
GC33-5372-2
File No. 5370-30

Systems

Systems

)

GC33-5372-2
File No. 5370-30

DOS/VS Data Management
Guide

Release 29

Summary of Amendments

This edition documents

• Virtual Storage enhancements and

• Support of the following new devices:

System/370 Model 115
3203 and 5203 Printers
3340 Disk Storage
3420 Tape Unit
3540 Diskette I/O Unit
3780 Data Communication Terminal
5425 Multifunction Card Unit

In addition, minor technical changes and editorial corrections have been
made throughout the book.

Changes in content are indicated by a vertical bar to the left of the change.

I Third Edition (Nov. 1973)

This edition applies to Version 5 of the IBM Disk Operating System/Virtual Storage
DOS/VS, and to all subsequent versions and releases until otherwise indicated in new
editions or Technical Newsletters. Changes are continually made to the information
herein. Before using this publication in connection with the operation of IBM systems,
consult the latest IBM System/360 and System/370 Bibliography, GA22-6822, for the
editions that are applicable and current.

This is a major revision of, and obsoletes, GC33-5372-1.

Note: For the availability dates of features and programming support described in this
manual, please contact your IBM representative or the IBM branch office serving your
locality. Similarly, requests for copies of IBM publications should be made to your IBM
representative or to your local IBM branch office.

If the functions listed below are available as a separate component and
your system does not include this component, the information about these
functions is included for planning purposes only. The functions are:

Chained RPL support
Concurrent request processing
Overlapping I/O operations by means of the EXCPAD exit.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Laboratory, Publications
Department, 703 Boeblingen, Schoenaicher Strasse 220, Postfach 210, Germany.
Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972, 1973

(

~

(

PREFACE

About this manual

This book is a guide to data management as it is provided by Version 5 of
the IBM Disk Operating System: DOS/VS. All of the data management
facilities provided are discussed on conceptual and functional levels.

Data management refers to the way data is organized and accessed. The
book describes how DOS/VS accomplishes this and, in addition, provides
information for choosing data management strategies for different types of
data files and processing requirements.

This book is not a guide to the operating system; instead, a separate manual
is provided for this purpose: the DOS/VS System Management Guide,
GC33-S371. A general overview of the system is presented in the
Introduction to DOS/VS, GC33-S370.

After reading the above mentioned manuals, you should be able to turn
directly to the DOS/VS library of reference manuals in order to work with
your system. From these manuals you can easily retrieve details about the
formats of the control statements, macros, labels, and messages, which you
must deal with from day to day.

The organization of this manual reflects four levels of information; these
are presented in four subsequent sections:

1. Concepts of data management.

The first section introduces data management without regard to any
specific operating system. It is mainly addressed to readers newly
entering the world of data processing.

2. DOS/VS data management facilities.

The second section describes all of the components that make up the
DOS/VS data management programming system.

3. Data management support by DOS/VS.

This section focusses on the access methods provided under DOS/VS,
and the various techniques a programmer can use in managing data
files.

4. Access methods.

The last section describes the four access methods in detail. It acts as
an introduction to the publication DOS/VS Supervisor and I/O
Macros, GC33-S373. After reading this section, the reader should be
familiar with the access methods, and be able to implement the
facilities offered in his problem programs, using the referenced manual
to find the detailed formats of the macros.

In addition to those sections, a set of appendixes is included. A glossary
containing terms and their definitions, as they are used in this manual, and
an index, are present at the end.

Preface 3

(
\;

(

)

TABLE OF CONTENTS

Section 1: Concepts of Data Management
Introduction •...•...•••.•. .•••..•..•. .•.... .•......•..•..•......•... •..•. .••.•....•..•....• •.•........••......•.......•... ..•• .•••.•.••.••••..•.••.. 11
Information - what it means ..•. .••.•.....•...•.•..........•...........•....•. .•....•...•.•.. ••..•........•. ••.•. •.•.• .•.•...•...• .•••. .•••••...••...•..••. 12
Fields and records . •••.•.••.••• ••.•. ••...•... .•• .•••.. •.••.•...• .••.•..•• .••.•.•.•.•.....•.• .•. •••.•....... .••••. ••• .••.....•...•.•••.•.•. .••.••••.. •••••. ••. ••• 13
Data encoding / data compression ... 14
Virtual data .. 1 S
Record design .. 16
Fixed-length records and variable-length records .. 17

Variable-length fields .. 17
Variable number of fixed-length fields " .. 17

Record identification ... 18
Data organization ..•.••.•••...••..••••••..•..••...•...•...••.......•.•.•...•..•.•.••..•.•.....•.•.••....••...•••.•...•.•..••...•.••..•••..•••••••.••..•.••••••.• 21
Physical and logical data organization .. 22
The role of the operating system in data organization .. 23
Storage devices •••.•••......•.•.•...•....•....•••.•.........•..••......••.....•.•.•.....•.•.•.•....•......•.••.•...•.•.•.•.•.•.....••..•.•...••..•...•..•..•.•.... 24
Record blocking •............•..•..•...•.••.•...•.•.•............••....••...••...•..•..•.•.•••....••••......••.......•••.. 25
File labeling •••.•.•.•...••..•....•......... .•...•.•.•.........•........•.•......•...•. .•. .•... .••.•........... .••••. ••.....•...• .•.•.•.....•..• •••...•.. •••..••. ••.. 26
Tape labels ... 26
DASD labels .. 27
Diskette labels ... 28
Label processing .. 28
Input/ output control .•..•...•.•..•..••...........•.••.••.....•....••..•.....•.•.•...•...••.............•..••.....•.••.•••.......••...••••.•.•••.•.............. 28
Data base concepts .••....••.•..........••..•..••.....•............•.....•.......•..•..••....•.••.••..•........••.•...••...••.••.•....•..•.•.•••..•.•.•••.••...• 28
Data structures .. 30
Implementation of data structures .. 30
References•.••..••..•.•.....•........••.•..••.••.•.....••..•...•......•...•.•.•.•..•..•...•..........•..•.•••....•••••.•...•.••....•..•.....•..•..•...••..•.••• 35

Section 2: DOS/VS Data Management Facilities
Record formats and record structures•.•..•.•......•.•......•...•.•.......•....•.••..•.................•••.•.....•....•••••..•.••..•......•..•... 37
Record formats in DOS/VS ... 39

Fixed-length records (Format F) ... 40
Variable-length records (Format V) .. 40
Spanned records (Format V) ... 41

Control information ... 43
Block descriptor .. 44
Record descriptor (for variable-length records) .. 44
Segment descriptor (for spanned records) ... 44
Undefined records (Format U) .. 44
Control character (optional) ... 4S

Record structures for the various device types .. 4S
Card readers and punches .. 46
Printers .. 46
Console ... 46
Magnetic tapes ... 46
Paper tape readers .. 46
Paper tape punches ... 46
Optical character readers (OCR) ... 46
Optical mark readers (3881) .. 47
Magnetic ink character readers (MICR) .. 47
Diskette storage devices ... 47

Control information on a diskette track .. 47

Table of Contents S

Direct access storage devices (DASD) ... 47
Control information on a DASD track .. 48
Record zero (RO) ... 48
DASD data records .. 49

Summary ... 50
File structure 55

Files and volumes ... 56
Cylinder concept ... 59
Track capacity -- DASD , .. 60
Track capacity -- Diskette .. 61

File labeling ... 61
Magnetic tape labeling .. 64

Volume labels ... 65
File labels ... 66
Additional labels ... ·67
Standard user labels ... 67
Placement of tapemarks ... 67

DASD labeling ... 69
DASD volume labels .. 69
DASD file labels ... 69
The five DASD label formats .. 70
DASD user header and trailer labels ... 71

Labeling of VSAM files .. 72
Diskette labeling ... 72
Label processing ... 73

Physical devices and symbolic device names .. 73
Symbolic device name format ... 75
Multiprogramming considerations ... 75

/
Device independence .. 76
The P'OWER program .. 76

\.
Checkpoint/restart ... : 76
Data secll,rity / data integrity ... 78

Track R·old feature .. 78
DASD file protect ... 79
Data set security facility ... 79
Virtual Storage Access Method (VSAM) .. 79
Diskette security/integrity .. 80

DASD initialization and maintenance ... 80
Defective DASD tracks .. 81
How to correct a defective DASD track ... 81
Preparing DASD volumes for data ... 81
Summary of DASD initialization and maintenance , .. 82

SectioR 3: Data Management Support by DOS/VS
Access methods and file organization•..•.•..••.•......•............................•..................•.......•..•.•••..••....••....••..•....•.. 83
Organization and processing of data .. 84

Serial devices such as tape, card, etc ... 84
Direct access storage devices (DASD) ... 85

Organization of physical data ... 88
Sequential organization ... , 88
Random organization .. 89
Indexed sequential organization ... 89

Relating organization to processing methods provided by DOS/VS ... 89
Introduction to the access methods provided under DOS/VS •..•..............•.....•....•.......•......•.•..••....•....•..••..••.•..•. 90
Sequential Access Method (SAM) .. 91 (

6 DOS/VS Data Management Guide

Direct Access Method (DAM) ... 91
Indexed Sequential Access Method (ISAM) ... 92
Virtual Storage Access Method (VSAM) ... 93
Choosing the right organization and processing method .•.•.••••••..•••••.•...••••.•.••••.•...•.••.••....••.•••••••••••••.•••..•••.••••••••• 97
Organization and processing of DASD files ... 97
Criteria for choosing an organization method .. 97

File activity ... 98
File volatility ... 98
Filesize 102
Response time to inquiries .. 103

Applying criteria to sample files ... 104
Summary .. 105

Random retrieval consideration .. 105
High-level language considerations .. 108

Input/ Output Control System ..•.•••••••..•...•....•...•.••...•.......••••....•.•••.••..••••••.••........•.•....••.•••••••••.••....•••..•.•.•.••..••••• 108
LogicallOCS (LIOCS) ... 111

Macro system .. 112
File description macros .. 114
Imperative macros .. 118
Logic module generation macros ... 121
Interrelationship of the I/O Macro-Instructions ... 122

Physical 10CS (PIOCS) .. 123
Direct control over PIOCS in assembler language .. 124
PIOCS macro instructions .. 124
Interrelationships between the PIOCS macros .. 126
PIOCS programming considerations ... 126

Section 4: Access Methods
Sequential Access Method .•........... .. 133
Storage areas and effective I/O overlap ... : .. 133
Diskette data transfer .. 136
Buffered I/O devices .. 137
Unbuffered I/O devices, unblocked records .. 138
Unbuffered I/O devices, blocked records .. 139
Assembler language considerations ... 146

Logical record processing ... 146
Move mode GET and PUT macro instructions .. 147
Locate mode GET and PUT macro instructions ... 147
Processing blocked logical records ... 148
End-of-volume conditions .. 149
Updating ... 149
End-of-file conditions .. , 150
Special macro instructions for OCR and MICR ... 150

Physical block processing ... ' .. 150
Storage areas .. 153
Special macro instructions for OCR and MICR ... 153
Device control macro instructions ... 154
End-of-file conditions ... ' 155

Logic modules for sequential access processing ... 159
Direct Access Method .. 160
Devices and record formats .. 160
Locating data ... 162

Physical track addressing .. 162
Relative track addressing .. 163

Capacity record ... 164

Table of Contents 7

Loading and processing a direct access file .. 164
File organization .. 165

Prime data organization .. 166
Overflow organization .. 170

Assembler language considerations ... 174
Macro instructions for random DASD processing ... 175

Reading blocks of data .. 175
Writing blocks of data .. 176
Seeks ... 177
Completion of read or write operations .. 177
Logic modules for direct access processing ... 177

Indexed Sequential Access Method•........•.......•..••......•..•...••..........................•..............•.....•...............•.••. 178
Devices and record formats .. 178
Indexes ... 178

Track index ... 178
Cylinder index ... 179
Resident cylinder index .. 180
Master index ... 180

Prime data area ... 181
Overflow area .. 181

Types of overflow areas ... 183
Structure of the physical blocks .. 183
ISAM procedures .. 184

Creating an ISAM file .. 184
Extending an ISAM file .. 185
Adding records to an existing ISAM file ... 185
Sequential retrieval and update .. 186
Random retrieval and update ... 186
Mixed functions .. 186
Reorganizing an ISAM file ... 187

Indexed Sequential disk storage space formulas ... 191
Assembler language considerations ... 194

Macro instructions for indexed sequential processing ... 194
Creating an ISAM file .. 194
Adding records to an ISAM file .. 194
Sequential retrieval and update .. 195
Random retrieval and update ... 196
Logic modules for ISAM processing .. 196

Virtual Storage Access Method (VSAM)•................•.....•..........................•.....................................•.•......•.. 198
Devices and record formats .. 198
VSAM file structures ... 198

Control intervals and control areas .. 199
The Method of Storing a record in a Control Interval ... 200
Physical organization .. 200

Key-sequenced files and entry-sequenced files .. 201
VSAM processing procedures ... 206

Creating VSAM files .. 206
Processing VSAM files ... 207

VSAM catalog, service programs, and job control .. 211
The VSAM catalog ... 211
Access Method Services ... 212
Job control and VSAM .. 219

Assembler language considerations ... 224
Connecting and disconnecting a processing program and a file ... 225
Specifying parameters that relate the program and the data ... 226

8 DOS/VS Data Management Guide

Manipulating the information relating the program and the data ... 228
Requesting access to a file ... 229
Summary ... 229

Using ISAM programs with VSAM .. 231
Comparison of VSAM and ISAM .. 231
How to use the ISAM interface ... 232
What the ISAM interface program does .. 234
Restrictions in IS AM interface program use .. 235

Optimizing the performance and storage of VSAM .. 235
Control interval size ... 236
Distributed free space ... 237
Index options .. 237
Key ranges .. 239
File statistics ... 240

Data security and integrity .. 240
Data integrity .. 241
Protection of shared data ... 242
Data security ... 243
Determining the causes of problems .. 245

Section 5: Appendixes
Appendix t: Devices supported by DOS/VS•............•..•..•......•...•.......•.....•...•.......•.•...•... 247
Appendix 2: Attributes of direct access storage devices .•...•...•....•.•...•.•••.............•.....•....•••............•................. 258
Appendix 3: Standard label formats for magnetic tape, diskette, and DASD .. 263
Appendix 4: Programming considerations for some special types of I/O equipment 268
Punched card considerations ... 269
Paper tape considerations .. 272
MICR/OCR considerations .. 276
OMR considerations .. 283
Appendix 5: The American National Standard Code for Information Interchange (ASCII) 286
Glossary•..••.•..•......•..•..••.•.......•.•.........••..•..•..••.....•...........•..........••.....••..•.........••.....................•.....••............•. 292
Index .•...•.•.•.....•..•.........•.•...•.•••.•.•.....•....•.............••......•.................................•........•.••..•..........•...•........••.•........ 299

Table of Contents 9

(
\

Section 1: CONCEPTS OF DATA
MANAGEMENT

Introduction

This first section introduces the basic principles of data management. It is
addressed to users newly entering the world of data processing who may
need a general overview of the subject. For more experienced users, reading
this section may help to refresh their memories.

The following items are introduced:

• the functions of data managemeQ.t
• the meaning of the term 'information'

data fields, records, and files
• data representations
• data organization
• attributes of storage devices
• record blocking
• file labeling
• input/ output control
• data structures

These are explained in very general terms, without regard to any specific
operating system. The same items will be discussed in the following
sections, in regard to DOS/VS. The last chapter in this section is a list of
references to other sections in this manual.

Data management is the control, storage, and retrieval of information to be
processed by a computer. Each of these three areas of data management is
an essential function of any information system.

Control is the internal supervision of the data management process.
It establishes the user's right to access or modify the information in the
system. And it monitors the location of information, insuring data integrity
(no data loss), and insuring that the information in the system is current.

Storage is the technique for representing the information on a storage
device such as disk, tape, or punched card. It includes the order in which
the information is stored, the way it may be accessed or addressed, and the
method of representing the data itself.

Retrieval is the process of locating, formatting, and seqltencing
information for the user of the system. Locating information means
determining what data is required and where it may be found. If this data is
not in a usable form, it must be re-structured and perhaps ordered in a
different sequence, to meet the needs of the user.

Section 1: Concepts of Data Management 11

INPUT
DATA

------------control-----------

OUTPUT
DATA

Figure 1.1 Concepts of data management

Information - what it means

Data management handles three essential functions of an information
system: control, retrieval, and· storage of information.

Information includes facts about entities such as things, people, and
machines. We record information about entities for use by the data
processing system. For example, as an entity, a person could be described
as follows:

"John Jones is an accountant who works for the ABC Company in
department SA. He is 40 years old, and he is married. His salary is
$250 per week. He lives at 801 Main Street, Grovers Corners, N.Y.
His social security number is 999-99-9999."

Much of this information is implicit and we interpret it by reason of
our experience. An attempt to make the information explicit results in the
following:

''John Jones is the NAME OF AN EMPLOYEE whose
OCCUPATION is Accountant. He works for EMPLOYER ABC
Company in DEPARTMENT SA. His AGE is 40 years, his
MARITAL STATUS is married. His SALARY is $2S0/wk. His
ADDRESS is 801 Main Street, Grovers Corners, N. Y.. His SOCIAL
SECURITY number is 999-99-9999."

This example shows that information about entities is composed of at
least two parts: the CONTEXT and the data. The context is the same for
all similar entities, the data may vary for each entity.

In addition to context and data, it is necessary to know how the data
is represented. We must know, for example, that the data in the field
NAME of AN EMPLOYEE is represented as follows: blanks separate the
first name from the last and that the first name appears first.
Information about entities therefore consists of three parts:

INFORMATION = CONTEXT + DATA + REPRESENTATION

In conventional data processing the data is stored separately from the
context and representation. The reason is, as was shown, that both context
and representation are common to all like entities. The data is stored on

12 DOS/VS Data Management Guide

Fields and Records

)

devices, such as tape, disk, or cards, and the context and representation are
implemented as part of the computer program that processes the data.

It is the function of data management to provide organization schemes
for data to make data available within a program so that it may be properly
related to its context and finally displayed in a meaningful representation.
Figure 1.2 shows how the data and its context and representation are
related to one another.

STORED ON
'KNOWN' BY THE APPLICATION PROGRAM EXTERNAL

DEVICE

CONTEXT REPRESENTATION DATA

NAME 20 Alpha characters maximum John Jones
First name first

- S.S·. # 11 Alpha characters 999-99-9999

DEPT. # 3 Alpha characters maximum 5A

SALARY 5 Decimal digits, assumed 250.00
decimal point between second
and third digit from the
right (example = $ 250.00)

Figure 1.2 Information = Context + Representation + Data
The program that uses data must specify its context and representation in
order to have it interpreted as meaningful information.

Each entity has certain characteristics that define the context (for the
entity 'Person' they are: Name, Address, Employer, Marital Status, etc.). A
user specifies the context of the information he will use by listing the
characteristics for which corresponding data values are recorded. Such a list
of characteristics is called the description of a logical record. It is the
description of a logical record which gives the data values a meaning:
without specifying both the context and the representation, data has no
meaning to anyone.

A field is the smallest unit of information of interest to a user. A field has a
meaning and a name (context), a value (data), and a representation.
Examples of fields were shown in Figure 1.2; a collection of fields relating
to the same entity is a logical record, which is shown in Figure 1.3

The collection of logical records that is presented to a user is called a
file.

Section 1: Information - what it means 13

LOGICAL RECORD

FIELD FIELD FIELD FIELD

1 2 3 4
NAME S.S. # OPT SAL

record 1 John Jones 999-99-9999 5A 25000

record 2 Peter Smith nnn-nn-nnnn 888 09000

etc.

Figure 1.3 Fields and records
The program knows the context of each field of data represented on a
record:

In a computer system, there are several ways of representing data both
internally (main storage) and externally (tape, disk, punched card, etc.).
The following types of representation lend themselves to processing by
System/3 70:

Arithmetic: represents numeric data.
decimal fixed point
decimal floating point
binary fixed point
binary floating point

• String: represents a sequence of characters or binary digits.
bit string (string of binary digits)
character string (string of alphameric characters)

In general, data to be used in calculations is represented arithmetically,
whereas other data is represented by strings.

Later in this chapter, more will be said about data representations.

Data Encoding / Data Compression

In addition to the types listed above, data can be represented within
character and bit strings in encoded or compressed form.

Encoding means translating data from one form of representation to
another, and is used to conserve either external or internal storage, or to
allow easier processing.

Compression means condensing repetitive information. Like encoding,
it is also used to conserve storage space.

Examples of encoding and compression of data are shown in Figure
1.4 and Figure 1.5

14 DOS/VS Data Management Guide

Virtual Data

MAX.
ENCODED RESULT CHARACTERISTIC

POSSIBLE FIELD TRANSLATION
DATA SIZE RESULT LENGTH

GERMAN GERMAN-G G
ENGLISH

7 char.
ENGLISH-E E

1 char. Language
FRENCH FRENCH-F F
SPANISH SPANISH----+- S S

RED RED-001 001
BLUE BLUE~010 010

Color ORANGE 6 char. ORANGE- 011 011 3 bits
YELLOW Y"ELLOW- 100 100
GRAY GRAY----+- 101 101

Figure 1.4 Examples of data encoding
Encoding saves space by using symbols to represent data.

COMPRESSION COMPRESSED RESULT
POSSIBLE DATA LENGTH

ALGORITHM RESULT LENGTH

... JOHN Remove blanks and
3JOH N9JONES4 12 char.

... JONES
25 char.

replace by a count
number of blanks
removed.

0015700 Remove first and 01570
0016300 7 char. last digit since 01630

5 char.
0019560 neither changes 01956
0187370 (always 0). 18737

Figure 1.S Examples of data compression
Compression saves space by leaving out unnecessary data.

Note: in the first example, blanks are represented by a period (.).

Another type of data that can be useful in information systems is virtual
data. Virtual data, unlike all other types of data mentioned so far, does not
really exist on a storage device, but is calculated from other values present.
For example, when the fields PRICE-PER-UNIT and
AMOUNT -OF-UNITS are stored in a logical record, then TOT AL-VALUE
is virtual data, since it may be calculated by multiplying the contents of the
fields PRICE-PER-UNIT and AMOUNT-OF-UNITS.

Section t: Fields and Records 15

Record Design

When designing logical records it is important to consider all of the data
representations mentioned in the preceding text. The following is a list of
considerations to bear in mind when choosing which type of data
representation to use.

1. How meaningful is the information in this field?

Since a logical record is designed for a user of the information system, only
those fields that have a meaning for the application should be included. It
should also be noted, however, that the addition of a field to records in an
existing file may require a reorganization of the entire file. It is therefore
usually advisable to incorporate an amount of 'empty' space in a record for
later addition of new fields.

2. How will the field be used?

The data representation of a field should be consistent with the
predominant usage of that field. For example, if a field is used 80% of the
time for arithmetic calculations and 20% of the time for display on a
report, it should be stored in arithmetic form (decimal or binary, fixed-point
or floating-point).

3. Are there language restrictions on a particular data representation?

Not all data representations are supported in all high-level programming
langauges (COBOL, FORTRAN, PL/I, and RPG). Thus, the data
representation should be chosen from those available in the programming
language that will be used for the particular application.

4. Is it necessary to be machine independent?

Certain data representations (fixed-decimal, fixed-binary) when
implemented for a particular computer system, may make the data
'machine-dependent', that is, this data cannot be processed by a computer
of different design. Character string data is the most compatible data
representation. In data interchange between two computer systems the data
is generally regarded as character string data, any other type of data
representation normally requiring prior agreement between the interchange
parties.

5. Is the field easy to process?

The data in a field should be in its most usable form. For example, a field
SEX can be encoded 1 for male and 2 for female. To display this
information on a report would probably require translation (J to male and 2
to female). If SEX were encoded M for male and F for female translation is
not required.

6. How will the data representation of a field affect the overall
efficiency of the process?

Certain data types in combination with encoding and compression conserve
internal and external storage, while others save processing time. These
tradeoffs should be considered in the design of a field.

16 DOS/VS Data Management Guide

/
I

~

(

7. Will changes in the data values of a field affect the representation?

In any encoding or compression scheme, prior knowledge of all possible
data values is required. Later changes in values may require extensive
changes in programs.

Fixed-Length Records and Variable-Length Records

Variable-Length Fields

A logical record is a collection of information fields relating to the same
entity. The user specifies the size of each field to hold the largest item of
data that may be encountered. The sum of the lengths of all fields in a
logical record is the length of that logical record.

- record length

- field ..
length

Figure t.6 Field length and record length
Fields and records may be of fixed or variable length, depending on the
application.

..

A fixed-length logical record is a record in which all fields are of
unchanging length and in which the location of all fields is defined for each
record within the file. Figure 1.3 is an example of a file containing
fixed-length logical records. The fixed-length format is the most commonly
used format in conventional data processing, because it is easy to process
and control. Not all representations of data, however, conform to this
format.

A record becomes a variable-length record if:

• it contains one or more variable-length fields
it contains a variable number of fixed-length fields.

For applications that use very large data files it may be important to save
external storage in order to reduce the total size of the files. One way to do
so is to make use of variable-length data. An example of data that might be
variable in length is a set of names, as is shown in Figure 1.7.

Fixed-length design
Fixed

Variable-length design
Variable

size size

IJohn Jones , 20 ,John Jonesl 10
IStanley R. Kowalski l 20 .Stanley R. Kowalski. 20

Figure t. 7 . Variable-length fields
Using variable-length fields reduces the size of a file.

Variable Number of Fixed-Length Fields
To illustrate this case, assume that a factory keeps records of its production

Section 1: Fields and Records 17

Record Identification

process by customer-order. Each record in the file describes the product
that has to be made as well as the plant activities required to make the
product. The number of activities to be performed will differ for each type
of product. The records will be designed so that they contain a fixed part at
the beginning and a variable part at the end, as is shown in Figure 1.8.

Fixed part Variable part

Customer Description Variable number of activities

order ordered to be performed in the factory

no. product
1 \2 \.3(4\----------n

Figure 1.S. Variable number of fixed-length fields
Each manufacturing step is represented by a fixed-length field. Some
products require less steps than others and will therefore use less fields in
the variable part of the record.

As we have said, the fixed length-format is most commonly used.
Users tend to choose this format, even when a variable-length format seems
to be more appropriate. The reason is that variable-length records require
more processing (more program steps, and therefore more time) than
fixed-length records. In addition, the procedures are more complex, which
means that programming (testing included) will take more time. The
programs will consume more time when they are executed, since the
procedures require more steps. A user will therefore tend to accept a certain
loss of space in external storage, if the profit in saved storage space does
not balance the extra processing time.

Logical records normally include an identification called a key. This key is
usually unique within the set of records, thus making each record unique
within the set.

The record identification which uniquely identifies a logical record in a
set is called the primary key. Examples are:

Employee number in payroll records
• Order number in order records
• Part number in inventory records.

The order of sequence among the records in a collection is usually
chosen according to the primary key, but may be changed by selecting
another field as a key and by re-sorting the records according to the new
key.

Fields that are selected for re-sorting are called secondary keys.
Examples are:

• Department in payroll records
Delivery date in order records
Inventory level in inventory records.

18 DOS/VS Data Management Guide

)

A secondary key is usually not unique within a group of records.
Figure 1.9 illustrates a set of punched cards containing personnel
information. The primary key is a personnel number which is unique within
the set of cards. As a secondary key, any other field or even group of fields
may be used. The second example in Figure 1.9 shows the same set,
re-sorted according to the secondary key 'Department'.

As will be shown in the next chapter, the primary key is an important
item when organizing data in external storage.

Section 1: Fields and Records 19

A. Set, sorted according to primary key 'Personnel Number'

Pers.
no.

t

1457 Tom Jones 88B

Mike Rose 5A

Jim Brown 5A 03700 ... -.. -....

Jerry Toms 88B 14750428-55-3729

Peter Smith 3B 38000936-85-2749

Joe Ferrari 5A 00025 025-13-2507

S. Kowalski 3B 03700017-25-2507

Ken B'aker 88B 06000 279-43-2507

John Jones 5A 25000 358-76-4769 etc

Name Dept Sal. Social
Security
Number

B. Same set, now sorted according to secondary key
'Department' :

1457 Tom Jones 88B

Jerry Toms 88B 14750428-55-3729

Ken Baker 88B 06000 279-43-2507

Mike Rose 5A , ... -.. -....

Jim Brown 5A 03700 ... -.. -....

Joe Ferrari 5A 00025 025-13-2507

John Jones 5A 25000 358-76-4769

Peter Smith 3B 38000936-85-2749

S. Kowalski 3B 03700017-25-2507 etc

1

Figure 1.9. Primary key and secondary keys
Its primary key distinguishes a record from other records in a set.

20 DOS/VS Data Management Guide

(

Data Organization

)

In order to make use of data that is stored on an external deyice it is
necessary to identify and retrieve that data. The techniques for identifying,
storing, and retrieving data are collectively referred to as Da:,la Organization.
Data organization techniques are an important part of the services of any
operating system.

Basically there are two forms of data organization:

• Sequential data organization
• Direct or random data organization.

Up to now, the most common form of data organization has been
sequential (Figure 1.10A). Records are stored and placed adjacent to one
another, and to retrieve any record, all preceding records must be scanned.
The advantage of a sequential organization is rapid access to the next
record in sequence (Figure 1.10A). Typical examples of sequentially
organized data occur on punched card equipment, printers, paper tape, and
magnetic tape.

Direct data organization ignores the physical sequence of records
stored, and accesses records on the basis of their physical location in the
storage device. The advantage of a direct organization is that any record in
a collection can be reached without scanning all preceding records. A direct
data organization is applicable to direct access devices such as disks, drums,
and data cells.

For both types of data organization, the primary key is used to
identify records. For sequential organization the records are normally
ordered in key sequence; in a direct organization they are usually not,
although the primary key is still used for identification. There are two ways
of identifying records in a direct data organization:

• Through an index (Figure 1.10B)
• Through an algorithm (Figure 1.1 OC).

Direct organization through an index means that there i,s a separate list
which contains the primary keys of records in the file, each key
accompanied by a reference to the actual data in external storage. This list
(index) may be a separate part of the file, or it may be a separate file itself.
The index is maintained in a sequential organization, according to the
values of the keys. Therefore, direct organization through an index is often
called indexed sequential organization.

Direct organization through an algorithm means that a formula is used
to establish a relationship between the primary key of a record and the
address of that record in a direct access storage device (DASD). This
technique is often called 'randomizing' or 'hashing'.
The formula (transformation algorithm) is usually arrived at by trial: an
algorithm is chosen and all primary keys are processed. Then an analysis of
the resulting storage addresses is made and, if the transformation algorithm
proves to be inadequate, a new one is developed and tested. An algorithm
is considered inadequate if it transforms many different primary keys into
the same storage address, or if many addresses are never used.

Section I: Data Organization 21

A. Sequential data organization.

record 1 record 2 record 3 record 4 record 5
prim.key prim.key prim.key prim.key prim.key etc.
= 000016 = 000258 = 000783 = 006846 = 006847

B. Direct data organization through an index.
The actual sequence of the data records in the data file
is usually the same as the sequence in which records
are entered when the file is created or updated.

INDEX DATA FILE

I
000016 I 0005 ~ record 1, primary key
000258

I
0002 I record 2, primary key I

000783 I 0003 I .., record 3, primary key I ~ 006846 I 0001 ~ record 4, primary key

006847 lOO04 ~ record 5, primary key ,

= 006846
= 000258
= 000783
= 006847
= 000016

C. Two examples of direct data organization through an algorithm.
The first example shows that the contents of the primary
key is also the address of the data. Each value has a
unique record address. This is the simplest type of
transformation algorithm.
DASD addresses marked ,*, are empty locations since no
records are present with that primary key (= address).
The second example shows an algorithm that gives non­
unique addresses. This might happen when a user wants
only the track address to be calculated and wants to
organize the records within the track himself, assuming
of course that a track has space for more than one
record. In this example 10 records can be stored on a
track. (I n certain types of disk storages devices,
manufactured by I BM, this type of track organization is
now done by hardware, making the transformation problem
much easier than in the past.)

Randomizing example 1: Randomizing example 2:

PRIMARY KEY DASD ADDR PRIMARY KEY DASD ADDR

21320 021320 01861 0000186
21321 021321 01868 0000186

021322* 02478 0000247
21323 021323 02500 0000250

021324* 02503 0000250
021325* 02509 0000250

21326 021326
21327 021327 TRANSFORMATION ALGORITHM

(Primary Key)
10

Figure 1.10. Examples of sequential and direct data organization

Physical and Logical Data Organization

In sequential organization, data records with successively higher keys are
found in physically sequential locations. In random organization, either an
index or an algorithm is used for relating keys to addresses of data
records that need not be in physically sequential locations.

Data organization has been discussed thus far in terms of data in external
storage. This is known as the physical organization of data. Physical data
organization refers to the techniques used for storing and maintaining data

22 DOS/VS Data Management Guide

in external storage as well as to the physical format of that data in external
storage.

The user may view the data in a way that is different from its physical
organization. If direct organization through an index is used to organize the
data physically, for example, the user may still view his data as if it were in
logical sequence (retrievable in key sequence) although physically the data
was stored at random. In addition, a user may establish relationships
between parts of his data: there may be relationships between data within
one record, or relationships between different records (see: Data base
concepts later in this section). The user's view of the data is called the
logical data organization. As will be explained later, a user may specify that
records are grouped together into blocks of records in order to improve
processing speed or to reduce external storage space requirements. In such a
case, the physical data organization operates on blocks of data records
while the user may still use a logical data organization which operates on
single logical records.

The Role of the Operating System in Data Organization

For both the logical and the physical data organization, an operating system
provides sets of input/output (I/O) routines for storing, retrieving, and
updating data records. There are different sets of I/O routines available,
each set supporting a certain type of data organization: sequential, indexed
sequential, or direct. In some cases, a mixture is possible. Such a set of I/O
routines is called an access method. A user may decide to maintain his data
by means of a direct access method (e.g. through an algorithm) and, for
certain programs, to retrieve this data in physical sequential order by means
of a sequential access method.

In some cases it may be necessary to give data records a special
format in order to make them "acceptable to a specific access method. In
other cases, it may be necessary to adapt data records in order to be able
to use different access methods on the same file. For example, it may be
necessary to add additional data to allow an access method to identify a
record. This type of data is called control information.

A user's problem program normally operates on single records which
are called logical records. In his logical data organization, a user provides
an interface between his logical records and the access method. This
includes pre formatting by which a logical record is 'mapped' into a format
acceptable to a specific access method and device type. This record is then
'mapped' by the access method into what is called a stored record, which is
then written to external storage as a physical record or physical block. In
some cases the logical, stored, and physical formats are identical, as in
punched card devices; in other cases they may be different.

We have described what happens when data is written (stored); when
it is read (retrieved), the mapping is done the other way around, as is
shown in Figure 1.11.

Section 1: Data Organization 23

Storage Devices

USER

~
Logical record

1
1

I
I

ACCESS METHOD

mapring~ ,

I Stored record
I

STORAGE DEVICE

maiPing ~

I Physical record

1 1------Logical data organization -----....... 1

1

...... I-----Physical data organization----_.

Figure 1.11. Data organization
Records are mapped to formats acceptable to the user (logical record), the
access method (stored record), and the storage device (physical record).

Input/ output devices include:

•
•
•

I :

Card readers and card punches
Printers
Typewriter-keyboards
Magnetic tape units
Direct access storages (disk, drum, data cell)
Paper tape readers and punches
Teleprocessing equipment
Optical readers and magnetic readers
Process control equipment
Visual display units
Audio response units
Diskette units

It is the main function of the I/O devices to provide an interface between

I main storage and data stored in external storage media such as punched
cards, magnetic tape, diskettes, or disk packs.

There are several characteristics that classify storage devices. These
include data capacity, address ability (how data is located), access time to
data, data transfer rate, physical advantages and limitations, and cost.
Devices are selected by comparing these characteristics with the
requirements of applications.

The capacity of a storage device is the amount of data that can be
stored on it. In some types of devices, part of this capacity is used by the
device itself for error checking and for synchronizing information. The
remaining capacity, accessible by programs, is usually measured in bytes.

•

Accessibility can be considered under two aspects:

addressing - how data is located
resolution - how much data (bits, bytes, words) is referred by one
data address.

24 DOSjVS Data Management Guide

Itecord Blocking

Addressing may simply be implied. For example, cards are read from a
card reader in the order in which they are placed in the hopper. A
particular card cannot be selected for reading. The opposite extreme is
direct access or direct addressing, where data is referred to explicitly by
location.

Access time is the time needed to locate the beginning of the data
desired. For magnetic tape this may be the time necessary to move the tape
to the beginning of the next record. Access time for direct access devices
such as disk consists of 'seek time', which is the time required to position
the read/write head to a particular track, plus the 'latency', or time
necessary to reach the beginning of the desired record on that track.
Once the beginning of a desired record has been reached, transfer of data
between main storage and the device occurs at a specific transfer rate
(bytes per second).

Physical records, for instance, on a magnetic tape are separated by
interrecord gaps. These 'empty spaces' between the physical records are
needed to allow the magnetic tape device to gain speed before reading or
writing and to come to a complete standstill after reading or writing. This
start-stop time is an important part of the access time for magnetic tape
devices.

A technique to reduce the number of interrecord gaps is to group
more than one logical record into a physical block. For magnetic tape this
may result in faster processing; for disk it may result in more efficient use
of space and faster processing.

The 'blocking' of records before writing and the 'de-blocking' after
reading is normally done by the operating system, without intervention by
the user. The user only supplies the system the size of physical blocks he
wants written, and the system then calculates the number of logical records
that should be put in a physical block.

A. Unblocked records. Each logical record is a physical block.

I I
Record 1 R Record 2 R Record 3

G G

B. Blocked records. More than one logical record in a
physical block.

Record 1 Record 2 Record 3 Record 4

Figure 1.12. Unblocked and blocked records

I
R
G

Record 4 etc.

Blocking is a technique for saving space and processing time.

~
)

When blocked, records need more space in main storage for input and
output areas than when unblocked. On the other hand, time is saved
because actual reading and writing takes place only when a new block is
needed (input) or when a current blpck has been completely filled (output).
In choosing blocksize, therefore, the user must balance the space he has
available for input/output areas against the average access time required to
read or write a new block. In some cases the maximum blocksize is limited

Section 1: Storage Devices 25

File Labeling

Tape Labels

not only because of space available in main storage, but also because of the
physical characteristics of the external storage device. The maximum
blocksize of a punched card is obvious; but data blocks on direct access
storage devices are also limited in size, since the size of a track limits the
maximum size of a block. And, last but not least, an operating system
usually also specifies a maximum size of blocks that can be transferred,
without regard to any type of device.

The same data file is often used by more than one program, in more than
one application, and even by more than one computer system. A company
may, for example, send the output file of its payroll program to a bank for
processing the payments. In this case the company and the bank must agree
on the format of the data: the arrangement of fields within records, the
record size, the number of logical records in a block (blocking factor), and
any required control information. But it is equally important that the file be
identified as a payroll file. This is done by labeling.

It is conceivable that a computer operator might put a stock dividend
file onto the computer, believing that it is a payroll file. The payroll
application will start treating stock data as payroll data. In many cases this
will be detected by the system because the blocksize of the wrong file will
not be the same as the expected blocksize specified by the program. But in
many other cases the blocksizes may be the same because of a standard
blocksize. For instance, when the contents of a set of punched cards is
written on magnetic tape, a blocksize of a multiple of 80 bytes will
frequently be used.

File labeling makes sure that a file can always be recognized and
identified. Generally, there are three different types of labels:

• labels for magnetic tape files (tape labels)
• labels for direct access files (DASD labels)
• labels for diskette files.

All three types are used to identify and recognize data files although the
techniques are different. Thus, they are conceptually the same, although
physically different.

Tape labels are frequently used for data interchange between different
computer systems. Therefore it is necessary that a tape file be recognized in
the same way by all systems. Magnetic tape labeling has been standardized
by industry-wide agreements. This means that a data file on magnetic tape
is delimited by one or more special records, called labels, at the beginning
and at the end of this file.

Labels that precede the data file are called header labels. They contain
information about the data, such as record format and blocking factor.
They also contain information about the physical medium (reel of tape),
such as the reel identification number.

Labels following the data file are called trailer labels. They contain
additional information about the file, such as a block count for checking

26 DOS/VS Data Management Guide

DASD Labels

(

against a count of the number of blocks processed, in order to make sure
that no blocks have been skipped due to some error.

Labels are separated from data by a special single-character record
called a tapemark. It is written as a separate block and allows a system to
distinguish between labels and data. Figure 1.13 shows the basic labeling
scheme for one magnetic tape file. If a file is written over more than one
reel of tape, this scheme applies also to each section of the file, on each
volume. If, on a reel of tape, more than one file is written, this scheme
applies to each subsequent file on that volume.

SETOF
HEADER
LABELS

T beginning of data file

M end of data file

T
M

SET OF
TRAILER
LABELS

Figure 1.13. The principles of tape labeling
Two sets of labels, separated from the data by tapemarks, are used for
identifying files on magnetic tape.

A DASD volume (for example, a disk pack), like a reel of tape, may
contain more than one file, and each file may be anywhere on the volume.
In order to locate any particular file, there is a table on each volume called
the Volume Table Of Contents (VTOC). In fact the VTOC is a set of
labels that identify each file on the volume, and through which each file
must be located.

DASD files are not usually interchanged the way tapes are. Therefore
there is at present no need for an international standard for disk labeling.
DASD labels are used only to locate, identify, and recognize data files
within one system, and every computer manufacturer has his own standard
label formats and labeling techniques for DASD.

VTOC
FILE 4 L1-...., b! VL2

L~>< , FILE 1 L4
etc. \

+ FILE 3

~ FILE 2 r---

Figure 1.14. The principles of disk or diskette labeling per volume
Each DASD or diskette volume has a table of contents consisting of a set
of labels, one label for each file on the volume.

Section 1: File Labeling 27

Diskette Labels

Label Processing

Input/Output Control

Data Base (:oncepts

A diskette volume may contain more than one file, and each file may be
anywhere on the volume. In order to locate any particular file, there is a
table on each volume called the Volume Table of Contents (VTOC). In
fact the VTOC is a set of labels that identify each file on the volume, and
through which each file must be located (see Figure 1.14.).

Tape labels, diskette labels, and disk labels are normally processed by a set
of label handling routines which are part of the operating system supplied
by the manufacturer.

The actual reading and writing of data blocks is normally done by the
operating system. The user has a set of instructions at his disposal to inform
the system what input or output action is desired. These instructions are
then interpreted by the operating system and translated into actual input
and output functions. The routines that perform those functions act as an
interface between the user's problem program and the external devices.
They are usually collectively referred to as the Input/Output Control
System (lOCS). Examples of functions are:

•
•
•

actual reading and· writing
blocking/ deblocking of logical records
label processing
checking for error conditions.

In addition, the IOCS provides a means of processing data from
input/ output buffers. A buffer is an intermediate storage area between an
external device and the user's I/O area, and allows programs to run faster.

Actual reading and writing takes a considerable amount of time
because of mechanical movements in the I/O device. On the other hand, a
move of a data record between locations in main storage is very fast. When
data is buffered, we can make use of the speed of this internal move.

An extra I/O area is placed between the external device and the I/O
area in the user's problem program. This extra area is called a buffer. As
shown in Figure 1.15, before the first logical record of a file is read by the
program of the user, the system reads it first and places it into the buffer.
When the user's problem program asks for this record, it is moved from the
buffer to the user's I/O area where it can be processed. IOCS then already
reads the next subsequent record into the buffer while the problem program
is still processing the first record, etc. As a result there is an overlap
between reading and processing, and the program runs much faster.

Most of the files in today's types of applications continue to use separate
records as entities which are unrelated to other records. That is to say,
many current implementations show the same data used in many different
files, each of them specially designed for a different purpose. For example,
a customer number may be used in applications for the commercial
department (in order files and invoice files), in applications for the

28 DOS/VS Data Management Guide

I

~

USER'S OPERATING
PROGRAM SYSTEM

Ready file for Initialize buffer: read
processing first record of data file

1-- into buffer, then return I
I to user's program.

+ l ----------------------
READ record Move buffer content to user's I/O

+ area. Read the next record
Process the into the buffer. As soon
I/O area, until as this reading starts,

last refordol return to the user's
program.

Figure 1.1S. Buffered data
Without buffering, the user's program, after processing a record, has to
wait while the external device transfers a new record to the I/O area.

production planning department (in different files for loading and
scheduling), in applications for the production control department (as an
identification of products being produced), and so on. The same holds for
other data items such as amount of products to be or being produced, and
delivery dates. Since the same data is present in different files for different
departments there is a possibility that each application interprets data
differently, from its own point of view, and since each application may
update its own data independently from the other applications there is also
a possible danger of ambiguities among the different files.

However, the advanced storage and processing capabilities of a
modern computer system enable a user to implement more complex
applications than he was used to in the past. New applications may be
designed to share the same data with other applications. This removes
ambiguities, since a data item is recorded only once, and it also minimizes
data redundancy for the same reason. Such applications are usually more
complex than they used to be in the past, mainly because of the more
complex data structure.

The collection of data which is shared by multiple applications or
which has a more complex structure is called a data base. It usually
contains much data, and usually this data is fundamental to the enterprise
because it is present in the data base only, making it one of the most
valuable resources for the enterprise. In many cases, an information system
in a data base environment shows several separate applications of the past
integrated into one, focussed on one specific area of an enterprise such as
production planning/control together with sales and transports, or one
system for the entire personnel department.

A discussion of data base concepts is beyond the scope of this manual.
A brief introduction to the concepts of data structuring is felt to be very

Section 1: Data Base Concepts 29

Data Structures

useful, however, because the design of a data base application presents one
of the greatest challenges to system designers of today.

When structuring data, the implementor of an information system
incorporates physical relationships between various types of data in the
design of the data itself. Data may be structured in many ways. For
example, the data structure may be represented as a 'tree' or as a 'network',
as is shown in the following diagrams.

Tree-structured data example:

Customer data

Order data

I nvoice data

Network-structured data example:

Type A data

Type B data

Type C data

Type D data

Implementation of Data Structures

The way of implementing a data structure depends on the type of structure
to be implemented. Some of the methods followed are typical, however, and
can be used in several types of data structures. This chapter will introduce
some possibilities for implementing a tree structure which happens to be the
most commonly used structure, applicable for many different types of
applications.

In implementing a data structure, the implementor usually provides for
additional information to accompany the data. This may be in additional
fields in the records, or it may be separate. Whether in the records or
separately, in most cases one makes use of pointers: address fields that refer
to other records. Pointers can be used to refer from one record to another
in order to establish a relationship between those two records, for example
their sequence.

30 DOS/VS Data Management Guide

~

)

Assume a tree-structured collection of data as was shown above. At
the top of the structure there is a collection of customer records each of
which may have been connected to one or more order records. Each order
record may, in turn, be connected to one or more invoice records. From
bottom to top, this structure represents a set of invoices that belong to a set
of orders, and the set of orders belongs to a set of customers. It is the task
of an implementor of an information system to provide a tool by means of
which these relationships can be identified and used.

If it is possible to assign keys that are logically related to one another,
it may be possible to use an index which reflects the structure of the data.
For example, suppose that customer records can be identified by a key
within the range COOl ... C999, and that the keys of the order records
include the key of the customer record: CnnnOOOl ... Cnnn0999 , and that
the keys of the invoice records include the key of the order record:
CnnnOnnnIOl ... CnnnOnnnI99. In this case, the index could possibly
have the following format:

........

C286 POOl (customer)
C286000l POO2 (order 1)

C286000ll0l POO3 (invoice 1)

C286000ll02 POO4 (invoice 2)
C2860002 POO5 (order 2)
C286000210l POO6 (invoice 3)

C2860003 POO7 (order 3)

C286000310l POO8 (invoice 4)

C2860003102 POO9 (invoice 5)

C2860003103 POlO (invoice 6)

In the example above, POOl ... POlO are pointers which contain the
addresses of the associated records. For example, for key C2860003I02,
pointer P009 represents the address of the invoice record with that key
(the second invoice for the third order for customer C286).

In this structure of keys, the data structure is implied in the sequence of the
keys in the index. If the keys cannot be structured as indicated above, as is
often the case, other methods must be used. One possible technique is the
list structure. Here, pointers are put in the data records themselves, for
example as follows:

Section 1: Data Base Concepts 31

Custome •• ceo. d

o. clc •• lOCO' II

In this scheme, PO represents a pointer to an order record, PI
represents a pointer to an invoice record. Each list or sublist ends with a P*
pointer that indicates the end of a list. The entry to a customer record (the
'root' of a tree) can be found through an index, and any order record or
invoice record then can be found by following the pointer chains.

One of the most important problems of structured data is that any
change in the structure must be maintained in the pointer strings as well.
For example, the addition of a new order record to the structure above
must cause the P* pointer in the last old order record to be changed into a
valid pointer to the new order record which is inserted. Also care must be
taken that no order record is deleted as long as it still contains a valid
pointer to an invoice record.

In many cases, both an index and pointers in the records are used.
The index then is used to locate individual records and the pointers in the
records are used to find the proper relationships with other records. Also
(not shown in the preceding diagram), each record often contains a pointer
to the 'top' of the hierarchy to which it belongs (above: order records
belong to a customer record, and invoice records belong to an order
record). This allows an implementation to scan pointer chains both upward
and downward.

Assume that for customer 00872 the following orders are present:
92746, 83035, and 58330. Further assume that the following invoices
exist: 27583 and 27585 for order 92746, 48947 for order 83035, and
13684, 14888, 37578 for order 58330. The keys of all records (customer
numbers, order numbers, and invoice numbers) are listed in an index in
ascending sequence, each key accompanied by a pointer to the record:

32 DOS/VS Data Management Guide

(

00872 0006893 (customer)

13684 0001468 (invoice)

14888 0003796 (invoice)

27583 0002845 (invoice)

27585 0000387 (invoice)

37578 0004487 (invoice)

48947 0003886 (invoice)

58330 0006385 (order)
83035 0002634 (order)
92746 0000279 (order)

KEY POINTER

From the example above the reader may conclude that the customer
numbers, order numbers, and invoice numbers always fall within a certain
range so that the keys of customer records, order records, and invoice
records are automatically separate in the index. Furthermore, the addresses
(pointers) of the records are obtained through some kind of randomizing
algorithm, and the different types of records occur randomly throughout the
entire collection.

The index above can be used only to locate individual records; no
interrelationship between any customer record and its order records and
invoice records can be found here. The interrelationships between records
are established in the data itself, as is shown in the last diagram.

In this example, the format of the different types of records is as
follows:

• Customer records: data, plus a pointer to an order record

• order records: data, plus three pointers:
1. an 'upward' pointer to the customer record
2. a 'horizontal' pointer to the 'next' order record for the same

customer
3. a 'downward' pointer to an invoice record

• invoice records: data, plus two pointers:
1. an 'upward' pointer to the order record
2. a 'horizontal' pointer to the 'next' invoice record for the same

order

If no 'next' record can be pointed to, the pointer is filled with a value that
can easily be recognized. In the example above, this is the value * * * *; any
other value such as, for example, 9999 can be used as well.

Section 1: Data Base Concepts 33

Any application that retrieves an invoice record can now retrieve the
associated order record as well. And having retrieved an order record, it can
also retrieve the customer record. In addition, the tree can be followed
down from customer record through all associated order records and invoice
records.

RECORD
ADDRESS:

6893 Customer data

0279 Order data (order 92746)

2845 Invoice data (invoice 27583)

0387 I nvoice data (invoice 27585)

2634 Order data (order 83035)

3886 Invoice data (invoice 48947)

6385 Order data (order 58330)

1468 I nvoice data (invoice 13684)

3796 Invoice data (invoice 14888)

4487 I nvoice data (invoice 37578)

34 DOS/VS Data Management Guide

References

This first section of this manual has introduced the major concepts of data
management, without regard to any specific operating system; The following
sections will discuss these items again (except data base) as they appear in
DOS/VS for IBM System/370.

Section I made references to the following topics, which appear in other
sections of this manual:

Fields and Records

Data Organization

Storage Devices

Record Blocking

Labeling

Input/ Output Control

Section 2:
Record Formats and Record Structures

Section 3:
Access Methods and File Organization

Section 2:
Record Structures for the Various Devices;
Appendix 1:
Devices Supported by DOS / VS

Section 2:
Record Formats and Record Structures;
Section 3:
Input/Output Control System

Section 2:
File Labeling

Section 3:
Input/ Output Control System;
Section 4:
Entire

Section I: References 35

Section 2: DOS/VS DATA MANAGEMENT FACILITIES

This section describes the separate components that constitute DOS/VS in

terms of data management.

The first chapter discusses the various kinds of record and block formats

that can be handled by the system. The next chapter relates those formats

to the various device types. The different record and block structures for

different device types are discussed.

A following chapter then relates the data files to the devices on which they

are stored. The relationships between files and volumes are explained.

A chapter on file labeling discusses methods that are used to locate and

identify data files.

The concluding chapters deal with special tools in DOS/VS such as logical

relationship between data and devices, input/output control, the

checkpoint/ restart facility, and the means of maintaining data security and

data integrity.

Record Formats and Record Structures
In data processing, a distinction is made between three different types of
records:

• logical records
stored records

• physical records (usually called physical blocks).

The examples in Figure 2.1 show how these three types of records may be
represented.

A logical record is a grouping of related information, identified in a
unique way, and treated as a unit by the application programmer. The
concept of logical record is not restricted to external data, but is carried
over into the definition of virtual storage items, including work areas in the
problem program. A logical record is seen from the standpoint of its
content rather than from its physical attributes.

For DOS/VS it is always assumed that a logical record is
stored and retrieved as one unit of information. Examples are: a
payroll record for each employee, an order record for each order, an
inventory record for each item.

A stored record is the group of data as it is manipulated by the data
management routines of DOS/VS. It contains the same information as a

Section 2: DOS/VS data management facilities 37

logical record, and it may be expanded by additional control information
required by the operating system.

A physical block is the amount of data, written to or read from an
external device as a unit. A physical block may contain one or more stored
records, or part of one or more stored records (see Spanned records). In
some cases a physical block is expanded by an additional block prefix.

The term record format refers to the choice a user must make
between:

• fixed-length records, blocked or unblocked
• variable-length records, blocked or unblocked
• spanned records, blocked or unblocked
• undefined records.

The term record structure refers to the special requirements that may be
specified by the physical characteristics of some device types. For example,
an IBM direct access storage device requires that a block of data be
preceded by a count area. This is not a requirement for magnetic tape.
Thus, even if the format of the data is the same, its structure may be
different when stored on different device types.

The following chapters discuss the record formats available" in
DOS/VS first, and then the record structures applicable to different device
types. It should be noted that these discussions apply to general DOS/VS
data management facilities, some of which may not be supported by a
particular high-level programming language.

38 DOS/VS Data Management Guide

~

Record Formats in DOS/VS

)

,.- Physical block ~
I+- Stored record -+l
j.- Logical record -+t
I I

I data I
r "'"11--1-------- Physical block ---------.-1
1 ~ Stored record ~ I : r Logical record ~ I

data data I data I
CI =additional control
information required
by operating system'

"'1"--- Physical block ~
1-011 .. --- Stored record -.:
I ~ Logical record-+t
I I I

"'"1 .. ____ ------------- Physical block ------------I-~I
I ... : .. 11---- Stored record --.: :
I 1 ~ Logical record........ II
I I I I I ci data I ci data I ci data I

bp = block prefix I"
1
~----- Physical block -.:

(extra control information I
I. 14---- Stored record ~
I

required by operating system I 1
I I r Logical record ~

or device) I I data I bp ci

... ---------------- Physical block ------------I-~I j4
1

I" I
1 I
1 I

I bp ci data I ci

14---- Stored record ~ I
:.- Logical record ~ I

I data i ci data

Figure 2.1. Examples of the differences between physical blocks, stored
records, and logical records

The first example in Figure 2.1 shows a design in which the three types of
records look the same. The second example indicates a design in which
records are blocked; here the stored record looks the same as the logical
record. The third and fourth examples indicate the use of additional
control information; here a stored record is formed by a logical record
plus the control information. The last two examples show a design in
which a block prefix is placed at the beginning of a physical block.
There are other possibilities which will be explained when the various
record formats are discussed in detail.

The application programmer is normally involved with logical records only.
He may be expected to supply additional information so that stored records
can be built by the DOS/VS data management routines. Physical blocks are
handled by both the DOS/VS data management routines and the hardware
systems.

Logical records are specified by the programmer as having one of the
following formats:

•
•
•

fixed length, blocked or unblocked
variable length, blocked or unblocked, spanned or unspanned
undefined.

Section 2: Record Formats and Record Structures 39

In addition, provision is made for the processing of ASCII magnetic tape
files, that have a special ASCII (Format D) format. Information about
ASCII tape files is presented in Appendix 5 of this manual.

The prime consideration in the selection of a record format is the
nature of the information itself. The programmer knows the type of input
his program will accept, and the type of output it will produce. His sele,ction
of a record format is based on this knowledge, as well as on an
understanding of the type of input/output devices on which the files are
written and of the access method within DOS/VS that reads or writes the
files.

Fixed-Length Records (Format F)
A logical record is considered as a fixed-length record (format F) when all
records in the file are of the same length. Format F records may be blocked
or unblocked, as is shown in Figure 2.2. The number of logical records in a
block is normally constant.

Unblocked format F record

I LOGICAL RECORD I
Blocked format F records (Blocking factor of 3).

LOGICAL RECORD LOGICAL RECORD LOGICAL RECORD

Figure 2.2. Fixed-length record format (format F)
Each logical record has the same length.

The system provides for the reading and writing of truncated blocks
(short blocks) which may be found at the end of a file containing blocked
records. This can happen when the last block is not completely filled with
the number of logical records specified for a block (blocking factor).

Variable-Length Records (Format V)
A logical record is considered as a variable-length record (format V) when
there are differences between the lengths of the records in a file. Format V
records may be blocked or unblocked, as is shown in Figure 2.3. Logical
records are expanded with additional control information specifying the
record length RL of each individual logical record, including the length of
the control information itself. Physical blocks are expanded with additional
control information specifying the block length BL including the length of
the control information itself. Programmers must supply the length of each
logical record on output; the length of a logical record is communicated to a
program by DOS/VS on input. The size of the I/O areas must be large
enough to accommodate the maximum block length that may be expected.

40 DOS/VS Data Management Guide

(
'~

(

Spanned Records (Format V)

Unblocked format V. tecord. NOTE: The length, specified in
BL and RL, includes
the length of the fields
BL and RL

BL RL I LOGICAL RECORD

RL

BL

Blocked format V records. (Blocking factor of 2)

BL RL I LOGICAL RECORD 1 RL I LOGICAL RECORD 2

RL RL

BL

Figure 2.3. Variable-length record format (format V)
Each logical record and physical block must be accompanied by length
specification.

Spanned records are records of varying length that may be written in one or
more continuous blocks. When in spanned record format, logical records are
broken into record segments before being written, and reassembled after
having been read. This dividing into segments and reassembling is all done
by the DOS/VS data management routines without intervention by the
user.

Spanned records may be useful when a file is to be moved between
device types with different characteristics, for instance, when the receiving
device type imposes a physical limitation on the maximum block size of the
sending device type. Another example when spanned records might be
useful is in text processing applications where very long strings of text must
be written. Figure 2.4 shows the fundamental concepts of spanned records.

Figure 2.4 Record spanning
When useful for the application, the operating system splits logical records
into segments before writing, and reassembles them after reading.

The processing of spanned records is an extension of variable-length
processing. The main difference between variable-length processing and the
processing of spanned records is that the programmer needs to be aware of

Section 2: Record Formats and Record Structures 41

the maximum data capacity of the I/O areas when processing
variable-length records, but not when processing spanned records. The
DOS/VS data management routines relieve, him of this concern by dividing
the logical records into segments that never exceed the size of the output
area.

The structure of a spanned record is exactly the same as that of a
variable-length record. The distinction between the processing of spanned
records and variable-length records is made by the DOS/VS data
management routines entirely. Specifying in a program that spanned records
are to be ·processed, causes the logical records to be divided into segments
(output), or to be constructed from one or more segments (input),
whenever necessary. A complete logical record may be wholly contained in
one physical block, or it may be contained in consecutive physical blocks.
In the first case, one segment constitute:> the logical record; in the latter
case, more than one segment constitutes the logical record.

Spanned records may be stored in a blocked or unblocked format.
Thus, a physical block may contain all or part of one or more logical
records. A physical block will never contain more than one segment of a
logical record; a logical record may start anywhere in anyone physical
block when blocked spanned records are processed.

Figure 2.5 shows possible arrangements of spanned records. The field
SL has the same meaning for spanned records as the field RL for
variable-length records (see Figure 2.3): it specifies the length of the data
portion that follows including the length of the field RL itself. The only
difference from variable length records is the meaning of the content of
that field: RL in Figure 2.3 specifies the length of a complete record,
whereas SL in Figure 2.5 specifies the length of part of a record (one
segment). In both cases the programmer must supply the length of the
logical record to the system when writing it, and in both cases the system
will communicate the length of the complete logical record to the problem
program when reading it. In both cases the system will compute the content
of the field BL, according to the maximum allowable blocksize, as specified
in the program.

42 DOS/VS Data Management Guide

I'

"

(
\

Control Information

A Unblocked spanned records.

Bl Sl 1 logical record

-

.Bl sci first segment of
logical record

----- Sl

__ --- ----------- Bl

$l
_ ..

Bl --.~

Bl Sl
last segment of
logical record

-----Sl

. Bl .
B Blocked spanned records.

Bl Sl 1 liI6t segment
Sl I of Nth record first segment of record N.l

. Sl . _._----------- Sl .
- Bl

Bl Sl 1 last segment
Sl fllst segment of record N • 2

of record N • 1

Sl ... Sl

"I . Bl .
Bl ,ntermed,ate segment of record N • 2

I
SL

1- Bl

last
complete

forst

Bl SL segment of Sl logIcal record N • 3 Sl segment of
I"cord N • 2 record N • 4

r-- . SL - Sl . SL --:

BL -I
Figure 2.5 Spanned record format (format V)

Field SL specifies either the length of an entire record that is not divided
into segments, or the length of part of a logical record that is divided into
segments.

The preceding text introduced the control information that is needed for the
processing of variable-length records and spanned records:

• field BL (Block Length)
• field RL (Record Length)
• field SL (Segment Length)

Section 2: Record Formats and Record Structures 43

Block Descriptor

These fields all have a size of four bytes, and are included in the
physical blocks whenever necessary; the I/O areas involved must be large
enough to accommodate the data plus the control information.

Field BL is called· the block descriptor. It specifies the length of the data
portion of any physical block, including the lengths of field BL itself and of
any other· control information fields that may be present in the physical
block after field BL. The block descriptor is maintained by the data
management routines of DOS /VS and is not furnished to the user; it is
present in all structures of variable-length or spanned records, whether
blocked or unblocked.

Record Descriptor (for Variable-Length Records)
Field RL is called the record descriptor. It specifies the length of a logical
record in a physical block, including the length of field RL itself. When a
problem program writes variable-length records it is expected to supply the
length of eacqlogical record to the data management routines of DOS/VS
which construct field RL from the information supplied. When a problem
program reads variable-length records the size of each logical record read is
furnished to the problem program by the DOS/VS data management
routines, from the field RL. The format of this information may differ,
depending on the programming language used. More specific information
can be found in the appropriate language reference manuals.

Segment Descriptor (for Spanned Records)

Undefined Records (Format U)

Field SL is called the segment descriptor. It specifies the length of a
segment of a spanned logical record, including the length of field SL itself.
Field SL may specify the length of one complete logical record if this
record is not divided into segments (it is t~en contained completely in one
physical block), or it may specify the length of part of a logical record if
this logical record is divided into segments (it is then contained in more
than one physical block). The content of field SL is computed by the
DOS/VS data management routines when spanned records are written,
from data that specifies the lengths of complete logical records as supplied
by the problem program. When spanned records are read, the DOS/VS
data management routines furnish the length of each complete and
re-assembled logical record, computed from the contents of all fields SL for
that logical record, to the problem program.

In addition to the length of a segment, field SL also ~pecifies the
segment type: whether it is the first, last, only, or an intermediate segment
of a logical record. A segment may consist of a segment descriptor only,
without any data following. It is then called a null segment. A special
indicator in the segment descriptor specifies whether a segment is a null
segment or not.

Any logical record that does not conform to either format F or format V is
considered an undefined record (format U). The DOS/VS data
management routines permit the processing of such records.

When undefined records are used, each logical record constitutes a
physical block. The~efore, any blocking or deblocking must be performed

44 DOS/VS Data Management Guide

(

Control Character (optional)

by the user's problem program itself, and that program must locate
individual records and fields.

Programs that write undefined records, must communicate the size of
each individual undefined record to the DOS/VS data management
routines; the size of each undefined record is communicated to problem
programs that read such records. For more detailed information about this
subject, the reader is referred to the manuals for the language processor he
is using.

Undefined records are useful for paper tape, console
printer-keyboards, optical character readers, and magnetic ink character
readers. They may also be used on printers, magnetic tape, and direct
access storage devices. In all cases, undefined records are process~d as
variable-length blocks without control information.

I logical record I
I 1--------- physical block --------•• \

Figure 2.6 Undefined record format (format U)
Undefined records are processed as variable-length blocks without control
information.

The programmer has the option of specifying a control character to precede
each logical record in a file. The control character is used for carriage
control on printers, or for stacker selection on card punches. If specified,
the control character must be the first character of each logical record; it is,
however, not printed or punched. If the control character option is not
used, the first character of a logical record is treated as the first data
character; otherwise, the second character of each logical record will be
treated as the first data character.

If the immediate destination of a record is a device that does not
recognize the control character (for example, disk), the data management

. routines treat this control character as really the first data character of the
record. This enables a user to store data with control characters on disk, for
example, and later move the data from disk to a printer by another
program. The control character will then be active for the printer~ provided
that the use of the· control character option is specified.

Record Structures for the Various Device Types
The physical characteristics of certain device types require certain record
structures, and may even limit the choice between record formats. This
chapter summarizes the device types that are supported under DOS/VS and
gives the record formats and record structures applicable to those types.

Note: It should be kept in mind that a specific programming language may have its own
requirements for, and restrictions on, record structure and format. For detailed
information about this subject the reader is referred to the manuals for the language
processor he is using.

Section 2: Record Formats and Record Structures 45

Card Readers and Card Punches

Printers

Console

Magnetic Tapes

Paper Tape Readers

Paper Tape Punches

All card input must consist of fixed length, unblocked records (format F)
records with a size of 96 characters or less for 96-column devices, or 80
characters or less for 80-column devices.

Card output may be any unblocked format F, V, or U. When format V
records are punched, the descriptor bytes preceding the logical records
(fields BL and RL) are not punched. If the control character option is used,
it is used for stacker selection only and is not punched.

Note: LIOCS (see "Input/Output Control System") accommodates only 8-bit character
codes. Column binary cards cannot be processed~

Printed output may be of any unblocked format F,V, or U. The maximum
size of a record is defined by· the maximum length of a print line. When
format V records are printed, the descriptor bytes preceding the logical
record (fields BL and RL) are not printed. If the optional control character
is specified, it is used for carriage control only and is not printed.

Records may be entered or displayed on the consoles in format F or U; the
blocksize must not exceed 256 characters. The control character option
cannot be used.

All standard record formats F, V, or U, blocked or unblocked, are
acceptable to magnetic tape. All control bytes are transmitted. Magnetic
tapes can be read forward or backward. Depending on the direction of
reading, the data will appear in the I/O area either left-justified or
right-justified. Spanned records may span volumes.

ASCII Tape Files.
If a DOS/VS system is required to process ASCII magnetic tape files, the
system must be prepared for this processing by specifying ASCII= YES
during system generation. Information about the format and structure of
ASCII tape files and data is presented in Appendix 5 of this manual.

Paper tape input may consist of fixed length, unblocked records (format F)
or undefined records (format U) terminate'd by an end-of-record character.
Considerations for paper tape are pr~sented in Appendix 4.

Paper tape output may consist of fixed length, unblocked records (format
F) or undefined records (format U). End-ot-record characters are added to
undefined records by the DOS/VS'data management routines.

" . ,

Considerations for paper tape are presented'in Appendix 4.

Optical Character Readers (OCR)
Records can be read from an OCR device in format F or U. Format F is
~sed when reading jounlal tapes containing an equal Ilumber of characters
per line, or when reading documents from the 3886 optical reader; format
U is used for 1287 files when the line length is van-able.

46 DOS/VS Data Management Guide

)
Optical Mark Readers (3881)

When documents are processed, each field to be read can be treated as
format F or U.

Records can be read only in fixed-length, unblocked format (F). Records
can be up to 900 bytes long. The first six bytes of the record are used for
record descriptor information. The remaining bytes of the record are used
for the mark read data. BCD (binary coded decimal) data follows the mark
read data if the BCD read feature is installed. If the serial number feature
is installed, the serial number data follows the BCD data.

Magnetic Ink Character Readers (MICR)

Diskette Storage Devices

Records can be read from MICR devices in format U. Record
characteristics are determined by the settings of the field selection switches
on the reader.

Records can be read from diskette devices only in format F. Because a
diskette is a pre-formatted medium, each track has the same fixed format.

JG,pGG"~G"GG,p8G,p~G,pGG'p[
~ I---Record 26--1 r-- Record 14 i----Record 2-

Figure 2.7 Schematic representation of the diskette track format.
Index Mark (1M) and Record Identifier (ID) are control fields for the
device.

Control Information on a Diskette Track
Control information is used to indicate the beginning of a track and the
status of that track. The control information consists of:

• index marker (1M), and
• record identifier (lD)

An index mark~r indicates the physical beginning of a track. The record
identification field identifies the location of each of the 26 record positions
on a track. Included in the record identification field are bytes used to
verify the validity of reading and writing. They are a function of the record
verification circuits of the system and are automatically generated for each
physical position. Each physical record position is formatted to allow data
records ranging from 1 to 128 bytes in length.

Direct Access Storage Devices (DASD)
All standard record formats F, V, or U, blocked or unblocked, are
acceptable to direct access storage devices. All control bytes are
transmitted.
All direct access devices have the same track format: control information, a
track descriptor record (called record zero), and data records.

Section 2: Record Formats and Record Structures 47

!---Recordzero: RO-. -,+1-, ------RecordOne: R1------QE GaPLJGap DATA AREA

~-------- Record two: R2-------.-r_---Record three: R3• etc.----

~·I ~ IG~c::J~ ~=
F~e 2.8 Schematic representation of the DASD track format

The key area is optional. Data areas that are preceded by a key area can
be located by the device, by means of a search on key. Data areas that
are not preceded by a key area must be identified by the user.

Control Information on a DASD Track
Control information is used to indicate the beginning of a track and the
status of that track. It is normally of no concern to users.
The control information consists of:

• index marker, and
• home address.

An index marker indicates the physical beginning of a track. The home
address defines the location of a track in terms of the physical parameters
of the files; it is recorded in binary format and is seven bytes long. Index
markers are written before the DASD packs are delivered to a user; home
addresses are written by an IBM-supplied utility program (see DASD
initialization and maintenance).

The flag byte is recorded on a track during a write-horne-address
operation. It indicates the condition of the track and is automatically
propagated to all physical blocks as they are recorded on the track.

The four-byte address contains the cylinder number (CC) and the head
number (HH), giving the physical location of a track.

The check bytes verify the validity of reading and writing. They are a
function of the record verification circuits of the system, and are
automatically appended to each separate area written on the same track.

index
marker

Figure 2.9

home-address

gap flag address check
byte CH I HH bytes

Schematic representation of the control information on a DASD
track

Record Zero (RO)
The first block on every track facilitates the use of an alternate track, when

48 DOS/VS Data Management Guide

the original track is found to be defective (see DASD initialization and
maintenance). Referred to as the track descriptor record or record zero
(RO), this record is unique in that it is not preceded by an address marker
(see DASD data records, below). Figure 2.10 js a schematic representation
of RO; the count area is similar to that used for normal data blocks
described in the following paragraphs.

The data area can hold updated infortnation about the data blocks on
the track following RO. A discussion of the c~pacity record portion of the
RO data area will be found in the section Access Methods (Section 4, under
Direct Access Method).

I "'" __ ----Count Area -----1 ... 11 'II-"I-----Data Area ·1
Identifier This area is used for the

Cylinder Head "E r.

Data
length

Check
Bytes

Capacity Record Option(DTFDA) Check
or the Cylinder Overflow Bytes

Gap 0 'C,
~ u

CIl c: >-

clc HIH

a: Q)

I I
al ...J
t7I >-111 Q) u: R ~

Gap Control Record (DTFIS)

Figure 2.10 Schematic representation of record zero (RO)
RO is called the track descriptor record· because it can hold information
about the data blocks following on the same track.

DASD Data Records
There are three sections in each physical DASD data block:

• the count area
• the key area (optional)
• the data area

Figure 2,11 is a schematic representation of blocks on DASD.

I •• ----Count Area-----t .. ~1 !--'<ey Area_I I-"II-~--Data Area---.. ~I

Identifier
Data Check Key Check Check

Cylinder Head 'E
~

Length Bytes
$ 8

Q) c >-

ele HI"
a: Q)

I I
aI ...J

If >-
Q) u: R ::.!

Area Bytes: Bytes
Gap (Vari.able Gap (Variable Length)

Length)

I I
A. Schematic Representation of a DASD Record with a Key Area

""'I • ...-----eount Ar'ea----.~I j,... .. -------Data Are'a-a -------I.~.I

Identifier
Data Check

~ylinder Head 'E
i

Length Bytes
0

~
u
Q) c

ele HI"
a: Q)

I I
aI ...J

If >-
Q) u: R ::.!

Gap

B Schematic Representation of a nASD Record without a Key area

Figure 2.11 Data representation on DASD

(Variable Length)

Check
. Bytes

I

Section 2: Record Formats and Record Structures 49

The Count Area.
The count area consists of the flag byte (copied from the home address flag
byte), the identifier field, the key length, the data length, and check bytes.
The count area is recorded automatically, in binary form.

The identifier field (record ID) of five bytes contains the cylinder
number (CC), the read-write head number (HH), and the record number
(R) to define the physical location of the record on a volume. The record
number is the sequential position of the record on the track. (Record zero,
see above, is the first record on a track and the following records are
numbered in ascending order.)

The key length is one byte and specifies the number of bytes in the
key area of the block, not including the two check bytes in the key area. If
the key area is not present, the key length is recorded as zero.

The data length is two bytes and specifies the number of bytes in the
data portion of the block, not including the two check bytes in the data
area.

The Key Area.
The key area consists of a key field and two check bytes. The key field is
the external record identifier such as a part number or an employee
number, that (mostly uniquely) identifies a logical record. It is usually the
major control field of the data to which it is appended. The length of a key
can vary from zero to a maximum of 255 bytes.

The Data Area.
The data area contains the actual data and two check bytes. The data area
may contain one logical record, or a number of logical records grouped
together into a blocked format. If spanned records are processed, the data
area may contain all or part of one or more logical records.

On DASD, records may be written in format F, V, or U, with or
without keys. Spanned records (format V), however, can have a key with
the first segment only; spanned records do not span volumes as they may
do on magnetic tape.

50 DOS/VS Data Management Guide

~

)

Summary
A summary of all record and block structures as they are applicable to the
various types of 110 devices is presented in Figure 2.12.

Section 2: Record Formats and Record Structures 51

UNBLOCKED, FIXED LENGTH RECORDS:

Unit record devices, inag~etic t"p~, diskette, etc.

DATA

logical record

stored record

physical block

Direct access storage devices, without a key area.

Count
DATA

area

logical record

stored record

physical block

Direct access storage devices, with a key area.

Cpunt Key
DATA

area area

logical record

stored record

physical block

BLOCKED, FIXED LENGTH RECORQS:

Magnetic tape

DATA DATA DATA

logical record

stored record

physical block

Direct access storage devices, without a key area.

Count
DATA DATA DATA

area

logical record

stored record

physical block ,.

Direct access devices, with a key area.

Count Key
DATA DATA DATA

area area

logical record
stored record

• 1---------------------1
, physical block

Figure 2.12. Record and block structures for the various devices (l of 4)

52 DOS/VS Data Management Guide

•

;:
'~

UNBLOCKED, VARIABLE LENGTH RECORDS:

Magnetic tape

BL RL DATA

logical record

stored record

physical block
-""

Direct access devices, without a key area

Count BL RL DATA
area

logical record

stored record
~

. physical block
-

Direct access devices, with a key area

Count Key
BL RL DATA

~rea area

logical record --
stored record

- physical block

BLOCKED, VARIABLE LENGTH RECORDS:

BL RL DATA RL DATA

logical record

stored record

physical block
-

Direct access storage devices, without a key area

Count
BL RL DATA DATA area RL

logical record
stored record -

physical block --

Figure 2.12. Record and block structures for the various devices (2 of 4)

Section 2: Record Formats and Record Structures 53

UNBLOCKED, SPANNED RECORDS:

Magnetic tape

SL

Direct access storage devices, without a key area

SL DATA

Direct access storage devices, with a key area

area DATA

. DATA BL DATA

stored record

physical block

logical record (excl. any fields BL and SL)

Count
area DATA

stored records

physical block

logical record (excl. any fields BL and SL)

Count
area DATA QUey SL

~--~--~--------~ stored record

physical block

logical records (excl. any fields BL and SL)

BLOCKED, SPANNED RECORDS:

Magnetic tape

SL DATA BL DATA

stored record

physical block
14---------.....;.,---~------~

logical record (excl. any fields BL and SL)

Direct access storage devices, without a key area

Count J
BL 1 SL I DATA 1 area

SL DATA

stored record

physical block -----
• logical record (axcl. any fields BL and SL)

Figure 2.12. Record and block structures for the various devic~s (3 of 4)

54 DOS/VS Data Management Guide

(

)

File Structure

UNDEFINED RECORDS:

Paper tape, MICR, OCR, Console, etc.

DATA

logical record

stored record

physical block

Direct access storage devices, without a key area

Count
DATA area

logical record

stored record

physical block

Direct access storage devices, with a key area

Count Key
DATA area area

logical record
..--

stored record

physical block

Figure 2.12. Record and block structures for the various devices (4 of 4)
A logical record is what is operated on by the user's program. A stored
record is what is handled by the access method. A physical block is what
is written on external storage.

Remarks regarding Access Methods:

Sequential-Access Method:
Records cannot be processe~ on DASD with a key area.

Direct-Access Method:
Only unblocked records can be processed.

Indexed-Sequential Access·Method:
ISAM is the only access method that can process blocked records with a key.
No variable-length records can be processed.

Virtual Storage Access Method:
Only unblocked records, without a key area, are processed; the
structure of VSAM records differs from those described here: see Section 4
of this manual.

Many different types of data files are used in data processing applications.
Theoretically, there is no restriction on the logical content of information
that can be processed, on the relationships of various units of information .
in a file, or on the organization or format of the data. As long as the user's
problem program includes the necessary processing capability and channel
programs (provided by the data management routines of DOS/VS), the
only restrictions are those imposed by the physical characteristics of the
devices, or by the maximum capacity of the computer system.

We may talk about data files either logically or physically. When
speaking about a logical file, we mean a collection of logical records that
constitute the set of data being processed. A logical file is a named,

Section 2: Record Formats and Record Structures 55

Files and Volumes

organized collection of logically related data. When speaking of a physical
file, we mean the physical characteristics of the data blocks as they appear
on an external medium, such as block structure and physical sequence.

A logical file is reflected by the description of the data in one
program, and this description normally applies to more than one physical
file. For example, the description of logical file A in Figure 2.13 applies to
different physical transaction files for different weeks.

PROBLEM PROGRAM:
Log!cal File

Physical Files

~--------------~,--------------~ I \

Transactions
Week 1

Transactions
Week 2

Figure 2.13. Logical rdes and physical rdes
A logical file is reflected by a descriptive framework that normally applies
to more than one physical file.

Depending on the device or the operating system, files may be
restricted only to a maximum size. At the other extreme, files may have to
be completely fixed with regard to size, record format, logical and physical
sequence, and, to a limited degree, logical content. Or intermediate
combinations may be allowed.

A previous chapter discussed record formats acceptable to DOS/VS;
this discussion was followed by a description of how these record formats
are related to physical structures for certain types of I/O devices. It should
be noted that, although DOS/VS may accept any of these record formats
and block structures, the choice may be limited by the use of a certain part
of the operating system (access method), or by a certain programming
language. As for high-level programming languages,. the reader is referred to
the manuals of the language processor he is using for further specifications
about the record formats and block structures that can be applied, for
assembler language this information will be found in the chapter
Input/Output Control System in this section of the manual, and in the
section Access Methods.

A recording medium that is mounted as a unit, like a reel of magnetic tape,
a diskette, or a disk pack, is usually referred to as a volume. Data files are
related to volumes in one of the following ways:

56 DOS/VS Data Management Guide

•
•
•

one complete file, stored on one volume
one complete file, stored on more than one volume (multi-volume file)
more than one file, all completely stored on the same volume
(multi-file volume)
more than one file, all or some of them broken into file segments, and
stored on more than one volume (multi-file/multi-volume)

These relationships are shown in Figure 2.14. The multi-volume file is often
used in magnetic tape processing, diskette processing, and disk processing,
simply because many files are so large that several volumes are required.
The multi-file volume, although possible on magnetic tape, is mostly used
on DASD and diskette volumes. This is because a file on a DASD or
diskette volume can be located directly whereas a file on magnetic tape can
be located only by scanning all files preceding it.

When a user has a number of large files that are processed randomly
at different times (DASD), he may decide to use the
multi-file/multi...;volume concept shown in Figure 2.14D. The main
advantage here is that the movements of the read-write heads are restricted
to a limited number of cylinders within each volume, resulting in more
efficient processing.

The user knows which volumes contain his files, and this knowledge is
supplied to DOS/VS through job control cards that precede his object
program (see File labeling). His program includes a set of label processing
routines that make use of this information to check whether the proper
volume is mounted and to locate the file on that volume. Whenever a
volume must be mounted, the console operator receives a message on the
console printer-keyboard (SYSLOG).

Section 2: File Structure 57

A. Multi volume file

I VOLWME 1 I I VOLUME 2 I I VOLUME 3 I I VOLUME 4
I I
I... DATAFILE .1
I I

B. Multi file volume

I I I I
I4--FILE l~I"'-FILE 2~1,"""'~--FILE3--~"~1

I I VOLU~E I

c. Multi file/multi volume on magnetic tape or diskettes

FILE 1 I FILE 2 FILE 3 I FILE4 I
VOLUME 1 I VOLUME2 I VOLUME 3 I VOLUME 4 1

D. Multi file/multi volume on DASD or diskettes

File 1 File 1 File 1 File 1
part 1 part 2 part 3 part 4

File 2 File 2 File 2
part 1 part 2 part 3

File 3 File 3 File 3 File 3 File 3
part 1 part 2 part 3 part 4 part 5

VOLUME 1 VOLUME 2 VOLUME 3 VOLUME 4 VOLUME 5

Since there is space left on volume 4, one disk drive can be saved
by allowing one more part of File 3 to be stored on volume 4. If
possible we may decide to have that part of the file that is least
active stored in the largest area available. It is not at all important
where the parts of the files are stored on the volumes. Assuming
that part 2 and part 5 of File 3 are less active than the other parts,
the organization could very well be as follows (not applicable for diskettes):

File 2 File 2 File 2 File 1
part 1 part 2 part 3 part 1

File 3 File 3 File 1 File 3
part 1 part 3 part 3 part 2

File 1 File 1 File 3 File 3
part 4 part 2 part 4 part 5

VOLUME 1 VOLUME 2 VOLUME 3 VOLUME 4

Figure 2.14. FOes and volumes

58 DOS/VS Data Management Guide

Multi-volume files may be used for magnetic tape, diskette, or disk files,
whereas multi-file volumes are usually used for disk or diskette volumes
only. Multi-file/multi-volume may also be used on magnetic tape,
diskette, and disk. On disk, parts of files may be placed wherever
convenient.

I

\

Cy6nder Concept

There is not much difference between the processing of magnetic tape
and of, for instance, punched card. Both types of proc~ssing are serial,
which means that records are encountered in the sequence in which they
occur in the file. Magnetic tape has the advantage that the size of data
blocks may vary between a few and many thousands of characters, with a
maximum of 32K bytes. Also, there are no specific boundaries needed for
magnetic tape blocks. Blocks are separated simply by inter-record gaps,
which are empty spaces between the blocks. An inter-record gap may occur
anywhere on the surface of magnetic tape.

I Because the physical characteristics of DASD or diskette are somewhat
different from those of magnetic tape, a DASD or diskette volume has
certain boundaries that need to be kept in mind.

A disk volume is constructed of a number of disks, one above the other.
Each disk has two surfaces that may be written with data, except the top
and bottom disks that have only one writing surface. Each disk in a volume
contains a number of tracks of a fixed data capacity. Corresponding tracks
on all surfaces are located one above the other, and may be pictured as
forming a number of concentric cylinders, each of them containing a
number of tracks. For example, as is shown in Figure 2.15, the IBM 3330
disk storage drives are accessing volumes that contain 411 cylinders (000 -
410) and each cylinder contains 19 tracks (00 - 18), so that one disk pack
has a total capacity of 7,819 tracks.

Each surface is accessed by one read-write head, that can be moved
from one cylinder to another. Tracks are numbered consecutively from top
to bottom per cylinder, so that the read-write head mechanism needs to
move only when the track to be accessed is in a different cylinder.

The above characteristics are different for each type of DASD;
detailed information is supplied in Appendix 1.

Section 2: File Structure 59

Access Assembly

Access Arms

Track Capacity -- DASD

\ ,
I' I'
I

\ -

Cylinders

--------------.

" ... -
" ~~~~-------------------.......

.... -... --­ ---- -------------

Disks

----

Figure 2.15. Cylinder cohcept, and access mechanism of disk

Track

All access arms move together as a unit so that all tracks i~ one cylinder
may be read at ohe positioning of the read-write head mechanisrri.

The IBM 3330 volumes (IBM 3336 disk packs) have a capacity of
411 cylinders. However, not aU of them are available for direct use; certain
cylinders are reserved as an alternate area, and are used only if some track
in the remaining cylinders becomes defective. In that case a track in the
alternate area is made an alternate track for the defective one. The
alternate area ensures that the stated capacity of a disk pack (404 cylinders
on the 3336 disk pack) can be maintained for the life of the pack. In the
example of a 3336 disk pack, seven cylinders out of the total of 411 are
reserved as alternate area (133 tracks). These figures are different for each
type of DASD volume.

More inform(;ition about alternate tracks and their use is supplied in
the chapter DASD initialization and maintenance.

Because each physical block has certain non-data areas (such as count field
and gaps), the net data capacity of a track varies with the number of
records that must be located on a track (see: Appendix 2). The largest
capacity would be obtained with one physical block per track. This
illustrates that it is frequently useful to have logical records blocked to the
nearest maximum blocksize, in order to make the most effective use of the
potential external storage capacity. Appendix 2 lists the track capacities
related to the amount of physical blocks per track for all DASD supported
under DOS/VS.

60 DOS/VS Data Management Guide

Track Capacity -- Diskette

File Labeling

A diskette volume has a sin.gle surface on which data may be written. This
surface contain~ 77 tracks, each of which has a fixed data capacity.
However, not all of these tntt!ks are available for direct use. When the
diskette is initialiZed, 74; of the tracks are available for use (track 0 for the
VTOC and tracks 1-73 for data). Track 74 is not used and tracks 75 and
76 are alternate tracks.

Each track is in tum devided into 26 records, each 128 bytes in length. To
make the most effective use of a diskette's potential external storage
capacity, logical records of 128 bytes in length should be used. See
Appendix 1, Figure 5.2 for a discussion of diskette device characteristics.

Data that is stored ori an external storage device may be used for data
interchange between different applications or even between different
comfjuter systems. Data can also be interchanged between different
programs of the same application, or between different runs of the same
program. An exception is a workfile, created and used by the same program
in the same job. In all other cases. some time will elapse between the
moment a file is created and the moment the same file is used again for
input.

Section 2: File Structure 61

A. Data interchange between different computer systems.

COMPUTER
SYSTEM

1
...... - DAtA-----.~1

B. Data interchange between different appl ications.

APPLICATION 1

COMPUTER
SYSTEM

2

[3----1 ~o~.m2 I~-B----B----
DATA

APPLICATION 2. ~

El---B----B---EJ---
C. Data interchange between programs within one application.

PROGRAM 1 r--DATA----I.~I PROGRAM 2

D. Data interchange between different runs of the same proaram.

1------------1
INPUT I ~ OUTPUT I data will be input for I
DATA • PROGRAM OATA ---'1 ~his program ~hen 1 t _ _ 1 __ '~~~e~~.:. ___ 1

L _______________________ J

Figure 2.16. Data Interchange
Because data is often subject to multiple uses, it needs to be labelled for
identification and protection.

It is obviously important that data files be safeguarded against
unauthorized usage or destruction. Also it is very important that a file can
be located and recognized when it is needed. File labeling is designed to

I
enable the data management routines to protect and recognize files that are
written on magnetic tape, diskette, or DASD.

The user is expected to know which volumes of magnetic tape,
diskette, or direct access storage contain his data file. He enters this
knowledge on job control cards before he creates a file, or uses it for
processing. These control cards, containing information such as file name
and volume serial number, are embedded in the input for a job, and read
before the object program that uses the file is loaded. job control selects
these control cards from the job stream and stores the information in the
label information cylinder, a file on SYSRES that is owned and maintained

62 DOS/VS Data Management Guide

by DOS/VS. Later, when the object program has been loaded and asks for

I a file on tape, diskette, or DASD, the DOS/VS data management routines
retrieve this information from the label information cylinder, and notify the
console operator which volumes are requested. After the operator has
mounted these volumes, the DOS/VS label handling routines start the
processing of labels. This sequence of reading job control cards and
processing of labels is illustrated in Figure 2.17.

JOB FLOW PROCESSING

/ ,

/ ,

/
control JOB

cards
V

CONTROL

Label
Information

/
Cylinder / Object OBJECT

/ program
l/ PROGRAM

Data Inform
Management Console
Routine Operator
Label

+ Processing ~
I------ Operator

File I Mounts
Processing Volumes
by the
Object
Program

Figure 2.17. The function of Job Control in labeling
Job Control reads user-supplied information for identifying a file and
stores it on SYSRES for later use by data management routines.

For examples of the format of job control cards in general, see
DOS/VS System Management Guide, GC33-5371; detailed information
about the format of job control cards will be presented in DOS/VS
System Control Statements, GC33-5376. In addition, the format and the
use of file labeling job control cards will also be presented in the
publications:

• DOS/VS Tape Labels, GC33-5374.
• DOS/VS DASD Labels, GC33-5375.

I File labeling in DOS/VS is conceptually the same for magnetic tape,
diskette, and DASD; physically, however, it differs according to the media.

Section 2: File Labeling 63

Magnetic Tape Labeling

The following chapters describe the most important facts about
magnetic tape labeling, diskette labeling, and DASD labeling under
DOS/VS; detailed information can be found in the two labeling manuals
listed above.

A magnetic tape to be processed under DOS /VS niust conform to certain
standards. These standards pertain to labels, placement of tapemarks, and
the grouping (blocking) of records. Record blocking was discussed earlier
under File structure; this chapter discusses tape labels and the placement of
tapemarks.

Magnetic tape labels can be processed with or without labels.
Unlabeled tapes do not contain labels; these files are delimited by
tapemarks only:

A. Single file/volume:

~ ~'I FILEA I~~] * See Note

B. Multifile/volume:

~ ~'I FILE A T T* FILE B T T
MM MM

Note: A leading tape mark before the first data block of a file will always be written
unless the program specifies otherwise. If it is specified that no tape mark must be
written before the first data block of a file, a tape mark will follow the file only, and a
double tapemark will occur at the end of a volume only.

If labels are present, they can be:

• IBM-standard
• nonstandard

This chapter will discuss IBM-standard labels only; information about
the processing of nonstandard labels can be obtained from the DOS/VS
Tape Labels manual listed above.

The IBM-standard label set for magnetic tape labeling includes the
following label types:

• volume labels
• file labels
• standard user labels

7

64 DOS/VS Data Management Guide

DOS/VS Magnetic Tape Labeling

Standard labels have a size of 80 bytes, and label types are identified
by a four-byte Label Identifier Field. The formats of the IBM-standard
volume label and file labels are illustrated in Appendix 3 of this manual. It
should be noted that, for standard labeling, only one volume label is
required per volume, and only one header label and one trailer label are
required per file. All other labels are optional and their use may even be
prohibited for high-level programming languages. For information regarding
label processing under a high-level programming language (COBOL, PL/I,
FORTRAN, RPG), the user should consult the appropriate sections in the
manuals for the language processor he is using.

Volume Labels
Whenever standard labeling is used on magnetic tape, the first block on the
reel is the required standard volume label. The standard volume label is
meant to uniquely identify one particular reel of magnetic tape (volume),
and contains the volume serial number. Usually, this number is also placed
on the outside surface of the reel for visual identification.

When standard labeling is specified for an output file, the standard
volume label is assumed to be present. It is usually written by an
IBM -supplied system utility program on each new, unused reel of the
installation. Label handling routines of DOS/VS check the volume label
and, if no standard volume label is present on an output tape, a diagnostic
message is issued. The console operator then has the option of entering the
volume serial number, so that the volume serial number can then be
written.

The standard volume label is identified by the contents VOLl in the
label identifier field. (See also Additional labels.)

Section 2: File Labeling 65

File Labels
Standard file labels are used to uniquely identify one particular file on one
reel of magnetic tape. Basically there are two types of file labels:

• File header labels: precede a whole file and, for a multi-volume file,
each section which is contained on anyone volume.

• File trailer labels: follow a file or each file section. A file always ends
with an end-of-file label. On a multi-volume file, each section except
the last is followed by an end-of -volume label.

For example:

1. A single-volume file:

2.

FILE
HEADER
LABEL

FILE A
END-OF­

FILE
LABEL

A multi-volume file (two volumes) :

FILE END-OF-
HEADER SECTION 1 OF FI LE A VOLUME
LABEL LABEL

FILE END-OF-
HEADER SECTION 2 OF FI LE A FILE
LABEL LABEL

File Header Labels
The file header label is identified by the contents HDRI in the label
identifier field. (See also Additional labels.) It contains a file identifier field,
a volume sequence number to indicate the proper sequence on a
multi-volume file, and a file sequence number to indicate the proper
sequence on a multi-file reel. It also contains the volume serial number
which is copied from the standard volume label of the first reel occupied by
the file.
On a multi-volume file, the HDR! label of the first reel is copied to each
subsequent reel, with the volume sequence number incremented by one.

File Trailer Labels
The end-of-file label is identified by the contents EOF 1 in the label
identifier field. (See also Additional labels.) A file is always terminated by
an end-of-file label. The end-of-volume label is identified by the contents
EOVI in the label identifier field. (See also (Additional labels.) It follows
each section of a file except for the last. Both types of labels contain a
block count field for the number of data blocks written between the last file
header label and the file trailer label. Except for the block count field and
the label identifier, the file trailer labels are a copy of the file header label
(see Appendix 3).

66 DOS/VS Data Management Guide

(

~.'\. t)

Additional Labels
When standard labeling is used, the VOL1, HDR1, EOV1 (multi-volume
files only), and EOF1 labels are required. Moreover, the user has the
option of writing the following additional labels:

• Up to seven additional volume labels, identified by the contents
VOL2 ... VOL8 in the label identifier field.

• Up to seven additional file header labels, identified by the contents
HDR2 ... HDR8 in the label identifier field.

• Up to seven additional end-of-file labels, identified by the contents
EOF2 ... EOF8 in the label identifier field.

• Up to seven additional end-of-volume labels, identified by the contents
EOV2 ... EOV8 in the label identifier field.

The additional labels may contain any information required by the user.
However, it should be noted that additional labels, when found on an input
tape, are bypassed by the DOS/VS label processing routines.

A collection of labels of the same type (for example, HDRI
HDR8) is called a label set. A header label set, for instance, may consist
of the required HDR1 label only, or of the HDR1 label plus a number of
additional HDRn labels.

Standard User Labels
To further define his file, the user can include standard user labels in
addition to the required and optional standard file labels just described.

As many as eight standard user header labels (UHLI ... UHL8), and
eight standard user trailer labels (UTLI ... UTL8) may be written.

A standard user header label set (if used) always follows the standard
file header label set. The two sets together constitute a file header label
group. A standard user trailer label set (if used) always follows the standard
file trailer label set (EOV or EOF). The two sets together constitute a file
trailer label group.

Thus, a file header label group may consist of the required HDR1
label only, or a file header label set only (HDR1 ... HDRn), or a file header
label set plus a user header label set (UHL1 ... UHLn). And a trailer label
group may consist of the required EOV1/EOF1 label only, or a file trailer
label set only (EOV1/EOF1 ... EOVn/EOFn), or a file trailer label set
plus a user trailer label set (UTL1 ... UTLn).

Placement of Tapemarks
DOS /VS distinguishes between file labels and data by means of a special
one-character block, called a tapemark. The placement of tapemarks is
normally of no concern to the user.

As a general rule, every label group , except the volume label
set/ group, is followed by a tapemark. The last label group on a reel is
followed by two tapemarks. A summary of standard magnetic tape labeling
is given in Figure 2.18.

Section 2: File Labeling 67

1. Standard VOLUME label set consists of:

VOL 1 label (required)
VOL2 ... VOLBlabels (optional)

2. Standard FILE HEADER label set consists of:

HDR1 label (required)
HDR2 ... HDR9 (optional)

3. Standard FI LE TRAI LER label set consists of:

EOV 1, or EOF1 (required)
EOV2 ... EOV9, or EOF2 ... EOF9 (optional)

4. Standard USER HEADER label set consists of:

UHL 1 ... UHLB (optional)

5. Standard USER TRAI LER label set consists of:

UTL 1 ... UTLB (optional)

6. A FILE HEADER LABEL GROUP MAY CONSIST OF A FILE
HEADEfl LABEL SET (2) PLUS A USER HEADER LABEL SET (4).

7. A FILE TRAILER LABEL GROUP MAY CONSIST OF A FILE
TRAILER LABEL SET (3) PLUS A USER TRAILER LABEL SET (5).

B. EXAMPLES OF LABELING CONFIGURATIONS:

A. One single file, on one single volume:

VOLUME
FILE FILE
HEADER T DATA BLOCKS OF T TRAILER

LABEL LABEL M FILE A M LABEL
SET GROUP GROUP

B. Multi volume file:

All volumes except last one (EOV labels)

VOLUME
FILE FILE
HEADER T FI LE SECTION OF T TRAILER

LABEL LABEL M FILE A M LABEL
SET GROUP GROUP

Last volume (EOF labels),:

FILE FILE

T T
MM

T T
MM

VOLUME
LABEL

HEADER T LAST SECTION OF T TRAILER T T

SET
LABEL M FILEA M LABEL MM
GROUP GROUP

C. Multi file volume:

FILE FILE FILE VOLUME HEADER T T TRAILER T HEADER T
LABEL

LABEL M
FILE A

M LABEL M LABEL M FILE B
SET

GROUP GROUP GROUP

~
T~
M~

t

Figure 2.18. Summary of standard magnetic tape labeling under DOS/VS
The processing of optional labels is the responsibility of the user.

68 DOS/VS Data Management Guide

DASD Labeling
DOS/VS provides positive identification and protection of DASD files by
recording labels on each volume (see also Data security/data integrity).

The IBM-standard label set includes volume labels and file labels. The
format of these labels is shown in Appendix 3; they are described below.
Provision is made for additional user volume labels and user file labels; user
file labels, however, are not processed by the DOS/VS label handling
routines. They are recognized by the DOS/VS label handling routines but
must be processed by user-written label handling routines as part of the
problem program.

DASD Volume Labels
Each volume in an installation must have an IBM-standard volume label
which uniquely identifies a volume. It is always located on cylinder 0, track
0, record 3. Provision is made for having up to seven additional volume
labels that immediately follow the required volume label.

Volume labels are identified by the contents VOLl ... VOL8 in the
label identifier field, which is the first four bytes of the data portion of the
label.

The volume label contains the volume serial number, and a pointer
(DASD address) to the Volume Table of Contents (see below). It is written
on a volume by an IBM-supplied utility program when the volume enters an
installation, and remains the same for its entire life in the installation. (See
DASD initialization and maintenance).

DASD File Labels
For all files (or parts of a file) on a DASD volume, file labels are stored in
a separate area on the same volume. This area is called the Volume Table
Of Contents (VTOC). The VTOC is essentially a directory of all data
blocks on a DASD volume.

DASD files can be written in one or more continuous areas called
extents, and the boundaries of each file extent are maintained in the file
labels in the VTOC. Figure 2.19 shows the fundamental concept of DASD
file labeling through a VTOC.

The number of file labels for a file depends on the type of the file, the
number of extents that constitute the file, the organization of the data in
the file, and the number of volumes containing parts of the file.
IBM-standard DASD file labels are written in a 140-byte format: 44 bytes
of key area and 96 bytes of data. The first four bytes of the data portion of
a label make up the label identifier field.

For the purpose of identifying and locating different types of data
files, three different formats of DASD file labels are available. In addition,
there is another label format which is used as a label for the VTOC itself.
Thus, the VTOC is considered to be just another file, addressed through a
pointer in the volume label, and accessed and maintained by DOS/VS only.

The complete range of IBM-standard DASD file labels consists of five
label formats; the format 5 DASD label, however, is not used by DOS/VS.

Section 2: File Labeling 69

Cylinder 0 - Track 0 - Record 3:

I
I
I

VOLl :
I
I
I

I
File-I 0
File A

I

File-ID
FILE S

Etc.

Standard Volume Label

I I
Address I I Volume I I

I Serial I I of I
I I I Number I I VTOC I

I I I I

~////
VTOC ././ I

--I I
Address" I Address I .~

I Etc./

//~ FILE A, EXTENT 1

./

/,11
/

FI LE S, EXTENT 2

/ v'
of I of

Extent 1 I Extent 2 l~/ _ l-
I ,_ --I

__ FI LE S, EXTENT 1

--,-- ;1- ' Address I Address / I ,
of I of / I "

Extent 1 I Extent 2 I
I I

I l
' I I I r I

, , ,
FILE A, EXTENT 2

~ I I
I 'I

~---------------

Figure 2.19. The fundamental concept of DASD labels in a VTOC
The VTOC lists the labels of all files or parts of files contained in the
same volume.

The Five DASD Label Formats (see Appendix 3)

• Format 1 file label.
This label is used for all files on DASD, regardless of type, number of
extents, or organization. It contains the file identification and the
specifications of the file and its records. Each volume of a file contains
a format 1 label. It provides for the specification of three extents on a
volume. If more than three extents on a volume are used for the file,
these additional extents are specified in one or more subsequent
format 3 labels (see below).

• Format 2 file label.
The format 2 file label is only required for any file that is maintained
by the Indexed Sequential Access Method (see Section 4, Access
Methods). The 44-byte key area, although present, is not used by
DOS/VS. The 96-byte data portion contains additional information
about the file unique for this type of organization, such as size and
location of indexes, data area, and overflow areas. If an ISAM file is
written over more than one volume, this additional format 2 label is
written on the first volume only.

• Format 3 file label.

•

70 DOS/VS Data Management Guide

The format 3 file label specifies any additional file extents on a
volume in excess of the first three extents, which are specified by the
format 1 label. Eacl! format 3 label can specify thirteen extents; any
number of format 3 labels can be used.

Format 4 file label.
The format 4 label describes the VTOC. It is always the first label in
the VTOC. In addition, this label provides the location and number of

)

•

available tracks in the alternate track area (see Files and volumes,
Cylinder concept).

Format 5 file label.
When the VTOC is preformatted (see DASD initialization and
maintenance), the second label in the VTOC is reserved as the format
5 file label. It is not used, however, by DOS/VS.

DASD User Header and Trailer Labels
The user can include additional labels to further define his file. Such labels
must be processed by the user in his problem program. The DOS/VS
Input/ Output Control System allows up to eight additional user header and
trailer labels on disk, and five on the IBM 2321 Data Cell. There are
certain restrictions:

• A file to be processed with physical IOCS macro instructions (see
Input/Output Control System) cannot contain user trailer labels.

• The Indexed-Sequential Access Method (see Access Methods) makes
no provision for any user labels.

User header and trailer labels are not placed in the VTOC. Instead,
they are written on the first track of the first extent allocated by the user
for the logical file. If a file is written on more than one volume, this label
track is reserved in the first extent of the file on each volume. The user's
label track is defined by IOCS as a separate extent, invisible to the user.

User labels must be 80 bytes in length. The first four bytes are the
label identifier field, the remaining 76 bytes may contain whatever
information a user requires. User labels are preceded by a four-byte key
field. Header labels are identified by UHLI ... UHL8 in both key field
and label; trailer labels are identified by UTLO ... UTL 7 in the key field,
and by UTLI ... UTL8 in the label. Each header or trailer label set is
terminated by an end-of -file record, which is a record with a data length
zero. For example, if a file has five user header labels and four user trailer
labels, the user label track contains the following:

RO Standard information, see description of record 0 under Record
Structures for the Various Devices.

Rl UHLI UHLl, user's 1st header label
R2 UHL2 UHL2, user's 2nd header label
R3 UHL3 UHL3, user's 3rd header label
R4 UHL4 UHL4, user's 4th header label
R5 UHL5 UHL5, user's 5th header label
R6 UHL6 (end-of -file record)
R7 UTLO UTLl, user's 1st trailer label
R8 UTLI UTL2, user's 2nd trailer label
R9 UTL2 UTL3, user's 3rd trailer label
RIO UTL3 UTL4, user's 4th trailer label
Rll UTL4 (end-of-file record)

For more detailed information on DASD user labels the reader is
referred to the DASD labels manual, listed in the introduction to this
chapter.

Section 2: File Labeling 71

Labeling of VSAM Files

Diskette Labeling

Labeling for VSAM files (see "Virtual Storage Access Method" in section 4
"Access Methods") is totally different from the labeling scheme above.
VSAM uses one DASD area over one or more volumes, that is used for an
arbitrary number of separate logical data files. Although this DASD area as
a whole fits in the labeling scheme described in this section, individual
VSAM files in this area are identified, located, and maintained through a
VSAM catalog which is located on SYSCA T.

DOS!VS provides positive identification and protection of diskette files by
recording labels on each volume (see also Diskette Security! Integrity).

The IBM-standard label set includes labels and file labels. The form
of these labels is shown in Appendix 3; they are described below. User
labels are not supported for diskette devices.

Diskette Volume Labels
Each diskette volume in an installation must have an IBM -standard volume
label which uniquely identifies that volume. It is always located on track 0,
record 7.

Volume labels are identified by the contents VOLl in the label
identifier field, which is the first four bytes of the data portion of the label.

The volume label contains the volume serial number, an accessibility
indicator (AI) and a standard label level indicator (SLL).

Diskette File Labels
For all files (or parts of a file) on a diskette volume, file labels are stored in
a separate area on the same volume. This area is called the Volume Table
of Contents (VTOC). The VTOC is essentially a directory of all files on a
diskette volume and is located on track 0, records 8 through 26.

Diskette files can be written in one or more continuous areas called
extents; the boundaries of each file extent are maintained in the file labels
in the VTOC. Each file may have only one extent per volume. Figure 2.20
shows the fundamental concept of diskette file labeling through a VTOC.

The number of file labels for a file depends on the number of extents
(volumes) that constitute the file.

IBM-standard diskette file labels are 80 bytes in length. The first four
bytes of the label make up the label identifier field. A single file label
format, identified by HDRl, is supported by DOS!VS. It contains the file
identification, and the specifications of the file and its records. Each
volume of a file has a HDRl label associated with it.

72 DOS/VS Data Management Guide

HDR1

HDR1

Label Processing

Track 0 - Record 7:
Standard Volume Label

. :
Volume: · · Serial : AI · · VOl1 · Number: · · · . · -- ·

VTOC

• SLL · · · B ,
TRACK 0 - RECORDS 8-26 " " "

~

. :
FILE-ID Beginning · · Extent · FILE A :..

Address • "I ~ . . • ,4 · ,-
FILE-ID Beginning ,?

Extent , :
FILE B Address · ·

" "" B

....... ~ FILE A

· · · · · · ·

Figure 2.20 The fundamental concepts of diskette labels in a VTOC.
The VTOC lists the labels of all the files or parts of a file contained on
the volume.

Standard labels are processed by the transient label handling routines of the
DOS/VS Input/Output Control System (lOCS); user labels and
nonstandard labels are processed by user-written label handling routines
which are part of the problem program. Detailed information about this
subject is given in the DOS/VS Tape Labels and DASD Labels manuals.

To process standard labels, the user need only provide the appropriate
job control cards; he need not be concerned with the actual process.

Physical Devices and Symbolic Device Names
Input/ output devices are addressed through DOS/VS data management via
physical channel and device addresses. In his problem program, a user can
refer to an I/O device by means of symbolic device names. This offers the
user a great deal of flexibility, because he can thereby change device
numbers from run to run without modifying the object program.

As will be explained later, some symbolic device names even allow a
programmer to assume a specific device type when creating a program,
although, when the program is actually running, another device type is used.

DOS/VS translates the symbolic device name into a physical channel
and device address. This is shown in Figure 2.21.

Section 2: File Labeling 73

OBJECT Symbolic
PROGRAM ~device-.

name
OPERATING

SYSTEM

Figure 2.21. Symbolic device addressing

Channel r----..
r--:-an.d~ DEVICE

device --I
address

By avoiding the direct use of physical device names in his problem
program, the user is not restricted to particular devices when actually
running his program.

DOS/VS uses two tables which are part of the resident supervisor in
lower main storage. The first table, called the Logical Unit Block table
(LUB), acts as an interface between the user's problem program and
DOS/VS and contains a list of all symbolic device names that are available
in the system. Each of the symbolic device names in the LUB table is
connected by means of a pointer to some element in the second table,
which is called the Physical Unit Block table (PUB). The PUB table
contains a list of channel and device addresses of all devices that are
physically available in the system, and indicates such status information as:

• the device is operative or not;
• the device is performing an I/O operation or not;
• the device is assigned to a symbolic device name or not.

Before a program starts running, the proper connection between a
symbolic device name and a physical device must be established. This
means that (Figure 2.22) the pointer from LUB table (symbolic device
name) to PUB table (actual device address) must be set by the job control
program. The user indicates the proper connection to job control by means
of the ASSGN job control statement or command.

74 DOS/VS Data Management Guide

(

\

Symbolic Device Name Format

)

Multiprogramming Considerations

SYMBOLIC
DEVICE
NAME IN
USER'S
PROGRAM

Supervisor
Data
management
routines

LUBTABLE

Channel
scheduler

~--------~~~----------~ I \

PUB TABLE

Figure 2.22. Relationship between symbolic device name and physical device,
via LUB and PUB tables

The ASSGN job control statement sets the pointer from LUB table to
PUB table.

A fixed set of symbolic. names is used in an installation to refer to I/O
devices. No other names can be used. All symbolic device names have the
format SYSxxx, where xxx can be either numeric or alphabetic.

Detailed information about symbolic device names and job control is given
in DOS/VS System Management Guide, GC33-S371, and DOS/VS
System Control Statements, GC33-S376.

In multiprogramming, there are special problems associated with data
management:

• Programs in different partitions may attempt to address:

1. the same physical device, using different symbolic device names;
2. different physical devices, using the same symbolic device name;
3. the same physical device, using the same symbolic device name.

• Programs in different partitions may attempt to access the same DASD
file.

The system solves the problem of maintaining a unique relation
between symbolic device names and physical devices by applying the
following rules:

• A non-DASD device can be assigned to one partition only.
• If assigned to SYSLST or SYSPCH, a tape unit cannot be assigned to

any other logical unit.

Violations of these rules result in an error message to the console
operator, who then can take corrective action.

Section 2: File Labeling 75

Device Independence

The POWER Program

Checkpoint / Restart

Symbolic device addressing gives the user a great deal of flexibility in
writing programs. He may write his programs as if a certain device were
always available. When the program is actually run and the device happens
not to be available, the symbolic device name can be assigned easily to
some other device. In some cases, this other device may even be of a
different type. This device independence is especially important in a
multiprogramming environment.

For example, each of five programs in virtual storage may assume that
it is reading punched cards from a card reader. If only one card reader is in
the installation, however, four programs may obtain their card-image input
from some other device (magnetic tape or disk) while only one is actually
using the card reader. Of course, if a program reads card-image input from
a device which is not a card reader, the actual card input must be written
on that other device before it is used for input.

Punched card output, or printed output, may be treated the other way
around: instead of data being actually transferred to a card punch or
printer, it may be written in a card- or printline-image format, to disk or
magnetic tape, and actually punched or printed later.

POWER (Priority Output Writers, Execution processors, and input Readers)
system control programming offers facilities for improving system
performance, and is designed to reduce CPU dependence on I/O unit
record devices by using intermediate storage on disk for input and output,
thus providing unit record device independence.

Full information on POWER is presented in the DOS / VS System
Management Guide, GC33-5371.

A number of causes, such as program errors and machine or power failures,
may cause processing to stop and programs to be terminated prematurely.
DOS/VS offers the user a checkpoint/restart facility to aid him iIi reducing
time lost in restarting programs that were interrupted. This feature has been
designed for programs that operate sequentially.

The checkpoint/restart feature provides for checkpoint records to be
taken periodically during the run. These records contain the status of the
job and system at the moment they are written. Thus, they provide a means
of restarting at some intermediate point rather than at the beginning of the
entire job:

...... C C C C C C error

C = checkpoint taken; restart at last checkpoint

DOS/VS writes a checkpoint in response to a CHKPT macro in the
problem program (see Macro system in the chapter Input/Output Control
System).

76 DOS/VS Data Management Guide

Checkpoint records can be written on magnetic tape or on a disk
pack. For magnetic tape, the programmer can use a separate file for
checkpoint records, or he may have them written within an output tape file.

When a program is to be restarted, information about the restarting
point is given in the RSTRT job control statement. I/O files must be
repositioned to the point at which the checkpoint was taken. In some cases,
this repositioning is done by DOS/VS; in other cases, it must be done by
the restarting program provided by the user. It is important, therefore, to
take checkpoints at the right time. Examples of proper times for taking
checkpoints are:

• After a certain number of input records have been processed. The I/O
routines of DOS/VS provide for taking checkpoints after each nth
record.

• When tape volumes are switched. The user may have the DOS/VS
label handling routines enter a user-written label processing routine
which may include taking a checkpoint.

• On operator demand. For large input files, for example, the operator
may decide to take a checkpoint when switching from one box of
cards to 'the next. A request for a checkpoint can then be issued
through the console.

The checkpoint/restart feature is a very useful tool, especially in a
context of sequential processing. For random processing, the problem of
checkpointing becomes more difficult. In many cases, random processing
includes the updating of existing records, whereby the original status of
updated records is not known. When restarting such a job, it is not always
possible to reset the data to the point at which a checkpoint was taken, and
the restart procedure may give different results.

When the random file is only small, it is useful to take a dump
periodically onto magnetic tape so that the original status of a file can be
reconstructed. For large files that are used frequently within a certain
period of time, however, this dumping may be very time consuming. A
method of resetting the status of such a file to a previous status is as
follows (see Figure 2.23).

Before records in a random file are updated, their original content is
written to a separate file (the Recorder file in Figure 2.23). Checkpoints,
whenever taken, are also written to this file. This means that if a restart is
necessary, the latest checkpoint is used to restore the status of the system,
after which the data following the checkpoint record is used to restore the
'old' content of the updated records to their original location. Then, the
updating procedure can actually be restarted: it should start with the first
activity input record that followed the last checkpoint when it was taken.

It should be clear that, even for large random files, it is always
advisable to have a dump taken periodically.

Detailed information about the checkpoint/restart feature is presented
in the publications:

• DOS/VS System Management Guide, GC33-5371

• DOS/VS Supervisor and I/O Macros, GC33-5373

Section 2: File Labeling 77

new contents

Last checkpoint
taken

"DATAFILE" contains the updated
version of the records; "RECORDERFILE"
contains the records as they were
before updating, and checkpoints.

In this example, it is assumed that a
checkpoint was taken before the
input activity for record 847 was processed.

"DATAFILE"

"Old" contents
of record 847

"Old contents
of record 628

Figure 2.23. How to make checkpoint/restart possible for a random file
Because records that are updated are first written to RECORDERFILE,
the status of DATAFILE can be restored should a restart be necessary.

Data Security / Data Integrity

Track Hold Feature

It is extremely important that sensitive data be protected against inadvertent
destruction (data integrity) and unauthorized access (data security). Payroll
data about an individual should be retrieved only by a select number of
users such as the payroll department or a particular manager. Other data,
while it may be available for reading, should still be protected against
accidental loss or inaccuracy. Equally important as prevention is the
detection and correction of events that lead to violations of security and
integrity.

In DOS/VS, labeling is the main tool for preventing illegal use of a
data file, since a user must supply keywords (file name) before he can
access the data. Also, since a label may contain an expiration date, files can
be protected against destruction of current data, provided that the
expiration date is well chosen.

The Input/Output Control System provides for the detection of I/O
errors that may occur and, in many cases, the correction of such errors.
Unrecoverable errors are communicated to the console operator.

Both file labeling and IOCS are discussed separately in this manual. In
addition, DOS/VS provides four other tools that can be used in order to
improve data security and integrity.

I See Diskette Security/Integrity for a discussion of data security
applicable to diskette volumes.

In multiprogramming, more than one program may try to access the same

78 DOS/VS Data Management Guide

(

DASD File Protect

Data Set Security Facility

file or wish to modify the same record simultaneously. This could result in
wrong results, as the following example illustrates.

Suppose that two different programs A and B both have read a certain
record X from file Y. The contents of record X is changed in two separate
work areas: program A modifying in its work area field Xl, and program B
modifying in its work area field X2. Then both programs write record X
back to its original location in file Y. The modification of the record that is
written first is canceled when the second write takes place.

The situation described above will only happen on DASD, when a
workfile is created to communicate with another program or task, or when
independent programs process the same file randomly or sequentially. The
track hold feature provided within DOS/VS prevents a track that is
modified by some program or task from being accessed by another program
or task at the same time. This facility can be active within one program
(multitasking) or between different programs in different partitions.

A full description of the track hold facility and how it is controlled is
presented in the publications:

• DOS/VS System Management Guide, GC33-5371
• DOS/VS Supervisor and I/O Macros, GC33-5373

This DOS/VS feature prohibits a user from reading or writing on cylinders
not specified in the file EXTENT statements. Thus, it is a useful tool in
direct access file organization for protecting data from illegal addressing,
should a randomizing algorithm produce a DASD address beyond the file
limits.

A full description of the DASD file protect feature is presented in the
publications:

• DOS/VS System Management Guide, GC33-5371
• DOS/VS Supervisor and I/O Macros, GC33-5373

The format 1 label (see Appendix 3) for DASD provides for a data set
security code bit setting. At OPEN time, if a file is accessed for which the
data set security bit in the format I label is ON, a warning message is
issued to the console operator. The operator must decide whether or not
this file may be accessed by the program issuing the message.

Data set security will also be active also if a data set secured file is
accidentally accessed, provided that the accessing program uses relative
addressing techniques rather than physical track addressing techniques (see
Direct Access Method in section 4 Access Methods).

The data set security bit in the format I DASD label is set ON by
means of the DLBL job control statement.

Virtual Storage Access Method (VSAM)
VSAM offers positive data security through its password option, whereby a
user must supply the correct password before he is allowed to access to a
file.

Section 2: Data Security / Data Integrity 79

Diskette Security/Integrity

VSAM also provides data integrity through its design: shared data is
protected by means of the track hold feature (see above), and VSAM can
verify write operations to prevent from errors to be introduced.

VSAM is described in detail in Section 4 of this manual.

DOS/VS provides five tools that can be used to improve data security and
integrity for diskette volumes.

Security
• The volume accessibility indicator in the volume label is checked for

all input and output files processed by IOCS. If at OPEN time the
volume accessed is indicated as being inaccessible (secured), a warning
message is issued to the console operator. The operator must decide
whether or not this volume may be accessed by the program causing
the message.

• The file security indicator in each HDR1 label for a file is checked
for all input files processed by IOCS. The user has the option of
creating a secured file at output time, using IOCS. If at OPEN time
for an input file the file being accessed is found to be secure, a
warning message is issued to the console operator. The operator must
decide whether or not this file may be accessed by the program
causing the message.

If at OPEN time a secured file is being created, the volume label is
also updated to indicate the volume is now inaccessible (secured).

Integrity
• The file can be protected against destruction by providing a well

chosen expiration date.
• The file will never be overwritten by IOCS if the HDR1 label filed

indicates that the file is write-protected.
• At OPEN time, IOCS determines that only one DTF is open to a

device.

DASD Initialization and Maintenance
IBM provides an initialize disk utility program as part of the DOS/VS SCP
package to prepare disk packs for use in an installation. This program writes
the volume label and establishes the VTOC area for cataloging file labels.

Disk packs for the IBM 2314, IBM 3330, and IBM 3340 are partly
initialized before being sent to a user: packs for the IBM 2314 (2319)
contain home addresses; packs for the IBM 3330 and 3340 contain home
addresses and track descriptor records (RO). For these types of disk packs a
track analysis has been performed, and the user need only write a volume
label and a VTOC on the new volume.

Disk packs for the IBM 2311 do not contain home addresses and ROs.
Nor has track analysis been performed. When a new pack must be
prepared, therefore, the Initialize Disk program also writes the required
home addresses and ROs, and performs a track analysis on each track to
check for any defective recording surfaces. If a defective track is spotted,
an alternate track is assigned for this defective track. The address of the
alternate track is placed in RO of the defective track; the alternate track
contains the address of the defective track, which is flagged as defective.

80 DOS/VS Data Management Guide

Defective DASD Tracks
Whenever a block of data cannot be successfully read from a DASD track
and standard error recovery procedures have not been able to remedy this
situation, a message indicating the error condition and the address of the
failing track is issued to the console operator. If the program cannot
continue, it is terminated. The user has the option of specifying whether he
wants IOCS to verify each physical block after it has been written. The
option does not require any addressable space for data in the user's
program, although it does require additional CPU time. If it is not used,
write data checks are not discovered until the block is read later for
processing. If the option is used, write errors are discovered and the track
address is included in an error message to the console operator.

How to Correct a Defective DASD Track
When the error message is issued, the operator should note the address of
the defective track. For such a track, an alternate track must be assigned,
and this is done by another IBM-supplied utility program: the alternate
track assignment program. This program flags the home address of each
defective track and selects an alternate track from the cylinders that are
reserved for that purpose. The address of the alternate track is written in
RO of the defective track, and the address of the defective track is written
in RO of the alternate track.

I Whenever a program wants to access track that has been flagged as a
defective track, this is detected. For the IBM 3330 and IBM 3340 defective
tracks are detected by the device; for the IBM 2311 and IBM 2314 (2319),
the necessary checks are done by DOS/VS. In all cases the physical
channel program is restarted for the alternate track, using the address noted
in RO of the defective track. No user action is required.

Whenever a channel program that operates in multiple track mode
reaches the end of an alternate track, this is also detected. IOCS error
recovery procedures then cause the track following the defective one to be
accessed next.

Since all switching to alternate tracks and back is done by IOCS
routines, problem programs need never be concerned with flagged defective
tracks or alternate tracks. There is, of course, a slight decrease of
performance, each time an alternate track must be accessed.

Preparing DASD Volumes for Data
The Initialize Disk utility program is used to prepare one or more complete
volumes for use in an installation. It is also used to re-initialize volumes in
case of changing job requirements. To guard against accidental destruction
of current data, the VTOC is always checked for labels reflecting
unexpected data files.

After a volume has been processed with the Initialize Disk program,
each track contains a track descriptor record (RO), that describes the entire
track as 'free space' which then can be used for new data. This is an
important feature, allowing the storing of variable-length data blocks
through a direct access processing method. It is explained in detail in
section 4 of this manual, under Capacity record in the chapter Direct
Access Method.

Section 2: DASD Initialization and Maintenance 81

For random files containing fixed-length records, the situation is
somewhat different. Here it is advisable to have the file preformatted with
dummy records of fixed length. This can be done by means of the Clear
Disk utility program, supplied by ffiM. A preformatted file has the
advantage that all possible record locations have been initialized and are
accessible for both input and output. Detailed information about the
preformatting of random files is presented under Loading and processing
direct access files, in the chapter Direct Access Method, section 4 of this
manual.

Summary of DASD Initialization and Maintenance
The Initialize Disk utility program must be used to prepare a new volume
for use. The volume will then contain:

• A VTOC, pre formatted with a series of 140-byte DASD labels. The
first label in the VTOC contains a format 4 DASD label, describing
the VTOC itself. The second label is reserved, but will not be used by
DOS/VS. All other labels are filled with binary zeros.

• A volume label, as the third record on cylinder 0 in track O.

• A home address and a track descriptor record (RO) on each track.

• Defective tracks replaced by alternate tracks.

The volume can then be used in the following procedures:

• Sequentially loading of a file with either fixed-length or variable-length
data blocks.

• Random loading and processing of a file with variable-length data
blocks.

• Preformatting of a file with fixed-length data blocks by means of the
Clear Disk utility program, which writes a complete file, filled with
dummy records. Such a file can be used for randomly loading and
processing fixed length data blocks. (The Clear-Disk utility program
operates on logical files only; the Initialize Disk utility program
operates on complete volumes.)

The user of a volume decides where the VTOC must be placed, within the
following restrictions:

• The VTOC must be placed in the area which is normally available for
data, including cylinder 0; cylinders in the alternate track area must
not be used. In cylinder 0, the VTOC may begin on track 0,
immediately following the last volume label. An exception is the
system residence pack: on this volume the VTOC must be placed
outside the residence area.

•

82 DOS/VS Data Management Guide

The VTOC must be on one or more full tracks, with the exception of
track 0 on cylinder 0, as noted in the previous lines. The VTOC must
be contained within one cylinder.

Section 3: DATA MANAGEMENT SUPPORT BY
DOS/VS

This section describes the actual data management support provided by
DOS/VS. The first chapter is devoted to organization of data files and the
processing of data files in general, and explains differences between the
organization and processing of data. It also introduces logical and physical
organization as opposed to logical and physical processing. Various
organization and processing techniques are introduced. An important
conclusion of this chapter is that a certain data organization (random or
sequential) does not always automatically imply a certain processing method
(random or sequential).

The second chapter introduces the three main access methods of DOS /VS
in general terms. It presents the main features of each of them separately,
as well as their restrictions.

The third chapter of this section gives guidelines for choosing the right
access method for a specific file in a specific processing environment. It
discusses the various attributes of a data file, and provides examples.

The last chapter explains the concepts of the DOS/VS Input/Output
Control System (lOCS). It discusses the macro system in terms of data
management, and explains its relationship to 10CS. As such it acts as an
introduction to section 4 of this manual which makes use of terms
introduced here.

This section will be of interest mainly for assembler language
programmers since they have extended control over all features provided
by Ioes. Users of high-level programming languages may find the
discussions presented interesting because they give information on how
IOeS actually processes their data. They should realize, however, that
not all of the features discussed may be available for them in their
language, and they should, therefore, consult the manuals for their
language processor as well.

Access Methods and File Organization
Users tend to look at their data logically: they prefer to talk about logical
records rather than physical blocks or stored records. Therefore, users also
tend to regard the organization of the data logically: the sequence of the
logical records and the way the data is stored and retrieved are usually
discussed from a logical point of view.

An operating system, on the other hand, handles data physically: it
arranges and accesses the data in a physical way.

The interface between these two points of view is the access method.
An access method is a technique for moving data between virtual storage
and I/O devices. It includes the mapping of logical records (user-oriented)
into physical blocks (device-oriented), via stored records (operating
system-oriented) and vice-versa. It also includes the physical organization,
which is the arranging of data, physically, in the file.

Section 3: Data Management Support by DOS/VS 83

Organization and Processing of Data
Data can be organized, physically as well as logically, in two basic ways:

• randomly
• sequentially

Organization usually refers to the way a file is created and maintained, or
to the order of the input transaction records from which the file is created
and maintained. Organization should not, however, be confused with the
processing of an existing file that has been created and updated. Processing
falls into the following basic categories (Figure 3.1):

1. Sequential processing of a sequentially organized file.
2. Random processing of a sequentially organized file.
3. Sequential processing of a randomly organized file.
4. Random processing of a randomly organized file.

Sequential Random
Organization Organization

Sequential 1 3 Processing

Random 2 4 Processing

Figure 3.1. Sequential/random organization vs sequential/random processing
Organization refers to the way data is arranged in a file, whereas
processing refers to the way in which this same data is accessed and used.

Serial Devices such as Tape, or Card

Sequential
Records on tape and card files must be processed as they are encountered
because of the physical nature of the storage medium. Therefore, tape and
card master files, and their associated transaction files (regardless of the
medium), tend to be sequentially organized.

Random
Random processing for tape files is impractical, since the desired record can
fall anywhere within the file limits, and a search for a specific record must
begin with the first record of the file. A random organization of transaction
records is common when the master file is stored on a direct access device,
since such devices are capable of retrieving records randomly. In those
cases where it is desirable to maintain information in the same sequence as
the source documentation to facilitate control and validation procedures, a
transaction file may be created in the order of occurrence, with sorting as
an intermediate step, before processing against the sequentially organized
master file.

84 DOS/VS Data Management Guide

Direct Access Storage Devices (DASD)

Sequential
In a sequentially organized DASD file, the records are stored in consecutive
order. Thus, a sequential DASD file can be processed strictly sequentially
in the same fashion as magnetic tape. This method does not, however, take
full advantage of the ability of a DASD to locate a specific record directly
and thereby eliminate the time required to read inactive records. In a
multiprogramming environment this type of sequential processing can be
more time consuming than the processing, sequentially, of magnetic tape. In
most cases a DASD volume will contain more than one file, and some of
them may be processed at the same time, by different programs or by the
same program. The read-write heads will then move many times between
files, which will result in an increased average access time.

Records are usually stored in primary key sequence, so that records with
successively higher primary keys have successively higher address numbers.
Normally there is no direct relationship between the content of a primary
key in a record and the address number of that record; the only
requirement is that the primary keys be in sequence and in sequential (not
necessarily consecutive) disk storage locations.

Additions to the file present the greatest design challenge. It is not possible
to insert new records physically in primary key sequence within the existing
file, since the records in the original (prime) area are placed adjacent to one
another. New records are known as overflow records and are put into a
separate area called overflow area. The overflow area is set aside on
specific tracks of the same cylinder or, since it may be difficult to predict
the overflow pattern, on a single cylinder or group of cylinders. An index
system is used to retrieve the records from prime area and overflow area in
primary key sequence. This index system may also be used to locate
individual records. Figure 3.2 shows a simplified example of a sequential
DASD file containing a prime area and an overflow area. In this example,
the index system mentioned above is replaced by pointers in the data
records: each pointer contains the address of the record that has the 'next
higher' primary key.

Section 3: Access methods and file organization 85

a. Initial status of the sequential DASD file.

Prime
area
only

Address #

000001
000002
000003
000004
000005

etc.

Primary key

0002865
0002866
0002885
0002890
0002891

etc.

Address #of
next record *

000002 P
000003 P
000004 P
000005 P
000006 P

etc.

b. New records must be inserted. Their primary keys are:

0002867
0002880
0002888
0002889

c. Status of the sequential DASD file after inserting.

Prime
area

Overflow
area

Address #

000001
000002
000003
000004
000005

etc.

Address #

000001
000002
000003
000004

Primary key

0002865
0002866
0002885
0002890
0002891

etc.

Primary key

0002867
0002880
0002888
0002889

* P indicates an address # in the prime area,
o indicates an address # in the overflow area.

Address # of
next record *

000002 P
000001 0
000003 0
000005 P
000006 P

Address # of
next record *

000002 0
000003 P
000004 0
000004 P

Figure 3.2. A simplified example of sequential DASD file maintenance

86 DOS/VS Data Management Guide

(

)
Random
In a random file, records are stored at an address that is obtained by
applying a mathematical formula to the primary key. No indexes are
required to locate a specific record, since the DASD address can be found
using the same conversion routine for retrieval. The main difficulty is
finding a proper conversion algorithm, especially when the primary key
contains alphameric characters. In many cases users tend to develop a
special coding scheme for the primary keys in order to obtain a more
computer-oriented (DASD-oriented) code that is easy to convert into
DASD addresses.

Example: assume an application where three types of loans (A, B, and C)
are to be stored on DASD. For those three types, the file is logically
divided into three parts, as follows:

Number of
Type of DASD addresses available

loan DASD storage
locations

A 00600-34099 33500
B 34100-47999 13900
C 48000-59999 12000

In this file, the loan account number (primary key) is used as input for a
randomizing algorithm, to obtain a DASD address for each record, as
follows:

1. Determine the type of loan, for step 2 (assume a type C loan).
2. Multiply the loan account number (assume account number 38596)

by the number of available DASD storage locations minus 1 (which
is, for type C loans, 12000-1 =11999):
38596x11999 = 463113404

3. Drop the five low-order positions of the product obtained in step 2;
the remaining part (4631) is then used as a relative DASD address:
relative to the beginning of one of the three parts of the file (for type
C loans, address 4631 is relative to location 48000).

4. Add the relative address obtained in step 3 (4631) to the lowest
location of the allotted part (48000); the result is the DASD address
desired:
4631 +48000 = 52631
Converting two different primary keys into DASD addresses can result
in the same DASD address. Such duplicate addresses are called
synonyms. If the conversion algorithm is supposed to convert primary
keys into single DASD record addresses, then all but the first
synonym become overflow records. A conversion algoritm may also
convert a primary key into a DASD track address; in this case a
synonym becomes an overflow record only if the track is completely

) filled. Overflow records are put into

Section 3: Access methods and file organization 87

a separate overflow area. The organization of random files is discussed
in more detail in the chapter Direct Access Method in the section
Access Methods. A random file may be processed sequentially be
reading the records in consecutive order. It should be kept in mind,
however, that not all record locations are necessarily filled with data.
In fact, since a randomizing algorithm is used for creating as well as
for updating a random file, the records will very often be clustered in
the file, with 'open' spaces between the clusters; not all available
record locations may be used. As long as a record location has not
been written with any kind of data, dummy or current, this will
normally cause no problem for the user: these locations will be ignored
by the sequential routines. But as soon as a record location has been
written with any kind of data, dummy or current, the sequential
routines will retrieve those records; it is then the user's responsibility
to recognize dummy records from current data, and to ignore the
dummy records. An example of a dummy record is a record that
contains deleted current data, for example overwritten with zeros, or
with a particular field set to a specific value. More information about
the use of dummy records is presented in the chapter Direct Access
Method in the section Access Methods. For random processing, all
volumes that constitute a file must be online at the same time, so that
the size of a random file is in fact limited by the online DASD
capacity of an installation.

Organization of Physical Data

Sequential Organization

The last chapter discussed the types of processing that are practical for
different types of I/O devices. It was explained that certain device types
are especially suitable for sequential processing, whereas DASD can be used
for both sequential and random processing. It was also explained that the
type of processing is not necessarily dependent on the way the data is
organized: on DASD it is possible to process a sequentially organized file
randomly, and a randomly organized file sequentially. Other device types
are designed for sequential processing and a sequential organization of the
data is then most practical.

In a sequential file, records are organized solely on the basis of their
successive physical locations in the file. The records are generally (but not
necessarily) in a sequence according to their primary keys as well as in
physical sequence. The records are usually updated or read in the same
order in which they appear. For example, the hundredth record is usually
processed after the first 99 have been processed.

Records usually cannot be deleted or added unless the entire file is
rewritten. Individual records cannot be located quickly, that is, in most
cases there is no direct relationship between the physical location of a
record and the primary key of that record. An individual record then can
be located only by scanning the entire file, until. the desired record is found.
If, however, a direct relationship between the location of a record and its
primary key does exist, which is totally the responsibility of the user, the
file may also be processed randomly, provided that the file resides on a
direct access device.

88 DOS/VS Data Management Guide

(

)

Random Organization

Indexed Sequential Organization

A file organized in a direct (random) manner is characterized by a
predictable relationship between the primary key of a record and the
location (address) of that record on a direct access device. This relationship
is established by the user of the file. This organization method is generally
used for files whose characteristics do not permit the use of a sequential
organization or for files where the time required to locate individual records
must be kept to an absolute minimum.

This organization method has considerable flexibility. Its accompanying
disadvantage is that, although the operating system includes data
management routines to read or write a file of this type, the user is largely
responsible for the logic and programming required to locate individual
records, since he establishes the relationship between the primary key of the
record and its address on the direct access device. It will be explained later
that, within certain restrictions, a file that is organized randomly, can also
be processed sequentially, that is, in physical sequential order.

Logically, the indexed sequential organization is an extension of sequential
organization, and includes the capability of random processing and
updating. Physically, depending on the implementation, the indexed
sequential organization is a technique which includes facilities for the
maintenance and management of the data in a particular type of file, and
which allows for different types of processing. DOS/VS includes two access
methods that can be characterized as indexed sequential methods.

An indexed sequential file is similar to a sequential file in that rapid
sequential processing is possible, that is, depending on the implementation it
may allow for the processing of records in physical sequential order (the
sequence in which the records appear), or in logical sequential order (the
sequence determined from the contents of all primary keys), or both in
physical sequential and logical sequential order.

An indexed sequential file is similar to a random file in that rapid
location of individual records is possible. The main difference here is that
individual records in a random file are located through a randomizing
algorithm established by the user, whereas individual records in an indexed
sequential file are located through a set of indexes.

The physical organization of an indexed sequential file is totally under
control of the operating system, so that an implementation of this type of
organization method is often called a file management system. The user
needs to do only very little I/O programming.

Relating Organization to Processing Methods Provided by DOS /VS
The three methods of data organization listed above are supported under
DOS/VS by four different access methods, each of which is described in
detail in following chapters. The four access methods are:

Sequential Access Method (SAM), for processing files in physical
sequential order.

Section 3: Access methods and file organization 89

• Sequential Access Method (SAM), for processing files in physical
sequential order.

• Direct Access Method (DAM), for processing files in random order.

• Indexed Sequential Access Method (ISAM), for organizing as well as
processing data in either a logical sequential order or a logical random
order, on the basis of the key of the individual logical records,
provided that the data is stored in the ISAM format.

• Virtual Storage Access Method (VSAM), for organizing as well as
processing files in four different ways, provided that the data stored
has the corresponding VSAM data format:

1. Physical sequential, based on the physical sequence of the
individual logical records.

2. Physical random, based on the relative location of individual
records in the file (relative to the beginning of the file, assuming
that all logical record are stored adjacent to each other).

3. Logical sequential, based on the primary keys of the individual
logical records.

4. Logical random, based on the keys of the individual logical
records.

The reader should note that both ISAM and VSAM perform the
function of actually organizing the data in external storage, while the user is
required to do this when using SAM or DAM.

Introduction to the Access Methods Provided under DOS/VS
It is the user's responsibility to choose both a data organization method and
a processing method to fit his application. As was explained before, a
sequentially organized file may be processed sequentially or randomly, and
a randomly organized file may be processed sequentially or randomly.

The Input/Output Control System of DOS/VS includes various types
of I/O processing routines for the user; these routines are grouped into four
different types of access methods, each access method supporting either a
processing method (sequential or random) or both a processing method and
an organization method (sequential or random):

• Strictly sequential processing: reading and writing records in
consecutive order is done by the Sequential Access Method (SAM),
and by the Virtual Storage Access Method (VSAM) in an
entry-sequenced data organization.

• Random (direct access) processing: reading and writing records in a
non-consecutive order is done by the Direct Access Method (DAM),
and by the Virtual Storage Access Method in an entry-sequenced data
organization.

•

90 DOS/VS Data Management Guide

Sequential DASD organization with the ability of locating individual
records directly: reading and writing records in either a primary key
sequence or individually is done by the Indexed Sequential Access
Method (ISAM), and by the Virtual Storage Access Method (VSAM)
in a key-sequenced data organization.

DAM, ISAM, and VSAM can be applied to DASD files only; SAM is
applicable for any type of device. Each of the access methods has its own
strengths and weaknesses; the characteristics of the access methods are
briefly introduced in the following pages. The next chapter will then guide
users in deciding which access method to choose. Detailed information
about programming for each of the four access methods is presented in the
last section of this publication.

In addition to the four access methods introduced above, which are
normally used for online batch processing, DOS/VS provides for
teleprocessing by means of two teleprocessing access methods:

BTAM:

QTAM:

Basic Teleprocessing Access Method

Queued Teleprocessing Access Method

Teleprocessing is beyond the scope of this manual; readers who wish
information about this subject are referred to their IBM representative or
the IBM branch office serving their locality.

Sequential Access Method (SAM)
The Sequential Access Method allows a programmer to store and retrieve
the records of a file in consecutive order. This method can be used for card,
printer, printer-keyboard, magnetic tape, optical character reader, magnetic
ink character reader, paper tape, diskette, and DASD files.

Direct Access Method (DAM)
The Direct Access Method is a flexible access method provided specifically
for use with direct access storage devices. Some of the features of these
devices are:

• Flexible record referencing, either to physical track and record address
(record ID) or to record key (control field of the physical block).

• Ability to search seque:p.tially through an area for a physical block,
using a minimum of central processing unit time.

The Direct Access Method does not include elaborate routines for handling
file maintenance functions such as:

• Adding records to existing files
• Handling overflows
• Locating synonym records
• Deleting records

These functions are entirely the user's responsibility. This may seem a
disadvantage, but, once a user has determined the way he will handle his
data, DAM will prove to be the most powerful and flexible method
available. Many of the problems associated with file maintenance are
virtually eliminated because of the advanced recording and addressing
technique of the direct access storage devices used with the IBM
System/370. High-level programming languages, on the other hand, may
not be able to support the devices fully, due to the restricted nature of the
languages themselves; high-level language programmers should consult their
language reference manual in order to learn about the device features that
are under their control.

Section 3: Introduction to the Access Methods Provided under DOS/VS 91

Indexed Sequential Access Method (ISAM)
The Indexed Sequential Access Method is a file management system
developed for use with DASD; logical records are organized by ISAM on
the basis of a collating sequence determined by their primary keys.

As a file management system, ISAM takes care of the data
organization where SAM and DAM do not. Difficulties such as handling
overflows when inserting records on an existing file and retrieving those
records later, are solved by ISAM data management routines, invisible to
the user. As a result, the management of ISAM data requires only very little
I/O programming by application programmers.

ISAM offers the programmer a great deal of flexibility in the
operations he can perform on a file. He has the ability to:

• Read or write logical records whose primary keys are in ascending
collating sequence.

• Read or write individual records randomly, on the basis of the primary
keys. If a large portion of a file is being processed, reading records in
this manner is somewhat slower than reading according to a collating
sequence. A search through indexes is required for each logical record.

• Add logical records with new keys to the existing file. The file
management routines of ISAM find proper locations in the file for the
new records and make all necessary adjustments to the indexes so that
the new records may be retrieved easily. New logical records are
physically stored in a separate overflow area; the logical sequence to
other logical records in the file is maintained through the indexes. As
new records are added, the performance of ISAM decreases slightly,
until it becomes advisable to reorganize the file (see below).

ISAM has the following restrictions:

• Data records may be blocked or unblocked but must be fixed length
only.

• All physical blocks must contain a key area; all key areas in an ISAM
file must be of the same length.

• For multivolume files, all volumes must be online for any function to
be performed.

• ISAM uses three types of data areas in auxiliary storage: prime data
area, overflow area, and indexes. The prime data area must be
allocated in one continuous area which may be over more than one
volume; it must begin on the first track (track 0) of a cylinder and it
must end on the last track of a cylinder. For a multivolume file, the
prime data area must continue from the last track of the last cylinder
on one volume to the first track of cylinder 1 of the next volume, so
that the area is considered continuous by ISAM (cylinder 0 is reserved
for labels). The overflow area and the indexes may be located on
separate volumes.

•

92 DOS/VS Data Management Guide

An ISAM file cannot be used as input for sort/merge programs. The
data is organized on a logical basis: the logical records are sequenced
logically, according to the primary keys of the records. Should a user
attempt to re-sort this file, the indexes would no longer be an
interface between the user's problem program and the data records,

/
'~

and individual records can no longer be located. It is possible, of
course, to create another file from the contents of an ISAM file, and
then to re-sort this newly created file.

• Once a file has been created as an ISAM file, it should be processed
and updated by means of ISAM only. SAM, DAM, or VSAM must
never be used to process an ISAM file; doing so might cause serious
problems in the area of data integrity. ISAM manages the data
completely, and this management function might be made impossible if
a user were to destroy an index/data relationship as established by
ISAM.

• ISAM does not provide for actually deleting logical records from an
ISAM file. However, since a user may update any logical record, he
can 'delete' a logical record by overwriting the data portion with, for
example, binary zeros, decimal zeros, or blanks. He must not include
the primary key in overwriting. He may also enter a special field in his
logical record which contains the status of the data: current data or
deleted data (See note, below). The main issue is that the user himself
must distinguish deleted data from current data, and choose some
satisfactory way of doing so.

A disadvantage of this restriction is that an ISAM file increases in size
as many logical records are 'marked' as deleted, and many new records
are added. Eventually, the file must be reorganized in order to obtain
a 'clean' file. During this reorganization, the file is read sequentially
(logically, according to the primary keys) and written (loaded) to a
new file; logical records that have been 'marked' as deleted are then
ignored by the user, and are not written to the new file.

Note: Under OS/VS 1 or OS/VS2, deleted records are flagged by placing the
hexadecimal value "FF" in the first byte. It is recommended that DOS/VS users, who
plan to use DOS/VS ISAM data under OS/VS, follow this procedure.

Virtual Storage Access Method (VSAM)
VSAM is a file management system developed for use with DASD. It
differs from the access methods described earlier in that:

1. It allows two different ways of data organization, each of which allows
different ways of processing.

2. It includes a facility for automatic space allocation for files on DASD.

3. It includes a set of service programs which can:
• define or reorganize VSAM files

load records into a VSAM file
• copy or print VSAM files
• create a backup copy of a VSAM file
• convert a SAM file or ISAM file to the VSAM format

4. It allows for the processing, by means of ISAM macros, of ISAM files
that have been converted to the VSAM format, which means that
most programs need not be changed.

5. It offers device independence by means of a special format of its
physical blocks, into which the logical records are mapped in a special
form of spanned records.

Section 3: Introduction to the Access Methods Provided under DOS/VS 93

6. It offers data integrity and data security by means of design, and
security and integrity options.

In VSAM, a user may choose between two types of data organization:

Key-sequenced data organization.
Entry-sequenced data organization.

It allows to save storage in a multipartition system, since its modules
can be loaded into the SVA. For details see DOSjVS Operating
Procedures, GC33-5378.

In a key-sequenced data organization, logical records are stored on the
basis of a collating sequence determined by the content of the primary keys
of those records. As new logical records are added and old logical records
are deleted, the entire file is kept in sequence according to the collating
sequence of the keys.

The key-sequenced data organization is basically similar to the
organization of an ISAM file. VSAM, however, does not use overflow
areas, and the decrease in performance when records are added in an ISAM
file is virtually absent in VSAM.

The key-sequenced data organization allows four types of processing
as ISAM; the first two are also allowed by ISAM.

• Processing of individual logical records randomly on the basis of their
primary keys (keyed-direct processing).

• Processing of a series of logical records in a logical sequence according
to their primary keys (keyed-sequential processing).

• Processing of individual logical records randomly on the basis of their
locations in the file (addressed-direct processing).

• Processing of a series of logical records in a physical sequence
according to their locations in the file (addressed-sequential processing).

In keyed-direct and keyed-sequential processing, the physical location
of a logical record is determined by VSAM through an index structure. In
addressed-direct and addressed-sequential processing, the user must know
the location of a logical record, relative to the beginning of the file.

As logical records are deleted, VSAM adds the space that was
occupied by those records to the amount of free space in the file.
(automatic space reclamation). In this process the physical location of
other logical records will change and, although a change of location is
communicated to the user, addressed processing requires that a user must
keep track of the location of logical records at all times. For keyed
processing the user need not be concerned about address changes of logical
records, since VSAM maintains each change in address in the index
structure.

The advantage of a key-sequenced VSAM file above an ISAM file is
that, to a certain extent, this type of file is self-reorganizing, so that the
average retrieval time will be virtually constant.

In an entry-sequenced data organization, logical records are stored
physically in the same sequence in which they were entered. New logical

94 DOS/VS Data Management Guide

records, when added to an entry-sequenced VSAM file, are physically
stored at the end of the file. This organization is basically similar to that of
a SAM file.

The entry-sequenced data organization allows only two types of
processing:

• Addressed-direct processing
• Addressed-sequential processing

These terms were explained above.

The space once occupied by deleted records in an entry-sequenced
VSAM file is not added to the amount of available free space, as is done
for a key-sequenced file. This implies that an entry-sequenced VSAM file is
not self-reorganizing. Any logical record that is entered will remain in the
same location for the life of the record, unless a user decides to change its
length; in that case the old version is automatically deleted, and the new
version is added to the end of the file. Logical records may, however, be
updated or even replaced by other logical records, provided that they are of
the same length.

VSAM accepts unblocked logical records which may be of a fixed
length or a variable length format; both formats are treated the same:
logical records are mapped into units of disk storage called control intervals.
A control interval is the unit of information that VSAM transfers between
virtual storage and auxiliary storage, and may consist of one or more
physical blocks. The amount of space available in a control interval is the
same for all control intervals that constitute a VSAM file.

Logical records are transformed into a special type of spanned record
structure; they may span physical blocks within a control interval, but they
will never span control intervals.

A VSAM file may physically be written over one or more extents,
over one or more volumes; logically, however, a VSAM file is considered
one continuous string of bytes, each byte addressable by the user.
Individual logical records are addressed by their relative byte address
(RBA), relative to the logical beginning of. the file, rather than by their
actual DASD address. This concept allows one file to be copied to another
area on the same device or on another, even on another device type,
without changing the address scheme. VSAM calculates DASD addresses
from the RBAs, taking the physical characteristics of the file and of the
device into account.

In addition to the data organization facilities described above, VSAM
has the following features:

• Automatic space allocation .
In the other access methods (SAM, DAM, and ISAM) the user is
required to keep track of occupied and free space on D ASD volumes,
and to assign free space to his files before they are created. This
contrasts with VSAM. An arbitrary total amount of DASD space is
assigned to VSAM. From this total amount of space, VSAM selects
the amount required and assigns it to a VSAM file. All of the VSAM
data space is maintained through a separate catalog which describes
the logical and physical attributes of all VSAM files in one system.

Section 3: Introduction to the Access Methods Provided under DOS/VS 95

Space allocation by VSAM is dynamic; as needed, more space is
added. During the allocation process (generally, during most of the
processes that require updating of the catalog only) the volumes
involved do not usually need to be online. The total space assigned to
VSAM may amount to more volumes than the number of DASD
drives available in an installation.

• ISAM interface routine.
After having been converted into the VSAM data format, ISAM files
may continue to be processed by the same program which continues to
use 'old' ISAM macros. It is recommended to convert ISAM files into
the VSAM format since reorganization of the data will then not be
needed as frequently. A VSAM file has no overflow areas; a new
record is inserted physically in a sequence according to its key.

• Data integrity and data security.

•

VSAM protects data by means of its design and its security options.
The design of VSAM allows users to access data only by specifying
the correct catalog information; the catalog itself points to the data,
and the knowledge stored in the catalog is restricted to VSAM. Using
the security options, a VSAM user may specify that only a correct
password will permit data to be accessed.

Device independence .
The common VSAM record structure into which all logical records are
mapped, and the fact that a VSAM file is logically considered as a
continuous area, allows a VSAM file to be processed on different
device types without reprogramming. The only restriction is that a
VSAM file must be entirely stored on volumes of the same device type.
Also, a VSAM file may be copied to another file, and the copy can be
processed without changing the program: the catalog will point to the
proper extents, and VSAM will compute correct DASD addresses in
all cases.

• Data portability.
Because the data is cataloged in the VSAM catalog, a VSAM file
belongs to a specific installation. The set of utility programs available,
however, includes the possibility of 'exporting' a VSAM file from one
installation, and of 'importing' the same file into another. The catalog
information is then carried along with the data. Data portability
includes the possibility of interchanging VSAM files between DOS/VS
and OS/VS.

VSAM has the following restrictions:

• Logical records may be of fixed length or of variable length format,
but must be unblocked. Logical records are stored in VSAM record
format, invisible to the user.

• A VSAM file must be processed by VSAM only. Other access
methods do not have access to the VSAM catalog and therefore
cannot determine the required DASD addresses.

•

96 DOS/VS Data Management Guide

A VSAM file cannot be used as input for sort/merge programs,
because this would affect the catalog information. In addition, the
location of a logical record could no longer be found via the index
after re-sorting the file. This does not preclude the creation of another

VSAM file in another sequence by a user program, provided that the
original file remains undisturbed or is deleted afterwards.

The user should realize that the physical locations of logical records in
a key-sequenced VSAM file will change as other logical records are
added or deleted. Therefore, addressed processing of such a file will
present a problem unless the user keeps track of all these changes.
VSAM communicates all address changes to the user, and the user
could maintain his own indexes as separate VSAM files. Such a 'user
index file' could contain logical records consisting of a key and, as the
only data, the address of a logical record in the main file. An address
change in the main file should then result in an update of a record in
the 'user index file'.

Choosing the Right Organization and Processing Methods
It was explained earlier in this section that there are differences between
the organization of a file and the processing of a file. It was explained also
that it is mainly the DASD which allows for different organization methods
and processing methods. The other device types such as card, magnetic
tape, and printer, have characteristics that call for sequential organization
and processing. It is evident that the choice of a device type which can
handle only sequential processing limits the possible later changes in the
application. Therefore, a choice of a specific device type must be based on
an overall consideration of the application and of its requirements for the
near future, rather than on a few programs in that application or on
temporary requirements.

This chapter indicates the considerations that must be kept in mind for
files that are stored on direct access storage devices. It stresses the
organizational aspects, by relating those aspects to processing requirements
and characteristics of the data. It indicates how a file should be created and
maintained rather tp.an how it should be processed.

Organization and Processing of DASD files
An installation equipped with DASD lends itself to different file
organization and processing methods. It is important, therefore, to analyze
each· file and the programs that process it to ensure that the chosen method
constitutes the best solution to the data processing requirements of the
installation.

In many cases, the most suitable type of organization and processing is
immediately evident. However, some applications may require additional
study because of their complexity, their unusual processing requirements, or
because of the wide range of programs that use a particular file. This is an
important aspect of planning for a data processing system. Decisions in this
area may affect system configuration requirements and should be made
before programming even begins. The general level of efficiency of the data
processing installation may be affected.

There are no absolute rules for the resolution of uncertainties
regarding the organization and retrieval alternatives. However, there are
several criteria that may provide an indication of the best solution.

Criteria for Choosing an Organization Method
The following items form a basis for a decision concerning the organization
of a file:

Section 3: Introduction to the Access Methods Provided under DOS/VS 97

File Activity

File Volatility

• File activity
• File volatility
• Filesize
• Response time

These items are discussed in the following text. The reader should note the
following:

In the following text, if a reference is made to sequential
organization, the user may choose between SAM or the entry-sequenced
organization of VSAM. If a reference is made to indexed sequential
organization, the user may choose between ISAM or the key-sequenced
organization of VSAM (the VSAM approach is generally preferred). If
a reference is made to random organization, the user may choose
between DAM and the entry-sequenced organization of VSAM; special
considerations are necessary for VSAM, however.

Activity refers to the number of records in a file for which there are
transactions. This is usually expressed in a percentage. For example, 100/0
activity in an inventory file means that, during a period of time, there are
transactions to be posted to 10% of the logical records contained in the
inventory file.

As the file activity increases to 60% or more, sequential processing
becomes more efficient. Sequential processing (sequential on the basis of
the primary key) implies either sequential or indexed sequential organization.
A high activity implies batch processing which means that transactions need
not be posted at the moment they occur. In fact, the time between the
occurrence and the posting may vary from a few hours to weeks or even
months, depending on the application.

Some applications do not allow transactions to be batched. An
example would be an online inventory file where the transactions have to
be handled as they occur.

A low file activity may justify direct retrieval instead of sequential
retrieval; for direct retrieval on the basis of a primary key either an indexed
sequential or a direct organization must be used.

Volatility refers to the number of additions to, or deletions from, an
existing file. First, consider the effect of making additions to or deletions
from a file that is sequentially organized by means of SAM. As is illustrated
in Figure 3.3, this case is similar to a construction which is often used for
magnetic tape. The existing file is merged with a transaction file which is
ordered in the same sequence. As output an updated version of the original
file is created. (The transaction file, of course, may be on any device, as
required).

With a low volatility (few additions and deletions), an indexed
sequential organization provides a practical solution. One of the advantages
of an indexed sequential organization is that additions and deletions can be
handled without copying the file. This is illustrated in Figure 3.4.

98 DOS/VS Data Management Guide

~
jY

transaction
file

data
file A

updating
program

Figure 3.3. Updating a sequentially organized file (SAM)
A sequential file has to be copied for updating.

transaction
file

updating
program

Figure 3.4. Updating an indexed sequential file (V SAM or ISAM)
An indexed sequential file need not to be copied for updating.

updated
data
file
A

indexed­
sequential
data file

The processing efficiency of an ISAM file decreases as the quantity of
activity increases. Logical records cannot be physically removed from the
file: they can only be 'tagged' for deletion, and be removed later when the
entire file is reorganized. Additions cause logical records to be placed in an
overflow area, and retrieval of those records in the collating sequence of
the file requires more time than the retrieval of a logical record from the
prime data area where they were stored when the file was created (loaded).
This is caused by the additional access arm movements between prime data
area and overflow area, and by the record-by-record search needed for
overflow records. Therefore, an ISAM file must be reorganized from time
to time; processing with a reorganized ISAM file is highly efficient.

The cycle of creating an ISAM file, followed by processing -
reorganizing - processing, is shown in Figure 3.5. The reorganization of an
ISAM file consists of reading the existing file in collating sequence, and
copying it to a new one, ignoring all logical records that have been 'tagged'
for deletion. The new file then replaces the old one in the problem
programs processing the file.

Section 3: Choosing the Right Organization and Processing Method 99

ONE-TIME
PROCEDURE:

CREATE
ISAM
FILE

N TIMES:

UPDATE
ISAM
FILE

REPLACES
ORIGINAL

ONE

AFTER N TIMES
UPDATING:

REORGANIZE
ISAM
FILE

Figure 3.S. The cycle of creating, processing, and reorganizing an ISAM file
Because logical records cannot be physically removed from this file,
occasional reorganization is needed to maintain processing efficiency.

Processing efficiency is not affected in VSAM files by the factors that
influence ISAM files. A key-sequenced VSAM file has the following
advantages over an ISAM file:

• Deleted logical records are physically removed from the file, and the
space they occupied is added to the amount of free space in the file.

• Added logical records are not placed into an overflow area; the entire
file is kept in collating sequence, and new records are physically
entered in the proper collating sequence.

Efficiency of a VSAM file may be slightly lower than that of a
reorganized ISAM file. However, the efficiency of a VSAM file is almost
constant and therefore the average processing efficiency of an average
key-sequenced VSAM file is higher than of an ISAM file. Moreover, a
VSAM file does not require frequent reorganizing as an ISAM file does.

This does not mean that a key-sequenced VSAM file never requires
reorganizing. As logical records are deleted during processing, the space
they occupied is added to free space within the collating sequence in a
control interval (see Figure 3.6). This free space will be used again for
another logical record within the same range of sequence of that control
interval. As long as such new records are not added the space will not be
used, unless the entire control interval becomes completely empty. Thus,

100 DOS/VS Data Management Guide

~.!
~

~ ..•

~

although there may be free space available in some place within the file,
there may be other places in that file where more space could be required
than is available. This may result in an inefficient usage of space, which will
be resolved when the file is reorganized like an ISAM file.

Figure 3.6 illustrates two subsequent control intervals from which a
number of records are deleted. The space that is freed can be used again
for other logical records within the same range of sequence only (3 to 44,
and 45 to 85, in the example given). If such records are not added, the
space will not be re-used.

CONTROL INTERVAL 1:

I Key=3 I Key=9 Key=38 Key=44 Free Space

CONTROL INTERVAL 2:

I Key=45 I Key=57 Key=85 Free Space

After deleting the records with keys 9, 38, 45, and 57:

CONTROL INTERVAL 1:

I Key=3 I Key=44 I Free Space

CONTROL INTERVAL 2:

Key=85 Free Space

Figure 3.6. Deleting logical records from a key-sequenced VSAM {"de
If the resulting free space is not to be used for new records,
reorganization may be advisable.

Additions to and deletions from a random file which is organized and
processed by means of the Direct Access Method do not necessitate the
creation of a new file, as they do for a sequential file. However, as the file
extents fill up, the randomizing algorithm and its corresponding synonym
(overflow) processor are more heavily taxed. On the other hand, DAM
offers various possibilities for randomizing: if a randomizing algorithm can
be established which (more or less) guarantees a unique DASD address for
all records, the user may decide to randomize to a record address and move
the few synonyms to an overflow area. Moreover, the devices allow the use
of algorithms that randomize to track addresses or even cylinder addresses,
in this case the number of synonyms may be reduced for more difficult
randomizing problems.

If a user can establish a randomizing algorithm that produces unique
addresses, an entry-sequenced VSAM organization may be an efficient
solution. In such a case he may pre-format an 'empty' entry-sequenced file
consisting of dummy records, and replace these with real logical records
while loading the file, using addressed-direct processing. This has the
advantage of retaining all of the features of VSAM such as data portability,
data integrity, and data security, as well as computing logical addresses

Section 3: Choosing the Right Organization and Processing Method 101

Filesize

relative to the beginning of the file. This approach, how~ver, is practical for
fixed-length logical records only.

Finally, the following items should be considered in regard to file
volatility:

• What are the operational limitations on each method of organization?
For example, remember that an ISAM file cannot be sorted, and that
ISAM or VSAM files can be processed only by their own access
methods respectively.

• If ISAM seems applicable, the key-sequenced VSAM organization is
preferable because it offers all of the ISAM facilities and some more
of its own. Whether reorganization is required and when, should also
be taken into consideration.

• If random processing is required it should be considered whether
addressed processing must be performed through pointers from one
user's record to another. Such pointers must be created and
maintained by the user in his problem program. In a key-sequenced
VSAM file they will be difficult to maintain because the physical
locations of logical records may change as records are added or
deleted.

Many variables must be considered in answering these questions. It is
impossible to provide direct answers except in terms of a specific file and a
well-defined application.

The user must consider the fact that his online capacity is limited. Three
important aspects of file organization are affected by the size of a file:

• A sequential file may be written on any number of volumes, that are
then mounted and processed consecutively. Each volume may be
mounted as needed, but the manual intervention that is required is
time consuming.

• An ISAM file must be entirely online for any type of processing; a
VSAM file must be entirely online unless only address-sequential
processing is done. Then each volume may be mounted as needed.

• A DAM file must be entirely online for any type of processing.

The fact that an ISAM file or a DAM file must be entirely online
whenever it is processed, imposes obvious physical restrictions on the
maximum filesize. These restrictions are, in fact, the same for a VSAM file
when it is involved in random processing; although it is not required that
the file is entirely online, frequent changing of volumes during processing
will result in much loss of time.

Perhaps less obvious, but just as important is the fact that the
possibilities for reorganizing a file are also affected by the online capacity
of the system. For the purposes of reorganizing an ISAM file, two files
must be defined: the file to be reorganized (as an input file) and the
reorganized file (as an output file). Both files must be kept online when
they are processed. If the user's installation does not include magnetic tape
units, the online DASD capacity must be sufficient to accommodate both
files at the same time (assuming that a user does not want to punch his

102 DOS/VS Data Management Guide

,
)

Response Time to Inquiries

entire file onto cards). If his installation does include magnetic tape units,
the reorganization may be accomplished in two steps. The first step consists
of reading· the ISAM file to be reorganized and writing it in a reorganized
form to magnetic tape; the second step consists of loading the reorganized
data from the magnetic tape to disk. In this way the maximum size of an
ISAM file can be doubled. This is shown in Figure 3.7.

A.

B.

,

8 o
The total size of
File 1 + File 2
must be less or
equal to the
maximum online
capacity

0--1 step 2

The reorganized file is reloaded onto the
same physical locations as the original file.

Figure 3.7. Two possibilities of reorganizing an ISAM f"de
A. Without using magnetic tape. B. Using magnetic tape as an
intermediate storage medium. Using magnetic tape as an intermediate
storage medium effectively doubles the maximum filesize.

(An inquiry is a request for information from storage. Thus, it may be
a request for a single record, for a number of records, or for an
entire file, in order to obtain information. There are very advanced
and specialized inquiry systems, for example airline-reservation systems.
A system like this uses a number of remote terminals from which
inquiries are issued and to which the computer supplies the information
required. A user, however, may also make use of inquiry by way of a
set of programs that are called into a high-priority partition, and that
react on control cards in the card reader. He even may consider a
normal program as an inquiry program, since any program may deliver
information. The main issue of an inquiry is that the request for
information normally concerns only a small portion of a file.)

One of the important advantages of a computer system with a direct
access storage device is the possibility of answering inquiries without the
need for processing complete files. Not all applications require inquiry
capability. In many data processing installations there are no inquiry
applications at all. Where inquiry is required, however, response time to
inquiry is a vital consideration. The less critical the response time, the
greater the choice of organization and retrieval options.

The user should consider the following:

Section 3: Choosing the Right Organization and Processing Method 103

• Can the answer to an inquiry wait until the next, batched, sequential
updating of the relevant file? If it can, then inquiries become an
additional transaction type and are processed sequentially with all
other transactions against the file. Data organization, in this case,
should be either sequential or indexed sequential. If the response
provided by this method is not fast enough, random access is required.

• Can the answer wait until the end of the present computer run? If so,
the relevant file is mounted at the completion of the current job, the
inquiry program is loaded, and the file is processed to produce the
required answers. Obviously, the time delay involved here varies
considerably, depending on the job that is in process when the inquiry
arrives. If the answer to an inquiry cannot wait, the current program
must be terminated. In this case, problems may arise with respect to
the status of the current job, problems that may be solved with the
checkpoint/restart procedure that is included in DOS/VS. (See:

Applying Criteria to Sample Files

Checkpoint / Restart, later in this section.) In a multiprogramming
environment it may be possible to have the partition with the highest
priority handle the inquiry jobs, while the partitions with a lower
priority continue processing the normal jobstream.

This chapter illustrates the choice of file organization and retrieval methods
for some typical sample files. The characteristics of the sample files were
chosen arbitrarily. Different characteristics could be attributed to files with
similar functions. The examples are furnished to demonstrate the application
of the criteria that have been discussed to specific file characteristics, and to
show the best organization and retrieval methods under these circumstances.
In all cases, adequate online storage capacity was assumed.

Sample file 1: Table File.
Characteristics: The file is stable and requires few changes and

infrequent additions and deletions. Normal processing
involves retrieval only.

Organization: Indexed sequential.

Sample file 2: Payroll File.
Characteristics: The file has generally low volatility, and a relatively

low level of additions and deletions. However, there is
a high activity rate. Processing for each period
involves updating a high percentage of the year-to-date
master payroll information. Batching of transactions
(time cards, changes, etc.) is normaL Fast response to
inquiries is not required.

Organization: SequentiaL

Sample file 3: Wholesale Inventory File.
Characteristics: The file has moderate volatility and activity. Normal

transactions may be batched for posting once or twice
a day. Recurring stock status, activity, and reorder
reports are sequential. Response to inquiries
concerning availability and stock level is required
within one hour.

Organization:

104 DOS/VS Data Management Guide

Indexed sequential; additional processing requirements
may change this choice to random.

(
'~

Summary

Random Retrieval Consideration

Sample file 4: Online Inventory, Parts.
Characteristics: The file has a low volatility but a high activity.

Transactions are processed as they are received.
Responses to inquiries concerning availability and stock
level are required within two minutes. Recurring stock
status, activity, and reorder reports are sequential but
are only produced bimonthly.

Organization: Random (likely), possibly indexed sequential.

Sample file 5: Accounts Receivable File.
Characteristics: The file has a low volatility and low activity.

Transactions are combined in batches for daily posting.
Billing is cyclic. Statements are written throughout the
month by sequentially retrieving logical records from
the file within specific limits. Inquiries are processed
twice a day.

Organization: Indexed sequential.

The method of organization best suited to a particular file of DASD records
depends upon many factors. These factors must be analyzed for each file in
anyone particular application. Often, more than one organization scheme
could be considered for the same file. In one application, records could be
processed purely at random; in another, the same records could be
processed in sequence by various control fields. A file such as this would
have to be analyzed to determine whether it should be organized:

• Randomly, thus keeping processing time to a minimum during one run
but possibly negating the advantage of sequential organization during
another.

• Sequentially, thus minimizing the time required to produce reports but
increasing the time used in updating.

• Randomly for updating and then sorted into sequence for reports.

The decision would depend on the nature of the file. Other considerations
might be:

• Can transactions be batched and sorted before processing, or must
they be processed as they occur?

• Is the activity distributed throughout the file in such a manner as to
warrant passing the entire file when updating?

• Would the processing time saved by sorting warrant the time and
effort required?

Questions of this kind apply to each file in an installation. In choosing
organization methods, the overall processing objectives of the system must
be kept in mind at all times.

Many files that could be organized sequentially, are nevertheless organized
as indexed sequential files in order to facilitate system design. It is often
possible to reduce the number of peripheral operations by using random
retrieval from an indexed sequential file. This is true, for example, for files
that have fields in their records that are used in several jobs.

Section 3: Choosing the Right Organization and Processing Method 105

As an example, assume that invoice summary cards are to be listed in
the sequence of invoices. Further assume that the cards do not contain
customer names but that these names are required in the listing. Customer
names may be obtained from a separate customer master file through
random retrieval (if that file is organized as an indexed sequential file) or
through sequential retrieval. In the latter case the invoice summary cards
must first be sorted into customer number sequence, which is the sequence
of the customer master file. Figure 3.8 illustrates the two solutions and
shows the additional steps that are required if the customer master file is
organized as a sequential file.

The example for the sequential file is a typical procedure for
sequential processing equipment. If this job were run frequently, system
design considerations would probably preclude the use of a sequential file
organization, and point to an indexed sequential organization.

106 DOS/VS Data Management Guide

A. INDEXED-SEQUENTIAL ORGANIZATION.

random
retrieval
customer
master file

invoice
report

B. SEQUENTIAL ORGANIZATION.

invoice
report

step 1:
sort input
into customer
:# sequence

step 2:
sequential
retrieval of
customer name

step 3:
sort invoices
to original
sequence

step 4:
print
invoice
report

With sequential organization, several extra steps are required to get the
same result.

Figure 3.8Indexed sequential vs sequential organization

Section 3: Choosing the Right Organization and Processing Method 107

High-Level Language Considerations
The access methods introduced in the preceding chapters were described in
an assembler language context. Most high-level programming language users
can make use of these facilities in their own programming language. An
overview of the access methods in relation to high-level programming
languages is given in Figure 3.9.

~ Method
SAM ISAM VSAM Using Key

and Track
Language Reference

ANS COBOL YES YES YES YES

FORTRAN YES NO NO NO

Through
ISAM

PL/1 YES YES Interface YES
Program
Only

Through
ISAM

RPG II YES 'YES Interface YES
Program
Only

Assembler YES YES YES YES
SCP

Note: The assembler is included in this table for comparison purposes.

1 The direct access support is implemented
by having the user specify the relative record
number within the file.

DAM

Usi ng Record
10 and Track
Reference

YES

YES1

YES1

YES

YES

Figure 3.9. Access methods supported for the high-level programming
languages

Input/Output Control System

BTAM
QTAM

NO

NO

NO

NO

YES

In a modern computer system like the IBM System/370, many different
functions can be performed simultaneously, independently of each other.
For example, different I/O devices may transfer data to and from the CPU
at the same time, while a problem program may be also processing other
data. Or since the design of the computer allows multiprogramming, more
than one program may be loaded into storage, each of them expecting to
have control over the system.

It is the task of an operating system to make sure that system
resources are used efficiently, thereby assuring maximum throughput. This
task includes monitoring the job flow without the need for frequent manual

108 DOS/VS Data Management Guide

intervention, keeping track of idling I/O devices, and detecting I/O
requests for those devices at the proper moment.

Data management is also part of an operating system. The routines
that perform functions such as actual reading and writing, blocking and
deblocking, label processing, and error recovery are referred to collectively
as the Input/Output Control System (lOCS). The IOCS functions are
performed without intervention from the user, who normally is not even
aware of the fact that IOCS is doing the job for him.

The details of IOCS that are discussed in the chapters following are
mainly addressed to programmers who use the DOS/VS Assembler
language. For high-level programming language users, while reading of
these chapters may be of interest, it is not mandatory.

The Input/Output Control System acts as an interface between the
user's file processing routines in the problem program and the data in
external storage. IOCS is regarded as having two parts (Figure 3.10):

• logical IOCS (LIOCS)
• physical IOCS (PIOCS).

USER'S 10CS I/O
PROBLEM

LlOCS +PIOCS DEVICE
PROGRAM

Figure 3.10. Logical Ioes (LIOeS) and Physical IOeS (PIOeS)
LIOCS handles logical data files, whereas PIOCS handles the physical
transfer of data in those same files.

LIOCS performs all functions a user needs to locate and access logical
records for processing. LIOCS routines are linked with, and executed as
part of, the user's problem program. As shown in Figure 3.10, they provide
an interface between the user's file processing routines and the Ploes
routines.

The term LIOCS refers to routines that perform the following
functions:

• Blocking and deblocking of logical records
• Switching between I/O areas when two areas are specified for a file
• Handling end-of-file and end-of-volume conditions
• Issuing requests to PIOCS to execute appropriate channel programs.

SAM, DAM, or ISAM LIOCS routines are assembled from logic
modules, which are discussed in a separate chapter later in this section. The
user, when including LIOCS routines in his program, has two options:

• The routines may be assembled with his source program

Section 3: Input/Output Control System 109

A selected group of LIOeS object routines may be kept in the
relocatable library. They will then be called by the linkage editor when
unresolved EXTRN statements are encountered in the object program
at the moment it is edited.

VSAM routines are loaded from the core image library when a VSAM file
is opened. The user does not have to assemble or link-edit VSAM modules.

Lloes is always used for programs written in high-level programming
languages. Programmers using those languages will never be aware of the
fact that loes is performing I/O functions. Assembler programmers have a
choice between the use of LIOeS which implies the use of Ploes as well,
or Ploes only. When using Ploes only, these programmers must construct
their own channel programs; when using LIOeS the channel programs are
included in the LIOeS routines. Even the Assembler programmer is
normally not aware of 10eS, although he has more means of controlling it
than a high-level language programmer has.

Lloes operates on logical data files, the characteristics of which are
specified by the programmer in his programs. These specifications include
all or part of the following information:

•

•

•

file name
I/O device type
organization structure
record format and block size
number of I/O areas and their locations
location and field length of record identification fields (control fields)
labeling procedures
error options
other optional information.

The specifications above differ from the physical characteristics of the
file in that Ploes knows only the actual location of the data being
accessed, and other information about the physical I/O device being used.

The following text is especially focussed on assembler language. The
high-level language programmer should consult the appropriate reference
manuals to find the proper way for him of specifying the characteristics of
his data and the means of processing that data.

Lloes consists of a number of routines which are called loes logic
modules and which access logical files. Each logic module is generalized,
and designed to perform I/O operations on a particular type of file. A
module is tailored according to the specifications made by the programmer
in his program, by means of declarative macro instructions, which are used
to specify the characteristics of a specific file.

Ploes is that part of loes that controls the actual transfer of data
between an external storage device and virtual storage. The Ploes routines
are permanently in lower real storage, as part of the control program
(supervisor). They supervise the execution of channel programs supplied by
the problem programs, without regard to the logical content, format, or the
organization of the data being transferred.

Ploes includes facilities for:

110 DOS/VS Data Management Guide

Logical IOCS (LIOCS)

• Scheduling and queuing I/O operations
• Checking for, and handling of, error conditions and other exceptional

conditions relating to I/O devices
• Handling I/O interruptions to maintain maximum I/O speeds without

burdening the user's problem program.

PIOCS consists of the following routines:

• Start I/O routine
Interrupt routine

• Channel scheduler
• Device error routines.

All programs make use of these PIOCS routines, which are invisible to the
user.

Figure 3.11 provides an example of how the user's program, LIOCS,
and PIOCS are clearly separated. It shows the kind of functions performed
to obtain a new logical record for processing from an input file.

LIOCS is based on a set of IBM-supplied macro instructions. A full
description of the macro system is supplied in OS/VS and DOS/VS
Assembler Language, GC33-4010; DOS/VS System Management Guide,
GC33-5371; DOS/VS Supervisor and I/O Macros, GC33-5373. The
following text discusses the macro system in its relationship to LIOCS only.

Section 3: Input/Output Control System 111

PROBLEM LOGICAL PHYSICAL I/O
PROGRAM 10CS 10CS DEVICE

Issue READ Provide a new logical
request (refer record from a physical
to the file block in the I/O area
description (deblock) to the
elsewhere problem program,
in the program).

?r

if actual input is
require'd (new block),
issue a physical read
request (EXCP)* Determine channel

and:
and , a) If channel is not

WAIT* busy, start I/O Start device

! b) If channel is busy, !
When I/O is complete, place request into Data transfer
provide the first (or channel queue and ! only) logical record return to LI OCS.
from the new block (Supervisor will I/O complete
in the I/O area to the retry later.) J
~roblem program.

When I/O i! complete,
N . t . ext instruction return to LI OCS via
after READ tnterrupt handling
request. routine.

* Physical I/O instructions are issued by means of two PIOCS macro instructions: EXCP and WAIT.
These are explained in the detailed discussion of PIOCS.

Macro System

Figure 3.11. Example of the use of LIOeS and PIOeS in reading a record
The actual coding of LIOeS is part of the problem program and taken
from IBM-supplied logic modules; the coding of PIoes is integrated
within the Supervisor.

The main purpose of macro instructions is to reduce repetition in source
coding, and consequently the probability of error. For example, IBM
provides a set of macro instructions which allow the programmer to perform
110 on a logical level. Thus, the programmer can concentrate on the actual
problem that he is expected to solve. He needs not, for example, be
concerned about blocking and deblocking records, or specifying channel
programs for input and output. These functions are performed by DOS/VS
which responds to the macro instructions issued in a problem program.

112 DOS/VS Data Management Guide

The macro system has two basic parts:

1. Macro definitions.
These are generalized functions, written in the macro definition
language as source statements.

2. Source program macro instructions.
These are the symbolic instructions used in the problem program.
Within the macro system, IBM supplies the following types of macro
instructions and their definitions:

Supervisor communication macro instructions.
These communicate with the supervisor and give access to the
communication region. The supervisor communication macro
instructions are not discussed in this manual, since here we are
concerned with input and output.

• Declarative macro instructions.
These macro instructions can be divided into two classes:

1. File description macro instructions.
They specify the characteristics of a specific file to be
processed. For example, the DTFMT (Define The File for
Magnetic Tape) macro instruction specifies the
characteristics of a particular magnetic tape file, such as
blocksize, and 110 areas used ..

2. Logic module generation macro instructions.
They give information about the type of logic module to be
generated. A logic module is an -object code routine that
can handle specific conditions typical for a certain type of
file. For example, the CDMOD (CarD MODule) macro
instruction generates a logic module to handle card files.

• Imperative 110 control macro instructions.
These macro instructions identify the kind of 110 operation that
is desired. For example, a GET macro instruction indicates that a
user wants a logical record to be retrieved.

A macro instruction (macro) has a name (for example DTFM1) ,
usually accompanied by a group of parameters. The parameters specify
which options are used. For example, some of the parameters of the
DTFMT macro are the address of the 110 area, the entry point of a routine
that handles end-of-file conditions for input files, and the size of a logical
record. The macro name is used to locate the macro definition in the
library, whereas the parameters are used to select the proper source code
from this macro definition, according to the options chosen. The result of
this location and selection (which is performed by the assembler processor)
is a set of assembler code called a macro expansion. The macro expansion
is inserted into the user's problem program, as shown in Figure 3.12. This
macro expansion has the format of normal assembler language and is
processed into machine object code along with the user's source statements.

Section 3: Input/Output Control System 113

SOURCE PROGRAM
~ (before) 1 ____ _

2

r

ASSEMBLER
OPERATIONS

Locate Macro
Definition

Source
Program •
Statements

SOURCE PROGRAM
~ (After) 1 ____ _

2

Source 15
Program 16 Macro Instruction-.
Statements 17

Perform I ndicated Selection
and Substitution

15
16 Macro Instruction

" ~-----
Merge with }

.... Source Program "-
" Macro ~

Expansion

{

17

Source :
Program •
Statements :

Figure 3.12. Macro processing
The assembler processor selects specified elements of a macro definition
for insertion into the user's problem program.

IBM provides a number of pre-written macro definitions and specifies
the macros that programmers can use. A user is free to write other macro
definitions and to add them to the already existing library. The
IBM-supplied macro instructions are described in full detail in DOS /VS
Supervisor and I/O Macros, GC33-5373.

In the following text, general information is supplied about the
following types of I/O macros:

• File description macros (DTFxx)
• Imperative macros (GET, PUT, OPEN, CLOSE, etc)
• Logic module generation macros (xxMOD).

Flle Description Macros
Whenever a file is to be processed under LIOCS, the characteristics of that
file must be specified by means of a DTFxx macro:

• For sequential processing (SAM):
DTFCD for card files
DTFPR for printer files
DTFCN for console (printer-keyboard files)
DTFMT for magnetic tape files
DTFSD for DASD files
DTFPT for paper tape files

114 DOS/VS Data Management Guide

)

DTFOR
DTFMR
DTFDI
DTFSR
DTFDU

for optical character reader files (OCR)
for magnetic ink character reader files (MICR)
for device independent files
for serial device files
for diskette files

• For random processing (DAM):
DTFDA for DASD files only

• For processing through ISAM:
DTFIS for DASD files only

For processing through VSAM:
ACB for VSAM, the ACB macro specifies the

Access-method Control Block (ACB); the ACB macro
is similar to the DTF macro for the other access
methods.

Figure 3.13 is an example of a DTFxx macro instruction; it describes
all of the options that can be used for a magnetic tape file; Figure 3.14
shows the DTFMT macro instruction which specifies the characteristics of
one particular magnetic tape file.

Section 3: Input/Output Control System 115

Applies to

~

~ = ~ s. Q.,
~

~ = = 0 -
X X X M BLKSIZE=nnnnn Length of one I/O area in bytes (maximum = 32,767).

X X X M DEVADDR=SYSxxx Symbolic unit for tape drive used for this file.

X X M EOFADDR=xxxxxxxx Name of your end-of-file routine.

X X X M FILABL=xxxx
(NO, STD, or NSTD). If NSTD speciJied, include LA-
BADDR. If omitted, NO is assumed.

X X M IOAREA I =xxxxxxxx Name of first I/O area.

X X 0 ASCII=YES ASCII file processing is required.

X X 0 BUFOFF=nn Length of block prefix if ASCII= YES.

X a CKPTREC= YES
Checkpoint records are interspersed with input data re-
cords. IOCS bypasses checkpoint recorids. (

X X X 0 ERREXT=YES Additional errors and ERET are desired.

X X X 0 ERROPT=xxxxxxxx
(IGNORE, SKIP, or name of error routine). Prevents job
termination on error records.

X X X a HDRINFO=YES Print header label information if FlLABL=STD.

Register number. Use only if GET or PUT does not specify
X X 0 10REG=(nn) work area or if two I/O areas are used. Omit WORKA.

General registers 2-12, written in parentheses.

X X 0 LABADDR=xxxxxxxx
Name of your label routine if FILABL=NSTD, or if
FILABL=STD and user-standard labels are processed.

X 0 LENCHK=YES
Length check of physical records if ASCII=YES and
BUFOFF=4.

X X X 0 MODNAME=xxxxxxxx
Name of MTMOD logic module for this DTF. If omitted,
lacs generates standard name.

Figure 3.13. General format of the DTFMT macro(Part t of 2)

116 DOS/VS Data Management Guide

Applies to

-- = ~ Q., = - """ Q., = 0

= 0 ~ -
(YES or POINTS). YES if NOTE, POINTW, POINTR, or

X 0 NOTEPNT=xxxxxx POINTS macro used. POINTS if only POINTS macro
used.

X X X 0 RDONLY=YES
Generate read-only module. Requires a module save area
for each task using the module.

X X 0 READ=xxxxxxx (FORWARD or BACK). If omitted, FORWARD assumed.

(FIXUNB, FIXBLK, V ARUNB, V ARBLK, SPNUNB,
X X X 0 RECFORM=xxxxxx SPNBLK, or UNDEF). For work files use FIXUNB or

UNDEF. If omitted, FIXINB is assumed.

If RECFPRM=FIXBLK, no. of characters in record. If

X X 0 RECSIZE=nnnn
RECFORM=UNDEF, register number. Not required for
other records. General registers 2-12, written in parenthes-
es.

X X X 0 RECWIND=xxxxxx
(UNLOAD or NORWD). Unload on CLOSE or end-of-
volume, or prevent rewinding. If omitted, rewind only.

X X X 0 SEPASMB= YES DTFMT is to be assembled separately.

X 0 TRMARK=NO
Prevent writing a tapemark ahead of data records if
FILABL=NSTD or NO.

X X X 0 TYPEFLE=xxxxxx
(INPUT, OUTPUT, or WORK). If omitted, INPUT is
assumed.

Register number, if RECFORM=VARBLK and records are
X 0 V ARBLD=(nn) build in the output area. General registers 2-12 are written

in parentheses.

X 0 WLRERR=xxxxxxxx Name of wrong-length-record routine.

X X 0 WOKA=YES GET or PUT specifies work area. Omit IOREG.

M = Mandatory; 0 = Optional

Figure 3.13. General format of the DTFMT macro (Part 2 of 2)

Section 3: Input/Output Control System 117

DM
"OGlIoM ...,...._.

- ~;Oft . " " 16

OL DM STR DT F~H
IL KS
DE VA

EO FA
F I LA
10 "R
ER RO
HD R I
10 AR
10 RE

LA IA
RE AD
RE CF
RE CS
RE rNl
SE PA
TV , E

~L RE

1.000- ...

.IM Syot""'IIO A.OInWe. CadlIItI p_ --~ .. u.

PUNCHINC I CqAPHIC I I I "G< Of

DAn
INSlItUCTlON$ (PUNCH I I I FO'U~-

ST.~fM(Nl
WlfttiRCllfI_-

20 ~ ,.
" .. " 50

c- -» " n

X
I Z E - 40 O. i X
DD R- SV SO o , • I X
DC R- EO FM sIT ~. X
IL -S TD. X

E~ , -~R ~A ON E • X

PT -C K~ LD I L K. X
NF 0- VE S. X

E~ 2 - ~R EA TW O. i
I X

G- (3 I. X

DD R-r.K len DI LK ~
- F OR ~~ RD. i X

lOR ~- F I XI L,K. X
I Z E- 80. X
NID -u NL ~* D!. ; X

s~ I- VE S. X
FL E- IN pu T. X

alA -R EG8

.. ---- Iiiii_--Iooolooo 1.0-_100

Figure 3.14. Sample DTFMT macro for a particular file

Imperative Macros
IBM supplies a variety of imperative macros, each of them performs a
specific action on a logical record, a physical block, or a file. For example,
when an input file is processed sequentially by SAM, each next logical
record is obtained from that file by issuing a GET macro. Another example
is label processing that is performed automatically in response to the OPEN
and CLOSE macros. Also device control, such as backspace tape, can be
performed; the CNTRL macro provides an easy and flexible way of doing
this. In general, imperative macros provide direct control over many varying
functions, on a logical level, so that the programmer can concentrate his
effort on the problem program itself.

Files must be defined to IOCS by means of one of the DTFxx
declarative macros before any of the imperative macros can be used for
processing.

The imperative macros can be divided into three types:

Initialization macros
Processing macros

• Completion macros.

Initialization macros provide secundary functions that must be
performed before a file can be processed. These functions include label
processing and, for example, setting a magnetic tape to load point, and
reading a first block of an input file into a buffer.
The following initialization macros are available:

• OPEN
• OPENR

LBRET

..

1001,..11

118 DOS/VS Data Management Guide

(

~
JI

OPEN and OPENR initialize a file for processing. The difference
between the two is that OPENR must be used in self-relocating programs,
whereas OPEN is used in all other cases. If a user specifies in the DTFxx
macro that a user-written label processing routine is present in the problem
program for additional label processing (LABADDR=name), the OPEN,
CLOSE, and end-of-volume routines of LIOCS will contain a link with that
user-written routine (CLOSE and end-of-volume are discussed below under
Completion macros).

User-written label handling routines can be used for additional label
checking on input, or for writing additional user labels on output; such
routines must always end with a LB RET macro which will cause control to
be returned to LIOCS so that execution of the OPEN(R), CLOSE, or
end-of-volume routine can be resumed and completed. Figure 3.15
illustrates the use of a user-written label handling routine as an extension of
the LIOCS OPEN routine.

PROBLEM PROGRAM: LlOCS:

Begin · · · · · ,---" DTFxx (parameters) ·
I ·

I
• OPEN function

I · · I · L ___ OPEN (R) ·

.D4
EXIT to user

. .
· END of OPEN function

· · · Begin of user's etc.
label routi ne

· The OPEN (R) macro instruction refers
· to the DTFxx macro instruction.
· From the DTFxx, a DTF table is
· generated wh ich specifies the address

LBRET of LlOCS and (among others) the
address of the user-written label
routine.

Figure 3.1S. Initialization macros
OPEN(R) initializes a file for processing, and may link to a user-written
label routine that ends with LBRET.

Section 3: Input/Output Control System 119

Processing macros provide functions directly related to actual input
and output. Examples of such functions are:

• Actual reading and writing
Stacker selection control and printer carriage control
Rewinding and backspacing of magnetic tape
Eject documents on OCR
Seek to a specified track on DASD.

A large variety of processing macros is supplied by IBM. The
functions performed depend on the options chosen and the access method
used. Explanations of the processing macros, in relation to specific access
methods, are provided in the next section of this manual: "Access
methods".

Completion macros provide secondary functions that must be
performed after processing a file and before the program is terminated.
These functions include label processing and, for example, rewinding a
magnetic tape. The following completion macros are available:

• CLOSE
• CLOSER
• FEOV

FEOVD

Both CLOSE and CLOSER deactivate a file; the difference between
the two is that CLOSER must be used in self -relocating programs, whereas
CLOSE is used in all other cases.

Both FEOV and FEOVD are used to deactivate a volume, while
processing sequentially. FEOV forces an end-of-volume condition for a
magnetic tape volume before sensing a tapemark (input file) or reflective
marker (output file) on magnetic tape. FEOVD forces an end-of-volume
condition on a DASD volume before the end-of-volume condition actually
occurs.

If an FEOV(D) macro is issued while the last volume of an input file
is being processed, it will result in an end-of-file condition for the entire
file. LIOCS will then branch to the user's end-of-file routine, the name of
which is specified in the DTFxx macro (EOFADDR=name).

In most cases the FEOV(D) macro will not be used: end-of-volume
conditions and end-of-file conditions are detected by LIOCS as they occur,
and necessary actions such as switching to a next volume are performed
automatically, without necessitating any action from the user.

The usage of CLOSE(R) and FEOV(D) is illustrated in Figure 3.16.

120 DOS/VS Data Management Guide

PAOBLEM PAOGAAM: LlOCS:

N

Begin

.....-----. OPEN function
DTFxx

OPEN (A) ------' r-----END of OPEN function ..
(file processing)

y

r--~--- FEOV (D)
initializes next
volume for
processing, if

,....---- any; Qtherwise,
branch to user's

..------,- end·of·file routine.

FEOV (D) ------'

USEA's EOF AOUTINE------'

CLOSE (A)

END EOF AOUTINE
(May also be end of
program)

Figure 3.16. Completion macros
CLOSE(R) in the user's EOF routine deactivates the file, after FEOV(D)
has deactivated the last volume of that file.

Logic Module Generation Macros
From a DTFxx macro, a DTF table is generated by the assembler
processor. This table links to a logic module which provides the necessary
machine instructions to perform the required I/O functions. For example, a
logic module reads and writes physical blocks, tests for unusual I/O
conditions, blocks and deblocks logical records if necessary, and places
logical records into a work area. Most of the imperative macros enter a
logic module (through addresses provided in the DTF table) to perform the
activity needed.

The activity to be performed depends on the requirements of the
problem program and the characteristics of the file to be processed. These
characteristics and requirements are specified in the problem program by
means of the xxMOD macro. According to the parameters of this macro,
the programmer has the option of selecting or omitting some of the
available functions of a logic module.

It is also possible to have a logic module name generated through the
DTFxx macro, according to the processing requirements specified there. As
a result a standard logic module is generated, and in this case the
programmer has no means of selecting or omitting any specific function.

Logic modules can be assembled together with the problem program,
or separately. A selected group of LIOeS object modules can be
pre-assembled and stored in the relocatable library; required logic modules
can then be retrieved and included in the user's object program when it is

Section 3: Input/Output Control System 121

edited by the linkage editor. This eliminates the need for lengthy macro
generation each time the program is assembled.

A pre-assembled logic module can be furnished to the linkage editor in
three ways:

1. INCLUDE the logic module from SYSIPT

2. INCLUDE the logic module from the relocatable library

3. A UTOLINK the module from the relocatable library

Detailed information about this subject can be found in:

• DOS/VS System Management Guide, GC33-5371, and

• DOS/VS Supervisor and I/O Macros, GC33-5373.

When many programs make use of a specific logic module, each of
them would need an equal amount of space for the module in the core
image library, after the module has been included in the program by the
linkage editor. If there is only limited space available for the core image
library, the user may consider having the logic module removed from the
program after the linkage editor process and, instead, have the module
stored only once in the core image library, separately from all problem
programs. At object time, when the program is to be executed, a LOAD
macro must then be issued before the first I/O macro (OPEN) to actually
load the logic module into virtual storage.

Interrelationships of. the I/O Macro Instructions
Imperative macros refer to the DTFxx macro by specifying a filename, as
follows:

filename DTFxx parameters

OPEN filename

GET filename

etc.

In the macro expansions of OPEN and GET, above, the parameter
filename is translated into an address constant which refers to the address
of the macro expansion of the DTFxx macro:

filename DTFxx parameters

OPEN filename

* DC A(filename)

GET filename

* L 1,=A(filename)

etc.

The expansion of the DTFxx macro is called the DTF table, and one
of the items in this table is the address of the logic module associated with

122 DOS/VS Data Management Guide

(

(

Physical IOeS (PIOeS)

the file. One of the parameters of the DTFxx macro is
MODNAME=modname. The value of modname is specified by the user, or
generated as a standard module name. In the latter case, a module name is
determined by the system, in accordance with the requirements specified by
the parameters of the DTFxx macro in general. In the DTF table, the
parameter MODNAME=modname is translated into a V-type address
constant specifying the address of the logic module, and the logic module is
designed as a named eSEeT:

filename DTFxx
DC V(modname) ---.... modname CSECT

etc.

In the examples above, only part of the macro expansions is shown.
The reader should note that in the DTF table a V -type address constant is
generated. This means that, as was said earlier, the logic module need not
be included in the user's problem program when it is assembled; it is called
from the relocatable library when the program is edited.

As a result, the user's program, by means of imperative macros, refers
to the DTF table for a file, and the DTF table refers in turn to the logic
module:

PROBLEM PROGRAM ----... DTF TA'BLE ------.~ LOGIC MODULE

OPEN
DC

GET
L

filename DTFxx ~ mOdnam~. CSECT

~I(~~:~:me) =J I
DC V(mnr!name)

filename
1, = A(filename)

PIoes normally operates under control of LIOeS so that programmers,
being hardly aware of the presence of LIOeS, are not aware of PIOeS at
all. Assembler programmers may choose to control PIOeS themselves,
however, thereby ignoring the features offered by LIOeS. With PIOeS a
programmer can obtain maximum flexibility, as will be explained later in
this chapter. It should be noted, however, that all logical functions normally
provided by LIOeS such as, for example, the blocking and deblocking of
logical records, are entirely the responsibility of a programmer if he chooses
for direct control over PIOeS. PIOeS operates on physical blocks only.

Section 3: Input/Output Control System 123

PIOCS generally processes in the following sequence: a routine
(usually LIOCS) issues an I/O request in the form of a Supervisor Call
(SVC) instruction accompanied by a Command Control Block (CCB).
As soon as the I/O request has been satisfied and the operation has been
started, control is returned to the requesting routine, without waiting for
completion of the I/O operation.
The completion of an I/O operation is detected through an interruption,
after which PIOCS tests for errors and again, returns control to the
program, taking priorities into account.

The CCB contains information about the I/O device to be accessed,
such as the symbolic device name SYSxxx, the location of the first Channel
Command Word (CCW) of a channel program to be executed, and error
options as selected by the programmer. (LIOCS also creates a CCB that
occupies the first 16 bytes of the DTF table which is generated from
the DTFxx macro).

The main element of PIOCS is the channel scheduler which is entered
through the SVC mentioned above. The channel scheduler determines the
channel to be used (by means of the symbolic device address SYSxxx), and
places the I/O requests into a queue for that channel. As soon as the
channel is not busy, the first request in the queue is taken and the
requested I/O operation is started. At the completion of an I/O operation,
the currently running program is interrupted, the interrupt routine
determines which channel caused the interrupt, checks are made for errors,
and control is given to the program with the highest priority that is able to
proceed (not waiting for any I/O). This process was, in simplified form,
illustrated in Figure 3.11.

Direct Control over PIOCS in Assembler Language

PIOCS Macro Instructions

An assembler programmer may choose to control PIOCS directly in his
programs. This means that, for each I/O request, he is responsible for
supplying a CCB and for issuing the SVC instruction. In addition, the
programmer must construct his own channel programs. Finally, he must also
provide for all necessary logical functions such as blocking and deblocking
logical records.

In return, PIOCS offers all the flexibility a programmer may desire.
For example, he is able to use only part of a physical block on input, or to
construct a physical block from noncontinuous areas in virtual storage on
output, because he is able to perform any typical function in his own
channel programs (within the capabilities of the system).

By means of the macro system (described in the chapters on LIOCS), an
assembler programmer is able to write PIOCS macros, allowing him to work
with symbolic terms and values rather than with difficult constructions of
bytes and bits.

CCB

The following PIOCS macros are available:

A CCB (Command Control Block) macro must be specified in
the problem program for each device that is controlled directly
through PIOCS. The CCB macro has the following operands:
• The symbolic device name (SYSxxx).

124 DOS/VS Data Management Guide

EXCP

WAIT

• A command-list-name which symbolically specifies the
address of the first CCW in a channel program (ccwname).
If different channel programs use the same device, this
address may be modified in accordance with the channel
program to be executed, or separate CCB macros may be
used for each separate channel program.

• User options, coded into a hexadeCimal value (optional).
• A sense address, which indicates that there is a user-written

error recovery procedure (optional).

(When under control of LIOCS, the CCB macro is generated
as a result of the DTFxx macro)

The CCB macro must have a ccbname; the general format is:

ccbname CCB S YSxxx,ccwname(, optional parameters)

The EXCP (EXecute Channel Program) macro is used for issuing
an I/O request to PIOCS. It is translated into an SVC instruction
(which calls the channel scheduler) and a reference to the
Command Control Block. This reference can be given in one of
two ways:

1. As a symbolic reference to the CCB by means of a ccbname.
2. As a reference to a general register which contains the

address of the CCB.

The general format of the EXCP macro is:

(name) EXCP ccbname (or Rn)

PIOCS does not wait for the completion of an I/O operation
after the operation has been started. Instead, control is returned
to the problem program, which must be sure that it does not start
processing data that has not been completely read, or start
overwriting an output area before the previous block has been
completely written.
A problem program can wait for the completion of an I/O
operation by issuing a WAIT macro and by referring, in that
macro, to a CCB. The effect of aWAIT macro is another SVC
instruction which checks, in the interrupt routine, the status of
the I/O operation in process.

The general format of the WAIT macro is:

(name) WAIT ccbname (or Rn)

The reference to a CCB can be made in either way described
above for the EXCP macro.

Section 3: Input/Output Control System 125

Interrelationships Between the PIOCS Macros
Only three different macros (CCB, EXCP, and WAIT) are used for
PIOCS. The relationships between the three macros are shown in Figure
3.17.

ccbname

~
ccwname

PROBLEM PROGRAM:

EXCP

WAIT

etc.

CCB

CCW
CCW
CCW
etc.

cCbname}

ccbname

SYSxxx, ccwname,optional operands.

r

cc, data-addr, flags, count}
cc, data-addr, flags, count Channel
cc, dara-addr, flags, count program

Figure 3.17. Relation between PIOCS macros

PIOCS Programming Considerations

Note that in this figure the assembler instruction eew is illustrated as
well. The eew instruction is not a macro, but it is included here because
it is the last missing link in PIOeS programming.

The following paragraphs indicate a few programming problems and explain
how they can be solved. Some restrictions are also mentioned.

Situations Requiring LIOCS Functions in PIOCS Processing.
In explaining PIOCS it was said that the programmer is responsible for
providing all of the logical functions that are normally provided by LIOCS
routines. There are, however, two exceptions to this rule. In fact, a
programmer must use some of the logical functions of LIOCS for these two
types of files:

1. DASD files that are file-protected.

2. Magnetic tape files, diskette files, or DASD files that require standard
label processing.

These two situations are closely related to data security and data integrity,
for which a system can accept responsibility only if it is recognized as the
only authority having access to system information.

126 DOS/VS Data Management Guide

(

In either of the two situations above, files must be defined to. LIOCS
by means of the DTFPH macro. This macro, like any other DTFxx macro
for LIOCS, specifies the characteristics of the file. The logic module will
provide the minimum facilities necessary for label processing and protecting
files, where applicable. Label processing will be performed, as usual, in
response to the OPEN(R) and CLOSE(R) macros. In addition, the FEOV
macro can be used for volume switchin on output magnetic tape files.

If the DTFPH macro is used, a program may look slightly different
from the previous example. As was explained before, the DTF table
contains the CCB in the first 16 bytes, so that the EXCP and WAIT
macros can now refer to the name of the DTFPH macro. The DTFPH
macro in turn contains a parameter CCWNAME=ecwname, so that the CCB
has the proper reference to the first CCW in the appropriate channel
program:

fHename

•

~
ccbname

f
ccwname

DTFPH

OPEN

EXCP
WAIT

CLOSE

CCB

CCW
CCW
etc.

(parameters, among which SYSxxx, and ccbname)

filename

filename
filename

filename

,
SYSxxx, ccwname, optional operands

cc, data-addr, flags, count
cc, data-addr, flags, count

Figure 3.18 Channel Programming Considerations.
for information about the CCW format and the concepts of data chaining
and command chaining, the reader is referred to System/3 70
Principles of Operation, GA22-7000.

• Command chaining retry.
If a system has been generated to support command chaining retry,
the user can use this option for his PIOCS channel programs by
setting the command chaining retry bit in the CCB to ON. Then, if
an error that involves retry occurs, the retry will begin with the last
CCWexecuted. If this bit is OFF, the entire channel program will be
re-executed.

Section 3: Input/Output Control System 127

When the command chaining retry bit is ON, the user must move
the address of the first CCW in the channel program to bytes 9 - 11
of the CCB before an EXCP is issued. This ensures that the CCB
always contains the correct CCW address; bytes 9 - 11 are modified
by PIOCS for a retry after an error with the address of the CCW to
be re-executed, and it is not reset to its original value.

If a command chain is broken by some exceptional condition (for
example, wrong length .record, or unit exception) that does not result
in device error recovery by laCS, the user can determine the address
of the last CCW executed and if necessary, restart the channel
program at that point. To obtain the address of the last CCW
executed, subtract 8 from the address in bytes 13-15 of the CCB.
On a 1403 printer, a command chain is broken after sensing channel 9
or 12. When using command chaining on a 1403, therefore, the
program should always check if the entire CCW chain has been
executed.

The command chaining retry bit must not be used to read
multiple blocks from SYSIPT or SYSRDR. Moreover, this bit should
never be ON for DASD or diskette channel programs.

• Data chaining.
When performing data chaining, the CCW in a channel program
should all contain the proper command code of the operation to be
executed, in order to ensure proper 110 error recovery. In normal
cases where nothing goes wrong, the command code is not used if a
preceding CCW has the data chaining bit ON. In case of an error,
however, recovery frequently depends on the command being executed
and the command code in the last CCW is often examined. In such a
case, a 'dummy' command code might prevent error recovery.

• DASD channel programs.

128 DOS/VS Data Management Guide

The user should begin a DASD channel program with a full seek
(command code X'D?'); if the channel program contains embedded
seeks, they should be full seeks as well.

If embedded seeks are used, a program cannot run under DASD
file protection, nor can it take full advantage of the seek separation
feature. With DASD file protection, an embedded seek causes
cancellation of the program in error.

The seek separation feature initiates a seek and separates it from
the channel program chain. Thus, the channel is available for other
input or output operations on the same channel. The seek separation
feature, however, applies only to the first seek in a channel command
chain.

When executing a channel program (Figure 3.19), the supervisor
sets up a channel program with three commands:

1. A Seek that is identical to the user's seek.

2. A Set File Mask that prevents other X'D?' seeks from being
executed.

3. A Transfer In Channel (TIC) command that transfers control
to the command following the user's seek.

1
SUPERVISOR

Problem
program

1
Channel program
written by the
user (CCW
instructions)

~SIO

l
SEEK

Set File Mask
TIC-

~CCBJ

EXCP

LCCW
CCW

. CCW

SEEK
SEARCH 10
TIC *-8

Channel program set up
by the Supervisor to
protect the DASD device

CCW WRITE Count, Key and Data

Figure 3.19. Example of channel programming a file protected DASD file
By setting the file mask, the supervisor prevents further seeks on DASD.

• Diskette channel programs.
The user must begin a diskette channel program with a define
operations command (command code X'2F'). This command is
intended for use during program initiation, and sets the operating
mode for a file during program execution. It defines whether read or
write operations will be done; if write operations are to be done, the
define operations command determines how many writes will be done
beween seeks. This command must be reissued to change the mode of
operations on the file.

Following the define operation should be a seek (command code
X'07').

Following the seek should be the read or write CCWs. You can chain
1, 2, 13, or 26 read/writes.You have to check however, where your
chaining begins.With 26 chained records, for instance, you have to
start chaining on track boundary. Record length can be chosen freely
up to 128 bytes. If write operations are being performed, a NOP
command should be chained to the last write command to ensure that
any errors occurring on this channel program are returned.

• Console (printer-keyboard) buffering.
If the console buffering option is specified at system generation, and if
the printer-keyboard is assigned to SYSLOG, throughput on output
under PIOCS can be increased for physical blocks that do not exceed
80 characters. This is accomplished by starting the I/O command and
returning to the problem program before the output is completed.

Section 3: Input/Output Control System 129

Blocks are always printed in a first-in-first-out (FIFO) order,
regardless of whether the output blocks are buffered (queued on an
I/O completion basis) or not.

Console buffering is performed on output only if the following
conditions are maintained:

• The actual block to be written must not exceed 80 characters.

• No data chaining or command chaining must be performed.

• The acceptance of unrecoverable I/O errors, of posting at device
end, or of user error routines must not be indicated in the CCB
associated with the operation.

Sense information must not be requested by the CCB.

• Alternate tape switching.
Alternate tape drives cannot be used on input processed by PIOCS.

On output, automatic alternate tape drive switching can be done
through the DTFPH and FEOV macros. The FEOV (Force End Of
Volume) macro writes the trailer label sets (standard labels and any
desired user labels), and deactivates the current volume. The next
volume is then mounted on the alternate tape drive, and IOCS writes
the header label sets (standard labels and any desired user labels) on
the new volume.

• Bypassing embedded checkpoint records on magnetic tape (see
Checkpoint/Restart ").

130 DOS/VS Data Management Guide

Checkpoint information is ~ritten as a set of magnetic tape records:

• One 20-byte header record;

• One status descriptor record in which the status of the system is
saved;

• As many core-image records as are needed to save the required
parts of virtual storage;

• One 20-byte trailer record which is identical to the header
record.

Depending on whether the file is processed forward or backward,
the header or trailer record can be used to recognize and bypass
checkpoint sets. The format of both header and trailer record is:

Bytes:
00-11

12-13

16-19

Contents:
/ / / b CHKPTb / / (note the two space characters:
one before, and one after 'CHKPT').
The total number of records that constitute the
checkpoint set, in unpacked decimal. This number
includes the header and trailer records and the status
descriptor record.
The serial number of the checkpoint taken.

(
\

Checkpoint sets can always be identified by the first 12 bytes of
the header record or trailer record (depending on whether the file is
read forward or backward).

When the file is read forward, the checkpoint header record
occupies the 20 high-order bytes of the I/O area; when the file is read
backward, the checkpoint trailer record occupies the 20 low-order
bytes of the I/O area.

Three methods may be used to bypass checkpoint sets:

1. Go into a read loop, until a checkpoint trailer (reading fOrwa:ld)
or header (reading backward) is encountered.

2. Extract the count from bytes 12-13 in header or trailer record
(depending on whether reading forward or backward), add 2 to
it, and space forward or backward that number of records.

3. Extract bytes 14-15, pack and convert the contents to binary,
and space forward or backward that number of records.

In methods 2 and 3, read commands could also be used. When
bypassing checkpoint sets on 7 -track tapes in translate mode, only
method 3 can be used. Read commands cannot be used then because
they would create data checks.

Section 3: Input/Output Control System 131

Section 4: ACCESS METHODS

This section provides full information about the access methods: SAM,
DAM, ISAM, and VSAM. Each access method is described in a separate
chapter.

First, general information is given about the features of the access method;
this includes information about the record formats and block structures
supported and the devices that can be used. Special considerations on data
organization are also included.

Each chapter is completed with considerations on the usage, through
assembler language, of the access method. The 110 macros are explained in
a context of programming procedures, showing the assembler programmer
how to control the access method. As such this section acts as an
introduction to the publication DOS/VS Supervisor and I/O Macros,
GC33-5373, which deals with specific formats of the macros.

This section is mainly addressed to programmers using the assembler
programming language; it may be of interest to others, though they may
find the assembler-oriented approach difficult to understand.

Sequential Access Method
The input/output routines of the Sequential Access Method permit the
programmer to store and retrieve the logical records of a file sequentially,
without the need for coding blocking/deblocking routines. The programmer
can, therefore, concentrate all his efforts on processing the data.

Another major feature pf this access method is its ability of using
one or two I/O areas, and of processing the data either in a work area or
in the I/O area. This permits the processing of a record while data is being
transferred to and from I/O areas. This section discusses these factors in
terms of achieving a maximum overlap of processing with I/O.

Storage Areas and Effective 110 Overlap
Routines are designed to provide for overlapping the physical transfer of
data with the processing of the data. Figure 4.1 shows the difference
between processing with and without overlap. The top diagram shows that
no overlap is taking place; for each I/O request, a certain amount of time
elapses before the data has been transferred and the problem program can
resume processing. The bottom diagram shows that the transfer of data is
overlapped with the processing of other data.

Section 4: Access Methods 133

A. INPUT/OlJTf>UT, WITHOUT PflOCESSlNG OVERLAP

I()CS reutine6 + IOCS routlines ..-
t.,.ansfer datoa A transfer data Ii

Processi ng R Processing
of data A af .. B

O......------time-----...-..

B. INPUT/OUTPUT, WITH PROCESSIN'G OVE·IIlLAP.

IOCS routines +
traAsfer data A

R

O-----time-----___...

Figure 4.1. Fundamental concept of overlap,iag I/O with precessiBg
With overlap, data A is processed during the physical trans<ferof d.ata I.
R represents an I/O request in the user's program.

The amount of overlap actually achieved (effective oVe£laft) is
governed by the problem program throup the assign.ment of work aFeaIS
and I/O areas. An I/O area is that area of vidual storage to oc fmm whid.l
a block 6f data is physically transferred tty tile caatmel scfl.edt*r aM tfte
f)hysical IOCS r'O,utifies. A work area is an. area ift virtual stonap \1_ ~r
proce~1 ali ittw:vidual logical record f·f6tM. a lMeck of ~ata. :ao.w@~,
logical fe~ may aiIo be prooessed wttkout w~ a work afea.; t4!tey .. ~
tReD pIIOOteHid aweeHy iFl the I/O area.

Certain combinations of I/O areas aBO work area8 are ~:

• One I/O area with no work area

• One I/O area with a work area

• Two I/O areas with no work area

• Two I/O areas with a work area.

For spaRned record processing, the only aliowaele co~ 0f
I/O areas and work area are:

• One I/O area with a work area

• Two I/O areas with a work area.

The occurrence of normal overlap in spanned record proce.ssioc is
difficult to predict because, in most cases, the system requires m.ul'~ I/O
operations to satisfy ORe I/O request (very long logical rec(')rM).

Using two I/O areas and/or a work an~a usually iNcreases tfie
processing speed. In some cases, however, a larger blocking fae-t6r -J
iml'rove ,rocessing speed more than the use of either twe I/O H@BS or a
work area. Moreover, certain devices al'.e buffered, increasing ta€ f'6~1
am(nuat af 0v'@rtap. The following text discUSS0S combinatwFl6 ef I/O atNa8"

134 DOS/VS Dalta M-an.ment Guide

~
~

Record
Format
(Blocked or
Unblocked)

Unblocked

Blocked

and work areas, as they may be used for buffered devices, unbuffered
devices, blocked tape, chained diskette records, and blocked DASD. The
Figures presented reflect the general principle of overlapped processing and
are not intended to indicate the exact amount of overlap possible with any
specific I/O device, or with any specific IBM-supplied program.

- .

Separatt'!
Number of
I/O Areas

Work Amount of Effective Overlap
Area

Overlap of the device operation only for buffered devices such as 1403.
no 1443.2540. No overlap of magneti~ tape. 1017.1018.1442.2311.2314.

1 3330.3333.3340.2671.1287.

yes Overlap processing of each record.

no Overlap processing of each record.
2

yes Overlap processing of each record. (No advantage to a work area.)

no No overlap.
1

yes Overlap processing of full block.

no Overlap processing of full block.
2

yes Overlap processing of full block. (No advantage to a work area.)

Note: Overlap given is the maximum achievable.

Figure 4.2. Summary of achievable overlap of processing and Input/Output
Overlapping of processing and I/O may, or may not be achieved,
depending on the device used, or the number of I/O areas applied.

Figure 4.2 .summarizes all possible combinations of I/O areas and
work area; Figure 4.4 indicates for each combination the amount of
processing overlap that may be achieved. It should be noted that a certain
combination mayor may not be implied in specific high-level programming
language. The assembler language programmer has direct control of all
possible combinations when using the GET/PUT macro instructions.
Whenever a programming language allows a programmer to choose a proper
combination, this choice is normally made when the files are defined in the
program.

In some parts of figure 4.4, the action 'P' is shown. This indicates an
IOeS action when a pointer to a next logical record is updated in LIOeS.
This may be a switch from one I/O area to another, or a setting of the
pointer to the next logical record in a block, or both.

Note: The terms 'READ REQUEST' and 'WRITE REQUEST as used in the following
figures, do not refer to any type of I/O instruction in any programming language. They
indicate the point in a user's program at which the user wants to have a next logical
record made available for processing (READ) or for output (WRITE).

Throughout this manual the concept of a block of data is used; a
block being a physical entity which is read or written as a unit on the
external device. To take full advantage of information contained in this
manual and apply it correctly to diskette files, one must know the following.
The user can take advantage of I/O area and work area overlap processing
by allowing LIOeS to read and write multiple records each time the
diskette is accessed. Physically each logical data record that the user reads
or writes is a separate record on the diskette~ But by allowing LIOeS to
chain I/O operations to the device on input, the user-provided I/O area
will be filled each time the device is accessed. In tum, on output LIOeS
waits until the I/O area provided is full before writing individual logical
records on the diskette.

Section 4: Sequential Access Method 135

Diskette Data Transfer

So, for diskette files the user can logically "block" records in the I/O
areas provided by chaining I/O operations; however, each record on the
diskette remains a physically separate entity.

Example:
If the user:
• has two I/O areas, each 160 bytes in length;
• wants to process 80 byte records;
• indicates chaining of 2 records.

For input, when a record is requested the following data transfer occurs:

RECORDS AS ON DISKETTE

*

I/O Area 1 I/O Area 2

Figure 4.3A Diskette data transfer (input)
Physically the diskette records are always 128 bytes in length. Because
only 80 bytes are desired, only the first 80 bytes of each physical record
are placed in the I/O areas.

Physically the diskette records are a constant 128 bytes in length. Because
only 80 bytes are desired, only the first 80 bytes of each physical record
are placed in the I/O areas. For output, when an I/O area is full, it is
written on the diskette as follows:

I/O AREA

DISKETTE RECORDS

Figure 4.3B Diskette data transfer (output)
The 80 bytes comprising each data record are written in the first 80 bytes
of the physical diskette record. The device itself places binary zeros in the

remaining unused bytes of the physical record (shaded area).

136 DOS/VS Data Management Guide

Buffered 110 Devices

One I/O area and no work area (Figure 4.4A).

The maximum achievable overlap is the device time only. The transfer
time between I/O area and buffer is not overlapped by processing.

If a next read or write request is issued before device end, the data
transfer between I/O area and buffer does not take place until device end
is reached.

One I/O area and one work area (Figure 4.4B).

In this combination, the maximum achievable overlap is the device
time plus the transfer time between I/O area and buffer.

If a next read or write request is issued after channel end but before
device end, the transfer of data between I/O area and buffer can take
place, even though the transfer bet~een buffer and device cannot start until
device end is reached.

Two I/O areas and no work area (Figure 4.4C).

In this combination, the maximum achievable overlap is the device
time plus the transfer time between one of the I/O areas and the buffer.
Thus, the overap is the same as when using one I/O area and one work
area. The difference is that, when using two I/O areas, the data in one
area is processed while the other I/O area is used for actual input/output
from or to the buffer. For each next request the system switches between
the two I/O areas.

If the next read or write request is issued after channel end and before
device end, only I/O area switching occurs. Control then returns to the
problem program, and the device-buffer transfer is started after device end
is reached.

Two I/O areas and one work area (Figure 4.4D).

As in the previous two combinations (Figures 4.4B and C), the
maximum achievable overlap is the total transfer time: the device time plus
the transfer time between I/O area and buffer. However, there is a
disadvantage to this combination when compared with the previous two
combinations, because this one requires extra virtual storage.

If the next read or write request is issued after channel end but before
device end, the data transfer between the I/O area and the work area can
take place. Control then returns to the problem program, even though the
device is not started until device end is reached. If the next request is
issued before channel end, IOCS must wait.

Section 4: Sequential Access Method 137

Unbuffered I/O Devices, Unblocked Records

One I/O area and no work area (Figure 4.4E).

In this combination, no overlap is possible at all. After each I/O
request, processing must wait until all data has been transferred between
device and I/O area.

One I/O area and one work area (Figure 4.4F).

The maximum achievable overlap is the transfer time between device
and I/O area. When a next i/O request is issued before channel/device
end is reached, IOCS must wait.

In this combination, the work area replaces the buffer of buffered
devices. Therefore, the total effect is more or less the same as in Figure
4.4A.

Two I/O areas and no work area (Figure 4.4G).

As in the previous combination, the maximum achievable overlap is
the transfer/time between device and I/O area. Processing is done in one
I/O area while data is tranferred between the other I/O area and the
device. This combination does not require a move of the data to or from a
work area; instead, IOCS points alternately to the I/O area in process.

Two I/O areas and one work area (Figure 4.4H).

This combination also allows for a maximum overlap of the transfer
time between device and I/O area. However, when compared with the
previous two combinations, it has the disadvantage of requiring extra virtual
storage.

Generally speaking, the best choice is either one I/O area with a work
area, or two I/O areas and no work area. Which of these combinations is
chosen depends on the application. For example, when processing an input
file whose records are written to another file after some modification
(updating), it may be useful to use a work area for both files. The work
area may then even be the same area, allowing the system to read records
into the work area, process them, and write them to the second file from
the same area. In other cases the best choice is two I/O areas and no work
area.

138 DOS/VS Data Management Guide

(

~ ,

UlflllMlfferft I/O Devices, BIO'cke4 Records
In all following combinations, there is overlap only if act_I I/O is involved.
The Figures present only these situations. I/O req«ests that 00 Aot result in
actual I/O cause, in LIOCS, a pointer to the next 10lic8l1 N'OOt"d tfl tthe
existing block to be updated, so that this new logKM 1OO0£'8 is .lade
available for processing. In combinations where a W{)Pk H~. i8 Hsed, such
requests also result in data transfer between work area _ I/O area.

One I/O area and ntJ work area (Figure 4.41).

This combination has no overlap of p,rocessing wit,. ~ or output.
The I/O time per record depends on the blocking factor. Taerefere, the
I/O time per record can be redaced by increasing thebtockifll factor.

Actual I/O is performed when the first record of a lIJeW lMock must be
oMamed, or when the last record 9f a block is writtetl.

One I/O area ana one work area (Figare 4.4J).

The maximum achievable overlap is the time ~or alia '~f.~r between
I/O area and device. I/O requests for any record, except the liast in a
block, involve only a data transfer between I/O area a.nd work area. For
the last logical record in a block, the data transfer between work area and
I/O area is followed by a data transfer between. I/O area ~fld device which
is overlapped by processing. Channel end must occnr befefe tbe first record
of the next block can be processed by LIOCS.

Two I/O areas and no work area (Figure 4.4K).

In this combination, the maximum achievable overlUJl is MIe time for
transfer of data between I/O area and device. I/O requests for aU but the
first record of a block take time oRly for pointing to the Next record. Input
reqvests for the first logical record of a block must wait f9f clta;ftftel end of
the data transfer to the alternate area. Pointing to the f .. SIt fOO0Hl ~Fld
retarning control to the program is then overlapped wit. tile MK?t device
transfer. Output requests work the same way, except tllM tIM wait occurs
with the last logical record of a block.

Two I/O areas and a work area (Figune 4.4L).

There is a disadvantage tio this combiftation cOllltp-.. widil me two
previous ones because it requires extra virtual storage; tt.~JlJli\tm
achievable overlap is the time for tnmsfer of data hetw.a I/O Mea and
de¥ke.

Section 4: Sequential Access Method 139

A. BUFFERED DEVICES, One I/O area and NO work area.

execute
channel
program

I/O Request

I
execute
channel
program

INPUT PROCESSING

transfer data from
buffer to I/O area transfer data from device to buffer

........-.. Max. achievable overlap

Channel end Device end

OUTPUT PROCESSI NG

transfer data from
I/O area to buffer transfer data from buffer to device

Max. achievable overlap ----t~

Channel end Device end

o ------------Time--------------~.

B. BUFFERED DEVICES, One I/O area and one work area.

INPUT PROCESSING

transfer data from execute transfer data from
I/O area to work channel buffer to I/O area transfer data from device to buffer
area program

I/O Re quest

I/O Re quest .. Max. achievable overlap
I

Channel end Device end

I/O Request I
OUTPUT PROCESSING

transfer data from execute transfer data from
work area to I/O channel I/O area to buffer transfer data from buffer to device
area program

• Max. achievable overlap
I

Channel end
O--------------------Time------------~.~

Figure 4.4. Storage areas and effective overlap (1 of 6)

140 DOS/VS Data Management Guide

•
Device end

(

p
execute
channel
program

1/0 R

p
execute
channel
program

transfer data from
buffer to 1/0 area

INPUT PROCESSING

transfer data from device to buffer

Max. achievable overlap
I

1/0 RequElst

Channel end Device end
equest

p OUTPUT PROCESSING

execute transfer data from
channel 1/0 area to buffer transfer data from buffer to device
program

Max. achievable overlap
I

Channel end
O------------------Time--------------------~ ..

transfer data from
1/0 area to work
area

transfer data from
buffer to 1/0 area

INPUT PROCESSING

transfer data from device to buffer

...
Device end

1/0 Request 1 ~-------Max. achievable over: ap---------------------1~
1/0 Request

transfer data from
work area to
1/0 area

execute
channel
program

I
Channel end Device end

p OUTPUT PROCESSING

transfer data from
1/0 area to buffer transfer data from buffer to device

~-------Max. achievable overlap-----------------~
I

Channel end Device end
O--------------------Time-----------------------I .. ~

Figure 4.4. Storage areas and effective overlap (2 of 6)

Section 4: Sequential Access Method 141

execute transfer
channel data from device INPUT PROCESSING
program to I/O area

I/O Request
DevIce end,
Channel end

lio R

j
execute transfer
channel data from I/O OUTPUT PROCESSING
program area to device

0----------Time -----------••

F. UNBLOCKED RECORDS. One I/O area and one work area. --------------------------

transfer
data from I/O area
to work area

equest

transfer data
from work area
to I/O area

execute
channel
program

execute
channel
program

INPUT PROCESSING

transfer data from device to
I/O area

_ Max. achievab Ii over: ap_
Channel end
Device end

OUTPUT PROCESSING

transfer data from I/O area to
device

-Max. achievable overlap~
Channel end,
Device end

O------------Time------------.

Figure 4.4. Storage areas and effective overlap (3 of 6)

142 DOS/VS Data Management Guide

I
I/O Request

(
~

1
I/O Request

)

G. UNBLOCKED RECORDS. Two I/O areas and NO work area. ---------------------------

I/O R

p
execute
channel
program

equest

execute
channel
program

P

INPUT PROCESSING

transfer data from device to
I/O area

4---Max. achievable overlap
Channel end,
Device end

OUTPUT PROCESSING

transfer data from I/O area to
device

-4--Max. achievable overlap
Channel end,
Device end

O--------------------Time---------------------...

H. UNBLOCKED RECORDS. Two I/O areas and one work areaL -------------------------

p

1

execute
channel
program

1/0 R equest

transfer data from
work area to
I/O area

transfer data from
I/O area to
work area

transfer data from device to
I/O area

t ~Max. achievable overlap_
Channel end,
Device end

p

INPUT PROCESSlalG

OUTPUT PROCESSING

execute transfer data from I/O area to
channel
program

device

Max. achievable overlap~
Channel end,
Device end

O--------------------Time------------------------~.~

Figure 4.4. Storage areas and effective overlap (4 of 6)

I/O Request

I/O Request

Section 4: Sequential Access Method 143

execute
transfer data from channel
t1evice to I/O area P INPUT PROCESSING

program

t
1/0 Request Channel end,

Device end

I/O R

0

1

execute transfer data from channel 1/0 area to device
p OUTPUT PROCESSING

program

t
Channel end,

transfer data from
I/O area to
work area

p

Device end

Time

execute
channel
program

..

INPUT PROCESSING

transfer data from device to I/O area

. - M x chievable overlap--J a . a
Channel end,
Device end

equest

j
transfer data from execute
work area to p channel
1/0 area program

OUTPUT PROCESSING

transfer data from 1/0 area to device

Max. achievable overlap ~

Channel end,
Device end

O----------------------Time------------------------~.

Figure 4.4. Storage areas and effective overlap (S of 6)

144 DOS/VS Data Management Guide

I/O Request

1
1/0 Request

(

~

K. BLOCKED RECORDS. Two I/O areas and NO work area. -------------------------

execute
channel
program

I
I/O Request

execute
channel
program

p INPUT PROCESSING

transfer data from device to I/O area

~Max. achievable overlap--------.

p

Channel end,
Device end

OUTPUT PROCESSING

transfer data from I/O area to device

Max. achievable overlap
Channel end,
Device end

O-------------------Time--------------------~.~

L. BLOCKED RECORDS. Two I/O areas and one work area. --------------------------

execute
channel
program

1/0 Request

p
transfer data from
I/O area to
work area

transfer data from device to I/O area

- Max. achievable over.ap ~
Channel end,
Device end

INPUT PROCESSING

OUTPUT PROCESSING

p
transfer data from
work area to

execute
channel
program

transfer data from I/O area to device
I/O area

~Max. achievable overlap --....
Channel end,
Device end

O------------------Time----------------------~.

Figure 4.4. Storage areas and effective overlap (6 of 6)

I/O Req uest

j

1/0 Request

Section 4: Sequential Access Method 145

Assembler Language Considerations

Logical Record Processing

The macro instructions provided for the sequential access method allow the
programmer to process a file sequentially with a minimum of effort.

For input/output, two levels of processing are available:

GET /PUT level sequential access

• READ /WRITE level sequential access.

The GET/PUT level macro instructions permit the programmer to
store and retrieve logical records of a file without the need for coding
blocking/ deblocking routines: these functions are performed automatically
by LIOCS whenever necessary. For example, each time a programmer
issues a GET macro instruction in his program, a next logical record is
made available for processing. Actual input/output is performed only when
a next logical record must be obtained from a next block.

Another major feature of this level of sequential processing is the
choice of using either one or two I/O areas, and of processing a logical
record either in one of the I/O areas or in a work area. This is discussed
and illustrated under "Storage areas and Effective I/O overlap".

The READ/WRITE level macro instructions provide the programmer
with an efficient and flexible means for storing and retrieving the blocks of
a sequentially organized magnetic tape or DASD file. The macro
instructions provided with this level of the Sequential Access Method allow
a file to be treated alternately as input or output. It is particularly effective
in applications where blocks are alternately read from and written to a file
used as a temporary extension of virtual storage.

Blocking and deblocking is not included in this level of I/O processing:
the programmer is responsible for writing his own routines if
blocking/ deblocking is desired. The READ and WRITE macro instructions
operate on the same basis as the physical 10CS EXCP macro instruction,
except that the CCW chain is provided by the system.

To a certain extent, even random processing is possible with this level
of I/O processing, by means of the POINT macro instruction.

GET The GET macro instruction is used to obtain logical records in
physical sequential order from a file on any device. Automatic
record deblocking is included. As required, the system schedules
the filling of input areas, deblocks records, and directs error
recovery procedures.

PUT

The system also checks for end-of -volume condition, and initiates
automatic volume switching if an input file extends over more
than one volume. When a file occupies more than one
discontinuous area on a DASD volume, automatic switching from
one extent to the next is also performed.

The PUT macro instruction releases logical records to the system
for output, in physical sequential order. Automatic record
blocking is included.

146 DOS/VS Data Management Guide

As required, the system blocks records, schedules the emptying of
output areas, and handles output error correction procedures,
where possible. The system checks for end-of-volume condition
and performs automatic volume switching and label creation.
References to non-continuous DASD extents are resolved.

Both the GET and PUT macro instructions can be used in either of
two ways:

• In move mode where logical reocrds are moved from an input area to
a work area (GET), or from a work area to an output area (PUT).

• In locate mode where logical records are processed in the 110 area. A
register then contains the address of the first byte of the logical record
in the 110 area.

Move Mode GET and PUT Macro Instructions
When operating in the move mode, the GET and PUT macro instructions
transfer logical records between the 110 area and a work area.

For an input file whose logical records are to be updated and written
to another output file, a work area is useful. Both the input file and the
output file may share the same work area. The size of a work area of an
input file may be larger than the input records, so that the records may be
extended during processing.

FILE A
(input)

FILE B
(output)

If the move mode is used for the GET and PUT macro instructions,
the following operands need to be specified:

• The name of the file.

• The address of the programmer's work area, or a register which
contains this address. The register option should be used for
self -relocating programs.

Locate Mode GET and PUT Macro Instructions
When operating in the locate mode, logical records are processed in the 1/0
area. After each GET, a register points to an input area (segment) where
the logical record has been made available for processing. Here the
programmer is not able to extend the size of the logical record during
processing. On the other hand, there is no need for an additional transfer
of data to a work area. After each PUT, a register points to the output
area (segment) where the next following logical record may be built.

When records are to be updated and written to a separate output file,
the programmer may either process the record in the input area and move it

Section 4: Sequential Access Method 147

to the output area afterwards, or move the record from the input area to
the output area and process the record there.

GET

process in
input area

FILE A FILE B
(input)

move record
(output)

to ..
output area

PUT

GET

move record
to •

FILE A
output area

FILE B
(input) (output)

process in
output area

PUT

If the locate mode is used for the GET and PUT macro instructions,
the only operand required is the name of the file.

Processing Blocked Logical Records
In normal cases, a program will process a file, starting with the first logical
record, until end-of-file is signalled by IOCS. In these cases there is no
difference between the processing of unblocked records and the processing
of blocked records, since the blocking and deblocking of logical records is
performed automatically with the GET and PUT macro instructions.

A special type of processing, however, may require the system to
obtain a next logical record from the next block, ignoring any remaining
logical records that follow the one in the same block that is being
processed. Or, for output, it may require the system to place the next
logical record as the first record of a new block. A special case is spanned
record processing, where a program may wish to obtain a next record and
bypass all segments of the current record being processed.

RELSE

TRUNC

148 DOS/VS Data Management Guide

The RELSE macro instruction causes the following
GET macro instruction to obtain the first logical
record from the next following block and to ignore any
logical record remaining in the current block.
When spanned records are processed, the RELSE
macro instruction causes the following GET to skip to
the next first segment of the next logical record.

The TRUNC macro instruction causes the following
PUT macro instruction to regard an output area as full,
and subsequently to place the next logical record in the
next block. Thus, just as intput areas may be released
by the RELSE macro instruction, output areas may be

~" ,

truncated for writing short blocks. IOCS provides for
reading truncated blocks, so that a short block will not
necessarily result in an error condition on input.
The CLOSE macro instruction effectively truncates the
last block of a file.

For both the RELSE and TRUNC macro instructions, the name of the
file must be specified as an operand.

End-of - Volume Conditions
Both the GET and PUT macro instructions check for end-of-volume
condition. If such a condition occurs, the system performs automatic
volume switching.

The programmer may decide to stop processing a file on one volume,
and to resume processing the same file on the next volume.

FEOV

FEOVD

The FEOV macro instruction forces the system to
assume an end-of-volume condition on either an input
or output magnetic tape file, thereby causing automatic
volume switching.
When FEOV is issued on an input file, trailer labels
are not checked. The header labels of the next
volume, however, are verified.
When FEOV is issued on an output file, trailer labels
are created as required.

The FEOVD macro instruction forces the system to
assume an end-of-volume condition on either an input
or output DASD file, thereby causing automatic
volume switching. The operation is exactly the same as
for the FEOV macro instruction except that trailer
labels are processed also for input, after a FEOVD is
issued.

For both the FEOV and FEOVD macro instructions, the name of the
file is required as an operand.

Updating
Files that are processed sequentially, are normally either read or written.
For certain devices, however, it is also possible to obtain logical records and
after processing, to write an updated version of the records back into their
original location in the file.
Those devices are:

• All types of DASD.

I. Card input on a 1442, 2520, 2560, 3525, or 5425.

• Card output in the punch feed of a 2540 equipped with the
punch-feed-read special feature.

For card files on the 1442, or 2520, the user specifies
TYPEFLE=COMBND in the DTFCD macro if card records must be
updated.

Section 4: Sequential Access Method 149

Physical Block Processing

For card files on the 2560, 3525, or 5425, the user specifies the
operands ASOCFLE and FUNC if card records must be updated.

For DASD files, the user specifies UPDATE=YES in the DTFSD
macro if DASD records are updated.

Records are obtained from the file as usual by a GET macro
instruction. After the record has been processed, the next PUT causes the
record to be returned to its original location in the file. (DASD), or
punched into the same card from which it was read.

Processing is done in the input area. After processing, the records are
returned to the file from the input area. For card devices, the records are
returned to the file by PUT, for DASD the PUT sets an indicator which is
used by the next GET to accomplish the transfer. Between a PUT and the
next GET, the input area must not be modified.

If a work area is used for the file, the records are returned, by PUT,
from the work area to the input area and then from the input area to the
file.

If a particular record does not require updating, a subsequent PUT
may be omitted, except for the 2540, 2560, 3525, or 5425.

End-of-FOe Conditions
For end-of-file conditions, see the end of this section on Assembler
Language Considerations.

Special Macro Instructions for OCR and MICR

RDLNE

DISEN

LITE

READ

The RDLNE macro instruction provides selective
online correction when processing journal tapes on the
IBM 1287 Optical Character Reader. The macro
instruction causes the reader to read a line in the
online correction mode, while processing in the offline
correction mode.

The DISEN macro instruction cuases the magnetic
character reader or the optical reader/sorter to stop
feeding documents.

The LITE macro instruction permits any combination
of pocket lights on the magnetic character reader or
the optical reader/sorter to be lit after a specified
number of documents has entered the pockets.

The READ macro instruction requests that a block be
transmitted from a file to a virtual storage area. Any
deblocking must be performed by the problem
program, and each READ operation transfers one full
block into virtual storage. To allow overlap of the
input operation with processing, READ does not wait
for the end of the operation, but returns control to the
problem program as soon as the READ has initiated
the CCW chain that performs the data transfer.

150 DOS/VS Data Management Guide

~
V

WRITE

CHECK

NOTE

Therefore the programmer must check for completion
of the input operation before processing the data.
After READ has retrieved all blocks of a file, and
discovers that no more data is available for processing,
IOCS passes control to the user's end-of-file routine,
whose address is specified in the DTFxx macro
instruction.

Because the READ macro instruction has been
designed for workfiles, multiple volume support is not
available. A file to be processed by means of the
READ macro instruction must be contained in one
volume.
READ can also be used to read backwards from
magnetic tape.

When used for MICR, the READ macro instruction
permits the use of more than one magnetic reader per
program.

The WRITE macro instruction requests that a block of
data be transferred from virtual storage to a file.
WRITE operates in much the same fashion as READ,
except that WRITE is in reverse. The file to be
processed by WRITE must be contained in one
volume.

The CHECK macro instruction waits for the
completion of an 110 operation requested by a READ
or WRITE macro instruction. It also tests for errqrs
and exceptional conditions that may have occurred
during the data transfer. As required, control is passed
to the appropriate exits, for error analysis and
end-of-file, that are specified by the programmer in the
DTFxx macro instruction for the file. After having
issued a READ or WRITE, the programmer must use
the CHECK macro instruction before issuing any other
macro instruction for the same file, or before the
contents of the input or output area in virtual storage
is altered.

Both READ and WRITE operate in a strictly
sequential manner, starting either at the beginning of a
file, or at a point to which the file has been positioned
by one of the three POINTx macro instructions (see
below).

The NOTE macro instruction places into a register the
position on a volume of the last block that has been
transferred to or from virtual storage by means of a
READ or WRITE macro instruction. This data can be
saved by the user's program and subsequently be used
to reposition the file to this location (see the POINTR
and POINTW macro instructions, beloW).

Section 4: Sequential Access Method 151

POINTS

POINTR

POINTW

For output files that are written on a DASD volume,
the NOTE macro instruction also places in another
register the number of bytes of space remaining on the
track containing the noted (= last written) block.

Before a programmer issues a NOTE macro
instruction, the last I/O operation must be tested for
completion by means of the CHECK macro
instruction.

This macro instruction causes the file to be positioned
at the beginning. For magnetic tape files, POINTS
causes a rewind of the tape to load point and the
positioning the tape to the first data block; labels are
bypassed to the first tape mark. A DASD file is
positioned to the lower limits of the first extent of the
file.

The POINTR macro instruction is used to position the
file to a specific block, prior to the reading of that
block by means of a subsequent READ macro
instruction.

A series of READ macro instructions following a
POINTR will pick up blocks sequentially starting with
the block specified in the POINTR.

The address to be specified in the POINTR macro
instruction can be obtained from the result of a
previously issued NOTE macro instruction (see above)
or may be specified by the user himself. More specific
information about the use of the POINTR macro
instruction in combination with the NOTE, READ,
and WRITE macro instructions, is presented in
DOS/VS Supervisor and I/O Macros, GC33-5373.

The POINTW macro instruction is used to position the
file to a block following the one specified in the
POINTW, prior to writing a block to that location with
a subsequent WRITE macro instruction.
A series of WRITE macro instructions following a
POINTW will write blocks sequentially, starting at a
location following the block specified in the POINTW.

The address to be specified can be obtained from the
result of a previously issued NOTE macro instruction
(see above) or may be specified by the user himself.
More specific information about the use of the
POINTW macro instruction in combination with the
NOTE, READ, and WRITE macro instructions, is
presented in DOS/VS Supervisor and I/O Macros,
GC33-5373.

The reader may have understood from the preceding text that the
Sequential Access Method allows for random processing through the
READ, WRITE, NOTE, and POINTx macro instructions. To a certain
extent this is true. However, the following facts should be recognized:

152 DOS/VS Data Management Guide

~.' ... I'.'.

1

1. The READ and WRITE macro instructions can be applied in SAM,
only to files that are completely contained on one single volume.

2. Random processing on magnetic tape, although possible, is highly
inefficient, since many blocks may have to be bypassed when going
from one block to another. Furthermore, on magnetic tape, random
processing is restricted to reading; writing should be done sequentially.
This is because writing is performed within certain tolerances: it takes
some time before actual writing starts and when actual writing stops it
takes some time before the medium comes to a complete standstill.
The interrecord gaps between blocks allow for this, but frequent
overwriting of blocks may cause an interrecord gap to be too short or
too long, and may even affect a following block.

3. For random processing on DASD through SAM, the user may specify
the operand UPDATE = YES in the DTFSD macro instruction. In this
case, a WRITE will be considered as a WRITE UPDATE; in other
cases, it is considered as a WRITE SEQUENTIAL.
For a WRITE UPDATE, the block that was POINTED at will be
overwritten; for a WRITE SEQUENTIAL, the block following the one
that was pointed at will be written and the remained of the track is
erased.

Storage Areas
Files that are processed by means of the READ and WRITE macro
instructions, use one single I/O area with a size equal to the block length.
This area is filled or emptied each time a READ or WRITE macro
instruction is issued.

The 110 area need not be fixed in location: the programmer supplies
the address of the I/O area in the macro instruction itself, each time the
macro instruction is issued.

Special Macro Instructions for OCR and MICR
DSPL Y The DSPL Y macro instruction displays a document

field on the display screen. This macro keys-in a
complete field on the keyboard when a 1287 read
error makes this type of correction necessary.

RESCN

WAITF

The RESCN macro instruction selectively rereads a
field on a document when a 1287 read error makes
this type of correction necessary.

The W AITF macro instruction, for use in document
processing with the IBM 1287 optical reader, is issued
to ensure that the transfer of data from reader to CPU
has been compoleted without error. The W AITF
macro instruction is used with magnetic character
readers in a multiprogramming system to determine if
any magnetic character reader has documents ready for
processing.
The W AITF macro instruction is used with optical
reader / sorters in a multiprogramming system to
determine if any optical reader I sorter has documents
ready for processing.

Section 4: Sequential Access Method 153

Device Control Macro Instructions
PRTOV The PRTOV macro tests overflow indicators for online

printer channel overflow; it can be used only of the
DTFPR macro is used, not if the DTFDI macro is
used. If an overflow indicator is ON, the user's printer
overflow routine, if specified, gets control. When no
user's printer overflow routine is specified in the
DTFPR macro, PRTOV causes an automatic skip to
channel 1.

CNTRL

154 DOS/VS Data Management Guide

The overflow indicator to be tested (channel 9 to 12)
is specified as an operand of the PRTOV macro.

Note: At system generation, a page size is inserted. The system
maintains a line count and automatically skips to channel 1 if
this line count becomes higher than the constant inserted at
sysgen. The constant can be changed for a job at job control
time, using the SETLINE job control statement.

The CNTRL macro provides for the following
functions:

• Card readers and punches (DTFCD only):
Stacker select control.

• Printers (DTFPR only):

•

Space number of lines, before or after
print.
Skip to specified channel, before or after
print.

Magnetic tape units:
Rewind.
Rewind and unload.
Erase gap (write blank tape).
Backspace to interrecord gap or to
tapemark.
Backspace to tapemark.
Space forward to interrecord gap.
Space forward to tapemark.
Space forward logical record.
Backspace logical record.
Logical record spacing (spanned record
input only).

DASD:
Seek to specified track.

• Optical readers:
Mark error lines when reading journal
tapes.
Read keyboard information when reading
journal tapes.
Eject documents.
Stacker select documents.
Increment documents.

The use of the PRTOV and the CNTRL macro instructions requires
that the devices involved are actually online when the program is executed.
In many cases, however, the output will be written to another device type
than is assumed by the program. For example, print output may be written
to magnetic tape when the program is executed, and a tape-to-print
program may produce the printed output later. In such programs the file
characteristics must be specified in the DTFDI macro, not in the DTFCD
or DTFPR macro; the PRTOV and CNTRL macros cannot be applied for
device control purposes if DTFDI is used.

Instead of using the CNTRL macro instruction, the user may use the
optional control character in the first byte of his output records. Also,
instead of using the PRTOV macro instruction, the user may maintain a
line-count field in his program which is incremented by one for each line
printed or spaced on a form, and is reset to zero at the first of a new form.

Using a line-count field and control characters instead of the PRTOV
and CNTRL macro instructions has the following advantages:

•

The line-count field can be used in the program to determine the
amount of lines already printed on a form.

When all programs running on an installation use a line-count field
and control characters, each program can create its own special
printing lay-out, without the need for frequenly changning a carriage
tape on the printer. As long as all different forms used are of equal
length, one carriage tape may be designed that suits all different
applications. On such a tape, channel one may be used for the top of
the form, channel 9 or 12 may be used for the bottom of the form,
and any other channels may be used to indicate any desired
checkpoints on the form.

• As already indicated above, the use of a line-count field and control
characters allows device-independent programming. Output can be
written on any device available when the program is executed and can
be transformed to the desired type of output at a later time. See also
section 2 "Device Independence".

End-of-FUe Conditions
Issuing a GET or READ macro instruction on a sequential input file after
the last record of that file has been processed, results in an end-of-file
condition. IOCS then enters the user's end-of-file handling routine, the
address of which is specified in the DTFxx macro instruction. This routine
usually contains the CLOSE macro instruction to deactivate the file.

A special case is a program that processes a sequential transaction file
against a sequential master file, producing an updated version of the master
file. One cannot usually predict which input file will reach end-of-file first.
Unexperienced programmers usually find this a problem, difficult to control.
Since, however, this type of program often occurs in business data
processing, this section on assembler language for SAM ends with a sample
program of this type, indicating a general solution to the problem.

Section 4: Sequential Access Method 155

The sample program operates on three magnetic tape files:

1. A master file as INPUT, whose filename is MASTER. The end-of-file
address specified in the DTFMT macro instruction is EOFMT. The
I/O area name is MFREC.

2. A transaction file as INPUT, whose filename is TRANSACT. The
end-of-file address specified in the DTFMT macro instruction for this
file is EOFTA. The I/O area is TARECD.

3. An updated master file as as OUTPUT. This file will be input for the
next cycle of this program, with new transaction input. For the
purpose of explaining how to handle EOF conditions on input, this
output file is not important, and it is not described in more detail.

PROBLEM
PROGRAM

--------1
I
I
I
I
I
I

input in
next
cycle

t
I
I
I
I

----____ --1

Reading the input files TRANSACT and MASTER is controlled by
two program switches (see Figure 4.5). If a switch is ON, reading is
permitted. The switches are ON when the program begins.

As soon as a GET is issued (switch was ON) the switch for the file is
set to OFF. Unless the switch is set to ON again, subsequent GETs are
bypassed. The two read switches are set on by the processing routines in
the program.

The identifier fields of both T ARECD and MFREC are to be
compared in order to find out whether both records match or not (both
files are pre-sorted in ascending sequence by identifier field). The two
fields are called CT A and CMF and are equal in length. They may be in
the input area, or may be moved from the input area to two work fields
with those names.

156 DOS/VS Data Management Guide

Depending on the result of the comparison, one processing routine out
of three is selected:

1. If CT A and CMF are equal, the transaction record matches the master
record so that updating can take place. After processing and writing
an updated master record, new input must be obtained from both
MASTER and TRANSACT. Consequently both read switches are set
to ON (see note below).

Note: It was assumed that only one transaction can occur on one master record.
If this assumption is not true, the program must be modified in such a way that
after the updating of a master record with the contents of a transaction record,
only the read switch for the file TRANSACT is set to ON. As long as both files
are in the proper sequence, they will always remain synchronized.

2. If the contents of CT A is lower than the contents of CMF, there is
apparently a transaction on a master record which does not exist. This
may be erroneous input or, depending on the application, it may mean
that a new master record must be added to the output file. After
whatever processing may be required, a new transaction record must
be obtained, so that the read switch for the file TRANSACT is set to
ON.

Section 4: Sequential Access Method 157

99 99
TO

CTA

END-OF-FILE
ROUTINES

1) (3)

UPDATE
MFRECWITH

TARECD

CREATE NEW
MASTERRECORD

WITH TARECI)

COpy MFREC
WITHOUT
UPDATING

• If, for one MASTER record, more than one
TRANSACT record may be expected, only
SWITCH TA should be set to ON; See note
in text.

99 •.... 99
TO

CMF

Figure 4.5. An updating program with end-of -fUe conditions on two input
fUes

158 DOS/VS Data Management Guide

One of three processing routines is used depending on whether the ID of
the transaction record (1) matches, is (2) lower than, or (3) higher than
the ID of the master record.

~.I';' Jl

3. If the contents of CT A is higher than the contents of CMF, there was
apparently no transaction for the master record in the transaction file.
The master record therefore can be written to the output file without
any updating. A new master record must now be obtained, so that the
read switch for the file MASTER is set to ON.

Eventually, one of the two input files will reach end-of -file. The only
action that really remains to be done is to prevent this file from being read
again; this is done in the end-of -file routine by setting the identifier field to
the highest possible value (all nines, for example, or binary ones). As a
result, the mechanism that synchronizes both files will only read the file
which did not reach end-of-file. After this second file also has been
processed completely, its identifier field is also set to the highest possible
value; both fields are then equal, and the program can be terminated.

I Note: For an input file on an IBM 5425 MFCU, the end-of-file indicator (/* or
user-defined) must be followed by a blank card.

Logic Modules for Sequential Access Processing
The logic modules available with the Sequential Access Method must be
assembled by the user from a source statement library, supplied by IBM.
This is a one-time process. Once assembled, the logic modules can be
stored in the relocatable library.

The logic modules can be linked with any problem program that
requires them by the linkage editor. If preferable, however, they can also
be assembled along with the user's program and included in the same
output object module.

The logic module for a specific type of file in a particular problem
program is assembled on a selective basis, according to the requirements for
that file, specified by the user through parameters in the xxMOD macro
instruction. These parameters specify the functions that the particular
module is to provide. The functions provided by a logic module vary
depending on the characteristics of the file, the type of device on which the
file resides, and the activities to be performed on the file.

There are different xxMOD macro instructions for different device types:

• CDMOD Card Module
• PRMOD Printer Module
• MTMOD Magnetic Tape Module
• SDMODxx Sequential Disk Module
• PTMOD Paper Tape Module
• MRMOD Magnetic Reader Module
• ORMOD Optical Reader Module
• DIMOD Device Independent Module

I · DUMODFx Diskette Module

The characteristics of the file are specified as parameters of the DTFxx
macro instruction, which generates a DTF table, serving as a link between
the user's program and the logic module for a certain file:

•
•

DTFCD
DTFPR

Card files
Printer files

Section 4: Sequential Access Method 159

•
•
•
•
•

Magnetic tape files
Sequential disk files
Paper tape files
OCR files

I :

DTFMT
DTFSD
DTFPT
DTFOR
DTFMR
DTFDU
DTFDI
DTFCN
DTFSR

MICR files
Diskette files
Device independent files
Console files

Direct Access Method

Devices and Record Formats

•
• Serial device files

For console and serial device files, no logic modules need to be generated,
or headed at object time.

The Direct Access Method supports the following DASD equipment:

•
•
•

IBM 2311 Disk Storage Drive
IBM 2314 Direct Access Storage Facility
IBM 2319 Disk Storage
IBM 3330 Family of Disk Storage Devices
IBM 3340 Disk Storage
IBM 2321 Data Cell Drive

The equipment listed is described in Appendix 1; the data capacities of
the devices are presented in Appendix 2.

Only unblocked records, with or without a key area, are processed by
the Direct Access Method. That is, a physical block is regarded as
containing one logical record. If any blocking is desired, this must be done
by the programmer in his problem program. Since the physical location of a
logical record is determined through a randomizing algorithm it is usually
impractical to have logical records blocked and, at the same time, physical
blocks written with a key area. This is explained in the following example:

Assume a direct access file consisting of physical blocks with a key
area, each block containing three logical records; blocking/deblocking is
done by the problem program.

Problem 1: A physical block may have only one key; which key of
the three is taken? Assume that the highest key in a
block is selected and that one block in the file looks as
follows:

COUNT KEY USER's USER's USER's
AREA .AREA RECORD 1 RECORD 2 RECORD 2

xxxxx 358 key = 145 key = 149 key = 358

highest key in the block t
I t---------physical block ---------.1

160 DOS/VS Data Management Guide

)

Problem 2: Assume that an application program wants to retrieve
the second logical record from the block above
(key= 149). This program will not be able to refer to
this block on the basis of its key, since the key of the
physical block is 358. Therefore the program can only
refer to the block by its physical location in the file
which is to be determined from key 149, through a
randomizing algorithm. In the block above, the
randomizing algorithm is thus supposed to calculate the
same DASD address for the keys 145, 149, and 358.

I •• -----INPUT AREA----...... ·~II

USER's USER's USER's
RECORD 1 RECOR.D 2 RECORD 3.

key = 145 key = 149 key = 358

t t t
References by problem program

Problem 3: Another physical block in the same file might contain
three records with the keys 147, 214, and 306; it then
would look as follows:

COUNT KEY USER's USER's USER's
AREA AREA RECORD 4 RECORD 5 RECORD 6

xxx xx 306 key = 147 key=214 key = 306

From the two blocks the real problem becomes clear: retrieval of
individual records from any block, by means of a search on key on the
device, can be done only if the user knows, for each individual record in
the file, the key of the block in which that record occurs. In effect this
means that only unblocked records with a key are practical, or in those
cases where the logical records are physically kept in sequence according to
their keys. In the latter case, retrieval might be possible by means of a
search for a key, equal to or higher than the one supplied by the user.
However, this organization is adequately treated by ISAM and VSAM, to
be described later.

The following formats can be applied in DAM:

• Fixed-length format (Format F)
Variable-length format (Format V), spanned or unspanned

• Undefined format (Format U).

If record spanning is used, the segmentation of logical records and the
reassembly of logical records from a sequence of segments is performed by
LIOeS routines whenever necessary.

Data can be written with or without a key area. Regardless of the
record format, the length of the key area must be fixed for a file.
Moreover, if spanned records are used, a key will be written only before
the first segment of a record.

Section 4: Direct Access Method 161

Locating Data

Physical Track Addressing

The various record formats, and the record structures possible on
DASD, were explained earlier in this manual, under Record formats and
record structures.

The Direct Access Method requires DASD addresses for all read or write
operations. These addresses may be supplied in two ways:

• As an actual physical DASD address that specifies the location of a
physical block within the entire system.

• As a relative track address that specifies the location of a physical
block within the file.

An actual physical DASD address can be shown as an 8-byte binary
address in the form mbbcchhr.

m identifies the volume.
A single file may be contained over more than one volume. If this is
the case the physical units must be assigned (in EXTENT control
cards) to a sequential set of symbolic unit numbers. The value of m is
always 0 for the first volume, 1 for the second, 2 for the third, etc.

For example, a single logical file located on three volumes could be
assigned to the logical unit numbers SYS002, SYS003, and SYS004.
Here, m=O refers to SYS002, m= 1 refers to SYS003, and m=2 refers
to SYS004.

The value of m is never actually read or written on the storage device.
It references the proper element in the LUB table (see Physical
devices and symbolic device names).

bb is a 2-byte field specifying a cell number (0-9). It is used for the 2321
data cell only; for disk bb is set to zeros.

cc is a 2-byte field that contains the cylinder number in binary form.

hh is a 2-byte field containing the head number in binary form. The first
byte is reserved.

is the record number within a track. This I-byte field can contain a
binary value of 0 to 255 to identify the physical location of a record
on a track. r is not always used: it is only required when records are
referenced by record ID. Records can also be referenced by record
KEY, in which case r is not used.

The 8-byte DASD addresses described above are used either as a
starting point for a search on record KEY (control field) or as the actual
address for a read or write operation. When searching for a key, the
programmer has the option of specifying that the search be only within the
specified track (hh) or from track to track starting at the address given and
continuing either until the record is found or until the end of the cylinder
(cc) is reached.

162 DOS/VS Data Management Guide

Relative Track Addressing
The required DASD address may also be given as a relative address, which
is then converted by lacs to an actual address. Relative track addressing
is more convenient to use than the actual physical address for the following
reasons:

• The data in the file is treated logically as if it were located in one
continuous area, although it may be physically non-continuous.

• The user needs to know only the relative position of the data within
the file; its actual physical address is not required. This is especially
advantageous if the user plans to move the file from one location to
another. In such cases the relative addressing scheme remains the
same whereas the actual addresses will be automatically converted by
lacs.

The user may specify relative addresses in either of two formats:

• Hex~decimal, in the form tttr.

• Zoned decimal, in the form ttttttttrr.

In hexadecimal, ttt represents the track number relative to the start of
the file, and r represents the record number oil that track. In zoned
decimal, tttttttt represents the track number relative to the start of the file,
and rr represents the record number on the track. The hexadecimal notation
requires 4 bytes, while the zoned decimal notation requires 10 bytes.

It should be noted that the addressing techniques described above are
used by the DOS/VS operating system, and may be applied in Assembler
language. Addressing in a high-level programming language, such as
COBOL or PL/I, may be different. Information about DASD addressing in
a high-level programming language should be obtained from the appropriate
reference manuals.

For certain types of op~ra1ions, the system can be requested to return
the actual record address (ID) of the block read or written, or of the block
following the one read or written. This returned ID can be used to either
read or write a new record, or to update the one just read and write it
back.

For example, to delete a logical record from a direct access file that
contains physical blocks with a key area, the programmer can randomize
the primary key of that record to a starting location (track or cylinder
address), search on key to read the block, and then use the ID returned to
write a blank or zeroed block (key and data) to this location.

If a user wants to use deleted blocks again for other data, he may
randomize the primary key of a new logical record to a starting location,
search on key to find a blank or zeroed key (see note), and then use the ID
returned to write the new record with the new key into the same location.

Note: In the examples, it was assumed .that a deleted block would be written as "all
blanks" or "all zeros". However, any unique identification is acceptable and the choice
is entirely up to the user. See also "Loading and Processing a Direct Access File".

Section 4: Direct Access Method 163

Capacity Record

The format of the returned ID will be the same as the format of the
DASD address that is used for locating data mbbcchhrr, tttr, or ttttttttrr.

Detailed information about the returning of IDs can be found in
DOS/VS Supervisor and I/O Macros, GC33-5373.

DASD design allows the operating system to locate space on a track for
writing a physical block. For this purpose, the Direct Access Method
maintains a capacity record as a part of record zero on a track (see Record
structures for the various devices in the section Introduction to DOS/VS
data management).

When a record must be written, the system will:

• Read the data portion of record zero (=capacity record).

• Determine whether there is space on the track for the record.

• If the new record fits, write it to the track as a new last record, and
update the capacity record.

• If there is not enough space on the track, notify the problem program.
An overflow routine in the problem program may then become active.

This design makes a randomizing problem less critical than in the past
when every single record was supposed to have its unique location. Each
synonym resulting from a conversion algortihm resulted in an overflow
record. Now the conversion algorithm may randomize to a track address,
and more than one record may have the same address assigned by the
algorithm.

The capacity record is not always used. The description of the WRITE
macro instruction (under Assembler Language Considerations) explains
when it is used.

The capacity record is updated for each record that fills empty space
on a track. When a record is deleted, however, the capacity record does
not show it as empty space. A deleted record can only be recognized by
the user as 'free space'. This consideration has consequences for processing.

Loading and Processing a Direct Access File
The only difference between loading· (creating) and processing (updating or
retrieving) a direct access file is the file's initial status. In both cases, the
same conversion algorithm is used for locating data blocks, and the entire
file must be online.

I Note: Multivolume direct access files on a 3.340 cannot extend over different types of
data modules.

Before creating a file, however, the user should be sure that the disk
storage area is cleared of any data that may have been stored previously.
IBM provides two utility programs to clear disk storage areas:

• Initialize Disk.

164 DOS/VS Data Management Guide

This utility program operates on complete volumes only. It may write
only a preformatted VTOC, or it may also clear the entire volume so

File Organization

that each track contains a home address and a record zero with zero
capacity. The preformatted VTOC contains empty file labels.
Although the initialize disk program cannot clear a portion of a
volume, the user can do so by writing a complete file consisting of
erased tracks preceded by RO with the desired contents.

• Clear Disk.
This utility program operates on logical files. It is used to preformat a
disk storage area with dummy blocks of fixed length format. It can be
used either on a new pack after the Initialize Disk program, or on a
used pack to clear data areas for a new file.
Pre formatting by means of the clear disk program is necessary for a
file of fixed length data blocks.

Additional information about these two utility programs is presented in
the section DASD Initialization and Maintenance.

A file that is organized randomly usually is designed with two types of data
areas:

• Prime data areas

• Overflow areas.

Overflow areas are used for data blocks that cannot be placed in the
prime data areas. Overflow areas can be spread over the file (for example
in the last tracks in each cylinder), or as one continuous area for the entire
file (for example in one or more complete cylinders outside the file, even
on a different volume).

The choice of a good conversion algorithm is very important. A poor
algorithm will produce many synonyms so that overflow areas may prove to
be too small and the space in the prime data area is used ineffectively. This
means a waste of space. If a good algorithm is used, however, the random
access technique is undoubtedly the most flexible method of all.

CyLl CyL2 Cyl.n

Prime data areas

----------~----
Overflow areas

~ _______________ J ____ ~

2

CyLl Cyl.2

Prime data
area

CyLn

O'flow
area

Figure 4.6. Two examples of overflow area organization
Overflow areas may be in the last tracks of each cylinder, or in separate
cylinders.

The strict requirement for a good randomizing formula is lessened by the
fact that the design of the mM direct access devices allow, in certain cases,
randomizing to a track address instead of down to the record address; in
some cases, even a cylinder address may be sufficient. This is explained in
the following text. It is important, however, to keep in mind that this
manual describes the data management features offered by DOS/VS in a

Section 4: Direct Access Method 165

Prime Data Organization

context of assembler programming language; it is quite possible that a
high-level programming language does not offer the same features. Those
languages are subject to standards that are based on minimum processing
requirements throughout the industry and do not apply to all features of
specific devices. The user, therefore, must consult the manuals of the
language processor he is using for a description of the facilities offered.

Different methods can be used for randomizing. The choice depends on the
record structure (with or without key) and the record format (fixed or
variable length).

Data Without a Key Area
If records are written without a key, the location of a data block can be
uniquely identified by the randomizing algorithm only. The device has no
means of identifying a data block other than by the record address as
specified by the user.

For data without a key, the most practical method of randomizing is to
establish a converstion algorithm that calculates a cylinder, track, and
record address. This implies that fixed-length records must be used, and
that the file will be pre formatted by means of the clear disk utility program,
before being loaded. Variable-length blocks cannot be processed randomly
without a key on the basis of a unique DASD record. address, since writing
to a record address requires an existing block at that address, and the size
of that block cannot be predicted before the size of the new data block to
be inserted is known.

All of this makes the conversion algorithm for data without a key more
critical, since each synonymous record becomes an overflow record. The
procedure to be followed is complex. Generally speaking, the following
procedure must be used for adding a new record:

1. Compute a DASD record address by means of the randomizing
algorithm.

2. Check whether the block on the address computed contains current data
or not. This requires an input operation.

3. If the block contains no current data, write the new record of the
computed address. Clear the overflow pointer (see Figure 60).

4. If the block does contain current data, find a proper place for the new
record in the overflow area. This problem is discussed under "Overflow
organization" .

5. The block, read in step 2, may already have a synonym in the overflow
area, so that the overflow pointer (Figure 60) will be filled. If the
overflow pointer is filled, save the contents and replace these by the
address of the new record, as found in step 4. Then restore this block to
its original location.

6. The contents of the saved overflow pointer (step 5) are now put in the
overflow chain pointer which is part of the new data block to be
inserted. As a result, a new synonym becomes the new first overflow
record in a chain, as shown in Figure 60. Finally, write the new data
block into to the overflow area, at the address found in step 4.

166 DOS/VS Data Management Guide

A result of this method may be that a chain of records must be searched
before the right record is found. Also, a requirement of this method is that
the pointers must be adjusted, if a record is deleted.

There is an alternative method that can be used for records without a
key. In this method, the randomizing algorithm calculates a cylinder and
track address only. The user must then check to see whether the track can
accommodate the new record. For fixed-length records this means that a
record-by-record scan must be performed until a record is found that
contains no current data. For variable-length blocks this method is not
practical: it may impose serious retrieval problems. Most likely more than
one block must be read until the right one is retrieved. Also the overflow
area must be used if the track is full. Since overflow records are now
chained by track, the overflow chains may be much longer than when
randomizing down to a record address. As a result, this procedure will
probably be rather time consuming, and is therefore not very attractive.

PRIME DATA AREA

Prime data record on location xx

OVERFLOW AREA

C Synonym 4)

~~

C~-')
I

Overflow pointer leads
to first overflow record

Overflow chain pointer leads
to next overflow record

Figure 4.7. Prime data record and overflow records
The last new record inserted in an overflow chain becomes the first
overflow record (synonym 1).

Data With a Key Area
If records are written with a key, certain functions can be performed by the
device. In the following text, a distinction is made between fixed-length
data blocks, and variable-length data blocks.

Section 4: Direct Access Method 167

Fixed-Length Blocks, With a Key Area
Files should be preformatted by means of the clear disk utility program.
The file then contains dummy records of fixed length specified by the user.
If the user specifies the same contents for both dummy records and deleted
records, he can use the same procedure for both creating and for updating
the file.

The key of a block distinguishes between a current data block and a
4ummy block. Keys for dummy blocks have the same content; keys of
current data blocks are unique, each key identifying a particular data
record.

A dummy key identifies an empty location. The user has two options
for adding a new record. He can:

1. Randomize to a CYLINDER address only.

2.

The user should specify that he wants the option to search
multiple tracks. This allows him to search for the first dummy
record in a cylinder, starting at the beginning of the cylinder that
is specified by the address obtained from the randomizing
algorithm.
In this case, he may use one or more separate cylinders as an
overflow area if the search for a dummy record is not successful.

Randomize to a TRACK address (includes a cylinder address).
The user mayor may not specify that he wants to use the search
multiple tracks option. If he uses this option, the procedure is the
same as above, except that the search begins at the track
specified instead of at the beginning of a cylinder. If he does not
specify the option, the user may for a dummy record on a
specific track. The search continues until either a dummy block
is found or the end of the track is reached.
In this case, the last few tracks in each cylinder may be used as
overflow tracks for that cylinder.

In either case, the system will return control to the problem program.
It will return with a record address unless the search was unsuccesful. If an
address is supplied, it can be used directly to write the new data record if
the search multiple tracks option is used. If this option is not used, the
address supplied reflects the block following the one that was searched for.

If no address is supplied, the system communicates 'no record found'
to user. The overflow procedure must then become active, as will be
discussed under Overflow organization.

Variable-Length Blocks, With a Key Area
The files should not be pre formatted with the clear disk utility program.
The initialize disk program can be used to clear a pack completely, or the
user must clear a particular area on a pack himself (Assembler language:
WRITE filename, RZERO), track by track.

On each track of a file that contains variable-length blocks, record
zero contains a count field that states the amount of free space at the end
of that track. Deleted records are not taken into account. (Unlike
fixed-length blocks, deleted variable-length blocks cannot be re-used for
other data records.)

168 DOS/VS Data Management Guide

The user should always establish a randomizing algorithm that delivers
a TRACK address (implies a cylinder address). The system checks the
contents of record zero (capacity record) to determine if the track can
accomodate the new block. If so, the new block is written after the last
block on that track. If there is not enough space left, this is communicated
to the user; he must then direct the new record to the overflow area.
(Assembler language: WRITE filename, AFTER).

Space occupied by a deleted record cannot be used for another new
record. This means that if a file contains variable-length blocks and is
frequently updated it may need to be reorganized from time to time. This
can be done by reading the file track after track, clearing each track
separately (Assembler language: WRITE filename, RZERO) and then
restoring each current data block back as if it were new. Since deleted
records are not restored, free space is again concentrated at the end of the
tracks. After the prime data tracks have been reorganized, the overflow
area may then be processed, and an attempt made to write overflow records
to the prime data area. Overflow records that cannot be moved to the
prime data area are moved back into the overflow tracks, omitting deleted
records.

Retrieving Records With a Key Area
Records may be retrieved by a search on key. If the option for a search on
multiple tracks is specified, a record can b~ found on a cylinder, as long as
the user specifies the start of the search at, or before the record address.
Thus, the same conversion algorithm that is applied for writing a record can
be used for retrieving it.

Summary
A brief summary of the techniques discussed above is presented in Figure
4.8.

Section 4: Direct Access Method 169

Overflow Organization

LOADING AND PROCESSING RADOM FILES.

1. RECORDS WITHOUT A KEY. (Fixed length data blocks)

Storage:, Randomize to a RECORD address.
Each synonym becomes an overflow
record, to be inserted logicall y
in an overflow chain.

Retrieval: Randomize to the RECORD address.
Read record and check if it is the
one desired. If not, search the
overflow chain.

2. RECORDS WITH A KEY.

Fixed length blocks.
File is preformatted by the clear disk program.
Randomize to TRACK address only, or to
CYLI NDE R address only.
A record will be an overflow record only if the
search for a dummy record is not successful.

Variable length blocks.
File is not preformatted with dummy records; record zero
is used to determine if a track still has enough space
left for a new record.
Randomize to a TRACK address.
Records will become overflow records, if the
track specified by the randomizing algorithm
has enough space left.

Retrieval.
The same randomizing can be used for updating and
for retrieval.

Figure 4.8. Summary of randomizing methods

Whenever a file is organized randomly and a randomizing algorithm is
applied, the user should include overflow areas in the file organization. The
two basic ways of organizing overflow areas are:

• Overflow tracks per cylinder in a file; these tracks are the last tracks
of each cylinder.

• One separate overflow area for an entire file. This area is kept
separately in one or more complete cylinders, or even on a separate
volume.

A combination of the two methods is also possible. The user may
design an overflow area in the last tracks of each cylinder and, in addition,
an independent overflow area that is used when the cylinder overflow area
itself overflows. This is shown in Figure 4.9.

170 DOS/VS Data Management Guide

(
\

)

~,
V

Cyl.1 Cyl.2 Cyl.3 etc.)
(

I
Cyl. n

(

INDEP.

PRIME DATA

(
o'flow
area
for the
entire
file

------- ------- ------- -------
a'flow a'flow a'flow
area area area etc.
cyl. 1 cyl. 2 cyl.3)

Figure 4.9. Sample overflow organization
In this case there is an additional separate overflow area to supplement
the overflow area on each cylinder.

The independent overflow area may be used as an overflow area
without any special structure. If a record cannot be fitted into the prime
data area according to the randomizing algorithm, or the cylinder overflow
area if that area is completely full, it may be placed anywhere in the
independent overflow area.

The independent overflow area may also be seen as an extension of
any prime data cylinder. For example, if a record must be stored in track
xx of cylinder yy according to the randomizing algorithm, this record can
also be placed in track xx of the independent overflow cylinder (assuming
one separate cylinder) or in track xx of any cylinder of the independent
overflow area (assuming multiple cylinders for the independent overflow
area). This means that the user can retrieve a record in an independent
overflow cylinder, by updating the randomizing algorithm, which is used to
search the prime data areas, with appropriate cylinder addresses. If only an
independent overflow area is used, more 110 is required than if cylinder
overflow areas are also used.

Whether or not the overflow areas are efficient depends on the
organization of the area in relation to the record format and the block
structure.

Fixed Length Records, With a Key Area
In 'Prime data organization', techniques are explained for locating data in a
prime data area. The same techniques are applicable for overflow areas.

If the search multiple tracks option is specified, a search for a dummy
record in the prime data cylinder will continue until the record is found or
the end of a cylinder is reached. A cylinder overflow area is not very useful
here, unless the last tracks of each cylinder are excluded by the
randomizing algorithm. In the latter case these tracks automatically become
an overflow area. In fact, all tracks that follow a calculated track address
are acting as an overflow area, as long as they are in the same cylinder.

If the search multiple tracks option is nQt specified, a search for a
dummy block will not extend beyond the specified track. If the record is
not found, the user must issue a search on each subsequent track, until the
record is found. This method is probably more time consuming, but it

Section 4: Direct Access Method 171

gives the user more direct control. The user can choose between cylinder
overflow areas and independent overflow areas, but is is difficult to predict
which method will be most efficient. If the prime data area and the
independent overflow area reside on the same volume, a switch to and from
the overflow cylinders requires a movement of the read/write mechanism,
which can be avoided if cylinder overflow areas are used.

Variable-Length Records, With a Key Area
As explained under 'Prime data organization', a cylinder search for a
specific key is only practical for retrieving data blocks. If a new record is to
be added, the randomizing algorithm must specify a track address. Using
the contents of the capacity record in RO, the system determines whether or
not the specified track can hold the new record. If not, the user can
perform this inquiry in the overflow area in exactly the same way, track by
track, until a track is found that can contain the new record. It is useful to
design cylinder overflow areas in each cylinder as well as a separate
independent overflow area. In case a prime data track overflows, the user
should first try to store the record in the cylinder overflow area of the
cylinder with the prime data track. If this is not possible, he should then
store the record in the independent overflow area. If the record can be
stored in the cylinder overflow area, it can be retrieved automatically if the
search multiple tracks option is specified by the retrieving program, If it
cannot be stored in the cylinder overflow area, the user must search each
independent overflow cylinder until the record is found. Since records
cannot be stored in the space occupied by deleted records, the cylinder
overflow areas themselves may overflow. Reorganization of the entire file
will then be necessary, in order to sustain processing efficiency.

Records Without a Key Area
Since there is no key for the system to search for, each overflow record
must be accessed directly by a unique record address. Since the
randomizing algorithm calculates only prime data addresses, the user must
establish an address in the overflow area by another method.

The user must be able to find the address of a 'free' record location
without having to scan the entire overflow area. Otherwise, he will lose
time in searching the overflow area, block by block. A good method is to
reserve the first record of the overflow area as an 'overflow area descriptor
record'. This record contains, at all times, the address of the first free block
in the overflow area. This block has a pointer to the next free block. If a
new record must be added to the overflow area, the 'overflow area
descriptor record' gives the direct address of the block where this new
record can be stored. The pointer to the next free record is then moved to
the 'overflow area descriptor record'. At the same time, the new overflow
record is added to a chain, as explained in "Prime data organization".

When a record is deleted from the overflow area, the address of that
block is moved to the 'overflow area descriptor record', and becomes the
address of the new first free record. The address that was already in the
'overflow area descriptor record' is moved to the block that just hecame
free, becoming the pointer to the next free block. The examples· in Figure
4.10 illustrate this process.

In Figure 4.10, block 1 in the overflow area is the 'Overflow Area
Descriptor Record'. The data portion of this block may contain any
information a user requires, in addition to a pointer that points to the first

172 DOS/VS Data Management Guide

I

~

'free' block that can be used for a new overflow record. In the top diagram
it points, as an example, to block 3. Block 3, in turn, points to block 5 as
the next 'free' block, etc. Thus, starting in block 1, a user can easily locate
all blocks that are free.

In the prime data area, each block has a pointer to the overflow area.
If no synonyms are present for a certain prime data record, this pointer will
be empty. If synonyms are present, however, this pointer will point to the
first synonym in the overflow area. In the top diagram of Figure 4.10, for
example, block 2 in the prime data area points to block 6 in the overflow
area as being the first synonym for prime data block 2. This synonym
location, in turn, points to a next synonym, if any, and so on. Thus,
overflow blocks 6 and 7 form the beginning of an overflow chain for prime
data block 2.

If, for example, a new record must be placed on prime data location 2
(according to some conversion algorithm), this new record must be placed
into the overflow area since prime data block 2 already contains current
data. In this situation, the new record can be written into overflow block 3,
which is the first 'free' block, and added to the overflow chain that already
exists. The central diagram in Figure 4.10 shows the situation after the new
record has been added. Note that the new record becomes the first
overflow block in the overflow chain, and that block 1 in the overflow area
now points to another first 'free'overflow block.

When a block must be deleted from the overflow area, the user
obviously must locate it properly following the overflow chain. The deleted
record becomes the first 'free' overflow block. The bottom diagram in
Figure 4.10 shows the situation after deleting block 2 from the overflow
area.

Section 4: Direct Access Method 173

A. Initial status of DASD file.

PRIME DATA AREA:

BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLQCK 5 BLOCK 6 etc
Data 0000 Data 0006 Data 0000 Data 0002

- ---------
OVERFLOW AREA: ---- -------

"..-- --.......
BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5
Data 0003 Data 0004 Data 0005 Data 0000 Data 0008

I L--4- f---+ t I

B. After inserting a new synonym for prime data block 2.

PRIME DATA AREA:

BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4
Data 0000 Data 0003 Data 0000 Data 0002

OVERFLOW AREA:

.......... , --­, -­,--A-"-- "
BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4
Data 0005 Data 0004 Data 0006 Data 0000

BLOCK 5

BLOCK 5
Data 0008

BLOCK 6 etc.
Data 0007

L ___ t

BLOCK 6 etc.

BLOCK 6 etc.
Data 0007

J L--L----t-L--
j L __ J

L ________ J I

C. After deleting overflow block 2 (synonym for prime data block 4).

PRIME DATA AREA:

BLOCK 1 BLOCK 2
Data 0000 Data 0003

OVERFLOW AREA-

BLOCK 1 BLOCK 2
Data 0002 Data 0005

I t I

BLOCK 3
Data 0000

BLOCK 3
Data 0006

BLOCK 4
Data 0004

I

I
/
~

BLOCK 4
Data 0000

BLOCK 5 BLOCK 6 etc.

BLOCK 5 BLOCK 6 etc.
Data 0008 Data 0007

L ________ L_L_-+ L __ -1
I I

Figure 4.10. Sample overflow organization

Assembler Language Considerations

Note: The 'Free-record pointers' in the overflow area must be written by
the user after the file is preformatted by the Clear-Disk program, and
before the file is loaded for the first time.

The DOS/VS DAM macro instructions the programmer to take advantage
of the flexibility of the direct access devices with a minimum of effort.
Reading and writing of data blocks (by READ and WRITE macro

174 DOS/VS Data Management Guide

)

1
:

!
(
)

~

r

1
•

instructions) is performed in basically the same way as with the physical
IOCS EXCP macro instruction, except that the system provides the CCW
chains.

Macro Instructions for Random DASD Processing

The following macro instructions are provided for processing a file by
means of DAM:

DTFDA

READ

WRITE

CNTRL

WAITF

Define The File for Direct Access

Read a block of data, with or without the KEY

Write a block of data, with or without the KEY, or:
Erase a track, resetting RO to maximum capacity, or:
Write EOF (End Of File)

CoNTRoL: perform a SEEK on DASD

Wait for completion of a READ or WRITE operation

These macro instructions are explained in the following sections in the
context of particular functions such as reading and writing.

Reading Blocks of Data
Data blocks can be referenced by KEY or by ID (record location). If
referencing by KEY, the programmer supplies the key field of the record to
be read and the track address at which the search is to begin. If referencing
by ID, the programmer supplies. the track and record address of the record
to be read.

For reference by KEY, the macro format is: READ filename, KEY. If
the search-multiple-track option is specified in the DTFDA macro
instruction (SRCHM= YES)~ the system searches until it locates the desired
record, or to the end of the cylinder. If the search-multiple-track option is
not specified, the system searches only the specified track.

For reference by ID, the macro format is: READ filename, ID. The
system searches on this ID and then reads the key and data fields, or the
data portion only if the key field is not used.

LIOCS can be requested to return the ID of records after reading.
The user must specify the name of the field that contains returned IDs in
the IDLOC=name parameter of the DTFDA macro instruction. The ID
returned is:

• For reference by key:
search-multiple-track specified: the ID of the record read.
search-multiple-track not specified: the ID of the record following the
one read.

• For reference by ID:
The ID of the record following the one read.

The READ macro instruction returns control to the problem program
after requesting PIOCS to execute a CCW chain. The programmer can
perform any processing desired and then issue a W AITF macro instruction
to check for completion of the read operation.

Section 4: Direct Access Method 175

Writing Blocks of Data
Data blocks can be written as new records, or as updates for existing
records. If a new record is written over a dummy record, this is also treated
as an update. The system can assign completely new records to a record
location by means of the capacity record (part of RO). For overwriting
existing records, such as updating or making use of dummy records for
actual data, a reference is made either by ID or by KEY.

Writing New Records
This is done with a WRITE macro instruction with the format:

WRITE filename, AFTER. The programmer supplies the track address.
The system reads the capacity record of that track to see whether there is
enough space left for the new record. If there is not, the problem program
is notified. If there is enough space, the system searches RO for the ID of
the last record on the track, and then issues a write count, key, and data
operaton for the new record. The new record is written directly following
the record currently last on the track. The capacity record is then updated
with the adjusted count of remaining bytes and the ID of the new record,
and is restored. This WRITE macro instruction format cannot return any
ID field.

Overwriting Existing Records
If reference is by ID, the macro instruction format is: WRITE

filename, ID. The programmer supplies the track and record address of
the record to be written. The system searches for this ID and starts a write
key and data (or write data only) operation. If an ID must be returned, this
will be the ID of the next record in the file.
If reference is by KEY, the macro instruction format is: WRITE filename,
KEY. The programmer supplies the KEY of the record to be located and
the address of the track on which the record resides. The system then
searches that track for the key or, if the search-multiple-track option is
specified in the DTFDA macro instruction, searches through the cylinder,
starting with the track specified, until the key requested is located. When
this key is found, a write data only operation is performed. If the DTFDA
macro instruction specifies that an ID must be returned, this ID will be:

• search-multiple-track specified: the ID of this record written.

search-multiple-track not specified: the ID of the record following the
one written.

Write Verification
If the user specifies in the DTFDA macro instruction that write

operations must be verified, a read command is issued after a write
operation with any of tge options ID, KEY, or AFTER. This is done
without actually transferring data to virtual storage. The system then checks
if the data, as it was recorded, is valid.

A special WRITE macro format causes an EOF record to be written
after the last record on the track specified. This macro instruction format
is: WRITE filename, AFTER, EOF.

Clearing a Track
The user can cause the contents of a track to be erased by specifying

a WRITE macro instruction with the format: WRITE filename, RZER 0,

176 DOS/VS Data Management Guide

)

and supplying the track address. The system searches for this track, restores
the maximum capacity of the track in RO, and erases the remainder of the
track after RO.

In all cases, the WRITE macro instruction returns control to the
problem program after requesting services from PIOCS. The programmer
can perform any processing desired, and then issue a W AITF macro
instruction to check for completion of the write operation.

Seeks
The READ and WRITE macro instructions do not have to be preceded by
a CNTRL-seek macro instruction. They automatically seek to the correct
cylinder by means of the track address that is supplied by the programmer.
However, it may improve processing speed to issue a seek in order to
position the access mechanism to the correct cylinder before the actual ID
or KEY required for a read or write operation is available. It should be
kept in mind, however, that such a preliminary seek operation may be
canceled if more than one problem program is operating on the same
volume (not necessarily the same file) at the same time. A seek issued by
one program can be destroyed after completion by another program that
issues an 110 request on the same volume. The SEEK macro instruction
returns control to the problelJ1 program as soon as the operation is initiated.

Completion of Read or Write Operations
The programmer must issue a W AITF macro instruction to check if a read
or write operation has been completed. This macro instruction tests for
errors and exceptional conditions. Any exceptional condition discovered is
passed to a special two-byte field, the name of which is specified in the
DTFDA macro instruction. This field must be defined in the problem
program.

Logic Modules for Direct Access Processing
The logic modules available with the Direct Access Method must be
assembled by the user from a source statement library supplied by IBM.
This is a one-time process. Once assembled, they can be stored in the
relocatable library.

Logic modules can be linke automatically with any problem program
that requires them. If prefereable, however, they can also be assembled
along with the user's problem program and included in the same output
object module. The logic module for a specific problem program is
assembled on a selective basis, according to requirements of the parameters
in the DAMOD macro instruction supplied by the user. These parameters
specify the functions that the particular module is to provide.

The characteristics of the file are defined by means of the DTFD A
macro instruction. This macro instruction generates a DTF table which
serves as an entry to the logic module generated by the DAMOD macro
instruction.

Section 4: Direct Access Method 177

Indexed Sequential Access Method

Devices and Record Formats

Indexes

Track Index

The Indexed Sequential Access Method supports the following devices:

• IBM 2311 Disk Storage Drive
• IBM 2314 Direct Access Storage Facility
• IBM 2319 Disk Storage
• IBM 3330 Family of Disk Storage Devices
• IBM 3340 Disk Storage
• IBM 2321 Data Cell Drive

The equipment listed is described in Appendix 1; capacities of the
devices are presented in Appendix 2. Later in this chapter, space formulas
for ISAM files are given.

Only fixed length record formats (Format F) can be processed by the
Indexed Sequential Access Method. Logical records may be blocked or
unblocked.

Data must be written with a key area. For blocked records this means
that the key of the last logical record is taken as the key for the block. As
a matter of fact, ISAM is the only access method that can process blocked
records with a key area.

A separate chapter in this section describes the different physical
block structures as they may occur in an ISAM file.

The ability to read and write records from or to anywhere in a file with
indexed sequential organization is made possible by indexes that are part of
the file itself.

There are three types of indexes:

• One track index for each cylinder of a file
• One cylinder index for the entire file
• One master index for the entire file (optional).

Each entry in a track index contains the highest key that is present on the
track associated with that entry. As Figure 4.11 shows, a search through
the sample track index for a record with a key 039 will find track 5 as its
track address. This means that track 5 contains records with a key higher
than 030 (highest key on track 4) and up to 040. If a record with a key
039 is present on track 5, it will be retrieved by a search on key for that
track.

178 DOS/VS Data Management Guide

(

Cylinder Index

)

TRACK INDEX FOR
CYLINDER

X

keys:
010
018
020
028
030
040
047
050

Figure 4.11. Track index

TRACK 0 in cylinder x, keys
1
2
3
4
5
6
7

etc.

000 - 010
011 - 018
019 - 020
021 - 028
029 - 030
031 - 040
041 - 047
048 - 050

etc.

The record with key 47, for example, has the highest key on track 6.

Each entry in the cylinder index contains the highest key in the cylinder
associated with that entry. As such it also covers the track index for that
cylinder. So, from an entry in the cylinder index, an entry point for a
specific track index is found. This is shown in Figure 4.12.

Figure 4.12. Cylinder index
The record with key 100, for example, has the highest key on cylinder 2.

Since it is necessary to search through cylinder index and track index
in order to locate individual records, it is useful to have the cylinder index
resident in virtual storage. This option speeds up the random retrieval and
add functions when the number of records to be processed is significant.
Since it is then not necessary to read the cylinder index, the processing time
per record is decreased. See: Resident cylinder index.

Section 4: Indexed Sequential Access Method 179

Resident CyUnder Index

Master Index

It is possible to have all, or part, of the cylinder index reside in virtual
storage. If part of the cylinder index is kept in virtual storage it is advisable
to pre-sort the input transactions to take full advantage of the resident
portion of the cylinder index. If in such a situation the input is not
pre-sorted, a certain portion of the index system will probably have to be
read several times, so that the resident cylinder .index option is not fully
utilized. If all of the cylinder index can reside in virtual storage at the same
time, there is obviously no need for pre-sorting the input transactions.

When the resident cylinder index option is used, there is no need at all
for searching the master index (if any); the option is selected by specifying
CORINDX= YES in the DTFIS macro instruction.

If desired, a third index can be created: the master index. If a file occupies
many cylinders, the cylinder index will be rather long and a search for a
key is slow. A master index of an order higher than the cylinder index
effectively reduces the length to be searched in the cylinder index is
inefficient. Each entry of the master index points to a track of the cylinder
index.

It is advisable to use a master index if the cylinder index occupies
more than four tracks, and if the cylinder index is not kept permanently in
virtual storage. The index structure with a master index is shown in Figure
4.13.

TRACK INDEX
CYLINDER 1

MASTER INDEX

TRACK INDEX
CYLINDER 2

P

CYLINDER INDEX

TRACK INDEX •• ____ ---'
CYLINDER N

C J

DATA IN CYLINDER 1

TRACK 1

TRACK 2

TRACK 3

TRACK 4

TRACK 5

Figure 4.13. Basic index structure for an ISAM fUe
The master index points to the cylinder index, the cylincer index points to
the track index, and the track index points to the data.

180 DOS/VS Data Management Guide

(

Prime Data Area

Overflow Area

When creating an indexed sequential file, data blocks are written in the
prime data area. This must be one continuous area which begins in the first
track (track 0) of a cylinder, and ends in the last track of the same or .
another cylinder. For a multivolume indexed sequential file, the prime data
area must continue from the last track of one volume to the first track of
cylinder 1 on the next volume, so that the prime data area is considered as
continuous by ISAM. (Cylinder 0 of a volume is reserved for labels.)

I Note: The prime data area of a multivolume ISAM file on a 3340 cannot extend over
different types of data modules.

Single-volume indexed-sequentiat file.

Multivolume indexed-sequential file

Figure 4.14. The .prime data area of an ISAM fHe
Prime data areas are continuous, except for the first cylinders on
multivolume files.

In addition to the prime data area, where the original records of an indexed
sequential file were stored, an overflow area is provided for records that are
forced off their original tracks by the insertion of new records. A new
record added to an indexed sequential file is placed into a location on a
track determined by the value of its key field. This implies that existing
records with a higher key must be shifted. Shifting all of the records of an
entire file would take too much time. Therefore, .only the records on a track
are shifted: only the track that is affected by the insertion of the new
record, and only the records that contain a key higher than that of the new
record, are shifted. A record that is shifted out of the track in this way is
put into the overflow area. The track index is also adjusted in the process.

Section 4: Indexed Sequential Access Method 181

Figure 4.15 shows how records are added to an ISAM file. Figure
4.15A shows the file before records are added. Figure 4.15B shows the file
after adding a record with key 7. In this picture, the record with key 11
has been moved to the overflow area. Figure 4~15C shows the situation
after a series of records with keys 9, 17, 18, 19, 20, 21, and 22 have been
added. The insertion of the record with key 9 causes the record with key
10 to be moved to the overflow area. The records with keys 17 ... 22 can
be put at the end of the file since their keys are higher than any key in the
file currently. The last track is filled up completely. Remaining records, in
this case the record with key 22, are moved to the overflow area.

A. Initial situation of an indexed- sequential file.

Prime track 1 2 3 4 5 8 10

Prime track 2 12 13 16

O'tlow track empty

B. Situation after insertion of record 7.

Prime track 1 2 3 4 5 7 8

Prime track 2 12 13 16

O'flow track 11

C. Situation after insertion of record 17-22, and 9.

Prime track 1 2 3 4 5 7 8

Prime track 2 12 13 16 17 18 19 20

O'flow track 11 22 10

•
(In this example it has been assumed that records 17-22 were inserted
before record 9. Otherwise, record 22 would have been placed after
record lOin the overflow area.)

For Prime track 1, the track index would contain the following
information:

Highest key on prime data track: 9.
Address of first record on the track: address of rec. 1.
Highest key in overflow area: 11.
Address of lowest key in chain: address of record 10.

11

10

9

21]

Figure 4.15. Addition of records to an existing, I-cylinder. 3-track ISAM f"de
Any record shifted out of a track can be located by way of the track index
and the overflow chain.

182 DOS/VS Data Management Guide

)

Types of Overflow Areas

If a record is shifted out of a track, it still remains associated with that
track. The track index contains, as was explained before, an entry for each
track. This entry contains information about the prime data track as well as
the overflow records that have been shifted out of this track:

• A normal entry that specifies:
The highest key on a prime data track
The address of the first record on that track.

• An overflow entry that spec~fies:
The highest key in the overflow area which is
associated with the prime data track
The address of the lowest key in the overflow chain.

The normal entry specifies the prime data track, the overflow entry
specifies all overflow records that have shifted out of that .prime data track
into the overflow area. All overflow records associated with a particular
prime data track are chained to one another, and the overflow entry in the
track index specifies the beginning of that chain. In Figure 4.15C, the
records with keys 10 and 11 are chained since they come from the same
prime data track. The address of the record with key lOis given by the
track index in the overflow entry. In this entry, the record with key 11 is
noted as the highest key in this chain.

Programmers may request two types of overflow areas:

• A cylinder overflow area for each cylinder, which provides a certain
amount of tracks on each cylinder to hold the overflow records of that
cylinder.

• An independent overflow area for the entire file, which provides a
certain amount of tracks, independently of the file, perhaps even on
another volume.

The independent overflow area can be used in addition to, or without,
cylinder overflow areas. If in addition to cylinder overflow areas, it is used
whenever one of the cylinder overflow areas is filled.

Structure of the Physical Blocks

All data blocks in an indexed sequential file are written with a count area, a
key area, and a data area. For prime data blocks, the logical records are as
defined by the user. For overflow blocks, the logical record is expanded
with a link field, which is used to chain overflow blocks together. In the
overflow area, logical records are written in an unblocked format, though
the records may be written blocked in the prime data area. Figure 4.16
shows the various record structures that can be used.

Section 4: Indexed Sequential Access Method 183

ISAM Procedures

Creadng an ISAM Yde

A. Unblocked prime data records.

COUNT
AREA

KEY OF
LOGICAL
RECORD

B. Blocked prime data records.

COUNT
AREA

KEY OF LAST
LOGICAL RECORD
IN BLOCK

c. Overflow records.

COUNT
AREA

KEY OF
LOGICAL
RECORD

ONE LOGICAL RECORD

BLOCKED LOGICAL RECORDS \

LOG REC 1 I LOG REC 2 I etc.)

EACH LOGICAL ~CORD HAS ITS (
OWN KEY EMBEDDED. ..

LINK
FIELD ONE LOGICAL RECORD

Figure 4.16. ISAM record structures
All physical blocks have three areas whose contents depend on the record
type.

The count area specifies the sequence number of the physical block on
the track, the length of the key area which must be constant throughout the
file, and the length of the data area which also is constant except for the
link field in overflow records. The link field itself is 10 characters long.

This section describes in general how the various functions of ISAM are
performed. How the user chooses and controls specific functions is
described separately under Assembler language considerations, later in this
chapter.

The functions that are described, are:

• Creating (loading) an Indexed Sequential file

• Adding new records to an existing Indexed Sequential file

• Sequential retrieval and update

• Random retrieval and update

• Reorganizing an Indexed Sequential file

An Indexed Sequential file is created by a load routine. The file is created
according to the characteristics of the file as they are defined by the
programmer in his program. It should be noted that those characteristics
describe only the output ISAM file. The input may be in a quite different
format and is described separately as another file, or as even more than one
file. The problem program constructs an ISAM record from the input and
presents this record to the ISAM load routine. Therefore, input may be

184 DOS/VS Data Management Guide

(

\.

Extending an ISAM File

provided by any access method, from any device, in any format suitable t8

that access method or device. The only requirement for the load routidle iIS
that the ISAM records be presented in ascending order by key.

The Format 2 DASD label used for an ISAM file contains
pre-recorded information about the record format, such as record length,
block length, and key length. This implies that those sizes are fixed for a
specific file.

Each logical record is presented to ISAM separately. If the program
requests blocking, this is done by the load routine. The load routine also
creates indexes.

The same program that initially sets up an ISAM file can also be used to
extend that file, provided that the key of each additional record is
sequentially higher than the last current record in the file.

Adding Records to an· Existing ISAM File

A separate routine is used to write new records to an ISAM file and place
those records in the proper sequence. The indexes are searched to locate
the proper place in the file for the new record. The block on that location
is read, the new record is inserted, and all records on the same track are
shifted one record location, changing records from one block to the next
when necessary. The last record previously on the track is written to tla€
overflow area. (Except for the last track in the file, which may be foH0wed
by usable free space.)

In the overflow area, all records that originally came from the same
prime data track are chained in key sequence. The beginning of such a
chain is addressed in the index for that prime data track, another index
entry also contains the highest (last) key of the chain. When records mtiSt
be added to an overflow chain, the entire chain is searched, starting witl1.
the first record, until a .record is found with a key higher than the key of
the new record. Therefore, when a string of new records must be added,
and each new record has a next higher key, it may be advisable to insert
those records in descending sequence. This keeps the update time for each
new record in the string constant. Otherwise the update time for each new
record is somewhat longer than for the previous one.

Prime data track 2 4 7 8 9 10 13 14

l
I

fir!
Overflow area 21 36 35 22

I •
New records to be added 30 29 28 27 26 25 24

,---, , I ~ ,---, fI ,---, ,----, fI
Of I ow area after adding 21 36 35 22 30 29 28 27 26 25 24

I #1 ~

In order to reduce search time, the resident cylinder index operation
should be used also.

Section 4: Indexed Sequential Access Method 1 i:i

Sequential Retrieval and Update

Random Retrieval and Update

Mixed Functions

A sequential processing routine retrieves all records in ascending sequence
by key, starting with a specified record somewhere in the file, and
continuing to the point where the program decides to break the sequence.
Then the program can choose another starting point to process another set
of records sequentially by key.

When unblocked records are processed, their keys are read along with
the records. These keys therefore need not be embedded in the records.
When blocked records are processed, the keys are not read. In sequential
processing, information regarding record, block, and key sizes is obtained
from the Format 2 DASD label.

Updating is possible, since each record that has been retrieved by the
sequential processing routine can, after processing, be returned to its
original location in the file.

Random processing of an Indexed Sequential file is done by a random
processing routine. This routine accepts the key of a desired record,
searches the indexes, reads the record, and presents it to the problem
program. For both blocked and unblocked records, only the data portion is
read; the key area is not read from the file. Information regarding record,
block, and key sizes is obtained from the Format 2 DASD label.

After the retrieved record has been processed it can be returned to its
original location in the file.

It is possible to perform both sequential and random processing in one
problem program. For example, while processing sequentially, it may be
necessary to update some other record randomly. In this case, the
sequential process is delimited at its beginning by the specified starting
record and at its end by an action in the program before the random
process.

186 DOS/VS Data Management Guide

~
)

Reorganizing an ISAM Flle

START SEOUENTIAL PROCESSING
(specify starting point)

sequential read

I
process

I
(sequential write)

I or ___ ---I

+
END SEOUENTIAL PROCESSING

supply key
random read

I
process

I
(random write)

I
or---~

New records may also be added to an ISAM file in the same program
that processes the file sequentially, provided that sequential processing is
separated from any random addition process in a way as indicated above.

It is not possible to combine the load function (creating the file) with
another function.

As new records are added to an Indexed Sequential file, existing records are
placed in overflow areas. The access time for retrieving records from an
overflow area is greater than that for retrieving prime data records. This is
because prime data records are located by a device search over a track,
whereas overflow records are found by scanning, record-by-record, through
a chain of records. Therefore, many overflow records reduce input/output
performance. For this reason, the programmer should reorganize indexed
sequential files as soon as he recognizes the need for it.

The system maintains statistics to assist the programmer in determining
when reorganization is required. These statistics, are maintained in the
Format 2 DASD label recorded with the file:

• Prime record count
A 4-byte count of the number of records in the prime data area, in
binary.

• Overflow record count

•

A 2-byte count of the number of records in the overflow area, in
binary.

Available independent overflow tracks
A 2-byte count of the number of tracks remaining in the independent
overflow area (if used), in binary.

Section 4: Indexed Sequential Access Method 187

•

•

Cylinder overflow areas full
A 2-byte count of the number of cylinder overflow areas that are full,
necessitating use of the independent overflow area, in binary.

Nonfirst overflow reference
A 4-byte count of the number of times a random reference (retrieve)
is made to records that are the second or higher links in an overflow
record chain.

The fields mentioned above are maintained automatically during
processing by ISAM. In addition, there is another field that can contain
statistics: Tag Deletion Count. This field, however is not maintained by the
DOS/VS ISAM routines; it can be maintained by the problem program.
The contents of this field is retrieved by the OPEN routines of ISAM and
placed in virtual storage. After processing, the CLOSE routines of ISAM
return this field to the Format 2 DASD label. Before ISAM returns the
field, the programmer may use it for counting the number of records that
he tags for deletion.

DOS/VS provides no facility for actually deleting records. A
programmer, however, may tag records for deletion by any method desired,
as long as the keys of the records are not changed in a way that alters the
sequence in the file. The data portion of a record may, for example, be
overwritten with character zeroes, or a special field in a record may indicate
that this record is deleted. Records that are tagged for deletion can be
eliminated when reorganizing the file. If a user plans to interchange
ISAM data between DOS/VS and OS/VS, it is recommended that
deleted records be tagged with the hexadecimal value X'FF' in the first
byte of the record.

Reorganization is accomplished by creating a new version of the file,
using the existing version as input. Two ISAM files are defined: the existing
file as (sequential) input, and a new version as (load) output. As far as the
system is concerned, there is no relationship between those two files. It is
the problem program that establishes a relationship by reading the existing
version, and loading a new version. Therefore, the records of the new
version may have quite another format, if desired, provided that the
problem programs that process the new version are so designed that the
new format is also defined.

Depending on the capacity of the system, the reorganization may be
done in one step, or in two steps. If the reorganization is done in one step,
the capacity of the system must be large enough to hold both files online.
Otherwise the reorganization must be done in two steps, the first of which
reads the existing version in key sequence and writes it to magnetic tape,
and the second of which reads the magnetic tape and creates a new version.
In either of the two steps, records that are tagged for deletion may be
eliminated.

Figure 4.17 indicates how the reorganization process can be
accomplished, in either one or two steps. When in two steps, an
intermediate file is created in step 1, and processed as input in step 2. This
file is processed in both steps by means of the Sequential Access Method.
It may be written on magnetic tape or on DASD (since this file need not be
completely online, a single DASD or tape drive is sufficient).

188 DOS/VS Data Management Guide

(

\

Input = FILA (existing version)

Output = FI LB (ne~version)

Intermediate file can be on tape or DASD

START SE~ PROCESSI NG FI LA
IN FIRST RECORD

I
SET Fl-LB TO LOAD MODE

Sequential read FILA

END SE~ PROCESSING FILA
END LOADING FILB

STEP 1

START SEOPROCESSING FILA
IN FI RST RECORD

Sequential read FILA

Write intermediate
file record

END SEO PROCESSING FILA
END STEP 1

SET FI LB TO LOAD MODE

Read intermediate file

I
Write FILB

END STEP 2

Figure 4.17. Reorganizing an ISAM file
If the online capacity of the system is not large enough to hold both FILA
and FILB (left diagram), reorganization must be done in two steps (right
diagram).

Section 4: Indexed Sequential Access Method 189

INDEXED SEQUENTIAL DISK STORAGE SPACE FORMULAS FOR THE IBM 2311

Three formulas compute IBM 2311 disk storage requirements for an ISAM file.
The known quantities for the computations given arc:

D Data Length
K Key Length
B Block Length (Data Length x Number of Records)
X Number of prime data tracks per cylinder
L Number of bytes (10) for overflow link infonnation.

I. TO CALCULATE THE NUMBER OF PRIME DATA RECORDS PER CYLINDER (Npr)

Let: A Number of prime data records on a shared track
B = Number of records on a non shared track.

Then: a.

(Notes:" These values must be whole numbers. A shared track is
~ne in which primc data records occupy unused space on a track
index.)

The last track of the prime data area cannot be used during a load
or an extension of a data file. The programmer should issue the
ENDFL macro and perform a load extcnd on the file.

Determine the size of the track index in bytes (T.).

T. = [2X+1 ! [91.49+1.049(KJ 1

b. Detennine the number of bytes remaining on a track for prime records
(T~.

T 2 = 3625 - T 1

c. Determine the size of the last prime ~ecord on a track (T 3)

T 3 = 20 + KL + I3 L

d. Determine the number of prime data records on a shared track (A).

T 4 =T 2 -T 3

if the result (T 4) is negative. set A= 0,

if the result (T 4) is zero, set A = I.
if the result (T 4) is pasitiw. c;et

A = I + _______ Iq
g 1+ 1.049(K L + B L)

e. Determine the number of records on a non -share~ trOick (B),
13=1+ 3605-(K L+'B'L)

---------- ._----
81+ 1.049 (K L + BL)

Compute the number of prime records per cylinder (Npr) by substituting for A, B
and X in

Npr=A+B(X-I)

II. TO DETERMINE THE NUMBER OF OVERFLOW RECORDS PER TRACK (Nor)
Compute:

Nor = I + ___ 3~Q~=-i~±~)
81+ 1.049 (K L+ DL+ L)

III. TODETERMINE THE NUMBER OF CYLINDER OR MASTER INDEX RECORDS PER TRACK (Nir)

Compute:
Nir = 1+ 3595 - KL

91.49 + 1.049 (K L)

(Note: Allow for a dummy record.)

190 DOS/VS Data Management Guide

(

INDEXED SEQUENTIAL DISK STORAGE SPACE FORMULAS FOR THE IBM 2314/2319

Three fonnulas compute IBM 2314/2319 disk storage requirements for an ISAM file. The
known quantities for the computations given are:

D = Data Length
K = Key Length
B = Block Length (Data Length x Number of Records)
X = Number of prime data tracks per cylinder
L = Number of bytes (10) for overflow link infonnation.

I. TO CALCULATE THE NUMBER OF PRIME DATA RECORDS PER CYLINDER (Npr)
Let: Let: A = Number of prime data records on a shared track

B = Number of records on a nonshared track.

(Notes: These values must be whole numbers. A shared track is
one in which prime data records occupy unused space on a track
index.)

The last track of the prime data area cannot be used during a load
or an extension of a data file. The programmer should issue the
ENDFL macro and perform a load extend on the file.

Then: a. Detemline the size of the track index in bytes (T 1),

T1 = [2X+l] [156.43+1.043 (Kd]

b. Determine the number of bytes remaining on a track for prime records
(T2),

T2 =7294 - T1

c. Determine the size of the last prime record on a track (T3),
T3 =45+KL+BL

d. Determine the number of prime data records on a shared track (A),
T,+;::T2 - T3

if the result (T,+) is negative, set A = 0,

if the result (T,+) is zero, set A = 1,

if the result 0:,+) is posjtive, set

A=I+ ____ ~_· ____ _

146+ 1.043 (KL+Bd

e. Determine the number of records on a non-shared track (B),
B=1 + 7249 - (KL+B L)

146+ 1.043 (KL+Bd

Compute the number of prime records per cylinder (Npr) by substituting for A, B
and X in.

Npr=A+B (X - 1)

II. TO DETERMINE THE NUMBER OF OVERFLOW RECORDS PER TRACK (Nor)
Compute:

Nor=l+ 7249-(KL+DL+L)

146+ 1.043 (KL+DL+L)

III. TO DETERMINE THE NUMBER OF CYLINDER OR MASTER INDEX RECORDS PER TRACK (Nir)
Compute:

Nir=1 + 7239 - KL

156.43+1.043 (K L)

(Note: Allow for a dummy record.)

Section 4: Indexed Sequential Access Method 191

INDEXED SEQUENTIAL DISK STORAGE SPACE FORMULAS FOR THE IBM 3330 FAMILY

Three fonnulas compute IBM 3330 disk storage requirements for an ISAM me. The
known quantities for the computations given are'

D = Data Length
K = Key Length
c =constant: c =0, ifK =0

c =56, ifK ~ O.
B = Block Length (data length x number of records)
X = Number of prime data tracks per cylinder
L = Number of bytes (10) for overflow link infonnation.

I. IQ~~~~k~lF_~~~~M~~~~f~~l~~~~I~~~~Q~f~R~X~~P£~~RU
Let: A = Number of prime data records on a shared track

C = Number of records on a non-shared track.

(Notes: These values must be whole numbers. A shared track is one
in which prime data records occupy unused space on a track index.)

The last track of the prime data area is never used for prime data
records. If the me is completely filled, the last track contains an
EOF record only.

Then: a. Determine the size of the track index in bytes (T 1),
Tl=(2X+l) (135+c+K)

b. Determine the number of bytes remaining on the track for prime
records (T2),
T2=13,165-Tl

c. Determine the number of prime data records on a shared track (A),
ifT2 is negative, set A=O,
~fT2 ~s zer~: set A = 1, T2
IfT2 IS positive, set A= 1 + 135+c+K+B

d. Detennine the number of records on a non-shared track (C),
C= 1+ 13.165-{K+Bj

135+c+K+B

Compute the number of prime records per cylinder (Npr) by substituting for
A,C, and X in

Compute:

Compute:

192 DOS/VS Data Management Guide

Npr =A+C (X-I)

Nor= 1 + 13.165 - (I(+D+L)
135+c+K+D+L

Nir= 1 + 13,165 - (1(+ 10)
135+c+(K+I0)

INDEXED SEQUENTIAL DISK STORAGE SPACE FORMULAS FOR THE IBM 3340

Three formulas compute IBM 3340 disk storage requirements for an ISAM file. The known quantities
for the computations given are:

D = Data Length
K = Key Length
c = constant c = 0, ifK = 0

c = 75 if K =1= O.

B = Block Length (data length x number of records)
X = Number of prime data tracks, that is, shared and non-shared data tracks, per cylinder.
L = Number of bytes (1~) for overflow link information,

I. TO CALCULATE THE NUMBER OF PRIME DATA RECORDS PER CYLINDER (Npr)

Let: A = Number of prime data records on a shared track
C = Number of records on a non-shared track.

Then:

(Notes: These values must be whole numbers. A shared track is one in which prime data
records occupy unused space on a track index.)

The last track of the whole prime data area is never used for prime data records. If the
file is completely filled, the last track contains an EOF record only.

a. Determine the size of the track index in bytes (T1),
T1 = (2X + 1) +- (167 + c + K)

If T1 ~ 8535 the track index requires at most one track. Otherwise track ~ and part
of track 1 is required. The size Tl' of the track index on track 1 is calculated as follows:

al. Number of track index entries on track ~:

N= 8535 N rounded to next whole number
167 + c + K smaller or equal.

a2. T1' = T1 - N (167 + c + K)

For T1 > 8535, use Tl' instead of T1 in b.

b. Determine the number of bytes remaining on the track for prime
records (T2),
T2 = 8535 - Tl

c. Determine the number of prime data records on a shared track (A),

if T2 is zero, set A = ~,
if T2 is positive, set A = --:-16-:-:7::--=-!'='~-+--'K=-+--'B=-

d. Determine the number of records on a non-shared track (C),

8535 C=
167 + c + K + B

Compute the number of prime records per cylinder (Npr) by substituting for
A, C, and X in

Npr = A + C (X - 1)
Npr = CX

in case of shared data tracks (A =1= ~)
in case of non-shared data tracks (A = ~)

II. TO DETERMINE THE NUMBER OF OVERFLOW RECORDS PER TRACK (Nor)

8535 Compute: Nor =
167 + c + K + D + L

III. TO DETERMINE THE NUMBER OF CYLINDER OR MASTER INDEX RECORDS PER TRACK (Nir)

Compute: Nir = __ --:--::-=-.....:..8 __ 53:...:5~;__~--
167+c+(K+L)

Section 4: Indexed Sequential Access Method 193

Assembler Language Considerations

Macro Instructions for Indexed Sequential Processing (Figure 4.18)

Both GET-PUT and READ-WRITE input/output macro instructions are
provided for indexed sequential processing. The purpose and the effect of
the macro instructions vary, depending on the logic modules used and the
conditions preset by other macro instructions.

The following macro instructions are provided:

DTFIS

GET

PUT

READ

WRITE

WAITF

SETL

ESETL

SETFL

ENDFL

Define The File for Indexed Sequential

Obtain a record (sequential retrieval)

Write a record (sequential update)

Read a record (random retrieval)

Write a record (load, add, or random update)

Wait for completion of a READ or WRITE

SET Lower limit for sequential retrieval

End of sequential retrieval

SET file load mode

End file load mode

These macro instructions are explained in the following text in the
context of a particular function.

Creating an ISAM File
The DTFIS macro instruction calls for a load routine. Before actual loading
begins, a SETFL macro instruction is issued to initialize the indexes. Each
record is presented to the load routine separately by means of a WRITE
macro instructions. When all records have been loaded, the loading process
is terminated by an ENDFL macro instructions. This instruction writes the
last block of records, followed by an end-of -file record. The indexes are
completed with any end-of -file record needed, and dummy index entries are
written for the rest of the specified prime data extent.

Adding Records to an ISAM File
New records are added to an existing indexed sequential file by means of
the WRITE macro instruction. This process is not preceded by a SETFL
macro instruction. A W AITF macro instruction is used at the point in the
program where processing must be suspended until the WRITE macro
function has been completed (for example, before the next WRITE).

194 DOS/VS Data Management Guide

SETFL

Prepare new
ISAM record

I
WRITE

ENDFL

Prepare new
ISAM record

I
WRITE

I
WAITF

DTF IS

I
ISMOD

I
OPEN (R)

CLOSE (R)

I

SETL

GET

I
Process

ISAM record

I
(PUT)

ESETL

Provide key of
ISAM record

I
READ

I
WAITF
Process

ISAM record

I
(WRITE)
(WAITF)

Figure 4.18. ISAM functions, and how to control them in Assembler language
Sequential retrieval and random retrieval functions are used in this
example for updating records.

Sequential Retrieval and Update
The SETL macro instruction specifies the location of the record that must
be retrieved first, as a starting location. Following records are retrieved in
logical sequential order (sequentially by key) by means of a GET macro
instruction. After processing a record obtained by a GET macro
instruction, the programmer can issue a PUT macro instruction to restore
the record to its original location. Obviously this is not needed for records
that have not been changed. The complete block is written back if, and
only if, a PUT is issued for any record in the block. The ESETL macro
instruction terminates the sequential processing of a string of records.

Section 4: Indexed Sequential Access Method 195

Processing may be resumed at another starting point in the file by issuing
another SETL.

When processing an indexed sequential file sequentially, new records
can be added to this file, provided that the WRITE macro instruction that
performs this function is preceded by a ESETL macro instruction. After the
addition of one or more records, sequential processing can be resumed by a
new SETL macro instruction.

Random Retrieval and Update
For reading a record, the programmer places the key of the desired record
in a special field, and issues a READ macro instruction. If it is in the file,
the record is then presented to the program. After the record has been
processed, a WRITE macro instruction may be issued to restore the record
to its original location. In order to allow overlap between processing and
input/ output, the READ and WRITE macro instructions return to the
problem program before input/output has been completed. The W AITF
macro instruction must be used to suspend processing until the I/O
operation is complete.

Logic Modules for ISAM Processing
The LIOeS routines provided for indexed sequential file processing are
much more than just an access method. Several routines are available to
provide complete file management for direct access storage files. The
complete facility is called the Indexed Sequential Access Method. The
ISAM routines can be retireved from the relocatable library by the linkage
editor just like the SAM routines. The user must assembler the routines
before placing them in the relocatable library. This is normally a one-time
operation, performed as part of normal total system generation. The
routines generated are tailored to provide specific functions but remain
generalized in regard to specific file and data attributes. Four basic types of
routines are available:

• LOAD

• ADD

To load (create) a new indexed sequential file.

To add new records to an existing indexed sequential file in
logical sequence.

• SEQUENTIAL RETRIEV AL
To retrieve records in logical sequence from an indexed
sequential file.

RANDOM RETRIEVAL
To retrieve individual records called for by key from any
point in the file.

The load routine is always separate. No other functions can be
performed on an output file that is being loaded. In other situations, the
add and retrieve functions can be used in any combination. Furthermore,
the retrieval routines are assembled with updating capability, allowing
records to be written back into their original location in the file.

The assembled routines of ISAM are called logic modules. They are
selected from a master source routine in accordance with parameters in a
special macro instruction: ISMOD (Indexed Sequential MODule). The

196 DOS/VS Data Management Guide

assembled modules are completely file-independent and can be used for all
indexed sequential files. If desired, the logic modules can be assembled
along with the user's problem program and included in the output object
module.

For each indexed sequential file to be processed, a program must
include a DTFIS macro instruction. Some of the fields within the DTF
table generated are not specified until the file is opened during execution of
the object program. Many of the fields are kept with the file in a special
format (Format 2) of the standard DASD file label.

In addition to the parameters that describe the file to be processed,
the DTFIS macro instruction includes certain parameters identical to those
used in the ISMOD macro instruction.

If the DTFIS and ISMOD macro instruction specify that two I/O
areas are used, overlap of the physical transfer of data with processing can
be achieved for load and sequential retrieval.

In addition to the macro instruction mentioned in the preceding
section, the CLOSE(R) and OPEN(R) macro instructions are used to
connect the indexed sequential file to the program, to process labels, and to
fill the DTF table with items from the Format 2 DASD label.

Section 4: Indexed Sequential Access Method 197

Virtual Storage Access Method (V SAM)

Devices and Record Formats

VSAM File Structures

The Virtual Storage Access Method (VSAM) supports the following
devices:

• IBM 2314 Direct Access Storage Facility
• IBM 2319 Disk Storage
• IBM 3330 Family of Disk Storage Devices
• IBM 3340 Disk Storage

The equipment is described in Appendix 1.

Fixed-length or variable-length records can be processed by VSAM.
Record blocking is completely controlled by VSAM, and so the user is not
concerned with whether records are blocked or unblocked. The user
specifies only the record size and, under some conditions, the size of a
logical unit of a VSAM file called a control interval.

VSAM has key-sequenced and entry-sequenced files. The primary
difference between the two is the sequence in which data records are
stored. This section explains the logical organization of the two types of
VSAM files. It also explains the physical organization of VSAM files on
direct-access volumes.

Records are stored in a key-sequenced file in the collating sequence of
a key field, such as employee number or invoice number. Each record must
have a unique value in its key field. VSAM uses an index to access records
in a key-sequenced file. VSAM also allows free space to be distributed
throughout the file so records can be inserted physically into the file.
Therefore, separate overflow chains are not needed.

Records are stored in an entry-sequenced file in the physical sequence
in which they are entered (loaded). New records are stored at the end of
the file and records cannot be physically deleted or changed in length.

VSAM stores the records of each type of file in a logical unit called a
control interval. Control intervals are grouped together in a logical unit
called a control area. The following section describes how and why VSAM
uses control intervals and control areas for storing data records. The index
of a key-sequenced file is stored separately as described later.

198 DOS/VS Data Management Guide

Control Intervals and Control Areas
A control interval is a continuous area of direct access storage in which
VSAM stores data records and control information describing them. It is
the unit of a file that VSAM transfers to and from direct access storage and
contains one or more physical blocks.

The size of a control interval can vary from one file to another, but
each control interval in a given file is of the same size. It is chosen either
by VSAM or by the user (within limits acceptable to VSAM). VSAM
chooses the size that is best for (1) the type of direct access device used to
store the file, (2) the length of the data records, and (3) the least amount
of virtual storage space the processing program will provide for VSAM's
110 buffers.

A control interval contains an integral number of physical blocks.
VSAM chooses the physical block size. It will be 512 bytes, 1024 bytes, I 2048 bytes, 4096 bytes (3330 and 3340 only), or 8192 bytes (3340 only).
Therefore, the control interval size has to be a multiple of 512 bytes. If the
control interval size is larger than 8192 bytes, it must be a multiple of 2048
bytes. The maximum control interval size is 32,768 bytes.

A control interval is independent of types of direct access devices,
though its size is chosen for the device on which it was created. As Figure
4.19 illustrates, a control interval that fits on a track of one type of device
might extend across tracks if the file is moved to another type of device.

The records of a file are stored in control intervals; a group of control
intervals makes up a control area. Each control area in the file has the
same number of control intervals. For a key-sequenced file, the number is
equal to the number of index entries in an index record in the lowest level
of the index. If 50 were the number chosen, for example, the first 50
control intervals would be the first control area; the next 50 would be the
second control area, and so on. Control areas are also used for distributing
free space throughout a key-sequenced file, as a percentage of free control
intervals per control area. The section Key-Sequenced Files describes the
relationship of control areas to the index and free space of a key-sequenced
file in more detail.

A control area is the amount of direct-access space that VSAM may
preformat for data integrity as records are added to the end (loaded) of
either a key-sequenced or entry-sequenced file. Whenever the space for a
file is extended, it is extended by an integral number of control areas. (See
the section Data Security and Integrity.)

Section 4: Virtual Storage Access Method (VSAM) 199

A control area always occupies an integral number of tracks. It has
normally the size of a cylinder on the device which contains the file, and
starts on a cylinder boundary. It wUI never be larger than a cylinder and
will be smaller only if (1) the user allocated space for the file in terms of
records or tracks, and (2) VSAM could not set the control area size to one
cylinder and still select a control interval size that met all requirements. If
the control area is smaller than a cylinder, it can cross cylinder boundaries
but will not cross extent boundaries.

Physical
Blocks "', I

Control Interval

I I I
Control Interval Control Interval

I I I I I

Physical
Blocks

Track 1 Tract< 2 Track 3

""
Control Interval Control Interval Control Interval

~ I I I I I I I I I I 1 J I I I I I
Track 1 Track 2 Track 3 Track 4

Figure 4.19. Control intervals are independent of physical block size

I

The Method of Storing a Record in a Control Interval

Physical Organization

VSAM stores fixed length and variable length records in the same way. It
puts control information at the end of a control interval to describe the data
records stored in that control interval. The combination of a data record
and its control information, though they are not physically adjacent, is
called a stored record. Figure 4.20 shows how data records and control
information are stored in a control interval.

Stored records do not extend across control intervals. When the user
defines a file, he must specify enough buffer space so that the control
intervals are large enough for the largest records. The maximum logical
record size is 32,761 bytes.

A data record is addressed by its displacement, in bytes, from the
beginning of the file. This displacement is the Relative Byte Address (RBA)
of the record. The RBA does not depend on the location (cylinder and
track) of the record on a direct-access volume. For relative byte addressing,
VSAM considers the control intervals in the file to be contiguous, as though
the file were stored in virtual storage beginning at address O. In calculating
RBAs, VSAM considers free space and control information in the control
intervals, as well as the records themselves, as part of the address space.

How do control intervals and control areas relate to the physical attributes
of direct access storage?

A volume need not be assigned exclusively to VSAM. System files and
files of other access methods can also be on the volume. An area to be
used exclusively by VSAM is called a data space and is defined in the
VTOC through DLBL and EXTENT statements. It can include up to 16
extents that need not be adjacent to one another on the volume.

200 DOS/VS Data Management Guide

/

'\

Data
Space 1

Control Interval

Data Data Data Data Data Data
Control Information

Record Record Record Record Record Record

Figure 4.20. How data and control information is stored in a control interval
Data records are stored in the front of a control interval; control
information in the back.

NOTE: Al , C, , A2 , etc. are extents of the files.

Data
Space 3

Data
Space 4

Figure 4.21. Volumes, VSAM data spaces,·VSAM files, and nonVSAM files
Portions of files A and C are stored in different data spaces on different

volumes.

A file is stored in a data space or data spaces on one or more
direct-access volumes. All the volumes of a file must reside on the same
device type, but the index of a key-sequenced file can be on a different
device type than the data of the file. When a file is defined, space can be
allocated at the end of the file for additional records. Otherwise, when
additional space is needed, VSAM automatically extends the file if unused
data space is available. The amount of space for extension is defined by the
user. The file can be extended beyond its original size to include up to 123
logical extents (data spaces or portions of data spaces) or to a maximum
size of 232 (approximately 4.3 billion) bytes. Figure 4.21 illustrates the
relationships among volumes, data spaces, and files.

Key-Sequenced Files and Entry-Sequenced Files
The purpose of this section is to describe VSAM's two types of files in
detail and to explain further how VSAM uses the control interval for data
storage. Figure 4.22 contrasts the two types of files by listing the attributes
of each.

Section 4: Virtual Storage Access Method (VSAM) 201

Key-Sequenced Files

Key-Sequenced File Entry-Sequenced File

Records are in collating sequence by Records are in the order in which they are
key field entered

Access is by key through an index or Access is by RBA
by RBA

A record's RBA can change A record's RBA cannot change

Distributed free space is used to insert Space at the end of the data is used for
records and change their length in adding records; their length cannot be
place changed in place

Space given up by a deleted or A record cannot be deleted, but its space can
shortened record is reused by new or be reused for a record of the same length
lengthened records in the same control
interval

Figure 4.22. Differences between, and characteristics of, key-sequenced files
and entry-sequenced files
Key-sequenced and entry-sequenced files differ in the use of an index and

free space and in the changeability of RBAs.

The most distinctive features of a key-sequenced file are its index and its
distributed free space. In discussing them we can cover all the important
points about this type of file.

The Index for a Key-Sequenced File.
A key-sequenced file has an index which relates key values to the locations
of the data records in a file. A key in the index is taken from a record's
key field, and whose value cannot be altered. VSAM uses an index to
locate a record for retrieval, deletion, or update and to locate the collating
position for insertion of a new record.

An index has one or more levels. Each level is a set of records that
contain index entries giving the location of the records in the next lower
index level. The index records in the lowest level are collectively called the
sequence set; their entries give the location of control intervals containing
the data records. The records in all the higher levels are collectively cal1ed
the index set; their entries give the location of lower level index records.
The highest level always has only a single record. The index of a file with
few enough data control intervals for a single sequence-set record has only
one level: the sequence set itself. The index record (also called an index

I
control interval) is the size of a physical block. Thus it may be 512 bytes,
1024 bytes, 2048 bytes, 4096 bytes (3330 and 3340 only), or 8192 bytes
(3340 only).

Figure 4.23 illustrates the levels of an index and shows the relationship
between a sequence-set index record and a control area.

An entry in an index-set record consists of the highest key that an
index record in the next lower level contains, paired with a pointer to that
index record. An entry in a sequence-set record consists of the highest key
a data control interval will contain, paired with a pointer to that control

202 DOS/VS Data Management Guide

(

interval. The group of control intervals pointed to by all the entries in a
single sequence-set record is a control area. Not all data records have
sequence-set entries, for there is only one entry for each control interval in
the file.

For direct processing by key, VSAM follows vertical pointers from the
highest index level down to the sequence set to find a pointer to the control
interval containing the data record. For sequential access by key, VSAM
usually refers only to the sequence set. It uses a horizontal pointer in a
sequence-set record to get from that sequence-set record to the one
containing the next key in collating sequence in order to find a pointer to
the control interval containing the data record. Figure 4.23 shows both
vertical pointers and horizontal pointers.

Index

z } Soqueoce ret

Data { _---0---
Control Intervals of First Control Area Control Intervals of Second Control Area

Figure 4.23. VSAM's index structure for key-sequenced fBes
The highest level index record (A) controls the entire next level (B

through Z); each sequence-set index "record controls a control area.

VSAM increases the number of entries that an index record can hold
by key compression. It eliminates from the front and the back of a key
those characters that are not necessary to distinguish it from the adjacent
keys. Compression helps achieve a physically smaller index by reducing the
size of keys in index entries. For example, a two-level index, the size of
whose records is 2048 bytes with a key field of 10 bytes, and the size of
whose entries (including compressed key and pointer) is 8 bytes on the
average, can control approximately 62,500 control intervals, each of which
may contain numerous data records.

Index entries vary in size because of key compression. Thus a binary
search of the index record cannot be made. Therefore, the entries in an
index record are grouped into sections, the number of sections depending
on the number of entries in a record. A binary search is made of the high
key of each section. The entries of the desired section are then searched for
the desired key.

The number of control intervals in a control area equals the number of
entries in a sequence-set index record. This equality has important uses in:

•

Placing the sequence-set index record adjacent to the control area on a
single cylinder (see the section Optimizing the Performance and
Storage of VSAM).

Distributing free space throughout a file as a percent of free control
intervals in each control area.

Section 4: Virtual Storage Access Method (VSAM) 203

Distributed Free Space for File Growth.
When the user defines a key-sequenced file, he can specify that free space
is to be distributed (1) by leaving some space at the end of all the used
control intervals and (2) by leaving some control intervals in each control
area completely empty. The amount of free space in a used control interval
and the number of free control intervals in a control area are independent
of each other. The user can specify that the file is to contain one type of
free space or both. Figure 4.24 shows how free space might be set aside in
each control area. The sequence-set record for a control area contains an
entry for each free control interval as well as an entry for each control
interval that contains data.

When records in a key-sequenced file are shortened or deleted, their
space is automatically reclaimed by VSAM and added to the free space of
the control interval.

Reclaiming space and using distributed free space may cause RBAs of
some records to change. As Figure 4.24 illustrates, free space within a used
control interval is between the data in the front (low RBA) and the control
information in the back (high RBA). If a record is deleted or shortened,
any succeeding records in the control interval are moved to the left and
their RBAs are changed so that the space vacated can be combined with
the free space already in the control interval. Conversely, if a record is
inserted or lengthened, any succeeding records in the control interval are
moved to the right into free space and their RBAs are changed. However,
the index entries in the sequence set and the index set do not change
because the sequence-set entries point to control intervals and not to each
record. This keeps the records physically in key sequence within the control
interval.

Highest· Key Fit.,.
Entry ,n Each Sp.,c,'

Control El1tl"'~
Il1terval

COl1trol Il1fulm.lt.UI1

COl1t.ol 11111·.Vdh of.1 COl1t.ol All,,,

Figure 4.24. Distributed free space in a key-sequenced VSAM file

There are two kinds of distributed free space; space left in used control
intervals and empty control intervals.

The preceding discussion assumes that there is enough free space in the
control interval for a new record or a lengthened record. If the record to be
inserted will not fit in the control interval, there is a control interval split.
VSAM moves approximately half of the stored records in the control

204 DOS/VS Data Management Guide

(
\

)

interval to an empty control interval in the same control area, and inserts
the new record in its proper key sequence.

Figure 4.25 illustrates a control interval split and shows the resulting
free space available in the two affected control intervals. Because the
number of records in the first control interval is reduced, subsequent new
or lengthened records will occupy the newly created free space in the two
control intervals.

If the control intervals involved in a split are not adjacent, the physical
sequence of data records is no longer the same as their key sequence. In
Figure 4.25, the physical sequence of the records in the last three control
intervals on the right is: 58, 59, 60, 61, 55, 56, 57. But the sequence set
index record reflects the key sequence, so that, for keyed sequential
requests, the data records are retrieved in the order: 55, 56, 57, 58, 59, 60,
61.

Should there not be a free control interval in the control area, an
insertion requiring a free control interval causes a control area split. VSAM
establishes a new control area at the end of the file, either by using space
already allocated or by extending the file (if the user provided for
extensions when the file was defined). VSAM moves the contents of
approximately half of the control intervals in the full control area to free
control intervals in the new control area and inserts a new record into one
of the two control areas, as its key dictates. Since about half of the control
intervals of each of these control areas are now free, subsequent insertions
will not require control area splitting. Splitting should be an infrequent
occurrence for files with sufficient distributed free space; splitting a control
area does make it possible, however, to insert records into a key-sequenced
file without previously distributed free space.

Control Information

01 04
07 I :=.IY 01 04 07 I :;:~e II

· Free Space · ·
55 56 57 59 IIr I 58 59 Free Space II

II
Insertion of

60 61 Free Space
Record 58

Splits a
Control Interval I 60 I 61 Free Space II

Free Space II 55 I 56 I 57 I~~~ell
Control Intervals in Control Area

Before Insertion
Control Intervals in Control Area

After Insertion

Figure 4.25. Example of a control interval split

A control-interval split: new record is inserted in key sequence and some
of the records in the control interval that is too full for insertion are
moved to the free control interval.

Section 4: Virtual Storage Access Method (VSAM) 205

Entry-Sequenced Files
The records in an entry-sequenced file are stored in the physical sequence
in which they are loaded. New records are added to the end of the file and
existing records cannot be physically deleted or changed in length. An
entry-sequenced file does not have an index. When a record is loaded or
subsequently added, VSAM indicates its RBA to the user. He must keep
track of the RBAs of the records to gain access to them directly.

Sequential processing with an entry-sequenced file is similar to that of
SAM with direct access devices. Direct processing is accomplished by
supplying the RBA of a record to be processed.

Direct processing with an entry-sequenced file can also be done in a
way similar to DAM by loading the file with dummy records (filled with
blanks, for instance). To store a record initially, the user determines an
RBA by using an application-oriented algorithm, retrieves the dummy
record at that RBA, and stores the new record back at that RBA. The
user's algorithm must have a procedure for determining an alternate RBA
when two or more keys are converted to the same RBA. To retrieve a
record, the user applies the same algorithm to determine the RBA.

VSAM Processing Procedures

Creating VSAM Files

This section describes the procedures used to create and process VSAM
files.

There are two or three steps to creating a VSAM file, depending on
whether the first two steps are combined or not. The first step is to allocate
an area of direct access storage to VSAM. This area, called a VSAM data
space, is owned by VSAM and is available for one or more VSAM files
that will be created later. A data space consists of one or more extents on a
volume and is described in the VTOC as well as in the VSAM catalog. The
user allocates VSAM data spaces through job control and Access Method
Services. No user-written routines are required.

The second step is to sub-allocate a VSAM data space to a file, and to
enter information about the file's characteristics in the VSAM catalog. This
is called defining the file and is also done through job control and Access
Method Services.

The first and second steps can be combined; the data space and the
file can be defined at the same time. In this case, the file is called Unique
and occupies the data space created with it. No other files can occupy that
space. A Unique file, like those of other access methods, occupies the
direct-access extents specified in the VTOC. However, unlike other files,
Unique files cannot be allocated new extents later.

The third step is to load records into the file. This can be done by
using Access Method Services to copy an ISAM or SAM file or by writing

I the records with the user's processing program.

The section VSAM Catalog, Service Programs, and Job Control has
more information on how to create VSAM files. The format of Access
Method Services commands and examples of their use are in DOS/VS
Utilities: Access Method Services, GC33-5382.

206 DOS/VS Data Management Guide

(
\

Processing VSAM FOes

For a key-sequenced file, the primary form of access is keyed access, using
the index; for an entry-sequenced file, the only form of access is addressed
access, using the RBA determined for a record when it was stored in the
file. Addressed access can also be used to process a key-sequenced file, but
previous keyed insertion, deletion, or update can change the RBAs of
records. Therefore, the user may have to keep track of RBA changes if he
wants to use addressed access. (VSAM passes back the RBA of each record
retrieved, updated, added, or deleted.)

VSAM allows both sequential and direct processing for each of its two
types of files. Sequential processing of a record depends on the position,
with respect to the key or the address, of the previously processed record;
direct processing does not. With sequential access, records retrieved by key
are in key sequence; records retrieved by address are in entry (ascending
RBA) sequence. To retrieve or store records after initial position, the user
does not need to specify a key or an RBA. VSAM automatically retrieves
or stores the next record in order - either next in key sequence or next in
entry sequence, depending on whether processing is by key or by address.
In sequential processing, initial positioning must be established by (1)
pointing to the desired record, (2) inserting a record into the file (keyed
access only), or (3) using direct processing to retrieve a record for update.

With direct processing, the retrieval or storage of a record is not dependent
on the key or the address of any previously retrieved record. The record to
be retrieved or stored must be identified by key or by RBA.

I

VSAM allows a processing program or its subtasks to process a file
with multiple concurrent sequential andlor direct requests, each requiring
that VSAM keep track of a position in the file, with a single opening of the
file. Access can be to the same part of the file or to different parts.

For processing a subset of records in sequence in a key-sequenced file,
the processing program can specify skip sequential processing. When the
program indicates the key of the next record to be retrieved, VSAM skips
to its index entry by using horizontal pointers in the sequence set to get to
the appropriate sequence-set index record to scan its entries. However, the
key of the next record must always be higher in sequence than the key of
the last record.

When the processing program retrieves a record, VSAM reads the
entire control interval in which it is stored. VSAM deblocks the records.
VSAM places the record in the processing program's work area (move
mode) or leaves the record in VSAM's 110 buffer and provides a fullword
pointer to the record in the work area (locate mode). VSAM indicates the
length of the record in both move mode and locate mode. The user need
not be concerned with any physical attributes of stored records.

VSAM provides programmers of utilities and systems with control
interval access. They retrieve and store the contents of a control interval,
rather than a single record, by specifying control interval access in the
macros and (for direct processing) giving the RBA of the control interval.
They are responsible for maintaining the control information at the back of
the control interval. The format of this information may change in future
releases of VSAM. Figure 4.26 summarizes the types of access for VSAM
files.

Section 4: Virtual Storage Access Method (VSAM) 207

Type of File Type of Type of Retrieve Add Update Delete Records
Access Processing Records Records Records

sequential yes yes yes yes

keyed skip sequential yes yes yes yes

key sequenced direct yes yes yes yes

sequential yes no yes* yes
addr

direct yes no yes* yes

sequential yes to end yes* no
entry

addr
sequenced

direct yes to end yes* no

* The length of the records cannot be changed.

Figure 4.26. Summary of Access to VSAM Files

Keyed Access for Key-Sequenced Files
Keyed access is only for a key-sequenced file. An entry-sequenced file has
no index and thus cannot be processed by keyed access.

Keyed access provides for retrieval, update (including lengthening or
shortening a record, as well as altering its contents except for the key),
insertion, addition, and deletion. Each of these actions can be sequential,
skip sequential, or direct.

Keyed Retrieval
Keyed-sequential access depends on where the previous macro request
positioned VSAM with respect to the key sequence defined by the index.
When the processing program opens the file for keyed access, VSAM is
positioned at the first record in the file in key sequence to begin
keyed-sequential processing. The POINT macro instruction positions VSAM
for keyed-sequential processing at the record whose key is specified. If the
key specified is a generic key (leading portion of the key field), the record
positioned to is the first of the records having the same generic key. A
subsequent GET macro retrieves the record VSAM is positioned at. The
GET then positions VSAM at the next record in key sequence. The POINT
macro can position either forward or backward in. the file.

With keyed direct processing, the user can optionally specify that GET
keep VSAM positioned at the next record in key sequence. His program
can then process the following records sequentially.

Keyed direct retrieval does not use previous positioning; VSAM
searches the index from the highest level down to the sequence set to
retrieve a record. The record to be retrieved can be specified by:
• The exact key of the record

• An approximate key less than or equal to the key field of the record

• A leading portion of the key, or generic key, of the record.

208 DOS/VS Data Management Guide

(
\

Approximate specification can be used when the exact key is unknown. If a
record actually has the key specified, VSAM retrieves it; otherwise, it
retrieves the record with the next higher key. Generic-key specification for
direct processing causes VSAM to retrieve the first record having that
generic key. If all the records with the generic key are to be retrieved, the
processing program should shift to sequential access to retrieve the rest of
the records.

Keyed Deletion.
An ERASE macro instruction following a GET for update deletes the
record that the GET retrieved. A record is physically erased in the file
when it is deleted. The space the record occupied is then available as free
space.

Keyed Storage.
A PUT macro instruction stores a record. A PUT for update following a
GET for update stores the record that the GET retrieved. To update a
record, the user must previously have retrieved it for update.

When VSAM detects sequential insertion of two or more records in
sequence into a collating position in a file, VSAM uses a technique called
mass sequential insertion to buffer the records being inserted. This reduces
I/O operations. Using sequential instead of direct processing to insert two
or more records in sequence between two records in a file enables the user
to take advantage of this technique. The file can be extended (loading can
be resumed) by using mass sequential insertion to add records beyond the
highest key. In this case, the percentage of free space specified when the
file was defined is maintained in the new control intervals.

Skip sequential processing or direct processing can be used to store
records in sequence throughout a file. With skip sequential processing,
VSAM skips to the next collating position by scanning the sequence set of
the index; with direct processing, it finds the next collating position by
searching the index from top to bottom.

VSAM uses free space for efficient insertion and lengthening of
records in a key-sequenced file and automatically combines the space that is
given up by deletion or shortening of records with any free space already in
the affected control interval. If there is not enough free space, a control
interval or control area split occurs.

Addressed Access for Both Types of Files
Addressed access can be either sequential or direct with key-sequenced and
entry-sequenced files, but the processing allowed for a key-sequenced file is
different from that allowed for an entry-sequenced file. With a
key-sequenced file, addressed access can be used to retrieve records, update
their contents, and delete records. (The length of a record and the contents
of its key field cannot be changed.) Records cannot be added because
VSAM will not allow changes to the file which could cause the index to
change. With an entry-sequenced file, addressed access can be used to
retrieve records, update their contents (but not change their length), and
add new records to the end of the file. Records cannot be physically
deleted because that would· change the entry sequence of the file (RBAs of
the records).

Section 4: Virtual Storage Access Method (VSAM) 209

The discussions of free space in a key-sequenced file pointed out that
keyed insertion, deletion, or update (length changing) of records can change
their RBAs. Therefore, to use addressed access to process a key-sequenced
file, the user may have to keep track of RBA changes. VSAM passes back
the RBA of each record retrieved, added, updated, or deleted.

Addressed Retrieval.
Positioning for addressed-sequential retrieval is done by RBA rather than
by key. When a processing program opens a file for addressed access,
VSAM is positioned at the first record in the file in entry sequence to begin
addressed-sequential processing. A POINT positions VSAM for sequential
access beginning at the record whose RBA is indicated. A sequential GET
causes VSAM to retrieve the data record at which it is positioned and
positions VSAM at the next record in entry sequence.

With direct processing, the user may optionally specify that GET keep
VSAM positioned at the next record in entry sequence. His program can
then process the following records sequentially.

Addressed-sequential access retrieves records in entry sequence. If
addressed-sequential retrieval is used for a key-sequenced file, records will
not be in their key sequence if there have been control interval or control
area splits.

Addressed-direct retrieval requires that the RBA of each individual
record be specified, since previous positioning is not applicable. The address
specified for a GET or a POINT must correspond to the beginning of a
data record; otherwise, the request is invalid.

Addressed Deletion.
The ERASE macro can be used onlywith a key-sequenced file to delete a
record that the user has previously retrieved for update.

With an entry-sequenced file, the user is responsible for marking a
record he wants to delete. In other words, as far as VSAM is concerned,
the record is not deleted. The space occupied by a record marked for
deletion can be reused by retrieving the record for update and storing in its
place a new record of the same length.

Addressed Storage.
VSAM does not insert new records into an entry-sequenced file, but adds
them at the end. With addressed access of a key-sequenced file, VSAM
does not insert or add new records.

A PUT macro instruction stores a record. A PUT for update following
a GET for update stores the record that the GET retrieved. To update a
record, the user must previously have retrieved it for update. He can update
the contents of a record with addressed access, but he cannot alter the
record's length. Neither can he alter the key field of a record in a
key-sequenced file.

To change the length of a record in an entry-sequenced file, the user
must store it either at the end of the file (as a new record) or in the place
of a deleted record of the new length (as an update). He is responsible for
marking the old version of the record as deleted.

210 DOS/VS Data Management Guide

(

VSAM Catalog, Service Programs, and Job Control

The VSAM Catalog

This section discusses creation of VSAM files and data spaces, through the
VSAM catalog, by using the commands of Access Method Services and by
using job control language.

VSAM is the only DOS/VS access method which can dynamically allocate
direct access storage space for files. This is made possible by a central file,
the VSAM catalog, which brings together extensive information about files
and storage space. The catalog, which is connected to the system at IPL by
a logical unit named SYSCAT, must be on the system whenever VSAM
files are defined or processed.

The Catalog's Use in Data and Space Management
The VSAM catalog is a central information point for all VSAM files and
the direct access storage volumes containing them. The catalog provides
VSAM with the information to allocate data space for files, verify that the
user is authorized to access them, compile usage statistics on them, and
relate RBAs to physical locations. Consequently, the management of files is
less dependent on job control or processing programs.

All VSAM files and indexes must be cataloged in the VSAM catalog.
That is, a file's name and characteristics must be entered in the catalog
when the file is defined.

There can be more than one VSAM catalog for a DOS/VS system.
However, only one catalog at a time can be connected to the system. The
catalog is connected to DOS/VS during IPL by the CAT command.

Access Method Services is used to define VSAM files in the catalog
and to allocate space for them. The DLBL and EXTENT statements of job
control are used to allocate VSAM data spaces on each volume that will
contain VSAM files; they are not used either to catalog files or to allocate
space for them from existing VSAM data spaces. (However, DLBL and
EXTENT statements are used to allocate space for Unique files.) See Job
Control and VSAM.

Information Contained in the Entries of a Catalog
The VSAM catalog is a key-sequenced file. The data of the catalog consists
of entries describing files and entries describing direct access volumes in
terms of the allocation of data spaces and the location of available space.
The index of the catalog allows VSAM to find the file entry through its
44-byte name (file-ID) or the volume entry through the volume serial
number. Except for Unique files, VSAM can allocate and deallocate space
for files on cataloged volumes that are not mounted. However, if there is
not enough unused data space to contain the file, the user must allocate
new data space or assign other volumes that contain unused data space to
the file.

Information in a File Entry.
File entries contain the information VSAM requires to translate a record's
RBA to its physical location on a direct access volume. Besides the type of
storage device and a list of volume serial numbers, the catalog keeps other
file information, including:

Section 4: Virtual Storage Access Method (VSAM) 211

Access Method Services

• A pointer to the location of each extent of the file. These do not
necessarily correspond to extents of the data space(s), specified on
EXTENT statements, which contains the file, unless the file is Unique.
They may be sub-allocated within the data space(s).

Statistics on file processing, such as the number of records inserted or
deleted, and the amount of free space.

• Attributes determined when the file was defined, such as control
interval size, physical block size, logical record length, number of
control intervals in a control area, and (for a key-sequenced file)
location of the key field.

• Password protection information.

• The 44-byte name of the file (File-ID) as well as an indication of the
connection between the data and the index of a key-sequenced file.

• Information used to determine whether only the data or only the index
of a key-sequenced file has been processed.

Indication of whether or not the file is shared.

Information in a Volume Entry.
Volume entries contain the information required to keep track of data
spaces and files on the volumes. Each volume entry contains the following
information:

The volume serial number and device type of each volume.

• The location of data spaces on a volume.

•

The location of files within data spaces on a volume

The location and size of free data spaces available for sub-allocation
to files.

Transporting Files Between Systems
Since all VSAM files must be cataloged, moving a file from one system to
another requires that catalog information be moved along with it or that the
copy of the file being moved be cataloged in the receiving system. The
entire catalog and all the VSAM files of a system can be moved to another
DOS/VS system or to an OS/VS system. Thus a VSAM volume or volumes
can be made portable between systems. To use a VSAM volume from
another DOS/VS system or an OS/VS system, the user need only assign its
catalog by use of the CAT command during IPL.

He can also move individual files from one DOS/VS system to
another or to an OS/VS system by using the EXPORT and IMPORT
commands of Access Method Services.

Access Method Services is a set of utility programs that are used with
VSAM. A very brief description of Access Method Services follows. For a
complete description see DOS/VS Utilities: Access Method Services,
GC33-5382. The user tells Access Method Services what to do by giving
commands and descriptive parameters through an input job stream or by
calling it in a processing program and passing to it command statements. A
set of conditional statements (IF, ELSE, DO, END, SET) allows the user
to alter the sequence of execution of a series of commands.

212 DOS/VS Data Management Guide

(
l\:j

There are Access Method Services functional commands for:
• Defining and maintaining files.
• Copying files, listing files, and listing catalog entries.

• Moving files from one operating system to another.

• Protecting data from loss.

Defining and Maintaining FDes
The DEFINE command must be used to define all VSAM data spaces and
files. It is also used to define the VSAM catalog. The ALTER command is
used to change one or more of the attributes of a file after it has been
defined. The DELETE command is used to remove a file from the catalog
and free its data space for other VSAM files or to remove unused data
space from VSAM's control and make it available for other DOS/VS files.
The VERIFY command helps the user check and maintain file integrity.

DEFINE: Defining an Object and Allocating Space

To define a data space, entry-sequenced file, key-sequenced file, or
catalog, the user specifies the DEFINE command and the object to be
defined.

Defining Data Spaces.
The extents of a data space are specified in the DLBL and EXTENT
statements of job control. Only a cross-reference to the DLBL and
EXTENT statements (filename) is taken from the DEFINE command.

Defining Files.
For a key-sequenced file, a single DEFINE command defines its data and
its index and their relationship. An entry-sequenced file or the data of a
key-sequenced file together with its index is called a cluster by Access
Method Services. The 44-byte name (File-ID) of the file (cluster) is
specified in the DEFINE command. Separate names are given, by VSAM or
by the user, to the data and the index of a key-sequenced file. These names
enable the user to process the data and the index separately with addressed
or control interval access.

The attributes of the file are specified in the DEFINE command.
There are parameters for specifying whether data in a deleted file will be
erased, whether passwords will be required to access the file, size and other
attributes of data records, minimum amount of virtual-storage space for I/O
buffers, percentages of free space in control intervals and in control areas
of a key-sequenced file and other performance options, retention period,
identification of the owner, whether a file can be shared, file pre formatting
options, and whether write operations are to be verified.

The amount of direct access storage space for a sub-allocated file is
specified as the number of data records that it is to contain or as a number
of physical units, such as tracks or cylinders. Specifying the number of
records, independent of type of storage device, leaves the calculation of the
number of physical units of space up to VSAM. It calculates the size of the
control interval and control area to be used. The user may specify the
control interval size, and VSAM will use it if it falls within the acceptable
limits that VSAM calculates.

Section 4: Virtual Storage Access Method (VSAM) 213

The volumes to contain the file must be specified; the order in which
they will be used can also be specified. The space for a key-sequenced file
can be allocated on volumes according to ranges of key values. The space
for each range is extended separately when additional space is required.
Examples of the use of space allocation parameters in the DEFINE
statement are described under Space Allocation for Sub-Allocated Files.

For convenience, an existing catalog entry can be specified as a model
for a new entry, if they are of the same type (entry-sequenced file or
key-sequenced file). The information in the model will be used in the new
entry unless the user overrides it.

ALTER: Modifying a Catalog Entry

Many of the attributes, which were defined explicitly or by default
when a catalog entry was created, may be modified subsequently by the
ALTER command, most of whose parameters are the same as the DEFINE
parameters. The user can change the name of a file, the indication whether
to erase the data in a deleted file, passwords, minimum amount of space for
I/O buffers (which can be increased, but not decreased), percentages of
free space in new control intervals and in control areas of a key-sequenced
file, retention period, name of the owner, the indication whether to share a
file, and the indication whether to verify write operations.

Certain attributes of the file cannot be modified, such as control
interval size and placement of the index in direct access storage relative to
the data of a key-sequenced file. Changing these attributes amounts to a
reorganization of the file and requires that a new file be defined and the
old file be copied into it.

DELETE: Removing a Catalog Entry and Freeing Space

The DELETE command removes the entry for a previously defined
object and, in effect, causes it to cease to exist. The space is freed for use
when new files are added to the data space. If the erase option is specified
in the entry, the deleted file is overwritten with binary zeros. If a Unique
file is deleted, the data spaces it occupies are also deleted and their labels
are removed from the VTOC.

VERIFY: Testing and Reestablishing a File's Accessibility

The VERIFY command protects data when a file was not closed
successfully the last time it was processed. It instructs Access Method
Services to investigate whether an entry-sequenced file or both the data and
the index of a key-sequenced file have been properly closed. The end of the
data or of the index of a file is indicated by a special field, the end-of-file
indicator, and by information in the file's catalog entry. If a file is divided
into key ranges, the end of each key range is indicated by an end-of-file
indicator. See Protecting Data With VSAM. The end may be improperly
indicated in the catalog if an error prevented VSAM from closing the file.
Access Method Services closes the file and modifies the catalog entry, if
necessary, to correspond with the file.

Copying and Listing Files
The REPRO and PRINT commands enable the user to copy and list
sequential, indexed-sequential, and VSAM files. The LIST CAT command
enables the user to list a catalog or individual entries of a catalog.

214 DOS/VS Data Management Guide

)

~
"~ .. ") i

REPRO: Converting and Reorganizing Files

The REPRO command instructs Access Method Services to get
records from a sequential, indexed sequential, or VSAM file and put them
into a sequential or VSAM file. It can be used to convert an indexed
sequential file to a key-sequenced file. First, define a new key-sequenced
file. Then copy the indexed-sequential file into the key-sequenced file.
Access Method Services converts data records to the VSAM format and
builds an index.

An old file can be reorganized by copying it into a newly defined file
of the same type. With key-sequenced files, the user can optionally specify
different percentages of distributed free space and different performance
options for the new file. Copying the old key-sequenced file into the new
one redistributes free space, makes the entry sequence of the data records
the same as their key sequence, and builds a new index.

The file into which records are copied may either be newly allocated
(by way of the DEFINE command) or contain records already. Records
copied into a key-sequenced file are merged with any existing records;
records copied into an entry-sequenced file are added at the end. A range
of records to be copied can be specified by number of records, by key in an
indexed-sequential or a key-sequenced file, or by address in either type of
VSAM file.

PRINT: Listing Data Records

The PRINT command instructs Access Method Services to list some or
all of the records of a sequential, indexed sequential, or VSAM file in one
of three formats: each byte as 2 hexadecimal digits, each byte as a single
character, or a combination of these two, side-by-side. A range of records
to be listed can be specified by number of records, by key in an indexed
sequential or key-sequenced file, or by address in either type of VSAM file.

LISTCA T: Listing Catalog Entries

The LISTCA T command lists individual entries, all entries of a
particular type, or all entries of a given catalog. The entire entry is listed,
but passwords in an entry are not listed unless the master password for the
file defined by the entry or the master password for the catalog itself is
specified.

Moving Files from One System to Another
VSAM files can be moved between DOS/VS systems and between a
DOS/VS and an OS/VS system by using the EXPORT and IMPORT
commands of Access Method Services. Figure 80 compares volume and file
portability. See the section Transporting Files Between Systems for a
description of volume portability.

EXPORT: Extracting Catalog Information and Making a File Portable

The EXPORT command instructs Access Method Services to copy an
entry-sequenced file or a key-sequenced file in the format of a sequential
file onto a storage volume to be transported to another system. The
transporting volume may be magnetic tape or disk. Access Method Services
also extracts information from the catalog entry that defines the file to be
transported and copies it onto the transporting volume. The information is

Section 4: Virtual Storage Access Method (VSAM) 215

used to define the file automatically in a VSAM catalog in the other
operating system.

Exportation is either permanent or temporary. In permanent
exportation, Access Method Services deletes the catalog entry and frees the
storage space; in temporary exportation, both the sending and the receiving
systems have a copy of the file, and the user may specify that one or both
of the copies are not to be modified. A protected copy can only be read.
The copy can be freed for full access with the ALTER command.

IMPORT: Loading a Portable and Its Catalog Information

The IMPORT command instructs Access Method Services to define
the entry-sequenced file or the key-sequenced file on the transporting
volume, using the catalog information extracted in exportation. The file
itself is stored in its VSAM format in a data space that is defined in the
catalog.

The EXPORT and IMPORT commands can be used to prepare a
backup copy of an entry-sequenced file or a key-sequenced file and its
index and their catalog entries and to load the backup copy if it is needed.
When a backup copy is imported, the catalog entry is regenerated.

Space Allocation for Sub-Allocated Files
Unless a VSAM file is defined as Unique, the direct access space for it is
suballocated from previously existing VSAM data spaces by using the
DEFINE statement as follows.

• The volume or volumes on which the file will reside are indicated in
the VOLUMES parameter. Space to be allocated initially (primary
allocation) and, optionally, space to be allocated if the file must be
extended (secondary allocation) are indicated in the TRACKS,
CYLINDERS, or RECORDS parameters. VSAM selects which data
spaces or portions of data spaces on a volume to suballocate to the
file.

• If more volumes are specified than needed for the primary allocation,
the additional volumes can be used when the file is extended. These
volumes are described in the file's catalog entry as potential overflow
volumes.

• The KEYRANGES parameter enables the user to put specifies parts
of a file on different volumes. The amount of space specified in the
primary allocation parameter is allocated to each key range.

• If the ORDERED parameter is specified, the space must be
suballocated on the volumes in the order in which they are listed in
the VOLUMES parameter.

The following examples illustrate the use of these parameters in the
DEFINE statement for suballocated files:

VOLUMES (A B C)
ORDERED
CYLINDERS (50 5)
The 50-cylinder primary space allocation for the file must be made on
volume A, or the request will be rejected. Volumes Band C are overflow
volumes. If the file is extended, a five cylinder secondary space allocation is
made on volume A if it has enough data space. Otherwise, the secondary

216 DOS/VS Data Management Guide

I

\

allocation is made on volume B. If volume B does not have enough data
space for a secondary allocation, the request for extension is rejected. When
the file is subsequently extended, the allocation is made on volume B if it
has enough data space. Otherwise, the allocation is made on volume C.

VOLUMES (A B C)
UNORDERED
CYLINDERS (50 5)
The 50-cylinder primary allocation for the file can be made on either
volume A, volume B, or volume C. However, if all 50 cylinders cannot be
allocated on one volume, the request is rejected. The volumes are searched
in the order they are specified. If both volume A and volume B have 50
cylinders available, the allocation will be made on volume A. If the file is
extended, the five cylinder secondary allocation can be made on any of the
three volumes. Once again, the volumes are searched for space in the order
specified.

VOLUMES (A B C)
KEYRANGES ((00 30) (31 65) (66 99))
ORDERED
CYLINDERS (100 10)
A primary allocation of 100 cylinders will be made for each key range. The
first key range will be one volume A, the second on volume B, and the
third on volume C. If 100 cylinders cannot be allocated on each volume,
the request is rejected. A key range can be extended only on the volume it
occupies or on an overflow volume. Thus, if volume D were added to the
list, the first key range could be extended on volume A or (if volume A
were full) on volume D. If only volumes A and B were specified, the first
key range would be allocated on volume A and the second and third key
ranges would be allocated on volume B.

VOLUMES (A B C)
KEYRANGES ((00 30) (31 65) (66 99))
UNORDERED
CYLINDERS (50 5)
A primary allocation of 50 cylinders will be made for each key range.
VSAM will attempt to put one key range on each volume. If volume A
does not have 50 cylinders available, the first key range is put on volume B
and the second and third on volume C. If neither volume A nor volume B
have 50 available cylinders, all three key ranges are placed on volume C. A
key range will be extended first on the volume it is on, then it will be
extended on any other volume in the list. However, if volume D was
available as an overflow volume, each key range would be extended on
volume D if no more space were available on the volume of its primary
allocation. A key range can cover only two volumes-the one of primary
allocation and one more.

VOLUMES (A B C)
ORDERED
CYLINDERS (800 10)
This request will be rejected because the amount of primary space
allocation can never be greater than one volume. The file being defined
should be split into key ranges (key-sequenced file only), or the secondary
allocation parameter should be used so that the file can be extended.

Section 4: Virtual Storage Access Method (VSAM) 217

Volume Portability with a CataloQ

~ -----,
~ -"­I -----_ I
I I
I I
I I
I I
' - ----'

First System
DOS/VS

or
OS/VS

Portability with Access Method Services

Demount Extract Catalog Information Copy in Sequen1'ial Format

Second System
DOS/VS

Mount on SYSCAT

Export

Import

Transporting
Volume
(Tape or Disk)

Define the File Copy in Original Format

Figure 4.27. Data Portability

218 DOS/VS Data Management Guide

File portability achieved by moving volumes or by moving individual
files.

(
\

Job Control and VSAM

)

VSAM data spaces and files are specified to DOS/VS job control by the
DLBL and EXTENT statements. DLAB, XTENT, and VOL statements
cannot be used with VSAM. EXTENT statements specifying the same
volume serial number must be contiguous. The VSAM catalog is connected
to DOS/VS by assigning the unit that has the volume containing the
catalog to the logical unit name SYSCA T. This is done at IPL by the
command CAT UNIT=X'cuu'. Figure 4.28 shows the use of DOS/VS job
control statements to create or process a VSAM file.

Reserving Virtual Storage for VSAM
VSAM modules are loaded into virtual storage dynamically during OPEN
time. You must reserve this virtual storage using the SIZE parameter of the
EXEC job control statement. If you have loaded the VSAM modules into
the SV A, working storage and buffer space must still be reserved in the
partition.

Defining a VSAM Data Space
When a data space is defined, DLBL and EXTENT statements are
required. They are used by VSAM catalog and space management routines.
The DEFINE command of Access Method Services specifies the data space
being defined. The data space is described by standard format-1 and
format-3 labels in the VTOC; it is also described in the VSAM catalog.
Two examples of job control statements used to define data spaces are
shown below:

II JOB ALLOCATE A 3330 VOLUME TO VSAM
II ASSGN SYS001,X'130'
II DLBL VFILENM, , , VSAM
II EXTENT SYS001 ,514966,1, ,001,7675
II EXEC IDCAMS,SIZE=26K

DEFINE SPACE(FILE (VFILENM) TRACKS (7675) -
VOLUME (514966))

1* If:.

II JOB DEFINE A VSAM DATA SPACE
II ASSGN SYS001 ,X' 130'
II DLBL VFILENM, , , VSAM
II EXTENT SYS001,321942,1,,800,400
II EXTENT SYS001,321942,1,,1800,200
II EXEC IDCAMS,SIZE=26K

DEFINE SPACE(FILE(VFILENM) TRACKS (600) -
VOLUMES (321942))

1* If:.
In the DLBL statement the user must specify the filename and the code
which identifies VSAM files. The filename (VFILENM) is the same as the
FILE parameter and connects the job control statements to the DEFINE
command. VSAM data spaces can be deleted only by using the DELETE
statement of Access Method Services even though the expiration data has
been reached. Therefore the user should specify an expiration date to
prevent other access methods from overwriting VSAM data spaces. In the
EXTENT statement he must specify the symbolic unit name, the volume
serial number, and the space parameters (beginning-track and
number-of-tracks). Note that the VOLUMES parameter and the space

Section 4: Virtual Storage Access Method (VSAM) 219

allocation parameter (CYLINDERS, TRACKS, or RECORDS) must be
included in the DEFINE command, and must agree with the information in
the EXTENT statements. If the CYLINDERS parameter is used, each
extent must begin on a cylinder boundary.

220 DOS/VS Data Management Guide

(
\

(
\.

ASSGN

DLBL

EXTENT

EXEC

DEFINE

Defining a Data Space

VSAM-logical-unit,X'yyy'

filename! VSAMcode

VSAM-Iogical-unit, volume-serial-number,
relative-track, number-of-tracks

access method" services

filename, data space parameters
)

Data Space parame.ters
stored in catalog

~
~ User allocates

extents of
data space

Defining and loading a File (Existing Data Space)

ASSGN VSAM-Iogical-unit, X'yyy'

ASSGN ISAM-Iogical-unit, X1ZZZ I

DLBL VSAMfilename, VSAMcode }
EXTENT VSAM-logical-unit, volume-serial-number

DLBL ISAMfilename, ISAMfile-id, ISE

EXTENT

EXEC

DEFINE

REPRO

ASSGN

DLBL

EXTENT

EXEC

CSECT

ACB
END

IS.t.M-logical-unit, volume-serial-number,
relative-track, number-of-tracks

access method services

VSAMfilename, VSAMfile-id, file parameters }

ISAMfilename (input), VSAMfilename (outPUt)}

Processing a File

VSAM-logical-unit,X'yyy' } Identify File
filename, file-id to VSAM

:=:::::~~~V}Olu"""";,' m..... ~
__ Process Identify volume

.-. .•.•.••• ,............ File \ location to DOSIVS

NOTES: Some job control statamen1S and parameters (or commas) of other statamen1S
have bean omitted_
The ACB in VSAM programs performs the functions of the DTF.
The VSAM catalog is c:onnected to DOS/VS during IPL

Figure 4.28. Using Job Control With VSAM

Unit xxX'

UNITyyy

UNIT xxx

UNIT xxx

UNITyyy

Section 4: Virtual Storage Access Method (VSAM) 221

A data space can consist of up to 16 separate extents on a volume. If
EXTENT statements are supplied for more than one volume, a separate
data space is defined on each volume. Each extent is checked against the
extent limits of each existing data space or file of other DOS/VS access
methods. If a new extent overlaps any previously written extent, VSAM
issues a message to the operator. He can cancel the job or, if the old extent
is part of a file of another access method, delete the file.

Defining a Sub-Allocated VSAM File
When a VSAM file is defined and the space for it is sub-allocated from one
or more existing data spaces, DLBL and EXTENT statements are not
required and label processing is not performed because (1) information
needed to set up the file is in the DEFINE command and (2) information
about the data spaces to be used for the file is in the VSAM catalog. An
example of job control statements used to define a sub-allocated VSAM file
is shown below. Note that the DEFINE parameters needed to specify the
logical attributes of the file are not shown.

II JOB
II EXEC

DEFINE

1*
1&

DEFINE A SUB-ALLOCATED VSAM FILE
IDCAMS,SIZE=26K
CLUSTER(NAME(MSTRFILE) -
VOLUMES (321942) TRACKS (300) -
......)

Defining a VSAM file involves building a catalog entry for the file and
finding free data space for it. The volume(s) on which the file is defined
need not be mounted because only the catalog is used. However, they must
contain previously defined data space. You can load the file in the same job
step by using the REPRO command of Access Method Services. In this
case, the volume(s) must be mounted.

Defining a Unique VSAM File
A file can be defined at the same time as the data spaces which will contain
it. In this case, the file is called Unique and no other file can occupy its
data spaces. The data and the index of a key-sequenced Unique file must
occupy separate data spaces; each requires DLBL and EXTENT
statements. However, an entry-sequenced file occupies only one data space.
An example of job control statements used to define a key-sequenced
Unique file is shown below. Note that the DEFINE parameters needed to
specify the logical attributes of the data and index are not shown.

II JOB
II ASSGN
II DLBL
II EXTENT
II EXTENT
II DLBL
II EXTENT
II EXEC

1*
1&

DEFINE

DEFINING A UNIQUE VSAM FILE
SYS001,X'130'
VDATANM, "VSAM
SYS001,321942,1,,800,400
SYS001,321942,1,,1800,400
VINDXNM",VSAM
SYS001,321942,1,,600,200
IDCAMS,SIZE=26K
CLUSTER (NAME (MSTRFILE) UNIQUE) -

DATA (FILE (VDATNAM) -
VOLUMES (321942) CYLINDERS (40) -
......) -
INDEX (FILE (VDINDXNM) -
VOLUMES (321942) CYLINDERS (10) -
......)

The DLBL and EXTENT statements contain the same information as
described above under Defining a VSAM Data Space. Note that the

222 DOS/VS Data Management Guide

'\
J

VOLUMES parameter and the space allocation parameter (CYLINDERS,
TRACKS, or RECORDS) must be included in the DEFINE command, and
must agree with the information in the EXTENT statements. The space
allocated to a Unique file must be an integral number of cylinders and each
extent must begin on a cylinder boundary. However, the TRACKS or
RECORDS parameter can be used in the DEFINE command. If the
KEYRANGES option is specified, the number of volumes must be equal to

I
the number of key ranges. Excessive volumes will be ignored and missing
volumes will cause an error. A Unique file can have a maximum of 16
extents per volume.

A Unique file cannot be extended, and space left over after the
records are loaded cannot be released. The file is limited to the extents of
the data spaces which contain it. The extents of a Unique file, like those of
other access methods, are described in the VTOC. They are also described
in the VSAM catalog. Since the user chooses the size of the area allocated
to the index, he must ensure that is is large enough to contain the index.

Processing a VSAM File
When an existing file is processed, DLBL and EXTENT statements are
required. They are used by VSAM OPEN routines. The catalog contains
most of the information required by VSAM to process a file. VSAM does
not require much information from job control statements. An example of
job control statements used for processing an existing VSAM file is shown
below:

II JOB PROCESS A VSAM FILE
II ASSGN SYS001 ,X' 130'
II DLBL VFILENM,'MSTRFILE' "VSAM
II EXTENT SYS001,321942
II EXEC USERPGM,SIZE=nnK

CSECT

ACB DDNAME=VFILENM, ...

END
1*
1&

File-ID, type code (VSAM), and filename are required in the DLBL
statement. The filename, (VFILENM) is a cross reference to the ACB and
connects job control to the processing program. The file-ID (MSTRFILE)
matches the 44-byte name of the file, stored in the catalog, and connects
job control and the processing program to the file.

Only the symbolic unit number and the volume serial number are
required in the EXTENT statement. The space parameters are not used
when referring to an existing file becuase that information is in the VSAM
catalog. One EXTENT statement is required for each volume the file
occupies. An EXTENT statement which specifies a volume not listed in the
file's catalog entry is ignored. If the correct volume is not mounted on a

I logical unit, a message is issued to the operator to mount the correct
volume.

If a multi-volume file is opened for direct or keyed sequential
processing, all volumes must be mounted at that time. If it is opened for
addressed sequential processing only, the volumes need only be mounted as
they are used.

Section 4: Virtual Storage Access Method (VSAM) 223

When processing a Unique file, the user can supply the same DLBL
and EXTENT cards that were used to define the file. VSAM obtains the
volume serial number from the first EXTENT card for each volume and
ignores the space parameters on all the EXTENT cards.

Defining the VSAM Catalog
Before VSAM can be used on a DOS/VS system, the VSAM catalog must
be created. The catalog is defined, like a VSAM file, by the DEFINE
command of Access Method Services. The catalog occupies a data space,
defined at the same time, which is described by format-l and format-3
labels in the VTOC. Two examples of job control statements used to define
a catalog are shown below:

II JOB
II DLBL
II EXTENT
II EXEC

1*
1&

DEFINE

II JOB
II DLBL
II EXTENT
II EXEC

1*
1&

DEFINE

DEFINE A VSAM CATALOG
IJSYSCT,'VSAMCAT' "VSAM
SYSCAT,321940,1,,100,250
IDCAMS,SIZE=26K
MASTERCATALOG(NAME(VSAMCAT) -

VOLUME (321940) TRACKS (250) -
FILE (IJSYSCT))

DEFINE CATALOG AND ALLOCATE VOLUME
IJSYSCT",VSAM
SYSCAT,321940,1,,020,3980
IDCAMS,SIZE=26K
MASTERCATALOG(NAME(AMASTCAT) -

VOLUME (321940) CYLINDERS (199) -
FILE (IJSYSCT)) -
DATA (CYLINDERS (10))

In the first example, the catalog and its data space are defined. In the
second example, an entire 2314 volume is allocated as VSAM data space
and the catalog is defined and allocated 10 cylinders of that data space.

In the DLBL statement, the user must specify the filename and the
code which identifies VSAM. The filename must be specified as IJSYSCT.
The 44-byte name (File-ID) of the catalog is chosen by the user and must
be specified in the DEFINE command. It is not required in the DLBL
statement when the catalog is being defined. In the EXTENT statement,
the logical unit must be SYSCA T. The user must decide which volume and
which extents will contain the catalog. The volume must have been assigned
to a unit by the CAT command during IPL. Note that the VOLUMES
parameter and the space allocation parameter (CYLINDERS, TRACKS, or
RECORDS) must be included in the DEFINE command, and must agree
with the information in the EXTENT statements. If the CYLINDERS

I parameter is used, each extent must begin on a cylinder boundary. The
data space containing the catalog can consist of up to 16 extents.

VSAM opens the catalog, after it has been defined, once in each job
step in which a file or data space is defined or processed. The catalog must
be on the volume mounted on the unit specified in the CAT command.

Assembler Language Considerations
VSAM macro instructions are coded in an assembler language processing
program to gain access to the data. There are macros for:

224 DOS/VS Data Management Guide

• Connecting and disconnecting a processing program and a file. These
prepare a bridge for VSAM between the program and the data.

• Specifying parameters that relate the program and the data. These
identify the file and describe the kind of processing to be done.

• Manipulating the information relating the program and the data. These
are used to specify changes in processing.

• Requesting access to a file. These initiate the transfer of data between
direct access storage and virtual storage.

Connecting and Disconnecting a Processing Program and a File
OPEN connects a processing program to a file, so that VSAM can satisfy
the program's requests for data. CLOSE completes processing and frees
resources that were obtained by the OPEN routine. TCLOSE secures
records that were added to the file.

OPEN: Connecting a Processing Program to a File

The OPEN routine, by calling a VSAM authorization routine, verifies that a
processing program has the authority to process a file.

OPEN constructs VSAM control blocks and loads the routines
required for processing. (VSAM routines are not link-edited into the
processing program like those of other access methods.) By examining the
DLBL statement indicated by the ACB macro filename parameter and the
volume information in the catalog, OPEN verifies that the necessary
volumes have been mounted and checks whether each volume matches its
catalog information. If a key-sequenced file is being opened, OPEN checks
whether the data of the file has been updated separately from its index.
OPEN also checks that the user is authorized to access the file; the
password he supplies must match the appropriate password in the catalog.

CLOSE: Disconnecting a Processing Program from a File

The CLOSE routine completes any 110 operations that are unfinished
when a processing program issues a CLOSE macro for a file.

CLOSE updates the catalog for any changes in the attributes of a file.
The addition of records to a file may cause its end-of-file indicator to
change, in which case CLOSE updates the end-of-file indicator in the
catalog. These end-of-file indicators help ensure that the entire file is
accessible. If an error prevents VSAM from updating the indicators, the file
is flagged as not properly closed, and subsequent executions of the OPEN
macro are given an error code indicating the failure. For more information
on correcting this condition, see the discussion of the Access Method
Services VERIFY command in the section Data Security and Integrity.

CLOSE restores control blocks to the status that they had before the
file was opened, and frees the virtual storage space that OPEN used to
construct VSAM control blocks.

TCLOSE: Securing records added to a file

A TCLOSE macro is issued to complete unfinished operations and update
the catalog. Processing may continue without reopening the file. The
TCLOSE macro is used to protect data while the file is being loaded. This
is described in the section Protecting Data with VSAM.

Section 4: Virtual Storage Access Method (VSAM) 225

Specifying Parameters that Relate the Program and the Data
To open a file for processing, the user must identify the file and the types
of processing to be done. The ACB macro specifies the file to be processed,
the EXLST macro specifies a list of user-supplied exit routines, and the
RPL macro specifies information for a request to access a particular record
in the file. These are the declarative macros of VSAM. The GENCB macro
can be used in place of the ACB, EXLST, or RPL macros to generate
processing specifications during the execution of a processing program
rather than while assembling or compiling the program.

ACB: Specifying the Access-Method Control Block

The ACB macro specifies an Access-Method Control Block (ACB). Each
VSAM file has an ACB; it identifies the file and contains information about
it. The filename of the DLBL job control statement that describes the file is
included, so that the OPEN routine can connect the program to the data.

The other information specified enables OPEN to prepare for the kind
of processing to be done:
• The address of a list of exit-routine names that the user supplies

(EXLST parameter). The EXLST macro, described next, is used to
construct the list.

• The amount of space for I/O buffers (BUFSP parameter) and the
number of I/O buffers (BUSND and BUFNI parameters) that VSAM
will use to process data and index records. The minimum number of
buffers allowed depends on how much buffer space is allocated, the
number of concurrent requests to be allowed, and whether processing
will be direct or sequential.

• The password, if required, for the level of authorization to access the
file (read, read and update, etc.) (PASSWD parameter).

• The processing options to be used (MACRF parameter): keyed or
addressed access, or both; sequential, direct, or skip sequential
processing, or a combination; retrieval, storage, or update (including
deletion), or a combination.

• For processing concurrent requests, the number of requests that are
defined for processing the data set. (See the discussion of the RPL
macro following EXLST.)

EXLST: Specifying the Exit List

The EXLST macro specifies the names of optional exit routines that the
user can supply for analyzing physical and logical errors and for end-of-file
processing. Any number of ACBs in a program can indicate the same Exit
List, and an exit routine can be used for more than one file.

Analyzing Physical Errors (SYNAD).
When VSAM encounters an error in an I/O operation that the DOS/VS
error recovery routines cannot correct, it exits to the physical-error analysis
(SYNAD) routine. VSAM sets a code in the RPL to indicate whether the
I/O error occurred during reading or writing the data or the index.

Analyzing Logical Errors (LERAD).
Errors not directly associated with an I/O operation, such as an invalid
request, cause VSAM to exit to the logical-error analysis (LERAD) routine.
VSAM sets a code in the RPL that indicates the type of logical error.

226 DOS/VS Data Management Guide

End-of-File Processing (EODAD).
When a record beyond the last record in the file is requested during
sequential access, the end-of-file (EODAD) routine is given control. The
last record is the highest-addressed record for addressed or control-interval
access or the highest-keyed record for keyed access. If an EODAD exit
routine is not available, control is given to the LERAD exit routine.

Overlapping I/O Operations (EXCPAD).
When VSAM starts an I/O operation caused by a request macro, the
execute-channel-program (EXCPAD) exit routine is given control. The
EXCP AD routine must return control to VSAM, which continues the user's
mainline routine at the instruction following the request macro. The
EXCP AD exit is intended for use by programmers of utilities and systems.

RPL: Specifying the Request Parameter List

The RPL macro produces a Request Parameter List (RPL). The RPL
specifies the information needed by a request macro to access a record in
the file. The request macros are GET, PUT, POINT, and ERASE
(described under Requesting Access to a File). The RPL identifies the file
to which the request is directed by naming the ACB of the file. The
MODCB macro (described below) is used to modify some of the
parameters for changing the type of processing, such as from direct to
sequential or from update to nonupdate.

For concurrent requests, that require VSAM to keep track of more
than one position in a file, any number of RPL macros may be used
asynchronously by a processing program or its subtasks to process a file.
The requests can be sequential or direct or both, and they can be for
records in the same part or different parts of the file.

Only the RPL parameters appropriate to a given request need the specified:

Processing Options for a Request (OPTCD).
A request is for keyed, addressed, or control-interval access. The processing
can be sequential, skip sequential (keyed access only), or direct. The
request is for updating or not updating a record. A nonupdate direct request
to retrieve a record can optionally cause positioning at the following record
for subsequent sequential access.

For a keyed request, the user specifies either a generic key or a full
key to which the key field of the record is to be matched. A generic key
can match several records while a full key matches only one record. He can
also specify that, if the key does not match the key of any record in the
file, the record with the next greater key will be processed.

For retrieval, a request is either for a data record to be placed in a
work area in the processing program (move mode) or for the address of the
record within VSAM's I/O buffer to be passed to the processing program
(locate mode).

Address of the Work Area for or Pointer to a Data Record (AREA).
For retrieval, update, insertion, or addition, a work area for the records
must be provided in the user's partition (move mode). For retrieval, the
user can have VSAM give him the address of the record within VSAM's
I/O buffer (locate mode) in this field.

Section 4: Virtual Storage Access Method (VSAM) 227

Size of the Work Area for a Data Record (AREALEN).
This parameter specifies the length of the work area in which the user and
VSAM place records for move mode or a four-byte address of the record
for locate mode. Having a work area that is too small is considered a logical
error.

Length of the Data Record Being Processed (RECLEN).
For storage, the processing program indicates the length to VSAM; for
retrieval, VSAM indicates it to the processing program.

Length of the Key (KEYLEN).
This parameter is required only for processing by generic key. For ordinary
keyed access, the full key length is available from the catalog.

Address of the Area Containing the Search Argument (ARG).
The search argument is either a key or an RBA. If the OPTCD parameter
indicates a generic key, the KEYLEN parameter tells how many high-order
(leftmost) bytes of the search argument will be used.

Address of the Next RPL in a Chain (NXTRPL).
The user can process several records with a single GET, PUT, or ERASE
by chaining RPLs together. For example, each RPL in a chain could
contain a unique search argument and point to a unique work area. A
single GET macro would retrieve a record for each RPL in the chain.
Chaining RPLs is not the same as issuing concurrent requests that require
VSAM to keep track of mUltiple positions in a file. A chain of RPLs is
processed as a single request.

GENCB: Generating Control Blocks and Lists

The GENCB macro can be used to generate an ACB, EXLST, or RPL
during the execution of the processing program, rather than to assemble it
with the corresponding macro. GENCB is coded the same as the other
macros, but it generates one or more copies of a control block or list.

Manipulating the Information Relating the Program and the Data
The macros MODCB, SHOWCB, and TESTCB are for modifying,
displaying, and testing the contents of an ACB, EXLST, or RPL.

MODCB: Modifying the Contents of Control Blocks and Lists

The MODCB macro is used to specify new values for fields in an ACB,
EXLST, or RPL. For example, if an RPL is used to retrieve directly the
first record having a certain generic key and then to retrieve sequentially
the rest of the records having that generic key, MODCB would be used to
alter the RPL to change from direct to sequential access.

SHOWCB: Displaying Fields of Control Blocks and Lists

SHOWCB enables the user to examine the contents of an ACB, EXLST, or
RPL. VSAM displays the requested fields in an area provided by the user.
Fields additional to those defined in the macros can be displayed. For
example, when a file is open, the user can display various counts, such as
number of control interval splits, number of deleted records, and number of
index levels. The RBA of the last record accessed and the error codes set in
the ACB or RPL after macro execution can also be displayed.

228 DOS/VS Data Management Guide

Requesting Access to a FOe

Summary

TESTCB: Testing the Contents of Control Blocks and Lists

The TESTCB macro enables the user to test the contents of a field or
combination of fields in an ACB, EXLST, or RPL and to alter the
sequence of the processing steps. It is similar to a branch instruction. He
can test the error codes set in the ACB or the RPL, for instance, or the
attributes of a file, such as record length.

All of the preceding macros prepare to process a file. The request macros,
GET, PUT, POINT, and ERASE, initiate an access to data. Each of these
macros is associated with a Request Parameter List that fully defines the

I
request. Another request macro, ENDREQ, is provided to (1) terminate
processing of a request when completion is not required, or (2) free VSAM
from keeping track of a position in the file. The only parameter that is
specified with a request macro is the identity of the Request Parameter List.

The options for using GET, PUT, POINT, and ERASE are outlined in
the discussion of the RPL macro, and the use of each macro is discussed in
the section VSAM Processing Procedures.

A summary of the assembler language processing options is given in Figure
4.29.

Section 4: Virtual Storage Access Method (VSAM) 229

~ FUNCTION

CREATE
or
REORGANIZE

ADD

DELETE

UPDATE

RETRIEVE
SEQUENTIAL BY
LOCATION (RBA)

RETRIEVE
SEQUENTIAL BY
KEY* (I N DEX)

RETRIEVE
RANDOM BY
LOCATION (RBA)

RETRIEVE
RANDOM BY
KEY* (INDEX)

ENTRY-SEQUENCED KEY-SEQUENCED
INDEX RECORD ORGANIZATION ORGANIZATION

(RBA) (INDEX) UPDATED MOVED

Use AMS; "REPRO" SAM,
Use AMS ;" DEFINE"
catalog entry, then YES

orVSAM file "REPRO" SAM,
in problem program. ISAM,or VSAM file

New records are placed ADD or INSERT by YES Right in
at the end of the KEY only. if contr. i nterv .
file, or to next

"REPRO" into partly split cntr. interval
filled file (merge) occurs (split)

NO. User program Use "GET UPDATE"

must recognize plus "ERASE" NO left

'deleted' records.

Use "GET UPDATE" Use "GET UPDATE" YES left
plus "PUT UPDATE" plus "PUT UPDATE" if or

Record length may split right
change. occurs

For first record: For first record:
"POINT" with RBA and "POI NT" with RBA and
"GET"; subsequent "GET"; subsequent
records: subsequent records: subsequent
"GET"s "GET"s

For first record:
"POI NT" with KEY and

NO "GET"; subsequent
records: subsequent
"GET"s.

For each record: For each record:
determine RBA, and determine RBA, and
"GET" for Retrieve, "GET" for Retrieve,
update. update or delete.

NO
(User may develop a For each record:

GET with KEY randomizing routine
to determine an RBA)

Figure 4.29. VSAM processing summary for assembler language

* KEY can be equal to, or less than the one produced as output by
VSAM; generic (truncated) keys can be processed.

230 DOS/VS Data Management Guide

!

\

Using ISAM Programs with VSAM

Comparison of VSAM and ISAM

This section is intended for users of ISAM who are converting to VSAM. It
contains detailed information for programmers to decide whether existing
ISAM programs can use the ISAM Interface Program (lIP) to process files
that have been converted from ISAM format to VSAM format. The lIP
minimizes conversion costs and scheduling problems by permitting ISAM
programs to process VSAM files. ISAM programs can process ISAM files
and VSAM files concurrently through the lIP.

In most cases, if the performance options described in the section
Optimizing the Performance and Storage of VSAM are used,
performance is better with VSAM while achieving essentially the same
results that can be achieved with ISAM; VSAM can also achieve results
that cannot· be achieved with ISAM. The use of existing ISAM processing
programs to process key-sequenced files depends upon the extents to which
VSAM and ISAM are similar in what they do, as well as upon the
limitations of the lIP. This subsection describes the similarities and
differences between VSAM and ISAM in the areas that the user is familiar
with from using ISAM and indicates the functions of VSAM that have no
counterpart in ISAM.

Comparison of VSAM and ISAM in Common Areas
A number of things that ISAM does are done differently or not at all by
VSAM, even though the same practical results are achieved.

Index structure.
Both a VSAM key-sequenced file and an indexed-sequential file have an
index that consists of levels, with a higher level controlling a lower level. In
ISAM, some or all of the index records of the cylinder index can be kept in
virtual storage. VSAM keeps individual index records in virtual storage, the
number depending on the amount of buffer space provided.

Relation of index to data.
The relation of a VSAM index to the direct access storage space whose
records it controls is quite different from the corresponding relation for
ISAM, with regard to overflow areas for record insertion.

ISAM keeps a two-part index entry for each primary track that a file
is stored on. The first part of the entry indicates the highest-keyed record
on the primary track. The second part indicates the highest-keyed record
from that primary track that is in the overflow area and gives the physical
location in the overflow area of the lowest-keyed record from that primary
track. All the records in the overflow area from a primary track are chained
together, from the lowest-keyed to the highest-keyed, by pointers that
ISAM follows to locate an overflow record. Overflow records are
unblocked, even if primary records are blocked.

VSAM does not distinguish between primary and overflow areas. A
control interval, whether used or free, has an entry in the sequence set, and
after records are stored in a free control interval, it is processed exactly the

Section 4: Virtual Storage Access Method (VSAM) 231

How to Use the ISAM Interface

same as other used control intervals. Data records are blocked in all control
intervals and addressed, without chaining, by way of an index entry that
contains the key (in compressed form) of the highest-keyed record in a
control interval.

Defining and loading a file.
All VSAM files are defined in the catalog. Records are loaded into a file
with Access Method Services or with the processing program, in one
execution or in stages. When loading new records into an empty
key-sequenced file, the index is built automatically. Access Method Services
does not merge input files. However, for a key-sequenced file, input records
are merged in key sequence with existing records of the output file.

VSAM Functions That Go Beyond ISAM
VSAM has capabilities that ISAM does not have:

Addressed sequential access. The user can retrieve and store the records of a
key-sequenced file by RBA, as well as by key. With ISAM, he can position
by physical address, but he must retrieve in a separate request.

Direct retrieval by generic key. VSAM can retrieve a record directly, not
only with a full-key search argument, but also with a generic search
argument. ISAM can only position at a record by generic argument: the
record must be retrieved separately.

Deletion of records. With ISAM, records cannot be deleted until the file is
reorganized; the user must keep track of the records he wants to delete.
VSAM automatically reclaims the space in a key-sequenced file and
combines it with any existing free space in the affected control interval.
VSAM's use of distributed free space for insertions and deletions requires
less file reorganization than ISAM does.

Concurrent request processing. A processing program can issue concurrent
requests from a single ACB. The requests can be sequential or direct, or
both for the same part or different parts of the file. VSAM maintains a
position in the file for each concurrent request.

Secondary aUocation of storage space. When a VSAM file is defined without
the Unique option, direct access storage space for automatic secondary
allocation can be specified. The amount of space can be specified in
number of data records or in number of tracks or cylinders.

Automatic file reorganization. VSAM partially reorganizes a key-sequenced
file by splitting a control area when it has no more free control intervals
and one is needed to insert a record. VSAM allocates a new control area
and gives it the contents of approximately half of the control intervals of
the old control area: about half of the control intervals of each control area
are then free.

No abnormal terminations by OPEN. The VSAM OPEN routine does not
abnormally end, but returns an explanatory message in all cases where it
cannot carry out a request to open a file.

To use the lIP, the user must ensure that his existing ISAM programs meet
the restrictions in the section Restrictions in ISAM Interface Use. He

232 DOS/VS Data Management Guide

(

must convert each ISAM file to a key-sequenced VSAM file by defining the
VSAM file and loading the ISAM file into it. He also must convert ISAM
job control statements to VSAM job control statements. The ISAM
programs do not have to be re-compiled or re-link-edited to use the lIP.

Converting an ISAM File to a VSAM File
To convert an ISAM file to a VSAM file, the user must first use the Access
Method Services DEFINE command to define a key-sequenced VSAM file.
The VSAM file may be defined on a volume(s) that already contain enough
free VSAM data space for it or the data spaces may be defined along with
the file (Unique file). The section Job Control and VSAM describes the
job control statements needed for the DEFINE command. In DOS/VS
Access Method Services, GC33-5382, the DEFINE command is described.

The information from several DTFIS parameters must be specified in
the DEFINE command:

DTFIS parameter

HOLD = YES

KEYLEN=n and
KEYLOC=n

RECSIZE=n

VERIFY=YES

VSAM DEFINE parameter

Specify SHAREOPTIONS (4)

Specify KEYS (length position).
length should always be set to KEYLEN.
position should be set to (1) KEYLOC if
RECFORM=FIXBLK in the DTFIS or (2)
o if RECFM=FIXUNB.

Specify RECORDSIZE (average maximum).
The average and maximum values must be
equal. If RECFORM=FIXBLK IN THE
DTFIS, RECORDSIZE should be set to
RECSIZE. If RECFORM=FIXUNB,
RECORDSIZE should be set to RECSIZE
+ KEYLEN.

Specify WRITE CHECK.

The BUFFERSPACE parameter in the DEFINE command specifies how
much space VSAM will have for I/O buffers. If the user does not specify
the BUFFERSP ACE parameter, the default is at least two data buffers and
one index buffer. If the default is taken, one index buffer and two or more
data buffers will be allocated if 10ROUT=LOAD, ADDRTR, or RETRVE
during lIP processing and two data buffers and one or more index buffers
will be allocated if 10ROUT=ADD. However, for better performance, the
user can specify space for more than two data buffers and index buffers.

After he defines the VSAM file, the user must load the VSAM file by
copying the ISAM file into it. He may use his ISAM load program, by way
of the lIP, or he may use the Access Method Services REPRO command.
In DOS/VS Access Method Services, GC33-5382, the REPRO command
is described. If the user has records marked for deletion in the ISAM file
and does not want them copied into the VSAM file, he should use his
ISAM load program. The REPRO command will copy all records from the
ISAM file, including those marked for deletion.

Section 4: Virtual Storage Access Method (VSAM) 233

Figure 4.30 summarizes converting indexed sequential files to
key-sequenced files and processing them with either programs that have
been converted from ISAM to VSAM or with programs that still use ISAM.

Converting ISAM Job Control Statements
The job control statements for ISAM must be replaced by VSAM job
control statements. An example of VSAM job control statement used with
an ISAM program is shown below:

II JOB
II ASSGN
II DLBL
II EXTENT
II EXEC

CSECT

IFN DTFIS

1*
1&

END

PROCESS A VSAM FILE
SYS001 ,X' 190'
IFN, 'MSTRFILE' "VSAM
SYS001,321942
ISAMPGM,SIZE=nnK

The type code VSAM causes the ISAM Interface Program to be called. The
same VSAM job control statements are required regardless of the type of
ISAM program. One DLBL statement is required for the file and an
EXTENT statement is required for each volume of the file. See the section
Job Control and VSAM for more information on how to write job control
statements for VSAM.

What the ISAM Interface Program Does
When a processing program that uses ISAM opens a VSAM file, the
DOS/VS OPEN routine detects the need for the ISAM Interface Program
(by a type code of VSAM in the DLBL statement). It calls the liP OPEN
routine to construct control blocks (ACB and RPL) required by VSAM and
an AMDTF used by the lIP processing routines, load the ISAM command
processor, and flag the DTFIS for the lIP to intercept ISAM requests.

Access

Existing ISAM Programs

ISAM Access
interface

I nterpret Each Request

VSAM
Access

(To take advantage of additional
functions of VSAM)

Figure 4.30. Using the ISAM interface

234 DOS/VS Data Management Guide

Most existing programs that use ISAM can process VSAM files through
the interface with little or no change.

The lIP intercepts each subsequent ISAM request, analyzes it to
determine the equivalent keyed VSAM request, which it defines in the
Request Parameter List constructed by OPEN, and then initiates the
request.

The lIP interprets the return codes from VSAM. If the VSAM
condition corresponds to an ISAM condition, the respective bit in the
filenameC byte in the DTFIS is turned on. For unrecoverable errors that
cannot be posted in the filenameC byte, a message is printed, the VSAM
file is closed (by the VSAM CLOSE routine), and the job is terminated. If
a physical (I/O) error occurs and ERREXT = YES was specified in the
DTFIS, the interface transfers additional error information to the processing
program. The contents of the filenameC byte and the ERREXT parameter
list with lIP are described in DOS/VS Supervisor and I/O Macros,
GC33-5373.

Restrictions in ISAM Interface Program Use
The ISAM Interface Program enables programs that use ISAM to issue only
those requests that VSAM or the interface can simulate. These are the
restrictions for using the interface routine:
• Record ID processing of ISAM cannot be used because VSAM does

not use the record ID function.

• VSAM does not return (1) device-dependent information or (2) the
virtual storage or DASD address of the record containing the error in
the ERREXT parameter list.

• The ISAM program cannot open a DTF while another DTF is already
open for the same file unless Sharing Option 4 is specified for the
VSAM file.

Optimizing the Performance and Storage of VSAM
This section explains VSAM options that affect performance and virtual
storage and direct access storage requirements: the size of the control
interval, the percentage of distributed free space, the division of
key-sequenced data into key ranges, and the handling of indexes. These
options are specified in the DEFINE command of Access Method Services
when a file is created. Other options that affect performance and data
integrity are described in the following section Data Security and Integrity.
This section also discusses statistics about the file that VSAM makes
available to the user.

Section 4: Virtual Storage Access Method (V SAM) 235

Control Interval Size
The user can let VSAM select the size of a control interval or he can
request a particular size through the CONTROLINTERV ALSIZE
parameter of the DEFINE command. The size requested, however, must
fall within acceptable limits determined by VSAM. These limits depend on
(1) the least amount of space VSAM can use for I/O buffers, (2) the
device type, and (3) the size of the data records. The user can issue the
LISTCAT statement of Access Method Services or the SHOWCB macro
instruction to find the control interval size used by VSAM.

A file's control interval size affects performance and storage requirements
as follows:
• As the size of his logical records increases, the user may need a larger

control interval because logical records cannot span control intervals.

• As control interval size increases, more buffer space is required for
each control interval.

• As control interval size increases, fewer I/O operations (control
interval accesses) are required to retrieve a given number of records
and fewer index records must be read. This is usually more significant
for sequential and skip sequential processing.

• Free space will probably be used more efficiently (fewer control
interval splits and less wasted free space) as the size of the control
interval increases relative to the size of the logical records. This is
especially true with variable length records. Free space in a control
interval will not be used if there is not enough for a complete logical
record.

The control interval size must be a mUltiple of 512 bytes because physical

I block size, chosen by VSAM, is 512 bytes, 1024 bytes, 2048 bytes, or
4096 bytes (3330 and 3340 only) and 8192 bytes (3340 only). If the user
specifies a control interval size that is not a multiple of 512 bytes, VSAM
will increase it to the next higher mUltiple of 512 bytes. The physical block
size will be set as large as possible. For example, if control interval size is
1024 bytes, the physical block size will be 1024 bytes; if control interval
size is 1536 bytes, the physical block size will be 512 bytes. If the control
interval size is larger than 8192 bytes, it must be a multiple of 2048 bytes.

A control area can never be larger than one cylinder of the device. If
the user allocates space in the DEFINE command in terms of
CYLINDERS, or if the file is Unique, VSAM will set the control area size
to one cylinder. VSAM will also set the control area size to one cylinder if
the user allocated space in terms of RECORDS or TRACKS and VSAM
can make the control area a cylinder without violating any other allocation
rules. If the control area is less than a cylinder, it will be an integral
number of tracks in size and it can extend across cylinders. However, a
control area can never extend across an extent on the device.

The user can specify the size of the index control interval (index
record) but, since it must equal block size, the only sizes available are 512
bytes, 1024 bytes, 2048 bytes, and 4096 bytes (not for the 2314).

236 DOS/VS Data Management Guide

Distributed Free Space

Index Options

I/O-buffer size is important because VSAM transmits the contents of
a control interval, and the amount of virtual storage space for I/O buffers
limits the size of a control interval. The amount of space for I/O buffers is
the most flexible variable for influencing control interval size. The size and
other attributes of the data records generally depend on the needs of the
application. If only one request at a time can be active, VSAM requires a
minimum of three buffers forkey-sequenced files, two for data control
intervals and one for an index <;ontrol interval, and two buffers for an
entry-sequenced file. If concurrent requests can be active, one additional
data buffer and one additional index buffer (for key-sequenced files) are
required for each additional request. If you do not specify a minimum
buffer space in the BUFFERSP ACE parameter of the DEFINE command,
VSAM defaults to enough buffer space for the minimum number of buffers
required.

In the section VSAM File Structures, we discussed the way VSAM uses
distributed free space when a record is inserted into a key-sequenced file.
We said that records can be inserted in a file that does not have any
distributed free space, by means of a control area split. Free space in the
immediate area into which a record is inserted speeds up the insertion and
avoids control area splitting, which may move a group of records to a
different cylinder, away from the preceding and following records in key
sequence. The percentage of free space is specified in the FREESP ACE
parameter of the DEFINE command. Both the percentage of free space in
a control interval and the percentage of free space in a control area
(number of free control intervals) can be specified.

How much space must be provided? That dpends on how many (and
where) records will be inserted, lengthened or deleted. If the user does not
provide enough free space, additional processing time will be needed to split
control intervals or control areas and to process the records sequentially
when they are physically out of sequence. If he provides too much free
space, more direct access storage than necessary will be used to contain the
file and extra control interval accesses will be needed in sequential
processing to read the same number of records. Of course, if the file is for
reference only, it might not need any free space. When estimating file
growth, remember that (1) when records in a key-sequenced file are deleted
or shortened, the space freed is available as free space and (2) each control
interval or control area resulting from a split contains about 500/0 free
space. The user will have to determine the best tradeoff between
performance and direct access storage requirements.

Four options influence performance and storage requirements through the
use of the index with a key-sequenced file. Each option can improve
performance, but some of them require additional virtual or direct access
storage space. The options are:
• Number of index records in virtual storage

• Index and file on separate volumes

• Sequence-set records adjacent to the file

• Replication of index records.

Section 4: Virtual Storage Access Method (VSAM) 237

Index-Set Records in Virtual Storage
For keyed access, VSAM needs to examine the index of a file. Before the
processing program begins to process the file, it must specify the amount of
space VSAM can use to buffer index records. Enough space for one index
record is the minimum; but, when the space is large enough for only one or
two index records, an index record may be continually deleted to make
room for another and then retrieved again later when it is required. Ample
space to buffer index records can improve performance by preventing this
situation provided that the buffer allocation does not cause excessive paging
by DOS/VS. Remember that VSAM searches the sequence set for
sequential access and every index level for direct access.

The user can ensure that index records will be in virtual storage by
specifying enough space for I/O buffers for index records through the
BUFNI and BUFSP parameters of the ACB when he begins to process a
file. VSAM keeps as many index-set records in virtual storage as the space
will hold. Whenever an index record must be retrieved to locate a record,
VSAM makes room for it by deleting {fom the space the index record that
VSAM judges to be the least useful under the circumstances then
prevailing. It is generally the index record that belongs to the lowest index
level then represented in the space which has been unused the longest.

Index and Data on Separate Volumes
When a key-sequenced file is defined, the entire index or the index set
alone can be placed on a separate volume from the data, either on the same
or on a different"type of storage device. Data and index of a cluster (file)
are defined separately and the volume that is to contain each is specified in
the VOLUMES parameter of the DEFINE command. Only the index set is
placed on the separate volume if the sequence set is imbedded with the data
as described below.

Using different volumes can eliminate the disk arm contention between
accessing index records and accessing data records when using keyed
access.

Sequence-Set Records Adjacent to the File
Having the sequence set adjacent to the file is one way to reduce disk arm
movement for a key-sequenced file. When the user defines the file, he can
use the IMBED parameter of the DEFINE command to specify that the
sequence set index record for each control area is to be on the first track of
the control area. This avoids two separate seeks when access to a data
record requires VSAM to examine the sequence-set index record of the
control area in which the data record is stored. One arm movement enables
VSAM to retrieve or store both the index record and the contents of the
control interval in which the data record is stored. However, if some control
areas extend across cylinders (see the preceding section on Control Interval
Size), this option may not eliminate separate seeks for the sequence set
record and the data. When this option is taken, sequence set records are
replicated, as described next.

Replication of Index Records
By specifying the REPLICATE parameter of the DEFINE command, the
user can have each index record written on a track of a direct access
volume as many times as it will fit. Replication reduces the time lost waiting
for the index record to come around to be read (rotational delay). Average

238 DOS/VS Data Management Guide

Key Ranges

rotational delay is half the time it takes for the volume to complete one
revolution. Replication of a record reduces this time. For instance, if ten
copies of an index record fit on a track, average rotational delay is only
one-twentieth of the time it takes for the volume to complete one
revolution.

This option costs direct access storage space; it requires a full track of
storage for each index record replicated. The user has to weigh the relative
values of direct access storage space and processing speed.

Index records can be replicated in these combinations of sequence set
and index set:
• Sequence set separated from index set and only sequence set records

replicated (IMBED).

• Sequence set separated from index set but all index records replicated
(IMBED, REPLICATE).

• Sequence set and index set together and all index records replicated
(REPLICATE).

Separating the sequence set from the index set is for placing the sequence
set adjacent to the data, which is the previous option we discussed. Figure
4.31 illustrates replication of a sequence set record that has been placed
adjacent to its control area.

Cylinder of Disk

First Track I Sequence-Set 1 ECOpy
Record I r--COpy I r-- COpy I r-- COpy I

Second Track I Control Interval II Control Interval II Control Interval I
Third Track I Control Interval II Control Interval II Control Interval I
Fourth Track I Control Interval II Control Interval II Control Interval I

Figure 4.31. Sequence set record placed adjacent to control area to reduce
disk arm movement and replicated to reduce rotational delay.

The records of a key-sequenced file can be grouped on volumes according
to key ranges. A payroll file, for example, could have employee records
beginning with A, B, C, and D on one volume; E, F, G, H, and I on a
second volume; etc. Each portion of a multivolume file can be on a
specified volume. Each keyrange of a file, as well as the end of the file, is
preformatted as described under Data Security and Integrity. The
KEYRANGES option in the DEFINE command of Access Method Services
establishes key ranges for the file.

Control Area

Section 4: Virtual Storage Access Method (VSAM) 239

File Statistics

Data Security and Integrity

VSAM keeps certain statistical information about a file in its catalog entry.
These statistics, on file size and activity, can help the user decide when to
reorganize the file or what processing modes to use.

The entire catalog entry, the statistics and the parameters selected
when the file was defined, can be listed by using the LISTCA T command
of Access Method Services. The SHOWCB and TESCB macros can be used
by a processing program to display or test one or more file statistics. These
statistics include:
• Control-interval size

• Percentage of free control intervals per control area

• Number of bytes of available space (includes distributed free space
and allocated space beyond the last record)

• Length and displacement of the key

• Maximum record length

• Number of buffers

• Number of records

• Password

• A timestamp that indicates if either the data or the index has been
processed separately

• Number of levels in the index

• Number of extents

•

•

Number of records retrieved, added, deleted, or updated

Number of control interval splits in the data and in the sequence set
of the index

• Number of EXCP commands issued.

How safe is data with VSAM? What provisions does VSAM make to ensure
that data is not lost or destroyed by errors in the system, or accessed by
unauthorized persons? How easy is it to determine what the cause of a
problem is and to do something about it? This section is intended for
installation managers and system programmers interested in the answers to
these questions.

The protection of data includes data integrity, or the safety of data
from accidental destruction, and data security, or the safety of data from
theft or intentional destruction. We will discuss the attributes and options of
VSAM that ensure data integrity, the protection of shared data, the use of
passwords to prevent unauthorized access to data, and the methods of
determining the causes of problems.

240 DOS/VS Data Management Guide

. ~.". V

Data Integrity
The attributes and options of VSAM that affect data integrity are:

• Method of inserting records into a key-sequenced file

• Control-interval principle

• Method of indicating the end of a file

• Verifying write operations.

Method of Inserting Records into a Key-Sequenced File
We discussed the method of inserting new records into a key-sequenced file
in the section VSAM File Structures. Free space distributed throughout
used control intervals allows VSAM to insert a record into a control
interval by shifting records in it without an I/O operation. VSAM splits
control intervals and control areas, when necessary, in a way that does not
expose any data to loss, even if an I/O error occurs before the split is
completed.

If an I/O error does occur during a split, however, some records may
be duplicated. The second copy of a duplicated record may be retrieved
during sequential processing. However, the first copy is always the most
recent one. Duplicate copies of records may not be retrievable if the
control interval or control area is split again.

Control-Interval Principle
With a key-sequenced file, the control interval is the unit pointed to by
entries in a sequence-set index record. Only a record addition or a record
insertion that splits a control interval or a control area causes a modification
of the index. For instance, even though a record insertion might change the
RBA of the record with the highest key in the control interval, the index
entry is not altered, since the pointer in it is to the control interval, not to
the record.

Method of Indicating the End of a File
VSAM combines two procedures· for achieving data integrity:

• Preformatting the last control area of a file or a key range

• Updating the catalog to indicate (1) the RBA of the end of the file,
and (2) the highest keyed record in the file.

Preformatting a File

Preformatting the end of a file as each control area comes into use ensures
greater data integrity than formatting it only at the end of processing. If a
key-sequenced file is divided into key ranges, the end of each key range is
preformatted. VSAM formats a control area before using its control
intervals by putting control information in them and putting an end-of-file
indicator after the last control interval. The end-of -file indicator helps
prevent the loss of data that has been added to the end of a file .

Section 4: Virtual Storage Access Method (VSAM) 241

Protection of Shared Data

VSAM optionally preformats control areas when initially loading
records into a file and always preformats them when subsequently adding
records to the file. Whether he uses the REPRO command of Access
Method Services or his own processing program, The user has two options
when initially loading records into a file: SPEED or RECOVERY.

• The SPEED option improves load speed: VSAM does not format the
last control area of a file until the file is closed.

• The RECOVERY option improves the ability to recover from a failure
to complete loading. Each time a control area is filled with records,
VSAM formats the next control area before storing records in it. In
this way each set of new records is protected against loss by the
end-of-file indicator as it is added to the file.

Updating the Catalog

The addresses kept by the catalog for the end of the file enable VSAM to
keep track of the physical end and, for a key-sequenced file, the logical end
of the file. VSAM updates these addresses either (1) when it assigns and
preformats a new control area or index control interval (Sharing Option 4
only) or (2) when the processing program issues either a TCLOSE macro
instruction or, at the end of file processing, a CLOSE macro instruction.
This depends on the preformat option the user chooses when he initially
loads his records into the file. By using the VERIFY command of Access
Method Services, he can recover data in cases where VSAM was unable to
close a file properly and update the end-of-file indicator in the catalog. See
the discussion of the VERIFY command in the Access Method Services
section.

Verifying Write Operations
To improve the integrity of data written to direct access storage, the user
can request VSAM to verify each write operation for accuracy. Verification
takes additional time, but it decreases the chance of 110 error during
subsequent retrieval.

A VSAM file can be shared by processing programs in two or more
partitions. If a file is shared (Sharing Options 3 and 4), more than one user
can OPEN it at the same time to update or add records. If the file is not
shared, only one user at a time can OPEN it to update or add records. Any
number of users can retrieve records from the file regardless of whether it
is shared or not. The degree of sharing to be allowed for the file is
specified, when the file is defined, in the SHROPT parameter of the
DEFINE command of Access Method Services. The SHROPT parameter
can be changed by the ALTER command of Access Method Services. One
of the following file sharing options can be specified:
• Sharing Option 1: The file may be opened by any number of users for

input processing (retrieve records) or it can be opened by one user for
output processing (update or add records). This option maintains full
(read and write) integrity.

• Sharing Option 2: The file may be opened by more than one user for
input processing and, at the same time, it may be opened by one user
for output processing. This option maintains write integrity but, since
the file might be modified while records are being retrieved from it,
each user must maintain his own read integrity.

242 DOS/VS Data Management Guide

(

Data Security

)

• Sharing Option 3: The file can be opened by any number of users for
both input and output processing. VSAM does nothing to maintain
either the write integrity of the file or the read integrity of the users.

• Sharing Option 4: A key-sequenced file can be opened by any number
of users for both input and output processing. VSAM maintains write
integrity by using the trackhold facility of DOS/VS. Read integrity
will be maintained by VSAM only when records are being retrieved
for update. If records are not being retrieved for update, some records
in control intervals being updated concurrently by more than one user
may be skipped by VSAM because each user might retrieve a different
copy of the control interval. Each task can issue requests from only
one ACB per file at any given time. Also, an ACB can be opened by
only one task at a time. It must be closed before another task can use
it.

Access Method Services provides options to protect a file or the VSAM
catalog against unauthorized use. These options, specified when a file (or
the VSAM catalog) is defined, include passwords and a user-written
security verification routine. They can be altered by using Access Method
Services.

Passwords
A password, if required, can be supplied by the processing program in a
field pointed to by the ACB. If the processing program does not supply the
password, it must be supplied by the operator. If the catalog requires a
password, it must be issued each time a job requiring Access Method
Services is started. The data and index of a cluster can have different
passwords. Either the password of the data or index or the password of the
cluster can be used when the data or index is opened separately. Four
different types of passwords, for different degrees of data security, can be
specified in the DEFINE command:
• Full access (MASTERPW parameter). This is the master password,

which allows access to a file and any index and catalog entry
associated with it for all operatio-ns (retrieving, updating, inserting,
deleting). Using this password to gain access to a catalog entry gives
the user the ability to delete an entire file and to alter password
information or any other information in the catalog about a file, index,
or catalog.

• Update access (UPDATEPW parameter). This password authorizes
retrieval update, insertion, or deletion of records in a file. It gives
limited access to catalog entries to define objects but not to alter their
definitions or to delete entries.

• Read access (READPW parameter). This is the read-only password,
which allows the user to examine data records and catalog entries, but
not to add, alter, or delete them.

• Control-interval access (CONTROLPW parameter). This password
authorizes processing the file by control interval access.

Two other options can be specified in the DEFINE command for use when
the operator supplies a password. The ATTEMPTS option specifies how
many times, 0 through 7, the operator can attempt to supply the correct
password. If 0 is specified, passwords cannot be supplied by the operator.

Section 4: Virtual Storage Access Method (VSAM) 243

If the ATTEMPTS option is not used, the default (2) allows the operator to
attempt to supply the password twice. The CODE option specifies a
one-to-eight character name, other than the name (file-ID) of the file, to
which the operator responds with a password. This prompting code helps
keep data secure by not allowing the operator to know both the name of
the file and its password. If the CODE option is not specified, the name of
the job and the name (file-ID) of the file is supplied to the operator.

If the processing program supplies the wrong password or the operator
cannot supply the correct password in the allowed number of attempts, the
job is terminated. An error code is set in the ACB indicating that the file
cannot be opened because the correct password was not supplied.

Security Verification Routine.
If the owner specifies password protection when the file or VSAM catalog
is defined, he can also supply a routine to check the authority of a
processing program to access the file or the catalog. The
AUTHORIZATION option specifies the name of the user's verification
routine. VSAM transfers control to the verification routine when the
program trying to open the file gives the correct password. If the master
password (MASTERPW) is given, the authorization routine is bypassed.
The authorization option can also include up to 256 bytes of information
which will be passed to the authorization routine when it is called. When
the authorization routine gets control from VSAM, the registers are set as
follows:

Register

o

2-13

14

15

Contents

Unpredictable

Address of a parameter list:

44 bytes Name of the file to be opened

8 bytes Prompting code (from the CODE option) or

zeros

8 bytes

2 bytes

n b"tes

File owner identification (from the OWN ER

parameter of DEFINE)

Length of string passed to routine that was

specified in the AUTHORIZATION parameter

The authorization string (up to 256 bytes)

Unpredictable

Return address to VSAM

Entry point to verification routine.

When the authorization returns to VSAM, register 15 should be set to zero
if the processing program is authorized to access the file or catalog. If
register 15 is not zero, VSAM will not allow the processing program to
open the file.

244 DOS/VS Data Management Guide

(

Determining the Causes of Problems
VSAM offers several diagnostic aids for the user to determine the cause of
errors.

Exits to the Error-Analysis Routines
VSAM provides optional exits to a user-supplied routine to handle 1/0
errors or a user-supplied routine to handle logical errors. The EXLST macro
instruction is used to specify the names of the user's exit routines. The exit
routines can examine return codes in the ACB or RPL to determine the
cause of the error. Figure 4.32 shows the conditions under which the user
exit routines are given control.

VSAM Messages
Like other access methods, VSAM issues messages to the operator if an
incorrect volume is mounted or a subsequent volume of a multivolume file
must be mounted. VSAM also issues messages to the operator if an error
occurs during catalog processing, a file was not closed during previous
processing, or when the operator must supply a password so that a file can
be opened. The ISAM interface issues messages to the operator when errors
occur while using an ISAM program to access a VSAM file. These messages
are described in DOSIVS Messages. Access Method Services issues
messages to the programmer. They are documented in DOS/VS Access
Method Services, GC33-5382.

VSAM Return Codes
Most errors detected by a VSAM processing program are indicated by
return codes which are set in Register 15 following execution of a macro
instruction. If an error occurs, additional information will be indicated by an
error code which is set in either the Access-Method Control Block (ACB),
the Request Parameter List (RPL), or Register 0 depending on the macro.
If the return code indicates an error, the appropriate user-supplied exit
routine will be taken if it is active. The exit routine can examine the error
code to determine what error occurred and how to handle it. Return codes
and exit routines are described in detail in the VSAM chapter of DOS / VS
Supervisor and I/O Macros, GC33-5373. The error checking that a user
program must do after execution of an imperative VSAM macro instruction
is summarized in Figure 4.32.

Section 4: Virtual Storage Access Method (VSAM) 245

Imperative Return Code If Return
Macro found in Code not 0,

Error Code
found in

OPEN
Register ACB CLOSE 15

TCLOSE

GET

PUT Regist~r RPL
15 (If Return POINT

Code is not
ERASE X'OO' or

X'Q4')

GENeB

SHOWCB
Register Register

TESTCB 15 0

MODCB

*End-of-file is indicated by an error code of X'04'. The
EODAD exit is taken if an EODAD routine is supplied.
Otherwise, the LERAD exit is taken.

Method of Exits Taken

Inspecting if User Exit

Error Code Routines are
Supplied

Code ERROR SYNAD exit for

parameter I/O errors in

inTESTCB CLOSE; code

orSHOWCB FDBK in TESTCB
orSHOWCB

Code FDBK LE RAD exit for
parameter logical errors
inTESTCB (Return Code
orSHOWCB is X'OS')*

SYNAD p.xit for
I/O errors
(R~turn Code

is X'OC')

Inspect
Register None

0

Figure 4.32. Summary of Error Checking for VSAM Imperative Macros

246 DOS/VS Data Management Guide

\
J

S~on5:APPENDrxES

Appendix 1: Devices Supported by DOS/VS

Punched Card Devices
The following punched card equipment is supported by DOS/VS:

• IBM 1442 Card Read Punch Model Nt
• IBM 1442 Card Punch Model N2
• IBM 2501 Card Reader Models Bland B2
• IBM 2520 Card Read Punch Model B 1
• IBM 2520 Card Punch Models B2 and B3
• IBM 2540 Card Read Punch Model 1
• IBM 2560 Multifunction Card Machine Model Al
• IBM 2596 Card Read Punch
• IBM 3504 Card Reader Models Al and A2
• IBM 3505 Card Reader Models Bl and B2
• IBM 3525 Card Punch Models PI, P2, and P3 I · IBM 5425 Multifunction Card Unit Models Al and A2

IBM 1442 Card Read Punch Model Nl
The IBM 1442 Card Read Punch Model Nl is a combined I/O unit for
punched cards, which reads at a rated speed of 400 cards per minute, and
punches at a rated speed of 160 columns per second. It has two stackers;
cards go to stacker t, unless directed to stacker 2 by the program. The
1442 Model Nl contains its own control unit.

IBM 1442 Card Punch Model N2
The IBM 1442 Card Punch Model N2 punches cards at a rated speed of
160 columns per second. It has one stacker, and it contains its own control
unit.

IBM 2501 Card Reader Models Bl and B2
The IBM 2501 Card reader Model Bl reads punched card input at a rated
speed of 600 cards per minute. The 2501 Model B2 reads punched card
input at a rated speed of 1000 cards per minute. Each model has one
stacker and contains its own control unit.

IBM 2520 Card Read Punch Model Bl
The IBM 2525 Card Read Punch Model Bl is a combined punched card
I/O unit, which reads and punches at a rated speed of 500 cards per
minute. The device has one input hopper and two output stackers; output
goes to stacker 1 unless directed to stacker 2 by the program. The 2520
contains its own control unit.

IBM 2520 Card Punch Models B2 and B3
The IBM 2520 Card Punch Model B2 punches cards at a rated speed of
500 cards per minute. The 2520 Model B3 punches at a rated speed of 300
cards per minute. Both models have two stackers; output goes to stacker 1
unless directed to stacker 2 by the program. The 2520 contains its own
control unit.

Section 5: Appendixes 247

IBM 2540 Card Read Punch
The IBM 2540 Card Read Punch is a combined punched card 110 unit
which is connected to a computer system through the IBM 2821 Control
Unit. Fully buffered card reading and punching is provided. The device has
five stackers located between the read and punch feeds; the center stacker
can be used for either feed.

The read feed operates at a rated speed of 1,000 cards per minute,
or 800 cards per minute if the 51-colums interchangable read feed (special
feature) is installed. The punch feed operates at a rated speed of 300 cards
per minute. Cards in the read feed go to stacker R1 unless directed to
stacker R2 or RP3 by the program. Cards in the punch feed go to stacker
PI unless directed to stacker P2 or RP3 by the program.

IBM 2560 Multifunction Card Machine

IBM 2596 Card Read Punch

The IBM 2560 Multifunction Card Machine provides the combined
functions of card reader I punch, collator, and, on a Model A 1 with the
Card Print special feature, card interpreter I document printer in one device.
The device permits collating, gangpunching, reproducing, summary
punching, punching of calculated results, printing and classifying of cards in
one single pass of the cards. The read feed has a primary and a secondary
hopper feeding cards individually at a rated speed of 500 cards per minute.
The read feed contains pre-read, read, and pre-punch stations. The punch
feed, following the read feed, contains a punch, pre-print, and print station.
Cards follow a common path and are fed into one of the five radial
stackers. The device includes its own control unit.

The IBM 2596 Card Read Punch reads and punches 96-column cards.
Reading is at a rated speed of 500 cards per minute; punching is at a rated
speed of 120 cards per minute. If the 1510 card print (special feature) is
installed the device provides printing of three lines (32 characters each) for
data being punched. The read and punch feeds are separate. There are four
stackers: normal read stacking 0), selective read stacking (2), normal
punch stacking (3), and selective punch stacking (4). The 2596 contains its
own control unit.

IBM 3504 Card Reader Models At and A2
The IBM 3504 Card Reader reads (fully buffered) at a rated speed of 800
cards per minute (Model At), or 1,200 cards per minute (Model A2).
Cards are read by means of light sensing. The device has two
non-programmable stackers which operate in an alternating mode.

The 3504 attaches natively to a System/370 Model 125 CPU
through an integrated 3504 Card Reader Attachment. The 3504 is a
natively attachable version of the 3505 Card Reader (described below).

IBM 3505 Card Reader Models B t and B2
The IBM 3505 Card Reader reads (fully buffered) at a rated speed of 800
cards per minute (Model B 1), or 1,200 cards per minute (Model B2).
Cards are read by means of light sensing. The device has two
non-programmable stackers which operate in an alternating mode. An extra
programmable stacker can be installed as a special feature. Other optional
special features are:

• Optical Mark Read, for reading up to 40 columns of marked data.

248 DOS/VS Data Management Guide

(
\

• Read column eliminate, which provides the suppression of reading
selected card columns, under program control.

• Adapters which enable an IBM 3525 Card Punch to be connected to
a system through the 3505. If the 3525 is equipped with special
features (see below), adapters for those special features are included
in the 3505.

The 3505 contains its own control unit.

IBM 3525 Card Punch Models Pt, P2, and P3
The IBM 3525 Card Punch is a full-function card punch which, when
equipped with the appropriate special features, can read and print as well
as punch 80-column cards in a single pass through the machine. It operates
at a rated speed of 100 (Model Pl), 200 (Model P2), or 300 (Model P3)
cards per minute. The basic unit, as a card punch only, contains two
stackers; cards go into stacker 1 unless directed to stacker 2 by the
program.

Optional special features are:

• Card Read. This feature provides an optical hole sensing station
ahead of the punch station.

• Card Print. This feature provides a print station following the punch
station. There are two versions of the card print special feature: one
version provides a possibility to print up to and on any of 25 lines on
a card, under program control; the other version is limited to two
lines. Each line contains 64 printing positions.

Adapters for the special features are to be installed in the IBM 3505 Card
Reader (see above), which acts as the control unit for the 3525.

IBM 5425 Multifunction Card Unit Models At and A2

Printers

The IBM 5425 Multifunction Card Unit can be used as a card reader, card
punch, and card printer/interpreter. Its functions are basically the same as
described for the 2560 Model AI.

The 5425 processes 96-column cards. In addition, it is supported by
DOS/VS as an 80-column card device for all system functions that require
card I/O.

Model Al of the 5425 reads 250 cards and punches 60 cards per
minute; Model A2 reads 500 cards and punches 120 cards per minute.

The 5425 includes its own control unit; it can be natively attached to
a System/370 Model 115 or Model 125.

The following line printers are supported by DOS/VS:

• IBM 1403 Printer Models 2, 3, 7, and N 1
• IBM 1443 Printer Model N1 I · IBM 3203 Printer Models 1 and 2
• IBM 3211 Printer Modell

•

IBM 3213 Console Printer
IBM 5203 Printer Model 3
IBM 5213 Console Printer Modell

Section 5: Appendix 1: Devices Supported by DOS/VS 249

IBM 1403 Printer Models 2, 3, 7, and N1

IBM 1443 Printer Model N1

The IBM 1403 Printer Models 2 and 7 operate at a maximum speed of 600
lines per minute. Models 3 and Nl operate at a maximum speed of 1,100
lines per minute. A print line is 120 characters on the Model 7, or 132
characters on the models 2, 3, and N 1. Each print position can print any of
48 characters. Forms spacing and skipping are governed by a 12-channel
tape in the carriage.

All models of the 1403 are connected to a system through the IBM
2821 Control Unit.

The IBM 1443 Printer Model N 1 operates at a rated speed of 240 lines per
minute, with a 52-character set which includes 16 special characters. Other
character sets are available: if used, the operating speed may increase or
decrease, depending on the character set used. A print line may consist of
120 characters. The device contains its own control unit.

IBM 3203 Printer Models 1 and 2

IBM 3211 Printer Model 1

IBM 3213 Console Printer

IBM 5203 Printer Model 3

The IBM 3203 Printer Model 1 operates at a maximum speed of 600 lines
per minute; the maximum speed of the Model 2 is 200 lines per minute.
For both models, a 48-character set and the UCS (Universal Character Set)
feature are standard. The UCS feature allows the use of character sets
other than the standard one. Each print line has a standard capacity of 132
print positions. Form spacing and skipping is controlled by a forms control
buffer.

Both models of the 3203 printer can be natively attached to a
System/370 Model 115 or 125.

The IBM 3211 Printer Modell operates at a rated speed of 2,000 lines per
minute. A 48-character set is standard. Each print line has a capacity of
132 character positions, and another 18 positions are available as a special
feature. Continuous marginally punched form spacing and skipping is
controlled by a forms control buffer.

The 3211 is connected to a system through the IBM 3811 Control
Unit. An IBM 3216 Interchangable Train Cartridge must be used on the
3211. This allows maximum flexibility for varying character sets, each set
operating at maximum speed.

The IBM 3213 Console Printer is a serial printing device, printing at a
maximum rated speed of 85 characters per second. Each print line has a
maximum capacity of 126 characters. The 88-character set of PTTC/EBCD
is standard. The device contains its own control unit.

The IBM 5203 Printer Model 3 operates at a maximum speed of 300 lines
per minute. It has a standard 48-character set and an optional UCS
(Universal Character Set) feature. The ues feature allows the use of
character sets other than the standard one. Each print line has a standard
capacity of 96 print positions; this standard carriage can be replaced by a
wider one with 120 or 132 print positions. Form spacing and skipping is

250 DOS/VS Data Management Guide

(

IBM 5213 Printer Model 1

Optical Readers

controlled by a forms control buffer. The 5203 printer with 96 print
positions cannot be used as SYSLST device.

The 5203 printer can be natively attached to a System/370 Model
115.

The IBM 5213 Printer Modell is a serial printing device, printing at a
rated speed of 85 characters per second. A print line can contain 132
characters. The device contains its own control unit.

The following optical readers are supported by DOS/VS:

• IBM 3881 Optical Mark Reader Model 1
• IBM 3886 Optical Character Reader Model 1.

IBM 3881 Optical Mark Reader Modell
The IBM 3881 Optical Mark Reader Modell reads handwritten or machine
printed marks on paper documents. The documents can range in size from 3
inches by 3 inches to 9 inches by 12 inches. The 3881 can read up to 40
marking positions across an 8 1/2 inch document and up to 6 rows per inch
vertically. An 8 1/2 inch by 11 inch document can contain up to 2480
marking positions. Approximately 4,000 8 1/2 inch by 11 inch documents
can be read per hour. The maximum size of the output record is 900 bytes.

IBM 3886 Optical Character Reader Model 1

Magnetic Tape Devices

The IBM 3886 Optical Character Reader is a general-purpose optical
reader. It can recognize data created by:

• Numeric handprinting
• High speed computer printing
• Typewriters
• Preprinting on forms

Data can be provided to your program exactly as it was read from the
document or it can be edited and formatted. Document processing and the
data provided to the problem program is controlled by a format record that
is loaded into the 3886 when the file is opened. Line and page numbering
can also be performed if the feature is included on the device. When a
document has been read, it can be routed to the normal stacker or to the
reject stacker if an error was found on the document.

The following magnetic tape devices are supported by DOS/VS:

• IBM 2401 Magnetic Tape Unit Models 1-6, and 8
• IBM 2415 Magnetic Tape Unit and Control Models 1-3, and 4-6
• IBM 2420 Magnetic Tape Unit Models 5 and 7
• IBM 2495 Tape Cartridge Reader Model 1
• IBM 3410 Magnetic Tape Unit Models 1, 2, and 3
• IBM 3411 Magnetic Tape Unit Models 1, 2, and 3
• IBM 3420 Magnetic Tape Unit Models 3, 5, and 7

The major characteristics of these devices are shown in Figure 5.1.

Section 5: Appendix 1: Devices Supported by DOS/VS 251

Diskette Device

Maximum Data Rates

Kilobytes Bytes
per'"second per inch

IBM 2401, M. 1 30 800
2 60 800
3 90 800
4 60 1,600
5 120 1,600
6 180 1,600
8 60 800

IBM 2415, M. 1-3 15 800
4-6 30 1,600

IBM 2420, M. 5 160 1,600
7 320 1,600

IBM 2495, M. 1 ;9 20

IBM 3410, M. 1 20 1,600
/3411 2 40 1,600

3 80 1,600

IBM 3420, M. 3 120 1,600
5 200 1,600
7 320 1,600

* Control Unit is included in the device.
** A first tape drive in a sequence of 1410's must

be a 3411 wh ich is a 3410 with a control unit.

Control
Unit

2803
or
2804

*

2803

*

**

3803

Figure 5.1. Characteristics of magnetic tape devices supported by DOS/VS

I

The IBM 3540 Diskette Input/Output Unit is supported as a sequential
access device. The major characteristics of this device are shown in Figure
5.2.

252 DOS/VS Data Management Guide

(

) .

Direct Access Devices

TRACKS PER VOLUME 77

o Track 0 System Use

o Tracks 1-73 Data Records

o Track 74 Reserved

o Track 75-76 Alternates for
Defective Tracks

RECORDS PER TRACK 26

BYTES PER RECORD 128

BYTES PER TRACK 3,328

BYTES PER VOLUME 242,944

Figure 5.2 Diskette layout and storage capacity

The following direct access devices are supported for data file residence by
DOS/VS:

• IBM 2311 Disk Storage Drive
IBM 2314 Direct Access Storage Facility

• IBM 2319 Disk Storage
• IBM 3330 Family of Disk Storage Devices

I. IBM 3340 Disk Storage
• IBM 2321 Data Cell Drive

All DASD devices have the following characteristics in common:

• Each physical block stored on a DASD has a discrete location and a
unique address.
Data is stored on DASD in such a way that any block can be located
without extensive searching.

• Data can be accessed directly rather than serially.
• If desired, data can also be processed sequentially.
• When DASD data is updated, the updated version of a physical block

can physically replace the old one.

The IBM DASD devices feature removable, interchangable disk packs. A
disk pack can be easily removed and replaced by another one, in less than a
minute. These units have flexibility comparable to a tape system, plus the
advantage of direct access processing.

On the IBM 2321 Data Cell Drive, data is stored on magnetically
coated strips. Two hundred strips are contained in a cell assembly, which is
removable and interchangeable.

The main characteristics of the direct access devices listed above are
described in Appendix 2.

Section 5: Appendix 1: Devices Supported by DOS/VS 253

IBM 2311 Disk Storage Drive

Access Mechanism
Ten read/write heads are mounted on a vertical assembly. The heads are
aligned vertically and are all moved together to any of 203 positions.
Therefore, each time the read/write heads are moved to some position, one
entire cylinder of ten data tracks is accessible for reading and writing. Only
electronic switching between the read/write heads is necessary to select a
particular track within a cylinder.

Storage and Record Capacity
The 7.25-million byte capacity of each volume is based on 200 tracks per
disk surface. The remaining three tracks per surface are used as alternate
tracks for defective tracks.
Up to eight 2311 drives can be connected to one storage control unit.

IBM 2314 Direct Access Storage Facility

IBM 2319 Disk Storage

The IBM 2314 consists of eight online disk storage modules, one spare
(offline) module, and a control unit. The spare module is available for
immediate use if servicing or routine maintenance is necessary for any of
the other modules. Of the total of nine modules, any eight can be online at
a time.

Access Mechanism
Twenty read/write heads are mounted on a vertical assembly, one for each
module. Each module has its own access mechanism which operates
independently. The heads of a particular module are aligned vertically and
are all moved to any of 203 positions. Therefore, each time the read/write
heads are moved to some position, one entire cylinder of twenty data tracks
become available for reading or writing.

Storage and Record Capacity
Information is read from, or written to disk surfaces of the IBM 2316 Disk
Pack. The 29.17 -million byte capacity of one module is based on 200 tracks
per surface. The remaining three tracks are used as alternate tracks to
replace defective tracks.

The IBM 2319 Disk Storage is a high-speed direct access storage facility for
System/370 Models 135 and 145 users. Its function and performance are
identical to the IBM 2314, but its configuration consists of only three
modules per 2319 Model A 1. This configuration can be expanded to six or
nine modules (only eight online at a time), by adding one or two 2319
Model A2s. A 2319 Model A2 is attachable only to a 2319 Model AI, a
2319 Model Al attaches to the System/370 Model 145 through the
Integrated File Adapter.

The IBM 2319 Disk Storage Models Bland B2 are high-speed direct
access storage facilities for System/360 and System/370 users. The
configurations available are identical to those for the 2319 Models Al and
A2, except that the Models Bland B2 are attached to a system through the
IBM 2314 Model Bl Storage Control Unit.

Functionally, the 2319 (all models) is identical to the 2314.

254 DOS/VS Data Management Guide

I

\,

IBM 3330 Family of Disk Storage Devices

IBM 3340 Disk Storage

The IBM 3330 Family of Disk Storage Devices offers the user a high-speed
direct access storage facility with a capacity of two to sixteen disk drives,
each drive having a data capacity of 100 million bytes. It consists of the
following components:

• IBM 3333 Disk Storage and Control.
A 3333 Disk Storage Module consists of two independent disk drives.
It may act as the control unit for one to three additional 3330
modules (see below) or it may be used individually. One 3333 module
may, with or without 3330 modules, directly be connected to a
system; two 3333 modules may, with or without 3330 modules, be
connected to a system via the 3830 Control Unit Model 2.

• IBM 3330 Disk Storage.
A 3330 Disk Storage modules consists of two independent disk drives.
One to four 3330 modules may be connected to a system via the 3830
Control Unit Modell; one to three 3330 modules may be attached to
a 3333 (see above).

Thus, a system may have one or two 3333 modules attached, each module
followed by one to three 3330 modules. Or it may have one to four 3330
modules attached.

Access Mechanism
Each disk drive contains an access mechanism of nineteen read/write
heads, mounted on a vertical assembly. The heads are aligned vertically
and are all moved to any of 411 positions.

Storage and Record Capacity
Data is stored on IBM 3336 Disk Packs. These packs are mounted in
powered drawers, and are easily removable and interchangeable. The 100
million byte capacity of one volume is based on 404 cylinders per disk
surface. The remaining seven tracks per surface are used as alternate tracks
to replace defective tracks.

The IBM 3340 Disk Storage is a direct access storage facility which
combines large storage capacity with high performance and maximum data
integrity. This high data integrity is achieved by the concept of data module
and drive (see Access Mechanism below).

The 3340 Disk Storage can be configured from combinations of three
modules:

• Model A2 with two drives
• Model B 1 with one drive
• Model B2 with two drives

Each system must have at least one model A2. The model A2 attaches
directly to the System/370 Models 115 and 125, and to Models 135, 145,
155-11, and 158 via the appropriate IFA (Integrated File Adapter), ISC
(Integrated Storage Control), or 3830-2 control unit. Models Bl and B2
can be attached to a model A2 or to another B model.

Section 5: Appendix 1: Devices Supported by DOS/VS 255

IBM 2321 Data Cell Drive

Up to four drives. can be attached to a System/370 Model 115, and
up to eight drives to a Model 125. Up to eight drives per string can be
attached to the other System/370 models.

Access Mechanism
The 3340 is designed according to the concept of data module and drive,
that is, the data module contains - sealed in a cartridge - the recording
disks, and the access arms and read/write heads which remain with the data
module when it is removed from the drive.

Storage and Record Capacity
Data is stored on IBM 3348 Data Modules. Data Modules are available in
two models:

• Model 35, with a capacity of approximately 35 million bytes.
• Model 70, with a capacity of approximately 70 million bytes.

Thus, the maximum capacity on an IBM 3340 Disk Storage Model A2
is 140 million bytes.

The IBM 2321 Data Cell Drive is a device for storing data on magnetically
coated strips. Two hundred strips are contained in a single removable and
interchangeable cell assembly. Ten cell assemblies, each of them containing
twenty subcells, can be mounted on a data cell drive at a time.
A rotary positioning system positions a selected subcell of ten strips
beneath an access station. At this station, one selected strip is withdrawn
from the subcell and rotated past a read/write head element for data
transfer. The strip is then returned to its original location in the subcell.

Access Mechanism
The access mechanism of the 2311 consists of a read/write head block
which contains 20 magnetic elements. It can be positioned to one of five
positions, creating five cylinders of 20 data tracks each, and providing for
100 recording tracks per strip.

Other Devices Supported by DOS/VS
In addition to the devices described above, DOS/VS supports the following
devices:

• Terminal devices:
IBM 1030 Data Collection System
IBM 1050 Data Communication System
IBM 1060 Data Communication System
IBM 2721 Portable Audio Terminal
IBM 2740 Communication Terminal Models 1 and 2
IBM 2760 Optical Image Unit
IBM 2770 Data Communication System
IBM 2780 Data Transmission Terminal Models 1-4
IBM 2790 Data Communication System
IBM 2972 Banking Terminal
IBM 3735 Programmable Buffered Terminal
IBM 3740 Data Entry System
IBM 3780 Data Communication Terminal

• Display devices:

256 DOS/VS Data Management Guide

IBM 2260 Display Station Models 1 and 2
IBM 2265 Display Station
IBM 3270 Information Display System

• Manual Controls:
IBM 3210 Console Printer-Keyboard
IBM 3215 Console Printer-Keyboard

• Miscellaneous equipment:
IBM 1017 Paper Tape Reader Models 1 and 2
IBM 1018 Paper Tape Punch Model 1
IBM 1255 Magnetic Character Reader Models 1-3
IBM 1259 Magnetic Character Reader Model 2
mM 1270 Optical Character Reader Models 1-4
IBM 1275 Optical Character Reader Models 2 and 4
IBM 1287 Optical Reader Models 1-5
IBM 1288 Optical Page Reader Model 1
IBM 1419 Magnetic Character Reader Model 1
IBM 2671 Paper Tape Reader Modell
IBM 2816 Tape Switching Unit Model 1
IBM 7770 Audio Response Unit Model 3

Section 5: Appendix 1: Devices Supported by DOS/VS 257

Appendix 2: Attributes of Direct Access Storage Devices

Figures 5.3, 5.4, 5.5, and 5.6 give useful information about the physical
attributes of the direct access devices supported by DOS/VS.

258 DOS/VS Data Management Guide

(

STORAGE DEVICE"- 2311
2314* 3330* 3340** 2319* 3333*

Volumes per device 1 8 8 2

Cylinders per volume 200 200 404 696

Cylinders per device 200 1,600 3,232 1,392

Tracks per cylinder 10 20 19 12

Tracks per volume 2,000 4,000 7,676 8,352

Tracks per device 2,000 32,000 61,408 16,704

Bytes per track 3,625 7,294 13,030 8,368

Bytes per cylinder 36,250 145,880 247,570 100,416

Bytes per volume 7,250,000 29,176,000 100,018,280 69,889,536

Bytes per device 7,250,000 233,408,000 800,146,240 139,779,072

Figure 5.3. Disk storage capacity table
* The table shows the maximum data capacity of an installation

with eight disk drives.

** The table shows the data capacity of a model A2 with two
Model 70 data modules.

Appendix 2: Attributes of DASD 259

Bytes per track 2,000

cyl.inder 40,000

strip 200,000

subcell 2,000,000

cell 40,000,000

full array 400,000,000

Tracks per cylinde·r 20

strip 100

subcell 1,000

cell 20,000

full array 200,000

Cylinders per strip 5

subcell 50

cell 1,000

full array 10,000

Strips per subcell 10

cell 200

full array 2,000

Subcells per cell 20

full array 200

Cells per full array 10

Figure 5.4. Data cell capacity table

260 DOS/VS Data Management Guide

Max imum Bytes per Record Maximum Bytes per Record
Formatted without keys Records Formatted with keys

2314
per

2314
2311 2321 3330 3340 Track 2311 2321 3330 3340

2319 2319

3625 7294 2000 13030 8368 1 3605 7249 1984 12974 8293

1740 3520 935 6447 4100 2 1720 3476 920 6391 4025
1131 2298 592 4253 2678 3 1111 2254 576 4197 2608
830 1693 422 3156 1966 4 811 1849 406 3100 1801
651 1332 320 2498 1540 5 632 1288 305 2442 1465

532 1092 253 2059 1255 6 512 1049 238 2003 1180
447 921 205 1745 1052 7 428 877 190 1689 977
384 793 169 1510 899 8 364 750 154 1454 824
334 694 142 1327 781 9 315 650 126 1271 706
295 615 119 1181 686 10 275 571 103 1125 611

263 550 101 1061 608 11 244 506 85 1005 533
236 496 86 962 544 12 217 452 70 906 469
213 450 73 877 489 13 194 407 58 821 414
193 411 62 805 442 14 174 368 47 749 367
177 377 53 742 402 15 158 333 38 686 327

162 347 44 687 366 16 143 304 29 631 291
149 321 37 639 335 17 130 277 21 583 260
138 298 30 596 307 18 119 254 15 540 232
127 276 24 557 282 19 108 233 9 501 207
118 258 20 523 259 20 99 215 467 184

109 241 15 491 239 21 90 198 435 164
102 226 10 463 220 22 82 183 407 145
95 211 6 437 204 23 76 168 381 129
88 199 413 188 24 69 156 357 113
82 187 391 174 25 63 144 335 99

77 176 371 161 26 58 133 315 86
72 166 352 149 27 53 123 296 74
67 157 335 137 28 48 114 279 62
63 148 318 127 29 44 105 262 52
59 139 303 117 30 40 96 247 42

Figure 5.5. Record capacities on DASD

Appendix 2: Attributes of DASD 261

TRACK CAPACITY IN

STORAGE BYTES, WHEN RO IS

DEVICE USED AS SPECIFIED
BY IBM PROGRAMM-
INGSYSTEMS

2311 3625

2314}
2319

7294

2321 2000

3330}
3333

13030

3340 8368

BYTES REQUIRED FOR DATA RECORDS

DATA RECORDS (except for last record)

Without key With key

61 + 537.DL 81 + 537.(KL+DL)
512 512

101 + 2137. DL
2048

146 + 2137 (KL+DL)
2048

84 + 537. DL 100 + 537. (KL+DL)
512 512

135+DL 191+KL+DL

167+DL 242+KL+DL

LAST RECORD

Without key

DL

DL

DL

DL

167+ DL

With key

20+KL+DL

45+KL+DL

16+KL+DL

56+KL+DL

242·+KL+OL

KL = key length
DL = data length

Figure 5.6. Track capacities on DASD

262 DOS/VS Data Management Guide

Appendix 3: Standard Label Formats for Magnetic Tape, Diskette, and DASD

Appendix 3: Standard Label Formats for Magnetic Tape, Diskette, and DASD 263

N
0"1
~

o
o
til
.........

-<
til

I:' ;
~
~
~
(l)

3
(l)

a
~
Q.:
(l)

IBM Standard Volume Label, Tape or DASD

Label Identifier

Volume Label Number

Volume Security

6
21 3 Volume Serial 141 5 Data File Directory

Number (Disk Only)

ANSI Standard Volume Label, ASCII Tapes

Label Identifier
Volume Label Number

Accessibility

Volume Serial 21"a 1:4"1'5
Number (Reserved)

IBM Standard Tape File Label

H D R
E 0 F

E 0 V

~

File Identifier

II

7

(Reserved) (Reserved)

'6 7

(Reserved)

is 6: m
Volume I File

File Serial I Sequence I Sequence I Generation
Number Number Number Number

~--,

8
Owner Name and

Address Code

Owner Name and
Identification Code

Version Number
of Generatipn

., 19 lD

9

6

Creation Date I Ex~iration Date

(Reserved for Future Expansion)

Label Standard Level

(Reserved)

File Security

19 14

Block Count System Code Reserved

~
"0
('D

::I
0-S<.
~
CI.l
6)
::I
0-
~ a.
~
~

61
9
~
0' ..,
~
~
K o·
-i
~
"0
!D
o
~.

~
('D

::::
!D
§
0-

o
>
CI.l o
tv
0"1
VI

ANSI Standard Tape Label, ASCn Tapes

File Label Number

4

File Identifier Set Identifier

Standard Diskette Volume Label (VOLt)

Label Identifier

Label Number

D1

Shaded areas apply to OS only. or are reserved for future use.

Standard Diskette HDRt Label

Field No.

Label

5 6 7 8
File File

Section
Number·

Sequence
Number

Generation
Number

File Security

Bypass
I ,.fi,..-.::I .. n.r-----,

Version Number
of Generation

Accessibility

9 10 11112

Creation Date Expiration Date Block Count

...----- Interchange Level

Owner
Identification

Multivolume Indicator

Volume Sequence Number

13 14

System Code Reserved

N
0\
0\

o
o
\I)
........
<:
\I)

o
~
III

~
~
~
3 o a
o
= s.: o

Standard DASD FHe LABEL, Format 1

File Identification
(File-IO; Generation No.; Version No.)

Standard DASD FHe Label, Format 2

-Field No.

Key Identification

~
-K1 K2 K3 K4 K5 K6

Last 2nd Last 3rd
Address of Level Master Address of Level Master
2nd Level Index Entry 3rd Level Index Entry
Master Index Address Master Index Address

Extent
Sequence
Number

(Reserved)

Format Identifier

Highest 'R' on
High Level

High Level Index Index Tracks

Development -
Indicator

Number of
Tracks for

Highest 'R' on
Prime Data Tracks

Extent Count

Bytes used in last
block of directory

System Code

.-- Highest 'R' on

- Overflow Tracks _ Non-First Overflo,
Reference Count

'R' of Last
Data Record Number of
on Shared r- Bytes for Highest

Number of Cylinder - Tracks Level Index

Index Levels Overflow

Last Data Highest'R' Number of
Format

Track in 'l on Track Tracks for Highes1
Identift Cylinders Itex Tracks Lrellndex

0102 03 D4 05 607 080 01P .PJ 012 013 014 015016 017

~; ~ 011- 'c A"g oS! :l Prime '" 0"'-0 Q) 0 :l

;;8:i ~ ou Record ~
Q) u;

il:£~ '" Ole Count
Q) ttl 0 a: '+=,

.- NI I I I I 10) enl I I I~ :!I I I I 1 I~ NI 1 I I~ ~I 1 1 1 1 I 1 1 1 1 I I I I I 1 I I; LnCD ~ ~I 1° ~IN ~;iIi Ln CD ~O) en ~I'- ~I (bLnCD ~ ~I 1 1'- N """" """" Ln
Ln Ln LnLn LnLn LnCDCD CD CD co CD ~~

018

Address of
Cylinder Index

019

Address of
Lowest Level
Master Index

020

Address of
Highest Level
Index

021

Last Prime
Data Record
Address

022 023

Last Track I Last
Index Entry
Address

024

Last Master
Index Entry
Address

Number of
Indt3pendent
Overflow Tracks

Bytes Remaining
on Overflow Track

025

Last Independent
Overflow Record
Address

Overflow Record Count

Cylinder Overflow
Area Count

026 I 027 I 028 I 029 I 030 031

Pointer

€
'0
~
::l
Q.

x"
w

til
S"
::l
Q.
III a.
l'
~
~
"T1
o
3
~
0-..,
3:
JJ
::l
!l
n"
-l
~
~

o
~
!l
J;
III
::l
Q.

o
:>
til o
tv
0"1
......:J

'-. .-Y

Standard DASD FUe Label, Format 3

Extent T

K1 Extent 1 Extent 2 Extent 3

Key
K2K3 K4 K5

Ident- Lower Upper
ification Limit Limit

~I l l<t It) CD ~I I I~ ;::1 I t:! ~ LII I I l~ It) I I I N

Extent 8 Extent 9 Extent 10

CD I I I I I I~ ~ I I I I I I~ ~ I I I I I I~ ~ ~

Standard DASD FUe Label, Format 4

Key Identification

Extent Type

VSAM Indicators D10 D11

(Reserved)

VSAM Timestamp

Extent 4 Extent 5

K11 JK16 K17 D1~)2 p~ D4 D5
K15

I I Ig ~ I I I I I I~ It) CD
<t <t I J 1 J 1 ItS ~

Extent 11

I 1 J

Extent
Sequence
Number

11 I~ ~

VTOC Extent

D141 D15

Lower LimitlUpper Limit

Extent 12 Extent 13

D34 1D36
D35

1 J I 1 1 J~ ~ I I I

Format
Identifier

Number of
Alternate Tracks

D3 ID4

Next
Last Active Available
Format 1

(Reserved)

Extent 6

l I I I J 118 ~

D38

D37
Pointer

I l I~ ~l I J I~

VTOC
Indicators

Number of Extents

Extent 7

I I I

D9 Device Constants

D16

I I I~I

CIl\CIl Q;~
.0 0
jiij

Ap~ndix 4: Programming Considerations for Some Special Types of I/O
Equipment

This appendix provides additional information for the control, through the
Sequential Access Method, of the following device types:

• Punched card equipment
• Paper tape equipment
• Magnetic and Optical Character Readers
• Optical Mark Readers

268 DOS/VS Data Management Guide

Punched Card Considerations

Associated Files

The range of punched card equipment provided by IBM allows a user to
select devices that best support his applications (see Appendix O. Some of
these devices are able to perform only one function, for example, reading or
punching. Other types are able to perform different functions in separate
card paths, and there are devices that can perform different functions in
one card path. This part of Appendix 4 provides hints to bear in mind
when using a device that can perform mUltiple functions.

I Associated files are possible on IBM 2560, 3525, and 5425 card devices.
One speaks of associated files when more than one function (read, punch,
print) must be performed on one card file. For example, Figure 5.7 shows
what can be done on a single pass of cards through a card path.

I

READ PUNCH PRINT

0
0

0
1 1 r
')

PRINT 1 I

1 1 G I I

1 PRINT 1 I
1 INTERPRET 1 I

Figure 5.7. What can be done on a single pass

In DOS /VS assembler language or RPG a file definition must be given
for each function which is to be performed on the cards (an exception is
punch-interpret which requires only one file definition). Each of the
associated files is then specified as associated by means of the operands
FUNC and ASOCFLE in the DTFCD and DTFPR declarative macro
instructions. (DTFPR is to be used for the print function of a card device.)

Appendix 4: Programming Considerations for Some Special Types of I/O Equipment
269

The FUNC operand is used to specify the function combinations; the
ASOCFLE operand is used to specify the name and address of the
associated file.

DTFCD

DTFCD}
DTFPR

Read-Punch

{

Read-Punch-Print
Read-Print
Punch-Print

FUNC= { I I RIP I RP I RW I RPW I PW}

This operand specifies the type of file to be processed. Where
applicable, the valid entries are:

I (Interpret), R (Read), P (punch), RP (Read-Punch), RW (Read-Print),
RPW (Read-Punch-Print), and PW (Punch-Print).

When FUNC=I is specified, the cards will be both punched and
interpreted; no associated file is necessary to achieve this.

RP, RW, RPW, and PW are used, together with the ASOCFLE
operand, to specify associated files. When one of these parameters is
specified for one associated file it must also be specified for the other
associated files.

ASOCFLE=filename

This operand specifies the filename of associated read, punch, and
print files, and enables macro sequence checking by the logic module of
each associated file. It is used together with the FUNC operand to define
associated files. One filename is required per DTF for associated files.

In ASOCFLE operand of ...

FUNC= read DTFCD, punch DTFCD, print DTFPR,
specify filename specify filename specify filename
of .. of . .. of

RP punch DTFCD read DTFCD

RW print DTFPR read DTFCD

PW print DTFPR punch DTFCD

RPW punch DTFCD print DTFPR read DTFCD

For example, if FUNC=PW is specified, specify the filename of the
print DTFPR in the ASOCFLE operand of the punch DTFCD, and specify
the filename of the punch DTFCD in the ASOCFLE operand of the print
DTFPR.

I/O Areas / Work Areas
Associated files can have only one I/O area. Each associated file may have
a different I/O area with or without a work area; the I/O area or work

270 DOS/VS Data Management Guide

area may also be the same for associated files. For example, by specifying
the same I/O area (or work area) for an RW file, cards will be read and
interpreted. Or, if the same I/O area (work area) is used for the associated
print and punch files of an RPW card file, the information which is
punched will also be printed (interpreted).

Processing Considerations for Associated Fdes on a 2560 or 5425
DOS/VS does not provide special macro instructions to control the
overlapping of reading with processing. For a 2560 or a 5425, however, the
DOS/VS Assembler language programmer who uses LIOCS can achieve a
type of overlapped processing in the way as is described in the following
text. The DOS/VS Assembler language progralllJl1.er who uses PIOCS may
design his own overlapped processing.

Read-Punch Associated Fdes.
For read-punch (RP) associated files, the GET for the read file as well as
the PUT for the punch file must always both be issued for each card. If no
punching is desired, the output area or work area must be filled with
blanks; LIOCS tests for blanks in the output area or work area and if it
finds them no punching is performed. If in the DTFCD macro instruction
the operand CTLCHR= YES or ASA is specified for the punch file, the
appropriate 370 or ASA control character must always be present in the
first byte; only the data portion following the control character must be
filled with blanks, if so desired. If the CNTRL macro instruction is used, it
must be issued before the PUT. As a result of the PUT, LIOCS will initiate
the reading of the next card, and read it into a special buffer which is part
of the DTF table for the read file. The user needs not and cannot set up
this buffer or control its use. The next GET will obtain the data from this
buffer into the input area. Thus, by is~uing the PUT as soon as possible
after a GET, as much as possible of the next card will be read while the
program is doing other processing.

Read-Print Associated Fdes.
For read-print (RW) associated files, the GET for the read file must always
be issued for each card. The PUT for the print file needs to be issued only
if actual printing is desired. However, the PUT will initiate the reading of
the next card as is explained for RP files above; it is therefore
recommendable to always issue a PUT even if no printing is desired: in
such a case the output area or work area should be filled with blanks. If no
PUT is issued, no overlapped processing will be achieved.

Read-Punch-Print Associated Fdes.
For read-punch-print (RPW) associated files, a GET for the read file must
always be issued for each card. Also, the PUT for the punch file must
always be issued for each card. The PUT for the print file needs to be
issued only if actual printing is desired. However, it is the PUT for the
print file that initiates the reading of the next card, as described for RP
files, above; it is therefore recommendable to issue a PUT for the print file
at all times. If the PUT for the print file is omitted, no overlapped
processing can be achieved. If an output area or work area is filled with
blanks, no punching and/or printing will occur, as is described above for
RP and RW files. If in the DTFCD macro instruction the operand
CTLCHR= YES or ASA is specified for the punch file, the appropriate
control character must always be present in the output area or work area

Appendix 4: Programming Considerations for Some Special Types of I/O Equipment

271

Paper Tape Considerations

Paper Tape Input

(first byte); only the data portion of the output area or work area may be
filled with blanks (see above). If the CNTRL macro instruction is used it
must be issued before the PUT for the punch file.

Paper tape I/O routines can, in DOS/VS, be programmed in assembler
language only. Input and output is performed by normal GET and PUT
macro instructions.

Paper tape readers accept the following two record formats:

• Fixed-length, unblocked format (Format F)

• Undefined format (Format U).

The characteristics of a paper tape file are specified in the DTFPT
macro instruction. The record format specified does not specifically apply
to the format of the data as it appears physically on paper tape, but to the
logical format of the records as they appear in the I/O area. The physical
data may have characters embedded that must be deleted from the records,
such as delete characters and shift codes.

The DTFPT macro instruction specifies the characteristics of the file.
Some of these specifications are described in this section:

BLKSIZE

OVBLKSZ

SCAN
LSCAN
FSCAN
TRANS
LTRANS
FTRANS

EORCHAR

DELCHAR

Specifies the size of a record. For fixed-length records this
is the size of a logical record; for undefined records this is
the maximum size of a physical record.

Specifies the amount of character to be read from paper
tape. It is used for fixed-length records. OVBLKSZ may be
equal to or higher than BLKSIZE.

These operands of the DTFPT macro instruction refer to
translation tables. Physical data may contain any paper
tape code, whereas logical data is expected to be in
EBCDIC. Also the data may be compressed by deleting
shift codes and delete characters from the physical
data. This can be done by an automatic translation process,
under control of 10CS.

Undefined records must end with an end-of -record
character. For input, this character is specified in a
translation table; for output, the end-of-record character is
added by IOCS as specified in this operand.

A user may specify that certain characters must be deleted
from the physical data. For input, these characters are
specified in a translation table; for output, the delete
character can be used as specified in this operand, but only
for the IBM 1018 with the Error Correction Feature.

Data that is read from paper tape may physically be in any paper tape code
a user requires. Logical data in virtual storage is expected to be in internal
IBM System/370 code (EBCDIC). If some code must be translated this

272 DOS/VS Data Management Guide

I

\

can be done automatically, as well as translation of shifted code (figure
shift and letter shift). Code translation is discussed separately in this
section.

After a GET has been issued a logical record is obtained from physical
data. During this process, delete characters and any shift characters are
removed from the data. Data that follows such characters is shifted to the
left so that the user need not be concerned about such code.

More serious is the problem of synchronizing the data fields with the
program. The paper tape is read character by character, and all characters
are placed in subsequent character locations in the input area. If, in some
data field, one character too many or too few is specified, all following
fields will be out of phase. Therefore one usually adds extra characters with
a special bit configuration to the data. These characters are expected to
occur in each record in the same character location. By checking this
location a user can identify incorrectly formatted records:

@ data field(s) # data field(s) $ data field(s) °h etc.

logical record in input area ----------.~

Another method of checking whether data that is processed is valid, is
to expand data fields with an additional check character which is the result
of some calculation.

For example, for numeric data fields one may add all characters on
even locations, do the same for all characters on uneven locations, multiply
the two sums, and then use the last character of the product as a check
character. A data field with the content 85318 would then be represented
on paper tape as 853184: 8+3+8=19,5+1=6, 19x6=114.

Undef"med Record Format on Input
Each record must be followed by an end-of-record (EOR) character. After
a GET, a count-controlled read is performed, count-controlled by the
operand BLKSIZE. Reading stops when an EOR character is sensed. The
input area must be at least one position longer than the longest record
anticipated, including any delete characters and shift codes that may be
embedded in the data. If an input area is filled up completely, the record is
assumed to be overlength, and the wrong-length record routine of IOCS
will become active.

After data has been read up to EOR, the delete characters and shift
characters are removed by the translation process. A translated and
compressed logical record is presented to the user.

Consecutive EOR characters are skipped. The system will never return
to the user with a data length zero. The length of the logical records is
communicated to the user in a register.

Fixed-Length, Unblocked Format on Input
Records must not be followed by an EOR character, since all characters
enter virtual storage as normal characters. An EOR character does not stop
the reading of fixed-length records.

The term 'fixed-length' applies to the format of a logical record in the
input area, after it has been translated (if necessary) and compressed. It

Appendix 4: Programming Considerations for Some Special Types of I/O Equipment

273

Paper Tape Output

does not apply to the format of the data as it appears physically on the
paper tape. A paper tape file consists of one continuous string of data
characters, and it is IOCS that establishes boundaries between the records
by means of the operand BLKSIZE as specified by the user. The physical
data may have embedded delete characters and shift codes. It may be
necessary therefore to read more characters than the size of a logical
record. The number of characters that must be read is specified by the
OVBLKSZ operand in the DTFPT macro instruction.

After a GET, IOCS starts a count-controlled read until the input area
contains the number of characters specified in OVBLKSZ. Then the
translation process starts, eliminating shift codes and delete characters from
the data. If the resulting record is shorter than BLKSIZE, additional reads
are performed until IOCS has obtained a logical record with a size equal to
BLKSIZE. As a result, some characters may belong to the next logical
record. These characters are moved to the beginning of the input area
when the next GET is issued. It is therefore important that the programmer
does not clear the input area beyond the size of the logical record as
defined in BLKSIZE. If he does, he will destroy part of the following
logical record.

Undef"med Format vs Fixed-Length Format
When using undefined format, a GET reads data until an EOR character is
read. The programmer must make sure that his input area can fully
accommodate that data, taking additional characters in the physical data
into account.

When using fixed-length format, IOCS performs as many read
operations as necessary to obtain one logical record. If the 110 area is
large enough to accommodate the logical data, but not large enough to
accommodate the physical data, this is solved by additional reads when the
preceding read and its translation and compression process is completed.

The main difference between the processing of the two formats is that
IOCS can recognize record boundaries of undefined records, but cannot
recognize those boundaries in fixed-length records. If too few or too many
characters are specified for some particular record, the problem is more
serious for a fixed-length record than for an undefined record. For
undefined records, only the wrong record will be out of phase, whereas for
fixed-length records all records following the wrong one will be out of
phase. As long as the user ensures that his input area is large enough to
contain all physical data of one record, therefore, it is usually better to use
and undefined record format, even if the logical records have a fixed-length
format.

Data may be written in any code a user requires. Translation of shifted or
non-shifted code can be done automatically. Code translation is discussed
separately in this section.

After a PUT has been issued, the logical record is expanded by IOCS
during the translation process, if required. Shift characters are added to the
data when necessary.

Undef"med Record Format on Output
Since lacs adds an EaR character to each record, it need not be written

274 DOS/VS Data Management Guide

Code Translation

by the user. The output area and the BLKSIZE operand must reflect at
least the longest record anticipated.

Fixed-Length Record Format on Output
The number of characters contained in each logical record is specified in
the BLKSIZE operand. Logical records are translated by IOCS if
necessary. As a result of a PUT, a count-contr61led write causes the
specified number of characters to be written. For shifted code files, the
records are expanded by IOCS, which adds the figure shift and letter shift
characters to the data. IOCS performs additional writes to construct the
required physical block.

Translation of Non-Shifted Code on Input
The TRANS operand in the DTFPT macro instruction is used for
translation of non-shifted code directly into internal IBM System/370 code.
If the input is in EBCDIC, no translation is required, and the TRANS
operand may be omitted.

The SCAN operand may be used alone or in conjunction with TRANS
to delete characters from records that do not contain shifted code. There
must not be any 04 or 08 entries in the scan table referred to by SCAN.

Translation of Shifted Code on Input
If the input contains shifted code, the FTRANS,· L TRANS, and SCAN
operands must be specified in the DTFPT macro instruction.

Translation of shifted code is accomplished by IOCS as follows:

1. The data is first scanned for shift characters. The segments between
shift characters are translated, using the appropriate shift table.

2. The translated segments are moved to the left to remove the shift
characters.

3. Steps 1 and 2 are repeated for each segment until the complete record
has been translated and compressed.

These steps result in a translated and compressed record, left-justified
in the input area. The record length is communicated to the user in a
register, which is designated in the RECSIZE operand.

The EOR character at the end of undefined records must be
shift-independent. That is, it must be effective whether the coding is in
letter shift or figure shift. If there is valid code in either shift that
corresponds to the coding of the EOR character established for a particular
job, then this shift code must not be included in the input.

IOCS assumes that the first record read from paper tape starts with
figure shift coding. Therefore, if the first record starts with letter shift code,
the user must make sure that the first character in the first physical block is
a letter shift character. The shift status is carried from one record to the
next and remains unchanged until another shift character is encountered.

Appendix 4: Programming Considerations for Some Special Types of I/O Equipment

275

MICR/OCR Considerations

TransIation of Non-Shifted Code on Output
The TRANS operand in the DTFPT macro instruction is used for
translation of non-shifted code, from internal IBM System/370 code into
any other code required by the user. If the output is to be punched in
EBCDIC, no translation is required, and the TRANS operand may be
omitted.

Translation of Shifted Code on Output
If the output contains shifted code, the TRANS, FSCAN, and LSCAN
operands must be included in the DTFPT macro instruction. The operand
OVBLKSZ may be used or omitted. If omitted, the records are written
segment by segment, and IOCS adds a shift character in front of each
segment. If OVBLKSZ is used, however, the segments are moved to the
right, while shift characters are inserted in the data before each segment. If
OVBLKSZ is specified too low, additional writes are performed to produce
the physical data.

Additional information about input/output control is provided in
DOS/VS Supervisor & I/O Macros, GC33-5373.

Note: This section excludes the IBM 3886 Optical Character Reader. For more
information on the 3886, see 3886 Optical Character Reader Considerations.

Magnetic Ink Character Recognition (MICR) devices, and Optical
Character Reader/Sorter (OCR) devices can be operated in any partition.
The user is supplied with an extension to the supervisor, which monitors, by
means of external interrupts, the reading of documents into a user supplied
I/O area (document buffer area).

The user must access all MICR/OCR documents through logical IOCS
macro instructions. Upon request, LIOCS gives a next sequential document
and automatically engages and disengages the devices to provide and
continuous stream of input. Detected error conditions and information
about errors are passed to the user in each document buffer.

MICR and OCR devices are unique in that documents must be read at
a rate dictated by the device rather than by the program. To allow time for
necessary processing (including the determination of pocket selection), the
device generates an external interruption at the completion of each read
operation for each document. The supervisor gives absolute priority to
external interrupt processing.

In a multiprogramming system with MICR/OCR document processing,
any partition can utilize MICR/OCR devices. In problem programs, these
devices can be controlled by means of Assembler language only, at the
LIOCS GET level if one device is attached, or at the LIOeS
READ/CHECK/WAITF level if multiple MICR/OCR devices are
attached. In the latter case, the user is allowed to continue processing as
long as one file has documents ready for processing.

This introduction to MICR/ OCR processing already indicates that the
two types of devices are very much the same, as far as the processing
characteristics are concerned.

276 DOS/VS Data Management Guide

MICR/OCR Programming

@

-

Before a user can begin any type of processing on MICR/OCR devices, he
must be aware of the special buffer format. Each document buffer must
not exceed 256 bytes, including the six-byte buffer status indicates, any
additional user work area, and the maximum document data area.

A user may specify any number of document buffers between 12 and
254; the maximum number depends on the amount of virtual storage
available.

Figure 5.8 shows a storage map of a set of document buffers.
Technical details about buffer control can be found in the publication
DOS/VS Supervisor & I/O Macros, GC33-5373.

The first time a GET (or READ) is executed, the supervisor engages
the device for continuous reading. Each time thereafter, the GET (or
READ) merely points (through IOREG) to the next sequential buffer
within each document buffer area. When a buffer for a file becomes
available, the user's main line processing continues with the instruction after
the GET (or READ-CHECK combination).

Beginning of document buffer area

r-- Byte 0·5 buffer status indicators

~ Batch num""'ri ng updates

r--- Error indicator for MICR device

r- Pocket user selected

~ Pocket document selected into

- Byte 6 = user's additional work area
r-- Byte xxx· document data area

80 00 00 00 AF AF
80 80 00 1F 5F 5F User's work area

Document reGards right - adjusted within -
this area -

r.'---------------Maximum length is 256 Bytes --------------~ .. ~I

CD Indicates the normal condition (no errors) when the document is being processed and the stacker selection is complete to
pocket A (1412).

@ Indicates the normal condition (no errors - all fields read) when the document is being processed and the stacker selection is
complete to pocket 5 and batch numbering update was performed (1419 model 1 or 31).

@ Number of buffers (between 12 and 254) is limited by the amount of virtual storage available.

Figure 5.8. MICR document buffer area

Appendix 4: Programming Considerations for Some Special Types of I/O Equipment

277

Each time an end-of-document condition occurs on an MICR device,
the user's main line processing routine, or any other routine having control
at that time, is interrupted by the supervisor's external interrupt routine.
The external interrupt routine branches immediately to the user's stacker
selection routine. After the user -selects a pocket, he exits from his stacker
selection routine so that the supervisor can issue the stacker selection
command. At this time, the MICR device(s) should be reading document
data into its (their) respective document buffer area(s). The supervisor, in
priority order, passes control to the user's main line processing routine, or
the routine that was interrupted, at the point of its interruption.

Thus, MICR document processing continues concurrently within the:

1. User's main line processing routine,

2. Supervisor's external interrupt routine, and

3. User's stacker selection routine.

Processing Operation (user) Monitor Operation (DOS/VS Supervisor)

Main Line Processing

NO

The above GET or Rt:AD
provides the next buffer
address in 10REG and
(he user processes the
data.

Document Buffer Area

I I W -, I
I Buffer nJ..-l

Supervisor starts and/or reads documents from
a MICR device.

Document data is placed into the I/O area.

During data transfer, control is passed to the
user's main line processing routine.

When end-of-document 'occurs, the supervisor
branches to the user stacker selection routine.

Supervisor selects pocket according to the
user's pocket selection.

Figure 5.9. MICR/OCR document processing

The order for exiting from these routines is the reverse of the
indicated order. processing and monitor operations continue concurrently
until the reader is disengaged, either normally or due to an error.

278 DOS/VS Data Management Guide

End-of-file processing must be detected and handled by the user's main line
processing routine.

The GET macro performs the functions of a READ except that it
waits while the document buffer fills. Instead, the READ posts an indicator
in the buffer (byte 0, bit 5) for the user to examine with the CHECK
macro. If this indicator bit is ON, the buffer is not ready for processing
and a branch is made to the second operand address of the CHECK macro.
The user's routine at this operand address can then READ and CHECK
another file for document availability. If this buffer is ready for processing,
control passes to the next instruction. If a special non-data status exists, the
user should analyze the conditions in his ERROPT routine and issue a
READ to obtain a document unless an unrecoverable I/O error has
occurred. If a second operand is not provided within the CHECK macro.
control passes to the ERROPT routine address.

At least one W AITF macro must be issued between two successive
executions of anyone READ to the same file. The mUltiple W AITF is
essential to the operation of the multiprogramming feature of the system.
Its function is to test device operation availability or buffer processing
availability. If work can be done on any specified file, control remains in
the partition. If not, control passes to a lower priority partition until this
partition is ready for processing.

3886 Optical Character Reader Considerations
The IBM 3886 Optical Character Reader, Model 1, can be operated in
either a foreground or background partition. You must access all operations
through LIOCS macro instructions or through the Physical Input/Output
Control System (PIOCS). In problem programs, the device is controlled by
means of the Assembler language only, at the READ/WAITF LIOCS level.

Two steps are required to use the 3886 as an input device. In one
assembly, you must define the documents to be read. Then, in the problem
program, you issue the instructions to process the documents.

Denning Documents
Two macro instructions are provided for defining documents. One, the DFR
macro instruction, defines attributes common to a group of line types. The
other, the DLINT macro instruction, defines specific attributes of an
individual line type. As many as 26 DLINT macro instructions can be
associated with one DFR macro as long as the number of line types plus
the number of fields is less than or equal to 53.

The DFR and associated DLINT macro instructions are used in one
assembly to build a format record. Only one DFR with its associated
DLINT macro instructions may be specified in each assembly, and the DFR
must precede all DLINT macros in the assembly. The format record must
be link-edited into the core image library so that it can be loaded into the
3886 when the file is to be processed. A format record is loaded into the
3886 control unit when the file is opened. This format record contains
information about the documents being read, each individual line on the
document and each field in the line. This information is used to read the
line and edit the data before it is passed to the problem program. For more
information about the DFR and DLINT macros, see DOS / VS Supervisor
and I/O Macros, GC33-5373.

Appendix 4: Programming Considerations for Some Special Types of I/O Equipment

279

Processing Documents
Existing and new DOS LIOCS macro instructions are used to process
documents on the 3886. Some parameters on existing macro instructions
have been changed or added. The following macros support the 3886:
Macro Functions

DTFDR

OPEN(R)

SETDEV

DRMOD

READ

WAITF

CNTRL

CLOSE(R)

280 DOS/VS Data Management Guide

Defines the 3886 file.

Opens the 3886 file and loads the first format record.

Loads a different format record and exits to the COREXIT
or EOF routine if applicable.

Provides the 110 functions.

Reads a record (one line) from the 3886.

Waits for the read operation to be completed. Exits to
COREXIT or EOF routine if applicable.

Ejects and stacker selects a document, writes the line mark
or page mark or performs timing mark check, and exits to
the COREXIT or EOF routine, if applicable.

Closes the 3886 file.

Reading Data Records
Each time a READ macro instruction is issued, one line of data is supplied
to your program. Each line read is considered to "be a data record. A header
record is also provided to your program with each data record. The header
record is 20 bytes in EBCDIC. Figure 5.10 shows the contents of the
header record.

The data record passed to your program is a fixed-length record
containing up to 130 bytes of data. You specify the length of the record in
the DTFDR macro instruction. The data record is in one of two formats as
follows:
1. If standard mode is specified (IMAGE=NO in the DLINT macro

instruction), the data record contains the EBCDIC character codes for
the line of data after the editing functions have been performed. The
editing functions are specified in the DLINT macro instruction.

2. If image mode is specified (IMAGE = YES in the DLINT macro
instruction), the data record contains two types of information: field
length and data from the document. The first 28 bytes contain 14
two-byte entries that indicate the length of each field in the record. If
the number of fields is less than 14,· the entries for the rightmost
unused fields contain EBCDIC zeros (X'FOFO'). The data read from
the document follows the field length entries, beginning in the 29th
byte.

If the number· of characters in the data record is less than the space allowed
for the input record, the unused rightmost portion of the record is padded
with blanks (X'40').

Document Control and Marking
DOS/VS 3886 support also provides methods of:

• Changing format records

• Ejecting and stacker selecting documents

• Performing timing mark checks

• Line and page marking documents that have been read.

All format records are created in separate assemblies; they must be
cataloged in the core image library before they can be used for processing
documents. You can change format records during program execution by
using the SETDEV macro instruction.

Line and page marking on the 3886 requires a special feature. For
more information on this feature, see IBM 3886 Optical Character
Reader Component Description and Operating Procedures, GA21-9147.

Appendix 4: Programming Considerations for Some Special Types of I/O Equipment

281

Bytes I Field Name

0-1 Document line number

2-3 Line format record number

4 Read sequence number

5 Line information indicator

I Field Contents

Indicates the two-character decimal line number, as specified in the
READmacro instruction.

Indicates the two-character decimal line format record number used
to read this'line of data. It is the same number specified in the LFR
parameter of the associated DLiNT macro instruction.

Indicates the number of times this line has been read. If the line is
read more than nine times, this byte contains X'F9: If a READ
macro instruction is issued but end of page is found before a
line, this byte contains X'FO:

Hex Contents Meaning

FO

F1

F2

F3

F4

F5

F6

The line is not blank and contains no errors.

The line is blank.

A reject character and/or wrong length field
occurred in a critical field. If image mode is
used, F2 indicates only reject characters.

The group erase symbol was encountered on
the line. The data record contains blanks, X, 40:

A reject character and/or wrong length field
occurred in a non-critical field. If image mode
is used, F4 indicates only reject characters.

End of page (EOP) occurred on the requested
read operation. All other bytes in the' header
data contain X'FO: All bytes in the recog­
nition data contain blanks, X'40:

A reject character and/or wrong length field
occurred in both a critical field and a non­
critical field. If image mode is used, F6 in­
dicates only reject characters.

Figure S.10. Header Record Contents (Part 1 of 2)

282 DOS/VS Data Management Guide

Byte Field Name Field Contents

6 - 19 Field information indicator A one - byte indicator exists for each of the 14 fields allowed on a
line.Byte 6 is an indicator for field 1 ,byte 7 for field 2,and so on.
Each byte contains one of the following:

Hex Contents Meaning

FO No errors exist in the field or the field is not
present.

F2 One or more reject characters were found in this
field.

F4 This field is the wrong length. (This setting
cannot occur with image mode.)

F6 Both reject character and wrong length field
conditions occured for this field. (This

.. setting cannot occur with image mode.)

F8 This field was blank before any editing functions
were performed.1f ALBNOF was specified, F4
will be set instead of F8.

Figure S.IO. Header Record Contents (Part 2 of 2)

OMR Considerations

Format Descriptor Card for 0 and R Mode

If MODE=O or MODE=R is specified, a format descriptor card defining
the card columns to be read, or eliminated, must be provided. This
descriptor card qmst be the first in the data set. When it is found, an
80-byte record is built which relates to the specified format on a
column-per-column basis. If the format descriptor record is not found, a
message is issued to the operator and the job is terminated.

The format descriptor card is written as follows:

FORMAT (N1,N2)[,(N3,N4) ...]

FORMAT must be punched in columns 2-7, followed by a blank in
column 8. Operands begin in column 9 and may continue through column
71; they must be separated by a comma. Continuation cards can be
specified by punching an X in column 72; coding on the next card must
then begin in column 16. Both N1 and N2 must be greater than or equal to
one, and less than or equal to 80. N2 must be greater than or equal to N 1.
If the format descriptor card is written FORMAT (N1,N2),(N3,N4), ... , N2
must be less than N3. For OMR, N3 minus N2 must be greater than or
equal to two.

Appendix 4: Programming Considerations for Some Special Types of I/O Equipment

283

Coding of OMR Input

OMR Data Records

For MODE=O, Nl indicates the first column, and N2 indicates the
last column, to be read in OMR mode. Only every other column between
Nl and N2 can be read in OMR mode; therefore, Nl and N2 must both
have even values or both have odd values.

For MODE=R, Nl indicates the first column not to be read, and N2
indicates the last column not to be read.

For example, if the operand MODE=O is specified, and it is desired
to read columns 1, 3, 5, 7, 9, 70, 72, 74, 76, 78, and 80 in OMR mode,
the following format descriptor card would be used:

FORMAT (1,9),(70,80)

Or, if the operand MODE=R were specified and it were desired to
read all card columns except 20 through 30 and 52 through 76, the
following format descriptor card would be used:

FORMAT (20.30).(52.76)

The following rules apply to the coding of an input card to be read in OMR
mode:

• Mark characters (characters to be read optically) must be separated by
at least one column which contains neither marks nor punches. "M"
in the example indicates mark characters and "b" indicates the
blanks:

MbMbMbbM

• Mark characters must be separated from any columns containing
punched holes (in the example indicated by "H") by at least one
column which contains neither marks nor punches:

MbHbHHH

• Mark characters in odd columns must be separated from mark
characters in even columns by at least two columns which contain
nether marks nor punches (in the example the numbers above the
characters indicate card columns):

12345678
MbMbMbM

Although OMR data is physically located in alternating columns the data in
the 110 area is compressed into contiguous bytes. The relationship of data
on card columns to the location of the data in storage is as follows:

1. If column n does not contain OMR data, the data content of column
n + 1 represents the contiguous byte in virtual storage which follows
the column n data byte.

2. If column n does contain OMR data, the data content of column n + 2
represents the contiguous byte in virtual storage which follows the
column n data byte. The data contents of column n+ 1 is not placed
in virtual storage.

284 DOS/VS Data Management Guide

I'
I

Card column 1 2 3 4

3. The data content of column 1 always represents the first data byte in
virtual storage.

Figure 5.11 shows how these rules apply to the data card and its
format descriptor card, and the record which results from reading the data
card.

When a weak mark or poor erasure is detected in a column by the
IBM 3505 Card Reader, the column's data is replaced with a hexadecimal
3F (X'3F') when reading in EBCDIC mode, or two hexadecimal 3Fs
(X'3F3F') when reading in column binary mode. Checking for this
condition is the user's responsibility.

If X'3F' is placed in the data, a X'3F' is also placed in byte 80 of the
I/O area when reading in EBCDIC mode, or in byte 160 when reading in
column binary mode, to indicate OMR reading error. The user can then
determine whether or not an OMR reading error occurred on the card by
checking this byte. If, however, the I/O area length is less than 80 for
EBCDIC mode or less than 160 for column binary mode, the X'3F' is not
placed in virtual storage. In this case, to determine if a reading error
occurred the user must check each OMR byte for a X'3F'.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Card Data P1 P2 15 M4 15 M6 1) 15 M9 15 M11 1) P13 P14 P15 P10 P17 P18 r 19 P20

Format Data 15 15 15 F4 - F6 - 15 F9 - Fll - 15 15 15 15 15 15 15 15

'---v-----' ~ '--v--'
Switcn from Switch from even SWitch from

punch to mark to odd marks mark to punch

Format
Descriptor F 0 R M A T (4 6) (9 I 1 1)
Card

Channel DatCi Pl P2 15 M4 M6 15 M9 Mll P13 P14 P15 P16 P17 P18 P19 P20

15 = Must have neither hole nor mark data

15 = Hexadecimal 40

- = May be character or blank

P = Punched data in column x
x

M
x = Mark data in column x

F = Format data for column x x

Figure 5.11. OMR Data and Format Coding Example.

Appendix 4: Programming Considerations for Some Special Types of I/O Equipment
285

Ap~ndix 5: The American National Standard Code for Information Interchange
(ASCII)

In addition to the EBCDIC mode, DOS/VS accepts magnetic tape files
written in ASCII (the American National Standard Code for Information
Interchange), a 128-character, 7-bit code. The high-order bit in this 8-bit
environment is zero. ASCII is based on the specifications of the American
National Standards Institute, Inc. (ANSI).

Under DOS/VS, ASCII data files are processed in EBCDIC. At
system generation time if ASCII= YES is specified in the SUPVR macro,
two translate tables are included in the supervisor. When these tables are
used, logical IOCS translates from ASCII to EBCDIC as soon as the data
has been read into the I/O area. For ASCII output the data is translated
from EBCDIC to ASCII just before writing the record. The address of the
ASCII to EBCDIC translate table is in bytes 44-47 of the extension of the
communication region for each partition. The address of the EBCDIC to
ASCII table is 256 bytes higher than that of the first table. The address of
the communication region extension is found in bytes 136-139 of the
communication region.

Figure 5.12 shows the relative bit positions of the ASCII character set.
An ASCII character is described by its column/row position in the table.
The four high-order bits are listed in columns across the top of the figure;
the four low-order bits are. in rows along the left side. Because the letter P
in ASCII is located under column 5 and row 0, it is described in ASCII
notation as 5/0. ASCII 5/0 and EBCDIC X'50' represent the same binary
configuration (B'0101 0000'); however, this configuration is graphically
represented by P in ASCII and by & in EBCDIC. ASCII notation is
always expressed in decimal; so, for example, the ASCII Z is expressed
5/10 (not 5/ A).

Figure 5.13 shows ASCII to EBCDIC correspondence. For those
EBCDIC characters that have no direct equivalent in ASCII, the substitute
character (SUB) is provided during translation.

Note: If an EBCDIC file has been translated into ASCII, and then the user translates
back into EBCDIC, these substitute characters may not receive the expected value.

286 DOS/VS Data Management Guide

)
/

)

b • 0 0 0 0 1 1 1 1 Kb • 0 0 1 1 0 0 1 1
6 b • 0 1 0 1 0 1 0 1

'B 5
i~ b b b b

1 ~ '\ i r i 1
0 1 2 3 4 5 6 7

Row

0 0 0 0 0 NUL OLE SP 0 @ P . p

0 0 0 1 1 SOH DEl tCV 1 A Q a q

0 0 1 0 2 STX DC2 .. 2 B R b r

0 0 1 1 3 ETX DC3 * 3 C S c s

0 1 0 0 4 EOT DC4 $ 4 0 T d t

0 1 0 1 5 ENQ NAK % 5 E U e u

0 1 1 0 6 ACK SYN & 6 F V f v

0 1 1 1 7 BEL ETB I 7 G W g w

1 0 0 0 8 BS CAN (8 H X h x

1 0 0 1 9 HT EM) 9 I Y i Y

1 0 1 0 10 LF SUB ." : J Z i z

1 0 1 1 11 VT ESC + ; K [k l
1 1 0 0 12 FF FS < L \ I I , I

1 1 0 1 13 CR GS - = M] m ~
1 1 1 0 14 SO RS > N ,,(2) n -
1 1 1 1 15 SI US / ? 0 - 0 DEL

(1) The graphic I (Logical OR) may also be used instead of I (Exclamation Point).

~ The graphic -, (Logical NOT) may also be used instead of (Circumflex).

C'J) The 7 bit ASCII code expands to 8 bits when in storage by adding a high order 0 bit.

Example: Pound sign (I') is represented by

b
7

b
6

b
5

b
4

b
3

b
2

b
1

0 0 1 0 0 0 1 1

Control Character R~resentations Special Graphic Characters

NUL Null OLE Data Link Escape (CC) 1 SP Space < Less Than
SOH Start t:J Heading (CC) DCl Device Control 1 II Exclamation Point Equals
STX Start of Text (CC) DC2 Device Control 2 I Logical OR > Greater Tha"
ETX End of Text (CC) DC3 Device Control 3 .. Quotation Marks ? Question Mark
EOT End of Transmission (CC) DC4 Device Control 4 (I Number Sigfl @ Commercial At
ENQ Enquiry (CC) NAK Negative Acknowledge (CC) $ Dollar Sign [Opening Bracket
ACK Acknowledge (CC) SYN Synchronous Idle (CC) % Percent \ Reverse Slant
BEL Bell ETB End of Transmission Black (CC) & Ampersand] Closing Bracket
BS Backspace (FE) CAN Cancel II Apostraphe A Circumflex
HT Horizontal Tabulation (FE) EM End of Medium I (Opening Parenthesis -,

Logical NOT
LF Line Feed (FE) SUB Substitute I ~ Closing Parenthesis Underline
VT Vertical Tabulation (FE) ESC Escape Asterisk Grave Accent
FF Form Feed (FE) FS File Separator (IS) I: Plus Opening Brace
CR Carriage Retum (FE) GS Group Separator (IS) Comma Vertical Line (This graphic
SO Shift out RS Record Separator (IS) . - Hyphen (Min ... s) is stylized to distinguish it
SI Shift in US Unit Separator (IS) I. Period (Deoimal Point) from Logical OR)

DEL Delete I~ Slant Closing Brace
Colon Tilde

I· Semicolon
(CC) Communication Control I '

(FE) Format Effector
(IS) Informati on Separator

FIgUre 5.12. ASCII character set

Appendix 5: The American National Standard Code for Information Interchange
(ASCII) 287

ASCII EBCDIC

I Bit Col : Row Bit
Character Col I Row Comments

I Position (in Hex) Positior>
I 1
I .

NUL 0 0 0000 I 0000 0 I 0 0000 I 0000
SOH 0 I 1 0000 I 0001 0

, 1 0000 I 0001
STX 0 I 2 0000 I 0010 0 . 2 0000 I 0010
ETX 0 I 3 0000 0011 0 3 0000 I 0011
EOT 0 I 4 0000 I 0100 3 I 7 0011 0111
ENQ 0 5 0000 I 0101 2 I 0 0010 I 1101
ACK 0

.
6 0000 I 0110 2 I E 0010 I 1110

BEL 0 I 7 0000 I 0111. 2 I F 0010 I 1111
8S 0 I 8 0000 , 1000 1 6 0001 I 0110
HT 0 I 9 0000 1001 0 5 0000

.,
0101

LF 0 I 10 0000 1010 2 5 0010 0101
VT 0 I 11 0000 1011 0 L B 0000 .1 1011
FF 0 12 0000 I 1100 0 I C 0000 1100
CR 0 13 0000 I 1101 0 I 0 0000 I 1101
50 0 14 0000 I 1110 0 I E 0000 I 1110
51 0 15 0000 1111 0 F 0000 I 1111
OLE 1 , 0 0001 0000 1 0 0001 I 0000
OCI 1 I 1 0001 0001 1 1 0001 0001
OC2 1 I 2 0001 0010 1 I 2 0001 0010
OC3 1 3 0001 I 0011 1 I 3 0001 I 0011
OC4 1 4 0001 I 0100 3 I C 0011 I 1100
NAK 1 I 5 0001 I 0101 3 I 0 0011 I lJOl
5YN 1 I 6 0001 0110 3 2 0011 I 0010
ETB 1 I 7 0001 0111 2 6 0010 0110
CAN 1 I 8 0001 1000 1 I 8 0001 1000
EM 1 I 9 0001 I 1001 1 I 9 0001 I 1001
5UB 1 10 0001 I 1010 3 I F 0011 I 1111
ESC 1 11 0001 I 1011 2 I 7 0010 I 0111
FS 1 I 12 0001 I 1100 1 C 0001 I 1100
G5 1 I 13 0001 I 1101 1 0 0001 1101
R5 1 I 14 0001 1110 1

.
E 0001 1110

US 1
, 15 0001 1111 1 I F 0001 1111

5P 2 0 0010 I 0000 4 I 0 0100 1 0000
1(1) 2 I 0010 , 0001 4 I F 0100 , 1111 Logic:alOR
" 2 2 0010 I 0010 7 I F 0111 I 1111

!.. 2 3 0010
,

001l 7 .' B 0111 I 1011
$ 2 4 0010 0100 5 B 0101 I 1011
% 2 I 5 0010

.
0101 6 C 0110

,
1100

& 2 I 6 0010 0110 5 0 0101 0000
I 2 I 7 0010 1 0111 7 I 0 0111 I 1101
(2

,
8 0010 I lOCO 4 , 0 0100 I 1101

) 2 9 0010 I 1001 5 , D 0101 I 1101
* 2 10 0010 , 1010 5 ,

C 0101 , 1100
+ 2 I 11 0010 , 1011 4 I E 0100 I 1110
, 2 , 12 0010 . 1100 6 B 0110

,
1011

- 2 I 13 0010 1101 6 0 0110
.

0000 Hyphen, Minus
2 I 14 0010 1 1110 4 I B 0100 1 1011

j 2
,

15 0010 I 1111 6 I 1 0110 I 0001
0 3 0 0011 , 0000 F I 0 1111 I 0000
1 3 1 1 0011 , 0001 F 1 1111 I 0001
2 3 I 2 001l 0010 F 2 1111 0010
3 3 I 3 0011 0011 F 3 1111 0011
4 3 I .. 0011 0100 F 4 1111 0100
5 3

,
5 0011 0101 F I 5 1111 1 0101

6 3 6 0011 I 0110 F I 6 1111 , 0110
7 3 7 0011 I 0111 F I 7 1111 I 0111
8 3 8 0011

,
1000 F I 8 1111 I 1000

9 3 I 9 0011 1001 F 9 1111 1001
: 3 I 10 0011 1010 7 i A 0111 1010
; 3 I 11 0011 I 1011 5 I E 0101 I 1110
< 3 12 0011 I 1100 .. I C 0100 I 1100
= 3 13 0011 I 1101 7 I E 0111 I 1110
> 3 I 14 0011 , 1110 6 I E 0110 I 1110
1. 3 I IS 0011

, 1111 6
,

F 0110 , 1111

Figure 5.13. ASCII to EBCDIC correspondence (Part 1 of 2)

288 DOS/VS Data Management Guide

ASCII
I
I Bit

Character Col I Row Pattern
I

@ .. I 0 0100 : 0000
·A .. 1 0100 I 0001
B .. 2 0100 I 0010
C .. 3 0100 I 0011
D 4 I 4 0100 I 0100
E 4 I 5 0100 0101
F 4 I 6 0100 0110
G 4

,
7 0100 J 0111

H 4 8 0100 I 1000
I 4 9 0100 I 1001
J .. I 10 0100 I 1010
K .. I 11 0100 1011
L .. I 12 0100 1100
M 4 I 13 0100 1101
N 4 14 0100 I 1110
0 4 L 15 0100 I 1111
P 5 1 0 0101 I 0000
Q 5 I 1 0101 I 0001
R 5 I 2 0101 0010
S 5 I 3 0101 0011
T 5 I 4 0101 ~ 0100
U 5 5 0101 I 0101
V 5 6 0101 I 0110
W 5 I 7 0101 I 0111
X 5 I 8 0101 I 1000
Y 5 I 9 0101 1001
Z 5 I 10 0101 1010
[5

,
11 0101 1011

" 5 12 0101 I 1100
J 5 13 0101 I 1101
""W 5 I 14 0101 I 1110

- 5 I 15 0101
,

1111 ,
6 I 0 0110 0000

a 6 I 1 0110 0001
b 6

,
2 0110 0010

c 6 · 3 0110 I 0011
d 6 I 4 0110 I 0100
e 6 I 5 0110 I 0101
f 6 t 6- 0110 01]0

9 6 I 7 0110 0111
h 6 , 8 0110 . 1 1000
i 6 9 0110 I 1001
1 6 · 10 0110 I 1010
k 6 · 11 0110 I 1011
I 6 I 12 0110 I 1100
m 6 I 13 0110

,
1101

n 6 I 14 0110 1110
0 6

,
15 0110 1111

p- 7 0 0111 I 0000
q 7 1 0111 I 0001
r 7 ~ 2 0111 I 0010
s 7 I 3 0111 0011
t 7 I .. 0111 0100
u 7 I 5 0111 0101
v 7

,
6 0111 1 0110

w 7 7 0111 I 0111
x 7 I 8 0111 I 1000
y 7 I 9 0111 I 1001
z 7 I 10 UIII 1019
{ 7 I 11 0111 1011 ,

7 I 12 0111 1100 I

) 7 · 13 0111 ~ 1101
,." 7 1 .. 0111 I 1110
DEL .,

I 15 0111 I 1111

CD The graphic I (Exclamation Point) can be used instead of I (Logical OR).

~ Th. graphic'" (Circumflex) can be used instead of ..., (logical NOT).

,
Col I Row

I
(in H.ex)

7
I

C
C I 1
C I 2
C I 3
C I 4
C

,
5

C 6
C 7
C I 8
C I 9
D I 1
D

, 2
D 3
D 4
D I 5
D I 6
D I 7
D I 8
D I 9
E

,
2

E 3
E I 4
E I 5
E I 6
E I 7
E I 8
E

,
9

4
,

A
E . 0
5 I A
5 , F
6 I D
7

, 9
8 -'--

1
8 2
8 I 3
8 I 4
8 I 5
8 I 6
8

,
7

8 8
8 I 9
9 I 1
9 I 2
9 I 3
9 I 4
9 5
9 6
9 7
9 I 8
9 I 9
A I 2
A ' 3
A ..
A I 5
A I 6
A I 7
A I 8
A I 9
C 0
6 A
D . 0
A I 1
0 I 7

Figure 5.13. ASCII to EBCDIC correspondence (Part 2 of 2)

EBCDIC

Bit
Pattern Comments

0111
I

1100
1100 I 0001
1100 I 0010
1100 I 0011
1100 I 0100
1100 0101
1100 0110
1100 I 0111
1100 I 1000
1100 I 1001
1101 I 0001
1101 I 0010
1101

,
0011

1101 I 0100
1101 I 0101
1101 I 0110
1101 I 0111
1101 I 1000
1101

,
1001

1110 I 0010
1110 I 0011
1110 I 0100
1110 I 0101
1110 I 0110
1110 , 0111
1110 1000
1110 1001
0100 I 1010
1110 I 0000 Reverse Slant
0101 I 1010
0101 I 1111 Loaicol NOT
0110 I 1101 Underscore
0111 . 1001 Grave Accent
1000 . 0001
1000 0010
1000 I 0011
1000 I 0100
1000 I 0101
1000 0110
1000 0111
1000 I 1000
1000 I 1001
1001 I 0001
1001 I 0010
1001 I 0011
1001 0100
1001 0101
1001 I 0110
1001 I 0111
1001 I 1000
1001 I 1001
1010 I 0010
1010 0011
1010 0100
1010 I 0101
1010 I 0110
1010 I 0111
1010 I 1000
1010 1001
1100 0000
0110 I 1010 Vertical_Line
1101 I 0000
1010 I 0001 Tilde
0000 I 0111

Appendix 5: The American National Standard Code for Information Interchange
(ASCII) 289

ASCII Tape Files
Records of an ASCII tape file may be preceded by a block prefix with a
length of 0-99 bytes.

On ASCII variable-length (format D) input, if the block prefix is four
bytes long and contains the length of the physical record (unpacked decimal
format), the block prefix may be used to check the physical record length.
On ASCII variable-length output, DOS/VS can create a block prefix that is
four bytes long containing the length of the physical record. The length of
the physical record includes the length of the block prefix. For fixed and
undefined records, DOS/VS ignores the block prefix on input and does not
restore this field on output.

The length of an ASCII physical record also includes any padding
characters present. For certain operating systems when the block size of a
file is required to be a multiple of a constant value n, unused end positions
of physical records may be filled with padding characters, thus ensuring that
all blocks conform with the required length. DOS/VS accepts these
padding characters (corresponding to EBCDIC X'5F') on ASCII input, but
it does not perform any padding operation on output.

All ASCII records are processed by DOS/VS in EBCDIC, and the
system takes care of the conversion and translation.

ASCII Variable-Length (Format D)
Format D provides for variable-length records in variable-length blocks,
each of which may include a block length. If the block prefix is four bytes
long and the physical record length is contained in the block prefix field,
the system performs length checking on input (if specified by the user).

Figure 5.14 shows format D records. The first four bytes of the
logical record (dddd) contain the length of that logical record. The system
makes use of this record length information in deblocking and blocking.

Blocked Records

------------- (DODD) ------------•

..........

................. "
Logical Record

1- Data

I
I--------dddd------- "
I
I
I Unblocked Records " I

Logical Record

------------(0000) ------------

Figure 5.14. Format D records (ASCII)

In format D, the block length (DDDD) may be contained in the block
prefix (in unpacked decimal format) if this field is four bytes long. In that
case the physical block length is automatically provided when the file is

290' DOS/VS Data Management Guide

written. On output the system only supports a block prefix with a length of
zero or four bytes. Although the block prefix does not appear in the logical
record furnished to the user, input and output areas must be large enough
to accomodate it and any padding characters within the physical record.

If a padding character is detected by 10CS in the first position of the
four-byte record length descriptor field (required as the first four bytes of
each logical record), all remaining bytes in the block are bypassed. The
next logical record is then retrieved from the next block.

Appendix 5: The American National Standard Code for Information Interchange
(ASCII) 291

Glossary
This glossary defines most of the terms used in this book. For a more
complete list of data processing terms, the reader is referred to the IBM
Data Processing Glossary, GC20-1699.

IBM is grateful to the American National Standards Institute (ANSI) for permission to
reprint its definitions from the American National Standard Vocabulary for Information
Processing (Copyright © 1970 by American National Standards Institute, Incorporated),
which was prepared by Subcommittee X3K5 on Terminology and Glossary of American
National Standards Committee X3. ANSI definitions are preceded by an asterisk.

Note: The definitions of some of the terms below are different from the definitions in
the IBM Data Processing Glossary. This is because the terminology used in that book is
less familiar to users of earlier versions of DOS. Rather than to change the familiar
terminology and perhaps confuse the reader, we have, for the purpose of this book,
chosen a somewhat older terminology in some instances.

Access Method:
Any of the data management techniques (sequential, indexed-sequential, or
direct) available for transferring data between virtual storage and an
input/ output device.

Access Method Services:
A multifunction service program that defines VSAM files and allocates
space for them, converts indexed-sequential files to key-sequenced files with
indexes, modifies file attributes in the catalog, reorganizes files, facilitates
data portability between operating systems, creates backup copies of files
and indexes, helps make inaccessible files accessible, and lists the records of
the files and catalogs.

ASCII (American National Standard Code for Information Interchange):
A 128-character, 7-bit code. The high-order bit in the System/370 8-bit
environment is zero.

Block:
1. To group logical records physically for the purpose of saving storage

space in external storage, or increasing the efficiency of access or
processing.

2. See: Physical block.

Block Prefix:
1. An optional, 0-99 byte field preceding an ASCII record on magnetic

tape. It contains data specified by the user or, for variable-length
(ASCII Format D) records, the physical block length.

2. (general) Additional data stored in one or more fields that precede
application data. A block prefix is used in those cases where an access
method requires additional information about the data following.

Buffer:
1. A storage device in which data is assembled temporarily during data

transfer between virtual storage and an input/output device. An
example is the 2821 control unit, a control and buffer storage unit for
card readers, card punches, and printers.

2. A portion of virtual storage into which data is read, or from which
data is written. Synonymous with I/O area.

CCB: See: Command Control Block.

CCW: See: Channel Command Word.

292 DOS/VS Data Management Guide

Chained records:
A method of grouping logical records on a diskette in order to enhance
access or processing efficiency.

Channel Command Word (CC;W):
A doubleword at the location in real storage specified by the channel
address word. One or more CCWs make up the Channel program.

Channel Program:
One or more Channel Command Words (CCWs) that control a specific
sequence of channel operations. Execution of the specific sequence is
initiated by a single SIO machine instruction.

Checkpoint Record:
A record containing the status of the job and of the system at the time the
checkpoint routine writes the record. This record provides the necessary
information for restarting a job without returning to the beginning of the
job.

Checkpoint/ Restart:
A means of restarting execution of a program at some point other than the
beginning. When a CHKPT macro is issued in a problem program,
checkpoint records are created. These records contain the status of the job
and the system. When it is desired to restart a program at a point other
than the beginning of the job, the restart procedure uses the checkpoint
records to re-initialize the system.

Checkpoint Routine:
A routine that records information for a checkpoint.

Command Control Block (CCB):
A 16-byte field required for each channel program executed by physical
IOCS (PIOCS). This field is used for the communication between PIOCS
and the problem program.

Control Program:
A group of programs that provides functions such as the handling of I/O
operations, error detection and error recovery, program loading, and
communication between the program and the operator. IPL, supervisor, and
job control make up the control program in DOS/VS.

Control Section:
The smallest separately relocatable unit of a program; that portion of text
specified as an entity, all elements of which are to be loaded into
contiguous virtual storage locations.

Data Compression:
The process of changing the representation of data into a compressed
representation, by replacing a string of repetitive characters by a number
which indicates the amount of characters eliminated. Data compression may
be used for saving space in virtual storage or auxiliary storage.

Data Conversion:
The process of changing data from one form of representation to another.

Data Encoding:

Glossary 293

The process of changing the representation of data into a coded
representation, through a translation routine. Data encoding may be used
for saving space in main storage or auxiliary storage, or for security.

Data Set Security:
A feature that provides protection for disk files. A secured file cannot be
accidentally accessed by a problem program.

Device Independence:
The capability of a program to process the same type of data on different
device types (punched card devices, printers, magnetic tape, or disk).

DTF (Define The File) Macro:
A macro which describes the characteristics of an input/output file,
indicates the type of processing for the file, and specifies the virtual storage
areas and routines to process the file. These characteristics are described
using the appropriate parameters in the keyword operands of the DTF
macro.

Extent:
A continuous space on a direct access storage device, occupied by or
reserved for a particular file.

*File:
A collection of related records treated as a unit. For example, one line of
an invoice may form an item, a complete invoice may form a record, the
complete set of such records may form a file, the collection of inventory
control files may form a library, and the libraries used by an organization
are known as its data bank.) See: Logical file, Physical file.

Fixed-Length Record:
A record having the same length as all other records with which it is
logically or physically related. (Contrasted with variable-length record.)

Header Label:
A file label that precedes the data records on a unit of recording media.

I/O (Input/Output) Area:
A portion of virtual storage into which data is read or from which data is
written. See: buffer.

IOCS (Input/Output Control System):
A group of macros and the routines which process them, provided by IBM
for handling the transfer of data between virtual storage and external
storage devices.

Load Point:
The beginning of the recording area on a reel of magnetic tape.

Logic Module:
The logical IOCS routine that provides an interface between a processing
program and physical IOCS.

Logical File:
A collection of one or more logical records, treated as a unit by
user-written data processing routines in application programs.

Logical Record:

294 DOS/VS Data Management Guide

(

\

A record identified from the standpoint of its content, function, and use
rather than its physical attributes; that is, one which is meaningful with
respect to a program. (Contrasted with Physical block.)

Multifile Volume:
A unit of recording media, such as a magnetic tape reel or disk pack, that
contains more than one file.

Multivolume File:
A file which, due to its size, requires more than one unit of recording media
(such as a magnetic tape reel or disk pack) to contain the entire file.

Nonstandard Labels:
Labels that do not conform to the IBM-standard label conventions. They
can be of any length, need not have a specified identification, and do not
have a fixed format.

Operating System:
A collection of programs that enables a data processing system to supervise
its own operations,automatically calling in programs, routines, language
processors, and data as needed for continuous throughput of a series of
jobs.

Physical Block:
A collection of one or more stored records read from or written to external
storage as a unit. The collection of stored records as a whole may be
expanded by additional control information required by the storage device
or the operating system.

Physical File:
A collection of one or more physical blocks, stored in external storage in
one of several prescribed arrangements, and described by control
information to which the system has access.

Private Library:
A relocatable, core image, or source statement library that is separate and
distinct from the system library.

Problem Program:
1. The user's object program. It can be produced by any of the language

translators. It consists of instructions and data necessary to solve his
data-processing problem or to achieve a certain result.

2. A general term for any routine that is executed in the data processing
system's problem state; that is, any routine that does not contain
privileged operations. (Contrasted with Supervisor.)

Processing Program:
A general term for any program that is both loaded and supervised by the
control program. This includes IBM-supplied programs such as language
processors, linkage editor, librarian, sort/merge, and system utilities, as well
as user-supplied programs. (Contrasted with control program.)

Real Storage:
All addressable storage from which instructions can be executed or from
which data can be loaded directly into registers.

Record:

Glossary 295

A general term for any unit of data that is distinct from all others when
considered in a particular context. See: Logical record, Stored record,
Physical block.

Relocatable:
The attribute of a module or control section whose address constants can
be modified to compensate for a change in origin.

Resource:
Any facility of the computing or operating system required by a job or task.
This includes storage, 110 devices, the central processing unit, files, and the
control and processing pr9grams.

Restart: See: Checkpoint/restart.

-SDL: See: System Directory List.

Self-Relocating:
A programmed routine that is loaded at any doubleword boundary and can
adjust its address values so as to be executed at that location.

Self-Relocating Program:
A program that can be loaded into any area of virtual storage by having an
initialization routine to modify al address constants at object time.

Shared Virtual Area:
An area located in the highest addresses of virtual storage. It can contain a
system directory list of highly used phases and resident programs that can
be shared between partitions.

Stored Record:
A logical record in a format in which it is manipulated by a logic module.
Thus, a stored record may be a logical record which is expanded with any
additional control information as required for an access method.

Supervisor~

A component of the control program. It consists of routines to control the
functions of program loading, machine interruptions, external interruptions,
operator communications, and physical IOCS requests and interruptions.
The supervisor alone operates in the privileged (supervisor) state. It coexists
in real storage with problem programs.

SVA: See: Shared Virtual Area.

Symbolic 110 Assignment:
A means by which problem programs can refer to an 1/0 device by a
symbolic name. Before a program is executed, job control can be used to
assign a specific 110 device to that symbolic name.

System Directory List:
A list containing directory entries of highly used phases and of all phases
resident in the shared virtual area. This list is placed in the shared virtual
area.

Telecommunications:
A general term expressing data transmission between remote locations.

Teleprocessing:

296 DOS/VS Data Management Guide

A term associated with IBM telecommunication systems expressing data
transmission between a computer and remote devices.

Track Hold:
A function for protecting DASD tracks that are currently being processed.
When track hold is specified in the DTF macro for that file, a track that is
being modified by a task in one partition cannot be concurrently accessed
by a task or subtask in another partition.

Undefined Record:
A record having an unspecified or unknown length.

Variable-Length Record:
A record having a length independent of the lengths of other records with
which it is logically or physically associated. (Contrasted with fixed length
record.)

Virtual Storage:
Addressable space that appears to the user as real storage, from which
instructions and data are mapped into real storage locations. The size of
virtual storage is limited by the addressing scheme of the computing system
and by the amount of auxiliary storage available, rather than by the actual
number of real storage locations.

Volume:
That portion of a single unit of storage media that is accessible to a
read-write mechanism. For example, a reel of magnetic tape, or a disk pack
on an IBM 2314 disk storage drive.

Glossary 297

Index addressing, relative track (DAM) 163
advantage, DASD and diskette 57
advantages of VSAM files 100

ACB macro (VSAM) ... 226
access (VSAM)

addressed ... 209

aids for problem determination (VSAM) 245
algorithm

organization ... 21

addressed sequential .. 232
authorization .. 243

randomizing for DAM 163,164
allocating space (VSAM) 213

control interval .. 243 allocation, automatic space 95

direct by key .. 208
full .. 243

ALTER command (VSAM) 214
altering password information (VSAM) 243

keyed .. 208
method control block examination 228

alternate
area .. .60

method control block modification 228 tape switching .. 130

method control block testing 229
read .. 243

track .. 48,81
track assign program ... 81

requesting ... 225
sequential by key ... 208
skip sequential ... 207
update .. 243
with entry-sequenced file 206

access method ... 23,83
control block definition (VSAM) 226

American National Standard Code for
Information Interchange 40,46,288

analysis, track ... 80
analyzing (VSAM)

errors .. 245
logical errors .. 226
physical errors ... 226

control block generation (VSAM) 228
direct .. 91

area
alternate ... 60

indexed-sequential ... 92
introduction ... 90

control (VSAM) 199,203
count .. 49

sequential .. 91,133
services ... 212

count, key, and data (ISAM) 183
data .. 49

virtual storage ... 93,198
access methods ... 133

key ... 49
overflow ... 99

teleprocessing ... 91
under DOS/VS .. 90

access time ... 25

overflow (DAM) 165,170,172
overflow (ISAM) ... 181
prime data (DAM) .. 165

accessibility ... 24
accessibility testing, VSAM file 214
activity, file ... 98
actual record address (DAM) 162
ADD routine .. 196

prime data (ISAM) .. 181
SAM storage .. 153
size of control (VSAM) 236
split, control (VSAM) 205
types under ISAM, overflow 183

adding records to an ISAM file 185,196
additional labels ... 67

argument, VSAM search 228
arranging spanned records 43

additions to a DAM file 101 ASCII ... 40,48,288

address ASCII tape file, record structures of 48

DASD (DAM) ... 162
home .. 48

assembly of logic modules 121
assembly of SAM logic modules 159

marker .. 49 ASSGN card ... 74

of VSAM work area .. 227 assignment of device names 75

addressed (VSAM)
access ... 209

associated files .. 269
attributes of direct access storage

direct deletion .. 210 devices .. 258

direct .processing .. 94
direct retrieval ... 210

authorization to access (VSAM) 244
automatic

sequential access .. 210
sequential processing ... 94
sequential retrieval ... 210

file reorganization (VSAM) 232
space allocation ... 93
space reclamation .. 93

Index 299

space reclamation (YSAM) 94,204 channel programs, diskette 129
tape switching .. 149 channel scheduler ... 125

character readers, programming
considerations ... 276

block
count field .. 66
descriptor ... 44
physical ... 23,25
processing, physical (SAM) 150
reading under DAM .. 175
structure restrictions .. 56
structure, physical (ISAM) 183
verification ... 81
writing under DAM ... 176

blocking factor (SAM) 139
blocking, record ... 23,25
blocks on diskette .. 135
blocks, truncated .. 40
BTAM .. 91
buffer .. 28
buffer size (YSAM) ... 233
buffer storage space (YSAM) 226
buffered data .. 29
buffering, console ... 130

character, control .. 45,155
characteristics of logical data files 110
characteristics of storage devices 24,247
CHECK macro (SAM) 151
checkpoint records ... 77
checkpoint records on magnetic tape 130
checkpoint/restart .. 76
checkpoint/restart for random

processing ... 77
CHKPT macro ... 76
choice of organization and processing

method .. 97
clear disk program (DAM) 165
clearing a track under DAM 176
CLOSE macro

ISAM ... 197
SAM ... 120
YSAM .. 225

CLOSER macro
ISAM ... 197
SAM ... 120

CNTRL macro (DAM) 175

capability of inquiry ... 103
CNTRL macro (SAM) 154
code, YSAM return .. 245

capacity of storage devices 24,258 codes, ISAM ... 234
capacity combination of I/O and work areas under

DASD .. 258 SAM ... 134
data .. 24 command (YSAM)
diskette .. 61,252 ALTER .. 214
record (DAM) ... 164 DEFINE .. 213
track ... 60 DELETE .. 214

card devices, record structure of 46 EXPORT ... 215
card, ASSGN .. 74 IMPORT .. 216
catalog (YSAM) ... 211 LISTCAT ... 215

definition ... 211,213 REPRO .. 215
entries .. 211 PRINT ... 215
entries, listing ... 215 YERIFY .. 214
entry listing .. 215
entry modification ... 214

command chaining retry 127
command control block (CCB) 124

entry removal ~ 214
information extraction 215
updating ... 241

CCB .. 124

completion
I/O operation .. 125
I/O operation for OCR 153
macros .. 120

CCB macro .. 124
CCW .. 125
CDMOD macro .. 159
chaining, command retry 128
chaining, data ... 128
changing the RBA (YSAM) 228,241
channel command word (CCW) 125

read or write operation (DAM) 177
compressing data .. 14
compressing YSAM keys 203
concept, cylinder .. 50
concept, data base .. 28
concurrent request processing 232
conditional statements .. 212

channel programs, DASD 129 conditions, end-of-volume (SAM) 149

300 . DOS/VS Data Management Guide

connection of processing program and file DAM ... 91,160
(VSAM) ... 225 capacity record .. 164

considerations DASD address ... 162
high-level language .. 108 data location .. 162
multiprogramming .. 75 file additions '" .. 101
PIOCS programming 126 file deletions .. 101
random retrieval .. 105 logical record deletion 163
record selection .. 40 overflow record ... 167

console buffering .. 129 record formats ... 161
consoles, record structures of 46 related to organization 90
context, data 13 DASD
control area (VSAM) 199,203 address (DAM) ... 163

preformatting ... 241 advantage ... 57
splitting ... 205,241 attributes .. 258

control channel programs ... 128
area size (VSAM) ... 236 data records ... 49
block generation (VSAM) 228 defective track ... 81
character ... 45,155 devices, organization of data 84
field .. 162 file organization ... 97
information .. 23 file processing .. 97
information (VSAM) 201 label formats .. 69
information for spanned records 41 maintenance ... 80
information for variable length mechanism ... 59
records .. 40 record structure ... 47

information on DASD tracks 47 standard label formats 263
input/ output .. 28 track control information 48
statement, RSTRT ... 77 volume preparation .. 91
system, input/output (I0CS) 108 data and index on separate volumes

control interval (VSAM) 199,236 (VSAM) ... 237
access ... 207 data area r .. 49
location .. 202 ISAM ... 181
size .. 199,236 prime (DAM) .. 167
split .. 205 prime (ISAM) .. 181
storing a record ... 200 data base .. 28

control intervals, number of VSAM 204 data block reading under DAM 175
converting VSAM files 215 data block writing under DAM 176
copying VSAM files ... 214 data blocks under DAM, fixed length 168
correction of I/O errors 78 data capacity .. 24
count data chaining .. 128

area .. 49 data context .. 12
area. (ISAM) .. 187 data entity .. 12
field, block ... 66 data field .. 13
field, line .. 155 data file, characteristics of logical 110

conversion algorithm for DAM 164 data integrity ... 78,255
creating a VSAM file ... 206 data integrity (VSAM) 96,240
creating an ISAM file 184,194 data interchange ... 26
cylinder ... 59 data length .. 50

concept ... 59 data location under DAM 166
index for ISAM ... 179 data management ... 11
index for ISAM, resident 180 data management functions 13
overflow area (DAM) 170,172 data module .. 255
overflow area (ISAM) 181 data organization .. 83
label information ... 62 entry-sequenced ... 94

key-sequenced ... 94
logical ... 23

Index 301

on DASD devices .. 84 record ... 44
on serial devices .. 84 segment .. 44
physical .. 23 track ... 49
prime (DAM) .. 166 design, record ~ 16
VSAM .. 199 detection of 110 errors .. 81

data portability ... 96 determinations of problems, aids for
data processing overlap 133 VSAM ... 244
data record device control macro instructions 154

DASD .. 49 device independence 76,93
length of VSAM .. 228 device name assignments 74
listing of VSAM .. 215 device names, symbolic .. 73
pointer to VSAM ... 227 device-independent programming 73

data representation ... 12 devices supported by DOS/VS 247
data safety (VSAM) .. 240 devices, 1/0 ... 24
data security ... 96 difference in VSAM data organization 201
data security (VSAM) 240,242 DIMOD macro (SAM) 159
data set entry (VSAM) 211 direct access
data space (VSAM) ... 201 by key (VSAM) .. 203
data space definition (VSAM) 213 file loading and processing 164
data structures .. 30 method (DAM) .. 91,160

implementation of .. 30 processing, logic modules 177
data to index relationship (VSAM) 231 storage device attributes 258
data transfer, diskette .. 136 storage devices, record structure 49
data without key, record format (DAM) 166 with entry-sequenced file (VSAM) 206
data, buffered ... 29 direct addressed (VSAM)
data, organization of physical 84 access ... 209
data, protection of shared VSAM 242 deletion .. 210
data, shared VSAM .. 242 retrieval .. 210
data, virtual .. 15 direct deletion, keyed (VSAM) 232
date, expiration .. 80 direct organization ... 21
declarative macro instructions 113,114 direct retrieval, generic key (VSAM) 232
decrease in processing efficiency 99 direct retrieval, keyed (VSAM) 208
defective track .. 81 direct storage, keyed (VSAM) 209
define (VSAM) disconnection of processing program and

access method control block 226 VSAM file .. 225
catalog .. 213 DISEN macro ... 150
data space .. 213 disk storage space formulas (ISAM)
entry-sequenced file .. 213 IBM 2311 .. 190
key-sequenced file ... 213 IBM 2314/2319 .. 191

DEFINE command (VSAM) 213 IBM 3330 family ... 192
defining a VSAM file 213,222,232 IBM 3340 .. 193
definition, macro .. 114 diskette channel programs 129
DELETE command (VSAM) 214 diskette data transfer ... 136
deleting a logical record from a random diskette labels ... 28,72

file under DAM .. 163 diskette security .. 80
deleting VSAM files ... 214 diskette storage devices .. 47
deleting records from an ISAM file 188 diskette track capacity ... 61
deletion diskette track format .. 47

addressed (VSAM) .. 210 distributed free space 232,237
DAM file ... 101 DLBL statement .. 211
keyed (VSAM) .. 209 DOS/VS supported devices 247
tagging ... 99 DSPLY macro .. 153
VSAM record .. 232 DTF table ... 123

descriptor DTFDA macro ... 175
block .. 44 DTFDU macro ... 115

302 DOS/VS Data Management Guide

DTFIS macro .. 194,197 extents .. 69
DTFxx macro ... 116 extract catalog information (VSAM) 215
DTFxx macro (SAM) .. 159
DTFxx macro example 118
dummy record to preformat storage 165
DUMODFx .. 159

facilities of PIOCS ... 109
facility, track hold (VSAM) 242
factor, blocking (SAM) 139
feature, track hold .. 78

efficiency of a VSAM file 100 FEOV macro .. 120
efficiency, decrease in processing 99 FEOV macro (SAM) ... 149
encoding data ... 14 FEOVD macro ... 120
end-of-file FEOVD macro (SAM) 149

indicator (SAM) .. 159 field
indicator (VSAM) ... 241 block count .. 66
label ... 66 control .. 162
processing (VSAM) ... 227 data .. 13

end-of-volume conditions for SAM 149 identifier ... 50
ENDFL macro ... 194 line count ... 155
ENDREQ macro .. 229 file accessibility testing (VSAM) 214
entity, data ... 12 file activity .. 98
entries of a VSAM catalog 211 file additions, ISAM ... 194
entry-sequenced file advantages, VSAM 101

data organization ... 94 file and organization summary 105
VSAM file .. 201,206 file and processing program (dis)connection
VSAM file definition 213 (VSAM) ... 225

entry file catalog information loading
data set (VSAM) ... 211 (VSAM) ... 216

) index (VSAM) ... 202
listing of VSAM catalog 215

file conversion, VSAM 215
file copying, VSAM ... 214

removal of VSAM catalog 215 file creation, ISAM 184,194
volume (VSAM) .. 212 file creation, VSAM ... 206

EOF conditions under SAM, example 156 file definition (VSAM) 206,222
ERASE macro (VSAM) 210,227 statements•... 213
error analysis (VSAM) 244 entry-sequenced ... 213

routines ... 226,244 key-sequenced ... 213
error detection, 1/0 ... 78 file deletion, VSAM ... 214
error on 110 operation (VSAM) 226 file description macro instructions 113
error, logical VSAM ... 226 file efficiency, VSAM .. 100
errors, analysis of physical VSAM 226 file extension, ISAM .. 185
errors, unrecoverable 1/0 78 file growth, VSAM ... 237
ESETL macro .. 194 file header label group ; 67
EXCPAD macro .. 277 file header labels .. 66
existing record lengthening (VSAM) 209 file labeling, VSAM ... 72
exit list (VSAM) .. 226 file labels .. 66
exit routine name list (VSAM) 226 file labels, DASD ... 69
exit routines for VSAM 226 file listing, VSAM .. 215
exits to error analysis routines file moving, VSAM .. 215

(VSAM) ... 244 file preformatting, VSAM 241
EXLST macro (VSAM) 226 file processing, VSAM 207
expansion, macro .. 113 file protect, DASD ... 79
expiration date ... 78 file protection ... 62
EXPORT command (VSAM) 215 file recognition ... 62
extending an ISAM file 185
EXTENT statement ... 219) file record deletion, ISAM 188

file reorganization, ISAM 101,187
file reorganization, VSAM 215,232

Index 303

file segments ... 57
file sequence number ... 66
file sizes .. 102
file statistics, VSAM .. 240
file structures, VSAM .. 198
file trailer label group .. 67
file trailer labels ... 66
file transportation, VSAM 215
file types, VSAM ... 198
file volatility ... 98
file

direct access ... 164
entry-sequenced (VSAM) 198,206
ISAM .. 184,231
key-sequenced (VSAM) 198,202
loading and defining (VSAM) 222
logical ... 56
physical .. 56

fixed length block with key, DAM format
of .. 167

fixed length data blocks (DAM) 165
fixed length records ... 17,40

disk preparation for ... 82
with key, format of (DAM) 171

format
DAM data record with key 167
DAM fixed length record with key 167,171
DAM record .. 160
DAM records without key 166,172
DAM variable length blocks with key 168,172
DASD label ... 69
ISAM record .. 177
record ... 17,38,39
standard label .. 263
forms control buffer .. 251

free space (VSAM) .. 204
distributed .. 237
distribution of .. 237
use of ... 209

freeing space (VSAM) 214
full access, VSAM .. 243
function of data management 13
unction of I/O devices .. 13
functions of IOCS .. 28
functions of LIOCS ... 110

gaps, interrecord .. 25,59
GENCB macro (VSAM) 228
generating VSAM control blocks and

lists .. 228
generation macros, logic modules 121
generation of access method control block

(VSAM) ... 226
generic key (VSAM) .. 208

304 DOS/VS Data Management Guide

generic key, VSAM direct retrieval 232
GET macro (ISAM) .. 194
GET macro (SAM) .. 146
GET macro (VSAM) 208,210,229
GET /PUT level sequential access 146
glossary ... 292
growth of a VSAM file 237

HA writing ... 80
header label group .. 67
header label, user ... 67
header labels ... 26

DASD user ... 71
file .. 66

high-level language considerations 108
highest-keyed record (VSAM) 241
home address .. 48
horizontal pointers (VSAM) 203

I/O and work area combinations under SAM .. 134
I/O buffer size (VSAM) 237
I/O buffers (VSAM) ... 226
I/O control ... 28
I/O devices, function of 13
I/O error detection .. 78
I/O macro interrelationship 122
I/O operation completion 125

DAM .. 177
for OCR .. 153

I/O operation error .. 226
I/O overlap for SAM .. 133
IBM standard labels ... 64
ID reference under DAM 175
ID, record (DAM) ... 163
identification, record .. 18
identifier field ... 50
identifier field, label ... 65
identifying records .. 18
imperative I/O control macro

instructions .. 113,118
IMPORT command (VSAM) 216
independence, device 74,96
independent overflow area (DAM) 170,171
independent overflow area (ISAM) 183
index (VSAM) ... 203
index and data on separate volumes

(VSAM) ... 238
index entry (VSAM) .. 202
index for key-sequenced file (VSAM) 202
index levels (VSAM) ... 202
index marker ... 47,48
index options for VSAM performance

(
\

(
I
\.

improvement .. 237 IOCS .. 28,108
index organization ~ .. 21 ISAM ... 92,177
index record location (VSAM) 202 codes .. 234
index record replication (VSAM) 238 DTF ... 194,197,233
index set (VSAM) .. 202 file reorganization .. 187
index set separation (VSAM) 238 file· additions .. 185
index structure (VSAM) 231 file creation ... 184,194
index to data relationship (VSAM) 231 file extension ... 185
index set records in virtual storage file record addition .. 185

(VSAM) ... 238 file reorganization .. 187
index files ... 184,231

cylinder (ISAM) .. 179 interface .. 231,232
master (ISAM) .. 180 interface routine .. 96
resident cylinder (ISAM) 180 interface use, restrictions 235
track (ISAM) ... 178 logic modules ... 196

indexed sequential access method overflow area ... 181
(ISAM) ... 92,177 processing macros .. 194

indexed sequential processing macros 195 programs with VSAM 231
indexes for ISAM ... 178 record formats ... 177
indicator, end-of -file (VSAM) 241 telated to organization 89
influences on VSAM performance 237 request ... 232
information statistics ... 187

control .. 23 ISMOD macro .. 196
control (VSAM) .. 201
label ... 62
unit of .. 13

information manipulation (VSAM) 228
initialization macros ... 118
initialization of DASD ... 80
initialization summary, DASD 82
Initialize Disk program (DAM) 164
Initialize Disk utility program 82
Input/Output Control System (IOCS) 28,108
inquiry capability .. 103
inserting records (VSAM) 241
insertion of new record (VSAM) 209
insertion, sequential mass (VSAM) 209
instructions, declarative macro 113
instructions, .purpose of macro 113
integrity, data ... 78
integrity, data (VSAM) 96,240
interchange, data .. 26
interface routine, ISAM 96
interface, ISAM ... 231,232
interrecord gaps .. 25
interrelationship of I/O macros 122
interrelationship of PIOCS macros 126
interval split, control (VSAM) 204
interval

access of control (VSAM) 207
control (VSAM) 199,241
location of control (VSAM) 202
size of control (VSAM) 199,236

intervals, number of control (VSAM) 209

key .. 18
key (DAM) .. 162
key area .. 49
key area (ISAM) .. 184
key compression (VSAM) 203
key length ... 50
key length (VSAM) ... 228
key reference under DAM 175
key search under DAM 162,167,169
key-sequenced VSAM file 198,200

definition .. 213
index .. 202
organization of .. 100

key-sequenced data organization 94
key, generic (VSAM) 208,232
key, primary ... 18
key, secondary .. 18
key, sequential access by (VSAM) 202
keyed access (VSAM) 208
keyed request (VSAM) 227
keyed-direct deletion (VSAM) 209
keyed-direct processing .. 94
keyed-direct retrieval (VSAM) 208
keyed-direct storage (VSAM) 209
keyed-sequential deletion (VSAM) 209
keyed-sequential processing 94
keyed-sequential retrieval (VSAM) 208
keyed-sequential storage (VSAM) 209

invalid request (VSAM) 227

Index 305

label formats, DASD 70,263 location of VSAM control intervals 202
label formats, standard 263 location of VSAM index records 202
label group .. 67 logic module 109
label identifier field .. 65 assembly ... 121
label information cylinder 62 direct access processing 177
label restrictions ... 71 generation macros .. 121
label set .. 67 ISAM processing ... 196
label, end-of -file ... 66 name .. 121
labeling, DASD .. 69 SAM assembly ... 159
labeling, file ... 26,61 selection (SAM) .. 159
labeling, magnetic tape .. 64 sequential access processing 159
labels logical data file characteristics 110

additional ... 67 logical data organization 23
DASD .. 27 logical error (VSAM) ... 226
DASD file .. 69 logical error analysis (VSAM) 226
DASD volume ... 69 logical file ... 55
diskette .. 26,28 logical IOCS ... 109
file .. 66 logical record ... 16,37
file header .. 66 blocked SAM processing 148
file trailer ... 66 deletion under DAM 163
header .. 26 processing (SAM) .. 146
nonstandard ... 64 logical records .. 23
standard user ... 67 logical sequence .. 23
tape .. 26 Logical Unit Block Table (LUB) 74
trailer ... 26
volume ... 64

language considerations, high-level 108
LBRET macro .. 118
length of key (VSAM) 228
length, data record (VSAM) 228
length, key .. 50
lengthening of existing record (VSAM) 210
levels, index (VSAM) .. 202
limitations of organization methods 102
line count field ... 155
LIOCS .. 111

macro system ... 112
object routines ... 110

list data records (VSAM) 215
list generation (VSAM) 228
list of exit routine names (VSAM) 226
LISTCAT command (VSAM) 215
listing catalog entries (VSAM) 215
listing files (VSAM) ... 215
LITE macro .. 150
LOAD routine .. 196
load routine (ISAM) .. 184
loading

a direc~ access file ... 164
a file (VSAM) ... 232
a portable file (VSAM) 215
file catalog information (VSAM) 215
VSAM record options 232

locate mode GET and PUT macros (SAM) 147
locating data under DAM 162

macro definition ... 113
macro expansion ... 113
macro instruction name 113
macro instruction parameters 113
macro instructions

source program .. 113
declarative .. 113
device control .. 153
file description 113
imperative 110 control 113
indexed-sequential processing 194
OCR and MICR 150,153
PIOCS .. 124
purposes ; ... 112
supervisor communications 113
VSAM .. 224

macro interrelationship, 1/0 122
macro system, LIOCS .. 112
macro

ACB (VSAM) ... 226
CCB ... 124
CDMOD .. 159
CHECK (SAM) .. 151
CHKPT .. 76
CLOSE .. 120
CLOSE (ISAM) .. 197
CLOSE (VSAM) ... 225
CLOSER .. 120
CLOSER (ISAM) ... 197

306 DOS/VS Data Management Guide

CNTRL .. 155 SETL .. 194
CNTRL (DAM) .. 175 SHOWCB (VSAM) ... 228
DIMOD (SAM) ... 159 TCLOSE (VSAM) .. 225
DISEN ... 150 TESTCB (VSAM) ... 229
DSPLY ... 153 TRUNC (SAM) .. 148
DTFDA .. 175 WAIT ... 125
DTFIS ... 194,197 WAITF .. 153
DTFxx .. 114 WAITF (DAM) ... 175
DTFxx (SAM) ... 159 W AITF (ISAM) .. 196
ENDFL .. 194 WRITE (DAM) ... 175
ERASE (VSAM) 209,210,228 WRITE (ISAM) .. 194
ESETL ... 194 WRITE (SAM) .. 151
example of DTFxx .. 116 macros
EXCP .. 125 completion ... 125
EXLST (VSAM) ... 226 imperative .. 118
FEOV .. 120 initialization ... 118
FEOV (SAM) .. 149 logic module generation 121
FEOVD ... 120 processing .. 118
FEOVD (SAM) ... 149 VSAM .. 224
GENCB (VSAM) .. 228 magnetic character readers, programming
GET (ISAM) ... 194 considerations .. 276
GET (SAM) .. 146 magnetic ink character reader, record
GET (VSAM) 209,210,229 structure of .. 47
ISMOD ... 196,197 magnetic tape
LBRET .. 119 checkpoint records ... 130
LITE .. 150 standard label formats 263
MODCB (VSAM) ... 228 record structures for .. 46
MRMOD .. 159 maintenance of DASD ... 80
MTMOD .. 159 maintenance summary, DASD 82
NOTE (SAM) ... 151 management of 110 buffers (VSAM) 226
OPEN .. 119 management, data .. 11
OPEN (ISAM) ... 188,197 management, space (VSAM) 211
OPEN (VSAM) ... 225 manipulating information (VSAM) 228
OPENR .. 119 marker, address .. 49
OPENR (ISAM) 188,198 marker, index ... 47
ORMOD .. 159 mass sequential insertion (VSAM) 209
POINT (VSAM) 208,210,229 master index for ISAM 180
POINTR (SAM) .. 152 mechanism, DASD ... 59
POINTS (SAM) .. 152 method, access .. 23,83
POINTW (SAM) ... 152 method, sequential access 133
PRMOD ... 159 methods, access .. 133
PRTOV .. 154 MICR ... 47
PTMOD ... 159 MICR macro instructions 153,160
PUT (ISAM) ... 194 MI CR, record structure of 47
PUT (SAM) ... 146 minimum number of buffers (VSAM) 226
PUT (VSAM) 209,210,227 MODCB macro (VSAM) 228
RDLNE ... 150 modifying a catalog entry (VSAM) 214
READ (DAM) .. 175 modifying parameters (VSAM) 228
READ (ISAM) .. 194 module assembly, logic 121
READ (SAM) ... 150 module name, logic .. 121
RELSE (SAM) .. 148 modules, logic ... 109
RESCN .. 153 move mode (VSAM) ... 227
RPL (VSAM) .. 226 move mode GET and PUT macros (SAM) 147
SDMODxx (SAM) .. 159 moving files (VSAM) ... 215
SETFL ... 194 moving files between systems (VSAM) 215

Index 307

MRMOD macro ... 159 data .. 83
MTMOD macro ... 159 data on DASD devices 84
multi-file volume .. 57 direct .. 21
multi-volume file .. 57 indexed sequential ... 89

key-sequenced VSAM file 100
overflow under DAM 170

name of macro instructions 113
name, logic module .. 121
names, symbolic device .. 73
new record insertion (VSAM) 210
nonstandard labels ... 64
NOTE macro (SAM) ... 151
null segment ... 44
number of control intervals (VSAM) 204
number of I/O buffers (VSAM) 226
number

prime data under DAM 166
random ... 21
record ... 21
sequential .. 21,88
VSAM data .. 198

ORMOD macro .. 159
overflow area .. 100

DAM .. 165,170,172
ISAM .. 181,183
types under ISAM ... 183

file sequence .. 66
volume sequence .. 66
volume serial .. 66

overflow organization under DAM,
example .. 171

overflow records, DAM 165,166
overlap of physical transfer 227
overlapping I/O operations 227

object routine, LIOCS 110
OCR

completion of I/O operation 153
macro instructions 150,153
record structure of ... 46

OPEN macro .. 118
OPEN macro (ISAM) .. 197
OPEN macro (VSAM) 225
OPENR macro ... 118
OPENR macro (ISAM) 197
operating system tasks 108
operational limitations of organization

methods .. 102
optical character readers, programming

considerations .. 276
record structure of ... 46

optical mark readers, programming
considerations ... 47,276

option, VSAM processing 226
optional exit routines (VSAM) 226
optional labels .. 67
options for record loading (VSAM) 232
options, processing (VSAM) 232
organization methods

criteria for choosing .. 97
operational limitations 102

organization related to processing
methods .. 89

organization summary .. 105
organization through algorithm 21
organization through index 21
organization, choice with processing

method ... 97

paper tape devices, record structure ... , 46
paper .tape :quipment, programming

conslderatlons .. 274
parameter list request (VSAM) 228
parameter modification (VSAM) 228
parameters of a macro instruction 113
password (VSAM) .. 79,243
PDAIDs .. 244
performance improvement through index

options (VSAM) .. 238
performance influences (VSAM) 235
performance of VSAM 235
physical block .. 23,25
physical block processing under SAM 150
physical block structure, ISAM 183
physical DASD address specification

under DAM ... 162
physical data organization 13,88
physical error analysis (VSAM) 226
physical file .. 55
physical 10CS ... 111,123
physical record .. 14,38
physical track addressing (DAM) 162
physical transfer overlap 196,227
Physical Unit Block Table (PUB) 74
PIOCS ... 111.,123
PIOCS facilities .. 111
PIOCS macro instructions 124
PIOCS macro interrelationship 126
PIOCS programming considerations 126
PIOCS routines .. 111
placement of tapemarks 67

308 DOS/VS Data Management Guide

POINT macro (VSAM) 208,210,229 programming considerations for serial
pointer to data record (VSAM) 227 devices ... 84
pointers ... 30 programming, device-independent 155

horizontal (VSAM) ... 203 programs, ISAM ... 231
vertical (VSAM) .. 203 protection of data (VSAM) 240

POINTR macro (SAM) 152 protection of files ... 62
POINTS macro (SAM) 152 protection of shared data (VSAM) 240,242
POINTW macro (SAM) 152 PRTOV macro ... 155
portability ... 96 PTMOD macro ... 159
portable file loading (VSAM) 216 PUB .. 74
possibilities of randomizing 101 punched card equipment, programming
POWER program ... 76 considerations .. 269
preformatting a file (VSAM) 241 purpose of macro instructions 113
pre formatting control areas (VSAM) 241 PUT macro (ISAM) ... 194
pre(ormatting storage ... 164 PUT macro (SAM) .. 146
primary key .. 18 PUT macro (VSAM) 209,210,229
prime data areas under DAM 165 PUT / GET level sequential access 146
prime data areas under ISAM 181
prime data organization under DAM 166
printer-keyboard buffering 129
printers, record structures of 46

QTAM .. 91

PRMOD macro .. 159
problem determination (VSAM) 244
processing and organizing DASD files 97 random DASD processing macros 175

processing macros .. 120
processing macros for random DASD 175
processing method, choice with

random ISAM file retrieval and
updating ... 186

random organization .. 21

organization ... 97 random organization on DASD devices 85

processing methods in relation to
organization ... 89

processing modules for direct access 177

random processing under SAM 153
random processing, checkpoint/restart 76
random retrieval and update of an ISAM

processing options (VSAM) 226 file ... 186,196

processing program and file connection
(VSAM) ... 226

random retrieval considerations 105
random retrieval routine (ISAM) 196

processing randomizing algorithm for DAM 165

addressed-direct ... 95 randomizing possibilities 101

addressed-sequential .. 95 RBA (VSAM) .. 200

blocked logical records (SAM) 148 RBA changes (VSAM) 241

direct access file .. 164 RDLNE macro ... 150

efficiency ... 99
EOF (VSAM) .. 227

read access (VSAM) .. 243
READ macro (DAM) .. 175

keyed-direct ... 94 READ macro (SAM) ... 150

keyed-sequential ... 94
label ... 72

read operation completion (DAM) 177
READ /WRITE level sequential access 146

logic modules for sequential
access .. 159

reading data block under DAM 175
reclamation of space (VSAM) 204,232

spanned record .. 41 reclamation of space, automatic

speed increase under SAM 133 (VSAM) ... 95,204,232

VSAM file .. 207,223 recognition of files ... 62

program
Alternate Track Assign 81
Initialize Disk ... 82

record addition to ISAM file 185
record deletion (VSAM) ~ 232
record descriptor .. 44

POWER ... 76 record format .. 17,39

programmer logical units 75
programming considerations for PIOCS 126

ISAM ... 177
of data without key (DAM) 166

Index 309

restrictions ... 57 replication of index (VSAM) 238
VSAM .. 198 securing added (VSAM) 225
without key under DAM 166 sequence-set (VSAM) 238

record ID .. 50 spanned .. 41
record ID for DAM ~ 163 storage of spanned .. 42
record identification .. 18,21 stored .. 23,38
record identifier, diskette 47 undefined ... 44
record insertion (VSAM) 209,241 variable length ... 40
record key (DAM) ... 162 without key .. 172
record length (VSAM) 228 reference by ID under DAM 175
record lengthening (VSAM) 209 reference by key under DAM 175
record loading options (VSAM) 241 relation of index to data (VSAM) 231
record pointer (VSAM) 227 relative byte address (VSAM) 200
record processing, blocked logical relative DASD address specification

(SAM) .. 148 under DAM ... 162
record restriction .. 38 relative track addressing (DAM) 163
record segments .. 41 releasing unused space (VSAM) 225
record selection, consideration 40 RELSE macro (SAM) 148
record sequence .. 21 removing a catalog entry (VSAM) 214
record storage in a control interval reorganizing a VSAM file 215,232

(VSAM) ... 199 reorganizing an ISAM file 99,187
record structures ... 38 replication of index records (VSAM) 238

ASCII tape files ... 46 representation, data .. 13
card devices ... 46 representing data .. 13
consoles .. 46 REPRO command (VSAM) 215
direct access storage devices 47 request parameter list (VSAM) 227
magnetic ink character readers 47 examination .. 228
magnetic tapes ... 46 generation .. 228
optical character readers 46 modification ... 228
paper tape devices ... 46 processing ... 232,237
printers ... 46 testing .. 229

record with key, format of (DAM) 167 request
record zero (RO) .. 48 invalid (VSAM) ... 227
record ISAM ... 234

capacity (DAM) .. 164 keyed (VSAM) .. 227
dummy, to preformat storage 164 requesting access (VSAM) 225,229
fixed-length 17 RESCN macro .. 153
highest-keyed (VSAM) 241 resident cylinder index for ISAM 180
location of index (VSAM) 202 response time 103
logical· ... 13 restart ... 76
overflow (DAM) ... 166 restriction (s)
stored (VSAM) .. 200 in ISAM interface use 235
structure of span-ned .. 41 on record formats .. 57
track descriptor .. 48 record ... 38

records on block structures .. 57
arrangement of spanned 41 label ... 69
checkpoint .. 77 VSAM .. 96
control information for 43 retrieval by generic key, direct
DASD .. 47 (VSAM) ... 232
fixed length .. 40 retrieval routines (ISAM) 195
listing (VSAM) .. 214 retrieval
logical .. 23,37 addressed (VSAM) .. 210
overflow (DAM) ... 166 keyed (VSAM) .. 208
physical ... 23,38 random ISAM file 186,196
processing of spanned 41 random, considerations 105

310 DOS/VS Data Management Guide

sequential ISAM file 186,195 sequence number, file .. 66
retry, command chaining 128 sequence number, volume 66
return address, actual (DAM) 163 sequence set (VSAM) .. 202
return code (VSAM) .. 245 sequence set records (VSAM) 205,238
routine sequence, logical ... 22

ADD .. 196 sequence, record·... 18
ISAM interface .. 96 sequential access method (SAM) 91,133
LOAD .. 196 sequential access
load (ISAM) .. 184 addressed (VSAM) .. 232

routines, Ploes ... 111 by key (VSAM) .. 203
routines, retrieval (ISAM) 185,195 GET/PUT level ... 146
RPL macro (VSAM) 227,228 processing logic modules 156
RSTRT control statement 77 READ /WRITE level 146
RO (record zero) .. 48 skip (VSAM) ... 207

with entry sequenced file (VSAM) 206
sequential addressed access (VSAM) 210

safety of data (VSAM) 240
SAM .. 91,133

blocked logical record processing 148
blocking factor ... 139
end of volume conditions 149
EOF condition .. 150,155
I/O and work area combination 139
logic module assembly 159
logical record processing 146
physical block processing 150
processing speed increase 136
random processing ... 153
related to organization 89
storage areas ... 133,153
updating ... 149

sample files for organization
criteria .. 104

scheduler, channel .. 125
SDMODxx macro (SAM) 159
earch argument area (VSAM) 228
search on key under DAM 162,167,168
search-multiple-track option

of DAM .. 168,171
secondary key 18
secure records added to a file (VSAM) 225
security

data ... 79,96
data (VSAM) .. 240,242
data set .. 79

seeks under DAM .. 177
segment descriptor ... 44
segment type .. 44
segment, null .. 44
segments, file .. 57
segments, record ... 41
selection of logic modules under SAM 156
selection, considerations for records 40
separate volumes for index and data

(VSAM) ... 238

sequential addressed retrieval (VSAM) 210
sequential ISAM file creation and

updating .. 194,195
sequential file retrieval and

updating (ISAM) ... 186
sequential mass insertion (VSAM) 209
sequential organization ... 21
sequenital organization on DASD

devices ... 84
sequential processing,

checkpoint/ restart ... 76
sequential retrieval and update of an

ISAM file .. 186,196
sequential retrieval routine (ISAM) 195
sequential retrieval, keyed (VSAM) 208
sequential storage, keyed (VSAM) 209
serial devices, organization of data 84
serial number, volume .. 66
set, index (VSAM) ... 202
set, label ... 67
set, sequence (VSAM) 202
SETFL macro ... 194
SETL macro ... 194
shared data (VSAM) ... 242
shared data protection (VSAM) 242
SHOWCB macro (VSAM) 228
size of control area (VSAM) 199,236
size of control interval (VSAM) 199,204,236
size of I/O buffers (VSAM) 237
size of virtual storage space for

buffers (VSAM) .. 237
size of work area (VSAM) 228
sizes, file ... 102
skip sequential access (VSAM) 207
source pr~gram macro instructions 113
space allocation (VSAM) 213,219
space allocation, automatic 96
space definition, data (VSAM) 213,219
space formulas (ISAM)

Index 311

for the IBM 2311 .. 190 structure, index (VSAM) 231
for the IBM 2314/2319 191 structures, data ... 30
for the IBM 3330 Family 192 structures, record .. 38
for the IBM 3340 .. 193 summary, organization 105

space freeing (VSAM) 214 supervisor call (SVC) ... 124
space management (VSAM) 211 supervisor communications macro
space reclamation, automatic (VSAM) 204,232 instructions ... 113
space (VSAM) supported devices ... 247

data .. 213 surface, writing ... 59
free .. 201,204 SVC .. 124
release of unused ... 225 switching, alternate tape 130
use of free ' .. 204 symbolic device names ... 73

spanned record processing 41 system logical units .. 74
spanned record storage .. 42 system, operating ... 23
spanned record structure 42
spanned records .. 41

arranging ... 41
control information .. 42

specifying a physical DASD address under
DAM .. 162

specifying a relative DASD address under
DAM .. 162

split of control area (VSAM) 205,241
split of control interval (VSAM) 205
splitting a control area (VSAM) 205,241
standard label formats .. 263
standard labels, IBM .. 64
standard logic module .. 121
standard user labels .. 67
statement, DLBL ... 211
statement, EXTENT .. 211
statements, conditional 212
statistics, VSAM files ... 240
statistics of ISAM .. 187
storage areas and I/O overlap for SAM 133
storage areas for SAM 153
storage device capacity .. 24
storage device characteristics 277
storage performatting ... 164
storage space for buffers (VSAM) 226
storage space formulas (ISAM)

for the IBM 2311 .. 190
for the IBM 2314/2319 191
for the IBM 3330 Family 192
for IBM 3340 .. 193

storage, keyed (VSAM) 209
stored record ... 23,37
stored record (VSAM) 200
stored records .. 23
storing a record in a control interval

(VSAM) ... 200
storing spanned records 42
structure of control interval (VSAM) 199
structure of ISAM physical blocks 183
structure of spanned record 42

table, DTF .. 123
tag deletion count .. 188
tagging for deletion .. 99
tape checkpoint records 130
tape file, record structure of ASCII 46
tape labeling ... 64
tape standard label formats 263
tape switching ... 130
tapemark ... 27,64,67
tapes, unlabeled .. 64
tasks of an operating system 109
TCLOSE macro (VSAM) 225
teleprocessing ... 91
TESTCB macro (VSAM) 229
testing file accessibility (VSAM) 214
time, access .. 25
time, response .. 103
track addressing, physical (DAM) 162
track addressing, relative (DAM) 163
track

alternate .. 48,81
analysis .. 80,81
capacity .. 60
clearance under DAM 176
defective ... 81
defective, DASD .. 81
descriptor record .. 47

track format, diskette ... 47
trackhold facility (VSAM) 242
trailer label group ... 67
trailer label, user .. 67
trailer labels .. 26
trailer labels, DASD user 71
trailer labels, file .. 66
transfer overlap, physical 196
transportation of files (VSAM) 215
TRUNC macro (SAM) 148
truncated blocks ... 40
type, segment ... 44

312 DOS/VS Data Management Guide

types of overflow areas under ISAM 183 volume labels, DASD ... 69
types of VSAM files .. 198 volume sequence number 66

volume serial number ... 65
UCS, See universal character set 250 Volume Table of Contents (VTOC) 27,69
undefined records ... 44 volumes for index and data (VSAM) 238
UNIQUE option of DEFINE command VSAM ... 93,198

(VSAM) ... 222
universal character set .. 250

catalog .. 211
file advantages ... 100

unit of information ... 12
unrecoverable I/O errors 81
unused space release (VSAM) 225

file efficiency ... 100
file labeling .. 72
file structures ... 198

update access (VSAM) 243
update of a random ISAM file 186,197

key sequenced file organization 100
macro instructions ... 224

update of a sequential ISAM file 186,196
updating the VSAM catalog 242

performance ... 235
record format ... 198

updating under SAM .. 149
use of free space (VSAM) 214

related to organization 90
restrictions ... 96

user header labels, D ASD 71 VTOC .. 27,69
user labels, standard ... 67
user'trailer labels, DASD 71
utility program

Clear Disk (DAM) .. 165
Initialize Disk ... 82
Initialize Disk (DAM) 164

WAIT macro .. 125
WAITF macro .. 153
WAITF macro (DAM) 175
W AITF macro (ISAM) 194
work and I/O area combinations under

SAM ... 136
variable length blocks with key, format work area address (VSAM) 227

of (DAM) .. 168 work area size .. 228
variable length data blocks 81 WRITE macro (DAM) 175
variable length record with key, format WRITE macro (ISAM) 194

of (DAM) .. 172 WRITE macro (SAM) 151
variable length records ... 40
variable length records control

write operation completion (DAM) 177
write operation verification (VSAM) 242

information .. 44 write verification under DAM 176
verification of write operations WRITE/READ level sequential access 146

(VSAM) ... 242
verification of write under DAM 176

writing data blocks under DAM 176
writing HA and RO .. 80

verificatioh, block ... 81
VERIFY command (VSAM) 214,242

writing surface .. 59

vertical pointers (VSAM) 203
virtual storage access method 93,198
volatility, file .. 98
volume .. 56
volume entry (VSAM) 212
volume labels .. 65

2311 storage space formulas (ISAM) 190
2314/2319 storage space formulas (ISAM) 191
3330 Family storage space formulas (ISAM) ... 192
3340 storage space formulas (ISAM) 193

Index 313

GC33-5372-2

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

c o
en -< en
c
~
Ql

s:
Ql
::J
Ql
co
CD
3
CD
::J

DOS/VS
Data Management Guide

GC33-5372-2

READER'S
COMMENT
FORM

This sheet is for comments and suggestions about this manual. We would appreciate your
views, favorable or unfavorable, in order to aid us in improving this publication. This form
will be sent directly to the author's department. Please include your name and address if
you wish a reply. Contact your IBM branch office for answers to technical questions about
the system or when requesting additional publications. Thank you.

Name

Address

What is your occupation?

Your comments* and suggestions:

* We would especially appreciate your comments on any of the following topics:

Clarity of the text
Organization of the text

Accuracy
Cross-references

Index

Tables

Illustrations

Examples

How did you use this manual?

As a reference source

As a classroom text

As a self-study text

Appearance
Printing

Paper
Binding

GC33-5372-2

YOUR COMMENTS, PLEASE ••.

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys­
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold
Fold

n
c
-l

»
r
o
Z
C)

-l
:r
en
r
Z
n1

... :

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Department 813 BP

POSTAGE WILL BE PAID BY ...

IBM Corporation
1133 Westchester Avenue
White Plains, N.Y. 10604

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS. N. Y.

...

Fold

International Buslne •• Machine. Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10804
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

. . .

c o
en -< en
c
Q)
Q)

s:
Q)

::J
Q)

co
CD
3
CD
::J

GC335372-2

ltJ]3~
<Il

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

o o
Ul
<
Ul

o
!'!
'" s:
'" :::l

'" co
CD
3
CD
;;
Cl
c:
0.:
CD

~
5
CD
Co

5
c
Ul
:t>
Cl
(")
w
~
(11
W
--.J
N
N

