GC26-4065-1
File No. S370-32

MVS/370
Program Product Utilities

Data Facility Product 5665-295

Release 1.1

'.l|‘=

TNL GN26-8133 (30 Mar 864) to GC26-4065-1

sacond Edition (October 1983)

This edition, as amended by technical newsletter GN26-8133,
applies to Release 1.1 of MVS/370 Data Facility Product, Program
Product 5665-295, and to any subsequent releases until otherwise
indicated in new editions or technical neuwsletters.

The changes for this edition are summarized under "Summary of
Amendments™ following the prefacae. Specific changes are
indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page
affected. Editorial changes that have no technical significance
are not noted.

Changes are made periodically to this publication; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM Svstem/370 and 64300 Processors
Biblioagraphy, 6€20-0001, for the editions that are applicable
and current.

Referencas in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications arae not stocked at the address given below;
requests for IBM publications should be made to your IBM
;epr?ggntative or to the IBM branch office serving vour

ocality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright Intaernational Business Machines Corporation 1983

PREFACE

ORGANIZATION

This publication describes how to use the MVYS/370 Data Facility
Product (MVS5/370) utility programs to manipulate system and user
data and data sets. :

This publication contains the following major parts:

*

"Introduction”" summarizes the utility programs and
information on the differences among systeum, data set, and
independent utility programs. The introduction contains
basic information about how the programs are executed and
about the utility control statements used to specify program
functions. New or infrequent users of the utility programs
should give particular attention to the introduction.

"Guide to Utility Program Functions" contains a table,

arranged in alphabetic order, of utility program functions
and the programs that perform them. This table enables you
to find the program that can do what you need to have done.

"Invoking Utility Programs from a Problem Program" contains
a description of the macro instructions used to invoke a
utility program from a problem program rather than executing
the utility program by job control statements or by a
procedure in the procedure library. This section should be
read only if vou plan to invoke a utility program from a
problem program.

The remainder of the book contains individual chapters for
each utility program arranged in alphabetic order. For a
discussion of the organization of these chapters, see
"Organization of Program Descriptions"™ on page iv.

Appendix A, "Exit Routine Linkage" contains information
about linking to and returning from optional user-supplied
exit routines. This appendix should be read only if you
plan to code or use an exit routine. If you are coding an
exit routine, this appendix provides linkage conventions,
descriptions of parameter lists, and return codes. If you
are using an existing exit routine, you may be interested in
the meaning of return codes from the exit routine.

Appendix B, "DD Statements for Defining Mountable Devices"
contains a review of how to define mountable volumes to
ensure that no one else has access to them. For a
definitive explanation of this subject, see the publication
0Ss/YS2 MVYS JCL.

Appendix C, "Processing User Labels" describes the
user-label processing that can be performed by IEBGENER,
IEBCOMPR, IEBPTPCH, IEHMOVE, and IEBUPDTE. This appendix
should be read only if vou plan to use a utility program for
processing user labels.

Preface iii

ORGANIZATION OF PROGRAM DESCRIPTIONS

To enable you to find information more easily, program
descriptions are all organized, as much as possible, in the same

Wway.

Most programs are discussed according to the following

pattern:

PREREQUISITE KNOWLEDGE

Introduction to and description of the functions that can be
performed by the program. This description typically
includes an overview of the program's use, definitions of
terms, illustrations, etc.

Functions supported by the utility and the purpose of each
function.

Input and output (including return codes) used and produced
by the program.

Control of the program through job control statements and
utility control statements. Explanations of utility control
statement parameters are presented in alphabetic order in
tabular format, showing applicable control statements,
syntax, and a description of the parameters. Any general
information, restrictions, and relationships of a given
utility control statement to other control statements are
described in the sections concerning the statements or in
the section for restrictions.

Examples of using the program, including the job control
statements and utility control statements.

In order to use this book efficiently, you should be familiar
with the foliowing:

REQUIRED PUBLICATIONS

Job control language
Data management

Virtual storage management

You should be familiar with the information presented in the
following publications:

iv MVS/370 Utilities

MVS/370 Utilities Messaqges contains a complete listing and
explanation of the messages and codes issued by MVS/370
utility programs.

0S7V52 MVS JCL contains a description of the use and coding
of the job control language.

MVS5/370 Data Management Services describes the input/output
facilities of the operating system. It contains information
on record formats, data set organization, access methods,
data set disposition, space allocation, and generation data
sets,

MVS/370 Data Management Macro Instructions contains contains

a description of the WRITE macro instruction; it also
contains the format and contents of the DCB.

0S/VS2 MVS System Programming Library: Supervisor Services

and Macro Instructions contains contains information on how
to use the services of the supervisor. Among the services

of the supervisor are program management, task creation and
management, and virtual storage management.

N

A

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

This publication describes how to use the MVS/370 Data Facility
Product (MVS/370) utility programs to manipulate system and user
data and data sets.

This publication contains the following major parts:

"Introduction™ summarizes the utility programs and
information on the differences among system, data set, and
independent utility programs. The introduction contains
basic information about how the programs are executed and
about the utility control statements used to specify program
functions. New or infrequent users of the utility programs
should give particular attention to the introduction.

®Guide to Utility Program Functions™ contains a table,

arranged in alphabetic order, of utility program functions
and the programs that perform them. This table enables vou
to find the program that can do what you need to have done.

"Invoking Utility Programs from a Problem Program™ contains
a description of the macro instructions used to invoke a
utility program from a problem program rather than executing
the utility program by job control statements or by a
procedure in the procedure library. This section should be
read only if you plan to invoke a utility program from a
problem program.

.The remainder of the book contains individual chapters for

each utility program arranged in alphabetic order. For a
discussion of the organization of these chapters, see
"Organization of Program Descriptions™ on page iv.

Appendix A, "Exit Routine Linkage™ contains information
about linking to and returning from optional user-supplied
exit routines. This appendix should be read only if you
plan to code or use an exit routine. If you are coding an
exit routine, this appendix provides linkage conventions,
descriptions of parameter lists, and return codes. If you
are using an existing exit routine, you may be interested in
the meaning of return codes from the exit routine.

Appendix B, "DD Statements for Defining Mountable Devices"™

contains a review of how to define mountable volumes to

ensure that no one else has access to them. For a

dgf%nitavg jéplanation of this subject, see the publication
/

Appendix C, "Processing User Labels"™ describes the
user-label processing that can be performed by IEBGENER,
IEBCOMPR, IEBPTPCH, IEHMOVE, and IEBUPDTE. This appendix
should be read only if you plan to use a utility program for
processing user labels.

e
e
e

Preface

ESCRIPTIONS

To enable you to find information more easily, program
descriptions are all organized, as much as possible, in the same
wa¥% Most programs are discussed according to the following
pattern: ’ ’

. Introduction to and description of the functions that can be
performed by the program. This description typically
includes an overview of the program's use, definitions of
terms, illustrations, etc.

. Functions supported by the utility and the purpose of each
function.

. Input and output (including return codes) used and produced
by the program. ,

. Control of the program through job control statements and
utility control statements. Explanations of utility control
statement parameters are presented in alphabetic order in
tabular format, showing applicable control statements,
syntax, and a description of the parameters. Any general
information, restrictions, and relationships of a given
utility control statement to other control statements are
described in the sections concerning the statements or in
the section for restrictions.

L Examples of using the program, including the job control
statements and utility control statements.

PREREQUISITE KNOWLEDGE

In order to use this book efficiently, you should be familiar
with the following:

. Job control language
[Data management

. Virtual storage management

JBLICATIONS ‘

You should be familiar with the information presented in the
following publications:

) MVS/370 Utilities Messages contains a complete listing and
explanation of the messages and codes issued by MVS/370
utility programs. >

) 0S/VS2 MVS JCL contains a description of the use and coding
of the job control language.

MVS/370 Data Management Services describes the input/output
facilities of the operating system. It contains information
on record formats, data set organization, access methods,)
data set disposition, space allocation, and generation data
sets.

o VS/370 Data Management Macro Instructions contains a
description of the WRITE macro instruction; it also contains
the format and contents of the DCB.

. 0S/VS2 MVS Supervisor Services and Macro Instructjons

contains information on how to use the services of the
supervisor. Among the services of the supervisor are
program management, task creation and management, and
virtual storage management.

iv MVS/370 Utilities

~—

N

TION

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

Within the text, references are made to the publications listed
in the table below.

short Title Publication Title order Number

Catalog Users VS/370 Catalog User i GC26-4053

Guide

Data Facility Dat acility Data Se $C26-3949

Data Set Services: User's Guide and

Services: Reference

User's Guide

and Reference

Debugging 0S/VS2 MVS Svystem GC28-1047

Handbook Programming Library: GC28-1048
Debugging Handbook, Volumas GC28~-1049
1 through 3

Device Support Device Support Faciliti ‘ GC35-0033

Facilities User's Guide and Reference

User's Guide

and Reference

Linkage Editor MVS/370 Linkage Editor and GC26-4061

and Loader Loader

Same IBM 3800 Printing Subsyste GC26-3846
Proqrammer's Guide

Same IBM 50 Magnetic Data GA27-2725
Inscriber Component
Description

Utilities MVS/370 Utilities Messages GC26-4068

Messages

JCL 0S/VS2 MVS JCL 6GC28-0692

Data Management MVS,/370 Data Management GC26-4057

Macro Macro Instructions

Instructions

Supervisor 05/VS2 MVS Supervisor GC28-0683

Services and Services and Macro

Macro Instructions

Instructions

Same Reference Manual for the GA26-1653
IBM 3800 Printing Subsystem

System MVS/370 System Programming GC26-4056

Programming Library: Data Management

Library: Data

Management

VSAM Users MVS/370 VSAM Users Guide GC26-4066

Guide

Praeface v

UTILITIES NOYV EXPLAINED IN THIS BOOK

There are several specialized utilities not discussed in this
book. The following list shows their names and functions, and
indicates which book contains their explanation.

‘ Utility Function Reference

IDCAMS Allows users to define, manipulate, »ﬂ!§4§1&_§%13%933953£§
or delete VSAM data sets, define Guide, GC26-405

and manipulate VSAM catalogs, and
copy, print, or convert SAM and
ISAM data sets to VSAM data sets.

Device Support Used for the initialization and
Facilities maintenance of DASD volumes.
Data Facility DPescribes DASD utility functions F
Data Set Services such as dump/restore and reduction rvices: J
of free space fragmentation and £
SC26-3949
O0ffline IBM Describes the 0ffline IBM 3800 O0ffline IEE %gn%
- 3800 Utility Utility program, used with the IBM Utility, SH20-9138
2802 Tape-to-Printing Subsystem
eature.

vi MVS/370 Utilities

~

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

RELEASE 1.1 UPDATE, MARCH 1084

NEW DEVICE SUPPORT

IBM 6248 Printer

The FCB statement in IEBIMAGE can now be usaed to create
forms control buffer modules in a form appropriate for use
on the IBM 4248 Printer. Information to support the 6248
has been added to the IEBIMAGE chapter.

IBM 3262 Model 5 Printer

Information to support the IBM 3262 Modael 5 Printer has been
added to the IEBIMAGE chapter.

RELEASE 1.1, OCTOBER 1983

NEW DEVICE SUPPORT

NEW PROGRAMMING SUPPORT

IBM 4245 Printer

Information to support the IBM 4245 Printer has been addad
to the IEBIMAGE chapter.

IBM 3800 Printing Subsystem Model 3

The IBM 3800 Printing Subsystem Model 3 is supported by
IEBIMAGE in full function mode.

IEBCOPY Enhancements

IEBCOPY can now be used to alter and copy load modules.
Information to support the altering and copying functions,
including the new ALTERMOD and COPYMOD statements, has been
added to the IEBCOPY chapter.

IEHMOVE Enhancements
When used to move or copy sequential data sets on DASD,
IEHMOVE now uses multiple BSAM buffers to improve

performance. Information to support multiple buffers has
been added to the IEHMOVE chapter.

Summary of Amendmaents vii

TNL GN26-8133 (30 Mar 84) to

Introduction .

System Utility Programs e e e e PR .
Data Set Utility Programs « e e e e e e
Independent Utility Programs e e e e e e e e
DASD and Tape Device Support e e e e e e e e
Control e s e e e s e 4 e e e
Job Control Statements e e e o o & o 4 4 s e
Utility Control Statements . . . o« o
Continuing Utility Control Statements . e
Restrictions . e s e e e s e e e e e e
Notational Conventzons e e e e e e e e e e e
keyword=device=list e e e e 4 e e e s .
Installation Considerations e e e e e e s .
Special Referencing Aids .« e e . .
Guide to Utility Program Functions o o s o o o
Invoking Utility Programs from a Problem Program
LINK or ATTACH Macro Instruction e e e e a4 e
LOAD Macro Instruction C e e e s e e e
CALL Macro Instruction e e e e o o o .
IcAPRTBL Pl‘ogram L[] L] L] L] L] L] L] L] L] [] L] L] [] * L]
Executing ICAPRTBL e e e e o e s
Input and Output e e e e e e e e e e e e e s
Control e e e s e e e e s
Utility Control Statements « e e e e e s e e
JOB Statement « o e e e v e e .
DFN Statement e e e s e a s e e e e e e
UCS Statement e e e e e s e 8 e 4 e e o
FCB Statement e v e e e s e e e e e e
END Statement e e e s e e e e e e e e e
ICAPRTBL Examples e e v e e e e e e s e e e
ICAPRTBL Example 1 e e e e e e e o s . o
ICAPRTBL Example 2 . . e e e e 8 e e
ICAPRTBL Example 3 . . . « o
ICAPRTBL Example 4 . . . e . o .
IEBcoMPR Progl‘am ® L] L] * * * ® L] L] L] * o L] L] L]
Input and OQutput e e e e s e e e o e e e e
Return Codes e e e e 4 e e e e e e e e e e
Control e e e e 8 e e e e e e
Job Control Statements « e e e e . .
Utility Control Statements . e e s e v e e
COMPARE Statement . e e e e e e e e e s
EXITS Statement e e e e e e e e e o
LABELS Statement e s e s e e s e s e e e
IEBCOMPR Examples e e s e s 4 e e s e e e e
IEBCOMPR Example 1 . e e e e e 4 e e e e e
IEBCOMPR Example 2 o e e . e o e e
IEBCOMPR Example 3 . e . . o o v o
JEBCOMPR Example 6 . . . e v e e
IEBCOMPR Example 5 . . e e e o e o s
IEBCOMPR Example 6 e e e e 4 .
IEBCOMPR Example 7 e e e e s e e e e
IEBCOPY Program e o o o o o o 06 o o o o o
Creating a Backup Copy e e e e e e e e
Copying Data Sets e v e e
Copying or Loading Unloaded Data Sets . .
Selecting Members to be Copied, Unloaded,

Copying Members That Have Alias Names
Replacing Identically Named Members
Replacing Selected Members . e .« e
Renaming Selected Members .

Excluding Members from a Copy Operatzon
Compressing a Data Set . e e e e o e
Merging Data Sets e e e e e e . .

e @ o o o ¢ o ™o o o @

6C26-4065-1

® & o o o o o o s O

0 OAOUVILIVIDDDUNE W

o o o O
.
.

N
o

s o o o o

L]
L]
L]
.

e o e o o o o
.
e o o o o e o o o o & o o o

e e o o o o

e o s o
H
N

Contents ix

Re-creating a Data Set
Altering Load Modules in Place

Copying and Reblocking Load Modules

Load Module Requirements . e
Inserting RLD Counts .« e e e
Input and Output e e e e e e
Return Codes v e e e e e
Control . e e e
Job Control Statements
PARM Information on the EXEC
SYSPRINT DD Statement

Statemen

e phe o o e 0 o s o »

anynamel and anyname2 DD Statements

SYSIN DD Statement

IEBCOPY Unloaded Data Set Block S1ze

Space Allocation . e e

Restrictions . :
Utility Control Statements
COPY Statement . e .

ALTERMOD Statement -
COPYMOD Statement . e
SELECT Statement . e e e
EXCLUDE Statement e e
IEBCOPY Examples e e e e e
IEBCOPY Example 1 .« o

IEBCOPY Example
IEBCOPY Example
IEBCOPY Example
IEBCOPY Example
IEBCOPY Example
IEBCOPY Example
IEBCOPY Example
IEBCOPY Example
IEBCOPY Example
IEBCOPY Example
IEBCOPY Example
IEBCOPY Example .
IEBCOPY Example 14 e e e
IEBCOPY Example 15 e e e .
IEBCOPY Example 16 e e e e
IEBCOPY Example 17 e e e e
IEBCOPY Example 18 « e e e

IEBDG Program e o o o o o o o
Types of Patterns . . o e
IBM-Supplied Patterns
User-Specified Pictures
Modification of Selected erlds
Input and Output e e e e e s e
Return Codes e e e s e e e s
Control e e e e
Job Control Statements
PARM Information on tha EXEC
SYSPRINT DD Statement
SYSIN DD Statement . e
seqinset DD Statement

.
.
.
.

@ o & ¢ 5 o o o o ¢ o

d fod pod = D QO NN NN N

* e © o o © o o o

parinset DD Statement . .
seqout DD Statement o s e
parout DD Statement « . e
Utility Control Statements .

DSD Statement . . . e e
FD Statement o e e e v e s
CREATE Statement e e e e e
REPEAT Statement e e e e
END Statement . .
IEBDG Examples . e e e
IEBDG Example 1 . .
IEBDG Example
IEBDG Example
IEBDG Example
IEBDG Example
IEBDG Example
IEBDG Example

IEBEDIT Program e o o s o o

e o o o o

NONUnMAWKLN
.
.
.

x MVS/370 Utilities

e o o o o o
e o o o o o

e o o ¢ o o o
e o o o o o ° o o o

.
e o o o o o & o
.
@ ® e o & © 8 o @ o o o o o o o @

.
e o o o o o o o o o

.
¢« o o o o o o

o o o o O

Statement

*® o ® o o o o o &

e o o o o o

® & ® & 6 & o ® ¢ & 0 o & 0 ® o s 8 6 % e s o @

e o o o o o o ¢ o o

© o ©6 ® e o o © & * o s o 0 0 0 o o o o

® o @ & o 8 & @ © o o * ¢ o O * o o

8 © © 8 ® © 6 6 ¢ o ° & o 6 0 0 6 @ ¢ e & 6 o o o o O

e ®© ® 06 @ % & o ® 8 ® © 6 ¢ 6 6 o 6 ° o 0 0 & s & e+ o 0 o

s ©

@ o 6 6 6 © 0 6 6 6 06 & 0 6 0 0 o & e 0 s 0 0 ° o o s o o O e ® ® o 6 © 8 ¢ ® o o ° © e © © @ 6 O & 0 % o 6 s o 0 * o

@ 6 & 6 8 o & 6 & & © 6 ® &8 © @ © e O o 6 & o 0 S o 0 " ¢ o © o & 0 0 0 0 o 0 o o

® ® @ 6 6 © o6 @ 6 & ® 6 0 ° ° o o & o P * o s o o 0+ ° o

® 6 o 6 @ 0 0 ° 9 0 0 0 O O ¢ 0 O s 0 6 0 0 0 e 0 o o

e o @ o o o o o o o o ° o o

« ©

e & @ o 6 ® © o ©® & o © o & ® o o * & * ° o o o e o o o

® 6 © 8 © © 6 8 & o 0 & © 8 ° 6 & O & @ © 0 o 06 0 0 0 ° o % @ 2 s 6 ° 0 e o 0 0 o

o o o o o o o o ¢ o o o o O

e ® o o o ® o o o o o o o o o o

@ © % 8 ® ® 6 ® © ¢ o © & o © O & O ® 0 0 © & & @ & 0 @ & ° ® ° 0 6 0 0 06 0 s 0 &

@ © @ 6 6 6 ¢ o ® o & ° & @ 5 0 & & & o & & 0 & o o 0 o o+ O

L]

® © © o 6 & 6 6 & 2 O © 0 © © & & 6 © 2 9 & 4 ® O & ° o o 0 o 0 o 0 0 0 0 0 o

3= X-X-3 -1
NNVNNN=O

Input and Output .o e
Return Codes . e e
Control

Job Control Statements

TNL GN26-8133 (30 Mar 84) to

Utility Control Statement.

EDIT Statement .
IEBEDIT Examples . .
IEBEDIT Example
IEBEDIT Example
IEBEDIT Example
IEBEDIT Example
IEBEDIT Example
IEBEDIT Example

IEBGENER Program

AU UN -~

o o o o o

Creating a Backup Copy

Producing a Partitioned Data
Expanding a Partitioned Data
Producing an Edited Data Set
Reblocking or Changxng Logical

Input and Output
Return Codes . e e
Control

Job Control Statements
SYSPRINT DD Statement

SYSUT1 DD Statement
SYSUT2 DD Statement

SYSIN DD Statement

.

.

Utility Control Statements

GENERATE Statement
EXITS Statement
LABELS Statement
MEMBER Statement
RECORD Statement
IEBGENER Examples
IEBGENER Example 1
JEBGENER Example 2
IEBGENER Example 3
IEBGENER Example 4
JEBGENER Example 5
IEBGENER Example 6
IEBGENER Example 7
IEBGENER Example 8
IEBGENER Example 9
IEBGENER Example 1

IEBIMAGE Program .
General Information
Storage Requirements
For IEBIMAGE .
For SYS1.IMAGELIB

.

e o o o o o o

e o o o o

o o o o o o

Set
Set

Reéo}d'L;nétﬁ

® o o o & o o e o o+ o o

e o o o o o

from S;qucntx

.

Maintaining the SYS1. IMAGELIB Data

General Module Structure

Naming Conventions for Moduies)

Using IEBIMAGE

Creating a Formé Control Buffer Modul
3800 FCB Module Structure
4248 FCB Module Structure

FCB Module Listing

Creating a Copy Mod1f1cat10n Module

COPYMOD Module Structure

COPYMOD Module Listing

.

.

.

e o o o o

.

.

. -
o
e o o e o o pre v o o @

® e o o o o o o o o

e o o o o o o o

Creating a Character Arrangement Table

TABLE Module Structure
TABLE Module Listing

.

s e o o o

L] L] L
.

o o o o o o o o o » ® o o & o o o & o o

3

e o o o o

e o o o © o ¢ o o o o o o o

® o ¢ s o o o

dul

Modu e

e e o o o o o o o o 0 o o

@ ® o © 6 o o o6 o 0 o 6 o " o 0 o s 0 0 o 2 0 s o

¢ o & o o ® & o o o 0 o o

e o o o o o o o o

® & & @ o o & o ® o @ o e o e O

.

@ o o o 5 0 o e & o ¢ o o @

® ¢ & & o o & o & s 0 o o

.-.....u.o

e o o @ o o o o o o

® & & o o o & o & o ° o ° s o O

Creating a Graphic Character Mod;f:cat;on Modulo
GRAPHIC Module Structure

GRAPHIC Module Listing

.

Creating a Library Character Set Modulo
CHARSET Module Structure

CHARSET Module Listing

Input and Output . e
Return Codes .
Control e e e e e

.

e o o o o

e o o o o o o

e« o o o o o

® o o ¢ o o & o o o s o o

o o o o Puje O

e o o o o o o

3

e 6 o6 o o o o o o o 0 o o o s o 0o Yo o

GC26-4065-1

® 2 o e 6 ¢ o o o 0 o o o

@ 6 @ ¢ ® o 8 o & o o e ¢ & o o o o 0 & 8 0 e s s 0 ¢ @

e o s o o s 0 0 0 gpe @

® & o o o o o ° 2 s s e e o O @ » e o o o 0o ¢ o ° o & o 2 e o e o o

e @ ® o & & o o 0 o o o =

e o o o o o o e o o o o o & & B s e &

® o o o s @

e o & » © 4 o s ¢ 0 o o+ s e @

Contents xi

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

Job Control Statements c e e e s e s e s s e e e s e e 184
SYSPRINT DD Statement e e e e e s e e e e e e e e 184
SYSUT1 DD Statement e e e e e et e e et e e e e 185
SYSIN DD Statement . e e e e e s e e e e e e e e 185

Utility Control Statements e e e e e e e e e e e e e 185
Operation Groups . . e e e e s e e e e e e e e e 185

FCB Statement e e e s e e e e e e e e e e e e e e 186

COPYMOD Statement e e e e e e e e e e e e e e e e e 187

TABLE Statement t ¢ o s s s 8 s s & s s s e 8 s e & » 188

GRAPHIC Statement s e s s e o s e s e e e e s e e s 189

CHARSET Statement e e e e e e e e e e e e e e e e e 190

INCLUDE Statement e s e e e e e e e e e e e e e e 191

NAME Statement e e e e e e e e e e e e e e e e e e e 191

OPTION Statement e e e e e e e e e e e e e e e e e e 191
Using OVERRUN e e e e e e e e e e e e e e e e e 192

IEBIMAGE Examples . e e e e s e e e e e e s 208.1

Example 1: Building a New 3800 Forms Control Buffer

Module « e e e e e . . . 209
3800 Model 1 209

Example 2: Replac:ng a 3800 Forms Control Buffer Module 210
3800 Model 1 210

Example 3: Replac1ng a 3800 Forms Control Buffer Module 210
3800 Model 1 . . 210

Example 4: Bu11d1ng a New 3800 Forms Control Buffer

Module e e e e . e . o . e e e e 4 e 211

3800 Model 1 . 211

Example 5: Replac1n9 the 3800 Forms Control Buffer

Module STD3 . e v e e e e e e e e e 212

3800 Model 1 212

Example 6: Building a New 3800 Forms Control Buffer

Module for Additional ISO Paper Sizes . . e e e 4 213

3800 Model 3 . 213

Example 6A: Building a 4248 Forms Control Buffer Module 216

Example 7: Building a New Copy Modification Module 214.1
3800 Model 1 214.1

Example 8: Bu11d1ng a New Copy Mod1f1cat1on Mcdule From

an Existing Copy e e e e e s e e e s s e e 215
3800 Model 3 .« 0 e 215

Example 9: Adding a New Character to a Character

Arrangement Table Module e e e e e e e e e e e e e 216
3800 Model 3 216

Example 10: Bu1ld1ng a New Character Arrangement Table

Module From an Existing Copy e e e e e o o e s e 216
3800 Model 3 216

Example 11: Bu11d1ng Graph:c Characters 1n a Character

Arrangement Table Module . . e e e e e e e e e e 217
3300 Model 1 217

Example 12: Deleting Graphic References From a Character

Arrangement Table Module e e e e e s e s e e e e e 218
3300 Model 3 e e e e e e e e e e e e e e e e . 218

Example 13: Listing the World Trade National Use

Graphics Graphic Character Modification Module . o e 219
3800 Model 1 e T 219

Example 14: Building a Graphic Character Modification

Module From the World Trade GRAFMOD e e e e e s e e 219
3800 Model 3 e e e e e e e e e e e e e e e e e e e 219

Example 15: Building a New Graphic Character

Modification Module and Modifying a Character

Arrangement Table to Use It . e e e e e s e e e e e 220
3800 Model 3 o« v e e 220

Example 16: Building a Graphic Character Modification

Module From Multiple Sources e e e e e e e e e e e 222
3300 Model 1 e e e e e e e e e e e e e e e e e e e 222

Example 17: Defining and Using a Character in a Graphic

Character Modification Module e e e s e e s e e e e 223
3800 Model 3 e e e e e e e e e e e e e e e e e e e 223

Example 18: Listing a Library Character Set Module . 226
3800 Model 1 e e o o s o s 6 4 8 s e w. s 4 e e e e s 226

Example 19: Building a Library Character Set Module . 226
3800 Model 3 e e e e e e e e e e e e e e e e e e e 226

Example 20: Building a Library Character Set Module and
Modifying a Character Arrangement Table to Use It . . 227
3800 Model 3 e e e e e e e e e e e e e e e e e e e 227

xii MVS/370 Utilities

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

Example 21: Building a L:brary Character Set Module From

Multiple Sources e e e e
3800 Model 1 o o e
IEBISAM Prog"am L] - L] L] L] L] * L] * [2 L] [] L] * [] *® L]
Copying an ISAM Data Set . e e e e e e e o e e
Creating a Sequential Backup Copy e e e s e e e e e e

Overriding DCB Control Information

Creating an ISAM Data Set from an Unloaded Data Set
Printing the Logical Records of an ISAM Pata Set

Input and Output
Return Codes e e e e e e e e e e e e e e
Control e e e e e e e e e

Job Control Statements . e
PARM Information on the EXEC Statement .
IEBISAM Examples . e e . .
IEBISAM Example e« e e e « e e e
IEBISAM Example
IEBISAM Example
IEBISAM Example
TEBISAM Example

IEBPTPCH Program » s o o o .
Printing or Punching an Ent:re Data Set
Printing or Punching Selected Members
Printing or Punching Selected Records .
Printing or Punching a Partitioned Dlrectory
Printing or Punching an Ed1ted Data Set .

Input and Output . . . e e e s e . e
Return Codes e e e e e e e e 6 e e

Control e v e e e e e e e
Job Control Statements e e e e e e e e e

SYSPRINT DD Statement e e s e e e e e
SYSUT1 DD Statement c e e e e e e e e
SYSUT2 DD Statement e e e e e e e e
SYSIN DD Statement . e e e e e e e e
Utility Control Statements e e e e e
PRINT Statement . e e e e e e e e
PUNCH Statement e e 6 e e e e e e e
TITLE Statement e v e e e e e e e e
EXITS Statement e e e e e e e e e
MEMBER Statement e e s e e e e e e e
RECORD Statement e e 4 s e e e e e e e
LABELS Statement e e e e e e e e e

IEBPTPCH Examples e e e e e e e e e e
IEBPTPCH Example 1 e e e e e e e e e
IEBPTPCH Example e e e e
IEBPTPCH Example
IEBPTPCH Example
IEBPTPCH Example
IEBPTPCH Example
TEBPTPCH Example
IEBPTPCH Example
IEBPTPCH Example e e e e e e . e
IEBPTPCH Example 10 e e e e e e e e

IEBTCRIN Program e o ¢ 6 o o o o 6 o o o o @
MTDI Editing Criteria . e e e e e s
MTDI Editing Restr1ct1ons e e e e e e
Special Codes

UMIDWNWN -

e o o o ¢ o o

OO NOUIWN

End-of-Cartridge e e e e e e e e e e e e
Error Records e e e e e e e e
Error Description Nord (EDN) e e e e e e
Sample Error Records . . .« e e s . o
Input and Output . e e e e e e e e e
Return Codes e e e e e e e e e e e e e e
Control . C h e e e e e e e e
Job Control Statements o« e e
SYSPRINT DD Statement e e e e e e . e
SYSUT1 DD Statement . e . e
SYSUT2 and SYSUT3 DD Statements « e e e
SYSIN DD Statement . . . c e e e e
Utility Control Statements e e e e e e e
TCRGEN Statement . e e e e 4 e e e

® o o o o @ o o o o o o o

.

¢ o @ o o o © o ¢ o e o @ o o o s O

e o o o o o o o o o e o o o o o e s 0 0 o
e o 6 ® o o o o o o 2 s @ . . . -
e o o+ o O e o o o o o .

e e o 6 6 o o s 0 0 06 s e e s s e @ o s o 8 o 0 0 0 e o o »

e 6 o @ o o o ® o o o o o v e o o o

e o o o o o o @
e o o o o
e« o o o o

.
® o o o o & o o o o

. Ky
e o e o o o o O e o o o o o
e o o & o o O ® o e o ° ¢ o o o

e @ e o & ® ® o © o o ¢ s o s o o O
e @ o e o @ o o o o o o o o o v o O

e @ o o & o o o o o
e o6 o o o o o o ¢ o o

Contents

EXITS Statement e e e e

IEBTCRIN Examples e e e e e
IEBTCRIN Example 1 e e e e .
IEBTCRIN Example 2 ¢« e e e e

IEBUPDTE Program O
Creating and Updating Data Set
Modifying an Existing Data Set
Changing Data Set Organization

Input and Output e e e e
Return Codes e e e e e e

Control e v e e
Job Control Statements

PARM Information on the EXEC

SYSPRINT DD Statement

SYSUT1 DD Statement

SYSUT2 DD Statement . e e

SYSIN DD Statement . . .
Utility Control Statements .

Function Statement P

Function Restrictions .

Detail Statement e e e e e
Detail Restrictions . e e
Data Statement . e e e e
LABEL Statement .

ALIAS Statement .
ENDUP Statement

IEBUPDTE Examples e

IEBUPDTE
IEBUPDTE
IEBUPDTE
IEBUPDTE
IEBUPDTE
IEBUPDTE

Example
Example
Example
Example
Example
Example

IEBUPDTE
IEBUPDTE
IEBUPDTE
IEBUPDTE Example
IEBUPDTE Example

IEHATLAS Program
Input and Qutput
Return Codes
Control e o v .

Job Control Statements . e e
Utility Control Statements .
TRACK Statement . .
VTOC Statement e e e
IEHATLAS Examples e e e e
IEHATLAS Example .
IEHATLAS Example
IEHATLAS Example
IEHATLAS Example

IEHINITT Program o o o« o
Placing a Standard Label
Input and Output e e v e e e
Return Codes e e e e e e
Control ..
Job Control Statements
PARM Information on the EXEC
SYSPRINT DD Statement .
anyname DD Statement .
SYSIN DD Statement o e e e
Utility Control Statement .
INITT Statement .« N
IEHINITT Examples e e e e e e
IEHINITT Example . .
IEHINITT Example
IEHINITT Example
JEHINITT Example
IEHINITT Example
IEHINITT Example
IERINITT Example

Example
Example
Example

P = ADOONANLNN -
-

DUNN =

NOUMH UKL=

xiv MVS/370 Utilities

0.. * : L]
Libraries

. .

Statement

.

on Magnetic

. . . .

Stetement)

.
.
e o o o o o o o o

* o o 2 o

e o o o

e o o o @

e o o o o ¢ o o O * * o o o o

® o 6 o o & s o o o o o o

o o o o o

e ¢ o o o o o o o »

e o o o o @

® o e e o o o o

® ® o e o o o o o o o o o

e o o O

e o ¢ o o

e o o o o o o

e ® o e o o o

283

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

IEHLISTPI‘OQI‘GIII e o o o o & o o o o e o o o

Listing 0S CVOL Entries “ . .
Listing a Partitioned Data Set Dxrectory e e e e e
Edited Format . e e o & s e e e s s s e e
Unedited (Dump) Form t e e s e e & e e
Listing a Volume Table of Contents e e e e e e e s

Edited Format e e s e e o 4 e e . .
Unedited (Dump) Format e s e e s e e e e e e e
Input and Output . e e e 6 e e e e e e e e e e
Return Codes e e e s s s e s e 4 s s 4 8 s e e e
Control e o s e e e e e . e e .

Job Control Statements) . .
PARM Information on the EXEC Statement .
SYSPRINT DD Statement

anynamel DD Statement . e e e : .
anyname2 DD Statement e e e .

SYSIN DD Statement
Utility Control Statements e e e e
LISTCTLG Statement . e e e

e o o o o

LISTPDS Statement e e 4 e 4 s o a .
LISTVTOC Statement e v e e e e e s o e e
IEHLIST Examples e e e e e e e e e e o e
IEHLIST Example 1 e e s s e e 4 s e . e

IEHLIST Example 2 e e e e o .
JEHLIST Example 3 e e b e e e e e e
IJEHLIST Example 4 . o . « .
IEHMOVE Program .« o o o o o o o o o

® @ o o ¢ e o o o o o o o
.
.

Volume Size Compat1b111ty ¢« e e e e e e e s e
Space Allocation e e e e e e e e e e . .

Reblocking Data Sets e e e
Using IEHMOVE with RACF o .
Moving or Copying a Data Set e e e e s . .
Sequential Data Sets e e e e e e e e e e

Partitioned Data Sets e e e e e e e e e . . e
BDAM Data Sets . e o o e 4 e e e e e e e e e
Multivolume Data Sets e e e e e e e e e e 4 e e
Unloaded Data Sets e e e s e e s e e e e s e e e
Unmovable Data Sets .« e o s e e e
Moving or Copying a Group of Cetaloged Data Sets .« .
Moving or Copying an 0S CVOL . c e e 4 e e e

Moving or Copying a Volume of Data Sets
Moving or Copying BDAM Data Sets wzth Varzable-Spanned

tape DD Statement e s e e e e o
SYSIN DD Statement e s b e 4 e e e e

Records . . e e e e .
Input and Output e e e e e e e e e e e e e . .
Return Codes e e e e e e e e e e e e e e e e .
Control e e e e e e e e e e e e e e
Job Control Statements e e s e s e e e e
PARM Information on the EXEC Statement o e e o e
SYSPRINT DD Statement . e e e e e e e . .
SYSUT1 DD Statement e e 4 e e e e e e e e e e
anynamel DD Statement e e e e e e .
anyname2 DD Statement e e s e e e e s e e e e

* o o o o

Job Control Language for the Track Overtlew.Fentune.

Utility Control Statements e e e e & s et e e e e e
MOVE DSNAME Statement e e e s e s e s s e e o o
COPY DSNAME Statement e e e e s e e e e e e e
MOVE DSGROUP Statement e b e e e e e s e e .
COPY DSGROUP s‘tatement
MOVE PDS Statement e e s s e e e & o e 8 e 8 e s
-COPY PDS Statement e e s e s e e e e e e e e e
MOVE CATALOG Statement e e e e e e e e e e s
COPY CATALOG Statement e b e e e e e . .

MOVE VOLUME Statement e e s e e s e s e o
COPY VOLUME Statement et e e o e o o e s
INCLUDE Statement e e e e e e e e e e e
EXCLUDE Statement e e e e . e e e e
SELECT Statement . e
REPLACE Statement .
IEHMOVE Examples e e e
IEHMOVE Example 1 e e o e .
IEHMOVE Example 2 e e e e e e e e

e o o o o
.
.
.

e o o6 ¢ o o o o o o
.

e o o o o »
.
.

e o o o o

345
345
345
366
347
347
347
350
351
351
352
352
352
353
353
353
354
354
354
354
355
357
358
358
359
359

361
362
363
364
365
365
366
366
369
369
370
370
370
371
372

373
373
374
374
374
375
376
376
376
377
377
378
378
378
379
380
381
381
382
383
383
384
384
385
385
386
386
386 .
393
394
395

Contents xv

IEHMOVE Example
JEHMOVE Example
JEHMOVE Example
IEHMOVE Example
IEHMOVE Example
IEHMOVE Example
JEHMOVE Example
IEHMOVE Example
IEHMOVE Example
IEHMOVE Example
IEHMOVE Example

IEHPROGM Program e o o o o o o
Scratching a Data Set or Member
Renaming a Data Set or Member

. . . ¢ o

Tt ot ol et \O OO NN DN

WN=O

Cataloging a Data Set in an 0S CVOL

e o o o ¢ o o &

* & o o o o o o e o o

® o o o o o o 0o o o @

Building or Deleting an Index in an 0S
Building or Deleting an Index Alias in

Connecting or Releasing Two 0S CVOLs

e o o o o o o o @ o

e & o &6 o o o o o o o

Building and Maintaining a Generation Data

an 0S CVOL
Maintaining Data Set Passwords
Adding Data Set Passwords
Replacing Data Set Passwords
Deleting Data Set Passwords
Listing Password Entries .
Input and OQutput « s e e
Return Codes e e s e e e e e
Control .« e e e
Job Control Statements
PARM Information on the EXEC
SYSPRINT DD Statement .o .

anynamel DD Statement . .
anyname2 DD Statement .
SYSIN DD Statement . . .
Utility Control Statements .
SCRATCH Statement .« o e
RENAME Statement e e e e e
CATLG Statement e e e e e

UNCATLG Statement
BLDX (Build Index) Statement
DLTX (Delete Index) Statement

Statemen

.

® o o o o o

e o o o o s o o

BLDA (Build Index Alias) Statement

DLTA (Delete Index Alias) Statement

CONNECT Statement

RELEASE (Disconnect) Statement

BLDG (Build Generation Data Group Index
ADD (Add a Password) Statement

e 6 o o o & o e o o

® ® o e o o s o 0 0 o o gipe o o e o 0 e 0 s e

REPLACE (Replace a Password) Statement

DELETEP (Delete a Password) Statement
LIST (List Information from a Password) $

IEHPROGM Examples e e 4 e o a
IEHPROGM Example 1 e e e e e
IEHPROGM Example 2
IEHPROGM Example 3
IEHPROGM Example 4
IEHPROGM Example 5 . e e
IEHPROGM Example g e e e e

8
9
1

.
.

JEHPROGM Example
IEHPROGM Example
IEHPROGM Example
IEHPROGM Example

o o & e o o o

e o o o o o o o o o

e o o o o

e o o o o o o o o o

)

e ® ¢ o o o o ° o o o

IFHSTATR Program o e o o o 6 o o o o @

Assessing the Quality of Tapes in a Library

Input and Output . e e e e e
Control e e e e
Job Control Statements . o e
IFHSTATR Example e e e e e

Appendix A. Exit Routine Linkage
Linking to an Exit Routine

Label Processing Routine Panameters

.

.
.
.
.

Nonlabel Processing Routine Parameters

xvi MVS/370 Utilities

o o o O

e o ® o o o o o o o o e o &6 & o o o o o o

e o o o @ o o o o o o gpeo o o fle o e o o o 0 o 2 e e 0 o o

e e o L]

[d
e o6 6 o o o o o o s o gpe o o e o ¢ 2 4 e o 0 6 6 6 0 8 o ¢ 0 6 e 0 s s e e e

® & o e o o o o o o o

® o o o o O

L d

e @ ¢ o o o ¢ 0 s s e 0 0 0 e 6 e 0 o e 0 s 0 e 0 s o e

- R

e o o O

e Jeo o o Po e o e 0 o 0 ¢ 0 0 0 o 9 0 o s e e 0 s 0 0 0 0o s s ke

e o o o O

[]
Lo

e e o o o o o o o o

® o @ o o 0 0 o o o o

e« e o o s e s e v e s).

e o o gire © o o o o o e s 0 e 0 o o

e ®» o o o o o o o o o

e s s o @

® o @ o ¢ o o o o o o

e o o o o O

© o ¢ o o 6 0 06 06 0 4 06 0 06 0 06 0 0 0 0 0 00 0 Yo o s 000

e ¢ & o ¢ o o o & o o

e & @ o o & o ° o o o

¢ o o o o O

e 6 6 o o o o 06 06 ¢ 0 0 06 0 0 0 0 o Hie o 0 o o o @

e« o o o o O

@ © o o6 o6 @ o & & o & o o & o & o 6 & ¢ " o * @

NS

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

Returning from an Exit Routine N
DD Statements for Defining Mountable Devices

Appendix B.

DD Statement Examples e e o e o e
DD Example 1 e v s e e o . .
DD Example 2 e e e e e e .o e
DD Example 3 e e e e e e s . .
DD Example 6 et e e e e e e e
DD Example 5 .o . .« . e . e

Appendix C. Processing User Labels

Processing
Exiting to
Processing

Index . o

User Labels as Data Set

¢ o o o o
e o » o o o
* o o o o
e o o o o
e & o o o

e o o o o

Descriptors

a User's Totaling Routine . e o o

User Labels as Data .

L] L 2 L L] L) . * *® L] * L] L]

o o .

Contents

440
443
443
443
444
444

444
445

446
446
447
447

449

xvii

xviii

® o o o o o o o

e s e

Dt ot

(™)
W N OV NOUMS WNM

MVS/370 Utilities

System Utility Programs e e e e e e e
Data Set Utility Programs e o e 4 e o
Independent Utility Program e e 4 e e e
Locating the Correct Example e e e e e
Tasks and Utility Programs « e e e
Typical Parameter Lists . e e e e e s
Sequence of DDNMELST Entrzes e e e e e
ICAPRTBL HWait-State Codes . e . e
JCAPRTBL Utility Control Statements .
ICAPRTBL Example Directory

e & o o s o o o o
e o o ® o s o o o o

Partitioned Directories Whose Data Sets Can Se.Compared

Job Control Statements for IEBCOPY
Changing Input Record Format Using IEBCOPY . e
IEBCOPY Utility Control Statements e . e
Multiple Copy Operations within a Job Step . e
IEBCOPY Example Directory . .« e e e e
Copying a Partitioned Data Set——Full Copy . . .
Copying from Three Input Partitioned Data Sets
Eopy10perat1on with "Replace"™ Specified on the Data
eve

Using IEBCOMPR e o e s e
Partitioned D1rector1es Nhose Data Sets Cannot Be

Compared Using IEBCOMPR e e e e e e e e e e e e
IEBCOMPR Return Codes . e e e e e e e e
Job Control Statements for IEBCOMPR e e e e .
IEBCOMPR Utility Control Statements e e e e e e s
IEBCOMPR Example Directory e e e e e e e s e e
IEBCOPY Return Codes e e e e e e e

e o o o o o

® o o o o o o o

* o o o o

Set

Copying Selected Members w1th Reblockxng and Deblock:ng

feleftzve Copy with "Replace™ Specified on the Membe
eve

r

Selectlve Copy w1th "Replace" Specified on.the.Data Sot

Level e e .s e s
Renam1n9 Selected Members Uszng IEBCOPY

Exclusive Copy with "Replace™ Specified for Cne Input

Partitioned Data Set

Compress-in-Place Followzng Full Copy thh "Replace"

Specified
Multiple Copy Operatzons/Copy Steps .

Multiple Copy Operations/Copy Steps w1th1n a Job Ste
IBM-Supplied Patterns e e e s e e e e e e e e e
IEBDG Actions . e e e e s e e e e e e . . e
IEBDG Return Codes e e & 4 e s e e
Job Control Statements for IEBDG o . o« e e
IEBDG Utility Control Statements

Defining and Selecting Fields for Output Records Uszng

p

.
.
.

IEBDG .
Field Selected from the Input Racord for Use 1n the
OQutput Record . e e e e s “ e e e e e
Compatible IEBDG Operatzons C e e e e e e e e s

IEBDG User Exit Return Codes

Default Placement of Fields w1th1n an Output Record
Using IEBDG . .
Creating Output Records w1th Ut111ty Control
Statements

Repetition Caused by the REPEAT Statement Us:ng IEBDG

IEBDG Example Directory . . .
Output Records at Job Step Completlon .

Output Partitioned Member at Job Step Completlon
Partitioned Data Set Members at Job Step Completion
Contents of Output Records at Job Step Completzon

IEBEDIT Return Codes e e e e .
Job Control Statements for IEBEDIT e e e e e
IEBEDIT Example Directory

Creating a Partitioned Data Set from Sequent1a1 Inpu
Using IEBGENER . . e
Expanding a Part1t1oned Data Set Us1ng IEBGENER .
Editing a Sequential Data Set Using IEBGENER . .

t

.

.

DO NN =

™
wn

NN NSNS NV
N BMIAWKN =O
o e o o

5.

Pt ot o ot ot ok Gt ot o P ot o Pt ot P
Nt it it it ek b ok Pl il el D O DO O

OVORNOUVMHWNW NHOVOONN

'IEBIMAGE Listing of a Forms Control Buffer Modul

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

IEBGENER Return Codes N

Job Control Statements for IEBGENER .

TIEBGENER Utility Control Statements

IEBGENER Example Directory o e v e

3300 General Module Header e .

3800 FCB Module Structure e o e e
4248 FCB Module Structure o« e 4 e
G248 FCB Module Control Byte . .
6248 FCB Module Data Byte .

e e o o & o o o
® e e o o o o o
® o o o & o o o

e o o o o o
e @ o o o o o o o

e @ o o o s 0 0 s e

Copy Modification Module Structure . .
IEBIMAGE Listing of Three Segments of a Copy
Modification Module . .« .

Character Arrangement Table Module Structure
ﬁEgITAGE Listing of a Character Arrangement Tuble
odule .
Graphic Character Mod1f1cataon Module Structure
IEBIMAGE Listing of Two Segments of a Graphic

Character Modification Module . e e e e s
Library Character Set Module Structure . .« e
IEBIMAGE Listing of Two Segments of a Library
Character Set . . e e 6 e e e e e
IEBIMAGE Return Codes e e e o o s
Job Control Statements for IEBIMAGE .« o . .

Utility Control Statements for IEBIMAGE .« .
IEBIMAGE Listing of a Copy Mod1fzcat10n Module w.
Overrun Notes . e e 0 e e
IEBIMAGE Example Dzreotorv

An Unloaded Data Set Created Us:ng IEBISAM
Record Heading Buffer Used by IEBISAM .

IEBISAM User Exit Return Codes . . .
IEBISAM Return Codes . .
Job Control Statements for IEBISAM .
IEBISAM Example Directory e e s s » .

IEBPTPCH Return Codes . .
Job Control Statements for IEBPTPCH
IEBPTPCH Utility Control Statements
IEBPTPCH Example Directory . e .
Special Purpose Codes e o e o o 4 »
MTDI Codes from TCR e s v.e o o o o @
MTST Codes from TCR .

MTST Codes after Transletzon by IEBTCRIN wat

o o o o o o o o o

e o o o o
e © ® & o 8 @ o ¢ 0 o o o o o e o o o

e o ® o o ® ° o o o o
e ® ¢ 2 o 0 & o o © o ° o o o

TFe o e o s 0 0 0 0 s 0 e

TRANS=STDLC

Tape Cartridge Reader Data Stream . e
Record Construction e e e e & e e 4 e e
IEBTCRIN Return Codes e e e e
IEBTCRIN Job Control Statements .

JEBTCRIN Utility Control Statements
IEBTCRIN Example Directory e e e e
IEBUPDTE Return Codes .
Job Control Statements for IEBUPDTE
IEBUPDTE Utility Control Statements
NEW, MEMBER, and NAME Parameters .
UPDATE=INPLACE Return Codes . o e
IEBUPDTE Example Directory .« .
Example of Reordered Sequence Numbers
Reordered Sequence Numbers e e e e e e
IEHATLAS Return Codes . e
Job Control Statements for IEHATLAS
Utility Control Statements for IEHATLAS
IEHATLAS Example Directory
IBM Standard Label Group after Volume Rece1
IEHINITT Return Codes e e e s e
IEHINITT Job Control Statements
Printout of INITT Statement Specxf:catxons
Initial Volume Label Information
IEHINITT Example Directory .
Index Structure—Listed by IEHLIST
Sample Directory Block . o .
Edited Partitioned D1rectory Entrv .
Sample Partitioned Directory Listing
Sample Printout of a Volume Table of Conten
IEHLIST Return Codes . e « e s e e
IEHLIST Job Control Statements e e e e

e ® o o o o o o o
® @ o ¢ o e ® e o o 0 o 0 o s o o

® o o o & o o o 2 o o

.
Cfe © ¢ o o ¢ o 0o ¢ o 0 o 0 0 0 0 o o o

3
......n_..g..

® o o o o o

ee*eeeeeo.ee<eeeeoeeeeeeoee‘.e..o

Figures

o o o o

* o o o

® © ¢ o o ¢ e o 0 0 0 0 0 0 o Fe o o 0

e o ¢ o o e o e ® e 0 e e s e 0 0 0 o

¢ o o o o o o o

® e 6 o ® © o o o o o o o

@ 6 ® o & 6 o e & o o ¢ * o o e s e o

17
17

o IN) \D 1= Bt ot Pt o ot Bt ot
e o NSNSNOWMISDD D

WNHNN = ONOWN

121.
123.
124,

125.
126.
127.
128.

129.
130.
131.

132,
133.

135.
136.
137.
138.

139.
140.

141,
142,
143.

144,

146.
167.

149.
150.
151.
152.
153.

156.
155.

xx MVS/370 Utilities

IEHLIST Utility Control Statements e e o e o o
IEHLIST Example Directory

Move and Copy Operetzons——DASD Recezvxng Volume wzth

Size Compatible with Source Volume

Move and Copy Operations—DASD Rece1v1n9 Volume wath

Size Incompatible with Source Volume

Move and Copy Operations—Non-DASD Receivzng Volume

Moving and Copying Sequential Data Sets « o .
Moving and Copying Partitioned Data Sets .
Partitioned Data Set Before and After an IEHMOVE

Operation e s e e s e,

Merging Two Data Sets Us1ng IEHMOVE v e e e e
Merging Three Data Sets Using IEHMOVE

go¥1ng and Copying a Group of Non-VSAM Cetaloged
ets . . o e e . o .
Moving and Copyxng the OS CVOL .« . e e o e
Moving and Copying a Volume of Data Sets . o
IEHMOVE Return Codes . . e e o e o o
IEHMOVE Job Control Statements e e e o o .
IEHMOVE Utility Control Statements “ e e . .
IEHMOVE Example Directory . .
Index Structure Before and After an IEHPROGM Bui
Operation o . .
Building an Index Al;as Us1n9 IEHPROGM . .

Connecting an 0S CVOL to a Second 0S CVOL Uszng
IEHPROGM . e o e e
Connecting Three OS CVOLs stng IEHPROGM . .

Building a Generation Data Group Index Using IEHPRDGM

Coev

.

Deia

e o o o o o o

.

Relationship between the Protection Status of a Data

Set and Its Passwords e e o s s e e e e s .
Listing of a Password Entry e o e e e e .
IEHPROGM Return Codes e e e s e o o
IEHPROGM Job Control Stetements e o e e s e
IEHPROGM Utility Control Statements e e e s e
IEHPROGM Example Directory . e e e
Type 21 SMF Record Format wlth ESV Date . e e
Sample Output from IFHSTATR e e e e e e e e e
IFHSTATR Job Control Statements . .

Parameter Lists for Nonlabel Process1ng Ex1t Routnn

Return Codes That Must Be Issued by User Exit

Routines . e e e s e 4 4 e o 4 e e u
System Action at OPEN. EOV, or CLOSE Time . e
User Totaling Routine Return Codes e e e e e e

e o o o o o o

MVS/370 Data Facility Product provides utility programs to
assist in organizing and maintaining data. Each utility program
falls into one of three classes of programs, determined by the
function performed and the type of control of the utility.

SYSTEM UTILITY PROGRAMS

System utility programs are used to maintain and manipulate
system and user data sets. Entire volume manipulation, for
example, copying or restoring, is also provided. Thesa programs
must reside in an authorized library and are controlled by JCL
statements and utility control statements.

They can be executed as jobs or can be invoked as subroutines by
authorized programs. The invocation of utility programs and the
linkage conventions are discussed in "Invoking Utility Programs
from a Problem Program™ on page 13.

Figure 1 is a list of system utility programs and their purpose.

system
utility Purpose
IEHATLAS To assign alternate tracks and recover usable data

records when defective tracks are indicated
IEHINITT ‘To write standard labels on tape volumes
IEHLIST To list system control data
IEHMOVE To move or copy collections of data
IEHPROGM To build and maintain system control data
IFHSTATR To select, format, and write information about tape
:gz?rs from the IFASMFDP tape or the SYS1.MAN data

Figure 1. System Utility Programs

GRAMS

Data set utility programs are used to reorganize, change, or
compare data at the data set and/or record level. These
programs are controlled by JCL statements and utility control
statements.

These utilities manipulate partitioned, sequential, or indexed
sequential data sets provided as input to the programs. Data
ranging from fields within a logical record to entire data sats
can be manipulated.

Data set utility programs can be executed as jobs or can be
invoked as subroutines by a calling program. The invocation of
utility programs and the linkage conventions are discussed in
"Invoking Utility Programs from a Problem Program™ on page 13.

Utility programs that manipulate data sets and are included in

this manual cannot be used with VSAM data sets. Information
about VSAM data sets can be found in VSAM Users Guide.

Introduction 1

TNL GN26-8133 (30 Ma

r 84) to GC26-4065-1
Two utilities, IEHMOVE and IEBCOPY, do not support Virtual
Input/Output (VIO) data sets.

Figure 2 is a list of data set utility programs and their
purpose.

Data Set
Utility Purpose

IEBCOMPR Totcompare records in sequential or partitioned data
sets

IEBCOPY To copy, compress, or merge partitioned data sets, to
add RLD count information to load modules, to select
or exclude specified members in a copy operation, and
to rename and/or replace selected members of
partitioned data sets

IEBDG Zotcreate a test data set consisting of patterned
ata
IEBEDIT To selectively copy job steps and their associated

JOB statements

IEBGENER To copy records from a sequential data set or to
convert a data set from sequential organization to
partitioned organization

IEBIMAGE To modify, print, or link modules for use with the
IBM 3800 Printing Subsystem, the 3262 Model 5, or the
4248 printer

IEBISAM T6 place source data from an indexed sequential data
set into a sequential data set in a format suitable
for subsequent reconstruction

IEBPTPCH To print or punch records that reside in a sequential
or partitioned data set

IEBTCRIN To construct records from the input data stream that
Ravg been read from the IBM 2495 Tape Cartridge
eader

IEBUPDTE To incorporate changes to sequential or partitioned
data sets

Figure 2. Data Set Utility Programs

INDEPENDENT UTILITY PROGRAMS

2 MVS/370 Utilities

Independent utility programs are used to prepare devices for
system use when the operating system is not available. They
operate outside of, and in support of, the operating system, are
controlled by utility control statements, and cannot be invoked
by a calling program. This publication addresses only the
ICAPRTBL utility program. :

The following figure shows the independent'utility program and
its purpose.

Independent
utility Purpose

ICAPRTBL To load the forms control and universal character
set buffers of the IBM 3203-5 or 3211 printer after
an unsuccessful attempt to IPL, with the 3203-5 or
3211 ?ssigned as the output portion of a composite
console.

Figure 3. Independent Utility Program

The selection of a specific program depends on the nature of the
job to be performed. For example, renaming a data set involves
modi fying system control data. Therefore, a system utility
program can be used to rename the data set. In some cases, a
specific function can be performed by more than one program.
"Guide to Utility Program Functions" on page 8 will help vou
find the program that performs the function you need.

DASD _AND_TAPE DEVICE SUPPORT

Except where noted, all the following DASD and tape devices are
supported by all utility programs. Restrictions and peculiar
device support are noted in the individual utility sections.

The table below indicates specific devices supported, and the
notation to be used to reference them. The term DASD includes
all direct access storage devices listed below.

Device Number Devices
DASD: 2305-1 2305-1
2305-2 2305-2
2314 2314
2319 2319
3330 3330-1, 3330-2, 3333, and 3350
in 3330-1 compatibility mode
3330-1 3330-11, 3333-11, and 3350 in
3330-11 compatibility mode
3330V 3850 MSS Virtual Volumes
3340 3340, 3344 (both 35 & 70
megabyte models)
3350 3350 Native mode
3375 , 3375
3380 33890
Tape: 2400 2400 (all models)
2495 2495 (IEBTCRIN only)
3400 3420 (all models)

Introduction 3

CONTROL

JOB CONTROL STATEMEN

UTILITY CONTROL STAT

% MVS/370 Utilities

System and data set utility programs are controlled by job
control statements and utility control statements. The
independent utility program is controlled by utility control
statements only; because this program is independent of the
operating system, job control statements are not required. The
job control statements and utility control statements necessary
to use utility programs are provided in the major discussion of
each utility progranm.

T8

A system or data set utility program can be introduced to the
operating system in different ways:

. Job control statements can be included in the input stream.

. Job control statements, placed in a procedure library or
defined as an inline procedure, can be included by means of
the EXEC job control statement.

. A utility program can be invoked by a calling program.

If job control statements are placed in a procedure library,
they should satisfy the requirements for most applications of
the program; a procedure, of course, can be modified or
supplemented for applications that require additional
parameters, data sets, or devices. The data set utility
IEBUPDTE can be used to enter a procedure into a procedure
library; see "IEBUPDTE Program"™ on page 293.

A job that modifies a system data set (identified by S5YS51.)
must be run in a single job environment; however, a job that
uses a system data set, but does not modify it, can be run in a
multiprogramming environment. The operator should be informed
of all jobs that modify system data sets.

DD statements should ensure that the volumes on which the data
sets reside cannot be shared when update activity is being
performed.

Job control statements can be continued on subsequent lines, but
the continued line must begin in column 4 through 16. No
continuation mark is required in column 72.

EMENTS

Utility control statements are used to identify a particular
function to be performed by a utility program and, when
required, to identify specific volumes or data sets to be
processed.

The control statements for the utility programs have the
following standard format:

label operation operand

The label symbolically identifies the control statement and,
with the exception of system utility program IEHINITT, can be
omitted. When included, a name must begin in the first position
of the statement and must be followed by one or more blanks. It
can contain from one to eight alphameric characters, the first
of which must be alphabetic.

The operation identifies the type of control statement. It must
be preceded and followed by one or more blanks.

The operand is made up of one or more keyword parameters
separated by commas. The operand field must be preceded and
followed by one or more blanks. Commas, parentheses, and blanks
can be used only as delimiting characters.

Comments can be written in a utility statement, but they must be
separated from the last parameter of the operand field by one or
more blanks.

continuing Utility Ccontrol Statements

Restrictions

Utility control statements are coded on cards or as online input
and are contained in columns 1 through 71. A statement that
exceeds 71 characters must be continued on one or more
additional lines. A nonblank character must be placed in column
72 to indicate continuation. A utility statement can be
interrupted either in column 71 or after any comma.

The continued portion of the utility control statement must
begin in column 16 of the following statement.

Note: The IEHPROGM, IEBCOPY, IEBPTPCH, IEBGENER, IEBCOMPR, and
IEBDG utility programs permit certain exceptions to these
requirements (see the applicable program description).

The utility control statements are discussed in detail, as
applicable, in the remaining chapters.

. Unless otherwise indicated in the description of a specific
utility program, a temporary data set can be processed by a
utility program only if the user specifies the complete name
generated for the data set by the system (for example,
DSNAME=S5YS582296.T000051 .RP001.JOBTEMP.TEMPMOD).

. The utility programs described in this book do not normally
support VSAM data sets. For certain exceptions, refer to
the various program descriptions.

U] Most utility programs do not support ISCIIZASCII tape data
sets. (Conversion from EBCDIC codes to ISCIIZASCII codes
will result in loss of data.) Refer to the IEHINITT program
for specific exceptions.

NOTATIONAL CONVENTIONS

A uniform system of notation describes the format of utility
commands. This notation is not part of the language; it simply
provides a basis for describing the structure of the commands.

The command format illustrations in this book use the following
conventions:

. Brackets [] indicate an optional parameter.

. Braces { } indicate a choice of entry; unless a default is
indicated, you must choose one of the entries.

Items separated by a vertical bar (]) represent alternative
items. No more than one of these items may be selected.

. An ellipsis (...) indicates that multiple entries of the
type immediately preceding the ellipsis are allowed.

. Other punctuation (parentheses, commas, spaces, etc.) must
be entered as shown. A space is indicated by a blank.

. BOLDFACE type indicates the exact characters to be entered,
except as described in the bulleted notes above. Such items
must be entered exactly as illustrated.

. Lowercase underscored tvype specifies fields to be supplied
by the user.

Introduction 5

keyuord=device=list

INSTALLATION CONSIDE

BOLDFACE UNDERSCORED type indicates a default option. If
the parameter is omitted, the underscored value is assumed.

The term keyword is replaced by VOL, FROM, or TO.

The term device is replaced by either a generic name, for
example, 3330; or an esoteric name, for example, DISK, if this
esoteric name has been generated into your system. For DASD,
the term list is replaced by one or more volume serial numbers
separated by commas. When there is more than one volume serial
number, the entire list field must be enclosed in parentheses.

For tapes, the term list is replaced by either one or more
volume serial number/comma‘/data set sequence number pairs. Each
pair is separated from the next pair by a comma. When there is
more than one pair, the entire list field must be enclosed in
parentheses; for example: FROM=3400=(tapeA,1l,tapeB,1).

RATIONS

The System/370 versions of Device Support Facilities (Release 1
through 5) are not applicable for Data Facility Product
Installations. The user must order and install Device Support
Facilities Release 6 (5752-VS2) to run in an MV5/370 Data
Facility Product environment.

Releases 1.0 and 1.1 of Data Facility Data Set Services (DFDSS)
are not applicable for Data Facility Product installations. The
user must install DFDSS Release 1.2 to run in an MVS/370 Data
Facility Product environment. Installation of Release 1.2
supersedes Release 1.1.

The following utilities are not included as support for the Data
Facility Product for MVS5/370.

. IBCDASDI—Disk initialization functions are described in
Device Support Facilities User's Guide and Reference.

. IBCDMPRS—Stand-alone disk restore functions are described
in Data Facility Data Set Services User's Guide and
Reference.

. IEHDASDR—Disk initialization functions are described in
Device Support Facilities User's Guide and Reference. Dump
restore functions are described in Data Facility Data Set
Services User's Guide and Reference.

Note: DFDSS does not support the dump format produced by
IEHDASDR or DRWDASDR.

. Analysis Program-1 (AP-1)—Functions to aid in the analysis
of DASD errors are described in Device Support Facilities
User's Guide and Reference.

SPECIAL REFERENCING AIDS

6 MVS/370 Utilities

Two special referencing aids are included in this publication to
help you locate the correct utility program for your needs and
locate the correct example of the program for reference.

To locate the correct utility program, refer to Figure 5 on page
8 in "Guide to Utility Program Functions™ on page 8.

To locate the right example, use the figure—called an "example
directory™—that precedes ecach program's examples. Figure % on
page 7 shows a portion of the example directory for IEHMOVE.
The figure shows that IEHMOVE Example ! is an example of moving
a sequential data set and that IEHMOVE Example 2 is an example
of copying a sequential data set.

Sequential

data sets are to be copied.
The disks are mountable.

Operation Device Comments Example
MOVE Disk Source volume is demounted 1
Sequential after job completion.

COPY Disk Three cataloged sequential 2

Figure 4. Locating the Correct Example

Introduction

7

GUIDE TO UTILITY PRO

8 MVS/370 Utilities

GRAM FUNCTIONS

Figure 5 shows a list of tasks that the utility programs can be
used to perform. The left-hand column shows tasks that you
might want to perform. The middle column more specifically
defines the tasks. The right-hand column shows the utility
programs that can be used for each task. Notice that in some
cas&s more than one program may be available to perform the same
task.

. utility
Task Options Program
Add a password IEHPROGM
Alter in a load module IEBCOPY
place
Assign tracks to a DASD volume and IEHATLAS
alternate recover usable data
Catalog a data set in an 0S5 CVOL IEHPROGM
Change data set organization IEBUPDTE
logical record length IEBGENER
Compare partitioned data sets IEBCOMPR
sequential data sets
records
Compress in a partitioned data set IEBCOPY
place
Construct records from MTST and MTDI input JEBTCRIN
Convert to a sequential data set created as IEBCOPY
partitioned a result of an unload
sequential data sets IEBUPDTE,
IEBGENER
Convert to a partitioned data set IEBUPDTE,
sequential IEBCOPY
an indexed sequential data set IEBISAM,
IEBDG
Copy a direct access volume TEHMOVE
a load module IEBCOPY
a partitioned data set IEBCOPY,
' IEHMOVE
a volume of data sets IEHMOVE
an indexed sequential data set IEBISAM
job steps IEBEDIT
selected members IEBCOPY,
IEHMOVE

Figure 5 (Part 1 of 5). Tasks and Utility Programs

~—

w__F

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

Utility
Task Options Program
sequential data sets IEBGENER,
TIEHMOVE,
IEBUPDTE
Create a backup copy of a partitioned IEBCOPY
data set
a character arrangement: table IEBIMAGE
module
a copy modification module IEBIMAGE
a 3800 or 4248 forms control IEBIMAGE
buffer module
a graphic character modification IEBIMAGE
module
a library character set module IEBIMAGE
a library of partitioned members IEBUPDTE
a member IEBDG
IEBGENER
IEBUPDTE
a sequential output data set IEBDG
an indexed sequential data set IEBDG
an output job stream IEBEDIT
Delete a password IEHPROGM
catalog’entries IEHPROGM
records in a partitioned data set IEBUPDTE
Edit MTDI input IEBTCRIN
Edit and a sequential data set IEBGENER,
convert to IEBUPDTE
partitioned
Edit and a job stream IEBEDIT
copy
a sequential data set IEBGENER,
IEBUPDTE
bEdit and error statistics by volume (ESV) IFHSTATR
list records
Edit and a sequential data set IEBPTPCH
print
"Edit and a sequential data set IEBPTPCH
punch
Enter a procedure into a procedure IEBUPDTE
library _

Figure 5 (Part 2

of 5). Tasks and Utility Programs

Guide to Utility Program Functions

ytility

Task options - : Program
Exclude a partitioned data set member IEBCOPY,
from a copy operation IEHMOVE
Expand a partitioned data set IEBCOPY
a sequential data set IEBGENER
Generate test data -IEBDG
Get alternate tracks on a DASD volume IEHATLAS
Include changes to members or sequential IEBUPDTE
data sets
i::::gs into a partitioned data set IEBUPDTE
Label magnetic tape volumes IEHINITT
List a password entry IEHPROGM
a volume table of contents IEHLIST
gggb::agzsunused directory blocks IEBCOPY
partitioned directories IEHLIST
Load a previously unloaded partitioned | IEBCOPY
data set
an indexed sequential data set IEBISAM
an unloaded data set IEHMOVE
UCS and FCB buffers of a 3211 ICAPRTBL |
Merge partitioned data sets IEHMOVE,
IEBCOPY .
Modi fy :e:artitioned or sequential data IEBUPDTE
Move a volume of data sets IEHMOVE
partitioned data sets IEHMOVE
sequential data sets IEHMOVE
Number in a new member IEBUPDTE
records
in a partitioned data set IEBUPDTE
Password add a password IEHPROGM
protect
delete a password IEHPROGM
list passwords IEHPROGM
replace a password IEHPROGM

Figure 5 (Part 3

10 MVS/370 Utilities

of 5). Tasks and Utility Programs

Utility

Task options Program
Print sequential data sets IEBGENER,
IEBUPDTE,
IEBPTPCH
partitioned data sets IEBPTPCH
selected records ' IEBPTPCH
Punch a partitioned data set member IEBPTPCH
a sequential data set IEBPTPCH
selected records IEBPTPCH
Read Tape Cartridge Reader input IEBTCRIN
Reblock a load module IEBCOPY
. a partitioned data set IEBCOPY
a 5equential data set TEBGENER,
IEBUPDTE
Recover data from defective tracks on IEHATLAS
direct access volumes
Re-create a partitioned data set IEBCOPY
Rename a partitioned data set member IEBCOPY,
IEHPROGM
a sequential or partitioned data IEHPROGM
set
moved or copied members IEHMOVE
Renumber logical records IEBUPDTE
Replace a password IEHPROGM
data on an alternate track IEHATLAS
identically named members IEBCOPY
logical records IEBUPDTE
members IEBUPDTE
raecords in a member IEBUPDTE
records in a partitioned data set IEBUPDTE,
IEBCOPY
selected members IEBCOPY
salected members in a move or IEBCOPY,
copy operation IEHMOVE
Scratch a volume table of contents IEHPROGM
data sets IEHPROGM
Uncatalog data sets IEHPROGM

Figure 5 (Part ¢

of 5). Tasks and Utility Programs

Guide to Utility Program Functions

11

utility

Task Options Proaram

Unload a partitioned data set IEHMOVE,

IEBCOPY

a sequential data set IEHMOVE

an indexed sequential data set IEBISAM

Update in a partitioned data set IEBUPDTE
place

Figure 5 (Part 5 of 5). Tasks and Utility Programs

12 MVS/370 Utilities

INVOKING UTILITY PROGRAMS FROM A PROBLEM PROGRAM

Utility programs can be invoked by a problem program through the
use of the ATTACH or LINK macro instruction. In addition,
IEBTCRIN can be invoked with the LOAD or CALL macro instruction.

The problem program must supply the following to the utility
program:

. The information usually specified in the PARM parameter of
the EXEC statement.

. The ddnames of the data sets to be used during processing by
the utility program.

The following programs may execute authorized functions:
IEBCOPY, IEHATLAS, IEHINITT, IEHMOVE, IEHPROGM

When executing an authorized function, the calling program must
be authorized via the Authorized Program Facility (APF).

When IEHMOVE, IEHPROGM, or IEHLIST is dynamically invoked in a
job step containing a program other than one of these three, the
DD statements defining mountable devices for the IEHMOVE,
IEHPROGM, or IEHLIST program must be included in the job stream
prior to DD statements defining data sets required by the other
program.

LINK OR ATTACH MACRO INSTRUCTION

The LINK or ATTACH macro instruction can be used to invoke a
utility program from a problem program.

The format of the LINK or ATTACH macro instruction is:

[label) | {LINK|ATTACH} | EP=progname
s PARAM=(optionaddrl,ddnameaddrl

[,hdingaddrl)
sVL=1

where:

EP=progname
specifies the name of the utility program.

PARAM=
specifies, as a sublist, address parameters to be passed
from the problem program to the utility program. These
values can be coded:

optionaddr
specifies the address of an option list, OPTLIST,

which is usually specified in the PARM parameter of
the EXEC statement. This address must be written for
all utility programs.

ddnameaddr
specifies the address of a list, DDNMELST, of
alternate ddnames for the data sets used during
utility program processing. If standard ddnames are
used and this is not the last parameter in the list,

Invoking Utility Programs from a Problem Program 13

VL

it should point to a halfword of zeros. If it is the

last parameter, it may be omitted.

hdingaddr
specifies the address of a 6-byte list, HDNGLIST,
which contains an EBCDIC page count for the output
device. If hdingaddr is omitted, the page number
defaults to 1.

1

specifies that the sign bit of the last fullword of the
address parameter list is to be set to 1.

Figure 6 shows these lists as they exist in the user's DC area.
Note that the symbolic starting addresses for OPTLIST and
DDNMELST fall on halfword boundaries which are not also fullword
boundaries.

olvV E R | F Y 0
Starting address of ~ | _loolas|oolooloo|oo 1
the optionaddr ik
parameter list
(OPTLIST) ¥ 0]00|00|00|00| 00|00 2
00J00|00 |00 |00 |00|00] 00 3
Starting address of g 00 |oo|o00|00|00|oo| 00|00 4
the ddnameaddr .
parameter list oo|oofoo|oof 1 | N| P | U 5
(DDNMELST) #
T |1 1 |40 (00 |(00| 00|00 6
V0 {00|00|00|00|00| 00|00 7
Starting address of P
the hdingaddr [eloRNelo] Nolo} Kolo) BN N U 8

parameter list T|S|E|T|W]|H | C 9
(HDNGLIST) s

Full word
boundary

Full word
boundary

Half word Half word

00| 04| 00(OO0 10

Figure 6. Typical Parameter Lists

The PARAM parameter of the LINK macro instruction in the calling
program provides the utility program with the symbolic addresses
of the parameter lists shown in Figure 6, as follows:

14 MVS/370 Utilities

The option list, OPTLIST, which includes the number of bytes
in the list (hexadecimal 08) and the NOVERIFY option.

The alternate ddname list, DDNMELST, which includes the
number of bytes in the list (hexadecimal 48) and alternative
names for the SYSIN INPUT11, SYSUT1 INPUTSET, and SYSUT2
WHICHPTR data sets.

The heading list, HDNGLIST, which includes the number of
bytes in the list (hexadecimal 04) and indicates the
starting page number (shown as decimal 10) for printing
operations controlled through the SYSPRINT data set.

The option list, OPTLIST, must begin on a halfword boundary that
is not also a fullword boundary. The two high order bytes
contain a hexadecimal count of the number of bytes in the
remainder of the OPTLIST. (For all programs except IEHMOVE,
IEHLIST, IEHPROGM, IEHINITT, IEBUPDTE, and IEBISAM, the count
must be zero.) OPTLIST is free form with fields separated by
commas. No blanks or zeros should appear in the list.

The ddname list, DDNMELST, must begin on a halfword boundary
that is not also a fullword boundary. The two high order bytes
contain a count of the number of bytes in the remainder of the
list. Each name of fewer than 8 bytes must be left aligned and
padded with blanks. If an alternate ddname is omitted from the
list, the standard name is assumed. If the name is omitted
within the list, the 8-byte entry must contain binary =zeros.
Names can be omitted from the end by merely shortening the list.
Figure 7 shows the sequence of the 8-byte entries in the ddname
list pointed to by ddnameaddr.

Entry standard Name

00000000
00000000
00000000
00000000
SYSIN
SYSPRINT
00000000
SYSUT1
sSYSsuUT2

0 SYSUT3

1 SYSUT4

igure 7. Sequence of DDNMELST Entries

M == ORJOWNDUWN

The first 2 bytes of HDNGLIST contain the length in bytes of the
heading list. The remaining 4 bytes contain a page number that
th: u:ility program is to place on the first page of printed
output.

LOAD MACRO INSTRUCTION

IEBTCRIN can be invoked through use of the LOAD macro
instruction.

The LOAD macro instruction causes the control program to bring
the load module containing the specified entry point into main
storage unless a copy is already there. Control is not passed
to the load module. '

The format of the LOAD macro instruction is:

{labell LOAD {EP-IEBTCRIN|EPLOC=address of name}

Invoking Utility Programs from a Problem Program 15

where:

EP=IEBTCRIN
is the entry point name of the program to be brought into
main storage.

EPLOC=address of name

is the main storage address of the entry point name
described above.

CALL MACRO INSTRUCTION

The CALL macro instruction can be used to pass control to
IEBTCRIN after IEBTCRIN has been loaded into main storage.

Control can be passed to IEBTCRIN via a CALL macro instruction
or via a branch and link instruction. If the branch and link
instruction is used, register 1 must be loaded with the address
of a parameter list of fullwbrds as described under "LINK or
ATTACH Macro Instruction” on page 13. The last parameter list
address must contain X'80' in bvyte 1 to indicate the last
parameter in the list.

The format of the CALL macro instruction is:

[labell CALL IEBTCRIN(,optionaddri,ddnameaddr]
[,hdingaddrl)
yVLE]
where:
IEBTCRIN

is the name of the program to be given control; the name is
used in the macro instruction as the operand of a V-type
" address constant.

optionaddr
specifies the address of an option list, OPTLIST,

usually specified in the PARM parameter of the EXEC
statement.

ddnameaddr
specifies the address of a list of alternate ddnames,
DDNMELST, for the data sets used during IEBTCRIN
processing. If standard ddnames are used and this is
not the last parameter in the list, it should point to
a halfword of zeros. If it is the last parameter, it
may be omitted.

hdingaddr
specifies the address of a six-byte list, HDNGLIST,

containing an EBCDIC page count for the output device.

vL=1l
specifies that the high order bit of the last address
parameter in the macro expansion is to be set to 1.

The option list, OPTLIST, must begin on a halfword boundary that
is not also a fullword boundary. The two high order bytes
contain a hexadecimal count of the number of bytes in the
remainder of the OPTLIST. This count must be zero. OPTLIST is
free form with fields separated by commas. No blanks or zeros
should appear in the list.

The ddname list, DDNMELST, must begin on a halfword boundary
that is not also a fullword boundary. The two high order bytes
contain a count of the number of bytes in the remainder of the
list. Each name of fewer than 8 bytes must be left aligned and

16 MVS/370 Utilities

padded with blanks. If an alternate ddname is omitted from the
list, the standard name is assumed. If the name is omitted
within the list, the 8-byte entry must contain binary zeros.
Names can be omitted from the end by merely shortening the list.
Figure 7 on page 15 shows the sequence of the 8-byte entries in
the ddname list pointed to by ddnameaddr.

The first two bytes of the heading list, HDNGLIST, contain the
length in bytes of the heading list. The remaining four bytes
contain a page number that IEBTCRIN places on the first page of
printed output.

Invoking Utility Programs from a Problem Program 17

ICAPRTBL PROGRAM

EXECUTING ICAPRTBL

ICAPRTBL is an independent utility that operates only in a
System/370 environment. It is used to load the universal
character set (UCS) buffer and the forms control buffer (FCB)
for an IBM 3211 or 3203-5 Printer.

ICAPRTBL is used when the 3211/3203-5 is assigned as the output
portion of a composite console and an unsuccessful attempt has
been made to initialize the operating system because the UCS and
FCB buffers contain improper bit patterns. ICAPRTBL properly
loads the buffers so the operating system can be initialized.

Note: When an operable console printer keyboard is available,
the buffars are loaded under the control of the operating
system.

ICAPRTBL must be loaded from a card reader. Control statements
must follow the last card of the program. Only one printer can
be initialized each time the program is executed.

To execute ICAPRTBL:

1. Mount the correct train on the printer and ready the
printer.

2. Place the object program deck and the control cards in the
card reader. Ready the reader and press the reader's END OF
FILE key.

3. Load the object program from the reader by setting the load
selector switches and pressing the console LOAD key.

Wait state codes will be displaved in the address portion of the
PSW for normal termination and for input/output, system, or
control card errors. Code B0l is issued for normal termination;
B02 through B07 are issued for control card errors; BO0A through
B0C are issued for system errors; and Bll through B1lD are issued
for input/output errors. Figure 8 on page 19 shows these codes
and their meanings.

18 MVS/370 Utilities

INPUT AND OUTPUT

CONTROL

Code Meaning

BO1 Visually check the train image printed on the
3211/3203-5.

BO2 Missing control card or control card out of order.
BO3 Incorrect JOB statement.
BO% Incorrect DFN statement.
BOS Incorrect UCS statement.
B06 Incorrect FCB statement.
BO7 Incorrect END statement.

BOA External interrupt.

BOB Program check interrupt.

BOC Machine check interrupt.

Bll Reader not online.

Bl2 Reader not ready.

B13 Reader unit check (display low virtual storage locations
2 through 7 for sense information).

Bl% Reader channel error.

B15 No device end on reader,

B19 Printer not online.

BlA Printer not ready.

B1B Printer unit check (display low virtual storage locations
2 through 7 for sense information).

BlC Printer channel error.

B1D No device end on printer.

Figure 8. ICAPRTBL Wait-State Codes

ICAPRTBL uses, as input, utility control statements that contain
images to be loaded into the universal character set and/or the
forms control buffer. ICAPRTBL produces, as output, properly
loaded UCS and FCB buffers.

ICAPRTBL is controlled by utility control statements. Because
ICAPRTBL is an independent utility program, operating system job
control statements are not used.

UTILITY CONTROL STATEMENTS

All utility control statement operands must be preceded and
followed by one or more blanks. Continuation requirements for
utility control statements are described in "Continuing Utility
Control Statements" on page 5.

ICAPRTBL Program 19

JOB Statement

DFN Statement

ucs statement

ICAPRTBL utility control statements are listed below.

Statement Use
JOB Indicates the beginning of an ICAPRTBL job.

DFN Defines the address of the 3211 or 3203-5, specifies
that lowercase letters are to be printed in
uppercase when the lowercase print train is not
available, and identifies UCS and FCB image names.

ucs Contains an image of the characters to be loaded
into the UCS buffer.

FCB Defines the image to be loaded into the FCB.

END Indicates the end of an ICAPRTBL job.

Figure 9. ICAPRTBL Utility Control Statements

The JOB statement indicates the beginning of an ICA?RTBL job.
The format of the JOB statement is:

[labell JOB [user-informationl

The DFN statement is used to define the address of the 3211 or
3203-5, to specify that lowercase letters are to be printed in
uppercase when the lowercase print train is not available, and
to identify UCS and FCB image names.

The format of the DFN statement is:

DFN ADDR=cuu

[,FOLD=Y|N]
[,DEVT=321113203-51
[,UCS=ucsname|AN|All]
[,FCB=fcbname |STD|STD2]

The UCS statement contains an image to be loaded into the UCS
buffer.

20 MVS/370 Utilities

FCB Statement

END Statement

The format of the UCS statement is:

[ucsnamel

ucs

yucs—image

The FCB statement defines the image to be loaded into the forms
control buffer.

statement.

The format of the FCB statement is:

The FCB statement may precede or follow the UCS

[fcbnamel

FCB

LPI={6{8)
yLNCH=((L,c)L,{1l,c)... 1)
» FORMEND=x

The END statement signals the end of the ICAPRTBL job.
The format of the END statement is:

[labell

END

[user—-informationl

ICAPRTBL Program

21

Parameters

Applicable
control
Statements

Description of Parameters

ADDR

DFN

ADDR=cuu
specifies the channel number, ¢, and unit
number, uu, of the 3211 or 3203-5.

DEVT

DFN

DEVT=3211|3203-5
specifies the device type for which the ADDR
parameter applies. 3211 is the default
device type.

FCB

DFN

FCB=fcbname|STD|SID2

specifies a 1 to 8 character name of the
image loaded into the forms control buffer.
The actual image loaded into the buffer is
not affected by this name, but serves as a
meaningful reference when printed on the
printer. fcbname should be the same as the
FCB image being used. 8STD2 is the default.

FOLD

DFN

FOLD=Y|N
specifies whether lowercase letters are to
be printed as uppercase letters when the
lowercase print train is not available. The
values can be coded:

Y
specifies that lowercase letters are to
be printed as uppercase letters when
the lowercase print train is not
available.

specifies that lowercase letters are
not to be printed as uppercase letters.
This is the default.

FORMEND

FCB

FORMEND=x
specifies the number of lines (maximum 180)
on the printer form. For an 1ll-inch fornm,
spacing six lines per inch, x must be 66.

LNCH

FCB

LNCH=((1l,c)I,(1l,c)...1)
specifies the channels of the FCB image.
Each set of parentheses must contain the
line number (1-180), a comma, and the
channel number (1-12) to be assigned to that
line. One or all of the 12 channels may be
assigned in any order. Each set must be
separated by commas and the entire group
surrounded by parentheses.

22 MV5/370 Utilities

Parameters

Applicable
control
Statements

Description of Parameters

LPI

FCB

LPI={6]8}
specifies the number of lines per inch that
Wwill be printed on the document. These
values can be coded:

6
specifies that six lines per inch will
be printed.

specifies that eight lines per inch
will be printed.

ucs

DFN

uUcS=ucsname|AN|A1l
is a 1 to 8 character alphameric name of the
image loaded into the UCS buffer. This name
is printed on the printer to serve as a
reference to the print train being used.

AN
is the default for 3203-5 devices.

All
is the default for 3211 devices.

ucs-image

ucs

ucs—-image
specifies characters to be loaded into the
UCS buffer. The characters must be
contained in columns 16 through 71. The
first UCS statement contains the first 56
characters; subsequent statements contain
continuations of the image to be loaded into
the UCS buffer. A continuation mark is
required in column 72 of a continued UCS
image card.

user=-
information

JOB
END

[user-informationl
specifies user explanation of action and
comments.

ICAPRTBL EXAMPLES

The examples that follow illustrate some of the uses of

ICAPRTBL.
the examples.

Figure 10 can be used as a quick-reference guide to
The numbers in the "Examples™ column refer to

examples that follow.

Devices
3211
3203-5

Figure 10.

Examples
1, 2
3, 4
ICAPRTBL Example Directory

ICAPRTBL Program

23

ICAPRTBL EXAMPLE 1

In this example, a 3211 UCS image (All) and an FCB image are
loaded intp the UCS and FCB buffers.

72
JOB LOAD All IMAGE
DFN ADDR=002,FOLD=N
All UCS 1<.=THGFEDCBAX$-RQPONMLKJ%,&ZYXWVUTS/J#0987654321<.=IHGF
EDCBAXS-RQPONMLKJ%, 8ZYXWVUTS/a#0987654321<. =IHGFEDCBAX$-
RQPONMLKJX, &ZYXWVUTS/a#0987654321<.=IHGFEDCBAX$-RQPONMLK
J%, &ZYXWVUTS/7a#0987654321<. ~IHGFEDCBAX$-RQPONMLKJY%, &ZYXUW
VUTS/7a#0587654321<.=THGFEDCBAX$-RQPONMLKJ%, &ZYXWVUTS/a#0
987654321<.=THGFEDCBAX$-RQPONMLKJ%,&ZYXWVUTS/23098765432
1<.=THGFEDCBAX$-RQPONMLKJ%, &ZYXWVUTS/a#0987654321<.=IHGF
EDCBA%$-RQPONMLKJ%, §ZYXWVUTS/7a#098765432
STD2 FCB LPI=6,
LNCH=((%,1),(10,2),(16,3),(22,4),(28,5),(34,6),(40,7),
(46,8),(52,10),(58,11),(64,12),(66,9)),
FORMEND=66

OO0

END

The control statements are discussed below:

. DFN specifies the channel and unit number of the default
device type 3211 and FOLD=N specifies that lowercase letters
are not to be printed as uppercase letters when the
lowercase print train is not available.

. UCS specifies the characters to be loaded into the UCS
buffer.

. FCB specifies the values to be loaded into the forms control
buffer. LPI=6 indicates that six lines per inch will be
printed, and FORMEND=66 specifies 66 lines per page.

ICAPRTBL EXAMPLE 2
In this example, a 3211 UCS image (P11) and an IBM standard FCB

image are loaded into the UCS and FCB buffers by specifying
images via the UCS and FCB parameters of the DFN statement.

JOB LOAD 3211 P11 IMAGE
DFN UCS=P11,ADDR=004,FCB=STD
END

The DFN control statement is discussed below:

. By omitting the DEVT parameter, the default device type is
3211.

° The UCS parameter specifies the UCS image ID to be loaded
into the UCS buffer from standard image tables provided by
the utility.

U The ADDR parameter specifies the channel and unit number of
the 3211.

. By omitting the FOLD parameter, the default FOLD value N is
selected, specifying that lowercase letters are not to be
printed as uppercase letters when the lowercase print train
is not available.

24 MVS/370 Utilities

ICAPRTBL EXAMPLE 3

ICAPRTBL - EXAMPLE 4

The FCB parameter specifies the standard FCB image id (STD)
to be loaded into the FCB buffer from standard image tables
provided by the utility.

In this example, a 3203-5 UCS image (AN by default) and a
standard FCB image (5TD2 by default) are loaded into the UCS and
FCB buffers.

JOB
DFN DEVT=3203-5,ADDR=002
END

The DFN statement is discussed below:
. The DEVT parameter specifies the device type as 3203-5.

) The ADDR parameter specifies the channel and unit number of
the 3203-5.

) By omitting the FOLD parameter, the default FOLD value N is
selacted specifying that lowercase letters are not to be
printed as uppercase letters when the louwercase print train
is not available.

. By omitting both a UCS statement and the UCS parameter, the
default 3203-5 UCS image (AN) is loaded into the UCB buffer
from standard image tables provided by the utility.

. By omitting both an FCB statement and the FCB parameter, the
default FCB image (STD2) is loaded into the FCB buffer from
standard image tables provided by the utility.

In this example, a 3203-5 UCS image (AN by default) and a
provided FCB image are loaded, respectively, into the UCS and
FCB buffers.

JOB 3203-5 USER FCB
USER FCB FORMEND=88,LPI=8,LNCH=((%,1),(12,2),

(20,3),(28,4),(36,5),(44,6),(52,7),
(60,8),(68,10),(76,11),(84,12),(88,9))

DFN FOLD=Y,
FCB=STD,
ADDR=003,
DEVT=3203-5

OO0 OO0 N

END

The control statements are discussed below:

. The JOB statement includes user comments on the action
taken.

. The FCB statement specifies the values to be loaded into the
forms control buffer. FORMEND=88 and LPI=8 indicate that
there will be 88 lines per page, 8 lines per inch. Note
that the specification of the FCB parameter on the DFN
statement is overridden by the FCB statement specification.

ICAPRTBL Program 25

26

MVS/370 Utilities

The DEVT parameter of the DFN statement specufles the device
type as 3203-5.

The ADDR parameter specifies the channel and unit number of
the 3203-5.

The FOLD=Y parameter specifies that lowercase letters are to
be printed as uppercase letters when the lowercase print
train is not available.

By omitting both a UCS statement and the UCS parameter of
the DFN statement, the default 3203-5 UCS image (AN) is
loaded from standard image tables provided by the utility.

IEBCOMPR PROGRAM

IEBCOMPR is a data set utility used to compare two sequential or
two partitioned data sets at the logical record level to verify
a backup copy. Fixed, variable, or undefined records from
blocked or unblocked data sets or members can also be compared.

Two sequential data sets are considered equal, that is, are
considered to be identical, if:

] The data sets contain the same number of records, and,

. Corresponding records and keys are identical.

Two partitioned data sets are considered equal if:

. Corresponding members contain the same number of records.

. Note lists are in the same position within corresponding
members.

. Corresponding records and keys are identical.

If all of these conditions are not met for a specific type of
data set, an unequal comparison results. If records are
unedqual, the record and block numbers, the names of the DD
statements that define the data sets, and the unequal records
are listed in a message data set. Ten successive unequal
comparisons terminate the job step unless a user routine is
provided to handle error conditions.

Partitioned data sets can be compared only if all the names in
one or both of the directories have counterpart entries in the
other directory. The comparison is made on members identified
by these entries and corresponding user data.

Figure 11 shous the directories of two partitioned data sets.
Directory 2 contains corresponding entries for all the names in
Directory 1; therefore, the data sets can be compared.

Directory 1
ABCDGL

Figure 11. Partitioned Directories Whose Data Sets Can Be
Compared Using IEBCOMPR

Figure 12 on page 28 shows the directories of two partitioned
data sets. Each directory contains a name that has no
corresponding entry in the other directory; therefore, the data
sets cannot be compared, and the job step is terminated.

User exits are provided for optional user routines to process
user labels, handle error conditions, and modify source records.
See Appendix A, "Exit Routine Linkage"™ on page 438 for a
discussion of the linkage conventions to be followed when user
routines are used.

IEBCOMPR Program 27

INPUT AND OUTPUT

RETURN CODES

CONTROL

Directory 1

v.1 Directory 2
ABEGFHIJ ;

ABFE

Figure 12. Partitioned Directories Whose Data Sets Cannot Be
Compared Using IEBCOMPR

IEBCOMPR uses the following input:
. Two sequential or two partitioned data sets to be compared.

. A control data set that contains utility control statements.
This data set is required if the input data sets are
partitioned or if user routines are used.

IEBCOMPR produces as output a message data set that contains
informational messages (for example, the contents of utility
control statements), the results of comparisons, and error
messages.

IEBCOMPR returns a code in register 15 to indicate the results
of program execution. The return codes and their meanings are
listed belou.

Codes Meaning
00 (00 hex) Successful completion.
08 (08) An unequal comparison. Processing continues.

12 (0C) An unrecoverable error exists. The job step is
terminated.

16 (10) A user routine passed a return code of 16 to
IEBCOMPR. The job step is terminated.

Figure 13. IEBCOMPR Return Codes

IEBCOMPR is controlled by job control statements and utility
control statements. The job control statements are required to
aexecute or invoke IEBCOMPR and to define the data sets that are
used and produced by IEBCOMPR. The utility control statements
are used to indicate the input data set organization (that is,
saquential or partitioned), to identify any user routines that
may be provided, and to indicate whether user labels are to be
treated as data.

28 MVS/370 Utilities

JOB CONTROL STATEMENTS
Figure 14 shows the job control statements for IEBCOMPR.

One or both of the input data sets can be passed from a
preceding job step.

Input data sets residing on different device types can be
compared. Input data sets with a sequential organization
written at different densities can also be compared.

Statement Use
JOB Initiates the job.
EXEC Specifies the program name (PGM=IEBCOMPR) or, if

the job control statements reside in a procedure
library, the procedure name.

SYSPRINT DD Defines a sequential message data set, which can
be written to a system output device, a tape
volume, or a direct access volume.

— SYSUT1 DD Defines an input data set to be compared.
SYSUT2 DD Defines an input data set to be compared.
SYSIN DD Defines the control data set or specifies DUMMY if

the input data sets are sequential and no user
routines are provided. The control data set
normally resides in the input stream; however, it
can be defined as a member within a library of
partitioned members.

Figure 14. Job Control Statements for IEBCOMPR

The SYSPRINT DD statement must be present for each use of
IEBCOMPR. The block size specified in the SYSPRINT DD statement
must be a multiple of 121.

The SYSIN DD statement is required. The block size specified in
the SYSIN DD statement must be a multiple of 80.

The logical record lengths of the input data sets must be
identical; otherwise, unequal comparisons result. The block
sizes of the input data sets can differ; however, block sizes
must be multiples of the logical record length.

IEBCOMPR Program 29

UTILITY CONTROL STATEMENTS

COMPARE Statement

EXITS Statement

The utility control statements used to control ;EBCOMPR are:

sStatement Use

COMPARE Indicates the organization of a data set.
EXITS Identifies user exit routines to be used. .
LABELS Indicates whether user labels are to be treated as

data by IEBCOMPR.
Figure 15. IEBCOMPR Utility Control Statements

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements”™ on page 5.

The COMPARE statement is used to indicate the organization of

data sets to be compared.

The COMPARE statement, if included, must be the first utility
control statement. COMPARE is required if the EXITS or LABELS
statement is used or if the input data sets are partitioned data
sets.

The format of the COMPARE statement is:

[labell COMPARE TYPORG={PS | PO}

The EXITS statement is used to identify any user exit routines
to be used. If a user exit routine is used, the EXITS statement
is required. If more than one valid EXITS statement is
included, all but the last EXITS statement are ignored. For a
discussion of the processing of user labels as data set

descriptors, see Appendix C, "Processing User Labels"™ on page
446 .

The format of the EXITS statement is:

[labell EXITS [INHDR=routinenamel
[, INTLR=routinenamel
[,ERROR=routinenamel
[, PRECOMP=routinenamel

30 MVS/370 Utilities

LABELS Statement

The LABELS statement specifies whether user labels are to be
treated as data by IEBCOMPR. For a discussion of this option,
refer to Appendix C, "Processing User Labels™ on page 446.

The format of the LABELS statement is:

[labell LABELS EDATA={YES |NO|ALL|ONLY2]

Note: LABELS DATA=NO must be specified to make IBM standard/
user label (SUL) exits inactive when input/output data sets with
nonstandard labels (NS5L) are to be processed.

If more than one valid LABELS statement is included, all but the
last LABELS statement are ignored.

Applicable
control
Parameters Statements Description of Parameters

DATA LABELS DATA={YES INOJALL |ONLY}

specifies whethaer user labels are to be
treated as data. The values that can be
coded are:

YES
specifies that any user labels that are not
rejected by a user's label processing
routine are to be treated as data.
Processing of labels as data stops in
compliance with standard return codes. YES
is the default.

NO
specifies that user labels are not to be
treated as data.

ALL
specifies that all user labels are to be
treated as data. A return code of 16 causes
IEBCOMPR to complete processing of the
remainder of the group of user labels and to
terminate the job step.

ONLY
specifies that only user header labels are
to be treated as data. User header labels
are processed as data regardless of any
return code. The job terminates upon return
from the OPEN routine.

ERROR EXITS

ERROR=routinename
specifies the name of the routine that is to
receive control after each unequal
comparison for error handling. If this
parameter is omitted and ten consecutive
unequal comparisons occur while IEBCOMPR is
comparing sequential data sets, processing
is terminated; if the input data sets are
partitioned, processing continues with the
next member.

IEBCOMPR Program 31

Parameters

Applicable
control
Statements Description of Parameters

INHDR

EXITS INHDR=routinename
specifies the name of the routine that
processes user input header labels.

INTLR

EXITS INTLR=routinename
specifies the name of the routine that
processes user input trailer labels.

PRECOMP

EXITS PRECOMP=routinename

specifies the name of the routine that
processes logical records (physical blocks
in the case of variable spanned (VS) or
variable blocked spanned (VBS) records
longer than 32K bytes) from either or both
of the input data sets before they are
compared.

TYPORG

COMPARE TYPORG={PS | PO}
specifies the organization of the input data
sets. The values that can be coded are:

PS
specifies that the input data sets are
sequential data sets. This is the
default.

PO
specifies that the input data sets are
partitioned data sets.

IEBCOMPR_EXAMPLES

The examples in Figure 16 illustrate some of the uses of
IEBCOMPR. The numbers in the "Example" column refer to examples
that follouw.

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

, Data Set .
Operation organization Davices Ccomments Example
COMPARE Sequential 9-track No usef routines. Blocked 1
Tape input.
COMPARE Sequential 7-track No user routines. Blocked 2
Tape input.
COMPARE Sequential 7-track User routines. Blocked input. 3
: Tape and Different density tapes.
9-track ’
Tape

Figure 16 (Part 1 of 2). IEBCOMPR Example Directory

32 MV5/370 Utilities

Data Set '
Operation Organization Devices comments Example
COMPARE Sequential Card No user routines. Blocked %
Reader, input.
9-track
Tape
COMPARE Partitioned Disk No user routines. Blocked 5
input.
COPY Sequential 9-track No user routines. Blocked 6
(using Tape input. Two job steps; data
IEBCOPY) sets are passed to second job
and step.
COMPARE
COPY Partitioned Disk User routine. Blocked input. 7
(using Two job steps; data sets are
IEBCOPY) passed to second job step.
and
COMPARE

Figure 16 (Part 2 of 2).

IEBCOMPR EXAMPLE 1

In this example,
tape volumes are

IEBCOMPR Example Directory

two sequential data sets that reside on 9-track
to be compared.

/7/TAPETAPE JOB
77 EXEC
//SYSPRINT DD
//75YSUTL DD
7/

/77

/775YSUT2 DD
7/

/77

//S5YSIN DD
/%

09#660,SMITH

PGM=1EBCOMPR

SYSOUT=A

UNIT=tape, LABEL=(,NL),

DCB=(RECFM=FB, LRECL=80,BLKSIZE=2000),
DISP=(0LD,KEEP),VOLUME=SER=001234%
UNIT=tape, LABEL=(,NL),DISP=(OLD,KEEP),
DCB=(RECFM=FB, LRECL=80,BLKSIZE=1040),
VOLUME=SER=001235

DUMMY

Because ho user r
sequential organi
necessary.

The job control s

. SYSUT1 DD def
unlabeled, 9-

. SYSUT2 DD def
unlabeled, 9-

. SYSIN DD defi

outines are used and the input data sets have a
zation, utility control statements are not
tatements are discussed below:

ines an input data set, which resides on an
track tape volume.

ines an input data set, which resides on an
track tape volume.

nes a dummy data set.

IEBCOMPR Program 33

IEBCOMPR EXAMPLE 2

In this example, two sequentiSI data sets that reside on 7-track
tape volumes are compared.

//TAPETAPE JOB
7/
/75YSPRINT DD

//5YSUT1 DD
144
144
/7/75YSUT2 DD
144
77
7/5YSIN DD
COMPARE
LABELS
7%

EXEC

09#660,SMITH

PGM=IEBCOMPR

SYSOUT=A
DSNAME=SET1,LABEL=(2,S5UL),DISP=(0OLD,KEEP),
VOL=SER=001234%,DCB=(DEN=2,RECFM=FB, LRECL=80,
BLKSIZE=2000, TRTCH=C),UNIT=3400

DSNAME=SET2, LABEL=(,SUL),DISP=(OLD,KEEP),
VOL=SER=001235,DCB=(DEN=2,RECFM=FB, LRECL=80,
BLKSIZE=2000, TRTCH=C),UNIT=3400

%

TYPORG=PS

DATA=ONLY

The control statements are discussed below:

SYSUT! DD defines an input data set, SETl, which resides on

IEBCOMPR EXAMPLE 3

a labeled,

7-track tape voluma.
originally written at a density of 800 bits per inch (DEN=2)

The blocked data set was

with the data converter on (TRTCH=C).

SYSUT2 DD defines an input data set, SET2,
first or only data set on a labeled,

which is the
7-track tape volume.

The blocked data set was originally written at a density of
800 bits per inch (DEN=2) with the data converter on

(TRTCH=C).

SYSIN DD defines the control data set,
input stream.

which follows in the

COMPARE TYPORG=PS specifies that the input data sets are
sequentially organized.

LABELS DATA=0NLY specifies that user header labels are to be
treated as data and compared.

are ignored.

In this example,
densities on different tape units are compared.

All other labels on the tape

two sequential data sets written at different

//TAPETAPE JOB
44
//SYSPRINT DD

/75YSUT1 DD
144
7/
/7/75YSUT2 DD
/77
7/
/7/SYSIN DD
COMPARE
EXITS
LABELS
7%

09#660,SMITH

EXEC PGM=IEBCOMPR

SYSOUT=A

DSNAME=SET1, LABEL=(,SUL),DISP=COLD,KEEP),
VOL=SER=001234,DCB=(DEN=1,RECFM=FB, LRECL=80,
BLKSIZE=320, TRTCH=C),UNIT=3400
DSNAME=SET2,LABEL=(,SUL),DISP=(OLD,KEEP),
DCB=(RECFM=FB, LRECL=80,BLKSIZE=640),

. UNIT=tape, VOLUME=SER=001235
*

TYPORG=PS
INHDR=HDRS, INTLR=TLRS
DATA=NG

34 MVS/370 Utilities

IEBCOMPR EXAMPLE 4

The control statements are discussed below:®

SYSUTL DD defines an input data set, SET1l, which is the

first or only data set on a labeled, 7-track tape volume.

The blocked data set was originally written at a density of

??g b;ts per inch (DEN=2) with the data converter on
TCH=C).

SYSUT2 DD defines an input data set, SET2, which is the
first or only blocked data set on a labeled tape volume. In
this example, assume SYSUT2 is on a 9-track tape drive.

SYSIN DD defines the control data set, which follows in the
input stream.

COMPARE TYPORG=PS specifies that the input data sets are
sequentially organized.

EXITS identifies the names of routines to be used to process
user input header labels and trailer labels.

LABELS DATA=NO specifies that the user input header and
trailer labels for each data set are not to be compared.

In this example, two sequential data sets (card input and tape
input) are compared.

7/
7/
/77
7/
/7
/7
/77
/77

(i

CARDTAPE JOB 09#660,S5MITH
EXEC PGM=IEBCOMPR

SYSPRINT DD SYSQUT=A

SYSIN DD DUMMY

SYSUT2 DD UNIT=tape, VOLUME=SER=001234,LABEL=(,NL),
DCB=(RECFM=FB, LRECL=80,BLKSIZE=2000),
DISP=C(OLD,KEEP)

SYSUT1 DD DATA

nput card data set)

/%

The control statements are discussed below:

SYSIN DD defines a dummy control data set. Because no user
routines are provided and the input data sets are
sequential, utility control statements are not necessary.

SYSUT2 DD defines an input data set, which resides on an
unlabeled, 9-track tape volume.

SYSUT1 DD defines an input data set (card input).

IEBCOMPR Program 35

IEBCOMPR EXAMPLE 5

In this example,

two partitioned data sets are compared.

//DISKDISK JOB

77 EXEC

//5YSPRINT DD

7/78YSUT1 DD

/77

7/

/75Y5UT2 DD

77

/77

7/SYSIN DD
COMPARE

/%

09#660,SMITH

PGM=IEBCOMPR

SYS0UT=A .
DSNAME=PDSSET1,UNIT=disk,DISP=SHR,
DCB=(RECFM=FB, LRECL=80,BLKSIZE=2000),
VOLUME=SER=111112
DSNAME=PDSSET2,UNIT=disk,DISP=SHR,
DCB=(RECFM=FB, LRECL=80,BLKSIZE=2000),
VOLUME=SER=111113

*

TYPORG=PO

The control statements are discussed below:

. SYSUT1 DD defines an input partitioned data set, PDSSETI.
The blocked data set resides on a disk volume.

. SYSUT2 DD defines an input partitioned data set, PDSSET2.
The blocked data set resides on a disk volume.

L4 SYSIN DD defines the control data set, which follows in the

input stream.

. COMPARE TYPORG=PO indicates that the input data sets are

partitioned.

IEBCOMPR EXAMPLE 6

36

In this example, a sequential data set is copied and compared in

two job steps.

//TAPETAPE JOB
/7/7STEPA EXEC
//5YSPRINT DD
//5YSUT1 DD

144
7/75YSUT2 DD

7/5YSIN DD

7/ %

7/STEPB EXEC
//5YSPRINT DD
/7/75YSUT1 DD
/775YSUT2 DD
/7/SYSIN DD

/7 %

09#660,SMITH

PGM=IEBCOPY

SYSOUT=A

DSN=COPYSET1,UNIT=tape,
DISP=(0OLD,PASS),

DCB=(RECFM=FB, LRECL=80,BLKSIZE=640),
LABEL=(,SL),

VOLUME=SER=001234
DSNAME=COPYSET2,DISP=(,PA55),LABEL=(,5L),
DCB=(RECFM=FB, LRECL=80,BLKSIZE=640),
UNIT=tape,

VOLUME=SER=001235

DUMMY

PGM=TEBCOMPR

SYSQUT=A
DSNAME=%.STEPA.SYSUT1,DISP=(0OLD,KEEP)
Dsna¢5=*.STEPA.SYSUTZ,DISP=(0LD.KEEP)
DU

MVS/370 Utilities

IEBCOMPR EXAMPLE 7

The first job step copies the data set and passes the original
and copied data sets to the second job step. The second job
step compares the two data sets.

Th? control statements for the IEBCOMPR job step are discussed
below:

. SYSUT1 DD defines an input data set passed from the
preceding job step (COPYSET1). The data set resides on a
labeled, 9-track tape volume.

L SYSUT2 DD defines an input data set passed from the
preceding job step. (COPYSET2). The data set, which was
created in the preceding job step, resides on a labeled,
9-track tape volume.

. SYSIN DD defines a dummy control data set. Because the

input is sequential and no user exits are provided, no
utility control statements are required.

In this example, a partitioned data set is copied and compared
in two job steps.

The example follows:

//DISKDISK JOB 09#660,SMITH

/7/7STEPA EXEC PGM=I1EBCOPY

//SYSPRINT DD SYSOUT=A

/7/75YSUT1 DD DSNAME=0LDSET,UNIT=disk,DISP=SHR,

77/ VOLUME=SER=111112,

77 DCB=(RECFM=FB, LRECL=80,BLKSIZE=640)
/7/75YSUT2 DD DSNAME=NEWMEMS ,UNIT=disk,DISP=(,PASS},
77 VOLUME=SER=111113,SPACE=(TRK, (5,5,5)),
77 DCB=(RECFM=FB,LRECL=80,BLKSIZE=640)

/77S5YSUT3 DD UNIT=SYSDA,SPACE=(TRK, (1))
/775YSUT4 DD UNIT=SYSDA,SPACE=(TRK, (1))
/77SYSIN DD *
COPY OUTDD=SYSUT2, INDD=SYSUT1
SELECT MEMBER=(A,B,D,E,F)
7 %

//7STEPB EXEC PGM=IEBCOMPR
//7SYSPRINT DD SYSOUT=A g
/775YSUTL DD DSNAME=OLDSET,DISP=(OLD,KEEP)
/7/75YSUT2 DD DSNAME=NEWMEMS , DISP=(0LD, KEEP)
//SYSIN DD *
COMPARE TYPORG=PO

EXITS ERROR=SEEERROR

/%

The first job step copies the data set and passes the original
and copied data sets to the second job step. The second job
step compares the two data sets.

The control statements for the IEBCOMPR job step are discussed
below:

U SYSUT1 DD defines a blocked input data set (OLDSET) that is
passed from the preceding job step. The data set resides on
a disk volume.

) SYSUT2 DD defines a blocked input data set (NEWMEMS) that is

passed from the preceding job step. The data set resides on
a disk volume. ,

IEBCOMPR Program 37

SYSUT3 and SYSUT4 define temporary system data sets to be
used for work files during IEBCOPY. These are not passed to
IEBCOMPR.

SYSIN DD defines the control data set, which follows in the
input stream.

COMPARE TYPORG=PO specifies partitioned organization.

EXITS specifies that a user error routine, SEEERROR, is to
be used.

Because the input data set names are not identical, the data
sets can be retrieved by their data set names.

38 MVS/370 Utilities

IEBCOPY PROGRAM

IEBCOPY is a data set utility used to copy one or more
partitioned data sets or to merge partitioned data sets. A
partitioned data set that is copied to a sequential data set is
said to be unloaded. The sequential data set created by an
unload operation can be copied to any direct access storage
device. When one or more data sets created by an unload
operation are used to re-create a partitioned data set, this is
called a load operation. Specific members of a partitioned or
unloaded data set can be selected for, or excluded from, a copy,
unload, or load process.

IEBCOPY can be used to:
. Create a backup copy of a partitioned data set.
. Copy one or more data sets per copy operation.

. Copy one partitioned data set to a sequential data set
(unload).

. Copy one or more data sets created by an unload operation to
any direct access device (load).

* ' Select members from a data set to be copied, unloaded, or
loaded.

L Replace identically named members on data sets (except when
unloading).

. Replace selected data set members.
. Rename selected members.

L Exclude members from a data set to be copied, unloaded, or
loaded.

. Compress partitioned data sets in place (except when the
data set is an unloaded data set).

. Merge data sets (except when unloading).

L Re-create a data set that has exhausted its primary,
secondary, or directory space allocation.

. Alter load modules in place.
. Copy and reblock load modules.

In addition, IEBCOPY automatically lists the number of unused
directory blocks and the number of unused tracks available for
member records in the output partitioned data set. If LIST=NO
is coded (see "COPY Statement" on page 51), the names of copied,
unloaded, or loaded members listed by the input data set are
suppressed.

CREATING A BACKUP COPY

IEBCOPY can be used to create a backup copy of a partitioned
data set by copying (unloading) it to a sequential data set. A
partitioned data set can be totally or partially unloaded to any
tape volume or direct access device supported by BSAM. A data
set is unloaded when physical sequential organization space
allocation is specified for the output data set on a direct
access device or when the output data set is a tape volume. To
unload more than one partitioned data set to the same volume in
one execution of IEBCOPY, multiple copy operations must be used

IEBCOPY Program 39

COPYING DATA SETS

and multiple sequential data sets must be allocated on the same
volume.

A data set with a physical sequential organization resulting
from an unload operation can, in turn, be copied. No output
tape file will be created if the input is a null file.

IEBCOPY can be used to copy a partitioned data set, totally or
in part, from one direct access volume to another. In addition,
a data set can be copied to its own volume, provided its data
set name is changed. If the data set name is not changed, the
data set is compressed in place.

Note that copied members are not reordered. Members are copied
in the order in which they exist on the original data set. If
the members are to be reordered, IEHMOVE can be used for the
copy operation (see "IEHMOVE Program” on page 361).

COPYING OR LOADING UNLOADED DATA SETS

Data sets can be copied or loaded, totally or in part, from one
or more direct access volumes or tape volumes to a single direct
access volume. To copy or load more than one input partitioned
data set, specify more than one input data set with the COPY
statement. The input data sets are copied or loaded in the
order in which they are specified.

SELECTING MEMBERS TO BE COPIED, UNLOADED, OR LOADED

Members can be selected from one or more input data sets.
Selected members can be copied, unloaded, or loaded from the
input data sets specified on the INDD statement preceding a
SELECT statement.

Selected members are searched for in a low-to-high (a-to-z)
collating sequence, regardless of the order in which they are
specified; however, they are copied in the same physical
sequence in which they appear on the input partitioned data set.

Once a member of a data set has been found, no search is made
for it on any subsequent input data set. Similarly, when all
the selected members are found, the copy or load step is
terminated even though all of the input data sets may not have
been searched. For example, if members A and B are specified
and A is found on the first of three input data sets, it is not
searched for again; if B is found on the second input data set,
the copy or load operation is successfully terminated after the
second input data set has been processed, although both A and B
may also exist on the third input data set. '

However, if the first member name is not found on the first
input data set, the search for that member stops and the first
data set is searched for the second member. This process
continues until the first input data set has been searched for
all specified members. All the members that were found on the
input data set are then processed for copying, unloading, or
loading to the output data set. This process is repeated for
the second input data set (except that the members that were
found on the first input data set are not searched for again).

Note: Only one data set can be processed if an unload operation
is to be performed. Multiple unload operations are allowed per
job step; multiple INDD statements are not allowed per unload
operation.

40 MVS/370 Utilities

Copying Members That Have Alias Names
When copying members that have alias names, note the following:

. When the main member and its alias names are copied, they
exist on the output partitioned data set in the same
raelationship they had on the input partitioned data set.

L When members with alias names are copied using the SELECT or
EXCLUDE member option, those alias names that are to be
selected or excluded must be explicitly named.

The rules for replacing or renaming members apply to both
aliases and members; no distinction is made between them.
However, the replace (R) option (on the SELECT statement) does
not apply to an unload operation.

REPLACING IDENTICALLY NAMED MEMBERS

In many copy and load operations, the output partitioned data
set may contain members that have names identical to the names
of the input partitioned data set members to be copied or
loaded. When this occurs, the user may specify that the
identically named members are to be copied from the input
partitioned data set to replace existing members.

The replace option allows an input member to override an
existing member on the output partitioned data set with the same
name. The pointer in the output partitioned data set directory
is changed to point to the copied or loaded member.

If the replace option is not specified, input members are not
copied when they have the same name as a member on the output
partitioned data set.

The replace option can be specified on the data set or member
level. This level is specified on a utility control statement.

When replace (R) is specified on the data set level with a COPY
or INDD statement, the input data is processed as follows:

. In a full copy or load process, all members on an input
partitioned data set are copied to an output partitioned
data set; members whose names already exist on the output
partitioned data set are replaced by the members copied or
loaded from the input partitioned data set.

. In a selective copy or load process, all selected input
members will be copied to the output data set, replacing any
identically named output data set members.

. In an exclusive copy process, all nonexcluded members on
input partitioned data sets are copied or loaded to an
output partitioned data set replacing those duplicate named
members on the output partitioned data set.

When replace is specified on the member level (specified as R on
a SELECT statement), only selected members for which replace is
specified are copied or loaded, and identically named members on
the output partitioned data set are replaced.

There are differences between full, selective, and exclusive
copy or load processing. These differences should be remembered
when specifying the replace option and all of the output data
sets contain member names common to some or all of the input
partitioned data sets being copied or loaded. These differences
are:

. When a full copy or load is performed, the output

partitioned data set contains the replacing members that
were on the last input partitioned data set copied.

IEBCOPY Program 41

. When a selective copy or load is performed, the output
partitioned data set contains the selected replacing members
that were found on the earliest input partitioned data set
searched. Once a selected member is found, it is not
searched for again; therefore, once found, a selected member
is copied or loaded. If the same member exists on another
input partitioned data set, it is not searched for, and
hence, not copied or loaded.

. When an exclusive copy or load is performed, the ocutput
partitioned data set contains all members, except those
specified for exclusion, that were on the last input
partitioned data set copied or loaded.

REPLACING SELECTED MEMBERS

The user may specify the replace (R) option on either the data
set or the member level when members are being selected for
copying or loading.

If the replace option is specified on the data set level, all
selected members found on the designated input data sets replace
identically named members on the output partitioned data set.
This is limited by the fact that once a selected member is found
it is not searched for again.

If the replace option is specified on the member level, the
specified members on the input data set replace identically
named members on the output partitioned data set. Once a member
is found it is not searched for again. (See "Replacing
Identically Named Members" on page %1.)

RENAMING SELECTED MEMBERS

Selected members on input data sets can be copied and renamed on
the output data set; the input and output data sets must not be
the same. However, in the case of a copy or load operation, if
the new name is identical to a member name on the output data
set, the input member is not copied or loaded unless the replace
option is also specified. See "SELECT Statement"™ on page 54for
information on renaming selected members.

Renaming is not physically done to the input data set directory
entry. The output data set directory, however, will contain the
new name.

EXCLUDING MEMBERS FROM A COPY OPERATION

Members from one or more input data sets can be excluded from a
copy, unload, or load operation. The excluded member is
searched for on every input data set in the copy, unload, or
load operation and is always omitted. Members are excluded from
the input data sets named on an INDD statement that precedes the
EXCLUDE statement. (See "COPY Statement” on page 51 and"EXCLUDE
Statement™ on page 56.)

The replace option can be specified on the data set level in an
exclusive copy or load, in which case, nonexcluded members on
the input data set replace identically named members on the
output data set. See "Replacing Identically Named Members” on
page 41lfor more information on the replace option.

COMPRESSING A DATA SET

A compressed data set is one that does not contain embedded,
unused space. After copying or loading one or more input
partitioned data sets to a new output partitioned data set (by
means of a selective, exclusive, or full copy or load that does
not involve replacing members), the output partitioned data set
contains no embedded, unused space.

42 MVS/370 Utilities

MERGING DATA SETS

To make unused space available, either the entire data set must
be scratched or it must be compressed in place. A compressed
version can be created by specifying the same data set for both
the input and the output parameters in a full copy step. A
backup copy of the partitioned data set to be compressed in
place should be kept until successful completion of an in-place
cogpre:sig? is indicated (by an end-of-job maessage and a return
code of 00).

An in-place compression does not release extents assigned to the
data set. Inclusion, exclusion, or renaming of selected members
cannot be done during the compression of a partitioned data set.

When the same ddname is specified for the INDD and OUTDD
keywords (see "COPY Statement” on page 51) and the DD statement
specifies a block size different from the block size specified
in the DSCB, the DSCB block size is overridden; however, no
physical reblocking or deblocking is performed by IEBCOPY. For
information on reblocking load modules, see "Copying and
Reblocking Load Modules.”

A merged data set is one to which an additional member is copied
or loaded. It is created by copying or loading the additional
members to an existing output partitioned data set; the merge
operation—the ordering of the output partitioned data set's
directory—is automatically performed by IEBCOPY.

If there is a question about whether or not enocugh directory
blocks are allocated to the output partitioned data set to which
an input data set is being merged, the output partitioned data
set should be re-created with additional directory space prior
to the merge operation.

RE-CREATING A DATA SET

A data set can be re-created by copying or loading it and
allocating a larger amount of space than was allocated for the
original data set. This application of IEBCOPY is especially
useful if insufficient directory space was allocated to a data
set. Space cannot be allocated in this manner for an existing
partitioned data set into which members are being merged.

ALTERING LOAD MODULES IN PLACE

IEBCOPY can be used to alter load modules in place.
Alter-in-place reads modules written by earlier runs of the
linkage editor and inserts new relocation dictionary (RLD)
counts. For modules copied by a program other than the linkage
editor or IEBCOPY, alter~in-place can replace an erroneous RLD
count by correcting PDS directory entries and control records.
For more information, see "Inserting RLD Counts" on page 45.

Only members of a partitioned data set may be altered.

For the procedure used to invoke the alter-in-place function,
see "ALTERMOD Statement"™ on page 53.

COPYING AND REBLOCKING LOAD MODULES

IEBCOPY can be used to copy and reblock load modules in a data
set library. Copy/reblock copies a sequential (unloaded) data
set or selected members from a partitioned data set onto a new
or existing output partitioned data set. The text records, RLD,
and control records are rebuilt; all other records are copied
unchanged. For a description of how the RLD count is inserted,
see "Inserting RLD Counts" on page 45.

IEBCOPY Program 43

The reblock function allows you to specify:

. A new maximum block size for compatibility with other
systems or programs

. A minimum block size to improve DASD track utilization. The
minimum block size specifies the smallest block which should
be uritten on the end of a track.

The load modules will be blocked such that they can be
re-link-edited and/or loaded by the loader, with the ability to
include the whole module or only the indicated CSECTs.

Load libraries may be copied to devices with a larger or smaller
block size than the input block size.

IEBCOPY will determine the amount of space remaining on a track

before assigning a new block size, and if this amount is less

than the output block size, it will attempt to determine whether

2hsm:11e; block can be written to utilize the remaining space on
e track.

The maximum block size which can be handled by the linkage
editor is 18K.

For the procedure used to copy and reblock load modules, see
"COPYMOD Statement" on page 53.

LOAD MODULE REQUIREMENTS

IEBCOPY requires that the members of the input data set which
are to be altered or copied/reblocked must qualify as load
modules; that is, they must possess characteristics such that
they can be loaded by the system fetch routine (IEWFETCH) or
re-link-edited by the linkage editor. Members which are not
recognhized as load modules will be unaffected by the
alter-in-place or copy/reblock operation.

Load modules in either overlay or scatter-load format and
modules which were link-edited with the noneditable (NE)
attribute or with an assigned origin other than zero cannot be
altered in place. For more information on module format and
attributes, see Linkage Editor and Loader.

The PDS directory entry for a load module must meet the
following requirements:

1. The entry must be at least 34 bytes long (standard length
for entries is only 12 bytes).

2. Bytes 26 and 27 must contain the length of the first text
record, and this length must be equal to the length
specified by the first control record.

Any record in a load module which precedes the first control
record must be one of the following:

. A symbol record (SYM)

. A composite external symbol dictionary record (CESD)
. An external symbol dictionary record (ESD)

. A scatter/translation record (STT)

A CSECT identification record (IDR)

[

RLD and control records must be:
. An RLD record: '0000 xx10'B in byte 1,

. A control record: '0000 xx01'B in byte 1,

44 MVS/370 Utilities

INSERTING RLD COUNTS

INPUT AND OUTPUT

. An RLD and control record: '0000 xx11'B in byte 1, or

] The length specified by the value in bytes 5-6 plus the
value in bytes 7-8 plus 16. Control records must contain
the length of the following text record in bytes 15-16.

The sequence of records following a control or RLD/control
record must be:

. Text, End-of-Module/End-of-Segment,

. Text, RLD, End-of-Module/End-of-Segment,

. Text, RLD/control,

. Text, RLD, (RLD, . . .), End-of-Module/End-of-Segment, or
U Text, RLD, (RLD, . . .), RLD/control.

Each block of text in a load module is preceded by a control
record and may be followed by one or more RLD and/or control
records. These records are variable length with a maximum of
256 bytes. They may contain only RLD data or only control data
or both RLD and control data.

The term "number' or 'count' of RLD records is used to mean the
number of these records containing RLD data/control data which
follow a block of text in a module library.

The system fetch routine (IEWFETCH) executes fewer start I/0
instructions if the number of these records following a block of
text is known. The number of RLD records following each block
of text is inserted into the control record which immediately
precedes that block of text. 1In addition, the number of RLD
records which follow the first block of text for a load module
is inserted into the PDS directory entry for that module.

The linkage editor inserts RLD counts in the control records and
in the PDS directory entries.

IEBCOPY uses the following input:

. An input data set that contains the members to be copied,
loaded, merged, altered, reblocked, or unloaded to a
sequential data set.

. A control data set that contains utility control statements.
The control data set is required for a copy, unload, load,
or merge operation.

IEBCOPY does not support VIO (virtual I/0) data sets.
IEBCOPY produces the following output:

. An output data set, which contains the copied, merged,
altered, reblocked, unloaded, or loaded data. The output
data set is either a new data set (from a copy, reblock,
load, or unload) or an old data set (from a merge,
compress—-in-place, copy, alter, or load).

. A message data set, which contains informational messages
(for example, the names of copied, unloaded, or loaded
members) and error messages, if applicable.

) Spill data sets, which are temporary data sets used to
provide space when not enough virtual storage is available
for the input and/or output partitioned data set
directories. These data sets are opened only when needed.

IEBCOPY Program 65

RETURN CODES

CONTROL

IEBCOPY returns a code in register 15 to indicate the results of
program execution. The return codes and their meanings are
listed below.

Codes Meaning

00 (00 hex) Successful completion.

046 (04) A condition exists from which recovery may be
possible.
08 (08) An unrecoverable error exists. The job step is

terminated.

Figure 17. IEBCOPY Return Codes

IEBCOPY is controlled by job control statements and utility
control statements.

JOB CONTROL STATEMENTS

PARM Information on

Figure 18 on page 47 shows the job control statements for
IEBCOPY.

the EXEC Statement

The EXEC statement for IEBCOPY can contain PARM information that
is used to define the number of bytes used as a buffer. The
PARM parameter can be coded:

PARM="SIZE=nnnnnnnnlK1’

The nnnnnnnn can be replaced by 1 to 8 decimal digits. The K
causes the nnnnnnnn to be multiplied by 1024 bytes.

If PARM is not specified, or a value below the minimum buffer
size is specified, IEBCOPY defaults to the minimum. Minimum
buffer size is twice the maximum of the input or output block
sizes or four times the input or output track capacilies,
whichever is larger.

The maximum buffer size that can be specified is equal to the
storage remaining in the storage area gotten when IEBCOPY issues
a conditional one-megabyte storage request (GETMAIN) for work
areas and buffers. If the value specified in PARM exceeds this
maximum, IEBCOPY defaults to the maximum.

A request for too much buffer storage may result in increased
system paging because of a lack of available system page frames.
This will degrade overall system performance.

SYSPRINT DD Statement

The SYSPRINT DD statement is required and must define a data set
with fixed blocked or fixed records. The block size for the
SYSPRINT data set must be a multiple of 121. Any blocking
factor may be specified, with a maximum allowable block size of
32767 bytes.

46 MVS/370 Utilities

statement Use
JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBCOPY) or, if the
job control statements reside in the procedure
library, the procedure name. This statement can
include optional PARM information to define the
size of the buffer to be used; see "PARM
Information on the EXEC Statement."

SYSPRINT DD Defines the sequential message data set used for
listing statements and messages. This data set can
be written to a system output device, a tape
volume, or a direct access volume.

anynamel DD Defines an input partitioned data set. These DD
statements can describe partitioned data sets on
direct access devices or sequential data sets,
created as a result of unload operations, on tape
or direct access devices. The data set can be
defined by a data set name, as a cataloged data
set, or as a data set passed from a previous job
step.

anyname2 DD Defines an output partitioned data set. These DD
statements can describe partitioned data sets on
direct access devices or sequential data sets,
created as a result of unload operations, on tape
or direct access devices.

SYSUT3 DD Defines a spill data set on a direct access device.
SYSUT3 is used when there is no space in virtual
storage for some or all of the current input
partitioned data set's directory entries. SYSUT3
may also be used when not enough space is available
in virtual storage for retaining information during
table sorting.

SYSUT4 DD Defines a spill data set on a direct access device.
SYSUT4 is used when there is no space in virtual
storage for the current output partitioned data
set's merged directory and the output partitioned
data set is not neu.

SYSIN DD Defines the control data set. The control data set
normally resides in the input stream; however, it
can reside on a system input device, a tape volume,
or a direct access volume.

Figure 18. Job Control Statements for IEBCOPY

anynamel and anyname2 DD Statements

DD statements are required for input and output data sets.

There must be one DD statement for each unique data set used for
input and one DD statement for each unique data set used for
output in the job step. For an unload operation, only one input
data set may be specified for each output data set.

Data sets used as input data sets in one copy operation can be
used as output data sets in another copy operation, and vice
versa.

Input data sets cannot be concatenated. The maximum block size
for input data sets to be unloaded is 32767.

IEBCOPY Program 47

SYSIN DD Statement

The SYSIN DD statement is required and must define a data set
with fixed block or fixed records. The block size for the SYSIN
data set must be a multiple of 80. Any blocking factor may be
specified, with a maximum allowable block size of 32767 bytes.

IEBCOPY UNLOADED DATA SET BLOCK SIZE

The block size for unloaded data sets is determined by the
following steps: ‘

1. The minimum block size for the unloaded data set is
calculated as being equal to the larger of:

. 284 bytes, or

L 20 bytes + the block size and key length of the input
data set.

2. If a user-supplied block size was specified, and it is
larger than 284 bytes, it will be passed to step 3.
Otherwise, the minimum size is passed.

3. The block size value passed from step 2 is then compared
with the largest block size acceptable to the output device.
If the output device capacity is less than the block size
passed in step 2, the unloaded data set block size is set to
the maximum allowed for the output device.

4., The logical record length (LRECL) is then set to the minimum
block size calculated in step 1 minus 4 bytes.

5. The block size is stored in the first control record
(COPYR1) and used at load time. Block size of the unloaded
data set must not be changed before the data set is loaded.
Be sure to specify the desired block size at unload time if
it is other than that taken by default as indicated above.

For unload and load operations, requests are handled in the same
way as for a copy operation.

Fixed or variable records can be reblocked. Reblocking or
deblocking is done if the block size of the input partitioned
data set is not equal to the block size of the output
partitioned data set.

An unloaded partitioned data set will have a variable spanned
record format. When an unloaded data set is subsequently
loaded, the output data set will have the same characteristics
it had before the unload operation, unless specified differently
by the user.

Figure 19 shows how input record formats can be changed. In
addition, any record format can be changed to the undefined
format (in terms of its description in the DSCB).

Input output

Fixed Fixed-Blocked
Fixed-Blocked Fixed

variable Variable-Blocked
variable-Blocked Variable

Figure 19. Changing Input Record Format Using IEBCOPY

48 MVS/370 Utilities

space Allocation

Restrictions

System data sets should not be compressed in place unless the
subject partitioned data set is made nonsharable. The libraries
in which IEBCOPY resides (SYS1.LINKLIB and SYS1.SVCLIB) must not
bnggT?EESSEd by IEBCOPY unless IEBCOPY is first transferred to
a .

Sometimes it is necessary to allocate space on spill data sets
(SYSUT3 and SYSUT4). The space to be allocated for SYSUT3
depends on the number of members to be copied or loaded. The
space to be allocated for SYSUT4 depends on the number of
directory blocks to be written to the ocutput data set.

To conserve space on the direct access volume, an initial
quantity and a secondary quantity for space allocation may be
used, as shoun in the following SPACE parameter:

SPACE=(c, (x,y))

The ¢ value should be a block length of 80 for SYSUT3 and of 256
for SYSUT4. The x value is the number of blocks in the primary
allocation, and the y value is the number of blocks in the
secondary allocation.

For SYSUT3, x + 15y must be equal to or greater than the number
of members in the largest input partitioned data set in the copy
operation, multiplied by 1.05.

For SYSUT4, x + 15y must be equal to or greater than the number
of blocks allocated to the largest output partitioned data set
directory in the IEBCOPY job step.

For example, if there are 700 members on the largest input
partitioned data set, space could be allocated for SYSUT3 as
follows:

SPACE=(80,(60,45))

However, the total amount of space required for SYSUT3 in the
worst case is used only if needed. If space is allocated in
this manner for SYSUT4, the user must specify in his SYSUT4 DD
statement:

DCB=(KEYLEN=8)

IEBCOPY ignores all other DCB information specified for SYSUT3
and/or SYSUT4. Multivolume SYSUT3I and SYSUT4 data sets are not
supported.

The temporary spill data sets may or may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

Refer to Data Management Services for more information on
estimating data set space allocations.

. IEBCOPY must run from an authorized library because of
special storage key requirements for IEBCOPY I/0 appendages.

. Variable block spanned format data sets are not supported.

. VIO is not supported by IEBCOPY for SYSUT4, nor for
partitioned input or output data sets.

. When merging into or compressing system libraries, do not
specify DISP=SHR. The results of a merge into or compress
of the current SYS1.LINKLIB or SYS1.SVCLIB would be
unpredictable.

IEBCOPY Program 49

L IEBCOPY does its own buffering; therefore, coding the BUFNO
parameter in the DCB will cause a JCL error.

. Reblocking or deblocking cannot be done if either the input
or the output data set has undefined format records, keyed
records, track overflow records, note lists, or user TTRNs,
or if compress—in-place is specified. Load modules,
however, may be reblocked using the COPYMOD statement.

The compress-in-place function cannot be performed for the
following:

. An unloaded data set
. A data set with track overflow records
. A data set with keyed records

e ' A data set for which reblocking is specified in the DCB
parameter

. An unmovable data set

Note: 1If IEBCOPY creates a copied library (partitioned data
set) whose block size is smaller than the logical record length
of the original library, a return code of & is issued, with
message JEB175I. If IEBCOPY is used later to compress-in—-place
the output library, the operation will fail and this library
becomes unusable.

UTILITY CONTROL STATEMENTS

50

IEBCOPY is controlled by the following utility control
statements:

statement Use

coPYy Indicates the beginning of a COPY operation.

ALTERMOD Specifies the load module(s) to be altered in
place.

COPYMOD Specifies the load module(s) to be copied and
reblocked.

SELECT Specifies which members in the input data set are
to be copied.

EXCLUDE Specifies members in the input data set to be

excluded from the copy step.
Figure 20. IEBCOPY Utility Control Statements

In addition, when INDD, a COPY statement parameter, appears on a
card other than the COPY statement, it is referred to as an INDD
statement; it can function as a control statement in this
context.

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements”" on page 5.

MVS/370 Utilities

COPY Statement

The COPY statement is required to initiate one or more IEBCOPY
copy, unload, or load operations. Any number of operations can
follow a single COPY statement; any number of COPY statements
can appear wWithin a single job step.

IEBCOPY uses a copy operation/copy step concept.! A copy
operation starts with a COPY statement and continues until
either another COPY statement or a COPYMOD or ALTERMOD statement
is found, or the end of the control data set is found. MWithin
each copy operation, one or more copy steps are present. Any
INDD statement directly following a SELECT or EXCLUDE statement
marks the beginning of the next copy step and the end of the
preceding copy step within the copy operation. If such an INDD
statement cannot be found in the copy operation, then the copy
operation consists of only one copy step.

Figure 21 shows the copy operation/copy step concept. Two copy
operations are shown in the figure: the first begins with the
statement containing the name COPOPER1l, and the second begins
with the statement containing the name COPOPER2.

First Copy Operation

STEP 1 COPOPER1 corPy OUTDD=AA, INDD=ZZ
INDD=(BB,CC)
INDD=DD
INDD=EE
SELECT MEMBER=(MEMA, MEMB)
SELECT MEMBER=MEMC

STEP 2 INDD=GG

INDD=HH
EXCLUDE MEMBER=(MEMD,MEMH)

second Copy Operation

STEP 1 COPOPER2 COPY ouTDD=YY,I=(MM,PP),LIST=NC
SELECT MEMBER=MEMB
STEP 2 INDD=KK

INDD=(LL,NN)
/¥

Figure 21. Multiple Copy Operations within a Job Step

There are two copy steps within the first copy operation shown
in Figure 21: the first begins with the COPY statement and
continues through the two SELECT statements; the second begins
with the first INDD statement following the two SELECT
statements and continues through the EXCLUDE statement preceding
the second COPY statement. There are two copy steps within the
second copy operation: the first begins with the COPY statement
and continues through the SELECT statement; the second begins
with the INDD statement immediately following the SELECT
statement and ends with the same /% (delimiter) statement that
ended the copy operation.

1 The same applies to an unload or load operation or step.

IEBCOPY Program 51

The format of the COPY statement is:

[labell coPY OUTDD=ddname

INDD=[(lddnamell,ddname?2]
[,(ddname3,R}I[,...1[]]
[,LIST=NO]

The control statement opefation and keyword parameters can be
abbreviated to their initial letters; for example, COPY can be
abbreviated to C and QUTDD can be abbreviated to 0.

If there are no keywords other than OUTDD on the COPY card,
compatibility with the previous version of the data set is
implied. In this case, comments may not be placed on this card.

The OUTDD and INDD keyword parameters on COPY statements name DD
statements that define data sets to be copied, unloaded, or
loaded. The INDD parameter names the DD statement that
identifies the input data set. The OUTDD parameter names the DD
statement that identifies the output data set.

Only one INDD and one OUTDD keyword may be placed on a single
card. OUTDD must appear on the COPY statement. When INDD
appears on a separate card, no other operands may be specified
on that card. If INDD appears on a separate card, it is not
preceded by a comma.

The characteristics of the input and output data sets depend on
the operation to be performed, as follows:

. If a data set is to be copied, the input and output data
sets must both be partitioned data sets.

. If a data set is to be loaded, the input data set may be
either partitioned or sequential; the output data set must
be partitioned.

. If a data set is to be unloaded, the input data set must be
either a partitioned data set or a sequential data set that
was created as a result of a previous unload operation. The
output data set may reside on either a direct access or tape
volume. If the output data set is to reside on a direct
access volume, the organization of the data set must be
specified as sequential. To specify sequential organization
for a direct access data set, specify the SPACE parameter,
omitting the directory or index value.

If more than one ddname is specified, the input partitioned data
sets are processed in the same sequence as that in which the
ddnames are specified.

A COPY statement must precede a SELECT or EXCLUDE statement when
members are selected for or excluded from a copy, unload, or
load step. In addition, if an input ddname is specified on a
separate INDD statement, it must follow the COPY statement and
precede the SELECT or EXCLUDE statement to which it applies. If
one or more INDD statements are immediately followed by the /¥
card or another COPY or COPYMOD or ALTERMOD statement, a full
copy, unload, or load is invoked onto the most recent previously
specified output partitioned data set.

A full copy, unload, or load is invoked only by specifying

different input and output ddnames; that is, by omitting the
SELECT or EXCLUDE statement from the copy step.

52 MVS/370 Utilities

ALTERMOD Statement

COPYMOD Statement

The compress—in-place function is valid for partitioned data
sets. Compress-in-place is normally invoked by specifying the
same ddname for both the OUTDD and INDD parameters of a COPY
statement. If multiple entries are made on the INDD statement,
a compress—in-place will occur if one of the input ddnames is
the same as the ddname specified by the OUTDD parameter of the
COPY statement, provided that SELECT or EXCLUDE is not
specified.

When a compression is invoked by specifying the same ddname for
the INDD and OUTDD parameters, and the DD statement specifies a
block size that differs from the block size specified in the
DSCB, the DSCB block size is overridden; however, no physical
reblocking or deblocking is done by IEBCOPY.

The ALTERMOD statement is required to alter load modules in
place. The function is designed to read modules which were
written by earlier versions of the linkage editor and to insert
RLD counts. It can also be used to alter modules which may have
an erroneous RLD count—for example, modules which were copied
by a program other than the linkage editor or IEBCOPY.

Only PDS directory entries and control records will be modified.
If the control records are already correct, they will not be
rewritten.

Members which are not recognized as load modules will not be
altered.

Load modules in either overlay or scatter-load format and
modules which were link-edited with the noneditable (NE)
attribute or with an assigned origin other than zero will not be
altered.

The alter-in-place function may be performed multiple times for
the same load module or module library. Altering has no
cumulative effect.

The format of the ALTERMOD statement is:

[labell ALTERMOD OUTDD=ddname
[(,LIST=NO]

OUTDD specifies the partitioned data set which is to be altered.

The replace (R) and RENAME functions of IEBCOPY cannot be
specified in the same step with ALTERMOD.

The COPYMOD statement is required to copy, reblock, and alter
modules in a library. When copying load modules, the selected
members will be copied from the input data set(s) to the output
data set. The output data set may be new or it may be an
existing load library to which members are to be added. The
output data set must be a partitioned data set, and it cannot
also be an input data set (reblock-in-place is not permitted).

The text records and the RLD/control records will be rebuilt.

Other records such as SYM and CESD records will be copied
unchanged. :

IEBCOPY Program 53

SELECT Statement

Load modules in either overlay or scatter-load format and
modules which were link-edited with the noneditable (NE)
attribute or with an assigned origin other than zero will be
copied, but not reblocked or altered (that is, as if the member
was specified with a COPY statement). Members which are not
recognized as load modules will be copied, but not reblocked or
altered.

Note that modules which are not reblocked by COPYMOD cannot be
copied to a device which has a track size less than the input
block size. They may, however, be re-link-edited with a smaller
block size.

The replace (R) function may be specified with input ddnames
and/or member names to cause like-named modules to be replaced,
or it may be omitted to prevent the copying of like-named
modules.

The rename function may be invoked to specify a new name for the
selected member. For more information, see "SELECT Statement.”

IEBCOPY can unload modules to a sequential data set via the COPY
function, and the output of that step can be input to a
subsequent COPYMOD step in which the output data set is the same
as the input to the unload step. This would also provide a
backup copy in the sequential data set.

The format of the COPYMOD statement is:

[labell COPYMOD 0UTDD=ddname

s INDD=[(lddnamell,ddname2]
{,(ddname3,R)I[,...1[]}]

[,MAXBLK={nnnnninnkK}1
[,MINBLK={nnnnninnkK}]
[,LIST=NO]

INDD specifies the partitioned or sequential (unloaded) data set
from which load modules are to be read. OUTDD specifies the
partitioned data set to which load modules are to be copied.
MAXBLK specifies the maximum block size for records in the
output data set. MINBLK specifies the minimum block size for
records in the output data set.

The SELECT statement specifies members (or modules, in the case
of ALTERMOD or COPYMOD) to be selected from input data sets to
be altered, copied, loaded, or unloaded to an output data set.
This statement is also used to rename and/or replace selected
members on the output date set. More than one SELECT statement
may be used in succession, in which case the second and
subs:quent statements are treated as a continuation of the
first.

The SELECT statement must follow either a COPY statement that
includes an INDD parameter, a COPYMOD statement, or one or more
INDD statements. A SELECT statement cannot appear with an
EXCLUDE statement in the same copy, unload, or load step, and it
cannot be used with a compress-in-place function.

When a selected member is found on an input data set, it is not
searched for again, regardless of whether the member is copied,
unloaded, or loaded. A selected member will not replace an
identically named member on the output partitioned data set
unless the replace option is specified on either the data set or
member level. (For a description of replacing identically named

56 MYS/370 Utilities

members, see "Replacing Identically Named Members" on page 41
and "Replacing Selected Members" on page 42.) In addition,
unless the replace option is specified, a renamed member will
not replace a member on the output partitioned data set that has
the same new name as the renamed member.

The replace (R) and rename (newname) options cannot be specified
with ALTERMOD.

The format of the SELECT statement is:

[labell SELECT MEMBER= {[(lnamell,pame2ll,...1[}]1]

({(namel,newnamel,RI¥,...1]|

{namel,neunamell,...1}

(namel,,R)(,...1[1)1}

where:?

MEMBER=
specifies the members to be selected from the input data
set. The values that can be coded are:

name

specifies the name of a member that is to be selected
in a copy step. Each member name specified mithin one
copy step must be unique; that is, duplicate names
cannot be specified as either old names, or new names,
or both, under any circumstances.

newname
specifies a new name for a selected member. The
member is copied, unloaded, or loaded to the output
partitioned data set using its new name. If the name
already appears on the output partitioned data set,
the member is not copied unless replacement (R) is
also specified. pewname cannot be specified with
ALTERMOD.

specifies that the input member is to replace any
identically named member that exists on the output
partitioned data set. The replace option is not valid
for an unload operation. R cannot be specified with
ALTERMOD.

The control statement operation and keyword parameters can be
abbreviated to their initial letters; SELECT can be abbreviated
to S and MEMBER can be abbreviated to M.

To rename a member, the old member name is specified in the
SELECT statement, followed by the new name and, optionally, the
R parameter. When this option is specified, the 0ld member name
and ned member name must be enclosed in parentheses. When any
option within parentheses is specified anywhere in the MEMBER
field, the entire field, exclusive of the MEMBER keyword, must
be enclosed in a second set of parentheses.

IEBCOPY Program 55

EXCLUDE Statement

The EXCLUDE statement specifies members to be excluded from the
copy, unload, or load step. Unlike the selective
copyZalter/unload/load, an exclusive copy/alter/unload/load
causes all members (or modules, in the case of ALTERMOD or
COPYMOD) specified on each EXCLUDE statement to be omitted from
the operation.

More than one EXCLUDE statement may be used in succession, in
which case the second and subsedguent statements are treated as a
continuation of the first. The EXCLUDE statement must follow
either a COPY statement that includes an INDD parameter, an
ALTERMOD or COPYMOD statement, or one or more INDD statements.
An EXCLUDE statement cannot appear with a SELECT statement in
the same copy, unload, or load step; however, both may be used
following a COPY statement for a copy or load operation. The
EXCLgPE statement cannot be used with a compress-in-place
unction.

The format of the EXCLUDE statement is:

[labell EXCLUDE MEMBER=[(Imembernamel[,membername2l]...[)]

The control statement operation and keyword parameters can be
abbreviated to their initial letters; EXCLUDE can be abbreviated
to E and MEMBER can be abbreviated to M.

If neither SELECT nor EXCLUDE is specified, the entire data set
is copied (a "full copy").

56 MVSs/370 Utilities

Parameters

Applicable
control
Statements

Description of Parameters

INDD

CoPY
COPYMOD

INDD=[(]?dnamg;[,ddnamezll,(ddname3,R)]

I,...

specifies the names of the input partitioned
data sets. INDD may, optionally, be placed
on a separate line following a COPYMOD or
COPY statement containing the QUTDD
parameter, another INDD statement, a SELECT
statement, or an EXCLUDE statement. These
values can be coded:

ddname

specifies the ddname, which is
specified on a DD statement, of an
input data set. In the case of
COPYMOD, this is the name of a load
module. For an unload operation, only
one ddname may be specified per COPY
statement. If more than one ddname is
specified in the case of a copy or load
operation, the input data sets are
processed in the same sequence as the
ddnames are specified.

specifies that all members to be copied
or loaded from this input data set are
to replace any identically named
members on the output partitioned data
set. (In addition, members whose names
are not on the output partitioned data
set are copied or loaded as usual.)
When this option is specified with the
INDD parameter, it does not have to
appear with the MEMBER parameter
(discussad in "SELECT Statement™ on
page 54) in a selective copy operation.
When this option is specified, the
ddname and the R parameter must be
enclosed in a set of parentheses; if it
is specified with more than one ddname
in INDD, the entire field, exclusive of
the INDD parameter, must be enclosed in
a second set of parentheses.

LIST

COPY
COPYMOD
ALTERMOD

LIST=

NO

spaecifies that the names of copied members
are not to be listed on SYSPRINT at the end
of each input data set.

Deféult: The names of copied members are
listed.

IEBCOPY Program

57

Paramaters

Applicable
control
Statements

Description of Parameters

MAXBLK

COPYMOD

MAXBLK={nonnn lnnkK}
specifies the maximum block size for records
in the output partitioned data set. MAXBLK
is normally used to specify a smaller block
size than the default, in order to make the
records in the data set compatible with
other systems or programs.

nnnnn is specified as a decimal number; K
indicates that the pn value is multiplied by
1024 bytes. :

MAXBLK may be specified with or without
MINBLK.

Pefault: The track size for the output
device or 18K, whichever is smaller. If a
value greater than 18K (18432) or less than
4K (4096) is specified, the default is used.

MEMBER

SELECT

MEMBER={[(lnamell,name
({(namelgnewnam [»R
{namel, newnamell,..

(namel y;R)[y...]}))

spacifies the members to be selected from
the input data set. The values that can be
coded for SELECT are:

name

specifies the name of a member that is
to be selected in a copy step. Each
member name specified within one copy
step must be unique; that is, duplicate
names cannot be specified as either old
names, or new names, or both, under any
circumstances. If no member name is
specified, the entire data set is
included in the operation.

newname
specifies a new name for a selected
member. The member is copied,
unloaded, or loaded to the output
partitioned data set using its new
name. If the name already appears on
the output partitioned data set, the
member is not copied unless replacement
(R) is also specified.

specifies that the input wmembher is to
replace any identically named member
that exists on the output partitioned
data set. The replace option is not
valid for an unload or alter operation.

58 MVS/370 Utilities

Parameters

Applicahle
control
Statements

Description of Parameters

MEMBER

EXCLUDE

MEMBER=[(Imembernamell,membername2l...l)1
specifies members on the input data set that
are not to be copied, unloaded, or loaded to
the output data set. The members are not
deleted from the input data set unless the
entire data set is deleted. (This can be
done by specifying DISP=DELETE in the
operand field of the input DD job control
statement.) Each member name specified
within one copy step must be unique.

MINBLK

COPYMOD

MINBLK={nnnnn|nnkK}
specifies the minimum block size for records
in the output partitioned data set. MINBLK
specifies the smallest block which should be
written on the end of a track for the
purpose of improving utilization of DASD
storage.

A small MINBLK value will improve track
utilization; however, a large MINBLK value
(close to the track size) will improve
system fetch (IEWFETCH) performance. When
determining the value of MINBLK, you should
consider the importance of fetch performance
versus optimal DASD storage. In any case,
in order to have room for RLD counts, the
value of MINBLK should be less than the size
of one full track.

nhnnn is specified as a decimal number; K
indicates that the nn value is multiplied by
1024 bytes.

MINBLK may be specified with or without
MAXBLK.

Default: 1K (1024). If a value greater
than MAXBLK or less than 1K is specified, 1K
is used. The default for the installation
can be changed by altering the value in the
assembler statement "MINBLK DC F'1024'' in
the macro IEBMCA and reassembling the module
IEBDSCPY.

guTDD

COPY
COPYMOD
ALTERMOD

QUTDD= ddname
speci fies the name of the output partitioned
data set. One ddname is required for each
copy, unload, or load operation; the ddname
used must be specified on a DD statement.

When the COPY or COPYMOD or ALTERMOD
statement is used, OUTDD must be specified.

IEBCOPY Program

59

IEBCOPY EXAMPLES

The following examples illustrate some of the uses of IEBCOPY.

Figure 22 on page 61 can be used as a quick-reference guide to

IEBCOPY examples. The numbers in the "Example”™ column point to
examples that follouw.

Examples that use disk or tape, in place of actual device
numbers, must be changed before use. See "DASD and Tape Device
Support"” on page 3 for valid device number notation.

60 MVSs/370 Utilities

Operation Device Camments Example

corPYy Disk Full Copy. The input and output data sets are 1
partitioned.

- coPY Disk Multiple input partitioned data sets. 2
Fixed-blocked and fixed-record formats.

COPY Disk All members are to be copied. Identically 3
named members on the output data set are to be
replaced. The input and output data sets are
partitioned.

COPY Disk Selected members are to be copied. 4
Variable-blocked data set is to be created.

Record formats are variable-blocked and
variable. The input and output data sets are
partitioned.

coey Disk Selected members are to be copied. One member 5
is to replace an identically named member on
the output data set. The input and output
data sets are partitioned.

copPY Disk Selected members are to be copied. Members 6
found on the first input data set replace
identically named members on the output data
set. The input and output data sets are
partitioned.

COPY Disk Selected members are to be copied. Two 7
members are to be renamed. One renamed membaer
is to replace an identically named member on
the output data set. The input and output
data sets are partitioned.

coPY Disk Exclusive Copy. Fixed-blocked and 8
fixed-record formats. The input and output
data sets are partitioned.

Unload and Disk and Copy a partitioned data set to tape (unload) 9

Compress-— Tape and compress—in-place if the first step is

in-place successful.

COPY and Disk Full copy to be followed by a 10

Compress- compress—in-place of the output data set.

in-place Replace specified for one input data set. The
input and output data sets are partitioned.

CoPY Disks Multiple copy operations. The input and 11
output data sets are partitioned.

COPY Disks Multiple copy operations. 12

Unload Disk and A partitioned data set is to be unloaded to 13

Tape tape.
Load Tape and An unloaded data set is to be loaded to disk. 14
Disk

Unload, Disk and Selected mambers are to be unloaded, loaded, 15

Load, and Tape and copied. The input data set is

COPY partitionad; the output data set is
sequential.

Slter in Disk Selected members are to be altered in place. 16

lace

Figure 22 (Part 1 of 2).

IEBCOPY Example Directory

IEBCOPY Program

61

Operation Device comments Example
Copy, Disk Selected members are copied to a new data set, 17
alter, and altered, and reblocked to various sizes.

reblock

Copy, Disk and All members copied to tape; library scratched; 18
alter, and Tape members copied back to library, altered, and

reblock reblocked. :

Figure 22 (Part 2 of 2).

IEBCOPY EXAMPLE 1

IEBCOPY Example Directory

In this example, a partitioned data set (DATASETS5)

from one disk volume to another.

output data sets before and after processing.

is copied

Figure 23 shows the input and

input

DATASETS

Directury
c

MFmbE"

Output

DATASET4

Before
copy
operation

Figure

Directory
AC

Members

After
processing
DATASETS

23. Copying a Partitioned Data Set—Full Copy

62 MVS/370 Utilities

IEBCOPY EXAMPLE 2

//COPY JOB e

//JOBSTEP EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=A

//INOUTS DD DSNAME=DATASET4,UNIT=3350,V0L=SER=111112,

Vs DISP=(NEW,KEEP),SPACE=(TRK, (5,1,2))
/7/INOUTS DD DSNAME=DATASET5,UNIT=3350,VOL=SER=111113,
/77 DISP=SHR

/75YSUT3 DD UNIT=SYSDA,SPACE=(TRK, (1))
/775YSUTSG DD UNIT=SYSDA,SPACE=(TRK, (1))
//SYSIN DD *

COPYOPER COPY OUTDD=INQUT4, INDD=INOUTS
/%

The control statements are discussed below:

. INOUT4 DD defines a new partitioned data set (DATASET4) that
is to be kept after the copy operation. Five tracks are
allocated for the data set on a 3350 volume. Two blocks are
allocated for directory entries.

. INOUTS DD defines a partitioned data set (DATASET5), that
resides on a 3350 volume and contains two members (A and ().

. SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

. SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

U SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement.

. COPY indicates the start of the copy operation. The absence
of a SELECT or EXCLUDE statement causes a default to a full
copy. The QUTDD parameter specifies INOUT4 as the DD
statement for the output data set (DATASET4); the INDD
parameter specifies INQUTS as the DD statement for the input
data set. After the copy operation is finished, the output
data set (DATASET4) will contain the same members that are
on the input data set (DATASET5); however, there will be no
embedded, unused space on DATASET4.

The temporary spill data sets may or may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

In this example, members are copied from three input partitioned
data sets (DATASET1, DATASETS5, and DATASET6) to an existing
output partitioned data set (DATASET2). The sequence in which
the control statements occur controls the manner and sequence in
which partitioned data sets are processed. Figure 24 on page 64
shows the input and output data sets before and after
processing.

IEBCOPY Program 63

Input
DATASETS

input
Input SET1 DATASETS

Directory
BCD

Directory
AC

Qutput
DATASET2

Director Directory Directory
CEv ABCDEF ABCDEF

Before After After After
©o| processing processing processing
opglyolion DATASET1 DATASET6 DATASETS

Figure 24. Copying from Three Input Partitioned Data Sets

//COPY JOB .o

//JOBSTEP EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=A

//INOUTL DD DSNAME=DATASET1,UNIT=3330,V0L=SER=111112,

res DISP=SHR
/7INOUTS DD DSNAME=DATASET5,UNIT=3350,VOL=SER=11111¢4,
/7 DISP=0LD

//7INOUT2 DD DSNAME=DATASET2,UNIT=3350,V0L=SER=111115,
/77 DISP=(OLD,KEEP)
//INOUTS DD DSNAME=DATASET6,UNIT=3350,V0L=SER=111117,
Vs DISP=(OLD,DELETE)
/75YSUT3 DD UNIT=SYSDA,SPACE=(TRK, (1))
/7/75YS5UT4 DD UNIT=SYSDA,SPACE=(TRK,(1})
//SYSIN DD *
COPYOPER COPY QUTDD=INOUT2
INDD=INOUT1
INDD=INOUT6
INDD=INOUTS
/%

64 MVS/370 Utilities

IEBCOPY EXAMPLE 3

The control statements are discussed below:

. INOUT1 DD defines a partitioned data set (DATASET1). This
data set, which resides on a 3330 volume, contains three
members (A, B, and F) in fixed format with a logical record
length of 80 bytes and a block size of 80 bytes.

. INOUT5 DD defines a partitioned data set (DATASET5), which
resides on a 3350 volume. This data set contains two
members (A and C) in fixed blocked format with a logical
raecord length of 80 bytes and a block size of 160 bytes.

. INOUT2 DD defines a partitioned data set (DATASET2), which
resides on a 3350 volume. This data set contains tuwo
members (C and E) in fixed blocked format. The members have
a iogical record length of 80 bytes and a block size of 240
bytes.

. INOUT6 DD defines a partitioned data set (DATASET6), which
resides on a 3350 volume. This data set contains three
members (B, C, and D) in fixed-block format with a logical
record length of 80 bytes and a block size of 400 bytes.
This data set is to be deleted when processing is completed.

. SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

] SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

. SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement and
three INDD statements.

. COPY indicates the start of the copy operation. The absence
of a SELECT or EXCLUDE statement causes a default to a full
copy. The OUTDD parameter specifies INOUT2 as the DD
statement for the output data set (DATASET2).

. The first INDD statement specifies INOUT1 as the DD
statement for the first input data set (DATASETL1) to be
processed. All members (A, B, and F) are copied to the
output data set (DATASET2).

U The second INDD statement specifies INOUT6 as the DD
statement for the second input data set (DATASETS) to be
processed. Processing occurs, as follows: (1) members B and
C, which already exist on DATASET2, are not copied to the
output data set (DATASET2), (2) member D is copied to the
output data set (DATASET2), and (3) all members on DATASET6
are lost when the data set is deleted.

] The third INDD statement specifies INOUT5 as the DD
statement for the third input data set (DATASETS5) to be
processed. No members are copied to the output data set
(DATASET2) because all of them exist on DATASET2.

The temporary spill data sets may or may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

In this example, members are copied from an input partitioned
data set (DATASET6) to an existing output partitioned data set
(DATASET2). In addition, all copied members replace identically
named members on the output partitioned data set.

Figure 25 on page 66 shows the input and output data sets before
and after processing.

IEBCOPY Program 65

input
DATASETS

Output
DATASET2

Before

copy
operation

C not pointed
at after
processing

After
processing
DATASETE

-

Figure 25. Copy Operation with "Replace™ Specified on the Data
Set Level

The example follows:

77COPY
77JOBSTEP
77SYSPRINT
77INOUT2
/77
77INOUT6
7/
775YSUT3
775YSUT4
77SYSIN
COPYOPER

7/ %

JOB
EXEC
DD

e s o0

PGM=IEBCOPY

SYSOUT=A -
DSNAME=DATASET2,UNIT=3330-1,Y0L=SER=111113,
DISP=0LD
DSNAME=DATASET6,UNIT=3350,VOL=SER=111117,
DISP=(OLD,KEEP)

UNIT=SYSDA,SPACE=(TRK, (1))
UNIT=SYSDA,SPACE=(TRK, (1))

%
QUTDD=INOUT2
INDD=CCINOUT6,R))

66 MVS/370 Utilities

IEBCOPY EXAMPLE %

The control statements are discussed below:

. INOUT2 DD defines a partitioned data set (DATASET2), uwhich
resides on a 3330~1 volume. This data set contains two
members (C and E).

. INQUT6 DD defines a partitioned data set (DATASET6), which
resides on a 3350 volume. This data set contains three
members (B, C, and D).

. SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

. SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

. SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement and an
INDD statement.

. COPY indicates the start of the copy operation. The absence
of a SELECT or EXCLUDE statement causes a default to a full
copy. The OUTDD parameter specifies INOUT2 as the DD
statement for the output data set (DATASET2).

. INDD specifies INOUT6 as the DD statement for the input data
set (DATASET6). Members B, C, and D are copied to the
output data set (DATASET2). The pointer in the output data
set directory is changed to point to the new (copied) member
C; thus, the space occupied by the old member C is embedded
unused space. Member C is copied even though the output
data set already contains a member named "C" because the
replace option is specified for all identically named
members on the input data set; that is, the replace option
is specified on the data set level.

The temporary spill data sets may or may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

In this example, five members (A, C, D, E, and G) are selected
from two input partitioned data sets (DATASETS and DATASET2)
copied to a new output partitioned data set (DATASET4).

Figure 26 on page 68 shows the input and output data sets before
and after processing.

//COPY JOB ceve
/7/JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//7INOUT2 DD DSNAME=DATASET2,UNIT=3330,V0L=SER=11111%,
77 DISP=(OLD,DELETE)
//INOUTE DD DSNAME=DATASET6,UNIT=3350,V0L=SER=111117,
s DISP=(0OLD,KEEP)
/7/INOUTS DD DSNAME=DATASET4,UNIT=3350,V0L=SER=111116,
/77 DISP=(NEW,KEEP),SPACE=(TRK,(5,,2)),
77 DCB=(RECFM=VB,LRECL=96,BLKSIZE=300)
/77SYSUT3 DD UNIT=SYSDA,SPACE=(TRK, (1))
/7/75YSUT4 DD UNIT=SYSDA,SPACE=(TRK, (1))
//7S5YSIN DD *
COPYOPER copPY OUTDD=INOUT4

INDD=INOUTS

INDD=INQUTZ2

SELECT MEMBER=(C,D,E,A,G)

/%

IEBCOPY Program 67

Output

DATASET4

Input
DATASET 2

Input
DATASET6

Directory

CE

Dis
first

Before
copy

operation

Directory Directory

After
processing
DATASET2

After
processing
DATASET6

Figure 26. Cdpying Selected Members with Reblocking and

Deblocking

The

68 MVS/370 Utilities

control statements are discussed below:

INOUT2 DD defines a partitioned data set (DATASET2),
resides on a 3330 volume. This data set contains two
members (C AND E) in variable-blocked format with a logical
record length of 96 bytes and a block size of 500 bytes.
This data set is to be deleted when processing is completed.

INOUTS6 DD defines a partitioned data set (DATASET6), which
resides on a 3350 volume. This data set contains three

members (B, €, and D) in variable-blocked format with a
éogical record length of 96 bytes and a block size of 100
vtes.

INOUT4 DD defines a partitioned data set (DATASET4). This
data set is new and is to be kept after the copy operation.
Five tracks are allocated for the data set on a 3350 volume.
Two blocks are allocated for directory entries. In
addition, records are to be copied to this data set in
variable blocked format with a logical record length of 96
bytes and a block size of 300 bytes.

SYSUT3 DD defines a temporary spill data set.
allocated on a disk volume.

which

One track is

IEBCOPY EXAMPLE 5

. SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

. SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement, two
INDD statements, and a SELECT statement.

. COPY indicates the start of the copy operation. The use of
a SELECT statement causes a selective copy. The OUTDD
parameter specifies INQUT4 as the DD statement for the
ocutput data set (DATASET4).

. The first INDD statement specifies INOUT6 as the DD
statement for the first input data set (DATASET6) to be
processed. The members specified on the SELECT statement
are searched for. The found members (C and D) are copied to
the output data set (DATASET4) in the order in which they
reside on the input data set, that is, in TTR (track record)
order. In this case, member D is copied first, and then
member C is copied.

. The second INDD statement specifies INOUT2 as the DD
statement for the second input data set (DATASET2) to be
processed. The members specified on the SELECT statement
and not found on the first input data set are searched for.
The found member (E) is copied onto the output data set
(DATASET4). All members on DATASET2 are lost when the data
set is deleted.

. SELECT specifies the members to be selected from the input
data sets (DATASET6 and DATASET2) to be copied to the output
data set (DATASET4).

The temporary spill data sets may or may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

In this example, two members (A and B) are selected from two
input partitioned data sets (DATASETS5 and DATASET6) copied to an
existing output partitioned data set (DATASET1). Member B
replaces an Identically named member that already exists on the
output data set. Figure 27 on page 70 shouws the input and
output data sets before and after processing.

7/7COPY JOB ceen
/77JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
/7INOUT1L DD DSNAME=DATASET1,UNIT=3330,V0L=SER=111112,
77 DISP=(OLD,KEEP)
/7/INOUTS DD DSNAME=DATASET6,UNIT=3350,V0L=SER=111115,
/77 DISP=0LD
/7/INOUTS DD DSNAME=DATASET5,UNIT=3330,V0L=SER=111116,
/7 DISP=(OLD,KEEP)
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK, (1))
/7/78YSUT4 DD UNIT=SYSDA,SPACE=(TRK, (1))
//SYSIN DD *
COPYOPER coPY OUTDD=INOUT1
INDD=INOUT5, INOUTS

R SELECT MEMBER=((B,,R),A)

7 %

IEBCOPY Program 69

70

F

Input
DATASETS

Input

Directory
A C DATASET6
v Directory
8CD

Member Member

Output
DATASET1

ml
not pointed at

Before After After

copy processing processing
operation DATASETS DATASET6
igure 27. Selective Copy with "Replace" Specified on

Level

the Member

MVS/370 Utilities

IEBCOPY EXAMPLE 6

The control statements are discussed below:

INOUT1 DD defines a
data set resides on
(A, B, and F).

INOUT6 DD defines a
data set resides on
(Bp C} and D).

INOUTS5 DD defines a
data set resides on
(A and C).

SYSUT3 DD defines a
allocated on a disk

SYSUT4 DD defines a
allocated on a disk

partitioned data set (DATASETLl). This
a 3330 volume and contains three members

partitioned data set (DATASET6). This
a 3350 volume and contains three members

partitioned data set (DATASET5). This
a 3330 volume and contains two members

temporary spill data set. One track is

volume.
temporary spill data set. One track is
volume.

. SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement, an
INDD statement, and a SELECT statement.

. COPY indicates the start of the copy operation. The use of
a SELECT statement causes a selective copy. The 0UTDD
parameter specifies INOUT1l as the DD statement for the
output data set (DATASETL).

. INDD specifies INQUTS5 as the DD statement for the first
input data set (DATASETS5) to be processed and INQUT6 as the
DD statement for the second input data set (DATASET6) to be
processed. Processing occurs, as follows: (1) selected
members are searched for on DATASET5, (2) member A is found,
but is not copied to the output data set because it already
exists on DATASET2 and the replace option is not specified,
(3) selected members not found on DATASETS5 are searched for
on DATASET6, and (4) member B is found and copied to the
output data set (DATASET1), even though a member named B
already exists on the output data set, because the replace
option is specified for member B on the member level. The
pointer in the output data set directory is changed to point
to the new (copied) member B; thus, the space occupied by
the old member B is unused.

. SELECT specifies the members to be selected from the input
data sets (DATASET5 and DATASET6) to be copied to the output
data set (DATASETL).

The temporary spill data sets may or may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

In this example, two members (A and B) are selected from two
input partitioned data sets (DATASETS5 and DATASET6) copied to an
existing output partitioned data set (DATASET1). All members
found on DATASETS5 replace identically named members on DATASETL.
Figure 28 on page 72 shouws the input and output data sets before
and after processing. i

IEBCOPY Program 71

Input

DATASETS DATASET6
Directory Directory
AC BCD
Member

Output
DATASET1

Directory
ABF

Directory
ABF

Directory
ABF

Member
F

1 Old member
A not
pointed at

Before copy After processing After processing
operation DATASETS DATASET6

Figure 28. Selective Copy with "Replace" Specified on the Data
Set Level

72 MVS/370 Utilities

7/7COPY
//JOBSTEP
7/SYSPRINT
/7/INOUTL
44
/7/71INOUTS
/7
7/INOUT6
/77
//SYSUT3
//75YSUT4
//SYSIN
COPYOPER

/%

JOB coss
EXEC PGM=IEBCOPY

DD SYSOUT=A

DD DSNAME=DATASET1,UNIT=3350,V0L=SER=111112,
DISP=(OLD,KEEP)

DD DSNAME=DATASET5,UNIT=3330,V0L=SER=111114,
DISP=(OLD,DELETE)

DD DSNAME=DATASET6,UNIT=2305-2,VOL=SER=111115
DISP=(OLD,KEEP)

DD UNIT=SYSDA,SPACE=(TRK, (1))

gg UNIT=SYSDA,SPACE=(TRK, (1))
3

COPY OUTDD=INOUT1
INDD=((INOQUT5,R), INOUTS)
SELECT MEMBER=(A,B)

The control statements are discussed below:

INOUT1 DD defines a partitioned data set (DATASET1). This

data set

resides on a 3350 volume and contains three members

(A, B, and F).

INOUTS DD defines a partitioned data set (DATASETS5). This
data set contains two members (A and C) and resides on a
3330 volume. This data set is to be deleted when processing
is completed.

INOUT6 DD defines a partitioned data set (DATASET6). This
data set contains three members (B, C, and D) and resides on
a 2305-2 volume.

SYSUT3 DD aefines a temporary spill data set. One track is
allocated on a disk volume.

SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement, an
INDD statement, and a SELECT statement.

COPY indicates the start of the copy operation. The
presence of a SELECT statement causes a selective copy. The
QUTDD operand specifies INQUTLl as the DD statement for the
output data set (DATASET1).

INDD specifies INOUT5 as the DD statement for the first
input data set (DATASET5) to be processed and INOUT6 as the
statement for the second input data set (DATASET6) to be
processed. Processing occurs, as follows: (1) selected
members are searched for on DATASETS5, (2) member A is found
and copied to the output data set (DATASET1) because the
replace option was specified on the data set level for

DATASETS,

(3) member B, which was not found on DATASETS is

searched for and found on DATASET6, (4) member B is not
copied because DATASET] already contains a member called
member B and the replace option is not specified for

DATASETS.

The pointer in the output data set directory is

changed to point to the new (copied) member A; thus, the
space occupied by the old member A is unused.

SELECT specifies the members to be selected from the input
data sets (DATASET5 and DATASET6) to be copied to the output
data set (DATASET1).

IEBCOPY Program 73

The temporary spill data sets may or may not be opened,
depending on the amount of virtual storage available; therefore,
thg SISUT3 and SYSUT4 DD statements should always appear in the
job stream.

IEBCOPY EXAMPLE 7

In this example, four members (A, B, C, and D) are selected from
an input partitioned data set (DATASET6) copied to an existing
output partitioned data set (DATASET3). Member B is renamed H;
member C is renamed J; and member D is renamed K. In addition,
member € (renamed J) replaces the identically named member (J)
on the output partitioned data set. Figure 29 shows the input
and output data sets before and after processing.

Input
DATASET6
Directory
BCD
opied;
ntically
ber (J)
opied;
Output
DATASET3 .
__/
. Directory
Directory
DGHJ DGHJ
K
Member Member
N—D N——D

Member J replaced by
renamed Member J

Before copy After processing
operation DATASET6

Figure 29. Renaming Selected Members Using IEBCOPY

74 MVS/370 Utilities

/77COPY JOB vo e
//JOBSTEP EXEC PGM=IEBCOPY

/7SYSPRINT DD SYSQUT=A
7/INOUT3 DD DSNAME=DATASET3,UNIT=disk,VOL=SER=111114,
v7 DISP=(OLD,KEEP) .

/7INOUT6 DD DSNAME=DATASET6,UNIT=disk,VOL=SER=111117,
’’ DISP=(OLD,DELETE)

//5YSUT3 DD UNIT=SYSDA,SPACE=(TRK, (1))

//758YSUT4 DD UNIT=SYSDA,SPACE=(TRK, (1))

//SYSIN DD *

COPYOPER CoPY OUTDD=INOUT3, INDD=INOUT6
SELECT MEMBER=((B,H),(C,J,R),A,(D,K))
/¥

The control statements are discussed below:

U] INOUT3 DD defines a partitioned data set (DATASET3). This
data set contains four members (D, G, H, and J) and resides
on a disk volume.

. INCUTS6 DD defines a partitioned data set (DATASET6). This
data set contains three members (B, C, and D) and resides on
a disk volume. DATASET6 is to be deleted when processing is
completed; thus, all members on this data set are lost.

. SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

. SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

J SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement, an
INDD statement, and a SELECT statement.

. COPY indicates the start of the copy operation. The
presence of a SELECT statement causes a selective copy. The
QUTDD parameter specifies INOUT3 as the DD statement for the
output data set (DATASET3I).

. INDD specifies INOUT6 as the DD statement for the input data
set (DATASET6). Processing occurs, as follows:

1. Selected members are searched for on DATASETG.

2. Member B is found, but is not copied to DATASET3 because
its intended new name (H) is identical to the name of a
member (H), which already exists on the output data set,
and replace is not specified.

3. Member C is found and copied to the output data set
(DATASET3), although its new name (J) is identical to
the name of a member (J), which already exists on the
output data set, because the replace option is specified
for the renamed member.

4. Member D is copied onto the output data set (DATASET3)
because its new name (K) does not already exist there.

L SELECT specifies the members to be selected from the input
data set (DATASET6) to be copied to the output data set
(DATASET3).

The temporary spill data sets may or may not be opened,
depending on the amount of virtual storage available;
therefore, the SYSUT3 and SYSUT4 DD statements should aluways
appear in the job stream.

IEBCOPY Program 75

IEBCOPY EXAMPLE 8

In this example, five members (A, B, €, J, and L) are excluded
from the copy operation when each of the input partitioned data
sets (DATASET1, DATASET3, and DATASET6) is processed. In
addition, replace is specified for the last input partitioned
data set (DATASET6) to be processed; thus, with the exception of
the members specified on the EXCLUDE statement, all members on
DATASET6 will replace any identically named members on the
output partitioned data set (DATASET4). Figure 30 on page 77
shows the input and output data sets before and after
processing.

//COPY JOB ceee
7/JOBSTEP EXEC PGM=IEBCOPY
//3YSPRINT DD SYSOUT=A .
//INOUT1 DD DSNAME=DATASET1,UNIT=disk,VOL=SER=111112,
77/ DISP=(OLD,KEEF) .
//INOUT3 DD DSNAME=DATASET3,UNIT=disk,VOL=SER=111114,
7/ DISP=0LD
//INOUTS DD DSNAME=DATASET4,UNIT=disk,VOL=SER=111115,
7/ DISP=(NEW,KEEP),SPACE=(TRK,(3,1,2)),
7/ DCB=(LRECL=100,RECFM=FB,BLKSIZE=400)
//INOUTS DD DSNAME=DATASET6,UNIT=disk,VOL=SER=111116,
77/ DISP=0LD
/7/5YSUT3 DD UNIT=SYSDA,SPACE=(TRK, (1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK, (1))
//SYSIN DD ¥
COPYOPER COPY QUTDD=INOUTS,
INDD=INOUTL, INOUT3, {INOUT6,R)
EXCLUDE MEMBER=(A,J,B,L,C)
/%

The control statements are discussed below:

. INOUT1 DD defines a partitioned data set (DATASET1). This
data set contains three members (A, B, and F) and resides on
a disk volume. The record format is fixed-blocked with a
éogical record length of 100 bytes and a block size of 400
vtes.

[INOUT3 DD defines a partitioned data set (DATASET3), uwhich
resides on a disk volume. This data set contains four
members (D, G, H, and J) in fixed-blocked format with a
logical record length of 100 bytes and @ block size of 600
bytes.

. INOUTS DD defines a new partitioned data set (DATASETS).
Three tracks are allocated for the copied members on a disk
volume. Two blocks are allocated for directory entries. In
addition, records are to be copied to this data set in
fixed-blocked format with a logical record length of 100
bytes and a block size of 400 bytes.

. INOQUT6 DD defines a partitioned data set (DATASET6). This
data set contains three members (B, €, and D) in fixed
format. The records have a logical record length of 100
bytes and a block size of 100 bytes. This data set resides
on a disk volume.

. SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

. SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

. SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement and an
EXCLUDE statement.

76 MV5/370 Utilities

tnput tnput Input
DATASET! DATASET3 DATASET6

Directory Directory Directory
ABF DGHIJ BC

Member

Output

DATASET4 member §

T —

Directory Directory Directory
F DFGH DFGH
e
Me"'\b‘"\':___/ ember F

Before After After After
copy processing processing processing
operation DATASET1 DATASET3 DATASET6

Figure 30. Exclusive Copy with "Replace" Specified for One Input
Partitioned Data Set

. COPY indicates the start of the copy operation. The
presence of an EXCLUDE statement causes an exclusive copy.
The OUTDD parameter specifies INOUT4 as the DD statement for
the output data set (DATASET4). The INDD parameter
specifies INOUT1l as the DD statement for the first input
data set (DATASET1) to be processed, INOUT3 as the DD -
statement for the second input data set (DATASET3) to be
processed, and INOUT6 as the DD statement for the last input
gat? set (DATASET6) to be processed. Processing occurs, as
ollous:

1. Member F, which is not named on the EXCLUDE statement,
is copied from DATASETIL.

2. Members D, G, and H, which are not named on the EXCLUDE
statement, are copied from DATASET3.

3. Member D is copied from DATASET6 because the replace
option is specified for nonexcluded members.

The pointer in the output data set directory is changed to
point at the new (copied) member D; thus, the space occupied
by the o0ld member D (copied from DATASET3) is unused.

U EXCLUDE specifies the members to be excluded from the copy
operation. The named members are excluded from all of the
input partitioned data sets specified in the copy operation.

The temporary spill data sets may or may not be opened,
depending on the amount of virtual storage available; therefore,
ths SISUTS and SYSUT4 DD statements should always appear in the
job stream.

IEBCOPY Program 77

IEBCOPY EXAMPLE 9

In this example, a partitioned data set is unloaded to a tape

volume to create a backup copy of the data set. If this step is

sgccessful, the partitioned data set is to be compressed in
place.

//SAVE JOB

//STEP1 EXEC PGM=IEBCOPY
7/SYSPRINT DD SYSOUT=A
/7 INPDS DD DSNAME=PARTPDS,UNIT=disk,VOL=SER=PCP001,
7/ DISP=0LD
/7/BACKUP DD DSNAME=SAVDATA,UNIT=tape,VOL=SER=TAPEO3,
/7 DISP=(NEW,KEEP),LABEL=(,SL)
7/7SYSUT3 DD DSNAME=TEMP1,UNIT=disk,VOL=SER=111111,
V4 DISP=(NEW,DELETE),SPACE=(80,(60,45))
//SYSIN DD *

COPY OUTDD=BACKUP, INDD=INPDS
/%
/7/STEP2 EXEC PGM=IEBCOPY,COND=(0,NE),
V4 PARM='SIZE=99999999K"
7/SYSPRINT DD SYSOUT=A .
//COMPDS DD DSNAME=PARTPDS,UNIT-disk,DISP=0LD,
/7 VOL=SER=PCP001
//5YSUT3 DD DSNAME=TEMPA,UNIT=disk,VOL=SER=111111,
7/ DISP=(NEW,DELETE),SPACE=(80,(60,45))
/7/7SYSUTS DD DSNAME=TEMPB,UNIT=disk,VOL=SER=111111,
7/ SPACE=(256,(15,1)),DCB=KEYLEN=8
//SYSIN DD

*
COPY OUTDD=COMPDS, INDD=COMPDS
/%

The control statements are discussed below:

. INPDS DD defines a partitioned data set (PARTPDS) that

resides on a disk volume and is assumed to have 700 members.

The number of members is used to calculate the space
allocation on SYSUT3.

. BACKUP DD defines a sequential data set to hold PARTPDS in

unloaded form. Block size information can optionally be
added; this data set must be NEUW.

. SYSUT3 DD defines the temporary spill data set.

. SYSIN DD defines the control data set, which follows in the

input stream. The data set contains a COPY statemaent.

J COPY marks the beginning of the unload operation; the

absence of an EXCLUDE or SELECT statement causes the entire

partitioned data set (INDD=INPDS) to be unlocaded to a
sequential data set (QUTDD=BACKUP).

* The second EXEC statement marks the beginning of the
compress-in-place operation. The SIZE parameter indicates
that the buffers are to be as large as possible. The COND
parameter indicates that the compress-in-place is to be
performed only if the unload operation was successful.

. COMPDS DD defines a partitioned data set (PARTPDS) that
contains 700 members and resides on a disk volume.

78 MVS/370 Utilities

SYSUT3 DD defines the temporary spill data set to be used if
there is not enough space in main storage for the input data
set's directory entries. TEMPA contains one 80-character
record for each member.

SYSUT4 DD defines the temporary spill data set to be used if
there is not enough space in main storage for the output

IEBCOPY EXAMPLE 10

partitioned data set's directory blocks. TEMPB contains one
256~character record for each directory block.

. SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement.

. COPY marks the beginning of the copy operation. The absence

of a SELECT or EXCLUDE statement causes a default to a full
copy. Because the same DD statement is specified for both
the INDD and OUTDD operands, the data set is compressed in
place.

The temporary spill data sets may or may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream. However, the SYSUT4 data set is never used for an
unload operation.

For an unload operation, only one INDD data set may be specified
for one QUTDD data set.

In this example, two input partitioned data sets (DATASET5 and
DATASET6) are copied to an existing output partitioned data set
(DATASET1). In addition, all members on DATASET6 are copied;
members on the output data set that have the same names as the
copied members are replaced. After DATASET6é is processed, the
output data set (DATASET1) is compressed in place. Figure 31 on
page 80 shows the input and output data sets before and after
processing.

/7/COPY JOB cens

//JOBSTEP EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=A

/7INOUTL DD DSNAME=DATASET1,UNIT=3330,VOL=SER=111112,

V4 DISP=(OLD,KEEP)

/7INOUTS DD DSNAME=DATASET5,UNIT=3350,V0L=SER=111114,
7/ DISP=0LD

/7INCUT6 DD DSNAME=DATASET6,UNIT=3350,V0L=SER=111115,
/7 DISP=(OLD,KEEP)

//8YSUT3 DD UNIT=SYSDA,SPACE=(TRK, (1))
//5YSUT4 DD UNIT=SYSDA,SPACE=(TRK, (1))
/7/5YSIN DD *
COPYOPER COPY OUTDD=INOUTI1

INDD=INOUT5, C(INOUT6,R), INOUTL
/¥

The control statements are discussed belowu:

. INOUT1 DD defines a partitioned data set (DATASET1). This
data set contains three members (A, B, and F) and resides on
a 3330 volume.

. INOUT5 DD defines a partitioned data set (DATASET5). This
data set contains two members (A and C) and resides on a
3350 volume.

U INOUT6 DD defines a partitioned data set (DATASET6). This
data set contains three members (B, C, and D) and resides on
a 3350 volume.

. SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

L SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

IEBCOPY Program 79

input

DATASETS

Directory
AC

DATASET6

Directory
BCD

Members
B

DATASET1

-

Directory
ABCDF

Members
N—F
A

Output
DATASET1

Directory
A BF

Members

Before copy
operation

Figure 31.

<
MN—]

Directory
ABCF
v
Members
F

A

After processing
DATASETS

-

Directory
ABCDF

Members
F

A

After processing
DATASET6

Directory
ABCDF

Members

After
compressing
in place

Compress~in-Place Following Full Copy with "Replace"”
Specified

MVS/370 Utilities

IEBCOPY EXAMPLE 11

. SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement and an
INDD statement.

. COPY indicates the start of the copy operation. The 0OUTDD
operand specifies INOUT1 as the DD statement for the output
data set (DATASET1). The absence of a SELECT or EXCLUDE
statement causes a default to a full copy.

L INDD specifies INOUTS5 as the DD statement for the first
input data set (DATASETS) to be processed. It then
specifies INQUT6 as the DD statement for the second input
data set (DATASET6) to be processed; in addition, the
replace option is specified for all members copied from
DATASET6. Finally, it specifies INOUT1 as the DD statement
for the last input data set (DATASET1) to be processed; this
causes a compress-in-place of DATASET1 because it is also
specified as the output data set. Processing occurs, as
follows:

1. Member A is not copied from DATASETS5 onto the output
data set (DATASET1) because it already exists on
DATASET1 and the replace option was not specified for
DATASETS.

2. Member C is copied from DATASET5 to the output data set
(DATASET1), occupying the first available space.

3. All members are copied from DATASET6 to the output data
set (DATASET1), immediately following the last member.
Members B and C are copied even though the output data
sat already contains members with the same names because
the replace option is specified on the data set level.

The pointers in the output data set directory are changed to
point to the new members B and C; thus, the space occupied
by the old members B and C is unused. The members currently
on DATASET]1 are compressed in place, thereby eliminating
embedded unused space.

The temporary spill data sets may or may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

In this example, members are selacted, excluded, and copied from
input partitioned data sets onto an output partitioned data set.
This example is designed to illustrate multiple copy operations.
Figure 32 on page 82 shows the input and output data sets before
and after processing.

IEBCOPY Program 81

Compress-in-Pilace Operation

DATASETA

Directory
MA MB MC MD
ME MF MG

Member
M

DATASETB

Directory
MA MJ

Output
DATASETA

Directory
- MA MB MC MD
ME MF MG

Member

Before copy
operation

Figure 32 (Part 1 of 2).

Directory
MA MB MC MD
ME MF MG

Member
:_MA

N VB
N MC
N MO
N ME
N MF

MG

After compressing
in place

Directory

MA MB MC MD
ME MF MG

MJ

Member
MA

~_ Y8
N ¢
N VD
N ME
Ne—_MF
NG

M

After processing
DATASETB

Multiple Copy Operations/Copy Steps

82 MVS/370 Utilities

Multipte Copy Steps

DATASETD DATASETC DATASETE
Directory Directory Directory
MM MP MF ML MM MN MD ME MF MT
Member Member
~——MD

>

Directory
MA MB MC MD
ME MF MG
MJ

Member

N MA
"
M
DL
N ME
Y
M

MJ

-

Directory
MA MB MC MD
ME MF MG
MJ MP

Member
MA

M
N MC
~__ M0
N~ ME A
~_ M
~_ "
~— "

Directory

MA MB MC MD
ME MF MG

MJ MP

Member

N MA
e

mMC

Directory
MA MB MC MD
ME MF MG
MJ MP MT

Member
MA

N~ B

MC

N~
N~ MF
N~V
N~
"
~_M0

After processing
DATASETC

After processing
DATASETE

Before copy After processing
operation DATASETD

Figure 32 (Part 2 of 2). Multiple Copy Operations/Copy Steps

IEBCOPY Program 83

//COPY
//7JOBSTEP
//SYSPRINT
//INOUTA
/7
//INCUTB
44
/7/INGUTC
/77
//INCUTD
7/
//7INOUTE
/7
/7INOUTX
Va4
//SYSUT3
/7/75YSUT4
//S5YSIN
COPERST1

/¥

JOB
EXEC
DD

EXCLUDE
SELECT

PGM=IEBCOPY
SYSOUT=A

DSNAME=DATASETA,UNIT=disk,VOL=SER=111113,

DISP=0LD

DSNAME=DATASETB,UNIT=disk,VOL=SER=111115,

DISP=(OLD,KEEP)

DSNAME=DATASETC,UNIT=diSk;VOL=SER=111114,

DISP=(OLD,KEEP)

DSNAME=DATASETD,UNIT=disk,VOL=SER=111116,

DISP=0LD

DSNAME=DATASETE,UNIT=disk,VOL=SER=111117,

DISP=0LD

DSNAME=DATASETX,UNIT=disk,VOL=SER=111112,
DISP=(NEW,KEEP),SPACE=(TRK,(3,1,2))

UNIT=SYSDA,SPACE=(TRK, (1))
UNIT=SYSDA,SPACE=(TRK, (1))
%

0=INOUTX,I=INCUTA
QUTDD=INOUTA, INDD=INOUTA
INDD=INCUTB

O=INCUTA

INDD=INGUTD

MEMB ER=MM

INDD=INOUTC
MEMBER=((ML,MD,R))
INDD=INGUTE

84 MVS/370 Utilities

The-control statements are discussed balow:

INGUTA DD defines a partitioned data (DATASETA).

set contains seven members (MA, MB, MC, MD, ME,
and resides on a disk volume.

INOUTB DD defines a partitioned data set (DATASETB). This
data set resides on a disk volume and contains two members
(MA and MJ).

INOUTC DD defines a partitioned data set (DATASETC), that

resides on a disk volume.

members (MF, ML, MM, and MN).

This data

MF, and MG)

The data set contains four

INOUTD DD defines a partitioned data set (DATASETD). This
data set resides on a disk volume and contains two members
(MM and MP).

INOUTE DD defines a partitioned data set (DATASETE). This
data set contains four members (MD, ME, MF, and MT) and
resides on a disk volume.

INOQUTX DD defines a partitioned data set (DAfASETX). This
data set .is new and is to be kept after the copy operation.
Three tracks are allocated for the data set on a disk

volume.

Two blocks

SYSUT3 DD defines a temporary spill data set.
allocated on a disk volume.

SYSUT4 DD defines a temporary spill data set.
allocated on a disk volume.

are allocated for directory entries.

One track is

One track is

SYSIN DD defines the control data set, which follows in the

input stream.

The data set contains two COPY statements,

several INDD statements, a SELECT statement, and an EXCLUDE
statement.

The first COPY statement indicates the start of the first
copy operation.

This copy operation is done to create a

IEBCOPY EXAMPLE 12

backup copy of DATASETA, which is compraessed in place in the
second copy operation.

The second COPY statement indicates the start of another
copy operation. The absence of a SELECT or EXCLUDE
statement causes a default to a full copy; however, the same
DD statement, INQUTA, is specified for both the INDD and
QUTDD parameters, causing a compress—in-place of the
spacified data set.

The output data set is compressed in place first to save
space because it is known that it contains embedded, unused
space.

INDD specifies INOUTB as the DD statement for the input data
set (DATASETB) to be copied. Only member MJ is copied
because member MA already exists on the output data set.

The third COPY statement indicates the start of the third
copy operation. The OUTDD parameter specifies INOUTA as the
DD statement for the output data set (DATASETA). This copy
operation contains more than one copy step.

The first INDD statement specifies INOUTD as the DD
statement for the first input data set (DATASETD) to be
processed. Only member MP is copied to the output data set
(DATASETA) because member MM is specified on the EXCLUDE
statement. EXCLUDE specifies the member to be excluded from
the first copy step within this copy operation.

The second INDD statement marks the beginning of tha second
copy step for this copy operation and specifies INOUTC as
the DD statement for the second input data set (DATASETC) to
be processed. Member ML is searched for, found, and copied
to the output data set (DATASETA). Member ML is copied even
though its new name (MD) is identical to the name of a
member (MD) that already exists on the output data set,
because the replace option is specified for the renamed
member.,

SELECT specifies the member to be selected from the input
gata set (DATASETC) to be copied to the output partitioned
ata set.

The third INDD statement marks the beginning of the third
copy step for this copy operation and specifies INOUTE as
the DD statement for the last data set (DATASETE) to be
copied. Only member MT is copied because the other members
already exist on the output data set. Because the INDD
statement is not followed by an EXCLUDE or SELECT statement,
a full copy is performed.

The temporary spill data sets may or may not be opened,
depending on the amount of virtual storage available; therefore,
it is suggested that the SYSUT3 and SYSUT4 DD statements always
appear in the job stream.

The output data set is compressed in place first to save space
because it is known that it contains embedded, unused space.

In this example, members are selected, excluded, and copied from
input partitioned data sets to an output partitioned data set.
This example is designed to illustrate multiple copy operations.
Figure 33 on page 86 shows the input and output data sets before
and after processing.

IEBCOPY Program 85

First copy operstion

Input Input
DATASETE DATASETC

Directory Directory
'LMJL/ MF ML MM MN
Member MA

Qutput
DATASETA

Directory ' Directory Directory
MA M8 MD MA M8 MD MJ mrm.a MD M

2

‘m& MA

M
MO
M A
e MF A

Mtu_—/ Member MA A

Before After Atter
copy processing pvocemngr
operation DATASETE DATASETC

Figure 33 (Part 1 of 3). Multiple Copy Operations/Copy Steps
within a Job Step

MVS/3708 Utilities

Second copy operation

Input
DATASETD

Directory
MM MP

Member

Input
DATASETC

rectory
MF ML MM MN

Input
DATASETS

-

Directory
MA MF MJ ML
MM MN MP

Member MA ' A

LY

Output
DATASETB

Owectory Directory

MA MJ MM MP

Member MA

Member MA A

Before After
copy processing
operation DATASETD

>

Directory
MA MF MJ ML
MM MN MP

Member MA

——]

After
processing
DATASETC

-

Directory
MA MF MJ ML
MM MN MP

Memr MA A
M
M
N M
ML A
MV

After
compressing
in place

Figure 33 (Part 2 of 3). Multiple Copy Operations/Copy Steps

within a Job Step

IEBCOPY Program 87

Third copy operation

Input
DATASETB

>

Directory
MA MF MJ ML
MM MN mMP

Member
MA
"
~_ "

ST

Output
DATASETD

Directory
MM MP

Directory
MM MP

Oid
member

Before copy After processing
operation DATASETB

Figure 33 (Part 3 of 3). Multiple Copy Operations/Copy Steps
within a Job Step

88 MVS/370 Utilities

/7/7COPY JOB

s7/7JOBSTEP EXEC PGM=1EBCOPY
//7SYSPRINT DD SYSOUT=A
//7INCUTA DD DSNAME=DATASETA,UNIT=disk,VOL=SER=111113,
77 DISP=0LD
/77INCUTB DD DSNAME=DATASETB,VOL=SER=111115,UNIT=disk,
7/ DISP=(0OLD,KEEP)
/77INCUTC DD DSNAME=DATASETC,VOL=SER=111114,UNIT=disk,
/77 DISP=(OLD,KEEP)
/77INOUTD DD DSNAME=DATASETD,VOL=SER=111116,DISP=0LD,
/77 UNIT=disk
/7INOUTE DD DSNAME=DATASETE,VOL=SER=111117,DISP=0LD,
77 UNIT=disk
/7/7SYSUT3 DD UNIT=SYSDA,SPACE=(TRK, (1))
/7/75YSUTS DD UNIT=SYSDA,SPACE=(TRK, (1))
/7/75YSIN DD *

COPY OUTDD=INOUTA

INDD=INOUTE
SELECT MEMBER=(MA,MJ)

INDD=INQUTC
EXCLUDE MEMBER=(MM,MN)

COPY O=INOUTB, INDD=INOUTD
I=CCINOUTC,R),INCUTB)
coPY 0=INOUTD,I=((INOUTB,R)})

SELECT MEMBER=MM
/%

The control statements are discussed below:

. INOUTA DD defines a partitioned data set (DATASETA). This
data set contains three members (MA, MB, and MD) and resides
on a disk volume.

. INOUTB DD defines a partitioned data set (DATASETB). This
data set resides on a disk volume and contains two members
(MA and MJ).

. INOUTC DD defines a partitioned data set (DATASETC), that
resides on a disk volume. This data set contains four
members (MF, ML, MM, and MN).

] INOUTD DD defines a partitioned data set (DATASETD). This
data set resides on a disk volume and contains two members
(MM and MP).

. INOUTE DD defines a partitioned data set (DATASETE), that
resides on a disk volume. This data set contains three
members (MA, MJ and MK).

. SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

L SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

. SYSIN DD defines the control data set, which follows in the
input stream. The data set contains three COPY statements,
two SELECT statements, one EXCLUDE statement, and several
INDD statements.

L The first COPY statement indicates the start of a copy

operation. The OUTDD operand specifies INOUTA as the DD
statement for the output data set (DATASETA).

IEBCOPY Program 89

90

The first INDD statement sbecifies INCQUTE as the DD
statement for the first input data set (DATASETE} to be
processed. Processing occurs, as follows:

1. Member MA is searched for and found, but is not copied
because the replace option is not specified.

2. Member MJ is searched for, found, and copied to the
output data set. Members are not searched for again
after they are found.

SELECT specifies the members (MA and MJ) to be selected from
the input data set (DATASETE) to be copied.

The second INDD statement marks the end of the first copy
step and the beginning of the second copy step within the
first copy operation. It specifies INOUTC as the DD
statement for the second input data set (DATASETC) to be
processed. Members MF and ML, which are not named on the
EXCLUDE statement, are copied because neither exists on the
output data set. EXCLUDE specifies the members (MM and MN)
to be excluded from the second copy operation.

The second COPY statement indicates the start of another
copy operation. The absence of a SELECT or EXCLUDE
statement causes a default to a full copy. The 0 (OUTDD)
parameter specifies INOUTB as the output data set
(DATASETB). The INDD parameter specifies INOUTD as the
first input data set (DATASETD) to be processed. Members MP
and MM are copied to the output data set.

INDD(I) specifies INOUTC as the DD statement for the second
input data set (DATASETC) and INOUTB as the DD statement for
the third input data set (DATASETB) to be processed.

Members MF, ML, MM, and MN are copied from DATASETC. Member
MM is copied, although it already exists on the output
partitioned data sets, because the replace option is
specified. (The pointer in the output data set directory is
changed to point to the new (copied) member MM; thus the
space occupied by the replaced member MM is embedded, unused
space.) Because DATASETB is also the data set specified in
the OUTDD parameter, a compress-in-place takes place, and
thus the embedded, unused space is removed.

The third COPY statement indicates the start of another copy
operation. The 0 (QUTDD) parameter specifies INOUTD as the
DD statement for the output data set (DATASETD). The I
(INDD)} parameter specifies INOUTB as the DD statement for
the input data set (DATASETB).

SELECT specifies the member (MM) to be selected from the
input partitioned data set (DATASETB) to be copied. The
replace option is specified on the data set level.

The temporary spill data sets may or may not be opened,
depending on the amount of virtual storage available; therefore,
the SISUTS and SYSUT4 DD statements should always appear in the
job stream.

MVS/370 Utilities

IEBCOPY EXAMPLE 13

In this example, a partitioned data set (SYS1.LINKLIB) is
unloaded to a tape volume.

//UNLOAD JOB

//STEPL EXEC PGM=IEBCOPY,PARM="'SIZE=100K'
//SYSPRINT DD SYSOUT=A)
/7/INPDS DD DSNAME=SYS1.LINKLIB,UNIT=disk,DISP=SHR,
77 VOL=SER=666666
/7/0UTTAPE DD DSNAME=LINKLIB,UNIT=tape,VOL=SER=TAPEGO,
7/ LABEL=(,SL),DISP=(NEW,KEEP)
/7/5YSUT3 DD DSNAME=TEMP1,UNIT=disk, VOL=SER=111111,
/77 DISP=(NEW,DELETE),SPACE=(80,(60,45))
//SYSIN DD *

COPY OUTDD=CUTTAPE

INDD=INPDS

/%

The control statements are discussed below:

. EXEC specifies the execution of IEBCOPY. The PARM parameter
sgecifies the size of the input/output buffer to be used
(100K).

. INPDS DD defines a partitioned data set (SYS1.LINKLIB),
which resides on a disk volume. This data set is assumed to
have 700 members; the number of members is used to calculate
the space allocation for SYSUT3.

. OUTTAPE DD defines a sequential data set to which
SYS1.LINKLIB is to be unloaded. The unloaded data set is
named LINKLIB. If a tape volume is used, it can be IBM
standard labeled or unlabeled.

. SYSUT3 DD defines a temporary spill data set on a disk
volume. This data set is used if there is not enough space
in virtual storage for the input partitioned data set's
directory entries. This data set may or may not be opened
depending on the amount of virtual storage available;
therefore, it is suggested that the statement always appear
in the job stream.

. SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY and INDD
statement.

. COPY indicates the start of an unload operation because the
QUTDD parameter refers to QUTTAPE DD, which specifies a
sequential output data set. Because no EXCLUDE or SELECT
statement is specified, the entire data set is unloaded.

. INDD refers to INPDS DD, which defines the input partitioned
data set to be unloaded. Note that for an unload operation,
only one INDD data set may be specified for each OUTDD data
set.

The SYSUT4 data set is never used for an unload operation. The
SYSUT3 data set for an unload operation is used under the same
conditions as it is used for a copy operation.

If too much space is allocated with the SIZE option of the PARM

parameter on the EXEC statement, the paging process slows down
because the buffer areas are fixed.

IEBCOPY Program 91

IEBCOPY EXAMPLE 14

IEBCOPY EXAMPLE 15

In this example, a sequential data set created by an IEBCOPY
unload operation is loaded.

/7/L0AD JOB

//STEPA EXEC PGM=IEBCOPY,PARM='SIZE=65536"
//SYSPRINT DD SYSOUT=A

//7SEQIN DD DSNAME=UNLOADSET,UNIT=tape, LABEL=(,SL)},

7/ VOL=SER=TAPEO01,DISP=0LD

/7INCUTS DB DSNAME=DATASET4,UNIT=disk,VOL=SER=2222222,
77 DISP=(NEW,KEEP),SPACE=(CYL,(10,5,10))
/7/75YSUT3 DD DSN=TEMP1,UNIT=disk, VOL=SER=111111,

7/ DISP=(NEW,DELETE),SPACE=(80,(15,1))

7/7SYSIN DD *
COPY OUTDD=INOUT4, INDD=SEQIN
/%

The control statements are discussed below:

. EXEC specifies the execution of IEBCOPY. The PARM parameter
allocates 2 tracks on a disk volume. If less space is
specified, 2 tracks are allocated because 2 tracks are the
minimum required by IEBCOPY when the unloaded data set's
block size does not exceed the track capacity.

] SEQIN DD defines a sequential data set that was previously
unloaded by IEBCOPY. The data set contains 28 members in
sequential organization.

. INOUT4 DD defines a partitioned data set on a disk volume.
This data set is to be kept after the load operation. Ten
cvlinders are allocated for the data set; ten blocks are
allocated for directory entries.

. SYSUT3 DD defines a temporary spill data set on a disk
volume. This data set is used if there is not enough space
in main storage for the input data set's directory entries.
This data set may or may not be opened, depending on the
amount of main storage available; therefore, it is suggested
that the statement always appear in the job stream. The
space allocated for this data set is based on the number of
members in the input data set (in this case, 28).

. SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement.

. COPY indicates the start of a load operation because the
INDD parameter refers to SEQIN DD, which defines a
sequential data set, and OUTDD refers to INOUT4 DD, which
defines a direct access volume.

Because the output data set in this example is new, the SYSUT4
data set is not needed. SYSUT4 should be specified, however,
when the output data set is old.

In this example, members are selected, excluded, unloaded,
loaded, and copied. Processing will occur, as follows: (1)
unload, excluding members, (2) unload, selecting members, and
(3) load and copy to merge members.

92 MVS/370 Utilities

77COPY JOB ..

//STEP EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=A

//PDS1 DD DSNAME=ACCOUNTA,UNIT=3350,VOL=SER=333333,
/77 DISP=0LD

//7PDS2 DD DSNAME=ACCOUNTB,UNIT=3350,V0L=SER=333333,
/7 DISP=0LD

//7SEQL DD DSNAME=SAVAC,UNIT=3350,VOL=SER=333333,

7/ DISP=(NEW,KEEP),SPACE=(CYL,(5,2))

/7/7SEQ2 DD DSNAME=SAVACB,UNIT=tape,VOL=SER=T01911,
/77 DISP=(NEW,KEEP), LABEL=(,SL)

/7 7NEWUP DD DSNAME=NEWACC,UNIT=tape,VOL=SER=T01219,

7/ DISP=0LD,LABEL=(,SL)

//MERGE DD DSNAME=ACCUPDAT,UNIT=3330-1,V0L=SER=222222,
Vs DISP=0LD

//75YSUT3 DD DSNAME=TEMP1,VOL=SER=666666 ,UNIT=3330-1,

/77 DISP=(NEW,DELETE),SPACE=(80,(1,1))

/775YS5UT4 DD DSNAME=TEMP2,VVOL=SER=666666,UNIT=3330~1,

V4 DISP=(NEW,DELETE),
7/ SPACE=(256,(1,1)),DCB=(KEYLEN=8)
/7/7SYSIN DD *

COPY OUTDD=SEQ1, INDD=PDS1

EXCLUDE MEMBER=(D,C)

COPY OUTDD=SEQ2, INDD=PDS2

SELECT MEMBER=(A,K)

copPYy OUTDD=MERGE, INDD=C(NEWUP,R),PDS1,PDS2)

EXCLUDE MEMBER=A
7 *

The control statements are discussed below:

PDS1 DD defines a partitioned data set called ACCOUNTA that
contains six members (A, B, C, D, E, and F) and resides on a
3350 volume.

PDS2 DD defines a partitioned data set called ACCOUNTB that
contains three members (A, K, and L) and resides on a 3350
volume.

SEQl DD defines a new sequential data set called SAVAC on a
3350 volume.

SEQ2 DD defines a new sequential data set called SAVACB on a
tape volume. The tape has IBM standard labels.

NEWUP DD defines an old sequential data set called NEWACC
that is the unloaded form of a partitioned data set that
contains eight members (A, B, C, D, M, N, 0, and P). It
resides on a tape volume.

MERGE DD defines a partitioned data set called ACCUPDAT that
contains six members (A, B, C, D, @, and R} and resides on a
3330-1 volume.

SYSUT3 DD defines a temporary spill data set on a 3330-1
volume.

SY5UT4 DD defines a temporary spill data set on a 3330-1
volume.

SYSIN DD defines the control data set, which follows in the
input stream.

The first COPY statement indicates the start of the first

unload operation. (The input data set is partitioned; the
output data set is sequential.)

IEBCOPY Program 93

IEBCOPY EXAMPLE 16

The first EXCLUDE statement specifies that members D and C
are to be excluded from the unload operation specified by
the preceding COPY statement.

The second COPY statement indicates the start of the second
unload operation. (The input data set is partitioned; the
output data set is sequential.) :

The SELECT statement specifies that members A and K are to
be included in the unload operation specified by the
preceding COPY statement.

The third COPY statement indicates the start of the copy and
load operations. The replace option is specified for the
NEWUP data set; therefore, members in this data set replace
identically named members on the output data set. The first
INDD data set is an unloaded data set that is to be loaded.
The second and third INDD data sets are partitioned data
sets that are to be copied. (The input data sets are
sequential and partitioned; the output data set is
partitioned.)

The second EXCLUDE statement specifies that member A is
excluded from the copy and load operation specified in the
preceding COPY statement.

In this example, all members of data set MODLIBJ, members MODX,
MODY, and MODZ of data set MODLIBK, and all members of data set
MODLIBL except MYMACRO and MYJCL are altered in place.

//ALTERONE JOB

//STEPA EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=A

775YSUT3 DD UNIT=SYSDA,SPACE=(TRK,(5,1))
7/75YSUT4 DD UNIT=SYSDA,SPACE=(TRK, (5,1))

/7/7LIBJ DD DSNAME=MODLIBJ,DISP=(OLD,KEEP)
//LIBK DD DSNAME=MODLIBK,DISP=(0OLD,KEEP)
7/LIBL DD DSNAME=MODLIBL,DISP=(0OLD,KEEP)

/7SYSIN DD *

ALTERMOD OUTDD=LIBJ :
ALTERMOD OUTDD=LIBK,LIST=NO
SELECT MEMBER=(MODX,MODY,M0ODZ)
ALTERMOD OUTDD=LIBL

EXCLUDE MEMBER=(MYMACRO,MYJCL)

The control statements are discussed below.

LIBJ DD defines the partitioned data set MODLIBJ, which has
been previously created and cataloged.

LIBK DD defines the partitioned data set MODLIBK, which has
been previously created and cataloged.?

LIBL DD defines the partitioned data set MODLIBL, which has
been previously created and cataloged.?

SYSIN DD defines the control data set, which follows in the
input stream.

96 MVS/370 Utilities

For data sets that have not been previously cataloged, you
must also specify UNIT and VOL=SER information on the DD
statement.

N

IEBCOPY EXAMPLE 17

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

4

The first ALTERMOD statement specifies that the entire data
set defined in LIBJ is to be altered in place.

The second ALTERMOD statement plus the following SELECT
statement indicates that members MODX, MODY, and MODZ are to
be altered in place. The remainder of MODLIBK is unchanged.

The third ALTERMOD statement plus the following EXCLUDE
statement indicates that all of MODLIBL is to be altered in
place except the members called MYMACRO and MYJCL. These
members remain unchanged.

In this example, members MOD7, MOD8, and MOD9 of data set
MODLIBL are copied to data set MODLIBM, altered, and reblocked
to the default size. All members of data set MODLIBN except
NEWMACRO and NEWJCL are copied to data set MODLIBP, altered, and
reblocked to 10K bytes; blocks as small as 2K bytes may be
written to improve utilization of disk space.

72

//COPYRBLK JOB ...
7/7STEPA EXEC PGM=1EBCOPY
//3YSPRINT DD SYSOUT=A '
//3YSUT3 DD UNIT=SYSDA,SPACE=(TRK,(5,1))
//3YSUT4 DD UNIT=SYSDA,SPACE=(TRK,(5,1))
//L1IBL DD DSNAME=MODLIBL,DISP=(0LD,KEEP)
//7LIBM DD DSNAME=MODLIBM, DISP=COLD,KEEP)
//LIBN DD DSNAME=MODLIBN,DISP=(OLD,KEEP)
//LIBP DD DSNAME=MODLIBP,DISP=(OLD,KEEP)
/7/7SYSIN DD

COPYMOD INDD=LIBL,O0UTDD=LIBM

SELECT MEMBER=(MOD7,MOD8,MOD9)

COPYMOD INDD=LIBN,OUTDD=LIBP,MAXBLK=10K, X

MINBLK=2K,LIST=NO

EXCLUDE MEMBER=(NEWMACRO, NEWJCL)

7%

The control statements are discussed below.

LIBL DD defines the partitioned data set MODLIBL, which has
been previously created and cataloged.?3

LIBM DD defines the partitioned data set MODLIBM, which has
been previously created and cataloged.?®

LIBN DD defines the partitioned data set MODLIBN, which has
been previously created and cataloged.?®

LIBP DD defines the partitioned data set MODLIBP, which has
been previously created and cataloged.?®

SYSIN DD defines the control data set, which follows in the
input streanm.

The COPYMOD statement indicates that the members listed in
the following SELECT statement (MOD7,MOD8,MOD9) are to be
copied from MODLIBL to MODLIBM, altered, and reblocked.

The second COPYMOD statement indicates that the MODLIBN data
set (except for NEWMACRO and NEWJCL, which are specified in

For data sets that have not been previously cataloged, you
m:st als: specify UNIT and VOL=SER information on the D
statement.

IEBCOPY Program 95

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

IEBCOPY EXAMPLE 18

the following EXCLUDE statement) is copied to MODLIBP,
altered, and reblocked to 10K bytes.

In this example, all members of data set MODLIBY are copied to
tape COPYLIBY in STEP1. MODLIBY is scratched (but not
uncataloged) in STEP2. In STEP3, all members are copied back to
data set MODLIBY, reblocked to the default size, and altered.
The net result is that the data set MODLIBY is compressed,
altered, and reblocked.

- 7/7COPYTWO JOB

“//LIBY DD DSNAME=MODLIBY,DISP=(0OLD),

7/7STEP1 EXEC PGM=I1EBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK, (5,
//73YSUT4 DD UNIT=SYSDA,SPACE=(TRK, (5,
//7L1IBY DD DSNAME=MODLIBY,DISP=(OLD)
/77 UNIT=3330-1,VOL=SER=333101
//TAPEA DD DSNAME=COPYLIBY,DISP=(NEW,PASS),
77 UNIT=tape,VOL=SER=717000,LABEL=(,NL)
/7/7SYSIN DD %

COPY INDD=LIBY,QUTDD=TAPEA
/7%

7/STEP2 EXEC PGM=IEHPROGM,COND=(0, EQ,STEP1)
//SYSPRINT DD SYSOUT=A

1
1
?

7/ UNIT=3330-1,VOL=SER=333101
7/SYSIN Db x
- SCRATCH DSNAME=MODLIBY,VOL=3330-1=333101

/7/7STEP3 EXEC PGM=IEBCOPY,COND=(0,EQ,STEP1)
//SYSPRINT DD SYSOUT=A

7/SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(5,1))
//75YSUTG DD UNIT=SYSDA,SPACE=(TRK,(5,1))

/7/7LIBY DD DSNAME=MODLIBY,DISP=(NEW,KEEP),

/7 UNIT=3330-1,VOL=SER=333101,

7/ SPACE=(TRK,(2,1,5)

7/TAPEA DD DSNAME=COPYLIBY,DISP=(OLD,KEEP),

7/ UNIT=tape,VOL=SER=717000,LABEL=(,NL)

7/7S5YSIN DD %*
COPYMOD INDD=TAPEA,OUTDD=LIBY
Vg

The control statements are discussed below.

96 MVS/370 Utilities

STEP1 marks the beginning of the IEBCOPY job step.

LIBY DD defines the partitioned data set MODLIBY, which has
also been previously defined.

TAPEA DD defines the tape data set COPYLIBY.

The COPY statement makes a backup copy of MODLIBY and places
it in the data set COPYLIBY.

STEP2 marks the beginning of the IEHPROGM job step. If
STEP1 fails, STEP2 will not be executed.

The SCRATCH statement scratches the old data set MODLIBY but
does not remove it from the catalog.

STEP3 mafks the beginning of the second IEBCOPY job step.
STEP3 will not be executed if STEPl fails.

The COPYMOD statement copies all members back to MODLIBY,
alters their RLD counts, and reblocks them. The new MODLIBY
will be compressed, but will not necessarily occupy the same

TNL GN26-8133 (30 Mar 84) to 0GC26-4065-1

space on the disk as it did before being scratched and
reallocated.

IEBCOPY Program 96.1

IEBDG_PROGRAM

TYPES OF PATTERNS

IEBDG is a data set utility used to provide a pattern of test
data to be used as a programming debugging aid.

An output data set, containing records of any format, can be
created through the use of utility control statements, with or
without input data. An optional user exit passes control to a
user routine to monitor each output record before it is written.
Sequential, ISAM, and partitioned data sets can be used for
input or output.

You can code utility control statements to generate a pattern of
data that can be analyzed quickly for predictable results.

When vou define the contents of a field, the following must be
decided:

. What type of pattern—IBM-supplied or user-supplied—is to
be placed initially in the defined field.

. What action, if any, is to be performed to alter the
contents of the field after it is selected for each output
record.

IBM-SUPPLIED PATTERNS

IBM supplies seven patterns:

. Alphameric

. Alphabetic

. Zoned decimal

. Packed decimal

. Binary number

. Collating sequence

. Random number

You may choose one of them when defining the contents of a

field. All patterns except the binary and random number

patterns repeat in a given field, provided that the defined

field length is sufficient to permit repetition. For example,

the alphabetic pattern is:
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFG. ..

Figure 34 on page 98 shows the IBM-supplied patterns.

IEBCOPY Program 97

Exprassed in Expressed in
Type Hexadecimal Printable Characters
Alphameric Cl C2...E9, FO0...F9 AB...Z, 0...9
Alphabetic C1 C2...E% AB...Z
Zoned Decimal FOFO0...F9F9 00...99
Packed Decimal 0000...001C Not applicable
(Positive pattern)
0000...001D
(Negative pattern)
Binary Number 00000001, etc. Not applicable
(Positive pattern)
FFFFFFFF, etc.
(Negative pattern)
Collating Sequence 40...F9 bé . <(+H|&ISH) 5=/, % > 8="
A...Z2 0...9
Random Number Random hexadecimal digits Not applicable

Figure 34. IBM-Suppl

USER-SPECIFIED PICTU

98 MVS/370 Utilitie

ied Patterns

A packed decimal or binary number is right-aligned in the
defined field.

You can specify a starting character when defining an
alphameric, alphabetic, or collating-sequence field. For
example, a 10-byte alphabetic field for which "H" is specified
as the starting character would appear as:

HIJKLMNOPQ

The same 10-byte alphabetic field with no specified starting
character would appear as:

ABCDEFGHIJ
You can specify a mathematical sign when defining a packed
decimal or binary field. If no sign is specified, the field is
assumed to be positive.

RES

IBM-supplied pattern, vou may wish to
placed in the defined field. The user

Instead of selecting an
specify a picture to be
can provide:

An EBCDIC character
A decimal number to
A decimal number to

string
be converted to packed decimal by IEBDG
be converted to binary by IEBDG

When you supply a picture, a picture length must be specified
that is equal to or less than the specified field length. An
EBCDIC picture is left-aligned in a defined field; a decimal
number that is converted to packed decimal or to binary is
right-aligned in a defined field.

You can initially load (fill) a defined field with either an
EBCDIC character or a hexadecimal digit. For example, the
10-byte picture "BADCFEHGJI" is to be placed in a 15-byte field.
An EBCDIC "2" is to be used to pad the field. The result is
BADCFEHGJI22222. (If no fill character is provided, the
remaining bytes contain binary zeros.) Remember that the fill
character, if specified, is written in each byte of the defined
field prior to the inclusion of an IBM-supplied pattern or
user-supplied picture.

S

MODIFICATION OF SELECTED FIELDS

IEBDG can be used to change the contents of a field in a
specified manner. One of eight actions can be selected to
change a field after its inclusion in each applicable output
record. These actions are:

. Ripple

. Shift left

. Shift right

. Truncate left

. Truncate right

. Fixed
. Roll
. Wave

Figure 35 shows the effects of each of the actions on a 6-byte
alphabetic field. Note that the roll and wave actions are
applicable only when a user pattern is supplied. In addition,
the result of a ripple action depends on which type of
pattern—IBM-supplied or user-supplied—is present.

Ripple—user- Ripple—1BM-
supplied picture supplied format Shift left Shift right
ABCODEF ABCDEF ABCDEF ABCDEF
BCDEFA BCDEFG BCDEF ABCDE
CDEFAB CDEFGH CDEF ABCD
DEFABC DEFGHI DEF ABC
EFABCD EFGHIJ EF AB
FABCDE FGH! JK F A
ABCDEF GHIJKL ABCDEF ABCDEF
lBCDEFA HIJKLM BCDEF ABCDE
Roll—user- Wave—user-
Truncate left Truncate right Fixed supplied picture supplied picture
ABCDEF ABCDEF ABCDEF AAA AAA{
BCDEF ABCDE ABCDEF AAA AAA
CDEF ABCD ABCDEF AAA AAA
DEF| ABC ABCDEF AAA A A A
EF AB ABCDEF AAA AA
F A ABCDEF AAA AAA
ABCDEF ABCDEF ABCDEF AAA AAA
BCDEF ABCDE ABCDEF AAA A A A

Figure 35. IEBDG Actions

If no action is selected, or if the specified action is not
gogpatible with the format, the fixed action is assumed by
EBDG.

IEBDG Program 69

INPUT AND OUTPUT

RETURN CODES

CONTROL

IEBDG uses the following input:

. An input data set which contains records to be used in the
construction of an output data set or partitioned data set
member. The input data sets are optional; that is, output
records can be created entirely from utility control
statements.

. A control data set that contains any number of sets of
utility control statements.

IEBDG produces the following output:

. An output data set that is the result of the IEBDG
operation. One output data set is created by each set of
utility control statements included in the job step.

U A message data set that contains informational messages, the
contents of applicable utility control statements, and any
error messages.

Input and output data sets may be sequential, indexed sequential
(ISAM), or partitioned data set members. BDAM and VSAM are not
supported.

IEBDG returns a code in register 15 to indicate the results of
program execution. The return codes and their meanings are
listed belouw.

Codes Meaning
00 (00 hex) Successful completion.

04 (04) A user routine returned a code of 16 to IEBDG. The
job step is terminated at the user's request.

08 (08) An error occurred while processing a set of utility
control statements. No data is generated following
the error. Processing continues normally with the
next set of utility control statements, if any.

12 (oC) An error occurred while processing an input or
output data set. The job step is terminated.

16 (10) An error occurred from which recovery is not
possible. The job step is terminated.

Figure 36. IEBDG Return Codes

IEBDG is controlled by job control statements and utility
control statements. The job control statements are used to
execute or invoke IEBDG and define the data sets used and
produced by IEBDG. Utility control statements are used to
control the functions of the program and to define the contents
of the output records.

100 MVS/370 Utilities

vJIB CONTROL STATEMENTS
Figure 37 shows the job control statements for IEBDG.

Both input and output data sets can contain fixed, variable, or
undefined records.

Statement Use
JOB Initiates the job.
EXEC Specifies the program name (PGM=IEBDG) or, if the

job control statements reside in a procedure
library, the procedure name. Additional
information can be specified in the EXEC statement;
see "PARM Information on the EXEC Statemaent™ on
page 102.

SYSPRINT DD Defines a sequential message data set. The data
set can be written on a system output device, a
tape volume, or a DASD volume.

SYSIN DD Defines the control data set, which contains the
utility control statements and, optionally, input
records. The data set normally resides in the
input stream; however, it can be defined as a
sequential data set or as a member of a partitioned
data set.

seqinset DD Defines an optional sequential or ISAM data set
used as input to IEBDG. The data set can reside on
a tape volume or on a DASD volume. Any number of
these statements (each having a ddname different
from all other ddnames in the job step) can be
included in the job step. Each DD statement is
subsequently referred to by a DSD utility control
statement.

parinset DD Defines an optional input partitioned data set
member residing on a DASD volume. Any number of
these statements (each having a ddname different
from all other ddnames in the job step) can be
included in the job step. The DD statement is
subsequently referred to by a DSD utility control
statement.

seqout DD Defines an output (test) sequential or ISAM data
set. Any number of these DD statements can be
included per job step; however, only one statement
is applicable per set of utility control
statements.

parout DD Defines an optional output partitioned data set
member to be created and placed on a DASD volume.
Any number of these DD statements (each DD
statement referring to the same or to a different
data set) can be included per job step; however,
only one statement is applicable per set of utility
control statements.

Figure 37. Job Control Statements for IEBDG

The DSORG subparameter must be included in the DCB subparameters
if the input or output data set has an indexed sequential (ISAM)
organization (DSORG=IS). If members of a partitioned data set
are used, DSORG=P0 or DSORG=PS may be coded. If the DSORG
subparameter is not coded, DSORG=PS is assumed.

IEBDG Program 101

PARM Information on

For an ISAM data set, the key length must be specified in the
DCB.

Refer to Data Management Services for information on estimating
space allocations.

the EXEC Statement

The EXEC statement can include an optional PARM parameter to
specify the number of lines to be printed between headings in
the message data set, coded as follows:

PARM=LINECT=pnnnn

The nnnn is a 4-digit decimal number that specifies the number
gf tines (0000 to 9999) to be printed per page of output
isting.

If PARM is omitted, 58 lines are printed between headings
(unless a channel 12 punch is encountered in the carriage
control tape, in which case a skip to channel 1 is performed and
a heading is printed).

If IEBDG is invoked, the line-count option can be passed in a
parameter list that is referred to by a subparameter of the LINK
or ATTACH macro instruction. 1In addition, a page count can be
passed in a six-byte parameter list that is referred to by a
subparameter of the LINK or ATTACH macro instruction. For a
discussion of linkage conventions, refer to "Invoking Utility
Programs from a Problem Program" on page 13.

SYSPRINT DD Statement

SYSIN DD Statement

If the SYSPRINT DD statement is omitted, no messages are
written. The block size for the SYSPRINT data set must be a
multiple of 121. Any blocking factor can be specified.

The block size for the SYSIN data set must be a multiple of 80.
Any blocking factor can be specified.

seqginset DD Statement

The "seqinset™ DD statement can be entered:

//seqinset DD DSNAME=setname, UNIT=xxxx, DISP=(0OLD,KEEP),
Vo4 VOLUME=SER=xxxxxx,LABEL=(C...,...),
/7 DCB=(applicable subparameters)

The LABEL parameter is included only for a magnetic tape volume.
If the input data set has an indexed sequential organization,
DSORG=IS should be coded in the DCB parameter:

102 MVS/370 Utilities

parinset DD Statement

seqout DD Statement

parout DD Statement

The "parinset™ DD statement can be entered:

//parinset DD DSNAME=setname{membername), UNIT=xxxx,
7/ DISP=(OLD,KEEP),VOLUME=SER=XXXXXX,
7/ DCB=(applicable subparameters)

The "seqout"™ DD statement can be entered:

//saqout DD DSNAME=setname, UNIT=xxxx,
Va4 DISP=(,KEEP), VOLUME=SER=xXXX%X
Va4 DCB=(applicable subparameters)

The LABEL parameter is included for magnetic tape; the SPACE
parameter is included for DASD.

The "parout™ DD statement can be entered:

//parout DD DSNAME=setname(membername), UNIT=xxxx,
DISP=(,KEEP),VOLUME=SER=xxxxxx,DCB=(applicable

// DCB= (applrcable subparameters),

Va4 SPACE=(applicable subparameter)

The SPACE parameter is included on the parout DD statement when

cr:ating the first member to be placed in a partitioned data
set.

The partitioned data set defined by "parout™ is a new member

and

has a new directory entry. No information is copied from the

previous directory.

IEBDG Program

103

UTILITY CONTROL STATEMENTS

DSD Statement

IEBDG is controlled by the following utility control statements:

statement Use

pDSD Specifies the ddnames of the input and output data
sets. One DSD statement must be included for each
set of utility control statements.

FD Defines the contents and lengths of fields to be
used in creating output records.

CREATE Defines the contents of output records.

REPEAT Specifies the number of times a CREATE statement or

a group of CREATE statements are to be used in
generating output records.

END Marks the end of a set of IEBDG utility control
statements.

Figure 38. IEBDG Utility Control Statements

Any number of sets of control statements can appear in a single
job step. Each set defines one data set.

General continuation requirements for utility control statements
are described in "Continuing Utility Control Statements" on page
5.

FD or CREATE utility control statements that contain a PICTURE
parameter and are to be continued must have a nonblank character
in column 72. The continuation must begin in column % on the
next statement.

The DSD statement marks the beginning of a set of utility
control statements and specifies the data sets that IEBDG is to
use as input. The DS5D statement can be used to specify one
output data set and any number of input data sets for each
application of IEBDG.

The format of the DSD statement is:

[labell DSD OUTPUT=(ddname)
[,INPUT=(ddnameys...)]

The ddname SYSIN must not be coded in the INPUT parameter.

Each parameter should appear no more than once on any DSD
statement.

1064 MVS5/370 Utilities

FD Statement

The FD statement defines the contents and length of a field that
will be used subsequently by a CREATE statement (or statements)
to form output records. A defined field within the input
logical record may be selected for use in the output records if
it is referred to, by name, by a subsequent CREATE statement.

Figure 39 shows how fields defined in FD statements are placed
in buffer areas so that subsequent CREATE statements can assign
selected fields to specific output records.

FD Statements—define fields

(Defines fisld 5

(Defines field 4

(Defines field 3

(Defines field 2

Defines field 1

Contents are placed in buffers .
so that subsequent CREATE | Field 1 Field 2 Field 3 Field 4 Field 5
statements can selectively
create output records.

CREATE Statement—
creates output

record from

selected fields

Output record

Field 1 Field 4

Figure 39. Defining and Selecting Fields for Output Records
Using IEBDG

IEBDG Program 105

106

.Figure 40 on page 106 shows how the FD statement is used to

specify a field in an input record to be used in output records.
The left-hand side of the figure shows that a field in the input
record beginning at byte 50 is selected for use in the output
record. The right-hand side of the figure shows that the field
is to be placed at byte 20 in the output record.

Input record
1

Output record
1

70 80

80

LENGTH
Same as input field

Figure 40. Field Selected from the Input Record for Use in the
Output Record

The format of the FD statement is:

[labell | FD NAME=name

» LENGTH=length-in-bvtes

[,STARTLOC=starting-byvte-locationl

[,FILL={"character'|X"2-hex-diqits'}]

[,FORMAT=patternl,CHARACTER=characterl|

»PICTURE=length,{"character-string'l

P'decimal-number"®|
B'decimal-number'}]

[,SIGN=signl

[,ACTION=actionl

[,INDEX=npumberl,CYCLE=numberl[,RANGE=numberl}]

[, INPUT=ddname]

1, FROMLOC=numberl

Some of the FD keywords do not aprly when certain patterns or
pictures are selected by the user; for example, the INDEX,
CYCLE, RANGE, and SIGN parameters are used only with numeric
fields. Figure 41 on page 107 shows which IEBDG keyuwords can be
used with the applicable pattern or picture chosen by the user.
Each keyword should appear no more than once on any FD
statement.

MVS/370 Utilities

CREATE Statement

FORMAT/PICTURE value

compatible Parameters

FORMAT=AL (alphabetic) ACTION=SL (shift left)

FORMAT=AN (alphameric) ACTION=SR (shift right)

FORMAT=CO0 (collating seq.) ACTION=TL (truncate left)
ACTION=TR (truncate right)
ACTION=FX (fixed)
ACTION=RP (ripple)

FORMAT=ZD (zoned decimal) INDEX=x

FORMAT=PD (packed decimal) CYCLE=x

FORMAT=BI (binary) RANGE=x
SIGN=x!

PICTURE=P'n' (packed decimal) INDEX=x

PICTURE=B'n' (binary) CYCLE=x
RANGE=x
SIGN=x!

PICTURE='"string' (EBCDIC) ACTION=SL (shift left)
ACTION=SR (shift right)
ACTION=TL (truncate left)
ACTION=TR (truncate right)

ACTION=FX (fixed)
ACTION=RP (ripple)
ACTION=WV (wave)
ACTION=RO (roll)

Figure 41.

Note to Figure 41:

Compatible IEBDG Operations

1 Zoned decimal numbers (ZD) do not include a sign.

The CREATE statement defines the contents of a record (or
records) to be made available to a user routine or to be written
directly as an output record (or records).

The format of the CREATE statement is:

[labell| CREATE

[QUANTITY=pumberl
[,FILL={"character"|X"2-hex-digits'}]
[,INPUT=ddname|SYSINL(ccee)l]
[,PICTURE=length,startloc(, *character-string'l

sP'decimal-number®|

»B'decimal-number'}}

[sNAME=name| (namel,namen...)]|

(name(COPY=number,namel,namen...}s...)1

[,EXIT=routinenamel

After processing each potential output record, the user routine
should provide a return code in register 15 to instruct IEBDG

how to handle the output record.

belouw.

The user codes are listed

IEBDG Program 107

Codes Meaning
00 (00 hex) The record is to be written.

04 (04) The record is not to be written. The skipped
! record is not to be counted as a generated output

record; processing is to continue as though a
record were uritten. If skips are requested
through user exits and input records are supplied,
each skip causes an additional input record to be
processed in the generation of output records. For
example, if a CREATE statement specifies that 10
output records are to be generated and a user exit
indicates that two records are to be skipped, 12
input records are processed.

12 (oc) The processing of the remainder of this set of
utility control statements is to be bypassed.
Processing is to continue with the next DS5D
statement.

16 (190) All processing is to halt.

Figure 42. IEBDG User Exit Return Codes

When an exit routine is loaded and vou return control to IEBDG,
register 1 contains the address of the first byte of the output
record. Each keyword should appear no more than once on any
CREATE statement.

Figure 43 shows the addition of field X to two different
records. In record 1, field X is the first field referred to by
the CREATE statement; therefore, field X begins in the first
byte of the output record. In record 2, two fields, field A and
field B, have already been referred to by a CREATE statement;
field X, the next field referred to, begins immediately after
field B. Field X does not have a special starting location in
this example.

Record 1
1 21

Field X

Record 2
1 41

Field A Field B Field X

Figure 43. Default Placement of Fields within an Output Record
Using IEBDG

You can also indicate that a numeric field is to be modified
after it has been referred to n times by a CREATE statement or
statements, that is, after n cvcles, a modification is to be
madfé A modification will add a user-specified number to a
field.

108 MVS/370 Utilities

The CREATE statement constructs an output record by referring to
previously defined fields by name and/or by providing a picture
to be placed in the record. You canh generate multiple records
with a single CREATE statement.

When defining a picture in a CREATE statement, the user must
specify its length and starting location in the output record.
The specified length must be equal to the number of specified
EBCDIC or numeric characters. (When a specified decimal number
is converted to packed decimal or binary, it is automatically
right-aligned.)

Figure 44 shows three ways in which output records can be
created from utility control statements.

1. Fields only Output record
CREATE ! 3 5
Previously defin
fields
1 2 3 4 5

2. Fields and
picture

OQutput record

CREATE 2 3 Picture

3. Picture only

Output record
| CREATE H Picture

Figure 44, Creating Output Records with Utility Control
Statements

As an alternative to creating output records from utility
control statements alone, vou can provide input records, which
can be modified and written as output records. Input records
can be provided directly in the input stream, or in a separate
data set. Only one input data set can be read for each CREATE
statement.

As previously mentioned, the CREATE statement is responsible for
the construction of an output record. An output record is
constructed in the followinhg order:

1. A fill character, specified or default (binary zero), is
initially loaded into each byte of the output record.

2. If the INPUT operand is specified on the CREATE statement,
and not on an FD statement, the input records are
left-aligned in the corresponding output record.

3. If the INPUT operand specifies a ddname in any FD statement,

only the fields described by the FD statement(s) are placed
in the output record.

IEBDG Program 109

REPEAT Statement

END Statement

4. FD fields, if any, are placed in the output record in the
order of the appearance of their names in the CREATE
statement.

5. A CREATE statement picture, if any, is placed in the output
record.

IEBDG provides a user exit so you can provide your own routine
to analyze or further modify a newly constructed record before
it is placed in the output data set. See Appendix A, "Exit
Routine Linkage" onh page 438 for information on linking to a
user exit routine.

A set of utility control statements contains one DSD statement,
any number of FD, CREATE, and REPEAT statements, and one END
statement when the INPUT parameter is omitted from the FD card.

When selecting fields from an input record (FD INPUT=ddname),
the field must be defined by an FD statement within each set of
utility control statements. In that case, defined fields for
field salection are not usable across sets of utility control
statements; such an FD card may be duplicated and used in more
than one set of utility control statements within the job step.

The REPEAT statement specifies the number of times a CREATE
statement or group of CREATE statements is to be used
repetitively in the generation of output records. The REPEAT
statement precedes the CREATE statements to which it applies.

zigure %5 shows a group of five CREATE statements repeated n
imes.

CREATE (1)

CREATE (3
CREATE (1) * CREATE f.'»

REPEAT CREATE (5)

CREATE (1"
TREATE (2,
CREATE (3)
CREATE (4)
CREATE (5)

.

.
CREATE (1)
CREATE (2)
CREATE (3)
CREATE (4)
CREATE (5)

Figure %5. Repetition Caused by the REPEAT Statement Using IEBDG

The format of the REPEAT statement is:

{labell REPEAT QUANTITY=numberl,CREATE=number]

The END statement is used to mark the end of a set of utility
control statements. Each set of control statements can pertain

110 MVS/370 Utilities

to any number of input data sets but only a single output data

set.

The format of the END statement is:

[labell

END

IEBDG Program 111

Applicable

control .
Parameters statements Description of Parameters
ACTION FD ACTION=action

specifies how the contents of a defined
field are to be altered (if at all) after
the field's inclusion in an output record.
These values can be coded:

FX

RO

RP

SL

SR

TL

TR

specifies that the contents of a
defined field are to remain fixed after
the field's inclusion in an output
record.

specifies that the contents of a
defined field are to be rolled after
the field's inclusion in an output
record. The picture is incremented to
the left by one byte for each output
record, until .the first non-blank
character of the picture is in field
byte 1. At that time, the character
string is reset to its original picture
position.

RO can be used only for a user-defined
field. For RO to be effective, the
picture length must be less than the
field length.

specifies that the contents of a
defined field are to be rippled after
the field's inclusion in an output
record.

specifies that the contents of a
defined field are to be shifted left
after the field's inclusion in an
output record.

specifies that the contents of a
defined field are to be shifted right
after the field's inclusion in an
output record.

spacifies that the contents of a
defined field are to be truncated left
after the field's inclusion in an
output record.

specifies that the contents of a
defined field are to be truncated right
after the field's inclusion in an
output record.

112 MVS/370 Utilities

Applicable

Ccontrol .
Paramaters Statements Description of Parameters
ACTION FD (continued)

(continued)

Wv
specifies that the contents of a
defined field are to be waved after the
field's inclusion in an output record.
The picture is incremented to the left
by one byte for each output record,
until the first non-blank character of
the picture is in field byte 1. At
this time, the character string is
reset to its original picture position.

WV can be used only for a user-defined
field. For WV to be effective, the
picture length must be less than the
field length.

Default: FX

See Figure 41 on page 107 for system actions
compatible with FORMAT and PICTURE values.
See Figure 35 on page 99 for examples of
IEBDG ACTION patterns.

CREATE

REPEAT

CREATE=number
specifies the number of following CREATE
statements to be included in the group.

Default: Only the first CREATE statement is
repeated.

EXIT

CREATE

EXIT=routinename
specifies the name of the user routine that
is to receive control from IEBDG before
writing each output record.

FILL

CREATE
FD

FILL={'character'|X"'2-hex-digits"}
specifies a value that is to be placed in
each byte of the output record before any
other operation in the construction of
record. These values can be coded:

*character®
specifies an EBCDIC character that is
to be placed in each byte of the output
record.

X'2-hex-digits"
specifies 2 hexadecimal digits (for
example, FILL=X'40', or FILL=X'FF') to
be placed in each byte of the ocutput
record.

Default: Binary zeros are placed in the
output record.

IEBDG Program 113

Parameters

Applicable
control
Statements

Description of Parameters

FORMAT

FD

FORMAT=patternl,CHARACTER=characterl

specifies an IBM-supplied pattern that is to
be placed in the defined field. FORMAT must
not be used when PICTURE is used. The
values that can be coded are:

pattern
specifies the IBM-supplied patterns, as

follouws:

AL
specifies an alphabetic pattern.

AN
specifies an alphameric pattern.

Bl
specifies a binary pattern.

co
specifies a collating sequence
pattern.

PD
specifies a packed decimal
pattern.

RA
specifies a random binary pattern.

Zb
specifies a zoned decimal pattern.

CHARACTER=character
specifies the starting character of a
field. See "IBM-Supplied Patterns" on
page 97 for details on starting
characters.

FROMLOC

FD

FROMLOC=number

specifies the location of the selected field
within the input logical record. The number
represents the position in the input record.
If, for example, FROMLOC=10 is coded, the
specified field begins at the tenth byte; if
FROMLOC=1 is coded, the specified field
begins at the first byte. (For
variable-length records, significant data
begins on the first byte after the %-byte
length descriptor.) :

When retrieving data sets with RECFM=F or
FB, and RKP>0, the record consists of the
key plus the data with embedded key. To
copy the entire record, the output DCB=LRECL
has to be input LRECL + KEYLEN. 1If only the
data (which includes the embedded key) is to
be copied, the FROMLOC must point to start

of the data, that is, FROMLOC=keylength.

pefault: The start of the input record.

114 MVS/370 Utilities

Applicable

Control
Parameters Statements Description of Parameters
INDEX FD INDEX=numberl,CYCLE=numberl[,RANGE=number]

specifies a decimal number to be added to
this field whenever a specified number of
records have been written. INDEX is valid
only with FORMATs 2D, PD, BI, or PICTURES
P'n', B'n'. Additional values can be coded:

CYCLE=number
specifies a number of output records
(to be written as output or made
available to an exit routine) that are
treated as a group by the INDEX
keyword. Whenever this field has been
used in the construction of the
spacified number of records, it is
modified as specified in the INDEX
parameter. For example, if CYCLE=J3 is
coded, output records might appear as
111 222 333 444 etc. This parameter
can be coded only when INDEX is coded.

RANGE=number
specifies an absolute value which the
contents of this field can never
exceed. If an index operation attempts
to exceed the specified absolute value,
the contents of the field as of the
previous index operation are used.

Default: No indexing is performed. If CYCLE
is omitted and INDEX is coded, a CYCLE value
of 1 is assumed; that is, the field is
indexed after each inclusion in a potential
output record.

IEBDG Program 115

Parameters

Applicable
control
statements

Description of Parameters

INPUT

DSD

FD

INPUT=(ddname’ cs e)

specifies the ddname of a DD statement
defining a data set used as input to the
program. Any number of data sets can be
included as input—that is, any number of
ddnames referring to corresponding DD
statements can be coded. Whenever ddnames
are included on a continuation card, they
must begin in column §.

The ddname SYSIN must not be coded as the
INPUT parameter on the DSD control
statement. Each ddname should not appear
more than once on any control statement.

INPUT=ddname

specifies the ddname of a DD statement
defining a data set used as input for field
selection. Only a portion of the record
described by the FD statement will be placed
in the output record. If the record format
of the output data set indicates
variable-length records, the position within
the output record will depend upon where the
last insert into the output record was made
unless STARTLOC is specified.

The ddname SYSIN must not be coded as the
INPUT parameter on the FD control statement.
Each ddname should not appear more than once
oh any control statement.

A corresponding ddname must also be
specified in the associated CREATE statement
in order to have the input record(s) read.

116 MVS/370 Utilities

Parameters

Applicable
control
Statements

Description of Parameters

INPUT
(continued)

CREATE

INPUT=ddnamelSYSINI(ccecll
defines an input data set whose records are
to be used in the construction of output
records. If INPUT is coded, QUANTITY should
also be coded, unless the remainder of the
input records are all to be processed by
this CREATE statement. If INPUT is
specified in an FD statement referenced by
this CREATE statement, there must be a
corresponding ddname specified in the CREATE
statement in order to get the input
record(s) read. These values can be coded:

ddname
specifies the ddname of a DD statement
defining an input data set.

SYSINIccccl
specifies that the SYSIN data set
(input stream) contains records (other
than utility control statements) to be
used in the construction of output
records. If SYSIN is coded, the input
records follow this CREATE statement
(unless the CREATE statement is in a
REPEAT group, in which case the input
records follow the last CREATE
statement of the group). ccecec can be
any combination of from 1 to 4 EBCDIC
characters. If ccecc is coded, the
input records are delimited by a record
containing EBCDIC characters beginning
in column 1.

When INPUT=SYSIN with no cccc value,
the input records are delimited from
any additional utility control
statements by a record containing $$$E
in columns 1 through 4.

LENGTH

FD

LENGTH=length-in-bvtes
specifies the length in bytes of the defined

field. For variable records, % bytes of
length descriptor must be added.

For ACTION=RP or WV, the length is limited
to 16383 bytes. For ACTION=R0, the length
is limited to 10922 byvtes.

IEBDG Program 117

Parameters

Applicable
control
Statements

Description of Parameters

NAME

FD

CREATE

NAME=pame
specifies the name of the field defined by
this FD statement.

NAMEZ=pame| {namel,namen...)| (name, (COPY=
number,namel,namen...J...])

specifies the name or names of previously
defined fields to be included in the
applicable output records. If both NAME and
PICTURE are omitted, the fill character
specified in the CREATE statement appears in
each byte of the applicable output record.
These values can be coded:

(namel,...)
specifies the name or names of a field
or fields to be included in the
applicable output record(s). Each
field (previously defined in the named
FD statement) is included in an output
record in the order in which its name
is encountered in the CREATE statement.

COPY=pumber
indicates that all fields named in the
inner parentheses (maximum of 20) are
to be treated as a group and included
the specified number of times in each
output record produced by this CREATE
statement. Any number of sets of inner
parentheses can be included with NAME.
Within each set of inner parentheses,
COPY must appear before the name of any
field.

oUTPUT

DSD

OUTPUT=(ddname}
specifies the ddname of the DD statement
defining the output data set.

118 MVS/370 Utilities

Applicable

control Lo

Parameters sStatements Description of Parameters

PICTURE FD PICTURE=)lengthl,startlocl{,*character-string"'|
CREATE yP'decimal-number'|,B'decimal-number '}

specifies the length, starting byte (CREATE
only), and the contents of a user-supplied
picture. For FD, PICTURE must not be used
when FORMAT is used. If both PICTURE and
NAME are omitted, the fill character
specified in the CREATE statement appears in
each byte of applicable output records.
These values can be coded:

length
specifies the number of bytes that the
picture will occupy. length must be
equal to or less than the LENGTH
parameter value in the FD statement.

startloc (CREATE only)
spacifies a starting byte (within any
applicable output record) in which the
picture is to begin.

‘character-string"'
spacifies an EBCDIC character string

that is to be placed in the applicable
record(s). The character string is
left-aligned at the defined starting
byte. A character string may be broken
in column 71, a non-blank character in
column 72 is required, and it must be
continued in column 4 of the next
statement. The number of characters
within the quotation marks must equal
the number specified in the length
subparameter (for FD statements).

P 'decimal-number"
specifies a decimal number that is to
be converted to packed decimal and
right-aligned (within the boundaries of
the defined length and starting byte)
in the output records or defined field.
The number of characters within the
quotation marks must equal the number
specified in the length subparameter
(for FD statements).

B 'decimal-number*
specifies a decimal number that is to
be converted to binary and
right-aligned (within the boundaries of
the defined length and starting byte)
in the output records or defined field.
The number of characters within the
quotation marks must equal the number
specified in the length subparameter
(for FD statements).

IEBDG Program 119

Paramaters

Applicable
control
Statements

Dascription of Paramaters

QUANTITY

CREATE

REPEAT

QUANTITY=number
specifies the number of records that this
CREATE statement is to generate; the
contents of each record are specified by the
other parameters. If both QUANTITY and
INPUT are coded, and the quantity specified
is greater than the number of records in the
input data set, the number of records
created is equal to the number of input
records to be processed plus the generated
data up to the specified number.

Default: If QUANTITY is omitted and INPUT is
not specified, only one output record is
created. If QUANTITY is omitted and INPUT
is specified, the number of records created
is equal to the number of records in the
input data set.

If both QUANTITY and INPUT are coded, but
the QUANTITY is less than the number of
records in the input data set, then only the
number of records specified by QUANTITY are
written to the output data set.

QUANTITY=number
specifies the number of times the defined
group of CREATE statements is to be used
ggpgggtively. This number cannot exceed

SIGN

FD

SIGN=sign
specifies a mathematical sign (+ or =), to
be used when defining a packed decimal or
binary field.

Default: Positive (+).

STARTLOC

FD

STARTLOC=starting-byte-location
specifies a starting location (within all
output records using this field) in which a
field is to begin. For example, if the
first byte of an output record is chosen as
the starting location, the keyword is coded
STARTLOC=1; if the tenth byte is chosen,
STARTLOC=10 is coded, etc.

pDefault: The field will begin in the first
available byte of the output record
(determined by the order of specified field
names in the applicable CREATE statement).
For variable records the starting location
is the first byte after the length
descriptor.

120 MVS/370 Utilities

IEBDG EXAMPLES

The following examples illustrate some of the uses of IEBDG.
Figure 46 can be used as a quick reference guide to IEBDG

examples.

that follow.

The numbers in the "Example" column refer to examples

) Data Set .
Operation Organization Device Comments Example
Place binary zeros Sequential 9-track Blocked input and 1
in selected fields. Tape output.
Ripple alphabetic Sequential 9-track Blocked input and 2
pattern Tape, output.
Disk

Create output Sequential Disk Blocked output. 3
records from utility
control statements
Modify records from Partitioned, Disk Reblocking is 4
partitioned members Sequential performed. Each block
and input stream of output records

contains ten modified

partitioned input

records and two input

stream records.
Create partitioned Partitioned Disk Blocked output. One 5
members for utility set of utility control
control statements statements per member.
Roll and wave Sequential Disk OQutput records are 6
user-supplied created from utility
patterns control statements.
Create indexed Sequential, Disk Qutput records are 7
sequential data set Indexed Tape created by augmenting:
using field Sequential selected input fields
selection and data with generated data.
generation

Figure 46. IEBDG Example Directory

Examples that use disk or tape in place of actual device numbers
must be changed before use.
on page 3 for valid device number notation.

IEBDG EXAMPLE 1

See "DASD and Tape Device Support”

In this example, binary zeros are placed in two fields of 100

records copied from a sequential data set.

After the operation,

each record in the copied data set (QUTSET) contains binary
zeros in locations 20 through 29 and 50 through 59.

IEBDG Program 121

IEBDG EXAMPLE 2

122 Mvs/370 Utilities

7/
7/
Va4
/7

/77

/%

CLEAROUT JOB ,,MSGLEVEL=1
EXEC PGM=IEBDG

SYSPRINT DD SYSOUT=A

SEQIN DD DSNAME=INSET,UNIT=tape,DISP=(OLD,KEEP),
DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
LABEL=(,NL),
VOLUME=SER=222222

SEQOUT DD DSNAME=QUTSET,UNIT=tape, VOLUME=SER=222333,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
DISP=(,KEEP),
LABEL=(,NL)

SYSIN DD *
DSD OUTPUT=(SEQOUT), INPUT=(SEQIN)
FD NAME=FIELD1,LENGTH=10,STARTLOC=20
FD NAME=FIELD2, LENGTH=10,STARTLOC=50
gsgATE QUANTITY=100, INPUT=SEQIN,NAME=(FIELD1,FIELD2)

The control statements are discussed below:

SEQIN DD defines a sequential input data set (INSET). The
data set was originally written on a unlabeled tape volume.

SEQOUT DD defines the test data set (QUTSET). The output
records are identical to the input records, except for
locations 20 through 29 and 50 through 59, which contain
binary zeros at the completion of the operation.

SYSIN DD defines the control data set, which follows in the
input stream.

DSD marks the beginning of a set of utility control
statements and refers to the DD statements defining the
input and output data sets.

Lh: first FD statement defines an 80-byte field of input
ata.

The first and second FD statements create two 10-byte fields
(FIELD1 and FIELD2) that contain binary zeros. The fields
are to begin in the 20th and 50th bytes of each output
record.

CREATE constructs 100 output records in which the contents
of previously defined fields (FIELDl, FIELD2) are placed in
their respective starting locations in each of the output
records. Input records from data set INSET are used as the
basis of the output records.

END signals the end of a set of utility control statements.

In this example, a 1l0-byte alphabetic pattern is rippled. At
the end of the job step the first output record contains
"ABCDEFGHIJ," followed by data in location 11 through 80 from
the input record; the second record contains YBCDEFGHIJK"
followed by data in locations 11 through 80, etc.

IEBDG EXAMPLE 3

72
//RIPPLE JOB ,,MSGLEVEL=1
77/ EXEC PGM=IEBDG
//SYSPRINT DD SYSQUT=A
//SEQIN DD DSNAME=INSET,DISP=(OLD,KEEP),VOL=SER=222222,
/7 DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
7 UNIT=tape .
//SEQOUT DD DSNAME=OUTSET,UNIT=disk,VOLUME=SER=111111,
77 DCB=(RECFM=FB, LRECL=80,BLKSIZE=800),
7/ DISP=(,KEEP),
/7 SPACE=(TRK,(10,10))
//SYSIN DD x
DSD OUTPUT=(SEQOUT), INPUT=(SEQIN)
FD NAME=FIELD1,INPUT=SEQIN,LENGTH=80
FD NAME=FIELD2,LENGTH=10, FORMAT=AL,ACTION=RP, C
STARTLOC=1
CREATE QUANTITY=100,INPUT=SEQIN,NAME=(FIELD1,FIELD2)
END
/%

The control statements are discussed below:

. SEQIN DD defines an input sequential data set (INSET). The
data set was originally written on a 9-track, standard
labeled tape volume.

. SEQOUT DD defines the test output data set (QUTSET). Ten
tracks of primary space and ten tracks of secondary space
are allocated for the sequential data set on a disk volume.

U SYSIN DD defines the control data set, which follows in the
input stream.

. DSD marks the beginning of a set of utility control
statements and refers to the DD statements defining the
input and output data sets.

. The FD statements create a 10-byte field in which the
pattern ABCDEFGHIJ is initially placed. The data is rippled
after each output record is written.

. CREATE constructs 100 output records in which the contents
of a previously defined field (FIELD1) are included. The
CREATE statement uses input records from data set INSET as
the basis of the output records.

. END signals the end of a set of utility control statements.

In this example, output records are created entirely from
utility control statements. Three fields are created and used
in the construction of the output records. In two of the
fields, alphabetic data is truncated; the other field is a
numeric field that is incremented (indexed) by one after each
output record is written. Figure 47 on page 124 shows the
contents of the output records at the end of the job step.

IEBDG Program 123

Field 1 Field 2 Field 3 (packed decimal}
1 31 61 71 80
ABCDEFGHIJKLMNOPQRSTUVWXYZABCD| ABCDEFGHIJKLMNOPQRSTUVWXYZABCD|FF ... FF |123...90
BCDEFGHIJKLMNOPQRSTUVWXYZABCD| ABCDEFGHIJKLMNOPQRSTUVWXYZABC |FF ... FF [123...91
CDEFGHIJKLMNOPQRSTUVWXYZABCD}| ABCDEFGHIJKLMNOPQRSTUVWXYZAB FF...FF |123...92
DEFGHIJKLMNOPQRSTUVWXYZABCD| ABCDEFGHIJKLMNOPQRSTUVWXYZA FF...FF]123...93
EFGHIJKLMNOPQRSTUVWXYZABCD| ABCDEFGHIJKLMNOPQRSTUVWXYZ FF...FF [123...94

Figure 47. Output Records at Job Step Completion

72
//UTLYONLY JOB ,,MSGLEVEL=1
77 EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=A .
//SEQOUT DD DSNAME=0UTSET,UNIT=disk,DISP=(,KEEP),

/7 DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
/77 SPACE=(TRK,(10,10)),
V4 VOLUME=S5ER=111111

//7SYSIN DD DATA
DSD OUTPUT=(SEQOUT)
FD NAME=FIELD1,LENGTH=30,STARTLOC=1,FORMAT=AL,ACTION=TL
FD NAME=FIELD2,LENGTH=30,STARTLOC=31,FORMAT=AL,ACTION=TR
FD NAME=FIELD3,LENGTH=10,STARTLOC=71,PICTURE=10, c
P'1234567890", INDEX=1
ESSATE QUANTITY=100,NAME=(FIELDL,FIELD2,FIELD3),FILL=X"FF'
/%

The control statements are discussed below:

. SEQOUT DD defines the test output data set. Ten tracks of
primary space and ten tracks of secondary space are
allocated for the sequential data set on a disk volume.

L SYSIN DD defines the control data set, which follows in the
input stream.

. DSD marks the beginning of a set of utility control
statements and refers to the DD statement defining the
output data set.

. FD defines the contents of three fields to be used in the
construction of output records. The first field contains 30
bytes of alphabetic data to be truncated left after each
output record is written. The second field contains 30
bytes of alphabetic data to be truncated right after each
output record is written. The third field is a 10-byte
field containing a packed decimal number (1234567890) to be
increased by one after each record is written.

. CREATE constructs 100 output records in which the contents
of previously defined fields (FIELD1, FIELD2, and FIELD3)
are included. Note that after each record is written,
FIELD1 and FIELD2 are restored to full width.

. END signals the end of a set of utility control statements.

126 MVS/370 Utilities

IEBDG EXAMPLE %

In this example, two partitioned members and input records from
the input stream are used as the basis of a partitioned output
member. Each block of 12 output records contains 10 modified
records from an input partitioned member and two records from

the input stream.

Figure 48 shows the content of the output

partitioned member at the end of the job step.

Input

Department 21

Department 21
Input record 1
Input record 2

Department 21

Department 21
Input record 3
Input record 4

Department 21

Department 21
Input record 19
Input record 20

Department 21

Department 21
Input record 21
Input record 22

Figure 48. Output Partitioned Member at

(Rightmost 67 bytes of INSET1 (MEMBA)

(Rightmost 67 bytes of INSET1 (MEMBA)
from input stream
from input stream

(Rightmost 67 bytes of INSET1 (MEMBA)

(Rightmost 67 bytes of INSET1 (MEMBA)
from input stream
from input stream

(Rightmost 67 bytes of INSET1 (MEMBA)

(Rightmost 67 bytes of INSET1 (MEMBA)
from input stream
from input stream

(Rightmost 67 bytes of INSET2 (MEMBA)

(Rightmost 67 bytes of INSET2 (MEMBA)
from input stream
from input stream

record 1)

record 10)

record 11)

record 20)

record 91)

record 100)

record 1)

record 10)

Output Records

1
°
.
.
.
10
11
12

Job Step Completion

1st block of 12

2nd block of 12

10th block of 12

11th block of 12

IEBDG Program

125

7/
7/
/7
/77
7/
/7
/7
44
/7
/7
144
144
/7

(i

(i

/%

MIX JOB ,,MSGLEVEL=1
EXEC PGM=IEBDG

SYSPRINT DD SYSQUT=A .

PARIN1- DD DSNAME=INSET1(MEMBA),UNIT=disk,DISP=0LD,
DCB=(RECFM=FB, LRECL=80,BLKSIZE=800,DSORG=PS),
VOLUME=SER=111111 .

PARIN2Z DD DSNAME=INSET2(MEMBA),UNIT=disk,DISP=0LD,
DCB=(RECFM=FB, LRECL=80,BLKSIZE=960,DSORG=PS),
VOLUME=SER=222222 .

PAROUT DD DSNAME=PARSET (MEMBA),UNIT=disk,DISP=(,KEEP),

‘ YOLUME=SER=333333,SPACE=(TRK,(10,10,5)),

DCB=(RECFM=FB, LRECL=80,BLKSIZE=960,DSORG=PS)
SYSIN bD DATA
DSD OUTPUT=(PAROUT), INPUT=(PARINI1,PARIN2)
FD NAME=FIELD1,LENGTH=13,PICTURE=13, 'DEPARTMENT 21°'

REPEAT QUANTITY=10,CREATE=2
CREATE QUANTITY=10,INPUT=PARIN1,NAME=FIELD1
CREATE QUANTITY=2,INPUT=SYSIN

nput records 1 through 20)

REPEAT QUANTITY=10,CREATE=2

CREATE QUANTITY=10,INPUT=PARIN2,NAME=FIELD1
CREATE QUANTITY=2,INPUT=SYSIN

nput records 21 through 40)

END

The control statements are discussed below:

126 MvS/370 Utilities

PARIN1 DD defines one of the input partitioned members.

PARIN 2 DD defines the second of the input partitioned
members., (Note that the members are from different
partitioned data sets.}

PAROUT DD defines the output partitioned member. This
example assumes that the partitioned data set does not exist
prior to the job step; that is, this DD statement allocates
space for the partitioned data set.

SYSIN DD defines the control data set, which follows in the
input stream.

DSD marks the beginning of a set of utility control
statements and refers to the DD statements defining the
input and output data sets.

FD creates a 13-byte field in which the picture "DEPARTMENT
21" is placed.

The first REPEAT statement indicates that the following
group of two CREATE statements is to be repeated 10 times.

The first CREATE statement creates 10 output records. Each
output record is constructed from an input record (from
partiiioned data set INSET1) and from previously defined
FIELD1.

The second CREATE statement indicates that two records are
to be constructed from input records included next in the
input stream.

IEBDG EXAMPLE 5

. The E record separates the input records from the REPEAT
statement. The next REPEAT statement group is identical to
the preceding group, except that records from a different
partitioned member are used as input.

. END signals the end of a set of utility control statements.

In this example, output records are created from three sets of
utility control statements and written in three partitioned data
set members. Four fields are created and used in the
construction of the output records. In two of the fields
(FIELD1 and FIELD3), alphabetic data is shifted. FIELD2 is
fixed zoned decimal and FIELD4 is fixed alphameric. Figure 49
s?ows the partitioned data set members at the end of the job
step.

MEMBA
Field 1 Field 3 Field 2 Binary zeros
\ 31 51 n 80
ABEDEFGHIJKLMNOPQRSTUVWXYZABCD | ABCDEFGHIJKLMNOPQRST | 00000000000000000001 fitl
BCDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDE FGHIJKLMNOPQRS | 00000000000000000001 fill
CDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDE FGHIJKLMNOPQR| 00000000000000000001 fill

W ABCDEFGHIJKLMNOPQ] 00000000000000222001 | __£i)l |

MEMB8
Field 3 Field 3 Field 3 Field 2

1 21 41 61 80

ABCDEFGHIJKLMNOPQRST

ABCDEFGHIJKLMNOPQRST

ABCDEFGHIJKLMNOPQRST

00000000000000000001

ABCDEFGHIJKLMNOPQRS

ABCDEFGHIJKLMNOPQRS

ABCDEFGHIJKLMNOPQRS

00000000000000000001

ABCDEFGHIJLKMNOPQR

ABCDEFGHIJKLMNOPQR

ABCDEFGHIJKLMNOPQR

00000000000000000001}

ABCDEFGHIJKLMNOPQ ABCDEFGHIJKLMNOPO, ABCNEEGHKL 00PN | 0000000000002200000
MEMBC
Field 4 Field 1 Binary zeros
1 31 61 80
ABCDEFGHIJKLMNOPQRSTUVWX YZ0123| ABCDEFGHIJKLMNOPQRSTUVWXYZABCD fill
ABCDEFGHIJKLMNOPQRSTUVWX YZ0123| BCOEFGHIJKLMNOPQRSTUVWXYZABCD fill
ABCDEFGHIJKLMNOPQRSTUVWX YZ0123| CDEFGHIJKLMNOPQRSTUVWXYZABCD fill
ABCDEFGHLIKLMNOPQRSTUYWY ¥20123| DEFGHIJKI ManpQReTvwxyzaecn L fill

Figure 49. Partitioned Data Set Members at Job Step Completion

The control statements are discussed below:

. PAROUT1 DD defines the first member (MEMBA) of the
partitioned output data set. This example assumes that the
partitioned data set does not exist prior to this job step;
that is, this DD statement allocates space for the data set.

. PARQUT2 and PAROUT3 DD define the second and third members,
respectively, of the output partitioned data set. Note that
each DD statement specifies DISP=0LD and UNIT=AFF=PAROUTL.

. SYSIN DD defines the control data set that follows in the
input stream.

. DSD marks the beginning of a set of utility control
statements and refers to the DD statement defining the
member applicable to that set of utility control statements.

. FD defines the contents of a field that is used in the
subsequent construction of output records.

IEBDG Program 127

IEBDG EXAMPLE 6

/7/7UTSTS JOB

/7 EXEC

/7/SYSPRINT DD

//PAROUT1 DD

144

/77

/77

//PAROUT2 DD

/77

’/

/77

//PAROUT3 DD

7/

a4

/7

/7/7SYSIN DD
DSD
FD
FD
FD
FD
CREATE
END
DSD
CREATE
END
DSD
CREATE
END

/%

» »MSGLEVEL=1
PGM=IEBDG

SYSQUT=A)
DSNAME=PARSET(MEMBA) ,UNIT=disk,
DISP=(,KEEP),
VOLUME=SER=111111,SPACE=(TRK,(10,10,5)),
DCB=(RECFM=FB, LRECL=80,BLKSIZE=800,DSORG=PS)
DSNAME=PARSET(MEMBB) ,UNIT=AFF=PAROUT1,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS),
DISP=0LD,

VOLUME=SER=111111
DSNAME=PARSET (MEMBC) ,UNIT=AFF=PAROUT1,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS),
DISP=0LD,

VOLUME=SER=111111

DATA

OUTPUT=(PAROUT1)

NAME=FIELD1,LENGTH=30, FORMAT=AL,ACTION=S5L
NAME=FIELD2,LENGTH=20, FORMAT=2D
NAME=FIELD3,LENGTH=20, FORMAT=AL,ACTION=SR
NAME=FIELD4, LENGTH=30, FORMAT=AN
QUANTITY=4,NAME=(FIELD1,FIELD3,FIELD2)

OUTPUT=(PAROUTZ2)
QUANTITY=4,NAME=(FIELD2, (COPY=3,FIELD3))

CUTPUT=(PAROUT3)
QUANTITY=4,NAME=(FIELD4,FIELD1)

. CREATE constructs four records from combinations of
previously defined fields.

. END signals the end of a set of utility control statements.

In this example,

10 fields containing user—supplied EBCDIC
pictures are used in the construction of output records.

a record is written,
in the applicable FD statement.

After
each field is rolled or waved, as specified
Figure 50 shows the contents of

the ocutput records at the end of the job step.

FIELD1 FIELD 2 FIELD3 FIELD4 FIELD5 FIELD6 FIELD7 FIELDS FIELD9 FIELD10
AAAAA BBBBB A AA BB B AAA ccecece DDDD ¢ cc DD D| ccc
AAAAA | BBBBB A AA [BB B AAA ccccec DDDD C CcC DD D | ccc
AAAAA BBBBB A AA[BB B| AAA ccccc [pbbD c- ccC DD D |cce
AAAAA BBBBB| A AA |BB B | AAA CCCCC DDDD CcC CC DD D ccC
AAAAA BBBBB |A AA BB B| AAA cccce| pbbp cC ccC DD D | ccc
AAAAA | BEBBB A AA |BB B AAA ccccc |[DDDD c cC DD D |cCC
AAAAA|BBBBB A AA| BB B AAA cccce DDDD C CC DD D] ccc
AAAAA BBBBB A AA |BB B AAA jCCCCC DDDD C CC DD D CCC
AAAAA BBBBB |A AA BB B AAA ccccc|DDDD C CC DD D cccC
AAAAA BBBBB| A AA [BB B AAA ccecee DDDD cC CC DD p|[ccc
Figure 50. Contents of Output Records at Job Step Completion

128 MVS/370 Utilities

IEBDG EXAMPLE 7

72

//ROLLWAVE JOB ,,MSGLEVEL=1
/77 EXEC PGM=IEBDG
//5YSPRINT DD SYSOUT=A
/7/0UTSET DD DSNAME=SEQSET,UNIT=disk,DISP=(,KEEP),
77 VOLUME=SER=SAMP,SPACE=(TRK,(10,10)),
/7 DCB=(RECFM=FB, LRECL=80,BLKSIZE=800)
7/SYSIN DD *

DSD OUTPUT=(OUTSET)

FD NAME=FIELD1,LENGTH=8,PICTURE=8," AAAAA', ACTION=RO
FD NAME=FIELD2,LENGTH=8,PICTURE=8, "BBBBB ',ACTION=RO
FD NAME=FIELD3,LENGTH=8,PICTURE=8,"'A AA ',ACTION=RO
FD NAME=FIELD4,LENGTH=8,PICTURE=8," BB B',ACTION=RO
FD NAME=FIELD5, LENGTH=8,PICTURE=8," AAA ',ACTION=RO
FD NAME=FIELD6,LENGTH=8,PICTURE=8," CCCCC',ACTION=WYV
FD NAME=FIELD?7,LENGTH=8,PICTURE=8,' DDDD ',ACTION=WV
FD NAME=FIELD8, LENGTH=8,PICTURE=8," C CC ',ACTION=WV
FD _ NAME=FIELD9,LENGTH=8,PICTURE=8,"' DD D*,ACTION=WV
FD NAME=FIELD10,LENGTH=8,PICTURE=8,' CCC ",ACTION=WV
CREATE QUANTITY=300,NAME=(FIELD1,FIELD2,FIELDS3, c
FIELD4,FIELDS,FIELD6,FIELD?7,FIELDS, c
FIELD9,FIELD10)
END
/%

»
The control statements are discussed below:

] OUTSET DD defines the output sequential data set on a disk
volume. Ten tracks of primary space and 10 tracks of
secondary space are allocated to the data set.

] SYSIN DD defines the control data set that follows in the
input stream.

. DSD marks the beginning of a set of utility control
statements and refers to the DD statement defining the
output data set.

. FD defines a field to be used in the subsequent construction
of output records. The direction and frequency of the
initial roll or wave depends on the location of data in the
field.

. CREATE constructs 300 records from the contents of the
previously defined fields.

. END signals the end of a set of utility control statements.

In this example, the first 10 bytes of the output record contain
data generated in zoned decimal format. This field serves as
the key field for the output record in the output indexed
sequential data set. The key field is increased (indexed) by
one for each record. The input sequential data set provides an
additional 80-byte field to complete the output record.

IEBDG Program 129

130

72
//CREATEIS JOB MSGLEVEL=1
//BEGIN EXEC PGM=IEBDG
//TAPEIN DD DCB=(BLKSIZE=80,LRECL=80,RECFM=F),

7/ DISP=(OLD,KEEP),UNIT=disk,

/77 LABEL=(,5L),

/7 DSNAME=TAPEIT,VOL=SER=MASTER

//DISKOUT DD DCB=(BLKSIZ2E=270,LRECL=90,RECFM=FB, DSORG=1IS,
/77 NTM=2,0PTCD=MY,RKP=0,KEYLEN=10,CYLOFL=1),
/77 UNIT=disk,SPACE=(CYL,1),

77 DISP=(NEW,KEEP),

77 VOL=SER=111111,DSNAME=CREATIS

//SYSPRINT DD SYSOUT=A
7/7SYSIN DD *
DSD QUTPUT=(DISKOUT), INPUT=(TAPEIN)
FD NAME=DATAFD,LENGTH=80, FROMLOC=1, c
STARTLOC=11,INPUT=TAPEIN
FD NAME=KEYFD, LENGTH=10,STARTLOC=1, FORMAT=2ZD, INDEX=1
gSSATE INPUT=TAPEIN,NAME=(KEYFD,DATAFD)
/%

Th

[

e control statements are discussed below:
TAPEIN DD defines the sequential input data set.
DISKOUT DD defines the indexed sequential output data set.

SYSIN DD defines the control data set, which follows in the
input stream.

DSD marks the beginning of a set of utility control
statements and refers to the DD statement defining the
ocoutput data set.

FD defines a field that will be used in the subsequent
construction of output records. The first FD statement in
this example defines and locates an 80-byte field of input
data. The data is field selected from one of the input
logical records and placed at start location 11 of the
output logical record. The second FD statement defines and
locates the 10-byte key field.

CREATE constructs a 90-byte output record by referring to
the previously defined fields.

END signals the end of a set of utility control statements.

MVS/370 Utilities

IEBEDIT PROGRAM

INPUT_ AND QUTPUT

RETURN CODES

IEBEDIT is a data set utility used to create an output data set
containing a selection of jobs or job steps. At a later time,
data sets defined on tave volumes and direct access devices can
be used as input streams for job processing.

JEBEDIT creates an output job stream by editing and selectively
copying a job stream provided as input. The program can copy:?

U An entire job or jobs, including JOB statements and any
associated JOBLIB or JOBCAT statements, and JES2 or JES3
control statements.

. Selected job steps, including the JOB statement, JESZ2 or
JES3 control statements following the JOB statement, and any
associated JOBLIB or JOBCAT statements.

All selected JOB statements, JES2 or JES3 control statements,
JOBLIB or JOBCAT statements, jobs, or job steps are placed in
the output data set in the same order as they exist in the input
data set. A JES2 or JES3 control statement or a JOBLIB or
JOBCAT statement is copied only if it follows a selected JOB
statement.

When IEBEDIT encounters a selected job step containing an input
record having the characters "..*" (period, period, asterisk) in
columns 1 through 3, the program automatically conVerts that
record to a termination statement (/% statement) and places it
in the output data set.

A "/%nonblank"™ indicates a JES2 or JES3 control statement.

IEBEDIT uses the following input:

. An input data set, which is a sequential data set consisting
of a job stream. The input data set is used as source data
in creating an output sequential data set.

. A control data set, which contains utility control
statements that are used to specify the organization of jobs
and job steps in the output data set.

IEBEDIT produces the following output:

. An output data set, which is a sequential data set
consisting of a resultant job stream.

. A message data set, which is a sequential data set that
contains applicable control statements, error messages, if
applicable, and, optionally, the output data set.

IEBEDIT returns a code in register 15 to indicate the results of
program execution. The return codes and their meanings are
listed below.

IEBEDIT Program 131

CONTROL

Codes Meaning
00 (00 hex) Successful completion.

04 (04) An error occurred. The output data set may not be
usable as a job stream. Processing continues.

08 (08) An unrecoverable error occurred while attempting to
process the input, output, or control data set.
The job step is terminated.

Figure 51. IEBEDIT Return Codes

IEBEDIT is controlled by job control statements and utility
control statements. The job control statements are required to
execute or invoke the program and to define the data sets used
and produced by the program. The utility control statements are
used to control the functions of the program.

JOB CONTROL STATEMENTS

Figure 52 shows the job control statements for IEBEDIT.

Statement Use
JOB Initiates the job.
EXEC Specifies the program name (PGM=IEBEDIT) or, if the

job control statements reside in a procedure
library, the procedure name.

SYSPRINT DD Defines a sequential message data set. The data
set can be written to a system output device, a
tape volume, or a direct access volume.

SYSUT1 DD Defines a sequential input data set on a card
reader, tape volume, or direct access davice.

SYSUTZ2 DD Defines a sequential output data set on a card
punch, printer, tape volume, or direct access
device.

SYSIN DD Defines the control data set. The data set normally

is included in the input stream; however, it can be
. defined as a member of a procedure library or as a
sequential data set existing somewhere other than
in the input stream.

Figure 52. Job Control Statements for IEBEDIT

Notes to Figure 52:

1. The block size for the SYSPRINT data set must be a multiple
of 121. If not, the job step is terminated with a return
code of 8. The block size for the SYSIN, SYSUT1l, and S5YSUT2
data sets must be a multiple of 80. Any blocking factor can
be specified for these record sizes.

132 MVS/370 Utilities

Any JES2 or JES3 control statement or JOBLIB DD statement
that follows a selected JOB statement is automatically
copied to the output data set.

JES2 or JES3 control statements preceding the JOB statement
are assumed to belong to the previous job. JES2 or JES3
control statements preceding the first JOB statement are
included only if a total copy is requested.

JES2 or JES3 control statements within a DD DATA stream are
included only if a delimiter other than "/%" is coded in the
DD DATA card. For a description of coding another
delimiter, see the publication JCL. If another delimiter is
not coded, the first two characters of the JES2 or JES3
control statement will act as a delimiter to DD DATA.

UTILITY CONTROL STATEMENT

IEBEDIT uses only one utility control statement, EDIT.
Continuation requirements for the statement are described in
"Continuing Utility Control Statements™ on page 5.

EDIT Statement

The EDIT statement indicates which step or steps of a specified
job in the input data set are to be included in the output data

set.

Any number of EDIT statements can be included in an

operation, thus including selected jobs in the output data set.

EDIT statements must be included in the same order as the input
jobs that they represent. If no EDIT statement is present in
the control data set, the entire input data set is copied.

The format of the EDIT statement is:

[labell EDIT [START=jobnamel

[, TYPE=POSITION|INCLUDE|EXCLUDE!
[,STEPNAME=(namel,name-namell,...]

[,NOPRINT]
Applicable
control .
Parameters | Statements Description of Parameters
NOPRINT EDIT NOPRINT

specifies that the message data set is not
to include a listing of the output data set.

Default: The resultant output is listed in
the message data set.

IEBEDIT Program 133

Parameters

Applicable
control
statements

Description of Parameters

START

EDIT

START=jobname
specifies the name of the input job to which
the EDIT statement applies. (Each EDIT
statement must apply to a separate job.) If
START is specified without TYPE and
STEPNAME, the JOB statement and all job
steps for the specified job are included in
the output.

Default: If START is omitted and only one
EDIT statement is provided, the first job
encountered in the input data set is
processed. If START is omitted from an EDIT
statement other than the first statement,
processing continues with the next JOB
statement found in the input data set.

STEPNAME

EDIT

STEPNAME=(namel,name-namel),...
specifies the first job step to be placed in
the output data set when coded with
TYPE=POSITION. Job steps preceding this
step are not copied to the output data set.

name can be specified as a single job step
name or a sequential range of names,
separated by a hyphen: name-name. If more
than one value is specified for name, the
entire STEPNAME field must be enclosed in
parentheses.

When coded with TYPE=INCLUDE or
TYPE=EXCLUDE, STEPNAME specifies the names
of job steps that are to be included in or
excluded from the operation. For example,
STEPNAME=(STEPA,STEPF~-STEPL,STEPZ) indicates
that job steps STEPA, STEPF through STEPL,
and STEPZ are to be included in or excluded
from the operation.

Default: If STEPNAME is omitted, the entire
input job whose name is specified on the
EDIT statement is copied. If no job name is
specified, the first job encountered is
processed.

134 MVS/370 Utilities

Applicable

specifies the contents of the output data

control
Parameters statements pescription of Parameters
TYPE EDIT TYPE=POSITION|INCLUDE [EXCLUDE

set. These values can be coded:

POSITION

specifies that the output is to consist
of a JOB statement,
spacified in the STEPNAME parameter,

and all steps that follow it.

steps preceding the specified step are
omitted from the operation.

is the default.

INCLUDE

speci fies that the ocutput data set is
to contain a JOB statement and all job
steps specified in the STEPNAME

parameter.

EXCLUDE

specifies that the output data set is
to contain a JOB statement and all job
steps belonging to the job except those
steps specified in the STEPNAME

parameter.

the job step

POSITION

All job

IEBEDIT EXAMPLES

The following examples show some of the uses of IEBEDIT.
Figure 53 can be used as a quick-reference guide to IEBEDIT
examples. The numbers in the "Example" column refer to examples

that follou.

Operation

Devices

Comments

Example

COPY

9-track Tape

The input data set
contains three jobs.
One job is to be
copied.

1

corPYy

7-track Tape

The output data set is
the second data set on
the volume. One job
step is to be copied
from each of three
jobs.

COPY

Disk and
9-track Tape

. Include a job step from

one job and exclude a
job step from another
job.

COPY

Disk

Latter portion of a job
stream is to be copied.

Figure 53 (Part 1 of 2).

IEBEDIT Example Directory

IEBEDIT Program 135

IEBEDIT EXAMPLE 1

IEBEDIT EXAMPLE 2

Operation Davices Comments Example

COPY 9-track Tape All records in the 5
input data set are to
be copied. The "..x"
record is converted to
a "/%¥" statement in the
output data set.

COPY 9-track Tape The input contains a 6
JES2 or JES3 control
statement and a neuw
delimiter.

Figure 53 (Part 2 of 2). IEBEDIT Example Directory

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

In this example, one job (JOBA), including all of its job steps
(A, B, C, and D), is copied into the output data set. The input
data set contains three jobs: JOBA, which has four job steps;
JgBB, which has three job steps; and JOBC, which has two job
steps.

//7EDITL JOB 09#440,SMITH
V4 EXEC PGM=IEBEDIT
//SYSPRINT DD SYSOUT=A
//5YSUTL DD UNIT=-tape,DISP=(0OLD,KEEP),VOL=S5ER=001234%
/7/5YSUT2 DD UNIT=tape,DISP=(NEW,KEEP),VOL=SER=001235,
4 DCB=(RECFM=F, LRECL=80,BLKSIZE=80),
/77 DSNAME=QUTTAPE
7/SYSIN DD *
EDIT START=JOBA
7/ %

The control statements are discussed below:

. SYSUT1 DD defines the input data set. The data set resides
on a standard labeled tape volume (001234).

. SYSUT2 DD defines the output data set, called OUTTAPE. The
data set is to reside as the first data set on a standard
labeled tape volume (001235).

. SYSIN DD defines the control data set, which follows in the
input stream.

. EDIT indicates that JOBA is to be copied in its entirety.

by

This example copies one job step from each of three jobs. The
input data set contains three jobs: JOBA, which includes STEPA,
STEPB, STEPC, and STEPD; JOBB, which includes STEPE, STEPF, and
STEPG; and JOBC, which includes STEPH and STEPJ.

136 MVS/370 Utilities

//7EDIT2 JOB 09#440,SMITH

77 EXEC PGM=1EBEDIT

/7SYSPRINT DD SYS0UT=A

/75YSUT1 DD DISP=(0LD,KEEP),VOLUME=SER=001234%,

Va4 UNIT=tape

/7/75YSUT2 DD DSN=0OUTSTRM,UNIT=tape,DISP=(NEW,KEEP),
Vo4 DCB=(RECFM=F, LRECL=80,BLKSIZE=80),

7/ LABEL=(2,5L)

/7/8YSIN DD *
EDIT START=JOBA,TYPE=INCLUDE,STEPNAME=(STEPC,STEPD)
EDIT START=JOBB, TYPE-INCLUDE, STEPNAME=STEPE
EDIT START=JOBC, TYPE=INCLUDE, STEPNAME=STEPJ

7 ¥

The control statements are discussed below:

. SYSUT1 DD defines the input data set. The data set resides
on a standard labeled tape volume (001234).

. SYSUT2 DD defines the output data set, OUTSTRM. The data
set is to reside as the second data set on a standard
labeled tape volume (001235).

. SYSIN DD defines the control data set, which follouws in the
input stream.

. The EDIT statements copy the JOB statements and job steps
described as follows:

1. The JOB statement and steps STEPC and STEPD for JOBA.
2. The JOB statement and STEPE for JOBB.
3. The JOB statement and STEPJ for JOBC.

IEBEDIT EXAMPLE 3

This example includes a job step from one job and excludes a job

. step from another job. The input data set contains three jobs:
JOBA, which includes STEPA, STEPB, STEPC, and STEPD; JOBB, which
includes STEPE, STEPF, and STEPG; and JOBC, which includes STEPH
and STEPJ.

//7EDIT3 JOB 09#440,SMITH

77 EXEC PGM=IEBEDIT

/7S5YSPRINT DD SYSOUT=A

/775YSUT1L DD DSNAME=INSET,UNIT=disk,DISP=(0OLD,KEEP),

Va4 VOLUME=S5ER=111111

//75Y5UT2 DD DSNAME=0OUTTAPE,UNIT=tape, LABEL(,NL),

/77 DCB=(DEN=2,RECFM=F,LRECL=80,BLKSIZE=80),
Va4 DISP=(,KEEP)

/7/S5YSIN DD *
EDIT START=JOBB, TYPE=INCLUDE, STEPNAME=(STEPF-STEPG)
EDIT START=JOBC, TYPE=EXCLUDE, STEPNAME=STEPJ

/%

The control statements are discussed below:

U SYSUT1 DD defines the input data set, INSET. The data set
resides on a disk volume (111111).

IEBEDIT Program 137

IEBEDIT EXAMPLE 4

. SYSUT2 DD defines the output data set, QUTTAPE. The data
set is to reside as the first or only data set on an
unlabeled (800 bits per inch) tape volume.

. SYSIN DD defines the control data set, which follows in the
input stream.

This example copies the JOBA JOB statement,
and all the steps that follow it.
one job (JOBA), which includes STEPA, .
steps STEPA through STEPE are not included in the output data

The EDIT statements copy JOB statements and job steps as
described below:

1. The JOB statement and steps STEPF and STEPG for JOBB.

2. The JOB statement and STEPH,

excluding STEPJ, for JOBC.

the job step STEPF,
The input data set contains
STEPB, STEPL. Job

set.
//7EDIT4 JOB 09#440,5MITH
Vs EXEC PGM=IEBEDIT
/7/SYSPRINT DD SYSQUT=A

/7/5YSUTL DD
/77
77
/7/75YSUT2 DD

DSNAME=INSTREAM,UNIT=disk,
DISP=(OLD,KEEP),
VOLUME=SER=111111
DSNAME=OUTSTREM, UNIT=disk,
DISsP=(,KEEP),

/7 DCB=(RECFM=F, LRECL=80,BLKSIZE=80),
4 VOLUME=SER=222222,
7/ SPACE=(TRK,2)
7/SYSIN DD ¥
EDIT START=JOBA, TYPE=POSITION, STEPNAME=STEPF
/¥

The control statements are discussed below:

. SYSUTL DD defines the input data set, called INSTREAM. The
data set resides on a disk volume (111111).

. SYSUT2 DD defines the output data set, called OUTSTREAM.
The data set is to reside on a disk volume (222222). Two

tracks are allocated for the output data set.

. SYSIN DD defines the control
input stream.

data set, which follows in the

U EDIT copies the JOBA JOB statement and job steps STEPF
through STEPL.

138 MVS5/370 Utilities

IEBEDIT EXAMPLE 5

IEBEDIT EXAMPLE 6

This example copies the entire input (S5Y5UT1) data set. The
record containing the characters "..¥" in columns 1 through 3
converted to a "/¥ " statement in the output data set.

is

//EDITS JOB 09#440,SMITH

77 EXEC PGM=IEBEDIT

7//SYSPRINT DD SYSOUT=A

/75Y5UT2 DD DSNAME=0OUTTAPE,UNIT=tape,

/77 VOLUME=SER=001234,
Va4 DCB=(RECFM=F, LRECL=80,BLKSIZE=80),
77 DISP=(NEW,KEEP)

//7SYSIN DD DUMMY
/775YSUT1 DD DATA
//BLDGDGIX JOB

77 EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=0LD

/7/5YSIN DD *

BLDG INDEX=A.B.C,ENTRIES=10,EMPTY
.o X
/¥

The control statements are discussed below:

. SYSUT2 DD defines the output data set, called OUTTAPE. The
data set is to reside as the first data set on a tape volume

(001234).
. SYSIN DD defines a dummy control data set.

. 5YSUT1 DD defines the input data set, which follows in the

input stream. The job is terminated when the termination

statement (/¥b) is encountered. (SYSUT1 therefore includes

the BLDGDGIX JOB statement, EXEC statement, SYSPRINT, DD1
and SYSIN DD statements.)

This example copies the entire input (5Y5UT1) data set,
including the JES2 control statement, since a new delimiter (

JP)

has been coded. Otherwise, the "/%X" the JES2 control statement

would have terminated the input.

//7EDITé6 JOB 09#440,S5MITH

/7/STEPA EXEC PGM=IEBEDIT

7/SYSPRINT DD SYSOUT=A

/7/75YSUT2 DD DSN=TAPEQUT,UNIT=tape,

V4 VOL=5ER=001234,LABEL=(,5L),
Va4 DCB=(RECFM=FB, LRECL=80,BLKSIZE=800),
144 DISP=(NEW,KEEP)

/7/S5YSIN DD bpumMmy
/7/75YSUT1 DD DATA,DLM=JP
//LISTVTOC JOB 09#550,BLUE
/¥MESSAGE JOB NEEDS VOLUME 338000
//FSTEP EXEC PGM=IEHLIST
7/SYSPRINT DD SYSOUT=A
/7DD2 DD UNIT=disk,VOL=5ER=111111,DISP=0LD
/75YSIN DD *

LISTVTOC FORMAT,voL=disk=111111
/%
JP

IEBEDIT Program

139

140

The control statements are discussed below:

MVS/370 Utilities

SYSUT2 DD defines the output data set, called TAPEOUT. The
data set will be the first data set on a standard label tape

volume (001234).

SYSIN DD defines a dummy control
S5YSUT1 DD defines the input data
input stream. The DLM parameter
act as a delimiter for the input

IEBEDIT copies the JOB statement

data set.

set, which follows in the
defines characters JP to
data.

through the "/%X" statement

(including the LISTVTOC and MESSAGE job statements, FSTEP
EXEC statement, and SYSPRINT, DD2 and SYSIN DD statements).

IEBGENER_PROGRAM

IEBGENER is a data set utility that can be used to:

. Create a backup copy of a sequential data set or a
partitioned member.

. Produce a partitioned data set or member from a sequential
input data set.

. Expand an existfng partitioned data set by creating
partitioned members and merging them into the data set that
is to be expanded.

. Produce an edited sequential or partitioned data set.
. Reblock or change the logical record length of a data set.

. Copy user labels on sequential output data sets. (Refer to
Appendix C, "Processing User Labels" on page 446.)

. Provide optional editing facilities and exits for user
routines that process labels, manipulate input data, create
keys, and handle permanent input/output errors. Refer to
Appendix A, "Exit Routine Linkage™ on page 438 for a
discussion of linkage conventions that are applicable when
user routines are provided.

CREATING A BACKUP COPY

A backup copy of a sequential data set or partitionad member can
be produced by copying the data set or member to any
IBM-supported output device. For example, a copy can be made
from tape to tape, from DASD to tape, etc.

‘A data set that resides on a direct access volume can be copied

to its own volume, provided that its data set name is changed.
A partitioned data set cannot reside on a magnetic tape volume.

PRODUCING A PARTITIONED DATA SET FROM SEQUENTIAL INPUT

Through the use of utility control statements, the user can
logically divide a sequential data set into record groups and
assign member names to the record groups. IEBGENER places the
newly created members in a partitioned output data set.

A partitioned data set cannot be produced if an input or output
data set contains spanned records.

Figure 54 on page 142 shows how a partitioned data set is

produced from a sequential data set used as input. The left
side of the figure shouws the sequential data set. Utility

control statements are used to divide the sequential data set
into record groups and to provide a member name for each record
group. The right side of the figure shows the partxt\oned data
set produced from the saquential input.

IEBGENER Program 141

Sequential Partitioned

input output
. | Record
Utility control
Jgroup
statement names 1
first member Directory

3456

LASTREC 1

»

LASTREC 2

Utility control
statement identified
last record

LASTREC 1
Record
group

n %
2 ____/

Utility control
statement names
new member

LASTREC n

Utility control
statement identified
last record

LASTREC 2
Utility control
statement names
new member

Record
group

LASTRECn

Figure 54. Creating a Partitioned Data Set from Sequential Input
Using IEBGENER

EXPANDING A PARTITIONED DATA SET

An expanded data set is a data set into which an additional
member or members have been merged. IEBGENER creates the
members from sequential input and places them in the data set
being expanded. The merge operation—the ordering of the
partitioned directory—is automatically performed by the
program.

Figure 55 on page 143 shows how sequential input is converted
into members that are merged into an existing partitioned data
sat. The left side of the figure shows the sequential input
that is to be merged with the partitioned data set shown in the
middle of the figure. Utility control statements are used to
divide the sequential data set into record groups and to provide
a member name for each record group. The right side of the
figure shows the expanded partitioned data set. Note that
members B, D, and F from the sequential data set were placed in
available space and that they are sequentially ordered in the
partitioned directory.

142 MVS/370 Utilities

PRODUCING AN EDITED

Sequential Existing Expanded

input data set data set
Utility control :
statements defin (: : >
record groups, . .
Directory Directory
name members A @ C @% E
Members
W
__Ji__/,/
\\\~_ji__/,4
LASTREC
Member Q’/
° \\‘__E__///
\\\‘_E__’//
\\F—/
LASTREC
Member

F

N

Figure 55. Expanding a Partitioned Data Set Using IEBGENER

DATA SET

IEBGENER can be used to produce an edited sequential or
partitioned data set. Through the use of utility control
statements, the user can specify editing information that
applies to a record, a group of records, selected groups of
records, or an entire data set.

An edited data set can be produced by:
. Rearranging or omitting defined data fields within a record.
. Supplying literal information as replacement data.

. Converting data from packed decimal to unpacked decimal
mode, unpacked decimal to packed decimal mode, or BCD% to

EBCDIC mode. Refer to Data Management Services for more

information on converting from BCD to EBCDIC.

Figure 56 on page 144 shows part of an edited sequential data
set. The left-hand side of the figure shows the data set before
editing is performed. Utility control statements are used to
identify the record groups to be edited and to supply editing
information. In this figure, literal replacement information is
supplied for information within a defined field. (Data is
rearranged, omitted, or converted in the same manner.) The BBBB
field in each record in the record group is to be replaced by
CCCC. The right-hand side of the figure shows the data set
after editing.

4 Used here to mean the standard H character set of Binary
Coded Decimal.

IEBGENER Program 143

Utility control statement . J; I:ecord J;
Defines record group, contains >, >
literal replacement data (CCCC). > >
Applies to all records within § %
the group. : g
> Record >
> 2 >
> >
> =

b Record ‘
% group g :
>] >
> >
> /&-\,

’/va =
>
>
>
§
g
B

Record >
>
>
>

n

&

8

/ B

Figure 56. Editing a Sequential Data Set Using IEBGENER

TEBGENER cannot be used to edit a data set if the input and
output data sets consist of variable spanned (VS) or variablae
blocked spanned (VBS) records and have equal block sizes and
logical record lengths. In these cases, any utility control
statements that specify editing are ignored. That is, for each
physical record read from the input data set, the utility writes
an unedited physical record on the output data set.

REBLOCKING OR CHANGING LOGICAL RECORD LENGTH

INPUT AND OUTPUT

IEBGENER can be used to produce a reblocked output data set
containing either fixed-length or variable-length records. In
addition, the program can produce an output data set having a
logical record length that differs from the input logical record
length.

IEBGENER uses the following input:

. An input data set, which contains the data that is to be
copied, edited, converted into a partitioned data set, or
converted into members to be merged into an existing data
set. The input is either a sequential data set or a member
of a partitioned data set.

. A control data set, which contains utility control
statements. The control data set is required if editing is
to be performed or if the output data set is to be a
partitioned data set.

IEBGENER produces the following output:
L An output data set, which can be either sequential or

partitioned. The output data set can be either a new data
set (created during the current job step) or an existing

144 MVS/370 Utilities

partitioned data set that was expanded. If a partitioned
data set is created, it is a new member with a new directory
entry. None of the information is copied from the previous
directory entry.

. A message data set, which contains informational messages
(for example, the contents of utility control statements)
and any error messages.

. Message IEC507D will be issued twice when adding data or
members to an existing data set which has an unexpired
expiration date. This occurs because the input and output
data sets are opened tuwice.

RETURN CODES

IEBGENER returns a code in register 15 to indicate the results
of program execution. The return codes and their meanings are
listed below.

Codes Meaning
00 (00 hex) Successful completion.

04 (04) Probable successful completion. A warning message
is written.

08 (08) Processing was terminated after the user requested
processing of user header labels only.

12 (0C) An unrecoverable error exists. The job step is
terminated.

16 (10) A user routine passed a return code of 16 to
IEBGENER. The job step is terminated.

Figure 57. IEBGENER Return Codes

CONTROL
IEBGENER is controlled by job control statements and utility
control statements. The job control statements execute or
invoke IEBGENER and define the data sets that are used and i
produced by the program. The utility control statements control
the functions of IEBGENER.

JOB CONTROL STATEMENTS

Figure 58 on page 146 shows the job control statements for
JTEBGENER.

IEBGENER always uses two buffers, regardless of what was
specified in the DCB.

SYSPRINT DD Statement
The SYSPRINT DD statement is required for each use of IEBGENER.

The block size for the SYSPRINT data set must be a multiple of
121. Any blocking factor can be specified for this record si:ze.

S§YSUT1 DD Statement

The input data set for IEBGENER, as specified in SYSUTL, can
contain fixed, variable, undefined, or variable spanned records.

IEBGENER Program 145

SYSUT2 DD Statement

statement Use
JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBGENER) or, if
the job control statements reside in a procedure
library, the procedure name.

SYSPRINT DD Defines a sequential message data set. The data
set can be written to a system output device, a
tape volume, or a DASD volume.

SYSUT1 DD Defines the input data set. It can define a
sequential data set or a member of a partitioned
data set.

sYSUTZ2 DD Defines the output data set. It can define a
sequential data set, a member of a partitioned data
set, or a partitioned data set.

SYSIN DD Defines the control data set, or specifies DUMMY
when the output is sequential and no editing is
specified. The control data set normally resides
in the input stream; however, it can be defined as
a member in a partitioned data set.

Figure 58. Job Control Statements for IEBGENER

Concatenated data sets with unlike attributes are not allowed as
input to IEBGENER. For information on concatenated data sets,
see Data Management Services.

77 cards (JCL statements) cannot be included in the SYSUT1 data
set unless SYSUTL DD DATA is specified.

Block size must be specified for the input data set in one of
two ways:

L with the BLKSIZE parameter in the DD statement ™~
. in the DCB information on the tape label.

The default RECFM is U for the input data set. RECFM must be
specified if the data set is new, undefined, a dummy data set,
or a data set from a card punch.

The input LRECL must be specified when the record format is FB,

VS, or VBS, or when the data set is new, a dummy data set, or a

data set from a card punch. Inh all other cases, a default LRECL
is generated by IEBGENER.

A partitioned data set cannot be produced if an input data set
contains spanned records.

If both the SYSUT1 and the SYSUT2 DD statements specify standard
user labels (SUL), IEBGENER copies user labels from SYSUT1 to
SYSUT2. See Appendix C, "Processing User Labels" on page %46
for a discussion of the available options for user label
processing.

The output data set for IEBGENER, as specified in SYSUT2, can
contain fixed, variable, undefined, or variable spanned records
(except partitioned output data sets, which cannot contain
variable spanned records). These records can be reblocked by
the specification of a new maximum block length on the SYSUT2 DD

146 MVS/370 Utilities

SYSIN DD Statement

‘statement. During reblocking, if the output data set resides on

a direct access volume:

. For fixed-length or variable-length records, keys can be
retained only by using the appropriate user exit.

. For variable spanned records, keys can never be retained.

If the output data set is on a card punch or a printer, the user
must specify DCB information on the SYSUT2 DD statement. DCB
parameters in a SYSUT2 DD statement defining an expanded
partitioned data set must be compatible with the specifications
made when the data set was originally created.

When RECFM, BLKSIZE, and LRECL are not specified in the JCL for
the output data set, values for each are copied from the input
data set'’'s DSCB.

The output block size must always be specified when the logical
record length and record format (except for U) are specified.

The default RECFM is U for the output data set. RECFM must be
specified when a data set is new, a dummy data set, or a data
set from a card punch or printer.

The output LRECL must be specified when editing is to be
performed and the record format is FB, VS, or VBS. LRECL must
also be specified when the data set is new, a dummy data set, or
a data set from a card punch or printer. In all other cases, a
default LRECL value is generated by IEBGENER.

If the logical record length of the output data set differs from
that of the input data set, all positions in the output records
must undergo editing to justify the new logical record length.

A partitioned data set cannot be produced if an input or output
data set contains spanned records.

IEBGENER can not produce an output data set having a logical
record length that differs from the input logical record length
if both input and output RECFM are V or VB

TEBGENER will terminate with an unpredictable message or abend
code if DISP=0LD is specified on a SYSUT2 DD Statement making a
specific volume request for a nonexistent data set.

The SYSIN DD statement is required for each use of IEBGENER.
The block size for the SYSIN data set must be a multiple of 80.
Any blocking factor can be specified for this block size.

UTILITY CONTROL STATEMENTS

IEBGENER is controlled by utility control statements. The
statements and the order in which they must appear are listed in
Figure 59 on page 148.

The control statements are included in the control data set as
required. If no utility control statements are included in the
control data set, the entire input data set is copied
sequentially.

When the output is to be sequential and editing is to be
performed, one GENERATE statement and as many RECORD statements
as required are used. If user exits are provided, an EXITS
statement is used.

When the output is to be partitioned, one GENERATE statement,
one MEMBER statement per output member, and RECORD statements,
as required, are used. If user exits are provided, an EXITS
statement is used.

IEBGENER Program 147

GENERATE Statement

EXITS Statement

Statement Use

GENERATE Indicates the number of member names and alias names,
record identifiers, literals, and editing information
contained in the control data set.

EXITS Indicates that user routines are provided.
LABELS Specifies user-label processing.
MEMBER Specifies the member name and alias of a member of a

partitioned data set to be created.

RECORD Defines a record group to be processed and supplies
editing information.

Figure 59. IEBGENER Utility Control Statements

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements” on page 5.
A nonblank character continuation mark in column 72 is optional
for IEBGENER.

The GENERATE statement is required when: (1) output is to be
partitioned, (2) editing is to be performed, or (3) user
routines are provided and/or label processing is specified. The
GENERATE statement must appear before any other IEBGENER utility
statements. If it contains errors or is inconsistent with other
statements, IEBGENER is terminated.

The format of the GENERATE statement is:

{labell GENERATE [MAXNAME=n]
[,MAXFLDS=nl
[, MAXGPS=nl
[, MAXLITS=n]

The EXITS statement is used to identify exit routines supplied
by the user. Linkages to and from exit routines are discussed
in Appendix A, "Exit Routine Linkage" on page 438.

For a detailed discussion of the processing of user labels as
data set descriptors, and for discussion of user label totaling,
refar to Appendix C, "Processing User Labels” on page 446.

148 MVS/370 Utilities

LABELS Statement

MEMBER Statement

The format of the EXITS statement is:

[labell EXITS [INHDR=routinenamel
[,0UTHDR=routinenamel
[, INTLR=routinenamel
[,OUTTLR=routinenamel
[,KEY=routinenamel
[,DATASroutinenamel

[, IOERROR=routinenamel

[,TOTAL=(routinename,sizell

4

The LABELS statement specifies whether or not user labels are to
be treated as data by IEBGENER. For a detailed discussion of
this option, refer to Appendix C, "Processing User Labels" on
page 446.

The LABELS statement is used when the user wants to specify
that: (1) no user labels are to be copied to the output data
set, (2) user labels are to be copied to the output data set
from records in the data portion of the SYSIN data set, or (3)
user labels are to be copied to the output data set after they
are modified by the user's label processing routines. If more
than one valid LABELS statement is included, all but the last
LABELS statement are ignored.

The format of the LABELS statement is:

[labell LABELS [DATA=YES [NO|ALL [ONLY | INPUT]

LABELS DATA=NO must be specified to make standard user labels
(SUL) exits inactive when input/output data sets with
nonstandard labels (NSL) are to be processed.

The MEMBER statement is used when the output data set is to be
partitioned. One MEMBER statement must be included for each
member to be created by IEBGENER. The MEMBER statement provides
the name and alias names of a new member.

All RECORD statements following a MEMBER statement pertain to
the member named in that MEMBER statement. If no MEMBER
statements are included, the output data set is organized
sequentially.

The format of the MEMBER statement is:

[labell MEMBER NAME=(namel,aliasl...]

IEBGENER Program 149

RECORD Statement

The RECORD statement is used to define a record group and to
supply editing information. A record group consists of records
that are to be processed identically.

The RECORD statement is used when: (1) the output is to be
partitioned, (2) editing is to be performed, or (3) user labels
for the output data set are to be created from records in the
data portion of the SYSIN data set. The RECORD statement
defines a record group by identifying the last record of the
group with a literal name.

If no RECORD statement is used, the entire input data set or
member is processed without editing. More than one RECORD
statement may appear in the control statement stream for
IEBGENER.

Within a RECORD statement, one IDENT parameter can be used to
define the record group; one or more FIELD parameters can be
used to supply the editing information applicable to the record
group; and one LABELS parameter can be used to indicate that
this statement is followed immediately by output label records.

The format of the RECORD statement is:

[labell RECORD [IDENT=(length, "name',input-location])l

[,FIELD=([lengthl
[,input-location|'literal’l}
[,conversion
[,output-locationl)l]

[,LABELS=nl

Note that the variables on the FIELD parameter are positional;
that is, if any of the options are not coded, the associated
comma preceding that variable must be coded.

150 MVS/370 Utilities

Applicable

control .
Parameters statements pescription of Parameters
DATA EXITS DATA=routinename
specifies the name of the routine that
modifies the physical record (logical record
for VS5 or VBS type records) before it is
processed by IEBGENER.
LABELS DATA=YES INOIALL |ONLY | INPUT

specifies whether user labels are to be
treated as data by IEBGENER. These values
can be coded:

YES
specifies that any user labels that are
not rejected by a user's label
processing routine are to be treated as
data. Processing of labels as data
ends in compliance with standard return
codes. YES is the default.

NO
specifies that user labels are not to
be treated as data. NO must be
specified when processing input/output
data sets with nonstandard labels (NSL)
in order to make standard user label
(SUL) exits inactive.

ALL
specifies that all user labels in the
group currently being processed are to
be treated as data. A return code of
16 causes IEBGENER to complete
processing the remainder of the group
of user labels and to terminate the job
step.

ONLY
specifies that only user header labels
are to be treated as data. User header
labels are processed as data regardless
of any return code. The job terminates
upon return from the OPEN routine.

INPUT
specifies that user labels for the
output data set are supplied as 80-byte
input records in the data portion of
SYSIN. The number of input records
that should be treated as user labels
must be identified by a RECORD
statement.

IEBGENER Program 151

Applicable

control
Parameters statements bDescription of Parameters
FIELD RECORD FIELD=([lengthl,linput-location]'literal"l,

[conversionl,loutput-locationl]

specifies field-processing and editing
information. Only the contents of specified
fields in the input record are copied to the
output record; that is, any field in the
output record that is not specified will
contain meaningless information.

Note that the variables on the FIELD
parameter are positional; if any of the
options are not coded, the associated comma
preceding that variable must be coded.

The values that can be coded are:

length
specifies the length (in bytes) of the

input field or literal to be processed.
If length is not specified, a length of
80 bytes is assumed. If a literal is
to be processed, a length of 40 bytes
or less must be specified. The length
cannot exceed 8 decimal characters.

input-location
specifies the starting byte of the
field to be processed. input-location
should be coded as a decimal number.

pefault: Byte 1 is assumed.

Yliteral?
specifies a literal (maximum length of
40 bytes) to be placed in the specified
output location. If a literal contains
apostrophes, each apostrophe must be
written as two consecutive apostrophes.

conversion
specifies a 2-byte code that indicates
the type of conversion to be performed
on this field. If no conversion is
specified, the field is moved to the
output area without change. The values
that can be coded are:

PZ
specifies that data (packed
decimal) is to be converted to
unpacked decimal data. Unpacking
of the low-order digit and sign
may result in an alphabetic
character.

zZp
specifies that data (unpacked
decimal) is to be converted to
packed decimal data.

HE
specifies that data (H-set BCD) is
to be converted to EBCDIC.

152 MVS/370 Utilities

Applicable

control
Parameters statements Description of Parameters
FIELD RECORD

(continued)

(continued)

conversion (continued)
If conversion is specified in FIELD, the
following restrictions apply:

. PZ-type (packed-to-unpacked) conversion
is impossible for packed decimal records
longer than 16K bytes.

. For ZP-type (unpacked-to-packed)
conversion, the normal 32K-byte maximum
applies.

. When the ZP parameter is specified, the
conversion is performed in place. The
original unpacked field is replaced by
the new packed field. Therefore, the ZP
parameter must be omitted from
subsequent references to that field. If
the field is needed in its original
unpacked form, it must be referenced
prior to the use of the ZP parameter.

If conversion is specified in the FIELD
parameter, the length of the output record
can be calculated for each conversion
specification. When L is equal to the
length of the input record, the calculation
is made, as follous:

. For a PZ (packed-to-unpacked)
specification, 2L-1.

. For a ZP (unpacked-to-packed)
specification, (L/2) + C. If L is an
odd number, € is 1/72; if L is an even
number, C is 1.

. For an (H-set BCD to EBCDIC)
specification, L.

output-location
specifies the starting location of this
field in the output records.
output-location should be coded as a decimal
number.

The default location is byte 1.

IEBGENER Program 153

Applicable

(continued)

(continued)

control
Parameters Statements pescription of Parameters
FIELD RECORD

If both output header labels and output trailer
labels are to be contained in the SYSIN data set,
the user must include one RECORD statement
(including the LABELS parameter), indicating the
number of input records to be treated as user
header labels and another RECORD statement (also
including the LABELS parameter) for user trailer
labels. The first such RECORD statement
indicates the number of user header labels; the
second indicates the number of user trailer
labels. If only output trailer labels are
included in the SYSIN data set, a RECORD
statement must be included to indicate that there
are no output header labels in the SYSIN data set
(LABELS=0). This statement must precede the
RECORD LABELS=n statement which signals the start
of trailer label input records.

For a detailed discussion of the LABELS option,
refer to Appendix C, "Processing User Labels" on
page 446.

IDENT

RECORD

IDENT=(length, "name',input-location)
identifies the last record of the input
group to which the FIELD parameters of
MEMBER statement applies. If the RECORD
statement is not followed by additional
RECORD or MEMBER statements, IDENT also
defines the last record to be processed.

These values can be coded:

length
specifies the length (in bytes) of the
identifying name. The length cannot
exceed eight decimal characters.

specifies the exact literal that
identifies the last input record of a
record group. 'name' must be coded in
single apostrophes.

"name

Default: If no match for 'name' is
found, the remainder of the input data
is considered to be in one record
group; subsequent RECORD and MEMBER
statements are ignored.

input-location
specifies the starting byte of the
field that contains the identifying
name in the input records.
input-location should be coded as a
decimal number.

pefault: If IDENT is omitted, the remainder
of the input data is considered to be in one
record group; subsequent RECORD and MEMBER
statements are ignored.

INHDR

EXITS

INHDR=routinename
specifies the name of the routine that
processes user input header labels.

1564 MVS/370 Utilities

Parameters

Applicable
control
statements

Description of Parameters

INTLR

EXITS

INTLR=routinename
specifies the name of the routine that
processes user input trailer labels.

IOERROR

EXITS

I0ERROR=routinename
specifies the name of the routine that
handles permanent input/output error
conditions.

KEY

EXITS

KEY=routinename
specifies the name of the routine that
creates the output record key. (This
routine does not receive control when a data
set consisting of variable spanned (VS) or
variable blocked spanned (VBS) type records
is processed because no processing of keys
is permitted for this type of data.)

LABELS

RECORD

LABELS=n)
is an optional parameter that indicates the
number of records in the SYSIN data set to
be treated as user labels. The number n,
which is a number from 0 to 8, must specify
the exact number of label records that
follow the RECORD statement. If this
parameter is included, DATA=INPUT must be
coded on a LABELS statement before it in the
input stream.

MAXFLDS

GENERATE

MAXFLDS=n
specifies a number that is no less than the
‘total number of FIELD parameters appearing
in subsequent RECORD statements. MAXFLDS is
required if there are any FIELD parameters
in subsequent RECORD statements.

MAXGPS

GENERATE

MAXGPS=n
specifies a number that is no less than the
total number of IDENT parameters appearing
in subsequent RECORD statements. MAXGPS is
required if there are any IDENT parameters
in subsequent RECORD statements.

MAXLITS

GENERATE

MAXLITS=n
specifies a number that is no less than the
total number of characters contained in the
FIELD literals of subsequent RECORD
statements. MAXLITS is required if the
FIELD parameters of subsequent RECORD
statements contain literals. MAXLITS does
not apply to literals used in IDENT
parameters.

IEBGENER Program 155

Parameters

Applicable
control
statements

Description of Parameters

MAXNAME

GENERATE

MAXNAME=n
specifies a number that is no less than the
total number of member names and aliases
appearing in subsequent MEMBER statements.
MAXNAME is required if there are one or more
MEMBER statements.

NAME

MEMBER

NAME=(namef,aliasl...)
specifies a member name followed by a list
of its aliases. Names of multiple members
and their aliases should be coded as
follows: ((namel,aliasl),(name2,alias2),...)
If only one name appears in the statement,
it need not be enclosed in parentheses.

OUTHDR

EXITS

OUTHDR=routinename
specifies the name of the routine that
creates user output header labels. OUTHDR
is ignored if the output data set is
partitioned.

OUTTLR

EXITS

OUTTLR=routinename
specifies the name of the routine that
processes user output trailer labels.
OUTTLR is ignored if the output data set is
partitioned.

TOTAL

EXITS

TOTAL=(routinename,size)
specifies that a user exit routine is to be
provided prior to writing each record. The
keyword OPTCD=T must be specified for the
SYSUT2 DD statement. TOTAL is valid only
when IEBGENER is used to process sequential
data sets. These values must be coded:

routinename
specifies the name of the user-supplied
totaling routine.

size

specifies the number of bytes needed to
contain totals, counters, pointers,
etec. size should be coded as a decimal
number. :

156

MVS7370 Utilities

IEBGENER EXAMPLES

The examples that follow illustrate some of the uses of
IEBGENER. Figure 60 can be used as a quick-reference guide to
IEBGENER examples. The numbers in the "Example" column refer to
the examples that follow.

. Data Sset .
Operation Organization Device comments Example
COPY Sequential Card Reader and Blocked output. 1
Tape
COPY—with Sequential Card Reader and Blocked output. 2
editing Tape
COPY—with Sequential Card Reader and Blocked output. Input 3
editing Tape includes 7//cards.
COPY—ui th Sequential Card Reader and Blocked output. Input 4
editing Disk includes // cards.
PRINT Sequential Card Reader and Input includes 7/ 5
Printer cards. System output
device is a printer.
CONVERT Sequential Tape and Disk Blocked output. Three 6
input, members are to be
Partitioned created.
output
COPY—with Sequential Disk Blocked output. Two 7
editing members are to be
merged into existing
data set.
COPY—with Sequential Tape Blocked output. Data 8
editing set edited as one
record group.
COPY—with Sequential Disk Blocked output. New 9
editing record length
specified for output
data set. Two record
groups specified.
COPY—with Sequential Tape Blocked output. Data 10
editing set edited as one
record group.

Figure 60. IEBGENER Example Directory

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support®
on page 3 for valid device number notation.

JEBGENER Program 157

IEBGENER EXAMPLE 1

In this example, a card-input, sequential data set is copied to
a 9-track tape volume.

The

example follows:

/77
7/
/77
/77
7/

4
7/

i

/¥

/7/7SYSUT1 DD *

CDTOTAPE JOB 09#660,SMITH
EXEC PGM=IEBGENER
SYSPRINT DD SYSOUT=A
SYSIN DD DuMMY
SYSUT2 DD DSNAME=QUTSET,UNIT=tape, LABEL=(,SL),
DISP=(,KEEP),VOLUME=SER=00123%,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)

nput card data set)

The

IEBGENER EXAMPLE 2

158

In t
copi
part

job control statements are discussed below:

SYSIN DD defines a dummy data set. No editing is performed;
therefore, no utility control statements are needed.

SYSUT2 DD defines the output data set, OUTSET. The data set
is written to a tape volume with IBM standard labels. The
data set is to reside as the first (or only) data set on the
volume.

SYSUT1 DD defines the card-input data set. The data set
contains no /7 or /% cards.

his example, a card-input, sequential data set is to be
ed to a tape volume. The control data set is a member of a
itioned data set.

/77
'e4
44
4

/77
7/

77
(i

/¥

/7/75YSUT2 DD DSNAME=0UTSET,UNIT=tape, LABEL=(,SL),
/7
77 DISP=(,KEEP),VOLUME=SER=001234

CDTOTAPE JOB 09#660,SMITH
EXEC PGM=IEBGENER
SYSPRINT DD SYSOUT=A .
SYSIN DD DSNAME=CNTRLIBY(STMNTS),UNIT=disk,
DISP=(0OLD,KEEP),VOLUME=SER=111112,
DCB=(RECFM=F, LRECL=80,BLKSIZE=80)

DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
SYSUT1 DD *

nput card data set)

The

MVS/370 Utilities

job control statements are discussed below:

SYSIN DD defines the control data set, which contains the

utility control statements. The control statements reside
gs a member, STMNTS, in a partitioned data set called
NTRLIBY.

SYSUT2 DD defines the output data set, OUTSET. The data set
is written as the first data set on the tape volume.

IEBGENER EXAMPLE 3

IEBGENER EXAMPLE #%

In t

SYSUT1 DD defines the card-input data set. The data set can
go?zain no // cards, since SYSUT1 has not been specified as
ATA.

his example, a card-input, sequential data set is copied to

a tape volume. The input contains cards that have slashes (//)

in ¢
part

olumns 1 and 2. The control data set is a member of a
itioned data set.

/77
/7/
7/
/77
7/
7/
7/
7/
/7

Gi

/%

CDTOTAPE JOB 09#660,SMITH
EXEC PGM=IEBGENER

SYSPRINT DD SYSOUT=A

SYSIN DD DSNAME=CNTRLIBY(STMNTS) ,UNIT=disk,
DISP=(OLD,KEEP),VOLUME=SER=111112

SYSUT2 DD DSNAME=OUTSET,UNIT=tape,LABEL=(2,S5L),
VOLUME=SER=001234, DCB=(RECFM=FB, LRECL=80,
BLKSIZE=2000),DISP=(,KEEP)

SYSUT1 DD DATA

nput card data set, including // cards)

The

In t
a di

job control statements are discussed below:

SYSIN DD defines the data set containing the utility control
statements. The statements reside as a member, STMNTS, in a
partitioned data set called CNTRLIBY.

SYSUT2 DD defines the copied sequential data set (output),
called QUTSET. The data set is written as the second data
set on the specified tape volume.

SYSUTL DD defines the card-input data set. The data set is
to be edited as specified in the utility control statements
(not shown). The input data set contains // cards.

his example, a card-input, sequential data set is copied to
sk volume. The input data set contains // cards.

7/
4
/77
/7
/77
7/
44

7/
/7

i

/%

CDTODISK JOB 09#660,SMITH
EXEC PGM=IEBGENER

SYSPRINT DD SYSOUT=A

SYSIN DD DSNAME=CNTRLIBY(STMNTS),UNIT=disk,
DISP=(0OLD,KEEP), VOLUME=SER=111112

SYSUT2 DD DSNAME=0UTSET,UNIT=disk, VOLUME=SER=111113,
DIsP=(,KEEP),SPACE=(TRK,(10,10)),
DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)

SYSUT1 DD DATA

nput card data set, including 7/ cards)

IEBGENER Program 159

The job control statements are discussed below:

. SYSIN DD defines the control data set, which contains the
utility control statements. The control statements reside
as a member, STMNTS, in a partitioned data set.

. SYSUT2 DD defines the output data set. Ten tracks of
primary storage space and ten tracks of secondary space are
allocated for the data set on a disk volume.

. SYSUT1 DD defines the card-input data set. The data set is
to be edited as specified in the utility control statements
(not shown).

IEBGENER EXAMPLE 5

In this example, the content of a card data set is printed. The
printed output is left-aligned, with one 80-byte record

appearing on each line of printed output.

/7/CDTOPTR JOB 09#660,SMITH

V4 EXEC PGM=IEBGENER

/7/SYSPRINT DD SYSOUT=A

/7/7SYSIN DD DUMMY

775YSUT2 DD SYSOUT=A,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)}
7/75YSUT1 DD DATA

(input card data set, including 7/ cards)

/%

The job control statements are discussed below:

. SYSIN DD defines a dummy data set. No editing is performed;
therefore, no utility control statements are required.

. SYSUT2 DD indicates that the output is to be written on the

IEBGENER EXAMPLE 6

160

system output device (printer).

Carriage control can be

specified by changing the RECFM=F subparameter to RECFM=FA.

SYSUT1 DD defines the input card data set.

The input data

set contains // cards.

In this example,

a partitioned data set (consisting of three

members) is created from sequential input.
7/7TAPEDISK JOB 09#660,SMITH
77 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
/7/785YSUT1 DD DSNAME=INSET,UNIT=tape,LABEL=(,SL),
77 DISP=(OLD,KEEP),VOLUME=SER=001234
7/75YSUT2 DD DSNAME=NEWSET,UNIT=disk,DISP=(,KEEP),
77/ VOLUME=SER=111112,SPACE=(TRK,(10,5,5)),
7/ DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
/7/7SYSIN DD *
GENERATE MAXNAME=3,MAXGPS=2

MEMBER NAME=MEMBER1
GROUP1 RECORD IDENT=(8,'FIRSTMEM', 1)

MEMBER NAME=MEMBER2
GROUP2 RECORD IDENT=(8, 'SECNDMEM', 1)

MEMBER NAME=MEMBER3
/%

MVS/370 Utilities

IEBGENER EXAMPLE 7

The control statements are discussed below:

SYSUT1 DD defines the input data set (INSET). The data set
is the first data set on a tape volume.

SYSUT2 DD defines the output partitioned data set (NEWSET).
The data set is to be placed on a disk volume. Ten tracks
of primary space, five tracks of secondary space, and five
blocks (256 bytes each) of directory space are allocated to
allow for future expansion of the data set. The output
records are blocked to reduce the space required by the data
set.

SYSIN DD defines the control data set, which follows in the
input stream. The utility control statements are used to
create members from sequential input data; the statements do
not specify any editing.

GENERATE indicates that: (1) three member names are
included in subsequent MEMBER statements and (2) the IDENT
parameter appears twice in subsequent RECORD statements.

The first MEMBER statement assigns a member name (MEMBERL)
to the first member.

The first RECORD statement (GROUP1) idenfffies the last
record to be placed in the first member. The name of this
record (FIRSTMEM) appears in bytes 1 through 8 of the input
record.

The remaining MEMBER and RECORD statements define the second
and third members. HNote that, as there is no RECORD
statement associated with the third MEMBER statement, the
remainder of the input file will be loaded as the third
member.

In this example, sequential input is converted into two
partitioned members. The newly created members are merged into
an existing partitioned data set. User labels on the input data
set are passed to the user exit routine.

/75YSUTL DD
/7
/77
/75YSUT2 DD
Va4

77SYSIN DD

/%

//DISKTODK JOB 09#660,SMITH
EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A

DSNAME=INSET,UNIT=disk,DISP=(0LD,KEEP),

VOLUME=SER=111112,
LABEL=(,SUL)

DSNAME=EXISTSET,UNIT=disk,DISP=(MOD,KEEP),

VOLUME=SER=111113
%

GENERATE MAXNAME=3,MAXGPS=1
EXITS INHDR=ROUT1, INTLR=ROUT2
MEMBER NAME=(MEMX, ALIASX)
GROUP1 RECORD IDENT=(8, "FIRSTMEM', 1)
MEMBER NAME=MEMY

The control statements are discussed below:

. SYSUT1 DD defines the input data set (INSET).
data set, which resides on a disk volume,

user labels.

The input

has standard and

[SYSUT2 DD defines the output partitioned data set

(EXISTSET).

merged into the partitioned data set.

The members created during this Job step are

IEBGENER Program 161

IEBGENER EXAMPLE 8

162

SYSIN DD defines the control data set, which follows in the

input stream.
create members from sequential input data;

The utility control statements are used to
the statements do

not specify any editing.

GENERATE indicates that:

(1) a maximum of three names and

aliases are included in subsequent MEMBER statements and (2)
one IDENT parameter appears in a subsequent RECORD

statement.

EXITS defines the user routines that are to process user

labels.

The first MEMBER statement assigns a member name (MEMX) and
an alias (ALIASX) to the first member.

The first RECORD statement (GROUP1)
record to be placed in the first member.

identifies the last
The name of this

record (FIRSTMEM) appears in bytes 1 through 8 of the input

record.

The second MEMBER statement assigns a member name (MEMY) to

the second member.

The remainder of the input data set is

included in this member.

In this example, a sequential input data set is edited and

copied.
72
//7TAPETAPE JOB 09#660,SMITH
7/ EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A - :
/7/75YSUT1 DD DSNAME=OLDSET,UNIT=tape,DISP=(0OLD,KEEP),
7/ VOLUME=SER=001234,LABEL=(3,5L)
7/78YSUT2 DD DSNAME=NEWSET,UNIT=tape,DISP=(NEW,PASS),
77 DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
Vo4 VOLUME=SER=001235,LABEL=(,SL)
7/7S5YSIN DD *
GENERATE MAXFLDS=3,MAXLITS=11
RECORD FIELD=(10, "%xxxxxxxxx",,1), c
: FIELD=(5,1,HE,11),FIELD=(1,"'=",,16)
EXITS INHDR=ROUT1,0UTTLR=ROUT2
LABELS DATA=INPUT
RECORD LABELS=2

(first header label record)
(second header label record)

RECORD

(first trailer label record)
(second trailer label record)

/¥

LABELS=2

The control statements are discussed below:

[

SYSUT1 DD defines the sequential

input data set (OLDSET).

The data set was originally written as the third data set on

a tape volume.

SYSUT2 DD defines the sequential output data set (NEWSET).
The data set is written as the first data set on a tape

volume.

The output records are blocked to reduce the space

required by the data set and to reduce the access time

MVS5/370 Utilities

IEBGENER EXAMPLE 9

required when the data set is subsequently referred to. The

data set is passed to a subsequent job step.

. SYSIN DD defines the control data set, which follows in the
input stream.

. GENERATE indicates that: (1) a maximum of three FIELD
parameters is included in subsequent RECORD statements and
(2) a maximum of 11 literal characters are included in
subsequent FIELD parameters.

. The first RECORD statement controls the editing, as follows:
(1) asterisks are placed in positions 1 through 10, (2)
bytes 1 through 5 of the input record are converted from
H-set BCD to EBCDIC mode and moved to positions 11 through
15, and (3) an equal sign is placed in byte 16.

U EXITS indicates that the specified user routines require
control when SYSUT1l is opened and when SYSUT2 is closed.

. LABELS indicates that labels are included in the input
stream.

. The second RECORD statement indicates that the next two
records from SYSIN should be written out as user header
labels on SYSUT2.

. The third RECORD statement indicates that the next two
records from SYSIN should be written as user trailer labels
on SYSUT2.

This example shows the relationship between the RECORD LABELS
statement, the LABELS statement, and the EXITS statement.
IEBGENER attempts to write a first and second label trailer as
user labels at close time of SYSUT2 before returning control to
the system; the user routine, ROUT2, can review these records
and change them, if necessary.

In this example, a sequential input data set is edited and
copied.

72
//DISKDISK JOB 09#660,SMITH
7/ EXEC PGM=IEBGENER
7//SYSPRINT DD SYSOUT=A
//5YSUT1 DD DSNAME=0LDSET,UNIT=disk,DISP=(0LD,KEEP),
7/ VOLUME=SER=111112
/773YSUT2 DD DSNAME=NEWSET,UNIT=disk,DISP=(NEW,KEEP),
7/ VOLUME=S5ER=111113,DCB=(RECFM=FB, LRECL=80,
77 BLKSIZE=640),SPACE=(TRK,(20,10))
//SYSIN DD *
GENERATE MAXFLDS=4,MAXGPS=1
EXITS IOERROR=ERRORRT
GROUP1 RECORD IDENT=(8,'FIRSTGRP', 1), c
FIELD=(21,80,,60),FIELD=(59,1,,1)
GROUP2 RECORD FIELD=(11,90,,70),FIELD=(69,1,,1)
/%

The control statements are discussed below:?

SYSUT1 DD defines the input data set (OLDSET).

SYSUT2 DD defines the output data set (NEWSET).

Twenty

tracks of primary storage space and ten tracks of secondary

storage space are

allocated for the data set on a disk

IEBGENER Program

163

volume. The logical record length of the output records is
80 bytes, and the output is blocked.

SYSIN DD defines the control data set, which follows in the
input stream.

GENERATE indicates that: (1) a maximum of four FIELD
parameters are included in subsequent RECORD statements and
(2) one IDENT parameter appears in a subsequent RECORD
statement.

EXITS identifies the user routine that handles input/output
errors.

The first RECORD statement (GROUP1) controls the editing of
the first record group, as follows: (1) FIRSTGRP, which

appears in bytes 1 through 8 of an input record, is defined
as being the last record in the first group of records and

- (2) bytes 80 through 100 of each input record are moved into

positions 60 through 80 of each corresponding output record.
(This example implies that bytes 60 through 79 of the input
records in the first record group are no longer required;
thus, the logical record length is shortened by 20 bytes.)
The remaining bytes within each input record are transferred
directly to the output records, specified in the second
FIELD parameter.

*The second RECORD statement (GROUP2) indicates that the
remainder of the input records are to be processed as the
second record group. Bytes 90 through 100 of each input
record are moved into positions 70 through 80 of the output
records. (This example implies that bytes 70 through 89 of
the input records from group 2 are no longer required; thus,
the logical record length is shortened by 20 bytes.) The
remaining bytes within each input record are transferred
directly to the output records, specified in the second
FIELD parameter.

If the logical record length of the output data set differs from
that of the input data set (as in this example), all positions
in the output records must undergo editing to justify the neuw
logical record length.

164 MVS/370 Utilities

~—

IEBGENER EXAMPLE 10

In the example, a sequential input data set is edited and
copied.

72
//TAPETAPE JOB ...
77 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A .
7/SYSUT1 DD DSNAME=OLDSET,UNIT=tape, DISP=(OLD,KEEP),
/77 VOLUME=SER=001234,LABEL=(3,SUL)
//5YSUT2 DD DSNAME=NEWSET,UNIT=tape,DISP=(NEW,PASS),
77 VOLUME=SER=001235, LABEL=(,SUL),
/77 DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
/7/SYSIN Db x
GENERATE MAXFLDS=3,MAXLITS=11
RECORD FIELD=(10, "3x%%¥xx%xx%",,1), c
FIELD=(5,1,HE,11),FIELD=(1,"=",,16)
LABELS DATA=INPUT
RECORD LABELS=3

(first header label record)

(second header label record)

(third header label record)
RECORD LABELS=2

(first trailer label record)
(second trailer label record)

7%

The control statements are discussed below:

SYSUT1 DD defines the
is the third data set

SYSUT2 DD defines the output data set (NEWSET). The data
set is written as the first or only data set on a tape
volume. The output records are blocked to reduce the space
required by the data set and to reduce the access time
required when the data set is subsequently referred to. The
data set is passed to a subsequent job step.

SYSIN DD defines the control data set,
input stream.

GENERATE indicates that: (1) a maximum of three FIELD
parameters are included in subsequent RECORD statements and
(2) a maximum of 11 literal characters are included in
subsequent FIELD parameters.

The first RECORD statement controls the editing, as follows:
(1) asterisks are placed in positions 1 through 10, (2)
bytes 1 through 5 of the input record are converted from
H-set BCD to EBCDIC mode and moved to positions 11 through
15, and (3) an equal sign is placed in byte 16.

LABELS indicates that label records ére included in the
input stream.

The second RECORD statement indicates that three 80-byte
records (cards), to be written as user labels on the output
data set, immediately follow.

The third RECORD statement indicates that the following
cards are to be treated as trailer labels.

input data set (OLDSET).
on a tape volume.

The data set

which follows in the

IEBGENER Program 165

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

IEBIMAGE PROGRAM

SENERAL INFORMATION

IEBIMAGE is a data set utility that creates and maintains the
following types of IBM 3800 Printing Subsystem and IBM 4248
Printer modules and stores them in a library:

L Forms control buffer modules for the 3800 and 4248 that
specify controls for the vertical line spacing and any one
of 12 channel codes per line.

U Copy modification modules for the 3800 that specify data
that is to be printed on every page for specified copies of
the output data set.

. Character arrangement table modules for the 3800 that
translate the input data into printable characters and
identify the associated character set(s) and graphic
character modification module(s).

. Graphic character modification modules for the 3800 that
contain the scan patterns of user-designed characters and/or
characters from IBM-supplied modules. ’

] Library character set modules for the 3800 that contain the
scan patterns of IBM-supplied character sets and/or
user~defined character sets.

The IEBIMAGE program creates and maintains all modules required
for use on the 3800 Model 1 and Model 3 printers. The program
default is to build these modules in the 3800 Model 1 format;
however, 3800 Model 3 compatibility can be specified with
IEBIMAGE utility control statements.

IEBIMAGE can also be used to create and maintain FCB modules for
the 42648 printer.

r 3262 Model 5 Printer 1

The 4268 FCB modules created by IEBIMAGE are compatible with the
3262 Model 5 Printer; however, the 3262 Model 5 does not support
variable printer speeds or the horizontal copy feature of the
4248. Unless otherwise stated, where a reference to the 6248
printer is used in this chapter, the 3262 Model 5 can be
substituted.

- End of 3262 Model 5 Printer d

STORAGE REQUIREMENTS

For IEBIMAGE

The IEBIMAGE utility program is IBM-supplied and requires
pageable virtual storage in which to operate. The storage
needed by IEBIMAGE is given by the formula:

Storage requirements (in bytes) = G4K+4B+H

B The largest block size in the job step, rounded to the
next highest multiple of 2K. If the format specified
for the data set is VS, and LRECL is less than 32K, then
B is the maximum logical record length, rounded to the
next highest multiple of 2K.

166 MVS/370 Utilities

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

H The size of the largest member to be loaded from
SISI.IMAGELIB. rounded to the next highest multiple of
s K 1024 bytes.

For 8YS1.IMAGELIB

The auxiliary storage requirement in tracks for SYS1.IMAGELIB
is:

Numbar of tracks = (A+B)/T

A The number of 1403 UCS images, 3211 UCS images, 3211 FCB
images, 3525 data protection images, 3886 format
records, 3890 SCI programs, 3800 FCB modules, 4248 FCB
images, 3262 Model 5 FCB images, and 3800 character
arrangement tables (both IBM-supplied and user-defined
images or modules, as applicable).

If the appropriate printer is in the system, IBM
supplies twelve 1403 UCS images, five 3211 UCS imagas,
four 3211 FCB images, one 3800 FCB imagae, one 4245 UCS

| image table, one 4248 UCS image table, and fourteen 3800
character arrangement tables. According to the TABLE
parameter coded on the DATAMGT system generation macro,
IBM supplies the following number of additional
character arrangement tables:

U 5 if T3211 is specified
. 13 if T1403 is specified
. 10 if TOCR is specified
\ . 3 if TKAT is specified
/ e 3 if TFMT is specified

If TABLE = ALL is coded, add all the above numbers. If
ALL, T3211, or T1403 is coded, add two more tables for
th: ?RAFSPCI and GRF2SPC1 graphic character modification
modules.

Note that IBM supplies no 4245 or 4248 UCS imagaes in
SYS1.IMAGELIB. The 4245 and 4248 printers load thair
own UCS images into the UCS buffer at power-on tima.
IBM does supply 4245 and 4248 FCB images which may be
used. For more information on printer-supplied UCS or

FCB images, see tem Programmin ibr :
Management.
B (V+600)/1500 for each 3800 graphic character

modification module and library character set modula,
each 3800 copy modification module, 4245 UCS image

| table, 4248 UCS image table, and each 3890 SCI program
that is more than approximately 600 bytes. V is the
virtual storage requirement in bytes for each modula.
The virtual storage requirements for the IBM-supplied
3800 graphic character modification module containing
the World Trade National Use Graphics are 32420 bytas
for Model 1 and 55952 bytes for Model 3. The virtual
storage requirements for the IBM-supplied 3800 library
character sets for the Model 1 are 4680 bytes and 3064
bvtes for the Model 3.

T The approximate number of members per track, depanding
on type of volume. Because of the overhead bytaes and
blocks in a load module, the difference in space
requirements for an 80-byte module and a 400~-byte module
is small. These constants assume an average member of 8
blocks, including a file mark, with a total data length
of 800 bytes. For example, on a 3330 with 135 bytas of

g

IEBIMAGE Program 167

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

block overhead, the assumed average is 1880 bytaes. If a
different average member data length and average number
of blocks per member are anticipated, these constants
should reflect the actual number of members per track.
To determine the number of members per track, divide the
average member length, including block ovaerhead, into
the track capacity for the device. (Track capacity for

DASD is discussed in Data Management Macro

Instructions.)

T =3 for a 2305-1
6 for a 2305-2
4 for a 231472319
7 for a 3330 or a 3330-11
4 for a 3340 or 3344
8 for a 3350
8 for a 3375
9 for a 3380

The result, (A+B)/T, is the track requiremant.

The number of directory blocks for SYS1.IMAGELIB is given by the
formula:

Number of directory blocks = (A+C+D)/6
As calculated to determine the track requirement, above.

The number of modules used to calculate B, when
calculating the track requirement.

D The number of aliases. The IBM-supplied 1403 UCS images
have four aliases and the IBM-supplied 3211 UCS images
have six aliases. If they will not be used, these
aliases can be scratched after system generation.

MAINTAINING THE SYS1.IMAGELIB DATA SET

You will normally maintain SYS1.IMAGELIB using saveral programs
in conjunction with IEBIMAGE. For example, you may find it
necessary to rename or delete modules or to compress or list the
entire contents of the data set. Utility programs such as
IEBCOPY, 1EBPTPCH, IEHLIST, IEHMOVE, and IEHPROGM (as described
in this book) and HMASPZAP or AMASPZAP (as described in Service
Aids) should be used to help maintain SYS1.IMAGELIB.

If you use programs other than IEBIMAGE for maintenance, you
must specify the full module name. The module's full name
consists of a 4-character prefix followed by its 1- to
4-character user-assigned name. It is thus a 5- to 8-character
member name in the form:

FCB2xxxx, mhich identifies an FCB module that may be used
with a 3203, 3211, 3262 Model 5, %248, or 4245 printer.
Note that the 4248 accepts FCBs that will also work with a
3203, 3211, 3262 Model 5, or 4245 printer.

FCB3xxxx, which identifies a 3800 FCB module

FCB4xxxx, which identifies an FCB module that may be used
with a 4248 or 3262 Model 5 printer

MOD1Ixxxx, which identifies a 3800 copy modification module

XTBlxxxx, which identifies a 3800 character arrangement
table module .

GRAFxxxx, which identifies a graphic character modification
"module for a 3800 Model 1

GRF2xxxx, which identifies a graphic character modification
module for a 3800 Model 3

168 MVS/370 Utilities

ey

TNL GN26-8133 (30 Mar 84) to GC26-4065-1

LCSlpn, which identifies a library character set module for
a 3800 Model 1

LCS2nn, which identifies a library character set module for
a 3800 Model 3

where:
is the 1- to G~character user-assigned name of the module.

is the 2-character user-assigned ID of the module.

Alias names are not supported by IEBIMAGE, so you should be
careful if you use them. For example, if you change a module by
specifying its alias name, the alias name becomes the main name
of the new module, and the old module is no longer accessible
via the alias but is still accessible via its original main
name.

GENERAL MODULE STRUCTURE

Each module contains eight bytes of header information preceding
the data. For the 3800 printing subsystem, the general module
header is shown in Figure 61.

01 23]45|617
I_ i Length (in hexadecimal) of module, excluding the

8 bytes of header information
Reserved - (X‘0000°)
A 1- to 4-character identification of the module,

left-justified (excluding the system-assigned prefix)

Figure 61. 3800 General Module Header

Header information for the 4268 printer FCB module