
\,.,

J

Program Product

GC26-4065-1
File No. S370-32

MVS/370
Utilities

Data Facility Product 5685-295

Release 1.1

---- ------ -------- ~ ---- -- -------------,-

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

Second Edition (October 1983)

This edition, as amended by technical newsletter GN26-8133,
applies to Release 1.1 of MVS/370 Data Facility Product, Program
Product 5665-295, and to any subsequent releases until otherwise
indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of
Amendments" following the preface. Specific changes are
indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page
affected. Editorial changes that have no technical significance
are not noted.

Changes are made periodically to this publication; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this pUblication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM· Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

e Copyright International Business Machines Corporation 1983

PREFACE

ORGANIZATION

This publication describes how to use the MVS/370 Data Facility
Product (MVS/370) utility programs to manipulate system and user
data and data sets.

This publication contains the following major parts:

• "Introduction" summarizes the utility programs and
information on the differences among system, data set, and
independent utility programs. The introduction contains
basic information about how the programs are executed and
about the utility control statements used to specify program
functions. New or infrequent users of the utility programs
should give particular attention to the introduction.

• "Guide to Utility Program Functions" contains a table,
arranged in alphabetic order, of utility program functions
and the programs that perform them. This table enables you
to find the program that can do what you need to have done.

• "Invoking Utility Programs from a Problem Program" contains
a description of the macro instructions used to invoke a
utility program from a problem program rather than executing
the utility program by job control statements or by a
procedure in the procedure library. This section should be
read only if you plan to invoke a utility program from a
problem program.

• The remainder of the book contains individual chapters for
each utility program arranged in alphabetic order. For a
discussion of the organization of these chapters, see
"Organization of Program Descriptions" on page iv.

• Appendix A, "Exit Routine Linkage" contains information
about linking to and returning from optional user-supplied
exit routines. This appendix should be read only if you
plan to code or use an exit routine. If you are coding an
exit routine, this appendix provides linkage conventions,
descriptions of parameter lists, and return codes. If you
are using an existing exit routine, you may be interested in
the meaning of return codes from the exit routine.

• Appendix B, "DD Statements for Defining Mountable Devices"
contains a review of how to define mountable volumes to
ensure that no one else has access to them. For a
definitive explanation of this subject, see the publication
OS/VS2 MVS JCL.

• Appendix C, "Processing User Labels" describes the
user-label processing that can be performed by IEBGENER,
IEBCOMPR, IEBPTPCH, IEHMOVE, and IEBUPDTE. This appendix
should be read only if you plan to use a utility program for
processing user labels.

Preface iii

ORGANIZATION OF PROGRAM DESCRIPTIONS

To enable you to find information more easily, program
descriptions are all organized, as much as possible, in the same
way. Most programs are discussed according to the following
pattern:

• Introduction to and description of the functions that can be
performed by the program. This description typically
includes an overview of the program's use, definitions of
terms, illustrations, etc.

• Functions supported by the utility and the purpose of each
function.

• Input and output (including return codes) used and produced
by the program.

• Control of the program through job control statements and
utility control statements. Explanations of utility control
statement parameters are presented in alphabetic order in
tabular format, showing applicable control statements,
syntax, and a description of the parameters. Any general
information, restrictions, and relationships of a given
utility control statement to other control statements are
described in the sections concerning the statements or in
the section for restrictions.

• Examples of using the program, including the job control
statements and utility control statements.

PREREQUISITE KNOWLEDGE

In order to use this book efficiently, you should be familiar
wi~h the foiiowing;

• Job control language

• Data management

• Virtual storage management

REQUIRED PUBLICATIONS

You should be familiar with the information presented in the
following publications:

• MVS/370 Utilities Messages contains a complete listing and
explanation of the messages and codes issued by MVS/370
utility programs.

• OS/VS2 MVS JCL contains a description of the use and coding
of the job control language.

• MVS/370 Data Management Services describes the input/output
facilities of the operating system. It contains information
on record formats, data set organization, access methods,
data set disposition, space allocation, and generation data
sets.

• MVS/370 Data Management Macro Instructions contains contains
a description of the WRITE macro instruction; it also
contains the format and contents of the DCB.

• OS/VS2 MVS System Programming Library: Supervisor Services
and Macro Instructions contains contains information on how
to use the services of the supervisor. Among the services
of the supervisor are program management, task creation and
management, and virtual storage management.

iv MVS/370 Utilities

PREFACE

)

ORGANIZATION

)

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

This publication describes how to use the MVS/370 Data Facility
Product (MVS/370) utility programs to manipulate system and user
data and data sets.

This pUblication contains the following major parts'

• "Introduction" summarizes the utility programs and
information on the differences among system, data set, and
independent utility programs. The introduction contains
basic information about how the programs are executed and
about the utility control statements used to specify program
functions. New or infrequent users of the utility programs
should give particular attention to the introduction.

• "Guide to Utility Program Functions" contains a table,
arranged in alphabetic order, of utility program functions
and the programs that perform them. This table enables you
to find the program that can do what you need to have done.

• "Invoking Utility Programs from a Problem Program" contains
a description of the macro instructions used to invoke a
utility program from a problem program rather than executing
the utility program by job control statements or by a
procedure in the procedure library. This section should be
read only if you plan to invoke a utility program from a
problem program.

• .The remainder of the book contains individual chapters for
each utility program arranged in alphabetic order. For a
discussion of the organization of these chapters, see
"Organization of ,Program Descriptions" on page iv.

• Appendix A, "Exi~ Routine linkage" contains information
about linking to and returning from optional user-supplied
exit routines. This appendix should be read only if you
plan to code or use an exit routine. If you are coding an
exit routine, this appendix provides linkage conventions,
descriptions of parameter lists, and return codes. If you
are using an existing exit routine, you may be interested in
the meaning of return codes from the exit routine.

• Appendix B, "DD Statements for Defining Mountable Devices"
contains a review of how to define mountable volumes to
ensure' that no one else has access to them. For a
definitive explanation of this subject, see the pUblication
OS/VS2 MVS JCL.

• Appendix C, "Processing User Labels" describes the
user-label processing that can be performed by IEBGENER,
IEBCOMPR, IEBPTPCH, IEHMOVE, and IEBUPDTE. This appendix
should be read only if you plan to use a utility program for
processing user labels.

Preface iii

ORGANIZATION OF PROGRAM DESCRIPTIONS

To enable you to find information more easily, program
descriptions are all organized, as much as possible, in the sa ••
way. Most programs are discussed according to the following
pattern'

• Introduction to and description of the functions that can b.
performed by the program. This description typically
includes an overview of the program's use, definitions of
terms, illustrations, etc.

• Functions supported by the utility and the purpose of .ach
function.

• Input and output (including return codes> used ~nd produced
by the program.

• Control of the program through job control statements and
utility control statements.. Explanations of utility control
statement parameters are presented in alphabetic order in
tabular format, showing applicable control statements, .
syntax, and a description of the parameters. Any general
information, restrictions, and relationships of a given
utility control statement to other control statements are
described in the sections concerning the statements or in
the section for restrictions.

• Examples of using the program, includ1ng the job control
statements and utility control statements.

PREREQUISITE KNOWLEDGE

In order to use this book efficiently, you should be familiar
with the following'

• Job control language

• Data management

• Virtual storage management

REQUIRED PUBLICATIONS

You should be familiar with the information presented in the
following publicationsl

• MVS/370 Utilities Messages contains a complete listing and
explanation of the messages and codes issued by MVS/370
utility programs.

• OS/VS2 MVS JCl contains a description of the use and coding
of the job control language.

• MVS/370 Data 'Management Services describes the input/output
facilities of the operating system. It contains information
on record formats, data set organization, access methods,
data set disposition, space allocation, and generation data
sets.

• MVS/370 Data Management Macro Instructions contains a
description of the WRITE macro instructionJ it also contains
the format and contents of the DCB.

• OS/VS2 MVS Supervisor Services and Macro Instructions
contains information on how to use the services of the
supervisor. Among the services of the supervisor are
program management, task creation and management, and
virtual storage management.

iv MVS/370 Utilities

\

\
I

J

RELATED PUBLICATIONS

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

Within the text, references are made to the publications listed
in the table below.

Short Title publication Title Order Numb.r

Catalog Users ~VS/~70 Catalog User:l ~y;dg GC26-4053
Guide

Data Facility Dati Facilit~ Data Saj; SC26-3949
Data Set Servi~es: User's Guidg aDd
Services: Referencg
User's Guida
and Reference

Debugging OS/VS2 MVS S~stem GC28-1047
Handbook frogramming librar~: GC28-1048

Debugging Handbook, Volumes GC28-1049
1 through 3

Device Support Device ~ueeort FacilitiBI GC3S-0033
Facilities User's ~uide and Referen~g
User's Guide
and Reference

Linkage Editor ~VS/370 Linkage Editor !nd GC26-4061
and Loader loader

Same IBM 3800 Printing Subs~sj;em GC26-3846
Programmer's Guide

Same IBM 50 Magnetic Data GA27-2725
Inscriber Comeonent
Descrietion

Utilities MVS/370 Utilities Message:! GC26-4068
Messages

JCL OS/VS2 MVS JCl GC28-0692

Data Management MVS/370 Data Managemenj; GC26-4057
Macro ftlacro Instructions
Instructions

Supervisor OS/VS2 MVS Sueervisor GC28-0683
Services and Services and Macro
Macro Instructions
Instructions

Same Reference Manual for tbl GA26-1653
IBM 3800 Printing Subs~stem

System MVS/370 S~stem Programming GC26-4056
Programming librar~: Data Management
Library: Data
Management

VSAM Users MVS/370 VSAM Users Guidg GC26-4066
Guide

Preface v

UTILITIES NOT IXPLAINID IN THIS BOOK

utility

I DCAMS

Device Support
Facilities

Data Facility
Data Set Services

Offline IBM
3800 Utility

There ara several specialized utilities not discussed in this
book. The following list shows their names and functions. and
indicates which book contains their explanation.

Function Reference

Allows users to define. manipulate, ~VS/~Zg ~lil!gS U&.C.
or delete VSAM data sets, define Guide, GC26- 053
and manipUlate VSAM catalogs, and
copy, print. or convert SAM and
ISAM data sets to VSAM data sets.

Used for the initialization and

~iUf!~r:~:~;:!oI' maintenance of DASD volumes.

GC3S-0033

Describes DASD utility functions ~ i F "I"! D it! such as dump/restore and reduction ::r:lc::~ ~:~t!: IY:~:
of free space fragmentation and B!flteDSCI,

SC26-3949

Describes the Offline IBM 3800 Offlin! lin ~Igg
Utility program, used with the IBM Utility, S 20-9138
3800 Tape-to-Printing Subsystem
Feature.

vi MVS/370 Utilities

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

SUMMARY OF AnENpnENTS

RELEAIE 1,1 UPPATE. nARCH 1984

NEW DEVICE SUPPORT

• IBM 4248 Printer

The FCB statement in IEBIMAGE can now be used to create
forms control buffer modules in a form appropriate for use
on the IBM 4248 Printer. Information to support the 4248
has been added to the IEBIMAGE chapter.

• IBM 3262 Model 5 Printer

Information to support the IBM 3262 Model 5 Printer has been
added to the IEBIMAGE chapter.

RELEASE 1,1, OCTOBER 1983

NEW DEVICE SUPPORT

• IBM 4245 Printer

Information to support the IBM 4245 Printer has been added
to the IEBIMAGE chapter.

• IBM 3800 Printing Subsystem Model 3

The IBM 3800 Printing Subsystem Model 3 is supported by
IEBIMAGE in full function mode.

NEW PROGRAMMING SUPPORT

• IEBCOPY Enhancements

IEBCOPY can now be used to alter and copy load modules.
Information to support the altering and copying functions,
including the new AlTERMOD and COPYMOD statements, has bean
added to the IEBCOPY chapter.

• IEHMOVE Enhancements

When used to move or copy sequential data sets on DASD,
IEHMOVE now uses multiple BSAM buffers to improve
performance. Information to support multiple buffers has
been added to the IEHMOVE chapter.

Summary of Amendments vii

CQNTINI'

)

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

Introduction ••••••••••••• • • • • • • • • • •
System utility Programs ..••
Data Set Utility Programs .••.
Independent Utility Programs
DASD and Tape Device Support
Control ...•.....

Job Control Statements .
Utility Control Statements •••••••••

Continuing Utility Control Statements
Restrictions

Notational Conventions
keyword=device=list .••.

Installation Considerations
Special Referencing Aids

Guide to utility Program Functions ·
Invoking utility Programs from a Problem Program

LINK or ATTACH Macro Instruction
• • • • •

LOAD Macro Instruction
CALL Macro Instruction

ICAPRTBL Program ••••••••••••••
Executing ICAPRTBL ..•. ••••.
Input and Output ..•...••
Control ...•.....

Utility Control Statements
JOB Statement
DFN Statement
UCS Statement
FCB Statement
END Statement

• • • • • • •

ICAPRTBL Examples
ICAPRTBL Example 1
ICAPRTBL Example 2
ICAPRTBL Example 3
ICAPRTBL Example 4

. " .

IEBCOMPR Program
Input and Output

. . . • • • • • • • • • • • •
Return Codes . . • • • • • • . • • • •

Control . . • •
Job Control Statements •••••
Utility Control Statements •••.

COMPARE Statement •.•.•.•••
EXITS Statement ..•• • • • .
LABELS Statement . • • • • • . • • . •

IEBCOMPR Examples • • • .
IEBCOMPR Example 1 • • • •
IEBCOMPR Example 2 . • • • • •
IEBCOMPR Example 3
IEBCOMPR Example 4
IEBCOMPR Example S
IEBCOMPR Example 6
IEBCOMPR Example 7

• • • • • •

IEBCOPY Program •••••••••••••••••••••
Creating a Backup Copy • • • • •. ••••••
Copying Data Sets .•.•.•••.•••••
Copying or Loading Unloaded Data Sets ••.••
Selecting Members to be Copied, Unloaded, or Loaded

Copying Members That Have Alias Names
Replacing Identically Named Members
Replacing Selected Members ...••••
Renaming Selected Members .•••••.
Excluding Members from a COpy Operation
Compressing a Data Set • • • • • • • • • •
Merging Data Sets . • • • • • • • .

1
1
1
2
3
4
4
4
5
5
5
6
6
6

8

13
13
15
16

18
18
19
19
19
20
20
20
21
21
23
24
24
2S
2S

27
28
28
28
29
30
30
30
31
32
33
34
34
3S
36
36
37

39
39
40
40
40
41
41
42
42
42
42
43

Contents ix

Re-creating a Data Set •.•••••
Altering Load Modules in Place ••
Copying and Reblocking Load Modules
Load Module Requirements • • • • •
Inserting RLD Counts .••••••••

Input and Output . • • .
Return Codes

Control . . . • . . • • •
Job Control Statements •..•.••••

PARM Information on the EXEC Statement
SYSPRINT DD Statement • . • •
anynamel and anyname2 DD Statements
SYSIN DD Statement •...•.•

IEBCOPY Unloaded Data Set Block Size •••••
Space Allocation • • • • • • •
Restrictions• ••••••••

Utility Control Statements •••••••••
COpy Statement .
ALTERMOD Statement
COPYMOD Statement
SELECT Statement
EXCLUDE Statement

IEBCOPY Examples
IEBCOPY Example 1
IEBCOPY Example 2
IEBCOPY Example 3
IEBCOPY Example 4
IEBCOPY Example 5
IEBCOPY Example 6
IEBCOPY Example 7
IEBCOPY Example 8
IEBCOPY Example 9
IEBCOPY Example 10
IEBCOPY Example 11
IEBCOPY Example 12
IEBCOPY Example 13
IEBCOPY Example 14
IEBCOPY Example 15
IEBCOPY Example 16
IEBCOPY Example 17
IEBCOPY Example 18

IEBDG Program ••••••••••••••••• • •
Types of Patterns .

IBM-Supplied Patterns ...•.
User-Specified Pictures .•

Modification of Selected Fields
Input and Output

Return Codes••••
Control • • •

Job Control Statements • • • . • •
PARM Information on the EXEC Statement
SYSPRINT DD Statement
SYSIN DD Statement
seqinset DD Statement
parinset DD Statement
seqout DD Statement
parout DD Statement .

Utility Control Statements
DSD Statement
FD Statement •
CREATE Statement
REPEAT Statement
END Statement

IEBDG Examples
IEBDG Example 1
IEBDG Example 2
IEBDG Example 3
IEBDG Example 4
IEBDG Example 5
IEBDG Example 6
IEBDG Example 7

. . ..

.. .

• • •

IEBEDIT Program •

x MVS/370 Utilities

43
43
43
44
45
45
46
46
46
46
46
47
48
48
49
50
50
51
53
54
55
56
60
62
63
65
67
69
71
74
76
78
79
81
85
91
92
92
94
95
96

97
97
97
98
99

100
100
100
101
102
102
102
102
103
103
103
104
104
105
107
110
110
121
121
122
123
125
127
128
129

131

'\

/

TNL GNZ6-8133 (30 Mar 84) to GC26-4065-1

Input and Output
Return Codes .•••

Control .•
Job Control Statements • • • •
utility Control Statement •••••

EDIT Statement . • • •
IEBEDIT Examples

IEBEDIT Example 1
IEBEDIT Example 2
IEBEDIT Example 3
IEBEDIT Example 4
IEBEDIT Example S
IEBEDIT Example 6

JEBGENER Program ••••••••••••••••••••
Creating a Backup Copy .•.•••.•••••••••
Producing a Partitioned Data Set from Sequential Input
Expanding a Partitioned Data Set ••••• ••••
Producing an Edi ted Data Set •.•.••• ••••
Reblocking or Changing Logical Record Length •••••

Input and Output • • • • . • • • • • • • •
Return Codes• . • • •

Control
Job Control Statements

SYSPRINT DD Statement
SYSUT1 DD Statement ..••..•••••
SYSUT2 DD Statement •••..••••
SYSIN DD Statement .• • • • •

Utility Control Statements .••••
GENERATE Statement • • • •
EXITS Statement
LABELS Statement
MEMBER Statement
RECORD Statement

IEBGENER Examples
IEBGENER Example 1
IEBGENER Example 2
IEBGENER Example 3
IEBGENER Example 4
IEBGENER Example S
IEBGENER Example 6
IEBGENER Example 7
IEBGENER Example 8
IEBGENER Example 9
IEBGENER Example 10

JEBJMAGE Program ••••••••••••••••••••
General Information . . • • • • • • • • • • • • •

Storage Requirements . • • • • •
For IEBIMAGE . . . • • • • • • • •
For SYSl.IMAGELIB •...••.••••••••••

Maintaining the SYS1.IMAGELIB Data Set ••••
General Module Structure .••• • • • • •
Naming Conventions for Modules •••• .•• • • •

Using IEBIMAGE••• . • • •
Creating a Forms Control Buffer Module

3800 FCB Module Structure
4248 FCB Module Structure
FCB Module Listing . . . •

Creating a COpy Modification Module ••••
COPYMOD Module Structure • • • •
COPYMOD Module Listing .• .. • •••••••

Creating a Character Arrangement Table Module ••••
TABLE Module Structure ••••••••.••••••
TABLE Module Listing • . • • • • • . . • •

Creating a Graphic Character Modification Module
GRAPHIC Module Structure • • • • • • • • • •
GRAPHIC Module Listing. •.••••••••••

Creating a Library Character Set Module •••••••
CHARSET Module Structure •••. • • • •
CHARSET Module Listing • • • • • • •

Input and Output . • • • . . • • • •• ••• •
Return Codes ...•. • • • •

Control

131
131
132
132
133
133
135
136
136
137
138
139
139

141
141
141
142
143
144
144
145
145
145
145
145
146
147
147
148
148
149
149
150
157
158
158
159
159
160
160
161
.162
163
165

166
166
166
166
167
168
169
170
170
170
171
171

172.1
173
173
174
174
175
176
178
178
179
181
181
182
183
183
184

Contents xi

TNLGN26-8133 (30 Mar 84) to GC26-406S-1

Job Control Statements
SYSPRINT DD Statement
SYSUTI DD Statement
SYSIN DD Statement •.•••.

Utility Control Statements
Operation Groups

FCB Statement
COPYMOD Statement
TABLE Statement
GRAPHIC Statement
CHARSET Statement
INCLUDE Statement
NAME Statement
OPTION Statement

Using OVERRUN
IEBIMAGE Examples •.•.••..•..•••••••

xii MVS/370 Utilities

Example 11 Building a New 3800 Forms Control Buffer
Module

3800 Modell. .. • • . . • . •
Example 21 Replacing a 3800 Forms Control Buffer Module

3800 Modell. • . • . • . • •
Example 31 Replacing a 3800 Forms Control Buffer Module

3800 Modell. • •
Example 41 Building a New 3800 Forms Control Buffer
Module • . . . • . •

3800 Modell. • . . •
Example 51 Replacing the 3800 Forms Control Buffer
Module STD3•......••.••.

3800 Modell. . . . • . • . . • • • • • .
Example 61 Building a New 3800 Forms Control Buffer
Module for Additional ISO Paper Sizes ..••••

3800 Model 3•••.•••
Example 6A: Building a 4248 Forms Control Buffer Module
Example 71 Building a New COpy Modification Module

3800 Modell. • . • • . . • .
Example 81 Building a New COpy Modification Module From
an Existing Copy ..••....••..•••

3800 Model 3•..•••.
Example 9: Adding a New Character to a Character
Arrangement Table Module••.•••.

3800 Model 3••..•.••.•••••
Example 101 Building a New Character Arrangement Table
Module From an Existing COpy .•..•.••••••

3800 Model 3•.••..••••
Example 11: Building Graphic Characters in a Character
Arrangement Table Module •.......••.•••

3800 Modell ..•.........•..•.•.•
Example 121 Deleting Graphic References From a Character
Arrangement Table Module••••

3800 Model 3
Example 131 Listing the World Trade National Use
Graphics Graphic Character Modification Module

3800 Modell. • • • • • •
Example 141 Building a Graphic Character Modification
Module From the World Trade GRAFMOD•.

3800 Model 3••••••
Example 151 Building a New Graphic Character
Modification Module and Modifying a Character
Arrangement Table to Use It•.•••

3800 Model 3•.••
Example 161 Building a Graphic Character Modification
Module From Multiple Sources•..••

3800 Modell. • . •
Example 171 Defining and Using a" Character in a Graphic
Character Modification Module•••

3800 Model 3•••
Example 18: Listing a Library Character Set Module

3800 Modell. • . . . •
Example 191 Building a Library Character Set Module

3800 Model 3••........•.•..•
Example 20: Building a Library Character Set Module and
Modifying a Character Arrangement Table to Use It

3800 Model 3•..•.....••

184
184
185
185
185
185
186
187
188
189
190
191
191
191
192

208.1

209
209
210
210
210
210

211
211

212
212

213
213
214

214.1
214.1

215
215

216
216

216
216

217
217

218
218

219
219

219
219

220
220

222
222

223
223
226
226
226
226

227
227

)

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

Example 21s Building a Library Character Set Module From
Multiple Sources•...••••

3800 Model I . . . • • . • • • •

JEBJSAM Program • • • • • • • • • • • • • • •
Copying an ISAM Data Set • • . . • • • •
Creating a Sequential Backup Copy • • • •
Overriding DCB Control Information•••
Creating an ISAM Data Set from an Unloaded Data Set
Printing the Logical Records of an ISAM Data Set

Input and Output
Return Codes

Control
Job Control Statements

PARM Information on the EXEC Statement
IEBISAM Examples

IEBISAM Example I
IEBISAM Example 2
IEBISAM Example 3
IEBISAM Example 4
IEBISAM Example 5

. '. .
JEBPTPCH Program ••

Printing or Punching
Printing or Punching

. Printing or Punching
Printing or Punching
Printing or Punching

Input and Output

.

Return Codes
Control

an Entire Data Set
Selected Members .••...••
Selected Records .•.•••••
a Partitioned Directory •.•••
an Edited Data Set

Job Control Statements
SYSPRINT DD Statement
SYSUTI DD Statement
SYSUT2 DD Statement
SYSIN DD Statement ..

Utility Control Statements ...•.
PRINT Statement•.
PUNCH Statement
TITLE Statement
EXITS Statement
MEMBER Statement
RECORD Statement
LABELS Statement

IEBPTPCH Examples
IEBPTPCH Example I
IEBPTPCH Example 2
IEBPTPCH Example 3
IEBPTPCH Example 4
IEBPTPCH Example 5
IEBPTPCH Example 6
IEBPTPCH Example 7
IEBPTPCH Example 8
IEBPTPCH Example 9
IEBPTPCH Example,IO

JEBTCRIN Program ••••••••••••••••••••
MTDI Editing Criteria. . ..•

MTDI Editing Restrictions ..••
Special Codes••
End-of-Cartridge•••••••• •
Error Records • . • • • • • • • •
Error Description Word (EDW) ••••••••
Sample Error Records . . •. •••••

Input and Output,. • • • • •
Return Codes••.••••

Control • • • •
Job Control Statements

SYSPRINT DD Statement
SYSUTI DD Statement•••••
SYSUT2 and SYSUT3 DD Statements
SYSIN DD Statement

Utility Control Statements
TCRGEN Statement

229
229

231
231
231
232
233
233
234
235
'235
235
236
237
238
238
239
239
240

241
241
241
242
242
242
242
242
243
243
244
244
244
244
244
245
246
246
246
247
247
248
258
258
259
260
260
261
262
263
264
264
266

267
267
268
269
273
274
274
277
279
279
280
280
281
281
282
282
283
283

Contents xiii

EXITS Statement
IEBTCRIN Examples

IEBTCRIN Example 1
IEBTCRIN Example 2

IEBUPDTE Program ••••••••••••••••••
Creating and Updating Data Set Libraries
Modifying an Existing Data Set
Changing Data Set Organization

Input and Output
Return Codes•..

Control
Job Control Statements • • .

PARM Information on the EXEC Statement
SYSPRINT DD Statement •.•...••
SYSUTI DD Statement . . . • . • •
SYSUT2 DD Statement . . •• ••••
SYSIN DD Statement .. . • . • . . • •

Utility Control Statements ..•.•.
Function Statement ...•• .• • •
Function Restrictions • • • • •
Detail Statement . • •. ...••••
Detail Restrictions • . • . • • • • • •
Data Statement . • • • •
LABEL Statement
ALIAS Statement . • . .
ENDUP Statement • .

IEBUPDTE Examples . . . • . . • • .
IEBUPDTE Example 1 . . • .
IEBUPDTE Example 2 . . . • . •
IEBUPDTE Example 3
IEBUPDTE Example 4 . . • .
IEBUPDTE Example 5
IEBUPDTE Example 6
IEBUPDTE Example 7
IEBUPDTE Example 8
IEBUPDTE Example 9
IEBUPDTE Example 10
IEBUPDTE Example 11

IEHATLAS Program
Input and Output

Return Codes
Control .• .

. . .
Job Control Statements .
Utility Control Statements

. . .

TRACK Statement
VTOC Statement

IEHATLAS Examples
IEHATLAS Example 1
IEHATLAS Example 2
IEHATLAS Example 3
IEHATLAS Example 4

• • • • • • • •

IEHINITT Program ••••••••••••••••••
Placing a Standard Label Set on Magnetic Tape

Input and Output ..•. . . • •
Return Codes . • • . • •

Control • . • . • • • • •
Job Control Statements • • . • • • .

PARM Information on ~he EXEC Statement
SYSPRINT DD Statement . • • • •
anyname DD Statement •.•. • • • .
SYSIN DD Statement • • • • •

Utility Control Statement •••.••••
INITT Statement ..•. • . • .

IEHINITT Examples . . • . . . • • • • . • • •
IEHINITT Example 1 . • • • • • • • .
IEHINITT Example 2 . • • • •
IEHINITT Example 3 . . • . . • • • • . • • • .
IEHINITT Example 4•••.•••••••.
IEHINITT Example 5 . . • . . • • • • . • • •
IEHINITT Example 6 . • • . • • • • • •
IEHINITT Example 7

xiv MVS/370 Utilities

• •

• •

• •

283
290
290
291

293
293
293
293
293
294
294
294
295
295
296
296
297
297
298
299
301
302
303
303
305
306
311
313
314
315
316
317
317
319
320
322
323
324

325
325
326
327
327
327
328
328
330
330
331
331
332

333
334
335
335
336
336
337
337
337
337
337
337
340
341
341
342
342
343
343
344

\

TNL ON26-1133 (30 Mar 14) to OC26-4065-1

IEHLIST Program • • • • • • • • • • • • • • • • • •
Listing OS CVOL Entries • . • • .
Listing a Partitioned Data Set Directory

Edited Format •.•.
Unedited (Dump) Format

Listing a Volume Table of Contents
Edited Format • • • . . . • •
Unedited (Dump) Format

Input and Output . • • • .
Return Codes • • • •

Control • • • • • • • • .
Job Control statements .•.....•

PARM Information on the EXEC Statement
SYSPRINT DD statement
anynamel DD Statement
anyname2 DD Statement
SYSIN DD Statement ..

Utility Control Statements
LISTCTLG Statement ..••
LISTPDS Statement
LISTVTOC Statement ..•••

IEHLIST Examples
IEHLIST Example 1
IEHLIST Example 2
IEHLIST Example 3
IEHLIST Example 4

IEHMOVE Program ••••••••••••••••••••
Volume Size Compatibility
Space Allocation ...•
Reblocking Data Sets
Using IEHMOVE with RACF

Moving or Copying a Data Set
Sequential Data Sets
Partitioned Data Sets
BDAM Data Sets
Multivolume Data Sets
Unloaded Data Sets .••..•
Unmovable Data Sets ...•.•••••..

Moving or Copying a Group of Cataloged Data Sets
Moving or Copying an OS CVOL •.••..••••••••
Moving or Copying a Volume of Data Sets • • • • .
Moving or Copying BDAM Data Sets with Variable-Spanned

Records
Input and Output

Return Codes . • . . • • • • • •
Control . • • • •

Job Control Statements . . • • •
PARM Information on the EXEC Statement
SYSPRINT DD Statement • • • • •
SYSUTI DD Statement . . • • •
anynamel DD Statement . • • •
anyname2 DD Statement . . • • •
tape DD Statement ...•..•••.••••••.
SYSIN DD Statement •..•••.••.•••.•
Job Control Language for the Track Overflow Feature

Utili ty Control Statements . • . • • • • • .
MOVE DSNAME Statement . .• • • • • • • .
COPY DSNAME Statement
MOVE DSGROUP Statement • • . •
COPY DSGROUP Statement •.•.•••
MOVE PDS Statement ..•.
COpy PDS Statement••
MOVE CATALOG Statement
COpy CATALOG Statement
MOVE VOLUME Statement
COpy VOLUME Statement
INCLUDE Statement
EXCLUDE Statement
SELECT Statement
REPLACE Statement

IEHMOVE Examples•...•••
IEHMOVE Example 1
IEHMOVE Example 2

345
345
345
346
347
347
347
350
351
351
352
352
352
353
353
353
354
354
354
354
355
357
351
358
359
359

361
362
363
364
365
365
366
366
369
369
370
370
370
371
372

373
373
374
374
374
375
376
376
376
377
377
378
378
378
379
380
381
381
382
383
383
384
384
385
385
386
386
386
393
394
395

Contents xv

IEHMOVE Example 3 · · · · · · · · · IEHMOVE Example 4 · · · · · · · · · · IEHMOVE Example 5 · · · · · · · · · IEHMOVE Example 6 · · · · · · · · IEHMOVE Example 7 · · · · · · · · · · · · · · · · IEHMOVE Example 8 · · · · · · · · IEHMOVE Example 9 · · · · · · · · · · · · IEHMOVE Example 10 · · · · · IEHMOVE Example 11 · · · · · · · · IEHMOVE Example 12 · · · · · · · · · · · · IEHMOVE Example 13 · · · · · · · · · · · ·
IEHPROGM Program ••••••••••••••••••••

Scratching a Data Set or Member • • • • •
Renaming a Data Set or Member . • • • •
Cataloging a Data Set in an OS CVOL ••
Building or Deleting an Index in an OS CVOL •
Building or Deleting an Index Alias in an OS CVOL
Connecting or Releasing Two OS CVOLs •••••••••
Building and Maintaining a Generation Data Group Index in
an OS CVOl••• • • • •

Maintaining Data Set Passwords • • • • • • • • •
Adding Data Set Passwords . • • •
Replacing Data Set Passwords
Deleting Data Set Passwords
Listing Password Entries

Input and Output••••••••
Return Codes•.•••

Control •.......••• · . . .
Job Control Statements • • • • • •

PARM Information on the EXEC Statement
SYSPRINT DD Statement
anynamel DD Statement
anyname2 DD Statement
SYSIN DD Statement ••

Utility Control Statements
SCRATCH Statement ••••••
RENAME Statement .•.•
CATlG Statement
UNCATLG Statement • •
BLDX (Build Index> Statement
DlTX (Delete Index) Statement ••
BlDA (Build Index Alias) Statement
DLTA (Delete Index Alias) statement
CONNECT Statement ..•••.••
RELEASE (Disconnect) Statement .••••••••••
BLDG (Build Generation Data Group Index) Statement
ADD (Add a Password) Statement •••••••••••
REPLACE (Replace a Password) Statement •• ~ • • • •
DElETEP (Delete a Password) Statement •••••••
LIST (List Information from a Password> Statement

IEHPROGM Examples • • • • • • • • ·
IEHPROGM Example 1 • . • • • • • •
IEHPROGM Example 2 • • • • • • • • •
IEHPROGM Example 3 • • • • • • • •
IEHPROGM Example 4 • • • •
IEHPROGM Example 5 • • • • • • • •
IEHPROGM Example 6 . • . . • • • • .
IEHPROGM Example 7
IEHPROGM Example 8
IEHPROGM Example 9
IEHPROGM Example 10

IFHSTATR Program • • • • • • • • • • • • • • • • • •
Assessing the Quality of Tapes in a Library
Input and Output ..•. • • • •
Control••• • • • • •

Job Control Statements • • • •
IFHSTATR Example • • • •

Appendix A. Exit Routine Linkage •••••••••••
Linking to an Exit Routine .••• • ••••

label Processing Routine Parameters • • • •
Nonlabel Processing Routine Parameters • • • •

xvi MVS/370 Utilities

395
396
397
397
398
399
400
401
401
402
403

404
404
404
405
405
405
406

407
409
410
411
411
411
412
412
412
413
413
414
414
414
415
415
415
415
417
417
418
418
418
418
419
419
419
420
420
421
421
426
427
428
428
429
429
430
430
431
431
432

435
435
436
436
436
437

438
438
438
439

\
)

TNL ON26-8133 (30 Mar 14) to OC26-4065-1

Returning from an Exit Routine

Appendix B.
DO Statement

DD statements for Defining Mountable Devic ••
Examples .•••••••••

DO Example
00 Example
00 Example
DO Example
DO Example

1 • • • • •
2 • • •• ••••••••••
3
4
5

Appendix C. Proce •• ing U.er Label. ••••••
Processing User Labels as Data Set Descriptors
Exiting to a User's Totaling Routine
Processing User Labels as Data

• • • •

Index •

440

443
443
443
444
444
444
445

446
446
447
447

449

Content. xvii

FIgURES

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.
27.

28.

29.
30.

31.

32.
33.
34.
35.
36.
37.
38.
39.

40.

41.
42.
43.

44.

45.
46.
47.
48.
49.
50.
51.
52.
53.
54.

55.
56.

xviii MVS/370 utilities

System Utility Programs
Data Set Utility Programs
Independent Utility Program
Locating the Correct Example
Tasks and Utility Programs
Typical Parameter Lists .••
Sequence of DDNMELST Entries
ICAPRTBL Wait-State Codes ••.....••
ICAPRTBL Utility Control Statements
ICAPRTBL Example Directory • • • . • . . . • •
Partitioned Directories Whose Data Sets Can Be Compared
Using IEBCOMPR
Partitioned Directories Whose Data Sets Cannot Be
Compared Using IEBCOMPR
IEBCOMPR Return Codes . 0 •

Job Control Statements for IEBCOMPR
IEBCOMPR Utility Control Statements
IEBCOMPR Example Directory
IEBCOPY Return Codes ... 0 0 • •

Job Control Statements for IEBCOPY •.
Changing Input Record Format Using IEBCOPY
IEBCOPY Utility Control Statements ••••.
Multiple Copy Operations within a Job Step
IEBCOPY Example Directory ...•. 0 • •

Copying a Partitioned Data Set--Full Copy ••.
Copying from Three Input Partitioned Data Sets •••
COpy Operation with "Replace" Specified on the Data Set
Level
Copying Selected Members with Reblocking and Deblocking
Selective Copy with "Replace" Specified on the Member
Level
Selective Copy with "Replace" Specified on the Data Set
Level
Renaming Selected Members Using IEBCOPY 0... 0 . .
Exclusive Copy with "Replace" Specified for One Input
Partitioned Data Set 0 • 0 • • • • • • • 0

Compress-in-Place Following Full Copy with "ReplaceR
Specified ..•..... 0 0 • • 0 0 0 • 0 0 0

Multiple Copy Operations/Copy Steps 0........
Multiple Copy Operations/Copy Steps within a Job Step
IBM-Supplied Patterns . • • • 0 • • • •

IEBDG Actions• 0 • • • • •

IEBDG Return Codes •.•. ••.•••••••
Job Control Statements for IEBDG ••.••.•.•
IEBDG Utility Control Statements ..•. 0 • 0 ••

Defining and Selecting Fields for Output Records Using
I EB DG •.••.•••.•.••.••••••
Field Selected from the Input Record for Use in the
Output Record O. 0 • 0 • • 0 0 • 0 OJ • 0 •

Compatible IEBDG Operations .. 0 0 • 0 0 • 0

IEBDG User Exit Return Codes . 0 0 0 • 0 0 •

Default Placement of Fields within an Output Record
Using IEBDG . 0 0 0 0 • 0 0 0 0 • • 0 0 • 0 •

Creating Output Records with Utility Control
Statements .. 0 • • 0 • 0 • • • • • • • O. •

Repetition Caused by the REPEAT Statement Using IEBDG
IEBDG Example Directory . 0 • • 0 0 0 • 0 • •

Output Records at Job Step Completion .••.
Output Partitioned Member at Job Step Completion
Partitioned Data Set Members at Job Step Completion
Contents of Output Records at Job Step Completion
IEBEDIT Return Codes 0........ 0 0 •

Job Control Statements for IEBEDIT 0 0 0 0 0

IEBEDIT Example Directory .. 0 • • • 0 • • • • • •

Creating a Partitioned Data Set from Sequential Input
Using IEBGENER 0 0 • 0 • • 0 • • • • • • 0 •

Expanding a Partitioned Data Set Using IEBGENER
Editing a Sequential Data Set Using IEBGENER

1
2
3
7
8

14
15
19
20
23

27

28
28
29
30
32
46
47
49
51
52
61
62
64

66
68

70

72
74

77

80
82
86
98
99

100
101
104

105

106
107
108

108

109
110
121
124
125
127
128
132
132
135

142
143
144

\
)

TNL GN26-8133 (30 Mar 14) to OC26-4065-1

57. IEBGENER Return Codes •.•.•••••••••••
58. Job Control Statements for IEBGENER
59. IEBGENER Utility Control Statements
60. IEBGENER Example Directory
61. 3800 General Module Header
62. 3800 FCB Module Structure .•••••
62.1. 4248 FCB Module Structure ••••
62.2. 4248 FCB Module Control Byte •••••
62.3. 4248 FCB Module Data Byte •.•.•••••••
63. IEBIMAGE Listing of a Forms Control Buffer Module
64. COpy Modification Module Structure .••••
65. IEBIMAGE Listing of Three Segments of a Copy

66.
67.

68.
69.

70.
71.

72.
73.
74.
75.

76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.

91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
Ill.
112.

113.
114.
115.
116.
117.
118.
119.
120.

Modification Module •..••..•.•••••••
Character Arrangement Table Module Structure •••
IEBIMAGE Listing of a Character Arrangement Table
Module•..•.••
Graphic Character Modification Module Structure
IEBIMAGE Listing of Two Segments of a Graphic
Character Modification Module ...••••
Library Character Set Module Structure •••
IEBIMAGE Listing of Two Segments of a Library
Character Set•.••.••
IEBIMAGE Return Codes .•.••••.
Job Control Statements for IEBIMAGE •
Utility Control Statements for IEBIMAGE ••••••
IEBIMAGE Listing of a COpy Modification Module with
Overrun Notes .•••..•.••••
IEBIMAGE Example Directory •••••••
An Unloaded Data Set Created Using IEBISAM
Record Heading Buffer Used by IEBISAM
IEBISAM User Exit Return Codes
IEBISAM Return Codes ••.•••
Job Control Statements for IEBISAM
IEBISAM Example Directory •...
IEBPTPCH Return Codes ...•••
Job Control Statements for IEBPTPCH
IEBPTPCH Utility Control Statements
IEBPTPCH Example Directory

.
Special Purpose Codes •••• •.••
MTDI Codes from TCR ••• .•• .•••
MTST Codes from TCR .•••.•••••••••••
MTST Codes after Translation by IEBTCRIN with
TRANS=STDLC ..•..•••.••••••••
Tape Cartridge Reader Data Stream ..••
Record Construction .•••..•.•••
IEBTCRIN Return Codes .•.•••••••••
IEBTCRIN Job Control Statements •
IEBTCRIN Utility Control Statements
IEBTCRIN Example Directory
IEBUPDTE Return Codes
Job Control Statements for IEBUPDTE
IEBUPDTE Utility Control Statements

NEW, MEMBER, and NAME Parameters
UPDATE=INPLACE Return Codes
IEBUPDTE Example Directory • •
Example of Reordered Sequence Numbers ••••••
Reordered Sequence Numbers •••.•••••
IEHATLAS Return Codes .•..•..
Job Control Statements for IEHATLAS
Utility Control Statements for IEHATLAS
IEHATLAS Example Directory ...•.•••••••
IBM Standard Label Group after Volume Receives Oat.
IEHINITT Return Codes •.••.•.••••
IEHINITT Job Control Statements •.••••
Printout of INITT Statement Specifications and
Initial Volume Label Information
IEHINITT Example Directory .•.
Index Structure--Listed by IEHLIST
Sample Directory Block ..•..
Edited Partitioned Directory Entry . . .
Sample Partitioned Directory Listing •••••••
Sample Printout of a Volume Table of Contents
IEHLIST Return Codes •••••••••••••••
IEHLIST Job Control Statements •.•••••

145
146
148
157
169
171
172
172

172.1
172.2

173

174
176

177
179

110
181

112
114
184
185

192
208.2

233
234
234
235
235
237
243
243
245
251
270
271
272

273
277
271
280
281
283
290
294
295
297
300
305
312
320
322
326
327
327
330
334
336
336

338
340
345
346
346
347
350
352
353

Figure. xix

121.
122.
123.

124.

125.
126.
127.
128.

129.
130.
131.

132.
133.
134.
135.
136.
137.
138.

139.
140.

141.
142.
143.

144.
145.
146.
147.
148.
149.
ISO.
151.
152.
153.

154.
ISS.

xx MVS/370 Utilities

IEHlIST Utility Control Statements ••••••••
IEHlIST Example Directory •••••••••••.
Move and COpy Operations--DASD Receiving Volume with
Size Compatible with Source Volume •..•.•..
Move and Copy Operations--DASD Receiving Volume with
Size Incompatible with Source Volume •••••••
Move and COpy Operations--Non-DASD Receiving Volume
Moving and Copying Sequential Data Sets
Moving and Copying Partitioned Data Sets • •
Partitioned Data Set Before and After an IEHMOVE Copy
Operation •.••.•••••.•••••••
Merging Two Data Sets Using IEHMOVE .••••
Merging Three Data Sets Using IEHMOVE ••••
Moving and Copying a Group of Non-VSAM Cataloged Dat.
Sets
Moving and Copying the OS CVOL ••••
Moving and Copying a Volume of Data Sets
IEHMOVE Return Codes .•••••
IEHMOVE Job Control Statements •••.
IEHMOVE Utility Control Statements
IEHMOVE Example Directory ••••••••.•••
Index Structure Before and After an IEHPROGM Build
Operation ••••.••••.••••••
Building an Index Alias Using IEHPROGM ••
Connecting an OS CVOl to a Second OS CVOl Using
I EHPROGM ..••••..•••••••••••
Connecting Three OS CVOls Using IEHPROGM •••••
Building a Generation Data Group Index Using IEHPROGM
Relationship between the Protection Status of a Data
Set and Its Passwords ••••
listing of a Password Entry ••••
IEHPROGM Return Codes•..
IEHPROGM Job Control Statements
IEHPROGM Utility Control Statements
IEHPROGM Example Directory • •
Type 21 SMF Record Format with ESV Data
Sample Output from IFHSTATR .••••
IFHSTATR Job Control Statements .•..•••••
Parameter lists for Nonlabel Processing Exit Routines
Return Codes That Must Be Issued by User Exit
Routines •.••••••••••. • • • • •
System Action at OPEN, EOV, or CLOSE Time ••••
User Totaling Routine Return Codes ..••.

354
357

362

362
363
366
367

368
368
369

371
371
373
374
375
379
393

406
406

407
408
408

410
412
412
414
416
427
435
436
437
439

441
447
447 .

INTRODUCTION

MVS/370 Data Facility Product provides utility programs to
assist in organizing and maintaining data. Each utility program
falls into one of three classes of programs, determined by the
function performed and the type of control of the utility.

IYITEn UTILITY pROGRAMS

System utility programs are used to maintain and manipUlate
system and user data sets. Entire volume manipulation, for
example, copying or restoring, is also provided. These programs
must reside in an authorized library and are controlled by JCL
statements and utility control statements.

They can be executed as jobs or can be invoked as subroutines by
authorized programs. The invocation of utility programs and the
linkage conventions are discussed in "Invoking utility Programs
from a Problem Program" on page 13.

Figure 1 is a list of system utility programs and their purpose.

system
utility

IEHATLAS

IEHINITT

IEHLIST

IEHMOVE

IEHPROGH

IFHSTATR

Purpose

To assign alternate tracks and recover usable data
records when defective tracks are indicated

To write standard labels on tape volumes

To list system control data

To move or copy collections of data

To build and maintain system control data

To select, format, and write information about tape
errors from the IFASMFDP tape or the SYS1.MAH data
set.

Figure 1. System Utility Programs

DATA SET UTILITY pROGRAMS

Data set utility programs are used to reorganize, change, or
compare data at the data set and/or record level. These
programs are controlled by JeL statements and utility control
statements.

These utilities manipUlate partitioned, sequential, or indexed
sequential data sets provided as input to the programs. Data
ranging from fields within a logical record to entire data sets
can be manipulated. .

Data set utility programs can be executed as jobs or can be
invoked as subroutines by a calling program. The invocat;on of
utility programs and the linkage conventions are disCUSSQ~ in
"Invoking Utility Programs from a Problem Program" on page 13.

Utility programs that manipulate data sets and are incluaed in
this manual cannot be used with VSAM data sets. Information
about VSAM data sets can be found in VSAM Users Guide.

Introduction 1

TNL ON26-8133 (30 Mar 84) to GC26-4065-1

Two utilities, IEHMOVE and IEBCOPY, do not support Virtual
Input/Output (VIO) data sets.

Figure 2 is a list of data set utility programs and their
purpose.

Data set
utility Purpose

IEBCOMPR To compare records in sequential or partitioned.data
sets

IEBCOPY To copy, compress, or merge partitioned data sets, to
add RLD count information to load modules, to select
or exclude specified members in a copy operation, and
to rename and/or replace selected members of
partitioned data sets

IEBDG To create a test data set consisting of patterned
data

IEBED!T To selectively copy job steps and their associated
JOB statements

IEBGENER To copy records from a sequential data set or to
convert a data set from sequential organization to
partitioned organization

IEBIMAGE To modify, print, or link modules for use with the
IBM 3800 Printing Subsystem, the 3262 Model 5, or the
4248 printer

IEBISAM To place source data from an indexed sequential data
set into a sequential data set in a format suitable
for subsequent reconstruction

IEBPTPCH To print or punch records that reside in a sequential
or partitioned data set

IEBTCRIN To construct records from the input data stream that
have been read from the IBM 2495 Tape Cartridge
Reader

IEBUPDTE To incorporate changes to sequential or partitioned
data sets

Figure 2. Data Set Utility Programs

INDEPENPENT UTILITY PROGRAMS

2 MVS/370 Utilities

Independent utility programs are used to prepare devices for
system use when the operating system is not available. They
operate outside of, and in support of, the operating system, are
controlled by utility control statements, and cannot be invoked
by a calling program. This pUblication addresses only the
ICAPRTBL utility program.

The following figure shows the independent utility program and
its purpose.

Independent
utility Purpose

ICAPRTBL To load the forms control and universal character
set buffers of the IBM 3203-5 or 3211 printer after
an unsuccessful attempt to IPL, with the 3203-5 or
3211 assigned as the output portion of a composite
console.

Figure 3. Independent Utility Program

The selection of a specific program depends on the nature of the
job to be performed. For example, renaming a data set involves
modifying system control data. Therefore, a system utility
program can be used to rename the data set. In some cases, a
specific function can be performed by more than one program.
"Guide to Utility Program Functions" on page 8 will help you
find the program that performs the function you need.

DASD AND TAPE DEVICE SUPPORT

Except where noted, all the following DASD and tape devices are
supported by all utility programs. Restrictions and peculiar
device support are noted in the individual utility sections.

The table below indicates specific devices supported, and the
notation to be used to reference them. The term DASD includes
all direct access storage devices listed below.

Device Number Devices

DASD: 2305-1 2305-1

2305-2 2305-2

2314 2314

2319 2319

3330 3330-1, 3330-2, 3333, and 3350
in 3330-1 compatibility mode

3330-1 3330-11, 3333-11, and 3350 in
3330-11 compatibility mode

3330V 3850 MSS Virtual Volumes

3340 3340, 3344 (both 35 & 70
megabyte models)

3350 3350 Native mode

3375 3375

3380 3380

Tape: 2400 2400 (all models)

2495 2495 (IEBTCRIN only)

3400 3420 (all models)

Introduction 3

CONTROL

System and data set utility programs are controlled by job
control statements and utility control statements. The
independent utility program is controlled by utility control
statements only; because this program is independent of the
operating system, job control statements are not required. The
job control statements and utility control statements necessary
to use utility programs are provided in the major discussion of
each utility program.

JOB CONTROL STATEMENTS

A system or data set utility program can be introduced to the
operating system in different ways:

• Job control statements can be included in the input stream.

• Job control statements, placed in a procedure library or
defined as an inline procedure, can be included by means of
the EXEC job control statement.

• A utility program can be invoked by a calling program.

If job control statements are placed in a procedure library,
they should satisfy the requirements for most applications of
the program; a procedure, of course, can be modified or
supplemented for applications that require additional
parameters, data sets, or devices. The data set utility
IEBUPDTE can be used to enter a procedure into a procedure
library; see "IEBUPDTE Program" o~ page 293.

A job that modifies a system data set (identified by SYS1.)
must be run in a single job environment; however, a job that
uses a system data set, but does not modify it, can be run in a
multiprogramming environment. The operator should be informed
of all jobs that modify system data sets.

DO statements should ensure that the volumes on which the data
sets reside cannot be shared when update activity is being
performed.

Job control statements can be continued on subsequent lines, but
the continued line must begin in column 4 through 16. No
continuation mark is required in column 72.

UTILITY CONTROL STATEMENTS

4 MVS/370 Utilities

Utility control statements are used to identify a particular
function to be performed by a utility program and, when
required, to identify specific volumes or data sets to be
processed.

The control statements for the utility programs have the
following standard format:

label operation operand

The label symbolically identifies the control statement and,
with the exception of system utility program IEHINITT, can be
omitted. When included, a name must begin in the first position
of the statement and must be followed by one or more blanks. It
can contain from one to eight alphameric characters, the first
of which must be alphabetic.

The operation identifies the type of control statement. It must
be preceded and followed by one or more blanks.

The QRgrand is made up of one or more keyword parameters
separated by commas. The operand field must be preceded and
followed by one or more blanks. Commas, parentheses, and blanks
can be used only as delimiting characters.

Comments can be written in a utility statement, but they must be
separated from the last parameter of the operand field by one or
more blanks.

continuing utility Control statements

Restrictions

Utility control statements are coded on cards or as online input
and are contained in columns 1 through 71. A statement that
exceeds 71 characters must be continued on one or more
additional lines. A nonblank character must be placed in column
72 to indicate continuation. A utility statement can be
interrupted either in column 71 or after any comma.

The continued portion of the utility control statement must
begin in column 16 of the following statement.

Note: The IEHPROGM, IEBCOPY, IEBPTPCH, IEBGENER, IEBCOMPR, and
IEBDG utility programs permit certain exceptions to these
requirements (see the applicable program description).

The utility control statements are discussed in detail, as
applicable, in the remaining chapters.

• Unless otherwise indicated in the description of a specific
utility program, a temporary data set can be processed by a
utility program only if the user specifies the complete name
generated for the data set by the system (for example,
DSNAME=SYS82296.T000051.RPOOl.JOBTEMP.TEMPMOD).

• The utility programs described in this book do not normally
support VSAM data sets. For certain exceptions, refer to
the various program descriptions.

• Most utility programs do not support ISCII/ASCII tape data
sets. (Conversion from EBCDIC codes to ISCII/ASCII codes
will result in loss of data.) Refer to the IEHINITT program
for specific exceptions.

NOTATIONAL CONVENTIONS

A uniform system of notation describes the format of utility
commands. This notation is not part of the language; it simply
provides a basis for describing the structure of the commands.

The command format illustrations in this book use the following
conventions:

• Brackets [] indicate an optional parameter.

• Braces C) indicate a choice of entry; unless a default is
indicated, you must choose one of the entries.

Items separated by a vertical bar (I) represent alternative
items. No more than one of these items may be selected.

• An ellipsis (...) indicates that multiple entries of the
type immediately preceding the ellipsis are allowed.

• Other punctuation (parentheses, commas, spaces, etc.) must
be entered as shown. A space is indicated by a blank.

• BOLDFACE type indicates the exact characters to be entered,
except as described in the bulleted notes above. Such items
must be entered exactly as illustrated.

• lowercase underscored type specifies fields to be supplied
by the user.

Introduction 5

keyword=device=list

BOLDFACE UNDERSCORED type indicates a default option. If
the parameter is omitted, the underscored value is assumed.

The term keyword is replaced by VOL, FROM, or TO.

The term device is replaced by either a generic name, for
example, 3330; or an esoteric name, for example, DISK, if this
esoteric name has been generated into your system. For DASD,
the term list is replaced by one or more volume serial numbers
separated by commas. When there is more than one volume serial
number, the entire list field must be enclosed in parentheses.

For tapes, the term list is replaced by either one or more
volume serial number/comma/data set sequence number pairs. Each
pair is separated from the next pair by a comma. When there is
more than one pair, the entire list field must be enclosed in
parentheses; for example: FROM=3400=(tapeA,1,tapeB,1).

INSTALLATION CONSIDERATIONS

The System/370 versions of Device Support Facilities (Release 1
through 5) are not applicable for Data Facility Product
Installations. The user must order and install Device Support
Facilities Release 6 (5752-VS2) to run in an MVS/370 Data
Facility Product environment.

.'
Releases 1.0 and 1.1 of Data Facility Data Set Services (DFDSS)
are not applicable for Data Facility Product installations. The
user must install DFDSS Release 1.2 to run in an MVS/370 Data
Facility Product environment. Installation of Release 1.2
supersedes Release 1.1.

The following utilities are not included as support for the Data
Facility Product for MVS/370.

• IBCDASDI--Disk initialization functions are described in
Device Support Facilities User's Guide and Reference.

• IBCDMPRS--Stand-alone disk restore functions are described
in Data Facility Data Set Services User's Gujde and
Reference.

• IEHDASDR--Disk initialization functions are described in
Device Support Facilities User's Guide and Reference. Dump
restore functions are described in Data Facility Data Set
Services User's Guide and Reference.

Note: DFDSS does not support the dump format produced by
IEHDASDR or DRWDASDR.

• Analysis Program-1 (AP-1)--Functions to aid in the analysis
of DASD errors are described in Device Support Facilities
User's Guide and Reference.

SPECIAL REFERENCING AIDS

6 MVS/370 Utilities

Two special referencing aids are included in this publication to
help you locate the correct utility program for your needs and
locate the correct example of the program for reference.

To locate the correct utility program, refer to Figure 5 on page
8 in "Guide to Utility Program Functions" on page 8.

To locate the right example, use the figure--called an "example
directory"--that precedes each program's examples. Figure 4 on
page 7 shows a portion of the example directory for IEHMOVE.
The figure shows that IEHMOVE Example 1 is an example of moving
a sequential data set and that IEHMOVE Example 2 is an example
of copying a sequential data set.

Operation Device Comments Example

MOVE Disk Source volume is demounted 1
Sequential after job completion.

COPY Disk Three cataloged sequential 2
Sequential data sets are to be copied.

The disks are mountable.

Figure 4. locating the Correct Example

Introduction 7

GUIDE TO UTILITY PROGRAM FUNCTIONS

8 MVS/370 Utilities

Figure 5 shows a list of tasks that the utility programs can be
used to perform. The left-hand column shows tasks that you
might want to perform. The middle column more specifically
defines the tasks. The right-hand column shows the utility
programs that can be used for each task. Notice that in some
cases more than one program may be available to perform the same
task.

Task Options
Utility
Program

Add a password IEHPROGM

Alter in a load module IEBCOPY
place

Assign tracks to a DASD volume and IEHATLAS
alternate recover usable data

Catalog a data set in an OS CVOL IEHPROGM

Change data set organization IEBUPDTE
logical record length IEBGENER

Compare partitioned data sets IEBCOMPR
sequential data sets
records

Compress in a partitioned data set IEBCOPY
place

Construct records from MTST and MTDI input IEBTCRIN

Convert to a sequential data set created as IEBCOPY
partitioned a result of an unload

sequential data sets IEBUPDTE,
IEBGENER

Convert to a partitioned data set IEBUPDTE,
sequential IEBCOPY

an indexed sequential data set IEBISAM,
IEBDG

Copy a direct access volume IEHMOVE

a load module IEBCOPY

a partitioned data set IEBCGPY,
IEHMOVE

a volume of data sets IEHMOVE

an indexed sequential data set IEBISAM

job steps IEBEDIT

selected m~mbers IEBCOPY,
IEHMOVE

Figure 5 (Part 1 of 5). Tasks and Utility Programs

TNl GN26-8133 (30 Mar 84) to GC26-406S-1

) Options
Utility

Task Program

sequential data sets IEBGE;NER,
IEHMOVE,
IEBUPDTE

Create a backup copy of a partitioned IEBCOPY
data set

a character arrangement; table IEBIMAGE
module

a copy modification module IEBIMAGE

a 3800 or 4248 forms control IEBIMAGE
buffer module

a graphic character modification IEBIMAGE
module

a library character set module IEBIMAGE

a library of partitioned members IEBUPDTE

a member IEBDG
IEBGENER
IEBUPDTE

a sequential output data set IEBDG

an indexed sequential data set IEBDG

an output job stream IEBEDIT

Delete a password IEHPROGM

catalog entries IEHPROGM

records in a partitioned data set IEBUPDTE

Edit MTDI input IEBTCRIN

Edit and a sequential data set IEBGENER,
convert to IEBUPDTE
partitioned

Edit and a job stream IEBEDIT
copy

a sequential data set IEBGENER,
IEBUPDTE

Edit and error statistics by volume (ESV) IFHSTATR
list records

Edit and a sequential data set IEBPTPCH
print

. Edit and a sequential data set IEBPTPCH
punch

Enter a procedure into a procedure IEBUPDTE
library

_/

Figure 5 (Part 2 of 5). Tasks and Utility Programs

Guide to Utility Program Functions 9

Task Options J
\

utility
Progralll

Exclude a partitioned data set member IEBCOPY,
from a copy operation IEHMOVE

Expand a partitioned data set IEBCOPY

a sequential data set IEBGENER

Gene'rate test data IEBDG

Get alternate tracks on a DASD volume IEHATLAS

Include changes to members or sequential IEBUPDTE
data sets

Insert into a partitioned data set IEBUPDTE
records

Label magnetic tape volumes IEHINITT

List a password entry IEHPROGM

a volume table of contents IEHLIST

number of unused d{rectory blocks IEBCOPY
and tracks

partitioned directories IEHLIST

Load a previously unloaded partitioned IEBCOPY
data set

an indexed sequential data set IEBISAM

an unloaded data set IEHMOVE

UCS and FCB buffers of a 3211 ICAPRTBL

Merge partitioned data sets IEHMOVE,
IEBCOPY.

Modify a partitioned or sequential data IEBUPDTE
set

Move a volume of data sets IEHMOVE

partitioned data sets IEHMOVE

sequential data sets IEHMOVE

Number in a new member IEBUPDTE
records

in a partitioned data set IEBUPDTE

Password add a password IEHPROGM
protect

delete a password IEHPROGM

list passwords IEHPROGM
:

replace a password IEHPROGM

Figure 5 (Part 3 of 5). Tasks and Utility Programs

10 MVS/370 Utilities

Task options
utility
Program

Print sequential data sets IEBGENER,
IEBUPDTE,
IEBPTPCH

partitioned data sets IEBPTPCH

selected records IEBPTPCH

Punch a partitioned data set member IEBPTPCH

a sequential data set IEBPTPCH

selected records IEBPTPCH

Read Tape Cartridge Reader input IEBTCRIN

Reblock a load module IEBCOPY

a partitioned data set IEBCOPY

a sequential data set IEBGENER,
IEBUPDTE

Recover data from defective tracks on IEHATlAS
direct access volumes

Re-create a partitioned data set IEBCOPY

Rename a partitioned data set member IEBCOPY,
IEHPROGM

a sequential or partitioned data IEHPROGM
set

moved or copied members IEHMOVE

Renumber logical records IEBUPDTE

Replace a password IEHPROGM

data on an alternate track IEHATlAS

identically named members IEBCOPY

logical records IEBUPDTE

members IEBUPDTE

records in a member IEBUPDTE

records in a partitioned data set IEBUPDTE,
IEBCOPY

selected members IEBCOPY

selected members in a move or IEBCOPY,
copy operation IEHMOVE

Scratch a volume table of contents IEHPROGM

data sets IEHPROGM

Uncatalog data sets IEHPROGM

Figure 5 (Part 4 of 5). Tasks and Utility Programs

Guide to Utility Program Functions 11

Task options
utility
Program

Unload a partitioned data set IEHMOVE,
IEBCOPY

a sequential data set IEHMOVE

an indexed sequential data set IEBISAM

Update in a partitioned data set IEBUPDTE
place

Figure S (Part S of S). Tasks and Utility Programs

12 MVS/370 Utilities

INVOKING UTILITY PROGRAMS FROM A PROBLEM PROGRAM

Utility programs can be invoked by a problem program through the
use of the ATTACH or LINK macro instruction. In addition,
IEBTCRIN can be invoked with the LOAD or CALL macro instruction.

The problem program must supply the following to the utility
program:

• The information usually specified in the PARM parameter of
the EXEC statement.

• The ddnames of the data sets to be used during processing by
the utility program.

The following programs may execute authorized functions:

IEBCOPY, IEHATLAS, IEHINITT, IEHMOVE, IEHPROGM

When executing an authorized function, the calling program must
be aut~orized via the Authorized Program Facility (APF).

When IEHMOVE, IEHPROGM, or IEHLIST is dynamically invoked in a
job step containing a program other than one of these three, the
DD statements defining mountable devices for the IEHMOVE,
IEHPROGM, or IEHLIST program must be included in the job stream
prior to DD statements defining data sets required by the other
program.

LINK OR ATTACH MACRO INSTRUCTION

The LINK or ATTACH macro instruction can be used to invoke a
utility program from a problem program.

The format of the LINK or ATTACH macro instruction is!

[label) (LINKIATTACHl EP=progname

,PARAM=(optionaddr[,ddnameaddr]

[,hdingaddr))

,VL=l

where:

EP=progname
specifies the name of the utility program.

PARAM=
specifies, as a sublist, address parameters to be passed
from the problem program to the utility program. These
values can be coded:

optionaddr
specifies the address of an option list, OPTLIST,
which is usually specified in the PARM parameter of
the EXEC statement. This address must be written for
all utility programs.

ddnameaddr
specifies the address of a list, DDNMELST, of
alternate ddnames for the data sets used during
utility program processing. If standard ddnames are
used and this is not the last parameter in the list,

Invoking Utility Programs from a Problem Program 13

it should point to a halfword of zeros. If it is the
last parameter, it may be omitted.

hdingaddr
specifies the address of a 6-byte list, HDNGlIST,
which contains an EBCDIC page count for the output
device. If hdingaddr is omitted, the page number
defaults to 1.

VL=l
specifies that the sign bit of the last fullword of the
address parameter list is to be set to 1.

Figure 6 shows these lists as they exist in the user's DC area.
Note that the symbolic starting addresses for OPTlIST and
DDNMElST fallon halfword boundaries which are not also fullword
boundaries.

ress of Starting add
the optionad
parameter Ii
(OPTLISTI

dr
st

Full word

~

100 1
08 N

-

~

Starting add
the ddname
parameter Ii
(ODNMELS

r~/ addr '
st
T)' ,

00

00

00

ress of Starting add
the hdingad
parameter I j
(HDNGLIST

dr
st
) . .""".,."""

T

00

00

T

1

0

--.'!Jiill

~'

00

00

00

1

00

00

S

0

Full word

V E R

Wr°O 48 00

00 00 00

00 00 00

00 00 00

00 00 I

1 40 00

00 00 00

00 00 I

E T W

..... ~ 00
"V

Figure 6. Typical Parameter lists

I F

00 00

00 00

00 00

00 00

N P

00 00

00 00

N P

H I

04 00

y

00

00

00

00

U

00

00

U

C

00

o

2

3

4

5

6

7

8

9

10

11

The PARAM parameter of the LINK macro instruction in the calling
program provides the utility program with the symbolic addresses
of the parameter lists shown in Figure 6, as follows:

• The option list, OPTlIST, which includes the number of bytes
in the list (hexadecimal 08) and the NOVERIFY option.

• The alternate ddname list, DDNMElST, which includes the
number of bytes in the list (hexadecimal 48) and alternative
names for the SYSIN INPUT11, SYSUT1 INPUTSET, and SYSUT2
WHICHPTR data sets.

• The heading list, HDNGLIST, which includes the number of
bytes in the list (hexadecimal 04) and indicates the
starting page number (shown as decimal 10) for printing
operations controlled through the SYSPRINT data set.

14 MVS/370 Utilities

The option list, OPTLIST, must begin on a halfword boundary that
is not also a fullword boundary. The two high order bytes
contain a hexadecimal count of the number of bytes in the
remainder of the OPTLIST. (For all programs except IEHMOVE,
IEHLIST, IEHPROGM, IEHINITT, IEBUPDTE, and IEBISAM, the count
must be zero.) OPTLIST is free form with fields separated by
commas. No blanks or zeros should appear in the list.

The ddname list, DDNMELST, must begin on a halfword boundary
that is not also a fullword boundary. The two high order bytes
contain a count of the number of bytes in the remainder of the
list. Each name of fewer than 8 bytes must be left aligned and
padded with blanks. If an alternate ddname is omitted from the
list, the standard name is assumed. If the name is omitted
within the list, the 8-byte entry must contain binary zeros.
Names can be omitted from the end by merely shortening the list.
Figure 7 shows the sequence of the 8-byte entries in the ddname
list pointed to by ddnameaddr.

Entry

1
2
3
4
5
6
7
8
9
10
11

standard Name

00000000
00000000
00000000
00000000
SYSIN
SYSPRINT
00000000
SYSUTI
SYSUT2
SYSUT3
SYSUT4

Figure 7. Sequence of DDNMELST Entries

The first 2 bytes of HDNGLIST contain the length in bytes of the
heading list. The remaining 4 bytes contain a page number that
the utility program is to place on the first page of printed
output.

LOAD MACRO INSTRUCTION

IEBTCRIN can be invoked through use of the LOAD macro
instruction.

The LOAD macro instruction causes the control program to bring
the load module containing the specified entry point into main
storage unless a copy is already there. Control is not passed
to the load module.

The format of the LOAD macro instruction is:

LOAD CEP=IEBTCRINIEPLOC=address of name}

Invoking Utility Programs from a Problem Program 15

where:

EP=IEBTCRIN
is the entry point name of the program to be brought into
main storage.

EPLOC=address of name

CALL MACRO INSTRUCTION

is the main storage address of the entry point name
described above.

The CALL macro instruction can be used to pass control to
IEBTCRIN a~ter IEBTCRIN has been loaded into main storage.

Control can be passed to IEBTCRIN via a CALL macro instruction
or via a branch and link instruction. If the branch and link
instruction is used, register 1 must be loaded with the address
of a parameter list of fullwbrds as described under "LINK or
ATTACH Macro Instruction" on page 13. The last parameter list
address must contain X'80' in byte 1 to indicate the last
parameter in the list.

The format of the CALL macro instruction is:

[labell CALL IEBTCRIN(,optionaddr[,ddnameaddr]

[,hdingaddr])

,VL=l

where:

IEBTCRIN

VL=l

is the name of the program to be given control; the name is
used in the macro instruction as the operand of a V-type
address constant.

optionaddr
specifies the address of an option list, OPTLIST,
usually specified in the PARM parameter of the EXEC
statement.

ddnameaddr
specifies the address of a list of alternate ddnames,
DDNMELST, for the data sets used during IEBTCRIN
processing. If standard ddnames are used and this is
not the last parameter in the list, it should point to
a halfword of zeros. If it is the last parameter, it
may be omitted.

hdingaddr
specifies the address of a six-byte list, HDNGLI5T,
containing an EBCDIC page count for the output device.

specifies that the high order bit of the last address
parameter in the macro expansion is to be set to 1.

The option list, OPTLIST, must begin on a halfword boundary that
is not also a fullword boundary. The two high order bytes
contain a hexadecimal count of the number of bytes in the
remainder of the OPTLIST. This count must be zero. OPTLIST is
free form with fields separated by commas. No blanks or zeros
should appear in the list.

The ddname list, DDNMELST, must begin on a halfword boundary
that is not also a fullword boundary. The two high order bytes
contain a count of the number of bytes in the remainder of the
list. Each name of fewer than 8 bytes must be left aligned and

16 MVS/370 Utilities

padded with blanks. If an alternate ddname is omitted from the
list, the standard name is assumed. If the name is omitted
within the list, the 8-byte entry must contain binary zeros.
Names can be omitted from the end by merely shortening the list.
Figure 7 on page 15 shows the sequence of the 8-byte entries in
the ddname list pointed to by ddnameaddr.

The first two bytes of the heading list, HDNGLIST, contain the
length in bytes of the heading list. The remaining four bytes
contain a page number that IEBTCRIN places on the first page of
printed output.

Invoking Utility Programs from a Problem Program 17

ICAPRTBl PROGRAM

EXECUTING ICAPRTBl

ICAPRTBL is an independent utility that operates only in a
System/370 environment. It is used to load the universal
character set (UCS) buffer and the forms control buffer (FCB)
for an IBM 3211 or 3203-5 Printer.

ICAPRTBL is used when the 3211/3203-5 is assigned as the output
portion of a composite console and an unsuccessful attempt has
been made to initialize the operating system because the UCS and
FCB buffers contain improper bit patterns. ICAPRTBL properly
loads the buffers so the operating system can be initialized.

Note: When an operable console printer keyboard is available,
the buffers are loaded under the control of the operating
system.

ICAPRTBl must be loaded from a card reader. Control statements
must follow the last card of the program. Only one printer can
be initialized each time the program is executed.

To execute ICAPRTBL:

1. Mount the correct train on the printer and ready the
printer.

2. Place the object program deck and the control cards in the
card reader. Ready the reader and press the reader's END OF
FILE key.

3. load the object program from the reader by setting the load
selector switches and pressing the console LOAD key.

Wait state codes will be displayed in the address portion of the
PSW for normal termination and for input/output, system, or
control card errors. Code B01 is issued for normal termination;
B02 through B07 are issued for control card errors; BOA through
BOC are issued for system errors; and B11 through BID are issued
for input/output errors. Figure 8 on page 19 shows these codes
and their meanings.

18 MVS/370 Utilities

INPUT AND OUTPUT

CONTROL

Meaning Code

BOI Visually check the train image printed on the
3211.13203-5.

B02

B03

B04

BOS

B06

B07

Missing control card or control

Incorrect JOB statement.

Incorrect DFN statement.

Incorrect UCS statement.

Incorrect FCB statement.

Incorrect END statement.

BOA External interrupt.

BOB Program check interrupt.

BOC Machine check interrupt.

Bll Reader not online.

B12 Reader not ready.

card out of order.

B13 Reader unit check (display low virtual storage locations
2 through 7 for sense information).

B14 Reader channel error.

BIS No device end on reader.

B19 Printer not online.

BIA Printer not ready.

BIB Printer unit check (display low virtual storage locations
2 through 7 for sense information).

BIC Printer channel error.

BID No device end on printer.

Figure 8. ICAPRTBl Wait-State Codes

ICAPRTBl uses, as input, utility control statements that contain
images to be loaded into the universal character set and/or the
forms control buffer. ICAPRTBl produces, as output, properly
loaded UCS and FCB buffers.

ICAPRTBl is controlled by utility control statements. Because
ICAPRTBl is an independent utility program, operating system job
control statements are not used.

UTILITY CONTROL STATEMENTS

All utility control statement operands must be preceded and
followed by one or more blanks. Continuation requirements for
utility control statements are described in "Continuing Utility
Control Statements" on page 5.

ICAPRTBl Program 19

JOB statement

DFN statement

UCS statement

ICAPRTBL utility control statements are listed below.

statement

JOB

DFN

ucs

FCB

END

Use

Indicates the beginning of an ICAPRTBl job.

Defines the address of the 3211 or 3203-5, specifies
that lowercase letters are to be printed in
uppercase when the lowercase print train is not
available, and identifies UCS and FCB image names.

Contains an image of the characters to be loaded
into the UCS buffer.

Defines the image to be loaded into the FCB.

Indicates the end of an ICAPRTBL job.

Figure 9. ICAPRTBl Utility Control Statements

The JOB statement indicates the beginning of an ICAPRTBl job.

The format of the JOB statement is:

I[label] JOB [user-information]

The DFN statement is used to define the address of the 3211 or
3203-5, to specify that lowercase letters are to be printed in
uppercase when the lowercase print train is not available, and
to identify UCS and FCB image names.

The format of the DFN statement is:

DFN ADDR=£YY

[,FOLD=vIHl

[,DEVT=J211IJ20J-Sl

[,UCS=ucsnameIANIAll1

[,FCB=fcbnameISTDISTD21

The UCS statement contains an image to be loaded into the UCS
buffer.

20 MVS/370 Utilities

FCB statement

END statement

The format of the UCS statement is:

I [ucsname] ucs ucs-image

The FCB statement defines the image to be loaded into the forms
control buffer. The FCB statement may precede or follow the UCS
statement.

The format of the FCB statement is:

[fcbnamel FCB LPI=C618J

,LNCH=((l,Q)[,(l,Q) •••])

, FORHEND=,K

The END statement signals the end of the ICAPRTBl job.

The format of the END statement is:

I[labell END [user-information]

ICAPRTBl Program 21

Parameters

ADDR

DEVT

FeB

FOLD

FORMEHD

LHeH

APplicable
Control
statements

DFH

DFH

DFH

DFH

FeB

FeB

22 MVS/370 Utilities

t

Description of Parameters

ADDR=cuu
specifies the channel number, c, and unit
number, gy, of the 3211 or 3203-5.

DEVT=3211 13203-5
specifies the device type for which the ADDR
parameter applies. 3211 is the default
device type.

FCB=fcbnameISTDISTD2
specifies a 1 to 8 character name of the
image loaded into the forms control buffer.
The actual image loaded into the buffer is
not affected by this name, but serves as a
meaningful reference when printed on the
printer. fcbname should be the same as the
FeB image being used. STD2 is the default.

FOLD=VIH
specifies whether lowercase letters are to
be printed as uppercase letters when the
lowercase print train is not available. The
values can be coded:

v

N

FORHEND=x

specifies that lowercase letters are to
be printed as uppercase letters when
the lowercase print train is not
available.

specifies that lowercase letters are
not to be printed as uppercase letters.
This is the default.

specifies the number of lines (maximum 180)
on the printer form. For an II-inch form,
spacing six lines per inch, X must be 66.

LNCH=((l,~)[,(l,~) •••])
specifies the channels of the FeB image.
Each set of parentheses must contain the
line number (1-180), a comma, and the
channel number (1-12) to be assigned to that
line. One or all of the 12 channels may be
assigned in any order. Each set must be
separated by commas and the entire group
surrounded by parentheses.

Parameters

Applicable
Control
statements Description of Parameters

LPI FCB

UCS DFN

ucs-image UCS

user- JOB
information END

ICAPRTBL EXAMPLES

LPI=(618J
specifies the number of lines per inch that
will be printed on the document. These
values can be coded:

6

8

specifies that six lines per inch will
be printed.

specifies that eight lines per inch
will be printed.

UCS=ucsnamelANIAll
is a 1 to 8 character alphameric name of the
image loaded into the UCS buffer. This name
is printed on the printer to serve as a
reference to the print train being used.

AN
is the default for 3203-5 devices.

All
is the default for 3211 devices.

ucs-image
specifies characters to be loaded into the
UCS buffer. The characters must be
contained in columns 16 through 71. The
first UCS statement contains the first 56
characters; subsequent statements contain
continuations of the image to be loaded into
the UCS buffer. A continuation mark is
required in column 72 of a continued UCS
image card.

[user-information]
specifies user explanation of action and
comments.

The examples that follow illustrate some of the uses of
ICAPRTBL. Figure 10 can be used as a quick-reference guide to
the examples. The numbers in the "Examples" column refer to
examples that follow.

Devices

3211

3203-5

Examples

1, 2

3, 4

Figure 10. ICAPRTBL Example Directory

ICAPRTBL Program 23

ICAPRTBL EXAMPLE 1

In this example, a 3211 UCS image (All) and an FCB image are
loaded into the UCS and FCB buffers.

72
JOB LOAD All IMAGE
DFN ADDR=002,FOLD=N
All UCS 1<.=IHGFEDCBA*$-RQPONMLKJ%,&ZYXWVUTS/~#0987654321<.=IHGF

EDCBA*$-RQPONMLKJ%,&ZYXWVUTS/~#0987654321<.=IHGFEDCBA*$­
RQPONMLKJ%,&ZYXWVUTS/~#0987654321<.=IHGFEDCBA*$-RQPONMLK
J%,&ZYXWVUTS/~#0987654321<.=IHGFEDCBA*$-RQPONMlKJ%,&ZYXW
VUTS/~#0987654321<.=IHGFEDCBA*$-RQPONMLKJ%,&ZYXWVUTS/~#0
987654321<.=IHGFEDCBA*$-RQPONMlKJ%,&ZYXWVUTS/23098765432
1<.=IHGFEDCBA*$-RQPONMlKJ%,&ZYXWVUTS/~#0987654321<.=IHGF
EDCBA*$-RQPONMlKJ%,&ZYXWVUTS/~#098765432

STD2 FCB LPI=6, C

END

LNCH=((4,1),(10,2),(16,3),(22,4),(28,5),(34,6),(40,7), C
(46,8),(52,10),(58,11),(64,12),(66,9», C
FORMEND=66

The control statements are discussed below:

• DFN specifies the channel and unit number of the default
device type 3211 and FOLD=N specifies that lowercase letters
are not to be printed as uppercase letters when the
lowercase print train is not available.

• UCS specifies the characters to be loaded into the UCS
buffer.

• FCB specifies the values to be loaded into the forms control
buffer. LPI=6 indicates that six lines per inch will be
printed, and FORMEND=66 specifies 66 lines per page.

ICAPRTBL EXAMPLE 2

In this example, a 3211 UCS image (P1l) and an IBM standard FCB
image are loaded into the UCS and FCB buffers by specifying
images via the UCS and FCB parameters of the DFN statement.

JOB LOAD 3211 P11 IMAGE
DFN UCS=P11,ADDR=004,FCB=STD
END

The DFN control statement is discussed below:

• By omitting the DEVT parameter, the default device type is
3211.

• The UCS parameter specifies the UCS image ID to be loaded
into the UCS buffer from standard image tables provided by
the utility.

• The ADDR parameter specifies the channel and unit number of
the 3211.

• By omitting the FOLD parameter, the default FOLD value N is
selected, specifying that lowercase letters are not to be
printed as uppercase letters when the lowercase print train
is not available.

24 MVS/370 Utilities

ICAPRTBL EXAMPLE 3

ICAPRTBL EXAMPLE 4

The FeB parameter specifies the standard FCB image id (STD)
to be loaded into the FCB buffer from standard image tables
provided by the utility.

In this example, a 3203-5 UCS image (AN by default) and a
standard FCB image (STD2 by default) are loaded into the UCS and
FCB buffers.

JOB
DFN DEVT=3203-5,ADDR=002
END

The DFN statement is discussed below:

• The DEVT parameter specifies the device type as 3203-5.

• The ADDR parameter specifies the channel and unit number of
the 3203-5.

• By omitting the FOLD parameter, the default FOLD value N is
selected specifying that lowercase letters are not to be
printed as uppercase letters when the lowercase print train
is not available.

• By omitting both a UCS statement and the UCS parameter, the
default 3203-5 UCS image (AN) 1S loaded into the UCB buffer
from standard image tables provided by the utility.

• By omitting both an FCB statement and the FCB parameter, the
default FCB image (STD2) is loaded into the FCB buffer from
standard image tables provided by the utility.

In this example, a 3203-5 UCS image (AN by default) and a
provided FCB image are loaded, respectively, into the UCS and
FCB buffers.

JOB 3203-5 USER FCB
USER FCB FORMEND=88,LPI=8,LNCH=«4,1),(12,2),

(20,3),(28,4),(36,5),(44,6),(52,7),
(60,8),(68,10),(76,11),(84,12),(88,9»

DFN FOLD=Y,
FCB=STD,
ADDR=003,
DEVT=3203-5

END

The control statements are discussed below:

• The JOB statement includes user comments on the action
taken.

72

C
C

C
C
C

• The FCB statement specifies the values to be loaded into the
forms control buffer. FORMEND=88 and LPI=8 indicate that
there will be 88 lines per page, 8 lines per inch. Note
that the specification of the FCB parameter on the DFN
statement is overridden by the FCB statement specification.

ICAPRTBL Program 25

• The DEVT parameter of the DFN statement specifies the device
type as 3203-5.

• The ADDR parameter specifies the channel and unit number of
the 3203-5.

• The FOLD=Y parameter specifies that lowercase letters are to
be printed as uppercase letters when the lowercase print
train is not available.

• By omitting both a UCS statement and the UCS parameter of
the DFN statement, the default 3203-5 UCS image (AN) is
loaded from standard image tables provided by the utility.

26 MVS/370 Utilities

IEBCOHPR PROGRAM

IEBCOMPR is 8 data set utility used to compare two sequential or
two partitioned data sets at the logical record level to verify
a backup copy. Fixed, variable, or undefined records from
blocked or unblocked data sets or members can also be compared.

Two sequential data sets are considered equal, that is, are
considered to be identical, if:

• The data sets contain the same number of records, and,

• Corresponding records and keys are identical.

Two partitioned data sets are considered equal if:

• Corresponding members contain the same number of records.

• Note lists are in the same position within corresponding
members.

• Corresponding records and keys are identical.

If all of these conditions are not met for a specific type of
data set, an unequal comparison results. If records are
unequal, the record and block numbers, the names of the DD
statements that define the data sets, and the unequal records
are listed in a message data set. Ten successive unequal
comparisons terminate the job step unless a user routine is
provided to handle error conditions.

Partitioned data sets can be compared only if all the names in
one or both of the directories have counterpart entries in the
other directory. The comparison is made on members identified
by these entries and corresponding user data.

Figure 11 shows the directories of two partitioned data sets.
Directory 2 contains corresponding entries for all the names in
Directory 1; therefore, the data sets can be compared.

Directory 1
ABCDGL

Figure 11. Partitioned Directories Whose Data Sets Can Be
Compared Using IEBCOMPR

Figure 12 on page 28 shows the directories of two partitioned
data sets. Each directory contains a name that has no
corresponding entry in the other directory; therefore, the data
sets cannot be compared, and the job step is terminated.

User exits are provided for optional user routines to process
user labels, handle error conditions, and modify source records.
See Appendix A, "Exit Routine linkage" on page 438 for a
discussion of the linkage conventions to be followed when user
routines are used.

IEBCOMPR Program 27

INPUT AND OUTPUT

RETURN CODES

CONTROL

I

Directory 2
ABF';li H1J

Figure 12. Partitioned Directories Whose Data Sets Cannot Be
Compared Using IEBCOMPR

IEBCOMPR uses the following input:

• Two sequential or two partitioned data sets to be compared.

• A control data set that contains utility control statements.
This data set is required if the input data sets are
partitioned or if user routines are used.

IEBCOMPR produces as output a message data set that contains
informational messages (for example, the contents of utility
control statements), the results of comparisons, and error
messages.

IEBCOMPR returns a code in register 15 to indicate the results
of program execution. The retu~n codes and their meanings are
listed below.

Codes Meaning

00 (00 hex) Successful completion.

OS (OS)

12 (OC)

16 (10)

An unequal compa~ison. Processing continues.

An unrecoverable error exists. The job step is
terminated.

A user routine passed a return code of 16 to
IEBCOMPR. The job step is terminated.

Figure 13. IEBCOMPR Return Codes

IEBCOMPR is controlled by job control statements and utility
control statements. The job control statements are required to
execute or invoke IEBCOMPR and to define the data sets that are
used and produced by IEBCOMPR. The utility control statements
are used to indicate the input data set organization (that is,
sequential or partitioned), to identify any user routines that
may be provided, and to indicate whether user labels are to be
treated as data.

28 MVS/370 Utilities

JOB CONTROL STATEMENTS

Figure 14 shows the job control statements for IEBCOMPR.

One or both of the input data sets can be passed from a
preceding job step.

Input data sets residing on different device types can be
compared. Input data sets with a sequential organization
written at different densities can also be compared.

statement

JOB

EXEC

SYSPRINT DO

SYSUTI DD

SYSUT2 DO

SYSIN DO

Use

Initiates the job.

Specifies the program name (PGM=IEBCOMPR) or, if
the job control statements reside in a procedure
library, the procedure name.

Defines a sequential message data set, which can
be written to a system output device, a tape
volume, or a direct access volume.

Defines an input data set to be compared.

Defines an input data set to be compared.

Defines the control data set or specifies DUMMY if
the input data sets are sequential and no user
routines are provided. The control data set
normally resides in the input stream; however, it
can be defined as a member within a library of
partitioned members.

Figure 14. Job Control Statements for IEBCOMPR

The SYSPRINT DD statement must be present for each use of
IEBCOMPR. The block size specified in the SYSPRINT DD statement
must be a multiple of 121. .

The SYSIN DD statement is required. The block size specified in
the SYSIN DD statement must be a multiple of 80.

The logical record lengths of the input data sets must be
identical; otherwise, unequal comparisons result. The block
sizes of the input data sets can differ; however, block sizes
must be multiples of the logical record length.

IEBCOMPR Program 29

UTILITY CONTROL STATEMENTS

COMPARE Statement

EXITS Statement

The utility control statements used to control IEBCOMPR are:

statement

COMPARE

EXITS

LABELS

Use

Indicates the organization of a data set.

Id~ntifies user exit routines to be used.

Indicates whether user labels are to be treated as
data by IEBCOMPR.

Figure 15. IEBCOMPR Utility Control Statements

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements" on page 5.

The COMPARE statement is used to indicate the organization of
.data sets to be compared.

The COMPARE statement, if included, must be the first utility
control statement. COMPARE is required if the EXITS or LABELS
statement is used or if the input data sets are partitioned data
sets.

The format of the COMPARE statement is:

I[labell COMPARE TVPORG=Cpslpo)

The EXITS statement is used to identify any user exit routines
to be used. If a user exit routine is used, the EXITS statement
is required. If more than one valid EXITS statement is
included, all but the last EXITS statement are ignored. For a
discussion of the processing of user labels as data set
descriptors, see Appendix C, "Processing User Labels" on page
446.

The format of the EXITS statement is:

[labell EXITS [INHDR=routinename]

[,INTLR=routinename]

t,ERROR=routinename]

[,PRECOMP=routinename]

LABELS statement

Parameters

DATA

ERROR

The LABELS statement specifies whether user labels are to be
treated as data by IEBCOMPR. For a discussion of this option,
refer to Appendix C, "Processing User Labels" on page 446.

The format of the LABELS statement is:

I[label] LABELS [DATA={YESINOIALLIONLY)]

Note: LABELS DATA=NO must be specified to make IBM standard/
user label (SUL)_.exits inactive when input/output data sets with
nonstandard labels (NSL) are to be processed.

If more than one valid LABELS statement is included, all but the
last LABELS statement are ignored.

Applicable
Control
Statements Description of Parameters

LABELS

EXITS

DATA={YESINOIALLIONLY)

YES

NO

ALL

ONLY

specifies whether user labels are to be
treated as data. The values that can be
coded are:

specifies that any user labels that are not
rejected by a user's label processing
routine are to be treated as data.
Processing of labels as data stops in
compliance with standard return codes. YES
is the default.

specifies that user labels are not to be
treated as data.

specifies that all user labels are to be
treated as data. A return code of 16 causes
IEBCOMPR to complete processing of the
remainder of the group of user labels and to
terminate the job step.

specifies that only user header labels are
to be treated as data. User header labels
are processed as data regardless of any
return code. The job terminates upon return
from the OPEN routine.

ERROR=routinename
specifies the name of the routine that is to
receive control after each unequal
comparison for error handling. If this
parameter is omitted and ten consecutive
unequal comparisons occur while IEBCOMPR is
comparing sequential data sets, processing
is terminated; if the input data sets are
partitioned, processing continues with the
next member.

IEBCOMPR Program 31

Parameters

INHDR

INTlR

PRECOMP

TYPORG

Applicable
Control
statements

EXITS

EXITS

EXITS

COMPARE

Description of Parameters

INHDR=routinename
specifies the name of the routine that
processes user input header labels.

INTLR=routinename
specifies the name of the routine that
processes user input trailer labels.

PRECOMP=routinename
specifies the name of the rQutine that
processes logical records (physical blocks
in the case of variable spanned (VS) or
variable blocked spanned (VBS) records
longer than 32K bytes) from either or both
of the input data sets before they are
compared.

TYPORG={Pslpo}
specifies the organization of the input data
sets. The values that can be coded are:

PS

PO

specifies that the input data sets are
sequential data sets. This is the
default.

specifies that the input data sets are
partitioned data sets.

IEBCOMPR EXAMPLES

Operation

COMPARE

COMPARE

COMPARE

The examples in Figure 16 illustrate some of the uses of
IEBCOMPR. The numbers in the "Example" column refer to examples
that follow.

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

Data Set
Organization Devices Comments Example

Sequential 9-track No user routines. Blocked 1
Tape input.

Sequential 7-track No user routines. Blocked 2
Tape input.

Sequential 7-track User routines. Blocked input. 3
Tape and Different density tapes.
9-track
Tape

Figure 16 (Part 1 of 2). IEBCOMPR Example Directory

32 MVS/370 Utilities

Data set
operation organization Devices Comments Example

COMPARE Sequential Card No user routines. Blocked 4
Reader, input.
9-track
Tape

COMPARE Partitioned Disk No user routines. Blocked 5
input.

COPY Sequential 9-track No user routines. Blocked 6
(using Tape input. Two job steps; data
IEBCOPY) sets are passed to second job
and step.
COMPARE

COPY Partitioned Disk User routine. Blocked input. 7
(using Two job steps; data sets are
IEBCOPY) passed' to second job step.
and
COMPARE

Figure 16 (Part 2 of 2). IEBCOMPR Example Directory

IEBCOHPR EXAMPLE 1

In this example, two sequential data sets that reside on 9-track
tape volumes are to be compared.

//TAPETAPE
//
//SYSPRIHT
//SYSUTl
//
//
//SYSUT2
//
//
//SYSIH
/*

JOB
EXEC
DD
DD

DD

DD

091660,SMITH
PGM=IEBCOMPR
SYSOUT=A
UNIT=tape,lABEl=(,Hl),
DCB=(RECFM=FB,lRECl=80,BlKSIZE=2000),
DISP=(OlD,KEEP),YOlUME=SER=001234
UHIT=tape,lABEl=(,Hl),DISP=(OlD,KEEP),
DCB=(RECFM=FB,lRECl=80,BlKSIZE=1040),
YOlUME=SER=001235
DUMMY

Because no user routines are used and the input data sets have a
sequential organization, utility control statements are not
necessary.

The job control statements are discussed below:

• SYSUTl DD defines an input data set~ which resides on an
unlabeled, 9-track tape volume.

• SYSUT2 DD defines an input data set, which resides on an
unlabeled, 9-track tape volume.

• SYSIH DD defines a dummy data set.

IEBCOMPR Program 33

IEBCOMPR EXAMPLE 2

IEBCOMPR EXAMPLE 3

,
In this example, two sequential data sets that reside on 7-track
tape volumes are compared.

//TAPETAPE JOB
// EXEC
//SYSPRINT DD
//SYSUTI DD
//
//
//SYSUT2 DD
//
//
//SYSIN DD

COMPARE
lABELS

09#660,SMITH
PGM=IEBCOMPR
SYSOUT=A
DSNAME=SETl,lABEl=(2,SUl),DISP=(OlD,KEEP),
VOl=SER=001234,DCB=(DEN=2,RECFM=FB,lRECl=80,
BlKSIZE=2000,TRTCH=C),UNIT=3400
DSNAME=SET2,lABEl=(,SUl),DISP=(OlD,KEEP),
VOl=SER=001235,DCB=(DEN=2,RECFM=FB,lRECl=80,
BlKSIZE=2000,TRTCH=C),UNIT=3400

* TYPORG=PS
DATA=ONlY

The control statements are discussed below:

• SYSUTI DD defines an input data set, SETI, which resides on
a labeled, 7-track tape volume. The blocked data set was
originally written at a density of 800 bits per inch (DEN=2)
with the data converter on (TRTCH=C).

• SYSUT2 DD defines an input data set, SET2, which is the
first or only data set on a labeled, 7-track tape volume.
The blocked data set was originally written at a density of
800 bits per inch (DEN=2) with the data converter on
(TRTCH=C).

• SYSIN DD defines the control data set, which follows in the
input stream.

• COMPARE TYPORG=PS specifies that the input data sets are
sequentially organized.

• LABELS DATA=ONlY specifies that user header labels are t~ be
treated as data and compared. All other labels on the tape
are ignored.

In this example, two sequential data sets written at different
densities on different tape units are compared.

//TAPETAPE JOB
// EXEC
//SYSPRINT DD
//SYSUTI DD
//
//
//SYSUT2 DD
//
//
//SYSIN DD

COMPARE
EXITS

LABELS

09#660,SMITH
PGM=IEBCOMPR
SYSOUT=A
DSNAME=SETl,lABEL=(,SUL),DISP=(OlD,KEEP),
VOl=SER=001234,DCB=(DEN=1,RECFM=FB,lRECL=80,
BlKSIZE=320,TRTCH=C),UNIT=3400
DSNAME=SET2,LABEl=(,SUL),DISP=(OlD,KEEP),
DCB=(RECFM=FB,LRECL=80,BLKSIZE=640),

. UNIT=tape,VOlUME=SER=OOI235

* TYPORG=PS
INHDR=HDRS,INTlR=TlRS
DATA=NO

34 MVS/370 Utilities

IEBCOHPR EXAMPLE 4

The control statements are discussed below:

• SYSUTI DD defines an input data set, SETI, which is the
first or only data set on a labeled, 7-track tape volume.
The blocked data set was originally written at a density of
556 bits per inch (DEN=2) with the data converter on
(TRTCH=C).

• SYSUT2 DD defines an input data set, SET2, which is the
first or only blocked data set on a labeled tape volume. In
this example, assume SYSUT2 is on a 9-track tape drive.

• SYSIN DD defines the control data set, which follows in the
input stream.

• COMPARE TYPORG=PS specifies that the input data sets are
sequentially organized.

• EXITS identifies the names of routines to be used to process
user input header labels and trailer labels.

• LABELS DATA=NO specifies that the user input header and
trailer labels for each data set are not to be compared.

In this example, two sequential data sets (card input and tape
input) are compared.

//CARDTAPE
//
//SYSPRINT
//SYSIN
//SYSUT2
//
//
//SYSUTI

JOB
EXEC
DD
DD
DD

DD

091660,SMITH
PGM=IEBCOMPR
SYSOUT=A
DUMMY
UNIT=tape,VOLUME=SER=OOI234,LABEL=(,Nl),
DCB=(RECFM=FB,lRECl=80,BlKSIZE=2000),
DISP=(OLD,KEEP)
DATA

(input card data set)

/*

The control statements are discussed below:

• SYSIN DD defines a dummy control data set. Because no user
routines are provided and the input data sets are
sequential, utility control statements are not necessary.

• SYSUT2 DD defines an input data set, which resides on an
unlabeled, 9-track tape volume.

• SYSUTI DD defines an input data set (card input).

IEBCOMPR Program 35

IEBCOMPR EXAMPLE 5

IEBCOMPR EXAMPLE 6

In this example, two partitioned data sets are compared.

//DISKDISK JOB 09#660,SMITH
// EXEC PGM=IEBCOMPR
//SYSPRINT DD
//SYSUTI DD
//

SYSOUT=A
DSNAME=PDSSETl,UNIT=disk,DISP=SHR,
DCB=(RECFM=FB,lRECl=80,BlKSIZE=2000),
VOlUME=SER=111112
DSNAME=PDSSET2,UNIT=disk,DISP=SHR,
DCB=(RECFM=FB,lRECl=80,BlKSIZE=2000),
VOlUME=SER=111113

//
//SYSUT2 DD
//
//
//SYSIN DD * COMPARE TYPORG=PO

The control statements are discussed below:

• SYSUTI DD defines an input partitioned data set, PDSSETI.
The blocked data set resides on a disk volume.

• SYSUT2 DD defines an input partitioned data set, PDSSET2.
The blocked data set resides on a disk volume.

• SYSIN DD defines the control data set, which follows in the
input stream.

• COMPARE TYPORG=PO indicates that the input data sets are
partitioned.

In this example, a sequential data set is copied and compared in
two job steps.

//TAPETAPE
//STEPA
//SYSPRINT
//SYSUTI
//
//
//
//
//SYSUT2
//
//
//
//SYSIN
/*
//STEPB
//SYSPRINT
//SYSUTI
//SYSUT2
//SYSIN
/*

JOB 09#660,SMITH
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD DSN=COPYSETl,UNIT=tape,

DISP=(OlD,PASS),
DCB=(RECFM=FB,lRECl=80,BlKSIZE=640),
lABEl=(,Sl),
VOlUME=SER=001234

DD DSNAME=COPYSET2,OISP=(,PASS),lABEl=(,Sl),
DCB=(RECFM=FB,lRECl=80,BlKSIZE=640),
UNIT=tape,
VOlUME=SER=001235

00 DUMMY

EXEC PGM=IEBCOMPR
DO SYSOUT=A
DD DSNAME=*.STEPA.SYSUTl,DISP=(OlD,KEEP)
DO DSNAME=*.STEPA.SYSUT2,DISP=(OlD,KEEP)
DD DUMMY

36 MVS/370 Utilities

IEBCOHPR EXAMPLE 7

The first job step copies the data set and passes the original
and copied data sets to the second job step. The second job
step compares the two data sets.

The control statements for the IEBCOMPR job step are discussed
below:

• SYSUTI DD defines an input data set passed from the
preceding job step (COPYSETl). The data set resides on a
labeled, 9-track tape volume.

• SYSUT2 DO defines an input data set passed from the
preceding job step. (COPYSET2). The data set, which was
created in the preceding job step, resides on a labeled,
9-track tape volume.

• SYSIN DD defines a dummy control data set. Because the
input is sequential and no user exits are provided, no
utility control statements are required.

In this example, a partitioned data set is copied and compared
in two job steps.

The example follows:

//DISKDISK
//STEPA
//SYSPRIHT
//SYSUTl
//

JOB 091660,SMITH
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD DSNAME=OLOSET,UHIT=disk,DISP=SHR,

//
//SYSUT2
//
//
//SYSUT3
//SYSUT4
//SYSIN

DD

DD
DD
DD

COpy
SELECT

/*

VOlUME=SER=111112,
DCB=(RECFM=FB,lRECl=80,BlKSIZE=640)
DSHAME=HEWMEMS,UHIT=disk,DISP=(,PASS),
VOlUME=SER=111113,SPACE=(TRK,(S,S,S»,
DCB=(RECFM=FB,lRECl=80,BlKSIZE=640)
UHIT=SYSDA,SPACE=(TRK,(l»
UHIT=SYSDA,SPACE=(TRK,(l»

* OUTDD=SYSUT2,IHDD=SYSUTl
MEMBER=(A,B,D,E,F)

//STEPB EXEC PGM=IEBCOMPR
//SYSPRIHT DD
//SYSUTl DD
//SYSUT2 DD
//SYSIH DO

COMPARE
EXITS

SYSOUT=A
DSHAME=OLDSET,DISP=(OlD,KEEP)
DSHAME=HEWMEMS,DISP=(OlD,KEEP)

* TYPORG=PO
ERROR=SEEERROR

The first job step copies the data set and passes the original
and copied data sets to the second job step. The second job
step compares the two data sets.

The control statements for the IEBCOMPR job step are discussed
below:

• SYSUTl DD defines a blocked input data set (OlDSET) that is
passed from the preceding job step. The data set resides on
a disk volume.

• SYSUT2 DD defines a blocked input data set (HEWMEMS) that is
passed from the preceding job step. The data set resides on
a disk volume.

IEBCOMPR Program 37

• SYSUT3 and SYSUT4 define temporary system data sets to be
used for work files during IEBCOPY. These are not passed to
IEBCOMPR.

• SYSIN DD defines the control data set, which follows in the
input stream.

• COMPARE TYPORG=PO specifies partitioned organization.

• EXITS specifies that a user error routine, SEEERROR, is to
be used.

Because the input data set names are not identical, the data
sets can be retrieved by their data set names.

38 MVS/370 Utilities

IEBCOPV PROGRAM

IEBCOPY is a data set utility used to copy one or more
partitioned data sets or to merge partitioned data sets. A
partitioned data set that is copied to a sequential data set is
said to be unloaded. The sequential data set created by an
unload operation can be copied to any direct access storage
device. When one or more data sets created by an unload
operation are used to re-create a partitioned data set, this is
called a load operation. Specific members of a partitioned or
unloaded data set can be selected for, or excluded from, a copy,
unload, or load process.

IEBCOPY can be used to:

• Create a backup copy of a partitioned data set.

• Copy one or more data sets per copy operation.

• Copy one partitioned data set to a sequential data set
(unload).

• Copy one or more data sets created by an unload operation to
any direct access device (load).

• Select members from a data set to be copied, unloaded, or
loaded.

• Replace identically named members on data sets (except when
unloading).

• Replace selected data set members.

• Rename selected members.

• Exclude members from a data set to be copied, unloaded, or
loaded.

• Compress partitioned data sets in place (except when the
data set is an unloaded data set).

• Merge data sets (except when unloading).

• Re-create a data set that has exhausted its primary,
secondary, or directory space allocation.

• Alter load modules in place.

• Copy and reblock load modules.

In addition, IEBCOPY automatically lists the number of unused
directory blocks and the number of unused tracks available for
member records in the output partitioned data set. If LIST=NO
is coded (see "COPY Statement" on page 51), the names of copied,
unloaded, or loaded members listed by the input data set are
suppressed.

CREATING A BACKUP COpy

IEBCOPY can be used to create a backup copy of a partitioned
data set by copying (unloading) it to a sequential data set. A
partitioned data set can be totally or partially unloaded to any
tape volume or direct access device supported by BSAM. A data
set is unloaded when physical sequential organization space
allocation is specified for the output data set on a direct
access device or when the output data set is a tape volume. To
unload more than one partitioned data set to the same volume in
one execution of IEBCOPY,multiple copy operations must be used

IEBCOPY Program 39

COPYING DATA SETS

and multiple sequential data sets must be allocated on the same
volume.

A data set with a physical sequential organization resulting
from an unload operation can, in turn, be copied. No output
tape file will be created if the input is a null file.

IEBCOPY can be used to copy a partitioned data set, totally or
in part, from one direct access volume to another. In addition,
a data set can be copied to its own volume, provided its data
set name is changed. If the data set name is not changed, the
data set is compressed in place.

Note that copied members are not reordered. Members are copied
in the order in which they exist on the original data set. If
the members are to be reordered, IEHMOVE can be used for·the
copy operation (see "IEHMOVE Program" on page 361).

COPYING OR LOADING UNLOADED DATA SETS

Data sets can be copied or loaded, totally or in part, from one
or more direct access volumes or tape volumes to a single direct
access volume. To copy or load more than one input partitioned
data set, specify more than one input data set with the COPY
statement. The input data sets are copied or loaded in the
order in which they are specified.

SELECTING MEMBERS TO BE COPIED, UNLOADED, OR LOADED

Members can be selected from one or more input data sets.
Selected members can be copied, unloaded, or loaded from the
input data sets specified on the INDO statement preceding a
SELECT statement.

Selected members are searched for in a low-to-high (a-to-z)
collating sequence, regardless of the order in which they are
specified; however, they are copied in the same physical
sequence in which they appear on the input partitioned data set.

Once a member of a data set has been found, no search is made
for it on any subsequent input data set. Similarly, when all
the selected members are found, the copy or load step is
terminated even though all of the input data sets may not have
been searched. For example, if members A and B are specified
and A is found on the first of three input data sets, it is not
searched for again; if B is found on the second input data set,
the copy or load operation is successfully terminated after the
second input data set has been processed, although both A and B
may also exist on the third input data set.

However, if the first member name is not found on the first
input data set, the search for that member stops and the first
data set is searched for the second member. This process
continues until the first input data set has been searched for
all specified members. All the members that were found on the
lnput data set are then processed for copying, unloading, or
loading to the output data set. This process is repeated for
the second input data set (except that the members that were
found on the first input data set are not searched for again).

Note: Only one data set can be processed if an unload operation
is to be performed. Multiple unload operations are allowed per
job step; multiple INDO statements are not allowed per unload
operation.

40 MVS/370 Utilities

Copying Members That Have Alias Names

When copying members that have alias names, note the following:

• When the main member and its alias names are copied, they
exist on the output partitioned data set in the same
relationship they had on the input partitioned data set.

• When members with alias names are copied using the SELECT or
EXCLUDE member option, those alias names that are to be
selected or excluded must be explicitly named.

The rules for replacing or renaming members apply to both
aliases and members; no distinction is made between them.
However, the replace (R) option (on the SELECT statement) does
not apply to an unload operation.

REPLACING IDENTICALLY NAMED MEMBERS

In many copy and load operations, the output partitioned data
set may contain members that have names identical to the names
of the input partitioned data set members to be copied or
loaded. When this occurs, the user may specify that the
identically named members are to be copied from the input
partitioned data set to replace existing members.

The replace option allows an input member to override an
existing member on the output partitioned data set with the same
name. The pointer in the output partitioned data set directory
is changed to point to the copied or loaded member.

Ifl the replace option is not specified, input members are not
copied when they have the same name as a member on the output
partitioned data set.

The replace option can be specified on the data set or member
level. This level is specified on a utility control statement.

When replace (R) is specified on the data set level with a COpy
or INDO statement, the input data is processed as follows:

• In a full copy or load process, all members on an input
partitioned data set are copied to an output partitioned
data set; members whose names already exist on the output
partitioned data set are replaced by the members copied or
loaded from the input partitioned data set.

• In a selective copy or load process, all selected input
members will be copied to the output data set, replacing any
identically named output data set members.

• In an exclusive copy process, all nonexcluded members on
input partitioned data sets are copied or loaded to an
output partitioned data set replacing those duplicate named
members on the output partitioned data set.

When replace is specified on the member level (specified as R on
a SELECT statement), only selected members for which replace is
specified are copied or loaded, and identically named members on
the output partitioned data set are replaced.

There are differences between full, selective, and exclusive
copy or' load processing. These differences should be remembered
when specifying the replace option and all of the output data
sets contain member names common to some or all of the input
partitioned data sets being copied or loaded. These differences
are:

• When a full copy or load is performed, the output
partitioned data set contains the replacing members that
were on the last input partitioned data set copied.

IEBCOPY Program 41

• When a selective copy or load is performed, the output
partitioned data set contains the selected replacing members
that were found on the earliest input partitioned data set
searched. Once a selected member is found, it is not
searched for again; therefore, once found, a selected member
is copied or loaded. If the same member exists on another
input partitioned data set, it is not searched for, and
hence, not copied or loaded.

• When an exclusive copy or load is performed, the output
partitioned data set contains all members, except those
specified for exclusion, that were on the last input
partitioned data set copied or loaded.

REPLACING SELECTED HEHBERS

The user may specify the replace (R) option on either the data
set or the member level when members are being selected for
copying or loading.

If the replace option is specified on the data set level, all
selected members found on the designated input data sets replace
identically named members on the output partitioned data set.
This is limited by the fact that once a selected member is found
it is not searched for again.

If the replace option is specified on the member level, the
specified members on the input data set replace identically
named members on the output partitioned data set. Once a member
is found it is not searched for again. (See "Replacing
Identically Named Members" on page 41.)

RENAMING SELECTED MEMBERS

Selected members on input data sets can be copied and renamed on
the output data set; the input and output data sets must not be
the same. However, in the case of a copy or load operation, if
the new name is identical to a member name on the output data
set, the input member is not copied or loaded unless the replace
option is also specified. See "SELECT Statement" on page 54for
information on renaming selected members.

Renaming is not physically done to the input data set directory
entry. The output data set directory, however, will contain the
new name.

EXCLUDING MEMBERS FROM A COPY OPERATION

Members from one or more input data sets can be excluded from a
copy, unload, or load operation. The excluded member is
searched for on every input data set in the copy, unload, or
load operation and is always omitted. Members are excluded from
the input data sets named on an INDD statement that precedes the
EXCLUDE statement. (See "COPY Statement" on page 51 and"EXCLUDE
Statement" on page 56.)

The replace option can be specified on the data set level in an
exclusive copy or load, in which case, nonexcluded members on
the input data set replace identically named members on the
output data set. See "Replacing Identically Named Members" on
page 41for more information on the replace option.

COMPRESSING A DATA SET

A compressed data set is one that does not contain embedded,
unused space. After copying or loading one or more input
partitioned data sets to a ng~ output partitioned data set (by
means of a selective, exclusive, or full copy or load that does
not involve replacing members), the output partitioned data set
contains no embedded, unused space.

42 MVS/370 Utilities

MERGING DATA SETS

To make unused space available, either the entire data set must
be scratched or it must be compressed in place. A compressed
version can be created by specifying the same data set for both
the input and the output parameters in a full copy step. A
backup copy of the partitioned data set to be compressed in
place should be kept until successful completion of an in-place
compression is indicated (by an end-of-job message and a return
code of 00).

An in-place compression does not release extents assigned to the
data set. Inclusion, exclusion, or renaming of selected members
cannot be done during the compression of a partitioned data set.

When the same ddname is specified for the INOO and OUTOO
keywords (see "COPY Statement" on page 51) and the 00 statement
specifies a block size different from the block size specified
in the OSCB, the OSCB block size is overridden; however, no
physical reblocking or deblocking is performed by IEBCOPY. For
information on reblocking load modules, see "Copying and
Reblocking Load Modules."

A merged data set is one to which an additional member is copied
or loaded. It is created by copying or loading the additional
members to an existing output partitioned data set; the merge
operation--the ordering of the output partitioned data set's
directory-is automatically performed by IEBCOPY.

If there is a question about whether or not enough directory
blocks are allocated to the output partitioned data set to which
an input data set is being merged, the output partitioned data
set should be re-created with additional directory space prior
to the merge operation.

RE-CREATING A DATA SET

A data set can be re-created by copying or loading it and
allocating a larger amount of space than was allocated for the
original data set. This application of IEBCOPY is especially
useful if insufficient directory space was allocated to a data
set. Space cannot be allocated in this manner for an existing
partitioned data set into which members are being merged.

ALTERING LOAD MODULES IN PLACE

IEBCOPY can be used to alter load modules in place.
Alter-in-place reads modules written by earlier runs of the
linkage editor and inserts new relocation dictionary (RLO)
counts. For modules copied by a program other than the linkage
editor or IEBCOPY, alter-in-place can replace an erroneous RLD
count by correcting POS directory entries and control records.
For more information, see "Inserting RLD Counts" on page 45.

Only members of a partitioned data set may be altered.

For the procedure used to invoke the alter-in-place function,
see "ALTERMOO Statement" on page 53.

COPYING AND REBLOCKING LOAD MODULES

IEBCOPY can be used to copy and reblock load modules in a data
set library. Copy/reblock copies a sequential (unloaded) data
set or selected members from a partitioned data set onto a new
or existing output partitioned data set. The text records, RLD,
and control records are rebuilt; all other records are copied
unchanged. For a description of how the RLD count is inserted,
see "Inserting RLD Counts" on page 45.

IEBCOPY Program 43

The reblock function allows you to specify:

• A new maximum block size for compatibility with other
systems or programs

• A minimum block size to improve DASD track utilization. The
minimum block size specifies the smallest block which should
be written on the end of a track.

The load modules will be blocked such that they can be
re-link-edited and/or loaded by the loader, with the ability to
include the whole module or only the indicated CSECTs.

Load libraries may be copied to devices with a larger or smaller
block size than the input block size.

IEBCOPY will determine the amount of space remaining on a track
before assigning a new block size, and if this amount is less
than the output block size, it will attempt to determine whether
a smaller block can be written to utilize the remaining space on
the track.

The maximum block size which can be handled by the linkage
editor is 18K.

For the procedure used to copy and reblock load modules, see
"COPYMOD Statement" on page 53.

LOAD MODULE REQUIREMENTS

IEBCOPY requires that the members of the input data set which
are to be altered or copied/reblocked must qualify as load
modulesj that is, they must possess characteristics such that
they can be loaded by the system fetch routine (IEWFETCH) or
re-link-edited by the linkage editor. Members which are not
recognized as load modules will be unaffected by the
alter-in-place or copy/reblock operation.

Load modules in either overlay or scatter-load format and
modules which were link-edited with the noneditable (HE)
attribute or with an assigned origin other than zero cannot be
altered in place. For more information on module format and
attributes, see Linkage Editor and Loader.

The PDS directory entry for a load module must meet the
following requirements:

1. The entry must be at least 34 bytes long (standard length
for entries is only 12 bytes).

2. Bytes 26 and 27 must contain the length of the first text
record, and this length must be equal to the length
specified by the first control record.

Any record in a load module which precedes the first control
record must be one of the following:

• A symbol record (SYM)

• A composite external symbol dictionary record (CESD)

• An external symbol dictionary record (ESD)

• A scatter/translation record (STT)

• A CSECT identification record (IDR)

RLD and control records must be:

• An RLD record: '0000 xx10'B in byte 1,

• A control record: '0000 xx01'B in byte 1,

44 MVS/370 Utilities

INSERTING RLD COUNTS

INPUT AND OUTPUT

• An RLD and control record: '0000 xx11'B in byte 1, or

• The length specified by the value in bytes 5-6 plus the
value in bytes 7-8 plus 16. Control records must contain
the length of the following text record in bytes 15-16.

The sequence of records following a control or RLD/control
record must be:

• Text, End-of-Module/End-of-Segment,

• Text, RLD, End-of-Module/End-of-Segment,

• Text, RLD/control,

• Text, RLD, (RLD, .), End-of-MQdule/End-of-Segment, or

• Text, RLD, (RLD, ..•), RLD/control.

Each block of text in a load module is preceded by a control
record and may be followed by one or more RlD andlor control
records. These records are variable length with a maximum of
256 bytes. They may contain only RLD data or only control data
or both RlD and control data.

The term 'number' or 'count' of RLD records is used to mean the
number of these records containing RLD data/control data which
follow a block of text in a module library.

The system fetch routine (IEWFETCH) executes fewer start I/O
instructions if the number of these records following a block of
text is known. The number of RLD records following each block
of text is inserted into the control record which immediately
precedes that block of text. In addition, the number of RLD
records which follow the first block of text for a load module
is inserted into the PDS directory entry for that module.

The linkage editor inserts RlD counts in the control records and
in the PDS directory entries.

IEBCOPY uses the following input:

• An input data set that contains the members to be copied,
loaded, merged, altered,reblocked, or unloaded to a
sequential data set.

• A control data set that contains utility control statements.
The control data set is required for a copy, unload, load,
or merge operation.

IEBCOPY does not support VIa (virtual 1/0) data sets.

IEBCOPY produces the following output:

• An output data set, which contains the copied, merged,
altered, reblocked, unloaded, or. loaded data. The output
data set is either a new data set (from a copy, reblock,
load, or unload) or an old data set (from a merge,
compress-in-place, copy, alter, or load).

• A message data set, which contains informational messages
(for example, the names of copied, unloaded, or loaded
members) and error messages, if applicable.

• Spill data sets, which are t~mporary data sets used to
provide space when not enough virtual storage is available
for the input and/or output partitioned data set
directories. These data sets are opened only when needed.

IEBCOPY Program 45

RETURN CODES

CONTROL

IEBCOPY returns a code in register 15 to indicate the results of
program execution. The return codes and their meanings are
listed below.

Codes Meaning

00 (00 hex) Successful completion.

04 (04) A condition exists from which recovery may be
possible.

08 (081 An unrecoverable error exists. The job step is
terminated.

Figure 17. IEBCOPY Return Codes

IEBCOPY is controlled by job control statements and utility
control statements.

JOB CONTROL STATEMENTS

Figure 18 on page 47 shows the job control statements for
IEBCOPY.

PARM Information on the EXEC Statement

The EXEC statement for IEBCOPY can contain PARM information that
is used to define the number of bytes used as a buffer. The
PARM parameter can be coded:

PARM='SIZE=nnnnnnnn[K],

The nnnnnnnn can be replaced by 1 to 8 decimal digits. The K
causes the nnnnnnnn to be multiplied by 1024 bytes.

If PARM is not specified, or a value below the minimum buffer
size is specified, IEBCOPY defaults to the minimum. Minimum
buffer size is twice the maximum of the input or output block
sizes or four times the input or output track capacities,
whichever is larger.

The maximum buffer size that can be specified is equal to the
storage remaining in the storage area gotten when IEBCOPY issues
a conditional one-megabyte storage request (GETMAIN) for work
areas and buffers. If the value specified in PARM exceeds this
maximum, IEBCOPY defaults to the maximum.

A request for too much buffer storage may result in increased
system paging because of a lack of available system page frames.
This will degrade overall system performance.

SYSPRINT DD Statement

The SYSPRINT DD statement is required and must define a data set
with fixed blocked or fixed records. The block size for the
SYSPRINT data set must be a multiple of 121. Any blocking
factor may be specified, with a maximum allowable block size of
32767 bytes.

46 MVS/370 Utilities

statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBCOPY) or, if the
job control statements reside in the procedure
library, the procedure name. This statement can
include optional PARM information to define the
size of the buffer to be used; see "PARM
Information on the EXEC Statement."

SYSPRINT DD Defines the sequential message data set used for
listing statements and messages. This data set can
be written to a system output device, a tape
volume, or a direct access volume.

anynamel DD Defines an input partitioned data set. These DO
statements can describe partitioned data sets on
direct access devices or sequential data sets,
created as a result of unload operations, on tape
or direct access devices. The data set can be
defined by a data set name, as a cataloged data
set, or as a data set passed from a previous job
step.

anyname2 DD Defines an output partitioned data set. These DO
statements can describe partitioned data sets on
direct access devices or sequential data sets,
created as a result of unload operations, on tape
or direct access devices.

SYSUT3 DD Defines a spill data set on a direct access device.
SYSUT3 is used when there is no space in virtual
storage for some or all of the current input
partitioned data set's directory entries. SYSUT3
may also be used when not enough space is available
in virtual storage for retaining information during
table sorting.

SYSUT4 DD Defines a spill data set on a direct access device.
SYSUT4 is used when there is no space in virtual
storage for the current output partitioned data
set's merged directory and the output partitioned
data set is not new.

SYSIN DD Defines the control data set. The control data set
normally resides in the input stream; however, it
can reside on a system input device, a tape volume,
or a direct access volume.

Figure 1&. Job Control Statements for IEBCOPY

anynamel and anyname2 DD statements

DO statements are required for input and output data sets.
There must be one DO statement for each unique data set used for
input and one DO statement for each unique data set used for
output in the job step. For an unload operation, only one input
data set may be specified for each output data set.

Data sets used as input data sets in one copy operation can be
used as output data sets in another copy operation, and vice
versa.

Input data sets cannot be concatenated. The maximum block size
for input data sets to be unloaded is 32767.

IEBCOPY Program 47

SYSIN DD statement

The SYSIN DD statement is required and must define a data set
with fixed block or fixed records. The block size for the SYSIN
data set must be a multiple of 80. Any blocking factor may be
specified, with a maximum allowable block size of 32767 bytes.

IEBCOPY UNLOADED DATA SET BLOCK SIZE

The block size for unloaded data sets is determined by the
following steps:

1. The minimum block size for the unloaded data set is
calculated as being equal to the larger of:

• 284 bytes, or

• 20 bytes + the block size and key length of the input
data set.

2. If a user-supplied block size was specified, and it is
larger than 284 bytes, it will be passed to step 3.
Otherwise, the minimum size is passed.

3. The block size value passed from step 2 is then compared
with the largest block size acceptable to the output de~ice.
If the output device capacity is less than the block size
passed in step 2, the unloaded data set block' size is set to
the maximum allowed for the output device.

4. The logical record length (LRECl) is then set to the minimum
block size calculated in step 1 minus 4 bytes.

5. The block size is stored in the first control record
(COPYRl) and used at load time. Block size of the unloaded
data set must not be changed before the data set is loaded.
Be sure to specify the desired block size at unload time if
it is other than that taken by default as indicated above.

For unload and load operations, requests are handled in the same
way as for a copy operation.

Fixed or variable records can be reblocked. Reblocking or
deblocking is done if the block size of the input partitioned
data set is not equal to the block size of the output
partitioned data set.

An unloaded partitioned data set will have a variable spanned
record format. When an unloaded data set is subsequently
loaded, the output data set will have the same characteristics
it had before the unload operation, unless specified differently
by the user.

Figure 19 shows how input record formats can be changed. In
addition, any record format can be changed to the undefined
format (in terms of its description in the DSCB).

Input

Fixed

Fixed-Blocked

Variable

Variable-Blocked

output

Fixed-Blocked

Fixed

Variable-Blocked

Variable

Figure 19. Changing Input Record Format Using IEBCOPY

Space Allocation

Restrictions

System data sets should not be compressed in place unless the
subject partitioned data set is made nonsharable. The libraries
in which IEBCOPY resides (SYS1.lINKlIB and SYS1.SVClIB) must not
be compressed by IEBCOPY unless IEBCOPY is first transferred to
a JOBlIB.

Sometimes it is necessary to allocate space on spill data sets
(SYSUT3 and SYSUT4). The space to be allocated for SYSUT3
depends on the number of members to be copied or loaded. The
space to be allocated for SYSUT4 depends on the number of
directory blocks to be written to the output data set.

To conserve space on the direct access volume, an initial
quantity and a secondary quantity for space allocation may be
used, as shown in the following SPACE parameter:

SPACE=(c,(x,y»

The c value should be a block length of SO for SYSUT3 and of 256
for SYSUT4. The x value is the number of blocks in the primary
allocation, and the y value is the number of blocks in the
secondary allocation.

For SYSUT3, x + 15y must be equal to or greater than the number
of members in the largest input partitioned data set in the copy
operation, multiplied by 1.05.

For SYSUT4, x + 15y must be equal to or greater than the number
of blocks allocated to the largest output partitioned data set
directory in the IEBCOPY job step.

For example, if there are 700 members on the largest input
partitioned data set, space could be allocated for SYSUT3 as
follows:

SPACE=(SO,(60,45»

However, the total amount of space required for SYSUT3 in the
worst case is used only if needed. If space is allocated in
this manner for SYSUT4, the user must specify in his SYSUT4 DO
statement:

DCB=(KEYlEN=S)

IEBCOPY ignores all other DCB information specified for SYSUT3
and/or SYSUT4. Multivolume SYSUT3 and SYSUT4 data sets are not
supported.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DO statements should always appear in the
job stream.

Refer to Data Management Services for more information on
estimating data set space allocations.

• IEBCOPY must run from an authorized library because of
special storage key requirements for IEBCOPY I/O appendages.

• Variable block spanned format data sets are not supported.

• VIO is not supported by IEBCOPY for SYSUT4, nor for
partitioned input or output data sets.

• When merging into or compressing system libraries, do not
specify DISP=SHR. The results of a merge into or compress
of the current SYS1.lINKlIB or SYS1.SVClIB would be
unpredictable.

IEBCOPY Program 49

• IEBCOPY does its own buffering; therefore, coding the BUFNO
parameter in t~e DCB will cause a JCl error.

• Reblocking or deblocking cannot be done if either the input
or the output data set has undefined format records, keyed
records, track overflow records, note lists, or user TTRNs,
or if compress-in-place is specified. load modules,
however, may be reblocked using the COPYMOD statement.

The compress-in-place function cannot be performed for the
following:

• An unloaded data set

• A data set with track overflow records

• A data set with keyed records

• A data set for which reblocking is specified in the DCB
parameter

.' An unmovabl e data set

Note: If IEBCOPY creates a copied library (partitioned data
set) whose block size is smaller than the logical record length
of the original library, a return code of 4 is issued, with
message IEB175I. If IEBCOPY is used later to compress-in-place
the output library, the operation will fail and this library
becomes unusable.

UTILITY CONTROL STATEMENTS

IEBCOPY is controlled by the following utility control
statements:

statement Use

COPY

ALTERMOD

COPYMOD

SELECT

EXCLUDE

Indicates the beginning of a COPY operation.

Specifies the load module(s) to be altered in
place.

Specifies the load moduleCs) to be copied and
reblocked.

Specifies which members in the input data set are
to be copied.

Specifies members in the input data set to be
excluded from the copy step.

Figure 20. IEBCOPY Utility Control Statements

In addition, when INDD, a COPY statement parameter, appears on a
card other than the COPY statement, it is referred to as an INDD
statement; it can function as a control statement in this
context.

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements" on page 5.

50 MVS/370 Utilities

COpy statement

The COPY statement is required to initiate one or more IEBCOPY
copy, unload, or load operations. Any number of operations can
follow a single COPY statement; any number of COPY statements
can appear within a single job step.

IEBCOPY uses a copy operation/copy step concept. 1 A copy
operation starts with a COPY statement and continues until
either another COpy statement or a COPYMOD or ALTERMOD statement
is found, or the end of the control data set is found. Within
each copy operation, one or more copy steps are present. Any
INDD statement directly following a SELECT or EXCLUDE statement
marks the beginning of the next copy step and the end of the
preceding copy step within the copy operation. If such an INDD
statement cannot be found in the copy operation, then the copy
operation consists of only one copy step.

Figure 21 shows the copy operation/copy step concept. Two copy
operations are shown in the figure: the first begins with the
statement containing the name COPOPER1, and the second begins
with the statement containing the name COPOPER2.

First Copy Operation

STEP 1 COPOPER1

STEP 2

Second Copy operation

STEP 1 COPOPER2

STEP 2

COpy

SELECT
SELECT

OUTDD=AA,INDD=ZZ
INDD=(BB,CC)
INDD=DD
INDD=EE
MEMBER=(MEMA,MEMB)
MEMBER=MEMC

INDD=GG
INDD=HH

EXCLUDE MEMBER=(MEMD,MEMH)

COPY
SELECT

OUTOO=YY,I=(MM,PP),LIST=NO
MEMBER=MEMB

INDD=KK
INDO=(LL,NN)

Figure 21. Multiple Copy Operations within a Job Step

There are two copy steps within the first copy operation shown
in Figure 21: the first begins with the COPY statement and
continues through the two SELECT statements; the second begins
with the first INDO statement following the two SELECT
statements and continues through the EXCLUDE statement preceding
the second COpy statement. There are two copy steps within the
second copy operation: the first begins with the COpy statement
and continues through the SELECT statement; the second begins
with the INDD statement immediately following the SELECT
statement and ends with the same /* (delimiter) statement that
ended the copy operation.

1 The same applies to an unload or load operation or step.

IEBCOPY Program 51

The format of the COPY statement is:

[label] COpy OUTDD=ddname

INDD=[(]ddnamel[,ddname2]

[,(ddname3,RJ][, •••][J]

[,LIST=NO]

The control statement operation and keyword parameters can be
abbreviated to their initial letters; for example, COPY can be
abbreviated to C and OUTDO can be abbreviated to O.

If there are no keywords other than OUTDD on the COpy card,
compatibility with the previous version of the data set is
implied. In this case, comments may not be placed on this card.

The OUTDO and INDO keyword parameters on COPY statements name DO
statements that define data sets to be copied, unloaded, or
loaded. The INDO parameter names the DO statement that
identifies the input data set. The OUTDO parameter names the DO
statement that identifies the output data set.

Only one INDD and one OUTDO keyword may be placed on a single
card. OUTDD must appear on the COpy statement. When IHDD
appears on a separate card, no other operands may be specified
on that card. If INDD appears on a separate card, it is not
preceded by a comma.

The characteristics of the input and output data sets depend on
the operation to be performed, as follows:

• If a data set is to be copied, the input and output data
sets must both be partitioned data sets.

• If a data set is to be loaded, the input data set may be
either partitioned or sequential; the output data set must
be partitioned.

• If a data set is to be unloaded, the input data set must be
either a partitioned data set or a sequential data set that
was created as a result of a previous unload operation. The
output data set may reside on either a direct access or tape
volume. If the output data set is to reside on a direct
access volume, the organization of the data set must be
specified as sequential. To specify sequential organization
for a direct access data set, specify the SPACE parameter,
omitting the directory or index value.

If more than one ddname is specified, the input partitioned data
sets are processed in the same sequence as that in which the
ddnames are specified.

A COPY statement must precede a SELECT or EXCLUDE statement when
members are selected for or excluded from a copy, unload, or
load step. In addition, if an input ddname is specified on a
separate INDD statement, it must follow the COPY statement and
precede the SELECT or EXCLUDE statement to which it applies. If
one or more INDD statements are immediately followed by the /*
card or another COPY or COPYMOD or ALTERMOD statement, a full
copy, unload, or load is invoked onto the most recent previously
specified output partitioned data set.

A full copy, unload, or load is invoked only by specifying
different input and output ddnames; that is, by omitting the
SELECT or EXCLUDE statement from the copy step.

52 MVS/370 Utilities

ALTERMOD statement

COPYMOD statement

The compress-in-place function is valid for partitioned data
sets. Compress-in-place is normally invoked by specifying the
same ddname for both the OUTDD and INDD parameters of a COpy
statement. If multiple entries are made on the INDD statement,
a compress-in-place will occur if one of the input ddnames is
the same as the ddname specified by the OUTDD parameter of the
COpy statement, provided that SELECT or EXCLUDE is not
specified.

When a compression is invoked by specifying the same ddname for
the INDO and OUTDD parameters, and the DD statement specifies a
block size that differs from the block size specified in the
DSCB, the DSCB block size is overridden; however, no physical
reblocking or deblocking is done by IEBCOPY.

The ALTERMOD statement is required to alter load modules in
place. The function is designed to read modules which were
written by earlier versions of the linkage editor and to insert
RLD counts. It can also be used to alter modules which may have
an erroneous RLD count--for example, modules which were copied
by a program other than the linkage editor or IEBCOPY.

Only PDS directory entries and control records will be modified.
If the control records are already correct, they will not be
rewritten.

Members which are not recognized as load modules will not be
altered.

Load modules in either overlay or scatter-load format and
modules which were link-edited with the noneditable (NE)
attribute or with an assigned origin other than zero will not be
altered.

The alter-in-place function may be performed multiple times for
the same load module or module library. Altering has no
cumulative effect.

The format of the ALTERMOD statement is:

[label] ALTERMOD OUTDD=ddname

[,LIST=NO]

OUTDD specifies the partitioned data set which is to be altered.

The replace (R) and RENAME functions of IEBCOPY cannot be
specified in the same step with ALTERMOD.

The COPYMOD statement is required to copy, reblock, and alter
modules in a library. When copying load modules, the selected
members will be copied from the input data set(s) to the output
data set. The output data set may be new or it may be an
existing load library to which members are to be added. The
output data set must be a partitioned data set, and it cannot
also be an input data set (reblock-in-place is not permitted).

The text records and the RLD/control records will be rebuilt.
Other records such as SYM and CESD records will be copied
unchanged.

IEBCOPY Program 53

SELECT Statement

Load modules in either overlay or scatter-load format and
modules which were link-ed;ted with the noneditable (NE)
attribute or with an assigned origin other than zero will be
copied, but not reblocked or altered (that is, as if the member
was specified with a COpy statement). Members which are not
recognized as load modules will be copied, but not reblocked or
altered.

Note that modules which are not reblocked by COPYMOD cannot be
copied to a device which has a track size less than the input
block size. They may, however, be re-link-edited with a smaller
block size.

The replace (R) function may be specified with input ddnames
and/or member names to cause like-named modules to be replaced,
or it may be omitted to prevent the copying of like-named
modules.

The rename function may be invoked to specify a new name for the
selected member. For more information, see "SELECT Statement."

IEBCOPY can unload modules to a sequential data set via the COpy
function, and the output of that step can be input to a
subsequent COPYMOD step in which the output data set is the same
as the input to the unload step. This would also provide a
backup copy in the sequential data set.

The format of the COPYMOD statement is:

[label] COPYMOD OUTDD=ddname

,INDO=[(]ddnamel[,ddname2]
[,(ddname3,R)][, •••][)]

[,MAXBLK=CnnnnnlnnK)]

[,MINBLK=CnnnnnlnnK)l

[,LIST=NO]

INDD specifies the partitioned or sequential (unloaded) data set
from which load modules are to be read. OUTDD specifies the
partitioned data set to which load modules are to be copied.
MAXBLK specifies the maximum block size for records in the
output data set. MINBLK specifies the minimum block size for
records in the output data set.

The SELECT statement specifies members (or modules, in the case
of AlTERMOD or COPYMOD) to be selected from input data sets to
be altered, copied, loaded, or unloaded to an output data set.
This statement is also used to rename and/or replace selected
members on the output data set. More than one SELECT statement
may be used in succession, in which case the second and
subsequent statements are treated as a continuation of the
first.

The SELECT statement must follow either a COpy statement that
includes an INDD parameter, a COPYMOD statement, or one or more
INDD statements. A SELECT statement cannot appear with an
EXCLUDE statement in the same copy, unload, or load step, and it
cannot be used with a compress-in-place function.

When a selected member is found on an input data set, it is not
searched for again, regardless of whether the member is copied,
unloaded, or loaded. A selected member will not replace an
identically named member on the output partitioned data set
unless the replace option is specified on either the data set or
member level. (For a description of replacing identically named

54 MVS/370 Utilities

members, see "Replacing Identically Hamed Members" on page 41
and "Replacing Selected Members" on page 4~.) In addition,
unless the replace option is specified, a renamed member will
not replace a member on the output partitioned data set that has
the same new name as the renamed member.

The replace (R) and rename (newname) options cannot be specified
with ALTERMOD.

The format of the SELECT statement is:

[label] SELECT MEMBER: {[(]namel[,name2][, •••][)]1

({ (n am e 1 , n e~ ... n a m e [, R 1) [, ••• 1 I

(namel,newname)[, ••• ll

(namel"R)[, •••][)])

where:

MEMBER:
specifies the members to be selected from the input data
set. The values that can be coded are:

specifies the name of a member that is to be selected
in a copy step. Each member name specified within one
copy step must be unique; that is, duplicate names
cannot be specified as either old names, or new names,
or both, under any circumstances.

newname

R

specifies a new name for a selected member. The
member is copied, unloaded, or loaded to the output
partitioned data set using its new name. If the name
already appears on the output partitioned data set,
the member is not copied unless replacement (R) is
also specified. newname cannot be specified with
ALTERMOD.

specifies that the input member is to replace any
identically named member that exists on the output
partitioned data set. The replace option is not valid
for an unload operation. R cannot be specified with
ALTERMOD.

The control statement operation and keyword parameters can be
abbreviated to their initial letters; SELECT can be abbreviated
to S and MEMBER can be abbreviated to M.

To rename a member, the old member name ;s specified in the
SELECT statement, followed by the new name and, optionally, the
R parameter. When this option is specified, the old member name
and new member name must be enclosed in parentheses. When any
option within parentheses is specified anywhere in the MEMBER
field, the entire field, exclusive of the MEMBER keyword, must
be enclosed in a second set of parentheses.

IEBCOPY Program 55

EXCLUDE statement

The EXCLUDE statement specifies members to be excluded from the
copy, unload, or load step. Unlike the selective
copy/alter/unload/load, an exclusive copy/alter/unload/load
causes all members (or modules, in the case of ALTERMOD or
COPYMOD) specified on each EXCLUDE statement to be omitted from
the operation.

More than one EXCLUDE statement may be used in succession, in
which case the second and subsequent statements are treated as a
continuation of the first. The EXCLUDE statement must follow
either a COPY statement that includes an INDO parameter, an
ALTERMOD or COPYMOD statement, or one or more INDD statements.
An EXCLUDE statement cannot appear with a SELECT statement in
the same copy, unload, or load step; however, both may be used
following a COPY statement for a copy or load operation. The
EXCLUDE statement cannot be used with a compress-in-place
function.

The format of the EXCLUDE statement is:

EXCLUDE MEMBER=[(]membernamel[,membername2] ••• [)]

The control statement operation and keyword parameters can be
abbreviated to their initial letters; EXCLUDE can be abbreviated
to E and MEMBER can be abbreviated to M.

If neither SELECT nor EXCLUDE is specified, the entire data set
is copied (a "full copy").

56 MVS/370 Utilities

Parameters

INDO

LIST

Applicable
Control
statements

COPY
COPYMOD

COpy
COPYMOD
ALTERMOD

Description of Parameters

INDD=[(]ddnamel[,ddname2][,(ddname3,R)]
[, ...][)]

specifies the names of the input partitioned
data sets. INDO may, optionally, be placed
on a separate line following a COPYMOD or
COPY statement containing the OUTDO
parameter, another INDO statement, a SELECT
statement, or an EXCLUDE statement. These
values can be coded:

ddname

R

LIST=NO

specifies the ddname, which is
specified on a DO statement, of an
input data set. In the case of
COPYMOD, this is the name of a load
module. For an unload operation, only
one ddname may be specified per COpy
statement. If more than one ddname is
specified in the case of a copy or load
operation, the input data sets are
processed in the same sequence as the
ddnames are specified.

specifies that all members to be copied
or loaded from this input data set are
to replace any identically named
members on the output partitioned data
set. (In addition, members whose names
are not on the output partitioned data
set are copied or loaded as usual.>
When this option is specified with the
INDD parameter, it does not have to
appear with the MEMBER parameter
(discussed in "SELECT Statement" on
page 54) in a selective copy operation.
When this option is specified, the
ddname and the R parameter must be
enclosed in a set of parentheses; if it
is specified with more than one ddname
in INDD, the entire field, exclusive of
the INDO parameter, must be enclosed in
a second set of parentheses.

specifies that the names of copied members
are not to be listed on SYSPRINT at the end
of each input data set.

Default: The names of copied members are
listed.

IEBCOPY Program 57

Parameters

MAXBlK

MEMBER

Applicable
Control
statements

COPYMOD

SELECT

58 MVS/370 Utilities

Description of Parameters

MAXBlK=(nnnnnlnnKl
specifies~he maximum block size for records
in the output partitioned data set. MAXBlK
is normally used to specify a smaller block
size than the default, in order to make the
records in the data set compatible with
other systems or programs.

nnnnn is specified as a decimal number; K
indicates that the un value is multiplied by
1024 bytes.

MAXBlK may be specified with or without
MINBlK.

Default: The track size for the output
device or 18K, whichever is smaller. If a
value greater than 18K (18432) or less than
4K (4096) is specified, the default is used.

specifies the members to be selected from
the input data set. The values that can be
coded for SELECT are:

specifies the name of a member that 1s
to be selected in a copy step. Each
member name specified within one copy
step must be unique; that is, duplicate
names cannot be specified as either old
names, or new names, or both, under any
circumstances. If no member name is
specified, the entire data set is
included in the operation.

newname

R

specifies a new name for a selected
member. The member is copied,
unloaded, or loaded to the output
partitioned data set using its new
name. If the name already appears on
the output partitioned data set, the
member is not copied unless replacement
(R) is also specified.

spec if i es that the input Inember i s to
replace any identically named member
that exists on the output partitioned
data set. The replace option is not
valid for an unload or alter operation.

Parameters

MEMBER

MINBLK

OUTDO

APplicable
Control
statements

EXCLUDE

COPYMOD

COPY
COPYMOD
ALTERMOD

Description of Parameters

MEMBER=[(]membernamel[,membername2] ••• [)]
specifies members on the input data set that
are not to be copied, unloaded, or loaded to
the output data set. The members are not
deleted from the input data set unless the
entire data set is deleted. (This can be
done by specifying DISP=DELETE in the
operand field of the input DO job control
statement.) Each member name specified
within one copy step must be unique.

MINBLK=CnnnnnlnnKl
specifies the mInImum block size for records
in the output partitioned data set. MINBLK
specifies the smallest block which should be
written on the end of a track for the
purpose of improving utilization of OASO
storage.

A small MINBLK value will improve track
utilization; however, a large MIHBLK value
(close to the track size) will improve
system fetch (IEWFETCH) performance. When
determining the value of MIHBLK, you should
consider the importance of fetch performance
versus optimal OASO storage. In any case,
in order to have room for RLD counts, the
value of MIHBLK should be less than the size
of one full track.

nnnnn is specified as a decimal number; K
indicates that the un value is multiplied by
1024 bytes.

MIHBLK may be specified with or without
MAXBLK.

Default: lK (1024). If a value greater
than MAXBLK or less than 1K is specified, lK
is used. The default for the installation
can be changed by altering the value in the
assembler statement 'MIHBLK DC F'1024" in
the macro IEBMCA and reassembling the module
IEBOSCPY.

OUTDD= ddname
specifies the name of the output partitioned
data set. One ddname is required for each
copy, unload, or load operation; the ddname
used must be specified on a DO statement.

When the COPY or COPYMOD or ALTERMOD
statement is used, OUTDO must be specified.

IEBCOPY Program 59

IEBCOPY EXAMPLES

The following examples illustrate some of the uses of IEBCOPY.
Figure 22 on page 61 can be used as a quick-reference guide to
IEBCOPY examples. The numbers in the "Example" column point to
examples that follow.

Examples that use disk or tape, in place of actual device
numbers, must be changed before use. See "DASD and Tape Device
Support" on page 3 for valid device number notation.

60 MVS/370 Utilities

Operation Device Comments Example

COPY Disk Full Copy. The input and output data sets are 1
partitioned.

COpy Disk Multiple input partitioned data sets. 2
Fixed-blocked and fixed-record formats.

COpy Disk All members are to be copied. Identically 3
named members on the output data set are to be
replaced. The input and output data sets are
partitioned.

COPY Disk Selected members are to be copied. 4
Variable-blocked data set is to be created.
Record formats are variable-blocked and
variable. The input and output data sets are
partitioned.

COPY Disk Selected members are to be copied. One member 5
is to replace an identically named member on
the output data set. The input and output
data sets are partitioned.

COpy Disk Selected members are to be copied. Members 6
found on the first input data set replace
identically named members on the output data
set. The input and output data sets are
partitioned.

COPY Disk Selected members are to be copied. Two 7
members are to be renamed. One renamed member
is to replace an identically named member on
the output data set. The input and output
data sets are partitioned.

COpy Disk Exclusive Copy. Fixed-blocked and 8
fixed-record formats. The input and output
data sets are partitioned.

Unload and Disk and Copy a partitioned data set to tape (unload) 9
Compress- Tape and compress-in-place if the first step is
in-place successful.

COpy and Disk Full copy to be followed by a 10
Compress- compress-in-place of the output data set.
in-place Replace specified for one input data set. The

input and output data sets are partitioned.

COpy Disks Multiple copy operations. The input and 11
output data sets are partitioned.

COPY Disks Multiple copy operations. 12

Unload Disk and A partitioned data set i s to be unloaded to 13
Tape tape.

Load Tape and An unloaded data set is to be loaded to disk. 14
Disk

Unload, Disk and Selected members are to be unloaded, loaded, 15
Load, and Tape and copied. The input data set i s
COPY partitioned; the output data set is

sequential.

Alter in Disk Selected members are to be altered in place. 16
Place

Figure 22 (Part 1 of 2). IEBCOPY Example Directory

IEBCOPY Program 61

Operation Device Comments Example

Copy, Disk Selected members are copied to a new data set, 17
alter, and altered, and reblocked to various sizes.
reblock

COpy, Disk and All members copied to tape; library scratched; 18
alter, and Tape members copied back to library, altered, and
reblock reblocked.

Figure 22 (Part 2 of 2). IEBCOPY Example Directory

IEBCOPY EXAMPLE I

In this example, a partitioned data set CDATASET5) is copied
from one disk volume to another. Figure 23 shows the input and
output data sets before and after processing.

Input

Output
DATASET4

Before
copy
operalion

DATASETlJ

After
process1nq
DATASETlJ

Figure 23. Copying a Partitioned Data Set--Full Copy

62 MVS/370 Utilities

IEBCOPY EXAMPLE 2

//COPY
//JOBSTEP
//SYSPRIHT
//INOUT4
//
//INOUTS
//
//SYSUT3
//SYSUT4
//SYSIN
COPYOPER
/*

JOB
EXEC
DO
DO

DO

DO
DO
DO
COpy

PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASET4,UNIT=3350,YOL=SER=111112,
DISP=(NEW,KEEP),SPACE=(TRK,(5,1,2»
DSNAME=DATASETS,UNIT=3350,YOL=SER=111113,
DISP=SHR
UNIT=SYSDA,SPACE=(TRK,(l»
UNIT=SYSDA,SPACE=(TRK,(l»

* OUTDD=INOUT4,INDD=INOUT5

The control statements are discussed below:

• INOUT4 DO defines a new partitioned data set (DATASET4) that
is to be kept after the copy operation. Five tracks are
allocated for the data set on a 3350 volume. Two blocks are
allocated for directory entries.

• INOUTS DO defines a partitioned data set (DATASETS), that
resides on a 3350 volume and contains two members (A and C).

• SYSUT3 DO defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DO defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIH DO defines the control data set, which follows in the
input stream. The data set contains a COpy statement.

• COpy indicates the start of the copy operation. The absence
of a SELECT or EXCLUDE statement causes a default to a full
copy. The OUTOO parameter specifies INOUT4 as the 00
statement for the output data set (DATASET4); the INDO
parameter specifies INOUT5 as the 00 statement for the input
data set. After the copy operation is finished, the output
data set (DATASET4) will contain the same members that are
on the input data set (DATASET5); however, there will be no
embedded, unused space on DATASET4.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DO statements should always appear in the
job stream.

In this example, members are copied from three input partitioned
data sets (DATASETl; DATASETS, and DATASET6) to an existing
output partitioned data set (DATASET2). The sequence in which
the control statements occur controls the manner and sequence in
which partitioned data sets are processed. Figure 24 on page 64
shows the input and output data sets before and after
processing.

IEBCOPY Program 63

Output
DATASET2

Before
copy
operation

Input
DATASETl

After
processing
DATASET 1

Input
DATASET6

After
processing
DATASET6

Input
DATASET5

After
processing
DATASET5

Figure 24. Copying from Three Input Partitioned Data Sets

//COPY
//JOBSTEP
//SYSPRINT
//INOUTI
//
//INOUT5
//
//INOUT2
//
//INOUT6
//
//SYSUT3
//SYSUT4
//SYSIN
COPYOPER

64 MYS/370 Utilities

JOB
EXEC
DD
DD

DD

DD

DD

DD
DD
DD
COpy

PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASETl,UNIT=3330,YOL=SER=111112,
DISP=SHR
DSNAME=DATASET5,UNIT=3350,YOl=SER=111114,
DISP=OlD
DSNAME=DATASET2,UNIT=3350,YOL=SER=111115,
DISP=(OlD,KEEP)
DSNAME=DATASET6,UNIT=3350,YOL=SER=111117,
DISP=(OLD,DELETE)
UNIT=SYSDA,SPACE=(TRK,(l»
UNIT=SYSDA,SPACE=(TRK,(l»
* OUTDD=INOUT2
INDD=INOUTI
INDD=INOUT6
INDD=INOUT5

IEBCOPY EXAMPLE 3

The control statements are discussed below:

• INOUT1 DD defines a partitioned data set (DATASET1). This
data set, which resides on a 3330 volume, contains three
members (A, B, and F) in fixed format with a logical record
length of 80 bytes and a block size of 80 bytes.

• INOUT5 DD defines a partitioned data set (DATASET5), which
resides on a 3350 volume. This data set contains two
members (A and C) in fixed blocked format with a logical
record length of 80 bytes and a block size of 160 bytes.

• INOUT2 DD defines a partitioned data set (OATASET2), which
resides on a 3350 volume. This data set contains two
members (C and E) in fixed blocked format. The members have
a logical record length of 80 bytes and a block size of 240
bytes.

• INOUT6 DO defines a partitioned data set (OATASET6), which
resides on a 3350 volume. This data set contains three
members (B, C, and D) in fixed-block format with a logical
record length of 80 bytes and a block size of 400 bytes.
This data set is to be deleted when processing is completed.

• SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIN DD defines the ~ontrol data set, which follows in the
input stream. The data set contains a COpy statement and
three INDD statements.

• COPY indicates the start of the copy operation. The absence
of a SELECT or EXCLUDE statement causes a default to a full
copy. The OUTDD parameter specifies INOUT2 as the DD
statement for the output data set (DATASET2).

• The first INDD statement specifies INOUT1 as the DD
statement for the first input data set (DATASET1) to be
processed. All members (A, B, and F) are copied to the
output data set (DATASET2).

• The second INDD statement specifies INOUT6 as the DD
statement for the second input data set (DATASET6) to be
processed. Processing occurs, as follows: (1) members Band
C, which already exist on DATASET2, are not copied to the
output data set (DATASET2), (2) member D is copied to the
output data set (DATASET2), and (3) all members on DATASET6
are lost when the data set is deleted.

• The third INDD statement specifies INOUT5 as the DD
statement for the third input data set (DATASET5) to be
processed. No members are copied to the output data set
(DATASET2) because all of them exist on DATASET2.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

In this example, members are copied from an input partitioned
data set (DATASET6) to an existing output partitioned data set
(DATASET2). In addition, all copied members replace identically
named members on the output partitioned data set.

Figure 25 on page 66 shows the input and output data sets before
and after processing.

IEBCOPY Program 65

Inpul
DATASU'

Output
DATASET2

Alter
prOClS$ing
DATASET6

Figure 25. Copy Operation with "Replace" Specified on the Data
Set level

The example follows:

.I.1COPY

.I.1JOBSTEP

.I.1SYSPRINT

.I.1INOUT2

.1.1

.I.1INOUT6
.1.1
.I.1SYSUT3
.I.1SYSUT4
.I/SYSIN
COPYOPER

.1*

66 MYS/370 Utilities

JOB
EXEC
DO
DD

DO

DD
DO
DO
COPY

PGM=IEBCOPY
SYSOUT=A
OSNAME=DATASET2,UHIT=3330-1,YOl=SER=111113,
OISP=OLD
OSNAME=DATASET6,UNIT=3350,YOL=SER=111117,
OISP=(OLD,KEEP)
UNIT=SYSOA,SPACE=(TRK,(l»
UNIT=SYSDA,SPACE=(TRK,(l»
* OUTDO=INOUT2
INDO=(CINOUT6,R»

IEBCOPY EXAMPLE 4

The control statements are discussed below:

• INOUT2 00 defines a partitioned data set (OATASET2), which
resides on a 3330-1 volume. This data set contains two
members (C and E).

• INOUT6 00 defines a partitioned data set (OATASET6), which
resides on a 3350 volume. This data set contains three
members (B, C, and 0).

• SYSUT3 DO defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DO defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement and an
INDO statement.

• COpy indicates the start of the copy operation. The absence
of a SELECT or EXCLUOE statement causes a default to a full
copy. The OUTDO parameter specifies INOUT2 as the 00
statement for the output data set (OATASET2).

• INDD specifies INOUT6 as the DD statement for the input data
set (OATASET6). Members B, C, and 0 are copied to the
output data set (OATASET2). The pointer in the output data
set directory is changed to point to the new (copied) member
C; thus, the space occupied by the old member C is embedded
unused space. Member C is copied even though the output
data set already contai ns a member named "C" because the
replace option is specified for all identically named
members on the input data set; that is, the replace option
is specified on the data set level.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DO statements should always appear in the
job stream.

In this example, five members (A, C, D, E, and G) are selected
from two input partitioned data sets (OATASET6 and DATASET2)
copied to a new output partitioned data set (OATASET4).
Figure 26 on page 68 shows the input and output data sets before
and after processing.

//COPY
//JOBSTEP
//SYSPRINT
//INOUT2
//
//INOUT6
//
//INOUT4
//
//
//SYSUT3
//SYSUT4
//SYSIN
COPYOPER

JOB
EXEC
DD
DD

DO

DD

DO
DD
DD
COPY

SELECT

PGM=IEBCOPY
SYSOUT=A
OSNAME=DATASET2,UNIT=3330,VOL=SER=111114,
DISP=(OLD,DELETE)
DSNAME=DATASET6,UNIT=3350,VOL=SER=111117,
DISP=(OLD,KEEP)
DSNAME=DATASET4,UNIT=3350,VOL=SER=111116,
DISP=(NEW,KEEP),SPACE=(TRK,(5,,2»,
DCB=(RECFM=VB,LRECl=96,BLKSIZE=300)
UNIT=SYSDA,SPACE=(TRK,(l»
UNIT=SYSDA,SPACE=(TRK,(l»

* OUTOD=INOUT4
INDD=INOUT6
INDD=INOUT2
MEMBER=(C,D,E,A,G)

IEBCOPY Program 67

Output
DATAsET4

Before
copy
operatIon

Input
DATASET 6

After
prOCesSIng
OATAsET6

Dis
first

Input
DATASET 2

After
processing
DATASET 2

Figure 26. Copying Selected Members with Reblocking and
Deblocking

The control statements are discussed below:

• INOUT2 DD defines a partitioned data set (DATASET2), which
resides on a 3330 volume. This data set contains two
members (C AND E) in variable-blocked format with a logical
record length of 96 bytes and a block size of 500 bytes.
This data set is to be deleted when processing is completed.

• INOUT6 DD defines a partitioned data set (DATASET6), which
resides on a 3350 volume. This data set contains three
members (8, C, and D) in variable-blocked format with a
logical record length of 96 bytes and a block size of 100
bytes.

• INOUT4 DD defines a partitioned data set (DATASET4). This
data set is new and is to be kept after the copy operation.
Five tracks are allocated for the data set on a 3350 volume.
Two blocks are allocated for directory entries. In
addition, records are to be copied to this data set in
variable blocked format with a logical record length of 96
bytes and a block size of 300 bytes.

• SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

68 MVS/370 Utilities

IEBCOPY EXAMPLE 5

• SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement, two
INDO statements, and a SELECT statement.

• COPY indicates the start of the copy operation. The use of
a SELECT statement causes a selective copy. The OUTDO
parameter specifies INOUT4 as the DO statement for the
output data set (DATASET4).

• The first INDO statement specifies INOUT6 as the DO
statement for the first input data set (DATASET6) to be
processed. The members specified on the SELECT statement
are searched for. The found members (C and D) are copied to
the output data set (OATASET4) in the order in which they
reside on the input data set, that is, in TTR (track record)
order. In this case, member 0 is copied first, and then
member C is copied.

• The second INDO statement specifies INOUT2 as the DO
statement for the second input data set (DATASET2) to be
processed. The members specified on the SELECT statement
and not found on the first input data set are searched for.
The found member (E) is copied onto the output data set
(DATASET4). All members on DATASET2 are lost when the data
set is deleted.

• SELECT specifies the members to be selected ,from the input
data sets (DATASET6 and DATASET2) to be copied to the output
data set (DATASET4).

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DO statements should always appear in the
job stream.

In this example, two members (A and B) are selected from two
input partitioned data sets (OATASET5 and DATASET6) copied to an
existing output partitioned data set (DATASET!). Member B
replaces an Identically named member that already exists on the
output data set. Figure 27 on page 70 shows the input and
output data sets before and after processing.

//COPY
//JOBSTEP
//SYSPRINT
//INOUTI
//
//INOUT6
//
//INOUT5
//
//SYSUT3
//SYSUT4
//SYSIN
COPYOPER

JOB
EXEC
DD
DD

DD

DO

DO
DO
DO
COpy

SELECT

PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASETl,UNIT=3330,YOL=SER=111112,
DISP=(OLD,KEEP)
DSNAME=DATASET6,UNIT=3350,YOL=SER=111115,
DISP=OLD
DSNAME=DATASET5,UNIT=3330,YOL=SER=111116,
DISP=(OLD,KEEP)
UNIT=SYSDA,SPACE=(TRK,(l»
UNIT=SYSDA,SPACE=(TRK,(l»

* OUTDO=INOUTI
INOD=INOUT5,INOUT6
MEMBER=«B"R),A)

Output
DATASET 1

Before
copy
operallon

Input
DATASETS

,

Alter
processIng
DATASETS

Input
DATASET6

Alter
procesSIng
DATASET6

Figure 27. Selective Copy with "Replace" Specified on the Member
Level

70 MVS/370 Utilities

IEBCOPY EXAMPLE 6

The control statements are discussed below:

• INOUT1 DD defines a partitioned data set (DATASET1). This
data set resides on a 3330 volume and contains three members
(A, B, and F).

• INOUT6 DD defines a partitioned data set (DATASET6). This
data set resides on a 33S0 volume and contains three members
(B, C, and D).

• INOUTS DD defines a partitioned data set (DATASETS). This
data set resides on a 3330 volume and contains two members
(A and C).

• SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement, an
INDD statement, and a SELECT statement.

• COPY indicates the start of the copy operation. The use of
a SELECT statement causes a selective copy. The OUTDD
parameter specifies INOUT1 as the DD statement for the
output data set (DATASET1).

• INDD specifies INOUTS as the DD statement for the first
input data set (DATASET5) to be processed and INOUT6 as the
DD statement for the second input data set (DATASET6) to be
processed. Processing occurs, as follows: (1) selected
members are searched for on DATASET5, (2) member A is found,
but is not copied to the output data set because it already
exists on DATASET2 and the replace option is not specified,
(3) selected members not found on DATASET5 are searched for
on DATASET6, and (4) member B is found and copied to the
output data set (DATASET1), even though a membe~ named B
already exists on the output data set, because the replace
option is specified for member B on the member level. The
poin*er in the output data set directory is changed to point
to the new (copied) member B; thus, the space occupied by
the old member B is unused.

• SELECT specifies the members to be selected from the input
data sets (DATASET5 and DATASET6) to be copied to the output
data set (DATASETl).

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; . therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

In this example, two members (A and B) are selected from two
input partitioned data sets (DATASETS and DATASET6) copied to an
existing output partitioned data set (DATASETl). All members
found on DATASETS replace identically named members on DATASET1.
Figure 28 on page 72 shows the input and output data sets before
and after processing.

IEBCOPY Program 71

Input

Output
DATASET1

Before copy
operation

DATASET5

After processing
DATASET5

DATASET6

After processing
DATASET6

Figure 28. Selective Copy with "Replace" Specified on the Data
Set level

72 MVS/370 Utilities

IICOPY
IIJOBSTEP
IISYSPRIHT
IIIHOUTI
II
IIIHOUT5
II
IIINOUT6
II
IISYSUT3
IISYSUT4
IISYSIN
COPYOPER

JOB
EXEC
DD
DD

DD

DD

DD
DO
DD
COPY

SELECT

PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASET1,UNIT=33S0,YOL=SER=111112,
DISP=(OLD,KEEP)
DSNAME=DATASETS,UNIT=3330,YOL=SER=111114,
DISP=(OLD,DELETE)
DSNAME=DATASET6,UHIT=230S-2,YOL=SER=11111S
DISP=(OLD,KEEP)
UNIT=SYSDA,SPACE=(TRK,(l»
UNIT=SYSDA,SPACE=(TRK,(l»

* OUTDD=INOUTl
INDD=(CINOUT5,R),INOUT6)
MEMBER=(A,B)

The control statements are discussed below:

• INOUTl DD defines a partitioned data set (DATASETl). This
data set resides on a 3350 volume and contains three members
(A, B, and F).

• INOUT5 DD defines a partitioned data set (DATASET5). This
data set contains two members (A and C) and resides on a
3330 volume. This data set is to be deleted when processing
is completed.

• INOUT6 DD defines a partitioned data set (DATASET6). This
data set contains three members (B, C, and D) and resides on
a 2305-2 volume.

• SYSUT3 DO defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DO defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement, an
INDD statement, and a SELECT statement.

• COPY indicates the start of the copy operation. The
presence of a SELECT statement causes a selective copy. The
OUTDD operand specifies INOUTl as the DD statement for the
output data set (DATASET!).

• INDD specifies INOUTS as the DD statement for the first
input data set (DATASETS) to be processed and INOUT6 as the
statement for the second input data set (DATASET6) to be
processed. Processing occurs, as follows: (1) selected
members are searched for on DATASET5, (2) member A is found
and copied to the output data set (DATASET1) because the
replace option was specified on the data set level for
DATASET5, (3) member B, which was not found on DATASET5 is
searched for and found on DATASET6, (4) member B is not
copied because DATASET1 already contains a member called
member B and the replace option is not specified for
DATASET6. The pointer in the output data set directory is
changed to point to the new (copied) member A; thus, the
space occupied by the old member A is unused.

• SELECT specifies the members to be selected from the input
data sets (DATASET5 and DATASET6) to be copied to the output
data set (DATASET1).

IEBCOPY Program 73

IEBCOPY EXAMPLE 7

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DO statements should always appear in the
job stream.

In this example, four members (A, 8, C, and D) are selected from
an input partitioned data set (DATASET6) copied to an existing
output partitioned data set (DATASET3). Member 8 is renamed Hi
member C is renamed J; and member D is renamed K. In addition,
member C (renamed J) replaces the identically named member (J)
on the output partitioned data set. Figure 29 shows the input
and output data sets before and after processing.

Input

Output
DATASET3

Before copy
operation

Member J replaced by
renamed Member J

DATASET6

After processing
DATASET6

Figure 29. Renaming Selected Members Using IE8COPY

74 MVS/370 Utilities

IICOPY
IIJOBSTEP
IISYSPRINT
IIINOUT3
II
IIINOUT6
II
IISYSUT3
IISYSUT4
IISYSIN
COPYOPER

1*

JOB
EXEC
DD
DD

DD

DD
DD
DD
COPY
SELECT

PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASET3,UNIT=disk,VOl=SER=111114,
DISP=(OlD,KEEP)
DSNAME=DATASET6,UNIT=disk,VOl=SER=111117,
DISP=(OlD,DElETE)
UNIT=SYSDA,SPACE=(TRK,(l»
UNIT=SYSDA,SPACE=(TRK,(l»

* OUTDD=INOUT3,INDD=INOUT6
MEMBER=«B,H),(C,J,R),A,CD,K»

The control statements are discussed below:

• INOUT3 DD defines a partitioned data set CDATASET3). This
data set contains four members CD, G, H, and J) and resides
on a disk volume.

• INOUT6 DD defines a partitioned data set (DATASET6). This
data set contains three members CB, C, and D) and resides on
a disk volume. DATASET6 is to be deleted when processing is
completed; thus, all members on this data set are lost.

• SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COpy statement, an
INDD statement, and a SELECT statement.

• COPY indicates the start of the copy operation. The
presence of a SELECT statement causes a selective copy. The
OUTDD parameter specifies INOUT3 as the DD statement for the
output data set (DATASET3).

• INDD specifies INOUT6 as the DD statement for the input data
set (DATASET6). Processing occurs, as follows:

1. Selected members are searched for on DATASET6.

2. Member B is found, but is not copied to DATASET3 because
its intended new name (H) is identical to the name of a
member (H), which already exists on the output data set,
and replace is not specified.

3. Member C is found and copied to the output data set
(DATASET3), although its new name (J) is identical to
the name of a member (J), which already exists on the
output data set, because the replace option is specified
for the renamed member.

4. Member D is copied onto the output data set (DATASET3)
because its new name (K) does not already exist there.

• SELECT specifies the members to be selected from the input
data set CDATASET6) to be copied to the output data set
(DATASET3).

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available;
therefore, the SYSUT3 and SYSUT4 DD statements should always
appear in the job stream.

IEBCOPY Program 75

IEBCOPY EXAMPLE 8

In this example, five members (A, B, C, J, and l) are excluded
from the copy operation when each of the input partitioned data
sets (DATASET1, DATASET3, and DATASET6) ;s processed. In
addition, replace is specified for the last input partitioned
data set (DATASET6) to be processed; thus, with the exception of
the members specified on the EXCLUDE statement, all members on
DATASET6 will replace any identically named members on the
output partitioned data set (DATASET4). Figure 30 on page 77
shows the input and output data sets before and after
processing.

//COPY JOB
//JOBSTEP EXEC
//SYSPRINT DO
//INOUTI 00
//
//INOUT3 DO
//
//INOUT4 DD
//
//
//INOUT6 DO
//
//SYSUT3 DO
//SYSUT4 DO
//SYSIN DO
COPYOPER COPY

EXCLUDE

PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASET1,UNIT=disk,VOl=SER=111112,
DISP=(OlD,KEEP)
DSNAME=DATASET3,UNIT=disk,VOl=SER=111114,
OISP=OLD
DSNAME=DATASET4,UNIT=disk,VOl=SER=111l15,
DISP=(NEW,KEEP),SPACE=(TRK,(3,l,2»,
OCB=(lRECl=100,RECFM=FB,BlKSIZE=400)
OSNAME=DATASET6,UNIT=disk,VOL=SER=1111l6,
DISP=OlD
UNIT=SYSDA,SPACE=(TRK,(l»
UNIT=SYSDA,SPACE=(TRK,(l»

* OUTDD=INOUT4,
INDD=INOUTl,INOUT3,(INOUT6,R)
MEMBER=(A,J,B,l,C)

The control statements are discussed below:

• INOUTI 00 defines a partitioned data set (DATASET1). This
data set contains three members (A, B, and F) and resides on
a disk volume. The record format is fixed-blocked with a
logical record length of 100 bytes and a block size of 400
bytes.

• INOUT3 DO defines a partitioned data set (DATASET3), which
resides on a disk volume. This data set contains four
members (0, G, H, and J) in fixed-blocked format with a
logical record length of 100 bytes and a block size of 600
bytes.

• INOUT4 DO defines a new partitioned data set (DATASET4).
Three tracks are allocated for the copied members on a disk
volume. Two blocks are allocated for directory entries. In
addition, records are to be copied to this data set in
fixed-blocked format with a logical record length of 100
bytes and a block size of 400 bytes.

• INOUT6 DO defines a partitioned data set (DATASET6). This
data set contains three members (B, C, and D) in fixed
format. The records have a logical record length of 100
bytes and a block size of 100 bytes. This data set resides
on a disk volume.

• SYSUT3 DO defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DO defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIN DO defines the control data set, which follows in the
input stream. The data set contains a COPY statement and an
EXCLUDE statement.

76 MVS/370 Utilities

Output
DATASET4

Before
copy
operatIon

Input
DATASET 1

After
processIng
DATASET!

Input
DATASETJ

After
processIng
DATASETJ

Input
DATASET6

After
processing
DATASET6

member

Figure 30. Exclusive Copy with "Replace" Specified for One Input
Partitioned Data Set

• COPY indicates the start of the copy operation. The
presence of an EXCLUDE statement causes an exclusive copy.
The OUTDD parameter specifies INOUT4 as the DD statement for
the output data set (DATASET4). The INDD parameter
specifies INOUT1 as the DD statement for the first input
data set (DATASET1) to be processed, INOUT3 as the DD
statement for the second input data set (DATASET3) to be
processed, and INOUT6 as the DD statement for the last input
data set (DATASET6) to be processed. Processing occurs, as
follows:

1. Member F, which is not named on the EXCLUDE statement,
is copied from DATASET1.

2. Members D, G, and H, which are not named on the EXCLUDE
statement, are copied from DATASET3.

3. Member D is copied from DATASET6 because the replace
option is specified for nonexcluded members.

The pointer in the output data set directory is changed to
point at the new (copied) member D; thus, the space occupied
by the old member D (copied from DATASET3) is unused.

• EXCLUDE specifies the members to be excluded from the copy
operation. The named members are excluded from all of the
input partitioned data sets specified in the copy operation.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

IEBCOPY Program 77

IEBCOPY EXAMPLE 9

In this example) a partitioned data set is unloaded to a tape
volume to create a backup copy of the data set. If this step is
successful) the partitioned data set is to be compressed in
place.

//SAVE JOB
//STEPI EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//INPDS DD DSNAME=PARTPDS)UNIT=disk)VOL=SER=PCPOOI)
// DISP=OLD
//BACKUP DD DSNAME=SAVDATA)UNIT=tape)VOL=SER=TAPE03)
// DISP=CNEW,KEEP),LABEL=(,SL)
//SYSUT3 DD DSNAME=TEMPI,UNIT=disk)VOL=SER=111111,
// DISP=CNEW,DELETE),SPACE=(80)(60,45»
//SYSIN DD * COpy OUTDD=BACKUP,INDD=INPDS
/*
//STEP2 EXEC PGM=IEBCOPY,COND=(O,NE»)
// PARM='SIZE=99999999K'
//SYSPRINT DD SYSOUT=A
//COMPDS DD DSNAME=PARTPDS,UNIT=disk,DISP=OLD,
// VOL=SER=PCPOOI
//SYSUT3 DD DSNAME=TEMPA,UNIT=disk)VOL=SER=111111,
// DISP=(NEW,DELETE»)SPACE=(SO,(60,45»
//SYSUT4 DD DSNAME=TEMPB,UNIT=disk,VOL=SER=IIIIII,
// SPACE=(256,(15,1»,DCB=KEYLEN=S
//SYSIN DD *

COPY OUTDD=COMPDS)INDD=COMPDS
/*

The control statements are discussed below:

• INPDS DD defines a partitioned data set (PARTPDS) that
resides on a disk volume and is assumed to have 700 members.
The number of members is used to calculate the space
allocation on SYSUT3.

• BACKUP DD defines a sequential data set to hold PARTPDS in
unloaded form. Block size information can optionally be
added; this data set must be NEW.

• SYSUT3 DD defines the temporary spill data set.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement.

• COpy marks the beginning of the unload operation; the
absence of an EXCLUDE or SELECT statement causes the entire
partitioned data set (INDD=INPDS) to be unloaded to a
sequential data set (OUTDD=BACKUP).

• The second EXEC statement marks the beginning of the
compress-in-place operation. The SIZE parameter indicates
that the buffers are to be as large as possible. The CONO
parameter indicates that the compress-in-place is to be
performed ~nly if the unload operation was successful.

• COMPDS DD defines a partitioned data set (PARTPDS) that
contains 700 members and resides on a disk volume.

• SYSUT3 DD defines the temporary spill data set to be used if
there is not enough space in main storage for the input data
set's directory entries. TEMPA contains one SO-character
record for each member.

• SYSUT4 DD defines the temporary spill data set to be used if
there is not enough space in main storage for the output

78 MVS/370 Utilities

IEBCOPY EXAMPLE 10

partitioned data set's directory blocks. TEMPB contains one
2S6-character record for each directory block.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COpy statement.

• COPY marks the beginning of the copy operation. The absence
of a SELECT or EXCLUDE statement causes a default to a full
copy. Because the same DD statement is specified for both
the INDD and OUTDD operands, the data set is compressed in
place.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream. However, the SYSUT4 data set is never used for an
unload operation.

For an unload operation, only one INDD data set may be specified
for one OUTDD data set.

In this example, two input partitioned data sets (DATASETS and
DATASET6) are copied to an existing output partitioned data set
(DATASET!). In addition, all members on DATASET6 are copied;
members on the output data set that have the same names as the
copied members are replaced. After DATASET6 is processed, the
output data set (DATASET1) is compressed in place. Figure 31 on
page 80 shows the input and output data sets before and after
processing.

//COPY
//JOBSTEP
//SYSPRINT
//INOUTI
//
//INOUTS
//
//INOUT6
//
//SYSUT3
//SYSUT4
//SYSIN
COPYOPER

/*

JOB
EXEC
DD
DD

DD

DD

DD
DD
DO
COpy

PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASET1,UNIT=3330,VOL=SER=111112,
DISP=(OLD,KEEP)
DSNAME=DATASETS,UNIT=33S0,VOl=SER=111114,
DISP=OLD
DSNAME=DATASET6,UNIT=33S0,VOl=SER=11111S,
DISP=(OlD,KEEP)
UNIT=SYSOA,SPACE=(TRK,(l»
UNIT=SYSOA,SPACE=(TRK,(l»

* OUTDD=INOUT!
INDD=INOUTS,(INOUT6,R),INOUT1

The control statements are discussed below:

• INOUTI DD defines a partitioned data set (DATASET1). This
data set contains three members (A, B, and F) and resides on
a 3330 volume.

• INOUTS DD defines a partitioned data set (DATASETS). This
data set contains two members (A and C) and resides on a
33S0 volume.

• INOUT6 DD defines a partitioned data set (DATASET6). This
data set contains three members (B, C, and D) and resides on
a 3350 volume.

• SYSUT3 DO defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

IEBCOPY Program 79

Input

Output
DATASET1

Before copy
operation

DATASET5

•

After processing
DATASET5

DATASET6

After processing
DATASET6

DATASET1

After
compressing
in place

Figure 31. Compress-in-Place Following Full Copy with "Replace"
Specified

80 MVS/370 Utilities

IEBCOPY EXAMPLE 11

• SYSIH DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement and an
INDD statement.

• COPY indicates the start of the copy operation. The nUTDD
operand specifies INOUTl as the DD statement for the output
data set (DATASETl). The absence of a SELECT or EXCLUDE
statement causes a default to a full copy.

• INDD specifies INOUTS as the DD statement for the first
input data set (DATASETS) to be processed. It then
specifies INOUT6 as the DD statement for the second input
data set (DATASET6) to be processed; in addition, the
replace option is specified for all members copied from
DATASET6. Finally, it specifies INOUTl as the DD statement
for the last input data set (DATASETl) to be processed; this
causes a compress-in-place of DATASET! because it is also
specified as the output data set. Processing occurs, as
follows:

!. Member A is not copied from DATASETS onto the output
data set (DATASET!) because it already exists on
DATASET! and the replace option was not specified for
DATASETS.

2. Member C is copied from DATASETS to the output data set
(DATASETl), occupying the first available space.

3. All members are copied from DATASET6 to the output data
set (DATASET!), immediately following the last member.
Members Band C are copied even though the output data
set already contains members with the same names because
the replace option is specified on the data set level.

The pointers in the output data set directory are changed to
point to the new members Band C; thus, the space occupied
by the old members Band C is unused. The members currently
on DATASETl are compressed in place, thereby eliminating
embedded unused space.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

In this example, members are selected, excluded, and copied from
input partitioned data sets onto an output partitioned data set.
This example is designed to illustrate multiple copy operations.
Figure 32 on page 82 shows the input and output data sets before
and after processing.

IEBCOPY Program 8!

Compress-in-Place Operation

Output
DATASETA

Before copy
operation

DATASETA

After compressing
in place

DATASETB

•

After processing
DATASETB

Figure 32 (Part 1 of 2). Multiple Copy Operations/Copy Steps

82 MVS/370 Utilities

Multiple Copy Steps

Before copy
operation

DATASETD

•

After processing
DATASETD

DATASETC

After processing
DATASETC

DATASETE

•

After processing
DATASETE

Figure 32 (Part 2 of 2). Multiple Copy Operations/Copy Steps

IEBCOPY Program 83

//COPY
//JOBSTEP
//SYSPRINT
//INOUTA
//
//INOUTB
//
//INOUTC
//
//INOUTD
//
//INOUTE
//
//INOUTX
//
//SYSUT3
//SYSUT4
//SYSIN
COPERSTI

/*.

JOB
EXEC
DD
DD

DD

DD

DD

DD

DD

DD
DD
DD
COPY
COpy

COpy

EXCLUDE

SELECT

PGM=IEBCOPY
SYSQUT=A
DSNAME=DATASETA,UNIT=disk,VOl=SER=111113,
DISP=OLD
DSNAME=DATASETB,UNIT=disk,VOl=SER=111115,
DISP=(OlD,KEEP)
DSNAME=DATASETC,UNIT=disk,VOl=SER=111114,
DISP=(OlD,KEEP)
DSNAME=DATASETD,UNIT=disk,VOl=SER=111116,
DISP=OlD
DSNAME=DATASETE,UNIT=disk,VOl=SER=111117,
DISP=OlD
DSNAME=DATASETX,UNIT=disk,VOl=SER=111112,
DISP=(NEW,KEEP),SPACE=(TRK,(3,1,2»
UNIT=SYSDA,SPACE=(TRK,(l»
UNIT=SYSDA,SPACE=(TRK,(l»
*.
O=INOUTX,I=INOUTA
OUTDD=INOUTA,INDD=INOUTA
INDD=INOUTB
O=INOUTA
INDD=INOUTD
MEMBER=MM
INDD=INOUTC
MEMBER=«Ml,MD,R»
INDD=INOUTE

The-control statements are discussed below:

• INOUTA DD defines a partitioned data (DATASETA). This data
set contains seven members (MA, MB, MC, MD, ME, MF, and MG)
and resides on a disk volume.

• INOUTB DD defines a partitioned data set (DATASETB). This
data set resides on a disk volume and contains two members
(MA and MJ).

• INOUTC DD defines a partitioned data set (DATASETC), that
resides on a disk volume. The data set contains four
members (MF, Ml, MM, and MN).

• INOUTD DD defines a partitioned data set (DATASETD). This
data set resides on a disk volume and contains two members
(MM and MP).

• INOUTE DD defines a partitioned data set (DATASETE). This
data set contains four members (MD, ME, MF, and MT) and
resides on a disk volume.

• INOUTX DD defines a partitioned data set (DATASETX). This
data set _is new and is to be kept after the copy operation.
Three tracks are allocated for the data set on a disk
volume. Two blocks are allocated for directory entries.

• SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains two COpy statements,
several INDD statements, a SELECT statement, and an EXCLUDE
statement.

• The first COPY statement indicates the start of the first
copy operation. This copy operation is done to create a

84 MVS/370 Utilities

IEBCOPY EXAMPLE 12

backup copy of DATASETA, which is compressed in place in the
second copy operation.

• The second COPY statement indicates the start of another
copy operation. The absence of a SELECT or EXCLUDE
statement causes a default to a full copy; however, the same
DO statement, INOUTA, is specified for both the INDO and
OUTDD parameters, causing a compress-in-place of the
specified data set.

The output data set is compressed in place first to save
space because it is known that it contains embedded, unused
space.

INDD specifies INOUTB as the DD statement for the input data
set (DATASETB) to be copied. Only member MJ is copied
because member MA already exists on the output data set.

• The third COPY statement indicates the start of the third
copy operation. The OUTDD parameter specifies INOUTA as the
DO statement for the output data set (DATASETA). This copy
operation contains more than one copy step.

The first INDD statement specifies INOUTD as the DD
statement for the first input data set (DATASETD) to be
processed. Only member MP is copied to the output data set
(DATASETA) because member MM is specified on the EXCLUDE
statement. EXCLUDE specifies the member to be excluded from
the first copy step within this copy operation.

The second INDD statement marks the beginning of the second
copy step for this copy operation and specifies INOUTC as
the DO statement for the second input data set (DATASETC) to
be processed. Member ML is searched for, found, and copied
to the output data set (DATASETA). Member ML is copied even
though its new name (MD) is identical to the name of a
member (MD) that already exists on the output data set,
because the replace option is specified for the renamed
member.

SELECT specifies the member to be selected from the input
data set (DATASETC) to be copied to the output partitioned
data set.

The third INDO statement marks the beginning of the third
copy step for this copy operation and specifies INOUTE as
the DO statement for the last data set (DATASETE) to be
copied. Only member MT is copied because the other members
already exist on the output data set. Because the INDO
statement is not followed by an EXCLUDE or SELECT statement,
a full copy is performed.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
it ;s suggested that the SYSUT3 and SYSUT4 DO statements always
appear in the job stream.

The output data set is compressed in place first to save space
because it is known that it contains embedded, unused space.

In this example, members are selected, excluded, and copied from
input partitioned data sets to an output partitioned data set.
This example is designed to illustrate multiple copy operations.
Figure 33 on page 86 shows the input and output data sets before
and after processing.

IEBCOPY Program 85

First copy operetion

Output
DATASET A

Belore
copy
operatIon

Input
DATASETE

Alter
processIng
DATASETE

Input
DATASETC

Alter
proceSSIng
DATASETC

Figure 33 (Part 1 of 3). Multiple Copy Operations/Copy Steps
within a Job Step

86 MVS/370 Utilities

Second copy operillon

Output
DATASETB

Before
copy
operatIon

Input
DATASETD

After
processIng
DATASETD

Input
DATASETC

After
processing
DATASETC

Input
DATASETB

Aft ...
compressing
in pIKe

Figure 33 (Part 2 of 3). Multiple Copy Operations/Copy Steps
within a Job Step

IEBCOPY Program 87

Third copy operation

Output
DATASETD

Before copy
operation

Old
member

Input
DATASETB

After processing
DATASETB

Figure 33 (Part 3 of 3). Multiple Copy Operations/Copy steps
within a Job Step

88 MVS/370 Utilities

//COPY
//JOBSTEP
//SYSPRINT
//INOUTA
//
//INOUTB
//
//INOUTC
//
//INOUTD
//
//INOUTE
//
//SYSUT3
//SYSUT4
//SYSIN

JOB
EXEC
DD
DD

DD

DD

DD

DD

DD
DD
DD
COPY

SELECT

EXCLUDE
COPY

COPY
SELECT

PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASETA,UNIT=disk,YOL=SER=111113,
DISP=OLD
DSNAME=DATASETB,VOL=SER=111115,UNIT=disk,
DISP=(OLD,KEEP)
DSNAME=DATASETC,YOL=SER=111114,UNIT=disk,
DISP=(OLD,KEEP)
DSNAME=DATASETD,VOL=SER=111116,DISP=OLD,
UNIT=disk
DSNAME=DATASETE,YOL=SER=111117,DISP=OLD,
UNIT=disk
UNIT=SYSDA,SPACE=(TRK,(l»
UNIT=SYSDA,SPACE=(TRK,(l»

* OUTDD=INOUTA
INDD=INOUTE
MEMBER=(MA,MJ)
INDD=INOUTC
MEMBER=(MM,MN)
O=INOUTB,INDD=INOUTD
I=«INOUTC,R),INOUTB)
O=INOUTD,I=«INOUTB,R»
MEMBER=MM

The control statements are discussed below:

• INOUTA DD defines a partitioned data set (DATASETA). This
data set contains three members (MA, MB, and MD) and resides
on a disk volume.

• INOUTB DD defines a partitioned data set (DATASETB). This
data set resides on a disk volume and contains two members
(MA and MJ).

• INOUTC DD defines a partitioned data set (DATASETC), that
resides on a disk volume. This data set contains four
members (MF, ML, MM, and MN).

• INOUTD DD defines a partitioned data set (DATASETD). This
data set resides on a disk volume and contains two members
(MM and MP).

• INOUTE DD defines a partitioned data set (DATASETE), that
resides on a disk volume. This data set contains three
members (MA, MJ and MK).

• SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIH DD defines the control data set, which follows in the
input stream. The data set contains three COPY statements,
two SELECT statements, one EXCLUDE statement, and several
INDD statements.

• The first COPY statement indicates the start of a copy
operation. The OUTDD operand specifies INOUTA as the DD
statement for the output data set (DATASETA).

IEBCOPY Program 89

The first INDD statement specifies INOUTE as the DD
statement for the first input data set (DATASETE) to be
processed. Processing occurs, as follows:

1. Member MA is searched for and found, but is not copied
because the replace option is not specified.

2. Member MJ is searched for, found, and copied to the
output data set. Members are not searched for again
after they are found.

SELECT specifies the members (MA and MJ) to be selected from
the input data set (DATASETE) to be copied.

The second INDD statement marks the end of the first copy
step and the beginning of the second copy step within the
first copy operation. It specifies INOUTC as the DD
statement for the second input data set (DATASETC) to be
processed. Members MF and ML, which are not named on the
EXCLUDE statement, are copied because neither exists on the
output data set. EXCLUDE specifies the members (MM and MN)
to be excluded from the second copy operation.

• The second COPY statement indicates the start of another
copy operation. The absence of a SELECT or EXCLUDE
statement causes a default to a full copy. The 0 (OUTDD)
parameter specifies INOUTB as the output data set
(DATASETB). The INDD parameter specifies INOUTD as the
first input data set (DATASETD) to be processed. Members MP
and MM are copied to the output data set.

INDD(I) specifies INOUTC as the DD statement for the second
input data set (DATASETC) and INOUTB as the DD statement for
the third input data set (DATASETB) to be processed.
Members MF, ML, MM, and MN are copied from DATASETC. Member
MM is copied, although it already exists on the output
partitioned data sets, because the replace option is
specified. (The pointer in the output data set directory is
changed to point to the new (copied) member MM; thus the
space occupied by the replaced member MM is embedded, unused
space.) Because DATASETB is also the data set specified in
the OUTDD parameter, a compress-in-place takes place, and
thus the embedded, unused space is removed.

• The third COPY statement indicates the start of another copy
operation. The 0 (OUTDD) parameter specifies INOUTD as the
DD statement for the output data set (DATASETD). The I
(INDD) parameter specifies INOUTB as the DD statement for
the input data set (DATASETB).

SELECT specifies the member (MM) to be selected from the
input partitioned data set (DATASETB) to be copied. The
replace option is specified on the data set level.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

90 MVS/370 Utilities

IEBCOPY EXAMPLE 13

In this example, a partitioned data set (SYSl.lIHKlIB) ;s
unloaded to a tape volume.

//UNLOAD
//STEPI
//SYSPRIHT
//INPDS
//
//OUTTAPE
//
//SYSUT3
//
//SYSIN

JOB
EXEC
DD
DD

DO

DD

DO
COpy

PGM=IEBCOPY,PARM='SIZE=100K'
SYSOUT=A
DSNAME=SYSl.lINKlIB,UHIT=disk,OISP=SHR,
VOl=SER=666666
DSNAME=lINKLIB,UHIT=tape,VOL=SER=TAPEOO,
lABEL=(,Sl),DISP=(NEW,KEEP)
DSNAME=TEMPI,UNIT=disk,VOL=SER=111111,
DISP=(HEW,DELETE),SPACE=(80,(60,45»

* OUTDD=OUTTAPE
INDD=INPDS

The control statements are discussed below:

• EXEC specifies the execution of IEBCOPY. The PARM parameter
specifies the size of the input/output buffer to be used
(lOOK).

• INPDS DD defines a partitioned data set (SYSl.LIHKLIB),
which resides on a disk volume. This data set is assumed to
have 700 members; the number of members is used to calculate
the space allocation for SYSUT3.

• OUTTAPE DD defines a sequential data set to which
SYSl.lINKlIB is to be unloaded. The unloaded data set is
named LINKLIB. If a tape volume is used, it can be IBM
standard labeled or unlabeled.

• SYSUT3 OD defines a temporary spill data set on a disk
volume. This data set is used if there is not enough space
in virtual storage for the input partitioned data set's
directory entries. This data set mayor may not be opened
depending on the amount of virtual storage available;
therefore, it is suggested that the statement always appear
in the job stream.

• SYSIN DO defines the control data set, which follows in the
input stream. The data set contains a COpy and INDO
statement.

• COPY indicates the start of an unload operation because the
OUTDO parameter refers to OUTTAPE DO, which specifies a
sequential output data set. Because no EXCLUDE or SELECT
statement is specified, the entire data set is unloaded.

• INDO refers to INPDS DD, which defines the input partitioned
data set to be unloaded. Note that for an unload operation,
only one INDO data set may be specified for each OUTDO data
set.

The SYSUT4 data set is never used for an unload operation. The
SYSUT3 data set for an unload operation is used under the same
conditions as it is used for a copy operation.

If too much space is allocated with the SIZE option of the PARM
parameter on the EXEC statement, the paging process slows down
because the buffer areas are fixed.

IEBCOPY Program 91

IEBCOPY EXAMPLE 14

IEBCOPY EXAMPLE 15

In this example, a sequential data set created by an IEBCOPY
unload operation is loaded.

//LOAD
//STEPA
//SYSPRINT
//SEQIN
//
//INOUT4
//
//SYSUT3
//
//SYSIN

/*

JOB
EXEC
DD
DD

DD

DD

DD
COpy

PGM=IEBCOPY,PARM='SIZE=65536'
SYSOUT=A
DSNAME=UNLOADSET,UNIT=tape,LABEL=(,SL),
YOL=SER=TAPE01,DISP=OLD
DSNAME=DATASET4,UNIT=disk,YOL=SER=2222222,
DISP=(NEW,KEEP),SPACE=(CYL,(10,5,lO})
DSN=TEMPl,UNIT=disk,YOL=SER=111111,
DISP=(NEW,DELETE),SPACE=(80,(15,1»

* OUTDD=INOUT4,INDD=SEQIN

The control statements are discussed below:

• EXEC specifies the execution of IEBCOPY. The PARM parameter
allocates 2 tracks on a disk volume. If less space is
specified, 2 tracks are allocated because 2 tracks are the
minimum required by IEBCOPY when the unloaded data set's
block size does not exceed the track capacity.

• SEQIN DD defines a sequential data set that was previously
unloaded by IEBCOPY. The data set contains 28 members in
sequential organization.

• INOUT4 DD defines a partitioned data set on a disk volume.
This data set is to be kept after the load operation. Ten
cylinders are allocated for the data set; ten blocks are
allocated for directory entries.

• SYSUT3 DD defines a temporary spill data set on a disk
volume. This data set is used if there is not enough space
in main storage for the input data set's directory entries.
This data set mayor may not be opened, depending on the
amount of main storage available; therefore, it is suggested
that the statement always appear in the job stream. The
space allocated for this data set is based on the number of
members in the input data set (in this case, 28).

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COpy statement.

• COpy indicates the start of a load operation because the
INDD parameter refers to SEQIN DD, which defines a
sequential data set, and OUTDD refers to INOUT4 DD, which
defines a direct access volume.

Because the output data set in this example is new, the SYSUT4
data set is not needed. SYSUT4 should be specified, however,
when the output data set is old.

In this example, members are selected, excluded, unloaded,
loaded, and copied. Processing will occur, as follows: (1)
unload, excluding members, (2) unload, selecting members, and
(3) load and copy to merge members.

92 MYS/370 Utilities

//COPY JOB
//STEP EXEC
//SYSPRIHT DO
//PDSI DO
//
//PDS2 DO
//
//SEQI DO
//
//SEQ2 DO
//
//HEWUP DO
//
//MERGE DO
//
//SYSUT3 DO
//
//SYSUT4 DD
//
//
//SYSIH DO

COPY
EXCLUDE
COpy
SELECT
COPY
EXCLUDE

PGM=IEBCOPY
SYSOUT=A
DSHAME=ACCOUHTA,UHIT=3350,VOl=SER=333333,
DISP=OlD
DSHAME=ACCOUHTB,UNIT=3350,VOl=SER=333333,
DISP=OlD
DSNAME=SAVAC,UNIT=3350,VOl=SER=333333,
DISP=(HEW,KEEP),SPACE=(CYl,(5,2»
DSNAME=SAVACB,UNIT=tape,VOl=SER=T01911,
DISP=(NEW,KEEP),lABEl=(,Sl)
DSNAME=NEWACC,UNIT=tape,VOl=SER=T01219,
DISP=OlD,lABEl=(,Sl)
DSNAME=ACCUPDAT,UNIT=3330-1,VOl=SER=222222,
DISP=OLD
DSNAME=TEMPl,VOl=SER=666666,UNIT=3330-1,
DISP=(NEW,DElETE),SPACE=(80,(1,1»
DSNAME=TEMP2,VOl=SER=666666,UNIT=3330-1,
DISP=(NEW,DElETE),
SPACE=(256,(1,1»,DCB=(KEYlEN=8)

* OUTDD=SEQl,INDD=PDS1
MEMBER=(D,C)
OUTDD=SEQ2,INDD=PDS2
MEMBER=(A,K)
OUTDD=MERGE,INDD=((NEWUP,R),PDS1,PDS2)
MEMBER=A

The control statements are discussed below:

• PDS1 DD defines a partitioned data set called ACCOUNTA that
contains six members (A, B, C, 0, E, and F) and resides on a
3350 volume.

• PDS2 DD defines a partitioned data set called ACCOUNTB that
contains three members (A, K, and l) and resides on a 3350
volume.

• SEQ1 DD defines a new sequential data set called SAVAC on a
3350 volume.

• SEQ2 DD defines a new sequential data set called SAVACB on a
tape volume. The tape has IBM standard labels.

• NEWUP DO defines an old sequential data set called NEWACC
that is the unloaded form of a partitioned data set that
contains eight members (A, B, C, D, M, N, 0, and Pl. It
resides on a tape volume.

• MERGE DD defines a partitioned data set called ACCUPDAT that
contains six members (A, B, C, D, Q, and R) and resides on a
3330-1 volume.

, SYSUT3 DO defines a temporary spill data set on a 3330-1
volume.

• SY5UT4 00 defines a temporary spill data set on a 3330-1
volume.

• SYSIN DO defines the control data set, which follows in the
input stream.

• The first COPY statement indicates the start of the first
unload operation. (The input data set is partitioned; the
output data set is sequential.)

IEBCOPY Program 93

IEBCOPY EXAMPLE 16

• The first EXCLUDE statement specifies that members D and C
are to be excluded from the unload operation specified by
the preceding COpy statement.

• The second COPY statement indicates the start of the second
unload operation. (The input data set is partitioned; the
output data set is sequential.)

• The SELECT statement specifies that members A and K are to
be included in the unload operation specified by the
preceding COpy statement.

• The third COPY statement indicates the start of the copy and
load operations. The replace option is specified for the
NEWUP data set; therefore, members in this data set replace
identically named members on the output data set. The first
INDD data set is an unloaded data set that is to be loaded.
The second and third INDD data sets are partitioned data
sets that are to be copied. (The input data sets are
sequential and partitioned; the output data set is
partitioned.)

• The second EXCLUDE statement specifies that member A is
excluded from the copy and load operation specified in the
preceding COPY statement.

In this example, all members of data set MODLIBJ, members MODX,
MODY, and MODZ of data set MODLIBK, and all members of data set
MODLIBL except MYMACRO and MYJCL are altered in place.

//ALTERONE JOB
//STEPA EXEC
//SYSPRINT DD
//SYSUT3 DO
//SYSUT4 DD
//LIBJ DD
//LIBK DO
//LIBL DD
//SYSIN DD

ALTERMOD
ALTERMOD
SELECT
AlTERMOD
EXCLUDE

PGM=IEBCOPY
SYSOUT=A
UNIT=SYSDA,SPACE=(TRK,(5,1»
UNIT=SYSDA,SPACE=(TRK,(5,1»
DSNAME=MODLIBJ,DISP=(OLD,KEEP)
DSNAME=MODLIBK,DISP=(OLD,KEEP)
DSNAME=MODLIBL,DISP=(OLD,KEEP)

* OUTDD=LIBJ
OUTDD=LIBK,LIST=NO
MEMBER=(MODX,MODY,MODZ)
OUTDD=LIBL
MEMBER=(MYMACRO,MYJCL)

The control statements are discussed below.

•

•

•

•

2

LIBJ DD defines the partitioned data set MODLIBJ, which has
been previously created and cataloged. 2

LIBK DD defines the partitioned data set MODLIBK, which has
been previously created and cataloged. 2

LIBL DO defines the partitioned data set MODLIBL, which has
been previously created and cataloged. 2

SYSIN DO defines the control data set, which follows in the
input stream.

For data sets that have not been previously cataloged, you
must also specify UNIT and VOL=SER information on the DO
statement.

94 MVS/370 Utilities

)

\
)

IEBCOPY EXAMPLE 17

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

• The first ALTERMOD statement specifies that the entire data
set defined in LIBJ is to be altered in place.

• The second ALTERMOD statement plus the following SELECT
statement indicates that members MODX, MODY, and MODZ. are to
be altered in place. The remainder of MODLIBK is unchanged.

• The third ALTERMOD statement plus the following EXCLUDE
statement indicates that all of MODLIBL is to be altered in
place except the'members called MYMACRO and MYJCL. These
members remain unchanged.

In this example, members MOD7, MOD8, and MOD9 of data set
MODLIBL are copied to data set MODLIBM, altered, and reblocked
to the default size. All members of data set MODLIBN except
NEWMACRO and NEWJCL are copied to data set MODLIBP, altered, and
reblocked to 10K bytes; blocks a$ small as 2K bytes may be
written to improve utilization of disk space.

//COPYRBLK JOB
//STEPA EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(S,I»
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(S,I»
//LIBL DD DSNAME=MODLIBL,DISP=(OLD,KEEP)
//LIBM DD DSNAME=MODLIBM,DISP=(OLD,KEEP)
//LIBN DD DSNAME=MODLIBN,DISP=(OLD,KEEP)
//LIBP DD DSNAME=MODLIBP,DISP=(OLD,KEEP)
//SYSIN DD *

COPYMOD INDD=LIBL,OUTDD=LIBM
SELECT MEMBER=(MOD7,MOD8,MOD9)
COPYMOD INDD=LIBN,OUTDD=LIBP,MAXBLK=IOK,

MINBLK=2K,LIST=NO
EXCLUDE MEMBER=(NEWMACRO,NEWJCL)

72

X

The control statements are discussed below.

• LIBL DD defines the partitioned data set MODLIBL, which has
been previously created and cataloged. a

• LIBM DD defines the partitioned data set MODLIBM, which MS
been previously created and cataloged. a

• LIBN DD defines the partitioned data set MODLIBN, which has
been previously created and cataloged. a

• LIBP DD defines the partitioned data set MODLIBP, which has
been previously created and cataloged. a

• SYSIN DD defines the control data set, which follows in the
input stream.

• The COPYMOD statement indicates that the members listed in
the following SELECT statement (MOD7,MOD8,MOD9) are to be
copied from MODLIBL to MODLIBM, altered, and reblocked.

• The second COPYMOD statement indicates that the MODLIBN data
set (except for NEWMACRO and NEWJCL, which are specified in

For data sets that have not been previously cataloged, you
must also specify UNIT and. VOL=SER information on the DD
statement.

IEBCOPY Program 95

TNL ON26-8l33 (30 Mar 84) to GC26-406S-l

IIICOPY EXAMPLE 18

the following EXCLUDE statement) is copied to MOOLIap,
altered, and reblocked to 10K bytes.

In this example, all members of data set MODLIay are copied to
tape COPYLIBY in STEPI. MODLIBY is scratched (but not
uncataloged) in STEP2. In STEP3, all members are copied back to
data set MODLIBY, reblocked to the default size, and altered.
The net result is that the data set MODLIBY is compressed,
altered, and reblocked.

//COPYTWO
//STEPI
//SYSPRINT
//SYSUT3
//SYSUT4
//LIBY
.1/
//TAPEA
//
//SYSIN

COPY
/)(

JOB
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD UNIT=SYSDA,SPACE=(TRK,(S,l»
DD UNIT=SYSDA,SPACE=(TRK, (S,l»
DD DSNAME=MODLIBY,DISP=(OLD),

UNIT=3330-1,VOL=SER=333l0l
DD DSNAME=COPYLIBY,DISP=(NEH,PASS),

UNIT=tape,VOL=SER=717000,LABEL=(,NL)
DD JE

INDD=LIBY,OUTDD=TAPEA

//STEP2 EXEC PGM=IEHPROGM,COND=(O,EQ,STEP1)
//SYSPRINT DD SYSQUT=A
//LIBY DD DSNAME=MODLIBY,DISP=(OLO),
.1/ UNIT=3330-1,VOL=SER=333101
//SYSIN DD JE

SCRATCH DSNAME=MODLIBY,YOL=3330-l=333l0l
.1)(
//STEP3 EXEC PGM=IEBCOPY,COND=(O,EQ,STEP1)
//SYSPRINT DD SYSOUT=A
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(S,I»
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(S,l»
//LIBY DD DSNAME=MODLIBY,DISP=(NEH,KEEP),
// UNIT=3330-1,VOL=SER=33310l,
// SPACE=(TRK,(2,1,S)
//TAPEA DD DSNAME=COPYLIBY,DISP=(OLO,KEEP),
// UNIT=tape,VOL=SER=717000,LABEL=(,NL)
//SYSIN DD JE

COPYMOD INDD=TAPEA,OUTDD=LIBY
/)(

The control statements are discussed below.

• STEPI marks the beginning of the IEBCDPY job step.

• LIBY DD defines the partitioned data set MOOLIBY, which has
also been previously defined.

• TAPEA DD defines the tape data set CDPYLIBY.

• The COpy statement makes a backup copy of MDDLIBY and places
it in the data set COPYLIBY.

• STEP2 marks the beginning of the IEHPROGM job step. If
STEPI fails, STEP2 will not be executed.

• The SCRATCH statement scratches the old data set MDOLIay but
does not remove it from the catalog.

• STEP3 marks the beginning of the second IEBCDPY job step.
STEP3 will not be executed if STEPI fails.

• The COPYMOD statement copies all members back to MDOLIBY,
alters their RLD counts, and reblocks them. The new MDDLlay
will be compressed, but will not necessarily occupy the same

96 MVS/370 Utilities

)

TNL GN26-8133 (30 Mar 84) to OC26-4065-1

space on the disk as it did before being scratched and
reallocated.

IEBCOPY Program 96.1

IEBDG PROGRAM

TYPES OF PATTERNS

IEBDG is a data set utility used to provide a pattern of test
data to be used as a programming debugging aid.

An output data set, containing records of any format, can be
'created through the use of utility control statements, with or
without input data. An optional user exit passes control to a
user routine to monitor each output record before it is written.
Sequential, ISAM, and partitioned data sets can be used for
input or output.

You can code utility control statements to generate a pattern of
data that can be analyzed quickly for predictable results.

When you define the contents of a field, the following must be
decided:

• What type of pattern--IBM-supplied or user-supplied--is to
be placed initially in the defined field.

• What action, if any, is to be performed to alter the
contents of the field after it is selected for each output
record.

IBH-SUPPLIED PATTERNS

IBM supplies seven patterns:

• Alphameric

• Alphabetic

• Zoned decimal

• Packed decimal

• Binary number

• Collating sequence

• Random number

You may choose one of them when defining the contents of a
field. All patterns except the binary and random number
patterns repeat in a given field, provided that the defined
field length is sufficient to permit repetition. For example,
the alphabetic pattern is:

ABCDEFGHIJKlMNOPQRSTUVWXYZABCDEFG ...

Figure 34 on page 98 shows the IBM-supplied patterns.

IEBCOPY Program 97

Expressed in Expressed in
Type Hexadecimal Printable Characters

Alphameric C1 C2 ... E9, FO ... F9 AB ... Z, O ... 9

Alphabetic C1 C2 ... E9 AB ... Z

Zoned Decimal FOFO ... F9F9 00 ... 99

Packed Decimal 0000 ... 001C Not applicable
(Positive pattern)
0000 ... 001D
(Negative pattern)

Binary Number 00000001, etc. Not applicable
(Positive pattern)
FFFFFFFF, etc.
(Negative pattern)

Collating Sequence 40 ... F9 b¢.«+I&!$*);~-/,X_>?:#="
A ... Z O ... 9

Random Number Random hexadecimal digits Not applicable

Figure 34. IBM-Supplied Patterns

A packed decimal or binary number is right-aligned in the
defined field.

You can specify a starting character when defining an
alphameric, alphabetic, or collating-sequence field. For
example, a 10-byte alphabetic field for which "H" is specified
as the starting character would appear as:

HIJKlMNOPQ

The same 10-byte alphabetic field with no specified starting
character would appear as:

ABCDEFGHIJ

You can specify a mathematical sign when defining a packed
decimal or binary field. If no sign is specified, the field is
assumed to be positive.

USER-SPECIFIED PICTURES

Instead of selecting an IBM-supplied pattern, you may wish to
specify a picture to be placed in the defined field. The user
can provide:

• An EBCDIC character string
• A decimal number to be converted to packed decimal by IEBDG
• A decimal number to be converted to binary by IEBDG

When you supply a picture, a picture length must be specified
that is equal to or less than the specified field length. An
EBCDIC picture is left-aligned in a defined field; a decimal
number that is converted to packed decimal or to binary is
right-aligned in a defined field.

You can initially load (fill) a defined field with either an
EBCDIC character or a hexadecimal digit. For example, the
10-byte picture "BADCFEHGJI" is to be placed in a IS-byte field.
An EBCDIC "2" is to be used to pad the field. The result is
BADCFEHGJI22222. (If no fill character is provided, the
remaining bytes contain binary zeros.) Remember that the fill
character, if specified, is written in each byte of the defined
field prior to the inclusion of an IBM-supplied pattern or
user-supplied picture.

98 MVS/370 Utilities

MODIFICATION OF SELECTED FIELDS

IEBDG can be used to change the contents of a field in a
specified manner. One of eight actions can be selected to
change a field after its inclusion in each applicable output
record. These actions are!

• Ripple

• Shift left

• Shift right

• Truncate left

• Truncate right

• Fixed

• Roll

• Wave

Figure 35 shows the effects of each of the actions on a 6-byte
alphabetic field. Note that the roll and wave actions are
applicable only when a user pattern is supplied. In addition,
the result of a ripple action depends on which type of
pattern--IBM-supplied or user-supplied--is present.

Rippl.-u .. r·
suppli.d pictur.

ABCOEF

BCOEFA

COEFAB

OEFABC

EFABCO

FABCOE

ABCOEF

BCOEFA

Truncate left

ABCOEF

BCOEF

COEF

o E F

E F

F

ABCOEF

BCOEF

Rippl IBM·
supplied forINt

ABCOEF

BCOEFG

COEFGH

OEFGHI

EFGHIJ

FGHIJK

GHIJKL

HIJKLM

Truncate right

ABCOEF

ABCOE

ABCO

ABC

AB

A

ABCOEF

ABCOE

Shift I.ft

ABCOEF

BCOEF

COEF

OEF

E F

F

ABCOEF

BCOEF

Fixed

ABCOEF

ABCOEF

ABCOEF

ABCOEF

ABCOEF

ABCOEF

ABCOEF

ABCOEF

Figure 35. IEBDG Actions

Shih right

ABCOEF

ABCOE

ABCO

ABC

AB

A

ABCOEF

ABCOE
Roll-user­
supplied pictur.

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

Wave-u.r­
supplied picture

AAA

AAA

AAA

AAA

AAA

AAA

AAA

~AA

If no action is selected, or if the specified action is not
compatible with the format, the fixed action is assumed by
IEBDG.

IEBDG Program 99

INPUT AND OUTPUT

RETURN CODES

CONTROL

IEBDG uses the following input:

• An input data set which contains records to be used in the
construction of an output data set or partitioned data set
member. The input data sets are optional; that is, output
records can be created entirely from utility control
statements.

• A control data set that contains any number of sets of
utility control statements.

IEBDG produces the following output:

• An output data set that is the result of the IEBDG
operation. One output data set is created by each set of
utility control statements included in the job step.

• A message data set that contains informational messages, the
contents of applicable utility control statements, and any
error messages.

Input and output data sets may be sequential, indexed sequential
(ISAM), or partitioned data set members. BDAM and VSAM are not
supported.

IEBDG returns a code in register 15 to indicate the results of
program execution. The return codes and their meanings are
listed below.

Codes Meaning

00 (00 hex) Successful completion.

04 (04)

OS (OS)

12 (OC)

16 (10)

A user routine returned a code of 16 to IEBDG. The
job step is terminated at the user's request.

An error occurred while processing a set of utility
control statements. No data is generated following
the error. Processing continues normally with the
next set of utility control statements, if any.

An error occurred while processing an input or
output data set. The job step is terminated.

An error occurred from which recovery is not
possible. The job step is terminated.

Figure 36. IEBDG Return Codes

IEBDG is controlled by job control statements and utility
control statements. The job control statements are used to
execute or invo.ke IEBDG and define the data sets used and
produced by IEBDG. Utility control statements are used to
control the functions of the program and to define the contents
of the output records.

100 MVS/370 Utilities

uJB CONTROL STATEMENTS

Figure 37 shows the job control statements for IEBDG.

Both input and output data sets can contain fixed, variable, or
undefined records.

statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBDG) or, if the
job control statements reside in a procedure
library, the procedure name. Additional
information can be specified in the EXEC statement;
see "PARM Information on the EXEC Statement" on
page 102.

SYSPRINT DD Defines a sequential message data set. The data
set can be written on a system output device, a
tape volume, or a DASD volume.

SYSIN DD Defines the control data set, which contains the
utility control statements and, optionally, input
records. The data set normally resides in the
input stream; however, it can be defined as a
sequential data set or as a member of a partitioned
data set.

seqinset DD Defines an optional sequential or ISAM data set
used as input to IEBDG. The data set can reside on
a tape volume or on a DASD volume. Any number of
these statements (each having a ddname different
from all other ddnames in the job step) can be
included in the job step. Each DD statement is
subsequently referred to by a DSD utility control
statement.

parinset DD Defines an optional input partitioned data set
member residing on a DASD volume. Any number of
these statements (each having a ddname different
from all other ddnames in the job step) can be
included in the job step. The DD statement is
subsequently referred to by a DSD utility control
statement.

seqout DD Defines an output (test) sequential or ISAM data
set. Any number of these DD statements can be
included per job step; however, only one statement
is applicable per set of utility control
statements.

parout DD Defines an optional output partitioned data set
member to be created and placed on a DASD volume.
Any number of these DD statements (each DD
statement referring to the same or to a different
data set) can be included per job step; however,
only one statement is applicable per set of utility
control statements.

Figure 37. Job Control Statements for IEBDG

The DSORG subparameter must be included in the DCB subparameters
if the input or output data set has an indexed sequential (ISAM)
organization (DSORG=IS). If members of a partition~d data set
are used, DSORG=PO or DSORG=PS may be coded. If the DSORG
subparameter is not coded, DSORG=PS is assumed.

IEBDG Program 101

For an ISAM data set, the key length must be specified in the
DCB.

Refer to Data Management Services for information on estimating
space allocations.

PARH Information on the EXEC statement

The EXEC statement can include an optional PARM parameter to
specify the number of lines to be printed between headings in
the message data set, coded as follows:

PARH=LINECT=nnnn

The nnnn is a 4-digit decimal number that specifies the number
of lines (0000 to 9999) to be printed per page of output
listing.

If PARM is omitted, 58 lines are printed between headings
(unless a channel 12 punch is encountered in the carriage
control tape, in which case a skip to channel 1 is performed and
a heading is printed).

If IEBDG is invoked, the line-count option can be passed in a
parameter list that is referred to by a subparameter of the LINK
or ATTACH macro instruction. In addition, a page count can be
passed in a six-byte parameter list that is referred to by a
subparameter of the LINK or ATTACH macro instruction. For a
discussion of linkage conventions, refer to "Invoking Utility
Programs from a Problem Program" on page 13.

SYSPRINT DD statement

SYSIN DD statement

If the SYSPRINT DD statement is omitted, no messages are
written. The block size for the SYSPRINT data set must be a
multiple of 121. Any blocking factor can be specified.

The block size for the SYSIN data set must be a multiple of 80.
Any blocking factor can be specified.

seqinset DD statement

The "seqinset" DD statement can be entered:

//seqinset DD DSNAME=setname,UNIT=xxxx,DISP=(OLD,KEEP),
// VOLUME=SER=xxxxxx,LABEL=(... , ...),
// DCB=(applicable subparameters)

The LABEL parameter is included only for a magnetic tape volume.
If the input data set has an indexed sequential organization,
DSORG=IS should be coded in the DCB parameter.

102 MVS/370 Utilities

parinset DD statement

seqout DD statement

parout DD statement

The "parinset" DD statement can be entered:

//parinset DD DSNAME=setnameCmembername),UNIT=xxxx,
// DISP=COlD,KEEP),VOlUME=SER=xxxxxx,
// DCB=Capplicable subparameters)

The "seqout" DD statement can be entered:

//seqout DD DSNAME=setname, UNIT=xxxx,
// DISP=C,KEEP),VOLUME=SER=xxxxxx,
// DCB=Capplicable subparameters)

The LABEL parameter is included for magnetic tape; the SPACE
parameter is included for DASD.

The "parout" DD statement can be entered:

//parout DD DSNAME=setnameCmembername),UNIT=xxxx,
// DISP=C,KEEP),VOLUME=SER=xxxxxx,DCB=(applicable
// DCB=Capplicable subparameters),
// SPACE=Capplicable 5ubparameter)

The SPACE parameter is included on the parout DD statement when
creating the first member to be placed in a partitioned data
set.

The partitioned data set defined by "parout" is a new member and
has a new directory entry. No information is copied from the
previous directory.

IEBDG Program 103

UTILITY CONTROL STATEMENTS

DSD statement

IEBDG is controlled by the following utility control statements:

statement

DSD

FD

CREATE

REPEAT

END

Use

Specifies the ddnames of the input and output data
sets. One DSD statement must be included for each
set of utility control statements.

Defines the contents and lengths of fields to be
used in creating output records.

Defines the contents of output records.

Specifies the number of times a CREATE statement or
a group of CREATE statements are to be used in
generating output records.

Marks the end of a set of IEBDG utility control
statements.

Figure 38. IEBDG Utility Control Statements

Any number of sets of control statements can appear in a single
job step. Each set defines one data set.

General continuation requirements for utility control statements
are descri bed in "Cont i nu i ng Ut i 1 i ty Control Statements" on pag_e
5.

FD or CREATE utility control statements that contain a PICTURE
parameter and are to be continued must have a nonblank character
in column 72. The continuation must begin in column 4 on the
next statement.

The DSD statement marks the beginning of a set of utility
control statements and specifies the data sets that IEBDG is to
use as input. The DSD statement can be used to specify one
output data set and any number of input data sets for each
application of IEBDG.

The format of the DSD statement is:

[label] DSD OUTPUT=(ddname)

[,INPUT=(ddname, •••)]

The ddname SYSIN must not be coded in the INPUT parameter.

Each parameter should appear no more than once on any DSD
statement.

104 MVS/370 Utilities

FD statement

The FD statement defines the contents and length of a field that
will be used subsequently by a CREATE statement (or statements)
to form output records. A defined field within the input
logical record may be selected for use in the output records if
it is referred to, by name, by a subsequent CREATE statement.

Figure 39 shows how fields defined in FD statements are placed
in buffer areas so that subsequent CREATE statements can assign
selected fields to specific output records.

F D Statements-define fields

Contents are placed in buffers
so that subsequent CREATE
statements can selectively
create output records.

CREATE Statement­
creates output
record from
selected fields

Defines field 5

Field 5

Figure 39. Defining and Selecting Fields for Output Records
Using IEBDG

IEBDG Program 105

.Figure 40 on page 106 shows how the FD statement is used to
specify a field in an input record to be used in output records.
The left-hand side of the figure shows that a field in the input
record beginning at byte 50 is selected for use in the output
record. The right-hand side of the figure shows that the field
is to be placed at byte 20 in the output record.

I nput record

50 --.1 ... __ 40 80

LENGTH
Same as input field

Figure 40. Field Selected from the Input Record for Use in the
Output Record

The format of the FD statement is:

[labell FD NAHE=.ruu!!..@

, LENGTH=length-in-bytes

[,STARTLOC=starting-byte-locationl

[,FILL=('character'IX'2-hex-digits']]

[,FORHAT=pattern[,CHARACTER=character]I

,PICTURE=length,('character-string'l

P'decimal-number'l

B'decimal-number']]

[,SIGN=sign]

[,ACTION=action]

[,INDEX=number[,CYCLE=number][,RANGE=number]]

[,INPUT=ddname]

[,FROMLOC=number]

Some of the FD keywords do not apply when certain patterns or
pictures are selectad by the user; for example, the INDEX,
CYCLE, RANGE, and SIGN parameters are used only with numeric
fields. Figure 41 on page 107 shows which IEBDG keywprds can be
used with the applicable pattern or picture chosen by'the user.
Each keyword should appear no more than once on any FD
statement.

106 MVS/370 Utilities

CREATE statement

FORHAT/PICTURE Value compatible Parameters

FORMAT=Al (alphabetic) ACTION=Sl (shift left)
FORMAT=AN (alphameric) ACTION=SR (shift right)
FORMAT=CO (collating seq.) ACTION=Tl (truncate left)

ACTION=TR (truncate right)
ACTION=FX (fixed)
ACTION=RP (ripple)

FORMAT=ZD (zoned decimal) INDEX=x
FORMAT=PD (packed decimal) CYClE=x
FORMAT=BI (binary) RANGE=x

SIGN=x 1

PICTURE=P'n' (packed decimal) INDEX=x
PICTURE=B'n' (binary) CYCLE=x

RANGE=x
SIGN=x 1

PICTURE='string' (EBCDIC) ACTION=SL (shift left)
ACTION=SR (shift right)
ACTION=TL (truncate left)
ACTION=TR (truncate right)
ACTION=FX (fixed)
ACTION=RP (ripple)
ACTION=WV (wave)
ACTION=RO (roll)

Figure 41. Compatible IEBDG~Operations

Note to Figure 41:
1 Zoned decimal numbers (ZD) do not include a sign.

The CREATE statement defines the contents of a record (or
records> to be made available to a user routine or to be written
directly as an output record (or records>.

The format of the CREATE statement is:

[label] CREATE [QUANTITY=number]

[,FILL=C'character'IX'2-hex-digits')l

[,INPUT=ddnameISYSIN[(~)]l

[,PICTURE=length,startlocC,'character-string'l

,P'decimal-number'l

,B'decimal-number')]

[,NAHE=~I(namel,namen ...)1
(ngmg(COPY=number,namel,namen ...), •••)]

[,EXIT=routinename]

After processing each potential output record, the user routine
should provide a return code in register 15 to instruct IEBDG
how to handle the output record. The user codes are listed
below.

IEBDG Program 107

Codes Meaning

00 (00 hex) The record is to be written.

04 (04) The record is not to be written. The skipped
record is not to be counted as a generated output
record; processing is to continue as though a
record were written. If skips are requested
through user exits and input records are supplied,
each skip causes an additional input record to be
processed in the generation of output records. For
example, if a CREATE statement specifies that 10
output records are to be generated and a user e~it
indicates that two records are to be skipped, 12
input records are processed.

12 (OC) The processing of the remainder of this set of
utility control statements is to be bypassed.
Processing is to continue with the next DSD
statement.

16 (10) All processing is to halt.

Figure 42. IEBDG User Exit Return Codes

When an exit roufine is loaded and you return control to IEBDG,
register 1 contains the address of the first byte of the output
record. Each keyword should appear no more than once on any
CREATE statement.

Figure 43 shows the addition of field X to two different
records. In record 1, field X is the first field referred to by
the CREATE statement; therefore, field X begins in the first
byte of the output record. In record 2, two fields, field A and
field B, have already been referred to by a CREATE statement;
field X, the next field referred to, begins immediately after
field B. Field X does not have a special starting location in
this example.

Record 1

21 80

Record 2

41 61 80
~------r-------r-------

Figure 43. Default Placement of Fields within an Output Record
Using IEBDG

You can also indicate that a numeric field is to be modified
after it has been referred to n times by a CREATE statement or
statements, that 1s, after n cycles, a modification is to be
made. A modification will add a user-specified number to a
field.

108 MVS/370 Utilities

The CREATE statement constructs an output record by referring to
previously defined fields by name and/or by providing a picture
to be placed in the record. You can generate multiple records
with a single CREATE statement.

When defining a picture in a CREATE statement, the user must
specify its length and starting location in the output record.
The specified length must be equal to the number of specified
EBCDIC or numeric characters. (When a specified decimal number
is converted to packed decimal or binary, it is automatically
right-aligned.)

Figure 44 shows three ways in which output records can be
created from utility control statements.

1. Fields only Output record

3. Picture only

(.... __ C_R_E_A_TE_~~ ••• r'Pul """d Picture

Figure 44. Creating Output Records with Utility Control
Statements

As an alternative to creating output records from utility
control statements alone, you can provide input records, which
can be modified and written as output records. Input records
can be provided directly in the input stream, or in a separate
data set. Only one input data set can be read for each CREATE
statement.

As previously mentioned, the CREATE statement is responsible for
the construction of an output record. An output record is
constructed in the following order:

1. A fill character, specified or default (binary zero), is
initially loaded into each byte of the output record.

2. If the INPUT operand is specified on the CREATE statement,
and not on an FD statement, the input records are
left-aligned in the corresponding output record.

3. If the INPUT operand specifies a ddname in any FD statement,
only the fields described by the FD statementCs) are placed
in the output record.

IEBDG Program 109

REPEAT statement

END statement

4. FD fields, if any, are placed in the output record in the
order of the appearance of their names in the CREATE
statement.

5. A CREATE statement picture, if any, is placed in the output
record.

IEBDG provides a user exit so you can provide your own routine
to analyze or further modify a newly constructed record before
it is placed in the output data set. See Appendix A, "Exit
Routine linkage" oh page 438 for information on linking to a
user exit routine.

A set of utility control statements contains one DSD statement,
any number of FD, CREATE, and REPEAT statements, and one END
statement when the INPUT parameter is omitted from the FD card.

When selecting fields from an input record CFD INPUT=ddname),
the field must be defined by an FD statement within each set of
utility control statements. In that case, defined fields for
field selection are not usable across sets of utility control
statements; such an FD card may be duplicated and used in more
than one set of utility control statements within the job step.

The REPEAT statement specifies the number of times a CREATE
statement or group of CREATE statements is to be used
repetit;vely in the generation of output records. The REPEAT
statement precedes the CREATE statements to which it applies.

Figure 45 shows a group of five CREATE statements repeated n
times.

CREATE (11
CREATE (2)
CREATE (3)
CREATE (4)
CRE.ATE (5)

CREATE (1'
"tREATE (2,
CMATE (3)
CREATE (4)
elfrATE (5)

• · ·
CREATE (1)
CREATE (2)
CREATE (3)
CREATE (4)
CREATE (5)

Figure 45. Repetition Caused by the REPEAT Statement Using IEBDG

The format of the REPEAT statement is:

REPEAT QUANTITY=number[,CREATE=number]

The END statement is used to mark the end of a set of utility
control statements. Each set of control statements can pertain

110 MVS/310 Utilities

to any number of input data sets but only a single output data
set.

The format of the END statement is:

I[label] END

IEBDG Program III

Parameters

ACTION

Applicable
Control
statements

FD

112 MVS/370 Utilities

Description of Parameters

ACTION=action
specifies how the contents of a defined
field are to be altered (if at all) after
the field's inclusion in an output record.
These values can be coded:

FX

RO

RP

SL

SR

TL

TR

specifies that the contents of a
defined field are to remain fixed after
the field's inclusion in an output
record.

specifies that the contents of a
defined field are to be rolled after
the field's inclusion in an output
record. The picture is incremented to
the left by one byte for each output
record, until ~he first non-blank
character of the picture is in field
byte 1. At that time, the character
string is reset to its original picture
position.

RO can be used only for a user-defined
field. For RO to be effective, the
picture length must be less than the
field length.

specifies that the contents of a
defined field are to be rippled after
the field's inclusion in an output
record.

specifies that the contents of a
defined field are to be shifted left
after the field's inclusion in an
output record.

specifies that the contents of a
defined field are to be shifted right
after the field's inclusion in an
output record.

specifies that the contents of a
defined field are to be truncated left
after the field's inclusion in an
output record.

specifies that the contents of a
defined field are to be truncated right
after the field's inclusion in an
output record.

Applicable
Control

Parameters statements

ACTION FD (continued)
(continued)

CREATE

EXIT

FIll

REPEAT

CREATE

CREATE
FD

Description of parameters

wv
specifies that the contents of a
defined field are to be waved after the
field's inclusion in an output record.
The picture is incremented to the left
by one byte for each output record,
until the first non-blank character of
the picture is in field byte 1. At
this time, the character string is
reset to its original picture position.

WV can be used only for a user-defined
field. For WV to be effective, the
picture length must be less than the
field length.

Default: FX

See Figure 41 on page 107 for system actions
compatible with FORMAT and PICTURE values.
See Figure 35 on page 99 for examples of
IEBDG ACTION patterns.

CREATE=number
specifies the number of following CREATE
statements to be included in the group.

Default: Only the first CREATE stat~ment is
repeated.

EXIT=routinename
specifies the name of the user routine that
is to receive control from IEBDG before
writing each output record.

FILL=C'character'IX'2-hex-digits']
specifies a value that is to be placed in
each byte of the output record before any
other operation in the construction of
record. These values can be coded:

'character'
specifies an EBCDIC character that is
to be placed in each byte of the output
record.

X'2-hex-digits'
specifies 2 hexadecimal digits (for
example, FIll=X'40', or FIll=X'FF') to
be placed in each byte of the output
record.

Default: Binary zeros are placed in the
output record.

IEBDG Program 113

Parameters

FORMAT

FROMLOC

APplicable
Control
statements

FD

FD

114 MVS/370 Utilities

Description of Parameters

FORMAT=pattern[,CHARACTER=characterJ
specifies an IBM-supplied pattern that is to
be placed in the defined field. FORMAT must
not be used when PICTURE is used. The
values that' can be coded are:

pattern
specifies the IBM-supplied patterns, as
follows:

AL

AN

II

CO

PD

RA

ZD

specifies an alphabetic pattern.

specifies an alphameric pattern.

specifies a binary pattern.

specifies a collating sequence
pattern.

specifies a packed decimal
pattern.

specifies a random binary pattern.

specifies a zoned decimal pattern.

CHARACTER=character
specifies the starting character of a
field. See "IBM-Supplied Patterns" on
page 97 for details on starting
characters.

FROMLOC=number
specifies the location of the selected field
within the input logical record. The number
represents the position in the input record.
If, for example, FROMLOC=10 is coded, the
specified field begins at the tenth byte; if
FROMlOC=1 is coded, the specified field
begins at the first byte. (For
variable-length records, significant data
begins on the first byte after the 4-byte
length descriptor.)

When retrieving data sets with RECFM=F or
FB, and RKP>O, the record consists of the
key plus the data with embedded key. To
copy the entire record, the output DCB=lRECL
has to be input LRECl + KEYlEN. If only the
data (which includes the embedded key) is to
be copied, the FROMlOC must point to start
of the data, that is, FROMLOC=keylength.

Default: The start of the input record.

Parameters

INDEX

Applicable
Control
statements

FD

Description of Parameters

INDEX=number[,CYCLE=numberl[,RANGE=numberl
specifies a decimal number to be added to
this field whenever a specified number of
records have been written. INDEX is valid
only with FORMATs ZD, PD, BI, or PICTURES
P'n', B'n'. Additional values can be coded:

CYCLE=number
; specifies a number of output records

(to be written as output or made
available to an exit routine) that are
treated as a group by the INDEX
keyword. Whenever this field has been
used in the construction of the
specified number of records, it is
modified as specified in the INDEX
parameter. For example, if CYCLE=3 is
coded, output records might appear as
111 222 333 444 etc. This parameter
can be coded only when INDEX is coded.

RANGE=number
specifles an absolute value which the
contents of this field can never
exceed. If an index operation attempts
to exceed the specified absolute value,
the contents of the field as of the
previous index operation are used.

Default: No indexing is performed. If CYCLE
is omitted and INDEX is coded, a CYCLE value
of 1 is assumed; that is, the field is
indexed after each inclusion in a potential
output record.

IEBDG Program 115

Parameters

INPUT

Applicable
Control
statements

DSD

FD

116 MVS/370 Utilities

Description of Parameters

INPUT=(ddname, •••)
specifies the ddname of a DD statement
defining a data set used as input to the
program. Any number of data sets can be
included as input--that is, any number of
ddnames referring to corresponding DD
statements can be coded. Whenever ddnames
are included on a continuation card, they
must begin in column 4.

The ddname SYSIN must not be coded as the
INPUT parameter on the DSD control
statement. Each ddname should not appear
more than once on any control statement.

INPUT=ddname
specifies the ddname of a DD statement
defining a data set used as input for field
selection. Only a portion of the record
described by the FD statement will be placed
in the output record. If the record format
of the output data set indicates
variable-length records, the position within
the output record will depend upon where the
last insert into the output record was made
unless STARTlOC is specified.

The ddname SYSIN must not be coded as the
INPUT parameter on the FD control statement.
Each ddname should not appear more than once
on any control statement.

A corresponding ddname must also be
specified in the associated CREATE statement
in order to have the input recordCs) read.

APplicable
Control

Parameters statements

INPUT CREATE
(continued)

LENGTH FD

Description of Parameters

INPUT=ddnameISVSIN[(ccccl]
defines an input data set whose records are
to be used in the construction of output
records. If INPUT is coded, QUANTITY should
also be coded, unless the remainder of the
input records are all to be processed by
this CREATE statement. If INPUT is
specified in an FD statement referenced by
this CREATE statement, there must be a
corresponding ddname specified in the CREATE
statement in order to get the input
record(s) read. These values can be coded:

ddname
specifies the ddname of a DD statement
defining an input data set.

SYSIN[cccc]
specifies that the SYSIN data set
(input stream) contains records (other
than utility control statements) to be
used in the construction of output
records. If SVSIN is coded, the input
records follow this CREATE statement
(unless the CREATE statement is in a
REPEAT group, in which case the input
records follow the last CREATE
statement of the group). ££££ can be
any combination of from 1 to 4 EBCDIC
characters. If cccc is coded, the
input records are delimited by a record
containing EBCDIC characters beginning
in column 1.

When INPUT=SYSIN with no cccc value,
the input records are delimited from
any additional utility control
statements by a record containing $$$E
in columns 1 through 4.

LENGTH=lgngth-in-bytes
specifies the length in bytes of the defined
field. For variable records, 4 bytes of
length descriptor must be added.

For ACTION=RP or WV, the length is limited
to 16383 bytes. For ACTION=RO, the length
is limited to 10922 bytes.

IEBDG Program 117

Parameters

NAME

OUTPUT

APplicable
Control
statements

FD

CREATE

DSD

118 MVS/370 Utilities

Description of Parameters

NAHE=name
specifies the name of the field defined by
this FD statement.

NAHE=~I(namel,namen •••)I(~,(COPY=
number,name~,namen •••) •••)

specifies the name or names of previously
defined fields to be included in the
applicable output records. If both NAME and
PICTURE are omitted, the fill character
specified in the CREATE statement appears in
each byte of the applicable output record.
These values can be coded:

(namel, •••)
-----specifies the name or names of a field

or fields to be included in the
applicable output record(s). Each
field (previously defined in the named
FD statement) is included in an output
record in the order in which its name
is encountered in the CREATE statement.

COPY=number
indicates that all fields named in the
inner parentheses (maximum of 20) are
to be treated as a group and included
the specified number of times in each
output record produced by this CREATE
statement. Any number of sets of inner
parentheses can be included with NAME.
Within each set of inner parentheses,
COpy must appear before the name of any
field.

OUTPUT=(ddname)
speClfies the ddname of the DD statement
defining the output data set.

Parameters

PICTURE

Applicable
Control
statements

FD
CREATE

Description of Parameters

PICTURE=length[,startloc][,'character-string'l
,P'decimal-number'I,B'decimal-number'l

specifies the length, starting byte (CREATE
only), and the contents of a user-supplied
picture. For FD, PICTURE must not be used
when FORMAT is used. If both PICTURE and
NAME are omitted, the fill character
specified in the CREATE statement appears in
each byte of applicable output records.
These values can be coded:

length
specifies the number of bytes that the
picture will occupy. length must be
equal to or less than the LENGTH
parameter value in the FD statement.

startloc (CREATE only)
specifies a starting byte (within any
applicable output record) in which the
picture is to begin.

'character-string'
specifies an EBCDIC character string
that is to be placed in the applicable
record(s). The character string is
left-aligned at the defined starting
byte. A character string may be broken
in column 71, a non-blank character in
column 72 is required, and it m~st be
continued in column 4 of the next
statement. The number of characters
within the quotation marks must equal
the number specified in the length
subparameter (for FD statements).

P 'decimal-number'
specifies a decimal number that is to
be converted to packed decimal and
right-aligned (within the boundaries of
the defined length and starting byte)
in the output records or defined field.
The number of characters within the
quotation marks must equal the number
specified in the length subparameter
(for FD statements).

B 'decimal-number'
specifies a decimal number that is to
be converted to binary and
right-aligned (within the boundaries of
the defined length and starting byte)
in the output records or defined field.
The number of characters within the
quotation marks must equal the number
specified in the length subparameter
(for FD statements).

IEBDG Program 119

Parameters

QUANTITY

SIGN

STARTlOC

Applicable
Control
statements

CREATE

REPEAT

FD

FD

120 MVS/370 Utilities

Description of Parameters

QUANTITY=number
specifies the number of records that this
CREATE statement is to generate; the
contents of each record are specified by the
other parameters. If both QUANTITY and
INPUT are coded t and the quantity specified
is greater than the number of records in the
input data sett the number of records
created is equal to the number of input
records to be processed plus the generated
data up to the specified number.

Default: If QUANTITY is omitted and INPUT is
not specified, only one output record is
created. If QUANTITY is omitted and INPUT
is specified, the number of records created
is equal to the number of records in the
input data set.

If both QUANTITY and INPUT are codedt but
the QUANTITY is less than the number of
records in the input data sett then only the
number of records specified by QUANTITY are
written to the output data set.

QUANTITY=number
specifies the number of times the defined
group of CREATE statements is to be used
repetitively. This number cannot exceed
65,535.

SIGN=sign
specifies a mathematical sign (+ or -), to
be used when defining a packed decimal or
binary field.

Default: Positive (+).

STARTLOC=starting-byte-location
specifies a starting location (within all
output records using this field) in which a
field is to begin. For example, if the
first byte of an output record is chosen as
the starting location, the keyword is coded
STARTlOC=l; if the tenth byte is chosen,
STARTlOC=10 is coded, etc.

Default: The field will begin in the first
available byte of the output record
(determined by the order of specified field
names in the applicable CREATE statement).
For variable records the starting location
is the first byte after the length
descriptor.

IEBDG EXAMPLES

operation

Place binary zeros

The following examples illustrate some of the uses of IEBDG.
Figure 46 can be used as a quick reference guide to IEBDG
examples. The numbers in the "Example" column refer to examples
that follow.

Data Set
Organization Device Comments Example

Sequential 9-track Blocked input and 1
in selected fields. Tape output.

Ripple alphabetic Sequential 9-track Blocked input and 2
pattern Tape, output.

Disk

Create output Sequential Disk Blocked output. 3
records from utility
control statements

Modify records from Partitioned, Disk Reblocking is 4
partitioned members Sequential performed. Each block
and input stream of output records

contains ten modified
partitioned input
records and two input
stream records.

Create partitioned Partitioned Disk Blocked output. One 5
members for utility set of utility control
control statements statements per member.

Roll and wave Sequential Disk Output records are 6
user-supplied created from utility
patterns control statements.

Create indexed Sequential, Disk Output records are 7
sequential data set Indexed Tape created by augmenting
using field Sequential selected input fields
selection and data with generated data.
generation

Figure 46. IEBDG Example Directory

IEBDG EXAMPLE 1

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

In this example, binary zeros are placed in two fields of 100
records copied from a sequential data set. After the operation,
each record in the copied data set (OUTSET) contains binary
zeros in locations 20 through 29 and 50 through 59.

IEBDG Program 121

IEBDG EXAMPLE 2

//ClEAROUT JOB
// EXEC
//SYSPRINT DD
//SEQIN DD
//
//
//
//SEQOUT DD
//
//
//
//SYSIN DD

DSD
FD
FD
CREATE
END

"MSGLEVEl=l
PGM=IEBDG
SYSOUT=A
DSNAME=INSET,UNIT=tape,DISP=(OlD,KEEP),
DCB=(RECFM=FB,lRECl=aO,BlKSIZE=aOO),
lABEl=(,NL),
VOlUME=SER=222222
DSNAME=OUTSET,UNIT=tape,VOlUME=SER=222333,
DCB=(RECFM=FB,lRECL=aO,BlKSIZE=aOO),
DISP=(,KEEP),
lABEl=(,Nl)

* OUTPUT=(SEQOUT),INPUT=(SEQIN)
NAME=FIElDl,lENGTH=10,STARTlOC=20
NAME=FIElD2,LENGTH=10,STARTlOC=50
QUANTITY=100,INPUT=SEQIN,NAME=(FIElD1,FIElD2)

The control statements are discussed below:

• SEQIN DD defines a sequential input data set (INSET). The
data set was originally written on a unlabeled tape volume.

• SEQOUT DD defines the test data set (OUTSET). The output
records are identical to the input records, except for
locations 20 through 29 and 50 through 59, which contain
binary zeros at the completion of the operation.

• SYSIN DD defines the control data set, which follows in the
input stream.

• DSD marks the beginning of a set of utility control
statements and refers to the DD statements defining the
input and output data sets.

• The first FD statement defines an aO-byte field of input
data.

• The first and second FD statements create two 10-byte fields
(FIELD1 and FIElD2) that contain binary zeros. The fields
are to begin in the 20th and 50th bytes of each output
record.

• CREATE constructs 100 output records in which the contents
of previously defined fields (FIElD1, FIELD2) are placed in
their respective starting locations in each of the output
records. Input records from data set INSET are used as the
basis of the output records.

• END signals the end of a set of utility control statements.

In this example, a 10-byte alphabetic pattern is rippled. At
the end of the job step the first output record contains
"ABCDEFGHIJ," followed by data in location 11 through ao from
the input record; the second record contains "BCDEFGHIJK"
followed by data in locations 11 through ao, etc.

122 MVS/370 Utilities

IEBDG EXAMPLE 3

//RIPPLE JOB
// EXEC
//SYSPRINT DD
//SEQIN DD
//
//
//SEQOUT DO
//
//
//
//SYSIN DO

DSD
FD
FD

CREATE
END

72
"MSGlEVEl=1
PGM=IEBDG
SYSOUT=A
OSNAME=INSET,DISP=(OlO,KEEP),VOL=SER=222222,
OCB=(RECFM=FB,lRECl=80,BlKSIZE=800),
UNIT=tape
OSNAME=OUTSET,UNIT=disk,VOLUME=SER=111111,
OCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
DISP=(,KEEP),
SPACE=(TRK,(lO,lO»

* OUTPUT=(SEQOUT),INPUT=(SEQIN)
NAME=FIElOl,INPUT=SEQIN,LENGTH=80
NAME=FIElD2,LENGTH=10,FORMAT=AL,ACTION=RP, C
STARTLOC=l
QUANTITY=100,INPUT=SEQIN,NAME=(FIELDl,FIELD2)

The control statements are discussed below:

• SEQIN DD defines an input sequential data set (INSET). The
data set was originally written on a 9-track, standard
labeled tape volume.

• SEQOUT DO defines the test output data set (OUTSET). Ten
tracks of primary space and ten tracks of secondary space
are allocated for the sequential data set on a disk volume.

• SYSIN DO defines the control data set, which follows in the
input stream.

• OSO marks the beginning of a set of utility control
statements and refers to the DO statements defining the
input and output data sets.

• The FD statements create a lO-byte field in which the
pattern ABCDEFGHIJ is initially placed. The data is rippled
after each output record is written.

• CREATE constructs 100 output records 1n which the contents
of a previously defined field (FIELD1) are included. The
CREATE statement uses input records from data set INSET as
the basis of the output records.

• END signals the end of a set of utility control statements.

In this example, output records are created entirely from
utility control statements. Three fields are created and used
in the construction of the output records. In two of the
fields, alphabetic data is truncated; the other field is a
numeric field that is incremented (indexed) by one after each
output record is written. Figure 47 on page 124 shows the
contents of the output records at the end of the job step.

IEBOG Program 123

Field 1 Field 2 Field 3 (packed decimal)

1 31 61 71 80
ABCDEFGHIJKLMNOPORSTUVWXYZABCD ABCDEFGHIJKLMNOPORSTUVWXYZABCD FF ... FF 123 ... 90

BCDEFGHIJKLMNOPORSTUVWXYZABCD ABCDE FG H IJKLMNOPORSTUVWXYZABC FF ... FF 123 ... 91

CDEFGHIJKLMNOPORSTUVWXYZABCD ABCDEFGHIJKLMNOPORSTUVWXYZAB FF ... FF 123 ... 92

DEFGHIJKLMNOPORSTUVWXYZABCD ABCDEFGHIJKLMNOPORSTUVWXYZA FF ... FF 123 ... 93
EFGHIJKLMNOPORSTUVWXYZABCD ABCDE FG H IJ KLM NOPORSTUVWXYZ FF ... FF 123 ... 94

Figure 47. Output Records at Job step Completion

72
//UTlYONlY JOB "MSGLEVEl=1
// EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=A
//SEQOUT DD DSNAME=OUTSET,UNIT=disk,DISP=(,KEEP),
// DCB=(RECFM=FB,lRECl=80,BlKSIZE=800),
// SPACE=(TRK,(10,10»,
// VOlUME=SER=11111l
//SYSIN DD DATA

DSD OUTPUT=(SEQOUT)
FD NAME=FIELDl,lENGTH=30,STARTlOC=1,FORMAT=AL,ACTION=Tl
FD NAME=FIElD2,LENGTH=30,STARTlOC=31,FORMAT=Al,ACTION=TR
FD NAME=FIELD3,lENGTH=10,STARTlOC=71,PICTURE=10, C

P'1234567890',INDEX=1
CREATE QUANTITY=100,NAME=(FIELDl,FIElD2,FIElD3),FILL=X'FF'
END

The control statements are discussed below:

• SEQOUT DD defines the test output data set. Ten tracks of
primary space and ten tracks of secondary space are
allocated for the sequential data set on a disk volume.

• SYSIN DD defines the control data set, which follows in the
input stream.

• DSD marks the beginning of a set of utility control
statements and refers to the DD statement defining the
output data set.

• FD defines the contents of three fields to be used in the
construction of output records. The first field contains 30
bytes of alphabetic data to be truncated left after each
output record is written. The second field contains 30
bytes of alphabetic data to be truncated right after each
output record is written. The third field is a 10-byte
field containing a packed decimal number (1234567890) to be
increased by one after each record is written.

• CREATE constructs 100 output records in which the contents
of previously defined fields (FIELD1, FIELD2, and FIELD3)
are included. Note that after each record is written,
FIELDI and FIELD2 are restored to full width.

• END signals the end of a set of utility control statements.

124 MVS/370 Utilities

IEBDG EXAMPLE 4

Input

Department 21

Department 21
I nput record 1
Input record 2

Department 21

Department 21
I nput record 3
Input record 4

Department 21

Department 21
I nput record 19
Input record 20

Department 21

Department 21
Input record 21
I nput record 22

In this example, two partitioned members and input records from
the input stream are used as the basis of a partitioned output
member. Each block of 12 output records contains 10 modified
records from an input partitioned member and two records from
the input stream. Figure 48 shows the content of the output
partitioned member at the end of the job step.

Output Records

(Rightmost 67 bytes of INSET1 (MEMBA) record 1) 1 st bloc k of 1 2

• • • • • • • •
(Rightmost 67 bytes of INSET1 (MEMBA) record 10) 10
from input stream 11
from input stream 12

(Rightmost 67 bytes of INSET1 (MEMBA) record 11) 2nd block of 12

• • • • • • • •
(Rightmost 67 bytes of INSET1 (MEMBA) record 20) 10
from input stream 11
from input stream 12

• • • •
(Rightmost 67 bytes of INSET1 (MEMBA) record 91) 10th block of 12

• • • • • • • •
(Rightmost 67 bytes of INSET1 (MEMBA) record 100) 10
from input stream 11
from input stream 12

(Rightmost 67 bytes of INSET2 (MEMBA) record 1) 11th block of 12

• • • • • • • •
(Rightmost 67 bytes of INSET2 (MEMBA) record 10) 10
from input stream 11
from in put stream 12

• • • •

Figure 48. Output Partitioned Member at Job Step Completion

IEBDG Program 125

//MIX
//
//SYSPRINT
//PARIN1
//
//
//PARIN2
//
//
//PAROUT
//
//
//SYSIN

DSD
FD
REPEAT
CREATE
CREATE

JOB "MSGLEVEL=1
EXEC PGM=IEBDG
DD SYSOUT=A
DD DSNAME=INSET1(MEMBA),UNIT=disk,DISP=OLD,

DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS),
VOLUME=SER=111111

DO DSNAME=INSET2(MEMBA),UNIT=disk,DISP=OLD,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=960,DSORG=PS),
VOLUME=SER=222222

DD DSNAME=PARSET(MEMBA),UNIT=disk,DISP=(,KEEP),
VOLUME=SER=333333,SPACE=(TRK,(lO,lO,5»,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=960,DSORG=PS)

DD DATA
OUTPUT=(PAROUT),INPUT=(PARINl,PARIN2)
NAME=FIELD1,LENGTH=13,PICTURE=13,'DEPARTMENT 21'
QUANTITY=10,CREATE=2
QUANTITY=10,INPUT=PARIN1,NAME=FIELD1
QUANTITY=2,INPUT=SYSIN

(input records 1 through 20)

REPEAT
CREATE
CREATE

QUANTITY=10,CREATE=2
QUANTITY=10,INPUT=PARIN2,NAME=FIELD1
QUANTITY=2,INPUT=SYSIN

(input records 21 through 40)

END

The control statements are discussed below:

• PARINI DD defines one of the input partitioned members.

• PARIN 2 DD defines the second of the input partitioned
members. (Note that the members are from different
partitioned data sets.)

• PAROUT DD defines the output partitioned member. This
example assumes that the partitioned data set does not exist
prior to the job step; that is, this DD statement allocates
space for the partitioned data set.

• SYSIN DD defines the control data set, which follows in the
input stream.

• DSD marks the beginning of a set of utility control
statements and refers to the DD statements defining the
input and output data sets.

• FD creates a 13-byte field in which the picture "DEPARTMENT
21" is placed.

• The first REPEAT statement indicates that the following
group of two CREATE statements is to be repeated 10 times.

• The first CREATE statement creates 10 output records. Each
output record is constructed from an input record (from
partitioned data set INSET1) and from previously defined
FIELD1.

• The second CREATE statement indicates that two records are
to be constructed from input records included next in the
input stream.

126 MVS/370 utilities

IEBDG EXAMPLE 5

• The E record separates the input records from the REPEAT
statement. The next REPEAT statement group is identical to
the preceding group, except that records from a different
partitioned member are used as input.

• END signals the end of a set of utility control statements.

In this example, output records are created from three sets of
utility control statements and written in three partitioned data
set members. Four fields are created and used in the
construction of the output records. In two of the fields
(FIELD1 and FIELD3), alphabetic data is shifted. FIELD2 is
fixed zoned decimal and FIElD4 is fixed alphameric. Figure 49
shows the partitioned data set members at the end of the job
step.

MEMBA
Field 1 Field 3 Field 2 Binary zeros
1 31 51 71 80

ABCDEFGHIJKLMNOPOASTUVWXYZABCD ABCDEFGHIJKLMNOPORST 00000000000000000001 fill

BCDE F GH IJK LMNOPORSTUVWX YZABCD ABCDE FGHIJKLMNOPORS 0000000000000001 fill

CDEFGHIJKLMNOPORSTUVWXYZABCD ABCDE FGH IJKLMNOPOR 0000000000000001 fill

DEFGHIJKI ~Aw'\PORSTUVWXYZA8C~_ ABCDEFGHIJKI MNOPO OOOOOOOOO()O()OOl'~1 .1iJ1 --
MEMBB
Field 3 Field 3 Field 3 Field 2

1 21 41 61 80

A8CDEFGHIJKLMNOPORST ABCDEFGHIJKLMNOPQRST ABCD~FGHIJKLMNOPORST 00000000000000000001

ABCDEFGHIJKLMNOPORS ABCDEFGHIJKLMNOPORS ABCDE FGHIJKLMNOPORS 00000000000000000001

ABCDEFGHIJLKMNOPQR ABCDEFGHIJKLMNOPOR ABCDEFGHIJKLMNOPOR 00000000000000000001

JBCDEFGHIJKLMNOPO ABCDEFGHIJKLMt-ll"\pn ABCJl~c:r,'i!JIfI "~If"\pn ooonnoooo~

MEMBC
Field 4 Field 1 Binary zeros

1 31 61 80

ABCDEFGHIJKLMNOPORSTUVWXYZ0123 ABCDE FG H IJ K LMNOPORSTUVWX YZABCD fill

ABCDE FGHIJKLMNOPQRSTUVWXYZ0123 BCDEFGHIJKLMNOPORSTUVWXYZABCD fill

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123 CDEFGHIJKLMNOPORSTUVWXYZABCD fill

ABCDEFGHI.IK LMNOPOR~TUVIAI'l(YZ0123 DEFGHIJKI a.!!!.Qf.Q.R~INXY7j\D"r) - fill -

Figure 49. Partitioned Data Set Members at Job Step Completion

The control statements are discussed below:

• PAROUTl DD defines the first member (MEMBA) of the
partitioned output data set. This example assumes that the
partitioned data set does not exist prior to this job step;
that is, this DD statement allocates space for the data set.

• PAROUT2 and PAROUT3 DD define the second and third members,
respectively, of the output partitioned data set. Note that
each DD statement specifies DISP=OLD and UNIT=AFF=PAROUT1.

• SYSIN DD defines the control data set that follows in the
input stream.

• DSD marks the beginning of a set of utility control
statements and refers to the DD statement defining the
member applicable to that set of utility control statements.

• FD defines the contents of a field that is used in the
subsequent construction of output records.

IEBDG Program 127

IEBDG EXAMPLE 6

FI ELD1 FIELD 2

AAAAA BBBBB A
AAAAA BBBBB

AAAAA BBBBB
AAAAA BBBBB

AAAAA BBBBB A
AAAAA BBBBB

AAAAA BBBBB
AAAAA BBBBB

AAAAA BBBBB A
AAAAA BBBBB

I'I'UTSTS JOB
1'1' EXEC
I'I'SYSPRINT DD
I'I'PAROUTl DD
1'1'
1'1'
1'1'
I'I'PAROUT2 DD
1'1'
1'1'
1'1'
I'I'PAROUT3 DD
1'1'
1'1'
1'1'
I'I'SYSIN DD

DSD
FD
FD
FD
FD
CREATE
END
DSD
CREATE
END
DSD
CREATE
END

, ,MSGlEVEl=l
PGM=IEBDG
SYSOUT=A
DSNAME=PARSETCMEMBA),UNIT=disk,
DISP=(, KEEP),
VOlUME=SER=111111,SPACE=CTRK,CI0,10,5»,
DCB=CRECFM=FB,lRECl=80,BlKSIZE=800,DSORG=PS)
DSNAME=PARSETCMEMBB),UNIT=AFF=PAROUT1,
DCB=(RECFM=FB,lRECl=80,BlKSIZE=800,DSORG=PS),
DISP=OlD,
VOlUME=SER=111111
DSNAME=PARSETCMEMBC),UNIT=AFF=PAROUT1,
DCB=CRECFM=FB,lRECl=80,BlKSIZE=800,DSORG=PS),
DISP=OlD,
VOlUME=SER=111111
DATA
OUTPUT=(PAROUTl)
NAME=FIElDl,lENGTH=30,FORMAT=Al,ACTION=Sl
NAME=FIElD2,lENGTH=20,FORMAT=ZD
NAME=FIElD3,lENGTH=20,FORMAT=Al,ACTION=SR
NAME=FIElD4,lENGTH=30,FORMAT=AN
QUANTITY=4,NAME=(FIElD1,FIElD3,FIElD2)

OUTPUT=(PAROUT2)
QUANTITY=4,NAME=CFIElD2,(COPY=3,FIElD3»

OUTPUT=(PAROUT3)
QUANTITY=4,NAME=(FIElD4,FIElD1)

• CREATE constructs four records from combinations of
previously defined fields.

• END signals the end of a set of utility control statements.

In this example, 10 fields containing user-supplied EBCDIC
pictures are used in the construction of output records. After
a record is written, each field is rolled or waved, as specified
in the applicable FD statement. Figure 50 shows the contents of
the output records at the end of the job step.

FIELD3 FIELD4 FIELD5 FIELD6 FIELD7 FIELDS FIELD9 FIELD10

AA BB B AAA CCCCC DODD C CC DO 0 CCC
A AA BB B AAA CCCCC DODD C CC DO 0 CCC

A AA BB B AAA CCCCC DODD C CC DO 0 CCC
A AA BB B AAA CCCCC DODD C CC DO 0 CCC

AA BB B AAA CCCCC DODD C CC DO 0 CCC
A AA BB B AAA CCCCC DODD C· CC DO 0 CCC

A AA BB B AAA CCCCC DODD C CC DO 0 CCC
A AA BB B AAA CCCCC DODD C CC DO 0 CCC

AA BB B AAA CCCCC DODD C CC DO 0 CCC
A AA BB B AAA CCCCC DODD C CC DO 0 CCC

Figure 50. Contents of Output Records at Job Step Completion

128 MVS/370 Utilities

IEBDG EXAMPLE 7

•

//ROllWAVE
//
//SYSPRINT
//OUTSET
//
//

JOB "MSGlEVEl=l
EXEC PGM=IEBDG
DD SYSOUT=A
DD DSNAME=SEQSET,UNIT=disk,DISP=(,KEEP),

VOlUME=SER=SAMP,SPACE=CTRK,(lO,lO»,
DCB=(RECFM=FB,lRECl=80,BlKSIZE=800)

//SYSIN
DSD

DD *­
OUTPUT=(OUTSET)

72

FD
FD
FD
FD
FD
FD
FD
FD
FD _
FD
CREATE

NAME=FIElDl,lENGTH=8,PICTURE=8,' AAAAA',ACTION=RO
NAME=FIElD2,lENGTH=8,PICTURE=8,'BBBBB ',ACTION=RO
NAME=FIElD3,lENGTH=8,PICTURE=8,'A AA ',ACTION=RO
NAME=FIElD4,lENGTH=8,PICTURE=8,' BB B',ACTION=RO
NAME=FIElD5,lENGTH=8,PICTURE=8,' AAA ',ACTION=RO
NAME=FIElD6,lENGTH=8,PICTURE=8,' CCCCC',ACTION=WV
NAME=FIElD7,lENGTH=8,PICTURE=8,' DDDD ',ACTION=WV
NAME=FIElD8,lENGTH=8,PICTURE=8,' C CC ',ACTION=WV
NAME=FIElD9,lENGTH=8,PICTURE=8,' DD D',ACTION=WV
NAME=FIElDIO,lENGTH=8,PICTURE=8,' CCC ',ACTION=WV

END
/*-

QUANTITY=300,NAME=(FIElDl,FIElD2,FIElD3, C
FIElD4,FIElD5,FIElD6,FIElD7,FIElD8, C
FIElD9,FIElD10)

The control statements are discussed below:

• OUTSET DD defines the output sequential data set on a disk
volume. Ten tracks of primary space and 10 tracks of
secondary space are allocated to the data set.

• SYSIN DD defines the control data set that follows in the
input stream.

• DSD marks the beginning of a set of utility control
statements and refers to the DD statement defining the
output data set.

• FD defines a field to be used in the subsequent construction
of output records. The direction and frequency of the
initial roll or wave depends on the location of data in the
field.

• CREATE constructs 300 records from the contents of the
previously defined fields.

• END signals the end of a set of utility control statements.

In this example, the first 10 bytes of the output record contain
data generated in zoned decimal format. This field serves as
the key field for the output record in the output indexed
sequential data set. The key field is increased (indexed) by
one for each record. The input sequential data set provides an
additional 80-byte field to complete the output record.

IEBDG Program 129

72
//CREATEIS JOB MSGLEVEL=l
//BEGIN EXEC PGM=IEBDG
//TAPEIN DD DCB=(BLKSIZE=aO,LRECL=aO,RECFM=F),
// DISP=(OlD,KEEP),UNIT=d;sk,
// LABEL=(,SL),
// DSNAME=TAPEIT,VOL=SER=MASTER
//DISKOUT DO DCB=(BLKSIZE=270,LRECL=90,RECFM=FB,DSORG=IS,
// NTM=2,OPTCD=MY,RKP=0,KEYLEN=10,CYLOFL=1),
// UNIT=d;sk,SPACE=(CYL,1),
// DISP=(NEW,KEEP),
// VOL=SER=111111,DSNAME=CREATIS
//SYSPRINT DO SYSOUT=A
//SYSIN DO *

DSD OUTPUT=(DISKOUT),INPUT=(TAPEIN)
FD NAME=DATAFD,LENGTH=aO,FROMLOC=l, C

STARTLOC=ll,INPUT=TAPEIN
FD NAME=KEYFD,LENGTH=IO,STARTLOC=I,FORMAT=ZD,INDEX=1
CREATE INPUT=TAPEIN,NAME=(KEYFD,DATAFD)
END

/*

The control statements are discussed below:

• TAPEIN DD defines the sequential input data set.

• DISKOUT DO defines the indexed sequential output data set.

• SYSIN DD defines the control data set, which follows in the
input stream.

• DSD marks the beginning of a set of utility control
statements and refers to the DD statement defining the
output data set.

• FD defines a field that will be used in the subsequent
construction of output records. The first FD statement in
this example defines and locates an aO-byte field of input
data. The data is field selected from one of the input
logical records and placed at start location 11 of the
output logical record. The second FD statement defines and
locates the IO-byte key field.

• CREATE constructs a 90-byte output record by referring to
the previously defined fields.

• END signals the end of a set of utility control statements.

130 MVS/370 Utilities

IEBEDIT PROGRAM

INPUT AND OUTPUT

RETURN CODES

lEBEDlT is a data set utility used to create an output data set
containing a selection of jobs or job steps. At a later time,
data sets defined on tape volumes and direct access devices can
be used as input streams for job processing.

lEBEDlT creates an output job stream by editing and selectively
copying a job stream provided as input. The program can copy:

• An entire job or jobs, including JOB statements and any
associated JOBllB or JOBCAT statements, and JES2 or JES3
control statements.

• Selected job steps, including the JOB statement, JES2 or
JES3 control statements following the JOB statement, and any
associated JOBllB or JOBCAT statements.

All selected JOB statements, JES2 or JES3 control statements,
JOBllB or JOBCAT statements, jobs, or job steps are placed in
the output data set in the same order as they exist in the input
data set. A JES2 or JES3 control statement or a JOBllB or
JOBCAT statement is copied only if it follows a selected JOB
statement.

When IEBEDIT encounters a selected job step containing an input
record having the characters " .. *" (period, period, asterisk) in
columns 1 through 3, the program automaticallY con~erts that
record to a termination statement (/* statement) and places it
in the output data set.

A "/*nonblank" indicates a JES2 or JES3 control statement.

lEBEDlT uses the following input:

• An input data set, which is a sequential data set consisting
of a job stream. The input data set is used as source data
in creating an output sequential data set.

• A control data set, which contains utility control
statements that are used to specify the organization of jobs
and job steps in the output data set.

lEBEDlT produces the following output:

• An output data set, which is a sequential data set
consisting of a resultant job stream.

• A message data set, which is a sequential data set that
contains applicable control statements, error messages, if
applicable, and, optionally, the output data set.

IEBEDlT returns a code in register 15 to indicate the results of
program execution. The return codes and their meanings are
listed below.

IEBEDlT Program 131

CONTROL

Codes Meaning

00 (00 hex) Successful completion.

04 (04) An error occurred. The output data set may not be
usable as a job stream. Processing continues.

08 (08) An unrecoverable error occurred while attempting to
process the input, output, or control data set.
The job step is terminated.

Figure 51. IEBEDIT Return Codes

IEBEDIT is controlled by job control statements and utility
control statements. The job control statements are required to
execute or invoke the program and to define the data sets used
and produced by the program. The utility control statements are
used to control the functions of the program.

JOB CONTROL STATEMENTS

Figure 52 shows the job control statements for IEBEDIT.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBEDIT) or, if the
job control statements reside in a procedure
library, the procedure name.

SVSPRINT DD Defines a sequential message data set. The data
set can be written to a system output device, a
tape volume, or a direct access volume.

SVSUTl DD Defines a sequential input data set on a card
reader, tape volume, or direct access device.

SVSUT2 DD Defines a sequential output data set on a card
punch, printer, tape volume, or direct access
device.

SVSIN DD Defines the control data set. The data set normally
is included in the input stream; however, it can be

, defined as a member of a procedure library or as a
sequential data set existing somewhere other than
in the input stream.

Figure 52. Job Control Statements for IEBEDIT

Notes to Figure 52:

1. The block size for the SYSPRINT data set must be a multiple
of 121. If not, the job step is terminated with a return
code of 8. The block size for the SYSIN, SYSUT1, and SYSUT2
data sets must be a multiple of 80. Any blocking factor can
be specified for these record sizes.

132 MVS/370 Utilities

2. Any JES2 or JES3 control statement or JOBlIB DD statement
that follows a selected JOB statement is automatically
copied to the output data set.

JES2 or JES3 control statements preceding the JOB statement
are assumed to belong to the previous job. JES2 or JES3
control statements preceding the first JOB statement are
included only if a total copy is requested.

JES2 or JES3 control statements within a DD DATA stream are
included only if a delimiter other than "/*" is coded in the
DD DATA card. For a description of coding another
delimiter, see the publication JCl. If another delimiter is
not coded, the first two characters of the JES2 or JES3
control statement will act as a delimiter to DD DATA.

UTILITY CONTROL STATEMENT

EDIT Statement

Parameters

NOPRINT

IEBEDIT uses only one utility control statement, EDIT.
Continuation requirements for the statement are described in
"Continuing Utility Control Statements" on page 5.

The EDIT statement indicates which step or steps of a specified
job in the input data set are to be included in the output data
set. Any number of EDIT statements can be included in an
operation, thus including selected jobs 1n the output data set.

EDIT statements must be included in the same order as the input
jobs that they represent. If no EDIT statement is present in
the control data set, the entire input data set is copied.

The format of the EDIT statement is:

[label] EDIT [START=jobname]

[,TYPE=POSITIONIINCLUDEIEXCLUDE]

[,STEPNAME=(~[,name-name]), •••]

[, NOPRINT]

APplicable
Control
statements Description of Parameters

EDIT NOPRINT
specifies that the message data set is not
to include a listing of the output data set.

Default: The resultant output is listed in
the message data set.

IEBEDIT Program 133

Parameters

START

STEPNAME

Applicable
Control
statements

EDIT

EDIT

134 MVS/370 Utilities

Description of Parameters

START=jobname
specifies the name of the input job to which
the EDIT statement applies. (Each EDIT
statement must apply to a separate job.) If
START is specified without TYPE and
STEPNAME, the JOB statement and all job
steps for the specified job are included in
the output.

Default: If START is omitted and only one
EDIT statement is provided, the first job
encountered in the input data set is
processed. If START is omitted from an EDIT
statement other than the first statement,
processing continues with the next JOB
statement found in the input data set.

STEPNAME=(name[,name-name]), •••
specifies the first job step to be placed in
the output data set when coded with
TYPE=POSITION. Job steps preceding this
step are not copied to the output data set.

~ can be specified as a single job step
name or a sequential range of names,
separated by a hyphen: name-name. If more
than one value is specified for ~, the
entire STEPNAME field must be enclosed in
parentheses.

When coded with TYPE=INCLUDE or
TYPE=EXCLUDE, STEPNAME specifies the names
of job steps that are to be included in or
excluded from the operation. For example,
STEPNAME=(STEPA,STEPF-STEPL,STEPZ) indicates
that job steps STEPA, STEPF through STEPL,
and STEPZ are to be included in or excluded
from the operation.

Default: If STEPHAME is omitted, the entire
input job whose name is specified on the
EDIT statement is copied. If no job name is
specified, the first job encountered is
processed.

Parameters

TYPE

APplicable
Control
statements

EDIT

Description of Parameters

TYPE=POSITION I INCLUDE I EXCLUDE
specifies the contents of the output data
set. These values can be coded:

POSITION
specifies that the output is to consist
of a JOB statement, the job step
specified in the STEPNAME parameter,
and all steps that follow it. All job
steps preceding the specified step are
omitted from the operation. POSITION
is the default.

INCLUDE
specifies that the output data set is
to contain a JOB statement and all job
steps specified in the SrEPNAME
parameter.

EXCLUDE
specifies that the output data set is
to contain a JOB statement and all job
steps belonging to the job except those
steps specified in the STEPNAME
parameter.

IEBEDIT EXAMPLES

The following examples show some of the uses of IEBEDIT.
Figure 53 can be used as a quick-reference guide to IEBEDIT
examples. The numbers in the "Example" column refer to examples
that follow.

Operation Devices Comments Example

COpy 9-track Tape The input data set 1
contains three jobs.
One job is to be
copied.

COpy 7-track Tape The output data set is 2
the second data set on
the volume. One job
step is to be copied
from each of three
jobs.

COpy Disk and Include a job step from 3
9-track Tape one job and exclude a

job step from another
job.

COPY Disk latter portion of a job 4
stream is to be copied.

Figure 53 (Part 1 of 2). IEBEDIT Example Directory

IEBEDIT Program 135

IEBEDIT EXAMPLE 1

IEBEDIT EXAMPLE 2

operation Devices Comments Example

COPY 9-track Tape All records in the 5
input data set are to
be copied. The " .. *"
record is converted to
a "/*" statement in the
output data set.

COpy 9-track Tape The input contains a 6
JES2 or JES3 control
statement and a new
delimiter.

Figure 53 (Part 2 of 2). IEBEDIT Example Directory

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid devi~e number notation.

In this example, one job (JOBA), including all of its job steps
(A, B, C, and D), is copied into the output data set. The input
data set contains three jobs: JOBA, which has four job steps;
JOBB, which has three job steps; and JOBC, which has two job
steps.

//EDITl
//
//SYSPRINT
//SYSUTl
//SYSUT2
//
//

JOB
EXEC
DD
00
DD

//SYSIN DD
EDIT

091440,SMITH
PGM=IEBEDIT
SYSOUT=A
UNIT=tape,DISP=(OlD,KEEP),VOl=SER=001234
UNIT=tape,DISP=(NEW,KEEP),VOl=SER=001235,
OCB=(RECFM=F,lRECl=80,BlKSIZE=80),
DSNAME=OUTTAPE

* START=JOBA

The control statements are discussed below:

• SYSUT1 DO defines the input data set. The data set resides
on a standard labeled tape volume (001234).

• SYSUT2 00 defines the output data set, called OUTTAPE. The
data set is to reside as the first data set on a standard
labeled tape volume (001235).

• SYSIN DD defines the control data set, which follows in the
input stream.

• EDIT indicates that JOBA is to be copied in its entirety.

This example copies one job step from each of three jobs. The
input data set contains three jobs: JOBA, which includes STEPA,
STEPB, STEPC, and STEPO; JOBB, which includes STEPE, STEPF, and
STEPG; and JOBC, which includes STEPH and STEPJ.

136 MVS/370 Utilities

IEBEDIT EXAMPLE J

//EDIT2
//
//SYSPRINT
//SYSUT1
//
//SYSUT2
//
//

JOB 09#440,SMITH
EXEC PGM=IEBEDIT
DD SYSOUT=A
DD DISP=(OlD,KEEP),VOlUME=SER=001234,

DD
UNIT=tape
DSN=OUTSTRM,UNIT=tape,DISP=(NEW,KEEP),
DCB=(RECFM=F,lRECl=80,BlKSIZE=80),
lABEl=(2,Sl)

//SYSIN DD * EDIT
EDIT
EDIT

START=JOBA,TYPE=INClUDE,STEPNAME=(STEPC,STEPD)
START=JOBB,TYPE=INClUDE,STEPNAME=STEPE
START=JOBC,TYPE=INClUDE,STEPNAME=STEPJ

The control statements are discussed below:

• SYSUT1 DD defines the input data set. The data set resides
on a standard labeled tape volume (001234).

• SYSUT2 DD defines the output data set, OUTSTRM. The data
set is to reside as the second data set on a standard
labeled tape volume (001235).

• SYSIN DD defines the control data set, which follows in the
input stream.

• The EDIT statements copy the JOB statements and job steps
described as follows:

1. The JOB statement and steps STEPC and STEPD for JOBA.

2. The JOB statement and STEPE for JOBB.

3. The JOB s.tatement and STEPJ for JOBC.

This example includes a job step from one job and excludes a job
step from another job. The input data set contains three jobs:
JOBA, which includes STEPA, STEPB, STEPC, and STEPD; JOBB, which
includes STEPE, STEPF, and STEPG; and JOBC, which includes STEPH
and STEPJ.

//EDIT3
//
//SYSPRINT
//SYSUT1
//
//SYSUT2
//
//

JOB 09#440,SMITH
EXEC PGM=IEBEDIT
DD SYSOUT=A
DO DSNAME=INSET,UNIT=disk,DISP=(OlD,KEEP),

DD
VOlUME=SER=111111
DSNAME=OUTTAPE,UNIT=tape,lABEl(,Nl),
DCB=(OEN=2,RECFM=F,lRECl=80,BlKSIZE=80),
OISP=(,KEEP)

//SYSIN DD * EDIT
EDIT

START=JOBB,TYPE=INClUDE,STEPNAME=(STEPF-STEPG)
START=JOBC,TYPE=EXClUDE,STEPNAME=STEPJ

The control statements are discussed below:

• SYSUT1 DD defines the input data set, INSET. The data set
resides on a disk volume (111111).

IEBEDIT Program 137

IEBEDIT EXAMPLE 4

• SYSUT2 DD defines the output data set, OUTTAPE. The data
set is to reside as the first or only data set on an
unlabeled (800 bits per inch) tape volume.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The EDIT statements copy JOB statements and job steps as
described below:

1. The JOB statement and steps STEPF and STEPG for JOBB.

2. The JOB statement and STEPH, excluding STEPJ, for JOBC.

This example copies the JOBA JOB statement, the job step STEPF,
and all the steps that follow it. The input data set contains
one job (JOBA), which includes STEPA, STEPB, ... STEPl. Job
steps STEPA through STEPE are not included in the output data
set.

//EDIT4
//
//SYSPRIHT
//SYSUTI
//
//
//SYSUT2
//
//
//
//

JOB
EXEC
DD
DO

DD

//SYSIH DO
EDIT

09#440,SMITH
PGM=IEBEDIT
SYSOUT=A
DSHAME=IHSTREAM,UNIT=disk,
DISP=(OlD,KEEP),
VOlUME=SER=111111
DSHAME=OUTSTREM,UNIT=disk,
DISP=(,KEEP),
DCB=(RECFM=F,lRECl=80,BlKSIZE=80),
VOlUME=SER=222222,
SPACE=(TRK,2)

* START=JOBA,TYPE=POSITION,STEPHAME=STEPF

The control statements are discussed below:

• SYSUTI DO defines the input data set, called INSTREAM. The
data set resides on a disk volume (111111).

• SYSUT2 DO defines the output data set, called OUTSTREAM.
The data set is to reside on a disk volume (222222). Two
tracks are allocated for the output data set.

• SYSIH DD defines the control data set, which follows in the
input stream.

• EDIT copies the JOBA JOB statement and job steps STEPF
through STEPL.

138 MVS/370 Utilities

IEBEDIT EXAMPLE 5

IEBEDIT EXAMPLE 6

This example copies the entire input (SYSUT1) data set. The
record containing the characters " .. *" in columns 1 through 3 is
converted to a "/* " statement in the output data set.

//EDIT5 091440,SMITH
PGM=IEBEOIT
SYSOUT=A

//
//SYSPRINT
//SYSUT2
//
//
//

JOB
EXEC
DD
DD DSNAME=OUTTAPE,UNIT=tape,

VOlUME=SER=001234,
DCB=(RECFM=F,LRECl=80,BLKSIZE=80),
DISP=(NEW,KEEP)
DUMMY
DATA

PGM=IEHPROGM

//SYSIN
//SYSUTI
//BlDGDGIX
//
//SYSPRINT
//DDI
//SYSIN

DO
DD
JOB
EXEC
DD
DD

SYSOUT=A
UNIT=disk,YOlUME=SER=111111,OISP=OLO

* DO
BLDG INDEX=A.B.C,ENTRIES=10,EMPTY

The control statements are discussed below:

• SYSUT2 DD defines the output data set, called OUTTAPE. The
data set is to reside as the first data set on a tape volume
(001234).

• SYSIN DD defines a dummy control data set.

• SYSUTI DD defines the input data set, which follows in the
input stream. The job is terminated when the termination
statement (/*b) is encountered. (SYSUTI therefore includes
the BLDGDGIX JOB statement, EXEC statement, SYSPRINT, DDI
and SYSIN DD statements.)

This example copies the entire input (SYSUT1) data set,
including the JES2 control statement, since a new delimiter (JP)
has been coded. Otherwise, the "/*" the JES2 control statement
would have terminated the input.

//EDIT6 JOB 091440,SMITH
//STEPA EXEC PGM=IEBEOIT
//SYSPRINT DD SYSOUT=A
//SYSUT2 DO DSN=TAPEOUT,UNIT=tape,
// YOL=SER=001234,LABEl=(,Sl),
// DCB=(RECFM=FB,lRECL=80,BlKSIZE=800),
// DISP=(NEW,KEEP)
//SYSIN DD DUMMY
//SYSUTI DD DATA,DlM=JP
//lISTYTOC JOB 091550,BlUE
/*MESSAGE JOB NEEDS VOLUME 338000
//FSTEP EXEC PGM=IEHlIST
//SYSPRINT DD SYSOUT=A
//DD2 DD UNIT=disk,VOL=SER=111111,OISP=OLO
//SYSIN DD *

lISTYTOC FORMAT,YOl=disk=111111

IEBEOIT Program 139

The control statements are discussed below:

• SYSUT2 DD defines the output data set, called TAPEOUT. The
data set will be the first data set on a standard label tape
volume (001234).

• SYSIN DD defines a dummy control data set.

• SYSUT1 DD defines the input data set, which follows in the
input stream. The DLM parameter defines characters JP to
act as a delimiter for the input data.

• IEBEDIT copies the JOB statement through the "/*" statement
(including the LISTVTOC and MESSAGE job statements, FSTEP
EXEC statement, and SYSPRINT, DD2 and SYSIN DD statements).

140 MVS/370 Utilities

IEBGENER PROGRAM

IEBGENER is a data set utility that can be used to:

• Create a backup copy of a sequential data set or a
partitioned member.

• Produce a partitioned data set or member from a sequential
input data set.

• Expand an existing partitioned data set by creating
partitioned members and merging them into the data set that
is to be expanded.

• Produce an edited sequential or partitioned data set.

• Reblock or change the logical record length of a data set.

• Copy user labels on sequential output data sets. (Refer to
Appendix C, "Processing User labels" on page 446.)

• Provide optional editing facilities and exits for user
routines that process labels, manipulate input data, create
keys, and handle permanent input/output errors. Refer to
Appendix A, "Exit Routine linkage" on page 438 for a
discussion of linkage conventions that are applicable when
user routines are provided.

CREATING A BACKUP COPY

A backup copy of a sequential data set or partitioned member can
be produced by copying the data set or member to any
IBM-supported output device. For example, a copy can be made
from tape to tape, from DASD to tape, etc.

A data set that resides on a direct access volume can be copied
to its own volume, provided that its data set name is changed.
A partitioned data set cannot reside on a magnetic tape volume.

PRODUCING A PARTITIONED DATA SET FROM SEQUENTIAL INPUT

Through the use of utility control statements, the user can
logically divide a sequential data set into record groups and
assign member names to the record groups. IEBGENER places the
newly created members in a partitioned output data set.

A partitioned data set cannot be produced if an input or output
data set contains spanned records.

Figure 54 on page 142 shows how a partitioned data set is
produced from a sequential data set used as input. The left
side of the figure shows the sequential data set. Utility
control statements are used to divide the sequential data set
into record groups and to provide a member name for each record
group. The right side of the figure shows the partitioned data
set produced from the sequential input.

IEBGENER Program 141

Utility control
statement names
first member

Utility control
statement identified
last record

Utility control
statement names
new member

Utility control
statement identified'
last record

Utility control
statement names
new member

Sequential
input

~-----. Record

LASTREC n

group
1

..
Record
group
2

Record
group
n

Partitioned
output

LASTREC 1

LASTREC 2

----~.·I LASTREC n

Figure 54. Creating a Partitioned Data Set from Sequential Input
Using IEBGENER

EXPANDING A PARTITIONED DATA SET

An expanded data set is a data set into which an additional
member or members have been merged. IEBGENER creates the
members from sequential input and places them in the data set
being expanded. The merge operation--the ordering of the
partitioned directory--is automatically performed by the
program.

Figure 55 on page 143 shows how sequential input is converted
into members that are merged into an existing partitioned data
set. The left side of the figure shows the sequential input
that is to be merged with the partitioned data set shown in the
middle of the figure. Utility control statements are used to
divide the sequential data set into record groups and to provide
a member name for each record group. The right side of the
figure shows the expanded partitioned data set. Note that
members B, D, and F from the sequential data set were placed in
available space and that they are sequentially ordered in the
partitioned directory.

142 MVS/370 Utilities

Utility control
statements define
record groups,
name members

Sequential
input

Member
B

LASTREC

Member
D

LASTREC

Member
F

Existing
data set

..

Expanded
data set

Figure 55. Expanding a Partitioned Data Set Using IEBGEHER

PRODUCING AN EDITED DATA SET

IEBGEHER can be used to produce an edited sequential or
partitioned data set. Through the use of utility control
statements, the user can specify editing information that
applies to a record, a group of records, selected groups of
records, or an entire data set.

An edited data set can be produced by:

• Rearranging or omitting defined data fields within a record.

• Supplying literal information as replacement data.

• Converting data from packed decimal to unpacked decimal
mode, unpacked decimal to packed decimal mode, or BCD4 to
EBCDIC mode. Refer to Data Management Services for more
information on converting from BCD to EBCDIC.

Figure 56 on page 144 shows part of an edited sequential data
set. The left-hand side of the figure shows the data set before
editing is performed. Utility control statements are used to
identify the record groups to be edited and to supply editing
information. In this figure, literal replacement information is
supplied for information within a defined field. (Data is
rearranged, omitted, or converted in the same manner.) The BBBB
field in each record in the record group is to be replaced by
CCCC. The right-hand side of the figure shows the data set
after editing.

4 Used here to mean the standard H character set of Binary
Coded Decimal.

IEBGEHER Program 143

Utility control statement.

Defines record group, contains
literal replacement data (CCCC).
Applies to all records within
the group.

Record
"

Record
2

Record
n

Record
group

»
»
»
»

.. I
»
»
~
,~

»
»
»
»

I
Figure 56. Editing a Sequential Data Set Using IEBGENER

IEBGENER cannot be used to edit a data set if the input and
output data sets consist of variable spanned (VS) or variable
blocked spanned (VBS) records and have equal block sizes and
logical record lengths. In these cases, any utility control
statements that specify editing are ignored. That is, for each
physical record read from the input data set, the utility writes
an unedited physical record on the output data set.

REBLOCKING OR CHANGING LOGICAL RECORD LENGTH

INPUT AND OUTPUT

IEBGENER can be used to produce a reblocked output data set
containing either fixed-length or variable-length records. In
addition, the program can produce an output data set having a
logical record length that differs from the input logical record
length.

IEBGENER uses the following input:

• An input data set, which contains the data that is to be
copied, edited, converted into a partitioned data set, or
converted into members to be merged into an existing data
set. The input is either a sequential data set or a member
of a partitioned data set.

• A control data set, which contains utility control
statements. The control data set is required if editing is
to be performed or if the output data set is to be a
partitioned data set.

IEBGENER produces the following output:,

• An output data set, which can be either sequential or
partitioned. The output data set can be either a new data
set (created during the current job step) or an existing

144 MVS/370 Utilities

RETURN CODES

CONTROL

partitioned data set that was expanded. If a partitioned
data set is created, it is a new member with a new directory
entry. None of the information is copied from the previous
directory entry.

• A message data set, which contains informational messages
(for example, the contents of utility control statements)
and any error messages.

• Message IEC507D will be issued twice when adding data or
members to an existing data set which has an unexpired
expiration date. This occurs because the input and output
data sets are opened twice.

IEBGENER returns a code in register 15 to indicate the results
of program execution. The return codes and their meanings are
listed below.

Codes Meaning

00 (00 hex) Successful completion.

04 (04)

08 (08)

12 (OC)

16 (10)

Probable successful completion. A warning message
is written.

Processing was terminated after the user requested
processing of user header labels only.

An unrecoverable error exists. The job step is
terminated.

A user routine passed a return code of 16 to
IEBGENER. The job step is terminated.

Figure 57. IEBGENER Return Codes

IEBGENER is controlled by job control statements and utility
control statements. The job control statements execute or
invoke IEBGENER and define the data sets that are used and
produced by the program. The utility control statements control
the functions of IEBGENER.

JOB CONTROL STATEMENTS

Figure 58 on page 146 shows the job control statements for
IEBGENER.

IEBGENER always uses two buffers, regardless of what was
specified in the DCB.

SYSPRINT DD Statement

SYSUT1 DD Statement

The SYSPRINT DO statement is required for each use of IEBGENER.
The block size for the SYSPRINT data set must be a multiple of
121. Any blocking factor can be specified for this record size.

The input data set for IEBGENER, as specified in SYSUT1, can
contain fixed, variable, undefined, or variable spanned records.

IEBGENER Program 145

SYSUT2 DD statement

statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBGENER) or~ if
the job control statements reside in a procedure
library, the procedure name.

SYSPRINT DD Defines a sequential message data set. The data
set can be written to a system output device~ a
tape volume, or a DASD volume.

SYSUTI DD Defines the input data set. It can define a
sequential data set or a member of a partitioned
data set.

SYSUT2 DD Defines the output data set. It can define a
sequential data set, a member of a partitioned data
set, or a partitioned data set.

SYSIN DD Defines the control data set, or specifies DUMMY
when the output is sequential and no editing is
specified. The control data set normally resides
in the input stream; however, it can be defined as
a member in a partitioned data set.

Figure 58. Job Control Statements for IEBGENER

Concatenated data sets with unlike attributes are not allowed as
input to IEBGENER. For information on concatenated data sets,
see Data Management Services.

// cards (JCL statements) cannot be included in the SYSUTI data
set unless SYSUTI DD DATA is specified.

Block size must be specified for the input data set in one of
two ways:

• with the BLKSIZE parameter in the DD statement'

• in the DCB information on the tape label.

The default RECFM is U for the input data set. RECFM must be
specified if the data set is new, undefined, a dummy data set,
or a data set from a card punch.

The input LRECL must be specified when the record format is FB,
VS, or VBS, or when the data set is new, a dummy data set, or a
data set from a card punch. In all other cases, a default lRECl
is generated by IEBGENER.

A partitioned data set cannot be produced if an input data set
contains spanned records.

If both the SYSUTI and the SYSUT2 DD statements specify standard
user labels (SUL), IEBGENER copies user labels from SYSUTI to
SYSUT2. See Appendix C, "Processing User labels" on page 446
for a discussion of the available options for user label
processing.

The output data set for IEBGENER, as specified in SYSUT2, can
contain fixed, variable, undefined, or variable spanned records
(except partitioned output data sets, which cannot contain
variable spanned records). These records can be reblocked by
the specification of a new maximum block length on the SYSUT2 DD

146 MVS/370 Utilities

SYSIN DD statement

·statement. During reblocking, if the output data set resides on
a direct access volume:

• For fixed-length or variable-length records, keys can be
retained only by using the appropriate user exit.

• For variable spanned records, keys can never be retained.

If the output data set is on a card punch or a printer, the user
must specify DCB information on the SYSUT2 DO statement. DCB
parameters in a SYSUT2 DD statement defining an expanded
partitioned data set must" be compatible with the specifications
made when the data set was originally created.

When RECFM, BlKSIZE, and lRECl are not specified in the JCl for
the output data set, values for each are copied from the input
data set's DSCB.

The output block size must always be specified when the logical
record length and record format (except for U) are specified.

The default RECFM is U for the output data set. RECFM must be
specified when a data set is new, a dummy data set, or a data
set from a card punch or printer.

The output lRECl must be specified when editing is to be
performed and the record format is FB, VS, or VBS. lRECl must
also be specified when the data set is new, a dummy data set, or
a data set from a card punch or printer. In all other cases, a
default lRECl value is generated by IEBGENER.

If the logical record length of the output data set differs from
that of the input data set, all positions in the output records
must undergo editing to justify the new logical record length.

A partitioned data set cannot be produced if an input or output
data set contains spanned records.

IEBGENER can not produce an output data set having a logical
record length that differs from the input logical record length
if both input and output RECFM are V or VB.

IEBGENER will terminate with an unpredictable message or abend
code if DISP=OLD is specified on a SYSUT2 DD statement making a
specific volume request for a nonexistent data set.

The SYSIN DD statement is required for each use of IEBGENER.
The block size for the SYSIN data set must be a multiple of 80.
Any blocking factor can be specified for this block size.

UTILITY CONTROL STATEMENTS

IEBGENER is controlled by utility control statements. The
statements and the order in which they must appear are listed in
Figure 59 on page 148.

The control statements are included in the control data set as
required. If no utility control statements are included in the
control data set, the entire input data set is copied
sequentially.

When the output is to be sequential and editing is to be
performed, one GENERATE statement and as many RECORD statements
as required are used. If user exits are provided, an EXITS
statement is used.

When the output is to be partitioned, one GENERATE statement,
one MEMBER statement per output member, and RECORD statements,
as required, are used. If user exits are provided, an EXITS
statement is used.

IEBGENER Program 147

GENERATE statement

EXITS Statement

statement Use

GENERATE Indicates the number of member names and alias names,
record identifiers, literals, and editing information
contained in the control data set.

EXITS Indicates that user routines are provided.

LABELS Specifies user-label processing.

MEMBER Specifies the member name and alias of a member of a
partitioned data set to be created.

RECORD Defines a record group to be processed and supplies
editing information.

Figure 59. IEBGENER Utility Control Statements

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements" on page 5.
A nonblank character continuation mark in column 72 is optional
for IEBGENER.

The GENERATE statement is required when: (1) output is to be
partitioned, (2) editing is to be p~rformed, or (3) user
routines are provided and/or label processing is specified. The
GENERATE statement must appear before any other IEBGENER utility
statements. If it contains errors or is inconsistent with other
statements, IEBGENER is terminated.

The format of the GENERATE statement is:

[label] GENERATE [MAXNAME=n1

[,MAXFLDS=nl

[,MAXGPS=nl

[,MAXLITS=n1

The EXITS statement is used to identify exit routines supplied
by the user. Linkages to and from exit routines are discussed
in Appendix A, "Exit Routine Linkage" on page 438.

For a detailed discussion of the processing of user labels as
data set descriptors, and for discussion of user label totaling,
refer to Appendix C, "Processing User Labels" on page 446.

148 MVS/370 Utilities

LABELS Statement

MEMBER Statement

The format of the EXITS statement is:

[label] EXITS [INHDR=routinename]

[,OUTHDR=routinename]

[,INTLR=routinename]

[,OUTTLR=routinename]

[,KEV=routinename]

[,DATA=routinenamel

[,IOERROR=routinename]

[,TOTAL=(routinename,size)]

The LABELS statement specifies whether or not user labels are to
be treated as data by IEBGENER. For a detailed discussion of
this option, refer to Appendix C, "Processing User Labels" on
page 446.

The LABELS statement is used when the user wants to specify
that: (1) no user labels are to be copied to the output data
set, (2) user labels are to be copied to the output data set
from records in the data portion of the SYSIN data set, or (3)
user labels are to be copied to the output data set after they
are modified by the user's label processing routines. If more
than one valid LABELS statement is included, all but the last
LABELS statement are ignored.

The format of the LABELS statement is:

I[label] LABELS [DATA=VESINOIALLloNLVIINPUT]

LABELS DATA=NO must be specified to make standard user labels
(SUL) exits inactive when input/output data sets with
nonstandard labels (NSl) are to be processed.

The MEMBER statement is used when the output data set is to be
partitioned. One MEMBER statement must be included for each
member to be created by IEBGENER. The MEMBER statement provides
the name and alias names of a new member.

All RECORD statements following a MEMBER statement pertain to
the member named in that MEMBER statement. If no MEMBER
statements are included, the output data set is organized
sequentially.

The format of the MEMBER statement is:

MEMBER

IEBGENER Program 149

RECORD statement

The RECORD statement is used to define a record group and to
supply editing information. A record group consists of records
that are to be processed identically.

The RECORD statement is used when: (1) the output is to be
partitioned l (2) editing is to be performedl or (3) user labels
for the output data set are to be created from records in the
data portion of the SYSIH data set. The RECORD statement
defines a record group by identifying the last record of the
group with a literal name.

If no RECORD statement is used, the entire input data set or
member is processed without editing. More than one RECORD
statement may appear in the control statement stream for
IEBGEHER.

Within a RECORD statement, one IDEHT parameter can be used to
define the record group; one or more FIELD parameters can be
used to supply the editing information applicable to the record
group; and one LABELS parameter can be used to indicate that
this statement is followed immediately by output label records.

The format of the RECORD statement is:

[label] RECORD [IDENT=(length,'name',input-location)]

[,FIElD=([lengthJ
[,input-locationl'literal'J
[,conversion]
[,output-location])]

[,lABElS=nJ

Hote that the variables on the FIELD parameter are positional;
that is, if any of the options are not coded, the associated
comma preceding that variable must be coded.

150 MVS/370 Utilities

parameters

DATA

Applicable
Control
statements

EXITS

LABELS

Description of Parameters

DATA=routinename
specifies th~ name of the routine that
modifies the physical record (logical record
for VS or VBS type records) before it is
processed by IEBGENER.

DATA=YESINOIALLIONLYIINPUT
specifies whether user labels are to be
treated as data by IEBGENER. These values
can be coded:

YES

NO

ALL

ONLY

INPUT

specifies that any user labels that are
not rejected by a user's label
processing routine are to be treated as
data. Processing of labels as data
ends in compliance with standard return
codes. YES is the default.

specifies that user labels are not to
be treated as data. NO must be
specified when processing input/output
data sets with nonstandard labels (NSL)
in order to make standard user label
(SUL) exits inactive.

specifies that all user labels in the
group currently being processed are to
be treated as data. A return code of
16 causes IEBGENER to complete
processing the remainder of the group
of user labels and to terminate the job
step.

specifies that only user header labels
are to be treated as data. User header
labels are processed as data regardless
of any return code. The job terminates
upon return from the OPEN routine.

specifies that user labels for the
output data set are supplied as 80-byte
input records in the data portion of
SYSIN. The number of input records
that should be treated as user labels
must be identified by a RECORD
statement.

IEBGENER Program 151

Parameters

FIELD

APplicable
Control
statements

RECORD

152 MVS/370 utilities

Description of Parameters

FIELD:([length],[input-locationl'literal'],
[conversion],[output-locationJ)

specifies field-processing and editing
information. Only the contents of specified
fields in the input record are copied to the
output record; that is, any field in the
output record that is not specified will
contain meaningless information.

Note that the variables on the FIELD
parameter are positional; if any of the
options are not coded, the associated comma
preceding that variable must be coded.

The values that can be coded are:

length
specifies the length (in bytes) of the
input field or literal to be processed.
If length is not specified, a length of
80 bytes is assumed. If a literal is
to be processed, a length of 40 bytes
or less must be specified. The length
cannot exceed 8 decimal characters.

input-location
specifies the starting byte of the
field to be processed. input-location
should be coded as a decimal number.

Default: Byte 1 is assumed.

'literal'
specifies a literal (maximum length of
40 bytes) to be placed in the specified
output location. If a literal contains
apostrophes, each apostrophe must be
written as two consecutive apostrophes.

conversion
specifies a 2-byte code that indicates
the type of conversion to be performed
on this field. If no conversion is
specified, the field is moved to the
output area without change. The values
that can be coded are:

PZ

ZP

HE

specifies that data (packed
decimal) is to be converted to
unpacked decimal data. Unpacking
of the low-order digit and sign
may result in an alphabetic
character.

specifies that data (unpacked
decimal) is to be converted to
packed decimal data.

specifies that data (H-set BCD) is
to be converted to EBCDIC.

Applicable
Control

Parameters statements

FIELD RECORD
(continued) (continued)

Description of Parameters

conversion (continued)
If conversion is specified in FIELD, the
following restrictions apply:

• PZ-type (packed-to-unpacked) conversion
is impossible for packed decimal records
longer than 16K bytes.

• For zP-type (unpacked-to-packed)
conversion, the normal 32K-byte maximum
applies.

• When the ZP parameter is specified, the
conversion is performed in place. The
original unpacked field is replaced by
the new packed field. Therefore, the ZP
parameter must be omitted from
subsequent references to that field. If
the field is needed in its original
unpacked form, it must be referenced
prior to the use of the ZP parameter.

If conversion is specified in the FIELD
parameter, the length of the output record
can be calculated for each conversion
specification. When l is equal to the
length of the input record, the calculation
is made, as follows:

• For a PZ (packed-to-unpacked)
specification, 2l-1.

• For a ZP (unpacked-to-packed)
specification, (l/2) + C. If l is an
odd number, C is 1/2; if l is an even
number, C is 1.

• For an (H-set BCD to EBCDIC)
specification, L.

output-location
specifies the starting location of this
field in the output records.
output-location should be coded as a decimal
number.

The default location is byte 1.

IEBGENER Program 153

APplicable
Control

Parameters statements

FIELD RECORD
(continued) (continued)

IDENT RECORD

INHDR EXITS

154 MVS/370 Utilities

Description of Parameters

If both output header labels and output trailer
labels are to be contained in the SYSIN data set,
the user must include one RECORD statement
(including the LABELS parameter), indicating the
number of input records to be treated as user
header labels and another RECORD statement (also
including the LABELS parameter) for user trailer
labels. The first such RECORD statement
indicates the number of user header labels~ the
second indicates the number of user trailer
labels. If only output trailer labels are
included in the SYSIN data set, a RECORD
statement must be included to indicate that there
are no output header labels in the SYSIN data set
(LABELS=O). This statement must precede the
RECORD LABElS=n statement which signals the start
of trailer label input records.

For a detailed discussion of the LABELS option,
refer to Appendix C, "Processing User Labels" on
page 446.

IDENT=(length,'~',input-location)
identifies the last record of the input
group to which the FIELD parameters of
MEMBER statement applies. If the RECORD
statement is not followed by additional
RECORD or MEMBER statements, IDENT also
defines the last record to be processed.

These values can be coded:

length
specifies the length (in bytes) of the
identifying name. The length cannot
exceed eight decimal characters.

'name'
----specifies the exact literal that

identifies the last input record of a
record group. 'nsmg' must be coded in
single apostrophes.

Default: If no match for '~' is
found, the remainder of the input data
is considered to be in one record
group; subsequent RECORD and MEMBER
statements are ignored.

input-location
specifies the starting byte of the
field that contains the identifying
name in the input records.
input-location should be coded as a
decimal number.

Default: If IDENT is omitted, the remainder
of the input data is considered to be in one
record group; subsequent RECORD and MEMBER
statements are ignored.

INHDR=routinename
specifies the name of the routine that
processes user input header labels.

Parameters

INTLR

IOERROR

KEY

LABELS

MAXFLDS

MAXGPS

MAXLITS

APpl;cable
Control
statements

EXITS

EXITS

EXITS

RECORD

GENERATE

GENERATE

GENERATE

Descript;on of Parameters

INTLR=routinename
specifies the name of the routine that
processes user input trailer labels.

IOERROR=routinename
specifies the name of the routine that
handles permanent input/output error
conditions.

KEV=routinename
specifies the name of the routine that
creates the output record key. (This
routine does not receive control when a data
set consisting of variable spanned (VS) or
variable blocked spanned (VBS) type records
is processed because no processing of keys
is permitted for this type of data.)

LABELS=n
is an optional parameter that indicates the
number of records in the SYSIN data set to
be treated as user labels. The number 0,
which is a number from 0 to 8, must specify
the exact number of label records that
follow the RECORD statement. If this
parameter is included, DATA=INPUT must be
coded on a LABELS statement before it in the
input stream.

I1AXFLDS=n
specifies a number that is no less than the
total number of FIELD parameters appearing
in subsequent RECORD statements. MAXFlDS;s
required if there are any FIELD parameters
in subsequent RECORD statements.

MAXGPS=n
sp;cifies a number that is no less than the
total number of IDENT parameters appearing
in subsequent RECORD statements. MAXGPS is
required if there are any IDENTparameters
in subsequent RECORD statements.

I1AXLITS=n
specifies a number that is no less than the
total number of characters contained in the
FIELD literals of subsequent RECORD
statements. MAXLITS is required if the
FIELD parameters of subsequent RECORD
statements contain literals. MAXLITS does
not apply to literals used in IDENT
parameters.

IEBGENER Program 155

Parameters

MAXNAME

NAME

OUTHDR

OUTTLR

TOTAL

APplicable
Control
statements

GENERATE

MEMBER

EXITS

EXITS

EXITS

156 MVS/370 Utilities

Description of Parameters

MAXNAME=n
specifies a number that is no less than the
total number of member names and aliases
appearing in subsequent MEMBER statements.
MAXNAME is required if there are one or more
MEMBER statements.

NAME=(name[,alias] •••)
specifies-a-member name followed by a list
of its aliases. Names of multiple members
and their aliases should be coded as
follows: ((name!,alias!),(name2,alias2), •..)
If only one name appears in the statement,
it need not be enclosed in parentheses.

OUTHDR=routinename
specifies the name of the routine that
creates user output header labels. OUTHDR
is ignored if the output data set is
partitioned.

OUTTLR=routinename
specifies the name of the routine that
processes user output trailer labels.
OUTTLR is ignored if the output data set is
partitioned.

TOTAL=(routinename,size)
specifies that-a-user exit routine is to be
provided prior to writing each record. The
keyword OPTeD=T must be specified for the
SYSUT2 DD statement. TOTAL is valid only
when IEBGENER is used to process sequential
data sets. These values must be coded:

routinename
specifies the name of the user-supplied
totaling routine.

specifies the number of bytes needed to
contain totals, counters, pointers,
etc. size should be coded as a decimal
number-.--

IEBGENER EXAMPLES

operation

COpy

COPY-with
editing

COPY-with
editing

COPY-with
editing

PRINT

CONVERT

COPY-with
editing

COPY-with
editing

COPY-with
editing

COPY-with
editing

The examples that follow illustrate some of the uses of
IEBGENER. Figure 60 can be used as a quick-reference guide to
IEBGENER examples. The numbers in the "Example" column refer to
the examples that follow.

Data set
organization Device Comments Example

Sequential Card Reader and Blocked output. 1
Tape

Sequential Card Reader and Blocked output. 2
Tape

Sequential Card Reader and Blocked output. Input 3
Tape includes //cards.

Sequential Card Reader and Blocked output. Input 4
Disk includes // cards.

Sequential Card Reader and Input includes // 5
Printer cards. System output

device is a printer.

Sequential Tape and Disk Blocked output. Three 6
input, members are to be
Partitioned created.
output

Sequential Disk Blocked output. Two 7
members are to be
merged into existing
data set.

Sequential Tape Blocked output. Data 8
set edited as one
record group.

Sequential Disk Blocked output. New 9
record length
specified for output
data set. Two record
groups specified.

Sequential Tape Blocked output. Data 10
set edited as one
record group.

Figure 60. IEBGENER Example Directory

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

IEBGENER Program 157

IEBGENER EXAMPLE 1

IEBGENER EXAMPLE 2

In this example, a card-input, sequential data set is copied to
a 9-track tape volume.

The example follows:

//CDTOTAPE
//
//SYSPRINT
//SYSIN
//SYSUT2
//
//
//SYSUTl

JOB
EXEC
DD
DD
DD

DD

09#660,SMITH
PGM=IEBGENER
SYSOUT=A
DUMMY
DSNAME=OUTSET,UNIT=tape,LABEL=(,SL),
DISP=(,KEEP),VOLUME=SER=001234,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)

*
(input card data set)

/*

The job control statements are discussed below:

• SYSIN DD defines a dummy data set. No editing is performed;
therefore, no utility control statements are needed.

• SYSUT2 DD defines the output data set, OUTSET. The data set
is written to a tape volume with IBM standard labels. The
data set is to reside as the first (or only) data set on the
volume.

• SYSUT1 DD defines the card-input data set. The data set
contains no // or /* cards.

In this example, a card-input, sequential data set is to be
copied to a tape volume. The control data set is a member of a
partitioned data set.

//CDTOTAPE
//
//SYSPRINT
//SYSIN
//
//
//SYSUT2
//
//
//SYSUTl

JOB
EXEC
DD
DD

DD

DD

09#660,SMITH
PGM=IEBGENER
SYSOUT=A
DSNAME=CNTRLIBY(STMNTS),UNIT=d;sk,
DISP=(OLD,KEEPi,vOLUME=SER=111112,
DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
DSNAME=OUTSET,UNIT=tape,LABEL=(,SL),
DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
DISP=(,KEEP),VOLUME=SER=001234

*
(input card data set)

/*

The job control statements are discussed below:

• SYSIN DD defines the control data set, which contains the
utility control statements. The control statements reside
as a member, STMNTS, in a partitioned data set called
CNTRLIBY.

• SYSUT2 DD defines the output data set, OUTSET. The data set
is written as the first data set on the tape volume.

158 MVS/370 Utilities

IEBGENER EXAMPLE 3

IEBGENER EXAMPLE ~

• SYSUTI DD defines the card-input data set. The data set can
contain no // cards, since SYSUTI has not been specified as
DATA.

In this example, a card-input, sequential data set is copied to
a tape volume. The input contains cards that have slashes (//)
in columns 1 and 2. The control data set is a member of a
partitioned data set.

//CDTOTAPE
//
//SYSPRINT
//SYSIN
//
//SYSUT2
//
//
//SYSUTI

JOB
EXEC
DO
DO

DD

DO

091660,SMITH
PGM=IEBGENER
SYSOUT=A
DSNAME=CNTRlIBY(STMNTS),UNIT=disk,
OISP=(OlD,KEEP),VOlUME=SER=111112
DSNAME=OUTSET,UNIT=tape,lABEl=(2,SL),
VOlUME=SER=001234,OCB=(RECFM=FB,LRECL=80,
BlKSIZE=2000),OISP=(,KEEP)
DATA

(input card data set, including // cards)

The job control statements are discussed below:

• SYSIN DO defines the data set containing the utility control
statements. The statements reside as a member, STMNTS, in a
partitioned data set called CNTRLIBY.

• SYSUT2 OD defines the copied sequential data set (output),
called OUTSET. The data set is written as the second data
set on the specified tape volume.

• SYSUTI DO defines the card-input data set. The data set is
to be edited as specified in the utility control statements
(not shown). The input data set contains // cards.

In this example, a card-input, sequential data set is copied to
a disk volume. The input data set contains // cards.

//COTOOISK
//
//SYSPRINT
//SYSIN
//
//SYSUT2
//
//
//SYSUTI

JOB
EXEC
OD
OD

DD

DO

091660,SMITH
PGM=IEBGENER
SYSOUT=A
DSNAME=CNTRLIBY(STMNTS),UNIT=disk,
OISP=(OlO,KEEP),VOlUME=SER=111112
DSNAME=OUTSET,UNIT=disk,VOLUME=SER=111113,
OISP=(,KEEP),SPACE=(TRK,(lO,10»,
OCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
DATA

(input card data set, including // cards)

/*

IEBGENER Program 159

IEBGENER EXAMPLE 5

IEBGENER EXAMPLE 6

The job control statements are discussed below:

• SYSIN DD defines the control data set, which contains the
utility control statements. The control statements reside
as a member, STMNTS, in a partitioned data set.

• SYSUT2 DD defines the output data set. Ten tracks of
primary storage space and ten tracks of secondary space are
allocated for the data set on a disk volume.

• SYSUTI DD defines the card-input data set. The data set is
to be edited as specified in the utility control statements
(not shown).

In this example, the content of a card data set is printed. The
printed output is left-aligned, with one SO-byte record
appearing on each line of printed output.

//CDTOPTR JOB 09#660,SMITH
// EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSIN DO DUMMY
//SYSUT2 DD SYSOUT=A,DCB=(RECFM=F,lRECl=SO,BlKSIZE=80)
//SYSUTI DD DATA
(input card data set, including // cards)
/*

The job control statements are discussed below:

• SYSIN DO defines a dummy data set. No editing is performed;
therefore, no utility control statements are required.

• SYSUT2 DO indicates that the output is to be written on the
system output device (printer). Carriage control can be
specified by changing the RECFM=F subparameter to RECFM=FA.

• SYSUTI DD defines the input card data set. The input data
set contains // cards.

In this example, a partitioned data set (consisting of three
members) is created from sequential input.

//TAPEDISK JOB
// EXEC
//SYSPRINT DD
//SYSUTI DO
//
//SYSUT2 DO
//
//
//SYSIN DO

GENERATE
MEMBER

GROUP1 RECORD
MEMBER

GROUP2 RECORD
MEMBER

09#660,SMITH
PGM=IEBGENER
SYSOUT=A
OSNAME=INSET,UNIT=tape,lABEl=(,Sl),
DISP=(OlD,KEEP),VOlUME=SER=001234
DSNAME=NEWSET,UNIT=disk,DISP=(,KEEP),
VOlUME=SER=111112,SPACE=(TRK,(lO,S,S»,
DCB=(RECFM=FB,lRECl=80,BlKSIZE=2000)
* MAXNAME=3,MAXGPS=2
NAME=MEMBERI
IOENT=(S,'FIRSTMEM',l)
NAME=MEMBER2
IDENT=(8,'SECNDMEM',1)
NAME=MEMBER3

160 MVS/370 Utilities

IEBGENER EXAMPLE 7

The control statements are discussed below:

• SYSUTI DD defines the input data set (INSET). The data set
is the first data set on a tape volume.

• SYSUT2 DD defines the output partitioned data set (NEWSET).
The data set is to be placed on a disk volume. Ten tracks
of primary space, five tracks of secondary space, and five
blocks (256 bytes each) of directory space are allocated to
allow for future expansion of the data set. The output
records are blocked to reduce the space required by the data
set.

• SYSIN DD defines the control data set, which follows in the
input stream. The utility control statements are used to
create members from sequential input data; the statements do
not specify any editing.

• GENERATE indicates that: (1) three member names are
included in subsequent MEMBER statements and (2) the IDENT
parameter appears twice in subsequent RECORD statements.

• The first MEMBER statement assigns a member name (MEMBER1)
to the first member.

• The first RECORD statement (GROUP1) iden~ifies the last
record to be placed in the first member. The name of this
record (FIRSTMEM) appears in bytes 1 through S of the input
record.

• The remaining MEMBER and RECORD statements define the second
and third members. Note that, as there is no RECORD
statement associated with the third MEMBER statement, the
remainder of the input file will be loaded as the third
member.

In this example, sequential input is converted into two
partitioned members. The newly created members are merged into
an existing partitioned data set. User labels on the input data
set are passed to the user exit routine.

//DISKTODK JOB
// EXEC
//SYSPRINT DD
//SYSUTl DD
//
//
//SYSUT2 DD
//
//SYSIN DD

GENERATE
EXITS

MEMBER
GROUPl RECORD

MEMBER

09#660,SMITH
PGM=IEBGENER
SYSQUT=A
DSNAME=INSET,UNIT=disk,DISP=(OLD,KEEP),
VOlUME=SER=111112,
LABEL=(,SUL)
DSNAME=EXISTSET,UNIT=disk,DISP=(MOD,KEEP),
VOLUME=SER=111113

* MAXNAME=3,MAXGPS=1
INHDR=ROUTl,INTlR=ROUT2
NAME=(MEMX,ALIASX)
IDENT=(S,'FIRSTMEM',I)
NAME=MEMY

The control statements are discussed below:

• SYSUTI DD defines the input data set (INSET). The input
data set, which resides on a disk volume, has standard and
user labels.

• SYSUT2 DD defines the output partitioned data set
(EXISTSET). The members created during this job step are
merged into the partitioned data set.

IEBGENER Program 161

IEBGENER EXAMPLE 8

'. SYSIN DD defines the control data set, which follows in the
input stream. The utility control statements are used to
create members from sequential input data; the statements do
not specify any editing.

• GENERATE indicates that: (1) a maximum of three names and
aliases are included in subsequent MEMBER statements and (2)
one IDENT parameter appears in a subsequent RECORD
statement.

• EXITS defines the user routines that are to process user
labels.

• The first MEMBER statement assigns a member name (MEMX) and
an alias (AlIASX) to the first member.

• The first RECORD statement (GROUP1) identifies the last
record to be placed in the first member. The name of this
record (FIRSTMEM) appears in bytes 1 through 8 of the input
record.

• The second MEMBER statement assigns a member name (MEMY) to
the second member. The remainder of the input data set is
included in this member.

In this example, a sequential input data set is edited and
copied.

//TAPETAPE JOB
// EXEC
//SYSPRINT DD
//SYSUTl DD
//
//SYSUT2 DD
//
//
//SYSIN DD

GENERATE
RECORD

EXITS
lABELS
RECORD

09#660,SMITH
PGM=IEBGENER
SYSOUT=A
DSNAME=OlDSET,UNIT=tape,DISP=(OlD,KEEP),
VOlUME=SER=001234,lABEl=(3,Sl)
DSNAME=NEWSET,UNIT=tape,DISP=(NEW,PASS),
DCB=(RECFM=FB,lRECl=80,BlKSIZE=2000),
VOlUME=SER=001235,lABEl=(,Sl)

* MAXFlDS=3,MAXlITS=11
FIElD=(lO,'**********'"l),
FIElD=(S,1,HE,11),FIElD=(1,'=',,16)
INHDR=ROUT1,OUTTlR=ROUT2
DATA=INPUT
lABElS=2

(first header label record)
(second header label record)

RECORD lABElS=2

(first trailer label record)
(second trailer label record)

The control statements are discussed below:

• SYSUTl DD defines the sequential input data set (OlDSET).

72

C

The data set was originally written as the third data set on
a tape volume.

• SYSUT2 DD defines the sequential output data set (NEWSET).
The data set is written as the first data set on a tape
volume. The output records are blocked to reduce the space
required by the data set and to reduce the access time

162 MVS/370 Utilities

IEBGENER EXAMPLE 9

required when the data set is subsequently referred to. The
data set is passed to a subsequent job step.

• SYSIN DD defines the control data set, which follows in the
input stream.

• GENERATE indicates that: (1) a maximum of three FIELD
parameters is included in subsequent RECORD statements and
(2) a maximum of 11 literal characters are included in
subsequent FIELD parameters.

• The first RECORD statement controls the editing, as follows:
(1) asterisks are placed in positions 1 through 10, (2)
bytes 1 through 5 of the input record are converted from
H-set BCD to EBCDIC mode and moved to positions 11 through
15, and (3) an equal sign is placed in byte 16.

• EXITS indicates that the specified user routines require
control when SYSUTI 1S opened and when SYSUT2 is closed.

• LABELS'indicates that labels are included in the input
stream.

• The second RECORD statement indicates that the next two
records from SYSIN should be written out as user header
labels on SYSUT2.

• The third RECORD statement indicates that the next two
records from SYSIN should be written as user trailer labels
on SYSUT2.

This example shows the relationship between the RECORD LABELS
statement, the LABELS statement, and the EXITS statement.
IEBGENER attempts to write a first and second label trailer as
user labels at close time of SYSUT2 before returning control to
the system; the user routine, ROUT2, can review these records
and change them, if necessary.

In this example, a sequential input data set is edited and
copied.

//DISKDISK JOB
// EXEC
//SYSPRINT DD
//SYSUTI DD
//
//SYSUT2 DD
//
//
//SYSIN DD

GENERATE
EXITS

GROUP1 RECORD

GROUP2 RECORD
/*

09#660,SMITH
PGM=IEBGENER
SYSOUT=A
DSNAME=OLDSET,UNIT=disk,DISP=(OLD,KEEP),
VOLUME=SER=111112
DSNAME=NEWSET,UNIT=d;sk,DISP=(HEW,KEEP),
VOLUME=SER=111113,DCB=(RECFM=FB,LRECL=80,
BLKSIZE=640),SPACE=(TRK,(20,10»

* MAXFLDS=4,MAXGPS=1
IOERROR=ERRORRT
IDENT=(8,'FIRSTGRP',1),
FIElD=(21,80,,60),FIELD=(59,1,,1)
FIELD=(11,90,,70),FIELD=(69,1,,1)

The control statements are discussed below:

• SYSUTI DD defines the input data set (OLDSET).

72

C

• SYSUT2 DD defines the output data set (NEWSET). Twenty
tracks of primary storage space and ten tracks of secondary
storage space are allocated for the data set on a disk

IEBGENER Program 163

volume. The logical record length of the output records is
80 bytes, and the output is blocked.

• SYSIN DD defines the control data set, which follows in the
input stream.

• GENERATE indicates that: (1) a maximum of four FIELD
parameters are included in subsequent RECORD statements and
(2) one IDENT parameter appears in a subsequent RECORD
statement.

• EXITS identifies the user routine that handles input/output
errors.

• The first RECORD statement (GROUP1) controls the editing of
the first record group, as follows: (1) FIRSTGRP, which
appears in bytes' 1 through 8 of an input record, is defined
as being the last record in the first group of records and
(2) bytes 80 through 100 of each input record are moved into
positions 60 through 80 of each corresponding output record.
(This example implies that bytes 60 through 79 of the input
records in the first record group are no longer required;
thus, the logical record length is shortened by 20 bytes.)
The remaining bytes within each input record are transferred
directly to the output records, specified in the second
FIELD parameter.

• ~The second RECORD statement (GROUP2) indicates that the
remainder of the input records are to be processed as the
second record group. Bytes 90 through 100 of each input
record are moved into positions 70 through 80 of the output
records. (This example implies that bytes 70 through 89 of
the input records from group 2 are no longer required; thus,
the logical record length is shortened by 20 bytes.) The
remaining bytes within each input record are transferred
directly to the output records, specified in the second
FIELD parameter.

If the logical record length of the output data set differs from
that of the input data set (as in this example), all positions
in the output records must undergo editing to justify the new
logical record length.

164 MVS/370 Utilities

IEBGENER EXAMPLE 10

)
In the example, a sequential input data set is edited and
copied.

//TAPETAPE JOB
// EXEC
//SYSPRINT DD
//SYSUTI DD
//
//SYSUT2 DD
//
//
//SYSIN DD

GENERATE
RECORD

LABELS
RECORD

PGM=IEBGENER
SYSOUT=A .
DSNAME=OLDSET,UNIT=tape,DISP=(OLD,KEEP),
VOLUME=SER=OOI234,LABEL=(3,SUL)
DSNAME=NEWSET,UNIT=tape,DISP=(NEW,PASS),
VOLUME=SER=OOI235,LABEL=(,SUL),
DCB=(RECFM=FB,LRECL=aO,BLKSIZE=2000)

* MAXFLDS=3,MAXLITS=11
FIELD=(IO,'**********'"I),
FIELD=(5,I,HE,II),FIELD=(I,'=',,16)
DATA=INPUT
LABELS=3

(first header label record)
(second header label record)
(third header label record)

RECORD LABELS=2

(first trailer label record)
(second trailer label record)

The control statements are discussed below.

72

c

• SYSUTI DD defines the input data set (OLDSET). The data set
is the third data set on a tape volume.

• SYSUT2 DD defines the output data set (NEWSET). The data
set is written as the first or only data set on a tape
volume. The output records are blocked to reduce the space
required by the data set and to reduce the access time
required when the data set is subsequently referred to. The
data set is passed to a subsequent job step.

• SYSIN DD defines the control data set, which follows in the
input stream.

• GENERATE indicates thata (1) a maximum of three FIELD
parameters are included in subsequent RECORD statements and
(2) a maximum of 11 literal characters are included in
subsequent FIELD para~eters.

• The first RECORD statement controls the editing, as follows.
(1) asterisks are placed in positions 1 through 10, (2)
bytes 1 through 5 of the input record are converted from
H-set BCD to EBCDIC mode and moved to positions 11 through
15, and (3) an equal sign is placed in byte 16.

• LABELS indicates that label records are included in the
input stream.

• The second RECORD statement indicates that three aO-byte
records (cards), to be written as user labels on the output
data set, immediately follow.

• The third RECORD statement indicates that the following
cards are to be treated as trailer labels.

IEBGENER Program 165

\

TNL GN26-1.133 (30 Mar 84) to GC26-406S-1

IEIIMAgl pROGRAH

glNIRAL INFORMATION

STORAGE REQUIREMENTS

For III IMAGE

IEBIMAGE is a data set utility that creates and maintains the
following types of IBM 3800 Printing Subsystem and IBM 4241
Printer modules and stores them in a library.

• Forms control buffer modules for the 3800 and 4248 that
specify controls for the vertical line spacing and anyone
of 12 channel codes per line.

• COpy modification modules for the 3800 that specify data
that is to be printed on every page for specified copies of
the output data set.

• Character arrangement table modules for the 3800 that
translate the input data into printable characters and
identify the associated character set(s) and graphic
character modification moduleCs).

• Graphic character modification modules for the 3800 that
contain the scan patterns of user-designed characters and/or
characters from IBM-supplied modules.

• Library character set modules for the 3800 that contain the
scan patterns of IBM-supplied character sets and/or
user-defined character sets.

The IEBIMAGE program creates and maintains all modules required
for use on the 3800 Model I and Model 3 printers. The program
default is to build these modules in the 3800 Model 1 format;
however, 3800 Model 3 compatibility can be specified with
IEBIMAGE utility control statements.

IEBIMAGE can also be used to create and maintain FCB modules for
the 4248 printer.

3262 Model SPrinter ------------------­

The 4248 FCB modules c·reated by IEBIMAGE are compatible with the
3262 Model S Printer; however, the 3262 Modal S does not support
variable printer speeds or the horizontal copy feature of the
4248. Unless otherwise stated, where a reference to the 4248
printer is used in this chapter, the 3262 Model S can be
substituted.

End of 3262 Model S Printer ----------------~

The IEBIMAGE utility program is IBM-supplied and requires
pageable virtual storage in which to operate. The storage
needed by IEBIMAGE is given by the formula.

Storage requirements (in bytes) = 44K+4B+H

I The largest block size in the job step, rounded to the
next highest multiple of 2K. If the format specified
for the data set is VS, and LRECL is less than 32K, then
B is the maximum logical record length, rounded to the
next highest multiple of 2K.

166 MV$/370 Utilities

'ar IVll.Z"AGELZI

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

H The size of the largest member to be loaded from
SYS1.IMAGELIB, rounded to the next highest multiple of
2K.

K 1024 bytes.

The auxiliary storage requirement in tracks for SYS1.IMAGELIB
is:

Number of tracks = (A+B)/T

A The number of 1403 UCS images, 3211 UCS images, 3211 FCB
images, 3525 data protection images, 3886 format
records, 3890 SCI programs, 3800 FCB modules, 4248 FeB
images, 3262 Model 5 FCB images, and 3800 character
arrangement tables (both IBM-supplied and user-defined
images or modules, as applicable).

If the appropriate printer is in the system, IBM
supplies twelve 1403 UCS images, five 3211 UCS images,
four 3211 FCB images, one 3800 FCB image, one 4245 UCS
image table, one 4248 UCS image table, and fourteen 3100
character arrangement tables. According to the TABLE
parameter coded on the DATAMGT system generation macro,
IBM supplies the following number of additional
character arrangement tables:

• 5 if T3211 is specified

• 13 if T1403 is specified

• 10 if TOCR is specified

• 3 if TKAT is specified

• 3 if TFMT is specified

If TABLE = ALL is coded, add all the above numbers. If
ALL, T3211, or T1403 is coded, add two more tables for
the GRAFSPC1 and GRF2SPCl graphic character modification
modules.

Note that IBM supplies no 4245 or 4248 UCS images in
SYS1.IMAGELIB. The 4245 and 4248 printers load their
own UCS images into the UCS buffer at power-on time.
IBM does supply 4245 and 4248 FCB images which may be
used. For more information on printer-supplied UCS or
FCB images, see System Programming Library: Dat,
Manaaement.

I (V+600)/1500 for each 3800 graphic character
modification module and library character set module,
each 3800 copy modification module, 4245 UCS image
table, 4248 UCS image table, and each 3890 SCI program
that is more than approximately 600 bytes. V is the
virtual storage requirement in bytes for each module.
The virtual storage requirements for the IBM-supplied
3800 graphic character modification module containing
the World Trade National Use Graphics are 32420 bytes
for Modell and 55952 bytes for Model 3. The virtual
storage requirements for the IBM-supplied 3800 library
character sets for the Model 1 are 4680 bytes and 1064
bytes for the Model 3.

T The approximate number of members per track, depending
on type of volume. Because of the overhead bytes and
blocks in a load module, the difference in space
requirements for an 80-byte module and a 400-byte module
is small. These constants assume an average member of a
blocks, including a file mark, with a total data length
of 800 bytes. For example, on a 3330 with 135 bytes of

IEBIMAGE Program 167

TNt GN26-8133 (30 Mar 84) to GC26-4065-1

block overhead, the assumed average is 1880 bytes. If a
different average member data length and average number
of blocks per member are anticipated, these constants
should reflect the actual number of members per track.
To determine the number of members per track, divide the
average member length, including block overhead, into
the track capacity for the device. (Track capacity for
OASO is discussed in Data Management Macro
Instructions.>

T = 3 for a 2305-1
6 for a 2305-2
4 for a 2314/.2319
7 for a 3330 or a 3330-11
4 for a 3340 or 3344
8 for a 3350
8 for a 3375
9 for Cit 3380

The result, (A+B)/T, is the track requirement.

The number of directory blocks for SYS1.IMAGELIB is given by the
formula:

Number of directory blocks = (A+C+O)/6

A As calculated to determine the track requirement, above.

C The number of modules used to calculate B, when
calculating the track requirement.

D The number of aliases. The IBM-supplied 1403 UCS images
have four aliases and the IBM-supplied 3211 UCS images
have six aliases. If they will not be used, these
aliases can be scratched after system generation.

"AINTAINING THE SYS1.IHAGELIB DATA SET

You will normally maintain SYS1.IMAGELIB using several programs
in conjunction with IEBIMAGE. For example, you may find it
necessary to rename or delete modules or to compress or list the
entire contents of the data set. Utility programs such as
IEBCOPY, IEBPTPCH, IEHLIST, IEHMOVE, and IEHPROGM (as described
in this book) and HMASPZAP or AMASPZAP (as described in Seryjce
~) should be used to help maintain SYS1.IMAGELIB.

If you use programs other than IEBIMAGE for maintenance, you
must specify the full module name. The module's full name
consists of a 4-character prefix followed by its 1- to
4-character user-assigned name. It is thus a 5- to 8-character
member name in the form:

168 MVS/370 Utilities

FCB2xxxx, which identifies an FCB module that may be used
with a 3203, 3211, 3262 Model 5, 4248, or 4245 printer.
Note that the 4248 accepts FCBs that will also work with a
3203, 3211, 3262 Model 5, or 4245 printer.

FCB3xxxx, which identifies a 3800 FCB module

FCB4~, which identifies an FCB module that may be used
with a 4248 or 3262 Model 5 printer

M001~, which identifies a 3800 copy modification module

XTB1xxxx, which identifies a 3800 character arrangement
table module

GRAFxxxx, which identifies a graphic character modification
module for a 3800 Model 1

GRF2~, which identifies a graphic character modification
module for a 3800 Model 3

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

LCSlnn, which identifies a library character set module for
a 3800 Model I

LCS2nn, which identifies a library character set ... odule for
a 3800 Model 3

where I

2nQQS
is the 1- to 4-character user-assigned name of the Module.

no
is the 2-character user-assigned ID of the module.

Alias names are not supported by IEBIMAGE, so you should be
careful if you use them. For example, if you change a ... odule by
specifying its alias name, the alias name becomes the tnain na
of the new module, and the old module is no longer accessible
via the alias but is still accessible via its original main
name.

GENERAL MODULE STRUCTURE

Each module contains eight bytes of header information preceding
the data. For the 3800 printing subsystem, the general ... odule
header is shown in Figure 61.

Length (in hexadecimal) of module, excluding the
8 bytes of header information

Reserved - (X'OOOO')

A 1- to 4-character identification of the module,
left-justified (excluding the system-assigned pre~)

Figure 61. 3800 General Module Header

Header information for the 4248 printer FeB module is shown,
with the module format, in Figure 62.1 on page 172.

The SETPRT SVC uses the name tal

• Identify the module in the image library

• store the name in the UCB extension

The SETPRT SVC uses the length tal

• Obtain sufficient storage for the module

• Build channel programs to load the data into the printer'

IEBIMAGE Program 16'

-)

TNL GN26-8l33 (30 Mar 84) to GC26-4065-l

NAMING CONVENTIONS FOR MODULES

USING IEBIMAGE

Each module placed in a library by the IEBIMAGE utility has a
4-character system-assigned prefix as the first part of its
name. These prefixes arel

FCB3 for 3800 forms control buffer modules

FCB4 for 3262 Model 5 and 4248 forms control buffer module.

MODI for 3800 copy modification modules

XTBI for 3800 character arrangement table modules

GRAF for graphic character modification modules for a 3800
Model 1

GRF2 for graphic character modification modules for a 3800
Model 3

LCSI for ~ibrary character set modules for a 3800 Model 1

LCS2 for library character set modules for a 3800 Model 3

You can assign a 1- to 4-character identifier (name) to the
module you create by using the NAME control statement in the
operation group you use to build the module. If the module is a
library character set, the ID assigned to it must be exactly two
characters. Each of those characters must be within the range 0
through 9, and A through F; the second character must represent
an odd hexadecimal digit. However, the combinations X'7F' and
X'FF' are not allowed. Except for library character set
modules, this identifier is used in the JCL, the SETPRT
parameter, or the character arrangement table to identify the
module to be loaded.

While IEBIMAGE refers only to the 1- to 4-character name or the
2-character ID (the suffix) that is appended to the prefix, the
full name must be used when using other utilities (such as
IEBPTPCH or IEHPROGM).

CREATING A FORMS CONTROL BUFFER MODULE

The forms control buffer (FCB) module is of variable length and
contains vertical line spacing information (6, 8, or 12 lines
per inch for the 3800 Modell; 60r 8 lines per inch for the
4248; and 6, 8, 10, or 12 lines per inch for the 3800 Model 3).
The FCB module can also identify one of 12 carriage-control
channel codes for each line. For the 4248 printer, the module
also contains information on the horizontal copy feature and the
printer speed.

The FCB module is created and stored in an image library, using
the FCB and NAME utility control statements of the IEBIMAGE
program. For the 4248 FCB module, the INCLUDE and OPTION
statements can also be coded to indicate that an existing FCB
module (prefix FCB2 or FCB4) is to be used as a model.

For the 3800, IBM supplies one default FCB image in
SYSl.IMAGELIB, called FCB3STDl. For the 4248, although the last
FCB image loaded is reloaded by the printer at power-on time,
IBM supplies two FCB images that may also be used by printers
other than the 4248. For the 3262 Model 5, a default FCB image
is also supplied.

170 MVS/370 Utilities

)

TNL ON26-8l33 (30 Mar 84) to OC26-4065-l

3100 FCB Module structure

The FCB data following the header information is a series of
I-byte line control codes for each physical line of the form.
There are 18 to 144 of these bytes, depending on the length of
the form.

Each byte is a bit pattern describing one of 12 channel codes
for vertical forms positioning and one of four lines-per-inch
codes for vertical line spacing. The structure of the 3800 FCB
module is shown in Figure 62.

Reserved Channel Code
(00)

Binary Hex Channel
0000 0 -:(nUii)

Line Spacing (LPl) 0001 I I
00 = 6 LPI 0010 2 2
01 = 8 LPI 0011 3 3
10 = 10 LPI 0100 4 4
11 = 12 LPI 0101 S S

0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12

Figure 62. 3800 FeB Module Structure

• The top and bottom 1/2 inch of each page are unprintable,
and the bytes corresponding to these positions must be void
of any channel codes. Three bytes of binary zeros are
supplied by the IEBIMAOE utility for the top and bottom 1/2
inch.

• The total number of lines defined in the module must be
equal to the length of the form. The printable lines
defined must start 1/2 inch below the top and stop 1/2 inch
from the bottom of the form.

4248 FCB Module structure

The FeB data following the header information consists of at
least five bytes' a flag byte (X'7E'), a control byte
(containing information about the horizontal copy feature and
printer speed), an offset byte, one or more FeB data byte.
(similar to the 3800 data byte for each physical line of the
form), and an end-of-sheet byte (X'FE'). The format of the 4241
FeB module is shown in Figure 62.1 on page 172.

IEBIMAOE Program 171

TNI GN26-8133 (30 Mar 84) to GC26-406S-l

Header

------- Data Byte

..... ------- Offset Byte

..... --------- Control Byte

'------------ Flag Byte (X'7E')

...... -------------- Length (in hexadecimal) of
module, excluding the 3
'bytes of header information

'------------------- Flag Byte: X'OO' = Non-default imlle
X'80' = Default imlle

Figure 62.1. 4248 FCB Module Structure

The control byte is a bit pattern describing whether the
horizontal copy feature is active and what printer speed is to
be set when the FCB is loaded into the buffer. The structure of
the control byte is shown in Figure 62.2.

Bit Pattern

1011213(45)671

~
, t Stacker Drop Rate l ,2

Printer Speed (PSPEED)2
00 = Unchanged
01 = Low (2200 LPM)
10 = Medium (3000 LPM)
11 = High (3600 LPM)

Horizontal Copy Feature2

o = Deactivate
1 = Activate

Stacker Level Control I ,2

Reserved (X'O')

Figure 62.2. 4248 FCB Module Control Byte

Notes to Figure 62.2:

1 IEBIMAGE sets these bits to zero. For more information on
the stacker drop rate and stacker level control bits, .ee
the appropriate hardware manual for your printer.

Z If the module is used by a 3262 Model S printer, these bit.
are ignored.

172 MVS/370 Utilities

)
:/

FeB Module Listing

~.
)

TNL GN26-8133 (30 Mar 84) to GC26-406S-1

The offset byte follows the control byte and is set either to
zero or to the print position of the horizontal copy (2 through
168).

The data byte is a bit pattern similar to that produced for the
3800 printing subsystem. Each data byte describes one of 12
channel codes for vertical forms positioning and one of the
allowed lines-per-inch codes for vertical line spacing. The
structure of the data byte is shown in Figure 62.3.

Bit Pattern

Channel Code

Binary Hex Channel
0000 0 - (null)

Line Spacing (LPI) 0001 1 1
0000 = No change 0010 2 2
0110 = 6 LPI 0011 3 3
1000 = 8 LPI 0100 4 4

0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12

Figure 62.3. 4248 FCB Module nata Byte

The total number of lines defined in the module must ba equal to
the length of the form.

Figure 63 on page 172.2 shows the IEBIMAGE listing of a 3800 FCB
module. The notes that follow the figure describe the encircled
numbers in the figure.

For the 4248 FCB module, the IEBIMAGE listing also includes the
horizontal copy feature, printer speed setting, and default
settings.

IEBIMAGE Program 172.1

TNL ON26-1133 (30 Mar 84) to GC26-4065-1

PRJNT LINE G? A~ LINES PER JNCH
PRINT Llt.E 2 AT a LINES PER INCH
PRINT LINE] AT a LINES PER It«:H
PRINT LINE It AT 12 LIt.ES PER ItCH
PRINT LINE 5 AT 12 LINES PER INCH
'RINT LINE 6 AT 12 LINES PER INCH
PRINT LINE 7 AT 12 LINES PER INCH
PRINT LINE a AT 12 LINES PER lUCH
PR!NT LINE 9 AT 12 LINES PER It.CH
PRINT LINE 10 AT 12 LINES PER It.CH
PRINT LINE 11 AT 12 LINES PER INCH
PRINT LINE 12 AT 12 LINES PER INCH
PRINT LIt.E 13 AT 12 LINES PER ItICH
PRINT LINE lit AT 12 L1t.ES PER ItCH
PRINT LINE 15 AT 12 LINES PER I..cH
PRINT LINE 16 AT 12 LINES PER INCH
PRINT LINE 17 AT 12 LINES PER INCH
PRINT LINE la AT 12 LIt.ES PER INCH
PRINT LINE 19 AT 12 LINES PER INCH
PRINT LINE 20 AT 12 LIt'ES PER It.CH
PRINT LINE 21 AT 12 LINES PER IUCH
PRIt.T LINE 22 AT 12 LINES PER INCH
PRINT LINE 23 AT 12 LINES PER INCH
PRINT LIt.E 21t AT 12 LIt'ES 1'''.

PAINT LINE 25 AT 12 , •.
PRINT LINE 26 AT •
PRINT LINE 27
~ttn LIN' •

•
•

.·tR INCH
.... tlES PER It~CH

... i. LINE S PER !tICH
AT 12 LINES PER INCH

to. 9a AT 12 LIt.ES PER INCH
PRI ... ·, Lit'! 99 AT 12 LIt.ES PER ItICH

- HAS CHANNEL 1 COOE.

PRINT LINE 100 AT 12 LIt.ES PER INCH - HAS CHANNEL 12 COOE.
PlItn LIt'E 101 AT 12 LINES PER !tICH
PRINT LIt.E 102 AT 12 LINES PER It'CH
PRINT LIN! 10] AT 12 LIt.ES PER !ttCH
PRINT LINE 101t AT 12 LINES PER It.CH
PRINT LINE 105 AT 12 LINES PER INCH
PRINT LINE 106 AT 12 LIt'ES PER INCH
PRINT LINE 107 AT 12 LINES PER INCH
PRINT LINE loa AT 12 LIt.ES PER !t~CH
PRINT UNE 109 AT 12 LIt.ES PER It.CH
PRINT LINE 110 AT 12 LIt'ES PER IUCH
PRINT LINE 111 AT 12 LINES PER IUCH
PRINT LiNE 112 AT 12 LINES PER IUCH
PRINT LINE 113 AT 12 LIt'ES PER ItlCH
PRINT LINE lilt AT 12 LIt'ES PER It'CH
PRINT LINf i15 AT 12 LIt'ES PER It'CH
""It.T LI.NE 116 AT 12 LIt~ES PER ItlCH
PRINT LINE 117 AT 12 LINES PER IUCH
PRINT LINE 11& AT 12 LINES PER It'CH

Figure 63. IEBIMAGE Listing of a Forms Control Buffer Mo.du.le

172.2 MVS/370 Utilities

Notes to Figure 63:

1. The line number. Each line of the form is listed in this
fashion.

2. The vertical spacing of the line, in lines per inch.

3. The channel code, printed for each line that includes a
channel code.

CREATING A COPY MODIFICATION MODULE

The 3800 copy modification module contains predefined data for
modifying some or all copies of an output data set. Segments of
the module contain predefined text, its position on each page of
the output data set, and the copy or copies the text applies to.

The copy modification module is created and stored in an image
library using the INCLUDE, OPTION, COPYMOD, and NAME utility
control statements of IEBIMAGE.

The INCLUDE statement identifies a module that is to be copied
and used as a basis for the newly created module. The OPTION
statement with the OVERRUN parameter allows the user to suppress
the printing of line overrun condition messages for those
vertical line spacings that are not applicable to the job. The
OPTION statement with the DEVICE parameter specifies 3800 Model
3 compatibility mode processing. The COPYMOD statement is used
to describe the contents of one of the new module's segments.
The NAME statement is used to identify the new module and to
indicate whether it is new or is to replace an existing module
with the same name.

COPVMOD Module structure

The copy modification data following the header information is a
series of segments. Each segment is of variable length and is
composed of the components shown in Figure 64.

Sesment I Segment 2

~------Modifying text

'-----------Number of bytes of text

L...---------Starting print position

~------Number of lines to be modified

'-------Starting line number

'------Number of copies to be modified

'-----Starting copy number

Figure 64. Copy Modification Module Structure

A, B, C, D, E, and F are each 1-byte fields.

TEXT

• If the module contains more than one segment, the starting
copy number must be equal to or greater than the starting
copy number in the previous segment.

• Any string of the same character within the text may be
compressed into 3 bytes. The first such byte is X'FF', the

IEBIMAGE Program 173

second byte is the number of compressed characters, and the
third byte is the data code for the character.

• The size of the module is limited to 8192 bytes of data and
8 bytes of header information.

COPVMOD Module Listing

SEGMENT

1

2

3

<b

INITIAL
COPY NO.

1

2

2

Figure 65 shows the listing of three segments of a copy
modification module. This listing shows only the positioning of
the modifying text. To print out the text itself, you can use
the IEBPTPCH utility program. The numbered notes that follow
the figure describe the items marked with the circled numbers.

~MODIHANK

NUMBER OF INITI-AL NUMBER OF INITIAL NUMBER OF
COPIES LINE NO. LINES PRINT POSe CHARACTERS

4 58 1 35 18

1 1 1 50 ?3

1 75 34v 3 10

~ ~
Figure 65. IEBIMAGE listing of Three Segments of a Copy Modification Module

Notes to Figure 65:

In this example, each note refers to the module's third segment.

1. The name of the copy modification module as it exists in the
SYS1.IMAGElIB data set's directory (including the 4-byte
system-assigned prefix).

2. The segment number of the modification segment.

3. This segment applies only to the second copy of the output
data set.

4. The text of the segment is located on lines 34, 35, and 36.

5. The text on each line starts at the 75th character, and
occupies 10 character spaces.

CREATING A CHARACTER ARRANGEMENT TABLE MODULE

The 3800 character arrangement table module is fixed length and
consists .of three sections:

• System control information, which contains the module's name
and length.

• The translate table, which contains 256 one-byte translate
table entries, corresponding to the 8-bit data codes (X'OO'
throughX'FF'). A translate table entry can identify one of
64 character positions in anyone of four writable character
generation modules (WCGMs) except the last position in the
fourth WCGM (WCGM 3), which would be addressed by X'FF'.
The code X'FF' is reserved to indicate an unprintable

174 MVS/370 Utilities

character. When an entry of X'FF' is detected by the
printer as a result of attempting to translate an invalid
8-bit data code, the printer prints a blank and sets the
data-check indicator on (unless the block-data-check option
is in effect).

• Identifiers, which identify the character sets and the
graphic character modification modules associated with the
character arrangement table.

The character arrangement table is created using the INCLUDE,
TABLE, and NAME utility control statements. The INCLUDE
statement identifies an existing character arrangement table
that is to be copied and used as a basis for the new module.
The TABLE statement describes the new or modified module's
contents. The NAME statement identifies the character
arrangement table and indicates whether it is new or is to
replace an existing module with the same name.

The OPTION statement with the DEVICE=3800M3 parameter should be
specified when printing an existing character arrangement table
for a 3800 Model 3 to ensure that the system assigns the correct
prefix to the graphic modification module name associated with
the character arrangement table.

See IBM 3800 Printing Subsystem Programmer's Guide for
information on IBM-supplied character arrangement tables and
character sets.

Note: All characters in a character set might not be referred
to by the character arrangement table you select. The character
arrangement table corresponds to a print train, which is
sometimes a subset of one or more complete character sets. When
the character set is loaded, all characters of the set (up to
64) are loaded into the printer's WCGM; only those characters
that are referred to by a translate table can be printed.

TABLE Module structure

The character arrangement table data following the header
information is composed of the following components:

• A 256-byte translate table

• Four 2-byte fields for codes identifying character sets and
their WCGM sequence numbers

• Four 4-byte fields for graphic character modification module
names

The translate table consists of 256 one-byte entries, each
pointing to one of 64 positions within one of four WCGMs:

• Bits 0 and 1 of each translate table byte refer to one of
four WCGMs and bits 2 through 7 point to one of 64 addresses
(0-63) within the WCGM. If SETPRT loads a character set
into a WCGM other than the WCGM called for, SETPRT, using a
copy of the translate table, alters bits 0 and 1 of each
non-X'FF' byte of the translate table to correspond with the
WCGM loaded. Figure 66 on page 176 describes the structure
of the character arrangement table module.

IEBIMAGE Program 175

TABLE Module Listing

These 6 bits reference one of 64
addresses (0-63) in the WCGM.

OO=W(,GMO
OI=WC'GMI
IO=W(,GM2
II=WCGM3

Figure 66. Character Arrangement Table Modul~ Structure

• A byte value of X'FF' indicates an invalid character and
prints as a blank and gives a data check. The data check is
suppressed if the block data check option is selected.

• One translate table can address multiple WCGMs , and multiple
translate tables can address one WCGM. The translate tables
supplied by IBM address either one or two WCGMs.

The next two components provide the linkage to character sets
and graphic character modification modules. They consist of
four 2-byte fields containing character set IDs with their
corresponding WCGM sequence numbersl followed by four
4-character names of graphic character modification modules.
The format is as follows:

• Each CGMID is a 1-byte character set ID containing two
hexadecimal digits that refers to a library character set
(as listed in the IBM 3800 Printing Subsystem Programmer's
Guide). Each WCGMNO refers to the corresponding WCGM
sequence (X'OO' to X'03'). Each name is the 4-character
name of a graphic character modification module.

CGMIDO WCGMNOO CGMID1 WCGMN01

CGMID2 WCGMN02 CGMID3 WCGMN03

Hamel

Hame2

Hame3

Hame4

• Most of the standard character arrangement tables do not
need graphic character modification. The names are blank
(X'40's) if no modules are referred to.

• The CGMIDx and the WCGMHOx are both X'OO' when there are no
character-sets referred to after the first one.

Figure 67 on page 177 shows the listing of a character
arrangement table module. Each of the notes following the figure
describes the item in the figure that is marked with the circled
number. '

176 MVS/370 Utilities

XT81T11T~
XO Xl X2 X] Xit X5 X6 X7 X8 X9 XA X8 xc XO XE Xf

ox • • • • • • • • • • • • • • • •

IX • • • • • • • • • • • • • • • •

~X • • • • • • • • • • • • • • • •

3X • • • • • • • • • • • • • • • •

ItX 0 00 • • • • • • • • • 0 OA 0 08 0 oe 0 00 0 OE V Of

5X 0 10 • • • • • • • • • 0 1A 0 18 0 Ie 0 10 0 IE 0 If

6X 0 20 0 21 • • • • • • • • • 0 28 0 2C 0 20 0 2E 0 2f

7X • • • • • • • • • • 0 3A 0 38 0 3C 0 30 0 3E 0 3f

8X • 1 01 1 02 1 OJ 1 Olt 1 05 1 06 1 07 1 08 1 09 • 1 00 1 OC 1 3C 1 1& 1 1A

9X • 1 11 12 1 13 1 lit 1 15 1 16 1 17 1 18 1 19 • 1 10 0 2A 1 3D 1 OE 1 Of

AX 1 3A 1 10 1 22 1 2] 1 21t 1 25 1 26 1 27 1 28 1 29 • 1 2A 1 2C 1 OA 1 2E 1 08

8X 1 30 1 11 1 12 1]] 1]1t 1 35 1 16 1 17 1 38 1 39 • 1 20 1 28 1 18 1 21 1 lC

ex • o 01 0 02 0 01 0 Olt 0 05 0 06 0 07 • • • • •
OX • o 11 0 12 0 11 0 lit 0 15 0 16 0 17 • • • • •
EX • • 0 22 0 2] 0 21t 0 25 0 26 0 27 • • •
fX 0]0 0]1 0 32 0 11 0 31t 0]5 0 16 0 37 • • •

CGH IDENTIfICATION ORDER 0 1 2]

.cGII IO(NnFlc.n... IF l~. •

· ... PltIC "'c.n (COROS Van, 'tv 'm
"®

Figure 67. IEBIMAGE Listing of a Character Arrangement Table Module

Notes to Figure 67:

1. The name of the character arrangement table module, as it
exists in the image library's directory (including the
4-byte system-assigned prefix).

2. The l-byte identifier of an IBM-supplied character set (in
this example, the Text 1 and Text 2 character sets, whose
identifiers are X'8F' and X'Il').

All character sets in SYSl.IMAGELIB or a user-specified
image library are represented by odd-numbered identifiers.
If the character set identifier specified is even-numbered,
it is incremented by one at print time and the character set
with that identifier is loaded.

3. The sequence number of the WCGM that is to contain the
character set indicated below it (in this example, the
second WCGM, whose identifier is 1).

4. The sequence number of the WCGM that contains the scan
pattern for the 8-bit data code that locates this translate
table entry.

IEBIMAGE Program 177

5. Your 8-bit data code X'B9' transmitted to the 3800 Model 3
addresses this, the B9 location in the translate table,
where the value X'39' in turn is the index into the WCGM
that contains the scan pattern to be used (in this example,
the Text 2 superscript 9).

6. Your 8-bit data code X'B9' transmitted to the 3800 addresses
this, the B9 location in the translate table, where the
value X'39' in turn is the index into the WCGM that contains
the scan pattern to be used (in this example, the Text 2
superscript 9).

7. An asterisk is shown in the listing for each translate table
entry that contains X'FF'. This indicates that the 8-bit
data code that addresses this location does not have a
graphic defined for it and is therefore unprintable.

8. An asterisk in the list of character set identifiers
indicates that no character set is specified to use the
corresponding WCGM. If you specify 7F or FF as a character
set identifier (to allow accessing a WCGM without loading
it), a 7F or FF prints here.

9. The name of a graphic character modification module, as the
name exists in the library's directory (including the
system-assigned prefix).

When you specify a graphic character modification module to
be associated with a character arrangement table, you must
specify th~ OPTION statement with the DEVICE parameter (for
the 3800 Model 3) to ensure that the system assigns the
correct prefix (GRF2) to the graphic character modification
module name.

CREATING A GRAPHIC CHARACTER MODIFICATION MODULE

The 3800 graphic character modification module is variable
length and contains up to 64 segments. Each segment c~ntains
the 1 byte (for the 3800 Model 1) or 6 bytes (for the 3800 Model
3) of descriptive information and the 72-byte (for the 3800
Model 1) or 120-byte (for the 3800 Model 3) scan pattern of a
graphic character.

The graphic character modification module is created using the
IEBIMAGE program's INCLUDE, GRAPHIC, and NAME utility control
statements.

The INCLUDE statement identifies an existing graphic character
modification module that is to be copied and used as a basis for
the new module.

The OPTION statement with the DEVICE parameter is required to
create graphic character modification modules in the 3800 Model
3 compatibility mode module format.

A GRAPHIC statement, when followed by one or more data
statements, defines a user-designed character. A GRAPHIC
statement can also select a character segment from another
graphic character modification module. Each GRAPHIC statement
causes a segment to be created for inclusion in the new module.

The NAME statement identifies the new module and indicates that
the module is to be added to the library or is to replace an
existing module of the same name. More than one GRAPHIC
statement can be coded between the INCLUDE and NAME statements,
and all such GRAPHIC statements apply to the same graphic
character modification module.

178 MVS/370 Utilities

I GRAPHIC Module structure

The graphic character modification data following the header
information is a series of 73-byte segments for the 3800 Modell
and 126-byte segments for the 3800 Model 3. A maximum of 64
such segments is allowed in a module. The module structure is
shown in Figure 68.

1011121314-516

I" ~ • •

.... Rcservcd

1251

-- 120 bytes of coding that represent
the 24 bits of each of the 40 raster
scan lines

.... Number of total scan lines in pattern set to 40

-- Set to zero

.... Wid th of the character: 24 pels = 10 pitch

-- Translate table code
20 pels = 12 pitch
16 pels = 15 pitch

Figure 68. Graphic Character Modification Module Structure

When a graphic character is to be modified, the 3800 uses the
translate table code to index into the translate table. The
contents found at that location (a 1-byte WCGM code) determine
the WCGM location into which the scan pattern and character data
are to be placed.

FOR THE 3800 MODEL 1: The 72-byte graphic definition that makes
up the scan pattern and system data for one character is divided
into 24 3-byte groups. Each 3-byte group represents a
horizontal row of 18 1-bit elements (plus parity information).

FOR THE 3800 MODEL 3: The 120-byte graphic definition that makes
up the scan pattern for one character is divided into 40 3-byte
groups. Each 3-byte group represents a horizontal row of 24
1-bit elements.

I GRAPHIC Module Listing

Figure 69 on page 180 shows an extract from a listing of a
graphic character modification module. This extract contains the
listing of two segments of the module. Each of the notes
following the figure describes the item in the figure that is
marked with the circled number.

IEBIMAGE Program 179

1 •
2 •
3 •
4 •
5 •
6 •
7 •
8 •

• ••••••
.***~Uf"**

9 •
10 •
11.
12 •
13 •
14 •
15 •
16 •
17 •
18 •
19 •
20 •
~ 1- •

• •••••• ** ••
..nUfWluf_.*** •.. *. -.-..

****.
***. • ••• • If •• _ -.
*-~.
tf~
**11 ••

..* ••
• •••• _._ ..

~2 • .* •• - ._ ••
23 • _.*.. ..w ..
Z4 • .**** ••• *If.*
25 • • ••••••• _*.
26 • ..** •. ~ .• 27 • _ •••
28 • ..**
Z9 • * •••
30 • • •••
31 • • •• If.¥*
32 • • •••••
33 • • ••••
34 •
35 •
36 •
37 •
38 •
39 •
40 •

SEGt1ENT 005
ASSIGNHENT C4 PITCH 10

123456789012345678901234
1 · 2 · 3 •
4 •
5 •
6 · 7 •
8 •
9 • .. •••••••• ***

10 · .*
11 ·
12 · •••• • ••••
13 • ..** * ••••
lit • .*** ..* ••
15 • .* •• • •••
16 · ***. ..* •
17 • .* •• • •••
18 • • •• *
19 • • •• *
20 · •••• • •••
21 · •••• .*.*
22 · *.*. .**.
23 • * •• * ...*
21t • ..** *.**
25 · .*** ...*.
26 · **.* ** •• *
27 • • •• * ** •••
28 • -* ••• *.****.* ••
29 • ...*.**** ••• *.
30 · * ... *********
31 · 32 · 33 •
34 · 35 •
36 · 37 · 38 •
39 •
40 ·

Figure 69. IEBIMAGE listing of Two Segments of a Graphic
Character Modification Module

Notes to Figure 69:

1. The segment number of the character segment within the
module.

2. The a-bit data code for the character.

3. The pitch of the character.

4. The scan pattern for the character. A dollar sign ($) is
printed instead of an asterisk if the bit specified is out
of the pitch range.

180 MVS/370 utilities

CREATING A LIBRARY CHARACTER SET MODULE

The 3800 library character set module is a fixed-length module
made up of 64 segments. Each segment contains the 73 bytes (for
the 3800 Model 1) or 126 bytes (for the 3800 Model 3) of
information including the scan pattern of a graphic character
and a code (00-3F) that identifies the WCGM location into which
the scan pattern is to be loaded.

The library character set module is created using the INCLUDE,
CHARSET, and NAME control statements.

The INCLUDE statement identifies an existing module.

The OPTION statement with the DEVICE parameter is required to
create library character set modules in the 3800 Model 3
compatibility mode module format.

A CHARSET statement, when followed by one or more data
statements, defines a user-designed character. A CHARSET
statement can also select a character segment from another
library character set or from a graphic character modification
module.

The NAME statement specifies the ID of the character set being
created and indicates if it is to replace an existing module.
More than one CHARSET statement can be coded between the INCLUDE
and NAME statements; all such CHARSET statements apply to the
same library character set module.

CHARSET Module structure

The library character set data following the header information
is a series of 73-byte segments for the 3800 Modell and
126-byte segments for the 3800 Model 3. Each module contains 64
segments. For each segment left undefined in a library
character set module, IEBIMAGE inserts the graphic symbol for an
undefined character. The structure of a library character set
module is shown in Figure 70.

125

120 bytes of coding that represent
the 24 bits of each of the 40 raster
scan lines

Number of total scan lines in pattern set to 40

Set to zero

Width of the character: 24 pels = 10 pitch

WCGM location of
graphic character

20 pels = 12 pitch
16 pels = 15 pitch

Figure 70. Library Character Set Module Structure

A library character set is loaded directly into a WCGM. SETPRT
uses the 6-bit code contained in the first byte of each 73-byte
segment (for the 3800 Model 1) or 126-byte segment (for the 3800
Model 3) as the address of the WCGM location into which the
remaining 72 bytes (for the 3800 Model 1) or 125 bytes (for the
3800 Model 3) are loaded.

IEBIMAGE Program 181

FOR THE 3800 MODEL 1:: The 73-byte graphic definition that makes
up the scan pattern for one character is divided into 24 3-byte
groups. Each 3-byte group represents a horizontal row of 18
I-bit elements.

FOR THE 3800 MODEL 3:: The 126-byte graphic definition that
makes up the scan pattern for one character is divided into 40
3-byte groups. Each 3-byte group represents a horizontal row of
24 I-bit elements.

I CHARSET Module Listing

Figure 71 shows an extract from a listing of a library character
set module. This extract contains the listing of two segments
of the library character set. The numbered notes that follow
the figure describe the items marked with the circled numbers.

SEGtt£NT 007
ASSIGUt1ENT 06 PITCH 10

12345678901Z345678901~34
1 •
2 •
3 •
4 •
5 •
6 .
7 .
8 . .****.**.*.
9 • *.*WWW.W.* ••

10 • **~~¥.* •• **.*
11 • *WNW_**
12 • .***~w ••
13 • .*.v_.w.*
14 • ..*~~~*~ ..
15 • •••• *.N.
16 •
17 •
18 •
19 •
~"b •
21 •

..**

.-**
• •••
.M.1t
*.It.
..11.

• ... IfW

.*_M
tnl'i*
.11" ••• _**
W*a(IfIf~t"E.

_ •• _ to'Hi
~v

.~ii*

~3. *11**~* •• ~~w,
~4. *1(.*.¥IIf*h~~*

~5. ..*~.***W*~I(*

~6. ..* *~**
27 • .*.*
Z8 • ** ••
29 •• ww.
30 • *w**
31 •
3~ •
33 •
34 •
35 •
36 •
37 •
38 •
39 •
40 •

*.". *1I1j.******
*"WN**IfW**
.*If**~."*.

LCS~99~ ~ &,
SEGMENT \008/

ASSIG1::1ENT 07 PITCH 10
1~34S67a901~345678901234

1 •
2 •
3 •
4 •
5 •
6 •
7 •
8 •
9 .

10 •
11.
12 •
13 •
14 •
15 •
16 •
17 •
18 •
19 •
~o •
~l •
Z3 •
~4 •
~5 •
~6 •
~7 •

• ••
..***.

******"****I(*N*.
*K***.M* •• * •• *~**

.*If*
Mf(**

.WtOiWlU'.. •
till(IftnOollot A

.""'If* *MII* /"
***~* N If •

tllllfif **.Wlf MlIW*
M.IUi.'OU* MIiN ..
..tOUUtltlt .. tllIlt*
.1t.lPilOf~ ~*~ ..
.*N.~'._ tou
***.¥.* M*I1*
.*lI(l(* *lfljllf_
.~~lnf .~*lilt*

28. .*MNWN*W*_.*NN~N*

~9. .**NWNNNN*_WMN.*
30. .NN~~.M~N~*WM~ •• M
31. tOHUOOt
3~. • ...
33 •
3:. •
35 •
36 •
37 •
33 •
39
40 •

Figure 71. IEBIMAGE Listing of Two Segments of a Library
Character Set

182 MVS/370 Utilities

)

INPUT AND OUTPUT

RETURN CODES

TNL GN26-8133 (30 Mar 84) to GC26-406S-1

Notes to Figure 71:

1. The name of the library character set module, including the
4-byte system-assigned prefix.

2. The segment number of the character segment within the
module.

3. The 6-bit code for the WCGM location.

4. The pitch of the character.

S. The scan pattern for the character. A dollar sign ($) is
printed instead of an asterisk if the bit specified is out
of the pitch range.

IEBIMAGE uses the following input.

• A control data set that contains utility control statements

• Source statements produced by the Character Conversion Aid

IEBIMAGE produces the following output.

• A new module or modules for use with the 3800 Model 1 and
Model 3 printers, 3262 Model S printer, or the 4248 printer,
to be stored in an image library. These may be of one of
the following types'

Forms control buffer modules (3800 or 4248)

COpy modification modules (3800 only)

Character arrangement table modules (3800 only)

Graphic character modification modules (3800 only)

Library character set modules (3800 only)

Note that, in building a 4248 FCB module, either a 4248
(prefix FCB4) or a 3211 (prefix FCB2) format FCB may be
used. IEBIMAGE prefixes the name with FCB4 first; then if
no module exists with that name, the prefix is changed to
FCB2.

• An output data set listing for each new module which
includes.

Module identification

Utility control statements used in the job

Module contents

Messages and return codes

IEBIMAGE returns a code in register IS that represents the most
severe error condition encountered during the program execution.
This return code is also printed in the output listing. The
codes are described Figure 72 on page 184.

IEBIMAGE Program 183

CONTROL

Codes

00 (00

04 (04)

08 (08)

12 (OC)

16 (10)

20 (14)

24 (18)

hex)

Meaning

Successful completion; operation(s) performed ••
requested.

Operation(s) performed; investigate messages for
exceptional circumstances.

Operation(s) not performed; investigate messages.

Severe exception; processing mav end.

Catastrophic exception; the job step is terminated.

SYSPRINT data set could not be opened; the job step
is terminated.

User parameter list invalid; the job step is
terminated.

Figure 72. IEBIMAGE Return Codes

IEBIMAGE is controlled by job control statements and utility
control statements.

JOB CONTROL STATEMENTS

Figure 73 shows the job control statements for IEBIMAOE.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (POM=IEBIMAOE) or, if
the job control statements reside in the procedure
library, the procedure name. No PARM parameters
can be specified.

SVSPRINT DD Defines the sequential message data set used for
listing statements and messages on the system
output device.

SVSUTI DD Defines the librarv data set (SYS1.IMAGELIB or a
user-defined library).

SVSIN DD Defines the control data set, which normallv
resides in the input stream.

Figure 73. Job Control Statements for IEBIMAGE

SVSPRINT DD Statement

Block size for the SYSPRINT data set should be 121 or a multiple
of 121. Any blocking factor can be specified. The first
character of each 121-byte output record is an ANSI control
character. .

184 MVS/370 Utilities

)

I

\
)

) I

SVSUTI DD statement

IVSIN DD statement

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

To ensure that the library data set is not updated by other jobs
while the IEBIMAGE job is running, DISP=OLD should be specified
on the SYSUTI DD statement.

Note that the system will only attempt to locate modules in
SYSl.IMAGELIB if the device is a 3800 printer.

Block size for the SYSIN data set should be 80 or a multiple of
80. Any blocking factor can be specified.

UTILITV CONTROL STATEMENTS

Operation Groups

IEBIMAGE is controlled by the following utility control
statements listed in Figure 74.

Continuation requirements for utility control statements are
discussed in ·Continuing Utility Control Statements" on page 5.

Statement Use

FCB

COPYMOD

TABLE

GRAPHIC

CHARSET

INCLUDE

NAME

OPTION

Creates a 3800 or 4248 forms control buffer module and
stores it in an image library.

Creates a 3800 copy modification module and stores it
in an image library.

Creates a 3800 character arrangement table module and
stores it in an image library.

Creates a 3800 graphic character modification module
and stores it in an image library.

Creates a 3800 library character set module and stores
it in an image library.

Identifies an existing image library module to be
copied and used as a basis for the new module.

Specifies the name of a new or existing library
module.

Specifies optional 3800 Model 3 or 4248 printer
compatibility, or COPYMOD overrun lines per inch for
an IEBIMAGE job.

Figure 74. Utility Control Statements for IEBIMAGE

IEBIMAGE utility control statements are grouped together to
create or print a library module. Each group of statements is
called an operation group. Your job's input stream can include
many operation groups. The operation groups (shown below
without operands) that can be coded arel

• To create or print an FCB modulel

[OPTION]
[INCLUDE]
FeB
NAME

IEBIMAGE Program 185

TNL GN26-1133 (30 Mar 84) to GC26-4065-l

FCB STATEMENT

Note: It is not possible to print a 4241 FCB module without
coding some valid operation on the FCB statement.

• To create or print a copy modification module.

[INCLUDE]
[OPTION]
COPYMOD
[additional COPYMOD statements]
NAME

• To create or print a character arrangement table module.

[INCLUDE]
[OPTION]
TABLE
NAME

• To create or print a graphic character modification module.

[INCLUDE]
[OPTION]
{GRAPHICIGRAPHIC, followed immediately by
data statements)
[additional GRAPHIC statements]
NAME

• To create or print a library character set module.

[INCLUDE]
[OPTION]
{CHARSETICHARSET, followed immediately by
data statements)
[additional CHARSET statements]
NAME

To print a module, you need only supply the function st.tement
(that is, FCB, COPYMOD, TABLE, GRAPHIC, or CHARSET) with no
operands specified, followed by the NAME statement naming the
module. However, it is not possible to print a 4248 FeB module
without coding some valid operation on the FCB statement.

The FCB statement specifies the contents of • forms control
buffer (FCB) module for the 3800, 3262 Model 5, or 4248 printer'
spacing codes (lines per inch), channel codes (simulated
carriage-control channel punches), and the size of the form.
For the 4248 printer, the FCB statement also specifies print
position for the horizontal copy feature and printer speed, and
whether the FCB image is to be used as a default.

The FCB statement must always be followed by a NAME statement,
and can only be preceded by an INCLUDE statement if DEVICE=4248
is specified on an OPTION statement.

An FCB statement with no operands specified, followed by a NAME
statement that identifies a 3800 FCB module in the image
library, causes the module to be formatted and printed. 3262
Model Sand 4248 FCB modules cannot be printed by the FCB
statement unless a valid operation is performed on them. To
build an FeB module, you code the FCB statement with at least
one operand. The format of a printed FCB module is shown in
nFCB Module Listingn on page 172.1.

116 MVS/370 Utilities

)

COPYMOD STATEMENT

)

TNL ON26-8133 (30 Mar 84) to OC26-4065-1

The format of the FCB statement iSI

Eh!tt.ll FCB ELPI={{lE,nJJE,{lE,nJJ ••• IJI

E,CH~={linAE,linA· •• JJE,CH~={linB ••• J ••• JJ

E,SIZE=lenathl

E,LINES=J.iDgJ

E,COPYP=positionJ

E,PSPEED=(LIMIHIN)J

E,DEFAULT=(YESI~)1

The COPYP, PSPEED, and DEFAULT parameters are valid only for a
4248 FCB module (not for the 3800 or 3262 Model 5).

A copy modification module consists of header information
followed by one or more modification segments. The header
information contains the module's name and length. Each
modification segment contains the text to be printed, identifies
the copy (or copies) the text applies to, and specifies the
position of the text on each page of the copy.

A COPYMOD statement specifies the contents of one of the
modification segments of a copy modification module. More than
one COPYMOD statement can be coded in an operation grouPJ all
COPYMOD statements so coded apply to the same copy modification
module.

IEBIMAGE analyzes the modification segments specified for a copy
modification module to anticipate line overrun conditions that
might occur when the module is used in the printer. A line
overrun condition occurs when the modification of a line is not
completed in time to print that line. The time available for
copy modification varies with the vertical line spacing (lines
per inch) at which the printer is being operated.

When IEBIMAGE builds a copy modification module from the user's
specifications, the program calculates an estimate of the time
the modification will require during the planned printing. If
the modification can be done in the time available for printing
a line at 12 LPI (lines per inch), it can also be done at 6 or 8
LPI (for the Modell), or 6, 8, or 10 LPI (for the Model 3).
(Note that 6, 8, 10, and 12 LPI are the only print densities
available on the 3800 Model 3 printer.) However, if the copy
modification module being built is too complex to be done in the
time available for printing a line at 6 LPI, it certainly cannot
be done at 8, 10 (for the Model 3 only), or 12 LPI. (Note that
at 10 and 12 LPI there is much less time available for printing
a line than at 6 LPI.)

When IEBIMAGE determines that a copy modification module is
likely to cause an overrun if it is used when printing at a
specified number of lines per inch, the program produces a
warning message to that effect. If the warning applies to 6
LPI, the overrun condition is also applicable to 8, 10 (for the
Model 3 only), and 12 LPI. If the warning applies to 8 LPI, the
condition is also applicable for 10 (for the Model 3 only) and
12 lPI. If the warning applies to 10 lPI, the condition also
applies to 12 LPI.

If you are planning to use a particular copy modification module
only while printing at 6 LPI, you can request suppression of the
unwanted warning messages for 8, 10 (for the Model 3 only), and
12 LPI by specifying the OPTION statement with 6 as the value of

IEBIMAOE Program 187

TABLE STATEMENT

the OVERRUN parameter. If you are planning to print only at 8
LPI, you can use the OPTION statement with OVERRUN = 8 to
request suppression of the unwanted warning messages for 10 (for
the Model 3 only) and 12 LPI. For more information on coding
OVERRUN, see "Using OVERRUN" on page 192.

For information about using your copy modification module, see
IBM 3800 Printina Subsystem Programmer's Guide. The copy
modification text can be printed using the same character size
or style, or one different from the size or style used to print
the data in the output data set.

The COPYMOD statement must always be followed by a NAME
statement or another COPYMOD statement and can be preceded by an
INCLUDE statement. When more than one COPYMOD statement is
coded, IEBIMAGE sorts the statements into order by line number
within copy number. A COPYMOD statement with no operands
specified, followed by a NAME statement that identifies a copy
modification module, is used to format and print the module.
The format of the printed module is shown under "COPYMOD Module
Listing" on page 174.

The format of the COPYMOD statement, when used to create a copy
modification module's segment, iSI

Ihb.IlJ COPVMOD COPIES=(starting-copyE,copiesJ),

LINES=(starting-lineE,~J),

POS=position,

TEXT=((E~J1,'~')E,(E~J!,'~')

The TABLE statement is used to build a character arrangement
table module. When a character arrangement table is built by
IEBIMAGE and an INCLUDE statement is specified, the contents of
the copied character arrangement table are used as a basis for
the new character arrangement table. If an INCLUDE statement is
not specified, each translate table entry in the new character
arrangement table module is initialized to X'FF', the graphic
character modification module name fields are set with blanks
(X'40'), and the first character set identifier is set to X'83'
(which is the Gothic 10-pitch set). The remaining identifiers
are set to X'OO'.

After the character arrangement table is initialized, IEBIMAGE
modifies the table with data specified in the TABLE statement.
character set identifiers, names of graphic character
modification modules, and specified translate table entries.
The character arrangement table, when built, must contain a
reference to at least one printable character. Only one TABLE
statement can be specified for each operation group. The TABLE
statement can be preceded by an INCLUDE statement and an OPTION
statement and must always be followed by a NAME statement.

A TABLE statement with no operands specified, followed by a NAME
statement that identifies a character arrangement table module
in the library, causes the module to be formatted and printed.
The TABLE statement should be preceded by an OPTION statement
with the DEVICE=3800M3 parameter for a 3800 Model 3. The format
of the printed character arrangement table module is shown under
"TABLE Module Listing" on page 176.

111 MVS/370 Utilities

)

GRAPHIC STATEMENT

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

The format of the TABLE statement iSI

El.I.b!!ll TABLE [CGMID=(setO[,~ ••• l)l

[,GCMLIST=[(gcml[,~ •• l)IDELETE)l

[,LOC=((~E,[~E,~lIFF)l)

The GRAPHIC statement specifies the contents of one or more of
the character segments of a graphic character modification
module. A graphic character modification module consists of
header information followed by from 1 to 64 character segments.
Each character segment contains

• The character's 8-bit data code, its scan pattern, and its
pitch (for the 3800 Model I)

• Six bytes of descriptive information and the 120-byte scan
pattern (for the 3800 Model 3)

By using the INCLUDE statement, you can copy an entire module,
minus any segments deleted using the DELSEG keyword. In
addition, you can select character segments from any module
named with the GCM keyword on the GRAPHIC statement. The
GRAPHIC statement can also specify the scan pattern and
characteristics for a new character.

The GRAPHIC statement must always be followed by a NAME
statement, another GRAPHIC statement, or one or more data
statements. The OPTION statement with the DEVICE parameter must
precede the GRAPHIC statement to create a graphic character
modification module in the 3800 Model 3 compatibility mode
module format. The GRAPHIC statement can be preceded by an
INCLUDE statement. More than one GRAPHIC statement can be coded
in the operation group. The operation group can include GRAPHIC
statements that select characters from existing modules and
GRAPHIC statements that create new characters. The GRAPHIC
statement, preceded by an INCLUDE statement, can be used to
delete one or more segments from the copy of an existing module
to create a new module.

A GRAPHIC statement with no operands specified, followed by a
NAME statement that identifies a graphic character modification
module, is used to format and print the module. When you
specify a graphic character modification module to be printed
for a 3800 Model 3, you must specify the OPTION statement with
the DEVICE parameter to ensure that the system assigns the
correct prefix (GRF2) to the graphic character modification
module name.

The format of the GRAPHIC statement, when it is used to select a
character segment from another graphic character modification
module, iSI

[labell GRAPHIC [REF=((segno[,xlocl)[,(segno[,xlocll •• l)

[,GCM=~]

IEBIMAGE Program 189

CHARSET STATEMENT

The format of the GRAPHIC statement, when it is used to specify
the scan pattern and characteristics of a newly-created
character, is:

[labell GRAPHIC ASSIGN=(~[,~l)

dati sta:temgo:ts

The CHARSET statement specifies the contents of one or more of
the character segments of a library character set module. A
library character set module consists of header information
followed by 64 character segments. Each character segment
contains the character's 6-bit code for a WCGM location, its
scan pattern, and its pitch. You can use the INCLUDE statement
to copy an entire module, minus any segments deleted using the
DELSEG keyword. In addition, you can use the CHARSET statement
to select character segments from any module named with a
library character set ID or the GCM keyword. The CHARSET
statement can also specify the scan pattern and characteristics
for a new character.

The CHARSET statement must always be followed by a NAME
statement, another CHARSET statement, or one or more data
statements. The CHARSET statement must be preceded by an OPTION
statement with the DEVICE parameter to create library character
set modules in the 3800 Model 3 compatibility mode module
format. The CHARSET statement can be preceded by an INCLUDE
statement. More than one CHARSET statement can be coded in the
operation group. The operation group can include CHARSET
statements that select characters from existing modules and
CHARSET statements that create new characters. The CHARSET
statement, preceded by an INCLUDE statement, can be used to
delete one or more segments from the copy of an existing module
to create a new module.

A CHARSET statement with no operands specified, followed by a
NAME statement that identifies a library character set module,
is used to format and print the module.

The format of the CHARSET statement, when it is used to select a
character segment from another module, is:

[labell CHARSET [REF=((~,sl2s)[,(~,~) ••• J)

[,[GCM=DAm!IID=~)lJ

The format of the CHARSET statement, when it is used to specify
the scan pattern and characteristics of a newly-created
character, is:

[~l CHARSET ASSIGN=(cloc[,pitchl)

data statgmeo:t:!

190 MVS/370 Utilities

INCLUDE STATEMENT

"\
,)

NAME STATEMENT

OPTION STATEMENT

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

When an IEBIMAGE operation group is used to create a new module,
the INCLUDE statement can identify an existing image library
module to be copied and used as a basis for the new module.
When the operation group is used to update an image library
module, the INCLUDE statement identifies the module to be
referred to and must be specified.

The format of the INCLUDE statement iSI

E .lJl.b.tll INCLUDE module name

[,DELSEG=(~E,~ ••• l)l

• When the INCLUDE statement is coded in an operation group,
it must precede any FCB, COPYMOD, TABLE, GRAPHIC, or CHARSET
statements.

• Only one INCLUDE statement should be coded for each
operation group. If more than one is coded, only the last
is used; the others are ignored.

• You can code an INCLUDE statement for an FCB module only if
the DEVICE=4248 parameter is specified on the OPTION
statement. Either 3211 format or 4248 format FCBs may be
included. IEBIMAGE attempts to locate the 4248 format FCB
first; if it is not found, IEBIMAGE looks for the 3211
format.

• You cannot copy a 3800 FCB module with INCLUDE.

The NAME statement can name a new library module to be built by
the IEBIMAGE program. The NAME statement can also specify the
name of an existing library module. The NAME statement is
required, and must be the last statement in each operation
group.

The format of the NAME statement iSI

I E.lJl.b.tll NAME· module nameE(Rll

The OPTION statement with the DEVICE=3800M3 parameter is
required to create library character set modules and graphic
character modification modules in a form usable on the 3800
Model 3. The OPTION statement with the DEVICE=3800M3 parameter
is optional when creating copy modification modules and
character arrangement table modules.

The OPTION statement with the DEVICE=4248 parameter is required
to create a forms control buffer module for the 3262 Model 5 or
4248 printer. DEVICE=4248 cannot be used to create any module
other than an FCB.

The OPTION statement with the OVERRUN parameter is used only in
a COPYMOD operation group and can be placed before or after any
INCLUDE statement for the group. The value in the OVERRUN
parameter specifies the greatest line density for which the user
wants the overrun warning message IEBA33I to be printed. See
"Using OVERRUN" on page 192 for information about overrun
conditions and suppression of overrun warning messages.

IEBIMAGE Program 191

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

Using OVERRUN

Notes Segment

1

Note(O)1 2

Note(1)2 3

Note(2)a 4

Note(2) 5

Note(3)" 6

Note(3) 7

Note(3) 8

Note(3) 9

The format of the OPTION statement iSI

E~J OPTION EOVERRUN=(OI618110112)J

EDEVICE=(3800M314248)J

When two parameters are specified, they may be listed in any
order and separated by a comma.

An effective use of the OPTION statement with the OVERRUN
parameter would be to determine the greatest print-line-density
(6, 8, 10, 12) at which the copy modification module will be
used, then specify that density in the OVERRUN parameter to
eliminate the warning messages for higher line densiti ...

The OPTION statement applies only to the operation group t~t
follows it. If used, the OPTION statement must be specified for
each operation group in the job input stream.

Figure 75 shows the listing of segments of a copy modification
module where an overrun warning was in order. Even if the
OPTION statement specifies OVERRUN=O and the overrun warning
message is not printed, a note is printed to the left of each
segment description for which an overrun is possible.

Initial Number Initial Number Initial NUlibar
cop~ of Line of Print of
Num er Copies Number Lines Position Character.

1 200 10 96 10 180

2 200 10 96 11 180

3 200 10 96 12 180

4 200 10 96 10 180

5 200 10 96 11 180

6 200 10 96 12 180

7 200 10 96 10 180

8 200 10 96 11 180

9 200 10 96 12 180

Figure 75. IEBIMAGE Listing of a COpy Modification Module with Overrun Notes

Notes to Figure 75:
I

2

192 MVS/370 Utilities

Note 0 indicates that, for segment 1, you might have a COpy
modification overrun if your are printing at 12 LPI.

Note 1 indicates that, for segments 2 and 3, you might ~ve
a copy modification overrun if you are printing at 8 LPI.

Note 2 indicates that, for segments 4 and 5, you might have
a copy modification overrun if you are printing at 8 or 12
LPI.

Note 3 indicates that, for segments 6, 7, 8, and 9, you
might have a copy modification over~un if you are printing
at 6, 8, or 12 LPI. In other words, you might have an
overrun at any LPI.

)

Parameters

ASSIGN

TNL GN26-8l33 (30 Mar 84) to GC26-4065-1

Factors used in determining a line overrun condition are.

•
•

Number of modifications per line

Number of segments per module

Combining COPYMOD segments reduces the possibility of a line
overrun condition.

For the algorithm for calculating when a copy modification
module might cause a line overrun condition, see Reference
Manual for the IBM 3800 Printing Subsystem.

Applicable
Control
statements

CHARSET

Description of Parameters

ASSIGN=(~[,2i!£bJ)
identifies a newly-created character and its
characteristics. The ASSIGN parameter
specifies the new character's 6-bit code and
its pitch. When IEBIMAGE detects the ASSIGN
parameter, the program assumes that all
following statements, until a statement
without the characters SEQ= in columns 25
through 28 is encountered, are data
statements that specify the character's scan
pattern.

cloc
specifies the character's 6-bit code
for a WCGM location and can be any
value between X'OO' and X'3F'. ~ is
required when ASSIGN is coded .

.ei.:Wl
specifies the character's horizontal
size and is one of the following
decimal numbers I 10, 12, or 15. If
Ei!£b is not specified, the default is
10.

At least one data statement must follow a
CHARSET statement containing the ASSIGN
parameter.

IEBIMAGE Program 193

Parameters

ASSIGN

CGMID

APplicable
Control
statements

GRAPHIC

TABLE

194 MVS/370 Utilities

Description of Parameters

ASS!GN=(~r,eii£hJ)
identifies a newly-created character and it.
characteristics. The ASSIGN parameter
specifies the new character's 8-bit data
code and its pitch. When IEBIMAGE detects
the ASSIGN parameter, it assumes that all
following statements, until a statement
without the characters SEQ= in columns 2S
through 28 is encountered, are data
statements· that specify the character's scan
pattern.

~
specifies the character's 8-bit data
code, and can be any value between
X'OO' and X'FF'. You should ensure
that ~ identifies a translate table
entry that points to a character
position in a WCGM (that is, the
translate table entry doesn't contain
X'FF'). The ~ is required when
ASSIGN is coded.

eii£h
specifies the character's horizontal
size and is one of the decimal numbers
10, 12, or 15. If eii£h is not
specified, the default is 10.

At least one data statement must follow a
GRAPHIC statement containing the ASSIGN
parameter.

CGM!D=(~r,~ ••• J)
identifies the character sets that are to be
used with the character arrangement table.
(The IBM~supplied character sets are
described in IBM 3800 Printing Subsystem
Programmer's Guide.) When CGMID is
specified, all character set identifiers are
changed. If only one character set is
specified, the other three identifiers ara
set to X'OO'.

is a I-byte identifier of a character
set. Up to four character set
identifiers can be specified; setO
identifies the character set that is to
be loaded into the first writable
character generation module (WCGM),
setl is loaded into the second WCGM,
etc. You should ensure that the
character set identifiers are specified
in the proper sequence, so that they
are coordinated with the translate
table entries.

For the character set identifiers, see II!
3800 Printing Subsystem Programmer's Gyide.

Applicable
Control

'ar ... ters statements

CHX FCB

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

Description of Parameters

CHX=(1inAE,~ ••• J)
specifies the channel code (or codes) and
the line number (or numbers) to be skipped
to when that code is specified.

CH~

~

specifies a channel code, where ~ is a
decimal integer from 1 to 12.

specifies the line number of the print
line to be skipped to, and is expressed
as a decimal integer. The first
printable line on the page is line
number 1.

The value of ~ cannot be larger than
the line number of the last printable
line on the form.

Only one channel code can be specified for a
print line. However, more than one print
line can contain the same channel code.

conventions:

• Channel 1 is used to identify the first
printable line on the form. The lob
entry subsystem and the CLOSE routines
for direct allocation to the 3800 with
BSAM or QSAM require a channel 1 cod.
even when the data being printed
contains no skip to channell.

• Channel 9 is used to identify a sp.cial
line. To avoid I/O interrupts that ar.
caused by use of channel 9, count lines
to determine the line position.

• Channel 12 is used to identify the last
print line on the form to be used. To
avoid I/O interrupts that are caused by
use of channel 12, count lines to
determine the page size.

• Use of an FCB that lacks a chann.l cod.
to terminate a skip operation causes a
data check at the printer when the
corresponding skip is issued. This data
check cannot be blocked.

If INCLUDE is specified, values for CH~ may
be taken from the included FCB module. Se.
the discussion under module nam ••

IEBIMAGE Program 195

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

Parameters

COPIES

COPYP

Applicable
Control
statements

COPYMOD

FCB

196 MVS/370 Utilities

Description of Parameters

COPIES=(starting-copv[,copieslJ
specifies the starting copy number and the
total number of copies to be modified.

starting-copy
specifies the starting COpy number and
is expressed as a decimal integer from
Ito 255. The starting-copy value is
required.

copies
specifies the number of copies that are
to contain the modifying text and is
expressed as a decimal integer from 1
to 255. When copies is not specified,
the default is 1 copy.

The sum of starting-copy and copies cannot
exceed 256 (255 for JES3).

COPYP=position
specifies the position (the number of
character spaces from the left margin) at
which the horizontal copy is to begin
printing.

position
is a decimal number from 2 to 168 which
indicates where the horizontal COpy
printing will start. If your 4248
printer has only 132 print positions,
the maximum number you should specify
here is 132.

If COPYP=O is coded, any COPYP value
previously set in an included FCB
module is overridden, and the
horizontal copy feature is turned off.
You may not specify COPYP=l.

If INCLUDE is specified, and the included
FCB module is formatted for a 4248 printer
only, the default is the COPYP value for the
included FCB module. Otherwise, if no COPyp.
value is specified, the default value is o.
COPYP is not valid for 3800 FCB modules.
COPYP is ignored for 3262 Model S FCB
modules.

The COPYP value specified affects the
maximum amount of data that may be sent to
the printer. Channel programs that are
executed with the horizontal copy feature
activated must set the suppress incorrect
length CSlI) bit and have a data length that
does not exceed the size of either one half
the number of print positions or the smaller
of the two copy areas.

)

DEFAULT

DELETE

Applicable
Control
stat.ants

GRAPHIC
CHARSET

FCB

TABLE

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

Description of Parameters

data statements
describe the design of the character as it
is represented on a character design form.
For details of how to design a character and
how to use the character design form, see
IBM 3800 Printing Subsystem Proarammer's
.G.Yi..dJl. Each data statement represen.ts a
line on the design form. Each nonblank line
on the design form must be represented with
a data statement; a blank line can also be
represented with a data statement. You can
code up to 24 (for 3800 Modell) or 40 (for
3800 Model 3) data statements to describe
the new character's pattern. On each
statement, columns 1 through 18 (for Model
1) or 24 (for Model 3) can contain nonblank
grid positions when the character is
10-pitch. Any nonblank character can be
punched in each column that represents a
nonblank grid position. Columns 1 through
15 (for Modell) or 20 (for Model 3) can
contain nonblank grid positions when the
character is 12-pitch. Columns 1 through 15
(for Modell) or 1 through 16 (for Model 3)
can contain nonblank grid positions when the
character is IS-pitch.

DEFAULT=(VESltml
specifies whether this 4248 FCB image is to
be treated as the default image by OPEN
processing. Default images are used by the
system for jobs that do not request a
specific image.

If a job does not request a specific FCB
image, and the current image is not a
default, the operator will be prompted for
an FCB image at OPEN time.

If INCLUDE is used to copy a 4248 FCB module
that was originally specified as a default
image, the new module will also be
considered a default image unless DEFAULT=NO
is now specified.

DEFAULT is not valid for 3800 FCB images.

DELETE
specifies that all graphic character
modification module name fields are to be
set to blanks.

IEBIMAGE Program 197

TNL GN26-8l33 (30 Mar 84) to GC26-406S-l

Parameters

DELSEG

DEVICE

GCM

Applicable
Control
statements

INCLUDE

OPTION

CHARSET
GRAPHIC

198 MVS/370 Utilities

Description of Parameters

DELSEG=(~[,~ ••• l)
specifies the segments of the copied module
that are to be deleted when the module is
copied. Segment numbers can be specified in
any order. In this parameter, segment 1 is
used to refer to the first segment of the
module. When you code the DELSEG parameter,
you should use a current listing of the
module's contents to ensure that you are
correctly identifying the unwanted segments.

You can code the DELSEG parameter only when
the named module is a copy modification
module, a graphic character modification
module, or a library character set module.

DEV!CE=[3800M3 I 4248]
specifies printer compatibility mode module
formats and processing considerations.

3800"3

4248

specifies 3800 Model 3 compatibility.

specifies that the module created or
modified with the FCB statement should
be formatted for the 3262 Model 5 or
4248 printer. See Figure 62.1 on page
172 for the format of the 4248 FCB
module.

If the DEVICE parameter is omitted, modules
are created for the 3800 Modell.

GCM=Dil!!!.!l
can be coded when the REF parameter is coded
and identifies the graphic character
modification module that contains the
character segments referred to by the REF
parameter.

specifies the 1- to 4-character
user-specified name of the graphic
character modification module.

If GCM is coded, REF must also be coded.
GCM should not be coded with ID.

When neither GCM nor ID is coded, the
segments are copied from the IBM-supplied
World Trade National Use Graphics graphic
character modification module.

)
Applicable
Control

Parameters statements
GCMLIST TABLE

ID CHARSET

D.scription of Parameters
ICMLIST=(A~l,~ ••• J)

names up to-fOur graphic character
modification modules to be associated with
the character arrangement table. When
OCMLIST is specified, all graphic character
Modification module name fields are changed
(if only one module nama is specified, the
other three name fields are set to blanks).

is the 1- to 4-character name of the
graphic character modification module.
Up to four modula names can be
specified. The name is put into the
character arrangement table, whether or
not a graphic character modification
module currently exists with that name.
However, if tha module doesn't exist,
IEBIMAGE issues a warning message to
the user. The character arrangement
table should not be ~sed unless all
graphic character modification modules
it refers to are stored in an image
library.

ID=~
can be coded when the REF parameter is coded
and idantifies a library character set that
contains the character segments referred to
by tha REF parameter.

spacifies the 2-haxadecimal-digit 10 of
the library character set module. The
second digit must be odd, and '7F' and
'FF' ara not allowed.

IO should not be coded with OCM.

When neither ID nor OeM has been coded, the
sagments are copied from the IBM-supplied
World Trade National Use Graphics graphic
character modification module.

IEBIMAGE Program 199

TNL GN26-8l33 (30 Mar 84) to OC26-4065-l

Parameters

LINES

LINES

Applicable
Control
statements

COPYMOD

FCD

200 MVS/370 Utilities

Description o~ Parameters

LINES=(startina-lineE,linAaJJ
specifies the $tarting line number, and tha
total number of lines to be modified.

starting-line
specifies the starting line number, and
is expressed as a decimal integer from
1 to 132. The starting-line value is
required.

liJ:lg
specifies the number of lines that ara
to contain the modification segment's
text, and is expressed as a decimal
integer from 1 to 132. When lines is
not specified, the default is 1 line.

The sum of starting-line and lines cannot
exceed 133. If the sum exceeds the number
of lines specified for the form size (see
the nFCB Statementn), the modifying text is
not printed on lines past the end of the
form.

LINES=l.i.n..u
specifies the total number of lines to be
contained in an FeB module .

.l:inY
is the decimal number, from 1 to 256,
which indicates the number of lines on
the page.

When the LINES, SIZE, and LPI parameters ara
specified in the FCB statement, each
parameter value is checked against the
others to ensure that there are no
conflicting page-length specifications.

When LINES is not specified, the form length
defaults to the value of LPI multiplied by
the value of SIZE, in inches. If no SIZE
parameter is specified, LINES defaults to 11
times the value of LPI.

If INCLUDE is specified, the value for LINES
may be taken from the included FCB module.
See the discussion under module name.

)
LOC

APplicable
Control
statements

TABLE

Description of Parameters
LOC=((~[,[~[,u.:t.n..CllIEE)l)

E-;r-~. :-:-r. .. n--
specifies values for some or all of the 256
translate table entries. Each translate
table entry identifies one of 64 character
positions within one of the WCGMs.

~
is an index into the translate table,
and is specified as a hexadecimal value
from X'OO' to X'FF'; ~ identifies a
translate table entry, not the contents
of the entry.

identifies one of the 64 character
positions within a WCGM, and is
specified as a hexadecimal value
between X'OO' and X'3F'. ~ and
u.:t.n..Cl specify the contents of the
translate table entry located by ~.
When ~ is not specified, the default
is X'FF', an invalid character. You
can specify the same ~ and set no
values for more than one ~.

ui.D.2
identifies one of the WCGMs, and is
specified as a decimal integer from 0
to 3. ~ and ui.D.2 specify the
contents of the translate table entry
located by~. When ~ is not
specified, the default is o. The ~
cannot be specified unless ~ is-aISO
specified. You can specify the same
~ and u.:t.n..Cl values for more than one
~.

IEBIMAGE Program 201

TNL ON26-8l33 (30 Mar 84) to OC26-4065-l

APplicable
control

Parameters statements

LPI FCB

202 MVS/370 Utilities

D.scription of Parameters

LPI=((1E,n)JE,(lE,n)J···)1
specifies the number of lines per inch and
the number of lines to be printed at that
line spacing.

1

n

specifies the number of lines par inch,
and can be 6, 8, or 12 (for the 3800
Modell); 6 or 8 (for the 3262 Model 5
or 4248); or 6, 8, 10, or 12 (for the
3800 Model 3).

specifies the number of lines .t • line
spacing of 1. When the printer uses
common-use paper sizes, t is • decimal
value from 1 to 60 when is 6, from 1
to 80 when 1 is 8; from to 100 when 1
is 10; and from 1 to 120 when 1 is 12.

When the printer uses ISO paper sizes,
n is a value from 1 to 66 when 1 is 61
from 1 to 88 when 1 is 81 from 1 to 110
when 1 is 10; or from 1 to 132 when 1
is 12. For the paper sizes, sea ~
3800 Printing Subsystem Proarammtr s
~.

It is the user's responsibility to ensure
that the total number of lines specifiad
results in a length that is a multiple of
1/2 inch.

The total number of lines cannot rasult in a
value that exceeds the usable length of the
form. For the 3800, do not specify coding
for the top and bottom 1/2 inch of tha form,
IEBIMAGE does this for you.

When the SIZE, LINES, and LPI paramaters are
specified in the FeB statement, each
parameter value is checked against tha
others to ensure that there are no
conflicting page-length specifications. For
example, SIZE=3S specifies a 3-1/2 inch
length; acceptable LPI values for tha 3800
cannot define more than the printable 2-1/2
inches of this length.

When you specify more than one (lLn) pair, 1
must be specified for each pair and D must
be specified for each pair except the last.

When you specify 12 lines per inch, use one
of the condensed character sets. If other
character sets are printed at 12 lines per
inch, the tops or bottoms of the characters
may not print.

) Paramaters

APplicable
Control
statements

LPI FCB
(continued)

modyll
nama

INCLUDE
NAME

TNL GN26-8l33 (30 Mar 84) to GC26-4065-l

Description of Parameters

When only 1 is specified, or when 1 is the last
parameter in the LPI list, all remaining lines on
the page are at 1 lines per inch.

When LPI is not specified, all lines on the page
are at 6 lines per inch. I

If the total number of lines specified is less
than the maximum number that can be specified,
the remaining lines default to 6 lines per inch.

If INCLUDE is specified, the value for LPI may be
taken from the included FCB module. See the
discussion under module name.

module name
names or identifies a library module. The
module name is 1 to 4 alphameric and
national ($, I, and a) characters, in any
order, or, for a library character set
module, a 2-character ID that represents two
hexadecimal digits (0-9, A-F), the second
digit being odd. Note that 7F and FF cannot
be used.

For a 3800 INCLUDE operation, the named
module must be the same type as the module
being created.

However, for the 4248 printer, if the named
FCB module is not found to exist with the
prefix FCB4, an existing 3211 FCB module
(prefix FCB2) with the same module name ~ill
be used. In this case, the values specified
for the LINES, SIZE, CH~, and LPI parameters
on the FCB statement will default to the
values previously specified in the included
module if the new values are not compatible
with the 3211 printer. If the 3211 module
was a default image, the 4248 module will
also be a default image unless the DEFAULT
parameter is specified as NO.

IEBIMAGE Program 203

Parameters

OVERRUN

POS

Applicable
Control
statements

OPTION

COPYMOD

204 MVS/370 Utilities

Description of Paramatars

OVERRUN=[OI618110IlZ1
specifies the greatest number of line. p.~
inch for which message IEBA33I i. to ~e
printed for a COPYMOD operation. For
example, OVERRUN=8 allows the mess •• e for 6
and 8 lines per inch, but suppresses it for
10 and 12 lines per inch. Specifying
OVERRUN=O suppresses messa.. IEBA331 for
every case. If you specify OVERRUN=12, nofte
will be suppressed.

OVERRUN=lO is valid only for the 3810 M.del
3.

If the OPTION statement is omitted, the
OVERRUN parameter default value is 12, aft"
messages are not suppressed. If the DvERIUI
parameter is omitted, the default value i.
also 12.

If the parameter specification is invalid
(for instance, if OVERRUN=16 is specified),
the entire operation group does not camplet·e
successfully.

For details of using the OVERRUN parameter
with COPYMOD, see ·Using OVERRUN" on pa.e
192.

POS=position
specifies the starting print position (the
number of character positions from the left
margin) of the modifying text.

position
specifies the starting print positio.n
and is expressed as an integer from I
to 204. See the restriction notecl f.,.
the TEXT parameter below.

The maximum number of characters that can
fi t in a print line depends on the pitch o·f
each character and the width of the form.

For the maximum number of characters that
can fit in a print lin. for each form width"
see IBM 3800 PrintinaSubsystem Proarammer"
1b!i..d.!l.

)
Applicable
Control

Parameters Stat •• ent.

PSPEED FCB

(R) NAME

TNl GN26-8133 (30 Mar 84) to GC26-406S-1

Description of Parameters

PSPEED=[LIMIHIN)

(R)

specifies the print speed for the 4248
printer. Note that printer speed affects
the quality of printingl lOW speed provides
the best quality.

L Dr LOW
sets the printer speed to 2200 line.
per minute (lPM).

M Dr MEDIUM
sets the printer speed to 3000 lPM.

H Dr HIGH
sets the printer speed to 3600 lPM.

N Dr NOCHANGE
indicates that the current printer
speed should remain unchanged.

If INCLUDE is specified, and the included
module is formatted for a 4248 printer only,
the default is the PSPEED value for the
included FCB module. Otherwise, the default
is NOCHANGE (or N).

PSPEED is not valid for 3800 FCB modules.
PSPEED is ignored for 3262 Model 5 FCB
modules.

indicates that this module is to b. replaced
by a new module with the same name, if it
exists. (R) must be coded in parentheses.

IEBIMAGE Program 205

Parameters

REF

Applicable
Control
statements

CHARSET

206 MVS/370 Utilities

Description o~ Parameters

REF=((segno,cloc)[,(segno,cloc) •••])
identifies one or more character segments
within an existing graphic character
modification module or library character set
module. If the reference is to a GCM, the
scan pattern and pitch of the character
referred to are used, and a 6-bit WCGM
location code is assigned. If the reference
is to a character in a library character
set, the entire segment, including the 6-bit
WCGM location code, is used, unless the .£l..G
subparameter is specified for that segment.
The REF parameter cannot be used to change a
character's pitch or scan pattern.

segno
is the segment number, a decimal
integer between I and 999. When a
character segment is copied from the
IBM-supplied World Trade National Use
Graphics graphic character modification
module, segno can be greater than 64.
When the character segment is copied
from a graphic character modification
or library character set module built
with the IEBIMAGE program, segno is a
number from 1 to 64.

specifies a 6-bit code that points to a
WCGM location, and can be any value
between X'OO' and X'3F'. When a
library character set segment is
referred to, if cloc is not specified,
the character's 6-bit code remains
unchanged when the segment is copied.
If a graphic character modification
segment is referred to, cloc must be
specified.

The REF parameter can be coded in a CHARSET
statement that includes the ASSIGN
parameter.

Parameters

REF

SEQ

Applicable
Control
statements

GRAPHIC

CHARSET
GRAPHIC

Description of Parameters

REF=((segno[,xloc])[,(segno[,~l) ••• l)
identifies one or more character segments
within an existing graphic character
modification module. Each character segment
contains the scan pattern forca character
and the 6 bytes of descriptive information
(used to locate its translate table entry).
The 6 bytes of descriptive information can
be respecified with the ~ subparameter.
The REF parameter cannot be used to change a
character's pitch or scan pattern.

segno
is the segment number, a decimal
integer between 1 and 999. When a
character segment is copied from the
IBM-supplied World Trade National Use
Graphics graphic character modification
module, ~ can be greater than 64.
When the character segment is copied
from a graphic character modification
module built with the IEBIMAGE program,
segno is a number from 1 to 64.

specifies an 8-bit data code for the
character, and can be any value between
X'OO' and X'FF'. You should ensure
that xloc identifies a translate table
entry that points to a character
position in the WCGM (that is, the
translate table entry doesn't contain
X'FF'). If xloc is not specified, the
character's 8-bit data code remains
unchanged when the segment is copied.

The REF parameter can be coded in a GRAPHIC
statement that includes the ASSIGN
parameter.

SEQ=n.n
specifies the sequence number that must
appear in columns 25 through 30 of the data
statement and identifies the line as a data
statement; nn specifies a line number
(corresponding to a line on the character
design form) and is a 2-digit decimal number
from 01 to 40.

IEBIMAGE Program 207

TNl GN26-8133 (30 Mar 14) to GC26-4065-1

Applicable
Control

Parameters statements

SIZE FCB

208 MVS/370 Utiliti.s

Description of Parameters

SIZE=lenath
specifies the vertical length of the !or~,
in 10ths of an inch. See ~"9~~~~~u. or e

e 00. The
complete length of the form is specified
(for example, with the 3800, SIZE=110 for an
II-inch form) even though the amount of
space available for printing is reduced by
the 1/2-inch top and bottom areas where no
printing occurs.

When the SIZE, LINES, and LPI keyWords are
specified in the FeB st.tement, each
parameter value is checked against the
others to ensure that there are no
conflicting page-length specifications. For
example, SIZE=35 specifies a 3-1/2 inch
lengthl acceptable LPI values for the 3100
cannot define more than the printable 2-1/2
inches of this length.

When SIZE is not specified, the form length
defaults to the value specified in LINES.
If LINES is not specified, SIZE is assumed
to be 11 inches (110).

If INCLUDE is specified, the value for SIZE
may be taken from the included FCB module.
See the discussion under mpdul. na •••

1
I 'ar ... ters

TEXT

Applicable
Control
stat.mants
COPYMOD

Dascription of Parameters

TIXT=((E~Jil'!§x1')E,([~Jil'~') ••• J)
specifies the modifying text. The text is
positioned on the form based on the LINES
and POS parameters and replaces the output
data set's text in those positions.

~

specifies a duplication factor (that
is, the number of times the text is to
be repeated). The d is expressed as a
decimal integer from I to 204. If d is
not specified, the default is 1.

specifies the form in which the text is
entered a C for character, or X for
hexadecimal. The t is required.

specifies the text and is enclosed in
single quotation marks.

If the text type is C, you can specify
any valid character. Blanks are valid
characters. A single quotation mark is
coded as two single quotation ma~ks.
You are not allowed to specify a
character that results in a X'FF'. If
the text type is X, the text is coded
in increments of two characters that
specify values between X'OO' and X'FE'.
You are not allowed to specify X'FF'.

The sum of the starting print position (see
the POS parameter) and the total number of
text characters cannot exceed 205. If the
width of the form is less than the amount of
space required for the text (based on
character pitch, starting position, and
number of characters), characters are not
printed past,the right margin of the form.

If a text character specifies a character
whose translate table entry contains X'FF',
the printer sets the Data Check error
indicator when the copy modification module
is loaded. This error indicator can be
blocked.

1111'." IXAMPLES
The following examples illustrate some of the uses of IEBIMAGE.
Figure 76 can be used as a quick-reference guide to the examples
that follow.

In most cases, examples for the 3800 Model 3 can be changed to
3800 Model 1 examples by deleting the OPTION DEVICE=3800M3
statement and specifying the OVERRUN parameter equal to a number
other than 10. See the parameter charts for restrictions on the
LPI parameter and on data statements.

IEBIMAGE Program 208.1

TNL GN26-8133 (30 Mar 84) to GC26-406S-1

Module Created Printer Comments Example

FCB 3800 Model II-inch form 1
1

FCB 3800 Model 5-1/2 inch form, replaces existing 2
1 SYSl.IMAGELIB member. Multiple

channel codes specified.

FCB 3800 Model 3-1/2 inch form, replaces existing 3
1 SYSI.IMAGELIB member. Varied vertical

spacing.

FCB 3800 Model 7-inch form, varied vertical spacing. 4
I

FCB 3800 Model 12-inch ISO form. Replaces 5
1 IBM-supplied module.

FCB 3800 Model 7-1/2 inch ISO form. Varied vertical 6
3 spacing.

FCB 4248 II-inch form, based on existing 6A
module. New print speed and copy
position specified.

COPYMOD 3800 Model 4 modification segments. 7
I

COPYMOD 3800 Model Existing module used as basis for new 8
3 module. OVERRUN specified.

TABtE 3800 Model IBM-supplied module modified to 9
3 include another character.

TABLE 3800 Model Existing module used as basis for new 10
3 module. Pitch changed.

TABLE 3800 Model Existing module used as basis for new 11
1 module. Includes user-designed

characters of GRAPHIC module.

TABLE 3800 Model Existing module used as basis for new 12
3 module. New module deletes all

GRAPHIC references and resets
translation table entries.

GRAPHIC 3800 Model Entire IBM-supplied module printed. 13
1

GRAPHIC 3800 Model Segments copied from IBM-supplied 14
3 module.

GRAPHIC 3800 Model New module contains a user-designed 15
3 character. Existing character

arrangement (TABLE) modified to
include new character.

GRAPHIC 3800 Model Segments copied from existing module. 16
1 User-designed character created.

GRAPHIC 3800 Model New GRAPHIC module contains a 17
3 user-designed character. Existing

character arrangement (TABLE) modified
to include new character. COPYMOD
created to print new character.
Result tested.

Figure 76 (Part I of 2). IEBIMAGE Example Directory

208.2 MVS/370 Utilities

Module created Printer comments Example

CHARSET 3800 Model Entire library character set with scan 18
1 patterns printed.

CHARSET 3800 Model Segments copied from IBM-supplied 19
3 GRAPHIC module.

CHARSET 3800 Model New module contains a user-designed 20
3 character. Existing character

arrangement (TABLE) modified to
include new character.

CHARSET 3800 Model Segments copied from existing module. 21
1 User-designed character created.

Figure 76 (Part 2 of 2). IEBIMAGE Example Directory

EXAMPLE 1: BUILDING A NEW 3800 FORMS CONTROL BUFFER MODULE

3800 Model 1

In this example, the vertical spacing and channel codes for an
1!-inch form are specified, and the module is added to the
SYS1.IMAGElIB data set as a new member.

//FCBMODI JOB
// EXEC PGM=IEBIMAGE
//SYSUTl DD DSNAME=SYS1.IMAGElIB,DISP=OlD
//SYSPRINT DD SYSQUT=A
//SYSIN DD *

FCB CH1=1,CH12=80,lPI=8
NAME IJ

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OlD to ensure that no
other job can modify the data set while this job is
executing.

• CH1=! specifies channel 1 code for line 1, allowing for
positioning at line 1.

• CH12=80 specifies channel 12 code for line 80, allowing for
positioning at line 80 and a unit exception indication at
line 80 (the last printable line on the page.)

• lPI=8 specifies that the entire form is to be at a vertical
spacing of 8 lines per inch. Because the SIZE parameter is
omitted, the form length defaults to 11 inches. Because
there are 10 inches of printable space in an 11-inch form,
80 lines are printed at 8 lines per inch.

• The name of the new FeB module is IJ, and it is stored as a
member of the SYSI.IMAGElIB data set.

IEBIMAGE Program 209

I EXAMPLE 2:

3800 Model 1

REPLACING A 3800 FORMS CONTROL BUFFER MODULE

In this example, the size and channel codes for a 5-1/2 inch
form are specified, and the module is added to the SYS1.IMAGElIB
data set as a replacement for an existing member. The new
module is added to the end of the data set; the name in the data
set's directory is updated so that it points to the new module;
the old module can no longer be accessed through the data set's
directory.

//FCBMOD2 JOB
// EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGElIB,DISP=OlD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

FCB CH1=(1,7,13,20),CH12=26,SIZE=55
NAME S5S(R)

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OlD to ensure that no
other job can modify the data set while this job is
executing.

• CH1=(1,7,13,20) specifies channell code for printable line
1, line 7, line 13, and line 20.

• CH12=26 specifies channel 12 code for printable line 26.

• SIZE=55 specifies the length of the form as 55 tenths of an
inch, or 5-1/2 inches.

• Because the lPI parameter is omitted, the vertical spacing
defaults to 6 lines per inch. Because there are 4-1/2
inches of printable lines in a 5-1/2 inch form, there are 27
print lines on this form.

• The name of the FCB module is S55, and it replaces an
existing FCB module of the same name. The new FCB module is
stored as a member of the SYS1.IMAGElIB data set.

EXAMPLE 3: REPLACING A 3800 FORMS CONTROL BUFFER MODULE

3800 Model I

In this example, the vertical spacing, channel codes, and size
for a form are specified, and the module is added to the
SYSl.IMAGElIB data set as a replacement for an existing member.
The new module is added to the end of the data set; the name in
the data set's directory is updated so that it points to the new
module; the old module can no longer be accessed through the
data set's directory.

210 MVS/370 Utilities

//FCBMOD3
1/
//SYSUTI
//SYSPRINT
IISYSIN

JOB
EXEC PGM=IEBIMAGE
DO DSNAME=SYS1.IMAGElIB,DISP=OlD
DO SYSOUT=A
DO *

FCB CH1=1,CH2=4,CH5=11,SIZE=35,
lPI=«6,2),(8,3),(6,4),(8,9»

NAME Hl(R)

The control statements are discussed below.

12

X

• The SYSUT1 DO statement includes DISP=OlD to ensure that no
other job can modify the data set while this job is
executing.

• CH1=1 specifies channell code for printable line 1.

• CH2=4 specifies channel 2 code for line 4.

• CH5=11 specifies channel 5 code for line 11.

• lPI=«6,2),(8,3),(6,4),(8,9» specifies vertical spacing for
the first 18 printable lines in the form:

(6,2) specifies lines 1 through 2 are at a vertical
spacing of 6 lines per inch, and take up 2/6 inch.

(8,3) specifies lines 3 through 5 are at a vertical
spacing of 8 lines per inch, and take up 3/8 inch.

(6,4) specifies lines 6 through 9 are at a vertical
spacing of 6 lines per inch, and take up 4/6 inch.

(8,9) specifies lines 10 through 18 are at a vertical
spacing of 8 lines per inch, and take up 1-1/8 inch.

• SIZE=35 specifies the length of the form as 35 tenths of an
inch, or 3-1/2 inches. Because there are 2-1/2 inches of
printable space on a 3-1/2 inch form, and since the lPI
parameter specifies vertical spacing for 2-1/2 inches of
lines, the vertical spacing of all lines in the form is
accounted for.

• The name of the FCB module is Hl, and it replaces an
existing module of the same name. The new FCB module is
stored as a member of the SYS1.IMAGElIB data set.

EXAMPLE 4: BUILDING A NEW 3800 FORMS CONTROL BUFFER MODULE

3800 Model 1

In this example, the vertical spacing, channel codes, and length
of a form are specified, and the module is added to the
SYS1.IMA.GElIB data set as a new member.

IEBIMAGE Program 211

72
//FCBMOD4
//
//SYSUTI
//SYSPRINT
//SYSIN

JOB
EXEC PGM=IEBIMAGE
DD DSNAME=SYSl.IMAGELIB,DISP=OLD
DD SYSOUT=A
DO *

FCB CHl=I,CH6=33,SIZE=70,
LPI=«8,32),(12,2»

NAME TGT

The control statements are discussed below.

x

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• CHl=1 specifies channel 1 code for printable line 1.

• CH6=33 specifies channel 6 code for line 33.

• LPI=«8,32),(12,2» specifies that the first 32 printable
lines of the form are to be at a vertical spacing of 8 lines
per inch, and the next 2 printable lines are to be at a
vertical spacing of 12 lines per inch.

• SIZE=70 specifies that the length of the form is 70 tenths
of an inch, or 7 inches. Because there are 6 inches of
printable lines in a 7-inch form and the LPI parameter
specifies 32 lines at 8 lines per inch, or 4 inches, and 2
lines at 12 lines per inch, or 1/6 inch, the vertical
spacing for the remaining 1-5/6 inches defaults to 6 lines
per inch.

Therefore, the form consists of lines 1 through 32 at 8
lines per inch, lines 33 through 34 at 12 lines per inch,
and lines 35 through 45 at 6 lines per inch, with channel
codes at line 1 and line 33.

• The name of the new FCB module is TGT; it is stored as a
member of the SYSl.IMAGELIB data set.

EXAMPLE 5: REPLACING THE 3800 FORMS CONTROL BUFFER MODULE STD3

3800 Model 1

In this example, an FCB module is defined that uses ISO paper
sizes, replacing the IBM-supplied module named STD3. This must
be done before the dump-formatting routines that print
high-density dumps can print them at 8 lines per inch on that
printer.

//FCBMOD5 JOB,
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYSl.IMAGElIB,DISP=OlD
//SYSPRINT DD SYSOUT=A
//SYSIN DO *

FCB CHl=1,CHI2=88,LPI=(8,88),SIZE=120
NAME ST03(R)

212 MVS/370 Utilities

)

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• CHI=1 specifies channel I code· for printable line II CH12=88
specifies channel 12 code for line 88.

• LPI=C8,88) specifies that all 88 printable lines of the form
are to be at a vertical spacing of 8 lines per inch.

• SIZE=120 specifies that the length of the form is 120 tenths
of an inch, or 12 inches, which is the longest ISO paper
size.

• The name of the new FCB module is STD3, and it is to replace
the existing module of that same name on SYSI.IMAOELIB.

EXAMPLE 6: BUILDING A NEW 3800 FORMS CONTROL BUFFER MODULI FOR ADDITIONAL ISO PAPER
SIZIS

3100 Modal 3

In this example, an FCB module is defined that uses ISO paper
sizes and has the ISO Paper Sizes Additional Feature installed.

//FCBMOD6
//
//SYSUTI
//SYSPRINT
//SYSIN

JOB
EXEC PGM=IEBIMAGE
DD DSNAME=SYSl.IMAGELIB,DISP=OLD
DD SYSOUT=A
DD *

FCB CHl=1,CH12=74,SIZE=75,
LPI=CCIO,35),(12,4),CIO,35),C6,1»

NAME ARU

The control statements are discussed below.

72

x

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• CHl=l specifies channel 1 code for line 1, allowing for
positioning at line 1.

• CH12=74 specifies channel 12 code for line 74, allowing for
positioning at line 74 and a unit exception indication at
line 74 (the last printable line on the page.)

• LPI=((lO,35),(12,4),CIO,35),C6,1» specifies vertical
spacing for the entire printable area on the form. The last
printable line on the form must have vertical spacing of 6
lines per inch.

• SIZE=75 specifies the length of the form as 75 tenths of an
inch, or 7-1/2 inches, although the printable area is 7-1/3
inches.

• The name of the new FCB module is ARU, and it is stored as a
member of the SYSl.IMAGELIB data set.

IEBIMAGE Program 213

TNL GN26-8133 (30 Mar 84) to GC26-406S-1

EXAMPLE 6A: BUILDING A 4248 FORMS CONTROL BUFFER MODULE

In this example, a new 4248 default FCB module is built using an
existing FCB module as a model. The new module, NEWl, is added
to SYSl.IMAGELIB as a new member. The existing module, OLDI,
remains unchanged. OLDI may be a 4248 FCB called FCB40LDl, or
it may be a 3211 FCB called FCB20LDl. (If both modules existed,
FCB40LDl would be used.)

//FCBMOD7 JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYSl.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

OPTION DEVICE=4248
INCLUDE OLDI
FCB COPYP=67,PSPEED=M,DEFAULT=YES
NAME NEWI

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• DEVICE=4248 on the OPTION statement specifies that this
module is to be created for the 4248 printer.

• The INCLUDE statement specifies that a copy of the existing
module OLDI is to be used as a basis for the new module,
NEWI.

• COPYP=67 indicates that the horizontal copy feature should
be activated, and that horizontal copies should begin
printing in the 67th print position from the left margin.
This setting overrides any COPYP value previously set in
module OLDl; it applies to module NEWl, but does not change
the value set in OLDI.

Note that the value 67 divides a 132-hammer printer into two
equal copy areas for two equally-sized horizontal copies.
With COPYP=67, a maximum of 66 bytes can be sent to the
printer.

• PSPEED=M indicates that the printer speed should be set to
medium (3000 LPM). This setting overrides any PSPEED value
previously set in module OLDl; it applies to module NEWl,
but does not change the value set in OLDI.

• DEFAULT=YES indicates that this module, NEWl, should become
a default FCB module for this installation.

• Because these parameters are not specified, the values of
LINES, SIZE, LPI, and CH~ default to the values which
already exist in module OLDI.

• The NAME statement indicates that this module should be
called NEWI.

214 MVS/370 Utilities

TNL GN26-8133 (30 Mar 84) to GC26-406S-1

EXAMPLE 7: BUILDING A NEW COPY MODIFICATION MODULE

3800 Modal 1

In this example, a copy modification module that contains four
modification segments is built. The module is added to the
SYSI.IMAGELIB data set as a new member.

//COPMODI JOB ...
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYSI.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
COPYI COPYMOD COPIES=(l,l),

LINES=(l,I),POS=SO,
TEXT=(C,'CONTROLLER"S COPY')

COPY2A COPYMOD COPIES=(2,1),
LINES=(I,I),POS=SO,
TEXT=(C,'SHIPPING MANAGER"S COPY')

COPY2B COPYMOD COPIES=(2,1),
LINES=(34,3),POS=7S,
TEXT=(10C,' ')

COPYALL COPYMOD COPIES=(1,4),
LINES=(S8,1),POS=3S,
TEXT=((C,'***'),(C,'CONFIDENTIAL'),
(3X,'SC'»

NAME RTOI

72

x
X

X
X

X
X

X
X
X

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• The COPYI COPYMOD statement specifies text that applies to
each page of the first copy of the output data seta

LINES=(l,l) and POS=SO specify that the text is to be on the
first printable line of each page, starting at the SOth
print position from the left.

The TEXT parameter identifies each page of the copy as being
the "Controller's COpy."

• The COPY2A COPYMOD statement specifies text that applies to
each page of the second copy of the output data set. The
text is to be on the first line of each page, at the 50th
print position from the left, with each page of the copy
being the "Shipping Manager's Copy."

• The COPY2B COPYMOD statement specifies that part of the
second COpy'S output data set text is to be blanked out, so
that the first, third, and subsequent copies contain
information that is not printed on the second copy. The
blank area is to be on lines 34, 3S, and 36, beginning at
the 7Sth print position from the left. The text on lines
34, 3S, and 36, between print positions 7S and 84, is to 'be
blank (that is, the character specified between the TEXT
parameter's single quotation marks is a blank).

• The COPYALL COPYMOD statement specifies text that applies to
the first four copies of the output data set. This example
assumes that no more than four copies are printed each time
the job that produces the output data set is executed. The
text is to be on the S8th line on each page, at the 3Sth

IEBIMAOE Program 214.1

print position from the left. The lQgend
"***CONFIDENTIAL***" is to be on each page of the copy.
Note that the text can be coded in both character and
hexadecimal format.

• The name of the copy modification module is RT01, and it is
stored as a member of the SYS1.IMAGELIB data set.

EXAMPLE 8: BUILDING A NEW COPY MODIFICATION MODULE FROM AN EXISTING COpy

3800 Model 3

In this example, a copy of an existing copy modification module,
RT01, is used as the basis for a new copy modification module.
The new module is added to the SYS1.IMAGELIB data set as a new
member. The existing module, RT01, remains unchanged and
available for use.

72
//COPMOD2 JOB
// EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

INCLUDE RT01,DELSEG=1
OPTION OVERRUN=8,DEVICE=3800M3
COPYMOD COPIES=(2,3),

NAME

LINES=(S2,6),POS=100,
TEXT=(X,'4040404040404040SCSC')
AP

The control statements are discussed below.

x
X

• The SYSUT1 DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• The INCLUDE statement specifies that a copy of the copy
modification module named RTOl is used as a basis for the
new module, and that the first modification segment of RT01
is to be deleted from the copy.

• OVERRUN=8 in the OPTION statement specifies that the
IEBIMAGE program is to print a warning message if the copy
modification could cause a line overrun condition when
printing at 6 and 8 lines per inch. The program is also to
suppress any warning messages that apply to printing at 10
and 12 lines per inch. DEVICE=3800M3 in the OPTION
statement specifies 3800 Model 3 compatibility mode
processing.

• The COPYMOD statement specifies text that applies to each
page of the second, third, and fourth copies of the output
data set:

LINES=(S2,6) and POS=100 specify that the text is to be on
the S2nd line and repeated for the S3rd through 57th lines
of each page, starting at the lOOth print positi~n from the
left.

The TEXT statement specifies the text in hexadecimal form:
eight blanks ,followed by two asterisks (in this example, the
assumption is made that X'40' prints as a blank and that
X'SC' prints as an asterisk; in actual practice, the
character arrangement table used with the copy modification

IEBIMAGE Program 215

module might translate X'40' and X'SC' to other printable
characters).

• The name of the new copy modification module is AP, and it
is stored as a member of the SYSl.IMAGELIB data set.

EXAMPLE 9: ADDING A NEW CHARACTER TO A CHARACTER ARRANGEMENT TABLE MODULE

3800 Model 3

In this example, an IBM-supplied character arrangement table
module is modified to include another character, and then added
to the SYSl.IMAGELIB data set as a replacement for the
IBM-supplied module.

//CHARMODI JOB
// EXEC PGM=IEBIMAGE

DSNAME=SYSI.IMAGELIB,DISP=OLD
SYSOUT=A

//SYSUTI DD
//SYSPRINT DD
//SYSIN DD

INCLUDE
OPTION
TABLE
NAME

* GFIO
DEVICE=3800M3
LOC=«2A,2A),(6A,2A),(AA,2A),(EA,2A»
GFIO(R)

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• The INCLUDE statement specifies that a copy of the character
arrangement table named GFIO is to be used as a basis for
the new module.

• The OPTION statement with the DEVICE parameter specifies
3800 Model 3 compatibility mode processing.

• The TABLE statement specifies updated information for four
translate table entries: X'2A', X'6A', X'AA', and X'EA'.
(These four locations are unused in the IBM-supplied GFIO
table.> Each of the four translate table entries is to
point to the '2A' (43rd character) position in the first
WCGM, which contains the scan pattern for a lozenge.

• The name of the character arrangement table is GFIO, and it
is stored as a new module in the SYSl.IMAGELIB data set.
The data set's directory is updated so that the name GFIO
points to the new module; the old GFIO module can no longer
be accessed through the data set's directory.

EXAMPLE 10: BUILDING A NEW CHARACTER ARRANGEMENT TABLE MODULE FROM AN EXISTING COPY

3800 Model 3

In this example, an existing character arrangement table module
is copied and used as a basis for a new -module. The new
character arrangement table is identical to the old one, except
that it uses the Gothic I5-pitch character set instead of Gothic
10-pitch.

216 MVS/370 Utilities

//CHARMOD2 JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYSI.IMAGElIB,DISP=OlD
/ISYSPRINT DD SYSOUT=A
//SYSIN DD *

INCLUDE All
OPTION DEVICE=3800M3
TABLE CGMID=87
NAME AIlS

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OlD to ensure that no
other job can modify the data set while this job is
executing.

• The INCLUDE statement specifies that a copy of the character
arrangement table named All is to be used as a basis for the
new module. The All character arrangement table translates
8-bit data codes to printable characters in the Gothic
IO-pitch character set.

• The OPTION statement with the DEVICE parameter specifies
3800 Model 3 compatibility mode processing.

• The TABLE statement specifies a new character set
identifier, X'87', which is the identifier for the Gothic
IS-pitch character set. No other changes are made to the
character arrangement table. The new table calls for
characters in the Gothic IS-pitch character set.

• The name of the new character arrangement table is AIlS, and
it is stored as a member of the SYSl.IMAGElIB data set.

EXAMPLE 11: BUILDING GRAPHIC CHARACTERS IN A CHARACTER ARRANGEMENT TABLE MODULE

3800 Model 1

In this example, an existing character arrangement table module
is copied and used as the basis for a new module that will
include user-designed characters of a graphic character
modification module. The new module is then added to the
SYSl.IMAGElIB data set.

//CHARMOD3 JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYSI.IMAGElIB,DISP=OlD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

INCLUDE ONB
TABLE GCMlIST=ONBI,

lOC=CC6F,2F,1),(7C,3C,1),(6A,2A,0»
NAME ONBZ

The control statements are discussed below.

72

x

IEBIMAGE Program 217

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• The INCLUDE statement specifies that a copy of the character
arrangement table named ONB is to be used as a basis for the
new module. ONa refers to two WCGMs.

• The TABLE statement identifies a graphic character
modification module and stipUlates the translate table
entries for each of its segments:

GCMLIST=ONBI identifies the graphic character modification
module named ONBI. The LOC parameter specifies the
translate table entry location, character position, and WCGM
number for each segment of the module:

The first segment corresponds to the 8-bit data code
X'6F'. The segment's scan pattern is to be loaded at
character position X'2F' (that is, the 48th character
position) in the second WCGM.

The second segment corresponds to the 8-bit data code
X'7C'. The segment's scan pattern is to be loaded at
character position X'3C' (that is, the 6Ist character
position) in the second WCGM.

The third segment corresponds to the 8-bit data code
X'6A'. The segment's scan pattern is to be loaded at
character position X'2A' (that is, the 43rd character
position) in the first WCGM.

• The name of the new character arrangement table is ONBZ, and
it is stored as a new module in the SYSI.IMAGELIB data set.

EXAMPLE 12: DELETING GRAPHIC REFERENCES FROM A CHARACTER ARRANGEMENT TABLE MODULE

3800 Model 3

In this example, an existing character arrangement table module
is copied and used as a basis for a new one. The new character
arrangement table deletes references to all graphic character
modification modules and resets the translate table entries that
were used to point to character positions for the segments of a
graphic character modification module.

//CHARMOD4 JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DO DSNAME=SYSI.IMAGELIB,DISP=OLD
//SYSPRINT DO SYSOUT=A
//SYSIN DO *

INCLUDE ZYL
OPTION DEVICE=3800M3
TABLE GCMlIST=DElETE,lOC=((6A),(6B»
NAME ZYlA

The control statements are discussed below.

• The SYSUTI DO statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• The INCLUDE statement specifies that a copy of the character
arrangement table named ZYL is to be used as a basis for the
new module.

218 MVS/370 Utilities

• The OPTION statement with the DEVICE parameter specifies
3800 Model 3 compatibility mode processing.

• The TABLE statement deletes references to graphic character
modification modules and resets two translate table entries:

GCMLIST=DELETE specifies that all names of graphic character
modification modules included with the module when the ZYL
character arrangement table was copied are to be reset to
blanks (X'40').

The LOC parameter identifies two locations in the translate
table, X'6A' and X'6B', that are to be set to X'FF' (the
default value when no character position or WCGM values are
specified).

• The name of the new character arrangement table is ZYLA, and
it is stored as a member of the SYS1.IMAGELIB data set.

EXAMPLE 13: LISTING THE WORLD TRADE NATIONAL USE GRAPHICS GRAPHIC CHARACTER
MODIFICATION MODULE

3800 Model 1

In this example, each segment of the IBM-supplied graphic
character modification module containing the World Trade
National Use Graphics is printed. Each segment is unique,
although the scan patterns for some segments are identical to
other segment's scan patterns with only the 8-bit data code
being different.

//GRAFMODl JOB
// EXEC PGM=IEBIMAGE
//SYSUTl DD DSNAME=SYS1.IMAGELIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

GRAPHIC
NAME *

The control statements are discussed below.

• DISP=SHR is coded because the library is not being updated.

• The World Trade National Use Graphics graphic character
modification module is identified with the pseudonym of "*".
The scan pattern of each of the characters in the module is
printed.

EXAMPLE 14: BUILDING A GRAPHIC CHARACTER MODIFICATION MODULE FROM THE WORLD TRADE
GRAFMOD

3800 Model 3

In this example, a graphic character modification module is
built. Its characters are segments copied from the World Trade
National Use Graphics graphic character modification module.
(See the IBM 3800 Printing Subsystem Programmer's Guide for the
EBCDIC assignments for the characters.) The new module is
stored in the SYS1.IMAGELIB system data set.

IEBIMAGE Program 219

72
//GRAFMOD2 JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYSl.IMAGElIB,DISP=OlD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

OPTION DEVICE=3800M3
GRAPHIC REF=«24),(2S),(26),(27),(28),

(31),(33),(3S),(38),{40»
NAME CSTW

The control statements are discussed below.

X

• The SYSUTI DD statement includes DISP=OlD to ensure that no
other job can modify the data set while this job is
executing.

• DEVICE=3800M3 in the OPTION statement specifies 3800 Model 3
compatibility mode module format.

• By not specifying the GCM keyword, the GRAPHIC statement
identifies the World Trade National Use Graphics graphic
character modification module. Ten of its segments are to
be copied and used with the new module.

• The name of the graphic character modification module is
CSTW, and it is stored as a new module in the SYS1.IMAGElIB
data set.

EXAMPLE IS: BUILDING A NEW GRAPHIC CHARACTER MODIFICATION MODULE AND MODIFYING A
CHARACTER ARRANGEMENT TABLE TO USE IT

3800 Model 3

In this example, a graphic character modification module is
built. The module contains one user-designed character, a
reverse 'E', whose 8-bit data code is designated as X'EO' and
whose pitch is 10. An existing character arrangement table is
then modified to include the reverse E.

220 MVS/370 Utilities

JOB
EXEC PGM=IEBIMAGE

//GRAFMOD3
//
//SYSUT!
//SYSPRINT
//SYSIH

DO DSNAME=SYS!.IMAGElIB,DISP=OlD
DO SYSOUT=A
DD *

OPTION DEVICE=3800M3
GRAPHIC ASSIGN=(EO,IO)

XXXXXXXXXXXXXXX SEQ=IO
XXXXXXXXXXXXXXX SEQ=!!
XXXXXXXXXXXXXXX SEQ=12

XXXX SEQ=13
XXX X SEQ=14
XXXX SEQ=15
XXXX SEQ=16
XXXX SEQ=17
XXXX SEQ=18
XXXX SEQ=19

XXXXXXXXXXXXX SEQ=20
XXXXXXXXXXXXX SEQ=2!
XXXXXXXXXXXXX SEQ=22

XXXX SEQ=23
XXXX SEQ=24
XXXX SEQ=25
XXXX SEQ=26
XXXX SEQ=27
XXXX SEQ=28
XXXX SEQ=29

XXXXXXXXXXXXXXX SEQ=30
XXXXXXXXXXXXXXX SEQ=3!
XXXXXXXXXXXXXXX SEQ=32
NAME BODE
INCLUDE GSIO
OPTION DEVICE=3800M3
TABLE CGMID=(83,FF),

NAME

GCMLIST=BODE,
LOC=(EO,03,1)
REIO

The control statements are discussed below.

• The SYSUT1 DD statement includes DISP=OlD to ensure that no
other job can modify the data set while this job is
executing.

• DEVICE=3800M3 in the OPTION statement preceding the GRAPHIC
statement specifies 3800 Model 3 compatibility mode
processing.

• The GRAPHIC statement's ASSIGN parameter establishes the
8-bit data code, X'EO', and the width, 10-pitch, for the
user-designed character. The data statements that follow
the GRAPHIC statement describe The character's scan pattern.

• The name of the graphic character modification module is
BODE, and it is stored as a new module in the SYS!.IMAGElIB
data set.

• The INCLUDE statement specifies that a copy of the GS10
character arrangement table is to be used as the basis for
the new table.

• The TABLE statement specifies the addition of the reverse E
to that copy of the GS10 table.

CGMID=(83,FF) specifies the character set identifier X'83'
for the Gothic-IO set (which is the set already used by the
GSIO table) and specifies X'FF' as a character set

IEBIMAGE Program 221

identifier to allow accessing of the second WCGM without
loading it.

GCMLIST=BODE identifies the graphic character modification
module containing the reverse E for inclusion in the table.

LOC=(EO,03,1) specifies that the reverse E, which has been
assigned the 8-bit data code X'EO', is to be loaded into
position X'03' in the second WCGM. Because this second WCGM
is otherwise unused, any position in it could have been used
for the reverse E.

• The new character arrangement table is named REIO and stored
as a new module in SYSl.IMAGELIB.

EXAMPLE 16: BUILDING A GRAPHIC CHARACTER MODIFICATION MODULE FROM MULTIPLE SOURCES

3800 Model 1

In this example, a graphic character modification module is
created. Its contents come from three different sources: nine
segments are copied from an existing module with the INCLUDE
statement; the GRAPHIC statement is used to select another
segment to be copied; the GRAPHIC statement is also used to
establish characteristics for a user-designed character. The
new graphic character modification module, when built, is added
to the SYSI.IMAGELIB.

//GRAFMOD4 JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYSI.IMAGELIB,DISP=OLD
//SYSPRINT DO SYSOUT=A
//SYSIN DD *

INCLUDE CSTW,DELSEG=3
GRAPHIC REF=(1,6A),GCM=BODE,ASSIGN=9A
******** SEQ=06

~***** SEQ=07
**** **** SEQ=08
*** *** SEQ=09
*** **** SEQ=10
*** ****** SEQ=11
*** ****** SEQ=12
*** **** SEQ=13
*** **** SEQ=14
*** *** SEQ=15
*** *** SEQ=16 *** **** **** SEQ=17
*** ******* SEQ=18
*** ***** SEQ=19

NAME JPCK

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OlD to ensure that no
other job can modify the data set while this job is
executing.

• The INCLUDE statement specifies that a copy of the graphic
character modification module named CSTW is to be included
with the new module. All segments of CSTW, except the third
segment (as a result of DELSEG=3), are to be copied into the
new module and become the module's first through ninth
modification segments.

222 MVS/370 Utilities

• The GRAPHIC statement specifies the module's tenth and
eleventh segments:

REF=(1,6A) and GCM=BODE specify that the tenth segment of
the new module is to be obtained by copying the first
segment from the graphic character modification module named
BODE. In addition, the segment's 8-bit data code is to be
changed so that its character is identified with the code
X'6A'.

ASSIGN=9A specifies that the new module's eleventh segment
is a user-designed character whose 8-bit data code is X'9A'
and whose width is lO-pitch (the default when no pitch value
is specified). The GRAPHIC statement is followed by data
statements that specify the character's scan pattern.

• The name of the graphic character modification module is
JPCK, and it is stored as a new module in the SYSl.IMAGElIB
data set.

EXAMPLE 17: DEFINING AND USING A CHARACTER IN A GRAPHIC CHARACTER MODIFICATION
MODULE

3800 Model 3

In this example, a graphic character modification module
containing a user-designed character is built. Next, a Format
character arrangement table is modified to include that new
character. Then, a copy modification module is created to print
the new character enclosed in a box of Format characters.
Finally, the result is tested to allow comparison of the output
with the input.

IEBIMAGE Program 223

224 MVS/370 Utilities

JOB //CHAR
//BUIlD
//SYSUTl
//SYSPRINT
//SYSIN

EXEC PGM=IEBIMAGE
DD DSNAME=SYSl.IMAGElIB,DISP=OlD
DD SYSOUT=A
DD *

OPTION DEVICE=3800M3
STEPl GRAPHIC ASSIGN=5C
XXX XXX SEQ=Ol
XXX XXX SEQ=02
XXX XXX SEQ=03
XXX XXX SEQ=04
XXXXXXXXXXXXXXXXXXXXXXX SEQ=05
XXXXXXXXXXXXXXXXXXXXXXX SEQ=06
XXXXXXXXXXXXXXXXXXXXXXX SEQ=07
XXX XXX SEQ=08
XXX XXX SEQ=09
XXX XXX SEQ=lO
XXX XXX SEQ=!l

XXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX
XXX XXX XXX
XXX XXX XXX
XXX XXX XXX
XXX XXX XXX
XXXX XXXXX XXXX

XXXX XXXXXXX XXXX
XXXXXXXXXXXXXXXXXXX

XXXXX XXX XXX

XXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX

XXXXXXX
XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX
XXXXXXX

XXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX

NAME AIBM

SEQ=12
SEQ=l3
SEQ=!4
SEQ=15
SEQ=16
SEQ=17
SEQ=18
SEQ=19
SEQ=20
SEQ=21
SEQ=22
SEQ=23
SEQ=24
SEQ=25
SEQ=26
SEQ=27
SEQ=28
SEQ=29
SEQ=30
SEQ=3l
SEQ=32
SEQ=33
SEQ=34
SEQ=35
SEQ=36
SEQ=37
SEQ=38
SEQ=39
SEQ=40

72
STEP2 OPTION DEVICE=3800M3

INCLUDE FMIO
TABLE GCMlIST=AIBM,lOC=(5C,2C)
NAME BIBM

STEP3 OPTION DEVICE=3800M3
COPYMOD COPIES=1,lINES=58,POS=5, X

TEXT=(C,'W6X')
COPYMOD COPIES=1,lINES=59,POS=5, X

TEXT=(C,'7*7')
COPYMOD COPIES=1,lINES=60,POS=5, X

TEXT=(X,'E9F6E8')
NAME CIBM

/*
//TEST EXEC PGM=IEBIMAGE
//SYSUTl DO DSNAME=SYSl.IMAGElIB,DISP=OlD
//SYSPRINT DO SYSOUT=A,CHARS=(GFlO,BIBM),
// MODIFY=(CIBM,l)
//SYSIN DD *

OPTION DEVICE=3800M3
GRAPHIC
NAME AIBM

/*

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OlD to ensure that no
other job can modify the data set while this job is
executing.

• The GRAPHIC statement's ASSIGN parameter specifies that the
8-bit data code for the user-designed character is X'5C' and
the width is lO-pitch (the default when no pitch is
specified). The GRAPHIC statement is followed by data
statements that specify the character's scan pattern for
vertical line spacing of 6 lines per inch.

• The name of the graphic character modification module is
AIBM, and it is stored as a new module in SYSl.IMAGElIB.

• At STEP2, the INCLUDE statement specifies that a copy of the
FMIO character arrangement table is to be used as a basis
for the new module.

• The TABLE statement identifies the graphic character
modification module named AIBM, created in the previous
step. The TABLE statement's lOC parameter specifies the
translate table entry location (the character's 8-bit data
code) of X'5C' and the position (X'2C') where that character
is to be loaded into the WCGM.

• The name of the new character arrangement table, which is
added to SYSl.IMAGElIB, is BIBM.

• At STEP3, the three COPYMOD statements specify text that is
to be placed on lines 58, 59, and 60 of the first copy of
the output data set, starting at print position 5 on each
line. When used with the BIBM character arrangement table,
the characters W, 6, and X print as a top left corner,
horizontal line segment, and top right corner, all in line
weight 3. The characters 7, *~ and 7 print as a weight-3
vertical line segment on both sides of the user-designed
character built at STEPl (the asterisk has the EBCDIC
assignment 5C, which addresses that character). The
hexadecimal E9, F6, and E8 complete the line-weight-3 Format
box around the character.

• The name of the copy modification module is CIBM, and it is
stored as a new module on SYSl.IMAGElIB.

IEBIMAGE Program 225

• At TEST, the EXEC statement calls for another execution of
the IEBIMAGE program to test the modules just created. On
the SYSPRINT DD statement the BIBM character arrangement
table is the second of two specified, and the CIBM copy
modification module is specified with a table reference
character of 1, to use that BIBM table.

• The GRAPHIC statement with no operand specified calls for'
printing of the module, AIBM, specified with the NAME
statement that follows it. Each page of the output listing
for this IEBIMAGE run has the following modification printed
in the lower left corner:

• The OPTION statement with the DEVICE parameter at STEPl,
STEP2, and STEP3 specifies 3800 Model 3 compatibility mode
module format and processing considerations.

EXAMPLE 18: LISTING A LIBRARY CHARACTER SET MODULE

3800 Model 1

In this example, each segment of a library character set is
printed. The scan pattern of each of the characters in the
module is printed.

//lIBMODl JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYSl.IMAGElIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

CHARSET
NAME 83

The control statements are discussed below.

• NAME specifies the name of the library character set (83).

EXAMPLE 19: BUILDING A LIBRARY CHARACTER SET MODULE

3800 Hodel 3

In this example, a library character set module is built. Its
characters are segments copied from the World Trade National Use
Graphics graphic character modification module. (See the IBM
3800 Printing Subsystem Programmer's Guide for the listing of
all the segments of that module. The EBCDIC assignments for the
characters are replaced by WCGM-Iocation codes.) The new module
is stored in the SYSl.IMAGElIB syst~m data set.

226 MVS/370 Utilities

//lIBMOD2
//
//SYSUTI
//SYSPRINT
//SYSIN

OPTION
CHARSET

NAME

JOB
EXEC PGM=IEBIMAGE
DD DSNAME=SYSl.IMAGElIB,DISP=OlD
DD SYSOUT=A
DD *

DEVICE=3800M3

72

REF=«24,01),(25,02),(26,03),(27,04),(28,05), X
(31,06),(33,07),(35,08),(38,09),(40,OA»

73

The control statements are discussed below.

• The SYSUTl DD statement includes DISP=OlD to ensure that no
other job can modify the data set while this job is
executing.

• DEVICE=3800M3 in the OPTION statement specifies 3800 Model 3
compatibility mode module format.

• By not specifying the GCM keyword or a library character set
ID, the CHARSET statement identifies the World Trade
National Use Graphics graphic character modification module.
Ten of its segments are to be copied and used with the new
module. For example, the 24th segment is to be copied and
assigned the WCGM location 01. See the REF parameter
(24,01).

• The name of the library character set module is 73, and it
is stored as a new module in the SYS1.IMAGElIB data set.

EXAMPLE 20: BUILDING A LIBRARY CHARACTER SET MODULE AND MODIFYING A CHARACTER
ARRANGEMENT TABLE TO USE IT

3800 Model 3

In this example, a library character set module is built. The
module contains one user-designed character, a reverse 'E',
whose 6-bit WCGM-Iocation code is designated as X'03', and whose
pitch is 10. An existing character arrangement table is then
modified to include the reverse E.

IEBIMAGE Program 227

//LIBMOD3 JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYSI.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

OPTION DEVICE=3800M3
CHARSET ASSIGN=(03,IO)
XXXXXXXXXXXXXXX SEQ=IO
XXXXXXXXXXXXXXX SEQ=11
XXXXXXXXXXXXXXX SEQ=12

XXXX SEQ=13
XXXX SEQ=14
XXXX SEQ=15
XXXX SEQ=16
XXXX SEQ=!7
XXXX SEQ=18
XXXX SEQ=19

XXXXXXXXXXXXX SEQ=20
XXXXXXXXXXXXX SEQ=21
XXXXXXXXXXXXX SEQ=22

XXXX SEQ=23
XXXX SEQ=24
XXXX SEQ=25
XXXX SEQ=26
XXXX SEQ=27
XXXX SEQ=28
XXXX SEQ=29

XXXXXXXXXXXXXXX SEQ=30
XXXXXXXXXXXXXXX SEQ=31
XXXXXXXXXXXXXXX SEQ=32
NAME 73
INCLUDE GSIO
OPTION DEVICE=3800M3
TABLE CGMID=(83,73),LOC=(EO,03,1)
NAME REIO

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• DEVICE=3800M3 in the OPTION statement specifies 3800 Model 3
compatibility mode module format and processing
considerations.

• The CHARSET statement's ASSIGN parameter establishes the
6-bit WCGM-location code, X'03', and the width, 10-pitch,
for the user-designed character. The data statements that
follow the CHARSET statement describe the character's scan
pattern.

• The name of the library character set module is 73, and it
is stored as a new module in the SYSl.IMAGELIB data set.

• The INCLUDE statement specifies that a copy of the GSIO
character arrangement table is to be used as the basis for
the new table.

• The TABLE statement specifies the addition of the library
character set containing the reverse E to that copy of the
GSIO table.

228 MVS/370 Utilities

CGMID=t83,73) specifies the character set identifier X'83'
for the Gothic-IO set (which is the set already used by the
GSIO table) and specifies X'73' as a character set
identifier to allow loading of the second WCGM with the
library character set 73.

I EXAMPLE 21:

3800 Model 1

LOC=(EO,03,l) specifies that the reverse E, which has been
assigned the WCGM location 03 in the second WCGM, is to be
referenced by the EBCDIC code X'EO'.

The new character arrangement table is named REIO and stored
as a new module in SYSl.IMAGELIB.

BUILDING A LIBRARY CHARACTER SET MODULE FROM MULTIPLE SOURCES

In this example, a library character set module is created. Its
contents come from three different sources: 62 segments are
copied from an existing module with the INCLUDE statement; the
CHARSET statement is used to select another segment to be
copied; a second CHARSET statement is used to establish
characteristics for a user-designed character. The new library
character set module, when built, is added to the SYSI.IMAGELIB.

//lIBMOD4 JOB
// EXEC PGM=IEBIMAGE
//SYSUTl DO DSNAME=SYSI.IMAGELIB,DISP=OLD
//SYSPRINT DO SYSOUT=A
//SYSIN DO *

INCLUDE 33,DELSEG=(3,4)
CHARSET REF=(I,02),GCM=BODE,ASSIGN=03
******** SEQ=06

********** SEQ=07
**** **** SEQ=08
*** *** SEQ=09
*** **** SEQ=lO
*** ****** SEQ=1l
*** ****** SEQ=12
*** **** SEQ=l3
*** **** SEQ=l4
*** *** SEQ=l5
*** *** SEQ=l6
*** **** **** SEQ=l7
*** ******* SEQ=l8
*** ***** SEQ=l9

NAME 53

The control statements are discussed below.

• The SYSUTl DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• The INCLUDE statement specifies that a copy of the library
character set module named 33 is to be included with the new
module. All segments of 33, except the third and fourth
segments (as a result of DELSEG=3,4), are to be copied into
the new module and become the basis for the new module.

• The CHARSET statement specifies the module's third and
fourth segments:

REF=(l,02) and GCM=BODE specify that the third segment of
the new module is to be obtained by copying the first
segment from the graphic character modification module named
BODE. The segment's 6-bit WCGM-Iocation code is to be set
so that its character is identified with the code X'02'.

IEBIMAGE Program 229

ASSIGH=03 specifies that the new module's fourth segment is
a user-designed character whose 6-bit WCGM-Iocation code is
X'03' and whose width is IO-pitch (the default when no pitch
value is specified). The CHARSET statement is followed by
data statements that specify the character's scan pattern.

• The name of the library character set module is 53, and it
is stored as a new module in the SYSl.IMAGELIB data set.

230 MVS/370 Utilities

IEBISAM PROGRAM

IEBISAM can be used to:

• COpy an indexed sequential (ISAM) data set directly from one
DASD volume to another.

• Create a backup (transportable) copy of an ISAM data set by
copying (unloading) it into a sequential data set on a DASD
or magnetic tape volume.

• Create an ISAM data set from an unloaded data set. The
sequential (unloaded) data set is in a form that can be
subsequently loaded, that is, it can be converted back into
an ISAM data set.

• Print an ISAM data set.

COPYING AN ISAM DATA SET

IEBISAM can be used to copy an indexed sequential (ISAM) data
set directly from one DASD volume to another. When the data set
is copied, the records marked for deletion are only deleted if
the DELETE parameter was specified in the OPTCD (optional
control program service) field. Those records that are
contained in the overflow area of the original data set are
moved into the primary area of the copied data set. Control
information characteristics such as BLKSIZE and OPTCD can be
overridden by new specifications. Caution should be used,
however, when overriding these characteristics (see "Overriding
DCB Control Information" on page 232).

CREATING A SEQUENTIAL BACKUP COPY

An unloaded sequential data set can be created to serve as a
backup or transportable copy of source data from an ISAM data
set. Records marked for deletion within the ISAM data set are
automatically deleted when the unloaded data set is created.
When the data set is subsequently loaded--reconstructed into an
ISAM data. set--records that were contained in the overflow area
assigned to the original data set are moved sequentially into
the primary area.

An unloaded data set consists of SO-byte logical records. The
data set contains:

• Fixed records from an ISAM data set

• Control information used in the subsequent loading of the
data set

Control information consists of characteristics that were
assigned to the ISAM data set. These characteristics are:

• Optional control program service (OPTCD)
• Record format (RECFM)
• Logical record length (LRECL)
• Block size (BLKSIZE)
• Relative key position (RKP)
• Humber of tracks in master index (HTM)
• Key length (KEYLEH)
• Humber of overflow tracks on each cylinder (CYLOFL)

IEBISAM Program 231

OVERRIDING DCB CONTROL INFORMATION

When a load operation is specified, control information
characteristics can be overridden by specifications in the DCB
parameter of the SYSUT2 DO statement (refer to "Job Control
Statements" on page 235 for a discussion of the SYSUT2 DO
statement). Caution should be used, however, because checks are
made to ensure that:

1. Record format is the same as that of the original indexed
sequential data set (either fixed (F) or variable (V)
length).

2. Logical record length is greater than or equal to that of
the original ISAM data set when the RECFM is variable (V) or
variable blocked (VB).

3. For fixed records, the block size is equal to or a multiple
of the logical record length of the records in the original
indexed sequential data set. For variable records, the
block size is equal to or greater than the logical record
length plus four.

4. Relative key position is equal to or less than the logical
record length minus the key length. Following are relative
key position considerations:

• If the RECFM is V or VB, the relative key position
should be at least 4.

• If the DELETE parameter was specified in the OPTCD field
and the RECFM is F or fixed blocked (FB), the relative
key position should be at least 1.

• If the DELETE parameter was specified in the OPTCD field
and the RECFM is V or VB, the relative key position
should be at least 5.

5. The key length is less than or equal to 255 bytes.

6. For a fixed unblocked data set with RKP=O, the LRECL value
is the length of the data portion, not, as in all other
cases, the data portion and key length. When changing an
RKP=O data set RECFM from fixed unblocked and to fixed
blocked, the new LRECL must be equal to the old LRECL plus
the old key length.

232 MVS/370 Utilities

If either RKP or KEYLEN is overridden, it might not be
possible to reconstruct the data set.

The number of 80-byte logical records in an unloaded data
set can be approximated by the following formula:

x = n(y+2) + 158
78

where x is the number of 80-byte logical records created, n
is the number of records in the ISAM data set, and y is the
length of a fixed record or the average length of variable
records.

Figure 77 on page 233 shows the format of an unloaded data
set for the first three lOO-byte records of an ISAM data
set. Each is preceded by 2 bytes ebb) that indicate the
number of bytes in that record. (The last record is
followed by 2 bytes containing binary zeros to identify the
last logical record in the unloaded data set.) The
characteristics of the ISAM data set are contained in the
first two logical records of the unloaded data set. Data
from the ISAM data set begins in the third logical record.
Each logical record in the unloaded data set contains a
binary sequence number (aa) in the first 2 bytes of the
record.

7. For variable records, all records in the data set must have
a length equal to or greater than RKP plus KEYLEN •

... 1---------------80 bytes----------------tl

a a blbl Characteristics
. a a Characteristics

a a blbl 76 bytes of data
a a 24 bytes of data Iblbl 62 bytes of data
a a 48 bytes of data Iblbl 28 bytes of data
a a 72 bytes of data IbLbl

Figure 77. An Unloaded Data Set Created Using IEBISAM

CREATING AN ISAH DATA SET FROH AN UNLOADED DATA SET

An ISAM data set can be created from an unloaded version of an
ISAM data set. When the unloaded data set is loaded, those
records that were contained in the overflow area assigned to the
original ISAM data set are moved sequentiallY into the primary
area of the loaded ISAM data set.

PRINTING THE LOGICAL RECORDS OF AN ISAH DATA SET

The records of an ISAM data set can be printed or stored as a
sequential data set for subsequent printing. Each input record
is placed in a buffer from which it is printed or placed in a
sequential data set. When the DELETE parameter is specified in
the OPTCD fjeld, each input record not marked for deletion is
also placed in a buffer from which it is printed or placed in a
sequential data set. Each printed record is converted to
hexadecimal unless specified otherwise by the user.

IEBISAM provides user exits so the user can include user-written
routines to:

• Modify records before printing.

• Select records for printing or terminate the printing
operation after a certain number of records have been
printed.

• Convert the format of a record to be printed.

• Provide a record heading for each record if the record
length is at least 18 bytes.

If no user routines are provided, each record is identified in
sequential order on the printout.

Exit routines must be included in either the job library or ,the
link library.

When a user routine is supplied for a print operation, IEBISAM
issues a LOAD macro instruction. A BALR 14,15 instruction is
used to give control to the user's routine. When the user's
routine receives control, register 0 contains a pointer to a
record heading buffer; register 1 contains a pointer to an input
record buffer. (The user must save registers 2 through 14 when
control is given to the user routine.)

IEBISAM Program 233

INPUT AND OUTPUT

The input record buffer has a length equal to the length of the
input logical record.

Figure 79 shows the record heading buffer.

The user returns control to IEBISAM by issuing a RETURN macro
instruction (via register 14) or by using a BR 14 instruction
after restoring registers 2 through 14.

A user routine must place a return code in register 15 before
returning control to IEBISAM. The possible return codes and
their meanings are listed in Figure 78.

Codes Meaning

00 (00 hex) Buffers are to be printed. The operation
continues.

04 (04) Buffers are to be printed. The operation
terminated. the operation is terminated.

OS (OS) This input record is not to be printed.
continues.

12 (OC) This input record is not to be printed.
operation is terminated.

Figure 78. IEBISAM User Exit Return Codes

Register 0

Available to the user ~

t-------Totallength = line length of applicable printer-----__

Register 1

tp",'~'d
... I------.-Totallength = input logical record length (LRECL)------

Figure 79. Record Heading Buffer Used by IEBISAM

is

Processing

The

IEBISAM uses an input data set (the organization of the input
data set depends on the operation to be performed) as follows:

• If a data set is copied, unloaded, or printed in logical
sequence, the input is an ISAM data set.

• If a data set is loaded, the input is an unloaded version of
an ISAM data set.

234 MVS/370 Utilities

RETURN CODES

CONTROL

IEBISAM produces as output:

• An output data set, which is the result of the IEBISAM
operation.

• A message data set, which contains information messages and
any error messages.

IEBISAM returns a code in register 15 to indicate the results of
program execution. The return codes and their meanings are
listed below.

Codes Meaning

00 (00 hex) Successful completion.

04 (04) A return code of 04 or 12 was passed to IEBISAM by
the user routine.

08 (08) An error condition occurred that caused termination
of the operation.

12 (OC) A return code other than 00, 04, 08, or 12 was
passed to IEBISAM from a user routine. The job
step is terminated.

16 (10) An error condition caused termination of the
operation.

Figure 80. IEBISAM Return Codes

IEBISAM is controlled by job control statements only. No
utility control statements are required.

JOB CONTROL STATEMENTS

Figure 81 shows the job control statements for IEBISAM.

statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBISAM).
Additional information is required on the EXEC
statement to control the execution of IEBISAM; see
"PARM Information on the EXEC statement" below.

SYSUTI DD Defines the input data set.

SYSUT2 DD Defines the output data set.

SYSPRINT DD Defines a sequential message data set, which can be
written to a system output device, a tape volume,
or a direct access device.

Figure 81. Job Control Statements for IEBISAM

IEBISAM Program 235

If the block size of the SYSPRINT data set is not a multiple of
121, a default value of 121 is taken (no error message is
issued, and no condition code is set).

PARM Information on the EXEC statement

The PARM parameter on the EXEC statement is used to control the
execution of IEBISAM.

The format of the PARM parameter is:

EXEC PARM={COPYIUNLOADILOADIPRINTL[,Nl)

[,EXIT=routinenamel

Exit routines must be included in either the job library or the
link library.

For a COPY operation, the SYSUT2 DD statement must include a
primary space allocation that is sufficient to accommodate
records that were contained in overflow areas in the original
ISAM data set. New overflow areas can be specified when the
data set is copied.

For an UNLOAD operation, specifications that are implied by
default or included in the DCB parameter of the SYSUT2 DD
statement (for example, tape density) must be considered when
the data set is subsequently loaded. If a block size is
specified in the DCB parameter of the SYSUT2 DD statement, it
must be a multiple of 80 bytes.

For a LOAD operation, if the input data set resides on an
unlabeled tape, the SYSUT1 DD statement must specify a BLKSIZE
that is a multiple of 80 bytes. Specifications that are implied
by default or included in the DCB parameter of the SYSUTI DD
statement must be consistent with specifications that were
implied or included in the DCB parameter of the SYSUT2 DD
statement used for the UNLOAD operation. The SYSUT2 DD
statement must include a primary space allocation that is
sufficient to accommodate records that were contained in
overflow areas in the original ISAM data set. If new overflow
areas are desired, they must be specified when the data set is
loaded.

For a PRINTL operation, if the device defined by the SYSUT2 DD
statement is a printer, the specified ILKSIZE must be equal to
or less than the physical printer size; that is 121, 133, or 145
bytes. If BLKSIZE is not specified, 121 bytes is assumed.
lRECl (or BLKSIZE when no lRECL was specified) must be between
55 and 255 bytes.

If a user routine is supplied for a PRINTL operation, IEBISAM
issues a LOAD macro instruction to make the user routine
available. A BALR 14,15 instruction is subsequently used to
give control to the routine. When the user routine receives
control, register 0 contains a pointer to a record heading
buffer; register 1 contains a pointer to an input record buffer.

236 MVS/370 Utilities

Parameters

PARM

APplicable
Control
statements

EXEC

Description of Parameters

PARM={CopvIUNLOADILOADIPRINTL[,N1J
[,EXIT=routTnename]

The PARM values have the following meaning:

• COPY specifies a copy operation.

• UNLOAD specifies an unload operation. This
is the default.

• LOAD specifies a load operation.

• PRINTL specifies a print operation in which
each record is converted to hexadecimal
before printing. The N is an optional value
that specifies that records are not to be
converted to hexadecimal before printing.

• EXIT is an optional value that specifies the
name of the exit routine that is to receive
control before each record is printed.

See "PARM Information on the EXEC Statement" on
page 236 for values that must be coded with the
PARM parameter.

IEBISAM EXAMPLES

operation

COPY

UNLOAD

UNLOAD

LOAD

PRINTL

The following examples illustrate some of the uses of IEBISAM.
Figure 82 can be used as a quick-reference guide to IEBISAM
examples. The numbers in the "Example" column point to the
examples that follow.

Data Set
organization Device Comments Example

ISAM Disks Unblocked input; blocked 1
output. Prime area and
index separation.

ISAM, Disk and Blocked output. 2
Sequential 9-track Tape

ISAM, Disk and Blocked output. Data set 3
Sequential 7-track Tape written as second data set

on input volume.

Sequential, 9-track Tape Input data set is second 4
ISAM and Disk data set on tape volume.

ISAM, Disk and Blocked input. Output not 5
Sequential System Printer converted.

Figure 82. IEBISAM Example Directory

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

IEBISAM Program 237

In this example, an ISAM data set is copied from two DASD
volumes. The output data is blocked.

//CPY
//
//SYSPRINT
//SYSUTI
//
//
//
//SYSUT2
//
//
//
//
//
//
//
/*

JOB
EXEC
DD
DD

DD

DD

091770,SMITH
PGM=IEBISAM,PARM=COPY
SYSOUT=A
DSNAME=ISAMOl,VOLUME=SER=(222222,333333),
DISP=(OLD,DELETE),UNIT=Cdisk,2),
DCB=CDSORG=IS,LRECL=500,

BlKSIZE=500,RECFM=F,RKP=4)
DSNAME=ISAM02(INDEX),UNIT=disk,
DISP=(NEW,KEEP),VOLUME=SER=444444,
DCB=(DSORG=IS,BlKSIZE=lOOO,RECFM=FB),
SPACE=(CYl,(2»
DSNAME=ISAM02(PRIME),UNIT=CdiSk,2),
DCB=(DSORG=IS,BlKSIZE=1000,RECFM=FB),
SPACE=(CYl,CIO»,
VOlUME=SER=(444444,555555),DISP=(NEW,KEEP)

The job control statements are discussed below:

• EXEC specifies the program name CIEBISAM) and the COPY
operation.

• SYSUTl DD defines an ISAM input data set, ISAMOl, which
resides on two disk volumes.

• SYSUT2 DD defines the output data set index area, ISAM02;
the index and prime areas are separated.

• The second SYSUT2 DD defines the output data set prime area.
Ten cylinders are allocated for the prime area on each of
the two disk volumes.

In this example, an ISAM input data set is converted into a
sequential data set; the output is placed on a 9-track tape
volume.

//STEPI
//
//SYSPRINT
//SYSUTI
//
//SYSUT2
//
//
/*

JOB
EXEC
DD
DD

DD

09#770,SMITH
PGM=IEBISAM,PARM=UHlOAD
SYSOUT=A
DSNAME=INDSEQ,UNIT=disk,DISP=(OlD,KEEP),
VOLUME=SER=111112
DSNAME=UNlDSET,UNIT=tape,LABEL=(,SL),
DISP=C,KEEP),VOLUME=SER=001234,
DCB=(RECFM=FB,lRECl=SO,BlKSIZE=640)

The job control statements are discussed below:

• EXEC specifies the program name (IEBISAM) and the UNLOAD
operation.

• SYSUTI DD defines the ISAM input data set, INDSEQ, which
resides on a disk volume.

238 MVS/370 Utilities

IEBISAM EXAMPLE 3

IEBISAM EXAMPLE 4

• SYSUT2 DD defines the unloaded output data set, UNlDSET.
The data set consists of fixed blocked records, and is to
reside as the first or only data set on a 9-track tape
volume.

In this example, ISAM input is converted into a sequential data
set and placed on a 7-track, tape volume.

//STEPA
//
//SYSPRINT
//SYSUTI
//
//SYSUT2
//
//
//
/*

JOB
EXEC
DD
DD

DD

09#770,SMITH
PGM=IEBISAM,PARM=UNlOAD
SYSOUT=A
DSNAME=INDSEQ,UNIT=disk,DISP=(OlD,KEEP),
VOlUME=SER=111112
DSNAME=UNlDSET,UNIT=2400-2,lABEl=(2,Sl),
VOlUME=SER=001234,DCB=(DEN=2,

RECFM=FB,lRECL=80,BLKSIZE=1040,TRTCH=C),
DISP=(,KEEP)

The job control statements are discussed below:

• EXEC specifies the program name (IEBISAM) and the UNLOAD
operation.

• SYSUTI DD defines the input data set, INDSEQ, which is an
indexed sequential data set. The data set resides on a disk
volume.

• SYSUT2 DD defines the unloaded output data set, UNlDSET.
The data set consists of fixed blocked records, and is to
reside as the second data set on a 7-track tape. volume. The
data set is written at a density of 800 bits per inch
(DEN=2).

In this example, an unloaded data set is converted to the form
of the original ISAM data set.

//STEPA
//
//SYSPRINT
//SYSUTI
//
//SYSUT2
//
//
/*

JOB
EXEC
DD
DD

DD

091770,SMITH
PGM=IEBISAM,PARM=lOAD
SYSOUT=A
DSNAME=UNlDSET,UNIT=tape,LABEl=(2,SL),
DISP=(OlD,KEEP),VOLUME=SER=001234
DSNAME=INDSEQ,DISP=(,KEEP),DCB=(DSORG=IS),
SPACE=(CYl,(1»,VOlUME=SER=111112,
UNIT=disk

The job control statements are discussed below:

• EXEC specifies the program name (IEBISAM) and the LOAD
operation.

• SYSUTI DD defines the input data set, UNLDSET, which is a
sequential (unloaded) data set. The data set is the second
data set on a tape volume.

IEBISAM Program 239

IEBISAM EXAMPLE 5

• SYSUT2 DD defines the output data set, IHDSEQ which is an
ISAM data set. One cylinder of space is allocated for the
data set on a disk volume.

In this example, the logical records of an ISAM data set are
printed on a system output device.

//PRIHT
//
//SYSPRIHT
//SYSUTl
//
//SYSUT2
/*

JOB
EXEC
DD
DD

DD

09#770,SMITH
PGM=IEBISAM,PARM='PRIHTl,H'
SYSOUT=A
DSHAME=ISAM03,UHIT=disk,DISP=OLD,
VOlUME=SER=222222
SYSOUT=A

The job control statements are discussed below:

• EXEC specifies the program name (IEBISAM) and the PRINTl
operation. The output records are not converted to
hexadecimal prior to printing. (H is specified).

• SYSUTI DD defines the input data set, ISAM03, which resides
on a disk volume.

• SYSUT2 DD defines the output data set (in this case, the
system printer). A logical record length (lRECl) of 121
bytes is assumed.

240 MVS/370 Utilities

IEBPTPCH PROGRAM

IEBPTPCH is a data set utility used to print or punch all, or
selected portions, of a sequential or partitioned data set.
Records can be printed or punched to meet either standard
specifications or user specifications.

The standard specifications are:

• Each logical output record begins on a new printed line or
punched card.

• Each printed line consists of groups of 8 characters
separated by 2 blanks. Each punched card contains up to 80
contiguous byte~ of information.

• Characters that cannot be printed appear as blanks.

• When the input is blocked, each logical output record is
delimited by "*" and each block is delimited by "**."

User formats can be specified, provided that no output record
exceeds the capability of the output device.

IEBPTPCH provides optional editing facilities and exits for user
routines that can be used to process labels or manipulate input
or output records.

IEBPTPCH can be used to print or punch:

• A sequential or partitioned data set in its entirety

• Selected members from a partitioned data set

• Selected records from a sequential or partitioned data set

• The directory of a partitioned data set

• An edited version of a sequential or partitioned data set

PRINTING OR PUNCHING AN ENTIRE DATA SET

IEBPTPCH can be used to print or punch a sequential data set or
a partitioned data set in its entirety. Data to be printed or
punched can be either hexadecimal or a character representation
of valid alphameric bit configurations. For a print operation,
packed decimal data should be converted to unpacked decimal or
hexadecimal mode to ensure that all characters are printable.

For a standard print operation, each logical record is printed
in groups of eight characters. Each set of eight characters is
separated from the next by two blanks. Up to 96 data characters
can be included on a printed line. (An edited output can be
produced to omit the blank delimiters and print up to 144
characters per line.)

Data from a logical input record is punched in contiguous
columns in the punched cardCs) representing that record.
Sequence numbers can be created and placed in columns 73 through
80 of the punched cards.

PRINTING OR PUNCHING SELECTED MEMBERS

IEBPTPCH can be used to print or punch selected members of a
partitioned data set. Utility control statements are used to
specify members to be printed or punched.

IEBPTPCH Program 241

PRINTING OR PUNCHING SELECTED RECORDS

IEBPTPCH can be used to print or punch selected records from a
sequential or partitioned data set. Utility control statements
can be used to specify:

• The termination of a print or punch operation after a
specified number of records has been printed or punched.

• The printing or punching of every nth record.

• The starting of a print or punch operation after a specified
number of records.

PRINTING OR PUNCHING A PARTITIONED DIRECTORY

IEBPTPCH can be used to print or punch the contents of a
partitioned directory. Each directory block is printed in
groups of eight characters. If the directory is printed in
hexadecimal representation, the first four printed characters of
each directory block indicate the total number of used bytes in
that block. For details of the format of the ~irectory, see the
Debugging Handbook.

Data from a directory block is punched in contiguous columns in
the punched cards representing that block.

PRINTING OR PUNCHING AN EDITED DATA SET

INPUT AND OUTPUT

RETURN CODES

IEBPTPCH can be used to print or punch an edited version of a
sequential or a partitioned data set. Utility control
statements can be used to specify editing information that
applies to a record, a group of records, selected groups of
records, or an entire member or data set.

An edited data set is produced by:

• Rearranging or omitting defined data fields within a record

• Converting data from packed decimal to unpacked decimal or
from alphameric to hexadecimal representation

IEBPTPCH uses the following input:

• An input data set, which contains the data that is printed
or punched. The input data set can be either sequential or
partitioned.

• A control data set, which contains utility control
statements. The control data set is required for each use
of IEBPTPCH.

IEBPTPCH produces ~he following output:

• An output data set, which is the printed or punched data
set.

• A message data set, which contains informational messages
(for example, -the contents of the control statements) and
any error messages.

IEBPTPCH returns a code in register 15 to indicate the results
of program execution. The return codes and their meanings are
listed below.

242 MVS/370 Utilities

CONTROL

Codes Meaning

00 (00 hex) Successful completion.

04 (04) Either a physical sequential data set is empty or a
partitioned data set has no members.

08 (08) A member specified for printing or punching does
not exist in the input data set. Processing
continues with the next member.

12 (OC) An unrecoverable error occurred or that a user
routine passed a return code of 12 to IEBPTPCH.
The job step is terminated.

16 (10) A user routine passed a return code of 16 to
IEBPTPCH. The job step is terminated.

Figure 83. IEBPTPCH Return Codes

IEBPTPCH is controlled by job control statements and utility
control statements. The job control statements are required to
execute or invoke the IEBPTPCH program and to define the data
sets that are used and produced by the program. The utility
control statements are used to control the functions of
IEBPTPCH.

JOB CONTROL STATEMENTS

Figure 84 shows the job control statements for IEBPTPCH.

statement Use

JOB Initiates the job step.

EXEC Specifies the program name (PGM=IEBPTPCH) or, if
the job control statements reside in a procedure
library, the procedure name.

SYSPRINT DD Defines a sequential message data set. The data
set can be written to a system output device, a
tape volume, or a direct access device.

SYSUT1 DD Defines a sequential or partitioned input data set.

SYSUT2 DD Defines the output (print or punch) data set.

SYSIN DD Defines the control data set. The control data set
normally resides in the input stream; however, it
can be defined as a member in a partitioned.data
set.

Figure 84. Job Control Statements for IEBPTPCH

IEBPTPCH Program 243

SVSPRINT DD statement

SVSUTI DD statement

SVSUT2 DD statement

SVSIN DD statement

The SYSPRINT DD statement is required for each use of IEBPTPCH.
The RECFM is always FBA, the lRECl is always 121. Output can be
blocked by specifying a block size that is a multiple of 121 on
the SYSPRINT DD statement. The default block size is 121.

The SYSUT1 DD statement is required for each use of IEBPTPCH.
The RECFM (except for undefined records), BlKSIZE, and lRECl
(except for undefined and fixed unblocked records) must be
present on the DD statement, in the DSCB, or on the tape label.

The input data set can contain fixed, variable, undefined, or
variable spanned records. Variable spanned records are
permitted only when the input is sequential.

A partitioned directory to be printed or punched must be defined
as a sequential data set (TYPORG=PS). You must specify RECFM=U,
BlKSIZE=256, and lRECl=256 on the SYSUT1 DD statement.

The SYSUT2 DD statement is required every time IEBPTPCH is used.
The RECFM is always FBA or FBM. The lRECl parameter, or, if no
logical record length is specified, the BlKSIZE parameter,
specifies the number of characters to be written per printed
line or per punched card (this count includes a control
character). The number of characters specified must be in the
range of 2 through 145. The default values for edited output
lines are 121 characters per printed line and 81 characters per
punched card.

The SYSUT2 data set can be blocked by specifying both the lRECl
and the BlKSIZE parameters, in which case, block size must be a
multiple of logical record length.

Both the output data set and the message data set can be written
to the system output device if it is a printer.

If the logical record length of the input records is such that
the output would exceed the output record length, IEBPTPCH
divides the record into multiple lines or cards in the case of
standard printed output, standard punched output, or when the
PREFORM parameter is specified. For nonstandard output, or if
the PREFORM parameter is not specified, only part of the input
record is printed or punched (maximums determined by the
specific characteristics of your output device).

The SYSIN DD statement is required for each use of IEBPTPCH.
The RECFM is always FB, the lRECl is always 80. Any blocking
factor that is a multiple of 80 can be specified for the
BlKSIZE. The default block size is 80.

UTILITY CONTROL STATEMENTS

IEBPTPCH is controlled by utility control statements. The
control statements in figure 85 on page 245 are shown in the
order in which they must appear.

Control statements are included in the control data set, as
required. Any number of MEMBER and RECORD statements can be
included in a job step.

244 MVS/370 Utilities

PRINT statement

A nonblank character in column 72 is optional for IEBPTPCH
continuation statements. Continuation requirements for utility
control statements are described in "Continuing Utility Control
Statements" on page 5.

statement

PRINT

PUNCH

TITLE

EXITS

MEMBER

RECORD

LABELS

Use

Specifies that the data is printed.

Specifies that the data is punched.

Specifies that a title is to precede the printed
or punched data.

Specifies that user exit routines are provided.

Specifies that the input is a partitioned data
set and that a selected member is printed or
punched.

Specifies whether editing is performed, that is,
records are to be printed or punched to the
user's specifications.

Spe.cifies whether user labels are treated as
data.

Figure 85. IEBPTPCH Utility Control Statements

The PRINT statement is used to initiate the IEBPTPCH PRINT
operation. If used, PRINT must be the first statement in the
control data set.

The format of the PRINT statement is:

[label] PRINT [PREFORM=AIM]

[,TYPORG=pslpO]

[,TOTCONV=XElpZ]

[,CNTRL=nl!]

[,STRTAFT=,n]

[,STOPAFT=,n]

[,SKIP=n]

[,MAXNAME=,n]

[,MAXFLDS=n]

[,MAXGPS=,n]

[,MAXLITS=n]

[,INITPG=,n]

[,MAXLINE=,n]

IEBPTPCH Program 245

PUNCH statement

TITLE statement

EXITS statement

The PUNCH statement is used to initiate the IEBPTPCH PUNCH
operation. If used, PUNCH must be the first statement in the
control data set.

The format of the PUNCH statement is:

[labell PUNCH [PREFORf1=AIf1l

[,TYPORG=PSlpOl

[,TOTCONY=XEIPZl

[,CNTRL=nl!]

[,STRTAFT=nl

[,STOPAFT=nl

[,SKIP=nl

[,f1AXNAf1E=n]

[,f1AXFLDS=nl

[,f1AXGPS=n]

[,f1AXLITS=n]

[,CDSEQ=nl

[,CDINCR=n l

The TITLE statement is used to request title and subtitle
records. Two TITLE statements can be included for each use of
IEBPTPCH. A first TITLE statement defines the title, and a
second defines the subtitle. The TITLE statement, if included,
follows the PRINT or PUNCH statement in the control data set.

The format of the TITLE statement is:

TITLE ITEf1=('title'[,output-locationl)

The literal coded for 'title' is not affected by the TOTCONV
parameter.

The EXITS statement is used to identify exit routines supplied
by the user. Exits to label processing routines are ignored if
the input data set is partitioned. Linkage to and from user
routines are discussed in Appendix A, "Exit Routine Linkage" on
page 438.

The EXITS statement, if included, must immediately follow any
TITLE statement or follow the PRINT or PUNCH statement.

246 MVS/370 Utilities

MEMBER statement

RECORD statement

The format of the EXITS statement is:

[labell EXITS [INHDR=routinenamel

[,INTLR=routinenamel

[,INREC=routinenamel

[,QUTREC=routinenamel

The MEMBER statement is used to identify members to be printed
or punched. All RECORD statements that follow a MEMBER
statement pertain to the member indicated in that MEMBER
statement only. When RECORD and MEMBER statements are used, at
least one MEMBER statement must precede the first RECORD
statement. If no RECORD statement is used, the member is
processed to standard specifications.

If no MEMBER statement appears, and a partitioned data set is
being processed, all members of the data set are printed or
punched. Any number of MEMBER statements can be included in a
job step.

If a MEMBER statement is present in the input stream, MAXNAME
must be specified in a PRINT or PUNCH statement.

The format of the MEMBER statement is:

MEMBER NAME=Cmembernamelaliasname)

The RECORD statement is used to define a group of records,
called a record group, that is printed or punched to the user's
specifications. A record group consists of any number of
records to be edited identically.

If no RECORD statements appear, the entire data set, or named
member, is printed or punched to standard specifications. If a
RECORD statement is used, all data following the record group it
defines (within a partitioned member or within an entire
sequential data set) must be defined with other RECORD
statements. Any number of RECORD statements can be included in
a job step.

A RECORD statement referring to a partitioned data set for which
no members have been named need contain only FIELD parameters.
These are applied to the records in all members of the data set.

If a FIELD parameter is included in the RECORD statement,
MAXFLDS must be specified in the PRINT or PUNCH statement.

If an IDENT parameter is included in the RECORD statement,
MAXGPS and MAXLITS must be specified in the PRINT or PUNCH
statement.

IEBPTPCH Program 247

LABELS statement

The format of the RECORD statement is:

[label] RECORD [IDENT=(length,'~',input-location}]

[,FIELD=(length
[,input-location]
[,conversion]
[,output-location])]

The LABELS statement specifies whether user labels are treated
as data. For a detailed discussion of this option, refer to
Appendix C, "Processing User Labels" on page 446.

LABELS DATA=NO must be specified to make standard user label
(SUL) exits inactive when an input data set with nonstandard
labels (NSL) is processed.

If more than one valid LABELS statement is included, all but the
last LABELS statement are ignored.

The format of the LABELS statement is:

[label] LABELS [CONv=pzIXE]

[,DATA=VESINOIALLIONLV]

248 MVS/370 Utilities

Parameters

CDINCR

CDSEQ

CNTRL

CONV

Applicable
Control
statements

PUNCH

PUNCH

PRINT

PUNCH

LABELS

Description of Parameters

CDINCR=n
specifies the increment to be used in
generating sequence numbers.

Default: 10 is the increment value.

CDSEQ=n
specifies the initial sequence number of a
deck of punched cards. This value must be
contained in columns 73 through 80.
Sequence numbering is initialized for each
member of a partitioned data set. If the
value of n is zero, 00000000 is the starting
sequence number.

Default: Cards are not numbered.

CNTRL=nll
spe~ifies a control character for the output
device that indicates line spacing, as
follows: 1 indicates single spacing (the
default), 2 indicates double spacing, and 3
indicates triple spacing.

specifies a control character for the output
device that is used to select the stacker,
as follows: 1 indicates the first stacker
(the default), 2 indicates the second
stacker, and 3 indicates the third stacker,
if any.

CONv=pzlxE
specifies a 2-byte code that indicates the
type of conversion to be performed on this
field before it is printed or punched. The
values that can be coded are:

PZ

XE

specifies that data (packed decimal) is
converted to unpacked decimal data.
The converted portion of the input
record (length L) occupies 2L - 1
output characters when punching, and 2L
output characters when printing.

specifies that data (alphameric) is
converted to hexadecimal data. The
converted portion of the input record
(length L) occupies 2L output
characters.

Default: The field is moved to the output
area without change.

IEBPTPCH Program 249

Parameters

DATA

APplicable
Control
statements

LABELS

250 MVS/370 Utilities

Description 01 Parameters

DATA=YESINOIALLIONLY
specifies whether user labels are treated as
data. The values that can be coded are:

YES

NO

ALL

ONLY

specifies that any user labels that are
not rejected by a user's label
processing routine are treated as data.
Processipg of labels as data stops in
compliance with standard return codes.
YES is t~e default.

f
specifies that user labels are not to
be treated as data. NO must be
specified when processing input/output
data sets with nonstandard labels (NSL)
in order to make standard user label
(SUL) exits inactive.

specifies that all user labels are
treated as data. A return code of 16
causes the utility to complete the
processing of the remainder of the
group of user labels and to terminate
the job step.

specifies that only user header labels
are treated as data. User header
labels are processed as data regardless
of any return code. The job terminates
upon return from the OPEN routine.

Parameters

FIELD

Applicable
control
statements

RECORD

Description of Parameters

FIELD:(length,[input-location],[conversion],
[output-locationl)[,FIELD: ••••]
specifies field-processing and editing
information.

Note that the variables on the FIELD
parameter are positional; that is, if any of
the options are not coded, the associated
comma preceding that variable must be coded.

These values can be coded:

length
specifies the length (in bytes) of the
input field to be processed. The
length must be equal to or less than
the initial input LRECL.

input-location
specifies the starting byte of the
input field to be processed. The sum
of the length and the input location
must be equal to or less than the input
LRECL plus one.

Default: Byte 1 is assumed.

conversion
specifies a 2-byte code that indicates
the type of conversion to be performed
on this field before it is printed or
punched. The values that can be coded
are:

PZ

XE

specifies that data (packed
decimal) is converted to unpacked
decimal data. The converted
portion of the input record
(length L) occupies 2L - 1 output
characters when punching, and 2L
output characters when printing.

specifies that data (alphameric)
is converted to hexadecimal data.
The converted portion of the input
record (length L) occupies 2L
output characters.

Default: The field is moved to the
output area without change.

IEBPTPCH Program 251

Applicable
Control

Parameters statements

FIELD RECORD
(continued)

IDENT RECORD

252 MVS/370 Utilities

Description of Parameters

output-location
specifies the starting location of this
field in the output records. Unspecified
fields in the output records appear as
blanks in the printed or punched output.
Data that exceeds the SYSUT2 printer or
punch size is not printed or punched. The
specified fields may not exceed the logical
output record length minus one. When
specifying one or more FIELDs, the sum of
all lengths and all extra characters needed
for conversions must be equal to or less
than the output LRECL minus one.

Default: Byte 1 is assumed.

If a FIELD parameter is included in the RECORD
statement, MAXFLDS must be specified in the PRINT
or PUNCH statement.

IDENT=(length,'name',input-location)
identifies the last record of the record
group to which the FIELD parameters apply.
The values that can be coded are:

length
specifies the length (in bytes) of the
field that contains the identifying
name in the input records. The length
cannot exceed 8 bytes.

'name'
----specifies the exact literal, enclosed

in apostrophes, that identifies the
last record of a record group. If the
literal contains apostrophes, each must
be written as two consecutive
apostrophes.

input-location
specifies the starting location of the
field that contains the identifying
name in the input records.

The sum of the length and the input location
must be equal to or less than the input
LRECL plus one.

Default: If IDENT is omitted and STOPAFT is
not included with the PRINT or PUNCH
statement, record processing halts after the
last record in the data set. If IDENT is
omitted and STOPAFT is included with the
PRINT or PUNCH statement, record processing
halts when the STOPAFT count is satisfied or
after the last record of the data set is
processed, whichever occurs first.

If an IDENT parameter is included in the
RECORD statement, MAXGPS and MAXLITS must be
specified in the PRINT or PUNCH statement.

Parameters

INHDR

INITPG

INREC

INTLR

ITEM

MAXFlDS

Applicable
Control
statements

EXITS

PRINT

EXITS

EXITS

TITLE

PRINT
PUNCH

Description of Parameters

INHDR=routinename
specifies the name of the routine that
processes user input header labels.

INITPG=n
specifies the initial page number; the pages
are numbered sequentially thereafter. The
INITPG parameter must not exceed a value of
9999.

Default: Page 1

INREC=routinename
specifies the name of the routine that
manipulates each logical record (or physical
block in the case of VS or vas records
longer than 32K bytes) before it is
processed.

INTLR=routinename
specifies the name of the routine that
processes user input trailer labels.

ITEH=('title'[,output-locationl)[,ITEM ••• l
specifies title or subtitle information.
The values that can be coded are:

'title'
-----specifies the title or subtitle literal

(maximum length of 40 bytes), enclosed
in apostrophes. If the literal
contains apostrophes, each apostrophe
must be written as two consecutive
apostrophes.

output-location

HAXFLDS=n

specifies the starting position at
which the literal for this item is
placed in the output record. When used
with output-location, the specified
title's length plus output-location may
not exceed the output logical record
length minus one.

Default: Byte 1 is assumed.

spe~ifies a number no less than the total
number of FIELD parameters appearing in
subsequent RECORD statements. The value
must not exceed 32767.

If MAXFLDS is omitted when there is a FIELD
parameter present, the print or punch
request is terminated.

IEBPTPCH Program 253

Parameters

MAXGPS

MAXLINE

MAXLITS

MAXNAME

NAME

OUTREC

Applicable
Control
statements

PRINT
PUNCH

PRINT

PRINT
PUNCH

PRINT
PUNCH

MEMBER

EXITS

254 MVS/370 utilities

Description of Parameters

HAXGPS=n
specifies a number no less than the total
number of IDENT parameters appearing in
subsequent RECORD statements. The value
must not exceed 32767.

If MAXGPS is omitted when there is an IDENT
parameter present, the print or punch
request is terminated.

HAXLINE=n
specifies the maximum number of lines'to a
printed page. Spaces, titles, and subtitles
are included in this number.

Default: 60 lines per page.

MAXLITS=n
specifies a number no less than the total
number of characters contained in the IDENT
literals of subsequent RECORD statements.
The value must not exceed 32767.

If MAXLITS is omitted when there is a
literal present, the print or punch request
is terminated.

MAXNAME=n
specifies a number no less than the total
number of member names and aliases appearing
in subsequent MEMBER statements. The value
must not exceed 32767.

If MAXNAME is omitted when there is a MEMBER
statement present, the print or punch
request is terminated.

NAHE=[membernamelaliasnameJ
specifies a member to be printed or punched.
The values that can be coded are:

membername
specifies a member by its member name.

aliasname
specifies a member by its alias name.

If a MEMBER statement is present in the
input stream, MAXNAME must be specified in a
PRINT or PUNCH statement.

QUTREC=routinename
specifies the name of the routine that
manipulates each logical record (or physical
block in the case of VS or VBS records
longer than 32K bytes) before it. is printed
or punched.

Parameters

PREFORM

SKIP

Applicable
Control
statements

PRINT
PUNCH

PRINT
PUNCH

Description of Parameters

PREFORM=AIM
specifies that a control character is
provided as the first character of each
record to be printed or punched. The
control characters are used to control the
spacing, number of lines per page, page
ejection, and selecting a stacker. That ls,
the output has been previously formatted,
and the "standard specifications" are
superseded. If an error occurs, the
print/punch operation is terminated. If
PREFORM is coded, any additional PRINT or
PUNCH operands and all other control
statements, except for syntax checking,
LABELS statements and TYPORG operands, are
ignored. PREFORM must not be used for

, printing or punching data sets with VS or
VBS records longer than 32K bytes. These
values are coded as follows:

A

"

SKIP=n

specifies that an ASA control character
is provided as the first character of
each record to be printed or punched.
If the input record length exceeds the
output record length, the utility uses
the ASA character for printing the
first line, with a single space
character on all subsequent lines of
the record (for PRINT), or duplicates
the ASA character on each output card
of the record (for PUNCH).

specifies that a machine-code control
character is provided as the first
character of each record to be printed
or punched. If the input record length
exceeds the output record length, the
utility prints all lines of the record
with a print-skip-one-line character
until the last line of the record,
which will contain the actual character
provided as input (for PRINT), or
duplicates the machine control
character on each output card of the
record (for PUNCH).

specifies that every nth record (or physical
block in the case of VS or VBS records
longer than 32K bytes) is printed or
punched.

Default: Successive logical records are
printed or punched.

IEBPTPCH Program 255

Parameters

STOPAFT

STRTAFT

APplicable
Control
statements

PRINT
PUNCH

PRINT
PUNCH

256 MVS/370 Utilities

Description of Parameters

STOPAFT=n
specifies, for sequential data sets, the
number of logical records (or physical
blocks in the case of VS or VBS records
longer than 32K bytes) to be printed or
punched. For partitioned data sets, this
specifies the number of logical records (or
physical blocks in the case of VS or VBS
records longer than 32K bytes) to be printed
or punched in each member to be processed.
The n value must not exceed 32767. If
STopiFT is specified and the IDENT parameter
of the RECORD statement is also specified,
the operation is terminated when the STOPAfT
count is satisfied or at the end of the
first record group, whichever occurs first.

STRTAFT=n
specifies, for sequential data sets, the
number of logical records (physical blocks
in the case of variable spanned (VS) or
variable block spanned (VBS) type records
longer than 32K bytes) to be skipped before
printing or punching begins. For
partitioned data sets, STRTAFT=n specifies
the number of logical records to be skipped
in each member before printing or punching
begins. The n value must not exceed 32767.
If STRTAFT is specified and RECORD
statements are present, the first RECORD
statement of a member describes the format
of the first logical record to be printed or
punched.

Parameters

TOTCONV

TYPORG

Applicable
Control
statements

PRINT
PUNCH

PRINT
PUNCH

Description of Parameters

TOTCONV=XElpz
specifies the representation of data to be
printed or punched. TOTCONV can be
overridden by any user specifications
(RECORD statements) that pertain to the same
data. These values are coded as follows:

XE

pz

specifies that data is punched in
2-character-per-byte hexadecimal
representation (for example, C3 40 F4
F6). If XE is not specified, data is
punched in l-character per byte
alphameric representation. The above
example would appear as C 46.

The converted portion of the input
record (length L) occupies 2L output
characters.

specifies that data (packed decimal
mode) is converted to unpacked decimal
mode. IEBPTPCH does not check for
packed decimal mode.

The converted portion of the input
record (length L) occupies 2L-l output
characters when punching, and 2L output
characters

Default: If TOTCONV is omitted, data is not
converted.

TYPORG=pslpo
specifies the organization of the input data
set. These values are coded as follows:

PS

PO

specifies that the input data set is
organized sequentially. This is the
default.

specifies that the input data set is
partitioned.

IEBPTPCH Program 257

IEBPTPCH EXAMPLES

Operation

PRINT

PUNCH

PRINT

PRINT

PRINT

PUNCH

PRINT

PUNCH

PRINT

PRINT

The following examples illustrate some of the uses of IEBPTPCH.
Figure 86 can be used as a quick-reference guide to IEBPTPCH
examples. The numbers in the "Example" column refer to the
examples that follow:

Data set
organization Devices Comments Example

Sequential 9-track Tape and Standard format. 1
System Printer Conversion to

hexadecimal.

Sequential 7-track Tape and Standard format. 2
Card Reader Conversion to

hexadecimal.

Partitioned Disk and System Standard format. 3
Printer Conversion to

hexadecimal. Ten
records from each member
are printed.

Partitioned Disk and System Standard format. 4
Printer Conversion to

hexadecimal. Two
members are printed.

Sequential 9-track Tape and User-specified format. 5
System Printer Input data set is the

second data set on the
volume.

Sequential Disk and Card User-specified format. 6
Reader Punch Sequence numbers are

assigned and punched.

Sequential, Disk and System Standard format. 7
Partitioned Printer Conversion to

hexadec i rna I.

Sequential Card Reader and Standard format. 8
Card Read Punch Control data set is a

member in a cataloged
partitioned data set.

Sequential Disk and System User-specified format. 9
Printer User routines are

provided. Processing
ends after the third
record group is printed
or STOPAFT is satisfied.

Sequential 9-track Tape and SYSOUT format. SYSOUT 10
System Printer data set is on tape

volume.

Figure 86. IEBPTPCH Example Directory

IEBPTPCH EXAMPLE I

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

In this example, a sequential data set is printed according to
standard specifications. The printed output is converted to
hexadecimal.

258 MVS/370 Utilities

IEBPTPCH EXAMPLE 2

//PRINT
//
//SYSPRINT
//SYSUTl
//
//SYSUT2

.//SYSIN
PRINT
TITLE

JOB 09#660,SMITH
EXEC PGM=IEBPTPCH
DO SYSOUT=A
DO UNIT=tape,lABEl=(,Nl),VOlUME=SER=001234,

OISP=(OlD,KEEP),OCB=(RECFM=U,BlKSIZE=2000)
DO SYSOUT=A
DO *

TOTCONV=XE
ITEM=('PRINT SEQ DATA SET WITH CONV TO HEX',lO)

The control statements are discussed below.

• SYSUTl DO defines the input data set on a tape volume. The
data set contains undefined records; no record is larger
than 2,000 bytes.

• SYSUT2 DO defines the output data set. The data set is
written to the system output device (printer ass~med). Each
printed line contains groups (a characters each) of
hexadecimal" information. Each input record begins a new
line of printed output. The size of the input record and
the carriage width determine how many lines of printed
output are required per input record.

• SYSIN DD defines the control data set, which follows in the
input stream. The control data set contains the PRINT and
TITLE statements.

• PRINT initiates the print operation and specifies conversion
from alphameric to hexadecimal representation.

• TITLE specifies a title to be placed beginning in column 10
of the printed output. The title is not converted to
hexadecimal.

In this example, a sequential data set is punched according to
standard specifications. The punched output is converted to
hexadecimal.

//PUNCHSET
//
//SYSPRINT
//SYSUTI
//
//

JOB 09#660,SMITH
EXEC PGM=IEBPTPCH
DO SYSOUT=A
DO DSNAME=INSET,UNIT=tape,VOlUME=SER=001234,

lABEl=(,Nl),DISP=(OlO,KEEP),OCB=(RECFM=FB,
lRECl=aO,BlKSIZE=2000)

//SYSUT2 DD
//SYSIN DO

SYSOUT=B

* TOTCONV=XE PUNCH
TITLE ITEM=('PUNCH SEQ DATA SET WITH CONV TO HEX',10)

The control statements are discussed below:

• SYSUTI DO defines the input data set, called INSET, on a
tape volume. The data set contains aO-byte, fixed blocked
records.

• SYSUT2 DO defines the system output class (punch is
assumed). Each record from the input data set is
represented by two punched cards.

IEBPTPCH Program 259

IEBPTPCH EXAMPLE 3

IEBPTPCH EXAMPLE 4

• SYSIN DD defines the control data set, which follows in the
input stream. The control data set contains the PUNCH and
TITLE statements.

• PUNCH initiates the punch operation and specifies conversion
from alphameric to hexadecimal representation.

• TITLE specifies a title to be placed beginning in column 10.
The title is not converted to hexadecimal.

In this example, a partitioned data set (ten records from each
member) is printed according to standard specifications. The
printed output is converted to hexadecimal.

JOB
EXEC
DO
DO

//PRINTPDS
//
//SYSPRINT
//SYSUT1
//
//SYSUT2
//SYSIN

DD
DO

PRINT
TITLE

09#660,SMITH
PGM=IEBPTPCH
SYSOUT=A
DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),
VOLUME=SER=111112
SYSOUT=A

* TOTCONV=XE,TYPORG=PO,STOPAFT=10
ITEM=('PRINT PDS - 10 RECS EACH MEM',20)

The control statements are discussed below:

• SYSUT1 DD defines the input data set, called PDS, on a disk
volume.

• SYSUT2 DO defines the output data set on the system output
device (printer assumed). Each printed line contains groups
(8 characters each) of hexadecimal information. Each input
record begins a new line of printed output. The size of the
input record and the carriage width determine how many lines
of printed output are required per input record.

• SYSIN DO defines the control data set, which follows in the
input stream. The control data set contains the PRINT and
TITLE statements.

• PRINT initiates the print operation, specifies conversion
from alphameric to hexadecimal representation, indicates
that the input data set is partitioned, and specifies that
10 records from each member are to be printed.

• TITLE specifies a title to be placed beginning in column 20
of the printed output. The title is not converted to
hexadecimal.

In this example, two partitioned members are printed according
to standard specifications. The printed output is converted to
hexadecimal.

260 MVS/370 Utilities

IEBPTPCH EXAMPLE 5

JOB
EXEC
DD
DD

//PRNTMEMS
//
//SYSPRINT
//SYSUTl
//
//SYSUT2
//SYSIN

DD
DD

PRINT
TITLE

MEMBER
MEMBER

09#660,SMITH
PGM=IEBPTPCH
SYSOUT=A
DSNAME=PDS,DISP=(OLD,KEEP),VOLUME=SER=111112,
UNIT=disk
SYSOUT=A

* TYPORG=PO,TOTCONV=XE,MAXNAME=2
ITEM=('PRINT TWO MEMBS WITH CON V TO HEX',lO)
NAME=MEMBERl
NAME=MEMBER2

The control statements are discussed below:

• SYSUTl DD defines the input data set, called PDS, on a disk
volume.

• SYSUT2 DD defines the output data set on the system output
device (printer assumed). Each printed line contains groups
(8 characters each) of hexadecimal information. Each input
record begins ~ ~ew Ifne of printed ~utput. The size of the
input record and the carriage width determine how many lines
of printed output are required per input record.

• SYSIN DD defines the control data set, which follows in the
input stream. The control data set contains PRINT, TITLE,
and MEMBER statements.

• PRINT initiates the print operation, indicates that the
input data set is partitioned, specifies conversion from
alphameric to hexadecimal representation, and indicates that
two MEMBER statements appear in the control data set
(MAXNAME=2).

• TITLE specifies a title to be placed beginning in column 10
of the printed output. The title is not converted to
hexadecimal.

• MEMBER specifies the member names of the members to be
printed (MEMBER1 and MEMBER2).

In this example, a sequential data set is printed according to
user specifications.

JOB
EXEC
DD
DD

//PTNONSTD
//
//SYSPRINT
//SYSUT1
//
//SYSUT2
//SYSIN

DD
DD

PRINT
EXITS

RECORD
LABELS

09tt660,SMITH
PGM=IEBPTPCH
SYSOUT=A
DSNAME=SEQSET,UNIT=tape,lABEL=(2,SUl),
DISP=(OLD,KEEP),VOlUME=SER=001234
SYSOUT=A

* MAXFLDS=l
INHDR=HDRIN,INTLR=TRLIN
FIELD=(80)
DATA=YES

IEBPTPCH Program 261

IEBPTPCH EXAMPLE 6

The control statements are discussed below:

• SYSUTI DD defines the input data set, called SEQSET, which
is the second data set on a tape volume.

• SYSUT2 DD defines the output data set on the system output
device (printer assumed). Each printed line contains 80
contiguous characters (one record) of information.

• SYSIN DD defines the control data set, which follows in the
input stream. The control data set contains the PRINT,
EXITS, RECORD, and LABELS statements.

• PRINT initiates the print operation and indicates that one
FIELD parameter is included in a subsequent RECORD statement
(MAXFLDS=l).

• EXITS indicates that exits will be taken to user header
label and trailer label processing routines when these
labels are encountered on the SYSUTI data set.

• RECORD indicates that each input record is processed in its
entirety (80 bytes). Each input record is printed in
columns 1 through 80 on the printer.

• LABELS specifies that user header and trailer labels are
printed according to the return code issued by the user
exits.

In this example, a sequential data set is punched according to
user specifications.

//PHSEQNO
//
//SYSPRINT
//SYSUTl
//

JOB
EXEC
DD
DD

//
//SYSUT2
//SYSIN

DD
DD

PUNCH
RECORD
LABELS

09#660,SMITH
PGM=IEBPTPCH
SYSOUT=A
DSNAME=SEQSET,UNIT=disk,LABEl=(,SUl),
VOLUME=SER=111112,DISP=(OLD,KEEP),
DCB=(RECFM=FB,LRECL=80,BlKSIZE=2000)
SYSOUT=B

* MAXFlDS=1,CDSEQ=00000000,CDINCR=20
FIELD=(72)
DATA=YES

The control statements are discussed below:

• SYSUTl DD defines the input data set, called SEQSET, which
resides on a disk volume. The data set contains 80-byte,
fixed blocked records.

• SYSUT2 DD defines the system output class (punch is
assumed). That portion of each record from the input data
set defined by the FIELD parameter is represented by one
punched card.

• SYSIN DD defines the control data set, which follows in the
input stream. The control data set contains the PUNCH,
RECORD, and LABELS statements.

• PUNCH initiates the punch operation, indicates that one
FIELD parameter is included in a subsequent RECORD statement
(MAXFLDS=l), and assigns a sequence number for the first
punched card (00000000) and an increment value for
successive sequence numbers (20). Sequence numbers are
placed in columns 73 through 80 of the output records.

262 MVS/370 Utilities

IEBPTPCH EXAMPLE 7

• RECORD indicates that bytes 1 through 72 of the input
records are to be punched. Bytes 73 through 80 of the input
records are replaced by the new sequence numbers in the
output card deck.

• LABELS specifies that user header labels and user trailer
labels are punched.

Labels cannot be edited; they are always moved to the first 80
bytes of the output buffer. No sequence numbers are present on
the cards containing user header and user trailer records.

In this example, the directory of a partitioned data set i5
printed. The printed output is converted to hexadecimal.

//PRINTDIR
//
//SYSPRINT
//SYSUTl
//
//SYSUT2
//SYSIN

PRINT
TITLE
TITLE

LABELS
/*

JOB
EXEC
DD
DD

091660,SMITH
PGM=IEBPTPCH
SYSOUT=A
DSNAME=PDS,UNIT=disk,YOLUME=SER=111112,
DISP=(OLD,KEEP),DCB=(RECFM=U,BLKSIZE=256)

DD SYSOUT=A
DD *
TYPORG=PS,TOTCONY=XE
ITEM=('PRINT PARTITIONED DIRECTORY OF PDS',lO)
ITEM=('FIRST TWO BYTES SHOW NUM OF USED BYTES',lO)
DATA=NO

The control statements are discussed below:

• SYSUTI DD defines the input data set (the partitioned
directory), which resides on a disk volume.

• SYSUT2 DD defines the output data set on the system output
device (printer assumed). Each printed line contains groups
(8 characters each) of hexadecimal information. Each input
record begins a new line of printed output. The size of the
input record and the carriage width determine how many lines
of printed output are required per input record.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains the PRINT, TITLE, and
LABELS statements.

• PRINT initiates the print operation, indicates that the
partitioned directory is organized sequentially, and
specifies conversion from alphameric to hexadecimal
representation.

• The first TITLE statement specifies a title, which is not
converted to hexadecimal.

• The second TITLE statement specifies a subtitle, which is
also not converted to hexadecimal.

• lABELS specifies that no user labels are printed.

Note: Not all of the bytes in a directory block need contain
data pertaining to the partitioned data set; unused bytes are
sometimes used by the operating system as temporary work areas.
With conversion to hexadecimal representation, the first four
characters of printed output indicate how many bytes of the
256-byte block pertain to the partitioned data set. Any unused
bytes occur in the latter portion of the directory block; they
are not interspersed with the used bytes.

IEBPTPCH Program 263

IEBPTPCH EXAMPLE 8

IEBPTPCH EXAMPLE 9

In this example, a card deck containing valid punch card code or
BCD is duplicated.

//PUNCH
//
//SYSPRINT
//SYSIN
//SYSUT2
//SYSUTl

JOB
EXEC
DD
DD
DD
DD

091660,SMITH
PGM=IEBPTPCH
SYSOUT=A
DSNAME=PDSLIB(PNCHSTMT),DISP=(OLD,KEEP)
SYSOUT=B
DATA

(input card data set including // cards)
/*

The control statements are discussed below:

• SYSIN DO defines the control data set. The control data set
contains a PUNCH statement and is defined as a member of the
partitioned data set PDSLIB. (The data set is cataloged.>
The RECFM must be FB and the LRECl must be 80.

• SYSUT2 DD defines the system output class (punch is
assumed) .

• SYSUTl OD defines the input card data set, which follows in
the input stream.

In this example, three record groups are printed. A user
routine is provided to manipulate output records before they are
printed.

72
//PRINT JOB
// EXEC
//SYSPRINT DO
//SYSUTl DD
//
//SYSUT2 DD
//SYSIN DD

PRINT
TITLE

EXITS
RECORD

RECORD

RECORD

LABELS

091660,SMITH
PGM=IEBPTPCH
SYSOUT=A
DSNAME=SEQDS,UNIT=disk,DISP=(OLD,KEEP),
LABEL=(,SUL),VOLUME=SER=111112
SYSOUT=A

* MAXFlDS=9,MAXGPS=9,MAXLITS=23,STOPAFT=32767
ITEM=('TIMECONV-DEPT D06'),
ITEM=('JANIO-17',80)
OUTREC=NEWTIME,INHDR=HDRS,INTLR=TLRS
IDENT=(6,'498414',1),
FIELD=(8,1"lO),FIELD=(30,9,XE,20)
IDENT=(2,'**',39),
FIELD=(8,1,,10),FIELD=(30,9,XE,20)
IDENT=(6,'498414',1),
FIELD=(8,1,,10),FIELD=(30,9,XE,20)
CONV=XE,DATA=ALL

The control statements are discussed below:

• SYSUTl DD defines the input data set, called SEQDS. The
data set resides on a disk volume.

• SYSUT2 DO defines the output data set on the system output
device (printer assumed).

C

C

C

C

264 MVS/370 Utilities

·SYSIN DD defines the control data set, which follows in the
input stream. The centrol data set contains the PRINT,
TITLE, EXITS, RECORD, and LABELS statements.

• The PRINT statement:

1. Initializes the print operation.

2. Indicates that not more than nine FIELD parameters are
included in subsequent RECORD statements (MAXFLDS=9).

3. Indicates that not more than nine IDENT parameters are
included in subsequent RECORD statements (MAXGPS=9).

4. Indicates that not more than 23 literal characters are
included in subsequent IDENT parameters (MAXLITS=23).

5. Indicates that processing is terminated after 32767
re~ords are processed or after the third record group is
processed, whichever comes first. Because MAXLINE is
omitted, 60 lines are printed on each page.

• TITLE specifies two titles, to be printed on one line. The
titles are not converted to hexadecimal.

• EXITS specifies the name of a user routine (HEWTIME), which
is used to manipulate output records before they are
printed.

• The first RECORD statement defines the first record group to
be processed and indicates where information from the input
records is placed in the output records. Bytes 1 through 8
of the input records appear in columns 10 through 17 of the
printed output, and bytes 9 through 38 are printed in
hexadecimal representation and placed in columns 20 through
79.

• The second RECORD statement defines the second group to be
processed. The parameter in the IDENT operand specifies
that an input record containing the two characters ** in
positions 39 and 40 is the last record edited according to
the FIELD operand in this RECORD statement. The FIELD
operand specifies that bytes 1 through 8 of the input
records are placed in columns 10 through 17 of the printed
output, and bytes 9 through 38 are printed in hexadecimal
representation and appear in columns 20 through 79.

• The third and last RECORD statement is equal to the first
RECORD statement. An input record that meets the parameter
in the IDENT operand ends processing, unless the STOPAFT
parameter in the PRINT statement has not already done so.

• LABELS specifies that all user header or trailer labels are
to be printed regardless of any return code, except 16,
issued by the user's exit routine. It also indicates that
the labels are converted from alphameric to hexadecimal
representation (CONV=XE).

IEBPTPCH Program 265

IEBPTPCH EXAMPLE 10

In this example, the input is a SYSOUT (sequential) data set,
which was previously written as the second data set of a
standard label tape. It is printed in SYSOUT format.

//PT~YSOUT
//
//SYSPRINT
//SYSUTl
//
//SYSUT2
//SYSIN

PRINT

JOB 09#660,SMITH
EXEC PGM=IEBPTPCH
DD SYSOUT=A
DD UNIT=tape,LABEL=(2,SL),DSNAME=LISTING,

DISP=(OLD,KEEP),VOL=SER=001234
DD SYSOUT=A
DD *

PREFORM=A

The control statements are discussed below:

• SYSUTl DD defines the input data set, which was previously
written as the second data set of a standard label tape.
The data set has been assigned the name LISTING.

• SYSUT2 DD defines the output data set on the system output
device (printer assumed).

• SYSIN DD defines the control data set, which follows in the
input stream. The control data set contains the PRINT
statement.

• The PRINT statement initiates the print operation and
indicates that an ASA control character is provided as the
first character of each record to be printed (PREFORM=A).

266 MVS/370 Utilities

IEBTCRIN PROGRAM

IEBTCRIN is a data set utility used to read input from the IBM
2495 Tape Cartridge Reader (TCR), edit the data as specified by
the user, and produce a sequentially organized output data set.

IEBTCRIN can be used to construct records from the stream of
data bytes read sequentially from the Tape Cartridge Reader.
The user has the option of gaining temporary control (via a
user-supplied exit routine) to process each logical record.

The input to IEBTCRIH is in the form of cartridges written by
either the IBM Magnetic Tape Selectric Typewriter (MTST) or the
IBM 50 Magnetic Data Inscriber (MTDI). An input data set (one
or more cartridges) must consist of either all MTST cartridges
or all MTDI cartri.dges. (For more information concerning the
MTDI use and an explanation of terminology used in this chapter,
refer to IBM 50 Magnetic Data Inscriber Component Description.)

Wh~n MTDI input is edited, IEBTCRIN maintains information about
each record as it is being edited. This information is
summarized in "Error Description Word (EDW)" on page 274. When
the EDW contains a value other than zero in either the level
status (byte 0) or the type status (byte 1), the record is
considered an error record by the program and the EDW is added
to the start of the record to aid the user in analyzing the
error.

"TDI EDITING CRITERIA

The cartridges created on the IBM 50 Magnetic Data Inscriber
contain a continuous stream of data bytes (that is, there are no
interblock gaps). Therefore, when editing is specified,
IEBTCRIN extracts records one at a time from the data stream.
To accomplish this, IEBTCRIN scans for control codes written by
MTDI. IEBTCRIN uses start-of-record (SOR) and end-of-record
(EOR) locations to extract MTDI records from the input stream.

The (SOR) location is defined as:

• The location of the first character on a cartridge.

• The location of the first character after the previous
record's (EOR) location.

• The location of an SOR code.

• The location of a group separator (GS) code.

The character in the SOR location is checked to determine if it
is a valid start-of-record character. A P1 through PS, a cancel
code, or a GS code are valid start-of-record characters; all
others are invalid.

The EOR location by priority sequence is:

1. The same location as the SOR location, if the SOR character
was a valid GS code.

2. The location of the first encountered record mark (RM) or
verify okay (VOK) code if that location is within the length
of the maximum user-specified record size.

3. The location of any code preceding either a valid SOR code
or the end-of-media (EOM) code, if that location is within
the length of the maximum user-specified record size.

IEBTCRIN Program 267

4. The location determined in 2 or 3, regardless of the maximum
user-specified record size if the SOR location contains a
cancel code.

5. If one of the previous EOR locations cannot be defined, an
EOR condition will be forced at the location where the
record length equals the maximum user-specified record size.

The character in the EOR location is checked to determine if it
is a valid end-of-record character. Valid EOR characters are
the GS character (if the SOR character was a GS code) and VOK or
RM codes; all others are invalid. Each GS code is considered a
valid SOR code or EOR code and will be bypassed.

"TDI Editing Restrictions

Following are the restrictions that apply when editing MTDI
records:

• All canceled records are bypassed; they are not passed to
any exit routines or written on any data sets. The level
status is set to O.

• All input records less than three bytes in length (SOR
location, one data byte, and EOR location) are treated as
c~nceled records. The remaining portion of a record th~t
was longer than the user-specified maximum record size can
result in an input record of this size.

• Data duplication is accomplished by replacing the DUP
(duplication) code with the character from the corresponding
location of the previous record.

• The record used for data duplication is the record returned
from any user exits.

• GS codes will not affect the level status or duplication of
following records.

• Data duplication does not occur for any of the following
conditions:

1. The DUP code is encountered in the first record of a
cartridge.

2. The DUP code is encountered in a record immediately
following a canceled record. A canceled record is one
that contains a cancel code in the SOR location or an
input record of less than three bytes as described
above.

3. The DUP code is encountered in a position that would
cause duplication of a position beyond the last data
byte of the previous record.

4. The DUP code is encountered in a position that would
cause duplication of an error-replace character.

In each case, the DUP code is replaced with the user
specified error-replace character, and a field error is
indicated.

• left-zero justification does not occur; the left-zero fill
code (ll) is replaced with the user-specified error-replace
character and a field error is indicated for either of the
following conditions:

268 MVS/370 Utilities

1. The left-zero fill code (ll) is encountered without
first having encountered its corresponding left-zero
start code (llS).

2. The user-specified maximum record size is exceeded
before encountering the valid end of a left-zero field.

SPECIAL CODES

If MTDI is QditQd, an EDW which is four bytQS long is apPQndQd
to thQ front of each error record describing the error
condition. For furthQr definition of the EOW, seQ "Error
Description Word (EOW)" on page 274. If the SYSUT3 DD statement
specified variable length records, an ROW which ;s four bytes
long is also appended to the front of the record. For further
description of the ROW, see Supervisor Services and Macro
Instructions.

The user-supplied routines specified in ERROR and OUTREC can be
used to examine and modify any byte in the record or EOW. The
record length can be changed, subject to the following
restrictions:

• A work area used to construct the records is allocated by
the program equal in size to the largest of (1) MAXlN, (2)
lRECl on SYSUT2, or (3) lRECl on SYSUT3.

• The record length must not be increased beyond this size.
Overlaying of other work areas may then occur, causing
unpredictable results.

The new record length must be placed in the location pointed to
by the second parameter word as received at entry to the
routine. This length must include the EOW and ROW (if
applicable). It is not necessary to modify the ROW because it
is re-created if the record is to be written by IEBTCRIN.
However, if the user does his own output from this routine, he
must ensure that the ROW is correct for the record.

If IEBTCRIN is to write the record, the length of the output
record depends on the RECFM specification, as follows:

• Fixed and variable records may have a maximum length equal
to lRECl. Records larger than this are truncated.

• Undefined records may have a maximum length equal to
BlKSIZE. Records larger than this are truncated.

These record lengths include the EDW and ROW, where applicable.

The record length returned from the error exit is used to
establish the location of the last data byte in the record. The
location is used to control data duplication in the following
record. However, it is not used for checking the record length
of subsequent records.

Modifications to the EDW, record, or record length may affect
the editing of subsequent records. If the input is not edited,
the user can examine and modify any byte in the record. The
record length can also be changed, subject to the MTDI-editing
rQstrictions.

Figure 87 on page 270 shows the hexadecimal characters
representing special purpose codes that must not be used as
replacement bytes.

IEBTCRIN Program 269

MTDI Codes

X' 00" (lZ) X'lE' (VOK) X'74' (P4)
X' 11 ' (OUP) X'3C' (RM) X'75' (P5)
X'12' (lZS) X'71' (Pl) X'76' (P6)
X'lS' (CAN) X'72' (P2) X'77' (P7)
X'lO' (GS) X'73' (P3) X'7S' CPS)

MTST Codes

X'lO' (cr) X'l4' (CR) X'51' (as)
X'll' (sw) X'l5' (SW) X'55' (AS)
X'l3' (fd) X'17' (FO) X'80' (src)

X'81' through X'FF'

Figure 87. Special Purpose Codes

The special purpose codes listed in Figure 87 are used by
IEBTCRIN when constructing records. Use of these codes causes a
message to be issued and the utility to be terminated.

Figure 88 on page 271 shows the values that can be chosen to
replace error bytes for MTDI input.

Figure 89 on page 272 shows the values that can be chosen to
replace error bytes for MTST input.

Figure 90 on page 273 shows MTST codes after they have been
translat.ed by IEBTCRIN when TRANS=STDlC is specified.

270 MVS/370 Utilities

It) 'u
v- -8

00 01 ell ~ C .g CIJ
%

'iii " ~
00 01 10 11 00 01 10 c .. 8

CD ~ 0 1 2 3 4 5

0000 0 LZ SP &

0001 1 DUP

0010 2 LZS

0011 3

0100 4

0101 5

0110 S

0111 7

1000 8 CAN

1001 9 ED

1010 A , !

1011 B $

1100 C RM < *

1101 0 GS ()

1110 E rvOK + ;

1111 F I,

This figure represents the character set and control
codes as read from an MTDI created cartridge.

S

I

%

>

?

Figure 88. MTDI Codes from TCR

10

11 00 01 10 11 00 01

7 8 9 A B C 0

0

P1 A J

P2 B K

P3 C L

P4 0 M

P5 E N

pS F 0

P7 G P

P8 H a

I R

:

@

I

=

..

11

10 11

E F

082 0

1

S 2

T 3

U 4

V 5

W S

X 7

y 8

Z 9

Bit Positions 0, 1

Bit Positions 2, 3

First Hexadecimal Digit

Special Control:

LZ = Left zero fill
DUP = Duplicate
LZS = Left zero start
ED = End data
GS = Group Separator

Start of Record (SOR):

Pl = Program level 1
P2 = Program level 2
P3 = Program level 3
P4 = Program level 4
P5 = Program level 5
PS = Program level S
P7 = Program level 7
P8 = Program level 8
CAN = Cancel

End of Record (EOR):

RM = Record mark
VOK = Verify OK

IEBTCRIN Program 271

ID ·u .- -! 00 VI ~ C
0 ~

.t; ~

. iii "t:J 00 01 10 11 e. c
8

&i ~ 0 1 2 3

0000 0 z cr 5 0

0001 1 2 sw 6 9

0010 2 t e h

0011 3 n fd k b

0100 4 Z CR %)

0101 5 @ SW t (

0110 6 T E H

0111 7 N FD K B

1000 8 1 7 4

1001 9 3 st 8

1010 A x d I

1011 B u c

1100 C ± & $

1101 D # ST *

1110 E X D L

1111 F U C

a and CR = Carrier return code
sw and SW = Switch code
fd and F 0 = Feed code
st and ST = .top code
tab and TAB = Tab code
as and AS
sp and SP
bspand BSP
stxand STX
srcand SRC

= Automatic search
= Space
= Backspace
= Stop transfer
= Search

01

00 01 10

4 5 6

I tab
,

as i

j sp p

= q

0 TAB "

• AS I

J SP P

+ a

m bsp r

v a

g :

f stx ,

M BSP R

V A

G :

F STX ,

This figure represents the character set and control
codes as read from an MTST created cartridge.

Figure 89. MTST Codes from TCR

272 MVS/370 Utilities

10 11 Bit Positions 0, 1

11 00 01 10 11 00 01 10 11 Bit Positions 2, 3

7 8 9 A B C 0 E F First Hexadecimal Digit

s src

w

y

S SRC

W

Y

0

/

0

?

~ 'u
~. -! 00 01 til ~ c: .g QI

J:
.;;; 'tJ 00 01 10 11 00 01 10 11
i. c:

8
i ~ 0 1 2 3 4 5 6 7

0000 0 SP &

0001 1 I

0010 2 STX

0011 3
~

0100 4·

0101 5 TAB

0110 6 BSP

0111 7

1000 8

1001 9

1010 A t ! :

1011 B $ #

1100 C * % @

1101 0 CR () -

1110 E SRC + ; =

1111 F ? ..

10

00 01 10 11 00

8 9 A B C

j 0

A a

b k s B

c I t C

d m u D

e n v E

f 0 w F

g P x G

h q Y H

i r z I

:t

11

01 10

D E

J

K S

L T

M U

N V

0 W

P X

a y

R Z

11

F

0

1

2

3

4

5

6

7

8

9

Bit Positions 0,1

Bit Positions 2, 3

First Hexadecimal Digit

TAB = Tab code
CR = Carrier return
SSP = Backspace
SRC = Search
STX = Stop transfer
SP = Space

Note: The STDUC option permits translating
both lowercase and uppercase alphabetic
characters to uppercase.

Figure 90. MTST Codes after Translation by IEBTCRIN with TRANS=STDlC

END-Of-CARTRIDGE

Unique codes, written by the MTST or the MTDI device, signal the
program when all data on a cartridge has been read. For MTST
cartridges, this end-of-cartridge code is a lowercase stop code
(st) or an uppercase stop code (ST). For MTDI cartridges, the
end-of-cartridge code is the end-data code (ED).

IEBTCRIN Program 273

ERROR RECORDS

IEBTCRIN terminates input from a cartridge upon encountering the
end-of-cartridge code and rewinds the cartridge. IEBTCRIN
continues to process cartridges until end-of-file is
encountered.

End-of-file is signaled following a rewind operation when there
are no more cartridges in the feed hopper, the END OF FILE
button is pressed, and end-of-cartridge for the last cartridge
is recognized. An end-of-file indication will be passed to the
OUTREC and/or ERRO~ exits if specified by setting register 1
equal to O.

A stop code, whether uppercase (ST) or lowercase (st), indicates
that all data on a cartridge has been read. Therefore, when an
MTST cartridge to be processed by IEBTCRIN is created, the user
must not use a stop code for any purpose other than signaling'
end-of-data on the cartridge. stop codes within meaningful data
cause any subsequent data on the cartridge to be lost because
the cartridge is rewound and unloaded when a stop code is
encountered.

If a record is found to be in error, the 'record is passed to the
user error exit routine if one is specified. If an error exit
is not specified, the action to be taken is determined by the
option specified in a utility control statement.

When either MTST input or MTDI input without editing is
specified, the only error that can be recognized is a record
containing one or more permanent data checks. The data check
bytes are replaced as described in a utility control statement.
The record is considered an error record, but because a data
check is the only error that can occur, no EDW is appended to
the error record.

ERROR DESCRIPTION WORD (EDW)

The Error Description Word (EDW) consists of four bytes that are
appended to the start of an error record.

The error description word is in EBCDIC format; for example, a 2
is represented as X'F2' and a C is represented as X'C3'. The
information provided in each of the four bytes of the EDW is
discussed in the following table.

274 MVS/370 Utilities

Byte Indicator Meaning

Level status (Byte 0)

Identifies error records ~hat result from
interrecord dependency that cannot be
identified in the type status byte.

Value Meaning

o Indicates any error record that will
not cause questionable data in the
following records. A ~ status
other than zero accompanies this byte.

1 Indicates any error record that may
cause questionable data in the
following records, and for which the
level status of the previous record
was O.

2 Indicates any error that contains
questionable data because the error
level of the preceding record was 1 or
2, or for any error record that may
cause questionable data in the
following records and for which the
level status of the previous record
was 1 or 2. .

A level status of 1 or 2 is presented with
error records resulting from the following:

• The start-of-record (SOR) location has a
character defined as an error.

• The record contains two or more data
check bytes side by side. These may have
been an SOR and EOR (end-of-record).

• The record is longer than the
user-specified maximum length record.

• The length of the record is not equal to
the length of the first valid record of
the same program level encountered on
this cartridge. For ·this purpose, a
valid record is one that contains no
errors as identified in the type status,
with the possible exception of being
shorter than the user-specified minimum
length.

• The record hass data-duplication
dependency on a previous record with one
of the above errors.

The level status is set to ~ when IEBTCRIN
encounters: (1) a record without one of the
previous errors, (2) a canceled record, or
(3) the first record of a cartridge.

IEBTCRIN Program 275

276 MVS/370 Utilities

Byte Indicato~ Meaning

Type status (Byte 1)
Identifies records in error because of SOR,
EOR, length, field, or data check error
conditions.

Value Meaning

o Indicates any record that contains
none of the following identifiable
errors, but contains questionable data
due to a level status other than zero.
(See Level status above.)

1 Indicates any record that has: (1) an
SOR character of other than PI through
P8 or a GS code, (2) an EOR character
of other than a VOK code for records
when the user specified a record
verification check, or (3) an EOR
character of other record-verification
check.

2 Indicates any record that has an
incorrect length because it is: (1)
longer than the user-specified
maximum, (2) shorter than the
user-specified minimum, or (3) not
encountered on this cartridge.

Indicates any record that has a field
error. A field error occurs when
duplication or left-zero justification
functions did not occur in a field
because of an error condition. See
"MTDI Editing Criteria" below.

8 Indicates any record that has a
permanent data check error.

The type-status indicator can also have
values of 3, 5, 6, 7, 9, A, B, C, D, E, and
F. These values indicate a combination of
SOR, EOR, length, field, and data check
errors. For example, a value of A indicates
a record with a data check error (8), as well
as, an incorrect length (2).

start-of-Record (Byte 2)
Indicates the start-of-record (SOR) character
associated with this record. The SOR
character can be 1 through 8, where 1
indicates PI, 2 indicates P2, etc., or E,
which indicates the SOR character is in
error.

End-of-Record (Byte 3)
Indicates the end-of-record (EOR) character
associates with this record. The EOR
character can be: U (unverified record); V
(verified record); or E (EOR character is in
error).

SAMPLE ERROR RECORDS

Figure 91 shows a stream of data bytes read sequentially from
the tape cartridge reader.

P V
111372 RECORD NUMBER lAO

1 K

P DDDDDDDDDDDDDDD DV
357987UUUUUUUUUUUUUUU3UO

1 PPPPPPPPPPPPPPP PK

P R
358436 RECORD NUMBER 5

1 M

* DDDDDDDDDDDDDDD DV
*111378UUUUUUUUUUUUUUU2UO
* PPPPPPPPPPPPPPP PK

P * V
358977 REC*RD NUMBER 4AO

1 * K

P DDDDDDDDDDDDDDD DV
358436UUUUUUUUUUUUUUU6UO

1 PPPPPPPPPPPPPPP PK

P V
998865 RECORD NUMBER 7A MAXIMUM 00001430 IN WAREHOUSEO

3 K

P * VE
367*82 RECORD NUMBER 8AO

1 KD

Figure 91. Tape Cartridge Reader Data stream

Figure 92 on page 278 shows the records constructed by IEBTCRIN
from the input records shown in Figure 91. These records show
some of the errors that can occur durlng processing and their
effect on the Error Description Word. The following parameters
were specified for these records:

TCRGEN TYPE=MTDI,EDIT=EDITR,VERCHK=VOKCHK,
MAXlN=50,REPLACE=X'5B'

72
C

IEBTCRIN Program 277

(Record 1)

v
P 0
1111372 RECORD NUMBER 1AK

(Record 3)

v
P 0

201V 1357987 RECORD NUMBER 3AK

(Record 5)

P R
131U 1358436 RECORD NUMBER 5M

(Record 7)

P

(Record 2)

v
o

19EV $111378 RECORD NUMBER 2AK

(Record 4)

v
P 0

081V 1358977 REC$RD NUMBER 4AK

(Record 6)

v
P 0

241V 1358436 RECORD NUMBER 6$K

(Record 8)

233E 3998865 RECORD NUMBER 7A MAXIMUM 00001430 IN WAREH

v
o

21EV OUSEK

(Record 9)

v
P 0

081V 1367$82 RECORD NUMBER 8AK

Resulting Error
Description Word

Figure 92. Record Construction

t
MAXLN ends here

(EOR Forced)

IEBTCRIN classifies records 2 through 9 in Figure 92 as error
records. The records are classified as follows:

• Record 1 is a valid record. It contains a program-level 1
code, and thus establishes the valid length for all
program-level 1 records in this cartridge to be 25 bytes.

• Record 2 has a data check in the SOR location. level status
is set to 1 because the SOR location might have contained a
cancel code that would cause any data duplicated on the
following record to be questionable. The type status (9)
indicates the record has an incorrect SOR/EOR character (1)
and a data check error (8).

• Record 3 contains no identifiable error, but contains
questionable data because it requires duplication from the
previous record, which had a level status of 1.

• Record 4 has a data check. Because it contained no DUP
codes, the level status is set to O.

• Record 5 is shorter than the first program-level 1 record on
this cartridge (length error). This record also contains an
RM code rather than a VOK code in the EOR location (VOKCHK
was specified on the TCRGEN statement. Because IEBTCRIN
cannot determine why the record is short, all data
duplicated from this record is questionable; the level
status is set to 1. The type status is set to 3 indicating
an SOR/EOR error (1) and length error (2).

278 MVS/370 Utilities

INPUT AND OUTPUT

RETURN CODES

• Record 6 contains a DUP code that is beyond the last
position of the preceding record.

• The seventh input record is longer than the maximum
user-specified record length. Note that it is passed as two
records. The first record (record 7) indicates an EOR error
and a length error; the second (record 8) indicates an SOR
error. Because record 7 is an error record, its length (50
bytes) is not established as the valid length for all
program-level 3 records on this cartridge.

• Record 9 has a data check. Because it contained no DUP
codes, the level status is set to O.

IEBTCRIH uses the following input:

• An input data set, which contains data on tape cartridges to
be read from the Tape Cartridge Reader (TCR). The input
data set was created on either MTST or MTDI.

• A control data set, which contains utility control
statements that are used to control the functions of
IEBTCRIN. .

IEBTCRIH produces the following output:

• An output data set, which contains the sequential output
produced by the utility as a result of processing the
cartridge input according to the utility control statements.

• An error output data set, which contains records that do not
conform to the specifications for a valid record.

• A message data set, which contains diagnostic messages.

IEBTCRIH returns a code in register 15 to indicate the results
of program execution. The return codes and their meanings are
listed below.

IEBTCRIH Program 279

CONTROL

Codes Meaning

00 (00 hex) Normal termination.

04 (04) Warning message issued; execution permitted.

12 (OC)

16 (10)

Conditions leading to issuance of this code are:

• SYSPRINT, SYSIN, SYSUT2, or SYSUT3 DD
statements missing and

• DCB parameters missing SYSUT2 or SYSUT3 DD
statements.

Diagnostic error message issued; execution
terminated. Conditions leading to issuance of this
code are:

• SYSUT1 DD statement missing,

• Conflicting DCB parameters in DD statements,
and

• Invalid or conflicting utility control
statements.

Terminal error message issued; execution
terminated. Conditions leading to issuance of this
code are:

• Permanent input/output errors (not including
data checks on the TCR),

• Unsuccessful opening of data sets,

• Requests for termination by user exit routine,

• Insufficient storage available for execution,
and

• User exit routine not found.

Figure 93. IEBTCRIN Return Codes

IEBTCRIN is controlled by job control statements and utility
control statements. The job control statements are required to
execute or invoke IEBTCRIN and to define the data sets that are
used and produced by the program. The utility control
statements are used to indicate the source of the input data
cartridges (MTST or MTDI) and to specify the type of processing
to be done.

JOB CONTROL STATEMENTS

Figure 94 on page 281 shows the job control statements for
IEBTCRIN.

280 MVS/370 Utilities

statement

JOB

EXEC

SYSPRINT DO

SYSUTl DO

SYSUT2 DD

SYSUT3 OD

SYSIN DD

Use

Initiates the job.

Specifies the program name (PGM=IEBTCRIN) or, if
the job control statements reside in a procedure
library, the procedure name.

Defines a sequential message data set, which can b~
written to any QSAM-supported output device.

Defines the input data set.

Defines a sequential output data set for valid
records.

Defines a sequential output data set for error
records.

Defines the control data set. The control data set
normally resides in the input stream; however, it
can be defined as a sequential data set or as a
member of a partitioned data set. If this
statement is not included, all utility control
statement defaults are assumed and a message is
issued to SYSPRINT. If DUMMY is specified, all
utility control statement defaults are assumed.

Figure 94. IEBTCRIN Job Control Statements

SYSPRINT DD statement

SYSUTl DO statement

If the SYSPRINT DD statement is missing, a message is written on
the operator console and processing continues.

If some parameters are specified but others are omitted,
IEBTCRIN attempts to set defaults for the missing parameters
that are consistent with those supplied. For example, if
RECFM=VBA is specified, IEBTCRIN assumes BlKSIZE=129 and
lRECl=125. If lRECl, BlKSIZE, and RECFM are not specified, the
defaults are lRECl=121, BlKSIZE=121, and RECFM=FBA.

Because IEBTCRIN always constructs the SYSPRINT records with
USASI (type A) cont~ol characters, type A control characters
should be indicated when RECFM is specified.

The DCB parameters defining the SYSPRINT data set can be
supplied from any valid source (for example, DO statements).

If a parameter that is not consistent with the other parameters
is specified on SYSPRINT DD, a message is issued and processing
is ended.

If a permanent input/output error occurs on SYSPRINT, both the
failing message and a SYNADAF message indicating the error are
written on the programmer's console and processing is
terminated.

The SYSUTI DD statement is required for each use of IEBTCRIN.

For the SYSUTI DD statement, only the UNIT keyword is required.
The value specified in UNIT=xxxx can be '2495', the device
address, or any other name that was generated in the system as a
unit device name. The VOlUME=SER=keyword may be specified to
identify the tape cartridges to be mounted. The volume serial

IEBTCRIN Program 281

number must be an externally recognizable name associated with
the cartridges to be processed. A message is issued to the
operator instructing that the cartridges identified by that name
be mounted. If VOLUME is not specified, the name TCRINP is
assumed and used in the mount message. The BUFL DCB parameter
can be specified to indicate the size of input buffers; if BUFL
is not specified, a value of 2000 is assumed.

If a permanent error occurs on SYSUTI (not including a data
check), a message is issued on SYSPRINT and the program is
terminated. .

SYSUT2 and SYSUT3 DD statements

SYSIN DD statement

The SYSUT2 DD and SYSUT3 DD statements must identify sequential
data sets; the data sets can have fixed, variable, variable
spanned, or undefined records. These data sets can be written
on any QSAM-supported device.

Fixed and variable records on the SYSUT2 or SYSUT3 data set can
be blocked through the specification of the BLKSIZE and RECFM
DCB parameters.

SYSUT2 DD and SYSUT3 DD statements may be omitted or specified
as DUMMY for other than sequential data sets. A message is
issued on SYSPRINT and processing continues.

The DCB parameters defining the SYSUT2 and SYSUT3 data sets can
be supplied from any valid source (for example, DD statements or
a data set label). Because the output (SYSUT2 and/or SYSUT3)
data sets are not opened until the first record is ready for
output (after any OUTREC and/or ERROR exits), DCB parameters to
be supplied from an existing data set label are not available
for records constructed before the data set is opened.
Therefore, the DCB parameters should always be provided in the
DD statement even though they may already exist in the label.
Otherwise, defaults are used to construct records until the data
set is opened.

If editing of MTDI input is specified on the utility control
statements, the SYSUT3 lRECl parameter should be four bytes
greater than the SYSUT2 lRECL parameter to include a four bytes
long Error Description Word appended to the front of the record
by IEBTCRIN. (See "Error Description Word (EDW)" on page 274.>
For variable records on either SYSUT2 or SYSUT3, the LRECL and
BlKSIZE DCB parameters must be large enough to include the four
bytes long record descriptor word.

If inconsistent parameters are specified on SYSUT2 DD or SYSUT3
DD, a message is issued and processing is ended.

If a permanent error occurs on SYSUT2 or SYSUT3, a message is
issued on SYSPRINT and the program is terminated.

The DCB parameters defining the SYSIH data set can be supplied
from any valid source (for example, DD statements or a data set
label). Because the output (SYSUT2 and/or SYSUT3) data sets are
not opened until the first record is ready for output (after any
OUTREC and/or ERROR exits), DCB parameters to be supplied from
an existing data set label are not available for records
·constructed before the data set is opened. Therefore, the DCB
parameters should always be provided in the DD statement even
though they may already exist in the label. Otherwise, defaults
are used to construct records until the data set is opened.

If a permanent error occurs on SYSIN, a message is issued on
SYSPRIHT and the program is terminated.

282 MVS/370 Utilities

UTILITY CONTROL STATEMENTS

TCRGEN Statement

EXITS Statement

Figure 95 shows the utility control statements for IEBTCRIN.

statement Use

TCRGEN Specifies whether MTDI or MTST input is to be
processed and the type of processing to be performed.

EXITS Specifies any exit routines provided by the user.

Figure 95. IEBTCRIN Utility Control Statements

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements" on page 5.

If these statements contain errors or inconsistencies, the
program is terminated and the appropriate diagnostics are sent
to the message data set. If TCRGEN is not specified, standard
defaults are used.

The TCRGEN statement is used to indicate the device (MTDI or
MTST) on which the input data was created and the type of
processing to be performed on the input data.

The format of the TCRGEN statement is:

[label] TCRGEN [TYPE=MTDIIMTST]

[,TRANS=STDUCISTDLClngmgINOTRAN]

[,EDIT=EDITDIEDITRINOEDIT]

[,VERCHK=NOCHKIVOKCHK]

[,I1INLN=n]

[,MAXLN=n]

[, REPLACE=X' 2Q1']

[,ERROPT=NORHALINOERR]

The EXITS statement is used to identify user-supplied exit
routines, which must exist in either the user job library or the
link library.

Upon entry, a parameter list is supplied to the exit routine.
Upon returning from the exit routine, the user must provide an
acceptable return code. See Appendix A, "Exit Routin~ Linkage"
on page 438.

IEBTCRIN Program 283

The format of the EXITS statement is:

Parameters

EDIT

[labell

Applicable
Control
Statements

TCRGEN

284 MVS/370 Utillties

EXITS [ERROR=routinenamel

[,OUTREC=routinenamel

[,DUTHDR2=routlnenamel

[,DUTHDR3=routinenamel

[,OUTTLR2=routinenamel

[,QUTTLR3=routinenamel

Description of Parameters

EDIT=EDIT~IEDITRINOEDIT
specifies the type of processing to be
performed on MTDI input. These values can
be coded:

EDITD

EDITR

specifies that the input is to be
edited and that SOR and EOR codes are
to be deleted and not included as part
of the output record. This is the
default.

specifies that the input is to be
edited and SOR and EOR codes are to be
kept as part of the output record.

NOEDIT
specifies that no editing is to be
performed. Data1 including any group
separator (GS) codes, is passed exactly
as read from the cartridge.

If EDlTD or EDITR is specified, the edit
consists of the following functions:

• Records are extracted one at a time from
the input buffers by scanning for the
record-delimiting codes (SOR and EOR).

• DUP codes are replaced with the
character from the corresponding
location in the preceding record.

• Left-zero fields are right aligned and
leading zeros are inserted where
necessary.

• Left-zero start codes are deleted from
the records.

• Group separator codes and records that
start with cancel record codes are
bypassed.

Parameters

ERROPT

ERROR

APplicable
Control
statements

TCRGEN

EXITS

Description of Parameters

ERROPT=HORNALIHOERR
specifies the-disposition of all error
records. ERROPT is ignored if a user error
routine is specified in the EXITS statement.
These values can be coded:

NORMAL

HOERR

specifies that all error records are to
be placed in the error data set
(SYSUT3).

specifies that all records (including
error records) are placed in the normal
output data set (SYSUT2). No records
are placed in the error data set
(SYSUT3). This is the default.

ERROR=routinename
specifies the name of the routine that
receives control before an error record is
passed to the error output data set
(SYSUT3). This exit routine can be used to
analyze and, if possible, correct the error
record. This parameter nullifies any ERROPT
value.

IEBTCRIN Program 285

Parameters

MAXlH

APplicable
Control
statements

TCRGEN

286 MVS/370 Utilities

Description of Parameters

MAXLN=n
specifies the number of bytes, n, plus four
for the record descriptor word when variable
records are specified, to be contained in
all but the last record passed to the output
routine when editing is not performed.
IEBTCRIN does not indicate the end of data
from one cartridge and the beginning of data
from the next. Usually this transition from
one cartridge to another occurs within an
output record. The last record passed to
the output routine contains only the number
of bytes remaining (plus four if the record
format is variable) and is the only record
that can be shorter than the length
specified by MAXlN. The size of the records
actually written depends on the record
length (lRECl) specified for the output data
set.

For MTDI input with editing specified, MAXLN
is used to specify in bytes the length of
the longest valid record after editing. If
the program encounters a record in which a
valid end-of-record cannot be determined
within this length, an end-of-record
condition is forced and the record is
considered an error record.

The values that can be specified for MAXlN
are:

• For MTST processing or MTDI processing
without editing, MAXLN should equal the
number of bytes to be passed as a
record.

• For MTDI processing when EDIT=EDITD,
MAXlN should equal the number of bytes
in the longest valid record after
editing, excluding SOR and EOR codes.

• For MTDI processing when EDIT=EDITR,
MAXlN should equal the number of bytes
in the longest valid record after
editing, including SOR and EOR codes.

Note: The values for MAXlN should not
include the 4-byte-long record descriptor
word added to a variable length record.

Default: 120 bytes

Parameters

MINLN

OUTREC

OUTHDR2

OUTHDR3

Applicable
Control
statements

TCRGEN

EXITS

EXITS

EXITS

Description of Parameters

MINLN=n
specifies in bytes the length, n, of the
shortest valid edited record. This
parameter is valid only when TYPE=MTDI and
either EDIT=EDITD or EDIT=EDITR are
specified. If IEBTCRIN encounters a record
shorter than this specified length, the
record is considered an error record.

The values that can be specified for MINLN
are:

• For MTST processing or MTDI processing
without editing, MINLN is not specified.

• For MTDI processing when EDIT=EDITD,
MINlN should equal the number of bytes
in the shortest valid record after
editing, excluding SOR and EOR codes.

• For MTDI processing when EDIT=EDITR,
MINlN should equal the number of bytes
in the shortest valid record after
editing, including SOR and EOR codes.

Note: The values for MINlN should not
include the four bytes long record
descriptor word added to a variable length
record.

Default: No minimum length checking is
performed.

OUTREC=routinename
specifies the name of the routine that
receives control before the record is passed
to the normal output data set (SYSUT2). In
this exit routine, the user can process the
record and perform hi-s own output if output
other than the SYSUT2 data set is desired.
Any modification of an edited MTDI record
may affect the editing of following records.
The record returned from this exit is used
to accomplish data duplication in the record
that follows. If the SYSUT2 data set has
specified variable length records, an RDW
which is four bytes long is append~d to the
front of the record.

OUTHDR2=routinename
specifies the name of the routine that
receives control during the opening of the
SYSUT2 data set; this exit routine can be
used to create user output header labels for
the normal output data set (SYSUT2).

OUTHDR3=routinename
specifies the name of the routine that
receives control during the opening of the
SYSUT3 data set; this exit routine can be
used to create user output header labels for
the error data set (SYSUT2).

IEBTCRIN Program 287

Parameters

OUTTLR2

OUTTLR3

REPLACE

APplicable
Control
statements

EXITS

EXITS

TCRGEN

288 MVS/370 Utilities

Description of Parameters

OUTTLR2=routinename
specifies the name of the routine that
receives control during the closing of the
SYSUT2 data set; this exit routine can be
used to create user output trailer labels
for the normal output data set (SYSUT2).

OUTTLR3=routinename
specifies the name of the routine that
receives control during the closing of the
SYSUT3 data set; this exit routine can be
used to create user output trailer labels
for the error data set (SYSUT3).

REPLACE=X'xx'
specifies the hexadecimal representation of
the character to be used by IEBTCRIN to
replace error bytes. REPLACE allows the
user to identify and possibly correct error
bytes on the error exit routine or in
subsequent processing. The specified
REPLACE character should be one that does
not normally appear in the data. To replace
error bytes on MTDI data, select a value for
xx from Figure 88 on page 271 To replace
error bytes on MTST data, select a value for
xx from Figure 89 on page 272 The
replacement of error bytes is accomplished
before any specified MTST translation.

Default: X'19', end-of-data

Parameters

TRANS

TYPE

Applicable
Control
statements

TCRGEN

TCRGEN

Description of Parameters

TRAHS=STDUCISTDlCI~INOTRAH
specifies the type of processing to be
performed on MTST input. These values can
be coded:

STDUC

STDle

specifies that the MTST code is to be
translated to standard EBCDIC;
alphabetic characters are translated to
uppercase. This is the default.

specifies that the MTST code is to be
translated to standard EBCDIC;
alphabetic characters are not
translated to uppercase.

specifies a user translate table to be
used by IEBTCRIN. The translate table
must exist as a load module named in a
user job library or the link library.
This load module must consist of a
translate table which begins at the
entry point and conforms to the
specifications for the translate
instruction (TR) found in IBM
System/370 Principles of Operation.

HOTRAH
specifies that no translation and no
special processing are to be performed.
Data is passed exactly as read from the
cartridge.

If STDUC, STDlC, or ~ is specified,
certain of the MTST codes are processed in a
special way before translation. Feed codes
(FD), switch codes (SW), and autosearch
codes (AS), both uppercase and lowercase,
are deleted from the data. Each
61-character reference code is reduced to a
single search code (SRC). See "Special
Codes" on page 269 for an explanation of
these codes.

TYPE=MTDIIMTST
specifies the device on which the magnetic
tape cartridge(s) was written. These values
are coded:

MTDI

MTST

specifies that the input was created on
a Magnetic Data Inscriber. This is the
default.

specifies that the input was created on
a Magnetic Tape Selectric typewriter.

IEBTCRIN Program 289

Parameters

Applicable
Control
statements Description of Parameters

VERCHK TCRGEH VERCHK=NOCHKlvOCHK

IEBTCRIN EXAMPLES

operation

Edit MDTI input

Invoke IEBTCRIN
with LINK macro
instruction

specifies whether a record-verification
check is to be made on MTDI input that is to
be edited. This parameter is valid only
when TYPE=MTDI and either EDIT=EDITD or
EDIT=EDITR are specified~ These values can
be coded:

NOCHK
specifies that no record-verification
check is to be made. Either a record
mark (RM) or a verify OK (VOK) code is
considered a valid end-of-record code.
This is the default.

VOKCHK
specifies that a record-verification
check is td be made. A record that
does not contain a verify OK code is to
be considered an error record.

The following examples illustrate some of the uses of IEBTCRIN.
Figure 96 can be used as a quick reference guide to IEBTCRIN
examples. The numbers in the "Example" column point to examples
that follow.

Data Set
organization Device Comments Example

Sequential Disk and Fixed blocked output. 1
9-track Tape Error exit routine

specified

- - Assembler language 2
interface
instructions

Figure 96. IEBTCRIH Example Directory

IEBTCRIN EXAMPLE 1

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

In this example, input from a tape cartridge is to be edited
with normal records written to a disk volume and error records
written to a tape volume.

290 MVS/370 Utilities

IEBTCRIN EXAMPLE 2

//JOBNAME
//STPNAME
//SYSPRIHT
//SYSUTI
//SYSUT2
//
//
//SYSUT3
//

JOB
EXEC
DD
DD
DD

DD

//SYSIN DD

O,SMITH,MSGLEVEL=1
PGM=IEBTCRIN
SYSOUT=A
UNIT=TCR,VOlUME=SER=MYTAPE,DCB=(BUFl=3000)
DSNAME=GOODSET,DISP=(NEW,CATLG),UNIT=disk
VOLUME=SER=111222,SPACE=(TRK(10,10»,
DCB=(LRECL=100,BLKSIZE=1000,RECFM=FB)
DSNAME=ERRSET,UNIT=tape,VOLUME=SER=000001,
DISP=(NEW,KEEP),DCB=(BlKSIZE=104,RECFM=U)

* TCRGEN
EXITS

TYPE=MTDI,EDIT=EDITD,MAXlN=100,REPlACE=X'5B'
ERROR=MYERR

The control statements are discussed below:

• SYSUTI DD defines the input tape cartridge data set. A
console message instructs the operator to mount a set of
cartridges named MYTAPE. The two input buffers are each
3000 bytes long (BUFl). The UNIT parameter assumes that TCR
has been system generated as an esoteric name for the Tape
Cartridge Reader.

• SYSUT2 DD defines a sequential data set for the normal
output records. The data will be written to a disk volume.

• SYSUT3 DD defines a sequential data set for the error
records. The records are undefined with a maximum block
size of 104 bytes, including a 4-byte error description
word.

• SYSIN DD defines the control data set, which follows in the
input stream.

• TCRGEN indicates MTDI input. The input is to be edited with
SOR and EOR codes deleted, the maximum valid record length
is to be 100 bytes, and the replace character is a
hexadecimal "5B." VERCHK is defaulted to NOCHK. Minimum
record length checking is not requested.

• EXITS indicates that a user has provided an exit routine to
handle error records. Because no job library has been
specified, the exit routine (MYERR) must reside in the link
library.

In this example, IEBTCRIN is invoked via the LINK macro
instruction in an Assembler language program. An alternate name
has been assigned to each of the DD statements used by IEBTCRIN.
The job control for this step must include DD statements with
the alternate DD names.

IEBTCRIN Program 291

LINK EP=IEBTCRIN,PARAM=(OPTLIST,DDNAME),VL=l
CNOP 2,4 (OPTlIST must be on halfword boundary)

OPTLIST DC H'O' (Length must be zero for IEBTCRIN)
CNOP 2,4 (DDNAME list must be on halfword boundary)

DDNAME DC H'82' (Length of DDNAME list)
DC 8F'O'
DC C'NEWIN , (Alternate DDNAME for SYSIN)
DC C'NEWPRINT' (Alternate DDNAME for SYSPRINT)
DC 2F'O'
DC C'NEWUTI , (Alternate DDNAME for SYSUTl)
DC C'NEWUT2 , (Alternate DDNAME for SYSUT2)
DC C'NEWUT3 , (Alternate DDNAME for SYSUT3)

292 MVS/370 Utilities

IEBUPDTE PROGRAM

IEBUPDTE is a data set utility used to incorporate IBM and
user-generated source language modifications into sequential or
partitioned data sets. Exits are provided for user routines
that process user header and trailer labels.

IEBUPDTE can be used to:

• Create and update data set libraries

• Modify existing partitioned members or sequential data sets

• Change the organization of a data set from sequential to
partitioned or vice versa

CREATING AND UPDATING DATA SET LIBRARIES

IEBUPDTE can be used to create a library of partitioned members
consisting of (at the most) aD-byte logical records. In
addition, members can be added directly to an existing library,
provided that the original space allocations are sufficient to
incorporate the new members. In this manner, a cataloged
procedure can be placed in a procedure library, or a set of job
or utility control statements can be placed as a member in a
partitioned library.

MODlFYING AN EXISTING DATA SET

IEBUPDTE can be used to modify an existing partitioned or
sequential data set. logical records can be replaced, deleted,
renumbered, or added to the member or data set.

A sequential data set residing on a tape volume can be used to
create a new master (that is, a modified copy) of the data set.
A sequential data set residing on a direct access device can be
modified either by creating a new master or by modifying the
data set directly on the volume on which it resides.

A partitioned data set can be modified either by creating a new
master or by modifying the data set directly on the volume on
which it resides.

CHANGING DATA SET ORGANIZATION

INPUT AND OUTPUT

IEBUPDTE can be used to change the organization of a data set
from sequential to partitioned, or to change a single member of
a partitioned data set to a sequential data set. If only a
member is changed, the remainder of the original data set
remains unchanged. In addition, logical records can be
replaced, deleted, renumbered, or added to the member or data
set.

IEBUPDTE uses the following input:

• An input data set (also called the old master data set),
which is modified or used as source data for a new master.
The input data set is either a sequential data set or a
member of a partitioned data set.

• A control data set, which contains utility control
statements and, if applicable, input data. The data set is
required for each use of IEBUPDTE.

IEBUPDTE Program 293

RETURN CODES

CONTROL

IEBUPDTE produces the following output:

• An output data set, which is the result of the IEBUPDTE
operation. The data set can be either sequential or
partitioned. It can be either a new data set (that is,
created during the present job step) or an existing data
set, modified during the present job step.

• A message data set, which contains the utility program
identification, control statements used in the job step,
modification made to the input data set, and diagnostic
messages, if applicable. The message data set is
sequential.

IEBUPDTE returns a code in register 15 to indicate the results
of program execution. The return codes and their meanings are
listed below.

Codes Meaning

00 (00 hex) Successful completion.

04 (04) A control statement is coded incorrectly or used
erroneously. If either the input or output is
sequential, the job step is terminated. If both
are partitioned, the program continues processing
with the next function to be performed.

12 (OC)

16 (10)

An unrecoverable error exists. The job step is
terminated.

A label processing code of 16 was received from a
user's label processing routine. The job step is
terminated.

Figure 97. IEBUPDTE Return Codes

IEBUPDTE is controlled by job control statements and utility
control statements. The job control statements are required to
execute or invoke IEBUPDTE and to define the data sets that are
used and produced by the program. The utility control
statements are used to control the functions of IEBUPDTE and, in
certain cases, to supply new or replacement data.

JOB CONTROL STATEMENTS

Figure 98 on page 295 shows the job control statements for
IEBUPDTE.

294 MVS/370 Utilities

statement

JOB

EXEC

SYSPRINT DD

SYSUTl DD

SYSUT2 DD

SYSIN DD

Use

Initiates the job.

Specifies the program name (PGM=IEBUPDTE), or, if
the job control statements reside in a procedure
library, the procedure name. Additional
information can be specified in the PARM
parameter of the EXEC statement.

Defines a sequential message data set. The data
set can be written to a system output device, a
tape volume, or a direct access volume.

Defines the input Cold master) data set. It can
define a sequential data set on a card reader, a
tape volume, or a direct access volume. Or, it
can define a partitioned data set on a direct
access volume.

Defines the output data set. It can define a
sequential data set on a card punch, a printer, a
tape volume, or a direct access device. It can
define a partitioned data set on a direct access
device.

Defines the control data set. The control data
set normally resides in the input stream;
however, it can be defined as a member of a
partitioned data set.

Figure 98. Job Control Statements for IEBUPDTE

PARM Information on the EXEC statement

Additional information can be coded in the PARM parameter of the
EXEC statement, as follows:

Following are the PARM values:

• NEW, which specifies that the input consists solely of the
control data set. An input data set does not exist and is
not defined if NEW is specified.

• MOD, which specifies that the input consists of both the
control data set and the input data set. If neither NEW nor
MOD is coded, MOD is assumed.

• inhdr, which specifies the name of the routine that
processes the user header label on the volume containing the
control data set.

• intlr, which specifies the name of the routine that
processes the user trailer label on the volume containing
the control data set.

SYSPRINT DD statement

The message data set has a logical record length of 121 bytes,
and consists of fixed length, blocked or unblocked records with
an American National Standards Institute (ANSI) control
character in the first byte of each record. The input and

IEBUPDTE Program 295

SYSUTl DD statement

SYSUT2 DD statement

output data sets have a logical record length of 80 bytes or
less, and consist of standard fixed-blocked (RECFM=FB) or
unblocked records. The control data set contains 80-byte,
blocked or unblocked records.

If the SYSUTI and SYSUT2 DO statements define the same
sequential data set (BDAM only), only those operations that add
data to the end of the existing data set can be made. In these
cases:

1. The PARM parameter of the EXEC statement must imply or
specify MOD. (See "PARM Information on the EXEC Statement"
on page 295.)

2. The DISP parameter of the SYSUTI DD statement must specify
OLD.

If SYSUTI and SYSUT2 define the same partitioned data set, new
extents resulting from updates on SYSUT2 are not retrievable in
SYSUTI.

The input and output data sets contain blocked or unblocked
logical records with record lengths of up to 80 bytes. The
input and output data sets may have different block sizes as
long as they are multiples of the logical record length.

If an ADD operation is specified with PARM=NEW in the EXEC
statement, the SYSUTI DD statement need not be coded.

If the SYSUTI DD statement defines a sequential data set on
tape, the file sequence number of that data set must be included
in the LABEL keyword (unless the data set is the first or only
data set on the volume).

Space must be allocated for an output data set (SYSUT2 DD
statement) that is to reside on a direct access device, unless
the data set is an existing data set.

The SYSUT2 DD statement must not specify a DUMMY data set.

When adding a member to an existing partitioned data set using
an ADD function statement, any DCB parameters specified on the
SYSUTI and SYSUT2 DD statements (or the SYSUT2 DD statement if
that is the only one specified) must be the same as the DCB
parameters already existing for the data set.

If the SYSUTI and SYSUT2 DD statements define the same
sequential data set (BDAM only), only those operations that add
data to the end of the existing data set can be made. In these
cases:

1. The PARM parameter of the EXEC statement must imply or
specify MOD. (See "PARM Information on the EXEC Statement"
on page 295.)

2. The DISP parameter of the SYSUT2 DD statement must specify
MOD.

If SYSUTI and SYSUT2 define the same partitioned data set, new
extents resulting from updates on SYSUT2 are not retrievable in
SYSUTI.

The output data set can have a blocking factor that is different
from the input data set; however, if insufficient space is
allocated for reblocked records, the update request is
terminated.

296 MVS/370 Utilities

SYSIN DD statement

The input and output data sets contain blocked or unblocked
logical records with record lengths of up to 80 bytes. The
input and output data sets may have different block sizes as
long as they are multiples of the logical record length.

If an UPDATE=INPLACE operation is specified, the SYSUT2 DD
statement should not be coded.

If both the SYSUTI and SYSUT2 DD statements specify standard
user labels (SUL), IEBUPDTE copies user labels from SYSUTI to
SYSUT2.

If the SYSUTI and SYSUT2 DD statements define the same
partitioned data set, the old master data set can be updated
without creating a new master data set; in this case, a copy of
the updated member or members is written within the extent of
the space originally allocated to the old master data set.
Subsequent referrals to the updated member(s) will point to the
newly written member(s). The member names themselves should not
appear on the DD statements; they should be referred to only
through IEBUPDTE control statements. The old directory entry
for each member is not copied.

The SYSIN DD statement is required for each use of IEBUPDTE.

UTILITY CONTROL STATEMENTS

Figure 99 shows the utility control statements used to control
IEBUPDTE.

statement

Function

Detail

Data

LABEL

ALIAS

ENDUP

Use

Initiates an IEBUPDTE operation (ADD, CHANGE,
REPL, REPRO).

Used with the function statement for special
applications.

A logical record of data to be used as a new or
replacement record in the output data set.

Indicates that the following data statements are
to be treated as user labels.

Assigns aliases.

Terminates IEBUPDTE.

Figure 99. IEBUPDTE Utility Control Statements

Note: Unlike other utility control statements, all IEBUPDTE
utility control statements (including the NUMBER and DELETE
detail statements, but not including data statements) must begin
with a "./" (period, slash) in columns 1 and 2.

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements" on page 5.

IEBUPDTE Program 297

Function sta~ement

The function statement (ADD, CHANGE, REPl, or REPRO) is used to
initiate an IEBUPDTE operation. At least one function statement
must be provided for each member or data set to be processed.

A member or a data set can be added directly to an old master
data set if the space originally allocated to the old master is
sufficient to incorporate that new member or data set. ADD
specifies that a member or a data set is added to an old master
data set. If a member is added and the member name already
exists in the old master data set, processing is terminated.
If, however, PARM=NEW is specified on the EXEC statement, the
member is replaced. For a sequential output master data set,
PARM=NEW must always be specified on the EXEC statement. At
least one blank must precede and follow ADD.

When a member replaces an identically named member on the old
master data set or a member is changed and rewritten on the old
master, the alias (if any) of the original member still refers
to the original member. However, if an identical alias is
specified for the newly written member, the original alias entry
in the directory is changed to refer to the newly written
member.

REPL specifies that a member of a data set is being entered in
its entirety as a replacement for a sequential data set or for a
member of the old master data set. The member name must already
exist in the old master data set. At least one blank must
precede and follow REPL. CHANGE specifies that modifications
are to be made to an existing member or data set. Use of the
CHANGE function statement without a NUMBER or DELETE detail
statement, or a data statement causes an error condition. At
least one blank space must precede and follow CHANGE. REPRO
specifies that a member or a data set is copied in its entirety
to a new master data set. At least one blank must precede and
follow REPRO.

Members are logically deleted from a copy of a library by being
omitted from a series of REPRO function statements within the
same job step.

One sequential data set can be copied in a given job step. A
sequential data set is logically deleted from a new volume by
being omitted from a series of job steps which copy only the
desired data sets to the new volume. If the NEW subparameter is
coded in the EXEC statement, only the ADD function statement is
permitted.

298 MVS/370 utilities

The format of the function statement is:

• .I[labelJ

Function Restrictions

CADDICHANGEIREPLIREPROl

[LIST=ALL]

[,SEQFLD=(ddlltddl,ddl)]

[,NEW=POIPS]

[,HEHBER=cccccccc]

[,COLUMN=nnl!]

[,UPDATE=INPLACE]

[,INHDR=cccccccc]

[,INTLR=cccccccc]

[,OUTHDR=cccccccc]

[,OUTTLR=cccccccc]

[,TOTAL=troutinename,sizell

[,NAHE=ccccccccl

[,LEVEL=hh]

[,SOURCE=2!]

[,SSI=hhhhhhhhl

When UPDATE=INPLACE is specified:

• The SYSUT2 DD statement is not coded.

• The PARM parameter of the EXEC statement must imply or
specify MOD.

• The NUMBER detail statement can be used to specify a
renumbering operation.

• Data statements can be used to specify replacement
information only.

• One CHANGE function statement and one UPDATE=INPLACE
parameter are permitted per job step.

• No functions other than replacement, renumbering, and header
label modification (via the LABEL statement) can be
specified.

• Only replaced records are listed unless the entire data set
is renumbered.

• System status information cannot be changed.

IEBUPDTE Program 299

Within an existing logical record, the data in the field defined
by the COLUMN parameter is replaced by data from a subsequent
data statement, as follows:

1. IEBUPDTE matches a sequence number of a data statement with
a sequence number of an existing logical record. In this
manner, the COLUMN specification is applied to a specific
logical record.

2. The information in the field within the data statement
replaces the information in the field within the existing
logical record. For example, COLUMN=40 indicates that
columns 40 through 80 (assuming 80-byte logical records) of
a subsequent data statement are to be used as replacement
data for columns 40 through 80 of a logical record
identified by a matching sequence number. (A sequence
number in an existing logical record or data statement need
not be within the defined field.)

The COLUMN specification applies to the entire function, with
the exception of:

• Logical records deleted by a subsequent DELETE detail
statement.

• Subsequent data statements not having a matching sequence
number for an existing logical record.

• Data statements containing information to be inserted in the
place of a deleted logical record or records.

Figure 100 shows the use of NEW, MEMBER, and NAME parameters for
different input and output data set organizations.

Input Data set
organization

Partitioned

None

output Data set
organization

Partitioned

Partitioned
(New)

Parameter Combinations

With an ADD function
statement, use NAME to
specify the name of the
member to be placed in the
partitioned data set
defined by the SYSUT2 DD
statement. If an
additional name is
required, an ALIAS
statement can also be
used.

With a CHANGE, REPL, or
REPRO function statement,
use NAME to specify the
name of the member within
the partitioned data set
defined by the SYSUTl DD
statement. If a different
or additional name is
desired for the member in
the partitioned data set
defined by the SYSUT2 DD
statement, use an ALIAS
statement also.

With each ADD function
statement, use NAME to
assign a name for each
member to be placed in the
partitioned data set.

Figure 100 (Part 1 of 2). NEW, MEMBER, and NAME Parameter

300 MVS/370 Utilities

Detail statement

Input Data set
organization

Partitioned

Sequential

output Data set
Organization

Sequential

Partitioned

Parameter Combinations

With any function
statement, use NAME to
specify the name of the
member in the partitioned
data set defined by the
SYSUT1 DD statement. Use
NEW=PS to specify the
change in organization
from partitioned to
sequential. (The name and
file sequence number, if
any, assigned to the
output master data set are
specified in the SYSUT2 DD
statement.)

With any function
statement, use MEMBER to
assign a name to the
member to be placed in the
partitioned data set
defined by the SYSUT2 DD
statement. Use NEW=PO to
specify the change in
organization from
sequential to partitioned.

Figure 100 (Part 2 of 2). NEW, MEMBER, and NAME Parameter

A detail statement is used with a function statement for certain
applications, such as deleting or renumbering selected logical
records. The NUMBER detail statement specifies, when coded with
a CHANGE function statement, that the sequence number of one or
more logical records is changed. It specifies, when coded with
an ADD or REPL function statement, the sequence numbers to be
assigned to the records within new or replacement members or
data sets. When used with an ADD or REPL function statement, no
more than one NUMBER detail statement is permitted for each ADD
or REPL function statement. If NUMBER is coded, it must be
preceded and followed by at least one blank.

The DELETE detail statement specifies, when coded with a CHANGE
function statement, that one or more logical records are to be
deleted from a member or data set. If DELETE is coded, it must
be preceded and followed by at least one blank.

Logical records cannot be deleted in part; that is, a COLUMN
parameter specification in a function statement is not
applicable to records that are to be deleted. Each specific
sequence number is handled only once in any single operation.

IEBUPDTE Program 301

Detail Restrictions

The format of a detail statement is:

./[label CNUMBERIDELETE1[SEQI=ccccccccIALLJ

[,SEQ2=ccccccccJ

[,NEW1=cccccccc]

[,INCR=cccccccc]

[,INSERT=YESJ

When INSERT=YES is coded:

• The SEQ! parameter specifies the existing logical record
after which the insertion is made. SEQ1=All cannot be
coded.

• The SEQ2 parameter need not be coded.

• The NEW! parameter assigns a sequence number to the first
logical record to be inserted. If the parameter is
alphameric, the SEQFlD=(ddl,ddl) parameter should be coded
on the function statement.

• The INCR parameter is used to renumber as much as is
necessary of the member or data set from the point of the
first insertion; the member or data set is renumbered until
an existing logical record is found whose sequence number is
equal to or greater than the next sequence number to be
assigned. If no such logical record is found, the entire
member or data set is renumbered.

• Additional NUMBER detail statements, if any, must specify
INSERT=YES. If a prior numbering operation renumbers the
logical record specified in the SEQ1 parameter of a
subsequent NUMBER detail statement, any NEWl or INCR
parameter specifications in the latter NUMBER detail
statement are overridden. The prior increment value is used
to assign the next successive sequence numbers. If a prior
numbering operation does not renumber the logical record
specified in the SEQ1 parameter of a subsequent NUMBER
detail statement, the latter statement must contain NEW1 and
INCR specifications.

• The block of data statements to be inserted must contain
blank sequence numbers.

• The insert operation is terminated when a function
statement, a detail statement, an end-of-file indication, or
a data statement containing a sequence number is
encountered.

• The SEQ1, SEQ2, and NEWl parameters (with the exception of
SEQ1=All) specify eight (maximum) alphameric characters.
The INCR parameter specifies eight (maximum) numeric
characters. Only the significant part of a numeric sequence
number need be coded; for example, SEQl=OOOOOOlO can be
shortened to SEQl=10. If, however, the numbers are
alphameric, the alphabetic characters must be specified; for
example, SEQl=00ABC010 can be shortened to SEQ1=ABCOlO.

302 MVS/370 Utilities

Data statement

LABEL statement

A data statement is used with a function statement, or with a
function statement and a detail statement. It contains a
logical record used as replacement data for an existing logical
record, or new data to be incorporated in the output master data
set.

Each data statement contains one logical record, which begins in
the first column of the data statement. The length of the
logical record is equal to the logical record length (LRECL)
specified for the output master data set. Each logical record
contains a sequence number to determine where the data is placed
in the output master data set (except when INSERT=YES is
specified).

When used with a CHANGE function statement, a data statement
contains new or replacement data, as follows:

• If the sequence number in the data statement is identical to
a sequence number in an existing logical record, the data
statement replaces the existing logical record in the output
master data set.

• If no corresponding sequence number is found within the
existing records, the data statement is inserted in the
proper collating sequence within the output master data set.
(For proper execution of this function, all records in the
old master data set must have a sequence number.)

• If a data statement with a sequence number is used and
INSERT=YES was specified, the insert operation is
terminated. IEBUPDTE will continue processing if this
sequence number is at least equal to the next old master
record (record following the referred to sequence record).

When used with an ADD or REPL function statement, a data
statement contains new data to be placed in the output master
data set.

Sequence numbers within the old master data set are assumed to
be in ascending order. No validity checking of sequence numbers
is performed for data statements or existing records.

Sequence numbers in data statements must be in the same relative
position as sequence numbers in existing logical records.
(Sequence numbers include leading zeros and are assumed to be in
columns 73 through 80; if the numbers are in columns other than
these, the length and relative position must be specified in a
SEQFLD parameter within a preceding function statement.)

The LABEL statement indicates that the following data statements
(called label data statements) are to be treated as user labels.
These new user labels are placed on the output data set. The
next function statement indicates to IEBUPDTE that the last
label data statement of the group has been read.

IEBUPDTE Program 303

The format of the LABEL statement is:

LABEL

There can be no more than two LABEL statements per execution of
IEBUPDTE. There can be no more than eight label data statements
following any LABEL statement. The first 4 bytes of each
80-byte label data statement must contain "UHLn" or "UTLn,"
where n is 1 through 8, for input header or input trailer labels
respectively, to conform to IBM standards for user labels.
Otherwise, data management will overlay the data with the proper
four characters.

When IEBUPDTE encounters a LABEL statement, it reads up to eight
data statements and saves them for processing by user output
label routines. If there are no such routines, the saved
records are written by OPEN or CLOSE as user labels on the
output data set. If there are user output label processing
routines, IEBUPDTE passes a parameter list to the output label
routines. (This parameter list is described fully in Appendix
A, "Exit Routine Linkage" on page 438.) The label buffer
contains a label data record which the user routine can process
before the record is written as a label. If the user routine
specifies (via return codes to IEBUPDTE) more entries than there
are label data records, the label buffer will contain
meaningless information for the remaining entries to the user
routine.

The position of the LABEL statement in the SYSIN data set,
relative to any function statements, indicates the type of user
label that follows the LABEL statement:

• To create output header labels, place the LABEL statement
and its associated label data statements before any function
statements in the input stream. A function statement, other
than LABEL, must follow the last label data statement of the
group.

• To create output trailer labels, place the LABEL statement
and its associated label data statements after any function
statements in the input stream, but before the ENDUP
statement. The ENDUP statement is not optional in this
case. It must follow the last label data statement of the
group if IEBUPDTE is to create output trailer labels.

When UPDATE=INPLACE is specified in a function statement, user
input header labels can be updated by user routines, but input
trailer and output labels cannot be updated by user routines.
User labels cannot be added or deleted. User input header
labels are made available to user routines by the label buffer
address in the parameter list. (See Appendix C, "Processing
User Labels" on page 446 for a complete discussion of the
linkage between utility programs and user label processing
routines.) The return codes when UPDATE=INPLACE is used differ
slightly from the standard codes discussed in Appendix C as
follows.

304 MVS/370 Utilities

ALIAS Statement

Codes Meaning

00 (00 hex) The system resumes normal processing; any
additional user labels are ignored.

04 (04) The system does not write the label. The next user
label is read into the label buffer area and
control is returned to the user's routine. If
there are no more user labels, the system resumes
normal processing.

08 (08) The system writes the user labels from the label
buffer area and resumes normal processing.

12 (OC) The system writes the user label from the label
buffer area, then reads the next input label into
the label buffer area and returns control to the
label processing routine. If there are no more
user labels, the system resumes normal processing.

Figure 101. UPDATE=INPLACE Return Codes

If the user wants to examine the replaced labels from the old
master data set, he must:

1. Specify an update of the old master by coding the
UPDATE=INPLACE parameter in a function statement.

2. Include a LABEL statement in the input data set for either
header or trailer labels.

3. Specify a corresponding user label routine.

If the above conditions are met, fourth and fifth parameter
words will be added to the standard parameter list. The fourth
parameter word is not now used; the fifth contains a pointer to
the replaced label from the old master. In this case, the
number of labels supplied in the SYSIN data set must not exceed
the number of labels on the old master data set. If the user
specifies, via return codes, more entries to the user's header
label routine than there are labels in the input stream, the
first parameter will point to the current header label on the
old master data set for the remaining entries. In this case,
the fifth parameter is meaningless.

The ALIAS statement is used to create or retain an alias in an
output (partitioned) directory. The ALIAS statement can be used
with any of the function statements. Multiple aliases can be
assigned to each member, up to a maximum of 16 aliases.

If an ALIAS statement specifies a name that already exists on
the data set, the original TTR (track record) of that directory
entry will be destroyed.

ALIAS must be preceded and followed by at least one blank. If
ALIAS statements are used, they must follow the data statements,
if any, in the input stream.

The format of the ALIAS statement is:

I·/[labell ALIAS NAME=cccccccc

IEBUPDTE Program 305

ENDUP statement

Parameters

./

COLUMN

INCR

INHDR

An ENDUP statement is used to indicate the end of SYSIN input to
this job step. It serves as an end-of-data indication if there
is no other preceding delimiter statement. The ENDUP statement
follows the last group of SYSIN control statements.

ENDUP must be preceded and followed by at least one blank. The
ENDUP statement must follow the last label data statement if
IEBUPDTE is used to create output trailer labels.

The format of the ENDUP statement is:

Applicable
Control
statements

ADD
REPL
CHANGE
REPRO
NUMBER
DELETE
LABEL
ALIAS
ENDUP

CHANGE

NUMBER

ADD
REPL
CHANGE
REPRO

ENDUP

Description of Parameters

is required for each utility control
statement and must appear in columns 1 and
2.

COLUMN=nnll
specifies, in decimal, the starting column
of a data field within a logical record
image. The field extends to the end of the
image. Within an existing logical record,
the data in the defined field is replaced by
data from a subsequent data statement. See
"Function Restrictions" on page 299 for
restrictions on COLUMN.

INCR=cccccccc
specifies an increment value used for
assigning successive sequence numbers to new
or replacement logical records, or specifies
an increment value used for renumbering
existing logical records.

INHDR=cccccccc
specifies the name of the user routine that
handles any user input (SYSUT1) header
labels. This parameter is valid only when a
sequential data set is being processed.

306 MVS/370 Utilities

Parameters

INSERT

INTLR

label

LEVEL

LIST

APplicable
Control
statements

CHANGE
NUMBER

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO
NU~1BER
DELETE
LABEL
ALIAS
ENDUP

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO

Description of Parameters

INSERT=YES
specifies the insertion of a block of
logical records. The records, which are
data statements containing blank sequence
numbers, are numbered and inserted in the
output master data set. INSERT is valid
only when coded with both a CHANGE function
statement and a NUMBER detail statement.
SEQ1, NEW1, and INCR are required on the
first NUMBER detail statement. See "Detail
Restrictions" on page 302 for more
information on INSERT=YES.

INTLR=cccccccc

label

specifies the name of the user routine that
handles any user input (SYSUT1) trailer
labels. INTLR is valid only when a
sequential data set is being processed, but
not when UPDATE=INPLACE is coded.

specifies an optional label for the
statement that begins in column 3 and
extends no further than column 10.

LEVEL=hh
specifies the change (update) level in
hexadecimal (OO-FF). The level number is
recorded in the directory entry of the
output member. This parameter is valid only
when a member of a partitioned data set is
being processed. LEVEL has no effect when
SSI is specified. .

LIST=ALL
specifies that the SYSPRINT data set is to
contain the entire updated member or data
set and the control statements used in its
creation.

Default: For old data sets, if LIST is
omitted, the SYSPRINT data set contains
modifications and control statements only.
If UPDATE was specified, the entire updated
member is listed only when renumbering has
been done. For new data sets, the entire
member or data set and the control
statements used in its creation are always
written to the SYSPRINT data set.

IEBUPDTE Program 307

Parameters

MEMBER

NAME

NEW

NEW1

Applicable
Control
statements

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO
ALIAS

ADD
REPL
CHANGE
REPRO

NUMBER

308 MVS/370 Utilities

Description of Parameters

MEMBER=cccccccc
specifies a name to be assigned to the
member placed in the partitioned data set
defined by the SYSUT2 DD statement. MEMBER
is used only when SYSUT1 defines a
sequential data set, SYSUT2 defines a
partitioned data set, and NEW=PO is
specified. Refer to Figure 100 on page 300
for the use of MEMBER with NEW.

For the ALIAS statement:

NAME=cccccccc
specifies a 1- to 8-character alias name.

For all other statements:

NAME=cccccccc
indicates the name of the member placed into
the partitioned data set. The member name
need not be specified in the DD statement
itself. NAME must be provided to identify
each input member. Refer to Figure 100 on
page 300 for the use of NAME with NEW. This
parameter is valid only when a member of a
partitioned data set is being processed.

NEU=POIPS
specifies the organization of the old master
data set and the organization of the updated
output. NEW should not be specified unless
the organization of the new master data set
is different from the organization of the
old master. Refer to Figure 100 on page 300
for the use of NEW with NAME and MEMBER.
These values can be coded:

PO

PS

specifies that the old master data set
is a sequential data set, and that the
updated output is to become a member of
a partitioned data set.

specifies that the old master data set
is a partitioned data set, and that a
member of that data set is to be
converted into a sequential data set.

NEUl=cccccccc
specifies the first sequence number assigned
to new or replacement data, or specifies the
first sequence number assigned in a
renumbering operation. A value specified in
NEWl must be greater than a value specified
in SEQ1 (unless SEQ1=ALL is specified, in
which case this rule does not apply).

Parameters

OUTHOR

OUTTLR

SEQ1

SEQ2

Applicable
Control
statements

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO

NUMBER
DELETE

NUMBER
DELETE

Description of Parameters

OUTHDR=cccccccc
specifies the name of the user routine that
handles any user output (SYSUT2) header
labels. OUTHOR is valid only when a
sequential data set is being processed, but
not when UPDATE=INPLACE is coded.

OUTTLR=cccccccc
specifies the name of the user routine that
handles any user output (SYSUT2) trailer
labels. OUTTLR is valid only when a
sequential data set is being processed, but
not when UPDATE=INPLACE is coded.

SEQl=cccccccclALL
specifies records to be renumbered, deleted,
or assigned sequence numbers. These values
can be coded:

cccccccc

ALL

specifies the sequence number of the
first logical record to be renumbered
or deleted. This value is not coded in
a NUMBER detail statement that is used
with an ADD or REPL function statement.
When this value is used in an insert
operation, it specifies the existing
logical record after which an insert is
to be made. It must not equal the
number of a statement just replaced or
added. Refer to the INSERT parameter
for additional discussion.

specifies a renumbering operation for
the entire member or data set. ALL is
used only when a CHANGE function
statement and a NUMBER detail statement
are used. ALL must be coded if
sequence numbers are to be assigned to
existing logical records having blank
sequence numbers. If ALL is not coded,
all existing logical records having
blank sequence numbers. copied
directly to the output master data set.
When ALL is coded: (1) SEQ2 need not be
coded and (2) one NUMBER detail
statement is permitted per function
statement. Refer to the INSERT
parameter for additional discussion.

SEQ2=cccccccc
specifies the sequence number of the last
logical record to be renumbered or deleted.
SEQ2 is required on all DELETE detail
statements. If only one record is to be
deleted, the SEQ1 and SEQ2 specifications
must be identical. SEQ2 is not coded in a
NUMBER detail statement that is used with an
ADD or REPL function statement.

IEBUPDTE Program 309

Parameters

SEQFlD

SOURCE

Applicable
Control
statements

ADD
REPl
CHANGE
REPRO

ADD
REPl
CHANGE
REPRO

310 MVS/370 utilities

Description of Parameters

SEQFLD=ddll(ddl,ddl)
ddl specifies, in decimal, the starting
column (up to column 80) and length (8 or
less) of sequence numbers within existing
logical records and subsequent data
statements. Note that the starting column
specification (dd) plus the length (1)
cannot exceed the logical record length
(lRECL) plus 1. Sequence numbers on
incoming data statements and existing
logical records must be padded to the left
with enough zeros to fill the length of the
sequence field.

(ddl,ddl)

SOURCE=x

may be used when an alphameric sequence
number generation is required. The
first ddl specifies the sequence number
columns as above. The second ddl
specifies, in decimal, the starting
column (up to column 80) and length (8
or less) of the numeric portion of the
sequence numbers in subsequent NUMBER
statements. This information is used
to determine which portion of the
sequence number specified by the NEWl
parameter may be increased and which
portiones) should be copied to generate
a new sequence number for inserted or
renumbered records.

The numeric columns must fall within
the sequence number columns specified
(or defaulted) by the first ddl.

Default: 738 is assumed, that is, an
8-byte sequence number beginning in
column 73. Therefore, if existing
logical records and subsequent data
statements have sequence numbers in
columns 73 through 80, this keyword
need not be coded.

specifies user modifications when the ~
value is 0, or IBM modifications when the x
value is 1. The source is recorded in the­
directory entry of the output member. This
parameter is valid only when a member of a
partitioned data set is being processed.
SOURCE has no effect when 551 is specified.

Parameters

551

TOTAL

UPDATE

APplicable
Control
statements

ADD
REPl
CHANGE
REPRO

ADD
REPl
CHANGE
REPRO

CHANGE

Description of Parameters

SSI=hhhhhhhh
specifies eight hexadecimal characters of
system status information (SSI) to be placed
in the directory of the new master data set
as four packed decimal bytes of user data.
This parameter is valid only when a member
of a partitioned data set is being
processed. SSI overrides any lEVEL or
SOURCE parameter given on the same function
statement.

TOTAL=(routinename2size)
specifies that exits to a user's routine are
to be provided prior to writing each record.
This parameter is valid only when a
sequential data set is being processed.
These values are coded:

routinename
specifies the name of the user's
totaling routine.

specifies the number of bytes required
for the user's data. The size should
not exceed 32K, nor be less than 2
bytes. In addition, the keyword
OPTCD=T must be specified for the
SYSUT2 (output) DD statement. Refer to
Appendix A, "Exit Routine linkage" on
page 438 for a discussion of linkage
conventions for user routines.

UPDATE=INPLACE
specifies that the old master data set is to
be updated within the space it actually
occupies. The ~ld master data set must
reside on a direct access device.
UPDATE=INPLACE is valid only when coded with
CHANGE~ No other function statements (ADD,
REPl, REPRO) may be in the same job step.
See "Function Restrictions" on page 299 for
restrictions on using UPDATE=INPlACE. See
"LABEL Statement" on page 303 for
information on updating user input header
labels.

IEBUPDTE EXAMPLES

The following examples illustrate some of the uses of IEBUPDTE.
Figure 102 can be used as a quick-reference guide to IEBUPDTE
examples. The numbers in the "Example" column point to examples
that follow.

IEBUPDTE Program 311

Operation

ADD and
REPL

CREATE a
partitioned
library

CREATE a
partitioned
data set

UPDATE
INPLACE and
renumber

CREATE and
DELETE

CREATE,
DELETE, and
UPDATE

INSERT

INSERT

CREATE

Data set
Organization

Partitioned

Partitioned

Partitioned

Partitioned

Partitioned,
Sequential

Sequential,
Partitioned

Partitioned

Partitioned

Sequential

Device

Disk

Disk

Disk

Disk

Disk and
Tape

Tape and
Disk

Disk

Disk

Card
Reader and
Disk

comments

SYSUTI and SYSUT2 DD
statements define the same
data set. A JCL procedure
residing in the control data
set is stored as a new
member of a procedure
library (PROCLIB). Another
JCL procedure, also in the
IEBUPDTE control data set,
is to replace an existing
member in PROCLIB.

Input data is in the control
data set. Output
partitioned data set is to
contain three members.

Input from control data set
and from existing
partitioned data set.
Output partitioned data set
is to contain three members.

Input data set is considered
to be the output data set as
well; therefore, no SYSUT2
DD statement is required.

Sequential master is created
from partitioned disk input.
Selected records are to be
deleted. Blocked output.

Partitioned data set is
created from sequential
input. Records are to be
deleted and updated.
Sequence numbers in columns
other than 73 through 80.
One member is placed in the
output data set.

Block of logical records is
inserted into an existing
member. SYSUTI and SYSUT2
DD statements define the
same data set.

Two blocks of logical
records are to be inserted
into an existing member.
SYSUTI and SYSUT2 DD
statements define the same
data set. Sequence numbers
are alphameric.

Sequential data set with
user labels is to be created
from card input.

Figure 102 (Part 1 of 2). IEBUPDTE Example Directory

312 MVS/370 Utilities

Example

1

2

3

4

5

6

7

8

9

Data set

Operation Organization Device Comments Example
,-,

COPY Sequential Disk Sequential data set is 10
copied from one direct
access volume to another;
user labels can be processed
by exit routines.

CREATE Partitioned Disk Create a new generation. 11

Figure 102 (Part 2 of 2). IEBUPDTE Example Directory

IEBUPDTE EXAMPLE I

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

In this example, two procedures are to be placed in the
cataloged procedure library, SYS1.PROCLIB. The example assumes
that the two procedures can be accommodated within the space
originally allocated to the procedure library.

//UPDATE JOB 09#660,SMITH
// EXEC PGM=IEBUPDTE,PARM=MOD
//SYSPRINT DO SYSOUT=A
//SYSUTl DD DSNAME=SYS1.PROCLIB,DISP=OLD
//SYSUT2 DD DSNAME=SYS1.PROCLIB,DISP=OLD
//SYSIN DD DATA
./ ADD LIST=ALL,NAME=ERASE,LEVEL=01,SOURCE=O
./ NUMBER NEW1=10,INCR=10
//ERASE EXEC PGM=IEBUPDTE
//DD1 DO UNIT=disk,DISP=(OlD,KEEP),VOlUME=SER=111111
//SYSPRINT DD SYSOUT=A
./ REPL LIST=ALL,NAME=LISTPROC
./ NUMBER NEW1=10,INCR=lO
//LIST EXEC PGM=IEBGENER
//SYSPRINT OD SYSOUT=A
//SYSUTl DD DISP=SHR,
// DSN=SYSl.PROCLIB(&MEMBER)
//SYSUT2 DD SYSOUT=A,
// DCB=(RECFM=F,BLKSIZE=aO)
//SYSIN DD DATA
(Data statements)
./ ENDUP
/*

The control statements are discussed below:

• SYSUTl and SYSUT2 DD define the SYSl.PROClIB data set, which
is assumed to be cataloged.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains the utility control
statements and the data to be placed in the procedure
library.

• The ADD function statement indicates that records (data
statements) in the control data set are to be placed in the
output. The newly created procedure, ERASE, is listed in
the message data set.

IEBUPDTE Program 313

IEBUPDTE EXAMPLE 2

The ADD function will not take place if a member named ERASE
already exists in the new master data set referenced by
SYSUT2.

• The first NUMBER detail statement indicates that the new and
replacement procedures are to be assigned sequence numbers.
The first record of each procedure is assigned sequence
number 10; the next record is assigned sequence number 20,
and so on.

• The REPL function statement indicates that records (data
statements) in the control data set are to replace an
already existing member. The member is stored in the new
master data set referenced by SYSUT2. The REPL function
will only take place if a member named LISTPROC already
exists in the old master data set referenced by SYSUTI.

• The ERASE EXEC statement marks the beginning of the first
new procedure.

• The REPL function statement indicates that records (data
statements) in the control data set are to replace an
already existing member. The member is stored in the new
master data set referenced by SYSUT2. The REPL function
will only take place if a member named LISTPROC already
exists in the old master data set referenced by SYSUTI.

• The second NUMBER detail statement is a duplicate of the
first.

• The LIST EXEC statement marks the beginning of the second
new procedure.

• The ENDUP statement marks the end of the SYSIN DD input
data.

In this example, a three-member partitioned library is created.
The input data is contained solely in the control data set.

//UPDATE
//
//SYSPRINT
//SYSUT2
//
//
//SYSIN
./

JOB
EXEC
DD
DD

DD
ADD

09#770,SMITH
PGM=IEBUPDTE,PARM=NEW
SYSOUT=A
DSNAME=OUTLIB,UNIT=disk,DISP=(NEW,KEEP),
VOLUME=SER=111112,SPACE=(TRK,(SO,,10»,
DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
DATA
NAME=MEMB1,LEVEL=00,SOURCE=0,LIST=ALL

(Data statements, sequence numbers in columns 73 through 80)

./ ADD NAME=MEMB2,LEVEL=00,SOURCE=0,LIST=All

(Data statements, sequence numbers in columns 73 through 80)

./ ADD NAME=MEMB3,lEVEl=00,SOURCE=0,LIST=All

(Data statements, sequence numbers in columns 73 through 80)

./ ENDUP
/*

The control statements are discussed below:

• SYSUT2 DD defines the new partitioned master, QUTlIS.
Enough space is allocated to allow for subsequent
modifications without creating a new master data set.

314 MVS/370 utilities

IEBUPDTE EXAMPLE 3

• SYSIH DD defines the control data set, which follows in the
input stream. The data set contains the utility control
statements and the data to be placed as three members in the
output partitioned data set.

• The ADD function statements indicate that subsequent data
statements are to be placed as members in the output
partitioned data set. Each ADD function statement specifies
a member name for subsequent data and indicates that the
member and control statement is listed in the message data
set.

• The data statements contain the data to be placed in each
output partitioned data set.

• ENDUP signals the end of control data set input.

Because sequence numbers (other than blank numbers) are included
within the data statements, no NUMBER detail statements are
included in the example.

In this example, a three-member, partitioned data set (NEWMClIB)
is created. The data set will contain:

• Two members (ATTACH and DETACH) copied from an existing
partitioned data set (SYS1.MAClIB).

• A new member (EXIT), which is contained in the control data
set.

IIUPDATE
II
IISYSPRINT
//SYSUTl
IISYSUT2
II
II

JOB
EXEC
DD
DD
DD

IISYSIN
.1
.1
.1
.1

DD
REPRO
REPRO

ADD
NUMBER

091770,SMITH
PGM=IEBUPDTE,PARM=MOD
SYSOUT=A
DSNAME=SYS1.MAClIB,DISP=SHR,UNIT=d;sk
DSNAME=NEWMClIB,VOLUME=SER=111112,UNIT=d;sk,
DISP=(NEW,KEEP),SPACE=(TRK,(100,,10»,
DCB=(RECFM=F,LRECl=80,BlKSIZE=80)
DATA
NAME=ATTACH,lEVEL=OO,SOURCE=1,LIST=All
NAME=DETACH,LEVEL=OO,SOURCE=l,LIST=All
NAME=EXIT,LEVEl=OO,SOURCE=l,LIST=All
NEW1=10,INCR=100

(Data records for EXIT member)

.1 ENDUP
/*

The control statements are discussed below:

• SYSUTl DD defines the input partitioned data set
SYS1.MACLIB, which is assumed to be cataloged.

• SYSUT2 DD defines the output partitioned data set NEWMClIB.
Enough space is allocated to allow for subsequent
modifications without creating a new master data set.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The REPRO function statements identify the existing input
members (ATTACH and DETACH) to be copied onto the output
data set. These members are also listed in the message data
set (since lIST=AlL is specified).

IEBUPDTE Program 315

IEBUPDTE EXAMPLE 4

• The ADD function statement indicates that records
(subsequent data statements) are to be placed as a member in
the output partitioned data set, called EXIT. The data
statements are to be listed in the message data set.

• The NUMBER detail statement assigns sequence numbers to the
data statements. (The data statements contain blank
sequence numbers in columns 73 through 80.) The first
record of the output member is assigned sequence number 10;
subsequent records are incremented by 100.

• ENDUP signals the end of SYSIN data.

Note that the three named input members (ATTACH, DETACH, and
EXIT) do not have to be specified in the order of their
collating sequence in the old master.

In this example, a member (MODMEMB) is updated within the space
it actuallY occupies. Two existing logical records are
replaced, and the entire member is renumbered.

//UPDATE
//
//SYSPRINT
//SYSUTI
//

JOB
EXEC
DD
DD

//SYSIN DD
./ CHANGE
./ NUMBER

09#770,SMITH
PGM=IEBUPDTE,PARM=MOD
SYSOUT=A
DSNAME=PDS,UNIT=disk,DISP=(OlD,KEEP),
VOlUME=SER=111112

* NAME=MODMEMB,lIST=All,UPDATE=INPlACE
SEQl=All,NEWl=10,INCR=5

(Data statement 1, sequence number 00000020)
(Data statement 2, sequence number 00000035)

/*

The control statements are discussed below:

• SYSUTI DD defines the partitioned data set that is updated
in place. (Note that the member name need not be specified
in the DD statement.)

• SYSIN DD defines the control data set, which follows in the
input stream.

• The CHANGE function statement indicates the name of the
member to be updated (MODMEMB) and specifies the
UPDATE=INPlACE operation. The entire member is listed in
the message data set. Note that, as renumbering is being
done, and since UPDATE=INPlACE was specified, the listing
would have been provided even if the lIST=AlL parameter had
not been specified. See the lIST parameter for more
information.

• The NUMBER detail statement indicates that the entire member
is to be renumbered, and specifies the first sequence number
to be assigned and the increment value (5) for successive
sequence numbers.

• The data statements replace existing logical records having
sequence numbers of 20 and 35.

316 MVS/370 Utilities

IEBUPDTE EXAMPLE 5

IEBUPDTE EXAMPLE 6

In this example, a new master sequential data set is created
from partitioned input and selected logical records are deleted.

//UPDATE
//
//SYSPRINT
//SYSUTI
//
//SYSUT2
//
//

JOB
EXEC
DD
DD

DD

//SYSIH DD
./ CHANGE

09#770,SMITH
PGM=IEBUPDTE,PARM=MOD
SYSOUT=A
DSNAME=PARTDS,UNIT=disk,DISP=(OLD,KEEP),
VOLUME=SER=111112
DSNAME=SEQDS,UNIT=tape,LABEL=(2,Sl),
DISP=(,KEEP),VOlUME=SER=001234,
DCB=(RECFM=FB,LRECL=80,BlKSIZE=2000)

* NEW=PS,NAME=OLDMEMBI

(Data statement 1, sequence number 00000123)

./ DELETE

(Data statement 2, sequence number 00000224)

/*

The control statements are discussed below:

• SYSUT1 DD defines the input partitioned data set PARTDS,
which resides on a disk volume.

• SYSUT2 DD defines the output sequential data set, SEQDS.
The data set is written as the second data set on a tape
volume.

• SYSIN DD defines the control data set, which follows in the
input stream.

• CHANGE identifies the input member (OlDMEMBl) and indicates
that the output is a sequential data set (NEW=PS).

• The first data statement replaces the logical record whose
sequence number is identical to the sequence number in the
data statement (00000123). If no such logical record
exists, the data statement is incorporated in the proper
sequence within the output data set.

• The DELETE detail statement deletes logical records having
sequence numbers from 223 through 246, inclusive.

• The second data statement is inserted in the proper sequence
in the output data set, since no logical record with the
sequence number 224 exists (it was deleted in the previous
statement).

Note that only one member can be used as input when converting
to sequential organization.

In this example, a member of a partitioned data set is created
from sequential input and existing logical records are updated.

IEBUPDTE Program 317

72
//UPDATE JOB
// EXEC
//SYSPRIHT DD
//SYSUTI DD
//
//SYSUT2 DD
//
//
//SYSIH DD
./ CHANGE
./

(Data statement

./ DELETE

(Data statement
(Data statement

./ ALIAS
/*

091770,SMITH
PGM=IEBUPDTE,PARM=MOD
SYSOUT=A
DSNAME=OlDSEQDS,UNIT=tape,
DISP=(OLD,KEEP),VOLUME=SER=001234
DSNAME=HEWPART,UHIT=disk,DISP=(,KEEP),
VOLUME=SER=111112,SPACE=(TRK,(10,S,S»,
DCB=(RECFM=F,LRECL=80,BLKSIZE=80)

* NEW=PO,MEMBER=PARMEM1,LEVEL=01,
SEQFLD=60S,COLUMH=40,SOURCE=0

1, sequence number 00020)

SEQl=220,SEQ2=2S0

2, sequence number 00230)
3, sequence number 00260)

NAME=MEMBI

The control statements are discussed below:

C

• SYSUTI DD defines the input sequential data set (OLDSEQDS).
The data set resides on a tape volume.

• SYSUT2 DD defines the output partitioned data set (HEWPART).
Enough space is allocated to provide for members that might
be added in the future.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The CHANGE function statement identifies the output member
(PARMEMl) and indicates that a conversion from sequential
input to partitioned output is made. The SEQFLD parameter
indicates that a S-byte sequence number is located in
columns 60 through 64 of each data statement. The COLUMN=40
p.arameter spec; fi es the starti ng column of a fi eid (wi thi n
subsequent data statements) from which replacement
information is obtained. SOURCE=O indicates that the
replacement information is provided by the user.

• The first data statement is used as replacement data.
Columns 40 through 80 of the statement replace columns 40
through 80 of the corresponding logical record. If no such
logical record exists, the entire card image is inserted in
the output data set member.

• The DELETE detail statement deletes all of the logical
records having sequence numbers from 220 through 250.

• The second data statement, whose sequence number falls
within the range specified in the DELETE detail statement
above, is' incorporated in its entirety in the output data
set member.

• The third data statement, which is beyond the range of the
DELETE detail statement, is treated in the same manner as
the first data statement.

• ALIAS assigns the alias name MEMBI to the output data set
member PARMEMI.

318 MVS/370 Utilities

IEBUPDTE EXAMPLE 7

In this example, a block of three logical records is inserted
into an existing member, and the updated member is placed in the
existing partitioned data set.

//UPDATE JOB
// EXEC
//SYSPRINT DO
//SYSUTI DO
//
//SYSUT2 DD
//
//SYSIN DO
./ CHANGE
./ HUMBER

09#770,SMITH
PGM=IEBUPDTE,PARM=MOD
SYSOUT=A
DSNAME=PDS,UNIT=disk,DISP=COLD,KEEP),
VOlUME=SER=111112
DSNAME=PDS,UNIT=disk,DISP=COLD,KEEP),
VOLUME=SER=111112

* NAME=RENUM,LIST=ALL,LEVEL=Ol,SOURCE=O
SEQ1=15,NEW1=20,INCR=5,INSERT=YES

(Data statement 1)
(Data statement 2)
(Data statement 3)

The control statements are discussed below:

• SYSUTI and SYSUT2 DO define the partitioned data set CPDS).

• SYSIN DO defines the control data set, which follows in the
input stream.

• The CHANGE function statement identifies the input member
RENUM. The entire member is listed in the message data set.

• The NUMBER detail statement specifies the insert operation
and controls the renumbering operation as described below.

• The data statements are the logical records to be inserted.
(Sequence numbers are assigned when the data statements are
inserted.)

In this example, the existing logical records have sequence
numbers 10, 15, 20, 25, and 30. Sequence numbers are assigned
by the NUMBER detail statement, as follows:

1. Data statement 1 is assigned sequence number 20 (NEW1=20)
and inserted after existing logical record 15 (SEQl=15).

2. Data statements 2 and 3 are assigned sequence numbers 25 and
30 (IHCR=5) and are inserted after data statement 1.

3. Existing logical records 20,· 25, and 30 are assigned
sequence numbers 35, 40, and 45, respectively.

Figure 103 on page 320 shows existing sequence numbers, data
statements inserted, and the resultant new sequence numbers.

IEBUPDTE Program 319

IEBUPDTE EXAMPLE 8

Sequence Numbers and
Data statements
Inserted

10
15
Data statement 1
Data statement 2
Data statement 3
20
25
30

New sequence Numbers

10
15
20
25
30
35
40
45

Figure 103. Example of Reordered Sequence Numbers

In this example, two blocks (three logical records per block)
are inserted into an existing member, and the member is placed
in the existing partitioned data set. A portion of the output
member is also renumbered.

//UPDATE JOB 09#770,SMITH
// EXEC PGM=IEBUPDTE,PARM=MOD 72
//SYSPRINT DO
//SYSUTI DO
//
//SYSUT2 DO
//
//SYSIN DO
./ CHANGE
./
./ NUMBER

(Data statement
(Data statement
(Data statement

./ NUMBER

(Data statement
(Data statement
(Data statement
(Data statement

/*.

SYSOUT=A
DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),
VOlUME=SER=111112
DSNAME=PDS,UNIT=disk,DISP=(OlD,KEEP),
VOlUME=SER=111112
*.
NAME=REHUM,lIST=AlL,lEVEL=Ol,SOURCE=O,
SEQFLD=(765,783)
SEQl=AA015,NEWl=AA020,INCR=5,INSERT=YES

1)
2)
3)

SEQl=AA030,INSERT=YES

4)
5)
6)
7, sequence number AA035)

The control statements are discussed below:

• SYSUTI and SYSUT2 DD define the partitioned data set PDS.

C

• SYSIN DO defines the control data set, which follows in the
input stream.

• The CHANGE function statement identifies the input member
RENUM. The entire member is listed in the message data set.

• The NUMBER detail statements specify the insert operations
(INSERT=YES) and control the renumbering operation as
described below.

320 MVS/370 Utilities

• Data statements 1, 2, 3, and 4, 5, 6 are the blocks of
logical records to be inserted. Because they contain blank
sequence numbers, sequence numbers are assigned when the
data statements are inserted.

• Data statement 7, since it contains a sequence number,
terminates the insert operation. The sequence number is
identical to the number on the next record in the old master
data set; consequently, data statement 7 will replace the
equally numbered old "master record in the output data set.

The existing logical records in this example have sequence
numbers AAOI0, AA015, AA020, AA025, AA030, AA035, AA040, AA045,
AA050, BBOI0, and BB015. The insert and renumbering operations
are performed as follows:

1. Data statement 1 is assigned sequence number AA020
(NEW1=AA020) and inserted after existing logical record
AA015 (SEQl=AA015).

2. Data statements 2 and 3 are assigned sequence numbers AA025
and AA030 (INCR=5) and are inserted after data statement 1.

3. Existing logical records AA020, AA025, and AA030 are
assigned sequence numbers AA035, AA040, and AA045,
respectively.

4. Data statement 4 is assigned sequence number AA050 and
inserted. (The SEQl=AA030 specification in the second
NUMBER statement places this data statement after existing
logical record AA030, which has become logical record
AA045.)

5. Data statements 5 and 6 are assigned sequence numbers AA055
and AA060 and are inserted after data statement 4.

6. Existing logical record AA035 is replaced by data statement
7, which is assigned sequence number AA065.

7. The remaining logical records in the member are renumbered
until logical record BBOI0 is encountered. Because this
record has a sequence number higher than the next number to
be assigned, the renumbering operation is terminated.

Figure 104 on page 322 shows existing sequence numbers, data
statements inserted, and the new sequence numbers. Note that
the sequence numbers are alphameric.

IEBUPDTE Program 321

IEBUPDTE EXAMPLE 9

Sequence Numbers and
Data Statements
Inserted

AAOIO
AA015
Data statement 1
Data statement 2
Data statement 3
AA020
AA025
AA030
Data statement 4
Data statement 5
Data statement 6
Data statement 7
AA035
AA040
AA045
AA050
BB010
B8015

New Sequence Numbers

AAOIO
AA015
AA020
AA025
AA030
AA035
AA040
AA045
AA050
AA055
AA060
AA065
AA065
AA070
AA070
AA075
BB010
8B015

Figure 104. Reordered Sequence Numbers.

In this example, IEBUPDTE is used to create a sequential data
set from card input. User header and trailer labels, also from
the input stream, are placed on this sequential data set.

//LABEL
//CREATION
//SYSPRINT
//SYSUT2
//
//

JOB
EXEC
DO
DO

//SYSIN
./

DO
LABEL

,MSGLEVEL=l
PGM=IEBUPDTE,PARM=NEW
SYSOUT=A
DSNAME=LABEL,VOLUME=SER=123456,UNIT=disk,
DISP=(NEW,KEEP),LABEL=(,SUL),
SPACE=(TRK,(15,3»

*
(First header label)

(Last header label)

./ ADD LIST=AlL,OUTHDR=ROUTINE1,OUTTLR=ROUTINE2

(First input data record)

(Last input data record)

./ LABEL

(First trailer label)

(Last trailer label)

./ ENDUP
/*

322 MVS/370 Utilities

IEBUPDTE EXAMPLE 10

The control statements are discussed below:

• SYSUT2 DD defines and allocates space for the output
sequential data set, called LABEL, which resides on a disk
volume.

• SYSIN DD defines the control data set, which follows in the
input stream. (This control data set includes the
sequential input data set and the user labels, which are on
cards.)

• The first LABEL statement identifies the SO-byte card images
in the input stream which will become user header labels.
(They can be modified by the user's header-label processing
routine specified on the ADD function statement.)

• The ADD function statement indicates that the data
statements that follow are placed in the output data set.
The newly created data set is listed in the message data
set. User output header and output trailer routines are to
be given control prior to the writing of header and trailer
labels.

• The second LABEL statement identifies the 80-byte card
images in the input stream which will become user trailer
labels. (They can be modified by the user's trailer-label
processing routine specified on the ADD function statement.)

• ENDUP signals the end of the control data set.

In this example, IEBUPDTE is used to copy a sequential data set
from one DASD volume to another. User labels are processed by
user exit routines.

//LABElS
//
//SYSPRINT
//SYSUTI
//
//SYSUT2
//
//
//SYSIN
//
/*

JOB
EXEC
DO
DO

00

OD

,MSGLEVEL=l
PGM=IEBUPDTE,PARM=(MOD"MMMMMM)
SYSOUT=A
DSNAME=OLDMAST,DISP=OLD,LABEL=(,SUL),
VOLUME=SER=111111,UNIT=disk
DSNAME=NEWMAST,DISP=(NEW,KEEP),LABEL=(,SUl),
UNIT=disk,VOLUME=SER=XB182,
SPACE=(TRK,(5,lO»
DSNAME=INPUT,DISP=OlD,lABEl=(,SUl),
VOLUME=SER=222222,UNIT=disk

The control statements are discussed below:

• SYSUTI DO defines the input sequential data set, called
OlDMAST, which resides on a disk volume.

• SYSUT2 DD defines the output sequential data set, called
NEWMAST, which will reside on a disk volume.

• SYSIN DO defines the control data set. The contents of this
disk-resident data set in this example are:

./

./

./

REPRO

ENDUP

LIST=AlL,INHDR=SSSSSS,INTLR=TTTTTT,
OUTHDR=XXXXXX,OUTTLR=YYYYYY

C

IEBUPDTE Program 323

IEBUPDTE EXAMPLE 11

• The REPRO function statement indicates that the existing
input sequential data set is copied to the output data set.
This output data set is listed on the message data set. The
user's label processing routines are to be given control
when header or trailer labels are encountered on either the
input or the output data set.

• ENDUP indicates the end of the control data set.

In this example, a partitioned generation data set consisting of
three members is used as source data in the creation of a new
generation data set. IEBUPDTE is also used to add a fourth
member to the three source members and to number the new member.
The resultant data set is cataloged as a new generation data
set.

//
//
//SYSPRINT
//SYSUTI
//SYSUT2
//
//
//SYSIN
./ REPRO
./ REPRO
./ REPRO
./ ADD
./ NUMBER

JOB
EXEC
DD
DD
DD

PGM=IEBUPDTE,PARM=MOD
SYSOUT=A
DSNAME=A.B.CCO),DISP=OlD
DSNAME=A.B.CC+l),DISP=C,CATlG),UNIT=disk,
VOlUME=SER=111111,SPACE=CTRK,C100,10,10»,
DCB=(RECFM=FB,lRECl=80,BlKSIZE=800)

DD DATA
NAME=MEMl,lEVEl=OO,SOURCE=O,lIST=All
NAME=MEM2,lEVEl=OO,SOURCE=0,lIST=All
NAME=MEM3,lEVEl=OO,SOURCE=O,lIST=AlL
NAME=MEM4,lEVEl=OO,SOURCE=O,lIST=All
NEW1=10,INCR=5

Cdata cards comprising MEM4)

./ ENDUP
/*

The control statements are discussed below:

• SYSUT1 DD defines the latest generation data set, which is
used as source data.

• SYSUT2 DD defines the new generation data set, which is
created from the source generation data set and from an
additional member included as input and data.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The REPRO function statements reproduce the named source
members in the output generation data set.

• The ADD function statement specifies that the data cards
following the input stream be included as MEM4.

• The NUMBER detail statement indicates that the new member is
to have sequence numbers assigned in columns 73 through 80.
The first record is assigned sequence number 10. The
sequence number of each successive record is increased by 5.

• ENDUP signals the end of input card data.

This example assumes that a model data set control block (DSCB)
exists on the catalog volume on which the generation data group
index was built.

324 MVS/370 Utilities

IEHATLAS PROGRAM

INPUT AND OUTPUT

IEHATLAS is a system utility used with direct access devices
when a defective track is indicated by a data check or missing
address marker condition.

IEHATLAS can be used to locate and assign an alternate track to
replace the defective track. Usable data records on the
defective track are retrieved and transferred to the alternate
track. A replacement for the bad record is created from data
supplied by the user and placed on the alternate track.

In a simple application, IEHATLAS is used as a separate job
after an abnormal termination of a problem program. Input data
necessary for execution of IEHATLAS--the address of the
defective track and replacement records--may be obtained from
the dump and from backup data.

A more complex use of IEHATLAS may involve the preparation of a
user's SYNAD routine, which reconstructs the necessary input
data and invokes IEHATLAS dynamically.

When IEHATLAS is invoked, it attempts to write on the defective
track. If the subsequent read-back check indicates that the
attempt was successful, a message is issued on the SYSOUT
device. If not, a supervisor call routine (SVC 86) is entered
automatically.

The SVC routine locates and assigns an alternate track. (If a
defective track already has an alternate and an error occurs on
that alternate, the SVC routine assigns the next available
alternate.) All of the valid data records on the defective
track are retrieved and transferred to the alternate track. The
input record is written on the alternate track in the correct
position to recover from the previous error.

When a READ error occurs and a complete recovery is desired, see
Data Facility Data Set Services: User's Guide and Reference for
information on how to produce a listing of error data on a
track. Using this data, the input data record for IEHATlAS can
be created. The replace function can then be performed by
executing IEHATLAS.

IEHATlAS supports all current DASD, as listed under "DASD and
Tape Device Support" on page 3 except the MSS staging packs and
virtual volumes.

IEHATLAS uses the following input:

• A description of the count field of the invalid record on a
defective track, specifying the cylinder, track, record,
key, and data length (in hexadecimal notation).

• An indication if WRITE special is needed.

• A valid copy (in hexadecimal notation) of the bad record.

IEHATlAS produces as output:

• A message, issued on the SYSOUT device, containing the
user's control information, the input record, and
diagnostics.

• The input record, written on either the original (defective)
track or on an alternate track containing the usable data
taken from the defective track.

IEHATlAS Program 325

RETURN CODES

• The return parameter list (specifying a maximum of three
error record numbers in hexadecimal when an unrecoverable
error occurs).

IEHATlAS returns one of the following codes in register 15 when
processing stops.

Codes Meaning

00 (00 hex) Successful completion; IEHATlAS has assigned the
data to an alternate track.

04 (04) The device does not have software-assignable
alternate tracks.

08 (08) All the alternate tracks for the device have been
assigned.

12 (OC) The requested main storage space is not available.

16 (10) There was an I/O error in the alternate track
assignment after N attempts at assignment (where
N=10% of the assignable alternate tracks for this
device).

20 (14) The error is a condition other than a data check or
missing address marker.

24 (18) There is an error in the Format 4 DSCB that
prevents IEHATlAS from reading it.

28 (lC) The user-specified error record is the Format 4
DSCB, which IEHATlAS cannot handle because the
alternate track information is unreliable.

32 (20) IEHATlAS cannot handle the error found in the count
field of the last record on the track.

36 (24) There are errors in the home address or in record
zero.

40 (28)

48 (30)

52 (34)

56 (38)

60 (3C)

IEHATlAS found one or more errors in record(s) and
assigned an alternate track:

1. There was an error on an end-of-file record,

2. IEHATlAS encountered an error in the count
field,

3. There were errors in more than three count
fields.

IEHATlAS found no errors on the track specified and
so assigned no alternate track.

Because of an I/O error, IEHATlAS cannot reexecute
the user's channel program successfully.

The system does not support track overflow.

The track address provided does not belong to the
indicated data set.

Figure 105. IEHATlAS Return Codes

326 MVS/370 Utilities

CONTROL

IEHATlAS ;s controlled by job control statements and utility
control statements. The job control statements are used to
execute or invoke IEHATlAS and to define the data sets used and
produced by IEHATlAS.

A utility control statement is used to specify whether the bad
record is part of the volume table of contents. It is also used
to indicate whether or not the WRITE special CCW command is to
be used for track overflow records.

JOB CONTROL STATEMENTS

Figure 106 shows the job control statements for IEHATlAS.

statement

JOB

EXEC

SYSPRINT DO

SYSUTI 00

SYSIN 00

Use

Initiates the job.

Specifies the program name (PGM=IEHATlAS) or, if
the job control statements reside in a procedure
library, the procedure name.

Defines a sequential data set that contains the
output messages issued by IEHATlAS.

Defines the data set that contains the bad
record.

Defines the control data set, which contains the
utility control statement and a copy of the
corrected version of the bad record.

Figure 106. Job Control Statements for IEHATlAS

The block size for the SYSPRINT data set must be a multiple of
121. Any blocking factor can be specified.

The block size for the SYSIN data set must be a multiple of 80.
Any blocking factor can be specified.

DISP=SHR must not be coded on the SYSUT1 DD statement.

UTILITY CONTROL STATEMENTS

Figure 107 shows the utility control statements for IEHATlAS.

statement

TRACK

VTOC

Use

Specifies that an alternate track is to be
assigned for a track that does not contain VTOC
records.

Specifies that an alternate track is to be
assigned for a track that contains VTOC records.

Figure 107. Utility Control Statements for IEHATlAS

IEHATlAS Program 327

TRACK statement

VTOC statement

Input data (consisting of the hexadecimal replacement record)
begins in column 1 immediately following the utility control
data. Input data may continue through column 80. As many cards
as necessary may be used to contain the replacement record. All
columns (1 through 80) are used on the additional cards.

IEHATlAS is designed to replace an error record with a copy of
that record. It cannot be used to replace a record with another
of a different key and/or data length.

An end-of-file record cannot be changed; therefore, input for
key and/or data fields are ignored.

Continuation requirements for the utility control statements are
described in "Continuing Utility Control Statements" on page 5.

The TRACK statement is used to identify a defective track which
does not contain VTOC records (that is, the defective record is
not included in the volume table of contents).

The TRACK statement must not begin in column 1.

The format of the TRACK statement is:

TRACK=bbbbcccchhhhrrkkdddd[S]

The VTOC statement is used to identify a defective track which
contains VTOC records (that is, the defective record is included
in the volume table of contents).

The VTOC statement must not begin in column 1.

The format of the VTOC statement is:

VTOC=bbbbcccchhhhrrkkdddd

328 MVS/370 Utilities

Parameters

bbbb

cccc

dddd

hhhh

rrkk

S

Applicable
Control
statements

TRACK
VTOC

TRACK
VTOC

TRACK
VTOC

TRACK
VTOC

TRACK
VTOC

TRACK

Description of Parameters

s

This number must be all zeros.

is the hexadecimal number of the cylinder in
which the defective track was found.

is the hexadecimal data length of the bad
record. (When a WRITE special command is
used, dddd is the length of the record
segment.) dddd must not exceed the data
length specified in the count field of the
defective record.

is the defective track number, in
hexadecimal.

is the record number and key length for the
bad record, in hexadecimal. kk must not
exceed the key length specified in the count
field of the defective record.

is an optional byte of EBCDIC information
that specifies that the WRITE special
command is to be used (when the last record
on the track overflows and must be completed
elsewhere) .

IEHATLAS Program 329

IEHATLAS EXAMPLES

IEHATLAS EXAMPLE I

The following examples illustrate some of the uses of IEHATLAS.
Figure 108 can be used as a quick-reference guide to IEHATLAS
examples. The numbers in the "Example" column point to examples
that follow.

operation comments Example

Get Alternate Write special is included because 1
Track of a track overflow condition.

Get Alternate Alternate track assigned for a bad 2
Track end-of-file record.

Get Alternate Alternate track assigned for a bad 3
Track VTOC record.

Get Alternate Replace defective ~ecord zero. 4
Track

Figure 108. IEHATLAS Example Directory

Examples that use disk in place of actual device numbers must be
changed before use. See "DASD and Tape Device Support" on page
3 for valid device number notation.

In this example, the data set defined by SYSUTl contains the bad
record. An alternate track on the specified unit and volume is
assigned to replace the defective track. Valid records from the
defective track are copied to the alternate track and the
replacement record (from SYSIN) is also written to the alternate
track.

//JOBATLAS JOB 06#990,SMITH,MSGLEVEL=1
//STEP EXEC PGM=IEHATLAS
//SYSPRINT DD SYSOUT=A
//SYSUTl DD DSNAME=HEWSET,UNIT=disk,VOLUME=SER=333333,
// DISP=OLD
//SYSIN DD *

TRACK=00000002000422020006S
F3FIC2C2FOFOOOOO

The control statements are discussed below:

• SYSPRINT DD defines the device to which the output messages
can be written (in this case, the system printer).

• SYSUTI DD defines the data set (NEWSET) that contains the
bad record.

• SYSIN DD defines the control data set, which follows in the
input stream.

• TRACK specifies the cylinder and track number for the
defective track, and the record number, key length, and data
length of the bad record. In this example, the input record
is to be placed on cylinder 2 (cccc=0002), track 4
(hhhh=0004), record 22 (rr=22); it has a key length of two
(kk=02) with a logical record (data) length of six
(dddd=0006). The WRITE special (S) character is used
because there is a track overflow condition.

330 MVS/370 Utilities

INPUT AND OUTPUT

RETURN CODES

Initial volume label

HDRI

HDR2

User header labels
(optional up to 8)

Tapemark

Data

Figure 109. IBM Standard Label Group after Volume Receives Data

IEHINITT uses as input a control data set that contains the
utility control statements.

IEHINITT produces an output data set that contains:

• Utility program identification

• Initial volume label information for each successfully
labeled tape volume.

• Contents of utility control statements.

• Any error messages.

IEHINITT returns a code in register 15 to indicate the results
of program execution. The return-codes and their meanings are
listed below.

IEHIHITT Program 335

CONTROL

Codes

00 (00 hex)

04 (04)

08 (08)

12 (OC)

16 (10)

Meaning

Successful completion. A message data set was
created.

Successful completion. No message data set was
defined by the user.

IEHINITT completed its operation, but error
conditions were encountered during processing. A
message data set was created.

IEHINITT completed its operation, but error
conditions were encountered during processing. No
message data set was defined by the user.

IEHINITT terminated operation because of error
conditions encountered while attempting to read the
control data set. A message data set was created
if defined by the user.

Figure 110. IEHINITT Return Codes

IEHINITT is controlled by job control statements and utility
control statements. The job control statements are used to
execute or invoke IEHINITT and to define data sets used and
produced by IEHINITT. The utility control statement is used to
specify applicable label information.

JOB CONTROL STATEMENTS

Figure IlIon page 337 shows the job control statements for
IEHINITT.

PARM Information on the EXEC Statement

The EXEC statement can include PARM information that specifies
the number of lines to be printed between headings in the
message data set, as follows:

PARM='LINECNT=nn'

If PARM is omitted, 60 lines are printed between headings.

If IEHINITT is invoked, the line count option can be passed in a
parameter list that is referred to by the optionaddr
subparameter of the LINK or ATTACH macro instruction. In
addition, a page count can be passed in a 6-byte parameter list
that is referred to by the hdingaddr subparameter of the LINK or
ATTACH macro instruction. For a discussion of linkage
conventions, refer to "Invoking Utility Programs from a Problem
Program" on page 13.

SYSPRINT DD statement

The SYSPRINT data set must have a logical record length of 121
bytes. It must consist of fixed length records with an ISO/ANSI
control character in the first byte of each record. Any
blocking factor can be specified.

336 MVS/370 Utilities

anyname DO statement

SYSIN 00 statement

statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEHINITT) or, if
the job control statements reside in a procedure
library, the procedure name. The EXEC statement
can include additional PARM information; see "PARM
Information on the EXEC Statement."

SYSPRINT DD Defines a sequential output data set.

anyname DD Defines a tape unit to be used in a labeling
operation; more than one tape unit can be
identified.

SYSIN DO Defines the control data set. The control data set
normally resides in the input stream; however, it
can be defined as a member of a partitioned data
set or as a sequential data set outside the input
stream.

Figure 111. IEHINITT Job Control Statements

The "anyname" DD statement is entered:

//anyname DD DCB=DEN=x,UNIT=(xxxx,n,DEFER)

The DEN parameter specifies the density at which the labels are
written. The UNIT parameter specifies the device type, number
of units to be used for the labeling operation, and deferred
mounting. See the publication JCL for more information on the
DEN and UNIT parameters.

The name "anyname" must be identical to a name specified in a
utility control statement to relate the specified unites) to the
utility control statement.

The SYSIN data set must have a logical record length of 80. Any
blocking factor can be specified.

UTILITY CONTROL STATEMENT

INITT Statement

IEHINITT uses the utility control statement INITT to provide
control information for a labeling operation.

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements" on page 5.

The INITT statement provides control information for the
IEHIHITT program.

Any number of INITT utility control statements can be included
for a given execution of the program. An identically named DD
statement must exist for a utility control statement in the job
step.

IEHINITT Program 337

Figure 112 shows a printout of a message data set including the
INITT statement and initial volume label information. In this
example, one INITT statement was used to place serial numbers
001122 and 001123 on two SL tape volumes. VOLI001122 and
VOLI001123 are interpreted, as follows:

• VOLI indicates that an initial volume label was successfully
written to a tape volume.

• 001122 and 001123 are the serial numbers that were written
onto the volumes.

• A blank space following the serial number represents the
Volume Security field, which is not used during
OPEN/CLOSE/EOV processing on an SL tape.

No errors occurred during processing.

SYSTEM SUPPORT UTILITIES IEHINITT
72

ALL INITT SER=001122,NUMBTAPE=2,OWNER='P.T.BROWN', X

VOLIOOl122
VOLI001123

DISP=REWIND

P.T.BROWN
P.T.BROWN

Figure 112. Printout of INITT Statement Specifications and
Initial Volume Label Information

The format of the INITT statement is:

ddname INITT SER=xxxxxx

,DISP=CREWINDIUNLOAD)

[,OWNER='cccccccccc[cccc]']

[,NUHBTAPE=nl!]

[,LABTVPE=AL]

[,ACCESS=~]

338 MVS/370 Utilities

Parameters

ACCESS

DISP

LABTYPE

ddname

NUMBTAPE

Applicable
Control
statements

INITT

INITT

INITT

INITT

INITT

Description of Parameters

ACCESS=c
specifies the ISO/ANSI volume accessibility
code. Valid values for ~ are upper case A
through Z only. The default value is a
blank character, indicating unlimited access
to the volume. You cannot specify a blank
character for the access code.

The Volume Access installation exit routine
in MVS must be modified to allow subsequent
use of the volume if ACCESS is specified.
Refer to Magnetic Tape labels and File
Structure for further information about
volume accessibility and ISO/ANSI
installation exits.

ACCESS is invalid unless LABTYPE=AL has also
been specified.

DISP=(REWINDIUNLOADJ
specifies whether a tape is to be rewound or
rewound and unloaded. These values can be
coded:

REWIND
specifies that a tape is to be rewound
(but not unloaded) after the label has
been written.

UNLOAD

LABTYPE=AL

specifies that a tape is to be rewound
and unloaded after the label has been
written. This is the default.

specifies that an ISCII/ASCII volume label
written in ISO/ANSI Version 3 format is to
be created. Labels written in ISO/ANSI
cannot be put on a 7-track tape volume.

Default: The tape is written in EBCDIC for
9-track tape volumes and in BCD for 7-track
tape volumes.

ddname
specifies the name that is identical to the
ddname in the name field of the DO statement
defining a tape unites). This name must
begin in column 1.

NUMBTAPE=nl!
specifies the number of tapes to be labeled
according to the specifications made in this
control statement. The value n represents a
number from 1 to 255. If more-than one tape
is specified, the volume serial number of
the first tape must be numeric.

IEHINITT Program 339

Parameters

OWNER

SER

Applicable
Control
statements

INITT

INITT

Description of Parameters

OWNER='cccccccccc[cccc],
specifies the-owner's name or similar
identification. The information is
specified as character constants l and can be
up to 10 bytes in length for EBCDIC and BCD
volume labelsl or up to 14 bytes in length
for volume labels written in ISCII/ASCII.
The delimiting apostrophes must be present
if blanks, commaSI apostrophes 1 equal signsl
or other special characters (except periods
or hyphens) are included. The set of valid
ISO/ANSI 'a' type characters for ISCII/ASCII
tapes is as follows: upper case A-ZI numeric
0-9 1 and special characters
!"%&'()~+,-./:;<=>?

If an apostrophe is included within the
OWNER name field l it must be written as two
consecutive apostrophes.

SER=xxxxxx
specifies the volume serial number of the
first or only tape to be labeled. For IBM
standard labeled (SL) tapesl the serial
number cannot contain blanksl commaSI
apostrophes 1 equal signsl or special
characters other than periods or hyphens.
ISO/ANSI labeled tapes (AL) may contain any
valid ISO/ANSI 'a' type character as
described under the OWNER keyword. However,
if any nonalphameric character (including a
period or a hyphen) is present, delimiting
apostrophes must be included.

You cannot use a blank as the first
character in a volume serial number.

A specified serial number is increased by
one for each additional tape to be labeled.
(Serial number 999999 is incremented to
000000.) When processing multiple tapes,
the volume serial number must be all
numeric.

IEHINITT EXAMPLES

The following examples illustrate some of the uses of IEHINITT.
Figure 113 can be used as a quick-reference guide to IEHINITT
examples. The numbers in the "Example" column refer to examples
that follow.

Operation Comments Example

LABEL Three 9-track tapes are to be 1
labeled.

Figure 113 (Part 1 of 2). IEHINITT Example Directory

340 MVS/370 Utilities

IEHINITT EXAMPLE 1

IEHINITT EXAMPLE 2

Operation comments Example

LABEL A 9-track tape is to be labeled. 2

LABEL Two groups of 9-track tape volumes 3
are to be labeled.

LABEL 9-track tape volumes are to be 4
labeled. Sequence numbers are to be
incremented by 10.

LABEL Three 9-track tape volumes are to be 5
labeled. An alphameric label is to
be placed on a tape volume; numeric
labels are placed on the remaining
two tape volumes.

LABEL Two 9-track tape volumes are to be 6
labeled. The first volume is labeled
at a density of 6250 bpi; the second
at a density of 1600 bpi.

LABEL A 9-track tape volume is labeled in 7
ISO/ANSI format with a nonblank
access code.

Figure 113 (Part 2 of 2). IEHINITT Example Directory

Examples that use tape in place of actual device numbers must be
changed before use. See "DASD and Tape Device Support" on page
3 for valid device number notation.

In this example, serial numbers 001234, 001235, and 001236 are
placed on three tape volumes; the labels are written in EBCDIC
at 800 bits per inch. Each volume labeled is mounted, when it
is required, on a single 9-track tape unit.

JOB
EXEC
DD
DD

//LABEL1
//
//SYSPRINT
//LABEL
//SYSIN
LABEL

DD
INITT

/*

091990,BROWN,MSGLEVEL=(1,I)
PGM=IEHINITT
SYSOUT=A
DCB=DEN=2,UNIT=(tape,1,DEFER)

* SER=001234,NUMBTAPE=3

The control statements are discussed below:

• LABEL DD defines the tape unit used in the labeling
operation.

• SYSIN DD defines the control data set, which follows in the
input stream.

• LABEL INITT specifies the number of tapes to be labeled (3),
beginning with 001234.

In this example, serial number 001001 is placed on one ISO/ANSI
tape volume; the label is written at 800 bits per inch. The
volume labeled is mounted, when it is required, on a 9-track
tape unit.

IEHINITT Program 341

IEHINITT EXAMPLE 3

IEHINITT EXAMPLE 4

JOB
EXEC
DD
DD
DD

//LABEL2
//
//SYSPRINT
//ASCIILAB
//SYSIN
ASCIILAB
/*

INITT

09#990,BROWN,MSGLEVEL=(1,1)
PGM=IEHINITT
SYSOUT=A
DCB=DEN=2,UNIT=(tape,1,DEFER)

* SER=001001,OWNER='SAM A. BROWN',LABTYPE=AL

The control statements are discussed below:

• ASCIILAB 00 defines the tape volume to be used in the
labeling operation.

• SYSIN 00 defines the control data set, which follows in the
input stream.

• ASCIILAB INITT specifies the serial number, owner 10 and
label type for the volume.

In this example, two groups of serial numbers (001234, 001235,
001236, and 001334, 001335, 001336) are placed on six tape
volumes. The labels are written in EBCDIC at 800 bits per inch.
Each volume labeled is mounted, when it is required, on a single
9-track tape unit.

JOB
EXEC
DD
DD

//LABEL3
//
//SYSPRINT
//LABEL
//SYSIN
LABEL
LABEL

DD
INITT
INITT

/*

09#990,BROWN,MSGLEVEL=(1,1)
PGM=IEHINITT
SYSOUT=A
DCB=DEN=2,UNIT=(tape,1,DEFER)

* SER=001234,NUMBTAPE=3
SER=001334,NUMBTAPE=3

The control statements are discussed below:

• LABEL DO defines the tape unit to be used in the labeling
operation.

• SYSIN DD defines the control data set, which follows in the
input stream.

• LABEL INITT defines the two groups of serial numbers to be
put on six tape volumes.

In this example, serial numbers 001234, 001244, 001254, 001264,
001274, etc., are placed on eight tape volumes. The labels are
written in EBCDIC at 800 bits per inch. Each volume labeled is
mounted, when it is required, on one of four 9-track tape units.

342 MVS/370 Utilities

IEHINITT EXAMPLE 5

IEHINITT EXAMPLE 6

JOB
EXEC
DD
DD

//LABEL4
//
//SYSPRINT
//LABEL
//SYSIN
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL

DO
INITT
INITT
INITT
INITT
INITT
INITT
INITT
INITT

/*

091990,BROWN,MSGLEVEL=(I,I)
PGM=IEHINITT
SYSOUT=A
OCB=DEN=2,UNIT=(tape,4,DEFER)

* SER=001234
SER=001244
SER=001254
SER=001264
SER=001274
SER=001284
SER=001294
SER=001304

The control statements are discussed below:

• LABEL DD defines the tape unit used in the labeling
operation.

• SYSIN DO defines the control data set, which follows in the
input stream.

• The LABEL INITT statements define the tapes to be labeled by
volume serial number.

In this example, serial number TAPE1 is placed on a tape volume,
and serial numbers 001234 and 001235 are placed on two tape
volumes. The labels are written in EBCDIC at 800 and 1600 bits
per inch, respectively.

JOB
EXEC
DD
DO
DD
OD

//LABEL5
//
//SYSPRINT
//LABEL1
//LABEL2
//SYSIN
LABELl
LABEL2

INITT
INITT

/*
/

091990,BROWN,MSGLEVEL=(I,l)
PGM=IEHINITT
SYSOUT=A
OCB=OEN=2,UNIT=ctape,I,DEFER)
DCB=DEN=3,UNIT=(tape,1,DEFER)

* SER=TAPE1
SER=001234,NUMBTAPE=2

The control statements are discussed below:

• LABELl DD and LABEL2 DD define two tape volumes to be used
in the labeling operation.

• SYSIN DD defines the control data set, which follows in the
input stream.

• LABELl INITT places the serial number TAPEl on the tape
volume defined in LABELl DD. LABEL2 INITT places the serial
numbers 001234 and 001235 on the tape volume defined in
LABEL2 DD.

In this example, the serial number 006250 is written in EBCDIC
on a tape volume at a density of 6250 bpi, and the serial number
001600 is written in EBCDIC on a second volume at a density of
1600 bpi.

IEHINITT Program 343

IEHINITT EXAMPLE 7

J08
EXEC
DD
DD
DD
DD

//lA8El6
//
//SYSPRINT
//DDFIRST
//DDSECOND
//SYSIN
DDFIRST
DDSECOND
/*

INITT
INITT

093990,8ROWN,MSGlEVEl=(l,l)
PGM=IEHINITT
SYSOUT=A
DC8=DEN=4,UNIT=(tape,l,DEFER)
DCB=DEN=3,UNIT=(tape,l,DEFER)

* SER=006250
SER=001600

The control statements are discussed below:

• DDFIRST DD defines the first tape volume to be used.

• DDSECOND DD defines the second tape volume to be used.

• SYSIN DD defines the control data set, which follows in the
input stream.

• DDFIRST INITT writes the serial number 006250 on the volume
defined in DDFIRST DD. DDSECOND INITT writes the serial
number 001600 on the volume defined in DDSECOND DD.

In this example, an ISO/ANSI (Al) labeled tape is created with a
nonblank access code. The volume serial number is TAPE01.

//lA8El7 J08
//STEPOl EXEC
//SYSPRINT DD
//lA8El DD

093990,8lUE,MSGlEVEl=(l,l)
PGM=IEHINITT
SYSOUT=A
UNIT=(tape,l,DEFER),DC8=DEN=4

//SYSIN DD
lA8El INITT
/*

* SER=TAPEDl,OWNER=TAPOWNER,lA8TYPE=AL,ACCESS=A

The control statements are discussed below.

• lABEL DD defines the device on which the tape is mounted.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The INITT statement creates an ISO/ANSI label for the tape
with volume serial number TAPEDl, owned by TAPOWNER. The
ACCESS code is specified as "A", and the MVS operating
system which receives this volume must be able to recognize
the "A" in order for the volume to be accepted.

344 MVS/370 Utilities

IEHLIST PROGRAM

IEHlIST is a system utility used to list entries in an OS CVOl,
entries in the directory of one or more partitioned data sets,
or entries in an indexed or non-indexed volume table of
contents. Any number of listings can be requested in a single
execution of the program.

LISTING OS CVOL ENTRIES

IEHlIST lists alIOS CVOL entries that are part of the structure
of a fully qualified, data set name. Figure 114 shows an index
structure for which IEHlIST lists fully qualified names A.B.D.W,
A.B.D.X, A.B.E.Y, and A.B.E.Z. Because A.C.F does not represent
a cataloged data set (that is, the lowest level of qualification
has been deleted>, it is not a fully qualified name, and it is
not listed.

A

B c

o E F

w x y z

Figure 114. Index Structure--Listed by IEHLIST

IEHLIST will list only OS CVOLs (SYSCTLG data sets). To list
ICF or VSAM catalogs, use access method services. See Access
Method Services Reference for more information.

LISTING A PARTITIONED DATA SET DIRECTORY

IEHlIST can list up to ten partitioned data set directories at a
time. A partitioned directory is composed of variable length
records blocked into 256-byte blocks. Each directory block can
contain one or more entries which reflect member (and/or alias)
names and other attributes of the partitioned members. IEHLIST
can list these blocks in edited and unedited format.

Figure 115 on page 346 shows a directory block as it exists in
storage.

IEHLIST Program 345

/"--- - -- -.-- - - - - - --- - ------'"
()

\
,~~----_,~~--~~~--~~----~L-----_,~~--~~~--~

Figure 115. Sample Directory Block

,
I

Edited Format

IEHLIST optionally provides the following information, which is
obtained from the applicable partitioned data set directory,
when an edited format is requested:

• Member name

• Entry point

• Relative address of start of member

• Relative address of start of text

• Contiguous virtual storage requirements

• Length of first block of text

• Origin of first block of text

• System status indicators

• Linkage editor attributes

• APF authorization required

• Other information

Figure 116 shows an edited entry for a partitioned member
(IEANUC01). The entry is shown as it is listed by the IEHLIST
program.

OTHER INFORMATION INDEX
SCATTER FORMAT SCTR=SCATTER/TRANSLATION TABLE TTR IN HEX, LEN OF SCTR LIST IN DEC, LEN OF TRANS TABLE IN DEC,

ESDID OF FIRST TEXT RCD IN DEC, ESDID OF CSECT CONTAINING ENTRY POINT IN DEC

OVERLAY FORMAT ONLY=NOTE LIST RCD TTR IN HEX, NUMBER OF ENTRIES IN NOTE LIST RCD IN DEC

ALIAS NAMES ALIAS MEMBER NAMES WILL BE FOLLOWED BY AN ASTERISK IN THE PDS FORMAT LISTING

ATTRIBUTE INDEX

BIT ON OFF BIT ON OFF BIT ON OFF BIT ON OFF

0 RENT NOT RENT 4 OL NOT OL 8 NOT DC DC 12 NOT EDIT EDIT
1 REUS NOT REUS 5 SCTR BLOCK 9 ZERO ORG NOT ZERO 13 SYMS NO SYMS
2 ONLY NOT ONLY 6 EXEC NOT EXEC 10 EP ZERO NOT ZERO 14 F LEVEL E LEVEL
3 TEST NOT TEST 7 1 TXT MULTI RCD 11 NO RLD RLD 15 REFR NOT REFR

MEMBER ENTRY ATTR REL ADDR-HEX CONTIG LEN 1ST ORG 1ST SST VS AUTH OTHER
NAME PT-HEX HEX BEGIN 1ST TXT STOR-DEC TXT-DEC TXT-HEX INFO ATTR REQ INFORMATION

IEANUC01 000000 06E2 000004 00020F 000166248 0927 ABSENT 880000 NO SCTR=OOOOOO,
00484,01084,32,32

OF THE 00002 DIRECTORY BLOCKS ALLOCATED TO THIS PDS, 00001 ARE (IS) COMPLETELY UNUSED

Figure 116. Edited Partitioned Directory Entry

346 MVS/370 Utilities

Before printing the directory entries on the first page, an
index is printed explaining the asterisk (*), if any, following
a member name, the attributes (fields 3 and 10), and other
information (field 12). Under OTHER INFORMATION INDEX, scatter
and overlay format data is described positionally as it appears
in the listing; under the ATTRIBUTE INDEX, the meaning of each
attribute bit is explained.

Each directory entry occupies one printed line, except when the
member name is an alias and the main member name and associated
entry point appear in the user data field. When this occurs,
two lines are used and every alias is followed by an asterisk.
If the main member is renamed, the old member name will still be
in the alias directory entry and consequently printed on the
second line.

The FORMAT option of the LISTPDS statement applies only to a
partitioned data set whose members have been created by the
linkage editor (that is, the directory entries are at least 34
bytes long). If a directory entry is less than 34 bytes, a
message is issued and the entry is printed in unedited format;
if the entry is longer than 34 bytes, it is assumed that it is
created by the linkage editor.

Unedited (Dump) Format

The user may choose the unedited format. If this is the case,
IEHLIST lists each member separately.

Figure 117 shows how the information in Figure 115 on page 346
is listed.

Note: A listing organized as shown in Figure 117 can also be
obtained by using IEBPTPCH (see "IEBPTPCH Program" on page 241).

MEMB A

MEMB B

MEMB C

MEMB n

TTR

TTR

TTR

TTR

USER DATA

USER DATA

USER DATA

USER DATA

Figure 117. Sample Partitioned Directory Listing

To correctly interpret user data information, the user must know
the format of the partitioned entry. The formats of directory
entries are discussed in the Debugging Handbook.

LISTING A VOLUME TABLE OF CONTENTS

Edited Format

IEHLIST can be used to list, partially or completely, entries in
a specified volume table of contents (VTOC), whether indexed or
nonindexed. The program lists the contents of selected data set
control blocks (DSCBs) in edited or unedited form.

For more information on indexed VTOCs, including a description
of the VPSM, VIXM and VMDS, see System Programming Library: Data
Management.

Two edited formats are available.

IEHLIST Program 347

FIRST EDITED FORHAT: The first edited format is a comprehensive
listing of the DSCBs in the VTDC. It provides the status and
attributes of the volume, and describes in depth the data sets
residing on the volume. This listing includes:

• Logical record length and block size

• Initial and secondary allocations

• Upper and lower limits of extents

• Alternate track information

• Available space information, including totals of unallocated
cylinders, unallocated tracks, and unallocated (Format 0)
DSCBs

• Dption codes (printed as two hexadecimal digits)

• Record formats

A VTDC consists of as many as seven types of DSCBs which contain
information about the data sets residing on the volume:

• Ide~tifier DSCB--Format 1

• Index DSCB--Format 2

• Extension DSCB--Format 3

• VTDC DSCB--Format 4

• Free Space DSCB--Format 5

• Shared Extent DSCB--Format 6

• Free VTDC DSCB--Format 0

The first DSCB in a VTDC (and on your listing) is always a VTDC
(Format 4) DSCB. It defines the scope of the VTDC itself; that
is, it contains information about the VTDC and the volume rather
than the data sets referenced by the VTDC.

The DSCB is followed by the Free Space (Format 5) DSCB, which
describes the space available on the volume for allocation to
other data sets. More than one Format 5 DSCB may be required to
describe the available space on a volume because each Format 5
DSCB describes up to 26 extents.

The Format 4 and Format 5 DSCBs are followed, in any order, by
Format 1, 2, 3, or 6 DSCBs.

Each Identifier (Format 1) DSCB contains information about a
particular data set or VSAM data space residing on the volume.
This type of DSCB describes the characteristics and up to three
extents of the data set.

For data sets having indexed sequential organization, additional
characteristics are specified in an Index (Format 2) DSCB
pointed to by the Identifier (Format 1) DSCB.

Additional extents are described in an Extension (Format 3) DSCB
pointed to by the Identifier (Format 1) DSCB or in the Index
(Format 2) DSCB for an ISAM data set.

A Shared Extent (Format 6) DSCB is used for shared-cylinder
allocation. It describes the extent of space (one or more
contiguous cylinders) that is being shared by two or more data
sets. The Shared Extent (Format 6) DSCB is pointed to by the
VTDC (Format 4) DSCB. Subsequent Format 6 DSCBs are pointed to
by the previous Format 6 DSCB. Though shared extent data sets
cannot be created by MVS/370, they are supported if previously
created.

348 MVS/370 Utilities

A Free VTOC Record (Format 0) DSCB, which indicates space
available for another DSCB, is not listed by IEHlIST. They are
140-byte records, consisting of binary zeros, that are
overwritten with Format 1, 2, or 3 DSCBs when a new data set is
allocated, with Format 5 DSCBs when space is released, or with
Format 3 DSCBs when a Format 1 or Format 2 must be extended.

Indexed VTOCs: For indexed VTOCs, there are two types of
formatted listings. These types are specified using the
INDEXDSN parameter.

If INDEXDSN is omitted, the listing contains:

• A statement of the number of levels in the index, if
enabled.

• A formatted Format 4 DSCB.

• Formatted data set entries in alphameric order (Format 1
DseB physical-sequential order if the index is disabled).

• Formatted VPSM freespace information.

• Totals of unallocated cylinders, unallocated tracks,
unallocated (Format 0) DSCBs, and unallocated VIRs.

If INDEXDSN=name is specified, the listing contains, in addition
to the items above:

• A formatted VPSM, VMDS, and VIXM.

• Allocated VIERs, formatted and listed by level and key
sequence within level (in physical-sequential order if the
index is disabled).

• If the VTOC index is disabled, a statement is included to
this effect.

Figure 118 on page 350 shows a sample listing of the first
edited format. This sample illustrates how each DSCB will
appear on a listing, although in many cases the VTOC may not
contain all possible types. The information is in columns, with
the values or numbers appearing underneath each item's heading.

SECOND EDITED FORMAT: The second edited format is an abbreviated
description of the data sets. It is provided by default when no
format is requested specifically. It provides the following
information:

• Data set name

• Creation date (dddyy)

• Expiration date (ddclyy)

• Password indication

• Organization of the data set

• ExtentCs)

• Volume serial number

The last line in the listing indicates how much space remains in
the VTOC.

For nonindexed VTOCs, data set entries are listed in
physical-sequential order. Totals of unallocated cylinders,
unallocated tracks, and unallocated (Format 0) DSCBs are also
listed.

IEHlIST Program 349

SYSTEMS SUPPORT UTILITIES---IEHLIST

CONTENTS OF VTOC ON VOL EXAMPL

PAGE 1

FORMAT 4 DSCB NO AVAIL/MAX DSCB /MAX DIRECT NO AVAIL NEXT ALT
VI DSCBS PER TRK BLK PER TRK ALT TRK TRK(C-H)

FORMAT 6
(C-H-R)

LAST FMT 1 VTOC EXTENT THIS DseB
DSCB(C-H-R)/LOW(C-H) HIGH«(,-H) (C-H-R)

00 154 16 10 30 200

FORMAT 5 DSCB
TRK FULL

ADDR CYLS
17 3

A = NUMBER OF TRKS IN ADDITION TO FULL CYLS IN THE EXTENT
TRK FULL TRK FULL TRK FULL

A
3

ADDR CYLS A
110 189 0

DSCB(C-H-R) 0

ADDR CYLS A ADDR CYLS A

5 0 5 5 0 5

TRK
ADDR

FULL
CYLS A

TRK
ADDR

FULL
CYLS A

()

---------------DATA SET NAME--------------- 10 SER NO SEQ NO CREDT EXPDT NO EXT DSORG RECFM OPTCD BLKSIZE
EXAMPLE.OF.COMBINED.FORMATS.ONE.AND.TWO 1 EXAMPL 1 36699 27469 IS F 100

LRECL KEY LEN INITIAL ALLOC 2ND ALLOC/LAST BLK PTR(T-R-L) USED PDS BYTES FMT 2 OR 3(C-H-R)/DSCB(C-H-R)
100 4 ABSTR 0 5 0 5 0 4

EXTENTS NO LOW(C-H) HIGH(C-H)
o 6 0 10 9

2MIND(M-B-C-H);3MIND(M-B-C-H)/L2MFN(C-H-R)/L3MIN(C-H-R)/CYLAD(M-B-C-H)/ADLIN(M-B-C-H)/ADHIN(M-B-C-H)/NOBYT/ NOTRK
o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 9 0 0 0 0 1 0 10 9 70 0

LTRAD(C-H-R)/LCYAD(C-H-R)/LMSAD(C-H-R)/LPRAD(M-B-C-H-R) /NOLFV /CYLOV/ TAGDT/ PRCTR / OVRCT/ RORG1/PTRDS(C-H-R)
6 0 3 10 9 1 0 0 0 1 0 6 1 12 1 0 20 0 0

----UNABLE TO CALCULATE EMPTY SPACE.

---------------DATA SET NAME--------------- 10 SER NO SEQ NO CREDT EXPDT NO EXT DSORG RECFM OPTCD BLKSIZE
EXAMPLE.OF.COMBINED.FORMATS.ONE.AND.THREE 1 EXAMPL 1 36699 27069 16 PS V 3504

LRECL KEY LEN
3500

EXTENTS NO
0
3
6
9

12
15

INITIAL ALLOC 2ND ALLOC/LAST BLK
TRKS 1 15

LOW(C-H) HIGH(C-H) NO LOW(C-H)
0 1 0 1 0 2
0 0 4 4 0 5
0 7 0 7 7 0 8
1 0 1 0 10 1

13 4
6 6

PTR (T-R-L)
1723

HIGH(C-H)
0 2
0 5
0
1

4

USED PDS BYTES FMT 2 OR 3(C-H-R)/DSCB(C-H-R)

NO
2
5
8

11
14

LOW(C-H)
0 3
0 6
0

506 505

HIGH(C-H)
o 3
o 6
o 9

2
5

- - - -ON THE ABOVE DATA SET, THERE ARE 0 EMPTY TRACK (S) .

THERE ARE 192 EMPTY CYLINDERS PLUS 3 EMPTY TRACKS ON THIS VOLUME
THERE ARE 154 BLANK DSCBS IN THE VTOC ON THIS VOLUME

Figure 118. Sample Printout of a Volume Table of Contents

For indexed VTOCs, this listing contains:

• A statement of the number of levels in the index.

• Data set entries listed in alphameric order.

• Totals of unallocated cylinders, unallocated tracks,
unallocated (Format 0) DSCBs, and unallocated VIRs.

Unedited (Dump) Format

This option produces a complete hexadecimal listing of the DSCBs
in the VTOC. The listing is in an unedited dump form, requiring
the user to know the various formats of applicable DSCBs. The
VTOC overlay for IEHlIST listings of VTOCs in dump format (form
number 620-0109-1) is useful in identifying the fields of the
DSCBs.

For nonindexed VTOCs, this listing contains:

• DSCBs dumped in physical-sequential order.

• Totals of unallocated cylinders, unallocated tracks, and
unallocated (Format 0) DSCBs.

For indexed VTOCs there are two types of dump listings.
types are specified using the INDEXDSN parameter.

350 MVS/370 Utilities

These

INPUT AND OUTPUT

RETURN CODES

,If INDEXDSN is omitted, the listing contains:

• DSCBs dumped in physical-sequential order (one token Format
5 DSCB is identified).

• A dump of the VPSM.

• Totals of unallocated cylinders, unallocated tracks,
unallocated (Format 0) DSCBs, and unallocated VIRs.

If INDEXDSN=~ is specified, the listing contains, in addition
to the items above:

• Dumps of the VIXM and the VMDS.

• A dump of all allocated VIERs dumped in hierarchic order.
All VIERs at the highest level are dumped, starting with the
VIER with the lowest high key; next, all VIERs at the next
lower level are dumped, starting with the VIER with the
lowest high key. The listing continues in this manner until
all VIERs at level 1 are dumped.

If the VTOC index is disabled, both allocated and
unallocated VIERs are dumped in physical-sequential order.

• If the VTOC index is disabled, a statement is included to
this effect.

Refer to Debugging Handbook for a discussion of the various
formats that data set control blocks can assume.

IEHLIST uses the following input:

• One or more source data sets that contain the data to be
listed. The input data set(s) can be:

1. A VTOC,

2. A partitioned data set,

3. An OS CVOl (SYSCTLG).

• A control data set, which contains utility control
statements that are used to control the functions of
IEHLIST.

IEHLIST produces as output a message data set which contains the
result of the IEHlIST operations. The message data set includes
the listed data and any error messages.

IEHlIST returns a code in register 15 to indicate the results of
program execution. The return codes and their meanings are
listed below.

IEHLIST Program 351

CONTROL

Codes Meaning

00 (00 hex) Successful completion.

OS (OS) An error condition caused a specified request to be
ignored. Processing continues.

12 (OC)

16 (10)

A permanent input/output error occurred. The job
is terminated.

An unrecoverable error occurred while reading the
data set. The job is terminated.

Figure 119. IEHlIST Return Codes

IEHlIST is controlled by job control statements and utility
control statements. The job control statements are used to
execute or invoke IEHlIST and to define the data sets used and
produced by IEHlIST.

Utility control statements are used to control the functions of
the program and to define those data sets or volumes to be
modified.

JOB CONTROL STATEMENTS

Figure 120 on page 353 shows the job control statements for
IEHlIST.

With the exception of the SYSIN and SYSPRINT DD statements, all
DD statements in this table are used as device allocation
statements, rather than as true data definition statements.

Concatenated DD statements are allowed only for SYSIN.

Because IEHlIST modifies the internal control blocks created by
device allocation DO statements, IEHlIST job control statements
must not include the OSNAME parameter. (All data sets are
defined explicitly or implicitly by utility control statements.)

IEHlIST cannot support empty space calculations for OS CVOl data
sets allocated in blocks when the block sizes are approximately
the same or larger than the track size. ' The empty block
calculation gives only approximate indications of available
space. When IEHlIST cannot supply an approximate number, the
"Unable to Calculate" message is issued.

IEHlIST specifications do not allow for protection of the object
being listed. If another program updates a block of the data
set just prior to IEHlIST reading the data set, a message
(IEHI05I or IEHI08I) may be issued and the output produced by
IEHlIST may be incorrect. If this happens, rerun the job.

PARM Information on the EXEC statement

Additional information can be specified in the PARM parameter of
the EXEC statement to control the number of lines printed per
page. The PARM parameter can be coded:

PARM='LINECNT=~'

352 MVS/370 Utilities

statement

JOB

EXEC

SYSPRINT

anynamel

anyname2

SYSIN DD

DD

DD

DD

Use

Initiates the job.

Specifies the program name (PGM=IEHlIST) or, if
the job control statements reside in a procedure
library, the procedure name. Additional PARM
information can be specified to control the
number of lines printed per page. See "PARM
Information on the EXEC Statement."

Defines a sequential message data set.

Defines a permanently mounted volume.

Defines a mountable device type. This can be
specified more than once as long as each
"anyname" is unique.

Defines the control data set. The control data
set normally follows the job control language in
the input stream; however, it can be defined as
an unblocked sequential data set or member of a
procedure library.

Figure 120. IEHlIST Job Control Statements

The lINECNT parameter specifies the number of lines, ~, to be
printed per page; xx is a decimal number from 01 through 99. If
LINECNT is not specified, 58 lines are printed per page. The
PARM field cannot contain embedded blanks, zeros, or any other
PARM keywords if lINECNT is specified.

SYSPRINT DD statement

The block size for SYSPRINT must be a multiple of 121. Any
blocking factor can be specified for this block size.

anynamel DD statement

An "anynamel" DD statement must be included for each permanently
mounted volume referred to in the job step. (The system
residence volume is considered to be a permanently mounted
volume.>

The "anynamel" DD statement can be entered:

//anynamel DD UNIT=xxxx,VOlUME=SER=xxxxxx,DISP=OLD

The UNIT and VOlUME=SER parameters define the device type and
volume serial number. The DISP=OLD specification prevents the
inadvertent deletion of the data set. (This statement has
arbitrarily been assigned the ddname DDl in the IEHLIST
examples.>

anyname2 DD statement

An "anyname2" DD statement must be included for each mountable
device to be used in the job step.

When deferred mounting is required, the "anyname2" DD statemerit
can be entered:

//anyname2 DD UNIT=(xxxx"DEFER),VOlUME=(PRIVATE, ..•),DISP=OLD

IEHLIST Program 353

SYSIN DD statement

(This statement is arbitrarily assigned the ddname DD2 in the
IEHLIST examples.)

When IEHLIST is dynamically invoked in a job step by another
program, the DD statements defining mountable devices for
IEHLIST must precede DD statements required by the other
program.

Unit affinity cannot be used on DD statements defining mountable
devices.

See Appendix B, "DD Statements for Defining Mountable Devices"
on page 443 for information on defining mountable devices.

The block size for SYSIN must be a multiple of 80. Any blocking
factor can be specified for this block size.

UTILITY CONTROL STATEMENTS

LISTCTLG Statement

LISTPDS Statement

Figure 121 shows the utility control statements for IEHLIST.

statement

LISTCTLG

LISTPDS

LISTVTOC

Use

Requests a listing of all or part of an OS CVOl
(SYSCTLG) .

Requests a directory listing of one or more
partitioned data sets.

Requests a listing of all or part of a volume
table of contents.

Figure 121. IEHLIST Utility Control Statements

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements" on page 5.

The LISTCTLG statement is used to request a listing of either
the entire OS CVOL or a specified portion of the OS CVOL
(SYSCTLG data set). The listing includes the fully quali~ied
name of each applicable cataloged data set and the serial number
of the volume on which it resides. Empty index levels are not
listed.

The format of the LISTCTLG statement is:

[labell LISTCTLG [VOL=device=seriall

[,NODE=~l

The LISTPDS statement is used to request a directory listing of
one or more partitioned data sets that reside on the same
volume.

354 MVS/370 Utilities

Before printing the directory entries on the first page, an
index is printed explaining the att~ibutes (fields 3 and 10) and
othe~ info~mation (field 12). OTHER INFORMATION INDEX explains
scatter and overlay format data as it appears in the listing;
ATTRIBUTE INDEX ~xplains each attribute bit.

The FORMAT option of the lISTPDS statement may be used only on a
partitioned data set whose members have been created by the
linkage editor. Members that have not been created by the
linkage editor cause their directory entries to be listed in
unedited (DUMP) format.

The format of the lISTPDS statement is:

[labell LISTPDS DSNAME=(ngmg[,namel •••)

[,VOL=device=seriall

[,DUMPIFORMATl

LISTVTOC statement

Pa~amete~s

DATE

The lISTVTOC statement is used to request a partial or complete
listing of the entries in a specified volume table of contents.

If you are using IEHlIST to list both the VTOC and the index
data set of an indexed VTOC, refer to "listing a Volume Table of
Contents" on page 347.

The format of the LISTVTOC statement is:

[labell

APplicable
Cont~ol
statements

lISTVTOC

LISTVTOC [DUMPIFORMATl

[,INDEXDSN=SYSl.VTOCIX.xxxxl

[,DATE=~l

[,VOL=device=seriall

[,DSNAME=(name[,name] •••)]

Desc~iption of Pa~amete~s

DATE=~
specifies that each entry that expires
before this date is to be flagged with an
asterisk (*) after the entry name in the
listing. This parameter applies only to the
abbreviated edited format. The date is
represented by ddd, the day of the year, and
~, the last two digits of the year.

Default: No asterisks appear in the listing.

IEHlIST Program 355

Parameters

DSHAME

DUMP

FORMAT

IHDEXDSH

APplicable
Control
statements

LISTPDS

LISTVTOC

LISTPDS
LISTVTOC

LISTPDS

LISTVTOC

LISTVTOC

356 MVS/370 Utilities

Description of Parameters

DSNAME=(name[,name] •••)
specifies the fully qualified names of the
partitioned data sets whose directories are
to be listed. A maximum of 10 names is
allowed. If the list consists of only a
single name, the parentheses can be omitted.

DSNAME=(name[,name] •••)

DUMP

specifies the fully qualified names of the
data sets whose entries are to be listed. A
maximum of 10 names is allowed. If the list
consists of only a single name, the
parentheses can be omitted.

specifies that the listing is to be in
unedited, hexadecimal form.

Default: If both DUMP and FORMAT are
omitted, an abbreviated edited format is
generated for LISTVTOC. For LISTPDS, DUMP
is the default used.

FORMAT
specifies that the listing is to be edited
for each directory entry.

The FORMAT option of the LISTPDS statement
may be used only on a partitioned data set
whose members have been created by the
linkage editor. Members that have not been
created by the linkage editor cause their
directory entries to be listed in unedited
(DUMP) format.

FORMAT
specifies that a comprehensive edited
listing is to be generated.

Default: If both FORMAT and DUMP are
omitted, an abbreviated edited format is
generated for LISTVTOC. For LISTPDS, DUMP
is the default used.

INDEXDSN=SYSl.VTOCIX.xxxx
specifies that index information is to be
listed, in addition to the VTOC. xxxx is
any third level qualifier. DUMP or FORMAT
must be specified if IHDEXDSH is specified.
For more information on indexed VTOCs, refer
to "Listing a Volume Table of Contents" on
page 347.

Parameters

NODE

VOL

Applicable
Control
statements

LISTCTLG

LISTCTLG
LISTPDS
LISTVTOC

Description of Parameters

NODE=name
specifies a qualified name. All data set
entries whose names are qualified by this
name are listed. The OS CVOL must be
defined in the ICF or VSAM master catalog
as: SYSTCTLG.VYYYYYY, where YYYYYY is the
serial number of the OS CVOL. See Catalog
Users Guide for details.

Default: All data set entries are listed.

VOL=device=serial
specifies the device type and volume serial
number of the volume on which the OS CVOL,
PDS directory, or VTOC resides.

For LISTPDS, if the partitioned data set is
not on the system residence volume, the VOL
parameter is required.

Default: For LISTCTLG, the OS CVOL is
assumed to reside on the system residence
volume.

IEHLIST EXAMPLES

The following examples illustrate some of the uses of IEHLIST.
Figure 122 can be used as a quick-reference guide to IEHLIST
examples. The numbers in the "Example" column refer to examples
that follow.

Operation Devices Comments Example

LISTCTLG Disk and Source OS CVOL is to 1
system output be listed on the
device system output device.

LISTCTLG Disk system Three OS CVOLs and 2
residence part of a fourth are
device and to be listed on the
system output system output device.
device

LISTPDS Disk and Three partitioned 3
system output directories are to be
device listed on the system

output device.

LISTVTOC Disk and Volume table of 4
system output contents is to be
device listed in edited form;

selected data set
control blocks are
listed in unedited
form.

Figure 122. IEHLIST Example Directory

IEHLIST Program 357

IEHLIST EXAMPLE 1

IEHLIST EXAMPLE 2

Examples that use disk in place of actual device numbers must be
changed before use. See "DASD and Tape Device Support" on pag~
3 for valid device number notation.

In this example, an OS CVOL named 'SYSCTLG, r~siding ~n a disk
volume (111111), is listed.

The example follows:

//CATLIST JOB
// EXEC
//SYSPRINT DD
//D02 DD
//SYSIN DD

lISTCTLG

09#550,BlUE
PGM=IEHlIST
SYSOUT=A
UNIT=disk,VOlUME=SER=111111,DISP=OlD

* VOL=disk=111111

The control statements are discussed below:

• D02 DO defines a mountable device on which the volume
containing the source OS CVOL is mounted.

• SYSIN DD defines the control data set, which follows in the
input stream.

• lISTCTlG defines the source volume and specifies the list
operation.

In this example, an OS CVOL residing on the system residence
volume, two OS CVOLs residing on disk volumes, and a portion of
an OS CVOL residing on another volume, are listed.

//CATLIST JOB
// EXEC
//SYSPRINT DD
//DOI DD
//D02 DD
//
//SYSIN DD

LISTCTLG
lISTCTlG
lISTCTLG
lISTCTLG

09#550,BlUE
PGM=IEHLIST
SYSOUT=A
UNIT=diskB,VOlUME=SER=llllll,OISP=OLD
UNIT=(diskA"DEFER),DISP=OLO,
VOlUME={PRIVATE"SER=(222222»

*
VOl=diskA=333333
VOl=diskA=444444
VOl=diskA=555555,NOOE=A.B.C

The control statements are discussed below:

• DDI DD defines a system residence device. (The first OS
CVOl to be listed resides on the system residence volume.)

• 002 DD defines a mountable device on which each diskA volume
is mounted as it is required by the program.

• SYSIN DO defines the control 'data set, which follows in the
input stream.

• The first lISTCTLG statement indicates that the OS CVOL
residing on the system residence volume is to be listed.

358 MVS/370 Utilities

IEHLIST EXAMPLE 3

IEHLIST EXAMPLE 4

• The second and third lISTCTlG statements identify two diskA
disk volumes containing OS CVOls to be listed.

• The fourth lISTCTlG statement identifies a diskA volume
containing an OS CVOL that is to be partially listed. All
data set entries whose beginning qualifiers are "A.B.C" are
listed.

In this example, a partitioned data set directory existing on
the system residence volume is listed. In addition, two
partitioned data set directories existing on another disk volume
are listed .

.I.1lISTPDIR JOB

.1.1 EXEC

.I.1SYSPRINT DD

.I.1DD1 DD

.I.1DD2 DD

.I.1SYSIN DD
LISTPDS
LISTPDS

091550,BLUE
PGM=IEHLIST
SYSOUT=A
UNIT=diskB,VOLUME=SER=11l1ll,DISP=OlD
UNIT=diskA,VOlUME=SER=222222,DISP=OlD

* DSNAME=PARSETl
DSNAME=(PARTl,PART2),VOl=diskA=222222

The control statements are discussed below:

• DDl DO defines the system residence device.

• DD2 DO defines a mountable device on which a disk volume
(222222) is to be mounted.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The first lISTPDS statement indicates that the partitioned
data set directory belonging to data set PARSETl is to be
listed. This data set exists on the system residence
volume.

• The second LISTPDS statement indicates that partitioned data
set directories belonging to data sets PARTl and PART2 are
to be listed. These data sets exist on a disk volume
(222222).

In this example, a non-indexed volume table of contents is
listed in the first edited format. The edited listing is
supplemented by an unedited listing of selected data set bontrol
blocks.

.I.1VTOCLIST JOB

.1.1 EXEC

.I.1SYSPRINT DD

.I.1DD2 DD

.I.1SYSIN DD
LISTVTOC
LISTVTOC

091550,BLUE
PGM=IEHLIST
SYSOUT=A
UNIT=disk,VOlUME=SER=llllll,DISP=OlD * .
FORMAT,VOl=disk=llllll
DUMP,VOL=disk=111111,DSNAME=(SETl,SET2,SET3)

IEHLIST Program 359

The control statements are discussed below:

• DD2 DD defines a mountable device on which the volume
containing the specified volume table of contents is to be
mounted.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The first lISTVTOC statement indicates that the volume table
of contents on the specified disk volume is to be listed in
edited form.

• The second lISTVTOC statement indicates that the data set
control blocks representing data sets SET1, SET2, and SET3
are to be listed in unedited form.

360 MVS/370 Utilities

IEHMOVE PROGRAM

IEHMOVE IS a system utility used to move or copy logical
collections of operating system data.

IEHMOVE can be used to move or copy:

• A non-VSAM, non-ISAM data set residing on from one to five
volumes.

• A group of non-VSAM data sets cataloged in an OS CVOl, ICF
or VSAM catalog.

• An entire OS CVOl or portions of an OS CVOl.

• A volume of data sets.

• BDAM data sets with variable-spanned records.

A move operation differs from a copy operation in that a move
operation scratches source data if the data set resides on a
DASD source volume and the expiration date has occurred, while a
copy operation leaves source data intact. In addition, for
cataloged data sets, a move operation updates the OS CVOl to
refer to the moved version (unless otherwise specified), while a
copy operation leaves the as CVOl unchanged.

The scope of a basic move or copy operation can be enlarged by:

• Including or excluding data sets from a move or copy
operation.

• Merging members from two or more partitioned data sets.

• Including or excluding selected members.

• Renaming moved or copied members.

• Replacing selected members.

When moving or copying a data set group or a volume containing
password-protected data sets, the user must provide the password
each time a data set is opened or scratched.

IEHMOVE always moves or copies any user labels associated with
an input data set. IEHMOVE does not take exits to a user's
label processing routines.

A move or copy operation results in: (1) a moved or copied data
set, (2) no action, or (3) an unloaded s version of the source
data set. These results depend upon the compatibility of the
source and receiving volumes with respect to:

• Size of the volumes

• Allocation of space on the receiving volume

• Data set organization (sequential, partitioned, or BDAM)

• Movability of the source data set

S If IEHMOVE is unable to successfully move or copy specified
data, an attempt is made to reorganize the data and place it
on the specified output device. The reorganized
data--called an unloaded data set--is a sequential data set
consisting of SO-byte blocked records that contain the
source data and control information for subsequently
reconstructing the source data as it originally existed.

IEHMOVE Program 361

VOLUME SIZE COMPATIBILITY

Two volumes are compatible with respect to size if:

1. The source record size does not exceed the receiving track
size, or

2. The receiving volume supports the track overflow feature and
the output is to be written with track overflow. (Refer to
"Job Control language for the Track Overflow Feature" on
page 378 for notes on the track overflow feature.)

When using BDAM data set organization, two volumes are
compatible with respect to size if the source track capacity
does not exceed the receiving track capacity. BDAM data sets
moved or copied to a smaller device type or tape are unloaded.
If the user wishes to load an unloaded data set, it must be
loaded to the same device type from which it was originally
unloaded.

Figure 123 shows the results of move and copy operations when
the receiving volume is a DASD volume that is compatible in size
with the source volume. The organization of the source data set
is shown along with the characteristics of the receiving volume.

Receiving Volume Sequential Partitioned BDAM
Characteristics Data sets Data Sets Data sets

Space allocated Moved or Moved or Moved or
by IEHMOVE copied copied copied
(movable data)

Space allocated Moved or Moved or No
by IEHMOVE copied copied action
(unmovable data)

Space previously Moved or Moved or No
allocated, as copied copied action
yet unused

Space previously No action Moved or No
allocated, copied action
partially used (merged)

Figure 123. Move and Copy Operations--DASD Receiving Volume with
Size Compatible with Source Volume

Figure 124 shows the results of move and copy operations when
the receiving volume is a DASD volume that is not compatible in
size with the source volume. The organization of the source
data set is shown along with the characteristics of the
receiving volume.

Receiving Volume sequential Partitioned BDAM
Characteristics Data sets Data Sets Data sets

Space allocated Unloaded Unloaded Unloaded
by IEHMOVE

Space previously Unloaded Unloaded No
allocated, as action
yet unused

Figure 124 (Part 1 of 2). Move and COpy Operations--DASD
Receiving Volume with Size
Incompatible with Source Volume

362 MVS/370 Utilities

SPACE ALLOCATION

Receiving Volume sequential partitioned BDAM
Characteristics Data sets Data sets Data sets

Sp~ce previously No action No action No
allocated, action
partially used

Figure 124 (Part 2 of 2). Move and Copy Operations--DASD
Receiving Volume with Size
Incompatible with Source Volume

Figure 125 shows the results of move and copy operations when
the receiving volume is not a DASD volume. The organization of
the source data set is shown along with the characteristics of
the receiving volume.

Receiving Volume
Characteristics Sequential partitioned BDAM

Movable data Moved or Unloaded Unloaded
copied

Unmovable data Unloaded Unloaded No
action

Figure 125. Move and Copy Operations--Non-DASD Receiving Volume

Space can be allocated for a data set on a recelvlng volume
either by the user (through the use of DD statements in a prior
job step) or by IEHMOVE in the IEHMOVE job step. If the source
data is unmovable (that is, if it contains location-dependent
code), the user should allocate space on the receiving volume
using absolute track allocation to ensure that the data set is
placed in the same relative location on the receiving volume as
it was on the source volume. Unmovable data can be moved or
copied if space is allocated by IEHMOVE, but the data may not be
in the same location on the receiving volume as it was on the
source volume. When data sets are to be moved or copied between
unlike OASO devices, a secondary allocation should be made to
ensure that ample space is available on the receiving volume.

Space for a new data set should not be allocated by the user
when a BDAM data set is to be moved or copied, not unloaded,
because IEHMOVE cannot determine if the new data set is empty.

If IEHMOVE performs the space allocation for a new data set, the
space requirement information of the old data set Cif available)
is used. This space requirement information is obtained from
the OSCB of the source data set, if it is on a DASO volume, or
from the control information in the case of an unloaded data
set.

If space requirement information is available, IEHMOVE uses this
information to derive an allocation of space for the receiving
volume, taking into account the differences in device
characteristics, such as track capacity and overhead factors.
However, when data sets with variable or undefined record
formats are being moved or copied between unlike DASO devices,
no assumption can be made about the space that each individual
record needs on the receiving device.

In general, when variable or undefined record formats are to be
moved or copied, IEHMOVE attempts to allocate sufficient space.

IEHMOVE Program 363

REBLOCKING DATA SETS

This might cause too much space to be allocated under the
following circumstances:

• When moving or copying from a device with a relatively large
block overhead to a device with a smaller block overhead,
the blocks being small in relation to the block size.

• When moving or copying from a device with a relatively small
block overhead to a device with a larger block overhead, the
blocks being large in relation to the block size.

BDAM data sets with variable or undefined record formats always
have the same amount of space allocated by IEHMOVE. This
practice preserves any relative track addressing system that
might exist within the data sets.

If a sequential data set, which is not an unloaded data set, on
a non-DASD volume is to be moved or copied to a DASD volume, and
space attributes are not available through a previous
allocation, IEHMOVE makes a default space allocation. The
default allocation consists of a primary allocation of 72,500
bytes of DASD storage (data and gaps) and up to 15 secondary
allocations of 36,250 bytes each.

Space cannot be previously allocated for a partitioned data set
that is to be unloaded unless the SPACE parameter in the DD
statement making the allocation implies sequential organization.
BDAM data sets should not be previously allocated because
IEHMOVE cannot determine whether they are empty or not.

If a move or copy operation is unsuccessful, the source data
remains intact.

If a move or copy operation is unsuccessful and space was
allocated by IEHMOVE, all data associated with that operation is
scratched from the receiving DASD volume. If the receiving
volume was tape, it will contain a partial data set.

If a move or copy operation is unsuccessful and space was
previously allocated, no data is scratched from the receiving
volume. If, for example, IEHMOVE moved 104 members of a
lOS-member partitioned data set and encountered an input/output
error while moving the 105th member:

• The entire partitioned data set is scratched from the
receiving volume if space was allocated by IEHMOVE.

• No data is scratched from the receiving volume if space was
previously allocated. In this case, after determining the
nature of the error, the user need move only the 105th
member into the receiving partitioned data set.

If a data set that has only user trailer labels is to be moved
from a tape volume to a DASD volume, space must be previously
allocated on the DASD volume to ensure that a track is reserved
to receive the user labels.

Data sets with fixed or variable records can be reblocked to a
different block size by previously allocating the desired block
size on the receiving volume. No reblocking can be performed
when loading or unloading. Also, no reblocking can be performed
on data sets with variable spanned or variable blocked spanned
records.

When moving or copying data sets with undefined record format
and reblocking to a smaller block size (that is, transferring
records to a device with a track capacity smaller than the track
capacity of the original device), you must make the block size
for the receiving volume equal to or larger than the size of the
largest record in the data set being moved or copied.

364 MVS/370 Utilities

,Blocked format data sets that do not contain user data TTRNs or
keys can be reblocked or unblocked by including the proper
keyword subparameters in the DCB operand of the DD statement
used to previously allocate space for the data set. The new
blocking factor must be a multiple of the logical record length
originally assigned to the data set. For a discussion of user
data TTRNs, refer to Data Management Services.

USING IEHMOVE WITH RACF

If the Resource Access Control Facility (RACF) is active, the
following considerations apply!

• You must have valid RACF authorization to access any
RACF-defined data sets with IEHMOVE. ALTER authorization is
required to access the source data set for a MOVE function,
as the source data set is scratched. When moving a volume
or group of data sets, the user must have adequate access
authorization to all of the RACF-protected data sets on the
volume or in the group.

• If you have the RACF ADSP attribute and IEHMOVE is to
allocate space for the receiving data set, that data set
will be automatically defined to RACF. If the data set does
not have your userid as the first level qualifier, at least
one of the following conditions must be met:

You specify MOVE or COpy with RENAME so that the first
level qualifier is the correct userid

The data set being moved or copied is a group data set
and You are connected to the group with CREATE authority

You have the OPERATION attribute

• If COPYAUTH is specified and the input data set is
RACF-protected (whether or not the user has the ADSP
attribute) and the output data set is not preallocated, then
the receiving data set of a MOVE or COPY operation is given
a copy of the input data set's RACF protection and access
list during allocation, governed by the same restrictions
described above for defining a data set for a user with the
ADSP attribute. The user must have ALTER access
authorization to the input data set to either MOVE or COpy
using COPYAUTH.

MOVING OR COPYING A DATA SET

IEHMOVE can be used to move or copy sequential, partitioned, and
BDAM data sets, as follows:

• A sequential data set can be:

1. Moved from one DASD volume or non-DASD volume to another
(or to the same volume provided that it is a DASD
volume), or

2. Copied from one volume to another (or to the same volume
provided that the data set name is changed and the
receiving volume is a DASD volume).

• A partitioned data set can be:

1. Moved from one DASD volume to another (or to the same
volume), or

2. Copied from one DASD volume to another (or to the same
volume provided that the data set name is changed).

* A BDAM data set can be moved or copied from one DASD volume
to another provided that the receiving device type is the

IEHMOVE Program 365

SEQUENTIAL DATA SETS

same device type or larger, and that the record size does
not exceed 32K bytes.

Figure 126 shows basic and optional move and copy opera~ions for
sequential data sets.

operation

Move
Sequential

Copy
Sequential

Basic Actions

Move the data set.
For DASD, scratch the
source data. For
non-VSAM cataloged
data sets, update the
appropriate catalog to
refer to the moved
data set.

Copy the data set.
The source data set is
not scratched. The
catalog is not updated
to refer to the copied
data set.

optional Actions

Prevent automatic
cataloging of the
moved data set.
Rename the moved data
set.

Delete the catalog or
OS CVOL entry for the
source data set.
Catalog the copied
data set on the
receiving volume.
Rename the copied data
set.

Figure 126. Moving and Copying Sequential Data Sets

When moving or copying sequential data sets on DASD, IEHMOVE
execution time can be reduced by using multiple BSAM buffers for
input and output.

The minimum number of buffers required for enhanced IEHMOVE copy
performance is 4: two for input and two for output. The size of
an input buffer is computed as: (INPUT BLOCKSIZE + KEY LENGTH) +
DECB LENGTH + 4. The size of an output buffer is computed as:
(OUTPUT BLOCKSIZE + KEY LENGTH) + DECB LENGTH + 4 + 16.

The maximum number of input buffers used by IEHMOVE is two times
the number of buffers which will fit in the input track size.
The maximum number of output buffers used by IEHMOVE is two
times the number of buffers which will fit in the output track
size.

If space for the minimum four buffers is not available, a single
buffer is used and message IEH476I is issued.

You can code the JCL REGION parameter in the JOB or EXEC
statement to control buffer storage allocation. For details on
how to code the REGION parameter. see JCl.

Message IEH477I, describing the number and size of your buffers,
will be issued each time multiple BSAM buffers are used. If you
do not specify your region size to achieve the maximum number of
buffers, the last line of the message will indicate the amount
by which the value of the REGION parameter should be increased
in order to obtain the maximum number of buffers.

The execution time of an IEHMOVE move or copy operation will
vary with the number of buffers available, the size of the data
sets, and the block size.

PARTITIONED DATA SETS

Figure 127 shows basic and optional move and copy operations for
partitioned data sets.

366 MVS/370 Utilities

Operation Basic Actions

Move Move the data set.
Partitioned Scratch the source

data. For non-VSAM
cataloged data sets,
update the appropriate
catalog to refer to
the moved data set.

Copy Copy the data set.
Partitioned The source data is not

scratched. The
catalog is not updated
to refer to the copied
data set.

optional Actions

Prevent automatic
cataloging of the
moved data set.
Rename the moved data
set. Reallocate
directory space. (Not
possible if the space
was not allocated by
IEHMOVE during this
move function.)
Perform a merge
operation using
members from two or
more data sets. Move
only selected members.
Replace members.
Unload the data set.

Delete the catalog or
OS CVOL entry for the
source data set.
Catalog the copied
data set. Rename the
copied data set.
Reallocate directory
space. (Not possible
if the space
previously allocated
is partially used.)
Perform a merge
operation using
members from two or
more data sets. Copy
only selected members.
Replace members.
Unload the data set.

Figure 127. Moving and Copying Partitioned Data Sets

IEHMOVE moves or copies partitioned members in the order in
which they appear in the partitioned directory. That is, moved
or copied members are placed in collating sequence on the
receiving volume.

Figure 128 on page 368 shows a copied partitioned data set. The
members are copied in the order in which they appear in the
partitioned directory. The IEBCOPY utility program (see
"IEBCOPY Program" on page 39) can be used to copy data sets
whose members are not to be collated.

IEHMOVE Program 367

Source data set Copied data set

Figure 128. Partitioned Data Set Before and After an IEHMOVE
Copy Operation

Members that are merged into an existing data set are placed, in
collating sequence, after the last member in the existing data
set. If the target data set contains a member with the same
name as the data set to be moved, the member will not be
moved/copied unless the REPLACE statement is coded.

Figure 129 shows members from one data set merged into an
existing data set. Members Band F are copied in collating
sequence.

Existing data set
prior to merge

Source data set

Figure 129. Merging Two Data Sets Using IEHMOVE

Figure 130 on page 369 shows how members from two data sets are
merged into an existing data set. Members from additional data
sets can be merged in a like manner. Members F, B, D, and E
from the source data sets are copied in collating sequence.

368 MVS/370 Utilities

BDAM DATA SETS

Existing data set
prior to merge

Source data sets

are placed in
collating sequence
after existing
members

Figure 130. Merging Three Data Sets Using IEHMOVE

When moving or copying a BDAM data set from one device to
another device of the same type, relative track and relative
block integrity are maintained.

When moving or copying a BDAM data set to a larger device,
relative track integrity is maintai~ed for data sets with
variable or undefined record formats; relative block integrity
is maintained for data sets with fixed record formats.

When moving or copying a BDAM data set to a smaller device or a
tape, the data set is unloaded. An unloaded data set is loaded
only when it is moved or copied to the same device type from
which it was unloaded.

MULTIVOLUME DATA SETS

IEHMOVE can be used to move or copy multivolume data sets. To
move or copy a multivolume data set, specify the complete volume
list in the VOl=SER parameter on the DO statement. A maximum of
5 volumes can be specified. To move or copy a data set that
resides on more than one tape volume, specify the volume serial
numbers of all the tape volumes and the sequence numbers of the
data set on the tape volumes in the utility control statement.
<You can specify the sequence number even if the data set to be

IEHMOVE Program 369

UNLOADED DATA SETS

UNMOVABLE DATA SETS

moved or copied is the only data set on a volume.) To move or
copy a data set to more than one tape volume, specify the volume
serial numbers of all the receiving volumes in the utility
control statement.

If IEHMOVE is unable to successfully move or copy specified
data, an attempt is made to reorganize the data and place it on
the specified output device. The reorganized data--called an
unloaded data set--is a sequential data set'consisting of
SO-byte blocked records that contain the source data and control
information for subsequently reconstructing the source data as
it originally existed.

When an unloaded data set is moved or copied (via IEHMOVE) to a
device. that will support the data in its true form, the data is
automatically reconstructed. For example, if the user attempts
to move a partitioned data set to a tape volume, the data is
unloaded to that volume. The user can re-create the data set
simply by moving the unloaded data set to a DASD volume.

A data set with the unmovable attribute can be moved or copied
from one DASD volume to another or to the same volume provided
that space has been previously allocated on the receiving
volume. Change the name of the data set if move or copy is to
be done to the same volume. SVClIB can be moved or copied to
another location on the system residence volume, provided that
space has been previously allocated on that volume. The
IEHPROGM utility program (see "IEHPROGM Program" on page 404)
must be used immediately after such a move operation to rename
the moved version SYSl.SVClIB; If the operation was a 'copy',
IEHPROGM must be used to scratch the old version and to rename
the copied version.

MOVING OR COPYING A GROUP OF CATALOGED DATA SETS

IEHMOVE can be used to move or copy a group of non-VSAM data
sets that are cataloged in ICF or VSAM catalogs and whose names
are qualified by one or more identical names. For example, a
group of data sets qualified by the name A.B can include data
sets named A.B.D and A.B.E, but could not include data sets
named A.C.D or A.D.F.

If the user specifies that the data set group is cataloged in an
OS CVOl, two additional options are available. First,
additional data sets not belonging to the specified data set
group can be included in the move or copy operation. Second,
data sets belonging to the group can be excluded from the
requested operation.

Before copying/moving a DSGROUP that is cataloged in an OS CVOl,
the volume containing the OS CVOl must be defined in the ICF or
VSAM master catalog. See Catalog Users Guide for details on how
this is done.

If a group of data sets is moved or copied to magnetic tape, the
data sets must be retrieved one by one by data set name and
file-sequence number, or by file-sequence number for unlabeled
or nonstandard labeled tapes.

Access method services can be used to determine the structure of
ICF ~r VSAM catalogs. See Access Method Services Reference for
more information.

Figure 131 shows basic and optional move and copy operations for
a group of non-VSAM cataloged data sets.

370 MVS/370 Utilities

operation

Move ,group
of
non-VSAM
cataloged
data sets

Copy group
of
non-VSAM
cataloged
data sets

Basic Actions

Move the data set
group (excluding
password-protected
data sets) to the
specified volumes.
Scratch the source
data sets (BDAM only).
Merging is not done.

Copy the data set
group (excluding
password-protected
data sets). Source
data sets are not
scratched. Merging is
not done.

optional Actions

Prevent updating of
the appropriate
catalog. Include
password-protected
data sets in the
operation. Unload
data sets. If a data
set group is cataloged
in an OS CVOL, you may
INCLUDE or EXCLUDE
data sets during the
operation.

Include
password-protected
data sets in the
operation. Delete
catalog entries for
the source data sets.
Catalog the copied
data sets on the
receiving volumes.
Unload a data set or
sets. If a data set
group is cataloged in
an OS CVOL, you may
INCLUDE or EXCLUDE
data sets during the
operation.

Figure 131. Moving and Copying a Group of Non-VSAM Cataloged
Data Sets

HOVING OR COPYING AN OS CVOL

IEHMOVE can be used to move or copy an OS CVOL or portions ~f an
OS CVOL without copying the data sets represented by the
cataloged entries. If the OS CVOL is in an unloaded form, all
entries are moved or copied. The SYSCTLG(system catalog) data
set need not be defined on the receiving volume before the
operation. If, however, SYSCTLG was defined before the
operation, the data set organization must not have been
specified in the DCB field. Moved or copied entries are merged
with any existing entries on the receiving volume. The
receiving volume must be a DASD volume unless the OS CVOL is to
be unloaded.

Figure 132 shows basic and optional move and copy operations for
the OS CVOL.

operation Basic Actions Optional Actions

Move OS Move entries from the Exclude selected
CVOL OS CVOL to the entries from

specified DASD volume. operation. Move an
Scratch the last index unloaded version of
of all entries in the the OS CVOL. Unload
source OS CVOL. the OS CVOL.

Figure 132 (Part 1 of 2). Moving and Copying the OS CVOL

IEHMOVE Program 371

operation Basic Actions optional Actions

Copy os Copy entries from the Exclude selected
CVOL OS CVOL to the entries from the

specified DASD. The operation. Copy an
source OS CVOL is not unloaded version of
scratched. the OS eVOL. Unload

the OS eVOL.

Figure 132 (Part 2 of 2). Moving and Copying the OS eVOL

Before copying/moving an OS eVOL, both the volume containing the
OS eVOL and the volume to which the OS eVOL is to be moved must
be defined in the IeF or VSAM master catalog.

MOVING OR COPYING A VOLUME OF DATA SETS

IEHMOVE can be used to move or copy the data sets of an entire
DASD volume to another volume or volumes. A move operation
differs from a copy operation in that the move operation
scratches source data sets, while the copy operation does not.
For both operations, any cataloged entries associated with the
source data sets remain unchanged. The IEHPROGM utility program
can be used to delete OS CVOL entries for all of the cataloged
data sets and recatalog them according to their new location.
(See "IEHPROGM Program" on page 404.)

If the source volume contains a SYSCTlG data set, that data set
is the last to be moved or copied onto the receiving volume.

If a volume of data sets is moved or copied to tape, sequential
data sets are 'moved' while partitioned and BDAM data sets are
'unloaded'. The data sets must be retrieved one by one by data
set name and file-sequence number, or by file-sequence number
for unlabeled or nonstandard labeled tapes.

When copying a volume of data sets, the user has the option of
cataloging all source data sets in a SYSCTLG data set on a
receiving volume. However, if a SYSCTlG data set exists on the
source volume, error messages indicating that an inconsistent
index structure exists are generated when the source SYSCTLG
entries are merged into the SYSCTLG data set on the receiving
volume.

The move-volume feature does not merge partitioned data sets.
If a data set on the volume to be moved has a name identical to
a data set name on the receiving volume, the data set is not
moved or merged onto the receiving volume.

The copy-volume feature does merge partitioned data sets. If a
data set on the volume to be copied has a name identical to a
data set name on the receiving volume, the data set is copied
and merged onto the receiving volume.

Figure 133 shows basic and optional move and copy operations for
a volume of data sets.

372 MVS/370 Utilities

Operation Basic Actions optional Actions

Move a Move all data sets not Include
volume of protected by a password-protected
data sets password to the data sets in the

specified DASD operation. Unload the
volumes. Scratch the data sets.
source data sets for
DASD volumes. The OS
CVOl is not updated.

COpy a Copy all data sets not Include
volume of protected by a password-protected
data sets password to the data sets in the

specified DASD volume. operation. Catalog
The source data sets all copied data sets
are not scratched. in the OS CVOl.

Unload the data sets.

Figure 133. Moving and Copying a Volume of Data Sets

MOVING OR COPYING BDAM DATA SETS WITH VARIABLE-SPANNED RECORDS

INPUT AND OUTPUT

IEHMOVE can be used to move or copy BDAM data sets with variable
spanned records from one DASD volume to a compatible DASD
volume, provided that the record size does not exceed 32K bytes.
(See "Volume Size Compatibility" on page 362 for information on
volume compatibility.)

Because a BDAM data set can reside on one to five volumes (all
of which must be mounted during any move or copy operation), it
is possible for the data set to span volumes. However, single
variable-spanned records are contained on one volume.

Relative track integrity is preserved in a move or copy
operation for spanned records. Moved or copied BDAM data sets
occupy the same relative number of tracks that they occupied on
the source device.

If a BDAM data set is unloaded (moved or copied to a smaller
device or tape), it must be loaded back to the same device type
from which it was originally unloaded.

When moving or copying variable-spanned records to a larger
device, record segments are combined and respanned if necessary.
Because the remaining track space is available for new records,
variable-spanned records are unloaded before being moved or
copied back to a smaller device.

If you wish to create a BDAM data set without using data
management BDAM macros, all data management specifications must
be followed. Special attention must be given to data management
specifications for RO track capacity record content, segment
descriptor words, and the BFTEK=R parameter. See Data
Management Services for more information on using data
management specifications.

When moving or copying a multivolume data set, the secondary
allocation for BDAM data sets should be at least two tracks.
(See the "WRITE" macro in Data Management Macro Instructions.)

IEHMOVE uses the following input:

• One or more data sets, which contain the data to be moved,
copied, or merged into an output data set.

IEHMOVE Program 373

RETURN CODES

CONTROL

• A control data set, which contains utility control
statements that are used to control the functions of the
program.

• A work data set, which is a work area used by IEHMOVE.

IEHMOVE does not support VIO (virtual input/output) data sets.

IEHMOVE produces the following output:

• An output data set, which is the result of the move, copy,
or merge operation.

• A message data set, which contains informational messages
(for example, the names of moved or copied data sets) and
error messages, if applicable.

IEHMOVE returns a code in register 15 to indicate the results of
program execution. The return codes and their meanings are
listed below.

Code Meaning

00 (00 hex) Successful completion.

04 (04) A specified function was not completely successful.
Processing continues.

08 (08) A condition exists from which recovery is possible.

12 (OC)

16 (10)

Processing continues.

An unrecoverable error exists. The job step is
terminated.

It is impossible to OPEN the SYSIN or SYSPRINT data
set. The job step is terminated.

Figure 134. IEHMOVE Return Codes

IEHMOVE is controlled by job control statements and utility
control statements. The job control statements are used to
execute or invoke the program, define the devices and volumes
used and produced by IEHMOVE, and prevent data sets from being
deleted inadvertently.

Utility control statements are used to control the functions of
the program and to define those data sets or volumes that are to
be used.

JOB CONTROL STATEMENTS

Figure 135 on page 375 shows the job control statements for
IEHMOVE.

374 MVS/370 Utilities

statement

JOB

EXEC

SVSPRINT DD

SVSUTl DD

anynamel DD

anyname2 DD

tape DD

SYSIN DD

Use

Initiates the job.

Specifies the program name (PGM=IEHMOVE) or, if
the job control statements reside in a procedure
library, the procedure name. This statement can
include optional PARM information; see "PARM
Information on the EXEC Statement" on page 375.

Defines a sequential message data set. The data
set can be written onto a system output device, a
magnetic tape volume, or a direct access volume.

Defines a volume on which three work data sets
required by IEHMOVE are allocated.

Defines a permanently mounted DASD volume. (The
system residence volume is considered to be a
permanently mounted volume.) This statement is
required.

Defines a mountable device type. At least one
anyname2 DD statement is required. Multiple
statements must have unique names.

Defines a mountable tape device.

Defines the control data set. The data set,
which contains utility control statements,
usually follows the job control statements in the
input stream; however, it can be defined either
as a sequential data set or as a member of a
procedure library.

Figure 135. IEHMOVE Job Control statements

PARM Information on the EXEC statement

The EXEC statement for IEHMOVE can contain PARM information that
is used by the program to allocate additional work space and/or
control line density on output listings. The EXEC statement can
be coded, as follows:

EXEC PGM=IEHMOVE[,PARM='POWER=n'
[,'LINECNT=~'ll -

The POWER=n parameter is used to request that the normal amount
of space allocated for work areas be increased n times (1 to
999). The POWER parameter is used when 750 or more members are
being moved or copied. The progression for the value of n is:

• POWER=2 when 750 to 1,500 members are to be moved or copied.

• POWER=3 when 1,501 to 2,250 members are to be moved or
copied.

• POWER=4 when 2,251 to 3,000 members are to be moved or
copied.

If POWER=2, the work space requirement on the SYSUT1 volume is
two times the basic requirement; if POWER=3, work space
requirement is three times the basic requirement, etc. For
example, if POWER=2, three areas of 26, 26, and 52 contiguous
tracks on a 3380 must be available.

IEHMOVE Program 375

When moving or copying an OS CVOl, the value of the POWER
parameter can be calculated, as follows:

n=(lOD + V + 20G)/4000

where D is the total number of data sets, aliases, and
generation data set entries (which is the number of data set
names printed by the IEHLIST utility program when the LISTCTLG
statement is specified); V is the total number of volumes used
by these data sets (which is the number of lines printed by the
IEHLIST utility program when the LISTCTLG statement is
specified); and G is the number of generation data sets.
Approximate values can be used:

• POWER=2 when 350 to 700 data sets are cataloged.

• POWER=3 when 701 to 1,050 data sets are cataloged.

• POWER=4 when 1,051 to 1,400 data sets are cataloged.

The LINECNT=xx parameter specifies the number of lines per page
in the listing of the SYSPRINT data set; xx is a two-digit
number in the range 04 through 99.

See Supervisor Services and Macro Instructions for more
information on PARM values.

SYSPRINT DD statement

SYSUTl DD statement

The block size for the SYSPRINT data set must be a multiple of
121. Any blocking factor can be specified.

The SYSUT1 DD statement must be coded:

//SYSUTI DD UNIT=xxxx,VOlUME=~ER=xxxxxx,DISP=OLD

The UNIT and VOLUME parameters define the device type and volume
serial number. The DISP=OLD specification prevents the
inadvertent deletion of a data set.

At least three utility work areas of 13, 13, and 26 contiguous
tracks, respectively, must be available for work space on the
volume defined by the SYSUT1 DD statement. (This figure is
based on a 3380 being, the work volume. If a direct access
device other than a 3380 is used, an equivalent amount of space
must be available.)

anynamel DD statement

One anyname1 DD statement must be included for each permanently
mounted volume referred to in the job step.

The anynamel DD statement should be coded:

//anyname1 DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OlD

In the anyname1 DD statement, the UNIT and VOLUME parameters
define the device type and volume serial number. The DISP=OlD
specification prevents the inadvertent deletion of a data set.

When unloading a data set from one DASD volume to another, the
data set name (DSN=) must be coded on the DD statement for the
data set to be unloaded. An unloaded data set on a DASD volume
can only be loaded to the same device type from which it was
unloaded.

(The anyname1 DD statement ;s arbitrarily assigned the ddname
DDI in the IEHMOVE examples.)

376 MVS/370 Utilities

anyname2 DD statement

tape DD statement

One anyname2 DO statement must be included for each mountable
device to be used in the job step. Multiple anyname2 DO
statements must have unique names.

When IEHMOVE is dynamically invoked in a job step containing
another program, the DO statements defining mountable devices
for IEHMOVE must be included in the job stream prior to DO
statements defining data sets required by the other program.

The anyname2 DO statement should be coded:

//a~yname2 DO UHIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

The UHIT and VOLUME parameters define the device type and volume
serial number. The DISP=OLD specification prevents the
inadvertent deletion of a data set.

When unloading a data set from one DASD volume to another, the
data set name (DSH=) must be coded on the DD statement for the
data set to be unloaded. An unloaded data set on a DASD volume
can only be loaded to the same device type from which it was
unloaded.

(The anyname2 DD statement is arbitrarily assigned the ddname
DD2 in the IEHMOVE examples.)

When the number of volumes to be processed is greater than the
number of devices defined by DD statements, there must be an
indication (in the applicable DD statements) that multiple
volumes are to be processed. This indication can be in the form
of deferred mounting, as follows:

//anyname2 DD UHIT=(xxxx"DEFER),VOLUME=(PRIVATE, ...),
// DISP=(... ,KEEP)

See Appendix B, "DD Statements for Defining Mountable Devices"
on page 443 for information on defining mountable devices. (DD
statements defining additional mountable device types are
assigned names DD3, DD4, etc., in the IEHMOVE examples.) Unit
affinity cannot be used on DO statements defining mountable
devices.

A merge operation requires that one DD statement defining a
mountable device be present for each source volume containing
data to be included in the merge operation.

The tape DD statement can be coded:

//tape DD DSHAME=xxxxxxxx,UHIT=xxxx,VOLUME=SER=xxxxxx,
// DISP=(... ,KEEP),LABEL=(... , ...),DCB=(TRTCH=C,DEN=x)

When unloading a data set from one DASD volume to another, the
data set name (DSH=) must be coded on the DD statement for the
data set to be unloaded. An unloaded data set on a DASD volume
can only be loaded to the same device type from which it was
unloaded.

A utility control statement parameter refers to the tape DD
statement for label and mode information.

The date on which a data set is moved or copied to a magnetic
tape volume is automatically recorded in the HDR! record of a
standard tape label if a TODD parameter is specified in a
utility control statement. An expiration date can be specified
by including the EXPDT or RETPD subparameters of the LABEL
keyword in the DO statement referred to by a TODD parameter.

A sequence number, for a data set on a tape volume, or a
specific device address (for example, unit address 190), must be

IEHMOVE Program 377

SYSIN DD statement

specified on a utility control statement instead of a reference
to a DO statement. To move or copy a data set from or to a tape
volume containing more than one data set, specify the sequence
number of the data set in the utility control statement. To
move or copy a data set from or to a specific device, specify
the unit address (rather than a group name or device type) in
the utility control statement. To copy to a unit record or
unlabeled tape volume, specify any standard name or number in
the utility control statement.

The tape DO statement can be used to communicate DCB attributes
of data sets residing on tape volumes that do not have standard
labels to IEHMOVE. If no DCB attributes are specifi~d, an
undefined record format and a block size of 2560 are assumed.
However, in order to recognize unloaded data sets on an
unlabeled tape volume, the DCB attributes must be specified as
follows:

DCB=(RECFM=FB,LRECL=80,BLKSIZE=800).

IEHMOVE automatically calculates and allocates the amount of
space needed for the work areas. No SPACE parameter, therefore,
should be coded in the SYSUTI DO statement. If, in the PARM
field of the EXEC statement, POWER=3 ;s specified, the work
space requirement is three times the basic requirements, etc.

Prior space allocations can be made by specifying a dummy
execution of the IEHPROGM utility program before the execution
of IEHMOVE. '

The block size for the SYSIN data set must be a multiple of 80.
Any blocking factor can be specified.

Job Control Language for the Track Overflow Feature

A data set containing track overflow records can be moved or
copied if the source volume and the receiving volume are mounted
on DASD that support the track overflow feature. (For BDAM data
sets, the source and receiving devices must be the same device
type.)

A data set that was written without track overflow can be moved
or copied with or without track overflow or vice versa if the
following conditions are met:

• Space was allocated for the data set prior to the request
for a move or copy operation.

• The DO statement used for that allocation included the
subparameter to specify the changed track overflow value and
all other desired values. (The RECFM specifications
assigned when the data set was originally created are
overridden by the RECFM subparameter in this DO statement.)

If space has not been allocated, or if RECFM was not specified
when space was allocated, the data set is moved or copied in
accordance with RECFM specifications that were made when the
data set was originally created. This track overflow attribute
is not retained for a sequential data set that is moved or
copied to a device other than a DASD.

UTILITY CONTROL STATEMENTS

IEHMOVE is controlled by the following utility control
statements.

378 MVS/370 utilities

statement

MOVE DSNAME

COPY DSNANE

MOVE DSGROUP

COPY DSGROUP

MOVE PDS

COpy PDS

MOVE VOLUME

COPY VOLUME

MOVE CATALOG

COPY CATALOG

Use

Moves a data set.

Copies a data set.

Moves a group of non-VSAM cataloged data sets.

Copies a group of non-VSAM cataloged data sets.

Moves a partitioned data set.

Copies a partitioned data set.

Moves a volume of data sets.

Copies a volume of data sets.

Moves OS CVOL entries.

Copies OS CVOL entries.

Figure 136. IEHMOVE Utility Control Statements

In addition, there are four subordinate control statements that
can be used to modify the effect of a MOVE DSGROUP, COPY
OSGROUP, MOVE POS, COpy POS, MOVE CATALOG, or COPY CATALOG
operation. The subordinate control statements are:

• INCLUDE statement, which is used to enlarge the scope of a
MOVE OSGROUP (with CVOL), COPY DSGROUP (with CVOL), MOVE
POS, or COPY POS statement by including a member or data set
not explicitly included by the statement it modifies.

• EXCLUDE statement, which is used with a MOVE DSGROUP (with
CVOL), COPY DSGROUP (with CVOL), MOVE PDS, COPY PDS, MOVE
CATALOG, or COPY CATALOG statement to exclude data set(s), a
member or OS CVOL entry(i es) from a m-ove or copy operati on.

• REPLACE statement, which is used with a MOVE PDS or COPY PDS
statement to exclude a member from a move or copy operation
and to replace it with a member from another partitioned
data set.

• SELECT statement, which is used with MOVE PDS or COPY PDS
statements to select members to be moved or copied and,
optionally, to rename the specified members.

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements" on page 5.

MOVE DSNAME statement

The MOVE DSNAME statement is used to move a data set. The
source data set is scratched.

If the data set is cataloged (in an OS CVOL, ICF or VSAM
catalog), the catalog is automatically updated unless
UNCATlG/FROM is specified.

IEHMOVE Program 319

The format of the MOVE DSHAME statement is:

[label] MOVE DSNAME=~

,TO=device=list

[,(FROM=device=listICVOL=device=serial]J

[,UNCATLGl

[,RENAME=1llU!!,g]

[,FROMDD=ddname]

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

COPY DSNAME statement

The COPY DSHAME statement is used to copy a data set.

The source data set, if cataloged, remains cataloged unless
UHCATLG or CATLG is specified without the RENAME and FROM
parameters.

The format of the COpy DSNAME statement is:

[label] COpy DSNAME=~

,TO=device=list

[,(FROH=device=listICVOL=device=serial]]

[,UNCATLG]

[,CATLG]

[,RENAHE=~]

[,FROHDD=ddname]

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

380 MVS/370 utilities

MOVE DSGROUP statement

The MOVE DSGROUP statement is used to move groups of data sets
whose names are partially qualified by one or more identical
names. The data sets may be cataloged on several catalogs (aS
CVOL, rCF or VSAM). Source data sets are scratched. Data set
groups to be moved must reside on DASD volumes. Only data sets
that could be moved by MOVE DSNAME or MOVE PDS can be moved by
MOVE DSGROUP. Alias entries in ICF or VSAM catalogs for the
data sets are lost and can be replaced with access method
services. See Access Method Services Reference for more
information.

INCLUDE and EXCLUDE statements, discussed later in this chapter,
can be used to add to or delete data sets from the group, if
CVOL ;s specified.

MOVE DSGROUP operations cause the catalog to be updated
automatically unless UNCATLG is specified.

The format of the MOVE DSGROUP statement is:

[label] HOVE DSGROUP[=~]

,TO=dev;ce=l;st

[,CVOL=device=serial]

[,PASSWORD]

[,UNCATLGl

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTHl

COPY DSGROUP Statement

The COpy DSGROUP statement is used to copy groups of data sets
whose names are partially qualified by one or more identical
names. The data sets may be cataloged on several catalogs (aS
CVOL, rCF or VSAM). Only data sets that can be copied with COPY
DSNAME or COPY PDS can be copied with COPY DSGROUP. Data set
groups to be copied must reside on DASD volumes.

INCLUDE and EXCLUDE statements, discussed later in this chapter,
can be used to add to or delete data sets from the group, if
CVOL is specified.

The source data sets remain cataloged unless UNCATLG or CATLG is
specified without the RENAME and FROM parameters.

IEHMOVE Program 381

HOVE PDS statement

The format of the COPY DSGROUP statement is:

[label] COpy DSGROUP[=~]

,TO=device=list

[,CVOL=device=seriall

[,PASSWORD]

[,UNCATLG]

[,CATLG]

[,TODD=ddnamel

[,UNLOAD]

[,COPYAUTHl

The MOVE PDS statement is used to move partitioned data sets.
When used in conjunction with INCLUDE, EXCLUDE, REPLACE, or
SELECT statements, the MOVE PDS statement can be used to merge
selected members of several partitioned data sets or to delete
members.

If IEHMOVE is used to allocate space for an output partitioned
data set, the MOVE PDS statement can be used to expand a
partitioned directory.

If the receiving volume contains a partitioned data set with the
same name, the two data sets are merged. The source data set is
scratched.

MOVE PDS causes the appropriate catalog to be updated
automatically unless UNCATLG/FROM is specified.

The format of the MOVE PDS statement is:

[label] HOVE PDS=~

,TO=device=serialllist

[,(FROH=device=seriaIICVOL=device=serial]J

[,EXPAND=!l!l]

[,UNCATLG]

[,REHAHE=~l

[,FROMDD=ddname]

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

382 MVS/370 Utilities

COpy PDS statement

The COPY PDS statement is used to copy partitioned data sets.
When used in conjunction with INCLUDE, EXCLUDE, REPLACE, or
SELECT statements, the COPY PDS statement can be used to merge
selected members of several partitioned data sets or to delete
members. '

If IEHMOVE is used to allocate space for an output partitioned
data set, the COPY PDS statement can be used to expand a
partitioned directory.

If the receiving volume already contains a partitioned data set
with the same name, the two are merged.

The source partitioned data set remains cataloged unless UNCATLG
or CATLG is specified without the RENAME and FROM parameters.

The format of the COPY PDS statement is:

[label] COpy PDS=M.!ru!

,TO=device=serialllist

t,{FROM=device=seriaIICVOL=device=serial]l

[,EXPAND=nn1

[,UNCATLG]

[,CATLGJ

[,RENAME=!!S.!ru'!l

[,FROMDD=ddname]

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

MOVE CATALOG statement

The MOVE CATALOG statement is used to move the entries of an OS
CVOL (SYSCTLG data set) without moving the data sets associated
with those entries. Certain entries can be excluded from the
operation by means of the EXCLUDE statement. If the receiving
volume already contains an OS CVOL, the source OS CVOL entries
are merged with it.

IEHMOVE Program 383

The format of the MOVE CATALOG statement is:

[label] MOVE CATALOG[=~]

TO=device=serialllist

[,(FROM=device=serialICVOL=device=serialJ]

[,FROMDD=ddname]

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

COPY CATALOG statement

The COpy CATALOG statement is used to copy the entries of an OS
CVOL (SYSCTLG data set) without copying the data sets associated
with those entries. Certain entries can be excluded from a copy
operation with the EXCLUDE statement. If the receiving volume
already contains an OS CVOL, the source OS CVOL is merged with
it.

The format of the COpy CATALOG statement is:

[label] COPY CATALOG[=~]

,TO=device=serialllist

[,(FROM=device=serialICVOL=device=serialJ]

[,FROMDD=ddname]

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

MOVE VOLUME statement

The MOVE VOLUME statement is used to move all the data sets
residing on a specified volume. Any catalog entries associated
with the data set~ remain unchanged. Data sets to be moved must
reside onDASD volumes.

384 MVS/370 utilities

The format of the MOVE VOLUME statement is:

[label] MOVE VOLUME=device=serial

,TO=device=list

[,PASSWORD]

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

COPY VOLUME Statement

INCLUDE Statement

The COpy VOLUME statement is used to copy all the data sets
residing on a specified volume. Any catalog entries associated
with the data sets remain unchanged. Data sets to be copied
must reside on DASD volumes.

If CATLG and CVOL are specified, error messages indicating that
an inconsistent index structure exists are issued when the
source SYSCTLG data set entries are merged into the OS CVOL on
the receiving volume. (Because the SYSCTLG data set is the last
to be copied, only those entries representing cataloged data
sets not residing on the source volume are copied into a
receiving volume's SYSCTLG data set; entries representing all
data sets residing on the source volume have already been made
in the receiving SYSCTLG data set.)

The format of the COPY VOLUME statement is:

[label] COPY VOLUME=device=serial

,TO=device=list

[,PASSWORD]

[,CATLGl

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

The INCLUDE statement is used to enlarge the scope of MOVE
DSGROUP, COPY DSGROUP, MOVE PDS, or COpy PDS statements by
including a member or a data "set not explicitly defined in those
statements. The INCLUDE statement follows the MOVE or COpy
statement whose function it modifies. The record
characteristics of the included partitioned data sets must be
compatible with those of the other partitioned data sets being
moved or copied. Any number of INCLUDE statements can modify a
MOVE or COPY statement. For a partitioned data set, the INCLUDE
statement is invalid when data is unloaded or when unloaded data
is moved or copied. For DSGROUP operations, INCLUDE is invalid
unless CVOL has been specified on the MOVE/COPY DSGROUP control
statement.

IEHMOVE Program 385

EXCLUDE statement'

SELECT Statement

REPLACE Statement

The format of the INCLUDE statement is:

[label] INCLUDE DSNAHE=~

[,HEHBER=membername]

[,(FROM=device=listlcVOL=device=serial)]

The EXCLUDE statement ;s used to restrict the scope of MOVE
DSGROUP, COPY DSGROUP, MOVE PDS, COPY PDS, MOVE CATALOG, or COPY
CATALOG statements by excluding a specific portion of data
defined in those statements.

Partitioned data set members excluded from a MOVE PDS operation
cannot be recovered (the source data set is scratched). Any
number of EXCLUDE statements can modify a MOVE PDS or COPY PDS
statement.

Source data sets or OS CVOL entries excluded from a MOVE DSGROUP
or MOVE CATALOG operation remain available. Only one EXCLUDE
statement can modify a MOVE DSGROUP, COPY DSGROUP, MOVE CATALOG,
or COpy CATALOG statement. The EXCLUDE statement is invalid
when data is unloaded or when unloaded data is moved or copied.
The EXCLUDE statement is invalid for a DSGROUP operation unless
CVOL is specified on the MOVE/COPY DSGROUP control statement.

The format of the EXCLUDE statement is:

EXCLUDE (DSGROUP=nameIHEHBER=membername)

The SELECT stat~ment is used with the MOVE PDS or COPY PDS
statement to select members to be moved or copied, and to
optionally rename these members. The SELECT statement cannot be
used with either the EXCLUDE or REPLACE statement to modifY the
same MOVE PDS or COPY PDS statement. The SELECT statement is
invalid when data is unloaded or when unloaded data is moved or
copied. Members not selected in a MOVE PDS operation cannot be
recovered since the source data set is scratched.

The format of the SELECT statement is:

[label] SELECT (HEHBER=(~[,~] •••)I

HEMBER=((name,newname)[,(name,newname)] •••)

The REPLACE statement is used with a MOVE PDS or COpy PDS
statement to exclude a member from the operation and replace it
with a member from another partitioned data set. The new member
must have the same name as the old member and must possess
compatible record characteristics. Any number of REPLACE
statements can modifY a MOVE PDS or COPY PDS statement. The
REPLACE statement is invalid when data is unloaded or when
unloaded data is moved or copied.

Parameters

CATALOG

CATLG

COPYAUTH

The format of the REPLACE statement is:

[label]

Applicable
control
statements

MOVE CATALOG
COPY CATALOG

COPY DSNAME
COPY DSGROUP
COPY PDS
COPY VOLUME

MOVE DSNAME
COPY DSNAME
MOVE DSGROUP
COPY DSGROUP
MOVE PDS
COPY PDS
MOVE CATALOG
COpy CATALOG
MOVE VOLUME
COPY VOLUME

REPLACE DSNAME=name

,I1Ef1BER=!lS..!!llii

[,(FROI1=device=seriaIICVOL=device=seriaIJ]

Description of Parameters

CATALOG[=name]

CATLG

specifies the OS CVOL entries to be moved or
copied. If name is not coded, all entries
in the OS CVOL are moved or copied. If name
is coded, alIOS CVOL entries whose name-s--­
are qualified by this name are moved or
copied. If the name is a fully qualified
data set name, (for example, AAA.BBB.CC),
only the OS CVOL entry that corresponds to
that data set is moved or copied.

specifies that the copied data set(s) is
(are) cataloged as described below.

1. If the CVOL parameter is omitted, the
cataloging is done in the ICF or VSAM
master/JOBCAT/STEPCAT catalog.

2. If the RENAME and FROM parameters are
omitted, the source data set(s) entry is
deleted from the appropriate catalog to
permit the copied data set(s) to be
recataloged.

3. If the CVOL parameter is specified, the
cataloging is done in the OS CVOL on the
receiving DASD volume. If an OS CVOL
does not exist on the receiving DASD
volume, one is created.

COPYAUTH
specifies that the recelvlng data set is to
be given the same access list as the input
data set, if the input data set is RACF
protected and the output data set ;s not
preallocated.

IEHMOVE Program 387

Parameters

CVOL

DSGROUP

APplicable
Control
statements

MOVE DSNAME
COPY DSNAME
MOVE PDS
COPY PDS
INCLUDE
REPLACE

MOVE DSGROUP
COPY DSGROUP

MOVE CATALOG
COPY CATALOG

MOVE DSGROUP
COPY DSGROUP

EXCLUDE

388 MVS/370 Utilities

Description of Parameters

CVOL=device=serial I

specifies the device type and serial number
of the OS CVOL on which the search for the
data set is to begin. If the CVOL or FROM
parameter is omitted, the data set is
assumed to be cataloged in the ICF or VSAM
master/JOBCAT/STEPCAT catalog.

FROM and CVOL should never appear in the
same utility control statement.

CVOL=device=serial
specifies the device type and serial number
of the OS CVOL on which the search for the
data set(s) ;s to begin. If the CVOL
parameter is omitted, the data set(s) is
assumed to be cataloged in the ICF or VSAM
master/JOBCAT/STEPCAT catalog.

CVOL=device=serial
specifies the device type and serial number
of the volume from which the SYSCTLG data
set is to be moved or copied. If the CVOL
or FROM parameter is omitted, the SYSCTLG
data set to be moved or copied is assumed to
reside on the system residence volume.

FROM and CVOL should never appear in the
same utility control statement.

DSGROUP=name
specifies the cataloged data set(s) to be
moved or copied. If ~ is a fully
qualified data set name, only that data set
is not moved or copied. If ~ is one or
more qualifiers, but not fully qualified,
all data sets whose names are qualified by
~ are moved or copied. If ~ is
omitted, all data sets whose names are found
in the searched catalog are moved or copied.

DSGROUP=name
Specifies the cataloged data set(s) or the
catalog entry(ies) to be excluded in a
MOVE/COPY DSGROUP or CATALOG operation. If
used in conjunction with MOVE/COPY DSGROUP,
all cataloged data sets whose names are
qualified by ~ are excluded from the
operation. If used in conjunction with
MOVE/COPY CATALOG, all catalog entries whose
names are qualified by ~ are excluded
from the operation.

The CVOL parameter must be specified if a
MOVE/COPY DSGROUP operation is being
performed.

Parameters

DSNAME

EXPAND

Applicable
Control
statements

MOVE DSNAME
COpy DSNAME

INCLUDE

REPLACE

MOVE PDS
COpy PDS

Description of Parameters

DSNAME=name
specifies the fully qualified name of the
data set to be moved or copied.

DSNAME=name
specifies the fully qualified name of a data
set. If used in conjunction with MOVE/COPY
DSGROUP, the named data set is included in
the group. If used in conjunction with
MOVE/COPY PDS, either the named partitioned
data set or a member of it (if the MEMBER
parameter is specified) is included in the
operation.

DSNAME=name
specifies the fully qualified name of the
partitioned data set that contains the
replacement member.

EXPAND=nn
specifies the decimal number (up to 99) of
256-byte records to be added to the
directory of the specified partitioned data
set. For COpy, EXPAND cannot be specified
if space is previously allocated. For MOVE,
EXPAND will be ignored if space is
previously allocated.

IEHMOVE Program 389

Parameters

FROM

FROMDD

Applicable
Control
statements

MOVE DSNAME
COpy DSNAME
MOVE PDS
COpy PDS
INCLUDE
REPLACE
MOVE CATALOG
COPY CATALOG

MOVE DSNAME
COPY DSNAME
MOVE PDS
COpy PDS
MOVE CATALOG
COPY CATALOG

390 MVS/370 Utilities

Description of Parameters

FROM=device=listlserial
specifies the unit address or device type
and serial number(s) of the volume(s) on
which the data set resides if it is not
cataloged. If the data set is cataloged,
FROM should not be specified.

When FROM is to refer to a specific device,
code the unit address in the device
parameter, in place of device type.

The serial subparameter applies to PDS and
CATALOG operations. The list subparameter
applies to DSNAME operations, but may also
be used when referring to an unloaded'PDS
residing on more than one DASD or tape
volume, and when referring to an unloaded OS
CVOL residing on more than one tape volume.

When FROM is used in conjunction with a
MOVE, DSNAME/PDS operation, the catalog will
not be updated. When FROM is used in
conjunction with a MOVE/COPY CATALOG
operation, it specifies where an unloaded
version of the OS CVOL resides.

When FROM refers to a tape device and the
data set to be retrieved is not the first on
the volume, the serial subparameter must be
enclosed in parentheses and the volume
serial number must be followed by the data
set sequence number and separated from it by
a comma, as follows:

FROM=device=(ser;al,seqnumber)

If FROM or CVOL parameter is omitted from a
MOVE/COPY DSNAME/PDS, INCLUDE or REPLACE
operation, the data set is assumed to be
cataloged in the ICF or VSAM
master/JOBCAT/STEPCAT catalog. If the FROM
or CVOL parameter is omitted from a
MOVE/COPY CATALOG operation, the SYSCTlG
data set to be moved or copied is assumed to
reside on the system residence volume.

FROM and CVOL should never be specified on
the same utility control statement.

FROMDD=ddname
specifies the name of the DO statement from
which DeB and LABEL information (except data
set sequence number), for input data sets on
tape volumes, can be obtained. When FROMDD
is used in conjunction with a MOVE/COPY
PDS/CATAlOG operation, the tape data set
must be an unloaded version of a partitioned
data set or an unloaded version of an OS
CVOl. The FROMDD operand can be omitted,
provided the data set has standard labels
and resides on a 9-track tape volume.

Pal'ametel's

MEMBER

PASSWORD

PDS

RENAME

TO

Applicable
cant 1'0 I
statements

INCLUDE
REPLACE

EXCLUDE

SELECT

MOVE DSGROUP
COPY DSGROUP
MOVE VOLUME
COPY VOLUME

MOVE PDS
COPY PDS

MOVE DSNAME
COpy DSNAME
MOVE PDS
COPY PDS

MOVE DSNAME
COPY DSNAME
MOVE DSGROUP
COPY DSGROUP
MOVE VOLUME
COpy VOLUME

MOVE PDS
COPY PDS
MOVE CATALOG
COPY CATALOG

Descl'iption of Pal'ametel's

HEHBER=membername
specifies the name of one member in the
partitioned data set named in the DSNAME
parameter on the INCLUDE/REPLACE statement.
When coded on an INCLUDE statement, the
named member is merged with the partitioned
data set being moved or copied. When coded
on a REPLACE statement, the member replaces
an equally named member in the partitioned
data set being moved or copied. Regardless
of the operation, neither the partitioned
data set containing the named member nor the
member is scratched.

HEHBER=membername
specifies the name of a member to be
excluded from a MOVE/COPY PDS operation

HEHBER=C~I(~[,n~]···JI((name,newnameJ
[,(name,newname)] ••• J]
specifies the names of the members to be
moved or copied by a MOVE/COPY PDS
operation, and optionally new names to be
assigned to the members.

PASSWORD
specifies that password protected data sets
are included in the operation. This is not
VSAM password protection, but the OS
password scheme.

Default: Only data sets that are not
protected are copied or moved.

PDS=name
specifies the fully qualified name (that is,
the name with all its qualifiers, if any) of
the partitioned data set to be moved or
copied.

RENAHE=name
specifies that the data set is to be
renamed, and indicates the new name.

TO=device=list
specifies the device type and volume serial
number of the volume or volumes to which the
specified group of data sets is to be moved
or copied.

TO=device=serialllist
specifies the device type and volume serial
number of the volume to which the
partitioned data set or OS CVOL entry is to
be moved or copied. The list parameter may
be used when unloading a partitioned data
set that must span tape volumes.

IEHMOVE Program 391

Parameters

TODD

UNCATLG

UNLOAD

VOLUME

Applicable
Control
statements

MOVE DSNAME
COpy OS NAME
MOVE DSGROUP
COpy OS GROUP
MOVE POS
COpy POS
MOVE VOLUME
COPY VOLUME
MOVE CATALOG
COpy CATALOG

MOVE DSNAME
COpy DSNAME
MOVE OSGROUP
COpy OSGROUP
MOVE PDS
COPY PDS

MOVE OSNAME
COPY DSNAME
MOVE OSGROUP
COpy DSGROUP
MOVE POS
COpy PDS
MOVE VOLUME
COPY VOLUME
MOVE CATALOG
COpy CATALOG

MOVE VOLUME
COpy VOLUME

392 MVS/370 Utilities

Description of Parameters

TODD=ddname
specifies the name of a DO statement from
which DCB (except RECFM, BlKSIZE and LRECL)
and LABEL (except data set sequence number)
information for output data sets on tape
volumes can be obtained.

When TODD is used in conjunction with a
MOVE/COPY OSNAME/OSGROUP/VOLUME operation,
it describes the mode and label information
to be used when creating output data sets on
tape volumes. RECFM, BLKSIZE, and LRECL
information, if coded, is ignored.

When UNLOAD is specified, or when TODD is
used in conjunction with a MOVE/COPY
PDS/CATALOG operation, it describes the mode
and label information to be used when
creating unloaded versions of data sets on
tape volumes. RECFM, BLKSIZE, and LRECL
information, if coded, must specify
(RECFM=FB, BlKSIZE=800, LRECL=80).

TODD must be specified in the control
statement when an expiration data (EXPOT) or
retention period (RETPD) is to be created or
changed.

The TODD parameter can be omitted for
9-track tapes with standard labels and
default density for the unit type specified.

UNCATLG
specifies that the catalog entry pertaining
to the source partitioned data set is to be
removed. This parameter should be used only
if the source data set is cataloged. If the
volume is identified by FROM, UNCATLG is
ignored. Alias entries in ICF or VSAM
catalogs for the source data sets are lost
and can be replaced with access method
services if the data sets are later
cataloged. See Access Method Services
Reference for more information. For a MOVE
operation, UNCATLG inhibits cataloging of
the output data set.

UNLOAD
specifies that the data set is to be
unloaded to the receiving volume(s).

VOLUHE=device=serial
specifies the device type and volume serial
number of the source volume.

IEHMOVE EXAMPLES

Operation

MOVE

COpy

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

COpy

COPY

MOVE

The following examples illustrate some of the uses of IEHMOVE.
Figure 137 can be used as a quick reference guide to IEHMOVE
examples. The numbers in the "Example" column refer to the
examples that follow.

Data Set
Organization Device comments Example

Sequential Disk Source volume is 1
demounted after job
completion. Two
mountable disks.

Sequential Disk Three cataloged 2
sequential data sets
are copied. The
disks are mountable.

Partitioned Disk A partitioned data 3
set is moved; a
member from another
PDS is merged with
it.

Volume Disk A volume of data 4
sets is moved to a
disk volume.

Partitioned Disk A data set is moved 5
to a volume on which
space was previously
allocated.

Partitioned Disk Three data sets are 6
moved and unloaded
to a volume on which
space was previously
allocated.

Sequential Disk and Tape A sequential data 7
set is unloaded to
an unlabeled 9-track
tape volume.

Sequential Disk and Tape Unloaded data sets 8
are loaded from a
single volume.

Sequential Disk and Tape Dat,a sets are copied 9
from separate source
volumes.

Partitioned Tape and Disk Unloaded data sets 10
are loaded from
unlabeled tape to a
specific device.

Data Set Group Disk Data set group is 11
moved.

Figure 137 (Part 1 of 2). IEHMOVE Example Directory

IEHMOVE Program 393

Data set
Operation organization Device Comments Example

MOVE OS CVOl Disk SYSCTlG data set (OS 12
CVOl) is moved from
one volume to
'another. Source OS
CVOl is scratched.

MOVE OS CVOl Disk Selected OS CVOl 13
entries are moved
from one OS CVOl to
another.

Figure 137 (Part 2 of 2). IEHMOVE Example Directory

IEHMOVE EXAMPLE 1

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASO and Tape Device Support"
on page 3 for valid device number notation.

In this example, three sequential data sets (SEQSETl, SEQSET2,
and SEQSET3) are moved from a disk volume to three separate disk
volumes. Each of the three receiving volumes is mounted when it
is required by IEHMOVE. The source data sets are not cataloged.
Space is allocated by IEHMOVE.

//MOVEDS
//
//SYSPRINT
//SYSUTI
//OD1
//002
//
//OD3
//
//SYSIN

MOVE
MOVE
MOVE

JOB
EXEC
DD
DD
OD
DO

DD

09#550,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=disk,VOlUME=SER=333333,DISP=OlD
UNIT=disk,VOlUME=SER=111111,OISP=OlD
UNIT=(disk"OEFER),DISP=OlD,
VOlUME=(PRIVATE"SER=(222222»
VOlUME=(PRIVATE,RETAIN,SER=(444444»,
UNIT=disk,OISP=OlD

DD *
OSNAME=SEQSETl,TO=disk=222222,FROM=disk=444444
DSNAME=SEQSET2,TO=disk=222333,FROM=disk=444444
DSNAME=SEQSET3,TO=disk=222444,FROM=disk=444444

The control statements are discussed below:

• SYSUT1 DO defines the disk device that is to contain the
work data set.

• DD1 DD defines the system residence device.

• DD2 DO defines the mountable device on which the receiving
volumes will be mounted as they are required.

• DD3 DD defines a mountable device on which the source volume
is mounted. Because the RETAIN subparameter is included,
the volume remains mounted until the job has completed.

• SYSIN DD defines the control data set, which follows in the
input stream.

• MOVE moves the source data sets to volumes 222222, 222333,
and 222444, respectively. The source data sets are
scratched.

394 MVS/370 utilities

IEHMOVE EXAMPLE 2

IEHMOVE EXAMPLE 3

In this example, three cataloged data sets are copied to a disk
volume. Space is allocated by IEHMOVE. The catalog is not
updated. The source data sets are not scratched.

//COPYPOS
//
//SYSPRINT
//SYSUTI
//DDI
//D02
//DD3
//SYSIN

JOB
EXEC
DD
DO
DD
DO
DD
DD

091550,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=disk,VOlUME=SER=222222,DISP=OlD
UNIT=disk,VOlUME=SER=llllll,DISP=OlD
UNIT=disk,VOlUME=SER=222222,DISP=OlO
UNIT=disk,VOlUME=SER=333333,DISP=OlD

"* COPY
COpy
COpy

DSNAME=SEQSETl,TO=disk=333333
DSNAME=SEQSET3,TO=disk=333333
OSNAME=SEQSET4,TO=disk=333333

The control statements are discussed below:

• SYSUTI 00 defines the device that is to contain the work
data set.

• DDI DO defines the system residence device.

• DD2 DO defines a mountable device on which the source volume
is mounted.

• DD3 DO defines a mountable device on which the receiving
volume is mounted.

• SYSIN DO defines the control data set, which follows in the
input stream.

• COPY copies the source data sets onto volume 333333.

In this example, a partiti~ned data set (PARTSET1) is moved to a
disk volume. In addition, a member (PARMEM3) from another
partitioned data set (PARTSET2) is merged with the source
members on the receiving volume. The source partitioned data
set (PARTSETl) is scratched. Space is allocated by IEHMOVE.

//MOVEPOS
//
//SYSPRINT
//SYSUTI
//001
//DD2
//003
//004
//SYSIN

MOVE
INCLUDE

/*

JOB 091550,GREEN
EXEC PGM=IEHMOVE
DO SYSOUT=A
DO UNIT=disk,VOlUME=SER=333000,DISP=OLD
DO UNIT=disk,VOlUME=SER=llllll,DISP=OLD
DO UNIT=disk,VOlUME=SER=222111,DISP=OLD
DO UNIT=disk,VOlUME=SER=222222,DISP=OLD
DD UNIT=disk,VOLUME=SER=222333,DISP=OLD
DO "*

PDS=PARTSETl,TO=disk=222333,FROM=disk=222111
DSNAME=PARTSET2,MEMBER=PARMEM3,FROM=disk=222222

The control statements are discussed below:

• SYSUTI DO defines the disk volume that is to contain the
work data set.

IEHMOVE Program 395

IEHMOVE EXAMPLE 4

• 001 00 defines the system residence device.

• The 002, OD3, and OD4 00 statements define mountable devices
that are to contain the two source volumes and the receiving
volume.

• SYSIN DO defines the control data set, which follows in the
input stream.

• MOVE defines the source partitioned data set, the volume
that contains it, and its receiving volume.

• INCLUDE includes a member from a second partitioned data set
in the operation.

In this example, a volume of data sets is moved to a disk
volume. All data sets that are successfullY moved are scratched
from the source volume; however, any catalog entries pertaining
to those data sets are not changed. Space is allocated by
IEHMOVE. The work data set is deleted when the job step is
completed.

//MOVEVOL
//
//SYSPRINT
//SYSUTI
//001
//002
//003
//SYSIN

JOB
EXEC
DO
DO
DO
DO
DO
DO

MOVE

09#550,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=disk,VOLUME=SER=222222,OISP=OlO
UNIT=disk,VOLUME=SER=IIIIII,OISP=OlO
UNIT=disk,VOlUME=SER=222222,OISP=OLO
UNIT=disk,VOLUME=SER=333333,OISP=OlO

* VOlUME=disk=333333,TO=disk=222222,PASSWORO

The control statements are discussed below:

• SYSUTI 00 defines the device that is to contain the work
data set. The work data set is removed from the receiving
volume when the job step is completed.

• 001 DO defines the system residence device.

• 002 DO defines the mountable device on which the receiving
volume is mounted.

• D03 DO defines a mountable device on which the source volume
is mounted.

• SYSIN DO defines the control data set, which follows in the
input stream.

• MOVE specifies a move operation for a volume of data sets
and defines the source and receiving volumes. This
statement also indicates that password-protected data sets
are included in the operation.

396 MVS/370 Utilities

IEHMOVE EXAMPLE 5

IEHMOVE EXAMPLE 6

In this example, a partitioned data set is moved to a disk
volume on which space has been previously allocated for the data
set. The source data set is scratched. The work data set ;s
deleted when the job step is completed.

//ALLOCATE
//
//SET1
//
//
//
//SYSPRINT
//SYSUTI
//DD1
//DD2
//DD3
//SYSIN

JOB
EXEC
DD

EXEC
DD
DD
DD
DD
DD
DD

MOVE

091550,GREEN
PGM=IEFBR14
DSNAME=PDSSET1,UNIT=disk,DISP=(NEW,KEEP),
VOLUME=SER=222222,SPACE=(TRK,(100,10,10»,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
PGM=IEHMOVE
SYSOUT=A
UNIT=disk,VOLUME=SER=222222,DISP=OLD
UNIT=disk,VOLUME=SER=l111l1,DISP=OLD
UNIT=disk,VOLUME=SER=222222,DISP=OLD
UNIT=disk,VOLUME=SER=333333,DISP=OLD

* PDS=PDSSETl,TO=disk=222222,FROM=disk=333333

The IEFBR14 job step is used to allocate space for data set
PDSSETI on a disk volume.

The control statements are discussed below:

• SYSUTI DD defines the device that ;s ,to contain the work
data set. The data set is removed at the completion of the
program.

• DDl DD defines the system residence device.

• DD2 DD defines the device on which the receiving volume is
to be mounted.

• DD3 DD defines a mountable device on which the source volume
is mounted.

• SYSIN DD defines the control data set, which follows in the
input stream.

• MOVE specifies a move operation for the partitioned data set
PDSSETI and defines the source and receiving volumes.

In this example, three partitioned data sets are moved from
three separate source volumes to a disk volume. The source data
set PDSSET3 is unloaded. (The record size exceeds the track
capacity of the receiving volume.) The work data set is deleted
when the job step is completed.

IEHMOVE Program 397

IEHMOVE EXAMPLE 7

//AlLOCATE
//
//SETI
//
//
//SET2
//
//
//SET3
//
//
//
//SYSPRINT
//SYSUTI
//DDI
//DD2
//

JOB
EXEC
DD

DD

DD

EXEC
DO
DO
DO
DD

//DD3
//SYSIN

DO
DD

MOVE
MOVE
MOVE

091550,GREEN 72
PGM=IEFBRl4
DSNAME=PDSSETl,UNIT=disk,DISP=CNEW,KEEP),
VOlUME=SER=222222,SPACE=(TRK,C50,10,S»,
DCB=(RECFM=FB,LRECl=8~,BLKSIZE=1600)
DSNAME=PDSSET2,UNIT=disk,DISP=CNEW,KEEP),
VOlUME=SER=222222,SPACE=(TRK,(25,5,5»,
DCB=(RECFM=F,lRECl=80,BlKSIZE=80)
DSNAME=PDSSET3,UNIT=disk,DISP=CNEW,KEEP),
VOLUME=SER=222222,SPACE=CTRK,C25,5»,
DCB=(RECFM=U,BlKSIZE=5000)
PGM=IEHMOVE
SYSOUT=A
UNIT=disk,VOlUME=SER=222222,DISP=OlD
UNIT=disk,VOlUME=SER=111l11,DISP=OlD
UNIT=(disk"DEFER),DISP=OlD,
VOlUME=(PRIVATE"SER=(333333»
UNIT=disk,VOlUME=SER=222222,DISP=OlD

* PDS=PDSSETl,TO=disk=222222,FROM=disk=333333
PDS=PDSSET2,TO=disk=222222,FROM=disk=222222
PDS=PDSSET3,TO=disk=222222, C
FROM =disk=444444,UNlOAD

The IEFBRl4 job step is used to allocate space for the
partitioned data sets PDSSET1, PDSSET2, and PDSSET3 on the
receiving volume. The SPACE parameter in the SET3 DD statement
allocates space for a sequential data set. This is necessary to
successfully unload the partitioned data set PDSSET3.

For a discussion on estimating space allocations, refer to Data
Management Services.

The DCB attributes of PDSSET3 are:

DCB=(RECFM=U,BlKSIZE=5000)

The unloaded attributes are:

DCB=(RECFM=FB,LRECl=80,BLKSIZE=800)

The control statements are discussed below:

• SYSUTl DO defines the device that is to contain the work
data set.

• DDl DD defines the system residence device.

• DD2 DD defines a mountable device on which the source
volumes are mounted as they are required.

• DD3 DD defines a mountable device on which the receiving
volume is mounted.

• SYSIN DD defines the control data set, which follows in the
input stream.

• MOVE specifies move operations for the partitioned data sets
and defines the source and receiving volumes for each data
set.

In this example, a sequential data set is unloaded onto a
9-track, unlabeled tape volume (800 bits per inch). The work
data set resides on the source volume and is deleted when the
job step is completed.

398 MVS/370 Utilities

IEHMOVE EXAMPLE 8

//UNLOAD
//
//SYSPRINT
//SYSUTI
//001
//DD2
//TAPEOUT
//
//

JOB
EXEC
DD
DD
DO
DD
DD

//SYSIN DD
MOVE

09#550,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=disk,VOLUME=SER=222222,DISP=OLD
UNIT=disk,VOLUME=SER=111111,DISP=OLD
UNIT=disk,VOLUME=SER=222222,DISP=OLD
UNIT=tape,VOLUME=SER=SCRTCH,DISP=OLD,
DCB=(DEN=2,RECFM=FB,LRECL=80,BLKSIZE=800),
LABEL=(,NL)

* DSNAME=SEQSETl,TO=tape=SCRTCH,
FROM=disk=222222,TODD=TAPEOUT

The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work
data set.

• DDI DO defines the system residence device.

72

C

• DD2 DO defines a mountable device on which the source volume
is mounted.

• TAPEOUT DD defines a mountable device on which the receiving
tape volume is mounted. This statement also provides label
and mode information.

• SYSIN DD defines the control data set, which follows in the
input stream.

• MOVE moves the sequential data set SEQSETI from a disk
volume to the receiving tape volume. The data set is
unloaded. The TODD parameter in this statement refers to
the TAPEOUT DD statement for label and mode information.

In this example, three unloaded sequential data sets are loaded
from a labeled, 7-track tape volume (556 bits per inch) to a
disk volume. Space is allocated by IEHMOVE. The example
assumes that the disk volume is capable of supporting the data
sets in their original forms.

//LOAD
//
//SYSPRINT
//SYSUTI
//DD1
//DD2
//TAPESETS
//
//

JOB
EXEC
DD
DD
DD
DD
DD

//SYSIN DD
MOVE

MOVE

MOVE

09#550,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=disk,VOLUME=SER=222222,DISP=OLD
UNIT=disk,VOLUME=SER=111111,DISP=OLD
UNIT=disk,VOLUME=SER=222222,DISP=OLD
UNIT=3420,
VOLUME=SER=001234,DISP=OLD,
LABEl=(l,SL),DCB=(DEN=l,TRTCH=C)

* DSNAME=UNLDSETl,TO=disk=222222,
FROM=3420=(001234,1),FROMDD=TAPESETS
DSNAME=UNLDSET2,TO=disk=222222,
FROM=3420=(001234,2),FROMDD=TAPESETS
DSNAME=UNLDSET3,TO=disk=222222,
FROM=3420=(001234,3),FROMDD=TAPESETS

72

C

C

C

IEHMOVE Program 399

IEHMOVE EXAMPLE 9

The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work
data set.

• DDI DD defines the system residence device.

• DD2 DD defines a mountable device on which the receiving
volume is mounted.

• TAPESETS DD defines a mountable device on which the source
tape volume is mounted. DeB information is provided in this
statement.

• SYSIN DD defines the control data set, which follows in tha
input stream.

• MOVE moves the unloaded data sets to the receiving volume.

To move a data set from a tape volume that contains more than
one data set, you must specify the sequence number of the data
set in the list field of the FROM parameter on the utility
control statement.

In this example, two sequential data sets are copied from
separate source volumes to a disk volume. Space is allocated by
IEHMOVE. Only one 9-track tape unit is available for the
operation.

72
//DEFER
//
//SYSPRINT
//SYSUTI
//DDI
//DD2
IITAPEI
IITAPE2
//SYSIN

JOB
EXEC
DD
DD
DD
DD
DD
DD
00

COpy

COpy

09#550,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=disk,VOlUME=SER=222222,DISP=OlD
UNIT=disk,VOlUME=SER=llllll,DISP=OlD
UNIT=disk,VOlUME=SER=222222,DISP=OlD
VOlUME=SER=001234,UNIT=tape,DISP=OlD
VOlUME=SER=001235,UNIT=tape,DISP=OlD

* DSNAME=SEQSETl,TO=disk=222222,
FROM=3400=(001234,2),FROMDD=TAPEI
DSNAME=SEQSET9,TO=disk=222222,
FROM=3400=(001235,4),FROMDD=TAPE2

The control statements are discussed below:

• SYSUTI DD defines the volume that is to contain the work
data set.

• DOl DD defines the system residence device.

• OD2 DO defines a mountable device on which the receiving
volume is mounted.

• TAPEI DD defines a mountable device on which the first
volume to be processed is mounted. The source data set is
the second data set on the volume.

c

c

• TAPE2 DD defines a mountable device on which the second
volume to be processed is mounted when it is required. The
source data set is the fourth data set on the volume.

• SYSIN DO defines the control data set, which follows in the
input stream.

400 MVS/370 Utilities

IEHMOVE EXAMPLE 10

IEHMOVE EXAMPLE 11

• COPY copies the second file of tape 001234 and the fourth
file of tape 001235 to the receiving volume.

To copy a data set from a tape volume that contains more than
one data set, you must specify the sequence number of the data
set in the list field of the FROM parameter on the utility
control statement.

In this example, three unloaded partitioned data sets residing
on an unlabeled tape volume mounted on device 282 are copied to
a 3380 volume mounted on device 191.

72
//LOAD JOB MEDDAUGH,PS40300439,MSGLEVEL=1
// EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=A
//SYSUTl DD UNIT=191,VOLUME=SER=338000,DISP=OLD
//DD1 DD UNIT=191,VOlUME=SER=338000,DISP=OlD
//TAPE1 DD UNIT=282,VOLUME=SER=NLTAPE,DISP=OLD,
// LABEL=(,NL),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
//SYSIN DD *

COpy PDS=DSETl,FROM=282=(NLTAPE,1), X
TO=191=338000,FROMDD=TAPEl

COPY PDS=DSET2,FROM=282=(NLTAPE,2), X
TO=191=338000,FROMDD=TAPEl

COpy PDS=DSET3,FROM=282=(NLTAPE,3), X
TO=191=338000,FROMDD=TAPEl

The control statements are discussed below!

• SYSUTI DD defines the work data set.

• DD1 DD defines the receiving volume.

• TAPE1 DD defines the source data sets. They are, in the
order in which they reside on the volume, DSET1, DSET2, and
DSET3.

• SYSIN DD defines the control data set, which follows in the
input stream.

• COPY copies the unloaded partitioned data sets from the
unlabeled tape to the receiving volume.

To copy data sets from an unlabeled tape, you must place a dummy
label in the list field of the FROM parameter of the utility
control statement. Following this dummy label, the sequence
number of the data set must also be included in the same field.
The unit address must appear in the device field of the FROM or
TO parameter whenever you want to move from or copy to a
specific device.

In this example, the cataloged data set group A.B.C--which
comprises data set A.B.C.X, A.B.C.Y, and A.B.C.Z--is moved from
two disk volumes onto a third volume. Space is allocated by
IEHMOVE. The catalog is updated to refer to the receiving
volume. The source data sets are scratched.

IEHMOVE Program 401

IEHMOVE EXAMPLE 12

//MOVEDSG
//
//SYSPRINT
//SYSUTI
//ODI
//OD2
//003
//004
//SYSIN

JOB
EXEC
OD
OD
DD
DD
DD
DO
OD

MOVE

09#550,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=disk,VOlUME=SER=222222,DISP=OlD
UNIT=disk,VOlUME=SER=llllll,OISP=OlD
UNIT=disk,VOlUME=SER=222222,DISP=OlD
UNIT=disk,VOlUME=SER=333333,OISP=OlO
UNIT=disk,VOlUME=SER=444444,DISP=OLD

* DSGROUP=A.B.C,TO=disk=222222

The control statements are discussed below:

• SYSUTI OD defines the device that is to contain the work
data set.

• DDI DD defines the system residence device.

• DD2 DD defines a mountable device on which the receiving
volume 1S mounted.

• DD3 DD defines a mountable device on which one of the source
volumes is mounted.

• DD4 DD defines a mountable device on which one of the source
volumes is mounted.

• SYSIN DD defines the control data set, which follows in the
input stream.

• MOVE moves the specified data sets to volume 222222.

This example can be used to produce the same result without the
use of the D04 00 statement, using one less mountable disk
device. With D03 and OD4, both of the source volumes are
mounted at the start of the job. With DD3 only, the 333333
volume is mounted at the start of the job. After the 333333
volume is processed, the utility requests that the operator
mount the 444444 volume. In this case the DD3 statement is
coded:

//OD3 OD UNIT=(disk"DEFER),OISP=OLD,VOLUME=(PRIVATE"
// SER=(333333»

In this example, the SYSCTLG data set is moved from a mountable
disk volume to another mountable disk volume. Space 1s
allocated by IEHMOVE. The source OS CVOL is scratched from the
first disk volume.

//MOVECATI
//
//SYSPRIHT
//SYSUTI
//001
//002
//SYSIH

JOB
EXEC
DO
OD
00
OD
OD

MOVE

09#550,GREEH
PGM=IEHMOVE,PARM='POWER=3'
SYSOUT=A
UNIT=disk,VOlUME=SER=333333,DISP=OLD
UHIT=disk,VOlUME=SER=llllll,DISP=OlD
UHIT=disk,VOLUME=SER=222222,DISP=OlD

* CATALOG,TO=disk=222222,CVOl=disk=111111

402 MVS/370 Utilities

IEHMOVE EXAMPLE 13

The control statements are discussed below:

• SYSUTI DO defines the device that is to contain the work
data set.

• DOl OD defines the mountable device on which the source
volume is mounted.

• 002 OD defines the mountable device on which the receiving
volume is mounted.

• SYSIN DO defines the control data set, which follows in the
input stream.

• MOVE specifies the move operation and defines the source and
receiving volumes.

See "PARM Information on the EXEC statement" on page 352 for a
description of the POWER PARM.

In this example, the OS CVOL entries for data set group
A.B.C--which comprises the entries A.B.C.X, A.B.C.Y, and
A.B.C.Z--are moved from a SYSCTLG data set to a mountable disk
volume. If no OS CVOL exists on the receiving disk volume, one
is created; if an OS CVOL does exist, the specified entries are
merged into it. The last index of all entries in the source
SYSCTLG is scratched. The work data set is deleted when the job
step is completed.

//MOVECAT2
//
//SYSPRINT
//SYSUTl
//001
//OD2
//SYSIN

JOB
EXEC
DO
DO
00
DO
DO

MOVE

09#550,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=disk,VOLUME=SER=222222,OISP=OLO
UNIT=disk,VOLUME=SER=llllll,OISP=OLO
UNIT=disk,VOLUME=SER=222222,OISP=OLO

* CATALOG=A.B.C,TO=disk=222222,CVOL=disk=111lll

The control statements are discussed below:

• SYSUTI DO defines the device that is to contain the work
data set. (Because IEHMOVE deletes the work data set at the
completion of the program, it can be contained on the
receiving volume, provided there is space for it.>

• DOl 00 defines the mountable device on which the source
volume is mounted.

• 002 DD defines the mountable device on which the receiving
volume is mounted.

• SYSIN DO defines the control data set, which follows in the
input stream.

• MOVE specifies a move operation for selected entries and
defines the source and receiving volumes.

IEHMOVE Program 403

IEHPROGM PROGRAM

IEHPROGM is a system utility used to modify system control data
and to maintain data sets at an organizational level. IEHPROGM
should only be used by those programmers locally authorized to
do so.

IEHPROGM can be used to:

• Scratch a data set or a member.

• Rename a data set or a member.

• Catalog or remove catalog entries for a non-VSAM data set in
an OS CVOL.

• Build or delete an index or alias in an OS CVOL (SYSCTLG
data set).

• Connect or release two OS CVOLs.

• Build and maintain a generation data group index in an OS
CVOl.

• Maintain data set passwords.

SCRATCHING A DATA SET OR MEHBER

IEHPROGM can be used to scratch the following from a DASD volume
or volumes:

• Sequential, ISAM, partitioned, or BDAM data sets

• Members of a partitioned data set

• Password-protected data sets

• Data sets named by the operating system

A data set is considered scratched when its data set control
block is removed from the volume table of contents (VTOC) of the
volume on which it resides; its space is made available for
reallocation.

A member is considered ~scratched when its name is removed from
the directory of the partitioned data set in which it is
contained. The space occupied by a scratched member is not
available for reallocation until the partitioned data set is
scratched or compressed. (When scratching a member of a
partitioned data set, all aliases of that member should also be
removed from the directory.)

If RACF is active, ALTER authorization i~ required to scratch a
RACF-defined data set, and UPDATE authorization is required to
scratch a member of a partitioned data set.

RENAMING A DATA SET OR MEMBER

IEHPROGM can be used to rename a data set or member that resides
on a DASD volume. In addition, the program can be used to
change any member aliases.

If RACF is active, ALTER authorization is required to rename a
data set. UPDATE authorization is required to rename a member
of a partitioned data set.

404 MVS/370 Utilities

CATALOGING A DATA SET IN AN OS CVOL

IEHPROGM can be used to catalog a non-VSAM sequential, ISAM,
partitioned, or BDAM data set in an OS CVOL. The program
catalogs a data set by generating an entry, containing the data
set name and associated volume information, in the index of the
OS CVOL. A valid TTR pointer is not placed in the DSCB until
the first time the data set is referenced.

The catalog function is used to catalog a non-VSAM data set in
an OS CVOL that was not cataloged when it was created.

IEHPROGM can also delete OS CVOL entries for a non-VSAM data set
by removing the data set name and associated volume information
from the OS CVOL.

The cataloging function of IEHPROGM differs from a DISP=(,CATLG)
specification in a DD statement in that the DISP=(,CATLG)
specification cannot catalog a data set on a volume other than
the system residence volume unless the system residence volume
is properly connected to the other volume. (See "Connecting or
Releasing Two OS CVOLs" on page 406.)

The "uncataloging" function of IEHPROGM differs from a
DISP=(... ,UNCATLG) specification in a DD statement in that the
DISP=(... ,UNCATLG) specification cannot remove an entry from the
SYSCTLG data set on a volume other than the system residence
volume unless the two volumes are properly connected.

You should not use the IEHPROGM CATLG/UNCATLG functions in place
of DISP=(,CATLG) or DISP=(,UNCATLG) in a multi-step job. If a
data set is to be "uncataloged" during termination of a step,
use DISP=(OLD,UNCATLG).

BUILDING OR DELETING AN INDEX IN AN OS CVOL

IEHPROGM can be used to build a new index in an OS CVOL or to
delete an existing index. In building an index, the program
automaticallY creates as many higher level indexes as are
necessary to complete the specified structure.

IEHPROGM can be used to delete one or more indexes from an index
structure; however, an index cannot be deleted if it contains
any entries. That is, it cannot be deleted if it refers to a
lower level index or if it is part of a structure indicating the
fully qualified name of an OS CVOL cataloged data set.

Figure 138 on page 406 shows an index structure before and after
a build operation. The left portion of the figure shows two
data sets cataloged in an OS CVOL, A.Y.YY and A.B.X.XX, before
the build operation. The right-hand portion of the figure shows
the index structure after the build operation, which was used to
build index A.B.C.D.E. Note in the left portion of the figure
that index levels C and D do not exist before the build
operation. These levels are automatically created when the
level E index is built.

When the level E index is subsequently deleted, the level C and
D indexes are not automatically deleted by the program. To
delete these index levels, delete: A.B.C.D.E, A.B.C.D, and
A.B.C, in that order. The level B index cannot be deleted
because data set A.B.X.XX and the X level index are dependent
upon the level B index.

BUILDING OR DELETING AN INDEX ALIAS IN AN OS CVOL

IEHPROGM can be used to assign an alternative name (alias) to
the highest level index of an OS CVOL or to delete an OS CVOL
index alias previously assigned. An alias cannot, however, be
assigned to the highest level of a generation data group index.

IEHPROGM Program 405

I
~

~--'--1
~ I
I IX
yy

xx

Befort build oper.tion

I I· .. 1
yy

x • xx

After build oper.tion

,
i
i
E

Figure 138. Index Structure Before and After an IEHPROGM Build
Operation

Figure 139 on page 406 shows an alias, XX, that is assigned to
index A (a high level index). The cataloged data set A.B.C can
be referred to as either A.B.C or XX.B.C.

Figure 139. Building an Index Alias Using IEHPROGM

CONNECTING OR RELEASING TWO OS CVOLS

IEHPROGM can be used to connect an OS CVOL to a second OS CVOL
by placing an entry into a high level index on the first OS
CVOL. The entry contains an index name and the volume serial
number and device type of the second OS CVOL. The program can
subsequently release the OS CVOLs by removing the entry from the
high level index. If two OS CVOLs are connected:

• The SYSCTLG data set must be created on the second volume
for cataloging of data sets having the same high level index
as the connected index.

406 MVS/370 Utilities

'. A high level index can only be connected to one second OS
CVOl, but chaining is possible from a second to a third OS
CVOl, etc.

Before any OS CVOl can be accessed by the system, it must be
defined in the ICF or VSAM master catalog. For details on how
this ;s done, see Catalog Users Guide.

Figure 140 shows how one OS CVOl can be connected to a second OS
CVOl. Any subsequent index search for index X on the first
control volume is carried to the second control volume.

First OS CVOL Connected OS CVOL

Figure 140. Connecting an OS CVOL to a Second OS CVOl Using
IEHPROGM

The index name of each high level index existing on the second
OS CVOl must be present in the first OS CVOl; when a new high
level index ;s placed on a second OS CVOl, the first OS CVOl
should be connected to the second OS CVOl.

Figure 141 on page 408 shows three OS CVOls connected to one OS
CVOL. All volumes are accessible through high level indexes X,
Y, and Z.

BUILDING AND MAINTAINING A GENERATION DATA GROUP INDEX IN AN OS CVOL

IEHPROGM can be used to build an index structure in an OS CVOL
for a generation data group and to define what action should be
taken when the index overflows.

The lowest level index in the structure can contain up to 255
entries for successive generations of a data set. If the index
overflows, the oldest entry is removed from the index, unless
otherwise specified (in which case all entries are removed). If
desired, the program can be used to scratch all generation data
sets whose entries are removed from the index.

Figure 142 on page 408 shows the index structure created for
generation data group A.B.C. In this example, provision is made
for up to five subsequent entries in the lowest level index.

IEHPROGM Program 407

1st CVOL

Figure 141. Connecting Three OS CVOLs Using IEHPROGM

Figure 142. Building a Generation Data Group Index Using
IEHPROGM

Before a generation data group can be cataloged as such on an OS
CVOL, a generation data group index must exist. Otherwise, a
generation data set is cataloged as an individual data set,
rather than as a generation.

When creating and cataloging a generation data set on an OS
CVOL, the user must provide the necessary DCB information. See
Data Management Services-for a discussion of how DCB attributes
are provided for a generation data group.

408 MVS/370 Utilities

MAINTAINING DATA SET PASSWORDS

IEHPROGM can be used to maintain non-VSAM password entries in
the PASSWORD data set and to alter the protection status of BDAM
data sets in the data set control block (DSCB). For a complete
description of data set passwords and the PASSWORD data set, see
System Programming library: Data Management and Data Management
Services.

A data set can have one of three types of password protection,
as indicated in the DSCB for BDAM data sets and in the tape
label for tape data sets. (See Debugging Handbook for the
format of the DSCB. See Magnetic Tape labels and File Structure
for a description of tape labels.)

The possible types of data set password protection are:

• No protection, which means that no passwords are required to
read or write the data set.

• Read/write protection, which means that a password is
required to read or write the data set.

• Read-without-password protection, which means that a
password is required only to write the data set; the data
set can be read without a password.

If a system data set is password protected and a problem occurs
on the data set, maintenance personnel must be provided with the
password in order to access the data set and resolve the
problem.

A data set can have one or more passwords assigned to it; each
password has an entry in the PASSWORD data set. A password
assigned to a data set can allow read and write access, or only
read access to the data set.

Figure 143 on page 410 shows the relation~hip between the
protection status of data set ABC and the type of access allowed
by the passwords assigned to the data set. Passwords ABLE and
BAKER are assigned to data set ABC. If no password protection
is set in the DSCB or tape label, data set ABC can be read or
written without a password. If read/write protection is set in
the DSCB or tape label, data set ABC can be read with either
password ABLE or BAKER and can be written with password ABLE.
If read-without-password protection is set in the DSCB or tape
label, data set ABC can be read without a password and can be
written with password ABLE; password BAKER is never needed.

Before IEHPROGM is used to maintain data set passwords, the
PASSWORD data set must reside on the system residence volume.
IEHPROGM can then be used to:

• Add an entry to the PASSWORD data set.

• Replace an entry in the PASSWORD data set.

• Delete an entry from the PASSWORD data set.

• Provide a list of information from an entry in the PASSWORD
data set.

Each entry in the PASSWORD data set contains the name of the
protected data set, the password, the protection mode of the
password, an access counter, and 77 bytes of optional user data.
The protection mode of the password defines the type of access
allowed by the password and whether the password is a control
password or secondary password. The initial password, added to
the PASSWORD data set for a particular data set, is marked in
the entry as the control password for that data set. The second
and subsequent passwords added for the same data set are marked
as secondary passwords.

IEHPROGM Program 409

Protection status of data
set ABC-contained in
its DSCB or tape label The kind of protection pointed

at allows data set ABC to be:
No
password
protection

l""ii@@@H;f;!f@ Read or written on with
I'" no password

Read/Write
protection

WMf Read with
. no password

System
residence
volume
-----~

Figure 143. Relationship between the Protection Status of a Data
Set and Its Passwords

For BDAM data sets, IEHPROGM updates the protection status in
the DSCB when a control password entry is added, replaced, or
deleted. This permits setting and resetting the protection
status of an existing BDAM data set at the same time its
passwords are added, replaced, or deleted. IEHPROGM
automatically alters the protection statu~ of a data set in the
DSCB if the following conditions are met:

• The control password for the data set is being added,
replaced, or deleted.

• The data set is online.

• The volume on which the data set resides 1S specified on the
utility control statement, or the data set is cataloged.

.• The data set is not allocated within the IEHPROGM job.

For tape data sets, IEHPROGM cannot update the protection status
in the tape label when a password entry is added, replaced, or
deleted. Protection status in a tape label must be set with
JCl.

Passwords to be added, replaced, deleted, or listed can be
specified on utility control statements or can be entered by the
console operator. IEHPROGM issues a message to the console
operator when a password on a utility control statement is
either missing or invalid. The message contains the job name,
step name, and utility control statement name and identifies the
particular password that is missing or invalid. Two invalid
passwords are allowed per password entry on each utility control
statement before the request is ignored; a total of five invalid
passwords is allowed for the password entries on all the utility
control statements in a job step before the step is canceled.

Adding Data set Passwords

When a password is added for a data set, an entry is created in
the PASSWORD data set with the specified data set name, password
name, protection mode of the password (read/write or read only),
and the ~ptional 77 characters of user-supplied data. The
access counter in the entry is set to zero.

~

410 MVS/370 Utilities

The control password for a data set must always be specified to
add, replace, or delete secondary passwords. The control
password should not be specified, however, to list information
from a secondary password entry.

Secondary passwords can be assigned to a data set to restrict
some users to reading the data set or to record the number of
times certain users access the data set. The access counter in
each password entry provides a count of the number of times the
password was used to successfully open the data set.

If a control password for a BDAM, online data set is added, the
protection status of the data set (read/write or
read-without-password) is set in the DSeB. However, the data
set to be protected must not be allocated within the same job as
the one in which IEHPROGM is executed. If it is allocated, the
DSeB cannot be accessed and the protection status is not set.
If the data set to be protected is being created within the same
job, use JeL to set the protection status in the DSeB.

Replacing Data set Passwords

Any of the following information may be replaced in a password
entry: the password, protection mode (read/write or read only)
of the password, and the 77 characters of user data. The
protection status of a data set can be changed by replacing the
control entry for the data set.

If the control entry of a BDAM, online data set is replaced, the
DSeB is also reset to indicate any change in the protection
status of the data set. Therefore, you should ensure that the
volume is online when changing the protection status of a BDAM
data set.

Deleting Data set Passwords

When a control password entry is deleted from the PASSWORD data
set, all secondary password entries for that data set are also
deleted. However, when a secondary entry is deleted, no other
password entries are deleted.

If the control password entry is deleted for an online, BDAM
data set, the protection status of the data set in the DSeB is
also changed to indicate no protection. When deleting a control
password for a BDAM data set, the user should ensure that the
volume is online. If the volume is not online, the password
entry is removed, but data set protection is still indicated in
the DSeB; the data set cannot be accessed unless another
password is added for that data set.

If the control password entry is deleted for a tape data set,
the tape volume cannot be accessed unless another password is
added for that data set.

The delete function should be used to delete all the password
entries for a scratched data set to make the space available for
new entries.

Listing Password Entries

A list of information from any entry in the PASSWORD data set
can be obtained in the SYSPRINT data set by providing the
password for that entry. The list includes: the number of
times the password has been used to successfully open the data
set; the type of password (control password or secondary
password) and type of access allowed by the password (read/write
or read-only); and the user data in the entry. Figure 144 on
page 412 shows a sample list of information printed from a
password entry.

IEHPROGM Program 411

INPUT AND OUTPUT

RETURN CODES

CONTROL

DECIMAL ACCESS COUNT= 000025
PROTECT MODE BYTE= SECONDARY, READ ONLY
USER DATA FIELD= ASSIGNED TO J. BROWN

Figure 144. Listing of a Password Entry

IEHPROGM uses the following input:

• One or more data sets containing system control data to be
modified.

• A control data set that contains utility control statements
used to control the functions of the program.

IEHPROGM produces the following output:

• A modified object data set or volume(s).

• A message data set that contains error messages and
information from the PASSWORD data set.

IEHPROGM returns a code in register 15 to indicate the results
of program execution. The return codes and their meanings are
listed below.

Codes Meaning

00 (00 hex) Successful completion.

04 (04) A syntax error was found in the name field of the
control statement or in the PARM field in the EXEC
statement. Processing continues.

OS (OS) A request for a specific operation was ignored
because of an invalid control statement or an
otherwise invalid request. The operation is not
performed.

12 (Oe) An input/output error was detected when trying to
read from or write to SYSPRINT, SYSIN or the VTOC.
The job step is terminated.

16 (10) An unrecoverable error exists. The job step is
terminated.

Figure 145. IEHPROGM Return Codes

IEHPROGM is controlled by job control statements and utility
control statements.

Job control statements are used to:

• Execute or invoke the program.

• Define the control data set.

412 MVS/370 Utilities

• Define volumes and/or devices to be used during the course
of program execution.

• Prevent data sets from being deleted inadvertently.

• Prevent volumes from being demounted before they have been
completely processed by the program.

• Suppress listing of utility control statements.

Utility control statements are used to control the functions of
the program and to define those data sets or volumes that are to
be modified.

JOB CONTROL STATEMENTS

Figure 146 on page 414 shows the job control statements for
IEHPROGM.

With the exception of the SYSIN and SYSPRINT DD statements, all
DD statements in Figure 146 on page 414 are used as device
allocation statements, rather than as true data definition
statements. Because IEHPROGM modifies the internal control
blocks created by device allocation DD statements, the DSNAME
parameter, if supplied, will be ignored by IEHPROGM. (All data
sets are defined explicitly or implicitly by utility control
statements.)

Note: Unpredictable results may occur in multitasking
environments where dynamic allocation/deallocation of devices,
by other tasks, causes changes in the TIOT during IEHPROGM
execution.

PARM Information on the EXEC statement

Additional information can be specified in the PARM parameter of
the EXEC statement to control the number of lines per page on
the output listing and to suppress printing of utility control
statements. The EXEC statement can be coded:

PGM=IEHPROGM[,PARM=[LINECNT=xx,]
[PRINTINOPRINTll --

The LINECHT parameter specifies the number of lines per page in
the listing of the SYSPRINT data set; xx is a 2-digit number,
from 01 through 99. If LINECNT is omitted, or if an error is
encountered in the LINECNT parameter, the number of lines per
page will be 45.

The PRINT value specifies that the utility control statements
are to be written to the SYSPRINT data set. If neither PRINT
nor NOPRIHT is coded, PRINT is assumed.

The NOPRIHT value specifies that utility control statements are
not to be written to the SYSPRINT data set. Suppressing
printing of utility control statements assures that passwords
assigned to data sets remain confidential. However, suppressing
printing may make it difficult to interpret error messages
because the relevant utility control statement is not printed
before the message.

IEHPROGM Program 413

statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEHPROGM) or, if
the job control statements reside in a procedure
library, the procedure name. Additional PARM
information can be specified to control the number
of lines per page on the output listing and to
suppress printing of utility control statements.
See "PARM Information on the EXEC Statement."

SYSPRINT DD Defines a sequential message data set.

anynamel DO Defines a permanently mounted volume. (The system
residence volume is considered to be a ~ermanently
mounted volume.)

anyname2 DO Defines a mountable device type.

SYSIN DD Defines the control data set. The control data set
normally follows the job control statements in the
input stream; however, it can be defined as a
member of a procedure library.

Figure 146. IEHPROGM Job Control Statements

SYSPRINT DD statement

The block size for the SYSPRINT data set must be a multiple of
121. Any blocking factor can be specified.

anynamel DO statement

One anyname1 DD statement must be included for each permanently
mounted volume referred to in the job step.

The anynamel DD statement can be entered:

//anyname1 DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

The UNIT and VOLUME parameters define the device type and volume
serial number. The DISP=OLD specification prevents the
inadvertent deletion of a data set. (The anynamel DD statement
is arbitrarily assigned the ddname DOl in the IEHPROGM
examples.)

anyname2 DO statement

One anyname2 DD statement must be included for each mountable
device to be used in the job step. Multiple statements may be
coded as long as each anyname is unique.

The anyname2 DD statement can be coded in the following ways:

//anyname2 DO VOLUME=SER=xxxxxx,UNIT=xxxx,OISP=OLD

//anyname2 DO VOLUME=(PRIVATE,SER=xxxxxx),
// UNIT=(xxxx"DEFER),DISP=OLO

The second example can be used to specify deferred mounting when
a large number of magnetic tapes or OASD volumes are to be
processed in one application of the program.

The UNIT and VOLUME parameters define the device type and volume
serial number. The DISP=OLD specification prevents the

414 MVS/370 Utilities

SYSIN DD statement

inadvertent deletion of a data set. Unit affinity cannot be
used on DD statements defining mountable devices. (The anyname2
DD statement is arbitrarily assigned the ddname DD2 in the
IEHPROGM examples.)

When IEHPROGM is dynamically invoked in a job step containing a
program other than IEHPROGM, the DD statements defining
mountable devices must be included in the job stream prior to DD
statements defining data sets required by the other program.

Refer to Appendix B, "DD Statements for Defining Mountable
Devices" on page 443 for instructions on defining mountable
volumes.

The block size for the SYSIN data set must be a multiple of 80.
Any blocking factor can be specified.

UTILITY CONTROL STATEMENTS

SCRATCH statement

RENAME Statement

Figure 147 on page 416 shows the utility control statements for
IEHPROGM.

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements" on page 5.
Note that continued lines need not begin in column 16 for
IEHPROGM.

The SCRATCH statement is used to scratch a data set or member
from a DASD volume. A data set or member is scratched only from
the volume(s) designated in the SCRATCH statement. This
function does not delete OS CVOL entries for scratched data
sets.

A SCRATCH operation will not be executed if the data set or
volume is being used by a program executing concurrently.
"DISP=OLD" on the DD statement only prevents the inadvertent
deletion of a data set. It does not ensure exclusive use of the
data set during execution of the job step.

For multivolume data sets, all volumes specified must be online.

The format of the SCRATCH statement is:

[labell SCRATCH [VTOCIDSNAME=name)

,VOL=device=(list)

[,PURGE]

[,MEMBER=ngmgl

[,SYS]

The RENAME statement is used to change the true name or alias of
a data set or member residing on a DASD volume. The name is
changed only on the designated volume(s). The rename operation
does not update the OS CVOL.

A RENAME operation will not be executed if the data set or
volume is being used by a program executing concurrently.

IEHPROGM Program 415

statement

SCRATCH

RENAME

CATLG

UNCATLG

BLDX

DLTX

BLDA

DLTA

CONNECT

RELEASE

BLDG

ADD

REPLACE

DELETEP

LIST

Use

Scratches a data set or a member from a DASD volume.

Changes the name or alias of a data set or member
residing on a DASD voluma.

Generates an entry in the index of an OS CVOl.

Removes an entry from the lowest level index of an
OS CVOl.

Creates a new index in the OS CVOl (SYSCTlG data
set).

Removes a low level index from an OS CVOl.

Assigns an alias to an index at the highest level of
an OS CVOl.

Deletes an alias previously assigned to- an index at
the highest level of an OS CVOl.

Connects two OS CVOls together using a high level
index name.

Removes a high level index name from one OS CVOl
that served as a connector or pointer to a second OS
CVOl.

Builds an index in an OS CVOl for a generation data
group and defines what action should be taken when
the index overflows.

Adds a password entry in the PASSWORD data set.

Replaces information in a password entry.

Deletes an entry in the PASSWORD data set.

Formats and lists information from a password entry.

Figure 147. IEHPROGM Utility Control Statements

For multivolume data sets, all volumes specified must be online.

If you do not code the MEMBER parameter, then the entire data
set is renamed.

The format of the RENAME statement is:

[labell RENAME DSNAME=rul!!!.@

,VOL=device=(listl

,NEWNAME=!llt!.nJ!

[,MEHBER=rul!!!.@]

416 MVS/370 Utilities

CATLG statement

UNCATLG statement

The CATLG statement is used to generate a non-VSAM entry in the
index of an OS CVOL. If additional levels of indexes are
required in the OS CVOL, this function automatically creates
them.

When cataloging generation data sets and the index becomes full,
see "BLDG (Build Generation Data Group Index) Statement" on page
419 for the action to be taken.

To catalog VSAM data sets in an ICF or VSAM catalog, see Catalog
Users Guide and Access Method Services Reference.

When device is represented by a group name (for example, SYSDA)
instead of a generic name (for example, 3350 or 3400) in the VOL
parameter, the catalog operation does not enter the device type
code in the OS CVOL. Instead, it places a unique entry in the
device type field of the OS CVOL. The allocation of the device
for this entry may not be satisfactory to the user. The generic
name should be used if the group name was generated for one or
more device types. When the system is subsequently generated,
this entry may no longer be valid; that is, entries for all such
group names should be deleted and then the group names should be
recataloged after a subsequent generation of the system.

When cataloging data sets residing on tape, specify the volume
serial number and the data set sequence number as follows:

VOL=device=(serial,segno, ••• l

If a data set is created on a 9-track dual density tape unit
(3400-6), the data set can be cataloged with a device
specification of 3400-3 for an 1600 bits per inch tape or 3400-5
for a 6250 bits per inch tape. If a device specification of
3400-6 is made when the data set is cataloged, any subsequent
retrieval of that data set is made on a dual density unit.

The format of the CATLG statement i~:

[labell CATLG DSNAHE=name

,VOL=device=(listll(serial,segnol

[,CVOL=device=seriall

The UNCATLG statement is used to remove a non-VSAM entry from
the index of the OS CVOL. If the entry removed was the last
entry in the index, that index and all higher, unneeded,
indexes, with the exception of the highest-level index, are
removed from the OS CVOL.

The format of the UNCATLG statement is:

[labell UNCATLG DSNAME=~

[,CVOL=device=seriall

IEHPROGM Program 411

BLDX (Build Index) statement

The BLDX statement is used to create a new index in an OS CVOL.
If the creation of an index requires that higher level indexes
be created, this function automatically creates them.

The format of the BLDX statement is:

[labell BLDX INDEX=~

[,CVOL=device=seriall

DLTX (Delete Index) statement

The DLTX statement is used to remove an index from an OS CVOL.
Only an index that has no entries can be removed.

Because this function does not delete hIgher level indexes, it
must be used repetitively to delete an entire structure. For
example, to delete a generation data group index structure
A.B.C.names, you must code the following sequence of statements:

DLTX INDEX=A.B.C

DLTX INDEX=A.B

DLTX INDEX=A

The format of the DLTX statement is:

[labell DLTX INDEX=~

[,CVOL=device=seriall

BLDA (Build Index Alias) statement

The BLDA statement is used to assign an alias to an index at the
highest level of an OS CVOL.

The format of the BLDA statement is:

[labell BLDA INDEX=name

,ALIAS=ruung

[,CVOL=device=seriall

DLTA (Delete Index Alias) statement

The DLTA statement is used to delete an alias previously
assigned to an index at the highest level of an OS CVOL.

The format of the DLTA statement is:

[labell DLTA ALIAS=name

[,CVOL=device=seriall

418 MVS/370 Utilities

CONNECT statement

The CONNECT statement is used to place an entry in the high
level index of an OS CVOL. The entry identifies a second OS
CVOL by its device type and volume serial number. In addition,
it contains an index name identifying the index to be searched
for (during subsequent index searches) on the second OS CVOL.

This function does not create an index on the second OS CVOL.

The CONNECT statement does not create a SYSCTLG data set on the
connected control volume. Before cataloging the first data set
on a connected control volume, the user must define a SYSCTLG
data set on that volume. This can be done with the following DO
statement:

//ddname DO DSNAME=SYSCTLG,UNIT=xxxx,DISP=(,KEEP),
// SPACE=(CYL,1),VOLUME=SER=xxxxxx

If a job requires an auxiliary control volume to complete a
catalog search, the user need not have the auxiliary control
volume mounted before the job is begun. (The user does not have
to remember the volume on which a particular data set is
cataloged.) The system directs the operator to mount an
auxiliary control volume if it is needed.

Before any OS CVOL can be accessed by the system, it must be
defined in the ICF or VSAM master catalog. For details, see
Catalog Users Guide.

The format of the CONNECT statement is:

[labell CONNECT INDEX=~

,VOL=device=serial

[,CVOL=device=seriall

RELEASE (Disconnect) statement

The RELEASE statement is used to remove an entry from the high
level index of an OS CVOL. This disconnects, in effect, a
second OS CVOL from the first OS CVOL. The RELEASE statement
does not delete an index from the second OS CVOL.

The format of the RELEASE statement is:

[labell RELEASE INDEX=name

[,CVOL=device=seriall

BLDG (Build Generation Data Group Index) Statement

The BLDG statement is used to build an index for a gen~ration
data group, and to define what action should be taken when the
index overflows.

To delete a generation data group index structure, use the "DLTX
(Delete Index) Statement" on page 418.

IEHPROGM Program 419

The format of the BLDG statement is:

[labell BUILD INDEX=M.!!1..@

,ENTRIES=n

[,CVDL=device=serial]

[,EMPTYl

[,DELETE]

ADD (Add a Password) statement

The ADD statement is used to add a password entry in the
PASSWORD data set. When the control entry for a BDAM, online
data set is added, the indicated protection status of the data
set is set in the DSCB; when a secondary entry is added, the
protection status in the DSCB is not changed.

The format of the ADD statement is:

[labell ADD DSNAME=rul!!!..@

[,PASWDRD2=new-passwordl

[,CPASWDRD=control-passwordl

[,TYPE=codel

[,VDL=device=(list)]

[,DATA='user-data'l

REPLACE (Replace a Password) statement

The REPLACE statement is used to replace any or all of the
following information in a password entry: the password name,
protection mode Cread/write or read only) of the password, and
user data. When the control entry for a BDAM, online data set
is replaced, the protection status of the data set is changed in
the DSCB if necessary; when a secondary entry is replaced, the
protection status in the DSCB is not changed.

The format of the REPLACE statement is:

[labell REPLACE DSNAME=1l§l!!.g

[,PASWORDl=current-passwordl

[,PASWORD2=new-passwordl

[,CPASWORD=control-passwordl

[,TYPE=codel

[,VOL=device=(!ist)]

[,DATA='user-data'l

420 MVS/370 Utilities

DELETEP (Delete a PasswordJ statement

The DELETEP statement is used to delete an entry .in the PASSWORD
data set. If a control entry is deleted, all the secondary
entries for that data set are also deleted. If a secondary
entry is deleted, only that entry is deleted. When the control
entry for a BDAM, online data set is deleted, the protection
status in the DSCB is set to indicate that the data set is no
longer protected.

The format of the DELETEP statement is:

[label] DELETEP DSNAME=~

[,PASWORDI=current-passwordl

[,CPASWORD=control-passwordl

[,VOL=device=(listJ]

LIST (List Information from a PasswordJ statement

Parameters

ALIAS

CPASWORD

The LIST statement is used to format and print information from
a password entry.

The format of the LIST statement is:

[labell

Applicable
Control
statements

BLDA
DLTA

ADD

DELETEP
REPLACE

LIST DSNAME=~

,PASWORDI=current-password

Description of Parameters

ALIAS=name
specifies an unqualified name to be assigned
as the alias or to be deleted from the
index. The name must not exceed 8
characters.

CPASWORD=contro!-password
specifies the control password for the data
set. CPASWORD must be specified unless this
is the first password assigned to the data
set, in which case PASWORD2 specifies the
password to be added.

CPASWORD=control-password
CPASWORD must be specified unless the
control entry is being changed or deleted,
in which case PASWORDI specifies the control
password.

IEHPROGM Program 421

Parameters

CVOL

DATA

DELETE

Applicable
Control
statements

CATLG
UNCATLG
BlDX
DlTX
BlDA
DlTA
CONNECT
RELEASE
BLDG

ADD
REPLACE

BLDG

422 MVS/370 Utilities

Description of Parameters

CVOL=device=serial
For CATlG, UNCATLG, BLDX, DLTX and BLDG,
CVOl specifies the OS CVOL on which the
search for the index (entry, for UNCATLG) is
to begin.

For BLDA and DLTA, CVOL specifies the OS
CVOL on which the entry is to be made or
deleted.

For CONNECT and RELEASE, CVOL specifies
specifies the device type and volume serial
number of the first OS CVOL.

If CVOL is omitted:

For CATLG and UNCATLG, the search begins
with the ICF or VSAM master/JOBCAT/STEPCAT
catalog.

For BLDX, DlTX, BlDA, DLTA, CONNECT, RELEASE
and BLDG, the system attempts to locate the
proper (the first, for CONNECT) OS CVOL by
checking the ICF or VSAM master catalog for
an OS CVOl pointer alias name equal to the
high level index specified in the INDEX
(ALIAS, for DlTA) parameter.

The OS CVOl must be defined in the ICF or
VSAM master catalog as: SYSCTlG.Vserial,
where serial must equal the serial number of
the CVOl. See Catalog Users Guide for more
information.

Default: The search begins with the ICF or
VSAM master catalog (or JOBCAT/STEPCAT, if
specified).

DATA='user-data'
specifies the user data to be placed in the
password entry. The user data has a maximum
length of 77 bytes and must be enclosed in
apostrophes. Any other apostrophes
contained within the user data must be
entered as two single apostrophes.

If DATA is omitted from an ADD operation, 77
blanks are used. If DATA is omitted from a
REPLACE operation, current user data is not
changed.

DELETE
specifies that generation data sets are
scratched after their entries are removed
from the index.

Parameters

DSNAME

EMPTY

ENTRIES

INDEX

APplicable
Control
statements

SCRATCH
RENAME
CATLG
UNCATLG
ADD
REPLACE
DELETEP
LIST

BLDG

BLDG

BLDG

BLDX
DLTX

BLDA

CONNECT
RELEASE

Description of parameters

DSNAME=name

EMPTY

specifies the fully qualified name of the
data set to be either scratched or renamed;
the fully qualified name of the partitioned
data set that contains the member to be
scratched or renamed; the fully qualified
name of the data set to be cataloged or
uncataloged; or the fully qualified name of
the data set whose password entry is to be
added, replaced, deleted, or listed. The
qualified name must not exceed 44
characters, including delimiters.

specifies that all entries be removed from
the generation data group index when it
overflows. This deletes all index entries
for all of the generation data sets.

Default: The entries with the largest
generation numbers will be maintained in the
catalog when the generation data group index
overflows.

ENTRIES=n
specifies the number of entries to be
contained in the generation data group
index; n must not exceed 255.

INDEX=name
specifies the 1- to 35-character qualified
name of the generation data group index.

INDEX=name
specifies the qualified name of the index to
be created or deleted. The qualified name
must not exceed 44 characters, including
delimiters.

INDEX=name
specifies the unqualified name of the index
to which an alias name is to be assigned.
The unqualified name must not exceed 8
characters.

INDEX=name
specifies the unqualified index name to be
entered or removed from the high level index
on the first OS CVOL. The unqualified name
must not exceed 8 characters.

IEHPROGM Program 423

Parameters

MEMBER

NEWNAME

PASWORDI

PASWORD2

PURGE

SYS

APplicable
Control
statements

SCRATCH
RENAME

RENAME

REPLACE
DELETEP
LIST

ADD
REPLACE

SCRATCH

SCRATCH

424 MVS/370 Utilities

Description of Parameters

MEMBER=name
specifies a member name or alias of a member
(in the named data set) to be renamed or
removed from the directory of a partitioned
data set. This name is not validity-checked
because all members must be accessible,
whether the name is valid or not.

Default: The entire data set or volume of
data sets specified by name is changed or
scratched.

NEWNAME=name
specifies the new fully qualified name or
alias name for the data set or the new
member.

PASWORD1=current-password
specifies the password in the entry to be
listed, changed, or deleted.

Default: The operator is prompted for the
current password.

PASWORD2=new-password

PURGE

SYS

specifies the new password to be added or
assigned to the entry. If the password is
not to be changed, the current password must
also be specified as the new password. The
password can consist of 1 to 8 alphameric
characters.

Default: The operator is prompted for a new
password.

specifies that each data set specified by
DSNAME or VTOC be scratched, even if its
expiration date has not elapsed.

Default: The specified data sets are
scratched only if their expiration dates
have elapsed.

specifies that data sets which have not
expired but which have names that begin with
"AAAAAAAA.AAAAAAAA.AAAAAAAA.AAAAAAAA." or
"SYSnnnnn.T" and "F," "V," or "A" in
position 19 are scratched. These are names
assigned to data sets by the operating
system. This parameter is valid only when
VTOC "is specified.

If the name of the data set to be scratched
begins with SYS, nnnnn is the date in dddyy
format.

Parameters

TYPE

Applicable
Control
statements

ADD
REPLACE

Description of Parameters

TVPE=code
specifies the protection code of the
password and, if a control password entry is
to be changed for or assigned to a BDAM,
online data set, specifies the protection
status of the data set. The values that can
be specified for ~ are:

1

2

3

specifies that the password is to allow
both read and write access to the data
set; if a control password is being
assigned or changed, read/write
protection is set in the DSCB.

specifies that the password is to allow
only read access to the data set; if
control password is being assigned or
changed, read/write protection is set
in the DSCB.

specifies that the password is to allow
both read and write access to the data
set; if a control password is being
assigned or changed,
read-without-password protection is set
in the DSCB.

Default: For ADD, if this parameter is
omitted, the new password is assigned
the same protection code as the control
password for the data set. If a
control password is being "added,"
TYPE=3 is the default. For REPLACE,
the protection is not changed.

IEHPROGM Program 425

Parameters

VOL

VTOC

Applicable
Control
statements

CONNECT

ADD
REPLACE
DELETEP
SCRATCH
RENAME

CATlG

SCRATCH

Description of Parameters

VDL=de~ice=serial
specifies the device type and serial number
of the second OS CVOL. This information is
placed 1n the high level index of the first
OS CVOL.

VDL=device=(listJ
specifies the device type and serial
number(s) of the volume(s), limited to 50,
that contain the data set(s). If only one
serial number is listed in list, it need not
be enclosed in parentheses.--

For ADD, REPLACE and DELETEP, if omitted,
the protection status in the DSCB is not set
or changed, unless the data set is cataloged
in the OS CVOL. This parameter is not
necessary for secondary password entries, or
if the desired protection status in the DSCB
is already set or is not to be changed by
ADD or REPLACE.

For SCRATCH and RENAME, if VTOC or MEMBER is
specified, VOL cannot specify more than one
volume. Caution should be used when
specifying VTOC if VOL specifies the system
residence volume.

VDL=device=(listll(serial,segnol

VTDC

specifies the device type, serial numbers,
and data set sequence numbers (for tape
volumes) of the volumes (up to 50) that
contain the data sets to be cataloged in the
OS CVOL.

The volume serial numbers must appear in the
same order in which they were originally
encountered (in DO statements within the
input stream) when the data set was created.

segno is valid only for data sets which
reside on tape.

specifies that all data sets on the
specified volume, except those protected by
a password or those whose expiration dates
have not expired, are scratched.
Password-protected data sets are scratched
if the correct password is provided. The
effect of VTOC is modified when it is used
with PURGE or SYS.

IEHPROGH EXAMPLES

The following examples illustrate some of the uses of IEHPROGM.
Figure 148 can be used as a quick-reference guide to IEHPROGM
examples. The numbers in the "Example" column point to the
examples that follow.

426 MVS/370 Utilities

Mount
Operation Volumes Comments Example

SCRATCH Disk VTOC is scratched. 1

SCRATCH Disk Two data sets are scratched and their entries 2
UNCATLG removed from the OS CVOL.

RENAME, Disks A data set is renamed on two mountable devices; 3
UNCATLG the old data set name is removed from the OS
CATLG CVOL. The data set is cataloged under its new

name.

UNCATLG Disk Index structures for three generation data sets 4
are deleted from the OS CVOL.

RENAME Disk A data set is renamed. The old passwords are 5
DELETEP, deleted and new passwords are assigned.
and ADD

LIST and Disk A password entry is 1 i sted. Protection mode 6
REPLACE and status are changed, and user data is added.

RENAME Disk A member of a partitioned data set is renamed. 7

CATLG and Disk One OS CVOL is connected to another. 8
CONNECT

BLDG, Disk A generation data group index is built, three 9
RENAME and data sets are renamed and entered in the index.
CATLG

BLDG Disk A new generation data group index is built and 10
updated through JCL. A model DSCB is created.
New generations are added.

Figure 148. IEHPROGM Example Directory

IEHPROGM EXAMPLE 1

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

In the following example, all data sets are scratched from the
volume table of contents of a mountable volume. Because the
system residence volume is not referred to, no DDI DD statement
is necessary in the job stream.

//SCRVTOC JOB
// EXEC
//SYSPRINT DD
//DD2 DD
//SYSIN DD

SCRATCH

091550,BROWN
PGM=IEHPROGM
SYSOUT=A
UNIT=disk,VOLUME=SER=222222,DISP=OLD

* VTOC,VOL=disk=222222, SYS

The SCRATCH statement, used in this example, indicates that all
data sets (including those system data sets beginning with
AAAAAAAA.AAAAAAAA.AAAAAAAA.AAAAAAAA) whose expiration dates have
expired are scratched from the specified volume.

IEHPROGM Program 427

IEHPROGH EXAMPLE 2

IEHPROGM EXAMPLE 3

In this example, two data sets are scratched: SETI is scratched
on volume 222222, and A.B.C.D.E is scratched on volume 222222.
Both data sets are uncataloged.

//SCROSETS JOB
// EXEC
//SYSPRINT DO
//ODI DD
//D02 DD
//SYSIN OD

SCRATCH
UHCATlG
SCRATCH
UHCATlG

091550,BROWN
PGM=IEHPROGM
SYSOUT=A
UNIT=disk,VOlUME=SER=llllll,DISP=OlD
UNIT=disk,DISP=OlD,VOlUME=SER=222222
* DSNAME=SETl,VOL=disk=222222
DSNAME=SETl
DSNAME=A.B.C.D.E,VOl=disk=222222
DSNAME=A.B.C.D.E

The utility control statements are discussed below:

• The first SCRATCH statement specifies that SETl, which
resides on volume 222222, is scratched.

• The first UNCATlG statement specifies that SETI is
uncataloged.

• The second SCRATCH statement specifies that A.B.C.D.E, which
resides on volume 222222, is scratched.

• The second UNCATlG statement specifies that A.B.C.D.E is
uncataloged.

In this example, the name of a data set is changed on two
mountable volumes. The old data set name is removed from the OS
CVOl and the data set is cataloged under its new data set name.

/IRENAMEOS
//
/ISYSPRINT
//001
//D02
/1
//SYSIN

RENAME

UHCATlG
CATlG

JOB 091550,BROWN
EXEC PGM=IEHPROGM
DD SYSOUT=A
DD VOlUME=SER=llllll,UNIT=dfsk,DISP=OlD
DD UNIT=(disk"DEFER),DISP=OlD,

VOlUME=(PRIVATE,SER=(222222,333333»
DD *
DSNAME=A.B.C,NEWNAME=NEWSET,
VOl=disk=(222222,333333)
OSNAME=A.B.C
OSNAME=NEWSET,VOl=disk=(222222,333333)

The control statements are discussed below:

• RENAME specifies that data set A.B.C, which resides on
volumes 222222 and 333333, is renamed HEWSET.

• UHCATlG specifies that data set A.B.C is uncataloged.

72

C

• CATlG specifies that HEWSET, which resides on volumes 222222
and 333333, is cataloged in the OS CVOl.

428 MVS/370 utilities

IEHPROGM EXAMPLE 4

IEHPROGM EXAMPLE 5

In this example, three data sets--A.B.C.D.E.F.SETl,
A.B.C.G.H.SET2, and A.B.I.J.K.SET3--are uncataloged.

//DLTSTRUC JOB
// EXEC
//SYSPRINT DD
//DD1 DD
//SYSIN DD

UNCATLG
UNCATLG
UNCATlG

09#550,BROWN
PGM=IEHPROGM
SYSOUT=A
UNIT=disk,VOlUME=SER=111111,DISP=OlD

* DSNAME=A.B.C.D.E.F.SETI
DSNAME=A.B.C.G.H.SET2
DSNAME=A.B.I.J.K.SET3

The control statements are discussed below:

• The UNCATLG statements specify that data sets
A.B.C.D.E.F.SETl, A.B.C.G.H.SET2, and A.B.I.J.K.SET3 are
uncataloged.

In this example, a data set is renamed. The data set passwords
assigned to the old data set name are deleted. Then two
passwords are assigned to the new data set name.

If the data set is not cataloged, a message is issued indicating
that the lOCATE macro instruction failed.

//ADDPASS JOB 09#550,BROWN
// EXEC PGM=IEHPROGM,PARM='NOPRINT'
//SYSPRINT DD SYSOUT=A
//DD1 DD VOlUME=(PRIVATE,SER=222222),DISP=OlD,
// UNIT=(disk"DEFER)
//SYSIN DD *

RENAME DSNAME=OlD,VOl=disk=222222,NEWNAME=NEW
DElETEP DSNAME=OlD,PASWORD1=KEY

72

ADD DSNAME=NEW,PASWORD2=KEY,TYPE=1, C
DATA='SECONDARY IS READ'

ADD DSNAME=NEW,PASWORD2=READ,CPASWORD=KEY,TYPE=2, C
DATA='ASSIGNED TO J. DOE'

The utility control statements are discussed below:

• RENAME specifies that the data set called OLD is renamed
NEW. The operator is required to supply a password to
rename the old data set.

• DElETEP specifies that the entry for the password KEY is
deleted. Because KEY is a control password in this example,
all the password entries for the data set name are deleted.
The VOL parameter is not needed because the protection
status of the data set as set in the DSCB is not to be
changed; read/write protection is presently set in the DSCB,
and read/write protection is desired when the passwords are
reassigned under the new data set name.

• The ADD statements specify that entries are added for
passwords KEY and READ. KEY becomes the control password
and allows both read and write access to the data set. READ

IEHPROGM Program 429

IEHPROGM EXAMPLE 6

IEHPROGM EXAMPLE 7

becomes a secondary password and allows only read access to
the data set. The VOL parameter is not needed, because the
protection status of the data set is still set in the DSCB.

In this example, information from a password entry is listed.
Then the protection mode of the password, th~ protection status
of the data set, and the user data are changed.

//REPLPASS JOB 091550,BROWN
EXEC PGM=IEHPROGM,PARM='NOPRINT'

//SYSPRINT DD SYSOUT=A
//DDI DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
//DD2 DD VOLUME=(PRIVATE,SER=(222222,333333»,
// UNIT=(disk"DEFER),DISP=OLD
//SYSIN DD *

LIST DSNAME=A.B.C,PASWORD1=ABLE

72

REPLACE DSNAME=A.B.C,PASWORD1=ABLE, C
PASWORD2=ABLE,TYPE=3, C
VOL=disk=(222222,333333), C
DATA='NO SECONDARIES; ASSIGNED TO DEPT 31'

The utility control statements are discussed below:

• LIST specifies that the access counter, protection mode, and
user data from the entry for password ABLE are listed.
Listing the entry permits the content of the access counter
to be recorded before the counter is reset to zero by the
REPLACE statement.

• REPLACE specifies that the protection mode of password ABLE
is to be changed to allow both read and write access and
that the protection status of the data set is changed to
write-only protection. The VOL parameter is required
because the protection status of the data set is changed and
the data set, in this example, is not cataloged. Because
this is a control password, the CPA SWORD parameter is not
required.

In this example, a member of a partitioned data set is renamed.

//REN
//
//SYSPRINT
//DD1
//SYSIN

RENAME

JOB 091550,BROWN
EXEC PGM=IEHPROGM
DD SYSOUT=A
DD VOL=SER=222222,DISP=OLD,UNIT=disk
DD *
VOL=disk=222222,DSNAME=DATASET,NEWNAME=BC,

MEMBER=ABC

The control statements are discussed below:

• DDl DD defines a permanently mounted volume.

• SYSIN DD defines the input data set, which follows in the
input stream.

72

C

430 MVS/370 Utilities

IEHPROGM EXAMPLE 8

IEHPROGM EXAMPLE 9

• RENAME specifies that member ABC in the partitioned data set
DATASET, which resides on a disk volume, is renamed BC.

In this example, a new OS CVOl (SYSCTlG data set) is defined and
connected to an existing OS CVOl. A data set is then cataloged
in the new OS CVOl.

//lNKX JOB
//STEPI EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//NEWCVOl DD DSN=SYSCTlG,UNIT=disk,VOl=SER=222222,
// DISP=(,KEEP),SPACE=(TRK,(10,1»
//DD1 DD UNIT=disk,VOl=SER=111111,DISP=SHR
//SYSIN DD *

CATlG DSNAME=SYSCTlG.V222222,VOl=disk=222222
CONNECT INDEX=AA,VOl=disk=222222
CATlG DSNAME=AA.BB,VOl=disk=PACK14

This example assumes that the OS CVOl on volume 111111 was
previously defined in the ICF or VSAM master catalog with an OS
CVOl pointer, and "A A" was defined in the ICF or VSAM master
catalog as an alias of the OS CVOl pointer. See Catalog Users
Guide for details on how this·is done.

The utility control statements are discussed below:

• NEWCVOl DD allocates space for the new OS CVOl.

• The first CATlG statement establishes an OS CVOl pointer in
the IeF or VSAM master catalog for the new OS CVOl.

• The CONNECT statement causes the new OS CVOl (on volume
222222) to be connected to the old OS CVOl (on volume
111111), such that any catal~g management requests coming to
the old OS CVOl having a high level index name of AA will be
routed to the new OS CVOl.

• The second CATlG statement will cause the data set AA.BB to
be cataloged in the new OS CVOl on volume 222222. Since
this is the first request to update the new OS CVOl, this
will cause the new OS CVOl to be formatted before the
catalog entry is made.

In this example, a generation data group index for generation
data group A.B.C is built in an OS CVOl. Three existing
noncataloged, nongeneration data sets are renamed; the renamed
data sets are entered as generations in the generation data
group index.

IEHPROGM Program 431

IEHPROGM EXAMPLE 10

72
//BLDINDEX JOB
// EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
//DD2 DD UNIT=(disk"DEFER),DISP=OLD,
// VOLUME=(PRIVATE"SER=(222222»
//SYSIN DD *

BLDG INDEX=A.B.C,ENTRIES=10,CVOL=disk=111111
RENAME DSNAME=DATASET1,VOL=disk=222222,

NEWNAME=A.B.C.GOOOIVOO
RENAME DSNAME=DATASET2,VOL=disk=222222,

NEWNAME=A.B.C.GOOO2VOO
RENAME DSNAME=DATASET3,VOL=disk=222222,

NEWNAME=A.B.C.GOOO3VOO
CATLG DSNAME=A.B.C.GOOOIVOO,VOL=disk=222222,

CVOL=disk=111111
CATlG DSNAME=A.B.C.GOOO2VOO,VOL=disk=222222,

CVOL=disk=111111
CATLG DSNAME=A.B.C.GOOO3VOO,VOL=disk-222222,

CVOL=disk=111111
/*

The control statements are discussed below:

• DDI DD defines the volume on which the SYSCTLG data set
resides.

• BLDG specifies the generation group name A.B.C and makes
provision for ten entries in the index. The oldest
generation is uncataloged when the index becomes full. No
generations are scratched.

• The RENAME statements rename three nongeneration data sets
residing on a disk volume.

C

C

C

C

C

C

• The CATLG statements enter the renamed data sets in the
generation data group index and catalog them in the OS CVOL.

Because the DCB parameters were supplied when the nongeneration
data sets were created, no DCB parameters are now specified;
therefore, no model DSCB is required. See Example 10 for
information on how to create a model DSCB.

In this example, an IEHPROGM job step, STEPA, creates a model
DSCB and builds a generation data group index. STEP B, an
IEBGENER job step, creates and catalogs a sequential generation
data set from data in the input stream. STEP C, an IEBGENER job
step, creates and catalogs a second generation with new DCB
attributes.

This example assumes that the OS CVOL with serial number 111111
was previously defined in the ICF or VSAM master catalog with an
OS CVOL pointer, and "A" was defined in the ICF or VSAM master
catalog as an alias of the OS CVOL pointer. See Catalog Users
Guide for details on how this is done.

432 MVS/370 Utilities

//BLDIHDX JOB
//STEPA EXEC PGM=IEHPROGM
//SYSPRIHT DD SYSOUT=A

DSNAME=A.B.C,DISP=(,KEEP),SPACE=(TRK,(O»,
DCB=(LRECL=80,RECFM=FB,BLKSIZE=800),
VOlUME=SER=111111,UHIT=disk

//BlDDSCB DD
//
//
//SYSIH DD '*

BLDG IHDEX=A.B.C,ENTRIES=10,EMPTY,DELETE
/'*
//STEPB EXEC PGM=IEBGEHER
//SYSPRIHT DD SYSOUT=A
//SYSIH DD DUMMY

DSHAME=A.B.C(+l),UHIT=disk,DISP=(,CATLG),
VOLUME=SER=222222,SPACE=(TRK,20)

//SYSUT2 DD
//
//SYSUTI DD DATA

(input data)

//STEPC
//SYSPRIHT
//SYSIN
//SYSUT2
//
//
//SYSUTI

EXEC
DO
DO
DD

DO

(input data)

/'*

PGM=IEBGEHER
SYSOUT=A
DUMMY'
DSNAME=A.B.CC+l),UHIT=disk,DISP=(,CATLG),
DCB=(lRECL=80,RECFM=FB,BLKSIZE=1600),
VOlUME=SER=222222,SPACE=CTRK,20)
DATA

The control statements are discussed below:

STEPA:

• BLDDSCB DD creates a model DSCB on the OS CVOL volume.

• SYSIN DD indicates that the control data set follows in
the input stream.

• BLDG specifies the generation data group name A.B.C and
makes provision for ten entries in the group. When the
index is filled, it is emptied, and all of the
generations are deleted.

STEPB:

• SYSUT2 DD defines an output sequential generation data
set. The generation data set is assigned the absolute
generation and version number GOOOIVOO in the index.

• SYSUTI DD defines the input data set, which follows in
the input stream.

STEPC:

• SYSUT2 DD defines a second output sequential generation
data set. The generation data set is assigned the
absolute generation and version number G0002VOO in the
index. The specified DCB attributes override those
initially specified in the model DSCB. The DCB
attributes specified when the model DSCB was created
remain unchanged; that is, those attributes are
applicable when you catalog a succeeding generation
unless you specify overriding attributes at that time.

• SYSUTI defines the input data set, which follows in the
job stream.

IEHPROGM Program 433

Any subsequent job that causes th~ deletion of the generations
should include DD statements defining the devices on which the
volumes containing those generations are to be mounted. The OS
CVOl entry is deleted for each generation for which no DD
statement is included at that time, but the generation itself is
not deleted.

After the generation data group is emptied, the new generations
continue to be assigned generation numbers according to the last
generation number assigned before the empty operation. To reset
the numbering operation (that is, to reset to GOOOOVOO or
GOOOIVOO), it is necessary to delete the catalog entries for all
the old generation data sets and then rename and recatalog,
beginning with GOOOOVOO.

434 MVS/370 Utilities

IFHSTATR PROGRAM

IFHSTATR is a system utility used to format and print
information from type 21 SMF (system management facilities)
records, which provide error statistics by volume (ESV) data.

Figure 149 shows the format of the type 21 record.

o

4

8

12

16

20

24

28

32

36

40

Bytes of Record Descriptor Word

System
Indicator Record Type Time of Day

Time of Day (continued) Current Date

Current Date (continued) System Identification

Length of rest of record
System Identifier including this field

Volume Serial Number

Volume Serial Number 22
(continued) Channel Unit Address

UCB Type

Temporary Temporary
Read Errors Write Errors Start I/O's

Permanent Permanent
Read Errors Write Errors Noise Blocks Erase Gaps

Erase Gaps
(continued) Cleaner Actions Tape Density

Block Size Reserved

Figure 149. Type 21 SMF Record Format with ESV Data

Error statistics by volume (ESV) records are retrieved from the
IFASMFDP tape or from SYS1.MAN (on tape).

ASSESSING THE QUALITY OF TAPES IN A LIBRARY

The statistics gathered by SMF in type 21 records can be very
useful in assessing the quality of tapes in a library. IFHSTATR
prints type 21 records in the same order that they were
gathered, that is, date/time sequence. You may find it useful
to sort type 21 records into volume serial number sequence, into
channel unit sequence, and into error occurrence sequence to aid
in analyzing the condition of tapes in the library.

The IFHSTATR report helps to identify deteriorating media
(tapes); occasionally poor performance from a particular tape
drive can also be identified. The permanent read error counter
or permanent write error counter is increased by one each time
the tape error recovery rout i nes (ERPs) determi ne that the er\ror'
is permanent and is returned to the user with indication of a(
permanent I/O error. If a SYNAD routine to handle such errors
is present, the counts in these fields can be greater than one.
The temporary read error counter and temporary write error
counter are increased when the ERP initially handles an error
condition corrected in the ERP. The severity of a temporary
error can be estimated by analyzing either the erase gap counter
for write errors or the noise block and cleaner action counters

IFHSTATR Program 435

INPUT AND OUTPUT

VOLUME CPU MOD
SERIAL DATE ID NO

001021 82/309 BB 40
001022 82/309 AA 40
000595 82/309 CC 50

Figure 150. Sample

CONTROL

for read errors. The erase gap counter is increased each time a
write error is retried.

For example, if the temporary write error counter contains 2 and
the erase gap counter contains 5, the ERP was entered twice for
write error recovery. The average recovery actions were 2.5 per
error (actually may have been 1 and 4). The cleaner action
counter is only increased every fourth read retry. A ratio of
one cleaner action to one temporary read error indicates, in
general, recovery on the fifth retry (the first retry after the
cleaner action). A ratio of 10 cleaner actions to one temporary
error indicates that recovery is, in general, a result of
reading the tape in the opposite direction (reading backward on
a read forward tape or readin~ forward on a read backward tape).
The noise block counter is increased once for each noise record
(record less than minimum read length) encountered.

In analyzing IFHSTATR reports, the usage (SIO) count should also
be considered, because it is the count of all start I/Os to the
tape drive, except those issued by the ERP in the course of
error recovery. The usage count can be used to determine the
ratio of error-free accesses of the tape to total accesses of
the tape.

IFHSTATR uses as input type 21 SMF (system
facilities) records from an IFASMFDP tape,
information about errors on magnetic tape.
only type 21 records; if none are found, a
the output data set.

management
which contain

IFHSTATR processes
message is written to

IFHSTATR produces as output an output data set, which contains
information selected from type 21 records. The output takes the
form of 121-byte unblocked records, with an American National
Standards Institute (ANSI) control character in the first byte
of each record.

Figure 150 shows a sample of printed output from IFHSTATR.

TIME CHANNEL TEMP TEMP PERM PERM NQISE ERASE CLEANER USAGE TAPE BLOCK
OF DAY / UNIT READ WRITE READ WRITE BLOCKS GAPS ACTIONS (SIO'S) DENSITY LENGTH

15:55:07 181 1 0 0 0 1 0 0 10 0800 80
15:56:02 184 10 0 0 0 0 0 0 28 1600 121
15:56:20 283 0 10 0 0 0 10 0 28 0800 50

Output from IFHSTATR

IFHSTATR is controlled by job control statements only. Utility
control statements are not used.

JOB CONTROL STATEMENTS

Figure 151 on page 437 shows the job control statements for
IFHSTATR.

436 MVS/370 utilities

IFHSTATR EXAMPLE

statement

JOB

EXEC

SYSUTI DD

SYSUT2 DD

Use

Initiates the job.

Specifies the program name (PGM=IFHSTATR).

Defines the input data set and the device on which
it resides. The DSNAME, UNIT, VOLUME, LABEL, DCB,
and DISP parameters should be included if the data
set is not copied from another program.

Defines the sequential data set on which the output
is to be written.

Figure 151. IFHSTATR Job Control statements

The output data set can reside on any output device supported by
BSAM.

The lRECL and BlKSIZE parameters are not specified by IFHSTATR.
This information is taken from the DCB parameter on the SYSUT1
DD statement or from the tape label.

This example shows the JCl needed to produce a report.

//REPORT
//
//SYSUT1
//SYSUT2
/*

JOB
EXEC PGM=IFHSTATR
DD DSNAME=COPY.SMFDATA,DISP=SHR
DD SYSOUT=A

Note: COPY.SMFDATA is a copy of the SYS1.MANx data set made
with the IFASMFDP utility program.

IFHSTATR Program 437

APPENDIX A. EXIT ROUTINE LINKAGE

Utility programs can be linked to user-supplied exit routines
for additional processing.

LINKING TO AN EXIT ROUTINE

Linking to an exit routine from a utility program is
accomplished by the utility program in one of the following
ways:

• If the exit routine is for label processing or totaling, or
if the exit routine is specified in the IEBTCRIN program by
OUTREC or ERROR, linkage is performed by the BALR
instruction.

• In all other cases, linkage is performed by using the LINK
macro instruction.

The LINK macro instruction contains the symbolic name of the
entry point of an exit routine and, if required, a list of
parameters.

For further information on the use of the LINK macro
instruction, see "LINK or ATTACH Macro Instruction" on page 13.

At the time of the linkage operation:

• General register 1 contains the starting address of the
parameter list.

• General register 13 contains the address of the register
save area. This save area must not be used by user label
processing routines. See Appendix C, "Processing User
Labels" on page 446.

• General register 14 contains the address of the return point
in the utility program.

• General register 15 contains the address of the entry point
to the exit routine.

Registers 1 through 14 must be restored before control is
returned to the utility program.

The exit routine must be contained in either the job library or
the link library.

The parameter lists passed to label processing routines and
parameter lists passed to non label processing routines are
described in the topics that follow.

LABEL PROCESSING ROUTINE PARAMETERS

The parameters passed to a user's label processing routine are
addresses of: the aO-byte label buffer, the DCB being
processed, the status information if an uncorrectable
input/output error occurs, and the totaling area.

The 80-byte label buffer contains an image of the user label
when an input label is being processed. When an output label is
being processed, the buffer contains no significant information
at entry to the user's label processing routine. When the
utility program has been requested to generate labels, the
user's label processing routine must construct a label in the
label buffer.

438 MVS/370 Utilities

If standard user labels (SUL) are specified on the DO statement
for a data set, but the data set has no user labels, the system
still takes the specified exits to the appropriate user's
routine. In such a case, the user's input label processing
routine is entered with the buffer address parameter set to
zero.

The format and content of the DCB are presented in Data
Management Macro Instructions.

Bit 0 of flag 1 in the DCB-address parameter is set to a value
of 0 except when:

• Volume trailer or header labels are being processed at
volume switch time.

• The trailer labels of a MOD data set are being processed
(when the data set is opened).

If an uncorrectable input/output error occurs while reading or
writing a user label, the appropriate label processing routine
is entered with bit 0 of flag 2 in the status information
address parameter set on. The three low order bytes of this
parameter contain the address of standard status information as
supplied for SYNAD routines. (The SYNAD routine is not
entered.)

NONLABEL PROCESSING ROUTINE PARAMETERS

Figure 152 shows the programs from which exits can be taken to
non label processing routines, the names of the exits, and the
parameters available for each exit routine.

Program

IEBGENER

IEBCOMPR

IEBPTPCH

IEBTCRIN

Exit

KEY

DATA

IOERROR

ERROR

PRECOMP

INREC

OUTREC

ERROR

OUTREC

Parameters

Address at which key is to be placed
(record follows key); address of DCB.
Address of SYSUT1 record; address of
DCB. "
Address of DECB; cause of the error and
address of DCB. (Address in lower
order three bytes and cause of error in
high order byte.)

Address of DCB for SYSUT1; address of
DCB for SYSUT2.1
Address of SYSUT1 record; length of
SYSUT1 record, address of SYSUT2
record; length of SYSUT2 record.

Address of input record; length of the
input record.
Address of output record; length of the
output record.

Address of the error record; address of
a fullword which contains the record
length.
Address of the normal record; address
of a fullword which contains the record
length.

Figure 152. Parameter Lists for Nonlabel Processing Exit
Routines

Appendix A. Exit Routine Linkage 439

Note to Figure 152 on page 439:
1 The IOBAD pointer in the DCB points to a location that

contains the address of the corresponding data event control
block (DECB) for these records. The format of the DECB is
illustrated as part of the BSAM READ macro instruction in
Data Management Macro Instructions.

RETURNING FROM AN EXIT ROUTINE

An exit routine returns control to the utility program by means
of the RETURN macro instruction in the exit routine.

The format of the RETURN macro instruction is:

RETURN [(r,r)]

[,RC=1l1(15)]

where:

(r,r)

RC=

specifies the range of registers, from 0 to 15, to be
reloaded by the utility program from the register save
area. For example, (14,12) indicates that all registers
except register 13 are to be restored. If this parameter
is omitted, the registers are considered properly restored
by the exit routine.

specifies a decimal return code in register 15. If RC is
omitted, register 15 is loaded as specified by Cr,r).

RC values can be coded:

.!l

(15)

specifies a return code to be placed in the 12 low
order bits of register 15.

specifies that general register 15 already contains a
valid return code.

The user's label processing routine must return a code in
register 15 as shown in Figure 153 unless:

• The buffer address was set to zero before entry to the label
processing routine. In this case, the system resumes normal
processing regardless of the return code.

• The user's label processing routine was entered after an
uncorrectable output error occurred. In this case the
system attempts to resume normal processing.

Figure 153 shows the return codes that can be issued to utility
programs by user exit routines. Slightly different return codes
are used for the UPDATE=INPlACE option of the IEBUPDTE program.
See "IEBUPDTE Program" on page 293.

For a list of return codes issued by IEBTCRIN at job
termination, see "IEBTCRIN Program" on page 261.

440 MVS/310 Utilities

Return
Type of Exit Code Action

Input Header or 0 The system resumes normal processing. If there
Trailer label are more labels in the label group, they are

ignored.

4 The next user label is read into the label
buffer area and control is returned to the
user's routine. If there are no more labels,
normal processing is resumed.

16 The utility program is terminated on request of
the user routine.

Output Header or 0 The system resumes normal processing. No label
Trailer label is written from the label buffer area.

4 The user label is written from the label buffer
area. The system then resumes normal
processing~

8 The user label is written from the label buffer
area. If fewer than eight labels have been
created, the user's routine again receives
control so that it can create another user
label. If eight labels have been created, the
system resumes normal processing.

16 The utility program is terminated on request of
the user routine.

Totaling Exits 0 Processing continues, but no further exits are
taken.

4 Normal operation continues.

8 Processing ceases, except for EOD processing on
output data set (user label processing).

16 Utility program is terminated.

All other exits 0-11 (Set Return code is compared to highest previous
(except to next return code; the higher is saved and the other
IEBPTPCH's exit multiple of discarded. At the normal end of job, the
OUTREC and four) highest return code is passed to the calling
IEBTCRIN's exits processor.
ERROR and
OUTREC)

12 or 16 Utility program is terminated and this return,
code is passed to the calling processor.

ERROR 0 Record is not placed in the error data set.
Processing continues with the next record.

4 Record is placed in the error data set
(SYSUT3).

8 Record is not placed in error data set but is
processed as a valid record (sent to OUTREC and
SYSUT2 if specified). IEBTCRIN removes the EDW
from an edited MTDI record before processing
continues.

16 Utility program is terminated.

Figure 153 (Part 1 of 2). Return Codes That Must Be Issued by User Exit Routines

Appendix A. Exit Routine linkage 441

Return
Type of Exit Code Action

OUTREC 4 Record is not placed in normal output data set.
(IEBPTPCH)

12 or 16 Utility program is terminated.

Any other Record is placed in normal output data set
number (SYSUT2).

OUTREC 0 Record is not placed in normal output data set.
(IEBTCRIN)

4 Record is placed in normal output data set
(SYSUT2).

16 Utility program is terminated.

Figure 153 (Part 2 of 2). Return Codes That Must Be Issued by User Exit Routines

Further information on the use of the RETURN macro instruction
is contained in Supervisor Services and Macro Instructions.

442 MVS/370 Utilities

APPENDIX B. DD STATEMENTS FOR DEFINING MOUNTABLE DEVICES

When defining mountable devices to be used by system utility
programs IEHPROGM , IEHMOVE , or IEHLIST, the user must consider
the implications of the DD statements used to define those
devices.

DD statement parameters must ensure that no one else has access
to either the volume or the data set. In any case, caution
should be used when altering volumes that are permanently
resident or reserved.

Under normal conditions, a mountable device should not be shared
with another job step; that is, if a utility program is used to
update a volume on a mountable device, the volume being updated
must remain mounted until the operation is completed.

Following are ways to ensure that mountable devices are not
shared:

• Specify DEFER in a DD statement defining a mountable device.

• Specify a volume count in the VOLUME parameter of a DD
statement that is greater than the number of mountable
devices to be allocated.

• Specify PRIVATE in a DD statement defining a mountable
device.

For a detailed discussion, see the publication JCL.

DD STATEMENT EXAMPLES

DD EXAMPLE 1

In the following examples of DD statements l an IBM DASD is
indicated as the mountable device. Alternative parameters are
stacked.

Examples that use disk in place of actual device numbers must be
changed before use. See "DASD and Tape Device Support" on page
3 for valid device number notation.

This DD statement makes a specific request for a private,
nonsharable volume or volumes to be mounted on a single device.

//DD1
//
//

DD UNIT=(disk,IDEFER),DISP=(,KEEP),
VOLUME=(PRIVATE,SER=(123456»,
SPACE=(CYL,(1,1»

A utility program causes a mount message to be issued for a
specific volume when the volume is required for processing by
the program. The user should supply the operator with the
clearly marked volume or volumes to be mounted during the job
step.

This DD statement ensures that the volume integrity of a
mountable volume is maintained. If only one volume is to be
processed, it is mounted at the start of the job step and
demounted at the end of the step. If additional volumes are
processed, they are mounted and demounted when needed by the
utility program. The last volume to be processed is demounted
at the end of the job step.

Appendix B. DD Statements for Defining Mountable Devices 443

DD EXAMPLE 2

DD EXAMPLE l

DD EXAMPLE 4

This DD statement makes a request for a private, nonsharable
volume.

//002 DO UNIT=Cdisk"DEFER),VOLUME=PRIVATE,DISP=CNEW,KEEP),
// SPACE=(CYL,(1,1»

The results of this statement are identical to those shown in DO
Example 1.

If a specific unit is requested and the volume serial number is
not given in the DO statement, the user must be certain that
either: (1) the desired volume is already mounted on that unit,
or (2) a volume is not mounted, causing the system to issue a
mount message.

This statement can be used only if the user is certain that a
removable volume, rather than a fixed volume, will be allocated
by the scheduler. If there is any chance that a fixed volume
will be allocated, this statement must not be used.

This DO statement makes a specific request for a private,
sharable volume to be mounted on a device.

//001 DO UNIT=disk,VOLUME=(PRIVATE,SER=C121212»,DISP=OLD

This DO statement does not ensure that volume integrity is
maintained. It should be used with extreme caution in a
multiprogramming environment because there is the possibility
that a job step running concurrently might make a specific
request for the volume, use the volume, and demount it.

This DO statement makes a specific request for a public,
nonsharable volume to be mounted on a device.

//003 DO UNIT=(disk"DEFER),VOLUME=SER=789012,DISP=OLD

If the volume is already mounted, it is used. The volume
remains mounted at the end of the job step, and is not demounted
until another job step requires the device on which the volume
is mounted.

This DO statement ensures that volume integrity is maintained
between jobs; two or more such statements in a single job can
allocate the same device.

444 MVS/370 Utilities

DD EXAMPLE 5

This DD statement makes a specific request for a public,
sharable volume to be mounted on a device.

//DD1 DD UNIT=disk,VOlUME=SER=654321,DISP=OlD

If the volume is already mounted, it is used. The volume
remains mounted at the end of the job step, and is not demounted
until another job step requires the device on which the volume
is mounted. (This DD statement can also be used to define
permanently resident devices.)

This DD statement does not ensure that the volume integrity of a
mountable volume is maintained. It should be used with extreme
caution in a multiprogramming environment because there is the
possibility that a job step running concurrently might use the
device.

Appendix B. DD Statements for Defining Mountable Devices 445

APPENDIX C. PROCESSING USER LABELS

User labels can be processed by IEBCOMPR, IEBGENER, IEBPTPCH,
IEBTCRIN, IEBUPDTE, and IEHMOVE. In some cases, user-label
processing is automatically performed; in other cases, you must
indicate the processing to be performed. In general, user label
support allows the utility program user to:

• Process user labels as data set descriptors.

• Process user labels as data.

• Total the processed records prior to each WRITE command
(IEBGENER and IEBUPDTE only).

For either of the first two options, the user must specify
standard labels (SUl) on the DD statement that defines each data
set for which user-label processing is desired. For totaling
routines, OPTCD=T must be specified on the DD statement.

The user cannot update labels by means of the IEBUPDTE program.
This function must be performed by a user's label processing
routines. IEBUPDTE will, however, allow you to create labels on
the output data set from data supplied in the input stream. See
"LABEL Statement" on page 303 of the chapter "IEBUPDTE Program."

IEHMOVE does not allow exits to user routines and does not
recognize options concerning the processing of user labels as
data. IEHMOVE always moves or copies user labels directly to a
new data set. See "IEHMOVE Program" on page 361.

Volume switch labels of a multivolume data set cannot be
processed by IEHMOVE, IEBGENER, or IEBUPDTE. Volume switch
labels are therefore lost when these utilities create output
data sets. To ensure that volume switch labels are retained,
process multivolume data sets one volume at a time.

PROCESSING USER LABELS AS DATA SET DESCRIPTORS

When u~er labels are to be processed as data set descriptors,
one of the user's label processing routines receives control for
each user label of the specified type. The user's routine can
include, exclude, or modify the user label. Processing of user
labels as data set descriptors is indicated on an EXITS
statement with keyword parameters that name the label processing
routine to be used.

The EXIT keyword parameters indicate that a user routine should
receive control each time the OPEN, EOV, or CLOSE routine
encounters a user label of the type specified.

Figure 154 on page 447 illustrates the action of the system at
OPEN, EOV, or CLOSE time. When OPEN, EOV, or CLOSE recognizes a
user label and when SUl has been specified on the DD statement
for the data set, control is passed to the utility program.
Then, if an exit has been specified for this type of label, the
utility program passes control to the user routine. The user's
routine processes the label and returns control, along with a
return code, to the utility program. The utility program then
returns control to OPEN, EOV, or CLOSE.

This cycle is repeated up to eight times, depending upon the
number of user labels in the group and the return codes supplied
by the user's routine.

446 MVS/370 Utilities

OPEN/EOV ICLOSE

User's I.bel
processing routine

Figure 154. System Action at OPEN, EOV, or CLOSE Time

EXITING TO A USER'S TOTALING ROUTINE

When an exit is taken to a user's totaling routine, an output
record is passed to the user's routine just before the record is
written. The first halfword of the totaling area pointed to by
the parameter contains the length of the totaling area, and
should not be used by the user's routine. If the user has
specified user label exits, this totaling area (or an image of
this area) is pointed to by the parameter list passed to the
appropriate user label routine.

An output record is defined as a physical record (block), except
when IEBGENER is used to process and reformat a data set that
contains spanned records.

The code returned by the user's totaling routine determines
system response as follows.

Codes Meaning

00 (00 hex) Processing is to continue, but no further exits are
to be taken.

04 (04) Normal processing is to continue.

08 (08) Processing is to terminate, except for EOD
processing on the output data set (user label
processing).

16 (10) Processing is to be terminated.

Figure 155. User Totaling Routine Return Codes

PROCESSING USER LABELS AS DATA

When user labels are processed as data, the group of user
labels, as well as the data set, is subject to the normal
processing done by the utility program. The user can have
labels printed or punched by IEBPTPCH, compared by IEBCOMPR, or
copied by IEBGENER.

To specify that user labels are to be processed as data, include
a LABELS statement in the job step that is to process user
labels as data.

Appendix C. Processing User Labels 447

There is no direct relationship between the LABELS statement and
the EXITS statement. Either or both can appear in the control
statement stream for an execution of a utility program. If
there are user label-processing routines, however, their return
codes may influence the processing of the labels as data. In
addition, a user's output label-processing routine can override
the action of a LABELS statement because it receives control
before each output label ;s written. At this time the label
created by the utility as a result of the LABELS statement is in
the label buffer, and the user's routine can modify it.

448 MVS/370 Utilities

ACCESS parameter
INITT statement 339

ACTION parameter
FD statement 112

actions
IEBDG program 99

ADD statement
CPASWORD parameter 421
DATA parameter 422
DSNAME parameter 423
IEBUPDTE program 298
IEHPROGM program 420
INHDR parameter 306
INTLR parameter 307
LEVEL parameter 307
LIST parameter 307
MEMBER parameter 308
NAME parameter 308
NEW parameter 308
OUTHDR parameter 309
OUTTLR parameter 309
PASWORD2 parameter 424
SEQFLD parameter 310
SOURCE parameter 310
SSI parameter 311
TOTAL parameter 311
TYPE parameter 425
VOL parameter 426

;,ddi ng data set passwords 410
ADDR parameter

DFN statement 22
al i as name

changing 404
IEBCOPY program 41
in partitioned directory 305
OS CVOL index 405

ALIAS parameter
BLDA statement 421
OLTA statement 421

ALIAS statement
IEBUPDTE program 305
NAME parameter 308

altering
load modules 43

ALTERMOD statement
IEBCOPY program 53
LIST parameter 57
OUTDD parameter 59

ANSI volume access security
ACCESS parameter 339

anyname DD statement
IEHINITT program 337

anyname1 DD statement
IEBCOPY program 47
IEHLIST program 353
IEHMOVE program 376
IEHPROGM program 414

anyname2 DO statement
IEBCOPY program 47
IEHLIST program 353
IEHMOVE program 377
IEHPROGM program 414

assessing tape quality 435
ASSIGN parameter

CHARSET statement 193
GRAPHIC statement 194

ATTACH macro
format 13
invoking utility programs with 13

authorized program facility (APF) 13

backup CO"PY.
creating 141, 231

example 78
IEBCOPY program 39

verifying
IEBCOMPR program 27

bbbb parameter
TRACK statement 329
VTOC statement 329

BDAM data set
cataloging in an OS CVOl 405
copying 369
moving 369
scratching 404
with variable-spanned records

copying 373
moving 373

BLDA statement
ALIAS parameter 421
CVOL parameter 422
IEHPROGM program 418
INDEX parameter 423

BLDG statement
CVOL parameter 422
DELETE parameter 422
EMPTY parameter 423
ENTRIES parameter 423
IEHPROGM program 419
INDEX parameter 423

BLDX statement
CVOL parameter 422
IEHPROGM program 418
INDEX parameter 423

block size
unloaded data set 48

buffer
record heading 234

buffer size
IEBCOPY program 46
IEHMOVE program 366

building an index
in an OS CVOL 405

CALL macro
format 16
invoking IEBTCRIN with 16

card input
copying to tape

examples 158-160
printing

example 160

Index 449

punching
example 264

CATALOG parameter
COpy CATALOG statement 387
MOVE CATALOG statement 387

cataloged data sets
copying 370
moving 370

cataloging
data sets in an OS CVOL

CATLG parameter
COpy DSGROUP statement 387
COPY DSNAME statement 387
COPY PDS statement 387
COpy VOLUME statement 387

CATLG statement
CVOL parameter 422
DSNAME parameter 423
IEHPROGM program 417
VOL parameter 426

cccc parameter
TRACK statement 329
VTOC statement 329

CDINCR parameter
PUNCH statement 249

CDSEQ parameter
PUNCH statement 249

CGMID parameter
TABLE statement 194

CHANGE statement
COLUMN parameter 306
IEBUPDTE program 298
INHDR parameter 306
INSERT parameter 307
1NTLR parameter 307

''LEVEL parameter 307
LIST parameter 307
MEMBER parameter 308
NAME parameter 308
NEW parameter 308
OUTHOR parameter 309
OUTTLR parameter 309
SEQFLD parameter 310
SOURCE parameter 310
SSI parameter 311
TOTAL parameter 311
UPDATE parameter 311

changing data set organization 293
channel codes

conventions for channel 1, channel 9,
channel 12 195

identified in FCB module 170
specifying in FCB statement 195

character arrangement table module 166
creating 174, 188
examples of building and
modifying 216-219

1EBIMAGE listing 176
structure 175

character set 181
CHARSET statement

ASSIGN parameter 193
GCM parameter 197
1D parameter 198
1EB1MAGE program 190
REF parameter 204
SEQ parameter 205

CHx parameter
FCB statement 195

CNTRL parameter
PRINT statement 249
PUNCH statement 249

codes, special
1EBTCRIN program 269

450 MVS/370 Utilities

coding
utility control statement 5

COLUMN parameter
CHANGE statement 306

comments
utility control statement 5

COMPARE statement
1EBCOMPR program 30
TYPORG parameter 32

comparing
partitioned data sets 27, 36, 38

examples 36-38
sequential data sets 27, 33, 35

examples 33-35
compressing a data set 42
CONNECT statement

CVOL parameter 422
1EHPROGM program 419
INDEX parameter 423
VOL parameter 426

connecting two OS CVOLs 406
continuing

utility control statement 5
control characters

PREFORM parameter 255
control statements 4
controlling

1CAPRTBL program 19
IEBCOMPR program 28
IEBCOPY program 46
1EBDG program 100
1EBEDIT program 132
IEBGENER program 145
1EB1MAGE program 184
1EBISAM program 235
IEBPTPCH program 243
IEBTCR1N program 280
IEBUPDTE program 294
1EHATLAS program 327
1EH1NITT program 336
1EHLIST program 352
1EHMOVE program 374
IEHPROGM program 412
IFHSTATR program 436

CONV parameter
LABELS statement 249

conversion
FIELD parameter 153

converting
fields 249

COPIES parameter
COPYMOD statement 196

COPY CATALOG statement
CATALOG parameter 387
COPYAUTH parameter 387
CVOL parameter 388
FROM parameter 390
FROMDD parameter 390
IEHMOVE program 384
TO parameter 391
TODD parameter 392
UNLOAD parameter 392

COPY OSGROUP statement
CATLG parameter 387
COPYAUTH parameter 387
CVOL parameter 388
OS GROUP parameter 388
IEHMOVE program 381
PASSWORD parameter 391
TO parameter 391
TODD parameter 392
UNCATLG parameter 392
UNLOAD parameter 392

COPY DSNAME statement

CATLG parameter 387
COPYAUTH parameter 387
CVOL parameter 388
DSNAME parameter 389
FROM parameter 390
FROMDD parameter 390
IEHMOVE program 380
RENAME parameter 391
TO parameter 391
TODD parameter 392
UNCATLG parameter 392
UNLOAD parameter 392

copy modification module 166
creating 173, 187
examples of building 213-216
IEBIMAGE listing 174

with overrun notes 192
structure 173

copy operation
excluding members 42

COPY PDS statement
CATLG parameter 387
COPYAUTH parameter 387
CVOL parameter 388
EXPAND parameter 389
FROM parameter 390
FROMDD parameter 390
IEHMOVE program 383
PDS parameter 391
RENAME parameter 391
TO parameter 391
TODD parameter 392
UNCATLG parameter 392
UNLOAD parameter 392

COPY statement
IEBCOPY program 51
INDD parameter 57
LIST parameter 57
OUTDD parameter 59

COPY VOLUME statement
CATLG parameter 387
COPYAUTH parameter 387
IEHMOVE program 385
PASSWORD parameter 391
TO parameter 391
TODD parameter 392
UNLOAD parameter 392
VOLUME parameter 392

COPYAUTH parameter
COpy CATALOG statement 387
COPY DSGROUP statement 387
COPY DSNAME statement 387
COPY PDS statement 387
COPY VOLUME statement 387
MOVE CATALOG statement 387
MOVE DSGROUP statement 387
MOVE DSNAME statement 387
MOVE PDS statement 387
MOVE VOLUME statement 387

copying
a member with an alias 41
a sequential data set 366
an ISAM data set 231
BDAM data sets 369

with variable-spanned records 373
cataloged data sets 370
data sets 365

examples 139-140
ISAM data set

example 238
job statements and steps 136, 138

examples 136-138
load modules 43
multivolume data sets 369

OS CVOL 371
partitioned data set

examples 77
partitioned data sets 366

examples 62
IEBCOPY program 39, 40

sequential data sets
examples 158-160

unloaded data sets 370
unmovable data sets 370
volume of data sets 372

COPYMOD statement
COPIES parameter 196
IEBCOPY program 53
IEBIMAGE listing with overrun
notes 207

IEBIMAGE program 187
INDD parameter 57
LINES parameter 199
LIST parameter 57
MAXBLK parameter 58
MINBLK parameter 59
OUTDD parameter 59
POS parameter 203
TEXT parameter 207

CPASWORD parameter
ADD statement 421
DELETEP statement 421
REPLACE statement 421

CREATE parameter
REPEAT statement 113

CREATE statement
EXIT parameter 113
FILL parameter 113
IEBDG program 107
INPUT parameter 117
NAME parameter 118
PICTURE parameter 119
QUANTITY parameter 120

creating data set libraries 293
CVOL parameter

BLDA statement 422
BLDG statement 422
BLDX statement 422
CATLG statement 422
CONNECT statement 422
COpy CATALOG statement 388
COPY DSGROUP statement 388
COpy DSNAME statement 388
COPY PDS statement 388
DLTA statement 422
DLTX statement 422
INCLUDE statement 388
MOVE CATALOG statement 388
MOVE DSGROUP statement 388
MOVE DSNAME statement 388
MOVE PDS statement 388
RELEASE statement 422
REPLACE statement 388
UNCATLG statement 422

CYCLE parameter
FD statement 115

data check
unblockable 195

data duplication 268
DATA parameter

ADD statement 422
EXITS statement 151

Index 451

LABELS statement 31, 151, 250
REPLACE statement 422

data set
comparing 27
copying 365
edited 143
merging

example 92
modifying 293
moving 365
printing 241
punching 241
reblocking 364
recreating 43
space allocation for IEHMOVE 363

data set libraries
creating 293
updating 293

data set organization
changing 293

data set utility programs
summary 1

data sets
passwords 409

data statement
IEBUPDTE program 303

data. statements
for user-designed characters 196

DATE parameter
LISTVTOC statement 355

DCB control information
overriding 232

DD statement
defining mountable device 443
examples 443

dddd parameter
TRACK statement 329
VTOC statement 329

ddname parameter
INITT statement 339

ddnameaddr subparameter
CALL macro 16
PARAM parameter

ATTACH macro 13
LINK macro 13

DDNMELST 13, 16
debugging aid

IEBDGprogram 97
defective track

replacing 325
examples 330-332

DELETE parameter
BLDG statement 422
TABLE statement 196

DELETE statement
IEBUPDTE program 301
SEQI parameter 309
SEQ2 parameter 309

DELETEP statement
CPA SWORD parameter 421
DSNAME parameter 423
IEHPROGM program 421
PASWORD1 parameter 424
VOL parameter 426

deleting an index .
in an OS CVOL 405

deleting data set passwords 411
DELSEG parameter

INCLUDE statement 197
detail statement

IEBUPDTE program 301
restrictions 302

DEVICE parameter
OPTION statement 197

452 MVS/370 Utilities

device support 3
device variable 6
DEVT parameter

DFN statement 22
DFN statement

ADDR parameter 22
DEVT parameter 22
FCB parameter 22
FOLD parameter 22
ICAPRTBL program 20
UCS parameter 23

DISP parameter
INITT statement 339

DLTA statement
ALIAS parameter 421
CVOL parameter 422
IEHPROGM program 418

DLTX statement
CVOL parameter 422
IEHPROGM program 418
INDEX parameter 423

DSD statement
IEBDG program 104
INPUT parameter 116
OUTPUT parameter 118

DSGROUP parameter
COpy DSGROUP statement 388
EXCLUDE statement 388
MOVE DSGROUP statement 388

DSNAME parameter
ADD statement 423
CATLG statement 423
COpy DSNAME statement 389
DELETEP statement 423
INCLUDE statement 389
LIST statement 423
LISTPDS statement 356
LISTVTOC statement 356
MOVE DSHAME statement 389
RENAME statement 423
REPLACE statement 389, 423
SCRATCH statement 423
UNCATLG statement 423

DUMP parameter
LISTPDS statement 356
LISTVTOC statement 356

DUP code 268
dynamic invocation 13

EDIT parameter
TCRGEN statement 284

EDIT statement
IEBEDIT program 133
NOPRINT parameter 133
START parameter 134
STEPNAME parameter 134
TYPE parameter 135

edited data set 143
printing 242
punching 242

EMPTY parameter
BLDG statement 423

END statement
ICAPRTBL program 21
IEBDG program 110
user-information parameter 23

end-of-cartridge 273
end-of-media code 267
end-of-record

in IEBTCRIN program 267 IEBPTPCH program 246
ENDUP statement linkage 438

IEBUPDTE program 306 return codes 440
ENTRIES parameter returning from 440

BLDG statement 423 totaling 447
EP parameter EXIlS statement

ATTACH macro 13 DATA parameter 151
LINK macro 13 ERROR parameter 31, 285
LOAD macro 16 IEBCOMPR program 30

EPLOC parameter IEBGENER program 148
LOAD macro 16 IEBPTPCH program 246

ERP (error recovery program) 436 IEBTCRIN program 283
ERROPT parameter INHDR parameter 32, 154, 253

TCRGEN statement 285 INREC parameter 253
error description word INTLR parameter 32, 155, 253

IEBTCRIN program 274 IOERROR parameter 155
ERROR parameter KEY parameter 155

EXITS statement 31, 285 OUTHDR parameter 156
error records OUTHDR2 parameter 287

IEBTCRIN program 274 OUTHDR3 parameter 287
sample 277 OUTREC parameter 254 1 287

ESV (error statistics by volume) OUTTLR parameter 156
data 435 OUTTLR2 parameter 288

evaluating tape quality 435 OUTTLR3 parameter 288
examples PRECOMP parameter 32

DD statement 443 TOTAL parameter 156
ICAPRTBL program 23 EXPAND parameter
IEBCOMPR program 32 COPY PDS statement 389
IEBCOPY program 60 MOVE PDS statement 389
IEBDG program 121
IEBEDIT program 135
IEBGENER program 157 0 IEBIMAGE program 207
IEBISAM program 237
IEBPTPCH program 258
IEBTCRIN program 290 FCB parameter
IEBUPDTE program 311 DFN statement 22
IEHATLAS program 330 FCB statement
IEHINITT program 340 CHx parameter 195
IEHLIST program 357 FORMEND parameter 22
IEHMOVE program 393 ICAPRTBL program 21
IEHPROGM program 426 IEBIMAGE program 186
IFHSTATR program 437 LINES parameter 199

EXCLUDE parameter LNCH parameter 22
EDIT statement 135 LPI parameter 23 1 201

EXCLUDE statement SIZE parameter 206
DSGROUP parameter 388 FD statement
IEBCOPY program 56 ACTION parameter 112
IEHMOVE program 386 FILL parameter 113
MEMBER parameter 59, 391 FORMAT parameter 114

excluding members FROMLOC parameter 114
copy operation 42 IEBDG program 105

exclusive copy or load processing 41 INDEX parameter 115
EXEC statement INPUT parameter 116

IEBCOMPR program 29 LENGTH parameter 117
IEBCOPY program 47 NAME parameter 118
IEBDG program 101 PICTURE parameter 119
IEBEDIT program 132 SIGN parameter 120
IEBGENER program 146 STARTLOC parameter 120 .
IEBIMAGE program 184 field
IEBISAM program 235 altering contents
IEBPTPCH program 243 IEBDG program 112
IEBTCRIN program 281 changing the contents
IEBUPDTE program 295 IEBDG program 99
IEHATLAS program 327 converting 249
IEHINITT program 337 defining the contents
IEHLIST program 353 IEBDG program 97, 105
IEHMOVE program 375 editing information 251
IEHPROGM program 414 FIELD parameter
IFHSTATR program 437 RECORD statement 152-154, 251

EXIT parameter FILL parameter
CREATE statement 113 CREATE statement 113

exit routine FD statement 113
identifying 148 fixed action 112

Index 453

FOLD parameter
DFN statement 22

FORMAT parameter
FD statement 114
LISTPDS statement 356
LISTVTOC statement 356

FORMEND parameter
FCB statement 22

forms control buffer
loading 21

forms control buffer module 166
creating 170, 186
examples of building 209-213
IEBIMAGE listing 171
structure 170

FROM parameter
COPY CATALOG statement 390
COPY DSNAME statement 390
COpy PDS statement 390
INCLUDE statement 390
MOVE CATALOG statement 390
MOVE DSNAME statement 390
MOVE PDS statement 390
REPLACE statement 390

FROMDD parameter
COpy CATALOG statement 390
COpy DSNAME statement 390
COPY PDS statement 390
MOVE CATALOG statement 390
MOVE DSNAME statement 390
MOVE PDS statement 390

FROMLOC parameter
FD statement 114

full copy or load processing 41
function statement

IEBUPDTE program 298
restrictions 299

GCM parameter
CHARSET statement 197
GRAPHIC statement 197

GCMLIST parameter
TABLE statement 198

GENERATE statement
IEBGENER program 148
MAXFLDS parameter 155
MAXGPS parameter 155
MAXLITS parameter 155
MAXNAME parameter 156

generating output records 110
generation data group

index in an OS CVOL 407
graphic character modification

module 166
creating 178, 189
examples of building and
listing 219-226

IEBIMAGE listing 179
structure 179

GRAPHIC statement
ASSIGN parameter 194
GCM parameter 197
IEBIMAGE program 189
REF parameter 205
SEQ parameter 205

GS code 268

454 MVS/370 Utilities

hdingaddr subparameter
CALL macro 16
PARAM parameter

ATTACH macro 14
LINK macro 14

HDNGLIST 14, 16
hhhh parameter

TRACK statement 329
VTOC statement 329

ICAPRTBL program 18
examples 23
executing 18
input and output 19
loading forms control buffer 21
loading universal character set
buffer 21

parameters 22
utility control statements 19

DFN 20
END 21
FCB 21
JOB 20.
UCS 20

wait state codes 18
10 parameter

CHARSET statement 198
IDENT parameter

RECORD statement 154, 252
IEBCOMPR program 27

comparing data sets 27
examples 32
input and output 28
job control statements 29
parameters 31
return codes 28
utility control statements 30

COMPARE 30
EXITS 30
LABELS 31

verifying a backup copy 27
IEBCOPY program 39

compressing a data set 42
copying members with aliases 41
creating backup copy 39
examples 60
excluding members 42
input and output 45
job control statements 46
load operation 39
parameters 57
recreating a data set 43
renaming selected members 42
replacing identically named
members 41

replacing selected members 42
return codes 46
selecting members to be loaded or
unloaded 40

selecting members to be moved or
copied 40

unload operation 39
utility control statements 50

ALTERMOO 53
COPY 51

COPYMOD 53
EXCLUDE 56
SELECT 54

IEBDG program 97
defining fields 97
examples 121
IBM supplied patterns 97
input and output 100
job control statements 101
modifying fields 99
parameters 112
return codes 100
user specified picture 98
utility control statements 104

CREATE 107
DSD 104
END 110
FD 105
REPEAT 110

IEBEDIT program 131
examples 135
input and output 131
job control statements 132
parameters 133
return codes 131
utility control statements 133

EDIT 133
IEBGENER program 141

creating an edit data set 143
creating backup copy 141
creating partitioned data sets 141
examples 157
expanding partitioned data sets 142
input and output 144
job control statements 145
parameters 150
return codes 145
utility control statements 147

EXITS 148
GENERATE 148
LABELS 149
MEMBER 149
RECORD 150

IEBIMAGE program
description 166
examples 207
input and output 183
job control statements 184
module naming conventions 169
operation groups 185
parameters 193
printer models supported by 166
return codes 183
storage requirements 166

SYS1.IMAGELIB data set 167
structure of modules 169
utility control statements 185

CHARSET 190
COPYMOD 187
FCB 186
GRAPHIC 189
INCLUDE 191
NAME 191
OPTION 191
TABLE 188

IEBISAM program 231
copying an ISAM data set 231
creating a sequential backup

copy 231
examples 237
input and output 234
job control statements 235
overriding DCB control

information 232

parameters 236
return codes 235

IEBPTPCH program 241
examples 258
input and output 242
job control statements 243
parameters 249
printing a data set 241
punching a data set 241
return codes 242
utility control statements 244, 245,

246, 247, 248
EXITS 246
LABELS 248
MEMBER 247
PRINT 245
PUNCH 246
RECORD 247
TITLE 246

IEBTCRIN program 267
error records 274
examples 290
input and output 279
invoking 15
job control statements 280
parameters 284
return codes 279
special codes 269
utility control statements 283

EXITS 283
TCRGEN 283

IEBUPDTE program 293
data statement 303
detail statement 301
examples 311
function statement 298
input and output 293
job control statements 294
parameters 306
return codes 294

UPDATE parameter 304
utility control statements 297

ADD 298
ALIAS 305
CHANGE 298
DELETE 301
ENDUP 306
LABEL 303
NUMBER 301
REPL 298
REPRO 298

IEHATLAS program 325
examples 330
input and output 325
job control statements 327
parameters 329
return codes 326
utility control statements 327

TRACK 328
VTOC 328

IEHINITT program 333
examples 340
input and output 335
job control statements 336
parameters 338
return codes 335
utility control st~tements 337

INITT 337
IEHLIST program 345

examples 357
input and output 351
job control statements 352
parameters 355
return codes 351

Index 455

utility control statements 354, 355
LISTCTLG 354
LISTPDS 354
LISTVTOC 355

IEHMOVE program 361
examples 393
input and output 373
job control statements 374
parameters 387
return codes 374
using RACF with 365
utility control statements 378

COPY CATALOG 384
COPY DSGROUP 381
COPY DSNAME 380
COpy PDS 383
COpy VOLUME 385
EXCLUDE 386
INCLUDE 385
MOVE CATALOG 383
MOVE DSGROUP 381
MOVE DSNAME 379
MOVE PDS 382
MOVE VOLUME 384
REPLACE 386
SELECT 386

IEHPROGM program 404
examples 426
input and output 412
job control statements 413
parameters 421
return codes 412
utility control statements 415

ADD 420
BLDA 418
BLDG 419
BlDX 418
CATLG 417
CONNECT 419
DELETEP 421
DLTA 418
DLTX 418
LIST 421
RELEASE 419
RENAME 415
REPLACE 420
SCRATCH 415
UNCATLG 417

IFASMFDP tape 435
IFHSTATR program 435

example 437
input and output 436
job control statements 436
sample printed output 436

image library
system 168

INCLUDE parameter
EDIT statement 135

INCLUDE statement
CVOL parameter 388
DELSEG parameter 197
DSNAME parameter 389
FROM parameter 390
IEBIMAGE program 191
IEHMOVE program 385
MEMBER parameter 391
module name 202

including modules to be copied 191
INCR parameter

NUMBER statement 306
INDD parameter

COPY statement 57
COPYMOD statement 57

independent utility programs

456 MVS/370 Utilities

summary 2
INDEX parameter

BLDA statement 423
BLDG statement 423
BlDX statement 423
CONNECT statement 423
DlTX statement 423
FD statement 115
RELEASE statement 423

index, generation data group
in an OS CVOl 407

index, OS CVOl
al i as name " 405
building 405
deleting 405

INDEXDSN parameter
LISTVTOC statement 356

INHDR parameter
ADD statement 306
CHANGE statement 306
EXITS statement 32, 154, 253
REPl statement 306
REPRO statement 306

initial volume label information 337
INITPG parameter

PRINT statement 253
INITT statement

ACCESS parameter 339.
ddname parameter 339
DISP parameter 339
IEHINITT program 337
LABTYPE parameter 339
NUMBTAPE parameter 339
OWNER parameter 340
SER parameter 340

input and output
ICAPRTBl program 19
IEBCOMPR program 28
IEBCOPY program 45
IEBDG program 100
IEBEDIT program 131
IEBGENER program 144
IEBIMAGE program 183
IEBISAM program 234
IEBPTPCH program 242
IEBTCRIN program 279
IEBUPDTE program 293
IEHATlAS program 325
IEHINITT program 335
IEHlIST program 351
IEHMOVE program 373
IEHPROGM program 412
IFHSTATR program 436

INPUT parameter
CREATE statement 117
DSD statement 116
FD statement 116

INREC parameter
EXITS statement 253

INSERT parameter
CHANGE statement 307
NUMBER statement 307
restrictions 302

installation considerations 6
INTLR parameter

ADD statement 307
CHANGE statement 307
EXITS statement 32, 155, 253
REPL statement 307
REPRO statement 307

invoking utility programs
from a problem program 13

IOERROR parameter
EXITS statement 155

ISAM data set
printing records 233
cataloging in an OS CVOL 405
converting to sequential data set

examples 238
copying 231

example 238
creating 233
from unloaded data set

example 239
printing logical records

example 240
scratching 404

ITEM parameter
TITLE statement 253

JES2 or JES3 control statements 133
IEBEDIT program 132

job control language
for track overflow feature 378

job control statements 4
IEBCOMPR program 29
IEBCOPY program 46
IEBDG program 101
IEBEDIT program 132
IEBGENER program 145
IEBIMAGE program 184
IEBISAM program 235
IEBPTPCH program 243
IEBTCRIN program 280
IEBUPDTE program 294
IEHATLAS program 327
IEHINITT program 336
IEHLIST program 352
IEHMOVE program 374
IEHPROGM program 413
IFHSTATR program 436

JOB statement
ICAPRTBL program 20
IEBCOMPR program 29
IEBCOPY program 47
IEBDG program 101
IEBEDIT program 132
IEBGENER program 146
IEBIMAGE program 184
IEBISAM program 235
IEBPTPCH program 243
IEBTCRIN program 281
IEBUPDTE program 295
IEHATLAS program 327
IEHINITT program 337
IEHLIST program 353
IEHMOVE program 375
IEHPROGM program 414
IFHSTATR program 437

job step
copying to output data set

example 136
output data set 134

KEY parameter
EXITS statement 155

keyword variable 6

label
, utility control statement 4
label processing routine

parameters 438
LABEL statement

IEBUPDTE program 303
LABELS parameter

RECORD statement 155
LABELS statement

CONY parameter 249
DATA parameter 31, 151, 250
IEBCOMPR program 31
IEBGENER program 149
IEBPTPCH program 248

LABTYPE parameter
INITT statement 339

LENGTH parameter
FD statement 117

LEVEL parameter
ADD statement 307
CHANGE statement 307
REPL statement 307
REPRO statement 307

library character set 181
library character set module 166

creating 181, 190
examples of building and
listing 226-230

IEBIMAGE listing 182
structure 181

line overrun conditions 187, 191, 192,
202

LINECNT parameter
IEHMOVE program 375

LINES parameter
COPYMOD statement 199
FCB statement 199

LINK macro
format 13
invoking utility programs with 13
parameter lists 14

linking to an exit routine
LIST parameter

ADD statement 307
ALTERMOD statement 57
CHANGE statement 307
COpy statement 57
COPYMOD statement 57
REPL statement 307
REPRO statement 307

LIST statement
DSNAME parameter 423
IEHPROGM program 421
PASWORD1 parameter 424

list variable 6
LISTCTLG statement

IEHLIST program 354
NODE parameter 357
VOL parameter 357

listing a VTOC 347
listing OS CVOl entries 345, 354

Index 457

examples 358
listing partitioned data set
directory 345

example 359
listing partitioned data set directory
entries 354

listing password entries 411
listing VTOC entries 355

example 359
LISTPDS statement

DSNAME parameter 356
DUMP parameter 356
FORMAT parameter 356
IEHLIST program 354
VOL parameter 357

LISTVTOC statement
DATE parameter 355
DSNAME parameter 356
DUMP parameter 356
FORMAT parameter 356
IEHLIST program 355
INDEXDSN parameter 356
VOL parameter 357

LNCH parameter
FCB statement 22

LOAD macro
format 15
invoking IEBTCRIN with 15

load modules
altering in place 43
copying and reblocking 43
requirements for IEBCOPY 44

load operation
example 92
recreating partitioned data sets 39

loading
forms control buffer 21
images to buffers

examples 24-26
universal character set buffer 21

LOC parameter
TABLE statement 200

logical record length
changing 144

logical records
ISAM data set

example 240
printing 233

LPI parameter
FCB statement 23, 201

magnetic data inscriber
editing criteria 267
editing restrictions 268
using IEBTCRIN with 267

magnetic tape selectric typewriter
using IEBTCRIN ~ith 267

maintaining data set passwords 409
MAXBLK parameter

COPYMOD statement 58
MAXFLDS parameter

GENERATE statement 155
PRINT statement 253
PUNCH statement 253

MAXGPS parameter
GENERATE statement 155
PRINT ·statement 254
PUNCH statement 254

MAXLINE parameter

458 MVS/370 Utilities

PRINT statement 254
MAXLITS parameter

GENERATE statement 155
PRINT statement 254
PUNCH statement 254

MAXLN parameter
TCRGEN statement 286

MAXNAME parameter
GENERATE statement 156
PRINT statement 254
PUNCH statement 254

MEMBER parameter
ADD statement 308
CHANGE statement 308
EXCLUDE statement 59, 391
INCLUDE statement 391
RENAME statement 424
REPL statement 308
REPLACE statement 391
REPRO statement 308
SCRATCH statement 424
SELECT statement 58, 391

MEMBER statement
IEBGENER program 149
IEBPTPCH program 247
NAME parameter 156, 254

merging
partitioned data sets

IEBCOPY program 39, 43
MINBLK parameter

COPYMOD statement 59
MINLN parameter

TCRGEN statement 287
modifying a data set 293
module

naming conventions 169
structure 169

module name
specifying in INCLUDE statement 202
specifying in NAME statement 202

modules
altering in place 43
copying and reblocking 43
requirements for IEBCOPY 44

mountable device
defining 443

MOVE CATALOG sta!ement
CATALOG parameter 387
COPYAUTH parameter 387
CVOL parameter 388
FROM parameter 390
FROMDD parameter 390
IEHMOVE program 383
TO parameter 391
TODD parameter 392
UNLOAD parameter 392

MOVE DSGROUP statement
COPYAUTH parameter 387
CVOL parameter 388
DSGROUP parameter 388
IEHMOVE program 381
PASSWORD parameter 391
TO parameter 391
TODD parameter 392
UNCATLG parameter 392
UNLOAD parameter 392

MOVE DSNAME statement
COPYAUTH parameter 387
CVOL parameter 388
DSNAME parameter 389
FROM parameter 390
FROMDD parameter 390
IEHMOVE program 379
RENAME parameter 391

TO parameter 391
TODD parameter 392
UNCATLG parameter 392
UNLOAD parameter 392

MOVE PDS statement
COPYAUTH parameter 387
CVOL parameter 388
EXPAND parameter 389
FROM parameter 390
FROMDD parameter 390
IEHMOVE program 382
PDS parameter 391
RENAME parameter 391
TO parameter 391
TODD parameter 392
UNCATLG parameter 392
UNLOAD parameter 392

MOVE VOLUME statement
COPYAUTH parameter 387
IEHMOVE program 384
PASSWORD parameter 391
TO parameter 391
TODD parameter 392
UNLOAD parameter 392
VOLUME parameter 392

moving
a sequential data set 366
BDAM data sets 369

with variable-spanned records 373
cataloged data sets 370
data sets 365
multivolume data sets 369
OS CVOL 371
partitioned data sets 366
unloaded data sets 370
unmovable data sets 370
volume of data sets 372

multiple copy operations
examples 81-90

multivolume data set
copying 369
moving 369

NAME parameter
ADD statement 308
ALIAS statement 308
CHANGE statement 308
CREATE statement 118
FD statement 118
MEMBER statement 156, 254
REPL statement 308
REPRO statement 308

NAME statement
IEBIMAGE program 191
module name 202
R parameter 203

naming a new library module 191
naming conventions for modules

IEBIMAGE program 169
NEW parameter

ADD statement 308
CHANGE statement 308
REPL statement 308
REPRO statement 308

NEWNAME parameter
RENAME statement 424

NEW! parameter
NUMBER statement 308

NODE parameter

LISTCTLG statement 357
nonlabel processing routine

parameters 439
NOPRINT parameter

EDIT statement 133
notation conventions 5
NUMBER statement

IEBUPDTE program 301
INCR parameter 306
INSERT parameter 307
NEW1 parameter 308
SEQ1 parameter 309
SEQ2 parameter 309

NUMBTAPE parameter
INITT statement 339

operand
utility control statement 4

operation
utility control statement 4

operation groups
IEBIMAGE program 185

OPTION statement
DEVICE parameter 197
IEBIMAGE program 191
OVERRUN parameter 192, 202

optionaddr subparameter
CALL macro 16
PARAM parameter

ATTACH macro 13
LINK macro 13

OPTLIST 13, 16
OS CVOL

alias name for index 405
building an index 405
cataloging data sets in 405
connecting or releasing 406
copying 371
deleting an index 405
generation data group index 407
listing entries 345, 354

examples 358
moving 371

OUTDO parameter
ALTERMOD statement 59
COPY statement 59
COPYMOD statement 59

OUTHDR parameter
ADD statement 309
CHANGE statement 309
EXITS statement 156
REPL statement 309
REPRO statement 309

OUTHDR2 parameter
EXITS statement 287

OUTHDR3 parameter
EXITS statement 287

output data set
contents 135
creating 131
reblocking 144

output data sets
including job steps 133

OUTPUT parameter
DSD statement 118

output partitioned member
example 125

output records
creating

Index 459

example 123, 127
example 129
generating 110

OUTREC parameter
EXITS statement 254, 287

OUTTLR parameter
ADD statement 309
CHANGE statement 309
EXITS statement 156
REPL statement 309
REPRO statement 309

OUTTLR2 parameter
EXITS statement 288

OUTTLR3 parameter
EXITS statement 288

OVERRUN parameter
OPTION statement 192, 202

OWNER parameter
INITT statement 340

page margins 206
PARAM parameter

ATTACH macro 13
LINK macro 13

parinset DO statement
IEBDG program 103

PARM parameter (EXEC statement)
IEBCOPY program 46
IEBDG program 102
IEBIMAGE program 237
IEBISAM program 236
IEBUPDTE program 295
IEHINITT program 336
IEHlIST program 352
IEHMOVE program 375
IEHPROGM program 413

parout DD statement
IEBDG program 103

partitioned data set
cataloging in an OS CVOL 405
changing to sequential 293
comparing 27

examples 36-38
compressing 42
copying 366

examples 62, 79
IEBCOPY program 39, 40

copying members
examples 63-77

creating
from sequential input 141

creating a backup copy
example 78

creating a library 293
creating from sequential input

examples 160-162
expanding 142
merging

IEBCOPY program 39, 43
modifying 293
moving 366
multiple copy operations

examples 81-90
printing 241

example 260-261
punching 241
renaming members 42
replacing identically named

members 41

460 MVS/370 Utilities

replacing selected members 42
scratching 404
unloading

example 91
partitioned data set directory

comparing data sets 27
edited format 346
listing entries 345, 354

example 359
printing 242

example 263
punching 242
unedited format 347

partitioned output 149
PASSWORD data set

listing entries 411
PASSWORD parameter

COPY DSGROUP statement 391
COPY VOLUME statement 391
MOVE DSGROUP statement 391
MOVE VOLUME statement 391

password-protected data set
scratching 404

passwords
data set 409

adding 410
deleting 411
replacing 411

listing entries 411
PASWORD1 parameter

DELETEP statement 424
LIST statement 424
REPLACE statement 424

PASWORD2 parameter
ADD statement 424
REPLACE statement 424

patterns of test data
IBM supplied 97, 114

PDS parameter
COPY PDS statement 391
MOVE PDS statement 391

PICTURE parameter
CREATE statement 119
FD statement 119

picture, user specified 98
example 128

POS parameter
COPYMOD statement 203

POSITION parameter
EDIT statement 135

POWER parameter
IEHMOVE program 375

PRECOMP parameter
EXITS statement 32

PREFORM parameter
PRINT statement 255
PUNCH statement 255

PRINT statement
CNTRl parameter 249
IEBPTPCH program 245
INITPG parameter 253
MAXFlDS parameter 253
MAXGPS parameter 254
MAXLINE parameter 254
MAXLITS parameter 254
MAXNAME parameter 254
PREFORM parameter 255
SKIP parameter 255
STOP AFT parameter 256
STRTAFT parameter 256
TOTCONV parameter 257
TYPORG parameter 257

printing
data set 241

logical records
ISAM data set 233

partitioned data set
example 260-261

partitioned data set directory 242
example 263

records 242
sequential data set

examples 258, 261
PUNCH statement

CDINCR parameter 249
CDSEQ parameter 249
CNTRL parameter 249
IEBPTPCH program 246
MAXFLDS parameter 253
MAXGPS parameter 254
MAXLITS parameter 254
MAXNAME parameter 254
PREFORM parameter 255
SKIP parameter 255
STOPAFT parameter 256
STRTAFT parameter 256
TOTCONV parameter 257
TYPORG parameter 257

punching
data set 241
partitioned data set directory 242
sequential data set

examples 259, 262
PURGE parameter

SCRATCH statement 424

QUANTITY parameter
CREATE statement 120
REPEAT statement 120

R parameter
NAME statement 203

RACF protection
IEHMOVE program 365

RANGE parameter
FD statement 115

reblocking
data sets 364
load modules 43
output data set 144

record
defining contents 107
printing 242
quantity 120

record format
changing 48

record group
defining 150, 247
dividing sequential data sets 141
printing

example 264
record heading buffer 234
RECORD statement

FIELD parameter 152-154, 251
IDENT parameter 154, 252
IEBGENER program 150
IEBPTPCH program 247
LABELS parameter 155

recreating a data set 43
REF parameter

CHARSET statement 204
GRAPHIC statement 205

RELEASE statement
CVOL parameter 422
IEHPROGM program 419
INDEX parameter 423

releasing two OS CVOLs 406
relocation dictionary

inserting counts 45
RENAME parameter

COPY DSNAME statement 391
COpy PDS statement 391
MOVE DSNAME statement 391
MOVE PDS statement 391

RENAME statement
DSNAME parameter 423·
IEHPROGM program 415
MEMBER parameter 424
NEWNAME parameter 424
VOL parameter 426

renaming
data sets 404
members 404

renaming members
selected 42

REPEAT statement
CREATE parameter 113
IEBDG program 110
QUANTITY parameter 120

REPL statement
IEBUPDTE program 298
INHDR parameter 306
INTLR parameter 307
LEVEL parameter 307
LIST parameter 307
MEMBER parameter 308
NAME parameter 308
NEW parameter 308
OUTHDR parameter 309
OUTTLR parameter 309
SEQFLD parameter 310
SOURCE parameter 310
SSI parameter 311
TOTAL parameter 311

REPLACE parameter
TCRGEN statement 288

REPLACE statement
CPA SWORD parameter 421
CVOL parameter 388
DATA parameter 422
DSNAME parameter 389, 423
FROM parameter 390
IEHMOVE program 386
IEHPROGM program 420
MEMBER parameter 391
PASWORD1 parameter 424
PASWORD2 parameter 424
TYPE parameter 425
VOL parameter 426

replacing data set passwords 411
replacing members

identically named 41
selected 42

REPRO statement
IEBUPDTE program 298
INHDR parameter 306
INTLR parameter 307
LEVEL parameter 307
LIST parameter 307
MEMBER parameter 308
NAME parameter 308
NEW parameter 308

Index 461

OUTHDR parameter 309
OUTTlR parameter 309
SEQFlD parameter 310
SOURCE parameter 310
SSI parameter 311
TOTAL parameter 311

restrictions
detai! statement 302
function statement 299

return codes
IEBCOMPR program 28
IEBCOPY program 46
IEBDG program 100
IEBDG user exit routine 107
IEBEDIT program 131
IEBGENER program 145
IEBIMAGE program 183
IEBISAM program 235
IEBISAM user exit routine 234
IEBPTPCH program 242
IEBTCRIN program 279
IEBUPDTE program 294

UPDATE parameter 304
IEHATlAS program 326
IEHINITT program 335
IEHlIST program 351
IEHMOVE program 374
IEHPROGM program 412
totaling routine 447
user exit routine 440

RETURN macro
format 440

returning
from an exit routine 440

ripp!e action 112
example 122

RlD counts
inserting 45

roll action 112
rrkk parameter

TRACK statement 329
VTOC statement 329

S parameter
TRACK statement 329

SCRATCH statement
DSNAME parameter 423
IEHPROGM program 415
MEMBER parameter 424
PURGE parameter 424
SYS parameter 424
VOL parameter 426
VTOC parameter 426

scratching
data sets 404
members 404

SELECT statement
IEBCOPY program 54
IEHMOVE program 386
MEMBER parameter 58, 391

selecting members to be loaded or
unloaded 40

selecting members to be moved or
copied 40

selective copy or load processing 41
SEQ parameter

CHARSET statement 205
GRAPHIC statement 205

SEQFLD parameter

462 MVS/370 Utilities

ADD statement 310
CHANGE statement 310
REPL statement 310
REPRO statement 310

seqout DD statement
IEBDG program 103

sequential data set
as backup copy 231
cataloging in an OS CVOL 405
changing to partitioned 293
comparing 27

examples 33-35
copying 366

examp!es 158-160
defining fields

example 121
editing and copying

examp!es 162-165
from ISAM data set

examples 238
loading

example 92
modifying 293
moving 366
printing

examp!es 258, 261
punching

examples 259, 262
scratching 404

sequinset DD statement
IEBDG program 102

SEQI parameter
DELETE statement 309
NUMBER statement 309

SEQ2 parameter
DELETE statement 309
NUMBER statement 309

SER parameter
INITT statement 340

SETPRT SVC instruction 169
shift left action 112
shift right action 112
SIGN parameter

FD statement 120
SIO usage count 436
SIZE parameter

FCB statement 206
size, volume 362
SKIP parameter

PRINT statement 255
PUNCH statement 255

SMF (system management facilities)
type 21 records

format 435
SOURCE parameter

ADD statement 310
CHANGE statement 310
REPL statement 310
REPRO statement 310

space allocation
IEBCOPY program 49
IEHMOVE program 363

special codes
for IEBTCRIN 269

SSI parameter
ADD statement 311
CHANGE statement 311
REPL statement 311
REPRO statement 311

standard label set
placing on magnetic tape 334

START parameter
EDIT statement 134

start-of-record

in IEBTCRIN program 267
STARTLOC parameter

FD statement 120
STEPNAME parameter

EDIT statement 134
stop code 273
STOPAFT parameter

PRINT statement 256
PUNCH statement 256

storage requirements
IEBIMAGE program 166
SYS1.IMAGELIB data set 167

STRTAFT parameter
PRINT statement 256
PUNCH statement 256

SYNAD routine 436
SYS parameter

SCRATCH statement 424
SYSCTLG data set

defining 419
SYSIN DO statement'

IEBCOMPR program 29
IEBCOPY program 48
IEBDG program 102
IEBEDIT program 132
IEBGENER program 147
IEBIMAGE program 185
IEBPTPCH program 244
IEBTCRIN program 282
IEBUPDTE program 297
IEHATLAS program 327
IEHINITT program 337
IEHLIST program 354
IEHMOVE program 378
IEHPROGM program 415

SYSOUT data set
printing

example 266
~YSPRINT DD statement

IEBCOMPR program 29
IEBCOPY program 46
IEBDG program 102
IEBEDIT program 132
IEBGENER program 145
IEBIMAGE program 184
IEBISAM program 235
IEBPTPCH program 244
IEBTCRIN program 281
IEBUPDTE program 295
IEHATlAS program 327
IEHINITT program 336
IEHLIST program 353
IEHMOVE program 376
IEHPROGM program 414

system utility programs
summary 1

SYSUT1 DD statement
IEBCOMPR program 29
IEBEDIT program 132
IEBGENER program 145
IEBIMAGE program 185
IEBISAM program 235
IEBPTPCH program 244
IEBTCRIN program 281
IEBUPDTE program 296
IEHATLAS program 327
IEHMOVE program 376
IFHSTATR program 437

SYSUT2 DD statement
IEBCOMPR program 29
IEBEDIT program 132
IEBGENER program 146
IEBISAM program 235
IEBPTPCH program 244

IEBTCRIN program 282
IEBUPDTE program 296
IFHSTATR program 437

SYSUT3 DD statement
IEBTCRIN program 282

SYS1.IMAGELIB data set
maintaining 168
storage requirements 167

SYS1.MAN tape 435
SYS1.VTOCIX data set 356

TABLE statement
CGMID parameter 194
DELETE parameter 196
GCMLIST parameter 198
IEBIMAGE program 188
LOC parameter 200

tape cartridge reader
editing data from 267
reading input from 267

tape DD statement
IEHMOVE program 377

tape labels 333
creating 341, 344

examples 341-344
tapes

assessing quality 435
TCRGEN statement

EDIT parameter 284
ERROPT parameter 285
IEBTCRIN program 283
MAXLN parameter 286
MINLN parameter 287
REPLACE parameter 288
TRANS parameter 289
TYPE parameter 289
VERCHK parameter 290

TEXT parameter
COPYMOD statement 207

TITLE statement
IEBPTPCH program 246
ITEM parameter 253

TO parameter
COpy CATALOG statement 391
COPY DSGROUP statement 391
COpy DSNAME statement 391
COpy PDS statement 391
COPY VOLUME statement 391
MOVE CATALOG statement 391
MOVE [)'S'GROUP statement 391
MOVE D:S'NAME statement 391
MOVE PDS statement 391
MOVE VOLUME statement 391

TODD parameter
COPY CATALOG statement 392
COpy DSGROUP statement 392
COpy DSNAME statement 392
COPY PDS statement 392
COpy VOLUME statement 392
MOVE CATALOG statement 392
MOVE DSGROUP statement 392
MOVE DSNAME statement 392
MOVE PDS statement 392
MOVE VOLUME statement 392

TOTAL parameter
ADD statement 311
CHANGE statement 311
EXITS statement 156
REPL statement 311

Index 463

REPRO statement 311
totaling routine 447

return codes 447
TOTCONV parameter

PRINT statement 257
PUNCH statement 257

track
assigning an alternate 325

examples 330-332
replacing defective 325

track overflow feature 378
TRACK statement

bbbb parameter 329
cccc parameter 329
dddd parameter 329
hhhh parameter 329
IEHATLAS 328
rrkk parameter 329
S parameter 329

TRANS parameter
TCRGEN statement 289

translate table
structure in module 175

truncate left action 112
truncate right action 112
TYPE parameter

ADD statement 425
EDIT statement 135
REPLACE statement 425
TCRGEN statement 289

TYPORG parameter
COMPARE statement 32
PRINT statement 257
PUNCH statement 257

UCS parameter
DFN statement 23

UCS statement
ICAPRTBL program 20
ucs-image parameter 23

ucs-image parameter
UCS statement 23

UNCATLG parameter
COPY DSGROUP statement 392
COPY DSNAME statement 392
COpy PDS statement 392
MOVE DSGROUP statement 392
MOVE DSNAME statement 392
MOVE PDS statement 392

UNCATLG statement
CVOL parameter 422
DSNAME parameter 423
IEHPROGM program 417

universal character set buffer
, loading 21
unload operation

creating sequential data sets ~9
example 91

UNLOAD parameter
COPY CATALOG statement 392
COPY DSGROUP statement 392
COPY DSNAME statement 392
COPY PDS statement 392
COpy VOLUME statement 392
MOVE CATALOG statement 392
MOVE DSGROUP statement 392
MOVE DSNAME statement 392
MOVE PDS statement 392
MOVE VOLUME statement 392

464 MVS/370 Utilities

unloaded data set 361
converting to ISAM data set

example 239
copying 370
moving 370

unmovable data set
cop~ti ng 370
movlng 370

UPDATE parameter
CHANGE statement 311
restrictions 299

updating data set libraries 293
user labels 151

processing 149, 446
as data 447
as data set descriptors 446

treated as data 250
user language modifications 293
user specified picture 98, 119

example 128
user-information· parameter

END statement 23
JOB statement 23

utility control statements 4
coding 5
continuing 5

utility control statements (ICAPRTBL)
DFN 20
END 21
FCB 21
JOB 20
UCS 20

utility control statements (IEBCOMPR)
COMPARE 30
EXITS 30
LABELS 31

utility control statements (IEBCOPY)
ALTERMOD 53
COPY 51
COPYMOD 53
EXCLUDE 56
SELECT 54

utility control statements (IEBDG)
CREATE 107
DSD 104
END 110
FD 105
REPEAT 110

utility control statements (IEBEDIT)
EDIT 133

utility control statements (IEBGENER)
EXITS 148
GENERATE 148
LABELS 149
MEMBER 149
RECORD 150

utility control statements (IEBIMAGE)
CHARSET 190
COPYMOD 187
FCB 186
GRAPHIC 189
INCLUDE 191
NAME 191
OPTION 191
TABLE 188

utility control ~tatements (IEBPTPCH)
EXITS 246
LABELS 248
MEMBER 247
PRINT 245
PUNCH 246
RECORD 247
TITLE 246

utility control statements (IEBTCRIH)

EXITS 283
TCRGEN 283

utility control statements (IEBUPDTE)
ADD 298
ALIAS 305
CHANGE 298
DELETE 301
ENDUP 306
LABEL 303
NUMBER 301
REPL 298
REPRO 298

utility control statements (IEHATLAS)
TRACK 328
VTOC 328

utility control statements (IEHINITT)
INITT 337

utility control statements (IEHLIST)
LISTCTLG 354
LISTPDS 354
LISTVTOC 355

utility control statements (IEHMOVE)
COPY CATALOG 384
COPY DSGROUP 381
COPY DSNAME 380
COpy PDS 383
COPY VOLUME 385
EXCLUDE 386
INCLUDE 385
MOVE CATALOG 383
MOVE DSGROUP 381
MOVE DSNAME 379
MOVE PDS 382
MOVE VOLUME 384
REPLACE 386
SELECT 386

utility control statements (IEHPROGM)
ADD 420
BLDA 418
BLDG 419
BLDX 418
CATLG 417
CONNECT 419
DELETEP 421
DLTA 418
DLTX 418
LIST 421
RELEASE 419
RENAME 415
REPLACE 420
SCRATCH 415
UNCATLG 417

utility programs
introduction 1
invoking 13
selecting 3
summary 8, 12

variable-spanned records
BDAM data sets with 373

VERCHK parameter
TCRGEN statement 290

ve"ri fyi ng a backup copy
IEBCOMPR program 27

vertical line spacing
IEBIMAGE program 170

VL parameter
ATTACH macro 14
CALL macro 16
LINK macro 14

VOL parameter
ADD statement 426
CATLG statement 426
CONNECT statement 426
DELETEP statement 426
LISTCTLG statement 357
LISTPDS statement 357
LISTVTOC statement 357
RENAME statement 426
REPLACE statement 426
SCRATCH statement 426

volume
copying 372
movlng 372

volume label set
placing on magnetic tape 333

VOLUME parameter
COPY VOLUME statement 392
MOVE VOLUME statement 392

volume size compatibility 362
volume table of contents (VTOC)

listing 347
edited format 347
unedited format 350

listing entries 355
example 359

VTOC parameter
SCRATCH statement 426

VTOC statement
bbbb parameter 329
cccc parameter 329
dddd parameter 329
hhhh parameter 329
IEHATLAS program 328
rrkk parameter 329

wait state codes
ICAPRTBL program 18

wave action 113

2495 tape cartridge reader
editing data from 267
reading input from 267

3800 Model 3 printer 191

Index 465

GC26-4065-1

==.= =<8> - ----- ----- _--- - - --------
-~-.-

Q;
o z

MVS/370 Utilities
GC26-4065-1

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

ustTNL __________________ _

Previous TNL ________ _

Previous TNL ________ _

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-4065-1

Reader's Comment Form

Fold and tape Please do not staple Fold and tape

..

Fold and tape

--...------- -------- - ---- -- ---------~-,-
<R>

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

Please do not staple

""II NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

Fold and tape

GC26-4065-1

8r'f~ / Technical Newsletter This Newsletter No. GN26 -1133
Date 30 March 1914

\

:
/

~I

Base Publication No. GC26-4065-1
File No. 5370-32

Prerequisite Newsletters None

MYS,370 utiliti.s

= Copyright IBM Corp. 1983

This technical newsletter (TNL) provides replacement page. for
the subject pUblication to support Release 1.1 of MV5'370 Data
Facility Product, Program Product 5665-295. These replacement
pages remain in effect for any subsequent releases unless
specifically altered. Pages to be inserted and/or removed are.

cover-2
9,10
95-96.1 (96.1 added)
165-172.2 (172.1 to 172.2 added)
183-208.2 (208.1 to 208.2 added)
213-214.1 (214.1 added)

Each technical change is indicated by a vertical bar to the left
of the change.

S~.ry of AIIandlnants

Technical changes .ffect~ve with this newsletter are noted in
the ·Summary of Amendments· following the preface.

Nota: Please file this cover letter at the back of the
publication to provide a record of changes.

IBM Corporation; P.O. Box 50020, Programming Publishing, San Jose, California 95150

Printed in U.S.A.

•

