
·
IBM Systems Reference Library

IBM Time Sharing System

Command System User's Guide

'ile No. S360-36
GC]8-2001- 9

Thi s is a reference book for users of the cOD'mands that
are part of the IBM Time Sharing System (TSS). The
command systew gives the user the atility to (1) con­
struct, execute, and debug programs; (2) create, modi­
fy, copy, and share data sets; (3) enter data into and
retrieve data from the system: and (4) modify and add
to the system-supplied commands.

Commands that are used exclusively ty the system opera­
tor, system manager, system administrator, and system
programmer are not presented in this book.

Three types of information make up the major part of
this reference: basic information for the new user,
examples, and command descriptions. Part II contains
seven sections, and each section descrites a different
category of commands. Introductory material in Part II
is provided to give the new user of the cOD'wand system
general knowledge of the commands. Part III contains
format illustrations and descriptions of the commands.
Parts II and III also contain examples that show ways
of using the commands.

Before reading Comnand System User"s Guide, you should
have general knowledge of TSS. For an introduction to
TSS see IBM Time Sharing system: Concepts and Facili­
ties, GC2S-2003. If you enter commands through a ter­
minal, you should be familiar with the ter1!'inal. See
IBM Time Sharing System: Terminal User"s Guide, GC28-
2017 -for instructions on operating the IBM 27111 COmmu-
nications Terminal and the IBM 1052 Printer-Keyboard.
A list of publications related to TSS appears in the
IBM Time Sharing system: Addendum, GC28- 2043 •

Tenth Edition (August 1976)

This is a major revision of. and makes obsolete. GC28-2001-8.
Extensi ve editorial and technical changes have been made in
this edition. Amon .. the modifications to the system that are
reflected in this publication are the following.

• Addition of the following commands.

BLIP
BLIP?
COBOL

EJECT
FILEDU'
FlLEREL

FTNH
HASH
LL

CDC
OSDD?
OSRUN

PllOPT
SPACE
Ti<I\NSLAT

• Changes to the SCRAXCH and HOLD options of the RELEASE
CD/!IlIand

• Clarified unit type parameters for several commands

This edition is current with Release 2.0 of the IBM Time
Sharing Systeml370 (TSSl370), and remains in effect for all
subsequent versions or modifications of TSS unless otherwise
noted. Significant changes or addi tions to this publication
will be provided in new editions of Technical Newsletters.

Requests for cOfies of IBM putlications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the baCk of this publication for
reader's comments. If the form has been removed,comments may
be addressed to: IEM Q:)rporation, Time Sharing System, Dept.
80M, 1133 westchester Avenue, White Plains, New York 1060'.

G)copyright International Business Machines corporation 1968,
1969, 1970, 1976

PREFACE

This is a general-pUY.'p03e ref,~rence manual
for the IBM Time Sharing System ('ISS) COfO­

mand system. Since users of tbis took have
varying degrees of knowledge about the com­
mand system, there d.re several levels of
information in it. The book is organized
as follows:

• Part 1. explains the basics of the <-"Om-­
mand system (for example, what a com­
mand statement is) and the method of
describing commands.

• Part II is divided into six sections.
each descr ibing one group of contrnands.
This contains general informat.ioll a.bout
the commands.

o Part XII contains format illustrations
and descriptions of Lhe commands. The
commands appear in alphab:etical order.
Examples of their use are providf?d.

• The appendixes provide supplementary
reference material, for: example. bulk
I/O procedures. system-snppll.ed tables
and default va lues. s pee i al codes for
printer and punch control, ;md dE!tailed
information about some commands.

If you are a new user of the command sys·­
tern, you should read Part II to get back-­
gromld knowledge about the com .. 'llands~ If,
in addi tioD. you a:r:e a new us er of 'TSS.
read IBM Time Sharin9.. sy~.!;..~~ Con.~:eets an<!
Facilities, GC28-2003 an introdu.ction t.o
the system. WhI.'!D you enter cCfmmands into
the system, enter them as shown in the for­
mat illustrations in Part. III. If you aI:e
entering commands at a terminal and are not
familiar with theterminal J :ce<!d IBM Time
Sharing system:_ ~rexminaJ .. _.us~!~~.j~!:i1de-:-­
GC28-20I7. You may have to review the rom­
mand descriptions dnd examples that are in
Part III

several times While you are learning the
system.

As you become familiar with the command
systelll. you may use only thE format ill us­
tration s in Par t 11. If you need a quick
reference, you may go immediately to Appen­
dix G.

Commands that: are used exclusively by a
system opelcator, admini stra tor, manager, or
prog rammer ,""re not deser ibed in this book.
Fox- info:t:'mation ahout t.hese cOll'mands see
!BM-,--'IJ:!.£l.~ .. S~.!!.~i!!.9..._~st;£~: OQerator' s Guide,
GC2S, .. 20:n, :g3J1_Tim~...:~haring S..Y§..tem: Mana­
~· __ §. __ ~l}.§_ l'~drnini?-t:l:"atm::s Guide, GC28-2024,
and ±EiL.!.!.!n~ __ ,Sh~rig9....S':l'stem: System Pro-
9:Eam~~!:~_::u?ujde? GC28··2008.

A publication list appears in IBM Time
Sharing ~'y'st_~~_ Add~du~. GC28-2043. Some
othel: publications in the IBM Time Sharing
System libra!.-y t.hat you may need to use, in
addi tion i:o theae that are listed above,
are:

Assembler User Macro Instructions,
---(;(:2 8- 2r:104--'-·'

I!!.!:E,2g::~~:j·ng _.J~S_§.L_ .. 1\ P rimer f or FOR TRAN
"::"::'::.CO:".' {;C 20··20 I> B

PART I: THE COMMAND SYSTEM
Command Format and Notation.

Command Statement
Operand Representation

Command Format Illustrations
Use of Metasymbols
Operation Format
Operand Format
Operand Descriptions

Command Function and Use
General Terms

PAR'I' II: USE OF COMMA NDS

SECTION 1: TASK MANAGEMENT
Communicating with the System •
Resource Contrcl

Conversational Mode •
Conversational Task Initiation
Conversational Task Execution •
Conversational Task Interruption
Conversational Task Termination •
Conversational Task output

Nonconversational Mode
Nonconversational SYSIN Data Set
Nonconversational Task Initiation •
Nonconversational Task Execution
Nonconversational Task Termination
Nonconversational ABEND Control
Nonconversational Task output •

Switching Modes

SEC'IION 2: DATA MANAGEMENT
Data Set Management
Text Editing

General TerIl'S
Invoking the Text Editor

Creating a Region Data set
Creating a Line Data set

Editing Data Sets
concatenating Input Records
Entering Hexadecimal Data •
Using the Text Editor.

Data Editing
source Input
Bulk output

SECTION 3: PROGRAM MANAGEMENT •
Language processing •

steps in Language processing
Listing Data sets

program Control •
Use of Corrmand statements
PCS Applications
Types of operand Specification
operand Definitions
Synonyms

Examples USing PCS Commands

SECTION 4: COMMAND CREATION.
Command procedure

procedure Library

iv

CON'IENTS

1
2
2
3
5
5
5
5
6
6
6

8

9
9

10
10
10
10
13
15
15
15

• 15
16
16
16
11
18
18

19
19
19
19
26
26
21
21
28
29
30
31
32
33

34
34
34
31
38
41
41
42
51
51
58

60
60
61

command Procedure Definition -- PROCDEF • 61
Specifying Dummy operands • • • • • • 61
Entering Procedure Text • • _ • • • 63
Terminating Procedure Definition • 63

Nested PROCDEFs 0 00 ••• 0 ••• 0 • 65
Nested Procedures 0 • 0 •• _ ••• _ •• 61
Sharing User-written Commands 0 • 68
Editing Procedures ••••• 68
Diagnostic Messages During Execution • • • • 70

Object Prograro Definition -- BUILTIN • 70
Operand Resolution and substitution • 70

Analysis of Calling and procedure Operands • • • • _ 71
Positional and Keyword Notation 0 • 0 _ • • • •• 71
Def aults • 0 • • • • • • • • • • • 72

Generation of Operand Equivalences • • • 74
Operand substitution •• _ • • 16

PROCDEF Examples • • 18

SECTION 5: MESSAGE HANDLING.
Message Generation and Reception

Message Explanation • •
Message Generation • • • •
Message Filtering • • _

Message File Construction •
Reference Message • • 0 •

Message Types and Format
Word Explanation Scope

SECTION 6: THE USER PROFILE
Synonyms and Defaults
PROFI LE Comrr:and 0 •

Implicit Operands •••

• • 81
• • 81
• • 81

• 81
• 81

82
• 83
• 84
• 87

• 88
• • 89

• • • • .. • 89
• 89

SECTION 7: PROGRAM PRODUCT LANGUAGE INl'ERFACE (PPLI) • 91
PROGRAM PRODUCTS UNDER TSS 0 • 0 0 • •

program products supported .0 0 0 ••

PROGRAM PRODUCT LANGUAGE INTERFACE COMMANDS •

PART III: COMMAND DESCRIPTIONS •••••
ABEND Command
ABENDREG Corrmand
ASM Command 0

/I.T Command
BACK Corrmand
BEGIN Command • •
BLI P COIT.mand
BLIP? Comrrand • 0

BRANCH Corrmand
BUILTIN Command 0

C, CA, and CB Commands
CALL Command
Direct Call • 0 0

CANCEL COll'roand
CATALOG Coromand •
CB Command
CDD ComIrand 0 0 0

CDS Command 0 0 0

CHGPASS Corrmand 0

CLOSE Command • 0

COBCL Cororrand 0 •

CONTEXT Corrmand •
CORRECT Command •
DAT A Corrmand
DDEF Corrmand • 0 • 0

DDNAME? Corrrrand • • • • •
DEFAULT Command 0 • 0 • •

DELEl'E Corrroand 0 0 0 ~
DISABLE, ENABLE, POST, and STET Commands

• 91
• 91
.91

• 92
• 92
• 92

• • 93
• 97
o 9B
• 99

o ••••• 100
.101

• 0 .101
• •• 102
• •• 103

.104

.105

.106

.107

.:111

.111
o .112

• •• 116
.117
.119

• •• _ •• 120
.122

o .126
o ••• 129

• •• 131
~ 132
.132
.134

v

DISPLAY Coromand
DMP RST COItroand
DSS? COIrmand
DlMP Command
EDIT Corrmand
EJECT Command
ENABLE Coromand
END Command
ERASE Comroand
EVV Command
EXC ERPT Command •
EXCISE Comroand
EXECUTE Coromand
EXHIBIT Command
EXIT Comnand
EXPLAIN Comroand
FILEDEF Command
FILEREL Command •
FTN Command
FTNH COIr.mand
GAV Command
GDV Command
GO Command
Gar 0 Corrmand
GSV ComIrand
HAS M Corrmand
IF Command
INSERT Corrrrand
JOBLIBS Cozrmand
K, KA, and KB Commands
KEYWORD Corrrrand
LINE? Comrr.and
LIS'! Command
LL Command
LNK Command
LOAD Cororoand
LOCATE Cozrrrand
LOGOFF Conmand
LOG CN Command
LTDS (List TAPE Datasets) Command
MCAST ComItand
MCASTAB COItroand
MOD IFY COImand
NUMBER COIfIl'and
ODC Command
OSDr:? Comrrand
OSRUN Comrrand
PC? Command
PERMIT Command
PLI comroand
PLIOPT Corrmand
POD? Corrmand
POS'I Command
PRI NI' ComII'and
PRMPr Comrrand
PROCDEF COII'rrand
PROFILE COII'rrand
PUNCH Comrrand
PUSH Corrmand
QUALIF'Y Command
REGION COIl'roand
RELEASE COIrmand
REMOVE Cororr,and
REI' ComIl'a nd
REVISE Corrmand
RTRN Corrmand
SECURE. Corrmand
S EI' Com Ita nd

vi

. .

.140

.142

.145

.147

.148

.150

.150

.151

.152

.154

.154

.156

.151

.158

.160

.161

.163

.164

.164

.161

.168

.169

.169

.110

.112

.112

.115

.116

.118

.178
.179
.180
.182
.184
.185
.181
.188
.189
.190
.192
.192
.195
.191
.202
.204
.205
.205
.205
.206
.208
.213
.215
.211
.218
.221
.221
.222
.223
.225
.226
.227
.228
.231
.232
.233
.234
.235
.236

SHARE COllllrand • •
SPACE Comrrand
STACK Com~and • •
STET COlt'.mand

• •• _ •• 237
• ••••• 239
• ••••• 239

.2110

.240 STOP Corrmand
STRING Corrmand
SYNCNYM Corrrnand •
TIME Corrmand

•••••••• •• 241
• • • • • .241

TRANSLAT Command
TRAP Corr.mand (System 370 only)
TV (Tape to VAM) command - • • _
UNLCAD corrroand • • • 8 • • • _ •

UPDATE Co~rnand • • • _ ••
USAGE Command • • • • • • _
VT (VAM To Tape) command
VV (VAM to VAM) Command.
WT command • • • • • •
ZLOGON Corornand • • • •

APPENDIX A: BULI< INPUT FROM MAGNETIC TAPE •
Information Needed by the System operator
Tape Format Requirements • v • • • • •

• _ • _ •• 243
••••••• 243

• ••••• 245
• ••••• 247

• .249
••• 250

.251
• u • • • .251
• ••••• 254

.256
• .258

.260
• .260

.261

.APPENDIX B: BULI< INPUT FROM CARD DECKS • • ~ ••• a _ •• 262
Nonconversational SYSIN Data set

Data-card Data set • • • • •
Data Descriptor Card
%ENCDS Card. • • • •

APPENDIX C: PROTOTYPE PROFILE
Table of system Defaults ••••
Basics of Translation. •
Chdracter switch Table • .. • •

APPENDIX D: CONTROL CODES AND CHARACTERS

.262
• •••• 262

• 263
• • _ • .265

.266

.266

.270

.282

.284

APPENDIX E: DETAILED DESCRIPTIO~ OF DDEF CCMMAND .286

.296

.297

APPENDIX F: CURRENT LINE POINTER

APPENDIX G: COMMAND FORMATS • fl •

APPENDIX H: I<EY TO VALUES DISPLAYED BY USAGE COMMAND .303

APPENDIX I: PL/I C(Jo1PILER
Control Options • • •
PREPROCESSOR Options
Input Options ••

. Output Options
Listing Options • • •
Dummy Options • • • •

OPTIONS •

APPENDIX J: COBOL/VS COMPILER OPTIONS •

.305

.306
• .306

• •• 307
• ••••• 307

.308

.309

• .310

APPENDIX I<: FORTRAN IV (H EXTENDED) CCMPILER OPTIONS .316

APPENDIX L: PL/I OPTIMIZING COMPILER OPTIO~S .319

INDEX • • • .329

vii

Table 1.
Table 2.

Table 3.
Table 4.

Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table II.
Table 12.
Table 13 .
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 2l.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
r-' ~ ,
_,dO e 27.
Table 28.
Table 29.
Table 30.
Table 3l.

Figure l.

Figure 2.

Figure 3.
Figure 4.

Figure 5.

viii

TABLES

Task management commands and their functions 9
Commands for SYSIN device and character set
selection . . · · · · · · · · · · · · · · · · 12
System responses to attention interruptions 13
Data set management commands and their
functions . · · · · 20
Text-editing commands and their functions · · 21
Data-editing commands and their functions 32
Bulk output commands and their functions 33
Language-processing commands 34
PCS commands and their functions · 40
Generation of operand equivalences · · · · · · · 75
Indication of operand resolution 75
Filter codes · · · · · · 82
Message content · · · · · · · · · · 86
User profile management commands 88
Implicit operands · · · · · · · · · 90
Characteristics of datasets used by CDS · .114
Type of prompt after the EDIT command · .149
PLCLPT options and system defaults · .209
Command system defaults · · · · · · · · · · · · .266
Prototype input character translation table · .272
Prototype output character translation table .277
Printer codes · · · · · · · · · · · .284
FORTRAN control characters for the printer · .284
IBM 2540 punch machine codes · · · · · · · · .285
FORTRAN control characters for the punch · .285
Format illustration of the DDEF command .286
Data set organization requirements .287
Typical use of DDEF operands · · · · .294
Command format summary · · · · · · .297
Explanation of output from the usage command .302
Formats of compiler options, abbreviations,
and standard defaults · · · · · · · · · · · · · .305

FIGURES

Flow of control from a nonconversational
task to a data set that continues the
task to normal termination . . 18
Format of output from the POD? command for
each member ..•••.•• • .217
Card deck for a non-conversational task ••• 263
An example of a SYSIN data set, showing input
data cards and the end-of-data card .263
An example of the data-card data set ••••. 263

PART I: THE COMMAND SYSTEM

The command system is the principal means with which you communicate
with the IBM Time Sharing System (TSS). With the command system, you
can create, execute, and debug your programs; you can create, alter, and
destroy collections of data (known as data sets); and you can modify
system commands or write your own commands. Each cOIlllTand acts as an in­
struction to the system; that is, it tells the system what operation you
want performed and on which data you want to operate.

The command system can be used in two modes: conversational and noncon­
versational. In conversational mode you interact with the system at
your terminal. AS you enter each command, it is executed by the system.
In nonconversational mode, the system executes one or more commands that
exist in a prestored data set. Each command is executed as it is
entered into the system from this data set, but there is no interaction
between you and the system through the terminal. In either mode, if you
have not deSignated that you are finished using the system, you are pro­
mpted for another command.

The system commands have been grouped into seven categories. These cat­
egories and the sections in which they are described in Part II are
listed below:

• 'I'ask management (see Section 1)

• Data management (see Section 2)

Bulk output (see Section 2)

• Prograrr management (see Section 3)

• comroand creation (see Section 4)

• Message handling (see section 5)

s User profile (see Section 6)

• Prograro product Language Interface (see Section 7)

Task management commands allow you to initiate, control, and terminate
the processing of your task. These commands do not manipulate data, nor
do they create programs; they are used to start and to stop execution of
your task.

Data management commands allow you to create and lTanipulate data sets.
These data sets can contain programs to be compiled, data to be main­
tained, or commands to be executed.

~ulk output commands allow you to initiate output oferaticns on system
printers or punches.

Prograro management commands allow you to initiate and control the execu­
tion of your programs, to initiate compilation cr asserrtly of data sets
created with data management commands, and to debug ycur programs after
they have been compiled or assembled.

Command creation commands allow you to create ycur cwn cClTmands to sup­
plerrent or replace system commands.

Fart I: The COlTwand System 1

MesSage handling commands allow you to create your own message file froK
which messages are issued to your task. You can sU~FleKent the system's
message file, create your own new messages. and display messages for
review or clarification.

User profile management commands allow you to control the environment in
which your task executes. You can alter values for operands; you can
change the translation tables; and you can choose whether to make your
changes permanent or temporary.

The Program product Language Interface (PPLI) allows you to execute the
OS/VS program product compilers via interface modules.

Note: Unless otherwise noted, the commands described in this book may
be used in either conversational or nonconversational operations.

This publication describes the oommand system for use in dOing produc­
tive work. The system maintainence commands are described in System
programmer's Guide, Operator's Guide, and Manager's and Administrator's
uuide.

CO~ND FORMAT AND NOTATION

The basic format of a command is:

r---------~--, I Operation I Operand I
t--------t--------------------------·--------------------~
I co It'llland lone operand; several operands delimited by commas or tabs; I
I name Ifield may be blank I l ________ 4--__ J

The operation field contains a command name, such as CANCEL or EXECUTE,
that identifies the command and its requested action~ The command name
m3Y not exceed eight characters or contain an embedded blank. The
operand field contains any information required by the command.

While the operation field specifies the action to be performed, the
operand field indicates the elements upon which the command is to act.
The operand field may be blank or may contain several operands, depend­
ing on the requirements of the operation. Multiple operands in an
operand field must be separated by commas or tabs. Blanks may be used
netween operands, in addition to the delimiter, but they are ignored by
the system. For example:

a,b,c
a, b, c

or
a (tab) b, c

yield identical results ~hen the command is executed. The operand field
must be separated from the operation field by either a tab or one or
more blanks.

Note: In the examples throughout this publication, commas are used as
operand se~arators.

COMMaND STATEMENT

A command statement is one command or a series of commands that are
separated by semicolons. The system recognizes a comrrand statement as
one SYSIN record. Normally, one command statement is written on one
line; however, when one command statement is written on more than one

2

line, you must end each line that is being continued with a hyphen. You
may corrwent a command, but the comment must be separated from the co~­
mand by a semicolon and the comment must be written between single quo­
tation marks. (I f several commands are used in the coo,mand statement,
there Il'Ust l::e a semicolon l:efore the comment and another semicolon
afterthe comment.) Comments do not affect execution. Comments can be
used in places other than on a command statement. You may begin a com­
ment after a system underscore, as follows:

'this is a comment'

'I'here are three types of command statements: dynamic, immediate, and
conditional. ~ dynamic corrmand statement contains an AT command, ~hich
specifies the location where the corrmands in the staterr.ent are executed.
An imrrediate command statement does not contain an AT command and is
executed when it is entered into the system. A conditional comroand
staterrent (dynamic or immediate) ccntains an IF cORrrand, and the part of
the statement following IF is executed only when the condition stipu­
lated by IF is true. The following are examples of immediate (1, 2, and
3), dynamic (4), and conditional (5) command statements:

1. delete myds; 'erase the catalog entry for myds'; cancel 3219;­
'eliminate print task'

2. execute datal; catalog data2,u,u;logoff

3. wt dsname=abc,dsname2=xyz,volume=1233,factor=3,startno=6,endno=35,­
prtsp=edit;'output data set'

4. at pgm.a;display x

5. if x>O; display Xi 'test variable Xl

The cORrrands are descril:ed and some examples cf the use of commands are
given in Part III. See also "Use of Command Statements" in section 3 of
Part II.

OPERAND REPRESENTATION

The system can determine the value of a specific operand in one of two
ways: (1) from the position of that operand within a series of operands
or (2) from a descriptive keyword preceding the operand value. When
positional operands are used, they must appear in the order that is
shown in the command format illustration. If a positional operand is
omitted and another positional operand is written following the omitted
operand, the delimiter (that is, comma or tab) that would have followed
the omitted operand must l::e used to indicate the relative position of
the ope~and that is included. For example, pcsitional cperands a, b,
and c may l::e written as:

a,b,c a, ,c a,b a ,b,c ,b r,c (blank)

Keywords may appear in any order, in the general forR,:

KEYWORD=value

where KEYWORD is the name of the operand and is shown in the illustra­
tion in all-capital letters, and value is the actual value of the
operand. Delimiters are not required to indicate omitted keyword
operands. When you enter keyword operands in positional notation, you

Part I: The Command System 3

can omit the keyword. You then follow the rules for entering operands
in positional notation.

Keyword and positional representation of operands way be used simul­
taneously in the same operand field. For example, assuming three
operands with keyworu representations expressed as A=x. B=y, and c=z,
the operand field may be represented as:

A=x,B=y,C=z A=x,y,z A=x,B=y,z x,c=z,E=y x,c=z E=y

When the keyword form is used, the same keyword operand can be repeated
several times in the operand string; however, the system uses the last
value specified in the operand string for a given operand. For exarrple:

command a=x,b=y,a=u,o=z,a=p

In this example, the keyword operand A takes a final value, A=P. If a
value is given to the same operand in both keyword and positional repre­
sentation, the last value encountered in the command statement is used
when the corrmand is executed. For example:

x,c=l,y,b=u

This corrrnand executes as if tbe values were:

x,u,y

Operands are resolved from left to right; that is, the last value
~~oountered for a given operand is used when tbe command is executed.
Again, if a command format shows three keyword operands:

r---------r----------------------,
loperaticnlOperand I
t--------+-----------------i
I COMMAND IA=term,B=value,C=name I l ________ ~ ______________________ J

the command can be entered as:

command x,y,z,b=p

The operand specified by B is resolved as B=p. The cornl1'and executes as:

coml1'and x, p, z

A self-defining keyword bas all the properties of a normal keyword. In
addition, the keyword may appear in a command by itself, without an
equal sign and value; in this case the user will be passed the Single
character 'Y'. If the keyword is entered by itself but prefixed with
"NO·, the user will be passed the single character ·N'. For example,
the follOWing two commands pass the same parameters to the user:

PROFILE
PROFILE

TASK=N
NOTASK

The examples are a guide; they do not contain all possibilities for
these operands. operand resolution is described rrore fully in Section 4
of Part II.

COMMAND FORMAT ILLUSTRATIONS

The following notational conventions are used in the command format
illustrations to explain how an operand is to be written.

USE OF METASYMBOLS

TO make the o~erands in the format illustrations clear, four metasymtols
are used:

Name
braces

brackets

vertical
stroke

ellipsis

Symbol
{ }

[)

OPERATION FORMAT

Use
delimit syntactical units (one or rrore operands)
that may be repeated; delimit alternatives.

delimit optional names and operands, or both, in
the appropriate field.

separates choices for the operand; for example,
{AlB} denotes that, for the syntactical unit enc­
losed by the braces, either A or B may be chosen,
but not both. {AlBIC} denotes that a choice rrust
be made tetw€en A, E, and C. Alternatives may also
be indicated ty aligning the choices vertically
within the braces: {:}

indicate that the preceding syntactical unit may te
repeated one or more times. If there is a system
limit to the number of repetitions permitted, this
is given in the operand list that follows the for­
mat illustration.

To distinguish command names in the format illustrations, uppercase let­
ters are used. The user may enter command names in either uppercase or
lowercase letters, depending on his mode of input (see "SYSIN Device and
Character Centrol," in Section 1 of Part II). In folded mode (that is,
uppercase letters and lowercase letters are equivalent), he may use
both. Unless specified by the user, this is the normal mode of keyboard
input. In full EBCCIC mode (that is, uppercase and lowercase letters
are differentiated by the system), he must use uppercase letters. The
operation must be separated from the operand by one or more spaces or by
a tab. A detailed description of how to enter conrrands is given in Sec­
tion 1 of Part II, under ·Communicating with the System."

OPERAND FORMAT

~ithin the operand field of the format illustration, the word or phrase
that is used to identify each operand is written entirely in lOwercase
letters. For positional operands, only the lowercase word or phrase ap­
pears; for keyword operands, the keyword (to the left of the equal sign)
is in uppercase letters, and the keyword descriptor (~o the right of the
equal sign) is in lowercase letters.

Note: Unless otherwise noted in the operand descriptions, all operands
shown in keyword format may be specified positionally. The converse is
not true; operands shown in positional format must be specified in posi­
tional notation.

Part 1: The Command System 5

Coded Value: This is a character or string of characters that must be
Olritten exactly as shown in the fcrrrat illustration. Ceded v~lues
always appear in format illustrations as nuwbers or u~~ercase letters,
either to the right of the equal sign or standing alone.

The comma, the period. and the parentheses have sfecial significance in
forwat illustrations. Commas (or tabs) must al~ays be used to separate
operands or to show the omission of positional operands, unless no other
operand follows the omission. Parentheses and reriods must be written
as shown in the format illustrations.

OPERAND DESCRIPTIONS

Detailed irlformation about writing each operand is given in a list fol­
lowing every format illustration. At the end of the cferand description
informatjon that appears under the heading "Specified as· describes the
valid specifications for the operand, and infcrnation under the heading
"System default, n descril:es the system's action if the operand is
omitted. System default is not shown if the system's default value is
null.

COMMAND FUNCTION AND USE

Following the operand description, the command is discussed under -Func­
tional Description g - "Programming Notes," and wCautions. R

-Functional Description" descrites the aC~lon of the system when the
command is received. "Programming Notes· cOutains information on how to
use the corrmand~ if none of this information is pertinent to the partic­
ular command, the subheading for these notes are OIri tted. "Cautions·
are statements of warning to the user about difficult.ies he may have in
using the command. "Cautions" appear only where applicable.

In the examples of command usage that follow the corrrrand description you
are given a brief description of what is being accomplished. The exam­
ple shows the user's input and the system's response.

GENERAL TERMS

These general terms are used in many of the comffiand descriptions in Part
III. (More terms. referring to a specific functional group of corrrrands,
are defined under "General Terms ft in Section 2 of Part II.)

cataloged
a data set is cataloged when its name and other rertinent informa­
tion is entered in the user's catalog. All VSAMv VIShM, am VPAM
data sets are automatically cataloged when they are created. All
others are cataloged via the CATALOG or EVV command.

data definition name (DDNAME)
the name assigned to the data set definiticIl for a given data set
by DDEF. This name consists of one to eight alpharreric characters,
the first of which must l:e alphabetic.

data set name (DSNAME)

6

the name used to identify a data set. A data set name consists of
one or more simple names. Each simple name has from one to eight
alpharreric characters. the first of which must be alphabetic. A
period is used as the separator between simple names.

GOA'!
GOAT.WINNER9
GOAT.RALPHR.S66.P1.A

The maximum number of characters, including periods, is 35. There­
fore, the m:tximun, number of simple names is 18.

~1l11y qualified data set name: identifies one specific data set;
it includes all simple names (that is, qualifiers or index levels)
of that data set name.

Partially qualified data set name: identifies two or more data
sets ty omitting the rightmost simple names of their fully quali­
fied data set names. For exarrple, the partially qualified data set
name GO.AE14 identifies data sets GO.AB14.Pl and GO.AB14.P2.

default value
the value that the system or user assigns to an operand of a com­
rr,and or to an implied operand. This val ue is used when the operand
is orr:itted.

defined
a data set is defined when its characteristics are described to the
systeIl'. Every uncataloged data set referred to in a task roust be
defined within that task; the definition must precede the first
reference. A data set may be defined by means of a CDEF command, a
DDEF nacro instruction, or a CDD command that results in execution
of a prestored DDEF command.

generation data group
a collection of successive, historically related data sets called
generations. The entire group is referred to by a single, partial­
ly qualified data set name that is limited to 26 characters to
allow for appending atsolute generation nUIl'bers.

generation names
specific generations of a generation data group are referred to by
appending an absolute or relative number to the generation data
group name.

Absolute qeneration numler: has the form GxxxxVyy, where xxxx is a
four-digit decimal generation number, and yy is a two-digit decimal
version number.

Example:

HURST.LINERQ.TT.G0002VOl
HARZ.G0452V23

A period must separate the absolute generation number from the
generation data group name to which it is appended.

Relative generation number: a plus or minus decimal number. The
relative generation number of the most recently cataloged genera­
tion is CO); the generation just prior to that is (-1), and the one
just prior to (-1) is (-2); a new generaticn is (+1).

Example:

GOST. nCO)
GOST.FF.PKJ(+l)

Part II: Use of Commands 7

line
a physical record in a line data'set or region data set. Also,
line may refer to a unit of information entered from a terminal.
In this context-, a line consists of the string of characters (in­
cluding blanks) typed in before the RETURN key is pressed.

member name
identifies a member of a VPAM data set. The memter name consists
of fro~ one to eight alphameric characters, the first of which rrust
be alphabetic.

FRH. T4 (SWIN;8)

The member name is enclos ed in par enthes es and immediately fellows
the VPAM data set name.

source list
a string of commands or program calls used as input to the system.

volume identification
the identification assigned tc a specific volurre. The volume iden­
tification cons its of from one to six alphameric characters.

PART II: USE OF COMt.1ANDS

The system-SuFplied com~ands are grouped into seven categories. tach
group has a different function. Tbe groups are:

• Task management

• Data management

• Progran management

• Command crea-tion

• Message handling

• User frofil€:'

• Program Product Language Interface (PPLI)

The commands in each grcmr are discussed in the secticns that follow.
Detai led descriptions of the commands are presented in Part III.

8

SEC'l'ION 1: TASK MANAGEMEN'I

Task uanagement commands allow the user to initiate and terminate tasks
or to supplement or change the system's operaticn fcr his own task. The
term "task" describes any discrete sequence of the system's operations
for the user.

The user's task comprises all the work done by and for the user. It is
initiated by a LOGON conmand and is terminated by a LCGCFF command.
However, certain conditions, such as an abnormal task termination
(ABEND), cause the system to issue a LOGOFF command to terminate the
current task and a LOGON command to initiate a new task for the user.

The task management comrr.ands and their system functions are shown in 'Ia­
ble 1.

Table 1. Teask management commands and their functions

r--------T---,
ICoumand I Function I
~--------+--~ I ABEND IEliminate the current task; start a new task. I
I I I
IABE~DREGIDisplay register contents at the tlue of the rrost recent I
I IllEENr:. I
I t I
I BACK I Shift the user's conversational task to nonconversational I
I I node. I
I I I
,BEGIN Iconnect the user to an MTT application prograrr. I
I I I
I CANCEL ITerminate execution of a nonconversational task prior to its I
I I normal end. I
I I
ICHGPASS Alter the user's password. ,
I I
IEXECUTE Initiate a previously defined nonconversaticnal task. I
I ,
IEXHIBIT Display the activity of the batch work queue cr of a user ,
, task. I
I ,
I LOGOFF ~otify the system that the user wants tc teruinate his task. I
I I
,LOGON Iden tify the user to the system for initiation cf his task. I
I I
I SECURE Identify the types of I/C devices that are needed for privatel
I data sets in a nonconv€rsational task. I
I I
,TIME I Establish a time limit for execution of the task. I
I I I
'USAGE IPresent statistics relating to the user's utilization of sys-I
I I tern resources. I
I I I
IZLOGON IPerform, at LOGCN, a user's previously defined procedure. I L ________ ~ ___ J

Communicating with the System

The user is known to the system by his user identificaticn, which is as­
signed to him by an installation administrator using the JCIN comrrand.
All the user's data is stored in the system under his identification.

Section 1: Task Managerrent 9

'l'hus, when the user is connected to the system, the m1n:U!lUm data re­
quired to initiate communication is his user ident_ification.

Resource Control

When the user is joined to TSS. he is assigned a user limits tatl €,

~hich centrols the allocation of system resources for his use. The user
is limited to the a~ount of CPU time, connect time, pages of permanent
and temporary storage, unit-record devices, direct access devices, wag­
netic tape devices, bulk I/O, and tasks. ~hese rations are imposed ei­
ther for a specific time period or for the cumulative time that the user
is joined to the system. The limits established for a user are deter­
mined by his installation. ThE user can examine his usage of rescurces
with the USAGE command (sEe Part III).

CONVERSATIONAL MODE

CONVERSATIONAL TASK INI~IATION

After t.UI:-ning on his terminal and dialing the systerr, the user initiates
his task by entering a correct LOGON command. He also has the option of
connecting to an already running task with the BEGIN corrmand. He rray
enter his comffiands through his terminal keyboard, or card reader6 to di­
rect execution of his task.

SYSIN: This name designates the source clf the input stream, which con­
tains the series of command statements that direct the user's ~<:ask. and
may include source language statements and data. In conversational
mode. this input stream is entered through the user's terminal. 'Ihe
executable command statements within a conversational SYSIN are recorded
only as the printed listing a t the terll'i nal, the exceI-tions are t te
DATA, MeDlEY, and text-editing commands. which ar8 used to build a data
SEt that is recorded within t_he system.

TIME: AS a part of the initialization {LCGCN} process, the systerr auto­
matically invokes the TH',E command g establ ishing a CPU time limit for
execut_ion of the user· s task. 'Ihe user may specify a time limi tv not
exceeding 7 1/2 hours. by issuing the TIME corrrrand at any time during
his ta~3k.

CONVERSATIONAL TASK EXECUTION

After the initialization process has been com~leted. the system asks the
user to enter his nt'".xt ccmmand statement (see -Request for Next CorrIt'and
Statemen-t, '" below) and engages in a conversation with hiro. The user's
part of this dialog consists of any ccrr~and and source language state­
ments that he enters during execution of his t_ask and his replies to the
messages issued by the system. The system"s part of this dialog con­
sists of messages to the user. responses to his command statements, and
requests for command statements. ~he user has control over the length
and type of messages he receives. (Details are presented later in Sec­
tion 5. Message texts appear in this manual as part of the exawples.
lllJeSsages are published in System Messages, GC28-2037. The system issues
general information messages and diagnostic messages that inform the
user of error conditions.

INFORMATION MESSAGES: These messages prompt the conversational user to
supply certain information when a mandatory operand bas been omitted or
inform the user of the actions the system has taken in executing a com­
mand staterr,ent.

10

DIAGNOSTIC MESSAGES: These messages warn the user of errors that he has
made in entering a command name or operands. Scme nessages request the
user to correct his errcrs.

ENTERING COMMAND STATEMENTS: Command statements may be entered into the
systen fraIl' the us er' s terminal, the system card reader, cr a magnetic
input device in which the information is stored in card-image fornat.
Uppercase and lowercase notations in this publication are illustrative:
command statements may be entered in either fcrn.

The end of a command statement entered from the terminal keyboard is in­
dicated by pressing the RE'IURN key. If a comnand staterrent requires
more than cne line. one hyphen must be typed at the end of the line be­
fore the RETURN key is pressed. 'Ihe hyphen signals that the staterrent
is not complete and is continued on the next line.

ComIl'and statements that are entered through the terminal card reader can
utilize free-form format (that is, input is net restricted to particular
card fields). The 11-5-9 punch, following the command operands, is used
to signify end of block (EOB) for command statements. For statements
longer than 80 characters, with the terminal FOB switch on, the con­
tinuation character may appear in any available column. If the ECE
switch is cff, the continuation character is not needed unless the
staterrent exceeds 260 characters.

Note: Nonconversational input thrcugh a high-sFeed card reader does not
require the 11-5-9 punch to signify EOB: its inclusicn will have no
effect. A semicolon is a valid command separator. An EOB is automati­
cally inserted by the card reader at the end of every card. A continua­
tion character must appear (in any column) for command statements that
req uire more than one card.

caution: In most cases, tat characters are treated as spaces and are
valid characters in the command system. However, because of physical
limitations in terminal devices, displaying tabs of more than 65 consec­
utive spaces at the terminal printer might cause the next character to
be lost. Furthermore, when two or rrore consecutive tats are entered
through the terminal card reader, they may not be printed correctly at
the terminal printer, even though they are correctly transmitted to the
system.

REQUE.ST FOR NEXT COMMAND STATEMENT: The systerr, inforrrs the terminal
user that it is ready to accept his next corrmand staterrent by printing a
prompt character that, initially, is an underscore character (_) in the
first character position of a new line. ('Ihe system backspaces one
space so that the first character you enter is above the underscore.)
When the terminal card reader is being used to enter input, the system
signals that it is ready for the next card, or the next command on a
card, by printing the underscore.

SYSIN DEVICE AND CHARACTER CON'IROL: The user has six ccmmands n isted
in 'Iable 2) that he can use to select the SYSIN device or the character
set he wants to use for communication with the system.

When the user initiates a conversational task, the system checks the
value of the ALPHABET operand in the user's profile (see Section 6).
Initially, its value is 1, which indicates folded mode. The user can
type any lowercase letter, and the system converts it to uppercase. ~he
special characters, , -E 1, ~r I, and $, are valid alphabetic charac­
ters in either mode. The system accepts the full EBCDIC character set
when the user enters KA. To initiate card reading, the user enters the
C, CA, or CB command at the keyboard and presses the RETURN key. The
systerr reads all the cards or reads cards until the user presses the A~­
TEN'IION key or until a R, RA, or RE corrwand is read. After any of these
conditions, the system requests the next input from the keyboard.

section 1: 'Iask Management 11

For further instructions on SYSIN device selection and character con­
trol, refer to Terminal User's Guide.

Table 2. Commands for SYSIN device and character set selection

r-------T--,
Iconmandl Function I
~-------+--i I C ITransfer control to the card reader; if the keyboard mode was I
I IRA, CA is the new mode; if KB was the keyboard mode, CB is I
I Ithe new mode. I
I I I
I CA ITransfer control to the card reader and convert card input I
I I from 1057 Card-Punch code to EECCIC. I
I I I
I CB ITransfer control to the card reader and convert card input I
I I frcm 029 punch code to EBCDIC. I
I I I
I R ITransfer control to the keyboard: if the character set used I
I I during card reader input was CA, KA is the new mode; if CB I
I Iwas the card reader mode, RB is the new mode. I
I I I
I RA ITransfer control to the keyboard and use the full EBCDIC I
I Icharacter set. Can be used to change the ALPHABET operand ,
I Iwithout transferring control. I
I I I
I KB ITransfer control to the keyboar~ and use the fclded character I
I Iset. Can be used to change the ALPHABET operand without I
I Itransferring control. I l _______ i _______________________________ . __________________________ .J

COMMAND STATEMENT EXECUTICN: First, every connand statement entered by
the user is analyzed to determine if it is valid. Then, if it is, the
actions requested by the command statement are performed. Lastly, the
user is prcmpted to enter the next statement. If a co~mand in a coaaand
staterrent is not valid, the system issues a diagnostic message, which
may request the user's corrections. If the invalid command is canceled,
the rest of the command statement is executed befcre the system invites
the user tc enter his correction or the next statenent. Prompting mes­
sages are issued as each command in a statement is analyzed, and the
user can supply requested information when the rressage is issued.

correctly entered commands have the same effect whether they are entered
in one statement or in individual statements. For example:

call abc; print resultds",edit; delete gh.k

produces the same result when Executed as:

call abc
print l';esultds", edit
delete gh. k

The first example (three corrIDands in one conmand statement) is more con­
venient for the user, since he does not have to ~ait for the executicn
of each command before he can enter the next command. If the CALI com­
mand had been entered incorrectly and was canceled by the system, the
user would not be able to correct the ccrorrand until the other two corr­
mands were executed. In the second exarrple, he would be atle to correct
his error tefore PRINT and DELE~E were executed.

COMMAND STA'IEMENT RESOLUTICN: When a command statement is entered, the
system goes through this sequence of events to resolve the contents of
the statement.

12

1. The system searches a list of synonyms to see if one exists for the
specified command name. If one does, the system replaces the spec­
ified name. This step is repeated until no further synonym is
found.

2. The system searches the user's procedure :library. which contains
corrmands he has written. to SEe if the command name exists there.
If it does, the system performs the action described in Item 5. If
it does not, the system performs the action described in Iterr 3.

3. ~he system searches the system's procedure library, which contains
systen-sufplied corrmands. If the command name is there. the systeF
performs the action descrit€d in Item 5. If not, the system dces
Item 4.

4. The system assumes that what 'Was entered was a module name<7 not a
corr.mand name. A direct progr am call is executed.

5. The system resolves the operands.

a. When keywords are specified, the list of synonyms is searched.
If a synonym is found D it is inserted in place of the specified
keyword.

b. If explicit operand values are specified. they are used; if
net, the system does Item c.

c. A list of user default values is searched; if values exist v
they are inserted; if not, the system does Item d.

d. A list of system default values is searched: if values exist,
they are inserted; if not, the system does Item e.

e. Ihe oFerand is given a null value.

6. This command is invoked.

Note: 'Ihe default values initially assumed by the system are described
in Appendix C; how to sFecify defaults and synonyms is discussed in Sec­
tion 6.

CONVERSATIONAL TASK INTERRUP'IION

The user can interrupt execution of his conversational task by pressing
the ~TTENTION key at his terminal. The system"s response depends upcn
when the interruption occurs (see 'Iable 3).

~atle 3. System responses to attention interruptions
,--------------T---,
I systerr Response I I
I to A~'IEN~ION I Explanation of Respcnse I
~--------------+-------------------,---,-----------------------------'i
I (underscore) I Tile last command in the souxce list was being I
I I executed. but the systerr was interrupted. (The I
I I system is executing privileged code.) The systerr I
I I cleans up tefore it prints the underscore. I
~-----------------+--i
I • (asterisk) I privileged code was interrupted before execution I
I I of last command in the source list vJas started. I
~-----------------+-------------------------------------~--------------i I ! (exclarration) I Nonprivileged code was interrupted; the processing I
I I can be resurr.ed if the interruFted scurce list has I
I I not completed execution. I L _______________ J. ___ J

Sec-ticn 1: Task Management 13

When the user presses the A~~EN~ION key while privileged code is e~ecut­
ing, the system responds with either an undersccre or an asterisk. In
either case, the user cannot resume execution of the interrupted corr.­
mand. He gets control in the command mode. If an * is received, the
user can resume execution of the source list (by pressing the carriage
return) at the command following the interrupted corrrrand.

When the user interrupts execution of nonprivileged code (the system
responds with an exclamation), any remaining commands in the source list
and the status of the interrupted program are sav~d. After receiving
the !, the user has several options:

• He can issue the AEENC command to cancel his taSk;

• He can issue the GO command (or press the carriage return) to resuwe
processing at the point of interruption;

• }Je can issue some valid command (either a system-supplied comnand or
one of his own making), including direct calls to ncnfrivileged
modules;

• He can use one of the ~SS attention handling corrrrands, descrited
below and in Part III of this took.

The AEEND coronand cancels the task and initiates a new task. All pro­
grams are unloaded; all DI:NAMES are released. 'Ihe user is now in corr·­
mand mode (see ABEND corrmand in Part III).

The GO corrrrand gives control to the most recently interrupted prograrr at
the point of interruption (see GO corm,and in Part III).

When the user follows an attention interruption with sorre command other
than AEEND or GO, the previously interrupted progI.am is saved for later
execution. New command statements are honored. 'Ihese new comrrands can
be interrupted; their status is saved, too. 'Ihe user can interrupt, and
save, as rrany as 10 source lists <commands or programs). If he e~ceeds
this nureber, he receives a diagnostic message.

There are attention handling commands that allow the user to control the
processing of interrupted source strings. lhese conrrands, descrited in
Part III, are listed below:

• EXI'I -- bypass current module or program: process next cororoand in
the source list

• PUSH save status of an active program

• RTRN clean up all current source lists

• STACK -- display names of active prograrrs

• STRING -- display modules not yet processed in the current source
list

If the user wants to run sections of his code that will not be affected
by an attention interruption, he can set the attention interventicn pre­
vention switch (AlPS), as described in Assembler User Macro Instruction.
When this switch is set, the system does not interrupt the user's pro­
gram when one attention interruption is received. However, a simulated
attention interruption is made so that the user can later test the AlPS
to see where the attention occurred. Setting the AlPS cnly inhibits a
single attention interruption. If a sutsequent attention interruption
occurs, the program stops executing and the user"s keyboard is unlocked.

14

Nacro instructions in t.he assembler languG'.g€ allow the user to sUfply
his own attention'-int;erruption-harl(~ling routines. See also Asseml::ler
User Macro Instructic:)}1§.-

CCNVERSATICNAL T}I.;3K TER~'HNA'[ION

The user ends his conversat~ional task by E:rlt:ering a LOGOFF cOfmnand at
his terrrinal. or he may s'.ritch his (:()nver~s<.,t:iorldltask to nonconversa­
tional rrode (see "Swit.ching Modes'" lat_er in this sect.ion).

CONVERSATICNAL TAS.¥: OU'l'NI'T

The lI'essages produced by t.he our ing Execution of conversational
tasks and the respons(,s tc, c'.)'/itriand sV'l.te!l:ielli-. execution are l:~rinted at
the user's termina]. f:f', res,:dt:s ·<)f 9 during execution of his
task way be held in 'Jdt.:d S'I"i:.S wit.hin t,H? 8'tL 'l'he user can exarrine
the results of P1COC£-:!ss He can i3~YJ'2 I,INE? command (if the data
set containing the resu,U~.S is a li.ne data 8(~t: J to obtain a listing at
his terrrinal. or he can issue one (If ·the bulk output corrmands (see -Bulk
output Corrrrands" in Sf'ction 2) "co or h the results in nOnccn-
versational mode. l,lsc',t the use ic 1/0 facilities in his
.r'ORTRAN and assemble';;- lan<;u~hje p.:cO'].l:cUil5 t.() obtain these r!:~sul ts_ (See
Assemble,rprogrammt:I.,· 8. Gnich;; tmd FOH'.::J-l4.t.Lpr0SP;'a]!!1ner·s Guide.)

SYSOUT: This na.me tes tht~ tllilt is f.t"cduced during execu­
tion of the user's tdsk. 'Ihis outpnt includes t.he systelI' messages, the
responses to comrnandE'.J~ecuti()n~ and ttl,", optional problem prograro output
that are produced duI. execution n[a useI" s task. In conversational
mode, the information 5.s I'lcluded in SYSCU'l' is delivered at the
user' s tenTinal~ The SYSOU'I £OT a comrersational i:ask is not norrrally
recorded by the system in i?l:£lY fO.!.ln~ SinGe SlU3IN <seethe oefintion of
this term undr;;~r "Corrversat:iooC!l T;.3isk In:'t;:iat:ion" earlier in this sec­
tion) is entered and is reco:1r:dt'.'d at i.:.b<~ user's terzrinalGthese two in­
formation streams arc, int.e1:spersed onUw texminal list,ing.

NONCONVERSATIO~~~DQ~

The nonconver sationdl llio{h~ of opeJc"lt:iun,;J; ;;,«tiT'e. usefu 1 for. tasks that do
not require the llse:r:'s p:esence iilttlle b"rmin alto resolve any problems
that may arise duri.ng -t,C\.sk exec \.It:i. 01.10 In this !lode, then:~ is no direct
comJli1lnication bet.we<f~n i:he a.nd the ·,..;sex·. The conlm<1tld staterrents
that direct the sy-st~em must h~.;ve l:JEEn fm:nished previously as a con:plete
sequence, called 0. noneonversaf.::iondl SYSIN data set (see telow). Any
systerr. messages r:esult-_ing from t.bl!:' execution of !:he tasJt ar.'e received by
the user as a printout, frOf{ tile centxal r .installation.

NONCONVERSATIONAL SYSIN DATA SE,],

A nonconversational s:J{s:rn dat:a set is a series of command statements and
associated data that are to be act:ed upon in th(~ sequence in which they
are presented to the syst.em. The cmrmand statements inform the system
of the actions the user wants performed duxing execution of his ncnccn­
versational task. ~rhe user cJ;:·eat",es his nO!lconversaticnal SYSIN data set
in the same way he creates any othEr type of data set~ He can construct
it at his terminal", by USing the t€xt-,-editing commands (or DATA or MeDI­
FY). or he can submit it. on puncht!o cards to the system operator for
entry into the system via the installation' s high-speed card reader.
The data set must be VSAM ~valr5 .. able-forlXiat or fi:xed~format records) or
VlSAM line .. and it, mus'V: he (:a".~a t(';:to:Le it can be e .. '(ecuted.

Seet!tjrl 1: Task Management 15

Each nonconversational SYSIN data set begins with a LOGCN command and
ends with a LOGOFF command. unless the rrode of the task is teing
switched (see "Switching Modes" below). If any private I/O devices are
to be used by the task. the SECURE command must immediately follo~ the
LOGON command.

Data that is to be read by the user's program during execution may ce
included in the SYSIN data set; this data must immediately follow the
command that starts execution of the user's progran. For FOR'l'RAN d~ta
sets, the end-of-data record (%END) must follow the last data record.

NONCONVERSATIONAL TASK INITIATICN

As in ccnversational mode, the user must be granted access to the systen
by his system administrator before attempting to communicate with the
system. 'lhen, the user can initiate his nonccnversational tasks ty one
of these methods:

1. After the nonconversational SYSIN data set has been cataloged, the
user initiates his task by issuing the EXECU'lE ccrr.rr,and, which must
be entered from the terminal as part of his conversational task;
hcwever. EXECUTE can te given within the SYSIN data set of a non­
conversational task to initiate another nonconversational task.

2. The user may start his task conversationally and then switch the
rrode tc ncnconversational ty using the BACK command (see "Switching
Modes· below).

3. By preparing his ncnconversationalSYSIN data set en f:unched cards,
the user can submit it to the systen operator for processing. 'lhe
data set is cataloged, and execution is requested ~hen it is read
in by the system. The user must make certain that any data sets
referred to by his nonconversational task are sutmitted to tte 5yS­
teffi before the SYSIN data set (see Appendix B).

hegardless of which method of nonconversational task initiation is used,
the user"stask is assigned a batch sequence Durrber (BS~) ty the systerr
and is executed as soon thereafter as space is available fer it. The
results are unpredictable if a data set is used by a conversational task
before a nonconversational task is finished with it.

The BSN is a four-digit decimal nUffiber that identifies the user's non­
conversational task. The user must use this nurrber when he wants to
cancel (via the CANCEL command) a previously initiated ncnconversational
task.

NONCONVERSATIONAL TASK EXECU'IION

During execution of a ncnconversational taSk, there is nc interaction
between the system and the user. The system analyzes, in the order pre­
sented, each comnand of the non conversational SYSIN data set and
executes every valid corrmand. If a command is invalid, the systerr
ignores it and continues reading the SYSIN until either a valid ccrrrrand
is read or the task is abnormally terminated. pfter reading and Execut­
ing a valid corrmand, the system proceeds to process the next corrmand,
continuing until it processes LOGOFF, which completes the task. Fesclu­
tion of corrrrand statement elements is identical to that described earli­
er in this section for conversational executicno

NONCONVERSATIONAL TASR TER~INATICN

A ncnconversational task is terminated in one of four ways:

16

1. ~hen LOGOFF is read w normal termination occurs.

2. When the user issues the CANCEL cOHmand, s~ecifying one of his pre­
viously initiated nonconversational tasks, that task is eliminated.
A task awaiting execution can be canceled.

3. The system terminates a nonconversational task when it encounters a
situation requiring resolution by the user. Typically, such a
situation arises when the system must prompt for an omitted operand
in a command or must issue a diagnostic wessage that requires a
user response. Whenever al::normal termination of the user' s task
occurs, a diagnostic message that indicates the reason is printed
as part of SYSOUT for the task.

The user can give a response to a system prompt even when his task
is running nonconversationally. Be must default RSVP=Y and he must
provide the response in his SYSIN data set. ~hen the prompt is is­
sued, the response is used and the task is not terminated abnorrral­
ly. There must be a response for each prompt or the task is
terminated.

4. A system shutdown terminates all ncnconversational tasks. Tbose
initiated by PUNCH, PRINT or WT are restarted when the systerr
resumes operation. No restart is attempted for other nonconversa­
tional tasks.

NONCONVERSATIONAL ABEND CONTROL

The system may terminate anonccnversational task if there is some pro­
blerr that needs to be resolved by a user. Such a case occurs when the
nonconversational task executes a command that issues a prompt that re­
quires a response. When this happens, the system terrrinates the task,
and diagncstic messages are printed as part of the SYSOU'I data set.

There is a way to control the system's action when this condition
arises. The user can provide a special data set that receives control
when his ncnconversational task would otherwise be terrr.inated. He can,
within his task, define a data set (via DDEF) that is cataloged and that
contains a series of commands:

ddef tSkabend,vi,dsname1

Notice that the DDNAME of the data set must be TSKAEEND. The data set
must be cataloged. Rather than terminate a nonconversational task, the
systerr finds the data set defined with the TSKABEND DDNAME; then, the
system executes the corrrrands from that data set (the data set should end
with a LOGCFF command).

Example: The user has a cataloged data set, narred ~SNAME1, that con­
tains these corrmands: FC?, USAGE, and LOGOFF. In his nonconversationa!
task, he defined this data set with the TSKABEND DDNAfl:E. Then, when the
nonconversational task is executin~, the system finds that the operand
of a LINE? command is a nonexistent data set name, NCDS. The systerr
stops executing the SYSIN data set (the nonconversational source list)
and begins to execute the commands in the £SNAME1 data set. A diagram
that represents the flow of control is shown in Figure 1.

Section 1: Task Management 17

NONCONVERSATIONAL TASK
LOC-0N NICK

DDEF TSKAEEND,VI,CSNAME1

LINE? NODS

LOGOFF

DSNAMEl

PC?
USAGE
LOGOFF

Figure 1. Flow of control fron: a nonccnversational task to a data set
that continues the task to normal termination

NCNCONVE.RSi\'IIONAL TASK OUTPUT

The user specifies, by commands in his nonconversational SYSIN data
sets, the output expected from his nonconversational task. He Ir,ust
define the data sets that are to be generated and indicate how they are
to be output. Other output includes a printout of the SYSOUT data set,
which is printed automatically by the system. This data set contains
dny ffiessages issued by the system, interspersed in a listing of the coro­
mands for the task, and may also contain printable data generated by
problem programs during execution of the task. All tapes, punched
cards, and listings resulting from the nonconversational task are pro­
duced only at thl" computer center.

Note: Each SYSOUT data set tegins with a message, identifying the ncn­
conversaticnal task and its originator.

SWITCHING MODE;S

The user can use the BACK command to switch a ccnversational task to a
nonconversational task. There is no way for him to switch fron: ncnccn­
versational to conversational mode.

The user can switch his conversational task to nonconversational if all
three, of these conditions exist:

1. He has entered a nonconversational SYSIN data set and defined it to
the system. This data set must not begin with a LOGON coa-mand
(however, it must end with a ICGOFF command).

2. The system has space for another nonconversational task (see "Ncn­
conversational Task Initiation" above). If not, the user is in­
formed, and he may try to switch the mode of operation again later.

3. The user enters at his terminal a BACK command requesting noncon­
versational continuation of his task.

If the system accepts the user's request, it establishes the nonconver­
sational task, assigns it a batch sequence number, and eliminates the
conversational task from the systeu. The user's terminal is then avail­
able to hi~, and he oan enter a new conversational task with the LOGON
procedure.

18

SECTION 2: CA'IA MANAGEMEN'I

There are comtrands that allow the user to manage his data sets. '!hese
commands are divided into four groups, as follo~s:

• Data set ~anagement

• Text editing

• Data editing

• Bulk output

DATA SET MANAGEMENT

The data set u:anagement commands are used to identify data sets; to
store them in the systeu: and to retrieve them frou: the system; to share
then, with other users; to copy and erase them; and to define them for
use in the system. The data set managewent ccrrrrands and their system
functions are shown in Tatle 4.

'I'EXT EDIT! NG

lext is edited by using the text-editing corr-mands. These canmands mani­
pulate lines of information that are within an existing region data set
or line data set, or the commands rranipulate lines as they are teing
entered into a region or line data set. With these commands, the user
can simultaneously create and edit data sets; he can correct. insert.
and delete lines: he can segment a data set intc regions; and he can
transfer lines from One data set to another. Also, the user can display
lines of a data set at his terminal and can nullify previous changes
that were made by the commands. The text-editing corrnands and their
system functions are shown in Table 5.

GENERAL TERMS

The following terms are used throughout the discussions on the text
editor.

break character
when the user enters a break character {which can te the system­
supplied underscore or some user-supplied substitute character},
the system interprets the statement that fellows as a command. The
break character allows the user to enter corrrrands when the system
expects data. However, when the first and second characters of the
line are break characters, the usual break-character action does
not take place. Instead, the system replaces the pair of break
characters with a single break character and processes the line as
if no break character had been seen. Thus, lines starting with
multifle break characters ean te put into procedures or data sets.

current line fainter
is an indicator that is maintained by the text editor. The current
line pOinter (CLP) is set initially to the value of BASE (~hich
defaults to 100) for empty regions or empty line data sets, and to
the first available line in an existing region or line data set.
The eLP is advanced through the region or line data set as text­
editing commands are executed, always pointing to the next line to
be precessed. For rules that govern the positioning of eLP, refer
to Appendix F.

Secticn 2: cata Management 19

Table ~. Data set management commands and their functions
r---------T--------------------------------:---------------------------,
I comnand I Funct10n I
~---------+---i
I CATALOG I Create or alter a catalog entry for a physical sequential I
I I data set; alter a VAM catalog entry; create a catalog I
I I index for a generation data group: or catalog a data set I
I I as a new generation of an existing generaticn data group. I
I I I
I CDD Retrieve DDEF commands, which have teen frestcred in a I
I cataloged or a defined line data set, and process then. I
I I
I CDS Duplicate a data set or a member cf a VPAM data set. I
I I
I CLOSE Closes a user's data sets. I
I I
I DDEF Define a data set and describe its characteristics to the I
I system. I
I I
I DDNAME? List DDNAMES. I
I I

DELETE

DSS?

ERASE

EVV

FILEDEF

FILEREL

JOBLIBS

L'ID~

PC?

PERMI'!

POD?

RELEASE

RET

SHARE

TV

V1

Delete one private data set entry fron the user·s catalog. I

Present the status of cataloged data sets.

Free direct access storage assigned tc a frivate or a fut­
lic data set and remove its catalog entry from the user's
catalog.

Catalog private VAM data sets.

Define a dataset, describe its characteristics, and pro­
vide the link between 'ISS and OS/VS datanames.

I
I
I
I
I
I
I
I
I
I
I
I

Delete a data definition established by a previous FILEDEF I
and disconnect the OS/1SS link. I

Manipulates DDNAMES.

List data set names frcrr a VAM taFe.

Obtain the name, access qualificaticn, and cwner's user
identification of cataloged data sets.

Authorize or withdraw authorizaticn of ether users to
access a user's specified data set.

Display inforroation abeut members of a VPAM data set.

Delete a data definitien established by a frevious DDEF
conmand.

Change the catalog attributes of a VAM data set.

Allow a user to share data sets belcnging tc another user
who has granted authorization with the PERMI'! command.

Retrieve a data set that was written ontc tafe via the VT
conmand and write the data set into a VA~ volume.

Copy a VAM data set onto tape as a Fhysical sequential
data set.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ,
I
I
I
I
I
I
I
I

I VV I Copy a VAt'. data set on direct access storage. I l _________ ~_______________ _ _______________________________________ J

20

Table 5. Text-editing camtaft4s aftd their fuacticme

r---------~--~ I CODIlI'and I Function J
~--------+---------------------------------------i
I CONTEXT I Replace the specified string of characters within a line I
I I or range of lines with another specified string of I
I I characters. I
I I I
I CORRECT I Change or insert characters in one or wore specified I
I I lines. I

I I
DISABLE I Remember all roodifications roade in a data set in order to I

I restore it to the original state, if requested. I
I I

EDIT I Invoke the facilities of the text editor; this command I
I must precede the other text-editing commands. I
I I

ENABLE I Remember the most recent modification wade in a data set.
I The data set will te restored to the state that existed
I before the last comwand.
I

END I Terminate processing by PRCCDEF and the text editor, or

EXCERPT

EXCISE

INSERT

LIS~

LOCA~E

NillIlBER

POS~

REGION

REVISE

S'IE'I

I both.
I

Insert the specified region or range of lines from another
place in this data set or from another data set into the
current data set.

Delete the specified line or range of lines from the cur­
rent data set.

Insert the following lines into the current data set.

Display the specified line, or range of lines, on the
user's SYSOUT.

Search the current region for the s~ecified character
string.

Renumber the Sfecified line or range of lines.

Retain all modifications made in a data set.

Create a subset of specified lines cf a data set; these
lines are to te locatec as an entity known as· a region.

Replace the specified line or range of lines with those
lines entered after the command or delete the specified
line.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Delete changes made to a data set by previcus editing com- I
mands; restore the data set to its previous condition. I

I
I UPDA~E I Add lines to the current region or data set. I l _________ L--_____________________ ~ ___________________________________ ~

Section 2: Data ~anagement 21

In all text-editing commands, where N1 is an oFerand, except as in­
dicated in the operand descriptions, the current value of CLP way
be specified by defaulting N1. The value of CLP may be displayed
by issuing:

list clp

hexadecimal constant
has the form of an X fol16wed l:y a
apostrophes; the characters in the
through 9) or A, B, C, D, E, or F.
ters within the a~cstrophes. SOme

X' 01'
X'ABC02'
X' •

string that is enclosed within
qucted string wust te a digit (0

There can be no other charac­
examples are:

1 me data set
is a VISAM data set that has this reccrd fornat:

1<----------------------132 l::ytes waximuIr.-------------------> I
r-------------~------------T------------T----------------------,
I record I line I I I
I length I number I f lag I text . J L ____________ ~ _____________ ~ ____________ ~ _____________________ J

<--4 tytes--> <--7 tytes--> <--1 tyte-->

Key

The record length field, which appears only in variatle-length rec­
ords, and the flag field are used only by t.he system. Total record
length, defined in the DCB sul:operand of the DDEF command, cannct
exceed 132 bytes. The teginning of a line data set record is the
first digit of the line number. The relative key Fosition is four.

line nunber specificaticn
is a number that represents a line. ~his nunl:er can l:e expressed
either as an absolute (for example, 200 specifies line 0000200) or
as a relative value (positive or negative). A relative value indi­
cates a number of lines distant from eLP (for examFle, +2 identi­
fies the second line after CLP, and -1 designates the line innedi­
ately preceding CLP).

N1 and N2 are the keywords for the beginning line number and the
ending line number operands that are used ~ith certain cororeands
(for. example, CORREC~, INSERT, LIS~, REVISE). The values specified
for N1 and N2 are resolved l:y the system according to the following
rules:

1. When the operands are in the range of line numbers that exist
in the current region or in the data set being processed, the
system uses the value that was specified~

2. The following items discuss the commands exce~t INSERT and
REVISE.

a. If N1 is a numter greater than the last line of the current
region or of the data set, or if N2 is a number less than
the first line of the cnrrent region or of the data set,
the command is canceled and a diagnostic message is issued.

(Note: The diagnostiC messages you get depend on the values of BREVI~Y
and LIMEN. See "Implicit Cperands· in Section 6 and Appendix C.)

22

b. If N1 and N2 are two different numters and are ~ithin the
limits of the current regicn or cf the data set, cut the
line does not exist, the system uses the next-higher­
numbered line for N1 and expcutes the corrmand and uses the
nExt-lowe:r-numbered line for N2 and executes thp comrrand.

c. If N1 and N2 specify the same line and the line does not
exist, the command is canceled and a diagnostic message is
issuea.

3. The following items discuss the INSER~ and REVISE commands.

a. An INSERT cOmIrand is executed when N1 is outside the range
of the data set or current region; N1 is within the range,
but does not exist; or Nl is within the range but, with the
increment (assumed or specified), Foints to a line that
does not exist.

b. A REVISE corrrnand is executed if thE line that is specified
does or does not exist within the data set or even if the
line is outside the lirrits of the data set.

:Example: The following data set exists. The accompanying corrrrands
shew what the system prints out after it resolves the values you
specify for N1 and N2. (This user has set LI~EN=I.)

0000100 N1 AND t-<2 ARE v.;nHIN THE RANGE
0000200 Nl IS GREATER THAN THE LAST LINE
0000300 N2 IS LESS THAN THE LAS'I LINE
0000400 N1=N2, EUT THE LINE DOES NOT EXIS~
0000500 N1 NOT= N2 AND THE LINE DOES NOT EXIST
0000600 INSERT CC~~ANB TESTS
0000700 REVISE COMMAND 'IESTS
0000900 LINE S DOES NCT EXIST
0001000 LAST LINE OF THE DATA SET

User: edit linetest
Sys,User: list 100,200

0000100 Nl AND N2 ARE WITHIN 'IRE RANGE
0000200 N1 IS GREA~ER THAN 'IHE LAST LINE
CZASP100 CLF SET TO 0000300
excise 1500
CZASL500 Nl, 1500, BEYOND END OF DATA SET OF REGION
excise 100,50
CZASL600 N2, 50, LESS THAN ST~RT OF BATA SE'I OR

REGION
excise 50,200
list 50,200
CZASL600 N2, 200, LESS TH~N START OF DATA SET OR

REGION
excise 900,1500
list 800,1500
CZASL500 N1, 800, BEYOND ENt OF DATA SET OR REGION

Note: This user reinserted the deleted lines (100, 200, 900,
1000).

list SOO,last
0000900 PREVIOUS LINE 8 DOES NO'I EXIST
0001000 LAST LINE OF THE DA~ SET
CZASFI00 CLF SET TO 0001100
list 800,800
CZASP200 CANCELED: RANGE INVALID
list 800

Section 2: Data Management 23

CZASP300 CANCELED: LINE 800 DOES NeT EXIST
insert 100
CZASGI00 CANCElED: LINE 0000200 ALREAry EXIS1S
insert 100 g S0
0000150 a new line
CZASGOSO CCMPLETED: LINE 0000200 ALREA£Y EXIE1S
insert 100
0000800 insert 1500
0001500 revise 50

(Note: The user issued the following commands -- REVISE 50,50:
REVISE 200; REVISE 800; and REVISE 1500. In each case the system
responded by prompting with tl:e specified line number.)

offset
in three conunands -- CCN'IEX'!, LIS'!, and LOCA'!E -- the user can spe­
cify starting and ending character positions in the Nl and N2
operands. He does this with an one- to four-digit atsolute decimal
nurrber, enclosed in parenthesEs 1 and immediately fcllowing the line
nurrber. The first character of data is at position 1. For exarr­
pIe: Nl=700(4) specifies the fourth character of line 700; ~2=900 (
14) specifies the fourteenth character of line 900.

prorrpting
is done by the text editor followinq entry of a corrmand that
expects data (for exarr,ple, EDIT, REG.ICN, REVISE, INSERT). Wben the
LINENC operand in the user profile has a value of Y, the text edi­
tor issues a line nurrber when it expects data; if IINENO=N, the
keyboard is unlocked, but line number r:rcrrrting does not occur.
Following execution of a command that does not expect data (for ex­
ample, STET, NUl'-lBER, EXCISE) or that completes its execution, the
text editor prompts the USEr for a command staterrent by issuing an
under score.

'Ihe user can inhibit line nUlr.ber prol'f.[:ti ng by issuing

default lineno=n

before or during text editing. Initially, LINENO=Y.

Even ""hen line nurrter prompting is inhibited, the text editor
inserts the line number in the key of each aata set line.

region

24

a line, or contiguous group 0 f lines. whose numbers are pref ixed by
the saffe region narre. The region of a data set is treated by the
text editor as an entity: region names lobel a ccntiguous sutset of
lines for identification purposes. The length of the region narre
is aeterrrined by the value of the R£GSIZE operand in the user
profile.

'Ihe text editor automatically reorganizes the regions of a data set
into alphabetically ascending order, by region name.

This is a sample region data set that was created by using the text
editor:

Region Name

a
a
a
alll'ost
almost
almost
nextcase
nextcase
nextcase
swan
swan

region data set

Line No.

0000100
0000200
0000300
0000100
0000600
0001100
0000100
0000200
0000300
0000100
0000200

Data Line

~ext of line number 1 of region -a-,
an~ this is next line of region -a-,
this is end of region -a-.
This line starts new region, -almost-,
where increment has been specified as 500,
so line nurebers advance ty 500.
Although NEXTCASE was the first region name
entered, the text editor automatically
alphabetizes regions.
Initial allowable range of region name
is from 0 to 244 characters.

is a VIS~J data set that has this record forll'at:

1<------------------256 bytes maxi1tUll1 -------------------->1
r-------------T------------T------------T------------T---------, I record I region I line I I . I
I length I name I number I flag I text I L _____________ ~ ___________ ~ ___________ ~ ___________ ~ ___________ J

<--4 bytes--> <--7 bytes--> <--1 byte-->

The record length field, which appears only in variable-length rec­
ords, and the flag field are used only by the system. The regicn
nall'e, specified by the user, can be from 0 to 244 bytes long; its
length is defined in the DCB suboperand of the DDEF command. Total
record length, also defined in the DCB suboperand, cannot exceed
256 bytes. The beginning of a record in a region data set line is
the first character of the region name. The relative key position
is four.

string constants
are either normal or quoted. A normal string is a contiguous group
of characters that begins with any nonblank character except an
apostrophe and ends with the last nonblank character prior to ei­
ther a corrma, equal sign, or semicolon that is external to all
pairs of parentheses in the string. A normal string may also end
with the last nonblank character prior tc the end cf a line that
does not have a continuation character. For normal strings, all
EBCDIC characters are valid except a comma, equal sign, or serr-ico­
Ion that is external to all pairs of ~arentheses in the string.
For example,

A+E; (C,D), A'BC' 'D', C=D,A B, A(B,C)D

contains these nermal strings:

A+E
(C ,D)
A'EC"r;'
C
D
A B
A(E,CH:

A quoted string is any character string that is enclosed in apos­
trophes, within which all other apostrophes are doubled. All EECD­
IC characters are valid. The representation of a quoted string af­
ter it is processed by the system does not have the apostrophes;
doubled apostrophes are replaced by single apostrophes. For
exal'l'ple:

Section 2: Data Management 25

Extexnal Representation
'$3.80'
'bOw ARE YOU'
'I'IM FINE'

Internal Refresentaticn
$3.80
HOW ARE YOU
I'M FINE

traa~action table
the text editor records the changes to a data set in this table;
additions are note~ in one set, deleticns in ancther. The user can
nullify the changes that are recorded in the transaction table (see
"DISABLE, ENABLE, fOST, and S~ET Ccrrroands,· in Part III). Normal­
ly, when the editor is invoked, the transaction table is not ac­
tive. To activate it, the user issues

default trantat=y

before invoking the editor. AS long as ~RANTAB=Y, the transaction
tatle is active.

INVCKING THE TEXT ECITOR

The EDI~ command invokes the text editor, initializes the transaction
table if TRANTAB=Y, and invites the user to enter a command or a line of
data. Unless preceded by a user-issued DDEF corr.mand, EDIT issues a CDEF
that has these values:

DDNAME=EDDN, DSORG=VI or VF, DCE=(KKP=4, LRECL=132, RECFM=V, REYLEN=XX)

The value cf DSNAME is supplied ty the user in the fClT coromand~ the
val ue of K.EYL~N is deterrdned by EDIT by adding seven to the value of
the REGSIZE operand that exists in the user prcfile. Fcr example, if
REGSIZE=2, then KEYLEN=9. The text editor can be used to create a data
set. The two types of data sets tbat can be created are a region data
set and a line data set.

creating a Region Data Set

The system-supplied value for the FEGSIZE operand is 0, the key length
(KEYLEN) is 7, and a line data set is assumed. The user can change the
value of the REGSlZE operand ty specifying a number from 0 to 244. The
REGSIZE operand governs the maximum length fOr the name of a region data
set. The EDIT command can be used to specify both the value of REGSIZE
and the narre of a region in the region data set that is to be created or
modified. If the user issues:

edit regds,rname=regnam,regsize=8

the system assumes that he wants to operate on the region named REGNAM
in data set REGDS. The maximum length of region narres in REGDS is 8
characters. The system then prompts (with a line number, if the LINENO
operand is set at Y, the system-supplied value) for the first line in
the region. The sequence of activity is as follo~s:

User:
SiStetr:

edit regds,rname=regnam,regsize=8
0000100

The system prompts for data for REGNAM, and the user enters the data.
Eor example:

Sys,User :
Sys,Oser :
Sys:

26

0000100 this is data
0000200 for region regnam
0000300

The user wants to revie~ these lines, but the syste~ has Frinted the
next line number. The user types in the break character (undersccre)
and a command, as follo~s:

sys,User:
syste!!:

0000300 list O,last
REGNAM 0000100 THIS IS CATA
REGNAM 0000200 FOR REGICN REGNA~

The system displays the lines of the region and pro~Fts for a corn~and.
Notice that the name of the region precedes each line number. In a
region data set, the region name and the line number form the key for
each line in the region. The user wants to terminate editing so he
types the END command following the break character, as followS:

Sys,User: end

The user is now in command mode; he must reissue the EtIT command to
continue processing his data set. Had the user not issued the LIST com­
mand at line 300, he could have terminated editing there:

Sys,User: 0000300 end

The break character is used when the system eXFects data (for example,
it has issued a line number>, and the user wants to enter a co~roand.
dad the user not entered the break character, the comnand at line 300
would have been put in the data set as data; it would not have been
executed.

Note: Once a region data set has teen created, the user cannot alter
the maximun region name length (REGSIZE) for that data set. If he wants
to allow region names of greater length, he must erase the data set and
re-create it. Of course, while he is doing this, the user can hold the
contents of the data set in a temporary data set.

Creating a Line Data Set

Unless the user changes the initial system value of REGSIZE, the EDIT
coronand assumes a line data set: if LINENO=Y, the user receives a line
number prompt:

User:
Systen:

edit lineds
0000100

Since LINEDS was a new data set, the system pronpts with line numter
100. The user can enter data, and the system responds with the next­
highest line number, in increments of 100. To enter a command when the
editor expects data, the user precedes the command with a break
character:

Sys,User: 0000100
0000200
0000300

EDITING DATA SETS

this is a line data set
wi th only two 1 in es

end

The text editor can be used, also, to edit data sets and to create and
edit data sets simultaneously. Whether the data set is line or region
makes little difference in the procedure used. For the remainder of
this discussion, a region data set is assumed.

The editing tools available to the user are extensive. The example that
follows is by no means complete. The user should refer to individual
command descriptions in Part III for more details.

Secticn 2: tilta Management 27

Example: Previously, the user created REGDS as a region data set with
one region, REGNAM. The value of REGSIZE was set tc 8 fcr the data set.
Now, whenever the user edits FEGDS, the systerr ex~ects him to treat the
data set as a region data set with a maximum region name length of 8.
The user can edit region REGNAM this way:

User : edit regds r I:egnam

The region exists so the system responds by tYFing an

Two lines of data that were created earlier exist in the region. Now,
the user wants to create a new region called FIRSTONE:

Sys,User: £egion firstone

The systew prompts with line 100, since this is a new region. '!he user
enters data into region FIRSTONE, and then he terninates the editing
procedure with the END command.

0000100
0000200
0000300
0000400

notice regsize is 8
and linEno=y
so far only two regions exist

end

when the user again edits this region he is prompted with an underscore.
~ssume now that the user wants to add two lines between lines 200 and
300 in increments of 25:

User:
.eys,user:

edit regds,firstone
insert 200.25

0000225 add these two lines
0000250 between 200 and 300
0000275

'1'0 continue adding lines in increments of 100 following line 400, the
user issues another INSERT corrrrand, preceded by a break character:

£Y~~~er: 0000275
000(l4VO
OOOO~OO
0000600
0000700

insert 400
more data can be entered
and the systeIT continues to prorrpt
with linE numbers in increnents of 100

'to change line 300, the user types in, after the line nurrl:er:

§ys,U~er: 0000700
Syste!!:

context 300"only,just

To check his results, the user enters:

~~er:
syste!!:

list 300
FIRSTCN£ 0000300 SC PAR JUST TWG REGIONS EXIST

CONCATENATING INPUT RI:.:CORDS

The text editor accepts 256-byte records in a regicn data set. rlowever,
most input devices cannot deliver records of this length. Therefore,
the input lines must be troken for entry at the input device and then
concatenated by the systerr.

If the user wants to concatenate input lines, be must set the irrplicit
operand, CGNREC, to Y (the systerr-su~plied default value is N). When

28

the user enters a line of data, and the last nonblank character of the
line is the concatenation character (the system-supplied character is a
colon), the system prompts ~ith a colon and unlccks the keytoard so that
the user can enter the rest of the line. ~he system joins the twc lines
to n·ake one record; the first character of the second line replaces the
concatenation character in the first line. Fcr exanfle:

User:
~s,user:

default conrec=y
edit datasetl.rnaroe=joe
0000100 this line is :

continued with the concatenation character
0000200 end

No line nuroter was issued for the concatenation line; the line has be­
come part of line 100. Also, a space was left tetween the last text
character in line 100, and the concatenation character. If this space
were not there, the two lines would be joined with no space between -is·
and ·continued." The content of line 100 is:

-this line is continued with the concatenation character-

The user can concatenate records for line data sets as well as for
region data sets. He must remember, however, that the reaximum record
length for a line data set is 132 characters; for a region data set, it
is 256 characters· (including the region narr·e).

For d line data set, concatenation works the same way. If the user does
not want the colon as a prompt (as is done after line 100 in the exanple
above), he sets CONFRMPT=N. For example:

User:
~ser:

Systerr:

default conrec=y,conprmpt=n
edit dataset2
0000100 this line is :
continued
0000200 list
0000100 THIS LINE IS CON~INUED

end

The system unlocks the keyboard so that the user can enter the conca­
tenation line.

caution: If the concatenated record length exceeds 132 characters for a
line data set, or 256 characters for a region data set, the 132nd or
256th character is replaced by a ocntinuation character (the systerr­
supflied character is a hyphen). The user receives a diagnostic message
stating that truncation has occurred. ihe message contains the last
five characters, entered tefore the record length ~as exceeded, and the
continuation characters.

ENTERING HEXADECIMAL DA~A

mIen using the text editor, the user can enter data in hexadeciroal nota­
tion as well as in character notation. To enter data in hexadecirral
notation, the user frecedes the data with a lEtter ~ followed by a per­
CEnt sign (X%). These characters. the system-s~~plied default for the
HEXSW implicit operand, indicate that the data that follows is in hexa­
decimal notation. The user follows the x% with a string of hexadecinal
data.

0000100 x%c1c2c3

The x% nay cccur anywhere in the data line:

0000100 defx%c1c2c3

Secticn 2: Data Management 29

All characters following the X% on the data line are treated as hexade­
ct-al input until the end of the line or until a nonhexadeci.al ctaract­
er is entered (hexadecitral characters are the nutrbers 0-9 and the let­
ters A-f). When an uneven numbEr of hexadecimal characters is entered,
the syst .. , truncates the line to the last even character ~ositionl

0000100 xlclc2c3c

1s truncated to

0000100 xlclc2c3

and a ..-sage is issued to inform the user cf the truncation.

The procesSing is the same for the EDIT, REGION, INSERT, REVISE, UPDA~K.
J,CCAT1, and CONTEXT cOtr.n:ands. See the LIS'! and CCRRECT cotrmand descrip­
tions. in Part III, for special consideraticns when using LIST and
ceRaEcr.

Hotes The x~ syabol is never put into the data set1 it merely tells the
3yste~ that hexadecimal data follows.

Eaawple, 'Ihis eEample shows how to use text-editing co..ands witb beaa­
dec~al input; the LIST command, and the CHAR c~erand, are used tc dis­
play the results of the operations.

Usu:
SYS;User:

Systems

User.:
SYStem:

Usert
SVitell':

~:

3ystem:

user.
SYStelll:
USer:
S'Y!tell:

edit hexdata
0000100 atcx~a1a2a3a4bl
0000200 x~faftfcfd9al

0000300 _list
0000100 AECstu
0000200 GAL

list char=h
0000100 C1C2C3A1A2A3A4Bl
0000200 FAFEFCF~C7C1D3

list char=m
0000100 AECAlstuBl
0000200 FAFiFCF~GAI
.!nsert 300

(hexadecillal input ceases
with the first nanhexadeci.al
character, namely G)

(unprintable hexadeciaal
characters are ignored on
output when CHAR is defaulted
to C)

(If CHAR=H, all data 1.
printed in hexadeci .. l
format)

(If CBAR=M. all unprintable
hexadecimal characters are
pr in ted a s entered, and they
are underscored)

0000300 hex data fcllowsxlalb2cffda5
0000400 list 300
0000300 HEX DATA PCLLGlSv
list 300,char=h
0000300C~C5E7'OC4C1E3C1'OC6r6r3[3[6!6E2Al!2CFFDA5
list 300,char=m
0000300 HEX DATA PCLLOWSAIE2CJJrv

~; ' .. ", , - ; ..

"~i':~'L~~e41ting cCIIBands can te issued only after !crr or PROCCE' bas b
"'....Iwok1ng the text editor does not, however, limit the user'.
ace ... to the command system. He can issue any command _bile the editoc
i • .ct1" ••

!!!!plea De user wants to write and ccmpUe a JORTRAN progra.. Be'
8ftere t:.heee cOIIIIlands:

J.

default lineno=n
!dit source.ftnprog

To avoid ccnfusion when entering FORTRAN statement numbers, the user has
suppressed line number prorr.pting. Following EDIT, his keyboard is
unlocked. The input stream is as follows:

Sys,User: a=O.O
b=17.9
d=a*b
wri te (2,5)d
5 format (f10.6)
stop
end

The END statement in the last line is a FORTRAN statement. To ter~inate
text editing, the user must issue the END command, preceded by a break
character. To compile this program, he enters the compiler call, the
name of the program, and y to indicate that the program is cataloged:

,!tn ftnl=rog,y

The program is compiled. He then enters, following the system prompt
for a co~~and statement, a direct call to execute his program:

Sys,User: !tnprog
Syste~: 0.000000

TERMINATED: STCF

since the editor is still active, the user can change his source program
with editing commands. Be enters:

.!evise 100,200

REVISE deletes the specified lines and requests replacement lines by
unlocking the keyboard:

Sys,User: a=11.0
b=14.0
list O,last

Since LINENO=N, the system responds to the LIST ccnnand by printing the
lines without line numbers:

System: A=11.0
9=14.0
D=A*B
WRITE (2,5)1:
5 FORMAT (Fl0.6)
STOP
END

Follo~ing execution of LIS'!, the system prompts for a command statement.
The user can recompile and reexecute his program and can make additional
alterations. '!o write another program, he issues another ftIT oonmand.
To terninate editing, he issues END.

DATA EDITING

The data-editing commands are used to build and edit VSAM and VISAM data
sets. These commands are not as flexible as those of the text editor.

Section 2: tata Management 31

The data-editing commands and the system functions they request are
shown in Table 6.

~able 6. Data-editing commands and their functions
r-------T--,
\CoRwandl Function I
~-------+--1
IDA~ IBuild a VSA~ or a VISAM line data set. I
I I I
ILINE? ICbtain lines from a line data set cr fron a language processor I
I I listing data set. Print the 1 ines on SYSOUT. I
I I I
IMODIFY IInsert, delete, or re~lace lines in VISAM data set or create al
I IVISAM data set. I L _______ i __ J

SOURCE INPUT

The system expects source input to follow certain connands, for example,
DATA, ECIT, MOCIFY, PLI, and PROCDEF. An operand, SYSINX, indicates
whether the source input is expected from SYSIN or from a source list.
If SYSINX=G (this is the system default value), the system expects tc
get input from SYSIN, which is either the terminal for a conversational
task or the SYSIN data set for a ncnconversational task. If you change
this value to SYSINX=E, the system expects to get input from the source
list; and if the source list is empty, the system goes to SYSIN fer
input. If SYSINX=L, the system goes to the source list only for input.
(Example 3, below, shows how to use SYSINX=L. Refer to wlmplicit
Operands w in Section 6 and to Appendix C for the possible values of
SYSINX.)

If the corrnand (for exarrple, EDIT) is executed trom a PROCCEF, you may
have created the expected data as part of the PROCDEF. The data inrr.edi­
ately follows the comroand that expects the data. Then, to indicate that
the input is to be taken from the source list, you must issue the
command

DEFAULT SYSINX=E

before issuing the command tbat Expects the data. If the source list is
empty when SYSINX=E, the system goes to SYSIN for input. The eJCarrples
shown belOW give sorre uses of SYSINX.

1. The fcllowing PRCCDEF adds lines of data to an existing data set.

32

User:
Sys,user:

procdef
0000100
0000200
0000300
0000350
0000400
0000500
0000600
0000100
0000800
0000900
0001000
0001100

addata
param DS=$1,$2,$3,$4,$5,$6
default sysinx=e
edit $1
insert last
$2
$3
$4
$5
$6

end
default sysinx=g
end

~hen the PROCDEF is invoked (ty entering AC~AT~). the values
entered fer the parameters $2, $3, $4, $5, ana $6 are treated as

input to the EDIT command. The values are added tc the data set
naJred $1.

2. For a batch job, a user keypunches a card that contains a PROCDEF
cOD'mand for ADDATA and a series of other commands that are
separated by semicolons. other cards in the deck ccntain input for
PROCD~F Y. Here, SYSINX=E.

USer: procdef addata;excise O,last;end;procdef y
param $1,$2,$3
if '$l'='n'; set a=$2
if '$1'="; set a=$3

end

If SYSINX=G in this example, the second, third, and fourth cards
are net executed as input for the PROCtEF named Y. Rather, they
are taken as input for AtDATA. The system attempts to execute the
EXCIS~ and END comrrands after ADDATA has been created, but it can­
not because there is no actiVE processor. (A diagnostic is
issued.)

3. If SYSINX=L, the system goes only to the scurce list for input.
The fcllowing PROCtEF calls the text editor, and it contains a null
line (line 400) as input to the editor.

User:
Sys,User:

procdef
0000100
0000200
0000300
0000400
0000500
0000600
0000700
0000800

nick
default sysinx=l
edit nickds
line one of data

line three of data
End

default sysinx=g
end

After PROCDEF NICI< has tEen executed, the data set named NICI<DS
will contain a line (line 200) that is nUll.

If SYSINX=E, the systerr. ignores line 400.

BULl(OUTPU'I

The bulk output commands (see Table 7) allow the user tc transfer data
sets from his virtual storage tc output devices other than the terrrinal.
The output printer, at the central computer installation, can write data
sets more rapidly than the user's terminal. ~'I and PUNCH put data sets
on tape and cards, which are not available at the user's tenninal. Each
Dulk output cOD'mand initiates a nonconversational task to accomplish the
data transfer, thereby freeing the user from the need tc mcnitor bulk
output..

'Iable 7. Bulk output cOJrmands and their functions

,-------T--, I COllmand I Function I

r-------t--------------------------------·------------------------------i
IPRIN'I IInitiate printout of the specified data set cn high-speed I
I I printer. I
I I I
I PUNCH IInitiate transfer of the specified data set tc punched cards. I
I I I
IwT IInitiate writing of the specified data set cn D'agnetic tape, I
I Iwith tape in format for offline printing. I L _______ 4 __ J

Section 2: Cata Management 33

SECTION 3: PROGRAM MANAGEMEN'I

Language-processing and program control conn-ands are used for pro gran
managerrent.

LANGUAGE PROCESSING

The language-processing conmands enable the user to enter his source
language data sets and have them processed into object nodules. He can
change and correct source language statements during processing. PI/I
and any processors supported by the PPLI are exceptions to this
statement.

The user initiates source language processing by issuing the c011'mand for
the desired language type. The language-~rocessing commands are listed
in 'lable 8. These corrmands are described in detail in Part III.

Table 8. LanguagE-processing coJllmands

r---~~--T--,
I Corrmand I Language Type I
r-------+---~
IASM IAssembler language I
IF~N IFORTRAN language compiler I
I LNR I Linkage editor I
IPLI !PL/I language compiler I
I COBOL ICeBOL Language compiler (supported by PPLI) I

·1 FTNH I FOR'l'RAN H Extended Language Compiler (supported by PPL!) 1
IHASM IAssembler H Language (supported by PPLI) I
IPLICPT IPL/I Optimizing Compiler (supported by PPLI) I l~ ______ ~ ___ -J

A source program is a data set that contains source language statenents.
'10 be acce[:table for language processing, a prestored source program
must have line organizaticn and must be named SOURCE. name. Source pro­
grams are automatically cataloged and retained by the system. For PL/I,
and PPLI sUFPorted processors, any legal name is acceptable.

When source statements are subnitted conversationally, or lIIIhen they forn
part of the prestored SYSIN of a task, a source program is constructed
with line organization. Each ~hysical line entered into the systeIr, ei­
ther as a single card or as a single record of the line data set,
becom.es a physical record of the line data set (input length is linited
to 120 characte.rs). continuation conventions for ccnbining two or more
physical records into a sinyle logical statement for a language proces­
sor are specified by that ~rocessor.

Note: 'Ihe com~ilation of PL/I and fPLI supporteq programs is not
interactive; you are not prompted for corrections to the source program.
PLII processing can only be initiated in a task for which the user is­
sued a LOGCN in 24-bit mode (that is, logon userid,,24).

S'IEPS IN LAt:GUAGE PROCESSING

From the user's standpoint, source-language processing ~roceeds in one
of four ways. Items 3 and 4 below do not apply to J"TjI or PPLI
proce$sing.

34

1. The task is nonconversational, and the source program is prestored.
The language processor picks up the source statements, line by
line, and processes them. No corrections are made; any diagnostic
wessages are written for later reference by the user.

2. 'the task is nonconversational, and the source "fregram and the com­
uands governing language processing appear line by line in the
SYSIN data set. In this case, a new source prcgrarr is created as
lines are read from SYSIN. A line number is prefixed to each line
to serve as the key 1:y which the line can be identified. Any diag­
nostic messages are written for later reference by the user. The
new program can be modified later.

3. The task is conversational with a prestored source program. Suc­
cessive lines from the source program are read and processed by the
language processor. Diagnostic messages for a single statement are
written at the terminal, along with the incorrect line, and the
user is invited to enter corrections. To indicate to the user that
he can enter corrections, the system types a pound sign (#) at the
beginning of a new line, and the keyboard is unlocked. The user
may enter a correction line, the first part of which must be the
line number that identifies the line being corrected, followed by a
comma and the contents of the line. For exanple:

Sys,User: '500, dc a{example)

This correction line is stored in the progran, either as an inser­
tien line or as a replacement line, and the system requests the
next correction line by issuing.. TO delete one or more lines,
the user types, following #:

Sys,User: D,line number

or he can enter:

Sys,User: D,first line number,last line number

Such corrections change the source program perrranently. To end
corrections, the user presses the RETURN key in response to #. The
correction lines are processed by the language processor, and if no
corrections are required for then, the next line is taken fron the
source program for processing.

'the user can enter other responses following the system's invita­
tion. (#) to enter corrections: I or C. If the user types I and
presses the RETURN key, language processing continues without fur­
ther display of diagnostics or invitations to enter corrections.
This response is useful when the user determines that he has too
many errors to correct conversationally. If the user types C and
presses the RETURN key, he receives all diagnostics, but is not to
be permitted to make corrections until language processing is
completed.

... 'the task is conversational« and the user enters his source state­
ments from the terminal (that is, the source program is not pre­
stored). The language processor, when ready for a source language
line, writes a line number at the terminal, inviting the user tc
enter a line. The line the user types is stored in the source pro­
gram teing created and is also passed to the language processor.
The user can modify previously entered statements by typing after
the system-issued line number:

sys,User: 0000500 Sline number,modification

Section 3: Program Management 35

The modificaticn the user types in after the comma is his insertion
or replacement line. He can delete a line or lines ty typing after
the system-issued line number:

Sys,User: 0000600 % D,line nurrber

or he can enter:

Sys,User: 0000700 % D,first line number,last line number

~he % indicates to the system that a roodification follows. When
the user enters the nExt source line that is not prefixed by %, the
previously collected modifications are sent to the language froces­
sor, and the line is stored in the source frogram. ~is line is
picked up when the language processor has finished working on the
modif ica tions.

If the user modifies a statement that has already been handled 'by
the language processor, compilation restarts automatically. lior a
more detailed description, refer to Asseubler Prcgrammer's Guide,
FORTRAN programmer's Guide, and Linkage Editor.

when the language processor issues a diagncstic rr.essage, the con­
versational user is prompted with # to enter corrections. He can
enter insertions, replacements, and deletions, as described for a
conversational task with a prestored source program. (See lterr 3,
above.> He is prompted for corrections until he presses the RETURN
key as the response tc the # request. At that faint, he is invited
to enter his next source statement line.

The language processors display thE incorrect line. Ho~ever, ~hen the
incorrect line is part of a continuation line, only the last part of the
line is displayed; this part may nct contain the error. If the user
wants to see the entire contents of the line, he:

1. Presses the ATTENTICN key to interrupt source language processing;

2. Invokes the text editor and rEviews the line in question:

3. Issues GO and resumes prOCESS mg.

when the entire source program has teen collected, the language proces­
sor finishes its analyses of source statements and may issue more diag­
nostic rressages. In FCRTRAN or assembler language and linkage editor
processing, the processor asks the conversational user if he ~ants tc
make modifications and restart or if he wants to continue processing.

When the user wants to continue, the next phase of the language proces­
sor is executed. If no errors are found that prevent the processcr frorr
producin9 an object prograrr module, the user is inforrred.

Finally, the object module is stored in the user's library (USERLlB),
unless he has defined another job library. If the object module is to
be stored in another job library, this library must be defined by the
user in his current task before he initiates source language processing.
For the FORTRAN or asserrbler user, this library must be his most recent­
ly defined library. Supplementary macro instruction libraries, used
during assembly, must also be defined before language precessing is ini­
tiated. For additional information ooncerning definiticn of theSE
libraries, see ASsembler programmer's Guide or FORTRAN Programmer's
Guide. The linkage editor plaCES the object module in the library spec­
ified in its input operands. For additional inforrr~tion, see Linkage
Editor.

36

Express Mode: You can use express rrode to compile or assemble more than
one program or to request more than one linkage editor function withcut
repeatedly entering the FT~, ASM, or LNR corrmands and operands. (PL/I
uses the continue function to achieve the same result.) See the appro­
priate OS/VS language programmer·s guide for similar options for progra~
product languages supported by FFLI.

you set LPCXPRSS=Y in your user profile before invoking the language
processor. If the task is nonconversational, the language processor
reads the next record from SYSIN, following the corrpletion of language
processing. If the task is conversational, the system prompts you to
enter the module name. The language processor assumes the same opticns
for the next scurce prograrr entered as those specified when the ASM,
FI'N, or LNK corr.mand was last specified. TO terminate language process­
ing. you can enter a break character followed by a command or you can
interrupt the language processor when you are prompted to enter the
module name. To initiate language processing again, enter the language­
processing corrmand and cperands, but note that you are still in express
mode (even though a system message said that express mode was
terrrinated.>

You can interrupt the express mode by pressing the ATTENTION key. If
you want to terminate express mode, set LPCXPRSS=N and issue a GO corr­
mand, as follows:

default lpcxprss=n
go

The compilation, assembly, or linkage editing of the interrupted prograrr
is corrfleted, and control is passed to the corrrrand system. However,
when the prccessor encounters an error in the specification of a nodule
name, a diagnostic messaae is issued, and language prccessing is termi­
nated. Express mode is still active until LPCXPRSS=N.

~isting Data Sets

The user has complete control of the listings that are printed. Tte
systeffi action for the listing data set varies, depending on whether the
symbol given as the module name has been Freviously used. When tiis
assembly, comFilation, or link-edit is the first cne in which the symbol
is used, the system establishes in the useros catalog a generation data
group (called LIST.symbcl) dnd maintains two generations. The systerr
also specifies that when the numbEr of g~lerations e~ceeds two, the old­
est generation is to be erased. When the listing data set for the cur­
rent run has been produced, the syste~ catalogs it and rrakes it a new
generation of the LIST. symbol generation data group.

When the sYffibcl has been used previously as a module name, the systerr
adds the listing as a new generaticn to the existing generation data
group. For example, the third listing data set for a given symbol
neCOffies the latest generation CO); the second 1 isting becorr,es the (-1)
generation; and the first listing is erased.

The user can change the number of generations that are rraintained in the
generation data group associated with a given symbol. Assume he has
neen working with a rrodule called ~YPROG, and that he has two genera­
tions in his LIST.MYPROG generation data group. He can change the nurr­
ber of generations rraintained in LIS~.MYPROG.

Exarrples:
1. Catalog the two generations as separate data sets (for this exarr­

FIe, MYPRCG1 and r-;YPRCG2).

catalog list.rryFrogCO),u"myprog1
catalog list.mYFrogC-l),u"myprog2

Section 3: Prcgram Management 37

2. Delete the system-defined generation data group~ LIST.MYPROG.

delete list.myprog

3. Define a new generation data group called LIST.MYPROG with five
generations, remove the oldest generations, and erase them.

catalog gdg=list.myprog,5~o,y

4. Add the two temporarily cataloged generations to the new
LIST.MYPROG generation data group.

catalog myprog2,u,~list.myprog(+1)
catalog myprogl,u"list.myprog(+l)

After the second CATALOG command is issued, MYPROGl becomes the
latest (0) generation, and MYPROG2 becomes the (-1) generaticn;
three more generations can ce stored before MYPROG2 will ce erased.

To obtain a printout of the desired listings after language processing,
the user issues a PRINT command with a data set name:

LIST.symbol (0)

for the latest listing or he issues:

LIST.symbol (-1)

for the last previous listing, if two generations were s~ecified.

The user can let the automatic erase logic associated with the genera­
tion data groups remove his unwanted listings, cr he can issue the ERASE
command or the ERASE option on the PRINT command to remove one or m,ore
generations. (Refer to the descriptions of these commands in Part III.)

Proqxanroing Notes: The user can create source data sets and correct
assembly or compilation errors with the text-editing commands. By leav­
ing the text editor invoked while he assembles or compiles a program,
the user can make changes after assembly or cCITpilaticn is complete.
Refer to Section 2, Text Editing, for a descr iption of the text editor.

PROGRAM CONTROL

Program control system (PCS> commands provide the user with great flexi­
bility for interacting directly with the execution of his programs.
These commands, and the system functions they request, are shown in Ta­
ble 9.

Caution: Some of these commands are restrictive in the class of virtual
storage they reference. The user may use all of these commands to ref­
erence his control sections that have been assigned to private read/
write storage. However, a control section that has the read-only attri­
bute may be referenced in all the commands except SET. Public nonprivi­
leged CSECTs roay be displayed (via DISPLAY) or dumped (via DUMP), but
the user cannot reference a public CSECT in a SET~ AT or TRAP command.
A user may never symbolically access nonprivileged or privileged system
CSECTs. Any violation of these restrictions will result in a diagnostic
message and rejection of the command.

38

dowever, if a CSECT having a system or privileged attribute is loaded
froIT USERLIB or from a jot litrary (JCBLIE), all attritutes are ignored.
Private read/write storage is assigned to the CSECT, and the systerr does
not recognize any of the above restrictions.

caution: PCS commands are generally roore difficult tc use with PL/I
programs or programs generated by PPLI sUfI=Crted cOI£I:ilers. Since nc
ISD is produced by an~ of these processcrs, synholic nanes may not te
~sed. In addition. actual hexadeci mal displacements from the roodule/
orocedure name are difficult to calculate since the name refers to the
actudl entry point of executable code. This entry pcint may be at vari­
ous displacements in the otject code although the listing might indicate
displacement zero. However, once the correct instructicn is located in
the object code, an 1\'1' statement and most other PCS statements may be
used. Complicated PCS statements should be avoided.

~he user can employ PCS ccmmands to:

• Explicitly and implicitly load and unload his programs.

• Initiate execution of his programs.

• Request output of the contents of data fields, instruction loca­
tions, and registers at any tiroe during execution of -his prograrr.

• Modify instructions and variables within his prcgran at any stage of
execution.

• Specify locations within his progran where execution is to be
stopped or started: when execution has been stopped, the user can
issue additional coamands tefore he resumes execution.

• Establish logical (that is, true or false) conditions that allow or
inhibit execution of other comroands.

• Perform arithmetic computations.

Section 3: program Management 39

Table 9. PCS commands and their functions
r-------T--,
ICoKmandl Function I
r-------+--i
IAT I Inform the user when execution of the frcgran. has reached a I
I Idesignated instruction location or make the statement that I
I Ifollows this command dynaKic. I
I I I
IBRANCH IDynamically change the control path cf a program or reSURe I
I lexecution at a different location. I
I I I
ICALL ILoad and pass parameters to an object nodule and execute. I
I I I
IDISPLAYIPresent the values of variables, the contents of machine reg- I
I listers, and the Sfecified virtual storage locations to user's I
! I SYSOUT. I
I I I
I DUMP IPresent the values of variables, the contents of machine reg- I
i listers, and the sfecified virtual storage locations to the I
I I task • s PCSOUT data set. I
I I I
IGO IResume execution of a freviously interru~ted program. I
I I I
I IF I Make the following statement conditicnal. I
I I I
ILOAD I Place an object module in the user's virtual storage without I
I I initiating execution. I
I I I
IQUALIFYIAllow the user to designate, before referring to group of I
I linternal symbols, the program in which the specified symbols I
I lare defined; thereafter, there is no need to explicitly quali-l
I I fy symbols. I
I I I
IREMOVE ISelectively delete the previously entered dynamic statements I
I I (that is, those that include liT). I
I I I
i RUN I Ini tiate execution of the loaded object nodule; resume execu- I
I Ition of the interrupted program; load and initiate execution I
I lof the object reodule. (Restrict.icns en the use of RUN are !
I I given in its command description in Part III.) I
I I I
ISE1 IChange the contents of machine registers, the values of pro- I
I I gram variables, the virtual storage locations, or the cOImand I
I I symbolS. I
I I I
ISTOP IInterrupt eXEcution of the user's program; disflay the in- I
I I struction location or the FORTRAN stateK,ent nunter where in- I
I Iterruftion was handled (if LlMEN=!). I
I I ,
11RAP IRequests notification when execution of an otject prograrr ,
I Icauses certain events to occur. I
I I I
IUNLOAD IRemove the specified object module fron the user's virtual !
I I stcrage. I l _______ ~ __ J

40

USE OF COM~AND STATEMENTS

PCS corerrands are often conveniently expressed in command statements.
For purposes of this discussion, three types of command statements are
considered: dynamic, immediate, and conditional.

DYNAMIC STATEMENT: This is a command statement that contains an A'1 or
TRAP; the AT or TRAP should a~pear first in the statereent and should be
the only A~ or TRAP command in the statement. Corrrrands that precede AT
or TRAP are executed immediately; commands that follo~ AT or TRAP are
not executed until control arrives at the instruction lccation designat­
ed by the AT command, or the TRAP event occurs. Cnly these commands can
fcllow AT or TRAP in a dynamic statement:

BRANCH
CALL
J:ISPLAY
DUMP

GO
IF
SET
STCP

If any other command appears in a dynamiC statement, a diagnostic rres­
sage is issued. Several dynamic statements can be effective at the sarre
instruction location; the statements are processed in the order in which
they were issued. A dynamic statement has the form,

AT location;command
TRAP operands;command

IMMEDIA~L STA1EMENT: This is a corrmand statement that does not begin
with an AT. Irrmediate statements are executed when they are entered.
hny corrrrand except AT may appear in an immediate statement.

CCNJ:I~IONAL S~ATEMENT: This is a command statement that contains an IF.
Both irrrrediate and dynamic statements can be conditional. ~e condition
that IF specifies must be satisfied before the commands that follow are
executed. Commands preceding the first IF corrrrand are executed without
regard to IF. When more than one IF appears in a conditicnal staterrent,
the conmands making up the statement are executed from left to right un­
til an IF that specifies an unsatisfied conditicn is encountered, or the
end of the corrmand statement is reached. Any command may appear in a
conditional statement. A conditional statement has the form,

IF conditionicommand

PCS APPLICP.TIONS

To load an object module, the user can issue a LOAD, CALL, or QUALIFY
comrr.and or he can issue a direct call. (Refer to the descriptions of
these commands in Part III.) The loading of one module may cause anoth­
er rrodule that is implicitly referenced by the first module to be
loaded. For example, when a LeAD ccnrr.and is issued fer module PG~A,
which implicitly references module PGMB, PGMB is also loaded.

Following LOAD, the user may enter immediate command statements to alter
the progran before execution tegins or dynamic statements to alter the
program during execution. The CAll corrnand or direct call initiateS
execution for a loaded rrodule, or loads and executes an unloaded nodule.
To modify a program after it has been called (via CALL or direct call),
the user presses the ATTENTION key and enters his corr.rrand staterr.ents.
~his procedure is not recommended for use of dynanic statements, since
execution may have progressed past the point referenced by the A'!' corr­
mand. He resumes execution ~ith the GO or ERPNCH ccrrrrands.

When the user references an external symbol, with the QUALIFY comrrand,
in a program that is not loaded, the program is loaded, and the user can

Section 3: Program Management 41

proceed as if he had entered the LOAD command. ~hen the user references
an external syrrbol that is not in any of the ~rcgrarrs in the likraries
available tc him, the symbol is assumed to be a command symbol, which
Nas defined via the SET command.

If the user has previously identified an external nane via the QUALIFY
comrrand, he can refer implicitly to locations in the identified mcdule.
he siwply omits the external name from the PCE cowmand operand. Fer ex­
ample, to display the lccation four bytes from CS£CT PG~, the user can
enter:

display pgm.{4)

or he can enter:

qualify pgm
display • (4)

Tne effects of the QUALIFY command last until the user issues another
QUALIFY command or until he unloads the rr,odule. So, later in his task,
he can still use the implicit form for addressing. This implicit form
applies to all PCS corrmands.

Note: Any PCS command causes a module to be loaded if the user enters
an external name as the operand of the PCS command. (SET PGM. (4)='A'
causes PG!¥J to be loaded).

To display a location offset from zero, the user can enter:

display LtO'. (4)

or he can enter:

display • (4)

if no external name has ceen identified by a QUALIFY command.

After execution has ended, the user can again issue command statenents,
or restart execution from a specified entry point by using the CALL
command.

The user can refer to internal program symbols in any loaded object
module for which he requested an internal symbol dictionary (lSD) when
that wodule was compiled or assembled; otherwise, he can reference only
external syrrbols.

Dynamic statements remain enforced until a REMOVE connand deletes them
or until a program referenced ty a dynamiC statement is unloaded. A
program is unloaded by an UNLOAD command or when the only program that
references it is unloaded. For example, if the loading of PGMA caused
PGMB to be loaded, unloading PGMA causes PGMB to be unloaded if PGMA is
the only loaded module that references PGMB.

Note: If PGMA is referenced in any PCS command, unloading PGMA renoves
all dynamic statements that refers to it during the session. If PGMA is
not referenced in a PCS command, but PGMB is, all dynamic statements
referencing PGMB are removed only if PGMA is also unloaded. A diagnost­
ic message is issued when dynamic statements are removed because a
module is unloaded.

TYPES OF OPERAND SPECIFICATION

The user has broad addressing capatilities for referenCing his programs
by using variables, constants, and the dynamic statew.ent counter as

42

operands for pes commands.

VARIAELES: These are designated by their (1) symbolic names, (2)
hexadecimal locations, cr (3) register numbers.

1. Syrr,bolic names: pes commands use either external, internal, or
cORxrand symbols .

• External symbols are defined within a rrograxr for reference dur­
ing load or execution. FCRTRAN COMMON ELOCR names, functicn
names, subroutine names, and the names of assembler language
ENTRY and CSECT statements are external symbols. For examrle, an
assexrbler program named PGM has these characteristics:

Two control sections, named PGMCS and PGMPS.

Two ENTRY statements, named PGMEP and PGMEX. ~hese, then, are
valid external symbols:

PGM
PGMCS
PGMPS
PGMEP
PGMEX

Four external symbols are assigned to every FORTRA~ object module

module name
CSECT name
PSECT name
module entry point

(for exarorle, F~NPG~)
(for example, FTNPGM#C)
(for example, f"INPG~#P)
(for example, FTNPG~#E)

In PCS commands any of the external symbols may be referenced,
and also any function subroutine or COMMON blcck names. Variables
referenced by external symbols have undefined type attributes •

• Internal symbols are defined within a single assembly or ccrrpila­
tion; FORTRAN statement numbers, FORTRAN data narres, and syrrbols
defined by the assembler statements are internal symbols.

The user may refer to internal symbols only if he requested an
ISD when his program was assembled or compiled. Also, he rrust
qualify each internal symbol to specify the program in which the
symbol was defined.

Note: When an ISD is requested for a FORTRAN compilation, opti­
nuIl1 code is not generated.

An internal symbcl is qualified explicitly by preceding it .ith
the name of the program in ~hich it was defined and a period.
When the defining program has not been processed by the linkage
editor, only one level of qualification is required. Thus, for
internal symbol IOSR, defined in program PGM, the qualified sYIl1-
hoI is:

PGM.IOSR

Section 3: Program Management 43

44

When the defining program has been processed by the linkage edi­
tor, two levels of qualification are required. ~he name of the
program output by the linkage editor (first level), followed by a
period; the original name of the defining ~rcgram (second level),
followed by a period; and the internal symbol. Thus, for intern­
al symbol IOSR, defined in frogram PGM, ~hich has reen processed
by the linkage editor into new program LEPGM, the qualified syro­
bol is:

LEPGM. PGM. IOSR

An internal symbol may also be qualified inrlicitly if its refer­
ence has been preceded ry a QUALIFY command containing the neces­
sary qualification. If internal synbol AEX has ceen defined in
program PGMA and a QUALIFY PGMA command has been entered, the
internal symbol may be referenced by entering ABX alone.

Note: If a progran' processed by the linkage editor contains an
internal symbol that is identical to an external symbol in ancth­
er frogram, explicit qualification is necessary to reference the
interna 1 symbol.

• Command symbols are independent of the user's ~rcgram and are de­
fined by a SET command, which designates a symbol that the system
cannot recognize as either an internal or external symbol. Fer
example, in the command SET R=5. if R is neither an external nor
internal symbol, the system designates R as a command syrobcl with
a value of 5. The command symbol may now be referenced or modi­
fiAd by subsequent rcs commands.

~hen a command symtol has ceen defined, it is addressable for the
user's entire terminal session; it is not affected by unloading
one of his programs. The corrroand symbcl nay be retained for
future terminal sessions ty using the PRCFILE com~and (see Sec­
tion 6).

Note: If a program is loaded after a coromand symool is defined,
and-the command symtol is identical to an internal or external
symbol in the program, the corrrrand symbol is not recognized until
that program is unleaded.

The types of internal and external symbols are discussed below.

• ~CSECT and %COM are two special symbols that may be used to refer
to the unnamed -assembler language control section and the FCRTRAN
CO~~ON BLOCK, respectively. %CSECT may be used cnly as an
internal symbol: %COM nlay be used as either an internal or exter­
nal symbol. When multiple unnamed contrcl secticns are loaded
internal symbols (including %CSECT) are referenced in the last­
loaded control section even -.. hen the internal symtol is explicit­
ly qualified ty the module name.

• FORTRAN statement numbers are written by the user in the original
source ~rogram and should not be confused with the line numbers
that are assigned to each scurce line by the compiler. State­
wents ~ust be referred to ty their numters, net ty line nurrbers.
Executable statement nurnters, used as internal symbols, can be
incremented to refer to unnumbered statements. The increment
must be an integer greater than 0, enclosed in parentheses, that
inrrediately follows the statement number. The increment deSig­
nated by (1) refers to the numbered statement itself. Therefcre,
86 (l) refers to numtered statement 86: 86 (2) ::efers to the neJ<t
executable statement f cllowing staterreflt 86.

Executable staterrents are arithmetic and logical assignment sta­
terrents, control statements, and I/O staterrents. Nonexecutatle
statements are specification statements and subprogram state­
ments; they should not be referenced.

Examples of FORTRAN statements:

10 READ (1,20)A
20 FORNAT (F6.2)

B = 11*3.14
WRITE (2,20)A,B
GO TO 10

The third statement (B = A*3.14) is referenced ty using 10 (2) •
The FO~~T statement cannot te referenced because it is not
executable.

A statement nurnter refers to a statement's first line and all of
its continuation lines; continuaticn lines can net te designated
separately when using increrrented statement nurrbers.

The integer 0 may te used to refer to a program·s first execut­
able statement when the first executable staterrent is not numter­
ed. In the preceding Example, if the READ statement were unnuw­
bered, 0 could be used to rEfer to it: 0(2) would then refer to
the second executatle staterrent (B = A*3.14) •

• SutscriFted symtcls are internal symbols that refer to elewents
within an array. A subscript to an internal symbol must be ei­
ther an integer constant, an integer variable, or an integer ari­
thmetic expression.

Symbols used in subscripts nay contain subscrifts, and subscript
symbcls may contain offsets: however, the subscript value cbtain­
ed when the various nests and expressions are evaluated must be
an integer. Eive levels of nesting (subscriFt and subscript,
subscript and offset, or offset and offset) are allowed. The
user may not refer to dummy FORTRAN arrays in a FCS statement.
If it is necessary to refer to a shared array, references to the
array should be qualified by the module that contains the array,
that is, the main routine.

The subscript is enclosed in parentheses, following the internal
symbol naming the array. One subscript may te used for each
dimension of the array: nultiple subscrifts are sefarated ty com­
rras. A diagnostic message is issued if an evaluated subscript
(1) is not an integer greater than 0, cr (2) is larger than the
dimensions defined for the array.

a. This two-dimension array contains three rows and five columns
and is defined by the internal symbol ~RRAY.

2
-2
o

o
1
1

-7
15

3

5
-6

9

13
8

-5

ARRAY (2,4) refers to tr.e array element at the intersection
of rON 2 and column 4.

ARRAY (2,4) = -6

Section 3: Program Management 45

46

ARRAY (4,4) would be invalid, since it is outside the array.

t. Consider this sutscripted symbol:

ARRAY (ARRAY (l,l),ARRAY (3,3»

The subscript contains subscripted symbols that must be
resolved first.

ARRAY (1,1> = 2
ARRAY D,3) = 3

When these values are sutstituted in the original expression,
the result is,

ARRAY (2,3) = 15

c. Assume this tatle is defined by the symbol TAELE, and each
item in the tatle contains a length attribute of 1.

Now

TABLE 5
TABLE+1 3
TABLE+2 1
TABLE+3 4
TABLE+4 2

consider:

ARRAY (ARRAY (TAELE. (l),TAELE. (4»,ARRAY (TAELE.(2),
TABLE. (3)))

This subscripted syrntol has a subscript with an offset that
is nested within the subscript. Evaluation of the sub­
scripted syrntol starts inside the nesting and works outward.

TABLE. (1)=3
TABLE. (4)=2
TABLE. (2)=1
TABLE. (3)=4

Sutstituting the values in the expression,

ARRAY (ARRAY (3 , 2),ARRAY (1,4»

reduces the expression to one similar to Example b. The
final value is determined by substituting the values fron
ARRAY in Exanple a:

ARRAY (1,5) = 13

d. The subscripted syrntol to be evaluated is:

ARRAY (l+X/Z,X-Y*Y)

Assume that X=6, Y=2, and Z=4. The arithmetic expressions
must be evaluated first.

1+ X/ Z = 1+ 6/ 4 = 1 + 1 = 2

(Note that in integer division pes ignores the remainder.)

x - Y *Y = 6- 2 * 2 = 6 - 4 = 2

Therefore the expression reduces tc:

ARRAY (2,2) = 1

Note: FORTRAN dimension variables and symbols, defined by
assembler language DC or OS statements with dUFlication factors
or rrultiple constants, are arrays. ~hen an array has an adjust­
aele dimension value, the value established at the latest execu­
tion of the subprogram is used. Assembler arrays are limited to
a single dimension that is equal to the durlicaticn factor multi­
plied by the numter of multiple constants •

• Offset, length, and type reference a specific byte following a
symtolic address or hexadecimal address. Pn offset of 1 refer­
ences the next tyte teyond the symbolic address. The number of
bytes that constitute the offset is written after the symbcl cr
address and its offset. The forrr. is symtol (cr address), period,
left parenthesis, offset, comma, length in bytes, cowma, type of
output format, right parenthesis:

SYMEOL • (OFFSET ,LENGTH,TYPE)
I!r:DRESS

An offset may be one of the following:

integer, hexadecimal, or address constant
integer or hexadecimal variatle
integer or hexadecimal arithmetic ex~ression

Length must be a positive integer.

TYPE controls the output format: it is specified as:

C character format; a string of characters is displayed
with all unprintable characters represented by periods.

I integer format: a string of from 1 to 10 integers pre­
ceded by a sign (for exarrple, +1234567890).

E binary format; a series of binary digits in bit represen­
tation. The LENG1H attribute for a binary constant con­
tains the length, in~. (In a SET command, this is
specified in the form B'11001010', where each digit
represents a bit.)

F -- floating-point format: for single precision values, this
specifies 8 digits in floating point format (that is,
±.XXXXXXXXE±XX). For double precision, this specifies 16
digits in double precision format (that is,
±.XXXXXXXXXXXXXXXXD±XX).

S ~- symbolic assemtler language format: as output data, this
is a header and one or more lines of assemtler language
code:

LOC
01 00022

INS'IRUC1ION
4330 F042

LABEL
NEX'I

CPC
Ie

OPERAND
3,66(0,15)

SYMBCl
SWITCH

If the user does nct specify the output format, the data is dis­
played in hexadecimal format. If the user specifies a range and
uses two different output formats in the staterrent (for €xarr:ple,
PGM.(4"C):PGM.(7"I},) the last form specified is used.

Note: The module must have an ISO if the user wants to specify
TYPE=S.

In a SET command, the TYPE attribute is ignored; the data is
entered as it is specified on the right side of the equal sign
(for example, SET PGM. (4, ,I) =' AECD') results in character data

Section 3: Program Management 47

48

being entered; the I, on the left side of the equal sign, is
ignored.

'Ihe rules for nesting offsets are the sane as for sul:scripts.
However, a symbol cannot have both a subscript and an offset.

Thus:

TAG. (ARRAY(2,3»

is a symbol with offset and is legal, but:

TAG. (4) (ARRAY(2,3})

descriLes an invalid symbol that has both a subscript and an off­
set at the same nesting level.

Examples:

a. 'Ihe twenty-seventh byte beyond £ATA would be ex~ressed as:

data. (27)

or it would be expressed as:

data.(x"lb")

If a length of four bytes is to be attributed to the data at
the twenty-seventh byte from DATA, the expression would be:

data.(27,4)

or it would be:

dat a • (X' it' ,4)

b. The user may reference data in a dummy control section
(DSECT) by using the register offset. Assume general regist­
er 5 contains the address of the DSEC'I, and the field to be
referenced has the symbol DATA associated with it in tte
DSECTi the lccation desired is:

data. (5r)

Again, explicit length may be supplied:

data. (Sr ,8)

c. A four-byte field that is the twentieth fullword field in a
table whose address is A'DATA' would be expressed as:

.(a'data'+20*4,4)

Note that the symbol to the left of the ~ericd is not re­
quired and is assumed to be location 0 if unspecified and no
qualification exists.

d. It is possible to achieve a full virtual storage dump by
specifying the range from location 0 to FFFFFF (for 24-bit
addressing) and 0 to FFFFFFFF (for 32-bit addressing) as off­
sets in the operand field of the DUMP command, for exanple:

dump .(x·O'):.(x'ffffff')

2. Bexadecimal locations: pes commands can refer to the contents of
locations. The hexadecimal address of the location referred to is
enclosed in apostrophes and is preceded by L. The referenced vir­
tual storage location must have been assigned to the user's
storage.

Examples of hexadecimal addresses:

L'BOOO'
L' 9FECO'
L' 9100'

Note that a hexadecimal address can be used in place of a synbol
for use with offset.

L'O'. (X'SOO' ,6)
L"1AFOOO'.(X'24',X'lS')
L' 1AFOOO'. (,24)

3. Registers: PCS conmands can refer to any of the general or
floating-Foint registers. A reference to a general register is
written as nR, where n is an integer from 0 to 15 that identifies
the register.

A reference to a single-precision, floating-~cint register is writ­
ten as nE, where n is 0, 2, 4, or 6. A double-precision, flcating­
pOint register is referenced ty writing nD, where n is 0, 2, 4, or
6.

Examples of register references:

3R reprE!s ents general register 3
2E represents floating-point register 2, single-precision
bD represents floating-point register 6, dcuble-precision

CONSTAN~S: Six classes of constant are used in pes commands: (1)
integer, (2) character, (3) hexadecimal, (4) floating-point, (5)

address, and (6) binary.

1. Integer constant may te writtEn as a signed or unsigned decinal
integer. The length of an integer constant is not explicitly de­
fined, but is determined from the expression in which the constant
occurs. If the value of the number exceeds the permissible size,
as determined by context, the number is truncated cn the left.

Examples of integer constants:

9327
-641
+1066
-67

2. Character constant consists of letters, decimal digits, and special
characters enclosed in apostrophes. Also, any remaining unused
conbinations of the 256 valid card-punch combinations may be desig­
nated as a character constant. An a~ostro~he, used as a character
in a character constant, must be represented by two apostrophes
even though only one is in storage. If the length of the constant
is not appropriate in the context used, the constant is truncated
or is filled with blanks on the right.

Exanples cf character constants:

Section 3: Program Management 49

'$3.98'
'HOW ARE YOU?'
'I"M FINE'

3. Hexadecimal constant is one or more hexadecimal digits (0 through 9
and A through F) preceded ty an X and enclosed in apostrophes. A
hexadecimal constant is either truncated or filled ~ith zeros at
the left if its length is inaFpropriate for the ccntext.

ExaIl',ples of hexadecimal constants:

X'76543210'
X'FFFFFFFF'
X'ACE"
X'9FEC3'

4. Floating-foint constant is a signed or unsigned decimal nurrber in
the principal part of the constant I which can be written with or
without a decimal point. ~he decimal point can be at the beginning
or end in any position ~ithin the decimal nurrber, as appropriate.

An exponent specifies a power of 10 by which the principal part is
multiplied during conversion. The decimal point roay be omitted if
an exponent is specified, in which case it is assumed to be located
at the right-hand end of the decimal number. The exponent of a
floating-point constant is either an E or a E, fcllowed by a signed
or unsigned decimal integer. An E indicates a single-precision
nurrber; a D indicates doutle-precision.

~he eXfooent may be omitted if the principal part contains a deci­
mal point. When used, the eXfonent must fcllow the principal part
of the constant. The magnitude of the exponent must be within the
range of approximately -75 to +75. It the exponent exceeds the
rraxiIl'um, +75 is assumed. If it exceeds the minimuro, 0 will be
assurr.ed.

A floating-point constant is converted to a normalized floating­
point number. If the exponent of a floating-point number is
orritted, the floating-point nurrber is assuIred tc te
Single-precision.

All of the following floating-point nurobers are equivalent and are
converted to the same floating-point binary number:

3.14159
31.4159E-1
314159.E-5
314159E-S
.314159E1

5. Address constant consists of the character A followed by a symbol
enclosed in apostrophes. The allowable symbols are external symbol
with cr without offset, internal symbol ~ith or without offset, and
subscripted variable.

50

The length of an address constant is always four tytes, and its
value is the address assigned to the symbol. Address constants are
evaluated at the time they are used. ~he current value of any
variacle referenced in a subscript or offset is used in co~puting
the value of the address constant. As a result, the value of an
address constant that contains a subscripted or offset symbol rr.ay
vary during program execution.

Examples of address constants:

A' PM(;. TAG'
A'NAME'
A' ARRAY {I, J} •
A'FTNPGM.I00(36)'
A • .l(. (4 096) •

6. Binary constant is written as a string of ~inary digits enclosed in
apostrcphes and preceded ty the letter B. Ei9ht bits comprise one
byte cf data. When the user displays binary data, the data is dis­
played as a series of bytes.

Examples of binary constants:

B'10001100 •
S'Ol' (displayed as B ' 00000001')
B'lO' (displayed as E'00000010')
B'1010' (displayed as B"00001010')

when the user enters a binary constant on the right side of the
equal sign in a SET command, and if LIMEN=I. the SET operand is
displayed for review in hexadecimal notation. For example. if the
user enters

default limen=i
set pgm.(4,2)=b'1111000011111111'

the system displays

PGM.(X'4',2)=FOFF

to confirm the operation.

COUNTER: A counter, associated with each dynamic statement, is incre­
mented by 1 for each occurrence of the events specified in the state­
ment. This counter must be referenced by the special character % when
the AT or 'IRAP command is entered. (For examx;le, AT X;I:ISPLAY%.) The
value of the counter may te displayed or dumped, and can be used in for­
ming expressions. The counter that is displayed or dumped is the one
associated with the AT or TRAP staterr.ent in wbich the counter is
referenced. Since % is not a user's variable, it cannot be changed by a
SET command. (See RExarrples Using pes Commands,R Example 3, later in
this section.)

OPERAND DEFINITIONS

The terms used to descri~e the operands of PCS corrmands are (1) data
location, (2) data field, (3) expressions (arithmetic and logical>, (4)
instruction location, (5) link-edited module name, (6) object module
name, and (7) statement number.

DATA LOCATION: A symbol, a hexadecimal location, a register, or the
special counter (%) can be a data location. Eoth fully defined and
incompletely defined data locations may be referenced.

Fully defined data locations have type and length attributes. Such
locations include internal symbols without offsets, subscripted sytrbols,
and floating-point registers.

Incompletely defined data locations lack either the type attributE or
the length attribute. A length attribute can be assigned to a syrrbol
with offset. The offset fo11ows the period and left parenthesis and is
followed by a comma and a length. Length is specified as an integer or

Section 3: Program Management 51

a hexadecimal constant that is greater than O. The attribute is closed
with a right parenthesis.

Examples of symbols with offset ana explicit length:

Y. (X I FCC' ,4)
Z. (12,8)
A. (2,X' AF')

Note that the offset may te defaulted and a length specified:

Y.(,24)

A length attribute may be assigned to a hexadecirral lccation by writing
a colon that is followed ty a larger hexadecimal location. A diagnostic
message is produced if any locations within the range have not been
allocated to the user's virtual stcrage.

Exawples of hexadecimal data locations with explicit length attributes:

L'9FECO':L'9FEC7"
1'9100':L'9103'

DATA FIELD: A contiguous group of storage locations whose contents are
to be displayed or duwped is a data field. These locations may be in
the user's virtual storage or in registers. A data field may be a data
location, an array, a ccntrol section, a symbolic range, a quoted str­
ing, or an arithmetic expression.

An entire array is specified as a data field for display or dumping if
its name is written as an internal syrrbcl withcut subscriftinq. Simi­
larly, a CSEC~ name, written as an internal symbol without an offset,
specifies the entire CSEC~ as a data field; so does a CSECT naIr.e ,,;ritten
as an external symbol without an offset.

A range of registers is specified as a data field by writing the nuwbers
of the first and last registers to be displayed or durrped, separated by
a colon, and followed by the character that identifies the register
type. The register type r are:

R = general registers
E = floating-point registers with fullword forrr
D = floating-point registers with doubleword forrr

When the user specifies a range, general register 0 followS general
register 15, just as floating-point register 0 follows floating-point
register 6.

Examples of specifying a range of registers are as follows:

o :4R general registers 0-4

14:3R general registers 14 and 15, then registers 0-3

2 :6E floating-point registers 2, 4, and 6 in fullword forrrat

6:2D floating-point registers 6, 0, and 2 in doubleword forrrat

A data field may be specified ty a symbolic range that is written as two
symbols separated by a colon. ~he storage location cf the symbol to the
right of the colon roust be greater than the location of the symbol on
the left. If not, a diagnostic message is issued. Ecth symbols used to
3pecify a data field must te either external symbols or internal syrr­
boIs. One range may not be specified by an internal and an external
symbol. When two internal symbols are used to specify a data field,

52

both must have been defined within the same CEECT. External symbol
ranges nust be contained within user-assigned storage. Either or both
of the symbols used to specify a data field may be offset, but may not
have explicit lengths.

Examples of data fields specified by symbolic ranges are:

A.BY:A.BX
PGM.LSF:PGM.LSA
LSF:LSA (if preceded by QUALIFY command)
ABX:ABX. (X 'FFFF')
ABY:AEY. (256)
ABY. (24) :AEY. (256)

EXPRESSIONS: PCS comn,and expressions are either arithmetic or logical.
They are fermed by using these operators:

Operator
Arithmetic

+

*
/

Logical

,;

I
Relational

>
<
=
>=
<=
..,=

Meaning

Addition
Subtraction
Multiplication
Division

Logical NC'I
Logical AND
Logical OR

Greater than
Less than
Equal to
Greater than or equal to
Less than or equal tc
Not equal to
Not greater than
Not less than

1. Arithrretie expressions may be used as sutscripts or offsets, as
values to which variables are to be set, as values to ce compared
when you use relational operators, or as values to be computed and
displayed.

The least complex arithmetic expression is a single constant or
data lecation. However, an arithmetic expression may include any
nunberof oonstants, data locations, and simpler arithmetic expre­
ssions that are related by arithmetic operators. The special char­
acter % may be used in an arithmetic expression in a dynamic state­
ment to reference the dynamic statenent ccunter.

'Ihese rules must ce followed in the formation of arithmetic
expressions:

a. Any arithmetic expression nay ce enclcsed in parentheses.

b. Arithmetic elen,ents or expressions may be connected by arith­
netic operators to form other arithmetic expressions, provided
that no two arithrr,etic operators afpear in sequence and no ari­
thnetic operator is assumed to be present.

c. An arithmetic element or expression preceded by a sign (+ or -)
is permitted; the operators * and / must be preceded and fol­
lowed by elements or expressions or coth.

Section 3: Progra~ Management 53

54

d. All data locations connected by arithmetic operators must have
lengths of 256 bytes or less and be aligned cn the a~prorriate
bcundary.

Arithrretic expressions that do not contain terms that are in ~aren­
theses are evaluated left to right, in this order: (1) mUltiplica­
tion or division; (2) addition or subtraction. For example, the
arithnetic expression:

PGM.A+PGM.B*PGM.C-PGM.D

is evaluated as:

PGM.B*PGM.C (denote result by X)
PGM.A+X (denote result by Y)
Y-PGM.D

Arithmetic expressions that centain terms in parentheses are evalu­
ated by treating the innermost tpxm in parentheses first. After
all terms in parentheses have bEen evaluated, the remaining opera­
tions are performed in the sane way as is done for expressions not
in parentheses. Fer example, the arithmetic expression:

PGM.A+(PGM.B-PG~.C)*fGM.B/PGM.E

is evaluated as:

PGM.E-PGM.C (denote result by Xl
~.PGM.D (denote result by Y)
Y/PGM.E (denote result by Z)
PGM .A+Z

~hen division is performed in an integer arithmetic expressicn, the
integer part of the quotient is retained, and the fraction is dis­
carded. Therefore, if 13 is divided by 2, the answer is 6 (13/2=
6). The expression A*B/C may yield a different result than the ex­
pressicn B/C*A.

For example, where A=8, E=6, and C=4, the first expression is

8*6/4=12

and the second expression is

6/4*8=8

Examples of valid arithmetic expressicns:

1.E-5
PGM.X. (4)
PGM.X/PGi.Y-1
PGM.I*(PGM.J+PGM.K)
-Z.(,4)/%

The arithmetic method used to perform the operation is based on the
type of the variables in the expression. Integer, floating-point,
or logical arithmetic can be used in evaluation.

An undefined expression contains all undefined variables (for exam­
ple, external symbols and hexadecimal locations), or it contains
two variables of different types.

If an undefined expression is used in a sul::script. it is assun.ed to
be integer. If an undefined expressicn has a variatle that is
longer than four tytes, the expressicn is assuned to l::e floating­
point. The user is prompted in all other cases to provide the type
of arithmetic to be perforrred.

An ex~ression containing a constant can never l::e undefined. ~h€
data type of the ccnstant is used to define the expression.

2. Lcgical expressions are used in a conditional statement and take
any of these forrrs:

a. A single logical variatle.

t. ~wo or more logical variatles connected by the logical o~era­
tcrs & or I.

c. Twc arithmetic expressions of the same type, connected by a
relational of era tor.

A lcqical expression that oontains a relational operator has the
logic value Wtrue w if the condition eXfressed by the o~erator is
rret when the expression is evaluated. Otherwise, the expression
has the value w£alse. w

~he lcgical operator must te followed by a logical expression or
term. Similarly, the operators & and I rrust be ~receded and fol­
lowed by logical expressions to form compound ex~essions.

Any logical expression may te enclosed in parentheses. Any corr­
pound logical expression to which the ~ operator is to apply rrust
be enclosed in parentheses.

Logical expressions that do not contain terms in parentheses are
evaluated in the following order:

a. Multiplication and division (* and /)

b. Addition and subtraction (+ and -)

c. Relational operators (>, <, =. >=, <=, ~=, ~<. ~»

d. Lcgical NOT (~)

e. Logical AND (&)

f. LcgicalOR (I>

when there is more than one operation of the same level, the opera­
tions are performed from left to right. For example, the
expression:

is evaluated as:

PGM .X/PGM. Y
A<1.E-5
PGM.z=q
fie

(denote result by A)
(denote result by E)
(denote result by e)

This example is evaluated as being -true" only if the data at PGM.X
divided by the data at PGM.Y was less than 10-s , and the data at
PGM.Z is the integer 4. Th~ variatles at PGM.X and FGM.Y must be

Section 3: program Management 55

floating-point data, and the variable at PGM.Z must be integer data
to have the logical expression evaluated.

Terms in parentheses within logical ex~ressions are evaluated in
the same order. Then, when the expressions have been reduced (that
is, a single logical value has been assigned to each term in paren­
theses), evaluation is performed in the order indicated. For exam­
ple, the logical expression:

(PGH. B=2f;PGM. C=3) I PGM.A=l

is evaluated as:

PGH. E=2 (denote result by W)
PGM.C=3 (denote result by X)
W&X (denote result by Y)
PGM.A=l (denote result by Z)
YIZ

In this example, the variable referenced Rust be integer data. The
ex~ression is "true" when the data at PGM.B=2, and the data at PGM.
C=3, cr when the data at PGM.A=l.

Logical negation, indicated by the operator ~, can be used
preceding:

a. ~he relational operators =, >, and <.

b. A single logical variatle, in which case the variable need not
be enclos ed in parentheses.

c. A corr.pound logical expression, in which case the expression
rrust te enclosed in parentheses.

Assurring that both im~licitly qualified symbols A and B are logical
variables, and both C and L are arithrretic expressions, then the
fcllowing are valid uses of tte -. operator:

-.'Pi
-oC=D&-.A
-.AIE
~(AI B)

The last two expressions are not equivalent. In the first case,
the -. operator applies to the logical variable Ai in the other
case, the -. operator applies to the evaluated result AlB. Ttus, if
A is false, and B is true, then ~IB is true, and -.(AIB) is false.

INS~RUC'I.ION LOCATION: A statement within the user' s source prograrr is
an instruction location. An instruction location is expressed either as
the staterrent number of an executable FCRTRAN staterrent cr as an inter­
nal syrrbol in a source ~rograro that is written in assembler language.
In either case, the user can apply an offset to the primary location de­
Signator. An explicit length is ignored. when an internal symbOl is
used. it does not have to referenCE a location defined in the ISD as an
instructicn or as a CSECT name.

~he user can express instruction locations as internal symbols llliithin
his program only if he requested an ISD when his prcgrarr was last com­
piled cr assembled. Otherwise, he must express tbem as external symbols
(with or without offset) or as hexadecimal locations. In either case,
the instructions must be en halfword boundaries.

~he ISD sUfplies the system with information concerning internal syrr­
boIs. However, an ISD that is produced may net cc,tain all of the in-

56

formation about the source program. For example, in assembler language
usage, overlays caused by the ORG state~Ent are not reflected in the
ISD. If the user displays (via DISPLAY command) the storage locations
affected by ORG statements, the contents will be correct, but the as­
signed symbolic names will be misleading.

LINI<-EDI'l'ED MODULE NAME: 'Ihis name must precede the criginal program
name, when qualifying internal symtols in a prograrr that has been pro­
cessed by the linkage editor.

OBJECT MODULE NAME: This name is always the one assigned when the
source module was compiled or assenbled. ~hen internal symbols are
referenced, the object module name must qualify the symbol. 'Ihis name
must be further qualified if the original program module was processed
by the linkage editor.

SlAIEMENl NUMBER: This number is assigned by the system to each state­
ment containing an AT command. This number may be referenced in a
REMOVE conrr and.

SYNONYMS

Synonyms fcr PCS co~mand names and operands may be used. Examples of
valid synonyms are:

XYZ=LEPGM. PGM. IOSR
Anc=XYZ. (X" 4C") (where XYZ is a synonym)
X=A+E*C
ABY=L"EF2Q6"
AEX= ARRAY (I ,J)

Nhenever the system is processing an operand (such as a data location or
a data field), and a synonym is recognized, the syncny~ is substituted.
'l'he operand derived by the sutstitution may also contain synonyrrs, which
are substituted one at a time. This procedure continues until all
synonyrrs are resolved.

Synonyrr substitution occurs only for the first character string encoun­
tered when processing such operands as data lecation and data field.
For exarrple. for a data location defined by LEPGM.PGM.IOSR, synonyms are
substituted for LEPGIvl, rut are not substituted for PGM or ICSR. (Refer
to Section 6 and to the description of the SYNCNYM command in Part Ill.)

Exa~ples:

1. Assu~e the user bas link-edited programs PGMA, PGME, and FGMC that
form a new program, LEPGM. New, the user wants to reference con­
currently internal syrr.bols wi thin PGMA, PGlffi, and FGMC with FCS
commands. Since only ene qualification is allowed at one tirr·e, the
user is required to qualify fully all syrrbcls in twc of the three
prcgrarr ~odules involved.

SUfpose he enters:

synonym a=lepgro.pgmb
synonym b=lepgm.pgmc
qualify lepgm.pgma

Now eXflicit qualification is simplified; the user can reference
symbols in PGMC merely by using B. as the qualifier. Thus, the
symbol X in PGMC can be referenced as:

set b.x=x"OOOOOOOO·

Secticn 3: Program Management 57

This is much simpler than

set lepgm.pgmc.x=x·OOOOOOOO"

which would be required otherwise. Now, an expression such as

set lefgm.pgma.z=lepgm.pgmt.y+lepgm.pgmc.x

can ce stated as

set z=a.y+b.x

2. ~he user has entered a ~UALIFY command so that explicit qualifica­
tion of external symtols is unnecessary. He then enters the
definiticns:

synonym array=table.
syncnym i=x'4c'
synonym j=4

~hen the expression

display array(i,j)

which would normally show an element of the array, is interpreted
as

disflay table. (x' 4c' ,4)

which, instead, displays an element of the table.

Note: Substitution is made for ARRAY, I, and J, since each is a
data location. If ARRAY had teen explicitly qualified (PGM.ARRAY),
then TAELE. would not have bEen substituted, since ARRAY is the
second character string in the data location PGM.ARRAY.

Examples Using PCS Commands

The internal symbols in all the following examples are implicitly quali­
fied, since a QUALIFY command ~as entered with the narre of the defining
program.

1. The user wants to display the contents of all general registers and
floating-point registers in doubleword format ~hen his prograrr
reaches the instruction location ERREX~. Ee alsc wants the con­
tents of the virtual storage locations, in the range from TOP to
EOT, to be put into his PCSOU~ data set ~hen PCS reaches the ERREXT
location

at errext;display O:15r,O:6D;dump top:bot

2. The user wants to change the value of variable POINT to the address
of the external symbol DATA ween his program arrives at instruction
location TAGA:

at taga;set point=a'data"

3. The user wants to display a table, TAB, every tenth time through
the leop ENTAB. When the loop is executed 100 times, he ~ants to
durrp the CSECT named BLD~B:

at entab;if ~=(%/10)*10:display tab;if '=(~/100)*100;durop bldtar

4. The user wants to use PCS comnands to froduce 'IOfUt and output to
his program. He wants to make some computations, using the sequen-

58

tial numbers 50 to 500. At statement number 10 he sets up a con­
stant, INPUT, using the variatle A, which was frevicusly initia­
lized at O. At the end of each computation, which is statement
number 80, he wants to see the result, O~~PUT:

at 10:set input=a+50:set a=a+l:if input=500;stop
at 80;display output:branch 10

5. The user has assembled his prcgram and has discovered that he has
forgotten to provide a latel (TAGA) for the instruction

L 2,XYZ

which is located at hexadecimal location 124 and referenced ty

B TAGA

which is at hexadecimal location 176. By using PCS commands, he
can fix his program temporarily, withcut reasserrbling, by issuing

at csect.(x·116');tranch csect. (x'124')

6. The user wants to display the contents of all general registers
when the variable VAR1 in his PSECT changes.

TRAP STORE,VAR1:DISPLAY O:15R

Section 3: Program Management 59

SEC~ION 4: COMMAND CREATICN

The user can alter the names of system-supplied commands, redefine
system-supplied commands, and create new commands from a series of
systerr-sufflied corrroands, or user assemtler otject coding. In crEating
a new corrrrand, the user can also define his own operands and establish
the desired defaults for these operands.

Two systerr-sufplied cOJrmands, PRCCr:EF and EUILTIN, are used to create
new commands •

• PROCDEF defines a command procedure, consisting of a combination of
other ccmrr.ands that. the user can invoke as a command •

• BUILTIN defines an otject program that the user can invoke as a
command.

The following are some advantages to user-written comroands:

1. Although it is possitle to store a series of commands (for exarrple,
a nonconversational SYSIN data set) and then execute them via the
EXECUTE command, this process has limitations in its flexibility.
PROCDEF is easier to use; it does not require the user to explicit­
ly create a data set when the commands are tc te stored, and it
allows easier modification of the commands.

A user may have a series of commands that he issues many times dur­
ing a task or several tasks. He can collect these commands in
sequence as a procedure, assign a name to this procedure via
PROCrEF, and invoke this procedure by issuing the name. Since scrre
of the commands in the procedure may require operands, provision is
made by the system to associate the operands with the name of the
cOlmand procedure. lifter the prOCEdure has been defined and named,
it rray be executed ty entering its name and the necessary operands
during a task, just as any systero-supplied conrrand is entered.
refining a comIrand procedure is analogous to writing a computer
program; that is, a set of corrrrands is established at one tirre and
is executed at a later time ty issuing its name.

2. ~he user may require an entirely ne'N" command that invokes actions
unlike those provided ty any current system-supplied commands. He
creates an object ~rogram and, ty using the BUIL'IIN corrmand,
defines his object code as a user-written corrmand. This procedure
is called by its name in the same way a systerr-su~~lied command
calls a procedure. It differs from a normal object module call,
however, in that oferands may te supplied according to corrrrand­
operand rules rather than program-call rules.

COMMAND PRCCEDURE

A command procedure is a prestored sequence of corrrrand statements that
uses pararreters and other input material necessary for the execution of
the ~tatements. The user calls the procedure by issuing the procedure
name as a ccmmand. For example, if he has defined a corrmand procedure
by using PROC~EF and has specified ABC as the procedure name, he rray
call his procedure by issuing ABC. The prccedure call is a two-stage
process. In the first stage, operand substituticn is rrade where speci­
fied. In the second, lines of the procedure, which are corrmands, are
scanned and exemted in tbe same manner as a system-supplied corrroand
that is entered at the tenT'ina!.

60

PROCEDUR~ LIBRARY

Command procedures are stored in procedure libraries: user-written pro­
cedures are in the user's procedure library (member SYSPRO of USERLIB);
system-defined procedures are in the system procedure library (me~ber
SYSPRO of SYSLIB). when the user issues a command, the system first
searches the user's procedure library. If the procedure is not there,
the system checks its library. ~his order of library search enables the
user to nane a procedure he has created with a system-supplied connand
name, thereby preempting execution of the systen prccedure.

COMMAND PROCEDURE DEFINITION -- PROCDEF

The PROCDEF con.mand defines a co~mand procedure that consists of other
comnands. In issuing PROCBEF, the user must specify, as an operand, the
name to be assigned to the new user-written command procedure. This
procedure name is the command that invokes the procedure. (See the de­
scription of the conmand in Part Ill.)

When the user enters the PRCCCEF command, the text editor is invoked.
The user can use all of the text-editing commands during command crea­
tion (see "Editing Procedures" later in this section and "~ext Editing"
in section 2 of this part). Unless the user suppresses line nurrber pro­
mpting (by issuing the ccmmand DEFAULT LINENO:N), the syste~ prompts hi~
to enter data by issuing line numbers. Fer a new procedure, the systero
issues line number 100; for an existing procedure, .the system issues an
underscore as a prompt for a corrmand. In both cases CLP is set tc the
first line after line o.

For example, if COPYCAT is the name of the command procedure being de­
fined,. the user enters

procde£ cOfycat

and the system replies

0000100

If COPYCAT were previously defined, and the last line is line 800, the
system's reply is an underscore and CLP is set to the first line of the
PROCDEF.

SPECIFYING DUMMY OPERANDS

The user can build a conmand procedure that accepts operands when called
by its connand name; to do this, he must establish dunmy operands in the
PROCDEF to "hold the places" for the real operand values. Dummy
operands are placed in the PROCDEF where the real values would be ex­
pected; then. when the command is entered, the real cperand values are
substituted for the dummy values. The dummy operands are specified in a
PARAM line. This line must only occur at the first line after line 0 of
a PROCDEF; the format is:--

User:
SYS;User:

procdef inlaw
0000100 param trouble

Then, when the PROCDEF is called, the system accepts cne operand (for
exa~ple, INLAw JONES> and substitutes the operand for each occurrence of
the dunrry cperand in the PROCDEF.

User: procdef inlaw
Sys,user: 0000100 param trouble

Section 4: Comroand Creation 61

0000200 display 'trouble'
0000300 end

In this example, the PROCDEF could be called like this:

inlaw jones

The system substitutes the operand ~CNES for each occurrence of the
dummy operand TROUBLE. The PROCDEF displays the wprd ~CNES.

A dummy operand name may be specified in either of two ways.

1. ~ character string, which defines a positional operand, is (a) the
keyword name of the dummy operand used for association with the
calling parameter (the value specified in the cperand field of the
conwand calling the procedure) and is (b) the internal string for
which there will be a substitution in the prccedure text. Tte ac­
tual character string specified as the calling parameter replaces
all occurrences of the dunrry cperand in the procedure text. For
exaniple:

param dsname

When the procedure is called, the value of the first positional
operand or the operand value of the keyword DSNA~E in the calling
command replaoes the occurrences of CSNAME in the procedure text.

2. An external character string is the keyword name of the dunmy
operand used for association with the calling paraweter (the value
specified in the operand field of the conwand calling the proce­
dure). The internal string (to the right of the equal sign) is
replaced by a substitute in the procedure text when the procedure
is called. For example:

62

param dsname=$l

DSNAME is the external string, and $1 is the internal string. when
the procedure is called, the value of the first positional operand
or the operand value of the keyword DSNA~~ in the command calling
the procedure replaces $1 in the procedure text. Operand resolu­
tion is discussed in detail under ·Operand Resolution and Substitu­
tion" later in this section.

Exarrple:
Procedure

User:
SYS:User:

procdef callme
0000100 param entry=$a
0000200 display 'calling $a'
0000300 call $a

Procedure call can be in one of the following forms:

callrre entry=one
callme one

The result is:

CALLING ONE

Module CNE is called.

ENTRY in the PARAM line is an external string and is associated
with the keyword ENTRY in the procedure call. The value ONE is
substituted for the dummy operand $~ in each ~currence.

Procedure

User: procdef callme
0000100 faram $a Sys,user:
0000200 disflay 'calling $a'
0000300 call $a

Procedure call can te in one of the fOllowing forms:

callme one
callrre $a=one

The result is:

CALLING ONE

Module ONE is called.

$A in the PARAM line is both tbe external string, used for associa­
tion with the calling operands, and the internal string, to be sub­
stituted for in the procedure.

The user may specify a dummy operand as either a nora'al string or a
quoted string. (Refer to the definition of string constants in Section
2 under "General Terms.")

Note: Dulury operand values are usually preceded by a $ or some other
identifier to ensure that only desirable substitution occurs. (See
·Operand Substitution, II later in this section.)

~NTERING PROCEDURE TEXT

After the user issues the PROCDEF command name and operands, and option­
ally the PP.RAM line, all subsequent lines issued without a preceding
break character are inc~uded in the procedure text. The system prompts
for each line with a Ii he number, and there is no limit to the nunber of
lines the user can enter.

When a break character appears first in a line, the statement that fol­
lows is interfreted as a command. (See the list of definitions under
·General Terms· in Section 2.) However, when the first and second
characters of the line are break characters, the usual break-character
action does not occur. Instead, the system replaces the pair of break
characters with a single break character and processes the line as if it
were text. Thus, lines starting with break characters can be put into
procedures.

The user can enter system-suppl ied commands (including PROCtEF and BUIL­
TIN) or user-written conmands as text. The ccnnands entered need not
include all the operands associated with them, but cnly those necessary
for the successful performance of the functions requested. These
operands can remain variatle, if tbe user specifies dummy names that
also appear in the PARAM line, or can be fixed with explicit values.
Fixed operand values are not included in the PARAM line and are acted
upon as specified in the text when the procedure is called.

A direct call to an object module can be entered by using the name of
the module in the procedure text.

TERMINATING PROCEDURE DEFI~ITICN

The user terminates processing of a PROCDEF command by entering a break
character followed by either an ENt corrrr.and, another PRCCtEF command, a

Section 4: Corr.rrand Creation 63

PLI command, or an EDIT cOll'mand. iihen the user enters another PRCCDEF
coro~and, the same options for terminating its ~rocessing are applicable;
the last PROCLEF must be terminated with either an END, EDIT, or PII
command.

Exanples:

1. User:
Sys,user:

procdef
0000100
0000200
0000300
0000400
0000500
0000600

copycat
param ddna:roe=alphname ,dsname=namel,­
$ any ,newnan:e=$l
ddef ddname=alphname,dsorg=vi,dsnaroe=namel,­
volume=$any
catalog dsname=nareel,u,newnane=$l
end

In line 100, DDNAME w DSNAME, and NEWNAME are external strings (key­
words) that associate the calling parameters with the internal
strings in the line: ALPHNAME, NAME1, and $1, respectively. These
internal strings are replaced in the procedure text by the calling
parameter values. $ANY, represented pcsitionally in line 100, is
replaced by a substitute in the text.

LDEF, cn line 200, is a system-supplied command that has the vari­
able operands DDNAME, DSORG, DSNAME, and VCLUME. DSCRG=VI is a
fixed operand value and is acted upon as specified. Values for the
other variable operands are supplied when the procedure is called.

CATALOG, on line 300, is also a system-supplied corr~and. ~wc of
its operands are variable and are replaced by substitutes ~en the
procedure is called. When the break character, followed by the END
corrmand, is entered, the definition of this procedure is
terminated.

2. User:
sYS;user:

procdef dmproq
0000100 param $1, 'here:there"

3.

64

0000200 if '$l'='yes'; display 'success'
0000300 if '$l'~='yes'; durrp here:there
0000400 _edit xyz

~he quoted string 'HERE: '!HERE' is given as a dunrry operand in the
P~RAM line. The apostrophes permit the use of the special charac­
ter (the colon) within the character string. The apostrophes are
rerroved when the string associated with this dummy operand is sub­
stituted in the procedure text.

In lines 200 and 300, IF is a system-supplied command; the apos­
trophes enclOSing its operands are not removed when the substitu­
tion is effected. The break character and ELIT ccrrmand o~ line 400
terminate the PROCtEF.

user:
~ser:

procdef
0000100
0000200
0000300
0000100
0000200
0000300
0000400

diff
param alphname, $1, namel
ddef ddnam€=alphn~ne,dsorg=$l,dsname=namel

procdef callme
param alphname,$a, $1, $2, '$3', $4
asm name=alphname, macrolib=$a,y,y,y,y
copyca~ alphname, $1,$2,$3,$4

end

~he break character preceding the secend PROCtEF ccmmand terrrinates
the execution of PROCCEF DIFF. The PROCDEF named CALLME is terni­
nated with ENC. within CALLME (line 300), the user-written corr­
rrand COPYCAT is used, since it was defined by ~ PRCCDEF.

Nested PROCDEFs

The text of a procedure, defined by PROCDEF, may contain other PROCDEF
commands. This structure is called a nested PROCDEF.

SYSINX: The value of SYSINX deterrrines the source of input for a
PROCDEF corrmand. A nested PRCCDEF should get its input from the preced­
ing PROCDEF. (see Example 1.) Before entering the nested PROCCEF,
issue the following command:

default sysinx=e

The user RUst remember to return the value of SYSINX to G following com­
pletion of the nested PROCCEF. (F'or further information on SYSINX, see
the discussions under ·Source Input" in Section 2 and ·Im~licit
Operands" in Section 6. The systeF default is given in Appendix C.)

Exatrples:

1. User:
Sys, U~er:

procdef
0000100
0000200
0000300
0000400
0000500
0000600
0000700
0000800
0000900
0001000
0001100
0001200
0001300

abc
pararn i1,alphname,dsname=name1,newname=$n
ddef alphname,vi,name1
catalog dsname=namel,ne~name=$n
default sysinx=e
procdef <ill
param Q2,name2,qsname=name3
ddef name2,vs,dsname=name3
set r=5
qualify iJ2
~2

end
default sysinx=g

end

Lines 100 through 1200 are treated as text of AEC. This procedure
is terminated by END, in linE 1300. The two break characters that
precede END in line 1100 are replaced by a single break character,
the normal break-character action qoes nct occur.

when ABC is entered, the valaes of the calling parameters are
resolved and substituted for the occurrences of the dummy operands
throughout the procedure. ABC is executed so that CeEF, CATAICG,
and DEFAULT are executed. When the PROCDEF on line 500 is encoun­
tered, definition of a new procedure is initiated. If the corrmand
AEC had been issued as

abc one,myprog,dsname=mylib,mylib02

line 500 would become

PROCDEF ONE

Input for this PRCCDEF comes froJ[, within AEC since SYSINX=E <line
400). Lines 600 through 1000 of ABC become lines 100 through 500
of ONE and the END on line 600 terminates procedure definiticn.

PROCCEF
0000100
0000200
0000300
0000400
0000500
0000600

ONE
PARAM a2,NAME2,DSNA~E=NAME3
DDEF NAME2,VS,DSNAME=NAME3
SET R=5
QUALIFY Gl2
il2

END

Section 4: Command Creation 65

2.

66

The next time the user issues ABC, with the first operand specified
as anything but ONE, another new procedure is defined. If O~E is
specified again as the first operand of ABC, no ne~ lines are added
to PROCDEF ONE. In order to add lines to a procedure created on
line 500 of ABC, there must be an INSERT LAST cORRand in ABC.

Notice that when AEC is EXEcuted, the value of SYSINX is returned
to G (line 1200).

User :
Sys,User:

procdef
0000100
0000200
0000300
OOOOliOO
0000500
0000600
0000700
0000800
0000900
0001000
0001100
0001200
0001300
0001400
0001500

def
param $1,$2,alphnarre,dsnaRE=$3
ddef a!phnarre,vi,dsnarre=$3
default sysinx=e
procdef $1
param dsnane=~3,$4,$2
catalog dsname=$3,state:u,newname=$4
default sysinx=e
procoef $2
param iil a .~t ,ac
if "ia'='yes'; display ~b
if "@b'::;;'yes'; disflay @c

end
end
default sysinx=g

end

In rrccedure DEF, there arE two nested PBOCtEFs. the PROCDEF on
line 800 is nested within tbe PROCDEF on line 400, which is nested
within DEF. The first time DEF is executed, a procedure is defined
(via PROCCEF on line 400); when this rrocedure is executed, another
procedure results.

Lines 100 through 1400 are text of OFF. The first two break chara­
cters f:receding ENr; on 1200 and the two break characters preceding
END on 1300 are replaced by sing Ie break characters. Assume DEF is
called:

def two,three,mypro,dsnaIl'e=Iryjob

Resolution and substitution of calling parameters occurs; r:DEF and
DEFAULT are executed, and then PROCDEF on line 400 is executed.
~his f:rocedure definition results:

PROCDEF
0000100
0000500
0000300
0000400
0000500
0000600
0000100
0000800
0000900

TWO
PARAM DSNAME=MYJOB,$4,THREE
CATALCG DS~AME=~YJCE.STATE=U,NEwNAME=$4
DEFAULT SYSll'IX=E
PROCDEF THREE
PAR~l aA, @B. ~c

IF '~A'='YES'; DISPLAY aB
IF '~B'='YES'; CISFLAY @C

END
END

NOW, assume this procedure call occurs:

two dsname=mine,ok,three

calling f:arametersare resolved and substituted, CA~ALOG and
CEFAULT are executed, and another procedure is defined:

PRCCDEF THREE
0000100 PARAM aA,iB,iC
0000200 IF "@A':·YES·; DISFLAY iE

0000300 IF 'iB'='YES': DISFLAY ac
0000400 _END

Following these procedure calls, the user has three ~rocedures:
DEf, TWO, and THREE.

3. User:
SyS;user:

procdef jot
0000100 param a>1,a2,alphname=name1,$3
0000200 ddef narne1,vi,$3
0000300 default sysinx=e
0000400 prccdef a>l
0000500 param $3,newname=$4
0000600 catalog $3,state=u,newname=S4
0000700 procdef a2
0000800 param al,b2,c3
0000900 if la1'=lt2";display c3
0001000 end
0001100 default sysinx=g
0001200 end

Within JOE, there are two nested PROCDEFs, but this time they are
both nested within JOB, not one within the other, as in Exam~le 2.
When JOB is called, two procedures are defined and stored in the
procedure library. Assume this procedure call:

job cat,cond,alphname=ddx,datas

Following resolution and sutstitution of the calling parameters,
DDEF and DEFAULT are executed, and the PRCCDEF on line 400 is
encountered. This procedure is then defined:

PRCCDEF CAT
0000100 PARAM DATAS,NEWNAME=$4
0000200 CATALOG DATAS,STATE=U,$4

prccedure definiticn is terminated by the PROCDEF (preceded by a
break character) on line 700 cf JOE., A new ~rccedure is then
defined:

PROCDEF
0000100
0000200
0000300

COND
PARAM A1 ,E2 ,C3
IF "Al'='B2'i DISPLAY C3

END

NESTED PRCCEDURES

Nested prccedures are user-written commands that call procedures (de­
fined by either PROCDEF or BUILTIN) within the text of a procedure. A
nested procedure may include another user-written command that calls a
procedure. In each case, when a new procedure is called, it is process­
ed before returning to the procedure from which the call was made. For
example:

User:
"SYS;user:

procdef
0000100
0000200
0000300
0000400
0000500

tab
param ddname=arg1,dsrg,dsn1,new,Qc
ddef arg1,dsrg,dsn1
rnycat new
mycall lilc

end

When TAB is called, DDEF is executed and MiCA'! is reccgnized as a user­
written corrmand. MYCAT invokes its procedure, and if that procedure
calls another procedure, that call is processed. When execution of
MYCAT is completed, MYCALL, also a user-written command, is executed.

Section 4: Corrmand Creation 67

SHARING USER-WRITTEN COMMANDS

User-written commands can be shared when the cwner nakes his user li­
brary available to other users via the PERMIT command. The prospective
sharer issues the SHARE command, with these operands: the name by which
he will refer to the owner"s user library, the owner"s user identifica­
tion, and the name of the data set to be shared (that is, USERLIB). For
example:

share lib,user345,userlib

is the conrrand issued where LIE is the name by which the sharer will
refer to the owner's user library. Then the sharer issues a PRCC£EF
comrrand, with the name of the command he wants to share as the operand.
When the system prompts with line 100, the user enters a break character
followed by the EXCERPT command. He specifies as operands on the
~~CERPT command the name ty which be refers tc the owner"s user litrary
(in the abcve example, LIE), the member name SYSPRO, and the name of the
owner's procedure. The entire text of the procedure is inserted intc
the sharer's user library.

For example, a user wants to share a command, procname, from a user li­
brary to which he has been granted access. After issuing the SHARE com­
mand, as above, this PROCDEF is entered:

User: rrocdef atc
Sys,User: 0000100 excerpt lib(syspro),rname=procname,100,last

end -

AEC is defined as a command in the sharer's user library and may be
called by him.

EDITING PRCCEDURES

The PROCDEF command invokes the text editor. This enables the user to
issue any of the text-editing commands while he is defining a procedure
or after he has defined it. The user enters a break character, followed
by the text-editing corrmand. He should not enter the EDIT command.

The CORRECT command can be used within a line to respecify characters
that the user wants to insert, replace, or delete. ether commands, such
as INSERT, EXCISE, and REVISE, can be used to insert, delete, or reflace
complete lines in the procedure text. (See Part III for the descrif­
tions of these commands.)

This exarr;fle shows how the text-editing commands can be used in the
definition of a procedure:

User:
Sys, User:

Systen;:
User:
Sys, User:

procdef copyit
0000100 param alphname,dsorg,name1,name3
0000200 ddef alphnarne,dsorg,name2
0000300 ddef alphname,dsorg,namel
0000400 cds name1,name2
0000500 correct 100
PARAM ALPHKA~E,DSCBG,~AME1,N~ME3
* $2
excise 300
Insert 500
0000500 default sysinx=e
0000600 edit name2
0000700 end

While defining COPYIT, the us€r enters text on line" 100, 200, 300, and
400. When the systen; prompts with line 500, he decides to make a

68

correction in line 100. He enters a Creak character followed ty the
CORRECT conmand and the number of the line (100) he wants to modify.
The system responds with the line text, and the user enters the correc­
tion. The asterisk in the first column duplicates that column and all
following columns until another co~rection character ($) is encountered.
The user wants to change NAME3 in the PARAM statement to NAME2, so he
places a $2 under the last two characters in the line. This duplicates
the celurrn abcve the $ and replaces the 3 with a 2.

The system then prompts with an underscore (rather than a line nunber),
indicating that another command statement must te given if ~rocessing is
to continue. The user wants to delete line 300 fron the ~rocedure text.
de enters the EXCISE corrmand and line number 300. The system again pro­
mpts with an underscore, indicating the completion of the command's
execution and requesting the next statement.

To continue entering text, the user enters an INSER'!, ccrrmand, followed
by the numter of the next line to te entered as text, Which, in this ex­
ample, was line 500. (He could have entered INSERT LAST since he is
adding to the end of the ~rocedure.) The systen ~ron~s with line num­
ber 500, and the user enters two additional statements in lines 500 and
600. The ~rocedure definition is terminated with the END command.

Another use of the INSERT command in a procedure definition follo~s:

User:
Sys,user:

procdef
0000100
0000 200
0000300

0000300
0000400

pdef
param alphnarre ,vi ,nanel ,nawe2 ,narr,e3
ddef dsname=alphname,vi,ddname=name1
ddef dsname=myprog,vs,ddname=test

-insert
ddef dsnarne=name2,vi,nane3

end

The user, after entering line 200, decides to issue a ccmrnand statement
to the corrnand system. When the system prompts with line 300, the user
enters a b~eak character followed ty a DDEF command, which does not be­
come a part of the procedure. when the DDEF is completed, the system
prompts with an underscore character, requesting the next command state­
ment. The user enters an INSERT corrmand with nc line numler specified,
and the system prompts with the line number specified by CLP (in this
case, line 300). This use of the INSERT conmand is ~essible because the
CLP was not changed by the issuance of a text-editing command for a ~re­
vious line number. The user continues to add tc the Frccedure text te­
fore terminating PROCDEF processing with the END command.

When a procedure has teen previously defined, the user may enter the
PROCDEF command followed by the nane of the procedure he wants to Rodi­
fy. The text editor is invoked, and the syste« ~rorrFts fer the next
command by issuing a break character.

For examFle, the user again wants to modify the procedure COPYII, which
he has previously defined. He enters:

procdef copyit

and the systero prompts with the treak character. The user may now enter
a text-editing command or he may aod to the procedure text by entering
the INSERT LAST command.

'ro delete a procedure that has teen defined, and to have the correspond­
ing procedure name removed from the dictionary as a USERLIB entry, the
user must enter the PROCDEF comroand, followed by the narre of the ~roce­
dure. He then enters a break character, fcllcwed by the EXCISE conrrand,
specifying the range of lines of the procedure as oFerands on the corr­
mand. For example, tc delete the previously defined frccedure COPYII:

secticn 4: Ccmrrand Creation 69

User: procdef copyit
sYS;User: 0000100 excise O,last

end

EXCISE deletes the entire procedure from line 0 to the last line. BUIL­
TIN, EDIT, END, PLI, or PROCDEF must be to complete the deletion of the
procedure. Until one of these commands is issued, the reference to the
procedure is not removed.

Note: .Line 0 must be specified, since it is the line nurr,ter assigned ty
the PROCDEF corr.mand to the procedure header.

DIAGNOS~IC MESSAGES DURING EXECUTICN

Diagnostic messages that occur during the execution of a corrmand proce­
dure are output to SYSCU'I', "Which may be a data set or terminal. When
the diagnostic message requests the user to repair an error condition,
the user can make the correction at his terminal, and the procedure con­
tinues executing. If the error is nonrecoverable, the diagnostic mes­
sage is output to the SYSOU'I data set. In nonconversational mode, the
task is terrrinated, and diagnostic messages are sent to the SYSCU'I data
set. In conversational mode, the user is queried for a new corrrrand.

OBJECT PROGRAM DEFINITICN -- BUILTIN

This command defines an object program that the user can invoke as a
comrrand. It is useful for accomplishing actions not achieved by any
systerr-supplied comnlands or combination of them. The user creates an
object prcgram and defines it as a command by use of BUILTIN. (See the
description of this corrmand in Part III.)

As ~ith a PROCDEF, the user can define operands and supply operand
values when his us er-written command is issued. If the user wants tc
define cperands for his command, he must supply the coding within his
module to handle the parameter values supplied when the module is
called, The BPKD macro instruction must be supplied in the object code
and must include the definitions of the expected parameters. The rracro
instruction must also supply the names needed to provide linkage between
the module and the BUILTIN command that defines that rrodule. Refer to
Assembler User Macro Instructions for a further description of these
macros.

OPERAND RESOLUTION AND SUESTI'IUTION

The user can specify operands for user-written oommands that are created
with either the PROCDEF or BUILTIN co~mands. With PROCCEF, the user is
prirrarily establishing the operand values that are required as pararre­
ters by the commands. He specifies these parameters ty entering, on the
line following the PROCCEF command, the word PARAM followed by the durrmy
names he wants to have for the operands.

When the user wants to define paraneters for a BUILTIN procedure, he
must supply the coding within his module to handle the parameter values
supplied as operands. Be must also provide a BPKD/BPKDS macro instruc­
tion within the module to generate the linkage to the object program de­
fined by BUILTIN. Pointers are then generated to specify the address
within the wodule where the operand names are stored. When the user
issues the command, any operand value given with the command is passed
to the module by pOinters in the locations provided ~y the BPKD/BFRDS
macro instruction.

70

with user-written commands created with BUILTIN and PRCCDEF. the para-.e­
ters supplied as operands are resolved at the tine the user-written com­
mands are issued. Since system-supplied ccnmands were created with ei­
ther PROCDEF or BUILTIN, the description of the operand resolution and
substitution process for user-defined commands pertains to system­
supplied commands as well.

For conroands created with FRCC~EF. there is a procedure-expander routine
that resolves operands and substitutes Operands. Cperand resolution
consists of:

1. Analyses of calling operands

2. Analyses of procedure operands

3. Generaticn of operand equivalences

ANALYSIS OF CALLING AND FRCCEDURE CPERANDS

When the user calls a procedure, he enters the procedure name and the
operand values he wants assigned to the dummy operands of the procedure.
As with system-supplied commands, operands may be represented either
positionally or by means cf a keyword.

positional and Keyword Kotation

Following is a review of pcsitional and keyword notation, which was in­
troduced under woperand Representation- in Part I.

Positional calling operands must te supplied by the user in the sane
order as that given in the procedure parameter list (PARAM line) or the
BPK~ parameter list. When a positional operand is omitted, and another
positional operand is written following the omitted operand, the conna
that would have followed the omitted operand nust be retained to indi­
cate the relative position of the operand that is included.

Assuroe this corrmand procedure defines a VISAM data set.

User: procdef viddef
SYS;user: 0000100 param ddnane,dsname

0000200 ddef ddname,vi,dsname
0000300 end

This procedure call might be used:

User: viddef mybest,test1

VIDDEF is the command that calls the procedure. The first positional
operand in the calling sequence is MYBEST, which is the value assuned by
the first positional dunmy operand (DDNAME) in the PARA~ list. TEST1 is
the value assumed by DSNA~E because TEST1 is in the same position as
DSNAM,E. The result of the above procedure call is:

DDEF MYBEST,VI,TESTl

For the same procedure, assume that the user wants to s~ecify operands
that are to be inserted into the DDEF command, but he wants to change
the data set organization to VSAM. He enters:

User: viddef mybest,vs,test1

This procedure call is erroneous. Ey positional association of the
calling operands and the PROCDEF PARAM line, these associations are
made:

Secticn 4: Co«~and Creation 71

DDNAME=MYBEST
CSNAME=VS

The result of the above procedure call is:

DDEF MYBES~,VI,VS

MYBES~ is the CDNAME; VI is still the data set organization, and VS is
DSNAME. There could be a data set that is naned VS, tut the user in­
tended TES'!-l as the DSNAME.

Keywords of calling operands may appear in any crder; of course, each
keyword has an associated positional notation. Keywords have the gener­
al forrr KEYWORD=value, where KEY~ORD is the name of the operand and is
shown in all-capital letters, followed ty an equal sign, and value is
the actual value of the operand.

Assume the following procedure defines a data set that dumps one or more
data locaticns or expressions:

User:
Sys, User:

procdef
0000100
0000200
0000300
0000400

autodump
param dsname=alphname,data="here:there'
ddef ddname=pcsout,dsorg=vi,dsname=alphname
dump here:there

end

The fcllowing frocedure call can te used:

User: autodurnp data='O:15r,O:6d,top:roiddle' ,dsnane=nyprg

This call has a comtination of keyword and positional notation, and the
keyword notation does not coincide with the corresFcnding positional
notaticn in the PARAM line of thE procedure. The result of the atove
procedure call is:

DDEF DDNAME=PCSOUT,DSORG=VI,DSNAME=MYPRG
DUMP 0:15R,O:6D,TOF:~IDDLE

1his exawple also shows how a quoted string can be used to define sever­
al operands in one operand field. Althcugh an cperand in the DUMf com­
mand is not shewn in keyword notation, it can be designated as keywcrd
notation in the PARAN line and calling sequence. 'The oFerand 'H.E.FE:­
THERE' in line 100 of AUTCDUMF must be identical tc the dummy operand
specified in the DUMP command. ~hE apostrophes are needed in the key­
word eXfression only if special Characters are used.

Defaults

The user can specify, alter, or delete default values fcr the operands
of a user-written com1l1and in the same way he does lIoiith a systero-suFplied
command. Unless the user has provided default values fcr the operands,
these operands must te specified wten the command is issued. 'The user
creates a default value by issuing the DEFAUL1 comrr.and (see Secticn 6
and the DEFAUL'T command in Fart III) and srecifying the dU1l1rny operand
name in the operand field.

If the use:r invokes his command procedure and omits operands, the systell'
~ither obtains the default value (if one exists) frcrr the USEr litrary
()r substitutes a null string for tte rr.issing value.

Por an otject frogram defined with BUILTIN, the user can write a routine
to either generate a message or sUFPly a fixed valu@ when a mandatory
operand is emitted.

72

Example: This command procedure has been created to define a data set:

procdef defcat User:
syB;user: 0000100 param ddname=datname,dsnalre=alphname,dsorg=vp

0000200 ddef ddname=datname ,dsorg=vp, dsname=alphname
0000300 end

A dummy value of VP, which is not the default value of DSeRG (VI is the
default), is assigned tc keyword DSORG.

Assume this sequence of commands in the procedure call:

User: default dsorg=vs
Sys,User: Qefcat testx,dsname=prog1,ddname=testxy

The result, after resolution of the values, is:

DDEF DDNAME=TESTXY,~SCRG=VS,DSNAME=PROG1

The following is an explanation of the way the system resolved the
values that were entered:

1. DD~E=TESTXY

Although the dummy operand tD~AME=DATNAME is in keyword notation,
it can also be considered positionally (that is, the first operand
in the PARM line). The systeIl' resolves 'IESTX as a possible value
for DA'INAME. However, DDNAME=TESTXY is specified in the calling
sequence, so the system takes it as the value of DATNAME.

2. DSORG=VS

The system-supplied default value for [SORG is VI. [SORG=VP is
given as an operand in the DDEF command and in the PARAM line. The
[EFEULT command sets DSORG=VS. As a result of the procedure call,
no indication is given for the value to be substituted for VF, ei­
ther in positional or in keyword notation. 'Ihe system searctes for
a default value. and since the user has given a default value for
DSORG, this value (VS) is assigned as a string to be substituted
for VP in the PARAM line. Eventually, the system substitutes vs
for the dummy operand VP in the DDEF command.

3. DSNAME=PROOl

'Ihis cperand is given in the procedure call in keyword format.
PROGl replaces ALPBNAME.

Nulls: 'l'he user can specify a null value for the operands of the user­
written command. A null value is indicated by two successive
apostrophes.

Assume operands A=x. B=y, C=z:

1. Ey oJritting keyword opex'and A=x and specifying another operand in
its position, a default value is assumed for A. If there is no
default value, a null value is assumed.

B=y, C=z

2. A null value for A can be expressed as:

• ., B=y, C=z

Secticn 4: COJr.Jrand Creation 73

3. Keyword notation can be used to indicate a null value for A.

fI.=' ., B=y, C=z

Here is an example of the use of a null value:

User:
Sys, Us~!:

procdef
0000100
0000200
0000300
0000400

copy
pararr. dsnamel ,dsname2 ,base, incr
if 'lase":"; cds dsnamel,dsname2
if "base'~="; cds dsnamel,dsname2,base,incr

end

calling Sequence 1:

copy orig,dupe,base="

AssuIT,e the user has specified a default value of 300 for EASE. The data
set names ORIG and DUPE are sutstituted in lines 200 and 300 of CCPY.
BASE is indicated with a null value, which is assigned to the dumrry EASE
operand in the PARAM line. The null value is substituted wherever the
character string BASE appears in the text cf COPY, as:

200 IF "=";CDS ORIG,DUPE
300 IF "~="iCDS ORIG,CUPE,",100

After substitution, the quoted string 'BASE' cecomes a quoted string
with no space between the apostrophes, Since a null value is actually a
quoted string of zero length. The system default value of 100 is
assuned for the operand INCR, in line 300, since INCR was defaulted in
the calling sequence.

;:;Oor calling sequence 1, therefore, the conditicns are ~et in the condi­
tional statement in line 200; the associated crs command is invoked.

calling Sequence 2:

copy orig,dupe

Assume, again, that the user has specified a default value of 300 for
BASE. EASE and INCR are defaulted in the calling sequence. The user­
supplied default value cf 300 for EASE and the system-supplied default
value of 100 for INCR will be the values assigned to the c~erands BASE
and INCR in the PARAM line. The result of the substitution process is:

200 IF '300'=";CDS CRIG,DUPE
300 IF "300· ... =·' ;CDS ORIG,DUPE,300,100

The conditicns for the conditional statement in line 200 are not Iret
(that is, '300' does not equal '"), but the conditions for the condi­
tional statement in line 300 are met. The CDS command is executed.

GENERATION OF OPERAND ECUIVALENCES

The system establishes a tatle for the dummy operands, their correspcnd­
ing keywords, and the calling sequence values.

The result that is generated is shown in Table 10. The first column,
Internal string, contains the character string that is the dummy operand
in the PARAM line. This dummy operand identifies the string that is to
be replaced in the procedure text when substitution occurs. The second
column, Keyword, contains the keyword operand in the PARAM line. The
third column, Value, contains either the keyword or positional value
expressed in the calling sequence. When a call is made on a procedure,
the keyword column is searched for each calling paraIreter keyword. If

74

one is found, the value associated with the calling keyword is placed in
the VALUE cclumn; this value is sutstituted later fcr the associated
string in the Internal String column~

'Iable 10. Generation of operand equivalences
r------------------------~------------------T-------------------------, I Internal string I Reyword I Value I
~----------------------+------------+_--------------------I
I String for which I Keyword in I Value in I
I substitution occurs I PARAM list I calling sequence I L _________________________ ~ __________________ i_ _______________________ J

rlere is an example of how resolution of operands occurs, based on the
process shown in Table 10. Assume this procedure has teen defined:

User:
Sys,USeE:

procdef
0000100
0000200
0000300
0000400
0000500
0000600

asmwlist
param alphname,stored=$n,lincr=Cfirst.last),­
version.symlist=$y
asm alphname,stored=$n,lincr=(first,last),­
verid~J'ersion ,iOO=y. symlist==$y,asmlist=y,­
crlist=y.stedit=y,isdlist=y,pmdlist=y

end

This procedure call is w.ade~

asmwlist myprog,stored=y,version=today,now,alphnarre=wyprogl,symlist=n

The effect of operand resol ution is shown in Table 11.

Table 11. Indication of operand rescluticn
r------------.--·-----T-·-·------~------------------T-------y-------,

, Pos i t ion I 1 I 2 I 3 I" I 5 I
~-------------+--------+---------+------------------+-------+----------i
I PARAM sb: ing IALPHNAtJ~ I STCRED=$N I IINeR= (FIRS'I,LAST) ! VERSIONI SY~LlST=$YI
I I I I I I I
I Calling IMYFROGl ISTCRED=Y I I NOW ISYMLIST=N I
I values I I I I I I
I i I I I I I
IString for IALPBNAMEt$N I (FIRS'I~LAST) !VERSICNI$Y I
Iwhich substi-I I I I I I
I tution occurs I I I I I J l-----________ ..1.....-___ . ___ .L.. _______ J. _________________ J. _____l.-________ J

For each string named t a value is ascertained.

Internal Stril'!SI
ALPHNAMF
$N
(FIRST,LAST)
VERSION
$Y

Re~!:g
~LFBNM"IE
STORED
lINeR
VERSION
SYMLIST

Substitute Values
MYPROG/MYPRO<=l
Y
null
TODAY/NOioi
N

The last value in each line is taken. The system's table of operand
equivalences looks liketbis:

Internal String
Al~PHNAME
$N
(FIRST,LAST)

Keyword
ALPHNAME
STeRED
LINeR

Value
MYPROGl
Y
null

Sectien 4: Command Creation 75

VERSION
$Y

VERSION
SYMLIST

NO'W
N

OPERAND SUES~ITUTION

After resolution of operands, a substitution process occurs. The result
of the procedure expansion, after operand substitution, is:

ASM MYPROG1,STORED=Y,LINCR=(100,lOO),VERID=NOW,ISD=Y,­
SYMLIST=N,ASMLIST=Y,CRLIST=Y,S~EDIT=YrISDLIS~=Y,PMDLIST=Y

Note: In the PARAM line, the keyword value of SYMLIS~ is specified as
~the $ ensures that the calling sequence keyword value (N) associated
with SYMLIST is substituted only where the string $Y occurs in the body
of the text. For example, if the dunrry operand were SYMLIS~=Y, then,
for every occurrence of string Y, string N is substituted. Since no
LINCR operand was specified in the procedure call, the default value for
LINCR is substituted.

Each character of the procedure text is ccmpared with the first charact­
er of each internal string, beginning with the last internal string. If
a matching character is found, the remaining characters of that particu­
lar internal string are ccmfared with the succeeding characters of the
procedure line. Note that the Rcharacters of the procedure line" in­
clude all characters, whether they are characters of a corr~and, operand,
comrrent, or delimiter within the text of the procedure.

When an entire internal string is matched, the characters of the proce­
dure line are replaced by the calling value. ~hen no match exists, the
other first letters of internal strings are ccrrpared with the procedure
line, as atove. If a character in the procedure text is not the same as
the starting character of any of tte operands, no substitution is rrade
for that character. The comparison continues with the next character in
the procedure text until all characters in the procedure have teen
compared.

If there are no variable operands, the procedure text remains intact,
and no substitution takes place.

Exarrples:

1. Assurr,e a user has defined ttree procedur es, PROCLOAD, FROCRUt>, and
PROCTEST, to perform three different functions. Each has its own
set of oFerands, which mayor nay not be sirrilar in toth name and
nurrber. The user would like to be able to call any of these proce­
dures by use of a single name, using a new procedure.

user:
§.ys,User:

procdef
0000100
0000200
0000300

proeall
param op,funct,p='list'
opfunct list
end

Later, he invokes FRCCLCA~:

precall proc,load,'rnyprogx,1.0,h"SO··"

After cperand resolution occurs, substitution takes place. CP,
FUNCT, and LIST are replaced ty PROC, LOAD, and ~YPRCGX,1.0,H'50·.
Following this substitution, the procedure is executed, and the re­
sult is a new procedure call to PReCLOAD, ~ith the calling parane­
ters MYPROGX,1.0,H"50'.

2. The following example shows what happens if dpn-lTY q::erand naIres are
carelessly selected. Assume this procedure has been defined:

76

User:
"S'Y'S:user:

procdef
0000100
0000200
0000300

starter
para~ progname,~ari=a,b,c,r
atacus name=progname,a,b,c,r
end

Later, a procedure call is issued.

starter zap,1.0,c=first,r=loca

After operand resolution and substitution, the result that is ob­
tained is undesiratle.

1.01.0FIRSTUS Nl.0RE=ZAF~1.0"FIRST,LOCA

~be PARAM line should have unique ch~racter strings for dummy
operands. The result of sutstitution would have been correct if
the procedure had teen written as follows:

User:
Sys,User:

procdef
0000100
0000200
0000300

starter
param progname,pari=$a,$b,$c,$r
atacus name=progname,$a,$b,$c,$r
end

The procedure call is issuej as before:

starter zap,1.0,$c=first,$r=loca

The result is:

AEACUS ZAP,1.0,.FIRST,LOCA

3. ~bis example illustrates that substituticn occurs cn full matchES
with cFerands in a right-to-lEft occurrenCE. Assume that twc prc­
cedures have been defined.

User:
Sysl.user:

procdef
0000100
0000200
0000300
,Erocdef
0000100
0000200
0000300

~'he calls made are:

fakel
pararr ab,abc,abce,c,e
if 'at'="abc': display 'abce'
end

fak€2
param atce,atc,ab,c,e
if 'ab'="abc"; display 'abce'

end

fakel1oca,no,ccnd 6 c:",e=code

faxe2 loca,no,cond,c=",e=code

After operand resolution and substitution:

FAKEl
IF 'LOCA"="NO'; DISFLAY 'CCND"

FAKE2
IF "COND":"COND', DISFLAY 'CONDCC~E'

In the call to FAKE1 there is no output. In the call to F'AKE2 the
systerr prints out CONCODE.

Secticn ,,: Cormand Creat ion 11

Note that these two procedures differ only in the order in which
the dunmy operands are specified. In FAKEl, the systEm found a
rratch for ABC before it found one for AB; the situation is reversed
in FAKE2.

\ PROCDEF EXAMPLES

'lhe user is expected to rr,ake extensive use of the facilities with which
he can create his own ccmmands¥ primarily by the use of the PROCDEF cca-­
mand. The user can save time by comDining a frequently used series cf'
ccmmands into one comrr-and. The exarrples below illustrate PROCDEF usage.

1. The user wants to combine the DISPLAY and rUMP corrmands, and he
wants the option of displaying data at the user's terminal or at
the printer. Also, if DUMF is used, an autorratic reEF command is
generated, defining the data set to be dumped:

User:
Sys,User:

procdef
0000100
0000200
0000300
0000400
0000500
0000600

output
param alter,datal,data2,data3,dsname
if 'alter'="I'alter":'y';display data1,­
data2,data3
if 'alter'='n'iddef pcsout,vi,dsname;dunp­
datal,data2,data3

end

AL'IER serves as a swi tch; if 'Y' is specified, cr if ALTER is
omitted, DISPLAY is executEd. If 'N' is specified, r:[FF and DUMP
are executed. The user may execute a DUMP to display two data
fields at the printer with the following calling procedure:

output alter=n,datal=fieldl,data2=field2,dsnarre=data

Only line 300 of CUTPUT is executed, which causes a crEF to be is­
sued and the two fields to be dumped.

To display one data field, the user issues:

output datal=fieldl

Only line 200 of OUTPU'I is executed. DSNAf.I.E need not be specified,
since the DDEF is not executed.

2. The user wants to have EDIT and REGION issued autorratically every
tine he uses the UPDATE command. He defines a procedure:

User:
Sys,User:

procdef
0000100
0000200
0000300
0000400

change
paI-am $ds, $rn
default sysinx=e: edit $ds,rname=$rn
__ default sysinx=g; update

end

If the user wants to update a region in a data set, and the text
editor is not invoked, he invokes his Frccedure CHANGE. For exarr.­
pIe, tc update the region XYZ in the data set MYLA~A:

change mydata,xyz

3. Rather than issue a separate PROFILE command whenever he ~ants a
synonyrr or default to te made part of his user library, the user
causes the PROFILE to be an option of either SYNONYM or DEFAULT:

78

User: proede£ def
sys,User: 0000100 param par,spec,csw,save

0000200 default par=spee
0000300 if 'save'='Y'i profile csw

0000400
,Erocdef
0000100
0000200
0000300
0000400

end
syn
param term.string,cs~,save
synonym term=string
if 'save'='y'; ~rofile csw

End

The user can issue SYN or D~F: however, if he wants tc retain the
synonyrr or default valu~, he enters SAVE='Y' as an operand of these
two commands. nhen the save option is selected, the user can also
enter CSW='Y' if he wants to retain command symbols.

4. ~he user wants to define a procedure to add a nessage to his mes­
sage file:

user:
sys,user:

procdef bldmsg
0000100 para~ rr.sgid=$1,text=$2
0000200 default sysinx=e
0000300 edit userlib(sysrrlf),rnarre=$l
0000400 update
0000500 0$2
0000600 end
0000700 dIsplay 'msg $1 filed'
0000800 end

Since the EDIT command is included in this procedure, with a member
nane cf SYSMLF following the rSNAME, the user always gains access
to his message file by issuing BLDMSG.

5. ~he user wants to have the FAFAM line autcnatically built aftEr
issuing the PROCDEF command:

user:
sys,user:

procdef
0000100
0000200
0000300
0000400
0000500

noparam
param pname,$1,$2,$3,$4
default sysinx=e;procdef pnane
param $1,$2,$3,$4
__ default sysinx=g~insert

end

The user can issue a PROCDEF and PARAM on one line

noparam pname,dparl,dpar2,dpar3,dpar4

and will be prompted to enter the lines for the text of the
procedure.

6. The user wants to generate a command to eliminate previously de­
fined procedures:

User:
sys,user:

procdef
0000100
0000200
0000300
0000400

destroy
param ax
default sysinx=e; procdef ax
__ exciSE O,last:end:dis~lay 'ix eliminated'

end

To eliminate OUTPUT, which was defined by PROCDEF in example 1, the
user issues

destroy output

and the frocedure shown in~xample 1 is eliminated.

7. The ccmmand system is provided with a procedure called ZLOGON,
which is automatically invoked when a user logs on. Each user can
define the actions that he wants performed by ZLOGCN with either

Section 4: command Creation 79

PROCDEF, BUILTIN, or SYNCNY~. For exa~ple, a user who uses only
one program might create this procedure:

User:
Sys,User:

procdef
0000100
0000200
0000300

2logon
qualify pyroll
pyroll

end

Every time he initiates a task, the system qualifies all internal
symbols implicitly, lcads his program, and causes the prograH to
start execution. (PYROLL must reside in his USERLIB in order to be
loaded and executed at this tirre.)

8. The user defines a procedure that ascertains current default values
for operands in his user profile:

User:
Sys,User:

procdpf
0000100
0000200
0000300
0000400
0000500
0000600
0000700
0000800
0000900
0001000

def?
pararn $:11
default sysinx=e
procdef demo
param $x=$y
display '$x=$y'

demo
excise O,last
end
default sysinx=g

end

Now, if the user enters

def? lineno

the system responds with

LINENO=Y

SECTION 5: MESSAGE HANDLING

During a user's task he is likely to receive any nu.ber of system mes­
sages that inform him of errors, rEquest necessary information, or
describe the status of some requested operation. These messages are
normally issued from the system message file (the SYSMLF member of SYS­
LIB). When the proper conaitions arise, the system calls the user
prompter to display a message from the message file.

MESSAGE GENERATION AND RECEPTION

The user can ccntrol the messages that he receives: he can reset the
LIMEN and BREVITY operands to screen out unwanted nessages or to specify
the length of messages he receives1 he can change the text of system
messages; and he can add new messages to be issued frem his own P~CCDEFs
and BUILTIN-defined commands. These operations, described later in this
section, are summarized below.

1. To screen out unwanted messages or message Its, the user can reset
the LIMEN and BREVITY implicit operands by using the DEFAULT COK­
mand (as described in Section 6). Initially, the user receives
standard messages without the message ID codes (EREVITY=T). These
messages are issued when an error has occurred, and the user Rust
know about the error (LIMEN=W).

2. The user can change the text of system messages. He must create a
rr.essage file in his own USERLIB (again, member SYSMLF). Then he
can put the new form of the system message in his own message file.
since the system searches the USERLIB message file before the sys­
tem message file, the user's altered forn is dis~layed. This pro­
cedure is described later in this section.

3. The user can put new messages in his message file and have the user
prorepter display them from PROCDEFs or BUILTIN-defined cowmands.
This procedure uses the PRMPT command or PRMPT macro instruction
and is described later in this section.

when the user creates a message file containing his own versions of nes­
sages issued from the system message file, or his own messages for user­
written conroands, other users are not affected because any changes made
to one user's USERLIB do not change another user's task.

t>1essaqe EXflanation

The user can issue an EXPLAIN command that causes the s9stem to give an
explanation of a system message or of specific words within a system
message. (See Part III for a description of this command.)

Message Generation

lhe user can generate a ~essage by calling the user prompter. He issues
either the PRMPT conmand (see the command description in Part III) or
the PRMPT macro instruction (for assembler language ~rcgrams: see
Assembler User Macro Instructions) to invoke the user prompter.

Message Y'il tering

Message filtering is the process of deterrrining which messages the sys­
tem displays. Each message is classified in each of three categories
when it is created. The three categories, as sho~n in Table 12, are:

secticn 5: Message Handling 81

1. severity of the rressage (LIMEN; see Part A of the table)

2. Length and type of rne::>sage (BFEVITY. see Part E cf the tatle)

3. Mcde cf the user's task (see Fart C of tte table)

SEVERI~Y: LIM£N is the operand name in the user profile for the severi­
ty of the rressage. The severity codes shown in Table 14 (Part A) are in
ordeI: of increasing severity. The user prompter does not display nes­
sages that have a severity code lower than the value of LIMEN. For ex­
ample, if the filter code is X, all X and 1 messages are displayed; ho~
ever. I and W ness ages are not. lhe user can change the systen default
for LIMEN (see Appendix C for system defaults) by issuing a DEFAUIl corr­
mand with the new LI~EN value. (See -Irrr;licit Operands" in Secticn 6
for the possitle values of LIMEN and Part III for a description of the
UEFAULT command.)

LENGTH AND TYPE: BREVrIY is the operand name for message length and
type. There are six different classifications for this operand. (See'
Table 12. Part E.) The shortest mEssage is the message ID only. ~he
standard message is the message ID and the message text. (The systerr
supplies this version in t:he syste11' message file.) The extended rressage
is an alternate message that is c.r-eated at the installation and is used
instead of the standard message. 'rhe user can specify that standard or
extended rressages be issued without their message ID. A reference rres­
sage points to another message that contains the message text. The user
prompter displays a message according to the value of BREVITY that is
specified in the user profile. To alter the systerr default for message
length and tyr:;e. the user issues a DEFAULT command with the desired
value for EREVITY. (Note: R is not a default value for BREVITY, but is
specified when the llsercreates a mEssage that he wants to designate as
a reference message. See the discussion on reference rressages later in
this secticn.)

MODE: when a user is creating a message, he can specify that it be is-
3ued for ccnversational tasks, nonconversational tasks, or both. He
cannot modify this specification with the DEFAULT command. He specifies
C, E. or A where: C messages are displayed only for conversational
tasks, E rressages only for nonconversational tasks, and A messages fer
all tasks, regardless of mode.

Tatle 12. Filter codes
r---------------T----TT------------------T----TT-----------------r----,
• A. LIM~N Icodel I E. BREVITY ICode\ I c. Mode of Task I Code I
t--------------+----++-----------------+----ff---------------+----~
I Inforrraticn I I 11 Message 1D I M II Conversational I C I
I I II I 1\ I I
I Warning I W II standard I S II Nonconversationa 11 E I
I I I I I I I I I
I Serious Error I X II Extended I Elf All I A I
I I I ! I I I I J
I Terrrinate Errorl T J I standard, no ID I 'I II I I
I I I I I II t I
I I II Extended. no ID I X I I I I
I ! I I I I I I I
I I I I Reference I R I I I I l ____________ . ____ k ____ ~~ _________________ ~ ____ ~~ _________________ ~ ____ J

MESSAGE FILE CONSTRUCTICN

The user's message file is a rnerrber of USERLIE; this rrerrber is called
SYSMLF. Using the text-editing commands, the user can construct and
maintain his own message file. To initiate this process, he enters:

edit userlib(sysmlf),z0047

82

The seccnd farameter, Z0047, is thE wessage It for the new message that
is being added to the message file. (The mEssage 10 can be frorr. cne to
eight characters.) Notice that the parameter cccupies the RNAME (for
region nall'e) fcsition in the EDIT command. E;ach message is contained in
its own region in SYS~lliF; the region name is the same as the Il'essage ID
for the message. Now, since this is a new regicn in the SYSMLF data
set, the systere prompts with thE first line number, line 100:

User:
Syst~!!.1:

edit userlib(sysmlf),z0047
0000100

Since standard messages are stored at line 0 (see "Message Type and For­
mat" later in this section), thE user wants to put his new message at
I ine 0:

sys,user: 0000100 _update

(No prompt is issued by UFDATE. The keybcard is unlocked when the user
can enter data. The user enters the following lines.)

User: 0 wsa this is the mEssage text
end

The underscore at line 100 tells the editor that the user wants to enter
a corrrrand; he enters the UPDA'TE coromand. 'Then, he enters the a (for
line O), one blank cnly, the message filter code (~SA), one blank (rrore
than one blank is included as part of the message text), and the nessage
text. The user has created message Z0047; the message reads, -this is
the message textW ; the filter code (~SA) roeans: w--a warning message,
S--a standard message, and A--a message for all of his tasks, whether
conversational or nonconversational.

The user may require more than one line for the text of his message. He
has issued the EDIT corrmand for the existing message ID, Z0047 (see
above), and the system has responded with line 100. He then enters:

0000100 update
o ws a thIs mEssagE requires more than one line -
10 wsa this is the continuation of the message

end

In this example, the user has typed a continuation character (hyphen) at
the end of line zero. (A blank precedes the hyphen so that the text of
the lines will not be run together.) When the keybcard is unlocked, the
user enters the next line, which can start with any line number frore 1
to 99. Th€ next line must be in the same format as the previous line.

Many wessages require that variablE text (in most cases, user-defined
names) be inserted in specified pOSitions in the message. These Fosi­
tions are indicated in the tody of the message by the elements $NN,
where N can assume the integer valUES 1 through 20 and denotes the Nth
element of the parameter sublist in the calling sequence. (Refer to the
PRMPI' wacrc in Assembler User's Macro Instructions.)

REFERENCE MESSAGE

The user promfter can be used to reduce the nurrber of times a message
may appear in the message file and still,maintain unique message IDs for
every distinct call to a message. For examFle, if user message XYZ is
established with text identical to the text of system message ABC, mes­
sage XYZ can point to ABC rather than repeat the text of ABC. Message
XYZ is created as a reference message.

To use a reference message the user must:

Section 5: Message Handling 83

• Put an R in the second position of the ~essage classification code
(for exam~le, WRA) for a message that is referencing another rres­
sage. One blank RUst follow the message classification code.

• Put the ID of the referenced message in the eight positions that im­
mediately follow the blank. Blanks must l::e added to the end of the
message ID if the ID does not occu~y all Eight Fositicns.

• Put the line number of the references message in the seven positions
of the line that immediately follow the message IC.

Exarrple: The construction of a reference message is as follows:

hRAbABCtbbbbOOOOOOO

(In this exan:r:;le, the symtol t ind.icates a l::lank.) This causes a refer­
ence to line 0 of message ABC whenever message)(YZ is issued. A user is
limited to 15 reference pOinters in one chain in locating a desired
text.

MESSAGE TYPES AND FORMA~

There are five types of messagEs in the message file: standard, Extend­
ed, resfonse, explanaticn, and wore explanation. Allor any of these
types can be used for each message ID. (Note: in the examples bela,.; ..
one blank rrust separate the message classification code from the line
number, and one blank separates the line nurrber frorr the message text.)

84

• standard message is a triEf corrmunication from a program to the
user. A standard message always begins on line 0, and continuation
lines can be on lines 1-99. (See the examrles under W~essage File
Construction" atove.)

¢ Extended rr,essage is an alternate message that is issued instead of
the standard message. An extended rr€ssage begins en line 100 and
can be continued on lines 101-199. For exarrple, the user wants to
add an extended mess ~Ag€ for thE existing message ID Z0047. He types
in;

User:
Sys, User:

edit userlib{sysrrlf) .zOOQ7
update
100 wea this is an alternate message -
105 wea to be used in place of the -
110 wea standard message when trevity -
115 wea has tEen defaulted to e.

end

If the user wishes to reference the text cf the extended message for
XYZ005. instead ot Z0047, he enters:

100 wra xyz005tt0000100

(You should make special note of the R in the seccnd rosition of the
classification code and of the reference to line 0000100, where the
text of the extended message is located.)

• Response message can be in one of the three forns listed celow. The
rest:cnse line begins on linE 200 and 'can te continued on lines 201-
299. Form.s of response message;

1. Text that states the possitle responses to the message. lhis
line is used for messages with unpredictable responses, and it
is issued when an EXPLAIN RESPONSE is entered ty the user.

(SeePart III.) To add a response line for existing message ID
MN041, which expects a response, the user enters:

User:
SYS;user:

edit userlib(sysmlf),mn041
update
200 ws a this line explains the-
205 ~sa expected response for -
210 ~sa message IDn041
end

When the user issues EXPLAIN RESPONSE, the system displays the
text of line 200 and any continuation lines (in this case, lines
205 and 210).

2. A set of predictable response words (for exanfle, yes or no) and
their associated response codes. Each predictable response word
rrust have, as a response code, a unique positive integer. A
response must be in the form

word1=codel,word2=code2, ••• ,wordn=coden

and can be entered as follows (assume that the user has issued
UPCATE and the keyboard is unlocked):

200 wsa yes=1,no=2

The codes are used ty the user prompter as return codes to the
issuing program to indicate which res~cnse ~as entered ty the
user. For the exarriple just given, if the user issues EXPLAIN
RESPONSE after a message is displayed, the system prints out:

VALID REPONSES ARE: YES,NO

3. A res~cnse line can reference the response line (line 200) of
ancther message. It must te set up in the same format as all
reference messages (sEe thE discussion on reference messages,
above) •

• Explanation message makes clear a standard message or an extended
message. An explanation message begins on line 300 and can be ccn­
tinued on lines 301-399. For ExaI~le, the user wishes to add an ex­
planatien message fer the Existing message ID Z0047. He enters:

edit userlit(sysmlf>,Z0047
ur:date
300 wsa this line is displayed -
305 wsa when thE USEr enters -
.310 wsa explain immediately after the -
315 wsa standard mEssagE at his terminal

end

• word exrlanation clarifies one or more words in a message. word ex­
planation messages begin on line 400 and above. For example, the
user enters:

edit userlibCsysmlf) ,fffOOl
0000100 update
o wsa thIs message contains references to ~ordl and ~rd2
400 wsa wordlbbbthese lines are for eXflanaticns
500 wsa word2tttof words that appear in the standard message
end

The first eight positions of tte text are for the word to be
expldined, and the rest of the line is for the ex~lanation. when
the EXPLAIN cowmand is issued, with a specific wcrd as the operand,

Section 5: Message Handling 85

iw~ediately after a standard message is displayed, the lines start­
ing with line 400 are searched to see if an explanation is available
fer the requested ~crd.

7he format of a VISAM variatle-Iength record is:

o 4 12 19 20
r------~------------------------T---------~----T------- --------,
I record I message ID I line Inet I message
ilength I (regien name) I number I used I text I L ______ ~ _________________________ ~ __________ ~ ____ ~ _________ ________ J

<--------------record length (rraxirrurr of 256 bytes}--------------->

The format of the message text (bytes 20-255) varies with the type of
message. For all types of messages bytes 20-22 contain a message clas­
sification code and byte 23 is tlank. Bytes 24 to the end of the line
contain different inforrration, as shown in ~aclE 13. You can use one of
the nurrbered items (for each message type) shown under the content of
the message.

~able 13. ~essage content
r-------------~--,
I Message Type I Content (Byte 24 to End of the Line) I
r-------------_+_--i
I standard I (1) Iv:essage text I
I (Line 0) I I
I I (2) Bytes 24-31 Reference rressage IL I
I I Bytes 32- 38 Reference I ine number I
I I Bytes 39 on Unused I
~--------------+---i
I Extended 1 (1) l':.essage text I
I (Line 100) I I
I I (2) Bytes 24-31 Reference message ID I
I J Bytes 32-38 Reference line nurrter I
I I Bytes 39 on Unused I
~------------_+_--i
I Response I (1) Explanation of response te be entered I
I (Line 200) I I
I I (2) word1=codel,wcrd2=code2, ••• ,wordn=coden I
I I I
I I (3) Bytes 24-31 Reference Iressage I[I
I I Bytes 32-38 Reference line number I
I I Bytes 39 on Unused I
~-------------_+_---i
I Message I (1) Message explanation text I
I Explanation I I
I (Line 300) I (2) Bytes 24- 31 Reference message ID I
I I Bytes 32-38 Reference line nurrter I
I I Bytes 39 on Unused I
r--------------+---~
I ward 1 (1) Bytes 24-31 Wcrd tc be ex~lained I
I Explanation I Eytes 32 on Word explanation text I
I (Line 400) , I
I I (2) Bytps 24-31 Word to bE explained I
I I Bytes 32-39 Reference Jressage IL I
I I Bytes 40-46 Reference line number I
I I Byte 47 Blank I
I I Bytes 48-55 Reference word I
I I Bytes 56 on Unused I
r--------------i---i
i Note: The user must ebserve strict byte alignment in message fields_I L __ J

86

Word Explanation Scope

The sco~e of word explanations varies, de~ending en the werd. For exam­
ple, sone word explanations are universal in scope. ether word explana­
tions are universal within a major component of ~ES, such as the conuand
system. Still others are limited to the particular message in ~hich
they appear. Broad sco~es are an advantage because fewer explanation
records are needed, which reduces the size of the message file. ihe
user can regulate the scope of word explanations to favor his particular
operation.

The scope of a word explanation is indicated ey an eight-tyte message
Ie. Ex~lanations with universal scope have an all-blank message ID
(that is, a blank region name). For a scope restricted to a single mes­
sage, the full eight-byte message ID is used. Identification codes can
be assigned in a pattern tc allOW various levels of scope, bet~en
universal and fully restrictive. All message IDs fer the command systen
start with CZA. Words whose meaning is universal in sccfe within the
comwand system would have an identification code of CZA. If the scope
were lin.ited te a particular module, say CZATP, the identification code
would be CZATP. The scope is further restricted to a particular nessage
by adding the final three digits, ~hich are unique within the module.

The user prompter has two one-tyte nasks that allew users to control the
user prompter's search for word explanations. One mask is for the sys­
tem message file, and one is for the user message file. Each bit in the
mask corresponds to one pOSition in the ID of the message that contains
the f;xplainable word. For example, bits 0-7 in the sccre mask corres­
pond to positions 1-8 in the message ID. The soope mask indicates hew
many positions in the message ID are to ee compared when a search is
made for a word-explantion record. The user Frcnpter scans the mask,
starting on the right with tit 7. It looks for bits set to 1. Each 1
bit found causes an access to the message file. The message file is
searched for the message ID, teginning with position 1 and continuing
through the position that corresponds to the mask bit that is one.

For example, bits 7, 4, and 2 are turned on in- the user scope mask. A
message with the ID ABCXX200 is issued. ~his message has an explainable
word, DSNAME, and the user issues EXPLAIN DSNAME. In the search, all
eight pOSitions of the message ID are used first because bit 7 is on:
therefore, lines 400 and above in the region ~ECXX200 are searched for
the word r:SNAME. Next, the lines 400 and above in the region ABCJ(X, if
it exists. are searched eecause l:i t 4 is on; and then the lines 400 and
above in the region ABC, if it exists, are searched because bit 2 is on.
The all-blank region is searched last. If DSNA~£ is not found in the
user message file or in the system tressage file, a diagncstic message is
issued that indicates that no explanation is available.

Both the syste~ mask and the user mask are located in the character
switch table, which is a section of the user profile (see Appendix C).
The user scope mask lr.ay be changed by using the MCAST command. The sys­
tem ffiask and the user mask are set initially, as a part of the prototype
profile.

section 5: Message Handling 87

SEC~ION 6: THE USER PRCFILE

The user profile is the data set t~at controls the user's operating
environment. It contains the default values for omitted operands, the
values for implicit operands, synonyms that the user creates for conrrand
names or oferands, conrnand symtols estatlished with the pes SET command
(see Section 3), and a fair of character translation tables -- one for
input, and one for output.

:~en a user is first connected to TSS, he is provided with a protetype
profile; this contains enly system-supplied default values, implicit
operand values, and the translation tables (including certain miscel­
laneous contrel characters that are described in AFpendix e). ~h€n.
~hen the user first initiates a task (via LOGCN), the system searches
his user library (USLRLIB) for a user profile (member SYSPRX). If SYS­
PRX cannot te found -- this occurs when the user first legs on to the
systerr- or after he erases his profile -- the system uses the protetype
profile member (SYSPRX) as the task profile.

The user creates a user profile ty issuing a PROFILE cowmand. Then,
when he logs on later, the SYSPRX rrember in his USERLIB is used to cre­
ate his task profile. The prototype profile is not used as long as
there is a USERLIB (SYSPRX) member for this user. The user can erase
~is user prcfile by issuing the following command:

ERASE USERLIB(SYSPRX)

r--,
SYSLIB I Prototype profile resides in SYSLIE as rrerrter SYSPRX. It is I

\ccried into storage if there is no user ?rofile in OSERLIB. I
L __ ~--____ J

I '
I

r---~--,
uSERLIE luser's profile (member SYSPRX) is copied into storage fron I

IUSERLIB every time a LOGON corrnand is issued. I
L---T------------------------T---------------------------______ J

I I
I LCX30N (every session) I PROFILE (whenever user wishes)
I I

r---~-----------------------~---------------------------------,
VIR!UAL IChanges made during task are entered on this CCfYi PROFILE I
STORAGE jconmand causes task profile to replace the one in USEFLIE. I L~ ___ J

The task profile controls the user'S operating environment. The user
can alter his task profile with the SYNONYM, DEFAULT, MCAST, and MCASTAB
commands; then he can make the changes a part of his permanent user pro­
file with the FROFILE command. The user ~rofile nanagement commands are
sURnarized in Table 14.

Table 14. User profile management commands
r---------T--,
I Cownana I Function I
~---------+--i
I SYNONYM I Rename conmands, keywords, pes operands, or command I
I I statements. I
I DEFAULT I Add, replace, or delete entries in default table. I
I PROFILE I Hake changes to task profile permanent in user profile. I
I MeAST I Alter miscellaneous control characters. I
I MCASTAE I Alter input and output translation tables. I l _________ ~ __ J

88

SYNONYMS AND CEFAULTS

The user can alter default valUEs with the DEFAULT co~mand. Default
values are used by the system when operands needed by the system are not
included when the user enters a cOK~and. A~pendix C shows the defa~lt
values for the system operands. Note that not all operands have system­
supplied default values.

To change the default value for an operand, the user enters the DEFAULT
command giving the name of the operand and the new value:

default regsize=7

The default value for the REGSIZE operand is nOli set to 7 for the
remainder of the task, or until the user again alters it. This new
value is set in the task profile.

The user can rename keyword operands or commands with the SYNONYM coa­
mand. He enters the new name, an equal Sign, and the old name:

synonYIr ~=FC?

NOW, when the user enters the P command, the system executes the PC?
camIrand.

To remove the effects of a SYNONYM or DEFAULT command, the user enters
the command this way:

synonym p=(press RE7URN)
default regsize=(press RETURN)

Since no value appears to the right of the equal sign in these exaaples,
the current settings are destroyed. Changes aade with SYNCNYM and
DEFAULT in this way are made to the task profile. If the user logs off
and again logs on, the values in the new task profile are taken frau. the
user profile Or the prototype profile, neither of which was changed.

PROFI LE CO}(MAND

To make changes permanent, the user issues the PROFILE command after the
DEFAULT or SYNONYM coromand. For example:

default regsize=7
profile

NOW, the value of REGSIZE is 7 in subsequent tasks until the user alters
it. If the value is changed later, the user can make that value Ferrra­
nent with.the PROFILE corrrrand. For example:

default regsize=(press RETURN)
Frofile

IMPLICIT OPERANDS

Implicit oFerands are not entered with any command. Rather, they con­
trol certain aspects of the user's operating environment. For exaaple,
the LINENO imFlicit operand indicates whether the user wants the text
editor to prompt with line numbers or to unlock the keytoard and do no
prorrptin~. The system value is Y (line numbers are disFlayed). If the
user does not want these line numbers (especially when a data set is ne-

section 6: The User ~rofile 89

lng listed at the terrr.inal) he can change the value cf LINENO with the
DEFAULT cowmand, just as he changed the value of a corrff'and operand.

default lineno=n

Again this change is made only in the task profile: the user can then
issue the PROFILE cOff'mand to make the change permanent in the user
profile.

uefault values for command operands and implicit operands are shown in
Appendix C. Table 15 lists the irr~licit o~erands and their functicns.

Table 15. Irrplicit o~erands

r--------r---------------r-------------------T--------------------,
IOperand I Function I System Default Valuel ether Values I
t-------+-----------------+------------------+---------------------i
IALPHABETlcontrols characterll - folded mode 12 - full EBC~IC I
1 I set used at the I 13 - P'l'IC/6 I
I I terminal I 14 - P'1TC/8 I
t-------+-----------------f--------------------+-------------------~
IBREVITY Iwessage length I'! - standard witboutlM - message ID I
I I I ff'essage I~ IE - extended message I
I I I I S - standard JlIe ssage I
I I I I X - extended without I
I I I I mes sage ID I
t-------+----------------t------------------+---------------------~
lCLEANUP Icontrols cleanup IY - user attenticn- IN - user attention- I
I lof user attention-I handling is I handling is I
I I handling tNhen EXIT I cleaned u~ I ignored I
I I is issued for a I I I
I Ilevel 1 program I I I
r--------+------------------f-------------------+---------------------~
ICONPRMPTlcontrols record- \Y - prompt characterlN - no prompt I
I i concatenation I is issued I character I
I I ~rom~ character I I I
r-------+------------------t--------------------f---------------------i
iCONREC Icontrols record- IN - no record- IY - record- I
I I concatenation I concatenation I concatenation I
I I processing I processing I processing is I
I I I I done I
t-------+-------------+.---------------+-------------------i
IDEPROMP'llprompting during IY - prompt for dis- IN - no prompt I
I I ERASE and DELETE I pOSition I I
r--------+--------------t------------------+-------------------i
IDIAGREG lcontrols display IN - registers are IY - registers are I
I 10£ registers I not displayed I displayed I
I I during ABEND I I I
r--------+------------------+--------------------+---------------------~
IBEXSW Icontrol characters\xl - indicates hexa-Iuser defined I
I I used to indicate 1 decimal input 1 I
I Ihexadecimal pro- I follows I I
I I cessing I I I
r--------+----------------f--------------------+-----------------i
I LIMEN Irressage severity IW - warning message II - information I
I I I I X - serious error I
t I I IT - terminate error I
r--------+-----------------+--------------------+---------------------.
ILINENO lcontrols line IY - line numbers IN - no line numters I
I Inumber issuance I are issued I are issued I
r--------t--------------t--------------+----------------f
IASMALIGNlcontrols alignmentlY - source code IN - source code not I
I 10 £ source oode in I aligned I aligned I
I I assembler list I I I
I Idataset I I I L ________ ~ _________________ ~ _________________ ~ ___________________ ~

90

SECTlcr; 7: PROGRAM FROrUCT LANGUAGE INTERFACE (PPLI)

PROGRAM PRODUCTS UNDER 'ISS

'ISS allows the execution of OS/VS compilers via interface modules. The
compilers therrselves are not changed; restructuring of the object code
after the program product is installed on a TSS systerr is done to allow
the prograrr product to execute under TSS. To provide suitable inter­
faces, a certain degree of OS/VS simulation nas been implemented.

The sequential, index-sequential, direct, and partitioned access rrethods
are logically simulated; the data records are physically maintained in
TSS formatted data sets and are processed internally to simulate OS/VS
data set characteristics.

OS/vS SUpervisor Call functions such as GETMAIN/FREEMAIN and TIME are
simulated at the functional level.

The sirrulation restrictions on cs/VS object programs executing under TSS
are primarily related to VSAM, and telecommunications access methods.
Functions related to multitasking are ignored. 'ISS restrictions rerrain
in effect.

PROGRAM PRODUCTS SUPPORTED

The IBM Vrogram products supported are as fellows:

5734-A31 Assembler H

5740-CE1 VS COBOL Compiler & ~ibrary

5734-.F03 FORTRAN IV (Ii Extended) Compiler

5734-LM3 FORTRAN IV Library Mod II

5734-PLl PL/I Optirrizing Compiler

5734-LM4 P L/I Resident Litrary

5734-LM5 PL/I Transient Library

5734-P~3 PL/I Optimizing Compiler and Libraries.

Note: Installation of these program products occurs using the PPREAD
comnand (described in the System Programmer"s ~uide) and installation
scripts supplied.

PROGRAM PRODUC! LANGUAGE INTERFACE CO~MANDS

The PPLI commands are as follows:

COBOL FILEREL HAS~ CSDD? PLICPT

FILEDEF FTNH ODe OSRUN

These commands are discussed in alphabetical sequence in the Command
Section cf this manual.

Section 7: Frogram Froduct Language Interface 91

PART III: COMMAND DESCRIP'IIONS

This part contains format illustrations, descxiFtions, and examples of
the use of the commands. 'Ihe cowmands appear in alphabetical order.
The symbol is used in the left-hand margin to help you find a corrmand.

If you do not need detailed information on the format of a command, but
need only a review of the operands, you should turn tc Appendix G. You
should review Part I before you look at the ccrrrrand descriptions if you
are not familiar with the way commands are described in this book.

The forrrat illustration of some commands show all operands within brac­
kets ([]). 'Ihis indicates that you do not have to enter any oFerand
with the ccrrmand. The action that the system takes when you do net spe­
cify an operand is discussed with the command. If an operand can be
entered in keyword format, the keyword is shown in all-capital letters.
If an operand is in lowercase letters, you cannot use keyword notation.

ABEND Command

This command returns the user's task to the status that existed after
the LOGCN process.

r---------~--, I operation I Operand I
~---------+--i
I ABEND I I L _________ ~ __ J

Note: There are no operands.

Functional Description: When AEEN~ is executed, the current task is
terminated. A new task is created, as if you had issued another LOGON
comrrand. All data set definitions, open data sets, and task variables
are elirrinated.

Note: If you issue the command DEFAULT DIAGREG=Y before you issue
ABEND, the system displays general register contents following the
AEEND. The system default for DIAGREG is N.

Exarrple: 'Ierroination, using AEEND, is as follows:

,!;1ser:
systerr:
User:
systerr:

(press AT'IENTICN key once)
!
abend
TAS}{ DELETED BY CC)!~AND
NEW TAS}{ LCGGED CN AT 11:12 ON 06/09/71. 'IAS}{I~ = 0020

ABENDREG Ccrrmand

This command displays the contents of general registers when AEENC oc­
curred and the location within your task where the ABEND occurred.

r---------T--,
I cperation I operand I
~---------+--i
IABENDREG I I l _________ ~ __ J

Note: There are no operands.

92

Functional Cescription: After your task has teen abnormally terminated
h¥ the system, or after you have entered the ABEND command, you may use
the ABENDREG command to display the general registers at the time termi­
nation occurred. No display occurs if your task has not teen terrrinated
abnormally.

Example: Your task has just teen abnormally terminated, and you want to
see the contents of the general registers at termination:

User: ~bendre9
System:

ABEND IN PRIV PRG CZASBC +000902, LAST USEF LOC AT CfAtBC +0003£8
USER GRS 003C.7A8 00007438 00113000 0001177A 00006BCO 00008058 00112000 00000017

00008054 OOS39DEC 0000804C 00006200 00011000 00007020 001125D8 00000008
PRIV GRS OOOOOOFF 000S98F8 00000008 00000048 00011140 00135E76 0013S_B8 0001C549

00000000 00001000 0042FOBC 001C68AC 000593A8 00059~40 001C6902 OOlBCOOO

ASM Command

This corrmand invokes the assemtler to assemble a source program module.

r---------T--, I Operaticn I Operand I
~---------+--i
IASM lNAME=module namel,STCREC=IYIN}] I
I I (,MACROLIB=({data definition name of symbolic portion, I
I I data definition name of index portion} (,.,.])] I
I I [,VERID--version identification) l,ISD={YINl] [,SY~LIST={YINl) I
I I [,ASMLIST={YINl] [,CRLIS1={Y1NIE}) I
I I (,STEDIT={YINll[,ISDLIS1={YIN}l[,PMDLIS1={YI~l] I
I I [,LISTDS={YINl] [,LINCR=(first line number,increment») I l _________ L __ J

NAME
identifies the otject module to be created.

If the source program module (that is, the source language data
set) is prestored, the user must have named it SCURCE.name. If it
is nct prestored, the system automatically prefixes SOURCE. to the
source program module name. 'Ihe listing data set is automatically
named LIS1.name(O).

Specified as: the part of the source program module name that fol­
lows SOURCE., if the source program is prestored: otherwise, any
narre from one to eight alphameric characters long. 1he first
character must be alfhatetic. The oeject module name must be
unique to the library in ~hich it is stored. See ~ssembler Pro­
grarrrr.er's Glide for a complete list of naming rules.

S10RED
specifies whether or not the source frcgrarr nodule is prestored
(that is, whether er not the data set SOURCE.narre exists).

Specified as:

Y - scurce program is prestored.
N - source program is not prestored.

Systen default: N.

MACRO LIB
specifies the data definition name ef the symbolic portion of the
sUfplerr.entary macro litrary tc be used and the data definition name
of the index porticn of that library. Both names must have been
defined by DDEF conmands within the current task. The user can
specify a maximum of six litraries (that is, six pairs of data

Part III: Command Cescripticns 93

definition names), which are searched in the opposite order in
which they were specified; the syste~ ~acrc li£rary <SYSMAC) is
nade available to the user automatically and is searched last.

specified as: the data definition names defined in the teEF
connands.

System default: only the systere n'acrc library is used.

VERID

ISD

specifies the version identificaticn to be assigned to the object
progratr.

Specified as: fro« one to eight alphameric characters.

System default: the listing and the object «·odules are time stamped

specifies whether an internal symbcl dictionary (ISD) is to be
produced.

Specified as:

Y - ISD is produced.
N - 1St is not produced.

Syste« default: Y.

SYMLIST
specifies whether a syrrholic source program listing is to be
produced.

Specified as:

Y - listing is produced.
N - listing is not produced.

syste« default: N.

ASMLIST
specifies whether an object progra« listing is to te produced.

Specified as:

Y - listing is produced.
N - listing is not produced.

syste« default: Y.

CRLIS'I
specifies whether a cross-reference listing is to te produced.

specified as:

Y - cross-reference listing is produced.
N - cross-reference listing is not produced.
E - cross-reference listing of only the symbols actually used is

produced.

system default: N.

STEDIT
specifies whether the edited symbol table is to £e listed.

94

Specified as:

Y - edited symbol tane is listed.
N - edited symbol tatle is not listed.

Systerr default: N.

ISDLIST
specifies whether an ISD listing is tc be produced.

Specified as:

Y - ISO listing is produced.
N - ISD listing is not produced.

Systerr defau It: !Ii.

Pt-lDLIST
specifies whether a progran mcdule dicticnary (PMO) listing is to
be prcduced.

sEecified as:

Y - PMO listing is produced.
N - PMC listing is not produced.

Systerr default: N.

LIS'IOS

LINCR

determines whether the user-requested listings from the assenbler
are tc be placed in a list data set or are to be flaced directly on
SYSOUT.

Specified as:

Y - listings are placed in list data set.
N - listings to SYSOU'I.

Systerr default: Y.

specifies the first line nun.ber of the SOurce language data set and
the increwent to be applied to get succeeding line numters.

Specified as: two three- to seven-digit decimal numbers, separated
by a comma and enclosed in parentheses; the last two digits in each
number must be zeros.

System default: (100,100) •

Note: This operand is ignored when STOREC=Y.

There is also an operand called the ASMALIGN cperand. ASMALIGN is not
an operand of the ASM command, tut is instead an implicit operand (Sec­
tion 6, Part II explains implicit operands). ASMALIGN controls the ali­
gnment of the sour~e statements in the assembler list data set.

If you issue DEFAULT AS~ALIGN=Y prior to issuing the ASM command, all
names, operation codes, and operands in your source code will be aligned
in colunns 1, 10, and 16 (respectively) in the list data set. ASMALIGN=
Y is the system default; if you desire alignment and haven't specified
otherwise, alignment is automatic. However if you do not want your
source statements aligned, issue DEFAULT ASMALIGN=N prior to issuing the
ASM command, and your source statements will appear in the list data set
just as you entered them.

Part III: Command Descriptions 95

Functional Description: See -Language Processing- in Section 3 of Part
II.

caution: The command is canceled if invalid operands are entered.

Examples: (refer also to Assembler prograrrmer's Guide)

1. The user wants to assemble a frestored scurce ~rogram (SOURCE.
IRISH); he wants an ISD and a source program listing:

User: asm irish,y,isd=y

The system assemtles the program SOURCE. IRISH and acknowledges suc­
cessful assembly by prompting with an underscore.

2. The user wants to assemble a program as he enters it. The ccrrrrands
and data he enters from thE tErminal are as follows:

~ser: ~sm tester,n,symlist=y

save
1
st

(14,12)
14,71(0,13)
14,8{0,13)
13,4{0,14

0000100
0000200
0000300
0000400
0000400 E **.
0000400

st
OPERAND
ST

FIELD IMPROPERLY DELIMITED
13,4(0,14

#400, st 13,4(0,14)

lr 13,% 0000500
0000500 E .. *
0000500

STATEMENT CONTAINS INVALID CHARACTER
LR 13,%

#500, lr 13,14

0002600 end
MODIFICAHONS?
n
0000200 W **. OPERAND REQUIRES FULL-wORD BOUNDARY
MINOR ERRORS

3. 'I'he user wants to create his own macro instruction library f cr use
with the assembler. The data definition narre ef the macro instruc­
tien library VIS.i\M data SEt must be SOURCE; the data definition
name of the macro instruction library index VSA~ data set must te
INDEX. The index is creatEd to facilitate reference to the library
by use of an IBM utility program, SYSINDEX.

User: ddef source,vi,mylib
edit mylib

The user creates a VISAM data set. He will use the symbol) as a
header flag character.

§ys,user: 0000100)macrol

Line 100 is the header of MACBC1. Lines 200 thrcugh 600, which are
the text of MACRO!, are not st.own.

0000700)macro2

Line 700 is the header of MACR02.
are text of MACRC2, arE not shown.
EDIT ccmmand (see EDIT) as follows:

Lines 800 thrcugh 1500, which
The user enos processing of the

00001600 end

Next, the user defines a macro instruction library index and calls
SYSINDEX.

User: ddef inde x, vs ,mynd x'
sysindex

The system prompts the user for control statenents.

header=),length=8
~srn lfiYFrog,y, (source, index)

~he user assembles his progran.

AT Conn and

~his command requests notification when executicn of an oeject program
reaches specific instruction locations. AT also designates the otject
progratr instruction locations at which the cowmands following A~ in the
dynamic statement are to be executed.

r---------T--,
I operation loperand I
~---------+--~
IA'I linstruction location[, •••] I L _________ ~ __ J

instruction location
specifies the location of an instruction within an oeject module.

Specified as: an internal or external symbol. with or without off­
set cr subscript, or a hexadecimal address.

Functional Description: AT cecomes effective when control arrives at
the instruction location specified in the operand, cut eefore the in­
struction at that location is executed. A command statement containing
an AT is called a dynamic statement. Only one ~T nay ce included in a
dynamic statement, and it must te the first command in the statement.
(See RUse of Command statements· in Section 3 of Part II. Note the list
of comrands that can be used after AT.) The system assigns a number to
each dynaIric statement. This number may be referenced by the REMCVE
cororrand.

when an A'1 cOIrrrand is executed, a standard output (including the in­
struction location where the command became effective, program status
information, and the staterr,ent number is Fresented to the user. If
LIMEN is not set to I, cnly the dynamic statenent nurreer is disFlayed.
If the AT is a conditional statement, the dynamic statement number is
displayed only if the condition is true. '1he program status infornation
includes the virtual storage location of the instruction ceing executed,
the instruction length code, the condition code, and the program nask.
If the user refers to an instruction location in a shared program or in
a system program, a diagnostic message is issued, and the command is
ignored for that location. A diagnostic is also issued if the instruc­
tion location contains a supervisor call (SVC) operation requiring para­
mEters that must follow the svc.

The counter, referred to ty the speCial character %, is aSSigned to a
dynamic state~ent and is incrementEd by one when the program arrives at
an instruction location designated in the AT corrnand. 'The counter is
increrrented even when the dynamic statement is conditional if the speci­
fied location is reached. The counter Iray be used as an oferand in the
other PCS commands within the ~tatement. The AT command alone ~ill

Part III: connand tescripticns 97

interrupt, but not stop, prog raIl' execution.
Specifications· in Section 3 of Part II.)

(See -Types of operand

Caution: The user should not designate an instructicn location ttat was
modified by program execution. If h~ does, the results are unpredict­
able. Also, since PCS only checks that the AT location is on a halfword
boundary, the user must te careful to put the A~ command at the begin­
ning of an instruction, not in the middle.

prograrrrring Notes: If AT specifies FCRTRAN statement numbers as in­
struction locations, the numbers must only designate executable FCRTRAN
statEments.

~xa~: The user wants to be informed when his ~rcgraK reaches the
locations PGM.Sl, PGM.S3. (4}, FTNPGM.98, and FTNPGM.98(S).

To acconplish this,

User:
Syst~!!:

at pgm.sl,f9m.s3.(4),ftnpgrn.98,ftnpgrr.98(5)
00001

Execution of the prograrr begins. When control arrives at any of the in­
struction looations, the user is notified. For example, the systen
prints out the following line (assuming LIMEN=I) when it reaches the
third location specif ied in the connand:

AT FTNPG~.98 PSW 1 3 0 0003F076 0001

In this statement

F~NPGM.98 is the instruction location
PSW 1 3 0 003F076 is the program status
0001 is the statement number assigned ty the systerr

Note: If LIMEN had not teen set to I, only 0001 would have been printed
by the system.

BACK connand

lhis command converts the user's conversational task to a nonconversa­
tional task.

r---------T---,
IcperationlOperand I
~---------+--f
I BACK IDSNAME=data set name I L _________ ~ __ J

DSNAME:
identifies the cataloged VSAM or VISAM line data set (new SYSIN)
that contains the series of commands that complete the current task
in nonoonversational mode.

Specified as: a fully qualified data set name.

Functional Description: If space for a nonconversaticnal task is avail­
able, the user's task is accepted for execution, and a batch sequence
number (BSN) is assigned to th~ task. Control of the task is passed to
a new SYSIN. The nonconversational task takes its commands from the
SYSIN data set named in the BAC~ operand field. The SYSIN data set
should conclude with a LOGOFF command; if it does not, the system per­
forms the LOGOFF operation and issues a diagnostic message.

If space for a nonconversational task is not available fcr the user's
task, the EACK command is rejected. This allows the user to continue

98

his task in conversational mode, as though he had not issued the EACR
command.

A BACR corrnand is not accepted if the system is being shut down.

caution: If Frivate devices are needed by a nonconversational task that
is initiated by the BACR command, each device must be either: (1) as­
signed to the task by an active data definition (DDEF), or (2) reserved
by a SECURE command, which must be the first command (other than GC) of
the SYSIN dataset.

prograrrning Notes: The BACR command is ignored by the system when it is
issued by a ncnconversational task.

After issuing the BACR command, the user must re-issue the LOGON conrrand
to begin a ne~ conversational task.

If the .BACR command is rejected, the user can re-issue the command
later. It reay be necessary to first modify the new SYSIN data set to
reflect any further conversational processing that has been done.

If the user interrupts a program that is being executed when he issues
the BACK command, the first command in his SYSIN data set should te GO,
which causes prograro execution to resume at the point of interruption.

When the user wants to initiate a nonconversational task that does not
require a prior conversational phase, he should use the EXECUTE corr~and.
The data set named as SYSIN in the EXECUTE oommand, unlike that named in
the BACK command, must begin with LOGON and conclude with LOGOFF, and
must be on public storage.

Exawple: ~he user wants to change his oonversational task to nonconver­
sational, using the data set ALFHA as SYSIN for his nonconversational
task. He issues the BACK command as follows:

User:
syste!!:

back alpha
BSN=OOOl
TERMINAL LOGICALLY DISCONNECTED, RECONNEC~ OR HANG UP

BEGIN COlurand

This command corulects the user's task to an MTT applicaticn prograu. run­
ning under TSS.

r---------~--,
\ Operation I operands I
~---------t--i I BEGIN lapplication narne{,application paraneters] I l _________ ~ __ J

application name
specifies the user-written application progran name.

Specified as: from one to eight alphameric characters,.

application parameters
specifies the user-written operand parameters (if any) that are
entered according to the requirements of the application.

Note: The application program must define a means by which its current
users may elect to be disconnected. Cnce the user is connected to the
application program, any commands that have been defined by the applica­
tion prograrr can be entered.

Part III: Command Descriptions 99

BLIP COltIl'and

The 'BLIP' command allows the user to receive assurance that thE system
is still active and the terminal is connected. This command is 9nly
valid for 2741's or their equivalent:

r---------~--,
IOperationlOperand I
~---------+---~ I BLIP I 'IIME=, * READ = I L _________ L __ ,

TIME

*READ

the decimal value given is the number cf seconds tetween the Sig­
nals tc the user. If 0 is entered, no assurance signal will be
given by the systen .•

Specified as: 0, cr 15 through 255 (seconds).

§ystem default: 30 (seconds).

If READ is specified and the terminal has the 'Receive Interrupt
Feature' the system will interrupt a read request tc send thE
assurance signal as long as tt:e user has not entered any data.

specified as:
Y - interrupt a read.
N = de not interruFt read.

Systerr default: N

,functional Description: The system causes the type ball on the terlt·inal
to 'wiggle' by transmitting alternating upper case - lcwer case shift
characters.

~he period between the transmitting of the characters is deterroined by
the 'TIME' parameter.

If ~~e ~IME is zero, then no transnission occurs.

If the user has specified READ=Y, and the terminal has the correct fea­
ture, the system will interrupt a read to send the 'ball wiggle'
transmission.

The systeIr will not interrupt a read request if the user has started
enter ing data.

prograIrlting Notes: The blip is supported only on 2141 type terminals.
If the user specifies READ=Y for a terminal without the correct feature,
the system will attempt the character transmission, but because the ter­
minal will be in the wrong mode, the ball wiggle will not be SEen by the
user.

Also, any characters entered by the user during this period will ce
lost.

The system attempts to prevent loss of data by not interrupting a read
once the user has started entering data, but because of hardware con­
straints, there is a very small period of time when the user may enter a
character and the systeIl' will interrupt to send the '~all wiggle'; at
that tilte. any data entered is lost.

100

Example: User enters:

ELIF 15

The system will blip-wiggle the type ball every 15 seconds as long as
there are no other reads or messages to be written to the terminal.

If the user wishes to turn off the ball wiggle, he enters:

ELIP 0

The system will not wiggle the ball again until the user enters a new
BLIP TIME value.

BLIP? Command

BLIP? is used to display the current BLIP settings.

r---------T--,
IOperationlOperand I
t---------t--i
I BLIP? I I L _________ ~ __ J

Note: This command has no operands.

Functional Description: BLIP? will display the current ELIP settings
in the following format:

CURRENT VALUES ARE:
TIME XX
READ ACTIVE/NOT ACTIVE

The time value is the deciIl'al number of seccnds between ELIPS. Read Ac­
tive specifies that a read will be interrupted to cause the type ball to
wiggle.

BRANCH Command

This command changes the control path of a);:rcgralr er resumes execution
of a prograrr. at a different location.

r---------T--, I operation IOperand I
t---------t--i
IBRA~CH IINSTLOC=instruction location I
L _________ ~---_______________ J

INSTLOC
specifies the location of an instruction within an otject module at
which execution is to resume.

Specified as: an ex);:licitly or implicitly qualified internal sym­
bol, with or without offset; an external symbol, with or without
offset; er a hexadecimal address.

Functional Cescription: If the user has interrupted a program, BRANCH
can oe used to resume execution of the program at a different location.
BRANCH Cdn also be used as part of a dynamiC statement to alter the path
of a program.

Part III: (onnand [escriptions 101

Cautions: BRANCH should be the last command in a command statement con­
taining more than one comIrand. If not, comranes that fcllow B~ANCH are
ignored.

BRANCH cannct te used to initiatE Execution of a program.

progranning Notes: When the user wants to use internal symbols in the
INSTLOC operand, he must have requested an ISO ~hen assemtling or con­
piling his frogram.

f;xanples:

1. ~he user has stopped execution of his Frcgran (which has an ISO).
He wants to resume execution at an instruction location labeled
with the internal sywbol LCCA. He issues the fcllcwing command:

User: branch pgm.loca

lhe system resumes execution at LOCA.

2. ~he user wants to alter the execution path of his program (PROG)
fron lccation PTA to PTC. He issues the following command:

User: qualify [:rog
at pta; branch ptc
prog

The system passes control to P~C when execution reaches PTA. (See
"Program Control" in Section 3 of Part II.)

BUILTIN COIlIrand

This command defines an object prograw (which was written in assentler
language) that the user can invoke as a command. (See Section 4 cf Part
II.)

r---------T---,
IOperationlCperand I
t-------+---of
I BUILTIN INAMf=command nam~[.EXTNAME=bpkd macro name) I
I I {, PROL IB=data set name] I L _________ L-___ ~

NAME
designates the name of the connand that calls the otject program.

Specified as: from one to eight characters. none of which can be
entedded blanks, commas, semicolons. equal signs, or apostrophp.s.

EXT NAME
is the external symbol assigned as the name of the EPKD macro in­
struction (BUILTIN procedure key definer); see Assembler User Macro
Instructions. This name becones the external naIre of the called
program and is the link tetween the command and the routine to be
called.

Specified as: from one to eight alphameric characters, the first
of which must be alphatetic.

SysteJr. default: the value given in NAME is assumed.

PROLIB
specifies the data set in which the BUIL~IN is stored.

102

specified as: the name of a vPAM data set. If this data set does
not exist, it will be created. The BUIL~IN is stored in the SYSPRC
nenber of the data set.

Systen default: USERLIE.

programming Notes: If the user wants tc define qperands for his com­
rodnd, he nust supply the coding within his module to handle the parame­
ter values supplied when the module is called. The BPKC macro instruc­
tion can be supplied in the otject code as part of the FSECT or CSEC~
and must include the definitions of the expected paraneters. The roacro
instruction must also supply the names needed to provide linkage between
the module and the BUIL'IIl\ corrmand that defines that nodule. Refer to
Assembler User Macro Instructions for a further description.
The user can define operands and supply operand values when his user­
written command is issued.

Note: If the command BUII~lN is stored in a data set other than USER­
LIB, the corrrrand will het te available until the data set becomes USER­
LIB or until the BUILTIN command is put in USERLIB.

C, CA, and CB Commands

These commands transfer input control from the user's 1052 Printer­
Keyboard tc the attached 1056 Card Reader.

r---------T--,
I operation loperand I
~---------+--i
IC I I L _________ ~ __ J

r---------T--,
loperationlOperand I
~---------+--i
ICA I I l _________ ~ __ J

r---------T--,
I Operation I operand I
t---------+--i
ICB I I l _________ ~ __ J

Note: These commands have no operands.

Functional Description: The C, CA, and CE conrrands indicate to tbe sys­
tem that input will come from the 1056 Card Reader, rather than from the
attached 1052 Printer-Keyboard. Tc use these commands, the user places
his card deck in the 1056 Card Reader, and then he issues the appropri­
ate command (C, CA, or eB> from the printer-keytoard. The system reads
cards from the card reader until the user presses the ATTENTION key cn
the terminal or until the system reads a K, KA, or KE card from the card
reader. The system then reads further input from the printer-keyboard.

These three commands also control the character set that is used cn card
input. The definitions are as follows:

C -- transfers control to the card reader: if keyboard mode was KA,
CA will be card reader mode; if keyboard mode was KB, CB ~ill be
card reader mode.

CA -- transfers control to the card reader; card input is converted
from 1057 card-punch code to EBCDIC. This conmand can be used
to change the ALPHAEET operand without transferring control.

Part III: COmmand Cescriptions 103

CE -- transfers control to the card reader~ card input is converted
from 029 card-punch code to BBCtle. This ccroRand can ce used to
change the ALPHABET operand without transferring control.

~ote: ~he CA and CB cowmands set tb~ ALPHABE~ operand.

Example: The user wants to shift from keyboard inFut mode to card read­
er input mode.

~er: C

The system reads input from the attached 1056 Card Reader. If the ter­
minal mode was KB, card mode is CB; if the terminal mode was KA, card
mode is CA.

CALL Command

This conrrand invokes an o£ject module or a PL/I procedure.

r---------T--,
JOperaticnloperand I
t---------t--i
I CALL I [NAME=entry point narnel[,module paraneters] I L-________ L--______ ~ ___ J

NAME
identifies the module to be invoked.

specified as: a module nawe cr external entry pcint without off­
set. (FORTRAN users should use only main-proqrarr names; otherwise,
the results are unpredictatle. PL/I users should use only OPTIONS
(MAIN) procedure names.)

System default: the last module referenced by the system is
called.

module pararr.eters
specifies the pararreters associated with the nodule teing called;
when a module expects parameters, all parameters must be specified,
including the comnas representing null values, whether or not the
parameters are norwally defaultable. Parameters may only take
forns acceptable to FCS. These ar~ as fellows:

• A ccnmand variatle

• A quoted string

• A decimal integer

• A floating-point numter

• A hexadecimal string

• A register

§Eecified as: the parameters, separated by cowmas, expected by the
nodule. A maximum of five parameters is allowed.

Systen default: the module called does not expect parameters.

Functional Description: CALL invokes the dynarric lcader and passes to
it the narre of the module specified. If a module was not specified,
CALL passes control to the module most recently referenced by one of

104

these counands: PLI, ASM, LNJ, FT~, LOAC, UNLOAD, CALL with a spEcified
module name, or an implicit call. Modules im~licitly referenced ty the
specified module are also loaded. The called module is invoked via
standard type-1 linkage. CALL passes control to a module that is alrea­
dy loaded. When the specified modul~ cannot be found, a diagnostic wes-
sage is issued. .

when the called module receives control, register 1 contains a pointer
to a parameter list if parameters were entered. This list is preceded
by a word containing the number of parameters entered. Each word in the
parameter list contains a pointer to the actual parameter entered. Each
parameter is preceded by a byte containing the length of the paraueter,
unless the parameter is a command variable and a register. In this
case, no length is given. If a parameter is defaulted (denoted by two
successive commas), the corresponding pointer in the parameter list is
zero.

Caution: If the module called during execution of a dynamic stateuent
has dynamic statements embedded in it, the results are unpredictatle.

PrOgramming Notes: A module can be invoked by either the CALL command
or by a direct call (see below). ~ direct call follows the command sys­
tem sy«bol-resolution process in which PROCDEFs take precedence over
modules. If a module and a PRCC£EF have the sane name, the PROCDEF is
inVOked by a direct call. In this case, a CALL command must be used to
invoke the «odule.

CALL may be used to initiate execution of a module that is already
loaded. When you call a PL/I program tc execute, ycu must use thE
module name.

:..-:xanples:

1. The user wants to compile and execute program ~YPRG.

User: ft n rryp r 9

The systen compiles and stores myprg.

User: call

The syste« invokes MYPRG.

2. lhe user wants to call module XYZ and to pass five parameters.

User: call xyz, [ar1",par4

Syste~: (invokes XYZ and places a [ointer tc the [arameter list
in register 1.

3. lhe user wants to call module XYZ and to pass one real-value
{:araueter.

User:
§.2s'te!!':

Direct Call

call xyz, '$$*#i~'
(invokes XYZ and places a pointEr to the parameter list
in register 1.

~hen the user wants to load and execute an object {:rcgrare, he may do so
by entering the module nane and the operands expected as parameters by
the module. The system loads the nodule (and any implicitly referenced
mcdules> a.'1d passes control to the uodule.

Part Ill: Conuand £escriptions 105

>.

When a PROC~EF and a module have the same name, the PRCCDEF is called.
The CALL command invokes the module.

When the specified module or PROCDEF cannot be found, a diagnostic mes­
sage is issued.

When a ncdule expects ~araroeters, all parameters must be specified, in­
cluding commas for null values. Parameters are passed to the module as
dE-'scribed atove.

Cauticn: A direct call is not permitted in a dynamic stateroent.

Examples:

1. Load and execute module AfC.

User: abc

The system invokes AEC.

2. Load nodule ABC, pass ~arametErs X, Y, and Z, and execute.

~: abc x,y,z

The system invokes ABC and places a pointer tc the parameter list
in register 1.

CANCEL Command

This command eliminates a nonconversational task or jct.

r---------~---, ICperaticnlOperand I
t---------+--i I CANCEL IBSN=batch sequence nurr~er I l _________ ~ ___ J

BSN
identifies the nonconversational task to be canceled.

specified as: a one- to four-digit ESN assigned by the system when
the ncnccnversational task was established.

Functional Description: When a task is canceled during its execution,
the devices reserved for its use are released and the pages of storage
it was using are freed; the SYSOUT, although probably incomplete, is
printed and includes a rressage indicating the reason for task
terninaticn.

A task that is canceled before it starts execution receives no explicit
sign of cancellation.

The user is informed if the task cannot be ~und.

prograrrrring Notes: The user may cancel any of his nonconversational
tasks, including those initiated through the bulk out~ut commands.

Example: The user wants to cancel the ncnconversaticnal task (before
execution) identified as ESN 1214.

User: execute xyz

systerr: BSN = 121q

106

cancel 1::sn=12116

system: CANCEL ACCEP'IE£

CATALOG COJurand

This cORwand creates a catalog indEx for a generation data group cr
renames a data set.

'Ihe CA'IALOG conmand, de~endin9 on the objective, takes cne of two forms.

Forn 1
r---------T--, IOperationlCperand I
t----. -----+---i I CATALOG I£SNAME=current data set name£,STATE={NIU}] [,ACC={RIU}] I
I I [,NEWNAME=new data set name] I L-~ _______ ~ ___ -J

Form 2
r---------T--, I operation I Operand I
~---------+--i ICA'IALOG IGDG=generation data group nane,GNO=nua1::er cf generations I
I I I,ACTION={AIO})[,ERASE=(YIN}] I L _________ ~ __ ~

DSNAME

S'IA'IE

ACC

identifies the data set. VAM data sets Rust be cataloged; ptysical
sequential data sets must be defined by a ttEF corr.mand within the
current task or must be catalcged. 'Ihe data set must reside on a
direct access device or on a roagnetic tape voluae.

specified as: a fully qualified data set name, which must nct have
an absclute generation num1::er appended.

specifies whether this is the updating of an existing catalog entry
or the creation of a new catalog entry.

Specified as:

N - new.
U - u~date.

Sy~ten default: N.

specifies the access qualification for the data set.

Specified as:

R - read-only.
U - unlill'ited.

Default: U, if the catalog entry is new; otherwise, no change is
wade to the access qualification.

NEWNAME
designates the new nane for the data set.

Specified as: a fully qualified data set name.

Part III: Coaaand Descriptions 107

"

GOO

GNO

Systell' default: the data SEt name i8 unchanged.

identifies a new generation data group.

specified as: a gener~tion data grouf nall'e; the maximum numter of
characters is 26.

Note: This operand must tE given in keyword format.

indicates the number of generations to be maintained in the genera­
ticn data group.

Specified as: a one- to three-digit decimal number; the maxill'ull'
value is 255.

AC'IION

ERASE

specifies the action to be taken when the GNC value flUS one
generation is being cataloged in the generation data group.

Speci fied as:

A - all Frevious generations are to be removed froK catalog.
o - only the oldest generation is to be removed.

Systen default: c.

designates the disfosition of old generatien data sets delEted froD'
the catalog. Disfosition applies tc Frivate data sets onlYl putlie
data sets are always erased wten uncataloged.

sEecified as:

Y - cld generation data sets to be erased.
N - old generation data sets to be saVEd.

Systen default: N.

Functional Description: CA!ALOG offers these e~ions:

1. Renane a VAM or physical sequEntial data set (Form 1)

2. Create or alter a catalog entry for a Fhysieal sequential data' set
(Fcrn 1)

3. Create a generation data grOuF (GOG) for VAM or Fhysical sequential
data sets (Form 2)

When a data'set is renamed, thE system changes the data set labels on
the direct access volumes containing the data set.

When a physical sequential data set is cataloged, the system enters the
specified data set name into the user's catalog and assigns to the data
set tte access qualificaticn specified by the user. If a data set name
is specified with a rremter name, tr.e data set name, not the appended
~ember name, is cataloged.

when a GBG is created, the system enters the G[G name in the catalog and
stores information pertaining to the maximum number of generations tc be
maintained, what is to haFpen when that nunber is exceeded, and tte dis­
position of the deleted generations.

108

A generation of a GOG can be catalcged with either an absolute or rela­
tive generation number. When the relative nunber is used, the system
automatically assigns the Froper atsolute generation number to the
generation and prints that number. When the user catalcgs a generation
to a GOG and exceeds the maximum numb~ of generations maintained, the
system removes all generations or the oldest generaticn, depending on
the option selected by the user.

Note: All VAM data sets, both public and Frivate, are cataloged auto­
matically ty the system when they are created.

Caution: 1he user should not rena~e data sets that reside on magnetic
tape volumes: he may lose the data sets if he renames them in his cata­
log. CA'IAI.<X; (Form 1) cannot be used to uFdate the entry for a GeG.

progranning Notes: To change the catalog entry for a GLG, use this
procedure:

1. TenFcrarily catalog each member as a separate data set by renaning
it. For example:

catalog sampleds(0),u"sampleds1

2. Delete the GOG by using the DELETE command.

3. Define a new GOG by using the CATALOG command, specifying the new
options desired.

4. Add the temporarily cataloged members to the GrG by renaming then
the original name. (Use the NEWNAME operand.)

Once a GDG has been cataloged, the user can add generations to the
group. When he creates a VAM data set and names it as a generaticn (by
appending a generation nunber) of a GOG, the systen catalogs the genera­
tion. Uncataloged physical sequential data sets can be added as genera­
tions with CA1ALOG (Forn 1). Eoth VAM and rhysical sequential data sets
that are already cataloged can become generations of a GDG by renaning
them with CA1ALOG (Form 1).

A data set may be renamed as a generation of a generation data grcup by
using the NEWNAME operand (Form 1). The new name must be specified as a
generation level, for example, narne(+l). If the data set being renamed
is the first generation in the group, Form 2 of the CA'lAICG comnand nust
be entered first to create a catalog index for the generation data
group.

A new generaticn can be cataloged with either an absolute or relative
generation number; any cataloged generaticn can be referenced ~itt ei­
ther nunber. when using relative numbers, the user rrust know the actual
generation being referenCEd. The newest generation has relative genera­
tion nUIrber o.

If a private VAM data set is deleted from the catalog, the EVV corrrrand,
not C~TALO~, must be used to reenter the data set in the catalog.

A user who has been granted unlimited sharing access tc cne or more
levels of another user's catalog may add entries to that catalog. When
naming such entries, the user roust include. qualifiers with the sarre
names that he assigned to his SHAFE corrrrand fer that catalcg. Sirrilar­
ly, if he wants to renaw€ a shared data set, he may only renarre the
SHAFE qualifier as a part of the new name. The starer cannot change the
owner's catalog.

When catalcging a n~N physical sequential data set, the user can use the
NEWhAlolE operand to specify a seccnd nane, and that naroe is assigned to

Part III: Co~mand tescriptions 109

the catalog entry. For exaH.ple, a data set created under OS or OS/VS
may have a name that is too long; with NEWNAME, the user can renane it
to suit TSS requirements.

Examples:

1. The user wants to rename oata set X.X2 to SI~UL.SR. 70 get the
catalcg entry changed, he enters:

catalog x.x2,u,newname=simul.sk

2. The user wants to catalog ASE~ as a new lO-generation data group.
Ey defaults, he indicates that only the oldest generation is to be
removed and saved when the eleventh (GNO+l) generation is
cataloged.

User: catalog gnc=10,gdg=aset

7he system creates a catalog index entry.

3. 7he user wants to catalog a new generaticn of generation data group
~SET. It is assumed that the generation has been cataloged:

User: catalog xgz,u,.aset(+1)

Note: The system automatically issues the absclute generation num­
ber assigned to the generation. The user may refer to that genera­
tion by absolute generation number or by relative generation nun­
ber. 7he relative generation nUff-ber of the nost recently cataloged
generaticn is always o.

ij. In a subsequent task, the user wants to catalog ancther new genera­
tion cf generation data group ASET. The new generation is assuHed
to have been cataloged:

User: catalog abc,u.,aset(+l)

Note: The relative generation num1:er correlates lIiith the ne lit a­
vailable absolute generation number. ~e user wust know the rela­
tionship between relative and absolute generation numbers whenever
he uses relative generation numbers. HOlliever, he can always refer
to generations by relative generation numbers.

5. 11 user (user2) wants to add the previously defined physical sequen­
tial ~rivate data set DO.FILE.B4 from the owner's (user1) catalog.
User1 issues a PERMIT command to grant user2 unlimited access to
the entire catalog. User2, in a SHARE cOJllH.and, assigns the name DO
to this catalog; he catalogs the new data set with unlimited
access.

110

USer1 :
User2:

permit *all.user2,u
share do,userl,ownerds=.all
ddef ddni,dsname=do.file.b4,disp=new
catalog do.fl1e.b4,n,u

The system creates a catalog entry for DO. FILE. B4 in the catalog
for user2.

CB Connand

(See C, CA, and CB Connands)

CDD CCllnand

Ihis command retrieves cne cr more [DEF ccnnands that have teen pre­
stored in a cataloged line data set and processes those conmands.

r---------~-------------------<---------------------------------------,
ICperaticnlOferand I
~---------+--i I CDD I DSNAME=da ta se t nane /I I
I I{ data definition namel (data definition nanel, •••])} I l _________ L __ . __________________ J

DSNAME
identifies the catalcged line data set that ccntains frestcrEd [tEF
ccnnar.ds.

SEecified as: a fully qualified data set nane.

data definition naw.e
identifies the Farticular tDEF cornmanos to be retrieved in tte
referenced data set •

.§~cified as: the data oefinition name or nanes of the [tEF ccn­
nands tc te retrieved. whEn t~o or more data definition names are
entered, they nust te enclOSEC in parentteses.

systen default: all [[EF comnands in the referenced data set are
to te retrieved.

Ncte: This operand J1'ust te specified positionally.

Functional Description: The Ctt conn and retrieves cne cr more tDEF com­
mands fron the specified data set and processes them. The user can thus
create a cataloged line data set of commonly used DDEF commands and re­
fer to them by the CDD corr.mand, thereby relieving hinself of direct DDEF
comnand entry. Each DDEF command that is executed is printed out in
full. Any tDEF commands that contain invalid operands are displayed, as
are diagncstic messages issued ty DDEF.

Cauticns: Each data definition name must be unique ~ithin the task.
The prestcred data set must contain CDEF commands only. A diagnostic
message is issued if data or if any other command appears in the data
set. These error lines are ignored and are nct printed. The conversa­
tional user has the option of either skipping the erroneous records in
the data set or canceling the CtC connand; a nonccnversational task is
terIrinated. '

progranning Notes: The user can retrieve and enter all prestored DDEF
comnands in the data set ty omitting the data definition name operand.
If the user wants to retrieve a selected set of these commands, he l1'ust
supply the data definition names of the selected DDEF commands ~hen he
enters the CDD command.

Exanples:

1. The user wants to execute three DDEF commands that are stored in
the cataloged line data set PAYROLL.DD. The three CCEF commands,
with data definition names NOW1, NOW2, and NOW3, are assumed to be
in the data set.

Part III: CoftJrand Descriptions 111

USer: odd payroll.dd,(nowl,now2,now3)

The system processes the DDEF commands in the data set, and then
prints information similar to the following:

DDEF NOW1,VI,DSNAME=~INDUP,DISP=CLD
DDEF NOW2,VI,DSNAME=GOONNU,DISP=CLD
DDEF NOW3,VS,DSNAME=STAR,DISP=CLD

2. The user wants to execute a DDEF command with DDNAME JBACCT in data
set PAYROLL.P.

cdd payroll.p,jbacct

The system processes the specified DDEF conmand and then prints in­
formation similar to the following:

DDEF JBACCT ,PS,DSNAME=LEAD. T,DCB=(DEN=2),
UNIT=(TA.9),VOLUME=(.043591),LABEL=(2,SL,RETPD=2).
DISP=OLD

CDS Command

This command copies a data set or specified members of a partitioned
data set.

r---------~--1 I Operation I Operand ,
~---------+--- ----------~ I CDS IDSNAME1=input data set name((member name[••••])], r
I I DSNAME2=copy data set namel (member name)] I
I I [,ERASE={YIN}] [,CCPYBASE=first line number, I
I I COPYINCR=increment 1 [,REPLACE={RI I}] I L--_______ ~ __ J

DSNAMEl
identifies the data set to be copied; VAM data sets must be cata­
loged; physical sequential data sets must already be defined by a
DDEF command within the current task or must be cataloged.

Specified as: a fully qualified data set name and (optionally)
member names of a VPAM data set. When s~ecified, the member naroes
are separated by commas and enclosed in parentheses, and they imme­
diately follow the VPAM data set name.

Note: A PS data set can only ce copied to another PS data set.

DSNAME2

ERASE

112

specifies the data set name to be assigned to the copy of the data
set. The data set can be already defined by a DDEF command within
the current task. otherwise, CDS defines it with the same data set
organization as DSN~lEl.

Specified as: a fully qualified data set name and (optionally) a
member name must be of a VPAM data set. The member name must be
enclosed in parentheses and must immediately follow the VPAM data
set name. When multiple members of the input data set are speci­
fied, the data set copy must be a partitioned data set with no mem­
ber names specified. If not, the CDS command is canceled and the
user receives a diagnostic message.

Note: A PS data set can only be copied to another PS dataset.

specifies whether the original data set or data set member residing
on direct access storage is to be erased after it has been copied.

speci fled as: Y - data set to be erased.
N - data set. to be saved.

System default: N.

Note: If the user shares, but does not own, the data set being
copied, he cannot specify its erasure unless his access is unlimit­
ed; if he has read-only access, this operand is ignored. If the
data set being copied is physical sequential, this operand is
ignored.

COPYBASE
identifies the starting line number of the data set copy when
renumbering is desired.

specified as: from one to seven decimal digits. An all-zero
starting line number is invalid.

System default: no renumbering occurs; COPYINCR must also be
defaulted.

COP YI NCR
designates the value by which line numbers in the data set copy are
to be incremented when renumbering.

specified as: from one to seven decimal digits. An all-zero in­
crement is invalid.

system default: 100, when renumbering.

Note: COPYBASE and COPYINCR «ay only be specified for line data
set copies. When COPYBASE and COPYINCR are specified for a line
data set copy, the first seven bytes of each record in the copy are
the line numbers, and the eighth byte is the origin character.
Thus, when a VSAM data set is the source for a line data set copy,
the first eight bytes of each source record are overlaid .ith line
numbers. When a line data set is source to a line data set copy,
the source record line numbers are overlaid with the new line
numbers.

REPIACE
allows the user to specify that duplicate «embers are replac€«ents
or are to be ignored with a suitable diagnostic.

specified as:

R - replace an existing member in the data set copy with a member
from the input data set.

I - ignore any member in the input data set that is duplicated in
the data set copy.

System default: R.

Note: When COPYBASE and COPYINCR are specified, this operand is
ignored.

Functional Description: The CDS command has two functions. The first
function is to merge or overlay members of one partitioned data set with
members of another partitioned data set. (The characteristcis of the
data sets are presented in Table 16.) This is known as member process­
ing. The user specifies the function with the following restrictions:

1. DSNAMEl and DSNAME2 must be names of virtual partitioned data sets.

2. DSNAME2 has no member name specified with it.

3. DSNAMEl may have one member name, a list of member names, or no
«.ember names specified with it.

Member processing causes the specified members of DSNAMEl (if no member
name is specified, all members are processed) to be ccpied into DSNAME2

Part III: Connand Descriptions 113

with duplicate members handled according to the specification for the
REPLACE operand. The CCPYBASE and COFYINCR parameters have no meaning
in this type of processing.

When CDS does member processing it moves member name aliases and user
data along with the data and the member name. The CDS command can be
used to cOFY a program litrary; all the aliases are preserved. However,
if an alias for a member of the input data set is an alias for a rrember
that is not being replaced in the output data set, the copy of that
input member is not made.

Table 16. Characteristics of data sets that are used by CDS
r-----------~------------_r------------------------,
I Data set I I I
I Organization I I Definition Requirements I
1------~-----1 Residence ~--------.,------------~
I Source I Copy I source and copy I Source I Copy I
~--------+-------+--------------+-------+-----------f
IPS IPS IOn either IMust be cata-Ican be defined I
I I Idirect access Iloged, or de-jby previous DDEF I
I I lor magnetic Ifined by pre-lin current task I
I I I tape volume I vious CDEF in I I
I I I 1~~entta~1 I
~------;------+-----------+--------t ,
I VI I VI I Must be stored I Must be cata-I I
IVS !VS Ion direct Iloged I I
I VI I VS I access volume I I I
IVS IVI I I I I
I------;------+------------+--------+--------------f
\VS IVS or VI ISource data setlMust be cata-ICan be defined by I
I I member ofl and VPAM data Iloged I previous DDEF in I
I IVPAM datal set receiving I I~rrent task, un- I
I Iset I member must be I Iless new member of I
r--------+------i on direct I I existing cataloged I
IVI IVS or VI laccess volumes 1 Idata set I
I Imember ofl I I I
i I VPAM da ta I I I I
I Iset I I I I
r--------f-------+--------------+-------+---------------f
IVS memberlVS IVPAM data set IVPAM data ICan be defined by a I
lof VPAM IVI Iprovides sourcelset must be !previous DDEF in the I
Idata set I land copy data I cataloged I~rrent task ,
.------;------fset, stored on I I I
IVI rr.ember IVI I direct access I I I
lof VPAM I VS I volumes I I I
I da ta set I I I I I
r--------+-------+------------+-------J.----------------f
IVS memberlVS or VI IVPAM data sets IVPAM data set RUst be cataloged I
lof VPAM .Imember oflstored on I I
Idata set IVPAM dataldirect access I I
t Iset I volumes I I
.. --------+------~ I I
I VI member IVS or VI I 1 I
lof VPAM Imember ofl I I
I data set IVPAM data I I I
I I set I I I L--_______ .L-. ______ .L __________ .L _______________________ -J

Whenever a member is not copied, because of a duplicated alias or be­
cause REPLACE=I, CDS issues a message that contains the name of the mem­
ber and the reason the member was not copied.

114

The second function is to copy any data set or member of a data set and
make it another data set or member of another data set. (See Table 16.)
This function has the following restrictions:

1. DSNAMEl and DSNAME2 may be the names of any type of data set.

2. If DSNAMEl or DSNA~E2 are virtual partitioned data sets, only one
member name must be specified.

The REPLACE operand has no meaning for this function.

When a starting line number is specified, the lines of the output data
set are numbered. The specified or default increment value is used, and
the line numbering within the original data set is not affected.

Cautions: If this function is used to create a member of a virtual par­
titioned data set, no user data or aliases are provided. The CDS com­
mand is restricted to data sets on direct access or magnetic tape
volumes. CDS cannot be used to change record formats.

A copy of a member of a partitioned data set may have VISAM or VSAM
organization.

The user may specify a VISAM organization for a data set copy even
though the original data set organization is VSAM. Each record of the
data set must contain a key. The user must use a I:DEF command to speci­
fy the new data set organization (VS), the key length U<EYLEN), the pad­
ding (PAD), and the key position (RKP). If the user fails to provide
these optional values (except PAD), and his task is conversational, he
is prompted for the values. If the task is nonconversational, no copy
is made. The PAD operand is optional; and if it is omitted, it is
assumed to be zero.

Examples:

1. The user wants to copy the cataloged VISAM data set FIRSTL, which
will be a VSAM data set named TWIN.FIRSTL. He does not want to
erase the original data set. He enters the following command:

ddef ddnz,vs,dsname=twin.firstl
cds firstl,twin. firstl

2. The user wants to copy three members, A, E, and C, from LIB1, a
VPAM data set, into LIB2. a VPAM data set that has members named A
and C. He wishes to replace members A and C and add B. Both data
sets are cataloged. The command he enters is:

Uses:-: . cds libl(a,b,c) ,lib2""r

The system copies members A, B, and C with aliases and user data.

3. The user wants to copy a VIsAM member A from LIB1, a VPAH data set,
into LIB2, also a VPAM data set, with the name A maintained for the
new member in LIB2. Be also wishes to renunber A with a base of 50
and an increment of 10. Be enters the following command:

User: cds libICA),lib2(A)"oopybase=50,copyincr=10

The system copies member A with all aliases and user data lost.

Part III: Conmand Descriptions 115

4. The user wants to merqe the VPAM data sets LIB1 and LIB2. He
enters:

cds lib1,lib2""i

The system copies all members from LIB1 into LIE2 unless a dupli­
cate member name is found in LIB2, in which case that member is
ignored. All aliases and user data are copied.

5. The user wants to copy VSAM data set SEQ. DATA, and he wants to make
it a VISAM data set named VI. DATA. He wants to use a l.Dlique man
number as a key in the fourth through sixth bytes of each record.
The original data set contains fixed-length records, 512 bytes
long. He enters the following commands:

User: ddef dd2,vi,dsname=vi.data,dcb=(recfm=f,lrecl=512,­
rkp=3,keylen=3,PAD=10)
cds seq.data,vi.data

The system copies the data set.

6. The user has a 9-track tape (volume serial number 000126) that con­
tains BSAM data sets. He wants to copy the third file on the tape
onto a scratch tape. The ser ial number of the scratch tape will be
supplied to the system by the operator.

USer: ddef tapel,ps,dsname=source.run,disp=old,unit=(ta,9),­
volume=(,000126),latel=3
ddef tape2,ps,dsname=source.oopy,disp=new,unit=(ta,9),­
volume=(private)
cds source.run,source.copy

The system copies the data set.

CHGPASS Command

This command will change. add, or remove your password.

r-------------~---, I Operation IOperand I
t-------------+--f
ICHGPASS I £NEWPASWD=passwordJ 'I
l _____________ ~ _________ ~---------------------------------____________ J

NEWPAS'WD
specifies your new password

Specified as: from one to eight alphameric or special characters
(exceFt tab. comma, backspace, percent sign, equal sign, and left
and right parentheses).

System default: if you do not enter the operand, the system over
types a line that is a prompt for you to enter a password.

FUnctional Description: CHGPASS adds, Changes, or removes your
password.

If you enter the command without the operand, the system prints out a
message that prompts you for the new password and prints an overtyped
area in which you enter the new password. After you enter the new pass­
word, the system validates it and prompts you for your current password.
You enter your current password in an overtyped area. If the current
password is valid, the new password becomes your current password.

116

If you enter the operand of this command, the specified password becomes
your new password after you have successful.ly entered your current
password.

If you wish to nullify a previous password. but do not wish to replace
it. enter the command with no operand. When you receive the overtyped
line, press the RETURN key an your terminal.

Examples:
1. You wish to enter a new password as an operand:

User: chgpass passwd2

The system prompts you to enter your current password by printing a
message and an overtyped line.

User: oldpass

The system replaces your old password -- oldpass -- with the new
password passwd2.

2. YOU wish to enter a new password with password security:

Us er: chgpas s

The system prompts you to enter your new password and prints an
overtyped line.

User: passwd3

The system prompts you for your current password and prints an
over typed line.

User: oldpass

3. You wish to nullify your password, but you do not wish to replace
it with a new password. You enter:

User: cbgpass

The system prompts you for your new password and prints an over­
typed line.

User: (presses the RETURN key to default the password)

The system prompts you for your current password and prints an
overtyped line.

USer: oldpass

CLOSE Camnand

ThiS command closes a user's data sets when the normal path of process­
ing is interrupted, either by the system or by the user, and the data
set cannot be closed at the program level.

r---------~--_, I Operation I Operand I
.--------+--- .. I CLOSE I [DSNAME=data set name] I,TYPE=T] I
I I [,DDNAME=data definition name] I L-________ ~ __ _J

Part III: Command Descriptions 117

DSNAME

TYPE

the name of the data set to be closed.

Specified as: the ~ully or partially qualified name of the data
set or data sets to te closed.

System default: All user data sets, with the exception of USERLIB,
are closed if a DDNA~E parameter is not specified.

a temporary close (TYFE='I) is to be perforn;ed for the user's data
sets.

Specified as: T

System default: A normal close is performed.

DDNAME
the data definition name of the data set to be closed or the lead­
ing characters of a data definition name that are common to a group
of data sets that are to be closed.

Specified as: from one to eight alphameric characters, the first
of which is alphabetic, or a quoted string. If the quoted string
is not eight characters, it is padded to that length with blanks.

System default: The data set specified by a fully qualified data
set name, or all the data sets identified by a partially qualified
name, or all user data sets except USERLIE when DSNAME is defaulted
are closed.

Functional Description: 'Ihe systeIr looks for the data sets you speci­
fied in the command. If a data set is found and it is a user data set
that is not a JOBLIB, it is closed. If the data set cannot be closed,
the system issues a message. The system issues a message. also, if the
data set cannot be found.

This command shculd be used when your task or program is abnormally ter­
minated, either by you or by the system. If you are not sure that data
sets have been closed, issue the CI.OSE command for your data sets. Con­
trol is returned to ycu after CLOSE has been executed; that is, CLOSE
does not terminate abnormally.

Programming Notes: This command closes data sets belonging to a user;
it cannot be used to close system data sets.

The default of data set name does not cause the user's USERLIB to be
closed; USERLIB is closed only when explicitly specified. If both DSNAME
and DDNAME are specified and the data set name is partially qualified.
only the data set with the specified data definition name is closed.

If the specified data set is a job library (JOELIB), all DCBs are closed
except the system DCB that makes the data set a JOBLIB (USERLIB is de­
fined as a JOBUB). The RELEASE comnand can be used to close this DCB
and release the JOBLIB.

A group of data sets can l::e closed with the Dr:NME operand by specifying
the leading characters of the data definition name that are common to
the group (for example. FT for FORTRAN data sets).

caution: TYPE=T must not be specified for duplexed VAM data sets.

The following conditions occur when the CLOSE co~~and is used and TYPE=T
has been specified. (1) PROCDEFs cannot be executed after the COJIltlClnd

has been executed for USERLIB. and messages in the user's SYSMLF cannot

118

be issued until the user issues another LOGON for the task. (2) ~he
command closes all open members of a partitioned data set. Therefore,
issue a FIND macro instruction for the partitioned data set before con­
tinuing processing from a program, or reissue the EeIT command before
continuing processing with the text-~iting commands.

COBOL Command

This command will invoke the OS/VS COBOL progra~ product using the Pro­
gram product Language Interface.

r------,..------------------------------ ,
I operation I operand I
~------+------ ----------------------t
1 COBOL INAME=modulename (,OSCP'X5=(optl.opt2 ••••)] I
I I I, SOURCEDS=sourcedsnamel I l ________ L-___________________________ _ ______ J

NAME
identifies the name by which the object progran will he known to
TSS. It consists of one to eight alphameric characters. the first
of which is alphabetic. If the SOORCEDS option is not specified,
there must exist a dataset called SOURCE. name which is assumed to
be the source program to be compiled.

OSOPTS
specifies a list of OS/VS options to be in effect during the
compi lation.

Option

LINECNt'
SEQ
FLAGE(W)
SIZE
BUF
SOURCE
DECK
LOAD
SPACE
DMAP
PMAP
SUPMAP
CLIST
TRUNC
APOST
QUOTE

Significant
Characters Option

Significant
Characters Option

CNT
SEQ
LAG,LAGW
SIZ
BUF
SOU
DEC
LOA
ACE
DMA
PMA
SUP
CLI
TRU
APO
QUO

XREF XRE
BATCH BAT
NAME NAM
SXREF SXR
STATE STA
TERM TER
NOM NUM

LIB LIB
SYMD4P SYM
OPTlf.jlZE OPT
SYNTAX SYN
CSYNTAX CSY
RESIDENT RES
DYNAM DYN
SYSx SYS

VERB
ZWE
ENDJOB
TES'l'
LVL
ADV
COUNT
DUMP
LSTONLY/LSTCOMP
LCOL1/LCOL2
FDECK
CDECK
L132/L120
VB SUM
VBREF

The compiler options are as follows:

Significant
Characters

VER
ZWB
END
TES
LVL
ADV
COU
DUM
LSTO/LSTC
CL1/CL2
FOE
CDE
L13/L12
VBS
VBR

[SIZE=YYYYYYY] [,BUF=YYYYYY] [,SOURCEINOSOURCE] (,DMAPINODMAP]

[,PMAPINOPMAP] [,SUPMAPI NCSUPMAP] [,LOAD I NOLOAD] [,DECK 1 NODECK]

{,SEQINOSEQl [,LINECNT=nnl [,TRUNCINOTRUNC] [,CLISTINOCLIST]

(,FlAGWIFLAGEJ (,QUOTEJAPOST] [.sPACElISPACE2ISPACEJl [,STATEINOSTATEl

(• XREF I NOXREF) [, S XREF I NOSXREF] (, NAME' NONAME] [• BATCBlNOEATCH)

(, TERM I NOTERM] [,PRINt'1 NOPRINT((*,dsname)}) [.SYMDMPI NOSYMI:MPl

Part III: Conmand Descriptions 119

{,OPTIMIZE I NOOPTIMI ZEl I,SYNTAXINOSYNTAX] [,LVL=AIEICIDl

(,TEST! NOTESTl (,ENDJOB I NOENDJOBl [,CSYNTAXINOCSYN'l'AX]

[, RESIDENT I NORESIDENT) [,DYNAMI NODYNAM) [, VERB I NOVERB] {, ZWBI NOZWBl

{,SYSTISYSxl 1 [,ADVI~OADV] [,COUNT I NOCOUNTl I,DUMPINODUMP]

[.LSTONLYILSTCOMPINOLST]~ [,LCCLlIICCL2]2 (,FDECKINOFDECK]2

I,CDECK!NODECKl [Ll321L1201 [,VBSUM!NOVBSUMl {,VBREFINOVBREFl

11f the information specified contains any special characters, it
must be delimited by single quotation marks instead of parentheses.
If the only special character contained in the value is a conma,
the value may be enclosed in parentheses or quotation marks. The
maximum number of characters allowed between the delimiting quota­
tion marks or parentheses is 100.

~These options are used to request the lister feature.

Additional information is available in Appendix J, and the OS/VS COBOL
Programmer' s Guide.

SOURCEDS
specifies the name of the input dataset to be compiled.

CONTEXT CorrIna nd

This corrmand replaces a string of characters within one line, a range of
lines, or all lines in a region or in a data set with another character
string.

r---------~--,
loperationlOperand . I
r---------+--i
I CON'lEXT I [Nl=starting position] [, N2=ending FositionJ, I
I I , STRING1=search string [,STRING2=replacement stringJ I L _________ ~ __ J

~l

N2

120

identifies the line or first line of a range of lines in the cur­
rent region or data set that is to be searched for STRING!.

specified as: a one- to seven-digit line number in decimal that
may be absolute or relative.

LAST - last line in the current region.

Note:· When the user wants to start the search at a character pOSi­
tion other than the first character position of the specified line,
he can specify the starting position as an absolute one- to four­
digit decimal number enclosed in parentheses and irrmediately fol­
lowing toe line number. The first character of text is position 1.

System default: When N2 is specified, the value of the CLP is
assumed: otherwise, the entire data set or region is searched from
the beginning.

identifies the last of a range of lines in the current region or
data set that is to be searched for STRINGl.

specified as: a one- to seven-digit decimal line number that may
be absolute or relative.

IAST - last line in the current region.

Note: When the user wants to 'end the search at any character posi­
tion other than the last character position of the specified line,
he can specify the ending position as an absolute one- to four­
digit decimal number enclosed in parentheses and immediately fol­
lowing the line number. This ending character is included in
correction processing. The first character of text is position 1.

system default: When N1 is specified, it is the only line
searched; otherwise, the entire data set or region is searched from
the beginning.

STRING1
designates the character string (called search argument) that is to
be searched for within the range N1 to N2. The character string
must be located in one line or it will not be found.

Specified as: a normal or quoted string; it may not be nUll.

STRING2
designates the character string that is to replace all occurrences
of STRINGl in the range N1 to N2.

Specified as: A normal or quoted string.

system default: Each occurrence of STRINGl is deleted.

Functional Description: Wherever STRINGl is found, the system replaces
it with STRING2. STRINGl and STRING2 need not be the same length. If
the replacement string is longer than the search string, the line is ex­
tended to make room for the replacement string; if the replacement str­
ing is shorter, the line is processed so that no extra spaces remain in
the line after the command is executed.

If STRING1 is not specified, the user is warned, and the command is
ignored. If STRINGl and STRING2 are enclosed in apostrophes, the apos­
trophes are stripped off tefore execution of CONTEXT. After execution,
the CLP is set to the line following the last line processed (N2); the
user is prompted for another cow~and. If N2 is the last line in the
data set or region, CLP is~set to N2 plus the value of INCR.

Caution: A language-processing command (EDIT, PROCCEF, or PLI) must be
invoked before the CONTEXT command is issued.

If you use CONTEXT or CORRECT to update a line of a source prograw that
was entered via punched cards, you must maintain punched-card format.

programming Notes: The CONTEXT corrwand can be used tc replace symbols
in source language modules. In this use, STRING1 is the original sym­
bol, and STRING2 is its replacement. This command can be used for any
source language data set if the data set is a region or line data set.

Since CONTEXT does not display the lines in which string replacement has
occurred, the user may want to use the LIST comIrand fcllowing CONTEXT.

Examples: A data set contains 20 lines, numbered from 100 through 2000.

1. The user wants to replace the string AECCEF with UVWXYZ. He
enters:

Part III: Command Descriptions 121

]!!!: context "atcdef,uvwxyz

2. The user wants to replace occurrences of ABeD!f that appear in
lines 500 through 1000. He ent~s,

]!!E: context SOO,1000,atcdef,uvwxyz

The system searches lines 500 through 1000~ feplecing ABeD!r with
UVWXYZ, and issues:

3. The user wants to replace ABCDEF only in the f~rst 5Q charaoter
positions of line 1200 (assume CLP~1000). He enters:

~: context +2,+2(SO),atcdef,uvwxyz

4. The user wants to delete AECDEF. He specifies all explicit null
string in the command (assume CLP=1000). ae enters:

User: context -3,last,atcdef
system:

5. The user wants to replace in a region tile strill9 JOHN'S HOUSJ with
another string. He enters:

Y!!E: context O,last,'john"s house','*Si/#$'

The system searches entire region, re~laces JO~'S HOUSE with .t8/
#$, and issues:

CORRECT Command

This command changes characters or inserts characters in one or more
~ines of the current region or data set.

~~;;~ion~erand------------------------------------.-----------------l

~~----+----------------------""'-"-""""--",;;,-,--""-----i
'ICORRECT I£Nl=starting line) [,N2=ending linel(,SOO .. , ~.,s~ar.ting column] I

I [,CORMARK=replacement correction charactersl[,~=(CIMIH}l I ~ ______ L--____________________________________ ~ ____ ~ _________ J

Nt

N2

122

iQentifies the line or first line of a range of lines to be
corrected.

seecified as: a one- to seven-digit dec.i.nlal linE! number that may
be absolute or relative.

LAST - last line in the current region.

system default: The value of CLP within the r.fJ~Cl'\.

identifies the line or last line of a ranfJe qf 1~ne8 to be
corrected.

seecified as: a one- to seven-digit Qecim"l lin. pUftlber that may
be absolute or relative. .

LAST - last line in the current region.

seOL

system default: Nl is assumed if specified~ otherwise, the value
of CLP within the region is assumed.

specifies the character positiOn within the text of each line, from
N1 to N2, at which co~rection is to begin. All characters to the
left of this position are ignored. The line to be corrected is
displayed starting at the seOL position, and if the logical line
length exceeds the physical line length capacity of the output ter­
minal, only the physical line containing the character specified by
seOL is displayed.

Note: The first character position of data is position 1.

Specified as: from one to four decimal digitso

system default: position 1.

CORMARK
identifies the correction characters that are to replace the stand­
ard correction characters. The standard correction characters
(*$a,#) are replaced from the left by a direct substitution. Any
that are not entered are assumed to be unchanged. All characters
up to the one to be changed must be entered.

Specified as: a normal or quoted string.

system default: The standard correction character.

The standard correction characters, or the corresponding replacement
correction Characters, and their functions, are:

* -- dut:licates the character directly aoove the * and all characters
to the right of that character -- until either the next correc­
ticn character or the end of line is encountered.

$ -- duplicates the character directly above the $. All replacement
characters on the correction line are substituted for the corre­
sponding characters on the original line until either the next
correction character or end of the original line is encountered.

i -- duplicates the character directly aoove the i. If the a is im­
mediately followed by another correction character or by the end
of the line, characters from the ret:lacement line are inserted
immediately after the character that is above the i. The rest
of the line is moved to the right to make room for the inser­
tion. If the i is not immediately followed by another correc­
tion character or by the end of the line the number of spaces
between the i and the next correction character (or the end of
the line, if no other correction character follows the a) mark
the characters in the original line that are replaced by the
characters in the replacement line.

I -- removes the character directly above the I. All characters to
the right of the character above the % are shifted left one po­
sition, and all other characters to the right of that character
are duplicated until either the next correction character or the
end of line is encountered.

-- functions as does the a, except that hexadecimal characters are
inserted and this symbol cannot be the last character in the
line before the carriage return. (See ·Caution,· below.)

CHAR
indicates the type of input expected.

Specified as:

Part III: CORBand Descriptions 123

C - character (the line is displayed in character notation)
H - hexadecimal (the line is displayed in hexadecimal)
M - mixed (functions the same as CHAR = H for input and display of

the line)

System default: C.

Note: If CHAR=H and the user enters nonhexadecima1 data, the CORRECT
command is canceled. Also, if CHAR=H, hexadecimal data is expected fol­
lowing the i and the # characters, and the $ character may input hexade­
cimal data in the correction line. If CHAR=C the # character can be
used to enter hexadecimal replacement characters.

Functional Description: When one line is specified to be corrected, the
system dis~lays that line. You enter a correction line (a line that
contains the correction or the correction characters, or both). Until
the system detects a correction character in the correction line, it
replaces the characters in the original line with those given in the
correction line. The system prompts you for a replacement line if the a
or the # characters are used to indicate replacement. If LIMEN is
defaulted to I, the system prompts with a message for you to enter the
replacement line; otherwise, only the keyboard is unlocked to indicate
that the replacement line can be entered.

An end of line in a field marked by *, $, or ~ within the correction
line causes the remainder of the original line to be duplicated. An end
of line in a field marked by $ terminates the line.

Following execution of the CORRECT command, the CLP is set to the next
line after N2 (or N2 plus the value of INCR if N2 is the last line), and
the user is prompted for a command.

Caution: Unprintable EBCDIC characters in the text appear as spaces
when the line to be corrected is displayed unless CBAR=M or CHAR=B is
specified. A language-processing command (EDIT, PROCDEF, or PLI) must
be invoked before the command is entered.

You can make a record longer by inserting data (use the i correction
character, for example). You cannot add data to the end of a record.
If you do, the system cancels the operation and prints a message.

If the # correction character is the last character in the line before
the carriage return, the line is canceled.

If you use CONTEXT or CCRRECT to update a line from a source data set
that was entered via punched cards, you must rraintain punch-card f9rmat
on that line. (Column 72 is still used for the continuation character.)

Examples: In the following examples, the user enters the CORRECT com­
mand, specifying the line to te corrected. The system displays the
line, as it exists. The user enters the correction line (the third line
in the exan~les) and a replacement line (fifth line), if one is
required.

1.

124

User:
System:
User:
SyStelI':
User:
Sys, User:
System:

correct 400
STEMS3660
i* $ *%
ENTER REPLACEMENT LINE
ys
list 400
0000400 SYSTEM 360
CLP SBT TO 0000500

In th-a example the G) in the correction line cau.:;ed the YS fron the
replacement line to be inserted after the character that appears

2.

3.

4.

above the a in the origina I line J the $ foll.oved by a blank cauM4
the blank to replace the character above it (5), and the I caused
the character above it (6) to be deleted and all following cha~ac­
ters to be shifted to the left. The characters above the * vere
duplicated until the next oorr~ion character: vaa found.

.2!!!:
system:
USer:
syB;user:
systelll:

correct lOll
COMPV'l'E n
* $u.
list 104
0000104 COMPUTE n
CLP SET TO 0000105

In the example the $ followed ~ the U caused the u to replace the
character above the $.

USer:
systell1:
USer:
system:
User:
SYS;user:
SysteJll:

correct 27
CONTNUE
* I)
ENTER REPLACEMENT LINE
i
list 27
0000027 CONTINUE
CLP SET TO 0000028

Again, in this example the a is used to indicate an insertion after
the T.

User:
systelll:
user:
System:
USer:
syB;user:
system:

correct 15
XYZ 1345 CC MPTE X

abCI) *" I)
ENTER REPLACEMENT LINE
1 3,1J,5I)U
list 15
0000015 ABC L 3,4,5 COMPUTE X
CLP SET TO 0000016

In the example XYZ is replaced h¥ ABC; the four blanks immediately
after the i in the correction line indicate that the characters in
the replacement line are to replace the characters above the
blanks; the blank between the 0 and M is deleted; and the U is
inserted.

In the following example, the user has a data set named PARTS.
Positions 15-18 of lines 300-800 contain a year that is incorrect.
He issues the follOWing sequence of commands to get the errors
corrected.

User:
System:

list 300(15) ,800(18)
1966
1966
1956
1966
1866
k866
CLP SET TO 0000900
correct 300,800

(Note: the system does not print out any data. The keyboard is
unlocked and the user enters his correction, using the conventions
descr !bed above.)

user: • $1968·

Part III: CO~llIand Descriptions 125

DATA Corrmand

This command creates either a line data set or a VSAM data set.

r---------~------------------------.----------------------------------, I Operation I Operand I
r---------+--1
I DA'IA IDSNAME=data set name I
I I,RTYPE=UILINEIFTNICARDIS} I
I I [,DBASE=first line numterl [,DINCR=incrementl I l _________ ~ __ J

DSNAME
identifies a data set or a merrber of a partitioned data set. The
data set must be defined within the current task by a DDEF cOlfmand,
unless it is to reside on public storage.

specified as: a fully qualified data set nane and (optionally) the
member name of a VPAM data set. When specified, the member name
must be enclosed in parentheses and must immediately follow the
VPAM data set name.

RTYPE

DBASE

126

indicates the organization of the data set specified.

Specified as:

I - line data set organization is required.
LINE - s arne as above.

FTN - line data set organization is required and the input is a
FORTRAN source data set in punch-card forwat. The card for­
mat is converted to keyboard format with keyboard continua­
tion conventions as it is placed into the data set. The
resultant data set may be updated from a terminal without
any special consideration being required for multicard sta­
tements. Trailing blanks are stripped from statements that
are not continued.

CARD - a VSAM fixed-length data set is created (no line numbering).
The record length is 80 characters. Normally, this option
is specified when the user is creating a data set for FOR­
TRAN data from card input. It may also be specified to
build a data set from the keyboard conversationally. In
this case, leading blanks are not stripped off, and all
input goes into the data set in the form it is entered from
the terminal. If the line entered is less than 80 charac­
ters, it is padded with blanks to create a record that is 80
characters long. If the record entered is greater than 80
characters, it is truncated to 80 characters.

S - a VSAM variable-length data set is required (this generates
. a record preceded by a four-byte length field) and a one­

byte origin field (keyboard/card reader indicator).

System default: s.

identifies the starting line number of the line data set being
created.

specified as: from three to seven decimal digits, the last two of
which must be zeros. An all-zero starting line number is invalid.
(see -Note- under DINCR.)

system default: 100.

DINeR
specifies the value by which the I ine numbers in the data set are
to be incremented.

specified as: from three to s~ven decimal digits, the last two of
which must be zeros. An all- zero increment is invalid. .

System default: 100.

Note: The specification of DEASE and DINCR is invalid for a
sequential data set (indicated by defaulting RTYPE).

Functional Description: Either a line data set is selected or a VSAM
data set is created. The user can modify, correct, insert, and delete
lines only in a line data set.

If the user's task is conversational and LINENO=Y, the CATA command
prompts for entry of data. If indExing was specified, the system re­
quests each line by issuing the current line number; if indexing ...as not
specified, the system prompts for each line by issuing a pound sign (.).
When the user does one of the following,

1. Enters %E

2. Enters a single break character as the first character of a line

3. Presses the ATTENTION key

the data set is closed and command mode resumed. (If the ATTENTION key
is pressed, the data on the current line is not entered into the data
set.) In each case, the system prompts the user for his next com~and.
The user may then reopen the data set and continue to build it or a J1IE!m­
ber of it by issuing another DATA corrmand.

If an old data set is specified, the user is prompted with the first
line number after the end of the data set. If the old data set is
VISAM, the user is prompted with the last line in the data set plus the
increment value. If the user specifies his own base value, he is pro­
mpted with the line number specified.

Lines being entered for a line data set can be modified, corrected, or
deleted, and new lines can te inserted by following the conventions
listed belOW. (See also "Language Processing" in section 3 of Part II.)

1. TO modify or correct a line of a line data set, enter:

%line number,data

where:

line number
.identifies the line to be replaced by a modified or correct
line.

data
is the replacement line of is data.

2. To insert a new line into a line data set, enter:

Iline number,data

where:

line number
identifies the new line to be inserted. It may be any one- to

Part III: COmrrand Cescriptions 127

seven-digit integer, the value of which specifies the location
of the new line within the data set. This value must not ex­
ceed the last existing line number.

3. To delete a line or a series of ~ines from a line data set, ,enter:

ID,line number[,lastline number]

where:

line number
identifies the last line to be deleted. If a sequence of
lines is being deleted, -last line number- must be higher in
value than -line number.-

Cautions: When other DATA and MODIFY ccrr~ands are entered as part of
the data set, they must be preceded by multiple break characters tecause
the system closes the data set and inunediately executes any command fol­
lowing a single break character. The use of multiple break characters
in the data mode is the same as described in Section 4 of Part II. The
number of break characters used depends upon the level of nesting.

programming Notes: The maximum line length is 120 characters of text
(not counting the line number) for either a line data set or a VSAM data
set with variable record length. For a VSAM data set with fixed-length
records, the maximum record length is 128 characters. When records are
being entered via the IBM 1056 Card Reader with the AUTO EOB switch on,
the maximum record length is 80 characters; and with the switch off, the
maximum length is 79.

when a line is being continued the continuation character (a hyphen) is
not included in the record placed in the data set. Each line that con­
tinues the statement initiated in a preceding line is accepted as if it
were a new and independent line that forms a complete statement by
itself.

DATA normally puts a new data set on a public volume. If a private vol­
ume is desired, a DDEF command must be issued for a data set before the
DATA corr.mand is issued.

Examples:

1. The user is attempting to construct a line data set named ROVER1.

USer: data rover1,line,100,200
sys,user: 100 subroutine alpha (beta)

300 common gamma(3,5),delta(10),epsilon
500 param=beta
700 %350,comrnon theta
700 %35g,integer beta

Systerr: INVALID <X>RRECTION NO. LINE IGNORED.
User: 700~355,integer beta
sys,user: 700 10 format (5x,I7)

900 %700,10 format (5x,IS)
900 %d,350,355
900 do 25 i=1,3
1100 do 25 j=1,3
1300 %950,gamma(1,1)=param
1300 gammaCi+1,j)=gamma(i,j}.pararn
1500 %e

2. The user wants to construct a VSAM data set that is made up of a
sequence of commands. The data set is named COMSE~ and is tc be
used in a BACK command.

128

User: data comset
syB;user: tftn raader,n,.,y,y,y,y

System:

#logoff
back comset
BSN=0310

3. The user wants to add to two members of a VPAM data set that is
named OVAL. One member. CIRCI.E, bas a virtual indexed sequential
organization, and the last line currently in the data set is 500.
The other member, SQUARE, has a virtual sequential organization.

data oval(circle),l ine,600,100

The system infcrms the user that this is an old VISAM member and
prompts him with line number 600.

600 new line of data
700 another line of data

USer:
System:

data oval (square)
(The user will be adding to the end of the data set.)

4. The user wants to create a VISAM data set to execute three assem­
blies nonconversationally.

User: data asseml:ly,line
Sys,Oser: 100 logon

200 procdef assm
300 param $1
400 ddef a,vi,asmac
500 ddef v,vs,asind
600 asm$l,y.macrolib=(a,v)
700 print list.$l",edit"",accept
800 end
900 assm progl; assw prog2; assm prog3

1000 logoff
1100 execute assembly

System: BSN=0489

DDEF COlrmand

This command defines a data set and describes its characteristics to the
system.

Note: This description does not contain all operands for the command.
A complete description appears in Appendix E. The tDEF command is shown
nelow in its expected normal form for typical new public VAM data sets.
In this use, most or all of the other operands are defaulted.

r---------~-- ----------, I operation I Operand 1
~---------t---i
IDDEF IDDNAME=data definition namel,DSORG={VIIVSIVP}] I
I I,DSNAME=data set name I l _________ ~______________________________________ 4

Part III: Co~wand ~escriptions 129

DDNAME
specifies the symbolic data definition name that is associated with
the data set, and which provides a link between the DCB in the
user"s program and the data set definition.

specified as: from one to eight alphameric characters, the "first
of which rrust be alpha1:etic.

DSORG
indicates the organization of the data set being defined.

Specified as:

VI - VI SAM.
VS - VSAM.
VP - VPAM.

Default: the value assigned at system generation if the data set
is new 1 the existing organization if the data set is cataloged.

DSNAME
specifies the name by which the data set will be (or is) cataloged
and referred to during the current task.

specified as: a fully qualified data set na~e and (optionally) a
roerober name of a VPAM data set. When specified, the member name is
enclosed in parentheses and immediately follows the VPAM data set
name.

Functional Description: The DDEF corrmand establishes a system entry for
the data set definition that can be referenced by allocation routines
and access methods. This link between the data set definition and the
problem program's reference to the data set (the DCB) is the data
definition name. The entry containing the data set definition is main­
tained until the task is concluded or until the definition is deleted
via the RELEASE command.

When the DSNAME specified inCludes a member name, DDEF defines the VPAM
data set, not the member.

When a data set is defined. and the RET operand (see Appendix E) is
defaulted, DDEF assumes that the data set resides on permanent storage
with unlimited access. The RET command can be used to change these
attributes once they are established.

Cautions: If a user' s program is executing in conversational mode and
refers to an undefined data definition name, a diagnostic message is is­
sued and the user is prompted for information. In nonconversational
mode. the task is abnormally terminated. A FORTRAN user can default his
terminal as the ·undefined" data source or destination (SYSIN or
SYSOUT) •

Each DDEF command is valid only during the task in which it was issued;
previously defined data sets must be redefined in each new task that
references them.

programming Note: The user can change the data definition name assigned
in a previous DDEF command by issuing DDEF with the new data definition
name. The only operands required are the data definition name and the
data set name, and all other parameters are ignored. If the user wants
to change the other parameters, be must issue a RELEASE command to
delete the previously issued DDEF command and re-issue a DDEF comrrand to
establish a new system entry for the data set definition.

130

The DDBF command cannot be used to change the catalog attributes of an
existing data set; only the DDNAME can be chill')C}ed.

Examples:

1. The user wants to defi'ne a new VPAM data set. Be enters:

~: ddef ddnl,vp,dsname=group(meml)

This command def ines the VPAM data set GROUP, not the member
(MEMl). A DDEF for GROUP (MEM2) does nQt create a new data set
definition, but only replaces the data definition name in the pre­
vious DDEF for GROUP (MEMl).

2. The user wants to define a new VlSAM public data set. He enters:

ddef ddn2,vi,t.trip3

DDNAME? COll1lland

This co~mand allows a user to list the data definition names (DDNAMEs)
and associated data set names (DSNAMEs) that are currently defined for
the user's task.

,.-- -,.--------------------------------------,
I Operation I operand I
~------+----- ----------- ----f
IDDNAME? I [JOBLIB={YIN}] I L-_____ .L--_________________________ _ .II

JOBLIB
controls which data definition names are displayed at the user's
terminal.

Specified as:

N - all currently defined DDNAMES are displayed.
Y - JOBLIB DDNAMES are displayed in the order in which they will be

searched.

System default: N.

Functional Description: Used to review the user's DDNAMES, with xhe
option of reviewing just JCBLIB DDNAMEs. Along with the DDNAMEs, the
associated DSNAMES are listed. If no operand is entered, all data
definition names and corresponding data set names defined in the user's
task are listed.

Example:

~:
System:

ddname?
DDNME

SYSULIB
LPCMNDX
LPCMSRC
SYSUSE
SYSLIB
SYSUCAT
SYSSVCT
SYSCAT
SYSOUT
SYSIN

DSNAME
USERLIB
MACNDX.GOOOSVOO
SYSMAC.GOOOSVOO
SYSUSE
SYSLIB. G0007VOO
USERCAT
SYSSVCT
TSS·····.SYSCAT
CARDTR
CARDTR

Part IIIl Command Descriptions 131

User: ddname?
DDNAME

SYSULIB
SYSLIB

joblib=y
DSNAME
USERLIB
SYSLIB.G0007VOO

DEFAULT Command

This command changes operand default values.

r---------~-- . ----------, I Operation I Operand I
t---------t--f I DEFAULT I {operand name=[value]} [, ••• 1 J L _________ ~ ______ ~____________________________________ ~

operand name

value

designates the operand whose default value the user wants to alter
or establish.

Specified as: an operand name from a oommand or an impliCit
operand name.

specifies the value to be assumed whenever the specified operand
name is omitted in a command. This value does not apply when an
operand value is explicitly given for the operand in a command in
which it appears. This value overrides any previous default value
that was assigned to the operand during the task.

Specified as: a normal or quoted string.

system default: any previously assigned default value for the
specified operand is deleted.

Functional Description: The systen. adds, replaces, or deletes entries
in the user's default table ac~~rding to the specifications of the com­
mand. When the user has assigned a value to an operand by issuing
DEFAULT, he can enter commands without explicit staterrent of the
operand; the system uses the value he assigns for the remainder of the
current task, unless the task profile is made perrranent with the PROFILE
comrrand. (See also the description of the PROFILE command and section 6
in Part II.)

programming Notes: The DEFAULT corr~and can be used to delete previously
defined default entries. The user enters the DEFAULT command and speci­
fies a null string to be assigned to the operand name he wants to
delete. Also, since some operands have the same value during one task
or during successive tasks, the DEFAULT command minimizes the necessity
of entering the same value several times, by assigning a value to an
operand in advance of its use.

Example: The user wants to change the system default LIMEN=W to IIMEN=I
permanently in his user profile. He enters:

User: default LIMEN=I
Sys,User: erofile

DELETE Command

This command deletes a data set entry from the user's catalog.

132

r---------~'--.----------.--~---, I Operation I Operand I
r---+-------------------- -------.
I DELETE I (DSNAMB=data set name) I
L-_____ ~ __________ , ---. --------.------'

OSNAME
identifies the cataloged data set that resides on a private VQlUllle,
or the shared data set owned by another user that is to be 4.1.~ed.

specified as: a fully qualified data set name, a name of a genera­
tion data group, or a partially qualified data set name.

system default: a partially qualified data set name ~ the user's
user identification is the only qualifier.

Functional Description: When the data set naM specified is partially
qualified, the action of the DELETE cOlllllland depends on the mode of oper­
ation. In conversational mode, DELETE tests the DEPROMPT operand in the
user profile to determine whether each fully qualified data set naue
referenced by the input name is presented to the user. When DEPROMPT=Y,
the user is presented one fully qualified data set name at a time for
disposition. He responds with D and the data set entry is deleted f¥QII
the catalog (if the data set is private), or he responds with R (for re­
tain) and no action is taken, or he responds with A tfor ALL) to delete
all data sets with the partially qualified name. When DEPROMPT=N, all
data sets with the partially qualified name are deleted without prompt­
ing. In nonconversational mode, the names of all private data sets
referenced by the input name are deleted, regardless of the value of
DEPROMPT.

When a private input name is fully qualified, a private data set is
deleted, regardless of the value of DEPROMPT or the mode of operation.

If the user wants to delete a data set that he bas shared, he must spe­
cify the same name that he used in the associated SHARE command. For
example, if the user issues

share my,ownerl,*all

and has in his catalog MY.ONE, MY.TWO, and MY.THR~E, he can only delete
at the -MY.. qualification level. He cannot delete the catalog entries
by issuing!

delete my.one

Rather, he must issue

delete my

to delete .the catalog entries.

When the input name cannot be found, the coltllland is ignored.

Whenever the user attempts to delete one of his own public data sets, a
diagnostic message is issued.

caution: d VAM data set that has been ·deleted from the catalog cannot­
be referenced by the user until he reenters the data set into the cata­
log (with EVV or SHARE).

If the user tries to delete a shared data set for which a bulk I/O oper­
ation is pending, the DELETE command is canceled.

Part III: COR-rand Descriptions 133

Programming Notes: Initia,lly, DEPROMPT=Y. To change this value, use
the DEFAULT Command. (See also Section 6 of Part II and the ERASE Com­
mand description in this part.)

When the user wants to delete the ca~alog entry for a public da~ set
and to free the space the data set occupies, he must use the ERASE
Command.

To delete a generation data group, you must recatalog each of its mem­
bers as a nonmember of the group prior to execution of DELETE.

Examples:

1. A conversational user wants to delete the data sets with the par­
tially qualified name A.B. D~PROMPT=Y is in his user profile.

User: delete dsname=a.b

The system asks the user to enter D for delete, R for retain, or A
for all. It prompts with fully qualified data set name.

System:
User:
System:
USer:
system:
User:

A.B.C
r
A.B.D
d
A.B.E
r

No more data sets begin with A.B so the system prompts for the next
command.

2. A conversational user wants to delete all private data sets whose
names begin with E.F. Be issues the following commands:

Tlser: default deprompt~n
delete e.f

DISABLE, ENABLE, POST, and STET Co~rnands

These commands allow the user to control changes to a data set.

r---------~-------------------------------------- , I operation I Operand I
~------t----------------------------:"'-----------f
IDISABLE I I L _______ L--______________________________ __J

r-------~-------------------------------- ---, lOperationloperand I
.. --------+--------------------------------------'1
IENABLE I I L ________ ~_________________________________ J

r-------~--- ~ I Operation I Operand I
~------+------------------------------------f
I POST I I L ________ L____________________________________ ,

r-------~--1 I Operation I operand I
.. --------t---f
I STET I 1 L _______ L--___ _J

134

~: These commands have no operands and are ignored when TRANrAB=N.

caution: A language-processing conmand (EDIT, PROCDEF, or PLI) must be
invoked before any of these command~ is entered.

Functional Description: The TRANTAB operand in the user profile may be
set to either N or Y. (The system-supplied default value is N.) if the
user wants to undo a chanye made by a text-editing command to a data set
when TRANTAB=N, he must do so explicitly. For exa~~le, assume that the
following line is line 200 of the data set ABELINC that is being edited,

0000200 FOUR SCORE AND SEVEN YEARS AGO

and the user issues a REVISE command to modify it:

revise 200
0000200 eighty-seven years ago

If the user decides that he prefers the original wording of the line and
wants to restore it, he has to do so explicitly by issuing another com­
mand, such as REVISE. FUrthermore, if the user has modified a nurrber of
lines and wants to undo many of the changes, he has to make each change
explicitly.

A facility for simplifying such modifications can be introduced by
defaulting TRANTAB=Y. When this option is exercised, the text editor
maintains a transaction table in which changes to a data set are record­
ed. Additions to the data set are noted in one part of this table,
deletions in another. The only text-editing commands that do not change
lines of the data set, and therefore do not result in entries in the
transaction table, are DISABLE, ENABLE, LIST, LOCATE, and POST.

When TRAN'IAB=Y, the text editor functions in either of two states, dis­
abled or enabled. The text editor is in the disabled state when it is
invoked; it may be enabled with the ENAELE conmand and returned to the
disabled state with the DISABLE command.

In the disabled state, records of all changes made to lines since the
text editor was last invoked, or explicitly disabled, are maintained in
the transaction table. If a modification is made to a line for which a
previous transaction table entry exists, however, the existing entry is
overlaid by the new one. For example, if the text editor is invoked and
used for the existing data set ABELINC as shown in the sequence:

User:
sys, User:
Sys, User:
System:
Sys,User:

default trantab=y
edi t abel inc
list 200
'0000200 FOUR SCORE AND SEVEN YEARS AGO
revise 200
'0000200 eighty-seven years ago

the transaction table has

0000200 EIGHTY-SEVEN YEARS AGO

as an addition, and

0000200 FOUR SCORE AND SEVEN YEARS AGO

as a deletion. if the user continues

Sys, User: revise 200
0000200 a long time ago

Part iii: OOmmand Descriptions 135

tbe transaction table contai1t'S

0000200 A LONG TIME AGO

as an addition, and

0000200 EIGHTY-SEVEN YEARS AGO

as a deletion. The original wording of line 200, FOUR SCORE AND SEVEN
YEARS AGO, is no longer retained in the transaction table.

In the enabled state, the text editor removes entries caused by previous
commands from the transaction table as each new command is executed.
Consequently, only the changes resulting from the most recently issued
editing corrroand that affected a line of data can be found in the trans­
action table. The text editor becomes enabled when the first editing
command that alters a line of data is entered following execution of the
ENABLE command. For example, in the following sequence

Sys,User: number 50,100
enable
excise 100

the text editor does not become enabled until the EXCISE command is
executed. If a nonmodifying command, such as LIST, had heen inserted
between the ENABLE and EXCISE commands, it would have been executed in
the disabled state. After the EXCISE command was executed, however, the
text editor remained enabled until a DISABLE conmand was issued, or un­
til the editing session was terminated by a break character follo.ed by
an END, PROCDEF, PLI, or EDIT command.

Similarly, the DISABLE command does not disable the text editor until a
line-modifying editing command is executed.

The STET command nullifies the changes to the data set that were record­
ed in the table. For example, in the case of the modification to line
200 of the data set illustrated above, the last modification could have
been nullified with the STET command. The sequence is as shown below.
(Note that line 300 exists so the system prompts for a command after
line 200 has been revised. If line 300 did not exist, the system would
pro~pt for data by printing 0000300.)

Sys, User:

sys,User:
Sys,User:
System:

revise 200
0000200 a long time ago
stet
list 200
0000200 EIGHTY-SEVEN YEARS AGO

Note, however, that the original wording of line 200, FOUR SCORE ~ND
SEVEN YEARS AGO, is lost. A second STET command at this point would
only reverse the transaction tatle once again and return the wording of
line 200 to A LONG TIME AGe. Thus, the effect of two ccnsecutive STET
commands (or of two STET commands separated only by non-modifying cow­
mands such as LIST) is to revert the transaction table to its status
prior to issuing the first STET command. STET does not change the
disable/enable state of the text editor.

The POST corr~and makes the temporary changes to the data set permanent
and permits the user to continue to make tempcrary rrodifications. For
example, in the following sequence:

136

default trantab=y
~dit jbm
0000100 the quick brown fix
0000200 jumped over the lazy dog

0000300 _context 100"fix,fox
EClst
context 200"dog,dig
stet
list
0000100 THE QUICK BROWN POX
0000200 JUMPED OVER THE LAZY DOG

NOte that the STET command only reverses the effect of the second
CONTEXT command, since the temporary change created by the first was
made permanent by the POST command. POST does not change the disable/
enable state of the text editor.

TO help explain the effect of the DISABLE, ENAELE, POST, and STET com­
mands, the nature of transaction table entries is illustrated below.

Transaction Table Entries: The examples below describe changes to a
data set and entries in the transaction table. On the left are the com­
mands that change the data set; on the right are the resulting entries
in the transaction table.

Case 1: A new data set is being created. The text editor is disabled.
The sequence is as follows:

Sys ,User: region name
0000100 abcdef
0000200 12345
0000300 e th
0000400 list 200

Transaction Table

r----------~--------------~ I Additions I Deletions I
.-----------+--------------1 I 100 AECDEF I J
I 200 12345 I I
J 300 E TH I I l __________ -L ______________ ~

Notice that the LIST command does not change data and therefore does not
affect the transaction table. Now assume that a STET command is issued.
The table described in Case 1 appears as:

Sys,User: stet Transaction Table

r----------~--------------, f Additions I Deletions I
.-----------+-------------~ I I 100 ABCDEF J
I I 200 12345 I
I I 300 E TH I L--_________ L _________ ' _____ 4

and lines 100 through 300 no longer exist in the data set.

Case 2: Whenever a change occurs to .a line for which a previous trans­
action table entry exists, the existing entry is overlaid by the new
one, no matter what the disable/enable status of the text editor is.
Assume the first transaction table and data set from Case 1. If line
100 is changed to ABCDMM, the transaction table becomes:

Sys ,User: update
User: 100 abcdmm

Transaction Table
r----------~------------~-,
I Additions I Deletions I
~----------+-----------~
I 200 12345 I 100 ABCDEF I
I 300 E TH I I
I 100 ABCDMMI I l ___________ L ____________ --J

Part III: Coawand Descriptions 137

Notice that the previous entry for line 100 in the additions coluron is
overlaid and that a change to two characters is treated as a change to
the entire line. Now assume that when the system unlocks the keyboard
the user types in a break character and the STET command:

User: stet ~Tansaction Table
r-----------r--------------, I Additions I Deletions I
1------ - I --i
I 100 ABCDEFI 200 12345 I
I I 300 E TH I
I I 100 ABCD~M I L _________ --1. _________ --'

Lines 200 and 300 are blank; line 100 is ABCDEF. If a POST command is
issued, the transaction tarle is emptied, but tbe lines of the data set
remain the same. ThUS, POST makes the changes irreversible.

Case 3: Now assume that the transaction table appears as in Case 2.

Sys,User: revise 100
0000100 BBCDMM

~ransaction Table
r----------T--------,
I Additions I Deletions I
.-------+----------1
I 200 12345 I 100 ABCDMM I
I 300 E TH I I
I 100 EECCMMI , L ________ --1. _______ .1

If STEl' were issued now, line 100 would become ABCDMM, and not ABCDEF.
Hence, when multiple changes are made to a line, only the changes still
reflected in the transaction table are reversible. Following STE~, the
tab Ie in Case 3 be comes:

Sys« User: stet Transaction Table
r---------~------------, I Additions I Deletions I
;--------+--------f
I 100 AECDMMI 200 12345 I
I I 300 E TH I
I I 100 BBCDMM I L--_____ --1. _________ .1

case 4: When the text editor is enabled, each new table entry overlays
existing entries. These line changes result in one table entry.

Sys, USer:·
~:

update
300 xyzabc
_context 200,300,za,by

Transaction Table
r------- ·-yt--------o

------,

I Additions I Deletions I
~----- 4 1
I 300 XYBYBCI 300 XYZABC I
L L _---"

Only the change made by the CONTEXT command a~pears in the transaction
table. STET issued nOW" could change only line 300.

Now assume an INSERT command is issued, followed by three lines of data
for lines 400, 500, and 600, which do not exi st. The transaction table
contains:

138

. I

. I

•• I

Sys, user: insert 300
0000400 hijkl
0000500 mnopq
0000600 rstuv

Transaction Table
r----------~-------------, I Additions I Deletions I
I-----------f-----------~
I 400 EIJIU. I I
I 5eO MNOPQ I I
I 600 TSTUV I I l __________ -L ______________ J

Three entries appear in the transaction table, since only one execution
of the INSERT command was involved. A STET command entered now deletes
lines 400, 500, and 600. Notice, however, what occurs if one STE'! com­
mand is followed immediately by another. In the example above, lines
400, 500, and 600, which were moved to the deletions column by the first
STET COlT-nand, would be moved back to the additions column by the second
STET command. The effect of a S'IE'I command can be reversed with another
STET command.

Case 5: The ENABLE command does not affect the transaction table until
after the ensuing editing canmand that changes a line is executed. As­
sume the editor is disabled and this transaction table:

Transaction Table
r----------~--------------, I Additions I Deletions I
f----------f----------i
I 100 1 KRS'II I
I 200 30405 I 200 3040506 I
I 300 NT416 I 300 ATXYZ J L--________ -L ______________ J

When ENABLE is issued, the table does not change. If ENABLE is followed
immediately by STET (or by LIS'! or LOCATE and then by STET), the entries
are reversed as if the editor is disabled. If, however, ENABLE is fol­
lowed by:

sys,User: £Ontext 100,300,kr,pq

the transaction table becomes:

Transaction Table
r----------~------------__, I Additions I Deletions I
~---------+ i
I 100 1 PQSTI 100 1 KRST I l __________ -L _____________ -J

Lines 200 and 300 of the data set are unchanged.

Cautions: ENABLE and DISABLE do not affect the transaction table until
a command that alters a line is executed. Thus, STET should not follow
ENABLE immediately because the result is unpredictable.

When multiple changes are made to one line, each succeeding change is
entered in the transaction table, overlaying previous entries for that
line.

Progruming Notes: Since the text editor is normally disabled when
TRANTAB==Y, revisions to a data set are temporary. The user can nullify
changes with the STET command. When the editor is enabled, revisions
are permanent, since only the last change is revocable with STET. POST
allows the user to make temporary changes permanent and then continue to
make temporary changes.

Part Ill: Conroand Descriptions 139

Following execution of DISABLE, ENABLE, POST, and STET, the user is
always prompted to enter a command.

POST and STET do not affect the disable/enable status. DISABLE, ENABLE,
POST, and STET do not change the val~e of the CLP.

Examples:

1. The user issues the follOWing sequence of coJlllllands:

sys,User: ~efault trantab=y,regsize=8
edit myproq
region abc
0000100 data line one
0000200 data line two
0000300 data line three
0000400 data line four
0000500 excise 400
excerpt your prog,pgr,500,700
context 100.300,line,number
enable
number 100,last
list
end

In this sequence of canmands. the results of EXCISE, EXCERPt', and
CONTEXT are made to the data set and recorded in the transaction
table. When the NUMBER command which follows ENABLE is executed,
these table entries are removed, and the entry from NUMBER exists
alone in the table.

2. Assume a STET command is issued between CONTEXT and ENABLE; the
effect of EXCISE, EXCERPT, and CONTEXT are canceled.

3. STET appears between NUMBER and LIST; only the effect of NtJ.1BER is
canceled.

4. POST appears between EXCERPT and CONTEXT, and STET is issued fol­
lowing CONTEXT: only the effect of CONTEXT is canceled.

5. STET appears between ENABLE and NUMBER: the effect of EXCISE,
EXCERPT, and CONTEXT are nullified.

6. STET appears between LIST and END: the effect of NUMBER is
canceled.

DISPLAY Command

This command prints the contents and names of specified data fields or
expressions on SYSOUT.

r---------~--,
IOperation IOperand I
~---------+--i
I DISPLAY I data field name or expressionl, ••• l I
I I id? data field name or expression [,. ••] I L __________ L __ ~

data field name or expression

140

specifies the data ~ield or expression to display_

Specified as: an absolute address, the name of a data location, an
array, a control section, a symbolic range, an arithmetic or logic­
al expression, a quoted string, or a command variable.

id? data field name or expression
specifies one or more data fields or expressions for which the
CSECT name, load address, and length are to be displayed.

specified as: the characters -.ID?- followed by the name of a data
location, an array, a symbolic range, or an internal or external
symbol. (See "Types of operand Specification- and -Operand :cefini­
tions· in Section 3 of Part II for explanations of these terms.)
For multiple requests in one DISPLAY command, the characters WID?­
must be repeated for each data field or expression. Data fields or
expressions preceeded by ID? and those not preceeded by ID? are
interchangable in one command.

Functional Description: The contents of each specified data field, i­
dentified by the name entered in the operand field, are printed. The
format of this pcintout is established by the system, according to the
type and length attributes of the data field. If the data field type is
not defined, it is assumed to be hexadecimal. If the user's task is
conversational, the data field is printed at the terminal; if the task
is nonconversational, it is entered on SYSOUT. liIhen a control section
name, used as an internal symbol, is entered as an operand of DISPLAY,
the entire control section is automatically formatted in accordance with
information in the internal symbol dictionary and is printed in symtolic
form in assembler language. When a control section name is used as an
external symbol in DISPLAY, the entire control section is printed in
hexadecimal.

~hen a symbolic range of internal symbols, without offsets, is entered
as an operand of DISPLAY, the specified range is automatically formatted
and printed in symbolic form. If either internal symbol in a symbolic
range has an offset, the output is in hexadecimal.

When a quoted string is specified as an operand, the string (without the
delimiting quotes) is displayed.

When an arithmetic expression is specified, it is evaluated, and the re­
sult is displayed.

The ID? form of the DISPLAY command displays the CSECT name, load
address, and length for the specified data location, array, or internal
or external symbol. This information is displayed as: ID=csect name
LOADED AT address, length BYTES LONG. Multiple requests in one DISPLAY
command require that each address or name must be prefixed by the char­
actersID? (see example 7).

programming Notes: Arithmetic operations may be executed with the
DISPLAY coamand if the user does not want to have the result saved in
storage. The type and length of the operands must be compatible.

When the user is in conversational mode, he can terrrinate the printout
by preSSing the ATTENTION rutton at his terminal. If more than one data
field had been specified in one DISPLAY command, the next data field is
displayed; otherwise, control is passed to the terminal.

Examples:

1. The user wants to print a header and the contents of register 6E.

USer:
system:
system:

display 'register 6' ,6e
REGISTER 6
6E = .27182818E + 01

2. The user has a 5 by 5 integer array and wants to dis~lay the first
10 elements of the array, and the element ARRAY (I,K).

Part III: Comrand Descriptions 141

SysteIr.:

display pgm.array (1,1): pgm.array (5,2),pgm.array
(pgm. I, pgm. 10
PGM.ARRAY (1,1): PGM.ARRAY (5,2) =
(1,1) 4 5 -8 1 6
(1,2) 9 -6 3 22 7
PGM.ARRAY (4,5) = -16

Note: The elements may l::e referenced symbolically, but the systeJr pro­
duces the actual subscript values.

3. The user wants to display the result of 9 + 5.

User:
SysteIr,:

display 9+5
14

4. The user wants to display ~~e contents of the data field PATTERN.

~:
System:

dis play pattern
PATTERN=4020202020202020

5. The user wants to display the address of the data field PATTERN.

User:
Systew:

display a' pattern'
00420320

6. The user wants to display the CSECT name fcr symbol JOE. He
issues:

User: display id? joe

7. The user wants information displayed for symbols JOE, JACR, and
SAM. He issues:

User: display id? joe,id? jack,id? sam

DMPRST Command

This command performs a time-shared dump and restore of a VAM2 disk
volume.

r---------~-- , I Operation I operands I
~---------+--i
[DMPRST IFROMDEV={231112314124xxI33301333E},FRVOLID={volidl(volid I
I Il,volid])},TODEV=t23111231 4124xxI33301333B} J
I I l,TOVOLID={volid1 (volid[,volid])JPRIVATE> 1 I
I Il,NEWVLID=volid] [,WRITCHR=(YESINO}]l,LABEL=(RETAININO}] I
t I [,],RUNMODE=(BACKIFORE} I L _________ .l.-__________________________ J

FROMOEV
specifies the device type that the from-volume is to be mounted on.
If not given" the command is canceled.

Specified as:

2311 - disk in VAM2 format.
2314 - disk in VAM2 format.
24xx - 9-track dump tapes containing a properly formatted duap.
3330 - 3330-1 disk in VAM2 format.
333B - 3330-11 disk in VAM2 format.

FRVOLID

142

specifies the volume identification number (VOLID) of each from­
volume. If not given, the command is canceled.

TODEV

specified as: one to six alphameric characters.

Notes:
1. Only one VOLID may be speci~ied for disk.

2. One or two VOLIDS may be specified for tape, each of which
must have a standard label.

3. Multiple tape volids must be specified in the order in which
the tapes are to be used.

4. Duplicate VOLIDs for the same device type are not permitted.

5. Blanks contiquous to a conma or parenthesis are iqnored.

specifies the device type that the to-volume is to be mounted on.
If not qiven, the command is canceled.

specified as:

2311 - disk in VAM2 format.
2314 - disk in VAM2 format.
2400 - labeled 9-track scratch tapes.
3330 - 3330-1 disk in VAM2 format.
333B - 3330-11 disk in VAM2 format.

~: the followinq chart indicates valid FROMtEV and TODEV pairs:

FROMDEV TODEV

24xx 2311, 2314, 3330, 333B 24xx legend

2311 24xx, 2311, 2314, 3330, 333B 2408

2416

800bpi

1600 bpi,

6250 bpi

2314

3330

333B

24xx, 2314, 3330, 333B

24xx, 3330, 333B

24xx,333B

2462

When FROMDEV is a 24xx, 'l'ODEV must have a capacity equal to or larqer
than the disk used to create the 24xx.

TOVOLID
specifies the volume identification of each to-volume.

specified as: from one to six alphameric characters or PRIVATE.

PRlVA~ - a scratch volume is requested.

system default: PRIVATE.

Note: If TODEV=24xx, and more tapes are required than are speci­
fied, the system requests scratch volumes.

Part III: COJrmand Descriptions 143

NEWVLID
specifies the volume identification number to be put in the to-disk
label at the completion of the job. This parameter is ignored if
TODEV=24xx.

Specified as: from one to six' alphameric characters.

pystem default: the volume identification nu~ber in the volume
label used (see lABEL> is unchanged.

Note: The NEWVLID may duplicate one already in use.

WRITCHK
specifies whether writing of
after-write validity check.
TODEV=24xx.

Specified as:

pages to disk is followed by a read­
This parameter is ignored if the

YES - write checking is performed.
NO - normal error recovery is used.

Systero default: NC.

lABEL

{,1

specifies whether the volume label on the to-disk is to remain, or
the volume label on the from-disk is to be used. This parameter is
ignored if TODEV=24xx.

Specified as:

RETAIN - use the label on the to-disk.
NO - use the label on the from-disk.

Systerr default: NC.

necessary, when RUNMODE is specified in positional notation, to
maintain system compatibility.

RUNMODE
specifies whether a nonconversational task is to be created to run
the dump and restore. This parameter is ignored if the task is
nonconversational. If not given for a conversational task, the
command is canceled.

Specified as:

BACK - a nonconversational task is created to run the dump and
restore.

FORE - the dump and restore is run in the user·s conversational
task.

Functional Description: DMPRST can be used to dump a VAM2 disk to ei­
ther a 9-track tape with standard TSS labels or to a VAM2 disk that has
been prepared by DASDI. The command can also be used to restore a dump
tape to a VAM2 disk. The dump tape must be either one dumped by DMPRST
or a standard labeled tape dumped ty the independent utility progra~
(DASDDR). A disk dumped to tape with DMPRST may also be restored with
DASDDR. If error pages were found and assigned when the disk was pre­
pared by DASDI. pages that fallon error pages are relocated (up to 96
relocations). Otherwise, all data pages are put in their original
places.

144

The DMPRST tape format differs slightl~ from the independent ut:ility
program tape.

1. DMPRST does not dump or restore disk user-labels. If th'~se rec«~~rd8
are desired, the independent utflity Dump/Restore is required.

2. DMPRST, when dumping to tape, writes the IPL records from constant
areas and, when restoring, skips these records. If a disk is to be
used for lPL, the proper IPL text must be on the to-disk b~fore
restoring. DASDI can be used to write this IPL text.

3. If a dump requires more than two tape volumes, this command cannot
be used for the restore. The independent utility Dump/Restore can
restore a dump of one or more tapes.

All space is assumed to be available on the to-volume. Disk pages not
actually used are made available and are left unchanged. No entries are
made to or deleted from the catalog.

If RUNMODE=BACK is specified, the maximum command string length (not
counting keywords) is 120 bytes.

'l'he tape ODEF uses DSNAME=DR. VAM2. nISK. DUMP and DDNAME=TSUS2814. These
names should not be in use when using this command to dump from or
restore to tape.

If the VOLIO of the to-disk is changed by this command, the operator is
requested to change the external 10 of the disk and the VOLID in the
$ymbolic device entry (SOAT) is cleared. If, as a result of this
change, the VOLIO duplicates one in use, the proper volume must be used.

The maximum tape record length for 2311 and 3330 dumps is 4096. For a
2314 dump tape, the maximum record length is 8192 bytes. If a dunp tape
is copied, care must be taken to insure that a full-length record is
copied for each record.

When dumping to a tape, if the tape is file protected, the task is
abnormally terminated when trying to write a tape label.

DSS? Corrmand

This command presents the status of one or more cataloged data sets to
the user.

r---------~---, I operation I Operand . I
t--------+----------------·------------------------------------i
IDSS? INAMES={dataset name I (data set name(, ••• »} I l _________ ~ ___ J

Note: Manager's and administrators should see Manager's and Administra­
torts Guide for specialized operands.

NAMES
identifies one or more cataloged data sets for which status infor­
mation is to be presented.

Specified as: one or more fully or partially qualified data set
names. 'When two or more data set names are specified, they must be
enclosed in parentheses.

System default: the status of every data set in user"s catalog is
presented.

Note: When this operand specifies a VPAM data set, only the status
Ofthe VPAM data set is given, not that of each member.

Part III: Connand Descriptions 145

Functional Description: DSS? provides the user with this information
about a da ta set:

SharinCj status - ownership and sharability

Access status - read-only, read/write, or unliwited

Device type and volume number

Creation and expiration dates

Organization

For VAM data sets only, the date last used and the data set Size,
record form. and logical record length.

Ifa partially qualified data set name is specified, the status. of each
dataset, with the specified qqalifiers. is presented.

Sharing .status is given only for those data sets that are permitted (via
the PERMIT command) under their fully qualified names. No sharing sta­
tusis given if a partially qualified data set name or the user's entire
catalog is permitted. In nonconversational tasks, the status· informa- '
tion is recorded on SYSOOT~ and in conversational tasks. the information
is printed at the user's keyboard, but the user can terminate the print­
ing at any time by pressing the ATTENTION key. . .

prograw-ming Notes: The PC? command can be used for a briefer descrip­
tion of the status of cataloged data sets.

'~en using DSS? nonconversationally, a SECURE command should be issued
before DSS? is issued for data sets on private devices.

Examples:

1 •. The user wants to present the status of his data sets.

~:'
System:

dSs1
HICBOLAS.OSERLIB

SHARED AT LEVEL 02
VOLUME: DB0622 (2314)
ORGANIZATION: VP
REFERENCE DA~E: 154/71

BY NICHOLAS, ACCESS: RW.

NICHOLAS. NICHOLAS. TEST
VOLUME: DB0668 (2314)

. O~ANIZATION: VI ,
REFERENCE DATE: 084/11
RECORD. FORMAT: 'V
KEr ,LENGTH: OOOG001

NICHOLAS.TA000304.SOURCE.SINGLE
VOLUME: 014442 (9-TRACK TAPE)
ORGANIZATION z PS

PAGES: 0000071
CHANGE DATE: 154/71

PAGES: 0000000
CHANGE 'DATE: 084/71
RECORD LENGTH: 0000132
KEY POSITION: 0000004

2. The user 'wants to present the status of all data sets qualified by
. D.A.

'Usera. das? d.a

, 'lhe systean preaents the status information.

:lUMP command

This command places the contents and names of specified data fields or
expressions in the data set with a data definition name of PCSOUT.

r---------~-----------------------~----------------------------------, I operation I Operand I
~--------+---i I DUMP I data field names or expression[, •••] I
I I id? data field name or expression I, ••.] I L ________ 4--__ J

data field name
identifies one or more data fields or eXFressions to be placed in
the PCSOUT data set.

Specified as: the name of a data location, an array, or a control
section; a symbolic range, an aritbnetic of logical expression, a
quoted string, an absolute address, or a command variable.

id? data field name or expression
specifies one or more data fields or expressions .for which the
CSECT name, load address, and length are to be dumped.

Specified as: the characters id? followed by a data location, an
array, an internal or external name, or a symbolic range. (~ese
terms are explained in section 3 of Part II under "Types of Operand
specification" and ·operand Definitions.") For multiple requests in
one DUMP command, the characters ID? must be repeated for each data
field or expression. Data fields or expressions preceded by id?
and those not preceded by ID? are interchangable in one command.

Functional Description: The contents of the specified data fields are
output to the PCSOUT data set. ThE format of the results is the same as
for DISPLAY.

Programming Notes: DUMP should be used for large amounts of data.

There can be only one PCSCUT data set per task. It must be organized as
a line data set. The user has facilities for printout control of the
data produced by the DUMP command. This procedure is recommended:

DDEF
roMP
RELEASE
PRINT

PCSOUT,VI,DSNAME=name
data field name
PCSOUT
name",EDIT

PCSOUT must be specified as the data definition name on a DDEF oommand
or a DDEF macro instruction before DUMP is issued. If no definition has
been given, the user is prompted to issue one. Refer to Appendix E for
a detailed description of the DDEF command.

The user can specify the ERASE option in the PRINT command to remove the
PCSOOT data set from his catalog.

Exanples:

1. The user wants to output the contents of an entire control section
to his PCSOUT data set. Assume this is the first use of D~P in
this task. He enters the following commands:

USer: - ddef pcsout,vi,dsname=list.pcsout
dump pgm. csect1

Part III: Conttand Descriptions 147

The system puts the information in the PCSOUT data set.

2. The user wants to see the contents of a control section, but does
not have an ISD for the program module. He issues a DtMP, using
the control section name as an external symbol; however, he fails
to issue a LOAD command for the object module.

User: dump csect

The system loads the module and outputs data.

3. The user wants to dump the CSECT name associated with the syrrbol
JOE. He enters:

User: dump id? joe

The system displays the CSECT name, load address, and length.

EDIT Command

This command invokes the system"s text-editing function for a VISAM or
VPAM data set.

r---------T--,
loperationloperand I
t---------t--f
I Eorr I DSNAME=da ta set name {(merr.ber name) J [,RNAME=region name] I
I I [,REGSIZE=region name length] I l _________ ~ __ J

DSNAME

RNA ME

identifies the data set to be edited or created.

Specified as: a fully qualified data set naMe and (optionally> a
xrernber name of a VPAM data set. When specified, the member name is
enclosed in parentheses and immediately fol~ows the VPAM data set
name.

identifies a region, within the data set specified in the DSNAME
operand, to be created or edited.

Specified as: an existing region name or a string of from 1 to 244
characters. The value of the REGSIZE operand determines the rr.axi­
mum length of the region name. Region names are padded with tlanks
or are truncated on the right to fit the specified length.

REGSIZE
specifies the maximum length of each region narre for the region
data set.

Specified as: a decimal number from 0 to 244. If 0 is specified,
a line data set is created.

System default: O.

Functional Description: The EDIT conmand invokes the text editor and
initializes the transaction table if TRANTAB=Y. Then, E~IT ascertains
whether the specified data set or region exists or has previously been
defined within the task.

If the data set or region exists, EDIT assumes the existing data defini­
tion values and prompts the user with an underscore so tilat he may enter
commands. The eLP is set to the first line of the data set.

148

If the data set does not exist, EDIT defines it and prompts with the
first line number of the new data set (specified by BASE in the user
profile; the default is 100) if LINENO=Y. If a region name is specified
in the EDIT command, EDIT prompts with the first line of the new region.
If the region name is not specified, but REGSIZE is greater than 0, EDIT
prompts with an underscore so that the user can specify a region name
with the REGION command.

The type of prompt a user gets depends on the value of LINENO, the value
of REGISZE, and whether the data set or region is new or old. Tatle 11
summarizes the prompt.

Table 17. Type of prompt after the EDIT command
r--------T-----------------------------~------------------------ . 1 I I REGSIZE = 0 I REGSIZE > 0 I
I LlNENO ~----------,.-----------_+_----------~----------__t
I Value I Data set is I Data set I I I
I 1 New I Exists I Region is New I Region Exists I
~------+-------_+---------_+-----------+_--------_t I I Prompt with I Prompt with ani If a region I Prompt with ani
I I the value of I underscore I name is spec-I underscore I
I 1 BASE I I ified, prompt I I
I I I I with the I I
I Y I I I value of I J
I I I I BASE; other- I I
I I I I wise, prompt I I
I I I I with an I I
I I I I underscore I I
~--------+-----------+---------------+-----------+_------------i I J open the I Prompt with I If a region I prompt with I
I I terminal to I an underscore I name is spec-I an underscore I
I I accept data I I ified, open I I
I I I I the terminal I I
I N I I I to accept I I
I I I I data; other- I I
I J I I wise, prompt I I
I I I I with an I I
I I I I underscore) I l ________ ~ _____________ i ______________ ~ _____________ _i_ ___________ J

prograrrming Notes: The user can precede EDIT with a ~DEF command to
specify the DCB suboperands he desires. To create a region data set
with maximum line length, the DCB values might be:

RKP=4,RECFM=V,LRECL=256,KEYLEN=15

A separate EDIT command must be issued for each data set to be process­
ed. The user can terminate processing of one data set and begin proc­
essing another by issuing an EDIT command without an intervening END
command.

Following EDIT, the user can issue any command.

ExaIl'ples:

1. The user wants to create a line data set named LINEDS:

~:
System:

edit lineds
0000100

NOW, the user can enter data, and the system
mpt with line numbers in increments of 100.
for irrmediate execution, the user must enter
followed by the command.

will continue to pro­
To enter a command,
the break character

Part III: Command Descriptions 149

2. The user wants to create a region data set, REGCS, with a region
name length of 15 characters. He wants to create region XYZ, and
does not want line numters displayed:

User: default lineno=n;edLt regds,xyz,15

The system unlocks the keyboard so that the user can enter data at
line 100 of region xyz.

The user can also use the REGION command to operate on other
regions in the data set. (see the description of REGION later in
this part.)

3. The user wants to edit an existing data set, LINEDS, which begins
at line 100. He wants the transaction table active:

USer: default trantab=y:edit lineds
System:

CLP is set to the first line in the data set.

£JECT Command

The EJECT command causes a skip to a new page in the non-conversational
SYSOUT listing. When the SYSOUT is a terminal, a triple space is done
instead.

r---------~--,
I Operation \ operand I
r---------t--i
I EJECT I I :. ________ .1.--__ .1

Note: This command has no operands.

Functional description: The EJECT command module issues a ·GTWRC· macro
~ith an 'EJECT' ASA carriage control character. The EJECT carriage con­
trol character is handled differently according to the SYSOUT. For
2741, TTY's and 3215 (l052-7) the paper is spaced up 3 times by issuing
three carriage return characters. For SYSOUT datasets with carriage
control specified, the carriage control character is included as the
first character in the record. When the dataset is printed with the
EDIT option, the carriage control character wi~l cause an eject to the
next page on the printer. If carriage control is not specified on the
SYSOUT dataset, the carriage control character is deleted and a blank
line is inserted instead.

Example: The user wishes to start the output from conmand B on a new
page in the SYSOUT dataset.

User:

System:

command A
EJECT
command B

••••. output from A •••••
EJECT to new page
•••••• output from B •••••

ENABLE Command

See "DISABLE, ENABLE, POST, and STET Con.mands. II

150

END Command

This coromand tenninates processing of a language processor controller
(LPC).

r---------~---, I Operation I Operand I
~--------+---f
lEND I I L _________ L-__ J

Note: There are no operands.

Functional Description: When an LPC, such as EDIT, PROCDEF, or PII, is
invoked all text editor functions become available. When END is issued
the use of these functions is inhitited, and control is passed to the
processor"s end routine (previously defined when the IPC was invoked).
The end processing depends on the particular processor. In the case of
EDIT, the data set is closed; whereas, in the case of PROCDEF, the pro­
cedure just defined or edited is saved, but the data set is not closed.
The function of END for PLI is described under the PLI command.

programming Notes: The user can terminate processing of one LPC and
begin processing another ty issuing an EDIT, PROCCEr, or PLI command
(preceded by a break character, if necessary) without issuing an inter­
vening END command. The previous LPC"s end-processing routine is
entered before the new LPC is invoked.

~en the system expects data, the END command must be preceded by a
break character. To enter an END command preceded by the break charact­
er as a line of data, as in a PROCCEF, two break characters must precede
the command.

caution: This command is not the END statement for the Assembler or
FORTRAN compiler.

Examples:

1. The user wants to terminate this editing procedure. The data set
MYPROG already exists.

Sys,User:
Sys,User:
sys,user:
SIS, User:

edi t myprog
context 700,900,lm,stm
number 200,last
end

END, in this case, is not preceded by a break character as the sys­
tem is expecting a command (it prompted with an underscore).

2. The user creates this data set.

User:
sy5;user:

edit myds
0000100 line one
0000200 line two
0000300 _end

The system expects data for line 300, so END must be preceded by a
break character.

3. If the user wants to terminate processing of data set MYDS in exam­
ple 2 and begin processing a new data set AMYDS, his entry for line
300 is

sys, User: 0000300 edit amyds

Part III: COKBand Descriptions 151

ERASE Cotrmand

This command frees the direct acces,s storage assigned to a data set, and
the catalog entry for a data set is removed from the user's catalog.

r---------~---, I operation I Operand I
t-------t--f
I ERASE I [DSNAME=data set name[(trember name)]}(,SHARED=(Y\N}] I l ________ ~ __ ~

DSNAME
identifies the data set, which resides on direct access storage, to
be erased. VAM data sets must be cataloged; and physical sequen­
tial data sets must already bE defined by a DDEF command within the
current task, or must be catalOged.

Specified as: a partially qualified data set name, or a fully
qualified data set name and (optionally) a member name of a VPAM
data set, or its alias. When specified, the member name or alias
is enclosed in parentheses and immediately follows the VPAM data
set name.

Systen default: all data sets qualified by the user w s user
identification.

SHAREr;
specifies for shared data sets whether or not an implicit search of
the owner's catalog is to ce performed (see prcgranming notes).

specified as:

Y - search.
N - no search.

Systen default: N.

Functional Description: In conversational mode, when the data set name
specified is partially qualified, the ERASE command tests the DEPROMPT
operand in the user profile to determine whether each fully qualified
data set name referenced by the input name will be presented to the
user. If DEP«OMPT=Y, the user is presented one fully qualified data set
name at a time for disposition. When he responds with E (for erase),
the data set name is removed from the catalog, and the direct access
storage occupied by that data set is freed. If he res fonds with R (for
retain), no action is taken. If he responds with A (for ALL), all data
sets with the specified qualifiers are removed from the catalog. If
DEPROMPT=N, all data sets are erased without prompting.

In nonconversational mode, all data sets referenced by the input name
are erased.

When the user enters a fully qualified data set name, the data set is
erased, regardless of the value of the DEPROMPT operand or the mode of
operation.

when the DSNAME operand does not contain a member narr.e, the direct
access storage occupied by that data set is freed and the data set name
is removed from the catalog.

When the DSNAME operand specifies a member name or alias of a VPAM data
set, the member name or alias is deleted from the partitioned organiza­
tion directory (POD), and the storage occupied by tlt,-, member is freed.

152

Any previous DDEF command issued on a data set that is erased is
released.

When a user, with sharing access U (for unlimited), attempts to erase a
shared VISAM or VPAM data set, the systen checks for any active users
(including the one who issued ERASE' of that data set •

• If there are active users, the system issues a diagnostic message
and disregards the ERASE command. In conversational mode, the diag­
nostic message appears at the terminal, followed by an underscore
that requests the next command. In nonconversational mode, the new
command is retrieved from the task's SYSIN after the diagnostic mes­
sage is sent to SYSOUT •

• If there are no active users, the ERASE command is executed.

Cautions: The ERASE command cannot be used for data sets on magnetic
tape. It applies only to data sets on direct access storage.

The user should not issue an ERASE conunand for a loaded module. The
module should be unloaded fil:st.

In nonconversational mode, the SYSIN data set cannot contain an ERASE of
itself.

~ven though the RET command has been invoked to give a user read-only
access to a data set, he may still erase that data set.

If DEPROMPT=N and the ERASE command is issued, all data sets are erased
without prompting.

proqrareming Notes: DEPRCMPT is initially set to Y. To change its
value, the us er issues the DEFAULT conunand, with DEPROMPT as an operand.

The SHARED operand is only meaningful in the situation where ERASE is
specified with a partially qualified name and an entry exists in the
user's catalog for a data set whicb was shared at a lower level of qua­
lification. In this case. if SHARED=N is specified, the descriptor
entry will be deleted from the sharer's catalog, but the data set entry
will remain in the owner's catalog and the data set will not be erased.

Examples:

1. A conversational user wants to erase several data sets whose names
begin with A.B. DEPROMPT=Y is in his user profile.

User: erase dsname=a.c

The system asks the user to enter E for erase, A for all, or R for
retain: it prompts with the fully qualified data set name.

Systero: A.B.C
User: r
SysteIf': A.B.D
User: r

The system prompts for next conmand when all data sets with the
fully qualified name have been presented.

2. A conversational user wants to erase all data sets whose names
begin with the components E.F.

User: default deprompt=n
erase dsname=e.f

Part III: Connand Descriptions 153

The system erases the catalog entries and frees the virtual storage
occupied by all data sets with the fully qualified name E.F.

EVV cOll'wand

This command catalogs private VAM volumes by volu1l'e.

r---------~---, I Operation I Operand I
r--------+---f
I EVV IDEVICE=(23l112314 13330 1333B} I
I I • VOLUME= (volume serial number I, ••• 1) I L _________ L __ J

Note: Managers and administrators should see Manager"s and Administra­
t:O"i""s Guide for specialized operands.

DEVICE
specifies the type of direct access device on which the VAM volume
resides.

Specified as: 2311 or 2314 or 3330 or 333E (3330-11 disk)

VOLUME
identifies the volume or volunes to be processed.

SQecified as: a one- to six-digit volume serial number for each
volume. The volume serial numbers are all enclosed in one pair of
parenthes es.

Functional Description: EVV catalogs only the user's data sets on the
volumes specified. but does not open them for use by subsequent
_programs.

Programming Notes: EVV allows the user to introdu _~e VAM data sets
created under other TSS systems into his current astallation, or to
recatalog his previously deleted VAM data sets. 1.-.civate VAM data sets
created under TSS are automatically cataloged.

Example: The user has three private volumes that are necessary for the
execution of his program. He wants to enter them into the system.

evv 2311,(111500,111501,111502)

The system makes catalog entries for all of the userfs data sets
residing on the specified volumes.

EXCERPT Coltlltand

This coro.mand inserts a region or range of lines from another data set
into the current data set.

r---------~-------------------------------------- , I Operation I Operand I
.. -----f---------------------------------------i
I EXCERPT IDSNAME=data set name [(member name) J [.RNAME=region name] I
I f£ ,N1=starting line I ,N2=ending line]) I L _________ L--___ J

D5NAME

154

identifies the data set
lines, is to be taken.
DDEF command within the

from which the region line, or range of
This data set must alrea"!'y be defined by a
current task or must be cataloged. when

DSNAME refers to a VPAM data set, a member name must also be
specified.

Specified as: a fully qualified data set name and (optionally> a
«;ember name of a VPAM data set. When specified, the member name is
enclosed in parentheses and immediately follows the VPAM data set
name.

RNAME

Ni

N2

identifies the region from which data is to be inserted into the
current data set or region, either in its entirety, or within the
range specified by Ni and N2.

specified as: the name of the region, expressed as a normal or
quoted string, from which data is to be copied.

Systerr.default: when Ni and N2 are specified, it is assumed that
the data set named in DSNAME is a line data set. When Ni and N2
are both omitted, the entire data set named in DSNAME is inserted
as a single region. When only N2 is omitted, the line designated
by Ni is inserted.

specifies the line, or the first of a range of lines, that is to be
inserted in the current region.

specified as: a one- to seven-digit absolute decimal number.

System default:
region, if RNAME
Ni is assumed to
set.

If N2 is also omitted, the entire data set -- or
is specified -- is inserted. If N2 is specified,
be the first line in the specified region or data

specifies the last in a range of lines that is to be inserted in
the current region.

Specified as: an absolute one- to seven-digit decimal number. Can
also be specified as LAST to indicate that the lines to be
excerpted range from the line specified by Ni to the end of the
data set.

System default: the entire data set is inserted when Ni and RNAME
are omitted. If RNAME is specified, the entire region is inserted.
When only N2 is omitted, only the line specified by Nl is inserted.

Note: This operand cannot be specified unless Ni is used.

Functional Description: Insertion is always made immediately after the
data line that is the current line location at the time the command is
issued. The system automatically renumbers the inserted lines by using
the value of INCR. If the existing line numbers do not accommodate the
number of lines to be inserted (for example, the user is trying to
insert more than 99 lines between line numbers 400 and 500), the command
is not executed, and a diagnostic nessage is issued.

The user is prompted when these exception conditions occur:

• Renumbered lines would overflow the interval between lines.

• The data set or region to be excerpted oould not be found.

• The line number within the region or data set to be excerpted could
not be found.

Part III: Conmand Descriptions 155

• The end of the region was reached before any of the requested lir.es
could be excerpted.

Upon completion of this command v the CLF points to the next line follow­
ing the last inserted line or to the last inserted line plus the value
of INeR, whichever is less.

caution: A language-processing corrmaoo (EDIT, PROCDEF .. or PLU must be
invoked before the command is issued.

programming Notes: When EXCERPT is preceded by a break character and
follows an INSERT command, the excerpted lines are added to the current
data set or region. When EXCERPT is preceded by a break character, but
follows an EDIT or REGION command, the excerpted lines are added to the
data set or region. In this case, the data set or region must be new.
If the data set is not new, INSERT must be issued first to pOSition the
CLP to a line number other than the first line in the data set or
region. When EXCERPT (preceded by a break character) follows REVISE,
these lines replace the lines deleted by REVISE.

Examples: The user is editing data set XYZ, which has regions XYZl and
XYZ2. He wants to excerpt lines from data set ABC (regions ABCl and
ABC2). Lines in all regions are numbered in increments of 100.

1. The user wants to excerpt the entire data set AEC into new region
XYZ3.

User: region xyz3
Sys,User: 0000100 _excerpt abc

'Ihe system inserts data set ABC into the current region XYZ3.

2. The user wants to excerpt only lines 300 thro'lgh 500 from region
ABCl in data set ABC to the end of region XY' 1. Assume CLP is
positioned in region XYZ1.

User: insert last
~user: 0001100 _excerpt abc,abcl.300,500

The system inserts lines 300 through 500 from region ABCl at the
end of region XYZ1.

3. The user wants to replace lines 200 through 400 in the current
region DEF2 with lines 800 through 2000 in region ADD3 of another
data set MYDS.

User:
Sys,user:

revise 200,400,10
D000200_excerpt myds,add3,800,2000

The sy~tem replaces lines 300 through 500 in region CEF2 with lines
800 through 2000 from region ADD3, using an increment of 10.

EXCISE Command

This command deletes a line or a range of lines frow the current region.

r---------~--,
IOperationlOperand I
~---------+--1
I EXCISE I IN1=starting line] [. N2=ending line] I L _________ .L-____________________________________ " ___ " _______ . ___ . ______ J

156

Nl

N2

designates the line, or first of a series of lines, to be deleted
from the current regiOn.

Specified as: a one- to seven-digit decimal line number that .~
be absolute or relative.

LAST - last line in the current region.

System default: the value of the CLP.

designates the last line in a series of lines to be deleted fro.
the current region.

Specified as: a one- to seven-digit decimal line number that may
be abSOlute or relative.

LAST - last line in the current region.

System default: only the line specified in Nl is deleted.

Functional Description:
value specified in N1..

After EXCISE is executed, the CLP is set to the
The user is then prompted for a command.

caution: A language-processing command (EDIT, PROCCEF, or PLI) must be
invoked before the command is issued. .

programming Notes: Since the CLP is set to the value of Nl, the user
may follow this command with either an INSERl' or EXCERPT command. The
REVISE command ,is equivalent in function to EXCISE followed by INSERT.

Examples:

1. The user wants to delete line 113 in the current region.

User:
system:

~cise 113

2. The user wants to delete the next 10 lines beyond the CLP in the
current data set.

USer:
SYstem:

~cise n1=+l,n2=+10

3. The user wants to delete all lines between 100 and 300 in the cur­
rent region.

USer:
systerr,

~cise 101,299

EXECUTE Cozmnand

This command introduces a nonconversational task into the system.

r------~---------------------------- ----1 I operation I operand I
~------+--------------------------------------t
I EXECUTE IDSNAME=data set name I l _______ .L--____________________________________ . ___ _ J

DSNAME
identifies the VSAM (fixed-forrrat or variable-format) data set or
the VISAM line data set that resides on public storage and that
contains a series of canmands starting with LOGON and ending with

Part III: COlf~and Descriptions 157

LOGOFF. This data set tecoroes the SYSIN of the nonconversational
task.

specified as: a fully qualified data set name.

Functional Description: ~XECUTE requests creation of a nonconversation­
al task that is independent of the user's current tasks. A BSN is as­
signed for the task, and the task is created when task space becones
available.

programming Notes: The nonconversational task is controlled by the com­
mands in the SYSIN data set. Each SYSIN data set represents one task.

The EXECUTE command differs from the BACK command in these ways:

1. EXECUTE requests an independent nonoonversational task, rather than
changing the user"s conversational task to nonconversational roode.

2. The data set named in the EXECUTE command must contain LOGON and
LOGOFF commands and must reside on public storage. The data set
specified in the BACK command need only conclude with a LOGOFF com­
mand and can be private or public.

3. EXECUTE is accepted by the system even if no task space is current­
ly available. 'Ihe task will te created later. If task space is
not available when the BACK coromand is issued, the command is can­
celed, and the user continues convers?J.tional. processing as though
he had not issued the command.

Example: The user wants to create a nonconversational task. The com­
mands for the task are created in a data set named NEWTASK.

User:
sys;user:

edit newtask
0000100 logon u£er01
0000200 asrn progx.y,isd=y
0000300 logoff
0000400 end
~xecute newtask

The system accepts the task and assigns a ESN.

EXHIBIT Conrnand

This command allows the user to determine the status of any batch or
bulk I/O job he has initiated or to obtain a list of all currently ac­
tive system users.

r---------~--, I Operation I operand I
~-----~--------------.---------------.--.-'----------i
I EXHIBIT IOPTION1=(BWQ[,TYPE={AI.L I BSN. number}] I I
I I UID[pTYFE={CONV\BACKIUID.useridIALL}]} I L _________ 4--___ J

~: For special operands, see Manager's and Awuinistrator's Guide or
operator"s Guide.

OPTION1

158

specifies whether to display catch work queue activity, or active
user task sta tus.

Specified as:

TYPE

BWQ - batch work queue status.
UlD - active user task status.

specifies the data to be displayed.

specified for BWQ as:

ALL - All BWQ entries, for the user, are displayed.

BSN.number - The entry assigned to the BSN is displayed. (The BSH
is a decimal numter from 251 to 9999.>

System default: ALL.

Specified for UlD as:

CONV - All conversational tasks are displayed.

BACK - All nonconversational tasks are displayed.

UID.userid - All tasks are displayed for the specified USERlD (from
three to eight alphameric characters).

ALL - All active tasks are displayed.

System default: ALL.

Functional Description: EXHIBI~ displays BWQ or user infor.mation. For
OPTION1=UID, the following information is displayed:

USERID -- The user's identification.
TID -- The task number assigned to the task.
TYPE Either CONV for conversational or BACK for

nonconver sa tiona 1.
SYSI -- Either a symtolic device address of SYSIN/SYSOUT for a con­

versational task or a BSN for a nonconversational task.

For OPTION1=BWQ, the following information is displayed.

BS,N -­
USERID
TID -­
TYPE

STAT

Batch sequence number.
-- The user's identification.
The task number assigned to the task.

Batch request type: LIST (print), EXECUTE, PUNCH, itTAPE,
or WTAPE.
status of the job request:

A active
P peuding (awaiting execution)
C canceled
S shutdown
E -- Erase

DEV -- Type of device required for the job (for example, un unit
record) •

STAID -- station identification for Remote ~ob Entry (RJE) jobs.
DSNAME -- IBta set named for the job (up to 35 characters).

Caution: After the user issues the EXHIBIT command, his catalog COD­
tains a pointer to the SYSUBWQ data set. This data set contains the BWQ
information displayed by EXHIBIT. The user may delete this pointer by
issuing:

Part III: Command Descriptions 159

delete sysubwq

Example:

1. The user wants to display all active tasks.

USer:
system:

exhibit option1=uid,type=all
ACTIVE USER STATUS AT 10:31:59
USERID TID TYPE SYSI

06/1V7X

USERID01 0056 CONV 0089 USERID02 0057 CCNV 0090
USERID06 0060 BAC~ 0259

2. The user wants to display the status of ilis nonconversational job
that has BSN=262.

User:
system:

exhibit bwq,type=bsn.262
BATCH WORK QUEUE STATUS AT 10:34
BSN USERID TID TYPE STAT ~EV
0262 USERID03 057 LIST P U/R

06/11/1X
STAII:
RJESTA01

DSNAME
DSNAME.HIS

EXIT Command

This command bypasses execution of the current program or cOK~and, and
the next command in the source list is executed.

r-------~-----------------------,'----------------------------,

I operation I Operand I
~--------+------------------------,,-----------------------1
IEXIT I [SIRTEST={YIN}] I L--______ ~ __ J

SIRTEST
specifies whether the system checks for a user-defined SIR routine.

Specified as:

N - system does not check.

Y - system checks for a user-defined SIR routine. If one exists,
the EXIT function is canceled.

System default: N.

Functional Description: The EXIT conmand returns control to the next
command or program in the current source 1 ist,. Any cou;roand that follows
EXIT is ignored. After the current source list is processed, the system
prompts for a command. If the user then enters t~he GO command, a previ­
ously interrupted source list is executed.

If the SIR~EST parameter is set to Y, the systerr first checks for any
active user~defined SIR routines. If one is active, the EXIT comnand is
canceled. When the CLEANUP implicit operand is set to Y, EXIT cancels
all user-defined AETD and SIR routines. An exit from an AETD routine
causes control to return to the prograro that was processing when the
AETD routine was invoked by an attention interruption. (AETD and SIR
routines are explained in Assembler User Macro Instructions.)

Example: The user interrupts a conmand string containing three program
calls (PROGA, PROGB, PROGC); the interruption occurred in PROGB. He
then issues the EXIT command:

160

User: (presses ATTENTION key)
SySferr: !
User: exit

The system terminates current command processing -- PROGB -- and
passes control to the next program in the source list --PROGC.

If the user had interrupted a source list before he entered the source
list containing calls to PBCGA, PBOGB, and PROGC, he could resume proc­
essing at that earlier source list" by issuing the GO command after the
system had processed PROGA, PROGB, and PROGC.

EXPlAIN Conmand

This command allows the user to obtain explanations of entire messages,
or of designated words within a message, that the system has generated.

r---------~-----------------------------~----------------------------, I Operation I Operand I
~---------+--1 I EXPLAI N I{MSGID I ORIG I N I word I TEXT I RESPONSE I I
I I [,message identificationJIMSGEIMSGS} I l _________ L_____________________________________ _ ___ ~

MSGID
the identification of some message in the Dessage file (SYSMLF).
Indicates that the user wishes to see the message identification.
Only the message ID will be shown.

Specified as: MSGID

ORIGIN

word

TEXT

specifies that the user wants to have displayed the location of the
program (the system's or the user's) that caused the message to be
generated. EVery message has an identification code, which is also
displayed.

Specified as: ORIGIN

Note: This form of EXPLAIN assists the user in isolating the
module that caused the message generation and is intended primarily
for system programmers.

specifies that a word, within the text of the last message, is to
be explained.

Specified as: a normal or quoted string .•

specifies that a code-identified message will be displayed in full
text.

Specified as: TEXT

RESPO~SE

MSGE

MSGS

specifies that the possible responses to the last message are to be
displayed.

Specified as: RESPONSE

indicates that the user wants the extended message to be displayed.

Specified as: MSGE

indicates that the user wants the standard message displayed.

Part III: Co"mand Descriptions 161

specified as: MSGS

message identification
specifies a message ID for which a word, text, response, extended
message, or standard message is. to be di splayed. This form, is used
when the request is for a message other than the most recently is­
sued rressage.

Specified as: a one- to eight-character message 10.

FWlctional Description: If no operand is used with the EXPIAIN command,
the preceding message is restated more explicitly. If the message is
not explainable but contains explainabl e words, these words are e la­
borated: otherwise, the system's reply is Wno explanation.-

Programming Notes: Only one of the options may be specified when an
EXPLAIN command is issued. If the user wants to use more than one
option, he must give additional EXPLAIN commands.

Example: A user is executing a module named UPTCM as a part of his con­
versational task. This module pronpts for the data set organization,
and this message is displayed at the user's terminal:

UPTCM110 ENTER VAM OS. CRG.

The user dces not understand what is required, so he requests an
explanation:

explain

The explanation for the current message UPTCM110 is displayed:

UPTCM170 A VAM DATA SET'S ORGANIZATION DEFINES THE OVERALL RELA~ICN­
SHIPS OF THE LOGICAL RECCRDS MAKING UP THE I:A'. A SET
ENTER ••• VP ••• OR ••• VS ••• OR ••• VI ••••

After reading the message explanation, the user wants more information
about the explainable word VAM:

explain vam

A definition of VAM is displayed at his terminal. An explanation mes­
sage can, in turn, contain explainable words for which further clarifi­
cation can be requested. Word explanations can continue to any number
of levels.

The user eventually understands the message, but now he is uncertain of
the form he should use in a valid response. He enters:

explain response

NOW, all possible responses to the message identified by OPTCM110 are
displayed:

VALID RESPONSES ARE: VP, VI, VS

Later in his terminal session~ the user again needs the explanation of
UPTCM110; he enters:

explain text,uptcm170

The TEXT option with the message ID is necessary hf"'-e because the expla­
nation requested is not for the most recently issl1ed message.

16~

FILEDEF Command

This co~mand defines a dataset and describes its characteristics to the
system (DDEF) • Additionally, it provides the link between TSS and OS
ddnames for the Program product Lanoguage Interface.

~: The operands with the exception of MACRO, OSr:DN and OSREYLE are
identical to DDEF operands •

..------,.-------------------------------- ,.
I Operation I operand I
~-------t----- ------------------1
IFILEDEF IDDNAME=ddname,DSORG=VIIVSIVP[,DSNAME=dsname •••] I
I I [,MAC'RO=CONC] {.OSDDN=osddnamel [, OSKEYLE=nwnber] I L _______ L---__ --...J

DDNAME,DSORG,DSNAME, •••
these are identical to DDEF operands defined in this manual.

MACRO

OSDDN

signifies that the dataset specified in the r:SNAME operand is to be
concatenated with another dataset with the same OS ddname (OSDDN
parameter). The OSDDN parameter is required in this case because
the TSS ddname (DONAM! option) cannot be the same for both data­
sets. See example.

Specified as: CONe

specifies the OS ddname with which the TSS dataset is to be associ­
ated. If no OSDON is specified, it is assumed to be the same as
the TSS ddname. If the ddname is specif ied as SYSxxx, the TSS
ddname will not be changed to TSSxxx, but the OS ddname will remain
SYSxxx.

OSREYLE
specifies the length of the key. This parameter is required when
OS/VS BDAM or ISAM access methods are being sinulated.

FUnctional description: The FILEDEF command causes a I:I:EP to be issued
against the TSS dataset specified with the ddname specified. It also
causes a control block to be built which will be the link between the OS
dataset specification and the TSS specification. The DDEF is issued
exactly as written in the first operands of the FILEDEF parameter list.

Examples: FILEDEF a,vp,dset1

A control block is created relating the TSS dataset (Wdset1W) and a TSS
ddname of WaW with an OS description of that dataset with an OS ddname
also of wa w •

FILEDEF b,vi,dsetl,OSDDN=dcbout

In this case the TSS and OS ddnames are different but the control block
built associates them at execution time.

FILEDEF mac1,vp,macbbl, OSDON=syslib F'ILEDEF

mac2,vp,macbb2,OSDDN=syslib,macro=oonc FILEDEF

mac3 ,vi, macb!:3 ,0SDDN=syslib,macro=conc

This example shows how to wconcatenateW three macro libraries to be read
by one OS read statement and one OS ddname. The last one filedeffed

Part III: Coltllland Descriptions 163

will be searched
previous will be
region datasets.
access method is

for the requested member and if it is not found, the
searched, etc. The TSS libraries may be partitioned or
This facility is only valid if the os partitioned

used by the executing program.

A FILEDEF command referring to the same dataset name as a previous FILE­
DEF will replace the old ddname with the new ddna~e.

FILEREL Command

This command deletes the data definition established by a previously is­
sued FILEDEF command. It also disconnects the OS/TSS link.

r---------~--, I Operation I Operand , I
~---------+---_f I FlLEREL 10SDDN=osddnaJfe I L _________ 4-___ J

OSDDN
identifies the dataset definition created by a FlLEDEF command.

Functional description: FILEREL will cause a RELEASE to be done on each
TSS ddname associated with the specified OS ddname. It also causes the
control bleck linking the os dataset specification with the TSS specifi­
cation to be destroyed. This will not be done unless all DCB's against
the datasets are closed.

Example: FILEREL syslib

This will cause all filedef·s associated with th~ OS dataset specifica­
tion to be released as well as destroying the lilking control blocks.

FTN COll'mand

This command invokes the FORTRAN cowpiler to coa-pile a source program
module.

r---------~---, I operation I Operand I
~---------+---_f
IFTN INAME=module name[,STORED={YIN1]£,VERID=versien I
I I identification] I
I I [,ISD={YIN1]{,SLIST={YIN1](,OBLIST={YIN1][,CRLIST={YINl) I
I I [,STEDIT={YIN}) [,MMAP={YIN}] [,BCD={YIN}) !,PUELIC={YIN1] I
I I [,LISTDS={YIN}) [,LINCR=(first line number, increment) 1 I L _________ L--__ J

NAME

164

identifies the object module to be created. If the source program
module (that is, source language data set) is prestored, the user
must have named it:

SOURCE.name

If it is not prestored, the system automatically prefixes SOURCE.
to the source program module name. The listing data set is auto­
matically named:

LIST.name(O)

Specified as: the part of the source program module name that fol­
lows SOURCE. -- if the source program is prestored -- otherwise,
anyone to eight alphameric characters, the first of which must be
alphabetic. The otject module name must not be identical to other
external entry points in the library in which it is stored. See
FORTRAN programmer's Guide for a complete list of naming rules.

STORED
specifies whether the source program module is prestored.

Speci fi ed as:

Y - source program is prestored.
N - source program is not prestored.

System default: N.

VERID

ISD

SLIST

specifies the version identification to be assigned to the object
program module.

specified as: from one to eight alphameric characters.

System default: the listing and the object n·odules are
tiI%'e-stamped.

specifies whether an internal symbol dictionary (ISO) is to be
produced.

Specified as:

Y - ISD is produced.
N - lSI) is not produ ced.

System default: Y.

specifies whether a source program listing is to be produced.

Specified as:

Y - source program listing is produced.
N - source program listing is not produced.

Systew default: Y.

OBLIST
specifies whether an object prOgram listing is to be produced.

specified as:

Y - object program listing is produced.
N - otject program listing is not produced.

system default: N.

CRLIST
specifies whether a cross-reference listing is to te produced.

specified as:

Part III: Connand Descriptions 165

Y - cross-reference listing is produced.
N - cross-reference listing is not produced.

System default: N.

STEDIT

MMAP

BCD

specifies whether the edited symbol table is to be listed.

Specified as:

Y - edited symbol table is produced.
N - edited symbol table is not produced.

Systerr. default: N.

specifies whether a memo~y map is to be produced.

Specified as:

Y - memory map is produced.
N - memory map is not produced.

System default: N.

specifies whether input contains the BCD (binary coded decimal)
form cf special characters.

specified as:

Y - input contains BCD form of special characters.
N - input does not contain BCD form of special characters.

System default: N.

PUBLIC
specifies whether the object nodule created has a putlic (rather
than Frivate) CSECT attribute.

specified as:

Y - module has putlic CSECT attribute.
N - module does not have public CSECT attr ibute.

System default: N.

LIS'IDS

166

determines whether the user-requested listings from the language
processors are to te placed in a list data set or Flaced directly
on SYSOUT.

Specified as:

Y - placed in list data set.
N - listings to SY30UT.

System default: Y.

LINCR
specifies the line number to be assigned to the first line of the
source language data set and the increment to be applied to suc­
ceeding line numbers.

Specified as: two three- to seven-digit decimal numbers .. separated
by a comma and enclosed in parentheses; the last two digits in each
number must be zeros.

System default: (100,100) •

Note: This operand is ignored when STORE:C=Y.

Functional Description: see wLanguage Processing- in Section 3 of Part
II.

Caution: 'lhe command is canceled if invalid operands are entered.

EXample: The user wants to enter FORl'RAN source language statements
from his terminal. The object module is to be named R~~DER; the start­
ing line number and the increment are 100. Source program. object pro­
gram. and cross-reference listings are requested. The following program
multiplies two digits:

Sys,user: ftn raader,slist=y,oblist=y,crlist=y,isd=n

systerr:

0000100 read (5,10) a,b
000020010 format (lx.2f6.2)
000030020 format (3f10.3)
0000400 atb=a.b
0000500 write (6,20) a,b,atb
0000600 stop
0000100 end

FTNH Command

This command will invoke the FORTRAN H EXTENDED program product using
the program product Language Interface.

r---------~--- , I Operation I Operand I
.. -------f---f
I FTNH I NAME=modulename [,CSOPTS= (opt1,opt2, •••)] . I
I I [« SOURCEDS=sourcedsname] I l _______ L--____________________________________ J

NJ\ME
identifies the name by which the object program will be known to
TSS. It consists of one to eight alphameric characters .. the first
of which is alphabetic. If the SOURCEDS option is not specified,
there must exist a dataset called SOURCE. name which is assumed to
be the source program to be compiled.

OSOPTS
specifies a list of OS options to be in effect during the
compilation.

SOURCE I NOSOURCE

Abbreviated
Form

SINOS

Abbreviated
!2!!!

XREFINOXREF

Part III: COmmand Descriptions 167

LINECOUNTCnumber)~

LIS'IINOLIST

OBJECT I NOOBJECT2

DECKI NODECK

OPTIMlZE(OI112}3

NOOPTIMIZE

FORMATINOFORMA~

GOSTMTINOGOSTMT5

MAP I NOMAP

2. Compiler

a Compiler

also

also

3 Compiler also

4 compiler also

5 Compiler also

6 Compiler also

LCCnumber)

OBJINCOBJ

OPT(OI112)

NCOPI'

F~INOFMT

accepts the old

accepts the old

accepts the old

accepts the old

accepts the old

accepts the old

NAME (name) 6

EBCDICIBCI:

. SIZE (~nnnlO

AUTODBL(value)

ALCI NOALC

ANSFI NOANSF

EBIBCD

AD (value)

FLAG (1) IFLAG(E) IFLAG(S)

form: LINECNT=xx

form: LOAr:INOLOAD

form: OPT=OI112

form: EDITINOEDIT

form: ItlNOID

form: NAME=name

Additional information is available in Appendix R and the CS FORTRAN H
EXTENDED programmer's Guide.

SOURCEDS
specifies the nane of the input dataset (S.SIN to CS) if source.
module is not to be used.

GAV Command

This command searches the entire Corrbined Dictionary for whatever types
of entries the user has specified and presents the data on the user's
SYSOUT.

r---------~--~--, I Operation I operand I
r---------+---~
IGAV I [TYPE={SYNIDEFICSW}] I l _________ ~ __ J

TYPE

168

identifies the type of search.

Specified as: SYN (Synonyms), DEF (Defaults), or CSW (Command Sym­
bol Words).

system Default: All three types will be processed.

Functional Description: The Combined Dictionay will be searched
for the type of entry specified. If TYPE is defaulted, a search
will be performed for all three types. Output will be presented at
the user' s SYSOUT in the form 'TERM VALUE' for synonyms and
defaults; for command symbol words, only the names will be listed,
though the kind of CSW will be indicated by the header.

Examples: If SYNONYM B = BARB and SET A = 8 had been previously
entered during the task .. and no other synonyms or cOOl1lland symbol
words exist for this task.. then;

User:
SyStem:

User:
SYStem:

gav syn
···SYNONYMS···

B BARB

gav csw
••• INTEGER CSWORDS •••
A

GDV Command

This command will list on the userls SYSOUT the default value associated
with a specified term.

r---------T-- ----------, I operation IOperand I
... -------+---------------------------.-----------------1
IGDV IDFLT = term I L ____ ~ ___ L__ ___ J

DFLT
is the term which is to be searched for.

specified as: 1-8 character name.

Default: None

Functional Description: The user's combined Dictionary will be
searched for the specified term. If this term is found, its cur­
rent default value will be listed. If not, the message ·THE~E IS
NO DEFAULT- will· be issued.

Example;

User: default base = 150
user: gdv base
system: 150

GO Corrmand

This cowmand resumes execution of a previously interrupted object pro­
gram (or command).

r--------~---, I operation I Operand I
~---------+--I
IGO I I l ________ ~ ___ J

Note: There are no operands.

Functional Description: GO gives control to the roost recently inter­
rupted object program or command. When GO is followed by other commands
in a command statement, the succeeding commands are ignored after GO is
executed.

The GO command issues a message stating the location at which execution
continues.

caution: In a dynamic statement, GO is meaningless; a diagnostic mes­
sage is issued. In an immediate statement, GO must appear last, because
the corrmands following are ignored; no diagnostic message is issued.

Part III: Oommand tescriptions 169

Proqramming Notes: GO is meaningful when it follows an attention inter­
ruption or after PCS has been used to S~OP execution. Otherwise, the
command is canceled.

Example: In executing his program ABC, the user wants to interrupt
execution and modify his program.

USer: call abc

The systew inVOkes ABC.

USer:
SYstem:
User :

(presses ATTENTION key)
!
set Sr=6;go

The system resumes executing ABC from the point of interruption.

GOTO COlllmand

The GOTO canmand provides the ability to branch forward in PROCDEFs.

r---------~---~---------, I Operation I Operand I
.. -------+------------------~.-.-.-------------------__f
I GO TO l{commandIOUTI'comment"} I L ______ .L--_________________________ .,, ___________________ J

command\'ccmment'

OUT

110

specifies the command statement to which control is to be passed.

Specified as: a command name or comment no longer than 8 charac­
ters beginning immediately after the w)dersc~~e or semicolon of the
destination statement.

specifies that an immediate return to the calling procdef is to be
made.

Functional Description: The GCfl'O command is to .be used t.o branch
forward in a PROCDEF or nest of PROCDEF's. The GOTO command rou­
tine searches the source list until 1) the destination is found or
2) the end of the PRCCDEF is encountered or 3) the end of the nest
of PROCDEF·s is encountered. In case 2, if the destination was OUT
the search stops and return is made as if the PROCDEF had cOlrpleted
normally. If the destination was not OU~, the search continues un­
til case 1 or 3 occurs. If 3) occurs, control is returned to the
cOlll.mand system.

programming Notes: The destination operand is to be specified as
command name or as I comment' • The command or comment must begin in
the first column of the PROCDEF line or immediately after a semico­
lon if multiple commands per line are us ed. The destinat ion
operand may also be specified as input to the procdef - i.e., GOTO
$comllland or GOTO I $comment a • In addition, if GOTO OUT is speci­
fied, control will be returned to the program calling the PROCDEF
(the command system or another PROCDEF) as if the PROCDEF had com­
pleted norne.lly. If the command or comment cannot be found \Within
the PROCDEF in which the GCTO exists (except for OUT as above).
control will be returned to the command system~ Note that the com­
mand or comment must be local to the GOTO or in a hi.gher level PRO­
CDEF, i. e., you cannot "GOTO" a command or CO:n'J'>~nt in ;:t lower level
PROCDEF. The GOTO command may be used as thf? <:".oject command in an
IF statement.

Examples:

The user enters the following PROCDEFs:

~:
Sys, User:

User:
5yS;user:

procdef
0000100
0000200
0000300
0000400
0000500
0000600
0000700
0000800
0000900
0001000

sample1
param $1
display 'bEgin sampleP
if '$l'='3';goto 'call'
if '$l'='l'Jgoto 'label'
if '$l'='2':goto display
goto out
'label' display 'one';goto 'call':display 'two'
'call' sample2 $1
display 'return from sample2'
end

procdef sample2
0000100 param $1
0000200 if'$l'='3',goto 'label'
0000300 if '$1'='2'Jgoto 'two'
0000400 display 'error in input for sam~le2'
0000500 goto xxx
0000600 -label' display 'sample2-three'
0000700 goto out
0000800 'two' display 'sample2-two'
0000900 end

If the PROCDEFs specified above were issued with the following inputs,
the outputs would be:

1. User
syStem:

sample1 1
BEGIN SAMPLE1
ONE
ERROR IN INPUT FOR SAMPLE2

The GOTO xxx statement in sample2 causes an exit from all PROCDEFS, not
a return to PROCDEF samplel.

2. User:
System:

sample1 2
BEGIN SAMPLEl
TWO
SAMPLE2-TWO
RETURN FRCM SAMPLE2

The GOTO display in samplel will not cause a branch to 'LABEL' display
'one' because ·display· does not begin in the 1st column of the command
line .•

3. ~:
SYstem:

samplel 3
BEGIN SAMPLEl
SAMPLE2-TBREE
RETURN FROM SAMPLE2

GOTO 'label' in sample2 does not cause a branch to 'label' in samplel.
Also GOTO out in sample2 causes-a return to the samplel PROCDEF.

User: sample1 x
sYStem: BEG 1 N SAMPLEl

GOTO OUT in samplel causes an exit from the PROCIlEF.

Part III: Co~.and Descriptions 111

GSV Command

This cow~and will list the synonym value associated with a specified
term, or all terms associated with a specified synonym value.

r---------~------------------------.-----------------------------------, I operation I Operand I
~---------+--I
IGSV INAME = value or term (,SEARCH={'IIVll I L-________ ~ __ J

NAME
identifies the value or term which is to be searched for in the
user's Combined Dictionary.

specified as: if a term is specified - a 1-8 character name. If a
value is specified, a 1-244 character nawe.

SEARCH
identifies the type of search that is to be performed.

specified as: T or V

System default; V

Functional Description: If SEARCH==T, the COJl'bined Dictionary will
be searched for the specified term. If the term is found, the
value for the term will be listed on the user' s SYSaUT. If SEARCH::::
V, or if SEARCH is def aulted, the entice Combined Dictionary will
be searched for all terms associated with the specified value. The
term(s) and value will be presented on the user's SYSOUT.

progranming notes: To avoid confusion between 'term' and ·value'
remember that synonyms are entered in this wanner:

SYNONYM term = value.

Examples: If SYNONYM L = LIST had been entered previously, then:

User: gsv 1, t
System: LIST

OR
User: gsv list
System: L list

HASM Command

This corrmand causes the OS ASM H Program Product to be invoked using the
Program Product Language Interface.

r--------~--, I Operation I Operand I
1------+-------------------------------------.----------------I
IHASM INAME=module name[,OSOPTS=(optl,opt2, •••)] i
I J [,SOURCEDS=sourcedsnameJ I L _______ L __ ~

NAME

112

identifies the name by which the object program will ~e known to
TSS. It consists of one to eight alphamE>x ic cA},n:-acters, the first
of which is alphabetic. If the SOURCEDS option is not specified~

there must exist a dataset called SOURCE. name which is assumed to
be the source program to be compiled.

OSOPTS
specifies a list of os options·to be in effect during the .

DECK

cOJllpilation.

Each of these options has a standard or default value which is used
for the assembly if you do not specify an alternative value.

The option list BUst not be longer than 100 characters, including
the separating commas. You may specify the options in any order.
If contradictory options are used (for exanple, LIST and NOLIS'l),
the rightnDst option (in this case, NOLlS'I) is used.

The assembler options are:

[DECK INODECK] [,OBJECTINOOBJECTl (,LISTI NOLIST)

(,TESTINOTESTl [,'XREF(FULLISHORT) 'I NOXREFl

[,'LINECOUNT(nn)'] [,ALIGNINOALIGNl [,RENTINORENT]

[,ESDINOESDl [,RLDINORLD] (,BATCHINOBATCHl

[,'SYSPARM(string),FLAG(nnn)'1

text cards are written to the LOAD. module dataset in preparation
for object deck conversion.

OBJECT
text cards are placed in the dataset specified as PUNCH.module.

Note: The OBJECT and DECK options are independent of each other. Both
or-Deither can be specified, but only the output of D~CK is used for
conversion to a 'ISS formatted module.

ESO

RLD

BATCH

LIST

TEST

the assembler produces the External SymbOl Dictionary as part of
the listing.

the assembler produces the Relocation Dictionary as part of ~he
listing.

the assembler will do multiple assemblies under the control of a
single set of job control language cards.

an assembler listing is produced. Note that the NCLIST option
overrides the ESD, RLD, &ld XREF options.

the object module contains the special source symbol table required
by the test translator (TESTRAN) routine.

XREF (FULL)
the assembler listing will contain a cross reference table of all
sYJllbols used in the assembly. This includes symbols that are de­
fined but never referenced. 'Ihe assembler listing will also con­
tain a cross reference table of literals used in the assembly.

Part III: COmmand Descriptions 173

XREF (SHORT)

RENT

the assembler listing will contain a cross reference table of all
symbols that are referenced in the assembly. Any symbols defined
but not referenced are not included in the table. The asserntler
listing will also contain a cross reference table of literals used
in the assembly.

the assembler checks for a possible coding violation of program
reenterability.

LINEX:OUNT (nn)
the number of lines to be printed between headings in the listing
is nne The permissible range is 1 to 99 lines.

NOALIGN
the assembler suppresses the diagnostic message "IEV033 ALIGN~ENT
ERROR- if fixed point, floating-point, or logical data referenced
by an instruction operand is not aligned on the proper boundary_
The message will be produced, however, for references to instruc­
tions that are not aligned on the proper (halfword) boundary or for
data boundary violations for privileged instructions such as IPSW.
DC, OS, DXD, or CXD constants, llsually causing alignment, are not
aligned.

ALIGN
the assembler does not suppress the alignment error diagnostic rr.es­
sage; all alignment errors are diagnosed.

FLAG (nnn)
error diagnostic messages below severity code nnn will not appear
in the listing.Diagnostic messages can hav@ severity codes of 0, 4,
8, 12, 16, or 20 (0 is the least severe). MNOTEs can have a
severity code of 0 through 255.

For example, FLAG (8) will suppress messages for severity codes 0
through 7.

SYSPARM (string)
'string' is the value of the system variable symbol iSYSPARM. ~he
assembler uses iSYSPARM as a read-only SETC variable. If no value
is specified for the SYSPARM option, iSYSPARM will be a null
(empty) character string. The function of &SYSPARM is explained
inthe Assembler H Language Specifications and in OS/VS and DOS/VS
Assembler Language.

You cannot specify a SYSPARM value lOn<Jer than 56 characters. Two
quotes are needed to represent a single quote, and two ampersands
to represent a single ampersand.

SYSPARM «i'AM,··EO).FY)
assigns the following value to 'SYSPARM:

('AM, • EO) • FY.

Any parentheses inside the string must be paired.

Note: EVen though the formats of some of the options previously sup­
ported by Assembler H have been changed, you can use the old formats for
the following options: ALGN (now ALIGN), NOALGN (NOALIGN), LINECN1'=nn
(LlNECOUNT(nn». LOAD (OBJECT), NOLOAD (NOOBJECT) •. MULT (BATCH), NOMULT
(NOBATCH), XREF (XREF(FULL», MSGLEVEL=nnn fFlAG(mm».

11~

Default Options: If you do not code an option, the assembler
assumes a default option. The following default options are in­
cluded when Assembler H is shipped by IBM:

(DECK.NOOBJECT,LIST,NOTESTr·XRE'{FULL).LINECOUNT(55)',ALIGN~NOBATCH
,'SYSPARM(),FLAG(O)')

However, these may not be the default options in effect in your
installation. The defaults can be respecified when Assembler H is
installed. For example, NODECK can be made the default in place of
DECK. Also, a default option can be specified during installation
so that you cannot override it.

For further information, please refer to the OS Assembler H Pro­
grammer's Guide.

SOURCEDS
specifies the name of the input dataset if SOURCE. module is not
used.

FUnctional Description: HASH will invoke the ASM H program product.
The interface routine invoked by the HASH command will filedef all re­
quired datasets. PPLI will allow processing of a TSS region dataset in
place of a VP dataset (PO in CS/VS terms). The filedefs may be overri­
den by issuing the appropriate filedef commands before entering HASH.

One of the outputs of the HASH process will be a LOAD.name dataset.
This dataset will be input to the oeject deck converter (CESHR), which
will convert it to a TSS loadable rrodule. Additional output is a LIST.
name dataset which may be printed at the user's discretion.

This command, included in a command statement, specifies a condition
that must be satisfied if the remaining commands in the statement are to
be executed. IF can be combined with any other cOJrmand or commands in a
conditional statement to designate any valid condition.

r---------~--- ,
I Operation I operand I
~---------+--~
I IF I condi tion I L--_______ i--__ ~

condition
specifies a condition that must be true to allow execution of com­
mands that follow the IF command in the conditional statement.

specified as: a logical expression.

FUnctional Description: If the cOJrmand statement containing the IF com­
mand is a dynamic statement, the logical expression is evaluated only
when the instruction locations specified in the AT command are reached.
The counter associated with each dynamiC statement containing an AT com­
mand, referred to by the special character I, is incremented by one when
the specified instruction location is reached, whether or not the IF
condition is true. (See wTypes of Operand Specification- in Section 3
of Part II.) When more than one IF command aFpears in the same condi­
tional statement, the commands in the statement are executed from left
to right until an IF that specifies an unsatisfied condition is encoun­
tered, or the end of the statement is reached. For example:

if X<O~display X;if Y<O;display Y

Part III: Command Descriptions 115

X will be displayed whenever X is less than O~ but Y will be displayed
only when both X and Yare less than O.

PrOgramming Notes: An IF command fray stand alone, but it performs no
useful purFose. If the condition is true, there are no further' actions
to be performed. If the condition is false, the remainder of the state­
ment is ignored. In either case, the results appear to be the sarre.
The dynamic statement counter (I) can be used in forming a logical ex­
pression for the IF command. The counter may be used to control the
frequency at which, or the interval through which, the statement con­
taining IF is effective. In statements other than dynamic statements,
the counter has a constant value of 1.

Examples:

1. The user wants to test a logical condition and, if that condition
is true, to issue other program control commands. The condition is
true only when the value of his internal symbol variable PGM.NUM is
less than or equal to 14.

User: if pgm.num <=14;display pem

The system evaluates the logical expression and executes DISPLAY
only if the condition is true.

2. The user wants to execute more PCS commands every fifth time.

User: at p.x;if S = (%/5)*5;

The statement is not evaluated at this time. The system assigns a
nurrber to the dynamic statement.

INSER T Cotrrrand

This command places the data lines entered at t,1e terreinal in the cur­
rent region.

r-------~---,
I operation I operand I
~--------+---i
I INSERT I lNl=starting lineJ [, INCF=increment] I L _________ ~ ___ J

N1

INCR

176

identifies the line that is to be the first line or that is to pre­
cede data lines that are to be inserted in the current region or
data set.

Specified as: a one- to seven-digit decimal line numter that may
be absolute or relative.

LAST - last line in the current region.

SysteIT default: the value of the eLP.

specifies the value by which line numbers assigned to the new data
lines are incremented. The value of N1 is the base against which
the line numbers are incremented.

Specified as: from one to seven decimal dig'+:.s. An all-zero in­
crement is not allowed.

System default: 100.

FUnctional Description: If Nl (the CLP, if Nl is defaulted) does not
exist, the first line is .inserted at Nl. The increment is then added
for all subsequent lines inserted. 'If Nl exists, the first line" is
inserted at Nl plus the value of INCa. If this line also exists, the
command is canceled. When inserting lines between two existing lines,
the insertions are made until a new line would overlay an existing line
or until the new line is greater than the limiting line. When either of
these situations occurs, the coIml'land is canceled.

INSERT prompts the user with line numbers for his insertions. Each time
the RETURN key is pressed. a line number incremented by the value of
INCR is issued. To terminate INSERT processing, enter a command pre­
ceded by a break character. 'l'he CLP is set to the last line entered
plus the value of INCR. If adding INCR to the last line entered exceeds
the next existing line, CLP is set to the next existing line. If no
data lines are entered, the CLP is set to Ni.

Caution: INSERT does not overlay an existing line with a new line. A
language-processing command (EDIT, PROCDEF, or PLI) must be issued be­
fore the command is issued.

programming Notes: INSERT is provided for consecutive insertions.
UPDATE should be used for the insertion of arbitrary line numbers.

Examples:

1. The user wants to insert data lines, in increments of 10, following
line 600.

User:
Systerr-:

insert 600,10
0000610

Note: Assuming that line 700 is the next existing line number af­
ter line 600, nine lines can be inserted.

2. The user wants to insert lines in the data set 10 lines beyond the
CLP, with an increment of 100. The CLP is line 500.

User: insert n1=+10
System: 0001500

3. The user wants to add lines to the end of an existing data set.

User: insert last

The system prompts with the last line number plus the value of
INCR.

4. The user wants to generate a region with a blank name in a new
region data set.

User:

sys,user:
System:

default regsiz e=8
~dit myds
insert
0000100

Note: The REGION command must be issued to generate a region with
a blank name in an existing region data set. EDIT automatically
positions the CLF to the first region in an existing data set, and
INSERT, without operands, assumes this value for the CLP.

Part III: Co««and Cescriptions 117

JOBLIBS Command

This coumand gives the user the ability to move anyone of his JOELIBs
to the logical top of the JCBLlS chain.

r---------~---------------------~------------------------------------, I Operation I Operand I
t--------+---'I
I JOBLIBS IDDNAME=data definition name , l _________ ~ __ ~

DDNAt-lE
specifies the DDNAME of the DDEF used to define the JOBLIB to be
moved to the top of the JOBLIB chain. If defaulted# a diagnostic
is issued and the command is canceled.

E'unctional Description: Used to move the specified JOBLIB and its asso­
ciated DCB from its present position in the chain to the logical top of
the chain. This positioning is important when the loader and compilers
retrieve or store modules.

Examele: The user wants to store the next object program he assenbles
in the data set LIB1, which he defined as a JOBLIB earlier in his termi­
nal session. LIB1 has a DDNAME of Ai and currently is not the top JCB­
LIB in the chain. The user enters:

User: joblibs ai

The system moves the data set LIBl to the top of the JOBLIB chain.

K, :RA, and KE commands

These commands transfer control from the 1056 Card Reader to the attach­
ed 1052 printer-Keyboard. The KA and KB commcllds also control the
user's input character set.

r---------,---, I Operation I operand I
t---------t--i
I K I I l ________ ._~ __ J

r--------,---,
\ operation \ Operand I
t---------t--~-----i
I KA I I l _________ L ___ J

r--------,--- ----------, I Operation I operand t
t---------t--1
IKE I I l _________ L--___ . ___ J

Note: These commands have no operands.

Functional Description: The K, KA, and KB con~ands indicate to the sys­
tem that input will come from the user's 1052 Printer-Keyboard. To use
these comIr,ands, the user can include a K, KA, or KB card in his card
deck in the 1056 Card Reader; when the system reads this card, control
will return to the attached 1052 printer-Keyboard. The user can also
use the KA and I<B conunands to change the input character set whil e he is
entering commands from a terminal. The command~ [unction as follows:

178

R -- transfer control from the 1056 Card Reader to the attached
1052 Printer-Keyboard. If the card reader mode was CA, the
terminal mode is KA; if the card reader mode was CB, the ter­
minal mode is KB.

KA -- transfer control to the p~inter-keyboard and use the full
EBCDIC character set (that is, uppercase and lowercase charac­
ters are used as such: no folding takes place).

RB -- transfer control to the printer-keyboard and use the folded
EBCDIC character set (see below).

The input character set is determined by the value of the ALPHABET
operand: when the user first logs on to the systere or enters the KB
command, the ALPHABET=l, which indicates that the folded character set
is used for inp1t. When the user enters the KA command, ALPHABET=2, and
the full EECDIC character set is used. In the folded mode, lowercase
letters are converted to their uppercase equivalents. In the full or
·unfolded" mode, lowercase letters are not converted; they are used as
they are entered. In either mode, the special characters, ,., !, a,
I, and $ are valid alphabetic characters. They are never folded. Note
that system-supplied commands are coded in uppercase letters. If the
user is in KA mode, he must shift to upper-case to execute these
commands.

The values set with the KA and RB commands are in effect only for the
duration of the user's task; however, if a PROFILE command is entered,
following a RA or RB in the same task, the values are in effect for sub­
sequent tasks until the value is changed. For example, if the user is
in RB mode and enters the RA command, he will be in KA mode only for the
duration of the task. When he logs on again he will be back in RB mode.
If, however, he entered a PROFILE command later in the same task, he
will be in RA mode when he logs on for subsequent tasks. (See the de­
scription of the PROFILE command in Section 6 of Part II.)

Examples:

1. The user wants to have the system take input from the 1052 Printer­
Keyboard when the last card is read from the 1056 Card Reader (see
C, CA, and CB Commands). To do this, the user includes a K, KA, or
KB card as the last card in his input deck. When the system reads
this card, it goes to the 1052 printer-Reyboard for input.

2. The user wants to change his input character set from folded mode
to unfolded mode. He is already entering input from the terninal.

User: J(A

The system accepts input in full EECDIC reode.

REYWORD Conmand

This command displays command names, and their operands, from the user·s
command library -- USERLIB(SYSPRO) or from the system's command library
-- SYSLIB (SYSPRO) •

r---------~--,
I operation I Operand I
~---------f--i
IKEYWORD I(PROCNAME=con~and name] I L-________ L-__ J

PROCNAME
specifies a command name for which the user wants the operands
displayed.

Part III: Conmand Descriptions 179

Specified as: a valid command name.

System default: all commands and operands are displayed fran: tha
user's command library -- USERLIB(SYSPRO).

Functional Description: The KEYWO~D command displays command names and
their associated operands from the user's command libraryo It displays
the coITInoand name, all the parameters included on the PARAM line of a
PROCDEF, or all the keywords defined in the BPKD macro instruction for a
BUILTIN-defined command. If the user does not include a command name as
the operand of the KEYWORD command, all the command names and their
operands are displayed from the SYSPRO member of the user"s USERLIB data
set. If the user specifies a command name that does not exist, a diag"
nostic is issued and the command is cancel ed.

programming Notes: The KEYWORD oommand also displays comroand names and
operands from the system command library -- SYSLIB(SYSPRO). If you
enter a cOIrIlliind name as the operand of the KEYWORD command, the system
first searches USERLIB for the comnand. If the command is not there,
the system searches its own command library (1'n SYSLIB). However, some
system commands are not displayed. You are not able to use some of the
displayed parameters because either they are not permitted to your pri­
vilege class or they are dummy parameters used for system processing
only. Also, some commands (SYNONYM, DEFAULT. and the PCS commands) do
not use the system's parameter processing factii ties: the parameters for
these commands are seen only by the associated cOffmand processing rou­
tines. When you enter one of these commands as the operand of the KEY­
WORD cotrmand, the system does not dif:;play any parameters. (In these
cases, consult this manual for operand specifications.)

Exatrples:

1. The user wants to display all commands and operands from his COm­
mand library:

Us er : l£eyword

The system displays the <.."Ommand names and:lperands from the user's
USERLIB(SYSPRO data set.)

2. The user wants to see the operands for the FRAMIS command:

User:
'SYStem:

keyword framis
FRAMIS, PARAMi, PARAM2, PARAM3

LINE? Command

This command presents one or more lines from a line data set to SYSOUT.

,------.-----------------------------'----'-------------------,
I Operation I Operand I
.. ------~-----------.-----------------.--------.---,--~--1
I LINE? IDSNAME=data set name [(lI1ember name)] I
I I[,{line number \ (first line number.last line nurnber)}(,~ •• J] I l _________ L-___ .1

DSNAME

180

identifies a line data set that must be defined b.l a DDEF command
within the current task or must be cata1.oged.

Specified as: a fully qualified data set name and (optionally) the
member name of a VPAM data set,. When specified, the member name
must be enclosed in parentheses, immediately following the data set
name.

1 in e DUMber
identifies a single line to be displayed from the specified data
set.

Specified as: a one- to seven-digit decimal number.

system default: if the "first 1ine number,last line number"
operand is specified, that range of lines is displayed. Otherwise,
entire contents of data set are displayed.

first line number, last line number
identifies a range of lines to be displayed.

specified as: two one- to seven-digit decimal numbers, separated
by a comma and enclosed in parentheses.

system default: if the "line number" operand is specified, that
line is displayed; otherwise, the entire contents of the data set
are displayed.

Functional Description: When the user specifies a line number or a
first line number that does not exist but is within the bounds of the
data set, the next-higher line is presented.

If the user specifies a range of line numbers that in some way overlaps
the boundaries of the data set, all lines in the data set within the
specified range are presented. If the range overlaps the end of the
data set, the user is informed when the end of the data set is reaChed.

The format of ootput for line data set is as follows:

Position
1-7

8

9

Contents
line number

blank if line was created from terminal keyboard;
C if line was created froIT card reader

text

The format of output for language processor listing data set is as
follows :

Position
1-130

Contents
text (record positions 2 through 131)

caution: In the specification of a range of line numbers, the first
line number must be less than or equal to the last line number. A maxi­
mum of 10 line-number ranges may be specified in a single execution of
the LINE? command.

proqrannning NOtes: In conversational mode, the user can terminate the
presentaticn at any point by pressing his ATTENTION key.

The user can present lines only from a data set that belongs to him or
that he is now sharing. He may request the lines in any numerical
sequence.

Exawples:

1. The user wants lines 800 through 1100 and line 1400 of data set
NAM3 to be presented.

USer: line? nam3,(SOO,1100),1400

Part III: Corrmand Descriptions 181

The system presents the specified lines.

2. The user wants lines 900 through 2400 an d lines IU'OO through 16000
of member AB1 of data set REPLAY to be presented.

User: line? replay(atl),(900.2400),(4400,16000)

The system presents the specified lines.

3. The user wants his entire data set, LIST. PLAYER, to be presented.

~: line? list. player

The system presents contents of the data set.

LI S'I cOl1llland

This command displays a line, or raDg'e of lines, or the value of the CLP
at the user's terminal or SYSOUT.

r---------~-- , I operation I Operand i
~---------+---~
ILIST I [Nl={starting positionlCLP}} [,N2=ending position] I
I I [,CHAR=(CIHIMl1 I L _________ L--__ J

Nt

N2

182

identifies the line, or. first of a range of lines, or the value of
the CLP in the current region to be displayed.

Specified as: a one- to seven-digit decimal line number that may
be absolute or relative.

LAST - last line in the current region.
CLP - value of current line pointer.

Note: If the user wants to start the 1is1:.1og at a character posi­
tion other than the first (position 1) position cf data in tbe
specified line, he can specify the starting position as an atsolute
one- to four-digit decimal number, enclosed in parentheses and im­
mediately following the line number.

System default: when N2 is specified, the value of the CLP is
assumed. Ot.herwise, the entire data set is listed, including rec­
ord keys.

identifies the last line in a range of lines of the current region
to be displayed.

specified as: a one- to seven-digit decimal line number that may
be absolute or relative.

LAST - last line in the current region.

Note: If the user wants to end the listing at any character posi­
tion other than the last in the specified line, he can specify the
ending position as an absolute one- to fcur-digit decimal nunber,
enclosed in parentheses and inmediately following the line number.
This ending character is included in the display.

System default: when N1 is specified, it is the only line listed.
Otherwise, the entire data set is listed"

CHAR
specifies type of output.

Specified as:

C - character.
H - hex.
M - mixed.

System default: C.

Functional Description: L~ST displays entire lines or the specified
portions of lines. If LINENO=Y, region names and line numbers are in­
cluded. If character positions other than the first or last positions
are specified for N1 or N2, these positions apply to all lines in the
specified range. After LIST is executed, the CLP is set to the next
line number after N2. If N2 is the last line of the data set, the CLP
is set to N2 plus the value of INCR. The user is then ~rompted for a
comJlland.

The mode of the output data is determined by the CHAR operand in the
LIST cO[rrnand:

CBAR=C - all printable characters are displayed in character nota­
tion; unprintable characters are ignored.

CHAR=H - the line is displayed in hexadecimal notation.

CHAR=M - all printable characters are displayed in character nota­
tion; unprintable characters are displayed in hexadecimal
notation, and are underlined.

caution: A language-processing command (EDIT, PROCDEF, or PLI) must be
invoked before the command is issued.

If CBAR=M, and if the user has altered his output translation table, the
results of the display are unpredictable.

Examples: The user has previously issued a REGION command to create the
following data set:

usa:
sys,user:

!.egion anyregn
0000100 line 1
0000200 line 2
0000300 line 3

1. Assuming the CLP is 400, the user can issue any of these LIST com­
mands to display the entire data set.

USer: list 100,300
or

list -3,last
or

list -5.+1

(~: When N1 and N2 exceed the limits of the data set, the low­
est and highest line numbers in the data set are assumed. Refer to
"line number specification- in the list of general terms in Section
2 of Part II.)

SysteIl': ANYREGNO000100 LINE 1
ANYREGN0000200 LINE 2

Part III: COmmand Descriptions 183

N1YRBGIIOOO01OG LINE 3

2. Display positions 2 through 4 of the data in lines 200 through 300.

User:
System:

list 200(2) ,300(4) .
INE
INE

3. Display the value of the eLP.

User:
systetr:

list clp
0000400

4. List the first and second characters of data in line 100.

User:
Systerr:

list 100(1),100(2)
LI

LL Corrmand

The LL comIrand is used to define the maximum length of any line to be
written to the SYSOUT.

r---------~---, I Operation (Operand I
~---------+--i
ILL ILGH=,*TRUNCATE=,*RESET= I l _________ ~ ___ J

LGH
decimal number, 1 or greater, defining the 11ngth of the ouput line
which can be written to the SYSOUT. Any lir.~ greater in length,
will be continued on the next line.

Specified as: A decimal number from 1 to maximum physical line
length for SYSOUT.

system default:
2741 -- 132
Te letYFe -- 72
3215/1052-7 132

*TRUNCATE
self-defining keyword. If TRUNCATE=Y is specified, then any output
line greater than the specified "LGH' value will not be continued
on the next line. Any text in excess of the above LGH value will
be de let ed and not displ ayed.

Specified as:
Y - truncate output.
N = de not truncate output.

Systerr Default: N

*t{ESET

184

(see specification below)

Specified as:
Y - restore the original system default length dnd turn off trunc­

ate, if on.

N = nc effect.

System Defaultl N

Functional Description: The LL command can be used to lengthen and
shorten the messages and data displayed by the system. On long lines,
the user can also have the system delete any data over a specified
length instead of writing continuation lines on the terminal.

The system defines a line as all output from one write request and not
containing either a 'Newline" or a 'Carriage Return, Suppress' control
character.

If the data contains a 'Newline' control character, then the system will
treat each 'Newline' character as the end of one line of output and will
~rite the d~ta that follows on the next line.

LNR Command

This command invokes the linkage editor to link-edit one or more object
modules.

r---------~--------------------------·---------------------------------,
I Operation I operand I
~---------+--f ILNK INAME=module namel,STORED={YIN}] I
I I [,LIB=data definition name of 1 ibrary] I
I I [,VERID=version identification] L. TSD=(YI N}] [,PMDLIST={YIN}] I
I I [,LISTDS=(YIN}1 [,LINCR=(first line number,increment)] I L _________ L-___ J

NAME
identifies the object module to be created. If the source program,
consisting of the control statements that direct the linkage edi­
tor, is prestored, the user must have narred it SOURCE. name.

If it is not prestored, the system automatically prefixes SOURCE.
to the source program module name. The listing data set will auto­
matically be named LIST.name(O).

Specified as: the part of the source program module name that fol­
lows SOURCE. if the source program is prestored. Otherwise, any
character string of from one to eight alphameric characters, the
first of which must be alphabetic, can be specified. The object
module name must not be identical to other external entry points in
that library.

STORED

LIB

specifies whether or not the source progran is prestored.

Specified as:

Y - source program is prestored.
N - source program is not prestored.

system default: N.

identifies the library in which the new object module is to be in­
cluded. The user must either choose a library that does not con­
tain any control section or entry point names identical to those in
the output module or must rename the control section and entry
point names in the output module during linkage editing.

Part III: COrrmand Descriptions 185

Specified as: the data definition name of the library.

System default: the last-mentioned library is assumed (that is,
the user library or a job library).

VERIO

ISO

specifies the version identification to be assigned to the object
program.

Specified as: from one to eight alphameric characters.

§Ystem default: the listing and the crea·ted modules are
time-stamped.

specifies whether an internal symbol dictionary (ISD) is to te
produced.

Speci tied as:

Y - ISD is produced.
N - IS:C is not prodn cede

System default: Y.

Note: An !SD can bE, produced only if the source module contains an
ISO.

PMDLIST
specifies whet.her a program module dictionary (PMD) listing is to
be produced.

Specified as:

Y - PMD listing is produced.
N - PMO listing is not produced.

Syste~ default: N.

LISTDS

LINCR

186

determines whether the user-requested listings from the language
processors are to be placed in a list data set or Flaced directly
on SYSOUT.

Specified as:

Y - place in list data set.
N - listings to SYSOU'I.

System defau H: : Y *

specifies the line number to be aSSigned to the first line of the
source 1 anguage data set and the increment to be a~plied to suc­
ceeding line numbers.

Specified Ci?: two three- to seven-digit decimal numbers separated
by a comma and enclosed in parentheses. The last two digits in
each number must be zeros.

System default: (100, 100).

Note: This operand is ignored when S'IORED=Y.

Functional Description: see -Language processing,- in Section 3 of Part
II.

caution: The output module from the linkage editor cannot be placed in
the library specified in the input operand if that library contains
modules whose control section or entry point names are identical to con­
trol section or entry point names in the output module.

The command is canceled if invalid operands are entered.

Example: 'lhe user wants to link-edit modules into an object module
named ABeD. COnversationally, he enters all LNR operands and linkage­
editor control statements from the terminal. The linkage editor takes
default values for the remaining operands, which designate a starting
line number and increment of 100, the module to be placed in the library
currently at the top of the user's program library list, the listing to
be time-stamped, an lSD, and no PMD listing.

User: Ink abcd,n

LOAD Command

This command loads an object module, and all other object modules to
which that module implicitly refers, into virtual storage, but does not
initiate program execution.

r---------T--, I operation I Operand I
~--------+--~ I LOAD I [NAME=entry point name] I l _________ L--___ -J

NAME
identifies the module to be loaded.

Specified as: a module name or external entry point without
offset.

system default: the last module referenced by the system is
loaded.

FUnctional Description: When the LOAD command is executed, the system
searches the libraries on the task's current program library list to
find the specified object module and loads the module. If the module is
already loaded, no action is taken. If that module is not implicitly
linked to.other modules, no further loading takes place. If that module
is implicitly linked to one or more other modules, those modules, and
any other modules to which they are implicitly linked, are loaded by a
similar search-and-allocate procedure. When a module to be loaded can­
not be found, a diagnostic message is issued.

When the LOAD command is issued with no operands, the user"s module last
referenced by one of the following commands is loaded: PLI, ASM, LNR,
FTN, LOAD, UNLOAD, CALL with a module name specified, or an implicit
call to a module.

In the case of FORTRAN-written programs, a LOAC command specifying the
main (or root) program causes the entire program to be loaded, because
all FORTRAN subprogram modules are implicitly linked to the main wodule.

Part Ill: Coa~and Descriptions 187

Assembler-written modules can be implicitly or explicitly linked to ot~
er modules. Explicitly linked object modules (for example, explicitly
called or loaded subroutines of a program1s main module) are not loaded
ioihen a LOAD command is executed; they are loaded one at a time during
execution as each explicit linkage is processed.

Caution: A FORTRAN COMMON block program must be loaded by module name,
not COMMON block name, because only the module .name can be found by the
dynamic loader.

Example: Load module ABC, and all modules to which it implicitly
refers.

User: load abc

The system loads ABC and all implicitly linked modules into virtual
storage.

LOCATE Command

This command searches a region for a specified character string. LO~ATE
does not alter the referenced data.

r---------~---, I Operation I Operand I
;---------+--i
ILOCATE I £N1=starting position] [,N2=ending {:osition1 I
I I [,STRING=character string] I . L_~ _______ L ___________ · _______________________________________ J

N1

1~2 .

188

identifies a line, or the first of a series of lines. in the cur­
rent region to be searched for STRING.

Specified as: a one- to seven-digit decimal line number that may
be absolute or relative.

LAST -- last line in the current region.

Note: If the user wants to start the search at a character posi­
tion other than the first character of the record1s key (position
IU, he can specify the starting position enclosed in parentheses,
and inmediately following the line number. The system normal+y
begins the search with position K (the first character of the key);
the first character of data is at positicn1 and is specified as .
(U following the line number. If the user wants to get to some
other data character. he can specify its position as an absolute

. one- to four-digit decimal number. Any character between the first
character of the key and the first data character can be referred
·to by a negative value enclosed in the parentheses. For exanple,
the second character in the key for line 0000100 of a line data set
is referred to as 100 (-6).

System default: when N2 is specified, the value of the eLP is
assumed. Otherwise. the entire data set or region is searched.

identifies the last of a series of lines to be searched fOr STRING.

Specified as: a one- to seven-digit decimal line number that may
be absolute or relative.

LAST -- last line in the current region.

Note: If the user wants to end the search at any character posi­
tion other than the last in the specified line, he can specify the
ending position as an absolu~e one- to four-digit decimal number,
enclosed in parentheses and i_mediately following the line nu~ber.
The ending character is included the command processing.

System default: when N1 is specified, it is the only line
searched. otherwise, the entire data set or region is searched.

STRING
designates the character string that is to be searched for (that
is, the string is the -search argument-). Strings that are con­
tinued in the next line are not recognized.

Specified as: a normal or quoted string.

System default: CLP is set to the next line in the current data
set or region. If N2 is the last line, eLP is set to N2 plus the
value of INCR.

Functional Description: LCCATE searches the specified lines for the
string (this search includes the region name and line number). When the
string is found, the first line containing it is displayed and the CLP
is set to that line number. When the string is not found, or LOCATE is
issued without operands, the CLP is set to the line following the last
line in the range specified (N2). If N2 is the last line, CLP is set to
N2 plus the value of INCR.

The user is then prompted for a command.

Caution: A language-processing con~and (EDIT, PROCCEF, or PLI) must be
invoked before the command is issued.

Examples:

1. The user wants to search the current region for the string ABC.
(Note: A blank separates the last letter in LOCATE and the corr,ma.)

user: locate ,,"abc'
System: 0000200 ABC WILL APPEAR IN SEVERAL LINES

2. The user wants to search lines 200 through 500.

User: locate 200,SOO,atc
systen: 0000200 ABC WILL APPEAR IN SEVERAL LINES

3. The user restricts the search in example 2 to character positions 1
through 26 in lines 200 through 500. The system displays the phys­
ical line in which ABC is first found and prompts for a command.
The LOCATE command the user enters is:

User: locate 200(3),500(26),abc

LOGOF F Command

This command notifies the system that the user wants to end his task.

Part III: COmmand Descriptions 189

r---------~--, I Operation I Operand I
r--------f--i
I LOGOFF I I L-______ ~ ___ _J

Note: There are no operands.

Functional Description: LCGOFF reJl'oveS the user's task from the system
and releases any data definitions (and I/O devices) used by the task.

When LOGOFF is given in a nonconversational task, an automatic PRINT is
issued by the system for the SYSOU~ data set.

programming Notes: If no LOOOFF appears at the end of a nonconversa­
tional task, a diagnostic message is issued, and the task is terminated~
SYSOUT will be printed.

LOGON Command

This con-mand validates the user to the system and creates the environ­
ment in which he may operate.

r---------~---, I operation I Operands I
~---------+--_i I LOGON luser identification(,password) (,addressing) (,charge number) I
I I (, control section packing] [,maximum auxiliary storage) I
I I (, pristine 1 {,user IVM code] I L ________ ~ __ J

Notes: The LOGON command name must
~tered in positional notation.
If one or more operands is omitted,
must enter a comma for each omitted

always be entered and operand s must
Trailing commas need not be entered.
and a later operand is used, you
operand.

user identification
identifies the user to the system.

Specified as: the user identification assigned to the user when he
was joined to the system.

password
specifies the user's assigned password.

Specified as: the passworo assigned to the user when he was joined
to the system.

System default: in conversational mode, none, if the user has been
assigned a password. In nonconversational mode, password is op­
tional and will not be verified.

addressing
. specifies the system addressing.

specified as: 24- or 32-bit addressing.

System default: present system addressing.

charge number

190

specifies the charge number to be used if the installation has task
accounting. This does not need to be the charge number assigned
when the user was joined to the system.

specified as; from one to eight alphameric ch?::acters.

System default: the charge number assigned when the user was
joined to the system.

control section packing
specifies the type of control'section packing to be provided by the
dynamic loader.

Specified as:

A - all control sections will be packed.

P - only prototype co~trol sections (PSECTs) will be packed.

o - only control sections having neither public nor prototype
attributes will be packed.

X - all control sections except prototype control sections will be
packed.

N - no control sections will be packed.

system default: N is asswned.

maximum auxiliary storage
specifies the expected maximum number of auxiliary storage pages
required in the session.

specified as: from one to five decimal digits.

System default: the lesser of either the system default establish­
ed at system generation or the limit assigned to the user when he
was joined.

pristine
indicates whether the user wants access to his previously defined
defaults, synonyms, and PROCDEFs or all options or his USERLIB.

Specified as:

P - the user will be able to use only system-specified defaults,
synonyms, or PROCDEFs; he can create synonyms, defaults, and
PROCDEFs during this task, but he cannot add them to his pro­
file for use in a subsequent task.

x - the user will be able to use only system-specified synonyms,
defaults, and PROCDEFs: he cannot access anything in his
USERLIBi he cannot create synonyms, defaults, or PROCDEFs,
unless he first defines USERLIB.

System default: the user will have all of his previously specified
defaults, synonyms, and PROCDEFs available to him, as well as all
other members of his USERLIB.

user IVM code
indicates whether a user wishes to modify the contents of his user
IVM.

Specified as:

Y - the user with U authority can modify the contents of his user
IVM with a na.i set of modules.

N - the user cannot modify his user IVM.

System default: N.

Part III: Connand Descriptions 191

Functional Description: The credentials the user enters (user identifi­
cation and any of the operands required by your installation) are com­
pared with the authorization data that identify him to the system. When
any or all are not valid, the cOD'l1ersationai user is prompted to enter
all operands again. If the system responds with a question mark (1),
the LOGON command was not recognized; the entire cOll1lland must be reen­
tered. When these credentials are valid, the task continues. LOGON
calls ZLOGON before control is given to the user.

programming Notes: LOGCN must precede any commands the user intends to
issue. When the user turns on his terminal and dials the system, the
system waits for the user to log on.

If the user has never been authorized to use the system, or the user's
permit to use the system has been withdrawn (he has been -quit-), he
will be advised of this via a message, and his LOGON will be terminated.

EXamples:

1. FRANRDOE dials up at his terminal, the system assumes that he wants
to begin a conversational task.

The system unlocks the terminal.

USer: logon frankdoe,mars7

The system acknowledges that user has successfully logged on.

2. A nonconversational task is being started, the first prestored com­
roand in the nonconversational SYSIN data set is:

LOGON FRANROOE

LTDS (List TAPE Datasets) Command

This comrrand will list the dataset name, file sequence number, and vol­
ume sequence number of all datasets on a tape created by the VT co~mand.

r---------r--, I Operation I (No Operands) I
t---------t------------. --i I LTDS I . , l _________ ~ __________ ~ __ J

Functional Description: The LTDS command can be used to list all data­
sets on a tape created by the VT command. The tape must be previously
defined by a ddef command with ddname of DDTVIN, and must be an unla­
belled 9 track tape. processing of datasets will begin with the file
sequence number specified in the label operand of the ddef command and
continue until EDT is detected.

Example: The user wants to list all datasets on tape TESTXX starting at
file 2.

USer: DDEF DDTVIN,PS,TESTDSN,VOLUME=(,TESTXX),UNI~=tTA,9),­
LABEL=(2,NL),DISP=OLD
LTDS

System: VSN TESTXX,FSQ 0002.USERID**.DSFILE2

MCAST Command

This command alters the control characters in the user"s Profile
Chara.citer SWitch Table (see Appendix C).

192

r---------~------ --------------------------------------, I Operation I Operand I 1-------1----------------------------------"
I MCAST I [EOB=end of block character) (,CONT=continuation character] I
I 1(, CLP=break character]. I
I Il.TRP=transient statement prefix character] I
I I [,RCC=concatenation characterl I
I I [,SSM=system scope mask) [,USM=user scope mask] I
I I (,KC=keyboard/card reader character] I
I 1 [, R5=carriage return suppression character 1 I
I I [, CP--comma nd prompt string] I L _______ L-_____________________________________ _ _________ J

Note: All hexadecimal numbers must be enclosed in apostrophes and pre­
ceded by an X (as in X'62').

Since no system-supplied default values exist for these operands, we
list the settings as they appear in the system-supplied version of the
user profile.

EOB

CONT

CLP

TRP

RCC

SSM

specifies the end-of-block character.

Specified as: X'26'.

System default: X'26'.

specifies the command system continuation character.

specified as: any single character or any hexadecimal number in
the range X'OO' to X'PP'.

system default: hyphen (X'60').

specifies the command system break Character.

Specified as: any single character or any hexadecimal number in
the range X'OO' to X·FF'.

System default: underscore (X'6D').

specifies the transient statenent prefix character.

Specified as: any sin9le character or any hexadecimal number in
the range X" 00" to X'FF'.

systen default: vertical stroke (x'4F').

specifies the concatenation character.

Specified as: any single character or any hexadecimal number in
the range X'OO' to X'FP'.

System default: colon (X'7A').

specifies the system scope mask.

Specified as: any sin9le character or any hexadecimal number in
the range X'OO· to X'PP'.

Part Ill: Con~and Cescriptions 193

USM

KC

RS

CP

System default: X'29'.

specifies the user scope mask.
.

Specified as: any single character or any hexadecimal number in
the range X'OO M to X'FF'.

system default: X·29".

specifies the SYSIN keyboard/card reader character.

Specified as: the letter X, which tells the system to get input
from the terminal keytoard: or the letter E, which tells the system
to use the value of the SYSIN implicit operand. If SYSIN=K, input
is from the keyboard; if SYSIN=C, input is frorr the card reader.

system default: E.

specifies the carriage return suppression character.

Specified as: any single character or any hexadecimal number in
the range X·OO· to X'FF'.

systerr, default: colon (X'7A').

specifies the command prompt str.ing.

Specified as: a string of frorr one to eight characters, or a hexa­
decimal number in the range X'OO' to X'FFFFFFFFFFFFFFFF' (16 hexa­
decimal digits).

system default: an underscore, backspace, and a carriage return
suppression character (X'6D167A').

Functional Description: The MCAST command replaces control characters
in the user's task profile with the control characters specified as com­
mand operands. If no operands are entered, only those control charac­
ters are changed for which the user has defined default values (for ex­
ample, DEFAULT CP=SIR).

TO make these changes perman ~nt. the user must follow the MCAST cOIl'mand
with a PROFILE command in the same task.

Note: All of the control characters for the MCAST corrmand are explained
in Appendix C. Any unprintable hexadecimal values (for example, X'2S')
are ignored when included in the command prompt string.

caution: DO not change the EOB character from the system-supplied value
X '26' •

Examples:

1. '!he user wants to change his command prompt string to ·SIR?·, and
his break character to the at sign (a):

User:
Sy'Stem:

mcast cp=sir?,clp=a
SIR?

2. The user wants to change the cOJmland prompt string to YES, and the
continuation character to ~n ~sterisk (*); he wa=~s to make these
changes permanent in his user profile:

194

User: mcast cp=yes,oont=.
SYS;user: YES profile

3. The user wants to change his COlf.mand prompt string to the word GO,
underscored, and followed by ~ question mark (GO?). Since the
back- space character (see Appendix C) is a hexadecimal number
(X'16') with no printable value, the entire prompt string must be
coded as a hexadecimal number.

User:
SYStem:

mcast cp=x'c7d616166d6d6f'
GO?

Note that: X'C7' is a G; X'D6' is an 0; X'16' is a backspace;
x'6D' is an underscore; and x'6f' is a question wark.

MCASTAB Coamand

This command alters the translation tables in the user's task profile by
replacing one or both with the replacement tables located by the labels
SYS1RIN (for input) and SYSTROUT (for output).

r---------~--, I Operation I Operand I
~-------+--i I MCASTAB I [INTRAN={N1Y}] [,CUTRAN={NIY}) I l ________ ~ __ J

INTRAN
specifies whether to replace the current input translation table
with the replacement table (SYSTRIN) or with the version that was
current when the user logged on.

Specified as:

Y - replace with SYSTRIU.
N - replace ~ith version current at LOGON.

System default: N.

OUTRAN
specifies whether to replace the output translation table with the
replacement copy in SYSTROUT, or with the version that was current
when the user logged on.

Specified as:

Y - replace with SYSTROUT.
N - replace with version current at I.OGON.

System default: N.

Functional Description: MCASTAB replaces the input and output transla­
tion tables with the replacement versions located by the labels SYSTRIN
(for :input) and SYSTROUT (for output). The user can a2.ter the replace­
ment tables with the SET command; he can effect replacement with
MCASTAB.

To make a change in the inpu~ translation table, the user alters the
replacement version:

He specifies the location in the translation table of the character or
function code he wants to change (X'Cl' in this case); then he sets the
location to the new value (X'C2' in this case). In this example, the

Part III: Coamand Descriptions 195

user has set the uppercase -A- to the value of -B-. (NOtice that the
values are not swapped; both -A- and -B- have the value of -B-.) Now,
to make the change, the user issues the MCASTAB command, which replaces
the current translation table with the altered version at SYSTRIN:

mcastab intran=y

The user can make the change permanent with the PROFILE command. This
is, however, not recommended until the user has had some experience with
changing the tables.

To reverse the changes, the user issues the MCASTAB command with the
operand set to N; this replaces the current table (now it is SYSTRIN)
with the version that was current when the user logged on. But, since
the user lost the use of the -A- in the above example, he must log off
and log on again to get to the original table since he is unable to
enter MCASTAB successfully. The user should swap values wherever poSSi­
ble to retain the use of the entire character set. Had the user swapped
the • A- and the WB W in the above example, he oould then reverse the
changes by issuing:

mCZlstab intr8n=n

Caution: Be careful not to lose the use of any important character by
replacing it without choosing an alternate.

prograll'ming Notes: At LOOCN, SYSTIUN and SYSTROUT always reflect the
system-supplied translation tables (as shown in Appendix C). Whenever
the user logs on, he can issue

mcastab intran=y ,outran=y

to replace his translation tables with the system-supplied versions.

The user can also use the MCASTAB command to reverse any translation ta­
ble changes made with the MCAST macro instruction.

Exal!1Ples:

1. The user wants to swap the characters wA w and -Bw in the input
table:

sys,user:
Sys,US&:
Sys,User:

~et systrin.(x"c1" ,l)=x'c2'
set systrin. (x'c2",1)=x"c1'
~castab intran=y

2. NOW, the user wants to reverse the changes and get back to the
system-supplied translation table:

Sys,User: !!ct\stab intrah=n

3. The user wants to convert the pound sign (I) to a backspace
character for input as datal he wants to use the asterisk as the
cancel character in place of of the pound sign:

196

Sys, User: set systrin. (x"7b' ,1)=x'16' (translate I to a backspace
character)

Sys,user: set systrin. (x·l7b",l)=X·OO· (remove the cancel function
code (x'Oc') from the I)

Sys,User: set systrin.(x"15c',l)=x·Oc" (assign the cancel oode to
the asterisk)

Sys,user: mcastab intran=y (effect the replacement)

MODIFY Command

This command inserts, deletes, replaces, or reviews lines of a VISAM
data set or a VISAM member of a VPAM data set, or creates a VISAM data
set or member.

r---------~--- ----------, I Operation I Operand I
~---------+--i I MODIFY ISETNAME=data set name(,CONF=R] (,LRECL=record length, I
I IKEYLEN=key length,RKP=key displacement,RECFM={VIF}] I
I I [,FTN={YIN}] I L _________ L __ J

SETNAME

CONF

identifies a VISAM data r:et. If the data set already exists, it
must have been defined previously by a DDEF command within the cur­
rent task or must have been cataloged; the data set to be created
by MODIFY need not be defined or cataloged. If the VlSAM data set
has hexadecimal keys (rather than the usual EBCDIC key or line num­
ber), the data portion of each record in the data set must also be
hexadecimal.

Specified as: a fully qualified data set name and (optionally) a
member of a VPAM data set. When specified, the member name is en­
closed in parentheses and immediately follows the VPAM data set
name.

specifies that review of modifications is requested; each line of
the data set that was changed is presented to the user in its orig­
inal form. The review option cannot be used on a line that con­
tains hexadecimal data.

Specified as: R.

System default: no review of records.

Note: The next four operands must all be explicitly entered as operands
of MODIFY (or by the DEFAULT command), or all be omitted. When they are
specifiea, MODIFY assumes that the data set being specified is not a
line data set.

LRECL
designates the length, in bytes, of each fixed-length logical
record.

Specified as: a decimal number. The maximum length for VISAM is
4000 bytes.

system default: 132.

KEYLEN
designates the length, in bytes, of the key associated with each
physical record. When a record is read or written, the number of
bytes transmitted equals the key length plus the record length.

Specified as: a decimal number. The maxilrum key length is 244
bytes.

System default: 7.

Part III: Coamand Descriptions 197

RKP
specifies the displacement of the key field from the first byte of
each logical record.

Specified as: a decimal number. The maximum key displacement is
4000 bytes.

Systen. defau It:

4 is assumed if RECFM=V.
o is assumed if RECFM=F.

RECFM
indicates the format of the data set records .•

Specified as:

v - variable-length records.
F - fixed-length records.

Systere default: V.

Note: When the LRECL, KEYLEN, RKP, and RECFM parameters are specified,
MODIFY assumes that the data set is not a line data set.

FTN
specifies that the MODIFY command is being executed to update an
existing FORTRAN source data set (via card input) that was created
using the FTN option of the DATA corrmand or the DATASET card. When
this option is specified, it is assumed that the card input is
punched in keyboard format and the input is processed accordingly.

Specified as:

Y - this function is required.
N - the function is not wanted.

System default: N.

Functional Description: If LINENO=Y, the system asks the user for modi­
fications by issuing a pound sign (#) and returning the carriage to the
margin. Otherwise, there is no prompting, and the user can enter modi­
fications after each carriage return. The user indicates his modifica­
tions by following these conventions:

1. Insert or replace a record.

key, data

key
the key of the record to be inserted or replaced; for a line
data set, this is the line number.

Specified as: from one to seven digits.

data
the new data of the replacement or insertion recordJ a maxi­
mum of 120 characters is perm! tted in a line data set.

Note: Modifications to a VIS AM data set with hexadecimal keys and data
must be entered as keydata. Key and data must be specified as one hexa­
decimal string (for example, XI keydata).

2. Delete a record or a range of records.

198

D,key[,last key)

key
the key of a single record to be deleted or the first key of
a range of records to be deleted.

last key
the final key of a range of records to be deleted.

3. Review a record or range of records (whether or not the review
option is specified) without taking any other action with the
records.

R,keyl,last key]

key
the key of a single record to be reviewed or the first key of
a range of records for review.

last key
the final key of a range of records to be reviewed.

The user indicates that he has completed his modifications by entering
%E or by entering as the first character of a line a single break
character followed by a command.

Note: The complete key must be given for a VIS»] data set that is not a
line data set.

When the review option is requested, the line deleted or replaced is
presented after each modification.

If the ATTENTION key is pressed while the MODIFY command is in opera­
tion, it does not affect the modifications that have been entered up to
the moment of interruption. Those modifications are made in the user's
data set. 'the MODIFY command operation is terminated, however, and the
system requests the user·s next command. If desired, he may then enter
a new MODIFY command and continue making modifications to his data set.

The MODIFY command accepts strings of EBCDIC representations of hexadec­
imal digits, converts them into machine representations of hexadecimal
digits, and inserts them in a data set as directed by the user.

The EBCDIC string representing the hexadecimal data is entered in the
format:

XIEBCDIC string -- (any non-EBCDIC character ends hexadecimal data)

When the system encounters the X and the ~ediately following I, it
enters hexadecimal mode. It then assumes that an EBCDIC string follows
and proceeds to convert each two EECDIC characters in the string to one
hexadecimal character, until the first nonhexadecimal character is
encountered.

In performing the required conversion, the system checks to ensure that
each input character represents a valid hexadecimal digit; that there is
an even number of input characters in the string~ and that there are no
incomplete inserts in any input line. (MOre than one insert may be made
in any input line; however, one insert may not be entered across input
lines.)

When characters not in alphameric format are displayed at the terminal
(REVIEW option), they will be lost in the transmission. There is no
REVIEW option for the HEX option.

Part Ill.: Command Descriptions 199

caution: The DATA and MODIFY command names may be included in the rec­
ords entered under a MODIFY command, but multiple break characters must
be entered to end the DATA or MODIFY command in the data set. The first
lE or single break character is interpreted as the end-of-input record
for the current MODIFY co~mand.

programming Notes: To save processing time, the user should enter his
modifications in sequence, starting with the lowest line number.

By making a series of insertions, the issuer can use the MODIFY command
to create a new VISAM data set.

When a data set that is to serve as SYSIN is being built from records
entered via the card reader, the maximum record length must be 80 char­
acters. In this case, continuation conventions must agree with those
specified for card input (see Part II, Section 1, under -Entering Co~­
mand Statements· in cotlVersational mode).

The user may create a VISAM data set, other than a line data set, that
includes his own keys. If so, he must give the key position and length
within the record. These key values may then be used to insert,
replace, delete, or review lines while the data set is being built. For
example, if the user enters:

AB14000 link, upper arm

he must have previously specified, in the MODIFY command, KEYLEN=5,
RKP=3, fixed-length records, and the record length. Thus, 14000 is the
indexing key to his record.

When creating a record that is longer than one line, the user must enter
a hyphen at the end of the line to signal that the next line is a con­
tinuation. (If the two lines should not be run together, use a blank
space before the hyphen.) The ~phen does not become part of the rec­
ord: the continuation line is not prefixed with a key.

Note: MODIFY, although much less flexible than the text-editing com­
mands, does permit use of a VISAM key anywhere in the record. The text
editor works only with line and region data sets.

Examples:

1. The user wants to delete lines 101 through 195 and replace line 107
in a line data set ASET. Review is not requested. (LIMEN=I.)

User:
Systere:
Sys,User:

modify source. aset
ENTER f.jODIFICATICNS

d,107,195

107,x=a •• 2.0

108,write(2,5)x

109,end

_ftn aset,y

To end modifications, the user enters a break character and a com­
mand after the system prints out the pound sign and returns the.
carriage.

2. The user wants to delete line 4900 and insert a new line at line
number 5450 in his partitioned line data set AB12.CA(V8). He re­
quests review.

200

USer:
SyStem:
sys,User:

System:
sys,user :

system:
Sys,User:

system:

modify at12.caevS),r
ENTER MODIFICATIONS

* d,4900
00004900X=(X=C) (prints out the deleted line for review) ..
5450, j=j+l
OOOOS4S0j=j+l (prints out the inserted line for review) ..
Ie

3. The user wants to replace line 12300 and insert a new line at 14350
in his data set DAT.C. Be requests review.

User:
System:
Sys,user:

system:
Sys,User:

system:
Sys, User:

system:

modify date e,r
ENTER MODIFICATIONS

12300,somer=b/c
12300SOMER=B-C (reviews old line)

14350,i=12
143501=12 (prints out the inserted line for review)

';e

4. The user wants to create a new VISAM data set naned QUIK4. Records
are to be 80 bytes and fixed-length~ the key is a five-digit part
number, displaced two characters from the start of the record.
Review is not wanted.

USer: modify quik4 ,lrecl=80,keylen=S ,rkp=3,recfm=f
System: PROCEEDI~: DATA SET OR MEMEER WILL BE CREATED EN'IER

MODIFICATIONS
Sys,user: #

system:

ab00411 spring,retaining

ab00412 spring,guide

abO0413 clip,retaining spring

ab00414 widget,silverplated

%e

5. The user wants to create a netN line data set named DISSMAL. Review
is not wanted. (LIMEN=I.)

USer:
System:

modify dissmal
PROCEEDING: DATA SET OR lv'..EMBER wILL BE CREATED
ENTER MODIFICA'IIONS

Sys, User: #

system:

100,aId de f'875'

200,smel dc f-S280'

300, dc f'6793'

400, dc £'557'

%e

Part III: Connand Descriptions 201

HomER ComIrand

This command renumbers a line or a range of lines within the current
region.

,------,.-- ------------ -----,
I operation I Operand I
I------+---------------------------------i
INUMBER I [Nl=starting line] [,N2=ending line] l,NBASE=base number] I
I I [. INCR=increment] I l _______ 4--_________________________________ .. J

N1

N2

identifies the line or first of a range of lines to be renumbered.

Specified as: a one- to seven-digit decimal line nUlllber that may
be absolute or relative.

IAST - last line in the current region or data set.

System Default: Nl is set to the value of CLP. If N2 is defaulted,
Nt is set to the first line of the current region or data set.

identifies the last of a range of lines to be renumbered.

Specified as: a one- to seven-digit decimal line number tha t may
be absolute or relative.

IAST - last line in the current region or data set.

System default: N1 is assumed if it was specified. Otherwise, N2
is set to last line in the region or data set.

NBASE

INCR

202

indicates the number from which the renumbering is to be
increrr.ented.

Specified as: from one to seven decimal digits. The value must
not be less than Nl.

system default: The value of Nl or its default value.

specifies the increment between the lines to be renumbered.

Specified as: from one to seven decimal digits. If the increment
causes renumbering to overlap the number of the line follOWing N2,
the increment is computed as though it were defaulted, and the user
is prompted with a message that the increment has been furnished by
the system.

system default: the difference between the base and the line num­
ber following N2 is divided by the number of lines to be ren~
bered. The increment is then determined in this manner:

If the quotient iSI
100 or greater
50-99
20-49
10-19

5-9
2-4

1.

the increment is:
1.00

50
20
10

5
2
1

~: If all operands are defaulted, these values are assumed:

Nl=First line of region
N2=LAST
NBASE=100
INCR=100

Functional Description: Renumbering does not change the sequence of
lines or affect the region name prefixed to line numbers.

When all operands are defaulted, tlle entire data set or region is
renumbered.

Upon completion of this command, the CLP is positioned to N2 plus the
value of INCR or to the line number after N2~ whichever is less.

If the NBASE is less than Nl, a diagnostic message is issued. If the
value of INCR causes the renumbering to overlap the line number speci­
fied in N2, the system computes the increment as if it were defaulted
and notifies the user by a message. Renumbering with the new increment
then occurs.

caution: A language-processing conmand (EDIT, PROCDEF, or PLI) must be
invoked before the command is entered.

If the NUMBER command is not allowed to run to completion, the user may
lose data.

ExamplesJ

1. number 103,290

Original Sequence
XYZ0000100
XYZ0000103
XYZ0000101
XYZ0000108
XYZ0000109
XYZ0000111
XYZ0000114
XYZOOOOl16
XYZ0000169
XYZ0000290
XYZ0000400

Resul ting Sequence
XYZ0000100
XYZ0000103
XYZ0000123
XYZ0000143
XYZ0000163
XYZ0000183
XYZ0000203
XYZ0000223
XYZ0000243
XYZ0000263
XYZOOOOIIOO

Since NBASE is defaulted, it is assumed to be 103 (Nl). Tbe dif­
ference between the base and the I ine following N2 (400) is 297,
which is divided by the number of lines. As the quotient is 33
(291 divided by 9 = 33), the increment is 20.

2. number 11,,22

Original Sequence
AR0000010
AR0000011
AR0000035

• 3. number 912,1000

Original Sequence
AR0000900
AR0000912
AR0000915
AR0000916
AR0000917

Resulting Sequence
AR0000010
AR0000022
AR0000035

Resulting Sequence
AR0000900
AR0000912
AR0000932
AR0000952
AR0000912

Part III: COlllDland Descriptions 203

AR0000918
AR0001000
AR0001050

AR0000992
AR0001012
AR0001050

4. number 5,12,nbase=6,incr=13

Original Sequence
MOOOOOOl
MO000005
M0000008
M0000009
M0000100

Resulting sequence
MOOOOOOl
M0000006
M0000019
M0000032
M0000100

5. number 100,200

Original sequence
100
125
150
200
250

Resulting sequence
100
120
lIlO
160
250

ODC Command

This command converts an os text deck into a ~ss object module and stows
the module into the highest joblib.

r-------~--,

I Operation I Operand I
.. -------+--------------------------------------f
IODC 10DCMOD=module [,CDCPLI=Y I~] [,Or:CERASE=YI~] I L _____ ~__________________________________ _ _______ J

module
the name of a test dataset which is a generation data group dataset
of the form LOAD.module(O)

ODCPLI
tells the command ~ether the text deck was produced by the PLII
Optimizer. This operand can be defaulted if deck was produced by
COBOL, FT'riH or HASM.

ODCERASE
signifies whether the command should erase the LOAD. modul e (0) data­
set following completion of the conversion.

Note: When you convert a PIJI module, ODC checks the value of PLIPACK,
in your user profile. If PLIPACR=N, one or more pages are assiqnedto
each CSECT. If PLIPACK=Y, CSECTS are packed. packing consists of com­
bining CSEl.'TS into contiguous storage, retaining doubleword boundaries
for CSECT origins. The name of the initialization CSECT is retained as
a CSECT name, and other CSECT names are transformed into entry-point
names. In effect, the CSECTs are combined into a single CSECT. If
PLIPACK=P, ODC packs all CSECTs except static external CSECTs that have
the TSS COMMON attribute, or are more then 4096 bytes long. This is
generally more efficient than PLIPACK=Y, since COMMON CSECTs are null
CSECTs and they are mapped onto external stor age ,-;.nly if they are
packed. The IBM-supplied default for PLIPACK is P.

204

OSDD? command

This command will list to SYSOOT all filedeffed datasets, indicating 08
ddname and TSS dataset name.

r---------~--, I operation I Operand I
~--------+----------------- . --------t
IOSDD? I I L _______ 4--_____________________________________ .

~: If a TSS dataset is datadeffed. but not file<ieffed, it will ~
appear in this list.

OSRUN Camnand

This command allows the user to execute the output of a program product
under TSS, using the Program Product Language Interface (PPLI).

r---------~--1 I operation I operand I
~---------+--_f
IOSRUN lmodulel,'parm') I L--_______ ~______________________________________ _ _________ J

module

parm

specifies the name of the program to be run using the PPLI. It
must have been assembled/compiled using the PPLI.

this represents a value that will be passed to the program being
run. Note that to pass an argument to a PUI Optimizing Compiler
main procedure the argument must be preceded by a slash.

Example: osrun PL130, '~234567890'

Functional description: This command will invoke a routine which sets
up the PPLI environment (i.e., issues SIR's for SVC's and initializes
required control blocks). It then invokes the module specified, and
upon return, deactivates the PPLI environment.

PC? command

This command presents the name, access, and, for shared data sets, the
owner's identification of one or more cataloged data sets.

r---------~---, I Operation I Operand I
t---------+---I
IPC? INAMES=(data set name I {data set name[, •••])} I L _________ ~ __ J

Note: Managers and administrators should see Manager's and Administra­
tor's Guide for special operands.

NAMES
identifies one or more cataloged data sets. If a partially quali­
fied data set name is specified, each data set with the same quali­
fication is presented.

Specified as: one or more fully or partially qualified data set
names. When two or more data set names are specified, they must be
enclosed in parentheses.

Part III: Conmand Cescriptions 205

System default: every data set in the user's catalog is presented.

Functional Description: PC? provides the user with this information
anout a data set:

• Name - the name of the data set is given.

• Access - if the data set is owned by the user, the owner access is
given; if the data set is owned by someone else, the sharer access
is given.

• Ownership - if the data set is owned by someone else, the user iden­
tification of the owner is given.

In conversational mode, the inforroation is presented at the terminal.
In nonconversational mode, the information is printed in the SYSOUT data
set.

programming Notes: Presentation can be terminated in conversational
tasks at any point by pressing the ATTENTION key. The I:SS? command can
be used for more thorough information about cataloged data sets.

ExaJllples:

1. The user wants the names of all his data sets.

User: pc?
system: DATA SETS IN CATALOG WITH QUALIFIER NICHOLAS

NICHOLAS.USERLIB, ACCESS: RW
NICHOLAS. NICHOLAS. TEST, ACCESS: RW
NICHOLAS.TA000304.SOURCE.SINGLE, ACCESS: RW
NICHOLAS. TA000307. SOURCE.FCB, ACCESS: RW
NICHOLAS.TA000310.S0URCE.DOUBLE, ACCESS: RW
NICHOLAS. TA000313. TMPDBL, ACCESS: RW

2. The user wants the names of all his data sets with the qualifica­
tion J.S.B ••

User: pc? j. s. b.

The system presents the inforuation for all the data sets with the
qualification j.s.b.

PERMIT ComIrand

This command allows the user to permit or restrict sharing of his cata­
loged data sets by other users.

r---------~-- - , I Operation I Operand I
~---------t--~ I PERMIT IDSNAME=£data set name *ALL} J
I I [, USER ID= { (user identi f icatio:! [, •••]) I*ALL}] I
I I [,ACCESS={RIROIRWIU}l I l _________ L--______________________________________ J

DSNAME

206

identifies the cataloged data set for which sharing is being per­
mitted or restricted.

Specified as: a partially or fully qual ified data set name.

*ALL - all cataloged data sets of the ~er are to be shared. (This
is referred to as sharing of the catalog.)

USERID
identifies the user teing per.itted or restricted sharing of the
specified data set.

Specified as: the user identification of one or mere permitted or
restricted users •

• ALL - all users of the system are permitted or restricted ~haring.

Syste~ default: .ALL.

ACCESS
designates the access qualification for users sharing the data
sets.

Specified as:

R - restricts access; sharing access that was previously permitted
is withdrawn.

RO - read-only access; sharers may only read the data set.

RW - read-and-write access; sharers may both read from and write to
the specified data set, but may not erase it.

u - unlimited access; sharers may read, write, and erase the data
set.

System default: If a list of sharers is being updated, the access
of the last sharer in the list is assmned. If a new list of
sharers is being created, U is assumed.

Functional Description: When PERMIT is issued to permit sharing, the
system either: (1) enters the list of sharing user identifications and
the associated access qualifiers in the owner's catalog entry that was
specified by the DSNAME operand, or (2) marks that catalog entry for
universal sharing. These notations are made only in the owner's cata­
log; sharers' catalogs are unaffected by the PERMIT corrmand.

When PERMIT is issued to restrict sharing, entries for sharers are
removed from the owner's catalog entry.

Cautions: If a sharer erases a data set to which he has teen given
unlimited access, the entry of that data set is also removed from the
owner's catalog. Thus, the owner's catalog can be changed without his
knowledge.

The owner of a shared data set cannot withdraw sharing privilege from an
active user of that data set.

After a 'PERMIT command is issued for a data set, the original data set
definition is not changed (for example, it indicates private ownership).
If a seoond user issues a SHARE command for the data set, the owner must
release the existing data set definition before the sharer can use it.

programming Notes: The designated sharers ~ust issue SEARE commands to
link their catalog entries to the owner·s. The sharers can reference
the data set under the owner's catalog entry only after the PERMIT com­
mand has been issued.

Once the owner grants access to all other users, he must also restrict
all users before he can selectively change the access qualification for
a specific user.

Part III: Connand Descriptions 207

The access qualification granted to a sharer is not limited by the
access level established for the owner during cataloging. For instance,
the owner can catalog a data set with read-only access for himself and
still assign unlimited access to a sharer in a PERMIT command.

Examples:
1. If all users have previously been granted access to catalog entry

MB.c, and the owner now wants to restrict every user except SSIMON
and LAF29, he must first restrict all users:

permit mb.c,*all,r

This marks catalog entry MBuC as private. Since the entry is now
private, the PERMIT command to grant SSI1,",ON and LAF29 access
creates a new list of sharers:

permit mb.c,(ssimon,laf29),rw

2. The user wants to allow users JOSEPH24 and HENRY24A to share his
cataloged data set AD.ATl with read-only access. These are the
only sharers in the sharer list.

User: permit ad. atl, (joseph24,henry24a) ,ro

The system enters a list of sharers in owner's catalog.

3. The user now wants to update the 1 ist created in Example 1 by
changing the access of users JOSEPH24 and HENRY24A to read/write.

permit ad. atl, (joseph24, henry24a) ,rw

The system updates the sharing list.

4. A user wants to share his oeject modules in his user library with
JBROWN#1.

User: permit userlib,(jbrown#l),ro

The system enters the sharing list in owner's catalog.

PLI COIflmand

This command invokes the PL/I compiler and corrpiles a source program
module.
r---------~---, I operation I operand 1
t---------+--i
IPLI I [NAME=module name] (,PLICPT=compiler option list] I
I I [,PLCOPT:;;language controller options] I
I I [,SOURCEDS=source data set narnel I
I I· [,MERGELST=converter input list] I
I I [,MERGEDS=converter input data set] I
I Il,MACRODS=interrnediate data set name] I
I 1[, EXPLICIT=external names to be changed) I
I I [,XFERDS=transfer vector data set name] I l _________ ~ __ J

NAME

208

The name by which the program will te known. It consists of one to
eight alphameric characters, the first of which is alphabetic. If
the name is omitted, PLC assumes that it is identical to the name
of the source data set if that is in the correct form. If neither
NAMB nor SOURCEDS is prOvided, no compilat_ion takes place and PIC
proceeds to process the merge list or go on to the next set of ~LI

parameters. See PL/I proqrammer"s Guide for a ccm~lete list of
naming rules.

Note: In nonconversational mode, PL/I source statements can follow
the PLII canmand in the input card deck. See PL/I Proqrammer"s
Guide for further information.

PLIOPT
The list of options to be used by the compiler. It is considered
to be one parameter, and the list of compiler options following the
equal sign in the PLIOPT parameter must therefore be enclosed in
parentheses unless only one value is given; the separate options
are separated by commas. ~he compiler options are described in Ap­
pendix I.

PLCOPT
A list of options external to the PL/I ccmpiler that effects the
compilation's progression through TSS. These opticns must be en­
closed in parentheses unless only one value is given. The options
and the standard default for each are shown in Table 18.

Table 18. PLCLPT options and system defaults

r-----------------------~-----------------------,
I PLC Option I Standard Default I
l--------------------+---------------------'f
I NOPRINTIPRINTIPRERASE I NOPRINT I
I DIAGINODIAG I DIAG I
I NOCONTICONT I NCCONT)
I LISTDS !LISTOUT I LISTDS I
I NOCONV I i
I I I
I LIMEN= ! I
! I system defaul ts I
I BREVITY= I I l ________________________ ~ ______________________ J

The PLC options shown in Table 18 are defined as follows:

NOPRINT or PRINT or PR~SE
this option specifies whether the listing data set produced by the
compiler is to be printed on a high-speed printer. NCPRINT indi­
cates that the data set is not to be printed as a part of the com­
pilation. You can at some later time issue a PRINT command direct­
ly as follows:

PRINT LIST.XXX(O)",EDIT

where XXX is The module name given in the NAME operand. PRINT in­
dicates that PLC should issue the print request automatically.
PRERASE indicates that PLC should cause the data set to be printed
and erased after printing; this is equivalent to:

PRINT LIST.XXX{O)",EDIT,ERASE

Normally PLC does not issue any print requests.

If LIS~OUT is specified, the data normally written into the list
data set is directed to SYSOUl and no print request is appropriate.
In this case the value of this print option is forced to NOPRI~T
under any circumstances.

DIAG or NODIAG
this option specifies whether diagnostics are to be directed to
SYSOUl or not. (This option only has meaning if LISTDS is speci­
fied. If LISTOUT is specified, then all compiler diagnostics

Part III: Corrrrand Cescriptions 209

appear on SYSOUT as a part of the listing data.) If DIAG is speci­
fied, then the diagnostics that will appear on SYSOUT are controll­
ed by two command-system defaults, LIMEN and BREVITY, Which control
the severity and length of the PL/I diagnostics selected for print­
ing on SYSOUT. The IIMEN and BREVITY operands of the PLI command
are explained later in this section.

The format of the diagnostic message is:

x ID-lnnnni statement no. line no. text

where x is the severity of the diagnostic and nnnn is the diagnos­
tic number. For example:

S IEi-101821 15 1600 TEXT BEGINNING 'KEYFROM CR' SKIPPED IN
OR FOLLCWING STATEMENT NUMBER 15

If no option is specified, then DIAG is assumed.

NOCONT or CON T
specifies whether additional ~rograms are to be compiled before re­
turn to the command system. NOCONT implies that there is no con­
tinuation of compilation. This is assumed if no value is speci­
fied. If CONT is specified, then PLC prompts for a new module name
with PLI on a new line if none was given in the original PLI com­
mand. To end the prompting, enter an underscore with a command, or
default by pressing the RETURN key.

This CONT ~,ent can be repeated as often as necessary.

LISTDS or LISTOUT
this option allows you to choose whether a separate data set should
be constructed by the PL/I compiler for the computer listing or
not. This is the default value specified explicitly by LISTDS.
LISTOUT implies that a separate listing is unnecessary and that the
listing output can be placed in SYSOUT. particularly in nonconver­
sational environment, the use of the SYSOUT data set is more effi­
cient. Since in nonconversational operation the SYSOUT data set is
automatically printed, the nurrber of print requests is reduced as
well as the overall load on the system.

In a conversational environment, placing the listing data on SYSOU~
means typing this data on the terminal. Only in most urgent cir­
cumstances should you consider this alternative.

NOCONV
this option allows you to specify that nc coropilation is to occur.
If NOCONV is selected, the MERGELIST operand should contain the
names of the modules that are to be put into the transfer vector
data set.

LIMEN=

210

LIMEN is the operand name in the user profile for message-severity
codes. It controls the severity of diagnostic messages printed on
SYSOUT. If specified in the PLI command, LIMEN applies only to
PL/I diagnostics. (See DIAG, aoove.) If LIMEN is not specified,
the current value in the system profile is used.

LIMEN Value
I (information)
W (warning)
X (serious error)
T (termination error)

LOwest Level DiagnostiC Issued
Warning messages
serious error ~essages
Termination error message
None is' shown

BREVITY=
BREVITY is the operand name in the user ~rofile for message-length
codes; it controls the length of diagnostic messages printed on
SYSOU'I. If specified in the :ELI coromand, it applies only to PL/I
diagnostics. (See DrAG, above. If not specified, the current
value in the system profile is used.

BREVITY Value OUtput
M (message In> Message 10 only
S (standard) Full text of lTessage
E (extended text) Full text of message
T (standard, no 10) Full text of IT.essage without

message 10
X (extended, no 10) FUll text of Il'essage without

message 10

Note: Both LlMEN= and BREVITY= can be followed by only one
character. If the equal sign is not the next-to-last character,
the oFtion is ignored. Thus:

LIMEN=I is valid

LIMEN=INFO is invalid because more than one character
follows the equal sign.

LIMEN: I is invalid because there should be no space after the
equal sign.

SOURCEDS
the fully qualified name of the
statements are to be obtained.
able. Examples:

1. AELE

2. A.B.C.D.

3. A.BCC)

4. A.B.GOOOOVOO

5. A.B{O)

6. A.B(O) (e)

data set from which the PL/I source
Any valid line data set is allow-

If the NAME operand is omitted, the SOURCECS name is used as the
name of the object module. Therefore, if the NAME operand is
omitted and a TSS executable object module is to be generated, the
source data set must not be in the last-defined job library, since
the object module will be stored in that library. TSS does not
allow a library to contain duplicate entry names.

If SOURCEDS is omitted, the name assumed for the source data set is
SOURCE.XXX, where XXX is the value you gave for the NAME operand.

If neither NAME nor SOURCEDS is given, it is assumed that no compi­
lation is to take place for this iteration of PLe. other functions
involving ODe may be involved. The system default for SOURCEDS is
a string of blanks.

MERGELST
the names, separated by commas, of previously compiled modules to
be converted by ODC for execution with the module being compiled.
Each of these modules should still exist as data sets named lOAD.
XXX(O), where XXX is the name given by you, or by default, in the

Part III: eOlTmand Descriptions 211

NAME operand. (Intially. the compiler creates all modules as LOAD.
XXX(O) data sets. You should not erase these data sets until you
are sure that you have all the needed co~ies of the converted
object module.) Modules that have been stored in job libraries af­
ter processing by ODC cannot ce used in a merge list.

If NOCONV is specified as a PLC option, this operand must contain
the names of the modules that are to be transformed. You should
keep the ~D data sets if co~plete module refreshment is desired.
otherwise, you are not required to keep the LOAD data sets for
reconversion.

If the MERGELST operand is omitted but the LOAD option is indicated
in the PLIOPT list, the PL/I compiler still generates a merge list
containing the name of the compiled program.

MERGLLST is similar to the NA~£ cards generat€d by OBJNM=aaaaaaaa
in PL/I. The merge list can be a single program name:

BAKER

or a list of program names enclosed in parentheses:

(F(~X, GEORGE, HOW)

The list must not exceed 253 characters, including blanks and
COIrnas.

Duplicate program nawes in the list cause reprocessing of those
programs. The only penalty is in terms of added processing time.

If no value is supplied for MERGELST, then a null string is assumed
initially.

MERGEDS
allows you to name a data set as the source of the merge list.
This can be in lieu of MERGELST or a sup~lewent to it. If tr.is
data set is VS or V~, it is assumed that each record contains frow
o to 15 program names separated by commas. As anywhere else,
spaces are immaterial. The PLC and ODC assurre that all program
names in the MERGEDS for which a LOAD.XXX(O) data set exists are
tobe combined into a Single JOBLIB. Duplicate names cause dupli­
cate ~rocessing, but otherwise do not hurt.

If the data set is a VP data set, then it is assumed that all the
member names for which a LOAD.XXX(O) data set exists are to be com­
bined into a JOBLIB. If the current active JOELIB has the same
name as MERGEDS, then all modules in the POD for which a PL/I LOAD.
XXX(O) data set exists are to be reprocessed.

If no value is supplied, no data set is assumed for MERGEDS.

MACRODS

212

is the data set name to be associated with the intermediate text.
If no name is given and either CHAR48 or MACRO options are speci­
fied, the compiler creates a data set named:

MAC.name(O)

Where 'name' is the user-supplied object module name. This data set
is normally erased when the compilation is completed. If you spe­
cify a value for MACRODS, that name is used instead of MAC. name (0)
for the data set, and it is retained permanently with a compiler­
generated source margin of 2 to 72. If a vclue is given for

MACRODS but neither CHAR48 nor MACRO is specified, the value is
ignored and does not contribute to or hinder the compilation.

Note: When using this data set for reoompilation, a source ~argin
of 2 to 72 must be specified in the SORMGIN option of the PLI com­
mand's PLIOPT parameter.

EXPLICIT
specifies the external names to be changed and put into a transfer
vector data set.

Specified as:

name - the external name.
(name+[, ••• l) - list of external names.
*ALL[(name+[, ••• l)] - all external names that do not begin with IHE

except the names listed in parentheses

programming Notes: The syste~ default, MAP, reports to the user
the results of name changes to REFs. The default, N (no report),
can be changed to Y (report) by issuing the DEFAULT command.

The padding character that is used when the external names are
changed is the symbol lil. This character can be changed to any
alphabetic character or to the symbolS # or $ by using the DEFAUL~
command, with PADCHAR specified as the oferand.

The system default value, UPDTXFER, if entered as UPCTXFER=Y, spe­
cifies that new names can be entered into the transfer vector data
set. If entered as UFDTXFFR=N or if defaulted, no names can be
entered into the data set.

XFERDS
is the name of the transfer data set that will be created.
operand is omitted, there will be no transfer data set. An
ing data set specified on this operand will be updated; and
data set does not exist, it will be created.

If this
exist­
if the

prograITming Notes: The system default value, PLIPACK, is checked to de­
termine what type of CSECT packing will be done. The options are: (1)
Y, all CSECTs of the input module will be packed: (2) P (the default),
there will be partial packing of CSECTs: and {3} N, no CSEC~ packing
will be done.

The system default value, REJMSG, is used to override the output of
rejection messages by the loader. The options are: (1) N (the
default), no overriding: and (2) Y, override.

You can change the initial settings of PLIPACK and REJMSG. Issue a
DEFAULT corrmand with the new value before issuing the PLI command.

PLIOPT Command

This co~nand will invoke the PL/I Optimizing Corrpiler program product
using the Program Product Language Interface.

r---------~---,
I Operation I Operand I
r---------t--i
IPLIOPT INAME=modulename(,OSOPTS=(opt1,opt2, •••)] I
I I [, SOURCEDS=sourcedsnamel I l _________ L __ J

Part III: Corrrrand Lescriptions 213

NAME
identifies the name ty which the o~ject prograw will be known to
TSS. It consists of one to eight alphameric characters, the first
of which is alphabetic. If the SOURCEDS cftion is not specified,
there must exist a dataset called SOURCE. name which is assumEd to
be the source program to be compiled.

OSOPTS
specifies a list of os options to be in effect during the compila­
tion. Not all options are applicable in TSS.

Compi ler Opti on

AGGREGAT~INOAGGREGATE

ATTRIBUTES I NOATTRIBt1l'ES

CHARSET ([1.l8160 J
{EBCDIC I BCD))

COMPILEINOCOMPILE [(WIEIS)}

CONTROLC'password")

COUNT I NOCOUNT

DECKI NODECK

DUMP \ NODUMP

ESDI NOESD

FLAG [n I W lEI S)]

GONU~ERINOGONUMBER

GOSTMT I NOGSTMT

IMPRECISE I NOIMPRECISE

INCLUDE I NOINCLUDE

INSOURCE\NOINSOURCE

LINECOUNT(n)

LIST [(N,M)] I NOLIST

LMESSAGEISMESSAGE

MACRO I NOMACRO

MAP I NOMAP

MARGINI(lc') I NOMARGINI

MARGINS(m,n (,c])

MDECK I NOMDECK

NAME ('name')

NEST I NOm;ST

Abbreviated Name

AGINAG

AINA

CS«(48160][EBIB})

CI NC ((WIEIS)]

CTINCT

DIND

DUINDU

F (UIWIEIS)]

GNINGN

GSINGS

IMPINIMP

INCININC

lSI NIS

LC(n)

LMSGISMSG

MINM

MI (" c') I NMI

MAR(m,n [,c»

MDI NMD

N('name")

TSS Default

NOAGGREGATE

NOATTRIBUTES

CHA~SET(60EBCDIC)

NOCOMPILES (S)

NCCOUNT

NODECK

NDESD

FLAG(!)

NOGONU>1BER

NOGOSTMT

NCIMPRECISE

NO INCLUDE

IN SO URCE

LINECOUNT(55)

NCLIST

LMESSAGE

NQMACRO

NCMAP

NOMARGINI

MARGINS(2,72,O) or
MARGINS (10,100,0)

NCMDECK

NON EST

NUMBER I NONUMBER

OBJECT I NOOBJ ECT

OFFSET I NOOFFSET

OPTIMIZE (TIME I 012)
NOOPTIMIZE

OPTIONS I NOOPTIONS

S~~UENCE(m,n) \NOSEQU~NCE

SIZE«(-)YYYYYYYYI
(-) YYYYYK MAX)

SOURCE I NOSOURCE

S'IMTI NOS'IM'I

STORAGE I NOSTORAGE

SYN~X\NOSYNTAX (W\EIS)]

TERMINAL [(opt-list»)1
NorERMINAL

XREFI NOXREF

NUM INNUM

OBJINO~

OF1NOF

CPT(TlME\Ot2) I NOPT

OPINOP

SEQ(m"n)INSEQ

SZl-]YYYYYYYY\
[-]YYYYYK MAX)

SINS

STGINSTG

SYNINSYN [(WIEIS)]

TER~ [(opt-list)] I
N'IERM

X\NX

NONUMBER

OBJECT

NCOFFSET

NOOPTIMIZE

OPTIONS

NOSEQUENCE

SIZE (MAX)

SOURCE

S'IM'I

NCSTCRAGE

NCSYNTAX(S)

NOT ERM INAL

NOXREF

see Appendix L and OS PLII Cptimizing Compiler Programmer"s Guide for
further information.

so URC EDS
specifies the na~e of the input data set to be ccmfiled.

POD? Command

This command places on SYSOUT a list of the member names and, optional­
ly, the alias names and other inforRation pertaining to individual mem­
bers of cataloged VPAM data sets.

r---------~--, I Operation I operand I
~---------+--------------~~---i I POD? I {PODNAME=data set name] (,DATA=Y] {, ALIAS=Y] I
I I (,MODULE= {module namel *ALL}] I L _________ J.-___ J

PODNAME

DATA

identifies the cataloged VPAM data set for which member information
is to .be presented.

Specified as: the fully qualified name of a VPAM data set, or the
absolute or relative generation name of a VPAM member of a genera­
tion data group.

system default: USERLIB.

specifies that the system and user data (if any) associated ~ith
each uember is to be printed in hexadeciwal. Only the first 21
bytes (42 hexadecimal digits) of user data are printed. The format
and content of this data are defined by the user. Similarly, only
certain system data (25 hexadectmal digits) can be printed.

Part III: COmJlland Descriptions 215

Specified as: Y.

System default: the system and the user data associated \Iiith each
member is not printed.

ALIAS
specifies that any aliases of each member are to be p}~j.nt,~d.i~~
alias is another name by which a member of a VPAM data s~t can be
identified.

Specified as: Y.

System default: the members' aliases are not listed.

MODULE

. .

identifies the module <member nane) for which information associat­
ed wi th that module will be printed. The information consists of
the module's version ID and the name, version ID, attributes, and
external references for each CSECT within the module. The CSECT
entry points are provided by the ALIAS o~ion •

Speci tied as:

wadule name - information is provided for the specific n"Xl.ulE:.

*ALL - information is provided for all modules in the da-ta se-t~

System default: no module information is printed.

Functional Description: If a VPAM data set is a program library (for
example, user library or a job library), its members are object program
modules. :Each member has a name that was assigned by the user during
compilation, assembly, or linkage editing. This narre is used by the
system as the basis for stowing the module in the library, and it is
recorded in the program library's directory (POD). To make each ~odule
available on the basis of other naRes (for example, entry point names),
the system also defines a number of aliases for the module (for example~
all external symbol definitions except those naRed COMMCN are defined as
aliases). The alias names are also stored in the POD by the system.
The user can thus invoke a lnodule cased on its member name or any of its
aliases. Additional inform~tion describing the version and external
references of a module is contained in the program module dictionary
(PMD) and is available to the user via the MorULE option.

If a VPAM data set is not a program library, each of its member nan.es is
defined in the STOW macro instruction or in a command (as CDS) that was
used when the member was added to the VPAM data set.

programrring Notes: The POD? command can be used to examine information
pertaining to the members of any cataloged VPAM data set that a user
owns or shares.

The conversational user may terminate the printout at any time by pres­
sing the ATTENTION key.

The format of the information sent to 3YSOUT after the POD? command is
executed is shown in Figure 2.

Example: 'Ihe user wants to obtain a listing of the modules presently in
his user library.

216

User: pod? userlib,y,y
SiS'tem:

SYSPRX 2003600030001000000000000
JJCBHELP 2002E00030010000000000000 000000000000016400010000000020000000000000

PSCNDX .. RDJ:NDX • GOI NDX
NIP 2001F00030010000000000000 00000000000000DO00010000000010000002000000

PIN
TWOCOL 200OCOOO]0010000000000000 000000000000035C00010000000020000000000000

TWOCOL.C. TWOCOL~

~---r~------~\r--.------~
user-suppll.ed

member data
I, I

/4---42 hexadecimal digits----l
digits

~1--~I------T!TI------~II~~~r---~----~
\D~l;61;S alias 1 , alias 2 ,

I~~I-----+I~I----~!~I--~\r---~----~

-..J 4 I--s--M--a--M-
If there are more than seven alias names, additional lines
are printed that contain up to seven aliases each.

I I I
l;6I;SI;SJ,HI00ULE~VERS10NI;S10; \61,lS

j 4 I. -20 J.
I I I

version 10 1,lS1t>1;S11 FTN~MAIN

I I J
18----t~i 4 ~ 8--1

See Note 1 See Note 2

I I I
\6\6I1l;6CSECT:I,iI\6\6\6

I II I I II II II .
name l l;61,lS version ID 16l6ATTR:VAR,RO,PUB cont,nued

I I I I I I I I II f I 1'1 below

--l 4 1-10 ~I. 8--12 ~r---18---+l~12 ~5-.13 hl21113 111.-
I II II II I I I" ,\; : : I PSECT ,COM PRIV1L, SYS\6lt>!pl/l EXTERNALl;t>REFERENCES: REFI , " REF 6
I I I ! I ! I I I I I! . . .
~~-5~~11-3~ll~-6-~~11-3~~4-~~I.----2-0-----~t~.--8-J~ll~)r--~~ll----B--J~

If there are more than six references, additional lines
are printed that contain up to eight references each. See Note 3

Note 1. The module version ID moy appear in either of two formats, (~epending on the manner in
which it was originally specified. O,'e format consists of eight EBCDIC characters, and the other
consists of a dote and time in the formot MMiDD/YY!\!~HH:MM·SS (for example 07/22/71 12: 15:0B) •

Note 2. If this i~ a FORTRAN module, this eight-byte field contains the Nards FTN MAIN or FTN SUBR.

Note 3. The CSECT nome, version ID, attributes, and external references are repeated for each CSECT
w:thin a module. The attributes and extemal reference portions only are provided if at leost one attri­
bute or one external reference is applicable. Only the applicable attributes are provided without
superfluous commas. The attributes t"at moy oe associated with a CSECTare Va'r (variable-length),
RO (read-only), Pub (public), PSECT (PS!:CT), Com (common), Priv'iI (privileged), and Sy. (system).

Figure 2. Format of output from the POD? command for each member

POST Command

SEe "DISABLE, ENABLE, peST, and STET Corrmands. to

Part III: Corrrr.and ~escriptions 217

PRINJ' Command

This co.mand schedules a job to print a data set on a high-speed line
printer.

r---------~--, I operation I Operand I
.---------+---~ I PRINT I DSNAME=data set name [,STARTNo=starting position] I
I I [, ENINO=ending position] I
I J ,.PRTSP=EDITI112131 I
I I (,HEADER=Hl [,LINES=lines per pagel [.PAGE=P] I
I I [,ERASE={YIN)}(,ERROROP'I=(ACCEP'IISRIPIEND}] I
I I [,FORM=paper form) [,S'IA'IION=station id] I L _________ ~ __ J

~: system programmers should see System Programmer' s Guide for spe­
cialized operands.

DSNAME
identifies the data set that is to be printed; VAN data sets must
be cataloged: BSAM data sets ~ust be defined within the current
task by a DDEF command or must be cataloged.

Specified as: a fully qualified data set name.

S7ARTNO
specifies the byte position at which printing is to start for each
data set record.

Specified as: from one to six decimal digits.

System default: printing starts with the first byte of each
record.

Note: In a VISAM line data set with no regions, the data begins in
position 9.

ENDNO

PRTSP

218

specifies the byte position at which printing is to stop for each
data set record; this end byte will be printed.

Specified as: from one to six decimal digits.

System default: printing continues to the last byte of each logi­
cal record or until the printer line length is reached, whichever
occurs first. (The maximum printer line length is 132 characters.)

specifies the number of spaces to be Skipped between lines.

Specified as:

EDIT - line spacing is controlled by a character in the first byte
position of each logical record. The control characters may
be either a FORTRAN control character (defined by American
National standard FORTRAN, ANSI X3.9-1966) or machine code
(see Appendix D). but must be of the same type throughout
the data set. l.be control character in each record is
user-supplied.

1 - one space between lines.
2 - two spaces between lines.
3 - three spaces between lines.

Note: When EDIT is specified, the HEADER, LINES, and PAGE operands
iiUSt not be specified.

System default: 1.

HEADER
specifies that the first logical record of the data set is to be
repeated on each print page as a header line. The first 132 bytes,
or the entire first record, whichever is smaller, will be used as
the header.

Specified as: H.

System default: no header is printed.

LINES

PAGE

indicates the number of lines to be printed on a page.

Specified as: from one to four decimal digits: 9999 is the
maximum.

System default: 54 lines are printed on each page.

specifies that pages are to be numbered.

Specified as: P.

system default: no page numbers are assigned.

ERASE
specifies that the cataloged data set is to be erased from the
catalog after the printing operation is finished.

Specified as:

Y - erase
N - save

System default: no erasure is made.

ERROR OPT

FORM

designates the action to be taken when
found while reading a data set record.
the data set to be printed is on tape.

Specified as:

ACCEPT - error record is accepted.
SKIP - error record is skipped.
END - print operation is terminated.

system default: END is assumed.

an uncorrectable error is
This option applies only if

designates the identification of the desired combination of paper
forms, print chain, carriage control tape, etc. See the installa­
tion manager for acceptable values.

specified as: from one to six alpha,meric characters.

System default: the installation's standard printer form, chain ..
etc., is used (as specified at system generation).

Part III: Co~mand Descriptions 219

STATION
indicates the R,JE station identifier to which output is t::) be sent.

specified as: up to eight alphameric characters.

System defaul b ID froM Task Common is used.

Note: This parameter can be specified only if the user was assign­
ed this capability when he was joined to the system.

Functional Description: PRINT assigns t.he request to an independent
nonconversdtional task. to ~"hich the systen assigns a ESN for possible
reference by the user. The specified dat.a set is printed as it appears.
Invalid print. character.·s appear as blanks in the output. Data set rec­
ords coma ining \J. read error (or an inval id control cha:r:'acter, when the
EDIT option is us~d) are printed in hexadecimal on SYSOUT. When the
data set resides on seven-tr'lck tape, the systen makes the character
adjustments required to ensure data validity.

I f the user specif ies a form numbe r. the system includes that number in
its instructions to t.he syst:em operator when the printer is readied for
operation.

The data set name specified foe a ESAM data set. m,,,y or may not be cata­
loged. If not, it is placed in the catalog until pdnting is completed
and then erased, regdrdless of Ul€ ERASE opticn. If the data set name
is cataloged, the ERASE option can be used to eraSe after printing is
completed.

When ED I'!' is specif led. the first byte of each logical record is assumed
to be the byte following the cont.rol char-deter, which is not printed and
is not counted when determining where t.o b,,~ryin printing a record.

If the data set to be printed was created via the I;ATJI. command, the
first byte of each record contains an indicator of the origin of the
record. PRINT translates the byt.E t.O a C if the record was entered
through a card reader and to a l:lank if it was entered through the key­
board. Unless the STARTNC operand is specified, this byte is printed as
part of the record. If STARTNO is specified as 2, this byte is
bypassed.

Cautions: When the user issues PRINT for a BSAM 'data set ·that is de­
fined in his task, the data 5et definition is released, and the data set
is disconnected from the uBer"s task.

The PRINT command is valid for BSAM g VSAt~, and VISAM data sets only. It
cannot be used to print a member of a VPAt-1 data set. However, a VPAM
member can be copied iNi t.h the CDS command t an d then the copy can be
printed.

A BSAM data' set must reside on magnetic t.ape, a VSAM or VISAM data set
must not have undef ined Cforma·t-U) formal:: records.

PRINT should not be used for an uncataloged data set that is awaiting
bulk I/O, as PRINT automatically erases an uncataloged data set.

programming Notes: The user may use the ESN to identify his task when
using the CANCEL command.

To print an unlabeled tape, the user must precede the PRINT command with
a DDEF comlT'and and these operands:

DD NAMb=name. PS, DSNAME=dsname .,DCB= {RECFM=-"f (; qfa~_" LP-ECL=length,

220

BLKSIZE=block size,DEN={OtlI2},TRTCH={CIEIT}),UNIT=(TA,tape type),

VOLUME= (,volume serial number) ,lABEL=(,NL) ,DISP=OLD

The user can also obtain a data set suitable for printing by using the
WT command.

Example: ~he user wants data set T44.REMOVE to be printed single­
spaced. The entire logical record is to be printed; no header or page
numbers are wanted; 54 lines per page are wanted on standard printer
forms; and the data set's catalog entry is not to be erased.

User:
SyS'telll:

PRMPT Command

print t44.remove
BSN=0231

This command allows a user to manipulate and use the rressage file.

r---------~---, I Operation I Operand I
r---------+---~ I PRMPT IMSGID=message identification I
I I [,INSERTn=inserted character I, •••]] I l _________ ~ __ J

MSGID
the identification of some message in the rressage file (SYSMIF).
If identification is less than eight characters, it is padded with
blanks on the right. If it is greater than eight characters it
will be truncated.

INSER~n
variable text to be inserted in the text of the rr.essage.
mum text that can be inserted in a single insertion is 40
terse If no inserted text is given when the message text
some, the location of the inserts is indicated with three
asterisks.

The maxi­
charac­
expects

Functional Description: The PRMPT command can generate messages from
the lIlessdge file so that they can te examined and corrprehended. ~his
allows users to display the standard and extended forms of the message
easily. The command also allows substitution of inserts into the text
of messages and, with DISPLAY, allows messages to be issued from corrrrand
procedures <'P.KOCDEFs).

Example: The user has a wessage in his own message file that reads:

Z0065 LI THUANIA $01 SWING $02

de can issue this message with the PRMPT command as:

User:
System:
User:
system:
User:
system:

Ermpt zoo65
ZOO65 LITHUANIA *** SWING ***
Ermpt zoo65,does
ZOO65 LITHUANIA DOES SWING ***
£rmpt zoo65,can,too
Z0065 LITHUANIA CAN SWING TOO

PROCDEF Corrrnand

The PROCDEF command defines a user-written command procedure that con­
sists of other commands.

Part III: COlmand I:escriptions 221

r---------T--, I Operation I Operand I
.---------+--.-- ---------i
IPROCDEF INAME=procedure name[,PROLIB=data set namel I L _________ L-__ ~

NAME
designates the name to be assigned to the connand ~rocedure.

Specified as: from one to eight characters •• This name must not
contain embedded blanks, commas, semicolons, equal signs, or
apostrophes •

PROLIB
specifies the library in which the PROCDEF is stored.

Specified as: the name of a VPAM data set. If the specified data
set does not exist, it will be created. The PROCDEF is stored in
the SYSPRO member of the data set.

system default: USERLIB.

Functional Descript.ion: When the user enters the PROCDEF command and
operand, the text editor is invoked to monitor PROCCEF processing. '!he
user can use all of the text-editing facilities during command creation.
Unless the user suppresses line number prompting (DEFAULT LINENO=N), the
system prompts him to enter data by issuing line nunbers. For a new
procedure, the system issues a line number with the value of BASE (100
is the default value for BASE). For an existing procedure, an under­
score is issued; CLP is set to the first line in the PROCDEF.

programming Notes: For a detailed discussion on defining command proce­
dures, see ·Command procedure- in Section 4 of Part II.

If you specify a data set, other than USERLIB, in which to store the
PROCDEF, you cannot execute that PROCDEF until you either redefine the
data set as USERLIB or store the PROCDEF in USERLIB.

Example.: If COPYCAT is the name of the command procedure being defined"
the user enters:

procdef copycat

and the system replies:

0000100

If COPYCAT had been defined previously, the system·s prompt would have
been:

PROFILE COIrl11and

This command causes the task profile to replace the user profile in
USERLIB.

r---------~--, I Operation I Operand I
~---------+--------------------------.--------------------------....
I PROFILE I (CSW=(N I y}] I L _________ L---___________________________________ J

CSW

222

specifies whether the command symbols are to be saved with the task
profile.

specified as:

Y - the camnand symbol definitions are saved with the task profile.
N - the command symbol definitions are not saved with the task

profile.

Syste~ default: N.

Functional Description: When a PRCFILE command is issued, the task pro­
file is written into the user library, replacing the previous version,
and remains unchanged until another PROFILE command is issued or until
the USERLIB (SYSPRX) is erased. Asa result, values entered by DEFAUL~
or SYNONYM, and (optionally, if CS~=Y) SET commands, are made part of
the user profile that is in USERLIB and these values are then used to
set up the task profile whenever the user initiates a new task.

caution: Any changes to the task profile made in the current task be­
fore the PROFILE command is entered become a part of the permanent
profile.

pro9ranmdnq Notes: This command is used when the user wants his current
task profile to be used for subsequent tasks.

Examples:

1. The user wants to save task profile with no command. symbol
definitions.

User:
S'iStem:

2. The user wants to save task profile including command symbols.

User:
system:

Erofile csw=y

PUNCH COIllJ'lland

This command schedules a job to punch an existing VSAM or VISAM data set
into cards on a high-speed punch.

r-- -~---, I operation I operand I
~---------+--:-----i
I PUNCH IDSNAME=data set name (,] I
I Il,STARTNO=starting positionll,ENDNO=ending position] I
I I [,STACK={11213IEDIT][,ERASE={YIN})[rFORM=card form] I l _________ L___ J

DSNAME

I,l

identifies the cataloged VSAM or VISAM data set to be punched.

Specified as: a fully qualified data set name.

specified, if follOWing parameters are entered in positional nota­
tion, to lIBintain system compatibility.

STARTNO
specifies the byte position at which punching is to start for each
data set record.

Specified as: from one to six decimal digits.

Part III: Conmand Descriptions 223

System default: punching starts with the first byte of each
record.

ENDNO
specifies the byte position at which punching is to stop for each
data set record. This end byte is punched.

Specified as: from one to six decimal digits. The value must be
greater than the value of the STARTNO operand.

System default: punching -xlntinues to byte 80 or to the end of the
record, whichever occurs first.

STACK

~RASE

FORM

specifies the stacker select or edit option:

Specified as:

1 - pocket number Pl.
2 - pocket number P 2.
3 - pocket number P 3.

EDIT - the first byte of each data set logical record contains a
control character for stacker selection. This control
character may be either a FORTRAN control character or ma­
chine code (seeb,ppendix D), tvlt must:. be of the same type
throughout the data set. The contr01 character in each rec­
ord is sUfplied by the user.

Systen default: 1.

specifies that the cataloged data set is to be erased from the
catalog after the punch operation is finiShed.

Specified as:

Y - erase.
N - save.

System defau It: N.

designates the punch card forro to be used for this punch request.

Specified as: frau. one to six alphameric characters.

Note: The system does not check the specified form type: you must
convey the meaning of the specified form type to the system
operator.

systero .default: installation"s standard card form is used.

Functional Description: This command results in the assignment of the
request to an independent nonconversational task, to which the system
assigns a BSN for possible reference by the user.

The specified data set is punched as it stands, with no code conver­
sions. The STARTNO and ENDNO options allow selection of any contiguous
field of ut: to 80 bytes of EBCDIC data from each record of the data set.

Input records containing an invalid control character, when the EDIT
option is used, are printed in hexadecimal form on system output
(SYSOUT) •

If the user specifies a form number6 the system includes that number in
its instructions to the 'system operator when the card punch is readied
for operation.

When EDIT is specified, the first byte of each logical record is assumed
to be the byte following the control character, which is not punched and
is not counted when determining where to begin punching the record.

If the data set to be printed was created via the DATA command, the
first byte of each record contains an indicator of the origin of the
record. PUNCH translates the byte to a C if the record was entered
through a card reader, and to a blank if it was entered through the key­
board. Unless the STARTNO operand is specified, this byte is printed as
part of the record. If STARTNO is specified as 2, this l:yte is
bypassed. .

Caution: lhe PUNCH command is valid for VSAM and VISAM
It cannot be used to punch a member of a VPAM data set.
case, the rrember can be copied via the CDS command~ and
then be punched.)

data sets only.
(In the latter

the copy can

Programming Notes: The user may use the BSN to identify his task when
entering the CANCEL command.

If the user wants to punch VISAM data sets, and he does not want to in­
clude the line number and keyboard/card reader character, he can specify
that the data to be punched begins in column 9 of the data set (colurrns
1-7 are the line number; column 8 is the keyboard/card reader charact­
er). To do this, the user can specify:

punch dsname,startno=9

When the PUNCH command is used to punch a line data set, and the punched
deck will subsequently be used as card-reader input by the operator to
re-create that line data set, the line numbers in the original data set
should not be punched out. When the operator reads the cards into the
system6 a line nlunber is automatically prefixed to each record of the
line data set (see Appendix A).

Example: lbe user wants to punch characters 24 through 56 of each
EBCDIC record in data set GHOOTS9 and selects pocket 2. After corrple­
tion of punching, the data set is to be saved. The usual card form is
to be used.

User: Euoch ghoots9 6,24,56,2
System: BSN=0244

PUSH Command

This command saves the status of the interrupted prograIl'.

r---------~---, I Operation J Operand I
r---------t---~
I PUSd I [SIRTEST={ N IY}] '. I L _________ i ______________________ ~_~ ___________________________________ J

Note: PUSH should be issued only after an attention interruption.

SIRTEST
specifies whether the system 'will check for a user-defined SIR
routine.

Specified as:

Part III: Connand Descriptions 225

N - the system does not check.
y - the system checks. If a SIR routine exists. PUSH is canceled.

Systerr default: N.

Functional Description: PUSH saves the status of all general registers
and the PSW for the active program in a system save area. If SIR~EST=Y.
and if there is an active sm routine defined by the user, the PUSH com­
mand is canceled.

progruming Note: The status of a program is automatically saved when
the user issues an ATTENTION interruption. The PUSH command allows him
to save the status of a program. modify the copy that he interrupted,
and execute both the original and the modified copy. (See Example 2,
below.)

Exan,ples:

1. The user has interrupted his program; he wants to save the status:

User: (presses ATTENTION key)
System: !
USE;:r: push

The system saves the status of the prograJf in a system save
area.

2. The user now wants to change the copy that he just saved. Next, he
wants to run the altered copy, and then run the original copy that
was saved:

User:
sYS"; Us er:
Sys,User:
Sys,User:

push (from Example 1)
~et 5r=x'10' (alters program)
go (runs altered version)
go (runs original version)

QUALIFY Command

This command allows tha user to reference the internal symbols within an
object mojule without using the fully qualified name.

r---------~---, I Operation I Operand I
~---------+--i I QUALIFY IMNAME=Uink-edited module name.) object Itodule name I L--_______ ~_____________________________________ ,

MNAME
identifies an assembled or conpiled progra~ (object module) and,
optionally, a module processed by the linkage editor.

Specified as: an object module name, control section name, or
entry point name and, optionally, a link-edited module name fol­
lowed by a period and an object module name.

Functional Description: An ISD must have been requested when the origi­
nal program was assembled, compiled, and, optionally, processed by the
linkage editor. QUALIFY enables the user to reference, implicitly, the
program's internal symbols wihtout preceding the internal symbols with
the appropriate object module w control section, entry point or link­
edited module name. QUALIFY loads the module if it is not currently
loaded.

226

caution: Only one QUALIFY command can be in effect at one time. Each
QUALIFY command overrides any previous ones.

Examples:

1. The user wants to reference, implicitly, the qualified internal
symbols in the program named PGMF, which is a part of the link­
edited program named PGML.

User: gualify pgml. pgmf
SyStem:

Note: The user may thereafter reference internal symbols in this
program in implicitly qualified form.

2. The user wants to qualify his internal symbols in program PGMF, but
he failed to request an ISD with his assembly or compilation.

gualify pgmf

The system informs the user that the module has no ISD. The user
must then use external symbols in his references to internal syw­
bols in PGMF.

3. The user wants to qualify his internal symbols defined in prograw
PGMF, which is part of the link-edited program named PGML. Howev­
er, in entering the QUALIFY command, he neglects to specify the
name of the original assembly or compiler module.

gualify pgml

The system informs the user that he needs two levels of
qual if ica tion.

USer: gualify pgml.pgmf
system:

REGION Command

This command is used to change regions when the user is editing a region
data set (see -EDIT command-); it can also be used to specify editing of
a region data set when that information was not provided in the EDIT
command.

r---------~--, I operation I Operand I
~---------+--f
IREGION . I [RNAME=region name] I L-________ i--__ J

RNAME
identifies an existing region or specifies the new region name to
be aSSigned to a line or range of lines. The value of the REGSIZE
operand in the user profile determines the maximum size of the
region names for the data set; region names are padded on the right
with blanks or truncated to fit the region name field.

Specified as: an existing region name or as a stI:ing of 1 to 244
characters.

System default: a blank region name is assun:ed.

Part III: Conrrand Descriptions 227

Functional Description: A region data Bet is created with the EDIT com­
mand using the RNAME and REGSIZE operands. If the user wants to operate
on another region in the same data set, he can use the REGION comJl'and to
specify the new region. The system responds with an underscore if the
region exists or line numter 100 if the region is new to the data set.
The lines of data in a region data set are prefixed by the system with
the name of the region and the line number within the region. Like
EDIT, the REGION command prompts with line numbers in increments of 100
(if the value of INCR is 100), until a conunand preceded by a break
character is entered. The region name prefix is not issued when the
system prompts with line numbers, but is issued when the user displays
the lines with a LIST command.

Caution: The system automatically reorganizes the regions of a data set
into alphabetically ascending order. A language-processing command
(EDIT, PROCDEF, or PLI) must be invoked before th~ command is issued.

If editing commands with N1 and N2 operands are not preceded by a REGION
cOmmand, the system assumes the current region name if one exists or a
blank regicn name. After entering REGION, the user can reference any
line in the region or he can add new lines to the region.

To create a region data set, the user enters an EDIT coxrmand with the
RNAME and REGSIZE operands. The system prompts with a line number.
Then, if the user wants to operate on a new region in that data set, he
can enter the REGION command with the name of the new region.

If the user wants to create several region data sets in the same task,
and he wants them all to have a maximum region na~e length of 12, he can
first enter the DEFAULT command to set REGSIZE=12. He need not specify
the REGSIZE operand in EDIT. All of his data sets will be created as
region data sets with REGSIlE=12.

Note: Once a region data set is created, the user cannot change the
maximum re9ion name length (REGSIZE) for that data set.

To terrr,inate processing by the REGION command, the user must issue a
command preceded by a break character after the text editor line number
prompt. The eLP is set to the last line entered plus the value of INCR.

Example: The user issues the EDIT command to create a new region, and
then he wants to operate on another new region:

User: ~dit dsnam,regnarn,regsize=8
Sys,User: 0000100 this is data

0000200 _region regnam2
System: 0000100

The system has terminated processing of the first region, REGNAM, in
data set DSNAM. It has initiated processing of region REGNAM2 in the
same data set.

RELEASE.Command

This command deletes the data set definition established by a previously
issued ~DEF command. It may also te used to separate and release one or
all data sets of a given concatenation (see description of DDEF in Ap­
pendix D for concatenation), or to remove JOBLIBs frorr the user's pro­
gram library list.

228

r---------~--,
I Operation I Operand I
1-------+--.
I RELEASE IDDNAME=data definition namel,DSNAME=data set name] I
I I [,lSCRATCHIHOLD1) [,{SCRATCBIHOLD}] I L--_______ L-___ _ ___ J

DDNAME
identifies the data set definition created by a DDEF command that
was issued earlier in the current task. The name either identifies
the data set definition to be released or identifies the concatena­
tion from which one or all data sets are to be separated and
released.

Specified as: the data definition name specified in a previous
DDEF command.

DSNAME
identifies one data set in a concatenated series. Only this data
set is to be released; the remainder of the concatenation is not
affected.

Specified as: a fully qualified data set nawe.

System default: all data sets concatenated with the specified data
definition name are released.

Note: This operand is used only for concatenated data sets and has
no meaning in any other situation.

SCRATCH

HOLD

specifies the private volume(s) on which the affected dataset(s)
resides is no longer required by the current task and may be dis­
mounted or handed off to another task. This applies only to a vol­
ume (s) for which no other data definitions exist.

Specified as: SCRATCH

SystelI' Default: see telow under HOLD command.

specifies that the private device(s) used for the volume(s) on
which the affected dataset(s) resides is to be reserved for further
use by the current task. This is implied for any device(s) in use
for 0 ther da ta def ini tions.

Specified As: HOLD

System Default:
for conversational task -- SCRATCH alone
for non-conversational task -- HOLD alone.

Functi,onal Description: RELEASE deletes the inforrration defining the
data set for either a public or private data set. It also may release
for other use volumes and I/O devices currently assigned to a specified
private data set. If the data set is open, it is closed tefore the
defining information is deleted.

wnenthe specified data definition name applies to the data set defini­
tion of a JOBLIB, the JOBLIB is rerroved from the JOBLIB chain. and the
definition of the data set is deleted.

When the data set name of a concatenated data set is specified, that
data set is released and dropped from the concatenation. The rest of
the concatenation remains unchanged and may still be referenoed by its

Part III: COmmand Descriptions 229

data definition name. If DDNAME refers to a concatenation, and DSNAME
is not spcified~ the user is prompted to enter a DSNAME.

A RELEASE command with the DSNAME parameter specified must be issued for
each data set to be released from a concatenation.

wnen there is more than One data set in use on the private volume beill9
released, the device that contains the volume is not released until a
RELEASE conmand has been issued for the last data set on that volume.

When the user specifies DDNAME for a data set on a public volume. the
definition of the data set is deleted, but the device is not released.

Programming Notes: The RELEASE conmand does not erase or uncatalog.
The user should issue a RELEASE conmand when a data set is no longer
needed in a task. He must redefine the released data set when he wishes
to refer to it again.

The LOGOFF command releases all data definitions in your task.

Examples:

1. The user wants to release a private data set identified by DCNAME
INGO.

USer: ,Eelease ingo

The system deletes the current definition of the data set.

2. The user wants to release a concatenated data set that has three
data sets (DTAB1, DTAB2, and DTAB3). The associated DDNAME is
TABLES.

release tables

The system prompts the user to enter a DSNAME.

User:
Sys,user:
Sys, User:

dtabl
release tables,dtab2
release tatles,dtat3

3. The user wants to release a concatenated data set (TURN9) from a
concatenation with DDNAME OVERT.

User: !elease overt,turn9

The system releases TURN9 fron the concatenation.

4. The user wants to release a job library with CDNAME PROGTEST.

User: !elease progtest

The system removes the JCBLIB from the JOBLIE chain.

5. The user wants to release DDNAME SAM, on a private volume. He
wants to release the volume, but hold the device. He can enter ei­
ther of the following:

User: Eelease sarn"scratch,hold

or

User: ,Eelease sam.,bold,scratch

230

Operational Note: The following chart indicates volume and device dis­
position for the three valid combinations of SCRATCH and BOLD. It must
be remembered that SCRATCH is- ·ignor-ed for any '\Tolume mounted for another
DDEF, and HOLD is assumed for any device on which a: volume is mounted
for another DDEF.

r-----------,------------------- , --"
I OPTIONS I DISPOSITION I '!'APE I
.. -----------t----' -- "Ii J
~~~ _~~~i_~~ME ___________ ~~~CE I O~~~_~ 
I I I I 
I ------- I --default according to task mode-- I I 
I I I I 

(1) I SCRATCH I logical disltount release (3) I rewind I 
I I I I 

(1.> I ------- HOLD I retain reserve I none I 
I I I I 
I SCRATCH HOLD I logical dismount reserve I rewind' I 
I' I~~d J 
i----------L--------------------'-------I 
I (1) = conversational default I 
i (2) = non-conversational default I 
I (3) = non-conversational reservation from SECURE is released 1 L____________________________________ J 

REMOVE Command 

This command deletes previously issued dynamic statements. (See "Dynam­
ic statement" under "program Control" in Section 3 of Part II and the 
descr iption of the AT command earlier in this part). 

r-------,-------------------------- , 
loperationioperand ' I 
.. ------+---------'---------------- -------f 
IREMOVE I (statement numberl, ••• ] tALL}] , L _________ ~ ___ . _________________________________ . ___ J 

statement number 

ALL 

identifies a dynamic statement that is to be deleted. 

Specified as: the number ass igned by the system when the dynamiC 
statement was entered. 

all PCS dynamic statements are removed. 

Seecified as: ALL 

Functional Description: REMOVE permanently cancels all dynamic state­
ments whose numbers are specified as operands. 

CautioD2 A REMOVE command cannot be used in a dynamic statanent. 

EXample2 The user wants to remove dynatdc statements 10, 2, and 4. 

User: remove 10,2,Q 

The system deletes the specified dynamic statements. 

Part IlIa Command Descriptions 231 



RE'l' command 

This cOJ(mand chanqes the attributes tbat vere aS8i.gned at DDEl' UIIIe for 
a cataloged VAM data set. 

r---------~-------------------------------------------.--------- -, I Operation I Operand I 
t------t-------------'--------------------f 
I RET IDSNAME=data set name,RE'I=retenti.on code I L-______ ~ ________________________________________ • __ J 

DSNAME 

RET 

identifies the cataloged VAN data set whoae attributes are to be 
changed. 

specified as: a fully qualified data set name. 

specifies the attributes to be cbanqed. 

Specified as: P or TI C or L, U or R, vherez 

P - permanent storage 
T - temporary storage 
C - erase at CLOSE 
L - erase at LOGOFF 
U - unlimited access 
R - read-only access 

system default: one code must be specified. When T is specified, 
L is assumed: when P is specified, a null value is assumed for the 
erase option. 

Functional Description: The RET co..and modifies the RET field in the 
data set descriptor (DSD), which contains information reqarding the 
storage type, deletion characteristics, and owner access attributes of 
the data set that were specified in a DDEF command or DDEF macro. 

caution: At least one of the codes must be specified. Otherwise, the 
command is ignored. 

A user may not issue RET for a data set he is sharing. 

Even though the RET command has been inVOked to give a user ~ead-only 
access to a data set, he may still issue an ERASE comJ(and for that data 
set. 

A data set is not erased at logoff if a RELEASI command has been issued 
for it and the retention code has been specified as RET=T. 

prograftlming Notes: When the user changes the attributes of a data set 
to permanent storage type (P) from temporary (T), an effective null str­
ing value is given to the deletion characteristic. When the access qua­
lification is not specified, no change to access is made. 

Examples: 

1. The user wants to alter the attributes of data set ETBPRG, which is 
temporary and unlimited and is to be erased at LOOCPF to perJ(anent 
and read-only. 

232 

User: ret ethprg,pr 

The system changes the attributes of E'l'HPRG to permanent and 
read-cnly. 



2. The user wants to change the attributes of a permanent data set, 
TEST1; to be erased at CLOSE. 

The system changes the attributes so that the data set will l:e 
erased at cr.OSE. 

REVISE COmlNlnc! 

This command specifies a line or range of lines in the current data set 
or region which are to be deleted and replaced. 

,--------,.---------'-----'--------------------------------------, 
I Operation I Operand I 
~--------t--,---'---,----·----------------------------------I 
I REVISE I [Nl=starting line] ["N2=ending line] [,INCR=incrementl I L-_____ J..... ______ .... _._. _____ • ___________________________________ J 

Nl 

N2 

INCR 

identifies the line or first of a range of lines to l:e deleted, and 
subsequently replacedo 

Specified as: a one- to seven-digit decimal line number that may 
be absolute or relative. 

LAST - last line in the o~rrent region. 

Systeff default: the value of the CLP. 

identifies the last in a range of lines to be deleted and subse­
quently replaced. 

Specified as: a one- to seven-digit decimal line number that may 
be absolute or relative. 

LAST -- last Jine in the current region. 

System de!aul~: the value of Nl. 

designates t.he increment to be used for the replacement lines. 

Specified a~: from one to seven decimal digits. An all-zero in­
crement is not valid. 

SysteIr defau_lt! 100. 

Functional Description: REVISE first deletes the specified line or 
range of lines and prompt_s the user with line numbers for the replace­
ment lines'. When the user en"ters a line and presses the RETURN key, 
REVISE continues line-number prompting until the range specified ~y Nl 
and N2 is completed, or a command preceded by a break character is 
executed. When REVISE is followed by an EXCERP~ command (preceded by a 
break character), the lines from the data set referenced by EXCERPT are 
inserted in the specified range. CLP is set to the last line entered 
plus the value of INCR. If the result exceEds the next existing line, 
CLP is set to the next existing line number. 

When REVISE is not followed immediately by EXCERPT or a data line or 
lines, the command deletes the specified lines an3 sets the CLP to Nl. 

The user is prompted if the nUID~er of insertion lines exceeds the upper 
limit specified by N2. 

Part Ill: Command Descriptions 233 



Caution: A language-processing command (ECIT, PROCCEF, or PLI) must be 
issued befcr~ the command is issued. 

prograrrrring Notes: REVISE is functionally equivalent to an EXCISE com­
mand followed by an INSERT or EXCERPT command. 

If the user specifies a nonexisting line in the REVISE command, or if 
the line specified for Nl or N2 is the last line in the data set or 
region, new lines are inserted into the data set with the starting line 
number and line-number increment specified in the REVISE connand. In 
this case, REVISE operates the same as INSERT. 

Examples: 

1. The user wants to replace the existing line 300 with data lines, in 
increwents of 10. 

User: revise 300,incr=10 
SYS;User: 0000300 first replacement line 
Systew: 0000310 

2. The user wants to replace lines 200 through 550 with data lines, in 
increrrents of 100. 

User: 
SyStem: 

rev ise 200,550 
0000200 

Note: The increment of 100 is the default value of INCR. If more 
than four lines are inserted, the fifth line number will e:x.ceed the 
N2 value (assuming the next-higher line number is 600 or less). A 
diagnostic message is displayed and the command is terminated. 

RTRN Conunand 

This command returns control to the user in cOJ1lmand mode. All inter­
rupted source lists are canceled. 

r---------~------------------------------------------------- 1 I Operation I Operand I 
~---------+------------------------------------------------------------i 
I RTRN I I l _________ ~___________________________________________ ___J 

Note: There are no operands. 

Functional Description: The RTRN cOKmand, entered after the user causes 
an attention interruption (by pressing the AT~NTION key), returns con­
trol to the. user at the terminal. The user is then in command mode, and 
the interrupted source lists are forgotten. All SIR and AETD macrO in­
structions are deleted. 

Example: The user has interrupted a program or command string. 
not want to resume processing in that program or command string. 
enters: 

User: 
SyStem: 
USer: 

(presses ATTENTION) 
! 
RTRN 

Be does 
Be 

The system terminates processinq of the interr.:pted program or coJllJlland 
string and returns control to the terminal. 

234 



SECURE Command 

This conmand reserves all devices that are required for private VOl-.1JfleS 
dur ing execution of a nonconversational task. 

r-------.--l'.~----'·-·-'·--·---··'·----·---------·--------------------------.----, 

I operation jopercu,d I 
~---------+-------.-------... --.---.--------------------------------f 
I 1{('l'A==nmltbe'c of devices£,type of deViCe])} I 
ISEaJRE I [, ... J I 
I I (IlA=number: of d(.>vices(,type of device» I L _________ L __ . _____ .~, __ ._., _____ ._._, __ ., ____________________________________ .1 

Notes: TA and D/\ mest be specified in keyword forIt'at. At least one of 
the operands mu.st be specified. 

system prograIl1ITl€'(i> shoulD seE~ sXstero Programmer's Guide for special 
operands. 

TA 

DA 

designates the .number and type of tape devices requested. 

number of devioes 

type of (J,evice 

7 - seV2n~t :tack tape. data converter not required. 
7DC - sev{;;;r, .. 'tl:ack ~:ape with data-converter feature. 
9D2 - 9-track. tar"" WiUl 800 bpi capability 
9D3 - 9-tracK tape '>lith 1600 bpi capability 
9D4 -. 9·-'tt:2h.:k with 6250 tpi capabil ity 

SYstenl_.~ief~:~,:::~±_,t.:: the type of tape specified at system generation. 

designates the nlHd:'''l9';r. and type of direct access devices requested. 

Specif:ieE:_.9:~;: a on<£;- or two-dlgit decimal number. 

Systerr d~~auJ.t ~ no direct access devices are reserved. 

type of device 

2311 - d:.L:3k 
2311~ - disk 

S.,Ysterr, defau It.: 
tem generation. 

3330 - 3330-1 disk 
333B - 3330-11 disk 

the type of direct access device specified at sys-

Functional De~c:r.i12t~<?:!!: SECURE reserves the specified devices as a 
group, so that the task can proceed without pause, when the entire group 
is available. l"-.."y 1,<ra:i.ti.ng for devices occurs when the SECURE comJrand is 
being executed" The devices that are reserved retrain assigned to the 
task until the task logs off, or until a RELEASE command is specified 
with the SCRA'I'CH op'tioD only. 

Part III: Command Descriptions 23'S 



Caution: 7he user must provide a SECURE command innediately after the 
LOGON command in every data set that is to be executed as a separate 
nonoonversational task and that refers to one or more private volumes. 
This is also true for tasks initiated by EXECUTE or BACR. If SECURE is 
not specified immediately after the LOGON command, the user·s task is 
terminated. 

Programming Note: SECURE applies to nonconversational tasks only; it is 
never executed in a conversational task. 

Examples: 

1. The user has prepared a task for nonoonversational execution that 
requires one 3330-11 disk drive and three tape units (at 1600 bpi), 
all for nine-tape. He prepares this SECURE command for insertion 
immediately after the LOGON command: 

secure (ta=3,9D3),da=1,333B) 

2. The user's nonconversational task requires three 3330-1 disk drives 
and seven tape units, three of them seven-track, and the remainder 
nine-track (800 bpi). He prepares this SECURE command: 

secure (da=3,3330),{ta=3,7),(ta=4,9D2) 

SET command 

This conunand changes the contents of a data location. 

r---------T------------------------------------------------------------, 
I Operation IOperand I 
~---------+------------------------------------------------------------f 
ISE'I I{data location=value}[, ••• l I L _________ ~ ____________________________________________________________ J 

data location 

value 

identifies a location whose value is to be changed. 

Specified as: a symbol, hexadecimal location, register, or co~roand 
syrr.bol. 

specifies the value to which the data location is to be set. 

Specified as: an arithmetic Expression, a constant, a character 
string, or the name of a data location. 

Functional Description: The SET command changes the contents of each 
specified data location to the value specified on the right of the cor­
responding equal sign. 

'Xhe expression is evaluated, using integer, floating-point, or logical 
arithmetic. All constants in an expression must agree in type. All 
variables should agree in type but, if they do not, the type is assumed 
by the system to be an integer (one, two, or four bytes), floating-point 
(eight bytes), or hexadecimal (length defined implicitly or explicitly). 
After SET is executed, a data reference in a subsequent command results 
in obtaining the new value. 

Cautions: Although the user may set one complex variable to the value 
of another complex variable, no arithmetic can be performed between two 
complex variables. This restriction also applies to variables in 
packed-decimal number format. 

236 



The operand of the SET command may never refer to read-only or pr1v1-
leged storage. Since tbe FORTRAN compiler automatically assigns the 
read-only attrirute to the control section containing instructions and 
constants, the FORTRAN user cannot refer to the CSECT as the data loca­
tion of the SET command. When the expression contains more than one 
operand, the lengths of the operands must be compatible (that is, 
floating-point variables must be four or eight bytes; integer and logi­
cal variables must be one, two, or four bytes). The length of the re­
sult of the expression should agree with the length of the data location 
to the left of the equal sign. 

The format X'C1C2C3' is acceptable for hexadecimal representation; the 
format 'ABC' gives the same result; however, C"ABe' results in a diag­
nostic message. 

Examples: 

1. The user wants to set two four-byte variables with qualified 
internal symbols of I and K to the values of 33 and 176, 
respectively. 

User: set i=33,k=176 

The system sets the values. 

2. The user wants to set a six-byte field to read ·system. w 

USer: set field=" system' 

The system sets the value at FIELD to E2ESE2E3C5D4. 

3. The user has two variables that he wants to add, placing the result 
in general register 8. Both variables were assigned hexadecimal 
types in the assemtly program. Variable X was defined as two bytes 
in length; variable y as eight bytes. The user wants to refer only 
to the first two bytes of Y. 

User: set Sr=x+y. (0,2) 

The system sets the values. 

4. The user wants to set a one-byte variable, SAM, to the binary value 
'10010011': 

User: set sam=b'10010011' 

The system sets the binary value. 

5. The user wants to set the value of a variable (A) to 1. He wants 
this value entered in his user profile. He enters: 

User: set a=1 
Sys,user: Erofile csw=y 

SHARF COtrlf.and 

This command allows the user to share another user's data sets. 

r---------T------------------------------------------------------------, I Operation I operand I 
t---------t------------------------------------------------------------i 
I SHARE IDSNAME=data set name,USERID=owner"s user identification I 
I I [,OWNERDS={owner's data set namel*ALL}] I l _________ L ____________________________________________________________ J 

Part III: Corrn-,and Descriptions 237 



DSNAME 
specifies the name by which the sharing user refers to the data set 
or data sets which he is going to access. This data set name 
becomes an entry in the sharer"s catalog. 

specified as: a fully or partially qualified data set name. 

USERID 
identifies the owner of the data sets to be shared. 

Specified as: the owner's user identification. 

O"WNEKDS 
identifies the data sets to which the user wants access. 

Specified as: the fully or partially qualified data set name as­
signed by the owner. 

*ALL - the user wants access to all the owner"s cataloged data 
sets. 

System default: *ALL. 

Functional Description: An entry is made in the sharer"s catalog, under 
the data set name specified by DSNAME, pointing to the owner's catalog 
entry for OWNERDS. The point.er is to the intial entry in the owner" s 
catalog if w*ALLw is specified. 

The user may issue the SHARE command before the owner has issued the 
PERMIT command to grant access to his data set or data sets. The PERMIT 
must be issued, however, before the user can reference or access the 
owner"s data sets. 

Cautions: The OWNERDS operand must have the same value as the DSNAME 
operand the owner uses when issuing his PERMIT cowu.and. 

To avoid the possibility of violating the length restriction for data 
set names, the sharer should not enter a DSNAME operand that is longer 
than the OWNERDS operand. Similarly, if -*ALL- is used, the sharer must 
be certain that the total number of characters for DSNAME plus any data 
set name in the owner"s catalog does not exceed 35. 

programming Notes: When CWNERDS in the owner·s catalog is a partially 
qualified data set name, the sharer refers to each shared data set· by 
appending to the data set name specified by DSNAME the same right~ost 
name or names that the owner assigned (in his catalog) to that data set. 
For example, if OWNERDS specifies a catalog entry for the partially 
qualified data set name A.B, and the sharer gives W.X in the DSNAI(E 
operand, he refers to the owner's data set A.B.C.D as "W.X.C.D. 

'!he sharer's catalog entry for a shared data set is not removed when the 
owner erases or deletes that data set from his own catalog. Sharers 
must update their own catalogs by using the DELETE command. 

Examples: 

1. The user wants to reference, by means of the name GREYX, the cata­
log entry for data set M.LOG1, to which he has been granted access 
by owner MICHAEL2. 

user: ~hare greyx,michae12,m.logl 

The system makes the entry in the sharer'S catalog. 

238 



2. The user has been granted access to all of owner JOSEPB24's cata­
loged data sets. He wants to use the nane Z to link his catalog to 
the initial entry in JOSEPH24's catalog. 

~: ~hare z,josepb24,.all 

The system makes the entry in sharer'S catalog. 

The user nOW can reference specific data sets belonging to 
JOSEPH24. FOr instance, if JOSEPH24's catalog has data sets na~e 
A.A, A.B, and A.C, the user refers to them as Z.A.A, Z.A.B, and 
Z.A.C, respectively. 

SPACE Command 

The SPACE command causes the SYSOU'I to be spaced the specified number of 
lines. 

r---------T------------------------------------------------------------, I Operation \ Operand I 
r---------+-------------------------- ----------------------i 
\ SPACE INUMLINES=(number lines to space) \ l _________ L--________________ . __________________________________________ J 

NUMLINES 
number of lines to space the SYSOUT 

specified As: 

1 - space 1 line (insert 1 blank line) 
2 - double space (insert 2 blank lines) 
3 - triple space (insert 3 blank lines) 

System Default: 1 space 1 line. 

Functional Description: The SPACE command module issues a 'GTWRC' macro 
with the appropriate carriage control character to cause the specified 
number of spaces (blank lines) to appear in the sysout. 

Example: User wishes to separate the output from co~«and A, from the 
output of the next command B. 

USer: 

System: 

command A 
SPACE 3 
command B 

••••• output from A ••••• 

(three blanks lines inserted 
by the SPACE oommand) 

••••• output from B ••••• 

STACK canmand 

This command displays all active, user-invoked module names displayed in 
descending order beginning with the most recent module name. 

r-- -~-----------------------------------------------------------, I Operation I Operand I 
~--------+----------------------------------------------_f 
I STACK I I L _________ L--_________________________________________ J 

Part III: Conmand Descriptions 239 



Note: There are no operands. 

FUnctional Description: The system displays the names of all user­
invoked modules that have been interrupted and are now saved for later 
execution. The most recent module is displayed first. If a SIR routine 
is active. the user is notified: the SIR module name does not appear in 
the module-name display. 

Example: The user has interrupted his source list. He wants to see 
what modules (or commands) he has interrupted: 

User: stack 

The system displays the active module or command names. The name 
at the top is the most recently interrupted program. 

STET Command 

See "DISABLE, E~BL~, POST, and STET Commands." 

STOP command 

This command suspends execution of an object progran and optionally (if 
L.IMEN=I) prints out tne current instruction location and program status 
in forma t ion. 

r---------~-----------------------------------------------------------, 
IOperationlOperand I 
t---------+----------------------------· -------~~---------------------~ 
I STOP I I l _________ ~ ____________________________________________________________ J 

Note: There are no operands. 

?unctional Description: The STOP conmand causes the cut put of two units 
of information at the user's terminal. 

1. current location in the object program: that is, the instruction 
location, expressed symbolically, at which execution is stopped. 

2. program status information (for example, the condition code, pro­
gram mask, and instruction length code). 

If the internal symbol dictionary (ISD) is not available, the symbolic 
instruction location is expressed in terms of the control section name 
and a hexadecimal offset. If the ISD is available, the location is 
expressed in terms of an internal symbol plus hexadecimal offset. The 
nearest internal symbol, plus an offset (in bytes) is output for assem­
bler language programs. For FORTRAN programs, it is the nearest state­
ment numner, with an increment to indicate which statement after the 
numbered statement has control. 

caution: S~OP should appear last in a dynamic statement, because any 
subsequent commands are ignored. and no diagnostiC is issued. 

prograwning Note: After an object program has been halted, the user can 
cause resurrption of execution with the GO command. 

:t:xarrples: (LIMEN has teen defaulted to I) 

1. The user wants to learn the status of hi~ program when execution 
reaches a specified point. 

240 



User: ~t ftnpgm.l00(4);stop 

When execution reaches FTNPGM.I00(4), the system replies by g1V1ng 
statewent number assigned to above statement. The system also 
gives program status information. 

2. The user interrupted his FCRTBAN object program during execution by 
pressing the ATTENTION key at his terminal. He wants to knOlli which 
statement was being executed. The user requested an ISO as an 
option during compilation. 

User: stop 
System: STOP AT FTNPGM.I00(4) PSW 1 1 0 0003EOF4 

stRING ComIrand 

This command displays commands and program calls not yet executed from 
the current source list. 

r---------T------------------------------------------------------------, I Operation I Operand I 
~---------+--------------------.---------------------------------------~ 
I STRING I I L _________ L ____________________________________________________________ J 

Note: There are no operands. 

The STRING command works only if it is issued inmediately fOllowing an 
attention interruption. 

Functional Description: STRING displays statements, from the current 
source list, that have not yet been processed. 

If the user issues an attention interruption while the system is execut­
ing a PROCDEF, he receives a -PROCDEF ACTIVE- message. Then, if he 
issues an EXIT, or presses the carriage return (to return control to his 
source list), the remaining commands in the PROCDEF are executed before 
the displayed source list is processed. The individual commands, in the 
PROCDEF, are not displayed by STRING. 

If the system is processing an OBEY when the STRING command is issued. 
the user receives an "OBEY ACTIVE" message before the source list is 
displayed. 

Example: The user interrupts his program, and then he wants to se~ what 
commands have not been processed from the source list: 

User: 
System: 
User: 

(presses the ATTENTION key) 
~ 
string 

The system displays unprocessed commands from current source list. 

SYNONYM Corrmand 

This command renames commands or corrmand statements. keyword operands, 
and PCS operands. 

r---------T------------------------------------------------------------, ,operation I Operand . I 
~---------+------------------------------------------------------------f 
ISYNONYM I(term=[value]}( •••• ] I L _________ ~ ___________________________________________________________ J 

Part III: Connand Cescriptions 2.1 



term 

value 

designates the new name of a conunand, keyword, or PCS expression. 
This is the synonym. 

Specified as: a normal or quoted string fro« one to eight 
characters. 

specifies the value of the term that is to be used when the term is 
referred to. This value overridgs any string value previously 
equated to the term. This is the old name. 

Specified as: a normal or quoted str ing; maximum length, 24 .. 
bytes. 

System default: any previously assigned synonym term is deleted. 

Functional Description: The systen adds, replaces, or deletes entries 
in the user's dictionary, according to the parameters of the SYNONYM 
command. When the user has assigned a value to an operand with the 
SYNONYM conunand, he can then enter a coromand or parameter which has a 
synonym value and the system uses that synonym value rather than the 
command or par~meter entered. Synonyms may be equated to other 
l:>ynonyJl'S. 

The synonyw and its value are only valid for the remainder of the cur­
rent task, unless the user's task profile is roade permanent by his issu­
ing the PROFILE command. (See the description of the PROFILE comlf,and in 
Section 6 of Part II). 

Caution: The user should te careful to avoid eventually equating a 
synonym to itself when creating a synonym chain. This creates a loop, 
which is broken by the system after an excessive number of synonyn 
searches. 

programming Note: The SYNCNYM command can be used to delete a synonym 
entry that was previously defined. The user enters the SYNONYM command 
and equates the operand he wants to delete to a null string by pressing 
che carriage return (SY~CNYM A=). When a user creates a synonym, he can 
still refer to the command, operand, value, or expression by its origi­
nal name. 

Examples: 

1. The user issues this command statement. 

User: ~nonym a=t,t=c,c=d,d=e;a 

The system calls the procedure or progra~ named E. 

~:. The value of last SYNONYM issued overrides previous values. 

2. The user executes a series of commands. 

synonym pg=pgapars 
progr a pg=x, y , z 

The first SYNONYM ccmmand defines a synonym for one of the valid 
keywords of PROGRA. When the command PROGRA (which was previously 
defined by the user as a BUILTIN) is called, synonym substitution 
occurs, and the command is executed ass 

progra pgapars=x.y,z 



3. The user creates an abbreviation for the EXECUTE command. 

synonym x=execute 

when he enters X as a command, the system invokes the EXECUTE 
command. 

4. The user wants to nullify the synonym created in Example 3 above: 

synonym x= 

TIME Command 

This co~mand establishes the time durin9 which a task can be executed. 

r---------~----------------------------------------------------------, 
\ Operation I Operand I 
t---------+-------- ------------------------------------------i I 'lIME I [HI NS=minute s] I L--_______ ~ __________________________________________________________ ~ 

MINS 
specifies the number of minutes of execution time before the timer 
interrupts the task. 

Specified as: a decimal number greater than 0 and less than 451. 

System default: the value assigned at system generation. 

Functional Description: TIME is invoked automatically as a part of the 
initialization of the user"s task, when a time specified at system 
generation is used to set the timer. When the 'lIME command is issued by 
the user, the value of the timer is reset. The value of the timer is 
always the value of the last-issued TIME command. Time is only accumu­
lated against this interval while the user"s task is actually executing. 
When the task is in a WAIT state or the time-slice has expired, no time 
is charged. 

At the end of the time, if the task is conversational, a message is is­
sued, and control returns to the user in command mode. If the task is 
nonconversational, the task is terminated abnormally. 

programming Notes: The user may issue the TIME command at any tilte. 
The maximum value he can specify is 450 (1 1/2 hours). 

Example: '!he user wants to set a four-minute time limit for execution 
of his task. 

USer: time 4 

The system. resets the timer. 

TRANSLAT Camnand 

The TRANSLAT command is used to set the user"s input and output transla­
tion tables. 

r---------~-----------------------------------------------------------, 
IOperationlOperand I 
t---------+--------------------------------------------------i 
ITRANSLAT ITYPE,FROM,TO,USN,CP I L _________ L ____________________________________________________________ J 

Part III: COlurand Descriptions 243 



TYPi. 

FROM 

TO 

USN 

CP 

specifies which table is to be set, input or output. 

specified AS: 
OU'I or 0 for output t.ranslation table 
IN or I for input translation table 

is a list of characters which are to be translated to the 'TC" 
character. Quotes are required as defined in rules for character 
strings. 

specified AS: A single character or str ing of characters enclosed 
in parentheses and separated by commas. Hexadecimal values should 
be in the X'NN' format where NN is the hexadecimal value. 

is the character the "FROM' characters are to be translated to. 

Specified As: A single character -- quotes are required as defined 
in the rules for character strings -- or a hexadecimal value in the 
format X"NN" where NN is the hexadeciroal value fer the character. 

for the MTT Administrator, the number of the user for whom the eom­
mand appl iea 

Specified As: A decimal number between 0 and 128. 

System Default: task owner"s sysinlsysout. 

specifies which sysin or sysout is to be changed -- currently not 
supported. 

Functional Description: Each sysin/sysout has a set of translate tables 
which users can tailor to their own terminal. All system input and out­
put is translated by these tables. The user can achieve the same result 
by using SYSTRIN and SYSTROUT with the MCAS~B command. The difference 
between TRANSLAT and the SYSTRIN/SYSTROUT mechanism is that the TRANSLA'I 
change is effective immediately and the SYSTRIN/SYS'IROUT tables are not 
changed. 

Example: The user wishes to changE all slashes U) to commas (,) on 
input: 

User: 
User: 
systere: 

TRANSLAT TYPE=I,FROM=/ ,TO=',' 
DISPLAY "/////" 
" .. , 

Now on output the user wants all corrmas to be printed as slashes: 

User: TRANSLAT TYPE=CUT,FROM=',",TO=/ 
User: DISPLAY "/////' 
syst'err: ///// 

On output the user decides to have certain unprintable characters 
printed as a period (.): 

~: TRANSLAT TYPE=O,FRCM=(X'OO·,X'Ol',X'02',X'20",X'21",X"22'. 
X" 23" , X" 24") ,TO=·. • 

Now, any of the' FROM" characters will be printed as a period (.) on 
the sysout. 

244 



TRAP command (System 310 Only) 

This command requests notification when execution of an object program 
causes certain events to occur. TRAP also designates the class of event 
and range of object program instruction locations in which the cOKmands 
following TRAP in the dynamic statement are to be executed. 

Storage Class: 

r---------~----------------------------------------------------------_, I Operation I Operand I 
~---------+------------------------------------------..... 
I TRAP I (FETCHISTOREIREF},[location(:location}] I L _______ ~ ____________________________________________________ J 

General Register Class: 

r---------T----------------------------------------------------------_, 
I operation I Operand J 
~--------+_--------------------------------------------------------i I TRAP IGR, (nR, ••• 1 nR:nR) I L-________ ~ __________________________________________________________ J 

Branch Class: 

r--------T---------------------------------------------------------, I Operation \ Operand I 
~--------+----------------------------------------------------------~ 
ITRAP I ERANCH{, location (:locationH ,location{: location}}} I l _________ L _________________________________________________________ J 

FETCH 

S'lORE 

REF 

GR 

Specifies that TRAP is to monitor instruction fetches within the 
location range specified. 

Specifies that TRAP is to monitor data stores within the location 
range specified. 

Specifies that TRAP is to monitor both fetches and stores within 
the lccation range specified. 

specifies that TRAF is to monitor changes in the contents of the 
general registers specified. 

BRANCH 
Specifies that TRAP is to monitor successful branches from the 
first location range specified into the second location range 
specified. 

location 

nR 

Specifies location or range of locations within the task's virtual 
mell10ry • 

specified as: An internal or external symbol, with or without off­
set or sutEcript, or a hexadecimal address. 

specifies a general register or range of general registers. 

Specified as: An integer from 0 to 15 inclusive. 

Part III: COInrand Descriptions 245 



Functional Description: TRAP becomes effective, subject to.the ranges 
specified in the command, at the end of the execution of an instruction 
when one or more of the following events has occured: 1) instruction 
fetch, 2) data stored. 3) change in the contents of a general register, 
Q) successful branCh. A command statement containing a TRAP is called a 
dynamiC statement. 0nly one TRAP may be included in a dynamic state­
ment, and it must be the first command in the statement. The system 
assigns a number to each dynamic statement. 'Ihis number may be 
referenced by the RlMOVE cOlm\and. only one TRAP in each of the three 
classes may be outstanding at. any point in time. The system will auto­
matically remove a TRAP statement if an attempt is· made to issue Il'ore 
than one TRAP in one class. 

Coincident events may occur and are processed in the following order: 

1. Storage 
2. General Register 
3. Branch 

Unprocessed coincident events are lost if program execution is resumed 
by a CALL or BRANCH statement. 

When a TRAP command is executed, a standard output (including the in­
struction location where the command became effective, program status 
information, and the dynamic statenent number) is presented to the user. 
If LIMEN is not set to I, only the dynamic statement number is dis­
played. The program status information includes the virtual storage 
location of the instruction being executed, the instruction length code, 
the condition code, and the program mask. Execution of a TRAP connand 
is disabled during execution of pr ivileged system programs. Also, SVC 
instructions and instructions that cause program interrupts to occur 
will not cause a TRAP command to be executed. 

The counter, referred to by the special character I, is assigned to a 
dynamic statement and is incremented by one when the TRAP statement is 
executed. The counter is incremented even when the dynamic statement is 
conditional. The counter may be used as an operand in other PCS com­
mands within the statement. The TRAP command alone will interrupt, but 
not stop, program execution. 

proqramll'inq Notes: If TRAP specifies FORTRAN statement numbers as loca­
tions, the numbers must designate executable FORTRAN statements and not 
format statements. The determination of whether a successful branch 
falls wi thin a specified location range in a TRAP branch statement is 
performed interpretively by pes for all successful branches. Ther~fore, 
this statement should be used with care. 

Example: The user wants to be informed when his program alters the con­
tents of general register 12. 

To accomplish this, 

User:' trap gr ,12r 
System: 0001 

Execution of the program begins. When general register 12 is altered, 
the user is notified. For example, the system prints out the following 
line (assuming LIMIN=I): 

system: TRAP SWTC.(X·2E'} PSw 2 0 F 00335032 0001 

In this statement 

246 

SWTC. (X'2E·) is the location of the instnlction that altered gener­
al registet 12. n that altered general register 12. 



PSW 2 0 F 00335032 is the program status. 

0001 is the dynamic statement number assigned by the system. 

Note: If LIMEN had not been set to I, only 0001 would have been printed 
by the system. 

TV (Tape to VAM) Command 

This command retrieves and writes into a VAM voluRe, one or more data 
sets previously written on magnetic tape by the VT command. 

r---------~----------------------------------------------------------, I Operation I Operand I 
~---------t------------------------------------------------------------i 
lTV IDSNAME1=tape data set name [,DSNAME2=varn data set name],., 1 
I I [,OVERLAY= YIN] I 
I I [,RFl'AIN= YIN] I 
I I (,FROMID=user identification] I 
I I [,TOID=user identification] I l _________ 4---_________________________________________________________ J 

• This position has no meaning for the TV command but is present in the 
BPKDS for ease of coding. 

DSNAMEl 
identifies, in the absence of a previously defined DDEF command 
with the DDNAME of DDTVIN, an existing physical sequential data set 
residing on a nine-track tape that is to be restored to VAM on di­
rect access storage. The data set must. already be defined by a 
DDEF command in the current task or mu~t be cataloged. 

Specified as: the fully qualified name with which the data set was 
defined or cataloged; if when using the VT command this name was 
preceded by an asterisk, this data name must be preceded by an 
aster isk here. 

Where a previously defined DDEF command with a DDNAME of Durvn; 
exists, it identifies one of all data set names that are to be 
restored to direct access storage. 

Specified as: the fully qualified data set that will be located on 
the volume(s) specified by the DDEF command with the DDNAME of 
DDTVIN, or 

.ALL; all data sets on the volume ( s) specified by the DDEF cOIrmand 
with DDNAME of DDTVIN will be processed. 

DSNAME2 
specifies the name under which the data set will be restored. This 
data set does not have to be defined in the current task unless the 
data set is to be restored to a private VAM volume. 

Specified as: a fully qualified data set name, or .DSNAME1, the 
data set name that was retained on tape is to be used for the name 
of the data set that is to be restored on direct access storage. 

System default: a name will be generated by the system in the 
form: 

$D.Dnnnn.dsnamel 

and used as the VAM data set name. Truncation, if required, will 
be performed from left to right to allow the insertion of $D .• Dnnnn. 
The $D qualifier will allow the user to reference all such data 
sets created by TV by partially qualified data set name. 

Part III: Conrrand Descriptions 247 



OVERLAY 
specifies that the output data set will be overlayed if it already 
exists and the data set attributes (DSORG, RECFM, LREeL, RKP, KEY­
LEN) for the two copies are the same. 

Specified as: Y - overlay to be made. 
N - overl ay not to be made. 

System defau It: N - no overlay to be made. 

RETAIN 
specifies that the change and reference dates of the input data set 
are to be retai.ned with t_he output data set. 

specified as: Y - input dates are to be retained. 
N - current dates are to be retained. 

Systerr default: the current dates will be retained with the data 
set copy. 

FROMID 

TOlD 

specifies the user identification prefixed to the name of the input 
data set. 

specified as: One-to-eight alphameric characters, or *ALL~ all 
userids retained on the tape are to be processed. 

System default: the user identification associated with current 
task is assumed. 

specifies the user identification to be associated with the output 
data set. 

Specified as: For a user, this must be the user identification as­
sociated with the current task. 

For the system manager, any user identification currently joined to 
the system. 

For a system administrator, any user identification currently 
joined to the system l:y him. 

*FROMID: the original user identification saved on tape is to be 
used. It must be user identification currently joined to the sys­
te~ and one ~hich the user has authority to specify. 

Functional Description: For each successfully copied data set, the user 
is informed of the names of the input and output data sets, and the file 
sequence and volume serial numbe~s used. Any failure to copy success­
fully results in a diagnostic message and cancellation of the command. 

Generation-indexes will be created as necessary for generation data 
groups not previously defined in the system. 

The DDEF command with DDNAME of DDTVIN must specify PS as the data set 
organization (DSORG), nine-track tape as the resioence volume (UNIT) and 
unlabeled tape (LABEL). 

An entire tape may be restored to a private VAM volume through the use 
of a DDEF coInnland with DDNAME or DDTVOUT. '!his DDEF Irust specify VAM 
data set organization (DSCRG) and identify the device type (UNIT) and 
volumes (VOLUME) required to contain the tape data sets. The DDEF will 
be used only when a DDEF wi th DDNA~E of DIY1'VIN is present and DSNAMEl is 
specified as *ALL. 

211a 



Note: When all data sets (DSNAME1=.ALL) on a tape volume are to 1:e pro­
cessed, DSNAME2 must be specified as .DSNAMEl or be defaulted. 

Examples: 

1. The user wants to restore data set ABC onto a private VAM volume 
(MYVOL1) as XYZ. 

User: ddef duml,vp,xyz,unit=(da,2314),volume=(,myvoll) 
tv abc,xyz 

System: (copies ABC onto private volwne MYVOLl as XYZ) 

2. The user wants to locate data set SOURCE.MYDS on volwne MR9024 and 
restore it to public storage as SOURCE.MYDS. The data set name LOO 
is used to fill the I:DEF requirements for a dsname value. It may 
be any data set name that will allow DDTVIN to be defined. 

User: ddef ddtvin,ps,log,unit=(ta,9),Volume=(,MR9024),­
LABEL=(,nl);tv source.myds,*DSNAME1,overlay=y 

System: (locates SOURCE.MYDS and restores it to public storage) 

3. The user wants to restore all data sets from volume MR9024. 

User: ddef ddtvin,ps,zip,unit=(ta,9),volume=(MR9024),­
LABEL= (,n!) ;tv *all ,*DSNAMEl ,overlay=:.-' 

systew: (restores all data sets from volume MR9024) 

UNLOAD Comrrand 

1~is command removes a module and all other modules tc which it impli­
citly or explicitly refers from virtual storage. 

r---------~-----------------------------------------------------------, I Operation I Operand I 
t---------+---------------------------------~--------------------------~ 
I UNLOAD I [NAME=entry point name] I L _________ ~ __________________________________________________________ ~ 

NAME 
identifies the mudule to be unloaded. 

Specified as: a module name or external entry point without 
offset. 

Systerr. default: the last module referenced by the system is 
unloaded (see below). 

Functional Description: The UNLOAD command invokes the dynamic loader, 
specifying the explicit symlJolthat is specified in the NAME operand of 
the command. If NAME is not specified, the last module referred to by 
one of the following corrmands is unloaded: PLI, ASM, LNK, FTN, LCAD, 
UNLOAD, CALL with a specified module name, or an implicit call. 

The specified object module is unloaded from virtual storage. Any 
object modules that are referred to only by that specified module are 
also unloaded. 

The specified module is not unloadEd if other Object modules are cur­
rently referring to it. The user is inforltied of this in a system mes­
sage, so he can re-issue the UNLOAI: command later, if desired. 

Part III: Corruand Descriptions 249 



caution: When a module is unloaded, all PCS A'I statements are rerroved 
for that module (reloading the module does not replace these AT state­
ments). The user is notified of the AT statements that are removed. 
However, the AT number counter is not reset to 0 unless all AT state­
ments are removed from all modules. 

Programming Note: An object module that is called by a direct call is 
not automatically unloaded upon exit. The.UNLOAD comnand can be used to 
remove these modules from virtual storage. 

Example: The user wants to unload a module named ABC. 

User: unload abc 

The system unloads ABC and all modules to which AEC implicitly or expli­
citly refers. 

UPDATE ComIrand 

This text-editing command adds or inserts the data lines entered at the 
terminal into the current data set or region. 

r---------~-----------------------------------------------------------, I Operation I Operand I 
t---------+-----------------------------------------------------------~ 
I UPDATE I I L _________ L-___________________________________________________________ J 

Note: There are no operands. 

Functional Description: UPDATE unlocks the keyboard to prompt the user 
to enter a line number, a blank or tab, and data. The lines of data 
entered by the user are inserted in the current region at the specified 
line number. If the user specifies a line number that already exists in 

. the region, the new line overlays the old line. 

UPDATE is terminated when a command preceded by an underscore is issued. 
The status of the CLP does not change during execution of UPDATE. 

Cautions: When issuing insertion lines, one space or tab must be 
entered between the line number and the text of the line. Excessive 
tabs or spaces are treated as text. 

A language-processing command (EDIT, PROCDEF, or PLI) must be issued be­
fore the command is issued. 

Programming Notes: UPDATE is equivalent to a ser ies of INSERT or REVISE 
commands. UPDATE is intended primarily to allow the insertion of arbi­
trary line numbers; INSERT and REVISE are designed for consecutive line 
insertions. 

Example: Assume the current line location is in the region ABC, which 
contains 10 lines, numbered 100 through 1000 in increments of 100. The 
user wants to insert a line between lines 200 and 300 and one between 
lines 600 and 700. He also wants to replace line 500 with a new line. 

250 

User: 
System: 
User: 
system: 

User: 
system: 

User: 
system; 

update 
(unlocks the keyboard) 
250 datal 
(inserts line 250 between' 200 and 300 and unlocks the 
keyboard) 
650 text 
(inserts line 650 between 600 and 700 and unlocks the 
keyboard) 
500 more data 
(replaces old line 500 with new line and unlocks the 
keyboard) 



User: insert 1100 
Systerr: (terminates execution of UPDll'l'Eq posit:ions the CLP to 

line 1100, and prompts the user to enter line 1100 which 
does not yet exist) 

USAGE Command 

This command presents to the user the statistics accunrulated in the sys­
tem that relate to his use of system resources. 

r---------~----------------------------'------~,------ ... -------------, 
I Operation IOperand I 
t-------+--------------------------'--------------------------1 
I USAGE I I l ________ L _________________________________ . _____________ • ___________ J 

Note: There are no operands. 

Manager's and Administrator's Guide and Systell Prograrrmer"s Guide list 
special operands for managers, administrators, and system programmers. 

Functional Description: The accounting statistics for the specified 
user identification, which include, the user" S J:atiC'Jn (that is. the rrax­
imum amount of each resource allowed for the user}, the accumulative 
statistics in the user table, and the usage stat.istics for the current 
task are tallied and presented to the user. Conversationally~ the data 
set is presented at the terminal; nonconversationally, in the SYSCUT 
data set. 

The user's accounting statistics are displayed always. The accumulative 
statistics cannot be reset to zero without displaying all of the user's 
accounting data. Furthermore, the display of his statistics occurs be­
fore the accumulative data is reset to zero, alUKmgh subsequent entry 
of the USAGE command displays the statistics "With t.heir new values. 

Three types of statistics are presented: accumulative statistics 
reflect total usage of resources from the time the user is joined to the 
system to the pre sen t, current sta tisti cs ref lect us age du ring the pre­
sent task, and the ration which reflects the maximum amount of a 
resource allowed for the user. The statistics displayed are srunmari zed 
in Appendix H. 

The information is presented in the following format: 

/TEMP STOR=ration;current;accum 
/PERM STOR=ration;current;accum 
/DA DEV=ration;current;accum 
/MAG TAP=ration;current:accum 
/PRINTERS=ration;current;accum 
/RD-PUN=ration;current:accum 
/TSS TASKS=ration;current 
/BULKIN=accum 
/BULKOUT=:accum 
/CPU TIME=ration;current;accum 
/CONN TIME=ration;current;accum 

statistics with zero value are not presented. 

VT (VAM To Tape) Command 

This command copies a 
sequential data set. 
the user to store VAM 
later time. 

VAM data set to magnetic tape as a physical 
Used with the TV (TAPE TO VAM) cOIDnland, VT allows 
data sets on magnet:ic tape and retrieve therr at a 

Part III: COmmand Descriptions 251 



~-----T-----------------------------------------------~---- , leperationlOperand I 
1------+--------------------------------------------4 
IV'!' IDSNAME1=vam data set name[,DSNAME2=tape data set naJl\e,*DSNAMEll, I 
I I [,ERASEDS1= YI Nl ,*, I 
I I [,RETAIN= YI N) I 
I I [,FROMID=user identification] I 
I I (,TOID=user identification] I 

I [,CATDS2= YI N] I L-_____ ~ ____________________________________________ J 

* This position has no meaning for the VT command but is present in the 
BPXDS for ease of coding. 

DSNAMEl 
identifies the cataloged VAM data set to be written on magnetic 
tape. 

Specified as: a fully qualified data set name. 

DSNAME2 
specifies the name to be assigned to the magnetic-tape copy of the 
data set. 

Specified as: a fully qualified data set narre; if the name is pre­
ceded imnlediately by an asterisk, the tape data set will not be 
cataloged, or 

*DSNAME1, the copy is to retain the same name as the original data 
set. 

System default: for the first VT command, the data set name given 
in the preceding DDEF command, with the tr:NAME of rDV'IOUT is 
assumed. For subsequent V'! commands, the tape data set name will 
be modified to the form of 

$T.Tnnnn.dsnamel 

and used as the tape data set name. Truncation of the given name 
to allow the insertion of $'1. 'Innnn (where nnnn is a unique nultber 
assigned by the system to assure data set uniqueness) will be from 
left to right. The qualifier $T will allow the user to reference 
all such data sets created by VT by partially qualified data set 
name. If this operand is specified as *rSNAMEl the tape data set 
naree will be the same as the vam data set name and no cataloging 
will be performed. 

ERASEDSl 
spec-ifies that the VAM data set is to be erased after the data set 

Specified as: Y - erase after copy 
N - no erase after copy 

System default: N - no erasure will be made. 

RETAIN 

252 

specifies that the change and reference dates of the input data set 
are to be retained with the output data set. 

Specified as: Y - input dates are to be r'C'tained. 
N - current dates are to be retained. 



system default: the current dates will be retained with the data 
set copy. 

FROMID 

TOlD 

specifies the user identification prefixed to the name of the input 
data set. 

Specified as: For a user, this must be the user identification as­
sociated with the current task. 

for the system manager, any user identification currently joined to 
the system. 

For a system administrator any user identification currently joined 
to the system by him. 

System default: the user identification associated with the cur­
rent task is assumed. 

specifies the user identification to be associated with the data 
set on tape. 

specified as: One-to-eight alphamer io characters, or 

*FROMID; the FROMID is to be retained on tape as the '£OlD. 

System default: The user identificc'ition, associated with the cur­
rent tas k is assumed. 

CATDS2 
specifies whether or not the data set on tape is tc te cataloged. 

Specified as: Y - the tape data set is to be cataloged. 
N - the tape data set is not to be cataloged. 

Functional Description: The VT command can be used to cOFY data sets 
serially on tape without issuing a new DDEF command each time. Once the 
user has identified the output data set by a DDEF command wi th DDNA~E of 
DDV~UT, VT accepts each new request, updates the required control in­
formation, and copies the specified data set (DSNA~£l) as t~e next 
sequential file of th€ existing tape. The data set written outill/ill be 
cataloged, if indicated, as though a new DDEF had been issued for each 
data set copied. 

The DSNAME2 and TOlD values will be retained as part of the tape data 
set. It may be used by the TV command when the data set is restored to 
direct access storage. 

Although the user may specify that the output data set be cataloged 
(CATDS2=Y), DSNAME2 will not be cataloged where *DSNAMEl is specified, 
the name is preceded by an asterisk, the na~ is already cataloged or 
the TOlD is not for a userid currently joined tc the system. 

DSNAMEl will be erased (ERASEDS1=Y) only if the data set is copied 
successfully. 

Labels are written on the magnetic tape as specified in the user's DDEF 
for DDVTOUT. If the data set is to be placed on an existing tape, the 
label ing must be consistent with the previous contents cf the tape. 

Note: Before the initial VT command in a task, a CDEF command must te 
issued for the tape data set with DDNAME of DrVTOUT. 

Part III: Conrrand Cescriptions 253 



For each successfully copied data set, the user receives a message indi­
cating the names of the input and output data sets and file sequence and 
volume serial numbers used. Any failure to copy successfully results in 
a diagnostic message and cancellation of the command. 

progratrJl1ing Notes: The DDEF command describing the DDN1>.ME of tDV'lOUT 
must specify PS as the data set organization (LSORG) and a nine-track 
tape as the residence volume under the UNIT operand. In addition, when 
the TV command will be used to process the entire tape volume (identi­
fied to TV by a DDEF with DDNAME of DMVIN), the LDVTOUT tI:!F must spe­
cify an unlabelled tape in the LABEL operand. 

EXample: 

1. The user wants to write his public VAM data set, MYDS, on a private 
tape volume as ABC. 

USer: ddef ddvtout,ps,abc,unit=(ta,9),volume=(private); vt ayds 

System: (copies MYDS on tape; the name assigned to the data set on 
tape is ABC) 

2. Now the user wants to write his public VAM data set, WN3, on to the 
same private tape volume. 

User: vt dsnamel=wn3 

System: (copies WN3 on tape with data set name $T.T0003.WN3) 

3. The user wants to save his VA~ dataset D~TA3 on a private tape as 
DATA3. 

User: vt data3, *DSNAMEl 

System: VSN (vsn) FSQ (fsq) data3 saved on tape. 

VV (VAM to VAM) Command 

This cOlt'mand copies a VAM data set in direct-access storage. 

r---------~-----------------------------------------------------------~ I operation I Operant I 
r---------t------------------------------------------------------------t I VV IDSNAME1=current data set name [,DSNAME2=new data set name] I 
I I [,ERASEDS1= YIN] ( .. OVERLAY= YIN) t 
I 1[,RETAIN=YINl I 
I I [,FROMID=user identification] I 
I t[,TOID=user identification} I L _________ L-_______________________________________ ____ ______ J 

DSNAMEl 
identifies the cataloged VAM data set to be copied. 

Specified as: a fully qualified data set name. 

DSNAME2 

254 

specifies the name to be aSSigned to the data set copy; 1f the copy 
is to reside on a private VAM volume, the data set name must be 
previously defined by a DDEF command. 

Specified as: a fully qualified data set name. 

System default: the new data set will be named in the form 



$D.Dnnnn.dsnaroel 

where nnnn is a unique number assigned to assure uniqueness of data 
set names. The qualifier $D will allow the user to reference all 
such data sets created by W by partially qualified data set naJTe. 

El<ASEDSl 
specifies that the input data set is to be erased after the data 
set has been copied. 

FROMID 
specifies the user identification prefixed to the name of the input 
data set. 

Specified as: For a user, this must be the same as the user iden­
tification associated with the current task. 

For the system manager, any user identification currently joined to 
the system. 

For a system administrator, any user identification currently 
joined to the system by him. 

System default: the user identification associated with the cur­
rent task is assumed. 

Specified as: Y - erase after copy 
N - no erase after copy 

System default: N - no erasure will be made. 

OVERLAY 

TOlD 

specifies that the output data set will be overlayed if it already 
exists and the data set attributes (DSORG, RECFM, LRECL, KEYLEN, 
RKP) for the two copies are the same. 

Specified as: Y - overlay to be made 
N - overlay not to be made 

System default: N - no overlay to be made. 

specifies the user identification to be associated with the output 
data set. 

*FROMID; the FROMID is to be used as the TOlD. 

System default: the current task userid is assumed. 

Functional Description: For each successful copy_ the user is informed 
of the input and output data set names. Any failure to copy successful­
ly results in a diagnostic message and cancellation of the command. 

DSNAMEl will be erased (ERASEDS1=Y) only when the data set is copied 
successfully. 

Generation indexes will be created as necessary for generation data 
groups not previously defined in the system. 

Examples: 

1. The user wants to copy data set XYZ into public storage. 

User: vv xyz 

Part III: COJl'mand Descriptions 255 



System: (copies XYZ with the name $D.DO003.XYZ) 

2. The user wants to copy data set GH2 onto private VAM volume MYVOLl 
and name the data set ABC. 

USer: ddef dummy,vi,abc,unit=(da,2311),volume=(,myvoll) 

vv gh2,abc 

Syste~: (copies GH2 onto MYVCLl with name AEC) 

WT Command 

This command writes an existing VSAM or VISAM data set on tape for even­
tual printing on a high-speed printer. 

r---------~----------------------------------------------------------, I Operation I Operand , 
r---------+------------------------------------------------------------i I VolT IDSNAME=current data set name ,DSNAME2=tape data set name I 
I I [,VOLUME=tape volume number] [,FACTOR=blocking factor] I 
I I [,STARTNO=starting positionJI,ENDNO=ending position] , 
I I ,PRTSP={EDITI 1121 3} , 
I I (, HFADER=H] [,LINES=lines per page J [,PAGE=P) I 
I I [,ERASE={YIN}] I l _________ ~ ____________________________________________________________ J 

DSNAME 
identifies the cataloged VSAM or VlSAM data set to be written on 
tape in print format. 

specified as: a fully qualified data set name. 

DSNAME2 
specifies the data set name under which the data set is to be cata­
loged while it resides on the output tape. 

specified as: a fully qualified data set name. 

System default: a previously labeled scratch tape is used. 

Caution: DSNAME2 must refer to a previously labeled tape data set. 

VOLtME 
specifies the volume identification nurrber of the output tape. 

Specified as: from one to six alphameric characters. 

system default: scratch tape is used. 

FAC'IOR 
designates the blocking factor for records of the output tap€. 

Specified as: from one to three decimal digits. The maximum 
blocking factor is 246. 

Syste~ default: 30. 

STARTNO 

256 

specifies, for each record, the byte position at which writing onto 
the tape is to start. 

Specified as: from one to six decimal digits. 



ENDNO 

PRTsP 

System default: writing start.s with the first byte of each record. 

specifies¥ for each record, the byte position at which writing onto 
the tape is to stop. This end byte is written. 

specified as: from one to six decimal digits. ~he value must be 
greater than the value of the STARTNO operand. 

Systea default: writing continues to the last byte of each logical 
record or until the printer line length (132 characters) is 
reached, whichever occurs first. 

designates the number of spaces to be skipped between lines. 

Specified as: 

EDIT - line spacing is controlled by a character in the first byte 
position of each data set logical record. The control 
character may be a FOR'IRAN control character or machine code 
(see Appendix D), but must be of the sane type throughout 
the data set. The control character in each record is supp­
lied by the user. 

1 - one space between lines. 

2 - two spaces between lines. 

3 - three spaces between lines. 

Systere default: 1. 

Note: When EDIT is specified, the HEADER, LINES, and PAGE operands 
Il'Ilst not be specified. 

HEADER 

LINES 

PAGE 

.i::RASE 

specifies that the first logical record cf the data set is to be 
repeated on each print page as a header line. The first 132 bytes, 
or the entire first record, whichever is smaller, is used as the 
header. 

Specified as: H 

System default: no header is printed. 

designates the number of lines to be printed on a page. 

Specified as: from one to four decimal diqits (rraximum 9999). 

System default: 54 lines are printed on each page. 

specifies that pages are to be numbered. 

specified as: P 

System default: no pages are nurr~ered • 

specifies that the cataloged data set is to be erased from the 
catalog after the tape operation is finished. 

Part III: Corrrrand Cescriptions 257 



specified as: 

Y - erase. 
N - save. 

Systerr defau It: N. 

Functional Description: WT results in the creation of an independent 
nonconversational task, to which the system assigns a BSN for possible 
reference by the user. 

The WT command processes input data sets that were created ty using ei­
ther VSAM or VISAM access methods. The tape data set, created by using 
the BSAM access method, is written in odd parity with standard TSS 
labels. 

The selected field in each input data record is written on tape as a 
logical record or print line, in proper format for high-speed printing. 
Records are blocked, if requested. The maximum blocked record length is 
32,767 bytes. Input records containing a read error (or an invalid con­
trol character when the EDIT option is used), are printed on SYSOUT, in 
hexadecimal form. 

When EDIT is specified, the first eyte in each logical record is assumed 
to be the byte following the control character, which is not printed or 
counted when the system determines where to begin printing a record. 

If the data set to be printed was created via the DATA command, the 
first byte of each record contains an indicator of the origin of the 
record. PRINT translates the byte to a C if the record was entered 
through a card reader, and to a blank if it was entered through the key­
board. Unless the STARTNO operand is specified, this byte is printed as 
part of the record. If STARTNO is specified as 2, this byte is 
bypassed. 

Cautions: WT is valid for VSJ.\M and VISAM data sets only. It cannot be 
used for a member of a VPAM data set. However, a VPAM member can be 
copied via the CDS command, and then the copy can be written onto tape. 

programming Notes: The user can use the BSN to identify his task when 
entering the CANCEL command. 

The user can also have a data set printed on-line by using the PRINT 
command. 

Exablle: 'Ihe user wants to create a tape, for offline printing, that is 
dou Ie-spaced and uses the first record as a header. Bytes 20 to 130 of 
each record of data set RT.WINDER are to be printed on scratch tape. 
Pages are to be numbered and contain 60 lines, and the input data set 
isto be erased after it is written on tape. ~he tape data set, TAPEDS1, 
will be system blocked. 

User: wt rt.winder,tapeds1",20,130,2,h,60,p,erase 

The system accepts the task and assigns ~ BSN. 

Z LOGON Command 

This command is automatically invoked after the LOGON command is 
executed, but before control is passed to the user. Initially. ZLOGCN 
performs no function; it allows the user to augment the initialization 
process. 

258 



r---------T------------------------------------------------------------, 
'Operationloperand I 
r---------+------------------------------------------------------------~ 
IZLOGON I I L-________ ~ ___________________________________________________________ J 

Note: There are no operands when invoked by LOGON. 

Functional Description: After the task initialization process is com­
pleted, LOGON calls ZLOGON. If the user (or the installation) has de­
fined a procedure with the name ZLCGON, it is executed before control is 
passed to the user. Otherwise, ZLOGON is ignored and control is passed 
to the user. 

programming Notes: When the user ~ants some function accomplished auto­
matically when he logs on, he can define a procedure (via PROCDEF or 
BUILTIN) with the name ZLOGON, or he can equate (via SYNCNYM) the name 
ZLOGON to the name of any other command or procedure. If a program is 
to be executed with ZLOGON during the initialization frocess, it must 
reside in USERLIB. The user can also enter ZLOGON, after it has been 
defined, at any time during his task. 

Examples: 

1. The user wants to execute program PGMA every time he initiates a 
task. He defines this command procedure: 

procdef z logon 
call pgma 

Note: program PGMA must be stored in the user's USERLIB to be 
exe-cuted. The user can also run program PGMA during his task by 
issuing ZLOGON. 

2. The user always wants to use the terminal card reader after 
initiating his conversational task. He issues: 

synonym zlogon=cb 

~: During the LOGON process, the CB cOlrmand is issued before 
the user gets control. CB is ignored during initiation of a non­
conversational task. 

Part III: Command Descriptions 259 



APPENDIX A: BULK INPUT FROM MAGNETIC TAPE 

This appendix describes how the user enters bulk input from magnetic 
tape. 

The way described here is the only direct means of reading a data set 
from tape and then converting it to VAM organization, writipg it onto 
public storage, and cataloging it. The user must send information, in­
dicated below with his tape to the system operator. He must also ensure 
that his tape format meets system requirements that are defined later in 
this appendix. The data set that will be stored and cataloged has a 
different organization from the input data set residing on the tape and 
must, therefore, have its own data set name. When the new data set has 
been cataloged, the user can refer to it just as he would refer to any 
other cataloged data set belonging to him. 

INFORMATION NEEDED BY THE SYSTEM OFERATOR 

The user must send the following information with his tape to the system 
operator for every data set that is to be read and cataloged. 

The system operator uses the information to enter an RT command that 
causes execution of a system-provided task to handle the tape input. 
Tne SYSOUT listing of that task, which is returned to the user, may con­
tain messages. 

1. Identification of the user to whom the data set belongs. This i­
dentification is specified as from three to eight alphameric char­
acters. The first character rrust be alphabetic. 

2. Volume identification of the tape. This identification must be 
specified as from one to six alphameric characters. 

3. Type of tape, for example, 7 (seven-track tape), 7DC (seven-track 
tape with data converter feature), or 9 (nine-track tape). If the 
user does not specify a type of tape, the tape type specified at 
system generation is assumed. 

When the user wants to submit a data set on seven-track tape (with 
or without the data converter feature), he must first consider tape 
characteristics. If characteristics such as density and parity 
match the standards set ty the installation, specify the type of 
tape as shown above. However, if characteristics are different, 
the user must issue a DDEF command for the data set, specifying the 
tape characteristics; issue a CATALOG corrmand to catalog the data 
set; and tell the operator that the tape has been cataloged. (See 
Item 5.> 

4. Name of the input data set, specified as a fully qualified data set 
name. 

5. CTLG, which indicates that the data set is cataloged. 

6. Narre under which the data set is to be cataloged, specified as a 
fully qualified data set name. 

7. LIN~, if the user wants lines to be numbered. If this option is 
specified, a VISAM data set that has variable-format records is 
created. otherwise, a VSAM data set without line numbering is 
created. 

260 



8. What action is to be taken if an unoorrectable read error occurs. 
One of the following options can be specified: ACCEPl' (error rec­
ord is accepted), SKIP (error record is skipped), END (read opera­
tion is terminated). If the user does not specify an option, END 
is assumed. 

The system reads the inplt data set .. converts it to VAN organization .. 
stores it on public storage, and catalogs it in the user's catalog under 
the name specified in the cataloged data set name operand. If the input 
tape contains more than one data set, the system reads the specified 
input data set only. 

The data set that is stored on public storage has either VSAM or VISAM 
organization, depending on whether the LINE option was selected. If 
line numbering was requested, the system generates line numbers in 
increments of 100. The maximum number of logical record's permitted is 
100,000. The input data set record length must not exceed 120 bytes if 
line numbering is requested. 

The system does not perform code conversions. 8)wever, if the data set 
is on seven-track tape, the system makes any character adjustments re­
quired for data validity. 

TAPE FORMAT REQUIREMENTS 

The magnetic tape must have the standard TSS label or a standard ASCII 
label. (This standard refers to American National Standard for Informa­
tion Interchange ANSI X3.Q-1968. The abbreviation ASCII is used 
throughout this book.) PhySical records must be fixed length am no 
longer than 32,767 bytes. 

Appendix A: Bulk Input From Magnetic Tape 261 



APPENDIX B: BULK INPUT FRCM CARD LECKS 

This appendix describes how the user enters bulk input from cards. 

The user submits his data sets on punched cards to the system operator, 
who enters them into the system via a high-speed card reader. A system­
provided task that handles the card input is €xecut~d. A SYSOUT listing 
of that task is produced. That listing may contain messages. Two types 
of input data sets are permitted: nonconversational SYSIN data sets and 
data-card data sets. The two types may be interspersed, one following 
another, in any order within a batch of cards. The rules for setting up 
these data sets are given below. 

Note: When the user wants to enter a nonconversational SYSIN data set 
together with the data sets it references, he must be certain that the 
data sets precede the SYSIN data set. 

The acceptable character set for punched cards is described in Terminal 
User's Guide. 

NONCONVERSATIONAL SYSIN DATA SE~ 

A nonconversational data set contains all comrrands needed to run a non­
conversational task. These cOIDmands are punched in exactly the format 
used to enter commands from a ~erminal (see Part I under "Command Format 
and Notation"). The first card must be a LOGCN corrrrand; the last, 
LOGOFF. Only the LOGON and LOGOFf' commands must begin in column 3. Any 
comrrand that is preceded ty a break character (normally the underscore) 
must begin with the break character in column 1 if it is to be 
recogni zed. 

When the data set is read in, it becomes the SYSIN data set of a noncon­
versational taSk; it is executed as soon as space is available. After 
execution, the SYSIN data set is eliminated. It does not remain in the 
catalog or in system storage. 

The card-deck format is shown in Figure 3. 

The SYSIN data set may include data that is to be read by the user ··s 
object program during execution. If so, the data to be read must appear 
immediately after the command that starts execution of the user's pro­
gram. (Card data may also start in column 1.> Also, for FORTRAN data, 
the end-of-data card, starting in column 1, must follow the last data 
card, as in Figure 4. 

Data-Card Data Set 

This type of data set contains any information the user wants to put 
into public storage as a cataloged data set; it may include commands. 
When this type of data set is read, a VAM data set is created and cata­
loged in public storage. This VAM data set continues to reside in 
storage until it is specifically erased. Unlike the nonconversational 
SYSIN data set, it is not executed upon being read. 

The format of a data-card data set is shown in Figure 5. The first card 
of the data set must be a data descriptor card: the last must be the 
'lENDDS card. The information that is punched into each card must start 
in column 3. 

262 



LOGOFF 

LOGON 

Figure 3. Card deck for a 
non-conversational task 

CALL MYPROG 

LOGON 

data 
cords 

Dota 

De'>u iphl 

aOfO COld~ 

FigurE 5. An example of the 
data-card data set 

LOGOFF 

PRINT M't DS 

% END 

Figure 4. An example of a SYSIN data set, showing input data cards and 
the end-of-data card 

Data Descriptor Card 

The information that is given on the data descriptor card is used by the 
system to create a data set. The format of the information on the card 
is as follcws: 

Appendix B: Bulk Input From Card Decks 263 



,----------------------------------------------------------------------, I Operands I 
~-----------------------------------------------------i 
I DATASET, user identification,dsname [,format] I 
I (,starting number] [,ending number] [,{LINEIFTNICOMPICARD}] I 
I [,error] (,REPLACEl I l ______________________________________________________________ ~ 

DATASET 
indicates that data descriptor information follows. This operand 
must begin in column 3. 

Specified as: DATASET 

user identification 
identifies the user to the system. 

Specified as: the user" s identification assigned to him when he 
was joined to the system. 

dsname 
is the name under which the new data set is to be cataloged. 

Specified as: a fully qualified data set name. 

format 
designates the class of card punching to be used. 

Specified as: 

EBCDIC 
BCD 

extended bina~y coded decimal interchange code. 
binary coded decimal. 

system default: EBCDIC. 

starting number 
is the first column to be read when creating the data set records. 

Specified as: a decimal number from 1 to 80. 

System default: column 1. 

ending number 

LINE 

264 

is the last column to be read when creating the data set records. 

Specified as: decimal number from 1 to 80. 

system Default: column 80. 

indicates that line numbering is requested. Each record in the 
data set is prefixed by a seven-character line number of the form 
xxxxxOO and by a byte of binary zeros that is reserved for system 
use. The resulting data set is a line data set with variable for­
mat records. 

Specified as: LINE 

System default: no line numbering, VSAM. 

indicates that a data set with the sarre characteristics as defined 
for LINE, above, be created. In addition, however, FTN specifies 
that the input cards are FORTRAN source and that the user wants 
them converted to contain keyboard continuation conventions. The 



COMP 

CARD 

resultant data set can be updated from a terminal without any spe­
cial consideration for multicard statements. Trailing blanks are 
stripped from statements that are not (X)ntinue~. 

indicates that a data set with the same characteristics as defined 
under LINE be created except that trailing blanks are stripped from 
all input records. The data set is compressed at the point as 
specified by the END byte. Accordingly, for example, compression 
could take place in an assembler source disregarding the sequence 
number. 

indicates that a VSAM fixed-length data set be created (no line 
numbering>. The record length is the difference between the start­
ing number and the ending numter + 1. This is the system default. 

error 
indicates the action to be taken if an uncorrectable read error 
occurs. 

Specified as: 

ACCEPT accept the record in error. 

SRIP skip the entire logical record if any card in it is in 
error. 

END terminate reading 0 f the data set. 

Systerr default: END 

REPLACE 
indicates whether an existing data set, with the same name as that 
specified on the DATASET card, will be erased when this data set is 
cataloged. When REPLACE is specified on the DATASET card and a 
data set with the same name exists in the lIser"s catalog, the old 
data set is erased, and the new data set is cataloged. If, howev­
er, the existing data set is on private storage, or if REPLACE is 
not specified, a diagnostic is issued, and the DATASET operation is 
canceled. 

Specified as: REPLACE 

System default: The old data set is not erased: the DATASET opera­
tion is canceled. 

Functional Description: The operator initiates card reading: and the 
system reads the input data set, converts it to VAM organization, puts 
it i~ public storage, and catalogs it in the user's catalog under the 
data set name provided. The stored data set has either a VSAM or a 
VISAM organization, depending on whether the LINE OFtion was selected. 
If line nurobering was requested, the system generates line numbers in 
increments of 100. The maximum number of lines permitted in such a data 
set is 100,000. When line numbering is requested, the new data set rec-­
ord length must not exceed 120 bytes. 

caution: You cannot create a VPAM data set with the DATASET card. 

SENDDS Card 

This card, with %ENDDS starting in colurrn 3, narks the end of a data set 
that is to be cataloged. (See Figure 5.> 

Appendix B: Bulk Input from Card Decks 265 



APPENDIX C: PROTOTYPE PROFILE 

The prototype profile, which is initially used to foru the user profile 
for each user, contains command system defaults, input and output trans­
lation characters, and a table of miscellaneous control characters. 
This appendix covers the following topics: 

• The table of system defaults 

• The basics of translation, including the translation tables and the 
corresponding fUllction codes for input translation and for output 
translation 

• The character switch tacle 

T.ABLE OF SYSTEM DEFAULTS 

Table 19 contains default values for conmand operands and implicit 
operands. (Implicit operands are not specified with a command, but they 
may affect the operation of a command or of the system.) This table 
shows the initial values for these defaults. Each value can be changed 
with the DEFAULT command. 

Table 19. Command system defaults 

Table 19. Command system defaults (part 1 of q) 

,------T------,-------------------------------------, 
loperand I Default I I 
I Name I Value I Purpose or Command that Uses I 
~-------+---------+-------------------------------~---------i 
I ACC I I CATALOG r 
I ACCESS I I PERMIT I 
I ACTION 10 I CATALOG I 
I ALIAS I IPOD? I 
I ALPHABET I 1 IC,CA,CB,K,KA,KB I 
I ASMLIST I Y I ASM I 
~------+--------+_------------------------------------------_f 
I BASE 1100 IEDIT, REGION I 
I BCD I N I FTN I 
I BREVITY I T I Message length filter I 
IBSN I I CANCEL I 
~-------+-------+---------------------------------------------_i 
I CHAR I C I CORRECT, LI ST I 
ICLEANUP IY I EXIT I 
I CLF I I MCAST 1 
I CONF I I MODIFY J 
ICONPRMPTIY IUPDATE, text editor data input routine I 
I CONREC I N I UPDATE, text editor data input routine 1 
I CONT I I MCAST I 
I COPYBASE I I CDS I 
I COPY INCR I I CDS I 
ICORMARK I.$a~# 'CORRECT I 
I CP I I MCAST I 
ICRLIST IN IASM, FTN I 
I CSW I N I PROFILE I L ______ ~ ______ ~___________________________________ __ __ ~ 

266 



Table 19. command system defaults (part 2 of q) 

,-------T-----,---------------------------------------, 
,operand , Default I I 
I Name I Value , Purpose or Comlfand that Uses I 
J-------t------+--------------------------------------.. 

DATA I I POD? I 
DBASE' I DATA I 
DCB I I DDEF, FlLEDEF , 
DDNAME I ICLOSE, DDEF, FILEDEF , JOBLIBS, RELEASE I 
DEPROMPT I Y I DELETE, ERASE f 
DEVICE I I EVV I 
DIAGREG IN I ABEND I 
DINCR I I DATA I 
DISP I IDDEF, FILEDEF I 
DS NAME I I BACK, CATALOG, CDD, CLOSE, DATA.. DDEF.. DELETE.. J 

I IEDIT, ERASE, EXCERPT, EXECUT.E, FILEDEF, LINE, I 
I I PERMIT, PRIN'I .. PUNCH, RELEASE, RET, SHARE, wr I 

DSNAMEl I I CDS, TV, V'I, VV I 
OS NAME2 I I CDS, TV, V'I, VV, WI' I 
DSORG I I DDEF, FILEDEF I 
~-------+---------+--------------------------------------------.. 
IENDNO I IPRINT, PUNCH, ~T I 
I EOB I I MCAST I 
I ERASE I N I CATAL(x;, CDS, PRINT, PUNCH, WT I 
I ERROROPT I END IPRINT, PUNCH, ~T I 
I EXPLICIT I I PLI I 
I EXTNAME , I BUI I.TI N I 
~------+-------+-----------------------------------------------.. 
I FACl'OR I , WT I 
I FORM I I PRI ~T, PUNCH I 
I FROMDEV , I DMPRST I 
I FRVOLID I IDMPRST I 
I FTN I I MODIFY I 
~-------+---------+-------------------------------------------~ 
, GDG I I CATAL(x; I 
, GNO I I CATALOG I 
~------+------+-----------------------------------------~ 
I HEADER I I PRINr .. WT , 
IHEXSW Ix~ ICONTEXT, DA~INE service routine, UPD~TE I 
~--------+------+-----------------------------------.. 
IINCR 1100 ,EDIT, INSERT, NUMBER, REGION, REVISE I 
I II~SER1'n I I PRMPT I 
I INSTLOC I I BRANCH I 
I INTRAN I I MCASTAB I 
IISD I Y lASH, FTN, LNR I 
I IS DL 1ST I N I ASM . I 
~-------+------+----------------------------------~ 
I JOBLIB I IDDNAME? I 
~-------+--------+----------------------------------------.. 
IRC I I MCAST I 
I KEYLEN t JDDEF, FILEDEF MODIFY I 
~-------+------+------------------------------- .. I LABEL I I DDEF, DMPRST, FlLEDEF I 
J LGH I ILL I 
I LIB I I LNR I 
I LIMEN IW IMessage severity filter I 
fLINCR I (100,100)IASM, FTN, LNR I 
I LINE I ILINE?, RT I 
I LINENO IY IDATA, MODIFY, text editor data input routine I 
I LINES 154 I PRINT, WT I 
I LISTDS I Y I ASM_ FTN, LNR I 
I LOC I I RUN I 
I LPCXPRSSI JASM, FTN, LNR I 
I LRECL I I DDEF, FILEDEF MODIFY I L ________ J. _______ .L-________________________________ J 

Appendix C: Prototype Profile 261 



Table 19. Command system defaults (part 3 of 4) 
,....-----r -~----------------- ---, 

I loperand I Default I 
I Name I Va1ue I 
r----+------~I~--

Purpose or command that Uses I 
------------------f 

I MACRO I IFlLEDEF 
IMACRODS I IPLI 
IMACROLIBI IASM 
I MAP I IPLI 
IMERGEDS I IPLI 
IMERGELSTI IPLI 
I MINS I I TIME 
IMMAP IN IFTN 
I MNAME I I QUALIFY 
I MODREP I I ASH, FTN, LNK 
I MODULE I I POD? 
IMSGID I IPRMPI' 
.------+-----+-------------------------- --i 
INl I ICONTEXT. CORRECT, EXCERPT, EXCISE, INSERT, LIST, 
I I I LOCATE, NtJomER, REVISE 
IN2 I ICONTEXT. CORRECT, EXCERPT, EXCISE, LIS'l', LOCATE, 
I I I NUMBER, REVISE 
INAME I lASH, BUILTIN, CALL, COBOL, FTN, FTNH, BASH, LNK, 
I I I LOAD, PLI, PLIOPT, PROCDEF, UNLOAD 
I NAMES I I DSS?, PC? 
I NBASE I I NUMBER 
I NEWNAME I I CATALro 
INEWPASWDI ICBGPASS 
1 NEWVLID I IDMPRST 
I NUML I NES I 1 I SPACE 
r----+-----+------------------------1 
IOBLIST IN IFTN I 
I DCERASE I IODC I 
IOOCPLI I IODC I 
I OPTION I I DDEF, FILEDEF I 
IOPTION! I I EXHIBIT I 
IOSDDN I I FI LEDEF, FILEREL I 
IOSKEYLE I I FILEDEF I 
IOSOPTS I ICOBOL, FTNH, HASM, PLIOPI' I 
I OUTRAN I I MCASTAB I 
IOWNERDS I.ALL I SHARE I 
.-----+----+------------------ .. 
IPADCBAR I IPLI I 
I PAGE I I PRI NT, wr I 
I PLCOPI' I 1 PLI I 
IPLIOPT I IPLI I 
IPLIPACK I IPLI I 
IPMDLIST IN IASM, FTN, LNR I 
I PODNAME I USERLIB I POD? I 
IPREXPAND\ IControls procedure expansion error analysis I 
IPROCNAMEI I KEYWORD I 
I PROLIB I 1 BUI LTI N, PROCDEF 1 
I PROl'ECT I I DDEF I 
IPRTSP 11 IPRINT, WT I 
I PUBLIC I N I FTN I 
r------+----+--------------- --f 
IREAD IN IBLIP 
I RCC I I MCAST 
I RECFM I IDDEF, FILEDEF MODIFY 
IREGSIZE 10 I EDIT 
IREJMSG I IPLI 
IREPLACE 1 I CDS 
I RESET I N ILL 
I RET I I DDEF, FILEDEF RET 
IRKP' IDDEF, FILEDEF MODIFY 
IRNAME I IEDIT,EXCERPT,REGION . 
IllS I I MCAST 
I RSVP I IControls responses in GATE 
I Rl'YPE I I DATA 
I RUNMODE I IDMPRST L ________ L ____ ....L-_________________ _ 

268 

I 
I 
I 



Table 19. Command system defaults (part 4 of 4) 
r-------~--------~---------------------------------. ·1 
loperand I Default I t 
I Name I Value I Purpose or COIIUlland that USes I 
r--------+-------+----------------------------------- .. 
I SCOL I 0 I CORRECT 
I SE TNAME I I MODIFY 
I SHARED I I ERASE 
ISIRTEST I IEXIT, PUSH 
ISLIST IY IFTN 
ISOURCEDSI ICOBOL, FTNH, HASM, PLI, PLIOPT 
ISPACE I IDDEF, FILEDEF 
I SSM I I MCAST 
I STACK 11 I PUNCH 
ISTARTNO I IPRINT, PUNCH, wT 
I STATE I N I CATALOG, PERMI'I 
I ST EDIT IN J ASf<l, F'IN 
I STORED I N I ASM, FTN, LNK 
I STRING I I LOCATE 
I STRINGl I I CONTEXT 
ISTRING2 I I CONTEXT 
ISYMLIST IN IASM 
ISYSIN IK IControls GATE'S access to SYSIN data set 
ISYSINX IG IControls corr.mand analyzer's access to GATE 
~------+------+-------------------------------------------i 
ITIME I I BLIP I 
I TODEV I I DMPRST I 
I TOVOLID I I DMPRST I 
I TRANTAB IN IText editor I 
ITRP I I MCAST I 
I TRUNCATE I N I LL I 
ITYPE, ICLOSE, EXHIBIT , 
~--------+---------+------------------~------------------------------i 
,UNIT, I DDEF, Fn.EDEF I 
IUPIJI'XFERI IPLI I 
I USERID I t PERl-I.IT, SHARE I 
IUSM I I MCAST I 
r-------+--------+--------~----------------------------------------1 
I VERID I IASM, FTN, LNR I 
IVOLUME I IDDEF, EVV, FILEDEF, WT I 
~--------+--------+----------------------------------------------.. 
IWRITCHK I I DMPRST I 
r--------+------+----------------------------.------------------f 
I XFERDS I I PLI I l ________ ..L ________ .L-___________________________________________ J 

BASICS OF 'IRANSLATION 

Each character translation table (see Table 20 and Table 21) is made up 
of two parts: the first part has 256 translation entries, and the 
second part has 256 corresponding entries that are the function codes 
assigned to the translation entries. 

The translation entries begin at byte 0 (X'OO') and continue through 
byte 255 (X'FF'). The function codes begin at byte 256 (X"100) and con­
tinue through byte 511 (X"lFF"). There are two sets of function codes, 
one for input and one for output. 

The meanings of the input function codes that are shown in Table 20 are 
as follows: 

Code 00 - Translate ?nly 
when this code ~s specified for ~ character, the system picks up 
the internal code of that character. 

Appendix C: prototype Profile 269 



Code 04 - Character kill 
every time it encounters a character with this function code, the 
system deletes that character and the one preceding it. The 
syste~supplied value is backspace. 

Code 08 - End-of-block or new line 
when the system encounters a character with this code, it reco­
gnizes it as the end of an input stream and appends at that point 
an EOB character from the table of miscellaneous control charac­
ters. Any characters beyond the EOB character are ignored. 

code OC - cancel 
if the last character in the line has this code, the system deletes 
the character and the entire line that precedes it. The system­
supplied value is #. 

Code 10 - Terminal null 
if this code is assigned to the last character before the end-of­
block, the system ignores the character. The system-supplied value 
is a new line. 

Code 14 - Null 
any character to which this code is assigned is ignored as input to 
the system. 

Code 18 - Escape 
any character to which this code is assigned becomes a one­
character escape. The character immediately following is always 
treated as dat a. 

The meanings of the output function codes that are shown in Table 21 are 
as follows: 

Code 00 -- Translate only 
all characters assigned this function code are translated using the 
corresponding values in the first half of the output translation 
table. 

Code 04 -- Restore 
when a bypass code is in effect for output data, the restore code 
restores printing of the output data to a 1050 Data Communicaticns 
System. 

Code 08 -- Bypass 
any output data, preceded by a bypass code, is not printed at a 
1050 terminal. A restore code restores output printing. 

Code OC -- Prefix 
a cha:cacter with this function code causes the printer ribbon to be 
shifted. This function requires special features on the 1052 
printer-Keyboard and the 2741 Communications Terminal. 

Code 14 -- Tab 
this code causes a tab to be generated at the terminal. The output 
continues at the next tab position. (Line length control is termi­
nated when a tab character is recognized.) 

Code 18 -- New Line 
this code generates a carriage return and a line feed. The func­
tion is not recognized on the teletype terminal. 

Code lC -- Eackspace 

270 

this code generates a backspace. On the teletype terminal there is 
no physical backspace; a left arrow is printed to indicate that a 
backspace has occurred. 



code 20 -- Delete Character 
a character assigned this code is deleted from the output stream; 
initially, all unprintable characters have this code. 

code 28 -- Line Break Character 
when a line of output data is too lollCJ for the terminal, this 
character is used to indicate where the line may be broken. 

Code 30 -- Line Feed 
this ex>de ca uses the terminal paper to be It'oved up one space. 

The procedure of translation is as follows: 

1. A character is entered into the system, either from a terminal or 
from an output data set. For example, a user enters a capital 
letter A from the terminal. 

2. The system uses the hexadecimal position of A, which is Cl, as an 
index into the translation table. (The translation entries and the 
corresponding functional codes for input are shown in Table 20. 
These are the values that are provided intially by the systerr.. The 
values can be changed.) 

3. There is a code in the location in the table that corresponds to 
the character (really, it corresponds to the EBCDIC representation 
of the character). The value in Table 20 for the letter A is 
X'Cl' • 

4. The system looks at the corresponding function code position to see 
if there is an entry. For example, the system looks at decirr.al 
location 449 (see the column labeled -Function code-; the hexadeci­
mal byte is X'lCl' which is found by adding X'Cl' to X'FF') for the 
function code for A. 

5. If a function code is found. the function is performed. If no 
function code is found, the character is translated only. For ex­
ample, the function code for A is 00 for input, as shown in Table 
20 (translate only), and 00 for output, as shown in Table 21 
(translate only). 

The user can change his translation tables. This procedure is explained 
in the descriptions of the MCASTAB and SET cormnands in part III. 

Table 20. prototype input character translation table (part 1 of 6) 
r---------------------------------~----------------------------~----, I Translation Entry I Function Code I 
.. ---------,.---------~------------+_-------------T-------------_f 
I Byte Icode (Hexa-I I I Input Code I 
I (Decimal) I decimal) I Character I Byte (Decimal) I (Bexadecilt'al) I 
t----------t----------t-----------t----------------t-----------------f 
1 0 I· 0 I 256 I 00 I 
I 1 I 1 I 257 I 00 I 
I 2 I 2 I 258 I 00 I 
I 3 I 3 I 259 I 00 I 
I 4 I 4 PF 1 260 1 00 I 
I 5 I 5 HT I 261 I 00 I 
I 6 J 6 LC I 262 I 00 1 
I 7 I 7 DEL I 263 I 00 I 
I 8 I 8 I 264 1 00 I 
I 9 I 9 I 265 1 00 I 
J 10 I A I 266 I 00 I 
I 11 I B 1 267 1 00 I 
I 12 I C I 2,68 I 00 I L _________ ~ _______ -L __________ .L _______________ .l_ ___________ J 

Appendix C: prototype profile 271 



Table 20. Prototype input character translation table (part 2 of 6) 

,----------------------------T------------------------------, I 'Iranslation Entry I Function Code I 
~---------T---------~------------+-------....... --------~----------~ I Byte I Code (Hexa-I I I Input Code I 
I (Dectmal) I decimal) I Character I Byte (Decimal) I (Hexadecimal) I 
~-------+--------+------------+----------------+-----------of 

13 D I I 269 00 I 
14 E I I 27 0 00 I 
15 F I I 211 00 I 
16 10 I I 272 00 I 
17 11 I I 273 00 I 
18 12 I 1 274 00 I 
19 13 I I 215 00 I 
20 14 I RES I 276 00 I 
21 15 I NL I 217 10 I 
22 16 I BS I 278 04 I 
23 17 I IL I 279 00 I 
24 18 I I 280 00 I 
25 19 I I 281 00 I 
26 lA I I 282 00 
27 1B I I 283 00 
28 lC I I 284 I 00 
29 ID I I 285 I 00 
30 IE I I 286 J 00 
31 IF I I 287 I 00 
32 20 I DS I 288 I 00 
33 21 I SOS I 289 I 00 
311 22 I FS I 290 I 00 
35 23 I I 291 I 00 
36 24 I BYP I 2921 00 
37 25 I LF I 293 I 00 
38 26 I ECB J 294 I 08 
39 27 I PRE I 295 I 00 
40 28 I I 296 I 00 
41 29 I I 297 I 00 
42 2A 1 SM I 298 I 00 
43 2B I I 299 I 00 
44 2C I I 300 I 00 
45 2D I I 301 I 00 
46 2E I I 302 I 00 
47 2F I I 303 I 00 
48 30 I I 304 I 00 
49 31 I I 305 I 00 
50 32 I I 306 I 00 
51 33 I I 307 I 00 I 
52 34 1 PN I 308 I 00 I 
53 35 RS I 309 I 00 I 
54 36 UC I 310 I 00 
55 37 EOT I 311 I 00 
56 38 I 312 I 00 
57 39 I 313 I 00 
58 3A I 314 I 00 
59 3B I 315 I 00 
60 3C I 316 I 00 
61 3D I 317 I 00 
62 3E I 318 I 00 
63 3F I 319 I 00 
64 40 SP I 320 I 00 
65 41 I 321 I 00 
66 42 I 322 I 00 
67 43 I 323 I 00 

I 68 J 44 I 324 I 00 
I 69 I 45 I 325 I 00 L _______ ..L.--_______ .L _________ -.L ____________ J. ____________ -'" 

272 



Table 20. Prototype input character translation table (part 3 of 6) 
r----------------------~--------------------- , 
I Translation Ent~ I Function Code I 
~------,.---------,.-------+---------~----------f 
I Byte I Code (Hexa-) I J Iaput Code I 
I (Decimal) I decimal) I Character I Byte (Dec~al) I (Hexadeci~al) I 
~--------+--------_+--------_+---------+------------f 
I 70 I 46 ,326 00 
I 71 I 47 I 327 00 
I 72 I 48 I 328 00 
I 73 I 49 329 00 
I 74 I 4A 330 00 
I 75 I 4B 331 00 
I 76 I 4C < 332 00 
I 77 I 40 ( 333 00 
I 78 I 4E + 334 00 
I 79 I 4F I 335 00 
I 80 I 50 , 336 00 
I 81 I 51 337 00 
I 82 I 52 338 00 
I 83 I 53 339 00 
I 84 I 54 340 00 
I 85 I 55 341 00 
I 86 I 56 3" 2 00 
I 87 I 57 343 00 
I 88 I 58 344 00 
I 89 I 59 345 00 

90 I 5A ! 346 00 
91 I 5B $ 347 00 
92 I 5C • 348 00 
93 I 50 ) 349 00 
94 I 5E 350 00 
95 I SF ... I 351 00 
96 I 60 I 352 00 
97 I 61 / I 353 00 
98 I 62 I 354 00 
99 I 63 I 355 00 

100 I 64 I 356 00 
101 I 65 I 357 00 
102 I 66 I 358 00 
103 I 67 I 359 00 
104 I 68 I 360 00 
105 I 69 361 00 
106 6A 362 00 
107 6B , 363 00 
108 6C I 364 00 
109 60 365 00 
110 6E > 366 00 
111 6F ? 367 00 
112 70 368 00 
113 71 369 00 
114 72 370 00 
115 73 371 00 
116 74 3'72 00 
117 75 373 00 
118 76 374 00 
119 77 375 00 
120 78 376 00 
121 79 377 00 
122 7A 378 00 
123 7B # 379 OC 
124 7C a 380 00 
125 7D • 381 00 
126 7E I = 382, 00 L ______ .L-_________ .1. ________ .1. ___________ .1. ____________ _ 

Appendix C: Prototype Profile 273 



Table 20. Prototype input character translation table (part 4 of 6) 

r---------------------------------T----------------------------------~ I Translation Entry , Function Code I 
~-------r---------.,.----------+---------,.----------__i 
, Byte ,Code (Hexa-I , I Input Code I 
I (Decimal) I decimal), Character I Byte (Decimal) I (Bexadeciaal) t 
t--------+-----------f---------_+--------------f---------------f 
, 127, 7F I • I 383 , 00 
, 128 I 80 I ,384 I 00 
I 129 I 81 I a , 385 , 00 

130 I 82 b, 386 , 00 
131 J 83 c 1 387 , 00 
132 I 84 d, 388 , 00 
133 I 85 e I 389 I 00 
134 I 86 f I 390 , 00 
135 J 87 g' 391 I 00 
136 88 h I 392 I 00 
137 89 i I 393 , 00 
138 8A I 394 , 00 
139 8B I 395 I 00 
140 BC I 396 I 00 
141 80 I 397 , 00 
142 8E ,398 I 00 
143 8F ,399 I 00 
144 90 I 400 , 00 
145 91 j, 401 , 00 
146 92 k I 402 , 00 

I 147 93 1 1 403 J 00 
,148 94 m I 404 1 00 I 
I 149 95 n I 405 I 00 I 
I 150 I 96 0 I 406 I 00 I 
I 151 I 97 P I 407 I 00 I 
I 152 I 98 q I 408 I 00 I 
I 153 J 99 r I 409 I 00 I 

154 I 9A I 410 I 00 I 
155 I 9B I 411 I 00 I 
156 I 9C I 412 I 00 I 
157 I 9D I 413 I 00 I 
158 I 9E I 414 I 00 I 
159 I 9F I 415 I 00 I 
160 I AO I 416 I 00 I 
161 I Al I 417 I 00 I 
162 I A2 s 1 418 I 00 , 
163 I A3 t I 419 I 00 I 
164 I A4 u I 420 I 00 I 
165 I AS v I 421 I 00 I 
166 I A6 I w I 422 I 00 I 
167 I A7 I x I 423 I 00 I 
168 I A8 I y I 424 I 00 I 
169, A9 I z , 425 I 00 , 
170 I AA I I 426 I 00 
171 I AB I I 427 I 00 
172 I AC I I 428 I 00 
173 I AD I I 429 I 00 
174 I AE' I 430 I 00 
175 I AF I I 431 I 00 
176 I BO I ,432 I 00 
177 I Bl I I 433 I 00 
178 I B2 1 1 434 I 00 
179 I B3 I I 435 1 00 
180 I B4 I ,436 I 00 
181 I B5 I I 437 I 00 
182 I B6, I 438 I 00 

I 183, B71 I 439 I 00 I L _______ .1.-________ .L ___________ .L _________________ L ____________ JI 

274 



Table 20. Prototype input character translation table (part 5 of 6) 

,----------------------------------T-----------------------------------, I ~ranslation Entry I !Unction Code I 
.---------T~-------~------------t_----------------~---------- 1 I Byte I Code (Hex a-I I I Input Code I 
l(Decimal)1 decimal) I Character I Byte (Decimal) I (Hexadecimal) I 
.---------+-----------f------------t_----------------f-----------------i I 184 B8 440 00 
I 185 B9 4lt1 00 
I 186 BA 442 00 
I 187 BB 443 00 
I 188 BC 444 00 
I 189 BO 445 00 

190 BE 446 00 
191 BF 447 00 
192 CO 448 00 
193 C1 A 449 00 
194 C2 B 450 00 
195 C3 C 451 00 
196 C4 0 452 00 
197 C5 E 453 00 
198 C6 F 454 00 
199 C7 G 455 00 
200 C8 H 456 00 
201 C9 I 457 00 
202 CA 458 00 
203 CB 459 00 
204 CC 460 00 
205 CD 461 00 
206 CE 462 001 
207 CF 463 00 I 
208 DO 464 00 I 
209 01 J 465 00 I 
210 02 K 466 00 I 
211 03 L 467 00 I 
212 04 M 468 00 I 
213 05 N 469 00 I 
214 06 0 470 00 J 
215 07 P 471 00 I 
216 08 Q 472 00 I 
217 09 R 473 00 I 
218 OA 474 00 I 
219 OB 475 00 I 
220 DC 476 00 
221 00 477 00 
222 DE 478 00 
223 OF 479 00 
224 EO 480 00 
225 E1 I 481 00 
226 E2 S I 482 00 
227 E3 T I 483 00 
228 E4 U 484 00 
229 E5 V 485 00 
230 E6 W 486 00 
231 E7 X 487 00 
232 E8 Y 488 00 
233 E9 Z 489 00 
234 EA 490 00 
235 EB 491 00 
236 EC 492 00 
237 ED 493 00 
238 EE 494 00 
239 I EF 495 I 00 
240 I FO 0 496 I 00 L.-______ ~ ___ ___.1. ________ _L ____________ .L.. ____________ __" 

Appendix C: prototype Profile 275 



Table 20. Prototype input character translation table (part 6 of 6) 

,---------------------------T---------------------------1 I Translation Entry I Function Code I 
~------,..---------"'--------t-------------T-------------_i I Byte ICode (Hexa-I I I Input Code I 
,(DeCimal) I decimal) I Character I Byte (Decimal) I (Hexadeciwal) , 

~---------+----------t---------+---------------t---------------_i 
241 I Fl I 1 I 497 I 00 I 
242 I F2 I 2 , 498 , 00 I 
243 I F3 I 3 I 499 , 00 I 
244, F'4 , 4 t 500 , 00 1 
245, F5 I 5 I 501 I 00 I 
246 I F6 I 6 I 502 I 00 I 
2~7 I F7 I 7 I 503 I 00 I 
248 I F8 I 8 I 504 I 00 , 
249 I F9 I 9 I 505 I 00 I 
250 I FA I I 506 I 00 I 
251 I FB I J 507 I 00 I 
252 I FC I I 508 I 00 I 
253 I FD I J 509 I 00 , 
254 I FE J I 510 I 00 I 
255 I FF I I 511 I 00 I ________ L--_______ J. __________ J. _______________ J. ___________ .I 

Table 21. prototype output character translation table (part 1 of 5) 

r------------------------~----------------------------, I Translat ion Entry I Function Code 1 
.--------T--------,.---------t--------------:r------------_i I Byte ICode (Hexa-l I I Input Code I 
I (Decimal) I decimal) I Character I Byte (Decimal) I (Hexadeciwal) I 
.. --------t_--------t----------t----------------t-----------------i 
I 0 I 0 I I 256 I 20 , 
I 1 I 1 I ,251 I 20 I 
I 2 I 2 I J 258 I 20 I 
I 3 I 3 I I 259 I 20 
I "I 4 I PF I 260 I 20 
I 5 I 5 I HT I 261 I 14 
I 6 I 6 I LC I 262 I 00 
I 7 I 7 I DEL I 263 I 20 
I 8 I 8 I I 25 4 I 20 
I 9 I 9 I I 265 I 20 
1 10 I A I I 266 I 20 

11 I B I I 261 I 20 
12 I C I I 268 I 20 
13 I D I 269 I 20 
1~ I E I 270 I 20 
15 I F I 271 I 20 
16 I 10 I 272 I 20 
17 I 11 I 273 I 20 
18 I 12 I 274 I 20 
l' I 13 I 275 I 20 
20 I 14 RES I 276 I 04 
21 I 15 NL I 277 I 18 
22 I 16 BS I 278 I lC 
23 I 17 IL I 279 I 00 
24 I 18 I 280 I 20 
25 I 19 I 281 I 20 
26 I lA I 282 I 20 
27 I 1B I 283 I 20 
28 I lC I 284 ) 20 

1 29 I 1D I 285 I 20 I 
I 30 I lE I 286 I 20 I l ________ J. _________ J. ____________ J. ______________ ..L-_________ J 

27' 



Table 21. Prototype output character translation table (part 2 of 5) 
r--------------------~--------------------.., 
I 'l'ranslation Entry I Function Code I 
r---------y -----r----- ---+---------------~ --'I I Byte I Code (Hexa-I I I Input Code I 
I (Decimal) I decimal) I Character; Byte (Decimal> I (Hexadecimal) I 
.... ------1---------+-----------+-----------+----------. i 

31 I 1F I I 287 I . 20 I 
32 I 20 I DS I 288 I 20 I 
33 I 21 I SOS I 289 20 I 
34 I 22 I FS I 290 20 I 
35 I 23 I I 291 20 I 
36 I 24 I BYP I 292 08 I 
37 I 25 I LF I 293 30 I 
38 I 26 EOB I 294 20 I 
39 27 PRE I 295 OC I 
40 28 I 296 20 I 
41 29 I 297 20 I 
42 2A SM I 298 20 I 
43 2B 299 20 I 
4t1 2C 300 20 I 
45 2D 301 20 
46 2E 302 20 
47 2F 303 20 
48 30 304 20 
tl9 31 305 20 
50 32 306 20 
51 33 307 20 
52 3t1 PN 308 20 
53 35 RS 309 20 
54 36 UC 310 00 
55 37 EOT 311 I 20 
56 38 312 I 20 
51 39 313 I 20 
58 I 3A 314 I 20 
59 I 3B 315 I 20 
60 I 3C 316 I 20 
61 I 3D I 317 I 20 
62 I 3E I 318 I 20 I 
63 I 3F I 319 I 20 I 
6t1 I 40 I SP 320 I 28 I 
65 I til I 321 I 20 I 
66 I tl2 I 322 I 20 I 
67 I 43 I 323 I 20 I 
68 I Q4 I 324 I 20 I 
69 I 45 I 325 I 20 I 
70 I Q 6 I 326 I 20 I 
71 I 47 I 327 I 20 I 
72 I 48 I 328 I 20 J 
73 I 49 I 329 I 20 I 
74 I 4A I 330 J 00 
15 I 4B I 331 I 00 
76 I 4C I < 332 I 00 
71 I 4D I ( 333 I 00 
78 I 4 E I + 334 I 00 
79 I 4F I I 335 I 00 
80 I 50 I i 336 I 00 
81 I 51 I 1 337 I 20 
82 I 52 I I 338 I 20 
83 I 53 I I 339 I 20 
84 I 54 I I 340 I 20 
85 I 55 I I 3t11 I 20 
86 I 56 I I 342 I 20 
87 I 57 I I 343 I 20 ______ J.. _____ -L-_______ ~ ______________ .l. _________ _ 

Appendix C: prototype Profile 277 



T.ble 21. Prototype output character translation table (part 3 of 5) 
,.------------------------T----------------..------, 
I TrilDslation Entry I function Code I 
~---------r-------_r--------+------------T--------i I Byte I Code (Hexa-I I I Input Code I 
I (Decimal). decimal) J Character I Byte (Decimal) I (Hexadeciaal) I 
~------+-------_+--------+------------+---------i 

aa I 58 I I 344 20 I 
89 I 59 I I 345 20 I 
90 I SA I I I 346 00 I 
91 I 5B I $ t 347 00 I 
92 I 5C I • I 348 00, 
93 I 5D I ) I 349 00 
94 , 5E I ; I 350 00 
95 I SF I "' I 351 00 
96 I 60 I I 352 00 
97 I 61 I / I 353 00 
98 I 62 I I 354 20 
99 I 63 I I 355 20 

100 I 64 I I 356 20 
101 I 65 I 1 357 20 
102 I 66 I I 358 20 
103 I 67 I I 359 20 

I 104 I 68 I I 360 20 
I 105 I 69 I I 361 20 
I 106 I 6A I I 362 20 
I 107 I 6B I r I 363 00 
I lOa I 6C I S I 364 00 
I 109 I 6D I I 365 00 
I 110 I 6 E I > I 366 00 
I 111 I 6F I ? I 367 00 
I 112 I 70 I I 368 00 
I 113 I 71 I I 369 20 
I 114 I 72 I I 370 20 
I 115 I 73 I I 371 20 I 
I 116 I 74 I I 372 20 I 
I 117 I 75 I I 373 20 I 
I 118 I 76 I I 374 20 I 
I 119 I 77 I I 375 20 I 
I 120 I 78 I I 376 20 I 
I 121 I 79 I I 377 20 I 
I 122 I 1A I I 378 00 I 
I 123 I 7B I # I 379 00 I 
I 124 I 7C I a I 380 00, 
I 125 I 7D I I 381 00 I 
I 126 I 7E I = I 382 00 I 
I 127 I 7F I " I 383 00 I 
I 128 I 80 I I 384 20 I 
I 129 I 81 I a I 385 00 I 
I 130 I 82 I b I 386 00 I 
I 131 I 83 I c I 387 00 I 
I 132 I 84 I d I 388 00 I 
I 133 I as I e I 389 00 I 
I 134 I 86 I f I 390 00. 
I 135 I 87 I 9 I 391 00 I 
I 136 I 88 I h I 392 00 I 
I 137 I 89 I i I 393 00 I 
I 138 I 8A I I 394 20 I 
I 139 I 8B I I 395 20 I 
I 140 I 8C I I 396 20 I 
I 141 I 8D I I 397 20 I 
I 142 I 8E I I 398 20 I 
I 143 I SF I I 399 I 20 I 
I 144 I 90 I I 400 I 20 I 
L-________ ~ __________ L ___________ _L _________ --------L--------------___ J 

278 



Table 21. prototype output character translation table (part 4 of 5) 

r---------------------------------~-----------------------------------, I Translation Entry I Function Code I 
~---------T-----------~------------+---------------~---------------~ I Byte Icode (Hexa-I I J Input Code I 
I (Decimal) I decimal) I Character I Byte (Decimal) I (HexadeciRal) I 
~---------+-----------+------------+-----------------+----------------~ I 145 I 91 J j I lIO 1 I 00 1 
I 146 I 92 I k I 402 I 00 
I 147 I 93 I 1 I 403 I 00 
I 148 I 94 I m I 404 I 00 
I 149 I 95 I n I 405 I 00 
I 150 I 96 I 0 I 406 I 00 
I 151 I 97 I p I 407 I 00 
I 152 I 98 I q I 408 I 00 
I 153 I 99 I r I 409 I 00 
I 154 I 9A I I 410 J 20 
I 155 I 9B I I 411 I 20 
I 156 I 9C I I lJ12 I 20 
I 157 I 90 I I 413 I 20 
I 158 9E I I 414 I 20 
I 159 9F I I 415 I 20 
I 160 AO I I 416 I 20 
I 161 Al I I 417 I 20 I 
I 162 A2 I 5 I 418 I 00 I 
I 163 A3 I t I 419 J 00 I 
I 164 A4 u I 420 I 00 I 
I 165 A5 v I 421 I 00 I 
I 166 A6 w I 422 I 00 I 
I 167 A7 x I 423 I 00 I 
I 168 A8 Y I 424 I 00 ! 
I 169 A9 z I 425 I 00 I 
I 170 AA I 426 I 20 I 
I 171 AB 427 I 20 I 

172 AC 428 I 20 I 
173 AO 429 I 20 I 
174 AE 43 a I 20 I 
175 AF 431 I 20 I 
176 BO 432 I 20 I 
177 Bl 433 I 20 I 
178 B2 434 I 20 I 
179 B3 435 I 20 I 
180 B4 436 I 20 I 
181 B5 437 I 20 I 
182 B6 438 I 20 I 
183 B7 439 I 20 I 
184 B8 440 I 20 I 
185 B9 441 I 20 I 
186 BA 442 I 20 I 
187 BB 443 I 20 
188 BC 444 I 20 
189 BD 445 I 20 
190 BE 446 I 20 
191 BF 447 I 20 
192 co 448 I 20 
193 C1 A 449 I 00 
194 C2 B 450 I 00 
195 C3 C 451 I 00 
196 C4 D 452 I 00 
197 C5 E 453 I 00 
198 C6 F 454 I 00 
199 C7 I G 455 I 00 
200 C8 I H 456 I 00 

I 201 I C9 I I 457 I 00 I L _________ L--_________ ~ ____________ ~ _________________ ~ ________________ J 

Appendix c: Prototype Profi Ie 279 



Table 21. Prototype output character translation table (part 5 of 5) 
r-----------------.----------------,..-----.-------------------------------, 
I Translation Entry I Function Code I 
~---------T----------.-------------+-------·-----------,..---------------~ 
I Byte ICode (Hexa-j I I Input Code I 
I (Decimal) I decimal> i Character I Byte (DeciIral) I (HexadeciIl1al) , 
t---------+------------+-----------+------------------+----------------~ 
I 202 I CA, I I 458 I 20 I 
I 203 CB I ! 459 I 20 I 
I :2 0 4 CC I I 46 0 I 20 I 
I 205 CD I I 461 I 20 I 
I 206 CE I I 462 I 20 I 
I 207 CF I I 463 I 20 I 
I 208 DO I I 464 I 20 I 
I 209 [it J i 465 I 00 I 
I 210 02 K I 466 i 00 I 
I 211 D3L ! 467 1 00 I 
I 212 D~\ M I 1.\ 68 I 00 I 
I 213 D5 N! 469 ! 00 I 
I 214 D6 0 I 470 I 00 I 
I 215 D7 P I 471 I 00 I 
I 216 D8 Q! 472 I 00 I 
I 217 D9 R' 473 I 00 I 
I 218 DA I 474 I 20 I 
I 219 DB i 475 I 20 I 
! 220 DC I 476 I 20 I 
I 221 DD i 477 I 20 I 
I 222 Dt: I 478 I 20 I 
I 223 DF I 479 I 20 I 
I 2 24 EO I 4 B 0 I 2 0 I 
I 225 £1 I 481 I 20 I 
I 226 E2 S! 482 I 00 I 
! 227 E3 T I 483 I 00 I 
! 228 E4 U I 1~8!, I 00 , 
! 229 E5 V I 485 I 00 I 
I 2 30 £6 W i 48 6 I 00 I 
I 231 E? X 1 tiS? 1 00 i 
I 232 E8 Y I LIB 8 I 00 I 
I 233 £:9 Z I 1~89 I 00 I 
I 234 £..1\ I 490 I 20 I 
I 235 EE I 491 I 20 I 
I 236.Be I 492 I 20 I 
I 237 ED I 493 I 20 I 
I 238 EE I l\94 I 20 I 
I 239 EF I 495 I 20 I 
I 2401"0 0 I 496 ! 00 I 
I 241 IF'l 1 I 497 I 00 I 
I 242 F'2 2 I 498 I 00 I 
I 243 f'3! 3 I 499 I 00 I 
I 244 FI! I 4 I 500 I 00 J 
I 245 1"5 I 5 I 501 I 00 I 
I 246 F6 I 6 I 502 I 00 I 
I 247 1"7 I 7 I 503 I 00 I 
I 248 F'H! B I 504 I 00 I 
I 249 F9! 9 I 505 I 00 I 
I 250 FA! I 506 I 20 I 
I 251 FEl I I 507 I 20 I 
I 252 FC I I 508 I 20 I 
I 253 PD I I 509 ! 20 I 
I 254 FE I I 51.0 i 20 I 
I 255! FF I I 511 1 20 I L _________ l. ____ . _____ .A. ______ ~ ______ J. _________ . ________ J.. _______________ J 

280 



Some cbaracters that appear in Tables 20 and 21 have special functions. 
The definitions of these functions are presented below. 

1. control characters <in order of appearance) 

PF Punch Off DS Digit Select PRE Prefix 
HT Horizontal Tab 50S Start of SM Set MOde 
LC LOItiercase Significance PN Punch On 
DEL Delete FS Field separator RS Reader stop 
RES Restore BYP Bypass UC Uppercase 
NL New Line LF Line Feed EOT End of Transmission 
BS Backspace EeB End of Block SP Space 
IL Idle 

2. Special graphic characters (in order of appearance) 

Cent Sign • Asterisk > Greater-than Sign . Per iod, Decimal Point ) Right Parenthesis ? Question Mark 
< Less-than Sign Semicolon Colon 
( Left Parenthesis -. Logical NOT # Pcund Sign 
+ Plus Sign - Minus Sign, Hyphen ~ -At- Sign 
I Logical OR / Slash • Prime, Apostrophe 
{;; Ampersand, Logical AND , COJr,ma = Equal Sign 

Exclamation Point " Percent Sign - Quotation Mark 
$ Dollar Sign Underscore 

CHARACTER SWITCH TABLE 

The table of miscellaneous control characters and the translation tables 
described above make up the character switch table. The table of mis­
cellaneous control characters includes: 

Source list EOB character 
defines the end of an input block. Its initial value is X'26". 
(Do not change the value.) 'Ihis character should not be used as 
input within a command statement. 

Command system continuation character 
indicates that a line is being continued. NorJrally, an EOB occurs 
when the carriage is returned. If the last character before a car­
riage return is a command system continuation character, the line 
is continued past the carriage return. Initially, this character 
is a hyphen (X'60"). 

Command system break character 
tells the system that a command follows. Initially, this character 
is an underscore (X I 6D"). 

Transient statement prefix character 
is an indicator that whatever follows is sent to a predetermined 
entry point for execution. Initially, this character is a vertical 
stroke (X"4F"). 

Concatenation character 
indicates that the next line should be concatentated with this 
line. This character must be the last character of a line of data 
for the text editor, and the CONREC implicit operand must be set to 
Y. The system-supplied value for the concatenation character is 
colon (X'7A"). For more information, see "Concatenating Input Rec­
ords· in Section 2 of Part II. 

system scope mask 
controls searches for explanatory messages issued by the user pro­
mpter. Its default value is X'29". The use of the system scope 

Appendix C: Prototype Profile 281 



mask is explained under -Message File Construction- in Section 5 of 
part II. 

ueer scope mask 
works in the same way as the system scope INlsk works, rut on usu­
created messages in the USERLIB. The user may set this JUsk 
according to his own search logic X'29'. ~he default value is 
X' 29' • 

Co.nand pranp t str ing 
is issued by the system and requests that a colll1land be entered. 
This may be a string of up to eight characters. The initial 
default is an underscore followed by a backspace and a carriage­
return suppression character (colon). 

SYSIN keyboard/card reader switch 
indicates the type of device from which input will be accepted by 
the system. It may be set with a K for a terminal keyboard, or 
with an E to indicate either the keyboard or the card reader. If. 
user specifies K as the switch setting, the system does not reco­
gnize his subsequent specification of a card reader as the input 
device. The initial value is E. 

Carriage return suppression character 

282 

indicates that carriage return is su~pressed when it is the last 
character in a message being written to SYSOUT by the command sys­
tem. In this case, the system does not add a new-line character to 
the text. The system-supplied value is a colon (X'7A'). 



APPENDIX 0: CONTROL CODES AND CHARACTERS 

Tables 22-25 contain control codes and characters that can be used for 
formatting printed output and for selecting stackers for punched output. 

Table 22. Printer codes 
r-------------------------------~----- , 
, FUnction , Byte Value (hexadecimal) I 
~-------------------------------------+----------------------i 
,Write (no automatic space) I 01 
,Write and space 1 line after printing, 09 
'Write and space 2 lines after printing' 11 
,Write and space 3 lines after print.ing I 19 
I Write and skip to channel 1 after printing , 89 
IWrite and skip to channel 2 after printing, 91 
,Write and skip to channel 3 after printing , 99 
Iwrite and skip to channel 4 after printing I 1101 
I Write and skip to channel 5 after printing I A9 
lwrite and skip to channel 6 after printing I B1 
I Write and skip to channel 7 after printing I B9 
IWrite and skip to channel 0 after printing I C1 
Iwrite and skip to channel 9 after printing I C9 
Iwrite and skip to channel 10 after pr intingl 01 
I write and skip to channel 11 after printing I 09 
Iwrite and skip to channel 12 after printingl E1 
~--------------------------------------L--------------------_i 
,Note: To obtain the corresponding carriage-control operations (spacel 
I or skip to channel n) without printing. increase the value of the I 
, low-order digit by hexadecimal 2. Example: space two lines - 13; I 
I skip to channel 5 - AB; skip to channel 9 - CB. I L ___________________________________________________________________ J 

Table 23. FORTRA.N control characters. for the printer 

r-----------------------------------------~----------------------1 
, Function I Character I 
i--------------------------------------_+-------------------1 
I Skip no lines before printing I + 
ISkip 1 line before printing I blank 
I Skip 2 lines before printing I 0 
ISkip 3 lines before printing I 
ISkip to channel 1 before printing I 1 
ISkip to channel 2 before printing I 2 
I Skip to channel 3 before printing 1 3 
ISkip to channel" before printing I If 
I Skip to channel 5 before printing I 5 
ISkip to channel 6 before printing I 6 
1 Skip to channel 7 before printing I 7 
ISkip to channel 8 before printing I 8 
I Skip to channel 9 before printing I 9 
,Skip to channel 10 before printin 9 , A 
, Sk ip to channel 11 bef ore printinq I B 
ISkip to channel 12 before printing I C 
.. --------------------------------L------------------f 
I. FORTRAN control characters are defined by American National Stand- I 
I ard FORTRAN. ANSI X3.9-1966. I L____________________________________________ _J 

Appendix D: Control COdes and Characters 283 



Table 24. IBM 25_0 punch machine codes 
r--------------------------------------,---------~--------, 
I Function I EBCDIC IColmnn Binaryl 
t----------------------------------f----------+-----------i I TYPE AA . I I I 
I Read, feed, and select stacker R1 I 02 I 22 , 
, Read, feed, and select stacker R2 I 42 t 62 I 
I Read, feed, and select stacker RP3 I 82 I A2 I 
.------------------------------------f------------+-----------~ 
ITYPE AB I I I 
I Read and no feed or staCker selection I C2 I E2 t 
I Read, feed, and no stacker selection I D2 I F2 I 
.--------------------------------------+----------+-----------~ 
ITYPE BA Itt 
I Feed and select stacker Rl I 23 I 23 I 
I Feed and select stacker R2 I 63 t 63 t 
I Feed and select stacker RP3 I AJ 1 A3 I 
I PFR write, feed, and select stack~ P1 I 09 I 29 , 
I PFR write, feed, and select stacker P2 I 49 I 69 I 
I PFR write, feed, and select stacker RP3 I 89 I A9 I 
.----------------------------------------+----------t------------i 
ITYPE BB I I I 
I Write, feed, and select stacker P1 I 01 I 21 I 
I write, feed, and select stacker P2 I 41 I 61 1 
I Write, feed, and select stacker RP3 I 81 I A1 I L _________________________________ -.l. ___________ J.___ .J 

Table 25. FORTRAN control characters 
for the punch 

r---------------T----------, I Function I Character I 
~-------------------+_----f I Select punch pocket 1 I V I 
I Select punch pocket 2 I W I L ______________________ J. ________ ~ 

284 



APPENDIX E: DETAILED DESCRIPTION OF ODD' COMMAND 

This appendix describes special use of the DDEF cOJmand. To define typ­
ical public data sets, see the DDEF canmand descripticn in Part III. A 
typical public data set is created with the virtual access method (VAM), 
is sequential or indexed sequential and resides on direct access public 
storage. 

Table 26 lists the required and optional fields of the I:DEF command for 
various types of data sets4 'Ihe complete ccmmand format illustration of 
the DDEF command is shown in Table 26. 

Table 26. Format illustration of the I:DEF command 

,---------T------------------------------------------------------------, 
I Operation I operand I 
~---------+-------------------------"---------------------------------~ 
IDDEF IDDNAME=data definition name I 
I Il,DSORG={PSIRXIVIIVPIVS}] I 
I I , DSNAME=data set name J 
I I I 
, ,DCB=([data definition name] {,I:SORG=data set organization] I 
, [,MACRF=type of macros] [,BUFL=buffer length] I 
I [,DEVD=device type] {,BUFNO=number of buffers] I 
I [,BFTEK=buffer technique] I 
I [ , NCP=consecuti ve macro number) I 
I [,RECFM=record format]l,OPTCD=(AI~}] I 
I l ~LRECL=record length] I 
I I,BLKSIZE=block length} {,KEYLEN=key length] I 
I (,DEN=tape densi tyJ I 
I (,TRTCH=data conversion] I 
I (,EROPT=error option] [,PAD=padding] I 
I {,RKP=key displacement] I 

(, IMSK=error recovery procedures] I 
(, BUFOFF=n] ) I 

I 
DA[ ,direct access type] I 

,UNIT=( TA£,tapedevice type] I 
device I 

I I 
1 [, SPACE= ( {CYL I TRK I record length} ,primary [, secondary] [" HeLD] ) I 
I I 
I I, VOLUME = ( [volseqnol PUBI.ICI PRIVATE], {volsernoIPRIVATE1", , 
1 [volsernoIPRIVA!E], ••• )] 
1 
1£,LABEL=([file sequence numberJ(,{NLISLISULIALIAUL}] 
, [,RETPIFretention period])] 

"I 
I [,DISP=(MODICLDINEW}] 
I 
I I, OPTION={CONC I.:TOBLIB}] 
I 
Il,RET=retention code] 
I 
I (,PROTECT={YIN}] 

---------~-----------------------------------------------------------
DDNAME 

specifies the symbolic data definition na~e that is associated with 
the data set and that provides a link between the data control 
block (DCB> in the user's program and the data set definition. 

Appendix E: Detailed Description of DDEF Command 285 



Specified as: From one to eight alphameric characters, the first 
of which must be alphabetic. To define the PCSOUT data set for the 
DUMP command, PC50UT should be given as the data definition name. 
DDNAME may not begin with SYS; these characters are used to prefix 
system-reserved data definition names. 

~: When DDEF is used by an assembler language user, the name 
specified for DDNAMF must be the sCltle as the name specified for the 
DDNAME operand in the DeB macro instruction. When DDEF is errployed 
by a FORTRAN user, the name specified for r:DNAME must be "FTxx­
Fyyy·, where "xx· is the two-digit data set reference number, and 
.yyy. is the three-digit file sequence number in his FORTRAN 
program. 

DSORG 
indicates the organization of the data set being defined. 
hIe 27.> 

Specified as: 

PS QSAM or BSAM (physical sequential access uethods) 
rue IOREQ (I/O request) 
VI VISAM (virtual indexed sequential access method) 
VP VPAM (virtual partit.ioned access method) 
VS VSAM (virtual sequential access method) 

System default: VI. 

(See Ta-

Table 27. Data set organization requirements (part 1 of 2) 

r----------------,----------------~---------- ---------1 
I Data Set ~--.. --DSORG.-,.--_4 I 
I Characteristics I PS I VI I VP I vs I Comments I 
~---------------t_-_t--+_---t--+_-------------------i 
IAny data set on a I I x I x I x I I 
I public volume I I I I I I 
~-----------------+---t--+---+-+_------------------__f 
IAny data set on a I x I x I x I x IPS ap~lies to tape or direct access I 
Iprivate volume I I I I lvolumes; VS, VI, and VP apply only I 
I I I I I Ito volumes on direct access devices., 
l---------------t----t----t----t----t_----------------------t 
IAny member of a parti-J I x I I x ISame ~artitioned data set may I 
Itioned data set I I I I I include both vs and VI members. I 
I I I I I I (Member must be ei ther VB or VI.) I 
t-------------+_--f--+-----r--+-------------- .. 
I SYSIN data set I I x I I x I I 
l--------------t---_t---t_---t--t----------------------i 
IData sets created by I I I I I I 
I or Used by Language- I I I I , J 
I ProcesSing conmands I I I I I I 
I I I I I I I 
ISource data set for I 'x I I ILine data set only; if source data I 
Ilanguage processing I I I I Isets are entered fram the terminal, I 
I I I I I la line data set is built I 
I I I I I I automatically. I 
.. -+---t-+----f---+--------- ---. 
I Source statements I I x I I x I Line data set will be bu:i It from I 
I stored as part of the I I \ I Isource statements. I 
ISYSIN data set I I I I I I 
t------------t_-+--+_--+ I -------i 
IObject module producedl I I I x IObject module automatically becomes I 
Iby the language pro- I I I I I a menber of the most recently de- I 
\cessor I I I I Ifined job library, if any, or of the) 
I I I I I I user" s library (USERLIB). I L ______________ ..L.. I ..1--_"'---..L.._______ _ ___ 01 

286 



Table 27. Data set organization requirements (part 2 of 2) 

,--- --r- ----,.- ~ 
I Data set ~ DSORG.~---f I 
I Chuacteristics I PS VI I VP I VS J COIII1lIents I 
~-------- I ---+--t--I f 
IJob library I I I x 1 I I 
r- ---+---+---+---+---+------ -1 
IListing data set pro- I I x I , I I 
lduced by the language I I I I I I 
I processor I I I I I I 
i-- -----1 t +---+-J 1 
IData sets Used for I I I I I I 
II/O op!ratlons I I I I I I 
I J I I I I ) 
,pcscxrr data set I I x I I I I 
r-----------f---+----+---+---+-------- .. 
t Input to the WT I I x I I x I I 
I eolllDand I I I I J I 
r- --+- I +----+---+-------- • 
I Input to the PRINT I x I x I I x I I 
I collllland I I I I I I 
r----- --+---+-+---+---+------- -1 
I Input to the PUNCH I I x I I x I I 
I eo_and I I I I I I 
r-- ---+---+--+---+-+ .. 
I Data sets for I I I I I I 
I Special COIIIII\and Usage I I I I I • 
I I I I I I I 
I Data set used by the I I x I I I Line data set only. I 
I CUD ooll11land I I I I I I 
1- - I I +---, I . ---1 
IData set used by the I I x I I ILine or lan9'llage processor listing I 
ILINE? cormand I I I I I data set only. I 
.-----------1 I +---+---+-------------- . -1 
I Data set created by I I x 'x I x I User option; if VI, it must be line I 
I the DATA command I I I I I data set. The member may be VS line I 
I I I I I I or VI line. I 
t------------f---f----+----+--+------------------ .. 
I Data set created by I I x I x I I User option determines whether VI is I 
I the MODIFY command I I I I Ifor a l$.ne data set. The member I 
I I I I I I must be VI. I 
t------------+---+-+----+----+--------- .. 
I Data set created by I I x I x I I User option determines whether VI I 
Ithe text editor I I I I lis for a line data set. The member I 
I , I I I Imust be VI. I t-____________ L-_--L-. __ ..L-___ ~ ___ ~_______ J 

'.Note: If one DSORG option is checked, the data set must be that organization. I 
I If IIIOre than one option is checked, select either organizationl I L- _________ .. 

DS~AME 

specifies the name under which the data set ~ay be cataloged or re­
ferred to for temporary reference. 

Specified as: a fully qualified data set narre or ~~mber name of a 
VPAM data set. When specified, the member name is enclosed in 
parentheses and immediately follows the VPAM data set name. 

Note: When a data set created under OS or OS/VS is introduced into 
TSSfor the first time, the name specified for DSNAME must );e pre­
ceded by an asterisk (.). Subsequent references to this data set 
are not prefixed by the asterisk. The data set name preceded by an 
asterisk may have a maximum of 44 characters. 

Appendix E: Detailed Description of DDEF Command 287 



DCB 

UNIT 

SPACE 

For ASCII input v you m.y specify any nonalphameric characters in 
DSNAME. However, if nonalpharreric characters are specified, DSNAME 
mst be preceded by a blank and must be enclosed by single quota­
tion marks. For example: 

DSNAME= • dsname' 

specifies data control block inforwation. 

Detailed descriptions of tl>e DCB suboperands are given in Assembler 
programmer's (''Uide and FORTRAl'l Programmer' s Guide. 

Note: If the data set is on tape or will be on tape, the DEN sub­
operand must be furnished to specify tape density, unless the t.pe 
conforms to the DEN default value, which is set at system 
generation. 

specifies the type of device required by the data set. Direct 
access devices may be specified for either public cr private 
volumes. The other types of devices and unit affinity may be spec­
ified for private volumes only. Allowable kinds of devices are 
specified at system generation and, therefore, may be changed. 

DAl,direct access type] 
specifies the type of direct access device. 

Specified as: 

2311 - 2311 disk 3330 - 3330-1 disk 

2314 - 2314/2319 disk 333B - 3330-11 disk. 

System default: the type of direct access device specified at 
system generation. 

TA[,tape device type] 
specifies magnetic tape device is required for the data set. 

Specified as: 

7 - seven-track tape, data converter not required 
7DC - seven-track tape with data converter fe.ture 
9D2 - 9-track tape with 800 bpi capability 
903 - 9-track tape with 1600 bpi capability 
9D4 - 9- track tape with 6250 bpi capability 

System default: the type of tape device specified .t system 
generat ion. 

device 
specifies the symbolic device address of a nonstandard device. 

Specified as: a four-digit hexadecimal symbolic device 
address. 

indicates the direct access storage allocation for the data set. 

Specified as: 

CYL 
space requirements are expressed as number of cylinders. 

288 



HOLD 

TRK 
space requirements are expressed as number of tracks. 

(record length) 
space requirements are expressed as a decimal number that speci­
fies the average length of the physical records; the number must 
not exceed 32,767. 

System default: if the data set organization is QSAM or BSAM (see 
DSORG), the space requirements are assumed to be expressed in terms 
of cylinders. If the data set organization is VISAM, VPAM, or VSAM 
(see DSORG), the space requirements are assumed to be in pages (of 
4096 bytes). 

Note: this field must be defaulted if the data set organization is 
VAM. 

(primary> 
a one- to three-digit decimal number that indicates the amount of 
space to be allocated initially. This operand may express space 
in terms of tracks or cylinders or in terms of number of pages. 

system default: the primary space allocation specified at system 
generation is assumed. 

(secondary> 
a one- to three-digit decimal nuwher specifying the amount of ad­
ditional space to be allocated each time the space already allo­
cated has been exhausted and more ~ata is to be written. No more 
than 256 pages are allocated at one time even if a number greater 
than 256 is specified. 

System default: the secondary space allocation specified at system 
generation. 

specifies the unused storage assigned to the data set being defined 
is not to be released when the data set is closed. 

Specified as: HOLD 

system default: the unused storage is released when the data set 
is closed. 

Note: If the SPACE operand is not specified, the direct access 
storage allocation specified at. system generation is assigned. 

If DISP=OLD, the SPACE operand is ignored. 

VOLUo\E 
specifies the volume on which the data set resides. This field 
must always be used when creating a new data set residing On a pri­
vate volume or when referring to an existing uncataloged data set 
residing on a private volume. This field must also be used when 
expanding an existing private data set. When expanding an existing 
private cataloged data set, only the new volumes to be added to the 
data set (PRIVATE or volume serial number) need be referred to. 
'I'his field is never required for data sets on public volumes. lfow­
ever, this field may be specified for new data sets on public 
volumes, if only existing public volume serial numbers are speci­
fied. Initial space allocation is limited to the specified 
volumes. 

speci fied as: 

Appendix E: Detailed Description of DDEF command 289 



LABEL 

290 

(volseqno) 
a one- to four-digit number specifying the volume sequence nuw~r 
of the first volume of the data set to be read or written. It is 
meaningful only if the data set has SAM organization, is cata­
loged, and its earlier voluJres are to be skipped. 

PUBLIC 
indicates 
volumes. 
is used. 

PRIVATE 

that the data set is to be placed on public storage 
PUBLIC may not be specified when a volume serial number 

specifies that volumes are to be allocated from the system pool 
(that is, the scratch or disk available to the operator). Once 
assigned, the volume remains the user"s, exclusively, until he 
notifies the operator that it can be returned to the pool. The 
user must use this option to request initial or additional 
scratch volumes for data sets on private volumes. PRIVATE must 
not be specified when a volume serial number is used. 

(volserno) 
from one to six alphameric characters specifying the volume seri­
al numbers that identify tte volumes on which the data set 
resides. This suboperand is required for old. uncataloged data 
sets that reside on private volumes or to specify ini tia1 or ad­
ditional volume serial numbers for data sets on private volumes; 
it is optional for new data sets that l,,1i11 reside on public 
volumes. For ASCII tapes with ncnalfhameric characters in the 
volume serial number. the volume serial number, preceded by a 
blank, must be contained in apostrophes. 

system default: if VOLSEQNO is specified, the data set is assurred 
to be cataloged, and the volume serial numbers are retrieved from 
the catalog. If PRIVA1E or PUBLIC is specified, VCLSERNO must be 
omitted, and a volume serial number is assigned ty the systerr. 

Note: VOLUME may be defaulted if a new data set is to be created 
on a public volume or if an old. cataloged data set is being 
defined. 

specifies the labeling conventions. 

specified as: U~le sequence number) ~- a one- or two-digit deci­
mal number specifying the filE sequence number of a data set resid­
ing on a tape, and that has mUltiple data sets on a tape volume. 

System default: the data set is assumed to be the first (or only) 
one on toe tape volume. 

Five suboperands specify either the type of labeling desired or the 
absence of labeling: 

NL - no labels 

SL - standard labels (as specified at system generation) 

SUI.. - standard and use.l:" lal:els 

AL - standard ASCII .labels 

AUL - standard ASCII and user labels 

system default: SL. 



DISP 

1he fcllowing suboperand can be used to indicate the number of days 
a data set is to be saved. 

RFI'PD 
retention period 

Specified as: a four-digit decimal nuwber; this suboperand is 
applicable for data sets on direct access voluroes or labeled 
tapes. 

System default: 0 days. 

Note: If the entire LABEL operand is defaulted, the labeling con­
venticns specified at system generation are assuroed, unless the 
data set being defined is already cataloged. If the data set is 
cataloged already, latel inforrration is retrieved from the catalog. 

specifies whether the data set already exists or is to be created. 

seecified as: 
MOD - the data set being defined exists; an addition to it is being 

made 

OLD - the data set being defined exists 

NEW - the data set being defined has not yet been created 

Note: MOD causes logical positioning after the last record 
of the data set. 

Systerr default: OLD if the data set is cataloged: NEW if it is not 
cataloged. 

Note: If the user specifies DISI> as OLD, NEW, or MOD, and this 
does not agree with the actual state of the data set, then: 

In conversaticnal mode, the user receives a diagnostic Jtlessage 
so that he can correct this error~ 

In nonconversational mode, the task is abnormally terminated. 

OPTION' 

RET 

specifies that either a job library is being defined or a data set 
is being added to the concatenation of data sets indicated by the 
DDNAME operand. 

Specified as: 

CONe 
only SAM data sets that are not job libraries can be concatenated 
with one or more data sets having the same DDNAMEs. The order of 
access for concatenated data sets is the same as the order in 
which they are defined. 

JOBLIB 
specifies that the data set being defined is to be used as a job 
library. The name specified in the DSNAME operand is entered 
inte the program library list. 

specifies the catalog attributes to be assigned to a VAM data set. 

Seecified as: P or T, C or L, or U or R. 

Appendix E: Detailed Description of DDEF Command 291 



P permanent storage 
T temporary storage 
e erase at CLOSE 
L erase at LOGOFF 
U unlimited access 
R read-only access 

System default: PU is assumed; when T is specified, LU is assumed, 
when P is specified, U is assumed. 

Note: A data set is not erased at logoff if a RELEASE command has 
been issued for it and the retention code has been specified as 
RET=T. 

PRO'IECT 
specifies whether to mount the tape with or without the file­
protect ring. 

Specified as: 

Y - mount tape with ring out. 
N - mount tape with ring in. 

System default: If DISP is NEW or MOD, the tape is mounted ~ith a 
ring inserted. If DISP is OLD, there is no default; the decision 
depends on the installation's operational procedure. 

r'unctional Description: The DDEF command causes a system entry tc be 
established for the data set definition. The link between this defini­
tion and the problem prcgrarn"s reference to the data set (through the 
DeB) is the DCNAME. The entry containing the data set definition is 
maintained until the user logs off or until, through the RELEASE com­
mand, the oata set definition is deleted. 

The DDEF command also results in a request for device allocation and 
volume mounting when the defined data set is private and resides on a 
demountable volume such as a reel of tape or a disk pack~ A request for 
a private device will not be fulfilled if the user has exceeded his 
ration. 

programming Notes: The DDEF command that defines a cataloged data set 
is brief and simple. The required operands are CI:NJI.ME and I:SNAME. 
DSORG is net necessary because the organization of the data set is de­
scribed in its catalog entry. Other operands are unnecessary. 

DDEF commands that define uncataloged data sets may be divided into two 
groups: those defining data sets that are generated during execution of 
the program, but do not yet exist; and those defining existing data 
sets. Old, uncataloged data sets can exist only on private volumes. 

To define a .new data set that is to be written on a public volume, the 
user may use the DDNAME, DSNAME, DSORG, SPACE, and LABEL operands. 
Exactly which fields he uses, other than the required DDNAME and DSNAME. 
depends on the characteristics of the particular data set to be defined. 

TO define a new data set that is to be written on a private volume, the 
user must give the DDNAME, DSNAME, UNIT, and VOLUME operands. He may 
also furnish the OSORG, DISP, SPACE, and LABEL operands. 

The user defines an old, uncataloged data set as it exists on his pri­
vate volume. He must use the DONAME, DSNAME, DISP, VOLUME, and UNIT 
operands. He may also use the DSORG and LABEL operands. The DCB 
operand is required to specify tape density for any data set on tape, 
unless the tape density matches that established at system generation. 

292 



To change the DtNAME assigned in a previous OOEF conunand. the user must 
issue a OOEF conunand with a new OONAME and the same OSNAME that was pre­
viously specified. Any other operands entered are ignored. If the user 
wants to change the other parameters, he must issue a RELEASE cODurand to 
delete the previously issued ODEF command and re-issue the DOEF cOIIIlIIand 
to establish a new system entry for the data set definition. Table 28 
summarizes some operations for which the ODEF command is used. 

Table 28. Typical use of DDEF operands 
,.--------------------,--., ., --.,.--.".---~--,--~-~--,.---. 
I IDI 101 I I I IVI 101 
I IDIDISI I I ISIOlLIPI 
I I N I SIN I 1: I I U I 511 L I A I T I 
I Operation I A I ° I A I I I DIN I A I U I B I I I 
I IMIRIM'SICIIIC'MIEIOI 
I . I E I G I E I 511 BIT I E I ElL I N I 
~-------------------------+---+---+---+---+---+--+---+---+---+---1 
IRead cataloged data set I X I I X I[X]I I I I I I I 
~----------------------------t---t---t---t---+---+---+---+---+---+---i 
IRead uncataloged data set I X I (X] I X I X I I X J I X I (X] I , 
.--------------------------+--4--+---+--+---+---+---+---+--+-1 
Iwrite data set on public I X I [Xl J X I (X] I I I [Xli J I I 
I volume I I I I I I I I I I J 
;-----------------------------t---t---+---+---+---+---+---+---+---+___i 
Iwrite data set on private I X I {Xli X I X I I X I (Xli X !(Xli I 
I volume I I I I I I I I I I I 
t-------------------------t---+---+---+---+---+---+---+---+---+---i 
IMOdify data sets on private I X I {Xli X I X I I X I I X I (Xl I I 
I volumes I I I J I I I I I I I 
t----------------------------+---+--+---+---+---+---+---+---+--+___i 
Iconcatenate cataloged data I X I X I X I X I I [Xli I[Xll[XJI I 
I sets while reading private I J I I I I I I I I I 
I volumes (for each concate- I I I I I I I I I I I 
I nated data set e~ept the I I I I I I I I I I I 
I first in concatenation) I I I I I I I I 1 I I .. ___________________________ J.-_--L- __ J.-__ i-_J.-__ ~ ___ ..I_._._L-__ L-_~ __ _'I 

INote: () indicates that the operand may be used, but is not mandatory. I l ______________________________________________________________ .1 

The following examples snow one way of entering a CDEF command to get 
the specified operation performed. In each example, DDNAME, DSORG, and 
DSNAME are specified positionally; the other operands are given in key­
word notation. 

1. Read a cataloged data set: 

ddef ddn,test1 

2. Read an uncataloged data set: 

ddef ddn1,ps,test2,unit=(da,2311),volume=(,012300),disp=new 

3. Write a data set on a purlic volume: 

ddef ddn2,vp,test3 

4. Write a data set on a private volume: 

ddef ddn3,ps,test4,unit=(ta.9),volume=(private) 

The VOLtI1E. operand could be entered as: 

volrune=(,005431) 

5. l40dify any data set of a private volume: 

Appendix E: Detailed Oescription of EDEF Command 293 



ddef ddn4.ps,test5,unit=(ta.9),volume=(,012301),disp=aod 

6. Concatenate cataloged data sets while reading private volumesl 

ddef ddn6,ps,test6.disp=old 
ddef ddn6,ps,test1,disp=old,option=oonc 
ddef ddn6,ps,test8,disp=old,option=oonc 

The DDEF coolJlland also has several special uses. Among them are: 

1. Define a job library: 

ddef ddl,vp,dsnl,option=joblib 

No other operan~s are necessary. If the data set already exists, 
it is defined as a jot library; if it does not exist, a new job li­
brary is created. 

2. Define a data set for dumps. Mandatory operands must be given. 

ddef pcsout,VI,dump1 

TO complete the DCB of a data set at execution, include the DCB operand. 
Other operands are included as needed for the particular data set. 

TO concatenate data sets, use the CPl'ION=CONC operand. Other operands 
are provided by the user as needed for a particular data set. The 
OPl'ION=CONC operand must be given in the DDEF command for data sets to 
be concatenated, except for the first-defined data set in the concatena­
tion. Each of the remaining data sets in the concatenation must have 
the same DDNAME as the first-defined data set. 

294 



APPENDIX F: CURRENT LINE POINTER 

After a text-editing command has been executed, the current line pointer 
(CLP) is positioned according to certain general rules: 

• If the command is canceled by the system, CLP is unchanged. 
• If the N2 value is equal to the last record in the data set or 

region, CLP is set to the value of N2 plus the value of INCR. 
• If the N2 value is not equal to the last record, CLP is set to the 

line after N2. 

For each text-editing command, CLP is positioned as follows: 

CONTEXT 
to the line following the last line searched (N2); if N2 is the 
last line, eLP is set to N2 plus the value of INCR. 

CORRECT 
to the line after N2; if N2 is the last line, CLP is set to N2 plus 
the value of INCR. 

DISABLE, ENABLE, POST, STET 
CLP is not changed. 

i.DIT 
to the fimt line in an existing data set; to the value of BASE 
(the system default is 100) for a new data set. 

EXCISE 
to the value specified by Nl. 

EXCERPT 
to the value of the last line inserted plus the value of INCR or to 
the next-existing line number, whichever is less. 

INSERT 

LIST 

to the line number of the last data line entered plus the value of 
INCR. If this exceeds the next-existing line number, CLP is set to 
that line number. If no data lines are entered, CLP is set to Nl. 

to the line after N2; if N2 = last line, CLP = N2 + value of INCR. 

LOCATE 
to the record containing the search string if the string is found; 
if the string is not found, CLP is set to the line following N2. 
If N2 is the last line, CLP is set to N2 plus the value of I~R. 

NUMBER 
to the last line renumbered plus the value of INCR or to the next­
existing line, whichever is less. 

REGION 
to the first line in region if the region exists. If the region is 
not currently in the data set, CLP is set to the new region name 
and a line number specified by BASE ( system default is 100) • 

Ri.VISE 
to the value of the last data line entered plus the value of INCR. 
If this exceeds the next-existing line number, CLP is set to that 
line number. If no data lines are entered, CLP is set to N1.. 

UPDATE 
CLP is not changed. 

Appendix F: CURRENT LINE POINTER 295 



~PPEftDIX G: COMMAND FORMATS 

Table 29 summarizes the commcmd formats that appear in Part III. 
appendix can be used as a reference to the fOrmat of a command if 
not need the detail presented in Part III. 

Table 29. Command format summary (part 1 of 6) 

This 
you do 

r---------,.--------------------------------------------_. -------, 
I operation I Operand I 
t---------t------------------------------------------------------i 
I ABEND I . I 
t---------t-------------------------------------------------------~ 
IABENDREG I I 
t---------t-----------------------------------------------------------i 
I A!:)M I NAME=rnod ule name [,STORbD= {Y I N}] I 
I I {.NACROLIB= ({data definition name of symbolic portion, I 
I I data definition name of index portion} [, ••• ])] I 
I I (.vERID=version identification][,ISD=={YIN}][,SYMLIST=(YIN}) I 
I I [,ASMLIST={YIN}](,CRLIsrr=(YINIElJ I 
I I [,STEDIT={YIN}] [,ISDLIsrr={YIN}] [,PMDLIST={YIN}] I 
I I [,LISTDS=lYIN}] [,LINCR={first line nllItlber,increment») I 
~---------t-------------------------------------------------~ 
IAT linstruction location£, ... 1 I 
t---------f-------------------------------------------------------i 
I BACK I DSNAME=data set name I 
~-------t-------------------------------------------------------i 
IBEGIN lapplication name [,application parameters] I 
t------f-----------------------------------------------i 
I BLIP ITIME=,*READ= I 
t---------t------------------------------------------------------i 
I BLIP? I I 
r---------t-----------------------------------------------------i 
I BRANCH IINSTLOC=instruction location I 
t--------t-------------------------------------------------------i 
I BUILTIN INAME=command narne[ ,EXTNAME=bpkd macro name) I 
I I {,PROLIB=data set namel I 
t---------t--------------------------------------------------i 
IC I I t-------t-------------------------------------------------f 
leA I I 
t--------+------------------------------------------------------i 
I CALL I [NAME=entry point namel (,module parameters] I 
t------t--------------------------------------------i 
iCANCEL IBSN=batch sequence number I 
t--------t-------------------------------------------------i 
iCATALOG IDSNAME=current data set name£,STATE={NIU})£,ACC=£RIU}] I 
I (Form 1) I ["NEWNAJilE=new data set name] I 
~---------t------------------------------------ ----i 
I CATALOG IGDG=generation data group name,GNO=number of generations I 
I (Form 2) I {,ACTION={AIO}J (,ERASE=lYIN}] I 
t--------t------------------------------------------i 
ICB I I 
t---------+------------------------------------------------------i 
, CDO I DSNAME=da ta se t name, I 
, I {data definition namel (data definition namel, ••• ) I 
t---------t----------------------------------------------f 
,CDS IDSNAME1==input data set name[(member namel, ••• ))], I 
, I DSNAME2=copy data set name[ (member name)] I 
I I (.ERASE={YIN}] [.COFYBASE=first line number, I 
I I COPYINCR=incrementl [,REPLACE=(RII}] I 
t--------t------------------------------------- " I CHGPASS I [NEWPASWD=password] I l ________ .L--_________________________________ --------" 

296 



Table 29. COJDland fOrJlat summary (part 2 of 6) 
.---".---------- ----- ----, 
I Operation I Operand I 
t--------+---------- - ------ 1 
I CLOSE I [DSNAME=d.ata set name] [,TYPB=TJ I 
I I l,DINAME=data definition name) I 
.-----f -------------------- ~ 
I COBOL INAME=modulename l,OSOPTS=(opt1,opt2 •••• )] I 
I I [,SOURCEDs=sourcedsname) I 
~-------+-------------------------. 1 
I CONl'EXT I lN1=starting position) (,N2-ending position] I 
I I,STRING1=search string(,S~ING2=replacement string) I 
t-------f--- 1 
I CORRECT I [N1=starting line] (,N2=ePiing line] (,SCOL=starting column] I 
I I [,CORMARK=replacement correction characters] (,CHAR={CIMIBl) I 
t--------+--------------- .. 
I DATA IOSNAME=data set name I 
I I ,RTYPE=£IILINEIFTNICARDIS} I 
I I (, DBASE=first line number] [,DINCR=increment] I 
t---------+------------------------ i 
IDDEF IDDNAME=data definition name[,DSORG={VIIVSIVP}] I 
I I ,DSNAME=data set name I 
~----t-------------------------------------___f 
IDDNAME? I [JOBLIB={YI N}] I 
.. --------+----------------------------------1 
I DEFAULT I {operand= [value] } [ , ••• 1 I 
t---------+-------------------------------- .. 
I DELETE I [DSNAME=data set name] I 
..------+---------------------------------------f 
IDI~BLE I I 
t--------t_----------------------------------------------1 
I DISPLAY I data field name or expression [, ••• ] I 
I I id? data field name or expression [, ••• ] I 
t-------f------------------------------------------------i 
IDMPRST IFROMDEV=(23111 23141 24xxl 33301 333B},FRVOLID={volidl (volid I 
I I (,volidl}},TODEV={231112314124xxI33301333B} I 
I I [, TOVOLID={ volid I (volid [. volid] ) IPRIVATE}] I 
I I (,NEWVLID=volid] [,WRITCHK={YESINO}] [,LABEL=£RETAININO}] I 
I I (. ] ,RUNMODE= (BACK I FORE} I 
t---------+---------------------------------------- ----------1 
lOSS? I NAMES= data set namel(data set narnel, ••• ] I 
t--------+-------------------------------------------- of 
I DUMP I data field name or expression [, ••• ] , 
I I id1 data field name or expression (, ••• 1 I 
t---------+--------------------------------------------------------1 
I EDIT IDSNAME=data set name{(member name)] [,RNAME=region name] I 
I I [, REGS IZE=region name lengthl I 
t--------+----------------------------- -----:..----f 
I EJECT I I 
.. -------+-----------------------------------------1 
IENABLE I I 
~-------t_------------------------------------------.. 
I END I I 
r--------t--------------------------------------------------------i 
lERASE I [DSNAME=data set name[hr.ember name)]1l,SHARED=<YINll I 
t------t-----------------------------------------i 
IEVV IDEVICE={2311\231 4 133301333B} I 
I I,VOLUME=(volume serial number (, ••• ]) 1 
~------+--------------------------------------------------------.. 
I EXCERPT 1 DSNAME=data set name [(member name)] [,RNAME=region name 1 I 
I I [,Nl=starting line (,N2=ending line)] I 
~--------+----------------------------------- 1 
J:EXCISE I (Nl=starting line} [,N2=ending line] t '--_______ .1. ______________________________________________ ~ 

Appendix G: Command Formats 297 



Table 29. Command format slBOlary (part 3 of 6) 
,------"..------------------------------------. 
I operation I Operand I 
~------+------------------ --1 
I EXECUTE IDSNAME=data set name I 
~----f---------------------- --1 
I EXHIBIT I OPTION 1= (BWQ [,TYPE={ALLI BSN.nwnber}], I 
I I UID[,TYPE={CONVIBACKIUID.useridIALL}J} I 
~-------t---------------------- ~ 
I EXIT I (SIRTEST={YIN}] I 
r------+-------------- --------f 
IEXPLAIN IMSGIDIORIGINlwordlTEXTIRESPONSEI I 
I I [,message identificationllMSGEIMSGS} I 
~------t---------------------------- I 
I FlLEDEF IDDNAME=ddname , DSORG=VI Ivsl VP[ ,DSNAME=dsname ••• ) I 
I I [ ,MACRO=CONC 1 (,OSDDN=osddname] (, OSlCEYLE=number ] I 
t------+------------------------- 1 
I FlLEREL IOSDrN=osddname I 
l------+-------------- -f 
I FTN INAME=module name [ , S'IORED= lYl N)] [, VERID=ver sion I 
I I identification] I 
I I (,ISO=(YIN1]I,SLIST={YIN}][,OBLIST=(YIN}l[,CRLIST=(YIN}] I 
I 1[, STEDIT={YI NJ] [,MMAP={YI N} 1 I ,BCD= {YI N} ] [, PUBLIC=(Y IN} 1 I 
I I [,LISTDS={YIN1J [,LINCR=(first line number,increment)] I 
t------f--------------------------- -i 
I FTNH I NAME=lllod ulename [, OSOPTS= (opt1 , opt 2, ••• ) J I 
1 II,SOURCEDS=sourcedsnamel I 
tG--AV-----~yp-E=-{SYNID--EFICSW}]----------------- -1 
l------f-------------------------------------f I GDV I DFLT=term I 
t--------f------------------------------------- i 
IGO 1 I 
t-------f---------------- -------------f 
I GO TO I (conunandIOUT) 'comment'} I 
~--------+---------------------------------------------- i IGSV INAME=value or term (,SEARCH=(TIV}] I 
t--------+---------------------------- ---1 
IHASM INAME=module name{,OSOPTS=(optl,opt2, ••• )] , 
I I [,SOURCEDs=sourcedsname] I 
r--------+-;..---------------------------- -~ 
I IF I condition I 
t-------+-----------------------------------------------------------i I INSERT I [N1=starting line] [, INCR=incrementl , 

~--------f--------------------------------------------i I JOBLIBS I DDNAME=dat a definition name I 

t--------+---------------------------------------------i 
I K I I r---------+------------------------------------------------- 1 
IKA I I 
~---------+-----------------------------------_f 
1 KB 1 I 
~--------+----------------------------------------------------------i I KEYWORD I [PROCNAME=command namel J 
t--------+----------------------------------------------f I LINE? I DSNAME=da ta set name [(member name) 1 . I 
I I[,{line numberl (first line number,last line number)}[, ••• l] I 
r--------+--------------------------------- -------1 
I LIST I [N1={starting position I CLP}] t ,N2=ending position] I 
I I [,CHAR={CIHIM}] I 
r---------+---------------------------------------------------------i I LL I LGH=, *TRUNCATE= ,*RES.ET= I L _________ L-___________________________________ J 

298 



Table 29. Command formClt sU/1b.lary (part 4 of 6) 
r---------T------------------------------------------------------------, 
I Operation I Operand I 
~---------+-----------.-----------------------------------------------~ 
I L:U< I NAME=nlodu 1 e narne { , STOReD= {YI N} ) I 
I I [,LIB=data definition namp of library) I 
I I [,VERI[).::cversion identification] l,ISD={YIN}) [,PMDLIST={YINll I 
I I [,i..ISTDS=(YIN}](,LINCR=(first line number,increment)] I 
~--------+-----------------------------------------------------------~ 
I LOAD I [NAME=entry point narneJ I 
t---------+------- ----------.----------------------------------- ------f 
I LOChTE I [Nl=starting position] (, t'i2=endi ng [:.ositionl I 
I I [, STRING=character str ingJ I 
t--------+----------------·----------------------------------------i 
I LOGOFF I I 
t---------+------------------------------------------------------i 
I LOGON luser identification(,password] [,addressing]f,charge nUJTIber] I 
I I [,control section packin91 [,maximum auxiliary storage) I 
I I (,pristine] [,user IVM code] I 
t--------+-----------------------------------------------------------i 
ILTDS I I 
t---------+----------------------------------------------------------f 
IMCAST I [EOB=end-of-block characterl I 
I Il,CONT=continuation character] I 
I If,CLP=break character) I 
I I l, TRP=t ransient statement prefix character] , 
I I l,RCC=concatenation character) I 
I I l, SSM=system scope mask) I 
I t£,USM=user scope mask] I 
I I [,KC=keyboard/card reader character] I 
I 11,RS=carriage return suppression character] I 
, I [, cP=command-prompt string] I 
t---------f---------------------------------------------------------i 
I MCASTAB IIINTRAN=(YIN}]I,OUTRAN={YIN}] I 
t---------t---------------------------------·-------------------------i 
lMODIFY ISETNAME=data set narne[ ,CONF=R] [,LRECL=record length, I 
I I KEYLEN=key length,RKP=key displace1l1ent,RECF~={VIF}] I 
I I [, FTN= {Y IN} ] , 

~---------t------------------------------------------------------------i 
INUMtlER IlNl=starting line] (,N2=ending line1 f,NBASE=base number.] I 
I I [,INCR=incrementJ I 
~---------+-----------------------------------------------------------~ 
lODe IODCMOD=module{ ,OOCPLI=YI!!] l ,ODeERASE=YI~] I 
r---------+------------------------------------------------------------i 
!OSDD? I I 
r---------+------------------------------------------------------------1 
IOSRUN lmodule l,' parm'] I 
~---------t------------------------------------------------------------~ 
IPC? INAMES=£data set namel(data set narnel, ••• ])} I 
r---------+------------------------------------------------------------i 
IPE&'iIT IDSNAME=£data set name\*ALL} I 
I Il,USERID=£(user identification[,._·)I*ALL}] I 
I I [,ACCESS={RIROIRWIU}] I 
r---------f------------------------------------------------------------~ 
IPLI I (NAME=module name] [,PLIOPT=compiler option list] I 
I I l,PLCOPT=language controller options] t 
I I [,SOURCEDs=source data set namel , 
I I [,MERGELST=convert er input 1 ist] I 
I I [,MERGEDs=converter input data set] I 
I I [,MACRODS=intennediate data set name] I 
I Il,EXPLICIT=external names to be changed] I 
I I [,XFERDS=transfer vector data set name) I L _________ ~ ____________________________________________________________ ~ 

Appendix G: Command Formats 299 



Table 29. Command format summary (part 5 of 6) 
r-------~--------------'----------------------------_, 

I operation I Operand I 
r--------+--------------·----------------------t 
IPLIOPT INAME=modulename[,OSOPTS=(optl,opt2, ••• )] I 
I I [,SOURCEDS=sourcedsnamel I 
.. --------+-------------------------------~ 
I POD? I [PODNAME=data set namel [,DATA=Y] [,ALIAS=Y] I 
I I [,MODULE={rnodule name,*ALL}] I 
t--------f-------------------------- ------i 
I POST I. I 
.-----+-------------- ------------------f 
I PRINT I DSNAME=data set narnel,S'IARTNO=starting position] I 
I I [, ENINO=ending position] I 
I I , PRTSP= ED ITfl 12 13 I I 
I I [,HFADER=Hl [,LINES=lines per pagel [,PAGE=P] I 
I Il,ERASE={YIN}] [,ERROROPT={ACCEPTISKIPIEND} 1 I 
I I [,FORM=paper form) [,STATION=station id] I 
r-------+---------------------------- -----i 
IPRMPT IMSGID=message identification I 
I I l,INSERTn=inserted character [ , ••• ]] I 
r----+-------------------------------------- i 
I PROCDEF INAME=procedure name [,PROLIB=data set namel I 
r----f----------------------------------- I 
I PROFILE llCSW={NIY}] I 
r--------f---------------------------------------!f 
I PUNCH IDSNAME=data set name [,J I 
I Il,STARTNo=starting positionll,ENDNo=ending position} I 
I I [,STACK={1121 3 IEDIT})[,ERASE={YINJ]I,FORM=card form] I 
;.-------1 -------------------------------i 
I PUSH I [SIRTEST={YINU I 
.-----+---------------------------------------~ 
I QUALIFY IMNAME=llink-edited module name.)object module name I 
r-------f-----------------------------------------------iI I REGION I [RNAME=region name] I 
~--------+--------------------------------------------------_i 
I RELEASE IDDNAME=data definition narnel "DSNAME=data set name] I 
I I [,{SCRATCH I HOLD} 1 [,{SCRATCHIHOLDl] I 
.-------f----------------------------------------i 
I REMOVE I{statement number[,·.·JIALL}] I 
r-------+-------------------------------------------i 
I RET IDSNAME=data set name,RET=retention code I 
r-------+----------------------------------------1 I REVISE I [Nl=starting line] [,N2=ending line] l"INCR=incrementl I 
r--------+---------------------------------------i 
I R'l'RN I I i------f---------------------------------------_i 
I I (TA=number of devices [,type of device) I 
ISEcrJRE I (, ... ] I 
I I (DA=number of devices [,type of device]) I 
~-----+--------------------------------------1 
ISET I {data location~alue} [, ••• ] I 
r--------+-------------------------------------------i I SHARE IDSNAME=data set name.USERID=owner's user identification I 
I Il,OWNERDS={owner's data set namel*ALL}] I 
.-------+------------------------------------------- i I SPACE INUMLINES=(number lines to space) I 
r--------+----------------------------------------------------------f 
I STACK I I 
t---------+-------------------------------------------------------i 
I STET I I 
.-------+----------------------------------------1 
I STOP I I L _______ J-. _______________________________ . ________________ J 

300 



Table 29. Command fornat summary (part 6 of 6) 

r-------,.------------------------------------------------" 
I Operation I Operand I 

~-------1-------------------------------------------1 
ISTRING I I 
~------+---------------------------------------------------f 
ISYNONYM Ilterm={value]}], ••• ] I 
~-------+---------------~------------------------------------1 
lTIME I [MIN5=mirutes] I 

~---------+-----------------------------------------------------i 
IT.RANSLAT ITYPE,FROM,TO,U5N,CP 1 
~---------+------------------------------------ ----i 
ITRAP IFETCHISTOREIREFl,£location{:locationl] I 
I I I 
I IGR,(nR,···lnR:nRl I 
I I I 
I I BRANCH ( ,LOCATICN{:LOCATIONH ,LOCATION{:LOCATION}}} I 
~-----+-------------------------------------------------1 lTV IDSNAME1=tape data set name[,DSNAME2=VAM data set name) , 
I I (,OVERLAY=Y J N] (,RETAIN=YI N] (,FROMID=USER IDENT] I 
I I {,TOID=USER IDENT] 1 
t------+------------------------------------------------i I UNLOAD I {NAME=entry FOint name] , 

~-------+---------------------------------------------------i 
,UPDATE I J 
~---------+----------------------------------------------------i 
IUSAGE I I 
~--------1--------------------------------------------------_i I VT IDSNAME1=VAM data set nalfe( ,DSNAME2=tape data set name] I 
I I (, ERASEDS1=Y IN) [ ,RETAIN=YI N] I 
I I {,FROMID=USER IDENT] (,TOID=USER IDENT] I 
I I {, CATDS 2=Y IN] I 
t---------+----------------------------------------------------i IW IDSNAME1=current data set nane[,DSNAME2=new data set nane] I 
I 1(, ERASEDS1=Y IN} {,OVERLAY=YI N] (,RETAIN=YI N) I 
I I [, FROMID=USER IDENT] {, TOlD=USER IDENT] I 
t---------+--------------------------------------------------1 IWT iDSNAME=CUrrent data set name,DSNAME2=tape data set name I 
I I I,VOLUME=tape volume number] (,FACTOR=blocking factor] I 
I I [,STARTNO=starting position] [,ENDNO=ending position] I 
I I ,PRTSP={EDITI1121 3 } I 
I I I ,HEADER=Hl l,LINES=lines per pagel l,PAGE=P] I 
I II,ERASE={YIN}] I 

t-------+-----------------------------------------------t 
IZLOGON I I L... ______ .L-________________________________________________ ---' 

Append ix G: Command Forma ts 301 



APPENDIX H: KEY TO VALUES DISPLAYED BY USAGE COMMAND 

Table 30 summarizes the output of the USAGE command. The field abbre­
viations are defined and the meanings of the statistics associated with 
each field are given. 

Table 30. Explanation of output from the usage COlllTand (part 1 of 2) 

,------------T----------------------------------- , 
I I Statistic I 
I Field r---------------~-------------~------------------i 
I Abbreviation I Ration I Current Usage IAcQlmulative Usage I 
t-----------t--------------+-----------t-----------------~ 
ITEMP STOR I Number of pages I Number of pages I Number of page- I 
I (temporary stor-Iavailable for Icurrently occu- Iseccnds utilized inl 
I age) Ithis user"s datal pied by this Istoring this user'sl 
I I sets. luser's data Idata sets since I 
I I tsetse Ithe accumulative I 
I I I I statistic was I 
I I I Ilast set to 0; cal~1 
r---------------i I I culated by sURRing I 
IPERM STOR I I Ithe time (in sec- I 
I (permanent star-I I lands) each page t 
I age) I I I was, or has been, I 
I I I lassigned to the I· 
I I I luser. I 
t---------------t---------------4----------------+------------------~ 
IDA DEV INumber of de- INumber of de- INumber of device- I 
I (direct access Ivices of this Ivices of this Iseconds utilized byl 
I devices) Itype available Itype currently Ithis user since the I 
r---------------~to this user. lassigned to thislaccumulative sta- I 
IMAG TAP I Iuser. \tistic was last setl 
I (magnetic tape) I 1 I to 0; calculated by I 
t---------------i I Isumming the time I 
I PRINTERS I I I (in seconds) each J 
I (high-speed I I I device was, or has I 
I printers) I I I been, assigned to I 
r---------------i I I this user. I 
IRD-PU J I I I 
I (card r~aders I I I I 
I and I I I I 
I card punches) I I I . I 
t-------------+---------------+---------------+----------------~ 
ITSS TASKS IMaximum number INumber of activelNot aFplicable I 
I lof tasks that I tasks currently I I 
I ) can be associ- I associated with I I 
I I ated with this I this USERID. I I 
I jUSERID. I I 1 
r----------------+----------------+----------------+------------------~ 
I BULKIN !Not applicable INot a~plicable ITctal number of I 
I I I Ibulk input (BULKIN)I 
I I I land bulk output I 
I I I I (BULKOU'I) tasks as-j 
r----------------1 I 1 sociated with this 1 
I BULKOUT I I I USERIC since this I 
I I I I accumulati ve sta- I 
I I I Itistic was last setl 
I I I I to o. I l ________________ ~ ________________ ~ ________________ ~ ___________________ J 

302 



Table 30. Explanation of output from the usage command (part 2 of 2) 
r----------------T-----------------------------------------------------, I I statist ic I 
I Field t-------------~---------T----------------_i 
I Abbreviation I Ration lcurrent Usage IAccumulative Usage I 
t------------+----------------t-------------t---------------i 
ICPU TIME IMaxiIIIUm amount ITime spent exe- lTime spent exe- I 
I (execution t1me)Jof CPU executionlcuting in the Icuting in the CPU I 
I Itime permitted ICPU since the ISince this accumu- \ 
I I to usks associ-Icurrent user Ilat.ive statistic I 
I I ated with this I task was logged Iwas last set to 0; I 
I IUSERID; pre- Ion; presented in\presented in the 1 
I Isented in the lthe form mm.ss. Iform hhh.mm.ss, 1 
I lform hhh.mm.ss, Inn, where rom is Iwhere hhh is in I 
I Iwhere hhh is in lin minutes, ss Ihcurs, rom is in 1 
I Jhours, rom is in lis in seconds, Iminutes, and ss is I 
I ,minutes, and S5 land nn is in lin seconds. It is I 
I I is in seconds. Imilliseconds. Ithis value that is I 
, I I Icompared to the I 
I I \ I maximum amount of I 
I I I I CPU execution tiIl'e I 
I I I I permitted (the I 
I I I Iration) to see if I 
I I I lthe user has EX- I 
I I I I ceeded hi s Ii [!Ii t • I 
~·----------+-------------.. -------------+-----------i 
ICONN TIME IMaxinum amount I Time elapsed I Sum of the current I 
I (connect time) lof time that Isince the cur- Itimes of each ter- I 
I Ithis user can bel rent user task Iminal session since I 
I lconnected to thelwas logged on: Ithis accumulative J 
I Isystem from til \presented in thelstatistic was last 1 
I Iterminal; pre- Iform hhh.mrr.ss, Iset to 0; presentedl 
I I s ented in the I wher e hhh is in I in the form hhh. rom. I 
I Iform hhh.mm.ss, Ihours, rom is in Iss, where hhh is inl 
l Iwhere hhh i3 in Iminutes, and ss Ihours, rom is in 1 
, Ihours, 11'11' is in lis in seconds. lminutes, and 5S is 1 
I I minutes, and 55 1 I in seconds; com- I 
I lis in seconds. I \pared to the rrax- I 
t I I I imum amount of the \ 
I I I I connected time in I 
I I I Ithe ration to see I 
I I I I if the user has ex-t 
I I I I ceeded his limit. I l ________________ ~ ________________ ~ ________________ ~ ___________________ J 

Appendix H: Xey to Values Displayed by USAGE Command 303 



APPENCIX I: PL/I COMPILER OPTIONS 

The PLIOPT operand of the PLI command specifies a list of PL/I options 
to be used by the compiler. The list of corr.piler ot:tionsfollowing the 
equal sign in the PIIOFT operand must be enclosed in parentheses unless 
only one value is given. Each option must be separated ty commas. For 
an option that includes a numeric specification (for example. SIZE or 
LINECN'l'). only significant digits need be speci fied. Futhermore. for an 
option that includes more than one numeric specification (for Exanple. 
SORMGIN). the numbers must be enclosed in parentheses and separated by 
comrras. 

There is no required order for specifying the compilEr options. but if 
conflicting options are specified, the last specification in the list is 
used. A brief explanation of the compiler options follows. This infor­
mation is summarized in Table 31. The standa rd def aults are shown in 
the table, but you can specify an alternative. Additional inforwaticn 
appears in PL/I Progralmner's Guide. 

Table 31. Formats of compiler options. abbreviations, and standard 
defaults 

r---------------T----------------------------~------------~----------, 
I I I Abbreviated I Standard I 
I Category I Compiler Option Format I Name I Default I 
~---------------+-----------------------------+-------------+----------~ 
I Control I OPl'=n I 0 I 01 I 
I options J STMTINOS'IMT I STINST J NOS'I~:I I 
I I OBJNM=aaaaaaaa I N I None I 
I I SYNCHKTISYNCHKSISYNCHKE I SKTISKSISKE I SYNCHKS I 
I I I I SYNCHKE I 
.--------------_+-----------------------------+------------_+----------i 
I Preprocessor I MACRO I NOMACRO I M I NM I NOMACRO I 
I opt ions I COMP I NCCOMP I C I NC I COMP I 
I I MACDCKI NOMACDCK I MDI NMC I NOMACDCK I 
~-------------__+-----------------------------+------------_+----------1 
I Input I CHAR60lCHAR48 I C60lC48 I CHAR60 I 
I options I BCDIEBCDIC I BlEB I EBCDIC I 
I I SORMGIN=(rrtlilm,nnn,[ccc]) I SM I n,100) I 
r---------------+-----------------------------+-------------+----------i 
I output I LOADI NOLOAD I LDI NLD I LOAD I 
I options I DECKINODECK I DIND I NODECK I 
.---------~----t-----------------------------+------------_+----------1 
I Listing I LlNECNT=xxx I LC I 50 I 
I options 1 OPLISTI NCOPLIST lOLl NOL I OPLIST I 
I I SOURCE21 NOSOURCE2 I S21 NS2 I SOURCE2 I 
I I SOURCE I NO SOURCE I SINS I SOURCE I 
I I NESTI NCNEST I NT I NNT I NONEST I 
I I ATRINOATR I AINA I NOATR I 
I I XREFI NCXREF' I X I NX I NOXREF I 
I I EXTREFI NOEXTREF I E I NE I NCEXTREF I 
I I LISTl NOLIST I LINL I NOLIST I 
I I FLAGWI FLAGEI FLAGS I F\oil FE IFS I FLAGW I 
r---------------+-----------------------------+-------------+----------1 
I Dummy I SIZE=yyyyyy!yyyKI999999IMAX I SIZE I MAX I 
I options I OBJ IN I OBJOUT* I OBJIN I OBJOUTI OBJOUT I 
I I EXTDIC/NOEXTDIC I ED I NED I ED 1 I-_________ ~ ___________________________ ._J. __ ,_. ________ ._J. _____ ----... 

I ·Note: Formerly referred to as M91/NOM91 I L _____________________________________________________________________ ~ 

304 



CONTROL OPTIONS 

Control options establish the conditions for compilation. 

OPT: This option specifies the type of optimization required: 

OPT=O 
instx'ucts the compiler to keep object-program storage requirerrents 
to a minimum at the expense of object-prograrr execution time. 

01'T=1 
causes object-program execution time to be reduced at the expense 
of storage. 

OPT=2 
has the same effect as OPT=l, but in addition requests the compiler 
to optimize the machine instructions generated for certain types of 
DO loops and expressions in subscript lists. IBM TSS: PLII Lan­
guage Reference Manual includes a discussion of DO loop and 
subscript-expression optimization. 

There is little difference in compilation time for optimization levels 0 
and 1, but specifying OPT=2 can increase compilation time. 

S~M~ or NOSTMT: This option requests the com~iler to produce additional 
instructions that allow statement numbers from the S0urce program to be 
included in diagnostic messages produced during execution of the com­
piled program. The use of this option increases execution time. Howev­
er, you can get information about statement numbers and their associated 
offsets by referring to the table of offsets in the listing. 

OBJNr-l: This option has meaning only in a *PROCESS statement. When the 
PLI command is executed this option is ignored and the valu~ is taken 
from the NAME parameter. The OBJNM option allows you to specify a name 
(from one to eight alphameric characters> for successive compilations in 
a batched compilation. 

SYNCHKT or SYNCHKS or SYNCBKE: Th~se o~tions allow the user to control 
the operation of the PL/I compiler when errors are encountered in the 
-Dictionary" phase of compilation. The effect of each option is as 
follo' .. s: 

• SYNCHKT overr ides the system default. There is nc ~rompting. 

• SYNCHKS causes prompting in conversational rrode or termination in 
nonconversational mode when errors of severity SEVERE are found • 

• SYNChKE causes prompting in conversational mode or termination in 
nonconversational mode when errors of severity SEVERE or ERROR are 
found. 

The system defaults are SYNCHKS in conversational mode; SYNCHKE in non­
conversational mode. 

PREPHOCESSCk OPTIONS 

iJreprocessor options request the services of the preprocessor and speci­
fy how its output is to be handled. 

t>1l'CRO or NCMACRO: specify MACRO when you want to employ the compiler 
preprocessor. 

COMP or NONCOMP: Specify CCMP if you want the PL/I source module pro­
duced by the preprocessor compiled immediately. The source module is 

Appendix I: PL/I Compiler Options 305 



then read by the compiler from the data set identified ry the DDNAHE 
PLlMAC. 

MACDCK or NOMACDCK: Specify MACDCK if you want to save the intermediate 
macro file that has the DDNAME of FLIMAC. NOMAC£CK causes the file to 
be erased after compilation is oomplete. 

INPUT OPTIONS 

Input options specify the format of the input to the compiler. 

CBAR60 or CHAR48: If the PL/I source statements are written in the PL/I 
60-character set, specify CHAR60; if they are written in the 48-
character set, specify CHAR48. IBM Time Shar inq System: pL/r Language 
Reference Manual lists roth character sets. (The compiler accepts 
source programs written in either character set if you specify CHAR48. 
However, use of CHAR48 is inefficient.) 

BCD or EBCDIC: The compiler accepts source statements in which the 
characters are represented by either binary coded decimal (BCD) or ex­
tended binary coded decimal interchange code (EECBIC). Whenever possi­
ble, use EECDIC since BCD requires translation and is less efficient. 
(see PL/I Language Reference Manual for the EBCDIC representation of 
both the 48-character set and the 6o-character set.> 

SORMGIN: This option specifies the extent of the part of each input 
record that contains the PL/I source statements. {SORMGIN represents 
source margin.> The compiler does not process data that is outside 
these limits. The option can also specify the Fositicn in the record of 
a FORTRAN control character. This character is used to format the list­
ing of source statements produced ty the oompiler if you include the 
SOURCB option. The format of SORMGIN is: 

SORMGI N::: ( rrmm, nnn [ , ccc] ) 
, 

where, 
mmm represents the number of the first byte of the field that con­
tains the source stateID€nts 

nnn represents the number of the last byte of the source statement 
field 

ccc represents the number of the byte that will contain the control 
character 

The value rrmm must be less than or equal to nnn, and neither must exceed 
100. The val ue ccc must be outside the limits set by mmm and nnn. The 
valio FORTRAN control characters are: 

blank 
o 

+ 
1 

Skip one line l::efore pr inting 
Skip two lines before printing 
Skip three lines before printing 
Suppress space before printing 
Start new page 

The carriage control character can be ignored by specifying zero. zero 
is the system default. 

OUTPUT OPTIONS 

Output options specify the type of data set that will contain the object 
module. 

306 



LOAD or NOLOAD: Specifying LOAD invokes the same action as the DEC~ 
option, but in addition the load data set will be presented to the 
object dataset converter (CDC), which produces an executable module. 

Note that the load data set is created as a data generation set of depth 
one. Each time the program is recompiled, the last data set is erased 
and replaced with the one currently being generated. 

DECK or NOtECK: specifying DECR causes the compiler to put the object 
code, in card image form, into a data set called LOAD.xxx(O), where xxx 
is the object module name. This option should be ccnsidered in conjunc­
tion with the LOAD or NOLCAD option. 

LISTING OPTIONS 

Listing options specify the information to be included in the compiler 
listing_ 

LINECNT: 'This option specifies the number of lines to be included in 
each page cf a printed listing, including heading lines and blank lines. 
Three decimal digits are used. 

OPLIST or NOOPLlST: This option requests a list showing the status of 
all the cOITFiler options at the start of compilation. 

SOURCE2 or NOSOURCE2: Specify SOURCE2 if you want a listing of the PL/I 
source statements input to the preprocessor. 

SOURCE or NOSOURC~: Specify SOURCE if you want a listing of the PLII 
50urce statements processed by the compiler. The source statements 
listed are either those of the original source program or the output 
from the preprocessor. 

NEST or NONEST: Specify NEST if you want the source program listing to 
indicate, for each statement, the tlock level and the level of nesting 
of a DO group. 

ATR or NOATR: Specify ATR if you want included in the listing a table 
of source program identifiers and their attributes. Attributes with a 
precision of fixed binary (15.0) or less are flagged •••••••••••• An 
aggregate length table, giving the length in bytes of all major struc­
tures and nonstructured arrays in the source program, is also produced 
when the ATR option is specified. 

XREF or NOXREF: Specify XREF if you want included in the listing a 
cross-reference table that lists all the identifiers in the source pro­
gram with the numbers of the source statements in which they appear. If 
you specify ATR and XREF, the two tables are corrbined. An Aggregate 
Length Table is also produced when the XREF option is specified. 

EXTREF or NOEXTREF: Specify EXTREF' if you want a listing of the exter­
nal symbol dictionary (ESD). 

LIST or NOLlST: Specify LIST if you want the machine instructions 
generated by the compiler (in a form similar to as, O~VS assembler lan­
guage instructions). 

FLAGW or FLAGE or FLAGS: Messages are listed in order of their occur­
rence on the user's terminal and in order of their severity in the out­
put listing. There are four classes of diagnostic messages, which are 
graded in order of severity: 

A warning is a message that calls attention ~o a possible error, 
although the statement to which it refers is syntactically valid. In 

Appendix I: PLII Compiler Options 307 



addition to alerting you, it may assist in writing lI'ore efficient pro­
grams in the future. 

An error message describes an attenpt to correct an erroneous statement; 
you are informed of the correction. Errors do not normally terminate 
processing of the text. 

A severe error message indicates an error that cannot be corrected by 
the coropiler. The incorrect section of the program is deleted, but com­
pilation is continued. Where reasonable, the ERROR condition is nade 
known when the object module is executed, if execution of an incorrect 
source statement is attempted. If a severe error occurs during corrpila­
tion, compilation is terminated after the SOURCE listing is produced. 

~ terrr.inal error message describes an error that, when discovered, for­
ces the termination of the compilation. 

You can select the severity at and above which diagnostic messages 
appear on the output listing. The meaning of each option is as follows: 

FLAGW list all diagnostic messages 

FLAGE list all diagnostic messages except warning messages 

FlAGS list only severe errors and termination errors 

DUMMY OPTIONS 

Dummy options are included solely to give com~atability with the PL/I 
(F) compiler. 

Size: This option is used in the FL/I (F) compiler to specify the a­
mount of main storage available. The option has no effect in TSS PL/I 
and is included to give compatability with PL/I. Since there is a 
standard default built into the compiler, you need never take account of 
this option. 

M91 or NOM91: This optj~n is used to indicate if the machine is a Model 
91. It is included for the same reasons as given above for SIZE. 

EXTDIC or NOEXTDIC: This option is ignored, since the ~SS PL/I compiler 
always takes the EXTDIC option. 

308 



APPENDIX J: COBOL/VB COMPILER OPl'ICNS 

This appendix lists and defines the COBOL/VB compiler Options • 

.5IZE=YYYYYYY 
indicates the amount of main storage, in bytes, available for 
compi lation. 

BUF=YYYYYY 
indicates the amount of main storage to be allocated to buffers. 
If both SIZE and BUF are specified, the amount allocated to buffers 
is included in the amount of main storage available for 
compi lation. 

Note: The SIZE and BUF cornpile-tirre parameters can be given in mul­
tiples of K, where K=1024 decimal bytes. For example, 131,072 decimal 
bytes can be specified as 128K. 

SOURCE I NOS0URCE 
indicates whether or not the source module is to be listed. 

CLISTINOLIST 
indicates whether or not a condensed listing is to be produced. If 
specified, the procedure portion of the listing will contain 
generated card numbers (unless the NUM option is in effect), verb 
references, and the location of the first instruction generated for 
each verb. Global tatles. literal pools. register assignments, and 
information about the working-storage section are also provided. 
CLIST and PMAP are mutually exclusive options. 

Note: In nonsegmented programs, verbs are listed in source order. in 
segmented rrograms, the root segment is last. (For programs run with 
the OPTINIZE option the root segment is first, followed by the individu­
al segments in order of ascending priority.) 

DMAP I NODMAP 
indicates whether or not a glossary is t.o be listed. Global 
tables, literal pools, register assignments, and information about 
the working-storage section are also provided. 

PMAP I NOPMAP 
indicates whether or not register assignrrents, gloeal tables, lit­
eral pools, information about the working-storage section, and an 
assembler-language expansion of the source modules are to be 
listed. CLIST and FMAP are mutually exclusive options. 

aote: If anyone of the options ClIST, DMAP, and PMAP is specified, the 
compiler will produce a message giving the hexadecimal length and start­
ing address of the working-storage section. 

VERB I NOVERB 
---- indicates whether procedure-names and verb-names are to be listed 

with the associated code on the object-program listing. VERE has 
meaning only if P~~P or CLIST is in effect. NOVERE yields more 
efficient compilation. 

L~DINOLOAD 
---- indicates whether or not the object module is to be written to a 

dataset named PUNCH. module. 

Appendix J: COBOL/VS Compiler Options 309 



DEC1CINODECK 
indicates whether or not the object module is to be written to a 
LOAD.module. This option is required if the R'odule is to be con­
verted by the object deck oonverter to a TSS loadable module. 

SEQ I NOsEQ 
indicates whether or not the compiler is to check the sequence of 
the source module statements. If the statements are not in 
sequence, a message is printed. 

LI.NECNT= nn 
indicates the number of lines to be printed on each page of the 
compilation source card listing. The number specified by nn must 
be a 2-digit int,eger from 01 to 99. If the LINECNT option is 
oroitted, 60 lines are printed on each page of the output listing. 

Note: The compiler allows for headings three lines less than the user 
nas specified. (For example, if nn=55 is specified, then 52 lines are 
printed on each page of the output E.sting.) 

ZWBI NOZWB 
--- indicates whether or not the compiler generates code to strip the 

sign from a signed external decimal field when comparing this field 
to an alphanumeric field. If ZWB is specified, the signed external 
decimal field is moved to an intermediate field, in which its sign 
is removed, before it is compan=d to the alphanumeric field. ZWB 
complies with the ANS standard, NOZTJE shculd be used when, for ex­
ample, inJ:Xlt numeric fields are >:.0 be oompared with SPACES. 

LVL=A/E/ C/ r I NOL VL 
specifies what level of FIPS (federal Information Processing stand­
ard) flagging is to te used. If flagging is specified, source 
clauses and stat.ements that do not. conform to the specified level 
of FIPS are identified. See the publication IB<i OS Full American 
National Standard COBCL for a complete list of the statements 
flagged at each level. 

Note: If LVL is the default, its assigned value can be overridden at 
compile tiRe with any level except NOLVL. If NOLVL is the SYSGEN 
default, it can be overridden a·t compil e time with any level. If the 
LVL option is in effect, the SYSUT6 dataset must be specified. If both 
LVL=A/B/C/:C and TEful1 are specified, the compiler listing output for 
options such as SOURCE, PMAP, and XREF are not produced. 

FLAGW I FLAGE 
indicates the type of messages that are to be listed for the corrpi­
lation. FLAGW indicates that all warning and diagncstic messages 
are to be listed. FLAGE indicates that all diagnostic messages are 
to be listed, Ult that the warning messages are not to be listed. 

SUPflillPI NOSUPMAP 
indicates whether or not the object codE: listing, and object module 
and link edit decks are to be suppressed if an E-level or D-level 
wessage is generated ty the ccrr.piler. 

SPACEliSPACE21SPACE3 
indicates the type of spacing that is to be used on the source card 
listing generated ~hen SCURC£ is specified. SPACEl specifies 
single spacing; SPACE2 specifies double spacing, and SPACE3 speci­
fies triple spacing. 

TRUNe I NOTRUNC 

310 

applies to mO'l.ernent of CCMPU'l'ATIONAL arithrrE"tic fields. If '!RUNe 
<standard truncation) is specified and the number ot digits in the 
sending field is qreater than the number of digits in the receivin!l 



field, the arithmetic item is truncated to the number of digits 
specified in the PICTURE clause of the receiving field when moved. 
if NOTRUNC is specified, movement of the item is dependent on the 
size of the field (halfward, fullword). 

QUOTE I APOST 
indicates to the compiler that eit.her the double quote Cft) or the 
apo;,;tropne (.) is accer:;tal:le as the character to delineate literals 
and to use that character in the generation of figurative 
constants. 

S'IA'IE I NOSTA'IE 
indicates whether or not. t.he number of the COEOL statement being 
executed at. the time of an abnormal termination is desired. STATE 
identifi, es the numter of the statement and the number of the verb 
beinq executed. 

SYMDMPINOSYMD!!P 
requests a formatted dump of the data area of the oeject program at 
abnormal termination. Wi1:h this opt,ion, the programmer may request 
dynamic dumps of specified data-names at strategic points during 
proyram execution. 

Notes: If 1~he SYMDMP option is in effect, the SYSUT5 data set must be 
filedeffed. If the BATCH opt.ion is requested, symbolic debugging is 
rejected. Specification of the SYMDMP option automatically yields the 
OPI'IMIZE feature, discussed below, and rejects the STATE option because 
SYMDMP output includes STATE output at ablormal termination. 

OPTIMIZEINOOPTIMIZE; 
causes optimized object: code to be generated by the compiler r con­
siderably reducing the use of object program rr.ain storage. In gen­
eral, the greater t.he number of COEOL Procedure Division source 
staterrents, the greater the percentage 0 f reduction in the aIrount 
of main storage required. 

Note The optimizer feature is autoIratically in effect when the SY~DMP 
feature is specified. 

SYNTAX I NOSYNTAX 
CSYNTAXINOCSYNTAX 

indicates whether the source text is to be scanned for syntal< 
errors only and appropriate error message are to be generated. For 
conditional syntax checking (CSYNTAX). a full compilation is pro­
duced so long as no messages exceed the ~ or C level. If one or 
wore e-level or higher severity messages are produced, tbe compiler 
generates the messages but does not generate object text. 

Notes : 

1. When the SYNTAX option is in effect, all of the following compile­
time options are suppressed: 

LOAD DECK NAME 
XREF SYMDMP COUNT 
SXREF TRONC VBSUM 
CLIST OPTIMIZE VBREl" 
NOSUPMAP PMAP STATE 

2. Unconditional syntax checking is assumed if all of the following 
compile-time options are specified: 

NOLOAD 
NOXREF 
NOSXREF 

NOCLIST 
NOPMAP 

SUP.MAP 
NODECK 

Appendix J: COBOL/vS Compiler Options 311 



3. CSYNTAX and SYNTAX are mutually exclusive. CSYNTAX will override 
SYN'IAX. 

NUMINONUM 
indicates whether or not line numbers have been recorded in the 
input and, rather than compiler-generated source numbers, should be 
used in error messages, as well as in PMAP, CLIST, STATE, XREF, 
SXREF, and FLOW. NONUM indicates ·that the compiler-generated num­
bers should be used in error nessages as well as in PMAP, CLIS~, 
STATE, XREF, and SXREF. 

XREF I NOXREF 
indicates whether or not a cross-reference listing is produced. If 
XREF is specified" an unsorted listing is produced l"'ith data-namt.~ 
and procedure-names appearing in two parts in source order. 

SXREFINOSXREF 
indicates whether or not a sorted cross-reference listing is pro­
duced. if SXREF is specified" a s\"Jl:ted listing is produced with 
data-names and procedure-names in alphanumeric order. 

Note: XREF and SXREF are mutually eJu::lluiive. 

LIB I NOLIB 
-- indicates whether or not a coPt aXHYor a EASIS request will be part 

of the COBOL source input stre~"jl\~~ If no library facilities are to 
be used, the specification of NCLlb will save coropilation time. 

BATCH I NOBATCH 
indicates whether or not multiple programs and/or subprograms are 
to be compiled with a single invocation of the compiler. 

NAME I NONAME 
indicates whether or not procJx(!ms In a multiple compilation 
environment will be combined into one or more load modules. If 
NAME is specified., each s\lcceeo:tng program will be put into a 
separate load module. this opti(m will rema~ in effect for the 
entire compilation unless NONAME is specified for an individual 
program. Names for the load n;o(,hlles will be formed according to 
the rules for forming module names from the PROGRAM- ID. 

Note: If the BATCH opt.ion is not specified .. NONAMF will be in effect. 

RESIDENT I NORE SIDE NT 
requests the COBOL LH:ral'."Y .Ma:ni!lj(31:!m~~t feature.. When one program in 
a given region/parti t.ion I:equests the RESl:DENT option, the main 
program and all stmprogral'!llS in that retion/partition should also 
request it. 

Note: The RESIDENT option is autom~tically in effect whej the DYNAM 
option is invoked. 

DYNAM I NODYNAM 
causes subprograms invokecr through the CALL lit.eral statement to be 
dynamically loaded and through the CANCEL statement to be dynamic­
ally deleted at object time (instead of link-edited with the call­
ing program into a siIl<.:Jle load module)" 

Note I When both NOtmsIDENT and NODYNAM are either specified or inplied 
bY default. and a CALL identifier 'I.!rt;atement occurs in the source state­
ment being compiled, the COBOL L.ihr~u:'Y Man8geIJen FACILITY OPTION (RESI­
DENT) is automatically in effect... A printed sta.tement of this is given 
in the compiler output. 

312 



lli!ISYSx 
indicates whether SYSOUT of SYSOUx. where x must be alphanumeric 
(that is, 0-9 or a-z except for t). is the ddname of the file to be 
used for debug output (READY '!RACE, EXHIBIT) or DISPLAY statement. 
The specification in the program that is first to access the file 
is chosen. 

END JOB I NOENDJOB 
indicates whether or not, at the end of each job, COBOL library 
subroutines are to be called to delete modules, free main storage 
acquired through GETMAINs issued by the COBOL program or COBeL li­
brary subroutines, close DCBs opened by subroutines, and free their 
associated buffers. Specifying ENDJOB prevents fragmentation of 
main storage for programs executed on the system after the COBOL 
program. This option takes effect at a STOP RUN statement in any 
program and at a GOBACK statement in a main program only. 

ADVINOADV 
indicates whether or not records for files with WRITE ••• ADVANCING 
need reserve the first byte for the control character. ADV speci­
fies that the first tyte need not be reserved. 

COUNT I NOCOUNT 
indicates whether or not code is to be generated to produce verb 
execution summaries at the end of problem program execution. Each 
verb is identified by procedure-name and by statement number, and 
the number of tilnes it was used is indicated. In addition, the 
percentage of verb execution for each verb with respect to the 
execution of all verts is given. A summary of all executable verts 
used in a program and the number of times they are executed is pro­
vided. COUNT implies VERB. 

DUMP I NODUMP 
---- specifies that an abnormal termination dump is to be produced in 

the event of certain disaster level errors during compilation. 
NODU!'-jP specifies that only an error message is to be produced in 
the event of these disaster level errors. 
The dump produced will contain a four digit user completion code. 
Have the following available before calling IBM for prograrr@ing 
support: source deck, control cards, and corrpiler output. 

V8SUM I NOVBSUf>l 
provides a brief summary of verbs used in the program and a count 
of how often each verb was used. This option provides the user 
with a quick search for specific types of staterrents. VBSUM 
implies VERB. 

VBREF I NOVBREF 
provides a cross-reference of all verbs used in the program. This 
option provides the programmer with a quick index to any verb used 
in the program. VBREF implies VERE and VESUM. 

Options for the Lister Feature 

There are five cowpiler options for using the lister feature of the com­
piler. Note that either LSTONLY or LSTCOMP must be selected for the 
other four options to have meaning unless the BATCH option is specified. 

LSTONLYI LSTCOMP1NOLST 
indicates whether the lister feature is to be used. LSTCN~Y speci­
fies that a reformatted listing is to be Froduced but that no com­
pildtion is to occur. r.S'ICOMP specifies that both a reformatted 
listing is to be produced and compilation is to occur. 

Appendix J: COBOL/VS Corr.piler Options 313 



FDECK I NOFDEC< 
indicates whether a copy of the reformatted source program is to be 
written on the SYSPUNCH da.ta srt~ Since LI;ECl< has meaning only 
with either LSTONLY or LST('''OMP g the lister output will be both a 
reformatted listing and a reformatted deck. 

CDECKINOCDECK 
indicates whether or not COpy statements are to' be expanded intO' 
COPY members in the SYSPOOCH outpute The COpy memcers are to' be 
expanded in the reformatted deck requested through F.cECK. if CDECK 
is specified with NOFDECK, only the expanded COpy statements are 
produced. 

LCCL11 LCCL2 
indicates whether the Procedure Dj.vision part cf the listing is to' 
be in single or dcuble column format. 

L1201 L132 
indicates whether t.be length of each line O'f the refcrmatted list­
ing is to' be 120 er 132 characters lO'ng. 

PRINT{(*ldsname)}INOP~ 
indicates whether or not. the program listing is to' be suppressed, 
placed on the eutput data set s!~cified by dsname, or displayed at 
the terminal. if PRINT is specified" the listing will include page 
headings, linE' numbers O'f the statements in errcr, message identi­
ficatien numbers, severity level::; e and message texts (as well as 
any ether out put requested by SOURCE. CLIS'!, DMAP, PMAP, XREF, O'r 
SXREF). If (*) is specified instead of data-set name, the printed 
eutput is sent to' the terminal. if PRINT alone is specified, a 
listing data set is created on sE'~condCl.ry storage and named accO'rd­
ing to standard dataset naming conventions. NOPRINT specifies that 
no listing is to' be printed. if neither PRINT nor NOPRINT is spec­
ified and any cne or mere of the options SOURCE, CLlST, DMAP, XREF, 
or PMAP are specified, PRINT is the default. Otherwise, NOPRINT is 
the default. 

TERM I NOTERM 

314 

indicates whether or net progress and diagnostic messages are to' be 
printed on the SYSTERM terminal data set. The severity level of 
the messages may te controlled by the FLAG O'ptiO'n. If PRINT (*> is 
specified, then NOTERM is the default, to' ensure that messages 
appear enly once. 



APPENDIX K: FORTRAN IV (H EX'IENDED) COMPILER OPTIONS 

Default options are indicated by an underscore and need never be speci­
fied explicitly. The default options shown are standard IEM defaults; 
when the ccmpiler is installed, each installation may establish its own 
set of default options. 

Options nlay be coded in any order and may be ser::arated t:y blanks or corn­
mas. lis ITiany as 100 characters may be coded. 

SOURCE I NOSOURCE. 
indicates whether the source module listing is to be written. If 
SOUkCE is specified, the sourCe listing is produced in the listing 
dataset. 

LINECOUl'i'l' (number) 
indicates the maximum number of lines to be assigned per page of 
the suurce listing. The number may be in the range 1 to 99. If 
the option is omitted, the compiler assumes 60. 

LIS'IINOLISl 
indicates whether the object n-odule listing is to te written. The 
object module listing consists of statements written in psuedo­
assembler language format. 

OBJECT I NOOBJECT 
indicates whether the object module (not the listing) is to be 
written. 

lJEClq ~ODt.C~ 
indicates 
produced. 
verter to 

whether the object module in card in-age form is to be 
DECK is required to supply input to the object deck con­

produce a TSS loadable module. 

OPTIMIZE({OI112}) I NOOPTIMIZE 
indicates what optimizing level is to be in force. NOOPTIMIZE in­
dicates that no optimization is to be performed, and is equivalent 
to the specification OPTIMIZE(O). OP'IIMIZE(l) specifies that each 
source module is to be treated by the compiler as a single program 
loop and that the single loop is to be optimized with regard to 
register allocation and branching. OPTIMIZE(2) specifies that each 
source module is to be treated as a collection of program loops and 
that each loop is to be optimized with regard to register alloca­
tion, branching, common expression elimination, and replacement of 
redundant computations. 

F'ORMATI NOFORMAT 
indicate-S-whether a structured source module listing is to be writ­
ten. A structured source mOduJe listing indicates loop structures 
and the logical continuity of a source program. This option is ef­
fective only when OPTIMIZE(2) is in effect. 

GOSTMTINOGOSTMT 
inaicates whether internal sequence numbers (ISN) are to be 
generated for the calling sequence to subroutines for a traceback 
map. (a traceback map is a tool used in diagnosing execution 
errors) • 

MAP I NOMAP 
indicates whether a table of names and statement labels used by the 
source program is to be written to the listing dataset. 

Appendix R: FORTRAN IV (H Extended) Compiler Options 315 



XREFINOXREF 
indicates whether a cross reference listing of variatles and labels 
used in the source progr.<l!m hi ·to be written tc the listing dataset. 
If XREF is specified • .lSNs Cl.re generated for each statement in 
which a variable or label is used~ 

NAME(name) 
indicates the name to te given to the main source program. 'Ihe 
name may be from one to six characters. If NAME is not specified, 
the ccmpiler assumes t.he name MAIN. 

BCD I EBCDIC 
indicates whether the source nodule is written in BCD (Binary Coded 
Decimal> or EBCDIC (Extended Binary Coded [ecirral Interchange 
Code). If BCD and EBCDIC statements are intermixed in the source 
module. BCD should be specified. Ee:c characters are not supported 
by the compiler as print control character s or in literal data. 
For example. the carriage control character to specify same line 
pr inting.+. is specified as a 12-8- 6 punch in EBCDIC and as a 12 
~unch in BCD: the compiler recognizes only the EBCDIC code. 
Therefore, programs keypllnch,,~d in BCD Should be carefully screened 
for pctential errors before job sutmission. 

SIZE(MAXlnnnnk) 
indicates the amount of main sto.rage to be allocated to the compi­
lation step. The symtol nnnnK n::!presents the number # multiplied by 
K (1024-bytes). to be allocdt.ed" ',rne number may range froll' 160 to 
9°99. 

If SI ZE (lYlAX) is specified, or if the opt.ion is omitted, the compiler 
uses all available storage in the envirOnIi1ic"nt in which it is operating. 

AUTODBL (value) 
calls the Automatic Precision Increase (API) facility and indicates 
whether data items are to be converted to higher precision. API 
provides an automatic means of converting single precision floating 
pOint calculations to double Frecision accuracy and double preci­
sion calculations to exte.nded precision accuracy. the AUTODEL 
option indicates which particular data types are to oe converted. 

If AUTODBL is omitted, no precision increase is performed. 

ALCINOALC 
indicates whether data items are to be aligned on proper storage 
boundaries. It is often used with the AUTODBL option to restore 
proper storage boundaries when a conversion is performed. 

ANSFINOANSF 
indicates whether the compiler is t.o recognize only those library 
and built-in functions specified by the Aroerican National Standards 
Institute, (ANS), or the entire range of functions specified by IBM 
in the publication IBM FOR'IRAN IV LANGUAGE, Form NO. GC28-6515. 
If ANSF is specified. any function not supported by ANS is consid­
ered to be user-supplied. 

FLAG (I) j.FLAGE (E) I FLAG (S) 

316 

indicates the level of diagnostic messages to be printed. FLAG(I) 
indicates that information messages, warning messages (those 
generating a return code of 4), error messag2s (those generating a 
return code of 8). and severe error messages (generating a return 
code of 12 or higher), are t.O be printed. FLAG (E) indicates that 
only error messages and sev(?re error messages are to be printed. 
FLAG(S> indicates that only severe error messages are to be 
printed. 



DUMPI NODUMP 
iDaicates whether the contents of registers, storage, and files as­
sociated with the compiler are to be printed if an aenormal ter~i­
nation occurs. If DUMP is specified, a filedef statement named 
SYSUDUMP or SYSABEND must be supplied. 

Changing Program options During Co~pilation 

~e programmer may compile more than one source module. To change the 
options for any source module, the programmer precedes the source JIIOdule 
with a card containing the characters .PROCESS in columns 1 through 9 
followed by the options up to coluren 72, which must be left blank and 
which denotes the end of the .PROCESS card. 

An example of the .PROCESS card is: 
.PROCESS LIST,MAP 

If succeeding source modules are not preceded by a .PROCESS card, 
options revert to those specified in the EXEC statement. Any option ex­
cept SIZE IT.ay be specified on the .PROCESS card. 

Appendix K: FORTRAN XV (H Extended) Coapiler Options 317 



APPENDIX L: PL/I OPTIMIZING CCMPILER CPTIONS 

The compiler options are of the following types: 

1. Sirr,ple pairs of keywords: a posit.ive form (for example, NEST) 
that requests a facility, and an alternative negative form (for ex­
ample, NONEST) that rejects that facility_ 

2. Keywords that permit you to provide a value-list that qualifies 
the 0Ftion (for example, NOCOMPILEm}). 

3. A combination of 1 and 2 above. 

The following paragraphs describe the opT.ions in alphabetic order. 

AGGREGATE option 
The AGGREGATE option specifie13 that. the coropiler is to include in 
the compiler listing an aggregate lE'_ngth t.able, giving the lengths 
of all arrays and rna jo.r· structu~(~S in the source program. 

ATTRIBUTES Option 
The ATTRIBUTES option specifiEs LV1i: the compiler is to include in 
the compiler listing a table of som:(';;-prograrr identifiers and 
their attributes. If both ATTRIBUTES and XREF apply. the two 
tables are combined. 

CHARSET Option 
The CHARSET option specifies the character set and data code that 
you have used to create the source progI:am. The compiler will ac­
cept source programs written in t.he 60-character set or the 48-
character set, and in the Ext.ended Bi nary Coded r:ecimal Interchange 
Code {EBCDIC or Binary co:1ed D.:cimal mCD}. 

60- or 48- character Set.: If t.he source program is written in the 
60-character set, s?€cify CHARSl'~':r: ((-'0); if it is written in the 
4B-chara cter set, specify CHAFlSE'l' (4 S). 

'Ihe language reference [{\<.illual for this compiler lists both of these 
character sets. (The compiler "'Jill accer:t- source programs written 
in either character set if CHARSE'I' (l.qj) is specified). 

BCD or EECDIC:If the source program is written in ECr;, specify 
CHARSET (BCD>; if it is written in EBCcrc¥ specify CHARSE'I (EBCD­
IC). The language reference nanual for t.his compiler list.s the 
EBCDIC representation of huth t.he 48 -·eha racter set and the 60-
character set. 

If .both arguments (~8 o.r 60. EBCDIC or BCD> are specified,ttey may 
be in any order and should be separated by a blank or by a corm,a. 

COMPILE option 

318 

The CCMPlLE option specifies that the compiler is to compile the 
source program unless an unrecoverable error was detected during 
preprocessing or syntax checkhlg. The NOCOMPILE option without an 
argument causes processing to stop unconditionally after syntax 
checking. With an argument, continuation depends on the seVErity 
of errors detected so far. as fo11m .. 5 

NOCOMPILE(W) ---- No compilation if a N;;.u::,l.ii<;i. error, sever error 
or unrecoverable error is detected. 



NOCOMPILE{E) ---- No compilation if error, severe error,or unrecov­
erable error is detected. 

NOCOMPILE(S) --- No compilation if a severe error or unrecoverable 
error is detected. 

If the compilation is terminated by the NOCOMPILE option, the 
cross-reference listing and attribute listing may be producedJ the 
other listings that follow the source progran will not be produced. 

CON'IROL Option 
The CONTROL option specifies that any compiler options deleted for 
your installation are to be available for this ccm~ilation. You 
must still specify the appropriate keywords to use the options. 
The CONTROL option must he specified with a password that is estab­
lished for each installation; use of an incorrect ~assword will 
cause processing to be terminated. the CONTROL option, if used, 
must be specified first in the list of options. It has the format: 

CONTROL{'password') 

where "password- is a character string, not exceeding eight 
characters. 

COUNT Option 
The COUNT option specifies that the compiler i s to produce code to 
enable the number of times each statement is executed to b e coun­
ted at execution time. 

The COUNT option implies the GOSTMT option if the STMT option ap­
plies, or the GONUMBER option if the NUMBER option a~plies. 

DECR Option 
The DECK option specifies that the compiler is to produce an object 
module in the form of 80-colu~n card images and store it in the 
data set defined by the DD statement with the name SYSPUNCH. 
Columns 73-76 of each card contain a code to identify the oh jt:ct 
module; this code comprises the first four characters of the first 
label in the externa:'.. procedure represented by the object module. 
Columns 77-80 contain a 4-digit decimal nurnherth e first card is 
numbered 0001, the second 0002, and so on. This o~tion is req 
uired to produce a dataset to be converted to a TSS loadable 
module. 

DUMP Option 
The DUMP option specifies that the com~iler is to produce a for­
matted dump of main s~orage if the compilation terminates abnormal­
ly (usually due to an I/O error or compiler error). This dutrp is 
wr itten on the data set associated with SYSPRINT. 

ESD Option 
The ESD option specifies that the external symbol dictionary (ESD) 
is to he listed in the compiler listing. 

PLAG Option 
The FLAG option specifies the minimum severity of error that re­
quires a message to be listed in the compiler listing: 

FLAGU) 

FLAG (W) 

List all messages. 

List all except informatory messages. If you specify 
FLAG, FLAG{W) is assumed. 

FLAG(E) --- List all except warning and informatory messages. 

Appendix L: PL/I Optimizing Compiler Options 319 



FLAG(S) --- List only severe error and unrecoverable error 
messages. 

GONUfliBER Option 
The GCNUMBER option specifies that the compiler is to produce addi­
tional information that will allow line numbers from the sou'rce 
program to be included in execution-time messages. Alternat ively. 
these line numbers can be der ived by using the offset address, 
which is always included in execution-tirre messages, and the ta.ble 
produced by the OFFSET option. (the Nt.'MBER option must also 
apply. ) 

Use of the GONUMBER option implies NUMEER, NOSTMT, and NOGOSTMT. 

GOS'IMT Option 
The GOSTMT option specifies that the compiler is to produce addi­
tional information that will allow statement numbers from the 
source program to be included in execution-time messages. A Iterna­
tively, these statement nurrbers can be derived by using thE offset 
address, which is always included in execution-time messages, and 
the tablE: produced by the OF},'SET option. (the STM'I option must 
also apply.) 

Use of the GOSTMT, NOGONUMBER option implies STMT and nonumber. 

INCLUDE option 
The INCLUDE option requests the compile~ to handle the inclusion of 
PL/I source statements for programs that use the %INCLUDE st ate­
ment. For programs that use the %INCLUDE statement but no other 
PL/l preprocessor statements, this method is faster than using the 
preprocessor. If the MACRO option is also specified, the INCLUDE 
option has no effect. 

INSOURCE Option 
The INSOURCE option specifies that the ccmpiler is to include a 
listing of the source program (including preprocessor statements) 
in the compiler listing. 'Ihis opt.ion is applicable only when the 
preprocessor is used. therefore the MACRO option must also apply. 

LINECOUNT Option 
The LINECOUNT option specifies the number of lines to be inCluded 
in each page of the compiler listing, including heading lines and 
blank lines. the format of the LlNECOUN'I option is: 

LlNECOUNT(n) 

where "n" is the number of lines. It must be in the range 1 
through 32767, but only headings are generated if you specify less 
than 7. 

LIST Option 

320 

The LIST option specifies that the compiler is to include a listing 
of the object module (in a form similar to IBM assembler language 
instructions) in the compiler listing. The format of the list 
option is: 

LIST[(m[,n) ) 

where ·m" is the number of the first source statement for which an 
object listing is required and "n" is the number of the last source 
statemen t for which an ob ject listing is req11 irede If" n" is 
omitted, only statement "m" is listed, If t.he option NUMBER appli­
es, w m" and "nft must be specified as line numbers. 



LMESSAGE Option 
The LMESSAGE and S~£SSAGE optio~s specify that the compiler is to 
produce messages in a long fonn (specify LMESSAGE) or in a short 
form (specify SMESSAGE). 

MACRO Option 
The MACRO option specifies that the source program is to be pro­
cessed by the preprocessor. 

MAP Option 
The MAP option specifies that the compiler is to produce tables 
showing the organization of the static storage for the object 
module. These tables consist of a static internal storage map and 
the static external control sections. The MAP oFtion is normally 
used with the LIST option. 

MARGINI Option 
The MARGINI option specifies that the corr,piler is to include a 
specified character in the column preceding the left-hand margin, 
and in the column following the right-hand margin of the listings 
resulting from the INSOURCE and SOURCE oftions. Any text in the 
source input which precedes the left-hand margin will be shifted 
left one column, and any text that follows the right-hand margin 
will be shifted right one column. For var iable-length input rec­
ords that do not extend as far as the right-hand margin, the 
character is inserted in the column following the end of the rec­
ord. Thus text outside the source margins can be easily detected. 

the MARGINI option has the format: 

MARGINI ( • c' ) 

where ·c" is the character to be pr.i nted as the rr,argin indicator. 

MARGINS Option 
The MARGINS option specifies the extent of the part of each input 
line or record that contains PL/I statements. The compiler will 
not process data that is outs ide these 1 irnits (but it will include 
it in the source listings). 

The 0Ftion can also specify tte position of an American National 
Standard CANS) printer control character to format the listing fro­
duced if the SOURCE option applies. This is an alternative to 
us ing %PAGE and %SK IP statements (described in the language refer­
ence manual for this compiler). If you do not use either method, 
the input record~ will be listed without any intervening blank 
lines. the format of the ~ARGINS option is: 

t-1AkGI NS ( m, n [ c] ) 

where "m n is the column number of the left-hand margin. 
not exceed 100. 

It should 

"n" is the column number of the right-hand margin. It should be 
greater t.han m, but not greater than 100. 

"c n is the column number of the ANS printer control characters. It 
should not excee~ 100 and sllould be outside the values specified 
for m and n. Only the following control characters can be used: 

(blank) skip one line before printing. 
o skip two lines before pr inting. 
- skip threE: lines l:efore printing. 
+- no skip before printing. 
1 fltart nelA' page. 

Appendix L: PL/I Optimiz ing Comfiler Options 321 



The standard IBM-supplied default. for fixed-length records is I>lAR­
GINS (2,72,0); that for variatle-lengt.h and undefined-length rec­
ords is MARGINS (10,100.0), A zero value for "e" specifies that 
there is ~ printPr control character. 

MDECK Option 
The MDECK option specifies that the preprocessor is to produce a 
copy of its output (see MACRO option) and store it in the da ta set 
defined by SYSPUNCH, the load.wodule dataset. The last four tytes 
of each record in SYSUTl are not copied, thus this option allows 
you to retain the output from the preprocessor as a deck of 80-
column punched cards. 

NAME Opticn 
'.rhe NlINE opt.ion specifies that the compiler is tc Flace a NA~E 
statement as t.he last statement of the object module. When pro­
cessed by the object. deck conve.r.:t.er. ·this NAME statement indicates 
that primary input is complete and causes the specified naIre to be 
assigned to the load module creat.ed from the preceding input (since 
the last NAME statement) * 

It is required if you want the object deck converter to create more 
than one load module from thE; object modules produced by batched 
compilation. 

If you do not use this option* r.he object deck converter will use 
the module name specified in the.' '.:::( . .lnlmand. the format of the NAME 
option is: 

NlIME ( • name' ) 

where name has from one t.hrough eight char,h-::ters, and begins with 
an alphabetic character. 

NEST Option 
the NEST option specifies that t.he 1 ist:in9 reBul ting from the 
SOURCE option will indicateD for each statement:. the block l€Vel 
and the do-group level. 

NUMBER option 
The Nill'lBER option specifies t.ha·t t:.lIe nm-r,bers specified in the 
sequence fields in the source input. records are to be used to 
derive the statement numbers in the list.in9s resulting from the 
AGGREGATE, ATTRIBUTES, LIST, CFl"SE'r. SOUHCE and XREF options. 

If NONtMBER is specified, sn,TT and NOGONtJf..,ll!ER are implied. NUMBER 
is implied by NOSTMT or GONUMBF~R. 

The position of the sequence field can lit specified in the SEQUENCE 
option. Alternatively the following default positions are assumed: 

First 8 columns for undefined-length or variable-Ien9th source 
input records. In this case, S is added to the values used in the 
MARGINS option. 

Last B columns for fixed-length source input records. 

Note: The Freprocessor output has fixed-length records irrespective of 
the original primary input. Any sequence numcers in the primary input 
are repositioned in columns 13-80. 

The line number is calcul ated from the fiy€! right-hand characters of the 
sequence number (or the number specified, if less than five). The~;e 
characters are converted to decimal dig:i1:s if ntc<.~sary., Each time a 
sequence number is found that is not qreai:.er th<:li., the preceding line 

322 



number, a new line number is formed by adding the rr1n1mum integral mul­
tiple of 100,000 necessary to produce a line number that is greater than 
the preceding one. If the sequence field consists only of blanks, the 
new 1 ine number is formed by adding 10 to the preceding one. The rr,axi­
mum line nurrber permitted by the compiler is 134,000,000; numbers that 
would normally exceed this are set to this maximum value. Only eight 
digits are printed in the source listing; line nurrbers of 1.00,000,000 or 
over will be printed without the leading "1.- digit. 

If there is more than one statement on a line, a suffix is used to iden­
tify the actual staterr€nt in the messages. For example, the second 
statement beginning on the line nurrbered 40 will be identified by the 
number 40.2. The maximum value for this suffix is 31. Thus the thirty­
first and subsequent statements on a line have the same number. 

OBJECT Option 
The OBJECT option specifies that the compiler is to store the 
object module that it creates in the data set defined by the ddname 
SYSLIN called punch. module. 

OFFSET Option 
The OFFSET option specifies that the compiler is to print a table 
of statement or line numbers for each procedure with their offset 
addresses relative to the primary entry point of the procedure. 
This information is of use in identifying the statement being 
executed when an error occurs and a listing of the object module 
(obtained by using the LIS~ option) is available. if GOSTMT appli­
es, statement numbers, as well as offset addresses, will be includ­
ed in execution-time messages. if GONUMBER applies, line nurrbers, 
as we 11 as offset addresses, will be included in execution-tiroe 
messages. 

OPTIMI ZE Option 
The OPTIMIZE option specifies the type of optimization required: 

NOOPTIMIZE -- specifies fast compilation speed, but inhibits opti­
mization for faster execution and reduced main storage 
requirements. 

OPTIMIZE (TIME) -- sp€cifies that the compiler is to optimize the 
roachine instructions generated to produce a very efficient Object 
program. A secondary effect of this type of optimization can be a 
reduction in the amount of main storage required for the object 
module. The use of CPTIMIZE (TIME) could result in a substantial 
increase in compile time over NCOPTIMIZE. 

OPTIMIZE(O) is the equivalent of NOOPTIMIZE~ 

OPTIMIZE (2) IS THE EQUIVALENT OF OPTIMIZE (TIME). 

The language reference manual for this compiler includes a full 
discus sion of optimization. 

OPTIONS Option 
The OPTIONS option specifies that the compiler is to include in the 
compiler listing, a list showing the compiler options, to be used 
during this compilation. 

SEQUENCE Option 
The SEQUENCE option specifies the extent of the part of each input 
line or record that contains a sequence nunber. This number is in­
cluded in the source listings produced by the INSOURCE and SOURCE 
option. Also, if the NUMBER option applies, line numbers will be 
derived from these sequence numbers and will be included in the 
source listing in place of statement numbers. No attempt is made 

Appendix L: PL/I Optimizing Compiler Options 323 



to sort the input lines or records into the specified sequence. 
The SEQUENCE option has the format: 

SEQUENCE (m,n) 

where Wm" specifies the oolumn number of the left-hand margin. 
where "n" specifies the column number of the right-hand margin. 

The extent speified should not overlap with the source prograrr (as 
spe cified in the ~~RGINS option). 

SIZE Option 
This option can be used to lirrit the amount of main storage used by 
the ccmpiler. This is of value, for exawple, when dynamically 
invoking the compiler, to ensure that space is left for other pur­
poses. The SIZE option can be expressed in five forms: 

SIZE(YYYYYYYY) -- specifies that yyyyyyyy bytes of main storage are 
to be requested. leading zeros are not required. 

SIZE (YYYYYK) -- specifies that YYYYYK bytes of main storage are to 
be requested (1K=1024). Leading zeros are not required. 

SIZE(-YYYYYY) -- specifies that the compiler is to obtain as much 
wain storage as it can, and then release YYYYYY bytes to the oper­
ating system. Leading zeros are not required. 

SIZE(-YYYK) -- specifies that the compiler is to ottain as much 
rrain storage as it can, and then release YYK bytes to the operating 
system (lK=1024). Leading zeros are not required. 

SIZE(MAX) -- specifies that the compiler is to obtain as much main 
storage as it can. 

The IBM default, and the most usual value to be used is SIZE (MAX), 
which permits the compiler to use as much main storage in the par­
tition or region as it can. 

When a limit is specified, the amount of main storage used by the 
comp ilerdepends on how the operating system has been generated, 
and the method used for storage allocation.The ccmFiler assurres 
that buffers, data management routines, and processing phases take 
up a fixed amount of main storage, but this amount can vary unknown 
to the compiler. 

MESSAGE Option 
See LMESSAGE option. 

SOURCE Option 
The SOURCE option specifies that the compiler is to include in the 
compiler listing a listing of the source program. The source pro­
gram listed is either the original source input or, if the MACRe 
option applies, the output frore the preprocessor. 

STM'I Option 
The STMT option specifies that statements in the source program are 
to be counted, and that this ·statement number" is used to identify 
statements in the compiler listings resulting from the AGGREGATE, 
ATTRIBUTES, LIST, OFFSET, SOURCE, and XREF options. STMT is 
implied by NONUMBER or GOSTMT. If NOSTMT is specified, NUMBER and 
NOGOSTMT are implied. 

S'IORAGE option 
The STORAGE option specifies that the compiler is to include in 

324 



thecompiler listing a table giving the main storage requirement.s 
for the object module. 

SYNTAX Option 
The SYNTAX option specifies that the compiler is to continue into 
syntax checking after initialization (or after preprocessing if the 
MACRO option applies) unless an unrecoverable error is detected. 

The NOSYNTAX option without an argument causes processing to stop uncon­
ditionally after initialization (or preprocessing). loli th an argurrent, 
continuation depends on the severity of errors detected so far, as 
follows: 

NOSYNTAX (lol) -- No syntax checking if a warning, error, severe 
error, or unrecoveratle error is detected. 

NOSYN~AX(E) -- No syntax checking if an error, severe error, or 
unrecoverable error is detected. 

NOSYN~AX(S) -- No syntax checking it a spvere error or unrecover­
able error is detected. 

If the SOURCE option applies, the oompiler will generate a source 
listing even if syntax checking is not performed. 

If the compilation is terminated by the NOSYNTAX 0Ftion. the cross­
reference listing. attribute ll.sting, and other listings that fol­
low the source program will nO"t be produced. 

The use of this option can prevent, wasted runs when debuggin a PL/I 
progI'am that uses the preprocessor. 

TERMINAL 0tti on 
It specifies that some or all of the comf:iler listing produced dur­
ing ccropilation is to be printed at the terminal. If TERMINAL is 
specified without an argument, diagnostic ano informatory messages 
are printed at the terminal. You can add an argument, which takes 
the form of an option list .• to specify other parts of the corrpiler 
listi ng that are to te print:ed at the terrr,ina 1. 

The listing at the terminal is independent of that written on 
SYSPRINT. the following option keywords. their negative forms, or 
their abbreviated forms, can te specified in the option list: 

AGGREGATE, ATTRIBUTES, ESD, INSOURCE, LIST, MAP, OPTIONS, SOURCE, 
STORAGE, and XREF. 

The other options that relate to t:he listing (that is, FLAG, 
GONUi'1EER,GOSTMT, LINECOUN'I, LMESSAGF/SMESSAGE, MARGINI, NEST, and 
NUMBER) will be the same as for t,he SYSPRINT listing. 

XREF Option 
The XREF option specifies that the compiler is to include in the 
compiler listing a list of all identifiers used in the PLII program 
together with the numcers of the statements in which they are 
declared or referenced. Note that label references on END state­
n~nts are not included, reference lists for structures may be 
incomplete, and arrays of structures are always listed with bounds 
of (*>. If both ATTRIBUTES and XREF apply, the two tables are 
combined. 

Appendix L: PL/I Optimizing ComFiler Options 325 



SPECIFYING EXECUTION-TIME OPTIONS 

Por each execution, the IBM or installation default for an execution­
time option will apply unless it is overridden by a PLIXOPT string in 
the source program or by the PARM parameter of the OSRUN statement for 
execution. 

An option specified in the PLIXOPT string overrides the default value, 
and an option specified in the PARM parameter overrides that specified 
in the PLIXOPT string. 

Specifying Execution-time Options in the PLIXOPT String 

Execution-time options can be specified in a source program by means of 
the following declaration: 

DCL PLIXOPT CHAR (len) VAR INIT ('strng") STATIC EXTERNAL; 

where "strng" is a list of options separated by commas, and "len" 
is a constant equal to or greater than the length of ·strng". 

If more than one external procedure in a job declares PLIXOPT as STATIC 
EXTERNAL, only the first string will be link-edited and available at 
execution time. 

Specifying Execution-time Options in the OSRUN Command 

You can also use the FARM field to pass an arguwent to the PL/I main 
procedure. To do so, place the argument, preceded by a slash, after the 
execution-time options. for example: 

OSRUN OPT, 'ISASIZE (10K), REPORT/ARGUMENT 

If you wish to pass an argument without specifying options, it must be 
preceded by a slash. for example: 

OSRUN OPT, PARM='/ARGUMENTI 

~XECUTION-TIME OPTIONS 

The following paragraphs descrite the execution-time options, which can 
be specified in the EXEC statement or in the PLIXOPT string. 

COUNT 
specifies that a count is to be kept of the number of times each 
staterrent in the program is executed and that the results are to be 
printed when the program terminates. 

NOCOUNT 
specifies that statement counting is not to be performed. 

REPORT 
specifies that a report of certain prograw management activity is 
to be printed. The report will be automatically output to a data­
set with the ddname PLIDUMP or PLIDUMP on program termination. 
This includes, for example, the amount of storage that was speci­
fied in the ISASIZE option, the length of the initial storage area, 
and the amount of PL/I storage required. This option may be abbre­
viated to R. The use of the report is described in "execution-time 
Storage Requirements·, below. 

NOREPORT 

326 

specifies that a report is not required. This o~tion may be atbre­
viated to NR. 



STAE 
specifies that when an ABEND SVC, but not a TSS abend, occurs, the 
PL/I library routines are to attempt to raise the ERROR condition 
or to produce a diagnostic message and a PLI[UMP. 

NOSTAE 

SPIE 

specifies that on program initialization, a STAE macro instruction 
is not to be issued. 

specifies that when a program interrupt occurs, the PL/I error 
handler is to be invoked. Under certain circunstances the ERROR 
condition will be raised. 

NOSPIE 
specifies that on program initialization, a SPIE macro instruction 
is not to be issued. This option must not be used if extended pre­
cision variables are used in the PL/I source program. 

The execution-time options are discussed in greater detail in the publi­
cation OS PL/I optimizing Compiler: Execution Logic. 

Appendix .L: pur Optimizing CClq:.iler Options 327 



INDEX 

When more than one page reference is given, the 
major reference is first. All references are within plus or 
minus one of the indicated page numbers. . 

I (exclamation point, response to attention interrup­

tion) 13 

$ (preceding dummy operand) 62 
* (asterisk, response to attention interruption) 13 
% (dynamic statement counter) 51 

(PC command operand) 51 
_ (underscore response to attention interruption) 13 
o/oCOM 44 
o/oCSECT and o/oCOM 44 
%END (end-of-data record) 16 
%ENDDS card 263,265 

ABEND command 92,9,14 
ABENDREG command 92,93,9 
abnonnal termination 17, 93 
absolute generation number, definition 7 
absolute line number 22 
ACC operand 266 

CATALOG command (Form 1) 107 
ACCESS operand 266 

PERMIT command 206 
ACTION operand 266 

CATALOG command (Form 2) 107 
address 

constant 50 
FORTRAN statement number 44 
hexadecimal 47 
specification 42 
variable 44 

alias 216 
ALIAS operand 266 

POD? command 215 
Aliases and member names placard on SYSOUT 

(POD? command) 216 
ALPHABET implicit operand 

C, CA, and CB commands 
K, KA, and KB commands 

apostrophe 
in character constant 49 
in quoted string 23 

arithmetic expression 53 
arithmetic operator 53 
array examples 45 
assembler 93, 34 
ASM command 93,96,34 

328 

266,11,90 
103 
178 

ASMAUGN implicit operand 88, 94 
ASMLIST operand 266 

ASM command 93,94 
asterisk, response to attention interruption 13 
AT command 97,98,40 
AT commands of dynamic statements, deleting 

(REMOVE command) 231 
attention interruption 

interruption of language processing 36 
interruption of privileged program 13 
intermption of user program 13, 14,36 
levels of interruption 13 
resume execiltion after 169,14 
save status after 226 
system response 13 
user ha\,dling routine 14 

attention in terruption prevention switch (IPS) 13 
attributes 

of control sections 38 
of data locations 51 
of V AM data set, changing (RET command) 232 

BACK command 98,99,9,18 
BASE operand 266 

EDIT command 148 
REGION command 227 

batch job, status of 158 
batch sequence number (BSN) 16, 99, 106, I S8 
BCD operand 266 

FTN command 166 
BEGIN command 98,9 
binary constant 5 J 
BKPD macro instruction 102 
BLIP command 100 
BLIP? command i 0 1 
braces (notational symbol) 4 
brackets (notational symbol) 4 
BRANCH command 101, 40 
break characters 

command system transient statement prefIX 
character 281 

command system prompt character 19,282 
definition 19 
entry in data se t 19 
text editor processing 19 
user definition 193 

BREVITY L'1lplicit operand 266, 90 
BSN (see b'ltd, ,;:~quence number) 
BSN ope' ;nll 266 

CANCEL command 106 



BUILTIN command 102,60 
(see also object program definition) 

bulk input 
from card decks 263,265 
from magnetic tape 260, 261 

bulk 1/0 job, status of 158, 159 
bulk output 

to cards 223, 224 
commands 33 
to tape 247 

C, CA, and CB commands 103, 12 
call another object program 105 
CALL command 104,105,28 
calling operand 

analysis of 71 
defaults 72 
nulls 73 
specification of 71 
synonyms 88 

CANCEL command 106 
canceling previous DDEF (RELEASE command) 229 
card input 263 
card punching of VSAM or VlSAM data sets 

(PUNCH command) 223,224 
carriage return suppression character 282 
catalog 

au tomatic 6, 107 
create entry for 

data set 109 
generation data group 109 
generation member 109 
volume 155 

defmition 6 
delete entry for 

private data sets 133 
public data sets 153 
shared data sets 133 

index, creation of 109 
present catalog 205 
update entry 109 

CATALOG command 107-111,20 
catalog entry, removal from user's catalog (ERASE 

command) 152 
cataloged, definition 6 
COD command 111,20 
CDS command I 12, 20 
change characters (CORRECT command) 122 
changing a data set (DISABLE, ENABLE, POST, 

and STET commands) 134-140 
changing attributes of V AM data set (RET command) 

232 

changing contents of data location (SET command) 236 
changing control path of a program (BRANCH 

command) 101 
CHAR operand 266 

CORRECT command 122 
LIST command 182,183 

character constant 49 
character set control (for SYSIN) 11 

(see also, C, CA, CB commands and K, KA, KB 
commands) 

character strings 23 
character switch table 281, 282 
character translation tables 271, 280 
CHGPASS command 116,9,296 
CLEANUP implicit operand 266, 90 

EXIT command 160 
CLOSE command 117, 20 
CLP (see current line pOinter) 
CLP operand 266 

MCAST command 193 
COBOL command 119 
coded value 5 
codes 

message filter 81,82 
miscellaneous control codes 281 
printer carriage 283 
punch 284 
translation character 269, 271 

comma, use in command statement 2, 5 
command creation commands 60 
command execution, resuming 169 
command format summary table 296, 301 
command mode, return to user in 234 
command name 2, 241 
command procedure, definition of 60 
command procedure defmition (pROCDEF 

command) 222, 60 
calling 71 
command creation 60 
deletion 69 
dummy operands 61,62 
editing 68 
entering text 66,63 
examples 61-80 
interruption 68-70 
messages 70 
nesting 65,68 
operand equivalences 74 
operand resolution 69 
procedure library 61 
prompting 63 
sharing 68 
synonyms 88, 241 

Index 329 



termination 63, 151 
command prompt string 282 
command statement 

command name 2 
conditional (IF command) 3,41 

specification 175 
continuation 10 
dynamic (AT command) 3,41 

counter 51 
specification 97 

entering 3, 11 
execution 12 
format 

description 2 
free-form 11 

immediate 3, 41 
invalid 12, 17 
renaming 242 
request for next statement 11 
resolution 12 
series 3, 12 
system request for next 11 
termina tion 11 
user-written 60, 222 

command symbols 44 
command system break character 281 
command system continuation character 281 
commands, creation of 60 
commands, renaming 241 
comment 3 
COMMON block name, FORTRAN 44 
compiler 

FORTRAN (FTN command) 164-168,34 
PL/I (PLI command) 208-212,304,308 

compiler options, PL/I 304-308 
concatenating input records 28 
concatenation character 281 
conditional execution (IF command) 175 
conditional statement 3,41,175 
CONF operand 266 
CONPRMT implicit operand 266, 90 

UPDATE command 250 
CONREC implicit operand 266, 90 

UPDATE command 250 
constants 

address 50 
binary 51 
character 49 
floating-point 50 
hexadecimal 22, 50 
integer 49 
string 23 

330 

CONT operand 266 
MCAST command 

CONTEXT command 
continuation eharacter 
continuation line II 
control, return to user 
control characters 281 

193 
120, 121 
281 

234 

control codes and characters 283,284 
control section 

attributes 38 
packing 191 

conversational mode 10 
conversational task 

conversion to nonconversational task (BACK 
command) 98 

execution 10 
initiation 10 
output 15 
termination 15 

copy data set or members 112 
COPYBASE operand 266 

CDS command 112, 113 
COPYINCR operand 266 

CDS command 112, 113 
copying V AM data set in storage (VV command) 
copying V AM data set to tape 252 
eORMARK operand 266 

CORRECT command 122 
CORRECT command 122-125 
correction characters 122 
counter, dynamic statement 51 
CP operand 266 

MCAST command 193 
Creating a catalog index (CATALOG command) 
creating user's environment (LOGON command) 
creating a VlSAM data set or member (MODIFY 

command) 197 
CRLIST operand 266 

ASM command 93-94 
FTN command 164-165 

CSW operand 266 
PROFILE command 222 

current line pointer (CLP) 266, 19 
definition 19 
displaying value of 182, 22 
positioning rules 295 

DA operand 
SECURE command 235 

DATA command 126-130 
DATA operand 267 

254 

107 
190 



POD? command 215 
data-card data set 262 
data definition name (DDNAME) 

definition 6 
listing (DDNAME? command) 13 I 

data descriptor card 263 
data editing commands 31,32 
data field 

definition of 52 
to dump contents of 147 
to print on SYSOUT 141 

data location 
to change contents of 236 
definition 5 I 

data management commands 20 
DATASET 263 
data set 

automatic cataloging, VAM 6, 108 
cataloging 

data set (CATALOG command) 107 
generation data group (CATALOG co~ 107 
volume (EW command) 154 

cataloged, status 145 
closing (CLOSE command) 117 
copying 

data set (CDS command) 112 
source/copy table 114 
volume 

tape to V AM (TV command) 247 
V AM to tape (VT command) 252 
V AM to V AM (VV) 254 

creating 
VlSAM 21-33, 126, 197 
VPAM member 126,197 
VSAM 33,197 

defining 
atypical (DDEF command) 285-294 
retrieve DDEF (CDD command) 11 ) 
typical public VAM (DDEF command) 129 

deleting catalog entty 
private or shared (DELETE comataad) 1)3 
public (ERASE command) 152 

deleting data defmition 
(RELEASE command) 229 

displaying lines of line data set 
(LINE? command) 180 

displaying tines of line or repon data let 

(LIST command) 182 
editing 

example 28 
V1SAM 21,32 
VSAM 32 

erasing 
after copying (CDS command) 112 
after printing (PRINT command) 21S 
after punching (PUNCH command) 223 
after writing on tape (WI' command) 2S6 
V AM (ERASE command) 152 
VISAM (EXCISE command) 156 

executing, object code (EXECUTE command) t!7 
generation (see generation data set) 
line (see line data set) 
listing names and aliases of VP AM members 

(POD? command) 215 
member 

(see VPAM member) 
modifying VISAM 21-33 

(EXCERPT command) I S4 
(EXCISE command) 1 S6 
(INSERT command) 176 
(MODIFY command) 197 
(UPDA TE command) 250 

organization 129 
partitioned (see VPAM member) 
presenting name and access (PC? command) 20S 
presenting status (DSS? command) 145 
printing BSAM, VSAM or VISAM (PRINT 

command) 218 
punching VlSAM or VSAM (pUNCH command) 223 
region (see region data set) 
renaming 107 
renumbering lines, VISAM (NUMBER. command) 

202 
sharing 

(PERMIT command) 206 
(SHARE command) 237 

source language (see source program module) 
system 

DDvrOUT 253 
PCSOUT 147,285 
SYSIN 11, 15,262 
SYSLIB 61,88 
SYSOUT 15-17 
TSKABEND 18 
USERLIB (see USERLIB data set) 

writing VISAM or VSAM on tape 
(Wf command) 256 

4ata set name (DSNAME) 
defmition 6 
listing (DDNAME? command) 131 

data set sharing (SHARE command) 237 
DBASE operand 267 

DATA command 126 
[)cB operand 267 

Index 33J 



DDEF command 285 
DDEF cancellation (RELEASE command) 229 
DOEF command 129, 130, 285-294 

creating typical data sets 285-294 
creating typical public V AM data sets 129, 130 

DDNAME operand 267 
CLOSE command 117 
DDEF command 129,285 
JOBLIBS command 178 
RELEASE command 229 

DDNAME? command 131 
DDVTOUT data set 253 
DEFAULT command 132 
default value 

(see also the specific operand) 266-269 
system-supplied commands 6, 13, 266 
user-written commands 70, 88 

default values, changing operand (DEFAULT 
command) 132 

defined (data set), definition 7 
defining a command procedure (PROCDEF 

command) 222 
defining and describing a data set (DOEF command) 

129,285 
DELETE command 133,129,285 
deleting AT commands (REMOVE command) 231 
deleting data set lines 233 
deleting from current region (EXCISE command) 1 ~ 
deleting, replacing, reviewing, or inserting VISAM 

lines (MODIFY command) 197 
DEPROMPT implicit operand 267, 90 

DELETE command 133 
ERASE command 152 

describing and defming a data set (DDEF command) 
130,285 

DEVICE operand 267 
EW command 154 

diagnostic message 10 
DIAREG implicit operand 267,85 

ABEND command 92 
DlNCR operand 267 

DATA command 126 
direct call 104. 
DISABLE command 134-140 
Disk dump/restore (DMPRST command) 142 
DISP operand 267 

DDEF command 285-298 
DlSPLA Y command 140 
display module names 239 
displaying commands 179 
Displaying lines or CLP value (LIST command) 182 
DMPRST command 142-144 
DSNAME operand 267 

332 

BACK command 98 
CATALOG command (Form 1) 107 
CDD command III 
CLOSE command J 17 
DATA command 126 
DDEF comrmmd 129-131, 285-294 
DELETE command 133 
EDIT command 148 
ERASE command 152 
EXCERPT command 154 
EXECUTE command 157 
LINE? command 180 
PERMiT command 206 
PRINT command 218 
PUNCH command 223 
RELEASE command 229 
RET command 232 
SHARE command 237 
WT command 256 

DSNAMEI operand 267 
CDS command 112 
TV command 247 
VT command 252 
W command 254 

DSNAME2 operand 267 
CDS wmmand 112 
TV command 247 
VT command 252 
W command 254 
WT command 256 

DSORG operand 
DDEF command 129, 285-294 

DDS? command 145 
dummy operand 

examples 61,74,75 
external string 62 
internal string 62 
specification 61 

dump and restore VAM2 disk 142 
DUMP command 147,37 
dump tapes, printing TSS 218 
dynamic statem.ent 

counter 51, 97 
definition 41,3 
deleting (REMOVE command) 231 
specification 97 

EBCDIC mode 5-10 
EDIT command 148,21 
editing 

(see also data set) 
data 



text 21 
EJECT command 150 
eliminating nonconversational task or job 

(CANCEL command) 106 
ellipsis (Notational symbol) 5 
ENABLE command 134, 21 
END command 151,21 
ending task, notifying system (LOGOFF command) 190 
ENDNO operand 

PRINT command 218 
PUNCH command 223 
WT command 256 

entering hexadecimal data 29 
Entry from user's catalog, deleting (DELETE 

command) 133 
EOB character 

command system continuation 281, 11 
source list end of block 281 

EOB operand 267 
MCAST command 193 

equivalences, operand 74 
ERASE command 152 
ERASE operand 267 

CATALOG command (Form 2) 107 
CDS command 112 
PRINT command 218 
PUNCH command 223 
WT command 256 

ERROROPT operand 267 
PRINT command 218 

EVV command 154, 20 
EXCERPT command 154,21 
EXCISE command 156,21 
excIanlation point (response to attention interruption) II 
EXECUTE command 157, 9 
execution time, specifying (TIME command) 243 
EXHIBIT command 158, 9, 298 
EXIT command 160 
EXPLAIN command 161 
explanation message 85 
EXPLICIT operand 267 

PLI command 208 
express mode 36 
expression 

arithmetic 53 
logical 55 
undefined 54 

extended message 86 
external symbol 43 
EXINAME operand 267 

BUILTIN command 102 

FACTOR operand 267 
wr command 256 

FILEDEF command 163 
FILEREL command 164 
fllter codes, message 82 
floating-point constant 50 
folded mode II, 179 
FORM operand 267 

PRINT command 267, 218 
PUNCH command 223 

FORTRAN compiler 34,164 
FORTRAN control characters 

printer 283 
punch 284 

FORTRAN statement number 43 
FROMDEVoperand 267 

DMPRST command 142 
FRVCUD operand 267 

DMPRST command 142 
FTN command 164,34 
FIN operand 267 

MODIFY command 197 
FfNH command 167 
full (unfolded) mode 179 

GAV command 168 
GOG operand 267 

CATALOG command (Form 2) 107 
GDV command 169 
generation data group, definition 7 
generation data sets 

catalog 107 
generation data group 7 
list 37 
generation names 7 
number 7 

generation names, defmition 7 
GNO operand 267 

CATALOG command (Form 2) 107 
GO command 169, 
GOTO command 170 
GSV command 172 

Halting execution (STOP command) 240 
HASM command 172 
HEADER operand 267 

PRINT command 218 
WT command 256 

hexadecimal 

Index 333 



constant 22, 50 
data, entering 29 
location 49 

HEXSW implicit operand 267,90 
CONTEXT command 120 
UPDATE command 250 

HOLD operand 267 
DDEF command 285-298 

IF command 175, 37 
immediate statement 3,41 
implicit operands 90 
INCR operand 267 

EDIT command 148 
INSERT command 176 
NUMBER command 202 
REGION command 227 
REVISE command 233 

information concerning data sets (PC? command) 205 
information message 10 
initiating or resuming execution (RUN command) 235 
input records, concatenating 28 
INSERT command 176,21,23 
inserting, deleting, replacing, or reviewing VISAM 

lines (MODIFY command) 197 
inserting from data set to data set (EXCERPT 

command) 154 
inserting terminal-entered lines (UPDATE command) 
250 

insertion of characters (CORRECT command) 122 
INSERTn operand 267 

PRMPT command 221 
INSTLOC operand 267 

BRANCH command 101 
instruction location 56 
integer constant 49 
internal symbol 

definition 43 
qualification 43, 44 
reference to in loaded program 216 
subscripted 45 

internal symbol dictionary (ISO) 42,43,56 
internal symbols in module, referencing (QUALIFY 

command) 226 
interruption, attention 

(see attention interruption) 
INTRAN operand 267 

MCAST AB command 195 
Introducing nonconversational task to system 

(EXECUTE command) 157 
invoking Linkage Editor (LNK command) 185 
invoking object module or procedure (CALL 

command) 104 

334 

Invoking the assembler (ASM command) 93 
invoking the text editor (EDIT command) 148 
I/O device 207,215,238,258 

releasing 229 
reserving 235 

ISD 42,43,56 
ISO operand 267 

ASM command 93 
FTNcommand 
LNKcommand 

ISO LIST operand 

164 
185 

267 
ASM command 93 

Job library (see JOBLIB) 
JOBLIB 

copy 112, 232 
define 285 
release 229 

JOB LIB operand 267 
DDNAME? command 131 

JOBLIBS command 178 

K, KA, and KB commands 178, 12, 13 
KC operand 267 

MCAST command 193 
KEYLEN operand 267 

DDEF command 287 
MODIFY command 197 

KEYWORD command 179 
KEYWORD operand, renaming (SYNONYM 

command) 241 
KEYWORD operand representation 3-4 
KEYWORD, self-defining 4 

LABEL operand 267 
DDEF command 285 
DMPRST command 142 

language processing commands 
(see also source language processing) 
ASM command 93 
FTN command 164 
LNK command 185 
PU command 208 
terminating processing of (END command) 151 

language processor controller 
(see also EDIT, PROCDEF, PLI commands) 
termination 151 

LIB operand 267 
LNK command 185 

library 
job (see lOBUB) 



macro instruction 36 
procedure 61 
system 88, 61 
user (see USERLIB) 

LIMEN implicit operand 267,82,90 
limiting execution time (TIME command) 243 
LINE? command 180 
LINCR operand 267 

ASM command 93 
FfN command 164 
LNK command 185 

line, definition 7 
line data set 

(see also data set) 
creating 148, 197 
definition 22 
displaying lines 

LINE? command 180 
LIST command 182 

editing 148, 26 
fonnat 22 
modifying 

(EXCERPT command) 154 
EXCISE command 156 
INSERT command 176 
MODIFY command 197 
UPDATE command 250 

renumbering 
NUMBER command 202 

line number 
absolute 22 
offset 24 
prompting 24 
relative 22 
resolution 23, 24 
specification 23, 24 

LINE operand 267 
LINE? command 180 

Line printing of data set (PRINT command) 218 
LINENO implicit operand 267,85 

DATA command 126 
MODIFY command 197 

LINES operand 267 
PRINT command 218 
WI' command 256 

lines presented from line data set (LINE? command) 
180 

lines to be replaced, specifying (REVISE command) 
233 

link-edit modules, how to 185 
link-edited module name 57 
LIST command 182 

list DDNAMES and associated DSNAMES 
(DDNAME? command) 131 

LISTDS operand 267 
ASM command 93 
FTN command ] 64 
LNK command 185 

listing data sets, control of 37 
LL command 184 
LNK command 185 
WAD command 187 
LOC operand 267 

RUN command 235 
WCATE command 188 
locations for post-AT-command command 

executions 97 
logical expression 55 
logical operators 55 
LOGOFF command 190 
WGON command 190 
LPC commands (see language processor controller) 
LPCXPRSS operand 267 

ASM command 93 
FTN command 164 
LNK command 185 

LRECL operand 267 
DDEF command 285 
MODIFY command 197 

LTDS command 19,192 

MACRODS operand 268 
PLI command 208 

MACROLIB operand 268 
ASM command 93 

MAP operand 268 
PLI command 208 

MCAST command 193 
MCASTAB command 195 
member name, definition 7 
member names and aliases placed on SYSour 
(POD? command) 215 

member processing (CDS command) 112 
MERGEDS operand 268 

PLI command 208 
MERGELST operand 268 

PLI command 208 
message 

classification 10 
diagnostic 11 
explanation 81 
filter codes 82 
flltering 81 

Index 335 



generation 81 
identification code 87 
information 10 
file 

construction 82 
system 81 
user 81 

filtering 81 
formats 

explanation 87 
extended 86 
response 86 
standard 86 
word explanation 87 

mode 82 
reference 83 
severity 82 
types 84,10 

message explanation (EXPLAIN command) 161 
message me manipulation and use (PRMPf 

command) 221 
metasymbols (notational symbols) 4 
MINS operand 268 

TIME command 243 
MMAP operand 268 

FTN command 164 
MNAME operand 268 

QUALIFY command 226 
mode, task 

conversational 
nonconversational 15 
switching 17 

MODIFY command 197, 31 
MOD REP operand 268 

ASM command 93 
FTN command 164 
LNK command 185 

module name, displaying 239 
module name, link-edited 57 
MODULE operand 268 

POD? command 215 
moving JOBUB to logical top oflist (JOBLIBS 

command) 178 
MSGID operand 268 

PRMJ!f command 221 
MTT program user connection to (BEGIN 

command) 99 

N I operand 268 

336 

CONTEXT command 120 
CORRECT command 122 
EXCERPT command 154 

EXCISE command 156 
INSERT command 176 
LIST command 182 
LOCATE command 188 
NUMBER command 202 
REVISE command 233 

N2 operand 268 
CONTEXT command 120 
CORRECT command 122 
EXCERPT command 154 
EXCISE command 156 
UST command 182 
LOCATE command 188 
NUMBER command 202 
REVISE command 233 

NAME operand 268 
ASM command 93 
BUILTIN command 95 
CALL command 104 
FTN command 164 
LNK command 185 
LOAD command 187 
PLI command 208 
PROCDEF command 222 
UNLOAD command 249 

names 
data defInition 6 
data set 6 
generation 7 
member 7 
module 57 
region 23 

NAMES operand 268 
DSS? command 145 
PC? command 205 

NBASE operand 268 
NUMBER command 202 

nested PROCDEFs 65 
nested procedures 67 
NEWNAME operand 268 

CATALOG command (Form 1) lO7 
NEWP ASWD operand 268 

CHGP ASS command 116 
NEWVLID operand 268 

DMPRST command 142 
nonconversational SYSIN data set 15 
nonconversational task 

ABEND control 17 
execution 16 
initiation 16, 157 
input from card reader II 
output 17 
reserling devices for 234 



termination ) 06 
normal string 25 
notification at specific program locations (AT 

command) 97 
null value 73 
NUMBER command 202 

object module, loading into virtual storage (LOAD 
command) ) 87 

object module name 57 
object program 

defining (BUILTIN command) 102 
invoking as command (BUILTIN command) 102 
operand resolution 103 

object program module 
call 104,38 
direct call 105 
execute 159,235 
interrupt execution 10, 13,37,97 
link 185 
load 187,103 
modifying 39 
name 57 
placement in library 35 
program control 40-59 
qualify internal symbols 226, 43 
resume execution 169 
run 235, 157 
stop execution 240 
unload 249 

OBLlST operand 268 
FTN command 164 

OOC command 204 
offset, character position 24 
operand 

for system-supplied commands 
defaults 6, 13 
equivalences 74 
field 2 
format 4 
keyword 3 
multiple 2 
positional 3 
resolution 11 
separator 2 
synonyms 73 

for user-written commands 
calling 71 
defaults 72, 132 
dummy 61 
equivalences 74 
keyword 72 
null value 73 

positional 71 
resolution 75 
separator 2 
specification 61 
substitution 76 
synonyms 73 

implicit 89 
notation 

keyword 3-4 
position 3-4 

operation field 2 
operation format 5 
operators 

arithmetic 53 
logical 55 
relational 55 

OPTION operand 268 
DDEF command 285 

OPTIONl operand 268 
EXHIBIT command 158 

OSDm command 205 
OSRUN command 205 
Output data set on tape (Wf command) 256 
OUTRAN operand 268 

MCASTAB command 195 
OWNERDS operand 268 

SHARE command 237 

PADCHAR operand 268 
PLl command 208 

PAGE operand 268 
PRINT command 218 
WI command 256 

PARAM line 61 
passwords 1 ] 6 
PC? command 205 
PCS commands 40 
PCS examples 58 
PCS operands, renaming (SYNONYM commands) 241 
PCSOUT data set 147,245 
PERMIT command 206 
placing data fields in data set (DUMP command) 147 
PL/I compiler 

introduction 34-57 
invoking (PLl command) 208 
options 299 

PLeOPT operand 268 
PLI command 208 

PU command 208 
format of output 211 

PLIOPT command 213 
PLIOPT operand 268 

PLIcommand 208 

Index 337 



PLIPACK operand 268 
PLI command 208 

PMDLIST operand 268 
ASM command 93 
LNK command 185 

POD? command 215 
PODNAME operand 268 

POD? command 215 
positional operand 3-4, 71 
POST command 134,217,21 
post-LOGON automatic procedure invocation 

(ZLOGON command) 259 
PPLI 91 

PPLI 
COBOL 119,309 
FlLEDEF 163 
FILEREL 164 
FTNH 167,315 
HASM 172 
OOC 204 
OSDD? 205 
OSRUN 205 
PCS 39 
PLIOPT 213,318 
restrictions 91 

preftxing region name (REGION command) 227 
PREXP AND operand 268 
PRINT command 218,33 
printer carriage control codes 283 
printing contents and names of data fields (DISPLAY 

command) 140 
PRISTINE operand (LOGON command) 190 
PRMPT command 221 
PRMPT mac TO 81 
PROCDEF command 222,61 

(see also command procedure definition) 
procedure call 61 
procedure library 62, 13 
PROCNAME operand 268 

KEYWORD command 179 
profIle, user 

(see user profIle) 
profIle character switch table 281, 197 
PROFILE command 222, 88, 89 
program control 

applications 41 
commands 40 
examples 58 
functions 39,40 

program execution, resuming at different location 
(BRANCH command) 101 

program management commands 34 
program module 

(see object program module or source program 
module) 

338 

Program Product Language Interface 91 
program products supported under TSS 91 

PROUB operand 268 
BUlLTlN command 102 
PROCDEF command 222 

prompt character 282 
prompting 

after EDIT command 148 
wmmand system 11 
definition 24 
line 24 
PROCDEF 66 
text t;.ditor 24 

PROTECT operand 268 
DDEF command 285 

prototype character translation table 266 
prototype profile (see user proftle) 
PRTSP op'Brand 268 

PRINT command 218 
WI commarld 256 

PUBLIC operand 268 
FTN command 164 

PUNCH commaIld 223,33 
punch control codes 284 
PUSH command 225 

QUALIFY command 226, 40 
quoted string 25,49 

RCC operand 268 
MCASTAB command 195 

RECFM operand 268 
DDfF command 285 
MODIFY command 197 

record format 
line 22 
region 24 
VISAM variable length 86 

reference internal symbols in modules (QUALITY 
command) 226 

reference message 83 
REGION command 227,21 
region, defmition 24 
region data sd 

create 228, 24, 26 
definition 24, 25 
edit 21 
example 25 
format 25 

re~.~Dn nan •. e 24, 228 
(see also REGSIZE operand) 

register references 49, 52 



REGSIZE operand 268 
EDIT command 148 

REJMSG operand 268 
PLI command 208 

relational operators 53 
relative generation number, definition 7 
relative line number 22 
RELEASE command 229 
REMOVE command 231 
removing a module (UNLOAD command) 249 
renaming a data set (CATALOG command) 107 
renaming commands and operands (SYNONYM 

command) 24] 
renumbering lines (NUMBER command) 202 
REPLACE operand 268 

CDS command 112,] ] 3 
replacing a string of characters (CONTEXT 

command) 120 
replacing existing lines, starting point (REVISE 

command) 233 
replacing, reviewing, inserting, or deleting 

VISAM lines (MODIFY command) 197 
replacing user profile with task profile (PROFILE 

command) 222 
reselVing devices for private volumes (SECURE 
command) 234 

resource control 10 
resources of system, statistics (USAGE command) 251 
response message 85 
restrict or permit sharing cataloged data sets 
(PERMIT command) 206 
resuming execution (GO command) 169 
resuming or initiating execution (RUN command) 235 
RET command 231 
RET operand 268 

DOEF command 285 
RET command 231 

retrieving and writing tape data set (TV command) 247 
retrieving prestored DDEF commands (COD 

command) 11 I 
RETURN key 11 
reviewing, inserting, deleting, or replacing VISAM 
lines (MODIFY command) 197 

REVISE command 233,21 
use of 23 

RKP operand 268 
DDEF command 285 
MODIFY command 197 

RNAME operand 268 
EDIT command 148 
EXCERPf command 154 
REGION command 227 

RTRN command 234 
RTYPE operand 268 

DATA command 126 
RUN command 235 
RUNMODE operand 268 

DMPRST command 142 

SCOL operand 269 
CORRECT command 122 

scope, word explanation 87 
search for specified character string (LOCATE 

command) 188 
SECURE command 234 
self-derming keyword 4 
semicolon, in command statement 2 
SET command 236 
SETNAME operand 269 

MODIFY command 187 
SHARE command 237 
SHARED operand 269 

ERASE command 152 
sharing cataloged data sets, restriction or 

permission (PERMIT command) 206 
shutdown 17 
SIRTEST operand 269 

EXIT command 160 
PUSH command 225 

SUST operand 269 
FTN command 164 

source language processing 
assemble 93, 34 
compile 164,34 
conversational 35 
enter statements 34 
link edit j 85,34 
listing data set control 37 
nonconversational 34,35 
print listing 38 

source list, defmition 7 
source list EOB character 281 
source program module 

assembly 93,34 
compilation 164,34 
initiate execution 235 
modification 35-37 
prestored 34 
resume execution 235 

SOURCEDS operand 269 
PU command 208 

SPACE command 239 
SPACE operand 269 

DDEF command 285 
special graphic charac ters 281 
SSM operand 269 

MCAST command 193 

Index 339 



STACK command 239 
STACK operand 269 

PUNCH command 223 
standard message 84 
ST ARTNO operand 269 

PRINT command 2 18 
PUNCH command 223 
wr command 256 

STATE operand 269 
CATALOG command (Form I) 107 

statement number 
AT command 97 
FORTRAN 97 

statistics in system presented to user 
(USAGE command) 251 

status of cataloged data sets (DSS? command) 145 
STEDIT operand 269 

FIN command 164 
STET command 134- 139 
storage assigned, freeing of (ERASE command) 152 
STORED operand 269 

ASM command 93 
FTN command 164 
LNK command 185 

storing V AM data sets on tape (VT command) 252-254 
STOP command 240 
STRING command 241 
string constants 

definition 25, 26 
display 140 
normal 26 
quoted 26 

STRING operand 269 
LOCATE command 188 

STRING 1 operand 269 
CONTEXT command 120 

STRING 2 operand 269 
CONTEXT command 120 

subscripted symbols 45 
switching modes 18, 98 
symbol 

command 88, 44 
external 43 
internal 43 

reference in loaded module 226 
subscripted 45 

SYMLlST operand 269 
ASM command 93 

synonym 
calling operands 89 
create 241,89 
examples 57 
substitution 58 

SYNONYM command 241, 88 

340 

SYSIN 
character control II 
data set 

conversational 10 
nonconversational 15, 262 

device control 10 
keyboard/card reader switch 282 
operand 269 

SYSINX 269,33,65 
SYSINX operand 269,64 
SYSLIB 61 
SYSOUT 

conversational 15 
nonconversational 18 

SYSPRX 88 
system default values 266-269 
system library (SYSLIB) 88, 61 
system scope ma:lk 281, 87 

tab character 
limitation 11 
use in command 2, 3 

tape output of data set (Wf command) 256 
task, conversational 

definition 9 
initiation 190 
interruption, conversational 13 
nonconversational (see non conversational task) 

task management commands 9 
task proftle 

change 88 
enter in USERLIB 88 

task profIle replacing user proftle (PROFILE 
command) 22 

task status, return to post-LOGON (ABEND 
command) 92 

terminal data placed in current region (INSERT 
command) 176 

terminal-entered lines, inserting (UPDATE 
command) 250 

text editing commands 21 
text editor 

examples 27, 28 
invocation 26,60, 148,228 
prompting 24, 30 
termination 27,151 

TIME command 243 
time-limit for task 10, 243 
TODEV operand 269 

DMPRST command 142 
TOVOLID operand 269 

DMPR.3T command 142 
TRANT AB operand 269 



transaction table 26 
TRANS LA T command 243 
TRAP command 40, 245 
TRP operand 269 

MCAST command 193 
TSKABEND data set 17 
TV command 247 
TYPE operand 269 

CLOSE command 117 
EXHIBIT command 158 

underscore 
as break character 281 
as system prompt character 282, 11, 13, 19 

UNIT operand 269 
DDEF command 285 

UNLOAD command 249,40 
UPDATE command 250,21 
UPDTXFER operand 269 

PLI command 208 
USAGE command 251, 9 
USAGE command output 302,303 
user identification 9 
user library (see USERLlB) 
user limits table 10 

(see also USAGE command) 
user profile 

character switch table 281 
definition 88 
erase 88 
prototype 88 

user profile management commands 88 
user profile replaced by task proftle 
(PROFILE command) 222 

user prompter 81 
user scope mask 87 
user-written commands 60, 222 
USERID operand 269 

PERMIT command 206 
SHARE command 237 

USERLIB, user proftle 88 
using another's data sets (SHARE command) 237 
USM operand 269 

MCAST command 193 

validating user to system (LOGON command) 190 
V AM data set, changing attribu tes of (RET 

command) 231 
V AM data set to tape (VI' command) 252 
V AM volume cataloging (EVV command) 154 
variable addresses 43 
VERID operand 269 

ASM command 93 
FTN command 164 
LNK command 185 

vertical stroke (notational symbol) 4 
VISAM data set (see data set) 
VISAM or VSAM data set punched into cards 

(pUNCH command) 223 
volume identiflcation 6 
VOLUME operand 269 

DDEF command 285 
EVV command 154 
WT command 256 

VPAM member 
(see also object program module) 
copy 111 
create 126, 148 
request information about 215 

VSAM data set (see data set) 
VSAM data set creation (DATA command) 126 
VSAM or VISAM data set punched into cards 
(pUNCH command) 223 

VT command 252, 20 
VVcommand 254,20 

word explanation message 85 
word explanation scope 87 
WRITCHK operand 269 

DMPRST command 142 
writing and retrieving tape data set (TV command) 2f7 
WI' command 256, 33 

X%, use of 28-30 
XFERDS operand 269 

PLI command 208 

ZLOGON command 248,10,259,9 

Index 341 



GC28-2001-8 

1a ...... 1I' ........ MachJneIa Corpot'llUon 
D ... ,... ............ " 
111S ".a.I.I' AHR .... White Plel ... New York 10104 
(U •• .A ...... ) 

.... ......, ,..... CelJteNtieft 
aee 11 __ .. , A ........ WftICe Plain •• New York 10801 
ChMrR ...... 

c 


