­
volume. In a multi-volume file, the file may be

removed from all the volumes that it occupies or
from only some of the volumes.

If OPEN (or OPENR) determines that an existing
file to be overlaid by the output file has not ex­
pired, the old file cannot be destroyed automatical­
ly. In this case, the following actions are possible.
For SAM, DAM, physical IOCS, or work file proc­
essing:

1. Delete the unexpired file, or

2. Terminate the job, or

3. Bypass the extent. That extent and any remain­
ing extents for that file are bypassed and the
job is terminated.

For ISAM processing:

1. Delete the unexpired file, or

2. Terminate the job.

Reopening a File
If further processing of a file which your program
has closed is required at some later time in the
program, the file must be reopened. When a file is
processed in sequential order, IOCS checks the
label(s) on the first volume and makes the first
extent available, the same as at the original OPEN
(or OPENR). When a file is processed by physical
IOCS with the DTFPH operand
MOUNTED = SINGLE, IOCS opens the next ex­
tent specified by your EXTENT job control state­
ment. When a file is processed by DAM (defined
by the DTFDA macro), by ISAM (defined by the
DTFIS macro), or by physical IOCS with the
DTFPH operand MOUNTED=ALL specified, all
label processing is repeated and all extents are
again made available.

For more information on label processing see the
discussion of the OPEN (or OPENR) macro' under
the appropriate access method.

End-of -Volume Processing

During processing, IOCS recognizes an end-of­
volume condition when the extents on one volume
have been processed and an extent for another

Part I. Introduction 23

volume is encountered. When this condition oc­
curs, 10CS branches to your LABADDR routine
(if provided) to write or pass individually each user
standard trailer label to be processed. After all
user standard trailer labels are processed, 10CS
processes the standard labels on the next volume
and branches to your LAB AD DR routine to proc­
ess user standard header labels. After the header
labels are processed, 10CS continues to process the
data.

End-of-File Processing

Output Files
When all records for a logical output file have been
written, the CLOSE (or CLOSER) macro must be
issued to perform normal end-of-file processing.
10CS then branches to your LABADDR routine (if
provided) to write user trailer labels, and the file is
closed. If the end of the last extent specified for
the file is reached before the CLOSE (or CLOS­
ER) macro is issued, 10CS assumes an error condi­
tion.

Input Files
10CS determines an end-of-file condition for a
logical input file either by the ending address of the
last extent specified for the file in the EXTENT
job control statement, or by an end-of-file record
read from the file. For SAM processing with
DTFSD or DTFSR, 10CS branches to the EO­
FADDR routine upon an end-of-file condition. For
sequential processing with DTFIS, 10CS posts the
end-of-file condition in the field referred to as fi­
lenameC. You can then test this byte and take ac­
tion necessary to close your file. However, when
processing in random order you must determine the
end-of-file by checking filenameC (DTFIS) or
ERRBYTE (DTFDA).

User Standard Labels

If user standard labels are desired, you must supply
a LABADDR routine, unless processing with physi­
cal 10CS. SAM and DAM process both user head­
er and trailer standard labels. ISAM does not proc­
ess user standard labels. User labels cannot be cre­
ated for a file whose first extent is a split cylinder
extent. DAM writes a user trailer label only on the
first volume of a multi-volume file.

When the LABADDR routine is entered, IOCS
loads an alphabetic 0, V, or F into the low-order

24 DOS/VS Supervisor & I/O Macros

byte of register O. 0 indicates header labels, V
indicates trailer end-of-volume labels, and F indi­
cates end-of -file labels. Your LABADDR routine
can test this character to determine the labels to be
processed. 10CS also loads the address of an 80-
byte 10CS label area in register 1; this is the ad­
dress you use if checking labels, or from which you
move the label to your program's label area if you
are modifying labels.

Within the LABADDR routine, you cannot issue a
macro that calls a transient routine (such as OPEN
(or OPENR), CLOSE (or CLOSER), DUMP,
CANCEL, and CHKPT). For multi-volume files,
the LABADDR routine should save registers 14
and 15 upon entry, and restore them before issuing
the LBRET macro to return to 10CS.

Writing User Standard Labels on Disk
When you specify LABADDR, OPEN (or
OPENR) reserves the first track of the first data
extent as a user label area. At least one user head­
er and trailer label must be written if the access
method is to process it. For DAM, when
TRLBL= YES is specified with LABADDR, trailer
labels are processed.

10CS uses bytes 1-4 of the 80-byte label for the
label identification (for example: UxLy, where x =
H or T and y = 1,2, ... , 8). You can use the other
76 bytes as you wish. The maximum number of
user standard header or trailer labels is eight for
files on all DASDs except the 2321, and five for
files on the 2321. 10CS stores the label informa­
tion (UHLx or UTLx) that it generates in bytes
1-4 of the 10CS label area. You can test this in­
formation, in addition to registers 0 and 1, to de­
termine the type and number of the label. (The
label formats will be found in DOS/VS DASD
Labels, GC33-5375.)

In your area of vir tau I storage, build either an 80-
byte label, leaving the first four bytes free, or sim­
ply a 76-byte label. For the 80-byte label, load the
address of the label area into register 0; for the
76-byte label, load the label area address minus
four into register O. Then issue the LBRET macro.
When the label is moved into the 10CS area, 10CS
adds four to the address in register 0, thus only
moving the 76 bytes of user information into the
10CS label area.

When the label is ready to be written, the LBRET
macro returns control to 10CS. If LBRET 2 is
used, OPEN (or OPENR) writes the label and re­
turns control to your label routine unless the maxi-

mum number of labels has been written. If LBRET
1 is used, the label set is considered complete and
no more labels can be created.

When IOCS receives control, the IOCS routines
move the label from the address you loaded into
register 0 into the IOCS label area. If the maxi­
mum number of labels has not been written, IOCS
increases the identification number by 1 and re­
turns to your label routine unless LBRET 1 was
used. If the maximum number of labels has been
created, IOCS automatically terminates building of
the label set.

Checking User Standard Labels on Disk
When a file on a DASD contains user standard
trailer andlor header labels, IOCS makes these
labels available one at a time if LAB AD DR is
specified in the DTF (see DASD Standard Labels,
above). If the labels are to be checked against in­
formation obtained from another input file, that file
must be opened ahead of the file on a DASD.

When your program has finished checking a label,
it can update it or leave it unmodified. If it is to be
updated, your program must move the label to an
area within the program before modifying it. After
the label is modified, the program must initialize
register 0 with the address of the modified label
before issuing the LBRET 3 macro. The program
then updates the appropriate label fields by issuing
the LBRET 3 macro. This causes the OPEN (or
OPENR) routine to rewrite that label and read the
next label. Register 1 points to the label in the
IOCS label area. If the label is to remain unmodi­
fied, you can issue a LBRET 2 macro so OPEN or
OPENR will read the next label. In either situation,
if the end-of-file record is encountered at the end
of the labels, OPEN (or OPENR) automatically
terminates the label checking.

If you wish to end label checking l;Jefore all the
labels have been read, the LBRET 1 macro may be
issued.

Diskette Labels

Labels are required when processing files on disk­
ette 110 units. Accordingly you must supply a
DASD label (DLBL) job control statement for
each logical file to be processed, and one or more
extent (EXTENT) job control statements (more
information will be found in DOS/VS System
Control Statements, GC33-5376.

OPEN and OPENR Macro Processing

The OPEN or OPENR macro uses the information
supplied in the DLBL and EXTENT job control
statements, information from the DTF for the file,
and information from the file label on the diskette.

For input, extent limits are taken directly from the
file label in the VTOC on the diskette; extent lim­
its provided in the extent statement(s) are ignored.
Similarly for output files, the extent limits for the
file are determined by OPEN (or OPENR) from
available space on the diskette extent limits provid­
ed by the user are ignored. If the name of the out­
put file to be created is the same as that of an
unexpired or write-protected file already present on
the volume, OPEN (or OPENR) will cause the job
to be canceled. You will not be allowed to request
that a duplicate file (unexpired or write-protected)
be deleted. If the duplicate file has expired and is
not write-protected or if a duplicate file is not be­
ing created, OPEN (or OPENR) will allocate space
for the file, starting at the cylinder following the
end of the last unexpired or write-protected file on
the diskette. If expired and non-write-protected
files are overlapped by this allocation, their labels
are deleted from the VTOC.

End-of -Volume Processing

During processing, IOCS recognizes an end-of­
volume condition when end-of -extent is reached on
a volume and more extents are available. When
this occurs, IOCS processes the standard labels on
the next volume and continues to process the data.

End-of-File Processing

Output Files
When all records for an output logical file have
been written, the CLOSE (or CLOSER) macro
must be issued to perform normal end-of-file pro­
cedures. If the end of the last extent specified for
the file is reached before the CLOSE (or CLOS­
ER) macro is issued, IOCS assumes an error condi­
tion.

Input Files
IOCS determines an end-of-file for an input logical
file by the end-of-data address. This address is
specified in the file label in the VTOC of the last
diskette of the file (first diskette if this is not a

Part I. Introduction 25

I multi-volume file). IOCS branches to the
EOFADDR routine upon an end-of-file condition.

Tape Labels

Tape Output Files

For output on magnetic tape, OPEN (or OPENR),
CLOSE (or CLOSER), or an end-of-volume condi­
tion rewinds the tape as specified in the DTFSR or
DTFMT REWIND operand. No rewind can be
defined in the DTFPH macro, and tape positioning
depends on the labels to be processed and is your
responsibility.

If you write any user standard labels, a LABADDR
routine must be supplied. (For ASCII tape files, the
LABADDR routine may only be used to process
user standard labels.) Your LABADDR routine,
specified in the DTF, cannot issue a macro that
calls a transient routine. For example, OPEN (or
OPENR), CLOSE (or CLOSER), DUMP, CAN­
CEL, and CHKPT cannot be issued. Also when
processing multi-volume files, your label routine
must save and restore register 15 if any logical
IOCS macros other than LBRET are used. When
user standard labels are written they always follow
the standard labels on the tape.

When all records of a file are processed, CLOSE
(or CLOSER) can be issued to exec,ute the end-of­
file (EOF) routines. These routines write any re­
cord or blocks of records that are not already writ­
ten. A partially filled record block is truncated;
that is, a short block is written on the tape. Fol­
lowing the last record, IOCS writes a tapemark, the
trailer labels, and two tapemarks, and executes the
rewind option. If no trailer labels are written, two
tapemarks are written and the rewind option is
executed. In either case, if no rewind is specified
and you have not specified any positioning, the
tape is positioned between the two tapemarks at
the end of the file.

If an end-of -volume (EOV) reflective marker is
sensed on an output tape before a CLOSE (or
CLOSER) is issued, logical IOCS prepares for clos­
ing the file by ensuring that all records are written
on the tape. If you issue another PUT, indicating
that more records are to be written on this output
file, EOV procedures are initiated. If you issue a
CLOSE (or CLOSER), the EOF procedures are
initiated.

26 DOS/VS Supervisor & I/O Macros

Under certain conditions, an unfilled block of re­
cords may be written at an EOV or EOF condi­
tion, even though the file is defined as having
fixed-length blocked records. When this file is used
for input, logical IOCS recognizes and processes
this short block. You need not be concerned or
aware of the condition.

Label processing for the EOV condition resembles
that for the EOF condition, except that a standard
label is coded EOV instead of EOF. Also, only one
tapemark is written after the label set or after the
data for unlabeled files. In an ASCII file, two tape­
marks follow the EOV labels.

When IOCS detects the EOV condition, it switches
to an alternate unit as designated in an ASSGN job
control statement. If an alternate drive is not speci­
fied, the operator is requested to mount a new vol­
ume (on the same drive) or cancel the job. When
the operator mounts the volume, IOCS checks the
standard header labels and processing continues.

In some cases, you may need to force an end-of­
volume condition at a point other than the reflec­
tive marker. You may want to discontinue writing
the records on the present volume and continue on
another volume. This may be necessary because of
some major change in category of records or in
processing requirements. The FEOV (forced EOV)
macro is available for this function (see FEOV
Macro in the Imperative Macros section of the
Sequential Access Method Macros chapter).

Writing Standard Labels on Tape
When standard labels are written (DTFMT or
DTFSR FILABL=STD or DTFPH
TYPFLE=OUTPUT), you must supply the TLBL
job control statement for standard label informa­
tion. Also, when standard labels are processed, a
LBL TYP job control statement is required to de­
fine virtual storage needed at link-edit time for
label processing (more information will be found in
DOS/VS System Control Statements, GC33-
5376).

When an OPEN (or OPENR) macro is issued and
the tape is positioned at load point, the volume
(VOLl) label is checked. Whether at load point or
not, the old file header, if present, is read and
checked to make sure that the file on the tape is
no longer active and may be destroyed. If the file
is inactive or if a tapemark was read, the tape is
backspaced and the new file header (HDRl) label
is written with the information you supply in the

tape label statement. The volume label is not rew­
ritten, altered, or updated.

A comparison is made between the specified densi­
ty (800 or 1600 bpi) and the VOL1 density of the
expired tape. If a discrepancy is found and the tape
is at load point, the volume label(s) is (are) rewrit­
ten according to the specified density.

If an output file begins in the middle of a reel, it is
your responsibility to properly position the tape
immediately past the tapemark for the preceding
file before issuing the OPEN (or OPENR) macro.
The MTC command can be used to do this. If the
tape is improperly positioned, IOCS issues an ap­
propriate message to the operator.

If user standard labels are written, the LABADDR
operand must be specified in the DTF (see Tape
Output Files, above). After writing the standard
label (header or trailer), IOCS loads register 0
(low-order byte) as follows:

o indicates header labels.

V indicates end-of-volume labels.

F indicates end-of -file labels.

Your LABADDR routine can test this character to
determine what labels should be written. IOCS also
loads the address of an 80-byte IOCS label area in
register 1; this is the address you use if checking
labels, or from which you move the label to your
program's label area if you are modifying labels.

Note: For ASCII files, you process your standard
labels in EBCDIC.

A maximum of eight user standard header (UHL),
or trailer (UTL) labels can be written following the
standard header (HDRl), or trailer (EOV1 or
EOFl) labels. The user standard labels are 80
bytes long and are built entirely by you. Bytes 1-4
must contain the label identification (UxLy, where
x=H or T and y=l, 2, ... , 8); the other 76 bytes
can be used as desired.

For ASCII tape files, you can have any number of
user standard header or trailer labels. To comply
with the standards for an ASCII file, these labels
are identified by UHLa and UTLa, where a repre­
sents an ASCII character in the range 2/0 through
5/14, excluding 2/7 (apostrophe). The remaining
76 bytes can be used as desired. It is your respon­
sibility to ensure that labels contain UHLa and
UTLa in the first four bytes.

Note: When creating user header and trailer labels
for 7 -track tapes, only unpacked data is valid in
the 76-byte data portion of the label.

You should build your labels in your area of virtual
storage, and load the address of the label into reg­
ister 0 before issuing the LBRET macro.

When the label is ready to be written, you issue
the LBRET macro, which returns control to IOCS.
If LBRET 2 is used, IOCS writes the label and
returns control to your label routine. If LBRET 1
is used, the label set is terminated and no more
labels can be created. When IOCS receives control,
IOCS writes the label on the magnetic tape and
either returns control (LBRET 2) or writes a tape­
mark (LBRET 1).

When a standard trailer label is written, IOCS ac­
cumulates the block count for the label when logi­
cal IOCS is used. However, if physical IOCS
(DTFPH) is used, your program must accumulate
the block count, if desired, and supply it to IOCS
for inclusion in the standard trailer label. For this,
the count (in binary form) must be moved to the
4-byte field within the DTF table named filena­
meB. For example, if the filename specified in the
DTFPH header name is DELTOUT, the block
count field is addressed by DELTOUTB.

If checkpoint records are interspersed among data
records on an output tape, the block count accu­
mulated by logical IOCS does not include a count
of the checkpoint records. Only data records are
counted. Similarly, if physical IOCS is used, your
program must omit checkpoint records and count
data records only.

After all trailer labels (including user labels, if any)
are written at end-of-volume or end-of-file, IOCS
initiates the EOF or EOV routines (see Tape Out­
put Files, above).

Writing Nonstandard Labels on Tape
To write nonstandard labels, you must specify
FILABL=NSTD and LABADDR=name. When
the file is opened, the tape must be positioned to
the first label that you wish to process. The MTC
job control statement can be used to skip the nec­
essary number of tapemarks or records to position
the file. You must also write your own channel
program and use physical IOCS macros to transfer
the labels from virtual storage onto tape. For an
example on reading, writing, and checking with
unstandard labels see Appendix C.

Part 1. Introduction 27

When a file is opened or closed, or when a volume
is finished, IOCS supplies the hexadecimal repre­
sentation (in the two low-order bytes of register 1)
of the symbolic unit currently in use. See bytes 6
and 7 of the CCB for these values (the format of
the CCB is given in the Physical IOCS Macros
chapter). IOCS also loads register 0 (low-order
byte) as follows:

o indicates header labels.

V indicates end-of-volume labels.

F indicates end-of-file labels.

Your LABADDR routine can then test this charac­
ter to determine the type of labels to be written.

In your LABADDR routine, physical IOCS macros
must be used to transfer labels from virtual storage
onto tape. For each label record, a CCB and CCW
must be established, and the EXCP macro must be
issued (see the Physical IOCS Macros chapter).
Other logical IOCS macros can be used for any
processing other than the transfer of the labels
from virtual storage to tape. Additional LA­
BADDR routine restrictions are discussed above.

After all labels are written, you return control to
IOCS by use of the LBRET 2 macro. IOCS proc­
essing after LBRET is executed, has been discussed
above.

Note: Nonstandard labels are not permitted with
ASCII.

Writing Unlabeled Files on Tape
If you use unlabeled files, you should specify
FILABL=NO and omit TPMARK=NO in the
DTF to improve the efficiency of your program.
Your file must be positioned properly with the
MTC job control statement, if necessary, and writ­
ing begins immediately. Other processing informa­
tion can be found under Tape Input Files, below.

For unlabeled ASCII files, TPMARK=NO is the
only valid entry. If the operand is omitted entirely,
TPMARK=NO is the default. Leading tapemarks
are not supported on unlabeled ASCII files. Special
error recovery procedures facilitate reading back­
wards.

Tape Input Files

For a magnetic tape input file, the macros OPEN
(or OPENR), CLOSE (or CLOSER), or an end-

28 DOS/VS Supervisor & I/O Macros

of -volume condition cause the tape to be rewound
as specified by the DTFSR of DTFMT REWIND
parameter. No rewind can be defined in the
DTFPH macro. Tape positioning depends on the
labels to be processed and is your responsibility.

If any labels other than standard labels are to be
checked, a LABADDR routine must be supplied.
Your LABADDR routine, specified in the DTF,
cannot issue a macro that calls a transient routine.
This is the same as for the tape output files.

When an end-of -file condition occurs, IOCS
branches to your EOF ADDR routine specified in
the DTF. Generally, you issue a CLOSE (or
CLOSER) in this routine to initiate a rewind oper­
ation for the tape (as specified by the DTF RE­
WIND operand), and deactivate the file. If CLOSE
(or CLOSER) is issued before the end of data is
reached, the rewind option is executed and the file
is deactivated without any subsequent label check­
ing.

When logical IOCS reads a tapemark on a tape
input file, either an end-of-file or end-of-volume
condition exists. This condition is determined by
IOCS or by yourself, depending on the type of
labels (if any) used for the file, and the appropriate
functions are performed.

IOCS can determine an end-of-volume condition
only when trailer labels have been checked (see
Checking Standard Labels on Tape or Checking
Nonstandard Labels on Tape, below). If labels are
not processed, your EOFADDR routine must proc­
ess the condition (see FEOV Macro). When IOCS
does detect the EOV condition, it switches to an
alternate unit as designated in an ASSGN job con­
trol statement. If an alternate drive is not specified,
a message to mount a new volume is issued. At this
time, the operator may also cancel the job. When
the operator mounts the volume, processing re­
sumes. If the input file is processed by physical
IOCS (DTFPH), you must issue an OPEN (or
OPENR) macro for the new volume. Then, IOCS
checks the header label(s) and processing contin­
ues.

In some cases, you may desire to force an end-of­
volume condition at a point other than at the nor­
mal tapemark. You may want to discontinue read­
ing the records on the present volume and continue
reading records on the next volume. This may be
necessary because of some major change in record
category or in processing requirements. An FEOV
(forced end-of-volume) is available for such cases

(see FEOV Macro in the Imperative Macros sec­
tion of the Sequential Access Method Macros
chapter).

Reading a Tape Backwards

When reading backwards (READ=BACK), a la­
beled tape must be positioned so that the first re­
cord read, when OPEN (or OPENR) is executed,
is the tapemark physically following the trailer la­
bels. An unlabeled file must be positioned so that
the first record read, when OPEN (or OPENR) is
executed, is the tape mark physically following the
first logical data record to be read (the last record
written when the file was created). Although AS­
CII unlabeled tapes contain no leading tapemark,
special error recovery procedures allow these tapes
to be read backwards.

Label checking of standard and nonstandard labels
is similar. That is, lacs still processes standard
labels, and your routine (if specified) still processes
user or nonstandard labels. The only difference is
that the volume label is not read immediately for
standard labels, the trailer labels are processed in
reverse order (relative to writing), and header la­
bels are processed at EOF time, also in reverse
order. If physical lacs macros are used to read
records backwards, labels cannot be checked
(DTFPH must not be specified).

Because backwards reading is confined to one vol­
ume, an end-of-file condition always exists when
the header label is encountered. At end-of-file for
standard lables, lacs checks only the block count
(which was stored from the trailer label) and then
branches to your EOFADDR routine. At EOF for
nonstandard labels, lacs branches to your
LABADDR routine where the header label may be
checked. To check labels, you must evoke physical
lacs macros to read the label(s). Your
LABADDR routine, specified in the DTF, cannot
issue a macro that calls a transient routine. For
example, OPEN (or OPENR), CLOSE (or CLOS­
ER), DUMP, CANCEL, and CHKPT cannot be
issued. Also, when processing multivolume files,
your label routine must save and restore register 15
if any logical lacs macros other than LBRET are
used. When user standard labels are checked, the
ckecking is the same as that for standard labels.

Checking Standard Labels on Tape

When standard labels are to be checked (DTFMT
or DTFSR FILABL=STD or DTFPH

TYPFLE=INPUT), you must supply the TLBL job
control statement for standard label information.
Also, when processing standard labels, a LBL TYP
job control statement is required to define virtual
storage needed at link-edit time for label processing
(more information will be found in DOS/VS Sys­
tem Control Statements, GC33-5376).

When standard labeled files positioned at load
point are opened, lacs requires that the first re­
cord be a volume (VOL 1) label. The next label
could be any HDRI label preceding the file. lacs
locates the correct file header (HDRl) label by
checking the file sequence number.

After checking the standard label (if user standard
labels UHLI-UHLS or UTLI-UTLS are present
for EBCDIC files, or UHLa or UTLa for ASCII
files), lacs enters the LABADDR routine and
enters an 0, V, or F in the low-order byte of regis­
ter O.

a indicates header labels.

V indicates end-of-volume labels.

F indicates end-of-file labels.

Your routine can test this character to determine
what labels should be checked. lacs also loads
the address if an SO-byte lacs label area in regis­
ter 1; this is the address you use if checking labels,
or from which you move the label to your
program's label area if you are modifying labels.

After each label is checked, a LBRET 2 macro can
be issued for lacs to read the next label. Howev­
er, if a tapemark is read instead, label checking is
terminated. If you wish to end label checking be­
fore all labels are read, you can issue a LBRET 1
macro. After all trailer labels are checked, lacs
initiates EOV or EOF procedures (see Tape Input
Files, above).

Checking Nonstandard Labels on Tape

Any tape labels not conforming to the standard
label specifications are considered nonstandard. It
is your responsibility to check such labels if they
are present. The MTC job control statement can
be issued to skip the necessary number of tape­
marks or records to position the file. On input,
nonstandard labels mayor may not be followed by
a tapemark. The following possible conditions can
thus be encountered:

Part 1. Introduction 29

1. One or more labels, followed by a tapemark,
are to be checked.

2. One or more labels, not followed by a tape­
mark, are to be checked.

3. One or more labels, followed by a tapemark,
are not to be checked.

4. One or more labels, not followed by a tape­
mark, are not to be checked.

For conditions 1 and 2, the DTFMT or DTFSR
operands FILABL=NSTD and LABADDR=name
must be specified. For condition 3, the operand
FILABL=NSTD must be specified. If LABADDR
is omitted, laCS skips all labels, bypasses the tape­
mark, and positions the tape at the first data record
to be read. For condition 4, the entries
FILABL=NSTD and LABADDR=name must be
specified. In this case, laCS cannot distinguish
labels from data records because there is no tape­
mark to indicate the end of the labels. Therefore,
you must read all labels--even though checking is
not desired--to position the tape at the first data
record.

Each time laCS opens a file or reads a tapemark,
it supplies (in the low-order bytes of register 1) the
hexadecimal representation of the symbolic unit
currently used. These values are as shown in bytes
6 and 7 of the CCB. laCS also loads an alphabet­
ic a into the low-order byte of register 0 when the
file is opened.

When your routine gains control, the tape is not
moved by OPEN (or OPENR). Physical laCS

30 DOS/VS Supervisor & I/O Macros

macros must be used to transfer labels from tape to
virtual storage. Therefore, you must establish a
CCB and a CCW. The macro EXCP is used to
initiate the transfer. After all labels are checked,
you return control to OPEN (or OPENR) by use
of the LBRET 2 macro.

When laCS reads a tapemark, it checks to deter­
mine if you have supplied a LABADDR routine. If
a LABADDR routine was supplied, laCS exits to
the routine. Otherwise, laCS skips the labels and
branches to the EOF ADDR routine. In the LA­
BADDR routine, you must use physical lacs mac­
ros to read your label(s). Furthermore, you must
determine the EOF and/or EOV condition and
indicate to lacs which condition exists by loading
either EF (end-of-file) or EV (end-of-volume) into
the two low-order bytes of register O. When this
information is passed to laCS, it initiates the end­
of-file or end-of-volume procedures.

Unlabeled Input Files on Tape

The first record for unlabeled tapes
(FILABL=NO) mayor may not contain a tape­
mark. Unlabeled tapes with ASCII contain no lead­
ing tapemark. If a tapemark is present, the next
record is considered to be the first data record. If
there is no tapemark, laCS reads the first record,
determines that it is not a tapemark, and backspac­
es to the beginning of that record. The file can be
properly positioned by use of the MTC job control
statement. When the tape mark following the last
data record is read, lacs branches to the end-of­
file address.

PART 2

SEQUENTIAL ACCESS METHOD

Declarative Macros

DTFxx Associated Device Type
Macro Macros

DTFCD CDMOD Card

DTFCN - Console

DTFDI DIMOD Device Independent

DTFDR DRMOD 3886 Optical Character
DFR Reader
DLINT

DTFDU DUMODFx Diskette

DTFMR MRMOD Magnetic Reader

DTFMT MTMOD Magnetic Tape

DTFOR ORMOD Optical Reader

DTFPR PRMOD Printer

DTFPT PTMOD Paper Tape

DTFSD SDMODxx Sequential DASD

DTFSR - Sequential Device

Imperative Macros

CHECK ERET OPENR RDLINE
CHNG FEOV POINTR READ
CLOSE FEOVR POINTS RELSE
CLOSER GET POINTW RESCN
CNTRL LBRET PRTOV SETDEV
DISEN NOTE PUT TRUNC
DSPLY OPEN PUTR WAITF

WRITE

Figure 2-1 summarizes the declarative and imperative macros which may be used
for SAM processing on a given I/O device.

V.l f IV ..
~

0
~ 0 -en

..........

< en

~ / IMPERA liVE MACROS DECLARATIVE MACROS INITIALIZATION PROCESSING COMPLETION

Q~~dJA~_~f.t/~if£JI~~~H
en
t:
"0 Operator ConsoI. X X X X X

.::::: (D ..,
0 <:

r;;'
S 0
~

..,
n .. Pl

= ::l
~ C.

1287/1288
4 11 10 10 11 11 11 4

OptIcal Reade. X X X X X X X X X X X
4 15 4

1403/~32O:V X X X X X X X X 3211/5203 Prln ...

"'" = .::::: ..
0 00

> 3: 3: Pl

-= (j,
= 0
n [Il

~
~

~.

1255/12~/ 4 14 4

1419 Magnetic X X X X X X X X X Charac ... Iteader

1442/2501/25ZV'254OI 23 21 4 15 13 22 4

2596/3504/3S05/35251~ X X X X X X X X
20 21 4 15 20 12 4

1442/25ZV'254OI352~
X X. X X X X X X X l'unc:h

= IJCI 4 15 4
2560WCM! X X X X X X X X X 5425 MFCU

4 6 15 16 6 6 6 5 6 7 8 6 ..
2311 Disk Unit X

4 6 15 16 6 6 6 5 6 7 8 6 ..
231"/2319/3330/~ X 3340 Disk Unit

4 15 16 5 4
2321 Dalo Cell X X X X X X X X X X

.. 6 9 15 16 6 6 6 6 6 7 8 6 ..
2400-Seri.v3420 X Magn.tic Tape Unit

18 2 2
2671/1017 Paper

X X X X X Tape Reade.

17 17
1018 Paper Tape

X .X X X l'unc:h

1270/1275 4 14 ..
OptIcal Reader.! X X X X X X X X X Sa

3881 Optical Mark

X X X X X Read ..

3886 Optical Reader X X X X X X X
4 16 4

3540 Disk
X X X X X X X V°Unit

_L..-I.--L...-

Notes:

1. Use only with system logical units.

2. Recommended for compatibility use only.

3. Applies only if LABADDR is specified.

4. Always required for this file.

5. PUT rewrites an input DASD record if UPDATE is specified. GET and PUT cannot be
used with workfiles.

6. Work files for DASD and magnetic tape only.

7. Applies only to blocked input records.

8. Applies only to blocked output records.

9. Applies only when 2 selector channels and one or more 2-channel simultanous-read­
while-write tape control units are installed.

10. Journal tape processing only.

11. 1287/1288 document processing only.

12. PUT punches on input card with additional information if TYPEFLE=CMBND is
specified for the 1442, 2520, or 2540, or if FUNC=RP or RPW is specified for the
3525. PUT prints on the card for the 3525 with the print feature.

13. In the 2540, GET normally reads cards in the read feed. If TYPEFLE=CMBND is
specified, GET reads cards at the punch-feed-read station.

14. For the 1419 or 1275 with the Pocket Light Feature.

15. This macro cannot be used with DTFDI.

16. Applies only if ERREXT specified.

17. Required if two I/O areas.

18. Valid for 2671 only.

19. 3525 Card Punch with read feature.

20. 3525 Card Punch with print feature.

21. Not supported for 2501, 3505, or 3525, respectively.

22. Not supported for 2501 or 3505. PUT is supported for any device that has a punch.

23. Not supported by 2596.

Part 2. Sequential Access Method 33

DECLARATIVE MACROS

As stated earlier, there are two related types of
declarative macros: DTFxx macros and logic mo­
dule generation macros. In this section each type of
processing is divided by type of storage medium:
card, magnetic tape, DASD, etc. The DTFxx macro
used with the file is discussed first, and then
(where applicable) the corresponding logic module
generation macro.

As discussed earlier, you need not specify names
for your modules. IOCS will do this for you, mak­
ing use of subsetting/ supersetting wherever it is
possible (see Module Names in The Macro
System chapter).

The sections on module-naming conventions fol­
lowing the discussions of the logic module genera­
tion macros are therefore provided only for those
who are interested in seeing how IOCS forms the
names for the modules.

DTFCDMacro

This macro defines a file for a card reader. However,
it should not be used to read SYSIPT data if the
program might be invoked by a catalogued proce­
dure. In this case, the DTFDI macro should be used.

Enter the symbolic name of the file (filename) in the
name field and DTFCD in the operation field. The
detail entries follow the DTFCD header card in any
order. Figure 2-3 lists the keyword operands con­
tained in the operand field.

ASOCFLE= rdename
This operand is used together with the FUNC ope­
rand to define associated files for the 2560, 3525, or
5425. (For a description of associated files see the
DOS/VS Data Management Guide, GC33-5372.)
ASOCFLE specifies the filename of associated read,

34 DOS/VS Supervisor and I/O Macros

punch, or print files, and enables macro sequence
checking by the logic module of each associated file.
One filename is required per DTF for associated
files. \

Figure 2-2 defines the filename specified by the
ASOCFLE operand for each of the associated
DTFs.

In ASOCFILE operand of ...

FUNC= read DTFCD, punch print DTFPR,
specify file- DFTCD, specify file-
name of specify file- name of

name of

RP punch read DTFCD
DTFCD

RW print DTFPR read DTFCD

PW print DTFPR punch
DTFCD

RPW punch print DTFPR read DTFCD
DTFCD

Figure 2-2 ASOCFLE operand usage

For example, if FUNC=PW is specified, specify the
filename of the print DTFPR in the ASOCFLE ope­
rand of the punch DTFCD, and specify the filename
of the punch DTFCD in the print DTFPR. Or if
FUNC=RPW is specified, specify the filename of
the punch DTFCD in the ASOCFLE operand of the
read DTFCD; specify the filename of the print
DTFPR in the punch DTFCD; and specify the filen­
ame of the read DTFCD in the print DTFPR.

Applies to
"'0
Q)

..... !::
..... = :s
= 0. S
0. = 0 !:: 0 U -
x x x M DEV ADDR = SYSxxx Symbolic unit for reader-punch used for this file

X X X M IOAREAl = xxxxxxxx
Name of first I/O area, or seperate input area if TYPEFLE=CMBND
and IOAREA2 are specified.

X X 0 ASOCFLE = xxxxxxx Name for FUNC=RP, RW, RPW, PW

Length of one I/O area, in bytes. If omitted, 160 is assumed for a col-
X X X 0 BLKSIZE = nnn umn binary on the 2560,3504,3505, or 3525; 96 is assumed for the 2596

or 5425, otherwise 80 is assumed.

X X X 0 CONTROL = YES
CNTRL macro used for this file. Omit CTLCHR for this file. Does not
apply to 2501.

X 0 CRDERR = RETRY Retry if punching error is detected. Applies to 2520 and 2540 only.

(YES or ASA). Data records have control character. YES for S/370
X 0 CTLCHR = xxx character set; ASA for American National Standards Institute character

set. Omit if TYPEFLE=CMBND. Omit CONTROL for this file.

X X X 0 DEVICE = nnnn
(1442,2501,2520, 2540, 2560P, 2560S,2596, 3504, 3505,3525, 5425P,or
5425S). If omitted, 2540 is assumed.

X X 0 EO FAD D R = xxxxxxxx Name of your end-of-file routine.

X X 0 ERROPT = xxxxxx
IGNORE, SKIP, or name. Applies to 2560,3504, 3505, 3525 and 5425
only.

X X 0 FUNC = xxx R, P, W, I, RP, RW, RPW, PW. Applies to 2560, 3525, and 5425 only.

Name of second I/O area, or separate output area if
X X X 0 10 AREA2 = xxxxxxx TYPEFLE=CMBND. Not allowed if FUNC=RP, RW, RPW, or PW.

Not allowed for output file if ERROPT=IGNORE.

X X 0 IOREG = (nn) Register number, if two I/O areas used and GET or PUT does not
specify a work area. Omit WORKA.

X X 0 MODE = xx
(E or C) for 2560. (E, C, 0, R, EO, ER, CO, CR) for 3504 and 3505. (E,
C, R, ER, CR) for 3535. If omitted, E is assumed.

M=Mandatory; O=Optional

Figure 2-3 DTFCD macro (part 1 of 2)

Part 2. Sequential Access Method 35

Applies to
"'0
Q) ... = ... = :s

= c.. 6 ... c.. = 0 = 0 U -
0

MODNAME= Name of CDMOD logic module for this DTF. If omitted, 10CS gener-
X X X

xxxxxxxx ates standard name.

X 0 OUBLKSZ = nn
Length of IOAREA2 if TYPEFLE=CMBND. If OUBLKSZ omitted,
length specified by BLKSZ is assumed for IOAREA2.

X X X 0 RDONLY = YES
Generates a read-only module. Requires a module save area for each

task using the module.

X X X 0 RECFORM = xxxxxx
(FIXUNB, UNDEF, or VARUNB). If omitted, FIXUNB is assumed.

Input or combined files always FIXUNB.

X 0 RECSIZE = (nn)
Register number if RECFORM=UNDEF. General registers 2-12, writ-

ten in parentheses.

X X X 0 SEPASMB = YES DTFCD is to be assembled separately.

X X 0 SSELECT = n
(t or 2) for 1442,2520,2596,3504, or 3525. (1,2, or 3) for 2540. (1,2,3,

4, or 5) for 2560. (1, 2, 3, or 4) for 5425. Stacker-select character.

X X X 0 TYPEFLE = xxxxxx
(INPUT, OUTPUT, or CMBND) If omitted INPUT assumed. CMBND

may be specified for 1442N 1, 2520B 1, or 2540 punch-feed-read only.

X X X 0 WORKA = YES
GET or PUT specifies work area. Omit IOREG. Not allowed for output

file if ERROPT=IGNORE.

M=Mandatory; O=Optional

Figure 2-3 DTFCD macro (part 2 of 2)

36 DOS/VS Supervisor and I/O Macros

BLKSIZE=n
Enter the length of the I/O area (IOAREA1). If the
record format is variable or undefined, enter the
length of the largest record. If the operand FUNC=I

is specified for the 2560 or 3525, the length speci­
fied for BLKSIZE must be 80 data bytes if
CTLCHR= YES or ASA is not specified, or 81 if
CTLCHR= YES or ASA is specified.

For the 3881, the BLKSIZE operand must be suffi­
cient to contain:

6 bytes of record description information

• Mark read data

• Binary coded decimal (BCD) mark read data if
the BCD feature is being used.

• 7 bytes of serial number and batch number data
if the serial number feature is being used.

The BLKSIZE operand for the 3881 cannot exceed
900. If a BLKSIZE greater than 900 is specified, the
BLKSIZE defaults to 900.

If the BLKSIZE operand is omitted, the length is
assumed to be 80, with the following exceptions:

160 is assumed for column binary mode on the
2560, 3505, or 3525.

• 96 is assumed for the 2596 or 5425.

900 is assumed for the 3881.

CONTROL=YES
This operand is specified if a CNTRL macro is to be
issued for a file. If this operand is specified,
CTLCHR must be omitted. The CNTRL macro
cannot be used for an input file with two I/O areas
(when the IOAREA2 operand is specified).

This operand must not be specified for an input file
used in association with a punch file (when the ope­
rand FUNC=RP or RPW is specified) on the 2560,
3525, or 5425; in this case, however, this operand
can be specified in the DTFCD for the associated
punch file.

CRDERR=RETRY
This operand applies to card output on the 2520 or
2540. It specifies the operation to be performed if an
error is detected. From this specification, 10CS gen­
erates a retry routine and a save area for the card
punch record.

If a punching error occurs, it is usually ignored and
operation continues. The error card is stacked in

stacker PI (punch), while correct cards are stacked
in the stacker you select. If the CRDERR=RETRY
operand is included and an error condition occurs,
10CS also notifies the operator and then enters the
wait state. The operator can either terminate the job,
ignore the error, or instruct 10CS to repunch the
card.

CTLCHR= IASA 1 YES}
This operand is required if first-character control is
to be used on an output file. ASA denotes the
American National Standards Institute, Inc. charac­
ter set. YES denotes the System/370 character set.
Appendix A contains a complete list of codes. This
entry does not apply to combined files. If this ope­
rand is specified, CONTROL must be omitted.

IPEV ADDR= ISYSIPT 1 SYSPCH 1 SYSRDR 1
SYSnnn}

This operand specifies the symbolic unit to be asso­
ciated with a file. The symbolic unit represents an
actual I/O device address and is used in the ASSG N
job control statement to assign the actual I/O device
address to the file.

SYSIPT, SYSPCH, or SYSRDR must not be speci­
fied:

• for the 2596

• for the 3881

for 1442, 2520, or 2540 combined files
(TYPEFLE=CMBND)

• for 2560, 3525, or 5425 associated files
(FUNC=RP, RW, RPW, or PW)

if the operand FUN C = I is specified

• if the MODE operand is specified with the C, 0,
or R parameters.

DEVICE=12540 114421250112520 1 2560P 1
2560S12596135041350513525 1
5425P 1 5425S 1 38811

This operand specifies the I/O device associated
with a file. The "p" and "s" included with the
"2560" and "5425" parameters specify primary or
secondary input hoppers.

EOFADDR=name
This entry must be included for input and combined
files and specifies the symbolic name of your end-of­
file routine. 10CS automatically branches to this
routine on an end-of-file condition. In your routine
you can perform any operations required for the end

Part 2. Sequential Access Method 37

of the file (you generally issue a CLOSE instruction
for the file).

10CS detects end-of-file conditions in the card read­
er by recognizing the characters / * punched in card
columns 1 and 2. If the system logical units SYSIPT
and SYSRDR are assigned to a 5425, 10CS requires
that the /* card, indicating end-of-file, be followed
by a blank card. An error condition results if cards
are allowed to run out without a / * trailer card (and
without a / & card if end-of-job).

ERROPT={IGNORE I SKIP I name}
This operand specifies the error exit option used for
an input or output file on a 2560, 3504, 3505, 3525,
or 5425. Either IGNORE, SKIP, or the symbolic
name of an error routine can be specified for input
files. Only IGNORE can be specified for output
files. This operand must be omitted when using 2560
or 5425 associated output files. The functions of
these parameters are described below.

IGNORE indicates that the error is to be ignored.
The address of the record in error is put in register 1
and made available for processing. For output files,
byte 3, bit 3 of the CCB is also set on (see Figure
6-1); you can check this bit and take the appropriate
action to recover from the error. Only one I/O area
and no work area is permitted for output files. When
IGNORE is specified for an input file associated
with a punch file (FUNC=RP or RPW) and an error
occurs, a PUT for the card in error must nevertheless
be given for the punch file.

SKIP indicates that the record in error is not to be
made available for processing. The next card is read
and processing continues.

If name is specified, 10CS branches to your routine
when an error occurs, where you may perform what­
ever actions you desire. Register 1 contains the ad­
dress of the record in error, and register 14 contains
the return address. GET macros must not be issued
in the error routine for cards in the same device (or
in the same card path for the 2560 or 5425). If the
file is an associated file, PUT macros must not be
issued in the error routine for cards in the same de­
vice (for the 2560 or 5425 this applies to cards in
either card path). If any other 10CS macros are is­
sued in the routine, register 14 must be saved. If the
operand RDONL Y = YES is specified, register 13
must also be saved. At the end of your routine re­
turn to 10CS by branching to the address in register
14. If the input file is associated with an output file
(FUNC=RP, RPW,or RW), no punching or printing

38 DOS/VS Supervisor and I/O Macros

must be done for the card in error. 10CS continues
processing by reading the next card.

Note: When ERROPT is specified for an input file
and an error occurs, there is a danger that the / *
end-of -file card may be lost. This is because 10CS,
after taking the action for the card in error specified
by the ERROPT operand, returns to normal process­
ing by reading the next card which is assumed to be
a data card. If this card is in fact an end-of-file card,
the end-of-file condition cannot be recognized.

FUNC=IR I P I I I RP I RW I RPW I PW}
This operand specifies the type of file to be proc­
essed by the 2560, 3525, or 5425. R indicates read,
P indicates punch, and W indicates print.

When FUNC=I is specified, the file will be both
punched and interpreted; no associated file is neces­
sary to achieve this. The information printed will be
the same as the information punched, in contrast to
FUNC=PW, where any relation between the in­
formation printed and the information punched is
determined by your program. When FUNC=I is
specified the file can have only one I/O area.

RP, RW, RPW, and PW are used, together with the
ASOCFLE operand, to specify associated files;
when one of these parameters is specified for one
file, it must also be specified for the associated
file(s). Associated files can each have only one I/O
area.

IOAREAl =name
This operand specifies the name of the input or out­
put area used for this file.

If issued for a combined file, this operand specifies
the input area. If IOAREA2 is not specified, the
area specified in this operand is used for both input
and output.

IOAREA2=name
This operand specifies the name of a second I/O
area. If the file is a combined file and the operand is
specified, the designated area is an output area.

If this operand is specified for the 3881, the 10REG
operand must also be specified.

This operand must not be specified if FUNC=I,
FUNC=RP, RPW, RW, or PW, or for output files if
ERROPT=IGNORE.

IOREG=(r)
If work areas are not used but two input or output
areas are, this operand specifies the register (2-12)
in which IOCS puts the address of the record. For
output files, 10CS puts the address where the user
can build a record. This operand cannot be used for
combined files.

This operand must be specified for the 3881 if the
IOAREA2 operand is specified.

MODE={~ I C I 0 I R I EO I ER I CO I CRJ
This operand specifies the mode used to process an
input or output file for a 2560, 3504, 3505, or 3525.
E indicates normal EBCDIC mode; C indicates col­
umn binary mode; 0 indicates optical mark read
(OMR) mode; R indicates read column eliminate
mode. E is also assumed if only 0 or R is specified.

For the 2560, only E and C are valid entries.

Valid entries for the 3504 and 3505 are E, C, 0, R,
EO, ER, CO, and CR. Valid entries for the 3525 are
E, C, R, ER, and CR. If 0 or R is specified (with or
without E or C), a format descriptor card defining
the card columns to be read, or eliminated, must be
provided. See OMR considerations in the DOS/VS
Data Management Guide, GC33-5372, for instruc­
tions on how to write this card as well as on how to
code and process OMR data.

Only E is valid for SYSIPT, SYSPCH, or SYSRDR.
o and R (with or without E or C) cannot be speci­
fied for output files. E is assumed if the MODE ope­
rand is omitted.

MODNAME = name
This operand may be used to specify the name of the
logic module that will be used with the DTF table to
process the file. If the logic module is assembled
with the program, MODNAME must specify the
same name as the CDMOD macro.

If this operand is omitted, standard names are gener­
ated for calling the logic module. If two DTF macros
call for different functions that can be handled by a
single module, only one module is called.

OUBLKSZ=n
This operand is used in conjunction with IOAREA2,
but only for a combined file. Enter the maximum
number of characters to be transferred at one time.
If this entry is not included and IOAREA2 is speci­
fied, the same length as defined by BLKSIZE is as­
sumed.

RDONLY=YES
This operand is specified if the DTF is used with a
read-only module. Each time a read-only module is
entered, register 13 must contain the address of a
72-byte doubleword-aligned save area. Each task
should have its own uniquely defined save area.
Each time an imperative macro (except OPEN or
OPENR) is issued, register 13 must contain the ad­
dress of the save area associated with that task. The
fact that the save areas are unique for each task
makes the module reentrant (that is, capable of be­
ing used concurrently by several tasks). For more
information see Shared Modules and Files in the
Multitasking Macros chapter.

If an ERROPT routine issues I/O macros using the
same read-only module that caused control to pass
to the error routine, your program must provide an­
other save area. One save area is used for the nor­
mal I/O operations, and the second for I/O opera­
tions in the ERR OPT routine. Before returning to
the module that entered the ERROPT routine, regis­
ter 13 must contain the save area address originally
specified for the task.

If this operand is omitted, the module generated is
not reenterable, and no save area is required.

RECFORM={FIXUNB I V ARUNB I UNDEFJ
This operand specifies the record format of the file:
fixed length, variable length, or undefined. If the
record format is FIXUNB, this operand may be
omitted. If TYPEFLE = INPUT ,
TYPEFLE=CMBND, FUNC=I, or
DEVICE=3881, this operand must be FIXUNB.

RECSIZE=(r)
For undefined records, this operand specifies the
register (2-12) that contains the length of the output
record. You must load the length of each record into
the specified register before you issue the PUT
macro for the record.

SEPASMB=YES
Include this operand only if the DTFCD is assem­
bled separately. This causes a CATALR card with
the filename to be punched ahead of the object deck
and defines the filename as an ENTRY point in the
assembly. If the operand is omitted, the program
assumes that the DTF is being assembled with the
problem program and no CAT ALR card is punched.

SSELECT=n
This operand specifies the valid stacker-select char­
acter for a file. If this entry is not specified, cards are
selected into NR (normal read) or NP (normal

Part 2. Sequential Access Method 39

punch) stackers. For the 5425 cards are placed in
stacker 1 when the cards came from hopper 1 and
into stacker 5 (4) when they came from hopper 2.
This operand must not be specified for combined
files or for the 3881. This operand must not be speci­
fied for 2560, 3525, or 5425 read files associated
with punch files (FUNC=RP or RPW); in this case
the SSELECT=n operand may be specified for the
associated output file. See the CNTRL Macro in
the Processing Macros section later in this chapter
for further information.

Note: When this operand is used with a device other
than a 1442 or 2596, the program ignores
CONTROL= YES with input files.

TYPEFLE={INPUT I OUTPUT I CMBNDI
This operand specifies if a file is input, output, or
combined. A combined file can be specified for a
1442 or 2520 or for a 2540 with the punch-feed­
read feature. TYPEFLE=CMBND is applicable if
both GETs and PUTs are issued for the same card
file.

Only TYPEFLE=INPUT can be specified for the
3881. If TYPEFLE=OUTPUT or
TYPEFLE=CMBND is specified, the DTF defaults
to DEVICE=2540 and a non-executable CD MOD
logic module is produced. The MNOTE "Improper
device. 2540 assumed." is then printed at assembly
time. If TYPEFLE=INPUT is omitted, INPUT is
assumed.

WORKA=YES
If 110 records are processed in work areas instead of
in the 110 areas, specify this operand. You must set
up the work area in storage. The address of the work
area, or a general-purpose register which contains
the address, must be specified in each GET and PUT
macro.

If ERROPT=IGNORE is specified for an output file
or if DEVICE=3881, WORKA=YES must not be
specified.

CDMODMacro

Listed here are the operands you can specify for
CDMOD. The first card contains CDMOD in the
operation field and may contain a module name in
the name field.

CONTROL = YES
Include this operamLif the CNTRL macro is used
with the module and its associated DTFs. The mo-

40 DOS/VS Supervisor and I/O Macros

dule also processes files for which the CNTRL ma­
cro is not used.

If this operand is specified, the CTLCHR operand
must not be specified. This operand cannot be speci­
fied if IOAREA2 is used for an input file.

This operand must not be specified for an input file
used in association with a punch file (when the ope­
rand FUNC=RP or RPW is specified) on the 2560,
3525, or 5425; in this case, however, this operand
can be specified in the DTFCD and CDMOD for the
associated punch file.

CRDERR=RETRY
Include this operand if error retry routines for the
2540 and 2520 punch-equipment check are included
in the module. Whenever this operand is specified,
any DTF used with the module must also specify the
same operand. This operand does not apply to an
input or a combined file.

CTLCHR={ASA 1 YESI
Include this operand if first character stacker select
control is used. Any DTF to be used with this mo­
dule must have the same operand. If CTLCHR is
included, CONTROL must not be specified. This
operand does not apply to a combined file or to an
input file.

DEVICE={2540 1144212501 12520 1 2560P 1
2560S1 25961 3504 13505 135251
5425P 1 5425S 138811

Include this operand to specify the 110 device used
by the module. The "p" and "s" included with the
"2560" and "5425" parameters specify primary or
secondary input hoppers; regardless of which is spec­
ified, however, the module generated will handle
DTFs specifying either hopper.

Any DTF to be used with this module must have the
same operand (except as just noted concerning the
"p" and "s" specification for the 2560 or 5425).

FUNC={R 1 P 1 I 1 RP 1 RW 1 RPW 1 PWI
This operand specifies the type of file to be proc­
essed by the 2560, 3525, or 5425. Any DTF used
with the module must have the same operand. R
indicates read, P indicates punch, and W indicates
print.

When FUNC=I is specified, the file will be both
punched and interpreted; no associated file is neces­
sary to achieve this.

RP, RW, RPW, and PW specify associated files;
when one of these parameters is specified for one
file, it must also be specified for the associated
file(s). Associated files can have only one I/O area
each.

IOAREA2=YES
Include this operand if a second I/O area is used.
Any DTF used with the module must also include
the IOAREA2 operand. This operand is not required
for combined files. This operand is not valid for
associated files.

RDONLY=YES
This operand causes a read-only module to be gener­
ated. Whenever this operand is specified, any DTF
used with the module must have the same operand.

RECFORM=IFIXUNB I VARUNB I UNDEF}
This operand specifies the record format: fixed­
length, variable-length, or undefined. Any DTF used
with the module must have the same operand. If
TYPEFLE=INPUT, TYPEFLE=CMBND, or
FUNC=I, this operand must be FIXUNB. For the
3881, only RECFORM=FIXUNB is valid. If this
operand is omitted for the 3881,
RECFORM=FIXUNB is assumed.

SEPASMB=YES
Include this operand only if the module is assembled
separately. This causes a CATALR card with the
module name (standard or user-specified) to be
punched ahead of the object deck and defines the
module name as an ENTRY point in the assembly. If
the operand is omitted, the program assumes that the
DTF is being assembled with the problem program
and no CAT ALR card is punched.

TYPEFLE=lINPUT I OUTPUT I CMBND}
This operand generates a module for either an input,
output, or combined file. Any DTF used with the
module must have the same operand. For the 3881,
only TYPEFLE=INPUT is valid. If
TYPEFLE=INPUT is omitted, INPUT is assumed.

WORKA=YES
This operand must be included if records are to be
processed in work areas instead of in 1/ a areas. Any
DTF used with the module must have the same ope­
rand. This operand is not valid for the 3881.

Standard CDMOD Names
Each name begins with a 3-character prefix (IJC)
and continues with a 5-character field corresponding
to the options permitted in the generation of the

module.

CDMOD name = IJCabcde

" a = F RECFORM=FIXUNB (always for INPUT,

CMBND, or FUNC=I files)

V RECFORM=VARUNB

U RECFORM=UNDEF

b A CTLCHR=ASA (not specified if CMBND)

Y"'- CTLCHR= YES

C CONTROL= YES

Z CTLCHR or CONTROL not specified

c B RDONLY=YESandTYPEFLE=CMBND

C TYPEFLE=CMBND

H RDONL Y = YES and TYPEFLE=INPUT

I ""-TYPEFLE=INPUt

N RDONL Y = YES and TYPEFLE=OUTPUT

0 TYPEFLE=OUTPUT

d Z WORKA and IOAREA2 not specified

W WORKA=YES

I IOAREA2= YES

= B WORKA and IOAREA2

Z WORKA=YES not specified (CMBND file
only)

e o DEVICE=2540, 3881

1 DEVICE= 1442, 2596

2 DEVICE=2520

3 DEVICE=2501

4 DEVICE=2540 and CRDER

5 DEVICE=2520 and CRDERR

6 DEVICE=3505 or 3504

7 DEVICE=3525 and FUNC=R/P or omitted

8 DEVICE=2560 and FUNC=R/P or omitted

9 DEVICE=5425 and FUNC=R/P or omitted

A DEVICE=3525 and FUNC=RP

B DEVICE=3525 and FUNC=RW

C DEVICE=3525 and FUNC=PW

D DEVICE=3525 and FUNC=I

E DEVICE=3525 and FUNC=RPW

= F DEVICE=2560 and FUNC=RP

G DEVICE=2560 and FUNC=RW

H DEVICE=2560 and FUNC=PW

I DEVICE=2560 and FUNC=I

J DEVICE=2560 and FUNC=RPW

K DEVICE=5425 and FUNC=RP

L DEVICE=5425 and FUNC=RW

M DEVICE=5425 and FUNC=PW

= N DEVICE=5425 and FUNC=I

0 DEVICE=5425 and FUNC=RPW

Subset/Superset eDMOD Names
The following chart shows the subsetting and super­
setting allowed for CDMOD names. All but one of
the parameters are exclusive (that is, do not allow

Part 2. Sequential Access Method 41

supersetting). A module name specifying C
(CONTROL) in the b location is a superset of a
module name specifying Z (no CONTROL or
CTLCHR). A module with the name IJCFCIWO is a
superset of a module with the name IJCFZIWO. See
Ioes Subset/Superset Names in The Macro
System chapter.

* * *
I J C F A B

V Y C
U + H

C I
Z N

0

* *
B
I
tV
Z

0
1
2
3
4
5
6
7
8
9
A
B
C

•

M
N
o

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

DTFCN Macro

DTFCN defines an input or output file that is proc­
essed on a 3210 or 3215 console printer-keyboard,
or a display operator console. DTFCN provides
GET /PUT logic as well as PUTR logic for a file.
Enter the symbolic name of the file in the name field
and DTFCN in the operation field. The detail entries
follow the DTFCN header card in any order. Figure
2-4 lists the keyword operands contained in the ope­
rand field.

42 DOS/VS Supervisor and I/O Macros

BLKSIZE=n
This operand specifies the length of the I/O area; if
the PUTR macro is used (TYPEFLE=CMBND is
specified), this operand specifies the length of the
output part of the I/O area. For the undefined re­
cord format, BLKSIZE must be as large as the larg­
est record to be processed. The length must not ex­
ceed 256 characters.

If the console buffering option is specified at system
generation time and the device is assigned to
SYSLOG, physical IOCS can increase throughput
for each actual output record not exceeding 80 char­
acters. This increase in throughput results from start­
ing the output I/O command and returning to the
program before output completion. Regardless of
whether or not output records are buffered (queued
on an I/O completion basis), they are always printed
or displayed in a first-in-first-out (FIFO) order.

DEV ADDR={SYSLOG I SYSnnnJ
This operand specifies the symbolic unit associated
with the file. In a multiprogramming environment,
DEV ADDR=SYSLOG must be specified to obtain
Background (BG), Foreground 1 (Fl), Foreground
2 (F2), Foreground 3(F3), or Foreground 4(F4)
prefixes for message identification.
DEVADDR=SYSLOG must be specified if
TYPEFLE= CMBND is specified.

INPSIZE=n
This operand specifies the length of the input part of
the I/O area for PUTR macro usage.

IOAREAl = name
This operand specifies the name of the I/O area
used by the file. For PUTR macro usage, the first
part of the I/O area is used for output, and the sec­
ond part is used for input. The lengths of these parts
are specified by the BLKSIZE and INPSIZE ope­
rands respectively. The I/O area is not cleared be­
fore or after a message is printed, or when a message
is canceled and reentered on the console.

M DEVADDR = SYSxxx Symbolic unit for the console used for this file.

M IOAREAl = xxxxxxxx Name of I/O area.

Length in bytes of I/O area (for PUTR macro usage, length of

0 BLKSIZE = nnn output part of I/O area). If RECFORM=UNDEF, max. is 256. If

omitted, 80 is assumed.

0 INPSIZE = nnn Length in bytes for input part of I/O area for PUTR macro usage.

Logic module name for this DTF. If omitted, IOCS generates a

0 MODNAME = xxxxxxx
standard name.

The logic module is generated as part of the DTF.

0 RECFORM = xxxxxx (FIXUNB or UNDEF). If omitted, FIXUNB is assumed.

0 RECSIZE = (nn)
Register number if RECFORM=UNDEF. General registers 2-12,

written in parentheses.

(INPUT, OUTPUT, or CMBND). INPUT processes both input

0 TYPEFLE = xxxxxx and output. CMBND must be specified for PUTR macro usage. If

omitted, INPUT is assumed.

0 WORKA=YES GET or PUT specifies work area.

M = Mandatory; 0 = Optional

Figure 2-4 DTFCN macro

MODNAME=name
This operand specifies the name of the logic module
generated by this DTFCN macro.

If this entry is omitted, standard module names are
generated for the logic module.

A module name must be given when two phases
(each containing a DTFCN macro) are link-edited
into the same program. Under such conditions, omis­
sion of this operand results in unresolved address
constants.

RECFORM={FIXUNB I UNDEF}
This operand specifies the record format of the file:
fixed length or undefined. FIXUNB must be speci­
fied if TYPEFLE=CMBND is specified. FIXUNB is
assumed if the RECFORM operand is omitted.

RECSIZE=(r)
For undefined records, this operand is required for
output files and is optional for input files. It specifies
a general register (2-12) that contains the length of
the record. On output, you must load the length of
each record into the designated register before you
issue a PUT macro. If specified for input files, IOCS
provides the length of the record transferred to stor­
age.

TYPEFLE={INPUT I OUTPUT I CMBND}
This operand specifies a file as input, output, or
combined. If INPUT is specified, code is generated
for both input and output files. If OUTPUT is speci­
fied, code is provided for output files only.

CMBND must be specified if you use the PUTR
macro. CMBND specifies that coding be generated
for both input and output files; in addition, coding is
generated to allow usage of the PUTR macro to
ensure that messages requiring operator action are

Part 2. Sequential Access Metho.~ 43
~

not deleted from the console. When CMBND is
specified, DEVADDR=SYSLOG must also be speci­
fied.

WORKA=YES
This operand indicates that a work area is used with
the file. A GET or PUT macro moves the record to
or from the work area. A PUTR macro moves the
record from and to the work area.

DTFDI Macro

The DTFDI macro provides device independence for
system logical units. If several DTFDI macros are
assembled within one program and all of them have
the same RDONL Y condition, only one logic mo­
dule (DIMOD) is required. Therefore, DTFDI proc­
essing requires fewer parameters and less storage
than multiple LIOCS macros. It allows you to
change device assignments without reassembling the
logic module.

The DTFDI macro should always be used to read
SYSIPT data if the program migth be invoked by a
catalogued procedure.

The restrictions on DTFDI processing are:

• Only fixed unblocked records are supported.

• Only forward reading is allowed.

• In a multivolume diskette file, new volumes are
fed automatically.

• The last volume of a multivolume diskette output
file will be ejected automatically, but the last
volume of a multivolume diskette input file will
not.

• If DTFDI is used with diskettes, special records
(deleted or sequentially relocated records) on
input files are skipped and not passed to the
user.

• Rewind options are not provided.

• Combined file processing is not supported for
reader-punches.

Reading of cards is restricted to the first 80
bytes per card.

• The CNTRL and PRTOV macros cannot be
used with this macro.

44 DOS/VS Supervisor and I/O Macros

• Reading, writing, or checking of standard or
user-standard labels for tape/disk is not support­
ed.

• If ASA control character code is used in a multi­
tasking environment and more than one DTF
uses the same module with RDONL Y = YES,
overprinting may occur.

If DTFDI is used with DASD or diskettes, FOPT
SYSFIL must have been specified at system gen­
eration time.

The symbolic name of the file should be entered in
the name field and DTFDI in the operation field.
The entries for the DTFDI macro are discussed here
and summarized in Figure 2-5.

DEV ADDR= {SYSIPT I SYSLST I SYSPCH I
SYSRDR}

This operand must specify the symbolic unit associat­
ed with this system file. Only the system names
shown above may be specified. The logical device
SYSLST must not be assigned to the 2560 or 5425.

EOFADDR = name
This operand must specify the name of your end-of­
file routine. It is required only if SYSIPT or
SYSRDR is specified.

IOCS branches to this routine when it detects an
end-of-file condition. In this routine, you can per­
form any operations necessary for the end-of-file
condition (you generally issue the CLOSE or CLOS­
ER macro).

IOCS detects the end-of-file condition by recogniz­
ing the characters /* in positions 1 and 2 of the re­
cord for cards, a tapemark for tape, and a file mark
for disk. If the system logical units SYSIPT and
SYSRDR are assigned to a 5425, IOCS requires that
the /* card, indicating end-of-file, be followed by a
blank card. An error condition results if the records
are allowed to run out without a /* card (and with­
out a / & card, if end-of-job). IOCS detects the
end-of-file condition on diskette units by recognizing
that end-of -data has been reached on the current
volume and that there are no more volumes availa­
ble.

M DEVADDR = SYSxxx (SYSIPT, SYSLST, SYSPCH, or SYSRDR). System logical unit.

M IOAREAl = xxxxxxxx Name of first I/O area.

0 EO FAD D R = xxxxxxxx Name of your end-of-file routine.

0 ERROPT = xxxxxxxx
(IGNORE, SKIP, or name of your error routine). Prevents termi-
nation on errors.

0 IOAREA2 = xxxxxxxx If two I/O areas are used, name of second area.

0 10REG = (nn)
Register number. If omitted and 2 I/O areas are used, register 2 is
assumed. General registers 2-12, written in parentheses.

0 MODNAME = xxxxxxxx
DIMOD name for this DTF. If omitted, 10CS generates a stand-
ard name.

0 RDONLY = YES
Generates a read-only module. Requires a module save area for
each task using the module.

0 RECSIZE = nnn
No. of chars. in record. Assumed values: 121(SYSLST),
81 (SYSPCH), 80(otherwise).

0 SEPASMB = YES DTFDI to be assembled separately.

0 WLRERR = xxxxxxxx Name of your wrong I~ngth record routine.

M=Mandatory; O=Optional

Figure 2-5 DTFDI macro

ERROPT={IGNORE I SKIP r name I
This operand does not apply to output files. For
output files for most devices, the job is automatically
terminated after IOCS has attempted to retry writing
the record; for 2560 or 5425 output files, normal
error recovery procedures are followed. This ope­
rand does, however, apply to wrong-length records if
WLRERR is omitted. If both ERROPT and
WLRERR are omitted and wrong-length records
occur, IOCS ignores the error.

ERROPT specifies the function to be performed
for an error block. If an error is detected
when reading a magnetic tape, a disk
pack, or a diskette volume, IOCS at­
tempts to recover from the error. If the
error is not corrected, the job is termi­
nated unless this operand is included to
specify other procedures to be taken.
The three specifications are described
below.

IGNORE indicates that the error condition is to be
ignored. The address of the error record
is made available to you for processing
(see CCB Macro in the chapter
Physical IOCS).

SKIP indicates that the error block is not to be
made available for processing. The next
record is read and processing continues.

name indicates that IOCS is to branch to your
routine when an error occurs, where you
may perform whatever functions desired
or note the error condition. The address
of the error record is supplied in register
1. The contents of the IOREG register
may vary and should not be used for er­
ror records. Also, you must not issue
any GET instructions in your error rou­
tine. If you use any other IOCS macros,
you must save the contents of register

Part 2. Sequential Access Method 45

14. If RDONL Y = YES is specified, you
must also save the contents of register
13. At the end of the error routine, re­
turn to IOCS by branching to the ad­
dress in register 14. The next record is
then made available for processing.

IOAREAl =name
This operand must specify the name of the input or
output area used with the file. The input and/or
output routines transfer records to or from this area.

If the DTFDI macro is used to define a printer file,
or a card file to be processed on a 2540, 2560, 3525,
or 5425, the first byte of the output area must con­
tain a control character.

IOAREA2=name
Two input or output areas can be allotted for a file
to permit overlapped GET or PUT processing. If this
operand is included, it specifies the name of the sec­
ond I/O area.

IOREG=l(r) I (2)}
When two I/O areas are used, this operand specifies
the general purpose register (2-12) that points to the
address of the next record. For input files, it points
to the logical record available for processing. For
output files, it points to the address of the area
where you can build a record. If omitted, and two
I/O areas are used, register 2 is assumed.

MODNAME=name
This operand may be used to specify the name of the
logic module used with the DTF table to process the
file. If the logic module (DIMOD) is assembled with
the program, the MODNAME parameter in this
DTF must specify the same name as the DIMOD
macro.

If this entry is omitted, standard names are generat­
ed for calling the logic module. If two different DTF
macros call for different functions that can be
handled by a single module, only one standard­
named module is called.

RDONLY=YES
This operand is specified if the DTF is to be used
with a read-only module. Each time a read-only mo­
dule is entered, register 13 must contain the address
of a 72-byte double word-aligned save area. Each
task should have its own uniquely defined save area,
and each time an imperative macro (except OPEN,
OPENR or LBRET) is issued, register 13 must con­
tain the address of the save area associated with that

46 DOS/VS Supervisor and I/O Macros

task. The fact that the save areas are unique for each
task makes the module reentrant (that is, capable of
being used concurrently by several tasks). For more
information see Shared Modules and Files in the
Multitasking Macros chapter.

If an ERROPT or WLRERR routine issues I/O
macros using the same read-only module that caused
control to pass to either error routine, the program
must provide another save area. One save area is
used for the initial I/O operations, and the second
for I/O operations in the ERROPT or WLRERR
routine. Before returning to the module that entered
the error routine, register 13 must be set to the save
area address originally specified for the task.

If the operand is omitted, the module generated is
not reenterable and no save area need be estab­
lished.

RECSIZE=n
This operand specifies the length of the record. For
input files (SYSIPT and SYSRDR), the maximum
allowable record size is 80 bytes. For output files,
RECSIZE must include one byte for control charac­
ters. The maximum length specification is 121 for
SYSLST and 81 for SYSPCH.

For printers and punches, DIMOD assumes a
System/370 control character if the character is not
a valid ASA character. The program checks ASA
control characters before System/370 control char­
acters. Therefore, if it is a valid ASA control charac­
ter (even though it may also be a System/370 con­
trol character), it is used as an ASA control charac­
ter. Otherwise, it is used as a System/370 control
character.

Control character codes are listed in Appendix A,
except for the following:

• 2520 stacker selection codes must be used for
the 1442.

• 2540 stacker selection 3 must not be used if
device independence is to be maintained.

If this operand is omitted, the following is assumed:

80 bytes for SYSIPT
80 bytes for SYSRDR.
81 bytes for SYSPCH.
121 bytes for SYSLST.

The use of assumed values for the RECSIZE ope-
I rand assures device independence. For disk and disk-

ette files, the assumed values are required to assure
device independence.

SEPASMB=YES
Include this operand only if the DTFDI is assembled
separately. This causes a CAT ALR card with the
filename to be punched ahead of the object deck and
defines the filename as an ENTRY point in the as­
sembly. If the operand is omitted, the program as­
sumes that the DTF is being assembled with the
problem program and no CAT ALR card is punched.

WLRERR = name

I This entry applies only to input files on devices other
than diskette units. It specifies the name of your
routine to which 10CS branches if a wrong-length
record is read on a tape or disk device.

Because only fixed-length records are allowed, a
wrong-length record error condition results when the
length of the record read is not equal to that speci­
fied in the RECSIZE operand. If the length of the
record is less than that specified in the RECSIZE
operand, the first two bytes of the CCB (first 16
bytes of the DTF) contain the number of bytes left
to be read (residual count). If the length of the re­
cord to be read is larger than that specified in the
RECSIZE operand, the residual count is set to zero
and there is no way to compute its size. The number
of bytes transferred is equal to the value of the
RECSIZE operand, and the remainder of the record
is truncated.

The address of the record is supplied in register 1. In
your routine, you can perform any operation except
issuing another GET for this file. Also if you use any
other 10CS macros in your routine, you must save
the contents of register 14. If RDONL Y = YES, you
must save the contents of register 13 as well.

At the end of the routine, you must return to 10CS
by branching to the address in register 14. When
control returns to your program, the next record is
made available. If this operand is omitted but a
wrong-length record is detected by 10CS, the action
depends on whether the ERROPT operand is includ­
ed.

• If the ERROPT operand is included, the wrong­
length error record is treated as an error record
and handled according to the ERROPT parame­
ter.

• If the ERROPT operand is omitted, 10CS ig­
nores wrong-length errors and the record is
made available to you. If, in addition to a wrong-

length record error, an irrecoverable parity error
occurs, the job is terminated.

DIMODMacro

Listed here are the operands you can specify for
DIMOD. The header card contains DIMOD in the
operation field and may contain a module name in
the name field. If the module name is omitted, 10CS
generates a standard module name.

IOAREA2=YES
Include this operand if a second I/O area is needed.
A module with this operand can be used with
DTFDls specifying either one or two I/O areas. If
the operand is omitted or is invalid, one I/O area is
assumed.

RDONLY=YES
This operand causes a read only module to be gener­
ated. Whenever this operand is specified, any DTF
used with the module must have the same operand.

SEPASMB=YES
Include this operand only if the module is assembled
separately. This causes a CATALR card with the
module name (standard or user-specified) to be
punched ahead of the object deck and defines the
module name as an ENTRY point in the assembly. If
the operand is omitted, the program assumes that the
DTF is being assembled with the problem program
and no CAT ALR card is punched.

TYPEFLE={OUTPUT I INPUT}
Include this operand to specify whether the module
is to process input or output files. If OUTPUT is
specified, the generated module can process both
input and output files.

Standard DIMOD Names
Each name begins with a 3-character prefix (IJ1)
followed by a 5-character field corresponding to the
options permitted in the generation of the module.
DIMOD name = IJJabcde

a = F

b=C

c = B TYPEFLE=OUTPUT(processes both input and

output)

= I TYPEFLE=INPUT

d = I IOAREA2=YES

= Z IOAREA2=YES is not specified

e = C RDONLY=YES

Part 2. Sequential Access Method 47

= D RDONLY=YES is not specified

Subset/Superset DIMOD Names
The following diagram illustrates the sub setting and
supersetting allowed for DIMOD names. All of the
variable entries allow subsetting. A module name
specifying B is a superset of the mod Jle specifying I;
for example, IJJFCBID is a superset of the module
IJJFCIID. See IOeS Subset/Superset Names in
The Macro System chapter.

+ + *
I\.TJFCB IC

I Z D

+ Subsetting/supersetting permitted.
* No subsetting/supersetting pennitted.

DTFDR Macro

You must use the DTFDR macro to define each
3886 file in your program. This macro defines the
characteristics of the file, the format record to be
loaded into the 3886 when the file is opened, and
the storage areas and routines used. Enter the sym­
bolic name of the file in the name field and DTFDR
in the operation field.
The entries of the DTFDR Macro are discussed
here and illustrated in Figure 2-6.

Besides the DTFDR Macro, the following declara­
tive macros are required for a 3886 file:

DRMOD Generate the logic module to process
the file.

DFR

DLINT

Define attributes common to a group of
lines described in one format record.

Describes the individual line in the for­
mat record.

48 DOS/VS Supervisor and I/O Macros

DEVADDR=SYSnnn
Specifies the symbolic unit to be associated with the
logical file. The symbolic unit (SYSnnn) is associat­
ed with an actual I/O device through the job control
ASSGN statement.

FRNAME= phasename
Specifies the phase name of the format record to be
loaded when the file is opened.

FRSIZE= numbel
Specifies the number of bytes to be reserved in the
DTF expansion for format records. The number
must equal at least the size of the largest DFR macro
expansion and its associated DLINT macro expan­
sions, plus four. This size is printed in the ninth and
tenth bytes of the DFR macro expansion. For a de­
scription of these macro expansions, see DOS/VS
LIOeS Volume 2, SAM, SY33-8560.

If you use the SETDEV macro in your program to
change format records, you can reduce the library
retrieval time by specifying a size large enough to
contain all the frequently used format records. The
area should then be equal to the sum of the format
record sizes, plus four bytes for each format record.
When the SETDEV macro is issued, the format re­
cord is loaded into this area from the core image
library if it is not already present in the area.

EXITIND=name
Specifies the symbolic name of the one-byte area in
which the completion code is returned to the
COREXIT routine for error handling from an I/O
operation.

M DEV ADDR = SYSxxx Symbolic unit assigned to 3886 optical character reader.

M FRNAME = xxxxxxxx Phase name of format record to be loaded upon file opening.

M FRSIZE = nn
Number of bytes to be reserved in DTF expansion for format
records.

M EXITIND = xxxxxxxx Name of completion code return area.

M IOAREAl = xxxxxxxx Name of file input area.

M HEADER = xxxxxxxx Name of area for header record from 3886.

M EO FAD D R = xxxxxxxx Address of your end-of-file routine.

M COREXIT = xxxxxxxx Name of your error condition routine.

0 DEVICE = 3886 If omitted, 3886 is assumed.

0 RDONLY=YES If DTF is to be used with read-only module.

0 MODNAME = xxxxxxx
Name of DRMODxx logic module for this DTF. If omitted, IOCS
generates standard name.

0 BLKSIZE = nnn
Length of area named by IOREG 1. If omitted, the maximum
length of 130 is assumed.

0 SEPASMB =YES If DTFDR is to be assembled separately.

0 SETDEV = YES
If SETDEV macro is issued in your program to load a different
format record into the 3886.

M=Mandatory; O=Optional

Figure 2-6 DTFDR macro operands

The meanings of the completion codes are:

Code Meaning

X'FO' No errors occured. (This code should not be
present when the eOREXIT routine re­
ceives control.)

X'Fl' Line mark station timing mark check error.

X'F2' Nonrecovery error (operator intervention is
required).

X'F3' Incomplete scan.

X'F4' Line mark station timing mark check and
equipment check.

X'F9' Permanent error.

Note: If any of these errors occur while the file is
being opened, the eOREXIT routine does not re­
ceive control and the job is canceled.

IOAREAt =name
Specifies the symbolic name of the input area to be
used for the file. The area must be as large as the
size specified in the BLKSIZE parameter. If
BLKSIZE is not specified, the input area must be
130 bytes.

HEADER = name
Specifies the symbolic name of the 20-byte area to
receive the header record from the 3886.

EOFADDR=name
Specifies the symbolic address of your end-of-file
routine. LIOeS branches to this routine whenever
end of file is detected on the 3886.

Part 2. Sequential Access Method 49

COREXIT=name
Provides the symbolic name of your error correction
routine. LIOeS branches to this routine whenever
an error is indicated in the EXITIND byte.

You can attempt to recover from various errors that
occur on the 3886 through the COREXIT routine
you provide. Your COREXIT routine receives con­
trol whenever one of the following conditions oc­
curs:

• Incomplete scan
• Line mark station timing mark check error
• Nonrecovery error

Error Normal COR EXIT Function

X'P2' Eliminate the data that has been read from this docu-
ment and prepare to read the next input document
(See Note I).

X'P4' or Do whatever processing is necessary before the job is
X'P9' canceled. (See Note 1).

X'PI' Do any processing that may be required. The docu-
ment may have been read incorrectly; you may want

Permanent error

Note: If any of these errors occur while the file is
being opened, the COREXIT routine does not re­
ceive control and the job is canceled.

Figure 2-7 describes normal functions for the
COREXIT routine for the various error conditions
and provides the exits that must be taken from the
COREXIT routine.

Error messages are provided to describe errors to the
operator during program execution.

Exit to

Routine in your program to read the next document.

Your end-of-job routine.

Branch to the address in register 14 to return to the
instruction following the macro causing the error.

to delete all data records from the document (see Note
2).

X'P3' Rescan the line using another format record or using Branch to the address in register 14 to return to the
image processing and editing the record in your pro- instruction following the macro causing the error.
gram (see Note 2).

Note 1: If in your COREXIT routine, you issue an I/O macro to the 3886 and an error occurs during that operation, control
is returned to the beginning of the COREXIT routine. You must take precautions in the COREXIT routine to prevent
looping in this situation. If no errors occur, control returns to the instruction following the I/O macro.

Note 2: If, in your COREXIT routine, you issue an I/O macro to the 3886, control always returns to the instruction following
the macro. You should then check the completion code to determine the outcome of the operation.

Figure 2-7 cOREXIT routine functions

50 DOS/VS Supervisor and I/O Macros

DEVICE=3886
Indicates that 3886 is the I/O device for this file. If
this parameter is omitted, 3886 is assumed.

RDONLY=YES
This operand is specified if the DTF is used with a
read-only module. Each time a read-only module is
entered, register 13 must contain the address of a
72-byte doubleword-aligned save area. Each DTF
should have its own uniquely defined save area.
Each time an imperative macro (except OPEN,
OPENR, LBRET, SETL, or SETFL) is issued using
a particular DTF, register 13 must contain the ad­
dress of the save area associated with that DTF. The
fact that the save areas are unique or different for
each task makes the module reentrant (that is, capa­
ble of being used concurrently by several tasks). For
more information see Shared Modules and Files in
the Multitasking Macros chapter.

If a COREXIT routine issues I/O macros using the
same read-only module that caused control to pass
to either error routine, your program must provide
another save area. One save area is used for the nor­
mal I/O operations, and the second for I/O opera­
tions in the COREXIT routine. Before returning to
the module that entered the COREXIT routine,
register 13 must contain the save area address origi­
nally specified for that DTF.

If this operand is omitted, the module generated is
not reenterable, and no save area is required.

MODNAME = name
This operand may be used to specify the name of the
logic module used with the DTF table to process the
file. If the logic module (DRMOD) is assembled
with the program, the MODNAME parameter in this
DTF must specify the same name as the DRMOD
macro.

If this entry is omitted, standard names are generat­
ed for calling the logic module. If two different DTF
macros call for different functions that can be
handled by a single module, only one standard­
named module is called.

BLKSIZE=nnn
Specifies the length of the area named by the
IOAREA1 keyword. The length of the area must be
equal to the length of the longest record to be passed
from the 3886.

If this operand is omitted, the maximum length of
130 is assumed.

Note: DOS/VS LIOCS does not allow you to block
records read from the 3886.

SEPASMB=YES
Specifies the DTF is assembled separately. If this
operand is specified, a CAT ALR card with the file­
name is punched before the deck and defines the
filename as an entry point for the assembly.

SETDEV=YES
Specifies that the SETDEV macro is issued in your
program to load a different format record into the
3886.

DRMODMacro

Listed here are the operands you can specify for
DRMOD. The first card contains DRMOD in the
operation field and may contain a module name in
the name field.

DEVICE=3886
Specifies that the 3886 is the input device. If this
parameter is omitted, the 3886 is assumed.

SEPASMB=YES
Must be specified if the I/O module is assembled
separately. This entry causes a CAT ALR card to be
punched preceding the module.

RDONLY=YES
This operand generates a read only module.
RDONLY=YES must be specified in the DTF. For
additional programming requirements concerning
this operand, see the DTFDR RDONL Y operand.

SETDEV=YES
Is specified if the SETDEV macro may be used
when processing a file with this I/O module. If
SETDEV=YES is specified in the DRMOD macro
but not in the DTFDR macro, the SETDEV macro
cannot be used when processing that file.

Standard DRMOD Names
Each name consists of eight characters. They are:
IJMZxxDO. The fifth and sixth characters are varia­
bles as follows:

If SETDEV = YES is specified, the fifth charac­
ter is S; otherwise it is Z.

• If RDONL Y = YES is specified, the sixth charac­
ter is R; otherwise it is Z.

Note: Subsetting/ supersetting is allowed with the

Part 2. Sequential Access Method 51

SETDEV keyword, but not with the RDONL Y key­
word.

DFR Macro

Two macros are provided for defining documents.
One, the DFR macro, defines attributes common to
a group of line types. The other, the DLINT macro,
defines specific attributes of an individual line type.
As many as 26 DLINT macros can be associated
with one DFR macro as long as the number of line
types plus the number of fields is less than or equal
to 53.

The DFR and associated DLINT macros are used in
one assembly to build a format record module. Only
one DFR with its associated DLINT macros may be
specified in each assembly, and the DFR must pre­
cede all DLINT macros in the assembly. The format
record must be link-edited into the core image li­
brary so that it can be loaded into the 3886 when
the file is to be processed. The format record defines
the types of lines to be read, the fields on the lines,
the editing functions to be used, and the format of
the data record to be passed to your program. For an
example of how to build a format record using DFR
and DLINT macros, see Appendix B.l: Assembling
a Format Record for the 3886 Optical Character
Reader.

The format record is loaded into the 3886 during
program execution. The initial format record is load-

52 DOS/VS Supervisor and I/O Macros

ed when the file is opened and new format records
can be loaded using the SETDEV macro.

The DFR macro defines attributes common to a
group of line types described by one format record.
DLINT macros describe the individual lines. The
DFR macro is specified first and provides the fol­
lowing information for the format record:

• Default font

• Reject character

• Group and character erase symbol usage

National symbol set option

• Edit characters

Serial and batch number control

National numeric hand print (NHP) character
set options

For more information on any of these topics, see the
discussion for the appropriate parameter.

The format of the DFR macro is shown in Figure
2-8. here are the operands you can specify for DFR.
The header card contains DFR in the operation field
and may contain a module in the name field. If the
module name is omitted, IOCS generates a standard
module name.

M FONT = xxxx Default font for all codes described by format record.

0 REJECT = x
Replacement character for any reject character in the data record
read by the 3886. If omitted, X'3F' is assumed.

0 ERASE = YES
Group and character erase symbols are to be recognized. If omit-
ted, NO is assumed.

0 CHRSET = n
Specifies recognizing character (see Figure2-9). If omitted, 0 is
assumed.

0 EDCHAR = (x, ...)
Characters that may be deleted from any field that is read. If
omitted, no character deletion occurs.

0 BCH =n
Batch numbering is to be performed by 3886. If used, BCHSER is
invalid.

0 BCHSER = n
Both batch and serial numbering are to be performed. If specified,
BCH is invalid.

European Numeric Hand Printing (ENHP) characters 1 and 7 are
0 NATNHP=YES used. If omitted, NO is assumed, indicating that Numeric Hand

Printing (NHP) character 1 + 7 are used.

M=Mandatory; O=Optional

Figure 2-8 DFR macro operands

OCR-A OCR-B

Numeric Numeric Alphameric

Mode Alphameric Modes Mode Mode

Highspeed Mode 1 Hexa- Format
Printers or (Highspeed) Mode 2 Highspeed Printers decimal Record

Typewriters Printer) (Typewriter) or Typewriters Code

$ $ $ $ $ 58

i i i £ £ 58

¥ ¥ ¥ ¥ ¥ 58

N N N 78

$ $ $ $ $ 58

A A J\ 58

*- *- If 78

~ ~ 0 7C
$ $ $ U Note 58

A A :(78

~ ij t5 7C

0 0 FO

Note: In OCR-A font the U is coded as a zero and should be used only in
alphabetic fields.

Figure 2-9 Character set option list

Codes

00

01

02

03

04

05

Part 2. Sequential Access Method 53

FONT=code
Specifies the default font for all fields described by
the format record. The default font is used to read a
field unless another font is specified for an individual

field through the DLINT macro. This is the only
required operand in the DFR macro. The valid
codes and the fonts they represent are:

Code Font

NUMA Numeric OCR-A font

ANAl Alphameric OCR-A font (mode 1)

ANA2 Alphameric OCR-A font (mode2)

NUMB Numeric OCR-B font (mode3)

ANB1 Alphameric OCR-B font

NHP1 Numeric hand printing (normal mode)

NHP2 Numeric hand printing (verify mode)

GOTH Gothic font

MRKA Mark OCR-A font

MRKB Mark OCR-B font

For a description of these fonts, see IBM 3886
Optical Character Reader Component Description
and Operating Procedures, GA21-9147.

REJECT = character
Indicates the character that is to be substituted in the
data record for any reject character read by the de­
vice. If this parameter is omitted, X'3F' is assumed.
Reject characters are characters that are not recog­
nizable by the device.

Note: This note applies to the keywords REJECT
and EDCHAR. Apostrophes enclosing the character
are optional for all characters except special charac­
ters used in macro operands. For a description of
these characters, see OS/VS and DOS/VS Assem­
bler Language, GC33-4010.

ERASE={YES I NO}
Specifies whether group and character erase symbols
are to be recognized as valid symbols. If this ope­
rand is not specified, NO is assumed. For more in­
formation on group and character erase symbols, see
IBM 3886 Optical Character Reader Component
Description and Operating Procedures, GA21-9147.

54 DOS/VS Supervisor and I/O Macros

CHRSET = t!! It I 2 I 3 I 4 I S}
Specifies which one of the options shown in Figure
2-9 is to be used for recognizing characters. If this
operand is not entered, 0 is assumed.

EDCHAR=(x, ...)
Specifies up to six characters that may be deleted
from any field that is read. The EDCHAR parameter
in the EDITn keyword in the DLINT macro controls
this function for individual fields. If this operand is
omitted, no character deletion is performed. See the
note under the REJECT parameter for characters
that must be specified in quotes. For example, to
specify the characters &, >, and), you would code
EDCHAR=(' & ','>',')').

BCH=U 1213}
Indicates that batch numbering is to be performed
by the 3886. Specifying 1, 2, or 3 indicates that doc­
uments routed to a stacker are to be batch num­
bered. Specifying 1 indicates stacker A, 2 indicates
stacker B, 3 indicates both stackers. If this operand
is entered, the BCHSER operand is invalid. If nei­
ther BCH nor BCHSER are entered, no batch num­
bering is performed. This parameter is valid only if
the serial numbering feature is installed on the 3886.
For more information on batch numbering, see IBM
3886 Optical Character Reader Component De­
scription and Operating Procedures, GA21-9147.

BCHSER={l I 2 I 3}
Indicates that both batch and serial numbering are to
be performed by the 3886. Specifying 1,2, or 3
indicates that documents routed to a stacker are to
be batch and serial numbered. Specifying 1 indicates
stacker A, 2 indicates stacker B, 3 indicates both
stackers. If this operand is entered, the BCH ope­
rand is invalid. If this operand is omitted, batch and
serial numbering are not performed. This parameter
is valid only if the serial numbering feature is in­
stalled on the 3886. For more information on batch
and serial numbering, see IBM 3886 Optical
Character Reader Component Description and
Operating Procedures, GA21-9147.

NATNHP={YES I NO}
Specifies which of the numeric hand printing charac­
ter set options are used for the numbers 1 and 7.
YES indicates that the European Numeric Hand
Printing (ENHP) characters 1 and 7 are used; NO
indicates the Numeric Hand Printing (NHP) charac­
ters 1 and 7 are used. If this operand is not entered,
NO is assumed.

M LFR = nn Line format record for this line.

M LINBEG = nn Specifies beginning of a line.

0 IMAGE = YES
Data record is to be in image mode. If omitted, NO (standard
mode) is assumed.

0 NOSCAN = (n,n)
Indicates an area on the document line that is to be ignored by the
3886.

Describes a field in a line. n in the FLD keyword may be from 1
0 FLDn = (n,n,NCRIT,xxx) to 14, if specified, a corresponding EDITn keyword must follow

each FLDn keyword.

Specifies editing functions to be performed on the data by 3886.
0 EDITn = (xxxxxx,EDCHAR) A corresponding FLDn keyword must precede each EDITn key-

word.

0 FRENO = YES
Indicates last DLINT macro for the format record. If omitted,
NO is assumed meaning that further DLINT macros follow.

M=Mandatory; O=optional

Figure 2-10 DLiNT macro operands

Part 2. Sequential Access Method 55

DLINT Macro

The DLINT macro describes one line type in a for­
mat group and the individual fields in the line. As
many as 26 DLINT macros can be associated with
one DFR macro.

The DLINT macro provides line and field informa­
tion: Line information applies to the entire line; field
information describes each of the fields on the line.
Up to 14 fields can be scanned on each line.

The format of the DLINT macro is shown in Figure
2-10. Listed here are the operands you can specify
for DLINT. The header card contains DLINT in the
operation field and may contain a module field. If
the module name is omitted, IOCS generated a
standard module name.

Line Information Entries

LFR=number
This operand is required. It specifies, the line format
record number for the line. The decimal number
specified must be in the range of 0 through 63.

The line format record describes the format of one
type of line, the line format record number is used to
identify the line format record. This number is speci­
fied in the READ macro when you read a line of
data from a document.

LINBEG=number
This operand is required. It specifies the beginning
of a line. The beginning position is the number of
tenths of an inch from the left edge of the document
to the left boundary of the first field. The limiting
range of this position is 4 to 85.

IMAGE = {YES I NO}
This operand specifies whether the data record
should be in standard mode (IMAGE=NO), or im­
age mode (IMAGE=YES). If this operandJs not
specified, IMAGE=NO is assumed.

When the standard format is used (IMAGE=NO),
all parameters in the DLINT macro are valid. The
data read from the document line is edited as speci­
fied in the EDITn keywords, the fields in the data
record are created as specified in the FLDn key­
words, and the standard mode data record then con­
tains fixed-length fields of edited data.

The sequence of operations used to build the stand­
ard mode data record in the 3886 is:

56 DOS/VS Supervisor and I/O Macros

1. Recognition of all the characters in the record
takes place.

2. Reject characters are removed and the reject
code is substituted.

3. Edit characters (specified by the EDCHAR key­
word in the DFR macro) are removed from the
data (as specified by the EDITn keywords in the
DLINT macro).

4. Blanks are removed from the data as specified
by the EDITn keywords in the DLINT macro.

5. The length of the fields is checked against the
field length specified, the fields are left- or right­
justified and padded or truncated as specified in
the DLINT macro, and error indicators are set if
errors have been detected.

When the image mode is used (IMAGE=YES), all
EDITn keywords and the field length parameter in
the FLDn keyword are invalid. The image mode
data record then contains 14 two-byte field length
entries followed by the data fields. Image mode is
provided to support exception application require­
ments where the standard fixed-field edited format
does not suffice. It is also applicable for error han­
dling purposes by rereading the same line.

The sequence of operations used to build the image
mode data record in the 3886 is:

1. Recognition of all the characters in the record
takes place.

2. Reject characters are removed and the reject
code is substituted.

3. Each field read and the field lengths are placed
in the data record.

NOSCAN = (field-end, ...)
Specifies an area on the document line that is to be
ignored by the 3886. Field-end is a decimal number
indicating the number of tenths of an inch from the
left edge of the document to the right end of the
NOSCAN field. The field immediately to the left of
the NOSCAN field must end with an address delimi­
ter rather than a character delimiter.

Field Information Entries

FLDn= ({address-delimiter I character-delimiter}
[,field-lengthll,{NCRIT I font-code I
N CRIT,f ont-code})

Describes each of the fields in a line. The n suffix is

a number from 1 through 14 and the parameters are
the same for keywords FLD1 through FLD14. The
following rules apply when specifying these key­
words:

•

•

•

Fields may be described in any order in the
macro.

Each EDITn parameter must follow its associat­
ed FLDn parameter.

The n suffix need not be 1 for the first field in
the line; however, the n suffix must increase for
each field from left to right on the document
line.

address-delimiter is a decimal number that specifies
the number of tenths of an inch from the left edge of
the document to the right end of the field being de­
fined. The last field in a line must end with an ad­
dress delimiter.

character delimiter specifies the character that indi­
cates the end of a field. The character delimiter is
not considered part of the data; it is not included in
the data record nor used in determining the length of
the field.

Apostrophes enclosing the characters are optional
for all characters except 0-9, and the special charac­
ters used in macro operands. For these characters,
the apostrophes are required. For a description of
these characters, see OS / VS and DOS / VS As­
sembler Language, GC33-401:0.

If a field ends with a character delimiter, the next
field must be read using a font from the same font
group. The font groups are:

• NPH1, NPH2, GOTH

• ANAl, ANA2, NUMA, MRKA

• NUMB,MRKB

• ANB1

field-length is a decimal number specifying the
length of the field in the edited record. The length
specified cannot be less than 1 or more than 127. If
IMAGE=NO is specified, this parameter is required;
if IMAGE= YES is specified, this parameter is inval­
id. The length specified in this parameter refers to
the length of the field after any EDITn options have
been performed. The sum of the field lengths for a
line cannot be greater than 130.

NCRIT indicates that this is not a critical field. If
this parameter is omitted, the field is assumed to be
critical.

font-code specifies a font for this field, different
from the font specified in the DFR macro. If this
parameter is not specified, the font specified in the
DFR macro is used for the field. For information
about the valid codes, see the DRF macro descrip­
tions.

EDITn=({code I ED CHAR I code,EDCHAR})
Describes the editing functions to be performed on
the data by the 3886.

The parameters are the same for keywords EDIT1
through EDIT14. There must be a FLDn keyword
corresponding with each EDITn keyword you
specify. If an EDITn keyword is specified, a code,
EDCHAR, or both must be specified. When image
mode is used, the EDITn keywords are invalid.

When the editing functions are completed and the
field is greater than the specified length, the field is
truncated from the right and the wrong length field
indicator is set on in the header record. If only
blanks are truncated, the wrong length field indica­
tor is not set.

code specifies the blanks to be removed and the fill
characters to be added to the field, if any. The valid
codes and their meanings are:

Code Meaning

HLBLOF All high- and low-order blanks are re­
moved, the data is left justified, and the
field is padded with blanks on the right
(see Note).

ALBLOF All blanks are removed from the data, the
data is left-justified, and the field is pad­
ded with blanks on the right.

NOBLOF No blanks are removed, the data is left­
justified, and the field is padded on the
right with blanks.

HLBHIF All high- and low-order blanks are re­
moved, the data is right-justified, and the
field is padded to the left with EBCDIC
zeros (X'FO') (see Note).

ALBHIF All blanks are removed, the data is right­
justified, and the field is padded with
EBCDIC zeros (X'FO') on the left.

Part 2. Sequential Access Method 57

ALBNOF All blanks are removed; the data must be
equal in length to the field length speci­
fied. No padding is done.

Note: Two consecutive embedded blanks is the max­
imum number sent.

If the EDITn keyword is omitted or if EDITn is
specified and the code is omitted, ALBLOF is as­
sumed.

EDCHAR indicates that the characters specified in
the EDCHAR keyword of the DFR macro are to be
deleted from the field. If this parameter is omitted,
the characters are not deleted.

FREND={YES I NO}
Indicates whether this is the last DLINT macro for
the format record. NO indicates more DLINT mac­
ros follow; YES indicates this is the last one. If this
keyword is omitted, NO is assumed.

DTFDU Macro

The DTFDU macro defines sequential (consecutive)
processing for a file contained on a diskette. Note
that special records (deleted or sequential relocated
records) on an input file are skipped, and not passed
to the user. The DTFDU macro cannot be used
when a diskette file is to be processed under
POWER. In this case, use the DTFDI macro.

A DTFDU entry is included for each sequential in­
put or output diskette file processed in the program.
The DTFDU header entry and a series of detail en­
tries describe the file. Enter the symbolic name of
the file in the name field and DTFDU in the opera­
tion field. The detail entries follow the DTFDU
header card in any order. The entries for the
DTFDU macro are discussed here and are summa­
rized in Figure 2-11.

CMDCHN=nn
This operand is specified to indicate the number of
Read/Write CCWS to be command chained. Valid
entries are 1, 2, 13, or 26; 1 is assumed if this entry
is omitted. For each CCW specified by this operand,
one record is processed (for example, if
CMDCHN = 13, 13 records are command chained
and are processed -- read or written -- as a group).
For entries of 2, 13, or 26, either the 10REG ope­
rand or the WORKA operand must be specified.

58 DOS/VS Supervisor and I/O Macros

DEVADDR=SYSxxx
This operand specifies the symbolic unit (SYSxxx)
associated with the file if an extent statement speci­
fication is not provided. And EXTENT statement is
not required for single-volume input files. If an
EXTENT statement is provided, its specification
overrides any DEV ADDR specification. SYSxxx
represents an actual I/O device address, and is used
in the ASSGN job control statement to assign the
actual I/O device address to this file.

A list of symbolic units applying to DTFDU can be
found in the Symbolic Unit Addresses section of
The Macro System chapter.

DEVICE = 3540
This operand specifies that the file to be processed is
on the 3540. If this parameter is unspecified, the
3540 is assumed.

EOFADDR=name
This operand specifies the symbolic name of your
end-of-file routine. 10CS automatically branches to
this routine on an end-of-file condition. You can
perform any operations required for the end-of-file
in this routine (you will generally issue the CLOSE
or CLOSER macro).

ERREXT=YES
This operand enables your ERROPT routine to re­
turn to DUMODFx with ERET macro. It also ena­
bles permanent errors to be indicated to your pro­
gram. For ERREXT facilities, the EROPT operand
must be specified. However, to take full advantage
of this option give the ERROPT=name operand.

ERROPT={IGNORE I SKIP I name}
Specify this operand if you don't want a job to be
terminated when a permanent error cannot be cor­
rected in the diskette error routine. If attempts to
reread a chain of records are unsuccessful, the job is
terminated unless the ERROPT entry is included.
Either IGNORE, SKIP, or the name of an error rou­
tine can be specified. The functions of these parame­
ters are described below.

IGNORE The error condition is ignored. The
records are made available for proc­
essing. On output, the error condi­
tion is ignored and the records are
considered written correctly.

X M EOFADDR = xxxxxxxx Name of your end-of-file routine. (Required for input
only)

X X M IOAREA 1 =xxxxxxxx Name of first I/O area

X X M RECSIZE=nnn Length of one record in bytes

X X 0 CMDCHN=nn
Number of read/write CCWs (records) to be command-
chained

X X 0 DEY ADDR=SYSxxx Symbolic unit, required only when not provided on an
EXTENT statement

X X 0 DEYICE=3540 Must be 3540. If omitted, 3540 is assumed.

X X 0 ERREXT=YES
Indicates additional errors and ERET desired. Specify
ERROPT

X X 0 ERROPT=xxxxxxxx IGNORE, or SKIP, or name of error routine

X X 0 FEED=xxx YES means feed at end-of-file. NO means no feed, YES
assumed if omitted.

X 0 FILESEC= YES YES means create file secure.

X X 0 IOAREA2=xxxxxxxx Name of second I/O area, if two areas are used.

X X 0 IOREG=(nn) Register number. Omit WORKA. General register 2 to
12 in parentheses.

X X 0 MODNAME=xxxxxxxx
Name of DUMODFx logic module for this DTF. If
omitted, 10CS generates standard name.

X X 0 RDONLY=YES
Generates a read-only module. Requires a module save
area for each task using the module.

X X 0 SEPASMB=YES DTFDU is to be assembled separately.

X X 0 TYPEFLE=xxxxxx INPUT or OUTPUT. If omitted, INPUT is assumed.

X 0 YOLSEQ=YES
YES means OPEN is to check sequencing of multi-
volume files.

X X 0 WORKA=YES GET or PUT specifies work area. Omit IOREG.

X 0 WRTPROT=YES
File will be created with Write-Protect on (cannot be
overwri tten).

M=Mandatory; O=Optional

Figure 2-11 DTFDU macro operands

Part 2. Sequential Access Method 59

SKIP

name

No records in the error chain are
made available for processing. The
next chain of records is read from
the diskette, and processing contin­
ues with the first record of that
chain. On output, the SKIP option
is the same as the IGNORE option.

IOCS branches to your error rou­
tine named by this parameter re­
gardless of whether or not
ERREXT = YES is specified. In this
routine you can process or make
note of the error condition as de­
sired.

IF ERREXT is not specified, register 1 contains the
address of the first record in the error chain. When
processing in the ERROPT routine, reference re­
cords in the error chain by referring to the address
supplied in register 1. The contents of the IOREG
register or work area are variable and should not be
used to process error records. Also, GET macros
must not be issued for records in the error chain. If
any other IOCS macros (excluding ERET if
ERREXT = YES) are used in this routine, the con­
tents of register 13 (with RDONL Y) and 14 must be
saved and restored after their use. At the end of the
routine, return control to IOCS by branching to the
address in register 14. For a read error, IOCS skips
that error chain of records, and makes the first re­
cord of the next chain available for processing in the
main program.

If ERREXT is specified, register 1 contains the ad­
dress of a two part parameter list containing the
4-byte DTFDU address and the 4-byte address of
the first record in the error chain. Register 14 con­
tains the return address. Processing is similar to that
described above except for addressing the records in
error.

At the end of its processing, the routine returns to
LIOCS by issuing the ERET macro.

For an input file
• The program skips the error chain and reads the

next chain with an ERET SKIP.
• Or, ignores the error with an ERET IGNORE.
• Or, it makes another attempt to read the error

chain with an ERET RETRY.

For an output file
• The program ignores the error condition ERET

IGNORE or ERET SKIP.
• Or, attempts to write the error chain with an

ERET RETRY macro. Bad spot control records

60 DOS/VS Supervisor and I/O Macros

(1,2, 13, or 26 records depending on the
CMDCHN Factor) are written at the current
diskette address, and the write chain is retried in
the next 1, 2, 13, or 26 (depending on the
CMDCHN factor) sectors on the disk.

Also, for an output file, the only acceptable par­
ameters are IGNORE or name.

The DTFDU error options are shown in figure 2-12.
The figure is divided into two parts: the lower part
lists the error conditions which you specify in the
DTF, and the upper part shows the action resulting
from these specifications when an error occurs.

FILESEC=YES
This operand applies to output only. On output it
causes OPEN or OPENR to set the security flag in
the file label. For subsequent input, the security flag
causes an operator message to be written. The oper­
ator must then reply in order to make the file availa­
ble to be read.

FEED={YES I NO}
If YES is specified for this operand, when end of file
is reached, the diskette being processed is fed to the
stacker and a new diskette is fed to the disk drive
(providing another diskette is still in the hopper). If
NO is specified, the diskette is left mounted for the
next job.

IOAREAl =oame
This operand specifies the symbolic name of the 1/0
area used by the file. IOCS either reads or writes
records using this area. Note that you should provide
an 110 area equal in size to the result obtained from
multiplying the RECSIZE entry by the CMDCHN
entry.

Desired
function

Specifications
required
in your
Progrern

Control Is passed
to your error routine

Error record is skipped

Error record is ignored

Error record is retri ed

The job is terminated

ERROPT = SKIP

ERROPT = IGNORE

ERR OPT = name

ERROPT = nerne
ERET SKIP

ERR OPT = name
ERET IGNORE

ERR OPT = name
ERET RETRY

None

-

'1
X

X
X X

X2 Xl X
X X

X X
X

I Input files only
2 Output files only

Figure 2-12 DTFDU error options

IOAREA2=name
If two I/O areas are used by GET or PUT, this ope­
rand is specified. Note that you should provide an
I/O area equal in size to the result obtained from
multiplying the RECSIZE entry by the CMDCHN
entry.

IOREG=(r)
This operand specifies the general purpose register
(2-12) in which 10CS puts the address of the logical
record that is available for processing. At OPEN or
OPENR time, for output files, IOCS puts the ad­
dress of the area where the user can build a record in
this register. The same register can be used for two
or more files in the same program, if desired. If this
is done, the problem program must store the address
supplied by IOCS for each record. If this operand is
specified, omit the WORKA operand.

This operand must be specified if the CMDCHN
factor is more than one for either input or output
and records are processed in one I/O area, or if two
I/O areas are used and records are processed in both
I/O areas.

MODNAME=name
This operand specifies the name of the logic module
which is to process the file. If the logic module is

assembled with the program, MODNAME must
specify the same name as the DUMODx macro. If
this entry is omitted, standard names are generated
for calling the logic module. If two DTF macros call
for different functions that can be handled by a sin­
gle module, only one module is called.

RDONLY=YES
This operand is specified if the DTF is used with a
read-only module. Each time a read-only module is
entered, register 13 must contain the address of a 72
byte double-word aligned save area. Each task
should have its own uniquely defined save area.
When an imperative macro (except OPEN, OPENR)
is issued, register 13 must contain the address of the
save area associated with the task. The fact that the
save areas are unique for each task makes the mo­
dule reentrant (that is, capable of being used concur­
rently by several tasks).

If an ERROPT routine issues I/O macros using the
same read-only module that caused control to pass
to the error routine, your problem program must
provide another save area. One save area is used for
the normal I/O operations, and the second for
input/ output operations in the ERR OPT routine.
Before returning to the module that entered the ER­
ROPT routine, register 13 must be set to the save
area address originally specified for that DTF. If this
operand is omitted, the module generated cannot be
reentered and no save area need be established.

RECSIZE=nnn
This operand specifies (in bytes) the length of each
record in the input/output area (1-128 bytes).

SEPASMB=YES
Include this operand only if the DTFDU is assem­
bled separately. This causes a CATALR card with
the filename to be punched ahead of the object deck
and defines the filename as an entry point in the
assembly. If the operand is omitted, the macro as­
sumes that the DTF is being assembled with the
problem program and no CAT ALR card is punched.

TYPEFLE={INPUT I OUTPUT}
This operand indicates whether the file is an input or
output file.

VOLSEQ=YES
This operand is only valid on input. If specified, it
causes OPEN or OPENR to ensure that the volume
sequence numbers (if specified) of a multi-volume

Part 2. Sequential Access Method 61

file are in ascending and sequential order. If the
volume sequence number of the first volume proc­
essed is blank, no volume sequence checking is done.

WORKA=YES
If I/O records are processed, or built, in work areas
instead of in the I/O areas, specify this operand.
You must set up the work area in storage. The ad­
dress of the work area, on a general register contain­
ing the address, must be specified in each GET or
PUT macro. For a GET or PUT macro, IOCS moves
the record to or from, the specified work area.

When this operand is specified, the IOREG operand
must be omitted.

WRTPROT=YES
This operand indicates that an output file will be
created with Write-Protect (meaning that the file
cannot be overwritten). For 3540 support, this has
no affect on subsequent input processing of the file.

DUMODFx Macro

Two categories of file characteristics are defined for
diskette unit module generation macros:

DUMODFI - Diskette Unit MODule, Fixed
length records, Input file.

• DUMODFO - Diskette Unit MODule, Fixed
length records, Output file.

The macro operation and the keyword operands
define the characteristics of the module. The ope­
rands for the two macros are explained in the follow­
ing section.

DUMODFx Operands
A module name can be contained in the name field
of this macro. The macro operation is contained in
the operation field, either DUMODFI (for input) or
DUMODFO (for output). The operands are con­
tained in the operand field.

ERREXT=YES
Include this operand if permanent errors are re­
turned to a problem program ERROPT routine or if
the ERET macro is used with the DTF and module.
The ERROPT operand must be specified for this
module.

ERROPT=YES
This operand applies to both DUMODFx macros.
This operand is included if the module handles any
of the error options for an error chain. Logic is gen-

62 DOS/VS Supervisor and I/O Macros

erated to handle any of the three options (IGNORE,
SKIP, or name) regardless of which option is speci­
fied in the DTF. This module also processes any
DTF in which the ERROPT operand is not speci­
fied.

If this operand is not included, your program is can­
celed whenever a permanent error is encountered.

RDONLY=YES
This operand causes a read-only module to be gener­
ated. If this operand is specified, any DTF used with
this module must have the same operand.

SEPASMB=YES
Include this operand only if the logic module is as­
sembled separately. This causes a CA T ALR card
with the module name (standard or user-specified)
to be punched ahead of the object deck, and defines
the module name as an ENTRY point in the assem­
bly. If the operand is omitted, the program assumes
that the logic module is being assembled with the
problem program and no CAT ALR is punched.

Standard DUMOD Names
Each name begins with a 3-character prefix (UN)
and continues with a 5-character field corresponding
to the options permitted in the generation of the
module, as shown below. DUMODFx name =
UNabcde

a = D

b = I DUMODFI
= ODUMODFO

c = C ERROPT=YES and ERREXT=YES
= E ERROPT=YES
= Z neither is specified

d = Z

e = Y RDONLY=YES
= Z RDONL Y not specified

Subset/Superset DUMOD Names
The following diagram illustrates the sub setting and
supersetting allowed for DUMOD names.

* + * *
I.JNDICZY

o E Z
Z

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

DTFMR Macro

DTFMR defines an input file processed on a 1255,
1259, or 1419 magnetic character reader, or a 1270
or 1275 optical character reader/sorter. Some gener­
al characteristics of such processing are discussed
below before the parameters of the DTFMR macro
are described.

Characteristic of Magnetic Ink Character Reader
(MICR) and Optical Reader/Sorter Processing
Important general characteristics of Magnetic Ink
Character Reader (MICR) and Optical
Reader/Sorter processing are given in the
DOS/VS Data Management Guide, GC33-5372.

In addition, examples of GET -PUT document proc­
essing and multiple 1419 operation (either all single
or dual) will be found in DOS/VS System
Generation, GC33-5377.

MICR Document Buffer
The MICR Document Buffer provides you with
processing status indicators and detected error indi­
cators. Before you can begin any MICR program­
ming, you must be aware of the purpose and format
of this buffer.

Figure 2-13 is a storage map of the document buffer.
The minimum number of document buffers you may
specify is 12, and the maximum number is 254. Be­
fore any data is read into the document buffer, logi­
cal IOCS sets the entire buffer, including the status
indicators, to binary zeros. The processing macro-­
GET if your program uses one MICR device, or
READ if your program uses more than one MICR
device--then engages the device, and documents are
read into the I/O area until the MI CR device is out
of documents, or until the I/O area is filled. The
external interrupt routine of the supervisor continu­
ally monitors the reading of data so that processing
of other document buffers is never disrupted. At the
completion of each read for a MICR document, the
external interrupt routine interrupts your program to
give control to your stacker selection routine which
then determines pocket selection for that document.

The MICR document buffer format is given in
Appendix E.

Stacker Selection Routine for MICR
Your stacker selection routine resides in your pro­
gram area and gains control of the system whenever
a document is ready to be stacker selected. This rou­
tine determines the pocket (stacker) selected to re­
ceive the document and whether batch numbering
update is to be performed (1419 only). The entry
point is specified in the DTFMR operand
EXTADDR=name. All registers are saved upon
exiting from, and restored upon returning to, your
program. The use of the general registers in this rou­
tine is as follows:

Register Comment

0-4,6,8-15 These registers are available to your
stacker selection routine for any pur­
pose. Because the program can be inter­
rupted at any time, the contents of these
registers are unpredictable.

5 When your stacker selection routine is
entered, this register contains the ad­
dress of the routine. Register 5 should
be utilized as the base register for the
routine.

7 This register always contains the address
of the first byte of the buffer for the
document being selected. Bytes 2 and 3
of the buffer (see Appendix E) indicate
the read status of the document.

Before entering your stacker selection routine, IOCS
aids in stacker selection by setting the entire docu­
ment buffer to binary zeros, reading the document
into the document data area, and posting informa­
tion in bytes 2 and 3. When the stacker selection
routine has determined which pocket to select the
document into, the actual stacker selection command
code for this pocket must be placed into byte 4 of
the document buffer pointed to by register 7. The
final destination of the document is indicated in byte
5 of the buffer. This indication is the same as byte 4
except in the case of a late stacker select, an auto­
selected document, a program malfunction, or a de­
vice malfunction. Any of these results in an I/O
error. The reject code X'CF' indicating that the doc­
ument is placed in the reject pocket is placed in byte
5.

Part 2. Sequential Access Method 63

- Beginning 0 document buffer area address specified in IOAREA1)

-Byte 0-5 buffer status indicators (address specified in IOREG and in register 7 for your stacker selection routine)

- Batch numbering updates

r---- Error indicator for MICR device

....---Pocket you selected

r-- Pocket document selected into

....--- Byte 6 - your additional work area
....--- Byte xxx - document data area

II I-B_O+8_0-+-00-+-1F--+-5_F J-5_F+--___ Your work area. ___ -----1t--_Document records right-adjusted within _
Length is specified in ADDAREA this area. Length is specified in RECSIZE.

• ~111111 - r -- I
...~ __ -------------- Maximum Length is 256 Bytes---------------_-.l1

D Indicates the normal condition (no errors - all fields read) when the document is being processed and the stacker selection is
complete to pocket 5 and batch numbering update was performed (1419 model 1 or 3).

II Number of buffers is limited only by the amount of storage available (see BUFFERS operand).

Figure 2-13 MICR document buffer

The command codes to be used to select pockets
are:

Pocket Code

A X'AF' (1270, except
models 1 and 3, 1275,
and 1419 only)

B X'BF' (1275 and 1419
only)

0 X'OF'
1 X' 1 F'
2 X'2F'
3 X'3F'
4 X'4F'
5 X'SF'
6 X'6F' (except 1270
7 X'7Ft models 1 and 3)
8 X'SF'
9 X'9F'

Reject X'eF'

64 DOS/VS Supervisor and I/O Macros

An invalid code placed in byte 4 puts the document
into the reject pocket and posts bit 1 of byte 0 of the
buffer. Byte 0, bit 2 of the next buffer is posted.

Before returning to a 1419 external interrupt routine
via the EXIT macro with the MR operand (required
method), you can request a batch numbering update.
You can do this only within your 1419 stacker selec­
tion routine by turning on byte 1, bit 0 in the current
document buffer (01 1(7), X'80').

For the 1419 (dual address), you cannot obtain
batch numbering update on an auto-selected docu­
ment (byte 2, bit 6 on). Such requests are ignored
by the external interrupt routine.

Timings for Stacker Selection:
Because the MICR readers continuously feed docu­
ments while engaged, it is necessary to reinstruct the
readers within a certain time limit after a read com­
pletion is signaled by an external interrupt. This peri­
od is generally called minimum stacker selection
time. This available time depends on the reader

model, the length of documents being read, single or
dual address adapter (1419, 1275), and the fields to
be read on the 1419 or 1275 (dual address) only.
Refer to the appropriate MICR publications listed in
the latest SRL Newsletter for a more complete de­
scription of device timings.

Failure to reinstruct the 1255, 1259, 1270, 1275, or
1419 (single address adapter) within the allotted
time causes the document(s) processed after this
time to be auto-selected into the reject pocket (late
read condition). Failure to reinstruct the 1419 or
1275 (dual address adapter) within the allotted time
causes the document being processed to be auto­
selected into the reject pocket (late stacker-select
condition).

Programming Considerations for 1419 or 1275 Stack­
er Selection
The stacker selection routine operates in the pro­
gram state with the protection key of its program
and with 110 and external interruptions disabled. If
your stacker selection routine fails to return to the
supervisor (loops indefinitely), there is no possible
recovery. If such looping occurs, the system must be
re-IPLed to continue operation. It is therefore re­
commended that you thoroughly debug your stacker
selection routine in a dedicated environment.

In your stacker selection routine, no system macro
other than EXIT MR can be used. The routine runs
with an all zero program and system mask, but the
machine check interruption is enabled and a program
check cancels the program.

Note: Any modification of floating point registers
without saving and restoring them may cause errone­
ous processing by any concurrent program using
floating-point instructions.

When processing with the dual address adapter
(1419 or 1275), you have more time for your stack­
er selection routine. The only additional processing
you must do within the main line is to check byte 2,
bit 0, of the document buffer for stacker selection
errors.

Note: Batch numbering update is not performed with
the stacker selection of auto-selected documents,
and batch numbering is not available on the 1275
optical reader I sorter.

Checkpointing MICR Files
This topic is discussed in the section Notes for
DASD and MICR Files under CHKPT Macro in
the Supervisor Macros chapter.

DTFMR Operands
Enter the symbolic name of the file in the name field
and DTFMR in the operation field. The entries are
discussed here and illustrated in Figure 2-14.

ADDAREA=n
This operand must be included only if an additional
buffer work area is needed. The parameter n speci­
fies the number of additional bytes you desire in
each buffer. The sum of the ADDAREA and REC­
SIZE specifications must be less than or equal to
250. This area can be used as a work area andlor
output area and is reset to binary zeros when the
next GET or READ for a file is executed.

ADDRESS=DUAL
This operand must be included only if the 1419 or
1275 contains the dual address adapter. If the single
address adapter is used, this operand must be omit­
ted.

BUFFERS=t25I nJ
This operand is included to specify the number of
buffers in the document buffer area. The limits for n
are 12 and 254. 25 is assumed if this operand is
omitted.

DEVADDR=SYSnnn
This operand specifies the symbolic unit to be asso­
ciated with the file. The symbolic unit represents an
actual 1/0 device address used in the ASSGN job
control statement to assign the actual 110 device
address to the file.

ERROPT = name
This operand may be included only if the CHECK
macro is used. The parameter name specifies the
name of the routine that the CHECK macro branch­
es to if any error condition is posted in byte 0, bits
2-4 (and bit 5, if no control address is specified in
the CHECK macro) of the buffer status indicators.
It is your responsibility to exit from this routine (see
the CHECK Macro in the Magnetic Reader
Macros section later in this chapter).

Part 2. Sequential Access Method 65

M DEY ADDR=SYSnnn Symbolic unit assigned to the magnetic character reader.

M I OAREA 1 = xxxxxxxx Name of the document buffer area.

0 ADDAREA=nnn
Additional document buffer area (ADDAREA+RECSIZE=250).
If omitted, no area is alloted.

0 ADDRESS=DUAL
Must be included only if the device is a 1419 or 1275 with a dual
address adapter.

0 BUFFERS=nnn Specifies the number of buffers needed. If omitted, 25 is assumed.

0 ERROPT=xxxxxxxx
Name of your error routine. Required only if the CHECK macro
is used.

0 EXT ADDR=xxxxxxxx
Name of your stacker selection routine. Required only if
SORTMDE=ON.

0 IOREG=(nn) Pointer register number. If omitted, register 2 is assumed. General
registers 2-12, written in parentheses.

0 MODNAME=xxxxxxxx
Name of your I/O module. Required only if a nonstandard mo-
dule is referenced.

0 RECSIZE=nnn Specifies the maximum record length. If omitted, 80 is assumed.

0 SECADDR=SYSnnn
Specifies secondary symbolic unit assigned to (dual address) 1275
or 1419. Required only if LITE macro is used.

0 SEPASMB= YES
Required only if the DTF is assembled separately; otherwise it
should be omitted.

0 SORTMDE=xxx
ON-1255/1259/1270 or program sort mode used; OFF-1419/1275
sort mode used. If omitted, ON is assumed.

M=Mandatory; O=Optional

Figure 2-14 DTFMR macro operands

EXTADDR = name
This operand specifies the name of your stacker se­
lection routine to which control is given when an
external interrupt is encountered while reading and
sorting the documents internally. The only case
when this operand may be omitted is when
SORTMDE=OFF is specified.

IOAREAl = name
This operand specifies the name of the document
buffer area used by the file. Figure 2-13 shows the
format of the document buffer area.

66 DOS/YS Supervisor and I/O Macros

IOREG={(~) I (r)J
This operand specifies the general-purpose register
(2-12) that the IOCS routines and your routines use
to indicate which individual document buffer is
available for processing. IOCS puts the address of
the current document buffer in the specified register
each time a GET or READ is issued. Register 2 is
assumed if this operand is omitted.

The same register may be specified in the IOREG
entry for two or more files in the same program, if
desired. In this case, your program may need to store
the address supplied by IOCS for each record.

MODNAME=name
This operand specifies the name of the logic module
MRMOD. If omitted, IOCS generates the standard
system module name.

RECSIZE= {SO I n}
This operand specifies the actual length of the data
portion of the buffer. The record size specified must
be the size of the largest record processed. If this
operand is omitted, a record size of 80 is assumed.
The sum of the ADDAREA and RECSIZE specifica­
tions must be less than or equal to 250.

SECADDR=SYSnnn
This operand specifies the symbolic unit to be asso­
ciated with the secondary control unit address if the
1419 or 1275 with the dual address adapter and
LITE macro are utilized. The operand should be
omitted if the pocket LITE macro is not being used.

SEPASMB=YES
Include this operand only if the DTFMR is assem­
bled separately. This causes a CAT ALR card with
the filename to be .punched ahead of the object deck
and defines the filename as an ENTRY point in the
assembly. If the operand is omitted, the program
assumes that the DTF is being assembled with the
problem program and no CAT ALR card is punched.

SORTMDE={ON I OFF}
This operand specifies the method of sorting done
on the 1419. SORTMDE=ON indicates that the
program sort mode is being used. SORTMDE=OFF
indicates that sorting is under control of the magnet­
ic character reader. If the operand is omitted, the
program sort mode is assumed.

MRMODMacro

The first card contains MRMOD in the operation
field and may contain a module name in the name
field. If a module name is omitted, the following
standard module name is generated by IOCS:

(S = single address adapter, and D = dual address
adapter). The operands you can specify for
MRMOD are listed below.

ADDRESS={SINGLE I DUAL}
Required only if the dual address adapter is utilized
for the 1419 or 1275. If omitted, the single address
adapter is assumed.

BUFFERS = nnn
A numeric value (nnn) equal to the corresponding
value specified in the DTFMR macro.

SEPASMB=YES
Include this operand only if the module is assembled
separately. This causes a CATALR card with the
module name (standard or user-specified) to be
punched ahead of the object deck and defines the
module name as an ENTRY point in the assembly. If
the operand is omitted, the program assumes that the
DTF is being assembled with the problem program
and no CAT ALR card is punched.

~~.I;zt
DTFMT Macro 7t?fJE \"~. ~ ,

'W ,,>.
A DTFMT macro is included for each EBCDIC or
ASCII magnetic tape input or output file that is to
be processed. Enter the symbolic name of the file in
the name field and DTFMT in the operation field.
The detail entries follow the header card in any or­
der. The entries are discussed here and illustrated in
Figure 2-15.

ASCII=YES
This operand specifies that processing of ASCII
tapes is required. If this operand is omitted,
EBCDIC processing is assumed. ASCII= YES is not
permitted for work files.

BLKSIZE=n
Enter the length of the I/O area. If the record for­
mat is variable or undefined, enter the length of the
largest block of records. If a READ or WRITE ma­
cro specifies a length greater than n for work files,
the record to be read or written will be truncated to
fit in the I/O area. The maximum block size is
32,767 bytes. The minimum size of physical tape
record (gap to gap) is 12 bytes. A record of eleven
bytes or less is treated as noise.

For output processing of spanned records, the mini­
mum physical record length is 18 bytes. If SPNBLK
or SPNUNB and TYPEFLE=OUTPUTare speci­
fied in the DTFMT and the BLKSIZE is invalid or
less than 18 bytes, a new MNOTE is generated and
BLKSIZE= 18 is assumed.

Part 2. Sequential Access Method 67

Applies to
.....

..... =' ~ =' ~ '"" §" 0
~ 0 ~

.......
x x x M BLKSIZE=nnnnn Length of one I/O area in bytes (maximum = 32,767).

x X x M DEV ADDR=SYSxxx Symbolic unit for tape drive used for this file.

X X M EOFADDR=xxxxxxxx Name of your end-of-file routine.

X X X Mt FILABL=xxxx
(NO, STD, or NSTD). If NSTD specified, include LA-
BADDR. If omitted, NO is assumed.

X X M 10AREA 1 =xxxxxxxx Name of first I/O area.
~

X X 0 ASCII=YES ASCII file processing is required.

X X 0 BUFOFF=nn Length of block prefix if ASCII= YES.

X 0 CKPTREC=YES
Checkpoint records are interspersed with input data re-
cords. 10CS bypasses checkpoint records.

X X X 0 ERREXT=YES Additional errors and ERET are desired.

X X X 0 ERROPT=xxxxxxxx
(IGNORE, SKIP, or name of error routine). Prevents job
termination on error records.

X X X 0 HDRINFO=YES Print header label information if FILABL=STD.

Register number. Use only if GET or PUT does not specify
X X 0 10REG=(nn) work area or if two I/O areas are used. Omit WORKA.

General registers 2-12, written in parentheses.

X X 0 LABADDR=xxxxxxxx
Name of your label routine if FILABL=NSTD, or if
FILABL=STD and user-standard labels are processed.

X 0 LENCHK=YES
Length check of physical records if ASCII= YES and
BUFOFF=4.

X X X 0 MODNAME=xxxxxxxx
Name of MTMOD logic module for this DTF. If omitted,
10CS generates standard name.

(YES or POINTS). YES if NOTE, POINTW, POINTR, or
X 0 NOTEPNT=xxxxxx POINTS macro used. POINTS if only POINTS macro

used.

M=Mandatory; O=Optional

Figure 2-15 DTFMT macro operands (part 1 of 2)

68 DOS/VS Supervisor and I/O Macros

Applies to

..... = ~ ::s 0.. 1-0
0.. ::s 0
d 0 ~ -
x x x 0 RDONLY=YES

X X 0 READ=xxxxxxx

x X X 0 RECFORM=xxxxxx

X X 0 RECSIZE=nnnn

X X X 0 REWIND=xxxxxx

X X X 0 SEPASMB=YES

X 0 TRMARK=NO

X X X 0 TYPEFLE=xxxxxx

X 0 V ARBLD=(nn)

X 0 WLRERR=xxxxxxxx

X X 0 WORKA=YES

M = Mandatory; 0 = Optional

Figure 2-15 DTFMT macro operands (part 2 of 2)

For ASCII tapes, the BLKSIZE includes the length
of any block prefix or padding characters present. If
ASCII= YES and BLKSIZE is less than 18 bytes
(for fixed-length records only) or greater than 2048
bytes, an MNOTE is generated because this length
violates the limits specified by American National
Standards Institute, Inc.

BUFOFF={!! I nJ
This operand indicates the length of the block prefix.
Enter the length of the block prefix if processing of
the block prefix is required. This operand can only

Generate read-only module. Requires a module save area
for each task using the module.

(FORWARD or BACK). If omitted, FORWARD assumed.

(FIXUNB, FIXBLK, V ARUNB, V ARBLK, SPNUNB,
SPNBLK, or UNDEF). For work files use FIXUNB or
UNDEF. If omitted, FIXINB is assumed.

If RECFORM=FIXBLK, no. of characters in record. If
RECFORM=UNDEF, register number. Not required for
other records. General registers 2-12, written in parenthes-
es.

(UNLOAD or NORWD). Unload on CLOSE or end-of-
volume, or prevent rewinding. If omitted, rewind only.

DTFMT is to be assembled separately.

Prevent writing a tape mark ahead of data records if
FILABL=NSTD or NO.

(INPUT, OUTPUT, or WORK). If omitted, INPUT is
assumed.

Register number, if RECFORM=VARBLK and records are
build in the output area. General registers 2-12 are written
in parentheses.

Name of wrong-length-record routine.

GET or PUT specifies work area. Omit IOREG.

be included when ASCII= YES is specified. The
contents of this field are not passed on to you.

Part 2. Sequential Access Method 69

n can have the following values:

Value Condition

0-99 If TYPEFLE=INPUT
0 IF TYPEFLE=OUTPUT
4 If TYPEFLE=OUTPUT and

RECFORM=VARUNB orVARBLK. In
this case, the program automatically inserts
the physical record length in the block pre-
fix.

CKPTREC=YES
This operand is necessary if an input tape has check­
point records interspersed among the data records.
10CS bypasses any checkpoint records encountered.
This operand must not be included when
ASCII=YES.

DEVADDR=ISYSRDR I SYSIPT I SYSPCH I
SYSnnn I SYSLSTI

This operand specifies the symbolic unit to be asso­
ciated with the file. An ASSGN job control state­
ment assigns an actual channel and unit number to
the unit. The ASSGN job control statement contains
the same symbolic name as DEV ADDR. When
processing ASCII tapes, you must specify a pro­
grammer logical unit (SYSnnn).

EOFADDR=name
This operand specifies the name of your end-of -file
routine. 10CS automatically branches to this routine
on an end-of-file condition. This entry must be spec­
ified for input and work files.

In your routine, you can perform any operations
required for the end of file (generally you issue the
CLOSE instruction for the file). 10CS detects end­
of -file conditions in magnetic tape input by reading a
tapemark and EOF when standard labels are speci­
fied. If standard labels are not specified, 10CS as­
sumes an end-of-file condition when the tapemark is
read, if the unit is assigned to SYSRDR or SYSIPT
when a / * is read. You must determine, in your rou­
tine, that this actually is the end of the file.

ERREXT=YES
This operand enables your ERROPT or WLRERR
routine to return to MTMOD with the ERET (error
return) macro. It also enables unrecoverable I/O
errors occurring before data transfer takes place to
be indicated to your program. To take full advantage
of this option, the ERROPT=name operand must be
specified.

70 DOS/VS Supervisor & I/O Macros

ERROPT=UGNORE I SKIP I name I
This operand specifies functions to be performed
when an error block is encountered.

If a parity error is detected when a block of tape
records is read, the tape is backspaced and reread a
specified number of times before the tape block is
considered an error block. Output parity errors are
considered to be an error block if they exist after
10CS attempts to forward erase and write the tape
output block a specified number of times.

If ERREXT = YES is specified on output, and
ERROPT=IGNORE or SKIP, the error will be ig­
nored.

If either FILABL=STD or CKPTREC, or both, is
specified, the error block is included in the block
count. After this the job is automatically terminated
unless this ERROPT entry is included to specify
other procedures to be followed in case of an error
condition. Either IGNORE, SKIP, or the symbolic
name of an error routine can be specified in this
card. The functions of these specifications are:

IGNORE The error condition is completely ig­
nored, and the records are made available
for processing.

When reading spanned records, the entire
spanned record or a block of spanned re­
cords is returned to the user rather than
just the one physical record in which the
error occurred. On output, the error is
ignored and the physical record contain­
ing the error is treated as a valid record.
The remainder, if any, of the spanned re­
cord segments are written, if possible.

SKIP No records in the error block are made
available for processing. The next block
is read from tape, and processing contin­
ues with the first record of that block.
The error block is included in the block
count.

When reading spanned records, the entire
spanned record or a block of spanned re­
cords is skipped rather than just one
physical record. On output, the error is
ignored and the physical record contain­
ing the error is treated as a valid record.
The remainder, if any, of the spanned re­
cord segments are written.

name 10CS branches to your error routine
named by this parameter regardless of

whether ERREXT = YES is specified. In
this routine, you process or make note of
the error condition as qesired.

If ERREXT is not specified, register 1 contains the
address of the physical record in error. When span­
ned records are processed, register 1 contains the
address of the whole unblocked or blocked spanned
record. Register 14 contains the return address.
When processing in the ERR OPT routine, refer the
error block, or records in the error block to the ad­
dress supplied in register 1. The contents of the
IOREG register or work area (if either is specified)
are variable and therefore should not be used for
error processing. Furthermore, your routine must not
issue any GET macros for records in the error block.
If any other IOCS macros (excluding ERET if
ERREXT= YES) are used in this routine, the con­
tents of registers 13 (with RDONLY) and 14 must
be saved and restored after their use. At the end of
the routine, return control to IOCS by branching to
the address in register 14. IOCS skips the physical
record in error and makes the next logical record
available for processing in the main program.

A sequence error may occur if LIOCS is searching
for a first segment of a logical spanned record and
fails to find it. If WLRERR or ERROPT=name was
specified, the error recovery procedure is the same
as for wrong-length record errors. If neither
WLRERR nor ERROPT=name was specified,
LIOCS ignores the sequence error and searches for
the next first segment.

If ERREXT is specified, register 1 contains the ad­
dress of a two-part parameter list containing the
4-byte DTFMT address and the 4-byte address of
the physical record in error, respectively.

Note: If ERREXT is not specified for an output file,
no code is generated and an MNOTE is issued. If an
error condition occurs, the job is canceled.

Register 14 contains the return address. Processing
is similar to that described for cases where ERREXT
is not specified, except for addressing the physical
record in error. The data transfer bit (byte 2, bit 2)
of the DTF should be tested to determine if a non­
data transfer error has occurred. If it is on, the phys­
ical record in error has not been read or written. If
the bit is off, data was transferred and the routine
must address the physical record in error to deter­
mine the action to be taken. At the end of its input
processing, the routine returns to LIOCS by issuing
the ERET macro. If any other IOCS macros are
used in this routine, the contents of register 13 (with

RDONL Y) and register 14 must be saved and re­
stored after their use. At the end of the ERROPT
output routine, the program must consider the device
inoperative and must not attempt further processing
on it. Any subsequent attempt to return to MTMOD
results in job termination.

The ERET macro can specify one of two actions to
the MTMOD logic module. The error condition can
be ignored with an ERET IGNORE, or the physical
record in error can be skipped to process the next
physical record with an ERET SKIP. ERET RETRY
is invalid and results in job termination.

Figure 2-16 shows the DTFMT error options for
various combinations of error specifications and
errors.

The job is automatically terminated if a parity error
still exists after IOCS attempts to write a tape output
block a specified number of times. This includes
erasing forward.

The ERROPT operand applies to wrong-length re­
cords if the WLRERR operand is not included. If
both ERROPT and WLRERR are omitted and
wrong-length records occur, IOCS assumes the IG­
NORE option.

Note: For ASCII tapes, the pointer to the block in
error indicates the first logical record following the
block prefix.

FILABL=INO I STD I NSTDI
This operand specifies what type of labels are to be
processed. STD indicates standard labels, NO indi­
cates no labels, and NSTD indicates nonstandard
labels. You must furnish a routine to check or create
the nonstandard labels by using your own 110 area
and an EXCP macro to read or write the labels. The
entry point of this routine is the operand of LA­
BADDR.

The specification FILABL=NSTD is not permitted
for ASCII files (that is, when ASCII= YES). Labels
and tape data are assumed to be in the same mode.

HDRINFO= YES
This operand, if specified with FILABL=STD, caus­
es IOCS to print standard header label information
(fields 3-10) on SYSLOG each time a file with
standard labels is opened. It also prints the filename,
logical unit, and device address each time an end-of­
volume condition is detected. Both FILABL= STD
and HDRINFO= YES must be specified for header
label information to be printed.

Part 2. Sequential Access Method 71

IOAREAl=name
This operand specifies the name of the I/O area.
When variable-length records are processed, the size
of the I/O area must include four bytes for the block
size. This operand does not apply to work files.

IOAREA2=name
This operand specifies the name of a second I/O
area. When variable-length records are processed,
the size of the I/O area must include four bytes for
the blocksize. This operand does not apply to work
files.

IOREG=(r)
This operand specifies the register in which IOCS
places the address of the logical record that is availa­
ble for processing if:

• two input or output areas are used.
• blocked input or output records are processed in

the I/O area.
• variable unblocked records are read.
• undefined records are read backwards.
• neither BUFOFF=O nor WORKA=YES is spec­

ified for ASCII files.

For output files, IOCS places in the specified register
the address of the area where you can build a record.
Any register (2-12) may be specified.

Note: This operand cannot be used if
WORKA=YES.

LABADDR = name
Enter the symbolic name of your routine to process
user-standard or nonstandard labels. See the Tape
Input Files section of the Label Processing chap­
ter.

For ASCII tapes, this operand may only be used for
writing and checking user standard labels which con­
form to American National Standards Institute, Inc.,
standards. You must process these labels in
EBCDIC. Nonstandard user labels are not permit­
ted.

72 DOS/VS Supervisor & I/O Macros

LENCHK::=YES
This operand applies only to ASCII tape input if
BUFOFF =4 and RECFORM= V ARUNB or
V ARBLK. It must be included if the block length
(specified in the block prefix) is to be checked
against the physical record length. If an inequality is
detected, the action taken is the same as described
under the WLRERR operand, but the WLR bit
(byte 5, bit 1) in the DTF is not set.

MODNAME = name
This operand specifies the name of the logic module
used with the DTF table to process the file. If the
logic module is assembled with the program, MOD­
NAME must specify the same name as the MTMOD
macro. If this entry is omitted, standard names are
generated for calling the logic module. If two DTF
macros call for different functions that can be han­
dled by a single module, only one module is called.
For example, if one DTF specifies
READ = FORWARD and another specifies
READ=BACK, only one logic module capable of
handling both functions is called.

NOTEPNT=iPOINTS I YES}
If the parameter YES is specified, the NOTE,
POINTW, POINTR, or POINTS macros are issued
for a tape work file. If POINTS is specified, only
POINTS macros can be issued for tape work files.
The NOTEPNT operand must not be specified for
ASCII tape files because work files are not support­
ed.

Desired
Function

Specifications
required
in your
Program

Figure 2-t6

TAPE
INPUT

",

........

TAPE {IJb. t • td o IS ermlna e
OUTPUT

I'"
Control is passed to your
wrong length record routine

Wrong Error record is skipped
l.enght
Record

Error record is ignored Errors

Job is terminated
........

,/
Control passed to your
error option routine

Errors
other than Error record is skipped
Wrong
l.enght Error record is ignored -Records

Job is terminated

1
ERROPT = IGNORE X
ERROPT = name

ERR OPT = SKIP

WLRERR = name X
ERR OPT = IGNORE, WLRERR = name X
ERROPT = name, WLRERR = name

ERROPT = SKIP, WLRERR = name

WLRERR = name X ERET IGNORE

ERR OPT = name X ERET RETRY

WLRERR = name
ERET SKIP

WLRERR = name X ERET IGNORE

WLRERR = name X ERET RETRY

WLRERR = name X ERET SKIP

ERROPT = name, WLRERR = name X ERET IGNORE

ERROPT = name, WLRERR = name X ERET RETRY

ERROPT = name, WLRERR = name
ERET SKIP

NONE X

X
X

X
X

X

X

ERET Macro Options: DTF Parameters:
IGNORE
RETRY
SKIP

DTFMT error options

~

X
X

X

X
X

X
X

X

X
X

X
X

ERROPT = name
ERROPT = IGNORE
ERROPT = SKIP
WLRERR = name

X X X
X
X X
X X
X X
X X

X X

X X

X X
X

Part 2. Sequential Access Method 73

RDONLY=YES
This operand is specified if the DTF is used with a
read-only module. Each time a read-only module is
entered, register 13 must contain the address of a

72-byte doubleword-aligned save area. Each task
should have its own uniquely defined save area and
each time an imperative macro (except OPEN (or
OPENR) or LBRET) is issued, register 13 must
contain the address of the save area associated with
the task. The fact that the save areas are unique
for each task makes the module reentrant (that is,
capable of being used concurrently by several
tasks). For more information see Shared Modules
and Files in the Multitasking Macros chapter.

If an ERROPT or WLRERR routine issues I/O
macros which use the same read-only module that
caused control to pass to either error routine, your
program must provide another save area. One save
area is used for the normal I/O operations and the
second for I/O operations in the ERR OPT or
WLRERR routine. Before returning to the module
that entered the error routine, register 13 must be
set to the save area address originally specified for
the task.

If the operand is omitted, the module generated is
not reenterable and no save area is required.

READ={FORWARD I BACKJ
This operand specifies the direction in which the
tape is read. If READ=BACK is specified and a
wrong-length record smaller than the I/O area is
encountered, the record is read into the I/O area
right-justified.

RECFORM={FIXUNB I FIXBLK I VARUNB I
VARBLKI SPNBLK I SPNUNB I
UNDEFJ

This operand specifies the type of EBCDIC or
ASCII records in the input or output file. Enter
one of the following parameters:

FIXUNB For fixed-length unblocked records

FIXBLK For fixed-length blocked records

V ARUNB For variable-length unblocked records

V ARBLK For variable-length blocked records

SPNBLK For spanned variable-length blocked
records (EBCDIC only)

SPNUNB For spanned variable-length un­
blocked records (EBCDIC only)

UNDEF For undefined records

74 DOS/VS Supervisor & I/O Macros

Work files may only use FIXUNB or UNDEF.

RECSIZE={n I (r)J
For fixed-length blocked records, this operand is
required. It specifies the number of characters in
each record.

When processing spanned records, you must specify
RECSIZE= (r) where r is a register that contains
the length of each record.

For undefined records, this entry is required for
output files and optional for input files. It specifies
a general register (2-12) that contains the length of
the record. On output, you must load the length of
each record into the register before you issue a
PUT macro. Spanned-record output requires a
minimum record length of 18 bytes. A physical
record less than 18 bytes is padded with binary
zeros to complete the I8-byte requirement. This
applies to both blocked and unblocked records. If
specified for input, IOCS provides the length of the
record transferred to virtual storage.

REWIND={UNLOAD I NORWDJ
If this specification is not included, tapes are auto­
matically rewound to load point, but not unloaded,
on an OPEN (or OPENR) or CLOSE (or CLOS­
ER) macro or on an end-of-volume condition. If
other operations are desired for a tape input or
output file, specify:

UNLOAD to rewind the tape on an OPEN (or
OPENR) or to rewind and unload on
CLOSE (or CLOSER) or or end-of­
volume condition.

NORWD to prevent rewinding the tape at any
time. This option positions the
read/ write head between the two
tapemarks on the end-of-file condi­
tion.

SEPASMB=YES
Include this operand only if the DTFMT is assem­
bled separately. This causes a CAT ALR card with
the filename to be punched ahead of the object
deck and defines the filename as an ENTRY point
in the assembly. If the operand is omitted, the pro­
gram assumes that the DTF is being assembled
with the problem program and no CAT ALR card is
punched.

TPMARK=NO
A tapemark is normally written for an output file if
nonstandard labels are specified (FILABL=NSTD).

If no tape mark is desired, this operand should be
specified. This operand is ignored if standard labels
are specified (FILABL=STD). For unlabeled tapes,
TPMARK=NO is the default.

TYPEFLE={INPUT I OUTPUT I WORKI
Use this operand to indicate whether the file is
used for input or output. If INPUT is specified, the
GET macro is used. If OUTPUT is specified, the
PUT macro is used. If WORK is specified, the
READ/WRITE, NOTE/POINT, and CHECK
macros are used. See Work File Macros for Tape
and Disk under the Processing Macros section of
the present chapter.

The specification of WORK in this operand is not
permitted for ASCII files.

VARBLD=(r)
This entry is required whenever variable-length
blocked records are built directly in the output area
(no work area specified). It specifies the number
(r) of a general-purpose register (2-12) that always
contains the length of the available space remaining
in the output area.

IOCS calculates the space still available in the out­
put area, and supplies it to you in the V ARBLD
register after the PUT macro is issued for a
variable-length record. You can then compare the
length of the next variable-length record with the
available space to determine if the record will fit in
the remaining area. This check must be made be­
fore the record is built. If the record does not fit,
issue a TRUNC macro to transfer the completed
block of records to the tape. The current record is
then built as the first record of the next block.

WLRERR=name
This operand applies only to tape input files. It
specifies the name of your routine to receive con­
trol if a wrong-length record is read.

If ERREXT is not specified, the address of the
physical record in error is supplied by IOCS in
register 1. If ERREXT is specified, register 1 con­
tains the address of a two-part parameter list. The
first four bytes of the list are the DTF address and
the second four bytes are the address of the physi­
cal record in error. If the block read is less than
that specified in the BLKSIZE parameter, the first
two bytes of the DTF contain the number of bytes
left to be read (residual count). Therefore, the size
of the actual block is equal to the specified block
size minus the residual count. If the block to be
read is larger than that specified in the BLKSIZE

parameter, the residual count is zero, and there is
no way to compute the record size. The number of
bytes transferred is equal to that specified in the
BLKSIZE parameter, and the remainder of the
original block is truncated.

Your WLRERR routine can perform any process­
ing desired for wrong length records. However, it
must not issue GET macros to this file. If the rou­
tine issues any other IOCS macros (excluding
ERET if ERREXT=YES) the contents of registers
13 (with RDONLY) and 14 must be saved before
and restored after their use. At the end of the rou­
tine, either control is returned to IOCS by branch­
ing to the address in register 14, or (if ERREXT is
specified) the ERET IGNORE or SKIP option can
be taken.

When fixed-length unblocked records are specified
(RECFORM=FIXUNB), a wrong-length record
error condition is given when the length of the
record read is not equal to that specified in the
BLKSIZE parameter. For EBCDIC fixed-length
blocked records, record length is considered incor­
rect if the physical tape record (gap to gap) that is
read is not a mUltiple of the logical-record length
(specified in DTF RECSIZE), Up to the maximum
length of the block (specified in DTFMT
BLKSIZE). This permits the reading of short
blocks of logical records without a wrong-length
record indication.

For EBCDIC variable-length records (blocked and
unblocked), the record length is considered incor­
rect if the length of the tape record is not the same
as the block length specified in the 4-byte block­
length field. The residual count can be obtained by
addressing the halfword at filename+98.

For ASCII variable-length records (blocked and
unblocked), a check on the physical record length
is performed if LENCHK=YES is specified. The
physical record length is considered incorrect if the
tape record is not the same as the block length
specified in the 4-byte block prefix. In this case,
the WLR bit (byte 5, bit 1) in the DTF table is set
off.

The WLRERR option is taken for undefined re­
cords if the record read is greater than the size
specified by the BLKSIZE parameter.

If the WLRERR entry is omitted but a wrong­
length record is detected by IOCS, one of the fol­
lowing conditions results:

Part 2. Sequential Access Method 75

• If the ERROPT entry is included for this file,
the wrong-length record is treated as an error
block, and handled according to your specifica­
tions for an error (IGNORE, SKIP, or name of
error routine).

• If the ERROPT entry is not included, IOCS
assumes the IGNORE option of ERROPT.

WORKA=YES
If I/O records are processed in work areas instead
of in the I/O areas, specify this operand. You must
set up the work area in virtual storage. The address
of the work area, or a general-purpose register con­
taining the address, must be specified in each GET
or PUT. Omit IOREG if this operand is included.
WORKA= YES is required for spanned record
processing.

MTMODMacro

Listed here are the operands you can specify for
MTMOD. The first card contains MTMOD in the
operation field and may contain a module name in
the name field.

ASCII=YES
Include the operand if processing ASCII input or
output files is required. This entry is not permitted
for work files. If omitted, EBCDIC file processing is
assumed.

CKPTREC=YES
Include this operand if input tapes processed by the
module contain checkpoint records interspersed
among the data records. The module also processes
tapes that do not have checkpoint records; that is,
those whose DTFs do not specify CKPTREC = YES.

This entry is not needed for work files, and is not
valid for ASCII files.

ERREXT=YES
Include this operand if additional I/O errors are to
be indicated and/or the ERET macro is used with
this DTF and module. ERROPT= YES should be
specified in this module for work files, but is not
needed for input or output files.

ERROPT=YES
Include this operand if the module is to handle any
of the error options for an error block. Code is gen­
erated to handle any of the three options (IGNORE,
SKIP, or name). The module processes also any files
in which the ERROPT operand is not specified in

76 DOS/VS Supervisor & I/O Macros

the DTF. This entry is needed for work files, but it is
not needed for input or output files.

NOTEPNT=IYES I POINTS}
This operand applies only to work files (EBCDIC
only).

Include this operand if NOTE/POINT logic is used
with the module. If YES is specified, the module
processes any NOTE, POINTR, POINTW, or
POINTS macro. If POINT~ is specified, only the
POINTS macro is processed.

Modules specifying either one of the two options
also process work files for which the NOTE/POINT
operand is not specified in the DTF. Modules specif­
ying YES also process work files specifying only
POINTS.

RDONLY=YES
This operand causes a read-only module to be gener­
ated. Whenever this operand is specified, any DTF
used with the module must have the same operand.

READ=IFORWARD I BACK}
This operand generates a module that reads tape
files forward or backward. If forward is specified,
only code to read tape forward is generated. Any
DTF used with the module must not specify BACK
in the READ parameter statement.

If the parameter is BACK, code to read tape both
forward and back}Vard is generated, and any DTF
used with the module may specify either FOR­
WARD or BACK as its READ parameter.
READ=BACK does not handle multi-volume files.

This entry is not needed for work files.

RECFORM=IFIXUNB I FIXBLK I V ARUNB I
VARBLKISPNBLKISPNUNBI
UNDEF}

This operand generates an input/ output module that
processes either EBCDIC or ASCII fixed-length,
variable-length or undefined records.

If either FIXUNB or FIXBLK is specified, a module
is generated that allows processing of both fixed­
length blocked and fixed-length unblocked records.
Similarly, if VARUNB or VARBLK is specified, a
module is generated that allows processing of both
types of variable and spanned records. ASCII files
are not permitted in spanned record format.

If UNDEF is specified, a module for processing un­
defined record types is generated. Any DTF used

with the module must specify the same record for­
mat type as the module. For examp.le, if the module
specifies RECFORM=FIXUNB, either
RECFORM=FIXUNB or RECFORM=FIXBLK
may be specified in the DTF.

This operand is not needed for work files.

If this operand is omitted, the module generated will
allow processing of both fixed-length blocked and
fixed-length unblocked records.

SEPASMB=YES
Include this operand only if the module is assembled
separately. This causes a CAT ALR card with the
module name (standard or user-specified) to be
punched ahead of the object deck and defines the
module name as an ENTRY point in the assembly. If
the operand is omitted, the program assumes that the
DTF is being assembled with the problem program
and no CAT ALR card is punched.

TYPEFLE=IOUTPUT I INPUT I WORK}
This operand generates a module that processes ei­
ther GET/PUT macros or READ/WRITE,
NOTE/POINT and CHECK macros for work files
(EBCDIC only). If the parameter of the operand
specifies WORK, code to process work files is gener­
ated. Otherwise, a module to handle both input and
output files is assumed. Only DTFs for work files
may be used with work file modules. Only DTFs for
input or output files may be used with an
input/ output mo~ule.

Note: INPUT and OUTPUT have the same table
format and logic modules.

WORKA=YES
This operand is to be included if records are to be
processed in work areas instead of I/O areas for the
GET /PUT macros. This operand must be included if
spanned records are processed. The module also
processes files that do not use a work area. This
entry is not needed for work files.

Standard MTMOD Names
Each name begins with a 3-character prefix (UF)
and continues with a 5-character field containing the
options permitted in module generation.

In MTMOD there are two module classes: the mo­
dule class for handling GET/PUT functions and the
module class for handling READ/WRITE,
NOTE/POINT, and CHECK functions (work files).
Modules handling fixedlength (F ,X) and undefined
(U ,N) records are mutually exclusive of each other

and of all forms of the module that process variable­
length records (V,R,S).
Name list for GET/PUT type modules:

MTMOD name = UFabcde

a = F RECFORM=FIXUNB (or FIXBLK) (EBCDIC
mode)

= X RECFORM=FIXUNB (or FIXBLK) (ASCII

mode)

= V RECFORM=VARUNB (or VARBLK) (EBCDIC

mode)

= R RECFORM=VARUNB (or VARBLK) (ASCII

mode)

= S RECFORM=SPNUNB (or SPNBLK) (spanned

records)

= U RECFORM=UNDEF (EBCDIC mode)

= N RECFORM=UNDEF (ASCII mode)

b = B READ=BACK

= Z READ=FORWARD, or if READ is not specified

c = C CKPTREC= YES

= Z CKPTREC= YES is not specified

d = WWORKA=YES

= Z WORKA=YES is not specified

e = M ERREXT = YES and RDONL Y = YES

= N ERREXT=YES

= Y RDONLY=YES

= Z ERREXT and RDONL Y not specified

Name list for work file type modules
(TYPEFLE= WORK):

MTMOD name = UFabcde

a=W

b = E ERROPT=YES

= Z ERROPT is not specified

c = N NOTEPNT=YES

= S NOTEPNT=POINTS

= Z NOTEPNT is not specified

d = Z always

e = M ERREXT=YES and RDONLY=YES

= N ERREXT = YES

= Y RDONLY=YES

= Z ERREXT and RDONL Y not specified

Subset/Superset MTMOD Names
The following charts illustrate the subsetting and
supersetting allowed for MTMOD names. Four of
the GET/PUT parameters allow subsetting. For
example, the module name IJFFBCWZ is a superset
of IJFFBZWZ specifying fixed-length records. See

Part 2. Sequential Access Method 77

I OC S Subset I Superset Names in The M aero
System chapter.

* + + + +
I 1.1 F F

N
R
U
X
+
s
V

B C W M
Z Z Z Y

+
N
Z

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

For Workfile Type Modules:

+ + +
I J F lv E N Z M

Z S y
Z +

N
Z

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

DTFOR Macro

DTFOR is used to define an input file to be proc­
essed on a 1287 optical reader or 1288 optical page
reader. Enter the symbolic name of the file in the
name field and DTFOR in the operation field. The
operands for DTFOR follow and are illustrated in
Figure 2-17.

DTFOR is not used for the 3881 Optical Mark
Reader. The 3881 uses DTFCD.

78 DOS/VS Supervisor & I/O Macros

BLKFAC=o
Undefined journal tape records are processed with
greater throughput speeds when this operand is in­
cluded. This is accomplished by reading groups of
lines as blocked records. When undefined records
are processed, BLKFAC specifies the blocking fac­
tor (n) that determines the number of lines read
(through CCW chaining) as a block of data by one
physical read. Deblocking is accomplished automati­
cally by IOCS when the GET macro is used. The
BLKF AC parameter is not used with
RECFORM=FIXBLK, because the blocking factor
is determined from the BLKSIZE and RECSIZE
parameters. If the operand is included for FIXBLK,
FIXUNB, or document processing, the operand is
noted (MNOTE) and ignored.

BLKSIZE= 138 I o}
This operand indicates the size of the input area
specified by IOAREAl. For journal tape processing,
BLKSIZE specifies the maximum number of charac­
ters that can be transferred to the area at anyone
time.

When undefined journal tape records are read, the
area must be large enough to accommodate the long­
est record to be read if the BLKF AC parameter is
not specified. If the BLKF AC parameter is speci­
fied, the BLKSIZE value must be determined by
mUltiplying the maximum length that must be accom­
modated for an undefined record by the blocking
factor desired. A BLKSIZE value smaller than this
results in truncated data.

If two input areas are used for journal tape process­
ing (IOAREA1 and IOAREA2), the size specified in
this entry is the size of each 110 area.

CONTROL = YES
This entry must be included if a CNTRL macro is
issued for a file. A CNTRL macro issues orders to
the optical reader to perform nondata operations
such as line marking, stacker selecting, document
incrementing, etc.

Applies to

f-4 Q
l(') t""- t""- oo
00 00 00 00
~ ~ ~ ~
.-I .-I .-I .-I

X X X x M COREXIT =xxxxxxxx Name of your correction routine

X X X x M DEV ADDR=SYSnnn Symbolic unit assigned to the optical reader

X X X X M EOFADDR=xxxxxxxx Name of your end-of-file routine

X X X X M 10 AREA 1 =xxxxxxxx Name of first input area

X X 0 BLKFAC=nn If RECFORM=UNDEF in journal tape mode

X X X X 0 BLKSIZE=nn Length of I/O area(s). If omitted, 38 is assumed.

X X X X 0 CONTROL= YES If CNTRL macro is to be used for this file

X X X X 0 DEVICE=xxxxx
(1287D or 1287T). For 1288, specify 1287D. If omit-
ted, 1287D is assumed.

X X X 0 HEADER=YES
If a header record is to be read from the optical read-
er keyboard by OPEN, OPENR

X X 0 HPRMTY=YES If hopper empty condition is to be returned.

X X 0 IOAREA2=xxxxxxxx
If two input areas are used, name of second input
area.

Reg. No. if 2 input areas or UNDEF records are to
X X 0 10REG=(nn) be used. If omitted, reg.2 is assumed. General regis-

ters 2-12, written in parentheses.

X X X X 0 MODNAME=xxxxxxxx
Name of DTF's logic module. If omitted, 10CS gen-
erates a standard name.

X X X X 0 RECFORM=xxxxxx
FIXBLK, FIXUNB, or UNDEF). If omitted, FIX-
UNB is assumed.

X X X X 0 RECSIZE=(nn) Reg. no. containing record size, if
RECFORM=UNDEF. If omitted, reg. 3 is assumed.

X X X X 0 SEPASMB= YES If the DTFOR is to be assembled separately.

X X 0 WORKA=YES
If records are to be processed in a work area. Omit
10REG.

M=Mandatory; O=Optional

Figure 2-17 DTFOR macro options

Part 2. Sequential Access Method 79

COREXIT=name
COREXIT provides an exit to your error correction
routine for the 1287 or 1288. After a GET, WAITF,
or CNTRL macro (to increment or eject and/or

stacker select a document) is executed, an error con­
dition results in an error correction routine with an
indication provided in filename+80. Filename+80
contains the following hexadecimal bits indicating
the conditions that occurred during the last line or
field read. Filename+80 should also be tested after
issuing the optical reader macros DSPLY, RESCN,
RDLNE, CNTRL READKB, and CNTRL MARK.
More than one error condition may be present.

X'20'

X'OI'

X'02'

X'04'

X'08'

For the 1288, reading in unformatted
mode, the end-of-page (EOP) condition
has been detected. Normally, on an EOP
indication, the problem program ejects
and stacker selects the document.

Filename + 80 should also be tested after
issuing the optical reader macros CNTRL
ESD, CNTRL SSD, CNTRL EJD in your
COREXIT routine. These should only be
tested for nonrecovery (X'10') and
(X'20') late stacker selection.

For the 1287, a stacker select was given
after the allotted elapsed time and the
document was put in the reject pocket.

A data check has occurred. Five read
attempts for journal tape processing or
three read attempts for document proc­
essing were made.

The operator corrected one or more char­
acters from the keyboard (1287T) or a
hopper empty condition (see
HPRMTY = YES operand) has occurred
(1287D).

A wrong-length record condition has
occurred (for journal tapes, five read at­
tempts were made; for documents, three
read attempts were made). Not applicable
for undefined records.

An equipment check resulted in an in­
complete read (ten read attempts were
made for journal tapes or three for docu­
ments).

If an equipment check occurs on the first
character in the record, when processing
undefined journal tape records, the REC­
SIZE register contains zero, and the IOR-

80 DOS/VS Supervisor & I/O Macros

X'10'

X'40'

EG (if used) points to the rightmost posi­
tion of the record in the I/O area. You
should test the RECSIZE register before
moving records from the work area or the
I/O area.

A nonrecoverable error occurred.

The 1287D scanner was unable to locate
the reference mark (for journal tapes, ten
read attempts were made; for documents,
three read attempts were made).

Filename + 80 can be interrogated to determine the
reason for entering the error correction routine.
Choice of action in your error correction routine is
determined by the particular application.

If you issue I/O macros to any device other than the
1287 and/or 1288 in the COREXIT routine, you
must save registers 0, 1, 14, and 15 upon entering
the routine, and restore these registers before exit­
ing. Furthermore, if I/O macros (other than the
GET, WAITF, and/or READ, which cannot be used
in COREXIT) are issued to the 1287 and/or 1288
in this routine, you must also save and later restore
registers 14 and 15 before exiting. All exits from
COREXIT should be to the address specified in
register 14. This provides a return to the point from
which the branch to COREXIT occurred. If the
command chain bit is on in the READ CCW for
which the error occurred, IOCS completes the chain
upon return from the COREXIT routine.

Note: Do not issue a GET, READ, or WAITF ma­
cro to the 1287 or 1288 in the error correction rou­
tine. Do not process records in the error correction
routine. The record that caused the exit to the error
routine is available for processing upon return to the
mainline program. Any processing included in the
error routine would be duplicated after return to the
mainline program.

When processing journal tapes, a nonrecovery error
(torn tape, tape jam, etc.) normally requires that the
tape be completely reprocessed.

Restriction: In this case, your routine must not
branch to the address in register 14 from the CO­
REXIT routine or a program loop will occur.

Following a nonrecoverable error:
• the optical reader file must be closed
• the condition' causing the nonrecovery must be

cleared
• the file must be reopened before processing can

continue

!

\

If a nonrecoverable error o~curs while processing
documents (indicating tqat a jam occurred during a
document incrementation operation, or a scanner
control failure has occurred, or an end-of-page con­
dition, etc.), the documept should be removed either
manually or by nonprpcess mnout.

Restriction: In such cases, your program should
branch to read the next document. If the 1287 or
1288 scanner is unable to locate the document refer­
ence mark, the document cannot be processed. In
this case, the document must be ejected and stacker
selected before attempting to read the following
document or a program loop will result. In any case,
the routine must not branch to the address in register
14 from the COREXIT routine. If a nonrecoverable
error occurs, the routine should ignore any output
resulting from the document.

Eight binary error counters are used to accumulate
totals of certain 1287 and 1288 error conditions.
These counters each occupy four bytes, starting at
filename+48. Filename is the name specified in the
DTF header entry. The error counters are:

Counter and
Address

1 filename+48

2 filename+52

3 filename + 5 6

4 filename+60

5 filename + 64

6 filename+68

7 filename + 72

8 filename + 7 6

Contents

Equipment check (see Note, be­
low).

Equipment check uncorrectable
after ten read attempts for jour­
nal tapes or three read attempts
for documents (see Note below).

Wrong-length records (not appli­
cable for undefined records).

Wrong-length records uncorrect­
able after five read attempts for
journal tapes or three read at­
tempts for documents (not appli­
cable for undefined records).

Keyboard corrections (journal
tape only).

Journal tape lines (including re­
tried lines) or document fields
(including retried fields) in which
data checks are present.

Lines marked (journal tape
only).

Count of total lines read f.rom
journal tape or the number of

CCW chains executing during
document processing.

Note: Counters 1 and 2 apply to equipment checks
that result from incomplete reads or from the inabili­
ty of the 1287 or 1288 scanner to locate a reference
mark (when processing documents only).

All the previous counters contain binary zeros at the
start of each job step and are never cleared. You
may list the contents of these counters for analysis at
end of file, or at end of job, or you may ignore the
counters. The binary contents of the counters should
be converted to a printable format.

DEV ADDR=SYSnnn
This operand specifies the logical unit (SYSnnn) to
be associated with the file. The logical unit repre­
sents an actual I/O device address used in the job
control ASSGN statement to assign the actual I/O
device address to this file.

DEVICE=U287D I 1287T}
This operand specifies the I/O device associated
with this file. 1287D specifies a 1287 or 1288 docu­
ment file. 1287T specifies a 1287 journal tape file.

From this specification, IOCS sets up the device­
dependent routines for this file. For document proc­
essing you must code the CCW s.

If this operand is omitted, 1287D is assumed.

EOFADDR=name
This operand specifies the name of your end-of-file
routine. 10CS automatically branches to this routine
on an end-of-file condition.

When reading data from documents, you can recog­
nize an end-of-file condition by pressing the end-of­
file key on the console when the hopper is empty.
When processing journal tapes on a 1287, you can
detect an end-of-file by pressing the end-of-file key
after the end of the tape is sensed.

When IOCS detects an end-of-file condition, it
branches to your routine specified by EOFADDR.
You must determine if the current roll is the last roll
to be processed when handling journal tapes. Re­
gardless of the situation, the tape file must be closed
for each roll within your EOF routine. If the current
roll is not the last, OPEN (or OPENR) must be is­
sued. The OPEN (or OPENR) macro allows header
(identifying) information to be entered at the reader
keyboard and read by the processor when using logi­
cal IOCS.

Part 2. Sequential Access Method 81

The same procedure can be used for 1287 processing
of multiple journal tape rolls, as well as the method
described under OPEN (or OPENR) Macro in the
section Imperative Macros later in this chapter.

HEADER=YES
This operand is required if the operator is to key in
header (identifying) information from the 1287 key­
board. The OPEN (or OPENR) routine reads the
header information only when this entry is present.
If the entry is not included, OPEN (or OPENR)
assumes no header information is to be read. The
header record size can be as large as the BLKSIZE
entry and is read into the high-order positions of
IOAREAl. This operand cannot be used for 1288
files.

HPRMTY=YES
This operand is included if you want to be informed
of the hopper empty condition. This condition oc­
curs when a READ is issued and no document is
present, and is recognized at W AITF time. When a
hopper empty condition is detected, your COREXIT
routine is entered with the condition indicated as
X'02' in filename+80.

This operand should be used when processing docu­
ments in the time-dependent mode of operation,
which allows complete overlapping of processing
with reading. (See Method 2 under Programming
the 1287 in IBM 1287 Optical Reader Compo­
nent Description and Operating Procedures, GA21-
9064). With this method of processing, the
HPRMTY parameter allows you to check for a hop­
per empty condition in your COREXIT routine. You
can then select into the proper hopper the previously
ejected document before return from COREXIT
(via register 14).

IOAREAl = name
This operand is included to specify the name of the
input area used by the file. When opening a file and
before each journal tape input operation to this area,
the designated area is set to binary zeros and the
input routines then transfer records to this area. For
document processing, the area is cleared only when
the file is opened.

IOAREA2=name
A second input area can be allotted only for a jour­
nal tape file. This permits an overlap of data transfer
and processing operations. The specified second 1/0
area is set to binary zeros before each input opera­
tion to this area occurs.

82 DOS/VS Supervisor & I/O Macros

IOREG=I(~) I (r)}
This operand specifies a general-purpose register
(2-12) that the input routines use to indicate the
beginning of records for a journal tape file. The
same register may be specified in the IOREG ope­
rand for two or more files in the same program, if
desired. In this case, your program may need to store
the address supplied by IOCS for each record.
Whenever this entry is included for a file, the
DTFOR entry WORKA must be omitted, and the
GET macro must not specify a work area.

A read by an optical reader is accomplished by a
backward scan. This places the rightmost character
in the record in the rightmost position in the 1/0
area and subsequent characters in sequence from
right to left. The register defined by IOREG indi­
cates the leftmost position of the record.

MODNAME = name
This operand may be used to specify the name of the
logic module used with the DTF table to process the
file. If the logic module (ORMOD) is assembled
with the program, the MODNAME parameter in this
DTF must specify the same name as the ORMOD
macro.

If this entry is omitted, standard names are generat­
ed for calling the logic module. If two different DTF
macros call for different functions that can be han­
dled by a single module, only one standard-named
module is called.

RECFORM=IFIXUNB I FIXBLK I UNDEFJ
This operand specifies the type of records in an opti­
cal reader file. One of the following specifications
may be entered immediately after the = sign:

FIXUNB For fixed-length unblocked records.

FIXBLK For fixed-blocked records in journal tape
mode.

UNDEF For undefined records.

RECSIZE= n II(~) I (r)J .
For fixed-length unblocked records, this operand
should be omitted and no register is assumed.

For fixed-length blocked records (journal tape
mode), this operand must be included to specify the
number, n, of characters in an individual record. The
input routines use this number to deblock records,
and to check the length of input records. If this ope­
rand is omitted, an MNOTE is flagged in the macro

assembly and fixed-length unblocked records are
assumed.

For undefined journal tape records, this entry speci­
fies the number (r) of the general-purpose register in
which IOCS provides the length of each input re­
cord. For undefined document records, RECSIZE
contains only the length of the last field of a docu­
ment read by the CCW chain which you supply. Any
register 2-12 may be specified, but if the entry is
omitted, register 3 is assumed.

Note: When processing undefined records in docu­
ment mode, you gain complete usage of the register
normally used in the RECSIZE operand. You can do
this by ensuring that the suppress-length-indication
(SLI) flag is always on when processing undefined
records.

SEPASMB=YES
Include this operand only if the DTFOR is assem­
bled separately. This causes a CATALR card with
the filename to be punched ahead of the object deck
and defines the filename as an ENTRY point in the
assembly. If t~e operand is omitted, the program
assumes that the DTF is being assembled with the
problem program and no CAT ALR card is punched.

WORKA=YES
Input records (journal tape only) can be processed in
work areas instead of in the input areas. If this is
planned, the operand WORKA= YES must be speci­
fied,. and you must set up the work area in storage.
The symbolic name of the work area, or a general­
purpose register containing the address of the work
area, must be specified in each GET macro. When
GET is issued, IOCS left-justifies the record in the
specified work area. Whenever this operand is in­
cluded for a file, the DTFOR IOREG operand must
be omitted.

1288 Optical Page Reader Programming Considera­
tions
After a 1288 file is defined, the OPEN or OPENR
macro makes it available for input. Processing is
then accomplished by the CNTRL, READ, RESCN,
and W AITF macros. When processing is completed,
the CLOSE or CLOSER macro deactivates the file.
1288 processing adheres closely to the macros and
DTF specifications used for 1287 document process­
ing.

ORMODMacro

Listed here are the operands you can specify for
ORMOD. The first card contains ORMOD in the

operation field and may contain a module name in
the name field.

Note: ORMOD is not used for the 3881 Optical
Mark Reader. The 3881 uses CDMOD.

IOAREA2=YES
Include this operand (journal tape only) if a second
1/0 area is used. The DTFOR used with this module
must also include the IOAREA2 parameter.

RECFORM=IFIXUNB I FIXBLK I UNDEF}
This operand generates a module that processes the
specified record format. Any DTF used with the
module must have the same operand.

BLKFAC=YES
Include this operand if RECFORM= UNDEF and
groups of undefined journal tape records are to be
processed as blocks of data. (See the DTFOR
BLKFAC=n operand.) The DTFOR used with this
module must also include RECFORM= UNDEF and
BLKFAC=n.

CONTROL=YES
Include this operand if CNTRL macros are to be
used with the associated DTFs. The module also
processes files that do not use the CNTRL macro.

DEVICE=U287D I 1287T}
This operand must be included to specify the I/O
device associated with this file. 1287D specifies a
1287 or 1288 document file. 1287T specifies a 1287
journal tape file.

SEPASMB=YES
Include this operand only if the module is assembled
separately. This causes a CATALR card with the
module name (standard or user-specified) to be
punched ahead of the object deck and defines the
module name as an ENTRY point in the assembly. If
the operand is omitted, the program assumes that the
DTF is being assembled with the problem program
and no CAT ALR card is punched.

WORKA = YES
Include this operand (journal tape only) if records
are to be processed in work areas instead of in I/O
areas. Any DTF used with the module must have the
same operand.

Standard ORMOD Names
Each name begins with a 3-character prefix (11M)
followed by a 5-character field corresponding to the

Part 2. Sequential Access Method 83

options permitted in the generation of the module.

ORMOD name = UMabcde

a = F RECFORM=FIXUNB

= X RECFORM=FIXBLK

= U RECFORM=UNDEF

= D RECFORM=UNDEF and BLKFAC=YES

b = C CONTROL=YES

= Z CONTROL=YES is not specified

c = I IOAREA2=YES

= W WORKA=YES

= B both are specified
= Z neither is specified

d = T device is in tape mode
= D device is in document mode

e = Z always

Subset/Superset ORMOD Names
The following chart shows the subsetting and super­
setting allowed for ORMOD names. One of the
parameters allows subsetting. For example, the mo­
dule IJMFCITZ is a superset of the module
UMFZITZ. See IOCS Subset/Superset Names in
The Macro System chapter.

* + * *
I IT H D C B D Z

F Z I T
U W
X Z

+ Supersetting/subsetting permitted.
* No subsetting/supersetting permitted.

DTFPR Macro

Enter the symbolic name of the file in the name field
and DTFPR in the operation field. The detail entries
follow the DTFPR header card in any order. Figure
2-19 lists the keyword operands contained in the
operand field.

ASOCFLE=filename
This operand is used together with the FUNC ope­
rand to define associated files for the 2560, 3525, or
5425. (For a description of associated files see the
DOS/VS Data Management Guide, GC33-5372.)
ASOCFLE specifies the filename of an associated
read and/or punch file, and enables macro sequence
checking by the logic module of each associated file.
One filename is required per DTF for associated
files.

84 DOS/VS Supervisor & I/O Macros

Figure 2-18 defines the filename specified by the
ASOCFLE operand for each of the associated
DTFs.

In ASOCFLE operand of .,.

FUNC= read DTFCD, punch print DTFPR,
specify filen- DTFCD, specify filen-
ame of specify filen- ame of

arne of

RW print DTFPR read DTFCD

PW print DTFPR
punch
DTFCD

RPW
punch

print DTFPR
read DTFCD

DTFCD

Figure 2-18 ASOCFLE operand usage with print associ­
ated files

For example, if FUNC=PW is specified, specify the
filename of the print DTFPR in the ASOCFLE ope­
rand of the punch DTFCD, and specify the filename
of the punch DTFCD in the print DTFPR. Or if
FUNC=RPW is specified, specify the filename of
the punch DTFCD in the ASOCFLE operand of the
read DTFCD; specify the filename of the print
DTFPR in the punch DTFCD; and specify the filen­
ame of the read DTFCD in the print DTFPR.

BLKSIZE= n
This operand specifies the length of IOAREA 1. If
the record format is variable or undefined, enter the
length of the longest record. The maximum value
which may be specified is:

151 for the 1403, 1443, 3203, or 3211

• 384 for the 2560

64 for the 3525

• 128 for the 5203 or 5425

If this entry is omitted:

• 121 is assumed for the 1403, 1443, 3203, or 3211

• 64 is assumed for the 2560 or 3525

96 is assumed for the 5203 or 5425

CONTROL=YES
This operand is specified if the CNTRL macro will
be issued for the file. If this operand is specified,
omit CTLCHR. This operand is not allowed for the
2560 or 5425.

CTLCHR= IYES 1 ASAI
This operand is specified if firstcharacter-control is
used. The parameter ASA specifie:; the American
National Standards Institute, Inc. character set. The
entry CTLCHR=YES specifies the System/370
character set. Appendix A contains the control char­
acter codes. If this parameter is specified, omit
CONTROL. This operand must not be specified for
the 2560 or 5425.

If CTLCHR=ASA is specified for the 3525, the +
character is not allowed. When CTLCHR=ASA is
specified for 3525 print (not associated) files, you
must issue either a space 1 command or skip to
channel 1 command to print on the first line of a
card. For 3525 print associated files, you must issue
a space 1 command to print on the first line of a
card.

DEV ADDR= ISYSLOG 1 SYSLST 1 SYSnnnl
This operand specifies the symbolic unit to be asso­
ciated with the printer. SYSLOG and SYSLST must
not be specified for the 2560, 3525, or 5425.

I DEVICE=U403 1 1443 1 2560P 1 2560S 132031
3211 1352515203 1 5425PI 5425S1

This operand specifies which device is used for the
file. The "p" and "s" included with the "2560" and
"5425" parameters specify primary or secondary
input hoppers. If this operand is omitted 1403 is
assumed.

ERROPT=IRETRY 1 IGNORE 1 namel
This operand specifies the action to be taken in the
case of an equipment check error. The functions of
the parameters are described below.

RETRY can be specified only for the 3211. RETRY
indicates that if an equipment check with command
retry is encountered, the command is retried once. If
the retry is unsuccessful a message is issued and the
job canceled.

IGNORE can be specified only for the 3525. IG­
NORE indicates that the error is to be ignored. The
address of the record in error is put in register 1 and
made available for processing. Byte 3, bit 3 of the
CCB is also set on (see Figure 6-2); you can check
this bit and take the appropriate action to recover
from the error. IGNORE must not be specified for
files with two 110 areas or a work area.

The name parameter can be specified only for the
3211. It indicates that when an equipment check
with command retry is encountered, the command is
retried once. If the retry is unsuccessful a message is
issued and the job canceled. With other types of
errors (for these see the CCB, Figure 6-2) an error
message is issued, error information is placed in the
CCB, and control is given to your error routine,
where you may perform whatever actions are de­
sired. If any IOCS macros are issued in the routine,
register 14 must be saved; if the operand
RDONL Y = YES is specified, register 13 must also
be saved. To continue processing at the end of the
routine, return to IOCS by branching to the address
in register 14.

FUNC=IWITII RWITII RPWITII PWITII
This operand specifies the type of file to be proc­
essed by the 2560, 3525, or 5425. W indicates print,
R indicates read, P indicates punch, and T (for the
3525 only) indicates an optional 2-line printer.

RW[T], RPW[T], and PW[T] are used, together with
the ASOCFLE operand, to specify associated files;
when one of these parameters is specified for a
printer file it must also be specified for the associat­
ed file(s).

If a 2-line printer is not specified for the 3525,
multi-line print is assumed. T is ignored if CON­
TROL or CTLCHR is specified.

Part 2. Sequential Access Method 85

M DEV ADDR=SYSxxx Symbolic unit for the printer used for this file.

M 10AREA 1 =xxxxxxxx Name for the first output area.

0 ASOCFLE=xxxxxxxx Name of the associated file for FUNC=RW, RPW, PW.

I Length of one output area, in bytes. If omitted, 121 is as-
0 BLKSIZE=nnn sumed for 1403, 1443, 3203 or 3211; 64 is assumed for 2560

or 3525, 96 is assumed for 5203 or 5425.

0 CONTROL=YES
CNTRL macro used for this file. Omit CTLCHR for this
file. Not allowed for 2560 or 5425.

(YES or ASA). Data records have control character. YES

0 CTLCHR=xxx
for S/370 character set; ASA for American National Stand-
ards Institute character set. Omit CONTROL for this file.
Not allowed for 2560 or 5425.

0 DEVICE=nnn
(1403, 1443, 2560P, 2560S, 3203, 3211,3525,5203, 5425P,
5425S). If omitted, 1403 is assumed.

I
0 ERROPT=xxxxxxxx

RETR Y or the name of your error routine for 3211. I G-
NORE for 3525. Not allowed for other devices.

0 FUNC=xxxx
(W, RW, RPW, PW) for 2560 or 5425. (W[T), RW[T),
RPW[T], PW[T) for 3525.

0 IOAREA2=xxxxxxxx If two output areas are used, name of second area.

0 10REG=(nn)
Register number, if two output areas used and PUT does
not specify a work area. Omit WORKA.

0 MODNAME=xxxxxxxx
Name of PRMOD logic module for this DTF. If omitted,
10CS generates standard name.

0 PRINTOV=YES
PRTOV macro used for this file. Not allowed for 2560 or
5425.

0 RDONLY=YES
Generate a read-only module. Requires a module save area
for each task using the module.

0 RECFORM=xxxxxx
(FlXUNB, V ARUNB, or UNDEF). If omitted, FlXUNB is
assumed.

0 RECSIZE=(nn) Register number if RECFORM=UNDEF.

M=Mandatory; O=Optional

Figure 2-19 DTFPR macro (part 1 of 2)

86 DOS/VS Supervisor & I/O Macros

0 SEPASMB=YES DTFPR is to be assembled separately.

0 STLIST=YES
1403 selective tape listing feature is to be used. Operand
valid for DOS only.

(ON) process data checks, (OFF) ignores data checks. Only
0 UCS=xxx for printers with the UCS feature or 321 1. If omitted, OFF

is assumed.

0 WORKA=YES PUT specifies work area. Omit fOREG.

M=Mandatory; O=Optional

Figure 2-19 DTFPR macro (part 2 of 2)

IOAREAl = name
This operand specifies the name of the output area.

IOAREA2=name
This operand specifies the name of a second output
area.

IOREG=(r)
If two output areas and no work areas are used, this
operand specifies the address of the area where you
can build a record. For (r) specify one of the regis­
ters 2-12.

MODNAME=name
This operand may be used to specify the name of the
logic module that is used with the DTF table to
process the file. If the logic module is assembled
with the program, MODNAME must specify the
same name as the PRMOD macro. If this operand is
omitted, standard names are generated for calling
the logic module. If two DTF macros call for differ­
ent functions that can be handled by a single mo­
dule, only one module is called.

PRINTOV=YES
This operand is specified if the PRTOV macro is
included in your program. This operand is not al­
lowed for the 2560 or 5425.

RDONLY=YES
This operand is specified if the DTF is used with a
read-only module. Each time a read-only module is
entered, register 13 must contain the address of a
72-byte doubleword-aligned save area. Each task
requires its own uniquely defined save area. Each
time an imperative macro (except OPEN or
OPENR) is issued, register 13 must contain the ad­
dress of the save area associated with the task. The
fact that the save areas are unique for each task

makes the module reentrant (that is, capable of be­
ing used concurrently by several tasks). For more
information see Shared Modules and Files in the
Multitasking Macros chapter.

If an ERROPT routine issues I/O macros which use
the same read-only module that caused control to
pass to either error routine, your program must pro­
vide another save area. One save area is used for the
normal I/O, and the second for I/O operations in
the ERR OPT routine. Before returning to the mo­
dule that entered the ERROPT routine, register 13
must be set to the save area address originally speci­
fied for the task.

If this operand is omitted, the module generated is
not reenterable and no save area need be estab­
lished.

RECFORM=IFIXUNB I UNDEF I VARUNB}
The operand RECFORM=FIXUNB is specified
whenever the record format is fixed. When the re­
cord format is FIXUNB, this entry may be omitted.
The entry RECFORM= UNDEF is specified when­
ever the record format is undefined. If the output is
variable and unblocked, enter VARUNB.

RECSIZE=(r)
This operand specifies the general register (2-12)
that will contain the length of the output record of
undefined format. The length of each record must be
loaded into the register before issuing the PUT ma­
cro.

SEPASMB=YES
Include this operand only if the DTFPR is assembled
separately. This causes a CAT ALR card with the
filename to be punched ahead of the object deck and
defines the filename as an ENTRY point in the as­
sembly. If the operand is omitted, the program as-

Part 2. Sequential Access Method 87

sumes that the DTF is being assembled with the
problem program and no CAT ALR card is punched.

STLIST=YES
Include this operand if the selective tape listing fea­
ture (1403 only) is used. If this entry is specified, the
CONTROL, CTLCHR, and PRINTOV entries are
not valid and will be ignored if specified. If this ope­
rand is specified, RECFORM must have the parame­
ter FIXUNB.

UCS={OFF ION}

I For a 1403 or 5203 printer with the universal char­
acter set feature or for a 3203 or a 3211, this ope­
rand determines whether data checks occurring in
case of unprintable characters are indicated to the
operator, printed as blanks, or ignored. The entry is
especially useful if you are using first-character
forms control and have modules that cannot process
the CNTRL macro.

ON Data checks are processed with an operator
indication.

OFF Data checks are ignored and blanks are
printed for the unprintable character.

WORKA=YES
If output records are processed in work areas instead
of in the 110 areas, specify this operand. You must
set up the work area in storage. The address of the
work area, or a general-purpose register which con­
tains the address, must be specified in each PUT
macro.

PRMOD Macro j
WlListed here are the operands you can specify for

PRMOD. The first card contains PRMOD in the
operation field and may contain a module name in
the name field.

CONTItOL=YES
Include this operand if CNTRL macros are used
with the associated DTFs. The module also process­
es files that do not use the CNTRL macro. If CON­
TROL is specified, the CTLCHR operand must not
be specified.

The CONTROL operand is not allowed for the 2560
or 5425.

CTLCHR={YES 1 ASA}
Include this operand if first-character carriage con­
trol is used. Any DTF used with the module must

88 DOS/VS Supervisor & I/O Macros

have the same operand. If CTLCHR is specified,
CONTROL must not be specified.

CTLCHR must not be specified for the 2560 or
5425. If CTLCHR=ASA is specified for the 3525,
the + character is not allowed; when
CTLCHR=ASA is specified for 3525 print (not
associated) files, you must issue either a space 1
command or skip to channel 1 command to print on
the first line of a card. For 3525 print associated
files, you must issue a space 1 command to print on
the first line of a card. If CTLCHR=ASA and
RDONL Y = YES are specified in a multitasking envi­
ronment where more than one DTFPR uses the
same module, overprinting may occur.

DEVICE = {1403 1 1443 1 2560P 1 2560S 132031
3211 1 3525 1 5203 1 5425PI 5425S}

This operand specifies which device is used for the
file. The "p" and "s" included with the "2560" and
"5425" parameters specify primary or secondary
input hoppers; regardless of which is specified, how­
ever, the module generated will handle DTFs specif­
ying either hopper.

Any DTF to be used with this module must have the
same operand (except as just noted concerning the
"p" and "s" specification for the 2560 or 5425).

ERROPT=YES
This operand must be specified if ERROPT=name is
specified in a DTFPR to be used with the module.
(ERROPT=name is applicable to the 3211 only.) If
ERROPT is not specified in the DTFPR, or if
ERROPT=RETRY (3211) or ERROPT=IGNORE
(3525) is specified, ERROPT= YES must be omit­
ted.

FUNC={W(T) 1 RW(T) 1 RPW(T) 1 PW(T)}
This operand specifies the type of file to be proc­
essed by the 2560, 3525, or 5425. Any DTF used
with the module must include the same operand. W
indicates print, R indicates read, P indicates punch,
and T (for the 3525 only) indicates an optional 2-
line printer.

RW[T], RPW[T], and PW[T] are used to specify
associated files; when one of these parameters is
specified for a printer file it must also be specified
for the associated file(s).

If a 2-line printer is not specified for the 3525,
multi-line print is assumed. T is ignored if CON­
TROL or CTLCHR is specified.

IOAREA2=YES
Include this operand if a second 110 area is used.
Any DTF used with the module must also include
the IOAREA2 operand.

PRINTOV=YES
Include this operand if PRTOV macros are used with
the associated DTFs. The module also processes any
files that do not use the PRTOV macro.

This operand is not allowed for the 2560 or 5425.

RDONLY=YES
This operand causes a read-only module to be gener­
ated. Whenever this operand is specified, any DTF
used with the module must have the same operand.

RECFORM={FIXUNB I VARUNB I UNDEFJ
This operand causes a module to be generated that
processes the specified record format: fixed-length,
variable-length, or undefined. Any DTF used with
the module must include the same operand.

SEPASMB=YES
Include this operand only if the module is assembled
separately. This causes a CAT ALR card with the
module name (standard or user-specified) to be
punched ahead of the object deck and defines the
module name as an ENTRY point in the assembly. If
the operand is omitted, the program assumes that the
DTF is being assembled with the problem program
and no CAT ALR card is punched.

STLIST=YES
Include this operand if the selective tape listing fea­
ture (1403 only) is used. If this entry is specified, the
CONTROL, CTLCHR, and PRINTOV entries are
not valid, and are ignored if supplied. If this operand
is specified, RECFORM must have the parameter
FIXUNB.

WORKA=YES
Include this operand if records are processed in work
areas instead of in 110 areas. Any DTF used with
the module must have the same operand.

Standard PRMOD Names
Each name begins with a 3-character prefix (IJD)
followed by a 5-character field corresponding to the
options permitted in the generation of the module.

PRMOD name = UDabcde

a = F RECFORM=FIXUNB

= V RECFORM=VARUNB

= U RECFORM=UNDEF

b = A CTLCHR=ASA

= Y CTLCHR= YES

= C CONTROL=YES

= S STLIST = YES

= Z none of these is specified

= T DEVICE=3525 with 2-line printer

= U DEVICE=2560

= V DEVICE=5425

c = B ERROPT=YES and PRINTOV=YES

= P PRINTOV=YES, DEVICE is not 3525, and ER­

ROPT is not specified

= I PRINTOV=YES, DEVICE=3525, and

FUNC= W[T] or omitted

= F PRINTOV=YES, DEVICE=3525, and

FUNC=RW[T]

= C PRINTOV=YES, DEVICE=3525, and

FUNC=PW[T]

= D PRINTOV=YES, DEVICE=3525, and

FUNC=RPW[T]

= Z PRINTOV=YES and ERROPT are not specified

and DEVICE is not 2560, 3525, or 5425

= 0 PRINTOV=YES not specified, DEVICE=3525,
and FUNC= W[T] or omitted

= R PRINTOV=YES not specified, DEVICE=3525,

and FUNC=RW[T]

= S PRINTOV=YES not specified, DEVICE=3525,

and FUNC=PW[T]

= T PRINTOV=YES not specified, DEVICE=3525,

and FUNC=RPW[T]

= E ERROPT=YES and PRINTOV=YES is not speci-

fied

= U FUNC=W or omitted and DEVICE=2560 or 5425

= V FUNC=RW and DEVICE=2560 or 5425

= W FUNC=PW and DEVICE=2560 or 5425

= X FUNC=RPW and DEVICE=2560 or 5425

d = I IOAREA2= YES

= Z IOAREA2=YES is not specified

e = V RDONLY=YES and WORKA=YES
-c::~ ... -

= W WORKA";YES

= Y RDONLY=YES

= Z neither is specified

Subset/Superset PRMOD Names
The following chart shows the subsetting and super­
setting allowed for PRMOD names. Two of the par­
ameters allow subsetting. For example, the module
name UDFCPIW is a superset of the module names
UDFCZIW and UDFZZIW. No
subsetting/ supersetting of PRMOD names is al­
lowed for the 2560 or 5425. See IOCS
Subset/Superset Names in The Macro System
chapter.

Part 2. Sequential Access Method 89

* * * * *
I ~1 D F A U I V

V y V Z W
U S l\f y

T X Z
U +
v p

+ Z
C +
Z I

0

+
F
R

+
C
S
+
0
T

+
B
E

* No subsetting/supersetting pennitted.
+ Subsetting/supersetting pennitted.

DTFPT Macro

A DTF entry is included for every paper tape input
or output file that is processed by the program. The
characteristics of a paper tape file are given in the
DOS/VS Data Management Guide, GC33-5372.

The first entry must be the DTFPT header entry.
Enter the symbolic name of the file in the name
field, and DTFPT in the operation field. The detail
entries follow the DTFPT header card in any order.
Figure 2-20 lists the keyword operands contained in
the operand field.

BLKSIZE=n
This operand specifies the length of the input or
output area. The maximum block size is 32,767
bytes.

Input: For undefined records, this area must be at
least one byte larger than the longest record includ­
ing all shift and delete characters included in the

90 DOS/VS Supervisor & I/O Macros

record. For fixed-length records, this area must be
the same size as the record. If shift and delete char­
acters are included in the record (the SCAN entry is
specified), BLKSIZE indicates the number of char­
acters required by the program after translation and
compression. OVBLKSZ contains the number of
characters to be read in to produce the BLKSIZE
number.

Output: For undefined records, the area must be at
least equal to the longest record, including all shift
characters that are to be included in the record. For
fixed-length records, the area must be the same size
as the record. For shifted codes (when the FSCAN
and LSCAN entries are specified), BLKSIZE must
contain the number of characters before translation
and insertion of shift characters. OVBLKSZ must
contain the number of characters after translation
and insertion of shift characters.

DELCHAR= X'nn'
This operand specifies the configuration of the de­
lete character and must be used for output files only,
that is, when DEVICE= 1018 is specified. The con­
stant X'nn' consists of two hexadecimal digits. The
delete character is used in the error recovery proce­
dure, and you must specify the correct configuration
in accordance with the number of tracks of the out­
put tape, as follows:

X' IF' for five tracks.

X'3F' for six tracks.

X'7F' for seven tracks.

X'FF' for eight tracks.

Note: The delete character ~s required only if the
1018 has the error correction feature.

DEVADDR=SYSnnn
This operand speCifies the logical unit (SYSnnn)
associated with this file. An actual channel and unit
are assigned to the unit by an ASSGN job control
statement. The ASSGN statement contains the same
symbolic name as DEV ADDR.

DEVICE={26711101711018J
This operand is required only to specify an I/O de­
vice other than 2671. If this entry is omitted, 2671 is
assumed.

Applies to
.... = = 0.

0.
I:: = - 0

x x M BLKSIZE=n Length of your I/O areas.

X X M DEY ADDR=SYSnnn Symbolic unit to be associated with this file.

X X M 10 AREA 1 =xxxxxxxx Name of first I/O area.

X 0 EOFADDR=xxxxxxxx Name of your end-of-file routine.

X 0 DELCHAR=x'nn' Delete character.

X X 0 DEYICE=nnnn
(2671, 1017, 1018). If omitted, 2671 is as-
sumed.

X 0 EORCHAR=x'nn
, End-of-record character. (For

RECFORM= UNDEF).

X X 0 ERROPT =xxxxxxxx
(IGNORE, SKIP, or error routine name). Pre-
vents job termination on error records.

X 0 FSCAN=xxxxxxxx
(For shifted codes). Name of your scan table
used to select figure groups.

X 0 FfRANS=xxxxxxxx
(For shifted codes). Symbolic address of your
figure shift translate table.

X X 0 IOAREA2=xxxxxxxx Name of second I/O area.

X X 0 IOREG=(nn)
Used with two I/O areas. Register (2-12) con-
taining current record address.

X 0 LSCAN=xxxxxxxx
(For shifted codes). Name of your scan table
used to select letter groups.

X 0 L TRANS=xxxxxxxx
(For shifted codes). Name of your letter shift
translate table.

X X 0 MODNAME=xxxxxxxx For module names other than standard.

X X 0 OYBLKSZ=n
Used if I/O records are compressed or ex-
panded.

X X 0 RECFORM=xxxxxx
(FIXUNB or UNDEF). If omitted, FIXUNB
is assumed.

M=Mandatory; O=Optional

Fagure 2-20 DTFPT macro operands (part t of 2)

Part 2. Sequential Access Method 91

Applies to

..... = =' S-a. = =' - 0

x x 0 RECSIZE=(nn) Register containing the record length.

X 0 SCAN =xxxxxxxx
Name of your scan table for shift or delete
character.

X X 0 SEPASMB= YES DTF is assembled separately.

X X 0 TRANS=xxxxxxxx Name of your table for code translation.

X 0 WLRERR=xxxxxxxx Name of wrong-length-record error routine.

M=Mandatory; O=Optional

Figure 2-20 DTFPT macro operands (part 2 of 2)

EOFADDR = name
This operand specifies the name of your end-of -file
routine. IOCS automatically branches to this routine
on an end-of-file condition if the end-of-file switch
is set on. The routine can execute any operation
required for the end-of-file, issue the CLOSE or
CLOSER macro for the file, or return to 10CS by
branching to the address in register 14. In the latter
case, IOCS reads in the next record. The end-of-file
condition cannot occur on the 1018.

EORCHAR=X'nn'
This operand specifies the user-defined end-of­
record (EOR) character, where nn is two hexadeci­
mal digits. It must be used for output files with unde­
fined record format only. IOCS writes this character
after the last character of the undefined record.

ERROPT={IGNORE I SKIP I namel
This operand is specified if you do not want a job
terminated when standard recovery procedure can­
not recover from a read or write error. If the ER­
ROPT entry is omitted and a read or write error
occurs, IOCS terminates the job.

For input files, IGNORE allows IOCS to handle the
record as if no errors were detected. If SKIP is speci­
fied, IOCS skips the record in error and reads the
next record.

For output files with shifted codes, no ERROPT can
be specified. For unshifted codes, the options
ERROPT=IGNORE and ERROPT=name can be
specified. IGNORE allows IOCS to handle the re-

92 DOS/VS Supervisor & I/O Macros

cord as if no errors were detected. The
ERROPT=SKIP option is ignored and causes IOCS
to terminate the job. If two I/O areas are used, the
CLOSE or CLOSER macro checks the last record,
and the ERROPT=name option is treated as the
ERROPT=IGNORE option.

If IGNORE and SKIP are not specified, the name of
your error routine must be supplied to process er­
rors. On an error condition, IOCS reads or writes the
complete record, including the error character(s),
and then branches to the error routine. At the end of
the eHor routine, return to IOCS by branching to
the address in register 14. The next record is then
read or written. You must not issue any GET or
PUT macros for records in the error block. If the
error routine contains any other 10CS macros, the
contents of register 14 must be saved and restored.

FSCAN=name
This operand must be included for every output file
using a shifted code. For an input file, omit this ope­
rand. It specifies the name of a scan table in your
program used to select groups of figures. This table
must conform to the specifications of the machine
instruction TRT. The entry in the table for each
letter character must be the letter shift character,
and all other entries must be hexadecimal zero. Any
deviation from this results in incorrect translation.

FTRANS = name
This operand must be included for every input file
using a shifted code and is not permitted for output
files. It specifies the name of a figure shift table in

your program. This table must conform to the speci­
fications of the machine instruction TR.

IOAREAl =name
This operand specifies the name of an input or out­
put area.

IOAREA2=name
This operand specifies the name of a second input or
output area. When this operand is specified, 10CS
overlaps the 110 operation in one area with the
processing of the record in the other.

IOREG=(r)
This operand must be included if two input or output
areas are used. For input, it specifies the register into
which 10CS puts the address of the logical record
available for processing. For output, it specifies the
address of the area into which your program can
build a record. Any register from 2 to 12 may be
specified.

LSCAN=name
This operand must be included for every output file
using a shifted code and is not permitted for input
files. It specifies the name of a scan table in your
program used to select groups of letters. This table
must conform to the specifications of the machi~e
instruction TRT. The entry in the table for each
figure character must be the figure shift character,
and all other entries must be hexadecimal zero. Any
deviation from this results in incorrect translation.

LTRANS = name
This operand must be included for every input file
using a shifted code and is not permitted for output
files. It specifies the name of a letter shift table in
your program. This table must conform to the speci­
fications of the machine instruction TR.

MODNAME = name
This operand may specify the name of the logic mo­
dule used with the DTF table to process the file. If
the logic module is assembled with the program, the
MODNAME operand in this DTF must specify the
same name as the PTMOD macro. If
MODNAME=name is omitted, IOCS generates
standard names for calling the logic module.

OVBLKSZ=n
For input files, this operand specifies the number of
characters to be read (before translation and com­
pression) to produce the number of characters speci­
fied in the BLKSIZE entry. OVBLKSZ is used only
when SCAN and RECFORM=FIXUNB are both

specified. If OVBLKSZ is omitted, 10CS assumes
the number of characters to be read is equal to the
number specified in the BLKSIZE entry. The maxi­
mum value is 32,767 bytes.

For output files, OVBLKSZ specifies the number of
characters indicated in the BLKSIZE entry, plus the
number of shift characters to be inserted. If the size
of OVBLKSZ is large enough to allow the insertion
of all the shift characters required to build the output
record, a single WRITE operation results from a
PUT macro. On the other hand, if the size of
OVBLKSZ (which must be at least one position
larger than BLKSIZE) does not permit the insertion
of all the shift characters, several WRITE operations
result from a PUT macro. OVBLKSZ is used only
when LSCAN and FSCAN are specified with the
FIXUNB format. If OVBLKSZ is specified with
UNDEF format, it is ignored.

RECFORM=IFIXUNB I UNDEF}
This operand specifies the record format for the file.
Specify either format for shifted or unshifted codes.
If the record format is FIXUNB, this entry may be
omitted.

RECSIZE=(r)
This operand specifies the number of a register (2-
12) that contains the length of the input or output
record. This entry is optional for input files. If pres­
ent, IOCS loads the length of each record read into
the specified register. If input files contain shift
codes or other characters requiring deletion, 10CS
loads the compressed record length into the specified
register.

For output files, this entry must be included for un­
defined records. Before translation, your program
must load each record length into the designated
register before issuing the PUT macro for the record.

SCAN = name
This operand must be included for all input files
using shifted codes. It may also be inGluded if you
wish to delete certain characters from each record.
The SCAN entry specifies the symbolic name of a
table provided by your program. This table must
conform to the specifications of the machine instruc­
tion TRT. It must contain nonzero entries for all
delete characters and, where appropriate, for the
figure and letter shift characters. The table entry for
the figure shift character must be hexadecimal 04,
and hexadecimal 08 for the letter shift character.
Delete entries must be hexadecimal OC. All other
entries in the table must be hexadecimal 00. Other-

Part 2. Sequential Access Method 93

wise, incorrect translation results and may produce a
program check.

The table must be large enough to hold the maxi­
mum value of coding for the tape being processed;
that is, 255 bytes for 8-track tape. This prohibits
erroneous coding on the tape from causing a scan
function beyond the limits of the scan table.

SEPASMB=YES
Include this operand only if the DTFPT is assembled
separately. This causes a CAT ALR card with the
filename to be punched ahead of the object deck and
defines the filename as an ENTRY point in the as­
sembly. If the operand is omitted, the program as­
sumes that the DTF is being assembled with the
problem program and no CAT ALR card is punched.

TRANS=nHle
The TRANS operand specifies the symbolic name of
a table provided within your program. This table
must conform to the specifications of the machine
instruction TR. For input files, include this entry if a
nonshifted code is to be translated into internal
System/370 code. Omit the FTRANS and LTRANS
entries if this entry is present. If none of these three
entries is present, no translation takes place. For
output files, include this entry if the internal
System/370 code is translated into a shifted or non­
shifted code, depending on whether the FSCAN and
LSCAN entries are present or omitted.

WLRERIl = name
This operand applies only to paper tape input files
when RECFORM= UNDEF is specified.

When IOCS finds a wrong-length record, it branches
to the symbolic name specified in the WLRERR

, entry. If this entry is omitted and the ERROPT en­
try is included, IOCS considers the error uncorrecta­
ble and uses the ERROPT option specified. Absence
of both ERROPT and WLRERR entries causes the
wrong-length record to be accepted as a normal re­
cord. Wrong-length checking is not performed for
fixed-length records because a fixed number of char­
acters is read in each time. IOCS detects overlength
undefined records when the incoming record fills the
input area. The input area must, therefore, be at
least one position longer than the longest record
anticipated.

At the end of the WLRERR routine, return to IOCS
by branching to the address in register 14. The next
IOCS read operation will normally cause the remain­
der of the overlength, undefined record to be read.
If any other IOCS macros are included in the record-·

94 DOS/VS Supervisor & I/O Macros

length error routines, the contents of register 14
must be saved and restored.

Note: A wrong-length condition appears during the
first read operation on a 1017 if the combined length
of the tape leader and the first record is greater than
the length of the longest record anticipated (the
length specified in BLKSIZE).

Paper Tape Processing Considerations

EOF Condition (Input Only)
The EOF condition occurs with an end-of -tape con­
dition when the EOF switch is on. When IOCS de­
tects this EOF condition (unit exception flag on in
first CSW status byte), it automatically branches to
your end-of-file routine. However, at the end of the
routine, you can choose to return to IOCS to read a
new tape by branching to the address in register 14.
If any IOCS macro is contained in this routine, the
contents of register 14 must be saved and restored.

If an end-of -tape condition is detected while reading
characters other than blanks or deletes (all punched
holes), the unit check bit in the first CSW status
byte is set on. This applies only to the 1017, and
causes the broken tape bit (bit 7) to appear in the
sense byte. The broken tape condition may occur in
addition to the EOF condition if the EOF switch is
on.

Trailer Length (Input Only)
To avoid a broken tape condition that would result if
the tape trailer is too short, the length of the trailer
must be greater than:

• For undefined records (read-EOR command): 2
inches.

For fixed unblocked records (read command):

Byte Count + 2 inches
10

Note: Byte count is either the count specified in
BLKSIZE (record without shifted codes or records
with shifted codes but without using the OVBLKSZ
operand in the DTFPT), or the count specified in
OVBLKSZ (records with shifted codes using the
OVBLKSZ operand).

However, when processing undefined records, and a
trailer greater than

BLKSIZE + 2 inches
10

is read, this trailer will be mistaken for a wrong­
length record.

Error Conditions
The paper tape reader or punch stops immediately
on an error condition. If the error cannot be correct­
ed and the job is not terminated, IOCS causes the
entire record containing the error to be:

• Translated and compressed, if needed (for input
records).

• Translated, expanded, and punched, before tak­
ing the error option specified by the problem
program (for output records).

Wrong Length
For input files, the only wrong-length condition that
can be detected is an overlength undefined record.
This should be reflected in the BLKSIZE operand.
Wrong-length record indication is impossible with
fixed unblocked records, because each record is a
sequence of a specified number of characters. Use
the FIXUNB record format carefully, because specif­
ying one character too few or too many in any re­
cord .causes all subsequent records to be out of
phase. The problem program should use the REC­
SIZE operand to check for the correct length of the
last record of any file. A record must be entirely on
one reel of input tape.

Data Check
The following shows the decision taken by logical
IOCS, or possible operator actions, after an irrecov­
erable data check occurs:

Type of Record Proc- Input Opera- Output Opera-
essed tion tion

Fixed unblocked record
Action 1 Action 1

in shifted code

Following an ignore decision, logical IOCS takes
action in accordance with the parameter specified in
ERROPT.

ERROPT=IGNORE

ERR OPT = SKIP

ERROPT=name

ERR OPT = omitted

The record is handled as if
no errors were detected.

The erroneous record is
skipped and the next record
is read in.

The record is handled as if
no errors were detected,
and control is given to your
error routine. At the end of
this routine, return to IOCS
by branching to the address
in register 14. The next re­
cord is then read in or writ­
ten out.

The job is canceled.

Note 1: The character in error is repunched preceded
by its corresponding shift character:

For output records expressed in a paper tape
code where the delete character and one of the
shift characters have the same configuration.

Following a data check.

Note 2: The entire erroneous record is repunched as
if no errors were detected:

• If an irrecoverable error occurs and
ERROPT=name or ERROPT=IGNORE was
specified in the DTFPT.

• In the case of output records with two 110 are­
as, the CLOSE or CLOSER macro checks the
successful completion of the last operation.

Note 3: No error condition occurs on the 1018 if the
Fixed unblocked record

Action 2
in nonshifted code

Action 2 j setting of the tape width selector does not match the
tape code specified in the problem program.

Undefined record in
Action 2 Action 2

nonshifted code

Undefined record in
Action 2 Action 1

shifted code

Action 1:

Action 2:

The system automatically cancels the job.

The operator may choose to:

• cancel the job
• ignore the error

• retry the operation (for 2671 only)

Part 2. Sequential Access Method 95

Note 4: When reading paper tape with physical
10CS, restore the CCW address in the CCB before
using the EXCP macro.

Programming Considerations
For information about special equipment considera­
tions for paper tape devices, refer to IBM 2671
Paper Tape Reader and IBM 2822 Paper Tape
Reader Control, GA24-3388, and IBM
System/360 Component Descriptions: 2826 Paper
Tape Control Unit, 1017 Paper Tape Reader,
1018 Paper Tape Punch, GA33-4500.

PTMOD Macro

Listed here are the operands you can specify for
PTMOD. The first card contains PTMOD in the
operation field and may contain a module name in
the name field.

DEVICE={26711101711018}
Required only to specify an I/O device other than
2671 used by the module. Any DTF used with the
module must have the same operand. 2671 is as­
sumed if this operand is omitted.

RECFORM={FIXUNB I UNDEF}
Required only if the operand SCAN = YES is pres­
ent. If records of undefined format using the SCAN
option are translated, specify the UNDEF parame­
ter. If records of fixed U' "locked format are trans­
lated, the FIXUNB parameter may be specified or
omitted.

SCAN=YES
Required for records containing shift characters
and/ or characters that are automatically deleted by
10CS.

SEPASMB=YES
Include this operand only if the module is assembled
separately. This causes a CATALR card with the
module name (standard or user-specified) to be
punched ahead of the object deck and defines the
module name as an ENTRY point in the assembly. If
the operand is omitted, the program assumes that the
DTF is being assembled with the problem program
and no CAT ALR card is punched.

TRANS=YES
Required only if records using an unshifted code are
translated and if the operand SCAN = YES is not

96 DOS/VS Supervisor & I/O Macros

specified.

Summary of PTMOD
Figure 2-21 shows the only possible combinations of
PTMOD operands and describes the resultant mo­
dules.

Standard PTMOD Names
Each name begins with a 3-character prefix (IJE)
and continues with a 5-character field corresponding
to the options permitted in the generation of the
module.

PTMOD name =I1Eabcde

a = S SCAN=YES

= Z SCAN=YES is not specified

b = T TRANS=YES (SCAN=YES is not specified)

= Z TRANS= YES is not specified

c = F RECFORM=FIXUNB, and SCAN=YES
= U RECFORM=UNDEF, and SCAN=YES

= Z SCAN=YES is not specified, and/or

DEVICE=1018

d = 1 DEVICE=1017
= 2 DEVICE=1018

= Z DEVICE=2671, or if this entry is omitted

e = Z always

Subset/Sup~rset PTMOD Names
The following chart shows the PTMOD names. No
subsetting or supersetting is allowed. See IOCS
Subset/ Superset Names in The Macro System
chapter.

* * * *
I I.T E Z Z Z Z Z

Z T Z Z
S Z F Z
S Z u z
z z z 1
Z T Z 1
S Z F 1
S Z U 1
S Z Z 2
Z T Z 2

* No subsetting/supersetting permitted.

Operand*
Resulting Module

DEVICE RECFORM SCAN TRANS

- Does not handle translation or shift or
delete characters

2671

- YES Handles translation of unshifted codes,
but not delete characters

2671 YES

- YES Handles shift and delete characters for
records of fixed unblocked format

- FIXUNB YES

2671 YES

2671 FIXUNB YES

- UNDEF YES Handles shift and delete characters for
records of undefined format

2671 UNDEF YES

to 17 Does not handle translation or shift or
delete characters

to17 YES Handles translation of unshifted codes,
but no delete characters.

tol7 YES Handles shift and delete characters for
records of fixed unblocked format

to 17 FIXUNB YES

to 17 UNDEF YES Handles shift and delete characters for
records of undefined format

to18 Handles translation of unshifted codes,
if specified in DTFPT, for records of

to18 YES
fixed unblocked format

to18 FIXUNB

to18 FIXUNB YES

to18 UNDEF

1018 UNDEF YES
Handles translation of unshifted codes,
if specified in DTFPT, for records of

". -' format

tol8 YES Handles shift characters for records of
fixed unblocked format

to18 FIXUNB
YES

to18 UNDEF YES Handles shift characters for records of
undefined format

* In all cases, SEP ASMB= YES may either be specified or omitted.

Figure 2-21 PTMOD operand combinations

Part 2. Sequential Access Method 97

DTFSDMacro

The DTFSD macro defines sequential (consecutive)
processing for a file contained on a DASD. Only
IBM standard label formats are processed.

A DTFSD entry is included for each sequential input
or output DASD file that is processed in the pro­
gram. The DTFSD header entry and a series of de­
tail entries describe the file. Enter the symbolic
name of the file in the name field and DTFSD in the
operation field. The detail entries follow the DTFSD
header card in any order. Figure 2-22 lists the key­
word operands contained in the operand field.

BLKSIZE=n
Enter the length of the I/O area. If the record for­
mat is variable or undefined, enter the length of the
I/O area needed for the largest block of records.

When processing spanned records, the size of the
I/O area must be at least as large as the smaller of
the values shown in Figure 2-25. For output files,
the first 8 bytes of IOAREAl must be alloted for
IOCS to construct a count field.

CONTROL = YES
This operand is specified if a CNTRL macro is to be
issued to the file. A CCW is generated for control
commands.

DELETFL=NO
Specify this operand if the CLOSE or CLOSER
macro is not to delete the Format-l and Format-3
label for a work file. The operand applies to work
files only.

DEVADDR=SYSnnn
This operand must specify the symbolic unit associat­
ed with the file if an extent is not provided. An EX­
TENT job control statement is not required for
single-volume input files. If an EXTENT job control
statement is provided, its specification overrides any
DEV ADDR specification. SYSnnn represents an
actual I/O address, and is used in the ASSGN job
control statement to assign the actual I/O device
address to this file.

A list of symbolic units applying to DTFSD can be
found in the Symbolic Unit Addresses section of
The Macro System chapter. The only symbolic unit
within this list which is not applicable is SYSLOG.

98 DOS/VS Supervisor & I/O Macros

DEVICE = 1231 1 1231412321 13330 133401
This operand is included to specify the device on
which the file is located. If no device is specified,
2311 is assumed. Specify 2314 for 2319 and 3330
for 3333.

EOFADDR=name
This operand specifies the name of your end-of-file
routine. IOCS automatically branches to this routine
on an end-of-file condition. You can perform any
operations required for the end of the file in this
routine (you generally issue the CLOSEor CLOSER
macro).

ERREXT=YES
This operand enables your ERROPT or WLRERR
routine to return to SDMOD with the ERET macro.
It also enables unrecoverable I/O errors (occuring
before a data transfer takes place) to be indicated to
your program. For ERREXT facilities, the ERR OPT
operand must be specified. However, to take full
advantage of this option give the ERROPT=name
operand.

ERROPT=UGNORE 1 SKIP 1 name I
This operand is specified if a job is not to be termi­
nated when a read or write error cannot be corrected
in the disk error routines. If a parity error is detected
when a block of records is read, the block is reread
256 times before it is considered an error block.
After unsuccessfully reading 256 times, the job is
terminated unless the ERROPT operand is specified.
Either IGNORE, SKIP, or the name of an error rou­
tine can be specified. The functions of these parame­
ters are described below.

IGNORE The error condition is ignored. The re­
cords are made available for processing.
When reading spanned records, the whole
spanned record or block of spanned re­
cords is returned, rather than just the one
physical record in which the error occur­
red. On output, the physical record in
which the error occurred is ignored as if it
were written correctly. If possible, any
remaining spanned record segments are
written.

Applies to
....

.... ::3
~ Q. ::3 1-0

Q. ::3 0

= 0 ~ -
x x x M BLKSIZE=nnnn Length of one I/O area, in bytes

X X M EOFADDR=xxxxxxxx Name of your end-of-file routine

X X M I OAREA 1 =xxxxxxxx Name of first I/O area

X X X 0 CONTROL=YES CNTRL macro used for this file

X 0 DELETFL=NO CLOSE, CLOSER macro is not to delete Format-I and Format-3 labels
for work file

X X X 0 DEV ADDR=SYSnnn Symbolic unit required only when not provided on an EXTENT state-
ment

X X X 0 DEVICE=nnnn (2311,2314,2321,3330,3340). If omitted, 2311 is assumed

X X X 0 ERREXT=YES Additional error and ERET are desired. Specify ERROPT

X X X 0 ERROPT=xxxxxxxx (IGNORE, SKIP, or name of error routine). Prevents job termination
on error records. Do not use SKIP for output files

X X 0 FEOVD=YES Forced end of volume for disk is desired

X X 0 HOLD=YES Employ the track hold function

X X 0 IOAREA2=xxxxxxxx If two I/O areas are used, name of second area

X X 0 10REG=(nn) Register number. Use only if GET or PUT does not specify work area or
if two I/O areas are used. Omit WORK A

X X 0 LABADDR=xxxxxxxx Name of your routine to check/write user-standard labels

X X 0 MODNAME=xxxxxxxx Name of SDMODxx logic module for this DTF. If omitted, 10CS gener-
ates standard name

X 0 NOTEPNT =xxxxxxx (YES or POINTRW). YES if NOTE/POINTR/POINTW /POINTS
used. POINTRW if only NOTE/POINTR/POINTW used

X X X 0 RDONLY=YES Generates a read-only module. Requires a module save area for each
task using the module

(FIXUNB, FIXBLK, VARUNB, VARBLK, SPNUNB, SPNBLK, or
X X X 0 RECFORM=xxxxxx UNDEF). For work files use FIXUNB or UNDEF. If omitted, FIXUNB

is assumed

M=Mandatory; O=Optional

Figure 2-22 DTFSD macro operands (part 1 of 2)

Part 2. Sequential Access Method 99

Applies to
... ... =' ~ =' 0.

0. =' 0 = 0 ~ -
If RECFORM=FIXBLK, number of characters in record. If

X X 0 RECSIZE=nnnnn RECFORM=SPNUNB, SPNBLK, or UNDEF, register number. Not
required for other records

X X 0 SEPASMB= YES DTFSD is to be assembled separately.

X X 0 TRUNCS=YES RECFORM=FIXBLK or TRUNC macro used for this file

X X X 0 TYPEFLE=xxxxxx (INPUT, OUTPUT, or WORK). If omitted, INPUT is assumed

X X 0 UPDATE=YES Input file or work file is to be updated

X 0 V ARBLD=(nn)
Register number if RECFORM=VARBLK and records are built in the
output area. Omit if WORKA=YES

X X 0 VERIFY=YES
Check disk records after they are written. For DEVICE=2321, YES is
assumed

X 0 WLRERR=xxxxxxxx Name of your wrong-length-record routine

X X 0 WORKA=YES
GET or PUT specifies work area. Omit IOREG. Required for
RECFORM=SPNUNB or SPNBLK.

M=Mandatory; O=Optional

Figure 2-22

SKIP

name

DTFSD macro operands (part 2 of 2)

No records in the error block are made
available for processing. The next block
is read from the disk, and processing con­
tinues with the first record of that block.
When reading spanned records, the whole
spanned record or block of spanned re­
cords is skipped, rather than just one
physical record. On an UPDATE=YES
file, the physical record in which the error
occurred is ignored as if it were written
correctly. If possible, any remaining span­
ned record segments are written.

IOCS branches to your error routine
named by this parameter regardless of
whether or not ERREXT = YES is speci­
fied. In this routine you can process or
make note of the error condition as de­
sired.

If ERREXT is not specified, register 1 contains the
address of the block in error. When spanned records

100 DOS/VS Supervisor & I/O Macros

are processed, register 1 contains the address of the
whole unblocked or blocked spanned record. Regis­
ter 14 contains the return address. When processing
in the ERROPT routine, reference the error block
(or records within the error block) by referring to
the address supplied in register 1. The contents of
the IOREG register or work area (if either is speci­
fied) are variable and therefore should not be used
for error block processing. Also, GET macros must
not be issued for records in the error block. If any
other IOCS macros (excluding ERET if
ERREXT = YES) are used in this routine, the con­
tents of register 13 (with RDONLY) and 14 must be
saved and restored after their use. At the end of the
routine, return control to IOCS by branching to the
address in register 14. For a read error IOCS skips
that error block and makes the first record of the
next block available for processing in the main pro­
gram.

A sequence error may occur if LIOCS is searching
for the first segment of a logical spanned record and

fails to find it. If WLRERR or ERROPT=name is
specified, the error recovery procedure is the same
as for wrong-length record errors. If neither
WLRERR nor ERROPT = name is specified, LIOCS
ignores the sequence error and searches for the next
first segment. Write errors are ignored.

If ERREXT is specified, register 1 contains the ad­
dress of a two part parameter list containing the
4-byte DTFSD address and the 4-byte address of
the error block respectively. Register 14 contains the
return address. Processing is similar to that described
above except for addressing the error block and for
the following considerations.

The data transfer bit (byte 2, bit 2) of the DTF is
tested to determine if a nondata transfer error has
occurred: If this bit is on, the block in error was not
read or written. If the bit is off, data was transferred
and the routine must address the block in error to
determine the necessary action. At the end of its
processing, the routine returns to LIOCS by issuing
the ERET macro.

For an input file:

• The program skips the block in error and reads
the next block with an ERET SKIP.

Or, it ignores the error with an ERET IGNORE.

Or it makes another attempt to read the block
with an ERET RETRY.

For an output file:

The program ignores the error condition ERET
IGNORE or ERET SKIP.

• Or, attempts to write the block with an ERET
RETRY macro.

Also, for an output file, the only acceptable ERET
parameters are IGNORE or name. On an
UPDATE = YES file, the parameter SKIP ignores
write errors.

If an error occurs while rereading the physical block
while updating spanned records, and neither
WLRERR nor ERROPT is specified, the entire logi­
cal record is skipped. Likewise, if an error occurs
when rereading the physical block that contains the
last segment for blocked spanned records, the next
entire logical record is skipped. If WLRERR and/ or
ERROPT were specified, the error recovery proce­
dure is the same as for nonspanned records.

This operand applies to wrong-length records if the
WLRERR operand is not included. If the ERROPT
routine is used to process wrong-length records, the
ERET RETRY option cannot successfully retry the
option. ERET RETRY for this condition results in
job termination. If both ERR OPT and WLRERR
are omitted and wrong length records occur, IOCS
assumes the IGNORE option.

The DTFSD error options are shown in Figure 2-23.
The figure is divided into two parts: the lower part
lists the error conditions which you specify in the
DTF, and the upper part shows the action resulting
from these specifications when an error occurs. For
example, assume that WLRERR=name is specified
and the ERET macro is used with the RETRY op­
tion. The upper part of the table then shows that
the job is terminated regardless of whether or not
the error was due to a wrong-length record.

FEOVD=YES
This operand is specified if the forced end of volume
for disk feature is desired. It forces the end-of­
volume condition before physical end of volume
occurs. When the FEOVD macro is issued, the cur­
rent volume is closed, and I/O processing continues
on the next volume.

HOLD=YES
This operand may be specified only if the track hold
function was specified at system generation time and
if it is employed when a data file or a work file is
referenced for updating. See DASD Track Protec­
tion Macros in the Multitasking Macros chapter
for more information.

IOAREAl = name
This operand specifies the symbolic name of the I/O
area used by the file. IOCS either reads or writes
records using this area. For variable-length or unde­
fined records, this area must be large enough to con­
tain the largest block or record. For output records,
the first 8 bytes of IOAREA1 must be allotted for
IOCS to construct a count field. When variable­
length records are processed, the size of the I/O
area must include four bytes for the block size. The
I/O area must begin on a half-word boundary.

When processing spanned records, the size of the
I/O area must be at least as large as the smaller of
the values shown in Figure 2-24.

Part 2. Sequential Access Method 101

Desired
Functions

Specifications
required
in your
Program

Control is passed to
your wrong length record

rong W
le
R
E

Error record is skipped
ngth

ecord
Error record is ignored rrors

Job is terminated

Control is passed to your
error option routine

rror other
Error record is skipped

han Wrong t
le
R

Error record is ignored ngth
ecords

Error record is retri ed

Job is terminated

ERROPT = IGNORE

ERR OPT = name

ERR OPT = SKIP

WLRERR = name

ERR OPT = IGNORE, WLRERR = name

ERROPT = name, WLRERR = name

ERR OPT = SKIP, WLRERR =name

ERROPT = name
ERET IGNORE

ERR OPT = name
RERET RETRY

ERR OPT = name
ERET SKIP

WLRERR = name
ERET IGNORE

WLRERR = name
ERET RETRY

WLRERR = name
ERET SKIP

ERR OPT = name, WLRERR = name
ERET IGNORE

ERROPT = name, WLRERR = name
ERET RETRY

ERR OPT = name, WLRERR = name
ERET SKIP

NONE

1 Input files only
2 Output files only

-

~
X

X
X

X
X

X
X

X
X

X2 Xl
X
X
X

X
X

X2 Xl

X

3 Record length not checked for DTFSD undefined records

Figure 2-23 DTFSD error options

102 DOS/VS Supervisor & I/O Macros

X
X

X

X
X

Xl X2
X

X

X
X

Xl

X

X
X
X
X
X
X

Xl

X

X

X

X
X
X
X

Xl

X

X

ERET Macro Options:

DTF Parameters:

IGNORE
RETRY
SKIP

ERROPT = name
ERROPT = IGNORE
ERROPT = SKIP
WLRERR = name

Device Length (Decimal)

2311 Disk Drive 3625 * or BLKSIZE

2314, 2319 Disk Drive 7294* or BLKSIZE

2321 Data Cell 2000* or BLKSIZE

3330 and 3333 Disk 13, 030* or BLKSIZE
Storage

3340 Disk Storage 8368* or BLKSIZE

* Add 8 for output files

Figure 2-24 I/O area requires when processing spanned
records

IOAREA2=name
If two 1/0 areas are used by GET or PUT, this ope­
rand is specified. When variable length records are
processed, the size of the 1/0 area must include four
bytes for the block size. Also, the 110 area must
include eight bytes to build a count field for output
files.

IOREG=(r)
This operand specifies the general purpose register
(2-12) in which IOCS puts the address of the logical
record that is available for processing. At OPEN
time, for output files, IOCS puts in the register speci­
fied the address of the area where you can build a
record. The same register may be used for two or
more files in the same program, if desired. If this is
done, the program must store the address supplied
by IOCS for each record.

This operand must be specified if blocked input or
output records are processed in one 110 area, or if
two 110 areas are used and the records are proc­
essed in both 110 areas.

LABADDR=name
Enter the name of the routine that enables you to
process your own labels. See the sections Writing
User Standard Labels on Disk and Checking
User Standard Labels on Disk in the Label
Processing chapter for a discussion of what the LA­
BADDR routine should do.

MODNAME = name
This operand may be used to specify the name of the
logic module that will be used with the DTF table to
process the file. If the logic module is assembled
with the program, MODNAME must specify the
same name as the SDMODxx macro.

If this operand is omitted, standard names are gener­
ated for calling the logic module. If two DTF macros
call for different functions that can be handled by a
single module, only one module is called.

NOTEPNT=IPOINTRW I YES}
The parameter POINTRW is specified if a NOTE,
POINTR, or POINTW macro is issued for the file. If
the parameter YES is specified, NOTE, POINTR,
POINTW, and POINTS macros may be issued for
the file.

RDONLY=YES
This operand is specified if the DTF is used with a
read-only module. Each time a read-only module is
entered, register 13 must contain the address of a
72-byte doubleword-aligned save area. Each task
should have its own uniquely defined save area.
When an imperative macro (except OPEN, OPENR,
or LBRET) is issued, register 13 must contain the
address of the save area associated with the task.
The fact that the save areas are unique for each task
makes the module reentrant (that is, capable of be­
ing used concurrently by several tasks). For more
information see Shared Modules and Files in the
Multitasking Macros chapter.

If an ERROPT or WLRERR routine issues 1/0
macros using the same read-only module that caused
control to pass to either error routine, your program
must provide another save area. One save area is
used for the normal 110 operations, and the second
for 1/0 in the ERR OPT or WLRERR routine. Be­
fore returning to the module that entered the error
routine, register 13 must be set to the save area ad­
dress originally specified for the task.

If the operand is omitted, the module generated is
not reenterable and no save area need be estab­
lished.

RECFORM=IFIXUNB I FIXBLK I V ARUNB I
VARBLKISPNUNBISPNBLKI
UNDEF}

This operand specifies the type of records for input
or output. Enter one of the following parameters:

FIXUNB For fixed-length unblocked records

Part 2. Sequential Access Method 103

FIXBLK For fixed-length blocked records

V ARUNB For variable-length unblocked records

VARBLK For variable-length blocked records

SPNUNB For spanned variable-length unblocked
records

SPNBLK For spanned variable-length blocked
records

UNDEF For undefined records

If RECFORM=SPNUNB or
RECFORM=SPNBLK is specified and
RECSIZE=(r) is not specified, an assembler diag­
nostic (MNOTE) is issued, and register 2 is as­
sumed. If WORKA= YES is omitted, an MNOTE is
issued and WORKA=YES is assumed. If
RECFORM is omitted, FIXUNB is assumed.

RECSIZE={n I (r)}
For fixed-length blocked records, this operand is
required. It specifies the number of characters in
each record.

When processing spanned records, you must specify
RECSIZE=(r) where r is a register.

For undefined records and variable-length spanned
records, this entry is required for output files, is op­
tional for input files, and is invalid for work files. It
specifies a general register (2-12) that contains the
length of the record. On output, you must load the
length of each record into the designated register
before issuing a PUT macro. If specified for input,
IOCS provides the length of the record transferred
to virtual storage.

SEPASMB=YES
Include this operand only if the DTFSD is assembled
separately. This causes a CATALR card with the
filename to be punched ahead of the object deck and
defines the filename as an ENTRY point in the as­
sembly. If the operand is omitted, the program as­
sumes that the DTF is being assembled with the
problem program and no CAT ALR card is punched.

TRUNCS=YES
This operand is specified if FIXBLK DASD files
contain short blocks embedded within an input file
or if the input file was created with a modUle that
specified TRUNCS. This entry is also specified if the
TRUNC macro is issued for a FIXBLK output file.

104 DOS/VS Supervisor & I/O Macros

TYPEFLE=UNPUT I OUTPUT I WORK}
Use this operand to indicate whether the file is an
input or output file. If WORK is specified, a work
file is used. (See Work File Macros for Tape and
Disk in the Processing Macros section later in this
chapter.) If INPUT/OUTPUT is specified, the
GET/PUT macros can be used. If WORK is speci­
fied, the READ/WRITE, NOTE/POINT, and
CHECK macros can be used.

UPDATE = YES
This operand must be included if the DASD input or
work file is updated--that is, if disk records are read,
processed, and then transferred back (PUT) to the
same disk record locations from which they were
read. CLOSE writes any remaining records in se­
quence onto the disk.

VARBLD=(r)
Whenever variable-length blocked records are built
directly in the output area (no work area specified),
this entry must be included. It specifies the number
(r) of a general-purpose register (2-12), which will
always contain the length of the available space re­
maining in the output area.

10CS calculates the space still available in the output
area, and supplies it to you in the designated register
after the PUT macro is issued for a variable-length
record. You then compare the length of your next
variable-length record with the available space to
determine if the record fits in the area. This check
must be made before the record is built. If the record
does not fit, you issue a TRUNC macro to transfer
the completed block of records to the file. Then, the
present record is built at the beginning of the output
area in the next block.

VERIFY=YES
This operand is included if you want to check the
parity of disk records after they are written. VERI­
FY is always assumed when 2321 records are writ­
ten. If this operand is omitted, any records written
on a disk are not verified.

WLRERR=name
This operand applies only to disk input files. It does
not apply to undefined records. WLRERR specifies
the symbolic name of your routine to receive control
if a wrong-length record is read.

If ERREXT is not specified, the address of the error
block is supplied by 10CS in register 1. If ERREXT
is specified, register 1 contains the address of a two
part parameter list. The first four bytes of the list are
the DTF address, and the second four bytes are the

address of the error block. If the block read is less
than the BLKSIZE parameter, the first two bytes of
the DTF contain the number of bytes left to be read
(residual count). Therefore, the size of the actual
block is equal to the block size minus the residual
count. If the block to be read is larger than the
BLKSIZE parameter, the residual count is zero, and
there is no way to compute its size. In this case, the
number of bytes transferred is equal to the
BLKSIZE parameter and the remainder of the origi­
nal block is truncated.

Your WLRERR routine performs any processing
desired for wrong-length records. However, GET
macros must not be issued in this routine. If the rou­
tine issues any other IOCS macros (excluding ERET
if ERREXT = YES) the contents of registers 13
(with RDONL Y) and 14 must be saved before and
restored after their use. At the end of the routine,
return to IOCS by branching to the address in regis­
ter 14. If ERREXT is specified, the ERET IG­
NORE or SKIP options can be taken. The ERET
RETRY terminates the job.

If the WLRERR entry is omitted from the set of
DTFSD entries but a wrong-length record is detect­
ed by IOCS, one of the following conditions results:

If the ERROPT entry is included for this file, the
wrong-length record is treated as an error block
and handled according to your specifications for
an error (IGNORE, SKIP, or name of error rou­
tine).

If the ERROPT entry is not included, the error
is ignored.

Undefined records are not checked for incorrect
record length. The record is truncated when the
BLKSIZE specification is exceeded.

WORKA=YES
If 110 records are processed, or built, in work areas
instead of in the 110 areas, specify this operand.
You must set up the work area in storage. The ad­
dress of the work area, or a general-purpose register
which contains the address, must be specified in
each GET or PUT macro. For a GET or PUT ma­
cro, IOCS moves the record to, or from, the speci­
fied work area. WORKA= YES is required for
SPNUNB and SPNBLK. When this operand is speci­
fied for a file, the IOREG operand must be omitted.

SDMODxx Macro

Sequential DASD module generation macros differ
from other IOCS module generation macros. The file

characteristics are separated into ten categories, and
each category has a unique macro associated with it
(see Figure 2-25).

Macro Module Generated

SDMODFI Sequential DASD Module,
Fixed-length records l , Input file

SDMODFC Sequential DASD Module,
Fixed-length records l , Output file

SDMODFU Sequential DASD Module,
Fixed-length records l , Update file

SDMODVI Sequential DASD Module,
Variable-length records (including
spanned records)2, Input file

SDMODVC Sequential DASD Module,
Variable-length records (including
spanned records)2, Output file

SDMODVU Sequential DASD Module,
Variable-length records (including
spanned records)2, Update file

SDMODUI Sequential DASD Module, Undefined
records3, Input file

SDMODUO Sequential DASD Module, Undefined
records3, Output file

SDMODUU Sequential DASD Module, Undefined
records3, Update file

SDMODW Sequential DASD Module, Work file4

1 RECFORM=FIXUNB or FIXBLK in DTFSD

2 RECFORM=VARUNB, VARBLK, SPNUNB, or
SPNBLK in DTFSD

3 RECFORM=UNDEF in DTFSD

4 RECFORM=FIXUNB or UNDEF in DTFSD

Figure 2-25 SDMOD macros

The macro operation code and the keyword ope­
rands define the characteristics of the module.

Modules for a specific file can thus be generated
more quickly than if there were only one macro.

The operands for the ten macros are shown in Figure
2-26 and explained in the following section.

Part 2. Sequential Access Method 105

SDMODxx Operands
A module name may be contained in the name field
of the macro. The macro operation code is contained
in the operation field (SDMODFI, for example). The
operands are contained in the operand field.

CONTROL=YES
This operand is specified if a CNTRL macro is is­
sued for the file. This entry applies to all SDMODxx
macros. The module also processes any DTF in
which the CONTROL parameter is not specified.

ERREXT=YES
Include this operand if nondata transfer errors are
returned to an ERROPT routine in your program or
if the ERET macro is used with the DTF and mo­
dule. If ERREXT is specified ERROPT must also be
specified.

ERROPT=YES
This operand applies to all SDMODxx macros. It is
included if the module handles any of the error op­
tions for an error block. Logic is generated to handle
any of the three options (IGNORE, SKIP, or name)
regardless of which option is specified in the DTF.
The module also processes any DTF in which the
ERROPT operand is not specified.

If this operand is not included, your program is can­
celed whenever any uncorrectable error except a
wrong-length record error (which LIOCS ignores) is
encountered.

HOLD=YES
This operand applies to update (SDMODFU,
SDMODVU, and SDMODUU) and to work files
(SDMODW) only. The operand is included if the
track hold function is employed. Any DTF used with
the module must have the same operand.

FEOVD = YES
This operand is specified if the forced end of volume
for disk feature is desired. It forces the end of vol­
ume condition before physical end of volume occurs.
When the FEOVD macro is issued, the current vol­
ume is closed, and 110 processing continues on the
next volume.

NOTEPNT=IPOINTRW I YESJ
This operand applies to SDMODW (work files)
only. It is included if any NOTE, POINTR,
POINTS, or POINTW macros are used within the
module. If the operand specifies POINTRW, logic to
handle only NOTE, POINTR, and POINTW is gen­
erated.

106 DOS/VS Supervisor & I/O Macros

If YES is specified, the routines to handle NOTE,
POINTR, POINTS, and POINTW are generated and
any files that specify NOTEPNT=POINTRW in the
DTF are processed.

In any case, any files that do not specify the NO­
TEPNT parameter in the DTF are processed.

RDONLY = YES
This operand causes a read-only module to be gener­
ated. Whenever this operand is specified, any DTF
used with the module must have the same operand.

RECFORM=ISPNUNB I SPNBLKJ
This operand is required only for SDMODVI (input
files), SDMODVO (output files), and SDMODVU
(update files) if RECFORM=SPNUNB or SPNBLK
is specified in th~ DTF. If RECFORM is specified
incorrectly, an assembler diagnostic (MNOTE) is
issued, and the module generation is terminated.

SEPASMB=YES
Include this operand only if the module is assembled
separately. This causes a CAT ALR card with the
module name (standard or user-specified) to be
punched ahead of the object deck and defines the
module name as an ENTRY point in the assembly. If
the operand is omitted, the program assumes that the
DTF is being assembled with the problem program
and no CAT ALR card is punched.

TRUNCS=YES
This operand applies to all SDMOD macros for
fixed-length records. It generates a logic module
which can handle the TRUNC macro. This operand
is assumed for V ARBLK output files. This operand
is ignored if specified for V ARBLK input or update
files. It must be specified if any FIXBLK DASD
files (processed by the module) contain short blocks
embedded within them or if the input file was creat­
ed with a module that specified TRUNCS. The mo­
dule cannot process any DTF, for fixed-length re­
cords, in which the TRUNCS operand is not speci­
fied.

UPDATE = YES
This operand applies to the SDMODW only. It is
assumed for SDMODFU, SDMODUU, and
SDMODVU and generates a logic module which can
handle the WRITE UPDATE macro with work files.

Operand Required Comments

CONTROL=YES If the CNTRL macro is to be issued for the file. Applies to all SDMODs.

ERREXT=YES If the module returns nondata transfer errors or is Applies to all SDMODs.
used with the ERET macro.

ERROPT=YES If the module is to handle error options for an Applies to all SDMODs.
error block.

FEOVD=YES If the FEOVD macro is to be issued for the file. Applies to all SDMODs except
SDMODW.

HOLD=YES If the track hold function is to be employed. Applies to update and work file logic
modules.

NOTEPNT={POINTRW I If NOTE, POINTR, POINTS, or POINTW mac- This parameter applies to SDMODW
YES} ros are to be issued for the file. only. The operand POINTW generates

logic for NOTE, POINTR, and
POINTW. The operand YES generates
logic for all macros.

RDONLY=YES If a read-only module is to be generated. Applies to all SDMODs.

RECFORM={SPNUNB I If unblocked or blocked spanned records are to be Applies to SDMODVI, SDMODVO,
SPNBLK} processed. and SDMODVU only.

SEPASMB= YES If the module is assembled separately from the Applies to all SDMODs.
DTF.

TRUNCS=YES If the TRUNC macro us to be issued for the file. Applies to all SDMODs for fixed-length
Assumed for output files consisting of variable- records.
length blocked records.

UPDATE=YES If SDMODW is to process the WRITE UPDATE Applies to SDMODW only.
macro.

Figure 2-26 SDMODxx operands

Standard SDMOD Names
Each name begins with a 3-character prefix (UG)
and continues with of a 5-character field corre­
sponding to the options permitted in the generation
of the module.

In SDMOD there are two module classes:

• Those which handle GET/PUT functions

• Those which handle READ/WRITE,
NOTE/POINT, and CHECK functions (work
files).

Name List for GET/PUT Type Modules
SDMODxx name = UGabcde

a = C SDMODFx specifies HOLD= YES

= F SDMODFx does not specify HOLD=YES

= R SDMODUx specifies HOLD= YES

= U SDMODUx does not specify HOLD=YES

= P SDMODVx specifies HOLD= YES (spanned re­

cords)

= Q SDMODVx does not specify HOLD=YES (spanned
records)

= S SDMODVx specifies HOLD= YES

= V SDMODVx does not specify HOLD=YES

b = U SDMODxU

= I SDMODxI

= 0 SDMODxO

c = C ERROPT=YES and ERREXT=YES

= E ERROPT=YES

Part 2. Sequential Access Method 107

= Z neither is specified

d = M TRUNCS=YES and FEOVD=YES

= T TRUNCS= YES

= W FEOVD= YES

= Z neither is specified

e = B CONTROL=YES and RDONLY=YES

= C CONTROL=YES

= Y RDONLY=YES

= Z neither is specified

Name List for Workfile Type Modules
(TYPEFLE=WORK)
SDMODxx name = UGabcde

a = T HOLD= YES

= W HOLD=YES not specified

b = C ERROPT=YES and ERREXT=YES

= E ERROPT=YES

= Z neither is specified

c = N NOTEPNT = YES

= R NOTEPNT=POINTRW

= Z NOTEPNT is not specified

d = C CONTROL=YES

= Z CONTROL=YES is not specified

e = T RDONL Y = YES and UPDA TE= YES

= U UPDATE=YES

= Y RDONLY=YES

= Z neither is specified

Subset/Superset SDMOD Names
The following diagrams illustrate the subsetting and
supersetting allowed for SDMOD names. For the
GET /PUT type modules, four parameters allow
supersetting. For example, in the GET/PUT type
module, the module IJGFUETC is a superset of a
module with the name of IJGFUZTZ. See IOCS
Subset/Superset Names in The Macro System
chapter.

108 DOS/VS Supervisor & I/O Macros

+ * + + +
IlTGCUCMB

FIE T Y
+ 0 Z + +
R W C
U Z Z
+
p
Q
V

+
p
S
V

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

For Workfile Type Modules:

+ + + + +
II.JGTCNCT

l~ERZY

Z Z +
U
Z

+ Subsetting/ supersetting permitted
* No subsetting/supersetting permitted

DTFSR Macro

The DTFSR macro is provided only for the convi­
ence of those who are converting to DOS/VS from
the Basic Operating System/360. If you are not a
former Basic Operating System/360 user, there is no
reason to use the DTFSR macro. Use the DTFCD,
DTFCN, DTFMT, DTFOR, DTFPR, DTFPT, and
DTFSD macros instead, as they are easier to use, are
more flexible, and take full advantage of the features
of DOS/VS.

For those using DTFSR, enter the symbolic name of
the file in the name field and DTFSR in the opera­
tion field. A begin-definition card follows, with
DTFBG punched in the operation field and DISK in
the operand field. The name field is blank.

Detail entries follow the DTFBG card in any order.
Figure 2-27 lists the keyword operands contained in
the operand field.

ALTIAPE=SYSnnn
This operand is provided for BPS and BOS compati­
bility.

BLKFAC=n
Undefined journal tape records are processed faster
when this operand is included because it reads
groups of lines as blocked records. When undefined
records are processed, BLKFAC specifies the block­
ing factor that determines the number of lines read
(through CCW chaining) as a block of data by one
physical read. Deblocking is accomplished automati­
cally by IOCS when the GET macro is used. The
BLKF AC operand is not used with
RECFORM=FIXBLK, because the blocking factor
is determined from the BLKSIZE and RECSIZE
operands. If the BLKF AC operand is included for
FIXBLK, FIXUNB, or document processing, an
assembler diagnostic (MNOTE) results, and the
operand is ignored.

BLKSIZE=n
This operand indicates the size of the input or output
area specified by IOAREAl. BLKSIZE specifies the
maximum number of characters that may be trans­
ferred to or from the area at one time. When
variable-length records are read or written, the area
must be large enough to accommodate the largest
block of records, or the longest single record if the
records are unblocked.

When undefined journal tape records are read, the
area must be large enough to accommodate the long­
est record to be read if the BLKFAC operand is not
specified. If the BLKF AC operand is specified, the
BLKSIZE value must be determined by multiplying
the maximum length that must be accommodated for
an undefined record by the blocking factor desired.
A BLKSIZE value smaller than this results in trunca­
tion of data.

If card-punch or printer output records include con­
trol characters (that is, the CTLCHR operand is
specified) and/or record-length fields for variable­
length records (RECFORM=VARUNB), the
BLKSIZE value must include the extra bytes allotted
in the output area.

If two input, or output, areas are used for a file
(IOAREA1 and IOAREA2), the size specified in
this entry is the size of each I/O area.

IOCS uses this block size parameter to:

construct the count field of the CCW for an
input file.

construct the count field of the CCW for an
output file of fixed-length records.

check physical record length for a file of fixed­
length blocked input records.

• determine if the space remaining in the output
area is large enough to accommodate the next
variable-length output record.

CHECKPf=n
This operand is for compatibility with BPS and BOS
and is ignored by DOS/VS.

CKPfREC=YES
This operand is required if an input tape contains
checkpoint records interspersed among the data re­
cords. When this entry is included, IOCS recognizes
the checkpoint records and bypasses them.

CONTROL= YES
This operand is specified if a CNTRL macro is to be
issued for a file. If this operand is specified,
CTLCHR must be omitted.

COREXIT = name
COREXIT provides an exit to your error correction
routine for the 1287 optical reader or 1288 optical
page reader. If an error occurs after a GET, WAITF,
or CNTRL macro (to increment or eject and/or
stacker select a document) is executed, the error
correction routine is eJ}.tered with an indication pro­
vided at the address filename+80. Filename+80
contains the following hexadecimal values indicating
the conditions that occurred during the last line or
field read. Filename+80 should also be tested after
issuing the optical reader macros DSPL Y, RESCN,
RDLNE, CNTRL READKB, and CNTRL MARK.
More than one error condition may be present.

X'20' For the 1288, reading in unformatted mode,
the end-of-page (EOP) condition was de­
tected. Normally, on an EOP indication, the
program ejects and stacker-selects the docu­
ment.

X'Ol' A data check has occured. Five read at­
tempts for journal tape processing or three
read attempts for document processing were
made.

X'02' The operator corrected one or more charac­
ters from the keyboard (1287T), or a hop­
per empty condition (see the
HPRMTY = YES operand) has occurred
(1287D).

Part 2. Sequential Access Method 109

X'04' A wrong-length record condition has occur­
red after five read attempts were made for
journal tapes or three for documents. Not
applicable for undefined records.

X'08' An equipment check resulted in an incom­
plete read after ten read attempts were
made for journal tapes or three for docu­
ments.

If an equipment check occurs on the first character
in the record when processing undefined journal
tape records, the RECSIZE register contains zero,
and the 10REG (if used) points to the rightmost
position of the record in the I/O area. Test the
RECSIZE register before moving records from the
I/O or work area(s). The test conditions are:

X'20' A stacker-select command was given after
the allotted time had elapsed and the docu­
ment is sent to the reject pocket.

X'40' The 1287D scanner was unable to locate the
reference mark after ten read attempts were
made for journal tapes or three for docu­
ments.

Filename+80 should be checked to determine the
reason for entry into the error correction routine.
You may then perform whatever action is appropri­
ate to recover from the error.

If you issue I/O macros to any device other than the
1287 and/or 1288 in the COREXIT routine, save
registers 0, 1, 14, and 15 upon entering the routine,
and restore these registers before exiting. Also, if
I/O macros (other than GET and/or READ, which
cannot be used in COREXIT) are issued to the 1287
and/ or 1288 in this routine, you must first save, and
later restore registers 14 and 15. All exits from CO­
REXIT should be to the address in register 14. This
returns control to the point from which the branch
to COREXIT occurred. If a READ document com­
mand chain is broken, 10CS completes the chain
upon return from the COREXIT routine.

Note: Do not issue a GET or a READ macro to the
1287 or 1288 in the error correction routine. Do not
process records in this routine. The record that
caused the exit to the error routine is available for
processing upon return to the main program. Any
processing attempted in the error routine would be
duplicated after return to the main program.

When processing journal tapes, a nonrecoverable
error (torn tape, tape jam, etc.) normally requires
the tape to be completely reprocessed. In this case,

110 DOS/VS Supervisor & I/O Macros

your routine must not branch to the address in regis­
ter 14 from the COREXIT routine or a program
loop will result. Following a nonrecoverable error,
the optical reader file must be closed, the condition
causing the nonrecoverable error must be cleared,
and the file must be reopened before processing can
continue.

When processing documents, a nonrecoverable error
requires that the document be removed, either man­
ually or by nonprocess runout. Such an error could
result from a jammed document or a scanner control
failure. In such cases, your program should branch to
read the next document. Also, if the 1287 or 1288
scanner is unable to locate the document reference
mark, the document cannot be processed. In this
case, the document must be ejected and stacker se­
lected before attempting to read the following docu­
ment or a program loop will result. In any case, you
must not branch to the address in register 14 from
the COREXIT routine. You should ignore any out­
put resulting from the document under any circum­
stances.

Eight binary counters are used to accumulate totals
of certain 1287 and 1288 error conditions. These
counters each occupy four bytes, starting at
filename +48. Filename is the name specified in the
DTF header entry. The error counters are:

1 filename+48 Incomplete read (eqipment check)

2 filename+52 Incomplete read uncorrectable after
ten read attenpts for journal tapes
or three for documents

3 filename+56 Wrong-length records (not applica­
ble for undefined records)

4 filename+60 Wrong-length records uncorrectable
after five read attempts for journal
tapes or three for documents (not
applicable for undefined records)

5 filename+64 Keyboard corrections (journal tape
only)

6 filename+68 Journal tape lines, including retried
lines, or document fields, including
retried fields, in which data checks
are present

7 filename + 72 Lines marked (journal tape only)

8 filename + 76 Count of total lines read from jour­
nal tape or the number of CCW

chains executed during document
processing.

All of these counters contain binary zero at the start
of each job step and are never cleared. You may list
the contents of these counters for analysis at end of
file, or at end of job, or you may ignore the count­
ers. The binary contents of the counters should be
converted to a printable format.

CRDERR=RETRY
This operand applies only to a card output file for
the 2520 or 2540. It specifies the operation per­
formed if an error is detected.

Normally, if a punching error occurs, it is ignored
and operation continues. The error card is stacked in
pocket PI (punch). Correct cards are stacked in the
pocket you specified. If the CRDERR operand is
specified, however, IOCS also notifies the operator
and then enters the wait state whenever an error
condition occurs. The operator can then either ter­
minate the job or instruct IOCS to repunch the card.
IOCS automatically generates a retry routine and
constructs a save area for the card punch record if
this entry is included.

CTLCHR=YES
The CTLCHR (control character) operand applies
only to printer and punch output files. It is included
if each logical record written or punched contains a
control character (carriage control or stacker selec­
tion) in the record itself, or in the virtual storage
output area. For fixed-length or undefined records,
the control character must be the first character. For
variable-length records, it is the first character after
the record-length field. The control character codes
are the same as the modifier bytes used for a punch
or print command.

When this operand is specified, IOCS routines cause
the designated control character for printer or card
punch order to be issued to the I/O device. Printing
or punching begins with the second character in the
record. When the CTLCHR entry is not included,
any control functions desired must be performed by
the CNTRL macro.

DEVADDR=SYSxxx
This operand specifies the symbolic unit name to be
associated with the file. The symbolic unit name
represents an actual I/O device address and is used
in the ASSGN job control statement to assign the
actual I/O device address to this file. For a complete
list of symbolic unit names that can be used for par­
ticular devices see Symbolic Unit Addresses in The

Macro System chapter. SYSOPT, if used, is proc­
essed as if SYSPCH were specified.

A reel of tape may be mounted on any tape unit
available at the time the job is ready to run. This is
done by assigning the device to the specified sym­
bolic unit name. Whenever two devices are used for
one logical file (such as an alternate tape unit speci­
fied in the ASSGN job control statement), this DE­
V ADDR entry specifies the symbolic unit name for
the first device.

The symbolic unit name must be specified for all
units except the 2311 disk drive. For files on this
device, DEV ADDR may be omitted. If DEV ADDR
is omitted, the symbolic unit name for a disk drive is
supplied by an EXTENT job control statement.

DEVICE =
This operand must be included to state the I/O de­
vice associated with this file. Enter one of the fol­
lowing:

DISK11

TAPE

PRINTER

READ01

READ20

READ40

READ42

CONSOLE

PTAPERD

READ87T

READ87D

For an input or output file on disk
(2311)

For an input or output file recorded
on magnetic tape (3420 or 2400-
series).

For output printed on a 1403, 1443
or 3211.

For an input card file in a 2501.

For an input or output card file in a
2520.

For an input or output card file in a
2540.

For an input or output card file in a
1442.

For input from and output to the
console printer keyboard or the dis­
play operator console.

For input from a 2671.

For a journal tape input file on a
1287.

For a document input file on a 1287
or 1288.

This operand causes IOCS to set up the device­
dependent routines for a file. For document process-

Part 2. Sequential Access Method 111

ing on the 1287 or 1288 optical reader, or 1288
optical page reader, you have to code your own
CCWs.

If this operand is omitted, 1287D is assumed.

EOFADDR=name
This operand must be included for:

Card reader files
Magnetic tape input files

• Paper tape input files
Sequential disk input files

• Optical reader files

It specifies the symbolic name of your end-of -file
routine. IOCS automatically branches to this routine
on an end-of-file condition.

IOCS detects end-of-file conditions as follows:

• Card Reader. By recognizing the characters /*
punched in card columns 1 and 2. If cards are
allowed to run out without a / * trailer card (and
a / & card if end-of-job), an error condition is
signaled to the operator (intervention required).

• Magnetic Tape Input. By reading a tapemark and
EOF in the trailer label when standard labels are
specified, or by reading the characters /* if the
unit is assigned to SYSRDR or SYSIPT. If
standard labels are not specified, IOCS assumes
an end-of -file condition when the tapemark is
read. You must determine, in your routine, that
this actually is the end of the file.

• Paper Tape Reader. By recognizing the end of
tape when the end-of-file switch is set on.

• Sequential Disk Input. By reading an end-of-file
record or reaching the end of the last extent you
supplied.

• Optical Reader Input. When reading data from
documents on a 1287 or 1288, end-of-file is rec­
ognized by pressing the end-of-file key on the
console when the input hopper is empty. When
processing journal tapes on a 1287, end-of-file is
detected by pressing the end-of-file key after the
end of the tape has been sensed.

112 DOS/VS Supervisor & I/O Macros

When IOCS detects the end of file, it branches to
your routine specified by EOFADDR. If journal
tapes are being processed, it is your responsibility
to determine if the current roll is the last roll to be
processed. Regardless of the situation, the tape file
must be closed for each roll within this routine. If
the current roll is not the last, the OPEN or
OPENR macro must be issued to allow header
(identifying) information to be entered at the read­
er keyboard and read by the processor when using
logical IOCS.

The same procedure can be used for 1287 process­
ing of multiple journal tape rolls as well as the me­
thod described in OPEN and OPENR Macros in
the Imperative Macros section later in this chapter.

ERROPT=UGNORE I SKIP I name}
This operand applies to disk or magnetic tape input
files. It specifies functions to be performed for an
error block.

If a parity error is detected when a block of se­
quential disk records is read, the disk block is re­
read 256 times before it is considered an error
block. If a parity error is detected when a block of
tape records is read, the tape is backspaced and
reread 100 times before the tape block is consid­
ered an error block. Unless the ERROPT operand
is included to specify other procedures, the job is
then automatically terminated. Either IGNORE,
SKIP, or the name of an error routine can be spec­
ified in this entry. The functions of these three
parameters are:

IGNORE The error condition is completely ig­
nored, and the records are made availa­
ble for processing.

SKIP No records in the error block are made
available for processing. The next block
is read from disk or tape, and process­
ing continues with the first record of
that block. The error block is included
in the block count, however.

name IOCS branches to your routine, where
you may perform whatever functions
you desire to process or note the error
condition. Register 1 contains the ad­
dress of the block in error, and register
14 contains the return address.

In your error routine, address the error block (or
records in the error block) by referring to the ad­
dress supplied in register 1. The contents of the
IOREG register or the work area (if either is speci-

fied) may vary and, therefore, should not be used.
Do not issue any GET macros for records in the
error block. If you use any other 10CS macros in
your routine, save and later restore the contents of
register 14. At the end of the routine return to
10CS by branching to the address in register 14.
When control returns to the problem program, the
first record of the next block is available for proc­
essing in your program.

The ERROPT entry does not apply to disk or tape
output files. The job is automatically terminated if
a parity error still existed after 10CS attempted to
write a disk output block ten times, or to write a
tape output block 15 times. The tape procedure
includes 15 forward erases. This entry applies to
wrong-length records if the DTFSR operand
WLRERR is not included. If both ERROPT and
WLRERR are omitted, 10CS ignores any wrong­
length records that occur.

FILABL=NO I STD I NSTD
This operand specifies what type of labels are to be
processed. Enter one of the following parameters:

NO For a tape that does not contain labels.
The entry FILABL=NO may be omitted,
if desired, and 10CS assumes that there are
no labels.

STD For tape input if standard labels are
checked by 10CS, or for tape output if
standard labels are written by 10CS.

NSTD For tape input or output with nonstandard
labels. You may process these labels your­
self (see Writing Nonstandard Labels on
Tape and Checking Nonstandard Labels
on Tape in the Label Processing chapter).
NSTD is specified for standard input labels
if they are not to be checked by 10CS.

HEADER=YES
This operand is required if the operator must key
in header (identifying) information from the 1287
keyboard. The OPEN or OPENR routine reads the
header information only when this operand is pres­
ent. If the entry is omitted, OPEN or OPENR as­
sumes no header information is to be read. The
header record size can be as large as the BLKSIZE
specification and is read into the high-order posi­
tions of 10AREAl. This operand cannot be used
for 1288 files.

HPRMTY=YES
This operand is included if you want to be in­
formed of the hopper empty condition. This condi-

tion occurs when a READ is issued and no docu­
ment is present. When hopper empty is detected,
your COREXIT routine is entered with the condi­
tion indicated as X'02' in filename+80.

This operand should be used when processing doc­
uments in the time dependent mode of operation.
This allows complete overlapping of processing
with reading. (See method 2 under Programming
the 1287 in IBM 1287 Optical Reader Compo­
nent Description and Operating Procedures,
GA21-9064. If the HPRMTY parameter is used
with this method of processing, you are able to
check for a hopper empty condition in your CO­
REXIT routine. This allows you then to select the
proper stacker for the previously ejected document,
before returning from the COREXIT routine (via
register 14).

INAREA=name
This operand applies only to a card file in a 1442
that is updated (TYPEFLE=CMBND) and for
which separate input and output areas are required.
INAREA specifies the name of the input area to
which the card record is transferred. OUAREA is
used in conjunction with INAREA, and both
10AREAl and IOAREA2 must be omitted.

This entry does not apply to combined files in a
2520 or 2540. When the same I/O area is used for
both input and output in a combined file for a
2520 or 2540, INAREA and OUAREA are omit­
ted. IOAREA1 specifies the name of the I/O area
used for both input and output files.

INBLKSZ=':l
This operand is used with INAREA for a combined
file in the 1442 when separate input and output
areas are required. It specifies the maximum num­
ber of characters that are transferred to the input
area (INAREA) at anyone time. Whenever this
operand is included, OUBLKSZ must also be in­
cluded, and BLKSIZE must be omitted.

IOAREAl =name
This operand is included to specify the name of the
input, or output, area used by this file. The
input/ output routines transfer records to or from
this area.

For a disk output file, reserve eight bytes at the
beginning of your I/O area, ahead of the positions
allotted for data records. These eight bytes are
necessary to allow 10CS to construct the count
area for the disk record. For 1287 readers, this
area is set to binary zeros before each input opera-

Part 2. Sequential Access Method 113

tion and before each tape input operation to this
area. For document processing, the area is cleared
only when the file is opened.

This operand must not be included for a 1442
combined file if INAREA and OUAREA are speci­
fied for the file. For a 2520 and 2540 combined
file, 10AREAl must be used for both the input
and output area.

IOAREA2 = name
Two input, or output, areas can be allotted for a
file, to permit an overlapping of data transfer and
processing operations. When this is done, this
IOAREA2 operand must be included to specify the
name of the second I/O area.

For a disk output file, reserve eight bytes at the
beginning of your I/O area, ahead of the positions
allotted for data records. These eight bytes are
necessary to allow 10CS to construct the count
area for the disk record. For the 1287 reader
(journal tape only) this area is set to binary zeros
before each input operation to this area.

This operand must not be specified if
DEVICE=READ87D or if TYPEFLE=CMBND.
In the latter case, 10AREAl must be used for both
the input and output areas.

IOREG=(r)
This operand specifies a general-purpose register
(2-12) that the input/output routines can use to
indicate which individual record is available for
processing. 10CS puts the address of the current
record in the specified register each time a GET or
PUT is issued.

The same register may be specified in the 10REG
entry for two or more files in the same program, if
desired. In this case, your program may need to
store the address supplied by 10CS for each re­
cord.

This operand must be included whenever:

• Blocked input or output records (from disk,
magnetic tape, or journal tape) are processed
directly in the I/O area.

• Variable-length unblocked or undefined tape
records are read backwards and processed di­
rectly in the input area.

• Two input, or output, areas are used and the
records (either blocked or unblocked) are proc­
essed in the I/O areas.

• Undefined records for journal tape are read.

114 DOS/VS Supervisor & I/O Macros

Whenever this entry is included for a file, the
WORKA operand must be omitted, and the GET
or PUT macros must not specify work areas.

Since a read by an optical reader is accomplished
by a backward scan, the rightmost character in the
record is placed in the rightmost position of the
I/O area. Subsequent characters are placed in se­
quence from right to left. The register specified
indicates the leftmost position of the record.

LABADDR=name
You may require one or more of your own disk or
tape labels in addition to the standard file header
label or trailer label (on tape). If so, include your
own routine to check or build the label(s). The
name of your routine is specified in this entry.
10CS branches to this routine after it has proc­
essed the standard label. This entry is also required
whenever nonstandard labels are checked or writ­
ten by your program. (FILABL=NSTD is speci­
fied.)

LABADDR allows you to specify a single label
routine for all types of labels for the file: header
labels, end-of-file labels, and end-of-volume labels.
For an input file, you can determine the type of
label that was read by the identification in the label
itself. For an output tape file, however, 10CS indi­
cates to you the type of label by supplying a code
in the low-order byte of register 0, as follows:

o indicates header labels.

F indicates end-of-file labels.

V indicates end-of -volume labels.

You can test this byte in your routine and then
build the appropriate type of label. At the end of
the routine, return to 10CS by use of the LBRET
macro. You may not issue a macro that calls in a
transient routine (OPEN, OPENR, CLOSE,
CLOSER, DUMP, PDUMP, CANCEL, or
CHKPT). For a more complete discussion, see the
Label Processing chapter.

OUAREA = name
This operand is used with INAREA for a combined
file on a 1442 that requires separate input and out­
put areas. It specifies the name of the output area
from which the updated card record is punched. If
only one area is used for input and output,
10AREA 1 should be used.

OUBLKSZ=n
This operand is used with OUAREA for a com­
bined file. It is similar to INBLKSZ, and specifies
the maximum number of characters that are trans­
ferred from the output area (OUAREA) at any
one time. If combined files use IOAREA1,
BLKSIZE must be used.

PRINTOV = YES
This operand must be included whenever the
PRTOV macro is used in your program.

READ={FORWARD I BACK}
This operand may be included for magnetic tape
input to specify the direction in which the tape is
to be read. If this entry is omitted, IOCS assumes
forward reading. BACK specifies that the tape is to
be read backwards.

RECFORM={FIXUNB I FIXBLK I VARUNB I
VARBLK I UNDEF}

This operand specifies the type of records in the
input or output file. Enter one of the following:

FIXUNB For fixed-length unblocked records

FIXBLK For fixed-length blocked records.
This applies only to disk and magnet­
ic tape input or output and optical
reader journal tape input.

VARUNB For variable-length unblocked re­
cords. This applies only to disk input
or output (2311), magnetic tape input
or output (240Q or 3420), card punch
output (1442, 2520, or 2540), and
printer output (1403, 1404, 1443,
1445, or 3211).

VARBLK For variable-length blocked records.
This applies only to disk and magnet­
ic tape input or output.

UNDEF For undefined records. This applies to
any file except card input (1442,
2501, 2520, or 2540).

The records in a file can be specified as follows:

Disk and magnetic tape input or output: FIX­
UNB, FIXBLK, V ARUNB, V ARBLK, or UN­
DEF.

Card input: FIXUNB.

• Card output: FIXUNB, V ARUNB, or UNDEF.

• Optical reader input:
All modes: FIXUNB or UNDEF.

Journal tape mode: FIXBLK.

• Paper tape input: FIXUNB or UNDEF.

Console printer-keyboard or display operator
console input or output: FIXUNB or UNDEF.

Printer output: FIXUNB, V ARUNB, or UN­
DEF.

RECSIZE={n I (r)}
For input or output files, this operand must be in­
cluded for disk, magnetic tape, and optical reader
journal tape records that are fixed-length blocked
(RECFORM=FIXBLK) or undefined
(RECFORM= UNDEF). For paper tape records,
this entry may be included for fixed-length un­
blocked or for undefined records
(RECFORM=FIXUNB or UNDEF). For other
devices, this entry must be included whenever re­
cords are undefined (RECFORM=UNDEF).

For fixed-length blocked disk, magnetic tape or
optical reader journal tape records, this operand
specifies the number of characters in an individual
record. The input/output routines use this number
to block or deblock records, and to check record
length of input records.

For undefined records, this operand specifies the
number, (r), of the general-purpose register (2-12)
that contains the length of each individual input or
output record. When undefined records are read,
IOCS supplies the physical record size in the regis­
ter. In the case of paper tape records, this applies
to both fixed unblocked and undefined records.
When undefined records are built, you must load
the length in bytes of each record into the specified
register before issuing the PUT macro for the re­
cord. This becomes the count portion of the CCW
that IOCS sets up for the file. Thus, it determines
the length of the record to be transferred to an
output device. If an undefined punch or printer
output record contains a control character in the
main-storage output area (the CTLCHR operand is
specified), the length loaded into the RECSIZE
register must also include one byte for this charac­
ter.

For undefined document records, RECSIZE con­
tains only the length of the last field of a document
read by the CCW chain which you supply.

Note: When processing undefined records on an
optical reader in document mode, you gain com­
plete usage of the two registers normally used in
the RECSIZE operand. To do this, make sure that

Part 2. Sequential Access Method 115

the suppress length indicator is always on when
processing undefined records.

REWIND=IUNLOAD I NORWD}
This operand may be specified with one of the
following parameters:

UNLOAD To rewind the tape on OPEN or
OPENR, and to rewind and unload
on CLOSE or CLOSR or on an end­
of-volume condition.

NORWD To prevent rewinding the tape at any
time.

If this operand is omitted, tapes are automatically
rewound, but not unloaded, on an OPEN or
OPENR or CLOSE or CLOSER macro or on an
end-of -volume condition.

TPMARK=NO
This operand is included if you do not want a tape­
mark written as the first record on a tape output
file if labels are not specified. This operand is also
included if no tape mark is written following non­
standard header lapels. If this operand is omitted
for a tape output file, a tape mark is the first record
if no labels are specified. If this operand is omitted,
a tape mark is written following nonstandard header
labels.

TRANS = name
This operand applies to input data read from the
2671 paper tape reader: it specifies the name of a
code translation table. The table must conform to
the specifications of the TR machine instruction.

The input records may be punched in 5-, 6-, 7-, or
8-channel paper tape, using anyone of several dif­
ferent recording codes. If a code other than
EBCDIC is used, it must be translated to EBCDIC
code for use in System/370 programming. For
IOCS to perform this translation, you provide a
translation table and specify the name of the table
in this TRANS operand. The logical IOCS routines
then translate the paper tape code and make the
record available to you in usable form directly in
the input area.

TRUNCS=YES
This operand applies to disk files with fixed-length
blocked records (RECFORM=FIXBLK) when
short blocks are processed. It must be included:

• For an output file if the TRUNC macro is is­
sued in your program.

116 DOS/VS Supervisor & I/O Macros

For an input file if the TRUNC macro was
issued to write short blocks when the file was
originally created.

TYPEFLE=IINPUT I OUTPUT I CMBND}
This operand must be included to specify the type
of file: input, output, or combined.

INPUT must be specified for:

• 2311 disk input (with or without updating)
• 2400, 3420 magnetic tape input
• 1442, 2501, 2520, 2540 card input
• 3210 or 3215 keyboard input (both GET and

PUT macros may be issued)
• 1287, 1288 optical reader input

OUTPUT must be specified for:

2311 disk output
• 2400, 3420 magnetic tape output

1403, 1404, 1443, 3211 printer output
• 1442, 2520, 2540 card output

3210 or 3215 printer output (only PUT macros
may be issued).

CMBND must be specified for a 1442, 2520, or
2540 card file that is updated. That is, card re­
cords are read, processed, and then punched (PUT)
in the same cards from which they were read.

If the TYPEFLE operand is omitted, INPUT is
assumed.

UPDATE=YES
This operand must be included if a disk input file
(TYPEFLE=INPUT) is updated.

1

That is, disk
records are to be read, processed, and then trans­
ferred back (PUT) to the same disk record loca­
tions from which they were read.

VARBLD=(r)
Whenever variable-length blocked records are built
directly in the output area (no work area speci­
fied), this entry must be included. It specifies the
number of a general-purpose register (2-12), which
always contains the length of the available space
remaining in the output area.

After a PUT macro is issued for a variable-length
record, IOCS calculates the space still available in
the output area and supplies it to you in the desig­
nated register. You then compare the length of
your next variable length record with the available
space to determine if the record fits in the area.
This check must be made before the record is built.
If the record does not fit, issue a TRUNC macro to

transfer the completed block of records to the tape
file. Then, the present record is built at the begin­
ning of the output area in the next block.

VERIFY=YES
This operand is included if you want disk records
to be parity checked after they are written. If this
entry is omitted, any records written on disk are
not verified.

WLRERR = name
This operand applies only to disk, magnetic tape,
or paper tape input files. It specifies the name of
your routine to which 10CS branches if a wrong­
length record is read. In your routine, any opera­
tion desired for wrong-length records can be per­
formed. GET macros, however, cannot be used in
your routine. Also, if you use any other 10CS mac­
ros in your routine, save the contents of register
14. The address of the wrong-length record is sup­
plied by 10CS in register 1. At the end of the rou­
tine return to 10CS by branching to the address in
register 14.

Whenever fixed-length blocked records or variable­
length records are specified
(RECFORM=FIXBLK, =VARUNB, or
= V ARBLK), a machine check for wrong-length
records is suppressed. In this case, 10CS generates
a program check for the wrong record length. For
fixed-length blocked records, record length is con­
sidered incorrect if the physical disk or tape record
(gap-to-gap) is not a multiple of the maximum logi­
cal record length specified in DTFSR RECSIZE.
This permits the reading of short blocks of logical
records, without a wrong length record indication.

For variable-length records on disk or tape, the
record length is considered incorrect if it is not the
same as the block length specified in the 4-byte
block length field.

When fixed-length unblocked records are specified
(RECFORM=FIXUNB), 10CS checks for a
wrong-length-record indication that may result
from an I/O operation.

If the WLRERR operand is omitted and a wrong­
length record is detected by 10CS, one of the fol­
lowing conditions results:

• If the ERROPT operand is specified for this
file, the wrong-length record is treated as an
error block and handled according to your
specifications for an error (IGNORE, SKIP, or
name of error routine).

• If the DTFSR ERROPT operand is not includ­
ed, the wrong-length record is ignored.

The WLRERR operand does not apply to unde­
fined records because undefined records are not
checked for incorrect record length.

WORKA=YES
If records are processed in work areas instead of in
the I/O areas, specify this operand. You must set
up the work area in storage. The address of the
work area, or a general-purpose register which con­
tains the address, must be specified in each GET or
PUT macro.

Whenever this operand is specified for a file, the
10REG operand must be omitted. For optical
char~cter records, a work area can only be used
when processing journal tape.

The DTFEN Card

An end-of-definition card must follow the last set
of DTFSR cards that applies to a magnetic tape or
DASD file. If two or more DTFSR macros are
used in the same program, they must not be assem­
bled separately from each other because duplicate
labels may be generated. However, the set of
DTFSR macros may be assembled separately from
the program. The DTFEN card must be punched
with DTFEN in the operation field and blanks in
the name field. The operand field may be blank or
it may contain OVLA Y as a parameter (to provide
compatibility with BOS). DOS/VS interprets the
DTFEN card as a signal to begin generation of the
required disk or tape I/O modules.

Part 2. Sequential Access Method 117

x x x M DEVICE=READnn (01,20,40, or 42). For 2501,2520,2540, 1442, respectively.

X X X M DEADDR=SYSxxx Symbolic unit for reader-punch used for this file.

X X M EOFADDR=xxxxxxxx Name of your end-of-file routine.

X X X M TYPEFLE=xxxxxx (INPUT, OUTPUT, or CMBND). CMBND does not apply to 250l.

X X 0 BLKSIZE=nn
Length of one I/O area, in bytes. Omit INBLKSZ and OUBLKSZ. Do
not use for 1442 CMBND file with separate I/O areas.

X X X 0 CONTROL=YES
CNTRL macro used for this file. Omit CTLCHR for this file. Does
not apply to 250l.

X X 0 CRDERR=RETRY
Retry if punching error is detected. Applies only to 2520 OUTPUT
and to 2540 OUTPUT or CMBND.

X 0 CTLCHR=YES
Data records have control character in first position. Omit CONTROL
for this file.

X 0 INAREA=xxxxxxxx
Name of sep. input area for 1442 CMBND file. Also specify OUAR-
EA, and omit IOAREAl and IOAREA2. Applies only to 1442.

X 0 INBLKSZ=nn Length of INAREA. Also specify OUBLKSZ, and omit BLKSIZE.

X X X 0 IOAREA 1 =xxxxxxxx
Name of first I/O area. Omit INA REA or OUAREA. Do not use for
1442 CMBND file with separate I/O areas.

X X X 0 IOAREA2=xxxxxxxxx If two I/O areas are used, name of second I/O area.

X X 0 IOREG=(nn)
Register number, if two I/O areas are used and GET or PUT does not
specify a work area. Omit WORKA.

X 0 OUAREA=xxxxxxxx
Name of sep output area for 1442 CMBND file. Also specify INAR-
EA, and omit IOAREAl and IOAREA2. Applies to 1442 only.

X 0 OUBLKSZ=nn Length of OUAREA. Also specify INBLKSZ and omit BLKSIZE.

X X X 0 RECFORM=xxxxxx
(FIXUNB) if TYPEFLE=INPUT. (FIXUNB, VARUNB, or UNDEF)
if TYPEFLE=OUTPUT. If omitted, FIXUNB is assumed.

X 0 RECSIZE=nnnn Register number if RECFORM=UNDEF.

X X X 0 WORKA=YES GET or PUT specifies work area. Omit 10REG.

M=Mandatory; O=Optional

Figure 2-27 (part 1 of 7) DTFSR macro operands - card

118 DOS/VS Supervisor & I/O Macros

x x M DEVICE=DISK 11

x x M BLKSIZE=nnnn Length of I/O area, in bytes

X M EO FAD D R=xxxxxxxx Name <?f your end-of-file routine

X X M 10AREA 1 =xxxxxxxx Name of first I/O area.

X X M TYPEFLE=xxxxxx (INPUT or OUTPUT)

X X 0 CONTROL=YES CNTRLmacrou~dfurili~file

X 0 ERROPT=xxxxxxxx
(IGNORE, SKIP, or name of error routine). Prevents job termination on
error records.

X X 0 IOAREA2=xxxxxxxx If two I/O areas are used, name of second area

X X 0 10REG=(nn)
Register number. Use only if GET or PUT does not specify work area. Omit
WORKA

X X 0 LABADDR=xxxxxxxx Name of your routine to check/write user-standard labels.

X X 0 RECFORM=xxxxxx
(FIXUNB, FIXBLK, V ARUNB, V ARBLK, or UNDEF). If omitted, FIX-
UNB is assumed.

X X 0 RECSIZE=nnnnn
If RECFORM=FIXBLK, no. of characters in record. If RECFORM=Undef,
register no. Not required for other records.

X X 0 TRUNCS=YES TRUNC macro used for this file

X 0 UPDATE=YES Input file is to be updated

X 0 V ARBLD=(nn) Register number if RECFORM=VARBLK and records are built in the
output area.

X 0 VERIFY=YES Check disk records after they are written.

X 0 WLRERR=xxxxxxxx Name of your wrong-length-record routine.

X X 0 WORKA=YES GET or PUT specifies work area. Omit 10REG.

M=Mandatory; O=Optional

Figure 2-7 (part 2 of 7) DTFSR macro operands - 2311 disk

Part 2. Sequential Access Method 119

x x x x M COREXIT=xxxxxxxx Name of your error correction routine.

X X X X M DEVADDR=SYSnnn Symbolic unit assigned to the optical reader.

X X X X M DEVICE=xxxxxxxx
(READ87T or READ87D). For 1288, specify READ87D. If
omitted, READ87D is assumed.

X X X X M EOFADDR=xxxxxxxx Name of your end-of-file routine.

X X X X M IOAREA 1 =xxxxxxxx Name of your first input area.

X X 0 BLKFAC=nn If RECFORM=UNDEF in journal tape mode.

X X X X 0 BLKSIZE=nn Length of I/O area(s). If omitted, 38 is assumed.

X X X X 0 CONTROL= YES If CNTRL macro is to be used for this file.

X X X 0 HEADER=YES
If a header record is to be read from the optical reader key-
board by OPEN or OPENR.

X X 0 HPRMTY=YES If hopper empty condition is to be returned.

X X 0 IOAREA2=xxxxxxxx If two input areas are used, name of second input area.

X X 0 IOREG=(nn)
Reg. number, if two input areas or undefined records are to be
used and a work area is not specified.

X X X X 0 RECFORM=xxxxxx
(FIXBLK, FIXUNB, or UNDEF). If omitted, FIXUNB is as-
sumed.

X X X X 0 RECSIZE=(nn)
Register number if RECFORM=UNDEF. If omitted, register 3
is assumed.

X X X X 0 TYPEFLE=xxxxxx If not specified, INPUT IS ASSUMED.

X X 0 WORKA=YES If GET is specified with a work area. Omit 10REG.

M=Mandatory; O=Optional

Figure 2-27 (part 3 of 7) DTFSR macro operands - optical reader

120 DOS/VS Supervisor & I/O Macros

/

M DEVICE=PRINTER

M BLKSIZE=nnn Length of one output area, in bytes.

M DEV ADDR=SYSnnn Symbolic unit for the printer used for this file.

M IOREA 1 =xxxxxxxx Name of first output area.

M TYPEFLE=OUTPUT

0 CONTROL= YES CNTRL macro used for this file. Omit CTLCHR for this file.

0 CTLCHR=YES
Data records have control character in first position. Omit
CONTROL for this file.

0 IOAREA2=xxxxxxxx If two output areas are used, name of second area.

0 10REG=(nn)
Register number, if two output areas are used and PUT does
not specify a work area. Omit WORKA.

0 PRINTOV = YES PRTOV macro is used for this file.

0 RECFO RM=xxxxxx
(FIXUNB, V ARUNB, or UNDEF). If omitted, FIXUNB
assumed.

0 RECSIZE=nnnn Register number if RECFORM=UNDEF.

0 WORKA=YES PUT specifies work area. Omit IOREG.

Figure 2-27 (part 4 of 7) DTFSR macro operands - printer

M DEVICE=CONSOLE

M BLKSIZE=nnn Length of I/O area, in bytes.

M DEVADDR=SYSnnn Symbolic unit for the console printer-keyboard used for this
file.

M 10 AREA 1 =xxxxxxxx Name of I/O area.

M TYPEFLE=xxxxxx (INPUT or OUTPUT).

0 RECFORM=xxxxxx (FIXUNB or UNDEF). If omitted, FIXUNB is assumed.

M RECSIZE=nnnn Register number if RECFORM=UNDEF.

0 WORKA=YES GET or PUT specifies work area. Omit 10REG.

M=Mandatory; O=Optional

Figure 2-27 (part 5 of 7) DTFSR macro operands - console printer-keyboard

Part 2. Sequential Access Method 121

x x M DEVICE=TAPE

x x M BLKSIZE=nnnnn Length of one I/O area, in bytes.

X X M DEVADDR=SYSnnn Symbolic unit for the tape drive used for this file.

X M EOFADDR=xxxxxxxx Name of your end-of-file routine.

X X M IOAREA 1 =xxxxxxxx Name of first I/O area.

X X M TYPEFLE=xxxxxx (INPUT or OUTPUT).

X X 0 AL TT APE=SYSnnn Symbolic unit for alternate tape drive used for this file.

X X 0 CHECKPT=n
Number assigned to identify 4-byte field for each tape drive specified in first
parameter of CHKPT macro (as: 1, 2, or 3).

X 0 CKPTREC= YES Checkpoint records are interspersed with input data records.

X X 0 CONTROL= YES CNTRL macro used for this file.

X 0 ERROPT =xxxxxxxx
(IGNORE, SKIP, or name of error routine). Prevents job termination on
error records.

X X 0 FILABL=xxxx
(STD, NSTD, or NO). If NSTD specified, include LABADDR. If omitted,
NO is assumed.

X X 0 IOAREA2=xxxxxxxx If two I/O areas are used, name of second area.

X X 0 IOREG=(nn)
Register number. Use only if GET or PUT does not specify work area. Omit
WORKA.

X X 0 LABADDR=xxxxxxxx
Name of your label routine if FILABL=NSTD or if FILABL=STD and
user-standard labels are processed.

X 0 READ=xxxxxxx (FORWARD or BACK). If omitted, FORWARD is assumed.

M=Mandatory; O=Optional

Figure 2-27 (part 6 of 7) DTFSR macro operands - tape

122 DOS/VS Supervisor & I/O Macros

x x 0 RECFORM=xxxxxx
(FIXUNB, FIXBLK, VARUNB, VARBLK, or UNDEF). If omitted, FIX-
UNB is assumed.

X X 0 RECSIZE=nnnnn
If RECFORM=FIXBLK, number of characters in record. If
RECFORM=UNDEF, register number. Not required for other records.

X X 0 REWIND=xxxxxx
(UNLOAD or NORWD). Unload on CLOSE or CLOSER or end of volume,
or prevent rewinding.

X 0 TPMARK=NO Prevent writing a tapemark ahead of data records if FILABL=NSTD or NO.

X 0 V ARBLD=(nn)
Register number if RECFORM=VARBLK and records are built in the
output area.

X 0 WLRERR=xxxxxxxx Name of wrong-length-record routine.

X X 0 WORKA=YES GET or PUT specifies work area. Omit IOREG.

M=Mandatory; O=Optional

Figure 2-27 (part 7 of 7) DTFSR macro operands - tape

Part 2. Sequential Access Method 123

IMPERATIVE MACROS

After the SAM files are defined by the declarative
macros, the following groups of imperative macros
are used to operate on the files:

•
•
•

Initialization macros
Processing macros
Completion macros

Turn back to Figure 2-1 for a summary of both the
imperative and declarative macros which may be
used for SAM processing on a given I/O device.

Initialization Macros

The initialization macros OPEN and OPENR are
used to ready a file for processing. These macros
associate the logical file declared in your program
with a specific physical file on an I/O device. Thus
OPEN or OPENR must be issued for any file be­
fore any processing is done for that file; an excep­
tion is that OPEN need not be issued for DTFCN
and DTFPT files.

The association by OPEN or OPENR of your
program's logical file with a specific physical file
remains in effect throughout your processing of 'the
file until you issue a completion macro.

OPEN and OPENR also check or write standard or
nonstandard DASD or magnetic tape labels. In­
formation on labels is contained in the Label
Processing chapter.

Included here under the category of initialization
macros is the LBRET macro, which is connected
only with label processing. LBRET is used to re­
turn to IOCS from a subroutine of your program
which writes or checks labels.

A description of these macros follows.

OPEN and OPENR Macros

The OPEN or OPENR macro activates all files.

When OPENR is specified, the symbolic address
constants that OPENR generates from the parame­
ter list are self -relocating. When OPEN is specified,

124 DOS/VS Supervisor & I/O Macros

the symbolic address constants are not self­
relocating. The format of these macros is:

Op Operand

for self-r~locating programs

OPENR j filename 1 t
1 (rt) ~

r, ~filename2 t ... , ~filenament]
L 1 (r2) ~ 1 (rn) ,

for programs that are not self-relocating

OPEN jfilenamel t
1 (rt) ~

[
~ fllename2 t ... , ~filenamen l]
1 (r2) f (rn) f

To write the most efficient code in a multiprogram­
ming environment it is recommended that OPENR
be used.

Self-relocating programs using LIOCS must use
OPENR to activate all files, including console files.
In addition to activating files for processing, OPENR
relocates all-address constants within the DTF tables
(zero constants are relocated only when they consti­
tute the module address).

If OPEN or OPENR attempts to activate a LIOCS
file (DTF) whose device is unassigned, the job is
terminated. If the device is assigned IGN, OPEN or
OPENR does not activate the file but turns on the
DTF byte 16, bit 2, to indicate the file is not activat­
ed. If DTF byte 16 bit 2 is on after issuing an OPEN
or OPENR, input/output operations should not be
performed for the file.

Enter the symbolic name of the file (DTF filename)
in the operand field. A maximum of 16 files may be
opened with one OPEN or OPENR by entering the
filenames as additional operands. Alternately, you
can load the address of the DTF filename into a
register and specify the register using ordinary regis­
ter notation. The high-order 8 bits of this register
must be zeros. For OPENR, the address of filename
may be pre loaded into any of the registers 2-15. For

OPEN, the address of filename may be preloaded
into register 0 or any of the registers 2-15.

Notes: If you use register notation, we recommend
that you follow the standard practice of using only
registers 2-12. If it is necessary to open a sequential
DASD file more than once, then the DTF must be
restored to its original state.

Whenever an input I output DASD or magnetic tape
file is opened and you plan to process user-standard
labels (UHL or UTL) or nonstandard tape labels,
you must provide the information for checking or
building the labels. If this information is obtained
from another input file, that file must also be
opened, if necessary, ahead of the DASD or tape
file. To do this, specify the input file ahead of the
tape or DASD file in the same OPEN or OPENR, or
issue a separate OPEN or OPENR for the file.

If an output tape (specified to contain standard la­
bels) is opened that does not contain a volume label,
an operator message is issued. This message gives
the operator the opportunity to type a volume serial
number so that a volume label can be written on the
output tape.

When opening files for card devices, printers, con­
soles, magnetic character readers, optical readers,
and paper tape devices, OPEN or OPENR simply
makes the file available for input or output. For an
output file with two 110 areas, OPEN or OPENR
loads your IOREG with the address of an 110 area.

If you want, device type checking can be performed
when a DTFCN (console) file is opened. The logi­
cal unit assignment must be a 3210 or 3215 console
printer-keyboard, a display operator console, or a
printer. An assignment to any device other than
these is invalid and the job is canceled.

If OMR or RCE is specified for a 3505 card reader
or if RCE is specified for a 3525 card punch, OPEN
or OPENR retrieves the data from the first data card
and analyzes this data to verify the presence of a
format descriptor card. If a format descriptor card is
found, OPEN or OPENR builds an 80-byte record
corresponding to the format descriptor card. If a
format descriptor card is not found, a message is
issued and the job is canceled.

For a 2560, 3525, or 5425 print only file, OPEN or
OPENR will feed the first card to ensure that a card
is at the print station.

For 2560, 3525, or 5425 associated files, all of the
associated files must be opened before a GET or
PUT is used for any of the files.

For printers with the Universal Character Set fea­
ture, data checks are ignored and blanks are printed
unless you specify UCS=ON in the DTFPR.

For MICR devices, OPEN or OPENR sets the entire
110 area to binary zeros.

When LIOCS is used for processing journal tapes on
the 1287 optical reader, OPEN or OPENR may be
issued at the beginning of each input roll.

To process two or more rolls on the 1287 as one file
(when an end-of-tape condition occurs), run out the
tape by pressing the start key on the optical reader.
This creates an intervention-required condition in­
stead of the end-of-file key. The next tape can then
be loaded and processed as a continuation of the
previous tape. However, because OPEN or OPENR
is not reissued, no header information can be en­
tered between tapes.

When processing documents on the 1287, OPEN or
OPENR must be issued to make the file available. If
the program is to be self -relocatable, OPENR must
be used and for any CCW chain you write, addressa­
bility must be provided for your data addresses.

OPEN or OPENR allows header (identifying) in­
formation to be entered at the 1287 keyboard for
journal tape or cut documents. When header inform­
ation is entered, it is always read into 10 AREA 1 ,
which must be large enough to accommodate the
desired header information.

When opening a 3886 optical reader file, OPEN or
OPENR loads the appropriate format record (as
specified in the DTFDR) into the 3886 control unit.

DASD Output
When a multi-volume DASD file is created using
SAM, only one extent is processed at a time. There­
fore, only one pack need be mounted at a time.
When processing on a volume is completed, message

4n55A WRONG PACK, MOUNT nnnnnn

will be issued so that the next volume may be
mounted.

When a file is opened, OPEN or OPENR checks the
standard VOLllabel and the specified extents:

1. The extents must not overlap each other.

Part 2. Sequential Access Method 125

2. The first extent must be at least two tracks
long if user standard labels are created.

3. Only extent types 1 and 8 are valid.

The data extents of a sequential DASD file can be
type 1, type 8, or both. Type 8 extents are called
split cylinder extents and use only a portion of each
cylinder in the extent. The portion of the cylinder
used must be within the head limits of the cylinder
and within the range of the defined extent limits. For
example, two files can share three cylinders--one file
occupying the first two tracks of each cylinder and
the other file occupying the remaining tracks. In
some applications, the use of split cylinder files re­
duces the access time.

OPEN or OPENR checks all the labels in the VTOC
to ensure that the file to be created does not destroy
an existing file whose expiration date is still pending.
It also checks to determine that the extents do not
overlap existing extents. After the VTOC checks,
OPEN or OPENR creates the standard label(s) for
the file and writes the label(s) in the VTOC.

If you wish to create your own user standard labels
(UHL or UTL) for the file, include the DTF
LABADDR operand. OPEN or OPENR reserves the
first track of the first extent for the user header and
trailer labels. Then, your label routine is given con­
trol at the address specified in LABADDR.

After the header labels are built, the first extent of
the file is ready to be used. The extents are made
available in the order of the sequence numbers on
the actual extent statements. When the last extent on
the mounted volume is filled, your LABADDR rou­
tine is given control and user standard trailer labels
can be built. Then, the next specified volume in the
extent statements is mounted and opened.

For a file-protected DASD, when OPEN or OPENR
makes the first extent of the new volume available, it
makes the extent(s) from the previous volume una­
vailable. When the last extent on the final volume of
the file is processed, OPEN or OPENR issues an
operator message. The operator has the option of
canceling the job or typing in an extent on the con­
sole printer-keyboard or the display operator console
and continuing the job.

DASD Input
In a multi-volume file only one extent is processed at
a time, and thus only one pack need be mounted at a
time. When processing on a volume is completed,
message

4n55A WRONG PACK, MOUNT nnnnnn

126 DOS/VS Supervisor & I/O Macros

will be issued so that the next volume may be
mounted.

When a volume is opened, OPEN or OPENR checks
the standard VOL 1 label and goes to the VTOC to
check the file label(s). OPEN or OPENR checks the
specified extents in the extent statements against the
extents in the labels to make sure the extents exist. If
LABADDR is specified, OPEN or OPENR makes
the user standard header labels (UHL) available to
you one at a time for checking.

After the labels are checked, the first extent of the
file is ready to be processed. The extents are made
available in the order of the sequence number on the
extent statements. The same extent statements that
were used to build the file can be used when the file
is used as input.

Note: If EXTENT cards with specified limits are
included in the job stream, or if an extent was creat­
ed by replying with an extent to message

4450A NO MORE AVAILABLE EXTENTS

when the file was built, then an additional EXTENT
card must be submitted on input to process that ex­
tent. If no EXTENT cards are submitted, however,
this additional extent is processed normally.

When the last extent on the mounted volume is
processed, the user standard trailer labels are made
available for checking one at a time. The next vol­
ume is then opened.

For DASD devices that are file protected, when
OPEN or OPENR makes the first extent of the new
volume available, it makes the extent(s) from the
previous volume unavailable.

Diskette Output
When a multi-volume diskette file is created, feeding
from diskette to diskette is automatically performed
by IOCS. If the file was defined by a DTFDI macro,
the last diskette is ejected automatically by IOCS. If
the DTFDU macro was used, the ejection of the last
diskette is controlled by the FEED operand of this
macro.

When a file is opened, OPEN or OPENR checks the
VTOC on the diskette and:

• ensures that the file to be created does not
have the same name as an existing unexpired
file.

• ensures there is at least one track available to
be allocated.

allocates space for the file, starting at the track
following the last unexpired or write-protected
file on the diskette.

Diskette Input
When a multi-volume diskette file is read, feeding
from diskette to diskette is automatically performed
by lacs. If the file was defined by a ~TFDI macro,
the last diskette is not ejected. If the DTFDU macro
was used, the ejection is controlled by the FEED
operand of this macro.

When a file is opened, OPEN or OPENR checks the
VTOC on the diskette and determines the extent
limits of the file from the file label.

After the label is checked, the first extent of the file
is ready to be ·processed. The extents are made avail­
able in the order of the sequence number on the
extent statements (if the statements are not num­
bered, job control numbers them consecutively). The
same extent statements used to build the file can be
used when the file is used as input.

LBRET Macro

Name Operation Operand

[name] LBRET {11213}

The LBRET macro is issued in your subroutines
when you have completed processing labels and wish
to return control to lacs. LBRET applies to su­
broutines that write or check DASD or magnetic
tape user standard labels, write or check tape non­
standard labels, or check DASD extents. The ope­
rand used--l, 2, or 3--depends on the function to be
performed. The functions and operands are ex­
plained below. See also the Label Processing chap­
ter.

Checking User Standard DASD Labels: lacs passes
the labels to you one at a time until the maximum
allowable number is read (and updated), or until you
signify you want no more. In the label routine, use
LBRET 3 if you want lacs to update (rewrite) the
label just read and pass you the next label. Use
LBRET 2 if you simply want lacs to read and pass
the next label. If an end-of-file record is read when
LBRET 2 or LBRET 3 is used, label checking is
automatically ended. If you want to eliminate the

checking of one or more remaining labels, use
LBRET 1.

Writing User Standard DASD Labels: Build the la­
bels one at a time and use LBRET to return to
laCS, which writes the labels. Use LBRET 2 if you
want control returned to you after lacs writes the
label. If, however, lacs determines that the maxi­
mum number of labels has already been written,
label processing is terminated. Use LBRET 1 if you
wish to stop writing labels before the maximum
number of labels is written.

Checking User Standard Tape Labels: lacs reads
and passes the labels to you one at a time until a
tapemark is read, or until you signify you do not
want any more labels. Use LBRET 2 if you want to
process the next label. If lacs reads a tapemark,
label processing is automatically terminated. Use
LBRET 1 if you want to bypass any remaining la­
bels.

Writing User Standard Tape Labels: Build the labels
one at a time and return to laCS, which writes the
labels. When LBRET 2 is used, lacs returns con­
trol to you (at the address specified in LABADDR)
after writing the label. Use LBRET 1 to terminate
the label set.

Writing or Checking Nonstandard Tape Labels: You
must process all your nonstandard labels at once.
Use LBRET 2 after all label processing is completed
and you want to return control to lacs. Appendix
C. shows an example of this.

Processing Macros

The processing macros permit you to store and re­
trieve records without coding your own
blocking/ deblocking routines. You can thereby con­
centrate on processing your data.

This description of processing macros begins with
the general macros which can be used for many dif­
ferent devices--such as GET, which can be used for
every input device; PUT, which can be used for ev­
ery output device; and CNTRL, which can be used
for many input and output devices. Then follow de­
scriptions of processing macros for more specific
applications: Magnetic Reader Macros, Optical
Reader Macros, and Work File Macros for Tape
and Disk.

Part 2. Sequential Access Method 127

A major feature of the processing macros is the abil­
ity to use one or two I/O areas and to process re­
cords in either a work area or in an I/O area.

The SAM routines provide for overlapping the phys­
ical transfer of data with processing. The amount of
overlapping actually achieved is governed by your
program through the assignment of I/O areas and
work areas. An I/O area is that area of storage to or
from which a block of data is transferred by LIOCS.
A work area is an area used for processing an indi­
vidual record (part of the block of data). A work
area cannot be used with paper tape records or for
the 3881 Optical Mark Reader. The I/O area(s) is
specified in the DTF macro, while the work area is
specified in the processing macro.

The following combinations of I/O areas and work
areas are possible (except in the cases of spanned
records and associated DTFCD files):

1. One I/O area without a work area
2. One I/O area with a work area
3. Two I/O areas without a work area
4. Two I/O areas with a work area

When processing spanned records, you may use:

1. One I/O area with a work area
2. Two I/O areas with a work area

Although two I/O areas are permitted, normal over­
lap is curtailed because each I/O command you issue
may require multiple I/O operations by MTMOD or
SDMODxx.

When processing associated DTFCD files, you may
use:

1. One I/O area without a work area
2. One I/O area with a work area

Although two I/O areas are not permitted for asso­
ciated files, a type of overlapped processing can nev­
ertheless be achieved-see the DOS/VS Data Man­
agement Guide, GC33-5372, for details.

GET Macro

Name Operation Operand

[name] GET ~filename} [workn;meJ
~ 1

GET makes the next sequential logical record from
an input file available for processing in either an

128 DOS/VS Supervisor & I/O Macros

input area or in a specified work area. It is used for
any input file in the system, and for any type of re­
cord: blocked or unblocked, fixed or variable length,
and undefined.

If GET is used with a file containing checkpoint
records, the checkpoint records are bypassed auto­
matically.

filename: This operand is required. The parameter
value must be the same as specified in the header
entry of the DTF for the file from which the record
is to be retrieved. The filename can be specified as a
symbol or in either special or ordinary register nota­
tion. The latter is necessary to make your programs
self -relocating.

workname: This is an optional parameter specifying
the work area name or a register (in either special or
ordinary register notation) containing the address of
the work area. The work area address should never
be preloaded into register 1. This parameter is used
if records are to be processed in a work area which
you define yourself (for example, using a DS instruc­
tion). If the operand is specified, all GETs for the
named file must use a register or a workname. Using
the second operand causes GET to move each indi­
vidual record from the input area to a work area.
The workname parameter is not valid for 3881. You
also cannot specify the WORKA operand in the
DTFCD for the 3881.

All records from a logical file may be processed in
the same worl} area, or different records from the
same logical file may be processed in different work
areas. In the first case, each GET for a file specifies
the same work area. In the second case, different
GET macros specify different work areas. It might
be advantageous to plan two work areas, for exam­
ple, and to specify each area in alternate GET mac­
ros. This would permit you to compare each record
with the preceding one, checking, for instance, for a
change in a control field within the record. However,
only one work area can be specified in anyone GET
macro.

Required DTF Macro Entries
The input area must be specified in the IOAREA 1
operand of the DTF macro. For any file other than a
combined file or an associated file, two input areas
may be used to permit an overlapping of data trans­
fer and processing operations. The second area is
specified in IOAREA2. Whenever two input areas
are specified, the IOCS routines transfer records
alternately to each area. They completely handle this

flip-flop so that the next sequential record is always
available to the problem program for processing.

For a combined file, the input area is specified in
IOAREA1 and the output area in IOAREA2. If the
same area is used for both input and output,
IOAREA2 is omitted.

For associated files only one input area may be spec­
ified.

When records are processed in the input area(s), a
register must be specified in the 10REG operand of
the DTF macro if:

I 1. Records are blocked, (chained if on diskettes) or
2. Undefined or variable-length magnetic tape re­

cords are read backwards, or
3. Two input areas are used, for either blocked or

unblocked records, or
4. Neither BUFOFF=O nor WORKA= YES is

specified for ASCII files

The specified register identifies the next single re­
cord to be processed. It always contains the absolute
address of the record currently available. The GET
routine places the proper address in the register.

If a work area is used, WORKA= YES must be spec­
ified. 10REG should not be specified.

When the GET macro detects an end-of-file condi­
tion, 10CS branches to your end-of-file routine
(specified by EOFADDR). For MICR document
processing, you do not regain control until either a
buffer becomes filled with a stacker-selected docu­
ment, or error conditions are posted in the buffer
status indicators.

An example of GET macro processing is shown in
Figure 2-28. The operand IOAREA1 points to the
first I/O area for this file. IOAREA2 points to the
second I/O area. The operands of the GET macro
point to the DTF and to the work area A3 to which
logical records are moved from areas A 1 and A2 by
LIOCS.

Unblocked Records
Records retrieved from any input file are considered
fixed unblocked unless otherwise specified.

Whenever records are unblocked (either fixed or
variable length) and only one input area is used,
each GET transfers a single record from an I/O
device to the input area. The record is then transfer­
red to a work area if one is specified in the

Name

FNAME

A1D
A2

~
A3

Figure 2-28

Operation

DTFMT

DS
DS

GET

DS

Operand

IOAREA1=A1

: IOAREA2=A2,
~ WORKA=YES

sooe
sooe

FNAME,A3 ..
looe

GET macro processing example

Col. 72

x

x

GET macro. If two input areas are specified, each
GET makes the last record that was transferred to
virtual storage available for processing in the input
area or work area. The same GET also starts the
transfer of the following record to the other input
area.

When a 2540 is used for a card input file, each
GET macro normally reads the record from a card
in the read feed. However, if the 2540 has the
special punch-feed-read feature installed and if
TYPEFILE=CMBND is specified in the DTFCD
macro, each GET reads the record from a card in
the punch feed, at the punch-feed-read station.
This record can be updated with additional inform­
ation that is then punched back into the same card
when the card passes the punch station and a PUT
macro is issued. (See Updating in the discussion of
the PUT macro, below.)

Blocked Records
When records on DASD or magnetic tape are speci­
fied as blocked in the DTF RECFORM operand,
each individual record must be located for process­
ing (deblocked). Therefore, blocked records (either
fixed or variable length) are handled as follows:

1. The first GET macro transfers a block of re­
cords from DASD or tape to the input area. It
also initializes the specified register to the ab­
solute address of the first data record, or it
transfers the first record to the specified work
area.

2. Subsequent GET macros either add an indexing
factor to the register or move the proper record

Part 2. Sequential Access Method 129

to the specified work area, until all records in
the block are processed.

3. Then, the next GET makes a new block of
records available in virtual storage, and either
initializes the register or moves the first record.

Command Chained Records
When records on diskettes are specified as com­
mand chained in the DTFDU CMDCHN operand,
each individual record must be located for process­
ing. Therefore, command chained records are han­
dled as follows:

1. The first GET macro transfers a chain of re­
cords (2, 13, or 26 records depending on the
CMDCHN operand) from diskette to the input
area. It also intializes the specified register to
the absolute address of the first data record, or
it transfers the first record to the specified
work area.

2. Subsequent GET macros either add an indexing
factor to the register or move the proper record
to the specified work area, until all records in
the block are processed.

3. Then, the next GET makes a new chain of
records available in virtual storage, and either
initializes the register or moves the first record.

Spanned Records
When unblocked or blocked spanned records are
processed, the operand RECFORM=SPNUNB or
RECFORM=SPNBLK, respectively, must be in­
cluded in both the file definition (DTFMT or
DTFSD) and the appropriate module (MTMOD,
SDMODVI, or SDMODVU). GET assembles span­
ned record segments into logical records in your
work area. Null segments are recognized. They are
not assembled into logical records, but skipped.
The length of the logical record is passed to you
through the register specified in the DTF RECSIZE
operand.

If you choose to update logical records using
SDMODVU, the pointer to the physical record in
which a logical record starts is saved on each GET
so that the device may be repositioned. The extent
sequence number (byte 40 of the DTF) is also
saved in case the logical record spans disk extents.

Undef"med Records
When undefined records are processed, the operand
RECFORM=UNDEF must be included in the
DTF. GET treats undefined records as unblocked,

130 DOS/VS Supervisor & I/O Macros

and you must locate individual records and fields.
If a RECSIZE register is specified, IOCS stores the
length of the record read in that register. Unde­
fined records are considered by IOCS to be varia­
ble in length. No other characteristics of the record
are known or assumed by IOCS. Determining
these characteristics is your responsibility.

Associated Files
For associated files on the 2560, 3525, and 5425
card devices, the sequence in which you issue GET,
CNTRL, and PUT macros is important. See the
section GET/CNTRL/ PUT Sequence for Associ­
ated Files under PUT Macro, below.

Reading Magnetic Tape Backwards
If records on magnetic tape are read backwards
(the DTF operand READ=BACK is specified),
blocks of records are transferred from tape to vir­
tual storage in reverse order. The last block is read
first, the next-to-last block is read second, etc. For
blocked records, each GET macro also makes the
individual records available in reverse order. The
last record in the input area is the first record
available for processing (either by indexing or in a
work area).

Any 9-track tape can be read backwards. 7 -track
tape can be read backwards only if the data con­
version special feature was not used when the tape
was written.

PUT Macro

Oper-
Name ation Operand

[name] PUT {mename}[rorkname}] (1) , (0)

[1 { STLs~con~:)meld} \]

{ STLSK =controlfield}
(r)

PUT writes or punches logical records which are
built directly in the output area or in a specified
work area. It is used for any output file in the sys­
tem, and for any type of record: blocked or un­
blocked, fixed or variable length, and undefined. It
operates much the same as GET but in reverse. It is
issued after a record has been built.

When a PUT is issued for a printer, the printer auto­
matically spaces one line. Neither the CNTRL ma­
cro nor a control character need be specified.

filename: This operand is required. The parameter
value must be the same as specified in the header
entry of the DTF for the file being built. The filen­
ame can be specified as a symbol or in either special
or ordinary register notation. The latter is necessary
to make your programs self-relocating.

workname: An optional parameter specifying the
work area name or a register (in either special or
ordinary register notation) containing the address of
the work area. The work area address should never
be preloaded into register 1. This parameter is used
if records are built in a work area which you define
yourself (for example, using a DS instruction). If the
operand is specified, all PUTs to the named file must
use a register or a workname. Using the second ope­
rand causes PUT to move each record from the work
area to the output area.

Individual records for a logical file may be built in
the same work area or in different work areas. Each
PUT macro specifies the work area where the com­
pleted record was built. However, only one work
area can be specified in anyone PUT macro.

Whenever a PUT macro transfers an output data
record from an output area (or work area) to an I/O
device, the data remains in the area until it is either
cleared or replaced by other data. 10CS does not
clear the area. Therefore, if you plan to build anoth­
er record whose data does not use every position of
the output area or work area, you must clear that
area before you build the record. If this is not done,
the new record will contain interspersed characters
from the preceding record.

STLSP=control field: This optional operand speci­
fies a control byte that allows for spacing while using
the selective tape listing feature on the 1403 printer.
To use this feature, the operand STLST= YES must
be specified in the DTFPR. Up to 8 paper tapes may
be independently spaced. The control byte is set up
like any other data byte in virtual storage. You can
also use ordinary register notation to provide the
address of the control byte. Registers 2 through 12
are available without restriction. You determine the
spacing (which occurrs after printing) by setting on
the bits corresponding to the tapes you want to
space. The correspondence between control byte
bits and tapes is as follows:

Control byte bits 0 t 2 3 4 5 6 7

Tape position 8 7 6 5 4 3 2 t

The tape position 1 is the leftmost tape on the selec­
tive tape listing device.

Note: Double-width tapes must be controlled by
both bits of the control field.

STLSK=control field: This optional operand speci­
fies a control byte that allows for skipping while
using the selective tape listing feature on the 1403
printer. To use this feature, the operand
STLIST=YES must be specified in the DTFPR. Up
to 8 paper tapes may be independently skipped. The
control byte is set up like any other data byte in
virtual storage. You can also use ordinary register
notation to provide the address of the control byte.
Registers 2 through 12 are available without restric­
tion. You determine the skipping (which occurs after
printing) by setting on the bits corresponding to the
tapes you want to skip. The correspondence between
control byte bits and tapes is shown in the figure
under STLSP=control field, above.

Required DTF Operands
The output area must be specified in the OAREAl
operand of the DTF macro. For any file, ther than a
combined file or an associated file, two utput areas
may be used to permit an overlapping f data trans­
fer and processing operations. The se ond area is
specified in IOAREA2. Whenever t 0 output areas
are specified, the 10CS routines tra s er records
alternately from one to the other ar . The routines
completely handle this flip-flop, so that the proper
output record area is always available to the pro­
gram.

For a combined file, the input area is specified in
10AREAl and the output area in IOAREA2. If the
same area is used for both input and output,
IOAREA2 is omitted.

For associated DTFCD files only one output area
may be specified.

When records are built in the output area(s), a regis­
ter must be specified in the 10REG operand if:

1. Records are blocked, or --
2. Two output areas are used for either blocked or

unblocked records.

Part 2. Sequential Access Method 131

This register always contains the absolute base ad­
dress of the currently available output-record area.
IOCS places the proper address in the register. You
should always address the 110 areas by using the
IOREG as the base register and should not make
any assumptions about which 110 area is presently
being used. If a work area is used, WORKA=YES
must be specified; IOREG should not be specified.

If blocked records are variable length and are built in
the output area(s), an additional register must be
specified in the V ARBLD operand. IOCS stores the
number of bytes remaining in the output area in the
V ARBLD register each time a PUT macro is execut­
ed.

Unblocked Records
Records transferred to any output file are always
considered fixed unblocked unless otherwise speci­
fied in the DTF RECFORM operand.

Whenever records are unblocked (either fixed or
variable length), each PUT transfers a single record
from the output area (or input area if updating is
specified) to the file. If a work area is specified in
the PUT macro, the record is first moved from the
work area to the output area (or input area) and
then to the file. For fixed DASD unblocked records,
IOCS follows the rule that if there is not enough
space for another record in the extent specified, then
there is not enough space for an EOF record.

Blocked Records
When blocked records are written on DASD or ntag­
netic tape, the individually built records must be
formed into a block in the output area before it can
be transferred to the output file. The blocked re­
cords may be either fixed or variable length.

Fixed-length blocked records can be built directly in
an output area or in a work area. Each PUT macro
for these records either adds an indexing factor to
the register (IOREG), or moves the completed re­
cord from the specified work area to the proper loca­
tion in the output area. When an output block of
records is complete, a PUT macro causes the block
to be transferred to the output file and initializes the
register, if one is used.

Variable-length blocked records can also be built in
either an output area or in a work area. The length
of each variable-length record must be determined
by your program and included in the output record
as it is built. Your program can calculate the length
of the output record from the length of the corre­
sponding input records. That is, variable-length out-

132 DOS/VS Supervisor & I/O Macros

put records are generally developed from previously
written variable-length input records. Each variable­
length input record must include the field that con­
tains the ~ength of the record.

When variable-length blocked records are built in a
work area, the PUT macro performs the same func­
tions as it does for fixed-length blocked records. The
PUT routines check the length of each output record
to determine if the record fits in the remaining por­
tion of the output area. If the record fits, PUT im­
mediately moves the record. If it does not fit, PUT
causes the completed block to be written and then
moves the record into the work area.

However, if variable-length blocked records are built
directly in the output area, the DTF V ARBLD ope­
rand, the TRUNC macro, and additional program­
ming are required. Your program must determine if
each record built will fit in the remaining portion of
the output area. This must be known before record
processing for a subsequent record begins, so that
the completed block can be written. Thus, the length
of the record must be precalculated and compared
with the amount of remaining space.

The amount of space available in the output area at
any time is supplied to your program in a register by
the IOCS routines if V ARBLD is specified in the
DTF. This register is in addition to the register speci­
fied in IOREG. Each time a PUT macro is executed,
IOCS loads into the specified register the number of
bytes remaining in the output area. Your program
uses this to determine if the next variable-length
record will fit. If it will not fit, a TRUNC macro
must be issued to transfer the block of records to the
output file. The entire output area is then available
for building the next block.

Command Chained Records
When command chained records are written on disk­
ettes, the individually built records must be formed
into a chain in the output area before they can be
transferred to the output file.

Command chained records can be built directly in an
output area or in a work area. Each PUT macro for
these records either adds an indexing factor to the
register (IOREG), or moves the completed record to
the proper location in the output area. When an out­
put chain of records is complete, a PUT macro caus­
es the chain of records to be transferred to the out­
put file and initializes the register, if one is used.

Spanned Records
When PUT handles unblocked or blocked spanned
records, the operand RECFORM=SPNUNB or
RECFORM=SPNBLK (whichever applies) must be
included in both the file definition (DTFMT,
DTFSD) and the appropriate module (MTMOD,
SDMODVO, or SDMODVU). Records in your work
area are divided into spanned record segments ac­
cording to the length specified in the RECSIZE ope­
rand. In constructing the segments, full use is made
of the space available in each physical record and
device track. For disk output, spanned records do
not span volumes. If there is not enough space on
the current volume to contain a spanned record,
SDMODVO:

1. Rereads the last block of the previous spanned
record.

2. Rewrites the last block (truncated to the last
segment of the previous spanned record, if nec­
essary) to erase the remainder (if any) of the
track;

3. Writes an eight-byte record-block descriptor
word and one null segment on each remaining
track on the current volume.

4. Attempts to put the entire spanned record on the
next volume.

For update files, SDMODVU repositions the device
to the first block of the -logical record by using the
pointer saved in GET processing. If the logical re­
cord spans extents, the extent sequence number that
was also saved in GET processing is used to ensure
that updating starts in the proper extent; that is,
from the beginning of the record.

Undefined Records
When undefined records are processed, PUT treats
them as unblocked. You must provide any blocking
desired. You must also determine the length of each
record (in bytes) and load it in a register before issu­
ing the PUT macro for that record. The register used
for this purpose must be specified in the DTF REC­
SIZE operand.

Updating
A DASD record may be read, modified, and written
back to the same DASD location from which it was
read. This is possible with all DASD devices. A card
record may, with some devices, be read and then
have additional information punched back into the
same card. This is possible with the 1442, 2520,

2560, 3525, and 5425, and with the 2540 equipped
with the special punch-feed-read feature.

For the card devices, there are two ways of specify­
ing in the DTFCD that such updating is desired;
which way is used depends on device type.

• For the 1442, 2520, or 2540 equipped with the
punch-feed-read feature, use a combined file by
specifying TYPEFLE=CMBND in the DTFCD.
An example of a combined card file is given be­
low. For the 2540 with the punch-feed-read
feature, the file to be updated must be in the
punch feed.

• For the 2560, 3525, or 5425, use associated
files. Associated files are described in the
DOSIVS Data Management Guide, GC33-
5372; they are defined in the associated file dec­
larations (DTFCD and DTFPR) by the ASOC­
FLE and FUNC operands.

When updating a file, one 110 area can be specified
(using the IOAREA1 operand) for both the input
and output of a card record. If a second 110 area is
required, it can be specified with the IOAREA2
operand. For associated DTFCD files, however, two
110 areas are not allowed.

A PUT for a DASD file or for a combined card file
must always be followed by a GET before another
PUT is issued: GETs, however, can be issued as
many times in succession as desired. The corre­
sponding rules for an associated card file are given in
the section GETICNTRLIPUT Sequence for Asso­
ciated Files, below. When updating a disk file, the
record is not actually transferred with the PUT but
with the next GET for the file.

For a file using the 2540 with the punch-feed-read
special feature, a PUT macro must be issued for
each card. For a 1442 or 2520 file, however, a PUT
macro may be omitted if a particular card does not
require punching. The operator must run out the
2540 punch following a punch-feed-read job.

In the following combined card file example, data is
punched into the same card which was read. Inform­
ation from each card is read, processed, and then
punched into the same card to produce an updated
record.

Part 2. Sequential Access Method 133

Name Operation Operand

FILEC DTFCD

GET

TYPEFLE=CMBND,
IOAREA1=AREA,
DEVADDR=SYS005,
RECFORM=FIXUNB,
IOAREA2=AREA2

FILEC

PUT FILEC

Col. 72

x
x
x
x
x

files in the sequence given in Figure 2-29. For ex­
ample, to process a card of a read-punch associated
file requires first issuing a GET macro for the file
defined in the read DTFCD, and then issuing a
CNTRL macro (if desired) for the file declared in
the punch DTFCD, and then issuing a PUT macro
for the file declared in the punch DTFCD.

GET /PUT sequences other than those given in
Figure 2-29 will cause an abnormal termination
with an illegal supervisor call 32 message. The use
of CNTRL in sequences other than those shown in
Figure 2-29 will cause unpredictable results.

GET/eNTRL/PUT Sequence for Associated Files
For 2560, 3525, or 5425 associated files, GET,
CNTRI" and-"fUT macros IllllS1 be used with the

Improved performance for the 2560 or 5425 may
be achieved by a type of overlapped processing
through the use of dummy PUTs. Details of this
technique may be found in the DOS / VS Data
Management Guide, GC33-5372.

To: Issue: For file declared in: FUNC=

GET DTFCD (read file)

READ/PUNCH [CNTRL]* DTFCD (punch file) RP

PUT DTFCD (punch file)

GET DTFCD (read file)

[CNTRL]* DTFCD (punch file)
READ/PUNCH/PRINT RPW

PUT DTFCD (punch file)

[PUT]** DTFPR

GET DTFCD

READ/PRINT [CNTRL]* DTFCD RW

[PUT]** DTFPR

[CNTRL]* DTFCD

PUNCH/PRINT PUT DTFCD PW

[PUT]** DTFPR

* Optional. If used, however, the sequence is as shown.
* * Optional provicled you do not want to print on the card. If used, however, the sequence is as shown.

Figure 2·29 GET /CNTRL/PUT macro usage to process one card of an associated me

134 DOS/VS Supervisor & I/O Macros

2560 Printjng
The 2560 has a maximum of 6 print heads, one for
each line of print. For a description of how the
print heads may be set, see IBM 2560 Multi-

Function Card Machine Component Description
and Operating Procedures, GA26-5893. The out­
put area can be as large as 384 bytes, printed 64
bytes per line.

With one PUT macro, one logical line of up to 384
characters in length is printed. This logical line is
split up into 6 physical lines. Thus a single PUT
macro prints all the information for a card. The
next PUT macro will cause printing for the next
card.

3525 Printing
For a 3525 with a 2-line printer, output is automat­
ically printed on lines 1 and 3.

When automatic line positioning is used for a print
only file on a 2-line printer, the one PUT macro
causes line 3 to be printed and the other PUT
causes a new card to be fed and the printing of
line 1 to be started.

With a multiline printer, card feeding is caused by
the PUT macro which follows the PUT causing
printing on line 25. This PUT maCro also starts the
printing on line 1 of the next card. If you want to
control line positioning either the CONTROL ope­
rand or the CTLCHR operand must be specified in
the DTFPR macro. (CONTROL and CTLCHR are
not valid for card feeding when they are specified
for a printer file associated with a re~d or punch
file.) You are then responsible for all spacing and
skipping during printing. If CTLCHR= YES is spec­
ified, you are also responsible for card feeding.

The following restrictions apply to user-controlled
line positioning:

1. Any attempt to print on lines other than lines 1
or 3 on a 2-line printer results in a command
reject. Otherwise, 2-line printer support is iden­
tical to multiline printer support.

2. A space after printing command for line 25
results in positioning on line 1 of the next card.

3. Any attempt to print and suppress spacing re­
sults in a command reject.

4. Any skip command to a channel number less
than or equal to the present channel position
results in line positioning at that channel posi­
tion on the next card.

5. If CONTROL or CTLCHR is specified, FUNC
is ignored for 2-line printer support.

5425 Printing
The 5425 has a maximum of 4 print heads, one for
each line of print. The output area can be as large
as 128 bytes, printed 32 bytes per line.

With one PUT macro, one logical line of up to 128
characters in length is printed. This logical line is
split up into 4 physical lines. Thus a single PUT
macro prints all the information for a card. The
next PUT macro will cause printing for the next
card.

Card Device and Printer Control
Output stacker selection for a card device, and line
spacing or skipping for a printer, can be controlled
either by specified control characters in the data
records or by the CNTRL macro. Either method,
but not both, may be used for a particular file. For
use of the latter method, see CNTRL Macro, be­
low.

When control characters in data records are used,
the DTF CTLCHR operand must be specified, and
every record must contain a control character in
the virtual-storage output area. This control charac­
ter must be the first character of each fixed-length
or undefined record, or the first character following
the record-length field in a variable-length record.
The BLKSIZE specification for the output area
must include the byte for the control character. If
undefined records are specified, the RECSIZE
specification must also include this byte.

When a PUT macro is executed, the control char­
acter in the data record determines the command
code (byte) of the CCW that IOCS establishes.
The control character is used as follows:

If CTLCHR=ASA, the control character is trans­
lated into the command code.

If CTLCHR= YES, the control character is used
directly as the command code.

If a program using ASA control characters sends a
space and/or skip command (without printing) to
the printer, the output area must contain the first­
character forms control, and the remainder of the
area must be blanks (X' 40').

If a program using ASA control characters prints
on the 3525, you must use a space 1 control char­
acter (a blank) to print on the first line of a card.

Part 2. Sequential Access Method 135

The particular character to include in the record
depends on the function to be performed. For ex­
ample, if double spacing is to occur after a particu­
lar line is printed, the code for double spacing must
be the control character in the output line to be
printed. The first character after the control char­
acter in the output data becomes the first character
punched or printed. Appendix A gives a complete
list of control characters.

PUTR Macro

Name Operation Operand

[name] PUTR {filename}
(1)

[,{ WOrknamel,workname2}]
(0) (2)

The PUTR (PUT with reply) macro is used for the
display operator console, to issue a message to the
operator which requires operator action and which
will not be deleted from the display screen until the
operator has issued a reply.

You may also use PUTR with the 3210 or 3215 con­
sole printer-keyboard, in which case PUTR func­
tions the same as PUT followed by GET for these
devices, but provides the message non-deletion code
for the display operator console. Use of PUTR for
the 3210 or 321j is therefore recommended for
compatibility if your program may at some time be
run on the display operator console instead of the
3210 or 3215.

Use PUTR for fixed unblocked records (messages).
Issue PUTR after a record has been built.

filename: This operand is required. The parameter
value must be the same as specified in the header
entry of the DTFCN for the file being built. The
filename can be specified as a symbol or in either
special or ordinary register notation. The latter is
necessary to make your programs self -relocating.

worknamel: An optional parameter specifying the
output work area name or a register (in either special
or ordinary register notation) containing the address
of the output work area. The work area address
should never be preloaded into registers 1 or 2. This
parameter is used if records are built in a work area
which you define yourself (for example, using a DS
instruction). The length of the work area is defined

136 DOS/VS Supervisor & I/O Macros

by the BLKSIZE parameter of the DTFCN macro. If
workname 1 is specified, workname2 must also be
specified.

workname2: An optional parameter specifying the
input work area name or a register (in either special
or ordinary register notation) containing the address
of the input work area. The work area address
should never be preloaded into registers 0 or 1. This
parameter is used if records are built in a work area
which you define yourself (for example, using a DS
instruction). The length of the work area is defined
by the INPSIZE parameter of the DTFCN macro. If
workname2 is specified, workname 1 must also be
specified.

RELSE Macro

Name Operation Operand

[name] RELSE kilename} r (1)

The RELSE (release) macro is used with blocked
input records read from a DASD device, or with
I

blocked spanned records read from, or updated on, a
DASD device. This macro is also used with blocked
input records read from magnetic tape. It allows you
to skip the remaining records in a block and continue
processing with the first record of the next block
when the next GET macro is issued. When used with
blocked spanned records, RELSE makes the next
GET skip to the first segment of the next record.

If RELSE immediately precedes a CNTRL macro
with the codes FSL or BSL (tape spacing for span­
ned records), then the FSL or BSL logical record
spacing is ignored.

The symbolic name of the file, specified in the DTF
header entry, is the only parameter required for this
macro. It can be specified as a symbol or in register
notation.

RELSE discontinues the deblocking of the present
block of records, which may be either fixed or varia­
ble length. RELSE causes the next GET macro to
transfer a new block to the input area, or switch 1/0
areas, and make the first record of the next block
available for processing. GET initializes the register
or moves the first record to a work area.

For example, RELSE may be used in a job in which
records on DASD or tape are categorized. Each cat-

egory (perhaps a major grouping) is planned to start
as the first record in a block. For selective reports,
specified categories can be located readily by check­
ing only the first record in each block.

TRUNC Macro

Name Operation Operand

[name] TRUNC ~filename } .
(1)

The TRUNC (truncate) macro is used with blocked
output records written on DASD or magnetic tape. It
allows you to write a short block of records. Blocks
do not include padding. Thus, the TRUNC macro
can be used for a function similar to that of the
RELSE macro for input records. That is, when the
end of a category of records is reached, the last
block can be written and the new category can be
started at the beginning of a new block.

The symbolic name of the file, specified in the DTF
header entry, is the only parameter required in this
macro. If the TRUNC macro is issued for fixed­
length blocked DASD records, the DTF entry
TRUNCS must be included in the file definition.

When TRUNC is issued, the short block is written
(on DASD or tape), and the output area is made
available to build the next block. The last record
written in the short block is the record that was built
and included in the output block by the last PUT
preceding the execution of the TRUNC macro.
Therefore, if records are built in a work area and the
program determines that a record belongs in a new
block, TRUNC should be issued first to write the
block. This should be followed by a PUT for this
particular record to move the record into the new
block. If records are built in the output area, howev­
er, you must determine if a record belongs in the
block before you build the record.

Whenever variable-length blocked records are built
directly in the output area, the TRUNC macro must
be used to write a complete block of records. When
a PUT is issued after each variable-length record is
built, the output routines supply you with the space
(number of bytes) remaining in the output area.
From this, you determine if your next variable­
length record fits in the block. If it does not fit, issue
the TRUNC macro to write the block and make the
entire output area available to build the next record.
The amount of remaining space is supplied in the
register specified in the DTF V ARBLD operand.

CNTRLMacro

Name Opera- Operand
tion

name] CNTRL 1fi1ename ~' code[,n 1][,n2]
(1)

The CNTRL (control) macro provides commands
for magnetic tape units, card devices, printers,
DASDs, and optical readers. Commands apply to
physical nondata operations of a unit and are specif­
ic to the unit involved. They specify such functions
as rewinding tape, card stacker selecti9n, and line
spacing on a printer. For optical readers, commands
specify mflrking error lines, correcting a line for jour­
nal tapes, document stacker selecting, or ejecting
and incrementing documents. The CNTRL macro
does not wait for completion of the command before
returning control to you, except when certain mne­
monic codes are specified for optical readers.

CNTRL usually requires two or three parameters.
The first parameter must be the name of the file
specified in the DTF header entry. It can 1;>e speci­
fied as a symbol or in register notation.

The second parameter is the mnemonic code for the
command to be performed. This must be one of a set
of predetermined codes (see Figur~ 2-30).

The third parameter, n 1, is required whenever a
number is needed for stacker selection, immediate
printer carriage control, or for line or page marking
on the 3886. The fourth parameter, n~, applies to
delayed spacing or skipping, or to timing mark check
on the 3886. In the case of a printer file, the param­
eters n 1 and n2 may be required.

The CNTRL macro must not be used for printer or
punch files if the data records contain control char­
acters and the entry CTLCHR is included in the file
definition.

Whenever CNTRL is issued in your program, the
DTF CONTROL operand must be included (except
for DTFMT and DTFDR) and CTLCHR must be
omitted. If control characters are used when CON­
TROL is specified, the control characters are ig­
nored and treated as data.

Part 2. Sequential Access Method 137

I

IBM lt Mnemonic Code n l n
2

3420, 2400 Series Magnetic Tape Its REW

RI,III

ERG

WTM

BSR

BSF

BSL

FSR

FSF

FSL

1442, 2520 Cord Read Punch SS 1
2

E

2540 Cord Read Punch PS 1
3504,3505 Cord Readers 2
3525 Cord Punch 3

2S6O Multi-Function Cord Machine SS 1
2
3
4
5

2596 Cord Read Punch SS 1

2

5425 Multi-Function Card it SS 1
2
3
4

See Note
1403, 1443, 3203, 3211, 5203 Printers SP c d
3525 Card Punch with Print Feature

SK c d

1403, 5203 Printers with Universal Character UCS ON
Set Feature or 3203, 3211 Printers OFF

3211 Printer FOLD

UNFOLD

2321 Data Cell Drive SEEK

RESTR

2311, 2314, 2319, 3330, 3333, 3340 SEEK
DASD

3881 Optical Mark Reader PS 1
2

1287 Optical Reader MARK

READKB

EJD

SSD 1
2
3
4

ESD 1-4

INC

1288 Optical Page Reader ESD 1
3

INC

3886 Optical Character Reader DMK nome
(r)
number

LMK ~~:::ge~!
number

ESP 1 nome
2 (r)

number

Note: c • An Integer that Indicates Immediate Printer Cantrol (before printing).

d - An Integer that Indicates a Delayed Printer Cantrol.

Figure 2-30 CNTRL macro command codes

138 DOS/VS Supervisor & I/O Macros

Command

Rewind Tape

Rewind and Ioad Tape

Erase Gap (Writes Blank Tape)

Write Tapemark

Backspace to Interrecord Gap

Backspace to Tapemark

Backspace Logical Record

Forward Space to Interrec~rd Gap

Forward Space to T apemark

Forward Space Logical Record

Select Stacker 1 or 2

Eject to Stacker 1 (1442 only)

Select Stacker 1, 2, or 3 (For 3S04, 3S05, and 3525,
3 Defaults to Stacker 2)

Select Stacker 1, 2, 3, 4, or 5

Select Stacker 1 for Read, or Stacker 3 for Punch

Select Stacker 2 for Read, or Stacker 4 for Punch

Select Stacker 1, 2, 3, or 4

Carriage Space 1, 2, or 3 lines

Skip to Channel c and/or d (For 3525, a Skip to Channel
1 is Valid Only for Print Only Files.)

Data Checks are Processed with an Operator Indication

Data Checks are Ignored and Blanks are Printed

Print Upper Case Characters for any Byte with
Equivalent Bits 2-7

Print Character Equivalents of any EBCDIC Byte

Seek to Address

Return Strip to Subcell

Seek to Address

Select stacker 1 or 2

Mark Error line in Tape Made

Read 1287 Keyboard in Tape Made

Eject Document

Select Stacker A, B, Reject, or Alternate Stacking
Made •

Eject Document and Select Stacker

Increment Document at Read Station

Select Stacker A
Reject Stacker (R)

Increment Document at Read Station

Page mark the document when it is stacker
selected os specified in parameter nl.

Line mark the document when it is stocker
selected os specified In parameter nl.

Eject and stocker select the current dacument
to stocker A or B. Perform line mark station
timing mark check os Indicated In parameter n2.

MagI!etic Tape Unit Codes
The CNTRC macro controls magnetic tape functions
that are not concerned with reading or writing data
on the tape. These functions are grouped in the fol-

lowing categories:

Rewinding tape to the load point

REW- Rewind
RUN - Rewind and unload

Moving tape to a specified position
BSR - Backspace to interrecord gap
BSF - Backspace to tapemark
FSR - Forward space to interrecord gap
FSF - Forward space to tape mark

Forward or backward logical record spacing
FSL - Forward space logical record
BSL - Backward space logical record

Writing a tape mark
WTM- Write tapemark

Erasing a portion of the tape
ERG - Erase gap (writes blank tape)

The tape rewind (REW and RUN) and tape move­
ment (BSR, BSF, FSR, and FSF) functions can be
used before a tape file is opened.

This allows the tape to be positioned at the desired
location for opening a file, so that:

• The tape can be positioned to a file located in
the middle of a multi-file-reel.

• Rewinding of the tape can be performed even if
NORWD was specified in the DTF REWIND
operand.

Note: If you are using a self-relocating program, you
must open the file before issuing any commands for
it.

The tape movement functions (BSR, BSF, FSR, and
FSF) apply to input files only, and the following
factors should be considered:

1. The FSR (or BSR) function permits you to skip
over a physical tape record (from one interre­
cord gap to the next). The record passes without
being read into storage. The FSF (or BSF) func­
tion permits you to skip to the end of the file
(identified by a tapemark).

2. The functions of FSR, FSF, BSR, and BSF al­
ways start at an interrecord gap.

3. If blocked input records are processed and if you
do not want to process the remaining records in
the block, nor one or more succeeding blocks,
issue a RELSE macro before the CNTRL ma­
cro. The next GET then makes the first record
of the new block available for processing. If the
CNTRL macro (with FSR, for example) is is­
sued without a preceding RELSE, the tape is
advanced. The next GET makes the next record
in the old block available for processing.

4. For any I/O area combination except one I/O
area and no work area, 10CS always reads one
tape block ahead of the one that is being proc­
essed. Thus, the next block after the current one
is in storage ready for processing. Therefore, if a
CNTRL FSR is given, the ~econd block beyond
the present one is passed without being read into
storage.

5. If FSR or BSR is used, LIOCS does not update
the block count. Furthermore, 10CS cannot
sense tapemarks on an FSR or BSR command.
Therefore, 10CS does not perform the usual
EOV or EOF functions in these cases.

The tape spacing functions (FSL or BSL) apply to
spanned record input files only. These codes are
used when logical record spacing is desired. Consider
these factors when FSL or BSL is specified:

1. Logical record spacing is ignored if it immediate­
ly follows a RELSE macro.

2. Forward and backward spacing refer to the ab­
solute direction of the spacing. For example, if
BSL is specified on an input file with
READ=BACK, only one logical record is skip­
ped.

3. If an end-of-file, end-of-volume, or an error
condition occurs while a FSL or BSL spacing
function is being executed, the condition is han­
dled as if it occurred during a normal GET oper­
ation.

Printer Codes
The CNTRL macro can be used for forms control on
any printer. The codes for printer operation cause
spacing (SP) over a specified number of lines, or
skipping (SK) to a specified location on the form.
The third parameter, nl, is required for immediate
spacing and skipping (before printing). The fourth
parameter, n2, is required for delayed spacing or
skipping (after printing).

Part 2. Sequential Access Method 139

The SP and SK operations can be used in any se­
quence. However, two or more consecutive immedi­
ate skips (SK) to the same carriage channel on the
same printer result in a single skip immediate. Like­
wise, two or more consecutive delayed spaces (SP)
and/ or skips (SK) to the same printer result in the
last space or skip only. Any other combination of
consecutive controls (SP and SK), such as immediate
space followed by a delayed skip or immediate space
followed by another immediate space, causes both
specified operations to occur.

Printer With the UCS Feature
The CNTRL macro can be used before a PUT for
the file to change the method of processing data
checks. Data checks can be either processed with an
indication given to the operator, or ignored with
blanks printed in place of the unprintable characters.

A data check occurs when a character except null,
(hexadecimal 00), or blank, (hexadecimal 40) sent
to the printer does not match any of the characters
in the UCS buffer.

Before opening a file, the BLOCK parameter of the
UCS job control command determines for a 1403
whether data check processing takes place. For an­
other UCS printer, the NOCHK option of the SYS­
BUFLD program (see DOS / VS System Control
Statements, GC33-5373) has the same meaning.

If several DTFPRs are assigned to the same physical
unit, the UCS parameter of the DTF last opened
determines whether data check processing takes
place. If a DTFDI is opened for a UCS printer, it has
the effect of a NOCHK option. This change is oper­
ated on the physical device and is valid for all DTFs
assigned to this device.

If the UCS form of the CNTRL macro is used for a
printer without the UCS feature, the CNTRL macro
is ignored.

Except on a 1403, 3203, or 5203, the CNTRL ma­
cro can also be used before a PUT for the file to
control the printing of lower-case letters. Lower­
case letters can either be printed or replaced by
upper-case equivalents.

Prior to using a CNTRL macro, the printing of lower
case letters is controlled by the UCB FOLD parame­
ter of SYSBUFLD. If the FOLD parameter is speci­
fied, bits 0 and 1 are considered ones and the upper
case equivalent of bits 2-7 is printed. If UNFOLD is
specified, the character equivalent of the EBCDIC
byte is printed.

140 DOS/VS Supervisor & I/O Macros

1442 and 2520 Card Read Punch Codes
Cards fed in the 1442 and 2520 are normally direct­
ed to the stacker specified in the DTF SSELECT
operand. If SSELECT is omitted, they go to stacker
1. The CNTRL macro can be used to temporarily
override the normally selected stacker.

Input File: CNTRL can be used only when one I/O
area, with or without a work area, is specified for the
file. To stack a particular card, the CNTRL macro
should be issued after the GET for that card, and
before the GET macro for the following card. When
the next card is read, the previous card is stacked in
the specified stacker.

Note: If CNTRL is not issued after each GET, the
same card remains at the read station.

Output File: CNTRL can be used with any permissi­
ble combination of I/O areas and work areas. To
stack a particular card, the CNTRL macro should be
issued before the PUT for that card. After the card
is punched, it is stacked into the specified pocket
immediately.

Combined File: CNTRL can be used with any per­
missible combination of I/O areas and work areas. If
a particular card is to be selected, the CNTRL macro
for the file should be issued after the GET and be­
fore the PUT for the card. When the next card is
read, the previous card is stacked into the specified
stacker.

2540 Card Read Punch Codes
Cards read or punched on the 2540 normally fall
into the stacker specified in the DTF SSELECT
operand (or the R 1 or PI stacker if SSELECT is
omitted). The CNTRL macro with code PS is used
to select a card into a different stacker, which is
specified by the third operand, n 1. The possible
selections are shown below. (These selections are
also those which may be specified in the DTF SSE­
LECT operand.)

Feed Stacker Value of n1

Read Rl 1
Read R2 2
Read RP3 3
Punch PI 1
Punch P2 2
Punch RP3 3

Input File: CNTRL can be used only when one I/O
area, with or without a work area, is specified for the
file. To stack a particular card, the CNTRL macro
should be issued after the GET for that card. Before

the next GET macro is executed, the card is stacked
into the specified stacker.

Note: If your program indicates that operator inter­
vention is required on a 2540 (for example, to cor­
rect a card out of sequence in a card deck), your
program has specified CONTROL = YES in
CDMOD, and you do not use the CNTRL macro,
then you should issue a CNTRL macro before the
operator intervention is requested. Issuing CNTRL
in this situation assures that subsequent commands
issued to the 2540 after the operator intervention
are not rejected as invalid.

Output FOe: CNTRL can be used with any permissi­
ble combination of I/O and work areas. When you
want to select a particular card, CNTRL must be
issued before the PUT for that card. However,
CNTRL does not have to precede every PUT.

2560 and 5425 Card Device Codes
Cards fed into the 2560 or 5425 are normally direct­
ed to the output stacker specified in the DTF SSE­
LECT operand. If SSELECT is omitted, cards which
came from hopper 1 go to output stacker 1; and
cards which came from hopper 2 go to output stack­
er 5 for the 2560, or output stacker 4 for the 5425.
The CNTRL macro can be used to temporarily over­
ride the normally selected stacker.

Single File: CNTRL cannot be used for a print file.
For a read file, to stack a particular card the CNTRL
macro must be issued after the GET for that card.
For a punch file, or a punch/interpret file (DTFCD
FUNC=I), to stack a particular card CNTRL must
be issued before the·PUT for that card.

Associated File: The sequence of CNTRL macro
usage with associated files is described below and is
summarized in the section GET/CNTRL/PUT Se­
quence for Associated Files under PUT Macro,
above. CNTRL must be used with only one of the
associated files:

• With the read file if the associated file is
read/ print. In this case, to stack a particular card
CNTRL must be issued after the GET and be­
fore any PUT for that card. If no PUT is issued
for that card, then CNTRL must be issued after
the GET for that card and before the GET for
the next card.

• With the punch file if the associated file is any­
thing other than read/print. In this case, to stack
a card CNTRL must be issued before the PUT
which punches that card.

2596 Card Read Punch Codes
Cards fed into the 2596 are normally directed to the
stacker specified in the DTF SSELECT operand. If
SSELECT is omitted, cards go to stacker 1 for read
and stacker 3 for punch. The CNTRL macro can be
used to temporarily override the normally selected
stacker. The possible selections are shown in Figure
2-25. (These selections are also those which may be
specified in the DTF SSELECT operand.)

Input File: CNTRL can be used only when one I/O
area, with or without a work area, is specified for the
file. To stack a particular card, the CNTRL macro
should be issued after the GET for that card, and
before the GET for the next card. When the next
card is read, the previous card is stacked in the spec­
ified stacker.

Output File: CNTRL can be used with any permissi­
ble combination of I/O areas and work area. To
stack a particular card, the CNTRL macro should be
issued before the PUT for that card. After the card
is punched it is stacked into the specified stacker
immediately.

3504 and 3505 Card Readers and 3525 Card Punch
Codes
Cards read on the 3504 or 3505 or punched on the
3525 are normally directed to the stacker specified
in the DTF SSELECT operand. If SSELECT is
omitted, stacker 1 is assumed. The CNTRL macro
can be used to temporarily override the normally
selected stacker. For input files, CNTRL can be
used only when one I/O area is specified for the file.

3525 Card Printing Codes
The CNTRL macro can control spacing and skipping
to a specific line on a card for the 3525 card print
feature. The command code SP is used to direct the
3525 to space one, two, or three lines on a card; and
SK is used to skip to a channel (1-12) on a card.
(See the section 3525 Printing under PUT Macro,
above.

The 3525 print channels correspond to specific rows
on a printed card. The channels and their corre­
sponding card rows are shown in Figure 2-31.

Part 2. Sequential Access Method 141

Line Number Channel Number
1 _________ 1

2 3 _________ 2

4
5 _________ 3

6 7 _________ 4

8 9 ________ ~

10
'11 _________ 6

12
13 _________ 7

14
15 _________ 8

16
17 _________ 9 (overflow)

18
19 ________l 0

20
21 _________ 11

22
23 _________ 12 (overflow)

24
25

Figure 2-31 3525 print channels

DASD Codes
The CNTRL macro to seek (SEEK) for any DASD
device, or to restore (RESTR) for the 2321, permits
access movement to begin for the next READ,
WRITE, GET, or PUT macro. While the arm is
moving for a SEEK or the strip is being restored on
a data cell, you can process data and/or request I/O
operations on other devices.

IOCS seeks the track that contains the next block
for that file without your having to supply a track
address. If the CNTRL macro is not used, IOCS
performs the seek or restore operations when a
READ, WRITE, GET, or PUT macro is issued.

3881 Optical Mark Reader Codes
Documents read by the 3881 are directed to the
stacker specified in the CNTRL macro or to the
stacker specified on the format control sheet. Stack­
er 1 is the normal stacker and stacker 2 is the select
stacker. If you use both the CNTRL macro and the
format control sheet to control stacker selection and
either specifies stacker 2, data documents are

!!
1 ~ DOS/VS Supervisor & I/O Macros

stacked in stacker 2. The DTF SSELECT operand is
not valid for the 3881.

1287 and 1288 Optical Reader Codes
The CNTRL macro for the 1287 and 1288 is used
for the nondata functions of marking a journal tape
line, incrementing a document, and ejecting and/or
stacker selecting a document. It is also used to read
data from the 1287 keyboard when processing jour­
nal tapes.

When the CNTRL macro is used with the READKB
mnemonic, it allows a complete line to be read from
the 1287 keyboard when processing journal tapes.
This permits the operator to key in a complete line
on the keyboard if a 1287 read error makes this type
of correction necessary. When IOCS exits to your
COREXIT routine, you may issue the CNTRL ma­
cro to read from the keyboard. The 1287 display
tube then displays the full line and the operator keys
in the correct line from the keyboard, if possible.
The line read from the keyboard is always read left­
justified into the correct input area. The macro re­
sets this area to binary zeros before the line is read.
After CNTRL READKB is used, the contents of
filename+80 are meaningful only for a wrong-length
error indication (X'04'). Therefore, you must deter­
mine whether the operator was able to recognize the
unreadable line of data. The CNTRL macro with the
READKB mnemonic waits for completion of the
order before returning control to the user.

When processing journal tapes, the CNTRL macro
with the MARK mnemonic marks (under program
control) a line on the input tape that results in a data
transfer error or is otherwise suspect of error. To
ensure that the proper line is marked, the CNTRL
macro must be issued in your error correction rou­
tine (specified in DTFOR COREXIT). If CNTRL is
issued at any other time, the line following the one in
error is marked.

When processing is done in document mode on the
1287, each document may be ejected with a CNTRL
macro. The EJD mnemonic causes the document to
eject and the next document is fed. Documents may
also be stacker selected by using the CNTRL macro
with the SSD mnemonic.

The CNTRL macro with the ESD mnemonic com­
bines the ejection and stacker selection functions. To
satisfy the alternate ejection and stacker selection
functions, the combined mnemonic must not be im­
mediately preceded by an eject or immediately fol­
lowed by a stacker select.

A document may be directed to stacker A, B, or R
(reject stacker) by specifying a selection number of
1, 2, or 3 respectively. Also, documents may be se­
lected into stackers A and B in an alternate stacking
mode, with automatic stacker switching when one
stacker becomes full. The selection number for alter­
nate mode is 4. If selection number 4 is used in the
first stacker selection macro, stacker A is filled first.
If selection number 4 is used after other selection
numbers, the last preceding selection number deter­
mines the first stacker to be filled. Only selection
numbers 1 and 3 are available for the 1288.

If a CNTRL macro is issued in a COREXIT routine
and a late stacker select or nonrecoverable error
condition occurs, IOCS branches to the next sequen­
tial instruction. Filename+80 should therefore be
tested for these conditions after issuing a CNTRL
macro.

The CNTRL macro with the INC mnemonic may be
used for document incrementation. This macro is
not used with documents having a scannable area
shorter than 6 inches. When this mnemonic is issued,
the document is incremented forward 3 inches. This
macro may be used only once per document.

For the 1288, the CNTRL macro with the INC mne­
monic can increment only documents with a scanna­
ble area longer than 6.5 inches. The document is
incremented to the next stopping point as selected
by console switches on the 1288. More than one
CNTRL macro can be used per document.

Document ejection and/or stacker selection and
document increment functions can also be accom­
plished by including the appropriate CCW(s) within
the CCW list addressed by the READ macro, rather
than by using the CNTRL macro. This technique
results in increased document throughput.

Note: For processing documents in a multiprogram­
ming environment where the partition containing
1287 support does not have highest priority, the
eject and stacker select functions must be accom­
plished by a single command. However, when proc­
essing documents in a dedicated environment, the
stacker select command can be executed separately.
It must follow the eject command within 270 millise­
conds if the document was incremented, or within
295 milliseconds if the document was not increment­
ed. The eject and stacker select functions must occur
alternately. If the timing requirements are not met, a
late stacker selection condition occurs.

3886 Optical Character Reader Codes
When you are using the 3886 Optical Character
Reader, you can use the CNTRL macro to perform
the following operations: '

• Page mark the current document
• Line mark the current document
• Eject and stacker select the current document
• Perform timing mark check

When the operation has been completed successful­
ly, control is returned to the next instruction in your
program. If the operation does not complete success­
fully, the COREXIT routine receives control. The
end-of -file routine receives control when an opera­
tion is requested but no documents are available and
the end-of-file key has been pressed.

The contents of parameters n 1 and n2 vary depend­
ing on the mnemonic operation code specified.
Therefore, this discussion treats each mnemonic
code separately.

DMK,nl: Specifies that the document currently be­
ing processed is to be marked when the next
eject/stacker-select command is issued. The digits to
be printed on the page are specified by the four low­
order bits of the field indicated in parameter n1. The
sum of the mark digits printed will equal the value
specified in the four bits. The high-order four bits of
the field are not used. You can specify the digits you
want printed in one of three ways:

• name specifies the symbolic name of a one-byte
field in your program in which the low-order
four digits indicate the combination of digits to
be printed.

• (r) indicates the number of the register that con­
tains the address of the one-byte field used for
page marking.

• number indicates the sum of the digits to be
printed. The decimal number may be from 1
through 15.

LMK,nl: Specifies a line on the current document
that is to be line-marked when the eject/ stacker­
select command is issued. The digits to be printed
and the line on which they should be printed are
specified in a two-byte field. The digits to be printed
are specified in the low-order four bits of the first
byte as in the document marking operation. The line
to be marked is specified in binary in the low-order
six bits of the second byte of the field. You can
specify the mark digits and line number in three
ways:

Part 2. Sequential Access Method 143

• name specifies the symbolic name of a two-byte
hexadecimal field in your program that contains
the necessary information.

• (r) indicates the number of the register that con­
tains the address of the two byte field with the
necessary information.

• number ,number provides first, the sum of the
decimal digits to be printed (from 1 through 15)
and second, the decimal line number to be mark­
ed (from 1 through 33).

ESP,nl,n2: nl specifies that the current document
should be ejected immediately and routed to stacker
1 or 2. (The valid entries are 1 and 2). A request for
timing mark check can also be made in this parame­
ter. If the number of timing marks on the document
disagrees with the number you specify, either a non­
recovery error or timing mark check error occurs.
You can specify the number of timing marks, by
using parameter n2, in three ways:

• name specifies the name of a one-byte hexadeci­
mal field in your program that indicates the
number of timing marks that should be on the
document.

• (r) specifies the number of the register that con­
tains the address of the one-byte hexadecimal
field containing the expected number of timing
marks.

• number is a decimal number from 0 through 33
specifying the number of timing marks there
should be on the document.

If the number of timing marks is not specified or
if zero is specified, no timing mark check is per­
formed.

CHNGMacro

Name Operation Operand

[name] CHNG SYSnnn

This macro is provided only for Basic Programming
Support and Basic Operating System upward com­
patibility. No code is generated from this macro. In
DOS/VS tape channel switching is handled automat­
ically by PIOCS.

144 DOS/VS Supervisor & I/O Macros

ERET Macro

Name Operation Operand

{SKIP }
[name] ERET FORE

\RETRY

This macro enables your program's ERROPT or
WLRERR routine to return to IOCS and specify an
action to be taken. The macro applies only to

I DTFMT, DTFSD and DTFDU files with the ER­
REXT operand specified.
The SKIP operand passes control back to the logic
module to skip the block of records in error and

I process the next block. For disk or diskette output,
an ERET SKIP is treated as an ERET IGNORE.
The IGNORE operand passes control back to the
module to ignore the error and continue processing
with the block in error.
The RETRY operand causes the module to retry the
operation that resulted in the error. With MTMOD
for any error or with SDMOD wrong-length record
errors, RETRY cancels the job with an invalid SVC
message.

PRTOV Macro

Name Operation Operand

[name] PRTOV {mename}, {9 }
(1) 12

[, to<:e-name}]

The PRTOV (printer overflow) macro is used with a
printer file to specify the operation to be performed
when a carriage overflow condition occurs. To use
this macro, the PRINTOV = YES operand must be
included in the DTFPR or DTFSR.
PRTOV requires either two or three parameters. The
first parameter must be the filename, written either
as a symbol or in register notation. The second par­
ameter must specify the number of the carriage con­
trol channel (9 or 12) used to indicate the overflow.
When an overflow condition occurs, IOCS restores
the printer carriage to the first printing line on the
form (channell), and normal printing continues.
The third parameter is required if you prefer to
branch to your own routine on an overflow condi­
tion, rather than skipping directly to channel 1. It
specifies the n~me of the routine, as a symbol or in

register notation. However, the name should never
be preloaded into register 1.
If you specify the third parameter, 10CS does not
restore the carriage to channell. In your routine
you may issue any 10CS macro to perform whatever
functions desired. If 10CS macros are used in the
routine, register 14 must be saved. The CNTRL
macro cannot be issued to the file unless
CONTROL= YES is specified in the DTF. For ex­
ample, you can print total lines, skip to channell,
and print overflow page headings. At the end of the
routine, return to 10CS by branching to the address
in register 14.
The PRTOV macro causes a skip to channell, or
branches to your routine, if an overflow condition
(channel 9 or 12) is detected on the preceding space
or print command. An overflow condition is not
recognized during a carriage skip operation. After
the execution of any command which causes carriage
movement (PUT or immediate CNTRL), you should
issue a PRTOV macro before issuing the next
CNTRL or PUT. This ensures that your overflow
option is executed at the correct time.
On the 3525 card punch, a channel 9 test indicates
print line 17. A channel 12 test indicates print line
23. An overflow condition from either of these
channels causes:

• a transfer of control to the overflow routine
specified in the PRTOV macro, or

• a skip to channel one to begin printing on the
next card for print only files.

When the PRTOV macro is used on a 3525 2-line
printer, the result of the test is always negative since
lines 17 and 23 are not available. The test is logically
a no-operation.
Notes: PRTOV without the routine name option is
invalid for 3525 associated files. A skip to channel
one is valid only for 3525 print only files. PRTOV is
not allowed for the 2560 or 5425.

Magnetic Reader Macros

Within a particular program, you should utilize either
the GET macro or the READ, CHECK, W AITF
combination. The READ, CHECK, and W AITF
macros are described below. For a program operat­
ing with two or more MICR devices, the READ,
CHECK, W AITF combination allows processing to
continue within the program when any document
buffer is ready for processing. On the other hand,
the GET macro (suggested for a program operating
with one MICR device) includes an inherent wait for
a document buffer to become available within the

file before processing begins. In a multiprogramming
environment, control always passes to another parti­
tion whenever aWAIT condition occurs.
Before any MICR document processing can be per­
formed, the file(s) must be opened. If an unrecover­
able II 0 error occurs when a GET macro is execut­
ed, no more GETs can be issued for the file. If an
unrecoverable 110 error occurs when using the
READ, CHECK, W AITF combination or when
document processing for that file is complete, you
can effectively continue by closing the file. Further
READ, CHECK, W AITFs treat this file as having
no documents ready for processing (see byte 0, bits
5 and 6 of the document buffer in Appendix E).

READ Macro

The READ macro makes the next sequential buffer
available to you, but it does not verify that it is ready
for processing (the CHECK macro is provided to
make that test). If the buffer is not ready for proc­
essing, the next READ to that file points to the same
buffer.

Name Operation Operand

[name] READ ffilename} ,MR
l (1)

The first operand specifies the name of the file asso­
ciated with the record to be read. This name is the
same as that specified in the DTFMR header entry
for the file, written as a symbol or in register nota­
tion. The second operand signifies that the file is for
a magnetic ink character reader (MICR).

CHECK Macro

Name Operation Operand

[name] CHECK {filename}
(1)

[, {contr(~)ddress}]

The CHECK macro examines the buffer status indi­
cators. A READ macro must therefore already have
been issued to the file before a CHECK macro is
issued.

The first operand specifies the name of the file asso­
ciated with the record to be checked. This name is

Part 2. Sequential Access Method 145

the same as that specified for the DTFMR header
entry for the file.

The second operand indicates the address to which
control passes when a buffer is waiting for data or
when the file is closed. Both parameters can be spec­
ified either as a symbol or in register notation.

CHECK determines whether the buffer contains
data ready for processing, is waiting for data, con­
tains a special nondata status, or the file (filename)
is closed. If the buffer has data ready for processing,
control passes to the next sequential instruction. If
the buffer is waiting for data, or the file is closed,
control passes to the control address, if present. If
the buffer contains a special nondata status, control
passes to the ERROPT routine for you to examine
the posted error conditions before determining your
action. (See byte 0, bits 2, 3, and 4, of the document
buffer in Appendix E.) Return from the ERROPT
routine to the next sequential instruction via a
branch on register 14, or to the control address in
register 0.

If the buffer is waiting for data, or if the file is
closed, and the control address is not present, con­
trol is given to you at your ERROPT address speci­
fied in the DTFMR macro.

If an error, a closed file, or a waiting condition oc­
curs (with no control address) and no ERROPT
address is present, control is given to you at the next
sequential instruction.

If the waiting condition occurred, byte 0, bit 5 of the
buffer is set to 1. If the file was closed, byte 0, bits 5
and 6 of the buffer are set to 1 (see Appendix E).

WAITFMacro

Name Operation Operand

[name] WAITF {fIlename!}
(d)

U fIlename2} ... ,{ fIlenamen}J
(r2) (rn)

The W AITF (wait mUltiple) macro is essential when
processing in a multiprogramming system. It allows
processing of programs in other partitions while
waiting for document data. If any device within the
W AITF macro list has records or error conditions
ready to be processed, control remains in the parti­
tion and processing continues with the instruction
following the W AITF macro. '

146 DOS/VS Supervisor & I/O Macros

One W AITF macro must be issued after a set of
READ-CHECK combinations before your program
attempts to return to a previously issued combina­
tion. Thus, the W AITF macro must be issued be­
tween successive executions of a particular READ
macro.

The operands required are the names of the files
waiting to be processed. The names are the same as
those specified in the DTFMR header entries.

DISEN Macro

This macro stops the feeding of documents through
the magnetic character reader or optical
reader/sorter. The program proceeds to the next
sequential instruction without waiting for the disen­
gagement to complete. You should continue to issue
GETs or READs until the unit exception bit (byte 0,
bit 3), of the buffer status indicators is set on (see
Appendix E).

Name Operation Operand

[name] DISEN ~fIlename}
~ (1)

The only required operand specifies the name of the
file to be disengaged. This name is the same as that
specified for the DTFMR header entry for the file.
The operand· can be specified either as a symbol or
in register notation.

LITE Macro

Name Operation Operand

[name] LITE ~filename~
(1)

[, ~1ight (~;tches~J

This macro lights any combination of pocket lights
on a 1419 magnetic character reader or 1275 optical
reader/sorter. Before using the LITE macro, the
DISEN macro must be issued to disengage the de­
vice. Processing of the documents should be contin­
ued until the unit exception bit (byte 0, bit 3) of the
buffer status indicators is set on (see Appendix E).
When this bit is on, the follow-up documents have
been processed, the MICR reader has been disen­
gaged, and the pocket LITE macro can be issued.

Bits 0 1 2 3 4 5 6 7 8 9 A B CDE F

Pocket A B 0 1 2 3 4 5 6 7 8 9 Reserved Error indi-
Lights with binary cator bit

zeros

Figure 2-32 Bit configuration for pocket light switch area of the 1419

The first operand is the name of the file; this name is
the same as that specified for the DTFMR header
entry for the file. The second operand indicates a
2-byte area containing the pocket light switches.
Both operands can be given either as a symbol or in
register notation.

The bit configuration for the pocket light switch area
is shown in Figure 2-32. The pocket lights that are
turned on should have their indicator bits set to 1. If
an error· occurs during the execution of the pocket
lighting 110 commands, bit F is set to 1. This error
condition normally indicates that the pocket light
operation was unsuccessful.

Optical Reader Macros -1287

GET Macro

See GET Macro, above in this chapter.

CNTRLMacro

See CNTRL Macro, above in this chapter.

DSPLY Macro

Name Operation Operand

[name] DSPLY ~filename~ ,(r),(r)
(1)

The DSPL Y macro displays the document field on
the 1287 display scope. A complete field may be
keyboard-entered if a 1287 read error makes this
type of correction necessary. An unreadable charac­
ter may be replaced by the reject character either by
the operator (if processing in the on-line correction
mode) or by the device (if processing in the off-line
correction mode). You may then use the DSPL Y
macro to display the field in error. The 1287 display
tube displays the full field and the operator keys in

the correct field from the keyboard, if possible. The
field read from the keyboard is always read into the
area (normally within IOAREAl) that was originally
intended for this field as specified in the CCW. The
macro first resets this area to binary zeros. At com­
pletion of the operation, the data is left-justified in
the area.

DSPL Y always requires three parameters. The first
parameter is the symbolic name specified in the
DTFOR header entry for the 1287 file. The second
parameter specifies a general-purpose register (2-12)
into which the problem program places the address
of the load format CCW giving the document coor­
dinates for the field to be displayed. When the
DSPL Y macro is used in the COREXIT routine, the
address of the load format CCW can be obtained by
subtracting 8 from the 3-byte address that is right­
justified in the fullword location beginning at
filename + 32. (The high-order fourth byte of this
full word should be ignored.) If the DSPL Y macro is
not used in the COREXIT routine, you must deter­
mine the load format CCW address. The third par­
ameter specifies a general-purpose register (2-12)
into which you place the address of the load format
CCW giving the coordinates of the reference mark
associated with the displayed field.

The contents of filename+80 are meaningful only
for X'40' (1287 scanner cannot locate the reference
mark) and X'04' (wrong-length record) after the
DSPL Y macro is issued. Therefore, you must deter­
mine whether the operator was able to recognize the
unreadable line of data.

Note: When using the DSPL Y macro, you must
ensure that the load format CCW is command
chained to the CCW used to read that field. This
provides the document coordinates for the field to
be displayed.

Part 2. Sequential Access Method 147

READ Macro

The READ macro causes the next sequential 1287
or 1288 optical reader (document mode only) record
to be read.

Name Operation Operand

[name] READ ~ fIlename ~ ,OR, ~ name~
(1) (r)

The first parameter is the symbolic name specified in
the DTFOR header for the file; it is always required.
The parameter OR is required to indicate an optical
character reader. The parameter name is always re­
quired; it specifies the address of the CCW list
which you provide to be used to read a document
from the 1287 or 1288. The register entry may be
used in this parameter to provide the address of the
CCW list. The first CCW in the list must not be a
transfer-in-channel CCW.

To accomplish document ejection and/or stacker
selection and document increment functions, include
the appropriate CCW(s) within the CCW list ad­
dressed by the READ macro. This technique results
in increased processing throughput. This method is
preferable to using the CNTRL macro for document
control.

The W AITF macro must be issued after the READ
macro and before the program attempts to process
an input record of the file.

RESCN Macro

Name Operation Operand

[name] RESCN ~ fIlename~
(1)

, (d) , (r2) [,n1] [,n2]

The RESCN macro selectively rereads a field on a
document when a defective character(s) makes this
type of operation necessary. The field is always
right-justified into the area (normally within
IOAREAl) that was originally intended for this field
as specified in the CCW. The macro first resets this
area to binary zeros.

Notes: For the 1287 models 3 and 4 and the 1288,
this macro can only be used with READ BACK­
WARD commands. If used with READ FORWARD

148 DOS/VS Supervisor & I/O Macros

commands, the input area is not cleared. When 1288
unformatted fields are read the RESCN macro
should not be used.

The first parameter specifies the symbolic name of
the 1287D file as specified in the DTFOR header
entry for the file. The second parameter specifies a
general-purpose register (2-12) into which the pro­
gram places the address of the load format CCW.

When this macro is used in the COREXIT routine,
the address of the load format CCW is obtained by
subtracting 8 from the 3-byte address that is right­
justified in the fullword location beginning in
filename+32. (The high-order fourth byte of this
fullword should be ignored.) If the RESCN macro is
not used in the COREXIT routine, you must deter­
mine the load format CCW address.

The third parameter specifies a general-purpose reg­
ister (2-12) into which the program places the ad­
dress of the load format CCW for reading the refer­
ence mark.

The previous three parameters are always required,
and result in one attempted reread for the field.

The fourth parameter, n1, allows you to specify the
number of attempts (one to nine allowed) to reread
the unreadable field. If this parameter is omitted,
om' is assumed.

The fifth parameter, n2, indicates one more reread
which forces on-line correction of any unreadable
character(s) by individually projecting the unreada­
ble character(s) on the 1287 display scope.

The operator must key in a correction (or reject)
character(s). This operand cannot be used for 1288
processing.

If the reread of the field results in a wrong-length
record, incomplete read, or an unreadable character,
it is indicated in filename+80.

Note: When using RESCN macro, you must ensure
that the load format CCW (giving the document
coordinates for the field to be read, second parame­
ter) is command chained to the CCW used to read
that field.

RDLNEMacro

Name Operation Operand

[name] RDLNE ~filename~
(1)

The RDLNE macro provides selective on-line cor­
rection when processing journal tapes on the 1287
optical reader. This macro reads a line in the on-line
correction mode while processing in the off-line cor­
rection mode. RDLNE should be used in the CO­
REXIT routine only, or else the line following the
one in error will be read in on-line correction mode.

If the 1287 cannot read a character, IOCS first re­
sets the input area to binary zeros and then retries
the line containing the character which could not be
read. If the read is unsuccessful, you are informed of
this condition via your error correction routine
(specified in DTFOR COREXIT). The RDLNE
macro may then be issued to cause another attempt
to read the line. If the character in the line still can­
not be read, the character is displayed on the 1287
display scope. The operator keys in the correct char­
acter, if possible. If the operator cannot readily iden­
tify the defective character, he may enter the reject
character in the error line. This condition is posted in
filename+80 for your examination. Wrong-length
records and incomplete read conditions are also
posted in filename+80.

This macro requires only one parameter, the symbol­
ic name of the 1287 file from which the record is to
be retrieved. This name is the same as that specified
in the DTFOR header entry for the file.

WAITF Macro

Name Operation Operand

[name] WAITF)filename~
) (1)

The W AITF macro is used to ensure that the trans­
fer of a 1287 or 1288 optical reader record
(document mode only) is completed. It requires only
one parameter: the symbolic name of the file con­
taining the record.

This instruction must be issued following a READ
and before the problem program attempts to process
an input record for the file concerned. The program
waits until the transfer of data is complete.

The W AITF macro accomplishes all checking for
read errors on the 1287 or 1288 file and exits to
your COREXIT routine for handling of these condi­
tions, if necessary.

Optical Character Reader Macros-3886

READ Macro

Name Operation Operand

[narne] READ ~ menarne~
(1) ,DR,

l nrune \ (r)
number, number

The READ macro reads one line of data from the
document.

Note: You must not issue any 110 macros to the
3886 between READ and WAITF macros. This
would cause any errors detected during the read
operation to be lost and the COREXIT routine
would not be entered for that error.

The first parameter specifies the name of the
DTFDR macro for the file, filename, or indicates
that the address of the DTFDR is in register one,
(1).

The second parameter, DR, is a required parameter
that indicates a 3886 Optical Character Reader is
the input device.

The third parameter specifies the line number to be
read and the format record for the line in one of
three ways:

name provides the symbolic address of a two­
byte hexadecimal field containing the line num­
ber in the first byte and the format record num­
ber in the second byte.

(r) provides the register number that contains
the address of the two-byte hexadecimal field.

• number,number provides the decimal line num­
ber to be read (1-33), followed by the format
record number used to read the line (0-63).

Note: The line number specified must always be

Part 2. Sequential Access Method 149

equal to or greater than the line number specified for
the previous read operation on the current docu­
ment; otherwise, a permanent error occurs.

W AITF Macro

Name Operation Operand

[name] WAITF ~filename\
(1)

The W AITF macro is used to ensure that an I/O
operation is completed before execution continues.
If the operation is not completed when the W AITF
macro is issued, the active partition is placed in a
wait condition until the I/O operation is completed.
The completed operation is then tested for errors. If
no errors were detected, control is returned to the
next instruction in your program.

If an error occurs during the I/O operation, control
is passed to the COREXIT routine. If an I/O opera­
tion is requested, no more documents are available,
and the end-of-file key has been pressed, control is
given to the end-of-file routine.

The only parameter of the W AITF macro specifies
the name of the DTFDR macro for the file, filen­
ame, or indicates the address of the DTFDR is in
register one (1).

CNTRLMacro

See CNTRL Macro above in this chapter.

SETDEV Macro

Name Ooeration Ooerand

[name] SETDEV ~ filename ~ , 1 phasename ~
(1) (r)

The SETDEV macro changes format records during
execution of the program. When the new format
record has been loaded into the 3886, control re­
turns to the next sequential instruction in your pro­
gram. If the operation is not successful, the comple­
tion code is posted at EXITIND and control is
passed to the COREXIT routine, or the job is can­
celed. If you issue the SETDEV macro and no docu­
ments remain to be processed and the end-of-file
key has been pressed on the device, control is passed
to the end-of-file routine.

150 DOS/VS Supervisor & I/O Macros

The first parameter specifies the name of the
DTFDR macro, filename, for this file, or indicates
the address of the DTFDR is in register 1, (1).

The second parameter specifies the name of the for­
mat record to be loaded, phase name ; or indicates the
register containing the address of an 8-byte area that
contains the phasename, (r).

Work File Macros for Tape and Disk

A work file can be used for disk and tape input, out­
put, or both. If TYPEFLE=WORK is specified in
the DTF, the work file macros READ, WRITE, and
CHECK may be used. Also, if NOTEPNT=YES is
specified, the work file macros NOTE, POINTR,
POINTW, and POINTS may be used. Work files
may contain only fixed-length unblocked records
and undefined record formats. Tapes written in AS­
CII mode cannot be used for work files.

A tape work file is a single-volume file used for both
input and output. It passes intermediate results be­
tween successive phases or job steps; however, work
files also can be written, read, and rewritten within a
single phase, without requiring additional OPEN,
OPENR or CLOSE or CLOSER processing. Work
files are specified by the DTFMT and MTMOD
TYPEFLE= WORK operand, and are accessed by
the READ/WRITE and CHECK macros.

The first time the volume for a work file is opened, it
is opened as an output file. OPEN or OPENR exam­
ines the tape to determine whether it contains stand­
ard labels. The DTFMT FILABL operand, if pres­
ent, is ignored. If the tape is labeled and the date in
the header label has expired, a new label is created,
consisting of HDRI followed by 76 blanks. Job
control label information cards are not required. If
the tape does not already contain standard labels,
labels are not created for the tape. Trailer labels are
not processed.

If a work file with standard labels is reopened,
OPEN or OPENR determines from the HDR label
that the file is a work file and does not rewrite the
labels.

When a tapemark is sensed during a read operation,
or when an end-of -reel reflective spot is sensed dur­
ing a write operation, 10CS exits to the address you
specified in the EOFADDR operand of DTFMT.

Disk work files are supported as single-volume
single-pack files. They are always opened as output
files. You must supply standard label information.

Both normal extents (type 1) and split extents (type
8) are supported. File protection for work files is
ensured only if the labels are unexpired.

Deleting a Work File After Use: The DTFSD
DELETFL=NO operand must not be used. OPEN
or OPENR creates a format 1 label for the file, and
CLOSE or CLOSER destroys this label. The next
job requiring a work file can use the same extents
and filename.

Saving a Work File After Use: The expiration date in
the DLBL job control statement must not be the
current date. The DTFSD DELETFL=NO operand
must be specified. OPEN or OPENR creates a for­
mat 1 label, but CLOSE or CLOSER does not de­
lete it. Thus, the file can be saved until the expira­
tion date is reached.

Deleting an Unexpired File: When you try to use the
limits of an unexpired file, an operator message is
printed to indicate the overlap condition. The opera­
tor can then delete the label, after which OPEN or
OPENR creates a label for the new file and the job
continues.

READ Macro

The READ macro makes the next sequential record,
or part of it, available to you. The record is read into
the area of virtual storage indicated by the third ope­
rand.

The DTF READ=FORWARD or BACK operand
should specify the direction of reading for tape.

The CHECK macro must be issued after the READ
macro and before your program attempts to process
an input record for the file.

Name Operation Operand

[name] READ ~mename ~ ,SQ, {area~
(1) (0)

[r:(~)th~]
The first parameter specifies the name of the file
from which the record is to be read and is always
required. This name is the same as the name speci­
fied in the DTFMT or DTFSD header entry for the
file. The name can be specified as a symbol or in
register notation.

The second parameter, SQ (for sequential), is always
required.

The third parameter, area, specifies the name (as a
symbol or in register notation) of the input area used
by the file. If tape is to be read backwards, area
must be the address of the rightmost byte of the
input area.

The fourth parameter, length, is used only for re­
cords of undefined format (RECFORM= UNDEF).
To read only a portion of a record, an actual length
(or a register containing the number) can be speci­
fied. Or, an S can be provided to indicate that the
entire physical record should be read.

If the work file records are fixed length unblocked
records (RECFORM=FIXUNB), this parameter
must not be specified in the READ macro. In this
case, the number of characters to be read is specified
in the BLKSIZE operand. You can change this num­
ber (which is stored in the DTF table) at any time
by referencing the halfword filenameL.

WRITE Macro

The WRITE macro writes a record from the indicat­
ed area into the file named. The record is stored
following the last record written in this file.

The CHECK macro must be issued after the WRITE
macro to allow for completion of the input/output
operation.

Name Operation Operand

[name] WRITE ~mename~ , ~ SQ f' (1) UPDATE

~ area ~ (0)
[, ~ le(~~h ~]

The first parameter specifies the name of the file to
which the record is to be written and is always re­
quired. This name is the same as the name specified
in the DTFMT or DTFSD header entry for this file.
The name can be written as a symbol or in register
notation.

The second parameter specifies the type of WRITE
to be executed. For magnetic tape, this parameter is
always SQ. If SQ is specified for disk work files, a
formatting WRITE (write count key and data) is
executed. If UPDATE is specified, a nonformatting
WRITE (write data) is executed. An update WRITE
should be preceded by a READ, WRITE UPDATE,

Part 2. Sequential Access Method 151

POINTR, or POINTW macro. A CLOSE or CLOS­
ER macro (following an update write) protects the
updated file by not writing an end-of -file record. If
SQ is specified and a CLOSE or CLOSER immedi­
ately follows an OPEN or OPENR (no formatting
WRITE commands were issued), an end-of-file re­
cord is not written.

The third parameter, area, specifies the name, as a
symbol or in register notation, of the output area
used by the file.

The fourth parameter, length, is used only for re­
cords of undefined format (RECFORM=UNDEF).
Length specifies the actual number (or register con­
taining the number) of bytes to be written.

If fixed-length unblocked records
(RECFORM=FIXUNB) are written, length is not
used in the WRITE macro. The number of charac­
ters to be written is specified in the BLKSIZE entry.
You can change this number, which is stored in the
DTF table, at any time by referencing the halfword
filenameL. For disk, the BLKSIZE entry should not
include eight bytes for the length of a count field.

CHECK Macro

Name Operation Operand

[name] CHECK ~filename~
(1)

This macro must be used after each READ or
WRITE. It prevents processing until completion of
the input I output operation, started by either a
READ or a WRITE, for the device associated with
the filename.

If the 110 operation is completed without any error
or other exceptional condition, CHECK returns
control to the next instruction. If the operation re­
sults in a read error, CHECK processes the option
specified in ERROPT. If CHECK finds an end-of­
file condition, control is passed to the routine speci­
fied in EOF ADDR.

NOTE Macro

Name Operation Operand

[name] NOTE ~filename ~
(1)

152 DOS/VS Supervisor & I/O Macros

The NOTE macro obtains identification for a physi­
cal record that is read or written during processing.
The CHECK macro must be issued before the
NOTE macro to ensure that the last operation has
completed.

For magnetic tape, the last record read or written is
identified by the number of physical records read or
written in the specified file from the load point. The
physical record number is returned in binary in the
three low-order bytes of register 1. The high-order
byte contains binary zero.

You must store the identification so that it can be
used later in either a POINTR or POINTW macro.

For disk, if a READ precedes the NOTE, the record
identified is the last record read. If a WRITE pre­
cedes the NOTE, the record just written is the iden­
tified record. The identification is returned in regis­
ter 1 in the form cchr, where

• cc = Cylinder number,
• h = Track number,

r = Record number within the track.

cc, h, and r are binary numbers. If NOTE follows a
READ or WRITE to a disk file, the unused space
remaining on the track following the end of the iden­
tified record is returned in register a as the binary
number OOnn.

You must construct a six-byte field and store in it
the identification of the record and the remaining
track capacity (in the form cchrnn) so that it can be
used later in a P0INTR or POINTW macro to find
the noted record again. The nn of cchrnn is needed
only for WRITE SQ.

POINTR Macro

Name Operation Operand

[name] POINTR ~ filename ~ , ~ address~
(1) (0)

The POINTR macro repositions the file for reading a
record identified by the NOTE macro.

For magnetic tape, address specifies a 4-byte virtual
storage location containing the required record iden­
tification. It can be expressed as a symbol or in reg­
ister notation. The four-byte number must be in the
form obtained from the NOTE macro. POINTR
repositions the file to read the record that was read
or written immediately before the NOTE that was

used to create the record identification field was
issued. For magnetic tape, a WRITE must not fol­
low POINTR.

For disk, address specifies a four-byte virtual storage
location containing the required record identifica­
tion. If WRITE SQ is used, two bytes containing the
remaining track capacity must also be supplied. The
disk address can be expressed as a symbol or in reg­
ister notation. The four- or six-byte number must be
supplied in the form obtained from the NOTE macro
(cchr or cchrnn, where nn is the length remaining on
the track). POINTR repositions the file to read the
record identification returned when a previous
NOTE macro was issued. If a WRITE UPDATE
follows the POINTR macro, the noted record is ov­
erwritten. If a WRITE SQ follows the POINTR ma­
cro, the record after the noted record is written, and
the remainder of the track is erased.

Some programs using disk work files may include
multiple WRITE macros following a NOTE macro.
If a POINTR macro is used and the work file records
are in undefined format, there may be occasions
when a replacement record longer than the original
record remains as the last record on the track when
the next WRITE is performed. The replacement
record is written as the first record on the next track
of the file.

POINTW Macro

Name Operation Operand

[name] POINTW {filename~ , {addreSs~
(1) (0)

The POINTW macro repositions a file to write a
record.

For magnetic tape, address specifies a four-byte
virtual storage location containing the required re­
cord identification. It can be expressed as a symbol
or in register notation. The four-byte number must
be in the form obtained from the NOTE macro
(Obbb). POINTW repositions the file to write a re­
cord after the one previously identified by the
NOTE. When a READ is issued to a tape file fol­
lowing a POINTW, the tape is positioned to read the
record following the one identified by the NOTE.

For disk, address specifies a four-byte virtual storage
location containing the required record identifica­
tion. If WRITE SQ is used, two bytes containing the
remaining track capacity must also be supplied. The

disk address can be expressed as a symbol or in reg­
ister notation. The four- or six-byte number must be
supplied in the form obtained from the NOTE macro
(cchr or cchrnn, where nn is the length remaining on
the track). POINTW repositions the file to write at
the record location that was read or written immedi­
ately before the last NOTE macro was issued. If a
WRITE UPDATE is issued, the noted record is ov­
erwritten. If a WRITE SQ is issued, the record fol­
lowing the noted record is written and the remainder
of the track is erased. A READ macro can follow
the POINTW macro, in which case the record identi­
fied by the NOTE is the record read.

Some programs using disk work files may include
multiple WRITE macros following a NOTE macro.
If a POINTW macro is issued and the work file re­
cords are in undefined format, there may be occa­
sions when a replacement record longer than the
original record cannot be written in the space availa­
ble on the track. In this case, when the next WRITE
is performed, the original record remains as the last
record on the track. The replacement record is writ­
ten as the first record on the next track of the file.

POINTS Macro

The POINTS macro repositions a file to its begin­
ning.

Name Operation Operand

[name] POINTS tilename~
(1)

For a tape file, the tape is rewound. If the file con­
tains any header labels, they are bypassed, and the
tape is positioned to the first record following the
label set.

For disk, the file is repositioned to the lower limit of
the first extent. An example of POINTS with work­
file processing follows:

Part 2. Sequential Access Method 153

L 1 2, LENGTH (load length ofvar-
length record to reg)

A NRITE F , SQ , OUT, (1 2) (write a record)
(processing of data
unrelated to OUT)

CHECK F

BNZ A
POINTS F

(wait until record is
written)

(finish processing)
(reposition to begin­
ning of file)

B READ F , SQ , IN, S (read physical
record 1)

•
• (processing data un-

related to IN)
CHECK F (wait until record is

read)
BNZ B (finish processing)
EOl]

On disk or magnetic tape, a POINTS followed by a
WRITE SQ causes the new record to be written and
the remainder of the track is erased. On disk,
POINTS should not be followed by a WRITE UP­
DATE.

Completion Macros

The completion macros CLOSER and CLOSE are
used after the processing of a file is completed.
These macros end the association of the logical file
declared in your program with a specific physical file
on an 110 device. CLOSER or CLOSE must be
issued to deactivate all files (with the exception of
DTFCN files, for which CLOSER and CLOSE must
not be issued--no deactivation of DTFCN files is
necessary) .

Included here under the category of completion mac­
ros are the FEON and FEOVD macros, which are
used to force an end-of-volume condition for mag­
netic tape or disk, respectively. Use of these macros
does not preclude the requirement to issue CLOSER
or CLOSE when processing of a file is complete.

A description of these completion macros follows.

154 DOS/VS Supervisor & I/O Macros

FEOV Macro

Name Operation Operand

[name] FEOV {filename ~
(1)

The FEOV (force end-of-volume) macro is used for
either input or output files on magnetic tape
(programmer logical units only); for system logical
units see SEOV Macro in the Physical IOCS
Macros chapter) to force an end-of-volume condi­
tion before sensing a tapemark or reflective marker.
This indicates that processing of records on the cur­
rent volume is finished, but that more records for the
same logical file are to be read from, or written on, a
following volume. If a spanned record is begun on an
output file and there is not enough space to contain
it, MTMOD issues an FEOV at the end of the last
completed spanned record. The last spanned record
(for which there was no room) is rewritten on a new
volume.

The name of the file, specified in the header entry, is
the only parameter required. The name can be speci­
fied either as a symbol or in register notation.

When LIOCS macros are used for a file, FEOV initi­
ates the same functions that occur at a normal end­
of -volume condition, except for checking of trailer
labels.

For an input tape, FEOV immediately rewinds the
tape (as specified by REWIND) and provides for a
volume change (as specified by the ASSGN cards).
Trailer labels are not checked. FEOV then checks
the standard header label on the new volume and
allows you to check any user-standard header labels
if LABADDR is specified. If nonstandard labels are
specified (FILABL=NSTD), FEOV allows you to
check these labels as well.

For an output tape, FEOV writes

• A tapemark (two tapemarks for ASCII files.)
• A standard trailer label and user-standard labels

(if any).
A tapemark.

If the volume is changed, FEOV then writes the
header label(s) on the new volume (as specified in
the DTFMT REWIND, FILABL, LABADDR ope­
rands, and the ASSGN cards). If nonstandard labels
are specified, FEOV allows you to write trailer labels
on the completed volume and header labels on the
new volume, if desired.

FEOVDMacro

Name Operation Operand

[name] FEOVD ~filename~
(1)

The FEOVD (force end-of-volume for disk) macro
is used for either input or output files to force an
end-of-volume condition before it actually occurs.
This indicates that processing of records on one vol­
ume is finished, but that more records for the same
logical file are to be read from, or written on, the
following volume. If extents are not available on the
new volume, or if the format 1 label is posted as the
last volume of the file, control is passed to the EOF
address specified in the DTF.

The name of the file is the only required operand.
The name can be specified either symbolically or in
register notation.

When FEOVD is issued to an input file, an end of
extent is posted in the DTF. When the next GET is
issued for this file, any remaining extents on the
current volume are bypassed, and the first extent on
the next volume is opened. Normal processing is
then continued on the new volume.

When FEOVD is issued for an output file, a short
last block is written, if necessary, with a standard
end-of-file record containing a key length of one
(indicating end of volume). An end-of -extent condi­
tion is posted in the DTF. When the next PUT is
issued for the file, all remaining extents on the cur­
rent volume are bypassed. The first extent on the
next volume is then opened, and normal processing
continues on the new volume. The DOS FEOVD
EOV marker is compatible with the OS EOV mark­
er.

If the FEOVD macro is followed immediately by the
CLOSE(R) macro, the end-of-volume marker is
rewritten as an end-of-file marker, and the file is
closed as usual.

CLOSE and CLOSER Macros

Op Operand

for self-relocating programs

CLOSER ~ftlenamel~
(d)

['~ filename2 ~ ... , ~ filenamen ~
(r2) (rn)]

for progra [IlS that are not self-relocating

CLOSE ~ filename 1 ~
(rl)

[, ~ ftlename2 ~ ... , ~ filenamen ~]
(r2) (rn)

The CLOSER or CLOSE macro must be issued to
deactivate any file which was previously opened.
Console files, however, cannot be closed.

When CLOSER is specified, the symbolic address
constants that CLOSER generates from the parame­
ter list are self -relocating. When CLOSE is specified,
the symbolic address constants are not self­
relocating.

To write the most efficient code in a multiprogram­
ming environment it is recommended that CLOSER
be used.

A CLOSE or CLOSER normally deactivates an
output file by writing an EOF record and output
trailer labels, if any. CLOSE(R) sets a bit in the
format-l label to indicate the last volume of the file.
A file may be closed at any time by issuing this ma­
cro.

For diskette files, CLOSE or CLOSER sets the mul­
tivolume indicator in the HDRllabel to indicate the
last volume of the file. Then, it sets up the end-of­
data address in the HDRI label and feeds the last
diskette, determined by the FEED operand in the
DTF.

After a CLOSE or CLOSER, no further commands
can be issued for the file unless it is reopened. Se­
quential DASD files cannot be successfully reopened
for output unless the DTFSD table is saved before
the file is first opened, and restored between closing
the file and reopening it again as an output file.

Enter the symbolic name of the file (DTF filename)
in the operand field. A maximum of 16 files may be

Part 2. Sequential Access Method 155

closed by with one CLOSE or CLOSER by entering
the filenames as additional operands. macro. Alter­
nately, you can load the address of the filename into
a register and specify the register using ordinary
register notation. The high-order 8 bits of this regis­
ter must be zeros. For CLOSER, the address of fi­
lename may be preloaded into any of the registers
2-15. For CLOSE, the address of filename may be
preloaded into register 0 or any of the registers 2-15.

Notes:

• If you use register notation, we recommend that
you follow the standard practice of using only
registers 2-12.

• If CLOSE(R) is issued to a magnetic tape input
file that has not been opened, the option speci­
fied in the DTF REWIND operand is performed.
If CLOSE(R) is issued to a magnetic tape output
file that has not been opened, no tape mark or
labels are written, and no REWIND option is
performed.

For a paper tape punch file with two I/O areas,
CLOSE(R) checks for the successful completion of
the last operation.

For the 2560, 3525, or 5425, when CLOSE(R) is
issued for a file it must also be issued for any associ­
ated files without any intervening input/ output op­
erations. Reopening one associated file requires
reopening the others.

For 2560 or 5425 read associated files, the last card
must not be punched or printed. When a read file
(single or associated) is closed the last card read will
be selected into the output stacker when 2560 "unit
exception" has occurred--that is, when there is no
following card. Two extra feed cycles are executed
to perform this. When a punch or print file (without
an associated read file) is closed, LIOCS performs
one feed cycle to select the last card into the output
stacker. When an associated punch-print file is
closed, LIOCS performs one feed cycle to select the
last card into the output stacker; if a print PUT was
not specified for the last card, LIOCS executes the
punch PUT before performing one feed cycle to
select the card into the output stacker.

When 0 or R have been included in the parameter
specified in the DTFCD MODE operand for a 3504,
3505 or 3525 running batched jobs, a non-data card
must follow the card which causes your program to
close the file.

156 DOS/VS Supervisor & I/O Macros

For the 3525, Figure 2-33 shows the card movement
caused by issuing CLOSE(R).

File Type Feed Caused by Close
of:

Read Read*

Punch Punch

Print Print

Read/Print Print*

Read/Punch/Print Print**

Read/Punch Punch**

Punch/ Print Print

Punch/Interpret Punch

* A card feed us executed only if R has been
specified in the DTFCD MODE operand. Pro-
grams using read column eliminate mode must
detect an end-of-file condition themselves.

** Delimiter cards cannot be punched or printed
in these files. CLOSE or CLOSER always is-
sues a feed command.

Figure 2-33 CLOSE or CLOSER card movement for the
3525

PART 3

DIRECT ACCESS
METHOD

Concepts of DAM

Declarative Macros

DTFDA

DAMOD

Imperative Macros

CLOSE OPENR

CLOSER READ

CNTRL WAITF

LBRET WRITE

OPEN

CONCEPTS OF DAM

With DAM you can process DASD records in ran­
dom order. You specify the address of the record
to IOCS and issue a READ or WRITE macro to
transfer the specified record.

Variations in the parameters of the READ or
WRITE macros permit records to be read, written,
updated, or replaced in a file.

Whenever DAM is used, the file must be defined
by the declarative macro DTFDA (Define The File
for Direct Access). The detail entries for this macro
are described in the Declarative Macros section
later in this chapter. In order to understand the use
of some of these entries, however, it is first neces­
sary to indicate how DAM processing uses them.

Record Types

DASD records that will be processed by DAM can
exist on the DASD in either of two formats: with a
key area, or without.

With key area:

Without key area:

When processing spanned records, this format ap­
plies only to the first segment. For additional in­
formation on spanned records, see the DOS / VS
Data Management Guide, GC33-5372.

Whenever records in a file have keys that are to be
processed, every record must have a key and all
keys must be the same length.

When the DTFDA KEYLEN operand is not speci­
fied for a file, IOCS ignores keys, and the DASD

records mayor may not contain key areas. A
WRITE ID or READ ID reads or writes the data
portion of the record. However, when KEYLEN is
not specified in the DTF for a file, WRITE
AFTER cannot be used to extend a file that has
keys.

IOCS considers all records as unblocked; if you
want blocked records, you must perform your own
blocking and deblocking. Records are also consid­
ered to be either fixed, variable, or undefined
length. A spanned record indicates variable blocks
where the size of each segment is a function of the
track size and record size. The record size is set by
a formatting WRITE macro (WRITE AFTER). All
the variable record segments of a given spanned
record are logically contiguous. The type of records
in the file must be specified in the DTFDA
RECFORM operand. Whenever records specified
as undefined are written, you must determine the
length of each record and load it in a register
(specified by the DTFDA RECSIZE operand) be­
fore issuing the WRITE macro for that record.

IOAREA Specification

The DTFDA IOAREA 1 operand defines an area of
virtual storage in which records are read on input
or built on output.

Format
The format of the 110 area is determined at assem­
bly time by the following DTFDA operands:
AFTER, KEYLEN, READID, WRITEID,
READKEY, and WRITEKY. Figure 3-1 describes
the types of DTF macros and the II 0 areas that
they define. The information in this figure should
be used to determine the length of the 110 area
specified in the BLKSIZE operand. The 110 area
must be large enough to contain the largest record
in the file. If the DTF used requires it, the 1/0
area must include room for an 8-byte count field.
The count is provided by IOCS.

Part 3. Direct Access Method 159

DTFDA MACRO ENTRIES I/O AREA DEFINED

AFTER KEYLEN READID WRITEID READKEY WRITKY

, COUNT I KEY I D~TA I
X X • • • • Length -l • I ,BLKSIZE - n----t

(Bytes) I. 8 IKEYLEN=n1 Largest Record l
IIOAREAl I l I

, COUNT I DATA d
X • • L th '" I BLKSIZE - n eng -I I

(Bytes) I. 8 I Largest Record I

IIOAREAl I I

, KEY I DATA ,

)(0 0 • • L th I. ,BLKSIZE = n----t
eng --lKEYLEN=n I

(Bytes) I. I Largest Record I
IIOAREAl I I

0 I DATA:::! 0
length I-BLKSIZE = n

-t I

X 0 0 (Bytes) I. largest Record I
! IOAREAl I

x - Specified

• - May also be specified

0- Of two entries, one ond/or the other is specified

Figure 3-1 I/O areas resulting from different DTFDA macro entries for fixed unblocked and undefined record formats

Contents
Figures 3-1 and 3-2 give a summary of what the
contents of 10AREAl are for the various types of
DTF macros. These contents are provided by, or
to, 10CS when an imperative macro is issued.
When you build a record, you must place the con­
tents shown in Figures 3-1 and 3-2 in the appropri­
ate field of the I/O area. The contents that 10CS
provides on input are always placed in the appro­
priate field of the I/O area. For example, if the
DTF used for the file resulted in the uppermost
format shown in Figure 3-1, the data would be
located to the right of the count or key area.

Control words

r-- 8 bytes-

t
IOAREAl

Figure 3-2

DATA

Largest record

BLKSIZE=n

I/O areas for variable length and spanned
unblocked DTFDA record format

As oppposed to fixed unblocked and undefined
records, the IOAREAl for variable length and
spanned unblocked records is independent of the
DTFDA macro entries. If you specify the
KEYLEN entry of the DTFDA macro, the key is

160 DOS/VS Supervisor & I/O Macros

•

transmitted to or from the field you specified on
the KEYARG entry. The count field, if desired, is
taken from an area reserved automatically by logi­
caIIOCS.

The control words are built by logical 10CS except
for the case when you create your file or add re­
cords to it by using the WRITE AFTER macro.
You must, in that case, insert the data length of
the record (plus four) into the 5th and 6th bytes of
the control words. When you read a variable length
or spanned unblocked record these bytes will con­
tain the length of the record. When updating re­
cords you should not change any parts of the con­
trol words.

The maximum length of a logical record plus its
key and control words, if any, is shown in Figure
3-3.

Device

2311

2314,2319

2321

3330/3333

3340

Figure 3-3

RECFORM

FIXUNB SPNUNB
VARUNB
UNDEF

3625 32767

7294 32767

2000 32767

13,030 32767

8,535 32767

Maximum length of DTFDA records includ­
ing key and control words

Reference Methods

With DAM, each record that is read or written is
specified by providing IOCS with two references:

• Track reference. This gives the track on which
the desired record is located.

• Record reference. This may be either the re­
cord key (if the records contain key areas) or
the record identifier (ID).

IOCS seeks the specified track, searches it for the
individual record, and reads or writes the record as
indicated by the macro. If a specified record is not
found, IOCS sets a no-record-found indication in
your error/status byte specified by the DTFDA
ERRBYTE operand. This indication can be tested
and appropriate action can be taken to suit your
requirements.

Multiple tracks can be searched for a record speci­
fied by key (SRCHM). If a record is not found
after an entire cylinder (or the remainder of a cyl­
inder) is searched, an end-of -cylinder bit is turned
on instead of the no-record-found bit in
ERRBYTE.

When an I/O operation is started, control returns
immediately to your program. Therefore, when the
program is ready to process the input record, or
build the succeeding output record for the same
file, a test must be made to ensure that the previ­
ous transfer of data is complete. Do this by issuing
a W AITF macro.

After a READ or WRITE macro for a specified
record has been executed, IOCS can make the ID
of the next record available to your program. The
W AITF macro should be issued to assure that the

data transfer is complete. You must set up a field
(in which IOCS can store the ID) to request that
IOCS supply the ID. You must also specify the
symbolic address of this field in the DTFDA
IDLOC operand.

When record reference is by key and multiple
tracks are searched, the ID of the specified record
(rather than the next record) is supplied. The func­
tion of supplying the ID is useful for a random
updating operation, or for the processing of succes­
sive DASD records. If you are processing consecu­
tively on the basis of the next ID and do not have
an end-of-file record, you can check the ID sup­
plied by IOCS against your file limits to determine
when the end of the file has been reached.

Track Reference
To provide IOCS with the track reference, you set
up a track reference field in virtual storage, assign
a name in the DTFDA SEEKADR operand, and
determine by DTFDA operand specifications which
type of addressing system to use. Before issuing
any READ or WRITE macro for a record, you
must store the proper track identifier in either the
first seven hexadecimal bytes (mbbcchh), the first
three hexadecimal bytes (ttt), or the first eight
zoned decimal (tttttttt) bytes of this field. The
latter two track references, along with the
DSKXTNT and REL TYPE operands, indicate that
relative addressing is to be performed. Thus instead
of providing the exact physical track location
(mbbcchh), only the track number relative to the
starting track of the file need be provided. If these
operands are omitted, the physical addressing sys­
tem is assumed.

The fields for each of these track reference systems
are shown in Figure 3-4. For reference to records
by record number, r or rr is used (see Identifier
(ID) Reference, below). When the READ or
WRITE is executed, IOCS refers to this field to
select the specific track on the appropriate DASD.

Record Reference
DAM allows records to be specified by either re­
cord key or record identifier.

Key Reference
If records contain key areas, the records on a par­
ticular track can be randomly searched by their
keys. This allows you to refer to records by the
logical control information associated with the re­
cords, such as an employee number, a part number,
a customer number, etc.

Part 3. Direct Access Method 161

For this type of reference you must specify the
name of a key field in virtual storage in the
DTFDA KEYARG operand. You then store each
desired key in this field.

Identifier (lD) Reference
Records on a particular track can be randomly
searched by their position on the track, rather than
by control information (key). To do this, use the
record identifier. The physical record identifier,
which is part of the count area of the DASD re­
cord, consists of five bytes (cchhr). The first four
bytes (cylinder and head) refer to the location of
the track, and the fifth byte (record) uniquely iden­
tifies the particular record on the track. You may,
however, use the relative track notation instead of
cylinder and head notation if specified in the
DSKXTNT and RELTYPE operands. When re­
cords are specified by ID, they should be numbered
in succession (without missing numbers) on each
track. The first data record on a track should be
record number 1, the second number 2, etc.

Whenever records are identified by a record ID,
the r-byte of the track-reference field (see Figure
3-4) must contain the number of the desired re­
cord. When a READ or WRITE macro that
searches by ID is executed, IDCS refers to the
track-reference field to determine which record is
requested by the program. The number in this field
is compared with the corresponding fields in the

Bytes
Decimal Iden- Contents in Zoned Deci-
tifier mal

0-7 tttttttt 0-16,777,215

8-9 rr 0-99

Bytes
Hexadecimal Contents in Hexadecimal
Identifier

0-2 ttt O-FFFFFF

3 r O-FF

Figure 3-4 Types of track reference fields (part 1 of 2)

162 DOS/VS Supervisor & I/O Macros

count areas of the disk records. The r-byte (or
bytes) specifies the particular record on the track.

Creating a File or Adding Records

Your program can preformat a file or an extension
to an existing file in one of two ways depending on
the type of processing to be done. If the WRITE
AFTER macro is used exclusively, the WRITE
RZERD macro is enough for pre formatting the
tracks. If nonformatting functions of the WRITE
macro are used, the tracks should be pre formatted
with the IBM -supplied Clear Disk utility program.
The Clear Disk utility also resets the capacity re­
cord to reflect an empty track.

In addition to reading, writing, and updating re­
cords randomly, DAM permits you to create a file
or write new records on a file. When this is done,
all three areas of a DASD record are written: the
count area, the key area (if present), and the data
area. The new record is written after the last re­
cord previously written on a specified track. The
remainder of the track is erased. This method is
specified in a WRITE macro by the parameter
AFTER.

IDCS ensures that each record fits on the track
specified for it. If the record fits, IDCS writes the
record. If it does not fit, IDCS sets a no-room­
found indication in your error/status byte specified

Information

Track number relative to the first track of the
file.

Record number relative to the first record on the
track. If reference is by key, rr should be zero.

Information

Track number relative to the first track of the
file.

Record number relative to the first record on the
track. If reference is by key, r should be zero.

Bytes
Physical Iden- Contents in Hexadecimal

Information
tifier

0 m OO-FF Number of the volume on which the record is
located. Volumes and their symbolic units for a
file must be numbered consecutively. The first
volume number for each file must be zero, but
the first symbolic unit may be any SYSnnn num-
ber. The system references the volume by adding
its number to the first symbolic unit number.

Example 1: The first extent statement
/ / EXTENT SYS005, ... and m=O result in the
system referencing SYS005.

Example 2: / / VOL SYS005, ... and m=2 results
in the system referencing SYS007 (previous job
control standard label card).

1-2 bb 0000 (disk) For 3221 the first byte is zero. The cell number
0000-0009 (2321) (0-9) is specified in the second byte. These two

bytes are always zero for disk references.

3-4 cc 0000-00C7 For disk, the maximum number of the cylinder in
(2311,2314,2319) which the record can be located is:
0000-0193 (3330,3333) for 2311, 2314, 2319 : 199
0000-015B (3348 model for 3330, 3333 : 403
35) for 3340 with 3348 model 35 : 347
0000-02B7 (3348 model for 3340 with 3348 model 70: 695
70) These two bytes (cc), together with the next two
0000-1309 (2321) (hh), provide the track identification. DAM does

not permit the use of different data module sizes
in a multivolume file on a 3340. For 2321, the
number of sub cell (0-19) is located in the first
byte; one of the ten strips (0-9) is located in the
second byte.

Note: The last four strips on each cell are re-
served for alternate tracks.

5-6 hh 0000-0009 (2311) For disk, the number of the read/write head that
0000-0013 (2314) applies to the record. The first byte is always
0000-0012 (3330) zero and the second byte specifies one of the
0000-0012 (3333) disk surfaces in a disk pack. For 2321, the first
OOOO-OOOB (3340) byte specifies one of the five head bar positions
0000-0413 (2321) (0-4, equivalent to cylinders on disk). The second

byte specifies one of the twenty head elements
(0-19).

7 r O-FF Sequential number of the record on the track.

Note: r=O if reference is by key.

Figure 3-4 Types of track reference fields (part 2 of 2)

Part 3. Direct Access Method 163

by the DTFDA ERRBYTE operand. If WRITE
AFTER is specified, lacs also determines (from
the capacity record) the location where the record
is to be written.

Whenever the AFTER option is specified, IOCS
uses the first record on each track (RO) to maintain
updated information about the data records on the
track. Record 0 (Figure 3-5) has a count area and
a data area, and contains the following:

Count Area

Flag (normally not transferred to virtual storage)

Physical Identifier

Key Length (KL)

Data Length (DL)

COUNT AREA

01
0
~

Bytes --. 0 1
I
I
I
I

Canto i ns --.:
I
I
!

Identifier KL

5 6

Standard Information

7

DL

Figure 3-5 Contents of record 0 for capacity-record option

164 DOS/VS Supervisor & I/O Macros

Data Area

PhysicallD of last record written on track (cchhr)

N umber of unused bytes remaining on track

Flag used only for operating systems other than
DOS/VS

Each time a WRITE AFTER macro is executed,
IOCS updates the data area of this record.

Additional Information

For more information about DAM processing--such
as the organization of overflow areas--see the
DOS/VS Data Management Guide, GC33-5372.

DATA AREA

01
C

01
iR

Identifier
c: ~). ·c ~!~ of Lost Record '" ·0

! E afl-o >"GI co a::

8 0 4 5 6 7

I I
I I
I I Number :c R: C H H of Unused
I I Bytes I I
I I
I I

I

DECLARATIVE MACROS

DAM files must first be defined by the declarative
macros before the imperative macros, described
later in this chapter, are used to operate on them.

DTFDA should not be used to define SYSIPT if
the program may be invoked by a catalogued pro­
cedure and SYSIPT contains data. In this case, the
program must process the data sequentially, and
the DTFDI macro should be used. This macro is
described in Part 2: Sequential Access Method.

There are two related types of declarative macros-­
DTFDA and DAMOD. These two macros are de­
scribed below.

DTFDA Macro
Enter the symbolic name of the file (filename) in
the name field and DTFDA in the operation field.
The detail entries follow the DTFDA header card in
any order. Figure 3-6 lists the keyword operands
contained in the operand field.

Applies to
~

~ = = 0..
~

0.. = = 0 -
x x M BLKSIZE=nnnn Length of one I/O area, in bytes

X X M DEVICE=nnnn (2311, 2314, 2321, 3330, 3340). If omitted, 2311 is assumed

X X M ERRBYTE=xxxxxxxx Name of 2-byte field for error/status codes supplied by 10CS

X X M I OAREA 1 =xxxxxxxx Name of I/O area

X X M SEEKADR=xxxxxxxx Name of track-reference field

X X M TYPEFLE=xxxxxx (INPUT or OUTPUT)

X 0 AFTER=YES
WRITE filename, AFTER or WRITE filename, RZERO macro is used for
this file

X X 0 CONTROL=YES CNTRL macro is used for this file

X X 0 DEVADDR=SYSnnn Symbolic unit required only when no extent statement is provided

X X 0 ERREXT=YES Nondata transfer errors are to be indicated in ERRBYTE

X 0 FEOVD=YES Support for sequential disk end of volume records is desired

X 0 HOLD=YES Employ the track hold function

X X 0 DSKXTNT=n Indicates the number (n) of extent for a relative ID

M=Mandatory; O=Optional

Figure 3-6 DTFDA macro (part 1 of 2)

Part 3. Direct Access Method 165

Applies to
... ... = Q., = ...

Q., = = 0 -
x x 0 IDLOC=xxxxxxxx Name of field in which 10CS stores the ID of a record

X X 0 KEY ARG=xxxxxxx
Name of key field if READ filename, KEY or WRITE filename, KEY or
WRITE filename, AFTER macro is used for this file

X X 0 KEYLEN=nnn
Number of bytes in record key if keys are to be processed. If omitted, 10CS
assumes zero (no key)

X X 0 LABADDR=xxxxxxxx Name of your routine to check/write user labels

X X 0
Name of DAMOD logic module for this DTF. If omitted, 10CS generates

MODNAME=xxxxxxx standard name

X X 0 RDONLY=YES
Generates a read-only module. Requires a module save area for each task
using the module

X 0 READID=YES READ filename, ID macro is used for this file

X 0 READKEY=YES READ filename, KEY macro is used for this file

X X 0 RECFORM=xxxxxx
(FlXUNB, SPNUNB, VARUNB, or UNDEF). If omitted, FlXUNB is
assumed

X X 0 RECSIZE=(nn) Register number if RECFORM=UNDEF

X X 0 REL TYPE=xxx (DEC or HEX). Indicates decimal or hexadecimal relative addressing

X X 0 SEPASMB= YES DTFDA is to be assembled separately

X 0 SRCHM=YES Search multiple tracks, if record reference is by key

X 0 TRLBL=YES Process trailer labels, LABADDR must be specified

X 0 VERIFY=YES
Check disk records after they are written. For DEVICE=2321, YES is
assumed

X X 0 WRITEID= YES WRITE filename, ID macro is used for this file

X X a WRITEKEY = YES WRITE filename, KEY macro is used for this file

X X 0 XTNTXIT =xxxxxxxx Name of your routine to process extent information

M=Mandatory; O=Optional

Figure 3-6 DTFDA macro (part 2 Of 2)

166 DOS/VS Supervisor & I/O Macros

I

AFTER=YES
This operand must be included if any records (or
an additional record) are written in a file by a for­
mating WRITE (count, key, and data) following

the last record previously written on a track. The
remainder of the track is erased. That is, whenever
the macro WRITE filename,AFTER; or WRITE
filename,RZERO; is used in a program, this ope­
rand is required.

BLKSIZE=n
This operand indicates the size of the 110 area by
specifying the maximum number of characters that
are transferred to or from the area at anyone time.
When undefined, variable length or spanned re­
cords are read or written, the area must be large
enough to accommodate the largest record.

For details on how to compute n, see IOAREA
Specification.

IOCS uses this specification to construct the count
field of the CCW for reading or writing records.

CONTROL=YES
Include this operand if a CNTRL macro is issued
for this file. The CNTRL macro for seeking on a
disk allows you to specify a track address to which
access movement should begin for the next READ
or WRITE macro. While the arm is moving, you
may process data andlor request 110 operations
on other devices.

For the 2321, the CNTRL macro enables you to
seek to a specific address or to restore the strip to
its subcell.

DEVADDR=SYSnnn
This operand must specify the symbolic unit
(SYSnnn) associated with a file if the symbolic unit
is not provided via an EXTENT job control state­
ment. If such a unit is provided, its specification
overrides the DEV AD DR parameter. This specifi­
cation, or symbolic unit, represents an actual 1/0
address and is used in the ASSGN job control
statement to assign the actual 110 device address
to the file.

Note: EXTENT job control statements provided
for DAM must be supplied in ascending order, and
the symbolic units for multi-volume files must be
assigned in consecutive order.

DEVICE=12311123141232113330 133401
This operand specifies the device on which the file
is located. Specify 2314 for 2319 and 3330 for

3333. If this operand is omitted, 2311 is assumed.

I
Note: DAM does not permit the use of different
size data modules (on a 3340) for a multivolume
file.

DSKXTNT=n
This operand indicates the maximum number of
extents (up to 256) that are specified for a file.
When RECFORM=FIXUNB, V ARUNB, or UN­
DEF is specified with this operand, it indicates that
a relative ID is used in the SEEKADR and IDLOC
locations. If DSKXTNT=n is omitted, a physical
ID is assumed in the SEEKADR and IDLOC loca­
tions.

If RECFORM=SPNUNB is specified, DSKXTNT
is required. If relative addressing is used,
RELTYPE=DEC or HEX must also be specified.

ERRBYTE=name
This operand is required for IOCS to supply indica­
tions of exceptional conditions to your program.
The name of a 2-byte field (in which IOCS ~an
store the error-condition or status codes) is en­
tered.

The ERRBYTE codes are available for testing by
your program after the attempted transfer of a re­
cord is complete. You must issue t4e W AITF ma­
cro before you interrogate the error s~atus informa­
tion. After testing the ERRBYTE sta~us code, your
program can return to IOCS by issuing another
macro. One or more of the error status indication
bits may be set to 1 by IOCS as in the bits shown
in Figure 3-7.

ERREXT=YES
This operand enables irrecoverable 110 errors
(occurring before a data transfer takes place) to be
indicated to your program. This error information
is indicated in the bytes named in the ERRBYTE
operand and is available after the W AITF macro
has been issued.

FEOVD=YES
This operand is specified if code is generated to
handle end-of-volume records. It should be speci­
fied only when reading a file which was built using
DTFSD and the FEOVD macro.

HOLD=YES
This operand can be specified only if the track hold
function is specified

• at system generation time, and

Part 3. Direct Access Method 167

• included in the DAMOD macro, and
• used when the file is referenced.

If the SRCHM operand is used, only the first track
IOCS seeks is protected.

When a REAP is issued while spanned records are
processed, the track containing the first segment is
held until you release it. If a formating WRITE
macro is issued, DAMOD reads ahead to determine
if enough space exists to write the record. All the
tracks required to write the record are held and
then released, one by one, as they are written.

168 DOS/VS Supervisor & I/O Macros

IDLOC=name
This operand is included if you want IOCS to sup­
ply the ID of a record after each READ or WRITE
(lD or KEY) is completed. Specify the name of a
record reference field in which IOCS is to store the
ID. W AITF should be used before referencing this
field.

IOCS supplies the ID in the same form as used in
the SEEKADR location. The ID forms, given in
Figure 3-4, are supplied in IDLOC in the same
format except when physical IDs are used. Only
the last five bytes of the physical ID (cchhr) are
supplied as compared with the complete relative ID
which includes leading zeros.

Byte Bit Error/Status Code Indi- Explanation
cation

0 0 Not applicable Not applicable

0 1 Wrong-length record The wrong-length record indication is applicable to fixed-length, undefined
length, variable-length, and spanned records.

Fixed-length Records: This bit is set on under the following conditions:

· A READ KEY or WRITE KEY is issued, and the keylength differs
from the length as specified by KEYLEN=n. No data is transferred.

· A READ KEY is issued, and the data length differs form the specified
length (BLKSIZE minus KEYLEN, or BLKSIZE minus KEYLEN plus
8 if AFTER=YES was specified).

· A READ ID is issued, and the length of the record (including key if
KEYLEN was specified) differs from the specified length (BLKSIZE,
or BLKSIZE minus 8 if AFTER=YES was specified).

· A WRITE KEY is issued, and the data length of the record is greater
than specified in the count field in the DASD record on disk. The
original record positions are filled, and the remainder of the updated
record is truncated and lost.

· A WRITE ID is issued, and the record length is greater than specified
in the count field in the DASD record on disk. The original record
positions are filled, and the remainder of the updated record is trun-
cated and lost.

Note: If an updated record is shorter than the original record, it is
padded with binary zeros to the length of the original record. The
wrong-length record bit is not set on.

Undefined-Length Records: This bit is set on under the following conditions:

· A READ KEY or WRITE KEY is issued, and the keylength differs
from the length as specified by KEYLEN=n. No data is transferred.

· A READ KEY is issued, and the data length is greater than the
maximum data size (BLKSIZE minus KEYLEN, or BLKSIZE minus
KEYLEN plus 8 if AFTER=YES was specified). IOCS supplies the
actual data length of the record read in the RECSIZE register.

· A READ ID is issued, and the length of the record (including key if
KEY LEN was specified) is greater than the maximum record length
(BLKSIZE, or BLKSIZE minus 8 if AFTER=YES was specified).
IOCS supplies the actual data length of the record read in the REC-
SIZE register.

· A WRITE (KEY, ID, or AFTER) is issued, and the data length of the
record (loaded into the RECSIZE register) is greater than the maxi-
mum d~ta size (BLKSIZE minus KEYLEN, or BLKSIZE minus KEY-
LEN plvs 8 if AFTER= YES was specified). The length of the record
written is equal to the maximum data size.

Figure 3-7 ERRBYTE error status indication bits (part 1 of 4)

Part 3. Direct Access Method 169

Byte Bit Error Status Indication Explanation

0 1 Wrong-length record · A WRITE KEY is issued and the data length (loaded into the REC-
(continued) SIZE register) is greater than specified in the count field of the DASD

record on disk. The original record positions are filled, and the remainder of
the updated record is truncated and lost.

· A WRITE ID is issued, and the record length is greater than specified
in the count field of the DASD record on disk. The original record positions
are filled, and the remainder of the updated record is truncated and lost.

Note: If an updated record is shorter than the original record, it is
padded with binary zeros to the length of the original record. The wrong
length record bit is not set on.

Variable-length records: This bit is set on under the following conditions:

· When a READ is issued and the LL count 1 is greater than the maxi-
mum value specified by the BLKSIZE operand.

· When a nonformating WRITE is issued and the record is larger than
the physical record on the device, the record is written with the low-
order bytes truncated. The indicator also is set on if the record is
shorter than the physical record, but the low-order bytes of the physi-
cal record are padded with binary zeros.

· When a formating WRITE is issued and the LL count l is greater than
the maximum specified block size, the record is written with the
low-order bytes truncated.

Spanned Records: This bit is set on under the following conditions:

· When a READ is issued and the logical record size is larger than the
value specified by BLKSIZE minus 8. Only the number of bytes speci-
fied is read.

· When a nonformating WRITE is issued and the record length is not
the same as that of the record being processed. If the length specified
is longer than the record being processed, the low-order bytes are
ignored. If the length specified is less than the record being processed,
it is padded with binary zeros.

· If a formating WRITE is issued and the logical record size is larger
than the size specifie9 with BLKSIZE minus 8, the record is truncated
to the size specifieq;,'<

· If the first physical record encountered is not an only or first segment.
The no-record-found ~rdicator ts also set on.

i

· If another first segment is encountered after the first segment is read
out before a middle or last segment.

1 The LL count is contained in the first two bytes of the block descriptor and counts the length of the physical block including
all control information. For more detail see DOS/VS Data Management Guide, GC 33-5372.

Figure 3-7 ERRBYTE error status indication bits (part 2 of 4)

170 DOS/VS Supervisor & I/O Macros

Byte Bit Error/Status Code Indi- Explanation
cation

0 2 Non-data-transfer error The block in error was neither read or written. If ERREXT is specified and
this bit is off, transfer took place and your program should check for other
errors in the ERRBYTE field.

0 3 Not applicable Not applicable

0 4 No room found This indication is applicable only when the WRITE AFTER form of the
macro is used for a file. The bit is set on if 10CS determines that there is
not enough room left on the track to write the record. The record is not
written.

With spanned records the no-room-found condition is set if not at least one
data byte will fit on the specified track in addition to the key, if any, and the
8 byte control field, or if any successive tracks required to transfer the record
are not completely empty.

0 5 Not applicable Not applicable

0 6 Not applicable Not applicable

0 7 Reference outside ex- The relative address given is outside the extent area of the file. No I/O
tents activity has been started and the remaining bits should be off. If IDLOC is

specified, its value is set to 9s for a zoned decimal ID or to Fs for a hexade-
cimallD.

t 0 Data check in count This is an irrecoverable error.
area

1 1 Track overrun The number of bytes on the track exceeds the theoretical capacity.

1 2 End of cylinder This indication bit is set on when SRCHM is specified for READ or WRITE
KEY and the end-of-cylinder is reached before the record is found. If ID-
LOC is also specified, certain conditions also turn this bit on (see IDLOC
operand).

1 3 Data check when read- This is an irrecoverable error.
ing key or data

1 4 No record found This indication is given when a search ID or key is issued and a record is not
found. This applies to both READ commands and WRITE commands and
may be caused by:

a. The record searched for does not exist in the file.

b. The record cannot be found because of a machine error (that is, incor-
rect seek).

For spanned record processing, if the first physical record encountered is not
the first or only segment, this indicator is set on.

Figure 3-7 ERRBYTE error status indication bits (part 3 of 4)

Part 3. Direct Access Method 171

I

Byte Bit Error/Status Code Indi- Explanation
cation

I 5 End of file This indication is applicable only when the record to be read has a data
length of zero. The ID returned in IDLOC, if specified, is hexadecimal FFFF
or, in the case of REL TYPE=DEC, zoned decimal 9's. The bit is set only
after all the data records have been processed. For example, in a file having
n data records (record n+ t is the end-of-file record), the end-of-file indicator
is set on when you read the n+ t record. This bit is also posted when an
end-of-volume marker is detected. It is your responsibility to determine if
this bit means true EOF or end of volume on a SAM file.

t 6 End of volume This indication is given in conjunction with the end-of-cylinder indication.
This bit is set on if the next record ID (n+ t, 0, t) that is returned on the end
of the cylinder is higher than the volume address limit. The volume address
limit is:

for 23 t t cylinder t 99, head 9
for 23 t 4 or 23 t 9 cylinder t 99, head t 9
for 3340 or 3333 cylinder 403 head t 8
for 3340 with 3348 model 35 cylinder 347, head t t
for 3340 with 3348 model 70 cylinder 695, head t t
for 232 t subcell 19, strip 5, cylinder 4, head 19

These limits allow for the reserved alternate track area.

If both the end of cylinder and EOV indicators are set on, the ID returned in
IDLOC is FFFF or, in the case of RELTYPE=DEC, zoned decimal 9's.

t 7 Not applicable Not applicable

Figure 3-7 ERRBYTE error status indication bits (part 4 of 4)

HOLD=YES
This operand can be specified only if the track hold
function is specified

at system generation time, and

• included in the DAMOD macro, and
• used when the file is referenced.

If the SRCHM operand is used, only the first track
IOCS seeks is protected.

When a READ is issued while spanned records are
processed, the track containing the first segment is
held until you release it. If a formating WRITE
macro is issued, DAMOD reads ahead to determine
if enough space exists to write the record. All the
tracks required to write the record are held and
then released, one by one, as they are written.

IDLOC=name
This operand is included if you want IOCS to sup­
ply the ID of a record after each READ or WRITE
(ID or KEY) is completed. Specify the name of a
record reference field in which IOCS is to store the
ID. W AITF should be used before referencing this
field.

172 DOS/VS Supervisor & I/O Macros

IOCS supplies the ID in the same form as used in
the SEEKADR location. The ID forms, given in
Figure 3-4, are supplied in IDLOC in the same
format except when physical IDs are used. Only
the last five bytes of the physical ID (cchhr) are
supplied as compared with the complete relative ID
which includes leading zeros.

IOCS either supplies the ID of the record specified
in the READ/WRITE macro, or the ID of the next
record location. The following may occur when this
option is taken:

• Whenever a READ or WRITE ID (or READ
or WRITE KEY without SRCHM) is issued,
the address returned is that of the next record
location.

Exception: When the record to be read or writ­
ten is the last record of the cylinder, an end-of­
cylinder indication is posted in ERRBYTE1, bit
2, and the address returned is that of the first
record of the next cylinder. If, in addition, the
end-of-volume indication is posted, the address
returned in IDLOC is all 1 bits.

• Whenever a READ or WRITE KEY with
SRCHM is specified, the address returned is
that of the same record location.

Exception: When the record is not found, an
end-of -cylinder condition is posted and the in­
formation returned is unpredictable.

• If a READ or WRITE (ID or KEY) is issued
for spanned records, the address returned is
that of the first segment of the record whose
IDLOC is requested.

Figure 3-8 summarizes the IDLOC ID supplied
under the various circumstances.

ID SUPPLIED

(Normal I/O Completion)

MACRO

With Without

SRCHM SRCHM

READ filename, KEY Same re- Next record

cord

READ filename, ID Next re- Next record

cord

WRITE filename, KEY Same re- Next record

cord

WRITE filename, ID Next re- Next record

cord

WRITE filename, RZERO Dummy Dummy re-

record cord

WRITE filename, Dummy Dummy re-

AFTER[,EOF] record cord

Figure 3-8 ID supplied after a READ or WRITE
macro

If IDLOC is specified and end of cylinder is
reached on a disk, the cylinder number is increased
by 1, the head number is set to 0, and the record
number is set to 1. On the 2321, an end-of­
cylinder condition with IDLOC specified causes the
high-order position of the head number to be in­
creased by 1, the low-order position of the head
number to be set to 0, and the record number to

be set to 1. An overflow from the high-order posi­
tion of the head number causes the low-order posi­
tion of the cylinder number to be increased by 1,
and the high-order position of the head number is
set to 0. The low-order position of the head num­
ber is 0, and the record number is set to 1. Subse­
quent overflows of address locations increase the
next higher positions of the addresses. It is your
responsibility to check the validity of the address
returned in IDLOC. When using relative addressing
with IDLOC specified, all user extents (except the
last extent for each file) should end on cylinder
boundaries.

IOAREAl = name
This operand must be included to specify the name
of the input/output area used for the file. The
input/ output routines transfer records to or from
this area. The specified name must be the same as
the name used in the DS instruction that reserves
this area of storage.

The input/output area must be large enough to
contain the maximum number of bytes required in
any READ or WRITE macro issued for a file in
your program. This is affected by the length of
record data areas, and by the use of the count and
key areas and control information as shown in Fig­
ures 3-1 and 3-2 and described under IOAREA
Specification.

• If undefined records are specified in the
DTFDA RECFORM operand, the area must
provide space for the largest data record that
will be processed.

• If variable or spanned records are specified in
the DTFDA RECFORM operand, the area
must be large enough to contain the largest
record in the file, plus an additional eight bytes
for control words. You must place the first byte
of your record in the ninth byte of the I/O
area for all write operations. You must also
place the data length plus four in bytes 4 and 5
of the I/O area.

When a READ macro is issued, the record
length is in bytes 4 and 5 of the I/O area and
the first byte of the record is in the ninth byte
of the I/O area.

If the DTFDA KEYLEN operand is specified
and any instructions that read or write the key
area of a record are issued in your program,
the input/output area (for records other than
spanned and variable) must provide room for

Part 3. Direct Access Method 173

the key area as well as for the data area. The
length needed for the key is the length speci­
fied in KEYLEN.

• If any write instructions that transfer the count
area to a disk record are issued in your pro­
gram, eight bytes must be allotted at the begin­
ning of the I/O area to enable 10CS to con­
struct the count field which is to be transferred
to disk (for records other than spanned and
variable).

Whenever a WRITE macro is issued, 10CS as­
sumes that the input/output area (see Figures 3-1
or 3-2) contains the information implied by the
type of macro that is being executed.

KEYARG=name
This operand must be included if records are iden­
tified by key, that is, if the macro READ file­
name ,KEY ; or WRITE filename ,KEY ; is used in a
program, this entry and the corresponding KEY­
LEN operand are required. KEY ARG specifies the
name of the key field in which you supply the re­
cord key for the READ/WRITE routines.

The KEY ARG operand is required for formating
WRITE (WRITE filename, AFTER) operations for
files containing keys if RECFORM= V ARUNB or
SPNUNB. It is required also when READ filename,
ID; is specified and if KEYLEN is not zero. When
record reference is by key, 10CS uses this specifi­
cation at assembly time to construct the data ad­
dress field of the CCW for search commands.

KEYLEN=n
This operand must be included if record reference
is by key or if keys are read or written. It specifies
the number of bytes in each key. All keys must be
the same length. If this operand is omitted, 10CS
assumes a key length of zero.

If there are keys recorded on DASD and this entry
is absent, a WRITE ID or READ ID reads or
writes the data portion of the record.

When record reference is by key, IOCS uses this
specification to construct the count field of the
CCW for this file. 10CS also uses this in conjunc­
tion with IOAREA1 to determine where the data
field in the I/O area is located (see the section
IOAREA Specification).

LABADDR=name
You may require one or more user labels in addi­
tion to the standard file label. If so, you must in-

174 DOS/VS Supervisor & I/O Macros

clude your own routine to check, or write, the la­
bels. The name of such a routine is specified in this
operand. 10CS branches to this routine after it has
processed the standard label. See Writing User
Standard Labels on Disk and Checking User
Standard Labels on Disk in the Label Processing
chapter for a discussion of what the LABADDR
routine should do.

MODNAME = name
This operand specifies the name of the logic mo­
dule that is used with the DTF table to process the
file. If the logic module is assembled with the pro­
gram, MODNAME must specify the same name as
the DAMOD macro. If this entry is omitted, stand­
ard names are generated for calling the logic mo­
dule. If two DTF macros call for different func­
tions that can be handled by a single module, only
one module is called.

RDONLY=YES
This operand is specified if the DTF is used with a
read-only module. Each time a read-only module is
entered, register 13 must contain the address of a
72-byte double word-aligned save area. Each task
should have its own uniquely defined save area.
Each time an imperative macro (except OPEN,
OPENR, or LBRET) is issued, register 13 must
contain the address of the save area associated with
the task. The fact that the save areas are unique
for each task makes the module reentrant, that is,
capable of being used concurrently by several
tasks. For more information see Shared Modules
and Files in the Multitasking Macros chapter.

READID=YES
This operand must be included if any input records
are specified by ID (identifier) in your program,
that is, whenever READ filename,ID is used.

READKEY = YES
This operand must be included if any input records
are specified by key in your program, that is,
whenever READ filename, KEY is used.

RECFORM=IFIXUNB I SPNUNB I UNDEF I
VARUNBI

This operand specifies the type of records in the
input or output file. The specifications are as fol­
lows:

FIXUNB For fixed-length records. All records are
considered unblocked. If you want
blocked records, you must provide your
own blocking and deblocking.

SPNUNB For spanned records. This specification
is for unblocked variable-length logical
records of less than 32,768 bytes per
record.

UNDEF For undefined records. This specification
is required only if the records are of un­
defined format.

VARUNB For variable-length records. This specifi­
cation is for unblocked variable-length
records.

For a definition of record formats see DOS/VS
Data Management Guide, GC33-5372.

RECSIZE=(r)
This operand must be included if undefined records
are specified (RECFORM=UNDEF). It specifies
the number of the general-purpose register (2-12)
that contains the length of each individual input or
output record.

Whenever an undefined record is read, IOCS sup­
plies the length of the data area for that record in
the specified register.

When an undefined record is written, you must
load the length of the data area of the record (in
bytes) into this register, before you issue the
WRITE macro for the record. IOCS adds the
length of the key when required.

When records are written (AFTER specified in the
WRITE macro), IOCS uses the length to construct
the count area written on DASD. IOCS adds the
length of both the count and the key when re­
quired.

RELTYPE=tDEC I HEX}
This operand specifies whether the zoned decimal
(DEC) or hexadecimal (HEX) form of the relative
ID is to be used. When RECFORM=FIXUNB,
VARUNB, or UNDEF, RELTYPE should only be
supplied if the DSKXTNT operand (relative ID) is
specified. If omitted, a hexadecimal relative ID is
assumed. However, if DSKXTNT is also omitted, a
physical ID is assumed in the SEEKADR and ID­
LOC addresses.

When RECFORM=SPNUNB, RELTYPE must be
specified when relative addressing is used. If REL­
TYPE is omitted, a physical' ID is assumed in the
SEEKADR and IDLOC addresses.

SEEKADR = name
This operand must be included to specify the name
of your track-reference field. In this field, you store
the track location of the particular record read or
written. The READ, WRITE, and CNTRL routines
refer to this field to determine which volume and
which track contains the desired record. Whenever
records are to be located by searching for a speci­
fied ID, the track-reference field must also contain
the number of the record on the track. See Figure
3-4 for the types of track reference fields that can
be used.

SEPASMB=YES
Include this operand only if the DTFDA is assem­
bled separately. This causes a CAT ALR card with
the filename to be punched ahead of the object
deck and defines the filename as an ENTRY point
in the assembly. If the operand is omitted, the pro­
gram assumes that the DTF is being assembled
with the problem program and no CATALR card is
punched.

SRCHM = YES
If records are identified by key, this operand may
be included to cause IOCS to search mUltiple
tracks for each specified record. The macro RE~D
filename ,KEY ; or WRITE filename,KEY; searches
the track specified in the track-reference field and
all following tracks in the cylinder, until the record
is found or the end of the cylinder is reached. If
the file ends before the end of the cylinder and the
record is not found, the search continues into the
next file, if any, on the cylinder. EOC, instead of
NRF, is indicated. Without SRCHM= YES, each
search is confined to the specified track.

TRLBL=YES
This operand, if specified with the LABADDR
operand, indicates that user standard trailer labels
are to be read or written following the user stand­
ard header labels on the user label track. Both ope­
rands must be specified for trailer label processing.
For more information on processing labels, see the
Label Processing chapter.

TYPEFLE=tINPUT I OUTPUT}
This operand must be included to indicate how
standard volume and file labels are to be processed.
INPUT indicates that standard labels are to be
read; OUTPUT indicates that standard labels are to
be written.

For DASD files this entry is always required.

Part 3. Direct Access Method 175

VERIFY = YES
This operand is included if you want to check the
parity of disk records after they are written. If this
operand is omitted, any records written on a disk
are not verified. VERIFY is always assumed when
2321 records are written.

WRITEID=YES
This operand must be included if the DASD stor­
age location for writing any output record or up­
dating an input file is specified by a record ID
(identifier), that is, whenever the macro WRITE
filename,ID is used in the program, this operand is
required.

WRITEKY = YES
This operand must be included if the DASD loca­
tion for writing any output record or updating an
input file is specified by record key, that is, when­
ever WRITE filename,KEY is used.

XTNTXIT = name
This operand is included if you want to process
label extent information. It specifies the name of
your extent exit routine. During an OPEN, IOCS
branches to your routine after each specified extent
is checked and validated. Upon entering your rou­
tine, IOCS stores in register 1 the address of a
14-byte field that contains the label extent inform­
ation (in binary form). If user labels are present,
the user label track is returned as a separate extent
and the lower limit of the first normal extent is
increased by one track. The format of this field is
shown in Figure 3-9.

Return to IOCS by use of the LBRET macro. Reg­
isters 2 - 13 are available in the XTNTXIT routine.
Within the routine you cannot issue a macro that
calls a transient routine (such as OPEN, OPENR,
CLOSE, CLOSER, DUMP, PDUMP, CANCEL,
CHKPT, etc.).

176 DOS/VS Supervisor & I/O Macros

Bytes Contents

0 Extent type code (as specified in the ex-
tent statement)

1 Extent sequence number

2-5 Lower limit of the extent (cchh)

6-9 Upper limit of the extent (cchh)

10-11 Symbolic unit number (in hexadecimal
format)

12 Old binary number

13 Present binary number of the extent (B2)

Figure 3-9 Label extent information field

DAMODMacro

Listed here are the operands you can specify for
DAMOD. The first card contains DAMOD in the
operation field and may contain a module name in
the name field. The parameters are explained here
and summarized in Figure 3-10.

AFfER = YES
This operand generates a logic module that can per­
form a formating WRITE (count, key, and data). It
performs the functions required by WRITE filen­
ame,AFTER; and WRITE filename,RZERO. The
module also processes any files in which the AFTER
operand is not specified in the DTF.

HOLD=YES
This operand is specified if the track hold function is

• specified at system generation time, and
included in the DTFDA macro, and

• used when the file is referenced.

For more information see the DTFDA HOLD ope­
rand.

ERREXT=YES
Include this operand if irrecoverable 110 errors
(occurring before a data transfer takes place) are to
be indicated to your program in the bytes named in
the DTF ERRBYTE operand.

FEOVD=YES
This operand is specified if coding is to handle end­
of -volume records. It should be specified only if you
are reading a file built using DTFSD and the
FEOVD macro.

IDLOC=YES
This operand generates a logic module that returns
record identifier (ID) information to you. The mo­
dule also processes any files in which the IDLOC
operand is not specified in the DTF.

RDONLY=YES
This operand causes a read-only module to be gener­
ated. Whenever this operand is specified, any DTF
used with the module must have the same operand.

Name Operation Operand Remarks

[modname] DAMOD1_'l Must be included.
DAMODV:.!

AFTER =YES When WRITE with the
operand AFTER or RZERO is
used.

ERREXT =YES Required if non-data-transfer
error conditions are to be
indicated in the ERRBYTE
status bits.

FEOVD=YES Required if support for
sequential disk end-of-
volume records is desired.

HOLD =YES Required if the track hold
function is to be used.

IDLOC=YES Required if IDLOC specified
in DTFDA.

RDONLY=YES Required if a read-only
module is to be generated.

RECFORM= Describes record format.

rXUNBI I UNDEFI
VARUNB2
SPNUNB2

RELTRK =YES Required if the module is to
process relative identifiers
along with physical
identifiers.

SEPASMB =YES If the module is assembled
separately.

1 - DAMOD is for fixed length unblocked and undefined records.
2 - DAMODV is for variable length unblocked and spanned unblocked

records.

Figure 3-10 DAMODmacro

RECFORM=IFIXUNB I SPNUNB I UNDEF I
VARUNB}

If UNDEF is specified, the logic module generated
can handle both unblocked fixed-length and unde-

fined records. If the operand is omitted or if FIX­
UNB is specified, the logic module generated can
handle only fixed-length unblocked records. If
SPNUNB is specified, the module can handle both
format V (variable length) and spanned format re­
cords. If V AR UNB is specified, the module can han­
dle only format V records.

RELTRK=YES
This operand generates a logic module that can proc­
ess with both physical and relative identifiers. If the
operand is omitt~d, the module can process only
with physical identifiers.

SEPASMB=YES
Include this operand only if the module is assembled
separately. This causes a CATALR card with the
module name (standard or user-specified) to be
pun~hed ahead of the object deck and defines the
module name as an ENTRY point in the assembly. If
the operand is omitted, the program assumes that the
module is being assembled with the problem pro­
gram and no CA T AL~ card is punched.

Standard DAMOD Names
Each name begins with a 3-character prefix (UI) and
continues with a 5-character field corresponding to
the options permitted in the generation of the mo­
dule.
DAMOD name = Ulabcde

a = F RECFORM=FIXUNB

= B RECFORM=UNDEF (handles both UNDEF and

FIXUNBJ

= S RECFORM=SPNUNB

= V RECFORM=VARUNB

b = A AFTER= YES

= Z AFTER is not specified

c = E IDLOC=YES and FEOVD=YES

= I IDLOC=YES

= R FEOVD= YES

= Z neither is specified

d = H ERREXT = YES and REL TRK= YES

= P ERREXT = YES

= R REL TRK= YES

= Z neither is specified

e = W HOLD=YES and RDONLY=YES

= X HOLD=YES

= Y RDONLY=YES

= Z neither is specified

Part 3. Direct Access Method 177

Subset/Superset DAMOD Names
The following chart shows the subsetting and super­
setting allowed for DAMOD names. Five parame­
ters allow supersetting. For example, the module
IJIBAIZZ is a superset of the module with the name
IJIFAZZZ. See IOCS Subset/Superset Names in
The Macro System chapter.

+ + + + +
I ,,} I BAEHX

F ZIP Z
+ Z Z +
S + + W
V E H Y

R R
Z Z

+ Subsetting/supersetting permitted.

178 DOS/VS Supervisor & I/O Macros

Notes:
1. The module IJIBAEHW will cause assembly

error IPK154 TOO MANY ENTRY SYMBOLS.
The valid entry points for this module total more
than 100, which is the maximum for assembler
language. Specify tess parameters for DAMOD
if you can. Otherwise, you must assemble your
own module for your program.

2. Your program can have only one DAMOD for
fixed unblocked or undefined records and/or
only one DAMOD for variable unblocked or
spanned unblocked records; otherwise, duplicate
name flagging occurs during assembly time.

IMPERATIVE MACROS

After the DAM files are defined by the declarative
macros, the imperative macros can be used to oper­
ate on the files. The imperative macros are divided
into three groups: those for initialization, processing,
and completion.

Initialization Macros

The initialization macros OPENR or OPEN must be
used to activate a DAM file for processing. These
macros associate the logical file declared in your
program with a specific physical file on a DASD.
The association by OPENR or OPEN of your
program's logical file with a specific physical file
remains in effect throughout your processing of the
file until you issue a CLOSE or CLOSER macro.

Included here under the category of initialization
macros is the LBRET macro, which is connected
only with label and extent processing. LBRET is
used to return to IOCS from a subroutine of your
program which writes or checks labels and extents.

OPEN and OPENR Macros

Op Operand

for self-rcilocating programs

OPENR { filename 1 }
(d)

[,{ filename2} ... ,{ filenamen}]
(r2) (rn)

for programs that are not self-relocating

OPEN { filename 1 }
(d)

['{ filename2} ... ,{ filenamen}]
(r2) (rn)

The OPENR or OPEN macro activates all files.

When OPENR is specified, the symbolic address
constants that OPENR generates from the parame­
ter list are self -relocating. When OPEN is specified,

the symbolic address constants are not self­
relocating.

To write the most efficient code in a multiprogram­
ming environment it is recommended that OPENR
be used.

Self-relocating programs using LIOCS must use
OPENR to activate all files, including console files.
In addition to activating files for processing, OPENR
relocates all address constants within the DTF tables
(zero constants are relocated only when they consti­
tute the module address).

If OPEN or OPENR attempts to activate a LIOCS
file (DTF) whose device is unassigned, the job is
terminated. If the device is assigned IGN, OPEN or
OPENR does not activate the file but turns on DTF
byte 16, bit 2, to indicate the file is not activated. If
DTF byte 16 bit 2 is on after issuing an OPEN or
OPENR, input/output operations should not be
performed for the file.

Enter the symbolic name of the file (DTF filename)
in the operand field. A maximum of 16 files may be
opened with one OPEN or OPENR by entering the
filenames as additional operands. Alternately, you
can load the address of the DTF filename into a
register and specify the register using ordinary regis­
ter notation. The high-order 8 bits of this register
must be zeros. If symbolic notation is used, you need
to establish addressability through a base register.
For OPENR, the address of filename may be pre­
loaded into any of the registers 2-15. For OPEN, the
address of filename may be preloaded into register 0
or any of the registers 2-15.

Note: If you use register notation, we recommend
that you follow the standard practice of using only
registers 2-12.

Whenever an input/output DASD file is opened and
you plan to process user-standard labels (UHL
only), you must provide the information for check­
ing or building the labels. If this information is ob­
tained from another input file, that file must be
opened, if necessary, ahead of the DASD or tape
file. To do this, specify the input file ahead of the
DASD file in the same OPEN or OPENR or issue a
separate OPEN or OPENR preceding the OPEN or
OPENR for the file.

Part 3. Direct Access Method 179

If an output file is created using DAM, all volumes
used must be mounteq at the same time, and all the
volumes are opened before the processing is begun.

For each volume, OPEN(R) checks the standard
VOL1 label and checks the extents specified in the
extent cards for the following:

1. The extents must not overlap.

2. Only type-1 extents can be used.

3. If user standard header labels are created, the
first extent must be at least two tracks long.

OPEN or OPENR checks all the labels in the VTOC
to ensure that the created file does not destroy an
existing unexpired file. OPEN or OPENR then cre­
ates the standard label(s) for the file and writes the
label(s) in the VTOC.

If you wish to create your own user labels (UHL)
for the file, include the DTF LABADDR operand.
OPEN or OPENR reserves the first track of the first
extent for these header labels and gives control to
your label routine.

If the XTNTXIT operand is specified, OPEN or
OPENR stores the address of a 14-byte extent in­
formation area in register 1. (See Figure 3-9 for the
format of this area.) Then, OPEN or OPENR gives
control to your extent routine. You can save this
information for use in specifying record addresses.

After the user labels are written, the next volume is
opened. When all the volumes are open, the file is
ready for processing. If the DASD device is file pro­
tected, all extents specified in extent cards are avail­
able for use.

Direct access input processing requires that all vol­
umes containing the file be on-line and ready at the
same time. All volumes used are opened before any
processing can be done.

For each volume, OPEN or OPENR checks the
standard VOL1labei and then checks the file
label(s) in the VTOC. OPEN or OPENR checks
some of the information specified in the extent cards
for that volume. If LABADDR is specified, OPEN
or OPENR makes the user standard header labels
available one at a time for checking.

If the XTNTXIT operand is specified, OPEN or
OPENR stores the address of a 14-byte extent in­
formation area in register 1. (See Figure 3-9 for the
format of this area.) Control is then given to your
extent routine. You can save this information for use

180 DOS/VS Supervisor & I/O Macros

in specifying record addresses. Then, the next vol­
ume is opened. After all the volumes are open, the
file is ready for processing. If the DASD device is
file protected, all extents specified in extent cards
are available for use.

LBRET Macro

Name Operation Operand

[name] LBRET {l1213}

The LBRET macro is issued in your subroutines
when you have completed processing labels or ex­
tents and wish to return control to IOCS. LBRET
applies to subroutines that write or check DASD
user standard labels or handle extent information.
The operand used depends on the function to be
performed. See the Label Processing chapter.

Checking User Standard DASD Labels: IOCS passes
the labels to you one at a time until the maximum
allowable number has been read and updated, or
until you signify you want no more. In the label rou­
tine, use LBRET 3 if you want IOCS to update
(rewrite) the label read and pass you the next label.
Use LBRET 2 if you simply want IOCS to read and
pass you the next label. If an end-of-file record is
read when LBRET 2 or LBRET 3 is used, label
checking is automatically ended. If you want to elim­
inate the checking of one or more remaining labels,
use LBRET 1.

Writing User Standard DASD Labels: Build the la­
bels one at a time and use LBRET'to return to IOCS
to write the labels. Use LBRET 2 if you want con­
trol returned to you after IOCS writes the label. If,
however, IOCS determines that the maximum num­
ber of labels are written, label processing is terminat­
ed. LBRET 1 is used if you wish to stop writing la­
bels before the maximum number is written.

Checking DASD Extents: When using the direct
access method, you can process your extent informa­
tion. After each extent is processed, you should use
LBRET 2 to obtain the next extent.

Processing Macros

Once DAM files have been readied for processing
with the initialization macros, the READ, WRITE,

W AITF, and CNTRL macros described in this sec­
tion may be used.

READ Macro

Name Operation Operand

[name] READ { filename H KEY }
(1) ID

The READ and W AITF macros transfer a record
from DASD to an input area in virtual storage. The
input area must be specified in the DTFDA
IOAREA 1 operand.

The READ macro is written in either of two forms
depending on the type of reference used to search
for the record. Both forms may be used for records
in anyone DTFDA-specified file if the file has keys.

This macro always requires two parameters. The first
parameter specifies the name of the file from which
the record is to be retrieved. This name is the same
as that specified in the DTFDA header entry for the
file and can be specified either as a symbol or in
register notation. The second parameter specifies the
type of reference used for searching the records in
the file.

If records are undefined (RECFORM=UNDEF),
DAM supplies the data length of each record in the
designated register in the DTF RECSIZE operand.

Record Reference by Key
If the record reference is by key (control informa­
tion in the key area of the D ASD record), the sec­
ond parameter in the READ macro must be the
word KEY, and the READKEY operand must be
specified in the DTFD A.

Whenever this method of reference is used, your
program must supply the desired record key to IOCS
before the READ macro is issued. For this, the key
must be stored in the key field (specified in the
DTFDA KEYARG operand). When the READ
macro is executed, IOCS searches the previously
specified track (stored in the 8-byte track-reference
field) for the desired key. When a DASD record
containing the specified key is found, the data area
of the record is transferred to the data portion of the
input area.

Only the specified track is searched unless you re­
quest that multiple tracks be searched on each
READ (by including the SRCHM operand in the

DTFDA). With this entry, the specified track and all
following tracks are searched until the desired record
is found or the end of the cylinder is reached. The
search of multiple tracks continues through the cylin­
der even though part of the cylinder may be assigned
to a different file.

Record Reference by ID
If the record reference is by ID (identifier in the
count area of records), the second parameter in the
READ macro must be the letters ID, and the
READID operand must be included in the DTFDA.

Whenever this method of reference is used, your
program must supply both the track information and
the record number in the track-reference field. When
the READ macro is executed, IOCS searches the
specified track for the particular record. When a
record containing the specified ID is found, both the
key area (if present and specified in the DTFDA
KEYLEN operand) and the data area of the record
are transferred to key and data portions of the input
area.

WRITE Macro

Name Operation Operand

!KEY 1 [name] WRITE { filename} , ~TER [,EOF] (1)
RZERO

The KEY, ID, or AFTER forms of the macro trans­
fer an output record from virtual storage to DASD
storage. The output area must be specified in the
DTFDA IOAREA1 operand, and the WAITF macro
must be used.

The first parameter specifies the symbolic name of
the file to which the record is transferred. This name
is the same as the one specified in the DTFDA head­
er entry for the file and can be given either as a sym­
bol or in register notation.

The second parameter specifies the type of reference
that is used to find the proper location to write the
output record.

The third parameter is optional and applies only to
the WRITE filename,AFTER form of the macro.
This form writes an end-of-file record (a record with
a length of zero) on a specified track after the last
record on a track.

Part 3. Direct Access Method 181

WRITE filename,RZERO resets the capacity record
of a specified track to its maximum value and erases
this track after record zero.

If records in the file are undefined
(RECFORM= UNDEF), you must determine the
length of each record and load it into a register for
IOCS use before you issue the WRITE macro for
that record. The register for this purpose must be
specified in the DTFDA RECSIZE operand.

If you are creating variable length or spanned un­
blocked records with WRITE filename,AFTER you
must put the data length of the record to be written
plus 4 into the 5th and 6th bytes of the control
words preceding the data. In the case that you are
updating records previously read by a READ macro
from the same physical file you should not change
the control words. Otherwise, the wrong length re­
cord bit will be set in the error information returned
to your program.

Record Reference by Key
If the DASD location for writing records is deter­
mined by the record key (control information in the
key area of the DASD record), the word KEY must
be entered as the second parameter of the WRITE
macro. Also the WRITEKY operand must be in­
cluded in the DTFDA.

Whenever this method of reference is used, your
program must supply the key of the desired record to
IOCS before the WRITE is issued. The key must be
stored in the key field (specified by the DTFDA
KEYARG operand). When the WRITE is executed,
IOCS searches the previously specified track (stored
in the track-reference field) for the desired key.
When a DASD record containing the specified key is
found, the data in the output area is transferred to
the data area of the DASD record. This replaces the
information previously recorded in the data area.
The DASD count field of the original record controls
the writing of the new record. If a record is shorter
than the original record, it is padded with zeros. A
record longer than the original record is written only
to the extent of the area indicated in the count field
on the track, and any excess bytes are lost. IOCS
turns on the wrong-length-record bit in the error­
status field if any short or long records occur.

Only the specified track is searched unless you re­
quest that multiple tracks be searched on each
WRITE macro. Searching multiple tracks "is specified
by including the SRCHM operand in the DTFDA. In
this case, the specified track and all following tracks
are searched until the desired record is found or the

182 DOS/VS Supervisor & I/O Macros

end of the cylinder is reached. The search of multiple
tracks continues through the cylinder even though
part of the cylinder may be assigned to a different
file.

Record Reference by ID
If the DASD location for writing records is deter­
mined by the record ID (identifier in the count area
of records), ID must be entered as the second par­
ameter of the WRITE macro and the WRITEID
operand must be included in the DTFDA.

Whenever this method of reference is used, your
program must supply both the track information and
the record number in the track-reference field. When
the WRITE is executed, IOCS searches the specified
track for the particular record. When the DASD
record containing the specified ID is found, the in­
formation in the output area is transferred to the key
area (if present and specified in DTFDA KEYLEN)
and the data area of the DASD rerecord. If
RECFORM is FIXUNB or UNDEF the key must
precede your data in the IOAREAl, otherwise you
must load the key into the key field (specified by the
KEY ARG operand) before you issue the WRITE
macro. This replaces the key and data previously
recorded. IOCS uses the count field of the original
record to control the writing of the new record. If a
record is shorter than the original record, it is pad­
ded with zeros. A record longer than the original
record is written only to the extent of the area indi­
cated in the count field on the track, and any excess
bytes are lost. IOCS turns on the wrong-Iength­
record bit in the error/status field if any long re­
cords occur. If an updated record is shorter than the
original record, it is padded with binary zeros to the
length of the original record. The wrong-Iength­
record bit is set set on.

Record Reference by AFTER
If a record is written following the last record previ­
ously written on a track (regardless of its key or ID),
the second parameter of the WRITE macro must be
AFTER and the AFTER operand mWit be included
in the DTFDA.

Whenever this method of reference is used for writ­
ing records, your program must supply the track
information in the track-reference field. When
WRITE is executed, IOCS examines the capacity
record (record 0) on the specified track to determine
the location and amount of space available for the
record. If the remaining space is large enough, the
information in the output area is transferred to the
track in the location immediately following the last
record. The count area, the key area (if present and

specified by DTFDA KEYLEN), and the data area
are written. IOCS then updates the capacity record.
If the space remaining on the track is not large
enough for the record, or the track is not followed
by enough empty tracks in the case of spanned re­
cords, IOCS does not write the record and, instead,
sets an indication in your error/status byte specified
by the DTFDA ERRBYTE operand.

Whenever a new file is built in an area of the disk
pack or data cell containing outdated records, the
capacity records must first be set up to reflect empty
tracks by issuing the WRITE RZERO macro.

For the 2311 and 2314, the capacity record will take
into account a track tolerance of about 5 0/0, to en­
sure that minor hardware imprecisions on the disk
tracks do not interfere with program execution. If a
record is close to the maximum record size for a
track, the capacity record could thus show a negative
value.

Record Reference by RZERO
WRITE filename,RZERO resets the capacity record
to reflect an empty track. Your program must sup­
ply, in SEEKADR, the cylinder and track number of
the track to be reinitialized. Any record number is
valid but will be ignored. IOCS writes a new RO with
the maximum capacity of the track in a two byte
field and erases the full track after RO. The maxi­
mum track capacities are:

for 2311
for 2314 or 2319
for 3330 or 3333
for 3340
for 2321

3625
7294

13030
8368
2000

This form of the WRITE macro should be issued
every time your program reuses a certain portion of
a pack or data module. It may be used as a utility
function to initialize a limited number of tracks or
cylinders.

WAITE Macro

Name Operation Operand

[name] WAITF ~filename ~
(1)

The W AITF macro makes sure that the transfer of a
record is complete. It requires only one parameter:
the name of the file containing the record. The par-

ameter can be specified either as a symbol or in reg­
ister notation.

This macro must be issued before your program at­
tempts to process an input record which has been
read or to build another output record for the file
concerned. The program does not regain control
until the data transfer is complete. Thus, the W AITF
macro must be issued after any READ or WRITE
macro for a file, and before the succeeding READ or
WRITE macro for the same file. The W AITF macro
makes error/status information, if any, available to
your program in the field specified by the DTFDA
ERRBYTE operand.

CNTRL Macro

Name Operation Operand

[name] CNTRL ~filename \' code
(1)

The CNTRL (control) macro can begin DASD ac­
cess movement (SEEK) or restore a data cell strip
(RESTR) for the next READ or WRITE. It requires
two parameters.

The first parameter specifies the name of the file,
which is the same name as that specified in the
DTFDA header entry for the file, and can be speci­
fied either as a symbol or in register notation.

The second parameter must be the word SEEK (for
any DASD) or RESTR (for the 2321 only). The
seek address must be provided in the field with the
name given in the DTFDA SEEKADR operand be­
fore issuing the CNTRL macro.

Part 3. Direct Access Method 183

Completion Macros

CLOSE and CLOSER Macros

Op Operand

for self-relocating programs

CLOSER {fllenamel}
(rt)

[, { filename 2 } ... ,{ fIIenamen}]
(r2) (rn)

for programs that are not self-relocating

CLOSE { filename 1 }
(rt)

[{fllename2} ... ,{ fIIenamen}]
(r2) (rn)

The CLOSER or CLOSE completion macro must be
used after the processing of a file is completed.
These macros end the association of the logical file
declared in your program with a specific physical file
on a DASD.

The CLOSER or CLOSE macro deactivates any file
which was previously opened. If trailer labels are
specified, they are written on output, and checked

184 DOS/VS Supervisor & I/O Macros

on input. A file may be closed at any time by issuing
this macro. No further commands can be issued for
the file unless it is reopened.

When CLOSER is specified, the symbolic address
constants that CLOSER generates from the parame­
ter list are self-relocating. When CLOSE is specified,
the symbolic address constants are not self­
relocating.

To write the most efficient code in a multiprogram­
ming environment it is recommended that CLOSER
be used.

Enter the symbolic name of the file (assigned in the
DTF header entry) in the operand field. A maximum
of 16 files may be closed by one macro by entering
additional filename parameters as operands. Alter­
nately, you can load the address of the filename in a
register and specify the register using ordinary regis­
ter notation. The high-order 8 bits of this register
must be zeros. For CLOSER, the address of file­
name may be pre loaded into any of the registers
2-15. For CLOSE, the address of filename may be
preloaded into register 0 or any of the registers 2-15.

Note: If you use register notation, we recommend
that you follow the standard practice of using only
registers 2-12.

PART 4

INDEXED SEQUENTIAL

ACCESS METHOD

Concepts of ISAM

Declarative Macros

DTFIS
ISMOD

Imperative Macros

CLOSE
CLOSER
ENDFL
ERET
ESETL
GET
OPEN

OPENR
PUT
READ
SETFL
SETL
WAITF
WRITE

CONCEPTS OF ISAM

With ISAM you can process DASD records in ei­
ther random or sequential order. For random proc­
essing, you supply the key (control information) of
the desired record to ISAM and issue a READ or
WRITE macro to transfer the specified record. For
sequential processing, you specify the first record
to be processed and then issue GET or PUT mac­
ros until all desired sequential records are proc­
essed. The successive records are made available in
sequential order by key. Variations in macros per­
mit:

Creating a DASD file

Reading, adding to, or updating a DASD file

Whenever ISAM is used, the file must be defined
by the declarative macro DTFIS (Define The File
for Indexed Sequential system). The detail entries
for this macro are described in the Declarative
Macros section later in this chapter. In order to
understand the use of some of these entries, how­
ever, it is first necessary to indicate how ISAM
processing uses them.

For processing VSAM files with an ISAM program
by means of the ISAM Interface Program (lIP), see
Appendix J.

Record Types

When an ISAM file is originally organized, it is
loaded onto the volume(s) from presorted input
records. These records must be sorted by key and
all records in the file must contain key areas:

All keys must be the same length, and this length
must be specified in the DTFIS KEYLEN operand.

The logical records must be fixed length, and the
length must be specified in the DTFIS RECSIZE
operand. Logical records may be either blocked or
unblocked, and this is specified in the DTFIS
RECFORM operand. When blocked records are
specified, the key of the highest (last) record in the
block is the key for the block and, therefore, ISAM
stores it in the key area of the record. The number

of records in a block must be specified in the
DTFIS NRECDS operand.

Storage Areas

Records of one logical file are transferred to, or
from, one or more I/O areas in virtual storage. The
areas must always be large enough to contain the
key area and a block of records, or a single record
if unblocked records are specified. Also, space must
be allowed for the count area when a file is loaded,
or when records are added to a file. For the func­
tions of adding or retrieving records, the I/O area
must also provide space for a sequence-link field
used with overflow records (see Addition of Re­
cords and Overflow Areas, below). When an over­
flow record is brought into the I/O area, you
should not alter the sequence-link field. The I/O
area requirements are illustrated in Figure 4-1 and
described in detail in the discussions of the DTFIS
IOAREAL, IOAREAR, IOAREAS, and IOAREA2
operands.

Records may be processed directly in the I/O area
or in a work area for either random or sequential
retrieval. If the records are processed in the I/O
area, a register must be specified in the DTFIS
IOREG operand. This register is used for indexing,
and points to the beginning of each record.

If the records are processed in a work area, the
DTFIS WORKL, WORKR, or WORKS operand
must be specified (WORKL must be specified in
any event when creating or adding records to a
file). ISAM moves each individual input record
from the I/O area to the work area where it is
available to your program for processing. Similarly,
on output ISAM moves the completed record from
the work area to the I/O area where it is available
for transfer to DASD storage. Whenever a work
area is used, no register is required.

Organization of Records on DASD

When a logical file of presorted records is loaded
ont9 a DASD, ISAM organizes the file in a way
that allows you to access any record. For any type

Part 4. Indexed Sequential Access Method 187

Length
(Bytes)

LOAD

Count

1
---1 8

/ t
IOAREAL or
IOAREA2

Key Data

1
KEYLEN =n ... , I_------- RECSIZE x NRECDS--------'~I

1 (Minimum size = 10) I

ADD - Unblocked Records

Count

I
Data (Unused)

Key ~--------I------------or-------~---~
SL Data

I

I I 1 I 1
Length ---l 8
(Bytes) 1 t

I KEYLEN = nil 0 "",I 11--_______ RECS I ZE = n ___________ --.1.1
I 1 1 NRECDS - 1 I

Length
(Bytes)

Length
(Bytes)

Length
(Bytes)

Length
(Bytes)

IOAREAL

ADD - Blocked Records

Key (of last
Count record in the Data

block)

I I /
--1 8 KEYLENoon ... II~-------RECSIZE x NRECDS-------------~./

It 1 (Minimum size = One record + 10) 1

IOAREAL

SEQUENTIAL RETRIEVE - Unblocked Record

Data (Unused)
Key or

SL Data

I I 1 RECSIZEoon -t KEYLEN oon 1 10 I· NRECDSoo 1
1 t I 1

IOAREAS or
IOAREA2

RANDOM RETRIEVE - Unblocked Records

I
Data

Of

: (Unused)

/ SL Data
/

I 10 / RECSIZE =n

it I • NRECDS=I
IOAREAR

I

RETRIEVE - Sequential or Random Blocked Records

Record 1 Record 2 Record 3

SL I Record Length

-~I :;...,----------RECSIZE x NRECDS ----------... 1

I t
IOAREAR,
IOAREAS, or
IOAREA2

(Minimum size = One record + 10) I

./

SL = Sequence Link

Figure 4-1 I/O areas resulting from different DTFIS operands

188 DOS/VS Supervisor & I/O Macros

of processing, the entire ISAM file must be on line.
If an ISAM file is assigned ignore by JCL, no proc­
essing can be done for that file.

Reference can be made to records at random
throughout the file, or to a series of records in the
file in their presorted sequence. The organization
also provides for additions to the file at a later
time, while still maintaining both the random and
sequential reference capabilities.

ISAM loads the records into a specified area of the
DASD volume. This area is called the prime area.
Both the starting and ending limits of this area are
specified by EXTENT job control statements. At
least one record must be written at load time if an
ISAM file is referenced.

Indexes

As ISAM loads a file of records sorted by key, it
builds a set of indexes for it. The indexes:

• Permit rapid access to individual records for
random processing.

Supply the records in key order for sequential
processing.

Either two or three indexes are built: a track index
and a cylinder index are always built, and a master
index is also built if you specify the DTFIS
MSTIND operand.

Once a file is loaded and the related indexes are
built, the ISAM routines search for specified re­
cords by referring to the indexes. When a particular
record (specified by key) is requested, ISAM
searches the master index (if used), and then the
cylinder index, and then the track index, and finally
the individual track. Each index narrows the search
by pointing to the portion of the next-lower index
whose range includes the specified key.

Because of the high speed and efficiency of the
direct access devices, a master index should be
established only for exceptionally large files, for
which the cylinder index occupies several tracks
(five or more). That is, it is generally faster to
search only the cylinder index (followed by the
track index) when the cylinder index occupies four
or less tracks.

The indexes are made up of a series of entries,
each of which includes the address of a track and
the highest key on that track or cylinder.

Highest
Key

Key Area

Track
Address

Data Area

Each entry is a separate record composed of both a
key area and a data area. The key area contains
the highest key on the track or cylinder, and its
length is the same as that specified for logical data
records in the DTFIS KEYLEN operand. The data
area of each index is ten bytes long; it contains
track information including the track address.

The indexes are terminated by a dummy entry that
contains a key of all one bits. Therefore you
should not use a key of all one bits for any of your
records.

Examples of a track index, cylinder index, and
master index are shown in the DOS/VS Data
Management Guide, GC33-5372.

Track Index
The track index is the lowest-level index for the
logical file. A separate track index is built for each
cylinder used, and contains index entries for that
cylinder only; each track index is located on the
cylinder that it is indexing. It always begins on
track zero, and it may extend over more than one
track.

When the track indexes are originally constructed,
they contain two similar entries (normal and over­
flow) for each track used on the cylinder. The use
of two index records for each track is required be­
cause of overflow records that occur if more re­
cords are inserted in the file at a later time (see
Addition of Records and Overflow Areas, below).
When overflow records for a track exist, the sec­
ond (overflow) index record contains the key of
the highest record in the overflow chain and the
address of the lowest record in the overflow chain
for the track. The dummy entry indicates the end
of the track index. Any following records are data
records.

Cylinder Index
The cylinder index is an intermediate level index
for the logical file. It contains an index entry for
each cylinder occupied by the file. This index is
built in the location which you specify in an EX­
TENT job control statement. You may change the
upper extent limit; however, no validity check is.
performed by the ISMOD and it is therefore your
responsibility to make sure the change is correct.

Part 4. Indexed Sequential Access Method 189

The cylinder index may not be built on one of the
cylinders that contains prime data records. Also, it
should not be built on a cylinder that contains
overflow records as this could prevent future ex­
pansion of the overflow area. The cylinder index
should be on a separate cylinder; or it may be on a
separate volume that is on-line whenever the logi­
cal file is processed.

The cylinder index may be located on one or more
successive cylinders. Whenever the index is contin­
ued from one cylinder to another, the last index
entry on the first cylinder contains a linkage field
that points to the first track of the next cylinder. A
cylinder index may not be continued from one vol­
ume to another, however.

This index contains one entry for each cylinder
occupied by the file. The key area contains the
highest key associated with the cylinder, and the
data area contains the address of the track index
for that cylinder. The dummy entry indicates the
end of the cylinder index.

References to a cylinder index also apply to the
2321. The bar-position address of the data cell
corresponds to the cylinder of a disk drive in
ISAM.

Master Index
The optional master index is the highest-level index
for a logical file. This index is built only if it is
specified by the DTFIS MSTIND operand. A mas­
ter index is built in the location specified by an
EXTENT job control statement. Like the cylinder
index, it may be located on the same volume with

, the data records or on a different volume that is
on-line whenever the records are processed.

The master index must immediately precede the
cylinder index on a volume, and it may be located
on one or more successive cylinders. Whenever it is
continued from one cylinder to another, the last
index entry on the first cylinder contains a linkage
field that points to the first track of the next cylin­
der. A master index may not be continued from
one volume to another.

The master index contains an entry for each track
of the cylinder index. The key area contains the
highest key on the cylinder index track, and the
data area contains the address of that track. The
dummy entry indicates the end of the master index.

190 DOS/VS Supervisor & I/O Macros

Addition of Records and Overflow Areas

After a logical file is organized on a DASD, it may
subsequently become necessary to add records.
These records may contain keys that are above the
highest key presently in the file and thus constitute
an extension of the file. Or these records may con­
tain keys that fall between keys already in the file
and therefore require insertion in the proper se­
quence in the file.

If all records to be added have keys that are higher
than the highest key in the file, the upper limit of
the prime area of the file can be adjusted (if neces­
sary) with an EXTENT job control statement. The
new records can then be added by presorting them
and loading them into the file. No overflow area is
required, and the file is merely extended further on
the volume. However, new records can be batched
with the normal additions and added to the end of
the file.

However, if records must be inserted among those
already in the file, an overflow area is required.
ISAM uses the overflow area to permit the inser­
tion of records without necessitating a complete
reorganization of the established file. The fast ran­
dom and sequential retrieval of records is main­
tained by inserting references to the overflow
chains in the track indexes, and by using a chaining
technique for the overflow records. For chaining, a
sequence-link field is prefixed to your data record
in the overflow area. The sequence-link field con­
tains the address of the record in the overflow area
that has the next-higher key. Thus a chain of se­
quential records can be followed when searching
for a particular record. The sequence-link field of
the highest record in the chain indicates the end of
the chain. All records in the overflow area are un­
blocked, regardless of the specification in the
DTFIS RECFORM operand for the data records in
the file.

An example of the addition of records to an ISAM
file using an overflow area is shown in the
DOS/VS Data Management Guide, GC33-5372.

You may request two types of overflow areas:

• A cylinder overflow area for each cylinder.
Specify the number of tracks to be reserved for
each cylinder overflow area with the DTFIS
CYLOFL operand when a file is loaded or
when records are added to an existing file.

• An independent overflow area for the entire
file, specified with an EXTENT job control

statement. This area may be on the same vol­
ume as the file or on a different (on-line) vol­
ume of the same device type. An independent
overflow area may be added to a file originally
created without it when the DTFIS IOROUT
operand specifies LOAD, ADD, or ADDRTR.

The independent overflow area may be used in
addition to cylinder overflow areas or without
them. When used in addition to cylinder overflow
areas, it is used whenever one of the cylinder over­
flow areas is filled.

There must always be one prime data track availa­
ble for a DASD EOF record when additions are
made to the last track in the prime data area con­
taining records. For additional information about
overflow areas, see the WRITE Macro later in
this chapter.

Programming Considerations

Recordsize=keylength+(blocking factor x record
length). The maximum record size possible for
ISAM on the various direct access devices is shown
below.

Device Maximum Record Size (Bytes)

2311 3,605

2314 7,249

2319 7,249

2321 1,984

3330 12,974

3333 12,974

3340 8,293

Formulas to calculate the storage requirements for
an ISAM file on the various direct-access devices
are given in the DOS/VS Data Management
Guide, GC33-5372.

When writing ISAM programs, do not forget to
include the LBLTYP, DLBL (or DLAB) job con­
trol statements. Information about these job control
statements will be found in DOS/VS System
Control Statements, GC33-5376. Examples of

complete sets of job control statements for ISAM
will also be found there.

DOS/VS does not support a null ISAM file. If an
attempt is made to access a null file, an X' 1 0' error
indication is placed in the field filenameC
(FilenameC is described in the discussion of the
DTFIS ERREXT operand, below).

ISAM maintains a helpful set of statistics to assist
you in determining when reorganization of an
ISAM file is required. These statistics are main­
tained in the Format 2 DASD label recorded with
the file; when the file is processed, the statistics
occupy fields within the DTFIS table. You can test
these fields as you process the file. The fields, and
the names by which you reference them, are de­
scribed below.

• prime record count (filenameP).
A four-byte count of the number of records in
the prime data area. FilenameP is used for
DTFIS ADD, while filenameP+4 is used for
DTFIS LOAD.

overflow record count (filenameO).
A two-byte count of the number of records in
the overflow area(s).

• available independent overflow tracks
(filenameI).
A two-byte count of the number of tracks re­
maining in the independent overflow area, if
used.

• cylinder overflow areas full (filenameA).
A two-byte count of the number of cylinder
areas that are full, necessitating use of the in­
dependent overflow area.

• non-first overflow reference (filenameR).
A four-byte count of the number of times a
random reference (READ) is made to records
that are the second or higher links in an over­
flow chain.

In addition to these fields maintained automatically
by ISAM, there is another field--filenameT --which
you can use to keep a count of records tagged for
deletion. This field is kept in the Format 2 DASD
label recorded with the file and is available in the
DTFIS table when the file is processed. You may
tag the records for deletion by any method you
desire, so long as the keys of the records are not
changed in such a way that the sequence in the file
would be altered. For instance, you could overwrite
the data portion of a record with zeros; or a spe-

Part 4. Indexed Sequential Access Method 191

cial field within a record could indicate that the
record is deleted. You can keep a count of such
records in filenameT. When reorganizing the file,
tagged or deleted records can be eliminated. Addi­
tional information on reorganizing an ISAM file
appears in the DOS/VS Data Management Guide,
GC33-5372.

Example of an ISAM File

Figure 4-2 shows schematically a simplified exam­
ple of a file organized on a DASD by ISAM. This
figure illustrates a file on a 3330, with the last two
tracks on each cylinder used for the overflow area.
The same file would have similar characteristics if
it was created on another DASD type. The as­
sumptions made and the items to be noted are:
1. The track index occupies part of the first track,

and prime data records occupy the rest of the
track. This is called a shared track.

2. The data records occupy part of track 0 and all
of tracks 1-16. Tracks 17 and 18 are used for
overflow records in this cylinder.

3. The master index is located on track X on a
different cylinder. The cylinder index is located
on tracks X + 1 through X + 20.

4. A dummy entry signals the end of each index.
5. The file was originally organized with records

as follows:

Track Records
0 5-75
1 100-150
2

16 900-980

6. The track index originally had two similar en­
tries for each track. It now shows that overflow
records have occurred for tracks 1 and 16.

7. Records 150, 140, and 130 were forced off the
track by insertions on the track. Record 135
was added directly in the overflow area.

8. A sequence-link field (SL) was prefixed to each
overflow record. The records for track 1 can be

192 DOS/VS Supervisor & I/O Macros

searched in sequential order by following the
SL fields:

Record Sequence-Link Field (SL)

130 SL points to record with key 135

135 SL points to record with key 140

140 SL points to record with key 150

150 End of search. (Key 150 was the
highest key on track 2 when the
file was loaded.)

9. When the file was loaded, the last record on
cylinder 1 was record 980; on cylinder 2, re­
cord 1850; and on cylinder 9, record 4730.
This is reflected in the cylinder index. The first
entry in the master index is the last entry of
the first track of the cylinder index.

10. When cylinder overflow areas are used, the
first record (record 0) in the track index for a
cylinder is the Cylinder Overflow Control Re­
cord (COCR). It contains the address of the
last overflow record on the cylinder and the
number of tracks remaining in the cylinder
overflow area. When the number of remaining
tracks is zero, overflow records are written in
the independent area. The format of record
zero data field is as follows: hhrbbtxx overflow
area.

hh - last cylinder overflow track containing
the records.

r - last overflow record on the track.

bb - the number of bytes remaining on the
track (for fixed-length records this is
binary zeros).

- the number of remaining tracks availa­
ble in the cylinder overflow area.

xx - reserved (with binary zeros).

'i:j
Pl
:l
~

S'
Q..
(1j
~
(1j
Q..

en
(1j

~
c
(1j

a
[

>-
C'l
C'l
(1j
CIl
CIl

3:
(1j

;.
o
Q..

.....
\0
!,;.)

~

1·
t

i
~

So
~

~

if

i
~.
=­=­'<

~
~

Trock
o

TRACK INDEX

1/751 Dmo I
K o

DATA RECORDS

~rock ,IOO! Dmo 1 lOS Dmo 1 _ -_. ---- - II I '" 1 - H -
K D DOD

DATA RECORDS

~rock I ~ ! Dma 1210
Dma 1- JI 12~ Data 12~ DaM - I

K D K D 0 K D

•
•

DATA RECORDS

r~k I a ! Dma I ~5 ! Data -- -I J[I ~ ! Data 1m ! Data

~ ___ ~ ___ ~ __ ~ ___________________________ ~ __ ~ ___ ~ __ 2 __ _
OVElFlOW DATA RECORDS

T"",k I I SL I SL I i SL l
17 ISO I SL Dma I~ I M 1 Data I~ I to Data 980 I SL Da." 135 I to Da~

I • I ISO 1 I 135 I • 1 I~
K D K D DOD

OVEIFLOW DATA RECORDS

Trock
18

1[- - - - . -- J
MASTER INDEX

I " , -- -----'----=-r I Trock I I Trock I I
Trock 4730 I X + I 18560 I X +2 I All. I Dummy
X I I I Add.... I 1 B,ts I

K 0 K D 0 K 0

CYUNDER INDEX

Trock
X+I ! I I Cylinder 10

•• I 4730 I Trock 0

! ! Add

K 0 K 0

Trock
X+2

I Cylinder II 1 I Cylinder 12 I
4800 ITrock 0 14a ITrock 0 I

I.......... l !Add.... 1

K

•
Trock
X+20

K

K=Key
D·Dmo

0

0

K D

I Cylinder'151 1
1717111 Trock 0 I
I IAddr... 1
I I

0

SL· s.q.-. LInk ·SL Indlcat. the end of the overflow chain •
coca = Cylinder Overflow Control IIecanI (Contal In 10)

K

I ICylinder 160IAII l
1B56101Trock 0 : 1-81tsl
I IAdd

K o K o

DECLARATIVE MACROS

ISAM files must first be defined by the declarative
macros before the imperative macros, described
later in this chapter, are used to operate on the
files.

DTFIS Macro

Enter the symbolic name of the file (filename) in teh
name field and DTFIS in the operation field. The
detail entries follow the DTFIS header card in any
order. Figure 4-3 lists the keyword operands con­
tained in the operation field.

There are two related types of declarative macros-­
DTFIS and ISMOD. These two macros are de­
scribed below.

Applies to

~ ~
~

.....
~

=
"'0

"'0 0< Cd
Cd 0 "'0
~

~
~ < Cfl

X X X x M DSKXTNT=n Maximum number of extents specified for this file

X X X x M IOROUT=xxxxxx (LOAD, ADD, RETRVE, or ADDR TR

X X X X M KEYLEN=nnn Number of bytes in record key (maximum is 255)

X X X X M NRECDS=nnn
Number of records in a block. Required for blocked records only;
if unblocked, 1 is assumed.

X X X X M RECFORM=xxxxxx (FIXUNB or FIXBLK)

X X X X M RECSIZE=nnnn Number of characters in logical record

X X X X 0 CYLOFL=nn
Number of tracks for each cylinder overflow area. Maximum = 8
for 2311, 18 for 2314 and 2321, 17 for 3330 and 3333, 10 for 3340

X X X X 0 DEVICE=nnnn (2311,2314,2321,3330,3340). If omitted, 2311 is assumed

X X X X 0 ERREXT=YES Non data-transfer error returns and ERET desired

X X X X 0 HINDEX=nnnn
(2311,2314,2321,3330,3340). Unit containing highest level
index. If omitted, 2311 is assumed

X X X 0 HOLD=YES Track hold function is desired

X X 0 INDAREA=xxxxxxxx Symbolic name of cylinder index area

X X a INDSKIP= YES Index skip feature is to be used

X X 0 INDSIZE=nnnnn Number of bytes required for the cylinder index area

M=Mandatory; O=Optional

Figure 4-3 DTFIS macro (part 1 of 2)

194 DOS/VS Supervisor & I/O Macros

Applies to

"> :E ...
~ ~

=
"'0

"'0 d- ~
~ <U 0 "'0
~ t:I'.l ~ <:

x x 0 IOAREAL=xxxxxxxx

x 0 10AREAR=xxxxxxxx Name of I/O area

X 0 10AREAS=xxxxxxxx

x x 0 IOAREA2=xxxxxxxx Name of second I/O area

x x 0 10REG=(nn) Register number. Omit if WORKA or WORKS is specified

X 0 IOSIZE=nnnn Bytes alloted to IOAREAL

x x 0 KEY ARG=xxxxxxxx
Number of key field in storage, for random retrieval or sequential
retrieval starting by key

X X X X 0 KEYLOC=nnnn
Number of high-order position of key field within record, if
RECFORM=FIXBLK

X X X X 0
Name of ISMOD logic module for this DTF. If omitted, 10CS

MODNAME=xxxxxxx generates standard name

X X X X 0 MSTIND=YES Master index used

X X X X 0 RDONLY=YES
Generates a read-only module. Requires a module save area for
each task using the module

X X X X 0 SEPASMB= YES DTFIS is to be assembled separately.

X X 0 TYPEFLE=xxxxxx (RANDOM, SQNTL, or RANSEQ)

X X X X 0 VERIFY=YES
Check disk records after they are written. For DEVICE=2321,
YES is assumed.

X X 0 WOR!<L=xxxxxxxx Name of work area for loading or adding to the file

X 0 WORKR=xxxxxxxx Name of work area for random retrieval. Omit 10REG

X 0 WORKS=YES GET or PUT specifies work area

M=Mandatory; O=Optional

Figure 4-3 DTFIS macro (part 2 of 2)

Part 4. Indexed Sequential Access Method 195

I

CYLOFL=n
This operand must be included if cylinder overflow
areas are reserved for a file. Do not include this en­
try if no overflow areas are reserved.

When a file is loaded or when records are added, this
operand is required to reserve the areas for cylinder
overflow (optional for retrieval operations). It speci­
fies the number of tracks to be reserved on each
cylinder. The maximum number of tracks that can be
reserved on each cylinder is:

for 2311 8
for 2314,2319, or 2321 18
for 3330 or 3333 17
for 3340 10

If an independent overflow area is also specified (by
an EXTENT job control statement), overflow re­
cords are written in the independent overflow area
after a cylinder overflow area becomes filled.

DEVICE=12311 1231412321 13330 1 3340}
This operand specifies the unit that contains the
prime data area or overflow areas for the logical file.
Specify 2314 for 2319 and 3330 for 3333. For
ISAM the prime data area must be on the same de­
vice type, and for a 3340 on the same model af data
module.

DSKXTNT=n
This operand must be included to specify the maxi­
mum number of extents for this file. The number
must include all the data area extents if more than
one DASD area is used for the data records, and all
the index area and independent overflow area ex-

Bit Cause

tents that are specified by EXTENT job control
statements. Thus the minimum number specified by
this entry is 2: one extent for one prime data area,
and one for a cylinder index. Each area assigned to
an ISAM file is considered an extent.

Note: Master and cylinder indexes are treated as one
area. When there is one master index extent, one
cylinder index extent, and one prime data area ex­
tent, DSKXTNT=2.

ERREXT = YES
This operand is required for IOCS to supply your
program with detailed information about irrecovera­
ble 110 errors occurring before a data transfer takes
place, and for your program to be able to use the
ERET imperative macro to return to IOCS specify­
ing an action to be taken for an error condition.

Some error information is available for testing by
your program after each imperative macro is execut­
ed regardless of whether ERREXT= YES is speci­
fied or not, by referencing the field filenameC. Fi­
lename is the same name as that specified in the
DTF header entry for the file. One or more of the
bits in the filenameC byte may be set to 1 by IOCS.
The meaning of the bits varies depending on which
parameter was specified in the IOROUT operand;
Figure 4-4 shows the meaning if IOROUT=ADD,
RETRVE, or ADDRTR was specified; Figure 4-5
shows the meaning if IOROUT=LOAD was speci­
fied.

Explanation

0 DASD error Any uncorrectable DASD error has occurred (except wrong length record).

1 Wrong length record A wrong length record has been detected during an I/o operation.

2 End of file The EOF condition has been encountered during execution of the sequential retrieval function.

3 No record found The record to be retrieved has not been found in the file. This applies to Random (RANSEQ)
and to SEn in SEQNn (RAN SEQ) when KEY is specified, or after GKEY.

4 Illegal 10 specified The 10 specified to the SElL in SEQNTL (RANSEQ) is outside the prime file limits.

5 Duplicate record The record to be added to the fi Ie has a dupl icate record key of another record in the fi Ie.

6 Overflow area full An overflow area in a cylinder is full, and no independent overflow area has been specified; or
an independent overflow area is full, and the addition connot be made. You should assign an
independent overflow area or extend the limit.

7 Overflow The record being processed in one of the retrieval functions (RANDOM/SEONTL) is an overflow
record.

Figure 4-4 FUenameC - status or condition code byte if IOROUT=ADD, RETRV, or ADDRTR

196 DOS/VS Supervisor & I/O Macros

Bit Cause Explanation

0 DASD error Any uncorrectable DASD error has occurred (except wrong length record).

1 Wrong length record A wrong length record has been detected during an I/o operation.

2 Prime data area full The next to the last track of the prime data area has been filled during the load or ex~€nsin or the
file. You should issue the ENDFl mocro, then do a load extend on the file with new extents
given.

3 Cylinder Index area The Cylinder Index area is not large enough to contain all entries needed to index each cyliner
full spec ified for the prime data area. This condition can occur during the execution of the SETFl. You

must extend the upper limit of the cylinder index by using a new extent card.

.. Master Index full The Master Index area is not large enough to contain all the entries needed to index eoch track of
the Cylinder Index. This condition can occur during SETFL. You must extend the upper limit, if y:)u
are creating the file, by using an extent card. Or, you must reorganize the file and assign
a larger area.

S Duplicate record The record being loaded is a duplicate of the previous record.

6 Sequence check The record being loaded is not in the sequential order required for loading.

7 Prime data area There is not enough spoce in the prime data area to wite an EOF record. This condition can occur
overflow during the execution of the ENDFL mocro.

Figure 4-5 FilenameC - status or condition code byte if IOROUT=LOAD

If ERREXT=YES is not specified, IOCS returns the
address of the DTF table in register 1, as well as any
data-transfer error information in filenameC, after
each imperative macro is executed; non-data­
transfer error information is not given. After testing
filenameC return to IOCS by issuing any imperative
macro except ERET; no special action is taken by
IOCS to correct or check an error.

If ERREXT=YES is specified, IOCS returns the
address of all ERREXT parameter list in register 1
after each imperative macro is executed, and inform­
ation about both data-transfer and non-data-transfer
errors in filenameC. The format of the ERREXT
parameter list is shown in Figure 4-6. After testing
filenameC and finding an error, return to IOCS by
using the ERET imperative macro; IOCS takes the
action indicated by the ERET operand. If
HOLD= YES (and ERREXT= YES), ERET must be
used to return to IOCS to free any held track.

Your program is also responsible for checking byte
16, bit 7 of the DTF for a blocksize compatibility
error when adding to, or extending a file. If the
blocksize of your program is not equal to the block­
size of the previously built file, this bit will be set to
1.

HINDEX=12311 1231412321 13330 1 3340}
This entry specifies the unit containing the highest
index. Specify 2314 for 2319 and 3330 for 3333.

Bytes Bits Contents

0-3 - DTF address

4-7 - Virtual storage address of the
record in error

8-15 - DASD address of the error
(mbbcchhr) where m is the ex-
tent sequence number and r is
a record number which can be
inaccurate if a read error oc-
curred during a read of the
highest level index. For more
information see Track Index
above.

16 Record identification:
1 Data record
2 Track index record
3 Cylinder index record

Master index record

Type of operation:
4 Not used
5 Not used
6 Read
7 Write

17 - Command code of failing
CCW

Figure 4.6 ERREXT parameter list

Part 4. Indexed Sequential Access Method 197

HOLD = YES
This operand provides for the track hold option for
both data and index records. If the HOLD operand
is omitted, the track hold function is not performed.

Because track hold cannot be performed on a LOAD
file, HOLD=YES cannot be specified when
IOROUT=LOAD.

If HOLD=YES and ERREXT=YES, your program
must issue the ERET macro to return to the ISAM
module to free any held tracks.

For further information see DASD Track Protec­
tion Macros in the Multitasking Macros chapter.

INDAREA=name
This operand specifies the name of the area assigned
to the cylinder index. If specified, all or part of the
cylinder index resides in virtual storage thereby in­
creasing throughput. If this operand is included,
INDSIZE must be included.

If the area assigned to INDAREA is large enough
for all the index entries to be read into virtual stor­
age at one time and the index skip feature
(INDSKIP) is not specified, no presorting of records
need be done. If the area assigned to INDAREA is
not large enough, the records processed should be
presorted to fully utilize the resident cylinder index.

INDSKIP= YES
When cylinder index entries reside in virtual storage,
this operand specifies the index skip feature. This
feature allows ISAM to skip any index entries pre­
ceding those needed to process a given key. If the
index skip operand is omitted, the cylinder indexes
are processed sequentially.

This operand may only be specified with the IN­
DAREA and INDSIZE operands and increases
throughput only when:

• The records are presorted.

• The allocated virtual storage is insufficient for
storing all of the cylinder index.

• A large segment(s) of the file is not referenced.

INDSIZE=n
This operand specifies the length (in bytes) of the
index area assigned in virtual storage to the cylinder
index by INDAREA. The minimum number must
be:

(m + 3) (keylength + 6)

198 DOS/VS Supervisor' & I/O Macros

where m is the number of entries to be read into
virtual storage at a time, 3 is the number of dummy
entries, and 6 is an abbreviated pointer to the cylin­
der. If m is set equal to the number of prime data
cylinders + 1, the entire cylinder index is read into
virtual storage at one time.

The resident index facility is suppressed if this ope­
rand is omitted or if the minimum requirement is not
met at assembly time, or if an irrecoverable read
error is encountered while reading the index.

IOAREAL = name

This operand must be included when a file is created
(loaded) or when records are added to a file. It spec­
ifies the name of the output area used for loading or
adding records to the file. The specified name must
be the same as the name used in the DS instruction
that reserves the area of storage. The ISAM routines
construct the contents of this area and transfer re­
cords to DASD.

This output area must be large enough to contain the
count, key, and data areas of records. Furthermore,
the data-area portion must provide enough space for
the sequence-link field of overflow records whenever
records are added to a file (see Figure 4-7).

If IOAREAL is increased to permit the reading and
. writing of more than one physical record on DASD

at a time, the IOSIZE operand must be included
when records are added to the file. In this case, the
IOREAL area must be at least as large as the num­
ber of bytes specified in the IOSIZE operand.

When simultaneously building two ISAM files using
two DTFs, do not use a common IOAREAL. Also,
do not use a common area for IOAREAL, R, and S
in multiple DTFs.

IOAREAR = name
This operand must be included whenever records are
processed in random order. It specifies the name of
the input/output area for random retrieval (and
updating). The specified name must be the same as
that used in the DS instruction that reserves this area
of storage.

The I/O area must be large enough to contain the
data area for records. Furthermore, the data-area
portion must provide enough space for the sequence­
link field of overflow records (see Figure 4-8).

IOAREAS = name
This operand must be included whenever records are
processed in sequential order by key. It specifies the
name of the input/output area used for sequential

OUTPUT AREA REQUIREMENTS (IN BYTES)

FUNCTION Sequence Count Key
Link

Data

load Unblocked Records 8 Key length - Record length

lood Blocked Records 8 Key length - Record length x Blocking Factor

Add Unblocked Records 8 Key length 10 Record length

Add Blocked Records 8 Key length - Record length x Blocking Factor
OR*

8 Key length 10 I Record length

* Whichever Is larger

Figure 4-7 Output area requirements 'for loading or adding records to a file by ISAM

- I/O AREA REQUIREMENTS (IN BYTES)
FUNCTION

Count Key Sequence Data .. link

Retrieve Unblocked Records - Key length for sequen-
10 Record length

tial unblocked records

Retrieve Blocked Records - - - Record length (including keys) x
Blocking Factor

OR'"
- - 10 I Record Length

* Wh ichever is larger

Figure 4-8 I/O area requirements for random or sequential retrieval by ISAM

retrieval (and updating). The specified name must be
the same as that used in the DS instruction that re­
serves this area of storage.

This 110 area must be large enough to contain the
key and data areas of unblocked records and the
data area for blocked records. Furthermore, the
data-area portion must provide enough space for the
sequence-link field of overflow records (Figure 4-8).

IOAREA2=name
This operand permits overlapping of 110 with index­
ed sequential processing for either the load
(creation) or sequential retrieval functions. Specify
the name of an 110 area to be used when loading or
sequentially retrieving records. The 110 area must
be at least the length of the area specified by either
the IOAREAL operand for the load function or the
IOAREAS operand for the sequential retrieval func­
tion. If the operand is omitted, one 110 area is as­
sumed. If TYPEFLE=RANSEQ, this operand must
not be specified.

IOREG=(r)
This operand must be included whenever records are
retrieved and processed directly in the 110 area. It

specifies the register that ISAM uses to indicate
which individual record is available for processing.
ISAM puts the address of the current record in the
designated register (2-12) each time a READ,
WRITE, GET, or PUT is executed.

IOROUT={LOAD I ADD I RETRVE I ADDRTR}
This entry must be included to specify the type of
function to be performed. The parameters have the
following meanings:

tOAD

ADD

RETRVE

ADDRTR

To build a logical file on a DASD or
to extent a file beyond the highest
record presently in a file.

To insert new records into a file.

To retrieve records from a file for
either random or sequential proc­
essing andlor updating

To both insert new records into a
file (ADD) and retrieve records for
processing andlor updating (RTR).

Part 4. Indexed Sequential Access Method 199

IOSIZE=n
This operand specifies the (decimal) number of
bytes in the virtual-storage area assigned for the add
function using IOAREAL. The number can be com­
puted using the following formula:

m(keylength + blocksize+40) + 24

where m is the maximum number of physical records
that can be read into virtual storage at one time; 40
is the sum of 8 for the count field and 32 for an
ISAM CCW; 24 is another ISAM CCW; and n must
also be at least equal to

(keylength + blocksize + 74)

This formula ac~olJnts for a needed sequence link
field for unblocked records or short blocks (see Fig­
ure 4-4).

If omitted, or if the minimum requirement is not
met, no increase in throughput is realized.

n should not exceed the track capacity because the
throughput cannot be increased by enlarging it fur­
ther.

KEY ARG = name
This operand must be included for random
READ /WRITE operations and sequential retrieval
initiated by key. It specifies the symbolic name of
the key field in which you must supply the record
key to ISAM.

KEYLEN=n
This operand must be included to specify the num­
ber of bytes in the record key.

KEYLOC=n
This operand must always be specified if
RECFORM=FIXBLK. It supplies ISAM with the
high-order position of the key field within the data
record. That is, if the key is recorded in positions
21-25 of each record in the file, this operand should
specify 21.

ISAM uses this specification to locate (by key) a
specified record within a block. The key area of a
block of records contains the key of the highest re­
cord in the block. To search for any other records,
ISAM locates the proper block and then examines
the key field within each record in the block.

MODNAME=name
This operand may be used to specify the name of the
logic module used with the DTF table to process the
file. If the logic module is assembled with the pro-

200 DOS/VS Supervisor & I/O Macros

gram, the MODNAME in the DTF must specify the
same name as the ISMOD macro. If this entry is
omitted, standard names are generated for calling
the logic module. If two DTF macros call for differ­
ent functions that can be handled by a single mo­
dule, only one module is called.

MSTIND=YES
This operand is included whenever a master index is
used or is to be built for a file. The location of the
master index is specified by an EXTENT job control
statement.

NRECDS=n
This operand specifies the number of logical records
in a block (called the blocking factor). It is required
only if RECFORM=FIXBLK.

RDONLY=YES
This operand is specified if the DTF is used with a
read-only module. Each time a read-only module is
entered, register 13 must contain the address of a
72-byte doubleword-aligned save area. Each task
should have its own uniquely defined save area. Reg­
ister 13 must contain the address of the save area
associated with the task each time an imperative
macro (except OPEN, OPENR, LBRET, SETL, or
SETFL) is issued. The fact that the save areas are
unique for each task makes the module reentrant
(that is, capable of being used concurrently by sever­
al tasks). For more information see Shared Modules
and Files in the chapter Multitasking Macros.

RECFORM=IFIXUNB I FIXBLKJ
This operand specifies whether records are blocked
or unblocked. FIXUNB is used for unblocked re­
cords, and FIXBLK for blocked records. if FIXBLK
is specified, the key of the highest record in the
block becomes the key for the block and must be
recorded in the key area.

The specification that is included when the logical
file is loaded onto a DASD must also be included
whenever the file is processed.

Records in the overflow area(s) are always un­
blocked (see Addition of Records and Overflow
Areas, above), but this has no effect on this operand.
RECFORM refers to records in the prime data area
only.

RECSIZE=n
This operand must be included to specify the num­
ber of characters in the data area of each individual
record. This operand should specify the same num-

ber for additions and retrieval as indicated when the
file was created.

SEPASMB=YES
Include this operand only if the DTFIS is assembled
separately. This causes a CATALR card with the
filename to be punched ahead of the object deck and
defines the filename as an ENTRY point in the as­
sembly. If the operand is omitted, the program as­
sumes that the DTF is being assembled with the
problem program and no CAT ALR card is punched.

TYPEFLE={RANDOM I SEQNTL I RANSEQ}
This operand must be included when
IOROUT=RETRVE or ADDRTR. It specifies the
type(s) of processing performed by your program for
the file.

RANDOM is used for random processing. Records
are retrieved in random order specified
by key.

SEQNTL is used for sequential processing. Your
program specifies the first record re­
trieved, and thereafter ISAM retrieves
records in sequential order by key. The
first record is specified by key, ID, or
the beginning of the logical file (see
SETL Macro later in this chapter.

RAN SEQ is used if both random and sequential
processing are to be performed for the
same file. If RANSEQ is specified, the
IOAREA2 operand must not be speci­
fied.

TYPEFLE is not required for loading or adding
functions.

VERIFY=YES
Use this operand if you want to check the parity of
disk records after they are written. VERIFY is al­
ways assumed when 2321 records are written. If this
operand is omitted, any records written on a disk are
not verified.

WORKL = name
This operand must be included whenever a file is
created (loaded) or records are added to a file. It
specifies the name of the work area in which you
must supply the data records to ISAM for loading or
adding to the file. The specified name must be the
same as the name used in the DS instruction that
reserves this area of storage.

This work area must provide space for one logical
record when a file is created (for blocked records,
data; for unblocked records, key and data).

The original contents of WORKL are changed due
to record shifting in the ADD function.

WORKR = name
When records are processed in random order, this
operand must be included if the individual records
are to be processed in a work area rather than in the
110 area. It specifies the name of the work area.
This name must be the same as the name used in the
DS instruction that reserves this area of storage. This
area must provide space for one logical record (data
area). When this entry is included and a READ or
WRITE macro is executed, ISAM moves the individ­
ual record to, or from, this area.

WORKS=YES
When records are processed in sequential order, this
operand must be included if the individual records
are processed in work areas rather than in the 1/0
area. Each GET and PUT macro must specify the
name of the work area to or from which ISAM is to
move the record. When processing unblocked re­
cords, the area must be large enough for one record
(data area) and the record key (key area). For
blocked records, the area must be large enough for
one logical record (data area) only.

The ISAM work area requirements are as follows:

Unblocked Blocked Records
Records

Load (KL + DL) or DL or 10*
10*

ADD (KL + DL) or DLor(KL+
10* 10)*

Random Retrieve DL DL

Sequential Re- KL+ DL DL
trieve

Where: K=KEY, D=Data, L=Length

* Whichever is greater

ISMODMacro

Listed here are the operands you can supply for IS­
MOD. The first card contains ISMOD in the opera­
tion field and may contain a module name in the
name field. The operands are explained below and

Part 4. Indexed Sequential Access Method 201

shown in Figure 4-9.

Note: If an ISMOD module precedes an assembler­
language USING statement or follows your program,
registers 2-12 remain unrestricted even at assembly
time. However, if the ISMOD module lies within
your program, you should issue the same USING
statement (as that which was issued before the IS­
MOD module) directly following the module. This
action is necessary because the ISMOD module uses
registers 1, 2, and 3 as base registers, and the IS­
MOD CORDATA module uses registers 1, 2, 3, and
5 as base registers. Each time either module is assem­
bled, these registers are dropped.

CORINDX=YES
Include this operand to generate a module that can
process DTFIS files (add or random retrieve func­
tions) with or without the cylinder index entries resi­
dent in virtual storage. If omitted, the module gener­
ated cannot process the resident cylinder index en­
tries.

If an irrecoverable I/O error occurs while reading
indexes into virtual storage, the program will not use
the resident cylinder index entries.

CORDATA=YES
Include this operand if the module is to add records
to files with the IOSIZE DTFIS operand. If this ope­
rand is included, the IOSIZE operand is required in
the DTF. If you omit the CORDATA=YES ope­
rand, you will not have an increase in throughput
when adding records to a file.

ERREXT=YES
Include this operand if the ERET macro is to be
used with this module or if non-data-transfer error
conditions are returned in filenameC.

If HOLD=YES and ERREXT=YES, your program
must issue the ERET macro to return to the ISAM
module to free any held tracks. See the DTF ER­
REXT and HOLD operands.

HOLD=YES
This operand provides for the track hold option for
both data and index records. If the HOLD operand
is omitted, the track hold function is not performed.

Because track hold cannot be performed on a LOAD
file, HOLD = YES cannot be specified when
IOROUT=LOAD.

If HOLD = YES and ERREXT= YES, your program
must issue the ERET macro to return to the ISAM
module to free any held tracks.

202 DOS/VS Supervisor & I/O Macros

For further information see DASD Track Protec­
tion Macros later in this chapter.

IOAREA2=YES
Include this operand if a second I/O area is to be
used--that is, if IOAREA2 is specified in the DTF.
The operand is only valid for load or sequential re­
trieval functions. This module can process DTFs
with one or two I/O areas specified. This operand
must not be specified if TYPEFLE=RANSEQ is
specified.

IOROUT=ILOAD I ADD I RETRVE I ADDRTR}
This operand specifies the type of module required
to perform a given function.

LOAD generates a module for creating or extending
a file.

ADD generates a module for adding new records to
an existing file.

RETRVE generates a module to retrieve
(randomly/sequentially) records from a file.

ADDRTR generates a module that combines the
features of the ADD and RETRVE modules. This
module also processes any file in which only ADD or
RETRVE is specified in the IOROUT operand of
the DTF, and in which the TYPEFLE operand con­
tains the corresponding parameter (or a subset of it).

RDONLY=YES
This operand causes a read-only module to be gener­
ated. Whenever this operand is specified, any DTF
used with the module must have the same operand.

RECFORM=IFIXUNB I FIXBLK I BOTH}
This operand generates a module that creates, adds
to, or processes an unblocked (FIXUNB) or blocked
(FIXBLK) file. If BOTH is specified, a module is
generated to process both unblocked and blocked
files, and the DTF may specify either FIXUNB or
FIXBLK in the RECFORM operand. The
RECFORM operand is required only when IOR­
OUT specifies ADD or ADDRTR. If IOROUT spec­
ifies LOAD or RETRVE, a module that handles
fixed-length blocked and unblocked files is generat­
ed, and the operand is not required.

S~PASMB=YES

Include this operand only if the module is assembled
separately. This causes a CATALR card with the
module name (standard or user-specified) to be
punched ahead of the object deck and defines the
module name as an ENTRY point in the assembly. If
the operand is omitted, the program assumes that the

\

DTF is being assembled with the problem program
and no CAT ALR card is punched.

TYPEFLE={RANDOM I SEQNTL I RANSEQI
This operand is required when IOROUT specifies
RETRVE or ADDRTR. RANDOM generates a
module that includes only random retrieval capabili­
ties. SEQNTL generates a module that includes only
sequential retrieval capabilities. RANSEQ generates
a module that includes random and sequential capa­
bilities. It also processes any file in which the TYPE­
FLE operand specifies either RANDOM or
SEQNTL. If TYPEFLE=RANSEQ,
IOAREA2=YES must not be specified.

When all operands are omitted, the ISMOD module
can only process files where IOROUT=RETRVE,
TYPEFLE=RANSEQ, CORINDX, CORDATA,
HOLD, and RDONLY are not specified. In this
event, the module name assumed is IJHZRBZZ.

Standard ISMOD Names
Each name begins with a 3-character prefix (IJH)
and continues with of a 5-character field corre­
sponding to the options permitted in the generation
of the module.

ISMOD name = UHabcde
a = A RECFORM=BOTH, IOROUT=ADD or

ADDRTR

= B RECFORM=FIXBLK, IOROUT=ADD or

ADDRTR

= U RECFORM=FIXUNB, IOROUT=ADD or

ADDRTR

= Z RECFORM is not specified. (IOROUT=LOAD or

RETRVE)

b = A IOROUT=ADDRTR

= I IOROUT=ADD
= L IOROUT=LOAD

= R IOROUT=RETRVE

c = B TYPEFLE=RANSEQ

= G IOAREA2= YES, TYPEFLE=SEQNTL or

IOROUT=LOAD

= R TYPEFLE=RANDOM

= S TYPEFLE=SEQNTL

= Z neither is specified (IOROUT=LOAD or ADD)

d = B CORINDX=YES and HOLD=YES

= C CORINDX= YES

= 0 HOLD=YES

= Z neither is specified

e = F CORDATA=YES, ERREXT=YES,

RDONLY=YES

= GCORDATA=YESandERREXT=YES

= 0 CORDATA=YES and RDONLY=YES

Name Operation Operand Remarks

lmodnamel ISMOD Must be included.

ERREXT=YES Required if non-data-trans-
fer error conditions or ERET
are desi red.

CORDATA=YES Required to add records
using the DTF 10SIZE
operand.

CORINDX=YES Required to add or retrieve
records with the cylinder
index entries in virtual
storage.

HOLD=YES Specifies the track hold
option.

I OAREA2=YES Required if two I/o areas
are to be used.

10ROUT= Specifies function to be

tAD ~
performed.

ADD
RETRVE
ADDRTR

RDONLY=YES Required if a read-only
module is to be generated.

RECFORM= Describes file. Required if

{FIXUNB} 10ROUT specifies ADD or
FIXBLK ADDRTR. If 10ROUT speci-
BOTH fies LOAD or RETRVE,

BOTH is assumed.

SEPASMB=YES If the module is assembled
separately.

h''YPEFLE= Required if 10ROUT

{RANDOM} specifies RETRV or ADDRTR.
SEQNTL
RAN SEQ

Figure 4-9 ISMODmacro

= P CORDATA=YES

= S ERREXT=YES and RDONLY=YES

= T ERREXT=YES

= Y RDONLY=YES

= Z neither is specified

Part 4. Indexed Sequential Access Method 203

Subset/Superset ISMOD Names
The following chart shows the sub setting and super­
setting allowed for ISMOD names. Five parameters
allow supersetting. For example, the module
IJHBABZi is a superset of the module IJHBASZZ.
See IDes Subset/Superset Names in The Macro
System chapter.

+ + + + +
II.THAABBF

B I ROO
Z + + + +
+ ABC S
A R S Z Y
U * + +
Z L G G

S p
+ +
G T
Z Z

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

204 DOS/VS Supervisor & I/O Macros

IMPERATIVE MACROS

After the ISAM files are defined by the declarative
macros, the imperative macros can be used to oper­
ate on the files. The imperative macros are divided
into three groups: those for initialization, process­
ing, and completion.

Initialization Macros

OPEN and OPENR Macros

Op Operand

for self-r!locating programs

OPENR {mename!}
(r1)

[{ mename2} ... ,{ menamen}]
(r2) (rn)

for programs that are not self-relocating

OPEN {mename!}
(d)

U mename2} ... ,{menamen}]
(r2) (rn)

The OPENR or OPEN macro must be used to acti­
vate an ISAM file for processing. These macros as­
sociate the logical file declared in your program with
a specific physical file on a DASD. The association
by OPENR or OPEN of your program's logical file
with a specific physical file remains in effect
throughout your processing of the file until you issue
a CLOSE or CLOSER macro.

When OPENR is specified, the symbolic address
constants that OPENR generates from the parame­
ter list are self-relocating. When OPEN is specified,
the symbolic address constants are not self­
relocating.

To write the most efficient code in a multiprogram­
ming environment it is recommended that OPENR
be used.

Self-relocating programs using LIOCS must use
OPENR to activate all files, including console files.

In addition to activating files for processing, OPENR
relocates all address constants (except zero con­
stants) within the DTF tables.

If OPEN or OPENR attempts to activate a LIOCS
file (DTF) whose device is unassigned, the job is
terminated. If the device is assigned IGN, the OPEN
or OPENR does not activate the file but turns on
DTF byte 16, bit 2, to indicate the file is not activat­
ed. If DTF byte 16 bit 2 is on after issuing an OPEN
or OPENR, input/output operations should not be
performed for the file.

Enter the symbolic name of the file (DTF filename)
in the operand field. A maximum of 16 files may be
opened with one OPEN or OPENR by entering the
filenames as additional operands. Alternately, you
can load the address of the DTF filename in a regis­
ter and specify the register using ordinary register
notation. The high-order 8 bits of this register must
contain zeros. If symbolic notation is used, you must
establish address ability through a base register. For
OPENR, the address of filename may be preloaded
into any of the registers 2-15. For OPEN, the ad­
dress of filename may be preloaded into register 0 or
any of the registers 2-15.

Note: If you use register notation, we recommend
that you follow the standard practice of using only
registers 2-12.

Whenever a DASD file is opened, you must provide
the information for checking or building the labels.
(See the Label Processing chapter.)

When a file is created or extended, those volumes of
the file to be written on are opened as output files. If
the file consists of more than one volume, all the
volumes must be on line and ready when the file is
first opened.

For each volume, OPEN or OPENR checks the
standard VOL 1 label and performs extensive checks
on the extents specified in the EXTENT job control
statements for that volume. The extents must meet
the following conditions:

1. All prime data extents must be contiguous.

2. The master and cylinder index extents must be
contiguous and on the same unit.

Part 4. Indexed Sequential Access Method 205

3. No extents must overlap,

4. Only type 1, 2, or 4 extents are valid.

5. The extent sequence numbers must be in the
following order:

o for master index, when present.

1 for cylinder index.

2, 3, 4, ... for the prime data and independ­
ent overflow tracks.

The EXTENT job control statements for the
independent overflow tracks can be placed either
before or after all the EXTENT job control
statements for the prime data extents.

OPEN or OPENR checks all the labels in the VTOC
to ensure that the file to be created does not destroy
an existing file. Any expired labels are deleted from
the VTOC. After the VTOC check, OPEN or
OPENR creates the standard labels for the file and
writes the labels in the VTOC. If the DASD device
is file protected, all extents specified in the EX­
TENT job control statements are available for writ­
ing. All volumes containing an ISAM file must be
on-line and ready when the file is first opened.

For each volume, OPEN or OPENR checks the ex­
tents specified in the EXTENT job control state­
ments for that volume (for example, checks that the
data extents are contiguous). OPEN or OPENR also
checks the standard VOLllabel and then goes to
the VTOC to check the file label(s) before opening
the next volume. After all the volumes are opened,
the file is ready for processing. If the DASD device
is file protected, all extents specified in EXTENT
job control statements are available for use.

Processing Macros

Once ISAM files have been readied for processing
with the OPENR or OPEN macro, the processing
macros described in this section may be used.

In this section, first the frequently used ERET macro
is described, and then the groups of macros used for:

• Loading or extending a file

• Adding records to a file

• Random retrieval of records

• Sequential retrieval of records

206 DOS/VS Supervisor & I/O Macros

ERETMacro

Name Operation Operand

[name] ERET {SKW } IGNORE
RETRY

At the completion of each imperative macro, filena­
meC should be checked by your error routine. See
the DTFIS ERREXT operand for details and for the
format of filenameC. The ERET (error return) ma­
cro enables a program specifying the ERREXT ope­
rand in the DTF to return to IOCS and specify an
action to be taken for each error condition.

After each imperative macro is executed, register 1
contains the address of an 18-byte parameter list.
The contents of this parameter list are shown in Fig­
ure 4-6. Nondata transfer error conditions are indi­
cated in the DTF data transfer bit (byte 2, bit 2) and
your error routine can return to IOCS via the ERET
macro. The ERET IGNORE or ERET SKIP ope­
rand returns to IOCS to ignore the error condition
and to continue processing with the block in error.
The ERET RETRY operand returns to IOCS to
make another attempt at reading or writing the re­
cord which caused the error.

Note: The ERREXT routine does not handle nonre­
coverable errors that are posted in filenameC. Ex­
amples of nonrecoverable errors are: no record
found (may also be caused by hardware errors),
prime data area full, master index full, etc. The su­
pervisor may recover from a no record found condi­
tion if byte 3, bit 5 of the DTF is set. However, a
recovery would then be initiated also for an nonre­
coverable no record found condition.

Your error routine should determine whether or not
data was transferred. This can be done by checking
the data transfer bit (byte 2, bit 2) in the DTF. If
the data transfer bit is on, the data was not read or
written. If it is off, data transfer did take place.

If any IOCS macros other than ERET are issued in
the error routine, the contents of registers 14 and 13
(with RDONLY) should be saved before use and
restored after use.

If HOLD = YES is specified, you must issue the
ERET macro to return to IOCS during an ERREXT
to free any held tracks.

Note: If the error occurred on an index record, you

should not IGNORE this record unless it is first
checked for accuracy. If the record was read inaccu­
rately, you should RETRY to read the record.

Loading or Extending a File

The functions of originally loading a file of presorted
records onto a DASD, and of extending the file by
adding new presorted records beyond the previous
high record, are the same. Both are considered a
load operation (specified by the DTFIS
IOROUT=LOAD operand), and use the same mac­
ros. However, the type field in the DLAB job con­
trol statement must specify ISC for load creation and
ISE for load extension.

The areas of the volumes used for the file are speci­
fied by EXTENT job control statements. The areas
are:

The prime area where the data records are writ­
ten.

A cylinder index area where your want ISAM to
build the cylinder index.

A master index area if a master index is to be
built (specified by the DTFIS MSTIND ope­
rand).

During a load operation, ISAM builds the track,
cylinder, and master indexes.

A combination of three different macros is required
in your program to load original or extension records
onto a DASD. These macros are SETFL, WRITE,
andENDFL.

SETFL sets the ISAM processing mode for loading
or extending a file. WRITE performs the actual load­
ing of new records into the file. ENDFL turns the
load mode off. These three macros are described in
detail below.

SETFL Macro

Name Operation Operand

[name] SETFL /filename!
(0)

The SETFL (set file load mode) macro causes ISAM
to set up the file so that the load or extension func­
tion can be performed. This macro must be issued
whenever the file is loaded or extended. When load­
ing a file, SETFL pre formats the last track of each

track index. When extending a file, SETFL prefor­
mats only the last track of the last track index plus
each new track index for the extension of the file.
This allows prime data on a shared track to be refer­
enced even though no track indexes exist on the
shared track. The name of the file loaded is the only
parameter required for this macro and is the same as
that specified in the DTFIS header entry for the file.
It can be specified as a symbol or in register nota­
tion. Register notation is necessary to allow use of
the macro in a self -relocating program.

WRITE Macro

Name Operation Operand

[name] WRITE ~ilename ,NEWKEY
(1)

When a WRITE macro with the parameter NEW­
KEY is issued in your program between a SETFL
macro and an ENDFL macro, ISAM loads a record
onto the DASD.

The WRITE macro for loading and extending re­
quires two parameters. The first parameter is the
name of the file specified in the DTFIS header entry.
The filename can be specified as a symbol or in reg­
ister notation. The second parameter must be NEW­
KEY.

Before issuing the WRITE macro, your program
must store the key and data portions of the record in
a work area (specified by DTFIS WORKL). The
ISAM routines construct the I/O area (see Figure
4-1) by moving the data record to the data area,
moving the key to the key area, and building the
count area. When the I/O area is filled, ISAM trans­
fers the record to DASD storage and then constructs
the count area for the next record. (The WAITF
macro should not be used when loading or extending
an ISAM file.)

Before records are transferred, ISAM performs both
a sequence check and a duplicate-record check. This
ensures that the records are in order by key.

After each WRITE is issued, ISAM makes the ID of
the record or block available to your program. The
ID is located in an 8-byte field labeled filenameH,
which cannot exceed 7 characters. For example, if
the filename in the DTFIS header entry is P A YRD,
the ID field is addressed by P A YRDH. The ID of
any selected records can be punched or printed for
later use by referencing this field. Using filenameH is

Part 4. Indexed Sequential Access Method 207

required if you plan to retrieve records in sequential
order"starting with the ID of a particular record (see
SETL Macro, below).

As records are loaded or extended on DASD, ISAM
uses the I/O areas to write:

• The new track address each time a track is filled.

• Two track index records (one prime data, one
overflow) each time a track is filled.

• A cylinder index record each time a cylinder is
filled.

• A master index record (if DTFIS MSTIND is
specified) each time a cylinder index is filled.

ENDFLMacro

Name Operation Operand

[name] ENDFL 1filename ~
(0)

The ENDFL (end file load mode) macro ends the
mode initiated by the SETFL macro. The name of
the file to be loaded is the only parameter required,
and is the same as the name specified in the DTFIS
header entry for the file. The filename can be speci­
fied either as a symbol or in register notation. Regis­
ter notation is necessary to allow use of the macro in
a self-relocating program.

The ENDFL macro performs an operation similar to
CLOSE or CLOSER for a blocked file. It writes the
last block of data records, if necessary, and then
writes an end-of-file record after the last data re­
cord. Also, it writes any index entries that are need­
ed followed by dummy index entries for the unused
portion of the prime data extent.

Adding Records to a File

New records can be added to an existing ISAM file.
Each record is inserted in the proper place sequen­
tially by key. To provide this function specify ADD
or ADDRTR in the DTFIS 10ROUToperand.

The file may contain either blocked or unblocked
records, as specified by the DTFIS RECFORM ope­
rand. When the file contains blocked records, you
must provide ISAM with the location of the key field
provided through the DTFIS KEYLOC operand.
The records to be inserted are written one record at

208 DOS/VS Supervisor & I/O Macros

a time. The records must contain a key field in the
same location as the records already in the file.
Whenever the addition of records follows sequential
retrieval (ADDRTR), the macro ESETL must be
issued before a record is added. Two macros-­
WRITE and WAITF--are used in a program to actu­
ally add records to a file.

WRITE Macro

Name Operation Operand

[name] WRITE 1filename ~ ,NEWKEY
(1)

The operand filename is the same name that is con­
tained in the DTFIS header entry. The name can be
specified either as a symbol or in register notation.

Before the WRITE macro is issued for unblocked
records, the program must store the record (key and
data) to be added into a work area specified in the
DTFIS WORKL operand. For blocked records, the
program must store only the data since the key is
assumed to be a part of the data. Before any records
transfer, ISAM checks for duplicate record keys. If
none are found, ISAM inserts the record into the
file.

To insert a record into a fil~, ISAM performs an
index search at the highest level. This search deter­
mines if the key of the record to be inserted is lower
or higher than the key of the last record in the file. If
it is lower, the record can be inserted, and searching
of the master index (if available), the cylinder index,
and the track index determines the appropriate loca­
tion to insert the record.

To add an entry to an unblocked file, an equal/high
search is performed in the prime data area of the
track. When such a condition occurs, the record is
read from the track and placed in the I/O area speci­
fied in the DTFIS 10AREAL operand. The two
records are then compared to check for duplicate
records. If a duplication is found, this information is
posted in the DTF table at filenameC. If none is
found, the appropriate record (in your work area) is
written directly to the track. The record (just dis­
placed from the track) in the I/O area is moved by
ISAM to your work area, and the next record on the
track is read into the I/O area. Then, the record in
the work area is written on the track. Succeeding
records are shifted until the last record on the track
is set up as an overflow record.

If the add 1/0 area (IOAREAL) is increased to
permit the reading or writing of more than one re­
cord at a time, an equal/high search is performed in
the prime data area of the track. When such a condi­
tion occurs, as many records as fit are read from the
track and placed in the 1/0 area (specified in the
DTFIS operand IOAREAL). The added record is
compared with existing records in the 110 area. If a
duplicate key is found, the condition is posted for
you in the DTF table at filenameC. If no duplicate is
found, the records are shifted in virtual storage, leav­
ing the record with the highest key remaining in the
work area. The other records are rewritten directly
onto the track. Any remaining record(s) on the track
are then read into the 110 area. This process contin­
ues until the last record on the track is set up as an
overflow record. It is then written into the appropri­
ate overflow area, and the track index entries are
updated. This area becomes the cylinder overflow
area, if CYLOFL is specified and the area is not
filled.

If the cylinder overflow area is filled, or if only an
independent area is specified by an EXTENT job
control statement, the end record is transferred to
the independent overflow area. If an independent
overflow area was not specified (or is filled) and the
cylinder area is also filled, no room is available to
store the overflow record. ISAM posts this condition
in the DTF table at filenameC. In all cases, ISAM
determines if room is available before any records
are written.

If records are to be added to a blocked file, a work
area must be specified by the DTFIS WORKL ope­
rand. Each added record must contain a key field in
the same location as the records already in the file.
You must specify the high-order position of the key
field (relative to the leftmost position of the logical
record). Use the DTFIS KEYLOC operand for this
purpose.

When a WRITE macro is issued, ISAM first locates
the correct track by referring to the necessary master
(if available), cylinder, and track indexes. Then, a
search on the key areas of the D ASD records on the
track is made to locate the desired block of records.
The block of records is read into the 110 area. If
IOREAL is included for reading and writing more
than one record on DASD at a time, several blocks
may be read into the 110 area.

ISAM then examines the key field within each logi­
cal record to find the exact position in which to in­
sert the new record and then checks for any dupli­
cate records. If a duplicate key exists the condition

is posted in filenameC. If the key of the record in­
serted (contained in WORKL) is low, the record is
exchanged with the record presently in the block.
This procedure continues with each succeeding re­
cord in the block until the last record is moved into
the work area. ISAM then updates the key area of
the DASD record to reflect the highest key in the
block. If IOAREAL was included, succeeding blocks
in the 110 area are also updated. The block (or
blocks) is then written back onto DASD. The re­
maining blocks on the track are similarly processed
until the last logical record on the track is moved
into the work area. This record (set up as an over­
flow record with the proper sequence-links) is then
moved to the overflow area. The indexes are updat­
ed and ISAM t:eturns to the program for the next
record to be added. If the overflow area is filled, the
information is posted in filenameC.

If the proper track for a record is an overflow track
(determined by the track index), ISAM searches the
overflow chain and checks for any duplication. If no
duplication is found, ISAM writes the record
(preceded by a sequence-link field in the data area
of the DASD record) and adjusts the appropriate
linkages to maintain sequential order by key. The
new record is written in either the cylinder overflow
area or an independent overflow area. If these areas
are filled, this condition is posted in filenameC.

If the new record is higher than all records presently
in the file (end-of-file), ISAM checks to determine if
the last track containing data records is filled. If it is
not, the new record is added, replacing the end-of­
file record. The end-of-file record is written in the
next record location on the track, or on the next
available prime data track. Another track must be
available within the file limits. If the end-of -file re­
cord is the first record on any track, the new record
is written in the appropriate overflow area. After
each new record is inserted in its proper location,
ISAM adjusts all indexes affected by the addition.

Random Retrieval of Records

Records in an ISAM file can be retrieved in random
order for processing andlor updating. Retrieval must
be specified in the DTFIS with the operand
IOROUT=RETRVE or IOROUT=ADDRTR. Ran­
dom processing must be specified in the DTFIS with
the operand TYPEFLE=RANDOM or
TYPEFLE=RANSEQ.

Because random reference to the file is by record
key, your program must supply the key of the de-

Part 4. Indexed Sequential Access Method 209

sired record. To do this, the key must be stored in
the key field specified by the DTFIS KEY ARG ope­
rand. The specified key designates both the record to
be retrieved and the record to be written back into
the file in an updating operation. Adding and updat­
ing should not be interspersed. Records that are add­
ed to a file (between the READ and WRITE macros
for a particular record to be updated) can result in a
lost record and a duplicate key.

The DTFIS RECSIZE operand should specify the
same value as entered at load time. If these values
differ, no error will result; however, the RECSIZE
from the load DTFIS is used. The necessary inform­
ation for a retrieval operation comes from the For­
mat 2 label and not the RETR VE operand in the
DTFIS.

READ Macro

Name Operation Operand

[name] READ ~ilename (,KEY
(1)

The READ macro causes ISAM to retrieve the speci­
fied record from the file. This macro requires two
parameters. The first parameter specifies the name
of the file from which the record is to be transferred
to virtual storage. This name is the same as the name
specified in the DTFIS header entry for the file and
can be specified as a symbol or in register notation.
The second parameter must be the word KEY.

To locate a record, ISAM first searches the indexes
to determine the track on which the record is stored
and then searches the track for the specific record.
When the record is found, ISAM transfers it to the
I/O area specified by the DTFIS 10AREAR ope­
rand. The ISAM routines also move the record from
the I/O area to the specified work area if the
WORKR operand is included in the DTFIS.

When records are blocked, ISAM transfers the block
that contains the specified record to the I/O area. It
makes the individual record available for processing
either in the I/O area or in the work area (if speci­
fied). For processing in the I/O area, ISAM supplies
the address of the record in the register specified by
the DTFIS IOREG operand. The ID of the record
can be referenced using filenameG. A W AITF ma­
cro must follow a READ macro.

210 DOS/VS Supervisor & I/O Macros

WRITE Macro

Name Operation Operand

}
[name] WRITE ~ilename ~ ,KEY

(1) ,

The WRITE macro with the parameter KEY is used
for random updating. It causes ISAM to transfer the
specified record from virtual storage to DASD stor­
age. This macro requires two parameters. The first
parameter specifies the name of the file to which the
record is transferred. The specified name is the same
as that used in the DTFIS header entry and in the
preceding READ macro. The name can be specified
as a symbol or in register notation. The second par­
ameter must be the word KEY.

ISAM rewrites the record following a READ macro
for the same file. The record is updated from the
work area (if one is specified) or from the I/O area.
The key need not be specified again ahead of the
WRITE macro. A W AITF macro must follow a
WRITE macro.

WAITFMacro

Name Operation Operand

[name] WAITF "'ilename (
(1)

The W AITF macro is issued to ensure that record
transfer is completed. Filenname is the same name as
that used in the DTFIS header entry, and can be
specified as a symbol or in register notation.

This macro must be issued before your program at­
tempts to process an input record which has been
read or to build another output record for the desig­
nated file. The program does not regain control until
the previous transfer of data is complete, unless
ERREXT = YES is specified in the DTFIS and an
error occurs. In this case, the ERET macro should be
issued to handle the error and complete the transfer
of data.

The W AITF macro posts any exceptional conditions
in the DTFIS table at filenameC. The W AITF ma­
cro applies to the functions described in Adding
Records to a File and Random Retrieval of
Records, above.

Sequential Retrieval of Records

Records of an ISAM file can be retrieved in sequen­
tial order by key for processing and/or updating.
The DTFIS IOROUT=RETRVE operand must be
specified. Sequential processing must be specified in
the DTFIS TYPEFLE=SEQNTL or RANSEQ ope­
rand.

Although records are retrieved in order by key, se­
quential retrieval can start at a record in the file
identified either by key or by the ID (identifier in
the count area) of a record in the prime data area.
Sequential retrieval can also start at the beginning of
the logical file. You must specify, in SETL, the type
of reference you use in your program.

Whenever the starting reference is by key and the
file contains blocked records
(RECFORM=FIXBLK), you must also provide
ISAM with the position of the key field within the
records. This is specified in the DTFIS KEYLOC
operand. To search for a record, ISAM first locates
the correct block by the key in the key area of the
DASD record. The key area contains the key of the
highest record in the block. ISAM then examines the
key field within each record in the block to find the
specified record. As with random retrieval, the REC­
SIZE operand should specify the same number as
indicated when the file was loaded.

SETLMacro

Name Operation Operand

[name] SETL {mename} ,
fdMmel (r) (r)

KEY
BOF
GKEY

The SETL (set limits) macro initiates the mode for
sequential retrieval and initializes the ISAM routines
to begin retrieval at the specified starting address.
The first operand (filename) specifies the same name

as that used in the DTFIS header entry, as a symbol
or in register notation. Register notation is necessary
if the macro is to be used in a self -relocating pro­
gram.

The second operand specifies where processing is to
begin.

If you are processing by the record ID, the operand
idname or (r) specifies the symbolic name of the
8-byte field in which you supply the starting (or
lowest) reference for ISAM use. This field contains
the information shown in Figure 4-10.

If processing begins with a key you supply, the sec­
ond operand is KEY. The key is supplied in the field
specified by the DTFIS KEY ARG operand. If the
specified key is not present in the file, an indication
is given at filenameC.

BOF specifies that retrieval is to start at the begin­
ning of the logical file.

Selected groups of records within a file containing
identical characters or data in the first locations of
each key can be selected by specifying GKEY
(generic key) as the second operand. GKEYallows
processing to begin at the first record (or key) within
the desired group. You must supply a key that iden­
tifies the significant (high order) bytes of the re­
quired group of keys. The remainder (or insignifi­
cant) bytes of the key must be padded with blanks,
binary zeros, or bytes lower in collating sequence
than any of the insignificant bytes in the first key of
the group to be processed. For example, a GKEY
specification of D6420000 would permit processing
to begin at the first record (or key) containing
D642xxxx, regardless of the characters represented
by the x's. Your program must determine when the
generic group is completed. Otherwise, ISAM contin­
ues through the remainder of the file.

Note: If the search key is greater than the highest
key on the file, the filename status byte is set to
X'10' (no record found).

Part 4. Indexed Sequential Access Method 211

I

I

Byte Identifier Contents in Hexadecimal Information

0 m 02-F5 Number of the extent in which the starting record is located

1-2 bb 0000 (disk) Always zero for disk

0000-0009 (2321) Cell number for data cell

3-4 cc Cylinder number for disk:
OOOO-OOC7 (2311, 2314, 2319) for 2311, 2314, 2319 :0-199
0000-0193(3330,3333) for 3330, 3333: 0-403
0000-015B (3348 model 35) for 3340 with 3348 model 35: 0-347
0000-02B7 (3348 model 70) for 3340 with 3348 model 70: 0-695

0000-1309 (2321) Subcell (byte 3) and strip (byte 4) for data cell
Note: The last four strips on each cell are reserved for alternate
tracks

5-6 hh 0000-0009 (2311) Head position for disk
0000-0013(2314,2319)
0000-0012(3330,3333)
OOOO-OOOB (3340)

0000-0413 (2321) Cylinder (byte 5) and head (byte 6) for data cell

7 r 01-FF Record location

Figure 4-10 Field Supplied for SETL Processing by Record ID

GET Macro bois or in register notation. The first parameter is the

Name Operation Operand

[name] GET ~ilename f
(1)

The GET macro causes ISAM to retrieve the next
record in sequence from the file. It can be written in
either of two forms, depending on where the record
is to be processed.

The first form is used if records are to be processed
in the I/O area (specified by the DTFIS IOAREAS
operand). The only required parameter is the name
of the file from which the record is to be retrieved.
This is the same name as that specified in the DTFIS
header entry and can be specified as a symbol or in
register notation. ISAM transfers the record from
the file to the I/O area after which the record is
available for the execution of the next instruction in
your program. The key is located at the beginning of
IOAREAS and the register (IOREG) points to the
data. If the records are blocked, ISAM makes each
record available by supplying its address in the regis­
ter specified by the DTFIS IOREG operand. The
key is contained in the record.

The second form of the GET macro is used if re­
cords are to be processed in a work area (specified
by the DTFIS WORKS operand). It requires two
parameters, both of which can be specified as sym-

212 DOS/VS Supervisor & I/O Macros

name of the file, and the second is the name of the
work area. When using register notation, workname
should not be preloaded into register 1.

If the records are blocked, each GET that transfers a
block of records to virtual storage will also write the
preceding block back into the file in its previous
location. GET writes the preceding block if a PUT
macro is issued for at least one of the records in the
block. If no PUT macro was issued, updating is not
required for the block and GET does not rewrite the
block. Whenever an unblocked record is retrieved
from the prime data area, ISAM supplies the ID of
that record in the field addressed by filenameH. If
blocked records are specified, ISAM supplies the ID
of the block.

PUT Macro

Name Operation Operand

[name] PUT !filename!
(1)

The PUT macro is used for sequential updating of a
file, and causes ISAM to transfer records to the file
in sequential order. PUT returns a record to a file. It
may be written in either of two forms, depending on

where records are processed. A GET macro must
precede each PUT macro.

The first form is used if records are processed in the
I/O area (specified by the DTFIS 10AREAS ope­
rand). It requires only the name of the file to which
the records are to be transferred. The name is the
same as that used in the DTFIS header entry and can
be specified in register notation or as a symbol.

The second form is used if records are processed in a
work area. It requires two parameters, both of which
can be specified either as a symbol or in register
notation. The first parameter is the name of the file,
and the second is the name of the work area. When
using register notation, workname should not be
loaded into register 1. The work area name may be
the same as that specified in the preceding GET for
the file, but this is not required. ISAM moves the
record from the work area specified in the PUT ma­
cro to the I/O area specified for the file in the
DTFIS 10AREAS operand.

When the records are unblocked, each PUT writes a
record back onto the file in the same location from
which it was retrieved by the preceding GET for the
file. Thus, each PUT updates the last record that was
retrieved from the file. If some records do not re­
quire updating, a series of GETs can be issued with­
out intervening PUTs. Therefore, it is not necessary
to rewrite unchanged records.

When the records are blocked, PUTs do not transfer
records to the file. Instead, each PUT indicates that
the block is to be written after all the records in the
block are processed. When processing for the block
is complete and a GET is issued to read the next
block into virtual storage, the GET also writes the
completed block back into the file in its previous
location. If a PUT is not issued for any record in the
block, GET does not write the completed block. The
ESETL macro writes the last block processed, if
necessary, before the end-of-file.

ESETL Macro

Name Operation Operand

[name] ESETL !filename \
(1)

The ESETL (end set limit) macro ends the sequen­
tial mode initiated by the SETL macro. Filename
must be the same as the name specified in the
DTFIS header entry. It can be specified as a symbol

or in register notation. If the records are blocked,
ESETL writes the last block back if a PUT was is­
sued. Register notation is necessary if the macro is to
be used in a self -relocating program.

Notes: If ADDRTR and/or RAN SEQ are specified
in the same DTF, ESETL should be issued before
issuing a READ or WRITE; another SETL can be
issued to restart sequential retrieval. Sequential proc­
essing must always be terminated by issuing an ES­
ETL macro. For additional information about ES­
ETL, see the DASD Track Protection Macros sec­
tion of the Multitasking Macros chapter.

Completion Macros

CLOSE and CLOSER Macros

Op Operand

for self-relocating programs

CLOSER {fllenamel}
(rI)

[, {fllenamel} ... , {fllenamen}]
(r2) (rn)

for programs that are not self-relocating

CLOSE {ftlenameI}
(d)

[- {fllename2} ... '{ fllenamen}]
(r2) (rn)

The CLOSER or CLOSE completion macro must be
used after the processing of a file is completed.
These macros end the association of the logical file
declared in your program with a specific physical file
on aDASD.

The CLOSER or CLOSE macro deactivates any file
that was previously opened. A file may be closed at
any time by issuing this macro. Once a file is closed,
no further commands can be issued for the file un­
less it is reopened.

If a load or load extension file is not closed, the
format-2label associated with the file is not updated
with the information that is in the DTF. Further
processing of such a file may give unpredictable re­
sults.

Part 4. Indexed Sequential Access Method 213

When CLOSER is specified, the symbolic address
constants that CLOSER generates from the parame­
ter list are self -relocating. When CLOSE is specified,
the symbolic address constants are not self­
relocating.

To write the most efficient code in a multiprogram­
ming environment it is recommended that CLOSER
be used.

Enter the symbolic name of the file (assigned in the
DTF header entry) in the operand field. A maximum
of 16 files may be closed by one CLOSE or CLOS­
ER by entering additional filename parameters as
operands. Alternately, you can load the address of
the filename in a register and specify the register

214 DOS/VS Supervisor & I/O Macros

using ordinary register notation. The high-order 8
bits of this register must be zeros. For CLOSER, the
address of filename may be preloaded into any of
the registers 2-15. For CLOSE, the address of file­
name may be preloaded into register 0 or any of the
registers 2-15.

Note: If you use register notation, we recommend
that you follow the standard practice of using only
registers 2-12.

See the Label Processing chapter for information on
label processing done by the CLOSE or CLOSER
macro.

PARTS

VIRTUAL STORAGE
ACCESS METHOD

Concepts of VSAM

Control Block Generating Macros

ACB
EXLST
RPL

Control Block Manipulating Macros

GENCB
MODCB
SHoweB
TESTCB

Imperative Macros

CLOSE
ENDREQ
ERASE
GET
OPEN
POINT
PUT
TCLOSE

CONCEPTS of VSAM

VSAM has key-sequenced and entry-sequenced
files. The primary difference between the two is the
sequence in which data records are stored.

Records are stored in a key-sequenced file in the
collating sequence of a key field, such as employee
number or invoice number. Each record must have a
unique value in its key field. Like ISAM, VSAM uses
an index to access records in a key-sequenced file.
VSAM also allows free space to be distributed
throughout the file so records can be inserted physi­
cally into the file. Therefore, separate overflow
chains are not needed.

Records are stored in an entry-sequenced file in the
physical sequence in which they are entered
(loaded). New records are stored at the end of the
file and records cannot be physically deleted or
changed in length. An entry-sequenced file does not
have an index.

Records in a key-sequenced file are accessed by
their key fields, using the index of the file. This is
called keyed access.

A record in an entry-sequenced file is addressed by
its displacement, in bytes, from the beginning of the
file. This is called addressed access. This displace­
ment is the Relative Byte Address (RBA) of the
record. The RBA does not depend on the location
(cylinder and track) of the record on a direct-access
volume. For relative byte addressing, VSAM consid­
ers the control intervals in the file to be contiguous,
as though the file were stored in virtual storage be­
ginning at address O. When a record is loaded or
subsequently added to an entry-sequenced file,
VSAM indicates its RBA. You must keep track of
the RBAs of the records to gain access to them di­
rectly.

Addressed access can also be used for a key­
sequenced file, but previous keyed insertion, dele­
tion, or update can change the RBAs of records.
Therefore, the user may have to keep track of RBA
changes if he wants to use addressed access. (VSAM
passes back the RBA of each record retrieved, up­
dated, added, or deleted.)

Fixed-length or variable-length records can be proc­
essed by VSAM. Record blocking is completely con­
trolled by VSAM, so the user is not concerned with

whether records are blocked or unblocked. VSAM
also adds and removes control information to the
records automatically, so you access only the data
itself. You supply an area for VSAM to move re­
cords to and from its I/O buffer (move mode) or
you supply four bytes in which VSAM will place the
address of the records in its I/O buffer (locate
mode).

VSAM stores the records of each type of file in a
logical unit called a control interval. A control
interval is a continuous area of direct processing
storage in which VSAM stores data records and con­
trol information describing them. It is the unit of a
file that VSAM transfers to and from direct process­
ing storage and contains one or more physical
blocks. Control intervals are grouped together in a
logical unit called a control area. Control intervals
and control areas and their relationship to the index
and distributed free space of a key-sequenced file
are explained in detail in the DOS/VS Data Man­
agement Guide.

Types of Processing

Keyed access allows the following types of process­
ing:

• Sequential

• Skip Sequential

• Direct

With sequential processing, records are retrieved or
stored in ascending key sequence starting from the
beginning of the file or another position that you
select. You do not have to supply a search argument
(key) for VSAM to process the records.

With direct processing, records are retrieved or
stored by the search argument (key) you supply.
Records can be processed in any order, without re­
gard to the key sequence of records processed before
or after.

With skip sequential processing, a group of records
can be retrieved or stored sequentially (in ascending
key sequence) and then you can skip to a different
part of the file and process another group of records
sequentially. Skip sequential combines features of
both sequential and direct processing.

Part 5. Virtual Storage Access Method 217

Addressed access allows the following types of proc­
essing:

• Sequential
• Direct

With sequential processing, records are retrieved
from a key-sequenced file or an entry-sequenced file
in ascending RBA sequence or stored at the end of
an entry-sequenced file in the order they are en­
tered.

With direct processing, records are retrieved from a
key-sequenced file or an entry-sequenced file by the
search argument (RBA) you supply. Records can be
added only to the end of an entry-sequenced file
with direct processing.

Figure 5-1 summarizes the use of keyed and ad­
dressed access to retrieve, add, update, or erase re­
cords in key-sequenced and entry-sequenced files.

Types of Macros

VSAM must always run virtual. You code macros to:

• Specify an Access-Method Control Block
(ACB) for the file you are going to process,
specify a list of addresses of your own exit rou­
tines (EXLST), and specify a list of parameters
for a particular request for access (RPL)

• Generate, modify, display, and test fields in an
ACB, EXLST, or RPL

• Open and close an ACB to connect and discon­
nect the processing program and the file

218 DOS/VS Supervisor & I/O Macros

• Request access to the file

In the VSAM macros, you can code an address
(addr) as a symbolic name that generates a relocata­
ble A-type address constant or as a register. You can
code a value (n) as any absolute expression, except
for a self-defining character term. You can code a
name according to the rules of the assembler.

Some operands of the VSAM macros can have more
than one parameter. These operands are shown with
parentheses around the parameters. For example, the
format of the MACRF operand of the ACB macro is
shown as follows:

MACRF = (option[,option ...])

This means that you can code the operand, if it has
only one parameter, with or without parentheses
around the parameter:

MACRF = option

MACRF= (option)

However, if the operand is coded with two or more
parameters, enclosing parentheses are required:

MACRF = (option,option, ...)

System control programmers can gain addressed
access to the index of a key-sequenced file by open­
ing the index without the data. This chapter general­
ly refers to access as access to a file, but access to an
index only is also included.

GET for
Macros Used Update GET for

and Update
Type of PUT for and
Request GET PUT Update ERASE

Type of Type of Type of Retrieve Add Update Delete
File Access Processing Records Records Records Records

sequential yes yes yes yes
keyed skip

sequential yes yes yes yes
key direct yes yes yes yes
sequenced

sequential yes no yes* yes
addr.

direct yes no yes* yes

entry sequential yes to end yes* no
sequenced addr.

direct yes to end yes* no

* The length of the records cannot be changed.

Figure 5-1 Types of processing for keyed and addressed access

Part 5. Virtual Storage Access Method 219

CONTROL BLOCK GENERATING MACROS

The macros ACB, EXLST, and RPL produce an
Access-Method Control Block (ACB), a user
EXLST, and a Request Parameter List (RPL) when
the macros are assembled. The GENCB macro can
be used in place of these macros to generate an
ACB, EXLST, or RPL when the processing program
is executed.

ACB Macro

Assembly of the ACB macro produces an Access­
Method Control Block (ACB). The ACB identifies
the key-sequenced file or the entry-sequenced file
that you want to process and indicates the types of
requests that you want to make. The ACB is similar
to a DTF in that it identifies the file to be processed.
However, you specify most information (such as key
length or record format) about the file in the DE­
FINE statement of Access Method Services. That
information then resides in the VSAM catalog and is
brought into virtual storage when the ACB is
opened.

Name Operation Operand

name I ACB [BUFND=n] [,BUFNI=n]
[,BUFSP=n]
['DDNAME=filename l]
[,EXLST=addr]
[,MACRF=(option
[,option ...])]
[,PASSWD=addr]
[,STRNO=n]

The name of the ACB macro provides the symbolic ad­
dress of the ACB. If you omit the DDNAME operand,
the name is also used as the DLBL filename.

BUFND=n
This operand specifies the number of buffers to be
used for control intervals containing data records.
Each buffer is the size of a data control interval. The

I minimum number is one plus the number specified
for the STRNO operand. (If you omit STRNO,
BUFND must be at least two, because the default
for STRNO is one). If the BUFND operand is omit­
ted, the default is two, the smallest number of data
buffers allowed.

VSAM will increase or decrease (not below the min­
imum required) the number of data buffers you spec­
ify if the amount of virtual storage available for

220 DOS/VS Supervisor & I/O Macros

buffers differs from the storage requirements indi­
cated by the BUFND and BUFNI operands. See the
BUFSP operand below for an explanation.

BUFNI=n
This operand specifies the number of buffers for
index control intervals (index records). Each buffer
is the size of an index control interval. The minimum
number is the number specified for the STRNO ope­
rand. (If you omit STRNO, BUFNI must be at least
one, because the default for STRNO is one). If the
BUFNI operand is omitted, the default is one, the
smallest number of index buffers allowed.

VSAM will increase or decrease (not below the min­
imum required) the number of index buffers you
specify if the amount of virtual storage available for
buffers differs from the storage requirements indi­
cated by the BUFND and BUFNI operands. See the
BUFSP operand below for an explanation.

BUFSP=n
This operand specifies the size, in bytes, of an area
for data and index buffers. VSAM issues a GETVIS
macro to obtain the buffer area in your processing
partition. It must be at least as large as the buffer
space size recorded in the catalog entry of the file or
the ACB will not be opened.

If the BUFSP operand is omitted, the buffer space
size will be the larger of (1) the size recorded in the
catalog or (2) a size determined from the value spec­
ified for BUFND and BUFNI. The size recorded in
the catalog was specified by the BUFFERSP ACE
parameter in the DEFINE statement of Access Me­
thod Services. If that parameter was omitted when
the file was defined, a default value was set in the
catalog by Access Method Services. This default
value, the minimum amount of buffer space allowed
by VSAM, is enough space for two data control in­
tervals and one index control interval.

If the values you code for BUFND, BUFNI, and
BUFSP are not consistent with each other, VSAM
increases or decreases the number of buffers to con­
form to the size of the buffer area.

If BUFSP is greater than the minimum requirements
and greater than the BUFND and BUFNI require­
ments, the extra space will be allocated between data
and index buffers as follows:

I

• The ACB indicates direct processing only:
BUFND and BUFNI are allocated as specified.
Then, all additional space is allocated to index
buffers.

• The ACB indicates sequential processing:
BUFND and BUFNI are allocated as specified.
Then, one additional buffer is allocated to the
index and the remaining space is allocated to
data buffers. If there is still space remaining, and
it is insufficient for a single data buffer, it will be
allocated to an index buffer.

If BUFSP is greater than the minimum requirements,
but less than the BUFND and BUFNI requirements,
BUFND and BUFNI will be reduced as follows in
order to comply with BUFSP:

• The ACB indicates direct processing only:
BUFND is reduced first. Then, if required, BUF­
NI is reduced until space requirements comply
withBUFSP.

• The ACB indicates sequential processing: Re­
duce the number of index buffers to not less
than one more than the minimum number. Then,
if required, reduce the number of data buffers to
not less than the minimum number. If the space
required for these buffers still exceeds BUFSP,
reduce the number of index buffers to the mini­
mum number.

If you provide your own pool of I/O buffers for
control-interval (CNV) access (MACRF=UBF), the
BUFND, BUFNI, and BUFSP operands have no
effect. The AREA and AREALEN parameters in
the RPL define the area for user buffers.

DDNAME= f"dename
This operand specifies a character string of up to
eight bytes and is the same as the filename parame­
ter specified in the DLBL statement that defines the
key-sequenced file or the entry-sequenced file to be
processed. If you omit this operand, you must speci­
fy the DLBL filename as the name (label) of the
ACBmacro.

EXLST= addr
This operand specifies the address of a list of user
exit-routine addresses. The list is generated by the
EXLST macro (or the GENCB macro) and can be
omitted if you have no exit routines. If you use the
EXLST macro, this operand will contain the symbol
(address) from the label field of the EXLST macro.
If you use the GENCB macro, this operand will con­
tain the address of the EXLST returned by GENCB

in register 1. Omitting this operand indicates that
you have no user exit routines.

MACRF=(option(,option, •..])
This operand specifies the types of access to be
gained to the file. Options are arranged in four
groups, and each group has a default value. You can
specify one or more options for each group, in any
combination, except as noted in parentheses. How­
ever, you cannot specify both NUB and UBF. You
must specify all types of access you are going to use,
whether you will use them concurrently or by
switching from one to another.

Option

KEY

ADR

CNV

SEQ

DIR

SKP

IN

OUT

NUB

UBF

Meaning

Keyed access (key-sequenced file with
index only).

Addressed access

Control-interval access

Sequential processing

Direct processing

Skip sequential processing (keyed proc­
essing only)

Retrieve records only

Retrieve, insert, add-to-end, or update
records (keyed access); retrieve or add­
to-end (addressed access)

No user buffers; VSAM supplies buffers
for I/O operations (KEY, ADR, and
CNV access).

User buffers (only CNV access can be
specified). VSAM will read and write
control intervals in a buffer you supply. It
is pointed to by the AREA parameter of
the RPL.

PASSWD=addr
This operand specifies a pointer to a length byte
followed by the 8-byte password required to author­
ize the type of access you have specified to the file.
If you omit the operand and a password is required,
the console operator can supply it. If the length byte
is zero, the operand is considered omitted. If the
length of the password is less than eight bytes,
OPEN pads it with blanks to eight bytes. If the

. length of the password is greater than eight bytes,
OPEN uses only the first eight bytes.

STRNO=n
This operand indicates how many requests requiring
concurrent data-set positioning VSAM is to be pre­
pared to handle. A request is defined by a given

Part 5. Virtual Storage Access Method 221

request parameter list or chain of request parameter
lists. For convenience, you could specify for STRNO
the total number of request parameter lists or chains
of parameter lists that you are using to define re­
quests. (VSAM needs to remember only one posi­
tion for a chain of request parameter lists). Howev­
er, each position beyond the minimum number that
VSAM needs to be able to remember requires addi­
tional virtual-storage space for:

• A minimum of one data I/O buffer and, for
keyed access, one index I/O buffer (the size of
an I/O buffer is the control interval size of a
data set)

• Internal control blocks and other areas (about
600 bytes for addressed access: about 1200
bytes for keyed access)

The internal control blocks and other areas are fixed
in real storage, so 600 or 1200 bytes of real storage
is tied up for each position beyond the minimum. To
save this space, you should specify only the number
of requests that require concurrent positioning.

VSAM remembers its position in the data set for any
sequential or update request. For example, sequen­
tial access depends on VSAM's being able to deter­
mine the location of the next record from the loca­
tion of the present record. Updating or deleting a
record depends on VSAM's remembering its location
after you retrieve it. Also, processing a record in line
I/O buffer requires VSAM to remember its location
in the buffer.

Even read-only direct retrieval into a work area can
make use of positioning because you may modify the
type of access from direct to sequential. (You speci­
fy for VSAM to remember its position for a direct
request by OPTCD=NSP in the RPL macro.

The ENDREQ macro enables you to cause VSAM
to forget the position for a request so it can remem­
ber the position for another request. If the number
specifed for STRNO isn't as large as the number of
request parameter lists or chains of request parame­
ter lists, you may have to issue the ENDREQ macro.

EXLST Macro

Assembly of the EXLST macro produces an optional
list of addresses of user exit routines. An exit routine
is entered when VSAM detects the condition (such
as I/O error) that the routine is supposed to handle.

222 DOS/VS Supervisor & I/O Macros

The Exit List (EXLST) is associated with an ACB
by the EXLST operand of the ACB macro. Two or
more ACBs can refer to the same EXLST.

The number of exit addresses in a list is variable and
depends on the number of operands you code. You
cannot add addresses to the list after it is generated,
but you can change an address or the indication of
whether an exit is active (with the MODCB macro).

Name Operation Operand

[name] EXLST [EODAD=(addr

[, {~I N}][,LD]

[,EXCPAD=(addr
[, {~I N}][,LD]

[, LERAD=(addr

[, {~ I N}][,LD]

[,SYNAD=(addr
[, {A I N}][,LD]1

The address must always be specified first, but L can be
specified before A or N.

The common optional subparameter {A I N} ,of
which A is the default, indicates whether an exit is
active (A) or not active (N). VSAM does not enter a
routine whose exit is marked not active. The subpar­
ameter L indicates that the address specified gives
the location of an 8-byte field containing the name
of an exit module in the core image library that
VSAM is to load for exit processing. If L is omitted,
the address gives the entry point of the exit routine
in virtual storage.

When VSAM enters an exit routine, register 13 con­
tains the address of a 72-byte save area that VSAM
is already using. If the exit routine returns to VSAM
it must not have altered the contents of the save area
or of register 13. It can, however, use all other regis­
ters without saving their contents (as long as the
return address in register 14 is saved).

EODAD=(address[,{~ I N}][,L])
This operand specifies the address of a routine that
finishes the processing of a file when VSAM reaches
the end of the file. VSAM exits to this routine when
there is no more data after a GET request or a PUT
for update request when you have specified control­
interval access and user buffers. With addressed
access, there are no more records in entry sequence;
with keyed access, there are no more records in key
sequence.

If you do not have this exit routine, VSAM exits to
the routine for analyzing logical errors (see the
LERAD operand). If you do not have the LERAD

exit routine, VSAM returns to your processing pro­
gram at the instruction following the last executed
instruction: register 15 contains X'08', and register 1
contains the address of the RPL. Your program can
examine the feedback field in the RPL with the
SHOWCB or TESTCB macro to discover that
VSAM reached the end of the file. See "Requesting
Access to Files", later in this chapter, for the return
codes for logical errors.

When VSAM exits to the EODAD routine, the con­
tents of the registers are:

Register
o
1
2-12

13

14
15

Contents
Unpredictable
Address of the RPL
Same as when the request macro
was issued
Address of user's 72 byte save area.
(It must be preserved for return to
VSAM).
Address of return to VSAM
Address of the exit routine

If the EODAD exit routine returns to VSAM and
you issue another GET macro, VSAM enters the
EODAD exit routine again. This can cause your
program to loop. If, however, you reach end-of-file
during keyed access and then change to addressed
access, additional records may be retrieved if they
are physically after the last record in key sequence
(because of a control interval or control area split).

EXCPAD=(address[,!! I NJ)[,L])
This operand specifies the address of a routine that
will receive control from VSAM when an I/O opera­
tion is started. It is intended for use by programmers
of utilities and systems. By supplying an EXCP AD
exit routine, you can overlap VSAM I/O operations
with execution of your processing program.

The exit routine must return to VSAM, so that
VSAM can return to you mainline program at the
instruction following the I/O request macro.

When VSAM exits to the EXCP AD routine, the
contents of the registers are:

Register
o
1

Contents
Unpredictable
Address of a parameter list with the
following contents:
X'O' address of the RPL
X'4' address of the CCB
X'8' EXCPAD lock word

2-13

14
15

Same as when the request macro
was issued. (Register 13 points to
the problem program's save area.)
Address of return to VSAM
Address of the exit routine

The EXCPAD routine can test the traffic bit of the
CCB to determine whether the VSAM I/O opera­
tion has been completed. However, the contents of
the CCB cannot be changed because it will be used
byVSAM.

The EXCP AD lock word may be zero or it may
contain an address. If the lock word is zero, the
EXCP AD routine may not issue a request to insert a
record or update a record when the length will
change. When the lock word is not zero, the request
being executed may cause a control-interval or
control-area split, and a system deadlock could result
if the EXCP AD routine i:p.serted or changed the
length of a record. The lock word will contain the
address of the RPL for the active request.

The EXCP AD routine may be entered more than
once for a VSAM request, because a request may
require more than one I/O operation.

LERAD=(address[,{! I Nl)[,L])
This operand specifies the address of a routine that
analyzes logical errors encountered by VSAM during
execution of a GET, PUT, POINT, or ERASE ma­
cro. The routine determines what error has occurred
by issuing a SHOWCB or TESTCB macro to exam­
ine the feedback field (FDBK) in the RPL. The con­
tents of FDBK will be OOOOOOxx, where xx is the
error code which indicates the type of error. See
Requesting Access to Files, later in this chapter, for
the error codes for logical errors.

If the routine cannot correct the error, it should ei­
ther:
• Close the file or index, or

• Return to VSAM (which will return to your
processing program at the instruction following
the last executed instruction)

If you do not have the LERAD exit routine and
VSAM encounters a logical error, VSAM returns to
your processing program at the instruction following
the last executed instruction: register 15 contains
X'08', and register 1 contains the address of the
RPL. Your program can examine the feedback field
in the RPL with the SHOWCB or TESTCB macro
to identify the logical error. (See Requesting Access
to Files, later in this chapter, for the error codes for
logical errors.)

Part 5. Virtual Storage Access Method 223

When VSAM exits to the LERAD routine, the con­
tents of the registers are:

Register
o
1
2-12

13

14
15

Contents
Unpredictable
Address of the RPL
Same as when the request macro
was issued
Address of user's 72-byte save area.
(It must be preserved for return to
VSAM).
Address to return to VSAM
Address to enter the exit routine

SYNAD=(addressl,{~ I NIU,L))
This operand specifies the address of a routine that
can anlyze physical I/O errors, detected by VSAM
during execution of a GET, PUT, POINT, ERASE,
or CLOSE macro, that the system error routine was
unable to correct. The exit routine determines what
error has occurred (reading or writing data or index)
by issuing a SHOWCB or TESTCB macro to exam­
ine the feedback field (FDBK) in the RPL. The con­
tents of FDBK will be OOOOOOxx, where xx is the
error code which indicates the type of error. See
"Requesting Access to Files", later in this chapter,
for the error codes for physical errors.

If the routine cannot correct the error, it should
close the file and end the job or do other processing.
If the error occurred while VSAM was closing the
file or index, and if another error occurs after the
exit routine issues a CLOSE macro, VSAM does not
exit to the routine a second time.

If the exit routine returns to VSAM, whether the
error was corrected or the file closed, VSAM drops
the request and returns to your processing program
at the instruction following the last executed instruc­
tion.

If you do not have this exit routine and VSAM de­
tects a physical error, VSAM returns to your proc­
essing program at the instruction following the last
executed instruction: register 15 contains X'OC', and
register 1 contains the address of the RPL. Your
program can examine the feedback field in the RPL
with the SHOWCB or TESTCB macro to identify
the physical error. (See "Requesting Access to
Files" for the error codes for physical errors.)

An error in transmitting the contents of a control
interval to an I/O buffer (read error) during the
execution of a sequential GET request positions
VSAM at the next control interval in key sequence
for keyed access or in entry sequence for addressed

224 DOS/VS Supervisor & I/O Macros

access. The next GET after the error will return the
first record from the control interval following the
one with the error. For processing an index, VSAM
is not positioned at the next index control interval,
and you should not attempt to process further.

Errors occurring during writing of a control interval
do not change positioning. When VSAM exits to the
SYNAD routine, the contents of the registers are:

Register

o
1

2-12

13

14

15

RPL Macro

Contents

Unpredictable

Address of the RPL

Same as when the request macro
was issued

Address of the user's 72-byte save
area. (It must be preserved for re­
turn to VSAM).

Address to return to VSAM

Address to enter the exit routine

Assembly of the RPL macro produces a Request
Parameter List (RPL). Each request must be defined
by an RPL or an chain of RPLs. Each request is
associated with a position in the file. There is one
position for a single RPL or a chain of RPLs.

Name Operation Operand

[name] RPL [ACB=addr] [,AREA=addr]

[,AREALEN=n]

[,ARG=addr]

[,KEYLEN =n]

[,NXTRPL=addr]

[,OPTCD=(option

[,option ...])] [,RECLEN =n

If the ACB specifies concurrent requests, either (1)
a single RPL or a chain of RPLs is supplied for each
concurrent request or (2) one request must be dis­
connected from its RPLs (by an ENDREQ macro)
before another concurrent request is issued. The
parameters required to access a record (such as the
address of the work area VSAM will move your re­
cords to) are in the RPL instead of in each action
macro (GET, PUT, etc.). The list does not indicate a
specific action (GET or PUT , for example); a single
RPL can be used, without modification, for different
actions. However, if you want to use the same RPL
for a different type of request (for both direct and
sequential processing, for example), you must modi-

fy the RPL (with the MODCB macro) each time you
change from one type of request to another.

ACB=addr
This operand specifies the Acccess-Method Control
Block (ACB) associated with the file you are gaining
access to. This operand is required, but you can
specify it through a MODCB macro when the pro­
gram is executed. The operand must be specified
before a request is issued against the RPL.

AREA = addr
This operand specifies the address of your I/O work
area to which VSAM moves the record
(OPTCD=MVE) for GET and PUT requests. You
process the record in this work area. If you process
the records in VSAM's I/O buffer (OPTCD=LOC),
this option contains the address of the record in the
I/O buffer (GET only).

When you specify user buffers (MACRF = UBF in
the ACB) for control-interval (CNV) access, AREA
specifies the address of a single I/O buffer. VSAM
uses the buffer to read and write control intervals.

~ALEN=n
This operand specifies the length of the work area.
For OPTCD=MVE, the work area must be large
enough to contain the largest record retrieved. For
OPTCD=LOC, the work area must be at least 4
bytes long to contain the address of the record in the
I/O buffer. For control interval access
(OPTCD=CNV), the work area must be at least the
size of a control interval.

ARG = addr
This operand specifies the address of a field that
contains the search argument (key for
OPTCD=KEY or RBA for OPTCD=ADR) for:

• Direct retrieval (GET)

• Skip sequential retrieval (GET)

• Sequential positioning (POINT)

With keyed access, the search argument may be a
full key or a generic key. If it is a generic key, you
must also specify its size in the KEYLEN operand.
To learn the RBA of a record to which you have
gained access sequentially or directly by key, you
can use the SHOWCB macro to display the RBA of
the last record processed. (See the section
"SHOWCB Macro" later in this chapter.)

When recors are inserted (PUT), VSAM obtains the
key from the record itself.

KEYLEN=n
When a generic key is used as a search argument
(OPTCD=GEN), this operand specifies the length
of the generic key in number of bytes. KEYLEN can
be any value from 1 to 255.

If, for example, the full key is 50 bytes long and
KEYLEN = lOis specified, VSAM uses the leftmost
10 bytes of the 50-byte key field for comparison
with the search argument. The length of the full key
is in the catalog. It can be obtained through the
KEYLEN parameter of the SHOWC~ macro. You
place the key (full or generic) in a field pointed to by
the ARG parameter.

NXTRPL=address
(Required for chaining request parameter lists.) You
can optionally define a single GET or PUT request
with two or more request parameter lists chained
together. Each list indicates a ,separate data record,
so that when you issue GET, for example, you cause
VSAM to retrieve two or more records.

The NXTRPL operand gives the address of the next
request .parameter list in a chain. Omit this operand
from the macro that generates the last RPL in the
chain. When you issue a request that is defined by a
chain of request parameter lists, indicate in the re­
quest macro the address of the first parameter list in
the chain.

Each request parameter list in a chain must have the
same OPTCD options. Having different options may
cause logical errors. You can't chain request parame­
ter lists for updating or deleting records - only for
retrieving records or storing new recQrds. You can't
pro~ess records in the I/O buffer with chained re­
quest parameter lists. (OPTCD=UPD, LOC is inval­
id for a chained request parameter list.)

With chained request parameter lists, a POINT, a
sequential or skip sequential GET, or a direct GET
with positioning requested (OPTCD=NSP) causes
VSAM to position itself at the record following the
record identified by the last request parameter list in
the chain.

OPTCD= (option(,option ...])
This operand specifies the type of access to be
gained to the file through the requests defined by
this RPL. Options are arranged in six groups, and
each group has a default value. You can specify only
one option in each group--if your ACB indicates
both sequential and direct processing, for example,
you must modify the RPL when you switch from one
to the other. However, the groups that are not re-

Part 5. Virtual Storage Access Method 225

quired are ignored. Thus you can use the same RPL
for a combination of requests (GET, PUT, POINT,
for example) without zeroing out the in applicable
options each time you go from one request to anoth­
er.

Option
KEY

ADR

CNV

SEQ
DIR
SKP

NUP

NSP

UPD

Meaning
Keyed access (key-sequenced file with
index only). You can change from keyed
to addressed access at any time without
positioning. If you change from keyed to
control-interval access, the results are
unpredictable. No error code will be is­
sued.
Addressed access (key-sequenced and
entry sequenced files). If you change
from addressed to keyed access, you
must reestablish positioning or the re­
quest will terminate with an error. If you
change from addressed to control inter­
val access, the results are unpredictable.
No error code will be issued.
Control-interval access (provided for
special applications such as utilities).
OPTCD=MVE is required. If you
change from control-interval to keyed
access, you must reestablish positioning
or the request will terminate with an er­
ror. If you change from control interval
to addressed access, the results are un­
predictable. No error code is issued.

Sequential processing.
Direct processing
Skip sequential processing (keyed access
only).

Request is not for update (you will not
update or delete a record you are re­
trieving; a record you are storing is
new). For a direct request, positioning
will be released.
For direct processing only, request is not
for update, and VSAM will be posi­
tioned at the next record for subsequent
sequential processing.
Request is for update; you must issue a
GET for update before you issue a PUT
for update or an ERASE. However, if
you supply your own buffers for
control-interval access, you can issue a
PUT for update without a preceding
GET.

226 DOS/VS Supervisor & I/O Macros

KGE

FKS

GEN

MVE

LOC

The search argument must equal the key
of the data record (keyed direct or skip
sequential retrieval or keyed sequential
pointing).
If the search argument does not equal
the key of a record the request applies
to the record with the next greater key
(key direct or skip sequential retrieval or
keyed sequential pointing).

The entire key is to be used for a search
argument (keyed direct or skip sequen­
tial retrieval or keyed sequential point­
ing).
A generic key is to be used for a search
argument (keyed direct or skip sequen­
tial retrieval or keyed sequential point­
ing: you specify the length of the gener­
ic key with the KEYLEN operand).

For retrieval and storage, VSAM moves
a data record between the I/O buffer
and your work area. MVE must also be
specified when you supply your own
buffers for control-interval access.
For retrieval, you can process the record
in VSAM's I/O buffer. VSAM will pass
you a pointer to the record in the buffer.
If you want to update the record, you
will have to move it to your work area
before issuing a PUT macro
(OPTCD=MVE).

RECLEN=n
This operand specifies the length of a data record
stored by a PUT request. For fixed length records,
the length need only be set once. For GET requests,
VSAM indicates the length of the record in this
field. To process a file with records of different
lengths you can examine the field with the
SHOWCB or TESTCB macro and modify it with the
MODCB macro.

Examples of ACB, EXLST, and RPL Macros

The following examples show specification of the
VSAM control blocks by using the ACB, EXLST,
and RPL macros. The control blocks are created at
assembly time. Default values will be supplied for
the parameters that are omitted. Note that the Filen­
ame of the file will be ACBAD, the label of the
ACBmacro.

ACBAD ABC EXLST=EXITS,PASSWD=PASS
BUFND=4,BUFNI=3,BUFSP=110
MACRF=(KEY,SEQ,DIR,OUT)

EXITS EXLST EODAD=(ENDUP,N),
LERAD=LOGERR,
SYNAD=(IOERR,L)

RPL ACB=ACBAD,AREA=WORK,

PASS DC
WORK DC
SEARCH DS

ARG=SEARCH,AREALEN=125,
OPTCD=(DIR,NSP)

L 1 ' 6' , C ' CHANGE'
125F
3F

Part 5. Virtual Storage Access Method 227

CONTROL BLOCK MANIPULATING MACROS

An Access-Method Control Block (ACB), Exit List
(EXLST), and a Request Parameter List (RPL)
can be dynamically generated, modified, displayed,
or tested when your program is executed. You can
use the GENCB macro to create a control block or
list. You can use the MODCB macro to modify
blocks or lists dynamically, the SHOWCB macro to
display selected fields, and the TESTCB macro to
test the value of selected fields. The advantage of
these macros, called the control block manipulation
macros, is that you need not be concerned with
changes in the formats of the ACB, RPL, and
EXLST or with the displacements of the fields in
them.

With GENCB and SHOWCB, you can specify an
area for VSAM to build the block or list or you
can let VSAM supply an area. If you want your
program to be reentrant, you should either let
VSAM supply the area or you should use a GET­
VIS macro to supply the area when your program
is executed.

Each control block manipulation macro has a par­
ameter list (not the same as an RPL) which is built
when the macro is assembled. This parameter list is
used by VSAM routines during program execution
to generate, modify, display, or test the ACB,
EXLST, or RPL. Parameter lists can be built with­
out using the control block manipulation macros, as
described in Appendix I. To allow you make your
program reentrant or to share macro parameter
lists, the GENCB, MODCB, SHOWCB, and
TESTCB macros have four forms:

• The standCl.rd form builds a parameter list inline
along with the instructions produced by the
macro. The standard form does not allow reen­
trant code or shared parameter lists.

• The list form builds a parameter list alone; it
does not include the instructions produced by
the macro. The list form is used together with
the execute form to allow you to share parame­
ter lists between macros and, if the list is built
outside your code, to make your program reen­
trant. If the list is built outside your code, you
must obtain the area for it during program ex­
ecution by a GETVIS macro.

228 DOS/VS Supervisor & I/O Macros

• The execute form contains the instructions
produced by the macro to take action on a par­
ameter list; you can also use it to change the
parameter list before VSAM acts on it. The
execute form is used together with the list form
to allow you to share parameter lists between
macros.

• The generate form produces both a parameter
list and executable instructions. It builds the
parameter list in an area you specify. You must
obtain the area during program execution by a
GETVIS macro.

The following descriptions of each macro show the
standard form. The list, execute, and generate
forms of the macros are nearly identical to the
standard forms. They are discussed together at the
end of this section.

When you issue a GENCB, MODCB, SHOWCB,
or TESTCB macro, register 13 must contain the
address of a 72-byte save area that you are provid­
ing.

GENCBMacro

The GENCB macro generates an ACB, an EXLST,
or an RPL when it is executed. You can use it in
place of the ACB, EXLST, and RPL macros to
avoid reassembling your programs should the format
of the control block or lists change, and to generate
more than one copy of a control block or list.

GENCB generates the control block(s) or list(s)
either in an area you specify or, if you do not specify
an area, in an area obtained by VSAM (by the GET­
VIS macro) in your partition.

The standard form of the GENCB macro is:

Name Op Operand

[name] GENCB BLK={ACB I EXLST I RPL}
[,COPIES=n] [,keyword=

{addr I n I option} ...]

[,LENGTH=n]

[W AREA=addr]

BLK=IACB I EXLST I RPLJ
This operand specifies whether you want to generate
an ACB, an EXLST, or an RPL.

COPIES=n
This operand specifies the number of blocks or lists
you want to generate. The default is 1. If you gener­
ate two or more, they are generated next to each
other. They are identical, so you must use MODCB
to tailor them for a particular file or request. Regis­
ter 0 contains the total length of the block(s) or
list(s) that were generated.

keyword = laddr I n I optionJ .••
The operands you code are identical to those of the
ACB, EXLST, and RPL macros, except that you can
code the operands in more ways as described in Ap­
pendix H. If you do not code any operands, VSAM
builds:

• For ACB, an ACB with default values provided
by VSAM when you open the file. You must
supply the DDNAME=filename operand before
the file is opened.

• For EXLST, a complete EXLST with zeros for
addresses and all entries flagged inactive

• For RPL, an RPL with default values

* GENERATE VSAM CONTROL BLOCKS

*

LENGTH=n
This operand specifies the length of the area, if any,
you provided by the W AREA operand. You can
determine the length of an existing block or list by
using the SHOWCB macro.

WAREA=addr
This operand specifies the address of an optional
area in which you want VSAM to generate the
block(s) or list(s). The area must begin on a full­
word boundary. If W AREA is specified, the
LENGTH operand must also be specified. If you do
not specify an area, VSAM obtains an area in your
processing partition (with a GETVIS macro) and
gives you its address in register 1 and its length in
register o.

Examples of the GENCB Macro The following ex­
amples show specification of the VSAM control
blocks by using the GENCB macro. With GENCB,
the control blocks are created dynamically during
execution of the program. The same parameters are
specified in this example as were specified in the
previous example of ACB, EXLST, and RPL mac­
ros. VSAM issues a GETVIS macro to obtain space
for each control block in your partition. The address
of each block is set in register 1 after the GENCB is
executed.

GENCB BLK=ACB,EXLST=(3),PASSWD=PASS,BUFND=4,BUFNI=3,
BUFSP=11064,MACRF=(KEY,SEQ,DIR,OUT),DDNAME=VFILENM

*

*

*
*

*
*
*
PASS
WORK

LTR
BNZ
LP

GENCB
LTR
BNZ
LR

GENCB

LTR
BNZ
LR

PROCESSING

GET

CONSTANTS

DC
DS

SEARCH DS

15,15 (GENCB successful?)
GENERR (No, go to error routine)
2,1 (Yes, save ACB address)

BLK=EXLST,EODAD=(ENDUP,N),LERAD=LOGERR,SYNAD=(IOERR,L)
15,15 (GENCB successful?)
GENERR (No, go to error routine)
3,1 (Yes, save EXLST address)

BLK=RPL,AREA=WORK,AREALEN=125,OPTCD=(DIR,NSP),
ARG=SEARCH,ACB=(2)
15, 15
GENERR
4,1

(GENCB successful?)
(No, go to error routine)
(Yes, save RPI address)

ROUTINES

RPL=(4)

AND WORK AREAS

FL 1 ' 6' , C ' CHANGE'
125F
3F

Part 5. Virtual Storage Access Method 229

MODCBMacro

The MODCB macro modifies the addresses, values,
options, and names that you can establish with the
ACB, EXLST, RPL, and GENCB macros in an
ACB, EXLST, or RPL.

The standard form of the MODCB macro is:

Name OP Operand

[name] MODCB {ACB I EXLST I RPL}=addr
,keyword={addr I n I option} ...

lACH I EXLST I RPLJ=addr
This operand specifies whether you want to modify
an ACB, an EXLST, or an RPL and specifies its
address. You cannot modify an open ACB. You can
modify a field in an EXLST at any time, but you
cannot add entries to or delete entries from it. You
cannot modify an active RPL: that is, one that de­
fines a request that has been issued but not complet­
ed.

With the execute form of MODCB, you can change
the address of the block or list to be modified, but
not the type.

keyword=laddr I n I optionJ ••.
The operands you code are identical to those for the
ACB, EXLST, and RPL macros, except that:

• You can code the operands in more ways, as
shown in Appendix H.

• There are no defaults for the options of the ACB
MACRF operand or the RPL OPTCD operand.
With OPTCD, when you set on a new option
with the MODCB macro, the old option is auto­
matically turned off, since you can specify only
one option in each of its seven groups (see RPL
Macro).

• You can make an address in an EXLST active or
not active without specifying the address
(keyword = {A IN}).

• When you specify an address for an entry in an
EXLST that previously contained zeros
(possible if you generated a default list with the
GENCB macro), you must code
keyword=(addr,A) to make the address active,
because A is not a default for the MODCB ma­
cro.

Examples of the MOOCH Macro The following ex­
amples show modification of VSAM control blocks
by using the MODCB macro.

The first example shows the use of MODCB to place the length of a record in the RPL when variable-length
records are being added to a file:

MODCB
LTR
BNZ
PUT

RPL=(4),RECLEN=(7) (Current length in reg.7)
15,15 (MODCB successful?)
MODERR (No, go to error routine)
RPL=(4) (Yes, write record)

The second example shows the use of MODCB to activate the EODAD exit specified in the previous
GENCB example:

MODCB
LTR
BNZ

EXLST=(3),EODAD=A
15,15
MOD ERR

230 DOS/VS Supervisor & I/O Macros

(MODCB successful?)
(no go to error routine)

SHOWCB Macro

The SHOWCB macro displays fields in an ACB,
EXLST or RPL. VSAM places these fields in an
area that you provide. They are independent of the
format of the block or list you are displaying: the
fields are displayed in the order that you specify the
keywords for them.

The standard form of the SHOWCB macro is:

Name Op Operand

[name] SHOWCB [{ACB I EXLST I RPL)=addr]
,AREA=addr,FIELDS=
(keyword[,keyword ...])

,LENGTH=n
[OBJECT={DAT A I INDEX}

tACB I EXLST I RPL}=addr
This operand specifies whether you want to display
an ACB, an EXLST, or an RPL and specifies its
address.

In the standard and list forms of SHOWCB, you can
omit this operand if you are displaying only the
standard length of a control block or list (see
"Length of a Control Block or List" under the key­
word operand). With the execute form of
SHOWCB, you can change the address of the block
or list to be displayed, but not the type.

AREA = addr
This operand specifies the address of the area in
virtual storage that you are providing for VSAM to
display the items you specify in the FIELDS ope­
rand. The items are in the area in the order you
specify the keywords. The area must begin on a full­
word boundary.

FIELDS = (keyword(,keyword •••])
There are three groups of keywords that you can
code for the FIELDS operand of the SHOWCB
macro:

•

•
•

The keywords that you can code with the ACB,
EXLST, RPL, and GENCB macros

The length of an ACB, RPL, or EXLST

The attributes of an open file or index indicated
by the ACB

Keywords of the ACB, EXLST, and RPL Macros
The keywords in this group require one fullword
each for display, except DDNAME which requires
two fullwords. The keywords are identical to those
of the ACB, EXLST, and RPL macros, except that:

•

•

•

•

You can code the operands in more ways, as
shown in Appendix H.

You do not code the address, value, option, or
name to which the keyword is equal.

In relation to the ACB macro, you cannot dis­
play the MACRF options, but you can display,
with the keyword ERROR, the error code (in
the rightmost byte of the display word) from the
Open or Close routine (see "Opening and Clos­
ing Files"). (You can test the MACRF options
with the TESTCB macro.)

In relation to the EXLST macro, you cannot
display the codes that indicate whether an exit
address is active or not active or is the address of
the name of a routine to be loaded (you can test
them with the TESTCB macro).

In relation to the RPL macro, you cannot display
the OPTCD options, but you can code the key­
word FDBK to display error codes from the re­
quest macros and the keyword RBA to display
the relative byte address of the last record proc­
essed. (You can test the OPTCD options with
the TESTCB macro.)

Length of a Control Block or List
You can code the keyword ACBLEN, EXLLEN, or
RPLLEN to display either the standard length of an
ACB, EXLST, or RPL, or the actual length of a
particular block or list. You display a standard length
by omitting the {ACB I EXLST I RPL} operand and
coding only one (or more) of these length keywords
and no other keywords. You display the actual
length of a block or list by specifying the
{ACB I EXLST I RPL} operand and the correspond­
ing length keyword.

Attributes of an Open FDe
After a file is opened, the ACB contains information
that it does not contain before it is opened or after it
is closed. Whether you are displaying the attributes
of the data or the index of a key-sequenced file is
determined by the OBJECT operand. Each item
displayed requires one fullword in your work area
except STMST which requires two fullwords. You
can display the following items:

Operand Meaning

A VSP AC Number of bytes of available space in
the data or the index.

BUFNO Number of buffers being used for the
data or the index.

Part 5. Virtual Storage Access Method 231

CINV

FS

KEYLEN

LRECL

NCIS

NDELR

NEXCP

NEXT

NINSR

NIXL

NLOGR
NRETR

NSSS

NIPDR

RKP

Size of the control interval in the data or
the index.
Percent of the free control intervals in
each data control area of a key­
sequenced file.
Full length of the key field in each logi­
cal record.
Maximum length of a logical record or,
for an index, the index control interval
size minus seven bytes.
Number of control-interval splits in the
file.
Number of data records deleted from a
key-sequenced file.
Number of EXCP commands issued
since the data or the index was opened.
Number of logical extents, data spaces
or portions of data spaces, of the data or
of the index.
Number of data records inserted into
the file.
Number of levels in the index of a key­
sequenced file.
Number of data records in the file.
Number of data records retrieved from
the file.
Number of data control area splits in the
key-sequenced file.
Number of data records updated in the
file.
Displacement of the key-field from the
beginning of the data record: the same

STMST

value is displayed whether the object is
index or data.

System time stamp; the time and day (in
microseconds) when the data or index
was last closed. Bits 52-63 of the field
are unused.

LENGTH=n

This operand specifies the length of the display area
you are providing (by way of the AREA operand).
Each field in the ACB and RPL takes a fullword,
except for DDNAME and STMST inthe ACB,
which take two fullwords. Each EXLST operand
takes only one fullword, since you cannot display the
codes A, N, and L.

OBJECT=U>ATA I INDEXl

This operand specifies, for the open ACB of a key­
sequenced file, whether the fields being displayed
are for the data or the index. KEYLEN and RKP
will contain the same value if the data or the index is
being displayed. FS, NCIS, NDELR, NINSR, NIXL,
NLOGR, NRETR, NSSS and NUPDR will contain
zeros if the index is being displayed.

Examples of the SHOWeB Macro The following
examples show the use of the :~HOWCB macro to
display information from VSAM control blocks.

The first example shows the use of SHOWCB to display statistics about an open file:

DISPLAY
KEY LEN
LRECL
RKP

SHOWCB

LTR
BNZ

DC
DS
DS
DS

ACB=(2),AREA=DISPLAY,LENGTH=12,
FIELDS=(KEYLEN,LRECL,RKP)
15,15 (SHOWCB successful?)
SHOWERR (No, go to error routine)

OF
F
F
F

(Align on fullword boundary)

232 DOS/VS Supervisor & I/O Macros

The second example shows the use of SHoweB to display the length and REA of a record that has been
retrieved:

GET RPL=(4)
SHOWCB RPL=(4),AREA=DISPLAY,LENGTH=8,

FIELDS=(RECLEN,RBA)
LTR 15,15 (SHOWCB successful?)
BNZ SHOWERR (No go to error routine)

DISPLAY DC OF (Align on fullword boundary)
LENGTH DC F
RBA DC F

Part 5. Virtual Storage Access Method 233

TESTCB Macro

The TESTCB macro tests values in an ACB,
EXLST, or RPL against values that you specify in
the macro.

You examine the condition code after issuing a
TESTCB macro and examining the return code in
register 15. For keywords specified as an option
(such as A for an operand of the EXLST macro), a
test is for an equal or unequal comparison; for key­
words specified as an address or value, a test is for
an equal, unequal, high, low, not-high, or not-low
comparison. In the comparison, A to B, B is the ad­
dress, value, or option that you specify in the
TESTCB macro. For example, if you test for a value
in an ACB, a high comparison means the value in
the block is higher than the value you specified in
the TESTCB macro.

The standard form of the TESTCB macro is:

Name Op Operand

[name] TESTCB [{ACB I EXLST I RPL}=addr]

[,ERET=addrl

,keyword = {addr I n I option}

[,OBJECT={DATA I INDEX}

IACB I EXLST I RPL}=addr
This operand specifies whether you want to test an
ACB, an EXLST, or an RPL and specifies its ad­
dress.

In the standard and list forms of TESTCB, you can
omit this operand if you are testing only the standard
length of a control block or list (see "Length of a
Control Block or List" under the keyword operand).
With the execute form of TESTCB, you can change
the address of the block or list to be tested, but not
the type.

ERET=addr
This operand specifies the address of a user-written
routine that VSAM gives control if, because of an
error, it is unable to test for the condition you speci­
fied (return code in register 15 is not X'OO'). When
the ERET routine receives control, it should inspect
the return code. If the return code is X'04', an error
code will be set in register O. The section "Return
Codes for the GENCB, MODCB, SHOWCB, and
TESTCB Macros" describes the return codes and
error codes which can be set by TESTCB.

After completing its processing, the ERET rotine
can terminate the job or pass control to a point in

234 DOS/VS Supervisor & I/O Macros

the processing program that it determines. It cannot
return to VSAM.

keyword=laddr I n I option} ...
This operand specifies a field and a value. The con­
tents of the field are compared with the value and
the condition code is set. You can specify only one
keyword at a time. There are three groups of ope­
rands that y~u can code with the TESTCB macro:

• The addresses, values, options, and names that
you can code with the ACB, EXLST, RPL, and
GENCB macros

• The length of a control block or list

• The attributes of an open file or index indicated
by the access-method control block

If you code more than one operand, each of them
must be compared equal to the corresponding value
in the block or list for you to get an equal condition.

Operands of the ACB, EXLST, and RPL Macros The
operands in this group are identical to those of the
ACB, EXLST, and RPL macros, except that:

• You can code the operands in more ways, as
shown in Appendix H.

• In relation to the ACB macro, you can test for
return codes from the Open and Close routines
(see "Opening and Closing Files") by coding
ERROR=code (as any absolute expression, ex­
cept for a self-defining character term).

In relation to the EXLST macro, you can test
whether an EXLST has an exit of a certain type
by coding keyword=O.

In relation to the EXLST macro, you can test
whether an address in an EXLST is active or not
active or is the address of the name of a routine
to be loaded, without specifying the address
(keyword=[{A I N}][,L]).

• In relation to the RPL macro, you can code the
operand FDBK=code (as any absolute expres­
sion, except for a self-defining character term)
to test for return codes from the request macros.
(See Return Codes for the Request Macros
under Requesting Access to Files.) You can
code the operand RBA=n to test the relative
byte address of the last record processed.

Length of a Control Block or List
You can code the operand EXLLEN=n,
ACBLEN=n, or RPLLEN=n to test either the
standard length of an EXLST, ACB, or RPL; or the

actual length of a particular ACB, RPL, or EXLST.
You test for a standard length by omitting the
{ACB I EXLST I RPL} operand and coding only one
(or more) of these length operands and no other
operands. You test the actual length of a block or list
by specifying the {ACB I EXLST I RPL} operand
and the corresponding length operand.

Attributes of an Open FOe or Index
After a file is opened, the ACB contains information
that it does not contain before it is opened or after it
is closed. Whether you are testing for the attributes
of the data or the index of a key-sequenced file is
determined by the OBJECT operand. You can test
whether the file is open by coding:
OFLAGS=OPEN. You can test the following fields:

Operand
AVSPAC

BUFNO

CINV

FS

KEYLEN

LRECL

NCIS

NDELR

NEXCP

NEXT

NINSR
NIXL

Meaning
Number of bytes of available space in
the data or the index.
Number of buffers being used for the
data or the index.
Size of a control interval in the data or
the index.
Percent of free control intervals in each
data control area of a key-sequenced
file.
Full length of the key field in each logi­
cal record.
Maximum length of a logical record or,
for an index, the index control interval
size minus seven bytes.
Number of control-interval splits in the
file.
Number of data records deleted from a
key-sequenced file.
Number of EXCP commands issued
since the data or the index was opened.
Number of logical extents, data spaces
or portions of data spaces, of the data or
of the index.
Number of records inserted into the file.
Number of levels in the index of a key­
sequenced file.

NLOGR

NRETR

Number of data records in the file.

Number of data records retrieved from
the file.

NSSS Number of control area splits in a key­
sequenced file.

NUPDR Number of data records updated in the
file.

RKP

STMST

Displacement of the key field from the
beginning of a data record; the same
value is displayed whether the object is
index or data.
System time stamp; the time and day (in
microseconds) when the data or index
was last closed. Bits 52-63 of the fields
are unused.

You can also test for these attributes:

Operand

ATRB=ESDS
,KSDS
,WCK

,SSWD

,REPL

,MACRF
,OPTCD

Meaning
Entry-sequenced file
Key-sequenced file
VSAM is verifying write opera­
tions
Sequence set of the index is
adjacent to the file
Index records are replicated
ACB options specified
RPL options specified

OBJECT=tDATA I INDEXl
This operand specifies, for the open ACB of a key­
sequenced file, whether the field being tested is for
the data or the index. KEYLEN and RKP will con­
tain the same value if the data or the index is being
tested. FS, NCIS, NDELR, NINSR, NIXL,
NLOGR, NRETR, NSSS, and NUPDR will contain
zero if the index is being tested.

Examples of the TESTCD Macro
The examples show how the TESTCB macro is used
to test values in a VSAM control block.

Part 5. Virtual Storage Access Method 235

In the first example, TESTCB is used to determine whether or not a file is open:

TESTCB

BE
B

ACB=(2),OFLAGS=OPEN,
ERET=TESTERR
OPEN
UNOPEN

(File open?)

(Yes)
(No)

TESTERR (Routine executed if TESTCB unsuccessful)

In the second example, an EODAF exit routine is not supplied and TESTCB is used to determine whether
the LERAD exit routine was entered because of an end-of-file condition or a processing error:

LOG ERR TESTCB

BE
B

RPL=(4), FDBK=4,
ERET=TESTERR
EODATA
ERROR

(End-of-file?)

(YES, go to EOF routine)
(No, go to error routine)

TESTERR (Routine executed if TESTCB unsuccessful)

Return Codes for the GENeB, MODCB,
SHOWCB, and TESTCB Macros
When VSAM returns to your processing program
after a GENCB, MODCB, SHOWCB, or TESTCB
request, register 15 indicates the success or failure
of the request. X'OO' means the operation has com­
pleted successfully. X'04' means an error was de­
tected; register 0 contains an error code which in­
dicates the type of error:

Error
Code
X'OI'

X'02'

X'03'

X'04'

X'05'

X'06'

X'07'

X'08'

Applicable
Macros Meamng
G M S T The request you indicated is

invalid.
G M S T You have not indicated an

ACB, RPL, or EXLST.
G M S T You have indicated an invalid

keyword.

G

M S T The block or list at the indicat­
ed address is not the type indi­
cated.

S T The ACB is closed - it must be
opened.

STY ou have indicated a nonexis­
tent index in the OBJECT
operand

M S There is no entry for the exit
you have specified in the
EXLST.
There id not enough virtual
storage in your partitions to
generate the requested blocks
or lists.

236 DOS/VS Supervisor & I/O Macros

X'09' G S Your work area is too small to
generate the requested blocks
or lists or to display the re-
quested fields.

X'OA' GM You did not specify a new
address for one of your
EXLST operands when you
specify the L subparameter, or
you specified neither an ad-
dress nor the subparameters A
orN.

X'OB' M The RPL is active - it must be
inactive.

X'OC' M The ACB is open - it must be
closed.

X'OD' M There is no EXLST address
indicated in the ACB.

X'OE' GM T You have specified inconsistent
parameters.

X'OF' G S Your work area (W AREA par-
ameter) does not begin on a
fullword boundary.

X'08' in register 15 means that you have tried to
use the execute form of a macro to change a no­
nexistent entry in the parameter list.

X'OC' in register 15 means that the request was
not executed because an error was encountered
while VSAM routines were being loaded.

List, Execute, and Generate Forms of the Control
Block Macros
The list and execute forms of the control block
manipulation macros (GENCB, MODCB,
SHOWCB, and TESTCB) allow you to save virtual
storage by using one parameter list for two or more

macros. You can also make your program reen­
trant; executable by more than one task at a time.
The generate form of the macros enables you to
make programs reentrant but it does not allow
shared parameter lists.

List and Execute Forms The list form of GENCB,
MODCB, SHOWCB, and TESTCB has the same
parameters as the standard form; except that it
includes the parameter MF = {L I (L,addr[,labelD}.

The parameter list of the macro is created inline
when MF=L is coded. This version is not reentrant
and register notation cannot be used for macro
parameter addresses.

When MF = (L,addr[,labelD is coded, the parameter
list of the macro is created in the area specified by
"addr". This form is reentrant. You must supply
the area by a GETVIS macro when your program
is executed. You can determine the size of the
parameter list by coding the third operand "label".
VSAM equates label to the length of the list.

The execute form produces the executable code of
the macros. The execute form is also identical to
the standard form, except that it includes the ope­
rand MF = (E,addr), where II addr" points to the

parameter list created by the list form of the ma­
cro. All of the other operands of the macro are
optional and are coded only to change entries in
the parameter list before the list is used. However,
you cannot use the execute form to add or delete
entries from the parameter list or to change the
type of list.

Generate Fonn The generate form of the macros
allows you to make your program reentrant, but it
does not create shared parameter lists. The gener­
ate form is the same as the standard form, except
that you code MF = (G ,addr[,labelD. The parameter
list is created in an area pointed to by "addr". To
ensure that the parameter list is reentrant, "addr"
should be coded in register notation. You must
obtain this area by a GETVIS macro when the
program is executed. You can determine the size of
the parameter list by coding the third operand
"label". VSAM equates "label" to the length of
the list.

Examples of the List, Execute, and Generate Forms
The following examples show use of the list, exec­
ute, and generate forms of the control block ma­
nipulation macros.

In the first example, MODCB is used to place the length of a record in the RPL before the record is
written. The list and execute forms are used so that only one parameter list is created even though the
macro is issued several times. Thos list from is not reentrant.

LENMOD
bytes)

MODCB
LTR
BNZ
PUT

MODCB
LTR
BNZ
PUT

MODCB

MF=(E,LENMOD),RECLEN=(7) (Current length in reg.7)
15,15 (MODCB successful?)
MODERR (No go to error routine)
RPL=(4) (Yes, write record)

MF=(E,LENMOD)
15, 15
MOD ERR
RPL=(4)

(Length is 100 bytes)
(MODCB successful?)
(No, go to error routine)
(Yes, write record)

RPL=(4),RECLEN=100,MF=L (List forms has default length - 100

Part 5. Virtual Storage Access Method 237

In the second example, the generate form is used to create an ACB. It is reentrant because both the ACB
itself anf the parameter list of the GENCB macro are created in areas obtained through a GETVIS macro.

PASS

LA
GETVIS
LTR
BNZ
GENCB

LTR
BNZ
LR

DC

10,PARMLEN (Load length for GETVIS)
ADDRESS=(8),LENGTH=(10) (Get area for parm. list)
15,15 (GETVIS successful?)

VISERR (No, go to error routine)
BLK=ACB,MF=(G,(8),PARMLEN,
EXLST=(3),BUFND=4,BUFNI=3,
BUFSP=11064,DDNAME=VFILENM,
MACRF=(KEY,SEQ,DIR,OUT),
PASSWD=PASS
15,15
GENERR
2, 1

FL'6' ,C'CHANGE'

(GENCB successful?)
(No, go to error routine)
(Yes, save ACB address)

238 DOS/VS Supervisor & I/O Macros

OPENING AND CLOSING FILES

The OPEN macro connects a processing program
to a file, so the program can gain access to data.
The CLOSE macro disconnects the program and
the file. The TCLOSE macro performs some of the
functions of CLOSE but leaves the program and
the file connected so processing can continue with­
out reopening the file.

OPEN Macro

Name Operation Operand

[name] OPEN addr[,addr ...]

This operand specifies up to 16 addresses of ACBs
and DTFs that specify the files to be opened.

A return code is set in register 15 to indicate wheth­
er the ACBs were opened or closed successfully.
ACBs should be coded together to ensure that the
return code will apply to all of them. If, for example,
you coded:

OPEN ACBl,DTFl,ACB2

the return code will apply to ACB2 only. If ACB2
opened successfully and ACB 1 did not, the return
code will still be X'OO'. (The VSAM Open routine
sets register 15 to zero when it receives control after
a DTF has been opened.) To ensure that the return
code applies to both ACBs, the macro should be
coded in one of the following ways:

OPEN DTFl,ACBl,ACB2

OPEN ACBl,ACB2,DTFI

The OPEN macro calls the Open routine, which
verifies that the processing program has authority to
process the file. Open constructs VSAM control
blocks and loads VSAM routines into your partition.
(VSAM routines, unlike those of other access me­
thods, are not link-edited with the processing pro­
gram.) By examining the DLBL statement indicated
by the DDNAME operand in the ACB macro and
the volume information in the catalog, Open verifies
that the necessary volumes have been mounted. If a
key-sequenced file is being opened, VSAM issues an

error code to warn you if the data has been updated
separately from its index.

Open sets one of the following return codes in regis­
ter 15. The return code will apply to all ACBs only if
they are coded together (see example above):

Return
Code
X'OO'
X'04'

X'08'

Meaning
All ACBs have been opened successfully.
All ACBs opened successfully, but one or
more ACBs had a warning message.
One or more ACBs were not opened suc­
cessfully. The entries with errors are re-
stored to their pre-Open status.

If register 15 contains X'04', an error code is set in
one or more ACBs to indicate a warning message.
All ACBs are open and, unless you prevent it, proc­
essing will continue on the file that the message ap­
plies to. You can use the ERROR keyword of a
SHOWCB or TESTCB macro to examine the code.

Error
Code Meaning
X'6C' The system time stamps of the data of a file

and its index do not match; this indicates
that either the data or the index has been
updated separately and data integrity prob­
lems may result if the file is processed now.

X'74' The file was not successfully closed the last
time it was processed because (1) an error
caused the job to terminate during CLOSE
or before the CLOSE macro was issued or
(2) the processing program did not issue a
CLOSE macro. If records were added, de­
leted, or updated during previous process­
ing, do not process the file now because of
possible data integrity problems. Consult
message 4n251 in DOSjVS Messages,
GC33-5379. If records were only retrieved,
the file will not have data integrity problems
and can now be processed as intended.

If register 15 contains X'08', an error code is set in
one or more ACBs. You use the ERROR keyword
of the SHOWCB or TESTCB macro to examine the
code.

Part 5. Virtual Storage Access Method 239

Error
Code Meaning
X'OO' No error (set when register 15 contains

X'OO').
X'04' This ACB is already open.
X'OE' The symbolic unit in the DLBL statement is

invalid.
X'OF' No job information block (Jms) are availa­

ble from the supervisor.
X'II' The address in an ASSGN statement for a

VSAM module was set to IGN.
X'12' The address in an ASSGN statement for a

VSAM volume was set to UA.
X'22' The volume serial numbers specified in the

EXTENT statement do not match those
specified in the catalog entry.

X'24' More than 16 EXTENT statements were
specified for the file.

X'32' One or more VSAM processing modules
cannot be loaded because the user's virtual
partition is too small.

X'50' 1. Attempt made to mount two volumes on
the same unit when direct or keyed process­
ing specified in the ACB.
2. Operator unable to mount required vol­
ume.

X'6S' The time stamp of the volume on which the
file is stored does not match the system time
stamp in the file's catalog entry. The extent
information in the catalog entry may not
agree with the extent infOrmation in the
VTOC. .

X'6E' Attempt made to open an empty file (no
records in it) for input only (MACRF=IN
in the ACB).

X'75' The symbolic unit specified in the EXTENT
statement is not a valid device type.

X'SO' The DLBL statement is mi~sing or the filen­
ame in the DLBL does not match the ACB.

X'S4' A permanent I/O error occurred while
VSAM was reading label information from
the label information cylinder.

X'SS' Not enough virutual-storage space is availa­
ble in your partition for work areas, control
blocks, or buffers.

X'90' A permanent I/O error occurred while
VSAM was reading or writing a catalog en­
try.

X'94' No entry was found in the catalog for this
ACB (file not found).

X'9S' Security verification failed; the password
specified in the ACB or supplied by the op­
erator for a specific level of access does not
match the password in the catalog for that
level of access.

240 DOS/VS Supervisor & I/O Macros

X' AO' Keyed access was specified in the ACB
(ACB macro or GENCB macro) but the file
is entry-sequenced.

X'Al' User buffers (MACRF=UBF) has been
specified with keyed or addressed access; it
can only be specified wilh control interval
access.

X'A4' A permanent I/O error occurred while
VSAM was reading the volume label of the
volume the file is on.

X' AS' The file is not available because it is being
(1) updated by (under the exclusive control
of) another ACB; or (2) exported by access
method.

X'B4' The VSAM catalog is not connected to the
system on logical unit SYSCAT.

X'FF' The unexpected error occurred during cata­
log processing; rerun the job and call your
IBM Programming Systems Representative
if the problem persists.

CLOSE Macro

Name Operation Operand

[name] CLOSE addr[,addr ...]

This operand specifies up to 16 addresses of A CBs
I and DTFs that specify the files to be closed.

A return code is set in register 15 to indicate wheth­
er the ACBs were closed or closed successfully.
ACBs should be coded together to ensure that the
return code will apply to all of them. If, for example,
you coded:

CLOSE ACBl,DTFl,ACB2

the return code will apply to ACB2 only. If ACB2
closed successfully and ACBl did not, the return
code will still be X'OO'. (The VSAM Close routine
sets register 15 to zero when it receives control after
a DTF has been closed.) To ensure that the return
code applies to both ACBs, the macro should be
coded in one of write the following ways:

CLOSE DTFl,ACBl,ACB2
CLOSE ACBl,ACB2,DTFI

The Close routine completes any I/O operations
that are outstanding when a processing program
issues a CLOSE macro for a file. It writes any out­
put buffers that have not been stored.

Close updates the catalog entries of the file, includ­
ing pointers to the end of the file and statistics on
file processing (such as number of records inserted).
If the file was being loaded and the SPEED option
was specified (in the catalog), Close formats the last
control area in the file to ensure that the entire file is
accessible.

Close restores the ACB to the status that it had be­
fore the file was opened and frees the virtual storage
that Open used to construct VSAM control blocks.

Close sets one of the following return codes in regis­
ter 15. The return code will apply to all ACBs only if
they are coded together (see example above):

Error
Code

X'OO'

X'04

Meaning

All ACBs were closed successfully.

One or more ACBs were not closed success­
fully.

If register 15 contains X'04', an error code is set in
one or more ACBs. You use the ERROR keyword
of the SHOWCB or TESTCB macros to examine the
error code.

Error
Code Meaning
X'OO' No error (set when register 15 contains

X'OO').
X'04' The ACB was already closed.
X'08' One or more close routines could not be

loaded because there was not enough virtual
storage space, or the modules could not be
found. Processing cannot continue.

X'88' Not enough virtual-storage space was avail-
able in your partition for a work area for the
close routine.

X'90' A permanent 110 error occurred while
VSAM was reading or writing a catalog en-
try.

X'B8' A permanent 110 error or an internal error
in a VSAM routine occurred while VSAM
was completing 110 requests.

X'BC' The ACB is being used by either a
SHOWCB macro or a TESTCB macro.

TCLOSE Macro

Name Operation Operand

[name] TCLOSE addrLaddr ...]

This operand specifies the addresses of up to 16
ACBs. You cannot specify the addresses of DTFs
with TCLOSE.

A TCLOSE macro completes outstanding 110 oper­
ations and updates the catalog. Processing can con­
tinue without reopening the file. You use the
TCLOSE macro to protect data while the file is be­
ing loaded or extended and the SPEED option was
specified when the file was defined. When TCLOSE
is issued, the Close routine formats the last control
area in the file to ensure that all of the data that has
been loaded is accessible.

TCLOSE sets one of the following return codes in
register 15:

Return
Code
X'OO'
X'04'

Meaning
All ACBs were closed successfully.
One or more ACBs were not closed success-
fully.

If register 15 contains X'04', an error code is set in
one or more ACBs. You use the ERROR keyword
of the SHOWCB or TESTCB macros to examine the
error code.

Error
Code Meaning
X'OO' No error (set when register 15 contains

X'OO').
X'04' The ACB was already closed.
X'08' One or more close routines could not be

loaded because there was not enough virtual
storage space, or the modules could not be
found. Processing cannot continue.

X'88' Not enough virtual-storage space was avail-
able in your partition for a work area for the
Close routine.

X'90' A permanent 110 error occurred while
VSAM was reading or writing a catalog en-
try.

X'B8' A permanent 110 error or an internal error
in a VSAM routine occurred while VSAM
was completing 110 requests.

X'BC' The ACB is being used by either a
SHOWCB macro or a TESTCB macro.

Part 5. Virtual Storage Access Method 241

REQUESTING ACCESS TO FILES

The macros GET, PUT, POINT, and ERASE initi­
ate all requests for access to data records.

When your program issues a request macro, its proc­
essing does not continue until VSAM completes the
request. At that time, VSAM sets a return code in
register 15. If end-of-file is reached or an error or
other special condition occurs during the request,
VSAM sets a code containing additional information
in the feedback field of the RPL, and takes any re­
quired exit. The return codes and codes set in the
feedback field of the RPL are described later in this
section.

GET Macro

Name Operation Operand

[name] GET RPL=addr

The operand contains the address of the RPL (or
first RPL in a chain of them) that specifies the GET
request. When you issue a GET macro, register 13
must contain the address of a 72-byte save area that
you are providing. This macro retrieves the next
record in key sequence with RPL operand
OPTCD=(KEY,SEQ), and the next record in entry
sequence with OPTCD= (ADR,SEQ). It retrieves
the record specified by the key in the search­
argument field with OPTCD=(KEY,SKP) or
OPTCD=(KEY,DIR), and by the RBA in the
search-argument field with OPTCD=(ADR,DIR).
With skip sequential retrieval, each key that you
specify must be greater in collating sequence than
the key of the previous record retrieved.

Get retrieves the next control interval with
OPTCD=(CNV,SEQ) and the control interval spec­
ified by the RBA in the search-argument field with
OPTCD=(CNV,DIR).

You must issue a GET with OPTCD= UPD to up­
date (PUT with OPTCD=UPD) or to delete
(ERASE) a record. You can have the record moved
to your work area (OPTCD=MVE) or you can have
VSAM leave the record in its 110 buffer and pass
you the address of the record (OPTCD=LOC). The

242 DOS/VS Supervisor & I/O Macros

AREA parameter points to your work area or to a
field in which VSAM will place a record address.

You can also keep VSAM positioned for subsequent
sequential or skip sequential processing when you
issue a direct GET request with
OPTCD=(DIR,NSP) or OPTCD=(DIR,UPD).
With OPTCD=(DIR,UPD) however, positioning is
cancelled when you issue a PUT for update or an
ERASE following the GET for update.

PUT Macro

Name Operation Operand

[name] PUT RPL=addr

The operand contains the address of the RPL (or the
first RPL in a chain of them) that specifies the PUT
request. When you issue a PUT macro, register 13
must contain the address of a 72-byte save area that
you are providing. This macro stores a new record in
key sequence with OPTCD=(KEY,SKP,NUP),
OPTCD=(KEY,DIR,NUP),
OPTCD=(KEY,SEQ,NUP), or
OPTCD=(KEY,DIR,NSP). When
OPTCD=(KEY,DIR,NSP), VSAM is kept posi­
tioned at the next record in key sequence for subse­
quent sequential processing.

PUT stores a new record at the end of an entry­
sequenced file with OPTCD=ADR (you cannot
store a new record in a key-sequenced file with ad­
dressed access). With skip sequential storage,
OPTCD=(KEY,SKP), the key of each record that
you store must be greater in collating sequence than
the key of the previous record stored. With control­
interval access, OPTCD=(CNV,NUP), PUT stores
a new control interval at the end of an entry­
sequenced file.

When loading or extending a file with the PUT ma­
cro, you must specify sequential or skip sequential
processing (OPTCD=SEQ or OPTCD=SKP).

To store a changed record or control interval, you
must have previously retrieved it with
OPTCD= UPD and also specify OPTCD= UPD

when you issue a PUT. You cannot change the key
of a record in a key-sequenced file. With
OPTCD=ADR, you cannot change the length of a
record in either a key-sequenced or an entry-
. sequenced file.

The record to be added or updated with a PUT ma­
cro must be in your work area (OPTCD=MVE);
you cannot use OPTCD=LOC with the PUT macro.
The AREA parameter of the ACB points to your
work area.

POINT Macro

Name Operation Operand

[name] POINT RPL=addr

The operand contains the address of the RPL (or the
first RPL in a chain of them) that specifies the
POINT request. When you issue a POINT macro,
register 13 must contain the address of a 72-byte
save area that you are providing. This macro posi­
tions VSAM at the record whose key (with
OPTCD=KEY) you specify in the search-argument
field. It can be used to position either forward or
backward in the file for subsequent sequential or
skip sequential processing.

POINT positions VSAM at the record or control
interval whose RBA (with OPTCD=ADR or
OPTCD=CNV) you specify in the search-argument
field. It can be used to position either forward or
backward in the file for subsequent sequential proc­
essing.

VSAM can also be positioned for sequential process­
ing by either a direct GET or a direct PUT as de­
scribed in the preceeding sections on the GET and
PUT macros.

ERASE Macro

Name Operation Operand

[name] ERASE RPL=addr

The operand contains the address of the RPL (or the
first RPL in a chain of them) that specifies the
ERASE request. When you issue an ERASE macro,

register 13 must contain the address of a 72-byte
save area that you are providing.

This macro deletes the record previously retrieved
for update (with the GET macro, OPTCD= UPD) .
You can delete records in a key-sequenced file by
keyed or addressed access, but you cannot delete
records in an entry-sequenced file. You cannot de­
lete control intervals (OPTCD=CNV).

ENDREQ Macro

Name Operation Operand

[name] ENDREQ RPL=addr

The operand contains the address of the RPL (or
first RPL in a chain of them) that specifies the re­
quest to be terminated. When you issue an EN­
DREQ macro, register 13 must contain the address
of a 72-byte save area that you are providing.

This macro caused VSAM to end a request. If an
110 operation was started, it will be allowed to com­
plete. Also, 110 operations required to maintain the
integrity of the file will be performed.

If the request involves a chain of RPLs, all records
specified by the request may not be processed. For
example, two RPLs are chained in a PUT request to
add two new records to the file and an ENDREQ is
issued after VSAM started the 110 to add the first
record. That 110 operation will be completed and, if
it causes a control-interval split, subsequent 1/0
operations will be performed to complete the split
and update the index. However, VSAM will then
return control to the processing program without
adding the second record.

The ENDREQ macro also causes VSAM to cancel
the position in the file established for that request.

Return Codes for the Request Macros

When VSAM returns to your processing program, a
return code in register 15 indicates what happened.
If an error occurred, additional information on the
request will be in the RPL. Your processing program
can examine the feedback field of the RPL with the
FDBK keyword of the SHOWCB or TESTCB ma­
cro: register 1 contains the address of the RPL that
defines the request that caused the error.

Part 5. Virtual Storage Access Method 243

Control is returned to the instruction following your
action macro when (1) the request is completed, (2)
the request was not accepted because another re­
quest was using the RPL, or (3) an error occurred
and you did not have an active exit routine. If you
do have an active exit routine and it returns control
to VSAM after processing the error, VSAM then
returns control to the instruction following the ac­
tion macro.

When you gain control after a request, register 15
will contain one of the following return codes:

X'OO' Request completed successully; the RPL
might contain additional (non-error) in­
formation about the request.

X'04' This request was not accepted because a
request from another task is active on the
same RPL; no additional information in the
RPL.

X'08' Logical error; the error code in the RPL
identifies the specific error.

X'OC' Uncorrectable I/O error; the error code in
the RPL identifies the specific error.

If the request completed with a logical error (X'08'),
your LERAD exit routine is entered if you specified
the LERAD exit in the EXLST and it is active.
When you reach end-of-file, error code X'04' is set.
Your EODAD exit routine will be entered. If you
have no EODAD exit routine or it is inactive, your
LERAD exit routine is entered.

If the request completed with an I/O (physical) er­
ror (X'OC'), your SYNAD exit routine is entered if
you specified the SYNAD exit in the EXLST and it
is active. The return code is not set in register 15
when the exit routine is entered. VSAM sets the
return code in register 15 and returns control to the
instruction following the action macro after you
complete the exit routine.

The feedback field in the RPL (FDBK parameter in
SHOWCB and TESTCB) is a fullword with the fol­
lowing format:

OOOOOOxx

where
xx is an error code which describes the error or,
if the return code is zero, additional information
about the request.

244 DOS/VS Supervisor & I/O Macros

Return Error
Code Code

X'OO' Request completed successfully.
X'OO' Request completed successfully; no

additional information.
X'04' Request completed successfully;

end-of-volume calling during re­
quest.

X'04' Request not accepted; a request from anoth­
er task is active on this RPL.

X'08' Logical error.
X'04' End-of-file encountered, EODAD

exit routine entered if one supplied.
X'08' Duplicate record.
X'OC' Record out sequence (record might

be a duplicate).
X'10' No record found.
X'14' Record already held in exclusive

control by another requester.
X'18' Record is on a volume which is not

mounted.
X' 1 C' All extents of file are full and

VSAM cannot sub-allocate new ex­
tents because there is no available
data spa~e on (1) a volume which
already contains extents of the file
or (2) a volume that is candidate for
extension of the file.

X'20' Invalid RBA specified.
X'24' The key of the record to be inserted

does not fall in an existing key
range in the file.

X'28' Insufficient virtual storage available
to finish request.

X'2C' The work area you have supplied
(AREA parameter) is not large
enough.

X'30' One or more VSAM processing
modules cannot be loaded because
the user's virtual partition is not
large enough.

X'34' An internal error occurred in a
VSAM routine. Save the program
listing, console log, and dump, and
contact your IBM Programming
Support Representative.

Return Error
Code Code

X'08' X'38' The VSAM catalog was accessed X'5C' PUT update or ERASE issued with-
during processing of a request. An out a preceding GET update.
I/O error or an internal processing X'60' Attempt to change key when updat-
error occurred during catalog ac- ing record.
cess. Use the LISTCAT command X'64' Attempt to change record length
of Access Method Services to ex- during update with addressed ac-
amine the catalog entry for this cess.
cluster. You can then attempt to re- X'68' Invalid or conflicting RPL options.
run the job if the catalog entry is X'6C' Record length specified that is larg-
valid. It t~~J'erun is not successful, er than allowed maximum, equal or
save the program listing, console zero, or smaller than key length plus
log, LISTCA T listing, and dump relative key position.
and contact your IBM Programming X'70' Length of generic key is too large or
Support Representative. equal to zero.

X'40' As many requests are active as the X'74' Request other than sequential or
number specified in the STRNO
operand of the ACB; therefore, an- skip sequential PUT to insert re-

other request cannot be started. cords specified during loading of the

X'44' Type of accessing for the request file.

not in ACB when file was opened: X'OC' Physical (I/O) Errors
• Keyed access not specified

Output not specified
X'04' I/O error while reading data.

•
CNV processing not specified X'08' I/O error while reading index set of

•
X'48' Keyed access requested for an index.

entry-sequenced file. X'OC' I/O error while reading sequence

X'4C' Addressed or control-interval inser- set of index.

tion requested for a key-sequenced X'lO' 110 error while writing data.

file. X'14' I/O error while writing index set of

X'50' ERASE macro specified for an index.

entry-sequenced file or for control- X'18' I/O error while writing sequence
interval processing. set of index.

X'54' Locate mode specified for PUT
macro or for user buffer processing.

X'58' VSAM not positioned (POINT) for
sequential GET or you changed to
keyed access after establishing posi-
tion by addressed access.

Part 5. Virtual Storage Access Method 245

PART 6

PHYSICAL IOCS

Concepts of Physical IOCS

Physical IOCS Macros

CCB
CLOSE
CLOSER
DTFPH
EXCP
FEOV
LBRET
OPEN
OPENR
SEOV
WAIT

CONCEPTS OF PHYSICAL IOCS

Records can be transferred to or from an
input/ output device by issuing physical IOCS
macros. These macros relate directly to the physical
IOCS routines and are distinct from the logical
IOCS macros described in the SAM, DAM, ISAM,
and VSAM chapters of this book. For more inform­
ation on the distinction between physical and logi­
cal IOCS see the DOS/VS Data Management
Guide, GC33-5372.

When using physical IOCS macros, you must pro­
vide for such functions as the blocking or deblock­
ing of records, performing programmed wrong­
length record checks, testing the CCB for certain
errors, switching I/O areas when two areas are
used, and setting up CCWs. You must also recog­
nize and bypass checkpoint records if they are in­
terspersed with data records on an input tape.

Physical IOCS routines control the transfer of data
to or from the external device. These routines per­
form the following:

• Starting I/O operations
• I/O interrupt handling
• Channel scheduling
• Device error handling

Thus physical IOCS macros provide you with the
capability of obtaining data and performing
nondata operations with I/O devices using exactly
the CCWs you request. For example, if your pro­
gram handles only physical records, you do not
need the logical IOCS routines for blocking and
deblocking logical records.

Three macros are available for direct communica­
tion with physical IOCS: CCB (command control
block), EXCP (execute channel program), and
WAIT. Whenever physical IOCS macros are used,
you must construct the CCWs for input/output
operations. Use the assembler instruction CCW
statement to do this. A detailed technical descrip­
tion of the CCW can be found in IBM
System/370 Principles of Operation, GA22-7000.
Considerations for CCW programming are given in
the DOS/VS Data Management Guide, GC33-
5372.

Macros normally used with files processed by logi­
cal IOCS are necessary in addition to the macros
provided by PIOCS when standard DASD or mag-

netic tape labels are processed, or when D ASD file
protect is present. The DTFPH, OPEN or OPENR,
CLOSE or CLOSER, LBRET, FEOV, and SEOV
macros can be used in this processing. The OPEN
and the DTFPH macros are also necessary when a
disk is used for a checkpoint file. PIOCS considera­
tions for alternate tape switching and bypassing
embedded checkpoint records on tape are given in
the DOS/VS Data Management Guide, GC33-
5372.

The CCB, EXCP, and WAIT macros used for di­
rect communication with PIOCS; the PIOCS
DTFPH declarative macro; and the OPEN or
OPENR, LBRET, FEOV, SEOV, and CLOSE or
CLOSER imperative macros used with PIOCS, are
described in the remainder of this chapter.

Physical IOCS Macros

CCB Macro

Name Op Operand

blockname CCB SYSnnn,command-list-name
[,X'nnnn'][,sense address]

A CCB (command control block) macro must be
specified in your program for each I/O device con­
trolled by physical IOCS macros. The first 16 bytes
of all the generated DTF tables--except DTFOR and
DTFSR (optical reader)--contain the CCB. For
DTFOR and DTFSR (optical reader), the CCB be­
gins at filename + 24 which includes the DTFPH.
The CCB (see Figure 6-1) is necessary to communi­
cate information to physical IOCS so that it can
perform desired operations (for example, notifying
your program of printer channel 9). The CCB also
receives status information after an operation and
makes this available to your program.

blockname: The CCB macro must be given a
symbolic name (blockname). This name can be used
as the operand in the EXCP and WAIT macros
which refer to the CCB.

SYSnnn: This operand specifies the symbolic unit

Part 6. PhysicallDCS 249

for the actual I/O unit with which this CCB is asso­
ciated. A list of symbolic units applying to eCB can
be found in the Symbolic Unit Addresse~ ~ection of
The Macro System chapter. The actual I/O;unit
can be assigned to the symbolic unit by ah ASSG N
job control statement.

command-list-name: This operand speCifies, the sym­
bolic name of the first CCW used with a CCB. This
name must be the same as the name specified in the
assembler CCW statement that constructs the CCW.

X'nnnn': A hexadecimal value used to set the CCB
user option bits. Column 5 of Figure 6-2 gives the
value used to set a user option bit on. It more than
one bit must be set, the sum of the values is psed.
For example, to set user option bits 3, 5, and 6 of
byte 2 on, X'1600' is used.

(

(X'1600'=X'1000' + X'0400' + X'0200')

The macro can set any of the bits iIi bytes 2 or 3 on.
Normally, however, you need not be concerned with
setting the remaining bits on.

sense address: This operand, when, suppiied, indi­
cates user error recovery (see Figure 6=-2 byte 2, bit
7) and generates a CCW for reading sense i~forma­
tion as the last field of the CCB. THe name field
(sense address) of the area that you supply must
have a length attribute assigned of at Jeast one byte.
Physical 10CS uses this length attribute in the CCW
to determine the number of bytes of sense informa­
tion you desire.

If the user has his own user error routine (byte 2, bit
7 of the CCB is on, or X'nnnn' in the CCll macro =
X'0100') but has not specified the parameter 'sense
address' in the CCB macro, the sense information is
cleared by the supervisor in order to prevent dead­
locks in the control unit. If the user then issues an
EXCP with the CCW address for SENSE from the
error routine, the information has already been de­
stroyed.

CCB Format
From the above specifications, the macro sets up a
16-byte or 24-byte field (Figure 6-1) as follows:

250 DOS/VS Supervisor & I/O Macros

Bytes Contents

0-1 After a record is transferred, 10CS places
the residual count from the CSW in these
two bytes. By subtracting the residual count
from the original count in the CCW, your
program can determine the length of the
record that was transferred. This residual
count is set to zero for negative values.

2-3 These next two bytes are for transmission of
information between physical 10CS and
your program. Your program can test any
bit in bytes 2 and 3, using the mask given in
the last column of Figure 6-2. More than
one bit can be tested by the hexadecimal
sum of the test values.

All bits are set to 0 when your program is
assembled unless the X'nnnn' operand is
specified. If this operand is specified, it is
assembled into these two bytes. You may
turn on bits 5 and 7 in byte 3 and bits 3
through 7 in byte 2. During execution, each
bit may be set to 1 by your program or by a
condition detected by physical 10CS. Any
bits that can be turned on by physical 10CS
during program execution are reset to zero
by Ploes the next time an EXCP macro
using the same CCB is executed. Figure 6-2
shows the condition indicated by the setting
of each bit.

4-5 These two bytes are the status bytes of the
CSW. If device-end posting is requested
(byte 2, bit 5), device end status is ORed in.
Byte 4 is set to X'OO' at EXCP time.
Note: For nonteleprocessing devices, a
program-controlled interruption (PCI) is
ignored by the channel scheduler.

6 This byte indicates the type of CCB.

7 This byte is a hexadecimal representation of
the symbolic unit for the I/O devices, as
specified in the first operand of this CCB.

8-11 These four bytes contain the address of the
CCW (or first address of a chain of CCWs)
associated with this CCB and specified sym­
bolically in the second operand.

12 You must not modify this byte.

"'tI

~
?'

~
(l'
e-
o
n
rJl

N
va -

i Count Reserved for
Physical IOCS

12 .. Byt ..

:.. • • ---- _------- IBuffer Offset: I Virtual or real IX' SO' -eC8 being ~ u..d for -, I Transml~lng I - - _ _--- IASCII IlIfMIt Tapes I addrea fI CCW lused by ERP
I Information I Byte 5 --.... _- - Byte 6 Byte 7 IX' 00' -X' 63' I _iated with I
I Between Physical 8its 8its I X'Ou' Original CC8 I Hexacleci~1 I I this CC8 cIepen_ IX' 40' -Channel

~

I
~

I
r
R
!!

IOCS and I I X'2u' Translated CC8 I Representation IASCII Output I ding an byte 6: I~
I Problem ~ragrc ... \0 Attentian I 0 Pragram-cantrolled I X' 411' 8TAM request original CC8 I rI SYSnnn ITapes Fixed I Real addr_ IR~'o;- Pr_t
I For details II Status madifier interruptian I X'6u' 8TAM request translated CCB I SYSRDR .. 00 X'OO' I if byte ~. Ix 20 _ Sense
I see 12 Cantrol unit end I 1 Incorrect length I X' Su' User-translated CC8 in virtual I SYSIPT • 01 IVariable: X'OO' or I X'2u', X' 6u', hnformation

Figure 6-2 3 Busy 2 PragrCJm check I partition I SYSPCH .. 02 I X'04' I or X'SU'; I Desired

14 Channel end 3 Protectioncheck I Note: Anyonefitheaboveincremented!SYSLST .. 03 I , , I Yirtualaddrea I
X

'10'-Message
5 Device end 4 Channel data check 1-- by X' 10' (bit 3 on) indicates I SYSLOG • 04 Utdefined: X 00 I If byte 6 • IWriter

16 Utit check 5 Channel control check I automatic sWitching ta the I SYSLNK • 05 I X'Ou', or I
17 Utit exception 6 Interface control check I beginning rI the next cylinder I SYSRES • 06 I X' 411' IX'OB' _ EU Tape

7 Chaining check I at End rI Cylinder condition. I SYSSL8 • 07 I Error

I I SYSRL8 .. 08 IX'04' OLTEP I u: 0" the addr_ in byte 7 refers to a I SYSYSE • 09 I -
System logical Utit I SYSREC • OA I~

1 • the addr_ in byte 7 refers to a I SYSCL8 .. 08 IAvallable
Pragrammer Lagical Utit I SYSVIS • OC IX'02' _ Tape ERP

I SYSCAT .. 00 IRead Opposite
I SYSOOO • 00 IRecovery
I SYSOOI • 01 IX'OI' _ Seek
: SY~2 .. 02 I Separation

ISY~ I
I (Nate 2) I
I I
I I

Not. 1. Bytes 4 and 5 c8ntain the status bytes rI the Channel Status Word (Bits 32-47).
If byte 2, bit 5 is on and device end results as a separate interrupt, device end will be OReel into CC8 byte 4.

Nat. 2. SYSmax-255- (number rI partitions. 14).

CCW Addrea -~~I--'
in CWi s-. ccw I

13 15 1~ ____ ~

Virtual addrea I 8 Bytes
fI CCW painted I Appended ta the
to the CWi at I CC8 when Sen..
Chann.1 End; I Information is
(if byte 6· • Desired
X'Su', it is
the real addrea)
or addrea rI­
the Channel End
AppeoIdage
Routine

Condition Indicated On Values Mask for
for Third Test Under

Byte Bit Operand in Mask
1 (ON) o (OFF) CCB Macro Instruction

2 0 Traffic Bit (WAIT) I/O Completed. Normally set I/O requested and not X'80'
at Channel End. Set at Device completed.
End if bit 5 is on.

1 End of Fi Ie on System Input. /* or /& on SVSRDR or SVSIPT. X'4O'
Byte 4, Unit exception Bit is
also on.

3211 UCSB Parity Check (line complete) Ves No

2 Irrecoverable I/O Error I/O error passed back due to No program or operator X'20'
program option or operator option error was passed
option. back.

3
1

Accept Irrecoverable I/O Error Return to user after physical Operator Option: X' 1000' X'10'
(Bit 2 is ON) 10CS attempts to correct I/o Dependent on the Error

error. 2

41 2671 data check. Operator Options: Operator Option: X'OSOO' X'08'
Ignore, Retry, or Cancel. Retry or Cancel.

1017/1018 data checks. Ignore or Cancel. Cancel.
Retrun any DASD data c hec ks . Return to user.

51 Post at Device End. Device End condition is posted; Device End conditions are X'Q400' X'04'
that is, byte 2, bit 0 and byte not posted. Traffic bit is
3, bits 2 and 6 set at Device set at Channel End.
End. Also byte 4, bit 5 is set.

61 Retum: L1ncorrectable tape read data check Retum to user: ofter physical Operator Option: X'0200' X'02'
(2400-series, 3420, or 2495); 1018, 2560 10CS attempts to correct 3211, Ignore or Concel for tapes,
data check; 2520 or 2540 punch equipment tape, or DASD error; when 1018 paper tape punch (1018),
check;2560 or 5425 equipment check; 3504, or 2560 data check; when 2560 or card punches other than
3505, or 3525 permanent errors; DASD read 5425 equipment check; when 2560 and 5425. Retry or
or read verify data check;3211 passbaek re- 3504, 3505, or 3525 permanent Cancel for DASD, 2560,
quested. (Data checks on count not retumed error (byte 3, bit 3 is also on). or 5425.

71 User Error Routine User handles error recovery. 3 A physical IOCS error X'OI00' X'OI'
routine is used unless the
CCB sense address operand
is specified. The latter re-
quires user error recovery.

3 0 Data check in DASD count Field. Ves-Byte 3, bit 3 is off; No X' 80'
Byte 2, bit 2 is on.

Data check - 1287 or 1288. Ves No
MICR - SCU not operational. Ves No
3211 Print Check (equipment check). Ves No

1 DASD T rae k overrun. Ves No X' 40'
1017 broken tape. Ves No
Keyboard correction 1287 in Ves No
Journal Tape Mode.
3211 print qual ity error (equipment Ves No
check)
MICR intervention required. Ves No

2 End of DASD Cylinder. Ves No X' 20'
Hopper Empty 1287/1288 Document Ves No
Mode.
MICR - 1255/1259/1270/1275/1419, Document feeding stapped. No

disengage.
- 1275/14190, I/O error in Chonnel data check or

extemal interrupt routine. 8usout check.
3211 line position error. 5 Yes No

Figure 6-2 Conditions indicated by CCB bytes 2 and 3 (part 1 of 2)

252 DOS/VS Supervisor & I/O Macros

Condition Indicated IOn Values

Byte Bit
for Third
Operand in

1 (ON) o (OFF) CCB Macro

3 3 Tape read data check (2400-series or Operation was unsuccessful. No
2495); 2520 or 2540 punch equipment Byte 2, bit 2 is also on.
check; any DASD data check. Byte 3, bit 0 is off.
1017, 1018, 2560 data check. Ves No
1287, 1288 equipment check. Ves No
2560, 5425 equipment check. Byte 2, bit 6 is also on. No
3504, 3505, 3525 permanent errors. Byte 2, bit 6 is also on. No
3211 data check (print check). Ves No

4 Questionable Condition. Card: Unusual command
sequence (2540). DASD: No
record found.

Nonrecovery 1287/1288: Document jam or
tom tape.

UCSB parity check (command retry). Ves Ves

51 No record found condition Retry command if no record found Set the questionable X'OOO4'
condition occurs (disk). condition bit on and return

to user.

6 Verify error for DASD or Carriage Ves. (Set on when Channel 9 No
Channel 9 overflow is reached only if Byte 2, bit 5

is on).
1287 document mode-late stacker select. Ves No
1288 End-of-Page (EOP). Ves No

71 Command Chain Retry Retry begins at last CCW Retry begins at first CCW X'OOOI'
executed. or channel program.

1 User Option Bits. Set in CCB macro. Physical 10CS sets the other bits off at EXCP time and on when the condition specified accurs.

2 I/O program check, command reject. or tape equipment check always terminates the program.

I Mask for
Test Ulder
-Mask
Instruction

X'10'

X'08'

X'04'

X'02'

X'OI'

3 Vou may handle Channel Control Checks and Interface Control Checks. The accurrence of a channel data check, unit check, or chaining
check causes a byte 2, bit X' 20' of the CCB to turn on, and completion posting and dequeuing to accur. I/O program and protection checks
always cause program termination. Incorrect length and unit exception are treated as normal conditions (posted with completion). Also,
you must request device end posting (CCB byte 2, bit X'04') in order to obtain errors after channel end.

4 Error correction feature for 1018 is not supported by physical IOCS. When a 1018 data check occurs and CCB byte 2, bit X'02' is on,
control returns directly to you with CCB byte 3, bit X' 10' turned on.

5 A line position error can accur as a result of an equipment check, data check, or FCB parity check.

Figure 6-2 Conditions indicated by CCB bytes 2 and 3 (part 2 of 2)

Bytes Contents

13-15 These bytes contain the virtual address of
the CCW pointed to by the CSW at
channel-end interrupt for this 1/0 opera­
tion.

Note: Bytes 13-15 contain the address of
the channel appendage routine when X'40'
is set in byte 12.

16-23 These bytes are allotted only when the sense
address operand is supplied in the CCB
macro. They contain the CCW for returning
sense information to your program.

EXCPMacro

Name Operation Operand

[name] EXCP rloCkname[,REAL] ~
(1)

The EXCP (execute channel program) macro re­
quests physical IOCS to start an input I output opera­
tion for a particular 110 device.

Physical IOCS determines the device from the CCB
specified by blockname, and places the CCB in a
queue of such CCBs for this device. If the channel
and device are available, the channel program is
started and program control is returned to your pro­
gram. 110 interruptions are used to process 1/0

Part 6. Physical IOCS 253

completion and to start I/O for requests if the chan­
nel or device was busy at EXCP time.

blockname

REAL

is the virtual address of the CCB
established for the device. It can be
given as a symbol or in register no­
tation.

indicates that the addresses in the
CCWs and the address in the CCB
pointing to the first CCW have al­
ready been translated into real ad­
dresses. The system's CCW transla­
tion routine will be skipped. The
CCB, the channel program, and the
I/O areas must be PFIXed prior to
issuing EXCP ... ,REAL.

Note: For a program running in real
mode, the parameter REAL is ig­
nored. If the supervisor is generated
without the option
ECPREAL= YES in the FOPT su­
pervisor generation macro, and
REAL is specified, the issuing task
is canceled.

WAIT Mac,.o

Name Operation Operand

[name] WAIT ~blockname ~
I' (1)

This macro is issued whenever your program re­
quires that an I/O operation (started by an EXCP
macro) be completed before execution of the pro­
gram continues. For example, transferring data (a
physical record) to virtual storage must be complet­
ed before data can be added or moved to another
area of virtual storage, or otherwise processed.
When WAIT is executed in a batched job environ­
ment, processing is suspended until the traffic bit
(byte 2, bit 0) of the related CCB is turned on.
Then, processing automatically continues and the
data can be processed. In a multiprogramming envi­
ronment, the supervisor gives control to another
program until the traffic bit is set on.

The blockname (specified as a symbol or in register
notation) of the CCB established for the I/O device
is the only operand required. This is also the same

254 DOS/VS Supervisor & I/O Macros

name as that specified in the EXCP macro for the
device.

DTFPH Mac,.o

When physical IOCS macros (EXCP, WAIT, etc.)
are used in a program, DASD, diskette, or tape files
with standard labels need to be defined by DTFPH
entries (DTF for a file handled by physical IOCS).

DTFPH must also be used for a checkpoint file on a
disk; the following operands can be specified:

Operand Optional Required

CCWADDR=name X

DEY ADDR=SYSnnn X

DEYICE=231l, 2314, 3330, X 3340,3540

LABADDR=name X

MOUNTED=SINGLE X

TYPEFLE=OUTPUT X

Enter the symbolic name of the file (filename) in the
name field and DTFPH in the operation field. The
detail entries follow the DTFPH header card in any
order. Figure 6-3 lists the keyword operands con­
tained in the operand field.

ASCII = YES
This operand is required to process ASCII tape files.
If this operand is omitted, EBCDIC processing is
assumed.

CCW ADDR = name
This operand allows you to use the CCB generated
within the first 16 bytes of the DTFPH table.
CCWADDR specifies the symbolic name of the first
CCW used with the CCB generated within the
DTFPH macro. This name must be the same as the
name specified in the assembler CCW statement that
constructs the CCW.

If this operand is omitted, the location counter value
of the CCB-CCW table address constant is substi­
tuted for the CCW address.

-M TYPFLE=xxxxxx (INPUT or OUTPUT). Specifies type of file.

0 ASCII=YES ASCII file processing is required.

0 CCW ADDR=xxxxxxxx If CCB is generated by DTFPH is to be used.

0 DEVICE=xxxx
(TAPE, 2311, 2314, 2321,3330,3340, 3540). If omitted,
T APE is assumed.

0 DEV ADDR=SYSxxx
Symbolic unit required only when not provided on an EX-
TENT statement.

0 HDRINFO= YES Print header label information.

0 LABADDR=xxxxxxxx Routine to check or built user standard labels.

0 MOUNTED = xxxxxx
(ALL or SINGLE). Required for DASD files only; for
diskette files, specify SINGLE.

0 XTNTXIT =xxxxxxxx If EXTENT statements are to be processed. DASD only.

M=Mandatory; O=Optional

Figure 6-3 DTFPHmacro

DEVICE={TAPE 12311123141232113330 13340 1
35401

If the file is contained on DASD or diskette, enter
the proper identification. Specify 2314 for 2319 and
3330 for 3333. TAPE applies to any 2400/3400-
series tape unit, and is the only valid entry in this
operand for ASCII files.

DEV ADDR=SYSxxx
This operand must specify the symbolic unit
(SYSxxx) associated with the file if a symbolic unit
is not provided via an EXTENT job control state­
ment. If a symbolic unit is provided, its specification
overrides a DEV ADDR specification. This specifica­
tion, or symbolic unit, represents an actual I/O ad­
dress, and is used in the ASSGN job control state­
ment to assign the actual I/O device address to this
file.

For a list of symbolic units applying to DTFPH, see
Symbolic Unit Addresses in The Macro System
chapter. The only symbolic unit in that section that
is not applicable is SYSLOG.

If SYSLST or SYSPCH are used as output tape units
and alternate tape switching is desired upon detect­
ing a reflective spot, the SEOV macro must be used
(see SEOV Macro). When processing ASCn tape
files, the only valid specification is a programmer

logical unit (that is, SYSnnn).

HDRINFO = YES
This operand causes IOCS to print standard header
label information (fields 3-10) on SYSLOG each
time a file with standard labels is opened. Likewise,
the filename, symbolic unit, and device address are
printed each time an end-of-volume condition is
detected. If HDRINFO= YES is omitted, no header
or end-of-volume information is printed.

LABADDR=name
You may require one or more DASD or tape labels
in addition to the standard file labels. If so, you must
include your own routine to check (on input) or
build (on output) your label(s). Specify the symbolic
name of your routine in this operand. IOCS branch­
es to this routine after the standard label is proc­
essed.

LABADDR may be included to specify a routine for
your header or trailer labels as follows:

• DASD input or output: header labels only.

• Tape input or output: header and trailer labels.

Thus, if LABADDR is specified, your header labels
can be processed for an input/ output DASD or tape
file, and your trailer labels can be built for a tape

Part 6. PhysicallOCS 255

output file. Physical 10CS reads input labels and
makes them available to you for checking, and writes
output labels after they are built. This is similar to
the functions performed by logical 10CS. For a com­
plete discussion of the LABADDR routine, see the
Label Processing chapter.

If physical 10CS macros are used for a tape file, an
OPEN must be issued for the new volume. This
causes 10CS to check the HDR11abel and provides
for your checking of user standard labels, if any.

When physical 10CS macros are used and DTFPH is
specified for standard tape label processing, FEOV
must not be issued for an input file.

MOUNTED={ALL I SINGLEJ
This operand must be included to specify how many
extents (areas) of the file are available for process­
ing when the file is initially opened. This operand
must not be specified for tape.

ALL is specified if all extents are available for proc­
essing. When a file is opened, 10CS checks all labels
on each disk pack and makes available all extents
specified by your control statements. Only one
OPEN or OPENR is required for the file. ALL
should be specified whenever you plan to process
records in a manner similar to the direct access me­
thod. In any case, you must supply a LBL TYP state­
ment.

After an OPEN or OPENR is performed, you must
be aware that the symbolic unit address of the first
volume containing the file is in bytes 30 and 31 of
the DTFPH table rather than in the CCB. Before
executing any EXCPs you must place the symbolic
address in bytes 6 and 7 of the CCB.

SINGLE is specified if only the first extent on the
first volume is available for processing. SINGLE
should be specified when you plan to process records
in sequential order. 10CS checks the labels on the
first pack and makes the first extent specified by
your control cards available for processing. You
must keep track of the extents and issue a subse­
quent OPEN or OPENR whenever another extent is
required for processing. You will find the informa­
tion in the DTFPH table helpful in keeping track of
the extents. The DTFPH table contains:

256 DOS/VS Supervisor & I/O Macros

Bytes Contents

0-15 CCB (symbolic unit has been initialized in
the CCB).

54-57 Extent upper limits (cchh).

58-59 Seek address (bb-bin or cell number). For a
one-celled device such as disk it must be
zero.

60-63 Extent lower limit (cchh).

On each OPEN or OPENR after the first, 10CS
makes available the next extent specified by the con­
trol cards. When you issue a CLOSE or OPENR for
an output file, the volume on which you are current­
ly writing records is indicated, in the file label, as the
last volume for the file.

TYPEFLE={INPUT I OUTPUTJ
This operand must be included to specify the type of
file: input or output.

XTNTXIT = name

This entry is included if you want to process label
extent information. It specifies the symbolic name of
your extent routine. The DTFPH
MOUNTED = ALL operand must also be specified
for the file.

Whenever XTNTXIT is included, 10CS branches to
your routine during the initial OPEN for the file. It
branches after each specified extent is completely
checked and after conflicts, if any, have been re­
solved.

Upon entry to your routine, 10CS stores the address
(in register 1) of a 14-byte area from which you can
retrieve label extent information (in binary form).
This area contains:

Bytes Contents

0 Extent type code:

00 Next three fields do not indicate any
extent.

01 The extent containing your data re-
cord.

02 Overflow area of an indexed sequen-
tial file.

04 Cylinder index or master index of an
indexed sequential file.

40 User label track area.

80 Shared cylinder indicator.

1 Extent sequence number.

2-5 Lower limit of the extent (cchh).

6-9 Upper limit of the extent (cchh).

10-11 Symbolic unit (see Figure 6-1).

12 Old bin (cell) number. For a one-celled de-
vice such as disk, byte 12 contains zero.

13 Present bin number of the extent (b2).

Return to IOCS by using the LBRET macro.

OPEN and OPENR Macros
Op Operand

for self-relocating programs

OPENR ~ filename 1 ~
(d)

[, 1 fIlename 2 ! ... , lfIlenamen!]
(r2) (rn)

for programs that are not self-relocating

OP~l:i ~ filename 1 ~
(d)

[- 1 fIlename 2 f ... , 1 fIlenamen f]
(r2) (rn)

The OPENR or QPEN macro activates files proc­
essed with the DTFPH macro. These macros associ­
~

ate the logical file declared in your program with a
specific physical file on a DASD. The association by
OPENR or OPEN of your program's logical file with
a specific physical file remains in effect throughout
your processing of the file until you issue a CLOSE
or CLOSER macro.

When OPENR is specified, the symbolic address
constants generated from the parameter list are self­
relocating. When OPEN is specified, the symbolic
address constants are not self-relocating.

To write the most efficient code in a multiprogram­
ming environment it is recommended that OPENR
be used.

Self-relocating programs using LIOCS must use
OPENR to activate all files, including console files.
In addition to activating files for processing, OPENR
relocates all address constants within the DTF tables
(zero constants are relocated only when they consti­
tute the module address). If symbolic notation is
used, you must establish addressability through a
base register.

If OPEN or OPENR attempts to activate a logical
IOCS file (DTF) whose device is unassigned, the job
is terminated. If the device is assigned IGN, OPEN
or OPENR does not activate the file and turns DTF
byte 16, bit 2 on, to indicate the file is not activated.

Enter the symbolic name of the file (DTF filename)
in the operand field. A maximum of 16 files may be
opened with one OPEN or OPENR by entering the
filenames as additional operands. Alternately, you
can load the address of the DTF filename into a
register and specify the register using ordinary regis­
ter notation. The high-order 8 bits of this register
must contain zeros. For OPENR, the address of
filename may be preloaded into any of the registers
2-15. For OPEN, the address of filename may be
preloaded into register 0 or any of the registers 2-15.

Note: If you use register notation, we recommend
that you follow the standard practice of using only
registers 2-12.

Whenever an input/output DASD or magnetic tape
file is opened and you plan to process user-standard
labels (UHL or UTL), or nonstandard tape labels,
you must provide the information for checking or
building the labels. If this information is obtained
from another input file, that file must be opened,
ahead of the DASD or tape file. Do this by specify­
ing the input file ahead of the tape or DASD file in
the same OPEN or OPENR, or by issuing a separate
OPEN or OPENR preceding the OPEN or OPENR
for the file.

If an output tape (specified to contain standard la­
bels) is opened and does not contain a volume label,
a message is issued to the operator. He can then
enter a volume serial number allowing the volume
label to be written on the output tape.

Single Volume Mounted--Output
When processing output files with physical IOCS,
OPEN or OPENR is used only if you want to build

Part 6. Physical IOCS 257

standard labels. When the first OPEN or OPENR
for the volume is issued, OPEN or OPENR checks
the standard VOL 1 label and the extents specified in
the EXTENT job control statements for the mount­
ed volume:

1. The extents must not overlap each other.

2. If user standard header labels are written, the
first extent must be at least two tracks long.

3. Only type 1 and type 8 extents are valid.

OPEN or OPENR checks all the labels in the VTOC
to ensure that the file to be created does not destroy
an existing file whose expiration date is still pending.
After this check, OPEN or OPENR creates the
standard label(s) for the file and writes the label(s)
in the VTOC.

If you wish to create your own user standard header
labels (UHL) for the file, you must include the
LABADDR operand in the DTF. OPEN or OPENR
reserves the first track of the first extent for these
labels and gives control to your label routine. After
this, the first extent of the file can be used. Each
time you determine that all processing for an extent
is completed, issue another OPEN or OPENR for
the file to make the next extent available. When the
last extent on the last volume of the file is processed,
OPEN or OPENR issues a message. The system
operator has the option of canceling the job, or typ­
ing in an extent on the printer-keyboard and contin­
uing the job. If the system provides DASD file pro­
tection, only the extents opened for the mounted
volume are available to you.

Single Volume Mounted--Input
When processing input files with physical IOCS,
OPEN or OPENR is used only if you want to check
standard labels.

When the mounted volume is opened for the first
time, OPEN or OPENR checks the extents specified
in the extent cards (for example, checks that the
extent limit address for the device being opened is
valid). OPEN or OPENR also checks the standard
VOL1 label and then checks the file label(s) in the
VTOC. If the system provides DASD file protec­
tion, only the extents opened for the mounted vol­
ume are available for use.

If LABADDR is specified, OPEN or OPENR makes
the user standard header labels (UHL) available to
you one at a time for checking. Then, OPEN or
OPENR makes the first extent available for process­
ing.

258 DOS/VS Supervisor & I/O Macros

Each time you determine that all processing for an
extent is completed, issue another OPEN or OPENR
for the file to make the next extent available. If an­
other extent is not available, OPEN or OPENR
stores the character F (for EOF) in byte 31 of the
DTFPH table. You can determine the end of file by
addressing and checking the byte at filename+30.

All Volumes Mounted--Output
If all output volumes are mounted when creating an
output file with physical IOCS, each volume is
opened before the file is processed. OPEN or
OPENR is used only if standard labels are checked
or written.

For each volume, OPEN or OPENR checks the
standard VOL1label and checks the extents speci­
fied in the EXTENT job control statements:

1. The extents must not overlap each other.

2. Only type-1 extents can be used.

3. If user standard header labels are created, the
first extent must be at least two tracks long.

4. For 3340, all data modules must be of the same
type.

OPEN or OPENR checks all the labels in the VTOC
to ensure that the created file does not destroy an
existing file with an expiration date still pending.
After this check, OPEN or OPENR creates the
standard label(s) for the file and writes the label(s)
in the VTOC.

If you wish to create your own user standard header
labels for the file, include the LABADDR operand
in the DTF. OPEN or OPENR reserves the first
track of the first extent for these labels and gives
control to your label routine.

If the XTNTXIT operand is specified, OPEN or
OPENR stores the address of a 14-byte extent in­
formation area in register 1. (See the DTFPH
XTNTXIT operand, above, for the format of this
area.) Then, OPEN or OPENR gives control to your
extent routine. You can save this information for
later use in specifying record addresses. If your
DASD file is file protected, you cannot write on any
extents while in the XTNTXIT routine. When
checking is complete, return control to OPEN or
OPENR by issuing the LBRET 2 macro which opens
the next volume. After all volumes are opened, the
file is ready for processing.

All Volumes Mounted--Input
When all volumes containing the input file are on­
line and ready at the same time, each volume is
opened one at a time before any processing is done.
OPEN(R) is used only when standard labels are to
be processed. For each volume, OPEN(R) checks
the extents specified in the EXTENT job control
statements, and checks the standard VOL 1 label on
track 0 and the file label(s) in the VTOC. If
LABADDR is specified in the DTF, OPEN or
OPENR makes the user standard labels available,
one at a time, for checking.

If XTNTXIT is specified in the DTF, OPEN or
OPENR stores the address of a 14-byte extent in­
formation area into register 1. (See the DTFPH
XTNTXIT operand, above, for the format of this
area.) Then OPEN(R) gives control to your extent
routine. For example, you can save this area and use
the information later on for specifying record ad­
dresses. If the DASD file is file protected, you can­
not write on any extents while in the XTNTXIT
routine.

Diskette Volumes--Output
When processing output files on diskettes with phys­
ical IOCS, OPEN or OPENR is used to build stand­
ard labels. When OPEN or OPENR is issued for the
first volume, it checks the VTOC on the diskette,
and

• ensures that the file to be created does not have
the same name as an existing unexpired file,

• ensures there is at least one track available to be
allocated, and

allocates space for the file, starting at the track
following the last unexpired or write-protected
file on the diskette.

After this check, OPEN or OPENR creates the
format-l label for the file and writes the label in the
VTOC. Each time you determine that all processing
for an extent is complete, you must feed to make the
next diskette available and then issue another OPEN
or OPENR for the file, to make the next extent
available. CLOSE or CLOSER will automatically
cause the last volume to be fed out. If the last extent
of the file is completely processed before a
CLOSE(R) is issued, OPEN or OPENR assumes an
error condition and the job is canceled.

Diskette Volumes--Input
When processing input files on diskettes with physi­
cal IOCS, OPEN or OPENR is used to check stand-

ard labels.

When the first volume is opened, OPEN or OPENR
checks the VTOC on the diskette and determines
the extent limits of the file from the file label.

After the label is checked, OPEN or OPENR makes
the first extent available for processing. Each time
you determine that all processing for a diskette is
complete, you must feed to make the next diskette
available, and then issue another OPEN or OPENR
for the file, to make the next extent available. If
another extent is not available, OPEN or OPENR
stores the character F (for EOF) in byte 31 of the
DTFPH table. You can determine the end of file by
addressing and checking the byte at filename + 30.

For a programmer logical unit, the last diskette will.
always be fed out; for a system logical unit, the last
diskette will not be fed out.

LBRET Macro

Name Operation Operand

[name] LBRET {11213}

The LBRET macro is issued in your subroutines
when processing is completed and you wish to return
control to IOCS. LBRET applies to subroutines that
write or check DASD or magnetic tape user standard
labels, write or check tape nonstandard labels, or
check DASD extents. The operand used depends on
the function to be performed (see the Label
Processing chapter).

Checking User Standard DASD Labels: IOCS passes
labels to you one at a time until the maximum allow­
able number is read and updated, or until you signify
you want no more. Use LBRET 3 in your label rou­
tine if you want IOCS to update (rewrite) the label
read and pass you the next label. Use LBRET 2 if
you want IOCS to read and pass you the next label.
If an end-of-file record is read when LBRET 2 or
LBRET 3 is used, label checking is automatically
ended. If you want to eliminate the checking of one
or more remaining labels, use LBRET 1.

Writing User Standard DASD Labels: Build the la­
bels one at a time and use LBRET to return to IOCS
to write the labels. Use LBRET 2 if you wish to
regain control after IOCS writes the label. If, howev­
er, lacs determines that the maximum number of

Part 6. Physical IOCS 259

labels has been written, label processing is terminat­
ed. Use LBRET 1 to stop writing labels before the
maximum number is written.

Checking DASD Extents: When processing an input
file with all volumes mounted, you can process your
extent information. After each extent is processed,
use LBRET 2 to receive the next extent. When ex­
tent processing is complete, use LBRET 1 to return
control to IOCS.

Checking User Standard Tape Labels: IOCS reads
and passes the labels to you one at a time until a
tapemark is read, or until you signify you want no
more labels. Use LBRET 2 if you want to process
the next label. If IOCS reads a tapemark, label proc­
essing is automatically terminated. Use LBRET 1 if
you want to bypass any remaining labels.

Writing User Standard Tape Labels: Build the labels
one at a time and return to IOCS, which writes the
labels. You are responsible for accumulating the
block count, if desired, and supplying it to IOCS for
inclusion in the standard trailer label; for this, the
count (in binary form) must be moved to the 4-byte
field named filenameB. When LBRET 2 is used,
IOCS returns control to you (at the address specified
in LABADDR) after writing the label. LBRET 1
must be used to terminate the label set.

Writing or Checking Nonstandard Tape Labels: You
must process all your nonstandard labels at once.
LBRET 2 is used after all label processing is com­
pleted and you want to return control to IOCS. For
an example see Appendix C.

FEOV Macro
_ ~ "f

Name Operation Operand

[name] FEOV)filename~
) (1)

The FEOV (forced end-of-volume) macro is used
for files on magnetic tape (programmer logical units
only) to force an end-of-volume condition before
sensing a reflective marker. This indicates that proc­
essing of records on one volume is considered fin­
ished, but that more records for the same logical file
are to be read from, or written on, the following
volume. For system units, see SEOV Macro, below.

260 DOS/VS Supervisor & I/O Macros

The name of the file is the only parameter required.
The name can be specified either as a symbol or in
register notation.

When physical IOCS macros are used and DTFPH is
specified for standard label processing, FEOV may
be issued for output files only. In this case, FEOV
writes a tapemark, the standard trailer label, and any
user-standard trailer labels if DTFPH LABADDR is
specified. When the new volume is mounted and
ready for writing, IOCS writes the standard header
label and user-standard header labels, if any.

SEOV Macro

Name Operation Operand

[name] SEOV filename

The SEOV (system end-of-volume) macro must only
be used with physical IOCS to automatically switch
volumes if SYSLST or SYSPCH are assigned to a
tape output file. SEOV writes a tapemark, rewinds,
unloads the file, and checks for an alternate tape. If
none is found, a message is issued to the operator
who can mount a new tape on the same drive and
continue. If an alternate unit is assigned, the macro
fetches the alternate switching routine to promote
the alternate unit, opens the new tape, and makes it
ready for processing. When using this macro, you
must check for the end-of-volume condition in the
CCB.

(;.LOSE and CLOSER Macros

Op Operand

for self-relocating programs

CLOSER ~ filename I f
(rl)

[, {filename2~ ... , {filenamen~J
(r2) (rn)

for programs that are not self-relocating

CLOSE {filename I ~
(rl)

[, {filename2 f ... , {filenamen f]
(r2) (rn)

The CLOSE or CLOSER macro is used to deacti­
vate any file that was previously opened. Console
files, however, cannot be closed. These macros end

the association of the logical file declared in your
program with a specific physical file on an 110 de­
vice. A file may be closed at any time by issuing this
macro. No further commands can be issued for the
iile'iiiiless it is opened.

When CLOSER is specified, the symbolic address
constants that CLOSER generates from the parame­
ter list are self-relocating. When CLOSE is specified,
the symbolic address constants are not self­
relocating.

To write the most efficient code in a multiprogram­
ming environment it is recommended that CLOSER
be used.

Enter the symbolic name of the file (assigned in the
DTF header entry) in the operand field. A maximum
of 16 files may be closed by one macro by entering
additional filename parameters as operands. Alter-

nately, you can load the address of the filename in a
register and specify the register by using ordinary
register notation. The high-order 8 bits of this regis­
ter must be zeros. For CLOSER, the address of fi­
lename may be pre loaded into any of the registers
2-15. For CLOSE, the address of filename may be
preloaded into register 0 or any of the registers 2-15.

Notes: --
C. If you use register notation, we recommend that

you follow the standard practice of using only
registers 2-12.

2 Jf CLOSS: or CLOSER.ls issued to an unopened
tape input file,;, the option specifIed 10 the D I F
rewind option is performed. If CLOSE or
CLOSER is issued to an unopened tape output
file, no tapemark or labels are written.

Part 6. Physical IOCS 261

PART 7

SUPERVISOR

MULTITASKING

PROGRAM LINKAGE

Supervisor Macros

CANCEL GETIME RELEASE
CHKPT GETVIS RELPAG
COMRG JDUMP RUNMODE
DUMP LOAD SETIME
EOJ MVCOM SETPFA
EXIT PAGEIN STXIT
FCEPGOUT PDUMP TECD
FETCH PFIX TIIMER
FREEVIS PFREE VIRTAD
GENL REALAD WAIT

WAITM

Multitasking Macros

ATTACH ENQ POST
DEQ FREE RCD
DETACH WAITM

Program Linkage Macros

CALL RETURN SAVE

SUPERVISOR MACROS

The supervisor itself, and the services provided by
supervisor macros, are introduced in the DOS/VS
System Management Guide, GC33-5371. The pres­
ent chapter describes specific macros available to
you, their interrelationship, and requirements for
their usage.

Program Loading

Phases may be loaded into virtual storage from the
system core image library or a private core image
library with the FETCH and LOAD macros.
FETCH gives control to the phase which was load­
ed; LOAD returns control to the phase which issued
the macro.

Provided the relocating load option was selected
during supervisor generation, a relocation factor will
be applied to all address constants when a relocata­
ble phase is loaded. The system calculates this relo­
cation factor by subtracting the load address deter­
mined at link-edit time from the load address speci­
fied in (or implied by) the FETCH or LOAD macro.
If the load address is implied, the system maintains
the correct displacement of the entire phase relative
to the beginning of the partition for which the phase
was link-edited.

FETCH Macro

Name ~peration Operand

[name FETCH ~ph(st)ame ~E ~ en~6)Point}]

r LIST= ~lis~~)me~] [,SYS= ~ ~~sG

EDE
= ~~~s~J

The FETCH macro loads the phase specified in the
first parameter. The phase name can be 1-8 charac­
ters long. Control is passed to the address specified
by the second parameter. If the second parameter is
not specified, or if the specification causes an unre­
solved reference, control is passed to the entry point
determined at link-edit time. If LIST is specified, the
local directory list specified by listname (or r) is
scanned for the required phasename. The directory
list, which is generated by the GENL macro, is as-

sumed to consist of 34-byte entries in collating se­
quence. If SYS= YES is specified, the System Direc­
tory is scanned first. (This is the search order equiv­
alent to that used when a $-phase is specified.) If
either or both LIST and SYS are specified, register 1
points to a parameter list rather than to the phasen­
arne. This parameter list has the format:

DC A(phasename)

DC B'options'

DC AL3 (list name)

If the first byte pointed to by register 1 contains
X'OO', the parameter list is pointed to.

DE= YES indicates that the phasename parameter
points to a directory entry rather than a phase. If the
directory entry that is then in virtual storage is ac­
tive, the directory scan mechanism is bypassed, if
not, the entry will be filled in by the supervisor.

If relocating load was specified during supervisor
generation, a relocatable phase will be loaded at the
address calculated at link-edit time, adjusted with
the relocation factor. Also the entry point and the
address constants in the phase will then be updated
using this relocation factor.

The parameters can be specified either as symbols or
in register notation. When register notation is used
for phasename, the register must be pre loaded with
the address of an 8-byte field that contains the pha­
sename as alphameric characters. The phasename
must be left-adjusted and padded with blanks, if
necessary.

If ordinary register notation is used for entryname,
the absolute address of the entry point of the phase
should not be preloaded into register 1. If, instead, a
symbolic name is used for entryname, the macro
expansion results in a V -type address constant. The
entryname does not have to be identified by an
EXTRN statement.

If the physical transient overlap option is specified at
supervisor generation time, an increase in through­
put can result by overlapping FETCH I/O opera­
tions of one partition with program execution in

another partition.

Part 7. Supervisor Macros 265

GENL--Generate a Directory List

Name Op Operand

[name] GENL phasel, ,phasen

The GENL macro generates a directory Ust with a
34-byte entry for each of the specified phases. The
format of the local directory list is compatible with
the format of the core image directory. The phase
name and the length field are generated at assembly
time; the remainder of the entry is filled with X'OO'
except the 4th byte which is made X'OB'. This local
directory list can be scanned using th~ FETCH and
LOAD macros.

LOAD Macro

Name Operation Operand

[name] LOAD ~ph(st)ame~E poa(~Oint ~]

E LIST= ~ lis~~)e ~] [,SYS= ~~~s~J

E DE= ~ ~~S ~J ~ TXT= ~ ~gs~J
The LOAD macro loads the phase specified in the
first parameter and returns control to the calling
phase. The phase name can be 1-8 characters long.
LIST, SYS, and DE have the same function as they
have when used with FETCH; for a full description
of that use, look under FETCH. the TXT parameter
has the same function as the DE parameter, only no
text is loaded. This has two distinct advantages:

1. The directory entry can be filled in for later
FETCH/LOAD calls without the overhead of
text transfer.

2. You can establish whether a given phase is pres­
ent by looking for the 'phase not found' condi­
tion, X'06', in the directory entry.

In case TXT=NO is specified in combination
with LIST =listname or DE= YES, the 'phase not
found' condition, X'06', is set in the core direc­
tory entry if the phase is not present. The ad­
dress of this condition byte minus a displacement
of 16 is returned in register O. You can also
check in which library or area the phase resides.

266 DOS/VS Supervisor & I/O Macros

After execution of the macro, the entry-point ad­
dress of the called phase is returned to you in regis­
ter 1. For a non-relocatable phase, this address is the
entry-point determined at link-edit time. For a relo­
catable phase the entry point is adjusted by the relo­
cation factor.

If the optional load-address parameter is provided,
the load-point address specified to the linkage editor
is overridden, and the phase is loaded at the speci­
fied address. The address used must be outside the
supervisor area. When an overriding address is given,
the entry-point address is relocated and returned in
register 1. If the relocating load option was specified
during supervisor generation, and the phase is non­
relocatable, none of the other addresses in the phase
are relocated; if the phase is relocatable, however,
the entry point and address constants are updated
with the relocation factor. If the optional load­
address parameter is provided and the relocating
load option was specified during supervisor genera­
tion, a program containing V -type address constants
must not be link-edited as a relocatable phase be­
cause the updated V -type address constants will be
invalid.

If the relocating load option was specified during
supervisor generation and the address for LOAD is
implicit (the load-address parameter is not speci­
fied), a relocatable phase will be loaded at the ad­
dress calculated at link-edit time, adjusted with the
relocation factor. The address constants in the relo­
catable phase will be updated with the relocation
factor.

The parameters can be specified either as symbols or
in register notation. When register notation is used
for phasename, the register must be preloaded with
the address of an 8-byte field that contains the pha­
sename. The phasename should be left-justified and
padded with blanks, if necessary. If ordinary register
notation is used for loadpoint, this parameter should
not be preloaded into register 1.

If the physical transient overlap option is specified at
supervisor generation time, an increase in through­
put can result by overlapping LOAD I/O operations
of one partition with program processing in another
partition.

Virtual Storage

The nature of virtual storage requires that certain
programs be specially handled. DOS /VS provides a
set of supervisor macros to perform these special

functions.

The PFIX macro allows you to fix pages of virtual
mode programs in real storage until you specify their
release with the PFREE macro.

The RELP AG macro allows you to release the con­
tents of one or more pages. When a location in a
page thus released is referenced again during the
same program execution, it is assigned a page frame
of all zeros.

The FCEPGOUT and PAGEIN macros allow you to
override the selection algorithm and have specific
pages paged out and in at your discretion.

With the RUNMODE macro, you can inquire in
which mode -- virtual or real -your program is run­
ning. To use this macro, the supervisor must have
been generated with support for page fault handling
overlap. See Appendix G.

The SETPF A macro allows you to establish linkage
to routines which are to be entered at the beginning
of a page fault and when a page fault has been satis­
fied.

The VIRTAD macro returns the virtual address cor­
responding to a specified real address and the
REALAD macro returns the real address corre­
sponding to a specified virtual address.

With the GETVIS and FREEVIS macros you can
dynamically retrieve and release blocks of storage in
the GETVIS area of your partition or of the shared
virtual area (SVA). The GETVIS area in a partition
can be allocated in multiples of 2K. The GETVIS
area in the SV A must be allocated in multiples of
4K. Any remainder above a multiple of 4K is ig­
nored. The maximum size of the GETVIS area is
994K bytes in a partition and 12 168K bytes in the
SV A. The amount of storage to be reserved as the
GETVIS area in a partition must be set aside by
means of the SIZE parameter of the EXEC job con­
trol statement. If the GETVIS area is part of the
SV A, the system must have been generated with
SV A= (nK,nK) in the VST AB supervisor generation
macro.

PFIX Macro

Name Operation Operand

[name] PFIX I begin address,)
end address

t [,begin address, f
end address] ...

\ ~ listname t
(1)

The PFIX macro causes specific pages to be brought
into real storage and fixed in their page frames until
they are released at some later time. Pages may only
be fixed in the real partition corresponding to the
virtual partition doing the fixing (for instance, pages
from BG can only be fixed in BGR). For this rea­
son, you must have allocated a real partition large
enough to contain all the pages which are likely to
be fixed at anyone time. In a single-partition system
all except 16K of the real background partition is
automatically available for fixing pages using the
PFIX macro. Each time a page is fixed a counter for
that page is incremented. This counter may never
exceed 255 for any page.

begin address: Points to the first location of the area
to be fixed.

end address: Points to the last location of the area to
be fixed.

Iistname: Is the symbolic name of a list of consecu­
tive 8-byte entries as shown below.

I 0 I address constant I length minus 1

o 4 7

address constant: Points to the first byte of the area
to be fixed.

length: A binary constant indicating the length of the
area to be fixed.

A non-zero byte following an entry indicates the end
of the list. Register notation may also be used.

Exceptional Conditions
If a PFIX causes the count of fixes for a page to
exceed 255, the task issuing the PFIX is canceled.

If it is not possible to fix all pages requested, then
none will be fixed.

Part 7. Supervisor Macros 267

If PFIX is issued in a program running in real mode
it is ignored, and register 15 contains O.

If the supervisor was not generated with
PFIX= YES, the program issuing PFIX will be can­
celed.

Return Codes in Register 15
o if the pages were successfully fixed.

4 if the number of pages to be fixed for one re­
quest exceeds the number of page frames in the
real partition; in order for this PFIX request to
be satisfied, the real partition must be reallocat­
ed and the PFIX reissued.

8 if not enough page frames available in the real
partition due to previous PFIXes; this PFIX re­
quest could, however, be satisfied at another
time without reallocating the real partition.

12 if one of the addresses specified was invalid.

PFREEMacro

Name Operation

[name] PFREE

Operand

beginn address,
end address
[,begin address,
end address] ...

~1istnamet
I (1) ,

Pages in the virtual address area are each assigned a
'PFIX counter'. If a page is not fixed--that is, if it is
subject to normal page management--the counter is
o. Whenever a page is fixed by using a PFIX macro
its counter is increased by one. All pages whose
counters are greater than 0 remain fixed in real stor­
age.

The PFREE macro decrements the counter of a
specified page by 1. A PFREE issued for a page
whose counter is 0 is ignored since the page has al­
ready been freed.

begin address: Points to the first location of the area
to be freed.

end address: Points to the last location of the area to
be freed.

listname: Is the symbolic name of a list of consecu­
tive 8-byte entries as shown below.

268 DOS/VS Supervisor & I/O Macros

I 0 I address constant I length minus I

o 1 4 7

address constant: Points to the first byte of the area
to be freed.

length: A binary constant indicating the length of the
area to be freed.

A non-zero byte following an entry indicates the end
of the list. Register notation may also be used.

Exceptional Conditions
If PFREE is issued by a program running in real
mode, it is ignored.

If the supervisor was not generated with PFIX= YES
specified in the FOPT macro, the program issuing
PFREE will be canceled.

Return Codes in Register 15
o if the pages were successfully freed.

12 if one of the addresses specified was invalid.

RELPAG Macro
Name Operation Operand

[name] RELP AG begin address,

'

end address I
[, begin address, ~

) end address 1 ... ~

I 5 listname t ,
I (1) \

The RELP AG macro causes the contents of one or
more storage areas to be released. If the affected
areas are in real storage when the RELP AG macro is
executed, their contents are not saved but simply
overwritten when the associated page frames are
needed to satisfy pending page frame requests.

After the RELPAG macro has been executed for an
area and a location in that area is referenced again
during the current program execution, the related
page is attached to a page frame which contains all
zeros.

The storage area is released only if it contains at
least one full page. You can be sure of this only if
your area is 4K minus 1 byte or bigger.

2k

2k

r----- First byte of page n

Starting address of specified
area Oength=4k-2 bytes)

Page n

Page n+ 1

End address of
specified area

Last byte of page n+ 1 ---....

Figure 7-1 Worst case of an area not containing one full
page

begin address: Points to the first location of the area
to be released.

end address: Points to the last location of the area to
be released.

listname: Is the symbolic name of a list of consecu­
tive 8-byte entries as shown below.

I 0 I address constant I length minus I

o 4 7

address constant: Points to the first byte of the area
to be released.

length: A binary constant indicating the length of the
area to be released.

A non-zero byte following an entry indicates the end
of the list. Register notation may also be used.

Exceptional Conditions
• The program is running in real mode.

• The area is, fully or partially, outside of the vir­
tual partition of the requesting program.

A page handling request is pending for the refer­
enced page(s).

• The page (s) is (are) fixed.
For these pages, the RELPAG request will be
ignored.

• The supervisor was not generated with
PAGEIN=n in the SUPVR macro (in this case
the program will be canceled).

Return Codes in Register 15
o - All referenced pages have been released or the

request has been ignored because the requesting
program is running in real mode.

2 - The begin address is greater than the end ad­
dress, or a negative length has been found.

4 - The area, fully or partially, does not belong to
the partition where the issuing program is run­
ning. The RELEASE request has only be execu­
ted for those pages which belong to the partition
of t6.e issuing program.

8 - 1. At least one of the requested pages is tem­
porarily fixed (via CCW -translation) and/or
PFIXed. The RELEASE request has only
been executed for the unfixed pages.

2. A page handling request (page fault, tempo­
rary fix, PFIX) for at least one of the re­
quested pages is pending (caused by asynch­
ronous processing within a partition). The
RELEASE request has not been executed
for those pages which are reinvolved in a
page handling request.

Any combination of the return codes is possible.

FCEPGOUT Macro

Name Operation

[name] FCEPGOUl

Operand

l
begiD address, end address

[, begin address, end address]

5listnamet
1 (1) \

The FCEPGOUT macro causes a specific area in
real storage to be paged-out at the next page fault.
This request is ignored if the specified area does not
contain a full page. This can happen up to an area
size of 4K minus 2 bytes (see Figure 7.1).

begin address: Points to the first location of the area
to be paged out.

end address: Points to the last location of the area to
be paged out.

listname: Is the symbolic name of a list of consecu­
tive 8-byte entries as shown below.

I 0 I address constant I length minus I

o 1 4 7

address constant: Points to the first byte of the area
to be paged out.

Part 7. Supervisor Macros 269

length: A binary constant indicating the length of the
area to be paged out.

A non-zero byte following an entry indicates the end
of the list. Register notation may also be used.

Exceptional Conditions
• The program is running in real mode.

• The page(s) referenced by the macro is (are)
outside of the requesting partition.

• The page handling request(s) is (are) pending
for the referenced page(s).

• The page(s) is (are) not in real storage.

• The page(s) is (are) fixed.

For those pages the FCEPGOUT request will be
ignored.

• The supervisor was not generated with
PAGEIN=n in the SUPVR macro.

(In this case the program is canceled.)

Return Codes in Register 15
0- All specified pages have been forced for page­

out or the request has been ignored because the
issuing program is running in real mode.

2 - The begin address is greater than the end ad­
dress, or a negative length has been found.

4 - At least one of the requested pages do not be­
long to the partition where the issuing program is
running. The P AGEOUT request has only been
executed for those pages which are belonging to
the partition of the issuing program.

8 - 1. At least one of the requested pages is tem­
porarily fixed (via CCW-translation) and/or
PFIXed. This PAGEOUT request has only
been executed for the unfixed pages.

2. A page handling request (page fault, tempo­
rary fix, PFIX) for at least one of the re­
quested page is pending (caused by asynch­
ronous processing within a partition). The
P AGEOUT -request has not been executed
for those pages which are involved in a page
handling request.

Any combination of return codes is possible.

270 DOS/VS Supervisor & I/O Macros

PAGEIN Macro

Name Operatiol1 Operand

[name] PAGEIN (begin address, end address l
'[, begin address, end address] ...
) f listname t
1 (l) \

[l , ECB= (eCb&),e) \]

The PAGEIN macro causes specific areas to be
brought into real storage before their contents are
needed by the requesting program. If the requested
area is already in real storage the attached page
frame will get low priority for the next page-outs.
This function, however, does not include any fixing,
so that it is not sure that all areas requested will still
be in real storage when the entire request has been
completed.

begin address: Points to the first location of the area
to be paged in.

end address: Points to the last location of the area to
be paged in.

listname: Is the symbolic name of a list of consecu­
tive 8-byte entries as shown below.

10 I address constant I length minus 1

o t 4 7

address constant: Points to the first byte of the area
to be paged in.

length: A binary constant indicating the length of the
area to be paged in.

A non-zero byte following an entry indicates the end
Jf the list. Register notation may also be used.

ECB=ecbname: Specifies the name of the ECB, a
fullword defined by your program, which is to be
posted when the operation is complete. Register
notation may also be used. The ECB parameter is
optional.

Return Information
The return information can be obtained from the
ECB, byte 2.

Bits SETPFA Macro
ofECB
byte 2: Meaning if bit is one:

o P AGEIN request is finished.

1

2

3

4

5

The page table is full, the request cannot
be queued at this time for further handling.
The request is ignored, bit 0 is set.

One or more of the requested pages are
outside the requesting program's partition.
PAGEIN is not performed for these pages.

At least one negative length has been de­
tected in the area specifications, P AGEIN
is not performed for these areas.

List of areas that are to be paged in is not
completely in the requesting program's par­
tition. The request is ignored, bit 0 is set.

Paging activity is too high in the system, no
performance improvement is possible.

Use the WAIT macro with the ecbname as operand
for completion of the PAGEIN macro, before the
return code is tested.

Any combination of the return bits in the ECB is

possible.

RUNMODE Macro

Name Operation Operand

[name] RUNMODE

The RUNMODE macro returns the following in­
formation to the program issuing it:

• Register 1 contains 0 if the issuing program is
running in virtual mode.

Register 1 contains 4 if the issuing program is
running in real mode.

No operand is required for this macro.

Name Operation Operand

[name] SETPFA ~entry address ~
(0)

The SETP:F' A macro either tstablishes or terminates
linkage to a page fault appendage routine that is to
be entered each time a page fault occurs or is com­
pleted. You will find more information on how to
write such a routine in Appendix G of this manual.

If an entry address is specified, then the routine
pointed to by the address will be entered every time
a page fault in its task occurs or is satisfied. The
routine to be entered and all areas referenced by the
routine must be fixed in real storage using the PFIX
macro before SETPF A is issued. The entry address
may be specified as a symbol or in register notation.

If SETPF A is issued without an operand, the linkage
to the page fault appendage is terminated. Each
issuance of SETPF A supersedes all previous
SETPF A's for that task.

The page fault appendage is only called when a page
fault occurs in the task owning the appendage. If a
page fault occurs in a supervisor service working for
the owning task, the appendage is not called.

See Appendix G for instructions on setting up a page
fault appendage.

VIRTAD Macro

Name Operation Operand

[name] VIRTAD rddress~
(1)

The VIR T AD macro returns the virtual address cor­
responding to a specified real address.

address: Is the real storage address to be converted.
It can be given as a symbol or in register notation.

Register 0 returns the virtual address corresponding
to the specified real address only if the page frame
containing the specified real address contains a fixed
page; otherwise register 0 contains O.

Part 7. Supervisor Macros 271

I

Note:

• The pages of a program running in real mode are
considered to be fixed.

If the supervisor has been generated without the
parameter ECPREAL= YES in the FOPT super­
visor generation macro instruction the issuing
task is canceled.

REALAD Macro

Name Operation Operand

[name] REALAD ~address f
~ (1)

The REALAD macro returns the real address corre­
sponding to a specified virtual address.

address: Is the virtual address to be converted. It can
be given as a symbol or in register notation.

Register 0 returns the real address corresponding to
the specified virtual address if and only if the virtual
address points to a fixed page, otherwise register 0
contains O.

Note:

• The pages of a partition running in real mode are
treated as if they were fixed.

• If the supervisor is generated without the param­
eter ECPREAL= YES in the FOPT supervisor
generation macro the issuing task is canceled.

GETVIS Macro

Name Operation Operand

[name] GETVIS [ADDRESS= ~ nWe 1 f]

[, LENGTH= ~ n(~e2 f]

[, PAGE= ~ ~g ~J
[, POOL= ~~~ fJ
[, SVA= ~~~S ~]

272 DOS/VS Supervisor & I/O Macros

The GETVIS macro retrieves a block or blocks of

I storage from the GETVIS area of your partition or
of the SVA.

The start address (ADDRESS) of the requested vir­
tual storage area is returned by the system either in
the 4-byte field addressed by name I or in the speci­
fied register. (Register 15 must not be used becfluse
it contains the return code.) The returned address is
only valid if the return code in register 15 is zero. If
the operand is omitted, the address is returned in
register 1.

The length (LENGTH) of the requested storage
block may be specified by you either in the 4-byte
field addressed by name2 or in a register. The length
is specified in bytes. The smallest unit that can be
requested by GETVIS is (a) 128 bytes if the GET­
VIS area is part of a partition or (b) 512 bytes if the
GETVIS area is part of the SVA. If the specified
length is not a multiple of 128 or 512, respectively, it
is rounded to the next higher multiple of 128 or 512.
If the operand is omitted, the system assumes that
you have specified the length in register O.

If you want the requested storage area to start on a
page boundary, specify PAGE= YES. This may re­
duce page faults.

If POOL is specified, GETVIS starts searching for
the requested virtual storage area at the address
specified in register 1. In this case, it is your respon­
sibility to provide a meaningful address in register 1.

I

If SV A= YES is specified, the GETVIS area in the
SVA is used. Otherwise, the GETVIS area of the
current partition is taken.

I User programs can only use the SVA if they have a
storage protection key of zero.

Return Codes in Register 15
o GETVIS completed successfully.

4 The GETVIS area is OK.
8 The GETVIS macro was issued by a program

running in real mode.
12 No more virtual storage is available in the GET­

VIS area, or the length specified is smaller than
zero.

FREEVIS Macro

Name Operation Operand

[name] FREEVIS [ADDRESS= 1 n0;el ~J

[,LENGTH= ~ (:e2 ~]

[, SV A= ~ ~~S ~]

The FREEVIS macro releases a block (or blocks) of
virtual storage that was retrieved by the GETVIS
macro.

The start address (ADDRESS) of the virtual storage
block to be released in the GETVIS area may be
specified by you either in a 4-byte field addressed by
name 1 or in a register. If the operand is omitted, the
system assumes that you have specified the address
in register 1.

The length (LENGTH) of the virtual storage block
to be released may be specified by you in a 4-byte
field addressed by name2 or in a register. The length
is specified in bytes. The smallest unit of virtual
storage that can be released by FREE VIS is (a) 128
bytes if the GETVIS area is part of a partition or (b)
512 bytes if the GETVIS area is part of the SVA. If
the specified length is not a multiple of 128 or 512,
respectively, it is rounded to the next higher integral
multiple of 128 or 512. If the operand is omitted,
the system assumes that you have specified the
length in register O.

If SV A= YES is specified, the GETVIS area in the
SVA is used. Otherwise, the GETVIS area of the
current partition is taken.

User programs can only use the SVA if they have a
storage protection key or zero.

Return Codes in Register 15
8 The FREEVIS macro was issued by a program

running in real mode.

12 The specified address is not within the GETVIS
area or the address is not (a) a multiple of 128
bytes if the GETVIS area is part of a partition,
or (b) a multiple of 512 bytes if the G ETVIS
area is in the SV A.

16 The specified storage block
(ADDRESS+ LENGTH) to be released exceeds
the GETVIS area, or the length specified is
smaller than zero.

If the return code is not zero, no action is taken by
FREEVIS.

Program Communication

For each partition the supervisor contains a storage
area called the communication region. The supervi­
sor uses the communication region, and your pro­
gram also can use it. Your program can check the
communication region of the partition in which your
program runs; your program can also modify the
user area of this communication region.

Figure 7 -2 shows the portion of the communication
region containing information of interest. This in­
formation is also described below.

Field
Length Information

8 bytes Calendar date. Supplied from system
date whenever the JOB statement is en­
countered. The field can be two forms:
mm/dd/yy or dd/mm/yy where mm is
month, dd is day, yy is year. It can be
temporarily overridden by a DATE
statement.

4 bytes Reserved.

11 bytes User area for communication within a
job step or between job steps. All 11
bytes are set to zero when the JOB
statement for the job is encountered.

1 byte UPSI (user program switch indicators).
Set to binary zero when the JOB state­
ment for the job is encountered. Initial­
ized by UPSI job control statement.

8 bytes Job name as found in the JOB statement
for the job.

4 bytes Address of the uppermost byte of the
program area. If the program was initi­
ated with the SIZE parameter in the
EXEC job control statement, this ad­
dress gives the highest byte of the area
determined by the SIZE parameter.

If the SIZE parameter was not specified,
the address is the highest address in the
partition (either real or virtual).

4 bytes Address of the uppermost byte of the
current phase placed in the program
area by the last FETCH or LOAD ma­
cro in the job.

Part 7. Supervisor Macros 273

4 bytes Highest ending virtual storage address
of the phase among all the phases hav­
ing the same first four characters as the
operand on the EXEC statement. For
the background partition only, job con­
trol builds a phase directory of these
phases. The address may be incorrect if
the program loads any of these phases
above its link-edited origin address and
the relocating loader is not used. If the

Date User Area - set to zero
when JOB statement is Mo/Day/Yr

or Reserved read. (Communication

Day/Ma/Yr
within a job step or
between job steps)

Bytes ... 0 7 8 11 12 22

+
Address cl first
byte supplied
in register 1
by COMRG

Figure 7-2 Communication region

COMRGMacro

Name Operation Operand

[name] COMRG

The COMRG macro places the address of the com­
munication region of the partition from which the
macro is issued in register 1. Your program can read
any portion of its own partition's communication
region by using register 1 as a base register.

274 DOS/VS Supervisor & I/O Macros

in
0-

2-
'" CII

..c.
~
'i
V)

E e
~

0-

23

2 bytes

EXEC statement has no operand, job
control places in this location the ending
address of the phase just link-edited.

Length of program label area.

The COMRG and MVCOM macros allow your pro­
gram to check and to modify the communication
region.

I
Address: Address: Address:

Uppermost Uppermost Uppermost Length of
Job Name Byte of Byte of Problem Byte of
(Entered from Problem Current phase with Program
Job Control) Program Problem highest Label

Program ending Area Area
Phase address

24 31 32 3536 3940 43 44 45 }

MVCOMMacro

Name Operation Operand

[name] MVCOM to ,length , {from f
(0)

The MVCOM macro modifies the content of bytes
12-23 of the communication region of the partition
from which the macro is issued.

The operand from represents the address (either as a
symbol or in register notation) of the bytes to be
inserted. The operand length represents the number
of bytes (1-12) inserted. The operand to is the ad­
dress (relative to the first byte of the region) of the
first communication region byte modified (12-23).

The following example shows how to move three
bytes from the symbolic location DATA into bytes
16-18 of the communication region:

MVCOM 16,3,DATA

Releasing I/O Units

RELEASE Macro

Name Operation Operand

[name] RELEASE (SYSnnn, ... ,SYSnnn)
[,savearea]

RELEASE specifies the names of programmer logi­
cal units to be released. RELEASE may be used
only for units used within a given partition running
in batched job mode. Up to 16 programmer logical
units may be specified in the parameter list for re­
lease.

The savearea parameter is optional. If provided, it
should be the name of an 8-byte word-aligned area
where registers 0 and 1 are saved for your program.
If not provided, the contents or registers 0 and 1 are
destroyed.

All the units specified are checked to assure that no
system logical units are requested for release. If sys­
tem logical units are specified, an MN OTE is issued
and such units are ignored.

After all checking is done, a unit table is set up and
register 0 is loaded with the table address. If the
savearea option is specified, registers 0 and 1 are
saved.

If there is no permanent assignment, the device is
unassigned. If the device is at permanent assignment
level, no action is taken on the unit.

Before any release is attempted, a check is made for
ownership of the unit. If the requesting partition
does not own the unit, or if the unit is already un­
assigned, the request is ignored.

Recommendation: You should inform the system
operator via a message that the assignment was re­
leased.

Time of Day Macro
GETIME Macro

Name Operation Operand

[name] GETIME rTANDARDl BINARY
TV
MICRO

[, ~LOCA~-
GMT <oJ

The GETIME macro obtains the time-of-day at any
time during program execution, provided the time of
day option was specified at system generation. (If
the time of day option was not specified at system
generation, issuing GETIME only obtains zeros in­
stead of a valid time.) STANDARD and LOCAL
are assumed if no GETIME operands are given.

The time-of -day clock is independent of the interval
timer options (for the latter see Interval Timer and
Exit Macros, below). The use of GETIME and use
of interval timer macros have no effect on one an­
other.

As long as no DATE job control statement is sup­
plied, the job date and system date in the communi­
cation region are updated every time GETIME is
issued. Those dates are therefore accurate at any
given moment during processing as long as no
DATE statement is encountered. However, when
the job stream contains a DATE job control state­
ment, only the system date in the communication
region is updated when GETIME is used; the job
date is not changed in that case.

If STANDARD is specified, the time-of-day is re­
turned in register 1 as a packed decimal number of
the form hhmmss, where hh is hours, mm is min­
utes, and ss is seconds, with the sign in the low­
order half-byte. The time-of-day may be stored,
unpacked, or edited.

If BINARY is specified, the time-of-day is returned
in register 1 as a binary integer in seconds.

If TU is specified, the time-of -day is returned in
register 1 as a binary integer in units of 1/300 sec­
onds.

If MICRO is specified, the time-of-day is returned in
registers 0 and 1 as a 64-bit binary integer in micro­
seconds; bit 63 represents the unit of microseconds.
If MICRO is specified, GMT must also be specified.
In case MICRO is specified by itself or in combina­
tion with LOCAL, the specification is not accepted
and GMT is assumed. (LOCAL is not accepted in
combination with MICRO because the conversion
routines from Greenwich Mean Time to local time

Part 7. Supervisor Macros 275

take up a great number of microseconds). The sys­
tem date in the communication region (offset 79) is
not updated when MICRO is specified.

Interval Timer and Exit Macros

The interval timer macros--SETIME, TTIMER,
WAIT, WAITM, TECB, STXIT IT, and EXIT IT-­
can be used only if the supervisor contains the inter­
val timer routines. You specify at system generation
time whether the interval timer is to be supported.

In a multiprogramming and/or multitasking environ­
ment, all tasks--main as well as subtasks--may use
the interval timer macros, if the interval timer was
specified at system generation.

There are two distinct methods, described below, of
using the interval timer macros. In each task only
one method can be used at a time.

The first method allows your program to set the
timer and enter a routine in your program when the
time elapses. The SETIME, TTIMER, STXIT, and
EXIT macros do this.

In the second method, it is possible to put the task
into the wait state until the time interval has elapsed.
The SETIME, TTIMER, TECB, WAIT, and
W AITM macros are used for this method.

Entering a Routine When Time Elapses

SETIME Macro

Name Operation Operand

[name] SETIME teCOnds~
(1)

The SETIME macro sets the interval timer to the
value specified in the operand. The largest allowable
value is 55918 (equivalent to 15 hours, 31 minutes,
58 seconds). A register may be specified as the ope­
rand. The register must contain the number of sec­
onds in binary. When the specified timer interval has
elapsed, the interval timer routine you supply is en­
tered.

If a routine is not supplied to the supervisor (via the
STXIT macro) by the time of the interruption, the
interruption is ignored. When a program is restarted

276 DOS/VS Supervisor & I/O Macros

from a checkpoint, any timer interval set by a
SETIME macro is not restarted.

ITIMER Macro

Name Operation Operand

[name] TTIMER [CANCEL]

The TTIMER macro is used to test how much time
has elapsed of an interval which was set in the same
task by the associated SETIME macro. The TTIM­
ER macro returns the time remaining of the interval,
expressed in hundredths of seconds in binary, in
register O.

If CANCEL is specified, the remaining time of the
interval set in that task is canceled and the interval
timer routine is not entered (See DOS/VS System
Management Guide, GC33-5371, for programming

considerations and examples).

STXlT Macro

Name Operation Operand

I

To establish linkage

[name] STXIT

r~B} 1 rtnaddr \ tvearea \
PC, (0) , (1)
OC

To terminate linkage

[name] STXIT {AB I IT I PC I OC}

The STXIT (set exit) macro establishes or termi­
nates linkage from the supervisor to your program's
routine for processing abnormal task termination,
interval timer, program check, or operator communi­
cation interrupts. Use the EXIT macro (described
later in this section) to return from these routines.
This linkage must be established before an interrupt
occurs. If only the first operand is present, linkage to
your routine is terminated.

Hexadecimal rep- Specific abnormal termination code meaning
resentation

10 Normal EOJ

11 No channel program translation for unsupported device

12 Insufficient buffer space for channel program translation

13 CCW with count greater than 32K

14 Page pool too small

15 Page fault in disabled program (not a supervisor routine)

16 Page fault in MICR stacker select or page fault appendage routine

17 Main task issued a CANCEL macro with subtask still attached

18 Main task issued a DUMP macro with subtask still attached

19 Operator replied cancel as the result of an I/O error message

lA An I/O error has occurred (see interrupt status information)

IB Channel failure

lC CANCEL ALL macro issued in another task

ID Main task terminated with subtask still attached

IE A DEQ macro was issued for a resource but tasks previously requesting a resource cannot be found
because their save areas (containing register 0) were modified

IF CPU failure

20 A program check occurred

21 An invalid SVC was issued by the problem program or macro

22 Phase not found in the core image library

23 CANCEL macro issued

24 Canceled due to an operator request

25 Invalid virtual storage address given (outside partition)

26 SYSxxx not assigned (unassigned LUB code)

27 Undefined logical unit

28 QT AM cancel in progress

29 Relocatable phase fetched or loaded by a supervisor without relocating loader support

2A I/O error on page data set

2B I/O error during fetch from private core image library

2C Page fault appendage routine passed illegal parameter to supervisor

Figure 7-3 Abnormal termination codes (part t of 2)

Part 7. Supervisor Macros 277

Hexadecimal rep- Specific abnormal termination code meaning
resentation

2D Program cannot be executed/restarted due to a failing storage block

2E Invalid resource request (possible deadlock)

2F More than 255 PFIX requests for one page

30 Read past a / & statement

31 I/O error queue overflow during system error recovery procedure

32 Invalid DASD address

33 No long seek on a DASD

35 Job control open failure

36 Page fault in I/O appendage routine

38 Wrong privately translated CCW

39 Reserved

FF Unrecognized cancel code

Figure 7-3 Abnormal termination codes (part 2 of 2)

278 DOS/VS Supervisor & I/O Macros

AD
An abnormal task termination routine is entered if a
job or task is terminated for some reason other than
a CANCEL, DETACH, DUMP, or EOJ macro is-

sued by either the program or the supervisor. Upon
entry to the task's abnormal termination routine:

• Byte 2 bit 1 is posted in the task's attachment
ECB, if AB= YES is generated in the supervisor.

Register 0 contains the abnormal termination
code in its low order byte (see Figure 7-3).

• Register 1 contains the address of the task's
abnormal-termination save area, which contains
the interrupt status information and the contents
of registers 0-15 at the time of the abnormal
termination. Details of the status information
are contained in the section Save Areas in
DOS/VS Serviceability Aids and Debugging
Procedures, GC33-5380.

The abnormal termination routine can then examine
this data and take whatever action is necessary.

Macros which might be used in this routine are
DEQ, POST, and CLOSE. However, if an abnormal
termination condition occurs in an abnormal termi­
nation routine, the job or task is abnormally termi­
nated without regard to an abnormal termination
exit.

Thus, your program's abnormal termination routine
should avoid macros such as ENQ, CHKPT, and any
other I/O macros which may cause an abnormal
termination.

Note: For systems operating in a QT AM environ­
ment, QT AM files must be closed before issuing this
macro.

After the appropriate action is taken, your abnormal
termination routine should end with a CANCEL,
DETACH, DUMP, or EOJ macro. However, DUMP
forces a storage map of the partition even if option
NODUMP was specified. At this time, the subtask's
attachment ECB bit 0 of byte 2 is posted, all held
tracks are freed, messages to identify the reason for
abnormal termination are given, and the subtask is
detached. If the main task issued the CANCEL ma­
cro, the entire partition is terminated with every
subtask abnormal termination exit taken in order of
priority.

If the system was generated with the multitasking
option, each task may require its own abnormal ter­
mination routine. A main task can attach a subtask
with an ABSA VE operand. This assumes the subtask
will use its abnormal termination routine. However,
the subtask may override this specification by issuing

its own STXIT AB macro.

IT
An interval timer interruption routine is entered
when the specified interval elapses.

OC
An operator communication interruption routine is
entered in a background job when the external inter­
rupt key on the console is pressed. In a foreground
program, the OC routine is entered when you press
the request key on the console and request the fore­
ground OC routine. In case of multitasking, only the
main task can process this condition.

PC
A program check interruption routine is entered
when a program check occurs. If a program check
occurs in a routine being executed from the logical
transient area, the job containing the routine is ab­
normally terminated.

A program check interruption routine can be shared
by more than one task within a partition. Do this by
executing the STXIT macro in each subtask with the
same routine address but with separate save areas.
To successfully share the same PC routine, the rou­
tine must be reenterable. That is, it must be capable
of being used concurrently by two or more tasks.

rtnaddr
Entry point address of the routine that processes the
condition described in the first operand. The address
can be specified as a symbol or in special or ordinary
register notation.

savearea
Address of a 72-byte area in which the supervisor
stores the old interrupt status information and gener­
al registers 0-15, in that order. The address can be
specified as a symbol or in special or ordinary regis­
ter notation. Your program must have a separate
save area for each routine that is included.

If a STXIT macro is issued and the supervisor is not
generated to handle the requested facility, the job is
abnormally terminated.

If an abnormal termination condition occurs and
linkage has not been established to an abnormal
termination routine, processing in the partition is
abnormally terminated. However, if the abnormal
termination condition occurs in a sub task without
exit linkage, only the subtask is terminated. An in­
terval timer or operator communication condition
occurring without exit linkage is ignored.

Part 7. Supervisor Macros 279

If a program check condition occurs in a main task
without exit linkage, processing in the partition is
terminated. However, if this same condition occurs
in a subtask, only the subtask is terminated.

The following shows what happens when a condition
occurs where a STXIT routine is being processed
within a particular partition:

Routine being Condition Occurring
Processed

AB IT OC PC

AB I I I T

IT S I H H

OC S H IB Ef H

PC S H H T

Ef Error message issued in foreground program,
and control returns to interrupted OC routine.

H Condition honored. When processing of new
routine completes, control returns to interrupt­
ed routine.

I Condition ignored for all partitions.

IB Interrupt ignored in the background partition.

S Execution of the routine being processed is
suspended, and control transfers to the AB
routine.

T Job abnormally terminated. If AB routine
present and there has not been an interruption
in the AB routine, its exit is taken. Otherwise,
a system abnormal termination occurs.

Note 1: When restarting a program from a check­
point, any STXIT linkages established prior to the
checkpoint are destroyed.

Note 2: If a task is using a logical transient routine
when a timer interrupt occurs, your timer routine is
not entered until the logical transient routine is re­
leased.

Note 3: Each routine should provide its own ad­
dress ability by initializing its base register.

Note 4: If a program issues a QTAM SVC WAIT,
the routine specified as linkage must store register 1
in the save area (savearea + 12) specified in the
third operand.

Note 5: Your exit routine will run under the associ­
ated task PIB and may be located anywhere in the
program.

280 DOS/VS Supervisor & I/O Macros

Note 6: If a timer interrupt occurs and your associ­
ated exit routine is in process, the interrupt will be
ignored. (This can only occur if a short time interval
has been issued in your exit routine.)

Note 7: If an operator communication interruption
routine or a program check interruption routine is in
process when a timer interrupt occurs, your timer
routine will be processed; when it completes, control
returns to interrupted routine.

Note 8: When subtasks are detached or canceled,
associated time intervals and exit linkages are
cleared.

Note 9: Timer intervals will not be restarted when a
program is restarted from a checkpoint.

EXIT Macro

Name Operation Operand

[name] EXIT {PC I IT I OC I MR}

The EXIT macro is used to return from your routine,
to the instruction in your interrupted program imme­
diately after the instruction where the interruption
occurred. Your routine is specified in the STXIT
macro (except for MR).

For PC, IT, and ~C, the interrupt status information
and registers are restored from the save area; thus,
the save area contents should not be destroyed. The
operands have the following meanings:

PC Exit from your program check routine.

IT Exit from your interval timer routine.

OC Exit from your routine which handles the opera­
tor attention interrupt.

MR The MR indicates that your stacker selection
routine (MICR document processing) exits to
the external interrupt routine of the supervisor.
The name of your stacker selection routine is
specified in the DTFMR macro.

Executing a Program at Given Intervals

TECB Macro

Name Operation Operand

[name] TECB

The TECB macro generates a timer event control
block (see Figure 7 -4) at the address of tecbname.
This block contains an event bit that indicates when
the time interval specified in SETIME has elapsed.

Byte

The event bit is set on by the supervisor's timer routines

Value Indication

o time specified in SETIME has not elapsed

time specified in SETIME has elapsed

Figure 7-4 Timer event control block (TECB)

SETIME Macro

Name Opera- Operand
tion

[name] SETIME)SeCOnds~ , ~tecbname~
) (1) (r)

The SETIME macro sets the amount of time that
must elapse before the TECB event bit is set to 1
and the execution of the program is resumed with
the instruction following the WAIT macro. When
SETIME is issued, the event bit is set to O.

The number of seconds can be specified directly or
in register notation. The largest allowable value is
55918, (equivalent to 15 hours, 31 minutes, 58 sec­
onds). If a register is specified, the register must
contain the number of seconds in binary.

You can specify the tecbname or specify the register
in which the address of the corresponding TECB is
placed. (Registers 0 and 1 must not be used.) After
SETIME is executed, the supervisor returns the
TECB address in register 1.

ITIMER Macro

;

Name Operation Operand

[name] TTIMER [CANCEL]

The TTIMER macro is used to test how much time
has elapsed of an interval which was set in the same
task by the associated SETIME macro. The TTIM­
ER macro returns the time remaining of the interval
in register o.

If CANCEL is specified, the time interval set in that
task is canceled, and the event bit in the associated
TECB is set on. This bit indicates to the task issuing
the WAIT or W AITM that a time interval has
elapsed or has been canceled.

WAIT Macro

Name Operation Operand

[name] WAIT ~tecbname~
(1)

The WAIT macro sets programs or tasks into the
wait state until the timer interval specified in SE­
TIME has elapsed (event bit in the TECB turned
on) before execution of the program or task issuing
the WAIT continues. Each task of the system can
wait on any TECB within the same partition. When
aWAIT macro is processed in a multiprogramming
and/ or multitasking environment, control is given to
the supervisor, which makes the time available to
another task or partition.

You can either specify the tecbname or use register
notation. The WAIT macro loads the TECB address
into register 1 unless a different register is specified.

Note: The SETIME macro leaves the TECB address

Part 7. Supervisor Macros 281

in register 1.

WAITM Macro

Name Operation Operand

[name] WAITM 'ecbl,ecb2 ... }
histname
) (1)

The W AITM macro sets programs or tasks into the
wait state until one of the events specified has occur­
red (event bit turned on) before execution of the
program or task issuing the W AITM continues. One
of the events to be waited upon can be the elapsing
of the interval specified in SETIME.

The operand provides the address of the ECBs--such
as the TECB--to be waited upon.

The symbolic names ecb 1, ecb2 ... are assumed when
at least two operands are supplied. If one operand is
supplied, it is assumed to be the symbolic name
(list name) of a list of consecutive full-word address­
es that point to the ECBs to be waited upon. The
first byte following the last address in the list must
be nonzero to indicate the end of the list. The list­
name parameter can be specified as a symbol, in
special register notation, or in ordinary register nota­
tion.

The W AITM macro loads the address of the posted
ECB into register 1. (The SETIME macro also
places the TECB address in register 1.)

Dump Macros

PDUMPMacro

Name Opera- Operand
tion

[name] PDUMP)addressl~ , rddress 2~
) (r) (r)

This macro provides a hexadecimal dump of the
general registers and of the virtual storage area con­
tained between the two address expressions
(addressl and address2). One or both of the ad­
dresses can be given in registers. If address2 is not
greater than address 1, or address 1 is greater than the

282 DOS/VS Supervisor & I/O Macros

highest address in virtual storage, the macro results
in no operation. If the value in address2 is greater
than the end of real storage, the virtual storage be­
tween address 1 and the end of virtual storage is
dumped. The contents of registers 0 and 1 are de­
stroyed, but the CPU status is retained. Thus,
PDUMP furnishes a dynamic dump (snapshot) use­
ful for program checkout. Processing continues with
your next instruction.

The dump is always directed to SYSLST with 121-
byte records. The first byte is an ASA control char­
acter. When SYSLST is a disk drive, you must issue
an OPEN or OPENR macro to any DTF assigned to
SYSLST after each PDUMP that is executed. The
OPEN or OPENR macro updates the disk address
maintained in the DTF table to agree with the ad­
dress where the PDUMP output ends. If the OPEN
or OPENR is not issued, the address is not updated,
and the program is canceled when the next PUT is
issued.

If nonaddressable areas were included in the range
of PDUMP, a message will be printed to indicate this
(nonaddressable areas are explained in the
DOS/VS System Management Guide, GC33-
5371).

DUMP Macro

Name Operation Operand

[name] DUMP

This macro terminates the job step and gives a hexa­
decimal dump of the supervisor, the partition that
issued the macro, and the general registers, if the
program or main task issued the macro. If a subtask
issues the macro, the subtask is detached, the parti­
tion is not terminated, and the dump, as described, is
given. The dump is always directed to SYSLST upon
DUMP macro execution. SYSLST, if disk or tape,
must be opened, and if tape it must be positioned as
desired.

If DUMP is issued by a job in real mode, only that
part of the partition available to the program will be
dumped. This is the part limited by the SIZE param­
eter of the EXEC job control statement if it was
specified, or the active partition if SIZE was not
specified. If DUMP is issued by a program running
in virtual mode, the entire virtual partition is
dumped.

JDUMPMacro

Name Operation Operand

[name] JDUMP

The JDUMP macro gives a hexadecimal dump of the
supervisor, the partition issuing the macro, and the
general registers. If JDUMP is issued by a main task,
the entire job is terminated. If JDUMP is issued by a
subtask, the issuing task is detached and the dump is
taken. The dump is always directed to SYSLST upon
JDUMP macro execution. SYSLST, if disk or tape,
must be opened, and if tape it must be positioned as
desired.

If JDUMP is issued by a program running in real
mode, only that part of the partition available to the
program is dumped. This is the part limited by the
SIZE parameter of the EXEC job control statement
if it was specified, or the entire real partition if it was
not specified. If JDUMP is issued by a program in
virtual mode, the entire virtual partition is dumped.

Cancel and EOJ Macros

CANCEL Macro

Name Operation Operand

[name] CANCEL [ALL]

The CANCEL macro issued by a subtask abnormal­
ly terminates the subtask without branching to any
abnormal termination routine. A CANCEL ALL
macro issued in a subtask, or a CANCEL issued in
the main task, abnormally terminates all processing
in the partition (job). Job termination in multitask­
ing causes all abnormal termination exits (via STXIT
AB) to be taken for each task except the task that
issued the CANCEL macro. Once these exits are
taken, the job is terminated. Upon task termination,
system messages (using the first 8 bytes of each sub­
task save area) are issued to identify each subtask
terminated.

If the CANCEL macro is issued without an operand,
the macro cannot contain a comment unless the
comment begins with a comma. If CANCEL ALL is
issued, the card may contain a comment.

If the DUMP option was specified, and SYSLST is
assigned, a system dump will occur

if a CANCEL ALL macro is issued by a sub­
task, or

if a CANCEL macro is issued by a main task
with subtasks attached.

EO] Macro

Name Operation Operand

[name] EOJ

The EOJ macro is issued in the main task or in the
only program within a partition, to inform the sys­
tem that the job step is finished. If a subtask issues
an EOJ, the subtask is detached and the remainder
of the partition continues. The operand field is ig­
nored.

Checkpointing a Program

A general description of how to checkpoint a pro­
gram, and suggestions and restrictions for use of the
CHKPT macro, can be found in the DOS/VS Sys­
tem Management Guide, GC33-5371, and
DOS/VS Data Management Guide, GC33-5372.

CHKPTMacro
Name Op Operand

[name] CHKPT SYSnnn, {restart address }
(r1)

[{end a~~;)ss}] [, ~ t~~~)tern

~ { dp(~~)ter ~] [, { ftr~)ame G
The CHKPT macro is used to record the status of
your program so that, in the event that processing is
terminated before the program has completed proc­
essing, the program may be restarted using job con­
trol.

Special register notation cannot be used with any of
the CHKPT macro operands.

Part 7. Supervisor Macros 283

SYSnnn
Specifies the logical unit on which the checkpoint
information is to be stored. It must be an EBCDIC
magnetic tape or a disk pack (see Checkpoint File
later in this section).

restart address (or r 1)
Specifies a symbolic name of the program statement
(or register containing the address) at which execu­
tion is to restart if processing must be continued
later.

end address (or r2)
A symbolic name (or register containing the address)
of the uppermost byte of the program area required
for restart (see Program Communication, above).
This address must follow the logic modules being
included from the relocatable library, and must be a
multiple of 2K. If not, it is rounded to the next 2K
boundary. If this operand is omitted, all storage allo­
cated to the partition is checkpointed.

If a checkpoint is taken in a program running in real
mode, the implied end address is the one specified
by the SIZE parameter of the EXEC job control
statement if specified. Otherwise it is the end of the
real partition.

If a checkpoint is taken in a program running in vir­
tual mode and using VSAM or the
GETVIS/FREEVIS macros, you must be sure to
specify the end of the virtual partition as the end
address operand.

This operand has two advantages:

1. Less time and space is required for recording the
checkpoint record set.

2. If a program using 96K of storage is being run in
a larger system and only 96K is checkpointed,
that program can be restarted either on a 96K or
larger system.

In a multiprogramming environment, checkpoints
must be restarted in the same partition that was
checkpointed.

tpointer (or r3)
The symbolic name of an 8-byte field contained in
the problem program area. (The use of this field is
described under Repositioning Magnetic Tape, later
in this section.)

284 DOS/VS Supervisor & I/O Macros

dpointer (or r4)
The symbolic name of a DASD operator verification
table which you can set up in your own area of stor­
age. (See DASD Operator Verification Table, later
in this section.)

filename (or r5)
Used only for checkpoint records on disk. It is the
name of the associated DTFPH macro. (For addi­
tional information see Checkpoints on Disk, later in
this section.)

Information That Is Saved
When the CHKPT macro is issued, the following
information is saved:

• Information for the restart and other supervisor
or job control routines.

The general registers.

• Bytes 8-10 and 12-45 of the communication
region.

The problem program area (see end-address,
above).

• All DASD file protection extents attached to
logical units that belong to the checkpointed
program.

• Real and virtual addresses of any PFIXed pages

• PFIX-counter of any PFIXed pages

• Real partition limits of any PFIXed pages

Information That Is Not Saved
• The floating-point registers. (If needed, these

registers should be stored in the problem pro­
gram area before issuing CHKPT, and restored
in your restart routine.)

• Any linkages to your routines set by the STXIT
or SETPF A macros. (If needed, STXIT or
SETPFA should be used in your restart routine.)

Any timer values set by the SETIME macro. (If
needed, SETIME should be used in your restart
routine.)

• The program mask in your program's PSW. (If
anything other than all zeros is desired, the mask
should be reset in your restart routine.)

Considerations for DASD, Diskette, MICR, and 3886
Files
DASD or diskette system input or output files
(SYSIPT, SYSLST, etc) must be reopened at restart

time. In your restart routine, you must be able to
identify the last record processed before the check­
point.

For MICR files, your program must disengage the
device and process all follow-up documents in the
document buffer before taking each checkpoint.
MICR files require the DTFMR supervisor linkages
to be initiated at restart time. Do this by reopening
the MICR file in your restart routine which clears
the document buffer.

For 3886 files, the SETDEV macro must be issued
at restart time. This ensures that the proper format
record will be loaded into the 3886 if the job must
be restarted. If the job processing the 3886 data set
uses line marking with reflective ink, the job can not
be restarted.

Checkpoint File

The checkpoint information must be written on disk
or on an EBCDIC magnetic tape (7- or 9-track).
The 7 -track tape can be in either data conversion or
translation mode. However, the magnetic tape unit
must have the data conversion feature. On 7 -track
tapes, the header and trailer labels are written in the
mode of the tape and the records are written in data
convert mode, with odd parity.

Checkpoints on Tape

You can either establish a separate file for check­
points or embed the checkpoint records in an output
file. When the file is read at a later time using
LIOCS, the checkpoint records are automatically
bypassed. If physical IOCS is used, you must pro­
gram to bypass the checkpoint record sets (see the
Physical IDeS Macros chapter).

If a separate magnetic tape checkpoint file with
standard labels is maintained, the labels should be
either checked by an OPEN or OPENR or bypassed
by an MTC command before the first checkpoint is
taken.

Checkpoints on Disk

If checkpoints are written on disk, the following
must be observed:

• One continuous area on a single disk volume
must be defined at execution time by the job
control cards necessary to define a DASD fil~.

• The number of tracks required is computed as
follows:

[

W x i::]
n 1+ 15+30+20 + .Q.

18 z

c = the number of bytes to be checkpointed in
your program up to the end address speci­
fied in the CHKPT macro or by the SIZE
parameter of the EXEC job control state­
ment.

n = the number of sets of checkpoint records to
be retained. (When the defined extent is
full, the first set of checkpoint records is
overlaid.)

v = the following values:
for 2311 18
for 2314/2319 20
for 3330/3333 49
for 3340 27

w = maximum number of page frames which are
fixed by PFIX at the time the checkpoint is
taken.

x = the number of disk extents including nono­
verlapping split-cylinder extents. If split­
cylinder extents overlap on the same cylin­
der, the number of extents counted is one
used by the program. (This number is zero if
DASD file protect is not used.)

y = for 2321, same as x.

z = the following values
for 2311 3000
for2314/2319 6000
for3330/3333 12000
for 3340 7000

For each division, the quotient is rounded to the
next highest whole number before multiplying by
n.

• Each program can use a common checkpoint file
or define a separate one. If a common file is
used, only the last program using the file can be
restarted.

• The checkpoint file must be opened before the
CHKPT macro can be used.

• A DTFPH macro must be included for use by
OPEN or OPENR and the checkpoint routine.

Part 7. Supervisor Macros 285

Repositioning 110 Files

The 110 files used by the checkpointed program
must be repositioned on restart to the record you
want to read or write next. Checkpoint provides no
aids for repositioning unit-record files. You must
establish your own repositioning aids and communi­
cate these to the operator when necessary. Some
suggested ways are:

• Taking checkpoints at a logical break point in
the data, such as paper tape end of reel.

• Switching card stackers after each checkpoint.

• Printing information at checkpoint to identify
the record in process.

• Issuing checkpoints on operator demand.

Sequential DASD input, output, and work files re­
quire no repositioning.

When updating DASD records in an existing file,
you must be able to identify the last record updated
at checkpoint in case you need to restart. This can
be done in various ways, such as:

• Creating a history file to record all updates.

• Creating a field in updated records to identify
the last transaction record that updated it. This
field can be compared against each transaction
at restart time.

Repositioning Magnetic Tape
Checkpoint provides some aid in repositioning 3420
or 2400-series magnetic tape files at restart. Files
can be repositioned to the record following the last
record processed at checkpoint.

This section and Figure 7-5 describe the procedure.
The fourth operand of the CHKPT macro points to
two V-type address constants which you specify in
your coding. The order of these constants is impor­
tant.

1. The first constant points to a table containing
the filenames of all logical IOCS magnetic tape
files to be repositioned.

2. The second constant points to a table containing
repositioning information for physical IOCS
magnetic tape files to be repositioned.

3. If the first, second, or both constants are zero,
no tapes processed by logical, physical, or both
types of IOCS, respectively, are repositioned.

286 DOS/VS Supervisor & I/O Macros

If the tables are contained in the same CSECT as
the CHKPT macro, the constants may be defined as
A -type constants.

You must build the tables discussed. Each filename
in the logical IOCS table points to the corresponding
DTF table where IOCS maintains repositioning in­
formation.

• Magnetic tapes with nonstandard labels should
be repositioned past the labels at restart time
(presumably the labels are followed by a tape­
mark so that forward-space file may be used).

• If either a nonstandard label or unlabeled mag­
netic tape file is to be repositioned for reading
backwards, you must position the tape immedi­
ately past the tapemark following the last data
record.

• Restart does not rewind magnetic tapes when
repositioning them.

• A multifile reel should be repositioned to the
beginning of the desired file.

• The correct volume of a multi-volume file must
be mounted for restart.

• For tapes with a standard VOL label, restart
writes the file serial number and volume se­
quence number on SYSLOG, and gives the oper­
ator the opportunity to verify that the correct
reel is mounted.

• IOCS can completely reposition files on system
logical units (SYSIPT, SYSLST, etc), if the tape
is not shared with any other program and if you
keep a physical IOCS repositioning table. How­
ever, if a system logical unit file is shared with
other programs, a problem exists. Output,
produced after the checkpoint, is duplicated at
restart. Input records must be reconstructed
from the checkpoint, or your restart routine must
find the last record processed before checkpoint.

The entries in the physical IOCS table are:

• First halfword. Hexadecimal representation of
the symbolic unit address of the tape (copy from
CCB).

• Second halfword. Number of files within the
tape in binary notation. That is, the number of
tapemarks between the beginning of tape and
the position at checkpoint.

• Third halfword. Number (in binary notation) of
physical records between the preceding tape­
mark and the position at checkpoint.

DASD Operator Verification Table

If the dpointer operand of the CHKPT macro is
used, you can build a table (in your own area of
virtual storage) to provide the symbolic unit num­
ber and the bin (cell) number of each DASD file
used by your program. At restart, the volume seri­
al number of these files is printed on SYSLOG for
operator verification.

Name Operation

CHKPT

f
POINTER DC

I CNOP

LOGICL DC

DC

PHYSCL DC

filenamel DTFxx

-- DASD

Figure 7-6 Repositioning magnetic tape

The entries in (he DASD operator verification
table must consist of the following two halfwords,
in the order stated:
1. The symbolic unit in hexadecimal notation

copied from the CCB bytes 6 and 7.
2. The bin (cell) number in hexadecimal notation.

The bin number is always zero, except for a
2321, in which case the bin number varies
with the cell (0-9) being verified.

There must be one entry for each DASD unit to
be verified by the operator.

Operand

SYSOOx,(r1)"POINTER,DASD

r I
I

V(LOGICL

V(PHYSCL)

I

2,4

H'n ' Number of entries in
the following table.

V (filename1) Symbolic 0 TF
h V (filename2) name of eac

tape file to
be repositio ned
at restart

V (f i lenamen)

H'n'

3H

3H

I H n I

2H

2H

number of entries in
the following table.

six bytes (3 halfwords)
for each tape file
to be repositioned
at restart

number of entnes tn

the following table.

4 bytes (2 halfwords)
are required for each
DASD unit so that the
operator can verify each
volume sequence number

at restart time.

Part 7. Supervisor Macros 287

MULTITASKING MACROS

The DOS/VS System Management Guide, GC33-
5371, gives a general description of multitasking,
some helpful techniques for using the multitasking
macros, and examples of their use.

The present chapter describes the multitasking
macros themselves. The macros are used for initiat­
ing and terminating subtasks, for resource protec­
tion, for intertask communication, and for DASD
track protection. At the end of the chapter macro
considerations for using shared modules and files
are discussed.

Subtask Initiation and Normal
Termination Macros

AITACH Macro

Name Op Operands

[name] ATTACH ~entrYPt~ , SA VE= ~ savearea}
(rO) (d)

I CECB= ~ ec~~)e ~]

[ABSA VE= ~ sav(:~)ea~]

A sub task can only be inititated by issuing the AT­
TACH macro within the main task. The pait of the
subtask containing the entry point must be in storage
before the subtask can be successfully attached.

Normally all the tasks are linked and cataloged to­
gether. It is possible, however, to LOAD a phase
into storage just before issuing the ATTACH macro.

The first operand must be the entry point of the
subtask and can be specified as a symbol or in regis­
ter notation. Register 1 should not be used.

The second operand must be the address of the save
area for the subtask. The second operand can be
given as a symbol, or in special or ordinary register
notation. The save area is 96 or 128 bytes in length
depending upon whether or not the floating-point
option (CONFG FP=YES) was specified at system

288 DOS/VS Supervisor & I/O Macros

generation time.

Save area without Floating-Point Option

I I NAME I ISI* I REGS 9-8 I USED BY DOS/VS
96 0 8 16 SO

Save area with Floating-Point Option

I NAME I ISI* I REGS 9-8 I USED BY DOS/VS I
0 8 16 80

IFP REGS I USED BY DOS/VS I
88 120 128

* Interrupt Status Information

Figure 7-6 Subtask save area

the save area (see Figure 7-6) contains the
subtask's interrupt status information, general­
purpose registers, floating point registers (option­
dependent), and a 16-byte area used by DOS/VS. A
subtask name should be provided in the first 8 bytes
of the save area. The name is used to identify the
sub task in the event of a possible abnormal termina­
tion condition.

The third operand must be specified if other tasks
can be affected by this subtask's termination, or if
the ENQ and DEQ macros are used within the sub­
task. This parameter is the address of the task's
event control block (ECB), and is a fullword defined
by your program. At the time a sub task is attached,
byte 2, bits 0 and 1 are set to O. When a subtask
terminates, the supervisor sets byte 2, bit 0 of the
ECB to 1. In addition, if AB= YES is generated in
the supervisor, byte 2, bit 1 is set to 1 when the sub­
task terminates abnormally; that is, if task termina­
tion is not the result of issuing the CANCEL, DE­
TACH, DUMP, or EOJ macros. The remaining bits
of an ATTACH ECB are reserved for future use.
However, the intertask communication ECB may be
any 4 byte (or larger) field with the following for­
mat:

:r'ermination Idicator -

r--Abnormal Indica tor

01234567 01234567 01234567 01234567

Byte 0 Byte t Byte 2 Byte 3

The fourth operand should only be specified if the
subtask is to execute the main task abnormal termi­
nation routine (see STXIT--Set Linkage to Your
Routine(s) in the Supervisor Macros chapter. Your
program can have separate subtask STXIT AB rou­
tines with or without a main task STXIT AB routine,
or it can have neither. The parameter specified in
this operand must be the address of a 72-byte
(doubleword-aligned) STXIT save area for the sub­
task. When an abnormal termination occurs, the
supervisor saves the old PSW and general registers
0-15 in this area before the exit is taken.

If the ATTACH macro successfully initiates a sub­
task, control passes to the subtask. Register 1 of the
subtask contains the address of the main task save
area, and the contents of the main task registers
2-15 will be passed to the appropriate subtask regis­
ters. The address in register 1 can be used as the
second operand of a POST macro later in the job if
specific task-to-task communication is desired. Upon
return from a successful ATTACH, the main task
register 0 contains the address of the byte immedi­
ately following the subtask save area, as determined
by the supervisor. Register 0 can be tested to ascer­
tain whether the supervisor contains the floating­
point option.

The maximum possible number of sub tasks is 13 for
a two-partition system, 12 for a three-partition sys­
tem, 11 for a four-partition system, or 10 for a five­
partition system. In the event that the maximum
possible number of sub tasks is already attached, any
attempt to attach another subtask will be unsuccess­
fuL In this event the main task will keep control and
register 1 (main task) will contain the address of an
ECB within the supervisor that will be posted when
the system can initiate another sub task. Register 1
will also have the high order bit 0 on to aid the main
task in testing for an unsuccessful ATTACH. (See
description of multitasking in the DOS/VS System
Management Guide, GC33-5371, for detailed pro­
gramming considerations.

DETACH Macro

Name Operation Operands

[name] DETACH ~A VE= ~ sav~~r)ea~J

A subtask is normally terminated by issuing a D E­
TACH macro, and no operand is required in this
case. The main task can also terminate a subtask it
initiated by issuing the DETACH macro with an
operand. The operand provides the address of the
save area specified in the ATTACH macro of the
subtask to be terminated.

Note: If the main task issues the DETACH macro
without specifying an operand, all programs in the
partition are terminated abnormally.

The DETACH macro sets byte 2 bit 0 of the ECB
to 1 (if specified in the ATTACH macro) to indicate
normal termination. All tasks waiting on this ECB
are taken out of the wait state, and the highest prior­
ity task obtains control.

Note: For systems operating in a QT AM environ­
ment, QT AM files must be closed before issuing this
macro.

Resource Protection Macros

ReB Macro

When two or more tasks in the same partition ma­
nipulate a resource (data in the same area, an 1/0
device, a set of instructions, etc.), protection should
be provided to prevent the resource from being used
concurrently by these tasks. If every task within the
partition uses the RCB, ENQ, and DEQ macros,
such protection is possible.

Name Operation Operand

[name] RCB

The RCB macro generates an 8-byte word-aligned
Resource Control Block (RCB),which protects a
user-defined resource if the ENQ macro is issued
before and the DEQ macro is issued after each use
of the resource. The format of the RCB is:

Part 7. Multitasking Macros 289

Queue Reserved Flag ECB Address of
Byte Byte Current Resource

Owner

0 t 12 1
3 4 5

1
6 17

All bits of byte 0 of this RCB are set to ones to indi­
cate that the resource is placed in a priority queue by
the ENQ macro. RCB bytes 1-3 are reserved for
future use.

If bit 0 of the flag byte is on, it indicates that anoth­
er task is waiting to use the resource. At this time,
RCB bytes 5-7 contain the ECB address of the cur­
rent resource owner.

ENQMacro

Name Operation Operand

[name] ENQ rcbname

A task protects a resource by issuing an ENQ
(enqueue) macro. When the RCB, (identified by the
rcbname) is enqueued, the task requesting the re­
source is either queued and executed, or it is placed
in a wait condition. When a task using that resource
completes, the DEQ (dequeue) macro is issued. All
other tasks that were waiting for the dequeued re­
source are freed from their wait condition, and the
highest priority task either obtains or maintains con­
trol.

If a task is terminated without de queuing its queued
resources, any task subsequently trying to enqueue
that resource is abnormally terminated. If a task
issues two ENQs without an intervening DEQ for
the same resource, the task is canceled. Also, any
task that does not control a resource but attempts to
dequeue that resource is terminated, unless DEQ
appears in the abnormal termination routine. If DEQ
appears in the abnormal termination routine, it is
ignored.

Although the main task does not require the program
to set up an intertask communication ECB to en­
queue and dequeue, every subtask using that facility
must have the ECB operand in the ATTACH macro,
and that ECB must not be used for any other pur­
pose. Also, a resource can only be protected within
the partition containing the ECB.

290 DOS/VS Supervisor & I/O Macros

DEQ Macro

Name Operation Operand

[name] DEQ rcbname}
(0)

A task releases a resource by issuing the DEQ ma­
cro. If other tasks are enqueued on the same RCB,
the DEQ macro frees all other tasks that were wait­
ing for that resource from their wait condition. In
such cases, the highest priority task either obtains or
maintains control. A task that attempts to dequeue a
resource that was not enqueued or that was en­
queued by another task is abnormally terminated.
Dequeuing under these two conditions within an
abnormal termination routine results in a no opera­
tion instruction.

The operand is the same as that in the ENQ macro
and specifies the address of the RCB either by a
symbolic name, special register notation, or ordinary
register notation.

The following example shows how an RCB can be
used to protect an area in virtual storage:

MTASK START 0 Example

ATTACH STASK1,SAVE=SVE1,ECB=ECBl
ATTACH STASK2,SAVE=SVE2,ECB=ECB2

STASK1ENQ RCBA
update TOTAL
DEC RCBA

STASK2ENQ RCBA
update TOTAL
DEQ RCBA

RCBA RCB
TOTAL DS or DTFxx

TOT AL can be simply an area in virtual storage or
a file defined by a declarative macro. In either
case, TOT AL is protected from subtask 2 while
subtask 1 is operating with it. Thus, if all tasks
enqueue and dequeue all references to TOTAL,
TOTAL is protected during the time each task
takes to process instructions from the task's ENQ
macro to its DEQ macro. This is readily apparent if

TOTAL is an area in virtual storage. However, if
TOT AL is a file, the record that is being operated
upon is protected while in virtual storage, but it is
not necessarily protected on the external storage
device. If the file is on a DASD, the HOLD func­
tion should therefore be used.

Intertask Communication Macros

WAITM Macro

Name Operation Operand

[name] WAITM l.~cb l,ecb2, ... }
}!lstname
\(1)

If the option is specified at system generation time,
the W AITM macro enables your program or task to
wait for one of a number of events to occur. Control
returns to the task when at least one of the ECBs
specified in the macro is posted.

The operand provides the address of the ECBs to be
waited upon. The symbolic names of ecb 1 ,ecb2 ... are
assumed when at least two operands are supplied. If
one operand is supplied, it is assumed to be the sym­
bolic name (listname) of a list of consecutive full
word addresses that point to the ECBs to be waited
upon. The first byte following the last address in the
list must be nonzero to indicate the end of the list.
The listname parameter can be specified as a sym­
bol, in special register notation, or in ordinary regis­
ter notation.

When control returns to a waiting task, register 1
points to the posted ECB that had byte 2 bit 0 on.
Other blocks can be used as ECBs if their byte 2 bit
o indicates a completed event. Examples of these
blocks are CCBs and TECBs. However, a task never
regains control if it is waiting for a CCB to be post­
ed by another task's I/O completion. A MICR CCB
gets posted only when the device stops, not when a
record is read. Furthermore, telecommunication
ECBs, QT AM control blocks, and all RCBs must
not be waited for because their format would never
satisfy aWAIT or a W AITM (that is, byte 2 bit 0
would not be posted).

A task that issues the W AITM macro should ensure
that the waiting task allows an eventual outlet if it is
possible that an event will not occur. (Such a condi­
tion could occur if a task which is to post an event is
terminated.) This outlet can also wait for the termi-

nation ECB of the task that is to perform the prefer­
red event. An example of a successful intertask com­
munication is:

ECB1A

ECB1

WAITM
B

DC
B
DC
B

ECB1A,ECB1
4(1)

F'O'
PEVENT
F'O'
TEVENT

In this example, the W AITM macro contains a
preferred event as the first operand, and a second­
ary event as the second operand. The preferred
event is the posting of ECB1A after subtask 1
completes its processing. If subtask 1 terminates
before its processing is completed, the supervisor
posts the ATTACH macro ECB of subtask 1,
ECB 1, and the secondary event can satisfy the
W AITM macro. In either case, after the W AITM
macro is satisfied, the address of the posted ECB is
contained in register 1. This address can be used
to select a routine of your program. In this particu­
lar case, a branch instruction points to a table con­
taining a list of ECBs with corresponding branch
instruction to the routine to be given control when
the ECB is posted. This table can easily be ex­
panded to include up to a maximum of 16 ECBs.

POST Macro

Name Operation Operand

[name] POST ~ecbname~
(1)

E SA VB= ~ sa(~)ea~]

This macro provides intertask communication by
posting an ECB (it turns byte 2 bit 0 on). A POST
issued to an ECB removes a task waiting for the
ECB from the wait state. The first operand provides
the address of the ECB to be posted. It can be pro­
vided as a symbol, in special register notation, or in
ordinary register notation.

If the SAVE operand is present, only the task identi­
fied by the address of its save area is taken out of
the wait state. This task normally is waiting for the
specified ECB to be posted. Although time is saved
by specifying this operand, other tasks waiting for
this ECB are not taken out of the wait state for this

Part 7. Multitasking Macros 291

event by this issuance of the POST macro. This does
not guarantee that they will stay in the wait state
until another POST is issued. On the contrary, other
events could cause the other tasks to be dispatched.
F or this reason the POST macro should not be used
with the SAVE operand to control subtask operation
unless separate ECB's are used. Otherwise, it should
be only used to save time. When a POST is issued
without the SAVE operand, all tasks waiting for the
ECB are taken out of the wait state, and the highest
priority task regains control.

DASD Track Protection Macros

DASD track protection means that when a record on
a DASD track is being modified by one task that
track is prevented from being accessed by another
task. Within a partition, track protection can be ac­
complished for a particular DASD by the resource
protection macros or the intertask communication
macros. With the resource protection macros, an
RCB can be enqueued before each reference to the
DASD. With the intertask communication macros, a
sub task can wait for an ECB to be posted before
each reference to the DASD.

For programs using the DTFSD-SDMOD (data files
with updating, or work files with updating), DTFIS­
ISMOD, and/or DTFDA-DAMOD macros, the
track hold function can provide DASD track protec­
tion.

In these cases, DASD track protection within the
entire system can be accomplished if the track hold
option is specified at system generation time, and if
every task specifies the HOLD= YES operand in its
DTFSD-SDMOD, DTFIS-ISMOD, and/or DTFDA­
DAMOD macros to access the DASD. If protection
is required within a partition, the track hold function
must be used for every read within the partition.

The track hold function can be used in four specific
situations:

1. DTFSD updating files without work files.

2. DTFSD updating files with work files.

3. DTFDA files.

4. DTFIS files.

In the first situation, the track being held is freed
automatically by the system. More specifically, the
next GET issued to a new track for the file frees the
previous hold.

292 DOS/VS Supervisor & I/O Macros

For situation 2, the track is automatically freed by
the system if the record that was read and held is
then updated. If it is not updated, the program must
issue the FREE macro.

For situation 3, the program must issue the FREE
macro for each hold placed on the track. A hold is
placed on a track each time the track is accessed
with a GET or a READ, and each hold is released
by issuing either a FREE or CLOSE(R) macro for
that file, or a DETACH macro for that task.

For situation 4, the method of implementation de­
pends on the function being performed.

FREE Macro

Name Operation Operand

[name] FREE ~filename ~
) (1)

The maximum number of tracks that can be held
within a system is specified at system generation
time. The maximum that can be specified is 255,
with a system default option of 10. If a task attempts
to exceed the limit, the task is placed in the wait
state until a previously held track is freed.

The same track can be held more than once without
an intervening FREE if the hold requests are from
the same task. The same number of FREEs must be
issued before the track is completely freed. Howev­
er, a task is terminated if more than 16 hold requests
are recorded without an intervening FREE, or if a
FREE is issued to a file that does not have a hold
request for that track.

For DTFDA files using WRITE or WRITE AFTER,
DAMOD initially places a HOLD on the track. Be­
fore returning control to your program, DAMOD
automatically issues a FREE to that track. However,
a WRITE AFTER issued to a track that has the max­
imum number of HOLDs already in effect cancels
the task (or partition).

If a task requests a track that is being held by anoth­
er task, that task is placed into the wait state at the
GET or WAITF macro associated with the I/O re­
quest. The request is fplfilled after the track is freed
and when control returns to the requestor.

If more than one track is being held, it is possible for
your program to inadvertently put the entire system
in the wait state. This occurs if each task is waiting

for a track that is already held by another task. A
way to prevent this, is to FREE each track held be­
fore another track hold is attempted.

For DTFIS files, bit 2 of byte 72 in the format 2
label is reset to 0 whenever a file is opened for ADD
or ADDRTR. If this bit is already 0 when
HOLD = YES, the program is canceled because an­
other program is already using the file for an ADD
or ADDRTR. When the file is closed, the bit is set to
1. This switch prevents two programs from trying to
update the same file because it does not allow a sec­
ond open for ADD or ADDRTR on the same file
when HOLD= YES.

If for any reason a file is not closed during execution
of a job in which ADD or ADDRTR is specified,
this file cannot be opened if the next job using this
file specifies ADD or ADDRTR when HOLD= YES.
Bit 2 of byte 72 of the format 2 label must first be
set to 1 by issuing a CLOSE(R) to that file in any
job in which ADD, ADDRTR, or LOAD is specified
and HOLD does not equal YES.

The method of implementation for ISAM track hold
depends on the function being performed:

• Sequential Retrieval - The track index is held at
the beginning of retrieval from each cylinder. A
search and hold is issued for the data track, the
index track is released, and a wait is issued for
the data track. When the system is finished with
the data track (prime or overflow), it is released,
and the next track is held. Your program must
release the track hold function by issuing either a
PUT (if the file is updated) or a GET (no up­
date) for the next record, or an ESETL.

• Random Retrieval - The track index is held while
the needed entries from it are read in. The data
track is held, and the desired record is searched
for. When the record is found, the track index is
released. Your program must release the data
track by issuing a WRITE (if the file is updated)
or a FREE (no update).

• Add - The track index and the data track are
held. If the record is not going onto the prime
data track, the track index is released. All tracks
being changed are held during modification. The
track index is again held while it is updated to
reflect the added records. After alteration, the
tracks are released by the system.

• SETL macro - SETL issues a hold on the track
index on which processing will begin. This hold
is released by the system at the appropriate time.

One method is to assemble a module with a different
module name for each task that could attempt to use
the module simultaneously. This method requires
each module name to be specified in the MOD­
NAME operand of the corresponding DTF macro.

Another method is to link-edit each DTF and mo­
dule separately for each task that could simultane­
ously attempt to use the same module. Then, before
a task attempts to reference a device through that
module, the DTF and module can be fetched or load­
ed into storage.

Either of these methods prevents the linkage editor
from resolving linkage to one module. Thus, separate
modules can be provided to perform each function.
For more information on the linkage between the
DTF and logic module, see Interrelationship of the
Macros in The Macro System chapter.

If several tasks are to share processing or reference
data on the same file, not only should reentrant mo­
dules be employed but each task must contain its
own DTF table for that file (unless you use the ENQ
and DEQ macros). Each task can either open its
own DTF, or the main task in the partition can open
all files for the subtasks.

There are two methods that can be used for a shared
file. You can either supply a separate set of label
statements (DLBL-EXTENT, TLBL, etc) for each
corresponding DTF filename, or you can assemble
each DTF and program (subtask) separately with the
same filename and one set of label statements. In the
latter case, each separately assembled program must
open its DTF.

Special consideration must be made for shared multi­
volume files on a 2321 data cell if DASD file-protect
is specified in the supervisor. Within a partition, each
task must have its own logical unit assigned to the
data cell unless all tasks switch volumes at the same
time.

• ESETL macro - ESETL frees any tracks that are
held by sequential retrieval when the ESETL is
issued. Since the ESETL macro is&ues a FREE
whether or not any tracks are held, you should
not issue ESETL if SETL has not been success­
ful.

Shared Modules and Files

The DTF and logic modules for the card, device

Part 7. Multitasking Macros 293

independent, direct access, indexed sequential, print­
er, sequential disk, diskette, and tape macros must
contain the operand RDONL Y = YES to generate a
read-only module.

Each time a read-only module is entered, register 13
must contain the address of a 72-byte, doubleword­
aligned save area. Each task requires its own unique
save area. The fact that the module save areas are
unique for each task makes the module reentrant
(that is, capable of being used concurrently by sever­
al tasks). The 72-byte save area required by the
read-only modules should not be confused with save
areas required for multitasking macros.

If RDONL Y = YES is omitted, the module generated
is not reenterable, and no save area need be estab­
lished. If an ERROPT or WLRERR routine issues

294 DOS/VS Supervisor & I/O Macros

I/O macros that use the same read-only module that
passed control to either error routine, your program
must provide another save area. One save area is
used for the initial I/O and the second for I/O oper­
ations in the ERR OPT or WLRERR routine. Before
control returns to the module that entered the ER­
ROPT routine, register 13 must contain the address
of the save area originally specified for the task.

Programs using devices such as an optical reader can
make use of the multitasking function to increase
I/O overlap without reentrant modules. However if
the program ignores module considerations, two
tasks may attempt to use a single nonreentrant mo­
dule. When this occurs, unpredictable results occur
because values for the first task using the module are
modified by the second task. To circumvent this
situation, several methods can be used.

PROGRAM LINKAGE MACROS

A program may consist of several phases or routines
produced by language translators and then combined
by the linkage editor. The CALL, SAVE, and RE­
TURN macros are used for linkage between rou­
tines. These macros, with conventional register and
save area usage, allow branching from phase to
phase, and delivery of parameters. Also, the parame­
ters can be delivered to another program. Passing
control from one routine to another within the pro­
gram is referred to as direct linkage.

Figure 7 -7 shows linkage between a main program
and two subroutines. Linkage can proceed through

as many levels as necessary, and each routine may
be called from any level. The routine given control
during the job step is initially a called program. Dur­
ing execution of a program, the services of another
routine may be required, at which time the current
program becomes a calling program. For example,
when the main program passes control to B, B is a
called program. When control is passed from B to C,
B is the calling program and C is the called program.

Part 7. Multitasking Macros 295

~ ~'~~ ~ ~~~ ~ ~\~,

F',' "~"tIAV.'·"'"

:;,. >;:r~~~~u

Figure 7-7 Direct linkage

296 DOS/VS Supervisor & I/O Macros

Linkage Registers

To standardize branching and linking, registers are
assigned specific roles (see Figure 7-8). Registers 0,
1,13,14, and 15 are known as the linkage registers.
Before a branch to another routine, the calling pro­
gram is responsible for the following calling se­
quence:

1. Loading register 13 with the address of a register
save area in that program which the called pro­
gram is to use.

2. Loading register 14 with the address to which
the called program will return control.

3. Loading register 15 with the address from which
the called program will take control.

4. Loading registers ° and 1 with parameters, or
loading register 1 with the address of a parame­
ter list. A typical calling sequence could read:

CNOP
CALSEQ LA

LA

para
list

L

BALR

SAVAR DS
PARLST DC

2,4
13,SAVAR

1 , PARLST

15,=V(SU1?R)

14, 15

9D
A(PAR1,PAR2)

Load save
area address
Load address
of a

meter

Load entry
point address
Load return
address

The address of the save area (SAVAR) and the
parameter list (P ARLST) containing two parame­
ters (PARI and PAR2) are passed to a subroutine
(SUBR). SUBR returns control to this program at
the next sequential instruction after BALR.

REGISTER
REGISTER NAME CONTENTS NUMBER

0 Parameter regist"r Parameters to be passed to the called
program.

1 Parameter register Parameters to be passed to the called

or
program.

Parameter list Address of a parameter list to be
register passed to either the control program

or your subprogram'

13 Save area register Address of the register save area to be
used by the called program.

14 Return register Address of the location in the calling
program to which control s,hould be
returned after execution of the called
program.

15 Entry paint register Address of the entry point in the
called program.

Figure 7-8. Linkage registers

After execution of the calling sequence, the follow­
ing should occur as a result of called program exec­
ution:

1. The contents of registers 2 through 14, and the
program mask are unchanged.

2. The contents of registers 0, 1, and 15, and the
contents of the floating point registers, and the
condition code may have been changed.

3. The parameter list addresses contain the results
obtained from called program execution.

Save Areas

A called program should save and restore the con­
tents of the linkage registers, as well as the con­
tents of any register that it uses. The registers are
stored in a save area that the higher level (calling)
program provided. This procedure conserves stor­
age because the instruction to save and restore
registers need not be repeated in each calling se­
quence.

Every program must provide a save area and place
its address in register 13 before it executes a direct
linkage. This address is then passed to the called
routine. A save area occupies nine double words
and is aligned on a double word boundary. For pro­
grams to save registers in a uniform manner, the
save area has a standard format shown in Figure
7 -9 and described below:

Part 7. Program Linkage Macros 297

Word

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 7-9

Displacement Contents

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

Indicator byte and storage
length; used by PL/I lan-
guage program.

The address of the previous
save area; that is, the save
area of the subprogram that
called this one (used for trac-
ing purposes).

The address of the next save
area; that is, the save area of
the subprogram to which this
subprogram refers.

The contents of register 14
containing the address to
which return is made.

The contents of register 15
containing the address to
which entry into this subpro-
gram is made.

(The contents of) register O.

(The contents of) register 1.

(The contents of) register 2.

(The contents of) register 3.

(The contents of) register 4.

(The contents of) register 5.

(The contents of) register 6.

(The contents of) register 7.

(The contents of) register 8.

(The contents of) register 9.

(The contents of) register 10.

(The contents of) register 11.

(The contents of) register 12.

Save area words and contents in calling
programs

298 DOS/VS Supervisor & I/O Macros

• Word 1: An indicator byte followed by three
bytes that contain the length of allocated stor­
age. Use of these fields is optional, except in
programs written in the PL/I language.

Word 2: A point~r to word 1 of the save area
of the next higher level program. The address
passed to a routine in register 13. The contents
of register 13 must be stored by a calling pro­
gram before it loads register 13 with the ad­
dress of the current save area that is passed to
a lower level routine (Figure 7-9, ST
13,SAVEB+4).

• Word 3: A pointer to word 1 of the save area
of the next lower level program, unless this
called program is at the lowest level and does
not have a save area. (The called program re­
quires a save area only if it is also a calling
program.) Thus, the called program, if it con­
tains a save area, stores the save area address
in this wor~l.

• Word 4: The return address, which is register
14, when control is given to the called pro­
gram. The called program may save the return
address in this word.

• Word S: The address of the entry point of the
called program. This address is in register 15
when control is given to the called program.
The called program stores the entry-point ad­
dress in this word.

• Words 6 through 18: The contents of registers
o through 12, in that order. The called pro­
gram stores the register contents in these words
if it is programmed to modify these registers.

In any routine, the contents of register 13 are
saved so that the registers may be restored upon
return. For purposes of tracing from save area to
save area, the address of the new save area is
stored. Only the registers to be modified in the
routine need be saved. However, the safest proce­
dure is to store all registers to ensure that later
changes to the program do not result in the modifi­
cation of the contents of a register that was not
saved.

CALL Macro

The CALL macro passes control from a program to
a specified entry point in another program. The pro-

gram issuing the CALL macro is the calling program.
The program receiving control is the called program
or routine. The called program must be in virtual
storage when the CALL macro is executed. The
called program is brought into virtual storage in one
of two ways:

1. As part of the program issuing the CALL. In this
case, the CALL macro must specify an entry
point by symbolic name. The linkage editor in­
cludes the phase containing that entry point in
the phase containing the CALL macro.

2. As the phase specified by a LOAD macro. In
this case, the CALL macro specifies register 15
(the entry-point register) into which the address
of the program to be called was loaded. The
LOAD macro must precede the first CALL for
that program.

The format of the CALL macro is shown below.

Name Operation Operand

[name] CALL ~entryPOint }
(15)

[,(parameter, ...)]

entrypoint specifies the entry point to which control
is passed. If the symbolic name of an entry point is
specified, an instruction

L 15,= V(entrypoint)

is generated as part of the macro expansion. The
linkage editor makes the called program part of the
calling program phase. The symbolic name must be
either the name of a control section (CSECT) or an
assembler language ENTRY statement operand in
the called program. Control is given to the called
program at this address.

If a symbolic name is specified for the entry point
operand, the called program resides in storage
throughout execution of the calling program. This
wastes storage if the called program is not needed
throughout execution of the calling program.

If register 15 is specified, the entrypoint address
should have been loaded into that register previous­
ly. The operand may be written as a self-defining
value equal to 15 and enclosed in parentheses, in
which case the V -type address constant instruction is
not generated. Control is given to the called program

at the address in register 15. Specifying register 15
preceded by a LOAD macro is most useful when the
same program is called many times during execution
of the calling program, but is not needed in storage
throughout execution of the calling program.

parameter specifies an address (relocatable or abso­
lute expression) to be passed as a parameter to the
called program. Terms in the address must not be
indexed. The parameter operands must be written in
a sublist, as shown in the format description. If one
or more parameter operands are written, a parameter
list is generated. It consists of a fullword for each
operand. Each fullword is aligned on a fullword
boundary and contains the address to be passed in
its three low-order bytes. When the called program
is entered, register 1 (the parameter list register)
contains the address of the parameter list.

In the following examples, EXI gives control to an
entry point named ENT. EX2 gives control to an
entry point whose address is contained in register 15.
Two parameters, ABC and DEF, are passed.

Examples:

EXI CALLENT

EX2 CALL (15),(ABC,DEF)

A typical macro expansion for the macro CALL
SUBR,(Pl,P2 ... ,Pn) is:

CNOP 2,4
NAME

L 15,=V(SUBR)
LA 14,*+6+4*n (return address)

BALR 1 , 15
DC A(P 1 , P2 ... , Pn)

ORG *-4
DC X'80'
ORG

NAME is the symbol in the name field of the ma­
cro. n is the number of fullwords in the parameter
list. SUBR is the symbolic name of the entry point
of the called program. PI through Pn are the ad­
dresses to' be passed to' the called prO'gram.

Part 7. Program Linkage Macros 299

SAVE Macro

The SA VE macro stores the contents of specified
registers in the save area provided by the calling
program. It is written at the entry point of a pro­
gram, before any registers can be modified by the
new program.

Name Operation Operand

[name] SAVE (rl[,r2])

The operands rl,r2 specify the range of the registers
to be stored in the save area of the calling program.
The address of this area is passed to the program in
register 13. The operands are written as self-defining
values so that they cause desired registers in the
range of 14 through 12 (14, 15,0 through 12) to be
stored when inserted in an STM machine instruction.
Registers 14 and 15, if specified, are saved in words
4 and 5 of the save area. Registers 0 through 12 are
saved in words 6 through 18 of the save area. The
contents of a given register are always stored in a
particular word in the save area. For example, regis­
ter 3 is always saved in word 9 even if register 2 is
not saved.

300 DOS/VS Supervisor & I/O Macros

If r2 is omitted, only the register specified by rl is
saved.

RETURN Macro

The RETURN macro restores the registers whose
contents were saved and returns control to the call­
ing program.

Name Operation Operand

[name] RETURN (rl [,r2])

The operands r 1 ,r2 specify the range of the registers
to be reloaded from the save area of the program
that receives control. The operands are written as
self-defining values. When inserted in an LM ma­
chine instruction, the operands cause the desired
registers in the range from 14 through 12 (14, 15,0
through 12) to be restored from words 4 through 18
of the save area. If r2 is omitted, only the register
specified by r1 is restored. To access this save area,
register 13 must contain the save area address.
Therefore, the address of the save area is loaded into
register 13 before execution of the RETURN macro.

APPENDIX A: CONTROL CHARACTER CODES

CTLCHR=ASA

If the ASA option is chosen, a control
character must appear in each record. If
the control character for the printer is
not valid, a message is given and the job
is canceled. If the control character for
card devices other than the 2560 and 5425
is not V or W, the card is selected into
stacker 1. The codes are:

Code Interpretation

blank Space one line before printing­
o Space two lines before printing
- space three lines before printing
+ Suppress space before printing
1 Skip to c~annel 1 before printing*
2 Skip to channel 2 before printing
3 Skip to channel 3 before printing
4 Skip to channel 4 before printing
5 Skip to channel 5 before printing
6 Skip to channel 6 before printing
7 Skip to channel 7 before printing
8 Skip to channel 8 before printing
9 Skip to channel 9 before printing
A Skip to channel 10 before printing
B Skip to channel 11 before printing
C Skip to channel 12 before printing
V Select stacker 1
W Select stacker 2
X Select stacker 3 (2560 and 5425

DTFCD files only)
Y Select stacker 4 (2560 and 5425

DTFCD files only
Z Select stacker 5 (2560 DTFCD file~

only)

For DTFDI files on 2560 and 5425

V Primary hopper: select stacker 1
W Primary hopper: select stacker 2
V Secondary hopper: select stacker 5

(on 2560)
V Secondary hopper: select stacker 4

W
(on 5425)
Secondary hopper: select stacker 3

- For 3525 print (not associated) files,
either space one or skip to channel 1
must be used to print on the first line
of a card. For 3525 print associated
files, only space one must be used to
print on-the first line of a card.

CTLCHR=YES

The control character for this option is
the command-code portion of the CCW used in
printing a line or spacing the forms. If
the character is not one of the following
characters, unpredictable events will
occur.

Hexa- Punch
decimal Combina- Function
Code tion

Stacker Selection on 1442 and 2596

81 12,0,1 Select into stacker 1

Cl 12,1 Select into stacker 2

Stacker Selection on 2520

01 12,9,1 Select into stacker 1

41 12,0,9,1 Select into stacker 2

Stacker Selection on 2540

01 12,9,1 Select into stacker 1

41 12,0,9,1 Select into stacker 2

81 12,0,1 Select into stacker 3

Appendix A 301

Hexa Punch Hexa- Punch
decimal Combina- Function decimal Combina- Function
Code tion Code tiOR

Stacker Selec:tiQn on 2560 gnd ~~25 Printer Control (Except for 3525)

13 11,3,9 Primary hopper: 89 12,0,9 Write and skip to
select into stacker 1 channel 1 after

23 0,3,9 Primary hopper:
printing

select into stacker 2 91 12,11,1 ~Jri te and skip to
33 3,9 Primary hopper: channel 2 after

select into stacker 3 printing

43 12,0,3,9 Primary hopper: 99 12,11,9 ~Jri te and skip to
select into stacker 4 channel 3 after

printing
53 12,11,3,9 Primary hopper:

select into stacker 5 Al 11,0,1 ~Jri te and skip to
(2560 only) channel 4 after

93 12,11,3 Secondary hopper:
printing

select into stacker 1 A9 11,0,9 ~Jri te and ski p to
channel 5 after

A3 11,0,3 Secondary hopper: printing select into stacke~2

B3 12,11,0,3 Secondary hopper: B1 12,11,0,1 Write and skip to
select into stacker 3 channel 6 after

printing
C3 12,3 Secondary hopper: B9 12,11,0,9 Write and ski P to select into stacker 4

channel 7 after
03 11,3 Secondary hopper: printing

select into stacker 5
(2560 only) C1 12,1 Write and skip to

channel 8 after
Sta~~er: Sele!;tjg[! gn 3504 1 3505 and 3525 printing

01 12,9,1 Select into stacker 1 C9 12,9 Wri te and skip to

Select stacker 2
channel 9 after

41 12,0,9,1 into printing

Printer Control (Exce~t for 3525} 01 11,1 Write and ski P to
01 12,9,1 Wri te (no automatic channel 10 after

space) printing

09 12,9,8,1 Write and space 1 09 11,9 Write and skip to
line after printing channel 11 after

printing
11 11,9,1 Wri te and space 2

1 i nes after printing E1 11,0,9,1 Write and skip to
channel 12 after

19 11,9,8,1 Write and space 3 printing
1 i nes after printing

302 DOS/VS Supervisor & I/O Macros

Hexa- Punch
decimal Combina- Function
Code tion

Printer Control for 3525 with Print
Feature

Printer Control (Exceet for 3525) Hexa- Punch
decimal Combina- Function

OB 12,9,8,3 Space 1 line Code tion

immediately 00 12,5,8,9 Print on 1 i ne 1

13 11,9,3 Space 2 lines
immediately

15 11,5,9 Print on line 2

IB 11,9,8,3 Space 3 lines
10 11,5,8,9 Print on line 3

imr.1ediately 25 0,5,9 Print on line 4

8B 12,0,8,3 Skip to channel
immediately

1 20 0,5,8,9 Print on line 5

35 5,9 Print on line 6
93 12,11,3 Skip to channel 2

immediately 3D 5,8,9 Print on line 7

9B 12,11,8,3 Skip to channel 3
immediately

45 12,0,5,9 Print on line 8

40 12,5,8 Print on line 9
A3 11,0,3 Skip to channel 4

immediately 55 12,11,5,9 Print on line 10

AB 11,0,8,3 Skip to channel 5
immediately

50 11,5,8 Print on 1 i ne 11

65 11,0,5,9 Print on line 12
B3 12,11,0,3 Skip to channel 6

immediately 60 0,5,8 Print on line 13

BB 12,11,0, Skip to channel 7
8,3 immediately

75 12,11,0, Print on line 14
5,9

C3 12,3 Skip to channel 8 70 5,8 Print on line 15
immediately 85 12,0,5 Print on line 16

CB 12,0,9, Skip to channel 9
8,3 immediately

80 12,0,5,8 Print on Hne 17

D3 11,3 Skip to channel 10
95 12,11,5 Print on line 18

immediately 90 12,11,5,8 Print on line 19

DB 12,11,9 Skip to channel 11
8,3 immediately

A5 11,0,5 Print on line 20

AD 11,0,5,8 Print on line 21
E3 0,3 Skip to channel 12

immediately B5 12,11,0,5 Print on line 22

03 12,9,3 No operation BO 12,11,0 Print on line 23
5,8

C5 12,5 Print on line 24

CO 12,0,5,8, Print on line 25
9

Appendix A 303

APPENDIX B: ASSEMBLING YOUR PROGRAM, DTFS, AND
LOGIC MODULES

All the programs described in this appendix
perform the same function, namely, a card­
to-disk operation with the following
equipment and options:

1. Card reader: 2540 (SYS004).

2. Disk: 3330 with user labels.

3. Record size: 80 bytes.

4. Block size: 408 bytes including.
8-byte count field (blocking factor
of 5).

5. One I/O area and work 'area for the
card reader.

6. Two I/O areas for the disk.

The following methods may be used to
furnish the DTFs and IOCS logic modules
to the card-to-disk program.

1. DTFs, IOCS logic modules, and your
program assembled together.

2. Logic modules assembled separately.

3. DTFs and logic modules assembled
separately, label exit, EOF exit,
and I/O areas assembled with DTFs.

304 DOS/VS Supervisor & I/O Macros

4. Same as in 3 except that I/O areas
are moved back into main program.

5. Same as in 4 except that label exit
and EOF exit are also moved back into
main program.

An example of each of these five methods
of assembling the main program, modules,
DTFs, and related functions follows. In
the figures that accompany the examples,
each dashed arrow represents a symbolic
linkage, with an external reference at
the base of the arrow, and a label or
section definition designating the same
symbol at the head of the arrow.

At the points where an arrow is marked with
a circle, it is your responsibility to
define an ENTRY or EXTRN symbol, as
applicable.

Each dotted arrow represents a direct
linkage. Components are represented by the
small rectangles. Assemblies are
represented by the larger bordered areas.

The examples are followed by a comparison
of the five methods.

EXAMPLE 1: ASSEMBLING YOUR PROGRAM, DTFs, AND LOGIC MODULES TOGETHER

Figure B-1 shows the assembly of the DTFs, logic modules, and
your program. The assembly source deck is:

CDTODISK START 0 Co 1 . 72
BALR 12,0
USING *,12
LA 13,SAVEAREA Initialize base- register
OPEN CARDS,DISK Establish addressability.

NEXT GET CARDS,(2) Use reg 13 as pointer to save area.
PUT DISK Open both files.
B NEXT Read one card and move it

SAVEAREA OS 90 to the disk output buffer.
Return for next card.

EOFCD CLOSE CARDS,DISK Save area is 72-byte, doubleword
EOJ aligned.

At card-reader EOF, close
MY LABELS both files and exit to job control.

LBRET 2 Your label-processing routine.
Return to main program.

CARDS OTFCO
DEVADDR=SYSOO4, X
EOFADDR=EOFCD, X
IOAREAI=Al, X
WORKA=YES X

DISK DTFSO X
BLKSIZE=408, X
IOAREAI=A2, X
IOAREA2=A3, X
IOREG=~2), X
LABADD =MYLABELS, X
RECFORM=FIXBLK, X
RECSIZE=80, X
TYPEFLE=OUTPUT X
DEVICE=3330 X

Al OS 80C Card-input buffer
A2 OS 408C First disk buffer
A3 OS 408C Second di~k buffer

(1) CDMOD X
DEVICE=2540, X
TYPEFLE=INPUT, X
WORKA~YES

SDMOOFO

END CDTODISK Program-start address

Appendix B 305

Your Program
• • •

DTF's

OPEN CARDS,DISK •••••••••••••••••••••••••••••••• •• •••• ••• •• ••••• ~DISK
GET CA~DS/(2) : •••••••• ·~CARDS

• • • · · •

r-------------------~

CARDS DTFCD

DeVADDR =SYS004
: ••• EOFADDR=EOFCD : L ··············IOAREA1=Al
: : WORKA=YES
· . · ·------~I----~

. I
I

. I
· I

A I (Bulle, Are.) I ~ I
1lIIlIlIlIlIIlIIllIIllIIlIroojoo: I

--t--------------~
I
I

EOFCD (End-of-File Processing)
• • • • •

I
I
I

r---------.J
I

• CDMOD

(Logic for a Card File)
• • • • • •

DISK DTFSD

I

BLKSIZE=408
IOAREA1=A2 •••••••••••••

•••••••• IOAREA2=A3 I
: IOREG= (2)
• LABADDR=MYLABELS·····

RECFORM=FIXBLK •
RECSIZE=80
TYPEFLE=OU TPUT

MYLABELSI : evr Rou'; ••) _ooofo:

A2 (Bull., Area) I
1II11I11I11I11I11I11I11I11r·········
A3 (Buffer Area)

: ·'j·"'1II1II1II1I1II1I1II11II1II

SDMODFO

(logic for a Disk File)

• • • • • •

Figure B-1. Assembling Your Program DTFs and Modules Together (Example 1)

306 DOS/VS Supervisor & I/O Macros

EXAMPLE 2: ASSEMBLING THE LOGIC MODULES
SEPARATELy Co 1 ."

The main-program source deck is identical
to that in Exam~le 1 until (1); at this
point, you S1mp y furnish the END card.
Figure B-2 shows the separation of the I/O
logic modules.

The two logic modules are assembled as
follows:

Your Program
• • •

Card logic
module

Disk logic
module

OTF's

CDMOD
DEVICE=2540,
SEPASMB=YES,
TYPEFLE=INPUT,
WORKA=YES

END

SDMODFO
SEPASMB=VES

END

OPEN CAROS,OISK ••• ~DISK

GET CA~OS,(2) : •••••••• ·~CAROS
• • • •

~--------------------
CARDS OTFCO

: OEVAOOR=SYSOO4
• ••• EOFAOOR~OFCD
: L··············IOAREA1=Al
: : WORKA=YES

~ : I
I

· I
: I
· 1

A 1 (Buller Area) I . 1

11111111111111111111111111- .. i .. : 1

I
I -:----------. ,

EOFCO (End-of-File Proc_i~)
• • • • •

I
I
I

r---------.J
I

• COMOO (Separately Assembled)

(Logic for a Cord File)
• • • • • •

DISK OTFSO

BLKSIZE=408
IOAREA1=A2 •••••••••••••

: ••• ····IOAREA2=A3 I
: IOREG= (2)
: LABAODR=MYLABELS····

RECFORM=fIXBLK
RECSlZE=80
TYPEFLE=OU TPUT

~T---'--------------~

MYLABELS I (Yr Routine) .. ···T·

A2 (Buffer Area) I
1II1I1I1I1I1nllmlllllll~·········
A3 (Buft'.r ANa)

: · · i . · · -11111111111111111111111110

SOMOOFO (Separately Assembled)

(Logic for a Disk File)

• • • • • •

Figure B-2. Logic Modules Assembled Separately (Example 2)

X
X
X
X

X

72

Appendix B 307

After assembly, each logic module is
preceded by the appropriate CATALR card.
The modules may be added to the system
re10catab1e library during a maintenance
run. Thereafter, logic. modules are
automatically included in your program
by the linkage editor while it prepares
the preceding main program for execution.

EXAMPLE 3: ASSEMBLING THE DTFs AND LOGIC
MODULEs sEpARATELy

The main program is assembled:

(2)

CDTODISK START
BALR
USING
LA
OPEN

NEXT GET
PUT
B

SAYEAREA DS

EXTRN
END

o
12,0
*,12
13,SAVEAREA
CARDS,DISK
CARDS,(2)
DISK
NEXT
9D

CARDS,DISK
CDTODISK

The logic modules are assembled as in
Example 2. Fi?,ure B-3 shows the separation
of the DTFs antl logic modules.

The DTFCD and related functions are
assembled:

Co 1. 72

CARDS DTFCD X
DEVADDR=SYS004, X
SEPASMB=YES, X
EOFADDR=EOFCD, X
IOAREA1=A1, X
WORKA=YES

USING *,14

EOFCD CLOSE CARDS,DISK
EOJ

(3) Al

EXTRN DISK

DS
END

80C

The DTFCD and related functions are
assembled:

308 DOS/VS Supervisor & I/O Macros

DISK

MYLABELS

(4) A2
(5) A3

DTFSD

BALR
USING

LBRET

DS
DS
END

Co 1 .

X
BLKSIZE=408, X
SEPASMB=YES, X

TYPEFLE=OUTPUT X
DEVICE=3330
10,0
*,10

2

40BC
40BC

72

In the card-file and the disk-file
assemblies, a USING statement was added
because certain routines are segregated
from the main program and moved into
the DTF assembly.

When your routines, such as error,
label processing, or EOF routines, are
segregated from the main progrm, it
is necessary to establish addressability
for these routines. You can provide thi5
addressability by assigning and
injtializing a base register. In the
special case of the EOF routine, the
addressability is established by logical
IOCS in register 14. For error exits and
label-processing routines, however, this
addressability is not supplied by
logical IOCS. Therefore, if YO'u segregate
your error routines, it is your responsi­
bility to establish addressability for
them.

Figure B-4 contains the printer output.
to show the coding of Example 3 would
look when assembled.

In Figure B-4, the standard name was
generated for the logic modules: statement
13 of the DTFCD--V(IJCFZIWO), and state­
ment 12 of the DTFSD--V(IJGtOZZZ). These
module names appear in the External Symbol
Dictionary of each of the respective
logic module assemblies.

Your Program
• • DTF's (Au.~led Separately)
•

OPEN CARDS,DISK-O·~------------·~DISK

GET CARDS,(2) r-- -CARDS
: L-O_-J ~------------------~
: CARDS DTFCD
• • DEVADDR=SYS004
•• EOFADDR~OFCD : L ··IOAREA1=Al

: WORKA=YES
: SEPASMB=YES

; I

~'-------------------~

A 1 (Buffer Area) I l
111111111111111111111111111- 0 0, 0 0 :

~:--------------~ ,
EOFCD (End-of-File Proceui~)

• • • • •

r----------..J
I

• CDMOD (Separately Assembled)

(Logic for a Card File)
• • • • • •

DISK DTFSD

I

t
I
I
I
I
I
I
I
I
I
I
J

BLKSIZE=408
IOAREA1=A2 •••••••••••••

•••••••• IOAREA2=A3 I
: IOREG= (2)
: LABADDR=MYLABELS ••• :

RECFORM~IX8LK
RECSIZE=tlO
TVPEFLE=OUTPUT
SEPASMB=YES

A2 ("/fo, Area) I
1II11111111111111111111111~"""'"
A3 (Buffer Area)

: 0 0 i 0 00-\11111111111111111111111111

SDMODFO (Separately Assembled)

(Logic for a Disk File)

• • • • • •

Figure B-3. Logic Modules and DTFs Assembled Separately (Example 3)

Appendix B 309

~---

MAIN PROGRAM

EXTERNAL SYMBOL DICTIONARY PAGE

SYMBOL TYPE ID ADDR LENGTH LD ID

CDTODISK SD 01 000000 000090 Section definition. Control section defined by START statement.
CARDS ER 02
DISK ER 03

Extemal reference. }
Extemal reference., Defined by EXTRN statement.

--

EXAMPLE 3 PAGE

LOC OBJECT CODE

000000

ADDRl ADDR2 STMT SOURCE STATEMENT DOS/VS ASSEMBLER V 28.0 09.44 13-05-16

000000 05CO
000002
000002 41DO C03E

000006 0100
000008
000008 4110 C086
OOOOOC loBFF
OOOOOE 0100
000010 4500 COLA
000014 00000000
000018 00000000
OOOOle OA02

OOOOlE 5810 e08E
000022 1802
000024 58Fl 0010
000028 45EF 0008

00002e 5alO e092
000030 58Fl 0010
000034 45EF oooe
000038 41FO e01C
000040

000000
000088 5B5Be2D6D7C5D540
000090 00000000
:)00094 00000000

00040

00088

OOOlC

00090

00010
00008

00094
00010
OOOOC
OOOlE

1 CDTODISK START 0
2 BALR 12,0
3 USING *,12

INITIALIZE BASE REGISTER
ESTABLISH ADDRESSABILITV

4 LA 13,SAVEAREA USE REGISTER 13 AS POINTER TO SAVE
5 * OPEN THE FILE
6 OPEN CARDS,DISK OPEN BOTH FILES
1+* IOCS - OPEN - 5145-SC-IOX - REL. 28.0
8+ CNOP 0,4
9+ DC OF'O'

10+ LA 1,=C'$$BOPEN'
11+ SR 15,15 ZERO R15 FOR ERROR RETURN 5-0
12+ NOPR 0 WORD ALIGNMENT 5-0
13+IJJ00001 BAL 0,*+4+4*13-1)
14+ DC AICARDS)
15+ DC AIDISK)
16+ SVC 2
17 NEXT GET CARDS,(2) READ ONE CARD, MOVE TO WORK AREA
18+* IOCS AND DEVICE INDEPENDENT I/O - GET - 5145-SC-IOX - REL. 28.0
19+NEXT L 1,=AICARDS) GET DTF TABLE ADDRESS
20+ LR 0,2 GET' WORK AREA ADDRESS
21+ L 15,16(1) GET LOGIC MODULE ADDRESS
22+ BAL 14,8(15) BRANCH TO GET ROUTINE
23 PUT DISK WRITE ON DISK
24+* 10CS AND DEVICE INDEPENDENT I/O - PUT - 5745-SC-IOX - REL. 28.0
25+ L 1,=AIDISK) GET DTF TABLE ADDRESS
26+ L 15,16(1) GET LOGIC MODULE ADDRESS
27+ BAL 14,12(15) BRANCH TO PUT ROUTINE
28 B NEXT GO FOR NEXT CARD
29 SAVE AREA DS 9D 72-BYTE SAVE AREA
30 EXTRN CARDS,DISK
31 END CDTODISK
32 =C'$$BOPEN '
33 =AICARDS)
34 =AIDISK)

3-5
3-5

~---

Figure 8-4. Separate Assemblies, (Example 3) (Part 1 of 4)

310 DOS/VS Supervisor & I/O Macros

DTFCD ASSEMBLY

SYMBOL TYPE ID ADDR LENGTH LD ID

CARDSC SD O~ 000000 OOOOAO
CARDS LD 000000 O~
IJCFlIWO ER 02
DISK ER 03

EXTERNAL SYMBOL DICTIONARY

SectIon defInitIon. } by f S P T label defInitIon (entry poInt). Generated .-cl ylng E ASMIooYES In D FCD macro.
External reference. Correlponda to V-type add conatont generated In DTFCD.
Extemal reference. Deftned by EXTRN .tatement.

PAGE

PAGE ~

EXAMPLE 3 DOS/VS ASSEMBLER V 28.0 09.44 T3-05-J,6

LOC OBJECT CODE ADDR~ ADDR2 STMT SOURCE STATEMENT

000000

000000
000000 000080000000
000006 O~
000007 04
000008 00000020
OOOOOC 00000000
OOOO~O 00
OOOOii 000000
0000i4 02
0000305 Oi
0000i6 02
oooon 02
OOOOll 0000004C
OOOOiC 00
OOOOD 00000034
000020 0200001tC20000050
000028 4700 0000 00000
00002C D24F DOOO EOOO 00000 00000
000032
000032

000032 0700
000034
000034 4~J.O E06E
000031 UFF
OOOOJA 0700
00003C 4500 EO~6
0000lt0 00000000
00001tit 00000000
000041 OA02

00001tA OAOE

0000ltC

OOOOAO '.'IC2C3D3D3D6E2C'

OOOAO

00041

~ CARDS DTFCD DEVADDR-SYS004, X
SEPASMB-YES, X
EOFADDR-EOFCD, X
IOAREA~-A~, X
WORKA-YES

2+* IOCS AND DEVICE INDEPENDENT 110 - DTFCD - 5145-SC-IOX - REL. 28.0
3+ PUNCH' CATALR CARDS,4.0'- 4-0
4+CARDSC CSECT
5+ ENTRY CARDS
6+ DC OD'O'
7+CARDS DC X '000080000000 , RES. COUNT,COM. BYTES,STATUS BTS
8+ DC AL~(~) LOGICAL UNIT CLASS
9+ DC AL~(4) LOGICAL UNIT

~O+ DC A(IJCXOOO~) CCW ADDRESS
~~+ DC 4X'00' CCB-ST BYTE,CSW CCW ADDR.
~2+ DC AL~(O) SWITCH 3 4-0
~3+ DC VL3(IJCFZIWO) ADDRESS OF LOGIC MODULE 3-3
~4+ DC X'02' DT~ TYPE CREADER)
~5+ DC AL~C~) SWITCHES
~6+ DC AL~(2) NORMAL COMM.CODE
~7+ DC AL~(2) CNTROL COMM.CODE
~8+ DC ACA~) ADDR. OF IOAREA~
~9+ DC AL~CO) JJ
20+ DC AL3(EOFCD) EOF ADDRESS JJ
2~+IJCXOOO~ CCW 2,A~,X'20',80
22+ NOP 0 LOAD USER POINTER REG.
23+ MVC 0(80,S3),OC~4) MOVE IOAREA TO WORKA
24+IJJZOOO~ EQU •
25 USING .,~4 ESTABLISH ADDRESSABILITY
26 • CLOSE THE FILE
27 EOFCD CLOSE CARDS ,DISK END OF FILE ADDRESS FOR CARD READER
28+* IOCS - CLOSE - 5145-SC-IOX - REL. 28.0
29+ CNOP 0,4
3O+EOFCD DC OF'O'
3~+ LA ~,-C"'BCLOSE'
32+ SR I ~5,~5 ZERO R i5 FOR ERROR RETURN 5-0
33+ NOPR 0 WORD ALIGNMENT 5-0
3lt+IJJC0002 BAL 0,.+4+4*C3-~)
35+ DC ACCARDS)
36+ DC ACDISK)
37+ SYC 2
38 EOJ
39+$ SUPYR COMMN MACROS - EOJ - '74'-SC-SUP - REL. 28.0
1tO+ SYC i4
4i EXTRN DISK
42 Ai DS 10C CARD 110 AREA
43 END
ItIt -C'''.CLOSE'

~---

Figure B-4. Separate Assemblies, (Example 3) (Part 2 of 4)

Appendix B 311

~--

DTFSD ASSEMBLY

EXTERNAL SYMBOL DICTIONARY PAGE

SYMBOL TYPE ID ADDR LENGTH LD ID

DISKC SD 01 000000 0003»4
DISK LD 000000 01

Section definition. }
label definition (entry point). Generated by tpeelfylng SEPASMB-YES In DTFSD macro.

IJGFOZZZ ER 02 Extemal ... ference. C~onds to V-type addr ... constont generated In DTFSD.

~--

EXAMPLE 3 PAGE

LOC OIJECT CODE ADDRl ADDR2 STMT SOURCE STATEMENT DOS/VS ASSEMBLER V 28.0 09.44 73-05-16

000000

000000
000000 000080040DOO
000006 FF
000007 FF
000008 00000068
OOOOOC 00000000
000010 00
000011 000000
000014 20
000015 49
000016 C4C9E2D2404040
OOOOD 04
OOOOlE 000000000000
000024 0000
000026 08
000027 00
000028 00
000029 OOOOAO
00002C 000000A4
000030 80000000
000034 0000
000036 00000000
00003A 0000
00003C OOOOFFOO
000040 00
000041 00
000042 0190
000044 00000000
000048 17
000049 04
00004A OlaF
00004C FFFFFFFFFF
000051 00
000052 32E6
000054 5821 0058
000058 OOOOOOAC
00005C 00000050
000060 00000231
000064 OA
000065 000000
000061 0700003A40000006
000070 310OOO3C40000005
000071 0100007000000000

00058

1 DISK DTFSD ILKSIZE-408,
SEPASMI-YES,
IOAREA1-A2,
IOAREA2-A3,
IOREG-(2),
LAIADDR-MYLAIELS,
RECFORM-FIXILK,
RECSIZE-80,
TYPEFLE-OUTPUT,
DEVICE-3330

2+* SEQUENTIAL DISK IOCS - DTFSD - 5745-SC-DSK - REL. 28.0
3+ PUNCH' CATALR DISK,4.0' 4-0
4+DISKC CSECT
5+ ENTRY
6+ DC
7+DISK DC
8+ DC
9+ DC

10+ DC
11+ DC
12+ DC
13+ DC
14+ DC
15+ DC
16+ DC
17+ DC
18+ DC
19+ DC
20+ DC
21+ DC
22+ DC
23+ DC
24+ DC
25+ DC
26+ DC
27+ DC
28+DISKS DC
29'+])C
30+ DC
31+ DC
32+ DC
33+ DC
34+ DC

~:: ~
37+ DC
38+ DC
39+ DC
40+ L
41+ DC
42+ DC
43+ DC
44+ DC
45+ DC
46+IJGCooOl CCN
47+ CCN
41+ CCN

DISK
OD'O'
X '000080040000 , CCI
AL1(255) LOGICAL UNIT CLASS
AL1(255) LOGICAL UNIT NUMIER
ACIJGC0001) CCI-CCW ADDRESS
4X'OO' CCI-ST IYTE,CSW CCW ADDRESS
AL1CO) 3-3
VL3CIJGFOZZZ) 3-8
X'20' DTF TYPE
AL1(73) OPEN/CLOSE INDICATORS
CL7'DISK' FILENAME
X'04' INDICATE 3330 4-0
6X'OO' ICCHHR ADDR OF Fl LAIEL IN VTOC
2X'OO' VOL SEQ NUMBER
X'80' OPEN COMMUNICATIONS IYTE
X'OO' XTENT SEQ NO OF CURRENT EXTENT
X'OO' XTENT SEQ NO LAST XTENT OPENED
AL3CMYLAIELS) USER'S LAIEL ADDRESS
ACA2) ADDRESS OF IOAREA 4-0
X '80000000' CCHH ADDR OF USER LABEL TRACK
2X'OO' LONER HEAD LIMIT
4X'OO' XTENT UPPER LIMIT
2X'OO' SEEK ADDRESS-II
X'OOOOFFOO' SEARCH ADDRESS-CCHH
X'OO' RECORD NUMBER
X'OO' KEY LENGTH
H'400' DATA LENGTH
4X'OO' CCHH CONTROL FIELD
AL1(23) R CONTROL FIELD
1'00000100' 3-2
H'399' SIZE OF ILOCK-l
5X'FF' CCHHR IUCKET
X'OO'
H'13030' TRACK CAPACITY CONSTANT
2,88(1) LOAD USER'S IOREG
AeA2+8) DEILOCKER-INITIAL POINTER
F'80' DEILOCKER-RECORD SIZE
AeA2+8+400-l) DEILOCKER LIMIT
ALlelO) LOGICAL INDICATORS
AL3eO) USER'S ERROR ROUTINE
7,*-46,64,6 SEEK
X'31',.-52,.4,5 SEARCH ID EQUAL
8,.-8,0,0 TIC

3-7

4-0

3-9

X
X
X
X
X
X
X
X
X

Figure 8-4. Separate Assemblies, (Example 3) (Part 3 of 4)

312 DOS/VS Supervisor & I/O Macros

~--
DTFSD (Continued)

EXAMPLE 3 PAGE 2

LOC OBJECT CODE ADDRl ADDR2 STMT SOURCE STATEMENT DOS/VS ASSEMBLER V 28.0 09.44 73-05-l6
00
000080 1D00023C00000198
000088 3l00003C40000005
000090 0800008800000000
000098 lE0000983000000l
OOOOAO
OOOOAO 05AO
0000A2

0000A2 OA09
0000A4
00023C

49+ CCW X'lD',A3,0,400+8 WRITE COUNT KEY AND DATA
50+ CCW X'3l',DISKS+2,64,5 SEARCH ID EQUAL
5l+ CCW 8,*-8,0,0 TIC
52+ CCW 30,*,48,l VERIFY
53+IJJZOOOl EQU *
54 MYLABELS BALR lO,O INITIALIZE BASE REGISTER
55 USING *,lO ESTABLISH ADDRESSABILITY
56 * USER'S LABEL *
57 * PROCESSING ROUTINE *
58 LBRET 2 RETURN TO LIOCS
59+* IOCS - LBRET - 5745-SC-IOX - REL. 28.0
60+ SVC 9 BRANCH BACK TO IOCS
6:1. A2 DS 408C FIRST DISK 1/0 AREA
62 A3 DS 408C SECOND DISK 1/0 AREA
63 END

CDMOD ASSEMBLY

EXTERNAL SYMBOL DICTIONARY
SYMBOL TYPE ID ADDR LENGTH LD ID

I-lCFZIWO SD Ol 000000 000060 Section definition. CSECT name generated by CDMOD macra.

LOC OBJECT CODE ADDRl ADDR2 STMT

2
3

73

EXAMPLE 3

SOURCE STATEMENT

PRINT NOGEN
CDMOD

END

DEVICE=2540,
SEPASMB=YES,
TYPEFLE=INPUT,
WORKA=YES

x
X
X
X

-

SDMODFO ASSEMBLY

EXTERNAL SYMBOL DICTIONARY
SYMBOL TYPE ID ADDR LENGTH LD ID

I JGFOZZZ SD Ol 000000 000lD4 Section definition. CSECT name generated by SDMODFO macro.

LOC OBJECT CODE ADDRl ADDR2 STMT

2
3

l69

'EXAMPLE 3

SOURCE STATEMENT

PRINT NOGEN
SDMODFO

SEPASHB=YES
END

x

[---~
Figure 8-4. Separate Assemblies, (Example 3) (Part 4 of 4)

Appendix B 313

The DTF assembly generates a table that
contains no executable code. Each of the
DTF tables is preceded by the appropiate
CATALR card. These two object decks can be
cataloged as follows into the relocatable
library together with the logic modules:

II JOB CATRELOC

II EXEC MAINT

1*

(DTFCD Assembly)

(DTFSD Assembl,x)

(CD~10D Assembly)

(SDMODFO Assembly)

Alternately, the object decks from these
assemblies (DTF tables and logic modules)
can be furnished to the linkage editor
along with the main-program object deck.
The sequence follows:

II JOB CATALOG

II OPTION CATA~

INCLUDE

PHASE name,*

(Object deck,

(Object deck,

(Object deck,

(Object deck,

(Object deck,

1*

II EXEC LNKEDT

1&

main program)

DTFCD as s emb ly)

DTFSD assembly)

CD~1OD assembly)

SDMODFO assembly)

Note: It is not necessary to remove the
~LR card because the linkage editor
bypasses it.

314 DOS/VS Supervisor & I/O Macros

EXAMPLE 4: DTFs and LOGIC MODULES
ASSEMBLED SEPARATELY, I/OC AREAS WITH
MA IN P ROGRA~1

The main program is identical to Example 3
except the following four cards are
inserted aft~r the card marked (2):

Al
A2
A3

DS
DS
DS
ENTRY

80C
408C
408C
Al,A2,A3

The separate assembly of logic modules is
identical to Example 3.

In the card-file assembly of Exam~le 3,
replace the card marked (3) wlth he
following card:

EXTRN Al

Similarly, in the disk-file assembly of
the previous example, replace the cards
marked (4) and (5) with the following
card:

EXTRN A2,A3

Figure B-5 shows the separation of the
logic modules, DTFs and 1/0 areas.

.
Vour Program

•
DTF's (Assembled Separately)

• •
OPEN CARDS,DISK- 0- - - - --- - - - - - - - DISK

GET CARDS, (2)
: L... - - 0 - - -. f-C ,AR_D_S _______,

• • • CARDS DTFCD

DEV AD DR =SV 5004

r -0- -IOAREA 1 =A 1
00000000000000000000000.0000000

1

000000000000 0 EOFADDR=EOFCD

I WORKA=¥ES
SEPASMB=VES

I I
I I

A 1 (Buffer Area) I I
1I1111111111111111111111111-"PO" -0- J :
A2 (Buffer ANa)

1111111111111111111111 III If.- - -0- - - - 1- - - - - -
A3 (Buffer A.-a) :

111111111111111111111111111- - -0- - - - - - - - -
I

I--- --------....
~-------------~

I
I ,

EOFCD (End-of-File Processing)
• • • • •

I
I
I

J---------~~J
I
•

• CDMOD

(Logic for a Card File)
• • • • • •

DISK DTFSD

BLKSIZE=408
~ - - - -0-IOAREA1=A2
I r - -0- -IOAREA2=A3
I I IOREG= (2)

o • 0 oLABADDR=MVLABELS
I I RECFORM=FIXBLK
I I RECSIZE=80

I
TVPEFLE=<:>UTPUT

I SEPASMB=VES

I I
.JI

I
_J

• SDMODFO

(Logic for a Disk File)

• • • • • •

Figure 8-5. Logic Modules and DTFs Assembled Separately, I/O Areas with Main Program
(Example 4)

Appendix B 315

EXAMPLE 5: ASSEMBLING OTFs AND LOGIC COTOOISK START 0
RODU[ES SEP~R~TE[V: 170 ~RE~S, [~BE[BALR 12,0
EXIT, ~ND END-OF-FI[E EXIT ~ITR M~IN USING *,12
PROGR~M LA 13,SAVEAREA

OPEN CARDS,DISK
In addition to the changes in Example 4, NEXT GET CAROS,(2)
the label exit and the end-of-f,le ex,t may PUT DISK
be assembled separately. Figure B-6 shows B NEXT
these separate assemblies. The main program SAVEAREA OS 90
is assembled:

EOFCO CLOSE CAROS,DISK
EOJ

MYLABELS

LBRET 2

EXTRN CARDS,DISK
Al DS 80C
A2 OS 408C
A3 OS 408C

ENTRY Al,A2,A3,EOFCD,MYLABELS
END COTODISK

316 DOS/VS Supervisor & I/O Macros

I Your Program
• DTF's (Assembled Separately)
• •

OPEN CARDS,DISK-O- - - - - --- - - - - - - - DISK
GET CARDS, (2)

: L.. - -0- - - - !-CARDS · ~----------------~ • • CARDS DTFCD DISK DTFSD •
DEY AD DR =SYSOO4

r - - - - - - - - - - -O-EOFADDR=EOFCD

I r 0 - -IOAREA1=Al BLKSIZE=408

I WORKA=¥ES r- - - - -O-IOAREA 1 =A2
I SEPASMB=YES I r - -0- -IOAREA2=A3

I I I I I IOREG= (2)

I
rOo LABADDR=MYLABELS

I I I t I RECFORM=FIXBLK

I A 1 (Buffer Area) I I I I I ~~~~~~UTPUT
I 111111111111111111111111111+- - -0 J: I I I SEPASMB=YES

I A2 (Buffer Area) I I I I
I 11111111111111111111111111 - -0- - - - .L - - - - _...J I I I
I A3 (Buffer Area) I I I I 1 MYLABELS

! 0111111011111111111111111-- - -0- - - III - - - - - - J ! L?-(Yf'p.ouHnel
9
_t I I

EOF.CD (End-af-File Praeeulr.a) I I
• : I I
• I I

• ___________ J I
I I

-'

• SDMODFO
i

CDMOD

(Lagle far a Card FUe)
• • • • • •

(Logic for a Disk File)
• • • • • •

Figure B-6. DTFs, and Logic Modules Assembled Separately; I/O Areas, Label Exit, EOF Exit
with Main Program (Example 5)

The file definitions are separately DISK DTFSD BLKSIZE=408, X
assembled: TYPEFLE=OUTPUT, X

SEPASMa=YES, X

Col. 72

CARDS DTFCD DEVADDR=SYSOO4, X
WORKA=YES, X ICAREAl=A2, X
EOFADDR=EOFCD, X IOAREA2=A3
S EPASf4B=Y ES, X EXTRN A2,A3,MYLABELS
IOAREAl=Al END

EXTRN EOFCD,Al
END

Appendix B 317

The separate assembly of logic modules
is identical to Example 3 and Example 4.

Comparison of the Five Methods

Exam~le 1 requires the most assembly time
and he least link-edit time. Because the
linkage editor is substantially faster
than the assembler, frequent reassembly
of this program requires more total time
for program preparation than examples 2
th rough 5.

Example 2 segregates the lacs logic modules
from the remainder of the program. Because
these modules are generalized, they can
serve several different applications.
Thus, they are normally retained in the
system relocatable library for ease of
access and maintenance.

When a system pack is generated or when
it requires maintenance, the lacs logic
modules that are required for all
applications should be identified and
generat·ed onto it. Each such modu1 e
requires a separate assembly and a
separate catalog operation, as shown in
examples 2 through 5. Many assemblies,
however, can be batched together as can
many catalog operations.

Object programs produced by COBOL, PL/I,
and RPG require one or more IOCS logic
modules in each executable program. These
modules are usually assembled (as in
Example 2) during generation of a system
pack and are permanently cataloged into
the system re10catab1e library.

Example 3 shows ho~ a standardized lacs
package can be separated almost totally
from a main program. Only the imperative

318 DOS/VS Supervisor & I/O Macros

lacs macros OPEN, OPENR, CLOSE, CLOSER, GET,
and PUT remain. All file parameters, label
processing, other lacs exits, and buffer
areas are preassembled. If there are few
lacs changes in an application compared
to other changes, this method reduces to
a minimum the total development/maintenance
time. Thi~ approach aJso serves to
standardize file descriptions so that they
can be shared among several different
applications. This reduces the chance of
one program creating a file that is
improperly accessed by subsequent programs.
In example 3, you need only be concerned
with the record format and the general
register pointing to the record. You can
virtually ignore the operands BLKSIZE,
LABADDR, etc. in your program, although you
must ultimately. consider their effect on
virtual storage, job-control cards, etc.

In example 4, a slight variant of example
3, the I/O buffer areas are moved into the
main program rather than being assembled
with the DTFs.

In example 5, the label processing and
exit tunct,ons are also moved into the
main program.

Exam~les 4 and 5 show how buffers and lacs
fac, ,t,es can be moved between main
program and separately assembled modules.
If user label processing is standard
throughout an installation, label exits
should be assembled together with the DTFs.
If each application requires special label
processing, label exits should be assembled
into the main program.

APPENDIX B.l: ASSEMBLING A FORMAT RECORD FOR THE 3886
OPTICAL CHARACTER READER

This section describes a use for the IBM
3886 Optical Character Reader. Included
are a sample document, a format record
assembly and the data provided by the
3886.

Document Example

A typical application for an optical
character reader is processing insurance
premiums. Figure B-7 shows an insurance
premium notice for the Standardacme Life
Insurance Company. The document .has three
lines of data to be read (see Figure B-4
for sample data). The first line contains
one field, the name of the policy holder.
The second line contains four fields: the
second line of the policyholder's address,
the policy number, the premium amount due
and a code to be hand printed if the amount
paid is different from the amount due. The
third line contains one fiald that contains
the amount paid if different from the amount
due.

Format Record Assembly Example

To process documents like that in Figure
B-7, one format record is used. The format
record must be created in a separate
assembly. The coding necessary to create
the format record is shown in Figure B-8.
The numbers at the left of the coding form
correspond to those in the following text.

ST ANDARDACME LIFE
INSURANCE COMPANY

DUE DATE

MO DAY YR

06 23 72

DALE E. STUEMKE

ANNIV
MONTH

07

1363 SE 10TH AVE.

DIST
NO

45

1 The job control language (JCL)
statements indicate that the job is an
assembly. The output of the assembly is
to be cataloged with the phase name FORMAT.

2 The DFR macro specifies the
characteristics common to all lines on
the document:

FONT=ANAl: The alphameric OCR-A font is
used for reading any fields that do not
have another font specified in the DLINT
macro field entries.

REJECT=&: The commercial at sign (@) is
substituted for any reject characters
encountered.

EDCHAR=(',',.): The comma and period are
removed from one or more fields as
indicated in DLINT entries (line 2,
field 3).

3 The OLINT macro describes one line type
in a format record described by the OFR
macro. The following information is
provided about the first line:

LFR=1,LINBEG=4: The first line on the
document has a line format record number
cf 1. The first field read from the line
begins four-tenths of an inch from the

NOTICE OF PAYMENT DUE

PREMIUM

249.75

1

ROCHESTER, MINN 58395404 249.75
POLICY NUMBER $ AMOUNT DUE

INSURED DAWN STUEMKE
If your address IS other than shown, please nolily the I ' ----------J-~
Company Please make check or money order payable to
Standardacme Llle and present With nollce to your

Company Representative or to • '---________ _

PLEASE RETURN WITH YOUR PAYMENT FOR COMPANY USE ONLY

Figure B-7. Premium Notice Example

Appendix B. 1 319

left edge of the document. The data
record is in the standard mode; editing
is performed on the field.

FLD1=(32,20,NCRIT),EDIT1=HLBLOF: The first
and only field on the line ends 3.2
inches from the left edge of the document,
the edited data is placed in a 20-character
field. The field is not considered
critical. All leading and trailing blanks
are removed, the data should be left­
justified, and the field is padded to
the right with blanks.

The second line on t~e document is
described as follows:

LFR=2,LINBEG=4: The s~cond line of the
document has a line f6rmat record number
of 2~ The first field read begins four­
tenths of an inch from the left edge of
the document. The data record is in
standard mode; editing is performed on
all fields on the line.

FLD1=(30,20,NCRIT),EDIT1=HLBLOF: The
first field on the line ends 3.0 inches
from the left edge of the document, the
edited data is placed in a 20 byte field.
The field is not considered critical. All
leading and trailing blanks are removed,
the data is left-justified, and the field
is padded to the right with blanks.

FLD2=(42,8),EDIT2=ALBNOF: The second
field ends 4.2 inches from the left edge
of the document, the edited data is placed
in an eight-byte field, the field is
critical. All leading and trailing blanks
are removed from the field. The resulting
field must be eight digits in length or
a wrong length field indicator is set.

320 DOS/VS Supervisor & I/O Macros

F~D3=(54,6),EDIT~=HLBHIF,EDCHAR: The third
field ends 5.4 incnes from the left edge of
the document, the edited data is placed in
a six-byte field, the field is.critical.
All leading and trailing blanks are
removed, the data is right-justified, and
the field is padded to the left with zeros.
A comma, if present, and the decimal point
are removed ,from the edited field.

FLD4=(62,1,HHP1),EDIT4=ALBHIF: The fourth
field ends 6.2 inches from the left edge of
the document, the edited data is placed in
a one-byte field, tH~ field is critical
and is read using the numeric handprinting
norma 1 mode. All b 1 an ks are. removed, th e
data is right-justified, and the field is
padded to the left with zeros.

The third line on the document is described
as follows:

LFR=3,LINBEG=45: The third line on the
document has a line format r~cord number of
3. The field to be read begins 4.5 inches
from the left edge of the document. The
data record is in standard mode; editing
is performed.

FLD1=(63,7,NHP1),EDIT1=ALBHIF: The field
on th1S line ends 6.3 inches from the left
edge of the documen~, th~ edited da~a is.
placed in a seven-byte f1eld, the f1eld 1S
critical and ts read using the numeric
handprinting normal mode. All blanks are
removed, the data is right-justified, and
the field is padded to the left with zeros.

FREND=YES: This is the format record end.
No DLINT macros follow this statement.

IBM IBM Ilyat8m/360 AoNmllle. CodIJlg 'arm

""GUM PUNCHING
INSH'UCTIONS

PlOGRAINM.I DATE

STATEMENT

1 - . I. OpeftillOft

" I. O~r;nd
3 •,

'" " II Jk)B flO RM AT
I I 10 P T I C~ CiA TAL

PH ASE fO RIM AT ,+ 0, NP AU TO
I I EX EC ~S SE 1MB LV

, T IT LE '0 ~C L I ST -f "R ~A T '
ST ART

** *,.** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * .. ** ** ** **
* I I

* TH IS AS SE ~B L~ ~ ILL CR EA TE A FO R~ IAT

* IN SU RA NCE PR E~J U~ INP T I C E ,

* I i

****'**** ** **1* ** 1"* ** ** ** ** ****t* ** *** -- -
, : i I 0 F R' if'" NT -A NA 1 , R E j1E C T_ !Ci1, E

0 LIN T L f R- 1, L I NB EG-",
: I FL 01 -(32 ,2 0, NC R I T)

I ; I ED IT 1 - HL B L f
I , I ' OL 111'01 T Lf R- 2 , L I NB EG -" ,

! f L 01 -(30 ,2 0, ~C R I T) ,
I ED IT 1 - HL IL ~f

:
! FL 02 -(42 ,8) ,

I I I : ED IT 2- AL BN Of,
I fL 03 -(5" ,6) ,

! ED IT 3- (H L B HI F , ED CH AR
i: fL 10" -(62 ,1 ,N HP 1) ,

I i I

It ttandord cord form, 11M electro 6509, is avollobl. for punching tOurce ,totements from th" form.
Inltrvctlons for utlng thIS form are in any laM Sys,."j360 Anembler R.ference Nonuol

** r----
DC

) ,

AdcIr ... COf'/WI'Ief'Ih eonc.nu'SJ this fofm to IBM Corporation, Programming PublicotlOM, Deportmlfnt 232, San Jos., California 9511 ...

RE clo RO 10 E

** ** *** ** c-
HA R- (,'

" --

GRAPHIC

PUNCH

'"

** **

SC R I

** **
.)

I
I

**

B I

**

i

i

Figure 8-8. Format Record Assembly Example (Part 1 of 2)

I I I
I I I

CO'IUI'III"II

" 60 "

** ** ** ** ** ** ~*

NG AN

** ** ** ** ** ** **

**

**

I'AGE Of

xa-_-4WMIIZ'
~h""II.U S A " .

ICAID ELlCTtO NUMlfI
*

w-tInUlfI .. --71 73 ..

*
....
*
*

** *

X
X

X
X
X
X
X
X
X
X

Appendix B.l 321

11M 11M ---WIllI'" ~
1H-' .. u.s.A.

1- PUNCH_ -r OIAPHIC T I I I MOl 01 - Dolfi INSTlUCTIONS I """'" I I I I I .
STAIIMlNT -• - • II

a.o- .. . ~ 10
c-

I~
.......

• . " «I ~ 10 55 .. " ED IT 14- IAL Itt If
ID l INT L. I. 3. L I NI Ui ." 5. X

fL Dl -('" • !, .N HP 1) • X
ED IT 1~ ~L IH If. X
fl EI~ ID- YES

END
I.
II EX E~ L~ KE DT
I~

·A __ _.IIM It ' .. __ "'It-.-........ It __,IIM~ ___ ,.

__ --..It_ .. IIM~ •-.. _ ~232, SooJoto, C.Ufomlo95I1 ••

Figure B-8. Format Record Assembly Example (Part 2 of 2)

322 DOS/VS Supervisor & I/O Macros

'\

Line 1:

Header Record:
(20 Bytes)
Data Record:
(130 Bytes)

Line 2:

Header Record:
(20 Bytes)
Data Record:
(130 Bytes)

Line 3:

Header Record:
(20 Bytes)
Data Record:
(130 Bytes)

01011000000000000000

DALEbE. bSTUEMKEb b b b b b ... b
~---------- ---------~ ~ V . -----v--

Policyholder
Field

02021000000000000000

Pad to
130 Bytes

ROCHESTER, bMINNb b b b b58395404024975 ob ... b

Address Policy Amount f ~ 130 Bytes
Field Number Due Lcode

03031000000000000000

OOOOOOOb ... b
~

Amount Pad to
Paid 130 Bytes

Figure 8-9. Sample Data

Appendix B.t 323

APPENDIX C: READING, WRITING, AND CHECKING WITH NONSTAN·
DARD LABELS

- -- -- - - - -- -- -- ----

EXTERNAL SYMBOL DICTIONARY PAGE
SYMBOL TYPE ID AOCIt lENGT~ lO ID

PC 01 003COO oeolt8c
JJCFllZO Eit 02
IJFFZZlZ ER 03
IJFFBlZZ ER 04
IJDFZZZZ Era 05
IJ210006 SD 06 003490 00CC64

TEST CREATING AND PROCESSING NON-STANCARO lAB~lS PAGE.

lOC OBJECT COCE ADDRI ADCR2 STHT SOURCE STATEMENT DOS/VS ASSEMBLER V 28.0 09.44 73-05-16

003000

003lAC 0520
003lAE

003106 47FO 2010

003216 47FO 2050

003252 47FO 20BC

0311!E

031FE

0323A

00327A 4900 22A6 03454
oo327E 4770 20FO 032~E
003282 0227 221e 21ce 033CA 0337A

2
3
4 •

PRINT ON,NOGEN.NODATA
START 12288

NSTCOC04
NSTD0005
NSTC0006

*NSTD0007
NSTD0008

26 • NSTDOC09
27 TAPEOUT OTf"T DEVADDRcSYS004,IOAREA1 c IOAREA,BlKSIZE-80,TYPEFlE-OUTPUT,.~STDOOI0

5 READER DTFeD OEVICE-2540,DEVADDR-SYSIPT,BLKSIZE-80,TYPEFLE-INPUT,
EOFADDR-ENOCARD,IOAREA1-IOAREA

lABAODR-lABElOUT,REAO·FGR~ARO,FIlABL-NSTD NSTDOOll
NSTD0012

.NSTOOC13
*NSTDOOI4
~STD0015

93 • NSTD0016
94 TAPEIN2 OTFMT OEVAOOR.SYS004,IOAREA1-IOAREA,BLKSIZEc80,TYPEFLE-INP~T, *NSTCOCI7

58 *
59 TAPEIN ·OTf"T DcVADDR-SYS004,IOAREA1-IOAREA,BLKSIZE-80,TYPEFLEc INPUT,

EOFADDR-ENDTAPE,REAOcfCRWARD,FILABL-NSTD,REWIND-NORWC,
LABADDR-LABELIN

EOfADDR=ENOTAPE2,READ-BACK,FIlABL-NSTD NSTD0018
129 * NSTC0019
130 PRINT OTFPR OEVICE-1403,DEVAOOR-SYSLST.IOAREA1-IOAREA,BLKSIZE-80 NST00020
151 • NST00021
152 CONSOLE uTFeN BLKSIZE-80,OEVACOR-SYSLCG,IOAREA1cCAREA,RECFORM=FIXU~B, *NSTD0022

221
222
223
224
225
226
234
239
244
245
2~3
2~4
2(:3
268
273
274
282
283
291
2~6
301
302
311
317
320
321
322
323
324
328
334

WORK A-YES NST00023

*
* START BAlR 2,0

USING .,2
* *. ROUTINE TO WRITE TAPE

OPEN TAPEOUT
GETCARC GET READER

P\JT TAPEOUT
~ "ETeARD

ENOCARD ClOS~ TAPEOUT
* *. ROUTINE TO READ TAPE FOR~ARD

OPEN PRINT,TAPEIN
GETTAPE GET TAPEIN

PUT PRINT

SET UP A BASE REGISTER

TO WRITE NSTD RECORDS
READ A CARC FRO~ CARO READER
WRITE CARD I~AGE ON TAPE
BRANCH AND GET ANOTHER CARD
TO wRITE NSTD TRAILER LABEL

TO PROCESS NSTD LABEL
GET A CARD IMAGE FROM TAPE
PRINT CARD IMAGE ON PRINTER

8 GETTAPE
ENDTAPE CLOSE TAPEIN

eQANCH AND GET ANOTHER TAPE RECORD
PROCESS NSTD LABELS

••• RCUTINE TO READ TAPE BACKWARDS
OPE~ TAPEIN2

GETTAPE2 GET TAPEIN2
PUT PRINT
B GETTAPE2.

ENCTAPE2 CLOSE PRINT,TAPEIN2
CNTRL TAPEIN2,REW
EOJ

••• LABEL CREATION ROUTINf
LABELCUT CH O,ALPHAO

SNE TRAILOUT

BRANCH

MVC IOAREA(40J,HEADER
RITELAB EXCP OUTe'B

wAIT OUTeCB
LBkET 2

8YPASS NSTD LABELS
READ A TAPE RECORD
PRINT RECORD
AND GET ANOTHER TAPE
BYPASS NSTC RECORDS
REWIND TAPE TO LeAD
NORMAL END OF JOB

OPEN Of CLOSE
BRANCH IF CLOSE

RECORD

POINT

~OVE HEAOER TO 1/0 AREA
WRlTf LABEL
WAIT FOR CCMPLETION
RETURN CONTROL TO 10CS

NSTOOC24
NST00025
NSTD0026
NSTDOC27
"STD0028
NSTDOC29
NSTD0030
NSTOOC31
NSTDOC32
NSTD0033
,..ST00034
NSTD0035
NSTOOC36
NSTD0037
NSTD0038
NSTDOC39
NSTDC040
NSTD0041
NSTD0042'
NST00043
NST00044
NST00045
NST00046
NSTD0047
NSTOOC48
NSTD0049
NSTC0050
NSTD0051
NSTDOC52
NSTDOC53
NSTD0054

Figure C-l. Reading, Writing, and Checking with Nonstandard Labels (Part 1 of 2)

324 DOS/VS Supervisor & I/O Macros

(

lOC

00329E
0032A4

0032AB
(l032AC

0032C4
0032C8
C·0~2CC
003202
003206

0032EE
0032F2
0032F6
0032FC

003312

003318
00334A
00331A
0033A2
0033CA

00343A
003440
003448
0031150
003454
0031AC
003458
003460
003468
00346C
003410
003414
003418
00341C
003480
003484
003488

TEST CRE~TING AND PROCESSING NON-STAND~~O LABELS PAGE 2

OBJECT CODE AODR1 ADDR2

0221 221C 21F4 033CA 033A.2
41FO 20DA 03288

4900 .22A6 03454
4180 212C 032CA

9101 2210 0341E
4710 2164 03312
0521 .221C 21F4 e33CA 033A2
4180 2102 032BO
41FO 2152 C3300

9101 2210 0341E
4710 2168 0331(:
0521 221C 21CC 033CA 0331A
4180 212C 0321:A

5800 22A2 03450

4040404040404040
E4E2C50~40D3CIC2
E4E2C50~40C8C5C1
E4E.2C5D940E3D9Cl
4040404040404(40

OOOOOOOCOOOO
020033C40000(C28
010033CAOOOO(028
0000C5C6
0006

5B5BC20601C51:540
5B5BC2C3D3C6E2C5
00003000
00003038
00003C90
00003150
000030FO
0000342A
0000341A
00003180
0000334A

ST'-T

331
338
339
340
341
342
346
352
353
354
355
356
351
3E:l
3E:1
3(:8
369
31C
311
311
380
381
384
385
3e6
3e1
388
389
390
loCI

SOLRCE STATEMENT DOS/VS ASSEMBLER V 28.0 09.44 73-05-16

TRAILOlT M~C IOAREAC40t,TRAILE~ MOVE TRAILER LABEL TC 1/0 AREA
BRANCH TO WRITE THE LABEL 8 RI TfLAB

••• LABEL P~OCESSING ROUTINE
LABEll" CH

BE
TRAILlI'\ EXC.P

wAIT
TM
bO
eLC
BE
iI

HEADIr- EXCP
wAIT
TM
bU
uc.
BE

ERRLAB PuT
EOJ

EXlTEOF L
EXIT LBkEY
• CONSTANTS
CAREA DC
LABELERR DC
HEAI:ER DC
TRAILER DC
ICAREA LIe
III.CCI.I CCB
CUTCC!! eCB

412 INCCW CC~

413 OUTCC~ CCw
414 E(FINC DC.
415 ALPHAC DC
416 ENO
411
4le
41<;
420
421
422
423
424
425
421;
421

O,At.PI1AO
HEADIN
INCCB
INC1.8
INCCB+4,X'01'
EXlTEOF
JOAREA(40),TRAILER
TRAIUN
ERRLAB BRA~CH
INCCB
INCCB
INCCIH4,X' 011
EXIT
IOAREA(40) ,HEADER
HEADIN
CONSULE,LABELERP

O,EOFIND
2

OPEN OR CLOSE
OPEN TIME
READ A TRAILER LABEL
WAtT FeR 110 CO~PLETION
TEST FOP A TAPE WARK
BRANCH IF YES
CCMP~RE TRAILER LABEL
BRANCH TO GET ANOTHER RECORD
IF LABELS CC NOT COMPARE
READ A HEADER LABEL
WAIT fOR CC~PLETION
TEST FOR A TAPE MARK
BRANCH IF YES
DOES HEADER LABEL COMPARE
IF YES, BR~NCH ANC READ TAPE
PUT LABEL ERROR MESSAGE
TERMINATE JOB
INCICATE ECF TO 10CS
RETURN CONTROL TO 10CS

el50' , CONSOLE 1/0 AREA
COUSER LABELS DC NOT C(MPARE. ABNORMAL END OF JOB.'
CL40'USER HEADER LABEL'
CL40'USER TRAILER LABEL'
~L&O' , INPUT/OUTP~T AREA
SYS004,INCC~ REAC TAPE eCB
SYS004,OUTCCW WRITE TAPE CCB

X'0~',IOAREA,X'00'~40 READ TAPE CCW
X'01',IOAREA,X'OO',40 WRITE tAPE CCW
X'0000C5C6'
X'00D6'
START
"C'S$BOPEN '
=C'SSBCLOSE'
=ACKEACER.
-AC TAP EOUT)
=AlTAPEIN)
=A(PRINT)
-ACTAPEIN2.
=ACOUTCCB'
-AlINCCB.
.. ACCONSOLe"
=ACLABELERR)

~ST00055
NST00056
NSTCOC51
NST00058
NST00059
NST00060
NST00061
II.ST00062
NST00063
NSTOOC61t
NST00065
NST00066
NSTD0061
NSTC'OC68
NSTD0069
NSTC0010
NSTOOOl1
NSTOOC12
NSTD0013
NSTC0014
NSTC0015
NSTC0016
NSTCOCl1
NSTC0078
NSTDOC19
NST00080
NSTD0081
NST00082
II.ST00083
NSTC0084

NSTC0085
NST00086
NSTOOC88
NSTC0089
NSTOOC90

[--- -- --- --= --- ----- =-=-:-__ -___ -__ -__ :J

Tape Output
(40 charact ...) ~

- ...)J
~ (40 charact.n) ~ ~ J

e e e I 1 ~ 1
USER HEADER LABEL a USER TRAILER LABEL a

4
No : 1. IOCS WlOt. the first tapemarlc beca~ the T APEMARK =NO paramet.r WCII omitted.

2. IOCS always writes the tapemarlc following the data.
3. IOCS wrot. the two tapemarks aft.r the ~r trail.r label.

Tape Input

(40 characters) ~ \~ ~ (40 charact ..) ~ 1 I e
~) e e

I 1 1 1
USER HEADER LABEL Data •••)1. .! USER TRAILER LABEL a a t

Not.: 1. IOCS reads the first tapemark or bypaaes it if Uler labels are not checked.
2. ~ erlCCMlterlng the second tapemark IOCS branches to Your label routln. add
3. Alter you reod the third tapemark you should iaue a LlRET 1 ancilOCS will branch to the Ind-af-fil. add,...

Figure C-l. Reading, Writing, and Checking with Nonstandard labels (Part 2 of 2)

Appendix C 325

APPENDIX D: WRITING SELF-RELOCATING PROGRAMS

DOS/VS has the capability of executing
self-relocating programs. A se1f­
relocating program is an assemb1er­
language program which can be executed
at any location in virtual storage. If
your system does not have the relocating
loader, writing a self-relocating program
is then an efficient coding technique
because self-relocating programs are
link-edited only once for execution in any
partition. When link-editing, use OPTION
CATAL and a PHASE card such as:

PHASE Phasename, +0

This causes the linkage editor to assume
that the program is loaded at storage
location zero, and to compute all absolute
addresses f~om the beginning of the phase.
The job control EXEC function recognizes a
zero phase address and adjusts the origin
address to compensa~e for the current
partition boundary save area and label area
(if any). Control is then given tO,the
updated entry address of the phase.
Programs that are written using se1f­
relocating techniques can be cataloged as
either self-relocating or non-se1f­
relocating phases.

Rules for writing Self-Relocating Programs

In general, if a problem program is written
to be self-relocating, these rules must be
followed:

1. The PHASE card must specify an origin
of +0.

2. The program must relocate all address
contants used in the program. Whenever
possible, use the LA instruction to
load an addres in a register instead
of using an A-type address constant.
For example,

Instead of Using:

USING
BALR
LA
BCTR
BCTR
LA
ST

L

EOF EOJ

AEOF DC

*,12
12,0
12,0(12)
12,0
12,0
1,EOF
1,AEOF

10,AEOF

A(EOF)

326 DOS/VS Supervisor & I/O Macros

Use:

EOF

USING
BALR
LA
BCTR
BCTR

LA

EOJ

*,12
12,0
12,0(12)
12,0
12,0

10,EOF

3. If logical IOCS is used, the program
must use the OPEHR and CLOSER macro to
open and close all files including
console files.

4. If physical IOCS is used, the program
must relocate all CCW address fields.

5. Register notation must be used with
imperative 1/0 macros and supervisor
macros. An example of coding the GET
macro with a work area in self­
relocating format follows:

RCARDIN
RPRTOUT
RWORK

EQU
EQU
EQU
LA
LA
LA
OPENR

GET

4
5
6
RCARDIN,CARDIN
RPRTOUT,PRTOUT
RWORK,WORK
(RCARDIN),(RPRTOUT)

(RCARDIN),(RWORK)

Note: Since the DTF name can be a
maximum of seven characters, an R can
be prefixed to this name to identify
the file, Thus, RCARDIN in this
example can immediately be associated
with the corresponding DTF name
CARDIN.

6. Use II LBLTYP before II EXEC card.

The following rules apply to programs
consisting of more than one control
section.

7. The relocation factor should be
calculated and stored in a register
for future use. For register economy,
the base register can hold the
relocation factor.

8.

For example:

USING
BALR
LA
BCTR
BCTR

*,12
12,0
12,0(12)
12,0
12,0

Register 12 now cQntains the relocation
factor and the program base.

When branching to an external address,
use one of the following techniques:

L 15,=V(EXTERNAL)
BAL 14,0(12~15)

II JOB A
II OPTION LINK
II EXEC ASSEMBLY
CSECT1 START 0

or

L 15,=V(EXTERNAL)
AR 15,12
BALR 14,15

where register 12 is the base register

9. The calling program is responsible for
relocating all address constants in
the calling list(s). See Figure 0-1 for
an example of the calling program
relocating the address constants in a
calling list.

USING *,12
BALR 12,0

Use load point value as the base to
find the load point value.

LA 12,0(12)
BCTR 12,0
BCTR 12,0

1 ,A
2,B

LA
LA
LA
LA
STM
01
LA

3,C Modify the CALL address constant llst.
4,D
1,4,LIST
LIST+12,X'80' Restore end of list blt In last adcon.
13,SAVEAREA

L 15,=V(EXTERNAL)
AR
CALL

15,12 Adjust CALL address by relocatlng factor.
(15),(A,B,C,D)

LIST EQU
EOJ

*-16 For address constants (4 bytes each).

SAVEAREA DC
END

1* *

9D'0'

II EXEC ASSEMBLY
CSECT2 START 0

ENTRY EXTERNAL
EXTERNAL SAVE (14,12)

USING *,12
BALR 12,0

1* *

RETURN (1 4 , 1 2)
END

II EXEC LNKEDT
1&

Establish new base

Figure D-1. Relocating Address Constants in a Calling List

Appendix D 327

Advantage of Self-Relocating Programs

Self-relocating programs have the ability
to run in anyone of the 5 partitions
without having to be link-edited again.

Another Way -- The Relocating Loader

Self-relocating programs are slightly more
time-consuming to write and they usually
require slightly mpre storage. They may
only be written in as~embler-language. For
these reasons you may want to use the
relocating loader instead. The relocating
loader accomplishes the same thing as
writing self-relocating programs but
without any of these disadvantages. See
the DOS/VS System Management Guide,
GC33-5371, for a description of the
relocating loader.

Programming Techniques

A self-relocating program is capable of
proper execution regardless of where it
is loaded. DTFDI should be used to resolve
the problem of device differences between
partitions. A self-relocating program must
also adjust all its own absolute addresses
to point to the proper address. This must
be done after the program is loaded, and
Defore the absolute addresses are used.

Within these self-relocating programs,
some macros generate self-relocating code.
For example the MPS utility macros are
self-relocating (that is, they modify all
of their own address constants to their
proper values before using them). OPENR
and CLOSER macros are used in self­
relocating programs. OPENR and CLOSER can
be used in place of OPEN and CLOSE, and
adjust all of the address constants in
the DTFs opened and closed. OPENR and
CLOSER can be used in any program because
the OPENR macro computes the amount of
relocation. If relocation is 0, the
standard open is executed. In addition,
all of the module generation (xxMOD)
macros are self-relocating.

The addresses of all address constants
containing relocatable values are listed in
the relocation dictionary in the assembly
listing. This dictionary includes both
those address constants that are modified
by self-relocating macros, and those that
are not. The address constants not

328 DOS/VS Supervisor & I/O Macros

modified by self-relocating macros must
be modified by some other technique. After
the program has been link-edited with a
phase origin of +0, the contents of each
address constant is the displacement from
the begi nni ng of the -phase to the address
pointed to by that address constant.

The following techniques place relocated
absolute addresses in address constants.
These techniques are required only when the
lA instruction cannot be used.

Technique 1

Named A-type address constants:

lA 4,ADCONAME
ST 4,ADCON

ADCON DC A (ADCONM1E)

Technique 2

A-type address constants in the literal
poo.l:

LA 3,=A(ADCONAME)
LA 4,ADCONAME
ST 4,0(3)

lTORG
=A (ADCONM1E)

Technique 3

A-type address constants with a specified
length of three bytes, and a nonzero value
in the adjacent left byte (as in CCWs):

A. If the CCW list dynamically changes
during program execution:

lA 4,IOAREA
STCM 4,X'07' ,TAPECCW

TAPECCW CCW l,IOAREA,X'20' ,100

IOAREA DS Cl100

B. If the CCW list is static during
program execution:

lA
ST
MVI

TAPECCW CCW

10AREA

TAPECCW

IOAREA

DS

USING
BAlR
lA
BCTR
BCTR

l
AlR
ST

CCW

DS

4,IOAREA
4,TAPECCW
TAPECCW,l

1,IOAREA,X ' 20 ' ,100

Cl100

or

12,0(12)
12,0
12,0 Register 12 contains

relocation factor.

11,TAPECCW
11,12
11,TAPECCW

1, I OAREA, X I 20 I ,100

Cl100

Technique 4

Named V-type or A-type address constants:

lA
S

l
AR
ST

ADCONAST DC
ADCON DC

3,ADCONAST
3,ADCONAST

4,ADCON

Determi ne
Relocation
factor

4,3 Add relocation factor
4,ADCON

The load point of the phase is not
synonymous with the relocation factor as
developed in register 3 (technique 4). If
the load point of the phase is taken from
register 0 (or calculated by a BAlR and
subtracting 2) immediately after the
phase is loaded, correct results are
obtained if the phase is link-edited with
an origin of +0. If a phase is link­
edited with an origin of * or S, incorrect
results will follow. This is because the
linkage editor and the program have both
added the load point to all address
constants. Figure D-2 shows an example of
a self-relocating program.

Appendix D 329

SOURCE STATEMENTS
REPRO

PROGRAM

PHASE EXAMPLE,+O
PRINT NOGEN
START 0
BALR 12,0
US I NG ::, 12

ROUTINE TO RELOCATE ADDRESS CONSTANTS
LA l,PRINTCCW
ST l,PRINTCCB+8
LA l,TAPECCW
ST l,TAPECCB+8
IC 2,PRINTCCW
LA 1,OUTAREA
ST l,PRINTCCW
STC 2,PRINTCCW
LA l,lNAREA
ST l,TAPECCW
MVI TAPECCW,READ

+0 ORIGIN IMPLIES SELF-RELOCATION

RELOCATE CCW ADDRESS
IN CCB FOR PRINTER

RELOCATE CCW ADDRESS
IN CCB FOR INPUT TAPE

SAVE PRINT CCW OP CODE
RELOCATE OUTPUT AREA ADDRESS

IN PRINTER CCW
RESTORE PRINT CCW OP CODE
RELOCATE INPUT AREA ADDRESS

IN TAPE CCW
SET TAPE CCW OP CODE TO READ

H MAIN ROUTINE ... READ TAPE AND PRINT RECORDS
READTAPE LA l,TAPECCB

EXCP (1)

CHECK

CHA12

EOFTAPE

PRINTCCB
TAPECCB

PRINTCCW
TAPECCW
OUTAREA
INAREA
SLI
READ
PRINT
SKIPT01

WAIT (1)
LA 10,EOFTAPE
BAL 14,CHECK
MVC OUTAREA(10),INAREA
MVC OUTAREA+15(70),INAREA+10
MVC OUTAREA+90(20),INAREA+80
LA l,PRINTCCB
EXCP (1)
WAIT (1)
LA 10, CHA12
BAL 14,CHECK
B READTAPE
TM 4(1),1
BCR 1,10
BR 14
MVI PRINTCCW,SKIPT01
EXCP (1)
WAIT (1)
MVI PRINTCCW,PRINT
BR 14
EOJ
CNOP 0,4
CCB SYS004,PRINTCCW,X'0400'
CCB SYS001,TAPECCW

CCW PRINT,OUTAREA,SLI,L'OUTAREA
CCW READ,INAREA,SLI,L'INAREA
DC CL110"
DC CL100"
EQU X'20'
EQU 2
EQU 9
EQU X'SB'
END PROGRAM

Figure D-2. Self-Relocating Sample Program

330 DOS/VS Supervisor & I/O Macros

GET CCB ADDRESS
READ ONE RECORD FROM TAPE
WAIT FOR I/O COMPLETION
GET ADDRESS OF TAPE EOF ROUTINE
GO TO UNIT EXCEPTION SUBROUTINE
EDIT RECORD
IN
OUTPUT AREA
GET CCB ADDRESS
PRINT EDITED RECORD
WAIT FOR I/O COMPLETION
GET ADDRESS OF CHAN 12 ROUTINE
GO TO UNIT EXCEPTION SUBROUTINE

CHECK FOR UNIT EXEC. IN CCB
YES-GO TO PROPER ROUTINE
NO-RETURN TO MAINLINE

SET SEEK TO CHAN 1 OP CODE
SEEK TO CHAN 1 IMMEDIATELY
WAIT FOR I/O COMPLETION
SET PRINTER OP CODE TO WRITE
RETURN TO MAINLINE
END OF JOB
ALIGN CCB'S TO FULL WORD

APPENDIX E: MICR DOCUMENT BUFFER FORMAT

Byte Bit

0, o

1

2

3

4

5

6

7

Figure E-l.

Buffer Status Indicators

Comment

The document is ready for processing (you need never test this
bit).

Irrecoverable stacker select error, but all document data is
present. You may continue to issue GETs and READs.

Irrecoverable I/O error. An operator I/O error message is
issued. The file is inoperative and must be closed.

Unit Exception. You requested disengage and all follow-up
documents are processed. The LITE macro may now be issued, and
the next GET or READ engages the device for continued reading.

Intervention required or disengage failure. This buffer contains
no data. The next GET or READ continues normal processing. This
indicator allows your program to give the operator information
necessary to select pockets for documents not properly selected
and to determine unread documents.

The program issued a READ, no document is ready for processing,
byte 0, bits 0-2 are off, or the file is closed (byte 0, bit 6
is on). The CHECK macro interrogates this bit.

Note: You must test bits 1-4 and take appropriate action.
~data from a buffer should not be processed if bits 2,
3, or 4 are on.

The program has issued a GET or READ and the file is closed.
Bit 5 is also on.

Reserved with zero.

MICR Document Buffer Format (Part 1 of 4)

Appendix E 331

Byte

1,

2·,

Bit

o

Buffer Status Indicator (Continued)

Comment

Your stacker selection routine turns this bit on to indicate that
batch numbering update (1419 only) is'to be performed in
conjunction with the stacker selection for this document. The
document is imprinted with the updated batch number unless a late
stacker selection occurs (byte 3, bit 2).

1-7 Reserved with zero.

o

Note: If bits 6 or 7 (byte 2) are on, bit 0 is ignored by the
external interrupt routine. With the 1419 (dual address) only,
batch numbering update cannot be performed with the stacker
selection of auto-selected documents.

For 1419 or 1275 (dual address) only. An auto-select condition
occurred after the termination of a READ command but before a
stacker select command. The document is auto-selected into the
reject pocket.

1-3 Reserved with zero.

4 Data check occurred while reading. You should interrogate byte 3
to determine the error fields.

5 Overrun occurred while reading. Byte 3 snould be interrogated to
determine the error fields. Overruns cause short length data
fields. When the 1419 or 1275 is enabled for fixed-length data
fi~lds, bit 4 is set.

6+7 The specific meanings of bits 6 and 7 depend on the device type,
the model, and the Engineering Change level of the MICR reader,
but if either bit is on, the document(s) concerned is auto­
selected into the reject pocket.

1. 1412 or 1270: Bit 6 on indicates that a late read condition
occurred. Slt 7 on indicates that a document spacing error
occurred. (Unique to the 1270, both the current document and
the previous document are auto-selected into the reject pocket
when this bit is on. This previous document reject cannot be
detected by IOCS, and byte 5 of its document buffer does not
reflect that the reject pocket was selected.)

• Byte 2 (bits' 4, 5, 6, and 7) and byte 3 contain tlICR sense information .
•• Only for the 1259 model 34 or 1419 model 32. Bits 0 and 1 are not used for other

models.

Figure E-l. HICR Document Buffer Format (Part 2 of 4)

332 DOS/VS Supervisor & I/O Macros

Byte

3 -,

Bit

o

Buffer Status Indicators (Continued)

Comment

2. 1275 and 1419 (single address) without engineering change
*125358: Blt 6 lndlcates elther a late read condltlon or a
document spacing error occurred. Bit 7 indicates a document
spacing error for the current document.

3. 1255, 1259, 1275, and 1419 (single or dual address) with
engineering change #125358: Bit 6 indicates that an
auto-select codlntion occurred while reading a document.
The bit is set at the termination of the READ command
before entry into the stacker select routine. Bit 7 is
always zero.

Field 6 valid.--

1 Field 7 valid.--

2 A late stacker selection (unit check late stacker select on the
stacker select command). The document is auto-selected into the
reject pocket.

3 Amount field valid (or field 1 valid).--

4 Process control field valid (or field 2 valid).--

5 Account number field valid (or field 3 valid).--

6 Transit field valid (or field 4 valid).--

7 Serial number field valid (or field 5 valid).--

Note:

1.

')
c.. •

3.

For the 1270, bits 3-7 are set to zero when the fields are
read without error.

For tile 1255,1259,1275, and 1419, bits 3-7 set on \'Ihen
each respective field, including bracket symbols, is
read without error. This applies to bits 0, 1, and 3-7
on the 1259 and 1419 model 32.

For the 1255, 1259, 1275, and 1419, unread fields contain
zero bits. Errors are indicated when an overrun or data
check condition occurs while reading the data field.

- By~e 2 (bits 4, 5, 6, and 7) and byte 3 contain MICR sense information.
-- Only for the 1259 model 34 or 1419 model 32. Bits 0 and 1 are not used for

other models.

Figure E-1. MICR document Buffer Format (Part 3 of 4)

Appendix E 333

Byte Bit

4

5

Buffer Status Indicators (Continued)

Comment

Inserted pocket code determination by your stacker select routine.
Whenever byte 0, bits 2, 3, or 4 are on, this byte is X100 1 because
no document was read and your stacker selection routine was not
entered. Whenever auto-selection occurs, this value is ignored.
A no-op (X ' 03 1) is issued to the device, and a reject pocket value
(X'CF') is placed in byte 5. The pocket codes are: (byte 2, bit 6
or 7 on).

Pocket A. - X'AF ' Pocket 5 - X' 5F '
Pocket B •• -X'BF' Pocket 6 - X' 6F ' Except 1270
Pocket 0 - X'OF ' Pocket 7 - X' 7F ' models 1 and
Pocket 1 - X' 1F ' Pocket B - X'BF '
Pocket 2 - X' 2F ' Pocket 9 - X' 9F '
Pocket 3 - X' 3F ' Reject
Pocket 4 - X' 4F ' Pocket - X'CF '

The actual pocket selected for the document. The contents are
normally the same as that in byte 4.

Note:

1. X'CF' is inserted whenever auto-selection occurs (byte 2,
bit 6; byte 2, bit 7; byte 2, bit 0; or byte 3 bit 2).
These conditions may result from late READ commands,
errant document spacing, or late stacker selection.

a. Start I/O for stacker selection is unsuccessful (byte
0, bit 1).

3

b. An I/O error occurs (for example, invalid pocket code)
on the 1419 (dual address) secondary control unit when
selecting this document.

Additional User Work Areas

This additional buffer area can be used as a work area and/or output area. Its size
is determined by the DTFMR ADDAREA operand. The only size restriction is that this
area, plus the 6-byte status indicators and data portion must not exceed 256 bytes.

Note: This area may be omitted.

Document Data Area

The document data area immediately follows your work area. The data is right-adjusted
in the document data area. The length of this data area is determined by the DTFMR
RECSIZE operand .

• 1275, 1419, and 1270 models 2 and 4 only .
•• 1275 and 1419 only.

Figure E-1. ~lICR Document Buffer Format '(Part 4 of 4)

334 DOS/VS Supervisor & I/O Macros

APPENDIX F: AMERICAN NATIONAL STANDARD CODE FOR IN­

FORMATION INTERCHANGE (ASCII)

In addition to the EBCDIC mode, DOS/VS
accepts magnetic tape files written in
ASCII, a 128-character, 7-bit code. The
high-order bit in this 8-bit environment is
zero. ASCII is based on the specifications
of the American National Standards
Institute, INnc.

DOS/VS processes ASCII files in EBCDIC.
At system generation time, if ASCII=YES is
specified in the SUPVR macro, two translate
tables are included in the supervisor.
Using these tables, logical IOCS translates
from ASCII to EBCDIC as soon as the data is
read into the I/O area. For ASCII output,
logical IOCS translates data from EBCDIC to
ASCII just before writing the record.

Figure F-1 shows the relative bit pOSitions
of the ASCII character set. An ASCII
character is described by its column/row
position in the table. The columns across
the top of Figure F1 list the three high­
order bits. The rows along the left side
of Figure F-1 are the four low-order bits.

For example, the letter P in ASCII is under
column 5 and in row 0 and is described
in ASCII notation as 5/0. ASCII 5/0 and
EBCDIC Xl 50 1 represent the same binary
configuration (B 1 01010000 1

). However,
P graphically represents this configuration
in ASCII and & in EBCDIC. ASCII notation
is always expressed in decimal. For
example, the ASCII Z is expressed 5/10
(not 5/A).

For those EBCDIC characters that have no
direct equivalent in ASCII, the substitute
character (SUB) is provided during
translation, See Figure F-2 for ASCII to
EBCDIC correspondence.

Note: If an EBCDIC file is translated into
1\S"CTI" and then you translate back into
EBCDIC, this substitute character may not
receive the expected value.

Appendix F 335

b7 II 0 0 0 0 1

~
II 0 0 1 1 0

b5 II 0 1 0 1 0

~b b3 b2 bl ~ s t ~ I ~
0 1 2 3 4

Row ~'

0 0 0 0 0 NUL DLE SP 0 @

0 0 0 1 1 SOH DCl !CD 1 A

0 0 1 0 2 STX DC2 " 2 B

0 0 1 1 3 ETX DC3 /I 3 C

0 1 0 0 4 EOT DC4 S 4 D

0 1 0 1 5 ENQ NAK % 5 E

0 1 1 0 6 ACK SYN & 6 F

0 1 1 1 7 BEL ETB I 7 G

1 0 0 0 8 BS CAN (8 H

1 0 0 1 9 HT EM) 9 I

1 0 1 0 10 LF SUB * : J

I 0 I I II VT ESC + ; K

I I 0 0 12 FF FS I < L

1 I 0 I 13 CR GS - = M

I I I 0 14 SO RS > N

I I I 1 15 SI US / ? 0

CD The graphic I (Logical OR) may also be used instead of ! (Exclamation Point).

(]) The graphic -'(Logical NOT) may also be used instead of A (Circumflex).

1 1 1
0 1 1

1 0 1

5 6 7

P '\ P

Q a q

R b r

S c s

T d t

U e u

V f v

W g w

X h x

Y i y

Z i z

[k f
I

\ I I
I

] m ,
I

A@ n ""

- 0 DEL

G) The 7 bit ASCII cade expands to 8 bits when in storage by adding a high order 0 bit.

Example: Pound sign (H) is represented by

b7 b6 b5 b4 b3 b2 bl

o 0 0 0 0

Control Character Representations

NUL Null DLE Data link Escape (CC)
SOH Start of Heading (CC) DCI Device Control I
STX Start of Text (CC) DC2 Device Control 2
ETX End of Text (CC) DC3 Device Control 3
EOT End of Transmission (CC) DC4 Device Control 4
ENQ Enquiry (CC) NAK Negative Acknowledge (CC)
ACK Acknowledge (CC) SYN Synchronous Idle (CC)
BEL Bell ETB End of Transmission Block (CC)
BS Backspace (FE) CAN Cancel
HT Horizontal Tabulation (FE) EM End of Medium
LF Line Feed (FE) SUB Substitute
VT Vertical Tabulation (FE) ESC Escape
FF Form Feed (FE) FS File Separator (IS)
CR Carriage Return (FE) GS Group Separator (IS)
SO Shift Out RS Record Separator (IS)
SI Shift In US Unit Separator (IS)

DEL Delete

(CC) Communication Control
(FE) Format Effector
(IS) Information Separator

Fig u re F-l. ASCII Character Set

336 DOS/VS Supervisor & I/O Macros

Special Graphic Cllaracters

SP Space
Exclamation Point
Logical OR
Quotation Marks

H Number Sign
S Dollar Sign
% Percent
& Ampersand

Apostrophe
Opening Parenthesis
Closing Parenthesis
Asterisk

+ Plus
Comma
Hyphen (Minus)
Periad (Decimal Point)

/ Slant
Colon
Semicolon

< Less Than
Equals

> Greater Than
? Question Mark
&J Commercial At
[Opening Brocket
\ Reverse Slant
] Closing Brocket
/\ Circumflex

Logical NOT
Underline
Grave Accent
Opening Brace
Vertical line (This graphic
is stylized to distinguish it
from Logical OR)
Closing Brace
Tilde

ASCII EBCDIC

I 8it Col : Row 8it
Character Col I Row , Comments

I Position (in He.) Position
I I

I
NUL 0 I 0 0000 I 0000 0 I 0 0000 I 0000
SOH 0 I 1 0000 I 0001 0 I 1 0000 I 0001
STX 0 I 2 0000 I 0010 0

,
2 0000

, ()I)10
ETX 0 I 3 0000 0011 0 3 0000 I 0011
EOT 0 I 4 0000 I 0100 3 I 7 0011 0111
ENQ 0 I 5 0000 I 0101 2 I D 0010 I 1101
ACK 0 6 0000 I 0110 2 I E 0010 I 1110
8El 0 , 7 0000 I 0111 2 I F 0010 I 1111
8S 0 I 8 0000 I 1000 1 I 6 0001 I 0110
HT 0 I 9 0000

, 1001 0 5 0000 0101
IF 0 I 10 0000 1010 2 5 0010 0101
VT 0 I 11 0000 I 1011 0 ~ 8 0000 .~ 1011
FF 0

,
12 0000 I 1100 0 I C 0000 1100

CR 0
,

13 0000 I 1101 0 I D 0000 I 1101
SO 0 14 0000 I 1110 0

,
E 0000 I 1110

SI 0 I 15 0000 I 1111 0 F 0000 I 1111
OLE 1 I 0 0001

,
0000 1 0 0001 I QOO(l

OCI 1 I 1 0001 0001 1 1 0001 0001
OC2 1 I 2 0001 .1 0010 1 I 2 0001 0010
OC3 I 3 0001 -.t 0011 1 I 3 0001 I 0011
OC4 1 4 0001 I 0100 3 I C 0011 I 1100
NAK 1 I 5 0001 I 0101 3 I D 0011 I 1101
SYN 1 I 6 0001

,
0110 3 2 0011 I 0010

ET8 1 I 7 0001 0111 2 6 0010 I 0110
CAN 1 I 8 0001 -'- 1000 1 I 8 0001 1000
EM 1 , 9 0001 I 1001 1 I 9 0001 I 1001
SU8 1 10 0001 I 1010 3 I F 0011 I 1111
ESC 1 11 0001 I 1011 2

,
7 0010 I 0111

FS 1 I 12 0001 I 1100 1
,

C 0001 , 1100
GS 1 I 13 0001 I 1101 1 0 0001

,
1101

RS 1 I 14 0001
,

1110 1 E 0001
,

1110
US 1 I J~ 0001 . 1111 1 L F 0001 J 1111
SP 2 u 0010 I 0000 4 I 0 0100 , 0000
lID 2 1 0010 I 0001 4 I F 0100 I 1111 logical OR
II 2 2 0010 I 0010 7 I F 0111 , 1111 , 2 3 0010 I 0011 7

,
8 0111 I 1011

S 2 .1 " 0010 0100 5 · 8 0101 I 1011
% 2 I 5 0010 0101 6 · C 0110

,
1100

& 2 I 6 0010 0110 5 I 0 0101
.

0000 , 2 I 7 0010 ~ 0111 7 .l 0 0111 I 1101
(2 I 8 0010 I 1000 " I 0 0100 I 1101
1 2 9 0010 I 1001 5 I 0 0101 I 1101 . 2 , 10 0010 I 1010 5 I C 0101 I 1100
+ 2 I 11 0010 I 1011 4 I E 0100 I 1110
-' 2 I 12 0010

,
1100 6 · 8 0110

,
1011

- 2 I 13 0010 1101 6 , 0 0110 . 0000 Hyphen, Minus
2 I 14 0010 '- 1110 4 l 8 0100 I 1011

/ 2
,

15 0010 I 1111 6 I 1 0110 I 0001
0 3 0 0011 I 0000 F I 0 1111 I 0000
I 3 I 1 0011 I 0001 F 1 1111 I 0001
2 3 I 2 0011 I 0010 F 2 1111

,
0010

3 3 I 3 0011 0011 F 3 1111
,

0011
4 3 I 4 0011 0100 F I 4 1111 I 0100
5 3 I 5 0011 I 0101 F I 5 1111 I 0101
6 3 6 0011 I 0110 F I 6 1111 I 0110
7 3 · 7 0011 I 0111 F I 7 1111 I 0111
8 3 8 0011 I 1000 F

,
8 1111 , 1000

9 3 • 9 0011 . 1001 F 9 1111 I 1001
: 3 • 10 0011 I 1010 7 I A 0111 1010
; 3 • 11 0011 .1 1011 5 J. E 0101 I 1110
< 3 · 12 0011 I 1100 4 I C 0100 I 1100
= 3 13 0011 I 1101 7 I E 0111 I 1110
> 3 I 1" 0011 I 1110 6 I E 0110 I 1110
? 3 I 15 0011 I 1111 6 ! F 0110 I 1111

Figure F-2. ASCII to EBCDIC Correspondence (Part 1 of 2)

Appendix F 337

ASCII
,
I Bit

Character Col I Row Pattern
I
1

@ 4 I 0 0100
I
~ 0000

A 4
,

1 0100 I 0001
8 4 1 2 0100 I 0010
C 4 I 3 0100 I 0011
D 4 I 4 0100 I 0100
E 4 I 5 0100 I 0101
F 4 I 6 0100 0110
G 4 J 7 0100 0111
H 4 8 0100 I 1000
I 4 9 0100 I 1001
J 4 I 10 0100 I 1010
K 4 I 11 0100 , 1011 -L 4 I 12 0100

,
1100

M 4 I 13 0100 1 1101
N 4 14 0100 I 1110
0 .. 15 0100 I 1111
P 5 I 0 0101 I 0000
Q 5 I 1 0101 I 0001
R 5 I 2 0101 I 0010
S 5 I 3 0101 0011
T 5 I 4 0101 I 0100
U 5

,
5 0101 I 0101

V 5 6 0101 I 0110
W 5 I 7 0101 I 0111
X 5 I 8 0101 I 1000
Y 5 I 9 0101 ,

1001
Z 5 I 10 0101 1010
[5 1 11 0101 1011

" 5 12 0101 I 1100
J 5 13 0101 I 1101
.... (2) 5 _1 14 0101 I 1110
- 5 I 15 0101 I 1111 ,

6 I 0 0110 0000
a 6 I 1 0110 0001
b 6 2 0110 0010
c 6 3 0110 I 0011
d 6 I .. 0110 I 0100
e 6 I 5 0110 I 0101
f 6 I 6 0110 I 0110
g 6 I 7 0110 0111
h 6 I 8 0110 1000
i 6 9 0110 I 1001
i 6 10 0110 I 1010
k 6 11 0110 I 1011
I 6 I 12 0110 I 1100
m 6 I 13 0110 I 1101
n 6 I 14 0110 1110
0 6 I 15 0110 1111
p 7 0 0111 I 0000
Jt 7 1 0111 I 0001
r 7 I 2 0111 I 0010
s 7 I 3 0111 0011
t 7 I 4 0111 0100
u 7 I 5 0111 0101
v 7 6 0111 I 0110
w 7 7 0111 I 0111
x 7 I 8 0111 I 1000
y 7 I 9 0111 I 1001
z 7 I 10 0111 101,Q
{ 7 , 11 0111 1011
: 7 J 12 0111 I 1100
J 7

, 13 0111 I 1101 - 7 14 0111 I 1110
OEL 7 I 15 0111 I 1111

(]) Th. graphic I (Exclamation Point) can be used instead of I (logical OR).

~ Th. graphic" (Circumflex) can be used instead of -, (logical NOT).

.
Col I Row

I
(in ~ex)

I
C 7

C I 1
C I 2
C I 3
C I 4
C I 5
C 6
C 7
C I 8
C I 9
D I 1
D I 2
D 3
D 4
D I 5
D I 6
D I 7
D I 8
D I 9
E

,
2

E 3
E 1 4
E I 5
E I 6
E I 7
E I 8
E 1 9
4 A
E 0
5 I A
5 I F
6 I D
7

,
9

8 1
8 2
8 I 3
8 I 4
8 I 5
8 I 6
8 7
8 8
8 9
9 I 1
9 I 2
9 I 3
9 I 4
9 5
9 6
9 I 7
9 I 8
9 I 9
A I 2
A I 3
A ..
A 5
A ~ 6
A I 7
A I 8
A I 9
C 0
6 A
D 0
A I 1
0 I 7

Figure F-2. ASCII to EBCDIC Correspondence (Part 2 of 2)

338 DOS/VS Supervisor & I/O Macros

EBCDIC

Bit
Pattern Comments

t
0111 I 1100
1100 I 0001
1100 I 0010
1100 I 0011
1100 I 0100
1100 0101
1100 0110
1100 I 0111
1100 I 1000
1100 I 1001
1101 I 0001
1101 I 0010
1101 0011
1101 0100
1101 0101
1101 I 0110
1101 I 0111
1101 I 1000
1101 1001
1110 0010
1110 0011
1110 I 0100
1110 I 0101
1110 I 0110
1110 I 0111
1110

,
1000

1110 1001
0100 I 1010
1110 I 0000 Revene Slant
0101 I 1010
0101 I 1111 Loaical NOT
0110 I 1101 Undencore
0111 1001 Grave Accent
1000 0001
1000 1 0010
1000 I 0011
1000 I 0100
1000 I 0101
1000

,
0110

1000 1 0111
1000 1 1000
1000 I 1001
1001 I 0001
1001 I OOJ9_
1001 I 0011
1001 , 0100
1001 0101
1001 I 0110
1001 I 0111
1001 I 1000
1001 I 1001
1010 I 0010
1010

, 0011
1010 0100
1010 I 0101
1010 I 0110
1010 I 0111
1010 I 1000
1010 1001
1100 ()(IQO-
0110 I 1C 10 Vertical lin.
1101 I OC 100
1010 I 0001 Tild.
0000 I 0111

APPENDIX G: PAGE FAULT HANDLING OVERLAP

For some special types of processing,
DOS/VS users often choose to write programs
which, while executing as one DOS/VS user
task, provide for the asynchronous
processing of several tasks. This multi­
tasking, which is not to be confused with
DOS/VS multitasking, is generally used
only in very sophisticated applications
where no other technique would give
acceptable performance.

This type of asynchronous proce5sing
(called 'private multitasking') is not
supported by IBM and therefore is not
documented as such. DOS/VS' does, however,
provide one tool which aids the programmer
doing private multitasking. This is the
ability to overlap the handling of a page
fault in one private subtask with the
processing of another private subtask.

If support is included in the supervisor
(PHO=YES in the SUPVR macro), the user may
set up an appendage routine which is to be
entered whenever his DOS/VS task causes a
page fault. This appendage routine acts as
a 'dispatcher ' for the private subtasks
originating in the same DOS/VS task. The
routine is called by the DOS/VS supervisor
whenever the DOS/VS task causes a page
fault and whenever a page fault has just
been handled for that task.

The DOS/VS task is not put into the wait
state when it causes a page fault as is
usually the case, but remains dispatchable.

The linkage to the appendage is
established by issuing a SETPFA macro. In
addition, the appendage routine must not
cause a page fault and therefore must be
fixed in real storage using the PFIX
macro before the SETPFA macro is issued.
The appendage routine is given control
in the supervisor state, with I/O inter­
rupts disabled, and with protection key
zero. Following is a description of the
conventions observed by page fault
appendages in DOS/VS as well as suggestions
how an appendage should be set up.

REGISTER USAGE

The following registers are used to pass
information between the supervisor and the
page fault appendage:

• Register 7 contains the return address
to the supervisor.

• Regist~r 8 contains the address of the
appendage routine, and can therefore be
used as the base register of the
routine.

• Register 13 contains a parameter with
information about the page fault to be
handled. The information in register 13
has the following format:

TIK Flags I address of page I PIK

0 1 2 3

Byte 0: TIK Task interrupt key of
interrupt task

Flags = used by the system.

Bytes 1-2: leftmost 16 bits of the address
of the page which has to be
handled. The remaining
(rightmost) 8 bits of the
address are considered to be
zero.

Byte 3: PIK of requesting task

ENTRY LINKAGE

The entry coding for the appendage should
be as follows:

USING *,8 USE REGISTER 8 AS BASE REGISTER
B entry A ENTRY POINT AFTER PAGE FAULT

B entry B ENTRY POINT AFTER PAGE FAULT COMPLETION

The name specified in label is the entry
point of the routine specified in the
SETPFA macro. The branch to entry A is
taken whenever the task causes a page fault
and the branch to entry B is taken whenever
a page fault for the task has been handled.

PAGE FAULT QUEUE

The appendage must have a queue with a
four-byte entry for each private subtask
controlled by that DOS/VS task. This queue
is used to store the page fault information
passed in register 13.

Appendix G 339

PROCESSING AT THE INITIATION OF A PAGE
FAULT

When the routine is entered at entry A,
register 13 contains information on the
page fault which has just occurred. The
appendage must store the contents of
register 13 in the internal page fault
queue, put the private subtask causing
the page fault into an internal wait
state, and, if possible, dispatch
another private subtask.

In addition, the appendage routine must
store (1) the contents of the save area
of the DOS/VS task in the save area of the
private subtask which is being deactivated
and (2) the contents of the private subtask
to be activated in the save area of the
DOS/VS task. If no private subtask is
dispatchable it is the responsibility of
the appendage routine to change the
contents of the task save area so that the
t~sk will not continue to cause the same
page fault each time it is dispatched.
A possible solution is to dispatch a private
task which does nothing but wait for a page
fault to be handled.

page fault
(PFR4)

The routine must then return control to the
supervisor and pass a parameter in register
13. The parameter must either be zero, to
indicate that a page fault request is
pending for the DOS/VS task, or if no
request is pending, the parameter must be
the same as was passed to the appendage
r 0 uti new hen i twa s .. c a 11 e d .

PROCESSING AT THE COMPLETION OF A PAGE
FAULT

Whenever a page ·faul t request has been
handled for the DOS/VS task, control is
passed to entry B. The appendage routine
dequeues the request which has just been
handled from the internal page fault queue
and posts the private subtask which caused
the page fault. If there are any more page
faults requests in the queue, the
information for the next request to be
handled must be returned in register 13,
otherwise register 13 must contain zero.

Figure G-1 is an example of how page
faults are handled when the task causing
the page faults has set up a page fault
appendage.

DOS
dispatcher

5
U
P
E
R
V
I

system page
Page Fault Handler
(request PFR4 is not enqueued
to system queue)

fault queue Page Manager
••••• ~. get PF~l from queue

• transfer cantrol to entry B
when PFRl has been handled 5

o
occupied by {
other DOS IIII!!!=;;....~ ..

R

A
R
E
A

P
A
R
T
I
T
I
o
N

o ... c
·2
S
u

M

tasks '-::::;--';;::l1li
enqueues PFR2 to system
queue at locatian d PFRl

page fault request
PFR4 is transferred
to appendage routine
in register 13

Entry ~ of page fault
appen age routine

set "private" subtask that
caused PFR4 to internal
wait state

internal page
fault queue

~ of page fault
CifijieriCfage routine

• past "private" subtask
that caused PFR1

•• lIIiIiiii •• W. dequeue PFR1 from internal
aetive another "private"
subtask queue

~ •• ; •• t~~jr •••• ~. load register 13 with PFR2 • enqueue PFR4 to internal from internal queue
...... _pa_ge_f_au_l_t _q ... ue_u_e ___ • return via register 7

• return via register 7

Assumptians: • Sequence d page fault requests to be handled is PFR 1, 2, 3, 4 •
• During handling d PFR1 3 other page fault requests have been caused by the same DOS/VS task

Figure G-l. Page Fault Handling Overlap

340 DOS/VS Supervisor & I/O Macros

APPENDIX H: OPERAND NOTATION FOR VSAM GENeD, MODeD,
SHoweD, AND TESTeD MACROS

The addresses, names, numbers, and options required with operands in
GENCB, MODCB, SHOWCB, and TESTCB'can be expressed in a veriety of ways:

• An absolute numeric expression, for example, COPIES=10

• A character string, for example, DDNAME=DATASET

• A code or a list of codes separated by commas and enclosed in
parentheses, for example, OPTCD=KEY or OPTCD=(KEY,DIR,IN)

• An expression valid for a relocatable A-type address constant,
for example, AREA=MYAREA+4

• A register from 2 through 12 that contains an address or numeric
value, for example SYNAD=(3); equated labels can be used to
designate a register, for example, SYNAD=(ERR). where the
following equate statement has been included in the program: ERR EQU 3

• An expression of the form (S.scon). where scon is any expression
valid for an S-type address constant, including the base­
displacement form

• An expression of the form (.scon). where scon is any expression
valid for an S-type address constant. including the base-displacement
form; the address specified by scon is indirect. that is, it
points to the location that contains the value of the keyword

If an indirect S-type address constant is used. the value it pOints to
must meet the following criteria:

• If it is a numeric quantity, a bit string representing codes. or a
pointer. it must occupy a fullword of storage.

• If it is an alphameric character string. it must occupy two words of
storage. be left aligned, and be filled on the right with blanks.

The expressions that can be used depend on the keyword specified.
Additionally. register and S-type address constants cannot be used
when MF=L is specified.

Appendix H 341

GENCB MACRO OPERANDS

Indirect
Absolute Character S-Type S-Type A-Type
Numeric Code String Register Address Address Address

GENCB Keywords

BLK X
COPIES v X X X .'
LENGTH X X X X
WAREA X X X X

ACB Keywords (BLK=ACB)

BUFND X X X X
BUFNI X X X X
BUFSP X X X X
DDNAME X X
EXLST X X X X
MACRF X I PASSWD X X X X
STRNO X X X X

EXLST Keywords (BLK=EXLST)

f
EO DAD X X X X
EXCPAD X X X X
LERAD X X X X
SYNAD X X X X

RPL Keywords (BLK",RPL)

ACB X X X X
AREA X X X X
AREAL EN X X X X
ARG X X X X I KEYLEN X X X X
NXTRPL X X X X
OPTOD X
RECLEN X X X X

342 DOS/VS Supervisor & I/O Macros

MODCB MACRO OPERANDS

Indirect
Absolute Character S-Type S-Type A-Type
Numeric Code String Register Address Address Address

MODCB Keyword

{ACBI EXLSTI RPL}

ACB Keywords

BUFND X
BUFNI X
BUFSP X
DDNAME
EXLST
MACRF
PASSWD
STRNO X

EXLST Keywords

EODAD
EXCPAD
LERAD
SVNAD

RPL Keywords

ACB
AREA
AREALEN X
ARG
KEYLEN X
NXTRPL
OPTCD
RECLEN X

SHOWCB MACRO OPERANDS

Absolute
Numeric

{ABCI EXLSTI RPL}
AREA
FIELDS
LENGTH X
OBJECT

X

X

X

Character
Code String

X

X

x x x x

X X X
X X X
X X X

X
X X X X

X X X X
X X X

X X X X
X X X X
X X X X
X X X X

X X X X
X X X X
X X X
X X X X
X X X
X X X X

X X X

Indirect
S-Type S-Type A-Type

Register Address Address Address

X X X X
X X X X

X X X

Appendix H 343

TESTCB MACRO OPERANDS

Indirect
Absolute Character S-Type S-Type A-Type
Numeric Code String Register Address Address Address

TESTCB Ke,z::words

{ABC I EXLST I RPL} X X X X
ERET X X X X
OBJECT X

ACB Keywords

ACBLEN X X X X
ATRB X
AVSPAC X X X X
BuFND X X X X
BUFNI X X X X
BUFNO X X X X
BUFSP X X X X
CINV X X X X
DDNAME X X
ERROR X X X X
EXLST X X X X
FS X X X X
KEYLEN X X X X
LRECL X X X X
MACRF X
NCIS X X X X
NDELR X X X X
NEXCP X X X X
NEXT X X X X
NINSR X X X X
NIXL X X X X
NLOGR X X X X
NRETR X X X X
NSSS X X X X
I~UPUR X X X X
OF LAGS X
PASSWD X X X X
RKP X X X X
STMST X
STRNO X X X X

EXLST Keywords

EODAD X X X X
EXCPAD X X X X
EXLLEN X X X X
LERAD X X X X
SYNAD X X X X

RPL Ke,z::words

ACB X X X X
AREA X X X X
AREAL EN X X X X
ARG X X X X
FDBK X X X X
KEY LEN X X X X
NXTRPL X X X X
OPTCD X
RBA X X X X
RECLEN X X X X
RPLLEN X X X X

344 DOS/VS Supervisor & I/O Macros

APPENDIX I: PARAMETER LISTS FOR VSAM GENCD, MODCD,

SHOWCD, AND TESTCD MACROS

The VSAM macros for generating, modifying,
displaying, and testing an access-method
control block, exit list, or request
parameter list use an internal parameter
list to describe the actions that you
specify when you code the macros. The
standard form of these macros builds a
parameter list in-line and processes it;
the list form builds a parameter list in
an area specified by the user; the execute
form processes a previously built parameter
list; the generate form builds a parameter
list in an area specified by the user
and also processes it.

For special purposes, such as developing
high-level programming languages, you may
want to build and process parameter lists
without using the macros. This appendix
describes the format of the parameter lists
and gives the codes used for the operands
of ~ach of the macros. The formats and
codes are fixed, so that you can build and
alter them by your own methods.

A parameter list contains a variable
number of entries of three types:

1.

2.

3.

At the beginning of the list, addresses
of entries of the second and thlrd
types; the addresses are fullwords, and
the high-order bit of the.last fullword
is 1.

Next, a header e~tth containing general
informatlon abou e block or list
that you want to generate, modify,
display, or test.

At the end of the list, keyword entries
describing each field that you want to
generate, modify, display, or test.

Entries of the second ~nd third types are
described separately for GENCB, MODCB.
SHOWCB, and TESTCB.

Appendix I 345

THE GENeB PARAMETER LIST

The Header Entry

o block X' 01 1 number of copies
or 1 i s t 1

4 address of the area
you are providing, or Os

8 length of the (reserved)
area, or Os

1 X'AO ' indicates access-method control
block (ACB)

X'BO ' indicates exit list (EXLST)
X'C0 1 indicates request parameter list

(RPL)

Keyword Entries

The parameter list for GENCB contains no
keyword e~tries if you are generating a
default ACB, Exit List, or RPL.

o

4

8

keyword code t I (reserved)

{valuel addressloption2 1 name}
of the keyword

(required for some keywords')

S ACB
"S"UrND AL2(4)
BUFNI 5
BUFSP 7
DDNAr4E 9
EXLST 12
MACRF 18
PASSWD 30

ISTRNO 32

EXLST
"E:OITAIT AL2(37)

IEXCPAD 38
LERAD 40
SYNAD 41

346 DOS/VS Supervisor & I/O Macros

RPL
Arr
AREA
AREALEN
ARG
KEY LEN

I NXTRPL
OPTCD
RECLEN

AL2(43)
44
45
46
48
51
52
53

a You indicate the options for MACRF and
OPTCD with a 1 in a bit of the fullword:

MACRF Option bit
KEY lr
ADR 1
CNV 2
SEQ 3
SKP 4
DIR 5
IN 6
OUT 7
NUB 8
UBF 9

OPTeD Uption Bit
KEY 0""
ADR 1
CNV 2
SEQ 3
DIR 4
SKP 5
NUP 8
UPD 9
NSP 10
KEQ 11
KGE 12
FKS 13
GEN 14
MVE 15
LOC 16

, The third fullword is required for the
ACB operand DDNAME and for all of the
EXLST operands, for which the third
fullword indicates [,{AIN}] [,L]:

Bit Meaning when set to 1
o Addres is active (A)
1 Address is not active (N)
2 Address is of a field containing

the name of an exit routine to be
loaded (L)

3 Address is specified in the
preceding fullword of this entry

4-31 Unused

An entry for any of the other operands is 8
bytes long.

THE MODCB PARAMETER LIST

The Header Entry

o block X' 02 1 (reserved)
or 1 is t 1

4 address of the block or
list to be modified

J X'AO ' indicates access-method control
block (ACB)

X'BO ' indicates exit list (EXLST)
X1C0 1 indicates request parameter list

(RPL)

Keyword f;ntries

o
4

8

1

keyword code1 I (reserved)

{val uel addressl optiona I name}
of the keyword

(required for some keywords ll
)

ACB
BiJFND AL2(4)
BUFNI 5
BUFSP 7
DDNAME 9
EXLST 12
MACRF 18 I PASSWD 30
STRNO 32

EXLST
rorrJm AL2(37)

IEXCPAD 38
LERAD 40
SYNAD 41

RPL
~ AL2(43)
AREA 44
AREALEN 45
ARG 46 I KEYLEN 48
NXTRPL 51
OPTCD 52
RECLEN 53

'You indicate the options for MACRF and
OPTCD with a 1 in a bit of the fullword:

MACRF Option Bit
KEV -U-
ADR 1
CNV 2
SEQ 3
SKP 4
DIR 5
IN 6
OUT 7
NUB 8
UBF 9

OPTCD Option Bit
KEY --0--
ADR 1
CNV 2
SEQ 3
DIR 4
SKP 5
NUB 8
UPD 9
NSP 10
KEQ 11
KGE 12
FKS 13
GEN 14
MVE 15
LOC 16

With the MODeB macro, there are no
defaults for these options. When you
code a bit for the OPTeD operand, the
contrary bit that was previously set
is turned off. For example, if KEY
was previously set, and you set ADR,
KEY is turned off, since a request
parameter list can be set for only
one type of access.

3 The third fullword is required for the
ACB operand DDNAME and for all of the
EXLST operands, for which the third
fullword indicates [,(AltO] [,L]:

Bit Meaning when set to 1
o Address is active (A)
1 Address is not actlve (N)
2 Address is of a field containing

the name of an exit routine to be
loaded (L)

3 Address is specified in the
preceding fullword of this entry

4-31 Unused

An entry for any of the other operands is
8 bytes long.

Appendix I 347

THE SHOWCB PARAMETER LIST

The Header Entry

o block I X' 03 1 1 type of object
or list1 to be displayed

4 address of the block or
list to be displayed

8 address of the display
area you are providing

12 length of the (reserved)
dis play a re a

1 X'OO I indicates that no block or list is
specified, to display the standard
length of the block(s) or list(s)
specified by'the keyword ACBLEN,
EXLLEN, or RPLLEN

X'AO ' indicates ACB
X'BO ' indicates Exit List
X1C0 1 indicates RPL

AL2(O) indicates the data of a file
AL2(1) indicates the index of a file

348 DOS/VS Supervisor & I/O Macros

Keyword Entries

0 keyword code1. (reserved)

1- ACB
ACBLEN AL2(3)
AVSPAC 2
BUFND 4
BUFNl 5
BUFNO 6
BUFSP 7
CINV 8
UDNAME 9
ERROR 11
EXLST 12
FS 13
KEYLEN 16
LRECL 17
NClS 19
NDELR 20
NEXCP 21
NEXT 22
NlNSR 23
NlXL 24
NLOGR 25
NRETR 26
NSSS 27
NUPDR 28
PASSWD 30
RKP 31 I STMST 35
STRNO 32

EXLST
EODAD AL2(37) I EXCPAD 38
EXLLEN 42
LERAD 40
SYNAD 41

RPL
ACB AL2(43)
AREA 44
AREALEN 45
ARG 46
FDBK 56 I KEYLEN 48
NXTRPL 51
RBA 57
RECLEN 53
RPLLEN 55

THE TESTCB PARAMETER LIST

The Header Entry

block X' 04 1 type of object
or list1 to be tested

o

4 address of the block or
list to be tested

8 address of the routin& to return
to for uneq ua 1 comparisons, or Os

12 (reserved)

t X10QI indicates that no block or list
is specified, to test the
$tandard length of the block(s)
or list(s) specified by the
operand ACBLEH, EXLLEN, or RPLLEN

X'AO ' indicates ACB
X'BO ' indicates Exit List
X1C0 1 indicates RPL

AL2(0) indicates the data of a file
AL2(1) indicates the index of a file

Keyword Entries

o
4

8

keyword code 1 I (reserved)

{valueladdressloptio n2 Inamelcode 3 }

of the keyword

(required for some keywords~)

:1 ACB
l\CB"LEN
ATRB
AVSPAC
BUFND
BUFNl
BUFNO
BUFSP
ClNV
DDNAME
ERROR
EXLST
FS
KEYLEN
LRECL
MACRF
NClS
NDELR
NEXCP
NEXT
N I NS R
NlXL
NLOGR
NRETR
NSSS
NUPDR
OFLAGS
PASSWD
RKP

I
s TMS T
STRNO

AL2(3)
1
2
4
5
6
7
8
9

11
12
13
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
35
32

z

EXLST
rooAIJ I EXCPAD
EXLLEN
LERAD
SYNAD

RPL
ill
AREA
AREALEN
ARG
FDBK

I
KEYLEN
NXTRPL
OPTCD
RBA
RECLEN
RPLLEN

ALD2(37)
38
42
40
41

ALD2(43)
44
45
46
56
48
51
52
57
53
55

You indicate the options
OFLAGS, and OPTCD by a 1
fullword:

ATRB Oe tion Bit
KSDS -0-

ESDS 1
WCK 2
SSWD 3
REPL 4

MACRF O~tion Bit
KEY -0-
ADR 1
CNV 2
SEQ 3
SKP 4
DIR 5
IN 6
OUT 7
UPD 8

OFLAGS O~tion Bit
OPEN LJ

OPTeD °e tion Bit
KEY -0-
ADR 1
CNV 2
SEQ 3
DlR 4
SKP 5
NUP 8
UPD 9
NSP 10
KEQ 11
KGE 12
FKS 13
GEN 14
r4VE 15
LOC 16

for ATRB, MACRF,
in a bit of the

Appendix I 349

3 The codes for ERROR are given in the
section IIOpening and Closing Files ll in
the VSAM chapter. The codes for FDBK are
given in the section IIRequesting Access to
Files ll in the VSAM chapter.

~ The third fullword is required for the
ACB operands DDNAME and STMST and for
all of the EXLST operands, for which the
thi rd fullword i ndi cates [, {A IN}] [,L] :

350 DOS/V~ Supervisor & I/O Macros

Bit Meaning when set to 1
-U- Address 1S actlve (A)

1 Addres is not a~tive (N)
2 Address is of a field containing

the name of an exit routine to be
loaded (L)

3 Address is specified in the
preceding fullword of this entry

4-31 Unused

An entry for any of the other operands is
8 bytes long.

APPENDIX J: USING ISAM PROGRAMS WITH VSAM FILES

The ISAM Interface Program (lIP) permits
ISAM programs to process VSAM files. ISAM
programs do not have to be reassembled or
relinkedited to use the lIP. Also, both
ISAM and VSAM files, through the lIP, can
be processed concurrently.

To use the lIP, you must convert your ISAM
files to VSAM files and the job control
statements of your ISAM program to VSAM job
control statements. You must also ensure
that ISAM programs meet certain restrictions
for using the lIP. See the DOS/VS Data
Management Guide, GC33-5372 for lnformation
on converting files and job control
statements and on lIP restrict10ns.

You do not have to make any changes in the
DTFIS to use ISAM programs with the lIP.
The following DTFIS parameters are used by
the lIP; all other parameters are ignored:

• ERREXT=YES
(See Figure J-1 for a description of
the ERREXT parameter list with lIP.)

• 10AREA=name
(used when 10ROUT=LOAD)

• 10AREAS=name
(used if SETL BOF is issued)

• IOREG=(r)
• 10ROUT= LOAD ADD RETRVE ADDRTR
• KEYARG=name
• RECFORM= FIXUNB FIXBLK
• WORKL=name
• WORKR=name
• WORKS=YES

The lIP interprets the error return codes
from VSAM. If the VSAM condition corres­
ponds to an ISAM condition, the respective
bit in the filenameC byte in the DTFIS is
posted. For unrecoverable errors that
cannot be posted in the filenameC byte, a
message is printed on the console, the
VSAM file is closed (by the VSAM close
routine), and the task is terminated.

If an I/O error occurs and ERREXT=YES is
specified in the DTFIS, the lIP posts
additional error information in the ERREXT
parameter list. Figure J-1 shows the format
of the ERREXT parameter list, and Figures
J-2 and J-3 show the formats of the filenameC
byte for ISAM processing through the lIP.

Bytes Contents

0-3 DTF address

4-7 Not supported by the lIP

8 .. 15 Not supported by the lIP

16 :
Bit 0 Data
Bit 1 VSMI Sequence Set
Btt 2 VSMl I ndex Set
Bits 3 .. 5 Not used
Bit 6 Read operati9n
Bit 7 Write operation

17 Not supported by the lIP

Figure J-l. ERREXT Parameter List for ISAM
Programs with the lIP

Bit C a use i n I S A~' Cause in IIP/VSAM

0 DASD error DASD error

1 Wrong length Not set
record

2 End of file End of fil e

3 No record found No record found

4 Illegal 10 Not supported by lIP
specified

5 Duplicate record Duplicate record

6 Overflow area No more VSAM data
full space available

7 Overflow Not set

Figure J-2. FilenameC with lIP when
IOROUT=ADD, RETRVE, or ADDRTR

Appendix J 351

Bit C a use i n I SA~1 Cause in -I IP/VSAt·1

0

1

2

3

4

5

6

7

DASD error DASD error

Wrong 1 ength Not set
record

Prime data area No more VSA~l data
full space

Cylinder index No more VSAf.1 data
area full space

r~ a s t e r i n de x No more VSA~l dat,
full space

Duplicate record Duplicate record

Sequence check Sequence check

Prime data area Uot set
overflow

If there is no more VSAM data space, all
three bits are set.

Figure J-3. FilenameC with rIP when
IOROUT=LOAD

352 DOS/VS Supervisor & I/O Macros

GLOSSARY

This glossary defines most of the terms used in this
book. For a more complete list of data processing
terms, refer to IBM Data Processing Glossary,
GC20-1699.

access method: Any of the data management tech­
niques (sequential, direct, indexed sequential, or
virtual storage) available for transferring data
between virtual storage and an input/output de­
vice.

ASCII (American National Standard Code for In­
formation Interchange): A 128-character, 7-bit
code. The high order bit in the System/370 8-bit
environment is zero.

associated fHe: A file for one function used in asso­
ciation with another file for another function to be
performed in the same set of cards on a 2560,
3525, or 5425 card device. For example, with
three associated files the same set of cards could be
read and punched and printed. A file definition
must be given for each associated file. Not
synonymous with combined file.

Basic Telecommunications Access Method (BTAM):
A basic access method that permits a
READ /WRITE communication with remote de­
vices.

block:
1. To group records physically for the purpose of

saving storage space or increasing the efficiency
of access or processing.

2. A physical record on magnetic tape or DASD.

block prefix: An optional, 0-99 byte field preceding
an ASCII record on magnetic tape. It contains data
which you specify or, for variable length ASCII
records, the physical record length. I

buffer:
1. A storage device in which data is assembled

temporarily during data transfer. An example is
the 2821 control unit, a control and buffer
storage unit for card readers, card punches, and
printers.

2. During I/O operations, a portion of virtual
storage into which data is read or from which
data is written. ~ynonymous with I/O area.

CCB: See command control block

CCW: See channel command word

channel command word (CCW): A double word at
the location in virtual storage specified by the
channel address word. One or more CCWs make
up the channel program.

channel program: One or more channel command
words (CCWs) that control(s) a specific sequence
of channel operations. Execution of the specific
sequence is initiated by a single SIO machine in­
struction.

checkpoint record: A record containing the status of
the job and of the system at the time the check­
point routine writes the record. This record pro­
vides the necessary information for restarting a job
without returning to the beginning of the job.

checkpoint/restart: A means of restarting execution
of a program at some point other thim the begin­
ning. When a checkpoint macro is issued in a pro­
gram, checkpoint records are created. These re­
cords contain the status of the job and the system.
When it is desired to restart a program at a point
other than the beginning, the restart procedure uses
the checkpoint records to reinitialize the system.

checkpoint routine: A routine that r.ecords informa­
tion for a checkpoint.

combined fHe: A single file on the 1442, 2520, or
2540 card device which both reads and punches
the same set of cards. Not synonymous with
associated file.

command control block (CCB): A 16-byte field re­
quired for each channel program executed by phys­
icaiIOCS. This field is used for communication
between physical IOCS and the program.

communication region: An area of the supervisor set
aside for interprogram and intraprogram communi­
cation. It contains information useful to both the
supervisor and your program.

control program: A group of programs that provides
functions such as the handling of input/output op­
erations, error detection and recovery, program
loading, and co~munication between the prograrp.
and the operator.' IPL, supervisor, and job control
make up the control program in DOS/VS.

Glossary 353

control section: The smallest separately relocatable
unit of a program; that portion of code which you
specify to be an entity, all elements of which are to
be loaded into contiguous virtual storage locations.

data conversion: The process of changing data from
one form of representation to another.

data set security: A feature that provides protection
for disk files. A secured file cannot be accidentally
accessed by a program.

device independence: The capability of a program to
process the same type of data on devices (printers,
magnetic tape, or disk).

DTF {define the file} macro: A macro used for all
access methods except VSAM to describe the char­
acteristics of an input/output file, indicate the type
of processing for the file, and specify the virtual
storage areas and routines to be used in processing
the file. These things are described using the ap­
propriate parameters in the keyword operands of
the DTF macro.

dump: To display the contents of virtual storage.

extent: A contiguous space on a direct access stor­
age device occupied by, or reserved for, a particu­
lar file.

fetch:
1. To bring a program phase into virtual storage

from a core image library for immediate execu­
tion.

2. The routine that retrieves requested phases and
loads them into virtual storage,

3. The name of a macro (FETCH) used to trans­
fer control to the system loader.

4. To transfer control to the system loader.

f"tle:
1. The major unit of physical data, consisting of a

collection of physical records in one of several
prescribed arrangements and described by con­
trol information to which the system has ac­
cess. For example, a deck of cards containing
payroll data (one record for each employee
describing his rate of pay, deductions, etc.), or
a disk extent containing inventory information
(one block for each inventory item describing
the cost, selling price, number in stock, etc.).

2. A representation within a program of the logi­
cal characteristics of a file as defined in defini­
tion 1, above. The representation is achieved
by a DTF macro or by an ACB, EXLST, and
RPL macro. A given file within a program can-

354 DOS/VS Supervisor & I/O Macros

not represent any physical file which has the
same logical characteristics.

f"txed length record: A record having the same
length as all other records with which it is logically
or physically associated.

header label: A file label that precedes the data
records on a unit of recording media.

I/O area: A portion of storage into which data is
read or from which data is written. I/O means
Input/ Output. I/O area is synonymous with buffer
(definition 2).

IOCS (input/output control system): A group of
macros and the routines which process them pro­
vided by IBM for handling the transfer of data
between virtual storage and external storage de­
vices.

load: To read a phase into virtual storage, returning
control to the calling phase.

load point: The beginning of the recording area on
a reel of magnetic tape.

logic module: The logical IOCS routine that pro­
vides an interface between a processing program
and physical IOCS.

logical file: See file, definition 2.

logical record: A record identified from the stand­
point of its content, function, and use rather than
its physical attributes; that is, one which is mean­
ingful with respect to a program. (Contrasted with
physical record).

macro: A single assembler language instruction
which is equivalent to a sequence of assembler
language instructions. Thus when you specify one
macro, the assembler generates a number of assem­
bler language instruction.

macro definition: A set of statements which defines
the name of, format of, and conditions for generat­
ing a sequence of assembler language instructions
from a single source instruction.

macro system: The method by which macros are
coded and by which the assembler program ana­
lyzes the macros and generates the appropriate
sequence of assembler language instructions.

main task: The main program within a partition in a
multiprogramming environment. (Compare with
subtask).

MPS: See multiprogramming system.

multi-rde volume: A unit of recording media, such
as a magnetic tape reel or disk pack, that contains
more than one file.

multiprogramming: A technique whereby two or
more problem programs may execute concurrently
in one computer, sharing system resources between
them.

multitasking: A technique whereby one or more
subtasks, attached to a main task within one parti­
tion, can execute concurrently.

multi-volume file: A file which, due to its size, re­
quires more than one unit of recording media (such
as magnetic tape reel or a disk pack) to contain the
entire file.

nonstandard labels: Labels that do not conform to
the System/370 standard label conventions. They
can be any length, need not have a specified identi­
fication, and do not have a fixed format.

operating system: A collection of programs that
enables a data processing system to supervise its
own operations, automatically calling in programs,
routines, language processors, and data as needed
for continuous throughput of a series of jobs.

phase: The smallest complete unit that can be ref­
erenced in a core image library. Each program
overlay is a complete phase. If the program has no
overlays, the program itself is a complete phase.

physical file: See file, definition 1.

physical record: A record identified from the stand­
point of the manner or form in which it is stored
and retrieved; that is, one that is meaningful with
respect to access. (Contrasted with logical record).

private Hbrary: A relocatable, core image, or source
statement library that is separate and distinct from
the corresponding system library.

problem program:
1. Your object program. It can be produced by

any of the language translators. It consists of
instructions and data necessary to solve your
data-processing problem or to achieve a certain
result.

2. A general term for any routine that is executed
in the data processing system's problem state;
that is, any routine that does not contain privi­
leged operations. (Contrasted with supervisor).

processing program: A general term for any pro­
gram that is both loaded and supervised by the
control program. This includes IBM -supplied pro­
grams such as language processors, linkage editor,
librarian, sort/merge, and utilities, as well as pro­
grams which you supply. The term processing pro­
gram is in contrast to the term control program.

real address area: The area of virtual storage where
virtual addresses are equal to real addresses.

real partition: A division of the real address area of
virtual storage that may be allocated for programs
that are not to be paged, or programs that contain
pages that are to be fixed.

real storage: The storage of a System/370 comput­
ing system from which the central processing unit
can directly obtain instructions and data, and to
which it can directly return results.

record: A general term for any unit of data that is
distinct from all others when considered in a partic­
ular context.

reenterable: The attribute of a set of code that al­
lows the same copy of the set of code to be used
concurrently by two or more tasks.

relocatable: The attribute of a module, control sec­
tion, or phase whose address constants can be
modified to compensate for a change in origin.

relocatable program: A program that can be loaded
into any area of virtual storage by the loader of a
supervisor with relocating load support.

resource: Any facility of the computing or operat­
ing system required by a job or task. This includes
virtual storage, input/output devices, the central
processing unit, files, and control and processing
programs.

restart: See checkpoint/restart.

self-relocating: A routine that is loaded at any dou­
bleword boundary in the problem program area and
can adjust its address values so as to be executed
at that location.

self-relocating program: A program that can be
loaded into any area in the problem program area
of storage by having an initialization routine to
modify all address constants at object time.

shared virtual area: An area located in the highest

Glossary 355

addresses of virtual storage. It can contain a sys­
tem directory list of highly used phases and resi­
dent programs that can be shared between parti­
tions.

storage: The term as used in this book is synony­
mous with virtual storage. See virtual storage.

subset module: A logic module which is a subset or
component of a superset module.

subtask: A task in which control is initiated by a
main task by means of a macro that attaches it.

superset module: A logic module which performs all
of the functions of its subset or component mo­
dules, avoiding duplication and therefore saving
storage space.

supervisor: The main control program. It consists of
routines to control the functions of program load­
ing, machine interruptions, external interruptions,
operator communications, and physical IOCS re­
quests and interruptions. It coexists in storage with
problem programs.

symbolic I/O assignment: A means by which your
program can refer to an I/O device by a symbolic
name. Before a program is executed, job control
can be used to assign a specific I/O device to that
symbolic name.

system directory list: A list containing directory
entries of highly used phases and of all phases resi­
dent in the shared virtual area. This list is placed in
the shared virtual area.

telecommunication: Data transmission between a
computer and remote stations.

teleprocessing: Same as telecommunication.

356 DOS/VS Supervisor & I/O Macros

track hold: A function for protecting DASD tracks
that are currently being processed. When track
hold is specified in the DTF, a track that is being
modified by one program cannot be concurrently
accessed by another program.

undefined record: A record having an unspecified or
unknown length.

variable length record: A record having a length
independent of the length of other records with
which it is logically or physically associated.
(Contrasted with fixed-length record). It contains
fields specifying physical and logical record lengths.

virtual address area: The area of virtual storage
whose addresses are greater than the highest ad­
dress of the real address area.

virtaul partition: A division of the virtual address
area of virtual storage that is allocated for pro­
grams that be paged.

virtual storage: Addressable space that appears to
you as real storage, from which instructions and
data are mapped into real storage locations. The
size of virtual storage is limited bu the addressing
scheme of the computing system and by the
amount of auxiliary storage available, rather than
by the actual number of real storage locations.

volume: That portion of a single unit of storage
media that is accessible to a single read/write
mechanism. For example, a reel of magnetic tape
on a 2400-series magnetic tape drive, or a disk
pack on a 3330 disk storage drive.

work area: A portion of virtual storage used for
processing an individual record.

INDEX

abnormal termination codes 277, 278
ACB macro 220, 277

examples .. 227
access method

(see also DAM; ISAM; SAM; VSAM)
access-method control block (ACB)

for VSAM . 220
direct (DAM) .. 159
indexed sequential (ISAM) 185
sequential (SAM) 31
virtual storage (VSAM) 215

address area
address constants, relocation of 328
addressed access 217, 218
addresses, symbolic unit 14
area (see address area; I/O area; MICR document

buffer; overflow; work area)
ASA control character codes 301
ASCII (American National Standard Code for In­

formation Interchange)
character set 335
comparison to EBCDIC. 337
files 27
label processing 27
tape files 27

assembling
program, DTFs, and modules 18, 304
format record for the 3886 optical character
reader 319

associated files
processing 134, 141, 156
specifying

for CDMOD 41
for DTFCD 34
for DTFPR 84
for PRMOD . 88

ATTACH macro 288
autolinking logic modules. 16, 18
autoselection for MICR 64
backwards, reading tape 29, 130
Basic Operation System/360

CHNG macro 144
DTFSR macro 108

begin-definition card for DTFSR 108
block

access-method control 220
blocked records

GET macro processing 129
PUT macro processing 132

BOS/360 (Basic Operating System/360)

CHNG macro 144
DTFSR macro 108

braces, brackets, notational conventions . 20, 218
buffer

(see also I/O area)
console 42
MICR .. 63, 331
printer-keyboard . 42

CALL macro 298
called program 299
calling program 299
CANCEL macro 283
capacity record. 164, 183
card

detail 19
device control 135
file (DTFCD) 34
header 15
module (CDMOD) 40
punch

control 140
file (DTFCD) 34
module (CDMOD) 40

reader
control 140
EOF condition (DTFSR) 112
file (DTFCD) 34
module (CDMOD) 40

catalog (VSAM) . 220
cataloging declarative macros 18
CCB (command control block)

conditions shown in bytes 2-3 252
format of . 250
macro 249

CCW (channel command word) 249
CDMOD macro . 40
chaining ISAM overflow records 190
chaining RPLs (VSAM) 225, 222, 224
channel command word (CCW) 249
character, control (see control character)
character, end-of-record 92
CHECK macro

for magnetic reader 145
for work files 152

checking
nonstandard labels 29
output file in VTOC 126
standard labels " 29
user standard labels

Index 357

on disk 25, 127
on tape 29, 127

checkpoint
DTFPH entries for 254
file 285
macro 283
record 27

on tape 27
checkpoint/restart (see checkpoint)
CHKPT macro 283
CHNG macro 144
CLOSE/ CLOSER macro

for DAM 184
for ISAM 213
for PIOCS 260
for SAM 155

CLOSE macro
for VSAM 239

closing (see CLOSE/CLOSER macro)
CNTRL macro

command codes 138, 183
for DAM 183
for SAM 137

codes
abnormal termination 277,278
CNTRL macro 138, 183
control character 301
ISAM condition 196, 197
MICR pocket selection 63
termination, abnormal 277, 278
universal character set, 140

combined file
example .. 134
specifying 43, 133

command chained records (diskette)
GET macro processing 130
PUT macro processing , 132

command codes for CNTRL macro ... 138, 183
command control block (CCB)

conditions shown in bytes 2-3 252
format of . 250
macro 249

communication, intertask 291
communication region

format of 274
macros for 274

completion macros
for DAM 184
for ISAM 213
for SAM 154

COMRG macro . 274
concepts of ISAM 187

of VSAM 217
concurrent request processing (VSAM) . 221, 224
condition codes for ISAM 196, 197

358 DOS/VS Supervisor & I/O Macros

console
buffer 42
file (DTFCN) 42

console printer-keyboard
buffer 42
file (DTFCN) 42

constants, relocation of 328
continuation punch . 20
control area (VSAM) 217
control block (see command control block) /tf/

operand notation 341
parameter lists 345

control block generation macros 220
control block manipulation macros 228
control character

codes 301
PUT macro processing 135

control interval (VSAM) 217
control macro (see CNTRL macro)
conventions for notation 20, 218
cylinder index for ISAM 189

resident .. 198, 202
cylinder overflow areas full 190

area 190

DAM (Direct Access Method)
adding records 162
creating a file .. 162
declarative macros 165
description of .. 159
EXTENT statement restriction 15
file (DTFDA) 165
imperative macros 179
keys (see keys)
logic module (DAMOD) 176
multi-volume file restriction 15
record types 159
reference methods 161

DAMOD macro 176
DASD (direct access storage device)

CNTRL macro codes 138, 142
file

DAM (DTFDA) 165
ISAM (DTFIS) 194
SAM (DTFSD) 98, 105

labels 23
logic module

DAM (DAMOD) 176
ISAM OSMOD) 201
SAM (SDMODxx) 105

operator verification table 287
track protection macros 292

data cell (see DASD)
data check . 95
declarative IOCS macros

(see also DTF macro; logic module
generation macro)
assembling. 18, 304
description of . 11
for DAM .. 14, 165
for ISAM 14, 194
for PIOCS 14, 254
for SAM 13, 31, 34
for VSAM 11,220
format. .. 19, 218

define the file macro (see DTF macro)
DEFINE statement (Access Method

Services) 220
deletion, ISAM records tagged for 191
DEQ macro 290
dequeue macro 290
DETACH macro 289
detail card . 19
device independence

file (DTFDI) 44
module (DIMOD) 47

DFR macro 52,319
DIMOD macro . 47
direct access

(see also DASD)
file (DTFDA) 165
method (see DAM)
module (DAMOD) 176
storage device- (see DASD)

DISEN macro 146
disengage macro .. 146
disk (see DASD)
diskette

file (DTFDU) 58
label processing 25
module (DUMODFx) 62

display control block (SHOWCB)
macro , 231

display macro .. 147
displaying VSAM blocks and lists 231
DLBL job control statement 23
DLINT macro 56
document buffer, MICR 63
document processing (see MICR)
DRMOD macro ... 51
DSPLY macro 147
DTF (define the file) macro

assembling 18, 304
cataloging 18
description of 11, 13
examples (see coding form examples)
for DAM (DTFDA) 14, 165
for ISAM (DTFIS) 14, 194
for PIOCS (DTFPH) 14,254
for SAM 13, 31, 34

format 19
DTF table, referencing 14, 191
DTFBG card 108
DTFCD macro . 34
DTFCN macro 42
DTFDA macro .. 165
DTFDI macro 44
DTFDR macro 48
DTFDU macro . 58
DTFEN card 117
DTFIS macro. 194, 351
DTFMR macro 63
DTFMT macro . 67
DTFOR macro . 78
DTFPH macro . 254
DTFPR macro . 84
DTFPT macro 90
DTFSD macro . 98

error options 102
DTFSR macro 108
DTFxx macro (see DTF macro)
dummy entry for ISAM indexes 189
DUMODFx macro 62
dump

macros for 282
DUMP macro 282
dump partition macro 282

ECB (event control block) 288
editing (see link-editing)
end file load mode macro 208

DASD label processing 24
diskette processing 25
magnetic tape label processing

input files 28
output files 26

paper tape processing 94
end-of-job-step macro 283
end-of-record character for paper tape 92
end-of -volume

DASD label processing 23
diskette processing 25
forced

for PIOCS 260
for SAM 154

magnetic tape label processing
input files 28
output files 26

end set limit macro 213
ENDFL macro 208
ENDREQ macro 242, 222, 224
ENHP (european numeric hand printing) 54
ENQ macro . 290
enqueue macro 290
EODAD VSAM exit routine 222

Index 359

EOF (see end-of-file)
EO] macro 283
EOV (see end-of-volume)
ERASE macro 242
ERET macro

for ISAM .. 206
for SAM 144

error
conditions

CCB 252
DAM 167, 169
ISAM 196, 197
paper tape 95

options (DTFSD) 102
return macro (see ERET macro)
status indication bits (DAM) 169

ESETL macro 213
event control block (ECB) 288
example

address constants, relocating 328, 329
assembling a format record for the

3886 optical character reader 319
assembling program, DTFs, and modules . . 304
coding form (see coding form examples)
combined file 134
GET macro processing 129
ISAM file 192
nonstandard label processing 324
relocating address constants 328, 329
relocating program 330
self-relocating program 330
subset-superset

module 16
names chart . 17

EXCP macro 253
EXCPAD VSAM exit routine 223
execute form

of control block
manipulation macros 236, 228
examples , 236

exit list (EXLST) for VSAM 222
EXIT macro 280
exit supervisor macros 276
EXLST macro 222

examples ... 227
extent

job control statement 14, 23
split cylinder 126

EXTENT job control statement 14, 23
external references in DTF table 18

FCEPGOUT macro 269
FEOV macro

for PIOCS . 260
for SAM 154

360 DOS/VS Supervisor & I/O Macros

FEOVD macro 155
FETCH macro . 265
field

information (DLINT) 56
name 19
operand 19
operation . 19
sequence-link 192, 200

file
associated (see associated files)
checkpoint . 285
combined (see combined file)
definition macro (see DTF macro)
entry-sequenced (VSAM) 217
key-sequenced (VSAM) 217
labels (see labels)
shared 293
work 150

filename for declarative macros 19
filename A 191
filenameC 196, 206, 208
filenamel . 191
filenameO 191
filenameP 191
filenameR 191
filename T 191
filename+48 - filename + 76

for DTFOR 81
for DTFSR 110

filename + 80
for DTFOR . 80
for DTFSR 109

fix page macro . 267
font codes for 3886 54
forced end-of -volume

for PIOCS 260
for SAM 154

format
CCB 250
communication region 273
conventions 20
descriptor card 39
keyword 19
macro '" 19,218
mixed 19
positional . 19

FREE macro 292
free page macro 292
FREEVIS macro 273

GENCB (generate control block) macro 228
examples 229

generate form
of control block

manipulation macros 236, 228

examples . 237
generating

logic modules 11, 16
VSAM blocks and lists 228

GENL (generate a directory list) macro 266
GET macro

for ISAM 202
for SAM 128
for VSAM 241

GETIME macro 275
GETVIS macro 272

header card 19
heaqer labels

DASD 24
magnetic tape . 27

hexadecimal control character codes 301
hold, track (see track hold)

IBM-supplied macros 12
identifier, DAM record 162, 163
lIP (ISAM Interface Program) 187,351
IJCxxxxx (CDMOD) 41
IJDxxxxx (PRMOD) 89
IJExxxxx (PTMOD) 96
IJFxxxxx (MTMOD) 78
IJGxxxxx (SDMODxx) 107
IJHxxxxx (ISMOD) 203
IJlxxxxx (DAMOD) 177
IJJxxxxx (DIMOD) 47
IJMxxxxx (ORMOD) 84
IJUxxxxx (MRMOP) 67
imperative 10CS macros

description of . 11
for DAM 179
for ISAM 295
for SAM 31, 124
for VSAM 238
restriction regarding modules 16

independence (see device independence)
independent overflow area 191
index,ISAM

cylinder 189
master .. 190, 200
SKIP feature 198
track 189

Indexed Sequential Access Method (see ISAM)
indexed sequential file (DTFIS) 194
indexed sequential module (ISMOD) 201
initialization macros

for DAM 179
for ISAM '. 205
for Ploes 257
for SAM 124

for VSAM 238
initiation, subtask . 288
input files

DASD labels 24
diskette labels 25
magnetic tape labels 28

input/output area (see I/O area)
interrupt

interval timer 276
intertask communication macros 291
jnterval timer macros 276
10CS macros 11, 249
ISAM (Indexed Sequential Access Method)

adding records 190, 198, 208
completion macros 213
concepts of 187
creating a file 198, 205
declarative macros 194
example of file 192
extending a file 205, 207
file (DTFIS) 194

null. .. 191
imperative macros 205
indexes 189
initialization macros 205
I/O areas 188
keys (see keys)
loading a file 198, 207
logic module 200
organization. .. 187
overflow 190
processing macros 206
programming considerations 191
programs, processing

VSAM files 187
random retrieval 198, 201, 209
random updating 210
record types .. 187
sequential retrieval 198, 201, 211
statistics 191
storage areas 187
work area 201

ISAM Interface Program (lIP) 187
ISMOD macro 201
I/O area

description of .. 128
use of

for DAM 159, 173
for ISAM .. 188
for SAM 105, 129

I/O assignment, symbolic
description of . 14
releasing 275

JDUMP macro . 283

Index 361

key-sequenced file 217
keyed access 217
keys

for DAM
description of 159
processing of 174, 176, 181

for ISAM
description of 187

keyword operand 19

LABADDR
routine 24

labels
DASD standard 23
diskette . 25
header

DASD 24
magnetic tape 27

magnetic tape . 26
processing 23
routine 24
tape 26
trailer

DASD 24
magnetic tape 27
user standard 24

LBL TYP job control statement 23, 26
LBRET macro

for DAM 180
for PIOeS . 259
for SAM 127

LERAD VSAM exit routine 223
library·

macro 11
relocatable, how to use 18
source statement 11

light macro 146
limitations (see restrictions)
link-editing 18, 326
link field for ISAM chaining 192, 200
linkage editing 18, 326
linkage macros 295
linkage registers . 297
list form

of control block
manipulation macros 236, 228, 345

examples . 236
listing, selective tape 88, 89, 131
LITE macro .. 146
LOAD macro . 266
loader, relocating 328
loading a program, macros for 266
locate mode (VSAM) 217

362 DOS/VS Supervisor & I/O Macros

logic module
assembling . 18
cataloging 18
eDMOD 40
DAMOD 176
description of 11, 16
DIMOD 47
entry points . 17
generation macro 11, 16
ISMOD 200
link-editing 18, 326
linkage with DTF 18, 304
macro .. 11, 16
MRMOD 67
MTMOD 76
names 17
ORMOD .. 83, 84
PRMOD 88
providing . 17
PTMOD 16, 96, 97
restriction 16
SDMODxx .. 105
shared 293
subset

description of . 1 7
superset

description of . 17
ways of providing 17

logical units
programmer . 15
system 15

macro
assembling . 18
cataloging 18
categories of 11
coding example . 13
communication . 274
completion

for DAM 184
for ISAM 213
for PIOeS 260
for SAM 154
for VSAM 239

declarative
description of 11
for DAM 165
for ISAM 194, 201
for PIOeS . 254
for SAM 31, 34
for VSAM 11,220

definition (see macro definition)
DTFxx (see DTF macro)
example 13
expansion 12

format. .. 19,218
imperative

description of . 11
for DAM 179
for ISAM 205
for SAM 31, 124
for VSAM 238

initialization
for DAM 179
for ISAM . 205
for PIOCS . 257
for SAM 124
for VSAM 238

interrelationship 17
intertask communication 291
interval timer 276
IOCS (see macro, declarative

macro, imperative)
library 11
link-editing 18
LIOCS (logical IOCS) 31

(see also macro, declarative
macro, imperative)

list of types 13
logic module generation (see logic module)
logicallOCS 31

(see also macro, declarative
macro, imperative)

multitasking . 288
PIOCS (physical IOCS) 249
processing

for DAM 180
for ISAM 206
for SAM 127
for VSAM 241

protection
DASD track . 292
resource 289

program loading 266
resource protection 289
self-relocating, how to make 19
source program . 11
storage, virtual . 266
sublibrary 11
supervisor 11, 265
system (see macro system)
timer 276
time-of-day 275
track protection 292
types of 11
usage 11
virtual storage 266

macro definition
description of . 11

macro system

description of . 11
magnetic ink character reader

(see MICR)
magnetic reader

file (DTFMR) 63
imperative macros 145
module (MRMOD) 67

magnetic tape
backwards reading 29, 130
checkpointing 27, 283
CNTRL macro codes 139
file (DTFMT) 67
labels 26
module (MTMOD) 76
reading backwards 29, 130
repositioning for restart 286

master index for ISAM 190, 200
MICR (magnetic ink character reader)

buffer, document 63, 331
characteristics 63
checkpoint file 285
document buffer 63, 331
file

checkpoint . 285
declaration (DTFMR) 63

module (MRMOD) 67
processing characteristics 63
stacker selection routine 63

mixed format 19
MODCB (modify control block) macro 230
modifying VSAM blocks and lists 230
module (see logic module)
move mode (VSAM) 217
move to communication region macro 275
MRMOD macro 67
MTMOD macro 76
multitasking macros 288
MVCOM macro 274

names
field 19
file 18
logic module 17
standard 17
subset/ superset description 17
symbolic unit . .o......... 15
user-supplied 18

NHP (numeric hand printing) 54
nonstandard labels processing 27, 29
notation, register 20
notational conventions 20, 218
NOTE macro 152
null file, ISAM 191

Index 363

OCR (see optical reader)
opening (see OPEN(R) macro)
OPEN(R) macro

DASD label processing 23, 124
diskette label processing 23, 126
for DAM. 179, 180
for ISAM . 205
for PIOCS . 257
for SAM 124
for VSAM 238

operand
cards 19
field 19
keyword 19
mixed 19
notation for VSAM macros 341
positional . 19

operation field 19
operator verification table 287
optical character reader (3886)

declarative macros 48
define format record (DFR) 52
define line type (DLINT) 56
field information entries (DLINT) 56
line information entries 56
file (DTFDR) . 48
imperative macros. 149
module (DRMOD) 51
sample format record assembly 319

optical mark reader (3881)
restrictions concerning CDMOD 41

optical reader (1287)
file (DTFOR) 78
format descriptor, card 39
imperative macros 147
module (ORMOD) 83,84
processing considerations 63, 83
restrictions concerning GET or READ ... 112

ordinary register notation 20
ORMOD macro 83, 84
output files

DASD labels 24
diskette labels 25
magnetic tape labels 26

overflow, ISAM
area 190

cylinder .. 190
independent 191

statistics 191
overflow, printer

macro 144
overlap, physical transient 265

page fix macro . 267

364 DOS/VS Supervisor & I/O Macros

page free macro
PAGEIN macro
paper tape

268
270

data check 95
end-of-file 94
end-of -record character 92
errors 92, 94, 95
file (DTFPT) 90
length 95
listing on 1403 89, 131
module (PTMOD) 96, 97
processing considerations 94, 95
selective tape listing on 1403 89, 131
trailer length 95
wrong length 95

parameter lists
for VSAM macros 228

parentheses 218
partial dump macro 282
PDUMP macro 282
PFIX macro . 267
PFREE macro 268
phase

fetching . 265
loading 266

physical IOCS
concepts of 249
file (DTFPH) . 254
macros 249-261

physical transient overlap 265
PIOCS (see physical IOCS)
pocket selection for MICR 63, 64
POINT macro 242
POINTR macro 152
POINTS macro 153
POINTW macro t ••••••• 153
positional operand 19
POST macro 291
pre loading registers . 20
prime record count 191
printer

codes 139
control 135, 302
file (DTFPR) . 84
module (PRMOD) 88
overflow macro 144

printer keyboard
buffer 42
file (DTFCN) 42

PRMOD macro 88
processing macros

for DAM 180
for ISAM . 206
for SAM 127
for VSAM 241

processing, sequential (see SAM)
program

assembling " 18, 304
called 299
calling . 299
communication macros 273, 274
communication region (see communication re­
gion)
linkage macros 295
loading macros . 265
self -relocating

how to write 19
programmer logical units 15
protection macros

DASD track 292
resource 289
track 292

PRTOV macro 144
PTMOD macro 96, 97
punch (see card punch)
PUT macro

for ISAM 212
for SAM 130
for VSAM 241

PUTR macro 136

random retrieval for ISAM 198, 201, 209
RBA (relative byte address) 217
RCB macro 289
RDLNE macro 149
read line macro 149
READ macro

for DAM 181
for ISAM 210
for magnetic reader 145
for optical character reader (3886) 149
for optical reader (1287) 148
for work files .. 151

reader (see card reader; magnetic reader;
optical reader)

reading tape backwards 29,130
REALAD macro 272
record

blocked
GET macro processing 129
PUT macro processing 132

capacity 164,183
command chained

GET macro processing 130
PUT macro processing 132

DAM, types for 159
ISAM, organization of 187
reference for DAM 161, 162
spanned

DTFMT, I/O area for. 176, 130
DTFSD, I/O area for 103, 130
GET macro processing 130
PUT macro processing 133

types for DAM 159
unblocked

GET macro processing 129
PUT macro processing 132

undefined
GET macro processing 130
PUT macro processing 133

variable-length
PUT macro processing 132

zero (DAM capacity record) 164,183
record identifiers (DAM) 162
record keys (DAM) 159-162
references, external in DTF table 14,18
register

conventions 20
linkage 297
notation . 20
pre loading 20
restoring 297
restriction for 1275 and 1419 65
saving and restoring 297
usage 21

relative byte address (RBA) 217
RELEASE macro . 275

(see also RELSE macro)
releasing I/O units 275
relocatable

library, how to use 18
programs .. 19, 326

relocating loader . 328
relocation of address constants 326
RELPAG macro 268
RELSE macro 136

(see also RELEASE macro)
reopening a file 23
repositioning magnetic tape 286
request macros (VSAM) 241
request parameter list (RPL)

for VSAM 224,241
chaining RPLs 225, 222, 224

RESCN macro .. 148
resource

control block macro (RCB) 289
macros 289
protection macros 289

restart (see checkpoint)
restoring registers 297
return codes

from GENCB, MODCB, SHOWCB,
and TESTCB macros 235

from CLOSE macro 240

Index 365

from OPEN macro 238
from request macros 242
from TCLOSE macro 240

RETURN macro 300
RPL macro 224

examples ... 227
RUNMODE macro 271
RZERO for DAM 164, 183

SAM (Sequential Access Method)
card file (DTFCD) 34
card module (CDMOD) 40
CDMOD 40
completion macros 154
console file (DTFCN) 42
DASD file (DTFSD) 98
DASD module (SDMODxx) 105
declarative macros 13, 31, 34
device independent file (DTFDI) 44
device independent module (DIMOD) 47
DFR 52
DIMOD 47
disk file (DTFSD) 98
disk module (SDMODxx) 105
DLINT 56
DRMOD 51
DTFCD 34
DTFCN 42
DTFDI 44
DTFDR 48
DTFMR 63
DTFMT 67
DTFOR 78
DTFPR 84
DTFPT 90
DTFSD 98
DTFSR 108
imperative macros 31, 124
magnetic reader

file (DTFMR) 63
macros for processing 145
module (MRMOD) 67

magnetic tape file (DTFMT) 67
magnetic tape module (MTMOD) 76
MRMOD 67
MTMOD 76
optical reader

file (DTFOR) . 78
macros for processing 147, 149
module (ORMOD) 83

ORMOD 83
paper tape file (DTFPT) 90
paper tape module (PTMOD) 16, 96
printer file (DTFPR) 84

366 DOS/VS Supervisor & I/O Macros

printer module (PRMOD) 88
PRMOD 88
processing macros 127
PTMOD 96
SDMODxx .. 105
sequential DASD file (DTFSD) 98
sequential DASD module (SDMODxx) ... 105
serial device file (DTFSR) 108
workfile macros 150

save area
program linkage 297
register 297
subtask 288

SAVE macro . 300
SDMODxx macro 105

subset I superset names 108
selective tape listing feature 131
self-relocating program

exampk 326, 330
rules for writing 19, 326

SEOV macro . 260
sequence-link field 192, 200
Sequential Access Method (see SAM)
sequential DASD file (DTFSD) 98
sequential DASD module (SDMODxx) 105
sequential retrieval for ISAM 198, 201, 211
serial device file (DTFSR) 108
set exit macro (STXIT) 276
set file load mode macro (SETFL) 207
set interval timer macro (SETIME) 276
set limits macro (SETL) 211
set linkage to routines macro

(STXIT) 276
set page fault appendage macro

(SETPFA) 271
set timer macro (SETIME) 276
SETDEV macro (3886) 150
SETFL macro 207
SETIME macro 276
SETL macro 211
SETPFA macro 271
shared file . 293
shared module 293
SHOWCB (display control block) macro 231

examples 232
skip sequential processing 217
source-program macro 11
source statement library 11
spanned records.

DTFDA I/O area for 160
DTFMT 110 area for 130
DTFSD I/O area for. 103, 130
GET macro processing 130
PUT macro processing 133

special register notation 20

split-cylinder extents 126
stacker selection routine, MICR 63
standard form of control block

manipulation macros 228, 345
standard labels

DASD " 23
user 24

standard module names 17
status code

for DAM 169
for ISAM .. 196

storage
area (see I/O area)
virtual

access method (see VSAM)
macros 266

STXIT macro 276
sublibrary, macro 11
subset module

description of . 16
names 17

sub task
initiation macro 288
save area . 288
termination macro 289

superset module
description of . 16
names 17

supervisor
communication region 274
macros 11, 265

symbolic I/O assignment
description of . 14

symbolic unit addresses 14
symbolic unit names 14
SYNAD VSAM exit routine 224
SYSCAT ~ 15
SYSCLB 15
SYSIPT 15
SYSLNK 15
SYSLOG 15
SYSLST 15
SYSmax 15
SYSnnn 15
SYSPCH 15
SYSRDR .. " 15
SYSREC 15
SYSRES 15
SYSRLB 15
SYSSLB 15
system end-of-volume macro (SEOV) 264
system logical units 15
SYSVIS 15

table, operator verification 287

tape (see magnetic tape; paper tape)
task (see subtask)
TCLOSE macro . 240
TECB macro . 281
termination

abnormal, codes for 277
macros 283,289

(see also completion macros)
subtask 283, 289

test time interval macro (TTIMER) 276
TESTCB (test control block) macro 233

examples " 235
testing VSAM blocks and lists 233
time-of-day macro (GETIME) 275
timer event control block macro (TECB) .,. 281
timer macros 281
timing for MICR stacker selection 64
track hold

description of . 292
macros for. 202, 292

track index for ISAM ~ 89
track protection 198, 292

(see also track hold)
track reference for DAM 161
trailer labels

DASD 24
magnetic tape . 27

transient overlap, physical 265
TRUNC macro 137
truncate macro (TRUNC) 137
TTIMER macro 276,281

UCS (universal character set) codes 140
unblocked records

GET macro processing 129
PUT macro processing 132

undefined records
GET macro processing 130
PUT macro processing, i 3:3

unit addresses, symbolic 14
unit names, symbolic 14
units, system logical 15
units, programmer logical 15
universal character set codes 140
unlabeled tape files . 28
updating 133

(see also associated files; combined file) ,
user-standard labels 24
user-supplied names 18

variable-length record
PUT macro processing 132

VIRTAD macro . 271
Virtual Storage Access Method (see VSAM)

Index 367

virtual storage macros 266
volume

end of (see end-of-volume)
label 26

volume table of contents (VTOC) 23
VSAM (Virtual Storage Access Method) 215

control blocks and lists 220
description 11, 217
ISAM Interface Program (lIP) 187
types of macros 218

control block
generation macros 220
mahipulation macros 228

OPE~, and (T)CLOSE macros 238
request macros 24 ~

types of processing 217
VTOC (volume table of contents) 23

WAIT macro 254
WAITF macro

for DAM 183
for ISAM 210
for magnetic reader " 146
for optical character reader (3886) 150
for optical reader (1287) 149
for SAM 146, 149, 150

W AITM macro 282, 291
work area

description of .. 128
ISAM storage requirements 201
MICR document buffer 63
use with I/O area

for ISAM .. 188
for SAM 128

work file macros .. 150
WRITE macro

for DAM 181
for ISAM 207, 2{)8, 210
for workfiles 151

wrong-length paper tape records 95

xxMOD macro (see logic module
generation macro)

368 DOS/VS Supervisor & I/O Macros

1287
CNTRL macro codes 138, 142
macros 147

1288
CNTRL macro codes 138, 142
programming considerations 83

1403
CNTRL macro codes 138, 140
selective tape listing feature 131

1442
CNTRL macro codes 138, 140
control character codes :.. 301

2520
CNTRL macro codes 138, 140
control character codes 301

2540
CNTRL m,!cro codes 138, 140
control character codes 301

2560
card device codes 138, 141
control character codes 301, 302
printing , 135

2596
CNTRL macro codes 138, 141
control character codes 301

3211 CNTRL macro codes 138, 140
3504

CNTRL macro codes 138, 141
control character codes 302, 303

3505
CNTRL macro codes 138, 141
control character codes 302, 303

3525
CLOSE(R) card movement 156
CNTRL macro codes 138, 141
control character codes 302, 303
printing " 135

3881
CNTRL macro codes

3886
CNTRL macro codes

138, 142

138, 143
macros 149

5425
card device codes 138, 141
control character codes 301, 302
printing .. 135

DOS/VS
Supervisor and I/O Macros

GC33-5373-2

READER'S
COMMENT
FORM

This sheet is for comments and suggestions about this manual. We would appreciate your
views, favorable or unfavorable, in order to aid us in improving this publication. This fonn
will be sent directly to the author's department. Please include your name and address if
you wish a reply. Contact your IBM branch office for answers to technical questions about
the system or when requesting additional publications. Thank you.

Name

Address

What is your occupation?

Your comments* and suggestions:

* We would especially appreciate your comments on any of the following topics:

Clarity of the text
Organization of the text

Accuracy
Cross-references

Index
Tables

Illustrations
Examples

How did you use this manual?

As a reference source

As a classroom text

As a self-study text

Appearance
Printing

Paper
Binding

YOUR COMMENTS, PLEASE ...

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM ..

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys­
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold
Fold

n
c
-l

»
r
o
Z
C')

-l
J:
en
r
Z
m

t •••••••••••••••••••••••••••••• • •• •• •••• •••••••••••••• ••• :

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Department 813 BP

POSTAGE WILL BE PAID BY ...

I BM Corporation
1133 Westchester Avenue
White Plains, N.Y. 10604

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS. N. Y.

...

Fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

o o en -< en
en
c:
"i
< iii·
g
II)

::l
c.. -o
s:
II)
(')

a
VI

41 s·
[
s·
c
en »
G>
(")
Co)
Co)
I

C1'I
Co)
-.....I
Co)
I

N

GC33-5373-2

International Business Machines Corporation
Data Proceislng Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM wor,ld Trade Corporation
821 UniteCi Nations Plaza, New York, New York 10017
(International)

o o
CIJ -<
CIJ
CIJ
c:
'0
CD
=2
iii'
Q
OJ
:::J
0.

